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ABSTRACT

ULTRAFAST SCIENCE: A MULTISCALE MODELING APPROACH TO
FEMTOSECOND ELECTRON DIFFRACTION AND ITS APPLICATIONS

By

Jenni Minttu Eleonora Portman

The focus of this work is the study of processes at the edge of the current space and time

resolutions. This includes both efforts in the development of an ultrafast electron microscope

(UEM) and in the study of correlated electron systems that reflect measurements taken with

this instrument.

The development of a reliable ultrafast electron diffraction and imaging system requires a

low emittance source of photoemitted electrons and an understanding of how the properties

of the generated bunch depend on the photocathode properties. In order to gain more

understanding of this process, we combine the so-called three-step photoemission model with

N-particle electron simulations. By using the Fast Multipole Method to treat space charge

effects, we are able to follow the time evolution of pulses containing over 106 electrons and

investigate the role of laser fluence and extraction field on the total number of electrons that

escape the surface as well as virtual cathode physics and the limits to spatio-temporal and

spectroscopic resolution originating from the image charge on the surface and from the profile

of the exciting laser pulse. The results of these simulations are compared to experimental

images of the photoemission process collected using the shadow imaging technique. By

contrasting the effect of varying surface properties (leading to expanding or pinned image

charge) and laser profiles (Gaussian, uniform and elliptical) under different extraction field

strengths and numbers of generated electrons, we quantify the effect of these experimental

parameters on macroscopic pulse properties such as emittance, brightness (4D and 6D),



coherence length and energy spread. Based on our results, we outline optimal conditions of

pulse generation for UEM systems.

With our knowledge of the photoemitted pulse properties, we also present our devel-

opment of a design for the whole UEM column using the Analytic Gaussian model. We

summarize the derivation of the equations governing this mean field model and show how

the contributions due to the photoemission gun and the relativistic motion of the electrons

can be added to this formalism to make it applicable for our system. We then explain the

procedure used for optimizing the lens and RF cavity strengths and analyze both the ef-

fect of each separate optical element and their role in the column. We discuss the limits

of this model and calculate the achievable temporal and spatial resolutions under different

photoemission conditions.

We conclude the present work with an investigation of Tantalum Disulphide (TaS2), a

material that presents interesting ultrafast phenomena that can be probed using the UEM.

TaS2 is a transition-metal layered compound that for T <190 K displays a commensurate

charge density wave (C-CDW) phase characterized by insulating behavior with the opening of

a gap at the Fermi energy. To better understand the C-CDW phase and explain its quantum

mechanical origin, we perform density functional theory calculations of the electronic band

structure of 1T-TaS2 and quantify the effect that spin orbit coupling and Hubbard repulsion

have on the ground state. Our results show that neither of these interactions is sufficient to

reproduce the insulating gap seen in experiment, an observation which is confirmed by our

calculation of the phonon band structure and absorption spectrum. We also consider the

effect of different stacking configurations of the TaS2 layers and find evidence of gap opening

for bilayers in the presence of disordered stacking.



Yet all experience is an arch wherethro’
Gleams that untravell’d world whose margin fades

For ever and forever when I move.

— Tennyson, Ulysses
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Chapter 1

Introduction

1.1 Why study ultrafast science

Phenomena in the natural world take place on a variety of time scales, ranging from the

millions of years one deals with in cosmology, to the infinitesimally small fractions of seconds

involved with chemical, atomic and nuclear reactions. As the title of this thesis suggests,

in the present work we are interested in ultrafast science, that is we seek to understand the

transient non-equilibrium processes that happen in materials on timescales of less than 10−9

seconds. Very broadly speaking, there is also often a correlation between timescale and size in

physical systems, meaning that as the time scales of the phenomena we are interested in get

smaller, so do the length scales over which these take place. For this reason when speaking

of ultrafast science, we are also implicitly talking about length scales roughly between 10−6

and 10−10 meters.

With these considerations in mind, we have a very broad field that includes a number

of interesting time dependent processes ranging from biology [2–5] to material science (from

ultrafast phase transitions [6–11] to charge transport at nanointerfaces [12,13] and dynamics

1



in correlated electron materials [14–16]), from chemistry [17–20] to plasma physics [21–24].

As seen in the examples of Fig. 1.1 these phenomena take place across several different

orders of magnitude of spatial and temporal resolution, but in each case further understand-

ing of the fundamental interactions that determine the system’s properties requires gaining

more insight into atomic motion on a timescale corresponding to the period of the atomic

vibrations. In addition to this, further understanding in this field would open the doors for

numerous technological applications [30].

Figure 1.1: Spatial and temporal timescales of the various processes of interest in Ultrafast
Science. The plot was compiled with the data reported in [2–25]

1.2 Pump probe microscopy

In practice these systems are best explored by using pump-probe measurements: we excite

the system under consideration by perturbing it with a pump and measure its response at
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various delay times with a probe. By recording the response of the system as a function

of delay time, we can obtain a description of the time evolution of the sample. In order to

resolve these ultrafast phenomena, both the pump and the probe pulse need to be sufficiently

short in time, which is the reason why the vast majority of this type of measurement use

a femtosecond laser [31–33] to excite the system in virtue of its short duration, high peak

power, broad bandwidth and commercial availability.

As far as probes are concerned, the main candidates are x-rays and electrons [25,34,35].

The advantage of using x-rays is that they offer Angstrom size wavelength, high spatial

coherence and short pulse length, but their generation with a high enough brightness requires

large scale facilities (such as SLAC’s Linac). In addition to this, the interaction of x-rays with

matter has a very small cross section, meaning that a high intensity and sensitive detection

are required to achieve a good signal to noise ratio.

Electron probes, on the other hand, are easily generated using tabletop scale equipment,

deal less damage to the sample compared to x-rays and have a high scattering cross section.

As a consequence of this high cross section, the mean free path of the probe electrons inside

the material is shorter than for x-rays and typically better matches the optical penetration

depth, allowing to only probe the pumped volume. The drawback presented by this probe is

that one has to deal with the space charge broadening due to the Coulomb repulsion between

electrons, which leads to a decreased coherence length and increased pulse size. In addition,

due to the short penetration length, there is a limited thickness that can be measured making

experiments in liquid phases very challenging.

Given these considerations, one should view electrons and x-rays as complementary

probes to use in ultrafast studies of materials. For the present work, though, we will only

discuss systems using electrons as a probe.
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1.3 Ultrafast Electron Microscope at MSU

In the Ultrafast Research group at Michigan State University, we are working on the devel-

opment of an Ultrafast Electron Microscope (UEM) that would allow measurements of some

of the processes described in the previous sections. More specifically, we want to perform

single-shot diffraction to observe irreversible processes in materials, such as photo-induced

non equilibrium dynamics of lattice and charge transfer. Single-shot means that enough

electrons for good signal to noise ratio are contained in a single probe pulse, in contrast to

the stroboscopic mode in which the measurement for a given time delay between pump and

probe is repeated over many shots to collect enough signal. The Rose criterion tells us that

approximately 100 electrons per pixel are needed to resolve a pattern, which translates to

roughly 105 to 107 electrons needed in a single pulse for diffraction and 107 to 109 electrons

if one is interested in imaging.

The requirement of such a high number of electrons means that the expansion of the

pulse due to space charge effects must be carefully considered and reversed in order to

focus the pulse at the sample. In the transverse direction this can be easily done by using

magnetic lenses but focusing in the longitudinal direction is harder to achieve. The solution

we adopted is to use a radio frequency (RF) cavity phase locked with the photoexciting

laser that generates the electron pulse. A schematic of the UEM system is shown in Fig.

1.2 and further details can be found in recent dissertations by Zhensheng Tao and Kiseok

Chang. which cover the experimental development. This thesis covers some of the theoretical

components of the project.
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Figure 1.2: Schematic diagram of the Ultrafast Electron Microscope system. (Image courtesy
of the Ruan Group, unpublished)

1.4 Overview

The central focus of this dissertation is to gain more insight into the development of the UEM

system and on its applications. To do so, in the first part of this work, we give an overview

of the simulations relative to the UEM system. In Chapter 2, we look at the details of the

5



photoemission process under different experimental conditions and discuss how to generate

optimal electron pulses for our application. The code used for the simulations was developed

by He Zhang [36]; using it to understand the photoemission process and extending it to

different laser and surface image charge configurations was my own contribution.

In Chapter 3 we proceed to simulations of the whole microscope column using a mean

field model and provide estimates of the achievable resolution in the system, given different

initial conditions. This so-called Analytic Gaussian model was originally derived by Michalik

and Sipe [37, 38] and refined by Berger and Schroeder [39]; my contribution was extending

it to treat the photoemission gun and the relativistic motion of the electrons and writing a

program to apply it to the study of the UEM system and combine it with an optimization

routine.

Chapter 4 moves away from microscope design and presents an example of a system,

TaS2, displaying interesting ultrafast phenomena that can be probed using the microscope.

By performing ab-initio calculations of the band structure, phonon modes and optical proper-

ties of this material, we shine light on the microscopic mechanisms underlying the insulating

gap seen in experiments. All the simulations in this chapter were performed by myself using

the well established Vienna Ab-initio Simulation Package (VASP).

Chapter 5 presents the conclusions of this thesis and an outlook on future research

directions.

6



Chapter 2

Generation of the electron pulse

2.1 Importance of the initial stages of pulse generation

Once an electron pulse has been generated in the initial stage of the UEM microscope

introduced in the previous chapter, it can be shaped as it travels through the column using

a variety of technologies such as magnetic lenses and radio frequency cavities [5, 25, 40–45].

What sets limits on the achievable temporal and spatial resolutions, though, is the phase

space volume the pulse occupies, which in turn is defined by the photoemission conditions

and the initial Coulomb expansion.

In the transverse direction our ability to resolve spatial features can be quantified with

the coherence length Lc, which at the beam waist can be expressed as [46]

Lc =
h

2m0c

σx
εn,x

, (2.1)

where we have assumed that the transverse and longitudinal directions are decoupled, h is

Plank’s constant, m0 is the rest mass of the electron, c is the speed of light, σx is the beam
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radius and εn,x is the normalized transverse emittance defined as [47–53]

εn,x =
1

mc

√
〈x2〉 〈p2x〉 − 〈xpx〉

2. (2.2)

In the longitudinal direction, using the uncertainty principle and assuming a Gaussian

pulse shape, we have that

∆E =
εz
∆t
γm0c. (2.3)

where εn,z is the normalized longitudinal emittance, ∆t and ∆E are, respectively, the tem-

poral and energy resolutions and γ is the relativistic Lorentz factor.

One last figure of merit for electron sources is the normalized beam degeneracy, defined

as [40,43]

η = B6Dε
3
0 =

Ne

εxεyεz
ε30, (2.4)

where B6D is the 6D beam brightness and ε0 = h/(m0c) is the emittance quantum. Consider-

ing that a single electron can have two possible spin orientations, the upper limit calculated

using the Pauli exclusion principle is η = 2, with typical values ranging from ' 10−4 for a

cold field emission gun to ' 10−12 if using a thermionic gun [40]. An ideal source of electron

pulses would maximize the coherence length Lc and the degeneracy η, while maintaining a

low energy spread ∆E which, in turn, requires minimizing the longitudinal emittance εn,z.

It is worth noting here that the emittance defined in Eq. 2.2 is a statistical approximation

of the true 6D emittance, where correlations between the x, y and z directions have been

neglected. We calculate this quantity and parameters derived from it as traditionally the

emittance has been used as a key figure of merit for UEM systems, being an estimate

of the phase space occupied by the pulse and therefore setting limits on the achievable
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resolution [26].

For all these reasons it is very important for the design of high brightness, high resolution

electron beams to control the initial stages of pulse formation, so that the increase in beam

emittance due to space charge effects can be minimized while maintaining a high number

of electrons. To better understand the nonlinear interplay between the space charge driven

expansion and laser and photocathode material properties on the generated electron bunch,

we have conducted explicit N-particle simulations of the electron photoemission process

using COSY Infinity, a code designed for high performance scientific computing and beam

dynamics simulations [54]. In the following sections we will first introduce the model used

to describe this process, followed by a description of the key elements of the simulation and

then proceed to a discussion of the results and their comparison with experimental data.

2.2 Modeling the photoemission process

In the UEM system, the electron bunch is generated through photoemission from a gold

photocathode irradiated with a 50fs laser pulse. This process can be described using the so-

called three-step photoemission model [48,55] in which each electron is emitted independently

as a result of (1) absorbing a photon of energy ~ω, (2) diffusing to the surface and (3) escaping

to the vacuum [Fig. 2.1(a)]. As the thickness of the photocathode used in the experiment

is smaller than the electron mean free path, electron-electron scattering does not contribute

and step (2) can be neglected by simply treating all of the electrons as generated on the

surface. We will now look at the remaining steps in the photoemission process in more

detail.

The photocathode is irradiated with a laser pulse with energy ~ω=4.66 eV. As the photon
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energy is higher than the gold work function, W=4.0 eV to 4.6 eV [41,56–58], a fraction of

the electrons inside the metal can absorb enough energy to overcome the potential barrier

and escape to the vacuum. The energy difference, ∆E = ~ω−W , allows only electrons with

energies in the range [EF−∆E,EF ] to be emitted, and since ∆E is small, the generated bunch

has a narrow energy spread. The lower limit for this range is set by the condition that the

energy of the electron after the collision with the photon must satisfy E = Ei+~ω > EF +W ,

while the upper limit reflects the fact that only states up to the Fermi energy are initially

occupied. We assume an uniform distribution of states within this energy band.

In order to escape the photocathode, the electrons need to cross the metal-vacuum bound-

ary with sufficient velocity in the direction perpendicular to the surface:

vz ≥ vz min =

√
2(EF +W )

m
, (2.5)

where vz min is the velocity corresponding to the minimum kinetic energy required to over-

come the potential barrier EF +W and the z axis is assigned to the direction perpendicular

to the metal surface [Fig. 2.1(b)].

Given an electron with initial energy Ei ∈ [EF −∆E,EF ], we have that

vi =

√
2(Ei + ~ω)

m
, (2.6)

which, together with the equation for vz min (Eq. 2.5), determines a maximum internal angle

for which the electron can escape:

cos θi,max =
vz min
vi

=

√
EF +W

Ei + ~ω
. (2.7)
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Figure 2.1: (a) Schematic of the three-step photoemission model: (1) the electron absorbs
a photon of energy ~ω, (2) migrates to the surface and (3) escapes to the vacuum. (b)
Definition of the coordinate system used in the simulation. Also shown is the Gaussian
profile of the laser pulse on the photocathode surface. The electron is emitted with velocities
given by equations (2.11)-(2.13). (c) Diagram showing the velocity of the electron inside the
metal and in vacuum. Notice the conservation of transverse velocity across the interface and
the decrease of the velocity in the perpendicular direction, vz, due to the potential barrier
at the surface.

Therefore inside the cathode:

vx in = vi sin θi cosφi, (2.8)

vy in = vi sin θi sinφi, (2.9)

vz in = vi cos θi, (2.10)

where θi ∈ [0, θmax] and φi ∈ [0, 2π]. Outside the cathode the velocities in the directions

parallel to the surface are conserved, while the velocity in the z direction is reduced due to
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the potential barrier [see Fig. 2.1(c)]:

vx out = vx in = vi sin θi cosφi, (2.11)

vy out = vy in = vi sin θi sinφi, (2.12)

vz out =
√
v2z in − 2(EF +W )/m =

√
(vi cos θi)2 − 2(EF +W )/m. (2.13)

In addition to defining the initial velocities of the electrons with the above equations,

the initial positions must also be calculated. The coordinates in directions parallel to the

surface (x, y in our notation) are randomly generated from the spatial profile of the laser

pulse. More details on how this is done in practice for the pulse profiles considered are given

in Appendix 5. The initial z coordinate is set equal to zero since, as previously mentioned,

we treat all of the electrons as generated on the surface. The physical parameters used to

describe the system in the simulation are summarized in Table 2.1.

Fermi energy, EF 5 eV
Work function, W 4.45 eV
Photon energy, ~ω 4.66 eV
Laser pulse duration, ∆t 50 fs
Laser pulse width, σr 91 µm

Table 2.1: Physical parameters used in the simulation of the photoemission process.

In each simulation run, given the total number of electrons to generate, N0
e , the number of

electrons emitted during each infinitesimal time interval can be calculated assuming that the

laser pulse has a Gaussian distribution in time with a standard deviation σ = ∆t/(2
√

2 ln 2),

where ∆t is the laser duration (FWHM). Considering then the range of times [−3σ,+3σ]

and dividing it into N parts (typically N = 100), it is possible to calculate the number of
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electrons generated in each ith interval as

Ni = N0
e

erf(ti/
√

2σ2)− erf(ti−1/
√

2σ2)

2C
, (2.14)

where erf is the error function and

C =
1

σ
√

2π

∫ +3σ

−3σ
dxe−

x2

2σ2 ' 0.997. (2.15)

Note that the quantity N0
e indicates the number of electrons that are emitted due to the laser

illumination and is therefore directly proportional to the laser fluence F . The proportionality

constant depends on the quantum efficiency as:

F =
~ωN0

e

A
QE · (1−R), (2.16)

where A = πσxσy is the area of the laser spot on the cathode surface, QE is the quantum

efficiency, typically on the order of ' 10−4 [48], and R is the reflectivity of the sample surface.

To conclude the discussion on the model used, it is necessary to point out that each

emitted electron contributes to the formation of an image charge on the surface of the

photocathode model. This positive field plays an important role in shaping the electron

pulse dynamics and will be discussed in more detail in section 2.4. Taking this into account,

each electron in the system is treated as subject to both the space charge field between

the particles in the bunch and the positive field generated by the image charge on the

surface. In addition to the Coulomb electron-electron forces and the field due to the image

charge, a constant electric field is applied in the direction perpendicular to the photocathode

surface. Typical values for extraction fields are between 0.1-1MV/m for the thermionic gun
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geometry [40], between 1-10MV/m for the DC electron gun [59] and 10-100MV/m for the

RF gun [60]. To provide relevant data over the whole range, we vary the extraction field

between 0.1MV/m and 10MV/m which corresponds to generation of electrons with energies

ranging from 5 · 10−3keV to 100 keV at t=120ps.

2.3 Details of the simulations

As we wish to simulate the time evolution of the electron bunch after the photoemission

process has taken place, it is necessary to find a good scheme to treat the Coulomb interaction

that would be both accurate and computationally advantageous. In the present work we have

used COSY INFINITY [54], which treats the space charge effects with a Multiple Level Fast

Multipole Method (MLFMM). In short, the MLFMM uses a tree algorithm to partition the

simulated space into boxes until the number of charges in each one is lower than a certain

threshold (typically NBOX < 100), after which the near and far region of each box are

determined. The near region includes the adjacent boxes, for which the electromagnetic field

is calculated directly. For the far region, a multipole expansion is used to calculate the field

in the box of interest. This approach gives an algorithm that scales almost linearly with

the number of particles with a prefactor that depends on the multipole order used. Further

detail on the MLFMM are given elsewhere [36,61].

In order to further reduce the computational time and allow simulations with higher num-

bers of electrons, we use macroparticles so that typically one simulated particle corresponds

to 100 electrons. The effect of using macroparticles made of different numbers of electrons

(NMP = 1, 10, 100) was checked and the results for a typical set of parameters are shown

in Fig. 2.2. The use of macroparticles does not affect the simulation results significantly,
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with the biggest effect being a constant shift of about 6% of the transverse momentum stan-

dard deviation, σpx for the NMP = 100 case. This shift is propagated to the calculated

emittance εn,x but, since it is only fractions of µm and since our main interest is comparing

values obtained with the same NMP varying the other emission conditions, it does not have

a significant impact on the discussion that follows.

