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ABSTRACT
- AN ELECTRON SPIN RESONANCE STUﬁY OF

RADICALS FORMED BY HIGH ENERGY IRRADIATION
OF K2PdCl, and KpPtCly

By
Thomas Michael Krigas

All known square-planar complexes of Pt (II) and Pd (II) are
diamagnetic with a8 electron configurations and therefore cannot be
studied by electron spin resonance spectroscopy. In this work serveral
new paramagnetic species have been produced by high-energy irradiation
of solid diamagnetic compounds to give Pt and Pd containing radicals
in which one-electron oxidation or reduction has occurred. The struc-
tures of these new species have been obtained from electron spin
resonance studies. The X-band electron spin resonance spectra of single
crystals of KyPdCl, and KyPtCl, that were irradiated by y-rays from a
60co source or by 1-MeV electrons have been studied at temperatures
between 77°K and 296°K with the primary purpose of elucidating the
structure and bonding in species showing unusual oxidation states of
palladium and platinum.

Irradiation of KoPd(II)Cl, produces two identifiable paramag-
netic radicals: one is shown to be (Pd(I)Cl4)3- with a 4d? electron
configuration and the unpaired electron in a dy2.y2 orbital; the second
radical is believed to be (Pd(III)Cls)Z' with the unpaired electron in a

4d,2 platinum atomic orbital.



Thomas Michael Krigas

Crystals of KoPt(II)Cl, irradiated at 77°K show two groups
of electron spin resonance lines: one belongs to a radical that shows
hyperfine interaction with two equivalent platinum nuclei; the second
arises from a radical showing hyperfine interaction with one platinum
and three chlorine nuclei. It is suggested that these species are
{(Pt(II)C14)(Pt(III)Cl4)}3- and (Pt(I)Cl3)2-, respectively, where the
metal electron configurations are 5d15 and 5d%. oOn warming to 125°K
some of the dimeric radical is converted to a new species whose spectra
are consistent with those predicted for (Pt(III)éls)z'.

Thus, each identifiable radical contains platinum or palladium
in which the original diamagnetic, low spin, a8 configuration of the
metal ion M(II) (M=Pt or Pd) has been oxidized or reduced to form para-
magnetic species with the metal in the unusual oxidation states M(III)
or M(I). Energy level schemes for each radical are pfoposed based upon
the electron spin resonance spectra. The nature of the metal-chlorine
bonds in the new sﬁecies is discussed and the extent of covalency is

estimated by using a simplified molecular orbital picture.
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INTRODUCTION

Electron spin resonance (ESR) studies of transition metal
complexes permit the identification of the paramagnetic species and
provide information concerning their ground-state electronic structures
and symmetries.1 Complexes of the first-row transition mgtal ions in
cubic, octahedral and tetrahedral crystal fields have been extensively
1nvestigated.2 Recent work has been increasingly directed toward less
common oxidation states and crystal-field symmetries and toward problems
involving second- and third-row transition metal ions.37 Many para-
magnetic metal ions exist only as transient species and therefore are
difficult to study by ESR. Thus, the stable oxidation states of plati-
num and palladium are diamagnetic, M(II) and M(IV), having a8 and d6
electronic configurations, respectively, whereas the unusual paramagnetic
oxidation states of M(I) and M(III) with d? and d7 configurations,
respectively are unstable transient species. It has recently been shown
that high-energy irradiation of solid materials provides a method for
obtaining such unusual species and that their stability in the solid
state is often adequate to permit ESR study.6'7

In this thesis, single-crystal ESR studies of several d’ and d9
complexes of platinum and palladium are reported. These species were
produced by high-energy irradiation of the stable, a8 configuration,
square-planar, diamagnetic compounds K;PdCly, (NH4)2PdC14 and KPtCly

and have been identified from their spectra. The crystal-field symmetry,



coordination, and electronic structure of each species is discussed and

compared with related transition metal complexes.



HISTORICAL

ESR Literature Reviews

The literature of ESR studies of transition metal complexes
has been reviewed up to 1965 in the Ph. D. thesis of H. A. Kuska,8 and
three subsequent reviews by Kuska and Rogersz’g'lo have continued the
coverage up to 1971. McGarvey has written a review of theory11 and
Konig has presented a useful general survey of the subject.12

A number of books on ESR have appeared including introductory
surveys by Baird and Bersohn13, McMillanl4 and Assenheimls; there is also
an excellent textbook by Carrington and McLachlan.16 Experimental
methods including the design and construction of spectrometers are
discussed in several monographs.17'19 A more advanced text by Ayscough20
and a review by 0'Reilly and Anderson?l give up-to-date general treat-
ments of the theory and applications of ESR spectroscopy.

A comprehensive treatment of transition metal ESR by Abragam and
Bleaneyl is the standard reference work on the subject, but a shorter
monograph by Orton?2 is useful because of a number of examples of typical
calculations. Ligand-field theory has been treated by Figg1823 and
Watanabe.Z24

Both the "Annual Reviews of Physical Chemistry"25'28 and the
"Annual Reports of the Chemical Society"29»30 provide coverage of recent

literature as do the proceedings of current ESR symposia.31'35 Specific



topics are reviewed from time to time in the "Advances in Magnetic
36

Resonance' series.

ESR Studies of Platinum and Palladium Species

Platinum (II) and palladium (II) complexes have played a
prominent role in the development of coordination chemistry. For
example, the first reported organometallic compound of a transition metal
was isolated over one hundred and forty years ago by Zeise. In this
salt, K(CoH,PtCl3), Pt is bonded to the ethylene m system by both o and
L bonds.37 In 1893, Werner38 accounted for the existence of two forms
(o and B) of Pt(NH3),Cly by postulating that the four-coordinate Pt(II)
complexes were planar species and that the a- and B-forms were the trans-
and cis- geometrical isomers, respectively, as has since been confirmed
by X-ray crystallography.39’4o The trans-effect proposed by
Tscherniaevl'1 in 1926 to rationalize the results of ligand substitution
reactions in Pt(II) square-planar complexes was one of the first
successful attempts to formulate an inorganic reaction mechanism.

Because of this interest in Pt(II) and Pd(II) complexes, a
substantial effort has been made to determine the d-orbital energy level
schemes in these square-planar compounds from optical spect;r:oecopyl‘2 and
by theoretical calculations.43 The generally accepted d-orbital se-
quences in KjPtCl, and KoPt (CN)4 are, in order of increasing energy, z2
Xz, yz, XYy, x2-y2 for the chloride®2 and Xy, Xz, yz, 22, x2-y2 for the
cyanide salt, 44

ESR provides another tool for determining the relative ordering

of the d-orbital levels and at the same time provides information about



the electron spin density distribution in the ground state. Paramagnetic
Pt3+(d7) has been observed by ESR in single crystals of A1203,45’46
yttrium aluminum garnet (YAlG),47 and Ba’I‘iO3.l‘8 In each case the plati-
num had inadvertently been leached out of the platinum crucibles used to
grow the host lattices by the high-temperature flux technique. In all
three lattices, the oxygen atoms form a distorted octahedron around the
metal rather than a square-planar arrangement. ESR signals centered at

49 and palladium-

g=2.000 have been reported from palladium-doped silicon
doped KC1 crysta1950 but the paramagnetic species are not well defined.

_ The paramagnetic square-planar bis-maleonitriledithiolene (mnt)
anion complexes51 (Pt(mnt)z)l- and (Pd(mnt)z)l_, and the related bis-
chelate anion complexes (PtSaCa(CF3)4)1- and (Pd54C4(CF3)4)1-, have also
been investigated by ESR. There has been a considerable controversy over
the interpretation of the ESR and other data for these complexes,52 but
they probably are reasonably well represented as a’ Pt(III) and Pd(III)
species, in view of the magnitude of the 33g ligand hyperfine interaction
observed in the nickel analog,53 rather than as d8, metal-stabilized,
ligand-radical systems.54

By irradiation of diamagnetic Pt and Pd compounds with y-rays or
high-energy electrons it should be possible to produce new M(I) and
M(III) square-planar complexes in which the metal ion (M) has been re-
duced to a d9, or oxidized to a d7, electron configuration. Indeed,
Pd(I) has apparently been produced by X-irradiation of palladium-doped
powders of Mg0 and CaO,55 and recently (Pd(I)(acac)z)l- has been detected
by ESR in y-irradiated palladium acetylacetonate.56

The effects of high-energy irradiation are of three main types:

changes in valency, changes in the point group symmetry of the species,



and bond breaking. In a classic paper on the effects of radiation on
transition metal ions substituted in LiF, NaF or KMgF3, Hall et. al.6
noted that X-rays changed Fe2+(d6) into Fe3+(d5) and Fel+(d7), and in a
similar manner N12+(d8) waé converted to N13+(d7) and N11+(d9). The
scope of the irradiation method is evident in the ESR study of X-ray
irradiated single crystals of K3C0(CN)6.7 Since the original Co3+(d6)
ion is reduced to C02+(d7) while one of the cyanide-metal bonds is
ruptured, thereby dropping the point group symmetry of the anion from
octahedral, Oy, to tetragonal,C4y, all three major effects are seen in
one problem.

No d’ or d9 platinum or palladium complexes showing ligand
hyperfine interaction in the ESR spectra have been reported; irradiation
of K PtCl, and K,PdCl, accordingly was undertaken in an attempt to
produce such species in a form sufficiently stable for study by ESR.
This thesis is concerned with reporting the results of these experiments
including identification of the products, a discussion of the energy
levels and bonding in each new species, and some speculations on the

nature of the reactions occurring.



THEORETICAL

Introduction

The solution of the many-electron problem associated with tran-
sition metal complexes has not been found exactly. Most of the
important attempts to make non-empirical calculationslof the eigen-
values, eigenfunctions and physical observables for a transition metal
complex have centered on the (N1F6)4_ cluster in KNiF357'59, because this
ion is known to have octahedral symmetry, its optical spectrum has been
assigned60 and the fluorine hyperfine splitting has been observed by
nuclear magnetic resonance (NMR)61 and ESR.62

Most of the remaining ESR experiments on metal complexes have
been interpreted by the spin-Hamiltonian method of Abragam and Pryce.63
In this method a phenomenological Hamiltonian is developed that is
restricted to terms containing the electronic-spin and nuclear-spin

operators S and I, respectively, which arise in a power series of the

form

H=ZI I agy GO OO (1)
n=0 m=0

where n and m are integers. Equation (1) permits the experimentalist to
interpret ESR spectra in a relatively straightforward manner. At the

same time, Abragam and Pryce have shown how to estimate the coefficients



apm (usually tensor quantities) in terms of basic physical interactions
such as the crystalline electric field, spin-orbit coupling, Zeeman
energies, nuclear hyperfine splittings and quadrupole interactions. The
basis of the calculation is to reduce the total Hamiltonian into segments
according to the energy associated with each segment. Then, a sequential
series of perturbations is performed in order of decreasing energy of the
segments. Low®4 gives typical energy ranges for the specific inter-
actions as: potential and kinetic energy ~105cm-1, spin-orbit coupling
%102-103cm“1, crystalline electric field m102-104cmf1, electron spip-spin
interaction ~lem~l, nuclear hyperfine splitting ~10"1-10"3cm~! and
nuclear quadrupole effects ~10™3em™ 1,

In this thesis, the crystal-field approach65 will be followed.
The ligands will primarily establish the symmetry and magnitude of the
electric field. However, the magnitude of the field will be treated as
an adjustable parameter since the optical spectra of the radicals pro-
duced by irradiation were not measured. The crystal-field basis set will
consist of the real metal 4d, and 5d atomic orbitals for Pd and Pt,
respectively, neglecting the closed shells. The physical picture is
that of a free metal ion perturbed by its nearest neighbors. Although
this is only an approximation, the crystal-field technique has proven
valuable in the past for determining the ground state electronic
structures of paramagnetic species based upon their ESR Spectra.3’6’7’66

The possible d-orbital energy level schemes in (PdCla)z“ and
(PtCl4)2', displayed in Figure 1, can be predicted by considering
symmetry arguments. In a six-coordinate octahedral field, the five

independent d orbitals split into a lower-energy triplet, t2gs and a

higher-energy doublet, eg, where the doublet is composed of the d,2 and
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dx2-y2 orbitals whose electron density is directed at the ligands;
therefore, the doublet is destabilized by electron repulsion relative to
the triplet. As one mentally removes the two imaginary ions situated
along thé positive and negative z axis, the d;2 and dg;, dyz orbitals are
reduced in energy relative to dy2-y2 and dxy. The only point to be
determined is to what extent d;2 and dyxz, dy; are stabilized. The three
possibilities that result as this tetragonal field increases are shown
as cases A, B and C in Figure 1. As was pointed out earlier, case C
gives the correct energy-level ordering for the parent (PtCla)z_ and
(PdC14)2- ions.42

It seems probable that ESR investigations of the irradiated
parent ions will usually only detect the paramagnetic species formed by
a one-electron oxidation or reduction of the initial d8 configurations to
produce d’ or d9, respectively, since any other metal radicals would have
to be created as a result of a less probable three-electron change. It
is also expected that the strong crystal field in the Pt and Pd complexes
will require that the radical species have S=}. Therefore, neglecting
the small nuclear quadrupole and Zeeman terms, the spin-Hamiltonian that

one would expect to apply is

=
]
2
ool
wnl
+
wi
=
=
=
-+
0l

LI (2)

where B is the electronic Bohr magneton, and the electronic Zeeman term
is linear in both magnetic field and electron spin, while the electron- |
nuclear hyperfine interactions may be observed for both metal (ZM) and
ligand (KL) nuclei. Vector quantities are indicated by a single bar over
the corresponding symbol while second-rank tensors are indicated by a

double-bar overline throughout the thesis.



11

The remainder of the theoretical section will explore the
crystal-field calculation of the g and AM tensors consistent with either
a d’ or a? configuration and with the three possible axially-elongated
tetragonal field energy levels of Figure 1. The ligand hyperfine inter-

action tensor, Aj,, will be treated by the molecular orbital approach.
Spin-Orbit Coupling

The metal ground state is subject to admixture of various
excited states by spin-orbit coupling. The spin-orbit Hamiltonian is

given by

Hs = L Cifi°si (3)
i

where 7{ is the one-electron spin-orbit coupling constant (always a
positive quantity), %4 and sj are the one-electron orbital and spin
operators, respectively, and the sum is over the i valence electrons.

The eigenfunctions of s2 and S,, where S is the total spin of the system,

6
are written as |nS@> 7 such that

SZInSm>

Sz|n8q>

S(S+1) | nSmy
(4)

m|nSnD

where m is the quantum number for the projection of S along z and n
specifies information about the radial properties and the orbital angular

momentum. The first-order energy correction to the ground state due to

the spin-orbit coupling is
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Epg =12 @Sml ciii-Ei |OSm> (5)
{ .

where IOS@> is the ground-state function prior to the spin-orbit inter-

action. The modified ground-state wavefunctions are

[a0Sm = [OSmy + L & % @s'm' |Hy5|05m) [nS'mD (6)
nm' i Eo-En

The second-order energy correction is of some considerable

interest in the ESP of systems where S>1. One obtains

5T <b5m|cizilsillns'maﬂ<ns'mv|Ciziksik|08d> 7
"4 1’k=x)y’z EO-EH

Eg=1IC
n m

which may be identified with the spin-Hamiltonian term
E2 o = §D-5 (8)
LS ’

that is, an expression, quadratic in spin, where D is a symmetric tensor.
In the lower symmetry, strong crystal fields that often occur in the
second- and third- row transition ion complexes, orbitally non-degenerate
ground states are the rule. The electrons fill the metal orbitals with
spins paired, but if there is an odd number of electrons the highest
orbital will contain a single unpaired electron and the paramagnetic
species will have S=); thus, Equation (8) should not be needed in this
thesis since D, the dipolar interaction between two unpaired electrons,

is then zero.
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For a centrosymmetric atom68 the spin-orbit interaction is

¢ (rg) 2q°sy = 282 (LA §yo5 (9)

' ry orj

where Vi is the potential arising from the interaction of the ith
electron motion with the nucleus and other electrons, and r is the inter-
particle distance. Although many of the common crystél fields are

considerably lower in symmetry than spherical, the factor cl..E!i

ri{ or

is proportional to Z/ri3 and this latter term is large only inatie region
close to the nucleus where the field is nearly spherical and the simple
form of Equation (3) can be used.

