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ABSTRACT

EFFECT OF MOLECULAR ASSOCIATION ON OSMOTIC PRESSURE AND
DIFFUSION IN DILUTE POLYMER SOLUTIONS

By

Kit Leung Yam

Polymer molecules in solution often associate with one
another via secondary binding forces (such as hydrogen
bonds) to form larger polymer molecules. Examples may be
found in many biopolymers and synthetic polymers consisting
of proton-donating and proton-accepting pairs. However the
influence of these associated complexes on solution
properties is still not well understood, for at least two
reasons., First, existing theories are incapable of
describing the behavior of these systems and, second, very

few relevant data are available in the literature.

In this work, expressions for the osmotic pressure and
the diffusion coefficient are derived for open associating
systems. The associating systems are treated as
pseudo-binary systems--the two components being solvent
molecules and polymer molecules with number average

molecular weight of the multimer mixture.

e

-~
The osmotic pressure m 1is expressed as

Ml 1r* %
PRT -V tAy Mpet ...




and the diffusion coefficient D*is expressed as
*=plw +[2A M /u, - G +2V )W ]p+
D =D, 2 [ A2 1 ‘Pl s po’ "2 P °cc

where p and M1 are the mass concentration and the unimer
molecular weight of polymer, respectively. Az* is the
second virial coefficient of the multimer mixture. ¥, and
4@ (both dimensionless groups) are functions of p, M1 and
the association equilibrium constant K., The partial
specific volume of polymer at infinite dilution, Vpo,.can be
obtained from density experiments, and the friction

parameter, ks’ can be estimated from the Pyun-Fixman theory.

*
The model predicts that the initial slope of 7 /pRT

versus p is
* 2
(A dops = Ay - K/My

which differs from its nonassociating counterpart A2 by

2

*
K/M1 « Similarly, the initial slope of D versus p is

*
(kd ) k, - K/M1

obs = *d

which differs from its nonassociating counterpart kd by

K/Mlo

Predictions from these expressions agree well with
osmometry data obtained from the literature and with
diffusivity data measured in this laboratory, for

polyethylene glycol in benzene. The effect of association



is most prominent at low concentrations and increases
progressively with decreasing molecular weight. Its

magnitude is governed by the dimensionless group Kp/Ml.
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FOREWORD

This dissertation consists of two parts. Part

One provides a summary for the essential findings of

this work. It was prepared in the form for publication.
Part Two provides a more detailed description of the

work.
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Abstract

Expressions for the concentration dependence of osmotic pressure and
diffusion coefficient in dilute polymer solutions are derived in this
work for open associating systems. Predictions from these expres-
sions are in good agreement with the experimental data of polyethylene
glycol in benzene obtained from our laboratory and from the liter-
ature. The effect of association increases with decreasing molecular

weight and is governed by the dimensionless group P = Kp/M;.

1. INTRODUCTION

The objective of this work is to study the effect of inter-
molecular association on osmotic pressure and diffusion coefficient of

dilute polymer solutions.

Polymer molecules in solution often associate with one another to
form larger molecules under favorable conditions.1»2 The resulting
associated complexes may be classified, based on the nature of inter-
molecular forces, into hydrogen-bonding complexes, polyelectrolyte

complexes, stereocomplexes, and charge-transfer complexee.3 The extent



of association 1s affected by the mechanism of association, the
chemical structures of polymer and solvent, solute concentration,

temperature, and pressure.

The behavior of associating polymer solutions is still not well
understood, for at least two reasons. First, there is a lack of
sufficient and reliable experimental data available in the literature.
Second, existing theories, such as the Flory-Huggins and the two-
parameter theories,“ are incapable of describing the behavior of these
systems; their applications are valid only for nonassociating,

nonelectrolyte systems.

Yet there exist many bilopolymers and synthetic polymers which
form associated complexes in solution,3 and the formation of these
complexes can greatly influence the solution properties. For example,
osmotic pressure, an important colligative property, may be strongly
affected by molecular association. A plot of reduced osmotic pressure
versus polymer concentration generally displays a linear relation. In
fact this linear relationship is the basis for molecular weight
determination.> However, if the polymer associates, this linear
relationship 1s no longer valid (especially in the very dilute
concentration range) and molecular weight determination based on
linear extrapolation may be in serious error.® Other solution prop-
erties such as viscosity and diffusion coefficient are also influ-
enced. Hence, there is a need for a better understanding of these

systems.



4
In this paper we formulate theoretical expressions for the
concentration dependence of osmotic pressure and diffusion coef-
ficient for associating polymer-solvent systems. Since these ex-
pressions depend on the type of association, we limit our study to the
systems which obey the so-called "open association" model.?2 However,

the procedures described below may also be applied to other types.

First, we derive the concentration dependence of osmotic pressure
for open association. This expression describes the behavior of a
pseudo-binary system--the two components being the solvent molecules,
and the polymer molecules with number average molecular weight of the
multimer mixture. Second, the osmotic pressure expression is used to

derive an expression for diffusion coefficient.

To test the validity of the model we compare theoretical pre-
dictions of osmotic pressure and diffusion coefficient with experi-
mental data. Polyethylene glycol (PEG) in benzene is used. Mutual
diffusion coefficients for this system, with molecular weight ranges

from 440 to 12600, were measured in our laboratory.

II. MOLECULAR ASSOCIATION

When considering colligative properties and diffusion, as-
soclating polymer-solvent systems are more difficult to study than
nonassociating systems. Unlike nonassociating systems, they cannot

always be considered to be binary but must be treated as multicom-



ponent systems which consist of unimers, dimers, trimers, etc., with
molecular weight distributions that change with concentration. 1In
order to construct a model to describe their behavior, a prior
knowledge of the mechanism of association must be assumed and its

validity tested with experimental data.

For simplicity, we restrict our study to polymer-polymer as-
sociation in inert solvents, although association can also occur
between polymer-solvent and solvent-solvent molecules. We further
restrict it to open association because this model is obeyed by many

synthetic polymers and is simple to construct.?2l

Open association is a consecutive association in which suc-
cessively higher multimers (dimers, trimers, etc.) are formed one step

at a time:

B,+B L B, , K=K,
-
B, +B, . By , K=K,
N
By * B« By o KKy
-
By v Boa1 e By 0 KEE ()

where By represents i-mer, K represents the association equilibrium
constant for the formation of i~-mer and n takes all positive integers

up to infinity.



If we assume K; is independent of molecular size (for example, in
the case of end-group association), and thus K} = K = . . . = K, we

obtain

cC, =K 'C (2)

and

KC1 - C2/C1 bl C3/C2 = ., . . etc. (3)

where C; is the molar concentration of i-mer. KC; is a dimensionless
group whose value ranges from O to 1: KC; = O corresponds to no
association (C; = C3 = C4 = . . . = 0), and KC} = 1 corresponds to the
maximum allowable association when all multimers have the same

concentration (C; = Cp = C3 . . ., etc.).

With the above description of the model and the relation M; =

iM;, some useful relations can be derived:6

vl{p} ] MllMa " T+ % (4)
Kc1 -] - !1 (5)
c./c = (1 - kc.)(kcHi? (6)
i'"p 1 1

M /M =1 + KC (7)
W n 1

where

£ = / 1 + 4P (8)



P & Ko/M, (9)
Ma 8 apparent polymer molecular weight = Cp/p (10)
Mw/Mn 8 polydispersity of the multimer mixture (11)

Cp B true molar concentration of polymer solute

@
= 3 cy (12)

Equations (4) through (7) are expressed in terms of measurable
quantities: the polymer mass concentration p, the association
constant K, and the unimer molecular weight Mj. The apparent molec-
ular weight M,, 1s equivalent to the number average molecular weight
of multimer mixture and can be readily calculated from Equation (4)

once Mj, K and p are known.

It is noteworthy to point out the similarities between open as-
sociation and stepwise polymerization. In fact, Equations (4) through
(7) can be obtained from the appropriate expressions for stepwise
polymerization, by substituting KC; for the fraction of conversion.’
The molecular distribution can be identified with the Schultz-Zimm
distribution.8 Since 0 < KC; £ 1 and according to equation (7), the

polydispersity is bounded between 1 £ M, /M, £ 2.



III. MODEL DEVELOPMENT

A. Osmotic Pressure

As mentioned in Section II, open associating systems are simply
heterogeneous systems with molecular weight distribution governed by
Equation (4). 1In the following, the osmotic pressure expression of

heterogeneous systems is tailored for describing these systems.

In a dilute solution containing heterogeneous polymer molecules,

4

the osmotic pressure 7 may be expressed as:

L 1
pRT-M+A2p+... (13)

and the second virial coefficient A2 is given by

AZ -3 wiwJ Aij (14)

where M, is the number-average molecular weight, w; the weight
fraction of polymer molecule i, and Aij the interaction between the
pair of polymer molecules 1 and j at infinite dilution. According to
the two-parameter theories, Aij is a function of the excluded volume z

and the ratio of molecular weights of molecules i and j.9,10

To adapt Equation (13) for associating systems, M, is substituted

for M;, and Az* for A2:2'6




*
M.p + . . . (15)

- Yl{p} + A, M

is defined for convenience. The superscript * denotes open as-

sociation. ¥; is a function of »p.

Az* is a function of association. Recently Tanaka and Solc8 have
suggested that it may be approximated by the second virial coefficient
of a monodisperse polymer, with number-average molecular weight of the
multimer mixture. Furthermore, if the Mark-Houwink relationship (Aj; =
K° M%) is assumed,“’12 we can incorporate the molecular weight
dependence of Az* into Equation (15). However, this leads to a rather
complicated diffusivity expression. Moreover, our calculations show
that the osmometry data used in this work are relatively insensitive
to the molecular weight dependence of Az*. Hence, an A2* independent

of concentration is assumed for each molecular weight sample.

For K = 0, M, and AZ* reduce to M} and Ajp (thg second virial
coefficient of unimer), respectively; and Equation (15) reduces to the
expression for nonassociating systems. Differentiating Equation (15)
with respect to p and evaluating the result at p = 0O, we obtain the

observed second virial coefficient

* K
)obs " AZ - 2

1

(16)

for associating systems. Note that (AZ*)obs differs from its nonas-

sociating counterpart by K/le.
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B. Diffusion Coefficient

The concentration dependence of the mutual diffusion coefficient
for a nonassociating dilute polymer solution can be expressed by the

series expansion:13

D= Do (1 + kd P+ .. .) (17)
where
kd = 2 A2 M- ks -2 vpo (18)
and
V =V (1l +ap+...) (19)
P po
f=f (1 +k p+ .. .) (20)
(o] S

Here Do is the diffusion coefficient at infinite dilution, Vp the

partial specific volume of polymer, and f the friction coefficient.