To treat the time evolution of the emitted electrons, their equations of motion are solved

at each time step using a fourth order Runge Kutta algorithm. The particles that fall back

on the surface (z < 0) are removed from the simulation. Collisions between electrons are

avoided by imposing a maximum force cutoff, which is translated into a constraint on the

minimum allowed distance between two particles: rmin = γra, where γ = 0.001 and ra is the

average distance of electrons in the selected box. For an analysis of the effect of imposing

this cutoff, see Chapter 5 in [36].

The value of the time step, ∆t, is adjusted throughout the simulation in order to achieve

a good compromise between numerical accuracy and simulation length. In particular during

the initial stages when the electrons are photoemitted and are very close to each other and

to the surface, a shorter time-step is needed to keep the forces finite and avoid excessive

errors due to the force cutoff. As the electron pulse expands, progressively longer time-steps

can be used. For this reason, while the electrons are being inserted into the simulation box,

∆t = 3σt/50 = 1.26 fs. After this phase concludes (at Nstep = 100), ∆t is increased every 100

time steps to, respectively, ∆t =4.5, 14, 80fs until reaching the final value of ∆t = 0.55 ps,

which is kept constant for the remainder of the simulation.

Typical simulations run for Nstep = 620, which corresponds to a final time of t = 120 ps

and take about 1.5hrs on 8 cores, for N0
e = 1 · 107 electrons and extraction field Fa =

1 MV/m. The standard parallel MPI routines implemented in COSY INFINITY and its
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Figure 2.2: Effect of varying the number of electrons in each macroparticle for N0
e = 106,

extraction field Fa=0.32 MV/m and Nmacr = 1, 10, 100. The pulse center of mass position
(x̄, z̄), width (σx, σz), momentum standard deviation (σpx, σpz) and emittance (εn,x, εn,z)
are plotted as a function of time in both the transverse (x) and longitudinal (z) directions.
Because of the radial symmetry, the x and y directions are equal so only the parameters in
the x direction are plotted.

MLFMM extension, were used and the parallel simulations were run on the cluster of the

High Performance Computer Center (HPCC) at Michigan State University.

At each step the pulse parameters (position and momentum averages and standard de-
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viations) are saved to a text file and every 10 steps the positions and momenta of all of the

electrons are saved to a separate file for post processing purposes, such as the calculation of

the normalized rms emittance (Eq. 2.2).

2.4 Treatment of the positive surface field

As briefly mentioned, the image charge generated on the surface by the emitted electrons

plays an important role in determining the final properties of the electron bunch. In order to

model this effect, the charge on the surface is approximated with a continuous distribution

and its field is calculated by dividing the surface into circular strips with a width ∆r � σr,

where σr is the laser pulse width. Each strip is approximated as having a uniform charge

density and, thanks to the circular symmetry of our problem, the field due to each one can

be calculated using the well known equation for the field of a uniformly charged ring [62].

The total radial and longitudinal electric fields are then simply given by a sum of the fields

generated by each ring. Note that the value of the positive charge on the surface depends

on the number of electrons in the pulse and is therefore reduced by electron recombination.

The equations describing the details of this positive field depend on the shape of the exciting

laser pulse and will be presented in the next section.

2.4.1 Equations for the surface field: Gaussian, Uniform and El-

liptical cases

Since the laser pulse used for the photoemission is radially symmetric in the photocathode

plane, we take a circular area with radius R0 around the center of the laser spot and divide it

into Nr = 1000 concentric rings where each has width R0/Nr and radii ri,int = (i− 1)R0/Nr,
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ri,ext = iR0/Nr with i ∈ [1, Nr]. The charge in each ring can now be calculated as

Qi = Q

∫ 2π

0

dθ

∫ ri,ext

ri,int

dr r · f(r), (2.17)

where Q = Nee is the total charge in the system and f(r) is the normalized charge distribu-

tion on the surface.

Since R0/Nr � σr, we now approximate each ring as being infinitesimally thin and

located at ri,0 = (ri,int + ri,ext)/2 with charge Qi. Given this, the radial and longitudinal

electric fields are simply given by the textbook equations [62] for a ring of charge as:

Er(r, z) =
2Qi

π

1

rR2

[
E(k)

1− k2
r2 + rr0

R
− R

2

(
E(k)

1− k2
−K(k)

)]
, (2.18)

Ez(r, z) =
2Qi

π

1

R3

E(k)

1− k2
(z − z0), (2.19)

where K(k) and E(k) are the complete elliptic integrals of first and second kind respectively:

K(k) =

∫ π/2

0

dθ√
1− k2 sin2 θ

, (2.20)

E(k) =

∫ π/2

0

dθ
√

1− k2 sin2 θ, (2.21)

and

k2 =
4rr0
R2

, (2.22)

R2 = (r + r0)
2 + (z − z0)2, (2.23)

where r0 is the radius of the ring and z0 is the coordinate of its center, with z0 = 0 in our
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system.

The sum of the fields generated by each ring i with i ∈ [1, Nr] is then calculated on a

mesh and saved to a file for use in the simulation. The mesh is typically a square 201 x

201 grid from 0 mm to 1.16 mm in both the longitudinal and transverse directions and the

COSY-MLFMM code linearly interpolates the electric field between the mesh points.

Details on the laser pulse shape enter in the calculation through the function f(r) that

specifies the charge distribution on the surface and is used in the calculation of the charge

of each ring Qi. For a Gaussian distribution

f(r) =
1

2πσ2
r

exp

(
− r2

2σ2
r

)
, (2.24)

and

Qi = Q

∫ 2π

0

dθ

∫ ri,ext

ri,int

dr r · f(r) = Q

[
exp

(
−
r2i,int
2σ2

r

)
− exp

(
−
r2i,ext
2σ2

r

)]
. (2.25)

We choose R0 = 4σr so that ri,int = (i−1)4σr/Nr, ri,ext = i4σr/Nr and ri,0 = 4σr/Nr(i−1/2).

In the case of a Uniform (top-hat) distribution

f(r) =


C = 1

πR2
0

r ≤ R0

0 r > R0

(2.26)

where R0 is the radius of the laser pulse on the surface and the constant is chosen so that∫
f(r)rdrdθ = 1. In this case the charge contained in each ring is given by

Qi = Q

∫ 2π

0

dθ

∫ ri,ext

ri,int

dr r · f(r) = Q

[(
ri,ext
R0

)2

−
(
ri,int
R0

)2
]
. (2.27)

19



Since ri,int = (i− 1)R0/Nr, ri,ext = iR0/Nr and ri,0 = R0/Nr(i− 1/2), we can rewrite this as

Qi = Q
2i− 1

N2
r

. (2.28)

We choose R0 = 2σr, so that the standard deviation of the Gaussian and Uniform distribu-

tions in the transverse direction is the same.

In the elliptical case, the laser pulse has a distribution on the surface given by

f(r) =
3

2πR2
0

√
1−

(
r

R0

)2

, (2.29)

where R0 is again the radius of the laser pulse on the surface and 0 < r < R0. Each ring on

the surface contains a fraction of the total charge equal to

Qi = Q

∫ 2π

0

dθ

∫ ri,ext

ri,int

dr r · f(r) = Q

[(
1−

r2i,int
R2

0

)3/2

−
(

1−
r2i,ext
R2

0

)3/2
]
. (2.30)

Again we wish to compare distributions of equal width and therefore choose R0 =
√

5σr so

that the standard deviation of the transverse distribution is the same as in the Gaussian

case.

2.4.2 Time evolution of the positive field

In the treatment presented so far we implicitly assumed that the positive field on the surface

had no time dependence. In the initial stages of the simulation the shape of the electron

pulse mirrors the profile of the exciting laser pulse, so it is natural to assume that this would

be also true for the positive charge on the surface. Given R0, the spatial width of the image

charge distribution on the surface, we can safely assume that R0(t = 0) corresponds to the
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width of the laser profile in the direction parallel to the surface. In general R0 does depend

on time and its temporal evolution has a complex dependence on the instantaneous shape

of the emitted pulse and on the cathode properties, as both surface characteristics and film

thickness play a role in determining the image charge created by the electrons.

To simplify this complex dependence into something treatable, the experimental systems

can be divided into roughly two categories. If the positive charges are pinned on the surface,

as would be the case for example in a patterned photocathode [63], the expansion of R0 will

be hindered or even blocked. We approximate these cases by taking R0(t) = R0(t = 0), so

that the image charge is pinned to a small constant area on the surface corresponding to its

initial value.

On the other hand if the positive charges on the surface are able to expand and mirror

the dynamics of the electron pulse, such as for a flat metal surface, the radius of the positive

charge R0(t) will increase as the electron pulse spreads. This can be treated in a simple way

by taking the standard deviation of the surface charge distribution equal to the instantaneous

transverse width (standard deviation) of the electron pulse. This means that each uniform

ring of charge Qi has a radius ri,0 that increases with time.

In the simulation code the positive field is calculated on a mesh, so we note that if, for

example, we double the radius of each ring, r′0 = 2r0, and also double the coordinates of

each mesh point r′ = 2r, z′ = 2z, then we get

R′2 = (r′ + r′0)
2 + z′2 = 4

[
(r + r0)

2 + z2
]

= 4R2, (2.31)

k′2 =
4r′r′0
R′2

=
4(2r)(2r0)

4R2
=

4rr0
R2

= k2. (2.32)

This means that in our expression for the electric field, the terms depending on k are not

21



affected by this transformation, while the ones depending on R would be doubled. This

translates to a transformation of the electric field where E ′ = E/4, as can be seen by taking,

for example, the field in the z direction:

E ′z(r
′, z′) =

2Qi

π

z′

R′3
E(k)

1− k2
=

1

4

2Qi

π

z

R3

E(k)

1− k2
=

1

4
Ez(r, z), (2.33)

where we have performed the substitutions z′ → 2z, R′ → 2R. A similar calculation can be

done for the field in the radial direction. This result can be explained intuitively by noting

that the units of the electric field are [charge]/[length]2. If the length is doubled, the electric

field scales as one fourth of the original value.

In practice for the simulations presented here, this means that if the radius of the surface

charge increases as r′0 = αr0, it is sufficient to increase the coordinates corresponding to the

mesh points as r′ = αr, z′ = αz and scale the electric field at each point as E ′r,z = Er,z/α
2,

where Er,z is a value calculated and tabulated before each simulation run. This method has

the effect of increasing the mesh spacing as the pulse expands, with the advantage that the

values for the positive field at a point need to be calculated only once, saving computational

time and resources.

2.5 Pulse time evolution

We now turn our attention to the results of these N-particle simulations, starting from an

analysis of the time dependent evolution of a single pulse followed by a comparison of the

properties of the emitted pulses for varying extraction conditions.

We begin by presenting, in Fig. 2.3, the temporal dependence of various key pulse

22



parameters for N0
e = 7 ·106 generated electrons with extraction fields of Fa=0.32 MV/m and

Fa=10 MV/m. In panel (a) of the figure, the number of electrons Ne is plotted as a function

of time on a log-log scale, showing the increase in Ne during the initial photoemission phase

lasting up to 0.1 ps. During the time evolution of the pulse, the electrons can recombine

with the photocathode surface, leading to a decrease in Ne at later times. This effect plays

a significant role for low extraction fields since the pulse remains closer to the surface, and

is absent in the high field case (dashed line in the figure). Figure 2.3(b) shows the pulse

center of mass distance from the surface for the two extraction fields considered compared to

a free particle moving in the corresponding electric field [z = 1/2(eFa/m)t2]. The center of

mass evolution for Fa=10 MV/m is free particle like, while at lower values of Fa, the positive

surface field hinders the pulse propagation.

Next, we look at the pulse size and normalized emittance [panels (c) and (d)], two param-

eters that are relevant for our imaging and diffraction applications. Looking at the transverse

components of these quantities [black lines in panels (c), (d)], we note that they remain close

to the initial values for both data sets presented, with a weak dependence on extraction field,

seen mostly in the increase of the pulse width σx for t >50 ps and Fa=10 MV/m due to the

weaker effect of the positive surface charge, which for Fa=0.32 MV/m keeps the electrons

focused towards the central region of the pulse. On the other hand, the longitudinal compo-

nents of both pulse size and emittance [red lines in panels (c), (d)] show a very rapid increase

during the first 20 ps of the simulation, due to the strong Coulomb repulsion between the

electrons extracted from the photocathode surface and even after this initial expansion stage,

both longitudinal components keep increasing for the duration of the simulation.

To better understand these features we look at the time evolution of the pulse in the

x − z plane, shown in Fig. 2.4 with a color map of the charge distribution in the rest
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Figure 2.3: Time evolution of key pulse parameters, for N0
e = 7 · 106, extraction fields of

Fa=0.32 MV/m (continuous lines) and Fa=10 MV/m (dashed lines): (a) number of electrons
Ne (note the logarithmic scale of both axes). (b) Pulse center of mass distance from the
surface and corresponding free particle time evolution [z = 1/2(eFa/m)t2, dotted lines]. (c)
Transverse (black) and longitudinal (red) pulse size. (d) Transverse (black) and longitudinal
(red) normalized emittance.
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frame of the bunch overlaid with arrows representing the average electron velocity. For short

timescales we observe that the spatial profile of the pulse retains the Gaussian distribution of

the generating laser pulse [Fig. 2.4(a)] and the velocities show a turbulent flow related to the

initial thermal distribution from which they were generated and independent of extraction

field, since the repulsion due to the space charge has not had time to play a big role. At

later times the pulse begins to move away from the surface, with a significant residual charge

left behind for low extraction fields [Fig. 2.4(b)]. The final profile of the pulse as t=120 ps,

depends strongly on the extraction field. Comparing panels 2.4(c) and 2.4(d), corresponding

respectively to Fa=0.32 MV/m and Fa=10 MV/m, we see that in the latter picture the flow

has become fully laminar and the pulse has evolved into the typical pancake shape, while

for the lower extraction field the pulse retains some turbulent flow and does not fully detach

from the surface.

Figure 2.4(e) presents the radial pulse profile at t=120 ps for three different extrac-

tion fields fitted to a combination of Gaussian [G = a exp(r2/2σ2)] and Ellipsoidal [E =

a
√

1− (r/R)2] functions. The laminar flow observed in the charge distribution plots [panel

(d)] can be seen to correspond to the formation of an Ellipsoidal profile, which is advanta-

geous due to its linear internal force field that leads to a non increasing emittance [53, 64].

As a consequence even though the pulse will expand and change its dimensionality ratio, this

expansion can be fully corrected with appropriate beam optics such as compression [65] and

aberration corrections [40]. On the other hand at Fa=0.32 and 1 MV/m, the flow is not fully

laminar; this component can be described by a Gaussian with extended tails representative

of the thermal-like population (accounting for, respectively 35% and 27% of the total number

of electrons), which coexists with the elliptical component.

Overall the emergence of a 2D ellipsoidal profile from the complex interplay of image- and

25



Figure 2.4: (a)-(d) Color map of the charge distribution in the rest frame of the bunch
projected onto the x-z plane, overlaid with arrows representing the average electron velocity.
Panel (a) shows the initial stage of photoemission, which is independent of extraction field.
Panel (b), (c) show the intermediate and final stages for weak (Fa=0.32 MV/m) extraction
field at times t=60 ps and t=120 ps. Panel (d) corresponds to the final stage for the strong
field case (Fa=10 MV/m). Note that the number of emitted electrons is the same in all
cases, N0

e = 7 · 106, while the final number of emitted electrons depends on the extraction
field. (e) Transverse charge density profiles under different extraction fields (Fa=0.32, 1 and
10 MV/m) fitted with a combination of Gaussian (G) and Ellipsoidal (E) functions [26].
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space charge effects, is somewhat surprising since formation of an ellipsoidal beam driven by

self fields is expected only at zero surface charge limit, i.e. σ0/ε0 � Fa, where ε0 is vacuum

permittivity and σ0 = 3Nee/(2πr
2) is the surface charge density. Inserting the parameters

used for the simulations in Fig. 2.4 into the equation gives σ0=5.35× 10−5 C/m2 and σ0/ε0 =

6.04 MV/m, showing that the extraction fields used (Fa) are comparable to this value. With

the highest number of particles considered, N0
e = 2 · 108, σ0/ε0 = 172.55 MV/m, and this

condition is definitely not satisfied. This is in contrast with the situation described elsewhere

in the literature such as in the work by Luiten et al. [53,64] where the extraction field Fa =

100 MV/m and σ0/ε0 = 5 MV/m, in which case the bunch evolution is solely dependent on

its self fields as image- and space-charge effects are negligible.

We conclude this section with a comparison of the simulated data to the values measured

in the shadow imaging experiments [66] (Fig. 2.5). Panel (a) shows the raw experimental

images, while panels (b)-(d) compare the longitudinal pulse profile in experiment (red cir-

cles) and simulation (black line) at various times. The shaded box indicates the region in

the proximity of the surface, which cannot be accurately imaged with the shadow imaging

technique. The experimental data is shifted horizontally to fix the position of the surface

and scaled vertically to match the units used in the simulation. This fitting is done for the

data set at t=50 ps (not shown) and fixed for the remainder of the plots. Given the few

parameters used in the simulation, we see a remarkable agreement with the measured pulse

profile over a time period of t '50 ps. This provides a validation that the simulation method

used correctly describes the experimental system.
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Figure 2.5: Comparison to experimental data. Panel (a) shows the raw experimental images,
while panels (b)-(d) show a comparison of the longitudinal pulse profile at various times in
experiment (red circles) and simulation (black line), corresponding to an extraction field of
Fa= 0.32 MV/m and N0

e = 108 [26].

2.6 Optimal pulse generation

In this section we investigate the optimal conditions for pulse generation in terms of laser

fluence (or, equivalently, initial number of electrons, N0
e ) and extraction field Fa for different

experimental realizations. We start the discussion by presenting our results for photoemission

using a Gaussian laser pulse from a flat surface (modeled with a radially expanding positive

surface charge), followed by a comparison with the pinned case (stationary positive charge

on the surface). To understand the effect of the spatial profile of the laser, we also discuss

our results for the radially Uniform (top-hat) and Elliptical profiles.
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2.6.1 Gaussian pulse

In order to use the generated electron bunch for single-shot imaging, a high enough number of

electrons is necessary, so one of the first quantities of interest is the final number of electrons

at time t=120 ps. This is shown in Fig. 2.6 as a function of the initial number of electrons, N0
e

for extraction fields Fa= 0.1 MV/m to 40 MV/m. For a low number of generated electrons

(Ne < 106), all of the particles escape the surface, creating the linear relationship seen in the

first part of the figure. As the initial number of electrons is increased, the space charge effect

also increases due to both the electrons and the image charge on the surface. This creates the

so-called virtual cathode (VC) limit in which the negative charge of the electrons emitted at

earlier times, combined with the attractive surface field, hinders further emission of particles

and effectively limits the final number of electrons extracted, a feature that can be seen in

the flattening of the curves shown. Increasing the extraction field shifts the onset of this

phenomenon enabling the emission of a higher number of particles from the photocathode.

The dependence of the onset of the virtual cathode effect on extraction field is investigated

by calculating the critical number of electrons from a linear fit of the two regimes described.

