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ABSTRACT

PARAMETER ESTIMATION FOR THE FAST AND SLOW

SUBSYSTEMS OF A PROCESS OPERATING

IN COUPLED SINGULARLY PERTURBED FORM

BY

Michael Joel Cook

The input and output of a deterministic singularly

perturbed system, operating in coupled form, are observed

over a finite time-interval. The problem under considera-

tion is to determine the system parameters of the decoupled

subsystems from these measurements. The nature and for-

mulation of the singularly perturbed system are examined

along with the fundamentals of systems identification.

A finite time-interval identification method is inves-

tigated which utilizes a filter to annihilate the initial

condition response, and models disturbances as solutions

to a homogeneous differential equation. The adaptation

of this method is applied to the singularly perturbed

problem, and a unique procedure for its implementation

is presented via a heuristic study of linear time invar-

iant systems. The experimental results indicate success

of the methodology for reasonable separation of the



Michael Joel Cook

subsystems, as characterized through the inherent time

scale parameter.
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CHAPTER I

INTRODUCTION

The purpose of this chapter is to serve as a founda-

tion for the results of this thesis. Section 1.1 will

commence the discussion with the concept of singular

‘perturbation and its significance in systems theory.

{The role of estimation in the identification of systems

vvill be the theme of Section 1.2. A survey of general

identification schemes and their application will be

examined in Section 1.3. The aggregated problem of iden-

tification and singular perturbation as presented in

Section 1.4 will complete this preview.

1.11. Singular Perturbation

A system can be defined as a function whose domain

is a: set of inputs and whose range is a set of outputs.

The: fumctional relationship and behavior between the

inputs and outputs are based on the inherent characteris-

tics of the physical system under consideration. In

studying this behavior it often becomes necessary to

construct a mathematical model, in which the relationships

between the physical variables in the system are mapped

onto the mathematical structures via equations. To acquire



a full representation of the system often requires many

variables and equations, which tend to increase the com-

plexity of the model. This largeness of the model can

be due to the inclusion of all factors which affect the

system, even those contributions which have little effect

on the behavior. They may be nearly negligible because

their cumulative effect is small during the operation

of the system, or they might be relatively "short-lived"

in comparison to the other variables and thus do not

dominate the mid-term and long-term phenomena. Since

these small contributors must be included for a complete

representation in the original model description of the

system, they are classified as "parasitic."

Examples of such parasitics are small time constants,

masses, moments of inertia, capacitances, inductances,

and any other relatively unimportant parameters. Besides

increasing the dynamic order of the system, these para-

sitics introduce "fast modes" making the model "stiff":

that is, hard to handle on a digital computer because

the equations require small integration intervals. Solu-

tion of the system equations becomes overly-complicated,

although numerical methods have been developed to increase

the efficiency of the solution procedures [CLA], [GE].

A set of dynamic equations containing such parasitics

is called a singularly perturbed system, since the



solutiontx>the equations can be constructed as a power

series in terms of a small perturbation parameter 6 [WA], [GA].

In a singularly perturbed system there are generally

many time-scales needed in describing the system behavior.

For instance, there can be very fast and very slow phenom-

ena requiring three or more separate time-scales [DE], [HO] .

In this thesis, the discussion will be limited to the case

of two time scales, for very fast and for normal-speed

phenomena. The separation between the two time scales is

directly related to e in that the smaller 6 is, the wider

the separation. The extension of this thesis to multi-

time-scaled systems is an area for further research.

The small parasitics of the system are considered as

proportional to the perturbation parameter c [KO-1]. The

effect that the parasitics have on the system behavior

occurs immediately upon initiation of the system. There-'

fore the states of the system associated with these para-

sitics are called "fast" states, and their swift effect

dies out rapidly allowing for these states to reach their

quasi-steady-states very quickly. The other states not

associated with the parasitics take longer to affect a

change in the system behavior and are therefore dubbed "slow"

states. The underlying assumption in singular perturbation

theory is that the slow variables remain constant at the

onset of the system and the fast variables are dominant

during this short time, and by the time the changes in the



slow variables become noticeable, the fast variables have

reached their quasi-steady-state.

A wealth of studies has arisen in reference to linear

singularly perturbed systems (to be discussed below non-

chronologically). Kokotovic et a1. [KO-2,3] provide

an overview on the use of singular perturbations in reduc-

ing the model order by first neglecting the parasitics

and then reintroducing them as boundary layer corrections

in separate time scales. Kokotovic et a1. [KO-1] develop

an iterative procedure to more accurately separate the

full-ordered system into two subsystems of slow and fast

states which avoids inconsistencies associated with the

approach of first neglecting parasitics. Javid [JA]

constructs a reduced-order state observer for the slow

reduced system wherein parasitics are neglected, and

derives two types of observer errors. And Saksena and

Cruz [SA] design a robust low-order observer estimating

the slow states using only the reduced model. O'Reilly

[OR] formulates a full-order observer for the singularly

perturbed system as a composition of two observers, one

for each of the slow and fast subsystems. Kokotovic

and Haddad [KO-4] find criteria for controllability of

the slow and fast states of the system by separately

analyzing the two subsystems defined by these states,

and apply the separation procedure to the time-optimal



control problem [KO-5]. The ever-popular linear state

regulator problem is treated by O'Malley [OM—1,2] via

Hamiltonian methodology and asymptotic expansions. He

gives conditions under which the optimal regulator-control

problem has a unique asymptotic solution for sufficiently

small 6. Basic theorems providing for the uniqueness

and uniformness of the Riccati solution to the linear

regulator problem are furnished by Kokotovic and Yackel

[KO-6]. Stochastic control of the linear singularly

perturbed system with additive noise is discussed by

Haddad and Kokotovic [HA-1] wherein the optimal control

is approximated by a near-optimal control obtained as

a combination of a slow controller and a fast controller

computed in separate time scales. Conditions on asymp-

totically stable feedback controllers by using Hurwitz

criteria is dealt with by Porter [PO-1]. By applying

frequency-domain techniques, Porter and Shenton [PO-2]

use the special structures of the transfer function

matrices for singularly perturbed systems to construct

controllers. They find that in the frequency-domain

the full system with slow and fast states is asymptotically

equivalent to parallel connections of the reduced slow

subsystem with the fast subsystem. Khalil and Kokotovic

[KH] examine stability test criteria for the implementation

of effective control laws for linear singularly perturbed



systems with multiparameters all of the same order,

and for systems with multitime scales. They also design

a near-optimal control law which does not depend on the

values of the small parameters. State estimation is

explored by Haddad [HA-2] for the case of input distur-

bances by developing two lower order filters in separate

time scales. For unknown 8, Sebald and Haddad [SE]

examine the problem of estimation of the slow and fast

states of the singularly perturbed system.

And Chow et a1. [CHO-l] rely on singular perturba-

tion techniques to take a system with slightly damped

high frequency oscillations and decompose it into two

separate subsystems, one containing the slowly varying

dynamics and the other containing only the fast oscilla-

tory modes. Then the subsystems are analyzed in different

time scales. This decomposition is also shown to work

for systems whose slightly damped large eigenvalues result

in sustained high frequency oscillations. These situa-

tions can occur in mechanical and electromechanical systems

such as the spring-mass suspension system and the multi-

machine power system. Chow and Kokotovic [CEO-2] also

design a near-optimal state regulator by decomposing

the singularly perturbed system into two subsystems with

separate fast and 81 w modes and then developing a com-

posite controller based on the inputs of each subsystem.



1.2. Estimation and Identification

The modelling of a system and its analysis has sig-

nificance in many fields, e.g. economics, biology, medi-

cine, ecology, and certainly in the field of process

control. The model building is an enormously important

condition for making use of control theory. In order

to better understand the dynamic behavior of a system,

the system must be properly designed. Treating the system

through mathematical representations allows for the model-

ling to be accomplished. Most certainly, an ample model

of the system to be controlled is necessary or else the

construction of a control law is not feasible.

A mathematical model can be considered as a function

between the physical variables of the system under con-

sideration and the mathematical equations presuming the

system structure. These equations may be simple alge-

braic, differential, or difference types of equations.

The plant system is then said to be described or modelled

by the set of mathematical equations involving these

physical variables.

The model is constructed theoretically and/or empiri-

cally. By theoretically analyzing the system through

the usage of balance equations and the physical laws of

conservation, the simple subprocesses of the plant can

be described by mathematical equations. Adjoining these



equations with the appropriate boundary conditions yields

the mathematical model that is desired.

The theoretic-construction approach is utilized

if experiments in the plant cannot be accomplished, or

if the plant is not yet in existence. However, if an

experimental analysis of a plant with arbitrary structure

is executed, the input and output signals are measured.

Evaluation of these measurements through an identification

procedure produces the mathematical model of the plant

process. This estimated model is then a description

of the input-output behavior of the process.

A precise definition of identification is now stated

[ZA]: Given a class of systems S where each member of

the class is completely specified, the identification of
 

a system A consists in finding a system s c S that is

input-output equivalent to A. It is important to note

that the definition requires input-output equivalence

and does not require 3 e S to be identical to A. Cer-

tainly, for a given input-output relation, there is gen-

erally no unique system representation [KA-l]. In this

thesis the systems under consideration are to be completely

specified within a parameter set and the purpose of iden-

tification is to determine, that is, estimate these

parameters.



There are three major complications which appear

into any real identification problem. The first deals

with the absence of knowledge concerning initial condi-

tions of the system; the second is the presence of random

noises shadowing the input and output observations; and

the last is the difficulty in establishing a meaningful

and convenient method for estimating the system parameters

as a function of the observations.

When disturbances are present they act on the process

and thus affect the output signals, making more difficult

the determination of a mathematical model from correctly

measured input and output signals. Hence, the method

of identification must separate the piece of output into

the information component and the disturbance component.

For linear systems, the disturbance is a single additive

component of the output superimposed upon the information-

carrying part. The identification scheme should overcome

the influence of these disturbance signals.

The model's validity rests upon the connection between

the variables of the mathematical structure and their

physical counterparts. Hopefully, the relation between

these entities is isomorphic [AH]. That is, the values

assumed by the variables in the mathematical model are

in a one-to-one property correspondence with the values

that are measured.
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Since one goal of identification is to determine

the system model for a process under investigation, it

is relevant to discuss the various model classifications

that are closely associated with the identification prob-

lem. A model described by sets of differential or alge-

braic equations is called parametric, and the identifica-
 

tion procedure is to determine the parameters in this

structure. The number of these parameters is finite,

and their true values uniquely determine the system

model [BL]. These parameters may be constant or vary

with time. The response description obtained from an

experimental analysis of the physical process is a Egg:

parametric model, for no a priori structure of the model

can be assumed, and no finite number of parameters deter-

mines the model.

If the dynamics of the system are described by partial

differential equations (e.g., parabolic, elliptical),

then a distributed parameter model is being used, whereas

a lumped parameter model is one using ordinary differen-
 

tial equations for its structure [FA]. A lumped parameter

model lends itself to being discretized in time from

an original continuous time model.

Models may also involve statistical values for some

of its variables (stochastic-type), or there may be no
 

probability structures at all (deterministic-type). In
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the former case, the stochastic phenomena can present

themselves in the form of random input and output dis-

turbances, or, perhaps, the initial states of the system

may be random variables with known or unknown means and

covariances. Improper measurements of the inputs and

outputs in conjunction with uncertainty in the process

are a cause for difficulties in the effective identifi-

cation of systems.

