
 

 

EDDY CURRENT NONDESTRUCTIVE EVALUATION USING 

MAGNETORESISTIVE SENSING 

 

By 

Guang Yang 

 

 

 

 

 

A DISSERTATION  

Submitted to  

Michigan State University  

in partial fulfillment of the requirements  

for the degree of  
 

Electrical Engineering––Doctor of Philosophy 

 

2013 

 

 

 



 

ABSTRACT 

 

EDDY CURRENT NONDESTRUCTIVE EVALUATION USING 

MAGNETORESISTIVE SENSING 

 

By 

Guang Yang 

 

Reliable inspection of hidden cracks in multilayer objects, such as the airframe structures still 

poses a major challenge in NDE. Conventional electromagnetic methods are limited in their 

abilities to detect second and third layer cracks in riveted structures. Cracks are normally found 

at fastener sites and the presence of steel fastener (high permeability) produces a strong signal 

that masks any indications from a crack. An eddy current (EC) system with sheet current source 

for uniform field generation and magnetoresistive (MR) sensing is studied in this dissertation. 

The contributions of this research are: 1) A study of three-component measurements using MR 

sensors and the use of information in these components to enhance crack detection at steel 

fasteners. 2) Experimentally validated model-based study of Pulsed EC excitation and low 

frequency EC excitation systems for the inspection of buried cracks at fastener sites. 3) Rotating 

current excitation designed to enhance the system capability to detect cracks of all orientations at 

fastener sites. 4) A statistical signal processing scheme developed for automated analysis of 

measured data. 5) Development of a numerical model for simulating the phenomenon in time 

and frequency domains. Model based study is used to assist the overall system and algorithm 

design. Results of implementing the techniques on simulation and measurement fully validate the 

proposed methods. 
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CHAPTER 1  INTRODUCTION 

1.1 Introduction to Nondestructive Testing  

Nondestructive testing and evaluation (NDT/NDE) is the assessment of the structural integrity of 

a material or component without causing any physical damage to the test object [1]. NDE 

techniques are well developed and widely used by industry to monitor and detect flaws or 

crack-like discontinuities. NDT/NDE techniques play a major role in quality control, safety 

maintenance, and failure prevention. The application of NDE technology has improved the 

reliability of operating aircraft, pipelines, bridges, nuclear power plants, etc. In order to inspect a 

variety of materials, a number of NDT techniques, employing different physical principles, have 

emerged. As show in Figure 1.1, a typical NDT method consists of an energy source that 

interacts with the specimen under test, and a receiving transducer that picks up the response of 

energy-material interaction. A measured NDT signal contains the indication of possible defect in 

the test object. 
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Figure 1.1 NDT and NDE technology 
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Each NDT/NDE method has certain advantages and limitations. Radiographic, ultrasonic, and 

electromagnetic methods are some of the commonly used approaches in NDE [1-4].  

1.1.1 Radiographic Testing 

Radiographic testing involves the use of a penetrating radiation source such as gamma rays or 

X-rays that travels through the object under test. The intensity of the beam energy is reduced 

after passing through the test specimen. The attenuation depends on material thickness and 

absorption coefficient. The energy distribution of the transmitted beam is imaged on a film or 

other imaging media. The density in a defect/crack region is generally lower than the rest of the 

sample, which produces intensity differences in the radiographic image [3-4].  

Radiographic NDT is extensively applied to find internal defects in coating and weld inspection 

[4]. However, radiographic imaging is a projection of a cross-section of the test object, and it 

requires a two-sided access to the component under examination. The test is highly directional 

and a simple radiograph cannot provide depth information of the discontinuity [1, 3-4]. 

Moreover, radiographic NDT has limitations due to the radiation hazard involved in its use and 

also, the equipment is relatively expensive.  

1.1.2 Ultrasonic Testing 

Ultrasonic testing uses the transmission of high frequency elastic waves (0.1 and 25 MHz) into a 

material to detect imperfections or locate changes in material properties. Acoustic energy is 

transmitted, reflected and scattered within the object under test or redirected by internal 

interfaces or anomalies. The reflected beam is captured by the transducer that is located in 

contact or in close proximity to the test object, and analyzed to determine the presence and 
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location of flaws or discontinuities [1, 3-4]. The most common ultrasonic examination, 

pulse-echo testing, employs a piezoelectric transducer that is energized in a pulsed mode to direct 

and propagate sound energy into the specimen. The features in the received signals (echoes) are 

evaluated to identify discontinuities [3-4].  

Ultrasonic NDT is widely used to measure material thickness and qualify the internal structure of 

metallic and non-metallic materials. However, ultrasonic testing needs couplant to inject energy 

efficiently into material and in general, cannot be used effectively in a layered structure with air 

gaps. Furthermore, small and thin objects and coarse-grained materials are difficult to be 

inspected, due to high scattering of the elastic waves in those materials. Interpretation of 

acquired signals demand advanced signal interpretation algorithms [3-4].  

1.1.3 Electromagnetic Testing 

Electromagnetic NDT techniques covering a broad range of the electromagnetic spectrum are 

non-contact and offer a low-cost means for high speed, large scale testing of metallic materials. 

Electromagnetic NDT includes magnetic flux leakage technique (static fields), eddy current (EC) 

method and remote field EC testing (quasi-static fields), microwave testing (high frequency 

fields), etc. [5]. In these techniques, the material under examination is excited 

electromagnetically and changes associated with electromagnetic fields are monitored and 

measured. Received signals contain information about material anomalies that affect electrical 

conductivity, magnetic permeability or dielectric permittivity. Electromagnetic methods have 

been used extensively in nuclear, aerospace, marine, high pressure and high temperature 

environments. They have been applied for flaw detection, microstructure characterization, and 
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evaluation of mechanical properties and residual stresses [5-8]. 

Electromagnetic NDT techniques differ in their detection sensitivity and capability, and signal 

analysis techniques for crack characterization [5]. Magnetic flux leakage testing, active or 

residual, is established by magnetizing a ferromagnetic material. The presence of a flaw in a 

material causes a discontinuity in its magnetic permeability. This distorts the distribution of the 

magnetic flux lines, and a part of the flux ‘leaks’ into the air in the vicinity of the flaw. During 

testing, the leakage field is captured by scanning the specimen’s surface with a flux-sensitive 

transducer. However, this method is limited to detect defects on the surface or near the surface of 

a ferromagnetic object. At the other end of the spectrum, microwave and Terahertz NDE 

methods are employed for defect detection by measuring differences in dielectric properties of 

non-conducting materials [6, 8-9].   

Conventional EC technique is the most common electromagnetic method used for the inspection 

of conductive components in several industries, such as nuclear and aerospace. It is widely 

employed to inspect surface defects, subsurface corrosion and coating characterization of 

conductive materials. In particular, this NDT method offers advantages in testing layered 

structures [2, 6-9]. An EC testing system consists of a probe coil excited by an alternating current. 

The discontinuities in component properties cause changes in induced current or magnetic field. 

Resultant fields provide complex signals representing probe coil impedance changes, which 

carries information about material properties [2, 5-7]. Recently, EC testing systems using 

advanced magnetic sensors have been investigated [8]. A detailed review of EC techniques is 

presented in Chapter 2 of this dissertation.  
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1.2 Inspection of Multilayer Structures  

The examination of multilayer structures poses a major challenge in the maintenance of aging 

aircraft and the aerospace industry [10-11]. Aeronautical components such as aircraft wings and 

riveted fuselage lap joints, undergo fatigue damage that occur around fasteners due to 

mechanical stresses. Undetected cracks hidden at fastener sites in layered structures can lead to 

catastrophic failures. Therefore, reliable NDT methods are required to detect these embedded 

cracks. EC methods are popularly used for detecting corrosion and subsurface fatigue cracks in 

riveted multilayer structures [11-12]. The penetration of low frequency electromagnetic fields 

through multiple layers provides the ability to detect hidden cracks in subsurface layers or small 

cracks under fastener heads without safety hazards. Figure 1.2 compares the penetration of 

electromagnetic and ultrasonic fields through the thickness of a multilayered structure. 
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Figure 1.2 Inspection of riveted multilayer structure: (a) Problem of ultrasonic testing and (b) 

Desired EC testing 

(For interpretation of the references to color in this and all other figures, the reader is referred to 

the electronic version of this dissertation.)  

 

However, due to skin depth effect, conventional EC method suffers attenuation of EC intensity 

along the depth of structure under test. In addition, the fastener behaves as a strong discontinuity 
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through the full depth of the layered structure, masking the response or indication due to small 

fatigue cracks. Hence, techniques for enhancing the signal-to-noise ratio in EC measurements are 

required. This dissertation focuses on the development of EC NDE techniques to reliably detect 

small cracks at fastener sites in layered structures. 

1.3 Challenges and Goals  

EC techniques that offer deep penetration of induced currents have been studied for the detection 

of subsurface discontinuities in layered structures. These techniques include low frequency EC 

testing and pulsed eddy current (PEC) methods. Particularly in the aerospace industry, EC testing 

is currently used for detecting fastener holes in aircraft components [12-17]. Low frequency EC 

method offers the potential to detect cracks that are not detectable by X-ray radiography [18]. 

However, present EC techniques require the removal of fasteners or perform inspections limited 

to corrosion detection, large size subsurface slots, and near-surface cracks within a few 

millimeters from the surface. Additionally, these methods do not quantify the reliability of defect 

detection under variable factors during inspection [18]. This dissertation attempts to address 

these problems.  

1.3.1 Problem Statement  

A typical aircraft skin structure including fuselage skin or wing splice that is joined together by 

fasteners is shown schematically in Figure 1.3 (a). Fasteners are typically made of aluminum, 

titanium or steel and typical diameters are about 20 mm. This type of structure tends to produce 

high stress concentration around fastener holes [10-11]. Hence, fatigue flaws, stress corrosion 

and cracks usually initiate at rivet sites in subsurface layers, as demonstrated in Figure 1.3 (b).  
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Figure 1.3 Layered structure: (a) Aircraft riveted skin structure geometry and (b) Initiation of 

hidden corrosion and cracks at rivet sites 

 

EC techniques have been widely used to inspect aluminum or titanium fastener structures 

(non-magnetic materials). However, the examination of a ferromagnetic fastener remains a 

challenge [2, 7, 19-22]. Ferromagnetic materials are characterized by a large change in magnetic 

permeability that strongly influences the measured signals associated with the induced magnetic 

field. Therefore, the dominant signal from a ferrous rivet in the lap joint masks the relatively low 

amplitude signal from a hidden defect propagating around the fastener hole. Consequently, the 

presence of a ferrous fastener confounds crack detection. Currently, fastener removal is required 

by EC techniques during the inspection of aircraft wing structures [22]. Some of the research 

solutions using EC techniques for ferromagnetic fastener examination and their limitations are 
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reviewed in Chapter 2. 

Incorporation of advances in magnetic sensors, signal and image processing, image fusion and 

numerical model based investigations has significantly enhanced the scope and applicability of 

EC techniques [23]. In particular, magnetoresistive (MR) imaging has improved EC inspection 

of complex structures such as riveted components. In contrast to impedance analysis of a single 

scan (conventional EC data analysis), flaw detection is evaluated based on asymmetry features in 

EC C-scan image data [24]. However, there are several potential sources of coherent noise that 

yield responses similar to a defect scenario. These include the asymmetric gaps between 

fasteners and holes, probe tilt, lift-off variation and irregular geometric factors. Such factors can 

interfere with defect detection [18]. Studies presented in [25-26] showed the enhanced detection 

of cracks beneath installed fastener heads using phase-based signal processing methods. A 

discussion of the benefits using phase shift or rotation to minimize the response of fastener is 

given in [27]. However, finding an optimum phase shift can be difficult in a noisy image. 

Additionally, a phase shift based flaw is affected by fastener type and lift-off variations. 

Model-based approaches for flaw detection and characterization, and model-assisted probability 

of detection (POD) have also been studied for riveted structure inspection [28-29]. However, the 

procedure for implementing the model-based approach is computationally intensive since these 

are iterative procedures involving 3D numerical models. 

1.3.2 Research Objectives and Methodologies  

The objective of this dissertation is to develop a reliable EC sensor system and automatic signal 

interpretation for detecting cracks buried around steel fastener sites in layered structures. 
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Additionally, the proposed system should be sensitive to cracks of all orientations emanating 

radially from fastener holes.    

The feasibility of proposed sensor systems is investigated using modeling and experiments. The 

use of uniform excitation currents with 3D MR sensing is explored using laboratory specimens. 

Low frequency excitation current methods as well as pulsed excitation with transient response 

are investigated. Simulation models using efficient finite element (FE) analysis in time and 

frequency domains are used for conducting parametric study that could assist in system design.  

1.4 Organization of the Dissertation   

This chapter introduced the research problem and summarized the research objectives. This 

dissertation addresses several topics in EC inspection: system design and modeling, experimental 

validation and algorithms for data analysis. Chapter 2 presents a review of EC techniques and its 

application to multilayer structures. A discussion of EC testing systems developed for riveted 

structures is presented. Chapter 3 proposes the design of a Pulsed Eddy Current-Giant 

Magnetoresistor (PEC-GMR) system. A numerical model for simulating transient 

electromagnetic field and GMR sensing in time domain is described. The feasibility of 

measuring the 3-components of the magnetic field using 3D GMR sensors is investigated and 

proposed as a solution to find defective ferromagnetic fasteners in a layered aircraft structure. 

Chapter 4 introduces a signal analysis scheme for automatic detection using statistical analysis of 

time-domain PEC-GMR signals. Chapter 5 presents the design of low frequency EC-GMR 

inspection and associated data analysis in the frequency domain. Chapter 6 proposes an 

EC-GMR rotating current excitation design that is sensitive to orientations of radial crack around 
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the fastener site. Numerical modeling studies and experimental measurements using rotating 

field are presented. Chapter 7 describes a parametric study of the proposed EC-GMR system. An 

invariance analysis scheme is introduced to render the measurements insensitive to sensor tilt 

that could cause unwanted response received by GMR sensor. Conclusions and 

recommendations for future research are summarized in Chapter 8.     
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CHAPTER 2  REVIEW OF ELETROMAGNETIC NDE 

2.1 Introduction  

The operation of EC testing is based on the principles of electromagnetic induction. A harmonic 

field at a specific frequency (typically Hz-MHz) is produced by a time-harmonic current through 

a source coil, which induces eddy currents in the object under examination. The presence of a 

defect or discontinuity behaves as a high resistance barrier which disturbs induced current flows. 

The resulting perturbations of the associated magnetic field are measured [2, 5-7].  

These phenomena can be described by Maxwell’s equations:  

  
t




D
JH  (Ampere’s Law)      (2.1) 

                          
t




B
E  (Faraday’s Law)                      (2.2) 

                                 0 B  (Gauss’ Law)          (2.3) 

          EJ    (2.4) 

where the variables are:  

E : electric field intensity (volt/meter) 

H : magnetic field intensity (ampere/meter) 

D : electric flux density (coulomb/meter
2
) 

B : magnetic flux density (tesla) 

J : electric current density (ampere/ meter
2
)  

: electric conductivity (mhos/meter) 

According to Ampere’s law in Eq. (2.1), a time-varying current source generates a time-varying 

magnetic field, as a primary field H shown in Figure 2.1 (a) [5]. As dictated by Faraday’s law in 

Eq. (2.2), a time-varying magnetic field induces an electromotive force that is proportional to the 
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time-rate of change of the magnetic induction flux density: 

                         
dt

Bd
                                  (2.5) 

This electromotive force interacts with the test material and results in currents induced inside the 

specimen. The induced currents are called eddy currents. Based on Lenz’s law, these eddy 

currents produce a secondary magnetic field that opposes the source field due to the excitation 

coil, as shown in Figure 2.1 (a) [5]. By sensing the changes in the total electromagnetic field, 

discontinuities in the conductivity or permeability of a conductive structure are detected. The net 

change in the magnetic flux is linked to changes of the coil impendence (z), a complex parameter 

with magnitude |z| and phase angle   as: 

       


zjXRIVz  /                       (2.6) 

Since the inductance of a coil is associated with the flux linkage per ampere, the presence of 

eddy currents generate a resistive power loss. This results in a small increase in the effective 

resistance of the coil, which changes the coil impendence when it approaches a conducting 

specimen. Thereby, the net effect caused by the reduction and redistribution of eddy currents due 

to a defect is reflected in the variations of the probe coil’s resistance and inductance. As shown 

in Figure 2.1 (b), the EC inspection monitors the impedance changes when the probe coil scans 

along the object surface. The effective inductance and resistance of the coil changes relative to 

the value in air [2, 5-7].     
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Figure 2.1 Principle of the EC inspection: (a) A typical EC probe above a conducting specimen 

under test and (b) The measurement of coil impedance [6] 

 

A typical EC testing system is shown in Figure 2.2. Such a system involves excitation, signal 

preparation, demodulation, and analysis [2, 5-7]. A probe consisting of a coil or a set of coils is 

excited, and the interaction of induced electromagnetic field with the sample is measured. 

Traditional EC technique monitors the induced voltage of a pick-up coil (same or different from 

the excitation coil) or collects the variations in inductance and resistance of the same source coil. 

A demodulator is a phase-magnitude receiver. As the probe scans above the specimen, response 

signals are represented in the impedance plane after noise filtering, amplification or other signal 

conditioning circuitry. Discrimination, summation or comparison, and signal processing may be 

included at the signal interpretation stage.  
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Figure 2.2 Eddy current testing system 

 

The ability to detect a flaw depends on the orientation of the defect’s largest dimension relative 

to the flow path of induced currents. Discontinuities are most detectable when their longest 

dimensions are perpendicular to induced currents [7, 30]. However, edges or boundaries in the 

test specimen also distorts current flow paths and generate a signal similar to a flaw response, 

and hence must be eliminated by signal processing. 

2.2 Skin Depth and Development of EC Techniques  

Conventional EC techniques have a limited field penetration through the material depth as 

dictated by the skin effect [7]. Skin depth   is characterized as: 

                                   



f

1
                              (2.7) 

where   is the conductivity of conductor under test,   is the permeability of conductor, and 

f  is the excitation frequency. The magnitude of induced eddy currents decreases exponentially 

in the conductive material. Hence, the amplitude of fields in the conductor at depths along X-axis 

is expressed as [7, 9, 31]:  
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                         /
0)( xeJxJ                             (2.8) 

The standard skin depth of penetration is defined as the depth where the eddy current density is 

about 37% (1/e) of its surface value. Since greater penetration depth of eddy currents is needed 

to inspect embedded flaws, the selection of excitation frequency is critical [5-7, 9, 31]. Detecting 

a deeper flaw requires lower excitation frequency. Figure 2.3 presents how the skin depth affects 

the distribution of eddy current densities inside a copper plate at high and low frequencies. 