The resulting data is plotted in the inset of Fig. 2.6 as a function of extraction field Fa. If

we approximate the electron pulse as a sheet of charge and define the onset of the virtual

cathode regime to be when the electric field generated by the sheet of emitted electrons is

equal to the extraction field Fa [67], we can express the critical current required as:

Jcrit = ε0Fa/τp, (2.34)

where τp is the pulse duration. Having assumed a thin sheet of charge, we can write σ = Jτp,
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where σ = N crit
e /(πr2) is the electron charge density in the xy plane so that

σ = ε0Fa. (2.35)

The fit of our data to this equation is also shown in the inset of Fig. 2.6, with a numerical

prefactor of α = 1.65 so that σ = αε0Fa (α = 1 in the ideal case).
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Figure 2.6: Number of electrons emitted at t=120 ps as a function of number of generated
electrons for various extraction fields. The lines serve as a guide to the eye for the scaling
N emit
e ∝ N0

e and N emit
e ∝ (N0

e )1/3. The data shows evidence of virtual cathode formation.
Inset: Critical number of electrons for virtual cathode formation as a function of extraction
field Fa. The dashed line shows the critical number of electrons as a function of Fa obtained
by using Eq. 2.35 [26].

The onset of the VC limit also acts on the longitudinal pulse width, σz (Fig. 2.7). For

pulses in the sub-VC regime, σz increases linearly with the number of particles, while in

the VC regime the width of the pulse does not show a strong dependence on the number
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of electrons emitted. Our simulations show that the trend of σz ∝ (N emit
e )1/2 seen in the

experimental data (right panel of Fig. 2.7), is a result of the linear growth of σz in the

sub-VC regime combined with its reduced increase as the VC regime sets in.

Figure 2.7: Longitudinal pulse width, σz, as a function of number of electrons at time
t=120 ps, for various extraction fields Fa from the simulation (left panel) and compared to
experimental data (right panel). The lines serve as a guide to the eye for the cases σz ∝ N emit

e

and σz ∝ (N emit
e )1/2 [26].

2.6.2 Effect of image charge pinning

We now focus on the effect that pinning of the image charge on the surface has on the onset

of the VC limit and on the final pulse parameters, as this will provide information on the

optimal photocathode geometry one should employ. By looking at the charge distribution

and transverse profiles of individual pulses (Fig. 2.8), we observe that in the pinned case

the positive image charge field provides a focusing effect, increasing the fraction of electrons

at the center of the pulse and consequently reducing the fraction of electrons in the lateral

region. The particles in the central region are also pulled back towards the surface by the

strong electric field, creating a channel of electrons that prevents the pulse from becoming
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fully pancake-like even at t=120 ps.
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Figure 2.8: (a),(b) Color map of the charge distribution in the rest frame of the bunch
projected onto the x-z plane, overlaid with arrows representing the average electron velocity.
Panel (a) shows the distribution at t=120 ps for extraction field Fa = 10 MV/m and number
of emitted electrons N0

e = 7 · 106. Panel (b) shows the charge distribution under the same
conditions but with the image charge pinned to a small area on the photocathode surface. (c)
Transverse charge density profiles under different extraction fields (Fa=0.32, 1 and 10 MV/m)
showing the central focusing peak caused by the pinned image charge.

Image charge pinning has very little effect on the longitudinal pulse width σz or on the

number of electrons emitted from the surface before the onset of the VC (Fig. 2.9). Upon

reaching the VC limit, though, the number of electrons in the pinned case is reduced by

≈ 5% compared to the non-pinned case, while maintaining the same linear dependence on
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N0
e seen in Fig. 2.6.
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Figure 2.9: (a) Number of electrons emitted at t=120 ps as a function of number of generated
electrons for various extraction fields in the presence of a pinned image charge. The red lines
show the data corresponding to the expanding image charge. (b) Longitudinal pulse width,
σz, as a function of number of electrons at time t=120 ps, for various extraction fields Fa with
a pinned image charge. The red lines, again, show the data corresponding to the expanding
image charge.

2.6.3 Effect of transverse laser profile

We now turn our attention to the effect of the laser pulse shape on the properties of the

photoemitted electron pulse and start by observing the temporal evolution of an electron

bunch generated from a radially uniform laser pulse (Fig. 2.10), where the laser intensity

I(r) ∝ const. Also shown for comparison is the time evolution of a similarly generated pulse

in the absence of the surface image charge. Similarly to the pinned case, the positive field on

the surface attracts the electrons and causes a focusing of the electron density towards the

center of the pulse where the field is strongest [Fig. 2.10(e)]. This effect is seen to be more

pronounced for low extraction fields Fa, as the pulse remains close to the surface throughout

the simulation.

In the case of an elliptical laser pulse we have that the intensity I(r) ∝
√

1− (r/R)2,
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Figure 2.10: (a)-(d) Color map of the charge distribution in the rest frame of the bunch
projected onto the x-z plane, overlaid with arrows representing the average electron velocity
for the top-hat (uniform) pulse. Panels (a) and (b) show the initial and final stages of
photoemission in the presence of an image charge on the surface. Panels (c), (d) correspond
to the case without image charge. Note that the number of emitted electrons is the same in
all cases, N0

e = 1 ·107, with an extraction field Fa = 1 MV/m . (e) Transverse charge density
profiles under different extraction fields (Fa=0.32, 1 and 10 MV/m), showing the effect of
the image charge.
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where R corresponds to the spatial width of the laser. Figure 2.11 shows the phase space

plots and radial distributions corresponding to this case both with and without the image

charge. Again we observe a dramatic change in the overall pulse shape that is a consequence

of the drastic disruption of the linear self fields otherwise present in the elliptical pulse [53].

Projecting the charge distribution onto the x-axis [Fig.2.11(e)], show that this effect results

in the formation of a pronounced central peak. A fit of the data to Gaussian and elliptical

distributions shows an increasing weight of the Gaussian pulse component at low extraction

fields (67% at Fa = 0.32MV/m and 37% at Fa = 10MV/m) for which the perturbation to

the pulse profile is more pronounced as the electrons remain closer to the surface throughout

the simulation.

2.7 Guidelines for generation of high brightness elec-

tron beams

Next we wish to compare the pulse properties obtained under these different conditions of

pulse generation. As our goal is to be able to do time resolved imaging, both the transverse

and longitudinal emittances are of importance since they determine, respectively, the spatial

and temporal resolutions. We also compare the emittance, coherence length and energy

spread obtained in each case.

Figure 2.12 shows the emittances corresponding to the Gaussian laser pulse both with

expanding and pinned surface charges. Our data shows a strong increase of the transverse

emittance εx [panel (a)] upon reaching N crit
e , due to the onset of the VC regime. From the

inset, which shows the temporal evolution of εx at Fa =0.32, 1 MV/m, we see that a steady

state value of εx is reached after approximately 40 ps and is correlated with the region where
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Figure 2.11: (a)-(d) Color map of the charge distribution in the rest frame of the bunch
projected onto the x-z plane, overlaid with arrows representing the average electron velocity
for the elliptically shaped pulse. Panels (a) and (b) show the initial and final stages of
photoemission in the presence of an image charge on the surface. Panels (c), (d) correspond
to the case without image charge. Note that the number of emitted electrons is the same in
all cases, N0

e = 1 · 107, with an extraction field Fa = 1 MV/m. (e) Transverse charge density
profiles under different extraction fields (Fa=0.32, 1 and 10 MV/m), showing the effect of
the image charge.
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the previously discussed 2D elliptical pulse structure dominates. In contrast, εz [Fig. 2.12(b)]

shows no change in behavior as the VC regime is reached and is also rather insensitive to

the extraction field. This is an indicator that in our pancake-like regime, the transverse

emittance is driven by the strong nonlinear fields while the longitudinal component has a

universal dependence on N emit
e . This is particularly evident in the inset, showing εz(t) for

three very different external field values and N emit
e = 107. Pinning of the surface charge has

the effect of increasing the transverse emittance significantly once the virtual cathode limit

is reached; the longitudinal emittance is also similarly affected.

Changing the shape of the laser profile used to emit the electrons also has a significant

impact on the normalized emittance (Fig. 2.13). For Fa = 1 MV/m (black symbols and lines),

the elliptical shape (circles) is favorable below the VC limit as it has a smaller transverse

emittance [panel (a)] compared to the Gaussian and uniform (top-hat) profiles. Previous

literature [53, 64], showed this to be the case for negligible image charge fields due to the

internal linear self-forces that limit the increase of the emittance. It is non-trivial that this

would still be the case even in the presence of the positive field on the surface, which disrupts

the linearity of the electron-electron forces and drastically changes the resulting pulse profile,

as we saw in Fig. 2.11. The results in Fig. 2.13 show that once the VC limit is reached,

at about N emit
e ' 1 · 107 for Fa = 1 MV/m, both the elliptical and uniform profiles present

a sharp scaling with the number of electrons, while the Gaussian profile retains a more

favorable scaling, with a slope for the emittance increase that is 1/3 that of the elliptical

case. The origin of this scaling can be understood by looking at the inset in Fig. 2.13, which

presents the number of emitted electrons N emit
e as a function of N0

e , the initial number of

electrons. In the elliptical and uniform case, the VC effect completely blocks the increase

in N emit
e , such that for N0

e > 107, the curves shown in the inset are flat. With a Gaussian
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Figure 2.12: (a) Transverse normalized emittance εx and (b) longitudinal normalized emit-
tance εz as a function of number of emitted electrons N emit

e and extraction field Fa at 120 ps
for a Gaussian pulse. Insets: time dependence of εx and εz for three selected cases at
N emit
e = 107 [26].

laser profile the emission of electrons is, instead, only hindered allowing an extraction of a

higher number of particles under the same conditions. An increase in the extraction field

Fa has the effect of shifting the onset of the VC regime to higher N emit
e , thus increasing the
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regime before the VC is reached in which the elliptical pulse is optimal. The longitudinal

emittance εz [Fig. 2.13(b)] scales linearly with the number of electrons for all laser profiles

considered, with a weak dependence on the extraction field. The signature of the onset of

the VC regime is also seen here in the sudden increase of εz by about one order of magnitude

for N emit
e ' 1 · 107.

The influence of the image charge on the emittance can be understood by comparing the

time evolution of the 6D normalized emittance (εx · εy · εz) as a function of laser pulse profile

and presence of image charge, shown in Fig. 2.14 both below and above the VC limit. Below

the virtual cathode limit [Fig. 2.14(a)], the image charge acts as a weak perturbation on the

pulse dynamics with some effect only during the initial stages (t <60 ps) of pulse formation.

In contrast for extraction conditions above the virtual cathode limit [panel (b)], the strong

positive field on the surface has a small effect on the emittance of the Gaussian pulse profile

(black continuous and dashed lines) but is a significant perturbation in the case of both the

elliptical (red) and uniform (green) cases.

From this we can conclude that the optimal extraction conditions depend on a delicate

balance between the image charge, which disrupts the favorable internal self-fields of both the

elliptical and uniform cases, the number of electrons emitted and the extraction field, which

controls the onset of the virtual cathode limit. Below this limit the image charge has a weak

effect with the pulse properties primarily controlled by the laser parameters (laser profile

and fluence), while above the VC limit the image charge strongly perturbs the expansion of

the pulse with a nonuniform dependence on the pulse profile.

A further check of these considerations is shown in Fig. 2.15 where the 6D emittance is

plotted as a function of time for the Gaussian and elliptical cases using different models for

the image charge: expanding radially, pinned, and placed behind the surface at a distance
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rms emittance εz dependence on number of emitted electrons N emit

e and extraction field Fa
for varying shapes of the exciting laser pulse at t = 120ps. Inset: number of emitted electrons
N emit
e at t=120 ps as a function of N0

e , the initial number of electrons for Fa = 1 MV/m and
varying laser profile.

z = −zCM , where zCM is the distance of the center of mass of the electron pulse. Below the

virtual cathode limit, the emittance values are robust with respect to the different choices
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Figure 2.14: Time dependence of the 6D normalized emittance for Fa = 1 MV/m both (a)
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(G), Elliptical (E) and Uniform (U) cases, with the subscript 0 indicating the absence of the
image charge (G0, E0, U0 respectively).

in treating the image charge. On the other hand in the nonlinear regime shown by the pulse

above the VC limit, the choice of the model for the image charge can have the effect of

varying the final value of emittance by about 2 orders of magnitude for the elliptical case,
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and by about one for the Gaussian profile. Conventionally UEM systems always operate

below the VC regime where the image charge field does not have a critical effect, but this

raises an important issue that needs to be addressed in pushing to higher brightness electron

pulses.

To conclude our discussion and extract useful guidelines for electron beam generation, we

compare the brightness (Fig. 2.16), coherence length and energy spread (Fig. 2.17) for pulses

generated under the different conditions described in the previous sections. Since pinning

of the image charge on the surface has a negligible effect below the VC and an unfavorable

scaling after the VC, it has been omitted for clarity from the discussion that follows.

The first parameters we wish to look at are the 4D and 6D brightness defined as B4D =

Ne/(εx · εy) and B6D = Ne/(εx · εy · εz), reported in Fig. 2.16. If temporal resolution is not

required, the appropriate figure of merit is the 4D brightness [panel (a)], where we observe

three distinct regimes for a given extraction field Fa. At low pulse currents (Ne < 104 for

Fa = 1 MV/m), it is independent on the transverse pulse shape. For intermediate values

of Ne (104 < Ne < 3 · 107 for Fa = 1 MV/m), an elliptical spatial profile offers the best

solution. At high numbers of electrons (Ne > 3 · 107 for Fa = 1 MV/m), the Gaussian

pulse offers a better scaling than the Elliptical or Uniform but is associated with a very low

peak brightness. Increasing the extraction field solves this issue by shifting the boundaries

between the regimes discussed to higher values of Ne. On the contrary, if temporal resolution

is a concern, it is necessary to include the longitudinal pulse properties in the discussion and

therefore the 6D brightness is the relevant figure. From our results in Fig. 2.16(b), we

conclude that in this case an elliptical transverse profile offers the optimal choice for the

whole parameter range considered.

Other key quantities for electron source design are the coherence length (Eq. 2.1) and
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Figure 2.15: Time dependence of the 6D normalized emittance for Fa = 1 MV/m both
(a) below and (b) above the virtual cathode limit. The data shown corresponds to the
Gaussian (G) and Elliptical (E) cases, for different ways of considering the image charge
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the energy spread (Eq. 2.3), These two quantities are plotted in Fig. 2.17 as a function of

emitted electron number and photoemitting laser pulse shape. The Elliptical profile presents
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Figure 2.16: (a) 4D brightness and (b) 6D brightness as a function of number of electrons
emitted, N emit

e for the Gaussian, Uniform and Elliptical cases. The data shown corresponds
to Fa = 1 MV/m (closed circles) and Fa = 10 MV/m (open circles).

the highest coherence length compared to the other two data sets even after reaching the

VC limit. Increasing the extraction field offers the advantage of pushing the onset of the VC

limit to higher Ne, increasing the range over which the coherence length is constant. In terms
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of the energy spread, the Elliptical and Uniform profiles are both equally favorable, having

a lower ∆E than the Gaussian case and, overall, this parameter is relatively insensitive to

the extraction field.
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Figure 2.17: Coherence length (a) and energy spread (b) as a function of number of electrons
emitted, N emit

e for the Gaussian, Uniform and Elliptical profiles. The data shown corresponds
to Fa = 1 MV/m (closed circles) and Fa = 10 MV/m (open circles).
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Chapter 3

Analytic Gaussian Model

The photoemission process previously described is only the first step in the operation of an

Ultrafast Electron Microscope (UEM) system. We now use the knowledge acquired from the

simulations of pulse formation as an input for calculations involving the whole microscope

column, which was introduced in Chapter 1. To do so, we use the so-called Analytic Gaussian

model introduced by Michalik and Sipe [37,38] and refined by Berger and Schroeder [39]. We

begin the discussion with an overview of the derivation of the equations for this mean-field

model and the proceed to show how we added the contributions due to the photoemission

gun and the relativistic motion of the electrons to this formalism to make it applicable for

our system. We then explain the procedure used for optimizing the lens and RF cavity

strengths and analyze the results obtained, taking into account the limits inherent in this

model.
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3.1 Derivation of the Analytic Gaussian equations

This section elucidates the derivation of the mean field Analytic Gaussian differential equa-

tions, following the work in [37]. We start with the propagation of an N-electron pulse in

free space, and then add in the effects of lenses, radio frequency (RF) cavities, photoemission

gun and relativistic motion.

3.1.1 N-electron pulse in the absence of external forces

The equations of motion for a classical system of N electrons are given by

dri(t)

dt
=

pi(t)

m
, (3.1)

dpi(t)

dt
= −

∑
j 6=i

∂V [ri(t)− rj(t)]

∂ri(t)
, (3.2)

where ri are the positions of particles i = 1, ..., N , pi are the momenta, m is the electron

mass and V (r) is the Coulomb potential

V (r) =
e2

4πε0|r|
, (3.3)

with e the electron charge and ε0 the vacuum permittivity. We now introduce a discrete

distribution to describe the particles in the system, which we formally write as

fD(r,p; t) =
N∑
i=1

δ [ri(t)− r] δ [pi(t)− p] , (3.4)
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where fD is normalized so that

∫
drdpfD(r,p; t) = N. (3.5)

The Boltzmann equation for this distribution can then be written as

∂fD(r,p; t)

∂t
= −∂fD(r,p; t)

∂r
· ∂r

∂t
− ∂fD(r,p; t)

∂p
· ∂p

∂t
, (3.6)

= −∂fD(r,p; t)

∂r
· p

m
− ∂fD(r,p; t)

∂p
· F, (3.7)

where Eqs. 3.1 and 3.2 have been used. We rewrite the force term

F = −
∑
j 6=i

∂V [ri(t)− rj(t)]

∂ri(t)
, (3.8)

= − ∂

∂r

∫
dr′ρ(r′)V (r− r′), (3.9)

= − ∂

∂r

∫
dr′dp′fD(r′,p′; t)V (r− r′), (3.10)

where ρ(r′) is the local density equal to

ρ(r′) =

∫
dp′fD(r′,p′; t), (3.11)

and then substitute Eq. 3.10 into Eq. 3.7 to obtain

∂fD(r,p; t)

∂t
= −∂fD(r,p; t)

∂r
· p

m
+
∂fD(r,p; t)

∂p
· ∂
∂r

∫
dr′dp′fD(r′,p′; t)V (r− r′). (3.12)

The discrete distribution fD depends on the specific initial positions and momenta of
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the particles, so next we take an ensemble average over a set of initial conditions, which we

indicate as f(r,p; t) = 〈fD(r,p; t)〉. Performing this average, Eq. 3.12 becomes

∂f(r,p; t)

∂t
= −∂f(r,p; t)

∂r
· p

m
+

〈
∂fD(r,p; t)

∂p
· ∂
∂r

∫
dr′dp′fD(r′,p′; t)V (r− r′)

〉
. (3.13)

As is typical in this kind of problem, it is impossible to derive a closed form expression

without solving for higher order moments such as 〈fD(r,p; t)fD(r′,p′; t)〉. By using a mean

field approach, we approximate 〈fD(r,p; t)fD(r′,p′; t)〉 ' 〈fD(r,p; t)〉 〈fD(r′,p′; t)〉, so that

Eq. 3.13 becomes

∂f(r,p; t)

∂t
= −∂f(r,p; t)

∂r
· p

m
+
∂f(r,p; t)

∂p
· ∂
∂r

∫
dr′dp′f(r′,p′; t)V (r− r′). (3.14)

Even with this approximation, it is not possible to solve Eq. 3.14 analytically, so we

choose to parameterize the distribution f(r,p; t) with some time-dependent parameters for

which we can derive ordinary differential equations. Using the cylindrical symmetry present

in the UEM system and assuming for simplicity a Gaussian distribution for both the trans-

verse and longitudinal components, we write

f(r,p; t) = C exp

[
−x

2 + y2

2σT
− z2

2σz
− [px − (γT/σT )x]2 + [py − (γT/σT )y]2

2ηT
− [pz − (γz/σz)z]2

2ηz

]
,

(3.15)

where σT,z, ηT,z and γT,z are time dependent parameters that describe, respectively, the

spatial width, kinetic energy spread and chirp of the electron pulse (see Fig. 3.1). Note

that the units for the parameters are σT,z units of length squared, ηT,z units of momentum

squared and γT,z units of action (length x momentum). C is a time dependent normalization
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constant

C(t) =
N

(2π)3

(
1

σ2
Tη

2
Tσzηz

)1/2

. (3.16)
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Figure 3.1: Schematic representation of the pulse parameters used in the Analytic Gaussian
model in phase space.

