—-.—-,;--1,“-‘[:T;:z ”1.1, -~-. .111.“ 11'1" “222122.233 2232321. 2.62322 .1; - I 1221::- 22“ 22M 2222" - " f1. .. r'W «IIIII'I ; III. 221111 12122221325211: I22; 3’“ 221111.1“11 111:1 312% 292321‘2F.‘ *3 222222221 «1322 12111112 c1113; 2 111222 11111 f1L1 “(12271233131 %22 I22M2WWHVMHW'w fififi ( 3 2J2 " 2222 22 2312 L‘I 222322222 21:21-11? 22 2 222 22 2222222222 '22222 223.122 3 I22? I“ 22 2|2I11II‘III 22" 2215“ . 2 2 2 I133III1‘22212II2122212222I “22 I22 3| I 22222 225i Irv-I222 2 22 2 43-2 2| L2 :- 1IIIII212‘2‘ 22222 22232 III“ I2I"%, I’fiiflI 111 L|112I|g1121221112d121411|2f1”£33 2 ' 1' g?" 222222-32: 5' .2- 7262" ;.2 1. h 'J.‘ 2‘- 1 W21 1111’“ 412 32111-211222 ' .. ' 22222221.: ”~I2II'I 32 "III : 1 2 2321"},2'1 :21Ir2'1'7gI1. 1111fl311‘ .st 2. III... I I 1 222“ I22 IIII 2 3 II 22I1IIII} 2III22h 2? ii 7 I h32NQI32vfifi . 11 72' 3 93332 3 I} fr 2E2 WI ' I III 2! E! 111 { 111111111 '22 222 222222 '2 III III I2 .2, II 4C 2412 2.221(222 t3 2 122 1111:7131121 :1»? 2‘3: _-| I; ”I 11:11. _1 ‘ 2‘: :1???“ - 222D 2 22121“ n2 2122\1III2 211222 112i2 [11 1 1 .’1 11, 22.32252, 2 2 I ,11227 11311.1 2IIIII ...22II.IIII . .22 22'2 2222 2|2 I222 2 III 222222 22242111222 |2|2222|22L2|121122122222111 “2222222112222 22222222 2213252112 2r21t1111:111212‘22: 222|I | _‘ ‘ .__1"- _~~’——-—— _. 212222222 22' 22222222222222 I2I2| 2222223 22222 2122' I222“ 222221:I III 222212 .1IIII2I1III 22122222”.2I2222 |2122 212'21 11111111111 111.1. 11 . 1- IIH2II 2.2I‘,IIII22 III2I|212III I|I 3222321222121 22211222222222? 22 2 2 2 222 222|22II2 2 22 222 2mm“ |I12111I1I112111i11111 11 222222 22222 2122222222 . . 1. 2121.22 .3212 12112221 1 22 1 1“ 222.222' I2 2 I22 222 III'22 2 2222 212ng II.2'2 "III2222222I222 222 II. . 2 I22| I 221‘ 2222222 11.1 IJ2|I 121.22 222II (1’21” 2212”” 22 I.“ lI2I |I2 2 222 2I2222I22222 222212221222 {22112222222 2222 21262322222222 I 2 2.22 II 222 222 2 2 I I11 2 '1I 2222|2 I.112|111I i 1222 2‘2 222 2 222.. 2 I I I 1. . III.2II22II’221II2‘I 2 22222222 I 22.‘ 2222-2«2.I2421I2I222I2222I¥-I. III“ 22 ‘I 2-um‘mm3n2I222l 212:2!“ Puma“! I. .‘z ""*’ LIBRARY Michigan State University //l in]; mm ”WW/m, Mm.-. ‘._..__ 1 a, 7 This is to certify that the thesis entitled A NEW METHOD FOR THE SOLUTION OF ANISOTROPIC THIN PLATE BENDING PROBLEMS presented by Benjamin Chin-wen Wu has been accepted towards fulfillment of the requirements for __.Eh.D..__ degree in mechanics. Date February 14, 1980 0-7639 MAY 1 2 203‘ OVERDUE FINES: 25¢ per day per item RETUMIIKS LIBRARY MTERIALS: Place in book return to remve charge from circulation records A NEW METHOD FOR THE SOLUTION OF ANISOTROPIC THIN PLATE BENDING PROBLEMS BY Benjamin Chin-wen Wu A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Metallurgy, Mechanics, and Materials Science 1980 ABSTRACT A NEW METHOD FOR THE SOLUTION OF ANISOTROPIC THIN PLATE BENDING PROBLEMS BY Benjamin Chin-wen Wu A numerical method for the solution of thin plate pro- blems is presented. With the conventional assumptions for thin plates implied, plates of arbitrary plan form, sub- jected to arbitrary loading and boundary conditions, and made of anisotrOpic material are considered. This method is developed from the concept of the indirect boundary in- tegral method. The indirect boundary integral method uses the Green's function of a clamped circular plate of isotrOpic material. To solve an isotropic thin plate problem, the first step is to embed the real plate into the fictitious clamped cir- cular plate for which the Green's function is known. Along the embedded contour, N points are prescribed, at which the boundary conditions for the original problem are specified. The numerical solution of the problem is then to find the magnitude of the set of N line forces and N ring moments imposed along the embedded contour such that the boundary conditions at the N boundary points are satisfied. With this method, problems with clamped and simply supported boundaries can be easily solved. For a free edge, however, due to the logarithmic nature of the Green's function and the fact that fourth order derivatives must be taken for the fictitious ring moments in the boundary condition equations, there are second order singularity difficulties during the numerical integration along the embedded contour. In this thesis, three major modifications are intro- duced. These are (1)the set of fictitious moments are re- placed by an additional set of fictitious forces, and the entire set of fictitious forces is located outside of the embedded contour, (2)the numerical integration is replaced by a simple summing process, and (3)the Green's function for a clamped circular plate is replaced by the Green's function of an infinite plate. With these modifications, significant improvements in solution accuracy and compu- ting efficiency have been achieved. The second order sin- gularity difficu1ties associated with free edges are avoided, and due to the simplicity of the new method, the computing costs are reduced by about sixty percent. Since the Green's functions for orthotropic and anisotropic infinite plates are also available, the new method is readily extended to orthotropic and anisotropic thin plate bending problems. ACKNOWLEDGEMENTS The author wishes to take this opportunity to express his gratitude and deep appreciation to his major advisor Professor Nicholas J. Altiero for his able guidance and sincere encouragement during the course of this thesis research, and for his spending many hours with the author in the preparation of this thesis. Special thanks are due to other members of the graduate guidance committee, Professor William A. Bradley, Professor George E. Mase, Professor Larry J. Segerlind, Professor David H. Y. Yen, and Professor David L. Sikarskie of the University of Michigan for their helpful advice, suggestions, and dis- cussions. To the Department of Metallurgy, Mechanics, and Materials Science of Michigan State University, the author is grateful for its support on computing costs. The author also wishes to thank his parents for their continuous encouragement during his studies and research for the past many years. Finally, and most importantly, the author wishes to acknowledge his wife Wei Sheng. Without her genuine understanding, encouragement, and moral support in the past several years, this work could never have been done. ii LIST OF TABLES . . LIST OF FIGURES. . LIST OF APPENDICES. INTRODUCTION. CHAPTER I CHAPTER II CHAPTER III CHAPTER IV APPENDICES BIBLIOGRAPHY. TABLE OF CONTENTS PRELIMINARIES ON PLATE THEORY. . . 1.1 1.2 1.3 GOVERNING EQUATIONS . . . . BOUNDARY CONDITIONS . . . . THE GREEN'S FUNCTION METHOD . INTEGRAL EQUATION APPROACH. . . . 11.1 11.2 A NEW 111.1 111.2 THE BOUNDARY INTEGRAL METHOD . THE AUXILIARY BOUNDARY METHOD. METHOD . . . . . . . . ISOTROPIC PLATE PROBLEMS . . ANISOTROPIC PLATE PROBLEMS. . III.2.1 ORTHOTROPIC PROBLEMS . III.2.2 ANISOTROPIC PROBLEMS . CLOSURE . . . . . . . . . . iii Page iv 12 30 Q6 .127 Table 10 11 LIST OF TABLES Comparison of numerical and exact results for a square plate, edge one free, edge two and four simply supported, and edge three clamped . . . . . . . . . . Comparison of numerical and exact results for a square plate, edges one and three free, edges two and four simply supported. Comparison of computing costs. . . Comparison of results of a simply supported triangular isotropic plate. . . . . Comparison of results of a clamped square plate, double-looped fictitious forces at am and 6m away from the plate boundary. . Comparison of results of a clamped square plate, double-looped fictitious forces at 1m and 3m away from the plate boundary. . Comparison of results of a clamped square plate, double-looped fictitious forces at 0.5m and 2.5m away from the plate boundary Comparison of results of a clamped square plate, single-looped fictitious forces at um away from the plate boundary . . . Comparison of results of a simply supported orthotrOpic square plate, Ex=2.068X10 MPa, Ey=Ex/15, vx=0.3, h=0.01m, p=0.1. . . . Comparison of results of a simply supported orthotrOpic square plate, E =2.06BX10 MPa, Ey=EX/1S, vx=0.3, h=0.01m, §=1.o. . . . Comparison of results of a simply sup orted orthotrOpic square plate, E =2.068X10 _MPa, X Ey=Ex/15, vx=0.3, h=0.01m, p=10.0 . . . iv Page 28 29 36 42 U3 US 56 57 Figure LIST OF FIGURES Problem of interest. . . . . . . . . Problem for which analytic solution is known Fictitious problem . . . . . . . . . A square plate with an auxiliary integration contour O O O I O O O O O C O O O A square plate with two sets of fictitious forces . . . . . . . . . . . . . A simply supported equilateral triangular isotrOpic plate . . . . . . . . . . Comparison of results of a triangular plate. A simply supported orthotropic plate . . . Flow chart for the computer programs . . . Page 16 20 20 26 32 35 37 55 66 LIST OF APPENDICES Appendix ' Page A Derivatives of the Green's function for a clamped circular plate . . . . . . . 67 B Computer program for the boundary inte- gral method . . . . . . . . . . . 80 C Computer program for the point-force method . . . . . . . . . . . . . 90 D Derivatives of the Green's function of an infinite orthotropic plate . . . . . 95 E Computer program for an orthotrOpic problem. 100 F Derivatives of the Green's function of an infinite anisotropic plate . . . . . 107 G Computer program for an anisotropic problem. 112 H Computer program for the verification of equations used for anisotropic problems . . 119 vi INTRODUCTION The thin plate bending problem is one of the most common problems in structural engineering. Design engineers encounter it daily. Plate theories and methods of solution can be traced back to the early eighteenth century. Famous names like Euler, Bernoulli, Lagrange, Navier, and Kirch- hoff were all involved in the development of plate theories. In this century, Nadai, Love, Huber, Timoshenko, Lekhnitskii, von Karman, and Reissner, to name a few, are well-known for their work related to plate problems. Mathematically, the thin plate bending problem is a typical boundary value problem. Since solving the problem reduces to finding a solution satisfying the governing fourth order partial differential equation and all the boundary condition equations, exact solutions are available only for special cases. In addition to many common methods for a wide range of problems shown in [1], the method of complex va- riables has been successfully applied [2,3,u,5,6] solving many additional problems. However, for a generalized pro- blem, numerical techniques such as finite difference and finite element methods must be employed, [7,8]. In this dissertation, a different numerical method is introduced. Developed from the concept of an indirect boun- dary integration equation method [9], the new numerical method employs a known Green's function, the scheme of em- bedding the real plate in a fictitious plate for which the Green's function is known, and the imposition of fictitious forces so that all the boundary conditions are satisfied. This method is very effective because of the simplicity of 2 its formulation. It can solve constant thickness plate problems with arbitrary plan form, arbitrary loading and boundary conditions, and anisotrOpic material properties. Since the fictitious forces are located far away from the plate boundary, this method gives more accurate results near the boundary than does the boundary integral method. The procedure of this method can be summarized in three steps. The first is to find a Green's function of a certain type of plate problem. Many of them are avail- able. Take isotropic problems for example. The Green's functions for a clamped circular plate [1,3,10], and for an infinite plate [1] are two possible choices. The second step is to embed the real plate in the aforementioned fic- titious plate for which the Green's function is known, and prescribing a set of N boundary points. Since there are two boundary condition equations associated with each boun- dary point, a set of 2N fictitious forces are placed around the plate boundary. Solution of the problem, therefore, involves the determination of this set of 2N fictitious forces such that the 2N boundary condition equations are satisfied. The third step is to superimpose these 2N fic- titious forces onto the actual loadings of the plate and compute the deflections and bending moments inside the plate. There are four chapters in this dissertation. The governing fourth order partial differential equations for isotropic, orthotrOpic, and anisotropic plate problems and their associated boundary condition equations are reviewed in Chapter I. Chapter II introduces the indirect boundary integral method originally derived by Altiero and Sikarskie [9]. Their method is modified by moving the integration contour to the outside of the plate boundary. In so doing, the second order singularity difficulties for the free edge boundary conditions, encountered in their work, are avoided. In the meantime, a significant improve- 3 ment in the solution accuracy is noticed. Chapter III illustrates the new point-force method for the solution of a generalized thin plate bending problem. The point- force method contains three major alterations over the boundary integral method, though the basic concept remains. The three changes are (1)the set of fictitious moments are replaced by a second set of fictitious forces, (2)the inte- gration is replaced by an algebraic summing process, and (3)the Green's function for a clamped circular plate is replaced by the Green's function of an infinite plate. These changes have made the original method more effective. A saving of sixty percent for computing costs is realized. More importantly, it is due to the successful use of the Green's function of an isotrOpic infinite plate and, the Green's functions for orthotropic and anisotropic infinite plates are readily known [11,12,13], the new method can be extended to solve general orthotropic and anisotropic plate problems as well. Chapter IV presents several comments regarding to this new point-force method. In order to verify the method, several test cases have been solved. The results are tabulated and graphed, and the computer programs are included in the Appendices. Though these computer programs are specifically designed for the example problems, they can be easily revised to accommodate general problems. CHAPTER I PRELIMINARIES ON PLATE THEORY I.1 GOVERNING EQUATIONS Following the assumptions involved in the well-known Kirchhoff—Love small deflection plate theory, all of the stress components within the plate can be expressed in terms of the vertical deflections, w(x,y). Therefore, for static equilibrium, the governing differential equation can be derived in terms of the deflection function and the two independent coordinate variables x and y. For the three material types, namely isotropic, orthotropic, and aniso- trOpic, the derivation of the governing differential equa- tions can be found in most texts on plate theory [1,7,1u]. Assuming constant thickness, for isotropic plates, the governing differential equation is 3“w(x,y) + 2 3“w(x,y) + a“w(x,y) = q(x,y) (1) 3x“ 8x23y2 By D where w(x,y) is the vertical deflection of the plate after bending, q(x,y) is the load in the vertical direction, and D is the flexural rigidity of the plate defined by 3 D = Eh 12(1-v2) where E is the Young's modulus, v is the Poisson's ratio, and h is the plate thickness. 