In complex ions the unpaired metal electrons can be found in
the vicinity of the ligand nuclei, a fact confirmed by the observation
of ligand hyperfine splittings. These splittings are one of the prime
reasons that molecular orbital theory has been used to treat the bonding

in transition metal complexes.69

In this theory, molecular orbitals are
constructed from metal atomic orbitals, |¢n>, and ligand group atomic
orbitals, |¢L>g which transform in the same irreducible representation.

The modified ground-state wavefunctions of Equation (6) will include

terms having the following integrals7o

oulzititsgloy) . (10)

The Z/r3 dependence of 7y means that the ligand spin-orbit coupling
constant must be used in the integrals of Equation (10). The net effect

in a molecular orbital description is to introduce terms in the g value
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that depend upon the ligand spin-orbit coupling constant, especially if
L1, *CM. An extreme example of the ligand spin-orbit coupling influence on
the g values can be found in the ESR study of (M(V)Oxs)z- where M=Cr, Mo
and W and X=F, Cl and Br.’! When X 1s fluorine, gl| <gL, but when X is

71 attribute the re-

chlorine or bromine, gl | >gL. Manoharan and Rogers
versal in order of the g-tensor elements to the increased contribution of
CL in the case of the heavier ligands. For the Pd and Pt radicals
discussed in this thesis gy is considerably larger than Zc3=550 cm-1 so
neglect of the ligand contribution should not alter the relative order of
the g-tensor elements.

In 1955 Owen72 noted that Zy for metal ions in complexes is
approximately 20-307% less than the corresponding free-ion value. He
ascribes the reduction in gy to the d-electron delocalization in the
molecular orbitals since the Z/r3 dependence will be reduced as the
electron orbital is expanded.

With CMGZ/r3 it is clear that a reduction in Z will also pro-
duce a reduction in gy. Murao’3 correctly predicted that charge donation
by the ligand to the metal in the bonding molecular orbitals would lower
the effective charge, Z, by partially screening the antibonding electrons
from the nucleus. Such effects will be more important for the first
members of a transition row because their fy values are more strongly
dependent on charge. Thus the results of extended Huckel molecular or-

69a carried to a self-consistent charge invariably show

bital calculations
that substantial electron density is transferred from the ligands. As an
example, a calculation of charge-transfer effects in (Cr04)3- indicates
that the metal charge 1is closer to +2 than to the formal charge of +5.74

In a similar manner, the two Huckel calculations of (PtCl4)2— 43 both
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find that the platinum ion probably has a charge close to +l1. 1In the
absence of the correct value for the metal charge, it 1s difficult to
decide which free-ion value of fM to use in ESR calculations.

Hazony75 has recently discussed the radial dependence of the 3d
wave funétions of iron complexes based upon Mdssbauer and ESR experi-
mental spectra. He concludes that the t2g orbital triplet in octahedral
symmetry undergoes radial expansion as the metal ion undergoes complex
formation, whereas the eg orbitals contract. Moreover, the degree of
radial expansion or contraction is a dynamic preperty that depends upon
the internuclear metal-ligand distance and the degree of covalency. As
covalent bonding increases, the expansion of the tog orbitals becomes the
dominant effect. In any event, tﬁe r~3 radial dependence of ryM suggests
that a somewhat different fM is appropriate for each separate type of d
orbital in a complex.

It is common practice in the analysis of ESR data to take the
free-ion value of gM corresponding to the formal oxidation state of the
metal. In the case of the radicals produced in irradiated KpPdCly and

K2PtCly, one could use the free-ion ¢ values of 1416 em™! and 3368 em™1

1+ 1+

for Pd and Pt~ ', respectively, since charge donation from the ligands

will produce metal ions with approximate charges of +1. The above values

76 and are

of ¢M were calculated from the optical data compiled by Moore
based on the Russell-Saunders LS coupling scheme .%9 However, in this
thesis fM will always appear in a perturbation coefficient of the form
(z/AE) where AE is a d-d energy separation. Because the optical spectra

of the radicals are unknown, and in view of the difficulties noted above

in selecting ¢, the (Z/AE) terms will be treated as adjustable parameters.
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g Values

The spin energy of an electron with a magnetic moment, i, in an

external magnetic field, H, is

E=-uH . (11)

The fact that an electron has both spin and charge requires that

the magnetic moment be proportional to the spin16, ie.,

W = -gBS = - y(h/2m)S (12)

where (h/2n)§ is the spin angular momentum, B is the electronic Bohr
magneton (|e|h/4nmc), e is the electronic charge, g is the spectroscopic
splitting factor and the negative sign demonstrates that the negative
charge of the electron causes the spin and magnetic moment to be oppo-
sitely directed. The quantum mechanical analogue of Equation (11), with

the magnetic field in the z direction, is

H = gBH,S, . (13)

The eigenvalues of Equation (13) are

E=&'n'[H;|Sm) = gBHmSg'gm'm (14)

where 6g'g 1s the Kronecker delta; §g's = 0 1f S' # S and 8g's =1 only

if S' = S.
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The resonance experiment is performed by inducing transitions
between the energy states of Equation (14) by means of an oscillating
microwave magnetic field which is usually oriented perpendicular to the
applied static field. From time-~-dependent perturbation theory67, the
transition probability for induced emission or absorption is proportional
to the square of the matrix element of the magnetic dipole moment between
the states of Equation (14). The perturbing Hamiltonian for the micro-

wave field acting on the magnetic dipole is
H = -uxHy cosut |, (15)

where t is the time and w is the oscillation frequency of the microwave
field, Hx. If the value of py from Equation (12) is substituted into

Equation (15), P, the transition probability, becomes

P |(S'm'|gBHy cosmt(§i;i§:)|$@>|2 , (16)
2

where Sy has been replaced by its equivalent ladder operator.67 Then

carrying out the indicated operations one obtains

P« gzﬂzﬂi cosZut

{(s(s+1)-mm+1))Gn' [+ D> + (S(s+1)-m(m-1)) {n'|m-1>)
(17)

Because the spin wavefunctions |S@> were chosen as an orthonormal set,
one arrives at the ESR selection rule S' = S,m' = mtl. Thus, magnetic

resonance will be observed when the microwave frequency v is equal to the
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energy separation between the m and the (m + 1) or (m - 1) states. The

Bohr condition then gives

hv = Ep+] -Ep = gBH . (18)

Angular Variation of the g Value

In the most general situation the g value is a tensor quantity.
In the principal coordinate axis system of the g tensor, the magnetic

dipole term becomes
H = B(gxxHxSx + 8yyHySy + 82zHzSz) . (19)
The evaluation of the matrix elements of Equation (19) are facilitated

by converting Sy and Sy into their corresponding ladder operators67 to

give
H = B{%(gxxﬂx-igyyHy) S+ + % (gxxHx+igyyHy)S-+ g8zzHzSz} (20)

The secular determinant®’ for an S = 4 example where |m = %) = |d> and

In = 4> |9 1s

m ™\ |G>' “3>

B
la) BezzHz _p 5 (BxxHx-1gyyHy)
2
(21)
|8 B (gxxHyHiguyHy)
7 \BxxtixT1Byylly - Bgzzllz _g
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Solution of the secular determinant yields
E =t 8/2 (bl + g2yhd + g2,0)" (22)

If H is expressed in polar coordinates with respect to the principal g
axes, then the magnetic resonance energy between the |d> and |d> spin

states is
AE = gBH , (23)

where

2

2 2 2514
vy sin® 6 sin“¢$ + g%z cos“0) (24)

g = (g)z(x sin? 6cos? o+ g

Bleaney77 has treated the angular variation problem in a slightly

different fashion. Equation (20) can be written

H = (1254 + 135_ + 1;S,) . (25)

It may be recognized that the spinor78

llsz 123+
135 -1;5, (26)

is an Hermitian matrix operator whose coordinate axis system can be

transformed by using a unitary matrix, Q, such that
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1;'S;' 12'S+' 1,8, 1,54 +
Q Q', (27)
13'8.. -ll'Sz' 13S_ -1;S,

where Q+ is the adjoint of Q. Now the transformed matrix of Equation
(27) is diagonalized along the magnetic field vector by forcing 1;' =

12' = 0. The Hamiltonian of Equation (25) becomes
H = BHI;'S,' , (28)

where 11' is identified with g and has the same value as in Equation (24).
Even though this exercise seems redundant, it is important for
two reasons: Bleaney's technique leads directly to the anisotropic
transition probability79 and, of greater interest, this same technique
was employed by Bleaney77 to find the angular variation of the hyperfine

interaction tensor in the form of an analytical function.

Zeeman Effect

The Hamiltonian operator for the total electron magnetic dipole
energy in a magnetic field is derived from the Dirac relativistic

Hamiltonian.68 The crucial terms are
L (22 3.3 5 i
=77 {e“A¢ + 2ecA+p + 2e(h/27m)co+ curl A}, (29)

where mc? 1s the electron rest energy, p is the linear momentum, A is the

vector potential and o4 (i = x,y,z), the components of o, are the Pauli

spin matrices. The vector potential of a uniform, unidirectional exter-

nal magnetic field is given by80
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A=-,XixH . (30)

After substituting this relationship into Equation (29), the resulting

expression can be simplified by vector identities to give
H = (eh/4mme) {(-2me/hc) (r2H-(T-H)T) + % + 25)}-H . (31)

The terms in the center brackets are the diamagnetic and paramagnetic
moments induced by the external field and since they are quadratic in
magnetic field strength, all of the states in the metal-ion ground term
are shifted by an equal amount and, therefore, do not contribute to the
spin Hamiltonian. The remaining expression is the familiar Zeeman

Hamiltonian
Hy = B(L + 25) *+ H . (32)

Slichter®! has shown that the orbital angular momentum is
quenched for an orbitally non-degenerate ground state (orbital singlet).
In other words, the expectation value of the orbital angular momentum

over the ground state wavefunction, |@>, is

&legley =0, (33)

where 24 is the x or y or z component of 2. When the resonance condition
between the orbitally non-degenerate spin states |q> and |d> is fulfilled

one finds that

AE = 28H, . (34)
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Comparing this result with the basic ESR equation (Equation (23)) shows
that g = 2. Indeed, most organic free radicals do exhibit g values very
close to 2, whereas the g values of most paramagnetic transition metal
complexes deviate substantially from 2. This fact is of paramount
importance to this thesis because it will be shown that the magnitude and
sign of the deviation of the g value from 2 allows one to make an assign-
ment of the ground state wavefunction.

The goal of this section is to calculate the first-order Zeeman
energies for an orbitally non-degenerate ground state using the spin-
orbit augmented wavefunctions of Equation (6). Recalling the ESR
selection rules AS = 0, Am = *1, it is obvious that one need only con-
sider the matrix elements between the components of the ground state with

different values of m. One then obtains

E, = {YOsm"|H,|a0OSm) (35)

which yields four terms, the first of which is

L I Hg (@Sm"|2ik+251k|08@> . (36)
k=x,y,z 1

If Equation (36) is recast into operator form by suppressing the matrix
elements of sji, and remembering that the orbital angular momentum is

quenched for an orbital singlet, the first term becomes

21 L Hgsik - (37)
k=x,y,z 1
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The second and third terms are equivalent and their sum is given by

21 ¢ ¢ g APk &s'm'|211511|0Sm> QOsm"|24k + 2sik[nS'm®> . (38)
1,k n m' 1 Eo=En

Retaining terms to first degree in H and S, Equation (38) reduces to

2B £ IL L LSL03 <n|211|0> <S'm' |811|Sm> <OSm"|21k|nS'm'> (39)
lk nm' 1 OE
where AEp = Eg-Ep. Equation (39) is further reduced by the ortho- |

normality of the spin functions to

28 1 11 3SR Glag | st [saalsm) Olealmd . o)
l,knm' i En

Recasting Equation (40) into operator form by suppressing the matrix

element <§'m'|sillsﬁ> one obtains

£11Hksi1
28 5 13 Qlalp Glan|d == | 41)
1,k n En

The fourth term has the form

}(li::)Z {ear+2sia ) eat2six) s (42)

which 1s quadratic in magnetic field strength and will be omitted as was
done in the reduction of Equation (31). When the first three terms are

collected (Equations (37) and (41)) and compared with the leading term in
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the spin Hamiltonian of Equation (2) the following identification may be

made

glk = 2L (6 + L I Qlog <“|21k|0>)

’ (43)
1 1,k n 8En :

where gix is the lk'th element of the g tensbr and 83k is the Kronecker
delta. This result was first obtained by Pryce82 in 1950.

It 1s possible to calculate the g tensor directly from Equation
(43), but in the case of strong crystal-field problems it is better to
perform the sequential perturbations of spin-orbit coupling followed by
the Zeeman interaction. This thesis is concerned only with S=% spin
systems so, if |é> and lé} are the doublet ground state wavefunctions,
the principal g tensor elements of Equation (35) can be equated with the
tensor elements of the phenomenological Hamiltonian of Equation (21) to

give

Bxx = 2 i <§|21x + 251x|é>

gyy = 21 I Gty + 2s1y|0) (44)
i

Bzz = 2 i <§|liz + zsiz|é> .

Sign of the g Shift

It is convenient to define a quantity known as the g shift, Agjk,

where

Agik = (B81x-2) . (45)
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From Equation (43)

sz g1 QOl2i1]n> <nleg | . 46)

1,k ni AEq

bg1k =

Although this gives the prescription for calculating the magnitude of the
g shift, the sign of the shift is unknown. It may be determined from the

following rule:21

if the excited state, E,, arises by promotion of the
unpaired electron into an empty anti-bonding orbital, the g shift is
negative; if the excited state arises by promotion of one of the paired

electrons into the half-filled orbital, the g shift is positive.

Sample g-Value Calculation

65,69

In the crystal-field approximation one needs the hydrogen-

like wavefunctions
“'nlmz = Rpg(r) Y£m2(6’¢) ’ (47)

where, as usual, n is the principal quantum number, 2 is the orbital
angular momentum quéitum number, my 1is ;he component of £ along the z
axis, R is the radial function, and the spherical harmonics Yzmz describe
the angular portipn of the wavefunction. In conside;ing the d orbitals
(2=2), the radial portion Ry is assumed to be the same for each. In
magnetic resonance one is interested in the matrix elements of the orbit-
al and spin angular momenta which are assumed independent of Rp2.
Whenever a radially dependent quantity occurs, the following type of

relationship is implied:
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gy = (81D = "R plRnprldr . (48)

In the absence of detailed information concerning the radial wave-
functions radially dependent terms are treated as adjustable parameters
to be evaluated by experiment.

In the notation for the d orbitals which will be employed in this

thesis one writes

(z2)*

(22)-

|d22,a:>

ld,2,8> (49)

where a,B are the soin function and d,2 is the spatial function. The

angular portions of the real d-orbitals are

(z2) = dz2 = dy
(x2-y2) = dx2-y2 = 1//2(d+d-))
(xy) = dyy = 1/1/2(d-d-3) (50)
(xz) = dg, = 1/V2(d;-d-1)
(yz) = dyz = -1/1¥2(d)+d-})

where

do = Y2° = V5/167(3cos26-1)
ds) = thl = /15/8n sindcosfetld (51)
dsg = Y2t2 = Y/15/32n sinZpet21¢

and z2 and d,2 will be used interchangeably.
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As an example of a typical calculation the case of a complex with
an axially symmetric g value (gzz = g||, gxx = Byy = gl), ad’ configura-
tion, S=!, the energy level scheme A of Figure 2 and the unpaired elec-
tron in d;2 will be examined. The ground state in the hole formalismb3
is (dx2_y2)2(d22). The calculation is facilitated by the use of two
tables; the first, the effect of the operator 2°8 on the d-orbital set
of Equations (50) is presented in Ballhausen's book69b; the second,
giving the matrix elements of the orbital angular momentum within the d-

11

orbital set is compiled in McGarvey's review"".

