

HARNESSING THE POWER OF GRAPHICS PROCESSING UNITS TO
ACCELERATE COMPUTATIONAL CHEMISTRY

By

Yipu Miao

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Chemistry - Doctor of Philosophy

2015

ABSTRACT

HARNESSING THE POWER OF GRAPHICS PROCESSING UNITS TO
ACCELERATE COMPUTATIONAL CHEMISTRY

By

Yipu Miao

Electron Repulsion Integral (ERI) and its derivative evaluation is the limiting factor for

self-consistent-field (SCF) and Density Functional Theory (DFT) calculations. Therefore,

calculation of these quantities on graphical processing Units (GPUs) can significantly

accelerate quantum chemical calculations. Recurrence relations, one of the fastest ERI

evaluation algorithms currently available, are used to compute ERIs. A direct-SCF

scheme to assemble the Fock matrix and gradient efficiently is presented, wherein ERIs

are evaluated on-the-fly to avoid CPU-GPU data transfer, a well known architectural

bottleneck in GPU specific computation. A machine-generated code is utilized to

calculate different ERI types efficiently. However, only s, p and d ERIs and s, p

derivatives can be executed on GPUs using the current version of CUDA and NVidia

GPUs. Hence, we developed an algorithm to compute f type ERIs and d type ERI

derivatives on GPUs. Our benchmarks shows the performance GPU enable ERI and ERI

derivative computation yielded speedups of 10~100 times relative to traditional CPU

execution. An accuracy analysis using double-precision calculations demonstrates the

accuracy is satisfactory for most applications. Besides ab inito quantum chemistry

methods, GPU programming can be applied to a number of computational chemistry

applications, for example, The Weighted Histogram Analysis Method (WHAM), a

technique to compute potentials of mean force. We present an implementation of

multidimensional WHAM on Graphical Processing Units (GPUs), which significantly

accelerates its computational performance. Our test cases, that simulate two-dimensional

free energy surfaces, yielded speedups up to 1000 times in double precision. Moreover,

speedups of 2100 times can be achieved when single precision is used whose use

introduces errors of less than 0.2 kcal/mol. These applications of GPU computing in

computational chemistry can significantly benefit the whole computational chemistry

community.

Copyright by
YIPU MIAO

2015

v

This dissertation is dedicated to my parents, girlfriend, and all those, whose
support, encouragement, and personal sacrifice have made this research

possible

vi

ACKNOWLEDGMENTS

First of all I want to thank my adviser, Professor Kenneth Merz, Jr from Michigan State

University and previously University of Florida, for providing me the opportunity to pursue

my Ph.D. in United States and supporting and guiding me as my advisor during the five

and half years of my Ph.D. Research.

Special thanks to my committee members, Professor Metin Aktulga, Professor Katharine

Hunt and Dr. Dirk Colbry. Moreover, I want to thank Professor Rodney Bartlett, Professor

Beverly Sanders, Dr. Erik Deumens and Dr. Benjamin Smith who were part of my original

committee at University of Florida for their help before my transfer to MSU with Professor

Merz.

I sincerely want to thank, Dr. Mark Burger and the many engineers from NVidia

Cooperation who supported myself and my research group with the-state-of-art facilities

for software development and research use. Their help was was a key to our success. After

my Ph.D. I will be taking up a position with the well respected company, Amazon.com

Inc.. Finally, I want to thank Professor Shuhua Li from Nanjing University, China, who

helped me understand the foundations of quantum chemistry and opened the door to

scientific research.

I want to give my heartfelt thanks to my parents Zhiguo Miao and Xiulan Ou who

emotionally and financially supported me during my Ph.D. career. I also want to thank my

girlfriend, Jiamin Liang, for her tireless support of me during my Ph.D.

vii

Many group members from Merz group, especially Dr. Yue Yang, Dr. Nihan Ucisik, Dr.

Dhruva Chakravorty, Dr. Alex Fu, To-be Dr. Li-Li Pan, Mr. Pengfei Li, Dr. Zheng Zheng,

and Dr. Xue Li provided fruitful discussions during my research career, and Mona

Minkara, Ting Wang, Nupur Bansal, Zhuoqing Yu and Lin Song also provided support to

me during my Ph.D. . The UFHPC and MSU iCER supported our group with facilities and

HPC courses, without which, my research would have been less successful, so I want to

thank Dr. Erik Deuemns, Dr. Charles Taylor, Dr. Craig Prescott, Dr. Ying Zhang of the UF

HPC and Dr. Kenneth Merz, Dr. Dirk Colbry and Dr. Benjamin Ong of the MSU iCER

team.

The Department of Chemistry of the University of Florida and the Department of

Chemistry at Michigan State University provided me with teaching assistant positions

during my Ph.D. career and guided towards the completion of the Ph.D. degree in

Chemistry. The Department of Computer and Information Science and Engineering of the

University of Florida bestowed a Master of Science degree in Computer Engineering,

thereby strengthening my knowledge of the computer science field. I want to thank all

faculty and staff of these departments, which had an influence on my life and career.

Last but not least, I also want to thank all of my friends in Gainesville, FL (the Gator

Nation) and East Lansing, MI for all their help and support.

viii

PREFACE

I was fortunate enough to work on a multitude of projects in computational chemistry

during my five-year studies towards my Ph.D. degree with Professor Kenneth Merz, Jr. I

focused on Graphic Processing Units (GPU) acceleration on computational chemistry and

computational biology methods, but also had great opportunities to explore the properties

of molecules especially biochemical molecules with potential application for drug design.

These projects, which were both interesting and challenging, allowed me to gain

experience in several fields especially at the interface of computer science and

computational chemistry.

The fundamental idea of my research projects was to speed up traditional computational

chemistry calculations using current generation computation technology with or without

modification of the computational methods employed. It is my strong belief that

computational chemistry will be a powerful tool for a broad range of chemistry disciplines,

but many of these applications of computational chemistry methods continue to be limited

by the speed of the computations rather than by their accuracy and theoretical justification.

Therefore, I focused my efforts on the power of high-performance computing especially

GPU-programming and its role in improving computational chemistry.

My dissertation focuses on three computational chemistry problems that are relevant to

scientific research in computational chemistry. I. Acceleration of electron repulsion integral

(ERI) evaluation on GPUs. II. Acceleration of the first order derivatives of ERIs (including

ix

high-angular momentum integrals) on GPUs. III. Acceleration of Molecular Dynamic

trajectory analysis using WHAM on GPUs.

x

TABLE OF CONTENTS

LIST OF TABLES ... xii

LIST OF FIGURES .. xiii

KEY TO ABBREVIATIONS ... xvi

CHAPTER 1. INTRODUCTION TO GPU PROGRAMMING, AND ITS APPLICATION
TO QUANTUM CHEMISTRY ... 1

1.1. INTRODUCTION TO GPU PROGRAMMING ... 2
1.2. GPU APPLICATIONS IN QUANTUM CHEMISTRY .. 15
REFERENCES .. 22

CHAPTER 2. PROJECT OBJECTIVES ... 25

CHAPTER 3. GPU ACCELERATION ON ERI EVALUATION 28

3.1. INTRODUCTION .. 29
3.2. ELECTRON REPULSION INTEGRALS ... 30

3.2.1. RECURRENCE RELATIONS FOR ERI EVALUATION 32
3.3. IMPLEMENTATION ... 35

3.3.1. COMPUTE UNIFIED DEVICE ARCHITECTURE .. 35
3.3.2. RELATED WORK .. 37
3.3.3. IMPLEMENTATION DESIGN .. 38

3.4. RESULTS AND DISCUSSION ... 47
3.5. CONCLUSIONS .. 61
APPENDIX .. 63
REFERENCES .. 67

CHAPTER 4. GPU ACCELERATION ON ERI DERIVATIVE EVALUATION 70
4.1. INTRODUCTION .. 71
4.2. THEORY .. 74

4.2.1. ELECTRON REPULSION INTEGRALS AND RECURRENCE RELATIONS
.. 75
4.2.2. CALCULATION OF DERIVATIVE ERIS .. 78

4.3. IMPLEMENTATION ... 79
4.3.1. CUDA .. 79
4.3.2. MACHINE GENERATED ERI CODE... 81
4.3.3. ERI EVALUATION FOR LOW-ANGULAR MOMENTUM VALUES 85
4.3.4. ERI EVALUATION FOR HIGH-ANGULAR MOMENTUM VALUES 85
4.3.5. IMPLEMENTATION OF ERI DERIVATIVE EVALUATION 94

