


LT

IHES!S ‘° LIBRARY 3 1293 01093 0059
| Michigan State
| University

This is to certify that the
dissertation entitled
PARAMETER ESTIMATION FOR THE FAST AND SLOW
SUBSYSTEMS OF A PROCESS OPERATING
IN COUPLED SINGULARLY PERTURBED FORM

presented by

Michael Joel Cook

has been accepted towards fulfillment
of the requirements for

Ph.D. degreein _Systems Science

Sttt O ﬁmﬂ/

Major professor

. 7@,@ 2, /952

MSU is an Affirmative Action/Equal Opportunity Institution o0-12T"



MSU

LIBRARIES
A ~—

RETURNING MATERIALS:

Place in book drop to
remove this checkout from
your record. FINES will
be charged if book is
returned after the date
stamped below.




PARAMETER ESTIMATION FOR THE FAST AND SLOW
SUBSYSTEMS OF A PROCESS OPERATING

IN COUPLED SINGULARLY PERTURBED FORM

By
Michael Joel Cook

A DISSERTATION
Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Electrical Engineering and Systems Science

1982



@ Copyright by
MICHAEL JOEL COOK

1982



ABSTRACT

PARAMETER ESTIMATION FOR THE FAST AND SLOW
SUBSYSTEMS OF A PROCESS OPERATING
IN COUPLED SINGULARLY PERTURBED FORM

By
Michael Joel Cook

The input and output of a deterministic singularly
perturbed system, operating in coupled form, are observed
over a finite time-interval. The problem under considera-
tion is to determine the system parameters of the decoupled
subsystems from these measurements. The nature and for-
mulation of the singularly perturbed system are examined
along with the fundamentals of systems identification.

A finite time-interval identification method is inves-
tigated which utilizes a filter to annihilate the initial
condition response, and models disturbances as solutions
to a homogeneous differential equation. The adaptation
of this method is applied to the singularly perturbed
problem, and a unique procedure for its implementation

is presented via a heuristic study of linear time invar-
iant systems. The experimental results indicate success

of the methodology for reasonable separation of the
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subsystems, as characterized through the inherent time

scale parameter.
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CHAPTER I
INTRODUCTION

The purpose of this chapter is to serve as a founda-
tion for the results of this thesis. Section 1.1 will
commence the discussion with the concept of singular
perturbation and its significance in systems theory.

The role of estimation in the identification of systems
will be the theme of Section 1.2. A survey of general

identification schemes and their application will be

examined in Section 1.3. The aggregated problem of iden-
tification and singular perturbation as presented in

Section 1.4 will complete this preview.

l.1. Singqular Perturbation

A system can be defined as a function whose domain
is a set of inputs and whose range is a set of outputs.
The functional relationship and behavior between the
inputs and outputs are based on the inherent characteris-
tics of the physical system under consideration. 1In
studying this behavior it often becomes necessary to
construct a mathematical model, in which the relationships
between the physical variables in the system are mapped

onto the mathematical structuresvia equations. To acquire



a full representation of the system often requires many
variables and equations, which tend to increase the com-
plexity of the model. This largeness of the model can
be due to the inclusion of all factors which affect the
system, even those contributions which have little effect
on the behavior. They may be nearly negligible because
their cumulative effect is small during the operation
of the system, or they might be relatively "short-lived"
in comparison to the other variables and thus do not
dominate the mid-term and long-term phenomena. Since
these small contributors must be included for a complete
representation in the original model description of the
system, they are classified as "parasitic."

Examples of such parasitics are small time constants,
masses, moments of inertia, capacitances, inductances,
and any other relatively unimportant parameters. Besides
increasing the dynamic order of the system, these para-
sitics introduce "fast modes" making the model "stiff";
that is, hard to handle on a digital computer because
the equations require small integration intervals. Solu-
tion of the system equations becomes overly-complicated,
although numerical methods have been developed to increase
the efficiency of the solution procedures [CLA], [GE].

A set of dynamic equations containing such parasitics

is called a sinqularly perturbed system, since the




solution to the equations can be constructed as a power
series in terms of a small perturbation parameter € [WA], [GA].

In a singularly perturbed system there are generally
many time-scales needed in describing the system behavior.
For instance, there can be very fast and very slow phenom-
ena requiring three or more separate time-scales [DE], [HO].
In this thesis, the discussion will be limited to the case
of two time scales, for very fast and for normal-speed
phenomena. The separation between the two time scales is
directly related to € in that the smaller € is, the wider
the separation. The extension of this thesis to multi-
time-scaled systems is an area for further research.

The small parasitics of the system are—considered as
proportional to the perturbation parameter € [KO-1]. The
effect that the parasitics have on the system behavior
occurs immediately upon initiation of the system. There-
fore the states of the system associated with these para-
sitics are called "fast" states, and their swift effect
dies out rapidly allowing for these states to reach their
quasi-steady-states very quickly. The other states not
associated with the parasitics take longer to affect a
change in the system behavior and are therefore dubbed "slow"
states. The underlying assumption in singular perturbation
theory is that the slow variables remain constant at the
onset of the system and the fast variables are dominant

during this short time, and by the time the changes in the



slow variables become noticeable, the fast variables have
reached their quasi-steady-state.

A wealth of studies has arisen in reference to linear
singularly perturbed systems (to be discussed below non-
chronologically). Kokotovic et al. [KO-2,3] provide
an overview on the use of singular perturbations in reduc-
ing the model order by first neglecting the parasitics
and then reintroducing them as boundary layer corrections
in separate time scales. Kokotovic et al. [KO-1] develop
an iterative procedure to more accurately separate the
full-ordered system into two subsystems of slow and fast
states which avoids inconsistencies associated with the
approach of first neglecting parasitics. Javid [JA]
constructs a reduced-order state observer for the slow
reduced system wherein parasitics are neglected, and
derives two types of observer errors. And Saksena and
Cruz [SA] design a robust low-order observer_estimating
the slow states using only the reduced model. O'Reilly
[OR] formulates a full-order observer for the singularly
perturbed system as a composition of two observers, one
for each of the slow and fast subsystems. Kokotovic
and Haddad [KO-4] find criteria for controllability of
the slow and fast states of the system by separately
analyzing the two subsystems defined by these states,

and apply the separation procedure to the time-optimal



control problem [KO-5]. The ever-popular linear state
regulator problem is treated by O'Malley [OM-1,2] via
Hamiltonian methodology and asymptotic expansions. He
gives conditions under which the optimal regulator-control
problem has a unique asymptotic solution for sufficiently
small €. Basic theorems providing for the uniqueness

and uniformness of the Riccati solution to the linear
regulator problem are furnished by Kokotovic and Yackel
[KO-6]. Stochastic control of the linear singularly
perturbed system with additive noise is discussed by
Haddad and Kokotovic [HA-1] wherein the optimal control

is approximated by a near-optimal control obtained as

a combination of a slow controller and a fast controller
computed in separate time scales. Conditions on asymp-
totically stable feedback controllers by using Hurwitz
criteria is dealt with by Porter [PO-1]. By applying
frequency-domain techniques, Porter and Shenton [PO-2]

use the special structures of the transfer function
matrices for singularly perturbed systems to construct
controllers. They find that in the frequency-domain

the full system with slow and fast states is asymptotically
equivalent to parallel connections of the reduced slow
subsystem with the fast subsystem. Khalil and Kokotovic
[KH] examine stability test criteria for the implementation

of effective control laws for linear singularly perturbed



systems with multiparameters all of the same order,
and for systems with multitime scales. They also design
a near-optimal control law which does not depend on the
values of the small parameters. State estimation is
explored by Haddad [HA-2] for the case of input distur-
bances by developing two lower order filters in separate
time scales. For unknown €, Sebald and Haddad [SE]
examine the prbblem of estimation of the slow and fast
states of the singularly perturbed system.

And Chow et al. [CHO-1] rely on singular perturba-
tion techniques to take a system with slightly damped
high frequency oscillations and decompose it into two
separate subsystems, one containing the slowly varying
dynamics and the other containing only the fast oscilla-
tory modes. Then the subsystems are analyzed in different
time scales. This decomposition is also shown to work
for systems whose slightly damped large eigenvalues result
in sustained high frequency oscillations. These situa-
tions can occur in mechanical and electromechanical systems
such as the spring-mass suspension system and the multi-
machine power system. Chow and Kokotovic [CHO-2] also
design a near-optimal state regulator by decomposing
the singularly perturbed system into two subsystems with
separate fast and slow modes and then developing a com-

posite controller based on the inputs of each subsystem.



