

llMilliT11511111111le

"\l‘ficifl
31293 0109

7"“- “\w-I-t-I—
-_.._

, gun _. r-

c \

1 J
.7

c.- E.

,i' '.' o . 3‘ o .. ,- fl 4 ..~. I '-

. ..

.5L’...’».-.3r.r - 9;..3 biu-‘i
h.

0 0.1

Unub‘Wflwr “’‘vK-ln"

This is to certify that the

dissertation entitled

THE DES IGN 0F IATION AL 3- SP1. IN E ALGOR ITBIS

INTERACTIVE COLORFggADING or SURFACES

presented by

Mark Norman Pickelnnnn

has been accepted towards fulfillment

ofthe requirements for

Doctor of Philoggflu degreeinw Engineering

MAS048
Major professor

Date 4/M/K
S

Eric D. Goodman

MSU i: an Affirmative Action/Equal Opportunity Institution 0- 12771

MSU

RETURNING MATERIALS:

Place in book drop to

remove this checkout from

LIBRARIES .

532:. your record. FINES W11]

be charged if book is

returned after the date

stamped below.

‘WJ‘J‘Z’V‘

I 111 _‘ ,. -

t? 2.1 it. 3 tr.

via"...- ‘- ' l." ”My

,7 I." 7 ’

v‘Wtc’vTSix

2.) v‘ A

,§’
i v A

.3 'I It a",

THE DESIGN OF RATIONAL B-SPLINE ALGORITHMS

FOR

INTERACTIVE COLOR SHADING OF SURFACES

By

Hark Norman Pickelmann

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Mechanical Engineering

1985

THE DESIGN OF RATIONAL H-SPLINE ALGORITHIS

FOR

INTERACTIVE COLOR SHADING OF

Submitted by:

lark N. Pickelmanm

Ph.D. Candidate

Approved by:

Erik D BoodCan

Proteeeor

Diaeertation Adviaor

n R. Lloyd

hairperaon

Department of Ieehanical Engineering

ii

SURFACES

4—13-34:

Date

Mat/ta
Dete

.é/M
Date

ABSTRACT

THE DESIGN OF RATIONAL H-SPLINE ALGORITHIS

FOR

INTERACTIVE COLOR SHADING 0F SURFACES

By

Hark Norman Pickelmann

This dissertation presents several algorithms

developed for use with CAD/CAI systems. The new algorithms

allow for more efficient evaluations of the entire range of

rational R-spline curves and surfaces. A class of rational

B-spline called Enhanced Uniform is defined. The

algorithms developed include an algorithm which is used es

s preprocessor to transform the definition of a nonuniform

rational B-spline surface to an equivalent surface based on

the Enhanced Uniform Rational B-spline. The second

algorithm deve10ped is used for evaluation of enhanced

uniform B-splines and their derivatives. Numerical

considerations in the implementation of these algorithms

are discussed. Examples of the use of these algorithms to

generate color images in a surface assessment program are

included.

To my loving wife Kristi.

For my sons Daniel and Kevin

and any others who come along.

iii

AKNO'LEDGEHENTS

The author would like to thank my committee of

Dr. Erik D. Goodman. Dr. James E. Bernard.

Dr. Ronald C. Rosenberg. and Dr. Jake M. Plotkin for all

their help getting me through.

A special thanks goes to Dr. James E. Bernard. for his

help. friendship. and advice. Although he left during the

course of this work he is responsible for starting me in

the Ph.D. pragram and he was there to get me through

qualifers when I needed him the most.

The author would like to thank the General Dynamics

Corporation for their funding of the COLORSCOPE project.

I would like to thank my family which includes mom and

dad. my brother. my mother and father in law. and my

brothers and sisters in law for all their encouragement

during the course of my studies.

Finally. I would like to thank my friends at MSU. for

the classes we took together and for hanging out on friday

afternoons. but most of all I would just like to thank them

for being my friends.

iv

TABLE OF CONTENTS

LIST OF FIGURESCOOOOOOCOO0.00.0000...

LIST OF TABLESOOOOOOOOOOOCOOOOO

CHAPTER I --- INTRODUCTION

1.0 INTRODUCTION

1.1 ERROR CHECKING

1.2 SURFACE NODELS

1.2.1 The Rational B-spline Surface

1.3 OVERVIEW OF THE DISSERTATION

CHAPTER II --- H-SPLINE CURVES AND SURFACES

2.03‘SPL1NEREVIE' eeeeeeeeeeeeeeeeeeeeee

2.1 B-SPLINE SPACE CURVE

2.1.1 Basis Functions

2.1.2 Rational B-spline Space Curves

2.2 B-SPLINE SURFACE

2.2.1 Rational B-spline Surfaces ...

2.3 [NOT VECTOR RESTRICTIONS

2.3.1 Uniform [not Vectors

2.3.2 Enhanced Uniform Knot Vectors

ix

xi

19

22

24

24

25

26

CHAPTER III --- CURHS ALGORITHM

3.0 ENHANCED UNIFORI RATIONAIJ B’SPLINB eeeeeeeeeeee

3.1 ADVANTAGES OF UNIFORN KNOT VECTOR

3.1.1 Knot Vector Translations

3.1.2 Enhanced Uniform Knot Vector Compression ..

3.1.3 Knot Vector Compression Algorithm

3.2 THE EVALUATION ALGORITHN .

3.3 LINITATIONS OF ENHANCED UNIFORN KNOT VECTOR ...

CHAPTER IV --- CURRS ALGORITHN ANALYSIS

4.0 ALGORITRN COIPARISON

4.1 COX-DEBOOR ALGORITHN

4.2 BIG-0H ANALYSIS eeeeeeeeee

4.2.1 Operation Analysis ...

CHAPTER V --- CONVERSION ALGORITHN

5.0 NURHS-TO-EURBS CONVERSION

5.1 INITIAL EXPLORATION OF THE CONVERSION PROHLEN .

5.1.1 Knot Vector Rescaling

5.1.1.1 An Example Of Approximate Knot Vector

5.2 EXACT NURHS-TO-EURBS CONVERSION

5.2.1 Bxp‘ndin‘ Th. lnot vectotOOOCOOOOOOC

5.2.2 Conversion By Knot Vector Expansion

3.2.3 Storage Considerations

vi

28

29

31

33

33

39

50

51

52

CHAPTER VI--- IMPLEMENTATION CONSIDERATIONS

6.0 NUMERICAL CONSIDERATIONS 65

6.1 BUILDING OF THE BLENDING FUNCTION MATRICES 67

6.2 EVALUATION OF THE COX-DEBOOR AND CURHS

ALGORITHMS 68

6.3 SIMULTANEOUS EQUATION SOLVER 69

6.4 EXAMPLES OF EVALUATION PROBLEMS 70

6.4.1 Evaluation of Normal Components 70

6.4.2 Normalization Of The Normal 73

6.4.3 F‘c. To p.00 OO.......OCOOOOOOCOOOOOOOOO... 75

CHAPTER VII --- EXAMPLES AND CONCLUSIONS

7.0 BXA‘PLES AND CONCLUSIONS 0 O 18

1.1 Ex.'pl°s 0.000.000...00.000.000.00.00......0... 89

7.2 concln‘ionsOIOCOOOOOOOCOO00.0.0.0... 84

APPENDIX A --- CALCULATION EXAMPLE

A. RATIONAL B-SPLINE CALCULATION EXAMPLE 87

APPENDIX B --- MATRIX FORMULATION

B. FORMULATION OF BLENDING FUNCTION MATRIX 97

APPENDIX C --- KNOT VECTOR TRANSLATION

C. EFFECTS OF KNOT VECTOR TRANSLATION ON BLENDING 104

vii

APPENDIX D --- [NOT VECTOR COMPRESSION ALGORITHM

D.O THE COMPRESSION ALGORITHM

D.1 Example of Knot Vector oompreaaion

APPENDIX E --- NURES TO EURBS CONVERSION

E. EXAMPLE OF NURHS TO EURBS CONVERSION

APPENDIX F --- CONVERSION ALGORITHMS

F. CODE FOR THE NURBS TO EURBS CONVERSION

LIST OF REFERENCES

viii

110

112

115

121

135

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

LIST OF FIGURES

Blending Functions of Order Up to Four

Fourth Order Blending Functions

Non-Zero Blending Functions for i=6 ..

Fourth Order Blending Functions. Knot

SOVOII EQUII to ant Sileaeeeeeeeeeaee

Fourth Order Blending Functions. Knot

Sir. Seven. and Eight Equal

Fourth Order Blending Functions

Homogeneous Coordinates vs Parametric

V‘ti‘bleOOOCOOIOOOOOOOO....

Three-space Plot of Homogeneous

Coordinates

Plot of X-Y Curve

Uniform vs Nonuniform Curves

Uniform Fit Using End Slopes

Uniform Fit Using First Subsegment ...

Uniform Fit Using Least Squsres

Uniform Fit By [not Vector Expansion .

Screen Space Coordinate System

Single Precision Evaluation

Double Precision Evaluation

Unnormalized 2 Component Calculation .

Normalized 2 Component Calculation ...

ix

10

12

13

14

15

16

2O

21

22

55

56

57

58

6O

67

73

74

75

Figure 7.1.1 : Shaded Cube. Sphere. Cone. and

Cylinder 80

Figure 7.1.2 : Shaded Torus 80

Figure 7.1.3 : Shaded Automobile Hood 81

Figure 7.1.4 : Curvature Shading of Automobile Hood . 81

Figure 7.1.5 : Intermediate Stamping of a Styled

'heel 82

Figure 7.1.6 : Shaded Bumper 82

Figure 7.1.7 : Shaded Turbine Blade 83

Figure 7.1.8 : Absolute Maximum Curvature Shading of

a Turbine Blade 83

Figure 8.1 : Tree Structure of Non-Zero Blending

functions 98

Figure 3.2 : Tree Structure of Non-Zero Blending

functions 0............OOOOOOOOOOOOOO99

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

4.2.1

4.2.2

4.2.3

LIST OF TABLES

Analysis of the Operations for the

Cox-deBoor Algorithm

: Analysis of the Operations for the

CURBS Algorithm

: Operations Analysis for Three

Coordinates

: Example of Calculated Values of the 2

Component of the Normal

Original Control Points

Homogeneous Control Points

Original Control Points

Control Points for Figure 5.1.2

Control Points for Figure 5.1.3

Control Points for Figure 5.1.4

Control Points for Figure 5.1.5

xi

46

46

47

76

116

117

117

118

119

CHAPTER I

INTRODUCTION

1.0 INTRODUCTION

The goal of this dissertation is to present several

algorithms deve10ped for use with CAD/CAM systems. The new

algorithms allow for more efficient evaluation of the

entire range of rational B-spline curves and surfaces.

These algorithms allow a considerable increase in the speed

of response of interactive CAD/CAM programs which utilize

them.

The use of mathematical models to represent sculptured

surfaces has become not only a design tool but also a

manufacturing tool. Before a model can be used for

production or analysis it must be checked for errors.

Common errors which occur in these types of models are

misplaced corner points. missing patches. slepe

discontinuities between patches. and gaps between patches.

1.1 ERROR CHECKING

Checking for errors in models can be a very costly

process. Two methods in common use are two-dimensional

line drawings and proofing runs of trial parts on a

numerically controlled machine. In the case of

two-dimensional line drawings small errors such as lepe

discontinuities are very difficult to detect due to the

complexity of the drawings.

To check the validity of tool paths for numerical

control machining. parts are often milled out of a

substitute material to check the model. This is costly

because it ties up a mill and an operator. and it increases

material costs.

Another method for checking the model is to use the

computer to generate an accurate shaded image of the model.

This method is becoming popular because it saves much of

the expense of checking the model [1].

Currently many color shading packages are available

for a wide range of surface representations [2]. However.

most of these packages sacrifice some of the surface

information to produce smoothly shaded pictures. This is

done by tiling the surface and utilizing some type of

filtering to hide the effects of tiling. These altered

surfaces do not represent the true surface definitions and

hide many of the errors.

Researchers at the A. H. Case Center for

Computer-Aided Design have develOped a surface assessment

package called MSU COLORSCOPE to produce accurate shaded

images. The package allows shading based on various light

models as well as surface curvature pr0perties. The MSU

COLORSCOPE approach is to calculate and shade the surface

at the pixel level using specialized scan line techniques

[3] [4] [5]. This creates a very accurate picture of the

surface. These pictures can then be used for rapid

detection of errors or flaws in the model.

1.2 SURFACE MODELS

Rapid growth in the computer-aided

design / computer-aided manufacturing (CAD/CAM) field has

resulted in the lack of a standard method for defining a

three-dimensional surface. In recent years the most

popular way has been the bi-cubic patch. But sophisticated

applications demand more flexibility than the bi-cubic

patch can offer. In many situations the rational B-spline

surface is being used [6]. The rational B-spline surface

allows a great deal of flexibility and the capability of

representing many popular types of surface descriptions in

an exactly equivalent form. lhile rational B-spline

surfaces cannot precisely represent all mathematical

surfaces. they are a very powerful form and are an emerging

g; fggtg standard in today's CAD/CAM systems.

MSU Colorscope is intended to be a general-purpose

surface assessment package. However. prior to this work.

it used bi-cubic patch definitions based on the Coons [7]

blending functions. This has severely limited applications

of the package in today's CAD/CAM community. This

dissertation develops both a method for the efficient

incorporation of the rational B-spline into a general

purpose surface assessment package. and the mathematical

forms and algorithms to allow conversion among a variety of

surface types.

1.2.1 The Rational B-spline Surface

B-splines have only recently been widely used in

engineering applications. Perhaps this has been due to the

complexity of the basis functions and the computing burden

associated with calculating them each time a surface point

is to be evaluated. It is well known that the time to

calculate the basis functions can be reduced if certain

restrictions are placed on the class of B-spline [8]. Is

shall show that it is possible to achieve similar time

reductions without any constraints placed on the class of

B-splines used.

An important component of this work is to shade

rational B-spline surfaces using scan line methods in an

interactive mode. The definition of interactive varies

from user to user and task to task; however. for the

present purpose. it is taken to mean that one should speed

up the shading process as much as possible without

sacrificing any of the surface information. The techniques

presented here will take advantage of a modern

thirty-two-bit computing processor using virtual memory.

1.3 OVERVIEW OF THE DISSERTATION

Chapter Two presents a review of the rational B-spline

surface. Chapter Three defines a class of B-spline called

gghggggd 33112;! and develops an algorithm. called the

Converted to Uniform Rational B-Splines (CURBS) algorithm.

for calculating with enhanced uniform rational B-splines.

A comparison of the commonly used Cox-deBoor algorithm to

the CURBS algorithm using the enhanced uniform B-spline is

made in Chapter Four. Chapter Five deve10ps an algorithm

to transform any rational B-spline into an exactly

equivalent enhanced uniform B-spline. Discussed in Chapter

Six are some of the numerical problems encountered in the

implementation of the B-spline algorithms. Conclusions are

drawn and examples given in Chapter Seven.

CHAPTER II

B-SPLINE CURVES AND SURFACES

2.0 B-SPLINE REVIEW

This chapter presents a review of the rational

B-spline surface patch. The review starts with a the

B-spline space curve and extends to the rational B-spline

space curve. Next the B-spline surface patch is defined

and extended to the rational B-spline surface patch.

Finally. various classifications of B-splines are

discussed.