 

 

 

 

 

 

 

 

 

 

The capabilities of conventional EC methods that employ single frequency excitation are limited 

to detecting defects at one or two skin depths. Multi-frequency EC techniques are introduced to 

provide additional information related to induced fields at different depths [7, 9, 32-34]. The 

design of a multi-frequency instrument needs to employ multiplexing strategy in the time or 

frequency domain [6-7]. When excitation signals at a swept-frequency mode are employed 

simultaneously, a frequency-division de-multiplexing method is applied to isolate individual 
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Figure 2.3 Demonstration of skip depth in EC testing (Comsol 3.5 simulation):  

(a) 100 Hz EC and (b) 1 KHz EC 
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response signals. In references [35-37], an EC probe operated at the sinusoidal swept-frequency 

from a 100Hz to several MHz is used to inspect different layers. Multi-frequency EC testing is 

particularly useful in removing undesired signals using advanced signal processing or 

information mixing. Different algorithms have been utilized to selectively suppress unwanted 

indications due to geometry and retain defect indication [38-41].  

The inclusion of a broad range of frequencies led to pulsed excitation in EC testing that applies a 

square, triangular, or a saw tooth waveform as a source current [7, 31, 42]. PEC techniques 

measure transient signals that contain a broad spectrum of frequencies and provides capabilities 

to detect and characterize deep corrosion and hidden defects. This technique also offers 

advantages in correlating depth information with time-dependent characteristics in the response 

signals [2, 43].  

Owing to deeper field penetration, the application of PEC techniques has been extensively found 

in the detection of cracks hidden inside multilayered aircraft components [2, 44-48]. Studies and 

details of PEC technique in detecting deeply buried cracks around fastener sites are investigated 

in Chapters 3 and 4 of this dissertation.   

2.3 Configurations of EC Coil Probes 

The distribution of eddy currents primarily depends on the source coil design. The pattern of 

induced currents is decided by the size, orientation and shape of the source coil. Controlling the 

eddy currents distribution is critical for detecting discontinuities at all possible orientations [30]. 

2.3.1 Conventional Coil Probes 

Common EC probes are designed as a flat coil, pancake coil, or encircling coil [7]. As shown in 
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Figure 2.4, coil configurations depend on different applications: 1) surface probes (Figure 2.4 (a)) 

that can be pancake shaped to scan along the surface and yield magnetic flux perpendicular to the 

surface; 2) Bobbin (inner diameter) probes (Figure 2.4 (b)) are wound on a bobbin to move along 

the inside of the tubes and produce axial magnetic flux, 3) outside diameter probes (Figure 2.4 

(c)) that can be wound to encircle the specimen [2, 49-50]. 
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Figure 2.4 Typical EC probes: (a) Pancake type coil [50] (b) Bobbin type (inner diameter) coil [2] 

(c) Encircling type (outer diameter) coil [2] 

 

Coil probes can operate in double-function mode, separate-function mode and hybrid mode, as 

displayed in Figure 2.5. The double-function operation includes two approaches: 1) An absolute 

probe which generally contains a single coil that is used as the source excitation as well as sense 

changes relative to induced magnetic field; 2) A differential probe which has two active coils 

usually wound in opposition for eddy currents generation and as well as pickup. The two coils 

give no signal in a flaw-free area while they produce a differential signal when the probe scans 

over a defect in the sample under test. The impedance change of double-function coil indicates 

defect existence.  

Absolute probes can be overly sensitive to material variations, temperature changes, lift-off and 

other variations during inspection. Differential probes are relatively insensitive to slow or 
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gradual discontinuity or composition changes of a test structure. Additionally, a differential probe 

detects large flaws only when they are over the beginning and end locations of the flaw, since the 

output signal is canceled when it is placed over uniform parts of the defective region [2, 49-51].  

 

Double-function probe: 

single coil/coils for 

source and sensing 

Separate-function probe:

two separate coils-

one for source and one for sensing 

(a) (b) (c) (d)  

Figure 2.5 Coil probes-mode of operation [49, 51]: (a) Double-function probe in absolute mode 

(b) Double-function probe in differential mode (c) Separate-function probe in absolute mode (d) 

Separate-function probe in differential mode 

 

Separate-function probes employ a primary coil to provide source currents and a secondary coil 

(pick-up coil) to sense the secondary field due to eddy currents. Separate-functions probes can 

also be used in an absolute or differential mode. This probe type is also called Transmit/Receive 

(T/R) probe. The configuration of transmit coil is specially designed for optimizing the eddy 

current flow pattern, and the receiving coil configuration is designed to achieve a maximum 

sensitivity to defect [2].  

2.3.2 Planar Coil Probes   

It is fundamental to EC testing that defects that distort the continuity of induced currents are 

detectable. Therefore, the configuration of excitation coil is critical since it decides the pattern 

and distribution of induced currents [7, 52]. Additionally, coil probes provide high sensitivity to 

defects if a flaw dimension is comparable to the size of coil transducer. Therefore, the shape, 
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cross-section, and size of the source coil vary for different applications [2, 52]. In the case of 

conventional coil probes, small diameter coil probes are preferred for higher sensitivity to small 

cracks. However, coil size is also crucial to obtain a signal with high signal-to-noise (SNR). With 

the development of microelectronics and integrated circuits, planar coil probes are being 

investigated in NDT areas and pursued particularly in EC probe applications [2, 52-53]. Planar 

coils are made of flexible windings with a certain number of turns that are fabricated on a printed 

circuit board (PCB).  

 

 

Figure 2.6 Planar coil configurations [52-53] 

 

As shown in Figure 2.6, the patterns of the planar windings can take different forms depending 

on the required induced eddy current directions [52-53]. Four research groups independently 

studied planar coil probes designed for electromagnetic NDE.  

The first study of planar coils as NDT sensors was introduced by General Electric (GE) [52-55]. 

In order to inspect complex engine parts, they deposited the separated driving and sensing coil 
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elements in a layered flexible structure as an array of EC planar probes. Their follow-on work 

conducted FE modeling and experimental studies for probe designs optimized for the inspection 

of rotating aircraft engine parts. They were able to detect Electrical Discharge Machining (EDM) 

notches 0.01’’ long and 0.005’’ deep.  

A second group that has investigated the design of planar coils is JENTEK® Sensors Inc. They 

introduced the planar coil probe with Meandering Winding Magnetometer (MWM) and a signal 

processing algorithm using grid measurements (a model-based technique) [52, 56-58]. MWM 

coils consist of thin and conformable coils. Multiple MWMs can be integrated to form a sensor 

array. The coil probe has a single-drive winding (primary windings) and one or more sensing 

elements on a thin and conformable substrate (secondary windings). Figure 2.7 (a) shows the H 

field distribution introduced in a MWM probe, which is generated by the linear current ID in the 

primary windings. The voltages of the secondary windings in VS1 and VS2 measure the field 

changes. The distance   between windings of the planar meander coil can be optimized. In 

aging aircraft applications, the permanently mounted MWM array sensors were able to detect 

cracks of 40µm length and 20µm depth during the fatigue test of aluminum specimens [59-60].  
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Figure 2.7 Two designs of planar coil probes: (a) a basic MWM probe [56] and (b) a 

meander/mesh coupled probe [61-62] 

 

A similar design using a pair of planar coils – a planar meander as the source coil but a planar 

mesh as the pick-up sensor was developed by collaborative effort between Kanazwa University 

in Japan and the University of Toronto [52, 61-63]. Figure 2.7 (b) shows a schematic of the 

planar meander/mesh probe. The application of this probe was mainly for PCB inspection. 

The fourth study of planar coil probes was carried out in structural health monitoring of aircraft 

structures [52, 64-65]. A conformable sensor film that uses planar rectangular or meandering coil 

configuration around the fastener shank is integrated with EC system for in situ monitoring of 

fatigue cracks at fastener holes in layered metallic joints. Other efforts to study planar coil probes 
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include the IOnic EC probe [66] that was specifically produced to detect a unique 

structure-friction stir welding, and a planar rectangular coil that was designed and optimized in 

[67]. 

Planar technology allows large scale production of precise and reproducible coil probes [68]. 

Additionally, planar coil technology enables the possibility of integrating identical array 

elements into an EC probe for fast inspection [8, 68-69]. Construction and characterization of EC 

probes with planar coils can be conducted using numerical investigations. Numerical studies are 

used in the design process of planar source coils for generating eddy currents in different path 

patterns [70-72]. PEC techniques using planar coil probes have shown considerable promise in 

detecting and monitoring fatigue cracks in layered structures [52]. 

2.3.3 Limitations of Coil Sensors 

Traditional EC methods use coils as sensors (pick-up coils) to measure changes in the magnetic 

field. Based on the Faraday’s law of induction, the voltage response of a pick-up coil is 

proportional to the rate of change of the induced magnetic field not the magnetic field itself. 

Therefore, it results in poor SNR ratio particularly at low frequencies [2, 14, 69, 73]: 

frN
dt

d
rNsignalcoilV 22

  
B

              (2.9) 

where N  is the number turns of coil wire,
2r  is the area of the loops and 

dt
dB  is the rate of 

change of magnetic field that is proportional to the operating frequency f . 
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Figure 2.8 Hybrid probe [49, 74]: EC coil with magnetic field sensor 

 

Consequently, coil sensors are fundamentally limited by the poor sensitivity at low frequencies. 

Unfortunately, the sensitivity at low frequency is needed in the inspection of thick components 

and subsurface flaws. Similar to traditional coils, planar coils also present limited sensitivity 

when they are used as pick-up or inductive coils for sensing low frequency magnetic field. 

Alternately, EC probes that are operated in hybrid mode have been developed to overcome those 

limitations. As shown in Figure 2.8, hybrid EC techniques employ conventional or planar coils to 

generate eddy currents, and utilize magnetic field sensors to directly measure field variations 

associated with discontinuities [2, 6, 49].  

2.4 Magnetic Field Sensors for Hybrid EC Testing   

The magnetic field associated with induced currents can be measured using magnetic field 

sensors such as magnetometers, superconducting quantum interference devices (SQUID), Hall 

sensors, magnetoresistive (MR) sensors, or magneto-optic sensors [51]. In contrast to pick-up 

coils, electromagnetic field sensors are sensitive to weak magnetic fields, obtain linear 

characteristics for a broadband of frequencies and produce a voltage output proportional to the 

magnetic field [2, 14, 69, 73]. With the help of electromagnetic sensors, hybrid EC techniques 

have enhanced the sensitivity and spatial resolution of detecting subsurface defects [68]. 
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Therefore, field sensors are finding increasing applications at low frequency EC testing and 

electromagnetic field imaging [2, 14-15].  

Hall element sensors utilize the Lorentz force that affects the trajectory of electrons in a 

magnetic field, and produce a proportional Hall voltage across a conductor or semiconductor that 

carries currents. Hall sensors are used mainly in the mT range and can be easily integrated on 

microelectronic circuits. However, Hall devices typically suffer limited sensitivity (much lower 

than MR devices), high level of noise, a relatively large offset and a limited dynamic range [2, 14, 

73]. Other magnetic sensors such as fluxgates in EC testing consist of an advanced 

magnetometry technique. A Fluxgate sensor is a solid state device that measures the intensity 

and direction of a magnetic field with a sensitivity range of 10
-10

 to 10
-4

 T. However, these core 

saturation magnetometers require a large size for sufficient sensitivity, so lateral resolution is 

relatively low [75].  

SQUID devices are the most sensitive magnetometers that have been applied in NDE areas. They 

are based on the interactions of electrical currents and magnetic fields. When the 

superconducting wires are cooled, SQUID sensors become superconductors below a certain 

temperature. Although SQUID sensors have exceptional low-frequency sensitivity and stability, 

testing systems using SQUID devices are of very high complexity. They require cryogenic 

cooling to reach the superconducting transition temperature. Therefore, the expensive cost and 

maintenance associated with the closed cycle refrigeration or cryogenic system significantly 

restrict their applications.  

MR sensors based on anisotropic magnetoresistance (AMR) or giant magnetoresistance (GMR) 



 25 

effects offer high sensitivity over a wide range of frequencies. The hybrid EC technique that 

utilizes MR sensors has been successfully introduced for higher sensitivity, particularly in low 

frequency electromagnetic NDE applications [14, 73-76]. Low frequency and multi-frequency 

EC methods using MR sensors are particularly useful in detecting hidden corrosion that typically 

produces a gradual thinning of structures. It is difficult to image corrosion using conventional 

techniques [14]. 

With the development of sensor fabrication and commercial packaging technology, MR sensors 

can be integrated with EC probes [14]. Research of planar coils used for EC probes reported the 

sensitivity can be improved by introducing MR sensors [57].  

2.5. Magnetoresistive (MR) Sensors 

2.5.1 Magnetoresistance  

Magnetoresistance is a galvanomagnetic phenomenon caused by the effect when a magnetic field 

applied to magnetic material. With the force exerted on the material electrons, they are redirected 

or scattered when they try to travel along microscopic domains that form a consistent magnetic 

orientation, as demonstrated in Figure 2.9 (a). The amount of redirection and scattering is a 

function of magnetization M that is decided by the direction of external magnetic field AH  

shown in Figure 2.9 (b) [51, 77]. Therefore, the resistance variation R/R of magnetic material 

called magnetoresistive effect is a function of the external magnetic field B [78]: 

       R=f(B)                             (2.10) 

Ferromagnetic thin film material is commonly used in MR sensing, and as seen in Figure 2.9, the 

rotation direction of magnetization M is determined by the film shape and the easy axis direction 
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that is designed during the film deposition. Hence, the application of an external magnetic field 

results in resistance changes associated with the rotation variation of magnetization direction 

[78]. 
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Figure 2.9 Magnetoresistive effect in a thin current strip [51, 77] 

 

2.5.2 Anisotropic Magnetoresistive (AMR) Sensor  

MR phenomenon was first studied in anisotropic magnetoresistive (AMR) materials such as iron 

and Permalloy (NiFe), and it was practically developed in magnetic sensing later when thin film 

technology was introduced [77]. Anisotropic resistance R depends on the angle   between 

applied current I and magnetization M as shown in Figure 2.9 (b). This distorts electron orbits 

and results in different scattering. This is expressed as a function [14, 73, 78]: 

     )(2c o s0 RRR                         (2.11) 
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Figure 2.10 AMR device: (a) Barber-pole structure for an optimum alignment and (b) Resistance 

change R/R  vs. angle   , and resistance R vs. applied field H [73] 

 

The anisotropic resistance is minimum when the magnetization direction is perpendicular to the 

external current direction, since electrons in the film travel freely in microscopic domains. On 

the other hand, the maximum resistance R is produced when the two directions are perpendicular 

to each other, and electron orbits are blocked due to the magnetization force. According to Eq. 

(2.11), the maximum sensitivity and linearity is found at an angle  45º. This 45º optimum 

alignment is usually designed by patterning a barber-pole configuration. As illustrated in Figure 

2.10, the configuration consists of diagonal strips of highly conductive metal where the current 

flows in the 45º direction. 

Two configurations have been used in MR material sensors: R/R and HddR / . R/R or 
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(Rmax-Rmin)/Rmin measures the absolute resistance change in percentage for a MR device. 

HddR / or (Rmax-Rmin)/(Hsat-0) measures the resistance change as the magnetic field increases 

from zero till the field Hsat that achieves maximum resistance change,. The dR/dH configuration 

is preferred when the sensitivity to small magnetic field is needed [77]. In general, a ratio MR is 

traditionally used and it is defined as: 

                               
m i n

m i n-m a x

R

RR
MR                           (2.12) 

Most AMR sensors commonly use Permalloy deposited onto silicon substrates in a Wheatstone 

bridge configuration. With an external magnetic field applied perpendicularly to the deposited 

film, the magnetization vector rotate and change the angle  . Therefore, the corresponding 

resistance variation produces a measurable change of voltage output in the Wheatstone bridge. 

AMR thin film can have a resistance change MR level of 2% to 3% [73]. Available commercial 

AMR sensors are described in references [69, 78]. 

2.5.3 Giant Magnetoresistive (GMR) Sensor  

Recent developments in thin-film technology have found a large resistance change in films when 

a magnetic field is applied to multiple thin-film layers. This giant MR effect was discovered in 

1988 [73, 78-79]. GMR films have two or more ferromagnetic metal layers separated by a 

non-magnetic metallic spacer layer. The spacer layers need to be thin relative to the average free 

path of electrons and this causes free motion of electrons from one layer into the other layers 

instead of electron scattering [14]. 

As displayed in Figure 2.11, the spin due to material electrons generates small magnetic fields 
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when structures of magnetic and non-magnetic materials are formed in thin layers. These layers 

are automatically coupled in ferromagnetical mode, Figure 2.11 (a) (where the magnetic layers 

are aligned in the same direction) or antiferromagnetical mode, Figure 2.11 (b) (where the 

magnetizations are opposite).  
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Figure 2.11 Illustration of the GMR effect [14]: (a) Lots of scatterings due to the alternating 

magnetization of the layers (b) Reduced scatterings when the magnetization of the layers is 

aligned by an applied field (c) Resistance variation as a function of an applied magnetic field 

 

Without magnetic force, electrons are not able to move across magnetic layers without 

experiencing adverse interaction with the formed magnetic domains. With an external magnetic 

field applied to the structure, the anti-ferromagnetic coupling is overcome, and scattering of 

electrons is reduced at layer interfaces. Therefore, the resistance variation is produced in Figure 
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2.11 (c). The MR level is maximum when the magnetic layers are antiparallel and minimum 

when they are parallel. Typical MR levels are about 10% to 20% [14, 77, 79].  

The commonly used structures in GMR sensor elements are unpinned sandwiches, 

antiferromagnet pinned spin valves, antiferromagnetic multilayers and magnetic tunnel junction 

[77-79]. GMR effects can be obtained by different arrangements of changes in the relative 

orientation of the magnetization in adjacent layers, and antiparallel configurations of magnetic 

alignment in thin ferromagnetconductor multilayers when an external magnetic field is applied.  
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Figure 2.12 Microscope picture of a GMR sensor fabricated by NVE Inc. [14] 

 

The challenging work in GMR research is finding materials and structures that exhibit large MR 

ratio at low magnetic fields. Developed structures include NiFeCo-CoFe-Cu multilayers 

(currently manufactured by NVE Inc. as shown in Figure 2.12), and granular films of Co–Cu and 

Co–Ag. They are heterogeneous alloys and exhibit GMR effects due to spin-dependent scattering 

in which metal particles are aligned or re-oriented and result in resistance variations with an 
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applied magnetic field [68, 77-79].  

