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ABSTRACT

PHYSICAL MODEL

FOR MASS TRANSFER

IN A PACKED BED

By

Raymond Leon Porter

A new method for calculating mass, heat and momentum transfer

between particles of a fixed bed and the fluid flowing through it is

shown. Overall mass and heat transfer coefficients and pressure loss

per unit length of bed are computed from fluid preperties--viscosity,

heat capacity, superficial velocity, thermal conductivity, density,

diffusion coefficient of active component through the fluid; and the

bed characteristics--porosity, particle size, specific surface per

unit volume and an index defining the distribution of passage cross

sections within the bed. Values calculated for gases in the Reynolds

number range from 5 to 33,000 show an average deviation of 3% from

literature correlations [5, 8, 15, 31, 40, S4, 58]. Values for

liquids in the Reynolds number range from 0.003 to 33,000 and for

Schmidt numbers up to 70,600 deviate an average of 5% from literature

results [15, 27, S4, 59, 60]. These figures are for fixed beds with

voids fractions ranging from 0.38 to 0.70.

It is believed that the values calculated in ranges not corrob-

orated by experimental investigators are of equivalent accuracy.

This is because the method deve10ped in this thesis is not a simple
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correlation of experimental data, but is based on a theoretical

treatment of a reasonable physical model for a packed bed using

principles of fluid dynamics and transport phenomena.

The physical model consists of a network of passages arranged

in parallel and series with complete mixing assumed at the passage

junctions. The passages are assumed to have a distribution of

cross sections as described by the index mentioned above. This

distribution of cross sections has an effect on coefficients

computed for the complete Reynolds number range. Its effect is

greatest at extremely low Reynolds numbers where it gives Nusselt

and Sherwood numbers which are considerably lower for the bed than

for the limiting values of the individual passages. .

In the region of fully developed velocity profiles through the

passages, treatment of the passages as cylinders with lengths equal

to packing size proved to be satisfactory and convenient. In the

region of developing boundary layers the length was taken to be half

the packing size to allow for boundary layer separation over surfaces

curved in the direction of flow. Typically it occurs at about 90

degrees around the curve for surfaces such as cylinders or spheres.

The method presented here is in the form of a computer program

due to the complexity of handling different cross sections in parallel_

with different flow patterns in the various cross sections.
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INTRODUCTION

A large number of chemical processes, especially catalytic

processes, are carried out in packed bed reactors. With improvements

in catalytic reactors, ion exchange columns, leaching beds, chromat-

ographic columns and gas adsorbers, it has become increasingly

important to predict accurately the performance of packed beds.

Proper design involves a knowledge of heat, mass and momentum

transport between fluid and solid surfaces.

Mass transfer between the packing and the flowing fluid can

occur in either direction depending upon the process. In either case

the physical phenomena is similar. There is a transfer of some chemi-

cal specie to and from the phase boundary through a series of resist-

ances. Resistances may be due to diffusion in either phase, laminar

or turbulent convection in the fluid, or due to slow chemical formation

or reaction of the active chemical substance.

In some processes the controlling resistance is in the flowing

fluid, such as in a catalytic reactor where there is a slow flow rate

and a fast chemical reaction rate. In such a case the size of the

equipment is determined by the mass transfer rate between the fluid

and solid particles. When the fluid flow rate is rapid and the

reaction rate is slow, chemical kinetics dictates the design.

Knowledge of the mass transfer rate for a particular process is

essential for design and it is dependent upon the type of heterogeneous

system.
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Mechanism of mass transfer has been explained by several theories.

The film concept assumes that most of the resistance to mass transfer

occurs in a stagnant layer next to the solid surface. Mass transfer

through the film is by diffusion. Boundary layer studies show that

there is also considerable resistance in the bulk flow stream and in

the buffer region next to the film adhering to the solid surface.

Another completely different explanation called the 'penetration

theory' holds that the flowing fluid is a mass of eddies which

continually expose fresh surfaces of fluid to the solid. No matter

which theory is followed mass transfer rates are generally expressed

in terms of a mass transfer coefficient, kc, just as heat transfer

rates are given in terms of a heat transfer film coefficient, h.

Variables influencing mass transfer coefficients in packed beds

are size and shape of the voids, viscosity and density of the flowing

fluid, and the diffusivity of the active substance in the fluid.

As with many other chemical engineering processes, correlations are

effected using dimensionless groups. The common ones for mass

transfer are Reynolds number, Schmidt number and Sherwood number.

Reynolds number is a measure of fluid flow rate. Schmidt number

contains only the physical prOperties of the fluid and its active

component which makes it similar to the Prandtl number of heat

transfer. Sherwood number contains the mass transfer coefficient

and the diffusivity and is analogous to the Nusselt number of heat

transfer. For packed beds particle diameter is commonly used in

place of effective diameter of voids and fluid velocity based on

empty cross sectional area is used in place of interstitial velocity.

For flow through pipes the analogy between heat and mass transfer

exists because they both occur due to molecular diffusion and
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convective mixing. Thus heat transfer correlations can be used to

calculate numerical values for mass transfer rates to or from pipe

walls. There is, however, less literature data concerning heat

transfer in packed beds than there is for mass transfer.

Momentum transfer, in terms of pressure drop, in a packed bed

can easily be determined from existing equations. However, attempts

to show the analogy between momentum and mass transfer have not been

successful.

Most of the correlations for mass transfer in packed beds are

given in the literature by a relationship between Reynolds number

and Sherwood number divided by Schmidt number to the one-third

power. Recent correlations give mass transfer rates which are in

reasonable agreement with reliable reported data. The best corre-

lations are for liquids flowing at high Reynolds numbers. For gases

at lower Reynolds number flow rates, correlations are more difficult

because diffusion coefficients are so much higher for gases than for

liquids. Equations necessarily have to be more complicated.

Keeping in mind all of the complexities of packed beds it was

decided to formulate a physical model for a packed bed which would

take into account factors such as fluid properties, packing arrange-

ments, nature of flow and the inter-relationships among these factors.

Due to the ready availability of digital computers it was thought

that a fairly sophisticated model could be devised which could be

readily solved by the computer for desired results.

For simplicity reasons it was decided to derive the model on

the basis of heat transfer and then make the necessary analogies for

application to mass transfer. It was also thought that some
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correlation could be obtained between mass and momentum transfer in

packed beds, namely an equation in which mass transfer coefficient

is a function of pressure loss per unit length of bed.



LITERATURE SURVEY

PACKED BEDS
 

The scientific means by which mass transfer occurs in packed

beds has been investigated by many persons. One of the first

investigations was by Colburn [9] in 1933 who wrote an analogy

between frictional resistance to fluid flow, heat transfer and mass

transfer which was based on flow through tubes and across tube

banks. He reported the equation:

Nu = 0.33 Re'6 pr1/3

for heat transfer across tube banks. Using the same analysis

Chilton anlColburn [7] later suggested as a basis for correlation

of heat transfer data the following equation:

2/3

h/CG Pr = J = f(Rep)
h

and for mass transfer a similar equation:

2/3 . .

~Graphs of J versus Reynolds number were presented for turbulent flow

inside tubes, across tube banks and parallel to flat plates. They

reported that the mass transfer equation disregarded free convection

at low Reynolds numbers and any liquid film resistance at the gas-

liquid interface on the tubes. Mass velocity was for the relative

motion between the two phases.



By using water evaporation data from a through circulation

dryer experiment Gamson, Thodos and Hougen [19] reported values

of Jd averaged about 8% lower than Jh values. They assumed in

the calculations that the surface temperature of the particles was

equal to the adiabatic saturation temperature. One of their

recommended equations was:

Jd = 16.8 (Rep)'1 for Rep< 40

Sherwood [50] pointed out that if the surface temperature were

not at the adiabatic saturation temperature the Jd values could vary

widely whereas the J values would vary little.
h

Wilke and Hougen [57] used the same type of experiment as Gamson

et. al. and by controlling heating conditions and changing the method

of wetting the packing arrived at a different equation.

J . 1.82 (Re )'-$1 for Re < 100
d p p

They also assumed the surface temperature to be equal to the adiabatic

saturation temperature.

Hurt [25] used different sizes and shapes of packing and measured

the height of a transfer unit for gas controlled systems. He showed

good agreement between heat and mass transfer factors when employing

cylindrical particles. The relationship between height of a transfer

unit and Jd is:

Jd - Sc2/3/(Ht)a

where a is the specific surface area per unit volume. The agreement

was poor for other packing shapes. Hurt did not, however, report the

surface area or the voids fraction of his packed beds.



Resnick and White [45] ran experiments with fixed and fluidized

beds of naphthalene particles. Results showed Jd values lower than

those of Gamson et. al. which was attributed to the use of smaller

particles.

McCune and Wilhelm [36] obtained data for the mass transfer in

both fixed and fluidized bed between flakes of P-naphthol and

flowing water. Gamson [18] collected data for water evaporation

from porous particles into a flowing air stream. Hobson and Thodos

[24] observed data during mass transfer to water or methyl ethyl

ketone adsorbed on fixed bed particles. BrStz [6] analyzed these

authors' data and came up with the equations:

-.41
Jd I 1.46 (Rep) (1 - c)’61 for Rep/(l - c)> 100

_ -l _ 1.2 _
Jd 17 (Rep) (1 e) for Rep/(1 c)< 100

using an equivalent diameter for particle diameter.

By changing temperature and pressure, the effect of gas

properties on the mass transfer coefficient was studied by Shulman

and Margolis [51]. They reported that J was independent of pressure
d

in their equation:

Jd - 1.195 [Rep/(l - an"36

Robson and Thodos [24] measured evaporation rates of water and

organic compounds from spherical packing into air, carbon dioxide,

ammonia and nitrogen. It was found that the temperature of the bed

decreased linearly in the direction of flow but the Schmidt number

remained practically constant, so the temperature effect was

disregarded.



Ergun [12] correlated a mass of experimental data and arrived

at an equation for pressure drop in packed beds in terms of

dimensionless groups.

(-AP)chpe3/[pu2L(l - 5)] 150(1 - e)/Rep + 1.75

At low Reynolds numbers the 1.75 is negligible and at high Reynolds

numbers it is dominant.

Chu, Kalil and Wetteroth [8] correlated data on heat and mass

transfer in liquid-solid and gas-solid systems and arrived at the

equation:

Jd - 1.77 [(Rep/(l - e)]'-44 for 30 < Rep/(l - e) < 5000

. Epatein [ll] determined an axial mixing factor to correct heat

and mass transfer coefficients to account for non-plug flow in packed

beds. The fixed bed is treated as a series of perfect mixers in his

mathematical treatment.

‘ Thoenes and Kramers [54] determined mass transfer coefficients

for fluids flowing around single active Spheres surrounded by similar

inactive spheres using eight different packing arrangements. The

acive Spheres were either soluble in the flowing fluid or were

porous and soaked with liquid “thich evaporated into a gas stream.

:Graphs of [Shp/Sc1/3][e/(1 - 2)] (which is equivalent to

eJdRep/[l - 2]) versus Rep/(l - S) were presented. A review of 438

mass transfer measurements was expressed by the equation:

Shp[e/(l - e)] . 1.0 Sc1/3[Rep/(1 - an”2

which was said to be good for a Rep /(1 - e) range between 40 and 4000,



a voids fraction range between 0.25 and 0.50 and a Schmidt number

range between 1 and 4000. It was said to have a mean deviation of

t 10%. An even better correlation was obtained by assuming that the

total mass transfer was due to three contributions: laminar

convective transfer, turbulent convective transfer and one for

diffusion in stagnant areas. The latter is important for gas flows

at Reynolds numbers less than 500. For gases the stagnant regions

near the contact points of adjacent spheres are important because

diffusion coefficients for gases are so much larger than for liquids.

The following equation was correlated:

Shple/(I - c)] . 1.26 Sc1/3[Rep/(1 - 5)]1/3 + 0,054 Sc-4[ReP,(1 _ 6)].8

* 0.8 [Rep/(1 - e)].2

in which the first term is for laminar convection, the second for

turbulent convection and the last for diffusion.

Al-Khudayri [1] made a correlation for predicting the mass trans-

fer coefficient in packed beds. The correlation is a plot of

[Shp/Sc1/3][e/(l f 5)] versus Rep/(l - e). For liquid-solid systems

the deviation of experimental data of other investigators was 30% and

was higher for gas-solid systems. His experimental work consisted

of the absorption of ammonia fvom a helium-ammonia flow stream onto

-the surface of 0.726 cm. diameter alundum spheres coated with

copper II chloride. Laminar flowsware used amd mass transfer

coefficients were calculated from the data. His results checked

closely with those of other investigators for gases at low flow rates.

Al Khudayri pointed out that void volume and void surface area are

more valid to use than packing diameter when expressing the mass
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transfer characteristics of the bed. If packing diameter is used,

a correction needs to be made to compensate for variations in voids

fraction.

DeAcetis and Thodos [10] made careful temperature measurements

of air and packing surface during the evaporation of water from the

surface of porous ceramic spheres into an air stream. They found

that contrary to usual assumptions, temperature of the packing sur-

face is not the same as the wet-bulb temperature of the entering

air, unless high air flow rates are used. They summarized their

data and that of other investigators up to 1960 in graphs of Jh and

Jd versus Rep. The ratio of Jh to Jd reported was 1.51 compared to

the value of 1.08 given by Gamson, Thodos and Hougen which was

obtained on the assumption that the temperature of the evaporating

surface was that of the wet-bulb temperature of the air entering

the bed.

Bradshaw and Bennett [5] measured mass transfer coefficients

for air flowing through short beds of naphthalene Spheres and

cylinders. They reported the equation:

1/3
J . 2.0/Re Sc + 1.97/Re 1’2
d p p

which was said to cover the Reynolds number range from 40 to 10,000.

Sen Gupta and Thodos [22] analyzed the data of other workers

-and found Jd to be inversely proportional to voids fraction for mass

transfer to flowing gases in packed beds.

Kusik and Happel [31] made a theoretical study of gas diffusion

rates in packed beds using a free-surface model (spherical particle

surrounded by a spherical envelope) with boundary layer theory.
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The Reynolds number (Rep/e) range covered was from 100 to 1000 with

voids fractions of 0.3 to 1.0. Simplified forms of momentum and

diffusion equations were solved to predict dissolution rates in a

particle bed and to analyze the effects of molar velocity perpendicular

to the spherical catalytic surface. Boundary layer equations were

solved by using Pohlhausen's method of introducing polynomials

describing velocity and density distributions. One equation arrived

at was :

Sh/Sc1/3=O.93[e - 0.75(1 - e)(e - 0.2)]‘1/2Rep1/2

The authors confirm that the change in boundary layer thickness due

to normal convective velocity was the same for boundary layers on

spheres as for flat plate geometry. The results Of the study

showed that the assumption in film theory that the film thickness

does not change with mass transfer rate is correct. This means that

film theory can be used for the bulk of chemical engineering problems

involving heterogeneous catalysis.

Williamson, Bazaire and Geankoplis [59] obtained liquid phase

mass transfer coefficients for packed beds of benzoic acid spheres

with water passing through. The recommended equations were:

St SCo53 = 2.40 (Rep/;)'-66

for Rep]: from 0.08 to 125 and:

St Sc-58 - 0.442(Rep/E)'°31

for Rep/e from 125 to 5000.
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Galloway and Sage [16] developed analytical expressions for

heat and mass transport from Spheres to a turbulent air stream

taking into account Reynolds number, sphere diameter, and level of

turbulence. Sphere size ranged from draplets to 1 ft. in diameter

and superficial Reynolds number values ranged from 2 to 1.33 x 106.

By analyzing the works of other investigators it was shown by graphi-

cal means that the assumption of Nusselt number to be a single valued

function of the square root of Reynolds number leads to an average

deviation of 60%. Their analysis begins with the Frossling [14]

equation for macroscOpic transfer from spheres with zero turbulence:

Nu . 2.00 + 0.552 Re 1/2Pr.1/3

P“

Relationships derived for predicting convective thermal and material

transport were:

[(Nu - 2.00)]/Re l/Zpr.1/3 - 0.538 + 0.1807 01/2 + 0.323

a (a + 0.0405)Re 1/2
t t p

[(Sh - 2.00)1/Repa1/25c.1/3 . 0.439 + 0.1807 01/2 + 0.234

a (a + 0.0500)Re 1/2

t t p

where d is sphere diameter and at is the longitudinal level of

turbulence.

I Mickley, Smith, Korchak [37] measured velocity profiles and

turbulence parameters in the voids of a 1 ft. square bed of

rhombohedrally arranged 1.5 in. diameter table tennis balls. A

hot wire anemometer was used and the superficial Reynolds number
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range covered was from 4780 to 7010. Turbulence energy spectra

showed that eddy shedding behind the particles did not occur in

the voids between spheres. Since high heat transfer coefficients

are known to be caused by eddy shedding and high turbulence level,

the high local heat transfer coefficients in the voids characteristic

of rhombohedral packing must be explained by a high level of turbu-

lence intensity. The mean void velocity showed a maximum within

1.5 particle diameters from the wall. There was a 10% difference

in the mean velocity at the center of the bed compared with the

maximum region.

Rhodes and Peebles [46] determined local mass transfer rates

at room temperature by measuring radius changes in 1.5 in. diameter

benzoic acid spheres by passing water around them at various flow

rates using simple cubic and rhombohedral packing arrays. The

Reynolds number range covered was from 166 to 3410 based on superficial

velocity. Mass transfer tests were carried out by placing the test

sphere in an assembled array of inert, insoluble spheres. Analysis

of results for the cubic array (voids fractionw-0.4764), in terms

of Sherwood number versus degrees from the front stagnation point,

suggested that the flow pattern around the test sphere had the

following characteristics: (a) The region around the forward contact

point (0 to 10 deg.) showed the minimum mass transfer rate. (b) The

over-all maximum mass transfer rate occurs between 50 to 80 degrees

forward from the front stagnation point. It was suggested that this

is the ring of attachment of the boundary layer of the sphere above.

In this region mass transfer rates are 2.2 to 3 times the over-all
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average. A streamline arriving at this location splits into two

streamlines: one circling upward forming the principle eddy of the

wake of the preceding sphere and the other streamline attaching

itself as a boundary layer that follows along the sphere surfaee

until it reachasa ring of separation between 103 and 122 degrees

depending upon the Reynolds number. (c) A region of essentially

zero mass transfer occurs where there is a point of contact between

spheres. (d) The region to the rear of the separation ring is a

wake region where the local mass transfer rates are less than the

average over the entire sphere. In the rhombohedral array (voids

fraction m 0.2595) the orientation of packing was such that each

sphere was entirely behind another sphere in the flowing stream,

thus giving the limiting case for investigating extremes of local

mass transfer rates. Considerably higher maximum Sherwood numbers

were reported between 30 and 50 degrees from the front stagnation

point than for the cubic array.

Wilson and Geankoplis [60] reported studies of mass transfer

and reviewed earlier works. They used a bed of randomly packed

benzoic acid spheres with an average diameter of 0.251 in. Water or

propylene glycol were allowed to flow down through the bed. For

superficial Reynolds numbers between 55 and 1500 and voids fractions

between 0.35 and 0.75 they recommend:

0.31
eJd I 0.250/Rep

Between superficial Reynolds numbers of 0.0016 and 55 the equation

given was:

_ 2/3
eJd 1.09/Rep
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This eqUation was shown to correlate data over a Schmidt number

range of 165 to 70,600.

