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ABSTRACT

EFFECT OF MOLECULAR ASSOCIATION ON OSMOTIC PRESSURE AND

DIFFUSION IN DILUTE POLYMER SOLUTIONS

By

Kit Leung Yam

Polymer molecules in solution often associate with one

another via secondary binding forces (such as hydrogen

bonds) to form larger polymer molecules. Examples may be

found in many biopolymers and synthetic polymers consisting

of proton—donating and proton—accepting pairs. However the

influence of these associated complexes on solution

properties is still not well understood, for at least two

reasons. First, existing theories are incapable of

describing the behavior of these systems and, second, very

few relevant data are available in the literature.

In this work, expressions for the osmotic pressure and

the diffusion coefficient are derived for open associating

systems. The associating systems are treated as

pseudo-binary systems--the two components being solvent

molecules and polymer molecules with number average

molecular weight of the multimer mixture.

J;

The osmotic pressure n is expressed as

Mlfl

 



and the diffusion coefficient D*is expressed as

* *

D “Do{‘l’2+[2A2 Ml/xpl-(ks+2VpO)\112]p+...

where p and M1 are the mass concentration and the unimer

molecular weight of polymer, respectively. A2* is the

second virial coefficient of the multimer mixture. W1 and

4% (both dimensionless groups) are functions ofla, M1 and

the association equilibrium constant K. The partial

specific volume of polymer at infinite dilution, vpo’ can be

obtained from density experiments, and the friction

parameter, ks, can be estimated from the Pyun-Fixman theory.

*

The model predicts that the initial slope of N /pRT

versus p is

* 2

(A2 )obs = A2 ' Km1

which differs from its nonassociating counterpart A2 by

*

K/Mlz. Similarly, the initial slope of D versus p is

(k k - K/M1

*

d )obs = d

which differs from its nonassociating counterpart kd by

K/Ml‘

Predictions from these expressions agree well with

osmometry data obtained from the literature and with

diffusivity data measured in this laboratory, for

polyethylene glycol in benzene. The effect of association



is most prominent at low concentrations and increases

progressively with decreasing molecular weight. Its

magnitude is governed by the dimensionless group Kp/Ml,
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FOREWORD

This dissertation consists of two parts. Part

One provides a summary for the essential findings of

this work. It was prepared in the form for publication.

Part Two provides a more detailed description of the

work.
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PART ONE



Abstract

Expressions for the concentration dependence of osmotic pressure and

diffusion coefficient in dilute polymer solutions are derived in this

work for open associating systems. Predictions from these expres-

sions are in good agreement with the experimental data of polyethylene

glycol in benzene obtained from our laboratory and from the liter-

ature. The effect of association increases with decreasing molecular

weight and is governed by the dimensionless group P - Kp/Ml.

1. INTRODUCTION

The objective of this work is to study the effect of inter-

molecular association on osmotic pressure and diffusion coefficient of

dilute polymer solutions.

Polymer molecules in solution often associate with one another to

form larger molecules under favorable conditions.192 The resulting

associated complexes may be classified, based on the nature of inter-

molecular forces, into hydrogen-bonding complexes, polyelectrolyte

complexes, stereocomplexes, and charge-transfer complexes.3 The extent



of association is affected by the mechanism of association, the

chemical structures of polymer and solvent, solute concentration,

temperature, and pressure.

The behavior of associating polymer solutions is still not well

understood, for at least two reasons. First, there is a lack of

sufficient and reliable experimental data available in the literature.

Second, existing theories, such as the Flory-Huggins and the two-

parameter theories," are incapable of describing the behavior of these

systems; their applications are valid only for nonassociating,

nonelectrolyte systems.

Yet there exist many biopolymers and synthetic polymers which

form associated complexes in solution,3 and the formation of these

complexes can greatly influence the solution properties. For example,

osmotic pressure, an important colligative property, may be strongly

affected by molecular association. A plot of reduced osmotic pressure

versus polymer concentration generally displays a linear relation. In

fact this linear relationship is the basis for molecular weight

determination.5 However, if the polymer associates, this linear

relationship is no longer valid (especially in the very dilute

concentration range) and molecular weight determination based on

linear extrapolation may be in serious error.6 Other solution prop-

erties such as viscosity and diffusion coefficient are also influ-

enced. Hence, there is a need for a better understanding of these

systems.
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In this paper we formulate theoretical expressions for the

concentration dependence of osmotic pressure and diffusion coef-

ficient for associating polymer-solvent systems. Since these ex-

pressions depend on the type of association, we limit our study to the

systems which obey the so-called "open association" model.2 However,

the procedures described below may also be applied to other types.

First, we derive the concentration dependence of osmotic pressure

for open association. This expression describes the behavior of a

pseudo-binary system--the two components being the solvent molecules,

and the polymer molecules with number average molecular weight of the

multimer mixture. Second, the osmotic pressure expression is used to

derive an expression for diffusion coefficient.

To test the validity of the model we compare theoretical pre-

dictions of osmotic pressure and diffusion coefficient with experi-

mental data. Polyethylene glycol (PEG) in benzene is used. Mutual

diffusion coefficients for this system, with molecular weight ranges

from 440 to 12600, were measured in our laboratory.

II. MOLECULAR ASSOCIATION

When considering colligative properties and diffusion, as-

sociating polymer-solvent systems are more difficult to study than

nonassociating systems. Unlike nonassociating systems, they cannot

always be considered to be binary but must be treated as multicom-



ponent systems which consist of unimers, dimers, trimers, etc., with

molecular weight distributions that change with concentration. In

order to construct a model to describe their behavior, a prior

knowledge of the mechanism of association must be assumed and its

validity tested with experimental data.

For simplicity, we restrict our study to polymer-polymer as-

sociation in inert solvents, although association can also occur

between polymer-solvent and solvent-solvent molecules. We further

restrict it to open association because this model is obeyed by many

synthetic polymers and is simple to construct.21

Open association is a consecutive association in which suc-

cessively higher multimers (dimers, trimers, etc.) are formed one step

at a time:

.9

B1 +B1 «- B2 , K--1<2

_)

B1+B2 (_ B3 , K-K3

B +B I B K-K
1 1-1 <- 1 ’ i

...)

Bl + Bn_1 +- Bn , K - Kn (1)

where Bi represents i-mer, Ki represents the association equilibrium

constant for the formation of i-mer and n takes all positive integers

up to infinity.



If we assume Ki is independent of molecular size (for example, in

the case of end-group association), and thus K1 I K2 I . . . I K, we

obtain

i-l i

ci - K c1 (2)

and

KC1 I C2/C1 I C3/C2 I . . . etc. (3)

where Ci is the molar concentration of i-mer. KCl is a dimensionless

group whose value ranges from O to 1: KCl I 0 corresponds to no

association (C2 I C3 I C4 I . . . I O), and KC] I 1 corresponds to the

maximum allowable association when all multimers have the same

concentration (C1 I C2 I C3 . . ., etc.).

With the above description of the model and the relation M1 I

1M1, some useful relations can be derived:6

 

Y1{p} I MllMa . 1 + 5 (4)

Kcl - 1 - 11 (5)

c /c - (1 - KC )(KC )1"1 (6)
i p l 1

M [M I 1 + KC (7)

w n 1

where

E I l 1 + 4P (8)



P a KD/M1 (9)

Ha I apparent polymer molecular weight I Cp/p (10)

Mw/Mn I polydispersity of the multimer mixture (11)

Cp l true molar concentration of polymer solute

- )3 C1 (12)

Equations (4) through (7) are expressed in terms of measurable

quantities: the polymer mass concentration 0, the association

constant K, and the unimer molecular weight M1. The apparent molec-

ular weight Ma, is equivalent to the number average molecular weight

of multimer mixture and can be readily calculated from Equation (4)

once M1, K and p are known.

It is noteworthy to point out the similarities between open as-

sociation and stepwise polymerization. In fact, Equations (4) through

(7) can be obtained from the appropriate expressions for stepwise

polymerization, by substituting K01 for the fraction of conversion.7

The molecular distribution can be identified with the Schultz-21mm

distribution.8 Since 0 5 KCl S 1 and according to equation (7), the

polydispersity is bounded between 1 S Mw/Mn S 2.



III. MODEL DEVELOPMENT

A. Osmotic Pressure
 

As mentioned in Section II, open associating systems are simply

heterogeneous systems with molecular weight distribution governed by

Equation (4). In the following, the osmotic pressure expression of

heterogeneous systems is tailored for describing these systems.

In a dilute solution containing heterogeneous polymer molecules,

the osmotic pressure I may be expressed as:4

w 1

pRT M + A20 + . . . (13)

and the second virial coefficient A2 is given by

A2 I 2 wiwJ A11 (14)

where Mn is the number-average molecular weight, "i the weight

fraction of polymer molecule 1, and Aij the interaction between the

pair of polymer molecules 1 and j at infinite dilution. According to

the two-parameter theories, Aij is a function of the excluded volume 2

and the ratio of molecular weights of molecules 1 and 1.9910

To adapt Equation (13) for associating systems, ”a is substituted

for Mn, and A2* for A2:296

M I

pRT

 



*

M p + . . . (15)- “(M + A2 1

is defined for convenience. The superscript * denotes open as-

sociation. Y1 is a function of 9.

A2* is a function of association. Recently Tanaka and Solc8 have

suggested that it may be approximated by the second virial coefficient

of a monodisperse polymer, with number-average molecular weight of the

multimer mixture. Furthermore, if the Mark-Houwink relationship (A2 I

K’ M-“) is assumed,11’12 we can incorporate the molecular weight

dependence of A2* into Equation (15). However, this leads to a rather

complicated diffusivity expression. Moreover, our calculations show

that the osmometry data used in this work are relatively insensitive

to the molecular weight dependence of A2*. Hence, an A2* independent

of concentration is assumed for each molecular weight sample.

For K I 0, Ma and A2* reduce to M1 and A2 (the second virial

coefficient of unimer), respectively; and Equation (15) reduces to the

expression for nonassociating systems. Differentiating Equation (15)

with respect to p and evaluating the result at p I O, we obtain the

observed second virial coefficient

) I A - -—— (16)

for associating systems. Note that (A2*)obs differs from its nonas-

sociating counterpart by K/Mlz.



