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ABSTRACT

.AN ELECTRON SPIN RESONANCE STUNY 0F

RADICALS FORMED BY HIGH ENERGY IRRADIATION

0F K2PdCl4 and K2Pt014

By

Thomas Michael Krigas

All known square-planar complexes of Pt (II) and Pd (II) are

diamagnetic with d8 electron configurations and therefore cannot be

studied by electron spin resonance spectroscopy. In this work serveral

new paramagnetic species have been produced by high-energy irradiation

of solid diamagnetic compounds to give Pt and Pd containing radicals

in which one-electron oxidation or reduction has occurred. The struc—

tures of these new species have been obtained from electron spin

resonance studies. The X-band electron spin resonance spectra of single

crystals of K2PdC14 and KthCl4 that were irradiated by y-rays from a

6000 source or by l-MeV electrons have been studied at temperatures

between 77°K and 296°K with the primary purpose of elucidating the

structure and bonding in species showing unusual oxidation states of

palladium and platinum.

Irradiation of K2Pd(II)C14 produces two identifiable paramag-

netic radicals: one is shown to be (Pd(I)C14)3- with a 4d9 electron

configuration and the unpaired electron in a dx2-y2 orbital; the second

radical is believed to be (Pd(III)C15)2— with the unpaired electron in a

4d22 platinum atomic orbital.



Thomas Michael Krigas

Crystals of K2Pt(II)C14 irradiated at 770K show two groups

of electron spin resonance lines: one belongs to a radical that shows

hyperfine interaction with two equivalent platinum nuclei; the second

arises from a radical showing hyperfine interaction with one platinum

and three chlorine nuclei. It is suggested that these species are

{(Pt(II)C14)(Pt(III)C14)}3- and (Pt(I)Cl3)2-, respectively, where the

metal electron configurations are 5d15 and 5d9. 0n warming to 125°K

some of the dimeric radical is converted to a new species whose spectra

are consistent with those predicted for (Pt(III)él5)2'.

Thus, each identifiable radical contains platinum or palladium

in which the original diamagnetic, low spin, (18 configuration of the

metal ion M(II) (M=Pt or Pd) has been oxidized or reduced to form para-

magnetic species with the metal in the unusual oxidation states M(III)

or M(I). Energy level schemes for each radical are proposed based upon

the electron spin resonance Spectra. The nature of the metal-chlorine

bonds in the new species is discussed and the extent of covalency is

estimated by using a simplified molecular orbital picture.
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INTRODUCTION

Electron spin resonance (ESR) studies of transition metal

complexes permit the identification of the paramagnetic Species and

provide information concerning their ground-state electronic structures

and symmetries.1 Complexes of the first-row transition metal ions in

cubic, octahedral and tetrahedral crystal fields have been extensively

investigated.2 Recent work has been increasingly directed toward less

common oxidation states and crystal-field symmetries and toward problems

involving second- and third-row transition metal ions.3'5 Many para-

magnetic metal ions exist only as transient species and therefore are

difficult to study by ESR. Thus, the stable oxidation states of plati-

num and palladium are diamagnetic, M(II) and M(IV), having d8 and d6

electronic configurations, respectively, whereas the unusual paramagnetic

oxidation states of M(I) and M(III) with d9 and d7 configurations,

respectively are unstable transient species. It has recently been shown

that high-energy irradiation of solid materials provides a method for

obtaining such unusual Species and that their stability in the solid

state is often adequate to permit ESR study.6’7

In this thesis, single—crystal ESR studies of several d7 and d9

complexes of platinum and palladium are reported. These species were

produced by high—energy irradiation of the stable, d8 configuration,

square-planar, diamagnetic compounds KdeCl4, (NH4)2PdC14 and KthC14

and have been identified from their Spectra. The crystal-field symmetry,



coordination, and electronic structure of each species is discussed and

compared with related transition metal complexes.



HISTORICAL

ESR Literature Reviews

The literature of ESR studies of transition metal complexes

has been reviewed up to 1965 in the Ph. D. thesis of H. A. Kuska,8 and

three subsequent reviews by Kuska and Rogersz’Q’10 have continued the

coverage up to 1971. McGarvey has written a review of theory11 and

Konig has presented a useful general survey of the subject.12

A number of books on ESR have appeared including introductory

surveys by Baird and Bersohn13, McMillan14 and Assenheimls; there is also

an excellent textbook by Carrington and McLachlan.16 Experimental

methods including the design and construction of spectrometers are

discussed in several monographs.l7"19 A more advanced text by Ayscough2O

and a review by O'Reilly and Anderson21 give up-to—date general treat-

ments of the theory and applications of ESR spectroscopy.

A comprehensive treatment of transition metal ESR by Abragam and

Bleaney1 is the standard reference work on the subject, but a shorter

monograph by Orton22 is useful because of a number of examples of typical

calculations. Ligand—field theory has been treated by Figgis23 and

Watanabe.24

Both the "Annual Reviews of Physical Chemistry"25-28 and the

"Annual Reports of the Chemical Society"29’3O provide coverage of recent

literature as do the proceedings of current ESR symposia.31"35 Specific



topics are reviewed from time to time in the "Advances in Magnetic

36
Resonance" series.

ESR Studies of Platinum and Palladium Species

Platinum (II) and palladium (II) complexes have played a

prominent role in the development of coordination chemistry. For

example, the first reported organometallic compound of a transition metal

was isolated over one hundred and forty years ago by Zeise. In this.

salt, K(C2H4PtCl3), Pt is bonded to the ethylene N system by both a and

N bonds.37 In 1893, Werner38 accounted for the existence of two forms

(a and B) of Pt(NH3)2012 by postulating that the four-coordinate Pt(II)

complexes were planar species and that the a- and B—forms were the trans-

and cis- geometrical isomers, respectively, as has since been confirmed

by X-ray crystallography.39’40 The trans-effect proposed by

Tscherniaev41 in 1926 to rationalize the results of ligand substitution

reactions in Pt(II) square—planar complexes was one of the first

successful attempts to formulate an inorganic reaction mechanism.

Because of this interest in Pt(II) and Pd(II) complexes, a

substantial effort has been made to determine the d-orbital energy level

schemes in these square-planar compounds from Optical spectroscopy42 and

by theoretical calculations.43 The generally accepted d-orbital se-

quences in KthCla and K2Pt(CN)4 are, in order of increasing energy, z2

xz, yz, xy, xz-y2 for the chloride42 and xy, xz, yz, 22, xZ-y2 for the

cyanide salt.44

ESR provides another tool for determining the relative ordering

of the d—orbital levels and at the same time provides information about



the electron spin density distribution in the ground state. Paramagnetic

Pt3+(d7) has been observed by ESR in single crystals of A1203,45:46

yttrium aluminum garnet (YAlG),47 and BaTiO3.l‘8 In each case the plati-

num had inadvertently been leached out of the platinum crucibles used to

grow the host lattices by the high-temperature flux technique. In all

three lattices, the oxygen atoms form a distorted octahedron around the

metal rather than a square—planar arrangement. ESR signals centered at

49 and palladium-g=2.000 have been reported from palladium-doped silicon

doped KCl crystals50 but the paramagnetic species are not well defined.

, The paramagnetic square-planar bis-maleonitriledithiolene (mnt)

anion complexes51 (Pt(mnt)2)1‘ and (Pd(mnt)2)1-, and the related bis-

chelate anion complexes (PtS4C4(CF3)4)1- and (PdS4C4(CF3)4)1-, have also

been investigated by ESR. There has been a considerable controversy over

the interpretation of the ESR and other data for these complexes,52 but

they probably are reasonably well represented as d7 Pt(III) and Pd(III)

species, in view of the magnitude of the 33S ligand hyperfine interaction

observed in the nickel analog,53 rather than as d8, metal-stabilized,

ligand-radical systems.54

By irradiation of diamagnetic Pt and Pd compounds with y-rays or

high-energy electrons it should be possible to produce new M(I) and

M(III) square—planar complexes in which the metal ion (M) has been re—

duced to a d9, or oxidized to 3 d7, electron configuration. Indeed,

Pd(I) has apparently been produced by X-irradiation of palladium—doped

powders of MgO and CaO,55 and recently (Pd(I)(acac)2)1- has been detected

by ESR in y-irradiated palladium acetylacetonate.56

The effects of high-energy irradiation are of three main types:

changes in valency, changes in the point group symmetry of the species,



and bond breaking. In a classic paper on the effects of radiation on

transition metal ions substituted in LiF, NaF or KMgF3, Hall et. 31.6

noted that X—rays changed Fe2+(d6) into Fe3+(d5) and Fel+(d7), and in a

similar manner Ni2+(d8) was converted to Ni3+(d7) and Nil+(d9). The

sc0pe of the irradiation method is evident in the ESR study of X-ray

irradiated single crystals of K3Co(CN)6.7 Since the original Co3+(d6)

ion is reduced to C02+(d7) while one of the cyanide-metal bonds is

ruptured, thereby drOpping the point group symmetry of the anion from

octahedral, Oh, to tetragonal,C4v, all three major effects are seen in

one problem.

No d7 or d9 platinum or palladium complexes showing ligand

hyperfine interaction in the ESR spectra have been reported; irradiation

of K2Pt014 and KdeC14 accordingly was undertaken in an attempt to

produce such species in a form sufficiently stable for study by ESR.

This thesis is concerned with reporting the results of these experiments

including identification of the products, a discussion of the energy

levels and bonding in each new species, and some speculations on the

nature of the reactions occurring.



THEORETICAL

Introduction

The solution of the many-electron problem associated with tran-

sition metal complexes has not been found exactly. Most of the

important attempts to make non-empirical calculations of the eigen—

values, eigenfunctions and physical observables for a transition metal

complex have centered on the (NiF6)4- cluster in KNiF357'59, because this

ion is known to have octahedral symmetry, its optical spectrum has been

assigned60 and the fluorine hyperfine splitting has been observed by

nuclear magnetic resonance (NMR)61 and ESR.62

Most of the remaining ESR experiments on metal complexes have

been interpreted by the spin-Hamiltonian method of Abragam and Pryce.63

In this method a phenomenological Hamiltonian is developed that is

restricted to terms containing the electronic-spin and nuclear-spin

operators S and I, respectively, which arise in a power series of the

form

H = 2 z anm (5)“ 6)“ (1)

11:0 m=o

where n and m are integers. Equation (1) permits the experimentalist to

interpret ESR spectra in a relatively straightforward manner. At the

same time, Abragam and Pryce have shown how to estimate the coefficients



anm (usually tensor quantities) in terms of basic physical interactions

such as the crystalline electric field, spin-orbit coupling, Zeeman

energies, nuclear hyperfine splittings and quadrupole interactions. The

basis of the calculation is to reduce the total Hamiltonian into segments

according to the energy associated with each segment. Then, a sequential

series of perturbations is performed in order of decreasing energy of the

segments. Low64 gives typical energy ranges for the specific inter-

actions as: potential and kinetic energy ~105cm'1, spin-orbit coupling

N102-103cm'1, crystalline electric field ~102-104cm51, electron spin-spin

interaction mlcm‘l, nuclear hyperfine splitting '\a10"1-10'3cm"1 and

nuclear quadrupole effects ~10_3cm—1.

In this thesis, the crystal-field approach65 will be followed.

The ligands will primarily establish the symmetry and magnitude of the

electric field. However, the magnitude of the field will be treated as

an adjustable parameter since the optical spectra of the radicals pro-

duced by irradiation were not measured. The crystal-field basis set will

consist of the real metal 4d, and 5d atomic orbitals for Pd and Pt,

respectively, neglecting the closed shells. The physical picture is

that of a free metal ion perturbed by its nearest neighbors. Although

this is only an approximation, the crystal-field technique has proven

valuable in the past for determining the ground state electronic

structures of paramagnetic species based upon their ESR spectra.3’6’7’66

The possible d-orbital energy level schemes in (PdC14)2- and

(PtCl4)2_, displayed in Figure 1, can be predicted by considering

symmetry arguments. In a six-coordinate octahedral field, the five

independent d orbitals split into a lower-energy triplet, tzg, and a

higher—energy doublet, eg, where the doublet is composed of the d22 and
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de-yz orbitals whose electron density is directed at the ligands;

therefore, the doublet is destabilized by electron repulsion relative to

the triplet. As one mentally removes the two imaginary ions situated

along the positive and negative 2 axis, the d22 and dxz, dyz orbitals are

reduced in energy relative to de—yz and dxy. The only point to be

determined is to what extent d22 and dxz’ dyz are stabilized. The three

possibilities that result as this tetragonal field increases are shown

as cases A, B and C in Figure 1. As was pointed out earlier, case C

gives the correct energy-level ordering for the parent (PtCl4)2- and

(PdCl4)2- ions.42

It seems probable that ESR investigations of the irradiated

parent ions will usually only detect the paramagnetic species formed by

a one—electron oxidation or reduction of the initial (18 configurations to

produce (17 or d9, respectively, since any other metal radicals would have

to be created as a result of-a less probable three-electron change. It

is also expected that the strong crystal field in the Pt and Pd complexes

will require that the radical species have S=%. Therefore, neglecting

the small nuclear quadrupole and Zeeman terms, the spin-Hamiltonian that

one would expect to apply is

m

ll I
E
.

0
0
"

(
A
l

+ m
l

3

H
I

:
2 + m
l

L'IL (2)

where B is the electronic Bohr magneton, and the electronic Zeeman term

is linear in both magnetic field and electron spin, while the electron- 2

nuclear hyperfine interactions may be observed for both metal (KM) and

ligand (XL) nuclei. Vector quantities are indicated by a single bar over

the corresponding symbol while second-rank tensors are indicated by a

double-bar overline throughout the thesis.
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The remainder of the theoretical section will explore the

crystal-field calculation of the g and AM tensors consistent with either

a d7 or‘d9 configuration and with the three possible axially-elongated

tetragonal field energy levels of Figure 1. The ligand hyperfine inter-

action tensor, AL, will be treated by the molecular orbital approach.

Spin-Orbit Coupling

The metal ground state is subject to admixture of various

excited states by spin-orbit coupling. The spin-orbit Hamiltonian is

given by

HLs = 2 6111'51 (3)

1

where Ci is the one-electron spin-orbit coupling constant (always a

positive quantity), £1 and Si are the one-electron orbital and spin

operators, respectively, and the sum is over the i valence electrons.

The eigenfunctions of S2 and 82, where S is the total spin of the system,

6 ,

are written as |n8m> 7 such that

SzlnSm>

SzlnSm>

s(s+1)|nsH>

(4)

mInSm>

where m is the quantum number for the projection of S along 2 and n

specifies information about the radial properties and the orbital angular

momentum. The first-order energy correction to the ground state due to

the spin-orbit coupling is
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ELS . z <©Sm| ciii-Ei |osH> ‘ ' (5)
1 -

where IOS@> is the ground-state function prior to the spin—orbit inter-

action. The modified ground-state wavefunctions are

laosfi> = losé> + z z z <Ps'm'lHLSIOSU> Ins'mi> . (6)

n m' i Eo-En

The second—order energy correction is of some considerable

interest in the ESR of systems where S>1. One obtains

Est = 2 z z z (bSmICiiilsillns'm9*<n3”m'ICi21k81kI03é> (7)

l

n m i l,k=x,y,z Eo-En

which may be identified with the spin—Hamiltonian term

I

a
n

é
u

é
:

EZLS _ (8)

that is, an expression, quadratic in spin, where D is a symmetric tensor.

In the lower symmetry, strong crystal fields that often occur in the

second- and third- row transition ion complexes, orbitally non-degenerate

ground states are the rule. The electrons fill the metal orbitals with

Spins paired, but if there is an odd number of electrons the highest

orbital will contain a single unpaired electron and the paramagnetic

species will have S=k; thus, Equation (8) should not be needed in this

thesis since D, the dipolar interaction between two unpaired electrons,

is then zero.
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For a centrosymmetric atom68 the spin-orbit interaction is

; (r1) Ei-Ei = 232 (1.311.) Ei-Ei (9)

_r1 3r1

where Vi is the potential arising from the interaction of the 1th

electron motion with the nucleus and other electrons, and r is the inter-

particle distance. Although many of the common crystal fields are

considerably lower in symmetry than spherical, the factor (l—.§!1.

r r

is proportional to Z/ri3 and this latter term is large only In tie region

close to the nucleus where the field is nearly spherical and the simple

form of Equation (3) can be used.