1.2. Estimation and lIdentification

The modelling of a system and its analysis has sig-
nificance in many fields, e.g. economics, biology, medi-
cine, ecology, and certainly in the field of process
control. The model building is an enormously important
condition for making use of control theory. In order
to better understand the dynamic behavior of a system,
the system must be properly designed. Treating the system
through mathematical representations allows for the model-
ling to be accomplished. Most certainly, an ample model
of the system to be controlled is necessary or else the
construction of a control law is not feasible.

A mathematical model can be considered as a function

between the physical variables of the system under con-
sideration and the mathematical equations presuming the
system structure. These equations may be simple alge-
braic, differential, or difference types of equations.
The plant system is then said to be described or modelled
by the set of mathematical equations involving these
physical variables.

The model is constructed theoretically and/or empiri-
cally. By theoretically analyzing the system through
the usage of balance equations and the physical laws of
conservation, the simple subprocesses of the plant can

be described by mathematical equations. Adjoining these



equations with the appropriate boundary conditions yields
the mathematical model that is desired.

The theoretic-construction approach is utilized
if experiments in the plant cannot be accomplished, or
if the plant is not yet in existence. However, if an
experimental analysis of a plant with arbitrary structure
is executed, the input and output signals are measured.
Evaluation of these measurements through an identification
procedure produces the mathematical model of the plant
process. This estimated model is then a description
of the input-output behavior of the process.

A precise definition of identification is now stated
[ZA]: Given a class of systems S where each member of

the class is completely specified, the identification of

a system A consists in finding a system s € S that is
input-output equivalent to A. It is important to note

that the definition requires input-output equivalence

and does not require s € S to be identical to A. Cer-
tainly, for a given input-output relation, there is gen-
erally no unique system representation [KA-1]. In this
thesis the systems under consideration are to be completely
specified within a parameter set and the purpose of iden-
tification is to determine, that is, estimate these

parameters.



There are three major complications which appear
into any real identification problem. The first deals
with the absence of knowledge concerning initial condi-
tions of the system; the second is the presence of random
noises shadowing the input and output observations; and
the last is the difficulty in establishing a meaningful
and convenient method for estimating the system parameters
as a function of the observations.

When disturbances are present they act on the process
and thus affect the output signals, making more difficult
the determination of a mathematical model from correctly
measured input and output signals. Hence, the method
of identification must separate the piece of output into
the information component and the disturbahce component.
For linear systems, the disturbance is a single additive
component of the output superimposed upon the information-
carrying part. The identification scheme should overcome
the influence of these disturbance signals.

The model's validity rests upon the connection between
the variables of the mathematical structure and their
physical counterparts. Hopefully, the relation between
these entities is isomorphic [AH]. That is, the values
assumed by the variables in the mathematical model are
in a one-to-one property correspondence with the values

that are measured.
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Since one goal of identification is to determine
the system model for a process under investigation, it
is relevant to discuss the various model classifications
that are closely associated with the identification prob-
lem. A model described by sets of differential or alge-

braic equations is called parametric, and the identifica-

tion procedure is to determine the parameters in this
structure. The number of these parameters is finite,
and their true values uniquely determine the system
model [BL]. These parameters may be constant or vary
with time. The response description obtained from an
experimental analysis of the physical process is a non-

parametric model, for no a priori structure of the model

can be assumed, and no finite number of parameters deter-
mines the model.

If the dynamics of the system are described by partial
differential equations (e.g., parabolic, elliptical),

then a distributed parameter model is being used, whereas

a lumped parameter model is one using ordinary differen-

tial equations for its structure [FA]. A lumped parameter
model lends itself to being discretized in time from
an original continuous time model.

Models may also involve statistical values for some

of its variables (stochastic-type), or there may be no

probability structures at all (deterministic-type). 1In
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the former case, the stochastic phenomena can present
themselves in the form of random input and output dis-
turbances, or, perhaps, the initial states of the system
may be random variables with known or unknown means and
covariances. Improper measurements of the inputs and
outputs in conjunction with uncertainty in the process
are a cause for difficulties in the effective identifi-

cation of systems.

1.3. Identification Schemes and Applications

There exists quite a variety of strategies dealing
with the problem of system identification [AS-1]. Step
response and frequency response techniques [RA], [CHE]
can accommodate both parametric and nonparametric models
[IS], whereas Fourier and spectral analysis as well as
correlation techniques [GO], [RA] apply only to nonparam-
etric models. It is the tactics of parameter estimation--
applicable solely to parametric models--that will be
under consideration in this thesis.

The first of the parameter estimation methods is that

of Least Squares [ST], [GR], [LEE]. This method is based

on the thought that the most probable value of the param-
eters is the one "that minimizes the sum of the squares
of the differences between the actually observed and
computed values multiplied by weighting factors measuring

the degree of precision" [GAU]. Within the least squares
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methodology are the specialized schemes of Generalized
Least Squares [CL], Instrumental Wariables [WO]), [YO],
Levin's method [LEV], and the Tally principle [PE-2].

The Maximum-Likelihood method [AS-2] estimates the

parameters by selecting the value of the parameters which
"makes the observed data most probable in the sense that
the likelihood function is maximized" [GOO]. The likeli-
hood function is a function of the conditional probability
density of the data given the parameters. Thus, the
method chooses the parameters' values that makes as proba-
ble as is possible the data which is in fact observed [BL].

Another scheme for parameter estimation is through
a Bayesian approach [DO], [PE-1]. In this method the
estimates are taken from the a posteriori conditional
density of the parameters given the input-output data.
This is done by the use of Bayes' Theorem [LEE] on the
conditional probability density of the data given the
parameters--the function which is the argument of the
likelihood functional.

In both the Maximum Likelihood and Bayesian estima-
tion methods, it is necessary to make assumptions on
the probability distributions of the data and parameters.
The difficulties involved with expressing the a priori
information in terms of a probability distribution can

be circumvented by using prediction error methods [AS-2].
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In this case, a prediction model (similar to the Kalman
filter [KA-2]) is implemented and the parameters are esti-
mated by minimizing a criterion which is a function of
the predicted output.

One of the main purposes of identification is to
determine the dynamics of a process so that a proper
control law may be deéigned and implemented to cause
the system to perform according to some set of criteria.
For example, better knowledge of a production industry
plant or an economic system may be obtained for improved
control.

The identification procedure can also be utilized
for a diagnostic examination to analyze the properties
of a system, such as the determination of rate coeffi-
cients in chemical reactions and reactivity coefficients
in nuclear reactors. This goal has practicality in biology,
economics, medicine, and many other related fields.

Of course, identification of a process may simply
be carried out to verify the structure of a theoretical
model which was posed. And by continuously monitoring
a process, a system identifier can learn parameters which
vary slowly through time. Thus, at each instant of time,
the system behavior is approximated and an effective
controller can be implemented for that instant. A con-

troller constructed by way of this type of parameter
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learning procedure is called a parameter adaptive con-

troller [KU], [SK]. And sometimes when system parameters
vary, a reliability index of that system may change. A
check on the reliability of the system can be maintained

by identifying the system parameters.

l1.4. Object of the Thesis

This first chapter has staged an introduction to
two areas of systems theory: singularly perturbed systems
and parameter estimation. The rest of this treatise is
to serve as a tutorial to the unification of these two
studies.

Chapter II will establish the algebraic language
of this text and the mathematical structure of the sin-
gularly perturbed system. The third chapter will concen-
trate on the solution to the identification problem at
hand, including the mathematical and systems approaches
and techniques utilized. Chapter IV will provide tangible
reckoning of the newly-constructed procedures through
computer-oriented examples.

The final chapter will summarize the results of
this thesis and provide directional comments for further

research in this area.



CHAPTER II
FORMULATION OF THE PROBLEM

In this chapter the mathematics behind the singularly
perturbed system will be introduced. The construction
of the two-time scale concept will be included along
with the algebraic "evolution" of that system. Sections 2.2
and 2.3 will focus on the decoupling; i.e., separation,
of that system into fast and sloﬁ subsystems. Section 2.4
will deal with properties and theorems for the singularly
perturbed system. The discussion will end with the fifth

section representing the formal problem statement.