10

B. Diffusion Coefficient
 

The concentration dependence of the mutual diffusion coefficient

for a nonassociating dilute polymer solution can be

series expansion:13

D I Do (1 + kd p + . . .)

where

kd I 2 A2 M - ks - 2 V

po

and

V I V (1 + a p + . . .)

P P0

f I f (1 + k p + . . .)

o 5

expressed by the

(17)

(18)

(19)

(20)

Here Do is the diffusion coefficient at infinite dilution, Vp the

partial specific volume of polymer, and f the friction coefficient.

If associating systems are treated as pseudo-binary systems (i.e.

use the apparent molecular weight, M8, to represent

molecular weight of the multimer mixture), Equation

to obtain the chemical potential of the solvent, p8

and the mutual diffusion coefficient may be derived

tion:13'1"

D - 1 - V p E. Ops

N f M "a so ,P

the average

(15) may be used

.4

(21)

from the rela-

(22)
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where N8 is the Avogadro's number; Ms Vs and p8 are the molecular

weight, the molar volume and the mass concentration of solvent,

respectively. Using Equation (15) and Equations (19) through (22), we

obtain the mutual diffusion coefficient D* for associating systems as

* *

D - Do {T2 + [2 A2 MI/Yl- (k8 + 2 vpo) Y2] p + . . . }

(23)

where

1 + 5

Y2 I 25 (24)
 

Both Y1 and Y2 are functions of concentration and open association.

For X I 0, Equation (23) reduces to Equation (17).

Differentiating Equation (23) with respect to p and evaluating

the result at pIO, we obtain

*

(k ) - kd — KIM1 (25)
d obs

*

Note that (kd )obs differs from its nonassociating counterpart by

K/Ml.



 

isl

Inf]

intr
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IV. EXPERIMENTAL

Diffusion coefficients were measured in our laboratory using a

Mach-Zahnder interferometer.159l6 Monodisperse polyethylene glycol

(PEG) polymer samples (Mg/Mn < 1.06) were purchased from Polymer

Laboratories, Inc., Massachusetts; these samples were used without

further purification. Solution temperature was controlled at 25.0 t

0.1°C. The accuracy of the interferometer was tested by comparing the

diffusion coefficients for several aqueous sucrose solutions with

those reported by Gosting and Morris;17 average deviation was found to

be less that 1%. However, PEG/benzene system has a smaller refractive

index difference compared to the sucrose/water system, and the

diffusion coefficients reported in this work (some of them represent

the average values of two or three runs) are estimated to be within

4%.

V. RESULTS AND DISCUSSION

A. Osmotic pressure data
 

The vapor pressure osmometry data of Elias18 for PEG in benzene

is chosen here for studying the effect of molecular association.

Infrared spectroscopic measurements by Langbein19 had shown that

intramolecular hydrogen bonds existed between the hydroxyl end-groups



l3

and the ether groups in this system; later, Elias found18920 that

intermolecular association also existed and the data could be quan-

titatively explained by the open association model.

The value of K is estimated first from the osmometry data.

According to Equation (16), if the dependence of A2 on H1 is weak, a

plot of (A2*)obs versus 1/M12 should yield a straight line, with slope

equal to -K. In fact the osmometry data of Elias fit such a straight

line quite well, and thus the slope provides a good initial value of

K. Next, Equation (15) and the method of least squares are used to

obtain the final values of K I 11000 cc/mole (which agrees with the

value estimated by Elias using a different approachlg) and A2*. The

values of A2* are presented in Table I.

 

Table 1. Values of A2* (mole mllgz) estimated from the osmometry data

of Elias.18 For comparison, (A2) is the second virial coefficient

calculated from two-parameter theories.

 

*

M1 A2 (A2)

208 -0.0095 -0.0027

409 -0.0011 0.0011

594 0.0005 0.0018

1518 0.0020 0.0023

6000 0.0022 0.0019

 

The performance of the model is shown in Figure l. The effect of

association is more prominent at low concentrations and increases pro-

gressively with decreasing molecular weight. This behavior is well

described by the model.
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Figure 1. Concentration dependence of H for PEG in benzene at 25°C.

Data taken from Elias et a1.18

( D ) Ml=6000; ( V) M1=1518; ( Q ) M1=594;

( O ) M1=4O9; ( A) 111=208.

predictions from Equation (15). 
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B. Diffusivity data
 

As shown in Section III, the prediction of D(p) in dilute

solutions requires the evaluation of A2*, K, Vpo’ Do and ks' The

first two terms have already been estimated from the osmometry data,

and Vp0 can be obtained from density experiments. Do and ks can be

estimated from the two-parameter scheme suggested by Vrentas and

Duda21: DC from the modified Kirkwood-Riseman theory and k8 from the

Pyun-Fixman theory (version II),22 because they seem to be the best

methods available at the present time. The short-range interferences,

A, for PEG/benzene system at 25°C is given by11

(R2> 0.5 -9

I 7.9 x 10 cm (26)
 

AI

where (R2)o is the unperturbed mean-square end-to-end distance. The

long-range interferences are estimated indirectly from the empirical

Mark-Houwink intrinsic viscosity relationship:“’21

8 - 0.063 M 0'641 1 (27)[ml-K M
V

where [n] is the intrinsic viscosity. The values of RV and B are

obtained from curve fitting the raw data of Rossi and Cuniberti23

"Sing the method of least squares. In addition, to adapt the two—



l7

parameter scheme to associating systems, the apparent molecular weight

Us is substituted for the unimer molecular weight M1 in calculating

the necessary parameters.

Several investigators had shown that the Kirkwood-Riseman theory

provided reasonable predictions for (Do)e, the translational diffusion

coefficient at infinite dilution under theta condition524v 25’ 26’ 27.

Furthermore, Vrentas and Duds extended this theory for predicting Do

under nontheta conditions27

 

 

(D )
D . o 9

o a

8

0.196 k g 5 (28)

a n A M '
S 8

where k is the Boltzmann's constant, "s is the viscosity of solvent,

and as is the expansion factor relating the perturbed and the unper-

turbed mean-square radii of gyration.

Mutual diffusion coefficients for four PEG samples in benzene at

25°C were measured using a Mach Zehnder interferometer. The con-

centration dependence is shown in Figure 2. The experimental Do is

found by extrapolation using the model and the method of least

squares. They are found to be in good agreement with the predictions

(see Table II). The molecular weight dependence of Do is shown in

Figure 3 along with a least squares fit to the relation

4 -0.57

D - G M1 - 2.64 x 10' M (29)



Figure 2.

18

Concentration dependence of diffusion coefficient

for PEG in benzene at 25 OC. Experimental data:

(V) M1=44o; (El) M1=960; (o) M1=4250;
(A) M1=126OO.

predictions from the association model

(Equation (23)); ------- predictions from the

nonassociation model (Equation (17)).
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D
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Figure 3. Plot of Do versus M1 for PEG in benzene at 25 oC.
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Flory suggested the exponents 7 and B may be related by28

7-(8+1)/3 (30)

Thus 7 may be calculated to be 0.55, using 8 I 0.64 from Equation

(27), and this value agrees reasonably well with 7 I 0.57 from

Equation (29). However, larger differences are observed for some

systemsll,29 and more experimental data are needed to determine the

validity of this relation.

 

Table II. Comparison of Do (cmZ/sec) from the modified Kirkwood-

Riseman theory (Equation (28)) with DC from eXperiment for PEG in

benzene at 25°C.

 

M1 Mw/Mn Do(theory) Do(exptl) Do(exptl)/

Do(theory)

440 < 1.09 8.31 x 10'"6 8.58 x 10"6 1.03

960 < 1.06 5.30 x 10-6 5.05 x 10‘6 0.95

4250 < 1.03 2.31 x 10-6 2.20 x 10"6 0.95

12600 < 1.04 1.28 x 10‘6 1.25 x 10'6 0.98

 

The performance of the association model is shown in Figure 2. K

I 11000 cc/mole is used, and the values of A2* are taken from the

osmometry data (see Table III). The only adjustable parameter used to

fit the data is A of the Pyun-Fixman theory (version II).22 For our

data A I 0.88 provides the best fit. (This compares to A I 0.86 used

by Vrentas and Duda to fit the diffusivity data of polystyrene in

cyclohexane.)22 Agreement between experimental and predicted values

is good.
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Table III. Values of A2* (mole ml/gz) used in calculating the concen-

tration dependence of diffusion coefficient in Figure 2. For com-

parison, (A2) is the second virial coefficient calculated from the two

parameter theories.

 

*

M1 A2 (A2)

440 —0.0010 0.0013

960 0.0012 0.0022

4250 0.0021 0.0020

12600 0.0018 0.0016

 

As for osmotic pressure, the effect of association is found to be

the strongest for low molecular weights. In fact, for the polymer

sample M1 I 440, (kd*)ob8 can roughly be equated to -K/M1 (see

Equation (25)). As molecular weight increases, the virial term and

friction term also become important. For comparison, the predictions

using the nonassociating model are also shown in Figure 2.

At theta conditions and when the contributions of k8 and Vpo are

negligible, Tlreduces to P1 and D*/Do reduces to Y2. Since Y1

decreases more rapidly with increasing concentration than Y2, osmotic

pressure is affected more strongly compared to diffusion coefficient

by association. (As P approaches infinity, ’1 and Y2 approach 0 and

0.5, respectively.)

Some D(p) curves from the literatureé’3o'31 display minima, even

at dilute concentrations. The diffusion rate first decreases sharply

with increasing concentration and then attains an almost constant

value or passes through a minimum. This behavior can be explained at
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least qualitatively by the association model if the polymer molecules

associate with one another in a thermodynamically good solvent.

Equation (23) suggests that, at very dilute concentrations, asso-

ciation dominates and causes the diffusion rate to decrease with

increasing concentration; at higher concentrations, the thermodynamic

term dominates (assuming that the hydrodynamic and volumetric terms

are relative small) and causes the diffusion rate to increase with

concentration.

VI. CONCLUSION

The association model and the two parameter theories provide good

predictions for both the osmometry and diffusivity data for PEG in

benzene. (A2*)°bs and (kd*)obs differ from their nonassociating

counterparts only by K/Ml2 and K/Ml, respectively. The effect of

association increases with decreasing molecular weight and is governed

by the dimensionless group P I Kp/Ml.
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CHAPTER I

INTRODUCTION

The purpose of this work is to study the effect of

association on the concentration dependence of osmotic

pressure and diffusion coefficient in dilute polymer

solutions.