GMR sensors are commercially available [69, 73]. Thin-film GMR materials are deposited on 

silicon substrates and can be fabricated into configurations with voltage output such as resistors, 

resistor pairs or half bridges, and Wheatstone bridges. GMR multilayers present the sensitivity in 

the form of R/R or dR/dH. They are similar to AMR sensors but with higher linearity in their 

MR response [68]. Additionally, GMR sensors have better directional characteristics than AMR 

sensors. MR sensors detect the vector component of a magnetic field along their sensitive axis. 

GMR sensors are insensitive to fields applied perpendicularly to the sensitive axis. In contrast, 

the sensitivity of AMR sensors is reduced by a field perpendicular to the sensitive axis due to a 

cross axis sensitivity. It might reverse the sensor response at high field values [75, 80-81].  

Based on MR effect and magnetoresistive materials, the use of these solid-state magnetic sensors 

represents a significant advance in sensing low fields over traditional inductive probes. In 

addition, the small size and low power consumption of these sensors enable the fabrication of 

compact array sensors on PCB boards and on-chip sensor arrays. Thin-film sensors can be 

fabricated on a planar board to locally sense the magnetic field in a region as small as tens of 

micrometers. They could also be arranged in arrays for high resolution imaging. 

2.5.4 NDE Applications of MR Sensors  

The use of MR sensors in EC systems and electromagnetic imaging has grown considerably in 

the past few years. Their linear response makes them suitable for detecting low amplitude 

electromagnetic field when a low-frequency or pulsed excitation is applied [2, 8], and they have 

been used successfully for detected subsurface cracks under riveted structures [14, 16-17, 76]. In 
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particular, GMR devices have higher directionality, sensitivity, and wider bandwidth compared 

to other MR sensors [2, 14, 51, 75], Therefore, GMR based EC testing exhibits significant 

advantages in detecting complex geometry such as layered component inspection [44, 81]. The 

directional property of GMR sensor had been used to locate edge cracks in aluminum specimen 

[34, 81]. A needle type GMR imaging technique named the SV–GMR system was designed for 

the inspection of a bare PCB structure, and for the measurement of magnetic fluid density 

injected in a living body [74-75].  

High resolution GMR elements fabricated in a small package of sensors arrays have been 

developed. An interesting application of this array probe was found in the evaluation of metal 

medical implants for invisible cracks [8]. A linear array of 20 GMR elements was packaged to 

image a hole defect in a steel plate using 1 Hz excitation. Designs of GMR array probes in 

identical elements were studied to detect subsurface cracks [14, 68]. High density GMR arrays 

are especially promising for rapid scanning of large area as well as high resolution imaging 

[34-35]. Another type of GMR array sensors that use two-directional elements was investigated 

in EC testing to detect surface cracks of unknown orientation. They measure both X-component 

and Y-component of the magnetic field at a same point under examination [81]. 

2.6 EC Techniques for Inspection of Riveted Structures    

Commercial EC probes such as sliding probe fabricated with multiple coils in drive/pick-up 

operation, and remote field EC coil probe have been investigated for detecting aircraft skin 

structures employing coil sensors at low frequency excitations [82]. However, sliding probes can 

only detect defects in one direction and lead to false call or undetected flaws in the case of rivets 
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that are not aligned in a row [10]. 

As an improvement, imaging based EC techniques enable efficient flaw detection using richer 

and more comprehensive data than traditional Lissajous patterns obtained from a single EC scan 

[18, 83-84]. 

2.6.1 EC Magneto-Optic Imaging 

A Magneto-optic (MO) sensor is based on Faraday rotation effect, in which the polarization 

plane of a linearly polarized light rotates in the presence of an applied magnetic field. When 

polarized light is transmitted through the specimen, the direction of polarization is rotated by the 

magnetic field associated with the induced currents in the specimen. A MO sensor consists of a 

thin film of bismuth-doped iron garnet grown on a substrate of gadolinium gallium garnet and 

directly produces an image. The variations due to the presence of structure like a rivet or defect 

generate a non-zero normal component of magnetic field. The response is imaged and viewed as 

the black and white images in Figure 2.13 (c) [85-86].   

Shih and Fitzpatrick in the early 1990s presented a MO imaging system for detecting surface and 

subsurface cracks, and corrosion in aircraft skins [85-86]. As illustrated in Figure 2.13 (a-b), this 

technology employs an induction foil that carries an alternating current and induces eddy 

currents in the conductive sample under inspection. The generated magnetic flux is tangential to 

the specimen surface under normal conditions. Discontinuities in the specimen divert uniformly 

induced currents and produce a normal component of the magnetic flux density that is detected 

and imaged by MO sensor. 
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Figure 2.13 EC-MO imaging technique: (a) Faraday rotation effect in a MO sensor (b) Schematic 

of the MO imaging system [85] (c) MO images of riveted structures (d) Images of riveted 

structures using LMOI system in Europe [87] 

 

A similar system, named the linear MO imager (LMOI) was patented in Europe [87]. It acquires 

an image based on the stroboscopic approach. A riveted structure results in an image with two 

semicircular shapes as shown in Figure 2.13 (d). Instead of using polarized light, Cheng et al [88] 

combined a laser into the MO imaging system. Multiple tests have shown that the MO imaging 

technique is fast, reliable and capable of detecting fatigue cracks and corrosions in large areas 

such as aircraft skins. However, current MO images of rivet holes, cracks, and corrosion lack a 
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quantitative measurement of fields. MO imaging systems are also costly [89-90]. 

2.6.2 Other EC Techniques  

Wincheski et al. [91] proposed a self-nulling EC probe to detect cracks under ferromagnetic 

protruding head fasteners. A flux concentrator is introduced to focus the magnetic flux field and 

minimize the flux linkage through the pick-up coil. In this way, only a minimal magnetic field is 

able to reach the interior area of the probe unless any discontinuity is present in the specimen 

under detection. Later, he developed a rotating self-nulling probe incorporating a commercial 

GMR sensor to enhance low frequency capabilities [8, 92], as shown in Figure 2.14. With image 

processing techniques, their system improved the SNR and enhanced the detection of deeply 

buried flaws in conductive materials. The use of this self-nulling probe that prevents the 

saturation of MR sensor has imaged flaws in the 10
th

 layer of 13 layers of 1 mm thick aluminum 

plates using a 185 Hz excitation frequency [14]. 
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Figure 2.14 Self-nulling EC probe: (a) Probe schematic and (b) Inspection of ferromagnetic 

protruding head fasteners [91-92] 

 

Similar to the GMR based self-nulling probe, a design using D-shaped excitation coils and a 

GMR sensor was introduced for detecting buried cracks and flaws emanating from fastener holes 

[93]. As displayed in Figure 2.15 (a), the D-shaped coil that is placed with its straight edge above 
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the fastener, rotates around the center of the fastener. The GMR sensor is attached to the 

excitation coil and positioned above the fastener edge with sensitivity axis tangential to the edge. 

Using a rotational scan, corner cracks of 2.5 mm in length were detected around a bolt hole in the 

2
nd

 layer of a 13 mm thick two-layer structure. Linear scan inspection had been also investigated 

using this probe. Transverse notches of 2 mm length, 1 mm height were detected around a row of 

holes in a two-layer specimen using linear scan probes. 
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Figure 2.15 EC-GMR probes for riveted structure inspection: (a) Schematic of a rotational 

D-shaped coil and GMR based probe [93] and (b) A sheet current and AMR sensing probe [17] 

 

A sheet current in a double rectangular spiral probe has been used to detect slots in the presence 

of stainless steel fasteners by Avrin [17]. An AMR sensor placed at the center of the coil is 

sensitive to the magnetic field perpendicular to the specimen surface. When the probe size is 

much larger than the fastener hole geometry (Figure 2.15 (b) shows the probe size of 19x19cm), 

it is insensitive to small lift-off variations. Subsurface slots (9.5 mm long, 6.3 mm height and 
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0.25 mm wide in the 3
rd

 layer, 19 mm from the top of a three-layer 25 mm thick aluminum plate) 

were detected.  

It has been indicated that the inspection of structures containing ferromagnetic components 

within thick multilayer is a challenging task. For the detection of defective ferrous fastener 

structure, a design proposed by Ko and Steffes [21] magnetized fasteners during inspection, to 

reduce the noise caused by the permeability. The use of a GMR sensor coupled with a lock-in 

amplifier increased the sensitivity. The EC data obtained at low frequencies was processed to 

detect 2
nd

 layer defects occurring 10 mm below the surface of an aluminum sample with steel 

fasteners. However, the detected cracks were large (about 10 mm).  

In this dissertation, the EC systems using the planar coil probe with 3-component MR sensors are 

studied to detect cracks hidden in non-ferromagnetic and ferromagnetic riveted structures. The 

configuration of source coil is designed to generate a uniform magnetic source field. Transient 

and low frequency EC excitations are investigated for improved sensitivity to subsurface cracks 

with the help of MR sensors. 
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CHAPTER 3  EC-MR SENSOR SYSTEM – PULSE EXCITATION 

3.1 Introduction  

Pulsed excitation produces transient signals with a wide range of frequency components and 

hence it contains more information compared to single frequency excitation. This chapter 

presents a study of PEC-GMR system. The detection of cracks at steel fastener sites and small 

cracks embedded in multilayer aircraft skin are investigated numerically and experimentally. A 

novel implementation of FE numerical model is developed to study the feasibility of defect 

detection in fasteners using transient EC techniques.   

3.2 Background   

Transient electromagnetic testing employs a voltage pulse or current pulse to diffuse into a 

conductive material. Induced transient currents are attenuated as they diffuse through the 

structure as the electromagnetic pulse energy is dissipated by Joule heating [94].  

3.2.1 Skin Depth in Transient Fields   

The analytical derivation of skin depth assumes a planar electromagnetic field propagating into a 

semi-infinite conductor [7]. Induced eddy currents decay exponentially with depth along the 

conductor in accordance with skin effect. The skin depth in conventional EC testing was 

presented in Chapter 2, Section 2.2. This section derives the skin depth expression due to a 

transient excitation.  

The governing equation in terms of time-dependent magnetic field B within a material is given 

by: 
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where   is the electrical conductivity,   is the material permeability and   the permittivity. 

For a good conductor with  << , the first term in the right hand side of Eq. (3.1) can be 

neglected in the frequency range of Hz-MHz [95], reducing Eq. (3.1) to: 
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Similar to the diffusion of heat in solids, the solution of B can be estimated from: 
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where Dτ  is the characteristic diffusion time and   is a characteristic length for the system, 

which is dependent on the conductor geometry.                                                     

Since the magnetic field vector can be separated in space and time domain, the general solution 

to diffusion equation in Eq. (3.4) is obtained by the separation of variables method in Eq. (3.5) as 

[95]: 
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Hence, the characteristic diffusion time Dτ  that is in the form of 
2 D  can be 

expressed as: 
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As opposed to the standard skin depth of EC testing in Eq. (3.7): 
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the skin depth for the transient response is obtained as: 
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Comparing Eq. (3.8) and Eq. (3.7) gives the relation: 
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Therefore, it is found that the penetration of transient electromagnetic field within a conductor is 

about 1.8 times greater than the standard depth for the steady-state case. This scenario is tested 

by numerical simulations. Figure 3.1 compares the skin depth calculated for conventional EC 

field to that of transient field. It is observed that a pulsed excitation offers deeper penetration into 

the conductive plate.    
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Figure 3.1 Skin depths of conventional EC and transient EC fields (Comsol 3.5 simulation): (a) 

Conventional 100Hz EC result: induced eddy current and skin depth and (b) 100Hz square-wave 

PEC result: induced eddy current and skin depth 

 

3.2.2 Transient Signal Characteristics   

Transient field can be generated by two modes, namely current driven or voltage driven [96]. In 
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the current driven mode, a constant current is provided regardless of the coil inductance (within a 

specified range). In the voltage driven mode, the driver applies a given voltage drop across the 

excitation coil. The voltage driven mode is generally less complicated in design and allows the 

adjustment of the current. However, the magnetic field generated by the excitation coil is 

proportional to the coil current not the voltage. Therefore, this dissertation uses the current 

driven mode to employ a transient source. 

Similar to ultrasonic testing where the measured time of flight in the received signal can 

determine a defect’s depth, transient eddy current propagation through the material and the 

transient shape of the response signal are related to discontinuities at different depths [52, 94-97]. 

Transient parameters and features allow flaw discrimination and characterization in the time 

domain [7, 52]. Interpreted in the time domain, the defects that are closer to a conductor surface 

activate PEC response earlier than those located further below the surface. The information about 

sub-surface flaws is mostly contained in the tail part of the transient signal.  

The most common features in transient characteristics of PEC signals are the peak amplitude, 

time to peak amplitude and time to zero crossing [52, 94, 96-98]. The peak amplitude is used to 

determine the defect size. The time to zero crossing is popularly used to find the depth of a flaw, 

and the time to peak amplitude can be used to identify the defect depth or material thickness. 

However, a balancing procedure is required to make those features indicative of flaw presence 

[52, 94, 96-97]. A common balancing procedure used is to subtract a reference signal that is 

collected over a region without flaws. A typical reference-subtracted PEC signal and its features 

are demonstrated in Figure 3.2 (a).  
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Figure 3.2 PEC signals: (a) A typical reference-subtracted transient response and typical features 

in the time domain and (b) Transient response associated with defective information at different 

depths (Comsol 3.5 simulation) 

 

Since hidden discontinuities in a layered structure take longer time to interact with the attenuated 

transient signal, the depths or layers where flaws are present can be inferred from transient 
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signals. As shown in Figure 3.2 (b), the corrosion in the 3
rd

 layer interacts with the transient field 

after deeper penetration and hence is indicated at a later time in the response signal. Furthermore, 

this deep defect also reduces the peak magnitude of transient signal.  

As a result, the pulsed EC is able to detect discontinuities at different layers with a single 

transient excitation. It superimposes a range of frequencies in one spatial location, while the 

conventional EC needs to multiplex different frequencies to provide the information at various 

depths [5, 99]. 

3.2.3 Review of Transient EC NDE for Layered Structure  

The earliest application of transient eddy current can be traced to the publication by Waidelich 

[100], where PEC was used to measure cladding thickness of reactor fuel elements. Furthermore 

investigation by Waidelich showed that transient signals presented characteristics that were 

independent of the distance between the probe and the specimen under test. This result was 

studied as a transient feature insensitive to lift-off [96] that has been investigated in the detection 

and characterization of corrosion by Lepine, Lefebvre and Giguere [46, 97, 101].  

The earliest study of PEC for crack detection in layered structures with installed fasteners was 

conducted by Harrison [102-103]. Giguere also studied the detection of cracks beneath rivet 

heads using transient EC techniques [104].  

Transient excitation of coil probes with two MR sensors or two Hall sensors in differential mode 

have been studied by Lebrun at al. [105-106], and used for characterizing crack parameters. Tai 

et al. [107] studied similar transient features for an inversion scheme to qualify the conductivity 

and thickness of samples. Moulder et al. [108] and Bieber et al. [109] developed quantitative 
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methods for crack and corrosion detection using C-scan images by the time gating of transient 

signals.   

Papers by Smith et al. [110-111] presented a PEC technique named TRECSCAN system 

(QinetiQ product) for the inspection of aircraft structures. Other PEC techniques were reported 

for the examination of layered or riveted structures [112-118]. Table 3-1 summarizes different 

PEC systems developed by several research groups and their applications. 

Pulsed EC imaging can be generated based on characteristics of the transient response [96]. 

Since an A-scan measurement refers the transient response at a single position, the mapping of a 

feature of each A-scan onto the probe position allows the construction of a C-scan image. Any 

time-dependent feature representing the dissipation of transient field associated different depths 

can be employed to produce the C-scan image. Therefore, the image produced contains 

information about the surface, near surface and subsurface [96, 119]. Data in the form of images 

is helpful if defects with complex shapes are encountered [23]. 

The C-scan measurement can be also generated by means of linear combinations of the 

parameters such as peak height, peak arrival time and zero crossing time [96]. The time gating 

method forms C-scan images by plotting those peak heights that have a zero crossing within a 

given time window. This technique was used for image information at various depths and 

discriminate signals from fastener structure against other interfering factors [108].   



 45 

Table 3-1 PEC system summary. 

 

PEC system Excitation Coil   Sensing  Applications 

QinetiQ (UK) Conventional coil Hall sensor 
Corrosions at layered structures 

Cracks at riveted structures 

Research Institute (France) Conventional coil 
Hall/GMR 

sensor 
Cracks at riveted structures 

Royal Military College & National Research 

Council (Canada) 

Conventional Coil/  

Planar coil 
Pick-up coil 

Corrosions at layered structures 

Cracks at riveted structures 

Iowa State University (USA) Conventional coil  
Hall sensor/ 

Pick-up coil 

Material characterization 

Corrosions at layered structures 

Cracks at riveted structures 

University of Newcastle & Huddersfield (UK) Conventional coil 
Hall/GMR 

sensor 

Corrosions & defects at single layer structures 

Cracks at riveted structures 

National University of Defense Technology 

(China) 
Conventional coil Pick-up coil 

Corrosions at layered structures 

 

General Electric (USA) Conventional coil 
Hall sensor/ 

Pick-up coil 
Corrosions at layered structures 
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3.2.4 Time Domain versus Frequency Domain   

Considering 
tTtTT


 

2

22
, the transient skin depth in Eq. (3.8) is given by: 

                              


 tT
PW

2
                              (3.10) 

where PW  is called the pulse width based skin depth. Therefore, increasing the pulse width 

(duty cycle) enables deeper transient penetration [95]. The relationship between the width of a 

pulse source and the penetration depth of electromagnetic transient wave has been investigated 

by Sather [96]. Results indicate that the penetration depth is increased by lengthening the pulse 

duration.  

In addition, the time interval between successive transient waveforms must be sufficient to allow 

each transient response to decay to zero. Since the diffusion velocity of the EC signal is heavily 

dependent upon the material, the transient response duration due to one pulse is also material 

dependent. Also, the transient response duration increases with the thickness of a specimen under 

test. According to Eq. (3.10), a higher value of Tt is required for a higher skin depth, i.e. a lower 

rate of pulse repetition is necessary for defect detection along deeper depth [97].  