2.1 B-SPLINE SPACE CURVE

The B-spline approximation was first presented by

I. J. Schoenberg [9] in 1946 for statistical data

smoothing. More recent work has been done by deBoor [10].

Cox [11]. Riesenfeld [12]. and Versprille [8]. Cox and

deBoor each developed a numerically stable algorithm to

evaluate the B-spline points and derivatives. Riesenfeld

used the Cox-deBoor algorithm to apply the B-spline to

geometric problems in computer-aided design. Versprille

used the rational B-spline, but restricted the knot vector

so as to produce only a small subset of the B-spline

family.

2.1.1 Basis Functions

Let P be the Cartesian position along a curve as a

function of the parametric variable t. A curve generated

using the B-spline basis is given by

P(t) - 3 C?1 - Ni.k(t) 2.1.1

i-O

where

CP are the n+1 control points

k is the order of the blending functions

n is the number of control points minus one

N are the n+1 blending functions

The order of the B-spline curve is the degree plus one. If

the number of control points exceeds the order of the curve

the B-spline will have more than one segment. The segments

which make up a B-spline will be called ggbgggggntg. The

above blending functions are defined by the recursion

formulas [13]

"1.1(t) 8 1 if x1 1 t (xi+1

2.1.2

8 0 otherwise

Ni.k(t) 8 (t’xi) Ni,k'1(t) I (11+k-1 ’ 31) 2 1 3

* “1+k't’ N1+1.k-1(t’ ’ (‘i+k ’ *i+1)

where

xi are the entries of the knot vector

10

The knot vector specifies how the parametric value is

distributed along the B-spline. Subsegments start and end

when the parametric value crosses the knot values.

For example if the knot vector is taken to be

X1-[8 9 9 9 9]

i

0 0 0 5 6 7

1 2 3 8 9 10 11 12 13 14 15

0 1 2 3

0 4 5 6

The values of the blending functions for it6 with k=1. k-2.

k-3. and k=4 are shown in Figure 2.1.1 as a function of the

parametric variable t.

a
I

e

n A

(a, ? N6.l

" T
9

F

3 f N52

i W
I

O

n 1/////~_ N

v f 5.3

a T

| /\

U

e a N
s I l l l l l l l L *1 6’4

Poromctric Variable

Figure 2.1.1 : Blending Functions of Order Up to Four

From Figure 2.1.1 we can see that the the blending

function is always zero for a value of t from zero to

three. As k increases. the blending functions are non-zero

for a larger and larger value of t. But the maximum value

of the blending functions is decreasing as k is increased.

In Figure 2.1.2 the values for all of the blending

functions for order k=4 have been plotted. The value

plotted for each Ni.4 would be used with with the

corresponding CPi to determine values along the B-spline

curve. At any value of t there are at most four non-zero

blending functions. As t crosses a knot. the blending

function Nj'g goes to zero and the blending function Nj+4.4

becomes non-zero. It is at this point that one subsegment

ends and another starts.

Z
Z

g
—
o

g
—
.

4
5

Scale

1&4

34

E4

Z4

@4

34

M4

14

34

L4

m4

G
O
G
-
O
<

3
0
-
w
4
-
O
D
C
'
T
I
c
0
3
-
O
.
3
0
—
W

Z
I
Z
Z
Z
Z
I
Z
Z
Z
Z
I
Z
Z
Z
I
Z
Z
I
Z
Z
Z
I
Z
Z

Parametric Variable

Figure 2.1.2 : Fourth Order Blending Functions

Figure 2.1.3 shows the non-zero blending functions for

i-6 for orders k=1. k-2. k-3. and k=4 as a function of the

parametric variable t. Here t varies from three to four.

For order k=4. we see that N3.4 is non-zero at :23 and goes

to zero It t=4. while N5'4 starts at zero and ends up

non-zero e

13

“
D
C
-
O
<

a
o
-
W
-
r
O
D
C
T
I

$
0
3
—
°
O
.
3
0
—
m

Parametric Variable

Figure 2.1.3 : Non-Zero Blending Functions for i-6

The effect on the blending functions of repeating

interior knots is shown in Figures 2.1.4 and 2.1.5.

14

Scale

a
a
c
—
o
<

:
o
—
n
n
s
c
m
o
n
-
a
n
—
m

l

I
Z
I
Z
Z
Z
Z
I
Z
L
Z
I
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z

? a
.

b
-

a 4
-

! l l l l L l

3 4 S 6 7

Parametric Variable

E
’
F

g
—
n

n
1

(
D

Figure 2.1.4 : Fourth Order Blending Functions

Knot Seven Equal to Knot Six

The knot vector used for Figure 2.1.4 is

12 - l o o o s 6 7 s s s s 1

1 = o 1 2 9 1o 11 12 13 14 15(
D
O 1 2 3 3 4

4 5 6 7 8

The knot vector used for Figure 2.1.5 is

:3 - [o o o 5 6 7 7 7 7 l

1 = o 1 2 1o 11 12 13 14 150
3
° 1 2 3 3 3 4

4 5 6 7 8 9

Scale

7A-

2v4

L4

; l P l l l l J 004'

0 t 2 3 4 5 5 7

Parametric Variable

w
o
c
—
o
<

D
O
-
n
O
J
C
T
I
o
a
-
a
a
a
—
m

Z
Z
I
Z
U
Z
E
I
Z
I
Z
I
Z
Z
Z
Z
I
Z
Z
Z
Z
Z
Z

?
'
4
.

Figure 2.1.5 : Fourth Order Blending Functions

Knots Six. Seven. and Eight Equal

The non-zero blending functions of Figures 2.1.2.

2.1.4. and 2.1.5 for t between two and four have been

plotted in Figure 2.1.6.

16

B 1
I T

e

3 i , ----------------------------------

m ...",l.........”‘\ ‘

' r".’.‘.“\ O

n K .;.;."""T‘ .‘.>

g a “"--o--- .-.."Oe...-...-- ___‘____.-——-”

1 I

11
F

u g
n ’.’.’.’

\)II”‘‘‘‘‘‘
‘ I’”.

c ’J’...... , ‘\\ ‘,2~.~
t .’. ”’a ‘. // ‘\“. b

m ‘m. ‘ /

o d ‘4‘; I, _-_E#.

n [m

I” ‘\\

v
’I’ \\\

O--------\. I \ /’—~\\ 2”,

| .,.,.<..... ”3g. /\(\ ’/,~<-\\

u P"3.”’ \‘ \\ o/ \ C

e a '-" \‘V/ 4’" “~~~ i‘i.‘ “I.
- """" J’ __ Q

a L L l l I

1L8 2J5 2L8 :15 440

Parametric Variable

Figure 2.1.6 : Fourth Order Blending Functions

a) Knot Vector X1

b) Knot Vector X2

c) Knot Vector X3

Iith no repeated knots there are five non-zero

blending functions in this range. Iith one repeated

interior knot there are six non-zero blending functions.

At t-3 two of the blending functions go to zero as Opposed

to one with no repeated interior knots. Iith the interior

knot repeated two times. three blending functions go to

zero at t-3.

17

Each control point is associated with an Ni and each

"1 is associated with a knot x1 in the knot vector.

However. it is difficult to associate a control point with

a knot in the knot vector. As shown later. only a number

of the control points equal to the order of the curve

affects a given subsegment. But the number of knots which

affect the blending functions for that subsegment is

greater than the number of control points. A way to think

of this is that a given control point affects more than one

subsegment. Because of continuity constraints between

subsegments. the control point must be able to look ahead

and look back to influence the other subsegments. The

control point uses the knot vector to do the looking.

Repeated knots in the knot vector can then be viewed as

walls to limit the number of subsegments the control point

can see forward or backward.

The only restriction placed on the elements of the

knot vector is that xi 2 xi-1. For a given set of control

points. an infinite number of curves could be generated.

depending on the values assigned to each xi. It is this

fact which causes the need to evaluate equations 2.1.2 and

2.1.3 or some version thereof. each time a point is to be

found. However. not all of the Ni,k are non-zero for a

given subsegment. In fact only a number equal to the order

(k) of the curve have non-zero values. These Ni k are the

18

only ones that need be evaluated for that subsegment. The

k non-zero Ni.k are the same for all t such that

1j 5 t < xJ+1s points on this part of the curve are said to

form the jth subsegment of the curve.

It is possible to derive a formula for the Ni,k for a

given subsegment without an explicit value of t. provided

the knot vector is given. These formulas are valid for any

t in the range xj S t (xj+1. However. there are an

infinite number of possible knot vectors. These formulas

would have to be derived each time a subsegment was to be

evaluated for a new knot vector.

It has been shown in [10] and [11] that the use of

equations 2.1.2 and 2.1.3 directly can cause numerical

instabilities when the entries of the knot vector become

irregularly spaced or the order of the curve becomes large.

Thus Cox [11] and deBoor [10] independently develOped the

same algorithm which is numerically stable. But this

algorithm returns values of the Ni.k and/or their

derivatives only for particular values of t. and must be

recalculated entirely for each new t. No shall return to

the stability of equations 2.1.2 and 2.1.3 later in the

discussion of the restrictions that can be placed on the

knot vector.

19

2.1.2 Rational B-spline Space Curves

The extension to rational B-spline curves is handled

by assigning a positive non-zero weight to each of the

control points. The weights are used to form a homogeneous

coordinate system. Each control point CPi(x.y.z.1) is

assigned a weight 'i° For calculations with this control

point. it 1‘ multiplied by ‘1 to form a new control point

CP;(wx,'y,'z,'), The cp' points are used in equation

2.1.1 to calculate a homogeneous point P'(wx.wy.wz.w). The

three-space point P(x.y.z,1) is calculated by dividing each

coordinate of P. by the calculated value of w.

X(t) = IX(t)/l(t)

Y(t) ‘ IY(t)/I(t) 2.1.4

Z(t) - urn/7(1)

It is hard to think of a curve in four-space. but one

way to visualize this is to use a curve in two dimensions.

The following three figures show an example of a

two-dimensional rational B-spline curve.

2O

30

w
a
~
o
=
-
c
1
-
o
o
o

m
c
o
o
a
o
o
o
a
o
z

-10 1 1 1 1

0 2 4 6 8 10

Parametric Variable T

Figure 2.1.7 : Homogeneous Coordinates vs

Parametric Variable

The data for Figures 2.1.7, 2.1.8 and 2.1.9 are given

in Appendix A. Figure 2.1.7 shows the values of IX. 'Y and

I as a function of the parametric value t. The three

ordinates of Figure 2.1.7 are plotted in three-space in

Figure 2.1.8. Figure 2.1.9 is a plot of the resulting

curve in K-! space; also plotted is the curve which would

result if all the weights were equal.

21

WY

WX A

Figure 2.1.8 : Three-Space Plot of Homogeneous Coordinates

A B-spline is then also a rational B-spline with all

the veishts set equal to one. A 21512111 11112211 §:anlins

will have one or more weights not equal to one or

or; a cri.

Assigning unequal weights to the control points

introduces an additional degree of freedom. This degree of

freedom can be used to produce curves or shapes that are

22

not attainable with non-rational curves.

circular arcs.

such as conics or

3

2 ~ ,

Y 8-spline

C Rational B-spline

O

O

f -

<1 1
l :

n s
0 :

t g

e I _ '.

- 1 1 - .4 1 1

-t.5 -l.0 -8.5 8.0 8.5 1.8

X Coordinate

Figure 2.1.9 Plot of X-Y Curve

2.2 B-SPLINE SURFACE

The extension from the space curve to the surface

patch is done by adding a second parametric coordinate and

associated knot vector. Points on the

by

surface are given

23

'here

Ni.k(t) ‘ lj,h(') 2.2.1

CP are the (n+1)-(m+1) control points

k is the order of the curve in the t direction

h is the

n is the

in the t direction

m is the

in the s direction

N are the n+1 blending

M are the m+1 blending

The control points are new

column. The number of rows

number of columns. nor does the

have to equal the order in

function is associated with

function is associated with

B-spline curve.

non-zero. AnalOgous to

resulting submatrix of the control point matrix

13121122.

t 22122; 2112!-

each

only a given number of these functions

the subsegment of the curve.

order of the curve in the s direction

number of control points minus one

number of control points minus one

functions of order k

functions of order h

associated with a row and

does not have to equal the

order in the s direction

the t direction. A basis

row and a different

each column. As with the

are

the

defines a

The entire B-spline patch will be referred to as

24

2.2.1 Rational B-spline Surfaces

More complex surfaces may be constructed if a weight

is also assigned to each control point of the B-spline

surface. To determine points on the surface. equation

2.2.1 is used in the homogeneous coordinate system as

described above. The resulting surface point in

three-space is then found by equation 2.1.4.

2.3 KNOT VECTOR RESTRICTIONS

The only restriction placed on the knot vector is that

each entry must be a real number equal to or greater than

the one immediately preceding it. This type of knot vector

is referred to as a gggggifggg gag; yggtgg and produces

B-splines called Nonuniform Rational B-splines (NURBS).

Knot vectors are often gxtggggg by adding knots to the

beginning and end equal to the first and last entries of

the vector respectively. Repeating the end knots causes

the curve to pass through the end control points. In this

case the end control points are called a gggggtgig gags.

25

2.3.1 Uniform Knot Vectors

Placing a restriction on the knot vector that the

entries are only allowed to take on successive integer

V91303 (31+1 = x1 + 1). produces a knot vector known as a

23132;; $32; 122325. This knot vector produces what is

called a ggifggg bggi; [12]. which leads to Uniform

Rational B-splines (URBS). This knot vector can also be

extended to form :n 22222222 2222222 2222 222222-

The use of uniform or extended uniform knot vectors

has some side effects. In particular. the parameterization

of the curve is 32; uniform with respect to arc length

along the curve. and local refinement is difficult.

However. a uniform knot vector makes evaluation of the

basis functions easier because equations 2.1.2 and 2.1.3

can be used directly. Thus an equation for each subsegment

can be derived without a specific value of the parametric

variable.

The nonuniform parameterization which often

accompanies a uniform knot vector is undesirable in some

applications such as numerically controlled machining. in

which it is desirable to have a constant step size of the

parametric variable produce a constant step size along the

curve. However. nonuniform parameterization does not

26

affect the evaluation of surface properties for the

purposes of shading.

2.3.2 Enhanced Uniform Knot Vectors

To restrict the knot vector to be uniform or extended

uniform for the purposes of a CAD/CAM modeler would

over-restrict the class of B-splines that could be used.

For example. this would not allow repeated interior knots.

which can be used to introduce slope discontinuities

between the subsegments.

Ihile slope discontinuities can instead be introduced

by repeating control points in the surface definition. this

type of discontinuity has the undesirable preperty of a

zero length normal. To allow for s10pe discontinuity and

also retain the necessary surface properties. knots must be

allowed to be repeated. The effect of repeating knots is

to relax the condition on continuity of derivatives at the

ends of subsegments -- one less derivative for each time a

knot is repeated. However. the surface properties are

defined. Repeating knots also makes some subsegments of

the curve have zero length. A knot vector with repeated

interior knots produces what is called a gpbgplipg bggig

[12].