Petrovic and Thodos [40] determined mass transfer factors in

a packed bed by vaporizing water and heavy hydrocarbons from the

surface of 0.0721 to 0.370 in. diameter random packed spheres into

air. Using this data and recalculating various other studies by

Thodos and coworkers to correct the data for axial mixing, their

recommended equation is:

I I

The results of this study covered the superficial Reynolds number

range between 3 and 230 for voids fractions between 0.416 and 0.778

and were said to hold for solid-gas systems subjected to either

upward or downward flow.

Satterfield [48] compared the equations of Wilson and Geankoplis

and Petrovic and Thodos and found that they only differ 15% or less

over a range of superficial Reynolds numbers between 55 and 1500.

Gillespie, Crandall, and Carberry [20] measured local and

overall heat transfer coefficients in two random packed beds of

l in. diameter brass Spheres. Air was passed through the packing

at flows corresponding to a Reynolds number range of 120 to 1700,

based on superficial velocity and Sphere diameter. Local heat

.transfer coefficients were measured in the first, second and nine-

teenth layers of packing. Average heat transfer coefficients were

determined at 25 places in the bed. By examining the local heat

transfer distribution the existence of a laminar boundary layer was

verified. Highest values of heat transfer coefficient were obtained



16

for the surface perpendicular to the bulk flow in the bed. It was

also observed from heat transfer coefficient profiles that at high

Reynolds numbers the flow may rejoin the sphere and begin to build

another boundary layer which subsequently separates. The effect of

repacking of the bed was to change the range of local heat transfer

coefficients, but the variation within the range was about the same.

The entrance effect of the bed has been shown to result in a lower

heat transfer coefficient in the tOp layer than in the bulk of the

bed. This has been attributed to a lower incident flow rate and

turbulence intensity. The effect of lateral position on average

heat transfer coefficient showed higher coefficients near the wall

than at the center of the bed.

Wilkins and Thodos [58] studied the evaporation of n-decane in-

to air from the surface of 0.1 in. diameter celite spheres in both

a random packed bed and a fluidized bed. Using their results and

those of other investigators they obtained the relationship:

cJ - 0.589/Rep°°427
d

Jolls and Hanratty [27] used electrochemical techniques and studied

details of flow around an instrumented l in. diameter nickel plated

brass-bronze ball located 7 to 8 inches from the top in a dumped

bed (voids fraction - 0.41) of l in. diameter glass spheres.

.Reynolds number (based on empty cross—section) ranged from 5 to 1100

and the Schmidt number of the flowing fluid was 1700. A transition

from laminar to turbulent flow was found to occur in this system

over a Reynolds number range from 110 to 150. The electrochemical

reaction consisted of the reduction of the ferricyanide ion on the

nickel cathode (test Sphere) and oxidation of the ferrocyanide ion
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on a nickel pipe anode located outside the column. Electrode lead

wires were placed at various points arOund the sphere. With the

exception of the very rearward portion of the Sphere the effect of

Reynolds number on the local mass transfer rate was the same as that

predicted by boundary layer theory. At the rear of the sphere local

mass transfer measurements indicated a larger variation with Reynolds

number, apparently due to separation. The effect of Reynolds number

on the overall mass transfer to a sphere in either a bed of inert or

active spheres indicates a slightly higher power on the Reynolds

number dependency than that predicted by boundary theory. This

research showed that the flow pattern varied from sphere to sphere.

In order to make meaningful results it was necessary to average

measurements from a large number of experiments. Reasonable

correlation was obtained by assuming the Sherwood number varied with

Re 0°57 and Sco'ss.

P Galloway and Sage [17] used an instrumented 1.5 in. diameter

copper sphere in a 12 in. diameter, 20 in. long column containing

a rhombohedral array of 1.5 in. uniform diameter spheres in order

to make local heat transfer measurements. Inert spheres were made

of celluloid and partial spheres were used on the inside surface

of the cylindrical wall to fill out the array and reduce wall effects.

The study concerned determination of local heat transfer coefficients

.as a result of steady flow of air and covered a range of superficial

Reynolds numbers from 875 to 3618 with the effect of turbulence

being noted. Local air velocities in flow passages were measured

directly. Analyzing available literature data their model provided

an analytical expression which was found to represent transport
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from Single cylinders and spheres, and arrays of cylindrical,

spherical, and commercial packing. Overall deviation was 9.8%.

The model also predicted the height of a gas phase transfer unit

in commercial packed columns being irrigated with liquid within 12%

for twelve cases involving absorption and vaporization. .The basis

of their boundary layer model was that the local Frassling number

l”Sci/3]) was independent of surface(Fs, equivalent to [Sh-2]][Re

shape and configuration of packing. Consequently such a model should

apply equally well to any packing material. Their general equation

was 3

u/kc - (Ht)a - ReSc/Sh - Rel/28c2/3/[Fs + 2/(Rel/28c1/311

Galloway [15] presented results of earlier analyses of data using

uniform Spheres, cylinders and commercial packing. The expression

given for mass transfer in beds of spheres was:

A 1 3
2

sap . 2/[1 - (1 - cp) / 1. °°55[(°pG/")(€p _ 6b)11/ Sc1/3

1/3
+ 0.30 Zt(Zt + 0.05)(DpG/uep)5c

in whick SP is the voids fraction of the packing, ch is the voids

fraction of relatively stagnant regions in the bed, and 2t is the

turbulence level.

Haring and Greenkorn [23] dev010ped a statistical model of a

porous medium with non-uniform pores which matched experimental

capillary pressure, permeability and dispersion data. The model

was constructed with two parameter distribution functions for pore

radius and pore length. Orientation of pores was considered random

in all directions. Various properties of a porous medium were found
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by integrating over joint distributions resulting from the model.

Dimensionless quantities were used for pore length and radius so they

varied from O to 1. To make the model non-uniform the dimensionless

terms were each assumed to be diStributed according to the beta

function. The permeability of the model was found by relating the

average velocity in an individual pore to the average velocity of

all pores. The permeability-porosity ratio, which causes dissipation

due to entrance-exit effects, was found to be a function of the

average pore radius squared and the pore radius distribution. For

most flow situations of interest to engineers, the residence time

of the fluid in the individual pore is much smaller than the time

needed for appreciable mixing due to molecular diffusion within that

pore. Neglecting molecular diffusion, expressions for dispersion

coefficient were found by determining the probability distribution

of the position of a marked particle after a random walk of inde-

pendent steps through the model. The diSpersion coefficient was

found to be dependent on both pore radius and length distributions.

Wegner, Karabelas, Hanratty [56] made studies of the motion of

dye streamers in a rhombohedral array (voids fraction -«O.26) of

3 in. diameter Plexiglas spheres. The test sphere containing the

dye taps was located in the tenth layer of a fifteen layer bed.

Similar flow patterns were observed at superficial Reynolds numbers

.0f 82 and 200. Nine distinct regions of reverse flow were noted.

Flow was described as steady at the lower flow rate and unsteady at

the higher one. 1

Van Der Merwe and Gauvin [55] investigated flow deveIOpment in

packed beds by setting up an experimental apparatus using a regular
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arrangement of ten banks of seven centimeter diameter spheres. A

skewed arrangement was also tested where the spheres were arranged

on 0.375 in. rods at an angle where the mean flow direction made

equal angles with the three principal axes of the packing. The

pressure drag coefficients on the central Sphere of each bank were

determined for air having Reynolds numbers of 27,000 and 10,000.

It was found from the distribution of local pressure measurements,

which allowed determinations of the separation and reattachment

points of the boundary layer on the central sphere of each bank,

that the boundary layer behavior on a sphere in a packing is similar

to that of a Single Sphere. The skewed arrangement showed a lower

pressure drag coefficient than did the regular arrangement at the

same Reynolds number.

Karabelas, Wegner and Hanratty [28] studied the effect of Grashof,

Reynolds and Schmidt numbers on mass transfer rates to liquids

(Sc . 1600) from cubic arrays of spheres. For Reynolds below

Rep - 110, the correlation equation was:

Shp a 0.46 (Gr Sc)-25

They also give a summary of other authors' correlations for heat

and mass transfer data.
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FLOW PHENOMENA

Graetz [21] in 1883 made the first analysis for the development

of the temperature profile in a round tube. He assumed the velocity

profile was fully developed at the tube entrance for the two cases

of uniform and parabolic velocity. Nusselt substantiated Graetzls

solutions independently in 1910. Pohlhausen [42] solved the problem

of heat transfer to a fluid in laminar flow parallel to a flat plate.

The velocities and temperatures are approximated by polynomials in

y having coefficients that are functions of x. The coefficients are

determined by satisfying the boundary conditions at the plate and at

the edge of the boundary layer using integral forms of the equations

of continuity, motion and energy for the boundary layer.

Leveque [33] modified the problem of heat transfer to a fluid in

laminar flow in a pipe with constant temperature walls. He assumed the

parabolic velocity profile to be completely developed before the fluid

enters the section of pipe where the heating begins. A thermal

boundary layer is then assumed to develOp, superimposing itself on

the already developed velocity profile. The following equation was

-formulated:

Nu . 1.077 [0 Re Pr/L]1/3

This equation gives the same values for Nusselt number in the region

[0 Re Pr/L] greater than 100 as the more complicated Graetz equation.
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The Leveque equation is not valid beyond the length where the thermal

boundary layer reaches the center of the pipe.

Norris and Streid [38] analyzed the problem for laminar flow in

flat rectangular ducts and suggested that entrance region Nusselt num-

bers for simultaneously develOping velocity and temperature profiles

might be obtained using results for heat transfer from a flat plate.

Langhaar [32] postulated that the pressure gradient in the

transition length of a tube is higher than in a region of laminar

flow because of increased frictional loss and increased kinetic energy

if fluid as it passes downstream. He used linear approximation methods

to solve the Navier-Stokes motion equations involving frictional flow

for the case of steady flow in the transition length of a straight

tube. A family of velocity profiles was determined which were

defined by means of Bessel functions. The pressure function was then

derived from the computed velocity field by means of the general

energy equation.

Sparrow [53] studied the simultaneous develOpment of temperature

and velocity profiles in flat rectangular ducts. Laminar flow and

constant wall temperature were assumed. Thermal and velocity

boundary layer calculations were made using the Pohlhausen method.

Nusselt numbers were reported for the Prandtl range from 0.01 to 50.

By plotting D Re Pr/L (Graetz.number, 02) versus Nusselt number it was

found that there is a separate curve for each Prandtl number in the

entrance region. In contrast when a parabolic profile is assumed at

the entrance, there is a single curve which satisfies all Prandtl

numbers. In order to compare his results with those of Norris and

Streid, the Pohlhausen solution gave the equation:
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Nu = [0.664/¢][D Re Pr/L11/2

For Prandtl numbers equal to or greater than one, many investigators

have found 0 - PSI/6. For Pr less than one Sparrow has a plot of

e vs. Pr.

Kays [30] studied the problem where the thermal and hydrodynamic

boundary layers develop at the same time by combining Langhaar's

results for the developing velocity profile with a numerical solution

of the differential energy balance. His solutions were limited to

fluids with a Prandtl number of 0.7. Kays pointed out that for high

Prandtl number fluids, such as oils, the assumption of a fully

developed velocity profile at the tube entrance does not affect the

heat transfer mechanism because the velocity profile is established

much more rapidly than the temperature profile at the place where

heating begins. However, for fluids with Prandtl numbers near unity,

such as gaSes, the velocity and temperature profiles develop at

nearly the same rate along the tube. As a result experimental data

Showed considerably higher Nusselt numbers than predicted by the

assumption of a parabolic profile throughout the tube. The Graetz

parabolic velocity solution provided lower limit Nusselt numbers,

while the Graetz slug flow solution gave upper limiting values.

Kays showed that the Pohlhausen flat plate solution using Langhaar

‘velocity profiles gave intermediate Nusselt numbers to those with

parabolic and slug flows. As D/L approaches zero, Nusselt number

approaches a minimum value of 5.75 for slug flow and 3.656 for

parabolic flow. Kays postulates that the Pohlhausen solution should

approximate actual performance near the tube entrance.



THEORETICAL ANALYSIS
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Packed beds are commonly made by packing tubes or cylindrical

vessels with solid particles such as cylindrical catalyst pellets,

Raschig rings, spheres, etc. These beds are generally used to effect

mass transport between the bulk of a fluid flowing through the bed

and the fluid-solid interface (or the interface with a second fluid

which wets the solid). Usually the solid particles which make up

the bed distribute themselves in a random fashion, but sometimes,

especially in research on the characteristics of packed beds, the

packing is placed in the bed in a regular pattern. Figure 14 and

15 in Appendix B Show the spatial arrangement for two types of

regular fixed beds.

 

 

 

Figure 1. Random Packed Bed of Spheres

The mass, momentum, and heat transport characteristics of packed

beds have been investigated by others in a vast number of experiments

resulting (after correction for wall and and effects) in a large

24
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number of correlating equations for transport in the bulk of the

packed bed. These equations are generally expressed in terms of a

packed bed Reynolds number together with a Sherwood and Schmidt

number (or alternatively a Nusselt and Prandtl number). The tacit

assumption is commonly made that these correlating equations may be

used to design beds with a different packing material and a different

random packing arrangement as long as the dimensionless variables are

in the same range as the experiments.

While such extension of the correlating equations could lead to

erroneous results (for example, when cylindrical packing happens to

arrange itself in a manner which blocks the fluid) they have been used

in this manner with some success. As might be expected, the corre-

lating equations are extended more successtlly when the dimensionless

variables are defined in terms of the average interstitial velocity

u]: rather than superficial velocity u, and interstitial hydraulic

radius e/a, or c Dp/6(l - e), rather than the spherical packing

diameter DP' Thus a packed bed may be viewed more appropriately as

a network of channels of varying Shapes and sizes rather than as an

aggregate of solids. The active part of the bed is the voids. It is

the solids which are inert.

 

   
 

Figure 2. Model of a Random Packed Bed
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This thesis grows out of the concept that the transport

characteristics of a random packed bed can be computed from a

physical model consisting of a simplified network of channels.

Al-Khudayri [I] assumed a network of uniform cylindrical channels

with mass transport in the individual channels governed by the

Graetz [21] equation. McCabe and Smith [35] use a similar model to

derive the Ergun [12] equation for pressure drOp in packed beds.

The model used here is more SOphisticated than these. It includes

channels of varying diameters, thus simulating the stagnant and

active flow regions which occur in real packed beds. And it provides

for mass transfer in the regimes of boundary layer formation and

separation, and incipient turbulence. Specifically, this model, or

combination of models, may be described as follows:

1. For computing velocity distribution in the bed and for

computing mass transfer at low velocities, the physical

model used is a network of cylindrical channels all of a

length equal to the diameter of equivalent spherical pack-

ing. On the average these channels are at an angle of 45°

with the axis of the bed, and the distribution of diameters

is described by a parameter XS. The void volume per unit

bed volume and the surface per unit bed volume are the same

as in the real bed.

2. The distribution of velocities in the bed is computed

assuming that all channels have the same pressure drop and

that that pressure drOp may be computed from Langhaar's

analysis [32] of the entrance of a circular pipe. This
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'gives very low velocities in low diameter channels, and

high velocities in large diameter channels.

Mass transfer in the channels is computed in accordance

with the type of flow occurring. At the lowest velocities

with fully developed velocity and concentration profiles

the asymptotic Sherwood number for cylindrical tubes is

used. At somewhat higher velocities with developed veloc-

ities and developing concentrations the Leveque equation is

used to compute the Sherwood number. Both of these equations

derive from rigorous application of basic fluid dynamic and

transport principles to the flow regimes described. I

At higher velocities and diameters both the velocity profile

and the concentration profiles are developing. The treatment

developed by Blasius and Pohlhausen [42] for flow over a

surface parallel to the direction of flow is applicable here

except that the real surface formed by spheres and cylindrical

packing curves in the direction of flow. Since boundary

layer separation occurs at about half way around a sphere or

cylinder, the length of the boundary layer in_the Pohlhausen

equation is taken as half the length of the channel.

At still higher velocities a somewhat different physical

model is used to simulate mass transport in a packed bed.

Instead of regarding the fluid as flowing through a network

of cylindrical passages, it is regarded as flowing normal to

a bank of cylinders, again with the same void fraction and

surface as the real bed. This model gives incipient turbu-

lence at much lower velocities than cylindrical passages
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and in this respect behaves more like a real packed bed.

The Colburn [9] equation developed for heat transfer in

fluids flowing across banks of tubes is applicable to this

model.

6. In this thesis a single equation is used to compute the

Sherwood number in all the flow regimes described above and

in the transition regions between them. This equation

states that the Sherwood number in any case is equal to the

feurth root of the sum of the fourth powers of Sherwood

numbers computed by all the equations described above. This

is a somewhat arbitrary combination of these equations, but

it does give values which are in pretty good agreement with

the transition between developing concentrations and developed

concentrations as derived rigorously by Graetz [21].

7. Overall mass transfer in the bed is then computed on the

basis that all the concentrations leaving a given layer of

channels mix to an average concentration before entering the

next layer of channels.

Obviously what is described above is not a rigorous derivation of

transport in a randOm packed bed from the equations of continuity,

motion, energy, and mass transfer. It is, however, a combination of

_ rigorous analysis and reasonable approximation to the transport

behavior of a fluid flowing through a physical model designed to

simulate many of the phenomena which occur in packed beds. Mass

transfer coefficients computed from this model are therefore a

priori predictions as to how random packed beds Should behave over

a wide range of operating conditions. This is much different from
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correlating equations which represent a posteriori fits to limited

range data taken on a particular packed bed.

The model equations are derived on the basis of heat transfer

for simplicity reasons and then converted to mass transfer by

substituting the appropriate dimensionless variables.

DERIVATION Q2 MODEL EQUATIONS

Primary units for quantities used in the derivations are:

heat H, mass M, length L, time t, force F, and temperature T.

Consider that the flow cross-section is distributed among

the various diameters so that:

S/sIll - (D/Dm)s (l)

where: S total cross-sectional area of passages

having diameters less than 0

sm - total cross-sectional area of all passages

D - diameter of a given passage

D - maximum passage diameter present

5 - exponent which depends upon the distribution

of passages

The average passage diameter Dav is determined from equation 1

by multiplying 4 times the average hydraulic radius. Average

hydraulic radius is calculated by dividing SIn by the total perimeter

of all passages. Since the perimeter of a given circular cross-section
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is ND = 4S/D:

Dav ' F.1— (2)

D

After integration (See Appendix A):

Dav 3 Lil on (3)

Let: XS = l/S

Dav = (1 - x3) 0In (4)

When X5 = 0, S = c, all passages have the same diameter. When

XS 3 1, Dav . 0. This requires that substantially all of the

surface to be located in passages of infinitesimal diameter.