5 For an orthotropic plate which has its geometric coor- dinates aligned with the principal material directions, the governing equation is kw” 2H—1(x—'Y—)-+D——3"—(l‘—’-X)—-q(x,y), (2) 3x 3x28y Y 3y“ where, E ~h3 E -h3 = X . = x . = E Dx 12(1-vxvy)’ Dy 12(1-vxvy)’ and H vay + 12 The subscripts x and y indicate the principal directions of the material constants, and G is the modulus of rigidity. Finally, the governing equation for an anisotropic plate, with one plane of material symmetry parallel to the middle surface of the plate is D __W(_Xr_.‘L)_ + DD _w_<><_lx)_+ 2(D12+2D6)M ax ax3ay axzay to to ., 140263—1341)— + Dnmlxl = DD“), (3) axay3 3y“ where Dij are associated with the material constants, and are determined as follows: D = ha (ayaGG’afiz) . D = ha (alLa 66'3152 ) , 11 12 det. ' 22 12 det. ' D = ha (311912-3112) . D = h3 (aleazi-anass) . 56 12 det. ' 12 12 det. ' D = h3 (31232;:322316), D = ha (aizais‘aiiaze) , '5 12 det. ' 26 12 det. ' and, a11 a12 a16 det. = a12 a22 a26 , a16 a26 a66 aij is the material constant matrix, i.e., r r j r ‘ 6x 1 a11 a12 a16 0x 16y > =1 a12 a22 a26 i 10y 1 nyJ La16 a26 a66J LTny The coefficient, a , are: v n n a =—1_p a =-—-§;a =M=M 11 12 16 G E ’ x x xy x 1 1 n x nx a = ___ ; a = ___ ; a = _XL_X._ __XLX 22 E 66 G 26 G E ’ Y XY XY Y where n and n are called the coefficients xy,x’ nxy,y' x,xy' ny,xy of mutual influence of the first kind and the second kind, res- pectively, [15,16]. Physically, it is clear that they represent mutual influences between shear strains and normal stresses and between normal strains and shear stresses. 1.2 BOUNDARY CONDITIONS Only the three major types of boundary conditions, namely, (1)clamped, (2)simply supported, and (3)free, are considered in this dissertation. Many others such as elastically-supported edges can also be handled with minor changes. The equations 7 associated with these three major types of boundary conditions are (1)Rigidly clamped edge (BC): w(x,y) = 0 ; gfléfiLXL-- O . (Ha) (2)Simply supported edge (BS): w(x,y) = 0 ; Mn = O (ab) (3)Free edge (Bf): ant .M = O ; N 4- n = 0 (HC) n n as , where 5% is the derivative along the contour arc, Mn is the unit edge bending moment, Nn is the unit edge shear force, th is the unit edge twisting moment, and the subscript n means acting along the normal direction of the edge. These values can be written in terms of their components in the x and y directions as M = M -n 2 + M -n 2 + 2H -n on (5a) n x x y y xy x y = — O O O 2 — 2 th (My Mx) nX ny + ny (nx ny ) (5b) N = N 'n + N -n (5c) n x x y y where nx and ny are direction cosines of an outward normal to the contour arc. For an anisotropic problem, the bending moment, twisting moment, and shear force in the x and y directions can be written in terms of the deflection function w(x,y) as 82w 32w 32w M = - (D -—— + D ——— + 20 ) (6a) x 113x2 123y2 165x5y _ 32 82w 32w My - (D123x2 + D223y2 + 20265??? ) (6b) 32 32w 82w H = - (D + D + 2D ———— ) (6c) xy 163x2 268y2 663x3y 3 a 3 Nx = - [D113e5 + 3D16 a w + (012+ 2D66) a w 3x3 szay axay2 3 4. D263 W ] (6d) 8y3 33w 33w 33w N = - [D ——— + (D + 2D ) + 3D y 163x3 12 66 axzay 263x3y2 3 + 022—3 w ] (69) Bya Substituting Eqs. (5) and (6) into Eq. (a), the boundary condition equations for anisotropic plates can be written explicitly as w(x,y) = 0 on Bc + Bs (7a) fiéralm + 91.92am = D on D (7D) x X By y c 32W(XIY) O 2 O O O 2 2 [D11 nx + 2D16 nx ny + D12 ny] 3x 32W(X,X) + 3x3y [2D1 -n2 + an °n -n + 2D . 2 6 x 66 x y 26 my] + 2 2 X Y Y 5 By 26 x 22 f (7C) 3 3.119111). . 2 .s- ..2 3x3 [D11 nx(1+ny )+2D16 ny D12 nx n ] 3 + 3 W(XLY) [4D °n +D °n (1+n 2)+tlD -n 3-D -n 2'1': 3x23y 16 x 12 y x 66 y 11 x y 3 - ..2é_v_1l>;:_y_>. . . 2 .a 2D26 nX ny ]+ axayz [L1D26 ny+D12 nx(1+ny )+uD66 nX a .. . . 2- . 2. M . 2 D22 nx ny 2D16 nx ny] + 3y3 [D22 ny(1+nx ) O 3- O 2. = +2D26 nX D12 nx ny] O on Bf (7d) BC is the clamped portion of the boundary B, B8 is the simply supported portion of B, and Bf is the free portion of B. Clearly, B=B¢+BS+Bf. D66 being replaced by Dx’ Dy' and Dk' respectively; D12 by vny For orthotropic plate problems, with D11, D22, and or vyDX; and D16=D26=0; Eqs.(6) and (7) can be reduced to 82w(x y) 32W(X X) Mx = -D [ ' + v ' ] (8a) X 8X2 y 8y2 82w(x y) 32w(x y) M = -D [ ’ + v ' ] (8b) y y Syz X 8x2 32w(x ) xy k 3x8y 10 2 2 Nx ___ __ 5%[Dx a w(x,y) + H3 w(x.1)] (35) 3x2 3Y2 2 2 ' N = _ §3_[H a w(x,y) + D 8 w(xly)] (8e) Y Y 3x2 y 3Y2 where, _ G-h3 _ Dk _ 12 , and H — vay + 2Dk w(x,y) = O on BC '1' BS (93) 3w(x,x>.n + BELEIXL.D = 0 on B (9b) 8x X By Y C 2 2 a—EifiLXL(D -n 2 + v D -n 2) + 3 W(X'~X)(D -n 2 + v D °n 2) 3x2 X X X Y Y 3Y2 Y Y X x 2 . . = + B 9 + Bxay k nx ny) 0 on BS f ( c) 83w(x,y) . 3 . . 2 - 3X3 [Dx nx + DX nx ny (2 vy)] + 83w(x,y)[v D -n (1+n 21+un -n 3-D -n2«n 1 axzay x y y x k y x x y 3 + 3 “(x'¥l[v D 'n (1+n 2)+un x x y 3 2 on -D on on ] axay2 X Y X y k 33w(xIY) aya + . 3+ D on 2on 2-v = 0 on B (9d) [Dy ny y x y( X” 11 For isotropic plate problems, these two sets of equations _D(1-v) can be further reduced by having Dk——_2_—— , vx=vy=v, and D =D =H=D: X Y 2 2 M = _ D[ 8 W(XIY) +\) a w(xri)] (10a) X 8x2 3y2 2 2 M = - D[ M+VM] (10b) y 3y2 8x2 2 H = - D(1-V)§_El§LXL (10C) xy 8x8y Nx = - ”3—3)? [ V2w(x,y)] (10d) _ 3 2 Ny — - D5; [V w(x,y)] (10c) where, VZW(X,Y) = BZW(Xpi) + 82w(xlz) 8x2 3y2 and; w(x,y) = O on BC + Bs (11a) EELELXL°n + agiiLXl’n = O on B (11b) 3x X By y c 12 3 3 a w(x,y) n [1m 2(1_D)] + 2.13211 D [1+n 2(1-v)] 8x3 X y 3y3 y x a + g—ELELXL n [(2v-1)n 2 + (2-v)-n 2] 3x23); y x Y 3 + M n [(Zv-1)n 2 + (Z-V)°n 2]: 0 on B (11d) axay2 X y X 1.3 THE GREEN'S FUNCTION METHOD Solving a plate problem is, mathematically, to find the deflection function w(x,y) such that the governing differen- tial equation as well as the prescribed boundary conditions are all satisfied. For the special problem of a concentrated force applied at an arbitrary location, the solution is called the "Green's function" of the problem, and is often written as G(x,y;€,n). That is, with the prescribed boundary conditions, a Green's function will provide the deflection at any point (x,y) when there is a concentrated force located at some point (€,n). The deflection function for a distri- buted load q(x,y) over a region R inside the plate can be written, using superposition, as: w(x,y) = ffRG(X,y;€,n)°q(€,n)d€dr1 (12) This is called the Green's function method or the influence function method, [1]. The Green's function can be either in closed form or in infinite series form, and varies with the problem. For isotropic problems, there are many Green's functions available. Some examples are given here. The Green's function for a clamped circular plate is [1,3,10], 13 G(x,Y:E,n) = -—1———wua2-x2-y2)(aZ-aZ-nz) 16nDa2 (13) +[a2(x-€)2+a2(y-n)2]ln .a2(x-€)2+a2(y-n)2 (az-xz-yz)(az-Ez-n2)+a2(x-Efiga2(y-nV where a is the plate radius. There are two well known Green's functions for a simply supported rectangular plate, and both of them are of the infinite series type. The one with double trigonometric series is called the Navier's solution, while the single trigonometric series function is named after Levy, [1,7] singleE sinflgxisinggé sing;11 G(X:Y:E:n)= 11 Emil 2 2 (1“) Dn ab ( m + n )2 3.2 32 m=1,2,3,4,...w; n=1,2,3,4,...m and, 2 B y B y 8 n B n _ a _ m m __ m m G(x,y,g,n)— D."3 1% (1+BmCOtth TCOth—b TCOth—b ) B n B y sinh-g— sinh—g— sinfllé sing-g—é x a (15) masinhB m where, Bm=flg2, and m=1,2,3,ll,...co ; if y{-nx(Qk)IBG‘xL§g5'”)ds(a.n) 1 S (21) _ BG(x y;€,n) ny(Qk)ka LOT] —dS(€pT1)] This method works satisfactorily if free boundary con- ditions are not included. For a free edge, the two boundary condition equations are as shown in Eq.(11). It can be seen that, associated with the fictitious moments, there are eight terms involving fourth order derivatives of the Green's function, Eq.(13). When integrating along the kth side of the polygon B, there will be difficulties in the evaluation of the second order singularities. That is, there will be terms such as f 1 dSk(€rn) (x-€)2+(y-n)2 Sk which pose difficulties when €+x and n+y. In addition, like other boundary integral methods, the errors in the region near the boundary can be substantial. Due to these two di- ficiencies, an "auxiliary boundary" method has been deve- loped. This method is presented in the following section. 11.2 THE AUXILIARY BOUNDARY METHOD The only difference between the current method and the boundary integral method discussed in the previous section is that an integration path, 8*, is chosen dif- ferent from the plate boundary, B; see Figure 3. In so 20 /lLL//// LO _ a (£1 7]) Figure 2. Problem for which Analytic Solution is Known. ///L///// Z Figure 3. Fictitious Problem 21 doing, the singularities which arise in the integrand during numerical integration for the free boundary condition are avoided. Since integration is now carried out along the fic- titious integration path, B*, there is no need to model the plate with an N-sided polygon. Instead, there are N boundary points prescribed on B where boundary conditions are to be satisfied. This, combined with the fact that the fictitious forces and moments are now located away from the boundary, provide significant improvements in the solution accuracy. For example, at the center point of a clamped rectangular plate, the errors for displacement and bending moments are reduced from 1.8 and 8.0 percent, shown in [9], to 0.0“ and 1.6 percent, respectively. Following the aforementioned procedure but integrating along B* instead of B, plate problems with mixed boundary condition of all the three types can now be solved. Writing the boundary condition equations more explicitly, Eq.(11) become P P*(€,0)G(x,y;§,0)d5(5,n) D. +:*Mg(g.n>[-nx = ‘fi{q(€:n)G(x,y;£,l)d€dn (22a) if (x,y) is on BC + BS; 2 P* B'k 32G(X,y;§,n) )BZG(X11;gIT]) -nx(€:n)ny(X:Y) ayag -ny(g'n)nx(x'y 3X30 -n (g )n (x )BZG'X'Y’g’”)]ds<€ n) y In y :Y ayan ' (22b) 22 8G(x,yg§,n) =-ffq(f;,n) [nx(x,y) ax’ +ny(x.y) aG‘xg§‘€'”’ ldadn if (x,y) on BC; 826(x.y;€.n) 326(x.y:€.n) é P*(€,n)[n;(x,y) 3* 3x2 +2nx(x,y)ny(x,y) Bxay 2 0 +1.12 (X,Y)a G(x’y’€’n)]d5(€,n) Y 3Y2 3 O +¢ M;(E;,n)[-nx(€,n)n;(x,y)a G(X'Y'5'”) 3* 3x236 a3G(x,y:€,n) -2nx(€.n)nx(xvylny(x'y) axayai 336(X1Y1510) szan 33G(x.y:€.n) -n (€,n)n2(x,y) X y 3y23£ 2 -ny(€,n)nx(x,y) 33G(XIY7€IU) Bxayan -2ny(€,0)nx(xpy)ny(xry) 336(XIY7SIU)]dS(€’n) _ 2 ny(€.n)ny(X.y) Byzan 2 , 2 , a G(X.y.§.n)+2nx(x'y)ny(x'y)3 G(xLy,€,n) __ 2 - [RIQ(§171) [nX(XIY) 3x2 3X3)! 2 . +n;(X,Y)3 Gny(XvY’] axay 2 . 18 G(XIYI€IH) }dS(E'n) + n2 x, + n2 x, [ y( y) v X( y) 3y? 3 0 +2 M;(€:n){-nx(€,n)[n;(x,y)+vn2(x,y)]a G]a G(x'y'€'n)}ds(€,n) X y y ay3 3“G(X.y:€.w) + M* p - I 3 I 2- I 2 I g* n(€ n){ nx(€ n)[nx(x y)+( v)nx(x y)ny(x y)] axaay 3~G(XIX7 €177) 8x28y3€ -nx(g,n)[(2v-1)n;m~.o- s:~.on mmm.. mmo.o nmo.o m. ooa.m.-. has.o m.m.o ooo.o omm.~ oom.~ mom._ mom.P mam.F N. .m~.P.- maa.o mmm.c Pomp.on oom.~ =em.~ osm.. Pa~.F Ps~.F P. m>~.o.- mmm.o mam.o mmmm.ou mmm.P mmm.P Nua.. mpm.o =om.o o. For... s=~.~ =mn.~ mmo.. apo.m m.o.m oma.. =~o.m oom.~ a Pom..- smm.~ smm.~ som.o ooa.3 ~.a.= mam.P m~=.~ m~=.~ m =mo.mu mmo.P moo.. mop.o mam.~ oom.~ sma.. smm.o mam.o a ooh.o Fps.~ ~mo.~ ams.. om~.m omo.m o==.~ sam.s mm=.a o omm.o mom.~ am~.~ mao.r aao.h mma.o =mm.~ o.s.m m_o.m m Pom.. oso.. omo.. mom.P mm_.m map.m m:m.~ o=:.. mo:.. 3 ooo.o ooo.o ooo.o osm.~ ama.a oms.a mm..m moo.m .mm.m m ooo.o ooo.o ooo.o Pao.m Pwm.m mm~.m mso.m mom.a oms.= m ooo.o ooo.o ooo.o .>~.a mam.m smm.m .m~.m spa.P 0mm.F . E\Euz E\E|z E\Enz E\Elz .EE .EE uouumu A.s=:o>z imauuosz HOHHma i.escoxz Amsuuoxz “chum“ ..e=coz Amounts .uooa A: .mfimv meEMHU mouse wmpm can .Umuuommsm xameflm usom new 039 wmmpm .wmuh mco mmom .wumHm mumsvm m HON muasmmm uomxm cam HmoflumEDZ mo COmfiummEoo P manna mm mmm.ml Nam.~ =o>.~ mum.w oba.mp o=N.mF mmm.m oso.h mmm.o m m~:.ml m=N.N mom.~ hom.P mh=.op mmN.oP omm.m mon.m Fhm.m m me.ml mmm.o omo.P moo.P oom.= mm:.= m=N.N ~o~.m =mP.N n bao.o hmp.m mme.m wmm.P mao.mp Poa.mp amm.~ mmm.h 530.5 m mpm.o Pam.P 5mm.P mmm.P mmm.ow mwa.op mh:.m Phw.m mmh.m m moo." Pom.o ham.o mum.P omm.= mha.= Nam.~ hmm.m FFN.N a ooo.o ooo.o ooo.o abh.m ama.mp oop.mp moo.m mmo.m mmm.n m ooo.o ooo.o ooo.o mmm.~ Nmm.PF oPo.PP mso.m mhm.o mmm.m N ooo.o ooo.o ooo.c omn.m mpw.: mm>.: mmo.m mam.~ hma.m w E\Elz E\Enz E\Enz E\Euz .55 .EE HOHuMR A.E:cvwz Amsnuvmz Houumx A.Edcvxz Awsuuvxz HOHHMR A.ESCV3 Amsuuvz .uooq A: .mflhv pmuuommnm wamfiflm much can 039 mmmpm .mmum mouse man one mmmpm wumam mumsvm m How madamwm uomxm cam HmoHHwEsz mo GOmAHMQEOU m magma CHAPTER III A NEW METHOD III.1 ISOTROPIC PLATE PROBLEMS Though the use of the boundary integral method to solve isotropic plate problems has been proved successful, the boundary condition equations, Eqs.(22) and Appendix A, are quite lengthy, especially for a free edge. To sim- plify the formulation, it is reasonable to consider re— placing the set of fictitious moments by a second set of fictitious forces. In so doing, there is no need to eva- luate all the derivatives of the Green's function with respect to E and n, since they are associated with the fictitious moment Mn* only. With this simplification, the length of boundary condition equations, Eqs.(22), can be reduced by about fifty percent. In practice, there are two simple ways that one can enter twice as many fictitious forces P*. One can either double the number of meshes along the integration contour, or define a second integration contour. Tests indicate that the latter provides somewhat better results. On the other hand, during numerical integration, the fictitious force is assumed constant along each mesh. It is there- fore logical to replace this evenly distributed line force by a concentrated point force and place it at the center of the mesh. With this change, together with the elimination of the fictitious moments, the deflection function w(x,y) of Eq.(21) can be reduced to the following form. 30 31 w(x,y) = If G(x.y;€.n)°q(€.n)d€dn R 2n + Z G(X,Y7€pn) 'Pk*(§rfl) k k=1,2,3,... (23) Following a numerical procedure similar to that of section 11.2, this simplified method was tested using the same square plate. The radius of the fictitious clamped circular plate was kept at 80m. The first set of fictitious forces were located at four meters away from the plate boun- dary, and the second set were located at two meters away from the first set, Figure 5. The results were almost identical to those obtained using both fictitious forces and moments. Thus far the boundary integral method has been mo- dified somewhat, in that the boundary integration has been replaced with an algebraic summing process. Though the eli- mination of the fictitious moments has been successful, the method is still tedious if free boundaries are involved. In order to further simplify the method, the well known Green's function for an infinite plate, [1], is introduced. It is - 2 _ 2 G(X'Y75vn) = Tg%5’Ux-€)2+(y-n)2]£n(x g) :(y n) , a (24) Mathematically, this is the fundamental solution to the isotropic plate problem with a unit force at (€,n). The beauty of this Green's function is that the denomenator in the logarithmic term is a constant, a2, where a is an arbitrary reference radius at which the deflection is zero. When derivatives are evaluated, this new Green's function gives a much shorter form than that obtained from the 32 5-69 ® ® GD 69 }—@ CD (2) CD ® 69 33383» ‘39 8838—!