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ABSTRACT

THE DESIGN OF RATIONAL B-SPLINE ALGORITHNS
FOR
INTERACTIVE COLOR SHADING OF SURFACES

By

Mark Norman Pickelmann

This dissertation presents several algorithms
developed for use with CAD/CAM systems. The new algorithms
allow for more efficient evaluations of the entire range of
rational B-spline curves and surfaces. A class of rational
B-spline <called Enhanced Uniform is defined. The
algorithms developed include anm algorithm which is used as
a preprocessor to transform the definition of a nonuniform
rational B-spline surface to an equivalent surface based on
the Enhanced Uniform Rational B-spline. The second
algorithm developed is wused for evaluation of enhanced
vniform B-splines and their derivatives. Numerical
considerations in the implementation of these algorithms
are discussed. Examples of the use of these algorithms to
generate color images in a surface assessment program are

included.
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CHAPTER 1

INTRODUCTION

1.0 INTRODUCTION

The goal of this dissertation is to presemt several
algorithms developed for use with CAD/CAM systems. The new
algorithms allow for more efficient evaluation of the
entire range of rational B-spline <curves and surfaces.
These algorithms allow a considerable increase in the speed

of response of interactive CAD/CAM programs which utilize

them,

The use of mathematical models to represent sculptured

surfaces has become not only a design tool but also a



manufacturing tool. Before a model <can be used for
production or analysis it must be <checked for errors.
Common errors which occur in these types of models are
misplaced corner points, missing patches, slope

discontinuities between patches, and gaps between patches.

1.1 ERROR CHECKING

Checking for errors inm models can be a very costly
process, Two methods in common use are two-dimensional
line drawings and proofing rums of trial parts omn a
numerically controlled machine, In the case of
two-dimensional line drawings small errors such as slope
discontinuities are very difficult to detect due to the

complexity of the drawings.

To check the validity of tool paths for numerical
control machining, parts are often milled out of a
substitute material to check the model. This is <costly
because it ties up a mill and an operator, and it increases

material costs,

Another method for checking the model is to wuse the

computer to generate an accurate shaded image of the model.



This method is becoming popular because it saves much of

the expense of checking the model [1].

Currently many color shading packages are availabdble
for a wide range of surface representations [2]., However,
most of these ©packages sacrifice some of the surface
information to produce smoothly shaded pictures. This is
done by tiling the surface and nutilizing some type of
filtering to hide the effects of tiling. These altered
surfaces do not represent the true suvrface definitions and

hide many of the errors.

Researchers at the A, H, Case Center for
Computer—Aided Design have developed s surface assessment
package called MSU COLORSCOPE to produce accurate shaded
images. The package allows shading based on various light
models as well as surface curvature properties. The MSU
COLORSCOPE approach is to calculate and shade the surface
at the pixel level using specialized scan 1line techmiques
[3] [4] [5). This creates a very accurate picture of the
surface. These pictures c¢can then be used for rapid

detection of errors or flaws in the model.



1.2 SURFACE MNODELS

Rapid growth in the computer—aided
design / computer-aided manufacturing (CAD/CAM) field has
roesulted in the lack of a standard method for defining a
three-dimensional surface. In recent years the most
popular way has been the bi-cubic patch., But sophisticated
applications demand more flexibility than the bi-cubdbic
patch can offer. In many situations the rational B-spline
surface is being used [6]. The rational B-spline surface
allows a great deal of flexibility amd the capability of
representing many popular types of surface descriptions in
an exactly equivalent form, While rational B-spline
surfaces cannot precisely represent all mathematical
surfaces, they are a very powerful form and are an emerging

de facto standard in today’'s CAD/CAM systems.

MSU Colorscope is intended to be a general-purpose
surface assessmont package. However, prior to this work,
it used bi-cubic patch definitions based on the Coons [7]
blending functions. This has severely limited applications
of the package in today's CAD/CAM community. This
dissertation develops both a method for the efficient
incorporation of the rationmal B-spline into a general

purpose surface assessment package, and the mathematical



forms and algorithms to allow conversion among a variety of

surface types.

1.2.1 The Rational B-spline Surface

B-splines have only recently been widely wused in
engineering applications. Perhaps this has been due to the
complexity of the basis functions and the computing burden
associated with calculating them each time a surface point
is to be evaluated. It is well known that the time to
calculate the basis functions can be reduced if certain
restrictions are placed on the class of B-spline [8]. Ve
shall show that it is possible to achieve similar time
reductions without any constraints placed on the <class of

B-splines used.

An important componment of this work is to shade
rational B-spline surfaces ©using scan line methods in an
interactive mode., The definition of interactive varies
from user to user and task to task; however, for the
present purpose, it is taken to mean that one should speed
up the shading process as much as possible without
sacrificing any of the surface information, The techmiques
presented here will take advantage of a modern

thirty—-two-bit computing processor using virtual memory.



1.3 OVERVIEW OF THE DISSERTATION

Chapter Two presents a review of the rational B-spline
surface. Chapter Three defines a class of B-spline called
enhanced uniform and develops an algorithm, called the
Converted to Uniform Rational B-Splines (CURBS) algorithm,
for calculating with enhanced uniform rational B-splines.
A comparison of the commonly used Cox-deBoor algorithm to
the CURBS algorithm using the enhanced uniform B-spline 1is
made in Chapter Four, Chapter Five develops an algorithm
to transform any rational B-spline into an exactly
equivalent enhanced uniform B-spline. Discussed in Chapter
Six are some of the numerical problems encountered in the
implementation of the B-spline algorithms, Conclusions are

drawn and examples given in Chapter Seven.



CHAPTER 11

B-SPLINE CURVES AND SURFACES

2.0 B-SPLINE REVIEW

This <chapter presents a review of the rational
B-spline surface patch,. The review starts with a the
B-spline space curve and extends to the rational B-spline
space curve, Next the B-spline surface patch is defined
and extended to the rational B-spline surface patch,
Finally, various classifications of B-splines are

discussed.



2.1 B-SPLINE SPACE CURVE

The B-spline approximation was first presented by
I. J. Schoenberg 91 in 1946 for statistigal data
smoothing., More recent work has been done by deBoor [10],
Cox [11], Riesenfeld [12], and Versprille [8]. Cox and
deBoor each developed a numerically stable algorithm to
evaluate the B-spline points and derivatives., Riesenfeld
used the Cox-deBoor algorithm to apply the B-splime to
geometric problems in ocomputer—aided design. Versprille
used the rational B-spline, but restricted the knot vector
s0 as to produce only a small subset of the B-spline

family.

2.1.1 Basis Functions

Let P be the Cartesian position along a ocurve as a
function of the parametric variable t. A curve generated

using the B-spline basis is given by



P(t) = 3 CP; - Ny 3(t) 2.1.1
i=0

where
CP are the n+l control points
k 1is the order of the blending functions
n 1is the number of control points minus one

N are the n+l blending funmctions

The order of the B-spline curve is the degree plus ome. If
the number of control points exceeds the order of the curve
the B-spline will have more than one segment., The segments
which make up a B-splinme will be called subsegments. The
above blending functions are defined by the recursion

formulas [13] :

N (t) =1 if x; £t ¢ x
i,1 i i+1
2.1.2
= 0 otherwise
Ni.k(t) = (t-xi) Ni,k'l(t) / (‘i+k-1 - xi)
2.1.3

*olxgexmt) Nygg x-1(t) / (x44x ~ 2347)

where

x; are the entries of the knot vector
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The knot vector specifies how the parametric value is
distributed along the B-spline. Subsegments start and end

when the parametric value crosses the knot values.

For example if the knot vector is takenm to be :

Xl-[

0 8 9 9 9 9]
i = 0

000 7
123 10 11 12 13 14 15

12 3 456
4 56 789
The values of the blending functioms for i=6 with k=1, k=2,

k=3, and k=4 are shown in Figure 2.1.1 as a functiom of the

parametric variable t.

wec—O0< 30-—~03CTM ©O3-QA30—0
-

Parametric Variable

Figure 2.1.1 : Blending Functions of Order Up to Four



From Figure 2.1.1 we can see that the the blending
function is always zero for a value of t from zero to
three. As k increases, the blending functions are nom-zero
for a larger and larger value of t. But the maximum value

of the blending functions is decreasing as k is increased.

In Figure 2.1.2 the values for all of the blending
functions for order k=4 have been plotted. The value
plotted for each N; , would be wused with with the

corresponding CP; to determine values along the B-spline

curve, At any value of t there are at most four mnom-zero

blending functions. As t <crosses a knot, the blending

function N; 4 goes to zero and the blending function Nj+q,4

becomes mnon-zero. It is at this point that one subsegment

ends and another starts.
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Figure 2.1.2 : Fourth Order Blending Functions

Figure 2.1.3 shows the non-zero blending functions for
i=6 for orders k=1, k=2, k=3, and k=4 as a function of the
parametric variable t, Here t varies from three to four,
For order k=4, we see that N3.4 is non-zero at t=3 and goes
to zero at t=4, while N5.4 starts at zero and ends up

non—z6ro0,.
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Figure 2.1.3 : Non-Zero Blending Functions for i=6

The effect on the blending functions of repeating

interior knots is showmn in Figures 2.1.4 and 2.1.5.
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: Fourth Order Blending Functions

Knot Seven Equal to Kmot Six

The knot vector used for Figure 2.1.4 is

12-[

i

0000
01233

1
4

2
s

3
6

3
7

4
8

5 6
9 10

7 8 8 8 8 ]
11 12 13 14 15

The knot vector used for Figure 2.1.5 is

X3

i

(

0
0

000
123

1
4

2
5

3
6

3
7

3
8

4
9

5
10

6 7 71 1 11
11 12 13 14 15

N114

=2=Z
s
.;-

94
8.4
7.4

6.4

3.4
4,4
3.4
2.4
1.4
8.4
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Knots Six, Seven, and Eight Equal
The non-zero blending functions of Figures 2.1.2,
2,1.4, and 2.1.5 for t botween two and four have been

plotted in Figure 2.1.6.
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a) Knot Vector X,

b) Knot Vector X,

¢) Knot Vector X4
With =no repeated knots there are five non-z0ro
blending functions in this range. With one repeated
interior knot there are six non-zero blending functions.
At t=3 two of the blending functions go to zero as opposed
to one with no repeated interior knots, With the interior

knot repeated two times, three blending functions go to

zero at t=3,
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Each control point is associated with an Ni and each
N; is associated with a knot x; in the kmot vector.
However, it is difficult to associate a control point with
a knot in the knot vector., As shown later, only a numbdber
of the control points equal to the order of the curve
affects a given subsegment. But the number of knots which
affect the blending functions for that subsegment is
greater than the number of control points. A way to think
of this is that a givem control point affects -;re than one
subsegment, Because of <continuity constraints between
subsegments, the control point must be able to 1look ahead
and 1look back to influence the other subsegments. The
control point uses the knot vector to do the 1looking.
Repeated knots in the knot vector canm then be viewed as
walls to limit the number of subsegments the comtrol point

can see forward or backward.

The only restriction placed on the elements of the
knot vector is that x; > x; 3. For a given set of control
points, an infinite number of curves could be generated,
depending on the values assigned to each x;. It is this
fact which causes the need to evaluate equations 2.1.2 and
2.1.3 or some version thereof, each time a point is to be
found. However, not all of the Ni,k are non-zero for a
given subsegment. In fact only a number equal to the order

(k) of the curve have non-zero values. These Ni.k are the
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only ones that need be evaluated for that subsegment. The
k non-zero Ni.k are the same for all t such that
lj £t < Xj+1s points on this part of the curve are said to

form the jth subsegment of the curve.

It is possible to derive a formula for the Ni.k for a
given subsegment without an explicit value of t, provided
the knot vector is given. These formulas are valid for any
t in the range X £t < T However, there are an
infinite number of possible kmot vectors. These formulas
would bhave to be derived each time a subsegment was to be

evaluated for a new knmot vector.

It has been shown in [10] and [11] tbat the wuse of
equations 2.1.2 and 2.1.3 directly ocan cause numerical
instabilities when the entries of the knot vector become
irregularly spaced or the order of the curve becomes large.
Thus Cox [11] and deBoor [10] independently developed the
same algorithm which is numerically stable. But this
algorithm returans values of the Ni.k and/or their
derivatives only for particular values of t, and must be
recalculated entirely for each new t, We shall returma to
the stability of equations 2.1.2 and 2.1.3 later in the
discussion of the restrictions that can be placed on the

knot vector,
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2.1.2 Rational B-spline Space Curves

The extension to rational B-spline curves is handled
by assigning a positive non-zero weight to each of the
control points. The weights are used to form a homogeneous
coordinate system. Each control point CP,;(x,y,z,1) is
assigned a weight wi;. PFor calculations with this control
point, it is multiplied by w; to form a new control point
CP;(wx.'y.wz.v). The CP points are used imn equation
2.1.1 to calculate a homogeneous point P'('x.wy.vz.w). The
three-space point P(x,y,z,1) is calculated by dividing each

coordinate of P’ by the calculated value of w,

X(t) = WX(t)/W(t)
Y(t) = WY(t)/W(t) 2.1.4

Z(t) = WZ(t)/W(t)

It is hard to think of a curve in four-space, but one
way to visualize this is to use a curve in two dimensions,
The following three figures show an example of a

two-dimensional rational B-spline curve,
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Figure 2.1.7 : Homogeneous Coordinates vs
Parametric Variable
The data for Figures 2.1.7, 2.1.8 and 2.1.9 are given
in Appendix A, Figure 2.1.7 shows the values of WX, WY and
W as a function of the parametric value t. The three
ordinates of Figure 2.1.7 are plotted in three-space in
Figure 2.1.8, Figure 2.1.9 is a plot of the resulting
curve in X-Y space; also plotted is the curve which would

result if all the weights were equal.
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WYy

wX

Figure 2.1.8 : Three-Space Plot of Homogeneous Coordinates

A B-spline is then also a rational B-spline with all
the weights set equal to ome. A strictly ratiomal B-spline

will have one or more weights not equal to omne or

CP; # CP,,.