In complex ions the unpaired metal electrons can be found in

the vicinity of the ligand nuclei, a fact confirmed by the observation

of ligand hyperfine splittings. These splittings are one of the prime

reasons that molecular orbital theory has been used to treat the bonding

69 In this theory, molecular orbitals arein transition metal complexes.

constructed from metal atomic orbitals, I¢m>, and ligand group atomic

orbitals, |¢L)g which transform in the same irreducible representation.

The modified ground-state wavefunctions of Equation (6) will include

terms having the following integrals7o

<4’LI CiEi'EiI‘IL) - (10)

The Z/r3 dependence of C1 means that the ligand spin-orbit coupling

constant must be used in the integrals of Equation (10). The net effect

in a molecular orbital description is to introduce terms in the g value
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that depend upon the ligand spin—orbit coupling constant, especially if

CchM. An extreme example of the ligand spin-orbit coupling influence on

the g values can be found in the ESR study of (M(V)0X5)2- where M=Cr, Mo

and W and X=F, Cland Br.71 When X is fluorine, gII <gL, but when X is

71 attribute the re-chlorine or bromine, gll >gl, Manoharan and Rogers

versal in order of the g-tensor elements to the increased contribution of

CL in the case of the heavier ligands. For the Pd and Pt radicals

discussed in this thesis CM is considerably larger than §C1=550 cm—1 so

neglect of the ligand contribution should not alter the relative order of

the g-tensor elements.

In 1955 Owen72 noted that CM for metal ions in complexes is

approximately 20-30% less than the corresponding free-ion value. He

ascribes the reduction in CM to the d-electron delocalization in the

molecular orbitals since the Z/r3 dependence will be reduced as the

electron orbital is expanded.

With CMOCZ/r3 it is clear that a reduction in Z will also pro-

duce a reduction in CM. Murao73 correctly predicted that charge donation

by the ligand to the metal in the bonding molecular orbitals would lower

the effective charge, Z, by partially screening the antibonding electrons

from the nucleus. Such effects will be more important for the first

members of a transition row because their CM values are more strongly

dependent on charge. Thus the results of extended HHckel molecular or-

693 carried to a self-consistent charge invariably showbital calculations

that substantial electron density is transferred from the ligands. As an

example, a calculation of charge-transfer effects in (Cr04)3- indicates

that the metal charge is closer to +2 than to the formal charge of +5.74

In a similar manner, the two Hfickel calculations of (PtCl4)2- 43 both
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find that the platinum ion probably has a charge close to +1. In the

absence of the correct value for the metal charge, it is difficult to

decide which free-ion value of CM to use in ESR calculations.

Hazony75 has recently discussed the radial dependence of the 3d

wave functions of iron complexes based upon Mfissbauer and ESR experi-

mental spectra. He concludes that the tzg orbital triplet in octahedral

symmetry undergoes radial expansion as the metal ion undergoes complex

formation, whereas the eg orbitals contract. Moreover, the degree of

radial expansion or contraction is a dynamic property that depends upon

the internuclear metal-ligand distance and the degree of covalency. As

covalent bonding increases, the expansion of the tzg orbitals becomes the

dominant effect. In any event, the r"3 radial dependence of CM suggests

that a somewhat different CM is apprOpriate for each separate type of d

orbital in a complex.

It is common practice in the analysis of ESR data to take the

free-ion value of QM corresponding to the formal oxidation state of the

metal. In the case of the radicals produced in irradiated KdeC14 and

KthC14 one could use the free-ion C values of 1416 cm"1 and 3368 cm"1

1+ 1+
for Pd and Pt , respectively, since charge donation from the ligands

will produce metal ions with approximate charges of +1. The above values

76 and areof CM were calculated from the optical data compiled by Moore

based on the Russell-Saunders LS coupling scheme.69 However, in this

thesis QM will always appear in a perturbation coefficient of the form

(c/AE) where AB is a d-d energy separation. Because the optical spectra

of the radicals are unknown, and in view of the difficulties noted above

in selecting ;, the (c/AE) terms will be treated as adjustable parameters.
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g Values

The spin energy of an electron with a magnetic moment, i, in an

external magnetic field, H, is

E = -E-fi . (11)

The fact that an electron has both spin and charge requires that

the magnetic moment be proportional to the spinlé, ie.,

E = -gB§ = - Y(h/2N)§ . (12)

where (h/2N)S is the spin angular momentum, B is the electronic Bohr

magneton (lelh/4nmc), e is the electronic charge, g is the spectroscopic

splitting factor and the negative sign demonstrates that the negative

charge of the electron causes the spin and magnetic moment to be oppo—

sitely directed. The quantum mechanical analogue of Equation (11), with

the magnetic field in the z direction, is

H = gBHzSZ . (13)

The eigenvalues of Equation (13) are

E = (S‘m'IHz|8é> = gBHzmés'Sdm'm , (14)

where 63's is the Kronecker delta; 63's = 0 if S' + S and 63's =1 only

if S' = S.
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The resonance experiment is performed by inducing transitions

between the energy states of Equation (14) by means of an oscillating

microwave magnetic field which is usually oriented perpendicular to the

applied static field. From time-dependent perturbation theory67, the

transition probability for induced emission or absorption is proportional

to the square of the matrix element of the magnetic dipole moment between

the states of Equation (14). The perturbing Hamiltonian for the micro-

wave field acting on the magnetic dipole is

H = ‘UxHx coswt , (15)

where t is the time and w is the oscillation frequency of the microwave

field, Hx. If the value of “x from Equation (12) is substituted into

Equation (15), P, the transition probability, becomes

P a I<S'm'|gBHx coswt(§i;:§EQISm>|2 , (16)

2

where Sx has been replaced by its equivalent ladder operator.67 Then

carrying out the indicated operations one obtains

ngzHi coszwt
 P .. {(S(S+1)-m(m+1))<m'|m+l> + (S(S+1)-m(m-l)) <m'Im-1>} .

(17)

Because the spin wavefunctions ISm> were chosen as an orthonormal set,

one arrives at the ESR selection rule 8' = S,m' - mil. Thus, magnetic

resonance will be observed when the microwave frequency v is equal to the
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energy separation between the m and the (m + 1) or (m - 1) states. The

Bohr condition then gives

hv = Emil -Em = gBH . (18)

Angular Variation of the giValue
 

In the most general situation the g value is a tensor quantity.

In the principal coordinate axis system of the g tensor, the magnetic

dipole term becomes

H = 8(gXXHXSX + gyyHySy + gzszSz) o (19)

The evaluation of the matrix elements of Equation (19) are facilitated

by converting Sx and Sy into their corresponding ladder operators67 to

give

H = 8{%(gxxHx‘18yyHy) S+ + 5 (gxxHx+18yyHy)S--+ gzszSz} (20)

The secular determinant67 for an S = % example where Im = %>’E Im> and

Im = 42>; I8) 1s

m' “‘ i la) l8)
 

h£> BgZZHZ -E gISXXHx‘igyyHy)

2

(21)

I8) £(g H +1 H )2 XX X gyy y - Bgzsz ‘E

 2
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Solution of the secular determinant yields

E = t 8/2 (ging + ggyflg + ggzflg)SE (22)

If H is expressed in polar coordinates with respect to the principal g

axes, then the magnetic resonance energy between the IQ) and I8>’spin

states is

AB = gBH , (23)

where

g = (gix sin2 6cos2 ¢ + g2 sin2 6 sin2¢ + ggz c0826)15 (24)
YY

Bleaney77 has treated the angular variation problem in a slightly

different fashion. Equation (20) can be written

H = (123+ + 13s_ + 1152) . (25)

It may be recognized that the spinor78

1132 125+

is an Hermitian matrix operator whose coordinate axis system can be

transformed by using a unitary matrix, Q, such that



20

11's,} 12's+' 1132 123+

<2“. (27)

ll

.
0

13's- ‘11'82' 13$- -llSz

where QdI is the adjoint of Q. Now the transformed matrix of Equation

(27) is diagonalized along the magnetic field vector by forcing 11' =

12‘ = O. The Hamiltonian of Equation (25) becomes

H = BH11'SZ' , (28)

where 11' is identified with g and has the same value as in Equation (24).

Even though this exercise seems redundant, it is important for

two reasons: Bleaney's technique leads directly to the anisotropic

transition probability79 and, of greater interest, this same technique

was employed by Bleaney77 to find the angular variation of the hyperfine

interaction tensor in the form of an analytical function.

Zeeman Effect
 

The Hamiltonian Operator for the total electron magnetic dipole

energy in a magnetic field is derived from the Dirac relativistic

Hamiltonian.68 The crucial terms are

.1 22 -- - '
H = 3;;2’{e A + 2ecA-p + 2e(h/2N)co~ curl A}, (29)

2
where me is the electron rest energy, p is the linear momentum, A is the

vector potential and 01 (i = x,y,z), the components of 3, are the Pauli

spin matrices. The vector potential of a uniform, unidirectional exter-

nal magnetic field is given by80
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X = - a? x i . (30)

After substituting this relationship into Equation (29), the resulting

expression can be simplified by vector identities to give

a = (eh/4nmc) {(-2ne/hc)(r2fi-(E-N)E) + E + 2§}-fi . (31)

The terms in the center brackets are the diamagnetic and paramagnetic

moments induced by the external field and since they are quadratic in

magnetic field strength, all of the states in the metal-ion ground term

are shifted by an equal amount and, therefore, do not contribute to the

spin Hamiltonian. The remaining expression is the familiar Zeeman

Hamiltonian

Hz = 3(I + 2;) - fi . (32)

Slichter81 has shown that the orbital angular momentum is

quenched for an orbitally non-degenerate ground state (orbital singlet).

In other words, the expectation value of the orbital angular momentum

over the ground state wavefunction, I£>, is

<¢Ifiil¢> = 0 . (33)

where ii is the x or y or 2 component of I. When the resonance condition

between the orbitally non-degenerate spin states lu>'and IS> is fulfilled

one finds that

AE - 28Hz . (34)
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Comparing this result with the basic ESR equation (Equation (23)) shows

that g = 2. Indeed, most organic free radicals do exhibit g values very

close to 2, whereas the g values of most paramagnetic transition metal

complexes deviate substantially from 2. This fact is of paramount

importance to this thesis because it will be shown that the magnitude and

sign of the deviation of the g value from 2 allows one to make an assign-

ment of the ground state wavefunction.

The goal of this section is to calculate the first—order Zeeman

energies for an orbitally non-degenerate ground state using the spin-

orbit augmented wavefunctions of Equation (6). Recalling the ESR

selection rules AS = 0, Am = :1, it is obvious that one need only con-

sider the matrix elements between the components of the ground state with

different values of m. One then obtains

E2 = (yosm"|Hz|a03m> , (35)

which yields four terms, the first of which is

z 2 HR <OSm"I2,1k+251k[OSm> . (36)

k=x,y,z i

If Equation (36) is recast into operator form by suppressing the matrix

elements of 31k: and remembering that the orbital angular momentum is

quenched for an orbital singlet, the first term becomes

22 Z Hksik . (37)

k=x,y,z i
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The second and third terms are equivalent and their sum is given by

282 E E )3 51—13-13- <nS'm'|9.flsflIOSm> <OSm"l£ik + ZSiklnS'm'> . (38)

l,k n m' 1 EO'En

Retaining terms to first degree in H and 8, Equation (38) reduces to

28 Z Z E-Z—Eflg <nl211I0> <S'm' I311ISm> <03m"|2,1klnS'm'> (39)

n

X Z

l,k m' i

where AEn = Eo—En. Equation (39) is further reduced by the ortho-

normality of the spin functions to

7-8 3 ’32 2wé‘lliil?(S'm'I811ISm><0I£1kIn> - (40)
l,k n m' i AED

Recasting Equation (40) into operator form by suppressing the matrix

element (S'm'lsill8m> one obtains

CilHkSil

28 2 2 Z (Winch) <n|211I0> “—5“— . (41)
l,k n 1 En

The fourth term has the form

 

1:12:32 <I£il+2511I>
<I21k+231kl>

,
(42)

which is quadratic in magnetic field strength and will be omitted as was

done in the reduction of Equation (31). When the first three terms are

collected (Equations (37) and (41)) and compared with the leading term in
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the spin Hamiltonian of Equation (2) the following identification may be

made

glk=22(61k+ X X

i l,k n

. _ <43)
§P|£11I€> <PI21kId> )

AE
n .

where 81k is the lk'th element of the g tensor and 61k is the Kronecker

delta. This result was first obtained by Pryce82 in 1950.

It is possible to calculate the g tensor directly from Equation

(43), but in the case of strong crystal-field problems it is better to

perform the sequential perturbations of spin—orbit coupling followed by

the Zeeman interaction. This thesis is concerned only with S=k spin

systems so, if Id) and Ié> are the doublet ground state wavefunctions,

the principal g tensor elements of Equation (35) can be equated with the

tensor elements of the phenomenological Hamiltonian of Equation (21) to

give

8xx = 2 i <§I£ix + 2SixIB>

gyy = 21 2 <§|21y + 2siy|é> (44)

1

gzz = 2 i <PI212 + 2SizI°I> °

Sign of the g,Shift
 

It is convenient to define a quantity known as the g shift, Aglk,

where

Aglk = (Elk-2) - (45)
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From Equation (43)

2: 22 <0|211In><nllikl® . I (46)
Aglk = 2

l,k n i AEn

a

Although this gives the prescription for calculating the magnitude of the

g shift, the sign of the shift is unknown. It may be determined from the

following rule:21 if the excited state, En, arises by promotion of the

unpaired electron into an empty anti-bonding orbital, the g shift is

negative; if the excited state arises by promotion of one of the paired

electrons into the half-filled orbital, the g shift is positive.

Sample g—Value Calculation
 

65,69
In the crystal-field approximation one needs the hydrogen-

like wavefunctions

Imam, = Rng<r> Y£m£(9.¢) . (47)

where, as usual, n is the principal quantum number, 2 is the orbital

angular momentum quantum number, m2 is the component of 2 along the z

axis, R is the radial function, and the spherical harmonics ngz describe

the angular portion of the wavefunction. In considering the d orbitals

(i=2), the radial portion an is assumed to be the same for each. In

magnetic resonance one is interested in the matrix elements of the orbit-

al and spin angular momenta which are assumed independent of an.

Whenever a radially dependent quantity occurs, the following type of

relationship is implied:
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C1 = (C1) = fo°°R*n251Rn2r2dr - (48)

In the absence of detailed information concerning the radial wave-

functions radially dependent terms are treated as adjustable parameters

to be evaluated by experiment.

In the notation for the d orbitals which will be employed in this

thesis one writes

(22)+ Id22,a:>

(22)“ |d22,s> . (49)

where a,8 are the spin function and dZZ is the spatial function. The

angular portions of the real d—orbitals are

(22) = 822 = do

(x2-y2) = dx2-y2 = 1//2(d2+d_2)

(xy) = dxy = 1/1/2(dz-d_2) (50)

(xz) = dxz = l//2(d1-d-1)

(yz) = dyz = -1/i/2(d1+d_1)

where

do = Y20 = /5/16N(3c0326-1)

9:1 = Y211 = /15/8N sinecosee11¢ (51)

d+2 — Y2-2 = 715/32n sinzeei21¢

and 22 and d22 will be used interchangeably.
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As an example of a typical calculation the case of a complex with

an axially symmetric g value (gzz = 8|]: gxx ' Byy ' 8L), 8 d7 configura-

tion, S=%, the energy level scheme A of Figure 2 and the unpaired elec-

tron in dZZ will be examined. The ground state in the hole formalism65

is (dx2-y2)2(d22). The calculation is facilitated by the use of two

tables; the first, the effect of the operator E‘E on the d-orbital set

of Equations (50) is presented in Ballhausen's bookégb; the second,

giving the matrix elements of the orbital angular momentum within the d—

orbital set is compiled in McGarvey's reviewll.

The zero-order Kramer's doublet is

I (xZ-y2)2(zz>+>

|<x2-y2>2(zz)f> (52)

I 0+)

I 0")

where Id> refers to the ground state wavefunction. The first-order

improved configurational wavefunction Id> obtained by introducing the

spin-orbit interaction (Equation (6)) is

IQ) = NI(x2-y2)2(22)£>'+iall(X2-y2)-(Xy)-(Zz)f>

-ia1I (XZ-y2)+(XY)-(22)+> 33% (xZ-y2>‘<yz>‘<zz>+>

-ia4/2| (xz-y2)+(y2)+(zz)+> :Z'Z‘I (xz-yz)‘(xz)'(zz)+>

—a4/2I (x2_y2)+(xz)+(22)+> 3%‘31I (xz-y2>2(xz)‘>

-1/3a3/2|(x2-y2)2(yz)f> , ' (53)

where
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a1 = c/E(0) - E{(x2-y2)’(xy)+(zz)+}

a2 = c/E(0) - E{(x2-y2)'(e)'(zz)+}

(54)

a3 = c/E(0) - E{<x2-y2)2(e>'1

a. = c/E(0) - E{(x2-y2)+(é,+(zz)+} .