— ® 161$} 1m ——4m—-+¢2m ‘ 1H 15 ha P7 1C5) .L ’X J R B 80m 4 0 Field Point Y (:3 Concentrated Fictitious Force Figure 5. A Square Plate with Two Sets of Fictitious Forces. @ © @ t©-'—® 33 Green's function of a clamped circular plate. Consider 3 . g§¥ for example. The new Green's function gives SET = unD 12 (x-£)2+(y-n)2 q(g,n)d€dn 33w 1 {f,(x-€)3+3(y-n)2(x-€) 2N(x-€)3+3(y-n)2(x-E) + E (x-£)2+(y-n)2 P§mm sz was HmummucH wumpcsom HDOm paw O3» wmmpw cam mucflom gamut m, can .pmmEmHo mum mmopm usOm may Had .wwouom HmcuwucH cop .pwuuommsm kaEHm mum “ovum mum wwunu was one wmpm .muCHom "N .02 mmmu .— .oz wmmu humpcsom o: pmoq omusnfluumflo >HEHOMHGD Hops: mumam mumswm oflmouuomH mumoo ocflusmsoo mo COmflnmmEou m magma 35 ’/ Om Om 0:: 0w ON 04 Ooo Om o D b o; :0 ‘ A _I ‘- 10!“ 7| 0 Field Point A Loading Point 0 Boundary Point Figure 6. A Simply Support Equilateral Triangular Isotropic Plate. mm .Houum mandamnm Human pan .uouum mmmuamonom mmumq* * mmpoo. mumorm. . omoo.ou m1mmmm. * summmm.n ooo.o PF .m~.o smP.P amP.P mom.m PFm.o .ms.o mmo.~ map.o ss..o op G-.ou mos.. ohs._ mrm.ou mam.. omm.. mm~.P hm~.o mmm.o m smo.o- mmm.F oom.F Fom.P mms.F ~ms.. m-.P mom.o mom.o m :Gm.ou mam.F smm.P arm.ou som.F mpm.P Pm~.P mm~.o sm~.o p om:.o- FFF.P .PF.F moo.~ sha.s smm.. Gom.F m=~.o ~:~.o G mom.~- smm.o osm.o mmo.o- «as.F oom.F mam.P mmF.o GGF.o .m . mmmoo.u smaoo. mam.~ .sm.. mam.F mm».s mmmo.o oomo.o : smo.m mom.ou mam.o- mmm.o amp." mNP.F as..~ ssmo.o smmo.c m 5mm.: mo=.ou Nam.o- mmm.s oom.o «Fm.c mam.s mmmoo.o mimoo.o m * F~oo.o mumarm. * mmPo.o mumm.~.- * summmo.n ooo.o F E\E|z E\Elz E\Euz E\E|z .85 .EE Monumn A.Ed:vwz Amsuuvwz Monumu A.Edcvxz Amsuuvxz HOHHMR A.En:v3 Amauuvs .uooq AG munmamv madam UHQOHuOmH umaamcmaua pounommsm mamfifim n no madammm mo somwummsoo : OHDMB moos‘ o..oouv 0.003 0 0.002 . Y 0.001 4 0.00054. Displacement (mm.) IL j! 0.00001 . V V 0.000005 Displacement O Exact Solution numerical Solution A 4 A A 1 1 >2.0 Figure 7. 3 5 ‘3 6 Location ‘31 O ‘04 b ..a O -D —0 Comparison of Results of a Triangular Plate. Bending Moment- (N-I/fl) 38 2N _ 2 _ 2 Z P:(€:T1)[(X-§)2+(y-n)2]gn(x E) + R a If (x,y) is on Bc + BS; N _ 2 _ 2 igl P:(€,n)[1+£n(x €)a:(y n) ][(x-€)nx+(y-n)ny] (26b) - 2 _ 2 = -ffq(€.n)[1+£n(x a) +(y n) ][(x-€)nx+(y-n)n ] R a2 Y if (x,y) is on BC; 7 2 2 2 N P:(E,n){n2[ 2(X—E) + 1 +2n(x-g) +(Y'n) ] 1 X (X-€)2+(y-n)2 a2 ll MN 1 + ann 2(x-E)(xfn) y (X-E)2+(y-n)2 + n2[ 2(tn)2 +1 +£n(X-€) 2+( _n)2]} Y (x-€)2+(y-n)2 a2 2(x-EV‘ + 1 +£n(x-E)2+(x-n)2] (X-€)2+(y-n)2 a2 'IIQ(€IU){n;[ x (26c) Y (x-€)2+(y-n)2 ‘ 2 + n2[ 2(y-nV + 1 +£n(x-E)2+(y-n) ]}dadn Y (x-€)2+(y-n)2 a2 if (x,y) is on BS; 39 2 P:(€,n){[n;+(2-V)nxn2](x-i)[(x-g) +3(y-n)2] 1 y [(X'€)2+(y—n)2]2 _ 2 + [(20-1)n2n +(2_V)n3](Y'n)l(Y'n)2'(X €)4l X Y [(x-€)2+(y-n)2]2 2 + [(2-v)n3+(2v-1)n n2](x-€)[(x-g)2-(y-n) ] X X [(x-£)2+(y-n)2]2 + [(Z-v)n2n +n3](Y'n)[(Y-nY%3(x-§)2l} x y y [(x-g)2+(y-n)2]2 - _ 2 _ 2 = -fo(€,n){[n;+(2-v)nxn2](x €)[(x a) +3(y n)_l R Y [(x-€)2+(y-n)2]2 2 + [(2v-1)n;n +(2-V)n3](y-n)[(y-n)2-(x-g) ] y [(X-§)2+(y-n)2]2 1(X-€)[(x-€)2-(y-n)21. + [(Z-v)n3+(20-1)n n2 X X [(x-€)2+(y-n)]2 2 _ 2 + [(2-v)n:n +n31'Y'“)[(Y'”) +3'X 5) ]}dgdn (26d) Y Y [(x-E)2+(y-n)2]2 if (x,y) is on Bf; and N _ 2 P:(E,n){(n;+vn2)[ 2(x 5) + 1 +£n 1 y (x-§)2+(y-n)2 a (x-€)2+(y-n)2] 2 I! MN 1 + 2(1-v)nxn 22 a2 2(x-€)(y-n) (26e) (X-€)2+(y-n)2 + 2(1-v)n n X Y 2 2 + (n2+vn2)[ 2(y-n)2 + 1 +£n(X-€) :(y-n) ]}d€dn (X-€)2+(y-n)2 a if1(x,y) is on Bf. Note that the common constants such as TEFB’ involved in both sides of the equations have been deleted. With the new Green's function and boundary condition equations, and following the same numerical procedure shown previously to solve a set of ZNXZN linear algebraic equa- tions for the unknowns of 2N fictitious forces, a general isotropic plate problem with arbitrary plar form, loading and boundary conditions can be solved. Although there are many improvements from the original boundary integral method [9], there are added numerical questions to be studied. In the original method, the radius of the fictitious plate involved in the Green's function is the only value to be chosen before analysis. An imprOper selection of this radius will result in poor solution accuracy. Fortunately, it has been found that good results can be obtained for a wide range of values of this radius. Take a 10m square plate for example. No change in solution has been noticed for values of this radius selected between 80m and 8000m. For the new point-force method, on the other hand, in addition to the reference radius a in Eq.(Zu), the locations of the fictitious forces must also be determined. It has been observed from the numerical tests of this 10m plate problem that the fictitious forces must be placed within a1 a narrow band 1m to 10m away from the plate boundary. Less accurate solutions will result if they are placed within 1m from the boundary, and no solution can be obtained if they are located farther than 10m away. It is conceivable that, like the boundary integral method, when the fictitious forces are too close to the boundary, it is impossible to get good results for those field points near the boundary. This is simply due to the fact that the boundary condi- tions are not satisfied everywhere along the boundary, but at those discretized boundary points only. On the other hand, when these fictitious forces are placed too far from the plate boundary, the influence due to each individual fictitious force is so weak that together with computing truncation errors, the RM matrix may become ill-conditioned. Some results for a 10m clamped square plate are shown in Tables 5 through 8 to illustrate the change of solutions when fictitious forces are placed at different locations. Tables 5, 6, and 7 are for double-looped fictitious forces, and the double 100ps are at am and 6m, 1m and 3m, and 0.5m and 2.5m away from the plate boundary, respectively; see Figure 5 for reference. Table 8 is for a single-looped approach. That is, all the 2N fictitious forces are distri- buted along a single contour surrounding the plate. This contour is am away from the plate boundary; see Figure u for reference. The results are compared with the exact so- lution published in [1]. The five locations indicated in these tables correspond to locations 1,6,10,13 and 15 shown in Figure 5. The discrepencies between MK and My of the exact solution were due to the fact that they were obtained from truncated infinite series solutions. The computer program for isotropic plate problems with arbitrary plan form, loading, and boundary conditions using this simple point-force method is shown in Appendix C. It is believed that for a plate of any size and shape, good solution accuracy can be achieved if the locations of fic- titious forces are selected properly. The determination of ma th.rl =m~.m Pam.m omm.P| =mm.~ omm.m ooo.o =mm.o =mo.o m mmw.PI mmm.P mum.w om>.Ft mmm.P 35¢.P ooo.o ohm.o mnm.o : hmp.ml mPP.P PmF.F one.mn mPP.F FmP.P mno.o: Pom.o Pom.o m oom.mF| mar.o Fmr.o oom.mpl mar.o Pmp.o omp.ol hme.o hmp.o N PNN.oP th.ou omm.on o:>.m Pum.OI hmm.on ooo.o owo.o meo.o P E\Euz E\Elz E\E|z E\Elz .28 .EE MonumR A.Escvmz Amsuuvwz HOHHMx A.Escvxz Amsuuvxz HOHHMR A.Es:v3 Amouuvz .uooq mumocsom wpmHm may Eonm >m3< Em pom E: um mwouOh msoflufluoflm Ummooqlwansoa wumHm mumsqm UOQEMHU m mo muasmmm mo COmHHmQEOU m manna m: mmm.FI mmm.~ Pm~.~ Po.P| mm~.~ omm.m osm.ou =mm.o amo.o m 0mm.PI mmm.P mum.P omm.P| mmm.F ano.P Pmo.ou ohm.o ohm.o : mPP.mI oFP.P FmF.F mmo.mu oFP.P PmP.P m=P.on oom.o Pom.o m ohm.hpn map.o pr.o Nmm.hFI map.o Fmp.o mo.ou hmw.o hmw.o N om~.PF mhm.ou mmm.o: arm.op mnm.ou hmm.01 ooo.o opo.o mwo.o P E\Elz E\Elz E\Etz E\Elz .58 .EE HOHHMR A.Eocvwz Awsuuvwz HOHHMx A.E:cvxz Amsuuvxz uouumR A.Escv3 Amsuuvz .uooa humocsom mumHm on» Scum >m3€ Em cam Er um moonom maofluauOflh vmmooglwansoo madam mnmsqm owdEMHU o no muasmmm mo cowfiummeou @ OHQMB =3 who.N| maN.N PmN.N amo.N| maN.N omN.N onw.ou mmw.o =wm.o m 5mm.N| mNm.F mum.P mom.NI mNm.P :N¢.— Npm.o1 onm.o mnm.o : mom.m: moP.P FmP.P omh.mn moP.P FmP.P Pmo.Pn owm.o Pom.o m MNm.hPI map.o Pmp.o =P=.NPI o=P.o Pm—.o mmP.—I mmp.o hmp.o N :oP.m bom.OI mmm.o: omm.m hmm.on 5mm.0I oom.NI w—o.o meo.o P E\Euz E\EIZ E\Elz E\Enz .58 .EE Honumu A.EDGVMS Amsuuvwz HOHMMR A.Escvx2 Amsuuvxz HOHHMx A.Ed:v3 Amsuuv3 .uooq wuwocsom wumam on» Eoum >m3< Em.N new Em.o um mmuuom mDONuwuowm pmmooqnmansoo mumam mumsvm ommfimao M NO muasmmm mo conflummeoo a manna m: mmm.P| mmN.N PmN.N mmm..u mmN.N omN.N ooo.o cow.o 300.0 m mow.eu osm.F mum.w w>N.PI oam.~ sum.r ooo.o ohm.o ohm.o a mmo.m| oPP.P PmP.P omo.ml wPP.P FmP.P mmo.o: Pom.o Pom.o m www.mpn map.o PmF.o omp.mpu osp.o FmF.o Nmp.o| nmp.o bmp.o N MNm.wF mmm.ou omm.on, moo.mp mmm.o: hmm.o1 www.ml mFo.o mpo.o P E\Elz E\Euz E\Enz E\Elz .28 .EE Monuma A.Escv>£ Amsuuvwz uouum: A.Escvxz Amsuuvxz HOHHMx A.Edcv3 Awsuuvz .uOOA whopcsom madam mnu Eoum >m3< Ea um mmouom mooflufluOAm @mmooqlmamcflm mumHm mumsvm omQEmHU m mo muasmmm mo conflummfiov m OHQMB Q6 of these locations may not be an easy task, and this nu- merical question requires further study. On the other hand, for multiply connected plates, seemingly there will be difficulties if the "holes" are small and many boundary points are prescribed at the holes, since placing many fictitious forces in a small area inside a hole will certainly lead to numerical problems. Further study is needed in the search for optimum locations for fictitious forces. III.2 ANISOTROPIC PLATE PROBLEMS Due to the increased use of composite and multilayered plates for strength and weight reduction, anisotropic plate problems are becoming more and more important. With mid- plane symmetry of the material properties, the governing equation is Eq.(3), and the boundary conditions are given by Eqs.(S) and (7). They are far more complicated than when the plate is made from an isotrOpic material. Finite dif- ference and finite element methods are generally used to obtain a solution. In this dissertation, a new numerical method is introduced. Using the Green's function for an anisotropic infinite plate and the same point-force tech- nique shown previously, solution of an anisotropic plate problem with arbitrary plan form, loading, and boundary con- ditions is obtainable. Since general anisotropic problems are very difficult to solve, they are often reduced to orthotropic problems through coordinate transformation or approximation, whenever possible. Therefore, orthotropic problems will be discussed first. For an orthotropic material, there are three mutually perpendicular planes of symmetry with respect to the elastic properties of the material, and the problems are greatly simplified compared with general anisotropic problems. In practice, it appears that orthotropic problems are more 07 common than the general anisotropic plate problems. Rein- forced decks in civil, marine, and aerospace engineering, and plates made of layered composite materials are typical examples. III . 2 . 1 ORTHOTROPIC PROBLEMS For an orthotropic problem, the governing differential equation, Eq.(2), is a special form of Eq.(3), the equation for anisotropic problems, with D16=D26=0. The boundary con- dition equations are also simpler than those for their aniso- tropic counterparts; see Eqs.(u) and (8). It is due to these simplifications that solutions are obtainable for many pro- blems. Bares and Massonet [22] used a beam and grid analogy, Vinson and Brull [23] used a power series expansion, and Rajappa [24] tried a Maclaurin's series. In addition, the application of finite difference method is clearly presented by Szilard [7], and the theory of finite element method is explicitly shown in Zienkiewicz's text [8]. For classic approaches, texts [14,26] of Lekhnitskii and Huber, res- pectively, are probably the most important. For an orthotropic material, if the geometric coordi- nates are aligned with the principal material directions, the governing differential equation for equilibrium can be shown in Eq.(2). There are four material constants, namely Ex’ Ey’ Vx' and ny, where Ex and By are the two Young's moduli evaluated along the x and y directions, respectively; Xx is the Poisson's ratio in the x direction due to normal stress in the y direction; ny is the shear modulus. The other Poisson's ratio vy is related to Xx by Betti's reci- procal theorem 48 and therefore is not an independent material constant. In order to apply the new point-force method, the first requirement is to find the Green's function of some appro- priate problem. There are two Green's functions readily available for a simply supported rectangular plate, namely Navier's double series solution and Levy's single series solution: “b3.».nsin:2€ sinmg: sing-g-Il sin§%X C(XIY;€IU)= Ind (27) n“a Dx (——$’+2H(n% m)2+ Dyn m=1,2,3,... , n=1,2,3, and G(le;gln)= M31) D .(82_AITI§ n3 X KY (28) Bsinhnnxéa-E)si nhnglx Asinhnngm-g) sinhnflgx] x[ - sinhnnga sinhnflga n=1,2,3, for 0§x<£; and substitute x by (a-x) and (a-fi) by E for Efxfa, where B and A are the roots of the characteristic equation (which will be discussed later), a and b are the dimensions of the rectangular plate, and i and n are the location of the point force. It is known that the Navier's double series solution converges slowly. However, due to its simplicity in higher order derivatives, it was also tested along with Levy's single series solution. Before the full development for orthotropic problems, these two Green's function were evaluated for their efficiency in isotropic problems. For a square plate under uniformly distributed load, the results were disappointing for both approaches. For a solution accuracy greater than ninety percent, more than one hundred terms of Levy's series were needed, and the number is even higher for Navier's series. The computing 49 costs were formidable. Therefore, the idea of using either approach was abandoned. Since the fast converging Levy's series failed to yield satisfactory results in the application of the point-force method, it was clear that the Green's function to be adopted for the method must be in closed form. One of the currently existing Green's function in closed form is given in [12] for an infinite plate. Depending on inter-relationships among the material constants, this Green's function contains a group of three independent equations. These equations are derived in terms of several new material parameters. There- fore, it is necessary to introduce these new material parameters prior to the presentation of the governing equa- tions. Let D — —— and a“ = .33 (29) D then, the governing partial differential equation, Eq.