If associating systems are treated as pseudo-binary systems (i.e.
use the apparent molecular weight, M,, to represent the average
molecular weight of the multimer mixture), Equation (15) may be used

to obtain the chemical potential of the solvent, “9:4

pomp® etV 21)

and the mutual diffusion coefficient may be derived from the rela-
tion:13,14

Dm—2=P2 M a—p’; (22)
N £ M Ps ap ,P



11

where N, is the Avogadro's number; Mg Va and pg are the molecular
weight, the molar volume and the mass concentration of solvent,
respectively. Using Equation (15) and Equations (19) through (22), we

obtain the mutual diffusion coefficient D* for associating systems as

* *
D = Do {?2 + [2 A2 MI/YI- (ks + 2 vpo) !2] P+ . . . }
(23)

where
1+¢
!2 = 2t (24)
Both ¥; and ¥; are functions of concentration and open association.

For K = 0, Equation (23) reduces to Equation (17).

Differentiating Equation (23) with respect to p and evaluating
the result at p=0, we obtain

*
(k, )

4 =k, - K/M (25)

obs

*
Note that (kg )obs differs from its nonassociating counterpart by

K/Ml.
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IV. EXPERIMENTAL

Diffusion coefficients were measured in our laboratory using a
Mach-Zehnder interferometer.l9,16 Monodisperse polyethylene glycol
(PEG) polymer samples (M,/M, < 1.06) were purchased from Polymer
Laboratories, Inc., Massachusetts; these samples were used without
further purification. Solution temperature was controlled at 25.0 ¢
0.1°C. The accuracy of the interferometer was tested by comparing the
diffusion coefficients for several aqueous sucrose solutions with
those reported by Gosting and Morris;17 average deviation was found to
be less that 1%. However, PEG/benzene system has a smaller refractive
index difference compared to the sucrose/water system, and the
diffusion coefficients reported in this work (some of them represent
the average values of two or three runs) are estimated to be within

4%.

V. RESULTS AND DISCUSSION

A. Osmotic pressure data

The vapor pressure osmometry data of Eliasl8 for PEG in benzene
is chosen here for studying the effect of molecular association.
Infrared spectroscopic measurements by Langbein19 had shown that

intramolecular hydrogen bonds existed between the hydroxyl end-groups
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and the ether groups in this system; later, Elias found!8,20 that
intermolecular association also existed and the data could be quan-

titatively explained by the open association model.

The value of K is estimated first from the osmometry data.
According to Equation (16), if the dependence of Ay on M; is weak, a
plot of (Az*)obs versus 1/M12 should yield a straight line, with slope
equal to -K. In fact the osmometry data of Elias fit such a straight
line quite well, and thus the slope provides a good initial value of
K. Next, Equation (15) and the method of least squares are used to
obtain the final values of K = 11000 cc/mole (which agrees with the
value estimated by Elias using a different approachls) and Az*. The

values of Az* are presented in Table I.

Table I. Values of Az* (mole ml/gz) estimated from the osmometry data
of Elias.l8 For comparison, (Aj) is the second virial coefficient
calculated from two-parameter theories.

*
M) A2 (A2)
208 -0.0095 -0.0027
409 -0.0011 0.0011
594 0.0005 0.0018
1518 0.0020 0.0023
6000 0.0022 0.0019

The performance of the model is shown in Figure 1. The effect of
association is more prominent at low concentrations and increases pro-
gressively with decreasing molecular weight. This behavior is well

described by the model.
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Figure 1. Concentration dependence of Il for PEG in benzene at 25°C.

Data taken from Elias et al.18

Q) Ml=6000; (V) Ml=1518; (@) Ml=594;

(0) M1=409; (A) Ml=208.

predictions from Equation (15).
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B. Diffusivity data

As shown in Section III, the prediction of D(p) in dilute
solutions requires the evaluation of AZ*- K, vpo° Do and kg. The
first two terms have already been estimated from the osmometry data,
and Vpo can be obtained from density experiments. D, and kg can be
estimated from the two-parameter scheme suggested by Vrentas and
Duda2l: Dy from the modified Kirkwood-Riseman theory and kg from the
Pyun-Fixman theory (version II),22 because they seem to be the best
methods available at the present time. The short-range interferences,

A, for PEG/benzene system at 25°C is given by11

= 7.9 x 10 ecm (26)

where (R2)° is the unperturbed mean-square end-to-end distance. The
long-range interferences are estimated indirectly from the empirical

Mark-Houwink intrinsic viscosity relat:ionsh:lp:“'z1

(n) = K, MIB - 0.063 M1°‘6“ (27)

where [n] is the intrinsic viscosity. The values of K, and B are
obtained from curve fitting the raw data of Rossi and Cuniberti?3

using the method of least squares. In addition, to adapt the two-



17
parameter scheme to associating systems, the apparent molecular weight
M, is substituted for the unimer molecular weight M; in calculating

the necessary parameters.

Several investigators had shown that the Kirkwood-Riseman theory
provided reasonable predictions for (D,)g, the translational diffusion
coefficient at infinite dilution under theta conditions2%,» 25, 26, 27,
Furthermore, Vrentas and Duda extended this theory for predicting Dy

under nontheta conditions?’

(D)
D = o' 0
o o
S
0.196 k g : (28)
a n AM°
S -

where k is the Boltzmann's constant, ng is the viscosity of solvent,
and ag is the expansion factor relating the perturbed and the unper-

turbed mean-square radii of gyration.

Mutual diffusion coefficients for four PEG samples in benzene at
25°C were measured using a Mach Zehnder interferometer. The con-
centration dependence is shown in Figure 2. The experimental D, is
found by extrapolation using the model and the method of least
squares. They are found to be in good agreement with the predictions
(see Table II). The molecular weight dependence of D, is shown in

Figure 3 along with a least squares fit to the relation

4 -0.57

D = GM  =2.64x 100 M (29)



Figure 2.
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Concentration dependence of diffusion coefficient
for PEG in benzene at 25 °C. Experimental data:
(V) M;=440; (0O) M,=960; (@) M=4250;

(A) M1=12600.

predictions from the association model
(Equation (23)); =—-====-- predictions from the
nonassociation model (Equation (17)).
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Figure 3. Plot of Do versus Ml for PEG in benzene at 25 °C.
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Flory suggested the exponents y and B may be related by28

y=(8+1) /3 (30)

Thus y may be calculated to be 0.55, using B = 0.64 from Equation
(27), and this value agrees reasonably well with y = 0.57 from
Equation (29). However, larger differences are observed for some
aystemsll’29 and more experimental data are needed to determine the

validity of this relation.

Table II. Comparison of D, (cm?/sec) from the modified Kirkwood-
Riseman theory (Equation (28)) with D, from experiment for PEG in
benzene at 25°C.

M M, /M, Dy(theory) Dyo(exptl)  Dy(exptl)/
Dy(theory)
440 < 1.09 8.31 x 1076 8.58 x 10~6 1.03
960 < 1.06 5.30 x 10-6 5.05 x 10-6 0.95
4250 < 1.03 2.31 x 10-6 2.20 x 10-6 0.95
12600 < 1.04 1.28 x 1076 1.25 x 10-6 0.98

The performance of the association model is shown in Figure 2. K
= 11000 cc/mole is used, and the values of A2* are taken from the
osmometry data (see Table I1I). The only adjustable parameter used to
fit the data is A of the Pyun-Fixman theory (version 11).22  For our
data A = 0.88 provides the best fit. (This compares to A = 0.86 used
by Vrentas and Duda to fit the diffusivity data of polystyrene in
cyclohexane.)22 Agreement between experimental and predicted values

is good.
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Table III. Values of Az* (mole ml/gz) used in calculating the concen-
tration dependence of diffusion coefficient in Figure 2. For com-
parison, (Aj) is the second virial coefficient calculated from the two
parameter theories.

*
M Aj (A2)
440 -0.0010 0.0013
960 0.0012 0.0022
4250 0.0021 0.0020
12600 0.0018 0.0016

As for osmotic pressure, the effect of association is found to be
the strongest for low molecular weights. In fact, for the polymer
sample M; = 440, (kd*)obs can roughly be equated to -K/M; (see
Equation (25)). As molecular weight increases, the virial term and
friction term also become important. For comparison, the predictions

using the nonassociating model are also shown in Figure 2.

At theta conditions and when the contributions of kg and Vpo are
negligible, Il reduces to ¥; and D*/Do reduces to ¥5. Since ¥,
decreases more rapidly with increasing concentration than ¥,, osmotic
pressure is affected more strongly compared to diffusion coefficient
by association. (As P approaches infinity, ¥; and ¥, approach 0 and

0.5, respectively.)

Some D(p) curves from the literature®,30,31 display minima, even
at dilute concentrations. The diffusion rate first decreases sharply
with increasing concentration and then attains an almost constant

value or passes through a minimum. This behavior can be explained at
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least qualitatively by the association model if the polymer molecules
associate with one another in a thermodynamically good solvent.
Equation (23) suggests that, at very dilute concentrations, asso-
ciation dominates and causes the diffusion rate to decrease with
increasing concentration; at higher concentrations, the thermodynamic
term dominates (assuming that the hydrodynamic and volumetric terms
are relative small) and causes the diffusion rate to increase with

concentration.

VI. CONCLUSION

The association model and the two parameter theories provide good
predictions for both the osmometry and diffusivity data for PEG in
benzene. (Az*)obs and (kd*)obs differ from their nonassociating
counterparts only by K/Ml2 and K/M;, respectively. The effect of
association increases with decreasing molecular weight and is governed

by the dimensionless group P = K, /M;.
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CHAPTER I

INTRODUCTION

The purpose of this work is to study the effect of
association on the concentration dependence of osmotic
pressure and diffusion coefficient in dilute polymer

solutions.

The term "association" is defined here as a rapid
equilibrium between unimers (unassociated molecules) and
multimers (associated molecules). Many synthetic polymers
and biopolymers in solution are capable of associating with
one another to form larger molecules via secondary binding
forces such as hydrogen bonds. Several studies [B-13, B-18,
B-37] have indicated that the extent of association depends
on the type of association, the chemical structures of
polymer and solvent, molecular weight, polydispersity,

concentration, and temperature.