The term "association" is defined here as a rapid

equilibrium between unimers (unassociated molecules) and

multimers (associated molecules). Many synthetic polymers

and biopolymers in solution are capable of associating with

one another to form larger molecules via secondary binding

forces such as hydrogen bonds. Several studies [B—13, B-18,

B-37] have indicated that the extent of association depends

on the type of association, the chemical structures of

polymer and solvent, molecular weight, polydispersity,

concentration, and temperature.

An associating system is a multi—component system

consisting of polymer unimers, polymer multimers, and

solvent molecules. The distribution of unimers and

multimers may change drastically with polymer concentration,

depending on the type of association. Consequently,
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association can greatly influence those solution properties

which are functions of molecular size. Moreover, if the

molecular weight of a polymer is to be determined

accurately, the possibility of association must be

investigated--if the polymer associates, traditional methods

for molecular weight determination (such as linear

extrapolations of osmotic pressure in dilute solutions)

should not be used.

In spite of its importance, relatively few studies have

been reported for association in polymer solutions. There

exists no satisfactory theory for describing the solution

properties of these systems. In addition, the lack of

pertinent data in the literature makes the situation even

more unfavorable.

The first systematic investigation of associating

macromolecules was conducted by Elias [B—18]. He studied a

large number of polymer—solvent pairs (both natural and

synthetic polymers) under various conditions and was

successful in describing the thermodynamic properties of

some of these systems using association models.

Only recently has the effect of association on

diffusion been studied. Lin [B—35] measured the osmotic

Pressures and the diffusion coefficients for two forms of

P01ytetrahydrofuran. The two ends of these polymer types

had different functional groups attached-—one the methyl
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group and the other the hydroxyl group. Methylethylketone

(MEK) and bromobenzene (BB) were chosen as the solvents.

Based on an association model, he derived an expression for

the osmotic pressure

1r -——————-—1 +AP+A102+
PRT- 2? 3p ”' 1-1

(Mn)app.e ( )

 

and an expression for the diffusion cofficient

__ o m
DObS—D anSO (1+kd Pp+ ...) (1_2)

where he defined (M ) as the "apparent number average

n aPP.6

molecular weight of polymer molecules in associating

solutions under theta condition" and kdm as the "linear

concentration dependence constant of the average diffusion

coefficient of all diffusing associated and non-associated

species". He concluded that the hydroxyl endgroups could

cause the polymer molecules to associate strongly with one

another.

However, Lin's work can be questioned in several

respects. First, he used a membrane osmometer to measure

osmotic pressures and his polymer samples had molecular

weights so low (one of them was determined by him to be as

low as 2500) that the use of this kind of osmometer is not

recommended. It is very difficult to prevent molecules of

molecular weight smaller than 20,000 from leaking through
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the membrane (see Chapter III). Consequently, faulty data

might have been obtained by him. However, if leakage of

polymer molecules through the membrane did occur, the actual

molecular weights for these polymer samples would be even

smaller and the effect of association greater than those

predicted by him.

Second, Equations (1—1) and (1-2) are oversimplified.

It has long been recognized that the second virial

coefficient is dependent on molecular weight [B-4, B-7, B-9,

B-57]. Justification must be provided for Lin's assumption

:1:

of constant A2 and kdm.

Third, the parameters xasso and kdm in Equation (1-2)

are devoid of physical meaning (because they are eXpressed

in complicated summation terms) and are obtained almost

solely from curve fitting the diffusivity data. Actually,

the concentration dependence of diffusion coefficient, kd,

is governed by three factors [B-49, B-57]--the

thermodynamic, hydrodynamic, and volumetric effects. The

volumetric effect is usually relatively insignificant, and

the thermodynamic and hydrodynamic factors can be estimated

from the two-parameter theory [B-SO].

In this work a different approach is used to study the

effect of association on polymer solutions. New

eXpressions for the osmotic pressure and the diffusion

Coefficient, based on the open association model, are
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derived. These expressions include the molecular weight

dependence of the second virial coefficient, and are

expressed in terms of physical quantities which can be

obtained easily. Predictions from these expressions are

compared with the osmometry and the diffusivity data of

polyethylene glycol (PEG) in benzene.



CHAPTER II

MOLECULAR ASSOCIATION

A. General Background

Under favorable conditions, polymer molecules in

solution can form intermolecular complexes with solvent

molecules or with other polymer molecules [B-36, B-46].

Examples for association of polymer molecules with solvent

molecules are the binding of iodine to amylose, the binding

of counterions to polyions, the association of enzymes with

substrates, inhibitors, etc. Examples for association of

polymer molecules with other polymer molecules are the

nonspecific association of cationic and anionic polymers,

the formation of hemoglobin and various enzymes from

separate protein subunits, the interaction of antigens with

antibodies, etc.

Furthermore, intermolecular complexes in polymer

solutions may be divided, based on the nature of binding

forces, into four classes: polyelectrolyte complexes,

hydrogen-bonding complexes, stereocomplexes, and charge

transfer complexes. Numerous examples for each class have

been compiled by Tsuchida and Abe [B-46].

32



I
'
l
l



33

The formation of intermolecular polymer complexes has

been studied under many names [B-18]--association,

self-association, aggregation, polymerization,

multimerization, complex formation, denaturation, sociation,

supersociation, agglomerization, etc. The association

between polymer molecules in an inert solvent is treated

exclusively in this work. The term "association" or

"multimerization" is defined here as a rapid equilibrium

between unimers (unassociated molecules) and multimers

(associated molecules). Thus an associated solution

consists of a mixture of unimers, dimers, trimers, etc. The

term "monomer" is avoided here because it is more properly

used to designate the molecule from which the polymer is

formed. Instead, the term "unimer" is used to represent a

polymer molecule which is not associated with another

polymer molecule via a secondary binding force.

Association is a function of polymer concentration. As

polymer concentration increases, the polymer molecules are

packed more closely together and, consequently, associate

with one another to a greater extent. The size and the

number of polymer molecules may change drastically depending

on the type of association.

Two groups of methods are commonly used to study

association: "the group specific methods" and "the molecule

Specific methods" [B—18]. Examples for the group specific
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methods are infrared spectroscopy, nuclear magnetic

resonance, ultraviolet, etc. As its name implies, these

methods can be used to determine the structure of a "group"

and the type of interaction that can occur between this

group and another group. On the other hand, examples for

the molecule specific methods are osmometry, light

scattering, ultracentrifugation, viscometry, gel permeation,

I
'

h

chromatography, diffusivity, etc. As its name implies,

these methods look at the "molecule" as a whole and can be

used to determine the characteristics of polymer molecules

such as the molecular weight. In general, the group

specific methods should not be used to study the association

of a polymer which have only a few associogenic groups

(groups that are capable of associating). These

associogenic groups can escape being detected because they

constitute such a small part of the polymer molecule. In

contrast, the molecule specific methods are the prime

choices for studying association because the drastic change

in apparent molecular weight (due to association) can be

easily detected.

B. Types of Association

When studying association, a physical model is assumed

a priori and tested for consistency with experimental data.
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An important consideration in constructing an association

model is to determine whether the number of associogenic

groups are dependent on the size of the polymer molecules.

"End-to-end association" is the kind in which the number of

associogenic groups per molecule is constant, regardless of

the length of the polymer. An example is the association of

two polymer molecules via associating endgroups. On the

other hand, "segment-to—segment association" [B-17, B-18,

B~44] is the kind in which the number of associogenic groups

increases proportionally with the length of the polymer.

End-to-end association is discussed exclusively here.

It is assumed that the unimers and the multimers are

distinguishable only in size, but not in shape and chemical

properties.

1. Open association

There are two basic types of end—to-end association--

open association and closed association. "Open association"

is one in which all types of multimer are present, and

successively higher multimers are formed one step at a time:
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1 i—l i i

—' = . _B1 + Bn_1 +__ Bn , K Kn (2 1)

where Bi represents i-mer. Note that the open association

model does not exclude associations such as

B + B :2’ B , K = K' (2-2)

because the molar concentration

1 (2’3)

C = K'C = K C (for K' = K) (2-4)

which is identical to Equation (2) in Part One for the

open association model.

An analogy can be made between open association and

stepwise polymerization. In stepwise polymerization, each

polymer formed can react further with a monomer to form a

larger polymer via a chemical bond, in a manner similar to

Equation (2—1). Thus the mathematics for open association

and stepwise polymerization are closely related. For

example, the mole fraction of the i-mer in the multimer

mixture (on a solvent free basis) is

c /c = (1 - KC )(KC )1"1 (2-5)
i p 1 1

and the polydispersity is

Mw/Mn = 1 + KC1 (2-6)
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for open association. On the other hand, the mole fraction

of x-mer (where x is the degree of polymerization) and the

polydispersity for stepwise polymerization can be obtained

from Equations (2-5) and (2-6) respectively, simply by

substituting the fraction of conversion (of stepwise

polymerization) for the dimensionless group KC1 [B-41].

Another type is the "closed association" in which only

unimers and n-mers are present:

nB1 :3 B (2-7)
n

Of course, combinations of open association and closed

association are possible. However, only open association is

treated in this work because this type of association is

very useful for describing the behavior of many synthetic

and natural polymers [B-18]. Some of the characteristics of

open association are discussed below.

As shown in Part One, the behavior of open association

can be expressed in terms of the dimensionless group P =

KP/Ml. Both K and M1 can be obtained from osmotic pressure

measurements.

The dimensionless parameter W1 (see Equation (4) in

Part One) is the ratio of the unimer molecular weight to the

apparent molecular weight. It is related directly to the

extent of association and to the reduction of molecules in

solution (due to association). A plot of W1 versus P is

shown in Figure 2-1. W1 decreases most rapidly in the
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region near infinite dilution, indicating that the effect of

association is most prominent in this region.

It is interesting to see how the i-mers are

distributed when the apparent molecular weight is equal to

that of unimer, dimer, etc. A plot of molecular weight

distribution versus apparent molecular weight is shown in

Figure 2-2. Ci/Cp is the mole fraction of i-mer in the

multimer mixture (on a solvent free basis). For low

apparent molecular weights, the distribution tends towards

the small i-mers; for high apparent molecular weights, the

i-mers are more evenly distributed.

2. Dimerization

Selecting an appropriate association model is so

critical that several promising candidates should be tested

with experimental data.