1.3. Identification Schemes and Applications

There exists quite a variety of strategies dealing

with the problem of system identification [AS-1] . Step

response and frequency response techniques [RA], [CHE]

can accommodate both parametric and nonparametric models

[IS], whereas Fourier and spectral analysis as well as

correlation techniques [GO], [RA] apply only to nonparam—

etric models. It is the tactics of parameter estimation—-

applicable solely to parametric models--that will be

under consideration in this thesis.

The first of the parameter estimation methods is that

of Least Squares [ST], [GR], [LEE]. This method is based

on the thought that the most probable value of the param-

eters is the one "that minimizes the sum of the squares

of the differences between the actually observed and

computed values multiplied by weighting factors measuring

the degree of precision" [GAU]. Within the least squares
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methodology are the specialized schemes of Generalized

Least Squares [CL], Instrumental Variables [W0], [YO],

Levin's method [LEV], and the Tally principle [PE-2].

The Maximum-Likelihood method [AS-2] estimates the
 

parameters by selecting the value of the parameters which

"makes the observed data most probable in the sense that

the likelihood function is maximized" [GOO]. The likeli-

hood function is a function of the conditional probability

density of the data given the parameters. Thus, the

method chooses the parameters' values that makes as proba-

ble as is possible the data which is in fact observed [BL].

Another scheme for parameter estimation is through

a Bayesian approach [DO], [PE-1]. In this method the

estimates are taken from the a posteriori conditional

density of the parameters given the input-output data.

This is done by the use of Bayes' Theorem [LEE] on the

conditional probability density of the data given the

parameters--the function which is the argument of the

likelihood functional.

In both the Maximum Likelihood and Bayesian estima-

tion methods, it is necessary to make assumptions on

the probability distributions of the data and parameters.

The difficulties involved with expressing the a priori

information in terms of a probability distribution can

be circumvented by using prediction error methods [AS-2].
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In this case, a prediction model (similar to the Kalman

filter [RA-2]) is implemented and the parameters are esti-

mated by minimizing a criterion which is a function of

the predicted output.

One of the main purposes of identification is to

determine the dynamics of a process so that a proper

control law may be designed and implemented to cause

the system to perform according to some set of criteria.

For example, better knowledge of a production industry

plant or an economic system may be obtained for improved

control.

The identification procedure can also be utilized

for a diagnostic examination to analyze the properties

of a system, such as the determination of rate coeffi-

cients in chemical reactions and reactivity coefficients

in nuclear reactors. This goal has practicality in biology,

economics, medicine, and many other related fields.

Of course, identification of a process may simply

be carried out to verify the structure of a theoretical

model which was posed. And by continuously monitoring

a process, a system identifier can learn parameters which

vary slowly through time. Thus, at each instant of time,

the system behavior is approximated and an effective

controller can be implemented for that instant. A con-

troller constructed by way of this type of parameter
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learning procedure is called a: parameter adaptive con-

troller [KU], [SK]. And sometimes when system parameters

vary, a reliability index of that system.may change. A

Check on the reliability of the system can be maintained

by identifying the system parameters.

1.4. Object of the Thesis

This first chapter has staged an introduction to

two areas of systems theory: singularly perturbed systems

and parameter estimation. The rest of this treatise is

to serve as a tutorial to the unification of these two

studies.

Chapter II will establish the algebraic language

of this text and the mathematical structure of the sin-

gularly perturbed system. The third chapter will concen-

trate on the solution to the identification problem at

hand, including the mathematical and systems approaches

and techniques utilized. Chapter IV will provide tangible

reckoning of the newly-constructed procedures through

computer-oriented examples.

The final chapter will summarize the results of

this thesis and provide directional comments for further

research in this area.



CHAPTER II

FORMULATION OF THE PROBLEM

In this chapter the mathematics behind the singularly

perturbed system will be introduced. The construction

of the two-time scale concept will be included along

with the algebraic "evolution" of that system. Sections 2.2

and 2.3 will focus on the decoupling; i.e., separation,

of that system into fast and slow subsystems. Section 2.4

will deal with properties and theorems for the singularly

perturbed system. The discussion will end with the fifth

section representing the formal problem statement.

2.1. The Singularly Perturbed System

It is the nature of systems engineering to commence

a discussion with analytic statements regarding the vari-

ables of the problem under consideration. In this case,

the statements may consist of vector-form ordinary dif-

ferential equations interrelating the variables. The

general form of these is

3%: n = 'F1(nlu't) t ”(to) = no (201-1)

y F2(n:u:t) (2.1.2)

15
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where n is an n'-dimensional time-differentiable state

vector, y is a q-dimensional output vector, u is an

r-dimensional input vector, and t is the scalar-time

variable with the initial time instant being to' (Until

otherwise stated, let to = 0.)

As discussed in the introduction to this thesis,

the fundamental concept embedded in singular perturbation

theory is that of slow and fast states. During the onset

of the process the slow variables remain relatively con-

stant compared to the fast variables which die out quickly;

i.e., reach their quasi-steady-states. Thus, if there

are n slow states x and m fast states 2, the n'-state

vector n can be partitioned as

n A [’2‘] (2.1.3)

with n + m = n'. Rewriting (2.1.1) and (2.1.2) in terms

of x and 2 yields

2% x = f(x,z.u.t) . X(0) = x0 (2-1-4)

6 - - ° 1 sd—t z - F3(X.2.u.t) . 2(0) - z (2. . )

Y = F4(X.2.u.t) (2.1.6)

where f, F3, and F4 are merely the adjusted functionals

of F1 and F2. (Generally, f and F3 are also functions
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of a parameter c which represents small "parasitic"

masses, capacitances, etc. of the system.)

Now, by assuming that t is the time frame for the

characteristics that are slow, and allowing T to repre-

sent the time frame for the fast characteristics, it

is reasonable to assume that the ratio of t to T is some

small positive number s [KO-l]. That is, if t is in

seconds and T is in milliseconds, then s is 0.001. Assum-

ing that T = 0 corresponds to the instant t = 0, it is

found that

t
E . (2.1.7)

If I were now changed to microseconds, then 6 would

decrease in magnitude. And when a is shrunk, the fixed

t period will correspond to quite a long I period. So,

as e is decreased toward zero, one fixed t period will

correspond to an infinitely long T interval. Thus, fol-

lowing the example, if 6 were decreased to 10-9, one

t period (1 second) would contain one billion T periods

(nanoseconds).

Feeling familiarized with this two-time scale concept,

it seems reasonable that the states x and 2 should inter-

act according to t and T, respectively. That is, the

states x are %~times slower than 2, and likewise are

their respective derivatives. Accordingly, F3 can be
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rescaled as g = eF3, so that g and f are of the same order

of magnitude [KO-1]. Thus, equations (2.1.4) and (2.1.5)

become

x = f(x,z,u,t) , x(0) = x0 (2.1.8)

2
|
“

8 5% z = g(x,z,u,t) , z(O) = z0 . (2.1.9)

(Recent results by Chow et a1. [CHO-l] show this state

description is utilizable for systems with lightly damped

high frequency modes.) Note that as e + 0 here,

ad? XS = f(xstzstutt) I XS(O) = X0 (2'1'10)

0 = g(xs,zs,u,t) (2.1.11)

where xs(t) and zs(t) are the quasi-steady-states of

x(t) and z(t), respectively. Here then, equation (2.1.11)

is algebraic and can now be backward substituted into

(2.1.10) to yield a new differential equation in x8.

It is worth noting that for the long-term studies

in the classical quasi-steady-state approach, the deriva-

tive of z with respect to t in equation (2.1.5) is set

equal to zero which then yields the system of equations

(2.1.10) and (2.1.11). Thus, dzs/dt = 0 which requires

2 to be a constant. However, equation (2.1.11) defines

28 as a time-varying quantity. Even though this procedure

is justifiable in yielding approximate solutions, it does
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leave this obvious inconsistency. It is through the

introduction of the two-time scale concept discussed

above that this inconsistency is circumvented. For in

equation (2.1.11) e(dzs/dt)==0 results from letting c + 0

rather than from sz/dt = 0.

If the time scale is changed to I using (2.1.7),

equations (2.1.8) and (2.1.9) become

= e f(x,z,u,tr) (2.1.12)e
l
m

N

g(x,z,u,cr) . (2.1.13)

3
1
0

N

Now as e + 0, equation (2.1.12) implies that x remains

constant in the fast time period. Therefore, during

this initial fast time period the only fast variations

are in 2. Accordingly,

z = zf + 25 (2.1.14)

and thus equation (2.1.13) becomes (with zf = z - 2s

and e + 0 and dzs/dt = 0):

g% 2f = g(X°,z: + zf(1),u(1),0), Zf(0) = 20 ’ 25(0)

(2.1.15)

often called.the "boundary layer system." Finally, it

is recognized that (2.1.10) and (2.1.11) represent the

slow model and (2.1.15) represents the fast model, with



20

(
I
!

x(t) xs(t) (2.1.16)

zs(t) + zf(§) = zs(t) + zf(T) . (2.1.17)I
l
l

z(t)

(From hereon,‘zf will be expressed in the T-domain, so

that the investigation of the system characteristics

at t = 2 seconds (say, with e = 0.001) will then involve

examination of zf at T = 2000 milliseconds.)

These representations (2.1.16) and (2.1.17) are

merely the zero-order approximations of the asymptotic

expansions in e of the solutions x and z for the system

(2.1.8) and (2.1.9) [OM-3], [GA]. The solutions x and

z are therein expressed as

x(t) = xo(t) + ex1(t) + 62x2(t) + ...

+ xo(r) + ex1(t) + €2§2(1) + ... (2.1.18)

z(t) = zo(t) + ezl(t) + 8222(t) + ...

+ 50(1) + 221(1) + e222(r) + ... . (2.1.19)

Thus, (with io(r) O--see (GA, pg. 29])

"
D

I
I
D

x(t) xs(t) xo(t) (2.1.20)

I
I
D

z(t) 28(t) + zf(1) é 20(t) + 20(1) . (2.1.21)
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2.2. Exact Decomposition of the System
 

It is natural to ask at this point if the system

(2.1.8), (2.1.9) with (2.1.6) can be decoupled into

separate subsystems. In facilitating this task, the

linear time-invariant matrix version of this system will

be used:

-d—x=Ax+Az+Bu x(0)=x° (221)
dt 11 12 1 ' ' °

5 EL 2 = A x + A z + B u z(0) = z0 (2 2 2)
dt 21 22 2 ' ° °

y = Clx + C22 + Eu (2.2.3)

where

A11 is n x n A12 is n x m B1 is n x r

A21 is m x n A22 is m x m B2 is m x r

C1 is q x n C2 is q x m E is q x r

and where the argument t for x, z, u, and y has been

suppressed for ease of notation. From hereon, equations

(2.2.1)-(2.2.3) will be called system CS for coupled

system. Kokotovic et al. [KO-1] provide an iterative

scheme to separate the slow and fast subsystems, wherein

the newly-determined subsystem matrices are obtained

in terms of A11, A12, A21, and A22 without ill-conditioned

modal transformations. And an alternative algorithm
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based on the modal transformation matrices is presented

in [KO-7]. Since these algorithms are cleanly presented

and available in those papers, a transformation technique

akin to that in [KO-4] will be discussed here.