The zero-order Kramer's doublet is

|0+> = '(xz_y2)2(22)+>
[0 = | (x2-y2)2(22)7) (52)

where |d> refers to the ground state wavefunction. The first-order
improved configurational wavefunction |é> obtained by introducing the

spin-orbit interaction (Equation (6)) is

|0 = N| (x2-y2)2(22)") +ia)| (x2-y2)~ (xy)~(22)D)
~1a;| (x2-y2)t ()" (22D '%I (x2-y2)~ (y2)~ (22)*D
-1a,/2| (xz-y2)+(yz)+(zz)+> +—:3| (xz-yz)'(xZ)'(z2)+>

—ay/2| (2-y2)* (x2) (22)) %ﬁl (x2-y2) 2 (xz)~)

-1/3a3/2] (x2-yD)2(y2))> | (53)

where



28

aj = ¢/E(0) - E{(x2-y%)~(x)*(z2)")
ap = ¢/E(0) - E{(x2-y2)"(e)~(z))*)
(54)
a3 = t/E(0) - E{(x2-y2)2(e)™}
a; = t/E0) - E{(xZ-y2)* (&)t (z2)*} .

’

The orbital, e, can be either dy; or dyza t is the one-electron metal

spin-orbit coupling constant, N is a normalization constant and the

denominators are the configurational excitation energies. Normalization

gives the equation
&l = 1=n2+2a2 + a2/2 + a2/2 + 3a3/2 . (55)

The first-order |é> function is found fromAl(xz—yz)z(zz)i> in a like
manner. The Zeecman spin-Hamiltonian expressions of Equation (44) lead

to

= N2 2 _ .2 2 _ q.2
g|| = 2N° + 4aj a; + 3a4 3a3

(56)
%L = 2N2 + 6a3N + Aa% + 2ajza;, .

The obvious problem is that one has five unknowns and only three equa-

tions (including normalization). However, the perturbation coefficients,

aj, are usually small enough (>0.1) that any product of two coefficients

can be ignored. When this is done, Equations (56) become

g|| = 2N2
(57)
gJ_ = 2N2 + 6a3N .
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Since the g shift (gl:Z) is due to the excitation of an electron from one

of the filled orbitals d,, or dy, into the partially filled d,2 orbital,

yz
its sign is positive such that g_L> g” = 2, The calculated g values for
the other two possible ground states of the Pt and Pd radicals reported

in this thesis are shown in Table I with the normalization constant

suppressed.

TABLE l.-- g Values calculated from ligand field theory?

Ground State

Configuration (hole formalism) g|| %l
d’ (dx2-y2)2 (dgy) 2 - B7/AE) 2 + 2¢/AE,
a’ (dy2-y2)2(d,2) 2 2 + 67/AEq
a? (dy2-y2) 2 + 87/AE] 2 + 20/AE,

a) AE; = E(x2-y2)-E(xy); AE; = E(xz,yz)-E(xy); AEj = E(xz,yz)-E(z2)

AE4 = E(xz,yz)—E(xz-yz).

If there is a low-lying excited state not coupled to the ground
state by the spin-orbit interaction the resonance signal will be strongly
temperature dependent because of the thermal distribution of electrons
between the two orbitals. If the low-lying state is coupled to the
ground state, the perturbation coefficients, aj = r/AE, will be very
large. In this situation one must simultaneously diagonalize the crystal-
field and spin-orbit interactionc to obtain the correct ground state
wavefunctions (the g shifts will still be large but calculable).

Fortunately neither of these two cases occurs in the Pd radicals. But
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in the Pt-containing radicals the large spinjorbit coupling constant may
require a higher-order perturbation treatment. Tippens83 gives analyti-
cal expressions for the second-order spin-orbit coupling correction to
the g value. Atkins and Jamieson84 have generalized Tippens' method to

insure that the g value remains gauge invariant.
Hyperfine Interactions

Introduction

When a nucleus with a non-zero nuclear magnetic moment, Yn, is
placed in a magnetic field, ﬁ, the associated nuclear spin vector, i,
takes one of (2I+1) quantized values, I, (I-1), *+++, -I, and the energy

becomes

Hy = -up * H = -gpBpH-1 (58)

where Bp 1s the nuclear magneton, eh/4mMc (M is the proton mass), gn is
the nuclear g factor and I has all of the properties ascribed to a gener-
alized spin angular momentum.

The hyperfine energy term 5.A-1 (Equation 2) arises from the
mutual interaction between the nuclear magnetic moment and the spin-plus-
orbital magnetic moments of the unpaired electrons. This interaction may
be viewed in two equivalent ways: either the electrons produce a magnetic
field at the nucleus thereby lifting the (2I+1)-fold nuclear spin degener-
acy; or, the nucleus produces a field at the electron that adds to the
external magnetic field. From either point of view the magnetic field at
the electron, which is being examined by the ESR experiment, has (2I+l)

values. The ESR selection rules AS=0, Am=t]1 state that the quantum of
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angular momentum imparted by the microwave field is used to "flip" an
electron spin and as a result of the conservation of angular momentum I
cannot be simultaneously changed. Thus the ESR spectrum will show (2I+1)
lines of equal spacing and intensity since the nuclear energy levels are
essentially equally populated. If the electron interacts with n magnetic
nuclei of spin Ii, the number of lines becomes

n

(211+1) (212+1) =+ (2Ip+l) = = (214+1) , (59)
i=1

while the relative intensities can be found by summation. Should j
nuclei of spin I be magnetically equivalent, the combined nuclear spin

- J
vector is I = II4{ and the j nuclei produce (2jI+1) lines.

The sci:; and utility of the structural information from the
hyperfine splitting is now apparent. One can often identify radicals by
the number and intensity of the lines in the ESR spectrum. The nuclear
spin of previously unexamined isotopes can be determined or, alterna-
tively, 1f I is known, then the magnetic moment can be estimated from the

hyperfine splitting. The extent of covalent bonding may also be judged

from the magnitude of the interactions.

The Hyperfine Hamiltonian

The objective in this section will be to develop two expressions
for the hyperfine interaction. It is desirable to have a phenomenol-
ogical spin Hamiltonian (Equation 1) that will allow the spin parameters
to be easily extracted from the experimental splittings. It is also

desirable to have an equivalent Hamiltonian expression that is directly
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related to the basic physical interactions which can then be used to give
a molecular structure interpretation to the splittings. This latter
expression can also be used to identify the ground state or confirm the
identification made from the g values.

The relevant portion of the Dirac equation for a one-electron

atom in a magnetic field 1565,68

Hp = e/mc {A - P+ (h/21) § + V x A} . (60)

. The vector potential A for the nuclear dipole is given by80

A=1p x /3 (61)

where r is the distance between electron and nucleus. Substitution of

Equation (61) into Equation (60) yields

Ho = gegntty (25014 3ADE D) (62)

r 1‘5

where as before % is the orbital angular momentum for a single electron,
s 1s the spin angular momentum for a single electron and ge = 2.000.
This dipolar Hamiltonian integrates to zero for the spherically symmetric
s orbitals which is fortunate, since a singularity develops in Equation
(62) when r = ry (ro is the nuclear radius); yet, p, d and f electrons
that do exhibit dipolar hyperfine interactions have nodes in their
electron distributions at the nucleus.

The fact that s electrons show an isotropic hyperfine splitting

is attributed to the Fermi contact interaction!=22 which may be written
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He = (87/3) gegnBBnlY¥(0)|2 | (63)

where I‘I’(O)I2 is the s-electron spin density evaluated at the nucleus

(r=0) for the orbital ¥. 1In operator.form the contact term becomes
He = (87/3) gegnBBn 6(F)I‘S (64)

where the delta function requires that r=0 for the integration over the

electron coordinates. The total hyperfine Hamiltonian is

Hp = Hn + He = gegnBBy (232 4 3C DT 4 ar/3)s(®F1I . (65)
r r

Additional unpaired electrons and/or nuclei can be included in Equation
(65). If Equation (65) is expanded into its components, the result can

be represented in‘tensor form by
Hy = 5-A-1 (66)

where A is a symmetric tensor. Equation (66) is the phenomenological
expression used to interpret experimental spectra.

Abragam and Pryce63 have cast the hyperfine Hamiltonian into a
form that is more convenient for computing matrix elements. Within
states where L, the total orbital angular momentum, is constant, which
includes the ground state and lowest-lying excited states, the Cartesian
coordinates of Equation (65) can be replaced by appropriate orbital
angular momentum operatoré. The validity of this replacement 1is based

on the Wigner-Eckharttheorem.81 Proper combinations of the (x,y,z)
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coordinates are relatgd (apart fFom a constant) to the spherical harmon-
ics whose rotations are covered by the Wigner-Eckhart theorem. The
angular momentum operator equivalent must t;ansform:in the same way as
the combination of Cartesian coordinates assuming that allowance is made
for the non-commutivity of ly, ly, and 1z; for example, xy transforms the
same as }(lxly + lylx). The constant of proportionality is d;termined by
evaluating the same matrix element for both forﬁs of the operator. In
this manner Abragam and Pryce showed that the hyperfine Hamiltonian for

a single electron is

By = gegnBn <rP (11 - «G-D + g2+ G D
-3£/2(2s) (2-I) -3£/2(2-I)(2+5)} (67)

where £=2/(22+3) (22-1) is the constant of proportionality,<:r'3:>is the
expectation value of r~3 over the radial portion of Hy and k is the s-

orbital contribution to the hyperfine interaction and is defined by

K-‘?Qgﬁ : (68)
r

The utility of Equation (67) is now apparent. The involved integrals
have been replaced by simple algebraic relationships depending upon the

well-known matrix elements of angular momentum operators.

Isotropic Hyperfine Interaction

One of the most striking hyperfine interaction problems is found
in the case of half-filled d-shell ions such as high-spin Hn2+ (with con-

figuration 3d5 and ground state 6S) in an octahedral crystal field where
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no hyperfine splitting would be expected. With L=0 there should be no
orbital contribution to the hyperfine splitting while the spherical
symmetry eliminates any dipolar contribution and the absence of half-
filled s orbitals rules out splittings arising‘from the Ferml contact
term. Yet, an appreciable splitting is observed and this splitting is

87,88 of the inner s electrons. Thus, an

attributed to core polarization
unpaired d electron with its spin up + will have different electrostatic
repulsion and exchange interactions with inner s electrons whose spin is
up 4+ than with those whose spin is down + . In the conventional Hartree-
Fock closed-shell calculations the spin properties of paired electrons
are exactly equal, but opposed in sign, leading to a net cancellation of
spin density at the nucleus due to filled s shells. The Hartree-Fock

87,88 does not have this restriction,

method employed by Watson and Freeman
so that electrons with the same values of the n and £ quantum numbers but
different values of the mg quantum number are allowed to have different
radial wave functions. The result is that the s-orbital core electrons
may be polarized to give a net spin at the nucleus which has a sign
opposed to that produced by the unpaired d electron. Any spin density at
the nucleus contributed by s electrons in the valence shell, or further
removed from the nucleus than the d level, yields a core polarization
term of the same sign as that of the unpaired d electron. Although these
spin density differences are quite small, the contact hyperfine inter-
action for a single s electron is very large and produceé isotropic
splittings which usually dominate the observed metal hyperfine splittings.

As a measure of the core polarization, the parameter x is defined

as the unpaired spin density at the nucleus per unpaired electron:

x = 41/25 (|64 |2 - |647(0)|%)
i (69)
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where |¢i+(0)|2 is the positive spin density (m=+5) in the 1th 5 oribtal

evaluated at the nucleus and S is the total spin of the system. Pre-

dictions of ¥ andﬁ<&’3:>by spin-unrestricted Hartree-Fock calculations8’,88

have been quite successful despite the fact that x is the sum of several
large terms which may have opposite signs. This success is particularly

surprising since the calculated metal hyperfine interaction energies are

approximately 10~2cm™1

approximately 10%cm~1.

, while the total energy of the complex ions is

McGarvey89 has summarized the experimental trends among values of
x. He shows that x gradually decreases across a transition series from
-2.0 atomic units (au) to -3.4 au as one goes from a 3d1 to a 3d° con-
figuration. Similarly x runs from -4.0 to -9.0 au across the 4d series
and from -10 to -15 au across the 5d series. Experimentally x is related

to ¥ by (see Equations (68) and (69))
K <r"3> = -(2/3)x . (70)

A number of workers have shown that « is relatively constant for a given
metal ion in a variety of complexes. However, as the complexes become

more covalent the unpaired electron becomes more delocalized and <r"3>

decreases while X approaches zero, a result supported by McGarvey'589

compilation. This linear correlation of X with covalency is observed for

dl, d3, dS and d7 configurations.

2+

In the case of the a? configuration, particularly Cu“’ complexes,

the linear correlation of x with covalency breaks down implying that x is

90,91

not constant?0,91,  Kuska et al. attribute the lack of correlation

in copper complexes to a small admixture of 4s electron density into the



37

ground state. They believe that molecular vibrations reduce the symmetry
restrictions which prohibits direct mixing of 4s with the dx2_y2 ground state

orbital. On the other hand, McGarvey89

says that spin density is induced
into the 4s copper orbital by exchange interaction with the ligands.
Recently McMillan92 has discussed the contribution to the metal
core polarization induced by unpaired spin density on the ligand nuclei
which will increase with increasing covalency as one goes from the 3d to
the 4d to the 5d transition series and as sigma bonding between metal and

8

ligands increases. Therefore, ions with d9 or d° configurations, or a

strong-field d7 configuration, where the unpaired electrons are in pre-

"anomalous" core polarization

dominately o-type orbitals will experience
and X cannot be easily correlated with covalency.

In certain point-group symmetries, it is possible for one of the d
orbitals to belong to the totally symmetric irreducible representation as
do the s orbitals. Mixing can then take place between the nd and (n+l)s
orbitals and, as noted earlier, spin density in s orbitals in the valence
shell (or beyond) will cause ¥ to become more positive. For example, (Co(II)
phthalocyanine),65 which has a low-spin 3d7 configuration of D}, symmetry
with the unpaired electron in a (3d;2 +4s) hybrid orbital, has an isotropic
hyperfine field at the nucleus of x>+2.2au where as the great majority of
3d" ions have negative values of x clustered about a value of -3 au.

The reason for the extensive discussion of x is that in this
thesis two of the three possible ground states of the Pt and Pd radicals
have either d° or low-spin a’ configurations. Since the molecular
orbitals containing the unpaired electrons form o-type bonds with the

ligands, these ground states are the ones most likely to exhibit

"anomalous" core polarizations. The consequences are: (1) the magnitude
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and even the sign of x cannot be assumed to agree with that calculated
from spin-unrestricted Hartree-Fock calculations for the metal ions since
those are based solely on d" core polarization; (2) the inability to
interpret X restricts the use of hyperfine splittings to assign the
ground states of the radicals; (3) x (or k) cannot be used to estimate
the degree of covalency. Because the i1sotropic hyperfine splitting, as
measured by -gegnfBn <r'3> k in Equation (67), does not necessarily
follow changes in <r‘3>, the hyperfine Hamiltonian in this thesis will be

written

Hy = -k(5-I) + P{(2-I) + £2(2+1) (s-1)
- - - (71)
-3/2g(2-8)(2-I) -3/2E(2-I)(L+s)}

where P = gagnfBn <r'3> and k now has units of energy. In the ESR
literature of transition metal complexes, energies are usually expressed
in units of em~l. To find X in atomic units from « (cm_l) the following

equation89 is used:
x(au) = -3/2(hcal/gegnBBn)x (cm~1) (72)

where ag is the Bohr radius.

Analysis of Metal Hyperfine Interactions

For transition metals Equation (71) may be transformed by putting
£=2/21 since, for d electrons, £=2. In the crystal-field approximation,
<:r’3>h is assumed to have the same value for all of the valence d elec-

trons and one obtains
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Hy = -x(s-I) + P2 + a/7)°1 (73)

where a = 43 -(E-g)i - 2(2+8). The relationship between the experimental
principal A values (Equation (66)) and the principal values of Equation
(73) can be determined by examining the corresponding matrix elements

between the ground state spin wavefunctions |a> and |B>

<0|AzzIzSz o)

<a|-KSZIZ+P(9,z+az/7)Izla> (74)

and

Azz/2 <a|Iz|a> <al—|<sz+P(5Lz+az/7)|a> (aIIz|a> (75)

or

Ay, = -« + 2P <a|22 + az/7|a.>
and similarly
Axx = -k + 2P o]y + ax/7|B)
(76)
Ayy = -« + 2iP $aley + ay/7]B) .