Dh‘yxs. 0.01

 

  

 

  
O S 5m

Figure 3. Distribution Index

Ordinary packed bed parameters are:

u a superficial fluid velocity, based on empty cross section (L/t)

e a voids fraction, voids volume/total bed volume (L3/L3)

a a packing surface area per unit bed volume (L2/L3)
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Dp - particle diameter (L)

p a fluid viscosity (M/Lt)

p a fluid density (M/L3)

k a thermal conductivity of fluid (H/LtT)

C a heat capacity of fluid (H/MT)

J- diffusion coefficient of active component in fluid (L2/t)

Volumetric hydraulic radius in terms of fixed bed parameters

is the volume of voids divided by the packing surface area. Therefore

the average equivalent diameter of a cylindrical passage is:

Dav = 45/8 (5)

Consider the fluid to be perfectly mixed before entering a

given layer of passages so that the entering temperature T1 is the

same for all passages. Consider the wall temperature Tw constant

throughout the layer so that (T1 - T") 8 ATI is also uniform. However,

since different temperatures are reached at the end of different

passages, T2 and (T2 - T") 2 AT are not uniform. Assume the length
2

of a passage L to be equal to a particle diameter D , and the average

angle between the flow direction in the passages and the axis of the

bed to be 0.

In order to determine the ATZ/ATl ratio for a given passage a

heat energy balance per unit of time is made:

m C dTp a - h (TP - Th) e D dL (6)

where: m . mass flow rate of fluid in a passage (M/t)

T a temperature of fluid at any point in a

passage (T)
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h a fluid film heat transfer coefficient (H/thT)

 
Figure 4. Flow in a passage

Rearranging equation (6) and integrating over the length of the

passage:

L1;.

111C (Iii-IIWDIOL

r-T
T. ' V) O

In [BIZ/1T1] - - 5.3.1:.

The mass velocity of the fluid is G = m/(nD2/4).

1 AT AT s-flL'11 2/ 1] 600

The dimensionless groups--Reynolds number, Re a DG/u; Nusselt

(7)

(8)

(9)

number, Nu s hD/k; and Prandtl number, Pr = Cu/k--are then substituted

into equation (9).

._ 4NuL
(10)
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It is then convenient to introduce Y = D Re/L, a parameter given in

Langhaar's article [32].

‘41'u
 ln [ATZIATI] =- - Y? (11)

V

Solving for ATz/ATI:

Mm

AT /AT- 2 e V (12)

2 1

In terms of dimensionless groups the average Reynolds number of

the fluid, based on the superficial velocity direction, is defined as:

1
g)! 035 .S

Reav I D... I. R. ‘0‘. D J 5:- (13)

The average temperature change ratio is calculated by integrating

equation (12) over the distribution of passages.

‘Nm

‘ . 'F D s

f a Re case "' <13;-
(ATZ/AT1)av = 3* ._________ (14)

R. case 23 135;

 

e

A relationship for Y is determined from the mechanical energy

balance of a fluid streamline at the entrance of a tube, the pressure

loss equation for fully developed laminar flow, and a correction

to account for the pressure loss in the transition length.

Disregarding elevation effects and assuming a fluid of con-

stant density, the Bernoulli equation [35] for potential steady-state
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flow along a streamline is:

-‘{-+-'£wdw=0 (15)

where: P a static pressure of fluid (F/Lz)

9 . density of fluid (M/L3)

w a velocity component perpendicular to the

cross section of channel (L/t)

gc - gravitational constant (LM/th)

Since the average velocity in the tubes is u/e and w in the mixing

sections between layers is negligible:

(16)

 

I.

By dividing both sides of equation (16) by 2l’:,:,,‘!..and defining V (the

number of 'Velocity heads') :- muff—:13; , then

at the tube entrance.

Beyond the transition length where the laminar flow pattern is

fully developed the Hagen-Poiseuille equation [35] for pressure loss

in a round tube applies.

- AP = flit“ (13)

$

t>IAQ
Since Y 3 D RE/L 3 W

V = 64/Y (19)
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Therefore the equation V I l + 64/Y or its equivalent,

 

Y I \IVYZ + 1024 - 32 (See Appendix A), satisfy the limiting conditions

at high Y and at low Y, but in the intermediate region (transition

length) a correction is needed. This region is important to the model

because of the distribution of passages. Langhaar [32] made a theoret-I

ical study of the pressure losses in the flow develOping region of a

tube and his results are used in this thesis to make the needed

correction.

Langhaar's analysis begins with the Navier-Stokes differential

equation of motion for flow perpendicular to the channel cross section.

He solves the differential equation using the equation of continuity and

valid approximations. The solution is a family of velocity profiles

defined by Bessel functions. The pressure function is then determined

from the computed velocity field by means of the general energy equation.

From these equations then Langhaar calculates a table of values for 4/Y

versus V. For purposes of this thesis the table is converted into the

 

equation:

2 B
a 4 - - ——_——.—_Y (‘Ivv +102 32)(1 ".N") (20)

where: B,A I constants

RT = (W2)°25 (21)

By analyzing Langhaar's data the best fit seems to be when: B = 5.8,

A I 175.

The Nusselt number in a given passage is determined by combining

the limiting value and three other equations using the fourth power

averaging method.



36

Nu - ((3.656)4 + (1.615)4(Y Pr)4/3 + (0.664(2 nuzprl”)4 e (22)

1/3 4 .25
(0.33 Re-6 Pr ) )

Equation 22 is a continuous equation and represents a weighted

average of the limiting Nusselt number for fully developed laminar

flow in tubes [30], the Leveque equation for developed velocity and

developing temperature laminar flow profiles [33], the Pohlhausen

equation for developing laminar velocity and temperature profiles

[42], and the Colburn equation for heat transfer in turbulent flow

across tube banks [9]. The factor 2 in the Pohlhausen equation

compensates for the formation of two boundary layers in one length

of channel as previously described.
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Figure 5. Nusselt Numbers in Tubes

As is seen in equation 22 the Nusselt number for boundary

layer formation, developed laminar flow and turbulent flow is

proportional to the one-third power of the Prandtl number times

Reynolds number to a power which depends upon flow conditions.
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For the analogy between heat and mass transfer the following

terms are defined:

Nu I average Nusselt number, Dth/k
8V

kc

Shav I average Sherwood number, Davkc/‘V

I mass transfer coefficient based on superficial velocity (L/t)

Shp I Sherwood number based on particle diameter, Dpkc/J?

. . f‘
Sc I Schmdt number of fluid, Q5

Rep I Reynolds number based on particle diameter, DquVr

Relationships derived in Appendix A are:

Rep - 1.5(1 - e)Reav

 

Shp - 1.5(1 - c)Shav/c

e 6Kc‘

Shp'7:1: *' auar
 

(23)

(24)

(251

(26)

For mass transfer Sherwood number and Schmidt number are

similar, respectively, to Nusselt number and Prandtl number of heat

transfer. Therefore:

1/3 ... 1/3
Shav/Sc -—-Nuav/Pr

In terms of mass transfer then:

1/3 x
Shav/Sc (1: Rem,

with the value of x depending upon the type of flow.

follows that:

(27)

(28)

It then

(29)
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where C1 is a proportionality constant.

Equation 29 expresses the mass transfer characteristics Of a

packed bed in terms of voids volume and voids surface area and many

of the literature correlations use varying forms Of this equation.

For a bed of spherical particles the following relationship

is derived in Appendix A.

L - Op - 6(l - c)/a (30)

OPERATION 9f Lg MODEL
 

The general procedure used to mathematically solve for

.891 and ‘3ng Tg—z from the model is:

(A) Bed porosity (e) and Pr (Sc) are set at desired values.

The angle 9 is assumed to be 45’, so case- I 0.707.

(B) XS is assigned a value of 0.3 (See Appendix B).

(C) A value for (W2)m is assumed, the magnitude of which depends

upon the voids fraction and the desired value for Rep/(1 - a)

(See Appendix C).

(D) Reav and (ATz/ATl)av are evaluated from equations 13 and 14 by

integration. Dav/0m is calculated from equation 4. For each

value of S/Sm, the following sequence of equations is used:

(a) DID. from equation 1

(b) W2 from (VY2)n(D/Dm)4 (31)
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(c) RT from equation 21

(d) Y from equation 20 XS

(e) From Appendix A: Re I 1.5 Y 1'7! (ii—'9) (I-XS) (32)

(f) Nu from equation 22

(E) Rep/(1 - c) is then determined from equation 23.

(F) Nuav is calculated from (See Appendix A):

é PrReAv 1 (AI:

3" ' - 5(:-£)cose :1 AT, M (33’

(6) Finally by combining equations 25 and 27:

Se"; .- 5 “0’3

Model equations are summarized in Appendix D.

The mass transfer coefficient can then be determined from

equation 26.

a 551;.“ ShF G

1‘c" —_"“ [Sch Te]

The pressure loss per unit length of bed can be calculated from

the model and the Ergun equation (See Appendix A).

q {730 - 010- X5)+(VY‘)- (35)-AP AL I

/ IZG 3e e‘ 2 D.

A correlation between mass transfer coefficient and pressure

loss per unit length of bed can be made by combining equations 28

and 35:
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1: '-AP [64.61 93: 50,1!» [Eh—'1‘] 36
c' TC zvar‘u-e0"0- X5)7"(VY") 56° '-‘ I )

 

The heat transfer coefficient can be determined by combining

the definition of Nuav and equation 5.

h - Nuavka/«t e (37)

Computer programs showing the Operational steps of the model

are given in Appendix E



RESULTS

The principal advantages Of the computerized model of this

thesis compared to previous correlations are its flexibility and

its coverage of larger ranges Of Reynolds and Schmidt numbers and

bed perosities. Literature correlations are generally for data

Obtained from specially constructed laboratory beds. Graphs of

data are usually in the form of Colburn 'J' factors versus Reynolds

number which are easily compared with results of this model. Authors'

equations containing Colburn 'Jd' factors are changed to equations

containing Sherwood number by:

J . kc/(u.Sc2/3)
d

Si ce: R I Dn ep p u p/u

SC = u/(plfl

Sh IDk

P P c”r

Then: Shp/(Rep Sc) I kc/u

1/3
I Shp/(Rep Sc )

Correlation equations Often contain specially defined axial

mixing or turbulence correction factors and apply only for limited

ranges of packed bed parameters. Data have been Obtained by

evaporating various liquids from porous solid particles into gas

41
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streams, dissolving pellets of slightly soluble solids into flowing

liquids or extracting liquids from porous solids into flowing water.

Correlations for gases at relatively low Reynolds numbers

(below 250) are most difficult because mixing in the axial direction

becomes increasingly significant and it is hard to avoid essentially

equilibrium conditions at the exit even in a short packed bed.

In this work boundary layer theory is considered by using the

Pohlhausen equation in the model to account for the development of

temperature, concentration and velocity profiles in the entrance

region of a conduit. The model also contains the Leveque equation

for developing temperature and developed velocity profiles. These

are important for gases because the temperature, concentration and

velocity profiles develop simultaneously whereas for viscous liquids

the velocity profile develops first. For gases, therefore, heat and

mass transfer occur at a much greater rate in this region than

downstream where profiles are fully developed.

{Figure 6 shows the effect of a low Schmidt number (gases) on

the model at low Reynolds numbers. It can be seen that mass transfer

is much greater than for a liquid with a high Schmidt number.

Figure 7 shows the effect of distributed cross-sections on the

rate of heat and mass transfer. A distribution index (XS) of 0.3

.gives Nusselt and Sherwood numbers at extremely low Reynolds numbers

which are only about one-third of the amount they would be if all

passages were of the same diameter. Data for the graph are given in

Table 41 in Appendix F.

An equation to account for turbulence is also incorporated into

the model. It is based on the Colburn equation for turbulent flow
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Voids Fraction I .4

X8 = .3 
0.001 0.01 0.1 1.0

 

322 g 6'49.
l"‘ an”

Figure 6. Effect of Schmidt Number on Mass Transfer

at Low Reynolds Numbers
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heat transfer across tube banks. Jolls and Hanratty [27] and

Karabelas, Wagner and Hanratty [28], using electrochemical techniques

report that in a dumped bed of l in. spheres having a voids fraction

of 0.41 that a transition from laminar to turbulent flow occurred

over the Reynolds number range of 110 to 150 (Rep/(l - e) I 186 - 255).

Table 1 shows the results of the model not using the turbulence

equation. The model equations used were identical with those of

Table 2 with the exception of the omission of the turbulence equation.

Comparison of the two tables shows that turbulence affects the results

above a Reynolds number of 260.

Tablesl to 33 compare Shp/Sc1/3Ic/(1 - e)] - 315233.17,- - ORE/ADS

(computer print-out) values from the model with those obtained by

using various authors' equations and graphs. The Reynolds numbers

given are Rep/ (1 - e) I 6 u Q/af I OUR/AZ (computer print-out).

Table 39 is an example computer program used to compute Table 2 and

is found in Appendix E. (W2)In values were selected from Appendix C

to produce the Reynolds number range desired at the voids fraction of

the bed. The equations listed in the headings are those of the

authors and the Reynolds number ranges given are in terms of

Rep/ (1 - 6).

Tables 2 and 3 compare the model results with those of Chu,

Kalil and Wetteroth [8]. Their correlation equation is for mass

transfer in packed and fluidized beds to a gas, Schmidt number of

2.57, covering a Rep/(l - c) range from 30 to 5000 and bed porosities

of 0.38 and 0.64.

Jd - 1.77[Rep/(l - an"44
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TABLE 1. COMPARISON OF MODEL WITH CHU, KALIL AND WETTEROTH [8]

CHU I KALIL + HETTEROTH (19531

EQUATION J 8 1.77/REEII.44

SCHMIDT NUMBER 8 2.57 (GASES)

VOIOS FRACTION = 0.38

REYNOLDS NUMBER RANGE = 30 - 5000

XS 3 0.3

REYNOLDS

I6UR/AZ)

29.7577

40.4643

54.3287

72.0920.

94.6633

123.1697

159.0187

203.9735

260.2463

330.6098

418.5302

528.3253

665.3528

836.2363

1049.1404

1314.1057

1643.4611

2052.3297

2559.2521

3186.9540

3963.2883

4922.3948

MODEL CHU DEVIATION

(6KE/ADS) (6KE/ADS) FRACTION

5.2150 4.4975 0.1375

5.9654 5.3421 0.1044

6.7986 6.3004 0.0732

7.7186 7.3819 0.0436

8.7323 8.5984* 0.0153

9e8490 909641 ‘000116

11.0793 11.4965 '0.0376

12.4354 13.2165 -0.0628

13.9321 15.1485 -0.0873

1505866 1703210 ”0.1112

17.4186 19.7662 -0.1347

19.4506 22.5206 -0.1578

2107076 2506251 -001804

24.2168 29.1246 -0.2026

27.0080 33.0692 “0.2244

30.1131 37.5136 -0.2457

3305668 4205189 “002666

3704066 4801521 -002872

41.6733 5404879 -003075

4604115 6106094 -0032?“

51.6702 69.6094 -0.3471

57.5034 78.5915 -0.3667
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TABLE 2. COMPARISON OF MODEL WITH CHU, KALIL AND WETTEROTH [8]

CHU + KALIL + HETTEROTH (1953)

EQUATION J 8 1.77/REEIO.44

SCHMIDT NUMBER 8 2.57 (GASES)

VOIDS FRACTION 8 0.38

REYNOLDS NUMBER RANGE 3 30 - 5000

XS 8 0.3

REYNOLDS

I6UR/AZ)

29.7577

40.4643

54.3287

72.0920

94.6633

123.1697

159.0187

203.9735

260.2463

330.6098

418.5302

528.3253

665.3528

836.2363

1049.1404

1314.1057

1643.4611

2052.3297

2559.2521

3186.9540

3963.2883

4922.3948

MODEL CHU DEVIATION

(6KE/ADS) (ORE/ADS) FRACTION

5.3352 4.4975 0.1570

6.1447 5.3421 0.1306

7.0588 6.3004 0.1074

8.0872 7.3819 0.0872

9.2432 8.5984 0.0697

10.5422 9.9641 0.0548

12.0020 11.4965 0.0421

13.6425 13.2165 0.0312

15.4874 15.1485 0.0218

17.5643 17.3210 0.0138

19.9058 19.7662 0.0070

22.5495 22.5206 0.0012

25.5381 25.6251 -0.0034

28.9198 29.1246 ‘0.0070

32.7488 33.0692 -0.0097

41.9954 42.5189 -0.0124

47.5545 48.1521 -0.0125

53.8453 54.4879 -0.0119

69.0052 69.6094 -0.0087

78.0956 78.5915 *0.0063
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TABLE 3. COMPARISON 0? MODEL WITH CHU, KALIL AND NETTEROTH [8]

REYNOLDS

IbUR/AZ)

CHU + KALIL + HETTEROTH (1953)

EQUATION J 8 1.77/REE*!.44

SCHMIDT NUMBER 8 2.57 (GASES)

VOIDS FRACTION 8 0.64 r

REYNOLDS NUMBER RANGE 8 30 - 5000

30.6966

40.0189

51.7523

66047391

84.9081

107.9628

136.7743

172.7587

217.6751

273.6998

343.5172

430.4298

538.4942

672.6872

839.1108

1045.2445

1300.2556

1615.3801

2004.3909

2484.1720

3075.4214

3803.5146

4699.5597

XS = 0.3

MODEL CHU DEVIATION

(6KE/ADS) (6KE/ADS) FRACTION

8.5324 7.7076 0.0966

9.6402 8.9417 0.0724

10.8636 10.3265 0.0494

12.2154 11.8805 0.0274

13.7110 13.6258 0.0062

1503684 1505878 ’0001‘2

1702084 1707957 “000341

19.2550 20.2824 -0.0533

21.5353 23.0848 -0.0719

2400789 2602438 ‘000899

2609188 2908046 “001072

30.0909 33.8172 -0.1238

33.6344 38.3366 -0.1398

37.5924 43.4238 -0.1551

42.0125 49.1464 -0.1698

46.9470 55.5795 “0.1838

52.4542 62.8071 -0.1973

58.5991 70.9229 -0.2103

65.4544 80.0319 -0.2227

73.1013 90.2516 -0.2346

8106313 10107137 -002460

91.1471 114.5663 -0.2569

101.7643 128.9749 -0.2673
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This equation converts to:

Shp/Sc1/3[c/(l - c)]I 1.77 e[Rep/(l - c)]'S6

Table 4 shows a comparison of one equation of Thoenes and Kramers

[54] and the model. They measured the rate of mass transfer between

a flowing fluid and the surface of one active Sphere in the middle

of a regular bed of spheres. Eight different geometric configurations

of spherical packing were used. They present graphs interpreting

their data, but do not list the data in tabular form. One equation

given is:

sup e/(l - c) . 1.26[Rep/(1 - 5)]1/3 Sal/3 + o.os4[aep/(1 - c)]°8 Sc°4

+ 0.8[Rep/(l - .)]'z

The first term is said to be for laminar convective transfer, the

second for turbulent convective transfer and the third for diffusion

in the stagnant regions near contact points of adjacent spheres. The

last.term is said to account for a large part of mass transfer in

gases at Reynolds numbers less than 500. Another equation listed in

this same article is:

Shp C/(l - E) a l'olkep
/(l _ 6)]l/2

SCI/3

' which they say checks within 1 10% for all of their 438 mass transfer

measurements. The ranges for this equation are given as: voids

fraction, 0.25 to 0.50; Schmidt number, 1 to 4000; Reynolds number,

40 to 4000. Tables 5 through 8 compare this equation with the model.