Consider the matrix T:

T= (2.2.4)

  
L I2

where L and M are any matrices of the proper sizes, along

with I1 and 12, to yield a square matrix T. It is easily

verified by checking T-lT = TT-1 = I3 that

I1 eM

T'1 = (2.2.5)

--L Iz-eLM‘ .

  

Assume now that L and M satisfy

A - A22L + EL(A11 - A12L) = 0 (2.2.6)
21

A - M(A22 + ELAlz) + €(A11 - AlZL)M = 0 . (2.2.7)
12

(By checking matrix sizes, it must be that L is m x n

and M is n X m, I1 is n X n and 12 is m X m, and thus I3

and T are (n + m) X (n + m) matrices.) Introducing the

change of variables
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£1 = X
(2.2.8)

52 = z + Lx = z + Lg1 (2.2.9)

into system CS yields

g% 51 = (All - A12L)g1 + A1252 + Blu (2.2.10)

931 g = (A - A L + eLA - eLA L)g +
dt 2 21 22 11 12 1

+ (A22 + 51.1112);2 + (32 + eLBl)u (2.2.11)

y = (c1 - CZL)£1 + C252 + Eu . (2.2.12)

By using (2.2.6) in (2.2.11), the system simplifies to

.g% g1 = (All - AlzL)g1 + A12€2 + Blu (2.2.13)

6 ._
e d? 52 — (A22 + eLA12)g2 + (32 + eLBl)u (2.2.14)

y = (c1 - CZL)§1 + c252 + Eu . (2.2.15)

Another change of variables

v2 = 52 (2.2.16)

v1 51 - 8M52 = 51 - eMv2 (2.2.17)

turns (2.2.13)-(2.2.15) into

d _ -

HE v1 ' ‘A11 ' A12L’V1 + [€(A11 ' AlzL’M + A12

- M(A22 + eLA12)]v2 + [B1-M(B2-+eLB1)]u

(2.2.18)
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d
e a; v2 = (A22 + eLA12)v2 + (B2 + eLB1)u (2.2.19)

y = (C1 - CZL)v1 + [e(C1 - CZL)M + C2]v2 + Eu .

(2.2.20)

By applying (2.2.7) in (2.2.18), the simplification

becomes

(2.2.21)

d
e a? v2 (A22 + eLA12)v2 + (B2 + sLB1)u (2.2.22)

Y = (C1 - CZL)V1 + [c~:(c1 - chm + C2]v2 + Eu .

(2.2.23)

What has thus been constructed is a state transformation

        

- q r - c F - 1

v1 51 eME2 x eM(z+Lx) x

= = = '1'

v2 - £2 . z+Lx . L z .

(2.2.24)

turning the coupled singularly perturbed system CS into

the decoupled slow and fast subsystems (2.2.21)-(2.2.23).

Assuming that A is non-singular, the choice of

22

L and M can be made through their asymptotic expansion

representation as
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1
L = A22 A21 + 0(6) (2.2.25)

_ -1
M — A12 A22 + 0(8) (2.2.26)

which, for small 6, satisfy equations (2.2.6) and (2.2.7).

Definition: A matrix P is of order 6, 0(8), if there
 

exists positive constants 6* and c such

that the norm IIPII satisfies IIPII §_cc

for all ee[0,e*].

If these two expressions for L and M are substituted

in (2.2.21)-(2.2.23), the resulting system is

-1

- A A - A120(s)]v1 +
d _

6? v1 ' [A11 12 A22 21

-1
+ [131 - (A12 A22 + 0(6))B2 -

-1 -1

' EA12 A22(A22 A21 + 0‘5”31 '

-1
- eO(e)(A22 A21 + 0(a))B1]u (2.2.27)

5 il»v = [A + cA-l A A + sO(e)A ]v +

dt 2 22 22 21 12 12 2

-1
+ [B2 + eA22 A21 B1 + cO(e)Bllu (2.2.28)

1
y = [c1 - c291;2 A21 + 0(6))1v1 +

+ [2:[C1 - C2(A212A21 + 0(a)) x

x (A12 A3; + 0(e))] + C2]v2 + Eu . (2.2.29)
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Defining

A A A - A A'1 A (2 2 30)
o 11 12 22 21 ' °

A _ -1

c 3 c - c A"1 A (2 2 32)
o 1 2 22 21 ' '

and recalling the fact that A0(e) = 0(6) for any matrix

A, then for small 5 system (2.2.27)-(2.2.29) simplifies

to

§% v1 = [A0 + 0(a)]v1 + [so + 0(a)]u (2.2.33)

8 g% v2 = [A22 + 0(a)]v2 + [32 + 0(6)]u (2.2.34)

y = [C0 + 0(8)]V1 + [C2 + 0(5)]v2 + Eu . (2.2.35)

This is the c-asymptotic expansion representation of

the decomposed system (2.2.21)-(2.2.23). The zero-order

approximation of this system is thus

d _
'3? v1 — on1 + Bou (2.2-36)

5 IL V = A v + B u (2 2 37)
dt 2 22 2 2 ' °

y = Cov1 + sz2 + Eu . (2.2-38)

If the expressions for L and M in equations (2.2.25)

and (2.2.26) are expanded [KO-4] to
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_ —1 -2 2

M = A A'1 + e(A A A"2 -
12 22 o 12 22

- A. A"2 A A A'l) + 0(52) (2 2 40)
12 22 21 12 22 ' ° '

then the first-order approximation of the decoupled system

becomes:

6 = [A - 6A A"2 A A ]v +
1 o 12 22 21 o 1

+ [B - e(A A"2 A B + A A'1 B )]u
o 12 22 21 1 12 22 2

(2.2.41)

e6 = [A + eA’1 A‘ A ]v + [B -+eA'1 A B ]u
2 22 22 21 12 2 2 22 21 1

(2.2.42)

_ -2
y — [cO - ec2 A22 A21 Ao]v1 +

-1 .

+ [c2 + see A12 A22]v2 + Eu . (2.2.43)

2.3. Approximate Decomposition of the System

Pausing for a moment, it is interesting to examine

what would result by approximately decomposing system

CS. This procedure is done by setting 6 = 0 in equa-

tion (2.2.2). This yields

222 + Bzu (2.3.1)0

II A ‘E + A
21

or

N
I

l_-1 — —
-A22(A21x + Bzu) (2.3.2)
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where the bar indicates that e = 0. Also

§'= C E + C E’+ EH . (2.3.3)
1 2

Substituting (2.3.2) into system CS leaves the slow

subsystem.

d _ _ 0

3? x8 - ons + BouS , xS(0) - x (2.3.4)

Y5 = Coxs + Eons (2.3.5)

where §'= x E} §’= ys, and 3': us are the slow partsI
S

of the variables x, z, y, and u, respectively, and

E 3 E — c A-1
o 2 225

2 . (2.3.6)

To derive the fast subsystem, it is assumed that the

slow variables are constant during the fast transients,

so that dE/dt = 0 and i = constant during that fast

period. Subtracting (2.3.1) from (2.2.2) and (2.3.3)

from (2.2.3) produces

z(JL z - ——’ ) = A (x - E) + A (z - E) +
dt dt 21 22

+ 32m - '3) (2.3.7)

y - y = C1(x - E) + C2(z - E) + E(u - Ii) . (2.3.8)

Since x is predominantly slow, x 2'}, and letting
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zf = z - 2' (2.3.9)

uf =u-E=u- (18 (2.3.10)

yf =y -§=y 'Ys (2.3.11)

then equations (2.3.7) and (2.3.8) become

d _
e E? zf(t) - A22 zf(t) + B2 uf(t) ,

213(0) = z° - 2(0) (2.3.12)

yf(t) = C2 zf(t) + Euf(t) . (2.3.13)

Introducing the fast "stretching" time scale T = t/e

produces

54T— zfm = A22 zfm + azufm. sz) = z°-E(0)

(2.3.14)

yf(T) = C22f(T) + Euf(T) . (2.3.15)

Notice that (2.3.1) and (2.3.4) represent the linearized

time-invariant matrix versions of (2.1.11) and (2.1.10),

just as (2.3.14) is to (2.1.15). And notice that (2.2.36)-

(2.2.38), the decomposition via asymptotic expansion, is

the same system as (2.3.4), (2.3.5), (2.3.12), and

(2.3.13) with v1 and v2 being identified as x8 and zf,

respectively. Looking back at (2.3.2), it becomes appar-

ent that E = 28, and thus
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l
_ _ -1 — .-

zs(t) ‘ A22 A21 "s‘t’ A22 B2 u‘s‘t’

9 2 3 16— A3 xs(t) + 33 us(t) ( . . )

so that

_ _ -1 o _ -1

23(0) ‘ A22 A21 x A22 B2 “s‘o’

_ o

where A3 is m X n and B3 is m x r.

It is now time to collect together the equations

of the system to be examined in the remainder of this

thesis. Therefore, equations (2.3.4), (2.3.5), (2.3.14),

(2.3.15), and (2.3.16) will comprise that system, hereby

dubbed system DS, the decoupled system.

2.4. Properties of the System

There is enough foundation at this point to discuss

properties of the singularly perturbed system. The system

CS has already been shown to possess a two-time scale

characteristic. This effect is evident in the eigenvalue

structure of that system.

Lemma 1: Suppose A22 exists and has all L.H.P. eigen-

values, none on the imaginary axis. Then, as

e + 0, the first n eigenvalues of system CS

tend to the eigenvalues of the reduced system
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(2.3.4), while the remaining m eigenvalues

tend to infinity as the eigenvalues of é-AZZ .

Proof: By rewriting equations (2.2.33) and (2.2.34)

        

as

fvl- pAo+0(e) 0 . _v1. FBO+0(e)

V2 0 %A22+%§0‘€’ V2 %Bz+%0(€’

3 Av + Bu (2.4.1)

it is clear that the eigenvalues of system CS are con-

tained in the eigenvalues of this system matrix A--which

consist of the eigenvalues of A6 + 0(a) and the eigen-

values of é-AZZ + %~0(e) . (Also see [KO-4].) Q.E.D.

Thus, system DS consists of two subsystems: the

slow subsystem containing n small eigenvalues (in magni-

tude) and a fast subsystem with m large eigenvalues.

And the smaller 8 is, the greater is the separation of

these two groups of eigenvalues. In an asymptotically

stable system the fast modes corresponding to the large

eigenvalues are important only during a short period

(measured in T-units). And after that period those modes

become negligible and the behavior of the system can

be described merely by its slow modes (using the t-domain).

(This is related to the concepts of Dominant Pole
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Theory [SH] which holds that the system eigenvalues of

small magnitude dominate the system behavior.) Neglecting

the fast modes (parasitics) is equivalent to assuming

that they are infinitely fast; that is, allowing 2 + 0

in system CS.

The last paragraph mentioned the concept of stability.

Basically, a system is asymptotically stable if when

the system is started near an equilibrium point, the

state of the system approaches that equilibrium point as

t + m, where an equilibrium point is a constant vector
 

solution of the state differential equation.

Theorem 2.1: If the real parts of all eigenvalues
 

of A0 and of A22 are negative, then there exists an

5* > 0 such that for all e < 5* the system CS is asymp-

totically stable.

Proof: Referring to (2.4.1), the system matrix

A 0

there becomes, for sufficiently small 6, [ C) 1. ]

0 E A22

and thus, if eigenvalues of A0 and A22 are in the left-

half of the complex plane then the system CS is asymp-

totically stable. This can be considered also as

_ l l _
o(AO + 0(a)) — o(Ao) + 0(a) and 0(8 A22 + 5 0(5)) -

'% o(A22) + %20(e), and thus for small positive 6 these

spectra become simply o(Ao) and %~o(A22), respectively.