I

The orbital, e, can be either dxz or dyz: C is the one-electron metal

spin-orbit coupling constant, N is a normalization constant and the

denominators are the configurational excitation energies. Normalization

gives the equation

<§I€> = 1 = N2 + 2a? + ag/Z + aZ/Z + 333/2 . (55)

The first—order IS) function is found from I(x2-y2)2(22)€> in a like

manner. The Zeeman spin-Hamiltonian expressions of Equation (44) lead

to

2 2 2 2 2
2N + 4a1 - a2 + 334 - 3a3

2N2 + 6a3N + 4a? + 2a2a4

g||

EL

(56)

The obvious problem is that one has five unknowns and only three equa-

tions (including normalization). However, the perturbation coefficients,

a1, are usually small enough (>O.1) that any product of two coefficients

can be ignored. When this is done, Equations (56) become

8II = 2N2
2 (57)

g-L =3 2N + 683N
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Since the g shift (gli2) is due to the excitation of an electron from one

of the filled orbitals dxz or d into the partially filled dZZ orbital,
yz

its sign is positive such that g1) gll = 2. The calculated g values for

the other two possible ground states of the Pt and Pd radicals reported

in this thesis are shown in Table I with the normalization constant

suppressed.

TABLE 1.~- g Values calculated from ligand field theory8

 

 

Ground State

 

 

Configuration (hole formalism) g|| gl-

87 (dx2_y2)2(dxy) 2 - 8c/AE1 2 + 2c/AE2

d7 (dx2_y2)2(dzz) 2 2 + 6§/AE3

d9 (dx2-y2) 2 + 8c/AE1 2 + 2c/AE4

a) AEl = E(xz-y2)-E(xy); AEZ = E(xz,yz)—E(xy); AE3 = E(xz,yz)-E(z2)

AE4 = E(xz,yz)-E(x2-y2).

If there is a low-lying excited state not coupled to the ground

state by the spin-orbit interaction the resonance signal will be strongly

temperature dependent because of the thermal distribution of electrons

between the two orbitals. If the low-lying state is coupled to the

ground state, the perturbation coefficients, a1 = g/AE, will be very

large. In this situation one must simultaneously diagonalize the crystal-

field and spin—orbit interactions to obtain the correct ground state

wavefunctions (the g shifts will still be large but calculable).

Fortunately neither of these two cases occurs in the Pd radicals. But
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in the Pt—containing radicals the large spinjorbit coupling constant may

require a higher-order perturbation treatment. Tippens83 gives analyti-

cal expressions for the second-order spin-orbit coupling correction to

the g value. Atkins and Jamieson84 have generalized Tippens' method to

insure that the g value remains gauge invariant.

Hyperfine Interactions

Introduction
 

When a nucleus with a non-zero nuclear magnetic moment, in, is

placed in a magnetic field, H, the associated nuclear spin vector, I,

takes one of (21+1) quantized values, I, (I-1), °°°°, -I, and the energy

becomes

HN = ’Un ° H = -ganH-I (58)

where 3n is the nuclear magneton, eh/4NMc (M is the proton mass), gn is

the nuclear g factor and I has all of the properties ascribed to a gener-

alized spin angular momentum.

The hyperfine energy term S°Z~I (Equation 2) arises from the

mutual interaction between the nuclear magnetic moment and the spin-plus-

orbital magnetic moments of the unpaired electrons. This interaction may

be viewed in two equivalent ways: either the electrons produce a magnetic

field at the nucleus thereby lifting the (21+1)-fold nuclear spin degener-

acy; or, the nucleus produces a field at the electron that adds to the

external magnetic field. From either point of view the magnetic field at

the electron, which is being examined by the ESR experiment, has (21+1)

values. The ESR selection rules A880, Amatl state that the quantum of
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angular momentum imparted by the microwave field is used to "flip" an

electron spin and as a result of the conservation of angular momentum I

cannot be simultaneously changed. Thus the ESR spectrum will show (21+1)

lines of equal spacing and intensity since the nuclear energy levels are

essentially equally populated. If the electron interacts with n magnetic

nuclei of spin Ii, the number of lines becomes

n

(211+1)(212+1) ~.-- (21n+1) = n (211+1) . (59)

i=1

while the relative intensities can be found by summation. Should j

nuclei of spin I be magnetically equivalent, the combined nuclear spin

_ 3

vector is I = 211 and the j nuclei produce (2jI+1) lines.

The scizi and utility of the structural information from the

hyperfine splitting is now apparent. One can often identify radicals by

the number and intensity of the lines in the ESR spectrum. The nuclear

spin of previously unexamined isotopes can be determined or, alterna-

tively, if I is known, then the magnetic moment can be estimated from the

hyperfine splitting. The extent of covalent bonding may also be judged

from the magnitude of the interactions.

The Hyperfine Hamiltonian
 

The objective in this section will be to develop two expressions

for the hyperfine interaction. It is desirable to have a phenomenol-

ogical spin Hamiltonian (Equation 1) that will allow the spin parameters

to be easily extracted from the experimental splittings. It is also

desirable to have an equivalent Hamiltonian expression that is directly
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related to the basic physical interactions which can then be used to give

a molecular structure interpretation to the splittings. This latter

expression can also be used to identify the ground state or confirm the

identification made from the g values.

The relevant portion of the Dirac equation for a one-electron

atom in a magnetic field 1365268

an = e/mc {Z . 5 + (h/ZN) a - 6 x X} . (so)

.The vector potential A for the nuclear dipole is given by80

A = in x r/r3 (61)

where r is the distance between electron and nucleus. Substitution of

Equation (61) into Equation (60) yields

{_—___<‘7‘§>'i + “imfih (62)
r 1'5

Hn = 8e8n88n

where as before I is the orbital angular momentum for a single electron,

§ is the spin angular momentum for a single electron and ge = 2.000.

This dipolar Hamiltonian integrates to zero for the spherically symmetric

s orbitals which is fortunate, since a singularity develops in Equation

(62) when r = r0 (r0 is the nuclear radius); yet, p, d and f electrons

that do exhibit dipolar hyperfine interactions have nodes in their

electron distributions at the nucleus.

The fact that s electrons show an isotropic hyperfine splitting

is attributed to the Fermi contact interactionl'22 which may be written
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H, = (an/3) gegnsenlwon2 ' (63)

where I‘I’(0)I.2 is the s-electron spin density evaluated at the nucleus

(r=0) for the orbital W. In operator form the contact term becomes

Hf = (aw/3) gegnsen 6(?>i-§ (64)

where the delta function requires that r=0 for the integration over the

electron coordinates. The total hyperfine Hamiltonian is

-Hh = Hn + Hf = SegnBBn {if§§2.+.212:§25.. (8w/3)6(E>§}-i . (65)

Additional unpaired electrons and/or nuclei can be included in Equation

(65). If Equation (65) is expanded into its components, the result can

be represented in tensor form by

ah = a-K-i' (66)

where E is a symmetric tensor. Equation (66) is the phenomenological

expression used to interpret experimental spectra.

Abragam and Pryce63 have cast the hyperfine Hamiltonian into a

form that is more convenient for computing matrix elements. Within

states where L, the total orbital angular momentum, is constant, which

includes the ground state and lowest—lying excited states, the Cartesian

coordinates of Equation (65) can be replaced by appropriate orbital

angular momentum operators. The validity of this replacement is based

on the Wigner-Eckhart theorem.81 Proper combinations of the (x,y,z)
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coordinates are related (apart from a constant) to the spherical harmon—

ics whose rotations are covered by the Wigner-Eckhart theorem. The

angular momentum operator equivalent must transform in the same way as

the combination of Cartesian coordinates assuming that allowance is made

for the non-commutivity of 1x. 1y, and 12; for example, xy transforms the

same as 3(1ny + lylx). The constant of proportionality is determined by

evaluating the same matrix element for both forms of the Operator. In

this manner Abragam and Pryce showed that the hyperfine Hamiltonian for

a single electron is

Hh = gegnBBn (r3) {E-i - «5.2) + £2(2+1)(§~I)

—3z/2<E-§>(I i) -3a/2<E-i)(Z-§>} (67)

where €=2/ (22+3) (22-1) is the constant of proportionality, <r_3> is the

expectation value of r"3 over the radial portion of Hh and K is the s-

orbital contribution to the hyperfine interaction and is defined by

(Bu/3)6(?) ‘
a , 68

K (If-3) ( 7

The utility of Equation (67) is now apparent. The involved integrals

have been replaced by simple algebraic relationships depending upon the

well-known matrix elements of angular momentum operators.

Isotr0pic Hyperfine Interaction
 

One of the most striking hyperfine interaction problems is found

in the case of half-filled d-shell ions such as high-spin an+ (with con-

figuration 3d5 and ground state 6S) in an octahedral crystal field where
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no hyperfine splitting would be expected. With L=O there should be no

orbital contribution to the hyperfine splitting while the spherical

symmetry eliminates any dipolar contribution and the absence of half-

filled s orbitals rules out splittings arising from the Fermi contact

term. Yet, an appreciable splitting is Observed and this splitting is

87:88 of the inner s electrons. Thus. anattributed to core polarization

unpaired d electron with its spin up i will have different electrostatic

repulsion and exchange interactions with inner s electrons whose spin is

up + than with those whose spin is down I . In the conventional Hartree-

Fock closed-shell calculations the spin properties of paired electrons

are exactly equal, but opposed in sign, leading to a net cancellation of

spin density at the nucleus due to filled s shells. The Hartree-Fock

87.83 does not have this restriction,method employed by Watson and Freeman

so that electrons with the same values of the n and A quantum numbers but

different values of the ms quantum number are allowed to have different

radial wave functions. The result is that the s-orbital core electrons

may be polarized to give a net spin at the nucleus which has a sign

Opposed to that produced by the unpaired d electron. Any spin density at

the nucleus contributed by s electrons in the valence shell, or further

removed from the nucleus than the d level, yields a core polarization

term of the same sign as that of the unpaired d electron. Although these

spin density differences are quite small, the contact hyperfine inter-

action for a single 5 electron is very large and produces isotropic

splittings which usually dominate the observed metal hyperfine splittings.

As a measure of the core polarization, the parameter x is defined

as the unpaired spin density at the nucleus per unpaired electron:

x = 411/28 £II¢1+(0)I2 - I‘M-(0H2)

1 (69)



36

where I¢1+(O)I2 is the positive spin density (m=+%) in the 1th 3 oribtal

evaluated at the nucleus and S is the total spin of the system. Pre-

dictions of x and <r'3>by spin-unrestricted Hartree-Fock calculation887’88

have been quite successful despite the fact that x is the sum of several

large terms which may have Opposite signs. This success is particularly

surprising since the calculated metal hyperfine interaction energies are

approximately 10'2cm-l

approximately 105cm'1.

, while the total energy Of the complex ions is

McGarvey89 has summarized the experimental trends among values of

x. He shows that x gradually decreases across a transition series from

-2.0 atomic units (an) to -3.4 an as one goes from a 3d1 to a 3d9 con—

figuration. Similarly x runs from -4.0 to -9.0 an across the 4d series

and from -10 to —15 au across the 5d series. Experimentally x is related

to K by (see Equations (68) and (69))

K <r'3> = -(2/3)x . (70)

A number of workers have shown that K is relatively constant for a given

metal ion in a variety of complexes. However, as the complexes become

more covalent the unpaired electron becomes more delocalized and <r-3>

decreases while x approaches zero, a result supported by McGarvey's89

compilation. This linear correlation of x with covalency is observed for

d1, d3, (15 and d7 cOnfigurations.

2+
In the case of the (19 configuration, particularly Cu complexes,

the linear correlation of x with covalency breaks down implying that K is

90,91
not constantgo’gl. Kuska st 31. attribute the lack of correlation

in copper complexes to a small admixture of 4s electron density into the
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ground state. They believe that molecular vibrations reduce the symmetry

restrictions which prohibits direct mixing of 43 with the dx2_y2 ground state

89 says that spin density is inducedorbital. On the other hand, McGarvey

into the 43 copper orbital by exchange interaction with the ligands.

Recently McMillan92 has discussed the contribution to the metal

core polarization induced by unpaired spin density on the ligand nuclei

which will increase with increasing covalency as one goes from the 3d to

the 4d to the 5d transition series and as sigma bonding between metal and

8
ligands increases. Therefore, ions with d9 or d configurations, or a

strong-field (17 configuration, where the unpaired electrons are in pre-

dominately o—type orbitals will experience "anomalous" core polarization

and x cannot be easily correlated with covalency.

In certain point-group symmetries, it is possible for one of the d

orbitals to belong to the totally symmetric irreducible representation as

do the s orbitals. Mixing can then take place between the nd and (n+1)s

orbitals and, as noted earlier, spin density in s orbitals in the valence

shell (or beyond) will cause x to become more positive. For example, (CO(II)

phthalocyanine),65 which has a low-spin 3d7 configuration of D4h symmetry

with the unpaired electron in a (3d22 +43) hybrid orbital, has an isotropic

hyperfine field at the nucleus of x=+2.2au where as the great majority of

3dn ions have negative values of x clustered about a value of -3 an.

The reason for the extensive discussion of x is that in this

thesis two of the three possible ground states of the Pt and Pd radicals

have either d9 or low-spin d7 configurations. Since the molecular

orbitals containing the unpaired electrons form o-type bonds with the

ligands, these ground states are the ones most likely to exhibit

"anomalous" core polarizations. The consequences are: (1) the magnitude
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and even the sign of x cannot be assumed to agree with that calculated

from spin—unrestricted Hartree-Fock calculations for the metal ions since

those are based solely on dn core polarization; (2) the inability to

interpret x restricts the use of hyperfine splittings to assign the

ground states of the radicals; (3) x (or K) cannot be used to estimate

the degree of covalency. Because the isotropic hyperfine splitting, as

measured by -gegn88n <r'3> K in Equation (67) , does not necessarily

follow changes in (K3), the hyperfine Hamiltonian in this thesis will be

written

uh = «(E-i) + pal-'1') + 52(2+1)(§o'1')

_ - _ _ _ _ _ _ (71)

-3/2§(2-s)(£-I) —3/2g(2-I)(2-s)}

where P = gegnBBn <r-3> and K now has units of energy. In the ESR

literature of transition metal complexes, energies are usually expressed

in units of cm'l. To find x in atomic units from K (cm-1) the following

equation89 is used:

x(au) = -3/2(hcag/gegnBBn)K(cm'1) (72)

where so is the Bohr radius.

Analysis of Metal Hyperfine Interactions
 

For transition metals Equation (71) may be transformed by putting

£=2l21 since, for d electrons, i=2. In the crystal-field approximation,

(:r‘3>h is assumed to have the same value for all of the valence d elec-

trons and one obtains



39

“I. = «(I-Sol") + 1303 + 5/7»? (73)

where a = 4§ -(I°§)E - E(I-E). The relationship between the experimental

principal A values (Equation (66)) and the principal values of Equation

(73) can be determined by examining the corresponding matrix elements

between the ground state spin wavefunctions Ii) and Id>

<PIAzzIzszI€>
(@I-KSZIZ+P(£z+az/7)IZI€> (74)

and

Azz/2 <§IIzIé> (bl-KSZ+P(£z+az/7)I€>> <6I12I€> (75)

or

-K + 2P <§I£z + az/7I€>

and similarly

—K + 2P (bllx + ax/7Ié>

(76)

W - -.< + 21? (ally + ay/7IB> .:
> I

The calculated hyperfine splitting values for the three possible ground

states of the Pt and Pd radicals studied in this work are reported in

Table 2 based upon an axially symmetric hyperfine interaction tensor

(Azz = All, Axx = Ayy = A1} where the unique axis is z). The ground state

wavefunctions I€> and Id) are the same spin-orbit augmented functions

used earlier to calculate the g values reported in Table 1.
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Covalency from Metal Hyperfine Splittings
 

McGarvey89 has presented the molecular orbital (MO) theory for

the Cu2+, 3d9, 2D ion in a square-planar complex of D4h symmetry. The

pertinent antibonding orbitals are

IO) = aIdx2_y2> - a'l¢L(x2-y2)>

I") = Bldxy> - B'|¢L(xy)> ' (77)

ITI1>=81Idxz yz>" BII¢L(x2.y2)>

where the ligands lie along the tx and iy axes. The I€> orbital contains

the unpaired electron and ¢L(x2-y2), ¢L(xy) etc. are the symmetry-adapted

wavefunctions constructed from linear combinations of ligand atomic

orbitals. The squares of the coefficients represent the electronic spin

density in that atomic orbital. If a2 = 0'2, the covalency is maximized

2
since the electron spends equal time on the metal and ligands. As a +1,

the electron is more nearly localized on Cu2+ and the bonding is more

nearly ionic. The value of a2 can exceed unity depending upon the value

of the overlap term found on normalization, eg.,

1 = oz + 6'2 - Zaa'S (78)

where S is the group overlap integral.