We can rewrite Eq. 3.15 in a more general form as a multivariate normal distribution

f(u; t) =
N√

(2π)k|χ|
exp

(
−1

2
uTχ−1u

)
, (3.17)

where u = (x, px, y, py, z, pz), k is the dimension of u (k = 6 in our case), χ is the covari-

ance matrix and |χ| is its determinant. The distribution is multiplied by N to obey the

normalization constraint in Eq. 3.5. Comparing Eqs. 3.15 and 3.17, we see that

χ−1 =


aT 0 0

0 aT 0

0 0 az

 , (3.18)
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with

ai =

 1
σi

+
γ2i
ηiσ2

i

γi
ηiσi

γi
ηiσi

1
ηi

 , (3.19)

where i = T or z. Calculating the covariance matrix χ is trivially done by inverting the

matrix in Eq. 3.18 giving

χ =


a−1T 0 0

0 a−1T 0

0 0 a−1z

 , (3.20)

where a−1i represents the inverse of matrix ai:

a−1i =

 σi γi

γi ηi +
γ2i
σi

 , (3.21)

where, again, i = T or z.

Using the definition of the covariance matrix [68], we know that

χi,j =< uiuj >=
1

N

∫
du ui ujf(u; t), (3.22)

where we use < ... > to represent an expectation value over the ui, uj components of the

vector u = (x, px, y, py, z, pz). We now take a time derivative of Eq. 3.22:

∂

∂t
χi,j =

1

N

∫
du ui uj

∂f(u; t)

∂t
, (3.23)

and substitute ∂f(u; t)/∂t with the mean-field equation 3.14 to obtain differential equations
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for each matrix component χi,j

∂

∂t
χi,j = Kflow

ij +Kforce
ij , (3.24)

where

Kflow
ij = − 1

N

∫
du ui uj

p

m
· ∂f(u; t)

∂r
, (3.25)

Kforce
ij =

1

N

∫
du ui uj

∂f(u; t)

∂p
· ∂Φ

∂r
, (3.26)

with the notation u = (x, px, y, py, z, pz), r = (x, y, z), p = (px, py, pz) and

Φ =

∫
du′f(u′; t)V (r− r′). (3.27)

Note that due to the symmetry of the problem, the terms corresponding to the x and y

coordinates are equal, meaning that χ11 = χ33, χ22 = χ44 and χ12 = χ21 = χ34 = χ43.

Similar relations hold for the Kij terms. For this reason in the following discussion we will

only consider components in the x direction.

The Kflow terms describe the geometric motion of the electrons and are easily evaluated

by substituting the explicit form of f(u; t) (Eq. 3.15) and solving the resulting Gaussian

integrals. It is easy to see that the Kflow
22 , Kflow

44 , Kflow
66 elements vanish and that the
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remaining terms are

Kflow
11 =

2

m
γT , (3.28)

Kflow
12 =

1

m

(
ηT +

γ2T
σT

)
, (3.29)

Kflow
55 =

2

m
γz, (3.30)

Kflow
56 =

1

m

(
ηz +

γ2z
σz

)
. (3.31)

The Kforce terms (Eq. 3.26), which incorporate the internal Coulomb repulsion felt

by the electrons, are harder to solve due to the interaction potential Φ but, nevertheless,

substituting Eq. 3.15 and manipulating the resulting integrals allows them to be expressed in

terms of the pulse parameters. We will skip the details of this calculation as it is somewhat

cumbersome and tedious and limit ourselves to reporting the relevant results (for details

see [37]):

Kforce
11 = Kforce

55 = 0, (3.32)

Kforce
22 =

2γT
σT

Kforce
12 , (3.33)

Kforce
66 =

2γz
σz

Kforce
56 , (3.34)

Kforce
12 =

1

4πε0

Ne2

6
√
σTπ

LT (ξ), (3.35)

Kforce
56 =

1

4πε0

Ne2

6
√
σzπ

Lz(ξ), (3.36)

where ε0 is the vacuum permittivity, N is the number of electrons in the pulse, e and m are
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the electron charge and rest mass, respectively, and

LT (ξ) =
3

2

[
L(ξ) +

ξ2L(ξ)− ξ
1− ξ2

]
, (3.37)

Lz(ξ) =
3ξ2

ξ2 − 1
[ξL(ξ)− 1] , (3.38)

with ξ =
√
σz/σT > 0 and

L(ξ) =
1

2

∫ π

0

dθ

1 + ξ sin θ
=


arcsin
√

1−ξ2√
1−ξ2

for 0 ≤ ξ ≤ 1

ln(ξ+
√
ξ2−1)√

ξ2−1
for ξ > 1.

(3.39)

Note that for ξ = 1, L(1) = LT (1) = Lz(1) = 1. The functions L(ξ), LT (ξ) and Lz(ξ) (Fig.

3.2) describe the effect of the Coulomb interactions on the pulse’s time evolution and are

the only coupling in our model between the transverse and longitudinal degrees of freedom.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3

ξ = (σz/σT)
1/2

L(ξ)

LT(ξ)

Lz(ξ)

Figure 3.2: Functions L(ξ) (Eq. 3.39), LT (ξ) (Eq. 3.37) and Lz(ξ) (Eq. 3.38) as a function
of ξ =

√
σz/σT .
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Once the Kflow
ij and Kforce

ij terms are known, we can use Eqs. 3.20 and 3.21 to derive

differential equations for the parameters describing the pulse, σT,z, ηT,z and γT,z as

dσT (z)
dt

=
∂

∂t
χ11(55) = Kflow

11(55), (3.40)

dγT (z)
dt

=
∂

∂t
χ12(56) = Kflow

12(56) +Kforce
12(56), (3.41)

dηT (z)
dt

=
∂

∂t
χ22(66) −

2

σT (z)

∂

∂t
χ12(56) +

γ2T (z)
σ2
T (z)

∂

∂t
χ11(55) = − 2

σT (z)
Kflow

12(56) +
γ2T (z)
σ2
T (z)

Kflow
11(55).

(3.42)

Substituting the previously calculated terms gives the final result:

dσi
dt

=
2

m
γi, (3.43)

dγi
dt

=
1

m

(
ηi +

γ2i
σi

)
+

1

4πε0

Ne2

6
√
σiπ

Li(ξ), (3.44)

dηi
dt

= −2γiηi
mσi

, (3.45)

where i = T or z. Note that the quantity
√
σiηi, corresponding to the pulse emittance, is

conserved in this formulation.

To check our calculation we consider the limit of zero Coulomb force, in which Eqs.

3.43-3.45 reduce to

dσi
dt

=
2

m
γi, (3.46)

dγi
dt

=
1

m

(
ηi +

γ2i
σi

)
, (3.47)

dηi
dt

= −2γiηi
mσi

. (3.48)

This system of equations can be easily solved by noting that d2γ/dt2 = 0 and by integrating,
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with the result

σi(t) =
ηi(0)

m
t2 + σi(0), (3.49)

γi(t) =
ηi(0)

m
t, (3.50)

ηi(t) =
σi(0)

t2/m2 + σi(0)/ηi(0)
. (3.51)

These equations, together with Eq. 3.15, are an exact solution of Eq. 3.14, which in the

absence of the Coulomb force reads

∂f(r,p; t)

∂t
= −∂f(r,p; t)

∂r
· p

m
. (3.52)

In the general case which includes the Coulomb force, no analytic solution of Eqs. 3.43-

3.45 exists and one must numerically integrate the equations.

3.1.2 Lenses and RF cavities

So far we have described the time evolution of an electron pulse with no applied forces, but

for the Analytic Gaussian model to be useful in describing the UEM column, we need to

incorporate the effect of the optical elements (lenses and RF cavities) and we do so following

the work by Berger and Schroeder [39].

Rewriting the differential equation for the covariance matrix (Eq. 3.24) with an additional

external position dependent force term gives

∂

∂t
χi,j = Kflow

ij +Kforce
ij +Kext

ij , (3.53)
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where Kflow
ij and Kforce

ij are defined in Eqs. 3.25 and 3.26 and

Kext
ij =

1

N

∫
du ui uj

−→
F ext(r) · ∂f(u; t)

∂p
, (3.54)

where u = (x, px, y, py, z, pz), r = (x, y, z), p = (px, py, pz) and
−→
F ext(r) is the external force.

In this case Eqs. 3.43-3.45 become

dσT (z)
dt

=
2

m
γT (z) +Kext

11(55), (3.55)

dγT (z)
dt

=
1

m

(
ηT (z) +

γ2T (z)
σT (z)

)
+

1

4πε0

Ne2

6
√
σT (z)π

LT (z)(ξ) +Kext
12(56), (3.56)

dηT (z)
dt

= −
2γT (z)ηT (z)
mσT (z)

+
γ2T (z)
σ2
T (z)

Kext
11(55), (3.57)

where we have made use of the fact that

Kext
12(56) = Kext

21(56) =
σT (z)
2γT (z)

Kext
22(66). (3.58)

Using these equations, any optical element can be added into our system by specifying its

force on the electron pulse,
−→
F ext(r), and by calculating Kext

11(55) and Kext
12(56).

In the transverse direction the electron pulse can be focused by using magnetic lenses.

Taking a perfect parabolic lens, the external force is linear with distance

−→
F lens(r) = −MTxx̂−MTyŷ, (3.59)

where MT characterizes the strength of the lens and is positive for pulse focusing. Performing

the integrals it is easy to see that Kext
11(55) = 0, Kext

56 = 0 and Kext
12 = MTσT , so that the
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equations describing the system read

dσi
dt

=
2

m
γi, (3.60)

dγi
dt

=
1

m

(
ηi +

γ2i
σi

)
+

1

4πε0

Ne2

6
√
σiπ

Li(ξ) +Miσi, (3.61)

dηi
dt

= −2γiηi
mσi

, (3.62)

with i = T or z and Mz = 0. To specify the physical region in which the lenses act, we take

Mi →Mi exp

[
−
(
z′ − z′lens
Llens/2

)2n
]
, (3.63)

where z′ is the position of the pulse center of mass in the lab frame, z′lens is the position of the

center of the lens, Llens is the length of the lens and n is a super-Gaussian order parameter

that sets the sharpness of the lens edge, where n = 1 corresponds to a Gaussian profile and

n→∞ is a top-hat.

To incorporate RF cavities into our treatment, we follow a similar procedure considering,

for simplicity, a cylindrical (pillbox) cavity operating in the TM010 mode. In this case the

electric and magnetic fields inside the cavity may be written in cylindrical coordinates and

to first order in r as [69]

Ez(r, z, z
′) = E0(z

′) sin

[
Ω(z′ − z)

v0
+ φ

]
, (3.64)

Er(r, z, z
′) = −r

2

∂E0(z
′)

∂z
sin

(
Ωz′

v0
+ φ

)
, (3.65)

Bφ(r, z, z′) = −r
2
E0(z

′)
Ω

c2
cos

(
Ωz′

v0
+ φ

)
, (3.66)

where Ω and φ are the RF field frequency and phase, so that the cavity will act as a pulse
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compressor if φ ' 0, while for φ ' ±π/2 it will accelerate the pulse. z′ and v0 are the position

and velocity of the pulse center of mass in the cavity, which extends between z′ = −d/2 and

z′ = d/2, and r and z correspond to the position of an electron in the pulse with respect to

the center of mass. E0(z
′) is the field amplitude which we write in a form similar to that of

the lens strength as

E0(z
′) = E0 exp

[
−
(
z′ − z′rf
d/2

)2n
]
, (3.67)

where z′rf is the position of the center of the cavity and n is the super-Gaussian order

parameter that sets the sharpness of the edge of the RF cavity field.

In the longitudinal direction, if the spatial dimension of the pulse is small compared to

the cavity size, Ωz << v0, we can expand Eqs. 3.64 as

Ez(r, z, z
′) = E0(z

′)

[
sin

(
Ωz′

v0
+ φ

)
− Ωz

v0
cos

(
Ωz′

v0
+ φ

)]
, (3.68)

which shows that the RF cavity both accelerates the center of mass of the pulse (first term on

the RHS) and compresses (or expands) it (second term on the RHS). Since the accelerating

component is constant with respect to the pulse coordinates (r,z), it will not contribute

to the force but it must be included in the calculation of the center of mass velocity. The

resulting force on the pulse is therefore

Fz = −eE0(z
′)Ω

v0
cos

(
Ωz′

v0
+ φ

)
zẑ. (3.69)

In the transverse direction we substitute Eq. 3.67 into Eq. 3.65 and take the derivative,
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with the result that

Er(r, z, z
′) = E0(z

′)r
2n

d

(
z′ − z′rf
d/2

)2n−1

sin

(
Ωz′

v0
+ φ

)
. (3.70)

The force in the radial direction can then be written as

Fr = eEr(r, z, z
′)− ev0Bφ(r, z, z′) (3.71)

= eE0(z
′)

[
2n

d

(
z′ − z′rf
d/2

)2n−1

sin

(
Ωz′

v0
+ φ

)
+

Ωv0
2c2

cos

(
Ωz′

v0
+ φ

)]
rr̂. (3.72)

From Eqs. 3.69 and 3.72, we can calculate the terms entering our equations as Kext
11(55) = 0,

and Kext
12(56) = M rf

T (z)σT (z), with

M rf
T = eE0(z

′)

[
2n

d

(
z′ − z′rf
d/2

)2n−1

sin

(
Ωz′

v0
+ φ

)
+

Ωv0
2c2

cos

(
Ωz′

v0
+ φ

)]
, (3.73)

M rf
z = −eE0(z

′)Ω

v0
cos

(
Ωz′

v0
+ φ

)
. (3.74)

3.1.3 Photoemission gun

The last element we need to incorporate into our UEM column is the photoemission gun.

In the initial part of the microscope, inside the gun, the electrons are accelerated under a

constant electric field. Therefore particles in the tail of the pulse spend more time in the gun

region and are accelerated to a higher velocity. Overall this has the effect of decreasing the

chirp of the pulse as it exits the gun, and we need to incorporate this effect into our model.

We represent the field in the gun region with a step function, Egun = Θ(z− d) where d is

the spacing between cathode and anode and Θ is the Heaviside theta function. In the pulse

center of mass frame of reference, in which our Analytic Gaussian equations are formulated,
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we have two cases: if the pulse center of mass is still inside the region with the electric

field, z′ < d, the portion of the pulse extending outside the anode (z > d − z′) will feel a

force F = −eEgun. On the other hand if z′ > d, the portion of the pulse before the anode,

z < d − z′ will be subject to a force F = eEgun. This is summarized in Fig. 3.3 and Eq.

3.75.

z’ < d

z’

(a)

-eE
gun

d z zd z’

z’ > d

(b)

eE
gun

Figure 3.3: Effect of stepwise electric field of photoemission gun: (a) z′ < d, (b) z′ > d


Fz = −eEgunẑ for z′ < d, z > d− z′

Fz = eEgunẑ for z′ > d, z < z′ − d.
(3.75)

Following the procedure used to incorporate the lenses and RF cavity, we write Eq. 3.54 as

Kgun
ij =

1

N

∫
du ui ujFz

∂f(u; t)

∂pz
. (3.76)

Inserting the expression for f(u; t) (Eq. 3.15) and performing the derivative, gives

Kgun
ij =

1

N

∫
du ui ujFz

1

ηz

(
pz −

γz
σz
z

)
f(u; t), (3.77)

with u = (x, px, y, py, z, pz). In the previous section we showed how any external force could

be added by simply calculating the elements Kext
11 , Kext

12 , Kext
55 and Kext

56 . In this case it is
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clear that the terms Kgun
11 , Kgun

55 and Kgun
12 vanish, so the only term of interest is

Kgun
56 =

1

N

∫
du z pzFz

1

ηz

(
pz −

γz
σz
z

)
f(u; t) (3.78)

=
1

2π
√
σzη3z

∫
dzdpz z pzFz

(
pz −

γz
σz
z

)
exp

[
− z2

2σz
− [pz − (γz/σz)z]2

2ηz

]
(3.79)

=
1√

2πσz

∫
dz Fz z exp

(
− z2

2σz

)
, (3.80)

where the second line was obtained after integration over x, y, px, py and in the third line we

integrated over pz as well. Now we have two possibilities, if z′ < d, then the force is nonzero

only for z > d− z′ and

Kgun
56 = −eEgun

1√
2πσz

∫ ∞
d−z′

dz z exp

(
− z2

2σz

)
(3.81)

= −eEgun
√
σz
2π

exp

(
−(d− z′)2

2σz

)
. (3.82)

A calculation for z′ > d and z < z′− d gives the same final result. We conclude that exiting

the gun region has the effect of a reduction in the chirp γz of the pulse proportional to
√
σz

multiplied by a spatial profile that decays as exp[−(d− z′)2/(2σz)].

3.1.4 Relativistic transformations

The equations we have written so far describe the electron pulse in its center of mass frame

of reference, while our observations are performed in the laboratory frame of reference. If

the center of mass of the pulse is moving at non-relativistic speeds (v0/c� 1, where v0 is the

magnitude of the COM velocity and c is the speed of light), a simple classical transformation
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can be used:

flab(r,p; t) = f(r− r0 − v0t,p−mv0; t), (3.83)

where r0 and v0 are, respectively, the initial center of mass position and velocity.

The addition of an external constant electric field E can also be handled in a simple way,

since the transformation to the lab frame of the distribution f(r,p; t) simply becomes

flab(r,p; t) = f(r− r0 − v0t,p−mv0 − eEt; t). (3.84)

In the context of typical UEM systems, where the pulse is initially accelerated with

extraction fields ranging from 0.1 MV/m to 100 MV/m, resulting in velocities of the center

of mass in the z-direction (taken parallel to the column axis) that are some fraction of the

speed of light, these transformations are not applicable as it is necessary to take relativistic

effects into account. In the center of mass frame the electrons are not moving relativistically

with respect to each other, so the only modification to the Analytic Gaussian model comes

from the transformations that connect the COM frame to the lab frame of reference.

In general, the transformations from a coordinate frame at rest (F) to a frame moving at

a velocity v (F’) can be easily written if one first defines the rapidity β [70,71] as a function

of the velocity v:

v

c
= tanh β, (3.85)

where we assume v to be parallel to the z-axis. In this case the Lorentz transformations are
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simply written as

z = z′ cosh β + ct′ sinh β, (3.86)

ct = ct′ cosh β + z′ sinh β, (3.87)

where z, t are coordinates in the rest frame (F), while the primed quantities denote variables

in the moving frame (F’). Note that in this notation the Lorentz factor γL = cosh β. For a

generic particle moving at a speed u = c tanhα with respect to the rest frame F, both energy

E and momentum p can be expressed as

E = mc2 coshα, (3.88)

p = mc sinhα, (3.89)

and the transformation of these quantities to the frame F’ moving at a speed v is conveniently

handled due to the additivity of the rapidity, resulting in

v′ = c tanh(α + β), (3.90)

E ′ = mc2 cosh(α + β), (3.91)

p′ = mc sinh(α + β). (3.92)

Now, assuming the electron pulse in our model has been accelerated to a velocity v0 =

(0, 0, v0), where v0/c > 0, and that no external fields are acting on it, the transformation

from the distribution in the COM frame to the lab frame of reference is conveniently given
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by [70]

flab(x, y, z, px, py, pz; t) = f(x′, y′, z′, p′x, p
′
y, p
′
z; t
′), (3.93)

with

v0
c

= tanh β,

x′ = x,

y′ = y,

z′ = z cosh β − ct sinh β,

p′x = px,

p′y = py,

p′z = mc sinh(α− β),

ct′ = ct cosh β − z sinh β,

where α is defined by pz = mc sinhα.