2.1. The Sinqularly Perturbed System

It is the nature of systems engineering to commence
a discussion with analytic statements regarding the vari-
ables of the problem under consideration. In this case,
the statements may consist of vector-form ordinary dif-
ferential equations interrelating the variables. The

general form of these is

d_i n Fl(n,u,t) ' n(to) = n° (2.1.1)

Yy = Fy(n,u,t) (2.1.2)

15
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where n is an n'-dimensional time-differentiable state
vector, y is a g-dimensional output vector, u is an
r-dimensional input vector, and t is the scalar-time
variable with the initial time instant being to' (Until
otherwise stated, let t = 0.)

As discussed in the introduction to this thesis,
the fundamental concept embedded in singular perturbation
theory is that of slow and fast states. During the onset
of the process the slow variables remain relatively con-
stant compared to the fast variables which die out quickly;
i.e., reach their quasi-steady-states. Thus, if there
are n slow states x and m fast states z, the n'-state

vector n can be partitioned as

n 8 [:] (2.1.3)

with n + m = n'. Rewriting (2.1.1) and (2.1.2) in terms

of x and z yields

é% x = £(x,z,u,t) , x(0) = x° (2.1.4)
d ., - = 2° 2.1.5
at z = F3(xlzlult) : 2(0) = 2 (2.1.5)

Y = F4(xlzlult) (2.1.6)

where f£, Fa, and F, are merely the adjusted functionals

of Fi and F,. (Generally, £ and Fy are also functions
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of a parameter € which represents small "parasitic"
masses, capacitances, etc. of the system.)

Now, by assuming that t is the time frame for the
characteristics that are slow, and allowing T to repre-
sent the time frame for the fast characteristics, it
is reasonable to assume that the ratio of t to v is some
small positive number € [KO-1]. That is, if t is in
seconds and T is in milliseconds, then € is 0.001. Assum-
ing that T = 0 corresponds to the instant t = 0, it is

found that
t
s - (2.1.7)

If 1 were now changed to microseconds, then € would
decrease in magnitude. And when € is shrunk, the fixed
t period will correspond to quite a long T period. So,
as € is decreased toward zero, one fixed t period will
correspond to an infinitely long T interval. Thus, fol-
lowing the example, if € were decreased to 10-9, one
t period (1 second) would contain one billion T periods
(nanoseconds) .

Feeling familiarized with this two-time scale concept,
it seems reasonable that the states x and z should inter-
act according to t and T, respectively. That is, the

states x are % times slower than z, and likewise are

their respective derivatives. Accordingly, F4 can be
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rescaledas g = eF3, so that g and £ are of the same order

of magnitude [KO-1]. Thus, equations (2.1.4) and (2.1.5)

become
é% x = £(x,z,u,t) , x(0) = x° (2.1.8)
€ é% z = g(x,z,u,t) , z(0) = 2° . (2.1.9)

(Recent results by Chowet al. [CHO-1] show this state
description is utilizable for systems with lightly damped

high frequency modes.) Note that as € - 0 here,

g% xg = £(xg,z ,u,t) , x (0) = x° (2.1.10)

0 = g(xs,zs,u,t) (2.1.11)

where xs(t) and zs(t) are the quasi-steady-states of

x(t) and z(t), respectively. Here then, equation (2.1.11)

is algebraic and can now be backward substituted into

(2.1.10) to yield a new differential equation in Xg-
It is worth noting that for the long-term studies

in the classical quasi-steady-state approach, the deriva-

tive of z with respect to t in equation (2.1.5) is set

equal to zero which then yields the system of equations

(2.1.10) and (2.1.11). Thus, sz/dt = 0 which requires

zg to be a constant. However, equation (2.1.11) defines

zg as a time-varying quantity. Even though this procedure

is justifiable in yielding approximate solutions, it does
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leave this obvious inconsistency. It is through the
introduction of the two-time scale concept discussed
above that this inconsistency is circumvented. For in
equation (2.1.11) e(dzs/dt)==0 results from letting € »+ 0
rather than from dzg /dt = 0.

If the time scale is changed to 71 using (2.1.7),

equations (2.1.8) and (2.1.9) become

=¢ f(x,z,u,ecT) (2.1.12)

Sle
%

g(x,z,u,et) . (2.1.13)

Sl
N
I

Now as € + 0, equation (2.1.12) implies that x remains
constant in the fast time period. Therefore, during
this initial fast time period the only fast variations

are in z. Accordingly,

z =z, + 2z (2.1.14)

]
N

|
N

and thus equation (2.1.13) becomes (with z¢

and € - 0 and dzs/dT = 0):

o

5 2p = 9(x%,22 + z (D ,u(1),0), 2£(0) = 2° - z_(0)

(2.1.15)
often called the "boundary layer system." Finally, it

is recognized that (2.1.10) and (2.1.11) represent the

slow model and (2.1.15) represents the fast model, with
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n

x(t) xs(t) (2.1.16)

n

z(t) = z_(t) + zf(E) =z (t) + z (1) . (2.1.17)

€

(From hereon,'zf will be expressed in the t-domain, so
that the investigation of the system characteristics

at t = 2 seconds (say, with € = 0.001) will then involve
examination of zg at T = 2000 milliseconds.)

These representations (2.1.16) and (2.1.17) are
merely the zero-order approximations of the asymptotic
expansions in € of the solutions x and z for the system
(2.1.8) and (2.1.9) [OM-3], [GA]. The solutions x and

z are therein expressed as

x(t)

xg(t) + ex)(t) + ezxz(t) + ...

+ X (1) + exy (1) + eziz(r) + ... (2.1.18)
z2(t) = z (t) + €z (t) + ezzz(t) + ...
+ 2 (1) + eZ (1) + 5252(1) ol . (2.1.19)
Thus, (with §O(T) Z 0--see [GA, pg. 29])
x(t) 2 xg (t) A X (t) (2.1.20)
A A >
z(t) € z_(t) + z-(1) 2 z (£) + z (1) . (2.1.21)
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2.2. Exact Decomposition of the System

It is natural to ask at this point if the system
(2.1.8), (2.1.9) with (2.1.6) can be decoupled into
separate subsystems. In facilitating this task, the

linear time-invariant matrix version of this system will

be used:
i-3 X =2A..Xx + A.,Z + B.u x(0) = x° (2.2.1)
dt 11 12 17’ ce.
€ 4 z =A.,x + A,z + B,u z(0) = zo (2.2.2)
dt 21 22 2° ! °er
y = Clx + sz + Eu (2.2.3)
where
All is n xn A12 is n xm B1 is n xr
A21 ism x n A22 ism xm B2 ismxr
C1 isgxn C2 is g xm Eis g xr

and where the argument t for x, z, u, and y has been
suppressed for ease of notation. From hereon, equations
(2.2.1)-(2.2.3) will be called system CS for coupled
system. Kokotovic et al. [KO-1] provide an iterative
scheme to separate the slow and fast subsystems, wherein
the newly-determined subsystem matrices are obtained

in terms of All' A12, A21, and A22 without ill-conditioned

modal transformations. And an alternative algorithm
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based on the modal transformation matrices is presented
in [KO-7]. Since these algorithms are cleanly presented
and available in those papers, a transformation technique
akin to that in [KO-4] will be discussed here.