An associating system is a multi-component system
consisting of polymer unimers, polymer multimers, and
solvent molecules. The distribution of unimers and
multimers may change drastically with polymer concentration,

depending on the type of association. Consequently,
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association can greatly influence those solution properties
which are functions of molecular size. Moreover, if the
molecular weight of a polymer is to be determined
accurately, the possibility of association must be
investigated--if the polymer associates, traditional methods
for molecular weight determination (such as linear
extrapolations of osmotic pressure in dilute solutions)

should not be used.

In spite of its importance, relatively few studies have
been reported for association in polymer solutions. There
exists no satisfactory theory for describing the solution
properties of these systems. In addition, the lack of
pertinent data in the literature makes the situation even

more unfavorable.

The first systematic investigation of associating
macromolecules was conducted by Elias [B-18]. He studied a
large number of polymer-solvent pairs (both natural and
synthetic polymers) under various conditions and was
successful in describing the thermodynamic properties of

some of these systems using association models.

Only recently has the effect of association on
diffusion been studied. Lin [B-35] measured the osmotic
Pressures and the diffusion coefficients for two forms of
polytetrahydrofuran. The two ends of these polymer types

had different functional groups attached--one the methyl
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group and the other the hydroxyl group. Methylethylketone
(MEK) and bromobenzene (BB) were chosen as the solvents.
Based on an association model, he derived an expression for

the osmotic pressure

T el iap +ael+
PRT 2'p 3p T 1-1
™y app, o (1-1)

and an expression for the diffusion cofficient

O

_ m
DObS—D anSO (l+kd Pp+ cee) (1-2)

where he defined (M ) as the "apparent number average
n‘app,9

molecular weight of polymer molecules in associating

solutions under theta condition" and kdm as the "linear

concentration dependence constant of the average diffusion

coefficient of all diffusing associated and non-associated

species". He concluded that the hydroxyl endgroups could

cause the polymer molecules to associate strongly with one

another.

However, Lin's work can be questioned in several
respects. First, he used a membrane osmometer to measure
osmotic pressures and his polymer samples had molecular
weights so low (one of them was determined by him to be as
low as 2500) that the use of this kind of osmometer is not
recommended. It is very difficult to prevent molecules of

molecular weight smaller than 20,000 from leaking through
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the membrane (see Chapter III). Consequently, faulty data

might have been obtained by him. However, if leakage of
polymer molecules through the membrane did occur, the actual
molecular weights for these polymer samples would be even
smaller and the effect of association greater than those

predicted by him.

Second, Equations (1-1) and (1-2) are oversimplified.
It has long been recognized that the second virial
coefficient is dependent on molecular weight [B-4, B-7, B-9,
B-57]. Justification must be provided for Lin's assumption

%
of constant A2 and kdm.

Third, the parameters X,ss0 aNd kdm in Equation (1-2)
are devoid of physical meaning (because they are expressed
in complicated summation terms) and are obtained almost
solely from curve fitting the diffusivity data. Actually,
the concentration dependence of diffusion coefficient, kd’
is governed by three factors [B-49, B-57]--the
thermodynamic, hydrodynamic, and volumetric effects. The
volumetric effect is usually relatively insignificant, and

the thermodynamic and hydrodynamic factors can be estimated

from the two-parameter theory [B-50].

In this work a different approach is used to study the
effect of association on polymer solutions. New
expressions for the osmotic pressure and the diffusion

coefficient, based on the open association model, are
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derived. These expressions include the molecular weight
dependence of the second virial coefficient, and are
expressed in terms of physical quantities which can be
obtained easily. Predictions from these expressions are
compared with the osmometry and the diffusivity data of

polyethylene glycol (PEG) in benzene.



CHAPTER II
MOLECULAR ASSOCIATION

A. General Background

Under favorable conditions, polymer molecules in
solution can form intermolecular complexes with solvent
molecules or with other polymer molecules [B-36, B-46].
Examples for association of polymer molecules with solvent
molecules are the binding of iodine to amylose, the binding
of counterions to polyions, the association of enzymes with
substrates, inhibitors, etc. Examples for association of
polymer molecules with other polymer molecules are the
nonspecific association of cationic and anionic polymers,
the formation of hemoglobin and various enzymes from
separate protein subunits, the interaction ‘of antigens with

antibodies, etc.

Furthermore, intermolecular complexes in polymer
solutions may be divided, based on the nature of binding
forces, into four classes: polyelectrolyte complexes,
hydrogen-bonding complexes, stereocomplexes, and charge
transfer complexes. Numerous examples for each class have

been compiled by Tsuchida and Abe [B-46].
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The formation of intermolecular polymer complexes has
been studied under many names [B-18]--association,
self-association, aggregation, polymerization,
multimerization, complex formation, denaturation, sociation,
supersociation, agglomerization, etc. The association
between polymer molecules in an inert solvent is treated
exclusively in this work. The term "association" or
"multimerization" is defined here as a rapid equilibrium
between unimers (unassociated molecules) and multimers
(associated molecules). Thus an associated solution
consists of a mixture of unimers, dimers, trimers, etc. The
term "monomer" is avoided here because it is more properly
used to designate the molecule from which the polymer is
formed. Instead, the term "unimer" is used to represent a
polymer molecule which is not associated with another

polymer molecule via a secondary binding force.

Association is a function of polymer concentration. As
polymer concentration increases, the polymer molecules are
packed more closely together and, consequently, associate
with one another to a greater extent. The size and the
number of polymer molecules may change drastically depending

on the type of association.

Two groups of methods are commonly used to study
association: "the group specific methods" and "the molecule

specific methods" [B-18]. Examples for the group specific



34

methods are infrared spectroscopy, nuclear magnetic
resonance, ultraviolet, etc. As its name implies, these
methods can be used to determine the structure of a "group"
and the type of interaction that can occur between this
group and another group. On the other hand, examples for
the molecule specific methods are osmometry, light
scattering, ultracentrifugation, viscometry, gel permeation,
chromatography, diffusivity, etc. As its name implies, f
these methods look at the "molecule" as a whole and can be
used to determine the characteristics of polymer molecules
such as the molecular weight. In general, the group
specific methods should not be used to study the association
of a polymer which have only a few associogenic groups
(groups that are capable of associating). These
associogenic groups can escape being detected because they
constitute such a small part of the polymer molecule. In
contrast, the molecule specific methods are the prime
choices for studying association because the drastic change
in apparent molecular weight (due to association) can be

easily detected.

B. Types of Association

When studying association, a physical model is assumed

a priori and tested for consistency with experimental data.
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An important consideration in constructing an association
model is to determine whether the number of associogenic
groups are dependent on the size of the polymer molecules,
"End-to-end association"” is the kind in which the number of
associogenic groups per molecule is constant, regardless of
the length of the polymer. An example is the association of
two polymer molecules via associating endgroups. On the
other hand, "segment-to-segment association" [B-17, B-18,
B-44] is the kind in which the number of associogenic groups

increases proportionally with the length of the polymer.

End-to-end association is discussed exclusively here.
It is assumed that the unimers and the multimers are
distinguishable only in size, but not in shape and chemical

properties.

1. Open association

There are two basic types of end-to-end association--
open association and closed association. "Open association"
is one in which all types of multimer are present, and

successively higher multimers are formed one step at a time:
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By + B, &= By » K=K
B1 + Bn—l - Bn ’ K = Kn (2-1)
where Bi represents i-mer. Note that the open association

model does not exclude associations such as
B. + B Pung B , kK =K' (2-2)
because the melar concentration
C2 = KC1 (2-3)
c = K'C = K°C (for K' = K) (2-4)

which is identical to Equation (2) in Part One for the

open association model.

An analogy can be made between open association and
stepwise polymerization. In stepwise polymerization, each
polymer formed can react further with a monomer to form a
larger polymer via a chemical bond, in a manner similar to
Equation (2-1). Thus the mathematics for open association
and stepwise polymerization are closely related. For
example, the mole fraction of the i-mer in the multimer

mixture (on a solvent free basis) is
C./C_ = (1 - KC,)(kC,)I~1 (2-5)
i’ 7p 1 1
and the polydispersity is

Mw/Mn =1 + KC1 (2-6)
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for open association. On the other hand, the mole fraction
of x-mer (where x is the degree of polymerization) and the
polydispersity for stepwise polymerization can be obtained
from Equations (2-5) and (2-6) respectively, simply by
substituting the fraction of conversion (of stepwise

polymerization) for the dimensionless group KC1 [B-41].

Another type is the "closed association"” in which only

unimers and n-mers are present:
—* -
nB, = B (2-7)

Of course, combinations of open association and closed
association are possible. However, only open association is
treated in this work because this type of association is
very useful for describing the behavior of many synthetic
and natural polymers [B-18]. Some of the characteristics of

open association are discussed below.

As shown in Part One, the behavior of open association
can be expressed in terms of the dimensionless group P =
KP/MI. Both K and Ml can be obtained from osmotic pressure

measurements,

The dimensionless parameter Wl (see Equation (4) in
Part One) is the ratio of the unimer molecular weight to the
apparent molecular weight. It is related directly to the
extent of association and to the reduction of molecules in
solution (due to association). A plot of Wl versus P is

shown in Figure 2-1. Wl decreases most rapidly in the
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region near infinite dilution, indicating that the effect of

association is most prominent in this region.

It is interesting to see how the i-mers are
distributed when the apparent molecular weight is equal to
that of unimer, dimer, etc. A plot of molecular weight
distribution versus apparent molecular weight is shown in
Figure 2-2. Ci/Cp is the mole fraction of i-mer in the
multimer mixture (on a solvent free basis). For low
apparent molecular weights, the distribution tends towards
the small i-mers; for high apparent molecular weights, the

i-mers are more evenly distributed.

2. Dimerization

Selecting an appropriate association model is so
critical that several promising candidates should be tested

with experimental data.