Studies of characteristics of the excitation pulse can be performed in the frequency domain. Two 

pulse sources in different forms using Discrete Fourier Transform (DFT) are presented in Figure 

3.3. Time-dependent signals are decomposed into their harmonic components in the frequency 

domain, and this helps to design transient excitation waveform. 
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Figure 3.3 Time domain vs. frequency domain: Transient excitations in different pulse widths 

and their DFT spectrum results 

 

Let the transient pulse source is a square waveform: 

                              
)1(          0

      0A
)(










TkttTkT

tTkTtkT
tsource            (3.11) 

where k is an integer, T is the pulse period, and Tt is the excitation pulse width shown in Figure 

3.4. The Fourier series of this pulse source are expressed as: 
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and the Fourier coefficients are evaluated as: 
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If the cycle Tt =1/2T (50% duty cycle), the source is represented in harmonics: 

]
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1
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0)( tsinn
n

tsintsintsin
TAA

tsource 


      (3.14) 

where n is odd and 
T




2
 . Therefore, the square wave is approximated by a summation of odd 

harmonics of the fundamental frequency with decreasing amplitude proportional to the harmonic 

number. As shown in Figure 3.4, a better approximation is achieved when more sinusoidal 

components are included in the summation. The transient field can be numerically studied in the 

frequency domain or in the time domain [120-121]. 
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Figure 3.4 Square waveform as a source of pulse excitation (left) and the reconstruction of the 

waveform by adding Fourier series harmonics (right) 

 

3.2.5 Review of Transient Field Numerical Modeling    

Theoretical models play an important role to help understand the underlying physics and 

application of inspection strategy [122-123]. The landmark work for analytical solution of a 

single frequency EC testing and coil impedance calculation was studied in [124-125]. Analytical 

methods for solving transient EC testing were implemented in [126-127]. However, analytical 

approaches are, in general, conducted for relatively simple geometries such as a conducting 

half-space and hence have limited abilities to simulate complex structures. Numerical methods 

have therefore been the method of choice [5, 123, 128]. 

The popular numerical methods are FE analysis, finite difference analysis, integral analysis, 

boundary element method, and meshless method. Main contributions in numerical modeling of 

transient electromagnetic NDE are summarized in Table 3-2 [128, 129-144]. The approaches 

using transfer function or transient circuit method for modeling PEC system have been 

introduced in [132, 145-147]. The primary advantage of FE methods is the ability to study 

irregular or complex features of geometries in discretized elements [18].   
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Numerically, the transient field can be calculated by two methods: summation of harmonic 

components in the frequency domain and step marching in the time domain [120-121]. A strategy 

of interpolation in the frequency domain was proposed to reduce the required number of 

simulations by reducing the total number of harmonics [137]. However, FE techniques based on 

frequency selection or interpolation might suffer from low accuracy and need varying mesh size 

for low or high frequency components [126-127]. Therefore transient field modeling in the time 

domain is preferred [144, 148]. This dissertation investigates a scheme in the time domain for 

efficiently modeling the pulsed EC excitation and GMR sensor signals. 

3.3 PEC Testing System with MR Sensor   

Planar coils were also designed for the inspection of ferrous riveted airframes [22]. However, in 

these applications, conventional planar coils have limited SNR, and the sizes of detectable cracks 

are larger than 1 mm and the detected depths are limited to few millimeters below the surface. A 

design of a rectangular planar coil in differential symmetry with a GMR sensor array along the 

centric axis has been patented by Boeing company in 2008 [149]. The patented device was 

designed for scanning layered structures such as aircraft fuselage and wing components. As 

shown in Figure 3.5, it incorporates an excitation coil with multi-line conductors on a flexible 

membrane. In collaboration with the NDE laboratory at Michigan State University, this probe 

was studied for developing an effective EC-GMR imaging system [150]. This dissertation 

extends the multi-line probe for the use of a pulsed excitation to enhance the inspection 

capabilities.   
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Table 3-2 Summary of transient field modeling and simulation. 

 

Modeling research  Modeling method Solution domain Applications 

J. R. Bowler (USA) 

Transfer function 

Integral method 

Analytical method 

Frequency domain 

Material characterization 

Conductor at half-space 

Crack profile inverse 

T. Theodoulidis (Greece) 
Integral method 

Analytical method 
Frequency domain Conductor at half-space 

C. Mandache & T. W. Krause (Canada) 
Transient circuit Method 

Comsol package (FE method) 
Time domain 

Layered structure 

Riveted structure 

F. Thollon (France) 
FE method 

Transfer function 
Frequency domain Riveted structure 

G. Y. Tian (UK) 
Comsol package (FE method) 

Analytical method 

Frequency domain 

Time domain 

 

Layered structure 

 

T. Takagi & Z. Chen (Japan, China) 
FE method 

Hybrid method 

Frequency domain 

Time domain 

Single layer structure 

Crack profile inverse 

http://www.sciencedirect.com/science/article/pii/096386959400010H
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Figure 3.5 Schematic of the multi-line planar probe design [149] 

 

3.3.1 Excitation Coil Configuration  

To demonstrate the advantages of using planar coil as an excitation source, the induced fields 

due to a multi-line planar coil are compared to those due to a pancake coil. A riveted structure 

with two cracks in the 2
nd

 and 3
rd

 layers is studied. The distributions of the magnetic field and 

induced currents are investigated by numerical studies. Two coils are excited by a same 1A 

current source at 100Hz frequency. Figures 3.6-3.7 present the magnetic fields and eddy currents 

generated by the two coil configurations.  
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Figure 3.6 Simulation results of pancake coil: (a) Tangential component (Bx) of magnetic field 

(T) and (b) Induced currents (A/m
2
)  
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In Figure 3.6 (a), the pancake coil has 5mm inner radius and 10mm outer radius, and the eddy 

currents flow in circular paths and are parallel to the turns of the coil. As shown in Figure 3.6 (b), 

the case without crack is used for studying the skin depth associated with a coil configuration. 

The maximum density of eddy currents occurs close to coil windings that is also the edge of the 

fastener. In the central region of the structure under test, eddy currents are self-canceling. 

Meanwhile, eddy currents exponentially decay as the depth increases. The amplitude of currents 

induced at the sample surface is reduced by 34.71% at the bottom layer, and the skin depth (37% 

of the induced current density at the surface) is about 10mm.  

In Figure 3.7 (a), the multi-line planar coil has a dimension of 98mm by 104mm with 2mm 

spacing between the wires, and the planar wire is 0.05mm thickness and 0.5mm height. The 

multi-line coil is driven by the current flowing in a same direction, and acts like a current sheet. 

The multi-line planar coil produces uniform and linear eddy currents. As shown in Figure 3.7 (b), 

the induced currents still keep 56.37 % of its energy after penetrating through all three layers. 

Therefore, a skin depth of more than 14mm is generated and this provides enhanced sensitivity to 

detect buried cracks. Additionally, the disturbances of eddy currents caused by the two defects 

around the fastener site generate a measurable magnetic field in the 2
nd

 and 3
rd

 layers that can be 

captured by a magnetic field sensor.  
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Figure 3.7 Simulation results of multi-line coil: (a) Normal component (By) of magnetic field (T) 

(b) Induced currents (A/m
2
) (c) Comparison of induced currents due to two coil configurations 

 

Furthermore, the induced currents along the depth due to these two coil configurations, as two 

dash lines shown in Figure 3.6 (b) and Figure 3.7 (b) are plotted in Figure 3.7 (c) using the 

normalized amplitude. It is seen that the multi-line coil generates stronger induced currents and 

provides deeper penetration of the induced field. In conclusion, the multi-line planar coil 

produces higher sensitivity to detect subsurface cracks hidden in riveted structures. Moreover, 

this coil configuration is relatively insensitivity to lift-off [52, 97, 149]. 
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3.3.2 PEC-GMR Probe Operation   

Numerical studies have validated the detection capability of the multi-line planar coil. This 

planar coil used for pulsed current excitation is studied in this chapter.  

As described schematically in Figure 3.8, in the absence of any discontinuity, due to the 

symmetry of the coil geometry, the normal component of the magnetic field is zero on the line of 

symmetry at the center of the source coil. When the uniform distribution of induced currents is 

distorted by a fastener and/or a crack, the zero induced field on the line of symmetry is destroyed. 

A GMR sensor placed at this location is utilized to acquire the induced magnetic field. In the 

case of pulsed excitation, the induced transient currents diffuse into the test sample. A nonzero 

transient signal of the normal component is produced and captured by the GMR sensor. This 

measured signal represents information about cracks around fastener sites. 
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Figure 3.8 Schematic of the operation of multi-line planar probe 

 

In this probe design, the induced field and eddy currents due to the return loop current at the 

edge sides of the probe are minor. Consequently, similar to MO imaging, but at much lower cost 

and simple design, single directional eddy currents in parallel pattern are induced around a 

fastener site. Subsurface discontinuities that distort these linear eddy currents are detected by the 
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GMR sensor that measures specific components of the magnetic field. 

3.3.3 Giant Magnetoresistive Sensor   

As described earlier, GMR sensors show large resistance changes when they are subjected to a 

magnetic field [51, 151]. The variation in resistance is about 2% for ferromagnetic materials and 

up to 300% for special materials [97]. GMR sensors have been used in low frequency EC testing 

[14-17, 21, 24, 76-77, 79-80, 92-93]. In this dissertation, the use of GMR sensors in conjunction 

with pulsed EC sensing is investigated. The advantages of this system are its high sensitivity, 

small dimension of field receiver, low cost, low power supply requirement, and linear sensitivity 

over a broad frequency range (from DC up to 1 MHz). Moreover, the front-end electronics are 

simple and relatively inexpensive [14, 152].  
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Figure 3.9 Characteristic curve for the calibration of the GMR sensor 

 

Typical characteristic of the commercial AAH002 GMR sensor by NVE Corporation is obtained 
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experimentally and is shown in Figure 3.9. Due to its unipolar output, the GMR sensor needs to 

be biased appropriately to permit bipolar operation before it can be used for field measurements. 

Usually, the DC bias field is realized using a coil or a permanent magnet. Once the sensor is 

biased, the characteristic curve can be used for calibrating the output of the GMR sensor to 

achieve a reliable and quantitative estimate of the magnetic field.  

3.3.4 Experimental Set-up  

Experimental measurements are performed using a high resolution scanning system. A 

two-dimensional raster scan around each fastener is generated. At each scan position, the planar 

coil is excited by a pulse. The GMR sensor measures the normal component of the changing 

magnetic field due to induced eddy currents in the specimen. It should be noted that a single 

GMR sensor at the center of the symmetry line of the coil probe or an array of GMR sensors 

along the line symmetry could be used. 

A schematic of the overall PEC-GMR inspection system is shown in Figure 3.10. The X-Y 

scanner is controlled by a PC, which produces a trigger signal to control the data acquisition at 

each scan position. The function generator supplies a square wave current excitation of 

frequency 100 Hz and 50% duty cycle as shown. The square waveform amplitude is adjustable 

by a power amplifier and it is fed into the multi-line excitation coil. A permanent magnet is used 

as a bias field for the GMR sensor. The DC bias is filtered out to get the pure response of the 

GMR sensor. A two-stage amplifier is used to amplify the output signal of the GMR sensor. The 

amplified output is connected to the data acquisition card in a differential mode to reduce the 

noise due to long connecting cables and interference from the environment. At each position, the 
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transient response of the GMR sensor is acquired at a sampling frequency of 50,000 samples per 

second for the duration of 2.56 seconds. The measurements are averaged over 256 cycles of the 

excitation waveform for further noise reduction.  
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Figure 3.10 Schematic of the PEC-GMR inspection system 

 

3.4 Inspection of Riveted Structures   

The performance of the system was evaluated using multilayer riveted specimens with machined 

subsurface cracks.  

3.4.1 A-scan Measurement of Transient Field 

GMR measurements due to a crack located at a fastener site through the second layer of the 
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sample are illustrated in Figure 3.11. As in ultrasonic measurements, the A-scan signal is the 

time-dependent response collected at each scan point. A total of 19 scan positions above the 

fastener head are used to collect the GMR A-scan signals. These A-scan signals are the 

measurements of the normal transient field (Bz) at 2mm lift-off. Scan position 5 is located at the 

left edge of the fastener, scan position 11 is located at the fastener center, and scan position 17 is 

located at the right edge of the fastener. Scan positions 17-19 are located at the crack region.  

As shown in Figure 3.11, the A-scan signals present a characteristic trend when the probe scans 

the fastener region. In the plots in Figure 3.11 (c), the peak magnitude of the GMR response 

presents an ascending trend when the probe moves towards the left edge of fastener (Scans 1-5). 

The response achieves the highest magnitude at the left edge location (Scan 5). The transient 

response magnitude decreases and reaches almost a null point at the center of the fastener (Scan 

11). When the probe continues to move to away from the fastener center, the peak magnitude of 

transient response increases again and presents a maximum value at the right edge location (Scan 

17). The plots in Figure 3.11 (d) show that the peak magnitude of the signal decreases as the 

probe moves away from the fastener’s right edge.  

The different characteristics of the signals are representative of the sample and defect geometry, 

and any discontinuity encountered at the corresponding scan position. Thus, the discriminations 

between transient signals at the two edges can be considered as a feature for the detection of 

embedded crack.  
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Figure 3.11 GMR measurements of the transient field Bz component along a line scan above a 

fastener with a subsurface crack: (a) Inspection Geometry (b) Sequence of A-scan signals within 

the fastener head region (c) Comparison of transient signals at the fastener head edge areas for 

crack indication 
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3.4.2 C-scan Image Measurement of Transient Field 

The magnitude mapping using the peak value of each A-scan is performed to obtain the C-scan 

image. The experimental GMR measurements of A-scan signal along a line across a defective 

fastener shown in Figure 3.12 (a) and the corresponding C-scan data are presented in Figure 3.12 

(b). The asymmetry observed in the C-scan image indicates the feasibility to infer the presence of 

a defect at the rivet site. The GMR response from multiple A-scan measurements or C-scan 

image data is utilized in this dissertation for data analysis and crack detection. 
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Figure 3.12 Three modes of PEC-GMR signals in the inspection of a riveted structure 

 



 62 

3.5 Time-domain Modeling of PEC-GMR Testing   

A time domain based FE model is studied for simulating the PEC-GMR inspection of multilayer 

aircraft frame. The proposed strategy provides a faster solution compared to the approach 

implemented in the frequency domain [137]. 

3.5.1 FE Modeling  

FE methods based on magnetic vector potentials have been successful in modeling EC NDE 

problems [153-155]. In general, Maxwell’s equations introduced in Chapter 2, Eq. (2.1) to Eq. 

(2.4) are formulated using vector potentials, along with the following continuity equation and the 

constitutive relationships: 

                                 D                                 (3.15) 

0





t


J                         (3.16) 

HB                               (3.17) 

EJ                               (3.18) 

where the variables are: 

D: electric flux density (coulum/meter
3
) 

: electric charge density (coulomb/ meter
3
) 

: magnetic permeability, 
7104 ´ ( henries/meter) for nonmagnetic materials 

: electric conductivity (mhos/meter) 

Various formulations have been used for modeling electromagnetic field, including the A-V-A 

potential formulation, and the rVr AA   reduced vector potential formulation. 

 

http://en.wikipedia.org/wiki/Henry_(unit)
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I. FE Model: A-V-A Potential Formulation  

In a typical EC testing problem, a solution region (Ω ) is depicted in Figure 3.13 which consists 

of a nonzero conductivity region with eddy currents ( 1Ω ), the region free of eddy currents but 

with source currents ( 2Ω ), interface and boundary sections. The magnetic vector potential (A) in 

the entire region is related to the magnetic flux density as:  

AB ´                           (3.19) 

And the magnetic field intensity is also expressed by A : 

AH ´


1
                        (3.20) 

The electric scalar potential (V ) in eddy currents region ( 1Ω ) is defined by the identity:  

0´ V                          (3.21) 

Substituting equation (3.19) into Maxwell’s equation of Eq. (2.1), we get: 

        0)( 



´

t

A
E                      (3.22) 

Combing Eq. (3.22) and Eq. (3.21): 

V
t







A
E                       (3.23) 

Considering the source currents, and using Ohm’s law:  

sJEJ                          (3.24) 

Maxwell’s equations are formed by the AA V  formulation as: 

sV
t

J
A

A 



´´ )()

1
( 


  

0)( 



 V

t

A
                                (3.25) 

in the whole solution domain by neglecting the displacement current term
t

D
, and 

where sJ presents the source current density.  
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Figure 3.13 A typical EC problem with regions, boundary sections and interface 

 

In the solution of Eq. (3.25), a gauge condition is necessary to ensure the uniqueness of A . Two 

gauge conditions, Lorentz gauge and Coulomb gauge are generally used. The Lorentz gauge is 

expressed as: 

0
2

1







t

V

c
A                       (3.26) 

where c  is the speed of light in free space. Lorentz gauge leads the potentials suitable for a set 

of wave equations in high frequency problems. The Coulomb gauge, defined as: 

0 A                           (3.27) 

is usually utilized in low frequency problems due to the absence of the displacement current and 

the resulting equations are simplified.  

II. FE Model: rVr AA  Reduced Vector Potential Formulation  

Although the AA V  formulation has been widely studied for FE modeling of 

time-harmonic and transient electromagnetic NDE [126, 143, 150, 153-156], the meshing of the 

source coil probe becomes very cumbersome, particularly if the probe motion is to be taken into 

account [137, 153-154, 157-158]. Moreover, accurately meshing the complex coil structure at 
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each scan position associated with the test sample poses difficulties in mesh discretization. A 

scheme that helps to alleviate this problem using reduced vector potential 

formulation rVr AA  is introduced [153-154, 157-158].  

The magnetic vector potential is decomposed into potentials due to excitation source and 

induced currents. Correspondingly the magnetic flux density B is similarly split into two parts: 

                             rsrs BHBBB  0                     (3.28)    

where sB  and sH  are the flux density and field density due to the source current in free 

space, and rB  is the flux density due to induced current or magnetization and 0  is the 

free-space permeability. Considering equation (3.19), the magnetic vector potential A is defined 

as: 

         rs AAA  , ss BA ´  and rr BA ´         (3.29) 

The vector potential sA  in air is due to the excitation current and rA  is due to the induced 

and/or magnetization currents. Furthermore, sA can be evaluated by Biot-Savart’s law: 

                               ss JH ´  

                            
 

  


 Ω dΩ

rr

rJ
A s

s




4

0                          (3.30)                                                                                                                                                                                                                                           

Where '  is the volume of source currents, and r  and 'r  denote the coordinates of 

observation and source points, respectively.   