Consider the matrix T:

T = (2.2.4)

where L and M are any matrices of the proper sizes, along

with I1 and 12, to yield a square matrix T. It is easily

verified by checking T 'T = TT @ = I, that
Il eM
1 = (2.2.5)

Assume now that L and M satisfy

A - A22L + EL(A11 - A12L) =0 (2.2.6)

21

(By checking matrix sizes, it must be that L is m x n
and M is n x m, I1 is n x n and I2 is m x m, and thus 13
and T are (n + m) X (n + m) matrices.) Introducing the

change of variables
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gl =X (2-2.8)

€y z + Lx = z + L§, (2.2.9)
into system CS yields
£ 6, = (&) - ALLIE + AL, + Bu (2.2.10)
cat £, = (Ay; = AL + elAy) - elA L)) +
+ (A, + €LA;,)E, + (B, + eLB))u (2.2.11)
y = (C; - C,L)E; + C,E, + Eu . T (2.2.12)

By using (2.2.6) in (2.2.11), the system simplifies to

g, = (A11 - AlzL)g1 + Aj,E, + Bju (2.2.13)

N

d =
€3t &, = (A,, + €LA;,)E, + (B, + €LB,y)u (2.2.14)
y = (C; - ch)g1 + C,E, + Eu . (2.2.15)

Another change of variables

v, 52 (2.2.16)

vy gl - eME2 = El - eMv2 (2.2.17)
turns (2.2.13)-(2.2.15) into

a _ _ _ -
dt V1 = By - AjoL)vy + [e(ag) - A)OLIM + Ay,

- M(A22 + eLA12)1v2 + [Bl-M(Bz-+eLB1)]u
(2.2.18)
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d

€3c V2 = (A22 + eLAlz)v2 + (B2 + eLBl)u (2.2.19)

y = (C1 - CZL)V1 + [e(C1 - CZL)M + C2]v2 + Eu .
(2.2.20)

By applying (2.2.7) in (2.2.18), the simplification

becomes

d =
(2.2.21)

€Ege Vo = (A22 + eLAlz)vz + (B2 + eLBl)u (2.2.22)

y = (C1 - CZL)V1 + [e(C1 - CZL)M + C2]v2 + Eu .
(2.2.23)

What has thus been constructed is a state transformation

vy gl-emgz X-eM(z+Lx) X
= = =T
v2 52 z+Lx z
(2.2.24)

turning the coupled singularly perturbed system CS into
the decoupled slow and fast subsystems (2.2.21)-(2.2.23).

Assuming that A is non-singular, the choice of

22
L and M can be made through their asymptotic expansion

representation as
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_ _1
_ _1
M=1a,, A22 + 0(¢g) (2.2.26)

which, for small €, satisfy equations (2.2.6) and (2.2.7).

Definition: A matrix P is of order e, 0(e), if there
exists positive constants €* and c such
that the norm ||P|| satisfies ||P|| < ce

for all €e€[0,e*].

If these two expressions for L and M are substituted

in (2.2.21)-(2.2.23), the resulting system is

d -1

at V1 = [Bgy = Byp Ay Ay - AL 0(e)]vy 4+

-1
+ [Bl - (&, Ay, + 0(e))B, -

-1,.-1
= €A); Ayn(A 5 Ay + 0(e))By -

-1
- €0(e) (A5 A, + 0(€))Bl]u (2.2.27)
e Ly = (A, + easla. a4+ e0(e)A,,lv, +
dt "2 22 22 “°21 ""12 12772
-1
+ [B2 + €A22 A21 B, + eO(e)Bllu (2.2.28)
1

y = [C1 - Cz(A22 A, + 0(€))]v1 +
+ [ele, - CZ(Agé Ay + 0(e)) x

x (A, Azé + 0(e))] + Cylv, + Eu . (2.2.29)
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Defining
A da -a_alla (2.2.30)
o - By T RApp Ay Ay -2.
A _ -1
c 8¢ -c. ala (2.2.32)
o= C1 = Cy A Ay -2.

and recalling the fact that ﬁO(e) = 0(e) for any matrix

i, then for small € system (2.2.27)-(2.2.29) simplifies

to
S v, = [, + 0(e)lv; + [B, + O(e)]u (2.2.33)
e & v, = [A,, + 0(c)lv, + [B, + O(c)]u (2.2.34)
y = [Cj + 0(e)]lvy + [C, + O(e)]v, + Eu . (2.2.35)

This is the c-asymptotic expansion representation of
the decomposed system (2.2.21)-(2.2.23). The zero-order

approximation of this system is thus

é% v, =Av, +B_u (2.2.36)
ed v =a.v., +B.u (2.2.37)
at V2 = BAyva t By -2.

y = C,vy + C,v, + Eu . (2.2.38)

If the expressions for L and M in equations (2.2.25)

and (2.2.26) are expanded [KO-4] to



27

— -1 -2 2
L = Ay, Ay + €Ay) Ay Ay + 0(e9) (2.2.39)
= -1 -2
M=2,,R) + eld;, A, Ay, -
-2 -1 2
A, A5 Ay Ay, AD) + 0(e) (2.2.40)

then the first-order approximation of the decoupled system

becomes:
v, = [A_ - €A 2 aA..a v, +
1 o 12 B2 Ay Allvy
+ [B_ - (A A2 A . B, +A,.2"18 )Ju
o 12 %22 %21 1 12 %22 ©2
(2.2.41)
ev. = [A.. + Al A . a lv, + [B,+¢eA -1 B.]u
2 22 22 %21 12 22 821 By
(2.2.42)
_ -2
y = [Cy = €Cy Ay5 RAyy Ajlvy +
+ [C + eC A12 22]v + Eu . (2.2.43)

2.3. Approximate Decomposition of the System

Pausing for a moment, it is interesting to examine
what would result by approximately decomposing system
CS. This procedure is done by setting € = 0 in equa-

tion (2.2.2). This yields

21x + A

o
"

A z + BZE (2.3.1)

22
or

N
I

-1 - -
A22(A21x + Bzu) (2.3.2)
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where the bar indicates that € = 0. Also
y =C,x + C,z + Eu . (2.3.3)

1 2

Substituting (2.3.2) into system CS leaves the slow

subsystem
d _ _ .0
3t Xs = ons + Bous R xs(O) = X (2.3.4)

where x = x E, Y = Ygr and u = ug are the slow parts

Sl

of the variables x, z, y, and u, respectively, and

E éE-—C Azl

o 2 A5 B, . (2.3.6)

To derive the fast subsystem, it is assumed that the
slow variables are constant during the fast transients,
so that dz/dt = 0 and x = constant during that fast
period. Subtracting (2.3.1) from (2.2.2) and (2.3.3)

from (2.2.3) produces
e(é% z - é% z) = A21(x - X) + Azz(z -z) +
+ B,(u - u) (2.3.7)
Y -Y=Ci(x=-X%X) +Cy(z=-2) +E(u-u . (2.3.8)

Since x is predominantly slow, x = x, and letting
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zg =2 -2z (2.3.9)
ue = u - u=u- u_ (2.3.10)
Ye =Y - Y=Y - ¥g (2.3.11)
then equations (2.3.7) and (2.3.8) become
d

€ 3¢ zf(t) = A22 zf(t) + B2 uf(t) R

z:(0) = z° - Z(0) (2.3.12)
Yel(t) = C, zo(t) + Eug(t) . (2.3.13)

Introducing the fast "stretching” time scale 1 = t/e

produces

£ z.(1) = Ay, 2. (1) + Byu (1), z£(0) = 2°-Z(0)
(2.3.14)

yf(r) = szf(T) + Euf(r) . (2.3.15)

Notice that (2.3.1) and (2.3.4) represent the linearized
time-invariant matrix versions of (2.1.11) and (2.1.10),
just as (2.3.14) is to (2.1.15). And notice that (2.2.36)-
(2.2.38), the decomposition via asymptotic expansion, is
the same system as (2.3.4), (2.3.5), (2.3.12), and

(2.3.13) with vy and v, being identified as Xg and Zgs
respectively. Looking back at (2.3.2), it becomes appar-

ent that z = z,, and thus
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1 1

zg(t) = -RAy5 Ayy x (t) - Ay, By uglt)
4 2.3.16
= A, x_(t) + By ug(t) (2.3.16)
so that
I | o _ ,-1
z2g(0) = -Ay5 Ry X~ = Ay; By u (0)
_ o
= A3 x + B3 us(O) (2.3.17)

where Ay is m X n and By is m x r.

It is now time to collect together the equations
of the system to be examined in the remainder of this
thesis. Therefore, equations (2.3.4), (2.3.5), (2.3.14),
(2.3.15), and (2.3.16) will comprise that system, hereby

dubbed system DS, the decoupled system.

2.4. Properties of the System

There is enough foundation at this point to discuss
properties of the singularly perturbed system. The system
CS has already been shown to possess a two-time scale
characteristic. This effect is evident in the eigenvalue

structure of that system.

Lemma 1: Suppose A22 exists and has all L.H.P. eigen-
values, none on the imaginary axis. Then, as
€ + 0, the first n eigenvalues of system CS

tend to the eigenvalues of the reduced system
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(2.3.4), while the remaining m eigenvalues

tend to infinity as the eigenvalues of % A22 .

Proof: By rewriting equations (2.2.33) and (2.2.34)

as

vy Ao+0(s) 0 vy B°+0(e)
£ = | + u
v, 0 %A22+%—0(e) v, %Bz+%0(e)
é Av + Bu (2.4.1)

it is clear that the eigenvalues of system CS are con-
tained in the eigenvalues of this system matrix A--which
consist of the eigenvalues of A6 + 0(e) and the eigen-

values of % A % O(e) . (Also see [KO-4].) Q.E.D.