Assigning wunequal weights to the <control points
introduces an additional degree of freedom. This degree of

freedom can be used to produce curves or shapes that are
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not attainable with non-rational curves, such as conics or

circular arcs.

Rational B-spline

d~0D-QAN00O <
—
T

'105 '1.0 '0.5 000 'os lo'
X Coordinate

Figure 2.1.9 : Plot of X-Y Curve

2.2 B-SPLINE SURFACE

The extension from the space curve to the surface
patch is done by adding a second parametric coordinate and
associated knot vector. Points on the surface are given

by :
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P(s,t) = S S CPi.j * Ni,k(t) ¢ uJ.h(3) 2.2.1
1=0 j=o

Where
CP are the (n+l):(m+1) control points
k is the order of the curve in the t direction
h is the order of the curve in the s direction
n is the number of control points minus one
in the t direction
m is the number of comtrol points minus one
in the s direction
N are the ntl blending functions of order k

M are the m+l1l blending functions of order h

The control points are now associated with a zow and
column, The number of rows does not have to equal the
number of columns, nor does the order in the s direction
have to equal the order in the t direction. A basgis
function is associated with each row and a differenmt
function is associated with each <column, As with the
B-spline curve, only a given number of these functioms are
non-zero, Analogous to the subsegment of the curve, the
resulting submatrix of the control point matrix defimes a
subpatch. The entire B-spline patch will be referred to as

a mother patgch.
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2.2.1 Rational B-spline Surfaces

More complex surfaces may be constructed if a weight
is also assigned to each control point of the B-spline
surface., To determine points omn the surface, equation
2.2.1 is nused in the homogeneous coordinate system as
described above. The resulting surface point in

three—-space is then found by equation 2.1.4.

2.3 KNOT VECTOR RESTRICTIONS

The only restriction placed on the kmot vector is that
each entry must be a real number equal to or greater than
the one immediately preceding it. This type of kmot vector
is =referred to as a nonuniform knmot vector amd produces
B-splines called Nonuniform Rational B-splines (NURBS).
Knot vectors are often extended by adding kmots to the
beginning and end equal to the first and 1last entries of

the vector respectively. Repeating the end knots causes

the curve to pass through the end control points. In this
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2.3.1 Uniform Knot Vectors

Placing a restriction on the knot vector that the

entries are only allowed to take on successive integer

values (x

i+1 = x3 + 1), produces a knot vector known as
wniform kmot yector. This knot vector produces what is

called a uniform basis [12], which 1leads to Uniform

Rational B-splines (URBS), This knot vector can also be
extended to form an extended mniform knot vector.

The use of uniform or extended uniform knot vectors
has some side effects. In particular, the parameterization
of the curve is not uniform with respect to arc length
along the curve, and local refinement is difficult.
However, a uniform knot vector makes evaluation of the
basis functions easier because equations 2.1.2 and 2.1.3
can be used directly. Thus an equation for each subsegment
can be derived without a specific value of the parametric

variable,

The nonuniform parameterization which of ten
accompanies a uniform knot vector is undesirable in some
applications sncﬁ as numerically controlled machining, in
which it is desirable to have a constant step size of the
parametric variable produce a constant step size along the

curve, However, nonuniform parameterization does not
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affect the eovaluation of surface properties for the

purposes of shading.

2.3.2 Enhanced Uniform Knot Vectors

To restrict the knot vector to be uniform or extended
uniform for the purposes of a CAD/CAM modeler would
over—restrict the class of B-splines that <could be wused.
For eoxample, this would not allow repeated interior knots,
which ocan be used to introduce slope discontinuities

between the subsegments.

While slope discontinuities can instead be introduced
by repeating control points in the surface definmition, this
type of discontinuity has the undesirable property of a
zero length normal. To allow for slope discontinuity and
also retain the necessary surface properties, knots must So
allowed to be repeated. The effect of repeating knots is
to relax the condition on continuity of derivatives at the
ends of subsegments -- one less derivative for each time a
knot is repeated. However, the surface properties are
defined. Repeating knots also makes some subsegments of
the curve have zero lemgth. A knot vector with repeated
interior knots produces what is called a subspline basis

[12].
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In order to include a more genmeral class of B-spline,
the uniform <condition x;,; = x; + 1, is relaxed to also
allow x,,7 = x3. If xj4,7 is equal to x; then the knot s
said to be repeated. It can be repeated up to k-1 times,

where k is the order of the curve. This type of knot

After a review of rational B-spline <curves and
surfaces, restrictions that <can be applied to the knot
vector were discussed. The uniform <coamdition of the
extended uniform knot vector was relaxed to introduce the
enhanced uniform knot vector, The next chapter will
discuss the enhanced uniform knot vector and present the

CURBS algorithm for calculating with it.



CHAPTER 111

CURBS ALGORITHN

3.0 ENHANCED UNIFORMN RATIONAL B-SPLINE

The last chapter defined some restrictions on the knot
vector. A class of Rational B-spline, the enhanced
uniform, was introduced. This chapter describes the
advantages of using EURBS and an algorithm for calculating
with them., Finally, it presents the limitations of nusing
this <class of B-spline, as opposed to the more genmeral

NURBS,

28
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3.1 ADVANTAGES OF UNIFORM KNOT VECTOR

In most engineering applications, surfaces free of
ripples are desired. The higher the order of the curve
used, the more difficult it is to eliminate ripples. To
produce a rippleless surface, the order of the curves used
is usually restricted to six or less. Therefore, if a
uniform or enhanced uniform knot spacing is used, then
equations 2.1.2 and 2.1.3 can be wused to <calculate the
basis functions with acceptable accuracy. This allows a
simple equation of degree k-1, for each of the Dbasis
functions, to be formulated before a specific surface is to
be evaluated. An example of this formulation is givem in
Appendix B, There are, however, an infinite numbdber of
possible knot vectors, resulting in an infinite number of
blending functions. Next it will be shown how to translate
the parametric valme to reduce the number of possible
blending functions to a finite tractable set, for any given

order k of B-spline.

3.1.1 Knot Vector Translations

Making the EURBS restriction to the knot vector allows

for the derivation of all possible blending functions of a

given order. In order to do this derivation, the
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parametric variadble is restricted to values between zero
and one for each subsegment, This is done by translating
the knot vector for each non-z2ero length subsegment so that
the ith x50t is zero and the i+1 knot is one. Repeated
knots form zero-length subsegments which are of no
interest, Therefore the transformation is possidble for any

non-z20ro subsegment, For example, the knot vector

" bd

X=[-1-1-1-1011233 3 3]

i = 0 1 2 3 456 1789 10 11
for the second subsegment and

X =[-2-2-2-2-100122 2 2]

i = 0 1 2 3 4561789 10 11

for the third subsegment, Appendix C shows that this is a
linear mapping of the parametric variable and has no effect
on the values of the resulting blending functions for any

given value of the parametric variable.
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3.1.2 Enhanced Uniform Knot Vector Compression

For a given subsegment of a curve, only a finite
portion of the knot vector 1is actually used imn the
calculation of the non-zero basis functions for that
subsegment, If the recursion of equation 2.1.3 1is
followed, the portiom of the knot vector which affects the
blending functions can be determined. If k is the order of
the curve, the effective knot vector for a subsegment
reaches k-2 knots back from the starting knot and k-1 knots
forward of the starting knot, for a total of 2.(k-1) knots.
In the above example, if k=4 the effective knot vector

would bhave a length of 2.(4-1) or six. For the first

subsegment, it would be

X, =[0001 2 2],

For the second subsegment, it would be

X, =[0012 2 3]

which could be shifted to

x; = [-1 -10112]).

For the third it would be
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X, = [1223 4 4]

which could be shifted to

X, = [-1 001 2 2],

Using parameter translation and the finite 1length of
the the effective knot vector, the set of possible
effective knot vectors has been reduced to a finite set,
given a bound on the order of the spline, The number of
possible knot vectors in the set is determined by the order
k of the curve and is 2(2:k-4) For k=4, there are
2(2“'4) or sixteen possible knot vectors for a subsegment.

For k=5, there are sixty—-four possible knot vectors.

Each of the 2(2°X74) 3 o¢ vectors yields a unique set
of blending functions., In order to determine easily which
set of blending functions should be wused for a given
subsegment, each subsegment is givem a label or poinmter to
the correct set of ©blending functions. The 1label is
determined by compressing the effective knot vector into a

binary-encoded label.
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3.1.3 Knot Vector Conpéession.Al;orithn

The effective knot vector is compressed into a unigque
binary-encoded 1label by the compression algorithm givenm in
Appendix D. The algorithm compares successive entries of
the effective kmot vector to definme a sequence of 2.k-4
bits, which are reversed and stored as an integer 1label.
This 1label will ©be referred to as a gsubsegment label.
Since a unique set of effective knot vectors for a given
order has been identified, a set of blending functions for
each unique knot vector can be formulated, as inm Appendix

Now that all the enhanced uniform blending functions
bave been identified and labeled we are ready to present
the CURBS algorithm for calculating with rational

B-splines.

3.2 THE EVALUATION ALGORITHM

This section presents an algorithm we call the
Converted to Uniform Rational B-Splines (CURBS) algorithm
for evaluation of enhanced uniform rational B-splines. It
assumes that all the blending functions have been

preformulated and stored in matrix fashion according to the
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labels determined from the effective knot vector. Note
that the formulation of the blending functions is done only
once and the results are stored for later use. The
algorithm as stated below also assumes that the subsegment
labels are <calculated or read in with the comtrol points

that define the surface.

The algorithm requires the following information to be

given

1) Control points for the subsegment : cp’ vector
2) Subsegment label : LAB

3) Order of the curve : K

4) A strictly rational indicator : RATNOT

5) Parametric value (betweem 0.0 and 1.0) : T

The following informal explanation preceding the algorithm
specification may assist the reader in understanding the

algorithnm.

Step 1: Use LAB and K to retrieve the proper
set of blending functions : [MAT})
Step 2: Construct the t vector
{t vector } = { ¢K-1 ¢K-2 _ _ ¢,1 )

Step 3: Evaluate blending functions
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{Bf} = {t vector)} - [lAT‘]

Step 4: Calculate homogeneous point
(WP} = (Bf]} . (cP')

Step 5: Calculate three-dimensional point if
strictly rational :

{P} = (WP} / W

For K=4 the CURBS algorithm can be coded as follows:
(the coordinates of the comtrol point CP’' for a subsegment

are contained in the PX, PY, PZ, and PW vectors).

T2 = TsT

T3 = Te*T2

BF(1) = T3®MAT4(1,1,LAB) + T2*MAT4(2,1,LAB)
+ TeMAT4(3,1,LAB) + MNAT4(4,1,LAB)

BF(2) = T3®MAT4(1,2,LAB) + T2*MAT4(2,2,LAB)
+ T®MAT4(3,2,LAB) + MNAT4(4,2,LAB)

BF(3) = T3®MAT4(1,3,LAB) + T2*MAT4(2,3,LAB)

+ T*MAT4(3,3,LAB) + MAT4(4,3,LAB)

BF (4) T3*MAT4(1,4,LAB)

WX = BF(1)*PX(1) + BF(2)*PX(2)
+ BF(3)*PX(3) + BF(4)°*PX(4)

WY = BF(1)*PY(1) + BF(2)*PY(2)

+ BF(3)*PY(3) + BF(4)°PY(4)



36

WZ = BF(1)*PZ(1) + BF(2)*PZ(2)
+ BF(3)*PZ(3) + BF(4)*PZ(4)
IF(RATNOT) THEN
W = BF(1)*PW(1) + BF(2)*PW(2)
+ BF(3)*PW(3) + BF(4)°*PVW(4)
X = Wx/Vw
Y = WY/VW
Z = WZ/V
ELSE

X = WX

Z = WZ

END IF

If derivatives of the point with respect to the
parametric variable are required, the algorithm is
modified. The appropriate derivative of the t vector is
taken and used in step 3 to evaluate an alternate set of
blending functions, This set of blending function
derivatives 1is used in step 4. If the surface is strictly
rational, then the chain rule must be employed to replace
step 5§ to <calculate the derivative. For example, to
calculate dX/dt it would be necessary to use the following

equation:
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dX/dt = dwX/dt = W - WX . dw/dt = (w2)

These modifications are shown in the following piece

code.