The calculated hyperfine splitting values for the three possible ground
states of the Pt and Pd radicals studied in this work are reported in
Table 2 based upon an axially symmetric hyperfine interaction tensor

(Azz = Al|» Axx = Ayy = Al, where the unique axis is z). The ground state
wavefunctions |o> and |B> are the same spin-orbit augmented functions

used earlier to calculate the g values reported in Table 1.
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Covalency from Metal Hyperfine Splittings

McGarvey89 has presented the molecular orbital (MO) theory for
the Cu2+, 3d9, 2D ion in a square-planar complex of D4 symmetry. The

pertinent antibonding orbitals are

10> = aldx2-y2) - o' |4y, (x2-y2))
|7 = 8ldyy) - 8'6pGy)) (17
I'"1> = Bl|dxz’yz> = Bi|¢L(x2.y2)>

where the ligands lie along the *x and %ty axes. The I&} orbital contains
the unpaired electron and ¢L(x2-y2), ¢1,(xy) etc. are the symmetry-adapted
wavefunctions constructed from linear combinations of ligand atomic
orbitals. The square: of the coefficients represent the electronic spin
density in that atomic orbital. 1If a2 = a'z, the covalency is maximized

since the electron spends equal time on the metal and ligands. As a?

+1,
the electron is more nearly localized on cu?* and the bonding is more
nearly ionic. The value of a2 can exceed unity depending upon the value

of the overlap term found on normalization, eg.,
1=0a4+a'? - 200's (78)
where S is the group overlap integral.

The ESR spectra of the Cu2t complexes can be fitted to the

following axial spin Hamiltonian:

H = g||BH,Sz+g| B(HxSxHtHySy) + A||1z5z+A| (IxSxtlySy) (79)
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which gives

Al| = -« -(4/7)a2P+Ag||P2|l+(3/7)A§l?§L
. A| = -« +(2/7)a2P+('11/14).AglPZJ_
z|| = a8}{aB) ~a'8;S-4a’ (1-62) 1 (n))
2| = aB'loB ~a'BS-(1//2)a" (1-82) *T(n)} (80)
s = <dx2_y2|’¢L(x2-y2)> |
T(n) = ﬁ-(l-nZ)*fa'o’Rs<zpzs)5/ 2(26-2p) / (2g+2p)3

Ag” = g” - 2.0023

A%L = gL - 2.0023

where Z, and Zg are the effective charges for p and s electrons on the
ligand, R is the metal-ligand internuclear distance and n? is the
fractional p character of the ligand orbitals making up ¢L(x2-y2). Often,
as in the case of the Pt and Pd radicals, there is a lack of good wave
functions, information about effective charges, spin-orbit coupling con-
stants and excitation energies which prevent one from using the complete
expressions of Equations (80). McGarvey points out that by setting Z|| =

%l = ] Equations (80) reduce to the much simpler pair

Al = -« +P(—4/7a2+Ag||+3/7Ag1)

81)
A| = ~x +P(2/742 + 11/148g]) .
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Fortunately substitution of experimental values of A||, Aif Agll’ A%l
into Equations (81), along with a value of P based on <r'3> from unre-

2 and k(or x)

stricted Hartree-Fock calculations, leads to values of «
that are substantially the same as result from more extensive treatments

employing Equations (80).

Angular Variation of the Hyperfine Splitting1’93’94

For a microwave frequency of ~10,000MHz (X-band), the Zeeman

energy is
E/hc = 0.3cm™ 1 . (82)

Using the point-dipole approximation, the hyperfine interaction energy

is about

E/hc « (BBn/hcr3) = 0.004cm™ ] (83)

o
where r is taken arbitrarily as 0.5A. In terms of magnetic fields, the
external field at X-band when g=2 is approximately 3600 Gauss at reso-
nance. Again, within the point-dipole approximation (r=0.SX), the
magnetic field at the nucleus due to the electron is
H, = 8/r3 = 80,000 Gauss (84)

while the field at the electron due to the nucleus 1s

He = Bn/r3 = 40 Gauss . (85)
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These observations illustrate the so-called high-field approximation in
which the larger energy Zeeman term is diagonalized with the electron
spin quantized along the external field. The smaller hyperfine term is
treated next with the nuclear spin quantized along the resultant magnetic
field which 1is primarily due to the field produced by the electron.

Consider the following Hamiltonian:

fas])
ooll
wnl

Hz = BH- (86)
If the unit vector n along the external magnetic field direction (ﬁ=Hﬁ)
has direction cosines cosasinB, sinosinB, and cos B with the {(x,y,z)

principal axes of the g tensor, then the energy eigenvalues are

E = gBHm (87)

where m 1s the projection of S along the magnetic field direction and

2usin2g + g2 sinasin?g + ggzcoszﬁ (88)

2 _ (2.5v(S.3Y = o2
g = (n-g)(g'n) = 8%xCOSs vy

and one obtains (2S+1) equally spaced levels of interval gfH. Since the
experimentally determined g tensor will always be positive and symmetric,
no information is lost by dealing with the gz tensor. The orientation of
the g-tensor axes 1s not usually known beforehand so one chooses a right-
handed Cartesian coordinate systeﬁ (1,2,3) located in the crystal (often
the crystallographic axes). Then the unit magnetic field vector n has
direction cosines cos¢sinf, sin¢sinb and cos0 with the chosen crystal

2

axes and g© becomes
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2 2 2 2
g° = 8in“0(Gjjcos“¢ + 2Gjosindcosd + Gosin“¢)
+ 2sinBcosB(Gj3cosd + Gy3sing) + G33c0926 (89)

where the Gjj are the g2

~-tensor elements in the (1,2,3) axis system.

To evaluate.the tensor it is usual to perform three mutually
perpendicular rotations of the crystal in the magnetic field and if the
three rotations are made about the orthogonal crystal axes (1,2,3) one
obtains

g2 = Gppsin2e + 2Gp3sinbcosd + G33cos26

for rotation around 1, since ¢ = 7/2 and H is in the 2-3 plane;

2 2

g° = Gy1 sin“6 + 2Gy3sinbcosb + G33c0329 (90)

for rotation around 2, since ¢ = 0 and H is in the 1-3 plane; and
2 = gypsin? + 2 2
g 118in“¢ + 2Gj3sindcosd + G2sin“¢

for rotation around 3, since 6 = m/2 and H is in the 1-2 plane. As

Schonland94 has noted each of these equations is of the form

g2 = aj) + B} cos20] + y) sin26, D

(for rotation about axis 1)

where
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aj = 34(G33 + G22)
B1 = %(G33 - G22)
Y1 = 623
with similar results for the other two rotations. As the magnetic field

makes its excursion there will be a maximum and a minimum in 32 in each

of the three planes. If gi and gg represent the extrema in each plane,
there result six equations in the six independent tensor elements Gij°

In each plane two unique parameters arise

a = k(g2 + g2)
(92)
8 = %(gﬁ - g
and it may be shown that the g2 tensor elements are
Gi1 = (a2 + a3 - al)
(93)

Gyp = *{(63 + a1 - a2) (63 - a; - az)}% .

Cyclic permutation of the indices will give the other four elements.

The g2 tensor can be diagonalized by an orthogonal (similarity)

transformation to.give the principal values 8§x’ g%y and ggz as follows:

3
L (lkicijljk = gﬁkcij) (94)

»J=1

where (1p4) = (lik)m1 are the orthogonal direction cosine matrices re-
lating the experimentally chosen crystal axes (1,2,3) to the principal g

axes (x,y,z), and 614 1s the Kronecker delta,
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If the Hamiltonian now includes the hyperfine interaction, and
the principal axes of the hyperfine tensor coincide with those of the g

tensor, then

H = BH(n1gyySx + N28yySy + Nn38;;5z)

+ AxxSxIx + AyySyly + Az;S,I, (95)

where H = nH. In the high-field approximation, S is quantized along H

to give
H = gBHS) + (1/g) (n1gxxAxxIx + n2gyyAyyly + n3gzzAz,I2)S,  (96)
where g2 = n%gxx2 + n%ggy + n%ggz. Then I is rotated to quantize I

along S to give

H = gBHS) + AS;I @7
where
2,2 _ 22 2 2.2 ,2 2 2
8°A" = nigyx Akx + nByyAyy + n3g%zAzz . (98)

The important result is that to extract the principal hyperfine tensor
elements the experimental tensor g2A2

2,2

must be diagonalized and one there-

2

fore treats the g tensor in the same manner as the g tensor (Equa-

tions (89)-(94)) above. Thus, following the three orthogonal rotations,
g2 and g2A2 (with A expressed in energy units) are both plotted versus

the angle of rotation. From the extrema in both plots one can obtain the

principal values of g and A.
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When the hyperfine splitting is relatively large the off-diagonal
elements in SiIi must be considered. The second-order perturbation
treatment of the problem of an axially symmetric radical is very useful
for interpreting the experimental results of this thesis. The solution
given by Bleaney77 is presented below for a radical with S=) and the

selection rule Am=%1, Am;=0.

2

A
AE = hv = gBH + Amp + (ATI'FA-T-)( J. ){I(I+1)-m§}

4A2¢

2 2

Ay -A
+ |' l. gllgl- sin229 mi (99)
8A2G gz
where
G = gBH

2

g = gflcosze + gj sin26

2,2

g A" = ngAIzlcos2

2,2 . 2
6 + %lfl?in 0
6 = angle between the unique molecular axis and the magnetic field.

Although the (2I+1) hyperfine lines are no longer equally spaced, the
energy difference between the my; and -my components is simply 2Amy. That
is, the second-order effects can be eliminated by measuring the separa-
tion between the imy lines. The more difficult problem of non-coincident
principal axes for g and A is not amenable to closed form solution, but

is discussed in Abragam and Bleaney's bookl.
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Sign of the Hyperfine Splitting

Because experimental hyperfine tensor elements are determined
as Aii, the signs of the elements are lost. Fortman's Ph.D. thesis95
describes a method for establishing the signs by use of a model system
in which the nucleus and unpaired electron(s) are considered to be point
charges and simple magnetic dipoles. There is an easier technique to
determine the signs of the hyperfine tensor elements which will be em-
ployed in the present work. As an example, if the hyperfine tensor is
axially symmetric there will be two experimental principal tensor ele-
ments usually, designated AII and QL, either of which can be positive or
negative thereby creating a total of 22=4 possible sign combinations. If
each of these combinations 1is substituted into the theoretical expres-
sions given by Equations (76) one obtains four sets of values for x and
P. The correct sign combination will be that giving the value of P
agreeing most closely in magnitude to the value of P which has been cal-
culated for the free ion by the Hartree-Fock method, and has the correct
sign. This technique for determining the signs depends upon the proven
ability of the free-ion Hartree-Fock calculations to predict observables

accurately, particularly <r'3> for the 3d87, 4d88 and 5 transition

metal ions.

Ligand Hyperfine Interactionsl’85

Ligand hyperfine splittings provide the most striking demon-
stration of covalency in transition metal compounds and also provide the
best criterion for finding the extent of covalent bonding. There are two
alternate theories for picturing the ligand hyperfine interaction. If

one examines an isolated metal-halogen bond composed of two paired
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p-electrons on the ligand and one'unpaired electron on the'metal, the two
approaches may be compared.
In the molecular orbital (MO) approach two orbitals ¢A and ¢p are

constructed:

$p = N, (d-Ap)
and A A (100)
¢g = Ng(p+Bd) .

The lower energy p electrons on the ligand constitute the major component
of the bonding orbital ¢g while the singly occupied antibonding orbital
¢5 1s largely the metal d atomic orbital. N, and Np are the normalizing
coefficients (Np=Ng=1l) and A and B are small admixture constants. After
bond formation the bonding orbital drops in energy below that of the
original atomic p level and the antibondiﬁg orbital is raised in energy
above that of the atomic d level, but the net energy of the system is

lowered. Normalization gives

Ny = (1-2A5+A2)

(101)
Ng = (1+2Bs+B2)?
where S = <d|p> . The orthogonality condition yields
{4519) = 0 = B-A+s-ABS (102)

and by neglecting the small term ABS, one obtains

A= B+S . (103)
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There 1s a fraction N%(B2+BS) of two electrons transferred from
the negatively charged ligand to the positively charged metal via the
bonding function ¢g. A fraction Ni(AZ-AS) of one electron is transferred
in the opposite direction via the antibonding orbital to give a net
electron transfer Ni(Az—AS) from p to d. Since the orbitals with spin
up 4+ are each singly occupied, the only measurable electron transfer is
that associated with the bonding electron with spin down +, or alterna-
tively with the antibonding hole with spin up 4. Because the hyperfine
interaction drops off as 1/r3 the overlap contribution is small and the

fractional spin density transferred to the ligand is
£~ a2 . (104)

That is, the transferred spin is just the square of the antibonding
ligand coefficient.

In the configuration interaction (CI) approach the ionic ﬁature
of the complex is emphasized. The ground state is considered to be

(M+n)(L') and the wavefunction is a many-electron Slater determinant
I+t
vg = (3)|ppd| (105)

where the spin 1s represented by the superscript + or - for m = )%, A
small amount of the excited state consisting of (M“'l)(Lo), where the
ligand has completely transferred one electron with spin down + to the
metal, is admixed into the ground state by configuration interaction

leading to a new wavefunction

¥Yg = N(¥g + CY¥e) (106)
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+—+
where N1, C is small and ¥, = (3)8|pdd|. The fraction of unpaired spin
on the ligand is

£ = c2N? (107)

a result that is formally analogous to the MO method.

In the past decade, the relative merits of the molecular orbital
and configuration interaction methods have been explored by performing a
host of non-empirical calculations on the (N1F6)4— "cluster" ion. 1In the
"cluster" ion approximation, the remainder of the crystal is ignored
except in that it creates a Madelung-type electrostatic potential at the
ion. Table 3 gives a comparison of the 10Dq, f5(%) and fg(%) values
determined experimentally with those calculated from the crystal-field
(CF), molecular orbital and configuration interaction theories. 10Dq for
(N1F6)4_ is defined as the energy separation between the ground (t6e2)3A2g

state and the first excited state (t5e3)3T28.

TABLE 3. -- Comparison of calculated with experimental parameters for
(NiFg) 4~

Method 10Dq(cm°1) fq(%) fg (%) Reference
Experiment 7250 3.8 0.5 (1963)60,61
Calculated CF 1514 (1970)37
Calculated CF -3572 (1971)38
Calculated MO 2800 1.0 0.3 (1964)97
Calculated CI 5400 2.9 1.0 (1966)98
Calculated MO 6089 4.8 0.4 (1970)57

59
Calculated MO 7210 3.3 0.4 (1971)
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The crystal-field calculation gives values of 10Dq too small and
can even reverse the known energy levels. Earlier calculations seemed to
favor the CI app&oach over the MO technique. However, larger and faster
computers have allowed workers to include the closed shell orbitals, to
calculate directly the energies of excited states and explicitly include
three- and four-center integrals. Thus, recent MO calculations have shown
good agreement with the experimental observables. The successful MO
calculations are appealing to chemical intuition because complexes such
as the dithiolate compounds,53 where = 50% of the unpaired spin density
is on the ligands, are difficult to picture in the CI framework. Also,
the bulk of experimental ESR results has been analyzed by the MO tech-
nique; therefore, the MO scheme will be followed in this thesis to

analyze the ligand hyperfine splittings.

Sample Calculation

The analysis of ligand hyperfine splittings in the complex ion
(PdCl4)3- will serve an example. The ion is assumed to have the same
square-planar arrangement of chlorines about the central metal atom as in
the parent (PdCl4)2— ion. The ground state in D4} point-group symmetry
should be (d47)?B; with the unpaired electron in the dy2-y2 orbital. A
metal coordinate axes system (XYZ) for this radical is defined so that
the Z axis is the unique C, rotation axis. Each chlorine nucleus is
assumed to have its own local right-handed Cartesian coordinate system
(xyz) with each x axis directed toward the metal atom (Figure 2).