22 1

Thus, system DS consists of two subsystems: the
slow subsystem containing n small eigenvalues (in magni-
tude) and a fast subsystem with m large eigenvalues.
And the smaller € is, the greater is the separation of
these two groups of eigenvalues. In an asymptotically
stable system the fast modes corresponding to the large
eigenvalues are important only during a short period
(measured in T-units). And after that period those modes
become negligible and the behavior of the system can
be described merely by its slow modes (using the t-domain).

(This is related to the concepts of Dominant Pole
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Theory [SH] which holds that the system eigenvalues of
small magnitude dominate the system behavior.) Neglecting
the fast modes (parasitics) is equivalent to assuming
that they are infinitely fast; that is, allowing € + 0
in system CS.

The last paragraph mentioned the concept of stability.

Basically, a system is asymptotically stable if when

the system is started near an equilibrium point, the
state of the system approaches that equilibrium point as

t + », where an equilibrium point is a constant vector

solution of the state differential equation.

Theorem 2.1: If the real parts of all eigenvalues

of Ao and of A,, are negative, then there exists an
e* > 0 such that for all € < €* the system CS is asymp-

totically stable.

Proof: Referring to (2.4.1), the system matrix

A 0
there becomes, for sufficiently small ¢, [ ° ]

1
0 ¢ A22
and thus, if eigenvalues of Ao and A22 are in the left-

half of the complex plane then the system CS is asymp-
totically stable. This can be considered also as

o(A, + 0(c)) = o(A ) + O(c) and o(% A

1
€

1 =
22 + 5 0(e)) =
o(A22) + %.0(3), and thus for small positive € these
spectra become simply o(Ao) and % °‘A22)' respectively.

(Here o (P) stands for the spectrum of P--the set of all
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eigenvalues of P.) Hence, if o(Ao) and °(A22) are in
the left-half plane then the system CS is asymptotically

stable. Q.E.D.

Thus, stability of system DS implies stability of
system CS. Other discussions on stability and stabili-
zation can be found in [KO-2], [KO-4], [PO-1], [WI],
and [GRU].

Controllability of the system CS can now be estab-

lished, too.

Definition: A pair of matrices (A,B) is a controllable

pair (and thus the system X = AX + BU is

2 n-1

controllable) if rank [B,AB,A“B,...,A B] =n,

where A is n x n and B is nxr and rank A=n.

Theorem 2.2: If AE% exists, and if the pairs

(AO,BO) and (A22,Bz) are controllable pairs, then there
exists an €* > 0 such that for all € < €* the system

CS is controllable.

Proof: From (2.4.1) it follows that for € small

the controllability of the reduced and boundary layer
systems, that is of the pairs (AO,BO) and (A22,Bz), implies
the controllability of the original system CS. (That

is, the subsystem (2.2.33) is a regular perturbation of

the reduced system (2.2.36) and the subsystems (2.2.33)
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and (2.2.34) are connected through u, but have different

eigenvalues.) (See also [KO-2], [KO-4].) Q.E.D.

Thus, controllability of system DS implies controllability
of system CS.

It should be noted here that a matrix K exists such
that A22 + BZK is non-singular. And the controllability
of the system CS is not influenced by u = Kz + w. Thus,
even if AE% doesn't exist, Theorem 2.2 still holds, but
with the matrix A,, + B,K replacing A,, in the definition
of A, and B, in equations (2.2.30) and (2.2.31).

The last concept to be discussed in observability.

Definition: A pair of matrices (A,C) is an observable

pair (and thus the system X = AX + BU,
Y = CX + EU is observable) if the rank

2 n—1]T

[c,cA,CcA® ... CA = n, where A is n x n

and C is g x n and rank A = n.

An analogous argument leads to the proof of the last

important theorem:

Theorem 2.3: If the pairs (Ao,co) and (A22,C2)

are observable, then there exists an €* > 0 such that

for all € < e* the system CS is observable.
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Thus, observability of system DS implies observability
of system CS. (For additional reading on observability
see Javid ([JA].)

In summary, the formalized system DS is compiled
here:

Slow Decoupled Subsystem (SDSS):

dit xg (t) = A_x_(t) + Bou_(t), x_(0) = x° ¢ R
yg(t) = Cx (t) + Eju_(t)
zs(t) = A3xs(t) + B3us(t)

Fast Decoupled Subsystem (FDSS) :
é% zf(r) = A22 zf(r) + Bzuf(r), zf(O) = z°-—zs(0)e:Rm
Yf(T) = szf(r) + Euf(T) .

2.5. The Identification Problem

It is now of interest to examine these two decoupled
subsystems with respect to parameter estimation concepts.
The problem under investigation can now be stated simply
as:

Given a priori knowledge that a system exhibits

the behaviors characteristic of slow and fast

phenomena, determine the "inner workings" of

that system from the input and output data

records available.
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What do the words "inner workings" refer to? 1In
the present case of this problem, it is initially assumed
that the process under scrutiny is of the bi-structural
form of system DS. The "inner workings" of that system
are then the internal mechanisms as defined by the system
matrices and the time-scale parameter €. What they
describe are the functionings of the decomposed slow
and fast subsystems.

So once the matriceg Ao' Bo’ Co' Eo' A3, B3, A22'
BZ' Cz, E, and the initial values x°,z° and the parameter
€ are known, then the system DS is totally describable,
and is then ready for further explorations such as in
the area of optimal control. Therefore, for the remainder
of this thesis, the goal will be the determination of
these parametric quantities.

In order to discover these quantities, it will be
necessary to choose the proper experimental design [GOO],
[IS]. This includes the selection of the input signals
[LE], for care need be taken to use inputs which will
act to "excite" all the fast and/or slow states so that
accurate determination of the parameters will be made.

Also an appropriate identification scheme must be
used which: (a) has good discriminating ability in order
to identify the faster components over the slower ones;

(b) is "good" in the sense that it yields a model
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consistent with the data; and (c) yields estimates which
converge, in some statistical sense, even in the presence
of noise. Finally, since the system DS is operating in
two time scales, it is important to consider relevant
sampling time(s) on the process to be identified.

It will be the intent of the next chapter to utilize
identification theory to solve the problem of estimating
the parameters of the decoupled singularly perturbed

systems SDSS and FDSS from a process operating in coupled

form (CS).



CHAPTER 111
PROBLEM SOLUTION

The scope of this chapter will be to provide the
theoretical solution to the problem of identifying the
decoupled singularly perturbed subsystems. The first
section will take into account the salient characteristics
of the singularly perturbed structure and discuss what
type of an identification method might be used to exploit
these features. Also discussed in that section is model
representation. This is expanded in Section 3.2 where
the models for the identification-solution method are
dealt with. The algorithms involved in the identifica-
tion procedure are unveiled in the next section, and
the last section presents the application of the identifi-
cation method to the specific problem of a singularly

perturbed system.

3.1. Considerations for a Solution to the Problem

At this point, let us examine system DS again:

. 4
SDSS: g Xg(t)

ons(t) +B°us(t); xs(O) =x(0) (3.1.1)

ys(t) Coxs(t) + Eous(t)

zg (t) = Agx_(t) + Bju_(t)

38
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. 4 = .
FDSS: ¢ 3t zf(t) = Azzzf(t) + Bzuf(t),

z¢ (0) z(0) - z,(0)
yf(t) = szf(t) + Euf (3.1.2)

The block diagram of the mechanics of the singularly

perturbed process may be seen in Figure 3.1. In this

SDSS

FDSS
£ Ye

Figure 3.1. Singularly Perturbed Process

figure the coupled system CS is visualized as two decom-
posed subsystems operating in parallel. What is desired
is some method and set of procedures for determining
the dynamics of each subsystem from the input-output
data information that is given.

Before addressing the issue of the method of iden-
tification, it is relevant to note something about the

model to be identified. Up to this point, the systems
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of equations under consideration have been represented
in state space equation forms. Since, in the framework
of identification, models of the fast and slow subsystems
are to be found, it is totally reasonable to try to deter-
mine any structural format as long as it is equivalent
in an input-output sense.