Here the behavior of the dimerization model and the

open association model are compared. The dimerization model

is represented by

B +B —’B (2-8)

and the apparent molecular weight is

\pl'EMl/Ma=0.5+1/(1+§) (2-9)
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where

K E ,’1+8P (2-10)

Equation (4) in Part One for the open association model

and Equation (2—6) for the dimerization model are compared

in Figure 2-1. ‘P1 of the open association is a more rapidly

decreasing function of P, especially at higher

concentrations. This can be explained intuitively by the

argument that the open association model allows multimers

larger than dimers to exist in the solution. The difference

is smaller at low concentrations. In fact, the two plots in

Figure 2-1 have the same initial slope -K/M12. However, the

PEG/benzene data in this work can be described satisfactory

only by the open association model.



CHAPTER III

EXPERIMENTAL METHOD

A. Polymer Sample

Polyethylene glycol (PEG) in benzene is chosen for

studying association in this work because it has been shown

[B-15, B-16, B-34] that the hydroxyl endgroups can form

hydrogen bonds either with other hydroxyl endgroups or with

the ether groups in this system.

Monodisperse PEG samples were purchased from Polymer

Laboratories Inc., Massachusetts. The samples were used

without further purification. The polydispersity of the

samples are listed in Table 3—1.

Table 3-1. Polydispersity of the PEG samples.

 

 

M Mw/Mn

440 <1.09

960 <1.06

4250 <1.03

12600 (1.04

42
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B. Osmometry Data

When the free energy of a solution has been diminished

by an addition of solute, it is possible to compensate for

this reduction by applying an external pressure to the

solution. For example, when solvent molecules diffuse

through a semi-permeable membrane from a dilute solution

into a more concentrated one through the process of osmosis,

it is possible to prevent the diffusion by applying an

external pressure (called the osmotic pressure) .

Osmotic pressures are frequently used to determine the

molecular weight of a polymer and to study the

thermodynamics of polymer solutions (such as second virial

coefficient, Flory-Huggins interaction parameter, and

activity coefficient). A plot of reduced osmotic pressure

versus concentration for a dilute polymer solution often

yields a straight line, and the number-average molecular

weight of the polymer can be determined by extrapolating the

data to zero concentration [B-7, B-24, B-25]. However, if a

straight line is not obtained, it is necessary to repeat the

measurements with several different solvents to prevent

faulty extrapolations.

The membrane osmometer [B-43, B-52] is commonly used

for measuring the osmotic pressures of polymer solutions.

The best type is the electrical and automatically recording

dynamic osmometer which usually allows equilibrium to be
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reached within 30 minutes. However, its usefulness is

3 5
limited to molecular weights range from 5 x 10 to 5 x 10

[B-7, B-43, B-52]. The upper limit is determined by the

smallest osmotic pressure that can be read, and the lower

limit is determined by the permeability of the membrane. In

addition, it is often difficult to find a suitable membrane

for a particular polymer-solvent pair. The membrane must

not be dissolved by the solvent. If the pores of the

membrane are too small, the measurements take a long time.

On the other hand, if they are too large, polymer molecules

may leak through the membrane. Such a membrane is not

always available.

For molecular weights under 2 x 104 , highly sensitive

vapor pressure osmometers should be used [B-43, B-52].

Vapor pressure osmometry is an indirect method for measuring

molecular weights and osmotic pressures, and a standard is

required for calibration. This kind of osmometer offers the

advantages that it requires no membrane, needs only a small

amount of sample, and is very easy to operate.

The vapor pressure osmometry data of Elias [B-15, B-19]

for PEG in benzene at 25°C were used in this work.
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C. Diffusivity data

Diffusion coefficients in this work were measured using

a Mach-Zehnder interferometer [B-5, B-lO]. The description

of this apparatus and its operation have been given in many

places [B-5, B—27, B-35, B-39] and are not repeated in

detail here. A complete description can be found in the

dissertation of Bidlack [B-5]. Although the Mach-Zehnder

interfermometer was developed a few decades ago, it remains

one of the most accurate methods for measuring the

concentration dependence of diffusion in solution [B-ll].

The interferometry technique involves carefully

bringing a more concentrated solution into contact with a

less concentrated solution to form a sharp interface in an

optical cell where free diffusion is allowed to take place.

The optical cell is immersed in a well-controlled

temperature bath. The diffusion rate can be followed by

measuring the refractive index in the cell as a function of

time and position. If refractive index is assumed linear

with concentration over small concentration ranges, the

diffusion coefficient can be calculated from photographs of

this fringe pattern at several times during the diffusion

process. The concentration for the measurement is taken to

be the arithmetic average of the original solution

concentrations.
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The interferometer was checked by comparing the

diffusion coefficients of five aqueous sucrose solutions at

25 0C with those reported by Gosting and Morris [B-22]. The

data of Gosting and Morris have been confirmed by several

investigators [B-2, B-12] and can be fitted by the method of

least squares to the empirical relationship

6
D = 5.226 ( 1 — 0.01480 c ) x 10- ‘:-0.002 (3-1)

3 ofwhere c is the sucrose concentration in grams per 100 cm

a water solution diffusing into pure water. A summary of

the comparison is presented in Table 3—2. The standard

deviation is found to be less that 1%.

Table 3-2. Comparision of the diffusivity data determined

in this work with the data of Gosting and

Morris.

 

6
D x 10 , cm2/sec Z deviation

c, grams/100 cm3 This work Equation (3-1)

0.4 5.220 5.195 +0.48

0.6 5.201 5.180 +0.41

0.8 5.191 5.164 +0.52

1.0 5.158 5.149 +0.17

1.2 5.108 5.133 —O.49
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The experimental procedure described by Bidlack [B—5]

was used in this work. The solutions were prepared and

agitated gently for about three hours before using. The

concentration differences between the two solutions were

chosen to be 0.40 g/dl for all runs. The temperature bath

was maintained at 25.0 i 0.1 0C. Each experiment took from

30 minutes to an hour for completion, depending on the

molecular weight. Six exposures were usually taken for each

run.

Because of the small refractive index difference

between the PEG/benzene solutions, the number of fringes, J

(see reference [B-5]), was usually less than 10. It was

vital to measure the value of J (i.e., the total refractive

difference between the two solutions) with great accuracy,

for a slight error could change the result significantly.

Each exposure provides a value of J. Since there were six

exposures per run, six values of J were obtained and the

average was used to calculate the diffusion coefficient. If

the difference between the largest and the smallest values

of J exceeded 0.3, the run was discarded. The accuracy of

the diffusion coefficients reported in this work were

estimated to be within 4%. A sample calculation is

presented in Appendix A.



CHAPTER IV

THERMODYNAMICS 0F ASSOCIATING POLYMER SOLUTIONS

A. Theoretical Background

The behavior of polymer solutions deviates greatly from

Raoult's law except at extreme dilutions. Excess

thermodynamic properties are large even for systems of

negligible heat of mixing. This is due to the large entropy

effect for mixing giant long-chain polymer molecules with

small solvent molecules. Below are some theories used

frequently to describe the thermodynamics for nonassociating

polymer solutions. In this work, an attempt is made to

extend the applications of these theories to associating

systems by replacing the unimer molecular weight with the

apparent molecular weight.

1. Flory-Huggins Theory

The Flory-Huggins theory [B—21] has been used

extensively due to its simplicity. This theory expresses

the change in free energy of mixing as

AGm
--——- = + +
R T “8 ””8 np 1MP ¢S¢pms + ms” (4-1)
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where the subscript s designates the solvent and the

subscript p the polymer. 0 and n are the volume fraction

and number of moles, respectively. m is the ratio of molar

volumes of polymer to solvent.

X is called the Flory-Huggins interaction parameter.

It is a dimensionless quantity and a function of the

interaction energy characteristic of a given solute-solvent

pair. It consists of both entropic and enthalpic

contributions and can be expressed empirically by [B-41]

x=x'+‘-I;—:-(5S-6)2
P

(4-2)

where x' is the entropy parameter with value between 0.3

and 0.4. 58 and 5p are "solubility parameters" of the

solvent and the polymer, respectively. VS is the molar

volume of the solvent and R is the gas constant.

The thermodynamic quality (good solvent versus bad

solvent) can be evaluated in terms of X. Note that the free

energy must be negative for the polymer to dissolve in the

solvent. Since the first two terms in Equation (4-1) are

always negative, the solubility of the polymer is determined

solely by the magnitude of X. It can be said that the

smaller the value for x, the more negative the value of AGm,

and the better the solvent for the polymer. A good solvent

is defined as one in which the interaction between polymer
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and solvent is stronger than that between polymer and

polymer.

2. Two-Parameter Theory

The two-parameter theory [B-50, B-57] is a group of

theories which express the properties (such as second virial

coefficients and viscosities) of dilute polymer solutions in

terms of two basic parameters.

Since polymer molecules in solution are constantly

coiling and uncoiling owing to thermal fluctuations, it is

possible to characterize their dimensions only by averages.

One of these averages is the mean-square end-to—end distance

of an unperturbed chain, <R2>O. The word "unperturbed"

implies that the polymer chain is completely free of outside

influences. Unperturbed dimensions are affected only by the

so-called "short-range interferences" due to fixed bond

angles and hinderances to rotation. The parameter [B-21,

B-52]

<Rza3

MM]

8

 

(4-3)

is often used to characterize the unperturbed state because

this quantity is almost independent of molecular weight for

sufficiently long chains, and its values are readily

available for a large number of polymer-solvent pairs [B—9].
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For a given polymer, A depends on temperature and solvent

characteristics. However, the solvent effect is usually

insignificant, at least for nonpolar polymers [B-9].

There are also the so—called "long-range interferences"

or "excluded volume effects". They arise because two

segments cannot occupy the same space at the same time. The

mean-square radius of gyration for a real linear

macromolecule in an infinitely dilute solution is generally

expressed as [B-4, B-57]

<32> = as <52> (4-4)

The expansion factor as measures the extent to which the

excluded volume perturbs the polymer molecule from its

unperturbed state. In contrast to A, information on as is

generally not available and it depends on temperature,

polymer molecular weight, and solvent characteristics.