The ESR spectra of the Cu2+ complexes can be fitted to the

following axial spin Hamiltonian:

= g] IBHzSz+giB(HxSx+HySy) + Al IIzSz+Ai(IxSx+IySy) (79)
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which gives

All = -K -(4/7)a2P+Ag|IPZ||+(3/7)A§1PEL’

, AL = -K +(2/7)62P+(11/14)AgLP2L

2" = aBi{qu -a'els—aa'<1-e§>kr(n)}

El.= OB'IOB —O'BS-(1//2)a'(1-82)kT(n)} I (80)

s = (Hx2_y2I¢L(x2-y2i> I

T(n) = n-(l-n2)%égh8(zpzs)5/2(zs—zp)/(zs+zp)5

Agll = gII - 2.0023

Agi = gi — 2.0023

where Zp and Z8 are the effective charges for p and s electrons on the

ligand, R is the metal-ligand internuclear distance and n2 is the

fractional p character of the ligand orbitals making up ¢L(x2-y2). Often,

as in the case of the Pt and Pd radicals, there is a lack of good wave

functions, information about effective charges, spin-orbit coupling con-

stants and excitation energies which prevent one from using the complete

expressions of Equations (80). McGarvey points out that by setting 2" =

2L.- 1 Equations (80) reduce to the much simpler pair

All = -K +P(-4/7a2+Ag||+3/7Ag1)

(81)

21.: "K +P(2/7a2 + 11/14AgL) .
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Fortunately substitution of experimental values of A||, Al, Agll, AgL

into Equations (81), along with a value of P based on <r'3> from unre-

2
stricted Hartree-Fock calculations, leads to values of a and K(Or x)

that are substantially the same as result from more extensive treatments

employing Equations (80).

Angular Variation of the HyperfineSplittingli93.94

For a microwave frequency of N10,000MHz (X-band), the Zeeman

energy is

E/hc 2 0.3cm-1 . (82)

Using the point-dipole approximation, the hyperfine interaction energy

is about

E/hc « (BBn/hcr3) = 0.004cm’1 (83)

O

where r is taken arbitrarily as 0.5A. In terms of magnetic fields, the

external field at X-band when g=2 is approximately 3600 Gauss at reso-

nance. Again, within the point-dipole approximation (r=0.5X), the

magnetic field at the nucleus due to the electron is

an a e/r3 = 80,000 Gauss (84)

while the field at the electron due to the nucleus is

Re « Bn/r3 = 40 Gauss . (85)
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These observations illustrate the so—called high-field approximation in

which the larger energy Zeeman term is diagonalized with the electron

spin quantized along the external field. The smaller hyperfine term is

treated next with the nuclear spin quantized along the resultant magnetic

field which is primarily due to the field produced by the electron.

Consider the following Hamiltonian:

Hz = BEE-'3' . (86)

If the unit vector 5 along the external magnetic field direction (H=Hfi)

has direction cosines cosasinB, sinesinB, and cos B with the (x,y,z)

principal axes of the g tensor, then the energy eigenvalues are

E = gBHm (87)

where m is the projection of S along the magnetic field direction and

2
yysinzosinZB + ggzcoszB (88)g2 = (n §)(§-fi) = ggxcoszesinzs + g

and one obtains (28+1) equally spaced levels of interval gBH. Since the

experimentally determined g tensor will always be positive and symmetric,

no information is lost by dealing with the g2 tensor. The orientation of

the g-tensor axes is not usually known beforehand so one chooses a right-

handed Cartesian coordinate system (1,2,3) located in the crystal (Often

the crystallographic axes). Then the unit magnetic field vector 3 has

direction cosines cos¢sin6, sin¢sin6 and cosO with the chosen crystal

2
axes and g becomes
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2 2 2 2
g = sin 9(G11cos O + 2G1251n¢cos¢ + Gzzsin O)

+ 23in6cosO(Gl3cos¢ + G23sin¢) + G33cosze (89)

2--tensor elements in the (1,2,3) axis system.where the G13 are the g

To evaluate the tensor it is usual to perform three mutually

perpendicular rotations of the crystal in the magnetic field and if the

three rotations are made about the orthogonal crystal axes (1,2,3) one

obtains

2
g = ngsinze + 2623sin6cosO + G33cosze

for rotation around 1, since 0 = N/2 and H is in the 2-3 plane;

g2 = G11 sin26 + 2613sin6cose + G33cosze (90)

for rotation around 2. Since 0 = O and H is in the 1-3 plane; and

2=c 12 2 .2
g 118 n ¢ + G13sin¢cos¢ + G2251n O

for rotation around 3, since 6 = N/2 and H is in the 1-2 plane. As

Schonland94 has noted each of these equations is of the form

g2 = a1 + 81 cosZOl + 71 sin261 (91)

(for rotation about axis 1)

where
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a1 ' 3(033 + G22)

81 = 5(033 - G22)

Y1 = G23

with similar results for the other two rotations. As the magnetic field

makes its excursion there will be a maximum and a minimum in g2 in each

of the three planes. If gi and g3 represent the extrema in each plane,

there result six equations in the six independent tensor elements Gij-

In each plane two unique parameters arise

a=afi+g5

(92)

6 = Mg}. - 33)

and it may be shown that the g2 tensor elements are

G11 = (012 + a3 - 0:1)

(93)

612 = t{(03 + 01 - 02)(03 - 01 - (12)}g5 .

Cyclic permutation of the indices will give the other four elements.

The g2 tensor can be diagonalized by an orthogonal (similarity)

transformation to give the principal values gfix, 33y and ggz as follows:

o
n

I-1 (lkicidljk = 8§k513>
(94’

where (lki) a (11k).1 are the orthogonal direction cosine matrices re-

lating the experimentally chosen crystal axes (1,2,3) to the principal g

axes (x,y,z), and 613 is the Kronecker delta.
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If the Hamiltonian now includes the hyperfine interaction, and

the principal axes of the hyperfine tensor coincide with those of the g

tensor, then

H = BH<nlgxxSx + nzgnyy + “382252)

+ Axxstx + Anyny + AzzSzIz (95)

where H = EH. In the high—field approximation, S is quantized along H

to give

H = g8HSé + (1/g)(n1gxxAxxIx + nzgyyAnyy + n3gzzAzzIz)S; (96)

where g2 = nigxxz + “Eggy + n§8§z° Then I is rotated to quantize I

along S to give

H = gBHSé + ASéI; (97)

where

2 2 _ 2 2 2 2 2 2 2 2 2
g A - nlgxx Axx + nZgyyAyy + n3gzzAzz . (98)

The important result is that to extract the principal hyperfine tensor

elements the experimental tensor ng2

2A2

must be diagonalized and one there-

2
fore treats the g tensor in the same manner as the g tensor (Equa-

tions (89)-(94)) above. Thus, following the three orthogonal rotations,

g2 and ng2 (with A expressed in energy units) are both plotted versus

the angle of rotation. From the extrema in both plots one can Obtain the

principal values of g and A.
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When the hyperfine splitting is relatively large the off-diagonal

elements in Silj must be considered. The second-order perturbation

treatment of the problem of an axially symmetric radical is very useful

for interpreting the experimental results Of this thesis. The solution

given by Bleaney77 is presented below for a radical with S=k and the

selection rule Am=tl, AmI= .

2
A

AB = hv = gBH + AmI + (Af|+Ai) .l. {I(I+1)—m§}

 

4A2G

2 2

A -A

+ II .I 8]|Sj_ sin226 mi (99)

BAZG 32

where

G = gBH

2 2 2 2 2
= cos 6 + sin 68 8|. 8L

2 2
g A = gIIAIICOSZ

2 2 2

6 = angle between the unique molecular axis and the magnetic field.

Although the (21+1) hyperfine lines are no longer equally spaced, the

energy difference between the m1 and -mI components is simply 2Am1. That

is, the second-order effects can be eliminated by measuring the separa-

tion between the imI lines. The more difficult problem of non-coincident

principal axes for g and A is not amenable to closed form solution, but

is discussed in Abragam and Bleaney's bookl.
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Sign of the Hyperfine Splitting

Because experimental hyperfine tensor elements are determined

as AIi’ the signs of the elements are lost. Fortman's Ph.D. thesis95

describes a method for establishing the signs by use of a model system

in which the nucleus and unpaired electron(s) are considered to be point

charges and simple magnetic dipoles. There is an easier technique to

determine the signs of the hyperfine tensor elements which will be em-

ployed in the present work. As an example, if the hyperfine tensor is

axially symmetric there will be two experimental principal tensor ele-

ments usually, designated All and Al, either of which can be positive or

negative thereby creating a total of 22=4 possible sign combinations. If

each of these combinations is substituted into the theoretical expres-

sions given by Equations (76) one obtains four sets of values for K and

P. The correct sign combination will be that giving the value of P

agreeing most closely in magnitude to the value of P which has been cal-

culated for the free ion by the Hartree-Fock method, and has the correct

sign. This technique for determining the signs depends upon the proven

ability of the free-ion Hartree-Fock calculations to predict observables

96
accurately, particularly <r'3> for the 3d87, 4d88 and 5d transition

metal ions.

Ligand Hyperfine Interactionsl’85
 

Ligand hyperfine splittings provide the most striking demon-

stration of covalency in transition metal compounds and also provide the

best criterion for finding the extent of covalent bonding. There are two

alternate theories for picturing the ligand hyperfine interaction. If

one examines an isolated metal-halogen bond composed of two paired
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p—electrons on the ligand and one unpaired electron on the metal, the two

approaches may be compared.

In the molecular orbital (MO) approach two orbitals 0A and OB are

constructed:

,

IPA a NA(d"AP)

and ' (100)

¢B " NB(P+Bd) .

The lower energy p electrons on the ligand constitute the major component

Of the bonding orbital OB while the singly occupied antibonding orbital

¢A is largely the metal d atomic orbital. NA and NB are the normalizing

coefficients (NA=NB=1) and A and B are small admixture constants. After

bond formation the bonding orbital drops in energy below that of the

original atomic p level and the antibonding orbital is raised in energy

above that of the atomic d level, but the net energy of the system is

lowered. Normalization gives

NA . (1-2As+z\.2)l5

(101)

N3 =- (1+212.s+132)15

where S = <de> . The orthogonality condition yields

<¢AI¢B> = o = B-A+S-ABS (102)

and by neglecting the small term ABS, one obtains

A - B+S . (103)
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There is a fraction N%(B2+BS) of two electrons transferred from

the negatively charged ligand to the positively charged metal via the

bonding function 63. A fraction Ni(A2—AS) of one electron is transferred

in the Opposite direction via the antibonding orbital to give a net

electron transfer Ni(A2-AS) from p to d. Since the orbitals with Spin

up + are each singly occupied, the only measurable electron transfer is

that associated with the bonding electron with spin down +, or alterna-

tively with the antibonding hole with spin up +. Because the hyperfine

interaction drops off as 1/r3 the overlap contribution is small and the

fractional spin density transferred to the ligand is

f = AzNi . (104)

That is, the transferred spin is just the square of the antibonding

ligand coefficient.

In the configuration interaction (CI) approach the ionic nature

of the complex is emphasized. The ground state is considered to be

(M+n)(L') and the wavefunction is a many-electron Slater determinant

a +-+
Wg = (3) Ipde (105)

where the spin is represented by the superscript + or - for m = :3. A

small amount of the excited state consisting of (Mn-1)(L°), where the

ligand has completely transferred one electron with spin down + to the

metal, is admixed into the ground state by configuration interaction

leading to a new wavefunction

9g - N(9g + owe) (106)
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+_+

where N=1, C is small and We = (3)8IpddI. The fraction of unpaired spin

on the ligand is

f = CZNZ , (107)

a result that is formally analogous to the MO method.

In the past decade, the relative merits of the molecular orbital

and configuration interaction methods have been explored by performing a

host of non—empirical calculations on the (NiF6)4- "cluster" ion. In the

"cluster" ion approximation, the remainder of the crystal is ignored

except in that it creates a Madelung-type electrostatic potential at the

ion. Table 3 gives a comparison of the 10Dq, fo(%) and f3(Z) values

determined experimentally with those calculated from the crystal-field

(CF), molecular orbital and configuration interaction theories. 10Dq for

 

 
 

 

(NiF6)4- is defined as the energy separation between the ground (t6e2)3A2g

state and the first excited state (t5e3)3T2g.

TABLE 3. -- Comparison of calculated with experimental parameters for

(N1F6)4'

Method 10Dq(cm-1) fo(%) fs(%) Reference

Experiment 7250 3.8 0.5 (1963)60’61

Calculated CF 1514 (1970)57

Calculated CF -3572 (1971)58

Calculated MO 2800 1.0 0.3 (1964)97

Calculated CI 5400 2.9 1.0 (1966)98

Calculated M0 6089 4.8 0.4 (1970)57

9
Calculated MO 7210 3.3 0.4 (1971)5
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The crystal—field calculation gives values of 10Dq too small and

can even reverse the known energy levels. Earlier calculations seemed to

favor the CI approach over the M0 technique. However, larger and faster

computers have allowed workers to include the closed shell orbitals, to

calculate directly the energies of excited states and explicitly include

three- and four-center integrals. Thus, recent MO calculations have shown

good agreement with the experimental observables. The successful MO

calculations are appealing to chemical intuition because complexes such

as the dithiolate compounds,53 where = 50% of the unpaired spin density

is on the ligands, are difficult to picture in the CI framework. Also,

the bulk of experimental ESR results has been analyzed by the MO tech-

nique; therefore, the MO scheme will be followed in this thesis to

analyze the ligand hyperfine splittings.

Sample Calculation
 

The analysis of ligand hyperfine splittings in the complex ion

(PdCl4)3- will serve an example. The ion is assumed to have the same

square-planar arrangement of chlorines about the central metal atom as in

the parent (PdCl4)2- ion. The ground state in D4h point-group symmetry

should be (d9)ZBl with the unpaired electron in the dx2_y2 orbital. A

metal coordinate axes system (XYZ) for this radical is defined so that

the Z axis is the unique C4 rotation axis. Each chlorine nucleus is

assumed to have its own local right-handed Cartesian coordinate system

(xyz) with each x axis directed toward the metal atom (Figure 2).

The blg antibonding orbital containing the unpaired electron is

Iblg) = aIxz-y2> - 1501' I01-02+O’3-O’4 > (108)
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where the chlorine O orbitals are

I01> = nI3px>1 + (1-n2);’I3s>1 . (109)

Normalization gives

1 = 02 + a'2 — 4aa'S (110)

where S is the overlap integra1¢<x2-y2I01>A

The ligand hyperfine spin Hamiltonian for the o orbitals is

expected to be axially symmetric with the x axis being the unique axis:

HL = AIISxIx + Al(sny + szIz) . (111)

By symmetry, it is possible to focus attention on one of the ligands and

simply multiply the spin density obtained for that ligand by four to get

the total transferred spin density. The expectation value of BL for blg

retaining only those terms containing 01, is

l
i
b
-
1
1
>

2

(blgIHLIb1g>= -aa'<x2->'2IHLI01>+ %'<01IHLI01>+' 5%. <°jIHLI°1>~

j 2

(112)

The third term, involving integrals of C11 with the other three chlorine

nuclei, is dropped because the r"3 dependence of the hyperfine splitting

makes the term vanishingly small. The first term would be dropped for

the same reason except that the coefficient a is large; that is, the

majority of the unpaired electron density resides on the metal. To the

ligand nucleus, the spin in de-yz appears to be concentrated at the
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metal nucleus and the interaction behaves as a direct dipole term which

can be written

Hd = Ad(2$xIx"Sny‘SzIz) (113)

where Ad = ggn88n R'3 and R is the metal-ligand distance. The second

term is evaluated with the hyperfine Hamiltonian of Equation (71) where

i=1, g=2/5, P=gegn88d<r'i>3p for a chlorine 3p electron and the (I-I)

contribution is zero for an orbital singlet. There results

HL = —t(§-i)-3/5P{-4/3(E-i)+(E.§)(Eoi)+(I-i)(I.§)} . (114)

The components of the second term for S=2 are

12 2

%‘ <b1+I{(n+1)K+'é§—'P}stxI01€><01+I (HL)XI 01+)

'2 22

%’ (bl'l{(n2-1)K— —%—'P}snyI01£> (115)<91’I(HL)yIOIf>

2
12 2

<Pl_I(HL)zI°1t> = %‘ <§1'|{(n2-1)K- —%‘P}szIz|oI£>

If one adds the direct dipole term of Equation (113) to Equation (115)

and compares corresponding elements with the phenomenological Equation

(111), one finds

A'I = A8 + 2(Ap + Ad)

(116)

21.: AS - (AD + Ad) ,
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where

(117)

All and Al are known experimentally, and Ad can be calculated if R is

known, hence AS and Ap may be computed readily.