On the other hand for a constant electric field, E0 = (0, 0, Ez), the COM frame accelerates

with respect to the lab frame with an acceleration in the z-direction equal to a = eEz/m

and the transformation between the two coordinate systems now reads

z + z0 = (z′ + z0) cosh [β(t′)] , (3.94)

ct = (z′ + z0) sinh [β(t′)] , (3.95)

where, again, z, t are coordinates in the lab frame while the primed quantities denote vari-
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ables in the pulse COM frame and we have defined

z0 =
c2

a
, (3.96)

β(t′) =
at′

c
. (3.97)

In the limit of zero acceleration, these equations reduce to the transformation previously

written.

Using these equations, it is possible to compute the time evolution of the pulse in its COM

frame of reference using the Analytic Gaussian equations and then transform the resulting

distribution into the lab frame of reference. More importantly, as we are interested in the

pulse parameters σi, γi, and ηi, with i = T or z, we know that they are simply transformed

as

σlabT = σT , (3.98)

σlabz = σz/ cosh β = σz/γ
2
L, (3.99)

γlabT = γT , (3.100)

γlabz = γz, (3.101)

ηlabT = ηT , (3.102)

ηlabz = ηz cosh β = ηzγ
2
L, (3.103)

where β is the rapidity of the COM with respect to the lab frame, γL is the Lorentz factor

and the equations we wrote simply represent the well known length contraction and time

dilation phenomena in relativistic mechanics (note that in our notation σi has units of length

squared and, similarly, ηi is in units of momentum squared).
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In addition to this, it is also necessary to consider the relativistic transformations of the

applied electric and magnetic fields. Taking the fields in the lab frame to be known, E and

B, their transformation to the pulse frame is given by

E′⊥ = γL(E⊥ + v0 ×B), (3.104)

E′z = Ez, (3.105)

B′⊥ = γL(B⊥ −
1

c2
v0 × E), (3.106)

B′z = Bz, (3.107)

where γL is the Lorentz factor, v0 = (0, 0, v0) is the velocity of the pulse center of mass, E

and B are the electric and magnetic fields in the lab frame, and the primed quantities denote

variables in the pulse frame.

In the COM frame the average velocity is equal to zero, so the force acting on the pulse

center of mass is given by F ′ = eE ′. The longitudinal electric field is not modified so we

have that F ′z = eE ′z = eEz = Fz. To consider the effect in the transverse direction, it is

convenient to think in terms of cylindrical coordinates. For a magnetic lens, Bφ 6= 0, E = 0,

so that E ′r = −γLv0Bφ and F ′r = −qγLv0Bφ = γLFr, where Fr = −qv0Bφ is the force in the

lab frame. In our formalism this corresponds to an increase of the lens strength equal to γL.

For an RF cavity, Er 6= 0, Bφ 6= 0 and E ′r = γL(Er − v0Bφ), resulting in a similar effect.

These contributions can be incorporated in our formulation by renormalizing the transverse
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lens and RF cavity strengths in the following way:

M lens
T → γLM

lens
T , (3.108)

M lens
z = 0, (3.109)

M rf
T → γLM

rf
T , (3.110)

M rf
z = M rf

z . (3.111)

The field in the photoemission gun, which is entirely in the z direction, is not affected as

fields parallel to the relativistic motion are not transformed. However, our derivation of the

effect of the gun region resulted in a term ∝ exp [−(dgun − z′)2/(2σi)], where dgun and z′ are

the length of the photoemission gun and the position of the pulse center of mass in the lab

frame. It becomes clear that the width of the pulse appearing in this expression should also

be taken in the lab frame, meaning that we perform the substitution σi → σi/γ
2
L.

For reference we now report the equations governing the Analytic Gaussian model with

the inclusion of the optical elements discussed in the text and the effects of relativistic

motion. Note that the units for the parameters are: σi units of length squared, ηi units of

momentum squared and γi units of action (length x momentum).

dσi
dt

=
2

m
γi, (3.112)

dγi
dt

=
1

m

(
ηi +

γ2i
σi

)
+

1

4πε0

Ne2

6
√
σiπ

Li(ξ) + (M lens
i +M rf

i )σi −M gun
i

√
σi exp

[
−(dgun − z′)2

2σi/γL

]
,

(3.113)

dηi
dt

= −2γiηi
mσi

, (3.114)
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with i = T or z and

ξ =
√
σz/σT , (3.115)

LT (ξ) =
3

2

[
L(ξ) +

ξ2L(ξ)− ξ
1− ξ2

]
, (3.116)

Lz(ξ) =
3ξ2

ξ2 − 1
[ξL(ξ)− 1] , (3.117)

L(ξ) =


arcsin
√

1−ξ2√
1−ξ2

for 0 ≤ ξ ≤ 1

ln(ξ+
√
ξ2−1)√

ξ2−1
for ξ > 1,

(3.118)

M lens
T = γLMT exp

[
−
(
z′ − z′lens
Llens/2

)2n
]
, (3.119)

M lens
z = 0, (3.120)

M rf
T = γLeE0(z

′)

[
2n

d

(
z′ − z′rf
d/2

)2n−1

sin

(
Ωz′

v0
+ φ

)
+

Ωv0
2c2

cos

(
Ωz′

v0
+ φ

)]
, (3.121)

M rf
z = −eE0(z

′)Ω

v0
cos

(
Ωz′

v0
+ φ

)
, (3.122)

E0(z
′) = E0 exp

[
−
(
z′ − z′rf
d/2

)2n
]
, (3.123)

M gun
T = 0, (3.124)

M gun
z = eEgun

1√
2π
. (3.125)

See previous text for further details of the notation used.
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3.2 Methods

The set of equations we have derived (Eqs. 3.112-3.125) describing all the optical elements

in our column, have to be numerically integrated to give the time evolution of the electron

pulse inside the microscope. To do so we developed a program written in Fortran 90 that

performs this numerical integration using a fourth order Runge Kutta method with adaptive

step size control, implemented following the procedure outlined in [72]. Given the positions

and properties of the elements one wishes to use, it is then possible to calculate the beam

size, chirp and momentum spread at the target position.

In order to provide information to guide the development of the electron microscope, an

optimization routine was also implemented to adjust the strengths of the magnetic lenses

and RF cavity in order to focus both the longitudinal and transverse pulse components at the

target and minimize the pulse size at the focal point. This was done using the Levenberg–

Marquardt algorithm [72], a quasi-Newton optimization method which allows to minimize a

given objective function F that depends on a set of parameters p. In our case the components

of p correspond to the RF cavity and magnetic lens strengths and what we want to achieve

is a focal spot in which both the transverse and longitudinal widths have a minimum value.

To do this we choose to use the following objective function

F = c1

(
zmin,z − zmin,T

zmin,z

)2

+ c2

(
σmin,z
σ0,z

)
+ c3

(
σmin,T
σ0,T

)
, (3.126)

where c1, c2, c3 are the relative weights of each term, σmin,z(T ) is the minimum pulse width

squared (following the notation used in our model) and zmin,z(T ) is the corresponding position

in the longitudinal (transverse) direction. σ0,z, and σ0,T are the initial pulse widths.

Given our function F (p) and a set of parameters pi, the Levenberg–Marquardt algorithm
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updates these parameters to minimize F (p) in the following way

pi+1 = pi − (H + λHdiag)
−1 d, (3.127)

where

Hi,j =
∂F (p)

∂pi

∂F (p)

∂pj
, (3.128)

d = F (p)
∂F (p)

∂p
. (3.129)

H is an approximation of the true Hessian matrix obtained by multiplying the first order

derivatives and Hdiag is a matrix formed with the diagonal elements of H. The parameter

λ, which is adjusted throughout the optimization procedure, determines the behavior of the

algorithm: for large λ the above equation approaches the steepest descent method, while

for small λ it approaches the Gauss-Newton algorithm. In practice we adjust λ so that far

from the minimum we use the former, while as we get closer to a minimum of F (p), we

incorporate more of the latter. We stop the minimization routine after performing a certain

number of steps (typically we choose N=3) where the fractional change in F (p) is less than

10−3. Once convergence has been reached, an evaluation of the matrix H gives information

on the covariance of the optimization parameters.

3.3 Results

In this section we present the results obtained using the Analytic Gaussian model and the

code we developed. We start by looking at the time evolution of an electron pulse in a

drift region and compare the Analytic Gaussian results to N particle simulations done using
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the COSY-MLFMM code described in chapter 2. We then proceed to analyze the effect of

each optical element on the electron pulse and then combine them to simulate the whole

microscope column.

3.3.1 Drift

It is clear that our simple mean field Analytic Gaussian model cannot capture the details

of the dynamics of an electron pulse, since it assumes a Gaussian pulse shape at all times

and neglects any nonlinear contributions of the optical elements. Nevertheless, we expect it

to be reasonably accurate in those sections of the column where the higher order electron–

electron correlations and aberrations can be ignored. In particular, since there are long drift

segments between the optical components of the microscope, we want to understand how well

our model performs in describing them. Having observed in our photoemission simulations

that there are two regimes of interest, below and above the virtual cathode (VC) limit, we

compare the predictions of the Analytic Gaussian model in both of these cases by fitting the

pulse profile at the end of the photoemission process (t =120 ps) with the Gaussian profile

in Eq. 3.15 and then calculating the time evolution over a period of 50 ps using both codes.

Below the VC and for a Gaussian laser profile, even though the photoemitted pulse

displays some nonlinear distortions both in the transverse and longitudinal directions, the

Analytic Gaussian model is able to describe the evolution of the pulse phase space (Fig.

3.4) and capture the time evolution of the pulse parameters remarkably well (Fig. 3.5),

with fractional errors less than 1.5 %. The pulse momentum spread is calculated from the

Analytic Gaussian parameters as

σpi = ηi +
γ2i
σi
, (3.130)
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where i = T or z and ηi.
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Figure 3.4: Color map of the charge distribution of an electron bunch below the virtual
cathode limit (Fa=1MV/m, Ne=106, Gaussian laser profile) in the rest frame of the bunch
projected onto the px-x plane [(a), (b)] and pz-z plane [(c),(d)]. Also shown is the time
evolution of the Analytic Gaussian model for the pulse, with the black line indicating the
contour where the intensity drops to 0.5 times its peak value.

Since our photoemission simulations showed that it is advantageous to use an Ellip-

tical transverse laser profile, in Figs. 3.6 and 3.7 we compare the N particle and Ana-

lytic Gaussian simulations with the electron pulse generated using an elliptical laser profile

[I(r) ∝
√

1− (r/R)2]. Our Analytic Gaussian model is able to accurately simulate the

time evolution in this case as well, and in fact, due to the more linear nature of the phase
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Figure 3.5: Time evolution of pulse parameters below the virtual cathode limit (Fa=1MV/m,
Ne=106, Gaussian laser profile) comparing N-particle simulations and the Analytic Gaussian
model. Panel (a) shows the pulse center of mass position, panels (b)-(d) show the transverse
(T) and longitudinal (z) pulse width

√
σi [panel (b)], chirp γi [panel (c)] and momentum

spread
√
σpi [panel (d)].

space, the fractional errors in the parameters are smaller than for the previous case, with all

parameters presenting a difference of less than 1.0 %.

On the other hand, above the virtual cathode limit, the pulse is very strongly nonlinear

(Fig. 3.8) and it is clear that a Gaussian fit of this pulse shape does not reflect its complex

dynamics. The time evolution of the pulse parameters, using a Gaussian laser profile, is

shown in Fig. 3.9. While the spatial width of the pulse is still reasonably captured, with a

fractional error that after 50ps is less than 1%, the momentum distribution is not accurately

described. In the transverse direction the fractional errors for γT and
√
σpT are between

3-4%, while in the longitudinal direction the error is 5-6% at t=50ps. As a result of these,

for longer time simulations, we expect that also the spatial width σi would deviate from the

N-particle prediction. Similar results hold for the Elliptical laser profile.
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Figure 3.6: Color map of the charge distribution of an electron bunch below the virtual
cathode limit (Fa=1MV/m, Ne=106, Elliptical laser profile) in the rest frame of the bunch
projected onto the px-x plane [(a), (b)] and pz-z plane [(c),(d)]. Also shown is the time
evolution of the Analytic Gaussian model for the pulse, with the black line indicating the
contour where the intensity drops to 0.5 times its peak value.

From these results we conclude that below the virtual cathode limit, the Analytic Gaus-

sian is indeed able to describe the evolution of the pulse with a high degree of fidelity even

though the N-particle distribution is not truly Gaussian. Above the VC limit, on the other

hand, this approximation breaks down and major differences start showing already after

50ps.
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Figure 3.7: Time evolution of pulse parameters below the virtual cathode limit (Fa=1MV/m,
Ne=106, Elliptical laser profile) comparing N-particle simulations and the Analytic Gaussian
model. Panel (a) shows the pulse center of mass position, panels (b)-(d) show the transverse
(T) and longitudinal (z) pulse width

√
σi [panel (b)], chirp γi [panel (c)] and momentum

spread
√
σpi [panel (d)].

3.3.2 Photoemission gun

Next we turn our attention to the various elements that compose the microscope, starting

from the effect that crossing the anode plane of the photoemission gun, corresponding to

the end of the extraction field, has on the pulse properties. We consider varying numbers of

electrons below the virtual cathode limit, which from our previous photoemission simulations

we estimate to be about Ne = 1.5 · 107 for Fa=1MV/m. As the transverse components are

not directly affected by this so-called acceleration gap, we focus on the longitudinal pulse

parameters in Fig. 3.10. The slower electrons in the tail of the pulse spend more time in

the acceleration region and are accelerated more, resulting in a reduction of the pulse chirp,

as seen in the Figure. This effect is seen to be more step-like for lower number of electrons

(Ne = 105) due to the smaller pulse size σz compared to the Ne = 107 case.
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Figure 3.8: Color map of the charge distribution of an electron bunch above the virtual
cathode limit (Fa=1MV/m, Ne=108, Gaussian laser profile) in the rest frame of the bunch
projected onto the px-x plane [(a), (b)] and pz-z plane [(c),(d)]. Also shown is the time
evolution of the Analytic Gaussian model for the pulse, with the black line indicating the
contour where the intensity drops to 0.5 times its peak value.

3.3.3 Lens

We now analyze the treatment of magnetic lenses with the Analytic Gaussian model. Each

lens is described by three parameters: the strength M0, the spatial width Llens, and an order

parameter n (n = 1 corresponds to a Gaussian profile). Given the magnetic field data for

the lenses used in the microscope, we use Eq. 3.119 with γL = 1 to perform a fit and obtain

the following values: n = 1 and Llens = 2.157mm. M0, proportional to the current in the
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Figure 3.9: Time evolution of pulse parameters above the virtual cathode limit (Fa=1MV/m,
Ne=108, Gaussian laser profile) comparing N-particle simulations and the Analytic Gaussian
model. Panel (a) shows the pulse center of mass position, panels (b)-(d) show the transverse
(T) and longitudinal (z) pulse width

√
σi [panel (b)], chirp γi [panel (c)] and momentum

spread
√
σpi [panel (d)].

magnetic lens, is left as a variable to adjust the focal length, as shown in Fig. 3.11 where

we plot the variation of the transverse pulse parameters due to a lens at z=45mm. In our

derivation, the lens affects dγT/dt directly with a term proportional to M0σT , which is seen

in the change of γT in Fig. 3.11(c). The reduction in γT results in a focusing of σT due to

the coupling between the parameters and, since the emittance ε =
√
σiηi, is conserved in our

model, this results in a defocusing of ηT . As the strength of the lens is decreased, the focal

distance increases and so does the pulse size at the focal point.

For a given lens, for which we take M0 = 5, the focusing power depends on the number of

electrons and the emittance of the pulse. Given the same initial conditions [Fig. 3.12(a)], the

higher the number of electrons, the harder it is to focus the pulse. In our data this is seen in

the increased focal length and spot size at the focal point in the case of the Ne = 107 pulse.
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Figure 3.10: Longitudinal pulse parameters as a function of distance along the microscope
column for Fa=1MV/m, as the pulse crosses the anode plane (at z=45mm, indicated with
dashed line). Panel (a) shows the center of mass velocity as a fraction of the speed of light c,
while panels (b)-(d) show the variation of the longitudinal (z) pulse width

√
σz [panel (b)],

chirp γz/γ0, where γ0 is the initial chirp [panel (c)] and local momentum variance
√
ηz [panel

(d)].

On the other hand, from our study of the photoemission process, we know that increasing

the number of electrons emitted results also in an increase in the pulse emittance. Therefore,

using the data from our photoemission simulations as the initial condition corresponds to

different initial values of the pulse emittance as Ne is varied. In our model pulses with a

higher emittance are focused more easily and to a smaller spot size than those with a lower

emittance, since focusing can be achieved at the expense of increasing the momentum spread

ηi. This results in pulses with a higher Ne, which have a higher emittance, being focused

better that those with lower Ne, as seen in Fig. 3.12(b), which shows that the focal length

of the lens is approximately the same for all the pulses considered with the Ne = 107 pulse
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Figure 3.11: (a) Fractional lens strength M(z)/M0 as a function of position. (b)-(d) Trans-
verse pulse parameters as a function of distance along the microscope column for Ne=106,
with a magnetic lens of varying strength M0 at z=45mm (indicated with a dashed line).
Shown are the transverse (T) pulse width

√
σT [panel (b)], chirp γz/γ0 [panel (c)] and local

momentum variance
√
ηz [panel (d)].

displaying a smaller size at the focal spot than the other two.

These results lead to two observations: first they highlight the importance of correctly

simulating the photoemission process. The previous works using the Analytic Gaussian

model [37–39] did not consider the details of how the electrons are emitted and assumed

that the initial conditions would be the same regardless of the number of electrons in the

pulse. We have shown here how this is not the case and that varying the initial emittance

changes the focusing obtained in this model.

Our second consideration is about the limits of the Analytic Gaussian model, since so

far we have assumed that the lenses used are linear regardless of focusing strength and pulse
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Figure 3.12: Transverse (T) pulse width
√
σT as a function of distance along the microscope

column with a magnetic lens (M0 = 5) at z=45mm (indicated with a dashed line) for varying
numbers of electrons in the pulse. (a) Effect of lens given the same initial conditions. (b)
Effect of lens using the initial conditions from the photoemission simulations.

size. This approximation is only valid in the limit where the pulse size is much smaller

than the lens diameter. Checking the magnetic field calculated for the actual lens in the

microscope, we see that it retains a mostly Gaussian shape for r . 0.8mm, meaning that

for values of
√

2σT greater than this, or
√
σT > 0.57mm, this approximation is not correct.