Correspondingly, the governing equations (3.25) can be expressed as: 

      
t

)(V
t

)(



´´´




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r

r
A
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A

A 




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t

V)
t

(








 sr AA

                        (3.31)      

The advantages of the reduced vector potential formulation are as follows [157-158]: 

1) Mesh generation with complex coil shape becomes much easier because the excitation coil is 

discretized independently for computing the source potential.  

2) Convergence of the iterative solver is faster because the current source can be modeled 

accurately.  

3) Scanning of the coil over a sample involved in a typical EC testing process can be simulated 

without re-meshing. Computational errors due to remeshing are removed.  

4) Incomplete factorization of the system matrix, which is the most time-consuming process in 

the solution phase, is performed only once.  

5) Only the secondary field due to magnetization and/or induced currents is solved. Hence the 

solution time can be reduced because the secondary field is much smaller than the source field.   

6) It is efficient for conducting parametric studies without changing the mesh, such as lift-off 

variation and tilt in angle.  

III. FE Method Implementation   

The numerical approximation of the potentials as unknowns is based on a discretized FE mesh. 

The potentials can be expanded in terms of shape functions associated with the nodes of mesh: 

               

k
kiziiyi

i
ixi NẑNAŷNAx̂NA kAA           (3.32) 

                            
i

iiVNV                          (3.33) 
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            

k
kNẑiNrziAŷiNryiA

i

x̂iNrxiA kArA            (3.34) 

Where ziyixi A,A,A    and iV  are the three Cartesian components of the potentials at node i , 

and iN is the shape function associated with node i  that assumes the value of one at this node 

and the value of zero at any other node. The vectors ẑ ŷ,x̂ ,  are the Cartesian unit vectors. 

The Galerkin formulation of weighted residual method [153-155] is implemented to solve Eq. 

(3.25) and Eq. (3.31) in two presented formulations: 

    ´´
Γ iΩ iii dΓˆVt/(NdΩVNt/NN nAAA   

 
Ω si dΩN J                                                   (3.35) 

  ´´
Ω isrisri dVNt/)(N)(N  AAAA  

   
Ω siΓ sri dNdˆVt/)((N  JnAA                        (3.36)                                         

where iN  ( Ni ,2,1 with N the number of nodes) are shape functions,  the solution 

domain, and  /1  is reluctivity.  is the conductor surface and n̂  is the unit outward 

normal vector of . By neglecting the surface integral in Eq. (3.35) or Eq. (3.36), we implicitly 

set the normal component of induced currents on the conductor surface to zero. 

The FE procedure results in a linear algebraic system of equations that must be solved to 

determine the unknown coefficients of the shape functions. The global stiffness matrix is 

obtained by assembling each element matrix together. The value at each entry is the sum of 

values contributed by all the connected elements: 

      SGA          (3.37) 

where G is a complex, symmetric sparse matrix, A is the vector of unknowns consisting of the 

electric scalar potential and the three components of the magnetic vector potential or the 
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magnetic reduced vector potential at each node, and S  is the load vector incorporating the 

current source. 

The equations can be solved using either direct or iterative methods. Either Dirichlet boundary 

conditions or Neumann boundary conditions need to be specified. Since Neumann boundary 

conditions are usually included implicitly in the FE formulation, one only needs to impose 

Dirichlet boundary conditions. Current continuity conditions will be explicitly imposed at the 

interface boundaries to avoid spurious solutions. 

3.5.2 Time-domain Modeling Schemes  

The rr V AA  formulation is used as the basis for the time domain modeling scheme. The 

backward difference method is used to treat time and the transient values are evaluated by 

iterations tntnt 1
. The time derivative term 

t

nn

t 

AAA 




 1
is implemented by 

considering As and Ar separately: 

t

nn

t 

sAsAsA 




 1
, 

t

nn

t 

rArArA 




 1
              (3.38) 

The governing equations of this formulation can be written as: 
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



  111          (3.39) 

I. Interpolation based Time-domain Modeling  

The simulation of PEC signals using an interpolation scheme in the time domain is proposed to 

increase the simulation efficiency. As shown in Figure 3.14, the geometry for this simulation 
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study is a 3 mm thick aluminum plate with a fastener hole of 10 mm diameter. A 1 mm crack is 

included at the right edge of the fastener hole. Transient signals of the normal component at three 

positions are simulated with the multi-line current excitation: position 1 (P1) is at hole center, 

position 2 (P2) is at the left edge, and position 3 (P3) is directly above a crack near the right 

edge.   

 

10 mm

1 mm long 

crack

P1P2 P3

(a)  (b)  
Figure 3.14 A geometry used in the time-domain modeling: 

(a) Simulation geometry and three scan positions and (b) Geometry FE mesh 
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Figure 3.15 The excitation source signal (upper left), and the simulation results of Bz in 

time-domain modeling at positions P1, P2, and P3 

 

A 100 Hz 50% duty cycle square waveform, with a total duration of 10 ms, is applied as source, 

shown in Figure 3.15. Solutions to Eq. (3.39) at the three positions in Figure 3.14 are calculated 
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over 500 time steps ( 52  et s). Transient signals simulated at three positions P1, P2 and P3 

are shown in Figure 3.15. A zoomed representation of the three signals is shown in Figure 3.16. 

These signals are used as a reference for comparison with other implementation of the time 

domain model. 
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Figure 3.16 The first peak of Bz in the simulation results at positions P1, P2, and P3 

 

The use of a larger sampling time step t  with linear interpolation is investigated. Two cases, 

namely, 125 time steps ( tt  21  = 54 e s), and 50 time steps ( tt  52  = 41 e s) are 

simulated. These simulation results are interpolated such that t = 52 e s. Figure 3.17 shows 

the results at positions P1, P2, and P3, before and after interpolation. Compared to the reference 

signals in Figure 3.16, the error in interpolated signals is listed in Table 3-3. 

           %100
)( reference

)( ioninterpolat)( reference
error ´




fB

fBfB
              (3.40) 

The results in Table 3-3 show that a larger time step produces higher simulation error. 
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Table 3-3 Simulation error analysis of the interpolation modeling in time-domain. 

 

Number of 

time steps 

Position Relative error to 

reference signal  

125  P1 1.64% 

P2 1.38% 

P3 1.39% 

50  P1 7.58% 

P2 6.68% 

P3 6.59% 
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Figure 3.17 Simulation results of Bz using the time-domain interpolation modeling: (a) 

PEC-GMR signals at P1 (b) PEC-GMR signals at P2 (c) PEC-GMR signals at P3 
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Figure 3.17 (cont’d).  
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II. Impulse Response based Time-domain Modeling  

A linear and time-invariant (LTI) system can be described by its impulse response [146-147]. In 

an LTI system, the response due to an arbitrary excitation is a convolution of an impulse 

response with the arbitrary excitation function [159-160]. Using this approach, results from 

different excitation signals could be calculated from a single simulation of the impulse response. 

Additionally, since less number of time steps is required for impulse response based time domain 

modeling, this strategy uses less computation time compared to conventional methods in time or 

frequency domain.  

The impulse response approach is depicted in Figure 3.18. An impulse ( 2)t   excitation 

source is applied to the FE time domain solver:  
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t,,,t
)t(


  (3.41) 

where t is the discrete time. The output f(t) is the impulse response obtained due to the excitation 



 73 

)(t , and t1 is the number of time steps used in the simulation. 
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Figure 3.18 The strategy for impulse response based time-domain simulation 

 

A square waveform is given as a current source s(t), which is sampled at 2t  time intervals, 

and with a total of 5002 t  time steps, the system response p(t) can be computed by 

convolving f(t) with s(t): 

-4 
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              (3.42) 

where the transient signal )(tp  is response due to the pulsed current source )(ts . The indices 

ji  ,  are time steps and the length of )(tp  is 121  tt .  

This approach is applied for the simulation of pulsed EC-GMR testing. The transient signals at 

the three positions P1, P2 and P3 are shown in Figure 3.19, and they are compared to the 

reference signal (250 time steps) in Figure 3.16. The simulation errors relative to different 

number of time steps are presented in Table 3-4. It is observed that the error in simulated signal 

depends on the number of time steps used in convolution.  

In order to increase the simulation accuracy using less number of simulation time steps, the result 

obtained with 30 time steps is extended by padding the signal with the last time-step value 

)30(f  as:   

  ])30(  )30( )30( )30( )30(),2(),1([)('

steps  time20 extra
  

 ffffffftf               

             )]500(),2(),1([*)]50('),2('),1('[)(*)(' )(' sssffftstftp         (3.43) 

The simulation error relative to the reference signal in Figure 3.16 is shown in Table 3-5. Using 

this padding procedure has effectively reduced the simulation error shown in Table 3-4, when 

only 30 time steps are used.  
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Figure 3.19 Impulse response based simulation results vs. the reference signal for the positions 

P1, P2, and P3 
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Table 3-4 Simulation error analysis of the impulse response based modeling. 

 

Impulse response based 

modeling 

 

Relative error to 

reference signal Number of 

time steps 

GMR sensor 

location 

90 P1 0.04% 

P2 0.58% 

P3 1.01% 

70 

 

P1 0.13% 

P2 1.69% 

P3 2.26% 

50 

 

P1 0.75% 

P2 5.16% 

P3 6.07% 

30 P1 5.22% 

P2 17.80% 

P3 19.73% 

25 P1 8.69% 

P2 25.09% 

P3 27.55% 

  

Table 3-5 Simulation signal accuracy enhancement. 

 

GMR sensor 

location 

Relative error to 

reference signal 

P1 1.79% 

P2 2.81% 

P3 2.61% 

 

3.5.3 Modeling in Frequency-domain vs. Time-domain 

The simulation of PEC testing is also evaluated using a frequency domain model presented in 

[137]. For position P1 in the geometry of Figure 3.14, the predicted transient response is shown 

in Figure 3.20 using 250 harmonic components ranging from 100 Hz to 25,000 Hz in 100 Hz 

step. Simulation accuracy is decided by the total number of frequency components representing 



 77 

the spectrum of excitation pulse in Figure 3.15. The simulation results have an error of 2.37% 

relative to the reference signal in Figure 3.16.  
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Figure 3.20 Simulations of PEC signals using FE solver in frequency-domain: Predicted transient 

signal of 250 frequency steps vs. the reference signal simulated in time-domain 

 

In order to reduce computation time, results were predicted with less number of harmonics and 

interpolation was used to compensate for the missing harmonics. Simulation results of the 

transient response using interpolation with only 100 and 50 uniformly spaced harmonic 

components from 100Hz to 25000Hz are predicted in Figure 3.21. The accuracy deteriorates 

when less harmonics are used in the modeling. The error is 0.44% for 100 harmonic components 

and 5.93% for 50 harmonic components. In contrast, the proposed approach provides a more 

accurate solution using 30 simulations in time domain. 
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Figure 3.21 Simulations of PEC signals: predicted transient signal of 250 frequency steps vs. 

predicted transient signals with interpolation of 100 and 50 frequency steps 

 

Additionally, the simulation in time domain uses a fixed computation time at each time step, 

while the computation time increases with higher harmonic components used in frequency 

domain simulation method as seen in Table 3-6. Therefore, the presented FE model based on the 

convolution with the impulse response is superior in speed and accuracy relative to the frequency 

domain model in [137]. 

 

Table 3-6 Computation time comparison. 

 

FE model Solve domain Simulation 

steps 

Computation 

time (each step) 

Relative  

error 

Node 

Proposed 

method 

Time domain 30 4 mins 1.79%  

12996

0 Reference 

method 

Frequency 

domain 

50 4 mins:20 mins 5% 

-4 

-4 
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3.5.4 Time-domain Model Validation  

The time-domain modeling strategy described in this section is validated using experimental 

PEC-GMR measurements of the specimen shown in Figure 3.14. The validation of the signals at 

three probe positions corresponding to P1, P2, and P3 is presented in Figure 3.22.  
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Figure 3.22 Model validation: Simulation signals of 250 time steps and signals of the impulse 

response based modeling (30 time steps) vs. experimental signals 
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The proposed FE model is then applied to multilayer riveted structure inspection. A three-layer 

aluminum plates with a 5 mm crack in the 3
rd

 layer around the aluminum fastener is modeled. 

The three dimensional geometry is meshed using hexahedral elements with 8 nodes. A narrow 

air gap is introduced around the fastener structure and also in between plate layers. The 

cross-sectional geometry of the model is shown in Figure 3.23. The simulation of PEC-GMR 

measurements at three positions displayed in Figure 3.24 is performed. The Bz component 

signals are studied using the impulse response based time-domain modeling. The experimental 

PEC-GMR measurements of the Bz component are presented for comparison.  

 

6mm
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Figure 3.23 Modeling geometry of a three layer riveted plate with a 3
rd

 layer crack at aluminum 

fastener site 
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Figure 3.24 PEC-GMR signals at three scan positions: (a) Simulation signals and (b) 

Experimental signals 

 

3.6 MR Measurements of 3-component Transient Fields   

In order to resolve the challenges of detecting cracks under steel fasteners, measurement of all 

3-components of the magnetic field (normal component- zB , tangential components- yB,xB ) 

using MR sensors is proposed. The model-based study in [161] reports the enhanced detection of 

defective steel fastener using the additional information in the tangential components in low 

frequency EC-GMR inspection. 
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3.6.1 Ferrous Fastener Inspection   

Due to ferromagnetism, ferrous fasteners become the areas of flux concentration, even for a 

relatively low applied field intensity [7, 21]. Consequently, the response due to ferrous fastener 

can mask small defect indications as seen in the distributions of the magnetic flux density for 

aluminum and steel fasteners in Figure 3.25 (a-b).  

 

    
(a)

No crack With a 3rd layer crack

 

            (b)

No crack With a 3rd layer crack

 

Figure 3.25 Numerical results illustrating the challenge of ferrous fastener inspection when 

measuring the normal magnetic field component (Bz): (a) Induced field at an aluminum fastener 

without crack (left image) and with crack (right image)  

(b) Induced field at a steel fastener without crack (left image) and with crack (right image) (c) 

C-scan image in the presence of a subsurface 8mm notch a at aluminum fastener site (left 

image), and at steel fastener site (right image) 
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Figure 3.25 (cont’d).  

                  (c)Al fastener Steel fastener  

 

The C-scan images of normal component data also demonstrate the difficulty in detecting a 

subsurface crack around steel fastener hole (Figure 3.25 (c)). That the C-scan image of a 

defective aluminum fastener demonstrates an observable asymmetry in the left and right lobes, 

however, this asymmetry is not easily detected in a defective steal fastener. 

Little study is done for ferrous fastener examination using transient EC methods. The study in 

[21] is limited to relatively large crack sizes (8mm, under surface up to 6mm), and 

one-dimensional transient signal analysis. The reliable detection of cracks under steel fasteners 

in layered structures is studied in this dissertation using GMR measurements of the three 

components of magnetic field. 

3.6.2 Simulation Study of 3-component Measurements    

The FE model developed in the time domain is employed to study the 3-component 

measurements in a layered geometry with a steel fastener. Using the impulse response based 

scheme, the formulation in Eq. (3.39) is solved in the time domain. The three components of the 

magnetic flux density are calculated from the solution vector as: 
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                              dy/xdAdx/ydAzB                        (3.44) 

                              dz/ydAdy/zdAxB                        (3.45) 

                              dx/zdAdz/xdAyB                        (3.46) 

The mesh for the FE model, and the geometrical dimensions of sample and crack are shown in 

Figure 3.26. The sensing position is shown to be at the right edge of the fastener head. The 

measured Bz, By, and Bx components for the defect and no defect cases are shown in Figure 3.27 

(a), (b), and (c) respectively. Figure 3.27 (d) shows the 3-components after baseline subtraction. 

It can be seen that the Bx components give a large difference compared with Bz. In this study, the 

FE model is used as a tool to generate signals for a variety of defective rivet geometries.  

 

6.5mm

14mm

6.5mm

No flaw case 2.87mm flaw case

Scan position: P3 Scan position: P3

 

Figure 3.26 Simulation for steel fastener structures-Test sample: no crack vs. with 2.87mm notch 
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Figure 3.27 Simulation of 3-component measurements for steel fastener structures: (a)-(c) 

Simulation signals of Bz, By, Bx components respectively (d) Subtraction of the no flaw 

measurements from the 2.87 mm flaw measurements for each component 
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Figure 3.27 (cont’d). 
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3.6.3 Experimental Study of 3-component Measurements  

The GMR sensor, as presented in Figure 3.28, placed at the center can be oriented to be sensitive 

to a selected component of the magnetic field. The experimental measurement of the three 

components in the case of a steel fastener with a subsurface 2.87 mm notch through the 2
nd

 layer 

is conducted. Two types of NVE GMR sensors (AAH002 for the normal component and AA002 

for the tangential components) are used with different linear response ranges. 
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Sensitive axis-Bz

GMR

sensor

Multi-line coil

Sensitive axis-By

GMR 

sensor

Multi-line coil

Sensitive

axis-Bx

GMR sensor

Multi-line coil  

Figure 3.28 GMR sensing 3-component of the magnetic field 

 

The C-scan images of these inspection data are shown in Figure 3.29. The application of PEC 

inspection of laboratory samples with 3D GMR measurements, and features from the C-scan 

images of 3-component data and signal processing algorithms for automatic crack detection will 

be implemented in Chapter 4. 
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Figure 3.29 PEC-GMR measurement of a steel fastener with a 2.87 mm notch using three 

components: (a) Test geometry (b) C-scan images of Bz, By, Bx (c) Transient A-scan signals of Bz, 

By, Bx  
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Figure 3.29 (cont’d). 
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3.7 Summary 

This chapter presents the development of an EC-GMR inspection system, which uses a pulsed 

excitation applied to a planar multi-line coil to generate a transient field that is detected using 

GMR sensor. The transient skin depth of electromagnetic field associated with the diffusing 

fields is shown to be greater than that associated with steady state case. A novel simulation 

strategy is developed to model the PEC system in the time domain and validated by experimental 

results. The scheme that measures 3-component of transient fields is numerically and 

experimentally demonstrated as a feasible approach for the inspection of ferromagnetic fasteners.  
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CHAPTER 4  ANALYSIS OF PEC-GMR INSPECTION DATA 

4.1 Introduction 

This chapter describes methods for the analysis of PEC-GMR data obtained from the inspection 

of multilayer riveted structures. C-scan image data of GMR response is collected experimentally. 

A strategy using principal component analysis (PCA) method is adopted to process the C-scan 

image for crack detection near fastener sites. Initial results show feasibility for detecting the 

embedded cracks at steel fastener sites using 3D GMR measurements.  