The following are two different representations of
the same observable system. The first is the observable
input-output canonical form [GU], [BE] for a multi-input,

multi-output (MIMO) system:
P(D)y(t) = Q(D)u(t) . (3.1.3)

P(D) is a square non-singular (g X q) polynomial matrix
in the differential operator D and Q(D) is a (g x r)

polynomial matrix in D, and u(t), y(t) are (r x 1) input
and (g x 1) output vector functions, respectively. For
the case of a single-input, single-output (SISO) system,
this can be expressed in a scalar linear time-invariant

differential equation:

y(n)(t) + a y(n-l)(t) + ...ay(t) =

n-1

= b u®(t) + b _

. a1 (e) + Lo+ bute) .

1
(3.1.4)

The second representation is the observable companion

form in state space form:
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d

at x(t) = Ax(t) + Bu(t)

y(t) Cx(t) + Eu(t) (3.1.5)

The transformation from (3.1.5) to (3.1.3) can be
divided into two steps [BE]. In the first step, by elimi-
nating state vector x(t) from equation (3.1.5), an equiva-
lent representation of the form (3.1.3) is obtained.
During the second step, a unimodular matrix is formed,
with which the representation obtained in the first step
can be transformed to the desired input-output canonical
form satisfying certain requirements on the degrees of
the element polynomials in E(D) and 6(D). The transforma-
tion from (3.1.3) to (3.1.5) can be obtained either through
the Structure Theorem [WOL] or by the algorithm developed
by Guidorzi [GU]. Other transformation procedures between
the two representations can be found in Ogata [0G], and
algorithms on the relationship of the initial conditions
between the two forms are dealt with by Heinen [HE].

With these equivalency considerations, it is therefore
legitimate to choose to find either the differential
equations (3.1.3) describing the system behavior or the
state space description (3.1.5) of that behavior.

As to what kind of method would be suited to the
problem at hand, a major consideration is the fact that

the two subsystems operate with different time constants.
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This difference manifests itself through the effect of
the fast subsystem dynamics. Since the fast dynamics
dissipate rapidly (on order % times faster than the slow
dynamics), a key concern should be a procedure which

can identify a continuous-time system in a limited time
frame.

Of the multitude of schemes in the literature,
several methods show promise of accomplishing identifica-
tion in a finite time period. Obviously, though, any
identification attempted--in particular, adaptive control
procedures--are performed in a finite time interval,
even if they are only theoretically valid on the infinite
time frame. There exists a well-defined procedure of
identification which has been proved to be valid and
successful on a finite time interval [PEA-1,2], which
will be discussed at length later.

In most identification methods, the initial condi-
tions of the system have to be determined along with
the system parameters, even though it is the set of system
parameters that is of primary interest. With the problem
at hand--of identifying the fast and slow subsystems--
finding the initial conditions for each separate subsystem
adds to the complexities of the problem. The basic issue
is to determine the system dynamics of FDSS and SDSS.

The same afore-mentioned finite-time procedure (called
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H-identification), due to Pearson, uses a noncausal filter
which eliminates the initial conditions during the iden-
tification process so that the system parameters can be

identified alone.

3.2. Model of a System to be Identified

Since H-identification will be used in this disser-
tation, it is now time to examine more closely this pro-
cedure and how it relates to the singularly perturbed
system identification problem. This procedure is a least
squares equation error parameter identification technique
(see Figure 3.2), but differs from other known applica-
tions of least squares in a number of ways. The first

of these is, as mentioned above, that only input-output

v

u {— Process n
M, |-t -1
El \ M2

J = <e,e>

e

Figure 3.2. Least-Squares Equation Error Model
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data is presumed to be given over a fixed finite time
interval with no attempt to estimate unknown initial
conditions. The second characteristic of H-identification
is sufficiently general to include a variety of nonlinear,
time varying, differential delay, possible unstable,
multivariable system models. The next is that the formu-
lation leads to an explicitly defined function of the
parameters which simplifies the computations significantly.
Also, this approach is a "one shot" identification scheme,
as opposed to other methods which are iterative in time.
The last, and most germane feature, is the way in which
the unknown disturbances are modeled on the finite obser-
vation time interval. While Maximum Likelihood and other
statistical methods of identification represent the dis-
turbances by stochastic processes with underlying Markov
process representations, the model for unknown disturbance
signals in this approach is the deterministic homogeneous
differential operator equation:

o] .
T(D,8)d(t) = 3} §.0%td(t) =0,
i=0

A
§ =

=1, 0<t<t <o (3.2.1)

(with the order being a € [0,a preselected)

max

|

where the Gi's and the initial conditions are completely

o
max

arbitrary. That is, the disturbances can be approximated
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by the arbitrary solution of a homogeneous ordinary dif-
ferential equation on a specified finite time interval.
Actually, this model can be regarded as generating a
stochastic process if the Gi's and the initial conditions,
d(i)(O) (i=1,...,0), comprise 2o independent random
variables with essentially infinite variances. The above
model is actually quite suitable, since the data set
is presumed to consist of input-output data observed on
a finite observation time interval. Thus, the shorter
the time interval, the more reasonable is the above dis-
turbance model for a modest value of a. With respect
to the finite time-interval length, it has been verified
by simulation studies [PEA-2,3] that this time interval
can be surprisingly short in many cases; i.e., on the
order of the dominant system time constant, or less.

At this juncture, it is appropriate to introduce
the model formulation for the identification procedure.

To refresh the memory, equation (3.1.3) is rewritten as:
P(D)y(t) + Q(Dult) =0, 0 <t <t . (3.2.2)

Since the system parameters are contained within §(D)
and 6(D), it would be best to express them in terms of

the parameters in question as:

P(D,w) + Q(D,wu(t) =0, 0 <t <t (3.2.3)
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where
- n n-i
B(D,w) = 'Zo B, (D"t (3.2.4)
1=
p LR n-i
Q(D,w) = 'Eo Q, (w)D (3.2.5)
1=

and D é 5-3 with w = (wy;,...,w,) being the vector of

dt 1 B
system parameters. By defining a vector valued function
f (w) with components fi(w) selected to reflect the ways
in which the parameters enter into P and Q, it is then
easy to define v(t) and V(t) (depending on the data pair
[u(t) ,y(t)]) and operators P and Q such that equation

(3.2.3) becomes

P(D)v(t) + Q(D)V(t)f(w) =0, 0 <t <t (3.2.6)

1 L]

This is the case for systems which are separable in the

parameters--as are all linear systems--wherein the generic

decomposition of equation (3.2.3):

P(D)v(t) + Q(D)g(t,w) =0 , 0 < t < ty (3.2.7)
admits to equation (3.2.6) via
glt,w) = V(t)f(w) . (3.2.8)

Here V(t) is a matrix valued function of the data and
£f(-) is a continuously differentiable vector-valued func-

tion of w with the single valued property
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f(w) = £f(w*) if and only if w = w* (3.2.9)

for all w and w*.
Now, if the actual input u(t) and output y(t) are
corrupted by additive disturbances 4, (t) and d2(t),

respectively, so that u(t) and y(t) are observed accord-

ing to:
y(t) = y(t) +d)(t) , 0 <t <t (3.2.10)
u(t) = u(t) +d,(t) , 0 <t <t (3.2.11)

then the model (3.2.3) becomes
P(D,w) [y(t) = d;(£)] + Q(D,w) [ult) - d,(t)] =0,

0<tc<t (3.2.12)

1 L]

And if dl(t), dz(t) are assumed to be solutions of the
differential equation (3.2.1) on [O,tll, then operating

on both sides of equation (3.2.12) with T(D,d) yields:

T(D,8)P(D,w)y(t) + T(D,8)3(D,w)u(t) =0 , 0<t<t, .
(3.2.13)
This is analogous to
T(D,8)P(D)v(t) + T(D,8)QDIV(t)E(w) =0 , 0<t<t,

(3.2.14)
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by following the same decomposition scheme that trans-
formed equation (3.2.3) into equation (3.2.6). By

expanding out T(D,d§), equation (3.2.14) takes the form:
DR (D)v(t) + 6;0% IR(D)v(t) +...+ § P(DIV(E) +

+ DYQ(D)V(t) £(w) + §,0% 1Q(D)V(L) £(w) +...+

1

+ GaQ(D)V(t)f(m) =0 . (3.2.15)
Writing this in vector form yields:

D% (D)v(t) + [D“‘lp(u)v(t),...,p(D)v(t),D“Q(D)V(t),

Ga =0
f (w)
Glf(w)

p*lo@)v(t),...,.am V()]

(3.2.16)

| 8of (w)

This'can be simplified into the following model form:

P(D)v(t) + QDIV(L)E(B) =0 , 0 <t <t (3.2.17)

1

where
6 = (61,...,6a,w1,...,w6) . (3.2.18)

The vector function f(6) satisfies the same single-valued
property (3.2.9) if the original function f(w) in (3.2.6)
does. This should be the case with a model that has

been properly parametrized.
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To summarize, the basic model including disturbances
is represented in equation (3.2.17). This is, of course,
valid only for models which are separable in the param-

eters. Otherwise, it would take the generic form:
P(D)v(t) + Q(D)g(t,0) =0, 0 <t < t; (3.2.19)

This generic model can be viewed in Figure 3.3.