(2), can be re-written in the form W + 2 €28“w(x’ ) +El’auw(xl ) = (XI ) 30 o —————-X—- -—————X—- 9———X— ( ) any BXZQYZ 3X1. Dy 0 Since the Green's function is the solution for the Dirac delta loading function of this equation, and this equation can be integrated in its homogeneous form, i.e., q(x,y)=0 for (x,y)#(€,n), we can write the Green's function symbo- lically as D1DZD3DQG(x.y;€.n)=O. (31) where the D's are linear differential operators, in the form 50 of .. 3 .2. Di - 3y ri 8X (32) and ri are determined as the roots of the characteristic equation r“ + 2p€2r2 + E“ = 0 (33) These roots are either complex or pure-imaginary as shown by Lekhnitskii [27]. That is, the roots are in the form of = til . (3“) Depending on the value of 0, either greater than, equal to, or less than unity, the values 8 and A can be easily deter- mined by using either one of the following three equations, 8 = E/p+\/;T. A= END-fa}: (356) B = E , A = 8 (35b) for O>1; for 0:1; and B = 01+ i02 , A U1“ iU2 (350) for p<1, where 51 It is clear that, depending on the material constants, each of the three criteria must be considered. For an in- finite plate, Mossakowski [12] has derived three different Green's functions for these three different material types. With we have (x-£)2+A2(y-n)2 a2 1 8NDO(BZ-x2 G(X.Y:€,n)= ){8[(x-£)2-)2(y-n)fiin -uAB(x-€)(y-n)[arc tglifiggi ’ arc théx:2)] n(x-£)2+BZ(y-n)2 a2 -) [ (X-E) 2-82 (y-:n)2]£ -3(B-))[(x-€)2+AB(y-n)2]} (36a) for p>1; . .. 1 (x-g)2-t-e:2(y-n)2 (x-g)“+2p8(x-§)2(y-n)2+€umn)u G(XIYI€In)-32nDO{ U1 fin a“ _2[‘(X'€)2-EZ(y-n)2]+ arc tg 2U11Jz (I'mz U2 (X’€)2+D€2(Y’n)2 _2e2(x-§)(y-n)inplqy‘n)2+l(X-€)-p2(y-n)]2 ”1'” u12(y-n)2+[(X-€)+112(Y’VH 2 _6[(x-€)2+ez(y-n)fl,} (36b) 01 for p<1; and 52 _ 2 2 _ 2 G(X.y;€.n)=Tg%EE;{[(x-§)2+52(y—n)2]gn(x 5) :: (y n) - [3(X-£)2+€2(y-n)2]} (36C) ' for 0:1. The second order derivatives of these equations are also given in [12]. Since they are needed not only in the boundary condition equations for a simply supported or free edge, but also in the determination of bending moments after fictitious point forces are computed, they are worth in- cluding in the following. Other derivatives are listed in Appendix D. There are three sets of equations, one set for each Green's function. 32 _ 2 A2 _ 2 _ 2 2 _ 2 a ? =WD (;T_)\2T[B’Q’n(x 5) +2 (X n) _A£n(x 5) +5 (y T1) 1 X 0 a a 326 E2 _ 2+82 _ 2 _ 2+A2( _ )2 3Y2 =HNDO(32-A2)[B£n(x 5) a2 (y n) _A£n(x 5) a2 y n 1 32G _ 22 B( -n) A( -n) $§F§‘EEDO(ez-AZ)[3X° t9"T¥:ET ’ arc t9 x-E ] (37a) for o>1: 2 =1st 1 ‘ u 2 I, 2 _ 2 _ 2 lo _ lo a G 1 L&JF.mw mop._ oPN.m ONP.m m mon.m1 ome.o ho>.o mFo.P meo.rp mma.PP "PF.P sho.m Foo.w m th.mP1 th.o omN.o bsm.P chm.a mnm.a mam.o th.N mam.N h omm.NI mao.P mno.e moo.r omo.NP opm.PP maN.P mop.h mpo.h m th.m| Nam.o m5m.o hmP.P o=P.oP mNo.oP mwN.P omn.m >o>.m m man.wrl mom.o mam.o mmP.N mP=.: MNm.s ham.P mMN.N mON.N a me.ol bom.o mpm.o mmm.P wMN.m hmP.m mwh.P hop.m mmo.m m NmN.F1 mmh.o mhh.o :mn.~ mmm.s um.: PNm.F mam.N hm=.N N bwm.wl oom.o mNm.o mph.= mmN.N NmP.N mmm.P omm.o mnm.o P E\Elz E\Elz E\Elz E\Elz .85 .EE MOHHMx A.Es:v>z Amsuuvwz HouHMm A.Edcvx2 Amouuvxz uouuma A.E:cvz Amsuuvz .DOOA P.ouo eso.onc .m.o x> .mp\xmu>m .mmz mocxmmo.~uxm madam mumsqm camouuonuuo pmuuommsm SHQEHm M MD muHSmOm mo :OmHHMQEOU a magma 5m 030.01 5F0.0 000.0 0P0.0 0N5.0 000.0 000.0 mNm.m P55.m m 0=N.51 003.0 0mm.0 300.0 00N.0 00N.0 0N0.0 m=5.= 000.: 0 mNP.5pw 05P.0 0PN.0 50N.P P50.m 3N0.m 0:0.m 5mw.r 055.? 5 mm0.:1 000.0 mm5.0 000.0 mNm.0 N5N.0 000.: m00.a 005.: 0 500.01 500.0 m00.0 505.0 0NP.5 N50.5 0m0.P m00.= 5N0.= m 0mm.:P1 00N.0 P=N.0 :==.P NMN.m 00P.m 050.9 050.5 P00.P : 00N.N1 FF0.0 0N0.0 000.0 0F0.m 05m.m 5Nm.P 00P.N 5NP.N m 030.31 0F0.0 Fm0.0 maP.P NOP.m 0ar.m 000.9 055.. N35.P N mmm.m~1 009.0 mNN.0 50m.N 3P0.P 05m.F 050.? 000.0 :00.0 P E\Enz E\EIZ E\Euz E\E1z .85 .EE uouumR A.Escv>z Awsuuvwz uouum: A.Esc0xz Amouuvxz MonuMK A.Esc03 Amouuvz .uooa 0.Hua 2.0.ou: .m.oux> .ms\xmusm .mmz mopxmeo.~uxm mumHm mumsqm Osmouuonuuo pmguommom hamfiflm m mo muHSmmm mo cemwummfioo or manna 00 500.001 mmmr.0 055.0 000.51 m0N.N 00N.N 000.0 053.5 503.5 0 003.001 005.0 505.0 000.51 M00.N 5NP.N 500.0 0PN.F 00N.P 0 00N.00l 0N0.0 000.0 305.51 005.5 PFN.F 000.0 000.0 503.0 5 500.0NI 0NP.0 055.0 000.51 N00.P 000.5 N05.0 :3N.5 :MN.P 0 500.001 N05.0 005.0 500.5I 005.5 005.5 030.0 0N0.F 0N0.P 0 500.001 NN0.0 000.0 505.NI NNO.P 330.5 000.0 003.0 500.0 a 500.5NI 355.0 505.0 0mm.:l 000.0 030.0 N~0.0 000.0 0N0.0 m 005.le 000.0 Nmp.0 500.31 005.0 005.0 000.0 500.0 503.0 N 005.051 050.0 000.0 050.01 003.0 000.0 005.0 055.0 055.0 P E\Elz E\Etz E\Euz E\Elz .EE .EE uouuma A.Escvwz Amnuuvwz uouuma A.Esc0xz Amsuuvxz HOHHMx A.Esc03 Amsuuvz .uOOA o.oPna epo.oun .m.onx> .mexxmusm .maz meexmmo.~uxm wumHm mumsvm camouuonuuo Umuuommsm xamEHw m 00 muasmmm mo acmflummeou PP OHDMB 59 obtained using a known Green's function for an infinite anisotropic plate [11,13] and applying a set of fictitious forces surrounding the plate boundary such that all the boundary conditions are satisfied. Similar to the previous problems, the numerical procedure is to solve the 2NX2N algebraic boundary condition equations for the unknown mag— nitude of fictitious forces. The only added work is in the determination of the complex roots of the characteristic polynomial equation. IMSL computer subroutine ZPOLR has been conveniently employed for this purpose. The characteristic equation for the homogeneous solu- tion of Eq.(3) is [13,14], D U _I —I +2D D 12D 66 r2 + 4 16 r + 22 2 D r“+u—2-6-r3+2 D22 0 (38) m) U n) n: where the roots ri are involved in the four linear differen- . 3 3 . . tial operators 3; - ri 5;, the same as in the orthotropic formulation. Solving this fourth order algebraic equation, the roots can be determined in the form of = . 0 = i . r1'2 a i 18 , r3,“ Y 1) They are all complex values as proved in [27]. For an infinite plate, the Green's function shown in [13] is , _ 1 (a-xlz-(Bz-AZ)D , G(X'Y'€'n)_8n022¢1¢2{ B “1(x,y.€.n) (a-Y)2+(82-XZ) + A R3(X:Y;€:T1) + 4(c-y)[S1(x.y;€,n)-S3(x,y:£.n)]} (39) 60 where, ¢1 = (G’Y)2+(B'A)2 3 ¢2 = (G'Y)2+(B+A)2 3 R1(x,y:€.n)={[(x-€)+a(y-n)]2-82(y-n)2} x {Rn1(x-€)+a(y-n)12+82(y-n)2 _ 3} a2 - 4B(y-n)[(x-€)+a(y-n)]arc tg 8(X'”' : (x-€)+a(y-n) S1(X.y;£,n)= B(y-n)[(x-£)+a(y-n)] x {Qn[(x-€)+a(y-n)12+82(y-n)2 _ 3} a2 +{[(X-€)+a(y-n)]2-Bz(y-n)0arc tg 8(y-n) : (x-€)+u(y-n) and R3(x,y;€,n) and S3(x,y;£,n) are obtained by replacing a and B by y and A, respectively. As with the orthotropic Green's function, the first order derivatives are quite lengthy. The second order deri- vatives, however, can be reduced to very compact forms. Since they are the most important derivatives, they are listed here. Others are shown in Appendix F. Q) 26 1 {(a-y)2-(ez-AZ) L1(XIY;€IW) (a-Y)2+(82-A2) + A L3(x,y;g,n)+4(a-y)[N1(x.y;E.n)-N3(X,y:€.nn} (40a) 61 325 = 1 (02+82-2ay)(a2+82)+(a2-BZ)(Y2+A2) ayz ”"D22¢1¢2{ B L1(X.y:€.n) 2 x2-2 2 2 2' 2 2 2 + (Y + ay)(j +A );(Y A )(a +8 )L3(x,y:€.U) - ala1[N1(x.y;€.n)-N3(x.y;g.n)]} (uOb) 326 1 {(a-Zy)(d2-Bz)+oijz+lz) B Bxay- UND22¢1¢2 L1(XIY7€IU) -. 2A2 22 + (Y 2&)(Irf‘ );Y(a +8 )L3(X,y;€.n) + 2(a2+82-Y2-12)[N1(x,y;€.n)-N3(x.y:€,n)]} (u0c) where, £n[(x-E)+a(y-n)]2+82(y-n)2 a2 L1(XIY7€IU) = 8(y-n) (X-€)+a(y-n) N1(X.y:€.n) arc tg and L3(x,y;€,n) and N3(x,y;€,n) are obtained by replacing a and B by y and A, respectively. It is worth noting that Eqs.(39) and (40) can be easily reduced to Eqs.(36) and (37) by making a=y=0 for p>1.0; a=u2, Y=-U2. B=A=p1 for p<1.0; and a=y+0, B=A+e for p=1.0. Following the same numerical procedure shown in the previous two sections, using the new point-force method, the solution of an anisotrOpic thin plate problem with arbitrary plan form, loading, and boundary conditions can 62 be obtained. For the verification of results, however, due to lack of exact solutions available for anisotropic problems to be compared with, a different approach must be taken. An orthotropic plate problem will become apparently anisotropic if the geometric coordinates are made different from the principal material directions. Therefore, solutions of ortho- tropic plate problems can be used to validate the equations for general anisotropic problems. This approach can be summa- rized in four steps as shown in the following. First, an angle of rotation for the geometric coordinates is chosen ar- bitrarily, and corresponding to the new coordinate system, locations of the boundary points, the fictitious forces, the field points, and the unit outward normals of the boundary points are determined. The second step is to compute the six flexural rigidity constants Dij used in Eq.(3), [14]. The next step is to employ the Green's function of the infinite anisotropic plate to solve the pseudo-anisotropic problem. The final step is to determine the displacements and bending moments at the prescribed field points in the original coor- dinate system using coordinate transformation, and then make comparison with the orthotropic solutions. With this validation method, orthotropic plate example problems shown earlier with all the three types of p, i.e., ‘greater than, equal to, and less than unity have been tested against four coordinate rotation angles, namely 15, 30, Q5, and 60 degrees. The discrepencies of results were Within one percent and were believed to be due to truncation errors during the added numerical processes. The computer program for this validation is shown in Appendix H, while the pro- gram for a general anisotropic plate problem is shown in Appendix G. It must be noted that the two flexural rigidity constants and D26 of Eq.(3). In order to investigate the influence due to D16 are based on the two material constants a16 and a 26 these two material constants, several sample problems using a simply supported square plate have been tested. Since the 63 the material constant matrix shown in Eq.(3) must be positive definite, a16 and a26 were selected to be less than a11 and a22, respectively. Under this condition, take four typical cases with a16=0’1/Ex’ a26=0.1/Ey; a16=0.9/Ex, a26=0.9/Ey; a16=0'1/Ex’ a26=0.9/By; and a16=0.9/Ex, a26=0.1/Ey for example, it has been found that the differences in displacements and bending moments were smaller than one percent. However, when the shear modulus ny is small in comparison with EX and By, a16 and a26 can be made greater than a11 and azz; their con- tribution to the solution may become significant. CHAPTER IV CLOSURE Starting from a boundary integral equation method for an isotropic thin plate problem with boundary clamped or/and simply supported, a very efficient numerical solution to problems with arbitrary plan form, arbitrary loading and boundary conditions, and anisotropic material, has been develOped. The method uses the known Green's functions of isotropic, orthotropic, and anisotropic infinite plates. The problem is solved after the real plate is embedded in the fictitious infinite plate, and the boundary conditions at the N prescribed boundary points are forced to be satisfied with an imposed set of 2N calculated fictitious forces located somewhere outside the plate boundary. Though no efforts have been made to compare with the two leading numerical methods, the finite element and the finite difference methods, it is believed that the new method has the following two advantages: (1)since the Green's function is the exact solution to a point force problem, and there are no assumed polynomials for results, high solution accuracy is expected; (2)due to the fact that the equations are simple, and the modeling is for the plate boundary only, the current method is easier to use. Large percentage errors indicated in all tables are some- what misleading. Take the simply supported triangular plate problem for example. Percentage errors shown in Table u are huge at certain locations. However, the real errors are small as shown in Figure 7. During the deve10pment of the current method, it was found that though series type Green's functions were easy for 6Q 65 formulation, they were not suitable for the current method. This was due to the fact that large number of terms of the series were needed to provide acceptable solution accuracy, and this would lead to formidable computing costs. Though the current method is efficient, numerical ques- tions remain. An imprOper choice of the locations for the fictitious forces may result in poor solution accuracy or no solution at all. Therefore, in order to take full advan- tage of this method, some further studies should be made so that the locations of fictitious forces chosen will bring optimum results. In the meantime, due to the involvement of many "looped" summing processes, Eqs. (19), (21), (22), and (26), it is also necessary to do sensitivity studies to minimize the numbers of boundary points, fictitious forces, and internal forces for least computing cost. All the five computer programs developed for this thesis research are shown in Appendices B, C, E, G, and H. The first is for the boundary integral method. It uses the Green's function of a clamped circular plate. The second is for the new point-force method for isotropic problems. The third and the fourth are for orthotropic and anisotropic problems, respectively. The fifth is a method employed to validate the equations for general anisotropic problems, using exact solutions for orthotropic plate problems. All these computer programs are coded in FORTRAN, and their flow chart is shown on the next page, Figure 9. 66 Do a coordinate transformation with an arbitrary rotation Read input values and create the model. Appendix H only Appendix G only-1 y angle and create a pseudo- anisotrOpic problem from the orthotropic problem. I Set up the fourth order poly- Determine the values involved in the RL vector nomial characteristic equation and use IMSL subroutine ZPOLR to compute complex roots. 1 with the known load dis- tribution function. Set up the RM matrix and solve the ZNXZN linear algebraic equation using IMSL subroutine LEQT1F. I Use the determined fictitious forces (and moments) to com- pute the deflections and bending moments at the pre- scribed field points. -Appendix H only Transform the bending moments back to the original coordinate system and compare with the known orthotropic results. End Figure 9 The flow chart for the programs shown in Appendices B, C, E, G, and F. APPENDICES APPENDIX A DERIVATIVES OF THE GREEN'S FUNCTION FOR A CLAMPED CIRCULAR PLATE APPENDIX A DERIVATIVES OF THE GREEN'S FUNCTION FOR A CLAMPED CIRCULAR PLATE The Green's function shown in Eq.(10) can be written as 2 G(X.y;€,n)= 75%5{(1-r12)(1-r22)+r122£n 2r12 2 2} (1-r1 )(1-r2 )+r12 2 2 2 2 2 2 where, r2: .x_+_X_, r2: _€_:_D_' and r = (x-E) +(y-n) . 1 a2 2 a2 12 a2 For simplicity, from now on the variables x, y, E, and n are all made non-dimensional. That is, the variables x, y, E, and n shown in the following equations are actually the ratios x E . of 3' g, 3, and 2, respectively. as a2 r122(x'r22'€) -— = -—ix-r 2- g - 3X 8WD 2 (1'3? 2) (1_r 2)+r 2 1 2 12 2 r +(x-£)£n 2 12 2 2} (1-r1 )(1-r2 )+r12 as a2 2 r122‘y'r22’”) _ 2 _ 2 2 (1 r1 )(1 r2 )+r12 67 68 2 r 12 } - 2 - 2 2 (1 r1 )(1 r2 )+r12 +(Y-n)£n r122(§-r12-x) 3: ”5%6{5°r1 ' X “ (1-r12)(1-r22)+r 2 12 2 r +(E-x)£n 2 12 2 2 } (1-r1 )(1-r2 )+r12 2 . 2- 39 - -—3—{ . _ r12 (” r2 Y) an - 8wD n r2 y - (1-r 2)(1-r 2)+r 2 1 2 12 2 +(n-y)£n r12 } (1-r1 )(1-r2 )+r12 - _ . 