4.2 Review of Signal Enhancement for PEC Inspection 

Signal transformation methods have been studied to represent transient signals in different 

domains, such as frequency domain, time-frequency domain, and wavelet transform [162-167]. 

Another study found in [168] used a Fisher discriminative model for defect classification in PEC 

testing. 

Although Safizadeh [165] studied the time-frequency distribution of PEC signals for the removal 

of interlayer gap and lift-off noise, the analysis of A-scan signals is not reliable to detect 

embedded cracks in riveted or layered structures [18, 23].  

Signal processing using PCA and independent component analysis (ICA) techniques were 

introduced as strategies for new feature extraction in [98, 163, 169-171]. The time series 

constituting transient signals were reduced to single points in principal component space for 

defect detection [171]. The detection schemes need training data and a training model to classify 

the data. 
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4.3 Multilayer Riveted Specimen  

Three laboratory specimens consisting of multilayer aluminum plates with aluminum or steel 

fasteners are used in this work. Sample 1 is a three-layer aluminum plate (aluminum alloy 3003 

and 1145) with mushroom-head aluminum fasteners drilled through the plates. The layer 

thicknesses are: 6 mm (top layer), 4 mm (middle layer) and 4 mm (bottom layer). The fasteners 

are of diameter 6 mm at the top and tapering to 3 mm diameter at the bottom layer. Cracks of 

various radial dimensions located at fastener sites in the 2
nd

 layer (Row 1) and the 3
rd

 layer 

(Row 2) of the sample are machined. A schematic of Sample 1 is shown in Figure 4.1.  

 

6mm
4mm
4mm

(a)

2mm1mm

 

6mm
4mm
4mm

(b)

3mm1mm 5mm

 

Fastener 

2-1

Fastener 

2-2

Fastener 

2-3

1 mm 3 mm

1 mm 2 mm

Fastener 

2-4

5 mm

Fastener 

1-1

Fastener 

1-2

Fastener 

1-3

Fastener 

1-4

(c)        
Figure 4.1 Schematic of Sample 1: three layers aluminum plate with aluminum fasteners and 

cracks in second and third layers (a) Side view of cracks in the second layer (b) Side view of 

cracks in the third layer (c) Top view of Sample 1 
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Sample 2 is a layered aluminum (aluminum 7075-T6) plate containing steel fasteners. This 

sample consists of a three layer aircraft skin structure. The thicknesses of the three layers are: 6.5 

mm (top layer), 14 mm (middle layer) and 6.5 mm (bottom layer). The steel fasteners are of 14.5 

mm top diameter and 7.9 mm bottom diameter. Through-wall notches in the 2
nd

 layer with 

different radial lengths are machined at Rows 2 and 4. Corner notches of four sizes are installed 

in Rows 1 and 3. Sample 2 is illustrated in Figure 4.2. 

 

Fastener 1

Row 1

Row 2

Row 3

Row 4

Fastener 8
Bottom corner notches

Top corner notches
 

4Row 1: Fastener # 5 6 7 8

4 5 6 7 8Row 2: 

Fastener #
3

1.524mm 3.048mm 4.572mm 6.096mm

0.6604mm 0.9652mm 1.3716mm 1.9812mm 2.8702mm

1.524mm3.048mm4.572mm6.096mm

0.6604mm0.9652mm1.3716mm1.9812mm2.8702mm

4 5 6 72 3

4 52 31
Row 3: 

Fastener #

Row 4: 

Fastener #  

Figure 4.2 Schematic of Sample 2: top view of a three layers aluminum plate with four rows of 

steel fasteners, and cracks dimensions in the second layer at each fastener site in every row 
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Sample 3 is a two-layer aluminum sample (aluminum alloy 3003 and 1145) with small cracks in 

the bottom layer around the fasteners. The layer thicknesses are 4 mm (top layer) and 2 mm 

(bottom layer) with drilled aluminum fastener of 6mm top diameter, 5mm bottom diameter in the 

first row, and 3mm bottom diameter in the second row. The machined cracks are less than 1mm 

long, as shown in Figure 4.3. Fastener 1-2 contains a radial crack of length 0.2 mm, and fastener 

2-3 has a 0.5mm crack. Fastener 1-3 has two radial cracks of lengths 0.8 mm and 0.7 mm 

extending at diametrically opposite sides. 

  

Fastener 1-1 Fastener 1-2 Fastener 1-3

0.2 mm

0.7 mm 0.8 mm

0.5 mm

Fastener 2-3  

        

2 mm

4 mm

0.8 mm0.7 mm0.2 mm

2 mm

4 mm

0.5 mm  

Figure 4.3 Schematic of sample 3: two layers aluminum sample with aluminum fasteners and 

cracks in the bottom layer  

 

The three samples are inspected using the PEC-GMR system, and the measured A-scan signals 

are used to generate C-scan images using the maximum value of transient signals. The three 

components of magnetic fields associated with induced eddy currents are measured for the 

inspection of steel riveted structures.  
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4.4 Automatic Analysis of PEC-GMR C-scan Images  

Image based data analysis is more reliable than the treatment of individual A-scan and line scan 

measurements. In this chapter, a strategy exploiting underlying statistical characteristics of 

C-scan image data is developed for automatic crack detection in the presence of fastener signals. 

Automatic damage detection using PEC-GMR measurements is performed using unsupervised 

classification. 

4.4.1 Principal Component Analysis 

Principal component analysis is an eigenvector-based multivariate analysis tool for analyzing and 

structuring data sets. It is applied to the image data of PEC-GMR measurements for reducing the 

dimensionality of measured data. This allows easier interpretation of the data in a lower 

dimensional space [172-173]. The PCA analysis is also known as the Karhunen Loeve (KL) 

transform or the Hotelling transform. The PCA technique is known for its ability to generate 

independent features. This data transformation is particularly useful for classification and 

compression [162, 174]. In the case of multi-frequency EC signal analysis, the PCA method has 

been used as a source separation algorithm [175-176]. 

In PCA processing, the procedure seeks to retain the maximum variance in the processed data. 

PCA method decorrelates the data sets to find the orthogonal principal components (PCs), and 

maps the original data onto the PCs subspace using a linear transformation. This is done by 

finding the eigenvectors of the covariance matrix of input data [172-173].  

 

http://en.wikipedia.org/wiki/Eigenvectors
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Let measured signals be represented by T]nx,,x,x[X 21 , the mean of the signals is:                                

  ][XE                                 (4.1) 

where n  is the number of sampled signals, E[.] is the expected value. The covariance of the 

data X  is calculated as matrix C: 

T)X)(X(EC                    (4.2) 

The algorithm performs a singular value decomposition of matrix C, and 

computes eigenvectors as the rows of matrix V  that diagonalizes the covariance matrix:  

                                   DCVV 1
                            (4.3) 

where D  is the diagonal matrix. 

The matrix decomposition defines the 
thk  principal component (PC) of X  as the normalized 

eigenvector kv  corresponding to the eigenvalue 
k  of matrix xC , which is obtained by 

solving: 

                                  kvkkvxC                              (4.4) 

where nk  ,,2 ,1  . This is equivalent to finding the solutions of the characteristic equation: 

                                 kvkkv,|IxC|      0                    (4.5) 

where I is the unity matrix.  

PCA method finds the directions that decorrelate the input data. Principal components are formed 

by projecting the data on the eigenvectors which are arranged according to descending 

eigenvalues. The first eigenvector has the direction of the largest variance of X and it determines 

the direction with the most significant amount of energy. 

 

http://en.wikipedia.org/wiki/Eigenvector
http://en.wikipedia.org/wiki/Diagonalizable_matrix
http://en.wikipedia.org/wiki/Diagonal_matrix
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4.4.2 Flaw Detection    

The PCA method is applied for the automatic flaw analysis of PEC-GMR measurements. A 

mn  C-scan image is obtained at each fastener site, and the image data of all fasteners 

machined in a row of a sample are used in PCA. As demonstrated in Figure 4.4, the C-scan 

images of the 7 fasteners from row 1 of sample 2 are formed. The image data D are formed by 

287 points (pixels) in each row, and with a total of 40 line scan, resulting in 40 pixels in each 

column. The zero-mean data of D is represented by a matrix M with a size of 40287. Each 

4041 data set in matrix M represents the measurements from a single fastener.   

The eigenvector decomposition is performed on the covariance matrix C of M and the 

eigenvectors are calculated as the vectors Vi in matrix }V,,V,V{V 4021  . A new 

representation of data M is implemented by the linear projection into a lower dimensional space: 

                                  S=V
T
M                                 (4.6) 

where the vector S is in PCs coordinates. Each row of S is the component 

,MT
kVkPC  40,,1k . 
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Figure 4.4 Flaw detection using the image analysis 

 

From a geometrical standpoint, the PCA procedure rotates the coordinate system so that the axes 

follow the directions of the largest variances of the analyzed data in the new space. These axes 

are referred to as principal axes [174]. In general, the dimensionality of the PCs subspace is 

selected to retain at least 90% of the energy in original data. The energy in 3 PCs is calculated as: 

                               




k:i
i/

:i
i

131

                           (4.7) 

The first three PCs: PC1 to PC3 are found to carry  95% energy of input data presented in 

Figure 4.4. Therefore, the first three PCs with 3k  are used in this chapter for the image data 

processing and analysis. 

The C-scan data of two fasteners without cracks and one defective fastener are processed 

following the procedure demonstrated in Figure 4.4. As shown in Figure 4.5 (a), the first two 

PCs (PC1 and PC2) are plotted for each pixel row in the C-scan image (this corresponds to 

column size of the image). Since the fastener information is the dominant energy in the input 

data, the plot of PC1 that is relative to the largest eigenvalue represents the fastener signals.  
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The plot of PC2 that is calculated by the smaller eigenvalue represents the residual energy, and 

indicates the signal variation relative to defect response. In Figure 4.5 (b), the components PC1 

vs. PC2 are represented by a phase-magnitude polar plot. It is observed that the data due to 

fasteners and cracks correspond to different regions in the plot. 
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Figure 4.5 Principle of applied PCA analysis 
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Therefore, crack detection is implemented by exploiting the uncorrelated PCs to represent the 

fastener data and crack signals in different directions in PC subspace. In This scheme does not 

need training data. Automatic crack detection is performed by plotting the data in the PCs 

subspace. 

4.5 Results of PEC-GMR Inspection 

4.5.1 Detection of 2
nd

 and 3
rd

 Layer Cracks in Sample 1 

Experimental measurements of Sample 1 are presented as the C-scan images in Figure 4.6. For 

each row, 40 line scans are measured with 215 points at 1mm interval in each line scan. The 

excitation current source is a 100Hz and 1.4A square waveform. The normal component zB  of 

the transient field is measured. The peak value of each A-scan signal is utilized to generate the 

C-scan image. Defects machined in Sample 1 are summarized in Table 4-1.  
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Figure 4.6 C-scan images of aluminum fasteners in Sample 1 using PEC-GMR measurements 
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Although the asymmetry observed in the C-scan images of aluminum fasteners with cracks, it is 

not a reliable indication in the case of 2
nd

 or 3
rd

 layer crack. In addition, it is also possible to get 

an asymmetric image in the case of improper fastener installation or sensor tilt.  

 

Table 4-1 Sample 1 – aluminum fastener. 

  

Sample1 Defect size Location  

Fastener1-1 0 
2

nd
 layer 

Fastener1-2 1 mm 
2

nd
 layer 

Fastener1-3 2 mm 
2

nd
 layer 

Fastener1-4 0 
2

nd
 layer 

Fastener2-1 0 
3

rd
 layer 

Fastener2-2 1mm 
3

rd
 layer 

Fastener2-3 3mm 
3

rd
 layer 

Fastener2-4 5mm 
3

rd
 layer 

 

PCA method for crack detection is performed on the C-scan images of aluminum fasteners 

(Figure 4.6) in Row 1 (2
nd

 layer cracks) and Row 2 (3
rd

 layer cracks) of Sample 1. The C-scan 

images of Sample 1 are first processed for mean removal and are represented by a matrix M of 

size (40215). A denoising linear spatial filter represented by a ‘gaussican’ 10 by 10 mask is 

used for de-noising.  
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Figure 4.7 Detection of cracks in the 2
nd

 layer of Sample 1 using the PCA method (a) Detection 

results by PC1 vs. PC3 representations (b) Detection results by PC3 vs. PC2 representations 
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Figure 4.8 Detection of cracks in the 3
rd

 layer of Sample 1 using the PCA method (a) Detection 

results by PC1 vs. PC3 representations (b) Detection results by PC3 vs. PC2 representations 

 

Projection of input data into PC1 vs. PC3, and PC3 vs. PC2 subspace domains is shown in 
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Figure 4.7 and 4.8. It is seen that discriminatory information about cracks are successfully found 

in PC3 vs. PC1 or PC3 vs. PC2 plots. As shown in Figures 4.7-4.8, the uncorrelated PCs have 

significantly suppressed fastener signals and enhanced the crack information contained in the 

collected image data. 

4.5.2 Detection of 2
nd

 Layer Cracks in Sample 2 

The PEC-GMR experimental C-scan images of sample 2 are shown in Figure 4.9. Table 4-2 

describes the cracks machined in sample 2.  
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Figure 4.9 C-scan images of steel fasteners in Sample 2 using PEC-GMR measurements 

 

Table 4-2 Sample 2 – steel fastener with 2
nd

 layer cracks. 

 

Row1 

Fastener 

Crack 

size 

(mm) 

Row2 

Fastener 

Crack 

size 

(mm) 

Row3 

Fastener 

Crack 

size 

(mm) 

Row4 

Fastener 

Crack 

size 

(mm) 

1-2 0 2-2 0 3-2 4.572 4-2 0 

1-3 0 2-3 0.6604 3-3 3.048 4-3 2.8702 

1-4 0 2-4 0.9652 3-4 1.524 4-4 1.9812 

1-5 1.524 2-5 1.3716 3-5 0 4-5 1.3716 

1-6 3.048 2-6 1.9812 3-6 0 4-6 0.9652 

1-7 4.572 2-7 2.8702 3-7 0 4-7 0.6604 

1-8 6.096 2-8 0 3-8 0 4-8 0 
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Figure 4.10 Detection of cracks around steel fasteners in Row 1 to Row 4 of Sample 2 using the 

3D plots of PC1 to PC3: Bz component 
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Figure 4.10 (cont’d).  
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C-scan images of steel fasteners in Row 1 to 4 (Figure 4.9) are processed using PCA method. 

Linear transformations of image data into PC1 to PC3 subspace are shown in Figure 4.10. The 

signal representations in PC1 vs. PC2 domain are found to exhibit the trajectories that can 

discriminate the steel fasteners without cracks from the fasteners with radial cracks. Therefore, 

the signals in PC1 vs. PC2 representations are employed for automatic crack detection and the 

results are shown in Figure 4.11. 

In this case, few false calls are observed: the image data of steel fastener #8 (no flaw) in Row 2, 

and steel fasteners #2 and #3 (2.87mm and 1.98mm) and #8 (no flaw) in Row 4. These false 

identifications were attributed to possible variations in lift-off, and a limited sensitivity of a 

single component of the magnetic field. 
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Figure 4.11 Detection of cracks in the 2
nd

 layer of Sample 2 using the PCA method (steel 

fasteners in Row 1 to Row 4): Bz component 

 

4.5.3 Flaw Detection using Tangential-component Measurements 

Data analysis using PEC-GMR measurements of By and Bx components are investigated in this 

section. Tangential-component measurements of steel fasteners in Sample 2 are presented in the 

C-scan images of Figure 4.12.  

 

-3 
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Figure 4.12 PEC-GMR tangential-component measurements of steel fasteners (a) C-scan images 

of By measurements (b) C-scan images of Bx measurements 

 

Image data of By and Bx measurements are processed using PCA technique, and the results are 

presented in Figures 4.13-4.14 (By component) and Figures 4.15-4.16 (Bx component). The 3D 

plots using the first three PCs are studied, and the signal representations in the PCs subspace are 

exploited to detect defective steel fasteners with cracks in the 2
nd

 layers. 

PCA applied to measurements of By component are seen to be effective in detecting cracks at 

steel fastener sites in Rows 2 and 4. The smallest crack (0.66mm length) is missed. The 

measurements of Bx component are sensitive to all cracks in four rows. Hence, the tangential 

components of the magnetic field are validated as a reliable option for the inspection of steel 

fasteners. 
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Figure 4.13 Detection of cracks around steel fasteners in Row 1 to Row 4 of Sample 2 using the 

3D plots of PC1 to PC3: By component 
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Figure 4.13 (cont’d).  
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Figure 4.14 Detection of cracks in the 2nd layer of Sample 2 using the PCA method (steel 

fasteners in Row 1 to Row 4): By component 
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Figure 4.15 Detection of cracks around steel fasteners in Row 1 to Row 4 of Sample 2 using the 

3D plots of PC1 to PC3: Bx component 
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Figure 4.15 (cont’d). 
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Figure 4.16 Detection of cracks in the 2nd layer of Sample 2 using the PCA method (steel 

fasteners in Row 1 to Row 4): Bx component 
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4.6 Automatic Crack Detection using 3-component GMR Images  

This section describes the design of quantitative signal analysis and classification developed to 

utilize information contained in the three components of the magnetic flux density with respect 

to feature based detection.  

4.6.1 Feature Extraction   

PCA based automated crack detection has proved to be promising in discriminating between 

signals from fasteners with and without cracks. A quantitative feature set is derived for reliable 

automatic crack detection. Three types of signal features containing discriminatory information 

are defined for automated classification. 