The blg antibonding orbital containing the unpaired electron is

b1g) = alx®-y2> - k' |oj-ogtos-o, D (108)
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where the chlorine o orbitals are

lo;> = n|3pxy + (1-n2)%]38)y . (109)
Normalization gives
1 =02+ a'? - 4aa's (110)

where S is the overlap integralg(xz-y2|01>h
The ligand hyperfine spin Hamiltonian for the o orbitals is

expected to be axially symmetric with the x axis being the unique axis:
HL = A' ISxIx + Al(Sny + SzIz) . (111)

By symmetry, it is possible to focus attention on one of the ligands and
simply multiply the spin density obtained for that ligand by four to get
the total transferred spin density. The expectation value of Hj, for blg

retaining only those terms containing o, is

2 Y
biglplbrg) = —aa'{x2-y2|Hy o)) + %'<°1|HL|°1>+ 'jzz %' oylHL]o1

(112)

The third term, involving integrals of Clj} with the other three chlorine
nuclei, is dropped because the r-3 dependence of the hyperfine splitting
makes the term vanishingly small. The first term would be dropped for
the same reason except that the coefficient o is large; that is, the
majority of the unpaired electron density resides on the metal. To the

ligand nucleus, the spin in dy2-y2 appears to be concentrated at the
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metal nuclecus and the interaction behaves as a direct dipole term which

can be written
Hd = Ad(ZSxIx"Sny-SZIz) (113)

where Aq = ggnBBp R™3 and R is the metal-ligand distance. The second
term is evaluated with the hyperfine Hamiltonian of Equation (71) where
=1, &£=2/5, P=gegnBBn<x'3>3p for a chlorine 3p electron and the (2-1)

contribution is zero for an orbital singlet. There results
Hy = -x(s-1)-3/5P{-4/3(s-I)+(2-5) R-I)+(2-I) (2-5)} . (114)

The components of the second term for S=X% are

12 2
<§1+|(HL)x|clf> ='% <§1+|{(n+1)x+ ﬁ%— P}stx|01£>
12 2
Grlapylod =7 Gplim?-e- 2% P)syly |01 (115)
a'? 2n2
<01'| (HL)z|°1+> =% <01"|{(n2-1)l<- 5 P}szIz|01+>

If one adds the direct dipole term of Equation (113) to Equation (115)

and compares corresponding elements with the phenomenological Equation

(111), one finds

Al| = As + 2(Ap + AqQ) (116)

Al = Ag - (Ap + AD) ,
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where

(117)

A|| and él are known experimentally, and Ay can be calculated if R is
known, hence Ag and Ap may be computed readily.

The transferred spin densities to the first chlorine are

Ag a'2
fg = Kg =% (1-n2)
(118)
. _52 n2a|2
p‘Ag= 4 ’
where
43 (¥c1) = cgg)gegnssn|w3s(0)|2 = 1570 x 10 %cm~1
(119)
A3(35¢1) = (2/5)802aB8aC s, = 46.75 x 1074cn

are obtained from I\!’3S(0)|2 and <r—3>3p which, in turn, have been taken
from the Hartree-Fock calculations for free chlorine atoms with con-
figurations (3s3p65 and (3323p5), respectively.99 The coefficients n2
and o'? are also obtained, as is the hybridization ratio p/s = n2/(1-n2).

The most serious approximations in the ligand hyperfine inter-
action are:

a) Core polarization of the chlorine ls and 2s orbitals by the

unpaired electron spin in the 3pyx orbital has been neglected



b)

c)
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and the entire isotropic hyperfine component has been attrib-
uted to spin density in the valence shell 3s orbitals, 100
This suggests that only the anisotropic ligand term should
be used to estimate spin densities and covalency just as was
done in estimating covalency from the metal hyperfine
splitting.

Since the chlorine is essentially C17, I‘V33(0)|2 and <r"3>3p
should be evaluated for the ionic species.101 However, in
this thesis the usual convention of taking |‘l’3s(0)|2 and
<r'i>3p from the C1° wavefunctions will be followed. This
facilitates making comparisons with ESR studies in the
literature.

The point-dipole correction, A4, is only the leading term in
a multipole expansion and is only rigorously correct for a

spherical electron charge distribution on the meta1102 (i.e.,

a half- or completely-filled shell).



EXPERIMENTAL

ESR System

The ESR system and the techniques employed have been discussed in
the Ph.D. thesis of Kuska.8 The measurements were performed on a Varian
Associates (VA) X-band, Model V-4500-10A ESR spectrometer with 100kHz
modulation and a 12-inch VA electromagnet. The magnetic field was
measured with a marginal-oscillator NMR probe103 and the resulting NMR
proton frequency was counted on a Hewlett-Packard (HP) Model 524C
electronic counter. The magnetic field for protons in a water sample is

calculated from the following equation:

H(Gauss) = (2.3487465 x 10'4)v(Hertz). (120)
Microwave frequencies were measured by either a calibrated TS-148/UP
U. S. Navy spectrum analyzer or with a Hewlett-Packard Model 5245L

frequency counter equipped with a Hewlett-Packard Model 5257A transfer

oscillator. All of the spectra were recorded on a Moseley XY recorder.

59



60

Sample Preparation

Samples of KyPdCl, and (NHg4)2PdCl, were obtained from both
Engelhard Minerals and Chemicals and the Matthey Bishop Company. KoPtCl1,

was prepared from platinum metal by oxidation with aqua regialo4

to give
HyPtClg, and KyPtClg was then precipitated by addition of KCl. The
KoPtClg was reduced with hydrazine hydrochloride to give K2PtC14.10S

All residues were saved and reworked when necessary. Single crystals
were grown from slightly acidified (HCl) aqueous solutions of the salts
by using seed crystals.

KoPt (CN)4*3H20 was prepared from KpPtCly, in aqueous solution by
addition of KCN followed by filtration and repeated recrystallizations
from water solutions. Single crystals were grown by slow crystallization
from water solution and had to be stored in a high-~humidity atmosphere
to prevent loss of water.

The bromine bridged complex, tetraethylammonium tetrabromo-uu'

dibromoplatinum II, (N(C2H5)4)Pt2Br6106a

1.106b

was prepared by the method of
Harris et and single crystals were grown from acetone solutions

of the salt.
Crystal Structure of Kp(Pd,Pt)c1,107

K9PdCl, and KoPtCl, are isostructural: the space group is Dzh—
o (o]
P4/mmm with Z=1 and ag = 7.04A, c, = 4.102 for Pd and a, = 6.98A,
o
¢o = 4.13A for Pt. Each metal atom is surrounded by four equivalent
o]
chlorines at a distance of 2.33A. These square-planar units are stacked

along the c axis in alternate lamellae with the potassium cations
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(Figure 3). The crystals almost always grow as rectangular needles with

the ¢ axis the needle axis and (100) and (010) forming the faces.

Irradiation Methods

Crystals suitable for irradiation (approximately 2 x 2 x 4 mm)
were optically selected with the aid of a polarizing microscope with
crossed Nicol prisms. In this manner, crystals that were twinned or had
large imperfections could be discarded or cleaved perpendicular to the
c axis. Crystals to be irradiated with the 60¢, Y-ray source were
placed in glass vials and immersed in a Dewar of liquid nitrogen. The

60,

Dewar was placed in the center of the Michigan State University
Y-source and subjected to 6 x 106 rads. Crystals to be irradiated by
electrons were placed in Saran-wrap containers which were buoyed up by
foamed polystyrene balls weighted to just float on liquid nitrogen in a
Dewar. If the crystals were allowed to sink in the liquid nitrogen the
electron beam was severely attenuated. The Dewar was placed approximately
four inches below the tip of the 1l-!MeV electron source at Michigan State
University and then subjected to a dose rate of 3 x 106 rad/min for three
minutes. A lower dosage gave a reduced paramagnetic signal intensity
whereas doses above 3 x 107 rads produced appreciable crystal fracture
and crumbling. The same crystal could be reirradiated at least twice
before the physical damage was too severe to allow handling without
breakage.

Experiments were conducted to measure the change in the ESR

spectra of y-damaged crystals upon exposure to ultraviolet irradiation.

The beam of a General Electric BH6 mercury lamp was focused through the
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port of a VA Model V-4531 general purpose ESR cavity and onto the crystal
which was cooled to liquid nitrogen temperature (both the lens and Dewar

were quartz).

Sample Handling

The sample handling technique was similar to that used by
Kispert.108 Because of the temperature sensitivity of the paramagnetic
radicals formed in irradiated crystals of KyPtCly, and KPdCly (no
radicals remain at room temperature), sample transfer, mounting and other
manipulations of the crystals were all performed under liquid nitrogen.
The crystals were clamped between two brass clips which were glued to
the end of a quartz rod and then the entire assembly was immersed in a
glass Dewar filled with liquid nitrogen. The bottom of the Dewar had
a quartz finger of the proper dimensions to just fit into the Varian
Associates general-purpose, Tj02 mode, X-band cavity, Model V-4531. The
rod was held centered in the Dewar by a cylindrical foam insert at the
top of the Dewar while the sample was centered vertically in the cavity
until the signal was maximized. The initial setting of the crystal in
the plane of rotation was done by visual alignment of the external
crystal faces with the quartz rod. This alignment was refined by phys-
ically reorientating the sample. The oscilloscope mode of signal display
was also used occasionally to refine the alignment or to find a principal
axis of the radical. The angular variation in each plane of rotation was
measured by either rotating the Dewar in the cavity and measuring the
angle of rotation on a machined protractor or by rotating the calibrated

magnet. Normally, three independent planes of rotation are employed to
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obtain the magnetic tensors; however, in this case, the high degree of
crystal symmetry reduced the necessary rotations to two. Accordingly,
the spectra were recorded at 10° intervals with the external magnetic

field in the ac and aa' planes.
Error Analysis

The error introduced into the measured g values may be estimated

by taking the total derivative of g = hv/BH

dg = (dg/3H),dH + (3g/dv)ydv (121)
which reduces to

Ag = *g(|2aH/H| + |av/v]) (122)

where the factor of two arises because the magnetic field must be
measured both up and down field from the center of the pattern. The
proton resonance from the marginal oscillator provides an absolute field
measurement limited by the precision of the fundamental constants and the
accuracy of the HP 524C counter (*20 Hz). At a microwave frequency of
104 MHz and a g value of 2, the proton resonance will occur at approxi-
mately 15 MHz *20 Hz, a very small percentage error compared to that
arising from the field inhomogeneity.

Since the water probe of the marginal oscillator was located
outside the cavity on the magnet pole face it was important to estimate

whether the field at the sample differed from that at the NMR probe. For
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this purpose a dual-probe assembly was constructed which permitted a
comparison of the field at the two positions; this revealed a field
difference of about 0.25 Gauss which was neglected.

The error in frequencies measured with the spectrum analyzer is
less than #0.5 MHz. Thus, for a spectrum centered at g = 2,00 with

H= 3500 Gauss and v (microwave) = 10,000 MHz, Equation (122) gives
Ag = +0.0001 . (123)

A larger error is introduced in the magnetic field measurement because
of the finite linewidths in transition-metal ESR spectra. In a first-
derivative presentation of the absorption spectrum, the point of inflec-
tion (crossover point) mid-way between the peak and valley becomes
successively more difficult to determine exactly as the line width in-
creases. Actually, in this research the limiting error is the error in
crystal orientation which arises because crystals must be mounted under
liquid nitrogen without the aid of a polarizing microscope or of X-ray
methods for establishing the location of crystal axes. The error Ag in
the g value of a radical with axial symmetry based upon an angular error,

A8, in orientation is
g = tl{(%i - ng)/g}cosesineAel (124)

where g2 is given in Equation (99). As an example, let A0 = 1° or 2° in
p
the data for the determination of gll, where gll = 2,500 and %L = 2,000.

Then
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26 = 1°, Ag = % 0.0035
o (125)
A0 = 27, Ag = % 0.014 .

Clearly, the larger the anisotropy (%i - gfl), the larger is the poten-
tial error in Ag. For a fixed angular error, the maximum error in Ag
occurs with 6 = 45°, It is difficult to assess the angular error in a
single measurement by the technique described earlier; hence, to minimize
and bracket the error, replicate measurements on many crystéls were made.
Therefore, the errors in the spin-Hamiltonian parameters are reported as

standard deviations, D, given by

n o, n 2 L
D= IA;- (A /n}, (126)
i=1 i=1
(n-1)

where Aj 1s the ith-individual observation of the n observations made.
If there are less than six independent observations, the mean experi-

mental deviation is reported.



RESULTS

KoPtCl,

Introduction

At 77°K four distinct groups of ESR lines are observed in irra-
diated KoPtCl, crystals. The two strongest sets are shown in Figure 4
with H||a. The intense group of six lines at low field (Set A) which is
also seen with Hllc, must belong to a radical containing two magnetically
equivalent platinum nuclei; in the absence of experimental information
concerning the ligands or charge, this radical will be designated as
(Ptg). The second set of intense lines shown in Figure 4 at higher field
(Set B) is also seen when H||c and is a triplet, each component of which
shows superhyperfine splitting into ten lines. On the basis of these
nuclear hyperfine interactions, this second radical is presumably
(PtC13)° or (PtCl3)2_ and will, thérefore, be tentatively designated
(PtC13)“'. A third set of lines of low intensity has ESR parameters
essentially identigal with those observed for (PdC14)3_ (see the Results
and Discussion sections on KyPdClg), but in Figure 4 the lines are ob-
scured by the lines of Set B. This radical is attributed to palladium
impurity which appears to be present in all available samples. A fourth
feature of the spectrum is a weak, single line at g = 2.000 which, on

warming, seems to resolve into a triplet of separation 6 Gauss; there is

67
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insufficient evidence to identify it and it will not be discussed further.
This fourth feature is too low in intensity to be seen under the condi-
tions of Figure 4.

On warming the crystals from 77°K to about 108°K the (Pty) lines
slowly decrease in intensity and a new set of lines of lower intensity
starts to grow in. At 125°K the (Pty) lines are gone and the new set
(Figure 5a), which shows hyperfine interaction with one platinum and one
chlorine nucleus, has reached maximum intensity; this radical is tenta-
tively designated as (PtCl) and its probable structure will be discussed
later. With further warming the (PtC13)n- lines disappear above 190°K.
The (PtCl) spectrum is also gone by room temperature, where no stable
radicals exist.

On irradiating the crystals at 77°K with the mercury vapor lamp
the (Pty) lines disappear rapidly and the (PtCl3)™ 1lines decrease in
intensity slowly; the (PtCl) species was, howevef, never observed on

illumination as it is on warming.

(Pty) Radical

The first-derivative spectra of the axially symmetrical radical
(Ptp) are shown in the parallel (Figure 6a) and perpendicular (Figure 6b)
orientations. Only a single magnetic site is observed for this radical.
These spectra can be interpreted with the spin Hamiltonian of Equation
(79) where S=!%. Hyperfine coupling of the odd electron to two equivalent
nuclel necessitates some care in constructing suitable nuclear spin wave-
functions.109 In order to account for the second-order hyperfine inter-
actions one must introduce the total nuclear spin operator i=(i1+f2) and

associated representations II, m1>where
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Figure 5. The first-derivative X-band ESR spectra of (PtCls)z_:
(a) with H||c, (b) with H|]a.
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Figure 6. The first-derivative X-band spectra of (PtC14)23- in
irradiated single crystals of KoPtCly: (a) with H||c, (b)
with H%p. The feature marked X in (a) 1s centered at
g = 2.000 and is from an unidentified species.
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I=1I3+1Ip, I;+Ip-1,....,1I=-1I=0

mp=I1,T-1,....,-I. (127)

The spin functions, representations, and degeneracies, along with the
calculated and experimental relative intensities for the six-line (Ptj)
radical, are given in Table 4. The line associated with the singlet
product function (aB-Ba)/v2 is not shifted by either the first- or second-
order hyperfine interaction and is therefore under the strong central

line which is dominated by the radicals containing the non-magnetic
platinum isotopes. The principal values of the g and A(lgSPt) tensors
that are listed in Table 5 under (Pty) were calculated from Equations

(99).

UV-Photobleaching Experiment

An ultraviolet (UV) photobleaching experiment was performed on
y-irradiated crystals of KyPtCl,, maintained at 77°K, with the light
beam incident on the (100) face. The decreaée in (Pt2) concentration
was measured by recording the decrease of the ESR signal intensity as a
function of UV exposure time. If the decrease in signal intensity
(radical concentration) with time is assumed to be proportional to the
instantaneous signal intensity (radical concentration) raised to some

power, n, then
-dI o I™dt (128)
where I is the signal intensity and t is the time. A plot of the in-

tegral form of Equation (128) for n=2, that is (1/I - 1/I,) versus t,

yields a straight line (see Figure 7) which implies that each reactive
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TABLE 5. -- ESR spectral parameters of radicals in irradiated crystals of

Arbitrary Designation of Radical

(Pto) (PtC1)

(PtC13)™"

Structure of Radical Assigned on Basis of ESR Data

(Ptcly),3" (PtClg)2- (ptcl3)?”
g|] = 1.771£0.001 g,, = 1.94240.002 82z = 2.80010.004
g| = 2.723%0.004 gy, = 2.417£0.004 Bxx = 2.174:0.002
A||(1%5pt) = 44421 gy = 2.38620.004 gz = 1.974£0.002

A (195pt) = 61823 A,,(195Pr) = 36925
Ax (1Pt =A, (195Pe) = 45525
Al (337c1) = 56.8+1.0

51‘35’3701) = 15.6%2.5

A(1%5pe) = 319%4
<] Hllc
A3%:37c1) = 15.1#0.1
A(19pe) = 36015

]lﬂ|a

A33537c1) = 18.7+0.3

experimental standard deviations.