The excluded volume effects can be eliminated by a

judicious choice of solvent and temperature. The polymer

chain contracts in poor solvents because the polymer

segments prefer to associate with other polymer segments

rather than with solvent molecules. When the contraction

due to poor solvent balances the expansion due to the

excluded volume, the net excluded volume is zero and the

solution is in the unperturbed or the theta state.
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A common application of the two-parameter scheme [B-50,

B-57] is to express the expansion factor as as

018 = as (A, B9 M) (4'5)

Yamakawa-Tanaka [B-55] suggest the expression:

652 = 0.541 + 0.459 (1 + 6.04 z)0°46 (4-6)

where

. - 3.3/2 m
2” A3

(4-7)

The parameter A represents the short-range interferences,

and the parameter B the long-range interferences. As

mentioned earlier, A can be obtained rather easily.

B is a function of temperature and solvent. The

Preferred method for calculating B involves light-scattering

measurements to determine aS at several polymer molecular

weights [B—57]. The quantity 2 can then be determined for

each value of M from Equation (4-6), and by Equation (4‘7) B

can be estimated from the slope of 2 versus Ml/2 plot. The

shortcoming of this approach is that very limited

1 .

lght~scattering measurements are available in the

llterature.

An alternative for estimating B is to use the

i .

ntrlnsic viscosity relation [B-21. 3’57]
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B

[n] = Kv M

 

(4-8)

Values of Kv and fi have been tabulated for many

polymer-solvent pairs [B-9]. The parameter B can be

estimated from the equation [B-SO, B-57]

B = KV M845 - 1.05<1>A3

0.27874>M;5

(4-9)

which can be used when BMl/Z/A3 < 5.06. Kurata et al.

[B—32, B-33] recommend <I>= 2.7 x 1023 for well-fractioned

polymer (Mw/Mn < 1.1) and <1>= 2.5 x 1023 for ordinary

fractioned polymers (MW/Mn > 1.1).

Although the two-parameter theory provides

satisfactory predictions for the properties of flexible

P01 ymer chains in dilute solution, it breaks down for stiff

Chains and for the region far away from the theta state

(lzl < 0.15) [B-57].

3. Second Virial Coefficient

As a general rule, polymer solutions seldom behave

idea:Lly except at infinite dilution. A convenient way to

de$Cribe the nonideal behavior of a polymer solution is to

e

xpress the chemical potential of the solvent, p , in terms

0f the power series [B-21, B-57]:
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- 2+...)

o

“s-“s -RTVSP(1/M+A2p +A3p

(4-10)

where V8 is the molar volume of the solvent. A2 and A3 are

the osmotic second and third virial coefficients,

respectively. The virial coefficients represent the binary

and higher-order interactions of polymer molecules due to

excluded volume effects. In dilute solutions, it is

sufficient to consider only the second virial coefficient

because the influence of the third and higher order virial

coefficients are usually relatively small.

The second virial coefficient for a dilute polymer

solution has several significant meanings. It is directly

related to the chemical potential of the solvent, the

excluded volume, and the Flory-Huggins interaction

Parameter. It may also be used to measure the goodness of a

S°1Vent for a particular polymer--good solvents are commonly

dEfined as those having positive A2.

The relationship between A2 and the excluded volume

depends on the geometry of the polymer molecules. If the

polylner molecules behave like rigid spheres, the excluded

vollltne per sphere, u, (see Figure 4—1) is [B-24]

(4-11)u = 4 (volume of sphere)

an .

d It can be shown that the second virial coefficient can

b

e related to u by
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2
A2 = Na u / 2 M (4-12)

Since the volume of a spherical molecule is proportional to

the molecular weight M, the second virial coefficient for

rigid sphere molecules is inversely proportional to M. For

rigid rod molecules, the second virial coefficient is

ijidependent of the molecular weight [B-57].

In general, the second virial coefficient can also be

c<31~related with the molecular weight by the relation [B-9]

(4-13)

and a are empirical constants which depend on thewileelre K'

As mentioned earlier, a=lsolvent and temperature.

The

pol ymer,

ft>z‘ rigid spheres and¢x=0 for rigid rod molecules.

realation is usually valid only within limited molecular

"aiiégllt range, and for most systems the values of a are found

to be less than 0.5 [B-9].

Since the osmotic pressure can be obtained from the

Flor y_HugginS theory [B-Zl]

 

n l .V’Z
MT.” (% -X) ‘_E-—p+ .00

(4-14)PRT

VS

1.
At (lain been shown easily that the second virial coefficient

a.

nd X are related by

V2

A2=(;s-x1—E—§

M (4—15)
Vs
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When X=1/2, A2=0, the excluded volume vanishes, and the

solution is said to be under theta conditions. This

situation arises because of the apparent cancellation

between the enthalpy of mixing and the excess entropy of

mixing.

B. Expression for Osmotic Pressure for Associating Polymer

Solutions

In Part One, an expression for the concentration

dependence of osmotic pressure has been derived:

_. M11?“
 

* .

a:

‘wh531‘€3 A is assumed to be independent of concentration for

2

ea‘:}1 nnolecular weight. In this section, Equation (4-16) is

*

extended to include the concentration dependence of A2 , and

the Osmotic pressure is expressed in terms of the unimer

n1

olecular weight, the mass concentration, the association

c.
onstant K, and the parameter 0: in Equation (4—13).

* 1|:

First, an approximation for A2 is made. A2

1.

S a complicated term because it includes the interactions

be
'tWVeen all multimers (such as unimer-unimer, unimer-dimer,



58

dimer-dimer, etc.). Recently Tanaka and Solc have shown

a:

that A2 can be approximated by [B-45]

an:

A 3' A2 (4-17)

where A2,n is the second virial coefficient of a

monodisperse polymer with molecular weight equal to the

number-average molecular weight of the multimer mixture.

(In Tanaka and Solc's paper, open association is identified

as a heterogeneous polymer solution having a Schultz-Zimm

distribution and a polydispersity less than 2.) For

excluded volume parameter 2 < 5, this approximation is

accurate within 5%. Since the sizes of the multimers vary

with concentration, A2 n also varies with concentration.

9

:1:

Next, A2 is expressed in terms of the second virial

coefficient of unimer, A The motivation is that A21 can

21'

be calculated easily by the two-parameter theory. If

equation (4-13) can be applied to the multimers such that

A21 = K. Mi-a (4-18)

where A2i is the second virial coefficient of i-mer, then

A21 = K' 111‘“ (4—19)

and

A = 11' M “" <4-20)
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Substituting Equations (4-19) and (4-20) into Equation

:1:

(4-17), A2 can be expressed as

*
—01

A2 = A21 (Ml/Ma)

= A a (4-21)
21 *1

where \111 has been defined previously (Equation (4) in Part

One) as Ml/Ma'

Substituting Equation (4-21) into Equation (4-16), the

osmotic pressure can be expressed as

—(X

The observed second virial cofficient obtained from

differentiating this equation with respect to p and

evaluating the result at p=O is

2
(112*)0b = A21 — K / M1 (4-23)

S

Which is the same as Equation (16) in Part One.

Equation (4-18) is valid for positive A2 only. Because

A2 may become negative as molecular weight decreases,

application of Equation (4-22) is restricted to polymer

molecules of ordinary size (with molecular weight higher

than 104).
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C. Presentation of Osmometry Data and Discussions

1. Estimation of K

According to Equation (4-23), if the dependence of A
21

on M1 is relatively weak compared to that of K/Mlz, a plot

a:

of (A2 )obs versus l/Ml2 should yield a straight line with

*

slope equal to -K. The values for (A2 )obs can be obtained

a:

from the initial slope of 1r /pRT versus p.

The osmometry data of Elias [B-16, B-19] for PEG in

benzene are used here to test this equation. Since the data

can be well fitted by a straight line (see Figure 4-2), the

slope is a good initial guess for K. The final value of K

calculated based on the association model and the least

squares method is 11000 -_+_ 300 cc/mole.

Association of PEG in benzene has also been studied by

Afifi-Effat and Hay [B-l]. Their association model

pred i cted that

*

(A2 )obs = A21 ‘ K / M1 (4‘24)

and they claimed that their data were in good agreement with

this prediction. However, this author found a lack of

consistency between their raw data. calculations, and

r .
eSults. The data of Elias do not agree with Equation

(4‘24). (A plot of (A

2|:

2 )Obs versus 1/M1 is not linear.)
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Figure 4—2. (A 2*)obs versus l/Ml. Experimental data take

from Elias et al. [B-16, B-19]. n



62

2. Estimation of A2*

The two-parameter theories can be used to estimate the

second virial coefficient for linear, flexible chain

polymers [B-SO, B-57]:

Na B 110(5)

A2 = "“E;‘—" (4-25)

where

E'=.£L.

as3
(4-26)

ho (g) = 0.547 {1 - (l—+ 3.9035 }-0o4683

2
(4-27)

Thus the second virial coefficient A2 of PEG in benzene at

25 0C can be easily estimated if the parameters A and B are

known. The parameter A, which represents the short-range

interferences, is given by [B-9]

 

<R2>

A={ °

%

_ -9
M I - 7.9 X 10 0‘31 (4’28)

The parameter B, which represents the long-range

interferences, is estimated indirectly from the empirical



63

Mark-Houwink intrinsic viscosity relationship (see Equations

(4-8) and (4-9)):

[0] = Kv M6 = 0.063 M0°64 (4-29)

where [n] is the intrinsic viscosity in ml/g. The values of

RV and 5 in Equation (4-29) are obtained from curve fitting

the raw data of Rossi and Cuniberti [B-42] using the method

of least squares. It should be pointed out that Rossi and

Cuniberti fitted their data with different values of Kv and

B:

[n] = 0.00129 110'5 (4-30)

because they were preoccupied by the idea that a should

always be 0.5. However, their raw data clearly agree only

with Equation (4-29), and the use of Equation (4-30) is

incorrect.

Figure 4-3 shows the second virial coefficient as a

function of molecular weight for PEG in benzene at 25 oC,

predicted by the two-parameter theory. The value of A2

increases very rapidly with molecular weight before it

reaches a maximum. (When M<297, B<O and the theory

predicts negative values for A2.) For higher molecular

weights, A2 decreases (not so rapidly) with increasing

molecular weight. In short, A2 can be positive or negative,

increasing or decreasing functions of molecular weight,

depending on the situation.
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The two-parameter theory expresses A2 in such a

complicated function that the derivation of a diffusion

coefficient equation using this function is extremely

difficult. An alternative is to assume a simplier relation

such as A2 = K' M-a. In fact many polymer-solvent pairs

have been found to obey this relation [B-4, B—9].