T2 = Te*T

THREET2 = 3+T2

TWOT = 2T

DBF (1)

DBF(2)

DBF(3) =

+

DBF(4) =

THREET2*MAT4(1,1,LAB) + TWOT*MAT4(2,1,LAB)
MAT4(3,1,LAB)
THREET2¢MAT4(1,2,LAB) + TWOT*MAT4(2,2,LAB)
NAT4(3,2,LAB)
THREET2*MAT4 (1,3 ,LAB) + TWOT*MAT4(2,3,LAB)
MAT4(3,3,LAB)

THREET2%MNAT4(1,4 ,LAB)

IF(RATNOT) THEN

T3 = Te*T2

BF(1)

BF(2)

BF (3)

BF(4)

+

+

T3%MAT4(1,1,LAB) + T2%MAT4(2,1,LAB)
T*MAT4(3,1,LAB) + MAT4(4,1,LAB)
T3*MAT4(1,2,LAB) + T2%MAT4(2,2,LAB)
T*MAT4(3,2,LAB) + MAT4(4,2,LAB)
T3®*MAT4(1,3,LAB) + T2%MAT4(2,3,LAB)
T*MAT4(3,3,LAB) + MAT4(4,3,LAB)

T3*MAT4(1,4,LAB)

WX = BF(1)*PX(1) + BF(2)*PX(2)

+ BF(3)*PX(3) + BF(4)*PX(4)

of
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WY = BF(1)*PY(1) BF(2)*PY(2)

+ BF(3)*PY(3) BF(4)*PY (4)

WZ = BF(1)*PZ(1) BF(2)%PZ(2)

+ BF(3)*PZ(3) BF(4)*PZ(4)

¥ = BF(1)*PW(1) BF(2)sPVW(2)

+ BF(3)*PVW(3) BF(4)*PVW (4)

END IF

DWXDT = DBF(1)*PX(1) + DBF(2)*PX(2)
+ DBF(3)*PX(3) + DBF(4)*PX(4)
DWYDT = DBF(1)*PY(1) + DBF(2)*PY(2)

+ DBF(3)*PY(3) + DBF(4)*PY(4)

+

DWZDT = DBF(1)*PZ(1) DBF(2)*PZ(2)

+

+ DBF(3)*PZ(3) DBF (4)*PZ(4)
IF(RATNOT) THEN

DWDT = DBF(1)*PW(1) + DBF(2)*PVW(2)

+ DBF(3)*PW(3) + DBF(4)*PVW(4)

W2 = Wew
DXDT = DWXDT/W - WX*DWDT/(W2)
DYDT = DWYDT/W - WYeDWDT/(W2)
DZDT = DWZDT/W - WZ*DWDT/(V2)
ELSE

DXDT = DWXDT
DYDT = DWYDT
DZDT = DWZDT

END IF
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The above algorithms are given for a curve. To
evaluate surface points the CP' vector is replaced by a cp’
matrix which is post-multiplied by the second set of
blending functions <corresponding to the other parametric

variable.

Unlike the Cox-deBoor algorithm, this algorithm does
not rederive the blending functions as they are being
evaluated for a surface point and/or derivative. However,
the application of algorithm is restricted to rational

B-splines defined with enhanced uniform knot vectors.

3.3 LIMITATIONS OF ENHANCED UNIFORM KNOT VECTOR

Having the formulas for all of the blending functions
predefined in the program appears to be more efficient for
evaluating B-splines and derivatives than ©building and
ovaluating the blending functions for each point, However,
the use of EURBS appears to limit the B-splines which can
be described to a subset of the B-splines with a more
general nonuniform kmot vector. But Chapter Five presents
an algorithm to insert knots into a knot vector so that anay
knot vector can be transformed to the enhanced ©uniform

format, removing the apparent limitation.
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We have discussed the advantages of a uniform knot
vector, and reduced the infinite set of enhanced uniform
knot vectors to a finite set by kmnot vector translation.
The eoffective knot vector was defined and then compressed
into a subsegment label. An evaluation algorithm was then
presented. In the next chapter we shall discuss the
performance differences between the above CURBS algorithm

and the Cox-deBoor algorithm,



CHAPTER 1V

CURBS ALGORITHM ANALYSIS

4.0 ALGORITHM COMPARISON

The last chapter presented the CURBS algorithm for
calculating with EURBS. This algorithm relies on the use
of preformulated blending function matrices and the ability
to determine which matrix should be used for a given
subsegment of the curve. In this <chapter the CURBS
algorithm will ©be compared to the well-known Cox-deBoor
algorithm for calculating with B-splines. The comparison

is made by classifying each algorithm according to order of

41
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complexity and them according to the number of machine

operations required.

4.1 COX-DEBOOR ALGORITHM

Cox [11] and deBoor [10] separately developed the same
numerically stable algorithm for <computing the basis
functions for B-splines. This algorithm is the standard of
today's B-spline algorithms and is 1in wide use in many
CAD/CAN systems. For the purposes of analysis the

algorithm as presented by deBoor [10] is reproduced below:

Set N(1,1) =1
fot ‘- 1 0 @ 0 ) k-ll do:

sot DP(s) = ti+s-t, Dm(s) = t-ti+l-gs,

set N(1,s+1) = 0:

set M = N(r,s) / (DP(r)+DM(s+1-r)),

set N(r,s+1) = N(r,s+1l) + DP(r)*N,

L] [ ] L] . o L] L] L] L] L[] e L]
-
-]
L]
L]
n
[
-
L ]
L]
L]
[ ]
-
(-9
(-]

oooooooooo.o"t N(r+10.+1) = Dl(8+1-t)‘n.

where

k is the order of the blending functions,
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The columns of N are used to evaluate the B-spline and/or

its derivatives as shown below.

The B-spline is then evaluated by

k-1
P(t) = ) cp; » Ny 4(t) 4.1.1
i=0

Where
Ni.k is the kth column of N in

the above algorithm

To evaluate derivatives, the appropriate columm of N would
be nused. However, N is a triangular matrix, so a set of
derivative control points must first be calculated to be
used with a specific column of N. The general formula

given by deBoor for this evaluation is
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k-j-1
F(j)(t) = (k-l) s o (k-j) 2 Aij) . Ni.k"j(t) 4.1.2
i=0

Where
jJ is the desired derivative 0 ( j < k

Nj,x-j is the (k-j)t® column of N

(0) .
Af CcP;

Af3) = 3T - afd71)y (e - oty

4.2 BIG-OH ANALYSIS

One way to classify an algorithm is the ©big-obh [14]
method. The big-oh analysis determines the order of
complexity of an algorithm, This analysis performed on the
above Cox-deBoor algorithm results in a classification of
k2 or 0(k2). The same analysis of the CURBS algorithm

given in the previous chapter produces O(k).

Big-oh analysis indicates that the computation time
using the CURBS algorithm increases linearly with k. It
also indicates that computation time using the Cox-deBoor
algorithm increases as k2, This savings of an order of

magnitude becomes significant when k becomes 1large. For
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our application, the size of k is usually six or less, so
big-oh analysis is not a very complete measure of the
relative performance of the algorithms., It does provides
an indication of the relative behavior for cases in which k
is required to be large (>>6). Vhile the size of k is
usually small, the number of points and/or derivatives to
be calculated per picture is usually very large. Therefore
the potential for considerable time savings is good if a
more detailed operation analysis indicates a significant
difference in relative efficiency for the nusual range of

values for k.

4.2.1 Operation Analysis

When the big-oh analysis is not sufficient to capture
the differences between two algorithms, a more detailed
analysis is neoded to determine performance. A second way
to classify algorithms is to determine the numbdber of
machine operations required. The following tables give the
number of operations required by each algorithm for k=3 and
k=5, where an operation is defined as an addition,
subtraction, multiplication, division, or assignment of
value. The tables present the number of operations
required to evaluate a point (a=0), or the jth derivative,

or evaluate the point and n derivatives.
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Operations for Operations for
the jth derivative point and n derivatives

| =3 | §j=2 | j=1 | a=0 | n=1 | n=2 | a=3 |
| | | | | | | |
| | | | | | | |
x=3 | 1| 44| 161 16 | 127 | 160 | 161 |
| | | | | | | |
| | | | | | | |
k=5 : 146 : 181 : 222 : 212 = 295 : 409 : 529 =

Table 4.2.1 : Analysis of the Operations for the
Cox-deBoor Algorithm

Operations for Operations for
the jtll derivative point and n derivative

176

3
| =3 | j=2 | j=1 | 2=0 | n=1 | n=2 | a=3 |
| | | | | | | |
| | | | | | | |

k=3 | 9 | 91 161 201 36 | 45 | 54 |
| | | | | | | |
| | | | | | | |
k=5 | 30 ] 42 | s6 | 54 | 106 | 146 | |
| | | | [ | | |

Table 4.2.2 : Analysis of the operations for the
CURBS Algorithm

This analysis was performed for the evaluation of a
single coordinate of a B-spline <curve and/or the
derivatives of a single coordinate. The implied integer
multiplication and addition for matrix subscript indexing

are not included. To evaluate other coordinates only
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requires that the evaluated blending functions be used on
the remaining coordinates of the control points. Thus the
other <coordinates would be quicker to evaluate once the
first one is done. Table 4.2.3 contains the operatioas
required by each algorithm to evaluate three coordinates

and three coordinates with derivatives,

k=3 | k=5
|
|
| n=0 | n=1 | n=2 | 2=0 | n=1 | n=2 |
| | I_ | | | |
| | | | | | |
c-p | 104 | 227 | 356 | 280 | 529 | 871 |
| | | | | | |
| | | | | | |
CURBS : 32 : 60 : 81 = 74 : 146 : 206 =

Table 4.2.3 : Operations Analysis for Three Coordinates

This table indicates that the Cox-deBoor algorithm
requires more effort to evaluate the additional
derivatives. This is because the Cox-deBoor algorithm must
calculate the Aij) points for each coordinate for each
derivative to be used with the columns of the N matrix,
The CURBS algorithm always wuses the same set of control

points for all evaluwations.
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For a surface, the algorithms would have to be used a
second time on the second parametric variable and the
resulting evalunated blending functions used on a matrix of

control points.

The above tables show that the CURBS algorithm wuses
fewer machine operations than Cox-deBoor for B-spline
evaluations. While the actual time differemce for using
each algorithm will vary from processor to processor, the
reduction of operations required does imply am approximate

reduction in computation time.

The CURBS algorithm does require additional storage
for the precalculated matrices. For k=4 the additional
storage required is sixteen 4-by-4 matrices. For k=6 the
storage required is 256 6-by-6 matrices. The additional
storage is a minor factor with the 1low cost of computer

memory and the availability of virtual memory inm computers.

The CURBS algorithm has been shown to produce a
three-to-one reduction in machine operations over using the
Cox-deBoor algorithm. The CURBS algorithm has no numerical
stability problems. It does, however, require that the
blending function matrices be constructed in a numerically
stable manner. The numerical problems of using equations

2.1.2 and 2.1.3 for construction of the the blending
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functions presented in [10] and [11] are avoided because of
the uniform nature of the knot vector being used and

because the order of the curves involved is not large.

The Cox-deBoor algorithm bhas been zreviewed and a
big=-oh analysis performed <comparing it to the CURBS
algorithnm, The big-oh analysis indicated a major
complexity differenmce between the two algorithms, but was
inconclusive as to the importance of the differemce in
commonly encountered situations. A more detailed operation
analysis was performed which indicated that the CURBS
algorithm would give a three-to-one operation savings over
Cox-deBoor, The only 1limiting factor to the CURBS
algorithm is that the knot vector must be enhanced uniform,
which limits its application to a subset of the NURBS, In
the next chapter, we will overcome this limitation by
developing a transforuation.to transform an arbitrary NURBS

surface definition to an equivalent EURBS surface.



CHAPTER V

CONVERSION ALGORITHN

5.0 NURBS-TO-EURBS CONVERSION

In the preceding chapter the CURBS algorithm was shown
to bhave a significant performance advantage over the
Cox-deBoor algorithm, However, it was also noted that the
surface must be defined with an EURBS knot vector which is
a8 subset of the NURBS knot vector, This appears to be
significant in view of the fact that a uniform kmot vector
does not necessarily produce a curve with uniform arc

length parameterization, a desirable attribute for

50
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applications such as gemeration of tool paths for
numerically ocontrolled machines. In order to produce a
curve with uniform arc length parameterization, the knot
spacing must reflect the relative arc lengths of the

subsegments, which implies a nonuniform kmot vector.

The above limitations on the use of the algorithm can
be eliminated by converting surface representations based
on nonuniform knot vectors into exactly equivalent surfaces
based on our enhanced uniform knot vector. This chapter
presents the design of an algorithm to do the
NURBS-to-EURBS conversion, Discussion of the initial
attempts to rescale without expanding the knmot vector are
followed by the exact reformulation of EURBS based on
NURBS. After presentation of the algorithm, the additional
storage required to represent the surface in the EURBS form

is discussed.

5.1 INITIAL EXPLORATION OF THE CONVERSION PROBLEM

Two approaches to converting NURBS to EURBS were tried
before a suitable method was derived. These initial
approaches were tried to determine whether a conversion was
possible which would use the same number of control points

as the original NURBS surface. The next section presents a
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discussion of one initial approach and includes examples

showing the shortcomings.