27

In order to include a more general class of B-spline.

the uniform condition ‘i+l - xi + 1, is relaxed to also

4110' 81+1 - 1i- If 3i+1 is equal to xi then the knot is

said to be repeated. It can be repeated up to k-l times.

where k is the order of the curve. This type of knot

vector '111 be called an 22222222 2222222 2222 122222 vhich

will produce 22222222 2222222 22222222 222222222 (E0338)-

After a review of rational B-spline curves and

surfaces. restrictions that can be applied to the knot

vector were discussed. The uniform condition of the

extended uniform knot vector was relaxed to introduce the

enhanced uniform knot vector. The next chapter will

discuss the enhanced uniform knot vector and present the

CURBS algorithm for calculating with it.

CHAPTER III

CURBS ALGORITHM

3.0 ENHANCED UNIFORM RATIONAL B-SPLINE

The last chapter defined some restrictions on the knot

vector. A class of Rational B-spline. the enhanced

uniform. was introduced. This chapter describes the

advantages of using EURBS and an algorithm for calculating

with them. Finally. it presents the limitations of using

this class of B-spline. as Opposed to the more general

NURBS.

28

29

3.1 ADVANTAGES OF UNIFORM RNOT VECTOR

In most engineering applications. surfaces free of

ripples are desired. The higher the order of the curve

used. the more difficult it is to eliminate ripples. To

produce a rippleless surface. the order of the curves used

is usually restricted to six or less. Therefore. if a

uniform or enhanced uniform knot spacing is used. then

equations 2.1.2 and 2.1.3 can be used to calculate the

basis functions with acceptable accuracy. This allows a

simple equation of degree k-l. for each of the basis

functions. to be formulated before a specific surface is to

be evaluated. An example of this formulation is given in

Appendix B. There are. however. an infinite number of

possible knot vectors. resulting in an infinite number of

blending functions. Next it will be shown how to translate

the parametric value to reduce the number of possible

blending functions to a finite tractable set. for any given

order k of B-spline.

3.1.1 Knot Vector Translations

Making the EURBS restriction to the knot vector allows

for the derivation of all possible blending functions of a

given order. In order to do this derivation. the

30

parametric variable is restricted to values between zero

and one for each subsegment. This is done by translating

the knot vector for each non-zero length subsegment so that

th. 1th knot is zero and the i+1 knot is one. Repeated

knots form zero-length subsegments which are of no

interest. Therefore the transformation is possible for any

non-zero subsegment. For example. the knot vector
”
H

I
I

6
0

H
O

N
O

9
5
0

for the third subsegment. Appendix C shows that this is a

linear mapping of the parametric variable and has no effect

on the values of the resulting blending functions for any

given value of the parametric variable.

31

3.1.2 Enhanced Uniform Knot Vector Compression

For a given subsegment of a curve. only a finite

portion of the knot vector is actually used in the

calculation of the non-zero basis functions for that

subsegment. If the recursion of equation 2.1.3 is

followed. the portion of the knot vector which affects the

blending functions can be determined. If k is the order of

the curve. the effective kggt vector for a subsegment

reaches k-2 knots back from the starting knot and k-l knots

forward of the starting knot. for a total of 2-(k-1) knots.

In the above example. if k=4 the effective knot vector

would have a length of 2-(4-1) or six. For the first

subsegment. it would be

X. = [o o o 1 2 2].

For the second subsegment. it would be

X0 = [O O 1 2 2 3]

which could be shifted to

x; 2 {-1 -1 o 1 1 2].

For the third it would be

32

1,-[122344]

which could be shifted to

x;=[-1oo122].

Using parameter translation and the finite length of

the the effective knot vector. the set of possible

effective knot vectors has been reduced to a finite set.

given a bound on the order of the spline. The number of

possible knot vectors in the set is determined by the order

k of the curve and is 2(2'k-4). For k-4. there are

2(2‘4-4) or sixteen possible knot vectors for a subsegment.

For k=5. there are sixty-four possible knot vectors.

Each of the 2(2°k-4) knot vectors yields a unique set

of blending functions. In order to determine easily which

set of blending functions should be used for a given

subsegment. each subsegment is given a label or pointer to

the correct set of blending functions. The label is

determined by compressing the effective knot vector into a

binary-encoded label.

33

3.1.3 Knot Vector Compression.Algorithm

The effective knot vector is compressed into a unique

binary-encoded label by the gggpggsgigg glggrithg given in

Appendix D. The algorithm compares successive entries of

the effective knot vector to define a sequence of Zak-4

bits. which are reversed and stored as an integer label.

This label will be referred to as a gpbggggggt label.

Since a unique set of effective knot vectors for a given

order has been identified. a set of blending functions for

each unique knot vector can be formulated. as in Appendix

Now that all the enhanced uniform blending functions

have been identified and labeled we are ready to present

the CURBS algorithm for calculating with rational

B-splines.

3.2 THE EVALUATION ALGORITHM

This section presents an algorithm we call the

Converted to Uniform Rational B-Splines (CURBS) algorithm

for evaluation of enhanced uniform rational B-splines. It

assumes that all the blending functions have been

preformulated and stored in matrix fashion according to the

34

labels determined from the effective knot vector. Note

that the formulation of the blending functions is done only

once and the results are stored for later use. The

algorithm as stated below also assumes that the subsegment

labels are calculated or read in with the control points

that define the surface.

The algorithm requires the following information to be

given :

1) Control points for the subsegment : CP' vector

2) Subsegment label : LAB

3) Order of the curve : K

4) A strictly rational indicator : RATNOT

5) Parametric value (between 0.0 and 1.0) : T

The following informal explanation preceding the algorithm

specification may assist the reader in understanding the

algorithm.

Step 1: Use LAB and K to retrieve the proper

set of blending functions : [MATK]

Step 2: Construct the t vector :

{t vector] ' [t"1.t"2.....t.1]

Step 3: Evaluate blending functions

35

[Bf] ' [t vector] 0 [MATK]

Step 4: Calculate homogeneous point

up} - {3:} - {cp'}

Step 5: Calculate three-dimensional point if

strictly rational

[P] ' [VP] / I

For K-4 the CURBS algorithm can be coded as follows:

(the coordinates of the control point CP' for a subsegment

are contained in the PK. PT. P2. and PI vectors).

T2 - T‘T

T3 ' T‘T2

BF(1) ' T3’MAT4(1.1.LAB) + T2‘MAT4(2.1.LAB)

+ T‘MAT4(3.1.LAB) + MAT4(4.1.LAB)

T3‘MAT4(1.2.LAB) + T29MAT4(2.2.LAB)BF(2)

+ T‘MAT4(3.2.LAB) + MAT4(4.2.LAB)

BF(3) = T3‘MAT4(1.3.LAB) + T2'MAT4(2.3.LAB)

+ T‘MAT4(3.3.LAB) + MAT4(4.3.LAB)

BF(4) ' T3‘MAT4(1.4.LAB)

IX ' BF(1)‘PX(1) + BF(2)‘PX(2)

+ BF(3)‘PX(3) + BF(4)‘PX(4)

MY = BF(1)‘PY(1) + BF(2)‘PY(2)

+ BF(3)‘PY(3) + BF(4)‘PY(4)

36

'2 I BF(1)‘PZ(1) + BF(2)‘PZ(2)

+ BF(3)‘PZ(3) + BF(4)‘PZ(4)

IF(RATNOT) THEN

I I BF(1)‘P'(1) + BF(2)‘PW(2)

+ BF(3)‘PU(3) + BF(4)‘PU(4)

X I 'X/'

Y I III!

2 I 'Z/'

X I 'X

Y I II

Z I '2

END IF

If derivatives of the point with respect to the

parametric variable are required. the algorithm is

modified. The appropriate derivative of the t vector is

taken and used in step 3 to evaluate an alternate set of

blending functions. This set of blending function

derivatives is used in step 4. If the surface is strictly

rational. then the chain rule must be employed to replace

step 5 to calculate the derivative. For example. to

calculate dX/dt it would be necessary to use the following

equation:

37

dX/dt - dIK/dt ? s - 7x . dI/dt e ('2)

These modifications are shown in the following piece of

code.

T2 I TIT

THREET2 I 3‘T2

T'OT I 2‘T

DBF(1) I THREET2‘MAT4(1.1.LAB) + T‘OT‘MAT4(2.1.LAB)

+ IAT4(3.1.LAB)

DBF(2) THREET2‘MAT4(1.2.LAB) + T'OT‘MAT4(2.2.LAB)

..
.

MAT4(3.2.LAB)

DBF(3) I THREET2‘MAT4(1.3.LAB) + T'OT‘MAT4(2.3.LAB)

+ MAT4(3.3.LAB)

DBF(4) I THREET2‘MAT4t1.4.LAB)

IF(RATNOT) THEN

T3 I T‘T2

BF(I) I T3‘MAT4(1.1.LAB) + T2‘MAT4(2.1.LAB)

+ T‘MAT4(3.1.LAB) + MAT4(4.1.LAB)

BF(2) TSIMAT4(1.2.LAB) + T2IMAT4(2.2.LAB)

+ T'MAT4(3.2.LAB) + MAT4(4.2.LAB)

BF(3) T3‘MAT4(1.3.LAB) + T20MAT4(2.3.LAB)

+ T‘MAT4(3.3.LAB) + MAT4(4.3.LAB)

BF(4) I T3IMAT4(1.4.LAB)

IX I BF(I)‘PX(1) + BF(2)‘PX(2)

+ BF(3)‘PX(3) + BF(4)‘PX(4)

38

NY I BF(I)‘PI(1) BF(2)‘PI(2)

+ BF(3)‘PY(3) BF(4)‘PY(4)

'Z I BF(1)9PZ(1) BF(2)‘PZ(2)

+ BF(3)‘PZ(3) BF(4)‘PZ(4)

I I BF(l)‘P'(1) BF(2)‘PI(2)

+ BF(3)‘P'(3) BF(4)‘PI(4)

END IF

D'XDT I DBF(1)‘PX(1) + DBF(2)‘PX(2)

+ DBF(3)‘PX(3) + DBF(4)‘PX(4)

DIYDT I DBF(1)‘PI(1) + DBF(2)‘PY(2)

+ DBF(3)‘PI(3) + DBF(4)‘PY(4)

+D'ZDT I DBF(1)‘PZ(1) DBF(2)‘PZ(2)

..
.

+ DBF(3)‘PZ(3) DBF(4)‘PZ(4)

IF(RATNOT) THEN

D'DT I DBF(1)‘PI(1) + DBF(2)‘PI(2)

+ DBF(3)‘PI(3) + DBF(4)‘P'(4)

'2 I "I

DXDT I D'XDT/I - 'X‘D'DT/(IZ)

DYDT I D'YDT/U - 'I'DIDT/(VZ)

DZDT I D'ZDTI' - 'Z‘D'DT/(U2)

ELSE

DXDT I DMXDT

DYDT I D'YDT

DZDT I D'ZDT

END IF

39

The above algorithms are given for a curve. To

evaluate surface points the CP' vector is replaced by a CP'

matrix which is post-multiplied by the second set of

blending functions corresponding to the other parametric

variable.

Unlike the Cox-deBoor algorithm. this algorithm does

not rederive the blending functions as they are being

evaluated for a surface point and/or derivative. However.

the application of algorithm is restricted to rational

B-splines defined with enhanced uniform knot vectors.

3.3 LIMITATIONS OF ENHANCED UNIFORM KNOT VECTOR

Having the formulas for all of the blending functions

predefined in the program appears to be more efficient for

evaluating B-splines and derivatives than building and

evaluating the blending functions for each point. However.

the use of EURBS appears to limit the B-splines which can

be described to a subset of the B-splines with a more

general nonuniform knot vector. But Chapter Five presents

an algorithm to insert knots into a knot vector so that any

knot vector can be transformed to the enhanced uniform

format. removing the apparent limitation.

40

Ie have discussed the advantages of a uniform knot

vector. and reduced the infinite set of enhanced uniform

knot vectors to a finite set by knot vector translation.

The effective knot vector was defined and then compressed

into a subsegment label. An evaluation algorithm was then

presented. In the next chapter we shall discuss the

performance differences between the above CURBS algorithm

and the Cox-deBoor algorithm.

CHAPTER IV

CURBS ALGORITHM ANALYSIS

4.0 ALGORITHM COMPARISON

The last chapter presented the CURBS algorithm for

calculating with EURBS. This algorithm relies on the use

of preformulated blending function matrices and the ability

to determine which matrix should be used for a given

subsegment of the curve. In this chapter the CURBS

algorithm will be compared to the well-known Cox-deBoor

algorithm for calculating with B-splines. The comparison

is made by classifying each algorithm according to order of

41

42

complexity and then according to the number of machine

operations required.

4.1 COX-DEBOOR ALGORITHM

Cox [11] and deBoor [10] separately developed the same

numerically stable algorithm for computing the basis

functions for B-splines. This algorithm is the standard of

today's B-spline algorithms and is in wide use in many

CAD/CAM systems. For the purposes of analysis the

algorithm as presented by deBoor [10] is reproduced below:

Set N(l.1) I l

for s I 1 k-l. do:

set DP(s) - ti+s-t. Dm(s) - t-ti+1-s.

set N(1.s+1) I O:

for r I 1 s. do:

. set M I N(r.s) I (DP(r)+DM(s+l-r)).

. : set N(r.s+1) I N(r.s+1) + DP(r)‘M.

.............set N(r+1.s+1) I DM(s+l-r)IM.

where

k is the order of the blending functions.

43

The columns of N are used to evaluate the B-spline and/or

its derivatives as shown below.

The B-spline is then evaluated by

2-1

P(t) I 2 cpi - Ni'k(t) 4.1.1

i-o

Ihere

Ni'k 1. the 2th column of N in

the above algorithm

To evaluate derivatives. the appropriate column of N would

be used. However. N is a triangular matrix. so a set of

derivative control points must first be calculated to be

used with a specific column of N. The general formula

given by deBoor for this evaluation is

44

2-1-1

F(3)(t) a (2-1) ... (k-j) E A15) . Ni.k_j(t) 4.1.2

i=0

Ibere

j is the desired derivative 0 S j < k

Ni,k-j is the (k-j)th column of N

(0) .A1 cpi

All) - (Ali-1’ - 11231)) / (ti+k_j - t.)

4.2 BIG-OH ANALYSIS

One way to classify an algorithm is the big-oh [14]

method. The big-oh analysis determines the order of

complexity of an algorithm. This analysis performed on the

above Cox-deBoor algorithm results in a classification of

12 or 0122). The same analysis of the canes algorithm

given in the previous chapter produces O(k).

Big-oh analysis indicates that the computation time

using the CURBS algorithm increases linearly with k. It

also indicates that computation time using the Cox-deBoor

algorithm increases as k2. This savings of an order of

magnitude becomes significant when k becomes large. For

45

Our application. the size Of k is usually six or less. so

big-Oh analysis is not a very complete measure Of the

relative performance Of the algorithms. It does provides

an indication of the relative behavior for cases in which k

is required to be large (>>6). Ihile the size of k is

usually small. the number Of points and/or derivatives to

be calculated per picture is usually very large. Therefore

the potential for considerable time savings is good if a

more detailed operation analysis indicates a significant

difference in relative efficiency for the usual range of

values for k.

4.2.1 Operation Analysis

'hen the big-Oh analysis is not sufficient to capture

the differences between two algorithms. a more detailed

analysis is needed to determine performance. A second way

to classify algorithms is to determine the number Of

machine Operations required. The following tables give the

number Of Operations required by each algorithm for kI3 and

kI5. where an Operation is defined as an addition.

subtraction. multiplication. division. or assignment of

value. The tables present the number Of operations

required to evaluate a point (nIO). or the 1th derivative.

or evaluate the point and n derivatives.