Expressions for the concentration dependence of osmotic

pressure and diffusion coefficient based on this relation

has been derived in Section B of this chapter.

However, the relation A2 = K' M-a is valid only for

positive A2. It cannot be used to describe the data of

Elias because some of these data (M1=208, M1=409) must take

negative A2 if they are to fit the open association model.

Of course, a more sophisticated relation may correct this

suitation, but it also leads to expressions that are very

difficult to use in diffusion theory.

3|:

One solution to this problem is to assume an A2

independent of concentration for each polymer sample when

calculating (see Equation (15) in Part One). In other

words, for five samples (as is the case for Elias' data)

five A2*'s are used, and each is an average over the

concentration. The values for A2* obtained using this

assumption are plotted as a function of molecular weight in

Figure 4—4. This plot is in qualitative agreement with the
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predictions from the two-parameter theory (compare with

Figure 4-3).

For high molecular weights, this assumption is valid

because the second virial coefficient is a weak function of

molecular weight [B-4, B-9, B-21, B-32] and concentration.

For low molecular weights, the justification for this

assumption is as follows. According to Equation (15) in

Part One, Ilconsists of two terms: the association term W1

and the virial term A2*M1P. If the virial term is

sufficiently small, the error introduced by this assumption

in calculating H is negligible. Figure 4-5 shows the

magnitudes of these two terms plotted against concentration

for two molecular weights. It is seen that the virial term

for the low molecular weight sample (M1=594) is very small.

Consequently, this assumption can also be used for low

molecular weights.

3. Other Discussion

As shown in Figure 4-5, the association term is a

decreasing function of p, but the virial term is an

increasing function of D. For the low molecular weight

sample (Ml=594), the association term dominates; for the

high molecular weight sample (M1=6000), the virial term

dominates. It is interesting that the effects of these two

terms sometimes balance each other, as for the sample
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Figure 4-5. Comparison of the association term G————-)

with the virial term ( ----- ) in Equation (15),

in Part One, for PEG in benzene at 25 °C.
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(M1=1518). rIfor this sample (see Figure 1 in Part One) is

almost unity regardless of concentration, and thus it

behaves like one under theta conditions (see Chapter II).

When both terms are large, the model predicts that the

association term dominates at low concentrations while the

virial term dominates at higher concentrations. In this

case, a plot of Ilversus p should first pass through a

minimium and then increase with p. This behavior has

already been observed in some systems [B-18, B-35].

Although the sample (M1=6000) displays a linear

behavior and can be satisfactorily descirbed by the

nonassociating model, it is incorrect to assume that

association does not occur at higher molecular weights. In

fact, Elias has shown that the association constant is

independent of molecular weight [B-19].



CHAPTER V

DIFFUSION IN ASSOCIATING POLYMER SOLUTIONS

A. Theoretical Background

Diffusion is movement of a chemical species from a

region of higher concentration to a region of lower

concentration. The flow of solute molecules per unit time

across a unit area perpendicular to the direction of flow (x

axis), J, is given by Fick's law

L
. II I

U

Q
)

|.
.

(5-1)

Q
)

x

where D is known as the diffusion coefficient.

The diffusion coefficients of many polymer solutions

depend strongly on the nature of the solvent and polymer

concentration. Most of the studies in this area indicate

that for dilute polymer solutions in good solvents, the

Value of D generally increases with polymer concentration.

On the other hand, the values of D for films or solids in

the region near the undiluted polymer generallly increase

sharply with increasing diluent concentration. Therefore

D(p) in good solvents can be expected to exhibit a maximum

70
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at an intermediate concentration from pure solvent to pure

polymer.

In addition to solvent and polymer concentration, the

diffusion coefficient may also be affected by molecular

association. The larger associated complexes (dimers,

trimers, etc.) diffuse much slower than the unimers, leading

to lower diffusion coefficients.

The concentration dependence of diffusion coefficient

in dilute polymer solutions is often expressed as [B—SO,

B-57]

D = DO ( 1 + kd p +-... ) (5-2)

Accordingly, predicting the value of D requires the

knowledge of DO and kd. At the present time, Do can best be

predicted by the Kirkwood-Riseman theory, and kd by the

Pyun-Fixman theory.

1. Kirkwood-Riseman Theory

The Kirkwood-Riseman theory [B-29, B—30, B—57] provides

a simple method for predicting the diffusion coefficient for

linear, flexible polymer chains at infinite dilution under

theta conditions. Infinite dilution implies that the

polymer molecules are widely dispersed in the solvent and

there are no interactions between individual polymer chains.
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This theory is applicable only under theta conditions

because the excluded volume effects are not included in the

derivation.

Its derivation is based on the assumption (the nonfree

draining limit) that there exists a very large hydrodynamic

interaction between polymer segments, and the polymer chains

behave like rigid molecules. The Kirkwood-Riseman theory is

expressed as

0.196 k T

(D) = --—-— (5-3)

0 9 USAM’li

where k is the Boltzman constant and "s is the viscosity of

the solvent. Since A and ”s are usually available, the

determination of (DO)e for many polymer-solvent pairs are

relatively simple. For solutions under nontheta conditions,

Duda et al. have suggested the modified form [B-48, B-SO]

(D

D0 = 23;" <5-4)
 

where Do is the diffusion coefficient at infinite dilution

under nontheta conditions, and as is the expansion factor

defined previously. Since as a 1 except for very poor

solvents,

(DO)E3 2 Do (5—5)



73

and thus the Kirkwood-Riseman theory provides an upper bound

for the diffusion coefficient at infinite dilution.

Duda et. al. [B-Sl] compared the predictions of this

theory with the experimental values of (Do)6 for polystyrene

in cyclohexane under theta conditions. The predictions were

found to be slightly higher than the experimental values.

The average ratio of Do(exptl) to Do(theory) was 0.86.

2. Modified Pyun-Fixman Theory

The behavior of dilute polymer solutions changes

significantly with polymer concentration. As concentration

increases, the polymer molecules interact hydrodynamically

with each other even though they may not overlap or

entangle.

The concentration dependence of diffusion coefficient,

kd, can be expressed as [B-49]

k = 2 Ad M - kS — 2 V (5-6)
2 p0

where A2 is the thermodynamic second virial coefficient, and

Vp0 is the partial specific volume of the polymer at

infinite dilution. The quantity kS is defined by the

series expansion [B-49]

f=fo(1+ksp+...) (5-7)
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and f is the friction coefficient defined by the relation

force on a polymer molecule = f ( u - u ) (5-8)

where 11S and up are the velocities of solvent and polymer,

respectively, with respect to a convenient reference frame.

According to Equation (5-6), the value of kd depends on

the thermodynamic, hydrodynamic and volumetric effects. The

thermodynamic effect, A2, has already been discussed in

Chapter IV; the hydrodynamic effect, ks, can be estimated by

the Pyun-Fixman theory; and the volumetric effect, vpo’ can

be measured from density experiments. The effect of Vpo is

usually relatively small, and can be ignored if kd is less

than 20 cmB/g.

The Pyun-Fixman theory [B-38, B-54, B-57] is based on a

spherical model in which the spheres are composed of both

polymer and untrapped solvent. It can be expressed as

S

ks = 2.23 6yfl3.NaM A3/512}- Vp0 (version I)

(5-9)

or

.L i 3 3

ks ={2.23 62 flzNaM A /512%.}- Vp0 (version II)

(5-10)

under theta conditions. Equation (5-9) is called version I,

and Equation (5-10) version II, of the Pyun-Fixman theory
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[B-51]. They are related by the parameter A which is

defined as

y

H

(Do)6,exptl / (Do)6,theory (5-11)

To extend its application for nontheta conditions, Duda et

al. [B—53] have suggested the following expressions

* 41ra03 Na

 

 

k = _ __
s [7.16 K010 )1 3M vpo (5_12)

a ___ 6%135 AMlfias

° 16 (5-13)

* _ 4096 2

7201531 (5-14)

* '21.n[l+x+(2x+x2);5]

K(A ) = 24f{ - 1 x2

0 0 (254+ x2);5

expL4%f(l">02(2'+>O]dx

(5-15)

which are collectively called the modified Pyun-Fixman

theory. Thus if A, B and Vp0 are known for a particular

polymer-solvent pair, kS can be calculated in a

straight-forward manner. When 2:0 and as=1 (i.e., under

theta conditions), Equations (5-12) through (5-15) reduce to
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Equation (5-9). However, it remains for future work to test

the modified Pyun—Fixman theory with experimental data.

B. Expression for Diffusion Coefficient for Associating

Polymer Solutions

In Part One, an expression for the concentration

dependence of diffusion coefficient for associating systems

has been derived, assuming that A2* is independent of

concentration for each molecular weight. Following the same

procedure as described in Part One, the diffusion

a:

coefficient D based on Equation (4-16) can be eXpressed as

 

 

* M1

D ={l‘(ks+2Vm)I-<—-:}

aP

{2‘21 MK21(2 J11“ s(1+2))P

£—_—(1+z)l+-]

(5—16)

where

\/1 + 4 P (5-17)

as defined previously. In deriving this equation, the

parameters ks, f and Vp were expanded in terms of a power

series with concentration, and only the first-order terms
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are retained. When a = O (i.e., Aikis independent of

molecular weight), this expression reduces to Equation (23)

in Part One. Note that Equation (5-16) is considerably more

complicated compared with Equation (23). In addition, the

parameter a must be estimated.

C. Presentation of PEG Diffusivity Data and Discussions

1. Estimation of DO

The Stoke-Einstein theory [B-6, B-AO]

U ll k T / 61rn r (5-18)

is often used to estimate the diffusion coefficient of

liquids. k is the Boltzmann's constant, n the solvent

viscosity, and r the solute radius. This theory is valid

only for large, spherical molecules diffusing in dilute

solutions. Moreover its direct application is not always

possible because the solute radius r is often not available.

However, many authors have used the form Dn/T = f(solute

size) as a starting point in developing empirical

correlations [B—40].

Polymer molecules in solution, in general, do not

behave like large spherical molecules. They are best

imagined to be like necklaces consisting of spherical beads
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connected by strings that have no resistance to flow.