(Here o(P) stands for the spectrum of P--the set of all
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eigenvalues of P.) Hence, if o(Ao) and o(AZZ) are in

the left-half plane then the system CS is asymptotically

stable. Q.E.D.

Thus, stability of system DS implies stability of

system CS. Other discussions on stability and stabili-

zation can be found in [KO-2], [KO-4], [PO-l], [WI],

and [GRU].

Controllability of the system CS can now be estab-

lished, too.

Definition: A pair of matrices (A,B) is a controllable
 

pair (and thus the system K = Ax + BU is

controllable) if rank [B,AB,A2B,...,An-1B]==n,

where A is n X n and B is n><r and rank A==n.

Theorem 2.2: If Ag; exists, and if the pairs

(AO,BO) and (A22,B2) are controllable pairs, then there

exists an 6* > 0 such that for all e < 8* the system

CS is controllable.

Proof: From (2.4.1) it follows that for 8 small
 

the controllability of the reduced and boundary layer

systems, that is of the pairs (AO,B°) and (A22,B2), implies

the controllability of the original system CS. (That

is, the subsystem (2.2.33) is a regular perturbation of

the reduced system (2.2.36) and the subsystems (2.2.33)
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and (2.2.34) are connected through u, but have different

eigenvalues.) (See also [KO-2], [KO-4].) Q.E.D.

Thus, controllability of system DS implies controllability

of system CS.

It should be noted here that a matrix K exists such

that A22 + 82K is non-singular. And the controllability

of the system CS is not influenced by u = Kz + w. Thus,

even if A.1 doesn't exist, Theorem 2~25till hOldS) but
22

with the matrix A22 + BZK replacing A22 in the definition

of A0 and B0 in equations (2.2.30) and (2.2.31).

The last concept to be discussed in observability.

Definition: A pair of matrices (A,C) is an observable
 

pair (and thus the system K # Ax + BU,

Y = CX + EU is observable) if the rank

2 n-llT

[C,CA,CA ... CA = n, where A is n X n

and C is q X n and rank A = n.

An analogous argument leads to the proof of the last

important theorem:

Theorem 2.3: If the pairs (AO,CO) and (A22,C2)
 

are observable, then there exists an 8* > 0 such that

for all e < 5* the system CS is observable.
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Thus, observability of system DS implies observability

of system CS. (For additional reading on observability

see Javid [JA].)

In summary, the formalized system DS is compiled

here:

Slow Decoupled Subsystem (SDSS):

git xs(t) = ons(t) + Bough). xsw) = xo 6 Rn

y8(t) = Coxs(t) + Eou8(t)

zs(t) = A3xs(t) + B3us(t)

Fast Decoupled Subsystem (FDSS):

39T- zf('r) = A22 zfm + Bzufh), zf(0) = zo-zs(0) eRm

yf(r) C22f(r) + Euf(T) .

2.5. The Identification Problem

It is now of interest to examine these two decoupled

subsystems with respect to parameter estimation concepts.

The problem under investigation can now be stated simply

as:

Given 5 priori knowledge that a system exhibits

the behaviors characteristic of slow and fast

phenomena, determine the "inner workings" of

that system from the input and output data

records available.
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What do the words "inner workings" refer to? In

the present case of this problem, it is initially assumed

that the process under scrutiny is of the bi-structural

form of system DS. The "inner workings" of that system

are then the internal mechanisms as defined by the system

matrices and the time-scale parameter c. What they

describe are the functionings of the decomposed slow

and fast subsystems.

So once the matrices A0, 30' Co' E0, A3, 33' A22,

B2, C2, E, and the initial values x°,zo and the parameter

c are known, then the system DS is totally describable,

and is then ready for further explorations such as in

the area of optimal control. Therefore, for the remainder

of this thesis, the goal will be the determination of

these parametric quantities.

In order to discover these quantities, it will be

necessary to choose the proper experimental design [GOO],

[IS]. This includes the selection of the input signals

[LE], for care need be taken to use inputs which will

act to "excite" all the fast and/or slow states so that

accurate determination of the parameters will be made.

Also an appropriate identification scheme must be

used which: (a) has good discriminating ability in order

to identify the faster components over the slower ones;

(b) is "good" in the sense that it yields a model
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consistent with the data; and (c) yields estimates which

converge, in some statistical sense, even in the presence

of noise. Finally, since the system DS is operating in

two time scales, it is important to consider relevant

sampling time(s) on the process to be identified.

It will be the intent of the next chapter to utilize

identification theory to solve the problem of estimating

the parameters of the decoupled singularly perturbed

systems SDSS and FDSS from a process operating in coupled

form (CS) .



CHAPTER III

PROBLEM SOLUTION

The scope of this chapter will be to provide the

theoretical solution to the problem of identifying the

decoupled singularly perturbed subsystems. The first

section will take into account the salient characteristics

of the singularly perturbed structure and discuss what

type of an identification method might be used to exploit

these features. Also discussed in that section is model

representation. This is expanded in Section 3.2 where

the models for the identification-solution method are

dealt with. The algorithms involved in the identifica-

tion procedure are unveiled in the next section, and

the last section presents the application of the identifi-

cation method to the specific problem of a singularly

perturbed system.

3.1. Considerations for a Solution to the Problem

At this point, let us examine system DS again:

snss: 33E xs(t) ons(t) +Bous(t); xs(0) =x(0) (3.1.1)

ys(t) Coxs(t) + Eous(t)

zs(t) A3xs(t) + B3us(t)

38
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a _ .FDSS. 8 3E zf(t) — A222f(t) + Bzufuz).

zf(0) 2(0) - 23(0)

yf(t) = szf(t) + Euf (3.1.2)

The block diagram of the mechanics of the singularly

perturbed process may be seen in Figure 3.1. In this

 

 

SDSS

  

 

 

 

FDSS .

“f Yf 

   
Figure 3.1. Singularly Perturbed Process

figure the coupled system CS is visualized as two decom-

posed subsystems operating in parallel. What is desired

is some method and set of procedures for determining

the dynamics of each subsystem from the input-output

data information that is given.

Before addressing the issue of the method of iden-

tification, it is relevant to note something about the

model to be identified. Up to this point, the systems
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of equations under consideration have been represented

in state space equation forms. Since, in the framework

of identification, models of the fast and slow subsystems

are to be found, it is totally reasonable to try to deter-

mine any structural format as long as it is equivalent

in an input-output sense.

The following are two different representations of

the same observable system. The first is the observable

input-output canonical form [GU], [BE] for a multi-input,

multi-output (MIMO) system:

§(0)y(t) = 6(0)u(t) . (3.1.3)

P(D) is a square non-singular (q X q) polynomial matrix

in the differential operator D and 0(5) isha (q X r)

polynomial matrix in D, and u(t), y(t) are (r X 1) input

and (q X 1) output vector functions, respectively. For

the case of a single-input, single-output (8180) system,

this can be expressed in a scalar linear time-invariant

differential equation:

(n) (n-l) _
y (t) + an“1 y (t) + ... aoy(t) -

= b u(n) (t) ‘1' bn_n u‘n‘1’(t) + ... + bou(t) .
1

(3.1.4)

The second representation is the observable companion

form in state space form:
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3% x(t) Ax(t) + Eu(t)

y(t) Cx(t) + Eu(t) (3.1.5)

The transformation from (3.1.5) to (3.1.3) can be

divided into two steps [BE]. In the first step, by elimi-

nating state vector x(t) from equation (3.1.5), an equiva-

lent representation of the form (3.1.3) is obtained.

During the second step, a unimodular matrix is formed,

with which the representation obtained in the first step

can be transformed to the desired input-output canonical

form satisfying certain requirements on the degrees of

the element polynomials in P(D) and 6(D). The transforma-

tion from (3.1.3) to (3.1.5) can be obtained either through

the Structure Theorem [WOL] or by the algorithm developed

by Guidorzi [GU]. Other transformation procedures between

the two representations can be found in Ogata [0G], and

algorithms on the relationship of the initial conditions

between the two forms are dealt with by Heinen [HE].

With these equivalency considerations, it is therefore

legitimate to choose to find either the differential

equations (3.1.3) describing the system behavior or the

state space description (3.1.5) of that behavior.

As to what kind of method would be suited to the

problem at hand, a major consideration is the fact that

the two subsystems operate with different time constants.
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This difference manifests itself through the effect of

the fast subsystem dynamics. Since the fast dynamics

dissipate rapidly (on order % times faster than the slow

dynamics), a key concern should be a procedure which

can identify a continuous-time system in a limited time

frame.

Of the multitude of schemes in the literature,

several methods show promise of accomplishing identifica-

tion in a finite time period. Obviously, though, any

identification attempted--in particular, adaptive control

procedures--are performed in a finite time interval,

even if they are only theoretically valid on the infinite

time frame. There exists a well-defined procedure of

identification which has been proved to be valid and

successful on a finite time interval [PEA-1,2L which

will be discussed at length later.

In most identification methods, the initial condi-

tions of the system have to be determined along with

the system parameters, even though it is the set of system

parameters that is of primaryinterest. With the problem

at hand--of identifying the fast and slow subsystems--

finding the initial conditions for each separate subsystem

adds to the complexities of the problem. The basic issue

is to determine the system dynamics of FDSS and SDSS.

The same afore—mentioned finite-time procedure (called
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H-identification), due to Pearson, uses a noncausal filter

which eliminates the initial conditions during the iden-

tification process so that the system parameters can be

identified alone.

3.2. Model of a System to be Identified

Since H-identification will be used in this disser-

tation, it is now time to examine more closely this pro-

cedure and how it relates to the singularly perturbed

system identification problem. This procedure is a least

squares equation error parameter identification technique

(see Figure 3.2), but differs from other known applica-

tions of least squares in a number of ways. The first

of these is, as mentioned above, that only input-output

n

u { Process +

~43

Figure 3.2. Least-Squares Equation Error Model
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data is presumed to be given over a fixed finite time

interval with no attempt to estimate unknown initial

conditions. The second characteristic of H-identification

is sufficiently general to include a variety of nonlinear,

time varying, differential delay, possible unstable,

multivariable system models. The next is that the formu-

lation leads to an explicitly defined function of the

parameters which simplifies the computations significantly.

Also, this approach is a "one shot" identification scheme,

as Opposed to other methods which are iterative in time.

The last, and most germane feature, is the way in which

the unknown disturbances are modeled on the finite obser—

vation time interval. While Maximum Likelihood and other

statistical methods of identification represent the dis-

turbances by stochastic processes with underlying Markov

process representations, the model for unknown disturbance

signals in this approach is the deterministic homogeneous

differential operator equation:

0. .

T(D,6)d(t) = 2 Gina-1 d(t) = 0 ,

i=0

"
D

6o 1,0_<_t_<_t1<°° (3.2.1)

(with the order being a s [0,0max preselected)a

1' max

where the 51's and the initial conditions are completely

arbitrary. That is, the disturbances can be approximated
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by the arbitrary solution of a homogeneous ordinary dif-

ferential equation on a specified finite time interval.