The transferred spin densities to the first chlorine are

As a'2

f = ——'= —' (1-n2)
5 A3 4

(118)

f _fp=n201'2

p 11.3 4 ’

where

8 _ _
Agc3501) = (—§)gegn88nlw3s(o)|2 = 1570 x 10 4cm 1

(119)

Ag(35c1) = (2/5)gegn88n<}'3)3p = 46.75 x 10"‘Icm'1

are Obtained from I‘I’33(O)I2 and <r-3>3p which, ‘in turn, have been taken

from the Hartree-Fock calculations for free chlorine atoms with con-

figurations (3S3p6) and (3823p5), respectively.99 The coefficients n2

and 0'2 are also obtained, as is the hybridization ratio p/s = n2/(1-n2).

The most serious approximations in the ligand hyperfine inter-

action are:

a) Core polarization of the chlorine Is and 25 orbitals by the

unpaired electron spin in the 3px orbital has been neglected



b)

C)
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and the entire isotropic hyperfine component has been attrib-

uted to spin density in the valence shell 3s orbitals.100

This suggests that only the anisotropic ligand term should

be used to estimate spin densities and covalency just as was

done in estimating covalency from the metal hyperfine

splitting.

Since the chlorine is essentiallyCl', I‘l’38 (O) I2 and <r'3>3p

should be evaluated for the ionic species.101 However, in

this thesis the usual convention of taking I‘l’3s(0)l2 and

<5-3>3p from the Cl0 wavefunctions will be followed. This

facilitates making comparisons with ESR studies in the

literature.

The point-dipole correction, Ad, is only the leading term in

a multipole expansion and is only rigorously correct for a

spherical electron charge distribution on the metal102 (132,,

a half— or completely—filled shell).



EXPERIMENTAL

ESR System

The ESR system and the techniques employed have been discussed in

the Ph.D. thesis of Kuska.8 The measurements were performed on a Varian

Associates (VA) X-band, Model V-4500-1OA ESR spectrometer with IOOkHz

modulation and a 12—inch VA electromagnet. The magnetic field was

measured with a marginal—oscillator NMR probe103 and the resulting NMR

proton frequency was counted on a Hewlett—Packard (HP) Model 524C

electronic counter. The magnetic field for protons in a water sample is

calculated from the following equation:

H(Gauss) = (2.3487465 x 10'4)v(Hertz). (120)

Microwave frequencies were measured by either a calibrated TS-148/UP

U. S. Navy spectrum analyzer or with a Hewlett-Packard Model 5245L

frequency counter equipped with a Hewlett-Packard Model 5257A transfer

oscillator. All of the spectra were recorded on a Moseley XY recorder.

59
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Sample Preparation

Samples of K2PdC14 and (NH4)2PdC14 were Obtained from both

Engelhard Minerals and Chemicals and the Matthey Bishop Company. KthC14

104 to givewas prepared from platinum metal by oxidation with aqua regia

HthCl6, and K2PtC16 was then precipitated by addition of KCl. The

K2PtC16 was reduced with hydrazine hydrochloride to give K2PtCl4.lOS

All residues were saved and reworked when necessary. Single crystals

were grown from slightly acidified (HCl) aqueous solutions Of the salts

by using seed crystals.

K2Pt(CN)4:3H20 was prepared from K2Pt014 in aqueous solution by

addition of KCN followed by filtration and repeated recrystallizations

from water solutions. Single crystals were grown by slow crystallization

from.water solution and had to be stored in a high-humidity atmosphere

to prevent loss of water.

The bromine bridged complex, tetraethylammonium tetrabromo-uu'

dibromoplatinum II, (N(C2H5)4)Pt2Br610
6a

was prepared by the method of

Harris g£_§l,106b and single crystals were grown from acetone solutions

of the salt.

Crystal Structure of K2(Pd,pt)314107

K2PdCl4 and KthCl4 are isostructural: the space group is D4h-

O O

P4/mmm with Z=1 and a0 = 7.04A, Co = 4.103 for Pd and a0 = 6.98A,

o

co = 4.13A for Pt. Each metal atom is surrounded by four equivalent

o

chlorines at a distance of 2.33A. These square-planar units are stacked

along the c axis in alternate lamellae with the potassium cations
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(Figure 3). The crystals almost always grow as rectangular needles with

the c axis the needle axis and (100) and (010) forming the faces.

Irradiation Methods

Crystals suitable for irradiation (approximately 2 x 2 x 4 mm)

were optically selected with the aid of a polarizing microscope with

crossed Nicol prisms. In this manner, crystals that were twinned or had

large imperfections could be discarded or cleaved perpendicular to the

c axis. Crystals to be irradiated with the 60CO y-ray source were

placed in glass vials and immersed in a Dewar of liquid nitrogen. The

60Co
Dewar was placed in the center of the Michigan State University

y-source and subjected to 6 x 106 rads. Crystals to be irradiated by

electrons were placed in Saran-wrap Containers which were buoyed up by

foamed polystyrene balls weighted to just float on liquid nitrogen in a

Dewar. If the crystals were allowed to sink in the liquid nitrogen the

electron beam was severely attenuated. The Dewar was placed approximately

four inches below the tip of the l-MeV electron source at Michigan State

University and then subjected to a dose rate of 3 x 106 rad/min for three

minutes. A lower dosage gave a reduced paramagnetic signal intensity

whereas doses above 3 x 107 rads produced appreciable crystal fracture

and crumbling. The same crystal could be reirradiated at least twice

before the physical damage was too severe to allow handling without

breakage.

Experiments were conducted to measure the change in the ESR

spectra of y-damaged crystals upon exposure to ultraviolet irradiation.

The beam Of a General Electric BH6 mercury lamp was focused through the
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port of a VA Model V—4531 general purpose ESR cavity and onto the crystal

which was cooled to liquid nitrogen temperature (both the lens and Dewar

were quartz).

Sample Handling

The sample handling technique was similar to that used by

Kispert.108 Because of the temperature sensitivity of the paramagnetic

radicals formed in irradiated crystals of K2PtCl4 and K2PdC14 (no

radicals remain at room temperature), sample transfer, mounting and other

manipulations of the crystals were all performed under liquid nitrogen.

The crystals were clamped between two brass clips which were glued to

the end of a quartz rod and then the entire assembly was immersed in a

glass Dewar filled with liquid nitrogen. The bottom of the Dewar had

a quartz finger of the prOper dimensions to just fit into the Varian

Associates general-purpose, T102 mode, X-band cavity, Model V-4531. The

rod was held centered in the Dewar by a cylindrical foam insert at the

top of the Dewar while the sample was centered vertically in the cavity

until the signal was maximized. The initial setting of the crystal in

the plane of rotation was done by visual alignment of the external

crystal faces with the quartz rod. This alignment was refined by phys-

ically reorientating the sample. The oscilloscope mode of signal diSplay

was also used occasionally to refine the alignment or to find a principal

axis of the radical. The angular variation in each plane Of rotation was

measured by either rotating the Dewar in the cavity and measuring the

angle of rotation on a machined protractor or by rotating the calibrated

magnet. Normally, three independent planes of rotation are employed to
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obtain the magnetic tensors; however, in this case, the high degree of

crystal symmetry reduced the necessary rotations to two. Accordingly,

the spectra were recorded at 100 intervals with the external magnetic

field in the ac and aa' planes.

Error Analysis

The error introduced into the measured g values may be estimated

by taking the total derivative of g = hv/BH

dg = (3g/3H)VdH + (8g/3v)Hdv (121)

which reduces to

Ag = ig(I2AH/HI + IAv/vI) (122)

where the factor of two arises because the magnetic field must be

measured both up and down field from the center of the pattern. The

proton resonance from the marginal oscillator provides an absolute field

measurement limited by the precision of the fundamental constants and the

accuracy of the HP 524C counter (:20 Hz). At a microwave frequency Of

104 MHz and a g value of 2, the proton resonance will occur at approxi-

mately 15 MHz :20 Hz, a very small percentage error compared to that

arising from the field inhomogeneity.

Since the water probe of the marginal oscillator was located

outside the cavity on the magnet pole face it was important to estimate

whether the field at the sample differed from that at the NMR probe. For
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this purpose a dual-probe assembly was constructed which permitted a

comparison of the field at the two positions; this revealed a field

difference of about 0.25 Gauss which was neglected.

The error in frequencies measured with the spectrum analyzer is

less than 10.5 MHz. Thus, for a spectrum centered at g - 2.00 with

H==3500 Gauss and v (microwave)==10,000 MHz, Equation (122) gives

Ag==i0.0001 . (123)

A larger error is introduced in the magnetic field measurement because

Of the finite linewidths in transition-metal ESR spectra. In a first-

derivative presentation of the absorption spectrum, the point of inflec-

tion (crossover point) mid-way between the peak and valley becomes

successively more difficult to determine exactly as the line width in-

creases. Actually, in this research the limiting error is the error in

crystal orientation which arises because crystals must be mounted under

liquid nitrogen without the aid of a polarizing microscope or of X-ray

methods for establishing the location of crystal axes. The error Ag in

the g value of a radical with axial symmetry based upon an angular error,

A6, in orientation is

.8 = iI{(Ri - gT|)/g}cosesin6A6I (124)

o or 20 inwhere g2 is given in Equation (99). As an example, let A6 = 1

the data for the determination of gll, where g|| = 2.500 and $1.: 2.000.

Then
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A6 = 1°, Ag = a 0.0035

0 (125)

A0 = 2 , Ag = i 0.014 .

Clearly, the larger the anisotropy (gi - gf'), the larger is the poten-

tial error in Ag. For a fixed angular error, the maximum error in Ag

occurs with 6 = 45°. It is difficult to assess the angular error in a

single measurement by the technique described earlier; hence, to minimize

and bracket the error, replicate measurements on many crystals were made.

Therefore, the errors in the spin-Hamiltonian parameters are reported as

standard deviations, D, given by

 

n 2 n 2 5

p = 2: A1 - (1: A1) In , (126)

i=1 i=1

,, (n-l)‘

where A1 is the ith-individual Observation of the n Observations made.

If there are less than six independent observations, the mean experi—

mental deviation is reported.



RESULTS

K2PtCl4

Introduction
 

At 770K four distinct groups of ESR lines are observed in irra-

diated KZPtCl4 crystals. The two strongest sets are shown in Figure 4

with HIIa. The intense group of six lines at low field (Set A) which is

also seen with HIIC, must belong to a radical containing two magnetically

equivalent platinum nuclei; in the absence of experimental information

concerning the ligands or charge, this radical will be designated as

(Ptz). The second set of intense lines shown in Figure 4 at higher field

(Set B) is also seen when HIIc and is a triplet, each component of which

shows superhyperfine splitting into ten lines. On the basis of these

nuclear hyperfine interactions, this second radical is presumably

(PtCl3)o or (PtC13)2_ and will, therefore, be tentatively designated

(PtCl3)n‘. A third set of lines of low intensity has ESR parameters

essentially identical with those observed for (PdCl4)3— (see the Results

and Discussion sections on KdeCl4), but in Figure 4 the lines are ob-

scured by the lines of Set B. This radical is attributed to palladium

impurity which appears to be present in all available samples. A fourth

feature of the spectrum is a weak, single line at g = 2.000 which, on

warming, seems to resolve into a triplet of separation 6 Gauss; there is

67
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insufficient evidence to identify it and it will not be discussed further.

This fourth feature is too low in intensity to be seen under the condi-

tions of Figure 4.

On warming the crystals from 770K to about 108°K the (Pt2) lines

slowly decrease in intensity and a new set of lines of lower intensity

starts to grow in. At 1250K the (Pt2) lines are gone and the new set

(Figure 5a), which shows hyperfine interaction with one platinum and one

chlorine nucleus, has reached maximum intensity; this radical is tenta-

tively designated as (PtCl) and its probable structure will be discussed

later. With further warming the (PtCl3)n- lines disappear above 1900K.

The (PtCl) spectrum is also gone by room temperature, where no stable

radicals exist.

On irradiating the crystals at 770K with the mercury vapor lamp

the (Pt2) lines disappear rapidly and the (PtCl3)n- lines decrease in

intensity slowly; the (PtCl) species was, however, never observed on

illumination as it is on warming.

(Ptz) Radical
 

The first-derivative spectra of the axially symmetrical radical

(Ptz) are shown in the parallel (Figure 6a) and perpendicular (Figure 6b)

orientations. Only a single magnetic site is observed for this radical.

These spectra can be interpreted with the spin Hamiltonian of Equation

(79) where S=%. Hyperfine coupling of the Odd electron to two equivalent

nuclei necessitates some care in constructing suitable nuclear spin wave-

functions.109 In order to account for the second-order hyperfine inter-

actions one must introduce the total nuclear spin operator I=(I1+I2) and

associated representations II, mI>where
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Figure 5. The first-derivative X-band ESR spectra of (PtC15)2—:

(a) with HIIc, (b) with HIIa.
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e) .1921 Hllc

 
In) Fifi/2) I19

"1‘ 9‘: 2.723

g“ 3 1.770

 

  

 

  Iv) IRE) l1°>

I90)

ILA/e

lac) I357!» It“)

 

 

I‘d: ‘4) IM)

Figure 6. The first-derivative X-band spectra of (PtCl4)23- in

irradiated single crystals of K2PtCl4: (a) with HIIc, (b)

with H%c. The feature marked X in (a) is centered at

g = 2. 00 and is from an unidentified species.
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I 3 II + 12, II + 12 - 1, . . . . , II - 12 = O

mI = 1, 1 - 1, . . . . , -1 . (127)

The spin functions, representations, and degeneracies, along with the

calculated and experimental relative intensities for the six-line (Ptz)

radical, are given in Table 4. The line associated with the singlet

product function (OB—Ba)//2 is not shifted by either the first- or second-

order hyperfine interaction and is therefore under the strong central

line which is dominated by the radicals containing the non-magnetic

platinum isotopes. The principal values of the g and A(195Pt) tensors

that are listed in Table 5 under (Pt2) were calculated from Equations

(99).

UV-Photobleaching Experiment
 

An ultraviolet (UV) photobleaching experiment was performed on

y-irradiated crystals of K2PtC14, maintained at 770K, with the light

beam incident on the (100) face. The decrease in (Ptz) concentration

was measured by recording the decrease of the ESR signal intensity as a

function of UV exposure time. If the decrease in signal intensity

(radical concentration) with time is assumed to be proportional to the

instantaneous signal intensity (radical concentration) raised to some

power, n, then

-dI a Indt (128)

where I is the signal intensity and t is the time. A plot of the in-

tegral form of Equation (128) for n=2, that is (l/I - 1/10) versus t,

yields a straight line (see Figure 7) which implies that each reactive
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TABLE 5. -- ESR spectral parameters of radicals in irradiated crystals of

 

Arbitrary Designation of Radical

(Ptz) (PtCl) (Ptol3)“‘

 

Structure of Radical Assigned on Basis of ESR Data

 

(PtCl4)23- (PtC15)2' (PtC13)2-

g|| = 1.771:o.001 g,Z = 1.942:o.002 gzz = 2.8oo:o.oo4

31.: 2.723:o.004 gxx = 2.417:o.004 gxx = 2.174:o.002

A||(195Pt) = 444:1 gyy = 2.386:o.004 gzz = 1.974:o.002

AL(195Pt) = 613:3 Azz(195Pt) = 369:5 A(195Pt) = 319:4

:]Hllc

195 ~ 195 _ 35,37 3
Axx( Pt)-Ayy( Pt) — 455:5 A( c1) 15.1:o.1

AII(35’37C1) = 56.8:1.o A(195Pc) = 360:5

Hlla

Alf35»37c1) = 15.6:2.5 A(35’37C1) = 13.7:o.3

 

All hyperfine splittings are in units of 10-4 cm71. The errors listed are

experimental standard deviations.
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Figure 7. A plot of (l/I-l/Io) versus time for the photobleaching decay

of (PtCl4)23' indicates that the decay is second order in

(PtCl4)23' concentration.
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photon eliminates two (Ptz) radicals. This is apparently not a thermal

effect since no new paramagnetic species appeared during or after the UV

illumination unlike the warming experiments where (PtCl) is produced.