Table 9 shows the equation of Bradshaw and Bennett [5] who

measured mass transfer coefficients for air passing through various



TABLE 4. COMPARISON OF MODEL WITH THOENES AND KRAMERS [54]

THDENES C KRAMERS

EQUATION

SCHMIDT NUMBER

VOIDS FRACTION

REYNOLDS NUMBER R

XS = 0.3

REYNOLDS

(6UR/AZ)

39.9038

54.1952

72.6815

96.3457

126.3956

164.3293

212.0186

271.8090

346.6431

440.2082

557.1130

703.0961

885.2755

1112.4486

1395.4568

1747.6302~

2185.3349

'2728.6450

3402.1703

4236.0747

50

(19581

SH/SCIII/3 = 1.26 REE**l/3 + .054 REE**.B

SC*0.067 + .8 REE**.2/SC**1/3

= 1.0 (GASES)

= 0.32

ANGE = 40 - 4000

MODEL THOENES

IbKE/ADS) (6KE/ADS)

5.4498 7.0087

6.2858 7.8628

7.2529 8.8089

8.3596 9.8574

9.6171 11.0220

11.0419 12.3193

12.6556 13.7704

14.4823 15.4002

16.5496 17.2393

18.8897 19.3235

21.5400 21.6954

24.5441 24.4050

27.9519 27.5106

31.8200 31.0800

36.2119 35.1921

41.1983 39.9385

46.8582 45.4261

53.2794 51.7792

60.5602 59.1428

68.8104 67.6867

DEVIATION

FRACTION

-0 0 2860

-0.2508

-002145

-001791

“001460

-0.1156

-0.0880

-000633

-0.0416

-0.0229

-000072

0.0056

0.0157

0.0232

0.0281

0.0305

0.0305

0.0281

0.0234

0.0163



TABLE 5. COMPARISON OF MODEL WITH THOENES AND KRAMERS [54]

THOENES 8 KRAMERS (1958)

EQUATION SH 3 1.0 RE**1/2 SCIIII3

SCHMIDT NUMBER 3 1.0 (GASES)

VOIDS FRACTION * 0.40

REYNOLDS NUMBER RANGE = 40 - 4000

XS 8 0.3

REYNOLDS

(6UR/AZ)

40.6615

54.3969

71.9472

94.2029

122.2702

157.5324

201.7237

257.0198

326.1454

412.5041

520.3302

654.8720

822.6120

1031.5341

1291.4520

1614.4116

'2015.1856

2511.8839

3126.7029

3886.8476

MODEL THOENES DEVIATION

(6KE/ADS) (6KE/ADS) FRACTION

602981 603766 ’000124

7.2164 7.3754 -0.0220

802533 804821 '000277

9.4165 9.7058 -0.0307

10.7198 11.0575 -0.0315

12.1816 12.5511 -0.0303

13.8236 14.2029 -0.0274

15.6701 16.0318 -0.0230

17.7488 18.0594 -0.0175

20.0921 20.3101 -0.0108

22.7369 22.8107 -0.0032

25.7253 25.5904 0.0052

29.1049 28.6812 0.0145

32.9285 32.1175 0.0246

37.2553 35.9367 0.0353

42.1509 40.1797 0.0467

47.6885 44.8908 0.0586

53.9497 50.1186 0.0710

61.0260 55.9169 0.0837

69.0199 62.3445 0.0967
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TABLE 6. COMPARISON OF MODEL WITH THOENES AND KRAMERS [54]

REYNOLDS

THOENES 8 KRAMERS (1958)

EQUATION SH 3 1.0 RE001IZ SCIIII3

SCHMIDT NUMBER 8 4000. (LIQUIDS)

VDIDS FRACTION 8 0.40

REYNOLDS NUMBER RANGE 8 40 - 4000

XS 3 0.3

(6UR/AZ)

40.6615

54.3969

71.9472‘

94.2029

122.2702

157.5324

201.7237

257.0198

326.1454

412.5041

520.3302

654.8720

822.6120

1031.5341

1291.4520

1614.4116

2015.1856

2511.8839

3126.7029

3886.8476

MODEL THOENES DEVIATION

(6KE/ADS) (6KE/ADS) FRACTION

6.5896 6.3766 0.0323

7.5172 7.3754 0.0188

8.5594 8.4821 0.0090

9.7288 9.7058 0.0023

11.0404 11.0575 “0.0015

12.5116 12.5511 “0.0031

14.1628 14.2029 -0.0028

16.0181 16.0318 “0.0008

18.1055 18.0594 0.0025

20.4576 20.3101 0.0072

23.1118 22.8107 0.0130

26.1103 25.5904 0.0199

29.5005 28.6812 0.0277

33.3357 32.1175 0.0365

37.6747 35.9367 0.0461

42.5833 40.1797 0.0564

48.1347 44.8908 0.0673

54.4106 50.1186 0.0788

61.5023 55.9169 0.0908

69.5127 62.3445 0.1031
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TABLE 7. COMPARISON OF MODEL um: THOENES AND was [54]

REYNOLDS

THOENES 8 KRAMERS (1958)

EQUATION SH 8 1.0 REOIIIZ SCI81/3

SCHMIDT NUMBER 8 1.0 (GASES)

VOIDS FRACTION 8 0.50

REYNOLDS NUMBER RANGE 8 4O - 4000

XS 8 0.3

(6UR/AZ)

39.6532

52.2723

68.2434

88.3577'

113.6052

145.2278

184.7829

234.2199

295.9704

373.0563

469.2186

589.0736

738.3027

923.8861

1154.3883

1440.3116

1794.5291

2232.8186

2774.5188

3443.3339

4268.3221

MODEL THOENES DEVIATION

(6KE/ADS) (6KE/ADS) FRACTION

7.3841 6.2970 0.1472

8.3994 7.2299 0.1392

9.5265 8.2609 0.1328

10.7772 9.3998 0.1278

12.1676 10.6585 0.1240

13.7167 12.0510 0.1214

15.4457 13.5934 0.1199

17.3790 15.3042 0.1193

19.5443 17.2037 0.1197

21.9731 19.3146 0.1209

24.7011 21.6614 0.1230

27.7678 24.2708 0.1259

31.2173 27.1717 0.1295

35.0983 30.3954 0.1339

39.4648 33.9762 0.1390

44.3770 37.9514 0.1447

49.9018 42.3618 0.1510

56.1140 47.2527 0.1579

63.0978 52.6737 0.1652

70.9478 58.6799 0.1729

79.7704 65.3323 0.1809
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TABLE 8. COMPARISON OF MODEL WITH THOENES AND KRAMERS [S4]

REYNOLDS

THOENES 5 KRAMERS (1958) .

EQUATION SH 8 1.0 RE981/2 SC'81/3

SCHMIDT NUMBER 8 4000. (LIQUIDS)

VOIOS FRACTION 8 0.50

REYNOLDS NUMBER RANGE 3 4O “ 4000

X5 3 003

(6URIAZ)

39.6532

52.2723

68.2434

88.3577'

113.6052

145.2278

184.7829

234.2199

295.9704

373.0563

469.2186

589.0736

738.3027

923.8861

1154.3883

1440.3116

1794.5291

2232.8186

2774.5188

3443.3339

4268.3221

MODEL THOENES DEVIATION

(6KE/ADS) (6KE/ADS) FRACTION

7.6487 6.2970 0.1767

8.6622 7.2299 0.1653

9.7893 8.2609 0.1561

11.0424 9.3998 0.1487

12.4365 10.6585 0.1429

13.9894 12.0510 0.1385

15.7218 13.5934 0.1353

17.6582 15.3042 0.1333

19.8265 17.2037 0.1322

22.2586 19.3146 0.1322

24.9899 21.6614 0.1331

28.0603 24.2708 0.1350

31.5139 27.1717 0.1377

35.3994 30.3954 0.1413

39.7710 33.9762 0.1457

44.6887 37.9514 0.1507

50.2196 42.3618 0.1564

56.4388 47.2527 0.1627

63.4301 52.6737 0.1695

71.2884 58.6799 0.1768

80.1198 65.3323 0.1845
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size naphthalene spheres and cylinders. Beds were randomly packed,

4 in. diameter and 5 to 10 in. high. .Their correlation equation is:

1/3 1/2
Jd I 2.0/Rep Sc . 1.97/Rep

which is said to cover the Rep range from 400 to 10,000. In terms

Of this work the equation is:

Shp/Sc1/3te/(1
- efl' 2.0 E/(l _ e)Sc1/3 + 1.97 6/(1 - e)1/2

[Rep/(1 - c)]'5

with a Rep/(l - 2) range from 667 to 16,667.

A theoretical study of gaseous diffusion rates in packed beds

using a free surface model (spherical particle surrounded by a

spherical envelope of fluid) and boundary layer theory was made by

Kusik and Happel [31]. They give the equation:

Shp/Sc1/3 Repl/Z a 0.93/(e _ 0.75(1 _ €)(e - .2))0.5

which they say is applicable for Rep]: range of from 100 to 1000

and a voids fraction range from 0.3 to 1.0. The Reynolds number

range converts to Rep/(l - e) between 67 and 667 at a porosity of 0.4

and between 233 and 2330 at a porosity of 0.7. Tables 10 and 11

are for voids fractions of 0.4 and 0.7.

Liquid mass transfer coefficients fOr randomly packed beds Of

benzoic acid spheres and water were measured by Williamson, Bazaire

and GeankOplis [59]. Two equations are reported, each covering a

different Reynolds number range.

The equation:

58
s: Sc' - 2.4(Rep/e)"66
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TABLE 9. COMPARISON OF MODEL WITH BENNETT AND BRADSHAW [3]

BRADSHAW 8 BENNETT (1961)

EQUATION J 8 2.0/(RE SCIIII3) + 1.97/RE'*.5

SCHMIDT NUMBER 8 2.57 (GASES)

VOIDS FRACTION 8 0.40

REYNOLDS NUMBER RANGE 8 667 - 16667

XS 8 0.3

REYNOLDS MODEL BRADSHAW DEVIATION

(6URIAZ) (6KE/ADS) (6KE/ADS) FRACTION

673.5189 26.2911 27.3747 “0.0412

845.8481’ 29.7285 30.5601 “0.0279

1060.4576 33.6169 34.1015 -0.0144

1327.4116 38.0163 38.0375 “0.0005

1659.0617 42.9933 42.4097 0.0135

2070.5549 48.6220 47.2641 0.0279

2580.4587 54.9854 52.6506 0.0424

3211.5306 62.1762 58.6243 0.0571

3991.6634 70.2983 65.2462 0.0718

4955.0464 79.4691 72.5835 0.0866

6143.5903 89.8206 80.7107 0.1014

7608.6738 101.5020 89.7104 0.1161

9413.2845 114.6816 99.6743 0.1308

11634.6421 129.5498 110.7038 0.1454

14367.4106 146.3218 122.9116 0.1599

17727.6347 165.2408 136.4224 0.1744
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TABLE 10. COMPARISON OF MODEL WITH KUSIK AND HAPPEL [31]

KUSIK a HAPPEL (1962)

EQUATION SH = 0.93/(E-O.75(l-E)(E-0.2))II.5

REII.5 SCIIl/B

SCHMIDT NUMBER I 1.0 (GASES)

VOIDS FRACTION 0.40

REYNOLDS NUMBER RANGE 8 67 - 667

XS = 003

REYNOLDS MODEL KUSIK DEVIATION

(6UR/AZ) IbKE/ADS) (6KE/ADS) FRACTION

66.1489 7.9246 7.0153 0.1147

76.94301 8.5270 7.5660 0.1127

89.2338 9.1685 8.1480 0.1113

103.2058 9.8513 8.7627 0.1105

119.0673 10.5783 9.4120 0.1102

137.0542 11.3526 10.0979 0.1105

157.4337 12.1777 10.8226 0.1112

180.5085 13.0574 11.5887 0.1124

206.6214 13.9954 12.3986 0.1140

236.1608 14.9961 13.2553 0.1160

269.5664 16.0640 14.1618 0.1184

307.3356 17.2039 15.1214 0.1210

350.0301 18.4214 16.1376 0.1239.

398.2840 19.7220 17.2140 0.1271

452.8119 21.1121 18.3546 0.1306

‘514.4185 22.5984 19.5634 0.1343

584.0083 24.1880 20.8447 0.1382

662.5978 25.8885 22.2029 0.1423



TABLE 11. COMPARISON OF MODEL WITH KUSIK AND HAPPEL [31]

REYNOLDS

(6UR/AZ)

232.1225

262.9783

297.7868

337.0403

381.2897

431.1519

487.3167

550.5560

621.7330

701.8132

791.8767

893.1315

1006.9285

1134.7789

1278.3733

1439.6023

1620.5811

1823.6756

2051.5325

2307.1125

KUSIK 8 HAPPEL

EQUATION

(1962)

SH = 0.93/(E-0.75(1-E1(E-0.2)1".5

RE*|.5 SCii1/3

SCHMIDT NUMBER =

VDIDS FRACTION =

REYNOLDS NUMBER RANGE

MODEL

(6KE/ADS)

25.0388

26.6128

28.2842

30.0589

31.9433

33.9440

36.0679

38.3225

40.7154

43.2549

45.9495

48.8034

51.8412

55.0582

58.4704

62.0892

65.9269

69.9967

74.3124

78.8888

(GASES)

233 - 2330

KUSIK

(6KE/ADS)

23.6251

25.1464

26.7589

28.4680

30.2791

32.1982

34.2311

36.3845

38.6650

41.0796

43.6360

46.3419

49.2057

52.2362

55.4428

58.8352

62.4240

66.2201

70.2353

74.4819

DEVIATION

FRACTION

0.0564

0.0551

0.0539

0.0529

0.0520

0.0514

0.0509

0.0505

0.0503

0.0502

0.0503

0.0505

0.0508

0.0512

0.0517

0.0524

0.0531

0.0539

0.0548

0.0558
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is said to cover a Rep/e range from 0.08 to 125 for a bed porosity of

0.4 and a Schmidt number of 1000. This converts to:

.09

Shp/Sc1/3fc/(l - ci . 2.4 Sc 81°66/(l - e)'66 [Rep/(1 _ eH.354

for Rep/(l - e) from 0.053 to 83. Table 12 analyzes this equation.

The other equation listed is:

58 1
St Sc‘ 3 0.442(I?.ep/e).'3

covering a Rep/c range from 125 to 5000. This equation converts to:

1/3 .09 61.31
[e/(l - 5)]: 0.442 Sc /(1 - e)°31 [Rep/(l - e)]°69Shp/Sc

at a Rep/(l - 2) range between 83 and 3333 for a voids fraction of 0.4.

Table 13 compares the equation with the model.

Two equations are reported by Wilson and Geank0plis [60] for

mass transfer from randomly packed beds of benzoic acid spheres to

water and prepylene glycol solutions. They report the equation:

6 Jd - 1.09 Rep’2/3

for the Rep range from 0.0016 to 55, Schmidt numbers varying from

950 to 70,600 and bed porosities between 0.35 and 0.75. This converts

to the equation:

1/3 1/3
Shp/Sc [e/(l - e)]= 1.09/(1 - 6) Rep

for a Rep/(l - 6) range from 0.0027 to 92 at a bed porosity of 0.4 and

0.0053 to 183 at a bed porosity of 0.7. Tables 14 through 18 compare

the model results with this equation. The other equation:

a .1d - 0.25 Rep’°31
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TABLE 12. COMPARISON OF MODEL WITH WILLIAMSON,

BAZAIRB AND GEANKOPLIS [59]

NILLIAMSON 5 BAZAIRE 8 GEANKOPLIS (1963)

EQUATION ST SC'*.58 8 2.4 (RE/E)**-.66

SCHMIDT NUMBER 8 1000 (LIQUIDS)

VOIDS FRACTION 8 0.40

REYNOLDS NUMBER RANGE 8 0.053 - 83

XS 3 003

REYNOLDS MODEL WILLIAMSON DEVIATION

16UR/AZ) (6KE/AOSI (6KE/AOS1 FRACTION

0.0528 0.5484 0.5034 0.0820

0.0789 0.6308 0.5769 0.0855

0.1177 0.7268 0.6609 0.0906

0.1755 0.8376 0.7570 0.0961

0.2614 0.9647 0.8669 0.1014

0.3889 1.1105 0.9922 0.1065

0.5778 1.2779 1.1352 0.1116

0.8569 1.4702 1.2979 0.1172

1.2675 1.6912 1.4827 0.1233

1.8690 1.9455 1.6920 0.1303

2.7443 2.2380 1.9280 0.1385

4.0072 2.5745 2.1929 0.1482

5.8102 2.9613 2.4881 0.1597

8.3509 3.4053 2.8147 0.1734

11.8776 3.9137 3.1729 0.1892

16.6937 4.4938 3.5622 0.2073

23.1624 5.1532 3.9817 0.2273

31.7142 5.8997 4.4307 0.2489

42.8610 6.7420 4.9085 0.2719

57.2182 7.6897 5.4151 0.2957

75.5354 8.7540 5.9514 0.3201
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TABLE 13. COMPARISON OF MODEL WITH WILLIAMSON,

REYNOLDS

BAZAIRE AND GEANKOPLIS [59]

WILLIAMSON 8 BAZAIRE 8 GEANKDPLIS (19631

EQUATION ST SC'*.58 8 0.442 (RE/E1**-.31

SCHMIDT NUMBER 3 1000 (LIQUIDS)

VOIDS FRACTION 8 0.40

REYNOLDS NUMBER RANGE I 83 - 3333

XS = 0.3

I6UR/AZI

83.6600

108.9902

140.8616

180.8422

230.8992

293.4984

371.7243

469.4210

591.3615

743.4491

932.9637

1168.8604

1462.1372

1826.2865

2277.8505

2837.1057

3528.9034

MODEL WILLIAMSON

(6KE/ADS) I6KE/ADSI

9.1886 6.1578

10.4353 7.3908

11.8335 8.8218

13.4021 10.4816

15.1635 12.4066

17.1440 14.6400

19.3742 17.2324

21.8891 20.2428

24.7289 23.7395

27.9387 27.8008

31.5691 32.5162

35.6763 37.9883

40.3230 44.3338

45.5790 51.6864

51.5220 60.1985

58.2389 70.0451

65.8272 81.4264

DEVIATION

FRACTION

0.3298

0.2917

0.2545

0.2179

0.1818

0.1460

0.1105

0.0752

0.0400

0.0049

-0.0300

-0006‘08

“000994

-001339

-00 168‘.