5.1.1 Knot Vector Rescaling

The first approach explored was the use of an enhanced
uniform knot vector with the same number of entries as the
nonuniform one to be replaced. This implies that both
definitions use the same number of control points (although
relocated) in the surface definition. This method results
in a rescaling of the parametric variable for each mom-zero
subsegment from A = x;,4 - x; to A =1, thus changing to
EURBS-based blending functions. Unfortunately, this method
is limited in the type of knot vector to which it «camn be
successfully applied. This is shown in the following

proof.

Define a nonuniform knot vector
X = [xq.x5,...0x5]
corresponding to the parametric variable
t. Let Y be an enhanced uniform knot

vector
Y = [Feu¥aseeesygql

corresponding to the parametric variable
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s. The following relationship bholds
between s and t for the jth subsegment:
8; = (t - xj)/(xj+1 - xj) + (j - 1),
If continuity of the first derivative is
assumed between the jtB gnga (j+1)th

subsegments, then:
$; = (t - xj)/(xj+1 - xj) + (j - 1)
$j+1 = (t - xj541)/(x542 - xj41) *+
Equating these relations at the jumction
of the two subsegments, t = xj+1 yields
the relation that must exist for the

knots.

(‘j+1 - x3) = (xj42 - xj+1)

The x; entries can take on values such
that (x;,9 - x3) # (xj42 - xj541).  This
means that dsj ds .1 at the
junction, which is a ocontradiction.
Thus this method would not be able to
yield an eoquivalent enhanced <uniform
ropresentation for all nonumniform knot

vectors.

Another way to view this rescaling is to think

of

it

mapping from subsegments of t-space to a new
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s-space. Each non-zero distamce A between knots ia the
t-space is mapped to A = 1 in the s-space. Because the A's
in the t-space do not have to be constant, the mapping to

s-space is, in general nonlinear.

Thus to use this form of rescaling, the knmots in each
effective knot vector must have a constant or zero spacing,
which will insure the linear mapping. An effective knot
vector with a constant or zero knot spacimng will be said to

have the constant delta property.

5.1.1,1 An Example Of Approximate Knot Vector Rescaling

The following figures will demonstrate the above
to:c;ling. Figure 5.1.1 contrasts the use of a nonuniform
knot vector and a uniform knot vector for the same set of
control points. ( Appendix E presents the data for these
figures). Figures 5.1.2 and 5.1.3 show the results of
solving for new <control points to try to fit the NURBS

curve,
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Figure 5.1.1 : Uniform vs Nonuniform Curves

The control points for Figure 5.1.2 were found by requiring

curve to pass through the ends of each segment and

match the slopes on the ends.
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Figure 5.1,2 : Uniform Fit Using End Slopes

The control points for Figure 5.1.3 were found by fitting
the first segmont and then requiring the curve to pass
through the end points of the remaining segments. By
design there are no discontinuities, but the fitted curves

do not represent the original definition.
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Figure 5.1.3 : Uniform Fit Using First Subsegment

In Figure 5.1.4 we have used ordinary least squares
[16] to try to fit the nonuniform data to a model using the
blending functions based on the enhanced wuniform knot
vector. The plot is the uniform curve that fits the
original nonuniform curve with the least amount of error
between input data points and corresponding points on the

uniform curve,
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Figure 5.1.4 : Uniform Fit Using Least Squares

5.2 EXACT NURBS-TO-EURBS CONVERSION

The following conversion technique was derived after
the initial explorations described abdbove showed the
necessity for additional knots and comtrol points. Vhile
it may produce a surface with more control points tham the

original surface, it is an exact <conversion and the
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resulting surface can take advantage of all the EURBS

properties.

5.2.1 Expanding The Knot Vector

The method described in section 5.1.1 would work if
each effective knot vector had the constant delta property.
In order to obtain the constant delta property, mnew knots
are inserted or repeated to expand the new EURBS knot
vector. This implies that additional comtrol points will
also be inserted 1into the surface definition. Only
zero-length subsegments are added, so the total number of

non—-zero subsegments remains the same.

The insertion is done such that the resulting
effective knot vector for each subsegment has the constant
delta property. This forces the mapping or rescaling of
each subsegment to be 1linear. The additional enhanced
uniform control points give the flexibility mneeded to

match the NURBS curve exactly.

The result of this method is shown in PFigure §5.2.1.
The resulting EURBS curve is identical to the NURBS curve,
and of course retains the same level of continuity between

subsegments. That 1is, all continuous derivatives of the
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nonuniform spline remain continuous in the uniform
representation. The algorithm for expanding the knot

vector and finding the new set of control points is given

below.
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Figure 5.2.1 : Uniform Fit By Knot Vector Expansion



61

§.2.2 Algorithm for Conversionm By Knot Vector Expansion

( NURBS-To-EURBS Algorithm )

To £fit a unique curve of a givem order k, k pieces of
information must be given, The information cam take the
form of k points along the curve or a point and k-1
derivatives or other such combinations. In this algorithm,
the point at the end of the subsegment is used along with
successive derivatives ss necessary. The following
outlines the steps involved in the conversion, and the code

for this algorithm is given in Appendix F.

Step 1 : Copy the NURBS knot vector into

the new EURBS knot vector.

Step 2 : For each successive effective knot
vector in the EURBS kmot vector Do:
While not constant delta property Do:
Duplicate the 1last knot with constant
delta property.
End While
Label the subsegment per sectiom 3.1.3.

End For,
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Step 3 : For each successive subsegment in

the new EURBS knot vector Do:
Use label to determine the number of
undetermined control points.
Evaluate the end point and necessary
derivatives of the NURBS curve for
this subsegment,
Determine the unknown EURBS control
points for this subsegment.

End For.

This algorithm is given for a curve. To use it for a
surface definition, the algorithm is first used on each
column of the nonuniform control point matrix with the
corresponding knot vector. The resulting expanded columns
are used to form an intermediate matrix of comtrol points
and the algorithm is then used on the rows of this matrix
with the other knot vector. The resulting expanded rows
contain the uniform control points that define the

mathematically equivaleant surface.
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5§5.2.3 Storage Considerations

To use the CURBS algorithm, a submatrix of the control
point matrix must be retrieved. The retrieval time will be
determined by the size of the submatrix and not the size of
the mother matrix, The retrieval of the comtrol points was
not included in the operation analysis done because it was
assumed to be the same for both algorithms. The additional
control points needed for the EURBS defimnitionm will have no
offect on the performance of the CURBS algorithm., However,
there is a possibility of a slight increase in the paging
time in a virtual memory environment because of the larger

number of control points used in toto.

The NURBS-to-EURBS conversion will represent any
surface originally based on a nonuniform knot vecotor with
an equivalent surface based on an enhanced =uniform knot
vector. The price for doing this is that there will bde
more control points to store for the enhanced ~uniform
representation. The amount of additional storage depends
how many new control points are created. An additional k-1
control points will be inserted for each subsegment which
does not initially possess the <constaant delta property.
The number of non-z0r0 length subsegments has not
increased, and since the knot vector is stored as a set of

labels, for non-zero length subsegments in EURBS form,
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there is no additional storage required for the longer knot
vector. The eoxtra virtual memory necessary to store the
surface in this form is far outweighed by the time savings
resulting from being able to <calculate points and

derivatives based on prestored blending fumnctions,

Notice that the introduction of new zero-length
subsegments does not increase the number of calculations
required since no evaluations are dome in these segments,
and the <cost of wusing the new control points is already
included in the evaluation of the CURBS algorithm,. Thus,
the CURBS algorithm offers a fairly direct tradeoff of
storage for computational time. The process of
transforming a NURBS surface to an equivalent EURBS surface
is done only once, after which the EURBS surface may be

manipulated quickly and efficiently by the CURBS algorithm,

The CURBS and NURBS-to-EURBS algorithms which have
been developed can be wused to evaluate any rational
B-spline curve or surface. The implementation of these
algorithms in a general-purpose surface assessment package
requires developing the routines for the necessary
calculations. The next chapter discusses some numerical

considerations of the implementation.



CHAPTER VI

IMPLEMENTATION CONSIDERATIONS

6.0 NUMERICAL CONSIDERATIONS

In the preceding chapters, algorithms have been
developed for <calculating with rational B-splimnes. If
these algorithms are to be used on a computer, they must be
implemented using floating point arithmetic. Floating
point arithmetic with finite word lengths does not always

yield accurate or even remotely usable results,

65
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In this <chapter some numerical considerations for
implementing these algorithms on a ocomputer will be

discussed and some examples given,

When scan line techmiques [3] [4] [5] are wused, the
patch coordinates are transformed to screem coordinates.
Many calculations are done in screen space, which we define
with X horizontal, Y vertical, and Z normal to the plane of
the screen. Each pixel is one unit wide in X and one unit
bigh in Y. This is illustrated in Figure 6.0.1. The
coordinate transformation from world space to screem space
can present some problems because of the size of the window
assigned to the screen; we will discuss this in terms of
the 2zo0om factor. If the zoom factor is very small, the
entire patch may be smaller than one pizxel; if the zoom
factor 1is very large, the smallest change that can be made
to a parametric variable may represent a difference of more

than one pixel.
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ZIntersection

Viewing Screen

Figure 6.0.1 : Screen Space Coordinate System

6.1 BUILDING OF THE BLENDING FUNCTION MATRICES

The blending functions are used for the evaluation of
the surface and its various properties and for the
transformation from NURBS to EURBS as well. When building
the matrices, care must be taken to avoid introducing

numerical errors which <change the surface definitions
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during the transformation. A surface could also be
inadvertently altered by using blending functions different

from those nsea by the original designer.,

The uniformity of the knot vector yields a denominator
which is common to each of the blending function matrices
of a given order. Vhen the denominator is factored out of
the matrix, the entries take on integer values. The matrix
can thus be stored as 1integer values along with the
denominator, This will avoids the roundoff or truncation

which occurs if the matrix is stored as real numbers.

6.2 EVALUATION OF THE COX-DEBOOR AND CURBS ALGORITHNS

Roundoff error is usually thought of as a problem when
the number of operations becomes large, such as in
inverting or reducing a large matrix, However, the
examples givenm 1later show that roundoff error has a
significant effect on the evaluated values of even

low-order blending functions,

The algorithm for the transformation from NURBS to
EURBS requires that the NURBS surface and its derivatives
and the blending functions for the EURBS surface be

evaluated at specific points., To ensure that the resulting
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EURBS surface is identical to the NURBS surface within the
full precision availabie. these evaluations should be done

as accurately as possible.

6.3 SIMULTANEOUS EQUATION SOLVER

The transformation algorithm also requires the
solution of a set of 1linear eoquations. The number of
equations to be solved depends on the number of control
points to be found. If omnly ome control point needs to be
found for a subsegment, then only one equation is
generated. But if multiple comtrol points are to be found,
then a stable means must be used to solve the set of linear
equations for the control points., Even for the relatively
small number of equations to be solved, matrix inversion is
not a good means to solve the system of equations because
of the roundoff error which occurs and because of the

problems which can arise if the matrix is ill-conditioned.

There are many good numerical analysis textbooks such
as [17) and [18]) which deal with the subject in depth. An
acceptable procedure is to use <row operations om the
augmented matrix to reduce the matrix to triangular form so
that back substitution canmn be wused to find the control

points.
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If increased precision is desired, an iterative method or

iterative improvement can be used.

6.4 EXANPLES OF EVALUATION PROBLENS

This section presents three examples of problems which
occurred when implementing the CURBS algorithm. The
central problem in each case was the evaluation of the
blending functions. For each example, the order of the
surface was 3 or 4 and the eovaluation was done on a

thirty—-two-bit computer.

6.4.1 Evaluation of Normal Components

To wuse scan-line techniques [3] [4] [5], it is
necessary to eovaluate the silhouette odges as well as the
physical edges of the patch. The silhouette edge of a
patch is made up of points on the patch where the Z
component of the normal is zero. The evaluations are done
on these edges at points where the odge crosses a scan
line. This is <called walking the edge. Walking the
physical eoedges from scan line to scan line is relatively

easy to do.
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To walk the silhouette odge, & bi-variate Newton-Raphson
method is used to iterate to each scan line that is crossed

by the edge.

The result of the Newton-Raphson <calculation is a
search direction and an approximation of the distamce to go
in that direction. Figure 6.4.1 1is a plot of the Z
component of the normal as a function of the distance along
the search direction. The basis function evaluation was
done in single precision (24-bit mantissa). Depending on
the error bounds used for zero, the point could be anywhere
along this search direction. Because of the noisy nature
of the Z component, convergence is &8 problem. Figure 6.4.2
is a plot of the Z component along the same search
direction with the evaluation of the basis function dome in
double precision. In this case, the method comverges in

three iterations.
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Figure 6.4.2 : Double Precision Evaluation

6.4.2 Normalization Of The Normal

Calculating the Z component of the normal alone
requires less effort than computing all three components of
the normal, However, this can cause problems with defining
what 1is considered to be zero for the given component., In

some cases the normal is changing so rapidly that it is
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difficult to find a small value of the unnormalized Z

component, This is shown in Figure 6.4.3.
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Figure 6.4.3 : Unnormalized Z Component Calculation

If all three components of the normal are <calculated
and the components normalized so the normal has length one,
then what is considered to be zero is defined with respect
to the value ome. In this case, finding the zero point is
not a problem, as shown in Figure 6.4.4., In this case the

absolute value of the Z component is between zero and one.