Here the behavior of the dimerization model and the
open association model are compared. The dimerization model

is represented by

1 + B & By (2-8)

and the apparent molecular weight is

v,'o= M / M, = 0.5+ 1 / (1 +¢ ) (2-9)
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where

¢ = ,/1 + 8P (2-10)

Equation (4) in Part One for the open association model
and Equation (2-6) for the dimerization model are compared
in Figure 2-1. \Pl of the open association is a more rapidly
decreasing function of P, especially at higher

concentrations. This can be explained intuitively by the

argument that the open association model allows multimers
larger than dimers to exist in the solution. The difference
is smaller at low concentrations. In fact, the two plots in
Figure 2-1 have the same initial slope -K/Mlz. However, the
PEG/benzene data in this work can be described satisfactory

only by the open association model.



CHAPTER III

EXPERIMENTAL METHOD

A. Polymer Sample

Polyethylene glycol (PEG) in benzene is chosen for
studying association in this work because it has been shown
[B-15, B-16, B-34] that the hydroxyl endgroups can form
hydrogen bonds either with other hydroxyl endgroups or with

the ether groups in this systemn.

Monodisperse PEG samples were purchased from Polymer
Laboratories Inc., Massachusetts. The samples were used
without further purification. The polydispersity of the

samples are listed in Table 3-1.

Table 3-1. Polydispersity of the PEG samples.

M Mw/Mn
440 <1.09
960 <1.06

4250 <1.03
12600 <1.04

42
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B. Osmometry Data

When the free energy of a solution has been diminished
by an addition of solute, it is possible to compensate for
this reduction by applying an external pressure to the
solution. For example, when solvent molecules diffuse
through a semi-permeable membrane from a dilute solution
into a more concentrated one through the process of osmosis,
it is possible to prevent the diffusion by applying an

external pressure (called the osmotic pressure) .

Osmotic pressures are frequently used to determine the
molecular weight of a polymer and to study the
thermodynamics of polymer solutions (such as second virial
coefficient, Flory-Huggins interaction parameter, and
activity coefficient). A plot of reduced osmotic pressure
versus concentration for a dilute polymer solution often
yields a straight line, and the number-average molecular
weight of the polymer can be determined by extrapolating the
data to zero concentration [B-7, B-24, B-25]. However, if a
straight line is not obtained, it is necessary to repeat the
measurements with several different solvents to prevent

faulty extrapolations.

The membrane osmometer [B-43, B-52] is commonly used
for measuring the osmotic pressures of polymer solutions.
The best type is the electrical and automatically recording

dynamic osmometer which usually allows equilibrium to be
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reached within 30 minutes. However, its usefulness is

3 5

limited to molecular weights range from 5 x 10 to 5 x 10
[B-7, B-43, B-52]. The upper limit is determined by the
smallest osmotic pressure that can be read, and the lower
limit is determined by the permeability of the membrane. 1In
addition, it is often difficult to find a suitable membrane
for a particular polymer-solvent pair. The membrane must
not be dissolved by the solvent. If the pores of the
membrane are too small, the measurements take a long time,.
On the other hand, if they are too large, polymer molecules

may leak through the membrane. Such a membrane is not

always available.

For molecular weights under 2 x 104, highly sensitive
vapor pressure osmometers should be used [B-43, B-52].
Vapor pressure osmometry is an indirect method for measuring
molecular weights and osmotic pressures, and a standard is
required for calibration. This kind of osmometer offers the
advantages that it requires no membrane, needs only a small

amount of sample, and is very easy to operate.

The vapor pressure osmometry data of Elias [B-15, B-19]

for PEG in benzene at 25°C were used in this work.
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C. Diffusivity data

Diffusion coefficients in this work were measured using
a Mach-Zehnder interferometer [B-5, B-10]. The description
of this apparatus and its operation have been given in many
places [B-5, B-27, B-35, B-39] and are not repeated in
detail here. A complete description can be found in the
dissertation of Bidlack [B-5]. Although the Mach-Zehnder
interfermometer was developed a few decades ago, it remains
one of the most accurate methods for measuring the

concentration dependence of diffusion in solution [B-11].

The interferometry technique involves carefully
bringing a more concentrated solution into contact with a
less concentrated solution to form a sharp interface in an
optical cell where free diffusion is allowed to take place.
The optical cell is immersed in a well-controlled
temperature bath., The diffusion rate can be followed by
measuring the refractive index in the cell as a function of
time and position. If refractive index is assumed linear
with concentration over small concentration ranges, the
diffusion coefficient can be calculated from photographs of
this fringe pattern at several times during the diffusion
process. The concentration for the measurement is taken to
be the arithmetic average of the original solution

concentrations.
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The interferometer was checked by comparing the
diffusion coefficients of five aqueous sucrose solutions at
25 °C with those reported by Gosting and Morris [B-22]. The
data of Gosting and Morris have been confirmed by several
investigators [B-2, B-12] and can be fitted by the method of

least squares to the empirical relationship

6

D =5.226 (1 - 0.01480 c ) x 10~ + 0.002 (3-1)

3 of

where ¢ is the sucrose concentration in grams per 100 cm
a water solution diffusing into pure water. A summary of
the comparison is presented in Table 3-2. The standard

deviation is found to be less that 17.

Table 3-2. Comparision of the diffusivity data determined
in this work with the data of Gosting and
Morris.

6

D x 10, cmz/sec Z deviation

c, grams/100 cm3 This work Equation (3-1)

0.4 5.220 5.195 +0.48
0.6 5.201 5.180 +0.41
0.8 5.1901 5.164 +0.52
1.0 5.158 5.149 +0.17

1.2 5.108 5.133 -0.49
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The experimental procedure described by Bidlack [B-5]
was used in this work. The solutions were prepared and
agitated gently for about three hours before using. The
concentration differences between the two solutions were
chosen to be 0.40 g/dl for all runs. The temperature bath
was maintained at 25.0 + 0.1 °Cc. Each experiment took from
30 minutes to an hour fér completion, depending on the
molecular weight. Six exposures were usually taken for each

run.

Because of the small refractive index difference
between the PEG/benzene solutions, the number of fringes, J
(see reference [B-5]), was usually less than 10. It was
vital to measure the value of J (i.e., the total refractive
difference between the two solutions) with great accuracy,
for a slight error could change the result significantly.
Each exposure provides a value of J. Since there were six
exposures per run, six values of J were obtained and the
average was used to calculate the diffusion coefficient. If
the difference between the largest and the smallest values
of J exceeded 0.3, the run was discarded. The accuracy of
the diffusion coefficients reported in this work were
estimated to be within 47. A sample calculation is

presented in Appendix A.



CHAPTER IV

THERMODYNAMICS OF ASSOCIATING POLYMER SOLUTIONS

A. Theoretical Background

The behavior of polymer solutions deviates greatly from
Raoult's law except at extreme dilutions. Excess
thermodynamic properties are large even for systems of
negligible heat of mixing. This is due to the large entropy
effect for mixing giant long-chain polymer molecules with
small solvent molecules. Below are some theories used
frequently to describe the thermodynamics for nonassociating
polymer solutions. In this work, an attempt is made to
extend the applications of these theories to associating
systems by replacing the unimer molecular weight with the

apparent molecular weight.

1. Flory-Huggins Theory

The Flory-Huggins theory [B-21] has been used
extensively due to its simplicity. This theory expresses

the change in free energy of mixing as

AGm
— <+
T s Ing n, lndap + ¢s¢p(ns + m) X (4-1)
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where the subscript s designates the solvent and the
subscript p the polymer. ¢ and n are the volume fraction
and number of moles, respectively. m is the ratio of molar

volumes of polymer to solvent.

X is called the Flory-Huggins interaction parameter.
It is a dimensionless quantity and a function of the
interaction energy characteristic of a given solute-solvent
pair. It consists of both entropic and enthalpic
contributions and can be expressed empirically by [B-41]
x=x'+‘§(58-5)2

p
(4-2)

where x'

is the entropy parameter with value between 0.3
and 0.4. g and Bp are "solubility parameters" of the
solvent and the polymer, respectively. VS is the molar

volume of the solvent and R is the gas constant.

The thermodynamic quality (good solvent versus bad
solvent) can be evaluated in terms of X. Note that the free
energy must be negative for the polymer to dissolve in the
solvent. Since the first two terms in Equation (4-1) are
always negative, the solubility of the polymer is determined
solely by the magnitude of X. It can be said that the
smaller the value for X, the more negative the value of AGm,
and the better the solvent for the polymer. A good solvent

is defined as one in which the interaction between polymer
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and solvent is stronger than that between polymer and

polymer.

2. Two-Parameter Theory

The two-parameter theory [B-50, B-57] is a group of
theories which express the properties (such as second virial
coefficients and viscosities) of dilute polymer solutions in

terms of two basic parameters.

Since polymer molecules in solution are constantly
coiling and uncoiling owing to thermal fluctuations, it is
possible to characterize their dimensions only by averages.
One of these averages is the mean-square end-to-end distance
of an unperturbed chain, <R2>°. The word "unperturbed"
implies that the polymer chain is completely free of outside
influences. Unperturbed dimensions are affected only by the

so-called "short-range interferences" due to fixed bond

angles and hinderances to rotation. The parameter [B-21,

B-52]

<R%>5)
n= {50

M
(4-3)

is often used to characterize the unperturbed state because
this quantity is almost independent of molecular weight for
sufficiently long chains, and its values are readily

available for a large number of polymer-solvent pairs [B-9].
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For a given polymer, A depends on temperature and solvent
characteristics. However, the solvent effect is usually

insignificant, at least for nonpolar polymers [B-9].

There are also the so-called "long-range interferences"
or "excluded volume effects". They arise because two
segments cannot occupy the same space at the same time. The
mean-square radius of gyration for a real linear
macromolecule in an infinitely dilute solution is generally

expressed as [B-4, B-57]

<s?y = o <s?s (4-4)

The expansion factor a, measures the extent to which the
excluded volume perturbs the polymer molecule from its
unperturbed state. In contrast to A, information on ag is
generally not available and it depends on temperature,

polymer molecular weight, and solvent characteristics.

The excluded volume effects can be eliminated by a
judicious choice of solvent and temperature. The polymer
chain contracts in poor solvents because the polymer
segments prefer to associate with other polymer segments
rather than with solvent molecules. When the contraction
due to poor solvent balances the expansion due to the
excluded volume, the net excluded volume is zero and the

solution is in the unperturbed or the theta state.
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A common application of the two-parameter scheme [B-50,

B-57] is to express the expansion factor a  as

Ols = aS (Ao B9 M) (4'5)
Yamakawa-Tanaka [B-55] suggest the expression:
o 2 = 0.541 + 0.459 (1 + 6.04 2)0+%® (4-6)
where
() e
2m A3
(4-7)

The parameter A represents the short-range interferences,

and the parameter B the long-range interferences. As

men t ioned earlier, A can be obtained rather easily.