”002027

’002369
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TABLE 14. COMPARISON OF MODEL WITH WILSON AND GEANKOPLIS [60]

WILSON 8 GEANKOPLIS (I966)

EQUATION E J = 1.09/RE*'2/3

SCHMIDT NUMBER = 950 (LIQUIDS)

VOIDS FRACTION = 0.40

REYNOLDS NUMBER RANGE = 0.0027 - 92

XS = 0.3

REYNOLDS MODEL WILSON DEVIATION

(6UR/AZ) (6KE/ADSI I6KE/ADS) FRACTION

0.0027 0.2416‘ 0.2134 0.1166

0.0053 0.2785 0.2686 0.0357

0.0107 0.3314 0.3379 -0.0195

0.0424 0.5082 0.5343 -0.0511

0.1665 0.8214 0.8431 -0.0262

0.3290 1.0459 1.0578 ~0.0113

0.6473 1.3298 1.3255 0.0032

1.2662 1.6898 1.6576 0.0190

2.4532 2.1472 2.0665 0.0376

4.6819 2.7284 2.5632 0.0605

8.7345 3.4650 3.1555 0.0893

15.7971 4.3926 3.8445 0.1247

27.5323 5.5482 4.6266 0.1661

46.1803 6.9723 5.4971 0.2115

74.7931 8.7131 6.4556 0.2590
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TABLE 15. COMPARISON OF MODEL WITH WILSON AND GEANKOPLIS [60]

WILSON 8 GEANKOPLIS (1966)

EQUATION E J = 1.09/RE'i2/3

SCHMIDT NUMBER = 70600 (LIQUIDS)

VOIDS FRACTION = 0.40

REYNOLDS NUMBER RANGE = 0.0027 - 92

XS = 003

REYNOLDS MODEL WILSON DEVIATION

(6UR/AZ) (6KE/ADS) (6KE/ADS) FRACTION

0.0027 0.2070 0.2134 -0.0309

0.0053 70.2633 0.2686 -o.ozoo

000107 003342 003379 “000111

0.0213 0.4234 0.4250 -0.0037

0.0424 0.5355 0.5343 0.0023

0.0841 0.6764 0.6713 0.0075

0.1665 0.8537 0.8431 0.0124

0.3290 1.0770 1.0578 0.0178

0.6473 1.3591 1.3255 0.0247

1.2662 1.7163 1.6576 0.0341

2.4532 2.1701 2.0665 0.0477

4.6819 2.7475 2.5632 0.0670

8.7345 3.4805 3.1555 0.0933

15.7971 4.4049 3.8445 0.1272

27.5323 5.5579 4.6266 0.1675

46.1803 6.9799 5.4971 0.2124

74.7931 8.7192 6.4556 0.2596



64

TABLE 16. COMPARISON OF MODEL WITH WILSON AND GEANKOPLIS [60]

WILSON 8 GEANKOPLIS (1966)

EQUATION E J = 1.09/RE**2/3

SCHMIDT NUMBER = 950 (LIQUIDS)

VOIDS FRACTION = 0.70

REYNOLDS NUMBER RANGE = 0.0053 - 183

XS = 0.3

REYNOLDS MODEL WILSON DEVIATION

(6UR/AZ) (6KE/ADS) (6KE/ADS) FRACTION

0.0050 0.3839 0.4183 ~0.0896

0.0101 0.4783 0.5260 -0.0996

0.0200 0.6051 0.6610 '0.0924

0.0397 0.7706 0.8302 -0.0774

0.0786 0.9814 1.0420 -0.0616

0.1548 1.2478 1.3062 -0.0467

0.3034 1.5850 1.6345 -0.0312

0.5896 2.0120 2.0396 -0.0137

1.1306 2.5520 2.5339 0.0071

2.1237 3.2320 3.1264 0.0326

3.8752 4.0802 3.8204 0.0636

6.8225 5.1235 4.6130 0.0996

11.5576 6.3869 5.4992 0.1389

18.8821 7.8977 6.4767 0.1799

29.9160 9.6911 7.5505 0.2208

46.2762 11.8153 8.7322 0.2609

70.3346 14.3362 10.0399 0.2996

105.5814 17.3412 11.4957 0.3370

157.1198 20.9410 13.1245 0.3732
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TABLE 17. COMPARISON OF MODEL WITH WILSON AND GEANKOPLIS [60]

WILSON 8 GEANKOPLIS (1966)

EQUATION E J = 1.09/RE'52/3

SCHMIDT NUMBER = 70600 (LIQUIDS)

VOIDS FRACTION = 0.70

REYNOLDS NUMBER RANGE = 0.0053 - 183

XS = 0.3

REYNOLDS MODEL WILSON DEVIATION

(6UR/AZ) (6KE/AOS) (6KE/ADS) FRACTION

0.0050 0.3979 0.4183 -0.0513

0.0101' 0.5035 0.5260 -0.0446

0.0200 0.6362 0.6610 -0.0390

0.0397 0.8030 0.8302 -0.0339

0.0786 1.0129 1.0420 -0.0286

0.1548 1.2777 1.3062 -0.0223

0.3034 1.6122 1.6345 -0.0137

0.5896 2.0358 2.0396 *0.0018

1.1306 2.5721 2.5339 0.0148

2.1237 3.2483 3.1264 0.0375

3.8752 4.0932 3.8204 0.0666

6.8225 5.1335 4.6130 0.1013

11.5576 6.3946 5.4992 0.1400

18.8821 7.9037 6.4767 0.1805

29.9160 9.6958 7.5505 0.2212

46.2762 11.8191 8.7322 0.2611

70.3346 14.3394 10.0399 0.2998

105.5814 17.3441 11.4957 0.3371

157.1198 20.9436 13.1245 0.3733



TABLE 18. COMPARISON OF MODEL WITH WILSON AND GEANKOPLIS [60]

REYNOLDS

(6UR/AZ)

92.6051

115.0941

142.2887

175.1088

214.6648

262.2967

319.6189

388.5730

471.4868

571.1448

690.8685

834.6116

1007.0720

1213.8246

1461.4782

1757.8623

2112.2491

2535.6173'

WILSON 8 GEANKOPLIS

EQUATION E J

SCHMIDT NUMBER

VOIDS FRACTION 3 0.40

REYNOLDS NUMBER RANGE 8 92 - 2500

XS = 0.3

MODEL

(6KE/ADS)

9.6456

10.7156

11.8924

13.1871

14.6124

16.1827

17.9146

19.8266

21.9396

24.2767

26.8637

29.7285

32.9020

36.4179

40.3129

44.6272

49.4048

54.6939

(1966)

0.25/RE'&.31

(LIQUIDS)

WILSON

(6KE/ADS)

6.6633

7.7417

8.9619

10.3417

11.9022

13.6672

15.6642

17.9245

20.4836

23.3812

26.6621

30.3764

34.5799

39.3351

44.7115

50.7870

57.6484

65.3929

DEVIATION

FRACTION

0.3091

0.2775

0.2464

0.2157

0.1854

0.1554

0.1256

0.0959

0.0663

0.0368

0.0075

-0.0217

-0.0509

'0.0801

'0.1091

-0.1380

-0.1668

-001956



TABLE 19. COMPARISON OF MODEL WITH WILSON AND GEANKOPLIS [60]

REYNOLDS

(6UR/AZ)

92.6051

115.0941

142.2887

175.1088

214.6648

262.2967

319.6189

388.5730

471.4868

571.1448

690.8685

834.6116

1007.0720

1213.8246

1461.4782

1757.8623

2112.2491

2535.6173

WILSON 8 GEANKOPLIS

EQUATION E J

SCHMIDT

VOIDS FRACTION = 0.40

REYNOLDS NUMBER RANGE

XS = 0.3

NUMBER

MODEL

(6KE/ADS)

9.6513

10.7209

11.8973

13.1917

14.6169

16.1870

17.9188

19.8305

21.9439

24.2807

26.8679

29.7328

32.9061

36.4223

40.3172

44.6318

49.4093

54.6977

(1966)

0.25/RE**.31

(LIQUIDS)

92 * 2500

WILSON

(6KE/ADS)

6.6633

7.7417

8.9619

10.3417

11.9022

13.6672

15.6642

17.9245

20.4836

23.3812

26.6621

30.3764

34.5799

39.3351

44.7115

50.7870

57.6484

65.3929

DEVIATION

FRACTION

0.3095

0.2778

0.2467

0.2160

0.1857

0.1556

0.1258

0.0961

0.0665

0.0370

0.0076

’000216

-0.0508

-000799

‘001089

”001379

”001667

-0.1955
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TABLE 20. COMPARISON OF MODEL WITH WILSON AND GEANKOPLIS [60]

REYNOLDS

(6UR/AZ)

181.3178

227.8180

285.7430

357.8186

447.3915

558.5660

696.3739

866.9824

1077.9505

1338.5433

1660.1180

2056.5974

2545.0501

3146.4014

3886.3040

.4796.2047

WILSON 8 GEANKOPLIS (1966)

EQUATION E J = 0.25/RE09.31

SCHMIDT NUMBER 950 (LIQUIDS)

VOIDS FRACTION 0.70

REYNOLDS NUMBER RANGE = 183 - 5000

XS = 0.3

MODEL WILSON DE

(6KE/ADS) (6KE/ADS) FR

22.4266 13.1327

25.0308 15.3733

27.9346 17.9744

31.1730 20.9922

34.7842 24.4910

38.8100 28.5439

43.2961 33.2348

48.2931 38.6597

53.8570 44.9288

60.0503 52.1685

66.9420 60.5240

74.6098 70.1625

83.1405 81.2761

92.6312 94.0858

103.1907 108.8460

114.9411 125.8496

VIATION

ACTION

0.4144

0.3858

0.3565

0.3265

0.2959

0.2645

0.2323

0.1994

0.1657

0.1312

0.0958

0.0596

0.0224

-0.0157

”0.0548

’0009’99



TABLE 21. COMPARISON OF MODEL WITH WILSON AND GEANKOPLIS [60]

REYNOLDS

(6URIAZ)

181.3178

227.8180

285.7430

357.8186

447.3915

558.5660

696.3739

866.9824

1077.9505

1338.5433

1660.1180

2056.5974

2545.0501

3146.4014

3886.3040

~4796.2047

WILSON 8 GEANKOPLIS

EQUATION E J

SCHMIDT NUMBER 8 70600

VOIDS FRACTION

REYNOLDS NUMBER RANGE

0.3

MODEL

(6KE/ADS)

22.4291

25.0332

27.9367

31.1755

34.7864

38.8115

43.2987

48.2949

53.8578

60.0525

66.9437

74.6112

83.1416

92.6330

103.1971

114.9396

(1966)

0.25/RE'*.31

(LIQUIDS)

183 - 5000

WILSON

(6KE/ADS)

13.1327

15.3733

17.9744

20.9922

24.4910

28.5439

33.2348

38.6597

44.9288

52.1685

60.5240

70.1625

81.2761

94.0858

108.8460

125.8496

DEVIATION

FRACTION

0.4144

0.3858

0.3566

0.3266

0.2959

0.2645

0.2324

0.1995

0.1657

0.1312

0.0958

0.0596

0.0224

-000156

“0.0547

-000949
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is for a Rep ranging from 55 to 1500 with Schmidt numbers and voids

fractions being the same as for the other equation. This equation

converts to:

sup/5c1/3fe/(1 - £)1- 0.25/(1 - 2) Rep'69

for a Rep/(1 - 5) range from 92 to 2500 at a porosity of 0.4 and 183

to 5000 at a bed porosity of 0.7. Tables 18 through 21 show com-

parison of results of the model with the equation.

In his thesis Galloway [15] reports equations containing

turbulence factors and graphs of c Jd versus ReP for beds of spheres,

cylinders and commercial packing. Tables 22 through 30 show results

obtained by estimating equations from his graphs and using these

equations for comparison with the model. Estimated equations for

spheres are:

e Jd - 0.85 Rep"5°

for a Rep range between 3 and 10,000 and a Schmidt number of 1000.

This converts to:

Shp/Scl/3[e/(l - c)]- 0.850 - e)"5[aep/(1 - e)]'5

for a Rep/(l - a) range between 5 and 16,700 for a bed porosity of 0.4'

and between 10 and 33,333 for a voids fraction of 0.7.

c Jd - 0.95 Rep"51

for a Rep range between 10 and 10,000 and a Schmidt number of 1. This

converts to:

Shp/Sc1/3[€/(l - 6)]. 0.95(1 _ €)'051[Rep/(1 _ 5)].49
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for a Rep/(l - c) range between 17 and 16,700 for a bed porosity of 0.4

and between 33 and 33,333 for a voids fraction of 0.7. Tables 22 to

25 analyze these equations.

Estimated equations for commercial packing are:

e Jd - 0.7 Rep“48

for a Rep range between 35 and 2000 and a Schmidt number of 1. This

converts to:

5 /S<=1/3 E/(l - 611- 0.7(1 - e)’°48[ge /(1 - c)]'52

hp
P

for a Rep/(1 - c) range between $8 and 3333 for a bed porosity of 0.4

and between 117 and 6667 for a voids fraction of 0.7.

-e32

c Jd I 0.23 Rep

for 3 Rep range between 2000 and 10,000 and a Schmidt number of

1000. This converts to:

sup/SCUSIC/(l - c)] I 0.230 - £)-'32[Rep/(1 - “1.68

for a Rep/(1 - a) range between 3333 and 16,667 for a bed porosity of

0.4.

c ad - 0.50 aep"4l

for a Rep range between 35 and 2000 and a Schmidt number of 1000.

This converts to:

sup/scum“: - .)]- 0.500 - .y-“mepm , 01-59
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TABLE 22. COMPARISON OF MODEL WITH GALLOWAY AND SAGE, SPHERES [15]

REYNOLDS

(6UR/AZ)

GALLOWAY 8 SAGE (1967)

ESTIMATED EQUATION FOR BEDS OF

SPHERES E J 8 0.95/REOO.51

SCHMIDT NUMBER 8 1 (GASES)

VOIDS FRACTION 8 0.40

REYNOLDS NUMBER RANGE 8 17 - 16700

16.0226'

27.8987

46.7518

75.6586

118.9646

182.9820

276.9902

414.6284

615.7833

909.1413

1335.7102

1953.7778

2845.9635

4129.2699

5969.3868

8600.9973

12356.5448

17706.9452

XS 8 0.3

MODEL GALLOWAY DEVIATION

(6KE/ADS) (6KEIADS) FRACTION

‘02321 ‘07993 -0013‘0

5.3202 6.2980 -0.1837

6.7193 8.1108 ‘0e2070

8.4574 10.2685 -0.2141

10.5737 12.8180 -0.2122

13.1487 15.8287 -0.2038

16.2933 19.3942 ‘0.1903

20.1469 23.6330 '0.1730~

2‘08866 28.6870 '001527

3007331 3‘07212 ‘001297

37.9542 41.9242 'OeIO‘b

46.8719 50.5120 -0.0776

57.8739 60073‘9 ’000‘9‘

71.4299 72.8860 “0.0203

88.1137 87.3116 0.0091

108.6299 104.4228 0.0387

133.8460 124.7084 0.0682

164.8315 148.7499 0.0975
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TABLE 23. COMPARISON OF MODEL WITH GALLOWAY AND SAGE, SPHERES [15]

REYNOLDS

(6UR/AZ)

GALLDWAY 8 SAGE (1967)

ESTIMATED EQUATION FOR BEDS OF

SPHERES E J 8 0.95/RE88.51

SCHMIDT NUMBER 2 1 (GASES)

VOIDS FRACTION 8 0.70

REYNOLDS NUMBER RANGE 8 33 - 33333

34.3932

52.8744

80.0105

119.7385

177.7973

262.4626

385.5627

563.9079

821.3252

1191.5570

1722.3868

2481.4956

3564.7579

5107.9823

7303.5199

10423.7565

14854.3412

21141.1899

30056.9690

XS 8 0.3

MODEL GALLDWAY DEVIATION

(6KE/ADS) (6KE/ADS) FRACTION

10.0932 9.9371 0.0154

12.3347 12.2682 0.0053

14.9978 15.0291 -0.0020

18.1788 18.3116 '0.0073

21.9951 22.2256 -0.0104

26.5873 26.8989 -0.0117

32.1195 32.4771 ’0.0111

38.7822 39.1276 “0.0089

46.7982 47.0439 -0.0052

67.9957 67.6232 0.0054

81.8735 80.8725 0.0122

98.5255 96.5798 0.0197

118.5122 115.1950 0.0279

142.5150 137.2532 0.0369

171.3632 163.3893 0.0465

206.0669 194.3568 0.0568

247.8578 231.0495 0.0678

298.2387 274.5268 0.0795
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TABLE 24. COMPARISON OF MODEL WITH GALLOWAY AND SAGE, SPHERES [15]

REYNOLDS

(6UR/AZ)

7.2776’

13.2947

23.4360

39.7536

65.0221

103.1153

159.6190

242.7263

364.4930

542.5527

802.4290

1180.7022

1729.4439

2522.5093

3664.5050

5303.5616

7649.4773

10999.4387

15774.4283

MODEL

(6KE/ADS)

3.2283

4.0952

5.1789

6.5186

8.1595

10.1587

12.5910

15.5542

19.1772

23.6257

29.1067

35.8728

44.2276

54.5361

67.2397

82.8762

102.1049

125.7371

154.7732

GALLDWAY 8 SAGE

ESTIMATED EQUATION FOR BEDS OF

SPHERES E J 3 0.85/RE89.50

SCHMIDT NUMBER 3 1000

VOIDS FRACTION 3 0.40

REYNOLDS NUMBER RANGE 3 5 - 16700

XS 3 003

(1967)

(LIQUIDS)

GALLDWAY

(6KE/ADS)

2.9603

4.0011

5.3123

6.9188

8.8485

11.1430

13.8639

17.0962

20.9501

25.5602

31.0846

37.7062

45.6348

55.1137

66.4279

79.9147

95.9752

115.0876

137.8224

DEVIATION

FRACTION

0.0830

0.0229

-0.0257

80.0613

"0e0844

'0.0968

-0.1010

-0.0991

-000924

-000818

-0e0679

-000511

-0.0318

‘0. 0105

0.0120

0.0357

0.0600

0.0846

0.1095



TABLE 25. COMPARISON OF MODEL WITH GALLDWAY AND SAGE, SPHERES [15]

REYNOLDS

(6UR/AZ)

13.3576

21.6167

33.9899

52.2805

79.1400

118.4652

175.9381

259.7546

381.6315

558.2222

813.1324

1179.7914

1705.5391

2457.4278

3530.4414

5059.1272

7234.0508

10325.0707

14714.2601

20942.4748

29775.2226

SPHERES

SCHMIDT

VOIDS FRACTION 3 0.70

REYNOLDS NUMBER RANGE 8 10 - 33333

XS 8 003

GALLDWAY 8 SAGE

ESTIMATED EQUATION FOR BEDS OF

E J = 0.85/RE8*.50

NUMBER

MODEL

(6KE/ADS)

6.7951

8.3831

10.2660

12.4967

15.1469

18.3106

22.1053

26.6711

32.1721

38.7982

46.7716

56.3548

67.8620

81.6717

98.2436

118.1347

142.0238

170.7337

205.2717

246.8614

296.9975

(1967)

(LIQUIDS)

GALLDWAY

(6KE/ADS)

5.6718

7.2152

9.0475

11.2209

13.8056

16.8909

20.5844

25.0115

30.3165

36.6658

44.2526

53.3041

64.0898

76.9305

92.2088

110.3814

131.9924

157.6902

188.2467

224.5806

267.7847

DEVIATION

FRACTION

0.1653

0.1393

0.1186

0.1020

0.0885

0.0775

0.0688

0.0622

0.0576

0.0549

0.0538

0.0541

0.0555

0.0580

0.0614

0.0656

0.0706

0.0763

0.0829

0.0902

0.0983
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TABLE 26. COMPARISON OF MODEL WITH GALLDWAY AND SAGE,

COMMERCIAL PACKING [15]

GALLDWAY 8 SAGE (1967)

ESTIMATED EQUATION FOR COMMERCIAL

PACKING E J 3 Oe7/RE..e#8

SCHMIDT NUMBER 3 1 (GASES)