Comparing this value to the data shown in Fig. 3.12 shows that the width of the Ne = 107

pulse is well above this value before the lens, so that in a real system it would not be

focused to such a tight spot as our model predicts. To improve this, in principle, one could

include spherical aberrations in the Analytic Gaussian model by adding nonlinear external

forces, but it would disregard the mean field approach inherent in its derivation and cause

pulse breakup. In practice this means that while the AG model can give an estimate of the

properties of the column, these should be seen as best-case estimates and one should use

other simulation tools to capture the details of the dynamics, specially as the number of

electrons in each pulse is increased.
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3.3.4 RF cavity

The last element to analyze in our column is the RF cavity, which is used to focus the pulse

in the longitudinal direction at the expense of a defocusing of the transverse components,

as seen in Figure 3.13. The parameters used for the RF cavity in our simulations are n =2,

Lrf =22.5mm, Ω = 2π· 1.013GHz and Erf =1.0-2.4MV/m, matching the parameters of the

cavity used in the actual microscope. In order to focus the pulse, the time dependent field

in the RF cavity needs to be zero when the center of mass of the pulse is at the center of the

cavity, so that the tail of the pulse is accelerated and the front is decelerated, with no net

change of the COM velocity [see Fig. 3.13(a)]. To do this it is necessary to match the phase

of the RF cavity with the time it takes the electron pulse to reach the center of the cavity,

which is not trivial to do in practice in a real microscope. Also, in addition to this, the time

of flight of the pulse through the cavity should be at most half of the oscillation period, to

prevent unwanted defocusing due to the oscillating field in the cavity. This sets a limit on

the maximum longitudinal pulse size that a cavity at a given frequency can compress, which

for our cavity and 100keV electrons can be estimated to be
√
σz . 20mm.

As seen in the discussion on the magnetic lenses, the increased Coulomb repulsion present

in pulses with higher numbers of electrons, makes them harder to focus and this is true also

in the longitudinal direction (Fig. 3.14), resulting in a larger spot size at the focal point for

increasing Ne.

3.3.5 Column

So far we have discussed the optical elements individually, now we combine them to model

the proposed design for the Ultrafast Electron Microscope under development in our group.
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Figure 3.13: Pulse parameters as a function of distance along the microscope column for
Ne=106 with an RF cavity centered at z=45mm (indicated by the vertical dashed line) for
different RF field strengths. (a) Center of mass velocity as a fraction of speed of light c and
electric field as a fraction of the peak value E0. (b)-(d) Transverse (T) and longitudinal (z)
pulse width

√
σi [panel (b)], chirp γi/γ0 [panel (c)] and local momentum variance

√
ηi [panel

(d)]. The continuous (dashed) lines indicate the longitudinal (transverse) components and
the colors correspond, respectively, to Erf = 2.4MV/m (black) and Erf = 1.0MV/m (red).

The positions and properties of the photoemission gun, magnetic lenses and RF cavity used

in the microscope are summarized in Table 3.1. The strengths of the lenses and of the electric

field in the RF cavity were used as variables in the optimization routine to control the focal

point position and spot size. The initial pulse parameters (number of electrons, center of

mass velocity and Analytic Gaussian parameters) were extracted from our simulations of the

photoemission process discussed in the previous chapter.

Results for the column optimized for Ne = 106 electrons generated with a Gaussian laser

pulse are shown in Fig. 3.15, where we plot the longitudinal and transverse pulse width
√
σi,
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Figure 3.14: (a) Transverse pulse width
√
σT and (b) longitudinal pulse width

√
σz as a

function of distance along the microscope column for varying Ne, with an RF cavity centered
at z=45mm (indicated by the vertical dashed line) with Erf=2.4MV/m.

Photoemission gun
Extraction field 2.2MV/m
Cathode position z=0mm
Anode position z=45mm
Magnetic lenses n=1, Llens=2.157mm
Lens 1 z=70.2mm
Lens 2 z=360.0mm
Lens 3 z=1066.0mm
RF cavity n=2, Lrf=22.5mm
Ω/ 2π = 1.013GHz z=640.8mm
Sample z=1080.5 ± 25.4 mm

Table 3.1: Parameters used in the simulation of the UEM system using the Analytic Gaussian
model.

chirp γi and local momentum variance
√
ηi as a function of position along the microscope.

The focal point is at 1088.62mm, with pulse size
√
σT = 0.92µm and

√
σz = 2.27µm. Due

to the strength of the lens used to focus the pulse, for positions close to the focal point, the

transverse width diverges rapidly so accurate positioning of the sample at the focal spot is

crucial for good spatial resolution. The divergence of the longitudinal component is much

less severe.

We perform a similar optimization varying the number of electrons in the pulse and the
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Figure 3.15: Longitudinal (black) and transverse (dashed red) pulse parameters as a func-
tion of distance along the microscope column for Ne=106. Shown are the (a) pulse width√
σi, (b) chirp γi and (c) local momentum variance

√
ηi. The region corresponding to the

photoemission gun is shown in blue, while that corresponding to the RF cavity is in green.
The dashed lines correspond to the magnetic lenses.

transverse profile of the photoemitting laser and summarize our results in Fig. 3.16 and

Table 3.2. We see that in our model the position of the focal spot is relatively insensitive to

the charge in the pulse. The longitudinal width
√
σz and the corresponding time resolution,

defined as δt = 2
√

2σz/v0, are increased from 0.76µm (δt=13fs) for the 105 Gaussian electron

pulse to 17µm (δt=288fs) for the Gaussian pulse with 107 electrons. The transverse pulse

sizes are comparable for all the simulations reported using a Gaussian laser profile but, as
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discussed in section 3.3.3, this is a result of neglecting aberrations which would certainly

play a role as the width of the pulse is increased. Using an elliptical laser profile to generate

the electron pulse offers some advantages in terms of a decreased transverse emittance,

which leads to a focal spot size that is half of what is predicted for the Gaussian case. In

the longitudinal direction the laser profile plays a less significant role, and the temporal

resolution is comparable to that obtained with a Gaussian laser.
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Figure 3.16: Detail of the transverse and longitudinal pulse widths in the optimized column
around the focal spot for a Gaussian laser pulse with (a) Ne = 105, (b) Ne = 106 and (c)
Ne = 107 electrons and (d) for an elliptical laser pulse with Ne = 106 electrons.

In conclusion, we have derived a mean field formalism to simulate the propagation of
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zfocus
√
σT

√
σz δt

(mm) (µm) (µm) (fs)
Gaussian - Ne = 105 1088.54 0.98 0.76 13.1
Gaussian - Ne = 106 1088.62 0.92 2.27 39.2
Gaussian - Ne = 107 1088.57 0.95 16.6 288
Elliptical - Ne = 106 1088.61 0.46 2.37 41.1

Table 3.2: Focal spot position and corresponding pulse width for varying number of electrons
Ne and transverse photoexciting laser profile.

an electron pulse through a microscope column with different optical elements. By com-

paring the time evolution of the pulse described with the Analytic Gaussian model to our

N-particle simulations, we have shown good agreement for extraction conditions under the

virtual cathode limit. Following a discussion of the effects of the different optical elements

composing the microscope column, we have built a model to describe our UEM system and

given quantitative predictions of the achievable spatial and temporal resolutions. Given the

limitations of the Analytic Gaussian model, these predictions should be viewed as best case

results, since aberrations and deviations of the pulse from the assumed self similar Gaussian

profile were neglected. Nevertheless, due to the simplicity of the model and the resulting

ease of computation, we believe these results can offer a valuable tool in understanding the

achievable resolution in UEM systems and allow one to search optimal configurations over a

vast range of parameters. Other simulation tools (such as the COSY-MLFMM code) could

then be used to analyze the most promising configurations in more detail.
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Chapter 4

Microscopic origin of the properties of

TaS2

The final part of this work will focus on an example of a material, Tantalum Disulphide

(TaS2), that can be studied with the Ultrafast Electron Microscope described in the previous

chapters. To do this, we first give a brief introduction to correlated electron systems with an

emphasis on Charge Density Wave (CDW) insulators, followed by a survey of the existing

experimental and theoretical results on TaS2. We then proceed to illustrate the simulation

methods used and conclude with a discussion of the results.

4.1 Physics of correlated electron systems

Materials with partially filled d- and f-orbitals have received considerable interest over the

last decades due to the challenges they present. The localized nature of these orbitals can

lead to the opening of a gap in the ground state in systems that would otherwise be metallic.

Moreover, varying the temperature (or other macroscopic parameters such as pressure or
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doping), can lead to a transition from the insulating to the metallic state with a change in

resistivity of several orders of magnitude. Over the last 30 years explaining these interesting

features has been a major challenge to theory and experiment alike and has led to the

development of many novel techniques (for an introduction to the subject see [73] and [27]

and references therein).

The unusual behaviors seen in these so-called correlated electron systems represent a

many-body problem that arises from the interaction of electronic and structural degrees of

freedom. Based on the driving mechanism of gap opening, it is possible to define three

categories of insulators (Fig. 4.1). The first category is the so-called Mott insulator, in

which the electron-electron Coulomb repulsion drives a gap opening at the Fermi energy EF

and leads to localization of the valence electrons on the atomic sites. The second type of

insulator is the excitonic insulator, resulting from unscreened electron-hole interactions.

In these materials a Charge Density Wave (CDW) is formed together with a small distortion

of the lattice that is caused by a finite electron-phonon coupling. Due to an avoided crossing

of valence and conduction bands, a gap opens at EF that stabilizes this distortion. The

third type of insulating behavior is the result of electron-phonon interactions and is called

the Peierls insulator. In this case a gap opens as a result of the simultaneous formation

of a CDW and a periodic lattice distortion with a wavelength that is determined by the

periodicity of the Fermi surface. The energy of the occupied levels is lowered by an amount

that is greater than the Coulomb repulsion resulting from the distortion.

The term Charge Density Wave introduced here indicates a periodic modulation of the

ground state electron density. This phenomenon was first described by Peierls in 1955

[74] when he noted that a one dimensional metal is not stable at low temperature. A

periodic modulation of the charge density, accompanied by a periodic lattice distortion due
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Figure 4.1: Three classes of insulators and their respective characteristic response times. (a)
Mott insulator (b) Excitonic insulator (c) Peierls insulator. In each case the gray shading
and dashed lines indicate the metallic state and the solid lines and colored shading show the
resulting insulating state both in real and momentum space. (d) Timescales corresponding
to probing these processes with a pump-probe experiment. [27]

to electron-phonon interactions, leads to an insulating ground state with an energy that is

lower than that of the metallic state. The size of the insulating gap depends on the amplitude

of the lattice distortion, while the filling of the levels in the system determines the periodicity.

For more details on CDW formation, we refer the reader to the classic text by Gruner [75].

Of course real materials present competing electron-electron and electron-phonon interac-

tions and thus rarely fit in a single one of the categories described above. However, as shown

in the cartoon of Fig. 4.1(d), these interactions can be separated based on the temporal

response of the system to perturbation with a pump pulse. Electron hopping processes are

typically very fast and act on timescales of τ <10fs. The buildup of charge screening that

results in the formation of excitonic behavior is a slower process characterized by time con-

stants τ =10-100fs. The excitation of phonon modes leading to charge oscillations requires a

transfer of energy from the excited electrons to the lattice and therefore takes place at later

times, with τ >100fs. Based on this separation of time scales, pump-probe measurements

have become a key technique to investigate these systems, as measuring the relaxation of
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the system to equilibrium after perturbation with the pump pulse allows decoupling of these

degrees of freedom.

4.2 Structural and electronic properties of TaS2

For the present work we chose to investigate Tantalum Disulphide as this material is thought

to be a combined Mott-Peierls insulator exhibiting strong electronic localization, CDW for-

mation and lattice distortion. TaS2 is a member of the transition metal dichalcogenides

group and presents a 2 dimensional layered structure, as seen in Fig. 4.2, with weak Van

der Waals interactions between the layers and covalent bonds between atoms in the same

layer [76,77]. The stacking of the layers is thought to be disordered [78–80]. The charge den-

sity wave distortion leads to the formation of a commensurate superlattice of size
√

13x
√

13

and rotated by 13.9◦ with respect to the original 1x1 unit cell for temperatures T <180 K [81].

In this “Star of David” arrangement, shown in Fig. 4.3, we can distinguish three types of

inequivalent atoms: one central atom which is not shifted with respect to the original lat-

tice (site a), its six nearest (b sites) and next-nearest neighbors (c sites) which undergo a

contraction towards the central atom forming the clusters drawn in the figure. This in-plane

displacement is accompanied by an out-of-the-plane swelling of the sulfur layers [1].

The CDW distortion alone is not sufficient to fully open a gap in TaS2, as only twelve of

the thirteen electrons of the reconstructed cell occupy levels below the distortion-generated

gap. Since Angle Resolved Photoemission Spectroscopy (ARPES) results [81–85] and resis-

tivity data [83,86] show this material to be an insulator, some further interaction is needed to

explain these results. Conventionally it is thought that a gap opens as a consequence of the

splitting of the band corresponding to the thirteenth electron, localized on the central atom,
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into upper and lower Hubbard bands due to Coulomb repulsion leading to the development

of a Mott insulating state [28]. This explanation for the origin of the gap is not entirely

convincing as some photoelectron spectroscopy (PES) investigations [87], tight-binding [81]

and DFT calculations [1,88,89] show that the system retains a finite density of states at the

Fermi energy. An alternative explanation suggests that the existence of a gap could be due

to Anderson localization caused by disorder [89]. The origin and nature of this insulating

gap is one of the topics that will be investigated in the present work.

Figure 4.2: TaS2 structure corresponding to the primitive unit cell (undistorted metallic
phase): (a) 3D view, (b) Top view and (c) Side view. Ta atoms are drawn in blue, S atoms
in red. The black lines delimit the primitive 1x1 unit cell.

Increasing the temperature leads to breaking of the commensurate CDW (C-CDW) and

the insulating state, and between T = 190K and T = 350K the system exhibits a nearly

commensurate CDW (NC-CDW) corresponding to a temperature dependent rotation of

the CDW vector from the commensurate value of 13.9◦ to about 11◦ and a simultaneous

formation of domains [77,90,91] with a size inversely dependent on temperature. For 350K <

T < 550K, we find an incommensurate CDW (IC-CDW) in which the CDW vector is aligned

with the underlying lattice and no domain structure is visible. For T > 550K the system

92



Figure 4.3: Positions of the Ta atoms corresponding to the reconstructed “Star of David”
arrangement in a 2x2 unit cell. The undistorted positions are shown in yellow, while the
reconstructed lattice and bonds resulting from the contraction associated with CDW forma-
tion are drawn in blue. The labels correspond to the three inequivalent atom types of the
distorted cell.

becomes metallic and reverts to a monoclinic undistorted lattice. Figure 4.4 shows resistivity

as a function of temperature and permits a clear identification of the phases discussed. Also

shown is the trigonal phase obtained upon heating between T = 200K and T = 280K [77].

Figure 4.4: Resistivity as a function of temperature in 1T-TaS2. The phases shown are: C-
CDW below 190K, NC-CDW below 350K, IC-CDW below 550K and metallic for T>550K.
Also shown is the trigonal phase present during the heating cycle between 200-280K. [28]
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Both pressure [28,92,93] and doping [94] can be used to modify the boundaries between

these phases and even induce the formation of a superconducting state. How this phase is

formed and whether it coexists with the CDW in real space or in reciprocal space is still an

unanswered question in the field and is outside of the scope of the present work.

As we have seen, experimental techniques that probe out of equilibrium conditions, such

as pump-probe measurements, can untangle the different timescales involved in the inter-

actions between electronic and phononic degrees of freedom and offer an excellent tool to

better understand the complex phase diagram present in TaS2. By performing time resolved

ARPES measurements, Perfetti et al. [95, 96] showed the ultrafast collapse of the electronic

gap after photoexcitation due to the creation of a hot electron distribution, and its succes-

sive revival after 680 fs. The nuclear and phononic degrees of freedom, acting on longer time

scales due to the coupling to the electronic ones, lead to periodic oscillations of the system

at long times (t>1-2ps) due to excited phonon modes. A qualitative explanation of these

results using a single band Hubbard model in the context of DFT+DMFT was advanced by

Freericks et al. [97], but several discrepancies such as a strongly insulating behavior absent

in the experiments, limit the applicability of these results.

More recently, time resolved x-ray photoemission spectroscopy (TR-XPS) has been used

to probe the melting of the CDW at specific atomic sites [27,86] and the transition from C-

CDW to NC-CDW. The authors find an initial ultrafast subpicosecond reduction of the CDW

peak and its successive partial recovery with a time constant of∼900 fs. This seems to suggest

that the system relaxes into a state with an inhomogeneous distribution of undistorted

(metallic) islands inserted into a CDW background, instead of recovering the superstructure

network typical of the equilibrium NC-CDW.

Recent experiments were also conducted by Prof. Ruan’s group at Michigan State (cur-

94



rently unpublished) to understand the laser fluence and wavelength dependence of the tran-

sition from NC-CDW to IC-CDW in TaS2. By measuring both the CDW peak amplitude

and rotation angle, they observe a transition dependent on the incident photon density,

rather than on energy density as would be expected. This suggests that the transition is not

thermodynamically driven but rather driven by a direct distortion of the CDW.

4.3 Methods

To better understand the ground and excited state properties of TaS2, we performed ab-initio

Density Functional Theory (DFT) calculations of the electronic and phononic structure both

in the commensurate CDW phase and in the undistorted metallic phase using the Vienna Ab-

initio Simulation Package (VASP) [98–101]. A description of the basic equations governing

the DFT theory is given in appendix 5. For the calculations presented in the rest of this

chapter, the GGA-PBE [102] exchange correlation functional was used and plane waves with

the projector augmented wave method [103] were used as the basis set.

The lattice constants and atom positions for the undistorted metallic phase (1 Ta atom

and 2 S atoms in the unit cell) were taken from Spijkerman et al. [90]. The
√

13x
√

13 C-

CDW supercell (13 Ta atoms and 26 S atoms) with a 13.9◦ rotation was then built from

this primitive unit cell using the bond contractions reported by Smith et al. [81]. For each

structure, the first step was to determine the appropriate energy cutoff and k-point mesh

such that the total (ground state) energy was converged to 1meV/atom. The results of these

checks are show in Fig. 4.5 for the undistorted cell and in Fig. 4.6 for the C-CDW supercell.

Based on this data, we choose to use an 11x11x6 mesh with an energy cutoff Ecut = 300eV

for the metallic system and, for the C-CDW system, a 4x4x8 mesh with Ecut = 350eV.
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Figure 4.5: Convergence of the ground state energy for the metallic phase as a function of
energy cutoff and k point mesh size. The dashed lines correspond to the acceptable range of
values that gives a precision of 1meV/atom. Note that due to the size of the reciprocal unit
cell, the Nth k-point mesh corresponds to a mesh of size N in the kx and ky directions and
N/2 in the kz direction.
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Figure 4.6: Convergence of the ground state energy for the distorted phase as a function of
energy cutoff and k point mesh size for varying energy cutoff. The dashed lines correspond
to the acceptable range of values that gives a precision of 1meV/atom. Note that due to the
size of the reciprocal unit cell, the Nth k-point mesh corresponds to a mesh of size N in the
kx and ky directions and 2 ·N in the kz direction.

Next, the positions of the atoms in the C-CDW structure were relaxed by performing

self consistent DFT runs with a force calculation. The conjugate gradient algorithm was

first used to relax the structure until the force on each atom was less than 0.1eV/Å and

the total and band structure energy changes between steps in the self-consistent electronic
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loop were less than 10−2eV. This was followed by a more stringent run in which a residual

minimization scheme - direct inversion in the iterative subspace (RMM-DIIS) algorithm [104]

was used to relax the forces to less than 0.01eV/Å, with total and band structure energy

changes ∆E < 10−5eV. The size of the unit cell in all three dimensions was allowed to

vary in addition to the atomic positions. To get accurate values for the stress tensor used to

calculate the forces on the atoms, it is necessary to increase the energy cutoff when performing

structural relaxations, so a cutoff equal to 1.3 ·Ecut was used, following the recommendation

in the VASP documentation. The optimized unit cell with the respective atomic positions

was then used in all the following calculations.