Actually, this model can be regarded as generating a

stochastic process if the 61's and the initial conditions,

d(i)(0) (i = 1,...,a), comprise 2a independent random

variables with essentially infinite variances. The above

model is actually quite suitable, since the data set

is presumed to consist of input-output data observed on

a finite observation time interval. Thus, the shorter

the time interval, the more reasonable is the above dis-

turbance model for a modest value of a. With respect

to the finite time-interval length, it has been verified

by simulation studies [PEA-2,3] that this time interval

can be surprisingly short in many cases; i.e., on the

order of the dominant system time constant, or less.

At this juncture, it is appropriate to introduce

the model formulation for the identification procedure.

To refresh the memory, equation (3.1.3) is rewritten as:

P(D)y(t) + 5(0)u(t) = o , 0 5 t 5 t (3.2.2)1 0

Since the system parameters are contained within P(D)

and 5(D), it would be best to express them in terms of

the parameters in question as:

P(D,w) + 5(n.w)u(t) = 0 , 0 5 t 5 t1 (3.2.3)
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where

5 n ~ n-'

P(D,(1)) = £0 pimp 1 (3.2.4)

1:

" n ~ n-i

Q(D,w) = '20 01(0)): (3.2.5)
1:

and D 2 g% with w = (m1,...,w8) being the vector of

system parameters. By defining a vector valued function

f(w) with components fi(w) selected to reflect the ways

in which the parameters enter into P and 6, it is then

easy to define v(t) and V(t) (depending on the data pair

[u(t),y(t)]) and operators P and Q such that equation

(3.2.3) becomes

P(D)v(t) + Q(D)V(t)f(w) = 0 , 0 :_t i t (3.2.6)1 O

This is the case for systems which are separable in the
 

parameters--as are all linear systems-~wherein the generic

decomposition of equation (3.2.3):

P(D)v(t) + Q(D)g(t,w) = 0 , 0 5 t‘: t1 (3.2.7)

admits to equation (3.2.6) via

g(t,w) E V(t)f(w) . (3.2.8)

Here V(t) is a matrix valued function of the data and

f(-) is a continuously differentiable vector-valued func-

tion of m with the single valued property
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f(w) = f(w*) if and only if m = A* (3.2.9)

for all m and w*.

Now, if the actual input u(t) and output y(t) are

corrupted by additive disturbances d1(t) and d2(t),

respectively, so that u(t) and y(t) are observed accord-

ing to:

y(t) = §(t) + d1(t) , 0 5_t : t1 (3.2.10)

u(t) = 6(t) + d2(t) , 0 5 t 5 t1 (3.2.11)

then the model (3.2.3) becomes

fi(0,w)[y(t) - d1(t)1 + 0(D.w)(u(t) - 42m] = 0 .

0 5 t 5,t (3.2.12)1 0

And if d1(t), d2(t) are assumed to be solutions of the

differential equation (3.2.1) on [0,t1], then operating

on both sides of equation (3.2.12) with T(D,6) yields:

T(0.6)§(D.w)y(t) + T(D.6)0(D.w)u(t) 0 ,05t5t1.

(3.2.13)

This is analogous to

T(D,6)P(D)v(t) + T(D,6)Q(D)V(t)f(w) = 0 , Oitfitl

(3.2.14)
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by following the same decomposition scheme that trans-

formed equation (3.2.3) into equation (3.2.6). By

expanding out T(D,6), equation (3.2.14) takes the form:

up o-l
D (D)v(t) + 61D P(D)v(t) +...+ 60P(D)v(t) +

+ DaQ(D)V(t)f(w) + a Da-lQ(D)V(t)f(w) +...+
l

+ daQ(D)V(t)f(w) O . (3.2.15)

Writing this in vector form yields:

DaP(D)v(t) + [Du-1P(D)v(t),...,P(D)v(t),DaQ(D)V(t),

5

El

Da'10(D)V(t).....0(0)V(t)] Ga = o .
f(w)

61f(w)

(3.2.16)

  6af(w)

This can be simplified into the following model form:

P(D)v(t) + 6(0)V(t)f(e) = o , 0 :.t 5 t (3.2.17)
1

where

6 = (61,...,6a,w1,...,m8) . (3.2.18)

The vector function f(e) satisfies the same single-valued

property (3.2.9) if the original function f(w) in (3.2.6)

does. This should be the case with a model that has

been properly parametrized.
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To summarize, the basic model including disturbances

is represented in equation (3.2.17). This is, of course,

valid only for models which are separable in the param-

eters. Otherwise, it would take the generic form:

P(D)v(t) + 6(0)‘g’(t,e) = 0 , o 5 t 5 t1 (3.2.19)

This generic model can be viewed in Figure 3.3.

1d(t)

 

u(t) System y(t)

S(w)

 

P(D)v(t) + 6(D)§(t,e) = o

6 = (61(1))

Figure 3.3. Basic Model

3.3. The Algorithms of H-identification

Having established the basic model to be identified,

it is time to deal with the algebraic mechanics behind

H-identification.

Definition: The basic model (3.2.19) is H-identifiable
 

if and only if the parameter vector 6 can

be identified via the input u(t) and the

output y(t) on a finite time interval [0,t1]
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without estimating (implicitly or explicitly)

the initial condition of the model.

Now, let a square non-singular polynomial matrix F(D) be

chosen such that

F‘lw) [15(0), 6(0)] (3.3.1)

is a proper transfer function matrix. The form of F(D)

is

m .

F(D) = 2 Fibm‘l , m > n . (3.3.2)

i=0

Then an auxiliary error function is implicitly designated

via

F(D)z(t,e) = P(D)v(t) + 6(D)§(t,e) . (3.3.3)

To get a better handle on the nature of z(t,6), it is

wise to first examine the homogeneous solution to equa-

tion (3.3.3):

F(D)z(t) = o . (3.3.4)

The solution to this can be expressed as:

Ax(t) , x(0) = xo 6 Rn341-: x(t)

z(t) Cx(t) (3.3.5)
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where (A,C) is an appropriate observable pair with minimal

dimension state space 3} Then z(t) takes the form:

z(t) = CeAtxo . (3.3.6)

Therefore, the particular solution to equation (3.3.3)

will take the form:

t
z(t,6) = CeA x + v(t) + u(t,6) , 05 t_<_ t1 .

0

(3.3.7)

By operating on both sides of this by F(D), it is seen

that the particular solutions v(t) and u(t,9) are the

zero state solutions to

P(D)v(t) = P(D)v(t) (3.3.8)

F(D)u(t.e) = 6(D)§(t.e) . (3.3.9)

respectively. In the case of separability :h1 the

parameters, the particular solution z(t,6) would be:

At
z(t,6) = Ce x0 + v(t) + M(t)p(6) (3.3.10)

whereupon M(t) would then be found (through the degeneracy

of equation (3.3.9» as the zero state solution to:

F(D)M(t) = 6(D)V(t) . (3.3.11)

However, for either case, the particular solution z(t,6)

contains unknown parameters 6 and x0. Since it is desired
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to identify 0 without actually estimating x0, the term

CeAtxo need be eliminated. This can be accomplished

via an annihilation filter H [PEA-1,2].

Laying some groundwork first, let T denote the

Hilbert space of all vector valued square integrable

functions on [0,t1]. And let v(t) and §(t,e) range over

the space of piecewise continuous functions on [0,t1].

Also, let To denote the subspace of T containing solutions

to equation (3.3.6). That is,

At n
Ce x0, xo 6 R , 0 §|t : tTo = {x(t)IX(t)

(3.3.12)

Definition: The filter H is a linear Operator with domain
 

T and range (T - T0) with the property:

t
1

J{ [H(t,T)]W(T)dT

o

T

CeAtW-leA TCT]w(I)dT

t
1

T

u(t) - CeAtW—ljf eA Tchp(-r)dr

° (3.3.13)

I
I
D

(at) 9- H(x)(t))

1

[I6(t-T)I
I
D

0

where (A,C) is the observable pair for the

system in equation (3.3.5) and

t
1

T

w 9 J{ eA tCTCeAtdt (3.3.14)

0
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is the observability Gramian for that same

system and—-only here--6 is the Dirac function.

Now, H is a self-adjoint projection operator, as can

readily be seen from H[H((p(t))] = H(w(t)) and

adj [H(w(t))] = H(w(t)) (see Appendix A). But the sig-

nificance to the filter H is that its null space is To;

that is,

H

Atx0) — V x e R , 0 i t 5 t1 . (3.3.15)H(Ce ol
I

o s

Thus, Operating on the solution z(t,6) ixiequation,03.3.7)

yields:

~ A

z(t,6) H(Z(t)9)) = ”(V(tH + H(u(t,9)) =

A ~ ~

= v(t) + u(t,6) , 0 i t §_t1 . (3.3.16)

Therefore, since the initial condition response is arbi-

trary and has nO physical significance, the solution

z(t,6) is projected down into the subspace (T - To),

via H, thus annihilating the initial condition response

on [0,t1]. In so doing, v(t) and u(t,6) are also pro-

jected down into that same subspace yielding:

t

1 T

v(t) = v(t) - ceAtw‘1 jf eA Tchde (3.3.17)

0

t1 T

u(t,6) = u(t,6) — CeAtW-l eA Tch(r,e)dr .

0

(3.3.18)
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Now, H—identification minimizes the inner product

norm of equation (3.3.16) yielding the functional J1(8)

for the least squares minimization problem:

t1

J1(8) = <2(t,6),2(t,6)> = [ ;T(t,6)2(t,6)dt .

° (3.3.19)

Thus, any value of 6 which satisfies the basic model

(3.2.19) is also a solution to

J1(6) = 0 . (3.3.20)

Conversely, any value of 6 which satisfies equation

(3.3.20) is a candidate for a value Of 6 satisfying the

basic model (3.2.19).

By substituting equations (3.3.16)-(3.3.18) into

equation (3.3.19), J1(9) unfolds as:

t1 t1

J1(0) = f vT(t)v(t)dt+2 f vT(t)u(t)9)dt+

O 0

t1

+ J{ uT(t)8)v(t)dt - nTW-ln -

O

- 2nTw'1y(e) - yT(e)w‘1y(e) (3.3.21)

where t1

T

n = J{ eA tCTv(t)dt (3.3.22)

0 t1 T

y(0) = J{ eA tcTu(t,e)dt . (3.3.23)
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In the case of separable-in-the—parameters models,

u(t,6) = M(t)p(6) (3.3.24)

so that

y(6) = Np(e) (3.3.25)

where

t1 T

N =f eA tCTM(t)dt (3.3.26)

0

The functional J1(6) can then reduce to an explicit func-

tion Of 9:

32(0) = a + 2pr(0) + pT(e)4p(e) (3.3.27)

where

t1

a = [ VT(t)\)(t)dt - nT '10 (3.3.28)

0

t1

b = J{ M¢(t)v(t)dt - NTw’ln (3.3.29)

0

t1

0 = f MT(t)M(t)dt - NT 'lN . (3.3.30)

0

Thus, once the data is collected and (a,b,¢) are found,

no further integrations are needed involving the data

over [0,t1]. It is left to just minimize J1(6) or J2(6)

with respect to 8.
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Theorem 3.1: A minimizing value 9* for the positive

definite J2(e) is a least squares estimate Of e which is

unique if (as a sufficient condition) the data makes 0

positive definite, which occurs if the columns of6(D)V(t)

are linearly independent functions on [0,t1].