VOIDS FRACTION 8 0.40

REYNOLDS NUMBER RANGE ‘ 58 - 3333

X5 8 0.3

REYNOLDS

(6URIAZ)

59.4799

78.4085

102.3652

132.5366

170.4078

217.8417

277.1744

351.3298

443.9556

559.5844

703.8279

883.6104

1107.4541

1385.8291

~1731.5826

2160.4675

2691.7937

3349.2280

MODEL GALLDWAY

(6KE/ADS) (6KEIADS)

7.5302 7.4861

8.6058 8.6427

9.8115 9.9280

11.1626 11.3553

12.6788 12.9407

14.3824 14.7034

16.2989 16.6654

18.4574 18.8519

20.8915 21.2912

23.6398 24.0146

26.7462 27.0562

30.2597 30.4537

34.2353 34.2479

38.7340 38.4834

43.8238 43.2091

49.5802 48.4786

56.0881 54.3509

63.4420 60.8915

DEVIATION

FRACTION

0.0058

-000042

-000118

-000172

-0.0206

'0.0223

-00022‘

-0.0213

-0.0191

-0.0158

-0001 15

-00006‘

-0.0003

0.0064

0.0140

0.0222

0.0309

0.0402
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TABLE 27. COMPARISON OF MODEL WITH GALLDWAY AND SAGE,

COMMERCIAL PACKING [15]

GALLOWAY 8 SAGE (1967)

ESTIMATED EQUATION FOR COMMERCIAL

PACKING E J 8 0.7/RE58.48

SCHMIDT NUMBER 8 1 (GASES)

VOIDS FRACTION 8 0.70

REYNOLDS NUMBER RANGE 8 117 - 6667

XS 8 0.3

REYNOLDS

(6UR/AZ)

120.1870

151.5724

190.7316

239.5497

300.3476

375.9781

469.9422

586.5336

731.0155

909.8388

1130.9102

1403.9211

1740.7517

2155.9658

2667.4182

3296.9977

4071.5381

5023.9338

6194.5064

MODEL GALLDWAY

(6KE/AOS) (6KEIAOS)

18.2114 15.0524

20.3618 16.9825

22.7569 19.1381

25.4265 21.5459

28.4033 24.2350

31.7229 27.2373

35.4241 30.5874

39.5495 34.3235

44.1459 38.4876

49.2648 43.1262

54.9635 48.2905

61.3058 54.0378

68.3626 60.4314

76.2135 67.5419

84.9474 75.4479

94.6639 84.2367

105.4746 94.0057

117.5047 104.8630

130.8944 116.9292

DEVIATION

FRACTION

0.1734

0.1659

0.1590

0.1526

0.1467

0.1413

0.1365

0.1321

0.1281

0.1246

0.1214

0.1185

0.1160

0.1137

0.1118

0.1101

0.1087

0.1075

0.1066
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TABLE 28. COMPARISON OF MODEL WITH GALLDWAY AND SAGE,

COMMERCIAL PACKING [IS]

GALLDWAY 8 SAGE (1967)

ESTIMATED EQUATION FOR COMMERCIAL

PACKING E J 8 0.50/RE88.41

SCHMIDT NUMBER 8 1000 (LIQUIDS)

VOIDS FRACTION 8 0.40

REYNOLDS NUMBER RANGE 8 58 - 3333

XS 8 0.3

REYNOLDS

(6URIAZ)

59.4799

78.4085

102.3652

132.5366

170.4078

217.8417

277.1744

351.3298

443.9556

559.5844

703.8279

883.6104

1107.4541

1385.8291

1731.5826

2160.4675

2691.7937

3349.2280

MODEL GALLDWAY

(6KE/ADS) (6KE/ADS)

7.8287 6.8676

8.9100 8.0835

10.1229 9.4605

11.4831 11.0180

13.0089 12.7792

14.7218 14.7717

16.6471 17.0275

18.8143 19.5839

21.2574 22.4832

24.0153 25.7732

27.1319 29.5075

30.6564 33.7459

34.6437 38.5549

39.1548 44.0085

44.2578 50.1891

50.0283 57.1888

56.5509 65.1107

63.9206 74.0705

DEVIATION

FRACTION

0.1227

0.0927

0.0654

0.0404

0.0176

-0.0033

-000228

-0.0409

80.0576

“Go 0731

-0.0875

-0.1007

-0.1128

-0.1239

”0.1340

-00 1431

-0.1513

-0.1587
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TABLE 29. COMPARISON OF MODEL WITH GALLDWAY AND SAGE,

COMMERCIAL PACKING [15]

GALLDWAY 8 SAGE (1967)

ESTIMATED EQUATION FOR COMMERCIAL

PACKING E J 8 0.23/RE8*.32

SCHMIDT NUMBER 8 1000 (LIQUIDS)

VOIDS FRACTION 8 0.40

REYNOLDS NUMBER RANGE 8 3333 - 16667

XS 8 0.3

REYNOLDS

(6UR/AZ)

3419.3315

3770.5474

4156.7638

4581.3815

5048.1279

5561.0876

6124.7370

6743.9821

7424.1993

8171.2809

8991.6844

9892.4867

10881.4438

11967.0551

13158.6356

14466.3931

15901.5144

17476.2585

MODEL GALLDWAY

(6KE/ADS) (6KE/ADS)

64.6694 68.5171

68.3292 73.2275

72.1945 78.2479

76.2764 83.5982

80.5869 89.2993

85.1385 95.3735

89.9444 101.8448

95.0186 108.7383

100.3758 116.0810

106.0317 123.9015

112.0026 132.2304

118.3061 141.1000

124.9604 150.5449

131.9852 160.6019

139.4007 171.3100

147.2289 182.7108

155.4928 194.8487

164.2157 207.7707

DEVIATION

FRACTION

”000594

'0.0716

-0.0838

-0.0959

“0.1081

-001202

“001323

'001443

“001564

-001685

-0.1806

-001926

-0.2047

“0.2168

-0.2289

-0e2409

°0.2531

-0.2652
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TABLE 30. COMPARISON OF MODEL WITH GALLOWAY AND SAGE,

COMMERCIAL PACKING [15]

GALLDWAY 8 SAGE (1967)

ESTIMATED EQUATION FOR COMMERCIAL

PACKING E J 8 0.50/RE88.41

SCHMIDT NUMBER 8 1000 (LIQUIDS)

VOIDS FRACTION 8 0.70

REYNOLDS NUMBER RANGE 8 117 - 6667

X5 8 0.3

REYNOLDS

(6UR/AZ)

120.1870.

151.5724

190.7316

239.5497

300.3476

375.9781

469.9422

586.5336

731.0155

909.8388

1130.9102

1403.9211

1740.7517

2155.9658

'266704182

3296.9977

4071.5381

5023.9338

6194.5064

MODEL GALLDWAY

(6KE/ADS) (6KE/ADS)

18.4361 13.8186

20.5849 15.8458

22.9782 18.1467

25.6457 20.7583

28.6203 23.7218

31.9377 27.0829

35.6369 30.8927

39.7602 35.2081

44.3547 40.0928

49.4720 45.6183

55.1695 51.8648

61.5108 58.9226

68.5671 66.8936

76.4176 75.8925

85.1519 86.0486

94.8687 97.5080

105.6806 110.4352

117.7119 125.0161

131.1033 141.4601

DEVIATION

FRACTION

0.2504

0.2302

0.2102

0.1905

0.1711

0.1520

0.1331

0.1144

0.0960

0.0778

0.0599

0.0420

0.0244

0.0068

-000105

-0.0273

'0e0‘49

~0.0620

-000789
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for a Rep/(1 - c) range between 58 and 3333 for a bed porosity of 0.4

and between 117 and 6667 for a voids fraction of 0.7. Tables 26 to

30 show these equations.

Data for mass transfer in randomly packed beds of spheres to

gases at low Reynolds numbers is given by Petrovic and Thodos [40].

The values given are corrected for axial mixing. Their recommended

equation is:

e Jd - 0.357/Rep'359

and is recommended for a Rep between 3 and 230. This converts to

the equation:

Shp/Scl/sfc/(l - c)]- 0.357 Rep’641/(1 - c)

with a Rep/(1 - e) range from S to 390. Comparison of this equation

with the model is in Table 31.

Table 32 compares the model with the equation of Jolls and

Hanratty [27]. They used electrochemical techniques to study mass

transfer rates to an active sphere in a dumped bed. They report

the equation:

1/3 _ .58
Shp/Sc 1.44 Rep

_ to be good for a Schmidt number of 1700, voids fraction of 0.41 and

a Re range between 35 and 140. This converts to:

P

5hp/5c1/3[e/(1 - e)]- 1.44 c/(l - 6) Rep'58

at a Rep/(1 - 0) range between 59 and 237.
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TABLE 31. COMPARISON OF MODEL WITH PETROVIC AND THODOS [40]

PETROVIC 8 THODOS (1968)

EQUATION E J 8 0.357/RE8*.359

SCHMIDT NUMBER 8 3 (GASES)

VOIDS FRACTION 8 0.40

REYNOLDS NUMBER RANGE 8 5 - 390

XS 8 0.3

REYNOLDS MODEL PETROVIC DEVIATION

(6URIAZ) (6KE/ADS) (6KE/ADS) FRACTION

4.9733 2.6797 1.1991 0.5525

7.1760 3.0551 1.5168 0.5035

10.2537 3.5051 1.9067 0.4560

14.4859 4.0366 2.3794 0.4105

20.2101 4.6556 2.9456 0.3672

27.8271 5.3662 3.6159 0.3261

37.8124 6.1719 4.4012 0.2868

50.7344 7.0783 5.3138 0.2492

67.2819 8.0954 6.3678 0.2134

88.3002 9.2360 7.5800 0.1792

114.8381 10.5147 8.9707 0.1468

148.2052 11.9482 10.5641 0.1158

190.0427 13.5558 12.3895 0.0860

242.4094 15.3604 14.4813 0.0572

307.8858 17.3888 16.8798 0.0292

' 389.6970 19.6724 19.6321 0.0020
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TABLE 32. COMPARISON OF MODEL WITH JOLLS AND HANRATTY [27]

REYNOLDS

(SUR/Al)

58.8424

66.6772

75.3981

85.0932

95.8594

JOLLS 8 HANRATTY (1969)

EQUATION SH/SC881/3 8 1.44 RE88.58

SCHMIDT NUMBER 8 1700 (LIQUIDS)

VOIDS FRACTION 80.41

REYNOLDS NUMBER RANGE 8 59 - 237

XS 8 0.3

107.8039

121.0455

135.7153

151.9587

169.9367

189.8276

211.8288

236.1587

MODEL JOLLS DEVIATION

(6KE/ADS) (6KE/ADS) FRACTION

7.9148 7.8308 0.0106

8.8847 9.0418 -0.0176

9.4082 9.6990 '0.0309

9.9591 10.3928 '0.0435

10.5389 11.1254 -0.0556

11.1491 11.8986 -0.0672

11.7914 12.7149 80.0783

13.9287 15.4467 -0.1089

15.5500 17.5326 -0.1274
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TABLE 33. COMPARISON OF MODEL WITH WILKINS AND THODOS [58]

REYNOLDS

(6UR/AZ)

30.5370

41.3359

55.2024

73.0405

95.5950

124.0220

159.7301

204.4754

200.4010

330.4450

417.0749

527.0341

003.2337

033.0319

1044.5050

1307.5790

1034.4309

‘2040.0195

2542.0420

3104.7524

WILKINS 8 THODOS (1969)

EQUATION E J 3 0.589/RE88.427

SCHMIDT NUMBER 8 3 (GASES)

VOIDS FRACTION 8 0.40

REYNOLDS NUMBER RANGE 8 33 8 3333

X5 3 003

MODEL WILKINS

(6KE/ADS) (6KE/ADS)

5.5967 5.1958

6.4317 6.1801

7.3700 7.2988

8.4226 8.5643

9.6028 9.9915

10.9258 11.5989

12.4092 13.4086

14.0731 15.4469

15.9415 17.7445

18.0426 20.3371

20.4093 23.2650

23.0791 26.5740

26.0949 30.3151

29.5045 34.5448

33.3614 39.3260

37.7251 44.7281

42.6617 50.8281

48.2448 57.7118

54.5568 65.4746

61.6895 74.2231

DEVIATION

FRACTION

0.0716

0.0391

0.0096

80.0168

-000404

-000616

-000805

“000976

80.1131

80.1271

-001399

-001514

80.1617

80.1708

-001787

80.1856

’001914

80.1962

80.2001

-002031
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TABLE 34. SUMMARY OF RESULTS FOR GASES

REYNOLDS DEVIATION AVERAGE

TABLE VOIDS NUMBER FRACTION DEVIATION

NUMBER FRACTION RANGE RANGE FRACTION

31 0.40 5-390 .55 -.- 0 +0.15

22 0.40 17-16,700 -.13-+- -.21-.- .10 -0.02

2 0.30 30-5000 .16 -.- -.01 +0.03

3 0.64 30-5000 .10 +-.27 -0.15

33 0.40 33-3333 .07 + -.20 -0.10

23 0.70 33-33,333 0 +.07 +0.02

4 0.40 40-4000 -.29 ->- .02 -0.04

5 0.40 40-4000 -.03 -e- .10 +0.04

7 0.50 40-4000 .14 —>- .12—>.10 +0.14

26 0.40 50-3333 0+ -.02 4.04 +0.01

10 0.40 67-667 .11 ->- .14 +0.12

27 0.70 117-6667 .17 + .11 +0.13

11 0.70 233-2330 .05 +.06 +0.05

9 0.40 667-16,667 -.04 +.17 +0.00

AVERAGE PERCENTAGE DEVIATION 8 +34
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TABLE 35. SUMMARY OF RESULTS FOR LIQUIDS

REYNOLDS DEVIATION AVERAGE

TABLE VOIDS NUMBER FRACTION DEVIATION

NUMBER FRACTION RANGE RANGE FRACTION

14 0.40 0.0027-92 .12+-.05 —+-.26 +0.06

Sc=950

15 0.40 0.0027-92 -.03 —>- .26 +0.06

56-70600

16 0.70 0.0053-103 -.09 + .37 +0.05

Sc-9SO -

17 0.70 0.0053-183 -.05 -—+-.37 +0.06

Sc-70600

12 0.40 0.053-03 .00 —0- .32 +0.15

24 0040 5-16.700 008+ -010 + 011 70002

25 0.70 10-33,333 .16 -+- .05 -+ .10 +0.00

6 . 0.40 40-4000 .03—0- 0 -—.- .10 +0.04

0 0.50 40-4000 .10-0- .13 ->- .10 +0.15

20 0.40 50-3333 .12—> -.16 - - -0.04

32 0.41 59-237 . .01....- -.13 -0.03

13 0.40 83-3333 .33 +-.24 +0.03

10 0.40 92-2500 .30 -e--.20 +0.05

30 0.70 117-6667 ‘ L25 + -.00 +0.05

20 0.70 103-5000 ‘ .41->- -.10 +0.14

29 0.40 3333-16,667 -.O6 +-.27 +0.15

AVERAGE PERCENTAGE DEVIATION 8 +54



87

In order to demonstrate the usefulness of the computer model

the results of an example problem, taken from Satterfield [48],

are shown in Table 36. Table 40 in Appendix E is the program

listing for Table 36. This program calculates h, kc and pressure

loss per unit length of bed by reading in the standard packed bed

parameters and fluid properties. Actual Reynolds number (REI) is

the Rep/(l - a) calculated from bed parameters and fluid properties.

Calculated Reynolds number (REE) is the Rep/(1 - 6) calculated from

(VY2)m. The (W2)m used is calculated from the actual REI. Since

the relationship between (VYZ)m and the Reynolds number changes

with the porosity of the bed, the constants A1 through A9 have to be

changed accordingly. The values for these constants are given in

Table 37, Appendix C.
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TABLE 36. EXAMPLE USING MODEL

GIVEN FLUID PROPERTIES

VISCOSITY (V15) 8 0.092 LB/(FT.HR)

HEAT CAPACITY (CP) 8 0.90 BTU/(LBoDEG F)

SUPERFICIAL VELOCITY (VEL) 8 1320 FT/HR

THERMAL CONDUCTIVITY (AK) 8 0.131 BTU/(FToHRcDEG F)

DENSITY (RHO) 8 1.05 L8/(CU FT)

DIFFUSION COEFFICIENT (DIF) 8 0.0296 SQ FT/HR

GIVEN BED CHARACTERISTICS

BED POROSITY (EP) 8 0.40

SPECIFIC SURFACE (ASP) 8 311 SQ FT/(CU FT)

PARTICLE DIAMETER (DPA) 8 0.01285 FT

COMPUTER RESULTS

ACTUAL CALCULATED

SCHMIDT REYNOLDS REYNOLDS

VYSM NUMBER NUMBER NUMBER

165593.6539 2.9601 322.6467 322.1269

HEAT MASS

TRANSFER TRANSFER DP/DL

COEFFICIENT COEFFICIENT PSI/FT

433.9091 98.0404 0.0397



DISCUSSION OF RESULTS

The model equations of this thesis simulate heat and mass

transfer rates in a randomly packed bed better over a wide range

parameters than any of the empirical equations we found in the

literature. This is because the equations are derived from basic

fluid dynamics and transport phenomena principles. Other authors'

equations are obtained by drawing arbitrary straight lines through

scattered data points and in some cases using special mixing or

turbulence factors to fit their data. Some of the earlier authors

did not recognize that Jd was inversely proportional to voids

fraction. ch, and not Jd, is shown to be a function of Reynolds

number by Thoenes 0 Kramers [54], Gupta 8 Thodos [22], Wilson 8

Geankoplis (60], and others. The model equations also cover the

entire range of Reynolds numbers, Schmidt or Prandtl numbers, and ,

voids fractions whereas literature equations are for limited ranges.

Comparisons between the model and empirical equations are

given in Tables 2 to 33 and summarized in Tables 34 and 35.

The equation of Chu, Kalil and Wetteroth [8] is analyzed in

‘Tables 2 and 3. Their equation is said to apply to both packed and

fluidized beds and shows no dependency of Jd on voids fraction. In

the article they show data for fixed beds with voids fractions of

about 0.4 and expanded beds of higher porosities. Table 2, which is

for a voids fraction of 0.38, shows a much better correlation than

Table 3, which is for a porosity of 0.64. The equation of Chu,
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et. a1., gives mass transfer rates that are proportional to voids

fraction compared to the model equations which indicate less

dependency. For example, at an interstitial Reynolds number of

3900, the increase in mass transfer by the Chu equation is 0.64/0.38

whereas the model equations show an increase of only the square

root of this ratio. In addition mass transfer rates are necessarily

higher in fluidized beds due to the increased surface contact between

solid and fluid which is the case in Table 2..

Thoenes and Kramers [54) present the equation shown in Table 4,

which contains three additive terms. One term is for mass transfer

in laminar flow, one for turbulent flow and one for stagnant areas.

The packing was arranged in a body-centered cubic configuration.

Analysis of results indicates that mass transfer was better in the

bed at low Reynolds numbers than the model shows. This could be

accOuntable to regular packing. In a regular packed bed there are

bottlenecks in which the fluid flows at a much higher rate than the

average velocity. Consequently mass transfer is greater in these

areas. The effect on overall transfer rate would reasonably be

greatest at lower Reynolds numbers.