4.4. BENCHMARK RESULTS AND DISCUSSION .. 98
4.5. CONCLUSIONS .. 110
APPENDIX .. 112

xi

REFERENCES .. 116
CHAPTER 5. GPU ACCELERATION ON HISTOGRAM ANALYSIS 120

5.1. INTRODUCTION .. 121
5.2. THEORY AND METHODS .. 123
5.3. RESULTS AND DISCUSSION ... 130
5.4. CONCLUSIONS .. 138
APPENDIX .. 141
REFERENCES .. 146

CHAPTER 6. SUMMARY AND CONCLUSION REMARKS 150

xii

LIST OF TABLES

Table 1.1 Summary of Capability and Performance of GPU-based HF and DFT
implementation .. 16

Table 3.1. Timing for two SCF schemes for Hydrogen Atom System ERI Evaluation 47!

Table 3.2. Time Comparisons Between QUICK and GAMESS ... 49!

Table 3.3. Accuracy and Performance Comparison Between CPU and GPU calculation . 57!

Table 3.4. Timing for GPU version calculation using different devices 60!

Table 3.5. Peak Memory Usage Comparison ... 60!

Table 4.1. Performance Comparison between CPU and GPU SCF Calculation 108!

Table 4.2. Performance Comparison between CPU and GPU HF-Gradient Calculation .. 109!

xiii

LIST OF FIGURES

Figure 1.1. The FLOPS counts of CPU and GPU architectures as a function of time. Data is
sourced from reference 1. .. 3!

Figure 1.2. The bandwidth of CPU and GPU architectures as a function of time. Data is
sourced from reference 1. .. 4!

Figure 1.3. Simplified model of CPU and GPU architectures, illustrating that GPU’s are
designed for massive data processing while CPUs depend more on flow control and
data caching. .. 5!

Figure 1.4. Number of Computational chemistry GPU applications published in the last few
years. Numbers provided by NVidia. .. 6!

Figure 1.5. Illustration of the automatic scalability of CUDA. A block, a logical unit, can
be executed in any available multiprocessor, which is a physical concept, by the
CUDA scheduler. ... 9!

Figure 1.6. Illustration of the CUDA thread hierarchies. One, two or three-dimensional
threads bundled as a block while one, two or three-dimensional blocks form a grid.
Two-dimensional threads and two-dimensional blocks are presented. 13!

Figure 1.7. CUDA Memory hierarchies. Local memory, shared memory and global
memory are presented. While the texture and constant memory are not presented but
are described in the text. .. 14!

Figure 3.1. Pre-sorting scheme for half ERIs. Row and column indices correspond to bra
and ket pairs of contracted integrals, and the colors reflect the estimated magnitude of
the ERI value. Sorting order is described in the text. .. 43!

Figure 3.2. Flowchart for GPU implementation of ERI evaluation within an SCF cycle ... 44!

Figure 3.3. Speedup comparisons between different basis sets on Alanine chain series.
Timing for CPU and GPU are their first iteration Fock matrix formation time
including data transfer time. Platform and software details are described in text. 52!

Figure 3.4. Energy deviation comparisons between different basis sets on Alanine chain
series. Logarithmic scale Y-axis is used. ... 53!

Figure 4.1. Class and Function description for the ERI code. (i,j)m
 represent an ERI class

for [i0|j0](m) and class Ci,j is built to express its relation with other classes with lower i,
j, same m and higher m values The goal of Function Fi,j is to generate [i0|j0](0) from
[00|00](m) where the m value varies from 0 to i+j by using classes to express its path.
 .. 84!

xiv

Figure 4.2. Optimized subroutine partition pattern for (a) CUDA 3.0 and (b) CUDA 2.0
architectures. All Fij functions that are within one zone will be warped in one
subroutine and called in a kernel. (c) (d) Kernel call pattern for ERI type [ij|kl] with
the partition strategy (a) for CUDA 3.0 and (b) for CUDA 2.0. See text for details. .. 90!

Figure 4.3. Pre-sorting and thread walking illustration. The test case is a water cluster with
4 water molecules. The color scheme indicates the upper bound of ERIs, dense*dense,
sparse*dense and sparse*sparse areas can be visually identify in the ERI matrix. The
table on the right is the boundary for different ERI types. See details in the text. 91!

Figure 4.4. Thread walk strategy comparison. Three different thread walk strategies are
presented for GPU calculations. Time used to calculate the 2nd iteration for four
examples of alanine chains of different lengths using 6-31g** are reported. Unit is
seconds. Improvement % row indicates performance improvement of circular strategy
over linear strategy. .. 93!

Figure 4.5. Optimized Subroutine Partition for ERI Derivatives. This partition strategy
works for both CUDA 3.0 and CUDA 2.0. The kernel call mapping is similar to
Figure 4.2 but simplified so it is not shown here. .. 96!

Figure 4.6. Calculation Time profiles for the CPU and GPU calculations on alanine chains.
Timings for the CPU and GPU kernel time (top two curves) are based on the Fock
matrix formation excluding the one-electron contribution. Timings for kernel 0 to
kernel 8 are given as well and the kernel call mapping corresponds to Figure 4.2.
Platform and software details are described in the text. A logarithmic scale is used for
the Y axis. .. 101!

Figure 4.7. (a) Speedup comparison and (b) gradient deviation comparison between CPU
and GPU calculations with different basis sets for alanine chain lengths from 1 to 30.
Timing for CPU and GPU are based on the gradient generation time including data
transfer but excludes the one-electron integral contribution. Platform and software
details are described in text. For (b) RMSD and maximum difference (bolded)
between the GPU and CPU result are presented. First 6 points are not presented
because the difference is smaller than 10-12. A logarithmic scale is used for the Y-axis.
 .. 105!

Figure 4.8. Accuracy of geometry optimization using a GPU versus a CPU. The test
molecule was (Glycine)12 with the 6-31G and 6-31G** basis sets. Three sets of
computations were executed including CPU+CPU, GPU+CPU, GPU+GPU. The
curves indicate geometry RMSD relative to the CPU+CPU results at the same step.
 .. 107!

Figure 5.1. Psudo-code for implementation of part 1. ... 126!

Figure 5.2. Psudo-code for implementation of part 2. ... 127!

xv

Figure 5.3. Configuration used for the first step in a WHAM calculation. Blue rectangles
indicate a block unit, while orange rectangles represent threads. 129!

Figure 5.4. Configuration used for the second step in a WHAM calculation. Blue rectangles
indicate a block unit, while orange rectangles represent threads. 130!

Figure 5.5. Benchmark reaction studied: CusF metallochaperone. Open(top) and
close(bottom) state exist for CusF protein. Umbrella sampling carried on for two
dimensions with x axis as one distance (Cu+--Trp44@CZ3 distance) and y axis as one
dihedral angle (Glu36-Met47 Phi angle, highlighted in black). See text for details.
 .. 131!

Figure 5.6. Profiling of the GPU-WHAM code for step 1 with different thread and block
choices. ... 136!