All hyperfine splittings are in units of 1074 em~!. The errors listed are
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Figure 7. A plot of (1/I-1/I,) versus time for the photobleaching decay
of (Pt014)23' indicates that the decay is second order in
(PtCl4) 93~ concentration.
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photon eliminates two (Ptj) radicals. This is apparently not a thermal
effect since no new paramagnetic species appeared during or after the UV
illumination unlike the warming experiments where (PtCl) is produced.
The fact that two (Ptjy) radicals are involved suggests that one unpaired
electron is transferred through a conduction band (see Structure section
below) from one (Pt3) to a second (Pty) with the resultant production of

four diamagnetic species.

(PtCl) Radical

The first-derivative spectra of the (PtCl) radical with H||c and
Hlla are shown in Figures 5a and 5b, respectively. The spectrum of
Figure 5a shows a central quartet plus two satellite quartets which arise
from a species containing a single platinum atom; the central quartet
belongs to those radicals containing the non-magnetic platinum nuclei and
the satellites to those containing 195p¢ (1=}, relative abundance 33.7%).
The quartet superhyperfine splitting arises from interaction with one
chlorine nucleus (3501, 37Cl both I=3/2 with abundances 75.47% and 24.6%,
respectively). Spectra from two magnetically nonequivalent sites are
observed and these coalesce for Hllc and for H||a (Figure 5). At no time
could the 35C1 and 37Cl splittings be separated.

The spectra can be described by the usual spin Hamiltonian
H=pH-g-5+5 (A Dp, + 5 ADg (129)

where S=!% and the smaller nuclear Zeeman and chlorine quadrupole terms
are neglected.
During rotation with the external magnetic field in the ac plane

the chlorine hyperfine interaction decreases from a maximum at Hllc until,
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at about 75° from the ¢ axis, it disappears in the linewidth (peak-to-
peak width about 37 Gauss). No chlorine splittings are observed when the
magnetic field is in the aa' plane which precludes a‘complete determina-
tion of the principal chlorine hyperfine elements, but the symmetry of
the platinum spin-Hamiltonian parameters suggests that the chlorine tensor
will be nearly axial. For this reason only Ai‘35’3701) is reported in
Table 5 and it 1s a calculated value obtained from fitting the angular
variation in the ac plane by Equations (131).

The principal values of the.g, A(195Pt) and A(35’37C1) tensors
are reported in Table 5. The g;, element is parallel to the c axis while
the gyx and gyy components bisect the aa' crystal axes. The two magnet-

ically inequivalent sites are related by a 90° rotation about c.

(PtC13)n- Radical

The first-derivative spectrum of the (PtC13)n_ radical with H||c
is shown in Figure 8a, and the second-derivative spectra with gL(IIO) and
Hlla in Figures 8b and 8c, all at X band. The g tensor has its maximum
element gz; coincident with the c axis while the gyyx and 8yy elements lie
in the aa' plane at 45° to the a axis. There are two magnetically in-
equivalent sites related by a 90° rotation about the c axis and these
become equivalent when H||a and H||c. The spectra at these two orienta-
tions consist of tén chlorine hyperfine lines with the correct intensity
ratios for three equivalent chlorine nuclei. However, 1t‘has not been
possible to analyze the spectra to give the complete chlorine and plati-
num hyperfine tensors and their direction cosines. Therefore, in Table 5,

A(3537c1) and A(lgSPt) are only reported for H||a and H||c.
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Figure 8. The X-band spectra of (PtCl3)2-: (a) first-derivative, H| [c,
(b) second-derivative, Hl(llo), (c) second-derivative, H”a.
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K,PdCl, and (NH,),PdCl,

Introduction

The first-derivative ESR spectrum of irradiated single crystals
of KpPdCl, shbws three sets of lines when the magnetic field is parallel
to the ¢ axis (Figure 9). The set at lowest field belongs to a radical
(Radical I) showing hyperfine interaction with one palladium and four
equivalent chlorines. The central set of Figure 9 consists of a group
of approximately twelve lines centered at g = 2.26 and appears to have
two sets of hyperfine splittings (=22G. and =24G.) but these are observed
oﬁly when the magnetic field is within 15° of the c axis; hence the
parameters of the spin Hamiltonian could not be determined and the
radical was not identified. The third set of lines (at high field) con-
sists of four lines of equal intensity and spacing which is attributed
to a radical designated as Radical II.

ESR spectra of irradiated single crystals of (NH4)2PdCly, which
has the same crystal structure as KpPdCl,, show almost identical sets
of lines as those attributed to Radical I and Radical II in K,PdCly.
However, the third and unidentified radical giving rise to the central

set of lines in KpPdCl, was not observed in the ammonium salt.
Radical I

The second-derivative spectrum shown in Figure 10 is obtained
when the external magnetic field is parallel to the c axis. The center
of the spectrum is dominated by thirteen intense lines while the multi-
plets on either side of the central one have been recorded under a nearly

fourfold greater amplification. Since palladium has only one naturally
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Figure 9. The first-derivative X-band ESR spectrum of irradiated
K2PdCl, at 77°K with H||ec.
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Figure 10. The X-band ESR spectra of irradiated singlg crystals of
KoPdCl, showing the lines from the (PdCly)~~ radical ion:
(top) second-derivative spectrum with H||c, (center) first-
derivative spectrum with H||a, (bottom) second-derivative
spectrum with ql(IIO).
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occurring isotope with a nuclear spin (losPd, I1=5/2, 22.3% relative
abundance), a palladium-containing radical should show a strong central
line from those species containing the palladium nuclei with even iso-
topes (I=0), plus six satellite lines (three on each side of the central
line) each having a relative intensity 4.8% of the central line. The
spectrum of Figure 10a may be interpreted on the above basis if each
palladium line is split into a thirteen-line multiplet with relative in-
tensities 1:4:10:20:31:40:44:40:31:20:10:4:1 by hyperfine interaction
with four equivalent chlorine nuclei (35’37C1, I=3/2), and 1if the
observable satellite multiplets are assigned to the palladium lines with
m7=%5/2 (along with their chlorine hyperfine structure) while the 105Pd
lines with my=t}, +3/2 (along with their chlorine hyperfine structure)
are assumed to lie buried beneath the strong central lines arising from
the non-magnetic palladium nuclei. There is only one magnetic site for
the (PdC14)™  radical.

On the basis of this analysis, the paramagnetic species 1is
(PdC14)n_ with n=1 or 3. This assignment is strengthened by examination
of the first-derivative spectrum shown in Figure 10b taken with H]Ia
which now permits resolution of the 35¢1 and 37c1 splittings. During a
complete rotation of the field in the aa' plane, g and A(1°5Pd) remain
constant and the spectrum repeats every 902, thus demonstrating that the
radical has retained D4} symmetry and, presumably, the location of the
original (PdClz,)'2 anion. It will be shown below that the radical has a

9 configuration and must be identified as (PdC14)3- so this formula will

d
be used in the remaining discussion.
The experimental results can then be described by the spin

Hamiltonian of Equation (79) for the metal (M) and the following spin

Hamiltonian for the ligand (L):
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4
n=1

+ Ay (Iyp + Iy4)} Sy (130)

where S=)%, the right hand coordinate systems at palladium (X,Y,Z) and at
each chlorine (x,y,z) are as in Figure 2, and the other symbols have

110 Therefore, with H||a (Figure 10b) the four

their usual significance.
chlorines are equivalent and the thirteen lines are separated by A =
%5 (Ai + Ag)%- When the external magnetic field is perpendicular to
(110) (Figure 10c), there are two magnetically nonequivalent pairs of
chlorine nuclei leading to a chlorine multiplet of forty-nine lines,
simplified in this case by the accidental approximate equality Ax=2Ay.

A(losPd) and A(33Cl) tensors are given

The principal values of the g ,
in Table 6.

The same radical is formed in crystals of (NH4)2PdCl; irradiated
and observed at 77°K but the (PdC14)3- radical in the latter crystal
gives rise to broader lines (first-derivative peak-to-peak linewidths of
~6.0 Gauss as opposed to V2.5 Gauss in the potassium salt’, presumably as

1I'N nuclei.

a result of interactions with the neighboring lH and
Upon warming crystals of KpPdCl,; which had been irradiated at
77°K, the lines from Radical I decay irreversibly with the decay becoming
rapid at 171°k and complete at about 200°K. A plot of signal intensity
log(I/I,) versus 1/T(°K) shows two linear portions intersecting at
approximately 171°K with activation energies AE = 1.4 x 102cm'1 below

171°K and AE = 20 x 102cm-l above 171° (Figure 11). This implies two

different modes of decay.



TABLE 6. -- Principal values of the spin-Hamiltonian tensors
in y-irradiated KPdCl, and (NH4)oPdCl,.
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of radicals

Parameter (PdC14)3— Parameter? (PdC15)2_
KoPdCl,

gl 2.516+0.003 8c 2.012+0.001
8| 2.084%0.002 ga 2.149+0.004
Al| (105pq) 35.7%0.2
éL(losPd) 24.740.7
A, (35c1) (+)20.020.3 Ac (33c1) 59.520.1
Ay (FPc1) (+) 8.920.6 A, (35c1) 10.81.0
A, (35c1) (+) 8.1:0.2

(NH,) 9PdC1,,
gl 2.561 ge 2.012
g| 2.090 Ac 59.0
Al] (105pq) 32.2
QL(1°5Pd) ~23.9
a

All hyperfine splittings are in units of 10-4cm'1. The errors listed
are experimental standard deviations. The remaining parameters for the
ammonium salt were not obtained with sufficient precision to list here
but were quite similar to the corresponding values for KpPdCl,.

The values of g and A along the a and c axes of the crystal have been
written g,, Ay and g., Ac, respectively. While g., Ac are found
directly experimentally the values of g and A, are obtained by use of
Equations (131) and the angular variation of the spectra in the ac
plane.
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Figure 11. A plot of log(I/I,) versus 103/T(°K) for the (Pd014)3-
radical shows two linear portions which implies two modes

of decay.
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Radical II

A second radical is oﬁserved at 77°K in irradiated crystals of
KoPdCl,. The spectrum consists of a four-line pattern centered at
g = 2.012 with a splitting of 63.4 Gauss when HIIc (Figure 12a).

Rotation in the ac plane allows the signal to be followed for about 65°
on either side of the ¢ axis. With the magnetic field in the aa' plane,
these lines are obscured by the more intense (PdC14)3- radical. Although
the linewidth of Radical II sharpens perceptibly (from ~20 G to ~15 G)
when the crystal is warmed slightly, both Radical I and Radical II decay
at approximately the same temperature on further warming.

The large linewidths and low intensities make it difficult to
determine whether the quartet arises from hyperfine interaction with
chlorine or potassium, since both have nuclear spin I=3/2. An examina-
tion of the irradiated (NH4),PdCl, crystals reveals the same radical,
thus confirming that the hyperfine interaction is with chlorine. The
radical does not appear to be C10,, although the chlorine hyperfine inter-

action is similar,111

since a crystal that was irradiated and observed in
an evacuated quartz tube gave an identical spectrum.
If the nuclear quadrupole and nuclear Zeeman terms are neglected,

the following tensor relationships fit the data taken with the field in

the ac plane:

g2 = gg c0826 + gg sinze
(131)
g2A2 = gEAg c0529 + ggAg sinze

where 0 is the angle between the ¢ axis and the field direction. The

data points are plotted in Figure 12b,c; the solid lines represent the
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(a) First-derivative X-band spectrum of a single

crystal of KoPdCl, irradiated and observed at 77°K

with H||c, (b) angular variation of g when the

magnetic field is in the ac plane, (c) angular variation
of A( 5Cl) when the magnetic field is in the ac plane.
The solid curves of (b) and (c) were calculated with the

parameters of Table 6.
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values obtained by use of Equations (131) and the parameters reported in

Table 6 under (PdCls)z-.
(N (C2H5) 4) 2Pt23r6

Since the (Ptj) radical, obtained by the irradiation of KyPtCl,
in this research, may have a structure involving a bridging chlorine,
irradiation of a complex known to have a bridged structure has been under-
taken. The triclinic crystalsl06a of (N(C2Hs5) 4) 2PtoBrg were irradiated
at 77°K and the ESR spectra recorded. In this compound the bridging
atoms are in the plane of the complex with one edge of the two square-
planar units in common:

Br Br Br | 2~
See” See”

Br’/ \‘Br” \\Bt

At least two radicals are formed. The spectrum of one is quite
weak and consists of many lines separated by approximately 20 Gauss, in
certain orientations, with the entire spectrum of this species covering
nearly 800 Gauss. In most of the orientations there is considerable
overlapping of these lines wﬁich apparently arises from bromine hyperfine
interactions. Moreover, the center of the pattern corresponds to a g
value significantly greater than 2.00, which suggests that the radical
contains platinum. The poor resolution and weak signal intensity pre-
cludes making a complete study; thefefore, this radical will not be

discussed further.
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The spectrum of the second radical is essentially isotropic with
g = 2.002 and consists of five hyperfine lines nearly equally spaced with
A = 28.5%1.0 Gauss (see Figure 13). The ratio of intensities for the
five lines varies with angle on rotation about three mutually perpendic-
ular axes, but remains about 1:4:6:4:1, as expected for five equivalent
protons. Because power saturation of these lines tends to occur readily,
unlike most transition metal spectra, the radical is believed to be the
((C2H5)3N-éHCH3)+ species obtained by removing a hydrogen atom from the
tetraethylammonium cation. This assignment is supported by the magnitude
of the hyperfine splittings which are just in the range between typical
a- and B- proton isotropic splittings observed for alkyl radicals in
solution.13 The large linewidth (>10 Gauss peak-to-peak) would seem to
indicate that the radical is undergoing restricted rotation at 77°K to

produce a broadened but virtually isotropic spectrum.
KoPt (CN) 4 3H0, (Pt(NH3)4)Cly and K(Pt(NH3)Clj) H,0

Irradiation of single crystals of KyPt(CN)4°3Hp0 at 77°K gave no usable
spectrum when examined by ESR since the fragile needles powder either on
irradiation or on cooling. (Pt(NH3)4)Cly and K(Pt(NH3)C13)~H20 single
crystals behaved in a similar manner and no satisfactory spectra were
obtained, although'there was evidence for a chlorine-containing platinum

radical in the case of K(Pt(NH3)Cl3)°H30.

KoPtBr,, KoPdBrs and KyPtClg
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Irradiation of single crystals of KpPtBry, KpPdBry and KyPtClg has been
carried out at 77°K without permitting the crystals to warm up. No

evidence for any platinum- or palladium-containing radicals was noted.



DISCUSSION

K,PtCl,

(Pty) Radical

1. g Values

Since the unique axes of the A and g tensors coincide with the
c crystallographic axis, the (Pty) radical must have a point-group
symmetry no lower than C4,. It is highly unlikely that any gross re-
arrangement of the ten nuclei that comprise the two original neighboring
(PtCl4)2- anions can occur and still preserve the C4; rotation axis.
Therefore, it is proposed that the (Ptj) species is either ((PtC14)2)n_
or ((PtC14)Cl(Pt014))n_, the latter unit having an additional bridging
chlorine midway between two adjacent square-planar units along the c axis.

Since the (Pty) radical converts on warming to the (PtCl) radical,
which is believed to be (PtCl5)2-, it is tempting to postulate the pre-
sence of a bridging chlorine in the dimer unit since that would also
explain why the unpaired spin is confined to two platinum nuclei rather
than being further delocalized along the infinite array of (PtClA)z- units
stacked along the c axis (Figure 3). However, there is no detectable
chlorine hyperfine interaction in the spectra of this species (Figure 5)

to confirm the presence of a chlorine bridge; also, not all the (Ptj3)

radicals transform to (PtC15)2- on warming and, on cooling, the (Ptj)

93
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species does not reform as would be expected if a bridging chlorine were
involved. Therefore, it appears more likely that the (Ptj) radical is
simply a dimer of the type ((PtCla)z)“-'in thch an electron has been
lost or gained from an adjacent pair of (PtC14)2_ units. On this
assu;ption we have computed approximate values of the components of the
g tensor as outlined below.