46

Operations for Operations for

the jth derivative point and n derivatives

l 1-3 I 1-2 I 1-1 I n-o l n-l l n-2 l n-s l

l l l l l_ l l _ l

l l l l l l l l

2-3 I 1 l 44 l 76 l 76 l 117 l 160 l 161 l

l l l l l l l l

l l I l l l l l

k-s : 146 : 131 l 222 l 212 l 295 l 409 l 529 I

Table 4.2.1 : Analysis of the Operations for the

Cox-deBoor Algorithm

Operations for Operations for

the jth derivative point and n derivative

S

I jI3 I jI2 I jIl I nIO I nI1 I nI2 I nI3 I

l _l l l l l l l

l l l l l l l l

1-3 l 9 l 9 l 16 l 20 I 36 l 45 l 54 l

l l l- _l l 2| l l

l l l l l l l |

k-s : 30 l 42 : 56 l 54 l 106 i 146 l l

Table 4.2.2 : Analysis of the Operations for the

CURBS Algorithm

This analysis was performed for the evaluation of a

single coordinate of a B-spline curve and/or the

derivatives of a single coordinate. The implied integer

multiplication and addition for matrix subscript indexing

are not included. To evaluate other coordinates only

47

requires that the evaluated blending functions be used on

the remaining coordinates of the control points. Thus the

other coordinates would be quicker to evaluate once the

first one is done. Table 4.2.3 contains the Operations

required by each algorithm to evaluate three coordinates

and three coordinates with derivatives.

i=3 l i=5

l

l

I nIO I nI1 I nI2 I nIO I nIl I nI2 I

l l |_ l l l l

l l l l l l l

c-n l 104 l 227 l 356 l 280 l 529 I 871 l

______ l l_ l l l l =l

l l I l l I l

cunns : 32 l 60 I 31 l 74 : 146 i 206 :

 I I I l I I l l l I

Table 4.2.3 : Operations Analysis for Three Coordinates

This table indicates that the Cox-deBoor algorithm

requires more effort to evaluate the additional

derivatives. This is because the Cox-deBoor algorithm must

calculate the Aij) points for each coordinate for each

derivative to be used with the columns of the N matrix.

The CURBS algorithm always uses the same set Of control

points for all evaluations.

48

For a surface. the algorithms would have to be used a

second time on the second parametric variable and the

resulting evaluated blending functions used on a matrix of

control points.

The above tables show that the CURBS algorithm uses

fewer machine Operations than Cox-deBoor for B-spline

evaluations. Vhile the actual time difference for using

each algorithm will vary from processor to processor. the

reduction of Operations required does imply an approximate

reduction in computation time.

The CURBS algorithm does require additional storage

for the precalculated matrices. For kI4 the additional

storage required is sixteen 4-by-4 matrices. For kI6 the

storage required is 256 6-by-6 matrices. The additional

storage is a minor factor with the low cost of computer

memory and the availability of virtual memory in computers.

The CURBS algorithm has been shown to produce a

three-to-one reduction in machine Operations over using the

Cox-deBoor algorithm. The CURBS algorithm has no numerical

stability problems. It does. however. require that the

blending function matrices be constructed in a numerically

stable manner. The numerical problems of using equations

2.1.2 and 2.1.3 for construction of the the blending

49

functions presented in [10] and [11] are avoided because of

the uniform nature of the knot vector being used and

because the order of the curves involved is not large.

The Cox-deBoor algorithm has been reviewed and a

big-Oh analysis performed comparing it to the CURBS

algorithm. The big-Oh analysis indicated a major

complexity difference between the two algorithms. but was

inconclusive as to the importance of the difference in

commonly encountered situations. A more detailed Operation

analysis was performed which indicated that the CURBS

algorithm would give a three-to-one Operation savings over

Cox-deBoor. The Only limiting factor to the CURBS

algorithm is that the knot vector must be enhanced uniform.

which limits its application to a subset Of the NURBS. In

the next chapter. we will overcome this limitation by

develOping a transformation to transform an arbitrary NURBS

surface definition to an equivalent EURBS surface.

CHAPTER V

CONVERSION ALGORITHM

5.0 NURBS-TO-EURBS CONVERSION

In the preceding chapter the CURBS algorithm was shown

to have a significant performance advantage over the

Cox-deBoor algorithm. However. it was also noted that the

surface must be defined with an EURBS knot vector which is

a subset of the NURBS knot vector. This appears to be

significant in view of the fact that a uniform knot vector

does not necessarily produce a curve with uniform arc

length parameterization. a desirable attribute for

50

51

applications such as generation of tool paths for

numerically controlled machines. In order to produce a

curve with uniform arc length parameterization. the knot

spacing must reflect the relative arc lengths of the

subsegments. which implies a nonuniform knot vector.

The above limitations on the use Of the algorithm can

be eliminated by converting surface representations based

on nonuniform knot vectors into exactly equivalent surfaces

based on our enhanced uniform knot vector. This chapter

presents the design of an algorithm to do the

NURBS-to-EURBS conversion. Discussion of the initial

attempts to rescale without expanding the knot vector are

followed by the exact reformulation of EURBS based on

NURBS. After presentation of the algorithm. the additional

storage required to represent the surface in the EURBS form

is discussed.

5.1 INITIAL EXPLORATION OF THE CONVERSION PROBLEM

Two approaches to converting NURBS to EURBS were tried

before a suitable method was derived. These initial

approaches were tried to determine whether a conversion was

possible which would use the same number Of control points

as the original NURBS surface. The next section presents a

52

discussion of one initial approach and includes examples

showing the shortcomings.

5.1.1 Knot Vector Rescaling

The first approach explored was the use of an enhanced

uniform knot vector with the same number Of entries as the

nonuniform one to be replaced. This implies that both

definitions use the same number of control points (although

relocated) in the surface definition. This method results

in a rescaling of the parametric variable for each non-zero

tnbsos-ont from A I ‘1+1 - xi to A = 1. thus changing to

EURBS-based blending functions. Unfortunately. this method

is limited in the type Of knot vector to which it can be

successfully applied. This is shown in the following

proof.

Define a nonuniform knot vector

x =[x.811eeeelxn]

corresponding to the parametric variable

t. Let Y be an enhanced uniform knot

vector

Y = [Y..y1.....yn]

corresponding to the parametric variable

linear

53

s. The following relationship holds

between s and t for the 1th subsegment:

31' (t .. xj)/(xj+1 - x1) ‘I’ (j - I).

If continuity of the first derivative is

assumed between the 1th and (j+1)th

subsegments. then:

'j I (t - xj)/(xj+1 - xi) + (j - 1)

'j+1 ‘ (t ‘ xfill/(814.2 ' 1j+1) + j

Equating these relations at the junction

Of the two subsegments. t I xj+1 yioldg

the relation that must exist for the

knots.

(3j+1 - xj) a (Ij+2 - 1j+1)

Th0 ‘j entries can take on values such

thlt (13+1 - xj) I (21+; - xj+1). This

means that dsj # dgj+1 gt the

junction. which is a contradiction.

Thus this method would not be able to

yield an equivalent enhanced uniform

representation for all nonuniform knot

vectors.

Another way to view this rescaling is to think of it

mapping from subsegments of t-space to a new

54

s-space. Each non-zero distance A between knots in the

t-space is mapped to A - l in the s-space. Because the A's

in the t-space do not have to be constant. the napping to

s-space is. in general nonlinear.

Thus to use this form of rescaling. the knots in each

effective knot vector must have a constant or zero spacing.

which will insure the linear napping. An effective knot

vector with a constant or zero knot spacing will be said to

htvo the assesses £215; arersrsx-

5.1.1.1 An Exanple 0f Approximate Knot Vector Rescaling

The following figures will demonstrate the above

rescaling. Figure 5.1.1 contrasts the use of a nonuniform

knot vector and a uniform knot vector for the same set of

control points. (Appendix E presents the data for these

figures). Figures 5.1.2 and 5.1.3 show the results of

solving for new control points to try to fit the NURBS

CIIVO.

55

Y

C

o

o

r

q

I

n

o

t

e

“'2‘ <>- — - - Uniform

- Cl Nonuniform

H I I I I I I
. IUITIVUIUIIIIIIII'UI1UTTITTUI|

0.0 0.5 1.0 1.5 2.0 2.5 3..

X Coordinate

Figure 5.1.1 : Uniform vs Nonuniform Curves

The control points for Figure 5.1.2 were found by requiring

the curve to pass through the ends of each segment and

match the slapes on the ends.

56

lo'—— 0 D

“08“—

Y -

C

0.06--

o

r -

9

A'o‘——

o

i 5 J

e 000

“'2‘ O- - - - Uniform

~ D——- Nonuniform

0" VIIIIIIIIITITIIFTTTIIIIFI’UFUI:

0.0 0.5 1.0 1.5 2.0 2.5 3.0

X Coordinate

Figure 5.1.2 : Uniform Fit Using End Slepes

The control points for Figure 5.1.3 were found by fitting

the first segment and then requiring the curve to pass

through the end points of the remaining segments. By

design there are no discontinuities. but the fitted curves

do not represent the original definition.

57

Y

C

o

o

r

a
I

n

a

t

e

LB. 0- - - - Uniform 0

[3-——-Nonuniiorm

0" TVIT:IIUI:UIIU:Irrrgrll'lliltr{

0.0 0.5 1.0 1.5 2.0 2.5 3.0

X Coordinate

Figure 5.1.3 : Uniform Fit Using First Subsegment

In Figure 5.1.4 we have used ordinary least squares

[16] to try to fit the nonuniform data to a model using the

blending functions based on the enhanced uniform knot

vector. The plot is the uniform curve that fits the

original nonuniform curve with the least amount of error

between input data points and corresponding points on the

uniform curve.

58

L0 c1<> n

-
‘0

Y

C

o

a

r

a
I

n

a

1

e D o

0.2- O- — - - Uniform

Cl— Nonuniform

0" UIUT I'll [Uifi'll‘ IIIUIIIIUI

mm 0J5 1J0 L5 am 2:5 2%!

X Coordinate

Figure 5.1.4 : Uniform Fit Using Least Squares

5.2 EXACT NURBS-TOIBURBS CONVERSION

The following conversion technique was derived after

the initial explorations described above showed the

necessity for additional knots and control points. 'hile

it may produce a surface with more control points than the

original surface. it is an exact conversion and the

59

resulting surface can take advantage of all the EURBS

properties.

5.2.1 Expanding The Knot Vector

The method described in section 5.1.1 would work if

each effective knot vector had the constant delta prOperty.

In order to obtain the constant delta property. new knots

are inserted or repeated to expand the new EURBS knot

vector. This implies that additional control points will

also be inserted into the surface definition. Only

zero-length subsegments are added. so the total number of

non-zero subsegments remains the sane.

The insertion is done such that the resulting

effective knot vector for each subsegment has the constant

delta pr0perty. This forces the mapping or rescaling of

each subsegment to be linear. The additional enhanced

uniform control points give the flexibility needed to

match the NURBS curve exactly.

The result of this method is shown in Figure 5.2.1.

The resulting EURBS curve is identical to the NURBS curve.

and of course retains the same level of continuity between

subsegments. That is. all continuous derivatives of the

60

nonuniform spline remain continuous in the uniform

representation. The algorithm for expanding the knot

vector and finding the new set of control points is given

below.

Y

C

o

o

r

q
I

n

a

1

e

“'2' O- - - - Uniform

[3-———-Nonuniform

'00 [TlerIlrllllflrrflllrlirllliil

0.0 0.5 1.0 1.5 2.0 2.5 3.0

X Coordinate

Figure 5.2.1 : Uniform Fit By [not Vector Expansion

61

5.2.2 Algorithm for Conversion By Knot Vector Expansion

(NURBS-To-EUBBS Algorithm)

To fit a unique curve of a given order k. k pieces of

information must be given. The information can take the

form of k points along the curve or a point and k-l

derivatives or other such combinations. In this algorithm.

the point at the end of the subsegment is used along with

successive derivatives as necessary. The following

outlines the steps involved in the conversion, and the code

for this algorithm is given in Appendix F.

Step 1 : C0py the NURBS knot vector into

the new EURBS knot vector.

Step 2 : For each successive effective knot

vector in the EURBS knot vector Do:

Ihile not constant delta property Do:

Duplicate the last knot with constant

delta property.

End 'hile

Label the subsegment per section 3.1.3.

End For.

62

Step 3 : For each successive subsegment in

the new EURBS knot vector Do:

Use label to determine the number of

undetermined control points.

Evaluate the end point and necessary

derivatives of the NURBS curve for

this subsegment.

Determine the unknown EURBS control

points for this subsegment.

End For.

This algorithm is given for a curve. To use it for a

surface definition. the algorithm is first used on each

column of the nonuniform control point matrix with the

corresponding knot vector. The resulting expanded columns

are used to form an intermediate matrix of control points

and the algorithm is then used on the rows of this matrix

with the other knot vector. The resulting expanded rows

contain the uniform control points that define the

mathematically equivalent surface.

63

5.2.3 Storage Considerations

To use the CURBS algorithm. a submatrix of the control

point matrix must be retrieved. The retrieval time will be

determined by the size of the submatrix and not the size of

the mother matrix. The retrieval of the control points was

not included in the operation analysis done because it was

assumed to be the same for both algorithms. The additional

control points needed for the EURBS definition will have no

effect on the performance of the CURBS algorithm. However.

there is a possibility of a slight increase in the paging

time in a virtual memory environment because of the larger

number of control points used is $252.

The NURBS-to-EUBBS conversion will represent any

surface originally based on a nonuniform knot vector with

an equivalent surface based on an enhanced uniform knot

vector. The price for doing this is that there will be

more control points to store for the enhanced uniform

representation. The amount of additional storage depends

how many new control points are created. An additional k-l

control points will be inserted for each subsegment which

does not initially possess the constant delta prOperty.

The number of non-zero length subsegments has not

increased. and since the knot vector is stored as a set of

labels. for non-zero length subsegments in EURBS form.

64

there is no additional storage required for the longer knot

vector. The extra virtual memory necessary to store the

surface in this form is far outweighed by the time savings

resulting from being able to calculate points and

derivatives based on prestored blending functions.

Notice that the introduction of new zero-length

subsegments does not increase the number of calculations

required since no evaluations are done in these segments.

and the cost of using the new control points is already

included in the evaluation of the CURBS algorithm. Thus.

the CURBS algorithm offers a fairly direct tradeoff of

storage for computational time. The process of

transforming a NURBS surface to an equivalent EURBS surface

is done only once. after which the EURBS surface may be

manipulated quickly and efficiently by the CURBS algorithm.

The CURBS and NURBS-to-EURBS algorithms which have

been develOped can be used to evaluate any rational

B-spline curve or surface. The implementation of these

algorithms in a general-purpose surface assessment package

requires develOping the routines for the necessary

calculations. The next chapter discusses some numerical

considerations of the implementation.

CHAPTER VI

INPLENENTATION CONSIDERATIONS

6.0 NUNERICAL CONSIDERATIONS

In the preceding chapters. algorithms have been

develOped for calculating with rational B-splines. If

these algorithms are to be used on a computer. they must be

implemented using floating point arithmetic. Floating

point arithmetic with finite word lengths does not always

yield accurate or even remotely usable results.