Figure 5.7. Profiling of the GPU-WHAM code for step 2 with different thread and block
choices. ... 136!

Figure 5.8. Benchmark results for two sets of data with different numbers of windows
(1024 for top, 1533 for bottom) and different grid points (from 32*128 to 768*1024).
Profiling with CPU, GPU single-precision (SP) and GPU double-precision (DP)
calculation is presented. A logarithmic scale on the y-axis is used. Speedup by GPU
SP and GPU DP is also plotted. The benchmark reaction is described in the text. ... 137!

Figure 5.9. The PMF surface and contour map produced using the GPU-WHAM code with
double-precision (top), single-precision (middle) and the absolute energy difference
(bottom). The energy unit is kcal/mol. X- and y-axes are Cu+--Trp44@CZ3 distance
and Glu36-Met47 Phi angle the unit is Å and rad. Full computational details are given
in the text. ... 140!

Figure 5.10. The scheme of step 1 (left) and step 2(right) in CusF 2D PMF simulations. The
arrow indicated the direction of the reaction coordinate. The hollow circle on the right
figure was the windows have been finished in step 1. (Just to be symbolize, the figure
shows 5 windows on X axis and 7 windows on Y axis but actually there are 39
windows in the X axis and 44 windows in the Y axis) .. 145!

xvi

KEY TO ABBREVIATIONS

AMBER Assisted Model Building with Energy Refinement

CPU Central Processing Unit

CUBLAS the NVIDIA CUDA Basic Linear Algebra Subroutines library

CUDA Compute Unified Device Architecture

CUFFT the NVIDIA CUDA Fast Fourier Transform library

DFT Density Functional Theory

DP Double-Precision

DRAM Dynamic Random-Access Memory

ERI Electron Repulsion Integral

FLOPS Floating-point Operations Per Second

GPU Graphic Processing Unit

HF Hartree Fock Theory

HRR Horizontal Recurrence Relation

PDB Protein Data Bank

PMEMD Molecular Dynamics using Particle mesh Ewald

PMF Potential Mean Force

MD Molecular Dynamics

MM Molecular Mechanics

QM Quantum Mechanics

QM/MM Mixed Quantum Mechanics and Molecular Mechanics

RHF Restricted Hartree Fock Theory

xvii

RMSD Root-Mean-Square Deviation

SCF Self Consistent Field method

SIMD Single-Instruction, Multiple Data

SP Single-Precision

VRR Vertical Recurrence Relation

WHAM The Weighted Histogram Analysis Method

1

CHAPTER 1. INTRODUCTION TO GPU PROGRAMMING, AND

ITS APPLICATION TO QUANTUM CHEMISTRY

2

1.1. INTRODUCTION TO GPU PROGRAMMING

In the past few years, the computing capability of Graphic Processing Units or GPUs has

increased dramatically as Figure 1.1 shows. From this figure we see that the GPU FLOPS

(Floating-point Operations Per Second) of DP(double precision) and SP(single precision)

have increased exponentially over the past 14 years, following Moore’s Law, while the

corresponding CPU FLOPS counts have not. Meanwhile, as Figure 1.2 shown, the

bandwidth of both GPUs and CPUs have dramatically increased largely driven by the

insatiable demand for graphics and high-performance computing that involve highly

parallel multithreaded processors with tremendous computational power and high

memory bandwidth. The Telsa, Fermi and Kepler architectures were released by NVidia

between the years of 2008 to 2013 and we were fortunate enough to have had early

access to them for benchmarking purposes They feature fast double-precision computing

and dynamic parallelism with the former being critical to scientific computing and the

latter to maximize the potential of GPU computing. The next two generation NVidia

GPUs, the Maxwell and Volta microarchitectures, have been announced by NVidia and

are expected to be release in the near future. They will be featured with Unified Virtual

Memory and stacked DRAM that will make it easier for the CUDA developer and

overcome some known drawbacks that have limited performance.

3

Figure 1.1. The FLOPS counts of CPU and GPU architectures as a function of time.

Data is sourced from reference 1.

4

Figure 1.2. The bandwidth of CPU and GPU architectures as a function of time. Data is

sourced from reference 1.

The main reason for the discrepancy in FLOP count between GPUs and CPUs is the

former is specialized for compute-intensive, highly parallel computing driven by the

needs of graphical rendering. Hence, GPU’s are designed to have more transistors that

are devoted to massive data processing rather than flow control as shown in Figure 1.3.

Therefore, GPU’s are better suited to address problems that can be split into data-parallel

5

and data-independent computations; thus, massively parallel arithmetic threads instead of

large data caches can mask memory access latency. CPUs on the other hand, with

sophisticated flow control and data caching, are more suitable for calculations that are

data dependent or are less arithmetically demanding.

Figure 1.3. Simplified model of CPU and GPU architectures, illustrating that GPU’s

are designed for massive data processing while CPUs depend more on flow control and

data caching.

With the growth of GPU computing power, computational chemists have ported a

number of applications to GPU architectures, which are summarized in Figure 1.4 per

NVidia. Computational chemists have used GPUs extensively to treat a wide range of

problems4, including AMBER PMEMD5,6 (molecular dynamics simulation), quantum

Monte Carlo7, DFT (density functional theory), SCF (self-consistent-field)8-11 and post

6

HF (Hartree-Fock) theory12. In this way, computationally intensive scientific applications,

which previously required expensive supercomputing facilities, are now within reach to

average users using relatively low-cost GPU cards. We will go into more detail regarding

the current state of quantum chemistry on GPUs below.

Figure 1.4. Number of Computational chemistry GPU applications published in the last

few years. Numbers provided by NVidia.

7

A GPU is an example of the single-instruction, multiple data (SIMD) paradigm, which,

unlike CPUs that are designed for rapid sequential code execution using a single thread,

has a parallel architecture that executes many concurrent threads relatively slowly.

Therefore, GPUs are well suited for high-performance computation with dense levels of

data parallelism where the threads are data-independent from each other. CUDA is

currently the most mature and widespread GPU computing platform for scientific

applications. It provides developers direct access to parallel computational elements

(GPUs) and enables code to run concurrently in CPUs. The assumption is that most

numerically intensive components of a program will be executed in the GPU hardware

with the remaining steps carried out in the CPU. The challenge in using GPUs lies in

adapting the specialized hardware to take advantage of the expected performance

increase. Moreover, memory allocation should be carefully handled to avoid memory

latency issues. Single-precision should be carefully employed because its accuracy may

be insufficient to handle the task at hand, and generally, single-precision is about 2-8

times faster than double-precision (depending on the device), so double-precision code

will give relatively poor performance. Another important consideration is the fact that

most existing computational chemistry software is written in Fortran, and to create GPU

code (particularly C/C++ code, but there are commercial Fortran or other programming

language CUDA compilers available), requires the creation of new software or

incremental inclusion of GPU kernels into the code base.

GPU programming, especially the CUDA parallel programming model is designed to

overcome the difficulty of developing application software that transparently scales its

8

parallelism in order to leverage the increasing number of processor cores. The core of

CUDA involves three key abstractions, a hierarchy of thread groups, memory types and

barrier synchronization that are exposed to the developer as a minimal set of C language

extensions. With these core abstractions, a CUDA developer can partition a problem into

several sub-problems that can be solved independently in parallel with a thread in a

block, and the overall problem can be solved cooperatively, by all threads, in all blocks,

once the sub-problems have each been solved. Each block of threads, which is a logic

concept, can be scheduled on any of the available multiprocessor within a GPU providing

automatic scalability and only the runtime system needs to be aware of the running

multiprocessor as Figure 1.5 illustrates. This automatic scalability scheduler allows the

GPU architecture to span a range of markets by simply scaling the number of

multiprocessors, from high-performance gaming platforms such as the GeForce GPU

card, the professional level Quadro and high-performance computing platform Tesla.