The fact that two (Ptz) radicals are involved suggests that one unpaired

electron is transferred through a conduction band (see Structure section

below) from one (Ptz) to a second (Ptz) with the resultant production of

four diamagnetic species.

(PtCl) Radical
 

The first-derivative spectra of the (PtCl) radical with Hllc and

Ella are shown in Figures 5a and 5b, respectively. The spectrum of

Figure 5a shows a central quartet plus two satellite quartets which arise

from a species containing a single platinum atom; the central quartet

belongs to those radicals containing the non—magnetic platinum nuclei and

the satellites to those containing 195Pt (I=%, relative abundance 33.7%).

The quartet superhyperfine splitting arises from interaction with one

chlorine nucleus (35C1, 37Cl both I=3/2 with abundances 75.4% and 24.6%,

respectively). Spectra from two magnetically nonequivalent sites are

observed and these coalesce for Hllc and for HIIa (Figure 5). At no time

could the 35C1 and 37C1 splittings be separated.

The spectra can be described by the usual spin Hamiltonian

H = sfi-E-‘é + 3301131,t + §.(X-i)C1 (129)

where S=k and the smaller nuclear Zeeman and chlorine quadrupole terms

are neglected.

During rotation with the external magnetic field in the ac plane

the chlorine hyperfine interaction decreases from a maximum at Hllc until,
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at about 750 from the c axis, it disappears in the linewidth (peak-to-

peak width about 37 Gauss). No chlorine splittings are observed when the

magnetic field is in the aa' plane which precludes a complete determina-

tion of the principal chlorine hyperfine elements, but the symmetry of

the platinum spin-Hamiltonian parameters suggests that the chlorine tensor

will be nearly axial. For this reason only Al(35’37Cl) is reported in

Table 5 and it is a calculated value obtained from fitting the angular

variation in the ac plane by Equations (131).

The principal values of the g, A(195Pt) and A(35’37C1) tensors

are reported in Table 5. The gzz element is parallel to the c axis while

the 8xx and gyy components bisect the aa' crystal axes. The two magnet-

ically inequivalent sites are related by a 900 rotation about c.

(PtCl3)n- Radical
 

The first—derivative spectrum of the (PtC13)n— radical with HIIc

is shown in Figure 8a, and the second-derivative spectra with El(110) and

Hlla in Figures 8b and 8c, all at X band. The g tensor has its maximum

element gzz coincident with the c axis while the gxx and gyy elements lie

in the aa' plane at 45° to the a axis. There are two magnetically in-

equivalent sites related by a 900 rotation about the c axis and these

become equivalent when Ella and Hllc. The spectra at these two orienta-

tions consist of ten chlorine hyperfine lines with the correct intensity

ratios for three equivalent chlorine nuclei. However, it has not been

possible to analyze the Spectra to give the complete chlorine and p1ati~

num hyperfine tensors and their direction cosines. Therefore, in Table 5,

A(35’37CI) and A(195Pt) are only reported for Ella and HIIc.
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(a) HIIC a": 2.800

11%.

 
   

(1») H1110 "=19"

(c) H Ila a: 2.073

GOG

Figure 8. The X-band spectra of (PtC13)2-: (a) first-derivative, HIIc,

(b) second—derivative, Hi(110), (c) second—derivative, Ella.
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K2PdC14 and (NH4)2PdC14

Introduction
 

- The first—derivative ESR spectrum of irradiated single crystals

of KdeCl4 shows three sets of lines when the magnetic field is parallel

to the c axis (Figure 9).‘ The set at lowest field belongs to a radical

(Radical I) showing hyperfine interaction with one palladium and four

equivalent chlorines. The central set of Figure 9 consists of a group

of approximately twelve lines centered at g 2 2.26 and appears to have

two sets of hyperfine splittings (=22G. and =24G.) but these are observed

only when the magnetic field is within 150 of the c axis; hence the

parameters of the spin Hamiltonian could not be determined and the

radical was not identified. The third set of lines (at high field) con-

sists of four lines of equal intensity and spacing which is attributed

to a radical designated as Radical II.

ESR spectra of irradiated single crystals of (NH4)2PdCl4, which

has the same crystal structure as KZPdC14, show almost identical sets

of lines as those attributed to Radical I and Radical II in K2PdC14.

However, the third and unidentified radical giving rise to the central

set of lines in KdeCl4 was not observed in the ammonium salt.

Radical I

The second-derivative spectrum shown in Figure 10 is obtained

when the external magnetic field is parallel to the c axis. The center

of the spectrum is dominated by thirteen intense lines while the multi-

plets on either side of the central one have been recorded under a nearly

fourfold greater amplification. Since palladium has only one naturally
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Figure 9. The first-derivative X—band ESR spectrum of irradiated

KdeC14 at 77°1< with HI lc.
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I "mun

     

Figure 10. The X-band ESR spectra of irradiated singlg crystals of

K2PdC14 showing the lines from the (PdCl4) ' radical ion:

(top) second-derivative spectrum with H c, (center) first-

derivative spectrum with Hlla, (bottom) second-derivative

spectrum with H1010) .
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occurring isotope with a nuclear spin (IOSPd, I=5/2, 22.3% relative

abundance), a palladium-containing radical should show a strong central

line from those species containing the palladium nuclei with even iso-

topes (I=O), plus six satellite lines (three on each side of the central

line) each having a relative intensity 4.8% of the central line. The

spectrum of Figure 10a may be interpreted on the above basis if each

palladium line is split into a thirteen-line multiplet with relative in-

tensities 1:4:10:20:31:40:44:40:3l:20:10:4:1 by hyperfine interaction

with four equivalent chlorine nuclei (35’3701, I=3/2), and if the

observable satellite multiplets are assigned to the palladium lines with

mI=15/2 (along with their chlorine hyperfine structure) while the 105Pd

lines with mI=i%, :3/2 (along with their chlorine hyperfine structure)

are assumed to lie buried beneath the strong central lines arising from

the non-magnetic palladium nuclei. There is only one magnetic site for

the (PdCl4)n- radical.

0n the basis of this analysis, the paramagnetic species is

(PdCl4)n— with n=1 or 3. This assignment is strengthened by examination

of the first-derivative spectrum shown in Figure 10b taken with Hlla

which now permits resolution of the 35C1 and 3701 splittings. During a

complete rotation of the field in the aa' plane, g and A(105Pd) remain

constant and the spectrum repeats every 90°, thus demonstrating that the

radical has retained D4h symmetry and, presumably, the location of the

original (PdCl4)'2 anion. It will be shown below that the radical has a

d9 configuration and must be identified as (PdCl4)3- so this formula will

be used in the remaining discussion.

The experimental results can then be described by the spin

Hamiltonian of Equation (79) for the metal (M) and the following spin

Hamiltonian for the ligand (L):
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4

n=1

+ Ax(Iy2 + 1%)) SY (130)

where S=%, the right hand coordinate systems at palladium (X,Y,Z) and at

each chlorine (x,y,z) are as in Figure 2, and the other symbols have

their usual significance.110 Therefore, with Hlla (Figure 10b) the four

chlorines are equivalent and the thirteen lines are separated by A =

%§'(A§ + A§)%. When the external magnetic field is perpendicular to

(110) (Figure 10c), there are two magnetically nonequivalent pairs of

chlorine nuclei leading to a chlorine multiplet of forty-nine lines,

simplified in this case by the accidental approximate equality Ax=2Ay.

A(105Pd) and A(35Cl) tensors are givenThe principal values of the g ,

in Table 6.

The same radical is formed in crystals of (NH4)2Pd014 irradiated

and observed at 77°K but the (PdCl4)3- radical in the latter crystal

gives rise to broader lines (first-derivative peak-to-peak linewidths of

~6.0 Gauss as opposed to ~2.5 Gauss in the potassium salt), presumably as

ll‘N nuclei.a result of interactions with the neighboring 1H and

Upon warming crystals of KdeCl4 which had been irradiated at

770K, the lines from Radical I decay irreversibly with the decay becoming

rapid at 1710K and complete at about 2000K. A plot of signal intensity

log(I/Io) versus 1/T(°K) shows two linear portions intersecting at

approximately 171°K with activationenergies AB 3 1.4 x 102cm'1 below

2
171°K and AB 2 20 x 10 em'1 above 171° (Figure 11). This implies two

different modes of decay.
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TABLE 6. -- Principal values of the spin-Hamiltonian tensors of radicals

in y—irradiated KdeC14 and (NH4)2PdCl4.

 

 

 

 

Parameter (PdC14)3- Parameterb (PdC15)2-

xzpdm4

g|| 2.516:0.003 gC 2.012:0.001

$1 2.084:0.002 ga 2.149:0.004

AII(105Pd) 35.7:0.2

AL(105Pd) 24.7:0.7

Ax(35Cl) (+)20.0:0.3 Ac(3501) 59.5:0.1

Ay(35C1) (+) 8.9:0.6 Aa(35Cl) 10.8:1.0

Az(35C1) (+) 8.1:0.2

(NH4)2PdCI4

gII 2.561 gc 2.012

21 2.090 Ac 59.0

AI|(105Pd) 32.2

alfIOSPd) =23.9

a

All hyperfine splittings are in units of lO-4cm51. The errors listed

are experimental standard deviations. The remaining parameters for the

ammonium salt were not obtained with sufficient precision to list here,

but were quite similar to the corresponding values for K2PdC14.

The values of g and A along the a and c axes of the crystal have been

written ga, Aa and gc, Ac, respectively. While gc, Ac are found

directly experimentally the values of ga and A8 are obtained by use of

Equations (131) and the angular variation of the spectra in the ac

plane.
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Figure 11. A plot of log(I/Io) versus 103/T(°K) for the (PdCl4)3-

radical shows two linear portions which implies two modes

of decay.
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Radical II
 

A second radical is observed at 770K in irradiated crystals of

K2PdC14. The spectrum consists of a four-line pattern centered at

g = 2.012 with a splitting of 63.4 Gauss when Hllc (Figure 12a).

Rotation in the ac plane allows the signal to be followed for about 650

on either side of the c axis. With the magnetic field in the aa' plane,

these lines are obscured by the more intense (PdCl4)3- radical. Although

the linewidth of Radical II sharpens perceptibly (from ~20 G to ~15 G)

when the crystal is warmed slightly, both Radical I and Radical II decay

at approximately the same temperature on further warming.

The large linewidths and low intensities make it difficult to

determine whether the quartet arises from hyperfine interaction with

chlorine or potassium, since both have nuclear spin I=3/2. An examina-

tion of the irradiated (NH4)2PdCl4 crystals reveals the same radical,

thus confirming that the hyperfine interaction is with chlorine. The

radical does not appear to be 0102, although the chlorine hyperfine inter-

action is similar,111 since a crystal that was irradiated and observed in

an evacuated quartz tube gave an identical spectrum.

If the nuclear quadrupole and nuclear Zeeman terms are neglected,

the following tensor relationships fit the data taken with the field in

the ac plane:

g2 - gE cosze + g: sinze

(131)

ng2 = gEAE c0326 + 82A: sinze

where 6 is the angle between the c axis and the field direction. The

data points are plotted in Figure 12b,c; the solid lines represent the



Figure 12.
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(a) First-derivative X-band spectrum of a single

crystal of K2PdCl4 irradiated and observed at 77°K

with HIIc, (b) angular variation of g when the

magnetic field is in the ac plane, (c) angular variation

of A( 3SC1) when the magnetic field is in the ac plane.

The solid curves of (b) and (c) were calculated with the

parameters of Table 6.  



Figure 12.
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values obtained by use of Equations (131) and the parameters reported in

Table 6 under (PdC15)2-.

(N(C2H5)4)2Pt23r6

Since the (Pt2) radical, obtained by the irradiation of K2PtC14

in this research, may have a structure involving a bridging chlorine,

irradiation of a complex known to have a bridged structure has been under-

taken. The triclinic crystals1063 of (H(C2H5)4)2Pt28r5 were irradiated

at 77°K and the ESR spectra recorded. In this compound the bridging

atoms are in the plane of the complex with one edge of the two square-

planar units in common:

Br\\ IlBr\\ /’ 2-

Pt Pt

Br” \‘Br” \‘Br

Br

At least two radicals are formed. The spectrum of one is quite

weak and consists of many lines separated by approximately 20 Gauss, in

certain orientations, with the entire spectrum of this species covering

nearly 800 Gauss. In most of the orientations there is considerable

overlapping of these lines which apparently arises from bromine hyperfine

interactions. Moreover, the center of the pattern corresponds to a g

value significantly greater than 2.00, which suggests that the radical

contains platinum. The poor resolution and weak signal intensity pre-

cludes making a complete study; therefore, this radical will not be

discussed further.
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The spectrum of the second radical is essentially isotropic with

g = 2.002 and consists of five hyperfine lines nearly equally spaced with

A = 28.5:1.0 Gauss (see Figure 13). The ratio of intensities for the

five lines varies with angle on rotation about three mutually perpendic-

ular axes, but remains about 1:4:6:4:1, as expected for five equivalent

protons. Because power saturation of these lines tends to occur readily,

unlike most transition metal spectra, the radical is believed to be the

((C2H5)3N-GHCH3)+ species obtained by removing a hydrogen atom from the

tetraethylammonium cation. This assignment is supported by the magnitude

of the hyperfine splittings which are just in the range between typical

a- and B- proton isotropic splittings observed for alkyl radicals in

solution.13 The large linewidth (>10 Gauss peak-to-peak) would seem to

indicate that the radical is undergoing restricted rotation at 77°K to

produce a broadened but virtually isotropic spectrum.

K2Pt(CN)4°3H20, (Pt(NH3)4)C12 and K(Pt(NH3)Cl3)’H20

Irradiation of single crystals of Kth(CN)4°3H20 at 77°K gave no usable

spectrum when examined by ESR since the fragile needles powder either on

irradiation or on cooling. (Pt(NH3)4)C12 and K(Pt(NH3)Cl3)°H20 single

crystals behaved in a similar manner and no satisfactory spectra were

obtained, although there was evidence for a chlorine-containing platinum

radical in the case of K(Pt(NH3)Cl3)'H20.

KZPtBr4, KZPdBr4 and KthC16
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Irradiation of single crystals of Kthqu, K2PdBr4 and KthC16 has been

carried out at 77°K without permitting the crystals to warm up. No

evidence for any platinum- or palladium—containing radicals was noted.



DISCUSSION

KZP:014

(Ptz) Radical
 

l. g Values

Since the unique axes of the A and g tensors coincide with the

c crystallographic axis, the (Pt2) radical must have a point—group

symmetry no lower than C4v° It is highly unlikely that any gross re-

arrangement of the ten nuclei that comprise the two original neighboring

(PtCl4)2- anions can occur and still preserve the C4 rotation axis.

Therefore, it is proposed that the (Pt2) species is either ((PtC14)2)n-

or ((PtC14)Cl(PtCl4))n-, the latter unit having an additional bridging

chlorine midway between two adjacent square-planar units along the c axis.

Since the (Pt2) radical converts on warming to the (PtCl) radical,

which is believed to be (PtC15)2-, it is tempting to postulate the pre-

sence of a bridging chlorine in the dimer unit since that would also

explain why the unpaired spin is confined to two platinum nuclei rather

than being further delocalized along the infinite array of (PtCl4)2- units

stacked along the c axis (Figure 3). However, there is no detectable

chlorine hyperfine interaction in the spectra of this species (Figure 5)

to confirm the presence of a chlorine bridge; also, not all the (Pt2)

radicals transform to (PtC15)2— on warming and, on cooling, the (Pt2)

93
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species does not reform as would be expected if a bridging chlorine were

involved. Therefore, it appears more likely that the (Ptz) radical is

simply a dimer of the type ((PtC14)2)n- in which an electron has been

lost or gained from an adjacent pair of (PtCl4)2- units. On this

assumption we have computed approximate values of the components of the

g tensor as outlined below.