Consequently, the Stoke-Einstein equation fails to

accurately predict the diffusion coefficients of polymer

solutions. On the other hand, the Kirkwood-Riseman theory

is more successful because it is based on a more realistic

random coil model. Although its application was originally

limited to polymer solutions under theta conditions, it has

been extended to nontheta conditions (the modified

Kirkwood-Riseman equation, see Equation (5-4)). Table 5-1

shows that the predictions of the modified Kirkwood-Riseman

theory and the experiment data for PEG in benzene are in

good agreement. The difference between the predictions and

the data is within 5%.

Table 5-1. Comparison of diffusion coefficients predicted

from the modified Kirkwood-Riseman equatiog with the

experimental data for PEG in benzene at 25 C.

 

Do x 106 (cmZ/sec)

M Kirkwood-Riseman Experiment Z difference

(This work)

 

960 5.30 5.05 5.0

4250 2.31 2.20 5.0

12600 1.28 1.25 2.4
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2. Estimation of kS

Despite many experimental and theoretical studies, the

prediction of k8 still remains a somewhat unsettled problem.

Duda et al. [B-Sl] recently evaluated several existing

theories by comparing their predictions with experimental

results. They concluded that the Pyun-Fixman theory

(versions I and II) was the best theory for predicting ks at

the present time. Still, one should not expect very

accurate predictions from this theory. The predictions may

differ from the experimental values by as much as 60%, as is

the case for the data of Duda et al.

To compensate for the uncertainty of the Pyun-Fixman

theory, the parameter A (see Equation (5-10)) is adjusted to

fit the diffusivity data. k=0.88 was used to fit the

diffusivity data of this work. This compares favorably with

A=O.86 used by Duda et al. [B-51] to fit the diffusivity

data of polystyrene in cyclohexane.

Figure 5-1 is a plot of kS versus M for PEG in benzene

at 25 oC, predicted by version I of the Pyun-Fixman theory.

Note that the application of this theory is originally

limited to nonassociating systems. In this work, its

application was extended to associating systems by replacing

the unimer molecular weight with the apparent molecular

weight.
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Figure 5-1. ks versus M for PEG in benzene at 25 0C,

predicted by the two-parameter theory (Equation

(5—12)).
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3. Other Discussions

As shown in Figure 2 (in Part One), the diffusivity

data are well described by the association model. The data

for the low molecular weight samples (M1=440, M1=96O) are

strongly dependent on concentration due to association. The

data for the higher molecular weight samples (M1=4250,

M1=126OO) are less dependent on concentration because the

effect of the association term diminishes as molecular

weight increases and its effect is also compensated by other

terms (A2 and ks).

Comparision between predictions from the Pyun-Fixman

theory and experimental data was made only for polystyrene

in cyclohexane under theta conditions. Thus it is necessary

to test this theory and its modified form (the modified

Pyun-Fixman theory) more extensively for future work.

Accurate knowledge of kS is vital for predicting diffusion

coefficients especially for high molecular weight polymers.

D. Presentation of PTHF Diffusivity Data and Discussions

Diffusivity data for polytetrahydrofuran (PTHF) in five

different solvents were measured. They were used to

investigate the effects of solvent, molecular weight and
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temperature on diffusion; to test the Kirkwood-Riseman

theory; and to calculate the molecular size of the polymer.

Two sets of PTHF samples were used. The first

consisted of three "fresh" PTHF samples purchased recently

from Polymer Laboratories, Inc., Massachusetts, and their

characteristics are listed in Table 5-2.

Table 5-2. Characteristics of "fresh" PTHF samples.

 

 

Molecular weight Endgroups Polydispersity

2850 -CH3 < 1.15

30800 -CH3 < 1.10

290000 -CH3 < 1.15

 

The second set consisted of the "old" PTHF samples used

earlier by Lin [B-35]. The adjective "old" was used because

these samples were purchased more than three years ago.

They were labeled, according to Lin, as PTHF-A1, PTHF-Bl and

PTHF-B2, with characteristics listed in Table 5-3. Note

that the molecular weights for PTHF-B1 and PTHF—B2

determined by Lin were lower than those by the manufacturer.

Lin pointed out that the manufacturer's values were in error

because the manufacturer overlooked the fact that these

polymers were capable of associating in solution [B-35].
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Because Lin did not store the unused portions of these

samples (which were later used by this author) under

nitrogen nor at very low temperature (as they should be),

the characteristics of these polymer samples might have

changed over the interim period of time.

Table 5-3. Characteristics of "old" PTHF samples (before

degradation). MM and Ml are respectively the

molecular weights determined by the manufacturer

and by Lin.

 

 

Polymer Code Endgroups MM Ml

PTHF-A1 —CH3 281,000 ----

PTHF-B1 —OH 25,000 7,660

PHTF-B2 -OH 10,200 2,500

 

Five solvents were used: methylethylketone (MEK),

diethylether (DE), n-butanol (BOH), ethylacetate (EA), and

bromobenzene (BB). They represent a wide range of solvent

power and hydrogen—bonding capability, with characteristics

listed in Table 5-4.
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Table 5-4. Characteristics of solvents. nZSand "34 are the

viscosities (centipoise) at 25°C and 34°c,

respectively. X:is the Flory-Huggin interaction

parameter.

 

Solvent M.W. W25 "30 H-Bonding

 

strength X

MEK 72 0.40 0.36 Medium 0.40

DE 74 0.23 ---- Medium 0.64

BOH 74 2.58 2.05 Strong 1.48

EA 88 0.42 ---- Medium 0.38

BB 157 1.06 0.95 Poor 0.61

 

Diffusion coefficients were measured using the

Mach-Zehnder interferometer. A summary of the data is

presented in Appendix C. Unless otherwise stated, a polymer

solution of 0.30 g/dl was allowed to diffuse into pure

solvent at 25°C during each experiment. Thus the average

concentration was reported to be 0.15 g/dl. The accuracy of

these data was estimated to be within 3%.

1. Effect of solvent

As shown in Appendix C, the diffusion coefficients of

PTHF in various solvents decrease in the order DB > MEK > EA

> BB > BOH. This trend indicates that polymer molecules

diffuse faster in solvents with lower molecular weights (see
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Table 5-4). The slow diffusion rate for the polymer

molecules in BOH is attributed to the fact that the BOH

molecules are capable of associating with each other to form

larger clusters.

It is often useful to use the form Dn/T = f(solute size)

as a starting point for correlating diffusivity data. If

Dn/T is plotted against M on a log-log graph, the result can

be fitted by a straight line for each solvent, as shown in

Figure 5-2. The straight lines are almost parallel with

each other, and the quantity Dn/T decreases in the order MEK

> DE > BOH > EA > BB. Note that BOH takes a higher position

in the order because the effect of viscosity has been

accounted for.

The diffusivity data can also be related by the form

D = G M-d. The estimated values for the parameters G and d

are presented in Table 5-5. Recall that the

Kirkwood-Riseman theory,

(D ) = 0.196 k T / A n Mo'so 6 (5—19)

predicts that the diffusion coefficient should be inversely

proportional to the square root of molecular weight. The

data in Table 5-5 agree well with this prediction, for the

values of d are very close to 0.5.
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Figure 5-2. Dn/T versus M for the "fresh" PTHF samples in

various solvents at 25 °C. (A) MEK; (0) DE; (A) BOH;

(1.) EA; (‘7) BB-
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Table 5-5. Parameter estimations for the diffusivity data

of "fresh" podlymer samples at 250C using the

form D = G Md .

 

 

Solvent G x 10"4 d Correlation coefficient

MEK 2.134 0.502 -1.00

BB 0.296 0.484 -1.00

 

It is interesting that if Dn/T is plotted against the

solvent molecular weight on a log-log graph, the result fits

a straight line for each polymer sample (see Figure 5-3).

The slopes of the lines suggest that Dn/T is inversely

proportional to the solvent molecular weight. Wilke and

Chang also made the similar correlation for low molecular

weight organic liquids and found that Dn/T was directly

proportional to the square root of the solvent molecular

weight [B-53]. However, there exists no satisfactory theory

for describing the effect of solvent on diffusion in dilute

polymer solutions. Further work is needed to determine the

correlation between diffusion coefficient and solvent

molecular weight.
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Figure 5-3. Dn/T versus M5 for the "fresh" PTHF samples at

25 0C. M and M5 are the molecular weights of

polymer and solvent, respectivley.
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2. Effect of temperature

Figure 5-4 is a plot Dn/T versus M for PTHF in MEK and

BB at 25 oC and 34 OC. The variation of temperature appears

to have no effect on diffusion for MEK. However its effect

is rather significant for BB. Few researches have been

conducted for investigating the effect of temperature on

diffusion for dilute polymer solutions. Although some

researchers suggest that the diffusion coefficient is a

peculiar function of the combination of

polymer/solvent/temperature, systematic study in this area

remains for future work.

3. Molecular Dimensions

Table 5-6. Estimated values of A (cm) for "fresh" polymer

 

 

samples.

Solvent A (25 0C) x 109 A (34 0C) x 109

MEK 9.6 i 0.2 9.4 i0.1

DE 10.9105 ____________

EA 13.1 i.0-3 ————————————

BB 21.7 i 0.5 11.8 i 0.8

 

When comparing the equation D = G M.d with the

Kirkwood-Riseman theory, it can be seen easily that the

parameter G is inversely proportional to the parameter A.
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Comparison of Dq/T versus M at 25°C and 34°C.

Aand Q are data measured by Lin and Yam,

respectively, for MEK at 34 C. V and D are

data measured by Lin and Yam, respectively,

for BB at 34°C. The solid lines are replotted

from Figure 5-2 (at 25°C). The dashed line

connects the data of BB at 25°C.
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Consequently values for A can be calculated (see Table 5-6).

These estimated values are in reasonably good agreement with

those reported in the literature [B-9].

4. "Old" Polymer Samples

As mentioned earlier, the "old" polymer samples might

have degraded during the time they were not properly stored.

The molecular weights for these degraded polymer samples can

be estimated using the data from the "fresh" polymer

samples. The lines which correlate the diffusivity data

(for the "fresh" polymer samples) in Figure 5-2 are redrawn,

and the data for the "old" polymer samples are adjusted to

fit these lines for each solvent so that they are consistent

with the "fresh" polymer data (see Figure 5-5).

Note the that diffusivity data for each polymer falls

consistently at a single molecular weight, suggesting that

this procedure provides a good measure for the molecular

weight of each degraded polymer sample. The molecular

weights of PTHF-A1, PTHF-Bl and PTHF-B2 are determined to be

9700, 2200 and 23500, respectively.
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Figure 5-5. Estimation of the molecular weights for the "old"

polymer samples. A. V andUare the data for

PTHF-Al, PTHF-Bl and PTHF-B2, respectively.