9

Figure 1.5. Illustration of the automatic scalability of CUDA. A block, a logical unit,

can be executed in any available multiprocessor, which is a physical concept, by the

CUDA scheduler.

For computational chemistry, Electron Repulsion Integral (ERI) calculations for ab initio

theory along with with basic linear algebra operations typically define the computational

cost of the application. ERI calculations formally scale as N4 for the HF method where N

is the number of basis functions, and typically it is reduced to N<3 with careful pre-

10

screening, cutoffs and efficient computational schemes. So for most calculations with N

less than several thousand basis functions, ERI evaluation is the most time-consuming

part while linear algebra, with a cubic scaling, will eventually dominate with very large

number of basis functions. However, ERI evaluations are not as general as linear

algebraic manipulations, and are less optimized than basic linear algebra subroutines

(BLAS). In addition, unlike linear algebra and some other common subroutines with

predictable and well-defined memory access patterns, ERI evaluations have many

different types of integral classes and thread divergence could jeopardize computing

efficiency. In addition, ERI evaluations require large amounts of both registers and

memory. In GPU computation, slow memory access and shortages in register space are

two factors that affect computational speed and need be considered carefully during

software development. Hence, careful software design and special procedures are

necessary to accelerate ERI evaluation using a GPU.

For the thread hierarchy, as illustrated in Figure 1.6, the most basic unit is the thread and

threads are identified by the build-in variable threadIdx. This variable is a three-

component vector, so that threads can be identified using one-two or three-dimensional

indices forming one-two or three-dimensional blocks depending on the specifications of

the developer’s. The index scheme is especially suitable for the elements in a domain

such as a vector or matrix. There is a limit to the number of threads per block since all

threads of a block are expected to reside on the same multiprocessor and share limited

memory. Blocks are further organized into a one-, two or three-dimensional grids of

threads blocks. The number of thread blocks in a grid is usually decided upon by the size

11

of the data being processed or the number of processors. Similar to the thread variable,

blockIdx is also provided to identify a block in a thread. It is worth noting that the thread,

block and grid are all logical concepts that are straightforward to map to physical

concepts such as a multiprocessor in GPU to maximize performance.

In terms of the memory hierarchy, CUDA threads may access data from multiple memory

spaces during execution as shown in Figure 1.7. First, each thread has fast and

readable/writable local memory. Each thread block has shared memory that is visible to

all threads within this block, which is also readable/writable with medium speed.

Moreover, all threads have access to large, readable/writable but comparatively slow

global memory. Two additional read-only memory spaces that are accessible by all

threads (which are not displayed in Figure 1.7) are constant and texture memory. Texture

memory also offers different addressing modes, as well as data filtering, for some

specific data formats. The global, constant, and texture memory are persistent across

kernel launches for the same application.

GPU programming, unlike CPU parallel programing, has several basic principals and

tricks to maximize performance that is unique because of the architecture of the GPU.

For example, in CUDA programming, the best performance is obtained when the number

of threads in one block is a multiple of 32. Each 32 threads are bundled as a warp, and

threads in a warp execute the same instructions, leading to the possible execution of the

code differently than when executed sequentially - a phenomenon termed thread

divergence. This divergence results in performance degradation and should be avoided in

12

order to maximize parallel performance. Moreover, coalescing memory access ensures

consecutive threads access consecutive memory addresses so that memory requests can

be handled simultaneously and multiple active threads can hide memory latency by

overlapping their computations. We will discuss these tuning procedures and show how

to take full advantage of GPU architecture later on in this document.

13

Figure 1.6. Illustration of the CUDA thread hierarchies. One, two or three-dimensional

threads bundled as a block while one, two or three-dimensional blocks form a grid. Two-

dimensional threads and two-dimensional blocks are presented.

14

Figure 1.7. CUDA Memory hierarchies. Local memory, shared memory and global

memory are presented. While the texture and constant memory are not presented but are

described in the text.

15

1.2. GPU APPLICATIONS IN QUANTUM CHEMISTRY

Quantum Chemistry and solid-state physics code implement relatively complex

algorithms13. The challenge in using GPUs and other parallel platforms lies in adapting

these complex algorithms to take advantage of specialized hardware. For example,

CUDA provides a swift way to utilize the power of GPUs by incorporating a CUDA

library such as CUBLAS3 or CUFFT2 even without coding directly in CUDA, however,

to maximize the performance, a careful consideration of memory hierarchy, thoughtful

design of parallelism and maximization of memory access in order to minimize memory

access latency14 should be taken. For example, when using single-precision GPUs,

numerical accuracy is a central issue because it is usually insufficient to match the

accuracy of the underlying theoretical model. For example, using single-precision

computation in ab initio calculation has as much as a 1kcal mol-1 error9, however, for

some other applications, such as GPU-WHAM, described in chapter 5, an error of 0.2

kcal mol-1 is realized using single-precision but the resultant code is 2-8 times faster than

double-precision depending on the GPU device chosen. It is important to realize that

many of these considerations are not only important for GPU programming, but for other

platforms, including standard CPU clusters. Thus, many of the techniques employed to

improve the parallel efficiency of quantum chemistry codes are also useful in GPU

programming.

Hartree-Fock (HF) derived wavefunctions is the starting point for ab initio electron

correlation method while Kohn-Sham Density Functional Theory(KS-DFT)15,16 is usually

16

used to calculate electronic ground states and their properties in chemistry due to its

outstanding balance between accuracy and computing time. However, both KS-DFT and

HF has two bottlenecks: 1) evaluation of the HF or DFT matrix elements, 2) solving the

SCF equations. The latter relies on diagonalization of the Fock or KS matrix, which

eventually dominates the computational cost because of its high order scaling (N3), but

GPU application to addressing this bottleneck has not has been touched extensively. It

potentially could be solved via alternative electronic structure methods17 or linear algebra

librarys18. The former bottleneck is the major focus for quantum chemistry GPU software

developers, which is dominated by the evaluation of the two-electron repulsion integrals

(ERIs). ERIs are required by HF and the exchange-correlation (XC) contribution of DFT.

Much work has been reported on the acceleration of ERI evaluation and these efforts are

summarized in Table 1.1, including our own work.

Table 1.1 Summary of Capability and Performance of GPU-based HF and DFT

implementation

Authors Software lmax ERIs J K XC Gradient Speedupa

Ufimtsev and
Martinez9-11

TeraChem d Yes Yes Yes Yes Yes 100-
1000

Yasuda8 p Yes Yes No No No 10

Asadchev et al.19.31 GAMESS g Yes Yes Yes Yes No 17.5

Miao and Merz QUICK f Yes Yes Yes Yes Yesb 10-100

a. Compared to single core CPU. b. Only supports up to d orbital

17

Yasuda8
 is the pioneer in porting ERI calculation to GPUs in 2008. In his work, he

addressed the major problem for ERI evaluation on GPUs and presented the results for

the Coulomb contribution to the KS matrix and the HF matrix with s and p type basis

functions. Even tough the algorithm is not the most efficient due the Rys quadrature

scheme20 he chose with low memory requirement, his program maximized the load

balance of GPU’s SMs. At that moment in time, GPU’s only supported single precision,

so a mixed-precision combined with CPUs and GPUs was introduced so that large ERIs,

prescreened by the Schwarz cutoff up bound, were calculated in the CPU with double-

precision while, relatively small ERIs were evaluated on the GPU in single precision.