Proof: By letting A = 9(6), due to its single-valued
 

property, and setting J2(8) as:

— T T

J2(A) = a + 2b 1 + A 41 , (3.3.31)

then the minimization becomes equivalent to

v3é(1) = b + 01 = 0 (3.3.32)

N
I
H

which is the normal equation for

ham=§w)+mO1,o5t5H. use»

A unique solution to this normal equation (3.3.32) is

found if and only if the columns Of H(t) are linearly

independent on [0,t1]. For then H(t) has full rank,

and thus 4 is positive definite and therefore non-singular,

allowing a unique solution to the normal equation [SEB].

The subspace (T - To) contains the columns Of H(t), which

can be represented as the projection of the function

F-1(D)5(D)V(t)1 in that subspace. Since To is the null

space for F(D), it follows that linear dependence, or

independence, of the columns of M(°) cannot be altered
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by Operating on that projection of F-1(D)6(D)V(t)1 with

F(D). Q.E.D.

Thus, 4 is non-singular if the columns of 6(D)V(t) are

linearly independent functions. However, this is mainly

of theoretical interest since it is not assumed that

the data is differentiable.

A final point concerning H-identification is that

the theory is still valid for any initial time to

(0 i-to < t1), whereby any reference to t = 0 in the

algorithm is replaced by t = to.

3.4. Identifying Decoupled Subsystems via H-identification

The aim of this section is to describe how H-identi-

fication is used to identify the decoupled subsystems

FDSS and SDSS. Re-examination of Figures 3.1 and 3.3

will help to facilitate this. Their combination is demon-

strated in Figure 3.4.

 

 

0531 (t)

 

Ext) + %;Y(t) 

DSSZ

u(t) _ d(t)

   
Figure 3.4. Basic Identification Model for Singularly

Perturbed Systems.



58

In Figure 3.4, one of the decoupled subsystems

(D881) is considered as the main system containing the

parameter vector w to be identified, whereas the second

decoupled subsystem (D882) is considered as the distur-

bance model (containing parameter vector 6) with output

d(t). These two mechanisms are acting in parallel, and

the Observed output y(t) is as in equation (3.2.10):

y(t) = §(t) + d(t) . (3.4.1)

This matches equation (2.3.11) in that

y(t) = ys(t) + yf(t) ; (3.4.2)

that is, there is equivalency between the two sets Of

signals via:

{§(t). d(t)} = {ys(t). yf(t)} (3.4.3)

provided there is no other outside noise disturbances

acting on the system CS or its component subsystems.

That H-identification should apply well here depends

On several factors. First, and most significant, is

that the output of the disturbance subsystem, d(t), is

in fact a solution of a homogeneous differential equation.

Without loss of generality, suppose that FDSS is the

subsystem DSSZ considered as the disturbance mechanism.

Examining the differential equations for FDSS as seen in
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equation (3.1.2) shows that its output yf satisfies equa-

tion (3.2.1) as d(t) where the order a of T(D,6) is at

least as large as the sum Of the order of zf and uf.

Therefore, d(t) g yf(t) will have some T(D,6) in existence

to annihilate it. Secondly, since the goal is to identify

--not one--but two (sub)systems, the need to determine

the initial conditions of each is eliminated via the

filter H, thus alleviating such difficulties. Thirdly,

of course, is that H-identification has been proved to

be quite successful [PEA-1,2,4] over very small time

intervals [0,t1]. This is of great significance to the

problem Of identifying the fast subsystem since the effects

Of FDSS die out quite rapidly, necessitating the need for

such a "fast" algorithm.

At this point it might seem that H-identification,

certainly used in the vein of points one and two just

above, is application to any system that admits to a

decoupling into subsystems. This might be the case;

however, the application in this thesis of H-identifica-

tion to the particular problem of the decoupled singularly

perturbed system is special in the following way: the

majority Of simulation studies carried out by Pearson

et a1. indicate satisfactory performance of H-identifica-

tion when the modes of the disturbance model D852 and

the modes Of the system.model DSSl are located some
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distance mo = %f , or greater, from each other in the

complex plane. Since the nature Of the singularly per-

turbed system is that it has subsets of modes located

apart from each other in the complex plane, this is in

line with the assumptions Of successful H-identification.

As far as the issue of exogeneous noise, n(t), acting

on the system CS, it seems reasonable that this will

only affect identification if the modes Of n(t) are close

to the modes of the subsystem to be identified. This

concern will be addressed within Chapter V of this thesis.

As a final point, once the parameters Of the main

subsystem DSSl are found, that knowledge can then be

incorporated to facilitate the identification of the

remaining system DSSZ. Details of this will be discussed

in the next chapter.

In the next chapter, the computational considerations

concerning the implementation of the algorithms will be

dealt with, along with some examples and results to verify

the direct numerical applications Of H-identification to

singularly perturbed systems.



CHAPTER IV

COMPUTATIONAL CONSIDERATIONS AND RESULTS

This chapter will deal with the implementation Of

the H-identification procedure for singularly perturbed

systems. Section 4.1 will modify the algorithms of

H—identification which simplifies the procedure. The

second section will discuss specific computational aspects

involved with implementing the algorithm and running it

on the computer. The third section will focus on the

direct application Of the implemented algorithm for the

singularly perturbed system, and provide specific examples

and their associated results. The last section will

examine these results and discuss their significance.

4.1. Modification Of H-identification

Recently, a formulation of H-identification was

described [PEA-5] which reveals the underlying least

squares functional to be minimized over the system param-

eters unrestrained by the parameters characterizing the

disturbance modes. At the same time, this formulation

accrues significant benefits in streamlining and simplify-

ing the computations needed to Obtain the least squares

functional from the Observed input-output data.

61
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Taking the system description (3.2.3) without

disturbances:

§(D.w)y(t) + 6(0.w)u(t) = o

and reshaping this yields:

R(D)k(t.m) = 0 ) 0 g't : t1 .

(4.1.1)

(4.1.2)

By including disturbances d(t) acting upon the system,

equation (4.1.2) admits to a general form as:

R(D)k(t,(0) = S(D,(0)d(t) , 0 5 t 5 t
1 0

Application of T(D,6) on both sides yields:

T(D,0)R(D)k(t,w) = 0

which in vector form presents itself as

0 = [0“R(0), Da-1R(D),...,R(D)]

’ k(t,w) '

61k(t,w)

  _dak(t,m)d

(4.1.3)

(4.1.4)

(4.1.5)

Then the equation error function z(t,6) is the solution

tO

F(D) z(t, e) = [0°‘R(0),0°"1R(0), . . . ,R(D)]

 

' k(t,w) '

61k(t,w)

_fiak (ttw). 
(4.1.6)
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A

with 6 = (6,w) = (61,...,6a,w1,...,w8). Here, F(D) is

chosen so that

F‘1(s)R(s)s“ (4.1.7)

is a proper transfer function matrix. As in Chapter III,

the filter H is applied to z(t,6) and the functional

J1(6) becomes:

t
1

J1(6) = <E(t,e),2(t,e)> = f ET(t,e)E(t,e)dt .

° (4.1.8)

Now, if c(t,6) satisfies equation (4.1.6) with zero

initial conditions, then J1(6) becomes (see Appendix B):

t1

J1(e) = [ cT(t.e)c(t.e)dt — ¢T(e)w'1¢(e)

° (4.1.9)

where

t
1

T

0(0) J{ eA tCTC(t,6)dt . (4.1.10)

0

In the case of separable-in-the-parameters models,

k(t,w) becomes:

k(t,w) 5 U(t)h(w) (4.1.11)

where U(t) is a matrix valued function of the Observed

input-output data on [0,t1] and h(w) is a continuously
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differentiable vector valued function of the system param-

eters. Then, J1(9) will become an explicitly defined

function of 0:

  

Q Q h(w)
32(9) = [hT(w) ,(STHT((0)] oo od

“do “ad H‘w’d

h(u))

= [hT(w),6THT(w)]Q (4.1.12)

H(w)6

where

Fh(w)

H(w) = ' 0 (4.1.13)

0 ',

h(w)

- 0 columns .

and the Gramian is

t1 , t1

(2 = f 1? (t)§(t)dt = [ YT(t)Y(t)dt - NT '11:

° ° (4.1.14)

with Y(t) as the zero-state solution to

F(D)Y(t) = [DaR(D),Da-1R(D),...,R(D)]U(t) (4.1.15)

and

1
T

N = Jf eA tCTY(t)dt . (4.1.16)
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The matrix 0 is effectively a time correlation matrix

with some bias removal terms which arise from the appli-

cation of the annihilating filter H. Also, 9 is symmetric

and non-negative definite, so that J2(6) satisfies the

positive definite property:

J2(6) 3 0 . (4.1.17)

Thus, once 0 is computed, any hill-climbing technique

can be used on J2(8) without further integrations of the

data on [0,t1].

Examining J2(6), it is seen that the disturbance

parameters, 6, enter quadratically in J2(6). Thus, a

necessary condition for a minimal value Of J2(6) would

be the vanishing of the gradients:

%% = 0 and 39 = 0 . (4.1.18)

Thus, solving the first of these yields:

A

5 = - [HT(m)oddH(w)]'1HT (w)fldoh(w) (4.1.19)

assuming the needed inverse exists functionally in w.

Substituting 6 into J2(6) yields an explicit function

Of the system parameters:

J3(w)=hT(w)[ooo-oodn(w)(HT(w)0ddn(w)1‘1HT(w)0do]h(m) .

(4.1.20)
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In general, J3(w), though positive definite, is nonlinear,

nonquadratic, and not necessarily convex in w. Although

not explicitly present, the effect Of the disturbance

parameters is manifest in the inverse of HT(w)QddH(w).

At this point, the computations needed for 0 are

undertaken. First, the solution Y(t) to equation (4.1.15)

can be partitioned as:

A (
"
1
'

AY(t) = [Yo(t),Y1(t),...,Ya(t)], o _ t1. (4.1.21)

A

P
.

A(Thus, DYi+1(t) = Yi(t), o 5_t 5 t1, 0 _ a - 1.)

Then N can be partitioned as:

t

N - [N N N 1 - 1 ATtCTlY (t) y (t)]dt
- 0' 11°00! (I "’ e O ,..., a .

° (4.1.22)

Then 0 is partitioned into (a + 1)2 blocks as

t
1

_ T _ T -1 . .
aij — J{ Yi(t)Yj(t)dt NiW Nj , 0 §_1,3 : a .

° (4.1.23)

Whence 00d, ado, and add for equation (4.1.12) are

defined as:

QOd = [QOl"'°'Qoo]

_ T

Qdo -_Qod _

Q11... filo

add = ; -. 1 . (4.1.24)

0&1... Qua
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Let a matrix function Z(t1) be defined as:

T
-A t1

Z(t1) = e N (4.1.25)

with a similar partitioning:

Z(t1) = [Zo(t1)l--°tza(t1)] = e l [NO'°°°'NC1]

(As occurred before, Dzi+1(t) = Zi(t), 0 5_t : t1,

0 5.i 5.0 - 1.) Then the bias removal term becomes:

T
At A t ~_

NTW-lN = ZT(t )e 1w'le 12(t ) = ZT(t )w 12(t )
1 1 1 1

(4.1.27)

where

... A -ATt1 -At1

W = e We . (4.1.28)

is the observability Gramian for the pair (-A,C).