65

66

In this chapter some numerical considerations for

implementing these algorithms on a computer will be

discussed and some examples given.

lhen scan line techniques [3] [4] [5] are used. the

patch coordinates are transformed to screen coordinates.

Many calculations are done in screen space. which we define

with X horizontal. Y vertical. and 2 normal to the plane of

the screen. Each pixel is one unit wide in X and one unit

high in I. This is illustrated in Figure 6.0.1. The

coordinate transformation from world space to screen space

can present some problems because of the size of the window

assigned to the screen; we will discuss this in terms of

the 533; £55525. If the zoom factor is very small. the

entire patch may be smaller than one pixel; if the zoom

factor is very large. the smallest change that can be made

to a parametric variable may represent a difference of more

than one pixel.

67

2:1:ersec:ion

Cave x

Viewing Screen

2

Figure 6.0.1 : Screen Space Coordinate System

6.1 BUILDING OF THE BLENDING FUNCTION MATRICES

The blending functions are used for the evaluation of

the surface and its various properties and for the

transformation from NURBS to EURBS as well. 'hen building

the matrices, care must be taken to avoid introducing

numerical errors which change the surface definitions

68

during the transformation. A surface could also be

inadvertently altered by using blending functions different

from those used by the original designer.

The uniformity of the knot vector yields a denominator

which is common to each of the blending function matrices

of a given order. 'hen the denominator is factored out of

the matrix. the entries take an integer values. The matrix

can thus be stored as integer values along with the

denominator. This will avoids the roundoff or truncation

which occurs if the matrix is stored as real numbers.

6.2 EVALUATION OF TEE COX-DEBOOR AND CURBS ALGORITHMS

Roundoff error is usually thought of as a problem when

the number of Operations becomes large. such as in

inverting or reducing a large matrix. However. the

examples given later show that roundoff error has a

significant effect on the evaluated values of even

low-order blending functions.

The algorithm for the transformation from NURBS to

EURBS requires that the NURBS surface and its derivatives

and the blending functions for the EURBS surface be

evaluated at specific points. To ensure that the resulting

69

EURBS surface is identical to the NURBS surface within the

full precision available. these evaluations should be done

as accurately as possible.

6.3 SIIULTANEOUS EQUATION SOLVER

The transformation algorithm also requires the

solution of a set of linear equations. The number of

equations to be solved depends on the number of control

points to be found. If only one control point needs to be

found for a subsegment. then only one equation is

generated. But if multiple control points are to be found.

then a stable means must be used to solve the set of linear

equations for the control points. Even for the relatively

small number of equations to be solved. matrix inversion is

not a good means to solve the system of equations because

of the roundoff error which occurs and because of the

problems which can arise if the matrix is ill-conditioned.

There are many good numerical analysis textbooks such

as [17] and [18] which deal with the subject in depth. An

acceptable procedure is to use row operations on the

augmented matrix to reduce the matrix to triangular form so

that back substitution can be used to find the control

points.

70

If increased precision is desired. an iterative method or

iterative improvement can be used.

6.4 EXAIPLES OF EVALUATION PROBLEMS

This section presents three examples of problems which

occurred when implementing the CURBS algorithm. The

central problem in each case was the evaluation of the

blending functions. For each example. the order of the

surface was 3 or 4 and the evaluation was done on a

thirty-two-bit computer.

6.4.1 Evaluation of Normal Components

To use scan-line techniques [3] [4] [5]. it is

necessary to evaluate the silhouette edges as well as the

physical edges of the patch. The silhouette edge of a

patch is made up of points on the patch where the 2

component of the normal is zero. The evaluations are done

on these edges at points where the edge crosses a scan

line. This is called walking the edge. Valking the

physical edges from scan line to scan line is relatively

easy to do.

71

To walk the silhouette edge. a bi-variate Newton-Raphson

method is used to iterate to each scan line that is crossed

by the edge.

The result of the Newton-Raphson calculation is a

search direction and an approximation of the distance to go

in that direction. Figure 6.4.1 is a plot of the 2

component of the normal as a function of the distance along

the search direction. The basis function evaluation was

done in single precision (24-bit mantissa). Depending on

the error bounds used for zero. the point could be anywhere

along this search direction. Because of the noisy nature

of the 2 component. convergence is a problem. Figure 6.4.2

is a plot of the 2 component along the same search

direction with the evaluation of the basis function done in

double precision. In this case. the method converges in

three iterations.

~
a
a
a
o
o
a
o
o

N
q
«
O

—
0
3
I
O
Z

72

x10'2

0.4

 -n.4 [III I I

I l ' l ' r

0.0 0.2 0.4 0.6 0.8

Search Direction

Figure 6.4.1 : Single Precision Evaluation

73

x10'3

0.966
J

l

53 I I

l
l

l

"
3
0
3
0
'
0
3
0
0

N

I

53 i?
l

l
l

l
l

—
O
B
H
O
Z

«
.
0

I
é

8 L
0

 4.970 . } . ' 1 'I T I I I

EM IL? 0u4 0J5 0J3 L0

Search Direction

Figure 6.4.2 : Double Precision Evaluation

6.4.2 Normalization Of The Normal

Calculating the 2 component of the normal alone

requires less effort than computing all three components of

the normal. However. this can cause problems with defining

what is considered to be zero for the given component. In

some cases the normal is changing so rapidly that it is

74

difficult to find a small value of the unnormalixed 2

component. This is shown in Figure 6.4.3.

“Nggm Ems:

Q

/

l
l

I
J

s 2‘
: I

J
l

/
/
/
/
J
/
V
/
/
/
/

/
/
/
/
/
/
/
/
/

 7
/
/
/
/
/
/
/
/
/

/

/
/
/
/
/
/
/
/
/
/
/

/

”
s
o
a
o
v
a
o
o

N

S 9 S

1
l

l

—
0
3
I
O
Z

-
O

é t
2 1 I

-
W
/
/
/
/
/
/
/
/
/
/

 ‘n-azllt illllillllilll

II 10 15 20

Iteration Step

Figure 6.4.3 : Unnormalized 2 Component Calculation

If all three components of the normal are calculated

and the components normalized so the normal has length one.

then what is considered to be zero is defined with respect

to the value one. In this case. finding the zero point is

not a problem, as shown in Figure 6.4.4. In this case the

absolute value of the 2 component is between zero and one.

75

Using this method. acceptable limits about zero can be

defined.

010'2

0.2
1
4
1
1

n
a
o
a
c
o
a
o
n

N

/
/
/
/
/
'
/
[
/
/
/

 0A

/
/
/
/

 /
/
/
/
/
/
/
/
/
/
/
/
/

—
0
3
I
O
Z

«
O

5'
9

l I

Iteration Step

Figure 6.4.4 : Normalized 2 Component Calculation

6.4.3 Face To Face

The 2 component of the normal is also used to decide

which face a point is on. If the 2 component is positive.

then the point is on the plus face of the surface. If it

76

is negative. then the point is on the minus face.

Silhouette edges are then the edges of a face. Even when

the 2 component is normalized. if the blending functions

are not calculated in double precision, the errors which

occur result in misleading results. as shown in the Table

0.3129074EI03

0.7580551EI03-O.6958499EI05

6.4.1.

: S : T I Single Precision : Double Precision I

I I I

I 0.25 I 0.25 I0.5982137EI04 I 0.241537IEI02

I I_ _ ' I ==__ __

I I I

I 0.00 l 0.25 0.00000000+00 l

I I

I I

I I

I I

— _ I

Table 6.4.1 : Example of Calculated Values of the 2

Component of the Normal

The errors in the above table may not seem to be

significant. and the results are more than adequate for

such things as wire frame drawings. outlining patches or

subpatches. or finding a pixel. The single precision

values. however. are not acceptable for deciding which face

a point is on.

77

Doing evaluations in double precision may require more

computation time. as will computing all the components of

the normal. But the additional effort is more than repaid

when iterative methods converge quickly as apposed to

taking many iterations or not converging at all.

In some modern processors. all instructions are done

in double precision and rounded to single precision when

the results are stored. In this case the only cost

associated with using the double precision is the

additional storage for the results in that form.

Numerical considerations of the implementation of

evaluation algorithms have been discussed. and some

examples of problems have been given. Sample output from

the surface assesment package. ISU COLORSCOPE. which uses

the algorithms developed in this dissertation. is given in

the next chapter. In addition to the examples. conclusions

are drawn about this work.

CHAPTER VII

EXAMPLES AND CONCLUSIONS

7.0 EXAMPLES AND CONCLUSIONS

The preceding chapters develOped algorithms useful for

the interactive shading of surfaces defined by rational

B-splines. This chapter presents some examples of surfaces

shaded using these algorithms. After the examples. some

conclusions about this work are drawn.

78

79

7.1 Examples

The following seven figures were generated using the

NSU COLORSCOPE surface assessment package. These surfaces

represent geometric as well as freeform surfaces. These

figures are not intended to demonstrate the primary error

detection function of the COLORSCOPE package. but rather

that the package can handle the rational B-spline surface.

The figures also demonstrate some of the capability of the

rational B-spline.

Figure 7.1.1 : Shaded Cube. Sphere. Cone. and Cylinder

Figure 7.1.2 : Shaded Torus

81

Figure 7.1.3 : Shaded Automobile Hood

Figure 7.1.4 : Curvature Shading of Automobile Hood

82

Figure 7.1.5 : Intermediate Stamping of a Styled Wheel

Figure 7.1.6 : Shaded Bumper

83

Figure 7.1.7 : Shaded Turbine Blade

Figure 7.1.8 : Absolute Maximum Curvature Shading of Turbine

Blade

84

7.2 Conclusions

This dissertation reviewed the rational B-spline. It

defined a class of rational B-splines called Enhanced

Uniform. The advantages of using this class of B-spline

were discussed.

The CURBS algorithm for calculating with Enhanced

Uniform Rational B-splines was developed and presented.

The performance of this algorithm was compared to the

commonly used Cox-deBoor algorithm for B-spline evaluation.

This comparison indicated that the CURBS algorithm would

typically produce a three-to-one savings over the use of

the Cox-deBoor algorithm. even for low-order B-splines.

An apparent limitation of the CURBS algorithm. that

the B-splines must be of the enhanced uniform rational

B-spline type. was overcome by develOping the

nonuniform-rational-B-spline-to-enhanced-uniform-rational-

B-spline (NURBS-to-EURBS) conversion algorithm to convert

any surface based on the NURBS knot vector to a

mathematically equivalent surface based on the EURBS knot

vector. The converted surface was shown to have a storage

penalty but no time penalty for surface evaluation. In

fact. the CURBS algorithm can be used on the converted

surface so that there is a three-to-one savings in machine

85

operations. The CURBS and NURBS-to-EURBS algorithms

combine to offer the tradeoff of lowered computation time

for increased storage space.

Some numerical consideration of the implementation of

the algorithms deve10ped here were discussed. Finally.

examples of shaded images produced by these algorithms were

given.

The algorithms deve10ped in this dissertation are a

viable solution to the problem of rapidly rendering

accurate shaded images of rational B-spline surfaces. They

offer significant advantages over the prevalent algorithms

now in use for this purpose. as well as for other tasks

requiring calculations with rational B-splines.

APPENDIX A

CALCULATION EXAMPLE

86

87

A. RATIONAL B-SPLINE CALCULATION EXAMPLE

This appendix presents examples of calculating a

B-spline and a rational B-spline curve. The results of

these calculations were used to generate the figures in

Chapter Two of this dissertation.

The control points used to define the B-spline curve

are given in Table A.l.

“011-2020

Each of the CPi is then multiplied by its

th set

Control point

0

1

2

3

4

5

6

7

8

9

10

11

Table A.l

To define the

weight is

of

rational

homogeneous

X

IO.1490382E-Ol

IO.1279431E+01

IO.1903875E+01

0.1243925E+01

0.1540538EI01

I0.7496327E+OO

0.6192721E+OO

IO.8542724EIO2

IO.4414083E+OO

0.3807828E+OO

O.1471788E+OO

0.1153550EIO2

Y

0.2372459E+01

0.2134099E+01

IO.1257925E+01

IO.7112664E+OO

O.1074566E+01

IO.4256855E+OO

IO.3516818E+OO

0.5969771E+OO

I0.2523811E+OO

IO.2515893E+OO

0.2455054E+OO

0.1825014E+OO

Original Control Points

assigned to

control

BIspline CEIVO. I. positive

each control point 0P1.

weight

points CP;.

control points are given in Table A.2.

0
H
I
‘

p
i
c
\
o
c
e
q
<
m
0
h
m
u
o
n
r
a
C
I
w VX

-O.2341119E-01

-O.2902891E+01

I0.6978094E+01

O.7164465E+01

O.1209919E+OO

IO.7457782E+01

O.7457602E+01

IO.12O7699E+00

I0.7164745E+01

O.6978148E+01

0.2902713E+01

0.235558OE-01

Table A.2

I!

0.37261018+01

0.4842038E+01

-0.4610554E+01

-0.4096585£+01

0.8439503E+01

-0.4234966£+01

-0.4235138£+01

0.84395608+01

-o.4096539B+01

-0.461057SE+01

0.48419458+01

0.37267288+01

Homogeneous

I

0.1570818E+01

0.2268892E+01

O.3665206E+01

0.5759564E+Ol

0.7853872E+01

0.994858OE+01

0.1204253E+O2

O.1413716E+O2

0.1623156E+O2

0.183258OE+02

O.1972236E+O2

0.2042028E+02

Control Points

to form

The 09'

89

The curve has been chosen to be a cubic so the order

is four (k-4). The following knot vector is used:

T I [0 O O 0 1 2 3 4 5 6 7 8 9 9 9 9]

The parameter varies from zero to nine along the curve and

the curve is made up of nine subsegments. Using equations

2.1.2 and 2.1.3 the following non-zero blending functions

for each subsegment are found.