B is a function of temperature and solvent. The

Pref e rred method for calculating B involves light-scattering

Meéa s u rements to determine ag at several polymer molecular

weigh g [B-57]. The quantity z can then be determined for

€ach alue of M from Equation (4-6), and by Equation (4-7) B
€an b e estimated from the slope of z versus M1/2 plot. The
Sl'”‘)rtcoming of this approach is that very limited

1 i
ight~sc:att:ering measurements are available in the

llterat:ure.

An alternative for estimating B is to use the

i <
T rinsic viscosity relation [B-21, B-57]
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[n] = &, u° (4-8)
Values of Kv and B have been tabulated for many
polymer-solvent pairs [B-9]. The parameter B can be
estimated from the equation [B-50, B-57]

p = Ky MT% - 1.05¢A3
0.2787 dM*
(4-9)

which can be used when BM1/2/A3 < 5.06., Kurata et al.

B-32, B- recommen = 2.7 x or well-fractione
[B—32, B-33] d &= 2.7 x 1023 ¢ 11-f d
23 for ordinary

po 1 ymer (Mw/Mn < 1.1) and &= 2.5 x 10

fractioned polymers (Mw/Mn > 1.1).

Although the two-parameter theory provides
Ssa t i sfactory predictions for the properties of flexible
Pol ymer chains in dilute solution, it breaks down for stiff

chains and for the region far away from the theta state

(=] < o0.15) [B-57].

3. Second Virial Coefficient

polymer solutions seldom behave

As a general rule,
A convenient way to

ideally except at infinite dilution.
des‘Ql‘:i.be the nonideal behavior of a polymer solution is to

e
XPregs the chemical potential of the solvent, u_, in terms

of Tthe power series [B-21, B-57]:
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0 2
pg — B, =RTV p(I/M+ Ajp + Agp°+ ... )
(4-10)

where VS is the molar volume of the solvent. A2 and A3 are

the osmotic second and third virial coefficients,

respectively. The virial coefficients represent the binary

and higher-order interactions of polymer molecules due to

excluded volume effects. In dilute solutions, it is

sufficient to consider only the second virial coefficient

because the influence of the third and higher order virial

coefficients are usually relatively small.

The second virial coefficient for a dilute polymer

Sol ution has several significant meanings. It is directly

rel ated to the chemical potential of the solvent, the

exc 1 uded volume, and the Flory-Huggins interaction

Parameter. It may also be used to measure the goodness of a

Ssol vent for a particular polymer--good solvents are commonly

def i n ed as those having positive A,.

‘The relationship between A2 and the excluded volume

deperlds on the geometry of the polymer molecules. If the

POl ymer molecules behave like rigid spheres, the excluded

VOlume per sphere, u, (see Figure 4-1) is [B-24]

(4-11)

u = 4 (volume of sphere)

a .
nd it can be shown that the second virial coefficient can

b
€ related to u by
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F‘j-sgure 4-1, The excluded volume (dotted volume) for two
spheres in contact.
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2 (4-12)

A2 = Na u/ 2 M

Since the volume of a spherical molecule is proportional to
the second virial coefficient for

the molecular weight M,
For

rigid sphere molecules is inversely proportional to M.

rigid rod molecules, the second virial coefficient is

independent of the molecular weight [B-57].

In general, the second virial coefficient can also be

correlated with the molecular weight by the relation [B-9]

(4-13)

where K' and @« are empirical constants which depend on the
As mentioned earlier, a=1

solvent and temperature.
The

po 1 ymer,

for rigid spheres and a=0 for rigid rod molecules.

relation is usually valid only within limited molecular

weight range, and for most systems the values of « are found
to be 1less than 0.5 [B-9].

Since the osmotic pressure can be obtained from the

Floxr ¥ -Huggins theory [B-21]

m 1 | v,2
M..,.(;E_x) _E__p-f..._
(4-14)

PRT
VS

i
t C an been shown easily that the second virial coefficient

ang X are related by

VZ
Ay = 05 %) —Ey
s M (4-15)
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When X =1/2, A2=0, the excluded volume vanishes, and the
solution is said to be under theta conditions. This
situation arises because of the apparent cancellation

between the enthalpy of mixing and the excess entropy of

mixing.
B. Expression for Osmotic Pressure for Associating Polymer
Solutions

In Part One, an expression for the concentration

de p endence of osmotic pressure has been derived:

_ Mot

* + ’ (4-16)

*
vher e A is assumed to be independent of concentration for

2
€ach ypplecular weight. In this section, Equation (4-16) is
e:'{tel'lcled to include the concentration dependence of AZ*’ and
the O smotic pressure is expressed in terms of the unimer
molecl.xlar weight, the mass concentration, the association

Constant K, and the parameter a in Equation (4-13).

% %*
First, an approximation for A2 is made. A2

i 0
S a complicated term because it includes the interactions

b (3
etween all multimers (such as unimer-unimer, unimer-dimer,
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dimer-dimer, etc.). Recently Tanaka and Solc have shown

*
that A2 can be approximated by [B-45]

*

A = A (4-17)

where A2,n is the second virial coefficient of a
monodisperse polymer with molecular weight equal to the
number-average molecular weight of the multimer mixture.
(In Tanaka and Solc's paper, open association is identified
as a heterogeneous polymer solution having a Schultz-Zimm

distribution and a polydispersity less than 2.) For

ex cluded volume parameter z < 5, this approximation is

accurate within 57Z. Since the sizes of the multimers vary

wi t h concentration, Az n also varies with concentration.
1]

%*
Next, A2

coe f ficient of unimer, A21. The motivation is that A21 can

is expressed in terms of the second virial

be cailculated easily by the two-parameter theory. If

€qua t jon (4-13) can be applied to the multimers such that

AZi = X! M (4-18)
vher & AZi is the second virial coefficient of i-mer, then

A, = K'M7C (4-19)
ang

A = k' M "% (4-20)
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Substituting Equations (4-19) and (4-20) into Equation

*
(4-17), A can be expressed as
2

%*

-
Ay = Ayp (My/M )

= Ay v,7° (4-21)

where ¥, has been defined previously (Equation (4) in Part

One) as Ml/Ma.

Substituting Equation (4-21) into Equatioh (4-16), the

osmotic pressure can be expressed as

-

The observed second virial cofficient obtained from
di £ ferentiating this equation with respect to p and

eva luating the result at p=0 is

2

*
(A2 ) = A - K/ Ml (4-23)

obs 21

which is the same as Equation (16) in Part One.

Equation (4-18) is valid for positive A2 only. Because

Az I a y become negative as molecular weight decreases,
|PP1 3 cation of Equation (4-22) is restricted to polymer
molecules of ordinary size (with molecular weight higher

thanp 104).
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C. Presentation of Osmometry Data and Discussions

1. Estimation of K

According to Equation (4-23), if the dependence of A21

on Ml is relatively weak compared to that of K/Mlz, a plot

*
of (A2 )obs versus I/Ml2 should yield a straight line with

*
slope equal to -K. The values for (A2 )obs can be obtained

*
from the initial slope of m /pRT versus p.

The osmometry data of Elias [B-16, B-19] for PEG in

benzene are used here to test this equation. Since the data

can be well fitted by a straight line (see Figure 4-2), the

sl ope is a good initial guess for K. The final value of K

calculated based on the association model and the least

squares method is 11000 + 300 cc/mole.

Association of PEG in benzene has also been studied by

Afi £ 3 _Effat and Hay [B-1]. Their association model

Pred i cted that

*
Ay dops = 421 - K/ M (4-24)

and T hey claimed that their data were in good agreement with
this prediction. However, this author found a lack of

Consistency between their raw data, calculations, and

TeSultg, The data of Elias do not agree with Equation

(4~24), (A plot of (AZ*)obs versus 1/M1 is not linear.)
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*
Figure 4-2. (A2 )obs versus l/Ml. Experimental data taken
from Elias et al. [B-16, B-19].
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2, Estimation of Az*

The two-parameter theories can be used to estimate the
second virial coefficient for linear, flexible chain

polymers [B-50, B-57]:

Ny B ho(2)
A2 = —2— (4-25)
where
Zz =_2_
as3 (4-26)

-0.4683

h o (Z) =0-547 {1 - (1 +3.903z)}
° z (4-27)

Thus the second virial coefficient Az of PEG in benzene at
25 °C can be easily estimated if the parameters A and B are
known. The parameter A, which represents the short-range

interferences, is given by [B-9]

<R2>
A ={ °

5
M , =7.9 x 10-9 an (4‘28)

The parameter B, which represents the long-range

interferences, is estimated indirectly from the empirical
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Mark-Houwink intrinsic viscosity relationship (see Equations

(4-8) and (4-9)):

2] = &, MP = o0.063 M0-8%

(4-29)

where [n] is the intrinsic viscosity in ml/g. The values of
Kv and B in Equation (4-29) are obtained from curve fitting
the raw data of Rossi and Cuniberti [B-42] using the method
of least squares. It should be pointed out that Rossi and

Cuniberti fitted their data with different values of Kv and

B
[n] = 0.00129 MO-3 (4-30)

because they were preoccupied by the idea that o« should
always be 0.5. However, their raw data clearly agree only
with Equation (4-29), and the use of Equation (4-30) is

incorrect.

Figure 4-3 shows the second virial coefficient as a
function of molecular weight for PEG in benzene at 25 °C,
predicted by the two-parameter theory. The value of A2
increases very rapidly with molecular weight before it
reaches a maximum. (When M<297, B<O0 and the theory
predicts negative values for AZ') For higher molecular
weights, A2 decreases (not so rapidly) with increasing

molecular weight. 1In short, A, can be positive or negative,

2

increasing or decreasing functions of molecular weight,

depending on the situation.
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Ay x 103 (mgle ml/g)

1.5

|
o 5000 10000
M

Figure 4-3. Molecular weight dependence of the second

virial coefficient for PEG in benzene,

predicted by the two parameter theory (Equation
(4-25))0
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The two-parameter theory expresses A2 in such a
complicated function that the derivation of a diffusion
coefficient equation using this function is extremely
difficult. An alternative is to assume a simplier relation
such as AZ = K' M™% In fact many polymer-solvent pairs
have been found to obey this relation [B-4, B-9].
Expressions for the concentration dependence of osmotic

pressure and diffusion coefficient based on this relation

has been derived in Section B of this chapter.