78

Using this method, acceptable 1limits about zero <can be

defined.
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Figure 6.4.4 : Normalized Z Component Calculation

6.4.3 Face To Face

The Z component of the normal is also used to decide
which face a point is on. If the Z component is positive,

then the point is on the plus face of the surface. If it
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is negative, then the point is on the minus face.
Silhouette edges are then the edges of a face. Even when
the Z component is normalized, if the blending fumnctions
are not calculated in double precision, the errors vwhich

occur result in misleading results, as shown in the Table

6.4010

| S | T | Single Precision | Double Precision |
| | _ | | |
| | | | |
| 0.25 | o0.25 | -0.5982137E-04 | 0.2415371E-02 |
| | | ‘ | |
| | | | |
Il o0.00 | o0.25 | 0.0000000E+00 | 0.3129074E-03 |
| | | _ | : |
| | | | |
= 0.75 : 0.50 : -0.6958499E-05 = 0.7580551E-03 :

Table 6.4.1 : Example of Calculated Values of the Z
Component of the Normal

The errors in the above table may not seem to be
significant, and the results are more thanm adequate for
such things as wire frame drawings, outlining patches or
subpatches, or finding a pixel, The single precision
values, however, are not acceptable for deciding which face

a point is on.
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Doing evaluations in double precision may require more
computation time, as will computing all the components of
the normal, But the additional effort is more tham repaid
when iterative methods converge quickly as opposed to

taking many iterations or not converging at all,

In some modern processors, all instructioms are done
in double precision and rounded to single precision when
the results are stored. In this case the only cost
associated with using the double precisiomn is the

additional storage for the results in that form.

Numerical <considerations of the implementation of
evaluation algorithms have been discussed, and some
examples of problems have been given. Sample output from
the surface assesment package, MSU COLORSCOPE, which uses
the algorithms developed in this dissertation, is givem 1in
the next chapter. In addition to the examples, conclusions

are drawn about this work.



CHAPTER VII

EXANPLES AND CONCLUSIONS

7.0 EXANPLES AND CONCLUSIONS

The preceding chapters developed algorithms useful for
the interactive shading of surfaces defined by rational
B-splines. This chapter presents some examples of surfaces
shaded using these algorithms. After the examples, some

conclusions about this work are drawn,

78



79

7.1 Examples

The following seven figures were generated using the
MSU COLORSCOPE surface assessment package. These surfaces
represent geometric as well as freeform surfaces. These
figures are not intended to demonstrate the primary error
detection function of the COLORSCOPE package, but rather
that the package can handle the rational B-spline surface.
The figures also demonstrate some of the capability of the

rational B-spline.
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Figure 7.1.1 : Shaded Cube, Sphere, Comne, and Cylinder

Figure 7.1.2 : Shaded Torus
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Figure 7.1.3 : Shaded Automobile Hood

Figure 7.1.4 : Curvature Shading of Automobile Hood
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Figure 7.1.5 : Intermediate Stamping of a Styled Wheel

Figure 7.1.6 : Shaded Bumper
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Figure 7.1.7 : Shaded Turbine Blade

Figure 7.1.8 : Absolute Maximum Curvature Shading of Turbine
Blade
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7.2 Conclusions

This dissertation reviewed the rational B-spline. It
defined a <class of rational B-splines <called Enhanced
Uniform. The advantages of using this class of B-spline

were discussed.

The CURBS algorithm for <calculating with Enhanced
Uniform Rational B-splines was developed and presented.
The performance of this algorithm was compared to the
commonly used Cox-deBoor algorithm for B-spline evaluation,
This comparison indicated that the CURBS algorithm would
typically produce a three-to-one savings over the use of

the Cox-deBoor algorithm, even for low-order B-splines.

An apparent limitation of the CURBS algorithm, that
the B-splines must be of the enhanced uniform rationmal
B-spline type, was overcome by developing the
nonuniform-rational-B-spline-to-enhanced-uniform-rational-
B-spline (NURBS-to-EURBS) conversion algorithm to convert
any surface based on the NURBS knot vector to a
mathematically equivalent surface based on the EURBS knot
vector. The converted surface was shown to have a storage
penalty but no time pemalty for surface evaluation, In
fact, the CURBS algorithm <can be used on the converted

surface so that there is a three-to-one savings in machine
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operations. The CURBS and NURBS-to-EURBS algorithms
combine to offer the tradeoff of lowered <computation time

for increased storage space.

Some numerical consideration of the implementation of
the algorithms developed here were discussed. Finally,
examples of shaded images produced by these algorithms were

given.

The algorithms developed in this dissertation are a
viable solution to the problem of rapidly rendering
accurate shaded images of rational B-spline surfaces. They
offer significant advantages over the prevalent algorithms
nov in use for this purpose, as well as for other tasks

requiring calculations with rational B-splines.
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CALCULATION EXAMPLE
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A. RATIONAL B-SPLINE CALCULATION EXANPLE

This appendix presents examples of calculating a
B-spline and a rational B-spline curve. The results of
these calculations were used to generate the figures in

Chapter Two of this dissertation.

The control points used to define the B-spline curve

are given in Table A.1,
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Each of the CPi is then multiplied by its

th

Control point
0
1
2
3
4
5
6
7
8
9
10
11
Table A,

To define the

weight is

set of homoge

X
-0.1490382E-01
-0.1279431E+01
-0.1903875E+01

0.1243925E+01
0.1540538E-01
-0.7496327E+00
0.6192721E+00
-0.8542724E-02
-0.4414083E+00
0.3807828E+00
0.1471788E+00
0.1153550E-02

Y
0.2372459E+01
0.2134099E+01

-0.1257925E+01
-0.7112664E+00
0.1074566E+01
-0.4256855E+00
-0.3516818E+00
0.5969771E+00
-0.2523811E+00
-0.2515893E+00
0.2455054E+00
0.1825014E+00

1 : Original Control Points

rational
assigned to

neous control

B-spline

curve, a

positive

each control point CPi.

weight

points CP,.

control points are givenm in Table A.2.

z)

-

OV g WULMAWNDRONY

-

LD
-0.2341119E-01
-0.2902891E+01
-0.6978094E+01

0.7164465E+01
0.1209919E+00
-0.7457782E+01
0.7457602E+01
-0.1207699E+00
-0.7164745E+01
0.6978148E+01
0.2902713E+01
0.2355580E-01

Table A.2

vy
0.3726701E+01
0.4842038E+01
-0.4610554E+01
-0.4096585E+01
0.8439503E+01
-0.4234966E+01
-0.4235138E+01
0.8439560E+01
-0.4096539E+01
-0.4610575E+01
0.4841945E+01
0.3726728E+01

v
0.1570818E+01
0.2268892E+01
0.3665206E+01
0.5759564E+01
0.7853872E+01
0.9948580E+01
0.1204253E+02
0.1413716E+02
0.1623156E+02
0.1832580E+02
0.1972236E+02
0.2042028E+02

Homogeneous Control Paoints

to form

The CP’
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The curve has been chosen to be a cubic so the order

is four (k=4)., The following knot vector is used:
T= [ 00O0O0123 4561789999 ]

The parameter varies from zero to nine alomng the curve and
the curve is made up of nine subsegments. Using equations
2.1.2 and 2.1.3 the following non-zero blending functions

for each subsegment are found.

Subsegment one 0.0 ( t ¢ 1,0
Noo,4(t) = -1,000.t3 + 3.000.t2 - 3.,000.t+ 1.000
Noj.e(t) = 1.750.t3 - 4.500.t¢2 + 3.000.t + 0.000
Ngg 4(t) = -0.917.t3 + 1.500.t2 + 0.000.t + 0.000

Nos 4(t) = 0.167.t3 + 0.000.¢2 + o0.000.t + 0.000

Subsegment two 1.0 ( t ¢ 2,0

Noj 4(t) = -0.250.t¢3 + 1.500.¢2 -  3.000.¢+ 2,000
Noz 4(t) = 0.583.t¢3 - 3.000.t2 + 4.500.t - 1,500
No3 4(t) = -0.500.t3 + 2.000.t2 - 2.000.t + 0.667

0.167.t¢3 - 0.500.t2 + 0.500.t - 0.167

Noq,a(t)



Noz2,4(t)
Nos,a(t)
Nog,4(t)

Nos,4(t)

No3,4(t)
Nog,a(t)
Nos,a(t)

Nog,4(t)

Nog,a(t)
Nos,4(t)
Nog,4(t)

No7,4(t)

Nos,4(t)
Nog,4(t)
No7,4(t)
Nog . 4(t)

90

Subsegment three 2.0
-0.167.t¢3 + 1.500.¢2
0.500.¢3 - 4.000.¢2
-0.500.¢3 + 3.500.¢2
0.167.t3 - 1.000.¢t2

Subsegment four 3.0 ( t

-0.167-t3 + 2.000.¢2
0.500.t3 - 5.500.¢2
-0.500.t3 + 5.000.¢2
0.167-t3 - 1.500.¢2

Subsegment five 4.0 ( t

-0.167.t3 + 2.500.¢2
0.500.t3 - 7.000.¢2
-0.500.t3 + 6.500.¢2
0.167.t3 - 2.000.¢2

Subsegment six 5.0 ¢

-0.167-t3 + 3.000.¢2
0.500.t3 - 8.500.t2
-0.500.t3 + 8.000.¢2
0.167-¢3 - 2.500.¢2

£t <3.0

+

+

+

+

+

4.500.¢
10.000.¢t
7.500.¢

2.000.t

< 4.0

8.000.t
19.500.t
16.000.¢t

4.5°°ot

< 5.0

12.500.¢
32.000.t
27.500.¢

8.000.¢t

< 6.0

18.000.t
47.500.t
42.000-t

12.5°o-t

4.500
7.333
5.167

1.333

10.667
21.833
16.667

4.500

20.833
47.333
38.167

10.667

36.000
86.833
72.667

20.833
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Subsegment seven 6.0 ( t < 7.0
Nog.4(t) = -0.167.t3 + 3.500.t2 - 24.500.t + 57.167
No7.4(t) = 0.500.t3 - 10.000.t2 + 66.000.¢t - 143.333

Nog 4(t) = -0.500.¢3 + 9.500.¢2 - 59.500.t + 123.167

Nog . 4(t) = 0.167.¢3 3.000.t2 + 18.000.t - 36.000

Subsegment eight 7.0 ( t ¢ 8.0
No7.4(t) = -0.167.t3 + 4,000.¢2 - 32.000.t + 85.333
Nog 4(t) = 0.500.¢3 - 11.500.¢2 + 87.500.¢t - 219.833
Nog,4(t) = -0.583.¢3 + 12.750.¢2 - 92.250.t + 221.250

Nig.4(t) = 0.250.t3 - 5.250.¢2 + 36.750.¢t - 85.750

Subsegment nine 8.0 ( t < 9.0
Nog.4(t) = =-0.167.¢3 + 4.500.t2 - 40.500.t + 121.500

Nog 4(t) = 0.927.t3 - 23.250.¢2 + 195.750.¢ - 546.750

Nio.4(t) = -1.750.t3 + 42.750.t2 - 347.250.t + 938.250

1.000.t3 - 24.000.t2 + 192.000.t - 512.000

Equation 2.1.1 is wused to multiply the above blending
functions by the appropriate homogeneous <control point
CP;. This yields the following equations for each

subsegment:



vX(t)
vY(t)

w(t)

WX (t)
WY (t)

w(t)

wX(t)
WY (t)

w(t)

wX(t)
WY (t)

w(t)

wX(t)
WY (t)

w(t)

Subsegment

2.534.¢3 +
8.290.¢3 -

0.000.¢3 +

Subsegment

-6.907.¢3 +
-0.445.¢3 +

0.000.¢3 +

Subsegment

3.442.¢3 -
-6.205.¢3 +

0.000.¢3 +

Subsegment

3.838.¢3 -
6.314‘t3 -

0.000.t3 +

92

one 0.0 ¢
2.526.t2
17.525.¢2

0.000.t2

two 1.0 £
30.848.t2
8.682.¢t2

0.000.¢t2

three 2.0
31.244.¢2
43.244.¢2

0.000.t2

1.0
8.638.¢t
3-3460t

2-09‘°t

< 2.0
36.961.¢t
22.861.t

2.095‘t

£t <3.0

+

87.223.¢
91.985.¢

2.095.¢

four 3.0 ( t < 4.0

34.812.¢2

+

97.927.t¢t

69.433.t2 + 246.044.¢

0.002.t2

+

2.088.¢t

Subsegment five 4.0 ( t < 5.0

o-ooo'ts +

0.000.¢3 -

6.336.¢2

0.003.¢2

+

-7.498.¢3 + 101.223.t2 - 446.212.t

57.030.¢

2.109.¢

+

+

0.023
3.727

1.571

9.418
12 .462

1.571

73.372
58 .545S

1.570

84.076
279 .484

1.577

641.442
124.615

1,550



wX(t)
wI(t)

W(t)

wX(t)
WY (t)

w(t)

wX(t)
WY (t)

w(t)

wX(t)
wY(t)

w(t)

The above equations are evaluated at a given

Equation

2.1.4 s
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Subsegment six 5.0 ¢
3.838.¢3 - 68.817.¢2
-6.314.¢3 + 101.052.¢2

0.000.¢3 + 0,003.¢2

Subsegment seven 6.0
3.442.¢3 - 61.690.¢2
6.205.¢3 - 124.304.¢2
0.000.¢3 + 0.000.t2

Subsegment eight 7.0
-6.907.¢3 - 155.644.¢2
0.445.¢3 - 3.337.¢2

0.000.¢3 - 0.003.¢2

£

+
+

+

£

-1160.110.¢t

+

< 6.0

403.989.t

775.560
530.608.t + 913,911
2.079.¢t + 1.598

t ¢ 7.0

361.227.¢ 690.034

821.525.¢

179.035
2.097.¢t + 1,563
t (8.0

+2859.751
25.246.t + 185.445

2.114.t + 1.523

Subsegment nine 8.0 ( t < 9.0

2.535.¢3 -

-8.290.¢3 + 206.313.t2 -1702.444.¢

0.000.¢3 + 0.011.¢t2

then

rational B-spline curve.