2 _ 2, 2 325 = a2{r 2 + 2(x-€)2+ “(X €)(€ x r2 ) r12 r2 2 8ND 2 2 - 2 - 2 2 8 x r12 (1 r1 )(1 r2 )+r12 2r 2(E-x-r 2)2 r 2 + 12 2 2 2 2 3 2n 2 12 2 2 } [(1-r1 )(1-r2 )+r12 ] (1-r1 )(1-r2 )+r12 - - . 2 - _ , 2 326 = a2{2(x-§)(y-n) + 2(Y ”)(E x r2 1+(X €)(n y r2) Bxay 8111:) 2 _ 2 _ 2 2 r12 (1 r1 )(1 r2 )+r12 2_.2 _.2 + 2r12 (E x r2 )(n y r2 ) - 2 - 2 2 (1 r1 )(1 r2 )+r12 .. _,2_ 22 “(Y n)(n y r2 ) r12 r2 2 _ 2 v - $113“ —Y-D—2‘ ’ + - 2 - 2 2 69 2r 2(n_y.r 2)2 r 2 + 12 2 22 2+2n 2 12 _ - 2 2 [(1-r1)(1-r2)+r122] (1 r1 )(1 r2 )+r12 2 -. 2 . 2- 326 a2 2(x-€)2 2r12 (X 5 r1"X r2 5) 2 §§§E= -8fiD{ 2 + 2 2 2 +2nr12 r [(1-r1)(1-r2)+r122] 12 (1-ZXE)(1-r12)(1-r22)-2(x-€)(x-€°r12)-2(x-€)(x'rzz-E) + 2 _ 2 2 (1-r1 )(1 r2 )+r12 - £n[(1-r12)(1-r22)+r122]} 82G _ _ a { 2(y- €)(x-n) + 2‘122‘Y'”'r12’(x’r22‘5’ Exam- 8TD 2 r12 [(1-r12)(1- r2 22)+r12 1 (-2xn)(1-r12)(1-r22)-2(x-€)(y-n-r12)-2(y-n)(X°r22-€) } + 2 _ 2 2 (1-r1 )(1 r2 )+r12 O 2 — O 2- 32G _ _ a2{ 2(x-€)(y-n) + “122”"g r1 ) (y r2 “) ayag 8wD _ 2 2 r122 [(1-r12)(1 r22)+r12 1 (-2y€)(1-r12)(1-r22)-2(y-n)(x-£°r12)-2(x-E)(y-rZZ-n) _ 2 _ 2 2 (1 r1 )(1 r2 )+r12 2 , 2 ‘ 2_ a2G _ __ a 2(X‘”)2 2r12 (y-n r )(y r2 n) 2 5y5n 8ND{ 2 + + Rnr12 r12 [(1-212)(1- r2 22)+r12 )2 (1-2yn)(1-r12)(1-r22)-2(y-n)(y-n-r12)-2(ysn)(y'rzz-n) _ 2 _ 2 2 (1 r1 )(1 r2 )+r12 7O - £n[(1-r12)(1-r22)+r122]} . - 2 _ 2 - 336v: - a2{ 3(x_€) - 2(X-§)3 - X(1-2X €)(1r2)+€(1 r1 )(1r22) 3x285 “ND r122 r122 (1-r12)(1-r22)+r122 _ (x-a)<1-2xa)-2(a-x-r22)+(x-g)r22 _ 4r122(x-€r12)(€-X°r22)2 (1-r12)(1-r22)+r122 [(1-r12)(1-r22)+r122]3 (1-ZXE)(E-X°r22)(1-r12)(1-r22)-u(x-€)(x-Sr12)(£-x-r22) + [(1-r12)(1-r22)+r122]2 2(x-5)(E-x-r22)2+r122r22(x-Er12)-r122(1-2x5)(i-x-rzz) } + [(1-r12)(1-r22)+r122]2 2 2 _ , 2 2 83G : _ a2{ (y-n) _ 2(x-g)2( —n) _ “r12 (Y'nr1 )(g X r2 ) 8x23n ““D r122 r12“ [(1-r12)(1-r22)+r122]3 x(-2xn)(1-r22)+n(1-r12)(1-r22)+(y-nr12)+(x-€)(-2xn)+(y-n)r22 _ 2 _ 2 2 (1:3 )0 r2)+r12 + (-2Xn)(E-x-rzz)(1-r12)(1-r22)-4(X-€)(y-nr12)(€-X'r22)+2(y-n)(E-X°r22)2 [(1-r12)(1-r22)+r122]2 +r122r22(y-nr12)-r122(-2xn)(E-x'rzz) 71 2 _ 2 _ . 33c; _ ‘az {(x-g) _ 2(y-n)2(x-£) _ “‘12 (X gr1 ”” Y ’22)2 ayzag “"9 r122 r12“ [(1-r12)(1-r22)+r122]3 y(-2y€) (1-r22)+§(1-r12) (1-r22)+(X-€r12)+(y-n) (-2y€)-i~(x-€)r22 _ 2 _ 2 2 (1 r1 )(1 r2 )+r12 (-2y€)(n-Y'rzz)(1-r12)(1-r22)-u(y-n)(x-Er12)(n-Y'r22)+2(x-€)(n-y°r22)2 + [(1-r12)(1-r22)+r122]2 +1.2122r22bc—Er12)+r122 (-2y€) (n-y-rzz) 2 2 _ . 2 33G - - a2 {3LY'T1) - 2(y_n)3- “I12 (Y'UI'1 )(T‘l Y r2 ) 2 (MD 2 u _2_2 23 By an r12 r12 [(1 r1 )(1 r2 )+r12 ] y(1-2yn)(1-r22)+n(1-r12)(1-r22)+(y-nr12)+(y'-n)(1-2yn)-2(n-Y'r22)+(y’-n)r22 _ 2 _ 2 2 (1 r1 )(1r2)+1:‘12 (1-2yn)(n-y'r 2)(1-r 2)(1-r 2)-4(y-n)(y'-nr 2)(n-y°r 2)+2(y'-n)(n-y-r 2)2 + 2 1 2 1 2 2 [(1-r12)(1-r22)+r122]2 22_2__2- -.2 +r12 r2 (y nr1 ) r12 (1 2yn)(n y r2 ) ur122(xr§r12)(€-x'r22)(n-Y°r22) 336 = _ _§:,{x:g _ 2(xP€)21ybn) _ axayag MD r122 r12“ [(1-1‘12) (1-r22)+r122]3 (€-X°r22)(1-2yn)(1-r12)(1-r22)-2(€-x'r22)(yhn)(ybnr12)+2(§-x-r + 72 2 . 2 ) [(1-r 2)(1-r 22)+r12 )2 -(y-n) (n_y.r22)-2(x-§) ‘Y‘W’ (”'Y'r22)*2‘“'y'r22)”"122 x(r22-1)(1-2yn)+2xn(ybn)+(€-X°r 2 + (1-r12)(1-r22)+r 33G = 32 {3(X‘€)_ 3X3 “TTD 2(x-EV ) 2 } 2 12 3(5-X°r22)-3r22(x-£) Hr 2(E-x-rzz)3 + + 12 2 2 2_2 23 r12 r12 (1-r12)(1-r22)+r12 [(1-r1 )(1 r2 )+r12 ] - . 2 2 _ , 2 + 6(5 x r2 ) (x- i) -3r12r 2 (E x r2 ) } [(1-r12)(1-r22)+r122]2 . 2 - 2 _ 2 _ , 2 3 836 = a2 {3(ybn) - 2(y_nyg+ 3(n-y r2 ) 3r2 (y n) + ur12 (n y r2 ) ay3 “"D r122 r12 (1-r12)(1-r22)+r122 [(1-r 2)(1-r 22)+r12 13 - . 2 2- 2 2 _ , 2 6(y n)(n-y r2 ) 3r12 r2 (n y r2 ) } + 33G __ 32 {y-n _ [(1-r1 2) (1 -r2 2)+r 4ND axzay r 2 12 r 2(x-a) 2 (x-n) + 2 12 2] n-y-rzz-r22(ybn) u _ 2 _ 2 2 (1 r1 )(1 r2 )+r12 “(XP€)(€-x-r22)(n-y°r22)-r122r22(n-y~r22)+2(ybn)(E-X°r22) + 2 2 2 [(1-r12)(1-r2 )+r12 ] +ur122 (E-X°r22)2(n-Y°r22) [(1-1:1 2 _ 2 )(1 r2 )+r12 2]3 73 .ifki_._éf.{§:§__ 2(ybn)2(xr§) + €‘X°r22-r22(x-a>+ ur122(fi-y-r2 2)2(g.x.r22) (“TD 2 I. (1-r12) (1-1:22)-1-1:'_122 ”1.1.1 2) (1-r2 2 )+r 8x8y2 r 3 12 I12 12 ] “(y-n)(n-y-r 2)(€-x'r 2)-r 2r 2(5-x-r2 2)+2(x-€)(n- °r 2)2 + 2 2 12 2 Y 2 [(1-r12)(1-r22)+r122]2 2 2 _ , 2 a“c _ .43: 1_;_,+ 8(x-g)“ _ 12(x—€)2_ 2“r12 (“’521 "2 X 22 ) 8x335 r 2 r126 r12“ [(1-r12)(1-r22)+r 12 1“ -(1-r22)(1—2xg)+uxg(1-r22)-2(1-2xg)+2g(x-g)—3r22 _2_2 2 (1 r1 )(1 r2 )+r12 _ _ 2 _ , 2 _ _ _ 2 _ 2 _ , 2 _ _ , 2 , + 4X(1 r2 )(5 x r2 )(1 2x5) ug(1 r1 )(1 r2 )(E x 1'2 ) 6(5 x r2 ) °(x-€r12)-8(€-X°r22)(x-E)(1-ZX€)+6(€-X°r2 2)-12r22(x~€)(€-x-r 2) 2 [(1-r12)(1 -r2 2)+r12 2]2 “2(1-r 2)(1-r2 2)(1- -2xg)+6r2 2(x~€)(x— -§r1 2)+2r 2(1-2xg)+2r1§g(g-x-r22) 122122 u<1-2x5)(a-x-r22>2(1-r12)(1-r22)-2u 1.0: ’ _ 32 _ 2 _ 2 _2 fl. 2 X uwDOmZ-AZ) a2 a2 . + 5{(x-£)f+>\2(y-n)2}_ mac—5) +8 j-TUZ} “ng y-..” arc t9 BEE/7:) (x-i)‘+kz(y-n)2 (x-£)2+B2 (y-n)2 - arc tg M¥:%)]- 3(x-5.) (B-M} ac;_ £2 (x-E)2+82(y-1'1)2 _ (x-€)2+A2(y-m2 a—y- (”Do 8(81- AT) {(y- n)[82n a2 Min a2 ){(X‘E) 2+)? (Y'n) 2} +8{ (X'g) 2+82 (Y'n)2 } ] +2 (X’E) [arc tg_(.L._ (x-E) +Xz(y-n)2 (x-€)2+Bz(y-n) - arc tg L331]- 3(y-n) (B-M} 95 96 x-E I B _ 1 9x3 21TDO(82-A2) (x-€)2+>\2(y-n)2 (x-€)2+B2(y-n)2 83 x3 ] (x-E) 2+B2 (y-n) 2 (x-E) 2H2 (y-n) 2 3:9: «Zn-n) 3y2 2nDO(sz—A2) a 3G -e2 (y-n) [ B .. 2‘ 3x23y 21:90 (82-12) (x-g) 24.82 (y-n) 2 (x-g) 2+A2 (y-n) 2 a 3G -e2 (x-g) [ A _ B 8x8y2 ZwDo (82-12) (x-E) 2+A2 (y-n) 2 (x-n) 2+B2 (y-n) For p < 1.0: BG 3‘; = 1 {£an (x-E) “+20€2(x-€) 257-71) 2+6”(y-n)" _ 6] I; 161rDO 111 a + 2 [(x-E) 2+£2(1-n) 2] [(x-E)3 +062 (x-E) (y-n)2] _ 2(x-€)arc “1 [(x-E) “+2062 (x-C) 2 (y-n) 2+6“ (y-n) “ ] “2 _ _ 2 + “(TOR SKY-D) 2 . “Uluzbt 5) (Y n) u2 Kx-€)2+p€2(yhn)2]2+[2u1u2(y~n)2]2 _ 62(x-n) Rn u12(yhn)2+[(x-€)-u2(ybn)]: - u u 1 2 1112 (y-n) 2+[ (x-ng (y-n)] 2 _ 2 2111112 (y n) tg (x-€)2+pe2 (y-n) 2 97 _ 52 (X-E) (y-n) 2{ (x-E) -u2 (y-n)} 2{ (x-€)+u2 (y-n) } “1“: 1112 GMT) 2+{ (x-€)-u2 (y-n)]2 1112(y-n) 2+{ (x-«SHIJ2 (y-n)}2 1} 39.9. = 1 {_€2(y_-n).[£n 2+€“(Y'm‘l 6] 3y 1671130 111 - a.2 + 2{(x-£)2+€2(y-n)2}{0€2(x-€)2(x-n)+e“(y-n)2}+ 262(x-n) , u1{(x-€) “+2062 (x-E) 2 (y-n) 2+6“ (y-n) “} 112 - 2 - - 2 2u1u2(y n) “uluzw n) (x E) _ (x-E) 2-e2fl-n)2, (x-g) 2+p€2 (y-n) 2 112 [(x-§)2+oe2(y-n)2 J2? [Zulu2 (y-n)2]2 °arc 52(x-5),m “12(Y'”)2+ [(x-g)-u2(y-n)] 2_ e2(x-€)fl'n) . 111112 1112(y-n)2+[(X-€)+U2(Y’“)]2 “I“: 2U12(Y"T1) --2112{(x-€)-u2 (y-n)} 2u12(y-n) +2u2{ (x-E) +112 (y-n) } 1112 (y-n) 2+{ (3:49-112 (y-n) }2 1112 (17-71) 2+{ (X'§)+IJ2 (y-n) }2 336 = _1_ { 1_ (x—€)2+pe2(x-€) (y-n)2 3 ”ND Ll 3x 0 1 (x-g) “+2062 (x-E) 2 (y-n) 2+6“ (y-n) 2 2u1(x+€)(y-n)2 + [(x-C) 2+oc2 (y-n) 2] 2+[2u1u2 (y-n) 2] 2 326 _ 1 1 062 (x-E) 2 (y-n) + e“ (y-n) 2 a"? " “ms 2 r 2’ Y o 1 (ac-2;) “+2er (ac-g) 2 (y-n) 2are“ (y-n) “ 33c; 8x28y For p 9.9: 8y 98 21: Wm) (x-E) 2 + 1 [(x-é) 2+oe2 (y-n) 2] 2+[2u 1112 (y-n) 2] 2 - £2 { (X’€)"U2 (y-n) 8WDOu1u2 1J12(y_n)2+[(x.g)-p2(y’-n)]2 (x—EHu (y-n) _ 2 } ul2(y-n) 2+[ (X'E) +112 (y-n) 12 62(y-n)-u (X‘E) = ‘ 52 { 2 8111301212212 1112 (y_n) 2+[ (x—E)-u2 (y-YTH e2 (y-n)+u2 (X-E) u12(y-n)2+[(X'€)+“2(Y'”)] = 1.0: (X-E) {2n (X-§)_2+€2(J-n) 2_ 2} BNEDO a2 6 (x-n) 2n (x-E) 2+e2 (y-n) 2 811DO a2 1 (x-F.) 2-82 (y-n) (x-é) ”"5120 { (x-E) 2+e2 (y-n) }2 99 3 3G e (y-n) 3 (x-E) 2+rs2(y-T1)2 23y3 “mo (x-EJ) 2+€2 (rm) 2 826 = 1 {52(y-n)2-(x-€)2}8(y-n) 2 8x23y “Do 2 2 2 {(x-€)2+€ (y-n) } 826 = 1 (x-§)2-e2(j-n)2€(x-€) 3x8y2 “Do {(x-i) 2+€2 (y-n) 2 } 2 APPENDIX E COMPUTER PROGRAM FOR AN ORTHOTROPIC PROBLEM (TCTfoT(TCTCTCTCTCTFTCTFTCTCT(if)f1f1f9f3f3f9f9f8f8f8f8f‘f1 APPENDIX E COMPUTER PROGRAM FOR AN ORTHOTROPIC PROBLEM PROGRAM ORTPLCLIINPUT.OUTPUT.TAPE5=INPUT.TAPE6=OUTPUT) 000001 000002 NHHRHGINIIIINNINNIUNNNNNRRINUIUNMNNNUNRNNNUNRIN'UIUNNIIINNNRNNNNNUNNHNO00003 POINT FORCE METHOD FOR ORTHOTROPIC PLATE SENDING PROBLEMS. ARBITRARY PLAN FWM. TRANSVERSE LOAD. AND BOUNDARY CONDITIONS '9' SHONN HERE IS AN EXAMPLE FOR A SIMPLY SUPPORTED SQUARE PLATE. REQUIRED INPUT VALUES --- NBP =NUMBER OF BOUNDARY POINTS NIP =NUMBER OF INTERNAL LOAD POINTS NFP .=NUMEER OF FIELD POINTS XB.YB =POINTS ON 8 AT NHICH B.C. ARE SATISFIED. BANK.BANY =COMPONENTS OF UNIT NORMAL TO B AT XB.YB. XXB.YYB =END POINTS OF MESHES AROUND B NHERE FICTITIDUS FORCES ARE ASSIGNED. XF.YF =FIELD POINTS XI.YI =INTERNAL LOAD POINTS VX =POISSON*S RATIO IN X DIRECTION. DUE TO STRESS IN Y DIRECTION EX.EY =YOLRTG'S MODULI IN X AND Y DIRECTIONS. RESPECTIVELY HVALUE 8PLATE THICKNESS RADIUS =RADIUS OF THE FICTITIOUS CIRCULAR PLATE OF NHICH THE DISPLACEMENT AT THE CIRCUMFERENTIAL BOUNDARY IS SET TO ZERO. 000004 000005 000006 000007 000008 000009 000010 000011 000012 000013 000014 000015 000016 000017 000018 000019 000020 000021 000022 000023 000024 000025 000026 000027 000028 000029 .I.ININIUI'IINNUIUINUNIINIIINNIQIIINNIIUDHINNNINNINNNMN‘NINUNININNINIIOOOO30 DIMENSION XE(40).YB(40).XXBIE1).YYB(81).NBTYPE(81) DIMENSION XI(100).YI(100|.DEL(2) DIMENSION RLXl80).RB(80).RM180.80I.PS(80).NKAREA(80).RL(80l DIMENSION XF(181).YF(181).H(181).EMX(181).BMY(181) DIMENSION BANX(40).BANYI40).RMX(80.80l REAL LUHDA.LUMDA2.MU1.MU2 100 FORMAT(‘0LOCT3.6X.‘XBF.8X.!TBF.7X.FANX‘.8X.FANY3.4X.8NBTYPE8. O/POP/(1595F10.991511 110 FORMAT(10LOCT8.11X.‘XXB3.14X.FYTB8/101/(I4.8X.F9.2.8X.F9.211 200 FORMAT I80LOCT3.11X.‘XIF.17X.FYIP.14X./808/ O‘I“!11X1F6.2011X9F6.311 400 FORMAT (IDLOCTI.19X.$PSP¢/¢03/(I4.BX.E20.B)1 500 FORMAT!¢0LOCTF.11X.’XF8.17X.FYF$/¢08/II4.11X.F6.3.11X.F6.3)l 600 FORMATI1H1.BX.FNCDE1.12X1XFF.16X.FYF‘.19X.*H1.16X.FBMX1. 116X.!BMYl/(1H0.I10.2F20.10.3E20.1211 700 FORMATIIH1.’INPUT VALUES .....8.//1X.8NML 3 ‘.I3.8 NIP =F.I3. 1t NFP 3 8.13.8 PR 3.F5.3.8 DPSI 3 F.F5.3.P DETA 3.F5.3. 4/1H0.‘ EX 8 3.E10.4.F ET 3 ‘.E10.4.1 VX = '.F5.2.3 GXY F.E10.4 6/1H0.‘ RADIUS OF THE PLATE 3 I. OF7.1.I THICKNESS OF THE PLATE =1.F6.3.1 1103 FORMATTI5.5X.E20.12.5X.E20.121 1014 FORMAT(1H1.PTHE FOLLONING IS A LIST OF DOUBLE CHECKING OF B.C.S‘. 1//1X.!NOTE .... 1 E-9 OR LESS. RESULTS HILL BE IN GOOD SHAPE.1. 1//.4X8NHL810X.8B.C. 1‘913X.PB.C. 2F.//1 . 701 FCRMATI1H1.FDX = P.E15.6.‘ DY = F.E15.6.F H = P.E15.6.1 G = F. 9E15.89P VT 3 P9F5.2.P RHO 3 ‘8'6-2, 100 DIST: !.F5.1) 000031 000032 000033 000034 000035 000036 000037 000038 000039 000040 000041 000042 000043 000044 000045 000046 000047 000048 000049 000050 000051 000052 000053 000054 IF ALL THE VALUES LISTED BELON ARE IN THE ORDER OF000055 000056 000057 000058 000059 702 FORMAT(1H0.FEPSLON = ’.E15.7.3 LUMDA 8 ’.E15.7) C C INPUT VALUES C (98'! 41 42 43 44 25 26 4‘ NEAD(5.'1N”L.NIP.NFP.PR.DPSI.DETA.EX.EY.VX.GXT.PADIUS.HVALUE.DIS ”RITE!6.700‘NUL.NIP.NFP.PR.UPSI.DETA12X.EY.VX.GXY. 4RADIUS.HVALUE.DIST HEADLS.P1LXB‘IT.I=1.NHL1 NEADL5.'11TBTITTI=1.NMLT NEADT59')(N3TTFETI).I=1.NHLT READ!STPTIBANXLITOI=1.NHL1 NEAD(5.P)(BANY‘I1.I=1."UL1 NEADLS.‘1(XI(I1.I=1.NIP1 'IADLS.‘)1TI‘I1.I=I.NIPT HHITEL6910011I.XB1119YB(IToBANXLI).BANT(I).NBTYPELI) 191:1.NHL1 X0=5.08Y0=5.0 XF(1)=10.-X08YF(1)=-10.+Y0 DO 41 XF(I)8XF(I-1)-0.5 YFtIT=YF(I-1) DO 42 J31.10 =J'17 132911 00 “2 131911 XFTI.K):XF(I) YFtIoKT=YFtI¢K-17)+l.o XFT121:10.-x08YF(12)=-9.5¢Y0 DD 43 1:13.17 XF(I)=XP(I-1)-1.D YFtI)=YP(1-1) 00 Q“ J:199 K=J917 DO 44 I=12.17 XFlI+K)=XF(I) YF(I+KT=YF(IOK-17)41.0 ML2=NML928NML2P1=NML2+1 NMLP1=NHL¢1 NOPTION=1 DIST1=4.0 8 DIST2=2.0 DEL(1)=(10.42.*DIST1)/10. DEL(2)=(10.¢2.'DIST102.'DIST21/10. XX8(1)=5.0DIST1-DEL(1)8YY8(1)=-5.-DIST1 XXB(41)=5.0DIST1*DIST2-DEL(2)8YYB(41)=-5.-DIST1-DIST2 DO 28 J:182 UELT=OELI1I8IFIJ.EQ.ZIDELT=DEL(2) DO 25 I32.10 K=I IFTJ.EO.2)K=K¢4O xxalKT=XXB(K-1)-DELT YYB(K)=YYB(K-1T 00 26 1:11.20 K=I IFTJ.EQ.2)K=K04D XXthizxxatk-l) YYBTK):YYBIK-1)+DELT DD 27 1:21.30 K=I 101 DETA = I.E15.7. 000060 000061 000062 000063 000064 000065 000066 000067 000068 000069 000070 000071 000072 000073 000074 000075 000076 000077 000078 000079 000080 000081 000082 000083 000084 000085 000086 000087 000088 000089 000090 000091 000092 000093 000094 000095 000096 000097 000098 000099 000100 000101 000102 000103 000104 000105 000106 000107 000108 000109 000110 000111 000112 000113 000114 000115 000116 000117 000118 000119 27 28 38 102 IF‘J.EQ.2)K:KO4O XXB1K1=XXBIK~IIOOELT TYB(K1=YTO(K'I) DO 28 I=3I.40 K=I IFIJ.EG.21K=K04O XXBIK)=XXB(K-1) YYB1K1=YYB1K-11-OELT XXB1811=XX51411 8 TT31811=YT31411 PI:‘8.PATAN11.T . Q=1.0 VT=ETPVX/EX 8 OX:EX'HVALUE.‘P3/(IE.‘(I.-VX'VT11 OY=EY9HVALUE“‘3/(12.'(1.-VX”VY11 8 Do=SQRT(OX‘DY) NCOUNT=1 CONTINUE DK=GXYPMVALUEHP3/12. H=OXPVYOZ.'OK 8 RHO3H/OD “ITE1691101119XXB1I19TTBLIT’I:19IHLZPI1 NHITE16.50011I.XF1I1.YF(I1.I:1.NFP) WRITE16.20011I.XIII1.YI(I1.I=I.NIP1 E4=OX/OY 8 E23509T1E4) 8 EPSLON=SORT1E21 FACTCP=1.E-6 8 QLOAD=Q‘DETA*DPSI 8 R2=RAOIUSPPZ KRITE16.701)DX.OT.H.GXT.VY.RHO IF1RHO-1.012.1.3 FOR HMO .EQ. 1.0 'PP'PP‘H'P' COEF1=1./116.8PI'EPSLONPOO) 8 COEF2=Z.RCOEF1 NTYPE=1 GOTO 4 FOR PHO .LT. 1.0 P‘”""'*' COEF1=1./(32.*PIPDD) 8 COEF232.8COEF1 HU1=EPSLONRSQRT111.4RHOT/2.1 "U2:EPSLON‘SORT((1.-RHO)/2.1 NTYPE=Z SOTO 4 FOR RHO .GT. 1.0 'P'P'PPP'P EETAPEPSLCNRSOHTLRHOOSGRTLRHORPZ-I.11 8 BETA2=OETAPPZ LUHOA=EPSLONPSQRT1RHO-SORTIRHO‘PZ-I.1) 8 LUHOAEPLUHOA'RZ HRITEI6.7021EPSLON.OETA.LUHOA COEF1=1./(O.'PIPOO'1OETA2°LUHDA211 8 COEFZ3COEF1'Z. NTYPE=3 CONTINUE 00 5 1‘16”". RL1I1=D.O NL1I§NML1=D.D R1X3X31I1 R1Y=YB1I1 ANx=BANN111 ANY=BANYlI1 DO 6 J=1oNIP H2X3XI1J1 R2T=YITJI ZI=R1X-R2X 8 zz=RIY-RZY 8 215321582 8 ZZSPZZ*'2 ANXS3ANXP'2 8 ANYSPANY'PZ AAPOXHANXSOOT‘ANYS’VX BBPOYPANTS¢OXPANXSPVT CC32.'ANX'ANTROK GOT0117.18.19).NTYFE 17 R125=ZIS+ZZSRE2 8 Z5=ALOG(R12S/R2) C1=25-2.'E28225/R12S C232502.9E2|ZZS/R125 000120 000121 000122 000123 000124 000125 000126 000127 000128 000129 000130 000131 000132 000133 000134 000135 000136 000137 000138 000139 000140 000141 000142 000143 000144 000145 000146 000147 000148 000149 000150 000151 000152 000153 000154 000155 000156 000157 000158 000159 000160 000161 000162 000163 000164 000165 000166 000167 000168 000169 000170 000171 000172 000173 000174 000175 000176 000177 000178 000179 an 18 10 c. 6. 45 6 5 33 20 21 103 C3=EPSLCNGZIRZZIR12S RLTI)=RL1IT-OLOAD'(R12SPZS-13.'ZISOE2*ZZS)l RLIIONMLT=RL1IONML)-QLOA08(AA*C1OBB'E2§C2¢2.REPSLONSCC8C3)iFACTOR SOTO 6 Z7=ALOG1121599242.lRHO‘E2921552254E48ZZS9'21/R28921 Z8=ATAN12.'MUl‘MUZPZZS/lZISORHO'EZ‘ZZS)1 IFIZS.LT.0.)Z8=286PI 000180 000181 000182 000183 000184 000185 000186 Z9=ALOS11lMUl'ZZ148241Z1-MU2‘ZZ1'921/1(MU1822189201110MU2922198211000187 RLlI)=RL(I)-QLOAD*((ZISOEZ'ZZSl/MUIPZ7-2.91215-E2'ZZS1/MU2‘ZD 4-2.5E2821822/(MU1'MU21‘29-6.*12130E292251/MU11 C1=Z7/MU1-2.PZB/MU2 8 C2=Z7/MU102.PZ8/MU2 8 C3=-Z9/(MU1’MU2) RL(I‘NWL)=RL1IONMLT-QLOAD‘lAA¥C14BBPE29C29CC9E29C31*FACTOR SOTO 6 ZLC81=ALOGtIZISOLUVDA2'ZZST/R21 8 ZLOSZ=ALOS1(ZlSOBETAZ'ZZSl/RZT IFtAESTZI).LE.1.E-6)SOTO 12 Z7=ATANfLUMDA‘ZZ/Z1) 8 ZS=ATAN1BETA822/21) GOTO 45 Z7=PI/2. 8 28:27 CONTINUE IF1Z7.LT.0.)Z7=Z76PI IF128.LT.0.)Z8=ZSOPI C1=BETA!ZLOS1-LUMDA'ZLOSZ 8 C23-LUMDA9ILOSIOBETA'ZLOS2 C3=~Z7028 000188 000189 000190 000191 000192 000193 000194 000195 000196 000197 000198 000199 000200 000201 000202 RL(I1=RL1I)-QLOAD9(8ETAI(ZIS-LUMDAZ'ZZS)PZLOSl-4.ILUMDA88ETA821'ZZ000203 0IIZ7-28l-LUMDA*(Z1S-DETA2'225T'ZLOSZ-3.'