To simulate the metallic state originating from pumping with an ultrafast laser, the

optimized unit cell for this phase was built using the lattice constants obtained from relaxing

the C-CDW structure, with the atoms restored to the initial high symmetry positions. Using

the symmetry present in the system, the unit cell of the metallic phase can be reduced to a

cell with 1 Ta atom and 2 S atoms.

For both the metallic and the C-CDW phase, we calculated the band structure and the

density of states (DOS); for the latter a denser k-point mesh was used equal to, respectively,

21x21x11 (metallic phase) and 8x8x16 (C-CDW phase). The effects of the spin-orbit cou-

pling were also investigated, as previous results from a tight-binding calculation [88] suggest

that they play an important role in TaS2. To see whether a Mott gap would open in the

C-CDW phase, DFT+U [105] was used with varying values of on-site Hubbard interaction,

U = 0− 5eV. Phonon spectra for both the metallic and C-CDW phases were also calculated

using density functional perturbation theory [106] in VASP and the results were post pro-

cessed using the program Phonopy; for the metallic phase a 3x3x3 unit cell was used in this

calculation with phonon wave vectors sampled on a 12x12x6 mesh. For the C-CDW phase
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we used a 1x1x1 unit cell and an 8x8x16 mesh. Finally, to investigate the optical absorption

of these materials, we computed the real and imaginary parts of the dielectric constants in

the independent particle approximation [107].

4.4 Ground state of TaS2

We begin by presenting our efforts in understanding the ground state of TaS2 and the origin

of the gap that is seen in the experimental data. To do so we calculate the band structure and

density of states and investigate whether spin orbit coupling or Hubbard splitting could lead

to an insulating state in this material. Following this, we will discuss the role of phonons in

thermalizing the hot electron distribution generated by the pump laser used in experiments

and conclude with a brief discussion of the optical properties of TaS2.

4.4.1 Band structure and DOS

After performing the relaxation of the structural parameters (unit cell vectors and atomic

positions) for the unit cell corresponding to the C-CDW phase, as described in the previous

section, we find the atomic ground state configuration shown in Fig. 4.7, with lattice param-

eters indicated in Table 4.1. As expected, we observe a buckling of the S layers both above

and below the Ta atomic plane with a variation in height of the S atoms equal to ∆z = 0.2 Å.

The lattice parameters obtained show good agreement with experimental data, with a and b

showing a 0.5 % difference from the experimental value. The vertical c axis is elongated by

about 13% compared to the experimental result due to the weak Van der Waals interactions

between the layers that is underestimated by DFT. The first Brillouin zone corresponding

to the C-CDW tetragonal unit cell is shown in Fig. 4.8, with the high symmetry points that
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will be discussed in the following text labeled.

Figure 4.7: Top (a) and side (b) views of the relaxed C-CDW structure, with the black line
indicating the boundary of the unit cell. Ta atoms are drawn in blue, while S atoms are in
red.

Theory Exp
a (Å) 12.192 12.129

b (Å) 12.192 12.129

c (Å) 6.677 5.889

Table 4.1: Theoretical and experimental (from [1]) values for the parameters of the C-CDW
unit cell

Figure 4.8: First Brillouin zone corresponding to the C-CDW TaS2 unit cell. The labels
represent the conventional high symmetry points. [29]

Our calculated band structure and density of states (DOS) are reported in Fig. 4.9

and agree with similar data previously published in the literature [1]. The uppermost half
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occupied band shows a weak dispersion in plane (Γ-M-K-Γ), being localized at energies of

about −0.1 eV and a strong dispersion in the out of plane direction (A-Γ, Γ-L, H-Γ) that

results in a crossing of the Fermi energy at positions close to the Γ point. This band is

mostly due to the Ta dz2 orbitals. Below this, at energies −0.2 eV to −1.0 eV, we find the

six sub-bands corresponding to the remaining d orbitals. These bands are somewhat close

at the Γ point (−0.3 eV to −0.5 eV) but elsewhere display a large spread in energies. The

DOS plot shows the presence of states at the Fermi energy, mostly due to the dz2 band on

the central Ta atom, so that the system is not fully gapped.
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Figure 4.9: Band structure along high symmetry lines and density of states for the C-CDW
phase. The contribution to the DOS due to the Ta d orbitals and that due to only the dz2
is also plotted.

In contrast the band structure displayed by the metallic case, Fig. 4.10, has an uppermost

band which is localized in the vertical A-Γ direction and strongly dispersive along the other

directions considered. From this we can deduce that the CDW distortion acts in localizing

the dz2 orbital corresponding to the central Ta atom in plane with the swelling of the S

planes caused by the consequent delocalization in the vertical direction. The DOS plot for

the metallic phase shows that the density at the Fermi level includes a significant contribution
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due to the d orbitals which, unlike what seen in the C-CDW phase, is not fully originated

by the dz2 orbital.
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Figure 4.10: Band structure along high symmetry lines and density of states for the metallic
phase. The contribution to the DOS due to the Ta d orbitals and that due to only the dz2
is also plotted.

Comparing the ground state energies (Table 4.2), we see that the distorted C-CDW is

indeed more stable at low temperatures compared to the metallic phase and that, even

though it is not completely gapped, the density of states at the Fermi energy is reduced

fivefold.

C-CDW Metallic
E0 (eV/TaS2) -23.190 -23.145

n(EF ) (states/eV/TaS2) 0.290 1.475

Table 4.2: Ground state energy E0 and density of states at the Fermi energy n(EF ) in the
C-CDW and metallic phases.

4.4.2 Role of spin-orbit coupling

Having investigated the ground states of the metallic and C-CDW phases, we now turn our

attention to the effect of the spin orbit coupling on the energy levels of TaS2. A previous 2D
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tight binding calculation [88] suggested that this coupling could split the band corresponding

to the dxy, dx2−y2 orbitals on the centralized atom, generating a narrow band of states at

the Fermi level. DFT calculations on TaS2 were performed in the presence of spin-orbit

coupling [97] but its role on the band structure and density of states was not fully explored.

Figure 4.11 presents our results for the C-CDW phase both with and without spin orbit

coupling. Bands below EF (doubly occupied) and those above EF (unoccupied) are slightly

perturbed by introducing this coupling, while the upper half filled band is relatively insensi-

tive to it. The density of states also shows a slight perturbation as a result but no significant

changes are observed. To better understand the effect of the spin orbit coupling, we focus

on the density of states around EF in Fig. 4.12. The atom projected densities [panel (a)]

confirm our previous observation that the DOS at the Fermi level is mainly localized on the

central Ta atom (a-site - see Fig. 4.3). This remains the case even with the introduction

of the SO-coupling, and its main effect is seen in a shift the first peak in the density above

EF from 0.2 eV to 0.25 eV. The orbital character of the density of states [panel (b)] shows

that at EF the states are still mostly of dz2 character. We conclude that the splitting of the

antibonding dx2−y2 and dxy bands seen in the 2D tight binding calculations is suppressed in

3 dimensions, where the uppermost band retains its dz2 character with a strong out of plane

dispersion.

We also report the band structure and DOS for the metallic case in the presence of SO-

coupling in Fig. 4.13. In this case, in agreement with the previous calculation by Rossnagel

et al. [88], the SO-coupling is seen to lift the degeneracy of the dz2 and dxy, dx2−y2 at the Γ

point and induce an energy splitting of 0.3 eV.
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Figure 4.12: Detail of the density of states for the C-CDW phase both with (continuous
lines) and without (dashed lines) spin orbit coupling. (a) Atom projected densities. (b)
Orbital projected densities.

4.4.3 Role of Hubbard repulsion

Since spin orbit coupling acts as a perturbation and does not play a significant role in

determining the ground state properties of TaS2, we now turn our attention to understanding

the effect that an on-site Hubbard repulsion has on the ground state of the C-CDW phase
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Figure 4.13: Band structure along high symmetry lines and density of states for the metallic
phase both with (black) and without (red) spin orbit coupling.

and whether there is evidence of a Mott gap opening. The results for varying values of the

electron-electron interaction U are plotted in Fig. 4.14. The first thing we observe is that

there is no evidence of a gap opening even at the highest value of U considered (U=5 eV).

While this is in agreement with the data presented in a preprint by Darancet et al. [89],

previous DFT+DMFT calculations [96, 108, 109] showed a gap opening by using a single

band Hubbard model. The origin of the discrepancy it most likely due to the simplified

model used in these papers that neglects the effect of the neighboring occupied d orbitals

and of the coupling to any unoccupied states.

4.4.4 Role of stacking disorder

Since we do not see evidence of the formation of a Mott gap due to Hubbard repulsion,

our results suggests that TaS2 is an in-plane insulator but presents metallic states in the

out of plane direction and that the experimentally seen gap is originated in the disordered

stacking sequence present in this material. We now proceed to test this hypothesis by using
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Figure 4.14: Band structure along high symmetry lines and density of states for the C-CDW
phase in the DFT+U approximation with varying values of the on-site electron-electron
interaction U

the stacking sequence for TaS2 proposed in [80], in which the authors find good agreement

with the structure factor calculated from the X-ray data in [78, 79] and suggest that the

stacking is of type ACiACj..., where A indicates stacking of layers with the central a-type

atoms lying on top of each other, while Ci indicates configurations where the central a-type

atom lies on top of a c-type atom (see Fig. 4.3 for the definition of a and c sites). There

are six possible Ci type stackings due to the six c atoms present in each unit cell and in the

discussion that follows we will collectively indicate them simply as C stacking. The order in

which these C stacking units repeat is random.

As density functional theory calculations scale approximately as O(N3), where N is the

number of atoms in the system, we are limited in how many layers we can consider. Therefore

we limit ourselves to the three cases: systems with A stacking (which is what we have used

in the calculations presented so far and corresponds to a configuration with no disorder), C

stacking and AC stacking; the unit cells used for each system are shown in Fig. 4.15. Note

that we use periodic boundary conditions in all three directions, which is the reason for using

4 layers in the unit cell for the AC stacking configuration.
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Figure 4.15: Units cells for the stacking sequences considered: (a) A stacking, (b) C stacking
and (c) AC stacking.

For each stacking configuration we calculate the band structure and density of states and

present our results in Fig. 4.16. In the absence of stacking faults, as we already showed in

the previous sections, the system presents a finite density of states at the Fermi energy and

no evidence of gap opening. Considering two layers with C stacking, we see that each central

a-atom contributes one weakly dispersing band around the Fermi energy. While the broad

feature seen in the A stacking for an energy range of −0.25 eV to 0.125 eV is narrowed, the

two bands in the C stacking are not fully separated in energy so that no gap opens in this case

either. For the AC stacking there are four bands in the energy range −0.25 eV to 0.25 eV,

and due to their mutual repulsion, we observe a gap in the density of states.
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Figure 4.16: Band structure along high symmetry lines and density of states for the C-CDW
phase with different stacking: (a) A stacking, (b) C stacking and (c) AC stacking. The
last two panels also show a comparison to the DOS obtained with the A stacking (stacking
without disorder).

To check whether the AC stacking is indeed a possible configuration for the system, we

consider the ground state energy for each configuration and find values for the A and AC

stackings of −301.465 eV/layer and −301.455 eV/layer, respectively, while the C stacking
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presents a ground state energy of −301.402 eV/layer. This means that for T >118K the A

and AC stacking sequences differ by less than the thermal energy. For the C stacking to be

within kT of the other two, a temperature of T =730K is required. These results confirm

that the ground state of TaS2 does indeed exhibit random stacking and show that contrary

to the conventional wisdom, the presence of a gap in the ground state of this material might

be due to stacking disorder rather than Mott physics.

4.5 Phonons

Having investigated the ground state of TaS2 both in the C-CDW and metallic phases, we

now want to understand how the system relaxes after being perturbed with a pump laser

pulse. tr-ARPES data [95] of the C-CDW phase shows a breakdown and successive recovery

of the metal insulator gap 680 fs after photo excitation and a subsequent long lived oscillation

of the energy of the system, with a frequency of about 2.5 THz (see Fig. 4 in [95]). We want

to explain how the excess energy of the hot electrons is transfered to the lattice and what

determines the temporal evolution seen in the experiments.

By using density functional perturbation theory [106], we calculate the phonon band

structure of both the C-CDW and the metallic phases and present it in Fig. 4.17. The

acoustic mode dispersion curves for the metallic state [panel (a)] show characteristic insta-

bilities expected from a system with CDW formation [75], and the wave vector associated

with this instability coincides with the CDW wave vector. The negative values correspond

to imaginary frequencies representing unstable modes. The optical branches located above

20 meV are mostly due to vibrations of the lighter S atoms. Overall these results show a

mostly in-plane dispersion and localized phonon bands in the vertical direction (Γ-A) and
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agree with a previous calculation on phonons in the metallic state of TaS2 reported in the

literature [92].
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Figure 4.17: Calculated phonon band structure for the metallic (a) and C-CDW (b) phases.
Imaginary frequencies, corresponding to unstable modes are represented by negative values.
(c) Phonon density of states for the metallic (green) and C-CDW (black) phases. The
continuous line represents the total DOS, while the dashed line shows the contribution due
to the Tantalum atom vibrations.

On the other hand the phonon band structure for the C-CDW phase [panel (b)] displays

a wealth of phonon branches due to the numerous atoms present in the unit cell. Only the

lower ones are shown in Fig. 4.17(b); an upper band of modes in the range 20 meV to 50 meV

is present but it is not of interest for the current discussion as it is mostly due to motions
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of the S atoms. Again we observe localized phonon bands in the vertical direction (Γ-A),

indicating soft phonon modes. There is also evidence of avoided crossing in the in plane

(Γ-M-K-Γ) direction, which points to strong interactions between phonon modes leading to

mode mixing. In particular in the Γ-M segment, at about 2/3 of the way to M, we see an

avoided crossing of the LA and LO bands, which presents itself again about halfway between

M-K and at K. Other avoided crossings are also present in the higher energy optical modes.

The phonon density of states [Fig. 4.17(c)] shows weak mixing between the Ta and S

atom vibrations, with a clear separation of the frequency ranges due to each one. Since

the distortion of the CDW is due to motions of the Ta atoms, we focus on the low energy

range and present in Fig. 4.18, in addition to the total phonon DOS, the projection of

the DOS onto the atomic sites in the reconstructed unit cell. In the C-CDW phase, we

observe numerous phonon peaks between 8 meV to 16 meV, with the principal one at 13 meV

(corresponding to a frequency of 3.1 THz) due to a vibration of the central atom (a-site). In

the metallic phase, on the other hand, the main mode is localized at 10 meV (2.3 THz), with

a lower energy broad secondary peak at 6 meV (1.5 THz).

As the system is in the metallic state following the pump laser excitation, the phonon

DOS for this state will determine what modes are most likely to be excited to dissipate

the excess energy. Our data shows the mode at 2.3 THz to be the most likely candidate,

in striking agreement with the experimentally measure oscillation frequencies reported by

Perfetti (see Fig. 4 in [95]). In the C-CDW phase, this vibrational frequency corresponds to

a superposition of modes involving all Ta atoms in the reconstructed cell. These modes then

can dissipate their energy through interaction with lower energy modes, seen in the avoided

crossings discussed in relation to the band diagram (Fig. 4.17).
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4.6 Optical absorption

We conclude the discussion by presenting the results relative to the optical absorption profile

of this system, with the goal of understanding the optimal conditions to excite this material

in the experimental setup. The real and imaginary parts of the dielectric function are

computed in the independent particle approximation [107] in which classical depolarization

effects (local-field effects), electron-hole and electron-electron interactions are not included.

The real part ε1(ω) of the dielectric function describes the polarization induced by the field

and is therefore related to electron dispersion inside the material, while the complex part

ε2(ω) describes the absorption properties. Other optical functions that can be calculated

from the dielectric function are:
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• the complex refractive index n(ω) + ik(ω):

ε1 = n2 − k2, ε2 = 2nk, (4.1)

n =

√√
ε21 + ε22 + ε1

2
, k =

√√
ε21 + ε22 − ε1

2
, (4.2)

• the optical absorption coefficient α(ω):

α =
4π

hc
ωk(ω), (4.3)

• the electron energy-loss function:

=
(
− 1

ε(ω)

)
=

ε2
ε21 + ε22

, (4.4)

• the reflectance R(ω):

R =
(n− 1)2 + k2

(n+ 1)2 + k2
, (4.5)

Note that whenever necessary, we have dropped the frequency dependence from the previous

equations for simplicity.

Our results for the in-plane direction are summarized in Fig. 4.19, where the first thing

we note is a remarkable agreement between our simulated data and the experimental mea-

surements found in the literature [see Fig. 10(b)-(d) of [76]]. The energies of the two main

peaks of the imaginary part of the dielectric function in the C-CDW phase [panel (b)], cor-

responding to intraband transitions, are well described by our simulations and match with

the experimental results. The shoulder present in the peak at 1.5 eV is also captured in our
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calculations. The main difference present is an overestimation of the value of the imaginary

part and an underestimation the value of the real part. This has the effect of introducing

additional zero-crossings of ε1 at energies < 5eV that are not seen in the experimental data

and is most likely due to the absence of impurities or defects in our simulated system. The

high positive value of ε1(0) and the absence of a metallic behavior [ε1(0) < 0], suggests that

TaS2 has a small optical band gap.

The absorption coefficient α [panel (c)], is also accurately described, as the shapes of

the secondary peak at 2.5 eV and of the broad feature between 5 eV and 20 eV are captured.

Similar considerations hold for the energy-loss function in panel (d), where the small peak

at 2.5 eV due to interband transitions is clearly captured, in addition to the plasmonic peak

seen at 20 eV [76]. The strength of this peak is increased by an order of magnitude compared

with the experimental data, which again can be explained by the absence of imperfections

in the simulated material.

The results for the metallic phase are also reported in Fig. 4.19, but no experimental

verification has been found in the literature for this data. Due to the smaller size of the unit

cell used, the plots are overall noisier. The absorption coefficient and energy-loss function

retain a behavior similar to that seen in the C-CDW phase, even though the details of the

dielectric function are modified with the metallic phase displaying a peak in ε2 at an energy

of 0.75 eV, absent in the C-CDW state.

Given the good agreement with experiment, we conclude that the optical transitions in

TaS2 are mostly single particle excitations from occupied valence states to unoccupied con-

duction states, with electron-electron and electron-hole interactions and polarization effects

playing a minor role. Some differences were seen in the magnitude of the optical properties

studied, which are due to imperfections in the sample used in the experiments that are not
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Figure 4.19: In-plane optical parameters for TaS2: real (ε1) and imaginary (ε2) parts of the
dielectric constant for the metallic (a) and C-CDW (b) phases. The insets show a detail
of the dielectric constant in the energy range relevant for pump-probe experiments. (c)
Absorption coefficient (d) Energy-loss function

captured in the simulations. In general we expect the inclusion of local fields to not play

a significant role in the in-plane components as the system is mostly homogeneous, while

it could have an effect if one is interested in the out of plane optical properties [110]. The

peak seen in ε2 at 1.0 eV suggests that exciting TaS2 with a wavelength corresponding to this

energy, would give the highest absorption and allow probing the material with a lower laser

power and higher efficiency.
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For completeness we also report the predicted out of plane optical parameters for TaS2

in Fig. 4.20. We note the overall lower value of the imaginary part of the dielectric con-

stant, indicating, as expected, that the material is more absorbing in plane. The absorption

coefficient and energy loss function show features very similar to those already discussed for

the in-plane direction.
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Figure 4.20: Out of plane optical parameters for TaS2: real (ε1) and imaginary (ε2) parts
of the dielectric constant for the metallic (a) and C-CDW (b) phases. The insets show a
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Chapter 5

Conclusions

The results presented in this thesis show how one can approach Ultrafast Science both from

the perspective of instrumentation development, as the achievable spatial and temporal

resolutions are fundamental quantities that determine what phenomena one can hope to

observe, and from the perspective of materials applications that can be studied with the

UEM system.