70.958.t2 + 652.700.t¢

+

used to

-1974.409
+4657.971

2.000.¢t + 1.822

value of t.

find the points on the



To generate the nonrational B-spline

2.1.1 s

used
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and the above blending functioms to

equations for each subsegment:

X(t)

Y(t)

I(t)

T(t)

X(t)

Y(¢t)

X(t)

1(t)

X(t)

Y(t)

Subsegment
-0.272.¢3 +

2.397.¢3 -

Subsegment
-1.410.¢3 +

-0.733.¢3 +

Subsegment
0.807.t3 -

-0.754.t3 +

Subsegment
0.278.¢3 -

0.810.¢t3 -

Subsegment
-0.688.¢3 +

-001170t3 +

one 0.0 ( t

2.857.¢2

4.373.¢2 -

two 1.0  t

6.2730t2

5.015.¢2 -

three 2.0 ¢
7.028.¢2 +

5.145.¢2 -

four 3.0 ( t
2.274.t2 +

8.934.t2 +

five 4.0 ( t
9.328.t2 -

2.186.¢2 -

curve,

yield the

< 1.0

3.794.¢t -
0.715.¢t +

< 2.0

7.209't +

10.103.¢t +

t ¢ 3.0

19.3920t -

10.3630t +

< 4.0

5.1300t -

31.813't -

( s.o

41.279.¢t +

12.607.t +

equation

with the nonhomogeneous comtrol points CPi

following

0.015

2.372

1.124

5.502

16.610

5.675

2.348

36.560

59 .530
22.746



X(t)

Y(t)

X(t)

Y(t)

X(t)

Y(t)

X(t)

Y(t)

Subsegment
0.365.¢3 -

-0.445.¢3 +

Subsegment
0.177.¢3 -

0.441.¢3 -

Subsegment
-0.405.¢3 +

-0.018.¢3 +

Subsegment
0.166.¢3 -

-0.436.t3 +

9s

six 5.0 ¢
6.478.¢2

7.119.¢2

seven 6.0
3.083.¢t2

8.844.¢2

eight 7.0
9.124.¢2

0.794.t2

t ¢ 6.0

+ 37.750.t

37 .270.t

£t 7.0

+ 17.382.¢t

+

58 .505.¢

{t <8.0
- 68.068.t

- 809550t

nine 8.0 ( t ¢ 9.0

4.575.¢2

10.829.¢t2

+ 41.529.t

- 89.239.t

+

+

72.185

63.851

31.449

127.700

167.935

29.708

124.324

243.7917

The above equations are then used directly to gemerate the

B-spline curve,
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B. FORMULATION OF BLENDING FUNCTION MNATRIX

The formulation of the blending function matrices for
the subsegments of a given knot vector is discussed and an
example givem in this appendix. To determine which
blending functions affect the ith subsegment, the recursion
of equations 2.1.2 and 2.1.3 must be followed. RBach
non-zero blending function of a givenr order is used in two
blending functions of the next order. The tree structure
which results is shown in figure B.1. As an example, let
the order of the curve equal four (k=4) and take the knot

vector to be :

- b
)

- o
o
(-]
[

2 3 4 5 6 6 6 6 ]
5 7 8 9 10 11 12

(-]
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Figure B.1 : Tree structure of non-zero blending fumctions

for the ith subsegment
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For this example the blending funmctions for the second
subsegment will ©be found. Therefore i=4 and Figure B.1

becomes

e
L

Figure B.2 : Tree structure of the non-zero blending

functions for the 284 subsegment k=4

Now that the non-zero blending function of each order
have been identified, the effective portiom of the knot

vector can be determined. To find the starting knot of the
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effective knot vector, equation 2.1.3 is written for k=4

and i=1

N1.4(t) = (t - X3) N1,3(t) / (X4 - xl)

+ (Xs - t) * N2,3(t) / (XS = XZ)

Equation B.1 requires kmots X;, X;, X,, and Xj. Knot one
would appear to be the start of the effective knot vector.
However, it is only used with N1.3' which from Figure B.2
is always 1zero for this subsegment, Equation B,1 is

rewritten as

N1.4(t) = (15 - t) - N2.3(t) / (Xs - x2) B.2

Equation B.2 requires knots X, and Xg; therefore, the

effective knot vector starts with knot two.

To find the ending knot of the effective knot vector,

Equation 2.1.2 is written for k=4 and i=4

N4’4(t) = (t - X4) . N4.3(t) / (X7 - X4)

+ (xs - t) M Ns‘s(t) / (18 - xS)

Equation B,3 requires knots 14. X5, X7, and Xg. Knot eight
is the last knot used in this subsegment; however, it is
only used with N5.3' which (from Figure B.2) is always zero

for this subsegment., Equation B.3 is rewritten as



Ng,a(t)

Equation B.4 re

effoective knot

effective knot vector for the second subsegment is then

101

= (t - X4) . N4.3(t) / (x-’ - X4)

quires knots x4 and X,; therefore,

B.‘

the

vector ends at knot seven., The resulting

' =710 0 1 2 3 41
i= 2 3 4 S5 6 1

Next the tem Ni,k of Figure B.2 must be found.

equations 2.1.2

Ng,1(t) =

N3,2(t) =

Nyo2(t) =

N2,3(t) =

N3, 3(t) =

and 2.1.3

1

(t-0)-0/(1-0) + (2-t)-1/(2-1)

(2-t)

(t-1)-1/(2-1) + (3-t)-0/(3-2)

(t-1)

(t=0)-0/(1-0) + (2-t)-(2-t)/(2-0)

(t2 - 4.t + 4)/2

(t=0)(2-¢t)/(2-0) + (3-t)-(t-1)/(3-1)

(-2+t2 + 6+t - 3)/2

.
.

Using

B.9



Ng,3(t)

Ni.e(t)

Ny 4 (t)

N3.4(t)

Ny 4(t)
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= (t-1):(t-1)/(3-1) + (4-t)-0/(4-2)

= (t2 - 2.t + 1)/2

= (-t3 + 6:t2 - 12.¢t + 8)/4

= [(t-0)-(t2-4.t+4)/21/(2-0)

+ [(3-t)(-2-t2+6-t-3)/21/(3-0)
= (7-t3 - 36.t2 + S4.t - 15)/12
= [(t-0)+(-2-t2+6-t-3)/21/(3-0)
+ [(4-t)(t2-2.¢t+1)/2)/(4-1)

= (-3-¢3 + 12.¢2 - 12:t + 4)/6

= [(t-1):(t2-2-¢+1)/2])/(4-1)

+  (5-t)-0/(5-2)

= (t3 - 3.¢2 + 3.¢ - 1)/6

Equations B.11, B,12, B.,13, and B.14 are then

matrix form as:

[N1.4(t). N2.4(t). N3'4(t). N4.4(t)] =

1712 - [t3 t2 ¢t 1) -3 1 -6

[
(- ]
|
w
(- %
N
F

1
D W
& o
|
= W
© »

'

)
® »

written

(£-0):0/(1-0) + [(2-t) (t2-4-t+4)/21/(2-0)

B.11

B.13

in
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C. EFFECTS OF KNOT VECTOR TRANSLATION ON

BLENDING FUNCTIONS

Appendix B formulated the blending function matrix for

the second subsegment of the fourth order kmot vector

3 4 5 6 6 6 6]
6 7 8 9 10 11 12

- bd
[ ]
o

This appendix formulates the blending function matrix

for the second subsegment of the translated kmot vector :

X'=[-1-1-1-1 0 1 2 3 4 5 5 5 5
i= 0 1 2 3 4 5 6 1 8 9 10 11 12

The effective knot vector for the second subsegment is
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The translation has not changed Figure B.2 and the
same ten Ni.k must be found. Using equations 2.1.2 and

2.1.3 with X'

[
N4.1(t ) =1 Cc.1

Ny o(t') = (£'+1).0/(0+1) + (1-t’)-1/(1-0)

C.2
= (1-t")
Ng g(t') = (£'-0):1/(1-0) + (2-t'):0/(2-1)
c.3
= (t'-0)
Ny 3(t') = (£'+1):0/(0+1) + (1-t')-(1-¢')/(1+1)
C.4

= ((¢')2 - 2.(t') + 1)/2

Ny g(t') = (£ +1).(1-¢")/(1+1) + (2-¢") (¢t -0)/(2-0)
c.s
= (-2.(tH2 + 2.(t") + 1)/2
Ne 3(t') = (£'-0)-(¢t'-0)/(2-0) + (3-t').0/(3-1)
c.6

= (t)?2 /2
Ny 4(t’) = (£'+1):0/(0+1)

+ [(1-t' ) ((t' )2-2.(t')+1)/2)1/(1+1) c.7
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= (-(t)3 + 3.(t)2 - 3.(t") + 1)/4

Ny g(t') = [(t'+1) - ((t)2=2. (¢ )+1)/21/(1+1)
+ [(2-t")e(-2-(t )2+2. (¢ )-1)/2])/(2+1) c.s
= (7.(t)3 - 15.(¢")2%2 + 3.(t") - /12

N3 4(t') = [(t'+1)e(-2:(t)2+2-(t")-1)/2]1/(2+41)
+ [(3-t")-((t)2)/21/(3-0) | c.9
= (-3t )3 + 3.2+ 3.t + 1)/6

Ng 4(t') = [(t'-0) - ((t")2)/21/(3-0)
+ (4-t'):0/(4-1) c.10
- ((t"3)/6

Equations C.7, C.8, C.9, and C.10 are then writtem in

matrix form as:

[INg 4(t ), Ny g(t'), N3 4(t' ), Ny ((t))] =

1712 - [(¢H3 (¢H2 (') 11 .

|
©
w
(-
(-]
—— e GEED SHED GEED GEED R =

The parametric variable t can be related to the parametric

variable t'
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Squaring and cubing equation C,12 yields the following

relations :

t2 = (£')2 4+ 2.(¢t') + 1 c.13

t3 = (¢)3 + 3.2+ 3.(t") +1 C.14

Equation C.12, C.13, and C.14 are expressed in matrix form

[t3 ¢2 ¢ 1]

= [(t)3 (¢"H2 (¢') 11 -

w W
(O™
= o
© o o

c.ls

Replacing the t vector of equation B.15 with the right hand
side of C.15 and equating the results with equation C.11

yields
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l10001] | -3 7 -6 2| | -3 7 -6 2 |
| | | | | |
: 3100 : = 18 -36 24 -6 : : 9 -15 6 0 :
|l 32101 | -36 54 -24 6 | | -9 3 6 o]
| | | | | |
l 11111 | 24 -18 8 -2 | | 3 7 2 o0}
| I | | |

a

L]

[y
-

The equality of equation C.16 holds; thus, translating the
knot vector is a linear map of the resulting blending
functions. The evaluated values of the Ni+k are the same

for equivalent values of t and t'.
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D.0 THE COMPRESSION ALGORITHM

This appendix presents the algorithm wused in the
compression of the effective knot vectors to umique labels,
The informal explanation preceding the algorithm
specification may render the encoding transpareant to the

reader.



111

Step 1: The first and second values of the effective

knot vector are compared :

if they are equal then the first bit is

set to zero;

else the first bit is set to one.

Step 2: The second and third values are compared as

as above to set the second bit,

Step 3: This is continued wuntil the

parametric value is reached.

Step 4: For a non-zero subsegment to

starting

exist,

the

starting parametric value and the next knmot

cannot be equal so there is =no bit for that

comparison.

Step 5: The remaining knots are compared

in order

and corresponding bits assigned zero or one

as in step one.

Step 6: The bits are now reversed to form a binary

number, which is stored as

label.

This algorithm could be coded as follows:
(Let KNOT(I) represent the effective

I'o. e e o 2°k-3)

integer

knot

vector,
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Set LABEL = 0

for I =1, ..., K-2, do:
. IF( ENOT(I) .EQ. xuor$1-1; ) THEN
. set LABEL = LABEL + 2(I-1
e e 0 0 0 0 'BND IF

for I = K, ..., 2¢k-3, do:
. IF( ENOT(I) .EQ. KNOT‘I-I; ) THEN
. set LABEL = LABEL + 2(1-2
ceeeeesEND IF

D.1 Example of Knot Vector Compression
Using the knot vector
X =[0000122333 3]

with k=4, we have the following effective knot vectors

labels for each subsegment,.

effective integer

segment knot vector bits label
1 (00012 2] 0010 4
2 [0 012 2 3] 0101 10
3 (1223 3 3] 1000 1

and

If the above portions of the knot vector are translated,

the labels remain the same:
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effective integer

jegment knot vector bits label
1 (00012 2] 0010 4
2 (-1 -1 011 2] 0101 10

3 (-1 0011 1] 1 000 1
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E. EXANPLE OF NURBS TO EURBS CONVERSION

This appendix presents the control points and knot
vectors used to generate the figures in Chapter five of
this dissertation. The order of each curve in these

figures is four.