(BETA-LUMDA1 ‘PTZISOLUMDA'EETA822511 RL(I§NML1=RL1IONML1-QLOADl1AA'CIOBB'EZICZOZ.PE28C315FACTOR CONTINUE CONTINUE DO 8 I=I.NML R1X=XB1I1 R1Y=YBTI1 ANX=BANX1I1 ANY=EANY1 I) DO 7 J=1oNML2 R2X=1XX81J9110XXBIJ11/2. R21=1YYB(J‘1)*YYB(JI)/2. IF(NCPTIDN.EQ.2.0R.J.NE.NMLTSOTO 33 R2X=1XXBI1HXXBINML1V2 . R2Y=(YYB(1)§YYB(NML))/2. CONTINUE 21=R1X-R2X 8 12=R1Y-R2Y 8 ZIS=Z1882 8 225:22982 ANYS=ANX992 8 ANYS=ANY*‘2 AA=DX*ANXSOOY!ANYSlVX EB=DYIANYSODXRANXSPVY CC=2.!ANX'ANYPDK SOTO (20.21.22).NTYPE R125=ZIS¢ZZS9E2 8 ZS=ALOS1R125/R2) C1=ZS-2.IE2'ZZS/R125 C2=Z502.NE2*ZZS/R125 C3=EPSLON'ZIPZZ/R125 RM!I.J)=R12S'ZS-13.IZ1S0E2'ZES) RMII‘NML.J13(AA9C19888E28C292.REPSLONNCC'C319FACTOR SOTO 7 Z7=ALOGI1ZIS'8242.'RHO'E2*ZISRZZS6E49225992T/RZRIZ) Z8=ATAN(2.'MU1‘MU2*ZZS/(ZlSORHO‘EZ'ZZS1) IF128.LT.0.’Z8=Z8§PI 000200 000205 000206 000207 000203 000209 000210 000211 000212 000213 000214 000215 000216 000217 000218 000219 000220 000221 000222 000223 000224 000225 000226 000227 000228 000229 000230 000231 000232 000233 000234 000235 000235 000237 000235 000239 22 23 66 7 8 10 1015 29 1102 1101 30 100 Z9=ALOSIl(HUI'Z21"20(ZI-HU2‘Z2)"2l/t(HUI'ZZ)*'2§(ZIOHU2'ZZ1'82))000240 RHII.J)=(l215*E2'ZZS)/flU1*Z7-2.'(ZIS-E2*ZZSi/HUZ'Z8 *-2.'E2*ZI'ZZ/(HU1*HU2)'Z9-6.*l21S‘E2‘ZZS)/HU11 C13Z7/HU1-2.928/HU2 8 C2=Z7/KU102.I28/HU2 8 C3=-Z9/(HU1'HU21 RHlI‘NHLoJ)=(AA‘CI‘BB'EZ'CZOCC‘EZ'C31'FACTOR SOTO 7 ZLCSI=ALOSI(ZIS‘LUHOAZ'ZZSl/PZI 8 ZLOSZ=ALOSIlZ1S+BETA2'ZZSl/RZ) IF(ABS(ZII.LE.1.E-6)SOTO 23 Z7=ATANtLUfiOA*ZZ/ZII 8 28=ATAN(BETA§ZZ/Zl) SOTO 66 Z7=PI/2. 8 28:27 CONTINUE IFlz7.LT.0.)Z7=Z7¢PI IF(Z8.LT.0.)ZS=28+PI C1=8ETI'ZL031-LUfiOA‘ZLOSZ 8 C2=-LUHOAlZLOSIOBETA‘ZLOSZ C3=-Z7928 RH!I.J)=(BETA*(Z1S-LUflDA2'ZZSI'ZLOSI-é.‘LUHOA*8ETA‘ZI'ZZ §I(Z7-ZOI-LUfiDA'IZIS'BETAZ'ZZS)“ZLOGZ-3.'(BETL'LUHOA) ¢I(Z156LUHOA‘BETA'ZZS)) RH(IONHLoJ)=(AA'CIOBB‘EZ*C2*2.‘EZ'C31'FACTOR CONTINUE CONTINUE OO 10 I=1gNHL OO 10 J=19NNL2 RflXlI.J)=PH(I.J) RflxtloNHLoJ)=RN(IoNflL.J) DO 1015 I=IgNflL2 PLX‘I)=RL(I) CALL LEGTlFtFH.1.NflL2.NHL2.RL.O.HKAREA.1ER) DO 29 1:1.NHL2 PSIII=PLtII HRITE (6.600) (1.PS(1).I=1.NHL2) HRIYEI6.1014) 00 1101 1:1.NHL2 SUfl=O. 00 1102 J=1.NHL2 SUH=SUH09HXII.J)IPS(J) CONTINUE RB(I)=SUH-RLXII) NRITE(6.1103)(I.RB(I).RB(I¢NHL).I=1.NHL) DO 9 1:10NFP "(I)=0.0 BHX(1)=0.0 BHY(I)=0.0 CONTINUE DO 16 1:1.NFP R1X=XFlI) R1Y=YF(I) 00 13 J=1.NIP R2X=XI¢JD RZY=YItJl 21:91X-R2X 8 22=01Y-R2Y 0 ZlS=ZlIiz 8 zzs=zz~~2 SOTO (30.31.32loNTYPE 91253213022S‘E2 8 ZS=ALOStR12$lR2) Z6=2.lE2'225/R125 "(I)=H(I)OOLOAO'IRIZS'ZS-I3.'ZISOE2'ZZS))lCOEFI BHXII)=BHX(I)-QLOAO*COEF2*OX*((ZS-Z6)+VY'E2‘(ZS+Z6)) 000241 000242 000243 000246 000205 000246 000247 000248 000249 000250 000251 000252 000253 000254 000255 000256 000257 000253 000259 000260 000261 000262 000263 000264 000265 000266 000267 000268 000269 000270 000271 000272 000273 000274 000275 000276 000277 000278 000279 000289 000281 000282 000283 000280 000285 000286 000287 000258 000289 000290 000291 000292 000293 000294 000295 000296 000297 000298 000299 31 32 26 67 13 1:. 11 36 35 36 105 BHYII)=8HY(I)-OLOAD'COEF2‘OY* (EZ'IZSOZ6DOVX'(25-Z6)) SOTO 13 Z7=ALOSTl2159'262.*RH09E2*215'2256E6'225**21/929921 ZB=ATANI2.lHU1‘HU2'ZZS/(ZlSORHOlEZ'ZZS)) IF128.LT.0.)ZS=Z8OPI 000300 000301 000302 000303 000306 Z9=ALOS(I(HUI'ZZ1*fl2§(ZI-HU2'Z2)**2)/((HU18221"26(21*HU2*ZZ)"211000305 w(I)=H(I)¢0LOAD!((215+225225)/HUI*Z7-2.Itle-EZfiz2sI/Huzfiza o-2.*EZ*21*22/(HUI!HUZIfiZO-6.I(2150E2IZZS)/MUI)iCOEFl H2x=Z71HUI-Za'2./HUZ 0 u2v=zvxn01o2.uze/nuz BHXII)=8HX(ID-OX'QLOAO'COEF2l(RZXOEZ'VYIHZYI BurtI)=BHY(Ii-DYuOLOA0*COEF2«(H2Y¢EZ+VX§H2XD GOTO 13 ZLCSl=£LOSt(leoLUHDA2IZZS)/RZD 0 ZLOGZ=ALOG((2150BETA2IZZSJIR2) IF(ABS(ZII.LE.1.E-6)SOTO 26 Z7=ATANtLUfl0A*Z2/le 0 20=ATAN(BETA’ZZ/Z1) GOTO 47 Z7=P1/2. 0 20:27 CONTINUE 1F(Z7.LT.0.)Z7=Z7+PI 1F(28.LT.0.)20=26+PI HtI)=H(Il¢GLOA0!(BETAITZ1S-LUWDA2*ZZS)lZLOGl-6.fiLUVDAvBETA&ZI*ZZ 6n!27-281-LUHDA¥(le-EETA2'ZZS)GZL062-3.§(BETA-LUHDA) 0*(ZIS¢LUHOA*BETAIZZS)D'COEF1 Hzx=BETA!ZL061-LUHOAIZL002 0 H2Y=BETA*ZLOGZ-LUHDA&ZLOGI BH¥(I1=BHX(Il-DX‘QLOAD'COEF2'(N2XOEZ‘VY‘H2Y1 BHY(I)=BHY(I)-OY'QLOAO*COEF2'(HZYIEZOVX'HZX) CCNT IHUE CONTINUE DO 16 1:13NFP RIX=XFtII R1Y=YFIIJ no 15 J=1.NHL2 RZX=(XXB(J+1)¢XXB(J))/2.0 921=(YYB(J01)OYYB(J))/2.0 IFtNOPTION.EG.2.0R.J.NE.NHL)GOTO 11 RZX=IXX8(1)OXX8(NHL))/2. R2Y=(YYB(1)¢YYBINHL))/2. CONTINUE Zl=R1X~R2x 0 22:01Y-02Y 0 z1s=21fiiz 8 ZZS=ZZ**2 GOTO (36.35.36).NTYPE 0125:2150223l22 0 zs=ALOG(R125/R2) 26:2.GE2!225/R123 "(I)=u(I)oFS(J)fiCOEFlIlRlZS‘ZS-t3.02150E2I225)) BHX(I)=BHX(1)-PS(J1§COEF2*0X§((ZS-Z6l0VY«22I(ZS¢Z6)) BHYtII=BHY(1)-P$(J)!COEF2I0YG(EZIIZS¢Z6IOVX!(zs-Z6)l GOTO 15 Z7=ALOSt(218*!2+2.GRHO*E2'Z1S‘ZZSOE6*ZZSG!Z)/R2*I2) 28=ATANI2.'HUI*HU2IZ25/(ZISORHO*E2*ZZS)) IF(28.LT.0.lza=zeoPI 000306 000307 000308 000309 000310 000311 000312 000313 000316 000315 000316 000317 000318 000319 000320 000321 000322 000323 000326 000325 000326 000327 000328 000329 000330 000331 000332 000333 000336 000335 000336 000337 000338 000339 000360 000361 000362 000363 000366 000365 000366 000367 000368 000369 Z9=ALOSI((HUllZ2)l'20(ZI-HU2*ZZD"2)/l(HUI‘ZZ)9i26(210HU2'22)*'2)1000350 “(I)3u1I)6PS(J)*(‘ZISOEZ'ZZS1/HU1.Z7-2.'IZIS'EZ'ZZS1/HU2'ZO #-2.'E2*Zl'ZZ/(HU1'HU2)‘Z9-6.'(ZIS¢E292251/HU1)9COEF1 H2X=Z7/flUl-ZO'2./flU2 8 H2Y=Z7/HU102.*ZO/NU2 BHXll)=BHX(II-DxiPSIJ1§COEF2'(H2XOEZ*VY!H2Y1 BHY(ID=BHYIIl-OYGPSCJ)*COEF2*(H2Y'E29VXIH2X) SOTO 15 ZLOSI=ALOStIZ1SOLUHOA2‘ZZSI/921 8 ZLOS2=ALOSt(Z1SOBETA20Z2$)/R2) IF(ABS(ZII.LE.1.E-6)SOTO 37 Z7=ATANtLUHPAII2/21) 8 28=ATAN(BETA'22/21) 000351 000352 000353 000356 000355 000356 000357 000358 000359 106 SOTO 68 37 Z7=PI/2. 8 28:27 68 CONTINUE IFTZ7.LT.0.)Z7=Z76PI IF128.LT.0.128=ZS+PI H(1)=H(11*PSIJ)'(BETA'(ZIS-LUNDA2*ZZS)§ZLOSl-6.iLUHOA'BETA*Z1*ZZ OI!27-281-LUHOA'121S-SETA2*ZZS)‘ZLOSZ-3.*(BETA-LUHOA) 0512159LUHDA*BETA*ZZS)1'COEF1 H2X=8ETA*ZLOS1-LUfiDA‘ZLOSZ 8 H2Y=BETA*ZLOSZ-LUHDAlZLOSl BHXII1=8HX1I1-OX'PSIJ)”COEF2'(H2X¢E2*VY*H2Y) OHYII|=BHYII)-OY5PS(J)lCOEF2*(H2Y*E20VX*H2X) 15 CONTINUE 16 CONTINUE HRITE(6.6001(1.XF(I).YF(I1.N(I).BHX(11.BHY(I1.1=1.NFP) SOTO(53.53.51.52.53).NCOUHT 69 RNO=0.5 8 NCOUNT=2 SOTO 38 50 RHO=2.0 8 NCOUNT=3 SOTO 38 51 RHO=0.1 8 NCOUNT=6 SOTO 38 52 RHO=10. 8 NCOUNT=5 SOTO 38 53 STOP END 609100.18190.3.1.091.Oo30.56.2.056.0.3.7.556o80..0.6.6.0 6.5.3.5.Z.5.1.5.0.59-0.5o'1.5.'2.59-3.5.-6.5.10'-5.u '“.59'3.59'2.50’1.59’0.590.501.502.593.594.5910'5. 101-5..-6.5.-3.5.-2.5.-1.5.-0.5.0.5.1.5.2.S.3.5.6.5. 10*5..6.5.3.5.2.5.1.5.0.5.-0.5.-1.5.-2.5.-3.5.-6.5 6092 10'0..10'-1.910‘”..10'1. 10"1 91050 010.1 910.0. 6.5.3. 5 2 5.1.5 0. 59-0.5.-1.5.-2.5.-3.5.-6.5. 0 59‘°.50'1.50'2-5"3.59'4.59 0. 59-0.5o'1.5.-2.5.'3.5o-6.59 0. 59'°.50'1.50‘2.59'3.59'“.59 O. 5,-0.5.‘1.59'2.5.-3.5.-6.5. 0. 59'0.5.'1.5.’2.5.-3.5.'6.5. 0. 59'0.59'1.59’2.53'3.50'4.50 0. 0 0. 1 ‘ tummemmmm cat: I To VI 50-0.59’1.59‘2.59’3.59'“.50 .5.-0.5.-1.5.-2.5.-3.5.-6.5. 5.-0. 5.-1. 5.- 2. 5.-3. 5.-6.5. 0"2.5’1°"1.591°.’°. 59 2. 5.1013. 5.10‘6. S 0 C ' . .C C O O 8 8 8 8 8 8 8 8 8 Hflbél‘EOaébb "91d1fl1d1d1d1d1fl1d1fl " “91181181111181“18113188; H. v v o o o o o v o CH“I»8V8“'UF°0°“8“ORD: I‘D- hit1fl1flUlUlUlUHm1fl1fl; 1.5. 1 5. 1.5. 1. 5. 1. 5. 1. 5. 1 5. L 5. 1. 5. -3. 5. .5 10 000360 000361 000362 000363 000366 000365 000366 000367 000368 000369 000370 000371 000372 000373 000376 000375 000376 000377 000378 000379 000380 000381 000352 000383 000386 000386 000387 000388 000389 000390 000391 000392 000393 000396 000395 000396 000397 000398 000399 000600 000601 000602 000603 000606 000605 APPENDIX F DERIVATIVES OF THE GREEN'S FUNCTION OF AN INFINITE ANISOTROPIC PLATE APPENDIX E DERIVATIVES OF THE GREEN'S FUNCTION OF AN INFINITE ANISOTROPIC PLATE For simplicity, the derivatives are written in terms of the four constants 01, 02, 03, and $0, and the eight functions L1, L3, R1, R3, 3_G - ___1.. 8R: 8R3 as_x ._ as; 3X - 8WD22¢1¢32 [(bBT +¢6"'— '1' ”((1’)( 3X ] 9.6. = _____13R1 8R3 - _3§_1_ _ 382 3y 8WD22¢1¢2 [$33Y +00? + “(a Y)(3 3y ] _a_3G_ 1 3x 3 ”"022¢1¢2 8N1_8__N3 3x 8x [033:1 +¢.§L3 + u<— J a G_ 1 (02+82-20y)(a2+82)+(az-BZ)(Y2+XZ) 8L. By3 “00220102 8 3y + (Y2+12-207)(Y2+12)+(1?-12)(az+82) 3L3 A By -“[0(Y 22+A2)-y1<§N1 - 3N3 )} 107 108 33G _ 1 3L1 3L3 3N1 8N3 axzay ' “RDzzRI¢-2‘¢3R‘i'*¢“57 * ““1”” ”837‘ " R;- ’1 33c = 1 [(02+82-2aY)(a2+82)+(a2-82)(Y2+A2) 9L1 Bxayz “WD22¢‘1¢2 L 3 3X + (Y2+k2-2ay)(12+A2);(y2-A2)(a2+82) 3L3 8x §N_1-_3N_3)} - u[a(v2+A2)—y]( 3X 3X where , ¢1 (a-y)2+2 ; ¢2 3¢u=(aY)+>\(B A) L: = 2n L(X'€)+a(Y-n)lz+32(y-n)2 a2 in [(x-E) ”(y-n) 12H2 (y-n) 2 2 a La: R1 {[(x-€)+a(y-n) 12-82 (y-n) 2}- (L1- 3) 3" u {[(x-£)+y(y-n)] 2-A2 (y-n) 2 } - (La- 3) N1 51 U) (A) I .611 8x 3x 3L1 = 8y 9.12. 3y 811. 109 8(y-n) 5) +0 (y-n) . _ “Yd” ' N3 ‘ arc t9 (X-EHYTy-n) arc tg (X? B(y~n)[(x-€)+a(y-n)](L1- 3)+{[(x-€)+a(y-n)]2-82(y-n)2}N1 - X(y-n)[(X-€)+Y(y-n)](L3- 3)+{[(x-€)+Y(y-n)]2-A2(y-n)2}N3 2{(x-€)+a§y-n)} {(x-€)+a(y-n)}2+82(y-n)2 2{(x-€)+ij~n)} {(x~€)+y(y'--n)}2+A2(y-n)2 2a(X-€)+2(02+82)jybn) {(x-C)+a(y-n)}2+82(y-n)2 27(x-§)+2(I?+A2)jy-n) {(x-£)+Y(y-n)}2+A2(y-n)2 -B(ybn) {(x-£)+a(y-n)}2+82(y-n)2 -1(y-n) {(x-€)+Y(y-n)}2+kz(y-n)2 8(x-E) {(Xr€)+a(y-n)}2+82(y-n)2 8N3 Y 213.1. 3x ES?" 110 A(x-€) {(x-E)+Y(y-n)}2+kz(y’-n)2 = 2[(x-£)+a(y-n)](L1-3) )+ 3L‘{[(x-g )+a(y-n)]2-82(y-n)2} -48(y-n)N1-48(y-n)[(x-€)+a(y-n)]§—N1 = 2[(X-€)+Y(y-n)](L3-3) )+ 3L3{[JNl-u8(y-n)[(x-a)+a(y-n)]LN1 = 2[Y(x-€)+(Y2-A3)(y-n)](La-3)+{[(x-€)+Y(y-n)]2-X2(y-n)3}-§F- '“X[(X-€)+2Y(y-n) )JNa-UA(y-n)[(x-€)+Y(y-n)]LN3 -——-= 8(y-n)(La-3)+B(y-n)[(X-€)+a(y-n)]gL1 + 2[(x-€)+a(y-nH'N1 +{[(x-€)+a(y-n)13-82(y-n)2}8N1 111 gig—3" My-n) (L3‘3)+X(Y('T1)[(X'E)+Y(Y’T1)]3L3 + 2[(X'€ “fly-”)1 °N3 +{[(x-£)+\(y-n112-12(Y“r) }§N3 .355]; = B[(X-C)+20.(Y-T1)](Ll-3)+B(y—n)[(x_5)+a n)] _a__L1 + 2[O(X’€)+(32_B2) (y_n) ] .N1+{ [ (X'E) MY’U) ] 2’82 (y- n) 2}3N_1_ 3—33— = A[ (X'€)+2Y(Y'T1)] (L3‘3)+)\ (y-n) [(X_€)+.Y (y_n)] L143 3_N_3 2[Y(x-E)+ < 2->2 )(y-n)] N3+{[(X‘5)+Y(y'n)]2-32 Y'”) 8y APPENDIX G COMPUTER PROGRAM FOR AN ANISOTROPIC PROBLEM (TCTCTCO(TCTCTCTf1(TCTCUCT(if)(if?(TCTFT(TCTTTCTCTCTCTCTCTGMO APPENDIX G COMPUTER PROGRAM FOR AN ANISOTROPIC PROBLEM PROGRAM ANIPLCLtINFUT.OUTPUT.TAPE5=INPUT.TAPE6=OUTPUT) 000100 000110 §¥III§¥§ICfiflIIOil.8".“lllliiliflifl'l‘filll5""!Nlfiflllflflllliflii’flflfilli'liflo 00 1 2 0 000130 POINT FORCE METNOD FOR ANISOTROPIC PLATE SENDING PROBLEMS. 000140 ARBITRARY PLAN FORM. TRANSVERSE LOAD. AND BOUNDARY CONDITIONS RP» 000150 000160 SNONN HERE IS AN EXAMPLE FOR A SIHPLY SUPPORTED SQUARE PLATE. 000170 000100 REOUIRED INPUT VALUES --- 000190 000200 NSP :NUMSER OF OOUNDARV POINTS 000210 NIP =NUMSER OF INTERNAL LOAD POINTS 000220 NFP =NUMSER OF FIELD POINTS 000230 xa.va =POINTS ON 8 AT NNICN B.C. ARE SATISFIED. 000240 BANX.BANY =COMPONENTS OF UNIT NORMAL To 0 AT XB.YB. 000250 XXB.YYB =END POINTS OF HESHES AROUND B NNERE FICTITIOUS 000260 FORCES ARE ASSIGNED. 000270 XF.TF :FIELD POINTS 000200 XI.TI =INTERNAL LOAD POINTS 000290 vx =POISSON-s RATIO IN x DIRECTION 000300 DUE TO STRESS IN T DIRECTION 000310 EX.EY tYOUNG'S MDDULI IN x AND Y DIRECTIONS. 000320 RESPECTIVELY 000330 sxv =8HEAP MODULUS 000340 NVALUE :PLATE THICKNESS 000350 RADIUS =RAOIUS OF THE FICTITIOUS CIRCULAR PLATE OF HHICH 000360 TNE DISPLACEMENT AT THE CIRCUMFERENTIAL DOUNDART 000370 IS SET TO ZERO. 000350 000390 .I.”.IlI”I.§II'IIIIII§C§liilliflifllfl‘lflifllll‘l...5"!“INKIUQI§§§5§I§IQ§IIOOOQOO 000410 DIMENSION XB(40).YB(40).X¥B(£1).YYB(81) 000420 DIMENSION XIIIOO).YIIIOO).DEL(Z) 000430 DIMENSION RLXTDO).RD(SD1.RM(SD.SD).PS(00).NKAREATDD).RL(SD) 000440 DIMENSION xF11011.TF(1011.N(101).3Mx(101).SMT(IDI) 000450 DIMENSION BANX(40).BANY¢60).RHN(80.80) 000450 REAL AVECTORT51.Mx.MT.HxT 000470 COMPLEX ERROR.ROOT(4) 000400 000490 100 FORMATtIDLOCTt.ex.¢xst.SX.¢TDF.7x.¢ANx1.Ox.¢ANvt.4x. 000500 o/aox/tIs.6F1D.411 000510 110 FORMATttDLOCT:.11x.txxat.14x.¢TvD:/:0¢/(I4.Ox.F9.2.Ox.F9.211 000520 200 FORMAT (COLOCTS.11X.¢XII.17x.1YI¢.14X./¢OI/ 000530 .(I4.11x.F6.3.11x.F6.3)1 000540 400 FORMAT tIILOCT!.19X.IPSPx/Iot/(14.8X.E20.61) 000550 500 FORHAT(30LOCT3.11X.£XF¢.17X.1YF¢/IOt/(16.11X.F6.3.11X.F6.3)) 000560 600 FORMAT:1N1.Sx.:NODEt.12x:xF¢.16X.:TF¢.19x.¢Nx.ISx.:SMx¢. 000570 116x.:DMv¢/t1N0.110.2F20.10.3Ezo.1211 000550 700 FDRMATTIN1.IINPUT VALUES .....a.//1x.:NOP : 1.13.: NIP =!.I3. 000590 4: NFP = P.13. 000600 9/1N091 EX ' '9E10.4.1 EY = 19E10.49‘ VX 3 '9F5.29' OX7 = $.E10.69 000610 S/lHOo‘ RADIUS OF THE PLATE = I. 000620 0F7.193 THICKNESS OF THE PLATE =‘OF6-3) 000630 703 FORHATllllylxoiTHE COEFFICIENTS OF THE CHARACTERISTIC i. 000660 OtPOLYNOHIAL ARE -----I./1X.5E12.5) 000650 704 EORHAT(1H091THE FOUR ROOTS OF THE CHARACTERISTIC EOUATIONtI. 000660 o(/1X92E12.5)1 000670 705 FORHAT11H0-‘ ’RROR FOR ROOT NO. 3.12.2X02E13.6.I IS I.2E10.6) 000680 112 C C C 113 707 FORHAT(1H0.1THE FOUR CONSTANTS ARE :1. O/IXSFALPHA = ‘oE10.49F BETA = F.E10.0o 0‘ OAHNA 8 F.E10.4o‘ LUHBOA = 39E10.4) 1103 FO'HAT(IS.SX.E20.12.5X.E20.121 1016 FOQHAT11H190THE FOLLONIRG IS A LIST OF DOUBLE CHECKING OF B.C.Si. I//.4X!NBP110X.FB.C. 1‘913XoFB.C. 2’1//) 708 FORMAT!1H0.’PAOIUS 3 19E10.3y‘ OISTI F ‘9F6.1v OF OIST2 = l.F6.11 801 FORMAT(1H1.ITHE SENDING RIGIDITIES ARE ----- 3. 4/1x.¢011 : ¢.E10.4.R 012 = 1.E10.4.¢ 022 = x.E10.4. o/Ix.tDeb = t.E10.4.x 016 = 1.510.4.: 026 = ¢.E10.4) 002 FOPHA711X.ISOHETHING Is NRONS NITN TNE INPUT MATERIAL CONSTANTSI. 41; THE DETERMINANT IS EITHER NEGATIVE OR zERo¢./1x. .xCOMPUTATION Is TERMINATED. DET = c.515.71 005 FORMATTIN1.¢TNE AIJ ARE ---t./1x.tA11= R.E15.7.: A12: 1. oEIS.7.v A22: :.E15.7.t A66: ¢.E15.7.t A16: :.E15.7. .r‘ A26= 8.E15.7) INPUT VALUES ......... 'EADISo“1NBPDNIPRNFPDEXoEYoVXoGXYoRADIUSDHVALUE READISS'IAIODAZO "EA0150'1(XB(I)DI=10NBP1 READ159'11YB‘1191=10NEP1 "£00159'118ANX11101:19KBP) 'EAD‘ 59.318‘NY1 I 1 01:1 ,NBP) lEADl5.l)(XI(I).I=1.NIP1 REAO‘50.1(YI(I)DI=10NIP1 NBP2:NBPl20N8P2P13N3P291 "OPTION:1 P13“..ATAN(1.1 A1131./EX 0 A12=~VX/EX 0 A2231./EY 0 A6631./GXY HPITE1698051A110‘120A220A669A169A26 DET31A11'A22'AIZO'21.A6692.”A12*A16'A26'A11"26"2'AZZ'A16*'2 IFtDET.GT.O.1GOTO 00 "RITE169802105T STOP (to CONT INUE ZZ=HVALUEi!3/(12.IDET) 0113(A22GA66-A26PPZIPZZ 0 022=(A11*A66-A16II2)‘ZZ 012=lA16'A26-A12!A66)'ZZ 0 066=lA11¥A22-A12*‘2)PZZ 016=lA12iA26-A22lA16)'ZZ 0 026=(A12*A16-A11PA26)RZZ RADIUS380. 0 DISTI:Z.O 0 DIST2=2. “R175160700INBPRNIPDNFPDEXDEYDVXDGXY0 ORADIUSRHVALUE HRITE(6.708)RADIUS.DISTI.DISTZ X035.°0Y0=5.° XF111310.’X00TF‘113-10.9Y0 DO 41 132911 XF(I)8XFII-1)-O.5 ‘1 TF1113YF1I'11 DO ‘2 J31910 K‘J'17 DO “2 131011 XE‘IOK13XF111 .2 T'IIOK13YFIIOK-171OI.O XF112131°.'XOSYF(1213-9.59Y0 DO ‘3 I313917 000690 000700 000710 000720 000730 000740 000750 000760 000770 000780 000790 000791 000792 000793 000600 000810 000820 000830 000550 000850 000860 000870 000830 000890 000900 000910 000920 000930 000940 000950 000960 000970 000980 000990 001000 001010 001011 001012 001013 001014 001020 001030 001060 001050 001060 001070 001080 001090 001100 001110 001120 001130 001140 001150 001160 001170 001180 001190 001200 001210 43 44 25 26 27 28 C SET 706 114 XF(1)=XF(I~1)-1.0 YFII)=YF(I-1) 00 “a J=109 K=Jfll7 00 44 1:12.17 XFIIQK1=XF111 YF(14K|=VF(IoK-17)91.0 DEL(1)=(10.92.*DIST11/10. DEL(2)=l10.92.l0157192.'01572)/10. XX8(1)=5.901$T1-0EL(1)9YY8(1)=-5.-DIST1 XXB(41)=5.ODISTIOOISTZ-OEL(2)SYY8(4113-5.