Subsegment one 0.0 S t < 1.0

"00.4(t) - -1.000.t3 + 3.000.:2 — 3.000.: + 1.000

"01.4(t) = 1.750.:3 - 4.500.:2 + 3.000.: + 0.000

N02'4(t) - -0.917.t3 + 1.500.:2 + 0.000.: + 0.000

N03.4(t) - 0.167.t3 + 0.000.:2 + 0.000.: + 0.000

Subsegment two 1.0 5 t (2.0

N01.4(t) = -0.2so.t3 + 1.500.:2 - 3.000.: + 2.000

N02.‘(t) a 0,533.t3 - 3.000.:2 + 4.500.: - 1.500

N03.4(t) . -0.500.t3 + 2.000.:2 - 2.000.: + 0.667

0.167-t3 - 0.500.:2 + 0.500.: - 0.167
"04.4‘t)

“02.4(t)

"03.4(tI

"04.4(t)

"05.4(t)

"03.4‘t)

"04.4‘t)

"05.4(t)

"06.4‘t)

"04.4(t’

"05.4(t)

"06.4(t’

"01.4(t)

"05.4(tI

"06.4‘t’

No7.4(t)

"08.4‘t’

Subsegment

-0.167.t3 +

0.500.t3 -

-0.soo.t3 +

0.167-t3 -

Subsegment

-0.167-t3 +

0.500.:3 -

-0.500.t3 +

0.167-t3 -

Subsegment five 4.0 5 t

-0.167-t3 +

0e5000t3 .-

I0.500ot3 +

0.167-t3

Subsegment

-0.167.t3 +

0.500.:3 -

-0.500-t3 +

0.167-t3 -

90

three 2.0

1.500.:2

4.0oo.t3

3.500.:2

1.000.:2

2.000.:2

5.500.t2

5.000.:2

1.500.:2

2.500.:2

7.000.:2

6.500.t2

2.000.t2

six 5.0 3

3.0000t2

0.500.t2

0.000.:2

2.500.:2

S t (3.0

...

four 3.0 5 t

+

+

4.500ot

10.000ot

7.500-t

2.00000

(4.0

8.000.t

19.500.t

16.000.t

4.500.t

(5.0

12.500.t

32.000.t

27.500.t

8.000-t

6.0

l8.000.t

47.500.t

42.000-t

12.500-t

4.500

7.333

5.167

1.333

10.667

21.833

16.667

4.500

20.833

47.333

38.167

10.667

36.000

86.833

72.667

20.833

91

Subsegment seven 6.0 5 t < 7.0

"05.4(t) = -0.l67.t3 + 3.300.:2 —A 24.500.t + 57.167

N07'4(t) - 0.300.:3 — 10.000.t2 + 66.000-t - 143.333

N03.4(t) - -0.300-t3 + 9.300.:2 - 59.500-t + 123.167

N09.4(t) - 0.167.t3 - 3.000.:2 + 18.000-t - 36.000

Subsegment eight 7.0 t (8.0

I
A

N07.4(t) . -o,157.t3 + 4.000.:2 - 32.000.: + 33.333

N08.4(t) - 0.300.:3 11.300.t2 + 87.500-t - 219.333

N09.4(t) = -0.583-t3 + 12.730.t2 - 92.250-t + 221.250

N10.4(t) . 0.2so.t3 - 5.250-t2 + 36.750-t — 83.730

Subsegment nine 8.0 5 t < 9.0

-0.167-t3 + 4.300.:2 - 40.500-t + 121.300
"08.4(t)

N09'4(t) - 0.917.c3 23.230.t2 + 193.730.: - 546.750

-1.750-t3 + 42.730.t2 347.230.: + 938.250
"10.4“’

"11.4“’
1.000.:3 24.000.t2 + 192.000.: - 312.000

Equation 2.1.1 is used to multiply the above blending

functions by the appropriate homogeneous control point

cp;. This yields the following equations for each

subsegment:

IXIt)

'Y(t)

'(t)

VX(t)

lYIt)

l(t)

IX(t)

IY(t)

I(t)

vX(t)

vY(t)

I(t)

'X(t)

IY(t)

'(t)

Subsegment

2.334.:3 +

8.290.t3 -

0.000.:3 +

Subsegment

-6.907.t3.+

-o.443.t3 +

0.000.:3 +

Subsegment

3.442.t3 -

-6.205.t3 +

0.000.:3 +

Subsegment

3e838‘t3 -

6e3140t3 -

0.000.:3 +

92

one 0.0 5

2.526.:2

17.323»2

0e0000t2

two 1.0 g

30.34s.t2

0.602.:2

0.000.:2

three 2.0

31.244.t2

43.244.t2

0.000.:2

5 t

< 1.0

8.638-t

3e3460t

2e094‘t

< 2.0

36e9610t

22e8610t

2.095-t

< 3.0

87.223-t

91.985-t

2.0950t

four 3.0 5 t < 4.0

344312.:2
+

97.927-t

69.433.t2 + 246.044-t

0.002.:2
...

2.088-t

Subsegment five 4.0 5 t < 5.0

-7.498-t3 + 101.223.:2 - 446.212.t

OeOOO‘t3 +

0.000.:3 -

6.336.:2

0.003.t2 +

57.030-t

2.109-t

+
..

.
+

0.023

3.727

1.571

9.418

12.462

1.571

73.372

58.545

1.570

84.076

279.484

1.577

641.442

124.615

1.550

93

Subsegment six 5.0 5 t < 6.0

vx(:) . 3.333.:3 - 63,317.:2 + 403.939.: - 773.360

v!(:) = -6.314.:3 + 101.032.:2 - 330.603.: + 913.911

v(:) = 0.000.:3 + 0.003.:1 + 2.079.: + 1.393

Subsegment seven 6.0 5 t < 7.0

vx<:) = 3.442.:3 - 61.690.:2 + 361.227.: — 690.034

IYIt) = 6.203.:3 - 124.304.:2 + 321.323.: - 179.033

V(t) = 0.000.:3 + 0.000.:2 + 2.097.: + 1.363

Subsegment eight 7.0 5 t < 8.0

Ix(t) a —6.907.:3 - 133.644.:2 -1160.110.: +2339.731

v2(:) = 0.443.:3 - 3.337.:2 - 23.246.: + 133.443

v(:) . 0.000.:3 - 0.003.:2 + 2.114.: + 1.323

Subsegment nine 8.0 5 t < 9.0

WX(t) = 2.333.:3 — 70.933.:2 + 632.700.: -1974.409

lY(t) = —8.29o.:3 + 206.313.:2 -1702.444.: +4637.971

v(:) = 0.000.:3 + 0.011.:2 + 2.000.: + 1.322

The above equations are evaluated at a given value of t.

Equation 2.1.4 is then used to find the points on the

rational B-spline curve.

94

To generate the nonrational B-spline curve.

2.1.1 is used

and the above blending functions to yield the

equations for each subsegment:

X(t)

Y(t)

X(t)

Y(t)

X(t)

Y(t)

X(t)

T(t]

X(t)

TIt)

Subsegment

-0.272.:3 +

2.397.:3 -

Subsegment

—1.410.:3 +

-0.733.:3 +

Subsegment

0e8070t3 -

-0.734.:3 +

Subsegment

0.278.t3 -

0.310.:3 -

Subsegment

-0.633.:3 +

-0.117.:3 +

one 0.0 5 t (1.0

2.337.:2 - 3.794.: -

4.373.:2 - 0.713.: +

two 1.0 5 : < 2.0

6.273.:2

3.013.:2

three 2.0 5 t < 3.0

7.023.:2 + 19.392.: -

3.143.:2

four 3.0 5 t < 4.0

2.274.:2 + 3.130.: -

3.934.:2 + 31.373.: -

five 4.0 5 t (5.0

9.323.:2 - 41.279.: +

2.136.:2 - 12.607.: +

7.209-t +

10.103-t +

10.363.t +

equation

with the nonhom0geneous control points CPi

following

0.015

2.372

1.124

5.502

16.610

5.675

2.343

36.560

59.530

22.746

X(t)

YIt)

X(t)

Y(t)

x(t)

1(t)

X(t)

1(t)

Subsegment

0.363.:3 -

-0.443.:3 +

Subsegment

0.177.:3 -

0.441.:3 -

Subsegment

-0.403.:3 +

-o.013.:3 +

Subsegment

0.166.:3 -

-0.436.:3 +

95

six 5.0 5

6.473.t2

7.119.:2

seven 6.0

3.033.:2

3.344.:2

eight 7.0

9.124.:2

0.794.:2

1

...

...

< 6.0

37e7500t

37.270.t

t < 7.0

11e3820t

58.505ot

t (8.0

68.068-t

8e955°t

nine 8.0 5 t < 9.0

4.373.:2

10.329.:2

+
‘1e5290t

89.239-t

+
4
-

72.185

63.851

31.449

127.700

167.935

29.708

124.324

243.797

The above equations are then used directly to generate the

B-spliue curve.

APPENDIX B

MATRIX FORMULATION

96

97

B. FORMULATION OF BLENDING FUNCTION MATRIX

The formulation of the blending function matrices for

the subsegments of a given knot vector is discussed and an

example given in this appendix. To determine which

blending functions affect the ith subsegment, the recursion

of equations 2.1.2 and 2.1.3 must be followed. Each

non-zero blending function of a given order is used in two

blending functions of the next order. The tree structure

which results is shown in figure B.1. As an example. let

the order of the curve equal four (k=4) and take the knot

vector to be

F
I
N

M
N

3 4 5 6 6 6 6]

6 7 8 9 10 11 120
°

93'

Figure B.l : Tree structure of non-zero blending functions

for the ith subsegment

99

For this example the blending functions for the second

subsegment will be found. Therefore i-4 and Figure 3.1

becomes

"‘15"

.... I...

.5; L45; ...

Figure 3.2 : Tree structure of the non-zero blending

functions for the 2nd subsegment k-4

Now that the non-zero blending function of each order

have been identified. the effective portion of the knot

vector can be determined. To find the starting knot of the

100

effective knot vector. equation 2.1.3 is written for k=4

and i-l

N1.4(t) ' (t I XI) ° "1.3(t) / (14 I 11)

+ (X5 ’ t) ' N2’3(t) I (X5 ’ Iz)

Equation B.1 requires knots X1. 12. X4. and 15. Knot one

would appear to be the start of the effective knot vector.

However. it is only used with N1.3. which from Figure 8.2

is always zero for this subsegment. Equation B.1 is

rewritten as

N1.4(t) 3 (XS I t) ' "2'3(t) / (X5 ’ X2) 3.2

Equation 3.2 requires knots X2 and 15; therefore. the

effective knot vector starts with knot two.

To find the ending knot of the effective knot vector.

Equation 2.1.2 is written for k=4 and i=4

“4.4(t) ‘ (t ’ X4) ' "4,3(LI / (X7 ' X4)

+ ‘13 - t) - u,,3<:) / (13 - x5)

Equation 8.3 requires knots X‘. X5. X7. and 18. Knot eight

is the last knot used in this subsegment; however. it is

only used with N5.3, which (from Figure 8.2) is always zero

for this subsegment. Equation 3.3 is rewritten as

101

"4.4(t) ' (t - X4) ' "4'3(t) I (I7 " X4) B.4

Equation B.4 requires knots X4 and X7; therefore. the

effective knot vector ends at knot seven. The resulting

effective knot vector for the second subsegment is then :

‘
0
‘

Next the ten Ni.k of Figure 3.2 must be found. Using

equations 2.1.2 and 2.1.3

N4'1(t) I 1 3.5

N3,2(t) = (t-0)-0/(1-0) + (2-:)-1/I2-1)

3.6

= (z-t)

N‘.2(t) = (:-1)-1/(2-1) + (3-:)-0/(3—2)

. 8.7

= (t-l)

N2.3(t) . (:-o)~0/(1—0) + (2-:)-(2-:)/(2-0)

B.8

- (:2 — 4-t + 4)/2

N3'3(t) - (t-0)-(2-t)/(2-0) + (3-t)-(t-1)/(3-1)

8.9

= (-2-t2 + 6-t - 3)/2

"4.3“’

"1.4“’

32.4(:>

"3.4(t)

N4’4tt)

102

I (tI1)°(tI1)/(3-1) + (4-tI'0/(4-2)

= (t2 — 2-: + 1)/2

= (~:3 + 6-:2 - 12-: + 3)/4

= [(t-O)-(t2-4-t+4)/2]/(2-0)

+ [IS-t)-(~2-t2+6-t-3)/2]/(3-0)

. (7-:3 - 36-:2 + 34-: - 13)/12

= [(t-O)-(-2-t2+6-t-3)/2]/(3-0)

+ [(4—:)-I:2-2-:+1I/2I/I4-1>

= I-3-:3 + 12-:2 - 12-: + 4)/6

= [It-1)-(t2-2-t+1)/2]l(4-1)

+ (3-:)-0/(3-2)

.. (:3 - 3-:2 + 3-: - 1)/6

Equations B.11. 8.12. B.13. and B.14 are then

matrix form as:

[Ni.4It). N2.4(t). "3'4(t), ”4'4(t)] 3

1/12 - [:3 :2 : 11 I" -3 7 -6

I 13 -36 24

I -36 34 -24

i 24 -13 3

written
0
5

(:-0)-o/(1-0) + [I2-:)-(:2-4-:+4)/21/(2-0)

3.11

B.13

in

APPENDIX C

KNOT VECTOR TRANSLATION

103

104

C. EFFECTS OF KNOT VECTOR TRANSLATION ON

BLENDING FUNCTIONS

Appendix B formulated the blending function matrix for

the second subsegment of the fourth order knot vector

4 5 6 6 6 6]x = [0 0 0 0 l 2 3

i = 0 l 2 3 4 5 6 7 8 9 10 11 12

This appendix formulates the blending function matrix

for the second subsegment of the translated knot vector

X I [I1 -1 -l -l 0 1 2 3 4 5 5 5 5]

i = 5 6 7 8 9 10 11 12

The effective knot vector for the second subsegment is

105

The translation has not changed Figure B.2 and the

same ten Ni.k must be found. Using equations 2.1.2 and

2.1.3 :1:1 3'

N4.1(t') = 1 0.1

N3'2(t') = (:'+1)-0/<o+1) + (1-:')-1/I1-o)

0.2

= (1-t')

N4'2(:') - (:'-0)-1/(1-0) + (2-:')-01(2-1)

0.3

:- (t'-0)

N2,3(:') = (:'+1)-o/(o+1) + (1-:')-(1-:')/(1+1)

c.4

= ((:'I2 — 2-(:') + 1)/2

N3.3(t') = (:'+1)-(1-:')/(1+1) + (2—t')c(:'-0)/(2-0)

0.3

= (-2-(:')2 + 2-(:') + 1)/2

N4,3(:') = (t'-0)-(:'-0)/(2-0) + <3-:'>-o/(3-1)

c.6

= I:')2 12

N1.4<:') = (t'+1)-0/(o+1)

+ [I1-t')-((:')2-2-(:')+1)/2I/(1+1) c.7

106

= (-(:')3 + 3-(:')2 - 3-(:') + 1)/4

N2,4(:'> - [I:'+1)-I(:'I2e2-(:')+1)/2I/(1+1)

+ [I2-:'I-<-2-(:'>2+2-I:')-1)/2I/(2+1) 0.3

a (7-(t')3 - 15«(t')2 + 3-(t') - 7)/12

N3,4I:'I - II:'+1>-(-2-I:')2+2-(:')-1)/2I/I2+1)

+ II3-:')-II:')2>/2I/<3-o> - 0.9

- (-3-I:')3 + 3-(:')2 + 3-(:') + l)/6

N4’4(t') - II:'—0)-(I:')2>/2J/I3-o)

+ (4—:')-0/(4-1) 0.10

. <I:')3)/6

Equations C.7. C.8. C.9. and C.10 are then written in

matrix form as:

[N1.4(t.)s "2.4(t.)s "3.4(t')s "4.4(t')] a

1/12 - [(t')3 (t')2 (t') 1]

The parametric variable t can be related to the parametric

variable t.

107

t I t + 1 C.12

Squaring and cubing equation C.12 yields the following

relations

:2 - (:')2 + 2-(:') + 1 0.13

:3 - (:')3 + 3-(:')2 + 3-(:') + 1 0.14

Equation C.12. C.13. and C.14 are expressed in matrix form

[t3 t2 t 1]

= [I:')3(:')2(:')1I -

U
.
)

N 0
.
4

O

Replacing the t vector of equation B.15 with the right hand

side of C.15 and equating the results with equation C.11

yields

108

I_1 0 0 0 I I -3 7 -6 2 I I —3 7 -6 2 I

I I I I I l

| 3 1 0 0 I I 13 -36 24 -6 I I 9 -13 6 0 I

I l =

: 3 2 1 o I I -36 34 -24 6 I I -9 3 6 o I

I 1 1 1 1 I I 24 -13 3 -2 I I 3 7 2 0 I

I I I I I I

O 0
.
1

-
O
s

The equality of equation C.16 holds; thus. translating the

knot vector is a linear map of the resulting blending

functions. The evaluated values of the Ni:k are the same

for equivalent values of t and t'.