.is the data for BOH.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

The behavior of open associating systems can be

described by the measurable quantities: K, p, and M1.

The effect of association increases with decreasing

molecular weight and is governed by the dimensionless group

P = Kp/Ml,

Using the open association model, expressions for

osmotic pressure and diffusion coefficient are derived.

Predictions from the combination of these expressions and

the two-parameter theory are found to compare favorably with

the experimental data for PEG in benzene. (A nd

*

2 )obs a

*

(kd )Obs differ from their nonassociating counterparts only

by K/M12 and K/Ml’ respectively. PEG solutions with low

polymer molecular weights are affected strongly by

association, and their behavior is described by the

association model. It is also found that the osmotic

pressure is influenced more by association than is the

diffusion coefficient.

Although this work deals exclusively with open

association, the same procedures for deriving the

96
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expressions for osmotic pressure and diffusion coefficient

can be used for other types of association.

work:

(1)

(2)

The following recommendations are proposed for further

The application of the association model to diffusion

should be tested more extensively. One interesting

area arises from some studies which show that the D(p)

curves display minima, even at dilute concentrations

[B-14, B-26, B-35]. This behavior may be explained by

the association model. To test this speculation, the

concentration dependence of osmotic pressure and

diffusion coefficient for these systems should be

obtained. The osmotic pressure data are used to match

several association models. After a reasonable model

is found, an expression for the diffusion coefficient

based on this model can be formulated and its

predictions tested against the experimental data.

The Pyun-Fixman theory should be tested more

extensively. Although some investigators have compared

the predictions of this theory with experimental data,

their studies are limited to polystyrene under theta

conditions. It is desirable to find out how well the

modified Pyun-Fixman theory can predict the value for

ks under nontheta conditions. To do this, osmotic

pressure and diffusivity data must be obtained for a
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dilute polymer solution. For simplicity, it is

advisable to start with a nonassociating system. The

second virial coefficient A2 can be obtained from the

osmotic pressure data, and the parameter kd from the

diffusivity data. The friction coefficient kS is

calculated using the relation kd = 2 A2 M - ks - 2 vpo’

and the results are compared with the predictions of

the modified Pyun—Fixman theory.



NOMENCLATURE

99



A..

13

BB

BOH

U
O
O
O

NOMENCLATURE

Parameter characterizes the short-range

interferences, defined in Equation (4-3)

Second virial coefficient of a nonassociating

polymer solution, defined in Equation (13)

Second virial coefficient of the unimer

Second virial coefficient of a monodisperse

polymer with molecular weight equal to the number

average molecular weight of a multimer mixture

Second virial coefficient of an associating

polymer polymer solution, defined in Equation

(4—16)

Observed second virial coefficient defined in

Equation (16)

Interaction between a pair of polymer molecules i

and j at infinite dilution, defined in Equation

(14)

Parameter characterizes the long-range

interferences

i-mer

Bromobenzene

n-butanol

Molar concentration of unimer

Molar concentration of i-mer

Molar concentration of polymer solute

Diffusion coefficient of a nonassociating polymer

polymer solution

100



EA

AG

X
‘

D
.

*
-

v

obs

U
)

3
z

Z
Z

3
Z

X
‘
A

U
)

:
3

0
3

H
t

MEK
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Diffusion coefficient at infinite dilution

Diffusion coefficient at infinite dilution under

theta conditions

Diffusion coefficient of an associating polymer

polymer solution

Diethyl ether

Ethyl acetate

Friction coefficient defined in Equation (5-7)

Change in free energy of mixing

Total number of fringes

Association equilibrium constant

Constant defined in Equation (6-4)

Parameter in Equation (27)

Boltzmann's constant

Concentration dependence of diffusion coefficient

defined in Equation (5-2)

Concentration dependence of diffusion coefficient

for an associating polymer solution

Observed kd* (see Equation (25))

Coefficient defined in Equation (20)

Molecular weight for monodisperse polymer

Molecular weight of unimer

Apparent polymer molecular weight

Number average molecular weight

Molecular weight of solvent

Weight average molecular weight

Methyl ethyl ketone

Ratio of molar volumes of polymer to solvent



PEG

PTHF
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Avogadro's number

Number of moles

Dimensionless polymer concentration for an

associating polymer solution, defined in Equation

(9)

Polyethylene glycol

Polytetrahydrofuran

Gas constant

Unperturbed mean-square end-to-end distance

Unperturbed mean-square radius of gyration

Absolute temperature

Excluded volume per sphere

Partial specific volume of polymer

Partial specific volume of polymer at infinite

dilution defined in Equation (19)

Weight fraction of polymer i

Excluded volume parameter (see Equation (4-7)

Parameter related to 2, defined in Equation

(4-26)

Greek symbols

(X

01
S

Exponent in Equation (4-13)

Expansion coefficient defined in Equation (4-4)

Exponent in Equation (4-8)

Exponent in Equation (29)

Solubility parameter

Dimensionless group defined in Equation (2-7)
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n Viscosity of solvent

[n] Intrinsic viscosity

A R ’

atio 0f Do,exptl to Do,theory

p5 Chemical potential of solvent in solution

u; Chemical potential of pure solvent

£ Dimensionless group defined in Equation (8)

n Osmotic pressure for a nonassociating polymer

solution

n* Osmotic pressure for an associating polymer

solution

H Dimensionless osmotic pressure defined in

Equation (15)

P Polymer mass concentration

PS Solvent mass concentration

¢ Volume fraction

X Flory-Huggins interaction parameter

W1 Dimensionless group defined in Equation (4)

w: Dimensionless group defined in Equation (24)

Subscripts

p Polymer

s Solvent

6 Under theta conditions

0 At infinite dilution

Superscript

* Relating to open association
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APPENDIX A

SAMPLE CALCULATION

Polymer: PEG (M=960)

Solvent: benzene

Temperature: 25 OC

Solution A (for the upper level)

Pure benzene

Solution B (for the lower level

Concentration = 0.400 g/dl

Below is the calculation for determining the diffusion

coefficient for the above system. The distances on the

photographic plate were measured using an optical comparator

made from a microscope fitted with a travelling eyepiece.

The nomenclature used by Bidlack [B—5] is followed here.

 

 

 

Exposure number Time, minutes

1 O

2 5

3 10

4 15

5 20

6 25

J = 4.6

106
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Exposure j (xo' — Xj)’ cm k (x0' + xk), cm

1 0.0937 3 0.2220

2 0.1069 3 0.2817

3 0.1220 3 0.3383

4 0.1664 3 0.4170

5 0.1532 3 0.4280

6 0.1290 3 0.4295

 

The measurements were fed into a computer program for

calculating the diffusion coefficient. A plot showing the

goodness of the data is shown in Figure A-l. All the data

points lie on a straight line. The diffusion coefficient for

6
this run was calculated to be 4.84 x 10 cmZ/sec.
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Figure A-l. Sample calculation for the diffusion

coefficient of PEG in benzene. The symbols are

those used by Bidlack [B-S].
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APPENDIX B

DIFFUSIVITY DATA FOR PEG IN BENZENE

Polymer: Polyethylene glycol (PEG)

Solvent: Benzene

Temperature: 25 OC

M1=44O

p x 102 (g/ml) D x 106 (cm2/s)

0.20 7.94

0.20 8.39

0.60 7.68

0.60 7.45

1.00 6.96

1.00 6.72

1.45 6.51

1.80 6.15

2.00 5.75

M1=960

p x 102 (g/ml) D x 106 (cmz/s)

0.20 4.84

0.20 5.10

0.20 4.79

0.60 4.62

1.00 4.37

1.40 4.26

1.40 4.10

1.85 3.99

2.00 3.97

2.00 3.73
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M1=4250

p x 102 (g/ml) D x 106 (cm2/s)

0.20 2.20

0.20 2.09

0.60 2.09

0.60 2.01

1.00 1.99

1.00 1.94

1.40 2.01

1.80 1.90

2.00 1.82

2.00 1.88

M1=126OO

p x 102 (g/ml) D x 106 (cmZ/s)

0.20 1.22

0.20 1.14

0.60 1.07

0.60 1.15

1.00 1.08

1.00 1.02

1.40 1.09

1.80 1.02

2.00 0.99
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APPENDIX C

DIFFUSIVITY DATA FOR PTHF IN VARIOUS SOLVENTS

Tables C-l. Diffusivity data (cmz/sec) of "fresh" PTHF

samples measured using the Mach-Zehnder interferometer in

various solvents. Unless otherwise stated, 0.3 g/dl of

solutioon was allowed to diffuse into pure solvent at 25 oC,

and the concentration for the diffusion measurements was

reported to be 0.15 g/dl.

 

 

M Solvent D x 107 D /T x 1011

2850 DE 63.1 4.87

MEK 38.7 5.20

EA 27.8 3.92

BB 6.47 2.30

30800 DE 19.0 1.47

MEK 12.2 1.64

(T = 34 00) 13.9 1.63

EA 8.19 1.15

BB 1.92 0.687

(T = 34 00) BB 3.51 1.09

BOH 1.65 1.43

290000 DE 5.52 0.426

MEK 3.80 0.510

EA 2.72 0.383

BB 0.688 0.245
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Tables C-2.

various solvents.

reported to be 0.15 g/dl.

114

Diffusivity data (cmZ/sec) of "old" PTHF

samples measured using the Mach-Zehnder interferometer in

Unless otherwise stated, 0.3 g/dl of

solutioon was allowed to diffuse into pure solvent at 25

and the concentration for the diffusion measurements was

 

 

M Solvent D x 107 D /T x 1011

PTHF-A1 DE 35.1 2.71

3.37 2.60

MEK 21.6 2.90

23.7 3.19

(T = 34 °C) 4.31 5.05

EA 14.3 2.02

BOH 34.3 2.97

PTHF—B1 DE 72.6 5.60

MEK 43.5 5.84

EA 29.4 4.15

BB 7.17 2.55

BOH 6.90 5.97

PTHF-B2 DE 21.2 1.64

MEK 13.8 1.85

EA 9.22 1.30

BB 2.27 0.807

BOH 2.13 1.85

(c = 0.2 g/dl) 3.17 2.74

 

0C,
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