-OIST1-DISTZ DO 28 J=1.2 0ELT=OELII)01FtJ.EQ.2)DELT=DEL(2) 00 25 1:2.10 K=I IFIJ.EO.2)V=K940 XXBlK)=XXB(K-1)-DELT YYBIK)=YY8(K-1) DO 26 1:11.20 K=I IF(J.EQ.2)K=K940 XXB!K)=XXB(K-1) YYBKK)=YYB(K-1)OOELT DO 27 1:21.30 K=I IFtJ.E0.2)K=Ko40 XXBtK)=XXB(K~1)+DELT YYBtK)=YY8(K-1) DO 28 1:31.40 K=I IFlJ.EG.2)K=K¢40 XXBIK)=XXB(K-1) YYB(K)=YYB(K-1)-OELT XX8(81)=XXB(41) 6 YY8(81)=YY8(411 HRITE(6.100)(I.XBII).YB(I).8ANX(I1.8ANY(I)pI=1:N8P) HP!TE(6.110)(I.XXB(I).YY8(I).I=1.NBP2P1) HRITE!6.500)(I.XF(I)»YF(I)’I=1.NFP) HRITE(6.200)II.XI(I).YI(I).I=1.NIP) HRITEI698011011.012.022.066.016.026 UP AND SOLVE THE FOURTH DEGREE CHARACTERISTEC POLYNOHIAL. AVECTORII1=1.0 9 AVECTORt21=4.'O26/022 AVECTOR!31:2.il01292.'0661/022 AVECTOP(4)=4.'DI6/DZZ 0 AVECTORISJ=OIIIO22 HRITEI6-703)(AVECTOP(11.13195) CALL ZFOLRlAVECTOPo4gflOOToIER1 "RITE(6.704)(ROOT(I1,131.41 DO 706 13194 ERROD=AVECTORII1§ROOTI11"49AVECTOQt21'ROOT11)FlIRAVECTORl3)* SHOOTtI1"29AVECTORI41'ROOT(IIOAVECTOR(51 NQITE(6.705)IRROOT(I)oERROR RI=REALIROOT1111 0 R2=AIHAGtROOTt111 R3=REAL(ROOT(3)) 9 R4=AIHAGtPOOT(3)1 H?ITE(6.7071R1.P29R3994 RIS=R1*'2 0 R2S832'F2 0 R3S=R3"2 0 H438R4'I2 CONSTG=IRI-P319.201929R41i'2 0 CONSTH=(R1-R31i'29(RZ-R41"2 COEF1=1./(8.5P19022'CONSTG'CONSTH1 0 COEF2=2.'COEF1 CONST1=((R1~R31952-(R25-R4S11/R2 001220 001230 001240 001250 001260 001270 001280 001290 001300 001310 001320 001330 001340 001350 001360 001370 001380 001390 001400 001410 001420 001430 001440 001450 001460 001470 001480 001490 001500 001510 001520 001530 001540 001550 001560 001570 001580 001590 001600 001610 001620 001630 001640 001650 001660 001670 001680 001690 001700 001710 001720 001730 001740 001750 001760 001770 001780 001790 001800 001810 60 61 62 63 6 5 115 CONSTzst(RI-R31-R241R2S-R4SI1/R4 CONST3=4.-(R1-R31 CONSTS=((RI-2.IR3)I(RIS¢RZS)9R11(R3S9R4SI)IRZ CONSTesctR3-2.uR1191R3S+R4ST+R3utRISoR2511/R4 CONST7=2.ItRISost-R3S-R4S1 CON518=1(R189025-2.¢R1*R3)RLEIS9RZS19(318-RZSTGIRSSOR4S)1/02 CONST9=TtR3SoR4S-2.~RI-R31n1R3SoR4S141R3S-R4SIPLRISoR2511/R4 00N3T10=4.l(01*(R3S+R4S)-R3l(RISoRZS)1 0LOA0=1.0 S AszADIUSR'z DO 5 1'10“? IL(1)80.0 RLTI.NSP1=0.0 R1x:x0111 RIY=Y8(I) ANx=DANXTIT ANTsDANvtIT 00 6 J=1.NIP RZX:XI(J) RZY=YI(J) zI=R1x-R2x o z2=R1v-R2v s 215=ZIEPZ S zzs=z2~~2 ANXS=ANXII2 S AN78=ANY‘!2 S ANxvaquANr FUNCLI=ALOG¢IT214R1~z2IsuzoRESPZESI/Azr FUNCL3=AL03tC(21903'221"2904S‘ZZS)/A2) 23=ZIRRIRZZ 0 z4=z1+R3-zz IFTADS1231.ST.1.E-SICOTO 50 FUNCN1=PI/2. GOTO 61 FUNCN1=ATAN(RZIZ2/Z3) IF!A85(Z4).GT.1.E-6)GOTO 62 FUNCN3=PI/2. SOTO 63 FUNCN3=ATANt R4'ZZ/Z4) CONTINUE IFIFUNCN1.LT.0.)FUNCN1=FUNQN19PI IFTFUNCN3.LT.0.1FUNCN3=FUNCN3.PI AA=011RANXSoDIERANv542.«DISSANxv =ANXS'01260225ANY562.lANXY*026 CC'Z.‘016'INX592.‘026'ANY594.'066'ANXY FUNCRIxL(ZIoRIRzz)Rcz-R2S92251R1FUNCL1-3.1-4.RRzuzzutz19R19z2) «FUNCNI FUNCRSst (219R3I22 )RIE-R4Suzzs m FUNCL3-3. 1-4.GR4*22*(21933'22) «FUNCN3 001820 001830 001840 001850 001860 001870 001880 001890 001900 001910 001920 001930 001940 001950 001960 001970 001980 001990 002020 002010 002020 002030 002040 002050 002060 002070 002080 002090 002100 002110 002120 002130 002140 002150 002160 002170 002180 002190 002200 002210 002220 002230 FUNCSI=R2'22'(ZIORI'221*(FUNCL1-3.19((ZIOR191219'2-R25'22S)lFUNCN1002240 FUNCS3=R4l2291219R3922)I(FUNCL3-3.)9((ZIOR3'ZZ)F‘Z-R4S'2251‘FUNCN3002250 HXX=CONSTIIFUNCL1+CONST2IFUNCL3§COHST3fltFUNCNl-FUNCN3) HXY=CONST5'FUNCL19CONST6'FUNCL3OCONST7'!FUHCNI-FUNCNS) HYT=CONST8iFUNCL19CONST9‘FUHCL3-CONST1051FUNCNI-FUNCN3) IL1113RLIIi-OLOAO'ICONSTI“FUNCRIOCONST29FUNCR3+CONST3¢ 0(FUNCSI-FUNCS311 HLIIONBPJSRLIIOHOPl-OLOAO*(AAlHXX988§HYYOCC§HXY1 CONTINUE CONTINUE OO 8 1319N8P RIXSXBTI) I1Y=T81I1 ANX=8ANX(I) AHY‘OANY111 DO 7 J313N892 002260 002270 002280 002290 002300 002310 002320 002330 002340 002350 002360 002370 002380 002390 002400 002410 33 70 71 72 73 10 1015 29 1102 1101 116 RZX=(XY8(J9119XX8(J)1/2. RZY=(YY6(J91)OYTB(J)1/2. IFINOPTION.EO.2.0R.J.NE.NBPIGOTO 33 R2X=IXXB(1)9XXB(NBP)1/2. 92Y=(YYB(116YYBINBP))/2. CONTINUE 21:31X-R2X 0 22=R1Y-RZT 0 215321'92 0 225:229'2 ANXS=ANXP*2 8 ANYS=ANY§92 0 ANXTSAinANY FUNCL1=ALOG(I(219R1'221"2632582251/A2) FUNCL3=AL051((21993.221'929P4S'2251/A2) Z3=ZI§FI*ZZ 0 24:21993922 IF(ABS(Z31.GT.1.E-6)GOTO 70 FUNCN1=PI/2. GOTO 71 FUNCN1=ATAN1R2'22/Z3) IF(A85124).OT.1.E-6)GOTO 72 FUNCN3=PI/2. GOTO 73 FUNCN3=ATAN(R4'ZZ/Z4) CONTINUE IFIFUNCN1.LT.0.)FUNCN1=FUNCN19PI IF‘EUNCN3.LTIO.1FUNCN3=FUNCN3991 AA=OII9AN¥59012§ANTSOZ.9016'ANXY BB=ANXS'012*OZ2*ANYSOZ.iANXY5026 Cc=2.'016'£NX592.‘OZ6'ANYSO4.'O66*ANXY FUNCRI=¢(214219221"2-RZSFZZS1FIFUNCL1-3.1-4.’RZ*ZZ*1210215221 oPFUNCNl FUNCP3=1(219939221"2-R4892281ltFUNCL3-3.1-4.‘R4*ZZ'(ZIOR3*22) 0*FUNCN3 002420 002430 002440 002450 002460 002470 002480 002490 002500 002510 002520 002530 002540 002550 002560 002570 002580 002590 002600 002610 002620 002630 002640 002650 002660 002670 002680 002690 002700 FUNC51392'ZZ'(219N1‘ZZ)‘(FUNCL1'3.19‘121431.221"2'N2582231'FUNCN1002710 FUNCS3=P4'22*(ZIRR3*ZZ19(FUNCL3-3.)9!(21993'221"2-945'2251'FUNCN3002720 HXX=CONST1*FUNCL1OCONSTZFFUNCL30CONST3'(FUNCNI-FUNCN31 WY=CONST5*FWCL1OCONSTO'FFLMC L39CONST7N FUNCNl-FUNCN3) HYT=CONST8FFUNCL1+CONST9‘FUNCL3-CONST10*(FUNCNI-FUNCN31 RH(IoJ)=(CONSTI‘FUNCPIOCONSTZ'FUNCR3OCONST3itFUNCSI-FUNCS3)1 RH!I+NBP9J)=(AA'HXX088'HYYOCC'HXY) CONTINUE CONTINUE OO 10 131.1189 00 10 J=1yN5P2 PHXTI.J)=PN(I,J) RHX(I¢NSP.J)=RN(I§NBP.J) DO 1015 I=13N8P2 RLX(I1=RL(I) CALL LEGTIF(RH.1.NBPZ.NBPZ.RL.0.HKAREA.IER) DO 29 1:1.N8P2 PS(I)=RL(I) HQITE (6.400) (I.PS(I).I=1.NBPZ) HRITEL6.1014) 00 1101 1:1.NBP2 SUfl=o. 00 1102 J=1.NBP2 SUH=SUN4RMXII.J)IPS(J) CONTINUE RB(1)=SUH-RLXTI) HRITET6.1103)(1.03!I).RB(1¢NBP).I=1.NBP) 00 9 I=1.NFP Nt!)=o.o 002730 002740 002750 002760 002770 002780 002790 002800 002810 002820 002830 002840 002850 002860 002870 002880 002890 002900 002910 002920 002930 002940 002950 002960 002970 002980 002990 003000 003010 80 81 82 83 13 14 11 90 117 CHX111=°.0 BHT11130.° CONTINUE 00 1“ IgloNFP RIX=XFL I1 NIY:TE( I) DO 13 J=10NIP sz=x11 J) NZT=T11J1 213N1X'Nzx 0 22=RIY-R2Y 0 215321"2 0 22$=ZZHZ 'Wng‘LOCI ( (21931‘22 1"29925‘z251/A2 1 FW'CL338L03111219N3'ZZ1"29R‘05'2231/A21 23321691'Z2 8 24:21993'22 IF‘ABS1Z3).GT.1 . E'6160T0 8° FUNCN13p1/2. SOTO O1 EUNCngATAN(PZ'ZZ/z31 1F( A851 Z4 1.8T . 1 . 5'6 TGOTO 82 FUNCN3=pI/2. COTO O3 FUNCN33ATAN1R‘O‘ZZ/Z‘O 1 CONTINUE IF! EWCNI . LT. 0 .1FWCN13FUNCN19PI IF‘FUNCN3.LT.O.1FUNCN3=FUNCN39PI FUTCP1311219R1‘221““2-925'2251'1FWCL1'3. 1'4 .‘NZ'ZZ‘1 219R1'z2) O'FUNCNI FUNCR3=I(21¢R3'221'82-R4592251'IFUNCL3-3.1-4.!R482291216R3'221 OiFUNCN3 003020 003030 003040 003050 003060 003070 003080 003090 003100 003110 003120 003130 003140 003150 003160 003170 003180 003190 003200 003210 003220 003230 003240 003250 003260 003270 003280 003290 FUNCSI=R2522N 219131.22 "(FUNCL1-3. “(1219919221992-2239225NFUTCNI003300 FUNCS3=R492251219R3922)‘(FUNCL3-3.)9((21933'221'92-R4592251fiFUNCN3003310 Hxx=CONST19FUNCL1 OCONSTZ'FUHC L3OCONST3NFUNCN1-FWCN3) HXY=CONST59FUNCL1OCONST6'FUNCL39CONST7ilFUNCNI-FUNCN3) NYY=CONST8'FUNC L1 OCONST9'FUNC L3-CONST10‘1FUNCNl-FUNCN3) H(I)=H(I19(CONSTl‘FUNCRI9CONST2§FUNCR39CONST39(FUNCSI-FUNCS3)1 O'COEF1*OLO‘D Hx=-COEFZP(OlliuxxoolzPHYvoz.POIéPHXY1RGLOA0 HY=-COEFZP(DIZGHXXROZZRHYYoz.'026¢HXY)POLOAO HXY3-COEF2'1016*NXX00269HYYOZ.‘OOOFNXY1'GLOAD OHX(I)=BHXTI)oMX 8NYII)=8HY(I)9NY CONTINUE CON'INUE OO 16 I=1.NFP R1X=XFtIl RIT=YFKII OO 15 J=I.NEP2 R2X=(XX8(J+1)OXXB(J11/2.0 R2Y=IYY8(J91)9YY8(J))/2.0 IF(N3PTION.EG.2.0R.J.NE.NBP)GOTO 11 R2X=IXX81119XX8lNBP))/2. RZY=IYY8(1)+YYB(NBP))/2. CONTINUE 218R1x-RZX 0 22=RIY-02Y 0 213:219'2 6 ZZS=ZZI92 FUJCL1=ALOGLt(21901.22)RRZoRZSPZZSI/Azl FUNCL3=ALOSIt(Zlonsvzz)II24R4SRZZS)IA2) 23:21691'22 0 Z4=ZIoR3lZZ IF(ABS(23).GT.1.E-6160TO 90 FUNCN1=PI/Z. GOTO 91 FUNCNI=ATAN¢RZRZZ/ZS) 003320 003330 003340 003350 003360 003370 003380 003390 003400 003410 003420 003430 003440 003450 003460 003470 003480 003490 003500 003510 003520 003530 003540 003550 003560 003570 003580 003590 003600 003610 118 91 IFtABS(Z4).CT.I.E-6)OOTO 92 003620 FUNCN3=PI/2. 003630 COTO 93 003640 92 FUNCN3=ATAN(R4'ZZ/Z41 003650 93 CONTINUE 003660 IF(FUNCN1.LT.0.)FUNCN1=FUNCN19PI 003670 IFtFUNCN3.LT.0.)FUNCN3=FUNCN39PI 003680 FUNC91=((21991'221'92-PZS‘Z2S)*(FUNCL1-3.1-4.9R2*ZZ'(ZIRPIFZZ) 003690 ORFUNCNI 003700 FUNCP3=I(21+R3'221"2-R4S*ZZS)'(FUNCL3-3.)-4.'R4'ZE§(ZIOR3'ZZ) 003710 o'FUN2N3 003720 FUNC51=RZ'ZZ‘(ZIOR1lZZlltFUNCL1-3.)9((ZIORI'ZZ)fli2-RZS'ZZS1‘FUNCN1003730 FUNCS3=R4922*IZIOH3*22)'(FUNCL3-3.19((21623922)G'Z-R4S‘Z2SJ'FUNCN3003740 NXX=CONST1 'FLNC L1 RCONST 2&FUNC L3OCONST3NFUNCN1 ~FUNCN3) 003750 HXY=CONSTS'FUNCL1QCONST6RFUHCL39CONST7PIFUNCNl-FUNCNS) 003760 HYY=CONSTO'FUNCL1OCONST9§FUNCL3-CONST10I(FUNCNI-FUNCN3) 003770 "(I)=H(I)9(CONSTI'FUNCRIRCONSTleUNCR3RCONST3GIFUNCSI-FUNCS31) 003750 RCCOEFI'PSIJ) 003790 HX=-COEF2I(011*HXX9012*NYY42.5016'HXYIRPS(J) 003800 HT=~COEF2lt012'HXX90229HYY92.‘026'HXY)IPS(J) 003810 HXY=-COEF2I(016*HXX50269HYY92.‘066'HXY)RF$(J1 003820 BHXIII=BHXTIJOHX 003830 8HY(II=EHY(I)4HY 003540 15 CONTINUE 003850 16 CONTINUE 003860 HRITEI6.600)(I.XF(I).YF(I).H(I).8HX(I).8HY(I).I=1.NFP) 003870 END 003880 40.100.181.30.E692.0E6.0.3p8.8E4.80.90.4 003900 0..0. 003910 4.5.3.5.2.5.1.5.0.5.-0.5.-1.5o-2.5.-3.5.-4.5.10'-5.o 003920 -4.5.-3.5.-2.5.-1.5.-0.5.0.5.1.5.2.5.3.5.4.5.10'5. 003930 10"5.9’“.59’3.50'2.59'1.50'0.500.501.502-503.50“.59 003940 10'5-o“.503.592.591.590.59‘0.59‘1.59‘2.50‘3.50'“.5 003950 10'0..10*-1..10'0.310*1. 003960 10I-1.310'0..10*1..10'0. 003970 0.503.592.591.500-50’0.50'1.59‘2.59’3.59'“.50 003980 4.5.3.5.2.5.1.5.0.5.-0.5.-1.5.-2.5.-3.5.-4.5. 003990 0.503.502.501.500.59'0.50'1.50‘2.50'3.59'4.50 004000 4.5.3.5.2.5.1.5.0.53-0.5.-1.5.-2.5.-3.5.-4.5. 004010 4.5.3.5.2.5.1.5.0.5.-0.5.-1.5.-2.5.-3.5.-4.5. 004020 4.593.592.501.500.50'0.59'1.59'2-50'3.59‘“.59 003030 4.5.3.5.2.5.1.5.0.5.-0.5.-1.5.-2.5.-3.5.-4.5. 004040 4.5.3.5.2.5.1.5.0.5.-0.5.-1.5.-2.5.-3.5.-4.5. 004050 4.5.3.5.2.591.5.0.5.-0.5.-1.5.-2.5.-3.5.-4.5o 004060 0.503.502.591.500.50'0.50'1.50'2.59’3.59'“.50 004070 10"“.5010"3.5010"2.5010.'1.5010"0.59 ° 004000 10.0.5910'1.5010'2.§010‘3.5010‘4.5 004090 IFlOET.OT.0.)SOTO 40 011011 APPENDIX H COMPUTER PROGRAM FOR THE VERIFICATION OF EQUATIONS USED FOR ANISOTROPIC PROBLEMS (TCIFT(TCTCTCICTCTCTCTCTCTCTf)(1C1f0€1f3f0f0€0€3f0f0f0f1(1 APPENDIX H COMPUTER PROGRAM FOR THE VERIFICATION OF EQUATIONS USED FOR ANISOTROPIC PROBLEMS PROSRAH PLCLCHKfINPUT90UTFUT9TAPE5=INPUToTAPE6=OUTPUT) THIS IS TO DOUBLE CHECK THE ANISOTROPIC PLATE PROCRAH. USING A SIHPLY SUPPORTED SQUARE PLATE. REQUIRED INPUT VALUES --- NSP 8PRNBER OF BOUNDARY POINTS NIP =HUHBER OF INTERNAL LOAD POINTS NFP =NUHBER OF FIELD POINTS X8oY8 =POINTS ON 8 AT HHICH B.C. ARE SATISFIED. 8ANX.8ANY =CONPONENTS OF UNIT NORNAL TO 8 AT XB’YB. XX81YY8 gEND POINTS OF HESHES AROUND 8 HHERE FICTITIOUS FORCES ARE ASSIGNED. XF0YF SFIELD POINTS XIpYI =INTERNAL LOAD POINTS VX gPOISSONSS RATIO IN X DIRECTION DUE TO STRESS IN T DIRECTION EX5EY tTOUNG'S NODULI IN X AND T DIRECTIONS: RESPECTIVELY GXY =SHEAR HOOULUS HVALUE *PLATE THICKNESS RADIUS 8RADIUS OF THE FICTITIOUS CIRCULAR PLATE OF HHICH THE DISPLACEHENT AT THE CIRCUHFERENTIAL BOUNDARY IS SET TO ZERO. 000001 000002 MIRRRRRRRRRRRRIRRRRRRRRRRRRRRRRRRRRRRRRRRR!RRRRRRRRRRRRRRRRRRRRRRRRRRROoooo3 000004 000005 000006 000007 000008 000009 000010 000011 000012 000013 000014 000015 000016 000017 000018 000019 000020 000021 000022 000023 000024 000025 000026 000027 000028 lllil‘.INI'IHNRIIUU‘I'INI“IIIIGINHONIGIINNHUUNIUNHIII“IIIGOIIINHQINHRHOOOO29 DIMENSION X8(40)oYB(40)oXX8l81loYY8181) DINENSION X1!1001.YI(1001.DEL(21 DINENSION RLX18019R818019RH(6098019PS(80)guKAREA(80).RL(801 DINENSION XF(181).YF(18119H(181108NX1181108NY(181I DIMENSION 8ANXI401.8ANY(40)oRNX(80.80) DINENSION BNXXtISl1oEFTY11811vBXY(181) DINENSION X81t401.Y81t401:X¥81(811.TY81(81).XI1(100).YI1(1001 DIMENSION XF1(18119YF11181198ANX1(40108ANY1(40) REAL AVECTOR(5).HX.HY.HXY COHPLEX ERROR.ROOT(4) 100 FORNAT(FDLOCT196X9FX81.8X9‘YB‘.7X,3ANXI98X.IANY!.4X91N8TYPE1, O/IOI/(I594F10.401511 110 FORHATlOOLOCT!.11XSFXXBi.14X0‘YT80/203/1I408X3F9.2.8X9F9.21) 200 FORNAT (IOLOCT8911X90XI¢.17X00YIFp14X9/201/ 0‘1“OIIXOF603011XOF60333 300 FORHAT (00LOCT0019X00RLDFv34X.FRLS*/101/(I4.8X.E20.8o16X9 1E20.8)) 400 FORHAT (FILOCT‘oI9Xo‘PSP1/200/TI4.8X:E20.811 500 FORNAT(IOLOCTthIX.IXF¢.17X.1YF!/!03/(I4911X0F6.3.11X.F6.3)1 600 FORHAT(1H1oOXo’NODEt.12X1XFI.16X.¢YFI.19X92H1916X.IBHX!. 116X.!8HYI/(1H0911092F20.1003E20.1211 700 FORNATIIHIoIINPUT VALUES .....89//1X90N8P 8 3,13.‘ NIP 32.13. 0: NFP 8 3,13, 9/1H00‘ EX 3 09:10.40‘ ET 3 09:10.00‘ VX 3 ‘9'5-20‘ GXT 3 00C10.09 o/IHO.’ RADIUS OF THE PLATE 3 ‘9 4F7.1,‘ THICKNESS OF THE PLATE =I.F6.3) 703 FORNATI///.1X.ITHE COEFFICIENTS OF THE CHARACTERISTIC 3» OOPOLYNOHIAL ARE ----- to/1X95E12.5) 119 000030 000031 000032 000033 000034 000035 000035 000037 000033 000039 000040 000041 000042 000043 000044 000045 000040 000047 000040 000049 000050 000051 000052 000053 000054 000055 000055 000057 000050 000059 C C C 120 704 FORHAT(IHO.ETHE POUR ROOTS OF THE CHARACTERISTIC EQUATIONzP. 4(/1X.2E12.51) 705 FORHATIIHOo‘ ERROR FOR ROOT NO. PpIZoZX92E13.4o‘ IS ‘92E10.4) 707 FCRHAT(1H09ETHE FOUR CONSTANTS ARE :Eo 9/1xot‘Lpfl‘ 3 .0E10.40‘ BETA 3 ‘0!1°.“g 9‘ GAHHA 3 P9E10.“41 LUHEOA 3 30E10.41 1103 FORHATI1595X9E20.1275X9E20.121 1014 FC°HAT(1H1.‘THE FOLLOHINS IS A LIST OF DOUBLE CHECKING OF B.C.S‘, 1//.QX’NSP$10X9TB.C. 708 FOPHAT11H0gtRADIUS = 1’.13X.‘8.C. ‘9E10.3o‘ Zloll) DISTI 3 P4F6.19 0’ DIST2 = ¢4F6.1) 801 FORHATIIHIo‘THE SENDING RIGIDITIES APE ----- 3: 0/1X4'011 = 34E10.4.l 012 = 3.E10.64i 022 = ‘oE10.44 O/1X43O66 = 14E10.4.l 016 8 PoE10.4.1 026 = ‘.E10.4) 805 FCRNATIIngiTHE AIJ ARE ---P./1X9‘A11= ioE15.7.P A12: 1. 0E15.79‘ A22= ‘oE15.7.‘ A66: 8.E15.7.‘ A16= ‘4E15.71 0! A26: 35E15.7) INPUT VALUES ......... READ‘54'INBP9NIPyNvaEXoE79VXvGXY,RAOIU55HVALUE RE‘O‘So'ILXB1117I=10NBP1 READ(59.’(YO‘I)0I=10NBP) READ‘50'1(OANX(ITolzlvNBFJ READ‘59P)‘EANT(I191:1.NBP) REAO(59P)IXI(I791319NIP1 READ‘59')(TI(I’7I=19NIP) NBP2=NBPPZSNBPEPI=NOFZOI NOPTION=I 91:“.RAT‘N(1., NCOUNT=1 A1630. 0 A2630. A11=I./Ex 0 A123'VX/EX 5 A2231./ET 0 A6631./5XT "RITE(608051‘110A129A225A660A169A26 OET=LAIIPA22'A12'PZ)PA66‘2.PAIZ'AI0”A26'AIIHA26‘HZ'A22‘A16P'2 ZZ=HVALUE"3/(12.0DET) 0113(A22'A66-A260'21‘22 0 022=(A11'A66-016'&2)&ZZ 012=|A16'Az6-A12'A66)‘zz 0 O66=IAIIRA22-AIZ"2)‘ZZ OI6=(A12'A26'AZZPA16)PZE 0 O26=(A12.A16-A11‘A26)‘zz RADIUS‘OO. 0 DISTI=Z.D 0 OIST232. OK=GXY‘HVALUE"3/12. 0 VT‘ET'VX/EX O¥=O11 0 OYPOZZ 0 O330X‘VX62.'OK ":03 5 RNO‘U/SQ°T(OX’OY) HRITE‘607OO)NBPvNIPoNvaEXoEToVX0sXTo ORAOIU57HVALUE "RITEI607OO)RAOIU59OISTloOIST2 "RITE(64709)OX9OY9RHO EOPNATl/l/1X9’OX 3 '9E15.705X9‘OY :‘oE15.795X0‘RHO =P9FIO.5) X035.00T0=5.0 XFII1:10.'XO0TF(1’='10.9TO OO “1 132711 XEII|=XF(I'I)'0.5 TEtli=VE(I’I) OO 42 J31710 K=J*17 OO “2 I‘loll XEIIOKIPXF(I) 42 YFIIOKIPYE(IOK'I7)OI.O 709 41 000060 000061 000062 000063 000066 000065 000006 000067 000068 000069 000070 000071 000072 000073 000074 000075 000076 000077 000078 000079 000080 000081 000082 000083 000086 000085 000086 000087 000088 000089 000090 000091 000092 000093 000094 000095 000096 000097 000098 000099 000100 000101 000102 000103 000106 000105 000106 000107 000108 000109 000110 000111 000112 000113 000114 000115 000116 000117 000118 000119 43 44 25 26 27 28 804 807 301 302 303 304 121 XF(12)=10.-X0$YF(12)=-9.59Y0 00 43 1=13.17 XF(I)=XF(1-1)-1.0 YFtI)=YF(1-1) DO 44 J=1.9 K=Jl17 00 44 1:12.17 XF(14K)=XF(1) YF114K1=YF(1+K-17)91.0 0EL(1)=l10.92.'015T1)/10. 0EL(2l=(10.92.'015T142.'015T2)/10. XX8(1)=5.9DIST1-DEL(1)0YY8(1)=-5.-DIST1 XXB(41)=5.¢DIST19015T2-DEL(2)5Y18t41i=~5.