The metal orbitals that may contain the unpaired electron, and
also are consistent with a C4 rotation axis parallel to c, are 5d,2,
5dxy, de2_y2 and 6p,. The g values for these possibilities can be
calcglated by the crystal-field method. Starting wavefunctions are con-
structed from the symmetric and antisymmetric cbmbinations of the real

metal d-orbital basis set. For example,

(1d4z21 +|4,2>21//2
{1d,2)) -1d,20,}/72 (132)

|31g> = |i2>
220 = 122D

where the functions are denoted by their symmetry under D4p, the sub-
scripts 1 and 2 refer to the two Pt nuclei, and overlap has been
neglected. The g values for the four possible orbitals are given in
Table 7, where only terms linear in 7, the one-electron spin-orbit
coupling constant, are retained (z is always positive). Although the
exact ordering of the orbital energy levels is unknown, the relative
order may be estimated from symmetry and the criterion of maximum overlap.
Experimentally one observes gl? 2>g|| which eliminates 6p, and
5dy2_y2 from further consideration. Regardless of the oxidation state
of platinum, z is of the order o£112 2000 to 5000 cm~! which means that,

in the case of gll for the xy ground state, E(x%:yz)-E(gz) is approximately
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70,000 to 173,000cm'1, an exceptionally large énergy for one-electron,
d + d transitions.l13 Moreover, two consecutive platinum nuclei along
the ¢ axis are separated by 4.132 in the undamaged crystal. For this
large a separation, xy would have a very small overlap and could not
possibly alter the energy levels to the extent demanded by the g values.
Thus g? (Equations 132) is the only orbital consistent with the experi-
mental evidence. Since the radical (PtCl), which is formed from the
(Pt2) radical on warming, has been shown to very likely be (PtClS)z'
with a7 configuration (see below), it is reasonable to assume that an
electron has been lost (rather than gained) from two (PtCl4)2_ units in
forming the (Pt)y) species. A proposed schematic energy level diagram
is shown in Figure 1l4.

An improved set of crystal field g values was then calculated
by carrying the treatment to second order. The zero-order ground state
in the hole representation is (x2:y2)2(x2;y2)2(52). After successively
applying the spin-orbit operator and the Zeeman operator over the excited

states, the following g-values result:114

g|| = 282 - 32 (¢/aE)2
(133)
g = 282 + 6N (z/AE) - 6N2(r,/AE)2 R

where N is the normalization coefficient of the zero-order configuration
in the wavefunction that arises from the spin-orbit interaction, and
where AE = E(ey) - E(az,). The second-order correction terms were com-
uted by the method of Tippins.83 Substitution of the experimental g

values for (Ptj) into Equations (133) yields

N = 0.964, (z/AE) = 0.180 .

,
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The optical transition, AE, can be estimated from the value of the spin-
orbit coupling constant for Ptl+ (z = 3368 cm-l).76 If the percentage

change in ¢ for platinum is similar to that exhibited by nickel in going

from Nil+ (z = 565 cm‘l) to Ni3+ (z = 705 cm—l)112 then ;(Pt3+) n
3368 (%%%) = 4203 cm'l. But the coupling constant in transition metal

complexes is reduced by 257 to 307 from its free-ion value by covalency
and chafge donation by the ligands; hence it is reasonable to choose
z = 3000 cm~! which leads to AE = 16,000 em” L,

The ESR parameters observed for the (Ptj;) radical are thus con-
sistent with those expected for a dimer (PtC14)23' with configuration a15
in a 2A2u ground state and with the unpaired electron delocalized over
two nearest-neighbor platinum ions through the interaction between their

5d,2 orbitals.
2., Pt Hyperfine Interaction

The crystal field platinum hyperfine tensor elements are

-k + P{4N282 + 12a2 - 6aN}/7

All

Al

(134)

-« + P{-2N282 - 9a2 + 45aN}/7

where k is the isotropic hyperfine interaction, P = gegn8e8n<%‘§>5d, N is
as before, a = (¢/AE) and 82 1s the total spin density in both 5d;2
orbitals. If the covalency is ignored (62=1), and the experimentally
determined A|| and QL are assumed positive, the solution to Equations
(134) results in a value for P that agrees in sign and order of magnitude
with the values computed by Freeman et al.96 by the Hartree-Fock method.

The resulting parameters are



99

P = 470 x IO"a em~1
K = =239 x 10"4 em~1

X = 9.37 a.u.

where x, the isotropic hyperfine field at the nucleus, is obtained from
k by Equation (72).

The covalency can be estimated from Equations (134) if the value
of P is taken from the Hartree-Fock calculations of the free ion. Using
the value P = 509 x 10~4 cm~1 for Pt3+(d7) obtained by extrapolation from
the recent calculations of Freeman?© (Table 8) one obtains Bz = 1,04.

The fact that the hyperfine magnetic field produced at the nucleus
(as measured by x) is positive in (Ptj) is unusual for transition metal
complexes. However, as noted earlier, positive signs for x have been
obtained in the ESR studies of Co(II) phthalocyanine65 and Co(II) in
irradiated crystals of K3C0(CN)6.7 In both systems the co?* ion 1s in a
low-spin, a’ configuration with the unpaired electron in an orbital com-
posed of 3d,2 and 4s. An analogous situation appears to exist for
(PtC14)23- such that the half-filled aj, orbital (Equations 132) under
D4, symmetry, where s and dz2 have the same irreducible representation,

should read
agy = B{(5d,2 + ubs); - (5d;2 + u6s),} (135)

where u is the degree of mixing and B is the normalization constant.
Although it is difficult to say anything quantitative about x, the hyper-
fine fields at the nuclei in various Pt species (Table 9) indicate that
pt3t in BaTiOg,[’8 YA1G47 and particularly (PtCl4)23', have substantial 6s

character in their ground states.
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TABLE 8. -~ Hyperfine interaction parameters for platinum species by spin-
unrestricted Hartee-Fock calculations.96

-—— — .-
— e e e - - Ve b . b e e —

System x(a.u.) <:r'€>5d(a.u.) P(x 10’4cm'1)
Pt 5a%6s2(3F) -4.4 11.8 451.5
Pt® 54%s(3p) +53.6 11.1 424.7
ret 542 (%) -18.3 11.2 428.5
peH 548 (3F) -18.1 12.2 466.8
petttsa’ (4p) -17.92 13.3% 5098

2 Values obtained in this work by linear extrapolation.

TABLE 9. -- Hyperfine fields at the Pt nucleus (H, = -k/2gnBp) in various
platinum species.

Substance Hp (kilogauss) Ref.
(Pt (I11)C15)2™ in KoPtCly -863 a
Pt3" in BaTi0, | -376 48
Pt3* in vaicb +124° 47
(PCl,) 53" in K,PtCl, +394 a
Pt metal -1180 115¢
Pt3+ (free ion) =754 96

This thesis
YA1G = yttrium aluminum garnet
k = % (Ag + Ay + Ap)/3

d Estimated from Knight shift measurements
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3. Linewidt:hs1

The ESR shapes for (PtCl4)23- are exactly Guassian and broader
than those noted for most of the other species in irradiated KpPtCl,; and
KoPdCl,. This broadening may be attributed to unresolved hyperfine
splittings from the planar chlorine ligands. There also appears to be
an anisotropic, my-dependent linewidth. In the parallel orientation
(Figure 7a) the linewidth decreases from V45 to ~19 Gauss as my goes from
-1 to +1, while just the opposite trend is observed in the perpendicular
orientation (Figure 7b) where the linewidth increases from ~16 to ~30
Gauss with increase in my. Closer inspection reveals that the transi-
tions at highest field in the parallel direction, and at lowest field in
the perpendicular direction, are really doubled. This doubling does not
seem to arise from nuclear spin flips (AMg=1l, Amy=t1) because, in that
case, it should occur symmetrically about the usual transitions. For the
same symmetry reason, spin-spin interactions from nearby radicals and/or
splitting from two magnetically different sites should broaden the II,
tm1>pairs to the same extent. Neither does the doubling seem to be a.
result of an error in orientation since a complete rotation with the mag-
netic field in the aa' plane gives no change in the position or intensity
of the split lines. Moreover, the spectrum of irradiated KPtCl, powder,
in which orientation effects are averaged, still shows the my-dependent
linewidth. Anisotropic spin-lattice relaxation could account for the
residual linewidth difference in the parallel and perpendicular orienta-
tions, but the dependence on my may indicate a time-dependent mechanism.

It is possible that the hole in the d manifold of (Pt014)23'
might migrate along the c axis but the spectra at 77°K demand that the

hole be localized on just two platinum nuclei so if the hole does hop it
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must do so in a time peroid slower than the reciprocal of the hyperfine

splitting frequency.
4. Structure

It is believed that the (PtC14)23- radical is an example of a
dimeric species with a one-electron metal-metal bond. It was noted many
years ago that certain d8 square-planar metal complexes show evidence of
metal-metal bonds. Thus, the crystal structures often show columnar
stacking of the square-planar units with the mgtal ions in infinite
chains, although such an arrangement does not permit closest possible
packing of the 1ons,116 and the metal-metal distances may become quite
short. The Pt-Pt distance, which is 4.138 in K,PtCl;, 1s only 3.258
in Magnus' green salt117 {Pt(NH3)4}{PtC14} and 3.09% 1in Sr{Pt(CN)4}'3H20.116
Also, Apgx of the absorption band polarized parallel to the metal chains
increases as the Pt-Pt distance decreases in a series of platinum cyanide

crystals with different cations;118

in solution, these are colorless.

It was suggested by Rundle,119 and later by Miller,120 that in
the complexes with short Pt-Pt distances the nd and (n+l)p orbitals on
adjacent metal ions overlap to give a pair of aj, and a pair of ajg
molecular orbitals and that configuration interaction lowers the energy
of the occupied (mostly nd,2) orbitals, thus accounting for the observed
interaction. For a chain of metal ions, these discrete levels are re-
Placed by energy bands and, if the metal-metal distance 1is small, the
bands broaden and the separation between the highest occupied nd,2 band
and the lowest unoccupied (n+l)s band decreases. It has indeed been

shown that the d8 system {(CO)2Ir(acac)} exhibits semiconductivity, with

the ratio o||/qL > 500 for the dc conductivity parallel and perpendicular
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to the chains,121

while the compouna Kth(CN)aBr0.3'2.3H20 shows metallic
conduction along the direction of the chains of metal 1ons.122

Monomeric d8 (PtCla)z" units have the energy level scheme C
(Figure 1). Loss of an electron from one of these units, followed per-
haps by a shortening of the Pt-Pt distance to a neighboring (PtC14)2_
unit would give d15 dimers (PtC14)23- with an energy level scheme as in
Figure 14. The stability of this species would arise from removal of an
electron from the antibonding a5, orbital and configuration interaction
stabilization of the ajg orbital. The Pt-Pt bond could then be described
as a one-electron metal-metal bond; such a bond has recently been re-

ported123 in the cation {Fe(hs-C6H5)(CO)(SR)};.

(PtCl) Radical

1. g and A (195Pt) Values

The g tensor for the (PtCl) radical (Table 5) is almost axial,
with the unique axis parallel to the ¢ axis of the crystal, indicating
that the radical has nearly retained the tetragonal symmetry of the
(PtC14)2_ ion. The magnitude of the g shifts suggests that the odd
electron is largely associated with the platinum ion.

If this small deviation from axial symmetry is temporarily ig-
nored one should be able to distinguish whether the Pt2+(d8) ion has
captured an electron to form Pt1+(d9) or lost an electron to give
Pt3+(d7) by comparing the experimental g values with those calculated
from crystal-field theory (see Table 1). The experimental order gyx =
8yy > 2 > gzz corresponds to the d7 configuration with the unpaired

electron in the 5d,2 orbital.
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Not only has Pt2+ been oxidized to Pt3+, but the energy levels
in the parent (PtCla)z- anion (Case C in Figure 1) have been altered by
an axial compression to the level scheme of Case A in Figure 1. Thus,
the chlorine that is responsible for both the chlorine hyperfine
splitting and the axial compression in the (PtCl) radical must be
positioned nearly along the c axis to give (PtC15)2-. If this chlorine
were exactly parallel to the c axis the g tensor should be axial.
Instead, the dy,, dyz orbital pair is split in energy, presumably by a
slight tipping (<5°) of the fifth chlorine away from the c axis in the
(110) plane. The C4 rotation axis of the crystal generates four mag-
netically inequivalent sites, but the small tipping angle effectively
reduces the inequivalence to two sites related by a 90° rotation about
c. The fifth chlorine interacts with the metal d;2 orbital to give a

sigma antibonding orbital, ¢:

[6> = A|5d;2pe - A'| Dy
where ' (136)

|°>Cl = m|3pz ) + (1-m2)%|3€> .

If the constraint of axial symmetry is now removed, a more
accurate description of the platinum spin-Hamiltonian parameters can be
calculated from cfystal-field theory. Maki E£.21066 have solved this
problem for a nearly axial, d7, strong-field example with a (dx2-y2)2(dzz)
ground state (hole representation). In a slightly modified form the pre-
sent results are:

Bzz = 2N
gxx = 2N2 + 6Naj

fyy = 2N2 + 6Na, (137)
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and" )
Agzz = -k + P{4N2)2 - 3N(aj + ;2)}/7
Agy = -k + P{-28222 + 6Na) + 3Na2}/7
Ayy = -x + P{-282)22 + 6Nap + 3Na;}/7 (138)

vhere the symbols k,P are as before, a) = g/{E(dy;)-E(d;z2)}, ap =
C/{E(dxz)—EtdZZ)}, A is tﬁe MO coefficient of Equation_(136), and N is the
normalization coefficient of the zero-order ground state, (dx2_y2)(d22),
following first-order perturbation by the spin-orbit coupling operator.
Only when A||(195Pt) and 4L(195Pt) are both negative does onerbtain a
-magnitude and sign for the parameter P in agreement with the Hartree-
Fock calculations for platinum.96'124 As a result of the'high symmetry
of the host crystal it is not possible to label gxx and Byy uniquely so
gxx = 2.417 is arbitrarily chosen.
By suppressing the covalency (setting 22 = 1) and making the

approximation Qlfexperimental) = (Axx + Ayy)/2, Equations (137) and (138)
can be solved. Substitution of the spin-Hamiltonian parameters of

(PtCl,) 2™ yields

N = 0.985 P =321 x 1074 cm~!
aj = 0.0805 k = 525 x 1074 em!
ap = 0.0751 X = -20.5 a.u.

Allowing covalpecy, and using the value of P for Pt:3+ from
Table 8, one obtains A2 = 0.88 and Xexp = -22.6 a.u. The relatively
close agreément between Xeyp and the theoretical value of X from Table 8

implies that the hyperfine field at the Pt nucleus results mainly from
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core palarization and not from any appreciable 6s involvement in the
ground state, while A2<1 confirms the obvious fact that the unpaired

electron is delocalized onto the ligands.
2. Chlorine Hyperfine Interaction

A direct measure of the covalency may be obtained from an
analysis of the chlorine hyperfine interaction. The spin Hamiltonian of

Equation (114) operating on the ground MO of Equations (137,138) gives

A1 (337c1) = (1-n2)r'2a3 + 4n?)'2P%/5

a1 331y = (1-n?)2'2ag - 2m?a' 205 (139)

The direct dipole interaction, A4 = gegnBeBnR-3, between the
unpaired electron in the 5d,2 orbital of platinum and the chlorine nucle-
us has been neglected because the numerical value of A3 for any reasonable
Pt-Cl internuclear distance, R, is less than the experimental error.

Since the hyperfine splittings for 35Cl and 37C1 could not be resolved,
the weighted arithmetic ﬁean of A and <r'3>3p for both isotopes was
taken from the tabulated Hartree-Fock parameters.99 The spin densities

can then be estimated as
£5(2) = A'2n? x 100 and £5(z) = A'2(1-n%) 100 (140)

Substitution of the exp: rimental splittings into Equations (139,140)

leads to
A' = 0.57 fg(%) = 2.0

m = 0.97 fp(Z) = 30.6

with a hybridization ratio p/s = m2/1-m2 = 16.