The metal orbitals that may contain the unpaired electron, and

also are consistent with a C4 rotation axis parallel to c, are 5d22,

5dxy: 5dx2_y2 and 6pz. The g values for these possibilities can be

calculated by the crystal-field method. Starting wavefunctions are eon-

structed from the symmetric and antisymmetric combinations of the real

metal d-orbital basis set. For example,

laig> = 15>

'32u> = '32)

{Id.2>1 +Id22>2}//2

H.122)1 -|dzz>2}//2 (132)

where the functions are denoted by their symmetry under D4h’ the sub-

scripts 1 and 2 refer to the two Pt nuclei, and overlap has been

neglected. The g values for the four possible orbitals are given in

Table 7, where only terms linear in C, the one-electron spin-orbit

coupling constant, are retained (t is always positive). Although the

exact ordering of the orbital energy levels is unknown, the relative

order may be estimated from symmetry and the criterion of maximum overlap.

Experimentally one observes g1? 2>g|| which eliminates 6pz and

deZ-yz from further consideration. Regardless of the oxidation state

of platinum, t is of the order of112 2000 to 5000 cm"1 which means that,

in the case of gll for the £1 ground state, E(xgzy2)-E(§y) is approximately
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70,000 to 173,000cm'1, an exceptionally large energy for one-electron,

d + d transitions.113 Moreover, two consecutive platinum nuclei along

the c axis are separated by 4.132 in the undamaged crystal. For this

large a separation, xy_would have a very small overlap and could not

possibly alter the energy levels to the extent demanded by the g values.

Thus 5? (Equations 132) is the only orbital consistent with the experi-

mental evidence. Since the radical (PtCl), which is formed from the

(Ptz) radical on warming, has been shown to very likely be (PtC15)2-

with (17 configuration (see below), it is reasonable to assume that an

electron has been lost (rather than gained) from two (PtCl4)2- units in

forming the (Ptz) species. A proposed schematic energy level diagram

is shown in Figure 14.

An improved set of crystal field g values was then calculated

by carrying the treatment to second order. The zero-order ground state

in the hole representation is (x2:y2)2(x2;y2)2(§2). After successively

applying the spin-orbit operator and the Zeeman operator over the excited

states, the following g-values result:114

all = 2N2 - 3N2 (c/AE)2
(133)

21 = 2N2 + 6N (c/AE) - 6N2(§/AE)2 ,

where N is the normalization coefficient of the zero-order configuration

-in the wavefunction that arises from the spin-orbit interaction, and

where AB = E(eu) - E(azu). The second-order correction terms were com—

uted by the method of Tippins.83 Substitution of the experimental g

values for (Ptz) into Equations (133) yields

N - 0.964, (c/AE) - 0.180 .

a_



F
i
g
u
r
e

1
4
.

 

   

 
 

 
 

P
o
s
s
i
b
l
e

m
o
l
e
c
u
l
a
r

o
r
b
i
t
a
l

e
n
e
r
g
y

a
I

l
e
v
e
l

s
c
h
e
m
e

f
o
r

(
P
t
C
l
4
)
2
3
-

(
d
o
r
b
i
t
a
l
s

o
n
l
y
)
.

97



98

The Optical transition, AE, can be estimated from the value of the spin-

1+ 76
orbit coupling constant for Pt (C = 3368 cm-l). If the percentage

change in C for platinum is similar to that exhibited by nickel in going

from Ni1+ (C = 565 cm-1) to Ni3+ (C = 705 cm—1)112 then C(Pt3+) N

3368 (ggg) = 4203 cm-1. But the coupling constant in transition metal

complexes is reduced by 25% to 30% from its free-ion value by covalency

and charge dOnation by the ligands; hence it is reasonable to choose

C = 3000 cm"1 which leads to AB = 16,000 cm-l.

The ESR parameters observed for the (Pt2) radical are thus con-

sistent with those expected for a dimer (PtCl4)23' with configuration d15

in a 2A2u ground state and with the unpaired electron delocalized over

two nearest-neighbor platinum ions through the interaction between their

5d22 orbitals.

2. Pt Hyperfine Interaction

The crystal field platinum hyperfine tensor elements are

All -r + P{4N282 + 12a2 - 6aN}/7

A1

(134)

-r + P{-2N282 - 9a2 + 45aN}/7

where K is the isotropic hyperfine interaction, P = gegn8e8n<r’€>5d, N is

as before, a = (t/AE) and 82 is the total spin density in both 5d22

orbitals. If the covalency is ignored (82=1), and the experimentally

determined All and A1 are assumed positive, the solution to Equations

(134) results in a value for P that agrees in sign and order of magnitude

with the values computed by Freeman g£_§l,96 by the Hartree-Fock method.

The resulting parameters are
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P - 470 x 10-4 cm-1

K a -239 x 10-4 cm"1

x - 9.37 a.u.

where x, the isotropic hyperfine field at the nucleus, is obtained from

K by Equation (72).

The covalency can be estimated from Equations (134) if the value

of P is taken from the Hartree—Fock calculations of the free ion. Using

the value P = 509 x 10‘4 cm"1 for Pt3+(d7) obtained by extrapolation from

the recent calculations of Freeman96 (Table 8) one obtains 82 8 1.04.

The fact that the hyperfine magnetic field produced at the nucleus

(as measured by x) is positive in (Ptz) is unusual for transition metal

complexes. However, as noted earlier, positive signs for x have been

obtained in the ESR studies of Co(II) phthalocyanine65 and Co(II) in

irradiated crystals of K3Co(CN)6.7 In both systems the Co2+ ion is in a

low-spin, (17 configuration with the unpaired electron in an orbital com-

posed of 3d22 and 43. An analogous situation appears to exist for

(PtCl4)23' such that the half-filled a2u orbital (Equations 132) under

D4h symmetry, where s and d22 have the same irreducible representation,

should read

a2u e B{(5d22 + u6s)1 - (5d22 + 063),} (135)

where u is the degree of mixing and B is the normalization constant.

Although it is difficult to say anything quantitative about x, the hyper-

fine fields at the nuclei in various Pt species (Table 9) indicate that

Pt3+ in BaTiOg,"8 YAlG47 and particularly (PtCl4)23', have substantial 63

character in their ground states.
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TABLE 8. -- Hyperfine interaction parameters for platinum species by spin-

unrestricted Hartee-Fock calculations.96

O...M iv ..

w*-----... .fl~ ....—. . - p - crow" -q

 

 

  

System x(a.u.) '<r"3>5d (a.u.) P(x lO'l‘cm'l)

Pt° 5d86s2(3F) -4.4 11.8 451.5

9:0 5d96s(30) +53.6 11.1 424.7

Pt+ 5d9(2D) -18.3 11.2 428.5

Pr++ 5d3(3F) -18.1 12.2 466.8

Pr+++5d7(4r) —17.98 13.38 5098

  .V ”— ”-— p_-——-—.

—.’—“d—.-—_— n F- —‘ V ——'—w 

a Values obtained in this work by linear extrapolation.

TABLE 9. -- Hyperfine fields at the Pt nucleus (Hn = -K/2gn8n) in various

platinum species.

  we— .

  - on..- —- -—.--o.

 

Substance Hn (kilogauss) Ref.

(Pt(III)C15)2— in KthCl4 -863 a

Pt3+ in BaTiO3 D —376 48

Pt3+ in YAle :124c 47

(PtC14)23- in KZPrCl4 +394 a

Pt metal -1180 115d

Pt3+ (free ion) -754 96

 

This thesis

YAlG B yttrium aluminum garnet

K = : (Ag + Am + An)/3

Estimated from Knight shift measurements
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3. Linewidths1

The ESR shapes for (Pt014)23- are exactly Guassian and broader

than those noted for most of the other species in irradiated K2PtCl4 and

K2PdCl4. This broadening may be attributed to unresolved hyperfine

splittings from the planar chlorine ligands. There also appears to be

an anisotropic, mI-dependent linewidth. In the parallel orientation

(Figure 7a) the linewidth decreases from ~45 to ~19 Gauss as m1 goes from

-1 to +1, while just the opposite trend is observed in the perpendicular

orientation (Figure 7b) where the linewidth increases from N16 to ~30

Gauss with increase in m1. Closer inspection reveals that the transi-

tions at highest field in the parallel direction, and at lowest field in

the perpendicular direction, are really doubled. This doubling does not

seem to arise from nuclear spin flips (AMS=1, Am1=11) because, in that

case, it should occur symmetrically about the usual transitions. For the

same symmetry reason, spin-spin interactions from nearby radicals and/or

splitting from two magnetically different sites should broaden the II,

imI>pairs to the same extent. Neither does the doubling seem to be a.

result of an error in orientation since a complete rotation with the mag—

netic field in the aa' plane gives no change in the position or intensity

of the split lines. Moreover, the spectrum of irradiated K2PtCl4 powder,

in which orientation effects are averaged, still shows the mI-dependent

linewidth. Anisotropic spin-lattice relaxation could account for the

residual linewidth difference in the parallel and perpendicular orienta-

tions, but the dependence on m1 may indicate a time-dependent mechanism.

It is possible that the hole in the d manifold of (PtCl4)23'

might migrate along the c axis but the spectra at 77°K demand that the

hole be localized on just two platinum nuclei so if the hole does hop it
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must do so in a time peroid slower than the reciprocal of the hyperfine

splitting frequency.

4. Structure

It is believed that the (PtCl4)23- radical is an example of a

dimeric species with a one—electron metal—metal bond. It was noted many

years ago that certain d8 square-planar metal complexes show evidence of

metal-metal bonds. Thus, the crystal structures often show columnar

stacking of the square-planar units with the metal ions in infinite

chains, although such an arrangement does not permit closest possible

packing of the ions,116 and the metal-metal distances may become quite

short. The Pt-Pt distance, which is 4.133 in KthCl4, is only 3.252

in Magnus' green salt117 {Pt(NH3)4}{PtCl4} and 3.093 in Sr{Pt(CN)4}'3H20.116

Also, Amax of the absorption band polarized parallel to the metal chains

increases as the Pt-Pt distance decreases in a series of platinum cyanide

118 in solution, these are colorless.crystals with different cations;

It was suggested by Rundle,119 and later by Miller,120 that in

the complexes with short Pt-Pt distances the nd and (n+1)p orbitals on

adjacent metal ions overlap to give a pair of 32u and a pair of “Ig

molecular orbitals and that configuration interaction lowers the energy

of the occupied (mostly nd22) orbitals, thus accounting for the observed

interaction. For a chain of metal ions, these discrete levels are re-

placed by energy bands and, if the metal-metal distance is small, the

bands broaden and the separation between the highest occupied nd22 band

and the lowest unoccupied (n+1)s band decreases. It has indeed been

shown that the (18 system {(C0)21r(acac)} exhibits semiconductivity, with

the ratio olI/ql > 500 for the dc conductivity parallel and perpendicular
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121 while the compound K2Pt(CN)4Br0.3°2.3H20 shows metallicto the chains,

conduction along the direction of the chains of metal ions.122

Monomeric d8 (Pt014)2' units have the energy level scheme C

(Figure 1). Loss of an electron from one of these units, followed per-

haps by a shortening of the Pt-Pt distance to a neighboring (PtCl4)2-

unit would give d15 dimers (PtCl4)23- with an energy level scheme as in

Figure 14. The stability of this species would arise from removal of an

electron from the antibonding aZu orbital and configuration interaction

stabilization of the 31g orbital. The Pt-Pt bond could then be described

as a one-electron metal-metal bond; such a bond has recently been re-

ported123 in the cation {Fe(h5-C6H5)(CO)(SR)};.

(PtCl) Radical

(195

 

1. g and A Pt) Values

The g tensor for the (PtCl) radical (Table 5) is almost axial,

with the unique axis parallel to the c axis of the crystal, indicating

that the radical has nearly retained the tetragonal symmetry of the

(PtCl4)2- ion. The magnitude of the g shifts suggests that the odd

electron is largely associated with the platinum ion.

If this small deviation from axial symmetry is temporarily ig-

nored one should be able to distinguish whether the Pt2+(d8) ion has

captured an electron to form Ptl+(d9) or lost an electron to give

Pt3+(d7) by comparing the experimental g values with those calculated

from crystal-field theory (see Table 1). The experimental order gxx =

gyy > 2 > gzz corresponds to the d7 configuration with the unpaired

electron in the 5d22 orbital.
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Not only has Pt2+ been oxidized to Pt3+, but the energy levels

in the parent (PtCl4)2- anion (Case C in Figure 1) have been altered by

an axial compression to the level scheme of Case A in Figure 1. Thus,

the chlorine that is responsible for both the chlorine hyperfine

splitting and the axial compression in the (PtCl) radical must be

positioned nearly along the c axis to give (PtC15)2-. If this chlorine

were exactly parallel to the c axis the g tensor should be axial.

Instead, the dxz’ dyz orbital pair is split in energy, presumably by a

slight tipping (<5°) of the fifth chlorine away from the c axis in the

(110) plane. The C4 rotation axis of the crystal generates four mag-

netically inequivalent sites, but the small tipping angle effectively

reduces the inequivalence to two sites related by a 90° rotation about

c. The fifth chlorine interacts with the metal d22 orbital to give a

sigma antibonding orbital, 0:

|¢> = A|5d22>Pt ' 4"€>Cl ’

where ' (136)

Io>C1 a ml3pz + (1-m2)%l3€> .

If the constraint of axial symmetry is now removed, a more

accurate description of the platinum spin-Hamiltonian parameters can be

calculated from crystal-field theory. Maki g£_§l,66 have solved this

problem for a nearly axial, d7, strong—field example with a (dx2-y2)2(d22)

ground state (hole representation). In a slightly modified form the pre-

sent results are:

822 ' 2N2

gxx - 2N2 + 6Na1

gyy - 2N2 + 6Na2 (137)
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pand‘ _ -

AZZ = -K + P{4N2A2 - 3N(a1 + az)}/7

Axx = -K + P{-2N2}\2 + 6Nal + 3N321/7

Ayy = -K + P{—2N212 + 6Na2 + 3Na1}/7 (138)

where the symbols K,P are as before, a1 = C/{E(dyz)—E(d22)}, a2 =

C/{E(dxz)—E(d22)}, A is the MO coefficient of Equation (136), and N is the

normalization coefficient of the zero-order ground state, (dx2_y2)(d22),

following first—order perturbation by the spin-orbit coupling operator.

Only when A|l(195Pt) and Al(195Pt) are both negative does one obtain a

-magnitude and sign for the parameter P in agreement with the Hartree-

Fock calculations for platinum.96’124 As a result of the high symmetry

of the host crystal it is not possible to label gxx and gyy uniquely so

gxx = 2.417 is arbitrarily chosen.

By suppressing the covalency (setting 12 = 1) and making the

approximation Alfexperimental) = (Axx + Ayy)/2, Equations (137) and (138)

can be solved. Substitution of the spin-Hamiltonian parameters of

(Pt014)2- yields

N = 0.985 P = 321 x 10" cm-1

a1 = 0.0805 r = 525 x 10" cm'1

a2 5 0.0751 x = -20.5 a.u.

Allowing covalnecy, and using the value of P for Pt3+ from

Table 8, one obtains 12 = 0.88 and Xexp = ~22.6 a.u. The relatively

close agreement between Xexp and the theoretical value of x from Table 8

implies that the hyperfine field at the Pt nucleus results mainly from
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core polarization and not from any appreciable 6s involvement in the

ground state, while 12<1 confirms the obvious fact that the unpaired

electron is delocalized onto the ligands.

2. Chlorine Hyperfine Interaction

A direct measure of the covalency may be obtained from an

analysis of the chlorine hyperfine interaction. The spin Hamiltonian of

Equation (114) operating on the ground MO of Equations (137,138) gives

A||(35’37Cl) = (1-m2)1'2Ag + 4m21'2P°/5

al(35’3701) = (1-m2)1'2Ag — 2m21'290/5 . (139)

The direct dipole interaction, Ad = gegnBeBnR-3, between the

unpaired electron in the 5d22 orbital of platinum and the chlorine nucle-

us has been neglected because the numerical value of Ad for any reasonable

Pt-Cl internuclear distance, R, is less than the experimental error.