This algorithm resulted in accurate DFT and SCF energies with errors within 10-3 kcal

mol -1 while full-GPU calculation produced an error of 1 kcal mol -1. The contribution to

the Coulomb matrix was directly computed from uncontracted ERIs to avoid one of the

major bottlenecks of GPU computing, namely, data-transfer between CPU and GPU. If

all ERIs are taken by the GPU, the resultant speedup using NVIDIA’s Geforce 8800

GTX is around one order of magnitude for the formation of the Coulomb matrix for a

system of over one hundred atoms (such as valinomycin, 168 atoms) with the 6-31G

basis set when compared to a single core CPU. However, if mixed-precision was

employed, the speedup drops to three-fold. Yasuda’s method only supported the

Coulomb matrix and only supported low-angular momentum functions, and precision

issues due to the hardware available at the time limited what he could do. However, he

opened the door for researchers to explore the potential of GPUs for acceleration of ERI

calculation.

18

Ufimtsev and Martinez9-11 later on published a series of papers developing a CUDA

kernel for ERI evaluation and Fock matrix assembly. They wrapped and commercialized

their code into a software package called TeraChem, and GPU computing is the biggest

selling-point of this program. Their early paper supported s and p type basis functions

and gradients, and later on support for d type and its gradient was reported29. Both HF

and KS-DFT methods are able to execute on a GPU, and was coupled with AMBER for

ab initio QM/MM calculations for small systems. They implement the McMurchie-

Davidson21 scheme for its relatively small footprint throughout ERI evaluation, resulting

in low memory requirements, which is similar to the Rys quadrature scheme. Three

different mapping were tested and the results showed that the optimal strategy is to

calculate each primitive ERI batch on one thread. In order to maximize the load balance

and reduce thread divergence, a pre-sorting strategy was introduced, which treated the N4

integrals as an N2 * N2 matrix which was sorted along the N2 dimension using different

criteria. As in Yasuda’s work, the Fock matrix elements are directly computed on the

GPU.

HF calculation with the 3-21G and 6-31G basis sets running on a NVIDIA GTX 280 card

realized more than a 100-fold speedup compared with the quantum chemistry program

package GAMESS. For small and medium size molecules, the Fock matrix time is the

most time consuming part but for large molecules, such as Olestra (453 atoms), linear

algebra required for the SCF solution emerged as a bottleneck since the Fock matrix

formation time on the GPU is close to that of the linear algebra part. This algorithm

places the s and p type functions in small integral blocks that can be treated entirely in

19

shared memory to achieve high performance, however, this situation changed for basis

functions with higher angular momentum quantum numbers, such as d-type functions.

Moreover, the Rys quadrature used by GAMESS in their comparisons is not an optimal

ERI evaluation algorithm and much more efficient algorithms do exist and less favorable

GPU speedup should be expected. Moreover, the speedup observed is mostly based on

the comparison between single-precision GPU and double-precision CPU results, so the

errors in the SCF energies quickly exceeded 10-3 au for mid-size molecule. However, for

larger molecules computation for larger ERIs in DP will be required. Similar to Yasuda’s

procedure, large ERIs in DP will be computed in double-precision, while smaller ones

were carried out in SP. This mixed precision22 model is a compromise between

computation speed and accuracy by providing 2-4-fold speedup over full double-

precision computing but reducing the error to about 10-6 au on Tesla C1060 and C2050

cards.

TeraChem also implemented the calculation of the analytical HF energy gradient with s-

and p type basis function9-11, and later on supported d type basis function29. Using the 3-

21G basis set, GPUs achieved a speedup of 6-100 for small to larger molecules on

NVIDIA 295 cards. Using the mixed precision model described above, the RMS (root

mean square) error in the forces is about 10-5 au, which is close to the typical

convergence threshold for geometry optimizations. With the aid of energy and gradient

calculations on GPUs, small ab inito molecule dynamics simulations was feasible. For

example, a MD simulation of the H3O+(H2O)30 Cluster with the 6-31G basis set in the

microcanonical ensemble with a time step of 0.5 fs was realized. An energy drift of 0.022

20

kcal mol-1 ps-1 was observed over a simulation time of 20 ps. It is worth mentioning that

TeraChem can run over multiple GPUs with a parallel efficiency of over 60% on three

NVIDIA GeFrorce 8800GTX cards.

To support d orbitals for both the energy and gradient29, as mentioned above, a meta-

programming strategy that leverages the computer algebra system to generate correct and

efficient code was employed. Since the capability of a compiler to identify the best code

transformation and permutations of data accesses is limited by the need to carry out

source code to machine code translation efficiently, full code optimization needs to be

dealt with at the source code level. Therefore, their code-generator, translated both the

mathematical formalism of Coulomb and exchange integral computation to modern

programming language such as Fortran and C, but also simplified the algebraic

expressions by factoring out and eliminating common sub-expressions and by divying

expressions into groups of intermediates. By using meta-programming, not only were d-

type basis sets supported, but s- and p- type basis sets were re-written and further

optimized. Moreover, the resultant CPU code also tokk advantage of meta-programming

optimization. Similar to previous publications, the realized speedup on GPUs involving

d-type basis functions was a factor of 10-100 using a NVIDIA GTX 580 card with an

error of 10-3-10-2 kcal mol-1 when compared to the corresponding CPU calculations.

Asadchev et al. presented algorithms and CUDA implementations for uncontracted ERI

evaluation up to g-type functions based on the GAMESS package19,31. The Rys

quadrature was chosen for its low memory requirement and efficiency for higher order

21

angular momentum. Rys quadrature has complex memory access patterns especially for

high angular momentum. (ff|ff) for example, requires 5376 FLOPS for intermediate

quantities which are reused and 104 FLOPS for the final ERIs. So with DP, the memory

requirement is larger than the device memory so that slow global memory access is

mandatory. Therefore, the author re-arranged the parallel calculation of the ERIs to

minimize memory loads. The code also processes ERIs, such as the Fock Matrix

formation, on the GPU device to avoid CPU-GPU communication. Moreover, similar to

TeraChem, the complex code must be machine generated to ensure correctness and

efficiency. The authors therefor selected Python Cheetah30 to adopt a template-based

approach to generate automated code. As was seen for the TeraChem implementation,

machine-generated code also boosts the performance of the CPU code.

The improved CPU and GPU code was tested on NVIDIA GTX 275’s and Tesla T10’s

and was then compared with the performance of ERI evaluation with the original Rys

quadrature implemented in GAMESS. More than a 30% improvement was gained using

the new C++ Rys quadrature code on the CPU, even though some of test cases showed

other ERI evaluation algorithms in GAMESS outperformed this approach. The GPU

implementation, on the other hand, observed a speed-up of up to 17.5-fold when

compared with the new C++ Rys quadrature code on a CPU with double-precision. Their

code not only can execute in parallel on multiple-CPUs, but also on a multi-CPU-single-

GPU hybrid platform.

22

REFERENCES

23

REFERENCES

 (1) NVIDIA. Compute Unified Device Architecture (CUDA).
http://docs.nvidia.com/cuda/index.html (accessed July, 2014)

(2) NVIDIA. The NVIDIA CUDA Fast Fourier Transform library.
http://developer.nvidia.com/cufft (accessed July, 2014)

(3) NVIDIA. The NVIDIA CUDA Basic Linear Algebra Subroutines (cuBLAS)
library. http://developer.nvidia.com/cublas (accessed July, 2014)

(4) Götz, A. W.; Wölfle, T.; Walker, R. C. In Annual Reports in Computational
Chemistry; Ralph, A. W., Ed. 2010; Vol. 6, p 21-35.