Orientations of corresponding signals in projected PC subspace are first studied. As shown in 

Figure 4.17, the orientations of signals in PCs representation are extracted quantitatively as: 

         )]xx/()yy[(ori 1212atan                    (4.8) 

where (x1,y1) and (x2,y2) are coordinates of the signal maximum and minimum in PC1 vs. PC2 

or PC1 vs. PC3 subspace. 
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Figure 4.17 Orientation based feature extraction 

 

A feature quantifying asymmetry calculated by the 3
rd

 order moment, and a feature quantifying 

sharpness calculated by the 4
th

 order moment are defined next. As shown in Figure 4.18, the two 

features s and k quantify the asymmetry associated with the crack in PC subspace. These two 

features based on the statistical moments skewness and kurtosis [24, 89, 156, 177] and are 

defined as:  
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where PC_isig  is the fastener image data associated with the 2
nd

 PC component, and 

PC_isig  is the mean and p is number of signal data points. The term std  is the standard 

deviation of the signal. 
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Figure 4.18 Asymmetry quantification using moment based features (3
rd

 & 4
th

 orders) 

 

4.6.2 Crack Detection Scheme  

The overall approach for automated fastener classification is depicted in Figure 4.19. Data from 

each row of the C-scan images from the 3-component EC-GMR system are applied to the PCA 

processor for enhancing the indications due to cracks present at fastener sites. GMR images of 



 113 

three components are analyzed sequentially. Corresponding signals represented in PC1 vs. PC2 

or PC1 vs. PC3 domain are used for feature extraction.  
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Figure 4.19 Overall approach for automated crack detection 

 

Classification results of Bz, By, Bx measurements using three features are performed. As 

presented in Figures 4.20-4.23 (Bz measurements) and Figures 4.24-4.27 (By measurements), the 

automatic classification and crack detection are implemented using the plots of features ori vs. k 

and features ori vs. s. Figures 4.28 presents the automatic classification and crack detection for 

Bx measurements using feature s vs. k. 
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Figure 4.20 Classification results of steel fasteners in Row 1 using features ori calculated from 

PC1 and PC2, s and k calculated from PC2: PEC-GMR measurements of Bz component 
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Figure 4.21 Classification results of steel fasteners in Row 2 using features ori calculated from 

PC1 and PC2, s and k calculated from PC2: PEC-GMR measurements of Bz component 
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Figure 4.22 Classification results of steel fasteners in Row 3 using features ori calculated from 

PC1 and PC2, s and k calculated from PC2: PEC-GMR measurements of Bz component 



 117 

0 0.5 1 1.5 2
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

  1

  2

  3

30

210

60

240

90

270

120

300

150

330

180 0
No cracks

Cracks

ori

s

(I)

(II)

ori vs. k

False calls

False

call

Cracks

No cracks

 

Figure 4.23 Classification results of steel fasteners in Row 4 using features ori calculated from 

PC1 and PC2, s and k calculated from PC2: PEC-GMR measurements of Bz component 
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Figure 4.24 Classification results of steel fasteners in Row 1 using features ori calculated from 

PC1 and PC2, s and k calculated from PC2: PEC-GMR measurements of By component 



 119 

0 0.5 1 1.5 2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

  1

  2

  3

30

210

60

240

90

270

120

300

150

330

180 0
No cracks

Cracks

ori

s

(I)

(II)

ori vs. k

False call

No cracks

Cracks

 

Figure 4.25 Classification results of steel fasteners in Row 2 using features ori calculated from 

PC1 and PC2, s and k calculated from PC2: PEC-GMR measurements of By component 
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Figure 4.26 Classification results of steel fasteners in Row 3 using features ori calculated from 

PC1 and PC2, s and k calculated from PC2: PEC-GMR measurements of By component 
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Figure 4.27 Classification results of steel fasteners in Row 4 using features ori calculated from 

PC1 and PC2, s and k calculated from PC2: PEC-GMR measurements of By component 
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Figure 4.28 Classification results of steel fasteners in (a) Row 1 (b) Row 2 (c) Row 3 (d) Row 4 

using feature s and k calculated from PC1: PEC-GMR measurements of 

Bx component 
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Figure 4.28 (cont’d).  

 

1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

(c)k

s

Cracks

No cracks

False calls

 

(d)k

s

Cracks

No cracks

1.8 2 2.2 2.4 2.6 2.8 3
-1.3

-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

Cracks

No cracks

False call

 

 

 



 124 

4.7 Summary     

Crack detection using the PCA analysis has been explored for the automatic inspection of 

defective fasteners. A feature set has been derived for quantifying asymmetry in GMR images. A 

strategy using 3-component GMR measurements has been validated for detecting subsurface 

cracks at steel fastener sites in layered structures.  
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CHAPTER 5  EC-MR SENSOR SYSTEM – LOW FREQUENCY EXCITATION 

 

5.1 Introduction 

The inspection of multilayer structures with buried cracks is examined using a low frequency EC 

testing with 3D GMR sensors. The experimental inspection of subsurface cracks under steel 

fastener heads is presented. A FE model that is validated with the experimental EC-GMR images 

is used to develop data fusion algorithms using 3-component measurements of the magnetic flux 

density.  

5.2 Low Frequency EC-MR Sensing    

The multi-line coil in presented in Chapter 3 is excited by a low frequency (100Hz) sinusoidal 

waveform, which generates a time-harmonic uniform field and linear EC currents. A GMR 

sensor placed on the line of symmetry measures the single component of magnetic field.  

5.2.1 Experimental Set-up  

The EC-GMR system consists of signal excitation, signal modulation, signal preparation and 

signal demodulation. In this section, an analog in-phase/quadrature (I/Q) detection scheme is 

used. The complex components of a GMR signal can be directly computed. The I/Q detection 

scheme exploits synchronous AM demodulation which results in a baseband signal whose 

bandwidth is a function of flaw characteristics. The raw GMR signal is processed for SNR 

enhancement and then fed into the I/Q detector to calculate in phase (real) and quadrature 

(imaginary) parts simultaneously. This system diagram is shown in Figure 5.1 (a).  
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The implementation of I/Q detection is based on the mathematical equations: 
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where sS  is the input excitation signal (also the reference signal) at frequency  and 

amplitude 0A . GMRS  is the measured GMR signal at the same frequency but different 

amplitude nA  and phase 
n . The complex sinusoidal field is expanded as: 
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Figure 5.1 Schematic of low frequency EC-GMR system: (a) Experimental Set-up and (b) Signal 

demodulation 
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By multiplying the GMR signal with )sin( t  and )cos( t , in-phase and quadrature 

components are obtained along with a high frequency sinusoidal terms at 2 frequency. Low 

pass filtering is used to filter out the AC component ( )nsin(),ncos(  ). The Lock-in amplifier 

is employed to “lock” onto the input signal and maintain the reference output at the proper 

frequency. The schematic of I/Q demodulation system is displayed in Figure 5.1 (b). 

5.2.2 Inspection of Cracks around Steel Fasteners –Normal component    

Two rows of steel fasteners in Sample 2 (described in Chapter 4, Figure 4.2) are examined 

experimentally. Row 1 has corner cracks at right fastener sites and Row 2 has notch cracks 

through the 2
nd

 layer at left fastener sites. The C-scan images of the normal component zB are 

measured at 100Hz excitation frequency and shown in Figure 5.2.  
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Figure 5.2 C-scan images of steel fasteners in Sample 2 using low frequency EC-GMR 

measurements: Bz component 
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Figure 5.3 Inspection of steel fasteners in Sample 2 using EC-GMR detection: Bz measurements 

(a) Plots of conventional complex trajectories (b) Detection of hidden cracks around steel 

fastener sites using the PCA method (c) Polar plots with data rotation for automatic detection 
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Using the conventional method that interprets EC signals in the impedance plane, the Lissajous 

plots of in-phase part vs. quadrature components are presented in Figure 5.3 (a). These Lissajous 

plots are from the line scans across the peak value of C-scan images in the complex plane. The 

defect indications are not easily detectable from these plots. Consequently, the PCA scheme 

described in Chapter 4 is employed.  

The crack detection using the PCA method is applied to the C-scan images of quadrature parts, 

and the results are shown in Figure 5.3 (b). The data representations in PCs subspace (PC1 and 

PC2 components) are rotated so that crack data is at 90 and plotted in Figure 5.3 (c). Two 

clusters that represent fasteners without cracks and fasteners with subsurface cracks are achieved 

although false calls are also found. 

5.2.3 Inspection of Cracks around Steel Fasteners –Tangential component  

The results in Figure 5.3 have shown the feasibility of flaw detection in the presence of steel 

fasteners, using the PCA processing of zB  measurements with a low frequency excitation. In 

this section, tangential components of low frequency EC field are examined.  

The GMR sensor placed at the center of the source coil can be oriented to be sensitive to a 

selected component of the magnetic field, as displayed in Figure 3.28. The C-scan images of 

Sample 2 using tangential component By at a 100Hz excitation are presented in Figure 5.4. 
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Figure 5.4 C-scan images of steel fasteners in Sample 2 using low frequency EC-GMR 

measurements: By component 

 

The same procedure using the PCA method is applied to enhance the data analysis. Automatic 

detection is implemented and presented in Figure 5.5. Similarly, the crack information is 

recovered in the By images of quadrature parts of GMR signals, and is indicated after data 

processing. In summary, it is feasible to use low frequency EC and GMR measurements to detect 

defective steel fasteners with embedded cracks. 
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Figure 5.5 Inspection of steel fasteners in Sample 2 using EC-GMR detection: By measurements 

(a) Detection of hidden cracks around steel fastener sites using the PCA method (b) Polar plots 

with data rotation for automatic detection 

 

5.3 Model-based Study of Low Frequency 3D EC-GMR Measurements  

The FE model based investigations are performed to enhance the analysis of EC-GMR image 

data associated with crack identification. C-scan image fusion of three components of 

time-harmonic magnetic flux density is developed.  
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5.3.1 FE Model of EC-GMR Imaging  

A FE model developed in [26, 156] is used to simulate 3D GMR inspection with low frequency 

excitation of the multi-line coil. This model employs an infinite sheet coil in place of the used 

finite and planar coil, which eliminates the need for scanning the sample and meshing the source 

coil. The AA --V  formulation is used in this FE model.  

As shown in Figure 5.6 (a), the excitation current source is a waveform of 100 Hz frequency with 

a current density Js along the ŷ  direction (Y-axis). The infinite current sheet is located at 1 mm 

above the sample. Homogeneous Dirichlet boundary conditions (values of A or V on the 

boundary) are imposed to obtain a unique solution. The riveted geometry consisting of a three 

layer structure is studied. The top layer and the bottom layer are 6.5 mm thick respectively. The 

2
nd

 layer is 14 mm thick. The material properties of steel fastener and aluminum plate are 

incorporated in the model.  
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Figure 5.6 Modeling study of a three layers riveted aircraft structure: (a) Test geometry and (b) 

Distributions of 3D induced currents 
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Figure 5.6 (cont’d).  

Jz Gauss

Jy Gauss

 

 

Jx Gauss

 

    (b) 

 

The AA --V  formulation presented in Eq. (3.35) is solved for the unknown nodal quantities. 

The induced currents inside the specimen are calculated by Eq. (5.3), and their 3D distributions are 

displayed in Figure 5.6 (b)-(d).  
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                             E  indJ                              (5.3) 
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Figure 5.7 Simulation of 3-component C-scan images of three cases: (a) Quadrature part of Bz (b) 

Quadrature part of By (c) Quadrature part of Bx 

The C-scan images of 3D magnetic flux density associated with three steel fasteners R1 (no 

defect), R2 (2.87 mm radial long defect) and R3 (4.6 mm radial long defect) are plotted in Figure 
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5.7 (a), (b) and (c) respectively. It is observed that the cracks at fastener sites magnify the 

asymmetry in C-scan images, particularly in the images of tangential components. Additionally, 

the degree of asymmetry is also related to the length of the crack.  

5.3.2 Experimental Validation  

The model predictions of 3-component fields are compared with experimental measurements on 

the defective steel fastener in Figure 5.6. The C-scan images (normalized values of in-phase and 

quadrature) of zB , yB , xB  components are presented in Figures 5.8-5.10 respectively. These 

results provide a qualitative validation of the FE simulation model for EC-GMR inspection, 

allowing the use of this model for further investigation of 3-component signals. 

 

 
X (mm) X (mm)

Y
 (

m
m

)
Y

 (
m

m
)

(a)

(c)

(b)

(d)

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

 

Figure 5.8 Qualitative comparison of experimental and simulation C-scan images of Bz 

component for a steel fastener with 2.8 mm notch: (a)-(b) Experimental in-phase and quadrature 

parts (c)-(d) Simulation in-phase and quadrature parts 
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Figure 5.9 Qualitative comparison of experimental and simulation C-scan images of By 

component for a steel fastener with 2.8 mm notch: (a)-(b) Experimental in-phase and quadrature 

parts (c)-(d) Simulation in-phase and quadrature parts 
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Figure 5.10 Qualitative comparison of experimental and simulation C-scan images of Bx 

component for a steel fastener with 2.8 mm notch: (a)-(b) Experimental in-phase and quadrature 

parts (c)-(d) Simulation in-phase and quadrature parts 
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5.3.3 Image Fusion Method 

Based on the prior analysis, a simple image fusion method is investigated to combine the 

quadrature parts in C-scan images of 3-component data. A simple approach for this fusion is 

shown schematically in Figure 5.11. Two issues are studied using this linear data processing.  
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Figure 5.11 Fusion of quadrature parts of the 3-component GMR measurements 

 

5.3.4 Model-based Study – Inspection of Non-ideal Fasteners  

A commonly encountered problem in riveted structures is the non-ideal case of a tilted fastener 

or off-center fastener as shown in Figure 5.12. These imperfect geometric factors also produce 

asymmetric responses during the inspection, which can be erroneously interpreted as a crack 

signal [26, 28].  
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Figure 5.12 Geometries of steel fastener structures: ideal and non-ideal fasteners 
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Figure 5.13 Simulation geometries and results: (a) Geometries of three cases: steel fastener 

without defect (left), with a 2.8 mm notch (middle) and off-centered fastener without defect (right) 

(b)-(d) Bz, By and Bx components (quadrature parts) for the corresponding cases 
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Simulation results of the three field components for the cases depicted in Figure 5.13 (a) were 

computed. The test cases are 1) Ideal fastener with no defect, 2) Ideal fastener with 2.8 mm notch 

in the 2
nd

 layer and 3) Non-ideal (off-centered) fastener with no defect. The quadrature 

components of the corresponding simulation fields are shown in Figure 5.13 (b)-(d). 

The fused image of three field components is designed to enhance the asymmetry information 

useful for crack detection relative to the conventional single component method. As seen in Figure 

5.14, the results of image fusion serve to suppress the contribution from steel fasteners and 

enhance the signals due to defect. Figure 5.14 (a) has no features once the fastener contribution is 

eliminated. In Figure 5.14 (b), an asymmetric image is produced in the presence of a defect. 

Non-ideal steel fastener yields a fused image in Figure 5.14 (c) with substantially different 

characteristics from that of a crack.  
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Figure 5.14 Fused images: (a) Defect-free steel fastener (b) Steel fastener with a 2.8 mm notch (c) 

Off-centered steel fastener 

 

These differences are captured and quantified by means of an algorithm based on PCA method. 

Specifically, the components PC1 and PC2 corresponding to two largest eigenvectors of the 
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covariance matrix are computed, which have been utilized for signal representation and crack 

detection in Chapter 4 and Sections 5.2. Here, the asymmetry of fused image is quantified using 

the function rF , defined by the ratio as: 

                              ))PC/PC(absmin(rF 21                     (5.4)                                                                                                      

Table 5-1 presents the comparison of feature values for the case of defect-free, defective and 

non-ideal steel fasteners. It is seen that the fused image of defect-free case produces a feature 

value close to 0, whereas the asymmetric image of fastener with 2.8 mm notch results in larger 

values of Fr. In the case of a non-ideal steel fastener, the values of Fr are significantly smaller 

than that due to a defect.  

Table 5-1 Feature Fr quantifying the defective steel fastener. 

 

Steel fastener Defect size 
Ratio feature Fr 

Fastener1 0 0.03 

Fastener2 2.8 mm 1.1 

Fastener3 4.6 mm 2.62 

Fastener4 Non-ideal-1 0.57 

Fastener5 Non-ideal-2 0.03 

Fastener6 Non-ideal-3 0.55 

Fastener7 Non-ideal-4 0.001 

 

5.4 Summary  

Eddy current testing at low frequency with 3D GMR sensors is studied for the detection of 

embedded cracks under steel fastener heads. Experimental inspection of a layered aircraft structure 

has been used to validate the FE model utilizing infinite coil source. Model based studies are then 
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conducted to effectively study the 3-component measurements of induced magnetic fields.  

Signal processing and image fusion of yB,xB,zB data are further investigated to enhance SNR 

for detecting cracks around steel fastener sites. The inspection of improperly installed fasteners is 

performed with promising initial results, but more extensive studies are needed using simulation 

and experimental measurements.  
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CHAPTER 6  EC-MR SENSOR SYSTEM – ROTATING FIELD EXCITATION 

 

6.1 Introduction  

The EC-GMR sensor system presented so far have one drawback in that it is sensitive largely to 

cracks that are perpendicular to induced current direction. The multi-line uniform coil cannot 

detect cracks that are parallel to the direction of linear currents [6-7]. Mechanically rotating EC 

probes around fastener sites can be used to capture flaws in all directions [91-93]. Alternatively, 

a rotating current excitation can be designed to rotate the fields and currents electrically that 

generates the uniform sensitivity to cracks at all directions around fastener sites.            

6.2 Orthogonal Current Excitation   

6.2.1 Rotating Field   

The EC-GMR probe is developed in a rotating field mode using two multi-line coils with linear 

currents in orthogonal directions carrying currents with 90º phase shift. As presented in Figure 

6.1, a simple design of linear current sources that are excited in two orthogonal directions is 

introduced. A rotating current field is generated by the 90º phase difference of the current in two 

multi-line coils: 

                                00 jJx̂Jŷrot J                           (6.1) 

where ŷ and x̂ are unit vectors along Y- and X-axis, and 1j  represents the 90º phase 

shift. These two orthogonal coils are on top and bottom sides of a planar PCB film and share the 

same geometrical center. The GMR sensor placed at the center of this probe measures the normal 

component of the total rotating field due to rotJ currents.  
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                      )jjBrB(j)jjBrB(rot 2211 B                    (6.2)                                                                                  

where jB,rB 11  are the real and imaginary parts of the field due to 0Jŷ  and jB,rB 22 are 

the corresponding fields produced by 0Jx̂j .  
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Figure 6.1 Planar multi-line current field: (a)-(b) linear current excitation: linear current field (c) 

rotating current excitation: rotating current field 

 

6.2.2 Experimental Set-up 

The low frequency EC-GMR system in Chapter 5 is extended to two orthogonal coils excited by 

two sinusoidal sources with 90º phase shift, produced by a function generator. The sinusoidal 

waveform in 0º phase is locked in as the reference for the I/Q detector. The normal component 

of the induced flux of the rotating field is sensed by the GMR sensor. The real and imaginary 
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parts of GMR response are obtained after signal conditioning and demodulation, as show in 

Figure 6.2.  
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Figure 6.2 Experimental set-up of the rotating current field 

 

6.3 Detection of Crack Orientation at Rivet Site  

6.3.1 Parameters in a Practical Design   

The rotating field operation is studied with respect to its sensitivity to cracks parallel in direction 

as shown in Figure 6.3. From the image data in Figure 6.3 (a)-(b), it is seen that the rotating 

EC-GMR sensor captures the crack orientation successfully. However, the practical design of the 

rotating current excitation has challenges in that the two orthogonal multi-line coils are located 

at different lift-off from the specimen surface. Therefore, the magnetic fields generated by two 

coils need to be normalized or calibrated corresponding to a reference lift-off.    