Figure 5.1.1 compares a nonuniform curve to a uniform
curve. The two curves use the control points givenm in

Table E.1.
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Control Point X Y
0 0.0000000E+00 O0.0000000E+00
1 0.5000000E+00 O0.1000000E+01
2 0.1000000E+01 0.5000000E+00
3 0.1500000E+01 0.2500000E+00
4 0.2000000E+01 0.5000000E+00
5 0.2500000E+01 0,.1000000E+01
6 0.3000000E+01 O0.7500000E+00

Table E.1 : Original Control Points

The nonuniform knot vector for the nonuniform curve is

X, =[0.00.00.00.00.30.75 1.0 1,66 1.66 1.66 1.66 ]

The uniform knot vector is then foumd to be :

X, =000001234444)]

The uniform B-spline of Figure 5.1.2 was generated by
using the above kmnot vector Xn and the control points in

Table E.2
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Control Point X Y
0 0.0000000E+00 O0.0000000E+00
1 0.4999999E+00 0.9999998E+00
2 0.7979605E+00 O0.6086380E+00
3 0.1737129E+01 0.2697527E+00
4 0.1623749E+01 0.2653303E+00
5 0.2500038E+01 0.1000007E+01
6 0.3000000E+01 O0.7500000E+00

Table E.2 Control Points for Figure 5.1.2

The control points in Table E.2 were found by requiring the

uniform B-spline to match the slopes at t=0 and t=4, and

also to pass through the nonuniform B-spline curve at the
ends of each subsegment.
5.1.3 was

The uniform curve of Figure generated Dby

uging the above knot vector xu and the control points in
Table E.3
Control Point X Y
0 0.0000000E+00 O0.0000000E+00
1 0.4999999E+00 0.9999998E+00
2 0.8999994E+00 0.5999985E+00
3 0.1379994E+01 0.2999918E+00
4 0.2950251E+01 0.1530137E+00
5 -0.3570400E+00 0.1241920E+01
6 0.2999855E+01 0.7499551E+00
Table E.3 Control Points for Figure 5.1.3
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The control points in Table E.3 were found by requiring the

uniform B-spline to match the first subsegment of the

nonuniform B-spline and also to pass through the ends of
the subsegments.
5.1.4 was

The uniform curve of Figure generated by

using the above knot vector xn and the control poiants in
Table E.4
Control Point X Y

0 -0.7910313E-02 -0.2146652E-01

1 0.5274833EB+00 O0.1050406E+01

2 0.8117139E+00 O0.5352641E+00

3 0.1712133E+01 0.2676190E+00

4 0.1676200B+01 0.3606113E+00

5 0.2516168E+01 0.9357985E+00

6 0.2998456E+01 0.7769325E+00

Table E.4 : Control Points for Figure 5.1.4

To find the <control points in Table E.4, one hundred

discrete points were used from each subsegment of the

nonuniform curve as the data to which the uniform curve was

fit by ordinary least squares.

The NURBS to EURBS algorithm was used on the the knot

vector X, and the control points ian Table E.1. The

resulting knot vector for the uniform curve inm Figure §5.2.1
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was found to be

X,=[00001112223334444]

above X

using the a

The control points which result from
knot vector to fit the curve defined by xn and the control

points of Table E.1 are given in Table E.S

The control points of Table E.5 and the above

X

u

Control Point X Y
0 0.0000000E+00 O0.0000000E+00
1 0.4999999E+00 0.9999998E+00
2 0.6999992E+00 O0.7999988E+00
3 0.8799984E+00 O0.6499976E+00
4 0.8799983E+00 O0.6499990E+00
5 0.1149997E+01 0.4249983E+00
6 0.1374994E+01 O0.3124974E+00
7 0.1561703E+01 0.3254953E+00
8 0.156167SE+01 O0.3254890E+00
9 0.1665399E+01 0.3327094E+00
10 0.1757320E+01 0.3786680E+00
11 0.1861713E+01 0.4497342E+00
12 0.1861710E+01 O0.4497327E+00
13 0.2137309E+01 0.6373476E+00
14 0.2499873E+01 0.9999626E+00
15 0.2999841E+01 O0.7499528E+00
Table E.§ Control Points for Figure 5.1.5

knot

This curve is identical to the nonuniform curve.

vector

were used to generate the uniform curve in Figure 5.1.5.
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F. CODE FOR THE NURBS TO EURBS CONVERSION

This appendix presents the code for three FORTRAN 77
subroutines used in the NURBS to EURBS comnversiom. These
subroutines assume that the nonuniform surface definmition
has been read in. The first routine handles the switching
of control points and is wused to <call the other two
routines. The second routime, LABEL, is used to label the
non-zero subsegments and doetermine where new control points
are to be added. The 1last routine, FITSU, is used to

doetermine the EURBS control points.
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C NONTOU: NONuniform TO Uniform rational B-spline converter
(o4 1 T of of of of & Subroutine Description cccc
g Purpose and use: Convert NURBS to EURBS

2 Error conditioas:

g Implementation:

g Notes:

C
cccececcecccecccecceccccecccecccccecceccccceccccccceccccccceccccccccccccccccce
gCCCCCCCCCCCCCC Statistics ccccececcceccceccccccce
g Author: Mark N, Pickelmann

g Date written: April 30, 1984

g Modifications:
ECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

csccccececce Entry _Storage Block Ccccce
C

SUBROUTINE NONTOU (NPNTS,NPNTT, ORDERS, ORDERT, RATNOT

1 ,SENOTR, TENOTR, CPW, CPX, CPY, CPZ)
C
C===Read-only arguments:
C =-=- Number of points and order of 8 and T curves

INTEGER NPNTS, NPNTT, ORDERS, ORDERT
C -—- Rational flag

LOGICAL RATNOT
C --- Nonuniform kmot vectors

REAL SENOTR (O:NPNTS+2¢ (ORDERS-1))

REAL TENOTR(O:NPNTT+2¢ (ORDERT-1))
C
C===Arguments returmned:
C none
C
C===Arguments modified:
C --- Maximum number of points

INTEGER MAXPNT, MAXSUB

PARAMETER (MAXPNT = 1000)

PARAMETER (MAXSUB = 1000)
C
C --- Control points

REAL CPV(O0:MAXPNT)

REAL CPX(0:MAXPNT)

REAL CPY (0:MAXPNT)

REAL CPZ(O0:MAXPNT)
C
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C===Common blocks:

COMMON/CMNO1/PVW
COMMON/CMNO2/PX
COMMON/CMNO3/PY
COMMON/CMNO4/PZ

C

C===Local variables:

C --- Control points
REAL PV (0:MAXPNT)
REAL PX(O0:MAXPNT)
REAL PY(O0:MAXPNT)
REAL PZ (0:MAXPNT)

C --- Subsegment labels
INTEGER LABELS(MAXSUB), LABELT(MAXSUB)

C --- Number of new points for each segment
INTEGER EXTEND (MAXSUB)

C --- Number of new points S and T
INTEGER NEWS, NEWT

C --- Non-zero segments S and T
INTEGER SEGS, SEGT

C --- Counters
INTEGER ROW, COL

C

C===Functions and subroutines:

EXTERNAL LABEL, FITSU
C
cccecececeecececcecceccececceccecceccceccceccecceccecccceccecccecceccccceccceccccccccccc
C

CPCCCcCCcCCC Process Block Ccccccce
C
C -—- Determine the labels for the s direction
C
CALL LABEL( NPNTS, ORDERS, SKENOTR, LABELS, EXTEND,
1 NEWS, SEGS)
C
C --- Refit in the s direction
C
CALL FITSU(CPW, CPX, CPY, CPZ, RATNOT,
1 ORDERS, NPNTS, NPNTT, SENOTR, LABELS,
2 EXTEND, NEWS, SEGS, PW, PX, PY, PZ )
C
C --- Determine the labels for the t direction
C
CALL LABEL( NPNTT, ORDERT, TENOTR, LABELT, EXTEND,
1 NEWT, SEGT )
C
C --- Refit in the t direction
C
C --- Transpose t and s
C

DO 100 ROW = 0, NPNIT
DO 100 COL = 0, NPNTS+NEWS
CPV (ROW+COL* (NPNTT+1)) =
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PW (COL+ROVW* (NPNTS+NEWS+1))
CPX(ROW+COL* (NPNTT+1)) =

PX (COL+ROW* (NPNTS+NEWS+1))
CPY (ROW+ COL* (NPNTT+1)) =

PY (COL+ROW* (NPNTS+NEWS+1))
CPZ (ROW+COL* (NPNTT+1)) =

PZ (COL+ROW* (NPNTS+NEWS+1))

100 CONTINUE '

Cc
C
CALL FITSU(CPW, CPX, CPY, CPZ, RATNOT, ORDERT,
1 NPNTT, NPNTS+NEWS, TENOTR, LABELT, EXTEND,
2 NEWT, SEGT, PW, PX, PY, PZ )
C
C --- Transpose back
C

DO 200 ROW = 0, NPNTS+NEWS
DO 200 COL = 0, NPNTT+NEWT
CPW(ROW+ COL* (NPNTS+NEWS+1))

1 PW (COL+ROW* (NPNTT+NEWT+1))
CPX(ROW+COL* (NPNTS+NEWS+1)) =
1 PV (COL+ROW* (NPNTT+NEWT+1))
CPY (ROW+COL* (NPNTS+NEWS+1)) =
1 PY (COL+ROW* (NPNTT+NEWT+1))

CPZ (ROW+ COL* (NPNTS+NEWS+1))

1 PZ (COL+ROW* (NPNTT+NEWT+1))
200 CONTINUE
C
C
cceceeececececcecececceccececceccecceccecceccecccecceccecccecceccceccceccccecccccceccccceccceccccccccccccce
C

RETURN

END
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C LABEL: Labels subsegments for an emhanced kmot vector
cbccccce Subroutine Description Ccccc

Purpose and use: Determine subsegment labels and where
new control points must go.

Brror conditions:

Implementation:

Notes:
cccecececececceccecceccececccceccecceccceccececcccecceccecccceccecceccccccceccccccccccecccccccccce
ccceccececcceccccccce Statistics ccccececccecceccececccccce

Author: Mark N. Pickelmann

Date written: April 30, 1984

Modifications:

QOO0 0CCANOEN

cccceccecececcececececcececcccccccccecceccececcccccccccccccccccccccccccccccccce
C

¢cscceccceccce Entry _Storage Block cccccece
C
SUBROUTINE LABEL ( NPNT, ORDER, RENOT, LAB, EXTEND,
NEW, SEG) '
C
C===Read-only arguments:
C --- Number of points and order of the curve
INTEGER NPNT, ORDER
C --- Nonuniform knot vector
REAL RENOT(O:NPNT+ORDER)
C
C===Arguments returned:
C --- Subsegment labels
INTEGER LAB (NPNT-ORDER+2)
C --- If the knot vector was extended for this segment
INTEGER EXTEND (NPNT-ORDER+2)
C --- Number of new knots
INTEGER NEW
C --- Number of non-zero segments
INTEGER SEG
C
C===Arguments modified:
C none
C
C===Common blocks:
C none
C

C===Local variables:
C =--- Pointers and counters
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INTEGER PNTER, I

C --- Uniform knot vector
REAL KNOT(0:40)

C ==- A numbdber like zero
REAL ZERO

C --- Knot spacing
REAL DELTA

C

C===Functions and subroutines:
INTRINSIC ABS

C

C

DATA ZERO/1.0E-06/

c . .

cccececeececececececcececececcecceccceccecceccecececcceccecccecceccceccceccccecceccceccccccccceccecccccccc

C

CPCCCCCCCC Process Block CCcCCcCC
C

C --- Copy the knot vector

C

DO 100 I=0,2*0ORDER-3
KNOT(I) = RENOT(I)
100 CONTINUE

C
NEW = 0
SEG = 0
PNTER = ORDER - 2
C
C ——- 8Shift the kanot vector
C

200 PNTER = PNTER + 1
DO 250 I=0,2*ORDER-4
KENOT(I) = KNOT(I+1)
250 CONTINUE
KENOT(2*ORDER-3) = RENOT(PNTER+ORDER-1)

C
C --- Check for repeat knot
C
IF(PNTER.GT.NPNT) THEN
GOTO 1000
ELSE IF(KENOT(ORDER-1)-ENOT(ORDER-2).GE.ZERO) THEN
SEG = SEG + 1
DELTA = ENOT(ORDER-1)-KNOT(ORDER-2)
ELSE
GOTO 200
END IF
C
C --- See if we need to extend the old kmot vector
C

BXTEND (SEG) = 0

DO 300 I=1,2°0RDER-3
IF(ABS(ENOT(I)-KNOT(I-1)-DELTA).GT.ZERO.AND.