Since the hyperfine splittings for 35C1 and 37Cl could not be resolved,

the weighted arithmetic mean of Ag and <r’3>3p for both isotopes was

taken from the tabulated Hartree-Fock parameters.99 The spin densities

can then be estimated as

fp(%) e 1'2m2 x 100 and fs(%) = 1'2(1-m2) 100 (140)

Substitution of the exp;rimenta1 splittings into Equations (139,140)

leads to

1' a 0.57 f3(%) = 2.0

m - 0.97 fp(%) ' 30.6

with a hybridization ratio p/s - m2/1-m2 = 16.
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Table 10 compares the axial ligand spin densities of low-spin,

d7 complexes in examples where the anisotropic splittings are available.

The exceptionally large spin densities on chlorine in (PdC15)2‘ and

(PtC15)2- are probably a reflection of the abnormally short M—Cl dis-

0

tance (R<2 A) demanded by the crystal structure. Thus, the unpaired spin

in (PtC15)2- is rather delocalized in the o antibonding molecular orbital

which is composed primarily of a 5d22 orbital on platinum and a 3pz

orbital on chlorine.

TABLE 10. -- Axial ligand spin densities.a

 

 

 

Substance Nucleus %fp %fS (%fp + %fS) Reference

Cope-Pyridineb N(Pyridine) 2.9 2.4 5.3 125

Fe(CN)5N0H 2“ N(NOH) 4.2 2.9 7.1 126

PdC15 2‘ 01 34.7 1.7 36.4 c

PtC15 2‘ 01 28.1 1.9 30.0 c

Rh(II)(CN)4C12 4’ 01 11.4 1.2 12.6 127

 

orbital.

Pc = phthalocyanine

c This thesis

Low-spin, (17 complexes with the unpaired electron in the metal d22
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(PtCl3)n- Radical
 

The presence of the ten hyperfine lines characteristic of three

equivalent chlorines for both Hllc and Hlla (Figure 8) indicates that

three chlorine ligands lie in the aa' plane occupying three of the four

chlorine positions of the (PtCl4)= ion. While the platinum need not lie

in this plane the symmetry of the host lattice favors a planar species.

The symmetry would then be D2h and the energy levels of Figure 1, Case

C, would be scrambled with dxz: dyz split in energy; dx2-y2, which is

directed at the ligands, would remain highest in energy.

Consideration of the possible d7 and d9 configurations suggests

that d9, (22)2(xz)2(yz)2(xy)2(x2-y2)1 is the only reasonably acceptable

ground state. Under DZh symmetry, dx2_y2 and d22 transform together as

A1. Taking the ground state in the hole formalism as

Ixz-y2>= oldx2_y2> + 8|d22> , (141)

where a2 + 82 = 1, the g values are calculated to be

gzz - 2N2 + 8N0:2 a1

gxx = 2N2 + 2Na2 (o + /38)2

g),y - 2112 + 2Na3 (o - /3B)2 , (142)

where

2 o+/38 o-/38

I‘N +q2a§+a§ (T)+a§ (Ty?

and

a1 3 c/E(xy) - E(xz-yz)

a2 - r/E(y2) - E(x2_y2)

a3 - C/E(x2) - E(xz-yz)
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There is insufficient information to solve these equations; however, the

order is predicted to be gzz >> gxx > gyy = 2 as observed. A rough

analysis of the available metal hyperfine splittings using P . 430 x

10"l'cm'1 (Table 8) yields a positive value for x which suggests that the

platinum 6s orbital contributes to the ground state as was noted in the

case of the (Pt2) radical. The chlorine hyperfine interaction results

from transferred spin density in the 0 molecular orbital which is formed

from a chlorine 3p orbital and the Ixz-y2> metal orbital.

Reaction Scheme
 

A possible mechanism to account for the observed radicals and

their decays may be given, beginning with the assumption that the initial

step on y-irradiation at 770K is

(9:014)2' + (PtCl3)2‘ + C1 .

The neutral chlorine atom could move into the potential well at the

center of the unit cell (Figure 3) eventually abstracting an electron

from (PtCl4)2- to form (PtCl4)-. This could then form the (Pt2) radical

by combining with a neighboring undamaged ion of the lattice

' (Pt014)2' + 01 + (PtCl4)- + 01'

(PtC14)' + (Pt014)2' + (PtCl4)23- .

On warming, the hole centered on the (Pt2) radical could then

migrate parallel to the c axis until it encounters either (PtCl3)2-,

forming a diamagnetic species, or Cl- forming (PtC15)2-:
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3- 2- 2- -
(PtCl4)2 + (PtCl3) + 2(PtCl4) + (PtC13)

(PtCl4)23- + 01‘ + (9:01),)?" + (9:015)? .

K2PdC14

Radical I

1. g Values

The ESR spectra (Figure 10) show that Radical I is (PdCl4)n-

where n = 1(d7) or n = 3(d9), corresponding to the loss or gain of an

electron by the original (PdCl4)2' ion. These two possibilities are

distinguished by comparing the observed g values (Table 6) with the

calculated g values of Table 1. Only the d9 configuration of Table 1

is consistent with the observed order g||>glf2.

The energy separations AEI = 23,000 cm"1 and AE4 = 27,500 cm—1

reported by Basch and Gray43 for the parent (PdCl4)2- ion are based on

the optical spectra of Day ggngl.128 If these numbers and the value of

th = 1416 cm"1 76 are used in the theoretical expressions for gll and

g1 for d9 in Table 1, one obtains gll - 2.483 and gl'= 2.105; these are

in fair agreement with the experiment considering the many approximations

that have been made which include neglect of the change in metal charge_

from +2 to +1 in estimating the AE values, neglect of the reduction

factor in the free-ion palladium spin-orbit coupling constant, neglect

of covalent bonding and other smaller terms.85

2. Pd Hyperfine Interaction
 

The anisotropic hyperfine interaction arises from the coupling

of an electron in the dx2_y2 antibonding orbital with the palladium
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nucleus. Only the magnitude is observed experimentally but the sign may

be obtained by the method of Fortman;95 a positive contribution of the

dipolar term with Hllc is predicted. The sign of the isotropic hyperfine

term is also predicted to be positive since it must arise solely from the

core polarization of the s orbitals (s orbitals cannot mix with dx2_y2

under D4h symmetry in the molecular orbital treatment). Calculations of

the core polarization for 4d ions with spin-polarized Hartree-Fock

wavefunctions predict that the isotropic hyperfine interaction a =

%(All + 2A1) will be negative when the nuclear magnetic moment is positive,

and vice versa.87 Since u (lnSPd) = -0.639 nuclear magnetons,129 it is

likely that both Al I (105%) and Ai(105Pd) are positive.

For (PdC14)3' with the unpaired electron in a dx2_y2 orbital one

employs Equations (81) for the metal hyperfine splittings. One finds that

P a -58.4 x 10"4 cm"1 for the Pd+ ion based on an estimate of<<r"i>zd of

7.17 a.u. obtained by extrapolation.87 The solution to Equations (81)

shows that approximately 78% of the unpaired spin density is localized

in the metal dx2-y2 orbital. Table 11 lists the spin densities calculated

in this manner for other palladiumrcontaining species reported in the

literature. 0n the basis of the anisotropic couplings, the acetylaceton-

ate complex is slightly more covalent than the chloride. However, as has

been observed in other d9 systems, the covalency found from the isotrOpic

magnetic field at the nucleus per unit spin (x/xo) bears no simple re-

lationship to 012 obtained from the anisotropic hyperfine coupling

constants.

3. Chlorine Hyperfine Interaction
 

The principal values of the chlorine superhyperfine interaction

tensor for (PdC14)3- are given in Table 6 where the coordinates are
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TABLE 11. -- Isotropic hyperfine fields and covalency parameters for

palladium complexes.a

 

 

 

Substance x x/xo a Reference

(PdCl4)3- (in KdeClA) -7.66 0.83 0.785 b

(PdC14)3' (in (NH4)2PdC14) -7.55 0.82 0.78 b

Pd(acac)2 ’ (in Pd(acac)2) -10.00 1.09 0.725 56

Pd° (in Pd metal) -8.2 0.89 129

Pd84C4(CF3)4 ' -1.58 0.17 51

 

8 x0

and x is the experimental value.

b This thesis

= -9.2 a.u. for Pd+ ion from the calculations of Watson and Freeman
87
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defined in Figure 2. Although there are eight possible sign combinations

for the principal elements, it is probable that the correct set is that

with all signs positive, since only that choice is consistent with the

assumptions that (a) the transferred spin density is positive (b) the

dx2-y2 metal oribtal forms 0 bonds with a hybrid of the 38, 3px chlorine

orbitals so that Ay = A2, and (c) the isotropic chlorine hyperfine inter-

action should be large and sign determining because the chlorine 3s

orbitals are directly involved in the bonding.

The principal elements of the chlorine hyperfine interaction

tensor may be written in terms of the isotropic contribution As, the

direct dipolar interaction Ad between the electron in the dx2-y2 orbital

of Pd and the chlorine nucleus, the dipolar interaction A0 between the

electron in the 3px orbital of chlorine and the chlorine nucleus, and the

dipolar interactions Any, Anz between an electron or hole in the chlorine

py and pz orbitals and the chlorine nucleus. As a result of the relation-

ship between the direction cosines of the three chlorine p dipolar terms

only two independent values (AU - Any) and (Anz - Any) can be determined,

such that

Axoo 100 200

0 AyO -AS 010 +(Ad+AO-Aflx) 0-10

0011, 001 00-1

-1 0 0

+ (Aflz — Any) 0 “'1 0 o

0 0 2 (143)

Ad - 0.2 x 10-4 cm"1 is estimated from Ad - ggnBBnR"3 using the Pd-Cl

distance observed107 for (PdC14)2-, R - 2.332. The three observed
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principal components lead, by the use of Equation (143), to A8 a 12.3 x-

10"4 cm"1, (A0 - Any) - 3.7 x 10" cm"1, and (A1,z - Any) 8 0.3 x 10'4

cm"1. Both ANZ and Any presumably arise from configuration interaction;130

that is, the approximate treatment given by the one-electron molecular

orbitals should be augmented by mixing in small amounts of excited states

which occur in the many-electron theory.85 In view of the fact that the

experimental tensor is nearly axial with Ay(35Cl) = Az(35Cl), and the

experimental error in Ay(35C1) is large, one can set Any 8 Aflz = 0, in

this way neglecting the small configuration interaction terms. One can

then obtain information about the blg antibonding molecular orbital

(Equation 108) that contains the unpaired electron. The analysis of the

chlorine hyperfine interaction for (PdCl4)3_ follows the sample calcu-

lation presented in the Theoretical section, Equations (108-119), and

yields

f8(%) 0.78 0'2 = 0.35

fpx(%) 7.9 n2 = 0.91

with a hybridization ratio p/s a 10.

Even though nitrogen-bonded ligands generally produce larger

crystal fields than chlorine ligands, many of the d9 ESR studies on Cu++

and Ag++ have involved nitrogen-bonded ligands. In Table 12 we compare

the spin density of Radical I with the well-characterized ESR results for

Cu(II) and Ag(II) tetraphenylporphyrins.132 The total ligand spin density

{(f8(%) + fpx(%))} , which is a direct measure of the covalency of the

metal-ligand bond increases in the order Cu++de+<Ag++. This is the order

expected qualitatively since covalency should increase in going from the
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3d to the 4d series, and, in the case of Ag++, the higher metal charge

will attract more electron density from the ligands resulting in a larger

covalency than in the singly charged Pd complex. It should be noted that

there is good agreement between the results obtained in this thesis for

(PdCl4)3- and those recently reported by Fujiwara and Nakamura.131

TABLE 12. -- Ligand spin densities in some o-bonded d9 square-planar

complexes.

 

 

Complex Configuration fs(%) fpx(%) (fs + fpx)(%) ‘ Reference

 

 

Cu(II)TPPa 3d9 2.5 4.6 7.1 132

Ag(II)TPPa 4d9 3.6 7.5 11.1 132

Pd(I)C143- 4d9 0.8 7.9 8.7 b

a TPP = Tetraphenylporphyrin

b This thesis

Radical II
 

If Radical II were a chlorine atom in a tetragonal crystal field

with the unpaired electron in a p orbital one would expect the principal

anisotropic hyperfine tensor elements for 35C1 to be (93.5, -46.8, -46.8

x 10-4 cmf‘l).99 Clearly only a fraction of the spin density is on the

chlorine nucleus. In irradiated crystals of K2PtC14 at 770K, the

(PtC15)2- radical has virtually the same hyperfine splitting tensors as

Radical II but shows additional splitting from a platinum nucleus.

Hyperfine lines from palladium in Radical II were not observed, probably
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as a result of the weak signal intensity and large linewidths. However,

by analogy with the platinum radical, it is proposed that Radical II is

(PdC15)2- (d7) formed by a chlorine atom attaching itself to (PdC14)2- in

a fifth coordination position along the fourfold axis.

The magnitude of the tetragonal field is reduced by this axial

ligand to the point where the energy levels correspond to case A,

Figure 1, placing the unpaired electron in the dZZ orbital. The cal-

culated g values given in Table 1 for a (dx2_y2)2(d22) ground state show

glggl' = 2 as is found experimentally.

Analysis of the chlorine hyperfine interaction in (PdC15)2-,

using the same method and equations employed in the section on (PtC15)2-

(Equations 136-140), gives

£8(z) = 1.7 :po(z) a 34.7

12 = 0.36 m2 - 0.95

s/p(BSCl) ratio 2 20 ,

where the sign of Al|(35Cl) is taken to be the same as the sign of

Al(35Cl) by analogy with the corresponding radical in K2PtC14. Thus,

Radical II also has a o-bonded chlorine with a very large spin density

in an almost pure 3pz orbital. It seems reasonable to assume that the

large spin density of the chlorine will be accompanied by a short Pd-Cl

bond distance and a large overlap.

Reaction Scheme
 

For irradiated KZPdCl4, the first reaction is assumed to be

PdCl 2'-—;1: PdCl ' + 01- + - .( 4) 770K ( 3) e
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The electron could then react with one of the original (PdCl4)2_ complex

ions to produce Radical I

(Pd014)2“ + e‘ + (Pd014)3' .

By analogy with the proposed platinum reaction scheme, the chlorine atom

could then move into the potential well at the center of the unit cell.

At 77°K the overlap between adjacent Pd atoms is apparently too small to

stabilize the palladium analogue of (Ptz); therefore, the chlorine atom

may react directly with an undamaged (PdCl4)2- ion to give Radical II

(Pd014)2‘ + 01- + (Pd015)2‘.
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SUMMARY

Paramagnetic species produced by irradiation of diamagnetic square-

planar complexes of Pt(II) and Pd(II) have been studied by electron

spin resonance spectroscopy. The ESR spectra have, in each case, been

obtained as a function of magnetic field orientation and the results

analyzed by the spin—Hamiltonian method. The spin-Hamiltonian para-

meters have been determined and nearly complete g and hyperfine

splitting tensors reported. An attempt has been made to identify

each radical with the aid of this information.

It has been shown that irradiation produces both Pt(I), Pd(I) and

Pt(III), Pd(III) species resulting from one-electron reduction or

oxidation, respectively. The results of irradiation by y-rays from

a 60C0 source and by 1 Mev electrons from a G. E. Resonant Trans-

former are identical.

The ESR Spectra have been followed, for each crystal studied, as a

function of temperature, and the regions of stability for each

species investigated. The reactions of the various radical species

have been studied and some postulates concerning the mechanisms made.

Single crystals of K2PdC14 and (NH4)2PdC14 have been irradiated at

770K, the ESR spectra analyzed, and the radicals shown to be

{Pd(I)C14}3- and {Pd(III)ClS}25 in both crystals. On warming, these

radicals decay to diamagnetic products and at room temperature no

ESR signal can be observed.

118
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The ESR spectra of single crystals of KZPtCl4 irradiated at 77°K

have been analyzed. The two radical species produced have been

shown to most probably be {(Pt,(II,III)Cl4)2}3- and {Pt(I)Cl3}2-.

On warming to about 125°K the former reacts with other species in

the crystal to produce a new radical which the ESR results indicate

is {Pt(III)ClS}2—. On warming to 190°K the (PtCl3)2- radical decays

to diamagnetic products and at room temperature no ESR spectrum is

observed.

The species (PtCl4)23_ appears to be an example of a complex con—

taining a metal-metal bond. In the species (PtCl4)23- the entire

spin density is shared by two equivalent platinum atoms. This is

consistent with a structure in which there is a metal-metal bond

between the platinum atoms.

Energy level schemes have been proposed for each radical species and

the nature of the chemical bonding in each has been discussed.

A number of other diamagnetic complexes of platinum and palladium

have been irradiated. None gives interpretable ESR spectra under the

experimental conditions employed.
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