Through the partitioning of Z and N, each 21 satisfies

t

-ATtl 1 ATT T
Zi(t1) = e e C Yi(r)dr , i = 0,1,...,a

° (4.1.29)

which is the solution (for t = t1) to the differential

equation

- _ _ T T _
Zi(t) - A zi(t) + c Yi(t) , zi(0) — o . (4.1.30)
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Let (A,B,C,E) be a minimal realization [GOO] for the

transfer function F-1(s)R(s)sa. Then using equation

(4.1.15), Yo(t) is the solution to

Xo(t) = Axo(t) + BU(t) Xo(0) = 0

Yo(t) = Cxo(t) + BU(t) 0 5 t 5 t1 (4.1.31)

and thus

_ -1
Yi+l(t) D Yi(t) 0 3 t 5 t1 . (4.1.32)

This leads to the following theorem [PEA-5]:

Theorem 4.1: Let (A,B,C,E) be a minimal realization

for F-1(s)R(s)sa, with det A # 0. Then a least squares

estimate Of w, in the separable case, is Obtained by

minimizing J3(w). The matrices Yi(t), Zi(t) (0 3 i :ja)

comprising 0 are efficiently determined from the zero

state solution to:

(i = 0) xo(t) = Axon.) + BU(t)

Yo(t) = CXo(t) + BU(t)

2 (t) = -A¢z (t) + cTy (t) (4.1.33)
0 O O

(1 = l,...,a) Xi(t) = A-1[Xi_1(t) - BD-iU(t)]

-1
Yi(t) = CXi(t) + ED U(t)

(-AT)‘1[
T

Zi(t) zi_1(t) - c Yi(t)]

(4.1.34)
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where D-1 denotes the i-fold pure integration Operator

with zero initial conditions.

Proof: Since J3(w) has already been derived together

with equations (4.1.33), it remains to establish equa-

tions (4.1.34). Since Xi(t) can be defined iteratively

_ -1
from Xi+1(t) - D Xi(t) (i = O,...,a-1), the first and

second relations in equations (4.1.34) are therefore

immediately seen to be valid from equations (4.1.33).

. _ -1
And since zi+1(t) - D Zi(t), the third relation in equa-

tions (4.1.34) is also immediately valid from equations

(4.1.33). Q.E.D.

Equations (4.1.34) represent a significant saving

in computation not only because the datamatrix is gen-

erally sparse, but also because the number Of distinct

time functions in U(t) is less than the number Of non-

zero entries. Furthermore, all that is needed Of the

2 function is Z(t1). And aside from the pure integra-

tions D-iU(t), only one other set of integrations (equa-

tions (4.1.33)) is needed.

It is the application of Theorem 4.1 that will be

used as the specific algorithm for H-identification.

4.2. Computational Aspects

Before the actual implementation Of the algorithm

can be undertaken, a choice for F(D) must be made. Apart
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from det F(D) # 0, the selection of F(D) is quite unre-

stricted and the modes of F(D) can, in theory, be selected

as either stable or unstable since all computations are

confined to the finite interval [0,t1]. However, strongly

unstable modes in F(D) are undesirable since the control

Of the integration errors will be more difficult. Now,

if n is the order Of the system to be identified (DSSl

as in Figure 3.4) and a is the order of the disturbance

process (DSSZ), then the order of F(D) must be c with

c Z'n + a such that F-1(s)R(s)sa is prOper. Pole-zero

cancellation is permitted in F-1(s)R(s)sa, but any such

cancelled modes must be included in the W matrix because

such modes, although not controllable, are observable

and must be included in the annihilating filter.

The choice of F(D) with c assumed even is

c/2

F(D) = (T (D2 + k2w§)I (4.2.1)

k=1

with

A 2n
mo _ t_1 , (4.2.2)

This selection Of F(D) simplifies the computations sig-

nificantly. The fundamental solution to the homogeneous

equation F(D)z(t) = 0 (that is, the modes for CeAt)

involves the functions {sin(kwot), cos(kwot)},

k = 1,2,...,%, which are orthogonal over the observation



71

time interval [0,t1]. Hence, the Gramian matrix W is

diagonal, as is W, such that:

t1
W=W=7I. (4.2.3)

(This same frequency mo was mentioned near the end of

Chapter III as the minimum resolving distance between

the two sets of modes of D551 and D582.) Notice that

the resonance frequencies of the filter F-1(D) coincide

with the null frequencies Of the filter H so that the

composite filter HF-1(D)R(D)Da tends to preserve the

useful information in the data at all frequencies.

In the case of linear, time-invariant SISO systems,

n(n) = (0“,Dn'1,....1] (4.2.4)

yielding a matrix transfer function (as 1 X (n + 1)).

+..
c/2 1 [sn+a’sn a 1,...,sa],

2 2 2)
(s + k mo

k=1 (4.2.5)

F-1(s)R(s)sa = 

In order for (A,B,C,E) to be a minimal realization for

F-1(s)R(s)sa, the following four conditions are

needed [GOO]:

(1) C(sI - A)’1B + E = F-1(s)R(s)sa (4.2.6a)

(11) rank [CT,(CA)T,...,(CAn-1)T]==rank A (4.2.6b)
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1
(iii) rank [B,AB,...,An- B] = rank A (4.2.6C)

(iv) rank CB °° - - CAn-IB

' ‘ ' = rank A . (4.2.6d)

CAD—1B -- Ice

By taking A (as c X c) in the canonical form

  

A = F0 ; '

: ; I

0 1

_-ac -a1_ (4.2.7)

where

c/2

sc + alsc-1 + ... + a = (s2 + kzwz) (4.2.8)
c k= 0

and C (as 1 X c) in the form

C = [l,0,...,0] , (4.2.9)

the matrices B (as c X (n + 1)) and E (as l X (n + 1))

can easily be found satisfying conditions (4.2.6). For

example, with n = 2 and a = 1, then c = 4 so that:

    

A = F 0 1 0 0" B = u 1 0 0 '

0 0 1 0 0 1 0

0 0 o 1 -Sw§ 0 1

L-4w: 0 —562 0‘ L 0 -503 0 .

c = [1,0,0,01 E = [0,0,0] (4.2.10a)
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F-1(s)R(s)sa = C(sI - A)‘18 + E =

_ 1 3 2 1
‘ C/2 2 2 2 (5 Is Is ]

(s + k wo) (4.2.10b)

k=1

As to the choice in t1, some fraction of the longest

expected system time constant is suggested [PEA-2,3].

All numerical examples were run on a Prime 750 Com-

puter using Fortran IV language (see Appendix C). The

IMSL Library [IMSL] was utilized for integration (DGEAR),

interpolation (ICSEVU, ICSCCU), and minimization (ZSRCH,

ZXMIN) routines. The IMSL library contains a comprehen-

sive range of high quality validated algorithms. The

library is internally self-consistent and well-documented

for the user. The effectiveness of the IMSL library is

discussed in Jacobs [JAC]. The routine DGEAR was signif-

icant for the problem of integrating singularly perturbed

systems of equations since it is a backward differentia-

tion formula based on Gear's stiff methods [GE], [SHA].

The routine ZSRCH systematically searches a spatial region

for good starting points to serve as initial guesses to

ZXMIN. This is necessary since J3(m) is not necessarily

convex. Hence more than one initial guess may be neces-

sary before the absolute minimum of J3(w) is achieved.

4
Roughly speaking, the value J3(&) 5,10- is sufficient

[PEA—2] to be assured that ||8 - (0*II2 is also small and
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that convergence has occurred. However, this threshold

might depend on the [0,t1] interval. And the routine

ZXMIN uses a quasi-Newton method to find the unconstrained

minimum of J3(w).

The only restrictions to H-identification comes

from under-ordering the disturbance model, and from dis-

turbance models with too large a value of a, for then

the formulation may not be suitable because a long time

interval will be required when there are a large number

of unknown parameters due to many frequency components

in the disturbance.

4.3. Direct Application and Results

The most basic illustration of the use of H-identifi-

cation as applied to singularly perturbed systems is the

minimum-dimensioned linear, time-invariant example:

dt x(t) = A11x(t) + A122(t) + Blu(t)

6: Bit- z(t) = A21x(t) + A222(t) + B2u(t)

y(t) = C1x(t) + C22(t) (4.3.1)

where all variables (matrices) are scalars (l X 1).

(Note that the effect of the input, u(t), is through the

state equations directly. This is a standard formulation

with u(t).)



75

Thus, this SISO system represents the process Operat-

ing in coupled form CS. Known design inputs u(t) will

be given along with the Observed output y(t) on [0,t1].

What is desired are the representations of the two sub-

systems (approximate):

snss: g% xs(t) = ons(t) + Bous(t)

ys(t) = Coxs(t) + Dous(t) (4.3.2)

FDSS: e g% zf(t) = A22zf(t) + B2uf(t)

C22f(t) + Duf(t) . (4.3.3)yf(t)

Each of these subsystems is input-output equivalent to:

§(t) + a1§(t) = bou(t) + b1u(t) . (4.3.4)

Therefore, it remains to determine, for each subsystem,

the scalar quantities a1, b0, b1. According to the

formulations in Section 4.1, it is found that:

o = R(D)k(t,w) = R(D)U(t)h(w) =

= [0,1] §(t) 0 -fi(t) 0 1

0 §(t) o -fi(t) a1

b0

b1   
o 5 t 5t1 , (4.3.5)
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This last equation is the model of the subsystem

DSSl to be identified, with the other subsystem output

considered as disturbance, d(t), such that:

A _ ~

y(t) = yf(t) + ys(t) = y(t) + d(t) . (4.3.6)

With the a priori knowledge of the dimensions n and a of

D881 and D882, respectively--along with the Observed

input and output--U(t), h(w), and H(w) can be formed.

Also, O can be chosen to make F-1(s)R(s)sa proper, whereby

(A,B,C,E) can be selected. Then the necessary integra-

tions (4.1.33) and (4.1.34) can be executed, and 0 formed.

At this point, all integrations of the data are

complete, and minimization of J3(w) is all that remains.

Once successful minimization is attained, the model D881

is known, and this information can then be used to find

the parameters of the other subsystem DSSZ. Then, if

so desired, the newly learned models can be transformed

into state—space configuration (as discussed in Sec-

tion 3.1). Tests for further determining the multiplier

c in the state-space form of FDSS are discussed in

Mendel [ME].

For each example attempted, some a priori knowledge

on the separation Of modes between the fast and slow

subsystems was assumed. This information was used to

help in the design of the input signals. The input
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signals were Of step, ramp, parabolic, and sinusoidal

types. Various combinations of inputs and final times,

t1, were applied until consistency (to three of four

significant places) in one or more parameters appeared.

These newly found parameters were then fixed as known

constants, making the parameter vector, h(w), smaller.

This iterative procedure was continued until all param-

eters within h(m) were learned.

At this point, the estimated model for DSSl was

attained. TO learn the parameters of DSSZ, the newly

found model 0851 was simulated, and its output effect,

y1(t), was subtracted from the output, y(t), Of the

original coupled system CS, yielding y2(t) (plus some

small disturbance effect due to the unknown initial condi-

tions on DSSl). Then H-identification was performed

anew to learn the estimated parameters of DSSZ.

As far as which subsystem to identify first and

over what interval(s) Of time to do this identification,

a heuristic study pointed directly to a unique procedure:

Procedure 4.1:

(i) Observe the coupled system output, y(t), over

some time interval [to,t1], where to > 0 is

some time instant after the fast response has

effectively died out.
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(ii) Use H-identification to estimate the param-

eters of the slow subsystem. Then the esti-

mated output §s(t), for a given input, can

be determined--up to the initial condition

response--over any time interval desired.