1 KENOT(I)-KNOT(I-1) .GT.ZERO) THEN
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EXTEND (SEG) = EXTEND(SEG) + 1
KNOT(I+1) = KNOT(I)
KENOT(I) = ENOT(I-1)

PNTER = PNTER - 1

END IF
300 CONTINUE
C
C =-- Label this segmeont
C

LAB(SEG) = 0
DO 400 I = 2%0RDER-4,0,-1
IF(1.EQ.ORDER-2) GOTO 400
IF(KENOT(I+1)-KNOT(I).GT.ZERO) THEN
LAB(SEG) = 2¢*LAB(SEG) + 1
ELSE
LAB(SEG) = 2¢LAB(SEG)
END IF
400 CONTINUE
NE¥W = NEW + EXTEND(SEG)

G0TO 200
C
C
cccccececeecceccccececccccecccceccccccecccecccccccccecccccccccccccccccccccccc
C

1000 RETURN
END
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C FITSU: Fit extended uniform rational B-splines in the S
C direction

cbccccce Subroutine Description CCccC
C

C Purpose and use: Find the EURBS control points for the

C given NURBS control points

C

C Exrror conditions: Notifies if jump discontinuity is
encountered

C

C Implementation:

C

C Notes:

C

c€ccecececcececcceccececcecececcceccececcececccecceccceccccecccceccccececcceccccecccccccc

C

c¢ccccececccececccccce Statistics cceceececcececccccccce
g Author: Mark N, Pickelmann

g Date written: MNay 2, 1984

E Modifications:

cccecececcececccecccecceccccecccceccceccccceccccccccceccccceccccecccccccccccccc
C

¢sccccececec Eatry _Storage Block cccccec
C
SUBROUTINE FITSU(CPW, CPX, CPY, CPZ, RATNOT, ORDER
1 NPNTS, NPNTT, RENOT, LAB, EXTEND,
2 NEW, NSEG, PW¥, PX, PY, PZ )
C===Read-only arguments:
C --- Rational or not
LOGICAL RATNOT
C ==- Order of the curve to be fit
INTEGER ORDER
C --- Numbdber of control points
INTEGER NPNTS, NPNTT
C --- Number of new control points
INTEGER NEV
C --- Knot vector
REAL RENOT(O:NPNTS+ORDER)
C --- Control points

REAL CPW(O:NPNTS, O:NPNTT)
REAL CPX(O:NPNTS, O:NPNTT)
REAL CPY(O:NPNTS, O:NPNTT)
REAL CPZ(0:NPNTS, O:NPNTT)

C --- Number of non-zero segments
INTEGER NSEG
C —-- Subsegment labels
INTEGER LAB (NSEG)
C --- List of extentions and total number of extentions

INTEGER EXTEND (NSEG)
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C
C
C===Arguments returned:
C --- Uniform control points
REAL PVW(O:NPNTS+NEVW,0:NPNTT)
REAL PX(O:NPNTS+NEW,0:NPNTT)
REAL PY(O:NPNTS+NEW,O0:NPNTT)
REAL PZ(O:NPNTS+NEW,0:NPNTT)
C
C===Arguments modified:
C none
C
C===Common blocks:
C none
C
C===Local variables:
C --- Counters and pointers
INTEGER ROW, ROW2, COL, SEG, I, J1, J2, TERM, PIV,
1 PIVOT
REAL MAX, HOLD
C -—- Uniform pointer and last poinmter
INTEGER UPNT, LPNT
C === A number like zero
REAL ZERO
C --- Number of points to determine for a given segment
INTEGER DETR
C --- BEquation matrix
REAL A(20,20)
C ——- Uniform blending function matrix
REAL MNAT(400)
C --- Nonuniform matrix
REAL N(400)
C --- Scale factor
REAL SF
C

C===Functions and subroutines:

EXTERNAL CDALGO, CDANS, BASMAT

INTRINSIC ABS
C
cccceeceececececcececcecececececceccecceccececcecceccecceccececcecccececccceccceccecccccccccc
C

CPcccccccc Process Block cccccce
C

C --- Check to see if need to use the weights

C

IF(RATNOT) THEN
DO 50 COL = O,NPNTT
DO 50 ROW = 0, NPNTS
CPX (ROW,COL) = CPX(ROW,COL) * CPW(ROW, COL)
CPY (ROW,COL) = CPY(ROW,COL) * CPW(ROW,COL)
CPZ (ROW,COL) = CPZ(ROW,COL) * CPW(ROW,COL)
50 CONTINUE
END IF



C -—-—-
100

225

1
1

1
200
C
C --—-
c
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ZERO = 1,0E-06
SEG = 0
LPNT = -1
I = ORDER - 2
UPNT = 1
Find the next non-zero segment
IF(I.GT.NPNTS) THEN
GOTO 1000
ELSE IF(RENOT(I+1)-RENOT(I).LE.ZERO) THEN
I =1+1
UPNT = UPNT + 1
GOTO 100
END IF

Fit this segment

SEG = SEG + 1
IF(SEG.NE.1) THEN
UPNT = UPNT + EXTEND(SEG-1)
END IF
Find the number of control points to determine
DETR = UPNT - LPNT
IF(DETR.GE.ORDER.AND,.SEG.NE.1) THEN
PRINT ¢, 'FITSU : Jump discon’
DETR = ORDER-1
UPNT = LPNT + ORDER - 1
END IF
LPNT = UPNT

Evaluate the nonuniform curve at the end

CALL CDALGO(ORDER, RENOT(I+2-ORDER),RENOT(I+1),N)
ROW = UPNT+1-DETR
DO 200 COL = O,NPNTT
IF(RATNOT) THEN
CALL CDANS(ORDER, RENOT(I+2-ORDER), RENOT(I+1),
N, CPW((I+1-ORDER),COL), PW(ROW,COL), DETR-1)
ELSE
DO 225 J1 = ROW, UPNT
P¥W(J1,CoL) = 1
CONTINUE
END IF
CALL CDANS(ORDER, RENOT(I+2-ORDER), RENOT(I+1), N,
CPX((I+1-ORDER),COL), PX(ROW,COL), DETR-1)
CALL CDANS(ORDER, RENOT(I+2-ORDER), RENOT(I+1), N,
CPY ((I+1-ORDER),COL), PY(ROW,COL), DETR-1)
CALL CDANS(ORDER, RENOT(I+2-ORDER), RENOT(I+1), N,
CPZ((I+1-ORDER),COL), PZ(ROW,COL), DETR-1)
CONTINUE

Scale results to extended kmot vector
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SF = RENOT(I+1) - RENOT(I)
DO 300 J1 = UPNT+2-DETR, UPNT
DO 300 J2 = J1, UPNT
DO 300 COL = O,NPNTT

IF(RATNOT) PW(J2,COL) = SF * PW(J2,COL)
PX(J2,COL) = SF * Px(J2,C0L)
PY(J2,CO0L) = SF * PY(J2,COL)
PZ(J2,CO0L) = SF * PZ(J2,COL)

300 CONTINUE
C
C -—- Get the uniform blending function matrix
C
CALL BASMNAT(ORDER, LAB(SEG), MNAT)
(o
C -—- Evaluate functions and derivatives
C
DO 400 ROW = 1, DEIR
IF(ROW.NE.1) THEN
DO 450 J1 = 1, ORDER
DO 450 J2 = 1, ORDER-ROVW
MAT(J2+(J1-1)*ORDER) =
MAT(J2+(J1-1)%ORDER)* (ORDER-ROW+2-J2)
450 CONTINUE
END IF
C
C --- Make up the A matrix
C
DO 475 COL = 1, ORDER
A(ROW,COL) = 0
DO 475 TERN = 1, ORDER+1-ROVW
A(ROW,COL) = A(ROVW, COL)+MNAT(TERM+ (COL-1)*ORDER)
4175 CONTINUE
400 CONTINUE
C
C --- Fill in the known information
C
DO 500 J1 = 1, ORDER-DETR
DO 500 J2 = UPNT+1-DETR, UPNT
ROW = UPNT-ORDER+J1
DO 500 COL = 0, NPNTT
IF(RATNOT) PW(J2,COL) = PW(J2,COL) - A(J2,J1)*
P¥ (ROW, COL)
PX(J2,CO0L) = PX(J2,COL) - A(J2,J1)*
PX (ROW, COL)
PY(J2,CO0L) = PY(J2,CO0L) - A(J2,J1)*
PY (ROVW, COL) .
PZ(J2,CO0L) = PZ(J2,COL) - A(J2,J1)*
PZ (ROV, COL)
500 CONTINUE
C
C --- Shift over
C

IF(DETR.LT,.ORDER) THEN
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DO 600 J1=1,DETR
DO 600 J2=1,DETR
A(J2,J1) = A(J2,J1+O0RDER-DETR)

600 CONTINUE
END IF
C
C --- Do some row reduction
C

DO 700 PIV = 1, DETR-1
NAX = 0
PIVOT = PIV
DO 750 J1 = PIV, DETR
IF(ABS(A(J1,PIV)).GT.MAX) THEN
MAX = ABS(A(J1,PIV))
PIVOT = J1
END IF
750 CONTINUE

IF(PIVOT.NE.PIV) THEN
DO 775 J1=PIV,DETR
HOLD = A(PIV,J1)
A(PIV,J1) = A(PIVOT,J1)
A(PIVOT,J1) = HOLD
775 CONTINUE
ROW = PIV+UPNT-DETR
ROW2 = PIVOT+UPNT-DETR
DO 780 COL = O,NPNTT
IF(RATNOT) THEN
HOLD = PW(ROW,COL)
PW(ROW,COL) = PW(ROW2,COL)
PV (ROW2,COL) = HOLD
END IF
HOLD = PX(ROW, COL)
PX(ROW,COL) = PX(ROW2,COL)
PX(ROW2,COL) = HOLD
HOLD = PY (ROW, COL)
PY(ROW,COL) = PY(ROW2,COL)
PY (ROW2,COL) = HOLD
HOLD = PZ(ROW, COL)
PZ (ROW,COL) = PZ(ROW2,COL)
PZ(ROW2,COL) = HOLD
780 CONTINUE
END IF

DO 790 J1 = PIV+1l, DETR
DO 785 J2 = DETR, PIV, -1
IF(J2.EQ.PIV) THEN
A(J1,J2) = 0
ELSE
A(J1,J2) = A(J1,J2) -
1 A(PIV,J2)*A(J1,PIV)/A(PIV,PIV)
END IF
785 CONTINUE
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ROV = J1+UPNT-DETR
ROW2 = PIV+UPNT-DETR
DO 786 COL=0,NPNTT
IF(RATNOT) PW(ROW,COL) = PW(ROW,COL) -

1 A(J1,PIV)*PW(ROW2,COL)/A(PIV,PI1IV)
PX(ROVW,COL) = PX(ROW,COL) -
1 A(J1,PIV)*PX(ROW2,COL)/A(PIV,PIV)
PY (RO¥,COL) = PY(ROW,COL) -
1 A(J1,PIV)*PY(ROW2,COL)/A(PIV,PIV)
PZ (ROVW,COL) = PZ(ROW,COL) -
1 A(J1,PIV)*PZ(ROW2,COL)/A(PIV,PIV)
786 CONTINUE
790 CONTINUE
700 CONTINUE
c
C --- Solve by back substitution
C

DO 800 PIV = DETR, 1, -1
ROW = UPNT+PIV-DETR
DO 800 COL = 0, NPNTT
DO 850, J1=DETR, PIV+1l, -1
IF(RATNOT) PW(ROW,COL) = PW(ROW,COL) -

1 A(PIV,J1) ® PV(UPNT+J1-DETR,COL)
PX(ROW,COL) = PX(ROW,COL) - A(PIV,J1)e

1 PX(UPNT+J1-DETR, COL)
PY (ROW,COL) = PY(ROW,COL) - A(PIV,J1)e

1 PY(UPNT+J1-DETR, COL)
PZ(ROW,COL) = PZ(ROW,COL) - A(PIV,J1)s

1 PZ (UPNT+J1-DETR, COL)

850 CONTINUE
IF(RATNOT) PW(ROW,COL) = PW(ROW,COL) /
1 A(PIV,PIV)
PX(ROW,COL) = PX(ROW,COL) / A(PIV,PIV)
PY (ROW,COL) = PY(ROW,COL) / A(PIV,PIV)
PZ(ROW,COL) = PZ(ROW,COL) / A(PIV,PIV)
800 CONTINUE

C

C

C —-- MNove to the next segment
I =1I+1
UPNT = UPNT + 1
GOTO 100

C

C --- Take out the weights

C

1000 IF(RATNOT) THEN
DO 1100 COL = O,NPNTT
DO 1100 ROW = 0, NPNTS
PX(ROW,COL) = PX(ROW,COL) / PW(ROW, COL)
PY (ROW,COL) = PY(ROW,COL) / PW(ROVW,COL)
PZ(ROW,COL) = PZ(ROW,COL) / PW(ROW, COL)
1100 CONTINUE
DO 150 COL = O,NPNTT
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DO 150 ROV = 0, NPNTS
CPX(ROW,COL) = CPX(ROW,COL) / CPW(ROW,COL)
CPY (ROV¥,COL) = CPY(ROW,COL) / CPW(ROW,COL)
CPZ (ROW,COL) = CPZ(ROW,COL) / CPVW(ROW,COL)

150 CONTINUE
END IF

c

C

ccccecceeeecccecccececceccccccccecceccccccccccccccccccccccccccccccccccc
C

RETURN

END
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