-DIST1-DIST2 00 28 J=1.2 0ELT=0ELI1)‘IFIJ.EQ.2)OELT=DELIZ) DO 25 1:2.10 K=I 1F(J.EO.2)K=K440 XXB!K)=XXB(K-1)-DELT YYBIK)=YYE'K-1) 00 26 1:11.20 K=1 1F(J.EG.2)K=K440 xxatxr=xxacx-11 YY8(K1=Y78tK-1)4DELT 00 27 1=21.30 K=1 IFCJ.E0.2)K=K+40 XX8(K)=XXB(K-1)+DELT YYBtK):YYBtK-1) 00 28 1=31.40 K=I 1FlJ.EQ.2)k=K440 XX8(KI=XXB(K-1) YYB(K)=YY8(K-1)-0ELT xxa1011=xx01411 0 Y781811=YYB(41) PH1=0. HRITE!6.807)FH1 F0:HAT(1H0."II HHEN PHI IS 1.F7.3.5X.tDEGREES --¢) FHI=PH10PIII80. SINP=SIN£PH1) 0 COSP=COStPH1I 00 301 1:1.181 XF1l11=XF(I)‘COSP9YF(1)'SINP YF1(1)=-XF(1)‘SINPoYF(I)'COSP 00 302 1=1.40 X81111=X811)“COSP9Y8(1)'SINP Y81(1)=-X8(II¥SINP9Y8(1)*COSP BANXII1)=8ANX(1)ICOSP+8ANY(I)‘SINP 8ANY11118-BANXI1)ISINP48ANY(I)ICOSP 00 303 I=1981 XXBIIII=XXB(I)!COSP9YY8tIDISINP YYBltI)8-XX8(I)ISINP41Y8(IDICOSP 00 304 181.100 X11!1)=X1(1)ICOSP4Y1(1)*SINP Y11t1)=-X1(11'SINP9Y1(1)¢COSP HRITE(6.100)(14X8111)4Y81l1).BANX1(I).8ANY1(1).I=1.N8P) HRITEI6.110)(1.XX81(1)oYY8111)oI=19N8P2P1) HRITEI64500)II.XF1(I)9YF1(I).1=1.NFP) HRITEI6.200)(19X11(114111(1191=1.N1P) COSP2=COSPv"‘ 0 cosp4=cospzbuz 000120 000121 000122 000123 000124 000125 000126 000127 000128 000129 000130 000131 000132 000133 000134 000135 000136 000137 000138 000139 000140 000141 000142 000143 000144 000145 000146 000147 000148 000149 000150 000151 000152 000153 000154 000155 000156 000157 000158 000159 000160 000161 000162 000163 000164 000165 000166 000167 000168 000169 000170 000171 000172 000173 000174 000175 000176 000177 000178 000179 706 60 61 62 63 122 SINPZ:SINPPPZ 0 SINPQFSINRZPHZ COSZP=COS(2.'PHI’ 0 OIN29331N12.'PHI1 011=DX¢COSF492.”03*SIHP2'COSP290YISINP4 022=OXPSINF492.'OS'SINPZ‘COSPZ‘OT‘COSPQ 066=OK61OX§OT'24.O3)PSINPZPCOSPE Olz=OTPVY¢1OX§OY-2.'O3)lSINPZ'COSPZ O16=°.5.1OT‘SINPZ'OX'COSPZ‘O3‘COSZP1'SIN2P 026:0.5'1OT'COSPZ'OXESINPZ'O3‘CCSZP)“SINZP "RITE169OOI,O110012002200669O160026 AVECTOR‘I”I.O 0 AVECTOR121=4.'DZ6/022 ‘VECT0913)=z.'(OIZ§Z.POOO1/O22 AVECTOR191=Q.POIO/O22 0 AVECTOR1513011/OZZ "RITE16070311AVECTOR11191:1951 CALL ZPOLR1AVECTOQo‘0ROOT01ER) “RITE16070311ROOT11101310“) DO 706 I319“ ERROR=AVECTOR111‘RCOT1I’PPQOAVECTOR121'ROOT‘ITNHIOAVECTOR(31* 9ROOT11)“PZOAVECTOR141'POOT11TOAVECTOR151 ”RITE169705110ROOT11ivERROR RI‘REAL‘ROOT1111 0 R23AIHA51ROOT(I1) R3=PEAL1ROOT1311 0 RQ=AIHAOIROOT1311 "RITE1647071R19R29R35R4 R15=Rl"2 0 R233RZPPZ 0 R333R3"2 0 RQS=R4PSZ CONSTG=1RI'R3)'PZO(RZOR41"2 0 CONSTN=(RI’R3)P'ZO(R2‘R41": COEF1=1./(O..RI'022'CONSTG'CONSTH1 0 COEF2=2.flCOEF1 CONST131‘RI‘RS’PRZ-‘RZS'RQS11/Rz CONST2=I‘RI'R31'PZ01R23'R4511/R“ CONST3:Q.P(R1'R3) CONST5=I(R1'2.'R31.(R139R2316R1.1R330R4511/R2 CONST631(R3'2.'R11’1R350R451*R3'1R130R23)1/R4 CON$T7=2.‘(RIS6R25‘R35'RQSI CONSTO31(RIS‘RZS'E.NRINR3)'(R159RZS19(R15'RESTPIR339RNS11/R2 CONST9=1(R359R45'2.'R1'R31'1R3S9RQS19(R35'R431'1R150RZS)1/R4 CONST10=4.'(RI‘(R3S‘R451-R3'1R159R23)1 GLOA0=1.0 0 02=RA0103552 00 5 I=1oNSP RLLI1=0.0 RL‘I‘NER):0.0 R1X=X81(1) R1Y=Y81111 ANX=BANX1tIl ANY=BANT11I1 OO 6 J=IoNIP RZX=X111J1 R2Y=7111J1 ZI=R1X-R2X 0 ZZ‘RIY-RZY 0 ZISPZIPPZ 0 225322"2 ANXS3ANXIl2 0 ANT530NTP'2 0 INXT=ANXPANT FUJCL1=AL051((ZIORIPZE1"2’R23PZZS1/A21 FUNCL3=AL051((216R3'ZZ1PPZOR9502251/‘21 Z3=ZI§R1‘22 0 z4=ZI9R3EZZ IE1ABS1ZS’.GT.1.E'O’GOTO OO FUNCN1=PI/2. GOTO 61 FWCN13ATATHR2'ZZ/231 IE1‘BS1Z“).GT.1.E'OTGOTO 62 PUVCN33RI/2. GOTO 63 FUNCN3=ATANIR4IZZ/Z4) CONTINUE IF‘EUNCN1.LT.O.TRUNCNIPFUNCNI9PI 000180 000181 000182 000183 000184 000185 000186 000187 000188 000189 000190 000191 000192 000193 000194 000195 000196 000197 000198 000199 000200 000201 000202 000203 000204 000205 000206 000207 000208 000209 000210 000211 000212 000213 000214 000215 000216 000217 000218 000219 000220 000221 000222 000223 000224 000225 000226 000227 000228 000229 000230 000231 000232 000233 000234 000235 000236 000237 000238 000239 6 5 33 70 71 72 73 123 1F1FUNCN3.LT.0.)FUNCN3=FUNCN3+PI AA=011dANXS90125Anv542.5016CANXY SBSANXS‘0120022'ANYSOZ.IANXT'026 €082 .0016uNx592 . .0269ANY594 . 5066“th “H.201“ 111401-22 )«2-02352251-17154011-3. )-4.IR2!ZZ!(ZI+R1522 ) O‘FUNCNI FUNCR3=t(ZIOR3‘ZZ1*‘2-R4S*2251'(FUNCL3-3.)-4.'R4‘ZZ'IZI¢R3*ZZ) “FUNCNS 000240 000241 000242 000243 000244 000245 000246 000247 FUNCS1=R2RZZRCIIOR1'ZZ1'1FUNCL1-3.101(21¢R1'22)G'Z-RZS*ZZS)iFUNCN1000248 FUNCS3=R4'ZZ*IZIOR3'ZZ)fllFUNCL3-3.10¢(ZIOR3'221"2-R4S‘ZZSIRFUNCN3000249 NXX=CONST1IFUNCL1OCONSTZIFUNCL3OCONST3'1FUNCN1-FUNCN3) NXY=CONST5*FUNCLIOCONST6IFUNCL39CONST7*(FUNCN1-FUNCN3) NYY=CONST8*FUNCL1*CONST9'FUNCL3-CONST10'1FUNCNl-FUNCN3) RLII)=RL(I)-QLOAD§(COHSTl'FUNCRI+CONST2'FUNCR3OCONST3* 4(EUNC31-EUNC5311 RLIIONBP1=RL1IONBP1-OLOA0'fAA‘NXX§BB*HYY+CC'HXY) CONTINUE CONTINUE OO 8 I=19NBP RIX:XOI(I) R1T=T011I1 ANX‘OANXI‘I) ‘NT’BANYIII’ DO 7 J31 .NBPZ RZX=IXXOIIJ011OXXO11J11/2. RZT=(TTOI‘J6119YYBI(J)1/2. IE1NOPTION.ER.2.0R.J.NE.NBP)GOTO 33 R2X=tXX8l11¢XX8tNBP))/2. R2T317T81119TT31N3911/2. CONTINUE ZI=R1X-R2X S 22=R1Y-RZT 0 215=ZIPHZ 0 Z25=22**2 ANXSgANXP‘Z 0 ANY5=ANT"Z E ANXY3ANX'ANT FUNCLI’ALOGI1(210RIPZZ1"20R2592251/A2) FUNCL3=ALOSII(ZIOR3*zZ1"2‘R45‘ZZS1/A2) Z3=ZI9R1822 0 Z4=ZI§R3'ZZ IF11351231.GT.1.E°6)GOTO 7O FUNCHl=PIl2 . GOTO 71 FUNCN1=ATAN1R2'22/Z3l IF‘ABS1ZQ1.GT.I.E-6)GOTO 72 FUNCN3=RI/2. SOTO 73 FUNCN3=ATAN1RQPZZ/ZQ1 CONTINUE IP1EUNCNI.LT.O.1EUNCN1=EUNCNI§PI IFIFUNCN3.LT.D.TFUNCN3=FUNCN3OPI AA=OIIPANXS4DIEPANYSOZ.“OIS'ANXY OO=ANXSPOIZODZZPANYSOZ.‘ANXY'OZS 00:2.‘016'ANX862.‘026'ANY394.'066'ANXY PUNCR1=C(219R1'221"2-R25'ZZS1'1FUNCLI-3.1-8.'R2*22*(ZIOR19121 0iFUNCN1 FUNCR3=1(21¢R3l221"2-R4S'ZZS)'(FUNCL3-3.1-4.RR4'22'(ZIOR3*221 OIFLMCN3 000250 000251 000252 000253 000254 000255 000256 000257 000258 000259 000260 000261 000262 000263 000264 000265 000266 000267 000268 000269 000270 000271 000272 000273 000274 000275 000276 000277 000278 000279 000280 000281 000282 000283 000284 000285 000286 000287 000288 000289 000290 000291 000292 000293 000294 FUNC51=RZRI2PIZIORIUZ2I'lFUNCLI-3.10((219R1'Z2li'Z-RZS‘ZZS)lFUNCN1000295 NMCS3=R4PZ2NZI¢R3RZZ )ll FLNCL3-3. ”(1210113922 M'Z-R‘oS'ZZS HFMN3000296 NXX=CONST1lFUNCLIOCONST2IFUNCL3OCONST3'IFUNCNl-FUNCN3) WTSCWSTS'FUJCLI OCGCST6RFWC L3OCWST7I(FUNCN1-FLNCN3 1 NTY‘CONST8"”"CLIOCONST9IFUNCL3-CONST10'IFUNCNl-FUNCN3) 000297 000298 000299 10 1015 29 1102 1101 80 81 82 83 124 Rut1.J1:!CONSTIIFUNCRl+CONST2'FUNCR3OCONST3“(FUNCSI-FUNCS3)) Rflt1+NBP.J)=(AA'HXX¢BBIHYY4chuxy1 CONTINUE CONTINUE 00 10 181.N8P DO 10 J=I.NEPZ RHXI1.J)=RH(1.J) RNXtIoNBP.J)=RH(ION8P.J) DO 1015 I=14NBP2 RLX(I)=RL(I) CALL LEOTlFtRH.1.NBPZ.NBP2.RL.0.HKAREA.IER) 00 29 1:1.NBP2 PStI)=PL(1) HRITE (6.400) (I.PS(I).I=1.NBP2) HRITE(6.10141 DO 1101 1=1.N3P2 SUH=0. 00 1102 J=1.NBPZ 5UH=5UH40HX(1.J)&PS(J) CONTINUE ' R8(I)=SUH-RLX(I) NRITE(6.1103)(1.RB(IJ.RB(IoNBP).1=1.NBP) 00 9 1:1.NFP H111=0.0 8HX(I1=0.0 BhYtI)=0.0 8XYlI)=0. BHXX(II=0. BHYYlII=0. CONTINUE OO 14 1:1.NFP Rlx=XF1(1) R1Y=YF111) OO 13 J=1.NIP R2X=X11(J) RZY=YII(J) 21:91x-nzx 0 22:01v-02Y 0 le=Zli‘2 0 225:22942 FUNCL1=ALOGI ( (2191211422 15529029225 )MZ) FUNCL3=ALOG(((2140352215'29R455225)/A2) 23:21901522 0 29=ZI+RSI22 IFIABSIZSD.GT.1.E-6)GOTO 60 FUNCN1=PI/2. GOTO 01 FUNCN1=ATAN(R2'22/Z3) IFIABS(Z4!.GT.1.E-6)GOTO 82 FUNCN3=P1/2. GOTO 03 FUNCN3=ATANIR4*Z2/Z41 CONTINUE IFIFUNCN1.LT.0.)FUNCN18FUNCN14PI IFtFUNCN3.LT.0.)FUNCN3=FUNCN39PI FUNCP1=I(Zloll‘zz)052-R2852253!(FUNCL1-3.)-4.!R2*22*(219R1522) uFUNCNl PUNCH!” (7.1493522 1442-0459zst-(rw013-3. )-4.IR4lZZI( 21911342) 4IFWCN3 000300 000301 000302 000303 000304 000305 000306 000307 000308 000309 000310 000311 000312 000313 000314 000315 000316 000317 000318 000319 000320 000321 000322 000323 000324 000325 000326 000327 000328 000329 000330 000331 000332 000333 000334 000335 000336 000337 000338 000339 000340 000341 000342 000343 000344 000345 000346 000347 000345 000349 000350 000351 000352 000353 000354 000355 000356 FUNCS1=R2'22'1210R1*ZZ11(FUNCL1-3.10((ZI‘R1'221*l2-RZS*ZZSTGFUNCN1000357 FUNCS3=R4'ZZI(ZIOR3*ZZ)‘(FUNCL3-3.)6!(21¢R3*22)GIZ-R4S'ZZS)iFUNCN3000358 NXX=CONST1*FUNCL19CDNST2‘FUNCL3OCONST3'(FUNCNI-FUNCN31 000359 13 14 11 90 91 92 93 15 125 NXYBCONSTS'FUNCLIOCONST6'FUNCL3¢CONST7'(FUNCNl-FUNCN31 HYY=CONST8EFIMCL1OCONST9lFLNCL3'CWST10'rf FUNCNI ~FLMCN31 “(I13H!I161CONSTI'FUNCRIOCONSTZ'FUNCR39CONST3'LFUNCSI-FUNCS311 O'COEFIROLOAD HX=-COEF2§(DII'HXXOD12'NYY92.I016lNXY1lQLOA0 HY=-COEF2'(012'HXX9022§NYY¢2.‘DZ6'NXY1|0LOAD HXY=-COEF2'(016*“XX4026'HYY62.5066*NXY1*QLOAD 8thI1=8HX(I19HX 8HT(I1=8HY(I14HY 8XY(I1=8XY(I14HXY 8HXX(I1=8HXII1'COSP298HYtI1ISINP2-2.i8XY(I1'COSP'SINP 8HYY11188HX(I1‘SINP298HYII1*COSP2-2.'8XY(I1'SINPICOSP THE NEGATIVE SIGN IS FOR A REVERSED ANGLE. CONTINUE CONTINUE DO 16 I=14NFP R1X=XF11I1 R1Y=YF1(I1 DO 15 J=1.N8P2 R2X=lXY81tJ9114XX81(J1)/2.0 R2Y=1YT81(J§11+YYBI1J11/2 . 0 IFTNOPTION.EQ.2.0R.J.NE.N8P1GOTO 11 R2X=(XX81(119XX811N8P11/2. R2Y=(YY81(119YY81(N8P11/2. CONTINUE ZI=R1X-R2X 9 22=R1Y-R2Y 0 218321'i2 0 ZZS=22*'2 FUNCL1=ALOG(t(ZIORI'ZZ1l*20R25522$1/A21 FUNCL3=ALOG(((214R3*221"29R4S'ZZS1/A21 l3=ZI¢R1'22 9 24=21+R3*22 IF(A88(Z31.GT.1.E-61GOT0 90 FUNCN1=PI/2. GOTO 91 FUNCN1=ATAH(R2522/Z31 IF(A85(Z41.GT.1.E-61GOTO 92 FUNCN3=PI/2. GOTO 93 FUNCN3=ATAN1R4'22/Z4 1 CONTINUE IFtFUNCN1.LT.0.1FUNCN1=FUNCN19PI IF!FUNCN3.LT.0.1FUNCN3=FUNCN3OPI FUNCR1=((ZI+R1*ZZ1*‘2-R25*2251'(FUNCL1-3.1-4.*R2*22*(21#R15221 OGFUNCNI FUNCR3=1(ZIOR38221"2-R4S'ZZS1‘1FUNCL3-3.1-4.'R4'22*1210R3*221 OlFUNCN3 000360 000361 000362 000363 000364 000365 000366 000367 000368 000369 000370 000371 000372 000373 000374 000375 000376 000377 000378 000379 000380 000381 000382 000383 000384 000385 000326 000387 000388 000389 000390 000391 000392 000393 000394 000395 000396 000397 000398 000399 000400 000401 000402 000403 FUNCSI=R2*ZZ‘1ZIORIPZZ1ltFUNCL1-3.1O((ZIOR1*221"2-R25'ZZS1'FUNCN1000404 FUNCS3=R4'22*(ZIOR3*ZZ1'(FUNCL3'3.101(ZIOR3'ZZ1*”2-R45'ZZS1'FUNCN3000405 NXX=CONST1*FUNCL19CDNST2'FUNCL3‘CONST3'1FUNCNI-FUNCN31 NXY=CONST5*FUNCL1OCONST6lFUNCL3OCONST7§(FUNCNI-FUNCN31 NTY=CONST85FUNCL1OCONST9'FUNCL3-CONST10'1FUNCNI-FUNCN31 ‘ N(I1=H(I1o(CONSTI'FUNCRI*CONSTziFUNCR3OCONST3‘(FUNCSI-FUNCS311 O'COEFI'PSTJ1 HX=~COEF2'(DII'HXXODIZ‘HYYOZ.‘016'NXY1lPS(J1 HY=-COEF2'(DIZ’HXXODZZ'HYY92."DZb‘NXY1'PS(J1 HXYS-COEF2'1016‘NXX+026‘HYY02.“066‘NXT1§PS(J1 BHX1I1=BHY(I1OHX DHY(I1=8HT(I1OHY OXY1I1=8XYtI1OHXY DH¥X(I1=BNX(I1'COSP248HY(I1'SINP2-2.'8XY1I1'COSP'SINP BHYT(I1=8HX(I1*SINPZOBHYII1'COSP2-2.IBXY(I1'SINPRCOSP CONTINUE 000406 000407 000408 000409 000410 000411 000412 000413 000414 000415 000416 000417 000418 000419 4.593.542.591.5.0.59 ...-0‘... 0 #Tfl‘flUIUIUIUHUIdId: FIO'O‘S‘C’U'O‘OHO1’ “a 126 CONTINUE "'ITE‘6060071I.XFII)0YF(IIOH(I7OBHXX(I'DBHTY11191310NFP, SOTO!49.50.51.52.531NCOUNT PHI=15. 0 NCOUNT=2 SOTO 804 PHI=30. 0 NCOUNT=3 SOTO 804 PHI=45. 0 NCOUNT=4 SOTO 804 PHI=60. 0 NCOUNT=5 GOTO 804 STOP END 40,100,181.30.E692.0E6.0.398.8E4.80.40.4 -0.5.-1.5.-2.5.-3.5.-4.5.10*-5.9 -4.54-3.5.-2.59-1.5.-0.5.0.5,1.5.2.5.3.5.4.5.10'5. ION'S.o'Q-50‘3.50’2.50’1.50’0.50O.501.502.503.50“.50 10'5.44.5.3.5.2.5.1.5.0.5.-0.5.-1.5.-2.5.-3.59-4.5 10.0.0100'1.010'O.510.1. 910.0. 910.1. .1050. 4. 5 3. 5 2.5 1. 5. 0. 5.-0.5.-1.5.-2.5.-3.5.-4. 5 0.50-0.50'1.50’2.50'3.59‘“. 5 0.54-0.5.-1.5o-2.5.-3.5.-4. 5 0.54-0.54-1.5o-2.5.-3.5.-4. 5 0.50’0450'1.50'2-50'3450'“. 5 0.54-0.59-1.5.-2.5.-3.5.-4. .5.0.5.-0.5.-1.5.-2.5.-3.5.-4. 5 0 5 0 .5 0. .5 1 1 ! 0'-2 5910i- 1. 5 105-0. 5: 2. 5 10'3. 5.10.4. 5 .55'0-50'1.50'2.50‘3.50'“. .50'0. 50-1 50-2 59-3 50'“. 50-0 50’1457’24 59-3-50'“. 59 So 5. 59 5. 5. 59 5. 5: So 000420 000421 000422 000423 000424 000425 000426 000427 000428 000429 000430 000431 000432 000434 000435 000436 000437 000438 000439 000440 000441 000442 000443 000444 000445 000446 000447 000448 000449 000450 000451 000452 BIBLIOGRAPHY 10. 11. 12. 13. BIBLIOGRAPHY Timoshenko, S. and Woinowski-Krieger, 5., Theory of Plates and Shells, McGraw-Hill Book Co., New York, (1959). Muskhelishvili, N. I., Some Basic Problems of the Mathe- matical Theory of Elasticity, Noordhoff, Holland, (1963). Lourye, A., Application of Complex Variables Method to Plate Problems, Journal of Applied Mechanics, USSR Aca- demy of Science, 4, (1940). Green A. E. and Zerna, W., Theoretical Elasticity, Oxford University Press, New York, (1954). Stevenson, A. C., Complex Potentials in Two-Dimensional Elasticity, Proceedings, Royal Society of London, Series A, 184, (1954). Morkovin, M. V., On the Deflection of Anisotropic Thin Plates, Ph.D. Dissertation, University of Wisconsin, (1942). Szilard, R., Theory and Analysis of Plates, Prentice-Hall, Inc., (1974). Zienkiewicz, O. C., The Finite Element Method, McGraw-Hill Book Co., New York, (1979). Altiero, N. J. and Sikarskie, D. L., A Boundary Integral Method Applied to Plates of Arbitrary Plan Form, Computers and Structures, (1979). Michell, J. H., The Flexure of Circular Plates, Proceedings of the Mathematical Society of London, (1902). Suchar, M., On Singular Solutions in the Theory of Aniso- tropic Plates, Bulletin de 1'Academie, Polonaise des Sciences, Series des Sciences Techniques, 13, (1964). Mossakowski, J., Singular Solutions in the Theory of Ortho- trOpic Plates, Archives of Mechanics, (1954). Mossakowski, J., Singular Solutions in the Theory of Aniso- trOpic Plates, Archives of Mechanics, (1955). 127 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 128 Lekhnitskii, S. G.. Anisotropic Plates, Gordon and Breach Science Publishers, (1968). Lekhnitskii, S. G., Theory of Elasticity of an Anisotropic Elasticity Body, Holden-Day, Inc., (1963). Ambartsumyan, S. A., Theory of AnisotrOpic Plates, Tech- nomic Publishing Co., Inc., (1970). Jaswon, M. A. and Maiti, M., An Integral Equation Formu- lation of Plate Bending Problems, Journal of Engineering Mechanics, II, (1968). Maiti, M. and Chakrabarty, S. K., Integral Equations for Simply Supported Polygonal Plates, International Journal of Engineering Science, 12, (1974). Jaswon, M. A., Maiti, M., and Symm, G. T., Numerical Bi- harmonic Analysis and some Applications, International Journal of Solids and Structures, 3, (1967). Benjumea, R. and Sikarskie, D. L., On the Solution of Plane Orthotropic Elastic Problems by an Integral Method, Journallof Applied Mechanics, 32, Transaction of ASME, 23. (1972). Altiero, N. J. and Sikarskie, D. L., An Integral Equation Method Applied to Penetration Problems in Rock Mechanics, Boundary Integral Equation Method: Computational Appli- cations in Applied Mechanics, Edited by T. A. Cruse and F. J. Rizzo, ASME, AMD-11, (1975). Bares, R. and Massonet C., Analysis of Beam Grids and Orthotropic Plates, Frederick Ungar Publishing Co., Inc., New York, (1968). Vinson, J. R. and Brull, M. A., New Techniques of Solution for Problems in the Theory of Orthotropic Plates, Pro- ceedings 4th ULS. National Congress of Applied Mechanics, University of California, Berkeley, June 18-21, (1962). Rajappa, N. R. and Reddy, D. V., Analysis of an Orthotropic Plate by Maclaurin's Series, Journal of Royal Aeronautical Society, 61, (1963). Mazumdar, J., A Method for Solving Problems of Elastic Plates of Arbitrary Shape, University of Adelaide, Adelaide, Australia, (1968). Huber, M. T., Theory of Plates, L'vow, (1921). Lekhnitzskii, S. G., Plane Statical Problem of the Theory of Elasticity of Anisotropic Body, Prikladnaya Matematika i Mekhanika, I, l, (1939). 28. 29. 30. 31. 129 Ashton, J. E., Halpin, J. C., and Petit, P. H., Primer on Composite Materials: Analysis, Technomic Publishing Co., Inc., (1969). Edited by Weeton, J. W. and Scala, E., Composites: State of Art, Proceedings and Sessions of 1971 fall meeting, The Metallurgy Society of the American Institute of Mining, Metallurgical and Petrolium Engineers, Inc., New York, (1974). Design with Composite Materials, The Institute of Mecha- nical Engineers, Great BritEin, (1973). Impact of Composite Materials on Aerospace Vehicles and Prgpulsion Systems, NATO Advisory Group for Aerospace Research and Development, Conference Proceedings, 112, (1972). "7114141174144“