APPENDIX D

KNOT VECTOR COMPRESSION ALGORITHM

109

110

D.0 THE COMPRESSION ALGORITHM

This appendix presents the algorithm used in the

compression of the effective knot vectors to unique labels.

The informal explanation preceding the algorithm

specification may render the encoding transparent to the

reader.

111

Step 1: The first and second values of the effective

knot vector are compared :

if they are equal then the first bit is

set to zero;

else the first bit is set to one.

Step 2: The second and third values are compared as

as above to set the second bit.

Step 3: This is continued until the

parametric value is reached.

Step 4: For a non-zero subsegment to

starting

exist. the

starting parametric value and the next knot

cannot be equal so there is no hit for that

comparison.

Step 5: The remaining knots are compared in order

and corresponding bits assigned zero or one

as in step one.

Step 6: The bits are now reversed to form a binary

number. which is stored as

label.

This algorithm could be coded as follows:

(Let KNOT(I) represent the effective

1.0. secs 2‘k‘3)

integer

knot vector.

112

36: LABEL - 0

for I I 1. K-2. do:

. IF(KNOT(I) .Ea. ruorzr-1;) THEN

. set LABEL - LABEL + 2 1’1

.......END IF

for I I K. Z‘K-3. do:

. IF(KNOTII) .EQ. KNOTzI-lg I THEN

. set LABEL - LABEL + 2 1’2

.......END IF

D.l Example of Knot Vector Compression

Using the knot vector

X I [0 0 0 0 l 2 2 3 3 3 3]

with kI4. we have the following effective knot vectors and

labels for each subsegment.

effective integer

9919999 9999 999999 9999 19991

1 [0 0 o 1 2 2] 0 0 1 o 4

2 [0 0 1 2 2 3] 0 1 o 1 10

3 [1 2 2 3 3 3] 1 o o 0 1

If the above portions of the knot vector are translated.

the labels remain the same:

113

effective integer

9919999 3999 22£12£ 9199 1999;

1 [o o o 1 2 2] o o 1 o 4

2 {-1 —1 o 1 1 2] o 1 o 1 1o

3 {-1 0 0 1 1 1] l 0 0 0 1

APPENDIX B

NURBS T0 EURBS CONVERSION

114

115

E. EXANPLE OF NURBS TO EURBS CONVERSION

This appendix presents the control points and knot

vectors used to generate the figures in Chapter five of

this dissertation. The order of each curve in these

figures is four.

Figure 5.1.1 compares a nonuniform curve to a uniform

curve. The two curves use the control points given in

Table 8.1.

Control Point

G
M
I
B
M
N
H
O

Table B.1

The nonuniform knot vector for the nonuniform curve is

xn - [0.0 0.0 0.0 0.0 0.3 0.75 1.0 1.66 1.66 1.66 1.66 l

116

X

0.0000000E+OO

0.SOOOOOOE+OO

0.lOOOOOOE+01

0.1SOOOOOE+01

0.ZOOOOOOE+01

0.ZSOOOOOE+01

0.3000000E+01

Y

0.0000000E+OO

0.1000OOOE+01

0.5000000E+OO

0.25000008+OO

0.SOOOOOOE+OO

O.IOOOOOOE+01

0.7SOOOOOE+OO

Original Control Points

The uniform knot vector is then found to be

In a

The uniform B-spline of Figure 5.1.2 was generated

using the above

Table B.2

knot vector X
B

I 0 0 0 0 1 2 3 4 4 4 4 l

and the control points in

117

Control Point X Y

0 0.0000000E+00 0.0000000E+00

1 0.4999999E+00 0.999999BE+00

2 0.79796058+00 0.608638OE+00

3 0.1731129E+01 0.2697527E+00

4 0.1623749E+01 0.26533038+00

5 0.2500038E+01 0.1000007E+01

6 0.30000008+01 0.75000008+00

Table B.2 Control Points for Figure 5.1.2

The control points in Table 8.2 were found by requiring the

uniform B-spline to match the slopes at t-O and t=4. and

also to pass through the nonuniform B-spline curve at the

ends of each subsegment.

5.1.3 wasThe uniform curve of Figure generated by

using the above knot vector Xu and the control points in

Table 8.3

Control Point I Y

0 0.00000008+00 0.00000008+00

1 0.4999999E+00 0.999999BE+00

2 0.8999994E+00 0.5999985E+00

3 0.1379994E+01 0.29999IBE+00

4 0.29502518+01 0.1530137E+00

5 ~0.35704OOB+00 0.124192OE+01

6 O.2999855E+01 0.74995518+00

Table E.3 Control Points for Figure 5.1.3

118

The control points in Table E.3 were found by requiring the

uniform B-spline to match the first subsegment of the

nonuniform B-spline and also to pass through the ends of

the subsegments.

5.1.4 wasThe uniform curve of Figure generated by

using the above knot vector 1“ and the control points in

Table 8.4

Control Point I Y

0 -0.7910313B-02 '0.21466528-01

1 0.5274833B+00 0.10504068+01

2 0.81171398+00 0.53526418+00

3 0.1712133B+01 0.267619OE+00

4 0.16762OOB+01 0.36061138+00

5 0.251616SE+01 0.9357985E+00

6 0.29984568+01 0.7169325B+00

Table 8.4 Control Points for Figure 5.1.4

To find the control points in Table 8.4. one hundred

discrete points were used from each subsegment of the

nonuniform curve as the data to which the uniform curve was

fit by ordinary least squares.

The NURBS to EURBS algorithm was used on the the knot

vector 1 and the control points in Table B.1. The

resulting knot vector for the uniform curve in Figure 5.2.1

119

was found to be

xn-[00001112223334444]

above Iusing the uThe control points which result from

knot vector to fit the curve defined by x and the control

points of Table 8.1 are given in Table 3.5

The control points of Table 8.5 and the above

1
u

Control Point I Y

0 0.0000000E+00 0.0000000E+OO

1 0.4999999E+00 0.99999988+00

2 0.6999992E+00 0.7999988E+00

3 0.8799984E+00 0.6499976E+00

4 0.8799983E+00 0.64999908+00

5 0.1149997E+01 0.4249983£+00

6 0.1374994E+01 0.3124974B+00

7 0.1561703E+01 0.3254953E+00

8 0.15616758+01 0.325489OE+00

9 0.1665399E+01 0.3327094E+00

10 0.17573202+01 0.37866808+00

11 0.1861713B+01 0.44973428+00

12 0.18617IOE+01 0.4497327E+00

l3 0.2137309E+01 0.63734768+00

l4 0.2499873E+01 0.9999626E+00

15 0.29998418+01 0.74995288+00

Table 8.5 Control Points for Figure 5.1.5

knot

This curve is identical to the nonuniform curve.

vector

were used to generate the uniform curve in Figure 5.1.5.

APPENDIX F

CONVERSION ALGORITENS

120

121

F. CODE FOR THE NURBS TO EURBS CONVERSION

This appendix presents the code for three FORTRAN 77

subroutines used in the NURBS to EURBS conversion. These

subroutines assume that the nonuniform surface definition

has been read in. The first routine handles the switching

of control points and is used to call the other two

routines. The second routine. LABEL. is used to label the

non-zero subsegments and determine where new control points

are to be added. The last routine. FITSU. is used to

determine the EURBS control points.

122

C NONTOU: NONuniform T0 Uniform rational B-spline converter

CDCCCCC Subroutine Description CCCC

C

C Purpose and use: Convert NURBS to EURBS

C

C Error conditions:

C

C Implementation:

C

C Notes:

C

CCC

C

CCCCCCCCCCCCCCC Statistics CCCCCCCCCCCCCCCC

g Author: Iark N. Pickelmann

C Date written: April 30. 1984

E Modifications:

CCC

C

CSCCCCCCC Entry _Storage Block CCCCC

C

SUBROUTINE NONT00(NPNTS.NPNTT. ORDERS. ORDERT. RATNOT

1 .SRNOTR. TKNOTR. CPI. CPX. CPY. CPZ)

C

CIIIRead-only arguments:

C --- Number of points and order of 8 and T curves

INTEGER NPNTS. NPNTT. ORDERS. ORDERT

C --- Rational flag

LOGICAL RATNOT

C --- Nonuniform knot vectors

REAL SKNOTR(0:NPNTS+2‘(ORDERS-1))

REAL TRNOTR(0:NPNTT+2‘(ORDERT-l))

C

CII-Arguments returned:

C none

C

CI-IArguments modified:

C --- Iaximum number of points

INTEGER NAXPNT. IAXSUB

PARANETER (NAXPNT I 1000)

PARANETER (NAXSUE I 1000)

C

C --- Control points

REAL CPI(0:NAXPNT)

REAL CPX(0:IAXPNT)

REAL CPY(0:NAXPNT)

REAL CPZ(0:IAXPNT)

C

123

CIIICommon blocks:

C

CONNON/CNNOl/P'

CONNON/CNNOZ/PX

CONNON/CNNOSIPY

CONNON/CNNO4/PZ

CIIILocal variables:

C

C

C

--- Control points

REAL PI(0:IAXPNT)

REAL PX(0:NAXPNT)

REAL PY(0:NAXPNT)

REAL PZ(0:IAXPNT)

—-- Subsegment labels

INTEGER LABELS(IAXSDB). LABELT(NAXSUB)

--- Number of new points for each segment

INTEGER EXTEND(NAXSUB)

--- Number of new points 8 and T

INTEGER NE'S. NEIT

--- Non-zero segments 8 and T

INTEGER SEGS. SEGT

--- Counters

INTEGER ROI. COL

CI-IFunctions and subroutines:

EXTERNAL LABEL. FITSD

C

CCC

C

CPCCCCCCCC Process Block CCCCCC

C

C --- Determine the labels for the s direction

C

CALL LABEL(NPNTS. ORDERS. SXNOTR. LABELS. EXTEND.

1 NEWS. SEGS)

C

C --- Refit in the s direction

C

CALL FITSU(CP'. CPX. CPY. CPZ. RATNOT.

1 ORDERS. NPNTS. NPNTT. SXNOTR. LABELS.

2 EXTEND. NEWS. SEGS. PI. PX. PY. PZ)

C

C --- Determine the labels for the t direction

C

CALL LABEL(NPNTT. ORDERT. TXNOTR. LABELT. EXTEND.

1 NEIT. SEGT)

C

C --- Refit in the t direction

C

C --- Transpose t and s

C

no 100 now - 0. NPNTT

no 100 COL I 0. NPNTS+NEIS

CPI(ROI+COL‘(NPNTT+1)) I

124

P'(COL+RO"(NPNTS+NEUS+1))

CPX(RO'+COL‘(NPNTT+1))

PX(COL+RO"(NPNTS+NEUS+1)) ‘

CPY(RO'+COL‘(NPNTT+1))

PY(COL+RO"(NPNTS+NEIS+1))

CPZ(ROW+COL‘(NPNTT+1))

PZ(COL+ROI‘(NPNTS+NE'S+1))

100 CONTINUE ‘

C

C

CALL FITSU(CP'. CPX. CPI. CPZ. RATNOT. ORDERT.

1 NPNTT. NPNTS+NEIS. TKNOTR. LABELT. EXTEND.

2 NEIT. SEGT. PI. PX. PY. PZ)

C

C --- Transpose back

C

D0 200 R0! I 0. NPNTS+NEIS

DO 200 COL I 0. NPNTT+NEIT

CPI(ROI+COL*(NPNTS+NEIS+1)) I

l PI(COL+ROWI(NPNTT+NEIT+1))

CPX(ROW+COL‘(NPNTS+NEIS+1)) I

1 PI(COL+ROW‘(NPNTT+NEWT+1))

CPI(ROW+COL‘(NPNTS+NEIS+1)) I

1 PT(COL+ROI‘(NPNTT+NEIT+1))

CPZ(R0'+C0LI(NPNTS+NEIS+1)) I

1 PZ(COL+ROW‘(NPNTT+NE'T+1))

200 CONTINUE

C

C

CCC

C

RETURN

END

125

C LABEL: Labels subsegments for an enhanced knot vector

CDCCCCC Subroutine Description CCCC

Purpose and use: Determine subsegment labels and where

new control points must go.

Error conditions:

Implementation:

Notes:

CC

CCCCCCCCCCCCCC Statistics CCCCCCCCCCCCCCCC

Author: Nark N. Pickelmann

Date written: April 30. 1984

Nodifications:

CC

SCCCCCCC Entry _Storage Block CCCCCC

O
O
O
O
O
G
G
O
O
O
G
O
O
O
O
O
O
O
O
O
O
G
O
O

SUBROUTINE LABEL (NPNT. ORDER. RXNOT. LAB. EXTEND.

NEI. SEG) '

C

CIIIRead-only arguments:

C --- Number of points and order of the curve

INTEGER NPNT. ORDER

C --- Nonuniform knot vector

REAL RXNOT(0:NPNT+ORDER)

C

CIIIArguments returned:

C --- Subsegment labels

INTEGER LAB(NPNT-ORDER+2)

C --- If the knot vector was extended for this segment

INTEGER EXTEND(NPNT-ORDER+2)

C --- Number of new knots

INTEGER NEW

C --- Number of non-zero segments

INTEGER SEG

C

CII-Arguments modified:

C none

C

CIIICommon blocks:

C none

C

CIIILocal variables:

C --- Pointers and counters

126

INTEGER PNTER. I

C III Uniform knot vector

REAL RNOT(0:40)

C --- A number like zero

REAL ZERO

C --- Xnot spacing

REAL DELTA

C

CIIIFunotions and subroutines:

INTRINSIC ABS

C

C

DATA ZERO/l.OE-06I

C ..

CCC

C

CPCCCCCCCC Process Block CCCCCC

C

C --- Copy the knot vector

C

DO 100 II0.2‘ORDER-3

KNOT”) I RRNOT(I)

100 CONTINUE

C

NEI I 0

SEG I 0

PNTER I ORDER - 2

C

C --- Shift the knot vector

C

200 PNTER I PNTER + 1

DO 250 II0.2IORDER-4

RNOT(I) I XNOT(I+1)

250 CONTINUE

XNOT(2IORDER-3) I RXNOT(PNTER+ORDER-l)

C

C --- Check for repeat knot

C

IF(PNTER.GT.NPNT) TEEN

GOTO 1000

ELSE IF(XNOT(ORDER-l)IXN0T(ORDER-2).GE.ZER0) TEEN

SEG I SEG + l

DELTA I KNOT(ORDER-l)‘XNOT(ORDER-2)

ELSE

GOTO 200

END IF

C

C --- See if we need to extend the old knot vector

C

EXTEND(SEG) I 0

DO 300 II1.2‘ORDER-3

IF(ABS(XNOT(I)‘XNOT(I-1)-DELTA).GT.ZERO.AND.