Tables 5 to 8 compare a simplified formula presented by Thoenes

and Kramers in the same article which they say has a mean deviation

of t 10%. Agreement is reasonably goOd for beds with porosities of

-0.4 but model resUlts average about 15% higher than the given

formula for a voids fraction of 0.5. No tabular data is listed, but

lines on graphs presented fOr packed beds with porosities of 0.48

generally show higher rates of mass transfer than for the lower

porosities.
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The equation of Bradshaw and Bennett [5] shown in Table 9 is

in terms of Jd instead of EJd. Also the data from which the equa-

tion was derived shows a 25% standard deviation.

Kusik and Happel [31] use a free surface model to derive their

equation which is compared to the model in Tables 10 and 11. They

used boundary layer theory in the derivation. As the Tables

indicate, correlation is better at a voids fraction 0.7 than for 0.4.

This would seem reasonable for a free surface model which is described

as a Sphere surrounded by a spherical enveIOpe of fluid.

Williamson, Bazaire and Geankoplis [59] present two equations,

one for low and one for high Reynolds numbers. These comparisons

are shown in Tables 12 and 13. Agreement is not too good, especially

in the Reynolds number region where the two equations coincide.

There is considerable scattering of the data and these two equations

seemed to be the best fit.

Wilson and Geankoplis [60] used the data of the previous

article by the senior author and new data to present two new equa-

tions which are analyzed in Tables 14 to 21. The first four Tables

are for void fractions of 0.4 and the others for 0.7. It can be

seen that changing the Schmidt number from 950 to 70,600 affects

the results only at low Reynolds numbers. Figures 8 and 9, which

follow, show graphically the answers in Tables 14 and 18. The model

results follow closely the authors' equations, except in the inter-

secting region. Again in order to divide the data into two correlating

equations, it was necessary to have larger deviations at intermediate

Reynolds numbers. Similar graphs would result by plotting Tables 15

and 19, etc.
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Galloway [15] presents graphs in his thesis that are correlations

of his data and other authors. The equations presented contain

turbulence intensity factors and are difficult to compare with the

model. Two of the graphs given are plots of Sh/Scl/S versus

Reynolds number; so equations were estimated from them that are

comparable to the model. Tables 22 to 25 are for beds of spheres

and the results compare reasonably well with the model. Tables 26

to 30 are for commercial packing. Again the results compare

favorably.

Petrovic and Thodos [40] give an equation for mass transfer to

gases. Table 31 shows poor correlation at low Reynolds numbers

but the data presented in the article shows considerable scattering

especially at low Reynolds numbers. He also uses axial mixing

factors of Epstein [11] in his analyses.

Wilkins and Thodos [58] use the previous data of the senior

author and others and give a new equation for mass transfer to

gases which varies considerably from the previous equation. These

results are given in Table 33. This equation gives higher mass

transfer rates at corresponding Reynolds numbers.

Jolls and Hanratty [27] give an equation for mass transfer for

an isolated sphere in a bed of inert spheres. Table 32 shows that

- mass transfer is slightly better than for the model. This would

seem logical since the model is for a randomly packed bed of active

spheres.

Figures 10, 11, and 12 compare the model results with literature

equations for gases and liquids at voids fractions of 0.4 and 0.7.

These Figures show that the model equations agree with the various



95

Schmidt Number = 1 (Cases)

Voids Fraction = 0.4

---- Model

Table

Table

Table

Table 10

Table 22

Table 31

Table 33 
10 100 1000 10,000

 
Re : ‘uQ

41-2 ar
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Figure 12. Comparison of Model with Literature Correlations
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authors' correlations better than the correlations do with each other.

For this reason the deviation fractions in Tables 2 to 33 are based

on results of the model equations. As is indicated in Tables 34

and 35 the average deviation for gases and liquids are +34 and +51,

respectively. Root mean square deviation, which is a measure of

data scattering, is not applicable. Root mean square deviations

were determined to be 13.0% for gases and 14.2% for liquids.

Satterfield [48] uses the equation of Petrovic and Thodos (40]

and calculate. heat and mass transfer coefficients for a hydrode-

sulfurization reactor packed with cylindrical catalyst pellets.

Table 36 shows results using the model of this thesis. Units for

the answers are: heat transfer coefficient-+8tu/ft2hroF; mass

transfer coefficient-~ft/hr; pressure drop per unit length of

Dede-pounds force per square inch per foot. Agreement between the

computer answers and those of Satterfield is about 10% due to the

use of the Petrovic equation.



SUMMARY

Through the years a very large number of articles have appeared

in the literature, representing a huge expenditure of research time

and effort in the study of heat, mass and momentum transfer in

packed beds. Many of the authors have presented correlation equations

for mass transfer coefficients covering varying ranges of fluid flow

rates, physical properties and bed characteristics. The method of

computing mass transfer coefficients develOped here differs from

most of these correlations, since it is based on a physical model

and does not employ arbitrary empirical constants to fit a specific

set of data.

If we compare the values predicted by the literature correlations

with those computed by this new model, we find that the root-mean-

square deviation for the literature correlations studied is about

13.5%, whereas the average deviation between the physical model

results of this thesis and these same correlations is about 4%. In

other words the mass transfer results from the model agree better

with authors' results than a comparison of authors' results with

'one another.

The physical model is derived from basic principles of fluid

flow and transport phenomena. The bed is considered to be randomly

packed with spheres. The channels between the spheres are treated

at low'loymolds mulbers as parallel cylindrical tubes with different
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cross sections. The distribution of cross sections is described by a

distribution index, XS. The bed is assumed to be divided into layers

of these parallel passages with the length of each passage equal to

the diameter of the spheres used. The fluid from all of the tubes in

each layer mix before entering the next layer. Flow in the passages

is treated as laminar and the pressure drop across each layer is the

same through each of the parallel conduits.

Mhss transfer coefficients computed using this model are the

ones for equimolal counter-diffusion, for low concentrations, or for

other cases where J is equal to N. These coefficients are therefore

entirely analogous to heat transfer and the latter may be computed by

substituting Pr for Sc and Nu for Sh. Also in deriving the model

most of the basic transport phenomena equations used-~Leveque,

Pohlhausen, Colburn--were originally derived for heat transfer. For

simplicity, therefore, the model was derived on the basis of heat

transfer and converted to mass transfer by substitution of the

apprOpriate dimensionless variables.

Starting equations are heat and mechanical energy balances

across a passage with constant temperature walls. A correction is

added to account fer the higher pressure gradient in the transition

length. Nusselt number is calculated (a) from a weighted average of

the limiting value fer fully developed laminar flow, (b) from the

Leveque equation for developed velocity and developing temperature

profiles, to) from the Pohlhausen equation for developing velocity

and temperature profiles and (d) from the Colburn equation for heat

transfer acress tube banks. These are all combined into a continuous

equation which smooths out the transition ranges between the regimes
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described by the individual equations. Average Nusselt and Reynolds

numbers are then determined by integrating over the distribution

of the cross sections in the layer. Overall Nusselt and Prandtl

numbers of heat transfer are converted to Sherwood and Schmidt numbers

of mass transfer. Since most of the literature correlations are in

terms of Sherwood number divided by Schmidt number to the one-third

power, they are easily compared with the model.

Due to the complexity of doing the mathematics of the model

equations, they are solved by means of a computer program.

The model equations cover a much broader range of Reynolds and

Schmidt numbers and bed porosities than do any of the literature

correlations. The Colburn equation is used to account for turbulent

heat and mass transfer at high Reynolds numbers. At low Reynolds

numbers the distribution of cross sections is particularly important

since uniform passages would give higher Sherwood numbers than

experimental results show. This should be particularly important

for gas chromatography where mass transfer occurs at extremely low

flow rates in packed beds containing finely divided particles.



CONCLUSIONS

The results and conclusions of this research are summarized

as follows:

Overall mass and heat transfer coefficients and pressure

loss per unit length of bed can be predicted with reasonable

accuracy using the physical model of this thesis. Fluid

properties that need to be specified are: viscosity,

heat capacity, superficial velocity, thermal conductivity,

density, diffusion coefficient of active component through

the fluid. Bed characteristics which have to be known are:

porosity, particle size, specific surface per unit volume

and an index defining the distribution of passage cross-

sections within the bed.

The model equations cover wider Reynolds and Schmidt

number ranges than do any of the literature correlations.

Mass transfer results using the model equations show

deviations from literature correlations of 3% for gases

and 5% for liquids in the Reynolds and Schmidt number

ranges reported.

Mass transfer values calculated in.Reynolds and Schmidt

number ranges not corroborated by experimental investigators

are believed to be reasonably accurate because basic

principles of fluid dynamics and transport phenomena are used

in developing the model.
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The distribution of cross-sections introduced into the

model has an effect upon coefficients computed over the

entire Reynolds number range. The effect is greatest,

however, at extremely low Reynolds numbers where it

gives Sherwood and Nusselt numbers which are much lower

for the bed than for the limiting values for individual

passages.

Treatment Of the passages between the spheres as layers

of parallel tubes with mixing between layers proved to be

satisfactory and convenient.

The Pohlhausen and Leveque equations adequately describe

transfer in the flow develOping regions and the Colburn

equation simulates the turbulence flow results. For

simplicity reasons the model was derived on the basis of

heat transfer.



RECOMMENDATIONS FOR FUTURE WORK

After analyzing the results of this thesis the following

suggestions are made for future investigations:

a. Design carefully controlled experiments to cover a wide

range of Schmidt, Reynolds numbers and bed porosities to

further verify the results of the model. Investigate

Reynolds number regions not previously explored. With

more controlled experiments we would be justified in making

a more sophisticated model.

Using turbulent boundary layer theory or some other

theoretical method, investigate the turbulent region in

more detail to obtain a better theoretical model.

Determine the effect of distributed cross sections on

results using cylinders or commercial packing, such as

Raschig rings, instead of spheres.

Refine the fourth power method of evaluating the transition

regions when calculating Nusselt number.

Investigate the effect of particle shape on the distribution

coefficient, XS, at low Reynolds numbers. Design experiments

for gas flow mass transfer in beds of finely divided particles.

Assume venturi shaped cross sections or passages with flat

walls to see if a better model can be formulated.
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g. A theoretical model could be attempted assuming passages

with non-isothermal walls. The partial differential

equations involved, however, would be more difficult to

solve.
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APPENDIX A

DERIVATION 0F MODEL EQUATIONS

DERIVATION 95 D
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DERIVATION 95,;

V 8 1 + 64/Y

VY2 8 Y2 + 64 Y

72 + 64 v + 1024 - w2 + 1024

2
(Y + 32)2 - vv + 1024

v . (w2 + 1024)”2 - 32

MODEL EQUATIONS ASSUMING PARTICLES ARE SPHERES

The parallel cylindrical passage model is related to spherical

particles using the subscript p to represent such particles.

Volume of sphere . i 11' D: l- l
 

SCI-Race area of sphere f p" T 0

Dp 8 6(1 - c)/a (30)

Since: a . 4 s/Dav (5)

0p - 1.5 Dav(l - c)/c I (30)

Rep .. 831.393 (24)

Since: Rem, - Dav 11 Q]: [I

Dav 8 4 e/a (S)

414!

v
R°av . (39) 
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Rep 8 1.5(1 - c)Reav

Since: Shav = Dav kc/JV

D :- 6.:
3" 1571-01

Shp . Dp kc/e

_ .51

5"“ fin.

Since: Dp 8 6(1 - c)/a

G 6310

5"? vs T 0+5

Re a Y L/D

Since: L . Dp . 1.5 Dave—31+)

-=--.—-'-°~ (44

Since: Dav - (1 - XS)DIn

(23)

(38)

(25) .

(30)

(26)

(38)

(4)
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Re I 1.5 Y(1 - XS)[(1 -e)lc](Dm/D)

Since: D/Dm = (S/sm)XS (1)

XS '
Re = 1.5 Y(1 - XS)[(1 - c)/c](Sm/S) (32)

The average Nusselt number is calculated from an energy

balance over a layer of passages. For one passage at the angle

6 it has been previously shown that:

Nu . - [(0 Re Pr)/(4 L)][ln(AT2/AT1)] (10)

A similar equation can be written for the average Nusselt number

of heat flow perpendicular to the superficial velocity direction.

Nuav I . [(DavReavPr)/(4 L cos 0)][ln(AT2/8Tl)av] (40)

Since: L = 1.5 Dav [(1 - E)/c] (38)

Nuav = - {[ReavPr c]/[6 cos 6(1 - c)]}[1n(AT2/ATl)av] (33)

The average Stanton number 15 defined as: Stav I Nuav/(Reavpr)+

Stav I - {8/[6 cos 6(1 - e)]}[ln(AT2/AT1)av] (41)
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MOMENTUM'EQUATION
 

The pressure loss per unit length in terms of the parameters of

the model is determined by the fellowing procedure from the Ergun [12]

equation.

ZEEELS‘ 0’ ‘3 ——— an ."'(L") .0 138‘

{Leeseu‘fl-B R0,

 Ergun equation:

. -AP 10 0' 6)

be" By ' Q 1. cos 0 1541-4)

-(;9‘5—1¢‘=L)°‘,,L)

(VIZ). - szm/D)‘ (31)

4-

M2) . -AP 21.29:
I r“

BIY‘BmII'1.19.5

H z. 2" of en 0 a‘h-e)

Since: L I 01) I 6(1 - c)/a (30)

BY Iatvv‘). 2"?qu
g

Q 0. u a to: 0

Since: Dav/DI I (1 - XS) (4)
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:g m‘). c‘n-mo-xss r

H t D” «so a" :0 Q‘

Since: Dav ' 4 5/8
(S)

1 (VP)... (Iv ¢)(c-xs)‘s‘r"
EY-

._

11.0 1 use uq

 

The Ergun Equation in terms of the model is then:

 

O o

£19 0' c’ - “"3"("‘x"”qr—)43’! . '"7Mt‘+1.1: (42)
QLe-south-é me ”sou

Solving for pressure loss per unit length of bed:

, , u‘r‘ “-60.4346,”Ill

“W W, + (35) 
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APPENDIX B

DISTRIBUTION INDEX

XS was assigned a value of 0.3 by comparing model results with

other authors' results from random packed beds. Figure 13 compares

the equation of Wilson and Geankoplis with the model for X8 values

of 0, 0.25 and 0.50. After studying this graph and other similar

plots from other authors it was decided to use XS - 0.3 in all cal-

culations. Dm/DP ratios for simple cubic (Figure 14) and rhom-

bohedral (Figure 15) arrays or any other regular arrangement of

Spherical packing can be approximated by the following method.

Dav - (1 - ‘xsmm (4)

XS 3 l - Dav/0m

Since: Dp - 1.5 Dav(1' e)/e (33)

"S’l'fiifin‘a

Since in regular packing the passage cross sections would be uniformly

distributed (X880):

l.

D.’% = m ‘4”
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Figure 13. Comparison of Model with Data of

Wilson and Geankoplis [60]
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Figure 14. Simple Cubic Array of Spheres
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APPENDIX C

(VYZ)In VARIATION WITH REYNOLDS NUMBER

As is shown in Table 38 the (VYZ)m value to use to produce a

desired Reynolds number depends upon the porosity of the bed.

Equation 44, which is in the form:

In (W2) - Al + A2 (ln REI) + A3 (ln REUZ + -----+ A9(ln mans

can be used to predict the correct (VY2)n. Using the data from

Table 38 the average constants--Al, A2, A3, °'-, A9--were determined

by a least squares technique using the Gauss-Jordan elimination method.

TABLE 37

 

CONSTANTS FOR EQUATION 44

EP I 0.3 EP 8 0.4 EP 3 0.5 EP 3 0.6 EP I 0.7

A1 .4124SE+01 .45844E+Ol .500618+01 .SSllGE+01 .58816E+01

A2 .104068001 .10358E+01 .10360Efi01 .123085+Ol .IOS8SE+01

A3 -.8546BE-OZ -.6l4ZlE-02 .104385-02 -.7829ZE-02 .27823E-Ol

A4 -.30444E-04 .40949E-02 .726988—02 -.90$07E-02 .111835-01

AS .260675-02 .236346-02 .188415-02 .322178-02 .49379E-03

A6 -.S6269£-04 -.l8728E-03 -.2606SE-03 .891635-04 -.30353E-03

A7 -.627lBE-04 -.43577E-04 -.2726SE-O4 -.5966SE-04 .63015E-06

A8 .698415-05 .618365-05 .530918-05 .392528-05 .354458-05

A9 -.22253£-06 -.21780£-06 -.2074l£-06 -.76254E-07 -.188535-06
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TABLE 38. (VYZ)In VARIATION WITH REYNOLDS NUMBER

5P=0.3

0.8725-02

0.1735-01

0e34SE‘01

006866-01

0.1365 00

0.2695 00

0.5325 00

0.1045 01

0.2045 01

0.3965 01

0.7565 01

0.1405 02

0.2545 02

0.4415 02

0.7395 02

0.1195 03

0.1875 03

0.2885 03

0.4365 03
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0.9705 03

0.1435 04
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0.6505 04
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0.3985 05
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0.3305 06
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0.9425 06
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Ep30e4

0.5615-02

0.1115-01

0.2225-01

0e441E'01

OeBTSE'Ol

0.1735 00

0.3425 00

0.6735 00

0.1315 01

0.2545 01

0.4865 01

0.9055 01

0.1635 02

0.2845 02

0.4755 02

0.7685 02

0.1205 03

0.1855 03

0.2805 03

0.4205 03

0.6245 03
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0.1355 04

0.1975 04

0.2885 04
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0.6045 04

0.8705 04
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0.2565 05
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0.7415 05
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5.0.6.0.?
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0e37‘E'02
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OeSBBE'OI

0.1155 00

0.2285 00

0.4495 00

0.8775 00

0.1695 01

0.3245 01

0.6035 01

0.1085 02

0.1895 02

0.3175 02

0.5125 02

0.8055 02

0.1235 03

0.1875 03

0.2805 03

0.4165 03

0.6145 03
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0.1315 04

0.1925 04

0.2785 04

0.4025 04
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0.8345 04
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0.5365 02

0.8255 02
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0.2775 03

0.4095 03

0.6015 03

0.8795 03

0.1285 04

0.1855 04

0.2685 04

0.3875 04

0.5565 04

0.7965 04

0.1135 05

0.1625 05

0.2315 05

0.3295 05

0.4685 05

0.6655 05
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0.1345 06

0.1905 06

0.2695 06

EP'0e7

0.1605-02

0.3195-02

0.6345-02

0.1265-01

0.2505-01

0.4955-01

0.9785-01

0.1925 00

0.3765

0.7285

0.1385

0.2585

0.4665

0.8115

0.1355

0.2195

0.3455

0.5305

0.8025

0.1205

0.1785

0.2635

0.3865

0.5655

0.8235

0.1195

0.1725

0.2485

0.3575

0.5125

0.7325

0.1045

0.1485

0.2115

0.3015

0.4285

0.6075

0.8615

0.1225

0.1735

The values in the 5 columns to the right are Reynolds numbers,

Rep/(l - a), calculated from the model using (VYZ). values in the

left column.
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APPENDIX D

SUWARY OF IDDEL EQUATIONS

Given Data: Voids Fraction (6)

Schmidt number (Pr)

cos 0 a 0.707

XS I 0.3

Assume a value for (W2)In depending upon the Rep/(l - e) desired.