The model-based study of the geometry used in Figure 6.3 addresses this issue and the 

corresponding results are shown in Figure 6.4. The FE model developed for simulating the 

EC-GMR system in Chapter 5 is employed in this study. Two cases are considered: Case 1) Ideal 

rotating current probe - the two coils are at the same lift-off of 1 mm. Case 2) Practical rotating 
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current probe - coil 1 is at 1mm lift-off and coil 2 is at 2 mm lift-off. The sensor is always 

considered to be at 2 mm lift-off. Aluminum fastener without a flaw and with a 90º orientation 

crack is simulated. Crack-free fastener signals for the two cases are used to calibrate the signal 

from the practical probe (Case 2) as shown in Figure 6.4 (a). This calibration is applied to Case 2 

signal from an Aluminum fastener with 90º orientation crack. The calibrated signal from a 

practical probe is compared to that of an ideal probe signal in Figure 6.4 (b). 
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Figure 6.3 Demonstration of crack detection using the rotating field: (a) No crack case and (b) 

Crack at orientation 90
o

 (parallel to Y direction current)  
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Figure 6.4 Probe lift-off study: (a) Model-based study of rotating field variations for the crack 

case (b) Model-based study of rotating field variations for the no crack case (c) Calibrated vs. 

ideal rotating current field for the crack case (d) Calibrated vs. ideal rotating current field for the 

no crack case 
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6.3.2 Model-based Investigation of Crack Orientation Detection 

Model-based investigations for detecting crack orientations in three-layer riveted lap-joint 

samples are described in this section. The model uses a low frequency (10Hz) excitation and 

studies the detection of 8mm cracks through the 2
nd

 layer in all orientations. The simulation 

results of rotating fields for aluminum and steel fasteners are studied and displayed in Figure 6.5 

respectively.  
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Figure 6.5 Detection of crack orientations: (a) Cracks geometry in all directions (b) Rotating 

field from cracks around aluminum fasteners (c) Rotating field from cracks around steel 

fasteners (steel fastener effect removed) 
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Figure 6.5 (cont’d).  
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Although the cracks are not easily visible with a single current excitation, cracks in different 

orientations are captured with rotating current excitation, validating the hypothesis. It should be 

noted that the data from steel fasteners are first processed to suppress the fastener response. 

6.4 Experimental Validation   

6.4.1 Experimental Detection of Crack Orientations  

EC-GMR measurements using rotating field excitation is first calibrated. In order to compensate 

for the varying liftoff of the two orthogonal coils on top and bottom sides of a film, two 

sinusoidal currents with 90º phase shift but different amplitudes are used. In Figure 6.6, a 

defective steel fastener is tested. The two source currents are operated individually or 

simultaneously and the GMR sensor located at the center measures the normal component of 

magnetic field.  

C-scan image of single coil operation-top coil is shown in Figure 6.6 (a), and that of the bottom 
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coil is shown in Figure 6.6 (b). The total rotating field using two simultaneous excitations can 

detect crack orientation as seen in Figure 6.6 (c).  
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Figure 6.6 Experimental study of rotating field: (a) Field measurement due to the top source coil 

(b) Field measurement due to the bottom source coil (c) Total rotating field sensitive to a crack 

around steel fastener site: absolute value of Bz 
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Figure 6.6 (cont’d). 
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Experimental validation of the model-based study was carried out using Sample 2 with steel 

fasteners. Rotating fields sensitive to different crack orientations are presented in Figure 6.7. The 

measurements demonstrate the feasibility of the proposed rotating field sensor to detect cracks of 

all orientations, in a qualitative manner. 
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Figure 6.7 Experimental data from cracks with different orientations: (a) Geometry of crack in 

different orientations and (b) Rotating field measurement 

 

6.4.2 Design of Array Receiver to Crack Orientations  

The use of a GMR array receiver is investigated for rapid imaging without moving the probe. 

The simulation of GMR array measurement is performed using the infinite coil modeling (FE 

model in Chapter 5), which generates the measured C-scan image of array receiver. Using the 

single coil excitation on the top side, GMR array measurement of Bz field in the fastener area 

40mm  30mm is performed experimentally. The top coil of the rotating current probe is excited 

and the corresponding GMR images are obtained without probe scan.  
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Figure 6.8 GMR image measurement without probe motion: (a) Bz measurement of aluminum 

plate and (b) Bz measurement of a defective steel fastener 

 

As presented in Figure 6.8, in the case of an aluminum plate (Figure 6.8 (a)) and defective steel 

fastener (Figure 6.8 (b)), the comparisons between the experimental and simulation data have 
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presented the feasibility of introducing the GMR array sensors for measuring the normal 

component of the magnetic field. The image response of the rotating current excitation is 

sensitive to all crack orientations and can be measured by the GMR array receiver, as 

demonstrated in Figure 6.9. 

 

(a)

GMR array receiver 

crack

(b)  

Figure 6.9 Application of GMR array receiver: Bz fast image measurement of fastener using 

rotating field (a) Without crack and (b) With crack at 90ºorientation 

  

6.5 Summary 

An EC-GMR system with orthogonal current excitation, that produces rotating currents, is 

developed for inspecting thick riveted multilayer structures with cracks in all directions. 

Capability of the sensor to detect cracks of all orientations at fastener sites was demonstrated 

using simulation and experiments. FE model based studies and experimental measurements 

validate the hypothesis. The model based study was used to optimize the design of a practical 

probe. More extensive experimental work to detect subsurface flaws in all directions need to be 

performed in the future. 
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CHAPTER 7  PARAMETRIC STUDY OF EC-GMR DETECTION SYSTEM 

7.1 Introduction   

In a practical inspection scenario, signals measured by GMR sensors depend on several 

parameters such as lift off, sensor tilt, top and bottom layer conductivity, and edge effect. In 

particular, the signals are affected by slight tilts of the sensor which alters the probability of 

detection of subsurface defects. A parametric study is conducted to analyze variations in signal 

due to sensor tilt. The FE model is applied to investigate changes in defect signals in the 

presence of sensor tilt. A procedure for rendering the signals invariant under sensor-tilt is also 

proposed. 

7.2 Sensor-tilt Study 

7.2.1 Sensor-tilt of GMR Sensing 

During the inspection of riveted samples, variations in EC-GMR probe lift-off from the sample 

and sensor wobble resulting in sensor tilt can occur. As illustrated in Figure 7.1, this affects the 

fields measured by the sensor since only the component of zB  normal to the sensor is measured 

according to Eq. (7.2). Also, induced magnetic fields associated with eddy currents through the 

sample are no longer uniform distributions. Consequently, some asymmetry of image data is seen 

to occur even when no crack is present.  

    zBG M RBG M RV            (7.1) 

     ) ( s i n) ( c o s   xzG M RG M R BBBV          (7.2) 
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7.2.2 Model-based Investigation of Sensor-tilt 

A systematic study of the effect of GMR sensor-tilt is performed using the FE model. In this 

study, the application of an infinite coil that is used for modeling the multi-line coil in Chapter 5 

obviates the need for simulating the scan operation. Therefore, the FE model using 

rVr AA  formulation is implemented to study the finite coil and its sensor-tilt scenario.  
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Figure 7.1 Sensor-tilt variations: (a) Probe lift-off and tilt sensor and (b) GMR sensor 

measurements of magnetic field components 

 

Model-based study is conducted using a three-layer aluminum sample with aluminum fasteners. 

The sample thicknesses are 6.5 mm (top layer), 14mm (middle layer) and 6.5mm (bottom layer). 

Excitation frequency is 100 Hz and current density Js is along ŷ direction. The cracks are 2
nd

 

layer through-wall Electrical Discharge Machined (EDM) notches of different lengths in x 
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direction. GMR sensor measures the normal component under normal (0
0
) and tilted (-2.5

0 
: 2.5

0
) 

states, as shown in Figure 7.2. The magnetic field measured by the GMR sensor is calculated by 

Eq. (7.2) for normal, positive and negative tilt angles.  
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2
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Figure 7.2 Sensor-tilt measurement: (a) Geometry and FE mesh of tested sample: three-layer 

riveted structure and (b) Definition of tilt degrees in two directions 

 

Figure 7.3 presents the real and imaginary parts of GMR signals under tilt variations for the case 

of a crack-free fastener geometry. It is seen that the measurements of both normal and tangential 

components introduce asymmetric image data that is normally interpreted as existence of a flaw. 

This could potentially results in false calls. It is hence necessary to render GMR signals 

insensitive to sensor tilt while preserving sensitivity to defects.  
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Figure 7.3 Magnetic field measured under tilt GMR sensor for a crack-free fastener: (a) Real part 

of signals and (b) Imaginary part of signals 
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7.3 Invariant Analysis    

Techniques for invariant pattern recognition have been studied to achieve invariance to specified 

operational parameters and preserve crack information in NDE applications [180-182]. 

Invariance schemes have been developed in magnetostatic flux leakage and eddy current NDE, 

to eliminate sensitivity to permeability or lift-off variations respectively. A novel invariance 

analysis with regard to sensor tilt is explored here.  

7.3.1 Transformation for Invariance to Sensor-tilt 

Independent component analysis [183-184] is a useful signal-processing tool to separate multiple 

unknown sources [171, 177]. In this section, the ICA analysis is applied to transform the GMR 

measurements insensitive to sensor-tilt variations. Assuming the GMR measurements under n tilt 

states to be composed of multiple signal components, the GMR signal jg  at the jth  tilt state 

is expressed as a linear combination of m independent components (ICs): 

          n,,j,msjmasjasjajg   21    2211              (7.3)                                         

where components msss ,, 21  are zero mean random variables that are mutually independent 

and elements njaaa jmjj  2,1,,,, 21
 are mixing coefficients. A vector-matrix notation of 

Eq. (7.3) is represented as:  

         ASG                               (7.4)                                                      

where A is coefficient matrix and row components of S are estimated ICs. 

The scheme for invariant transformation is depicted in Figure 7.4. Simulations of 11 GMR 

signals are measured with tilt angles in the range [-2.5
0 

: 0.5
0
: 2.5

0
] and 15 scan positions. Tilt 

signals are computed by Eq. (7.2). Linear interpolation is used to generate signals from other 
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sensor-tilt angles to get a dense set of measurements. After the interpolation, the GMR 

measurements are re-sampled as an input vector ]21[ pt,t,tT  , where p is the total number 

of signals for ICA analysis. The RobustICA Matlab module is used for ICA decomposition. The 

measured GMR signal (with or without sensor-tilt effect) is expressed as a linear weighted sum 

of ICs with weight coefficients.  
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Invariance transformation is obtained by projecting GMR signals T  onto the ICs domain to 

generate transformed signals D .  
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Figure 7.4 Diagram of ICA based transformation invariant to sensor-tilt 
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7.3.2 Invariance Transformations of GMR signals 

The invariance processing is implemented on the signals in Figure 7.3 and the results are 

presented in Figure 7.5. The GMR signal is a linear combination of conventional measurement 

and signal caused by sensor tilt. Hence sensor-tilt effects serve as an interference source that 

should be suppressed relative to crack indication. The results of suppression of the contributions 

of sensor tilt are shown in Figure 7.5 (a) for the real part and Figure 7.5 (b) for the imaginary 

part.  

 

G
M

R
 m

ea
su

re
m

en
t 

(T
)

0 50 100 150
-4

-2

0

2

4
x 10

-9

0 50 100 150
-4

-2

0

2

4
x 10

-9

-9

Real part

(a)
 

G
M

R
 m

ea
su

re
m

en
t 

(T
)

0 50 100 150
-4

-2

0

2

4
x 10

-9

0 50 100 150
-4

-2

0

2

4
x 10

-9-9

Imaginary part

(b)
 

Figure 7.5 Transformed signals invariant to sensor-tilt in the inspection of a crack-free aluminum 

fastener: (a) Real part of signals and (b) Imaginary part of signals 
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The ICA scheme for tilt invariance is applied to data from fastener geometries in Figure 7.6, 

which include fasteners with different crack sizes or locations. The invariance transformations of 

GMR measurements are presented in Figures 7.7-7.8.  
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Figure 7.6 Studied riveted geometries 
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Figure 7.7 Measured GMR complex signals of defect-free and defective fasteners:  

(a) Real parts of signals and (b) Imaginary parts of signals 
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Figure 7.7 (cont’d).  
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As seen in Figures 7.7, the interpretation of signals is rather difficult. However, the transformed 

signals in Figure 7.8 have successfully ameliorated this difficulty and enhanced the contributions 

from different cracks. The distinguishable characteristics of transformed signals indicate the 

potential for crack detection. 
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Figure 7.8 Transformed GMR complex signals of defect-free and defective fasteners: (a) Real 

parts of signals and (b) Imaginary parts of signals 
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7.3.3 Invariance Features and Crack Detection 

Signal features that are insensitive to sensor-tilt variations are extracted from the data after ICA 

transformation. Features based on skewness and kurtosis that were described in Chapter 4 are 

utilized to detect cracks in the presence of sensor tilt. The skewness values of real parts of 

transformed GMR signals in Figure 7.8 (a) are calculated. The skewness curves in Figure 7.9 (a) 

are seen to follow a constant curve demonstrating their insensitivity to changes in sensor-tilt 

angles during inspection.  
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Figure 7.9 Invariance feature analysis: (a) Skewness curves of transformed GMR signals 

regarding different fastener states: single cracks vs. no crack (b) Two cracks on both sides 
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Figure 7.9 (cont’d).  
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It is also found that the used feature is able to identify the signals due to cracks at rivet sites from 

the case without crack. An interesting phenomenon is observed in Figure 7.9 (b). In the case of 

two cracks on both sides of the rivet, the skewness values vary from positive to negative 

numbers with respect to sensor-tilt changes, while the signals due to single cracks yield 

consistent skewness value. A similar phenomenon is observed in the study of kurtosis values.  

Therefore, skewness and kurtosis are employed as invariance features for signal classification, as 

shown in Figure 7.10. Considering the performance of skewness feature in Figures 7.9-7.10, 

work was on done on effectiveness of higher-order moments. Moments of order 

 thth,th 1165  were investigated with respect to their behavior with sensor tilt and defects. 

The classification using 
th5  order moments is displayed in Figure 7.11 where insensitivity to 

sensor-tilt is achieved, while detection of cracks is retained.  
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Figure 7.10 Crack detection: classification of GMR signals (the real part) using invariance 

features  
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Figure 7.11 Classification of GMR signals in Figure 7.10 using higher order invariance features 

 

7.3.4 Implementation to Experimental Data 

The strategy described above is implemented on the experimental data from Sample 2. As shown 

in Figure 7.12, GMR measurements of line scan signals along the center of steel fasteners in 

Row 1 are collected under two sensor-tilt conditions. Transformed experimental signals after ICA 

processing are presented in Figure 7.13 (a). Invariance analysis and classification of GMR 

signals are shown in Figure 7.13 (b), which demonstrates the potential use of the scheme for 

EC-GMR signal analysis in the presence of sensor-tilt.     
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Figure 7.12 GMR signals collected under two sensor-tilt states 
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Figure 7.13 Results of invariance analysis: (a) Transformations of measured GMR signals and (b) 

Classification result using invariance features 
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7.4 Summary 

Sensor–tilt is a major source of error in the proposed EC-GMR sensor. A novel invariance 

analysis scheme based on independent component analysis is studied and validated in this 

chapter. Model-based parametric studies successfully validated the performance of proposed 

invariance transformation. Invariance features are extracted from transformed GMR signals and 

their ability to detect defective fastener in the presence of sensor-tilt noise is demonstrated. The 

results of the experimental data validate the feasibility of proposed strategy.  
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CHAPTER 8  CONCLUSIONS AND FUTURE WORK 

8.1 Accomplishments and Conclusions 

The research carried out during the course of this dissertation resulted in the following 

contributions to the field of electromagnetic NDE: 

(1) The applications of electromagnetic field GMR sensors in EC technique have been studied 

extensively. Image measurements using three-component MR sensors are proposed and GMR 

measurements of three-component magnetic flux density have been experimentally and 

numerically validated for improving the detection of subsurface cracks under steel fastener sites. 

The overall optimization was done using model-based studies for sensor design and signal 

processing algorithms for data analysis and classification. 

(2) Inspection systems using pulsed excitation and low frequency excitation are developed and 

studied for the inspection of buried cracks at fastener sites. These studies comprise, model-based 

simulation results validated by experimental measurements and development of signal 

processing techniques for classification of measurements. 

(3) Design of rotating field using two orthogonal-current excitations has enhanced the system 

capability to detect cracks of all orientations at fastener sites. Crack orientations in all radial 

directions around fastener site can be detected using appropriate signal processing algorithms. 

(4) A statistical signal processing scheme is developed for automated analysis of measured data.  

(5) An invariance analysis strategy is developed and evaluated and experimentally validated for 

crack detection under sensor-tilt conditions.    

(6) FE models that compute electromagnetic fields associated with the EC-GMR sensor 
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geometry are investigated in time and frequency domains. A fast numerical model for pulsed EC 

technique is developed in time domain.  

8.2 Future Work 

Although a number of signal processing algorithms have been proposed, these algorithms have 

not been tested with a lot of experimental data. The proposed probe design and signal analysis 

algorithms must be tested more extensively. In addition, the remaining work can be pursued in 

the coming years:  

(1) More quantitative feature extraction for crack sizing. 

(2) 3-component GMR measurement and data fusion for crack profile in riveted structure. 

(3) More experimental validation of the rotating field probe and array receiver. 

(4) Extension of proposed techniques to inspect other geometries.   

(5) Effect of coil size to reduce edge effect. An initial study of this effect is presented. In order to 

alleviate edge effects, the coil size is reduced. The system capability to inspect a riveted structure 

is studied with decreasing the size of multi-line planar coil. Sample 3 with small subsurface 

cracks (less than 1mm size) is examined using an excitation coil with just two turns, as shown in 

Figure 8.1.  

The C-scan images of the normal component are measured in Figure 8.1 (b)-(c), and the analysis 

results are shown in Figure 8.1 (d) after the PCA processing. Initial results indicate feasibility of 

the approach. Decreased coil size is beneficial in reducing artifacts due to edges. A more 

systematic study is warranted. 
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Figure 8.1 Detection of the subsurface cracks (less than 1mm) around aluminum fasteners in 
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