107

Table 10 compares the axial ligand spin densities of low-spin,

d7 complexes in examples where the anisotropic splittings are available.

The exceptionally large spin densities on chlorine in (PdC15)2- and

(ptCl )2- are probably a reflection of the abnormally short M-Cl dis-
5

o
tance (R<2 A) demanded by the crystal structure. Thus, the unpaired spin

in (PtCls)z— is rather delocalized in the ¢ antibonding molecular orbital

which is composed primarily of a 5d,2 orbital on platinum and a 3p;

orbital on chlorine.

TABLE 10. -- Axial ligand spin densities.?

Substance Nucleus pr Zifg (pr + %fg) Reference
CoPc-Pyridineb N(Pyridine) 2.9 2.4 5.3 125
Fe(CN)sNOH 2~ N (NOH) 4.2 2.9 7.1 126
PdCls 2~ c1 34.7 1.7 36.4 c
PtCls 2~ c1 28.1 1.9 30.0 c
Rh(II) (CN)4C1, 4~ c1 11.4 1.2 12.6 127

orbital.
Pc = phthalocyanine

¢ This thesis

Low-spin, d7 complexes with the unpaired electron in the metal dj2
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(PtCl3)"” Radical

The presence of the ten hyperfine lines characteristic of three
equivalent chlorines for both H||c and H||a (Figure 8) indicates that
three chlorine ligands lie in the aa' plane occupying three of the four
chlorine positions of the (PtCls)™ ion. While the platinum need not lie
in this plane the symmetry of the host lattice favors a planar species.
The symmetry would then be Dy}, and the energy levels of Figure 1, Case
C, would be scrambled with dg,, dyz split in energy; dx2-y2, which is
directed at the ligands, would remain highest in energy.

Consideration of the possible a’ and d° configurations suggests
that d9, (zz)z(xz)z(yz)z(xy)z(xz-yz)1 is the only reasonably acceptable
ground state. Under Dy} symmetry, dx2_y2 and d,2 transform together as

Ay. Taking the ground state in the hole formalism as

|x2-y2> = ald,2_y2> + 8|4, (141)
where a2 + 62 = 1, the g values are calculated to be

gzz = 2N2 + 8Na? a;

gxx = 2N2 + 2Nap (o + v38)2
= 2N% + 2Na3 (a - V38)2 , (142)

Byy

where
2 a+vY38 a-/3B)2

1= +ofad + a2 (528 4 2 @28
and
a) = £/E(xy) - E(x2-y?)
ap = ¢/E(yz) - E(x*-y?)

aj = ;/E(xz) - E(x2-y2)
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There is insufficient information to solve these equations: however, the
order is predicted to be gzz >> gxx > 8yy = 2 as observed. A rough
analysis of the available metal hyperfine splittings using P = 430 x
lo-l’cm"1 (Table 8) yields a positive value for x which suggests that the
platinum 6s orbital contributes to the ground state as was noted in the
case of the (Pt2) radical. The chlorine hyperfine interaction results
from transferred spin density in the o molecular orbital whichris formed

from a chlorine 3p orbital and the Ixz-y2> metal orbital.

Reaction Scheme

A possible mechanism to account for the observed radicals and
their decays may be given, beginning with the assumption that the initial

step on y-irradiation at 77°K 1is
(Ptc1,)2” » (PtC13)2” + cl .

The neutral chlorine atom could move into the potential well at the
center of the unit cell (Figure 3) eventually abstracting an electron
from (PtCl4)2_ to form (PtCl;) . This could then form the (Pt) radical

by combining with a neighboring undamaged ion of the lattice

(PtC14)2” + c1 + (PtCl,)” + C1”

(PtCl,)”~ + (Ptcl,)2™ =+ (Pecly),3 .

On warming, the hole centered on the (Ptz) radical could then
migrate parallel to the c axis until it encounters either (PtCl3)2-,

forming a diamagnetic species, or Cl1~ forming (PtCls)z—:
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3- 2- 2- -
(PtCl,) o~ + (PtCl3)® - 2(PtCl,)“ + (PtClj)

(Pecl,) 3 + 1™ » (Pec1,)?” + (prc1g)? .
KoPdC1,

Radical I

1. g Values

The ESR spectra (Figure 10) show that Radical I is (PdC14)n-
where n = 1(d7) orn = 3(d9), corresponding to the loss or gain of an
electron by the original (PdC14)2_ ion. These two possibilities are
distinguished by comparing the observed g values (Table 6) with the
calculated g values of Table 1. Only the d9 configuration of Table 1
is consistent with the observed order g||>gl?2.

The energy separations AE; = 23,000 em~! and AE, = 27,500 em™l
reported by Basch and Grayl’3 for the parent (PdCl4)2- ion are based on
the optical spectra of Day gg.gl.lzs If these numbers and the value of
tpq = 1416 em~! 76 are used in the theoretical expressions for gll and
%L for a2 in Table 1, one obtains gll = 2,483 and 5L = 2.105; these are
in fair agreement with the experiment considering the many approximations
that have been made which include neglect of the change in metal charge
from +2 to +1 in éstimating the AE values, neglect of the reduction
factor in the free-ion palladium spin-orbit coupling constant, neglect

of covalent bonding and other smaller terms.8>

2. Pd Hyperfine Interaction

The anisotropic hyperfine interaction arises from the coupling

of an electron in the dy2_y2 antibonding orbital with the palladium
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nucleus. Only the magnitude is observed experimentally but the sign may
be obtained by the method of Fortman;95 a positive contribution of the
dipolar term with Hllc is predicted. The sign of the isotropic hyperfine
term is also predicted to be positive since it must arise solely from the
core polarization of the s orbitals (s orbitals cannot mix with dx2_y2
under D4}, symmetry in the molecular orbital treatment). Calculations of
the core polarization for 4d ions with spin-polarized Hartree-Fock
wavefunctions predict that the isotropic hyperfine interaction a =

%(All + 251? will be negative when the nuclear magnetic moment is positive,
and vice versa.87 Since u (lnsPd) = -0.639 nuclear magnetons,129 it is
likely that both A[|(105Pd) and Al(wsPd) are positive.

For (Pd014)3" with the unpaired electron in a dy2_y2 orbital one
employs Equations (81) for the metal hyperfine splittings. One finds that
P = -58.4 x 1074 cm™! for the Pd* ion based on an estimate of <r'3>4d of
7.17 a.u. obtained by extrapolation.87 The solution to Equations (81)
shows that approximately 787 of the unpaired spin density is localized
in the metal dy2.y2 orbital. Table 11 lists the spin densities calculated
in this manner for other palladium-containing species reported iﬁ the
literature. On the basis of the anisotropic couplings, the acetylaceton-
ate complex is slightly more covalent than the chloride. However, as has
been observed in other d9 systems, the covalency found from the isotropic
magnetic field at.the nucleus per unit spin (x/xo0) bears no simple re-
lationship to a2 obtained from the anisotropic hyperfine coupling

constants.

3. Chlorine Hyperfine Interaction

The principal values of the chlorine superhyperfine interaction

tensor for (PdC14)3_ are given in Table 6 where the coordinates are
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TABLE 11. -~ Isotropic hyperfine fields and covalency parameters for

palladium complexes.@

Substance X x/x° a2 Reference
(®dc14)3” (in KoPdCl,) -7.66 0.83 0.785 b
(dc1,)3™ (in (NH,),PdCl,) -7.55  0.82  0.78 b
Pd(acac),  (in Pd(acac),) -10.00 1.09 0.725 56
Pd° (in Pd metal) -8.2 0.89 129
PdS,C4(CF3), -1.58  0.17 51
a x° = -9.2 a.u. for Pd+ ion from the calculations of Watson and Freeman

and x is the experimental value.
b

This thesis

87



113

defined in Figure 2. Although there are eight possible sign combinations
for the principal elements, it is probable that the correct set is that
with all signs positive, since only that choice is consistent with the
assumptions that (a) the transferred spin density is positive (b) the
dx2-y2 metal oribtal forms o bonds with a hybrid of the 3s, 3py chlorine
orbitals so that Ay = Az, and (c) the isotropic chlorine hyperfine inter-
action should be large and sign determining because the chlorine 3s
orbitals are directly involved in the bonding.

The principal elements of the chlorine hyperfine interaction
tensor may be written in terms of the isotropic contribution Ag, the
direct dipolar interaction Aq between the electron in the dx2-y2 orbital
of Pd and the chlorine nucleus, the dipolar interaction A5 between the
electron in the 3py, orbital of chlorine and the chlorine nucleus, and the
dipolar 1n;eractions Any, App between an electron or hole in the chlorine
py and pz orbitals and the chlorine nucleus. As a result of the relation-
ship between the direction cosines of the three chlorine p dipolar terms
only two independent values (A5 - A"y) and (Apz - A“y) can be determined,

such that

A, O 0 100 2 0 0
0 Ay O [=Ag [ 010] + (Aq+Ag-Am) [0-1 0

0 0 A, 001 0 0-1

-1 00
+ (A‘"z - A‘"y) 0 -'1 0 .

0 02 (143)

Ag = 0.2 x 104 cm~! 1s estimated from Ag = 1,;gnBBnR'3 using the Pd-Cl

distance observedl07 for (PdC14)2—, R = 2.338. The three observed
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principal components lead, by the use of Equation (143), to Ag = 12.3 x-
1074 en™l, (Ag - Agy) = 3.7 x 1074 cn™l, and (Any - Agy) = 0.3 x 107
em~l, Both Ay, and Aﬂy presumably arise from configuration interaction;13o
that is, the approximate treatment given by the one-electron molecular
orbitals should be augmented by mixing in small amounts of excited states
which occur in the many-electron theory.85 In view of the fact that the
experimental tensor is nearly axial with Ay(3501) = Az(35C1), and the
experimental error in Ay(3501) is large, one can set Any = Aq, = 0, in

this way neglecting the small configuration interaction terms. One can
then obtain information about the bjg antibonding molecular orbital
(Equation 108) that contains the unpaired electron. The analysis of the
chlorine hyperfine interaction for (PdC14)3_ follows the saﬁple calcu-

lation presented in the Theoretical section, Equations (108-119), and

yields

f£5(Z) = 0.78 a'2 = 0.35

fpy(2) = 7.9 nZ = 0.91

with a hybridization ratio p/s = 10.

Even though nitrogen-bonded ligands generally produce larger
crystal fields than chlorine ligands, many of the d? ESR studies on Cutt
and Ag++ have involved nitrogen-bonded ligands. In Table 12 we compare
the spin density of Radical I with the well-characterized ESR results for
Cu(II) and Ag(II) tetraphenylporphyrins.132 The total ligand spin density
{(fg (%) + fpx(%Z))} , which is a direct measure of the covalency of the
metal-ligand bond increases in the order Cu++<Pd+<Ag++. This is the order

expected qualitatively since covalency should increase in going from the
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3d to the 4d series, and, in the case of Ag++, the higher metal charge
will attract more electron density from the ligands resulting in a larger
covalency than in the singly charged Pd complex. It should be noted that
there is good agreement between the results obtained in this thesis for

(PdC14)3— and those recently reported by Fujiwara and Nakamura.l31

TABLE 12. -- Ligand spin densities in some o-bonded d9 square-planar
complexes.

Complex Configuration fg(%) fpx (%) (fg + fpx) ()  Reference

Cu(II)TPP? 34° 2.5 4.6 7.1 132
Ag(1I)TPP® 4d’ 3.6 7.5 11.1 132
Pa(1)C1,> 4d° 0.8 7.9 8.7 b
2 1pp = Tetraphenylporphyrin

b This thesis

Radical 11

If Radical II were a chlorine atom in a tetragonal crystal field
with the unpaired electron in a p orbital one would expect the principal
anisotropic hyperfine tensor elements for 35Cl to be (93.5, -46.8, -46.8
x 10‘4 cm"l).99 Clearly only a fraction of the spin density is on the
chlorine nucleus. In irradiated crystals of KoPtCly at 77°K, the
(Pt015)2- radical has virtually the same hyperfine splitting tensors as
Radical II but shows additional splitting from a platinum nucleus.

Hyperfine lines from palladium in Radical II were not observed, probably
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as a result of the weak signal intensity and large linewidths. However,
by analogy with the platinuﬁ radical, it is proposed that Radical II is
(PdCls)z- (d7) formed by a chlorine atom attaching itself to (PdC14)2- in
a fifth coordination position along the fourfold axis.

The magnitude of the tetragonal field is reduced by this axial
ligand to the point where the energy levels correspond to case A,
Figure 1, placing the unpaired electron in the d;2 orbital. The cal-
culated g values given in Table 1 for a (dx2_y2)2(d22) ground state show
gl?gll = 2 as is found experimentally.

Analysis of the chlorine hyperfine interaction in (PdCls)z_,
using the same method and equations employed in the section on (PtCls)z-

(Equations 136-140), gives

£5(%) = 1.7 fpo (%) = 34.7
22 = 0.36 m2 = 0.95

a/p(35C1) ratio = 20 ,

where the sign of Al|(35C1) is taken to be the same as the sign of
41‘3501) by analogy with the corresponding radical in KyPtCl,. Thus,
Radical II also has a o-bonded chlorine with a very large spin density
in an almost pure 3pz orbital. It seems reasonable to assume that the
large spin density of the chlorine will be accompanied by a short Pd-Cl

bond distance and a large overlap.

Reaction Scheme

For irradiated K,PdCl,, the first reaction is assumed to be

PdC1,)2~ —X» (PdCl3)” + Cl- + e~ .
(PdC14) 77°K ¢ 3 ©
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The electron could then react with one of the original (PdCl4)2— complex

ions to produce Radical I
(PAC1,) %™ + e~ » (PdCly) 3™ .

By analogy with the proposed platinum reaction scheme, the chlorine atom
could then move into the potential well at the center of the unit cell.
At 77°K the overlap between adjacent Pd atoms is apparently too small to
stabilize the palladium analogue of (Pt3); therefore, the chlorine atom

may react directly with an undamaged (PdCl4)2- ion to give Radical II

(PdC14)2™ + Cl- » (PdClg)? .



SUMMARY

Paramagnetic species produced by irradiation of diamagnetic square-
planar complexes of Pt(II) and Pd(II) have been studied by electron
spin resonance spectroscopy. The ESR spectra have, in each case, been
obtained as a function of magnetic field orientation and the results
analyzed by the spin-Hamiltonian method. The spin-Hamiltonian para-
meters have been determined and nearly complete g and hyperfine
splitting tensors reported. An attempt has been made to identify
each radical with the aid of this information.

It has been shown that irradiation produces both Pt(I), Pd(I) and
Pt(I11), Pd(III) species resulting from one-electron reduction or
oxidation, respectively. The results of irradiation by y-rays from
a 60co source and by 1 Mev electrons from a G. E. Resonant Trans-
former are identical.

The ESR spectra have been followed, for each crystal studied, as a
function of temperature, and the regions of stability for each
species investigated. The reactions of the various radical species
have been studied and some postulates concerning the mechanisms made.
Single crystals of KoPdCl, and (NH,)2PdCl, have been irradiated at
77°K, the ESR spectra analyzed, and the radicals shown to be
{Pd(I)Cl4}3- and {Pd(III)ClS}2~ in both crystals. On warming, these
radicals decay to diamagnetic products and at room temperature no

ESR signal can be observed.

118
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The ESR spectra of single crystals of KyPtCl, irradiated at 779K
have been analyzed. The two radical species produced have been
shown to most probably be {(Pt,(II,III)C14)2}3- and {Pt(I)C13}2_.

On warming to about 125°K the former reaéts with other species in
the crystal to produce a new radical which the ESR results indicate
is {Pt(III)ClS}z-. On warming to 190°K the (PtCl3)2- radical decays
to diamagnetic products and at room temperature no ESR spectrum is
observed.

The species (PtC14)23- appears to be an example of a complex con-
taining a metal-metal bond. In the species (PtC14)23' the entire
spin density is shared by two equivalent platinum atoms. This is
consistent with a structure in which there is a metal-metal bond
between the platinum atoms.

Energy level schemes have been proposed for each radical species and
the nature of the chemical bonding in each has been discussed.

A number of other diamagnetic complexes of platinum and palladium
have been irradiated. None gives intetﬁretable ESR spectra under the

experimental conditions employed.
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