(iii) Observe the coupled system output, y(t), over

some interval [0,ta], where 0 < ta i-to‘

(iv) Form the output measurement y(t) - §s(t) over

[0,ta].

(V) With this formed output, use H-identification

to estimate the parameters of the fast subsystem.

Actually, the Observations Of y(t) over [0,t1] can

be made all at once, with the record of y(t) over [0,ta]

being stored for the later computations in step (iv).

For most of the examples considered (shown in the tables

to follow) , to _<_ 1 (second) worked well as a time instant

after which the fast response had effectively dissipated.

And the instant ta was generally taken as to.

It was hoped that FDSS could be successfully esti-

mated over [0,ta] first, and then SDSS estimated over

ltdtl]. For then this would point toward an adaptive

control procedure for singularly perturbed systems.
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A very interesting discovery was made while running

the computer analysis. It was found that the subsystems

being identified were not the zeroth-order approximation

(equations (2.2.36)-(2.2.38)) nor even the first-order

approximation (equations (2.2.41)-(2.2.43)). What was

being identified was the gxggg decoupled subsystems

(equations (2.2.21)-(2.2.23)):

SDSS: v1 = (All - AlzL)v1 + [B1 - M(B2 + eLB1)]u

(4.3.7)

FDSS: 51°72 = (A22 + eLA12)v2 + (132 + eLBl)u

(4.3.9)

y2 = [6(C1 — CzL’M + Czlvz (4.3.10)

where

A

y(t) = y1(t) + y2(t) = ys(t) + yf(t) (4.3.11)

and L and M satisfy equations (2.2.6) and (2.2.7).

The specific examples tested are listed in Table 4.1.

A range of values for e was considered, from 8 =‘% to

e = 5%5 . For each example in Table 4.1, the model Of

CS was (one fast state and one slow state):

1': x

. = A + Blu]

e z z

x

[y] = [3,2] (4.3.12)
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Table 4.4. Example and Result (n = 1, m = 2)

 

 

        

. . , .

g% x -1 0 11 x 1 r1.]

1 1 _ _ _ ;L_ .

'26'6? z1 - o 1.05 1 21 + 20 [u].

1 d 1

'5-0' a-E 22 -O.9 0 ‘1 22 '2—0'

L g b . L. - L d

”x -

[Y] = [2,311] 21

  
1511u

(11.12.13) = (-2,—19,-21) SDSS*: 98 + 2ys = 06 + 289u

“ ° " 7113 ' 542493
*.

= — —

FDSS ' Yf + 4°Yf + 399Y£ one + 5491 “f ' 5491 “f

(a1,bo,b1)slow = (2.003,-0.001,5.234)

(a1,a2 ,bo ,61,b2)fast = (40.09,399.8,0.002,1.293,98.06)

 

 

||8 - w*||
slow A 4

= 0.001 m - w = 0.006
IIw-Icllslow

Ii IISlOW

IIG - 5*II fast A *

= 0.002 m - w = 0.885

|J3(w)|slow = 4.46E-5

IJ3(w)Ifast = 3.08E-4

(ta'to'tl) = (0.8,0.8,8.0)
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and the model of each subsystem was:

y + aly = 808 + blu . (4.3.13)

The results for these examples can be found in Tables 4.2

and 4.3.

It has already been reported [PEA-2,3] that the

algorithm does not work well for systems with too many

modes--particularly high frequency modes. Therefore,

the size of each example was kept to a minimum to test

the actual effectiveness Of the algorithm and procedure.

As also reported in these same articles, there is

essentially no effect by over-ordering the disturbance

model. In many examples this was done.. Table 4.4 indi-

cates the results Of an example with one slow state and

two fast states.

4.4. Discussion of Results_
 

A grasp on the effectiveness Of H-identification

of a singularly perturbed system can now be made through

the examination Of the information displayed in Tables 4.2

and 4.3. It is seen that the algorithm had much diffi-

culty in identifying the separate subsystems when the

time-scale factor 8 was large (Example #1: e = %). In

this example the relative errors in the slow and fast

parameters amounted to 5.3% and 15.8%, respectively.

This apparent failure of the algorithm--for this example
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--stems, most definitely, from the fact that the eigen-

values for the fast and slow subsystems are too close

to each other, even with the small resolving distance

.21
O 10 ‘

The effectiveness of the algorithm to differentiate

Of w

between the subsystems improves as 6 decreases in size.

This was anticipated from the beginning of this thesis.

As a decreased, the relative error in 6 remained less

than 0.1%. (That these errors are considerably small

was unexpected; however, not totally surprising. The

preliminary investigations of Pearson et al. showed very

accurate results in their simulation studies.) The rela-

tive errors in the slow subsystem parameter estimates

improved as 8 decreased, due to the fact that the "dis-

turbance" system (FDSS) died out rapidly. This parallels

the fundamental construct in singular perturbation theory

that as c + 0, the coupled system CS basically reduces

to the lower-order slow subsystem SDSS. A major reckoning

for e 5-%, though, is that almost all parameters 81

(i = 1,2,3) for both subsystems are accurate to two or

three significant digits.

As to the effect of a decreasing time-scale s on

the parameter estimates for the fast subsystem, a slight

increase in the relative error is noticed, albeit the

absolute error is poor. This could be due, in part, to
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the extreme speed with which the exponential factors

decay, thereby decreasing the richness of information

in the output signal yf(t), and/or due to integration

errors.

As to the example in Table 4.4, wherein the fast-

state dimension is increased to two, the parameter esti-

mates 8 for both the fast and slow subsystems are accurate

to three significant digits, and the relative errors

are less than 0.5%.

All these results tend to indicate that the two

subsystems of a coupled singularly perturbed process

can be identified provided the time-scale, e, is much

less than unity.

In the next chapter of this text, a review Of the

essentials covered in this thesis will be made, along

with relevant conclusions. The chapter will close with

some insights on directions for further research in this

problem area.



CHAPTER V

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

The purpose of this dissertation was to examine

the problem of identifying the system parameters of the

fast and slow subsystems of a singularly perturbed system.

This singularly perturbed system was Operating in coupled

form with its input and output used to estimate the charac-

teristics Of the decoupled subsystems.

In the beginning Of this document, an introduction

to the nature Of singularly perturbed systems, along

with the nature of the identification problem, was pre-

sented. Following that, some algebra and theory of sin-

gularly perturbed systems was revealed, along with the

mechanics of its decomposition into slow and fast

subsystems.

Next, the solution of the problem at hand was under-

taken using a deterministic, least squares, equation

error, finite time—interval, identification method. This

method utilized a filter to annihilate the initial condi-

tion response, and assumed the disturbances to be solu-

tions to a homogeneous differential equation. The adapta-

tion of this method was then applied to an example set

87
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Of deterministic, linear, time invariant, single-input

single-output, stable, observable, controllable, singu-

larly perturbed systems.

The results Of this analysis revealed success in

identifying the parameters of the separate subsystems

via a unique procedure determined through a heuristic

study. The success of the procedure was based, in part,

on the time-scale parameter c, for if e was too large

the parameter estimates were not significantly close to

the true parameter values.

It is, therefore, possible to determine reasonable

estimates for the parameters of each decoupled subsystem

from the input and output (observed over a finite time

Iinterval) of a system operating in coupled singularly

perturbed form.

There are several recommendations for further research

in this area. The first of these is to explore the iden-

tification problem for singularly perturbed systems that

are nonlinear in form. Since the theory of H-identification

is valid for nonlinear systems, it might prove applicable

to this. Another area of interest would be the problem

Of identifying the parameters for a singularly perturbed

system with more than one time scale. An iterative

approach, similar to Procedure 4.1, might solve this

problem. Thirdly, the success of identifying the decoupled
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fast and slow subsystems could be further developed to

the broader problem of parameter estimation for any system

admitting to a decoupling into subsystems.

And finally, and most significantly, a study could

be undertaken on the success Of parameter estimation

for the singularly perturbed system when corrupted by

noise. The effects of different noise (stochastic, white,

etc.) upon the actual input and output variables might

significantly change the effectiveness of the identifica-

tion procedure, particularly if the noise contains modes

in common with the modes of any subsystem.

These directions are significant and warrant further

investigations and developments.
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Verification of H(H) = H:

t
1

T

H[H(z(t))] = H[z(t) - CeAt‘W-1 f eA TCTz('r)d'r]

°t
1

T

H(z(t)) - Hi:CeAt-’Wm1 f eA TCTz('r)d'r]

°t
l

H(z(t)) - [{CeAtW-1 f eATTCTz(T)dT} -

O

1 T t1 T

CeAtW-1f eA TCT{CeATW-1[ eA OCTZ(O)dO}dT]

o O

t1 T .

H(z(t)) - CeAt'W-l f eA TCT2(T)dT +

0

t1 1

T -1 ATo T

CeAtW-l f eA TCTCeATd‘r W e C z(o)do

O

t
1

T

H(z(t)) - CeAtW-lf eA TCTz(T)d'r +

t O

t
1

CeAtW-l mm"1 f eATOCTz (0) do

0

t1 T

H(z(t)) - CeAtW-l 1 AA Tcszan +

t1 To .

CeAtW-l f eA OCTZ(O)dO = H(z(t)) . Q.E.D.

o

90



91

Verification of adj(H) = H (i.e. H* = H):

<Hx,y> = <£,y> = (xT(t) _

t1
T

(CeA'"t‘W1f eA TCT,Tx(T)d1:)

O

t
1

= f [meym -

0

t1 T

(CeAtw"'1 of eA TCTx(I)dT) Tdty(t)]

1-’1[

xT(t)y(t) -

t1
T

0] xT ('r)CeA(11 (W1)TeA 1-’C'I|y(1:)]dt

0

t1

=f xT(t)y(t)dt -

O

T

.. ftl ftl xT(T)CeATdT(W-1)TeA tCTy(t)dt .

T -1

But w = w => w = (w' ) . And switching t H 1 in

second term:

1‘1

<Hx,y> =f xT(t)y(t)dt -

O

t

t 11

'1' At -1 ATTCT

- x (t)Ce dtW e CY(T)dth

O O
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1‘1

T
.l. [x (t)y(t)dt -

0

t1
T

xT(t)CeA’tW-1 .l. eA TCTy(T)d'r]dt

O

t

1 T

<X:Y ' CeAtW-1 f eA TC'I"y('r)d'r>

O

<x,y> = <x,Hy> ,

Thus, <Hx,y> = <x,Hy> .

But by definition, <Hx,y> = <x,H*y> .

Thus, <x,Hy> = <x,H*y>=e H* = H.

Therefore, H is self-adjoint. Q.E.D.

See also HaLmos [HA], wherein it is shown that every pro-

jection operator is a self-adjoint operator.
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Derivation of equation (4.1.9):

Using operator notation, J1(6) in equation (4.1.8)

is given by J1(6) = <H(§),H(c)> since ; = H(c). Since

H is self-adjoint and a projection,

J1(e) = <c.H2(c)> = <c.H(c)>

t1 T

= <;,; - eeAtw'l f eA TCTC(T.6)dI>

0

t1 T

= <;,;> - <«';,Cep‘tW-'1 jr eA TCTC(T:9)dT>

O

= <c.c> - <c.CeAtw‘1¢(e)>

t1

= <§,2;> - f l;(t,6)CeAtdtW-1¢(9)

O

= <;,;> - ¢T(e)w'1¢(6) .
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