However, the relation A, = K' M™% is valid only for
positive A2. It cannot be used to describe the data of
Elias because some of these data (M1=208, M1=409) must take
negative Az if they are to fit the open association model.
Of course, a more sophisticated relation may correct this
suitation, but it also leads to expressions that are very

difficult to use in diffusion theory.

*
One solution to this problem is to assume an A2

independent of concentration for each polymer sample when
calculating (see Equation (15) in Part One). 1In other
words, for five samples (as is the case for Elias' data)
five Az*'s are used, and each is an average over the
concentration. The values for AZ* obtained using this
assumption are plotted as a function of molecular weight in

Figure 4-4. This plot is in qualitative agreement with the
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predictions from the two-parameter theory (compare with

Figure 4-3).

For high molecular weights, this assumption is valid
because the second virial coefficient is a weak function of
molecular weight [B-4, B-9, B-21, B-32] and concentration.
For low molecular weights, the justification for this
assumption is as follows. According to Equation (15) in
Part One, Il consists of two terms: the association term Wl
and the virial term AZ*Mlp‘ If the virial term is
sufficiently small, the error introduced by this assumption
in calculating Il is negligible. Figure 4-5 shows the
magnitudes of these two terms plotted against concentration
for two molecular weights., It is seen that the virial term
for the low molecular weight sample (M1=594) is very small.
Consequently, this assumption can also be used for low

molecular weights.

3. Other Discussion

As shown in Figure 4-5, the association term is a
decreasing function of p, but the virial term is an
increasing function of p. For the low molecular weight
sample (M1=594), the association term dominates; for the
high molecular weight sample (M1=6000), the virial term
dominates. It is interesting that the effects of these two

terms sometimes balance each other, as for the sample
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1.57
,M=6000

0 0.05 0.10
P(g ml")

Figure 4-5. Comparison of the association term (=)
with the virial term (----- ) in Equation (15),
in Part One, for PEG in benzene at 25 °C.
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(M1=1518). Il for this sample (see Figure 1 in Part One) is
almost unity regardless of concentration, and thus it
behaves like one under theta conditions (see Chapter II).
When both terms are large, the model predicts that the
association term dominates at low concentrations while the
virial term dominates at higher concentrations. In this
case, a plot of Il versus p should first pass through a
minimium and then increase with p. This behavior has

already been observed in some systems [B-18, B-35].

Although the sample (M1=6OOO) displays a linear
behavior and can be satisfactorily descirbed by the
nonassociating model, it is incorrect to assume that
association does not occur at higher molecular weights. In
fact, Elias has shown that the association constant is

independent of molecular weight [B-19].



CHAPTER V
DIFFUSION IN ASSOCIATING POLYMER SOLUTIONS

A. Theoretical Background

Diffusion is movement of a chemical species from a
region of higher concentration to a region of lower
concentration. The flow of solute molecules per unit time
across a unit area perpendicular to the direction of flow (x

axis), J, is given by Fick's law

(@A
[l
|
[w]
Q
|~

(5-1)

%
>

where D is known as the diffusion coefficient.

The diffusion coefficients of many polymer solutions
depend strongly on the nature of the solvent and polymer
concentration. Most of the studies in this area indicate
that for dilute polymer solutions in good solvents, the
value of D generally increases with polymer concentration.
On the other hand, the values of D for films or solids in
the region near the undiluted polymer generallly increase
sharply with increasing diluent concentration. Therefore

D(p) in good solvents can be expected to exhibit a maximum

70
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at an intermediate concentration from pure solvent to pure

polymer.

In addition to solvent and polymer concentration, the
diffusion coefficient may also be affected by molecular
association. The larger associated complexes (dimers,
trimers, etc.) diffuse much slower than the unimers, leading

to lower diffusion coefficients.

The concentration dependence of diffusion coefficient
in dilute polymer solutions is often expressed as [B-50,

B-57]

D=D (1+ kyp + ... ) (5-2)

Accordingly, predicting the value of D requires the
knowledge of Do and kd. At the present time, Do can best be
predicted by the Kirkwood-Riseman theory, and kd by the

Pyun-Fixman theory.

1. Kirkwood-Riseman Theory

The Kirkwood-Riseman theory [B-29, B-30, B-57] provides
a simple method for predicting the diffusion coefficient for
linear, flexible polymer chains at infinite dilution under
theta conditions. Infinite dilution implies that the
polymer molecules are widely dispersed in the solvent and

there are no interactions between individual polymer chains.



72

This theory is applicable only under theta conditions
because the excluded volume effects are not included in the

derivation.

Its derivation is based on the assumption (the nonfree
draining limit) that there exists a very large hydrodynamic
interaction between polymer segments, and the polymer chains
behave like rigid molecules. The Kirkwood-Riseman theory is

expressed as

0.196 k T

(Dy), = (5-3)
°e ng A Mz

where k is the Boltzman constant and Mg is the viscosity of

the solvent. Since A and ng are usually available, the

determination of (Do)e for many polymer-solvent pairs are

relatively simple. For solutions under nontheta conditions,

Duda et al. have suggested the modified form [B-48, B-50]

(Do)

Do = ag (5-4)

where D° is the diffusion coefficient at infinite dilution
under nontheta conditions, and ®s is the expansion factor
defined previously. Since s > 1 except for very poor

solvents,

(Do)e = D0 (5-5)
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and thus the Kirkwood-Riseman theory provides an upper bound

for the diffusion coefficient at infinite dilution.

Duda et. al. [B-51] compared the predictions of this
theory with the experimental values of (Do)e for polystyrene
in cyclohexane under theta conditions. The predictions were
found to be slightly higher than the experimental values.

The average ratio of Do(exptl) to Do(theory) was 0.86.

2, Modified Pyun-Fixman Theory

The behavior of dilute polymer solutions changes
significantly with polymer concentration. As concentration
increases, the polymer molecules interact hydrodynamically
with each other even though they may not overlap or

entangle.

The concentration dependence of diffusion coefficient,

kd’ can be expressed as [B-49]

k, =2 A

d M - kS -2V (5-6)

2 po

where A2 is the thermodynamic second virial coefficient, and
Vpo is the partial specific volume of the polymer at
infinite dilution. The quantity ks is defined by the

series expansion [B-49]

f = fo (1 + kS P+ e ) (5-7)
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and f is the friction coefficient defined by the relation
force on a polymer molecule = f (u_ - u_ ) (5-8)

where ug and up are the velocities of solvent and polymer,

respectively, with respect to a convenient reference frame.

According to Equation (5-6), the value of kd depends on
the thermodynamic, hydrodynamic and volumetric effects. The
thermodynamic effect, A2, has already been discussed in
Chapter IV; the hydrodynamic effect, ks’ can be estimated by
the Pyun-Fixman theory; and the volumetric effect, Vpo’ can
be measured from density experiments. The effect of Vpo is

usually relatively small, and can be ignored if kd is less

than 20 cm3/g.

The Pyun-Fixman theory [B-38, B-54, B-57] is based on a
spherical model in which the spheres are composed of both

polymer and untrapped solvent. It can be expressed as

5

> 5 3
ks ={2.23 6 7> N M A /512}- v (version I)
a po
(5-9)
or
1 3 3 3
ks ={2.23 62 ﬂzNaM A /5122 }— Vpo (version II)
(5-10)

under theta conditions. Equation (5-9) is called version I,

and Equation (5-10) version II, of the Pyun-Fixman theory
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[B-51]. They are related by the parameter X\ which is

defined as

>
T}

(Do)e,exptl / (Do)e,theory (5-11)

To extend its application for nontheta conditions, Duda et

al. [B-53] have suggested the following expressions

47!803 Na

k = _ *
s = [7.16 - k(a, )] 37— ~ Vpo (5-12)

1
. L 6imaMiag

° 16 (5-13)
* - 4096 z
72 a7 (5-14)
. M2 1n[l + x + (2x + x2)%]
K(A ) = 24[! -1 %2
0 o (2x + x2)%

exp[-A.* (1 - x)2(2 + x)] &

(5-15)

which are collectively called the modified Pyun-Fixman
theory. Thus if A, B and Vpo are known for a particular
polymer-solvent pair, ks can be calculated in a
straight-forward manner. When z=0 and as=1 (i.e., under

theta conditions), Equations (5-12) through (5-15) reduce to
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Equation (5-9). However, it remains for future work to test

the modified Pyun-Fixman theory with experimental data.

B. Expression for Diffusion Coefficient for Associating

Polymer Solutions

In Part One, an expression for the concentration
dependence of diffusion coefficient for associating systems
has been derived, assuming that AZ* is independent of
concentration for each molecular weight. Following the same
procedure as described in Part One, the diffusion

*
coefficient D based on Equation (4-16) can be expressed as

po

{2A21K( ) ( z(ffw>
=

M
D*={1-(ks+zv )}-(-l-p}

E(l+5) +1

(5-16)

where

g =VN1+40P (5-17)

as defined previously. In deriving this equation, the
parameters ks’ f and Vp were expanded in terms of a power

series with concentration, and only the first-order terms
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are retained. When o= 0 (i.e., Ai*is independent of
molecular weight), this expression reduces to Equation (23)
in Part One. Note that Equation (5-16) is considerably more
complicated compared with Equation (23). In addition, the

parameter « must be estimated.

C. Presentation of PEG Diffusivity Data and Discussions
1. Estimation of Do

The Stoke-Einstein theory [B-6, B-40]

o
i

k T/ 6nnr (5-18)

is often used to estimate the diffusion coefficient of
liquids. k is the Boltzmann's constant, 5 the solvent
viscosity, and r the solute radius. This theory is valid
only for large, spherical molecules diffusing in dilute
solutions. Moreover its direct application is not always
possible because the solute radius r is often not available.
However, many authors have used the form Dn/T = f(solute
size) as a starting point in developing empirical

correlations [B-40].