(5) D.A. Case; T.A. Darden; T.E. Cheatham, I.; C.L. Simmerling; J. Wang; R.E.
Duke; R. Luo; R.C. Walker; W. Zhang; K.M. Merz; B.P. Roberts; B. Wang; S. Hayik; A.
Roitberg; G. Seabra; I. Kolossváry; K.F. Wong; F. Paesani; J. Vanicek; J. Liu; X. Wu;
S.R. Brozell; T. Steinbrecher; H. Gohlke; Q. Cai; X. Ye; J. Wang; M.-J. Hsieh; G. Cui;
D.R. Roe; D.H. Mathews; M.G. Seetin; C. Sagui; V. Babin; T. Luchko; S. Gusarov; A.
Kovalenko; Kollman, P. A. AMBER11,University of California, San Francisco. 2010.

(6) Case, D. A.; Cheatham, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M.;
Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. J. Comput. Chem. 2005, 26, 1668-
1688.

(7) Anderson, J. A.; Lorenz, C. D.; Travesset, A. J. Comput. Phys. 2008, 227, 5342-
5359.

(8) Yasuda, K. J. Comput. Chem. 2008, 29, 334-342.

(9) Ufimtsev, I. S.; Martinez, T. J. J. Chem. Theory Comput. 2008, 4, 222-231.

(10) Ufimtsev, I. S.; Martinez, T. J. J. Chem. Theory Comput. 2009, 5, 1004-1015.

(11) Ufimtsev, I. S.; Martinez, T. J. J. Chem. Theory Comput. 2009, 5, 2619-2628.

(12) Vogt, L.; Olivares-Amaya, R.; Kermes, S.; Shao, Y.; Amador-Bedolla, C.;
Aspuru-Guzik, A. J. Phys. Chem. A 2008, 112, 2049-2057.

(13) Helgaker, T., Jørgensen, P., Olsen, J. Molecular Electronic-Structure Theory,
Wiley, West Sussex, England, 2000.

(14) Kirk, D.B., Hwu, W.W. Programming Massively Parallel Processors, Morgan
Kaufmann Publish­ ers, Burlington, MA, 2010.

(15) Kohn, W., Sham, L. Phys. Rev. 1965, 140, A1133-8.

24

(16) Parr, R.G., Yang, W. Density-Functional Theory of Atoms and Molecules,
Oxford University Press, Oxford, 1989.

(17) Salek, P., Hos, S., Thogersen, L., Jorgensen, P., Manninen, P., Olsen, J., Jansik,
B. J. Chem. Phys. 2007, 126, 114110.

(18) NVIDIA. The NVIDIA CUDA Sparse Matrix library (cuSPARSE) library.
https://developer.nvidia.com/cuSPARSE (accessed July, 2014)

(19) Asadchev, A.; Allada, V.; Felder, J.; Bode, B. M.; Gordon, M. S.; Windus, T. L.
J. Chem. Theory Comput. 2010, 6, 696-704.

(20) Rys, J.; Dupuis, M.; King, H. F. J. Comput. Chem. 1983, 4, 154-157.

(21) McMurchie, L. E.; Davidson, E. R. J. Comput. Phys. 1978, 26, 218-231.

(22) Luehr, N.; Ufimtsev, I. S.; Martinez, T. J. J. Chem. Theory Comput. 2011, 7, 949-
954.

(23) Kulik, H. J.; Martinez, T. J. Abstr Pap Am Chem S 2012, 244.

(24) Kulik, H. J.; Luehr, N.; Ufimtsev, I. S.; Martinez, T. J. J Phys Chem B 2012, 116,
12501-12509.

(25) Isborn, C. M.; Gotz, A. W.; Clark, M. A.; Walker, R. C.; Martinez, T. J. J. Chem.
Theory Comput. 2012, 8, 5092-5106.

(26) Ufimtsev, I. S.; Luehr, N.; Titov, A.; Martinez, T. Abstr Pap Am Chem S 2011,
242.

(27) Ufimtsev, I. S.; Luehr, N.; Martinez, T. J. J Phys Chem Lett 2011, 2, 1789-1793.

(28) Kulik, H. J.; Isborn, C. M.; Luehr, N.; Ufimtsev, I.; Martinez, T. J. Abstr Pap Am
Chem S 2011, 242.

(29) Titov, A. V.; Ufimtsev, I. S.; Luehr, N.; Martinez, T. J. J. Chem. Theory Comput.
2013, 9, 213-221.

(30) Cheetah - the Python-Powered template engine. http://www. cheetahtemplate.org/
(accessed Jan, 2015).

(31) Asadchev, A.; Gordon, M. S. J. Chem. Theory Comput. 2012, 8, 4166-4176.

25

CHAPTER 2. PROJECT OBJECTIVES

26

The main objectives of this work were:

A. Develop a novel algorithm to execute ab initio quantum chemistry methods

including energy calculation using the Hartree-Fock method and Density

Functional Theory on GPUs using the CUDA platform. As described above, the

peak FLOPs count and bandwidth of GPUs are about 10x of that of a CPU, so we

expected significant speedup could be realized. For most of these calculations, s,

p and d orbitals are sufficient for second row elements that are essential in organic

chemistry and biochemistry; hence, the support of s, p and d orbital calculations

was initially focused on.

B. Develop novel algorithms to execute the gradient calculation of ab initio quantum

chemistry methods including HF and DFT methods. Support for s, p and d

orbitals is the target, but to support the d orbital gradient, we needed f orbital

energies as well. Hence, we also aimed to support f orbital energy calculations as

well.

C. Integrate the above-mentioned main features into our quantum chemistry software

package, Quick, and further GPU-ize the software by introducing CUDA library

calls into linear algebra calculations to further speedup HF and DFT calculations.

D. Benchmark the software for a series of representative molecules and calculations

including energy, gradient, and geometry optimization calculations on GPUs and

CPUs and then compare and discuss the result.

E. Develop GPU-based WHAM (The Weighted Histogram Analysis Method), a

Molecular Dynamics trajectory analysis software. The one-dimensional WHAM

is very fast, but multi-dimensional WHAM is time-consuming for some real tasks

27

in our group, therefore, a GPU-ized WHAM accelerated our research.

28

CHAPTER 3. GPU ACCELERATION ON ERI EVALUATION

29

3.1. INTRODUCTION

Quantum theory has been utilized in many roles, including interpreting chemical

phenomena and predicting new molecules with novel functions. To achieve this,

computational and theoretical chemists constantly make compromises between accuracy

and computational expense. However, we are witnessing a new era in computational

quantum chemistry, sparked by an interest in harnessing the capabilities of heterogeneous

computing, especially modern graphics processing units (GPUs), which afford impressive

price versus performance characteristics. Early GPUs were not widely accepted by the

computational chemistry community because of limited precision and programming

difficulties. Recently, though, these difficulties have been largely remedied by the

development of the latest generation of GPU cards from NVIDIA, which support up to

64-bit floating-point arithmetic, and through the introduction of the Compute Unified

Device Architecture (CUDA)1, which is a simple interface extension based on the

standard C/C++ language.

So in this chapter, we will focus on the acceleration on ERI evaluation using GPU so that

the calculation of HF energy can be speedup. This chapter is organized as following.

First, we briefly describe the ERI evaluation algorithm employed, which uses vertical and

horizontal recurrence relations and is one of the most efficient methods for ERI

evaluation. Next we describe a general approach for GPU evaluation of ERIs using

recurrence relations, and describe the details regarding Fock matrix assembly in our

direct SCF implementation. To study the efficiency of our direct SCF scheme, we

30

compare it to a conventional SCF implementation on a GPU. In the next section, we

provide more detailed benchmarks in order to compare our GPU and CPU

implementations. With double-precision ERI evaluation, the accuracy of the SCF

calculation is 10-7
 a.u. or better for moderate systems with thousands of basis functions,

suitable for most applications. We have applied these ideas in a series of typical proteins

(up to 4000 basis functions) with high-angular momentum Gaussian basis sets and show

performance increases of up to 100 fold, but more typical speedups are approximately 10

to 20 fold. Memory usage is shown in this section, where we show that systems with up

to ~10000 basis function are feasible with a typical GPU. Finally, we conclude the

chapter with a brief discussion and conclusions.