1d(t)

u(t) System —— y(t)
S (w)

P(D)v(t) + Q(D)g(t,d) =0
6 = (6,&))

Figure 3.3. Basic Model

3.3. The Algorithms of H-identification

Having established the basic model to be identified,
it is time to deal with the algebraic mechanics behind

H-identification.

Definition: The basic model (3.2.19) is H-identifiable

if and only if the parameter vector 6 can
be identified via the input u(t) and the

output y(t) on a finite time interval [0,t,]
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without estimating (implicitly or explicitly)

the initial condition of the model.

Now, let a square non-singular polynomial matrix F(D) be

chosen such that
F 1 (D) [F(D), Q(D)] (3.3.1)

is a proper transfer function matrix. The form of F (D)

is
m m-i
F(D) = 3 F,D ,m >N . (3.3.2)
i=0
Then an auxiliary error function is implicitly designated
via
F(D)z(t,8) = P(D)v(t) + Q(D)g(t,8) . (3.3.3)
To get a better handle on the nature of z(t,8), it is

wise to first examine the homogeneous solution to equa-

tion (3.3.3):
F(D)z(t) =0 . (3.3.4)

The solution to this can be expressed as:

Ax(t) , x(0) = x_ € rR"

£ x(t)

z(t) Cx(t) (3.3.5)
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where (A,C) is an appropriate observable pair with minimal
dimension state space n. Then z(t) takes the form:

z(t) = CeAtxo ] (3.3.6)

Therefore, the particular solution to equation (3.3.3)

will take the form:

z(t,8) = Ce”Tx_ + v(t) + u(t,0) , 0<t<t .

(3.3.7)

By operating on both sides of this by F(D), it is seen
that the particular solutions v(t) and u(t,6) are the

zero state solutions to
F(D)v(t) = P(D)v(t) (3.3.8)
F(D)u(t,6) = Q(D)g(t,8) , (3.3.9)

respectively. In the case of separability in the

parameters, the particular solution z(t,6) would be:
At
z(t,0) = Ce X, + v(t) + M(t)p(0) (3.3.10)

whereupon M(t) would then be found (through the degeneracy

of equation (3.3.9)) as the zero state solution to:
F(D)M(t) = Q(D)V(t) . (3.3.11)

However, for either case, the particular solution z(t,6)

contains unknown parameters 6 and X,. Since it is desired
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to identify 6 without actually estimating Xy the term
CeAtxo need be eliminated. This can be accomplished
via an annihilation filter H [PEA-1,2].

Laying some groundwork first, let T denote the
Hilbert space of all vector valued square integrable
functions on [O,tll. And let v(t) and E(t,e) range over
the space of piecewise continuous functions on [0,t1].

Also, let To denote the subspace of T containing solutions

to equation (3.3.6). That is,

At n
Ce™"x,, xg eR, 0 <t < tl} .

T, = {x(t) [x(¢)
(3.3.12)

Definition: The filter H is a linear operator with domain

T and range (T - To) with the property:
t

1
f [H(t,t)1y(T)drt
o

T
cePty~leh TCT]w(T)dT =

>
ne

vie) & Hev(e))

>

[IS(t-1)

° t

1
T
vit) - CeAtW-lf P TeTy () ar

°© (3.3.13)

where (A,C) is the observable pair for the

system in equation (3.3.5) and
t

1
T
wéf P teToePtat (3.3.14)

(o)



53

is the observability Gramian for that same

system and--only here--§ is the Dirac function.

Now, H is a self-adjoint projection operator, as can
readily be seen from H[ﬁ(w(t))] = H(y(t)) and

adj [H(w(£))] = H(W(t)) (see Appendix A). But the sig-
nificance to the filter H is that its null space is To;
that is,

n

At
Hice™ x_) 20, ¥x, eR , 0<t<t . (3.3.15)

Thus, operating on the solution z(t,6) in equation (3.3.7)

yields:

~ A
z(t,0) H(z(t,0)) = H(v(t)) + H(u(t,0)) =

A - ~
= v(t) + u(t,8) , 0 <t <t . (3.3.16)

Therefore, since the initial condition response is arbi-
trary and has no physical significance, the solution
z(t,0) is projected down into the subspace (T - To),

via H, thus annihilating the initial condition response
on [O,tll. In so doing, v(t) and u(t,6) are also pro-
jected down into that same subspace yielding:

t

1
. _ T
S(t) = v(t) - cePtyl [ 2 TeTy(nar (3.3.17)
(o]
tl o
n(t,0) = u(t,s) - cePty™l [ e TeTy(r,0)ar .
o

(3.3.18)



54

Now, H-identification minimizes the inner product
norm of equation (3.3.16) yielding the functional Jl(e)
for the least squares minimization problem:

t

3 (8) = <z(t,0),z(t,0)> = f z0 (t,0)z(t,0)dt .

° (3.3.19)

Thus, any value of 6 which satisfies the basic model

(3.2.19) is also a solution to
Jl(e) =0 . (3.3.20)

Conversely, any value of 6 which satisfieé equation
(3.3.20) is a candidate for a value of 6 satisfying the
basic model (3.2.19).

By substituting equations (3.3.16)-(3.3.18) into
equation (3.3.19), Jl(e) unfolds as:

t t

1 1
3, (8) = [ vi(t)y(t)dt + 2 [ v (t)u(t,0)at +
(o] (o]
Y
+ f uT(tre)v(t)dt - nT -ln -
o
- 2nTw 1y (o) - yTo)yw ly (o) (3.3.21)
where tl
T
n = f 2 Ty (v)at (3.3.22)
o tl T
v(8) = [ A teT(e,0at . (3.3.23)
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In the case of separable-in-the-parameters models,

u(t,0) = M(t)p(H)
so that
Y(6) = Np(96)

where
t

1
N =f e tcTm(r)at

(o]

(3.3.24)

(3.3.25)

(3.3.26)

The functional Jl(e) can then reduce to an explicit func-

tion of 6:
3,(8) =a + 2b7p(8) + p" (8)0p(8)

where
t

1
a = f vI(t) v(t)dt - nTw In
[o)

Y
b = [ MT(t)v(t)dt - NTw 1

o
t

1
o = f MY (t)M(t)dt - NTw 1IN

(o)

Thus, once the data is collected and (a,b,?®) are

(3.3.27)

(3.3.28)

(3.3.29)

(3.3.30)

found,

no further integrations are needed involving the data

over [0,t1]. It is left to just minimize Jl(e) or Jz(e)

with respect to 6.
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Theorem 3.1: A minimizing value 6* for the positive

definite Jz(e) is a least squares estimate of 6 which is
unique if (as a sufficient condition) the data makes ¢
positive definite, which occurs if the columns of Q(D)V(t)

are linearly independent functions on [0,t1].

Proof: By letting A = p(6), due to its single-valued

p;operty, and setting Jz(e) as:

T,00 =a+ 2°A + 2Ter (3.3.31)
then the miﬁimization becomes equivalent to
VI,(A) =Db + éx =0 (3.3.32)
which is the normal equation for

z(t,0) = v(t) + M(t)A , 0 < t <t . (3.3.33)

A unique solution to this hormal equation (3.3.32) is
found if and only if the columns of ﬁ(t) are linearly
independent on [0,t1]. For then ﬁ(t) has full rank,

and thus ¢ is positive definite and therefore non-singular,
allowing a unique solution to the normal equation [SEB].
The subspace (T - To) contains the columns of ﬁ(t), which
can be represented as the projection of the function
F_l(D)ﬁ(D)V(t)A in that subspace. Since To is the null
space for F(D), it follows that linear dependence, or

independence, of the columns of §(°) cannot be altered
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by operating on that projection of F 1(D)T(D)T () A with

F(D). Q.E.D.