Polymer molecules in solution, in general, do not
behave like large spherical molecules. They are best

imagined to be like necklaces consisting of spherical beads
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connected by strings that have no resistance to flow.
Consequently, the Stoke-Einstein equation fails to
accurately predict the diffusion coefficients of polymer
solutions. On the other hand, the Kirkwood-Riseman theory
is more successful because it is based on a more realistic
random coil model. Although its application was originally
limited to polymer solutions under theta conditions, it has
been extended to nontheta conditions (the modified
Kirkwood-Riseman equation, see Equation (5-4)). Table 5-1
shows that the predictions of the modified Kirkwood-Riseman
theory and the experiment data for PEG in benzene are in
good agreement., The difference between the predictions and

the data is within 5%.

Table 5-1. Comparison of diffusion coefficients predicted
from the modified Kirkwood-Riseman equation with the
experimental data for PEG in benzene at 25°C.

Do x 106 (cmz/sec)

M Kirkwood-Riseman Experiment % difference
(This work)

440 8.31 8.58 -3.2
960 5.30 5.05 5.0
4250 2.31 2.20 5.0

12600 1.28 1.25 2.4
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2, Estimation of kS

Despite many experimental and theoretical studies, the
prediction of kS still remains a somewhat unsettled problem.
Duda et al. [B-51] recently evaluated several existing
theories by comparing their predictions with experimental
results. They concluded that the Pyun-Fixman theory
(versions I and II) was the best theory for predicting ks at
the present time, Still, one should not expect very
accurate predictions from this theory. The predictions may
differ from the experimental values by as much as 60%, as is

the case for the data of Duda et al.

To compensate for the uncertainty of the Pyun-Fixman
theory, the parameter A\ (see Equation (5-10)) is adjusted to
fit the diffusivity data. A=0.88 was used to fit the
diffusivity data of this work. This compares favorably with
A=0.86 used by Duda et al. [B-51] to fit the diffusivity

data of polystyrene in cyclohexane.

Figure 5-1 is a plot of kS versus M for PEG in benzene
at 25 °C, predicted by version I of the Pyun-Fixman theory.
Note that the application of this theory is originally
limited to nonassociating systems. In this work, its
application was extended to associating systems by replacing
the unimer molecular weight with the apparent molecular

weight.
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Figure 5-1. k, versus M for PEG in benzene at 25 °C,
predicted by the two-parameter theory (Equation
(5-12)).
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3. Other Discussions

As shown in Figure 2 (in Part One), the diffusivity
data are well described by the association model. The data
for the low molecular weight samples (M1=440, M1=960) are
strongly dependent on concentration due to association. The
data for the higher molecular weight samples (M1=4250,
M1=126OO) are less dependent on concentration because the
effect of the association term diminishes as molecular
weight increases and its effect is also compensated by other

terms (A2 and ks).

Comparision between predictions from the Pyun-Fixman
theory and experimental data was made only for polystyrene
in cyclohexane under theta conditions., Thus it is necessary
to test this theory and its modified form (the modified
Pyun-Fixman theory) more extensively for future work.
Accurate knowledge of ks is vital for predicting diffusion

coefficients especially for high molecular weight polymers.

D. Presentation of PTHF Diffusivity Data and Discussions

Diffusivity data for polytetrahydrofuran (PTHF) in five
different solvents were measured. They were used to

investigate the effects of solvent, molecular weight and
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temperature on diffusion; to test the Kirkwood-Riseman

theory; and to calculate the molecular size of the polymer.

Two sets of PTHF samples ‘were used. The first
consisted of three "fresh" PTHF samples purchased recently
from Polymer Laboratories, Inc., Massachusetts, and their

characteristics are listed in Table 5-2,.

Table 5-2. Characteristics of "fresh" PTHF samples.

Molecular weight Endgroups Polydispersity
2850 -CH3 < 1.15
30800 -CH3 < 1.10
290000 -CH3 < 1.15

The second set consisted of the "o0ld" PTHF samples used
earlier by Lin [B-35]. The adjective "o0ld" was used because
these samples were purchased more than thrée years ago.
They were labeled, according to Lin, as PTHF-Al, PTHF-B1l and
PTHF-B2, with characteristics listed in Table 5-3. Note
that the molecular weights for PTHF-B1 and PTHF-B2
determined by Lin were lower than those by the manufacturer.
Lin pointed out that the manufacturer's values were in error
because the manufacturer overlooked the fact that these

polymers were capable of associating in solution [B-35].
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Because Lin did not store the unused portions of these
samples (which were later used by this author) under
nitrogen nor at very low temperature (as they should be),
the characteristics of these polymer samples might have

changed over the interim period of time.

Table 5-3. Characteristics of "o0ld" PTHF samples (before
degradation). M, and M, are respectively the
molecular weights determined by the manufacturer
and by Lin.

Polymer Code Endgroups M, M,
PTHF-Al -CH3 281,000 _——
PTHF-B1 -0H 25,000 7,660
PHTF-B2 -0H 10, 200 2,500

Five solvents were used: methylethylketone (MEK),
diethylether (DE), n-butanol (BOH), ethylacetate (EA), and
bromobenzene (BB). They represent a wide range of solvent
power and hydrogen-bonding capability, with characteristics

listed in Table 5-4.
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N25and M34 are the

viscosities (centipoise) at 25°C and 34°C,

respectively,
parameter.

X is the Flory-Huggin interaction

Solvent M.W, Nos N3y H-Bonding X
strength
MEK 72 0.40 0.36 Medium 0.40
DE 74 0.23 -—— Medium 0.64
BOH 74 2,58 2.05 Strong 1.48
EA 88 0.42 -———- Medium 0.38
BB 157 1.06 0.95 Poor 0.61

Diffusion coefficients were measured using the

Mach-Zehnder interferometer.

presented in Appendix C.

Unless otherwise stated, a polymer

A summary of the data is

solution of 0.30 g/dl was allowed to diffuse into pure

solvent at 25°C during each experiment.

concentration was reported to be 0.15 g/dl.

these data was estimated to be within 37.

1.

Effect of solvent

As shown in Appendix C,

PTHF in various solvents decrease in the order DE > MEK > EA
> BB > BOH.

diffuse faster in solvents with lower molecular weights (see

the diffusion coefficients of

Thus the average

The accuracy of

This trend indicates that polymer molecules
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Table 5-4). The slow diffusion rate for the polymer
molecules in BOH is attributed to the fact that the BOH
molecules are capable of associating with each other to form

larger clusters.

It is often useful to use the form Dn/T = f(solute size)
as a starting point for correlating diffusivity data. If
Dn/T is plotted against M on a log-log graph, the result can
be fitted by a straight line for each solvent, as shown in
Figure 5-2., The straight lines are almost parallel with
each other, and the quantity Dn/T decreases in the order MEK
> DE > BOH > EA > BB. Note that BOH takes a higher position
in the order because the effect of viscosity has been

accounted for.

The diffusivity data can also be related by the form
D =G M-d. The estimated values for the parameters G and d
are presented in Table 5-5. Recall that the

Kirkwood-Riseman theory,

0.5

(D) =0.196 k T/ An M (5-19)

predicts that the diffusion coefficient should be inversely
proportional to the square root of molecular weight. The
data in Table 5-5 agree well with this prediction, for the

values of d are very close to 0.5.
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Figure 5-2. Dn/T versus M for the "fresh" PTHF samples in
various solvents at 25 °C. (A) MEK; (O) DE; (A) BOH;
(®@) EA; (V) BB.
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Table 5-5. Parameter estimations for the dlfqulVity data
of "fresh" polymer samples at 25°C using the
form D = G M

Solvent G x 10"4 d Correlation coefficient
DE 4,285 0.528 -1.00
BB 0.296 0.484 -1.00

It is interesting that if Dn/T is plotted against the
solvent molecular weight on a log-log graph, the result fits
a straight line for each polymer sample (see Figure 5-3).
The slopes of the lines suggest that Dyn/T is inversely
proportional to the solvent molecular weight. Wilke and
Chang also made the similar correlation for low molecular
weight organic liquids and found that Dn/T was directly
proportional to the square root of the solvent molecular
weight [B-53]. However, there exists no satisfactory theory
for describing the effect of solvent on diffusion in dilute
polymer solutions. Further work is needed to determine the
correlation between diffusion coefficient and solvent

molecular weight.
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Figure 5-3. Dn/T versus M; for the "fresh" PTHF samples at
25 °C. M and M, are the molecular weights of
polymer and solvent, respectivley.
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2, Effect of temperature

Figure 5-4 is a plot Dn/T versus M for PTHF in MEK and
BB at 25 °C and 34 °C. The variation of temperature appears
to have no effect on diffusion for MEK. However its effect
is rather significant for BB. Few researches have been
conducted for investigating the effect of temperature on
diffusion for dilute polymer solutions. Although some
researchers suggest that the diffusion coefficient is a
peculiar function of the combination of
polymer/solvent/temperature, systematic study in this area

remains for future work.

3. Molecular Dimensions

Table 5-6. Estimated values of A (cm) for "fresh" polymer

samples.
Solvent A (25 °C) x 10° A (34 °C) x 10°
MEK 9.6 + 0.2 9.4 + 0.1
DE 10.9 + 0.5 = mmmmmmme———e
EA 13.1 + 0.3 = mmmmmmmme—ee
BB 21.7 + 0.5 11.8 + 0.8
When comparing the equation D = G M-d with the

Kirkwood-Riseman theory, it can be seen easily that the

parameter G is inversely proportional to the parameter A.
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Comparison of Dn/T versus M at 25°C and 34°C.
Aand @ are data measured by Lin and Yam,
respectively, for MEK at 34°C. V and [J are
data measured by Lin and Yam, respectively,
for BB at 34°C. The solid lines are replotted
from Figure 5-2 (at 25°C). The dashed line
connects the data of BB at 25°C.
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Consequently values for A can be calculated (see Table 5-6).
These estimated values are in reasonably good agreement with

those reported in the literature [B-9].

4, "01d" Polymer Samples

As mentioned earlier, the "o0ld" polymer samples might
have degraded during the time they were not properly stored.
The molecular weights for these degraded polymer samples can
be estimated using the data from the "fresh" polymer
samples. The lines which correlate the diffusivity data
(for the "fresh" polymer samples) in Figure 5-2 are redrawn,
and the data for the "o0ld" polymer samples are adjusted to
fit these lines for each solvent so that they are consistent

with the "fresh" polymer data (see Figure 5-5).