3.2. ELECTRON REPULSION INTEGRALS

In computational chemistry field, the Hatree-Fock(HF) method is one of the most popular

ab initio quantum chemistry method, which is based on approximation for the

determination of wave functions and energy in a stationary state. By assuming N-Body

wave function of a system can be approximated expressed by a single Slater determinant,

HF method invokes the variational method that minimizes N-body HF energy to be close

to real energy. A solution yielding HF wave function and energy, can be derived from a

series of equation called HF equation as an approximate solution of Schrödinger

equations and the solution of HF equation required to be a self-consistent mean charge

field. Most HF calculation can be solved iteratively although iteration algorithm does not

31

guarantee to converge and advanced method can remedy the issue that is not in the scope

of this chapter’s discussion.

On the other hand, Density functional theory (DFT) is a computational quantum

mechanical modeling method that also based on an approximation of Schrödinger

equation for N-body. With this theory, the properties of N-body system are determined

and described by the spatially electron density of the N-body using functional. For most

modern DFT method, iteratively solution is necessary based on Kohn-Sham equation in a

self-consistent fashion.

For ab initio including HF and DFT methods, one of the major time-consuming steps is

the evaluation of a large number of two-electron repulsion integrals that have the form:

!ν κλ = φ! r φ! r !
!!!!φ! r! φ! r! drdr! (1)

where the !! are one-electron basis functions and r refers to the coordinates of the

electron. In practice, linearly combined contracted Gaussian functions made up of

primitive atom-centered Cartesian Gaussian functions of the form:

!! ! = !!!!! !!
!!! (2)

are used to represent the one-electron basis functions. The contribution of the primitive p

to the contracted function is denoted by the coefficient!!!". An unnormalized primitive

Cartesian Gaussian function centered at ! = (!! + !! + !!) with exponent ! is given

by

!! ! = (! − !!)!!(! − !!)!!(! − !!)!!!!!(!!!)! (3)

where

32

! = (!! ,!! ,!!) (4)

and p is a set of integers indicating angular momentum and the direction of the Gaussian

function. Therefore, the contracted two-electron integral is constructed from integrals

over primitive functions and coefficients. A primitive ERI will be denoted by [pq|rs], and

a contracted ERI will be distinguished from a primitive ERI by:

!" !" = !!"!!"!!"!!"[!"|!"]!"#$ (5)

ERIs possess eight-fold symmetry (!" !" = !" !" = !" !" , etc.), meaning one

can be computed and used for the remainder, providing a reduction in computational

effort by roughly 6-fold. It would be more efficient to compute all of the primitive ERIs

involving four shells for which ! has the same !!. For example, 3 [ps|ss] type integrals

can be computed at the same time where ! = 1,0,0 , 0,1,0 !and 0,0,1 . The ERI

bottleneck formally has N4 scaling, but many approaches have been devised to reduce

scaling to N<3, however, even with these algorithms, ERI computation can still consume

the majority of the computational time (typically 80-90% of the overall CPU time for

systems with less than a thousand basis functions). Once contracted ERIs are generated as

given in equation (1), it is straightforward to form the Fock matrix with

!!" = !!"!"#$ + !!"[!" !" − !
!!" !" !"] = !!"!"#$ + !!" − !

!!!" (6)

where P is density matrix and J and K are the Coulomb and exchange matrices

respectively.

3.2.1. RECURRENCE RELATIONS FOR ERI EVALUATION

The primitive integrals can be evaluated in many ways and most of them are based on

Boys’ seminal work13. Recurrence relation is one of the most efficient and most widely

33

used methods. Obara and Saika(OS)14 first derived a recurrence relation for ERI

evaluation which related a given ERI to other integrals. Head-Gordon and Pople (HGP)15

optimized this method by storing some common ERIs to reduce floating point operation

counts. In their derivation, the vertical recurrence relation (VRR) is given as:

! + 1! ! !" ! = !! − !! !" !" ! + !! − !! !" !" !!!

+ !!
2! ! − 1! ! !" ! − !

! + ! ! − 1! ! !" !!!

+ !!
2! ! ! − 1! !" ! − !

! + ! ! ! − 1! !" !!!

+ !!
2(! + !) !" ! − 1! ! !!! + !!

2(! + !) !" ! ! − 1!
!!!

 (7)

where i is x, y or z, and

1! = (!!" , !!" , !!"), (8)

! = ! + !, ! = ! + !, (9)

and !,!, !, ! are exponents of a, b, c and d respectively.

!! = !!!!!!!
!!! ,!!! = !!!!!!!

!!! ,!!! = !!!!!!!
!!! . (10)

The superscript index (m) in eq (7) is an auxiliary index, with m=0 yielding true ERIs.

The VRR shows that primitive ERIs of higher angular momentum are linear

combinations of lower angular momentum ERIs ultimately depending on s type ERIs.

The quantities requiring evaluation are [ss|ss](0)
 to [ss|ss](n), where the max n value is:

! = (!! + !! + !! + !!)!
!!! (11)

We can evaluate [ss|ss](m) with analytical formality:

[!!|!!](!) = !
!!!!!"!!"!!(!) (12)

34

where

! = !"
!!! (! − !)

! (13)

!! ! = !!!!!!!!!"!
! (14)

!!" = 2 !
!
!

!!! exp![−
!"
!!! ! − ! !] (15)

and KCD is analogous to KAB. HGP noted further that

[!(! + 1!)|!"](!) = [(! + 1!)!|!"](!) + (!! − !!)[!"|!"](!) (16)

This equation relates one integral with another of the same total angular momentum but

with a shifted position from the first to the second, and is termed as a horizontal

recurrence relation (HRR). Since this relation does not involve the exponent partial, it

may be applied to contracted ERIs.

(!(! + 1!)|!")(!) = ((! + 1!)!|!!)(!) + (!! − !!)(!"|!")(!) (17)

For example, using the previous equation to evaluate (ab|cd), integrals from (a0|b0) to

((a+b)0|(c+d)0) are constructed using VRR and then (ab|cd) are evaluated using HRR.

This algorithm greatly reduces floating-point operation counts, especially for basis

functions with high angular momentum. In practice, temporary integrals, with auxiliary

index m = 0, are used in other ERI evaluations, and should be stored in memory

temporarily for higher efficiency. For double zeta Gaussian basis sets, hybrid functions,

sp for example, are used, and to treat this type of function, primitive ERIs such as [a0|b0]

to [(a+b)0|(c+d)0] can be stored instead of contracted ERIs because s and p share the

same primitive ERI exponent values, this treatment speeds up calculations, but requires

large memory resources in exchange. Because of their different architectures, the

35

required memory is attainable for CPUs but is too large to implement efficiently for

GPUs. We will return to this issue in the coming sections.

3.3. IMPLEMENTATION

3.3.1. COMPUTE UNIFIED DEVICE ARCHITECTURE

GPU technology, typically used to handle computation for computer graphics and video

gaming, has been adapted to perform computations for applications that are traditionally

handled by CPUs. This is termed General-Purpose computing on Graphics Processing

Units or GPGPU. GPU is a good example of a massive parallel stream-processing

architecture that uses the single-instruction multiple data (SIMD) model. Currently, as

we described above, the most widely used language environment for GPGPU technology

is NVIDIA Compute Unified Device Architecture (CUDA). CUDA is a programming

model for graphics as well as general-purpose computation using a relatively simple

extension of the standard C language to develop scalable and efficient parallel programs.