By graphical integration solve for:

a.” - (1 - XS) cosI f ‘4 (-‘-£-)”4(‘3:)

d‘ir-:—::R, (...ngm
LR g.Tx‘déi'»

The sequence used for the graphical integration is:

 (AT2/AT1)‘V '

For SIS“ values between 0 and 1, determine:

vvz - (wz). (seams)

Y I ( VY + 1024 - 32)(1 - 5.8/(RT + 175IRT))

Re - 1.5 Y(l - 115) (%£) ‘53.)”

123

(l3)

(14)

(31)

(21)

(20)

(32)
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1/2 1/3 4
4 . 1.6154(v pr)"3 + (.664 (2 Y) Pr )Nu I ((3.656

.6Pr1/3 4 .25
+ (.33 Re ) )

After Reav and (ATZ/ATl)aV have been determined:

Rep/(l - c) I 1.5 Reav

1e Fk'lhe £5129)

nuav. - fill-GSUSO 5'! AT. MI

8 e as He

'35 1-0 ' PC"

k-"‘°"’ Ea: +3]c .’ 6»!

1 a? r";. - (1"(1- xs)4(vv),
- L .

Ap/A ‘26 ‘6 a? D?

h I Nuav k a/(4 e)

(22)

(23)

(33)

(34)

(26)

(35)

(37)
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APPENDIX E

TABLE 39. COMPUTER PROGRAM LISTING FOR TABLE 2

HRITEISoII

FORMATIIHI)

MRITEISeZI

FORMATII4I/121X'CHU + KALIL + HETTEROTH (19531'./21X

I'EQUATION J 3 1.77/REEII.44'./21X

Z'SCHMIDT NUMBER 8 2.57 (GASESI'o/ZIX

3'VOIDS FRACTION I 0.38'./21X

4'R5YNOLDS NUMBER RANGE I 30 - 5000'0/21X

5'XS I 0.3'/////)

HRIT515931

FORMATI9X

I'REYNOLDS MODEL CHU DEVIATION

2'I9X

3'16UR/AZ) (6K5/ADS) (6KE/ADSI FRACTION'

4el/I

FORMATI4FI7.4)

COSINE THETA

CT‘eTO.’

CONSTANT IN LANGHAAR CORRECTION

B’Sea

SCHMIDT NUMBER EQUALS VISCOSITY DIVIOED BY

DENSITY AND OIFFUSIVITY

PR32e57

BED VOIDS FRACTION

EPI.38

EPRIII.-5P)/EP

DISTRIBUTION INDEX

XS'.3

V TIMES Y SQUARED MAXIMUM

VYSM82600.

DO 12 NIlg22

VYSMIVYSMI1.5

S DIVIDED BY S SUBSCRIPT M

SR 3 1e0625

START GRAPHICAL INTEGRATION TO FIND

AVERAGE REYNOLDS NUMBER AND

AVE TEMPERATURE DIFFERENCE RATIO

00 IO 1 3 1116

SRISR-.0625

D DIVIOED BY 0 SUBSCRIPT M

OR I SRIIXS

V TIMES Y SOUARED

VYSI VYSM I ORG-4

VARIABLE IN LANGHAAR CORRECTION

RT 3 VYS..e25

Y EQUALS DIAMETER TIMES REYNOLDS NUMBER

DIVIDED BY LENGTH

Y I ((1024.+VYSIII.5 - 32.1*(1. - B/IRT + 175./RTI)

REYNOLDS NUMBER IN A PASSAGE

REIl.SIYIEPR/DRI(l.-XS)
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TABLE 39 (cont'd,)

NUSSELT NUMBER IN A PASSAGE

AA=3.656**4+1.615**4*(Y*PR)**1.33333

BB=(.664*(2.*Y)**.S*PR**.33333)**4

CC=(.33*RE**.6*PR**.33333)**4

GNU=(AA+BB+CC)**.25

IF(I-1)15,15,9

LOGARITHM OF MAXIMUM TEMPERATURE DIFFERENCE RATIO, SR - 1

ALXM=-4.*GNU/PR/Y

STARTING VALUE FOR INTEGRAL TO FIND AVERAGE REYNOLDS NUMBER

SUMRI-RE/Z .

STARTING VALUE FOR INTEGRAL To FIND AVERAGE TEMPERATURE RATIO

SXOMRI-RE/Z. ;

SUM OF REYNOLDS NUMBERS ‘

SUMR-SUMR+RE/UR I

TEMPERATURE DIFFERENCE RATIO DIVIDED BY MAXIMUM RATIO

XOXMIEXP(-4.*GNU/PR/Y-ALXM)

SUM OF TEMPERATURE DIFFERENCE RATIOS DIVIDED BY MAXIMUM RATIO

SXOMR=SXOMR+XOXM*RE/DR

CORRECTION FOR THE INITIAL VALUE

SUMR=SUMR+RE/DR/2.

CORRECTION FOR THE INITIAL VALUE

SXOMR=SXOMR+RE/DR/2.

AVERAGE REYNOLDS NUMBER FOR A GIVEN VYSM

REAI(l.-XS)*CT*SUMR/l6.

AVERAGE TEMPERATURE DIFFERENCE RATIO DIVIDED BY MAXIMUM RATIO

DTAOMISXOMR/SUMR

AVERAGE TEMPERATURE DIFFERENCE RATIO FOR A GIVEN VYSM

XXI-(ALOG(DTAOM)+ALXM)

AVERAGE STANTON NUMBER

STAIXX/6./EPR/CT

PARTICLE REYNOLDS NUMBER DIVIDED BY (1 - VOIDS FRACTION) - 6UR/AZ

REE=1.5*REA

AVERAGE NUSSELT NUMBER

GNUAISTA*REA*PR

6KE/ADS FROM MODEL EQUATIONS

SSTIl.S*GNUA/PR**.33333

DRE/ADS FROM THE EQUATION 0F CHU, KALIL AND NETTEROTH

CHU=1.77*EP*REE**.S6

DEVIATION FRACTION BASED ON MODEL 6KE/ADS

DEVG=(SST-GRU)/SST

WRITE(S,4)REE,SST,CHU,DEVC

CONTINUE

CALL EXIT

END
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TABLE 40. COMPUTER PROGRAM LISTING FOR.TABLE 36

HRITEI5OII

FORMATIIHIYIZI/II

WRITEISgSI

FORMATIZTX'GIVEN FLUID PROPERTIES'e/IIZX

'VISCOSITY IVISI = 0.092 LB/IFToHRI'p/IZX

'HEAT CAPACITY (CF) 3 0.90 BTU/ILBTDEG FI'v/IZX

(
1

(
T

O
n

n
o
n

N

2

3 .

4 'SUPERFICIAL VELOCITY (VEL) : 1320 FT/HR'./12X

5 'THERMAL CONDUCTIVITY (AK) 8 0.131

HRITEISob)

BTU/(FT.HR.D5G FI'I

FORMATIIZXI'DENSITY IRHOI 8 1.05 LB/(CU FTI'a/IZX

I 'DIFFUSION COEFFICIENT IOIFI 3 0.0296 SQ FT/HR'o/l/ZSX

2 'CIVEN BED CHARACTERISTICS'QFIIZX

3 'BED POROSITY (EP) = 0.40'0/12X

4 'SPECIFIC SURFACE (ASP) 3 311 SQ FT/ICU FTI'o/IZX

5 'PARTICLE DIAMETER IDPAI 3 0.01285 FT'I

HRITEISeTI

FORMATI/////3OX'COMPUTER RESULTS.)

HRITEISQZI

FORMATII/IIX

I. ACTUAL CALCULATED'

Zc/IIX

3' SCHMIDT REYNOLDS REYNOLDS.

Re/IOX ‘

5'VYSM NUMBER NUMBER NUMBER.)

COSINE THETA

CT‘oTOT

CONSTANT IN LANGHAAR CORRECTION

835e8

DISTRIBUTION INDEX

XS=.3

VISCOSITY OF FLUID

VIS=.O92

HEAT CAPACITY OF FLUID

CP=.9

SUPERFICIAL VELOCITY OF FLUID

VEL=I3ZO.

THERMOCONDUCTIVITY OF FLUID

AK=.131

DENSITY OF FLUID

RHO=1.05

DIFFUSIVITY OF ACTIVE COMPONENT

0153.0296

BED VOIDS FRACTION

EP=.4

SPECIFIC SURFACE OF PACKING

ASP=3II.

DIAMETER OF PARTICLE
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TABLE 40 (cont‘d.)

DPA=.01285

GRAVITATIONAL CONSTANT

GC=4.17E+08

EPR=(l.-EPl/EP

SCHMIDT NUMBER EQUALS VISCOSITY DIVIDED BY

DENSITY AND DIFFUSIVITY

SC=VISIDIFIRHO

PRISC

ACTUAL PARTICLE REYNOLDS NUMBER

REO=DPAIVELIRHOIVIS

ACTUAL REYNOLDS NUMBER = OUR/Al

REI=REO/(I.-EPI

CONSTANTS FROM TABLE 31

Al=.4584425+01

AZ=.1035827E+01

A3=-.6142123E-02

A4=.40949ISE-02

A5=.23b3402E-02

Abs-.187284E-03

A7=-.4357685E-04

A8=.6183554E-05

A9I-.21780075-06

EQUATION TO FIND V TIMES Y SQUARED MAX'

FROM ACTUAL REYNOLDS NUMBER

A=ALOGTREII

AZIAI+AZIA+A3IAII2

AZIAZ+A4IAI53+ASIAII4+A6IAIIS

AZIAZ+A7IAII6+A8IAII7+A9IAII8

V TIMES Y SQUARED MAX

VYSM=EXPTAZT

S DIVIDED BY S SUBSCRIPT M

SR 2 1.0625

START GRAPHICAL INTEGRATION TO FIND

AVERAGE REYNOLDS NUMBER AND

AVE TEMPERATURE DIFFERENCE RATIO

DO 10 I 3 1916

SRISR-.0625

D DIVIDED BY 0 SUBSCRIPT M

OR = SRIIXS

V TIMES Y SQUARED

VYS= VYSM . DRII4

VARIABLE IN LANGHAAR CORRECTION

RT : VYS'.025

Y EQUALS DIAMETER TIMES REYNOLDS NUMBER

DIVIDED BY LENGTH

Y = ((1024.+VYS)II.5 - 32.1!(1. - B/(RT + 175./RT!)

REYNOLDS NUMBER IN A PASSAGE

RE=I.SIYIEPRIDRI(l.-XS)

NUSSELT NUMBER IN A PASSAGE
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TABLE 40 (cont'd.)

AA=3.656**4+1.615**4*(Y*PR)**1.33333

BB=(.664*(2.*Y)**.S*PR**.33333)**4

CC=(.33*RE**.6*PR**.33333)**4

GNU=(AA+BB+CC)**.25

IF(I-1)Is,15,9

LOGARITHM OF MAXIMUM TEMPERATURE

DIFFERENCE RATIO, SR = 1

ALXM=-4.*GNU/PR/Y

STARTING VALUE FOR INTEGRAL

TO FIND AVERAGE REYNOLDS NUMBER

SUMRa-RE/Z.

STARTING VALUE FOR INTEGRAL TO FIND

AVERAGE TEMPERATURE DIFFERENCE RATIO

SXOMRs-RE/Z.

SUM OB REYNOLDS NUMBERS

SUMR=SUMR+RE/DR

TEMPERATURE DIFFERENCE RATIO

DIVIDED BY MAXIMUM RATIO

XOXM=ExP(-4.*GNU/PR/Y-ALXM)

SUM OF TEMPERATURE DIFFERENCE RATIOS

DIVIDED BY MAXIMUM RATIO

SXOMR=SXOMR+XOXM*RE/DR

CORRECTION FOR INITIAL VALUE

SXOMR=SXOMR+RE/DR/2.

CORRECTION FOR INITIAL VALUE

SUMR=SUMR+RE/DR/2.

AVERAGE REYNOLDS NUMBER FOR A GIVEN VYSM

REA-(1.-XS)*CT*SUMR/16.

AVERAGE TEMPERATURE DIFFERENCE RATIO

DIVIDED BY MAXIMUM RATIO

DTAOM=SXOMR/SUMR

AVERAGE TEMPERATURE DIFFERENCE RATIO

FOR A GIVEN VYSM

XX--(ALOG(DTAOM)+ALXM)

AVERAGE STANTON NUMBER

STA=XX/6./EPR/CT

PARTICLE REYNOLDS NUMBER DIVIDED

BY (1. - VOIDS FRACTION) a 6UR/AZ

REE=1.S*REA '

AVERAGE NUSSELT NUMBER

GNUA-STA*REA*PR

6KE/ADS FROM MODEL EQUATIONS

SST=1.S*GNUA/PR**.33333

HEAT TRANSFER COEFFICIENT

AH=GNUA*AK*ASP/4./EP

MASS TRANSFER COEFFICIENT

AKC=ASP*DIF*SC**.33333/6./EP*SST

PRESSURE LOSS PER UNIT LENGTH OF BED

DPDL-9.*ASP**2*VIS**2*(I.-EP)**2

DPDLaDPDL*(1.-XS)**4*VYSM/128.

 a};



131

TABLE 40 (cont'd.)

DPDL=DPDLlGC/EP**4/R
HO/DPA/144.

HRITEIS.3)VYSM,PR.RE
I.REE

FORMATI/4F17.4)

HRITEISI4I

FORMAT(/////6X

W
I

1' HEAT MASS

TRANSFER

COEFFICIENT
2' TRANSFER

3' COEFFICIENT

FORMATI/9X3Fl7.4)

HRITEI5.8)AH9AKCVD
PDL

CALL EXIT

END

0)

F URES SUPPORTED
1F

T E NDED PRECISIJN

(I

A

x

0 s

R

E

E

I

:9 E REQUIREMENTS FOR

“OHMDN O VARIABLES 172 PROGRAM

EVD OF COMPILATION

[I XEQ

'o/BX

1312

DP/DL'9/7X

PSI/FT')

 

I

I

n
.
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APPENDIX F

TABLE 41. SHERWOOD NUMBERS, UNIFORM AND NON-UNIFORM PASSAGES

REYNOLDS

(4UR/AZ)

0.0002

0.0004

0.0009

0.0018

0.0037

0.0074

0.0147

0.0293

0.0582

0.1154

'0.2279

0.4483

0.8785

1.8971

3.2358

8.0289

10.8788

18.9190

31.8884

51.1938

80.4313

123.8393

187.0805

279.9594

415.8919

813.8238

901.4041

1318.3273

1920.0885

2785.5598

4028.4345

5800.9157

8333.1087

1 1940.4843

1‘I072.5998

SCHMIDT NUMBER 8 1

VOIDS FRACTION 8 .4

SHERWOOD

(XS303’

1.1300

1.1302

1.1310

1.1320

1.1337

1.1364

1.1410

1.1493

1.1646

1.1937

1.2459

1.3294

1.4542

1.6377

1.9065

2.2956

2.8416

3.5732

4.5129

5.6792

7.0988

8.8263

10.9363

13.5222

16.7032

20.6271

25.4737

31.4590

38.8428

47.9403

59.1366

72.9045

89.8261

110.6193

136.1690
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REYNOLDS

I4UR/AZI

0.0007

0.0015

0.0030

0.0060

0.0120

0.0239

0.0476

0.0945

0.1872

0.3698

0.7278

1.4240

2.7603

5.2708

9.8294

17.7197

30.6258

50.6487

80.5665

124.4274

188.4019

281.8330

418.5266

618.4262

909.9348

1333.2542

1945.2162

2826.2189

4090.1040

5898.1543

8478.8974

12156.1121

17388.4383

24825.4019

35386.6635

SHERHDOD

(X5801

3.6560

3.6560

3.6560

3.6560

3.6560

3.6561

3.6563

3.6568

3.6580

3.6611

3.6690

3.6890

3.7392

3.8611

4.1339

4.6595

5.5049

6.6785

8.1774

10.0291

12.3023

15.1029

18.5683

22.8646

28.1877

34.7702

42.8924

52.8964

65.2029

80.3305

98.9195

121.7597

149.8247

184.3144

226.7064

 {3

.‘Il..- _.
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TABLE OF NOMENCLATURE

Primary Quantities

 

§ZEB£1. Dimension Name

F Force

H Heat

L Length

M Mass

T Temperature

t Time

Secondary Quantities

 

 

 

 

 

 

 

 

 

 

 

  
 

       

Symbol Name Dimensions

r—- "“‘

H L M T t

8 Packing area per unit volume of -1

bed

C Heat capacity of flowing fluid 1 -l -1

D Diameter of a given passage 1

Dav Average diameter of a passage 1

Dn Maximum diameter of any passage 1

Dp Particle diameter ,1

Diffusivity of solute in flowing 2 -l

‘5 fluid

G Mass velocity of fluid in a -2 l -1

given passage

Gav Average mass velocity of fluid -2 I -1

LL perpendicular to cross-section
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TABLE OF NOMENCLATURE (cont'd.)

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Symbol Name Dimensions

' F II L M T t

gc Gravitational constant -1 l l -2

h Average Fluid film heat transfer I -2 —l -1

coefficient parallel to the bed

axis

k Thermal conductivity of fluid 1 -1 -l -1

k Average mass transfer coefficient 1 -1

L Length of parallel passages l

m Mass flow rate in a given passage 1 -l

P Pressure exerted by fluid 1 -2

S Total cross-sectional area of all 2

passages having diameters less

than D -

Sm Total cross-sectional area of 2

all‘passages

T1 Temperature of fluid entering l

a passage

T2 Temperature of fluid leaving 1

a passage

T Temperature of fluid at any 1

p point in a passage

Tw Temperature of the passage wall 1

u Average linear velocity of fluid, 1 -1

based on empty cross-section,

perpendicular to the cross-

section of the bed

w Velocity component perpendicular l -1

to the cross-section

p Fluid density -3 l

u Fluid viscosity -1 1 -l
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TABLE OF NOMENCLATURE (cont'd.)

91112119115

Name
 

Voids fraction (voids volume/total bed volume)

Average angle between passages and average flow

direction in bed (degrees)

Constants in Langhaar [32] correction factor for Y

Constant and exponent in: ShPIScl/3 [c/(l - 8)]

3 C1[Rep/(l - 6)]x

Exponent which depends upon the distribution of

passages

l/s

Dimensinnlessfima

Name
 

Graetz number

Colburn mass transfer factor

Colburn heat transfer factor

Nusselt number in a passage

Average Nusselt number in all

passages

Prandtl number of fluid

Reynolds number in a passage

Average Reynolds number in

all passages

Reynolds number based on

particle diameter

Basic Formula

Cu/k

0 Ch:

Dav Gav,"

Dp uQ/u
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TABLE OF NOMENCLATURE (cont'd.)

Dimensignlgss 919335

Name
 

Variable in Langhaar [32]

correction factor

Schmidt number

Average Sherwood number

Sherwood number based on

particle diameter

Average Stanton number

Velocity head

Maximum VY2 factor

Parameter of Langhaar [32]

Basic Formula

(vyz).25

.11.

u!

Dav kc/D

DP kc/D

h/C Gav

- P

Q Iiélu’dd

VY2(Dm/D)4

D Re/L
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