Thus, ¢ is non-singular if the columns of Q(D)V(t) are
linearly independent functions. However, this is mainly
of theoretical interest since it is not assumed that
the data is differentiable.

A final point concerning H-identification is that
the theory is still valid for any initial time t
(0 < ty < tl), whereby any reference to t = 0 in the

algorithm is replaced by t = ts-

3.4. Identifying Decoupled Subsystems via H-identification

The aim of this section is to describe how H-identi-
fication is used to identify the decoupled subsystems
FDSS and SDSS. Re-examination of Figures 3.1 and 3.3
will help to facilitate this. Their combination is demon-

strated in Figure 3.4.

DSS1 Ly (t)

a(t)

+ ) y(t)

Dss2 .
u(t) d(t)

Figure 3.4. Basic Identification Model for Singularly
Perturbed Systems.
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In Figure 3.4, one of the decoupled subsystems
(DSS1) is considered as the main system containing the
parameter vector w to be identified, whereas the second
decoupled subsystem (DSS2) is considered as the distur-
bance model (containing parameter vector §) with output
d(t). These two mechanisms are acting in parallel, and

the observed output y(t) is as in equation (3.2.10):

y(t) = y(£) + d(t) . (3.4.1)
This matches equation (2.3.11) in that

y(t) = y (t) + ye(t) ; (3.4.2)

that is, there is equivalency between the two sets of

signals via:
{y(t), d(t)} = {y (t), yp(t)} (3.4.3)

provided there is no other outside noise disturbances
acting on the system CS or its component subsystems.

That H-identification should apply well here depends
6n several factors. First, and most significant, is
that the output of the disturbance subsystem, d(t), is
in fact a solution of a homogeneous differential equation.
Without loss of generality, suppose that FDSS is the
subsystem DSS2 considered as the disturbance mechanism.

Examining the differential equations for FDSS as seen in
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equation (3.1.2) shows that its output Yg satisfies equa-
tion (3.2.1) as d(t) where the order o of T(D,§) is at
least as large as the sum of the order of Zge and Ue.
Therefore, d(t) £ yf(t) will have some T(D,§) in existence
to annihilate it. Secondly, since the goal is to identify
--not one--but two (sub)systems, the need to determine

the initial conditions of each is eliminated via the
filter H, thus alleviating such difficulties. Thirdly,

of course, is that H-identification has been proved to

be quite successful [PEA-1,2,4] over very small time
intervals [0,t1]. This is of great significance to the
problem of identifying the fast subsystem since the effects
of FDSS die out quite rapidly, necessitating the need for
such a "fast" algorithm.

At this point it might seem that H-identification,
certainly used in the vein of points one and two just
above, is application to any system that admits to a
decoupling into subsystems. This might be the case;
however, the application in this thesis of H-identifica-
tion to the particular problem of the decoupled singularly
perturbed system is special in the following way: the
majority of simulation studies carried out by Pearson
et al. indicate satisfactory performance of H-identifica-
tion when the modes of the disturbance model DSS2 and

the modes of the system modal DSS1 are located some
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distance Wy = %f , or greater, from each other in the
complex plane. Since the nature of the singularly per-
turbed system is that it has subsets of modes located
apart from each other in the complex plane, this is in
line with the assumptions of successful H-identification.

As far as the issue of exogeneous noise, n(t), acting
on the system CS, it seems reasonable that this will
only affect identification if the modes of n(t) are close
to the modes of the subsystem to be identified. This
concern will be addressed within Chapter V of this thesis.

As a final point, once the parameters of the main
subsystem DSS1 are found, that knowledge can then be
incorporated to facilitate the identification of the
remaining system DSS2. Details of this will be discussed
in the next chapter.

In the next chapter, the computational considerations
concerning the implementation of the algorithms will be
dealt with, along with some examples and results to verify
the direct numerical applications of H-identification to

singularly perturbed systems.



CHAPTER IV

COMPUTATIONAL CONSIDERATIONS AND RESULTS

This chapter will deal with the implementation of
the H-identification procedure for singularly perturbed
systems. Section 4.1 will modify the algorithms of
H-identification which simplifies the procedure. The
second section will discuss specific computational aspects
involved with implementing the algorithm and running it
on the computer. The third section will focus on the
direct application of the implemented algorithm for the
singularly perturbed system, and provide specific examples
and their associated results. The last section will

examine these results and discuss their significance.

4.1. Modification of H-identification

Recently, a formulation of H-identification was
described [PEA-5] which reveals the underlying least
squares functional to be minimized over the system param-
eters unrestrained by the parameters characterizing the
disturbance modes. At the same time, this formulation
accrues significant benefits in streamlining and simplify-
ing the computations needed to obtain the least squares

functional from the observed input-output data.

61
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Taking the system description (3.2.3) without

disturbances:
P(D,w)y(t) + Q(D,w)u(t) = 0 (4.1.1)
and reshaping this yields:

R(D)k(t,w) =0 , 0 <t <t (4.1.2)

1 L)
By including disturbances d(t) acting upon the system,

equation (4.1.2) admits to a general form as:

R(D)k(t,w) = s(D,w)d(t) , 0 < t < t, . (4.1.3)
Application of T(D,6) on both sides yields:
T(D,S)R(D)k(t,w) = 0 (4.1.4)

which in vector form presents itself as
- k(t,w) T

o = [p°r(m, p*'R(D),...,R(D)] 8,k(t,0) | . (4.1.5)

| 6,k (t,0) ]

Then the equation error function z(t,6) is the solution

to
C k(t,w) ]

F(D)z(t,0) = [D®R(D),D* IR(D),...,R(D)] |8,k (t,w)

|8k (t,0) ]
(4.1.6)
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A
with 6 = (§,w) = (61,...,6a,w1,...,w Here, F(D) is

B).
chosen so that

F~1(s)R(s)s® (4.1.7)

is a proper transfer function matrix. As in Chapter III,
the filter H is applied to z(t,6) and the functional

Jl(e) becomes:
t1

J (8) = <z(t,0),z(t,0)> = [ 2T (t,0)z(t,0)dt .
° (4.1.8)

Now, if ¢(t,0) satisfies equation (4.1.6) with zero
initial conditions, then Jl(e) becomes (see Appendix B):
t
T T -1
Jl(e) = g (tle)C(tle)dt - @7 ()W “@(0)
° (4.1.9)
where
@(0) = [ e® tcTr(t,0)at . (4.1.10)
o

In the case of separable-in-the-parameters models,

k(t,w) becomes:
k(t,w) & U(t)h(w) (4.1.11)

where U(t) is a matrix valued function of the observed

input-output data on [0,t1] and h(w) is a continuously
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differentiable vector valued function of the system param-
eters. Then, Jl(B) will become an explicitly defined
function of 6:

Q 9]
3,00 = [nT(w,6Ta ()] | "°°

Qdo Qdd H(w)§

od h(w)

h (w)

= [6T(w), 68T (w)] @ (4.1.12)
H(w) 8
where
h(w)
H(w) = -0 (4.1.13)
0o .
h (w)
) o columns i
and the Gramian is
t t
Q = [ YT (t)Y (t)dt = [ YT (t)¥Y(t)dat - NTw 1N
© ° (4.1.14)

with Y(t) as the zero-state solution to
F(D)¥(t) = [D®R(D), 07 IR(D),...,R(D]U(t)  (4.1.15)

and

1
T
N = [ A tely(myae | (4.1.16)
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The matrix Q is effectively a time correlation matrix
with some bias removal terms which arise from the appli-
cation of the annihilating filter H. Also, Q is symmetric
and non-negative definite, so that Jz(e) satisfies the

positive definite property:
Jz(e) >0 . (4.1.17)

Thus, once  is computed, any hill-climbing technique
can be used on Jz(e) without further integrations of the
data on [0,t1].

Examining J2(6), it is seen that the disturbance
parameters, §, enter quadratically in JZ(B). Thus, a

necessary condition for a minimal value of Jz(e) would

be the vanishing of the gradients:

3F _ 37 _
ﬁ =0 and "2)_5 =0 . (4.1.18)

Thus, solving the first of these yields:

A

§ = - [HT(w)QddH(w)]-IHT

(w)ﬂdoh(w) (4.1.19)
assuming the needed inverse exists <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>