We started in chapter 2 by simulating the electron pulse photoemission process. By look-

ing at the time dependent evolution of a single pulse and comparing it with experimental

results obtained using the shadow imaging technique, we confirmed the validity of our ap-

proach and saw that overall, for short timescales, the spatial profile of the pulse is dependent

on the transverse laser profile used to generate it, with velocities showing a turbulent flow

related to the initial thermal distribution and independent of extraction field. At later times,

as the pulse moves away from the surface, the pulse properties display a strong dependence

on the extraction field: for high fields the pulse becomes fully laminar, evolving into the

typical pancake shape, while for the lower extraction fields it retains some turbulent flow

and does not fully detach from the surface. By fitting the resulting transverse profiles with
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Elliptical and Gaussian functions, we observed the surprising emergence of a 2D ellipsoidal

profile from the complex interplay of image- and space charge effects.

Our investigation of the optimal conditions for pulse generation in terms of laser fluence

and extraction field Fa for different experimental realizations showed evidence of virtual

cathode (VC) formation as the initial number of electrons was increased due the space charge

effect. By approximating the electron pulse as a sheet of charge, we derived a relationship

connecting the extraction field to the critical number of electrons required for the onset of

the VC.

We also analyzed the role of different photocathode geometries by observing the effect

that pinning of the image charge on the surface had on the onset of the VC limit and on the

final pulse parameters. In this case the positive image charge field provided a focusing effect,

increasing the fraction of electrons at the center of the pulse and preventing the pulse from

becoming fully pancake-like. Due to this both the transverse and longitudinal emittances

were seen to increase significantly once the virtual cathode limit was reached compared to

the case of radially expanding charge.

We showed that changing the shape of the transverse laser profile used to emit the

electrons also has a significant impact on the normalized emittance. Using a laser pulse with

a transverse elliptical profile gives the optimal pulse properties below the VC limit, while

once this limit is reached both the elliptical and uniform (top-hat) profiles present a sharp

scaling with the number of electrons, whereas the Gaussian profile retains a slightly less

unfavorable scaling. An increase in the extraction field can shift the onset of the VC regime

to higher numbers of electrons, thus increasing the favorable regime for the elliptical pulse.

The longitudinal emittance was observed to scale linearly with the number of electrons for

all laser profiles considered, with a weak dependence on the extraction field.
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We conclude that optimal extraction conditions depend on a delicate balance between

the image charge, which disrupts the favorable internal self-fields of both the elliptical and

uniform cases, the number of electrons emitted and the extraction field, which controls the

onset of the virtual cathode limit. Below this limit the image charge has a weak effect with the

pulse properties primarily controlled by the laser parameters (transverse profile and fluence),

while above the VC limit the image charge strongly perturbs the expansion of the pulse with

a nonuniform dependence on the pulse profile. By calculating the brightness, coherence

length and energy spread for the pulses considered, we provided quantitative guidelines for

pulse generation.

In chapter 3 we built on our knowledge of the initial phases of pulse generation to simulate

the UEM system. We derived a mean field formalism to simulate the propagation of the

electron pulse through the microscope column, including the effects of the photoemission

gun, magnetic lenses, RF cavity and relativistic motion of the electrons. By comparing the

time evolution of the pulse described with this Analytic Gaussian model to our previous N-

particle simulations, we showed good agreement for extraction conditions under the virtual

cathode limit for both the Elliptical and Gaussian laser profiles. After analyzing the effects

of the different optical elements composing the microscope column, we built a model to

describe our whole UEM column and gave quantitative predictions of the achievable spatial

and temporal resolutions.

Moving forward, the next steps in the development of UEM systems will need to move

on two fronts. On the photoemission side, a more detailed model for the positive image

charge is needed and, since increasing the extraction field was seen to offer many advantages,

strategies to do this should be considered, including the addition of an RF cavity to the

photoemission gun, which would allow higher peak values of the electric field at the price
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of added complexity in the system. On the other hand, to better understand the operation

of the whole UEM column, more accurate models and more sophisticated simulation tools

(such as the COSY-MLFMM N-particle code) are necessary to analyze in more detail the

configurations obtained with our simple Analytic Gaussian model. Given the limitations

of this model, the predictions we calculated should be viewed as best case results, since

aberrations and deviations of the pulse from the assumed self similar Gaussian profile were

neglected. A careful process of modeling the details of the lenses and cavity used in the

actual microscope is needed, so that details of their nonlinear effects can also be included in

the simulations.

On the applications side, in the last part of this thesis (chapter 4), we showed our work

in understanding the properties of TaS2, a very promising material that can be studied with

the UEM microscope. With our density functional theory calculations of the electronic band

structure of 1T-TaS2, we shone light on the ground state of this material and quantified

the effect of spin orbit coupling and Hubbard repulsion both in the metallic and in the

commensurate charge density wave (C-CDW) phases. Since our results showed that neither

of these interactions is sufficient to reproduce the insulating gap seen in experiment, we also

analyzed the effect of different stacking configurations of the TaS2 layers and found evidence

of gap opening for bilayers in the presence of disordered AC stacking. This points to a

deviation from the conventional picture of TaS2 as a Mott insulator, as the measured gap

could be due to the repulsion of the levels originating from interactions in the vertical stacking

direction. To better understand the processes involved in pump-probe measurements of this

material, we also looked at the phonon band structure and absorption spectrum and found

a remarkable agreement with the experimental measurements, which allowed us to point

out possible mechanisms for dissipation of the pump energy and recovery of the insulating
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ground state.

Our understanding of stacking disorder in TaS2 opens the door to the investigation of

a variety of other layered materials (such as TaSe2 or TiS2) whose physics might also be

influenced by interlayer coupling, a mechanism that hasn’t been considered in the literature

so far. In addition to this, TaS2 itself still presents numerous unanswered questions such as

the emergence of superconductivity under pressure or doping, which might be better under-

stood on the basis of our results. On a more general level, the role of disorder as a competing

mechanism in addition to Mott and Peierls physics in correlated electron materials is an open

question. Simulating disordered systems often requires significant computational resources,

but the inclusion of this effect might be necessary to explain some of the experimentally

observed material properties.
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Appendix A:

Generation of electron coordinates

This appendix gives details on how the initial x and y coordinates are generated in the

photoemission simulations for the three laser pulse shapes considered: Gaussian, Uniform

and Elliptical.

A.1 Generation of random numbers with an arbitrary distribution

The standard random number generator available in any programming language will provide

numbers with a uniform distribution in the interval (0, 1), but for many problems we wish to

use numbers generated at random from an arbitrary distribution. This section will outline

the method used to do so.

Starting with the given arbitrary normalized probability distribution, f(x), the first step

is to calculate the cumulative probability:

g(x) =

∫ x

−∞
dx′f(x′), (A.1)

where the function g(x) represents the sum of probabilities from −∞ to x and has values

between (0,1), while x has values (−∞,∞). We can now think of g(x) as a one-to-one
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mapping from the interval of values of x (−∞,∞) to (0,1). For this reason if we invert g(x)

by setting g(x) = y and calculating x = h(y), we have a function that maps the y values

belonging to the interval (0,1) into x. If we extract random numbers (y1, y2, ...yn) from a

uniform distribution in the interval (0, 1), then the numbers (h(y1), h(y2), ...h(yn)) will be

random numbers from the original distribution f(x).

The tricky step in this procedure is inverting g(x), since for an arbitrary distribution it

might not be possible to find an analytic expression for its inverse. In that case numerical

methods would have to be used as an approximation.

A.2 Gaussian laser profile

In the case of a Gaussian profile, the distribution of coordinates is given by

f(x, y) =
1

2πσ2
r

exp

(
−x

2 + y2

2σ2
r

)
. (A.2)

We begin by rewriting this distribution in terms of polar coordinates r, θ, where x = r cos θ,

y = r sin θ:

f(r, θ) =
1

2πσ2
r

exp

(
− r2

2σ2
r

)
. (A.3)

Since this distribution only depends on r, it is clear that we can simply choose θ from a

uniform distribution (0, 2π), while for r we will use the procedure presented in the previous

section.

123



We begin by calculating the cumulative probability distribution

g(r′) =

∫ 2π

0

dθ

∫ r′

0

drrf(r, θ) (A.4)

=

∫ 2π

0

dθ

∫ r′

0

drr
1

2πσ2
r

exp

(
− r2

2σ2
r

)
(A.5)

=

∫ r′

0

drr
1

σ2
r

exp

(
− r2

2σ2
r

)
(A.6)

= 1− exp

(
− r′2

2σ2
r

)
. (A.7)

Now we set g(r′) = α and solve this for r′:

α = 1− exp

(
− r′2

2σ2
r

)
(A.8)

1− α = exp

(
− r′2

2σ2
r

)
(A.9)

log(1− α) = − r′2

2σ2
r

(A.10)

−2σ2
r log(1− α) = r′2 (A.11)√

−2σ2
r log(1− α) = r′. (A.12)

Since α ∈ (0, 1), 1− α ∈ (0, 1) as well and we can substitute 1− α with α, giving us

r′ =
√
−2σ2

r log(α). (A.13)

From this we can go back to our initial x,y coordinates using x = r′ cos θ, y = r′ sin θ and
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the final result is:

x =
√
−2σ2

r lnα cos(2πφ) (A.14)

y =
√
−2σ2

r lnα sin(2πφ), (A.15)

where α and φ are random numbers generated uniformly in the interval (0, 1). This is the

well known Box-Muller transform.

A.3 Uniform laser profile

Now we use the same procedure for the distribution consisting of a uniform circle in the xy

plane, written in radial coordinates as

f(r) =


C = 1

πR2
0

r ≤ R0

0 r > R0

. (A.16)

We note that similarly to the Gaussian case, the probability distribution does not depend

on the angle θ, which can then simply be taken a from uniform distribution (0, 2π).

As before, we calculate the cumulative radial probability distribution

g(r′) =

∫ 2π

0

dθ

∫ r′

0

drrf(r) =

∫ r′

0

dr
2r

R2
=
r′2

R2
, (A.17)

and then invert this to get the function that maps the uniform distribution into our desired
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one

α = g(r′) =
r′2

R2

r′ = R
√
α.

In the end the initial x,y coordinates are given by

x = R
√
α cos(2πφ) (A.18)

y = R
√
α sin(2πφ), (A.19)

where α and φ are random numbers generated uniformly in the interval (0, 1).

A.4 Elliptical laser profile

The final case we wish to consider is that of a laser with an elliptical profile, given by the

distribution

f(r) =
3

2πR2

√
1−

( r
R

)2
0 ≤ r ≤ R. (A.20)

Since once again this does not depend on θ, the angular part is easily treated with a uniform

distribution.
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For the radial part, we integrate f(r) to obtain the cumulative distribution g(r′)

g(r′) =

∫ 2π

0

dθ

∫ r′

0

drrf(r)

=
3

R2

∫ r′

0

drr

√
1−

( r
R

)2
= −(R2 − r2)3/2

R3

∣∣∣∣r′
0

= 1− (R2 − r′2)3/2

R3
.

We now follow the usual procedure to invert g(r′)

α = g(r′) = 1− (R2 − r′2)3/2

R3

(1− α)R3 = (R2 − r′2)3/2

(1− α)2/3R2 = R2 − r′2

r′2 = R2
[
1− (1− α)2/3

]
r′ = R

√
1− (1− α)2/3,

and by using the same substitution used in the Gaussian case, (1 − α) → α, the equations

for the initial coordinates become

x = R
√

1− α2/3 cos(2πφ) (A.21)

y = R
√

1− α2/3 sin(2πφ), (A.22)

where α and φ are random numbers generated uniformly in the interval (0, 1).
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Appendix B:

Overview of Density Functional

Theory

In this appendix we will give a brief overview of the theory and approximations that govern

Density Functional Theory. For an in depth discussion of both the fundamentals and the

applications of DFT to a variety of systems, the reviews by Gillan [111] and Hafner [112]

offer an solid starting point. Also the Nobel prize talks by Kohn [113] and Pople [114] give

an excellent discussion of the development of methods to simulate the electronic structure

of materials and of the derivation of the DFT equations. More information on the technical

aspects of the computation and its implementation in computational codes can be found in

the review by Cramer and Truhlar [115] and in the papers by Kresse et al. [98–101, 116],

Bloechl [103] and Perdew et al. [102].

B.1 From wavefunctions to a density functional

In principle, if one wishes to study materials using an ab-initio method, all that is required

is to write out the Schroedinger equation for the system and solve it. The resulting ground
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state energy and wavefunctions uniquely determine all the properties of the system under

consideration. The term ab-initio here is taken to mean methods in which, in addition to the

nuclear mass and coordinates, only the fundamental physical constants enter the calculation

and no empirical parameters are included in the solution.

For a system of Nel electrons and Nat nuclei, the non-relativistic and time independent

Hamiltonian and Schroedinger equations can be written as

Ĥ = − 1

2mel

Nel∑
i=1

∇2
i −

1

2

Nat∑
i=1

∇2
i

Mi

+

Nel∑
i=1

Nel∑
i 6=j

1

|ri − rj|
+

Nat∑
i=1

Nat∑
j 6=i

ZiZj
|Ri −Rj|

−
Nat∑
i=1

Nel∑
j=1

Zi
|Ri − rj|

(B.23)

ĤΨα = EαΨα, (B.24)

where the first two terms are respectively the kinetic energy of the electrons of mass mel

and that of the nuclei of mass Mi. The following terms include electrostatic interactions

between the electrons and nuclei with spatial coordinates ri and Ri. Ψα is the wavefunction

corresponding to the alphath state of the system.

Since we are mostly interested in properties arising from the electronic distribution and

nuclei are approximately 104 times heavier than electrons, with a size that is approximately

10−5 times the size of the electronic orbit, we integrate out the nuclear motion and treat

them as stationary point particles. This is the so-called Born-Oppenheimer approximation,

using which we rewrite the Hamiltonian as

Ĥel = − 1

2mel

Nel∑
i=1

∇2
i +

Nel∑
i=1

Nel∑
i 6=j

1

|ri − rj|
−

Nat∑
i=1

Nel∑
j=1

Zi
|Ri − rj|

(B.25)

= − 1

2mel

Nel∑
i=1

∇2
i +

Nel∑
i=1

Nel∑
i 6=j

1

|ri − rj|
−

Nel∑
i=1

Vext(ri), (B.26)
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and

Ĥelψel = Eelψel. (B.27)

The problem we face now is solving this Schroedinger equation to find the antisymmetric

electronic wavefunction ψel, which depends on the positions and spins of the Nel electrons

for fixed nuclear positions Ri. This is a prohibitive task for any system consisting of more

than O(10) electrons [113], leading to the idea of describing the system using the density as

it only depends on 3 coordinates regardless of the size of the system:

n(r) = Nel

∫
· · ·
∫
ψ∗el (r, r2, · · · rNel ;σ)ψel (r, r2, · · · rNel ;σ) dr2 · · · drNeldσ, (B.28)

where the integrals are over the Nel − 1 spatial degrees of freedom and the spins (indicated

collectively by σ).

Hohenberg and Kohn [117] showed that the ground state density uniquely determines the

Hamiltonian of the system and its ground state energy E0 and that therefore we can rewrite

the problem posed by equations B.26 and B.27 as:

E0 = min
n(r)

E[n(r)] (B.29)

E[n(r)] = Ekin[n] + Eee[n] +

∫
Vext(r)n(r)dr, (B.30)

where the unknown is now represented by the density n(r).

B.2 The Kohn-Sham equations

Up to this point, the equations written are exact and no approximations have been made.

They are also impossible to solve, as the kinetic and electron-electron contributions to the
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total energy in Eq. B.30 can’t be written in an exact form as functionals of the density.

To get around this it is necessary to find approximate expressions for Ekin[n] and Eee[n].

Following the work done by Kohn and Sham [118], we start by rewriting the electron-electron

interaction as a sum of the Coulomb interaction term and two non-classical terms that include

the electron exchange and correlation effects:

Eee[n] = ECoul[n] + EX [n] + EC [n] (B.31)

=
1

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′ + EX [n] + EC [n]. (B.32)

We can now rewrite the kinetic energy term as the kinetic energy of independent particles,

Ekin,KS[n], plus the difference of this from the original kinetic energy:

Ekin[n] = Ekin,KS[n] + (Ekin[n]− Ekin,KS[n]). (B.33)

Putting all of this together gives:

E[n] = Ekin[n] + Eee[n] +

∫
Vext(r)n(r)dr

= Ekin,KS[n] +
1

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′ +

∫
Vext(r)n(r)dr

+ EX [n] + EC [n] + Ekin[n]− Ekin,KS[n]

= Ekin,KS[n] +
1

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′ +

∫
Vext(r)n(r)dr + EXC [n]

= Ekin,KS[n] +

∫ [
1

2

∫
n(r′)

|r− r′|
dr′ + Vext(r) + VXC(r)

]
n(r)dr,
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where the last three terms in the second row have been grouped into the unknown functional

EXC = EX [n] + EC [n] + Ekin[n]− Ekin,KS[n] =

∫
VXC(r)n(r)dr. (B.34)

Using the fact that Ekin,KS[n] corresponds to the kinetic energy of independent particles,

we can now treat the system as being composed of Nel independent particles such that:

Ĥeff =

Nel∑
i=1

ĥKS(ri) (B.35)

ĥKSψj(r) =

(
−1

2
∇2 + VKS(r)

)
ψj(r) = εjψj(r) (B.36)

VKS =
1

2

∫
n(r′)

|r− r′|
dr′ + Vext(r) + VXC(r). (B.37)

This form of VKS is chosen so that the density obtained from this system of non-interacting

fictitious particles is the same as the ground state density in the true system of interacting

electrons. Approximations now enter our calculations in the choice of the expression for

VXC(r).

A couple of notes to conclude the discussion:

• The Kohn-Sham single particle orbitals, ψj, should not be considered representative

of real electron orbitals in the system. Rather they are a mathematical construction

used to give the correct ground state density. Also the independent particles used in

this description are Kohn-Sham fictitious particles, not real electrons.

• Since VKS depends on the density, it is necessary to do a self-consistent calculation

in which one starts from a guess for the orbitals ψj, then solves the Schroedinger

equation (Eq. B.36) to calculate the new orbitals ψnewj and iterates this procedure
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until convergence is reached.

• In the work presented in chapter 4, the exchange-correlation functional, EXC , was

described using the generalized gradient approximation (GGA) as implemented by

Perdew, Burke and Ernzerhof (PBE) [102]. A discussion of the various choices that

can be made in terms of exchange-correlation functionals is beyond the scope of this

overview, but can be found in numerous reviews (see for example [115]).

• In addition to the approximation resulting from the choice of EXC or, equivalently,

VXC , the single particle wavefunction is also expanded on a set of basis functions that

must be chosen appropriately. In the work presented here, we used plane waves with

the projector augmented wave method [103] as the basis set.
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