XNOT(I)-XNOT(I-1).GT.ZERO) TEEN

127

EXTEND(SEG) I EXTEND(SEG) + 1

KNOT(I+1) I XNOT(I)

XNOT(I) I XNOT(I-1)

PNTER I PNTER - 1

END IF

300 CONTINUE

C

C III Label this segment

C

LAB(SEG) I 0

D0 400 I I 2‘0RDER-4.0.-1

IF(I.EQ.0RDER-2) GOTO 400

IF(XNOT(I+1)'KNOT(I).GT.ZERO) TEEN

LAB(SEG) I 2‘LAB(SEG) + 1

ELSE

LAB(SEG) I 2‘LAB(SEG)

END IF

400 CONTINUE

NEW I NEI + EXTEND(SEG)

GOTO 200

C

C

CCC

C

1000 RETURN

END

128

C FITSU: Fit extended uniform rational B-splines in the S

C direction

CDCCCCC Subroutine Description CCCC

C

C Purpose and use: Find the EURBS control points for the

C given NURBS control points

C

C Error conditions: Notifies if junp discontinuity is

encountered

C

C Implementation:

C

C Notes:

C

CCC

C

CCCCCCCCCCCCCCC Statistics CCCCCCCCCCCCCCCC

3 Author: Nark N. Pickelmann

C Date written: Nay 2. 1984

E Nodifications:

CCC

C

CSCCCCCCC Entry _Storage Block CCCCCC

C

SUBROUTINE FITSU(CPI. CPX. CPY. CPZ. RATNOT. ORDER

1 NPNTS. NPNTT. RRNOT. LAB. EXTEND.

2 NE'. NSEG. PI. PX. PY. PZ)

CIIIRead-only arguments:

C --- Rational or not

LOGICAL RATNOT

C III Order of the curve to be fit

INTEGER ORDER

C --- Number of control points

INTEGER NPNTS. NPNTT

C --- Number of new control points

INTEGER NEI

C --- Xnot vector

REAL RRNOT(0:NPNTS+ORDER)

C III Control points

REAL CPI(O:NPNTS. 0:NPNTT)

REAL CPX(O:NPNTS. 0:NPNTT)

REAL CPY(O:NPNTS. OzNPNTT)

REAL CPZ(O:NPNTS. 0:NPNTT)

C --- Number of non-zero segments

INTEGER NSEG

C --- Subsegment labels

INTEGER LAB(NSEG)

C --- List of extentions and total number of extentions

INTEGER EXTEND(NSEG)

129

C

C

CIIIArguments returned:

C III Uniform control points

REAL P'(0:NPNTS+NEI.0:NPNTT)

REAL PX(0:NPNTS+NEI.0:NPNTT)

REAL PY(0:NPNTS+NEI.0:NPNTT)

REAL PZ(0:NPNTS+NEI.0:NPNTT)

C

CIIIArguments modified:

C none

C

CIIICommon blocks:

C none

C

CIIILocsl variables:

C III Counters and pointers

INTEGER ROI. R012. COL. SEG. I. 11. 12. TERN. PIV.

l PIVOT

REAL NAX. EOLD

C III Uniform pointer and last pointer

INTEGER UPNT. LPNT

C III A number like zero

REAL ZERO

C III Number of points to determine for a given segment

INTEGER DETR

C III Equation matrix

REAL A(20.20)

C III Uniform blending function matrix

REAL NAT(400)

C III Nonuniform matrix

REAL N(400)

C III Scale factor

REAL SF

C

CIIIFunctions and subroutines:

EXTERNAL CDALGO. CDANS. BASNAT

INTRINSIC ABS

C

CCC

C

CPCCCCCCCC Process Block CCCCCC

C

C III Check to see if need to use the weights

C

IF(RATNOT) TEEN

DO 50 COL I 0.NPNTT

DO 50 R0! I O. NPNTS

CPX(ROW.COL) I CPX(RO'.COL) I CPU(RO'.COL)

CPY(RO'.COL) I CPY(RO'.COL) I CPI(RO'.COL)

CPZ(ROW.COL) I CPZ(ROI.COL) I CPI(ROI.COL)

50 CONTINUE

END IF

c --..

100

225

1

l

1

200

C

c ---

C

130

ZERO I 1.0EI06

SEG I 0

LPNT I I1

I I ORDER I 2

UPNT I I

Find the next non-zero segment

IF(I.GT.NPNTS) TEEN

GOTO 1000

ELSE IF(RRNOT(I+1)IRKN0T(I).LE.ZERO) TEEN

I I I + 1

UPNT I UPNT + 1

GOTO 100

END IF

Fit this segment

SEG I SEG + 1

IF(SEG.NE.1) TEEN

UPNT I UPNT + EXTEND(SEGI1)

END IF

Find the number of control points to determine

DETR I UPNT I LPNT

IF(DETR.GE.ORDER.AND.SEG.NE.l) TEEN

PRINT I.'FITSU : Jump discon'

DETR I ORDER-1

UPNT I LPNT + ORDER I 1

END IF

LPNT I UPNT

Evaluate the nonuniform curve at the end

CALL CDALGO(ORDER. RKNOT(I+2IORDER).RKNOT(I+1).N)

ROI I UPNT+1IDETR

DO 200 COL I O.NPNTT

IF(RATNOT) TEEN

CALL CDANS(ORDER. RENOT(I+2IORDER). RKNOT(I+1).

N. CPI((I+1I0RDER).COL). PI(ROI.COL). DETR-1)

ELSE

DO 225 J1 I ROI. UPNT

PI(Jl.COL) I 1

CONTINUE

END IF

CALL CDANS(0RDER. RXNOT(I+2IORDER). RXNOT(I+1). N.

CPX((I+1IORDER).COL). PX(ROI.COL). DETR-1)

CALL CDANS(ORDER. RRNOT(I+2IORDER). RXNOT(I+1). N.

CPY((I+1-0RDER).COL). PY(ROI.COL). DETR-1)

CALL CDANS(ORDER. RRNOT(I+2IORDER). RXNOT(I+1). N.

CPZ((I+1IORDER).COL). PZ(ROI.COL). DETR-1)

CONTINUE ‘

Scale results to extended knot vector

300

c ...-—

c ——...

450

C ...-—

500

C

c ---

C

131

SF I RRNOT(I+1) I RENOT(I)

DO 300 11 I UPNT+2IDETE. UPNT

DO 300 12 I 11. UPNT

DO 300 COL I O.NPNTT

IF(RATNOT) PI(12.COL) I SF I PI(12.COL)

PX(12.COL) I SF I PX(12.COL)

PY(12.COL) I SF I PY(12.COL)

PZ(12.COL) I SF I PZ(12.COL)

CONTINUE

Get the uniform blending function matrix

CALL BASNAT(ORDER. LAB(SEG). NAT)

Evaluate functions and derivatives

DO 400 ROI I 1. DETR

IF(ROI.NE.1) TEEN

DO 450 11 I 1. ORDER

DO 450 12 I 1. ORDER-ROI

NAT(12+(11I1)IORDER) I

NAT(12+(11I1)IORDER)I(ORDERIROI+2I12)

CONTINUE

END IF

lake up the A matrix

DO 475 COL I 1. ORDER

A(ROI.COL) I 0

DO 475 TERN I 1. ORDER+1IROI

A(ROI.COL) I A(ROI.COL)+NAT(TERN+(COLIl)IORDER)

CONTINUE

CONTINUE

Fill in the known information

DO 500 11 I 1. ORDER-DETR

DO 500 12 I UPNT+1IDETR. UPNT

ROI I UPNTIORDER+11

DO 500 COL I 0. NPNTT

IF(RATNOT) PI(12.COL) I PI(12.COL) I A(12.11)I

PI(ROI.COL)

PX(12.COL) I PX(12.COL) - A(12.11)I

PX(ROI.COL)

PY(12.COL) I PY(12.COL) I A(12.J1)I

PY(ROI.COL) '

PZ(12.COL) I PZ(12.COL) I A(12.11)I

PZ(ROI.COL)

CONTINUE

Shift over

IF(DETR.LT.ORDER) TEEN

132

D0 600 11I1.DETR

DO 600 12I1.DETR

A(12.11) I A(12.11+ORDERIDETR)

600 CONTINUE

END IF

C

C III Do some rov reduction

C

DO 700 PIV I 1. DETRII

NAX I O

PIVOT I PIV

DO 750 11 I PIV. DETR

IF(AES(A(11.PIV)).GT.NAX) TEEN

NAX I ABS(A(11.PIV))

PIVOT I 11

END IF

750 CONTINUE

IF(PIVOT.NE.PIV) TEEN

D0 775 JIIPIV.DETR

EOLD I A(PIV.11)

A(PIV.11) I A(PIVOT.11)

A(PIVOT.11) I EOLD

775 CONTINUE

ROI I PIV+UPNTIDETR

ROI2 I PIVOT+UPNTIDETR

DO 780 COL I O.NPNTT

IF(RATNOT) TEEN

EOLD I PI(ROI.COL)

PI(ROI.COL) I PI(ROI2.COL)

PI(ROI2.COL) I EOLD

END IF

EOLD I PX(ROI.COL)

PX(ROI.COL) I PX(ROI2.COL)

PX(ROI2.COL) I EOLD

EOLD I PY(ROI.COL)

PY(ROI.COL) I PY(ROI2.COL)

PY(ROI2.COL) I EOLD

EOLD I PZ(ROI.COL)

PZ(ROI.COL) I PZ(ROI2.COL)

PZ(ROI2.COL) I EOLD

780 CONTINUE

END IF

DO 790 11 I PIV+1. DETR

DO 785 12 I DETR. PIV. I1

IF(12.EQ.PIV) TEEN

A(11.12) I O

ELSE

A(11.12) I A(11.12) -

1 A(PIV.12)IA(11.PIV)/A(PIV.PIV)

END IF

785 CONTINUE

133

ROI I 11+UPNTIDETR

ROI2 I PIV+UPNTIDETR

DO 786 COLI0.NPNTT

IF(RATNOT) PI(ROI.COL) I PI(ROI.COL) I

1 A(11.PIV)IPI(ROI2.COL)/A(PIV.PIV)

PX(ROI.COL) I PX(ROI.COL) I

1 A(11.PIV)IPX(ROI2.COL)/A(PIV.PIV)

PY(ROI.COL) I PY(ROI.COL) I

1 A(11.PIV)IPY(ROI2.COL)/A(PIV.PIV)

PZ(ROI.COL) I PZ(ROI.COL) I

1 A(11.PIV)IPZ(ROI2.COL)/A(PIV.PIV)

786 CONTINUE

790 CONTINUE

700 CONTINUE

C

C III Solve by back substitution

C

DO 800 PIV I DETR. 1. I1

ROI I UPNT+PIVIDETR

DO 800 COL I 0. NPNTT

DO 850. JIIDETR. PIV+1. I1

IF(RATNOT) PI(ROI.COL) I PI(ROI.COL) I

1 A(PIV.11) I PI(UPNT+11IDETR.COL)

PX(ROI.COL) I PX(ROI.COL) I A(PIV.11)I

1 PX(UPNT+11IDETR.COL)

PY(ROI.COL) I PY(ROI.COL) I A(PIV.11)I

1 PY(UPNT+11IDETR.COL)

PZ(ROI.COL) I PZ(ROI.COL) I A(PIV.11)I

1 PZ(UPNT+11IDETR.COL)

850 CONTINUE

IF(RATNOT) PI(ROI.COL) I PI(ROI.COL) /

1 A(PIV.PIV)

PX(ROI.COL) I PX(ROI.COL) / A(PIV.PIV)

PY(ROI.COL) I PY(ROI.COL) / A(PIV.PIV)

PZ(ROI.COL) I PZ(ROI.COL) I A(PIV.PIV)

800 CONTINUE

C

C

C III love to the next segment

I I I + 1

UPNT I UPNT + 1

GOTO 100

C

C III Take out the weights

C

1000 IF(RATNOT) TEEN

DO 1100 COL I O.NPNTT

DO 1100 ROI I 0. NPNTS

PX(ROI.COL) I PX(ROI.COL) / PI(ROI.COL)

PY(ROI.COL) I PY(ROI.COL) / PI(ROI.COL)

PZ(ROI.COL) I PZ(ROI.COL) / PI(ROI.COL)

1100 CONTINUE

DO 150 COL I O.NPNTT

134

D0 150 ROI I O. NPNTS

CPX(ROI.COL) I CPX(ROI.COL) I CPI(ROI.COL)

CPY(ROI.COL) I CPY(ROI.COL) I CPI(ROI.COL)

CPZ(ROI.COL) I CPZ(ROI.COL) / CPI(ROI.COL)

150 CONTINUE

END IF

C

C

CCC

C

RETURN

END

LIST OF REFEREQ(ES

135

136

[1] Coviak. R. A.. "Color Graphics in Engineering Design”. I.S.

Thesis. Nichigan State University. 1981.

[2] Blinn. 1.F.. ”Computer Displsy of Curved Surfaces". Ph.D.

Dissertation. University of Utah. 1978.

J” [3] Vanderploeg.AN. 1.. "Surface Assessment Using Color

Graphics". Ph.D. Dissertation. Nichigan State University. 1982.

[4] Lane. 1. E.. Carpenter. L. C.. Ihitted. T.. and Blinn. 1. F..

"Scan Line lethods For Displaying Parametrically Defined Surfaces".

Cbmmunications of the A.C.N.. Vol. 23. No. l. pp23-34. Jan. 1980.

[5] Lane. 1. N.. Carpenter. L. C.. "A Generalized Scan Line

Algorithm. for Computer Display of Parametrically Defined Surfaces".

Computer Graphics and Image Processing. Vol. 11. pp290-297. 1979.

[6] Barnhill. R. E.. "A Survey of Representation and Design of

Surfaces”. IEEE Computer Graphics and Applications. Vol. 3. Number 7.

October 1983 .

137

[7] Forrest. A. E.. On Coons and Other Nethods for the

Representation of Curved Surfaces". Cauputer Graphics and Image

Processing. 1972.

[8] Versprille. X. 1.. ”Conputer Aided Design Applications of the

Rational B-Spline Approximation Form". Ph.D. Dissertation. Syracuse

University. 1975

[9] Schoenberg. I. 1.. ”Contribution to the Problem of

Approximation of Equidistant Data by Analytic Functions". Quart.

Appl. lath. 4 (1946). 45-99.

[10] deBoor. C.. "On Calculation with BISplines". 1. Approx.

Theory. Vol. 6. pp 50-62. 1972.

[11] Cox. I. G.. "The Numerical Evaluation of B-splines". 1.

Inst. Naths. Applics. Vol. 10. pp. 134-147. 1972.

[12] Riesenfeld. R. F.. "Applicstions of BISpline Approximation

to Geometric Problems of Computer Aided Design ”. Ph.D. Dissertation.

Syracuse University 1973

138

[13] Rogers. D. F. and Adams. 1. A.. JILL-$512.11 3.1.2.3331 1.91

MW. NcGraw-Eill Book Compsny. Nev York. Nev York 1976.

[14] deBoor. C.. A 23.39.1129]. Opidg _tg Salim. Springer-Verlag

Nev York Inc.. Nev York. Nev York. 1978.

[15] Aho. A. V.. Eopcroft. 1. E.. and Ullman. J. D.. M

WM m. Addison-Iesley Publishing Co.. Reading

Nassachusetts. 1983.

[16] Beck. J. V. and Arnold. K. 1.. 29299919; Egsigntign in

W _a_1;d Sgigngg. John Iiley and Sons. Nev York. Nev York.

1977.

[17] Stunt. 6- I.. 111399999191 99 125991 11929919119119.

Acadenic Press. New York. 1973.

[18] Conte. S. D. and deBoor. C.. _Igggntgrz Enggricsl 43911111

33 W M. NcGrav I Eill Book Company. Nev York. Nev

York. Third Edition . 1980.