Note the that diffusivity data for each polymer falls
consistently at a single molecular weight, suggesting that
this procedure provides a good measure for the molecular
weight of each degraded polymer sample. The molecular
weights of PTHF-Al1l, PTHF-Bl1 and PTHF-B2 are determined to be

9700, 2200 and 23500, respectively.
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Figure 5-5. Estimation of the molecular weights for the "old"
polymer samples. A, V and0are the data for
PTHF-Al, PTHF-Bl1l and PTHF-B2, respectively.
@® is the data for BOH.
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CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

The behavior of open associating systems can be
described by the measurable quantities: K, p, and Ml'
The effect of association increases with decreasing

molecular weight and is governed by the dimensionless group

P = Kp/Ml,

Using the open association model, expressions for
osmotic pressure and diffusion coefficient are derived.
Predictions from the combination of these expressions and
the two-parameter theory are found to compare favorably with

*
2 )obs and

%k
(kd )ObS differ from their nonassociating counterparts only

the experimental data for PEG in benzene. (A

by K/Ml2 and K/Ml’ respectively., PEG solutions with low
polymer molecular weights are affected strongly by
association, and their behavior is described by the
association model. It is also found that the osmotic

pressure is influenced more by association than is the

diffusion coefficient.

Although this work deals exclusively with open

association, the same procedures for deriving the

96
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expressions for osmotic pressure and diffusion coefficient

can be used for other types of association.

work:

(1)

(2)

The following recommendations are proposed for further

The application of the association model to diffusion
should be tested more extensively. One interesting
area arises from some studies which show that the D(p)
curves display minima, even at dilute concentrations
[B-14, B-26, B-35]. This behavior may be explained by
the association model., To test this speculation, the
concentration dependence of osmotic pressure and
diffusion coefficient for these systems should be
obtained. The osmotic pressure data are used to match
several association models. After a reasonable model
is found, an expression for the diffusion coefficient
based on this model can be formulated and its

predictions tested against the experimental data.

The Pyun-Fixman theory should be tested more
extensively. Although some investigators have compared
the predictions of this theory with experimental data,
their studies are limited to polystyrene under theta
conditions., It is desirable to find out how well the
modified Pyun-Fixman theory can predict the value for
kS under nontheta conditions. To do this, osmotic

pressure and diffusivity data must be obtained for a
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dilute polymer solution., For simplicity, it is
advisable to start with a nonassociating system. The
second virial coefficient A2 can be obtained from the
osmotic pressure data, and the parameter kd from the
diffusivity data. The friction coefficient ks is
calculated using the relation kd = 2 A2 M - ks -2 Vpo’
and the results are compared with the predictions of

the modified Pyun-Fixman theory.
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BB

BOH

o o o O

NOMENCLATURE

Parameter characterizes the short-range
interferences, defined in Equation (4-3)

Second virial coefficient of a nonassociating
polymer solution, defined in Equation (13)

Second virial coefficient of the unimer
Second virial coefficient of a monodisperse
polymer with molecular weight equal to the number

average molecular weight of a multimer mixture

Second virial coefficient of an associating
polymer polymer solution, defined in Equation
(4-16)

Observed second virial coefficient defined in
Equation (16)

Interaction between a pair of polymer molecules i
and j at infinite dilution, defined in Equation
(14)

Parameter characterizes the long-range
interferences

i-mer

Bromobenzene

n-butanol

Molar concentrationvof unimer

Molar concentration of i-mer

Molar concentration of polymer solute

Diffusion coefficient of a nonassociating polymer
polymer solution
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EA

AG

*
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%

MEK

obs
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Diffusion coefficient at infinite dilution

Diffusion coefficient at infinite dilution under
theta conditions

Diffusion coefficient of an associating polymer
polymer solution

Diethyl ether

Ethyl acetate

Friction coefficient defined in Equation (5-7)
Change in free energy of mixing

Total number of fringes

Association equilibrium constant

Constant defined in Equation (6-4)

Parameter in Equation (27)

Boltzmann's constant

Concentration dependence of diffusion coefficient
defined in Equation (5-2)

Concentration dependence of diffusion coefficient
for an associating polymer solution

Observed kd* (see Equation (25))
Coefficient defined in Equation (20)
Molecular weight for monodisperse polymer
Molecular weight of unimer

Apparent polymer molecular weight

Number average molecular weight

Molecular weight of solvent

Weight average molecular weight

Methyl ethyl ketone

Ratio of molar volumes of polymer to solvent
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Na Avogadro's number

n Number of moles

P Dimensionless polymer concentration for an
?giociating polymer solution, defined in Equation

PEG Polyethylene glycol

PTHF Polytetrahydrofuran

R Gas constant

<R2>o Unperturbed mean-square end-to-end distance

<Sz>o Unperturbed mean-square radius of gyration

T Absolute temperature

u Excluded volume per sphere

Vp Partial specific volume of polymer

Vpo Partial specific volume of polymer at infinite

dilution defined in Equation (19)

L Weight fraction of polymer i

z Excluded volume parameter (see Equation (4-7)

z Parameter related to z, defined in Equation
(4-26)

Greek symbols

o Exponent in Equation (4-13)

o Expansion coefficient defined in Equation (4-4)
B Exponent in Equation (4-8)

Y Exponent in Equation (29)

b Solubility parameter

¢ Dimensionless group defined in Equation (2-7)



103

n Viscosity of solvent
[n] Intrinsic viscosity
x I3
Ratio of Do,exptl to Do,theory
KB Chemical potential of solvent in solution
p; Chemical potential of pure solvent
¢ Dimensionless group defined in Equation (8)
4 Osmotic pressure for a nonassociating polymer
solution
¥ Osmotic pressure for an associating polymer
solution
I Dimensionless osmotic pressure defined in

Equation (15)

p Polymer mass concentration
P Solvent mass concentration
¢ Volume fraction

Flory-Huggins interaction parameter

¥, Dimensionless group defined in Equation (4)
v, Dimensionless group defined in Equation (24)
Subscripts
P Polymer
s Solvent
0 Under theta conditions
0 At infinite dilution

Superscript

* Relating to open association
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APPENDIX A
SAMPLE CALCULATION
Polymer: PEG (M=960)
Solvent: benzene
Temperature: 25 °c

Solution A (for the upper level)
Pure benzene

Solution B (for the lower level
Concentration = 0.400 g/d1l

Below is the calculation for determining the diffusion
coefficient for the above system. The distances on the
photographic plate were measured using an optical comparator
made from a microscope fitted with a travelling eyepiece.

The nomenclature used by Bidlack [B-5] is followed here.

Exposure number Time, minutes
1 0
2 5
3 10
4 15
5 20
6 25
J = 4.6

106
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Exposure j (xo' - xj), cm k (xo' + xk), cm
1 1 0.0937 3 0.2220
2 1 0.1069 3 0.2817
3 1 0.1220 3 0.3383
4 1 0.1664 3 0.4170
5 1 0.1532 3 0.4280
6 1 0.1290 3 0.4295

The measurements were fed into a computer program for
calculating the diffusion coefficient. A plot showing the
goodness of the data is shown in Figure A-1. All the data
points lie on a straight line. The diffusion coefficient for

6

this run was calculated to be 4.84 x 10 cmz/sec.
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Sample calculation for the diffusion
coefficient of PEG in benzene. The symbols are

those used by Bidlack [B-5].

Figure A-1.




APPENDIX B

DIFFUSIVITY DATA OF PEG

109




APPENDIX B

DIFFUSIVITY DATA FOR PEG IN BENZENE

Polymer: Polyethylene glycol (PEG)
Solvent: Benzene

Temperature: 25 °C

M1=440

p x 102 (g/ml) D x 10° (cn?/s)
0.20 7.94
0.20 8.39
0.60 7.68
0.60 7.45
1.00 6.96
1.00 6.72
1.45 6.51
1.80 6.15
2.00 5.75

M1=960

px 102 (g/ml) D x 10° (cm?/s)
0.20 4.84
0.20 5.10
0.20 4.79
0.60 4.62
1.00 4.37
1.40 4.26
1.40 4.10
1.85 3.99
2.00 3.97
2.00 3.73
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M1=4250
o x 102

0.20
0.20
0.60
0.60
1.00
1.00
1.40
1.80
2.00
2.00

M1=12600
pxlo2

0.20
0.20
0.60
0.60
1.00
1.00
1.40
1.80
2,00

(g/ml)

(g/ml)

D x 10

D

X

2.20
2.09
2.09
2.01
1.99
1.94
2.01
1.90
1.82
1.88

1.22
1.14
1.07
1.15
1.08
1.02
1.09
1.02
0.99
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(cm2/s)

(sz/s)
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APPENDIX C

DIFFUSIVITY DATA FOR PTHF IN VARIOUS SOLVENTS

Tables C-1. Diffusivity data (cmz/sec) of "fresh" PTHF
samples measured using the Mach-Zehnder interferometer in
Unless otherwise stated, 0.3 g/dl of
solutioon was allowed to diffuse into pure solvent at 25
and the concentration for the diffusion measurements was

various solvents.

reported to be 0.15 g/dl.

M Solvent D x 107 D /T x 10!l

2850 DE 63.1 4.87
MEK 38.7 5.20
EA 27.8 3.92
BB 6.47 2,30
30800 DE 19.0 1.47
MEK 12.2 1.64
(T = 34 °C) 13.9 1.63
EA 8.19 1.15

BB 1.92 0.687
(T = 34 °C) BB 3.51 1.09
BOH 1.65 1.43

290000 DE 5.52 0.426

MEK 3.80 0.510

EA 2.72 0.383

BB 0.688 0.245

113
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Tables C-2. Diffusivity data (cmz/sec) of "o0ld" PTHF
samples measured using the Mach-Zehnder interferometer in
various solvents. Unless otherwise stated, 0.3 g/dl of
solutioon was allowed to diffuse into pure solvent at 25 oC,
and the concentration for the diffusion measurements was
reported to be 0.15 g/d1l.

M Solvent D x 10’ D /T x 1011
PTHF-A1l DE 35.1 2.71
3.37 2.60
MEK 21.6 2.90
23.7 3.19
(T = 34 °C) 4,31 5.05
EA 14.3 2.02
BOH 34.3 2.97
PTHF-BI DE 72.6 5.60
MEK 43.5 5.84
EA 29.4 4.15
BB 7.17 2.55
BOH 6.90 5.97
PTHF-B2 DE 21.2 1.64
MEK 13.8 1.85
EA 9.22 1.30
BB 2.27 0.807
BOH 2.13 1.85

(C = 0.2 g/dl) 3.17 2.74
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