The CUDA device architecture has a scalable array of streaming multiprocessors that

consist of 8 scalar processors. Note that all technical specifications referred to in this

paragraph are for CUDA 2.x unless otherwise noted. With this design, GPUs are

especially well suited for compute-intensive and highly parallel computations.

As introduced in chapter 1, within the CUDA framework, a batch of threads is

hierarchically arranged into a one-, two- or three-dimensional grid of blocks up to 65535

36

blocks, and each block of threads further consists of one-, two-, or three-dimensional

grids (shown in 1.6). The number of threads in a block cannot exceed 512 and should be

specified explicitly in the code. The CUDA framework introduces the built-in variables

threadIdx and blockIdx to identify a thread in a block. The best performance is obtained

when the number of threads in one block is a multiple of 32. Each 32 threads are bundled

as a warp, so that thread in the same warp will execute the same instruction that may

result divergence when occur branches. Divergence results in performance degradation,

and should be avoided in order to maximize parallel performance, an issue that will be

touched on later. The thread scheduler switches active warps to balance the load so that

the overall performance will be maximized. Although only one thread block can be

executed at any given time on an SM (two for the Fermi architecture), multiple thread

blocks can be active. For the memory hierarchies (as shown in 1.7), each thread has

access to its local register on the processor, and shared data in a block is visible to threads

in this block via a parallel data cache with medium data latency but limited resources.

Furthermore, all threads have access to the relatively large global memory (also known as

dynamic random-access memory, DRAM) but with high data access latencies. Also,

GPUs provide fast and high visibility but limited and read-only constant and texture

memories. The global, constant, and texture memory spaces are persistent across kernel

launches by the same application. Because of the architecture of the CUDA platform,

main memory has high latency, on the order of hundreds of cycles. Therefore, in order to

achieve high bandwidth, coalesced memory access to DRAM is recommended.

Coalescing ensures consecutive threads access consecutive memory addresses so that

37

memory requests can be served simultaneously. Multiple active threads can hide

memory latency by overlapping their computations.

When the GPU kernel function is called in the CUDA implementation, the CPU waits

until the kernel function completes and is returned. Most GPU kernel functions only

access GPU memory, therefore the CPU must copy the required data from the CPU

memory to the GPU memory. Because of the relatively slow 2.0 Gb/s transfer speeds

between the CPU and GPU memories, it is important to avoid large amounts of CPU-

GPU data transfer. We will discuss a scheme to reduce CPU-GPU data transfer below.

In addition, subroutine libraries are available that provide common solutions for problems

in quantum chemistry and solid-state physics such as the Fourier transform (CUFFT)16

and linear algebra (CUBLAS)17 operations that are used in our implementation. One of

the most notable accelerations these libraries afford is in matrix-multiplication, providing

a six- to ten-fold speedup for large GEMMs over the INTEL MKL library.

3.3.2. RELATED WORK

As introduction chapter mentioned, Yasuda6 was the first to evaluate ERIs on GPUs for s

and p functions in single precision. He chose the Rys quadrature scheme18 for its low

memory requirements even though it is not the most efficient algorithm for low angular

momentum quantum numbers. A mixed-precision (MP) scheme was introduced to

calculate the largest ERIs in double precision (DP) on the CPU and the remainder in

single-precision (SP) on the GPU. This scheme led to SCF energy errors of the order of

38

10-3 au. If all ERIs are computed on the GPU, speedups of ~1 order of magnitude for

molecules as big as valinomycin with 6-31G basis set (168 atom, 882 basis sets) have

been realized. Asadchev19,20 further adopted the Rys quadrature scheme on GPUs for ERI

evaluation in GAMESS21 and extended it up to g functions. Their implementation on

NVIDIA Tesla T10 cards showed speedups of around 25 times for DP and 50 for SP

compared with a single CPU; however, no timings were given for data transfer between

the GPU DRAM and CPU main memory which may take several times longer than the

actual execution time of the ERI kernel.

Ufimtsev and Martinez7-9 have developed a CUDA-based program for ERI evaluation and

Fock matrix formation involving s and p basis functions on GPUs, using the McMurchie-

Davidson22 scheme for its relatively few intermediate steps per integral and its memory

requirements, similar to the Rys quadrature18. HF SCF calculations with 3-21G and 6-

31G basis sets using their implementation and a NVIDIA GTX280 card7-9 was, in some

cases, more than 100 times faster than the quantum chemistry software GAMESS21 on a

CPU. However, most of their comparisons were between single-precision GPU result and

double-precision CPU results so the SCF energy error observed with UM’s code quickly

exceeded 10-3 au. Later, a mixed SP/DP approach was described as a compromise

between accuracy and speed23.

3.3.3. IMPLEMENTATION DESIGN

In our work, in order to implement the ERI evaluation in the GPU, code was created

using our code generator to express the recurrence relation given in eq (7). Current GPU

39

code will use registers to store the auxiliary integrals and automatically delete and flag

them as available once they are not needed in the subsequent steps, increasing register

usage efficiency by keeping as many registers busy as possible.

As discussed above, GPU architecture is very different from that of CPU, and one of the

most important concerns is thread divergence, that is to say, every thread in a warp will

execute the same instruction sets and, therefore, threads may be idle when they do not go

into the same branching or conditional statement as other threads in the warp. So it is

necessary to classify ERI type and subsequently reorder them so that threads in one warp

will likely undergo the same ERI or loop (or all of them bypass ERI evaluation because

of the Schwarz upper bound cutoff24,25). We treat the ERIs in the direct SCF procedure as

an N2*N2 integral matrix problem with row and column indices as half ERIs in the form

of bra (!") and ket (|!"]), where an ERI corresponds to an element in this matrix.

[!"|!"] evaluation can be skipped if index a is greater than index c due to ERI

symmetry. We find that by sorting bra and ket (including tiebreakers) a well-ordered

integral grid can be obtained that leads to generally optimal performance for most

systems. Figure 3.1 illustrates our approach using a water cluster with 4 water molecules

employing the cc-pVDZ26 basis set with 100 basis functions. We use coloration to denote

the magnitude of the ERI estimation value. First, sorting in |!"] half ERIs type, for

instance, the highest angular momentum in this system with cc-pVDZ basis set is a d-

orbital, so we have nine combinations as shown in figure 3.1. We identify the angular

momentum criterion as the most important. Second, half ERIs are sorted by Primitive

Gaussian function number. The cc-pVDZ basis set has a maximum of seven primitive

40

Gaussian functions for Oxygen used to construct the contracted basis set. Contracted

ERIs of type (ss|ss), for example, require various numbers of primitive ERIs [ss|ss] from

2401 to 1 (from 74 to 14), so if it is not sorted, it is quite possible that one thread takes

2401 loops and others in the warp take significantly fewer loops and wait in an idle state.

Therefore, sorting by primitive Gaussian function number in the same ERI type will

greatly improve thread usage percentage. Correlation-consistent basis sets benefit most

from this sorting criterion as our benchmark results show below. The third sorting

criterion is the Schwarz cutoff, or upper bound. The size of an individual ERI can be

estimated using Cauchy-Schwarz inequality24,25,

[!"|!"] ≤ !" !" [!"|!"] (18)

With this cutoff bound sorting, sparse populated regions are gathered to certain areas so

that threads in a warp that are responsible for this area could possibly skip ERI evaluation

simultaneously and set as available for future computation. These three sorting orders

create a well-balanced grid as shown in Figure 3.1 and guarantee that threads are kept

busy and at or near maximum usage.

Most streaming-type architectures, such as CUDA, do not provide efficient tools for

inter-thread data communication except for threads that are in the same block. We find

that the most efficient mapping strategy is to have one thread working on one contracted

ERI. This mapping strategy is efficient based on our well-sorted scheduling combined

with thread divergence avoidance in order to keep threads under dense computation.

Variables in eqs. (9), (10) and (15) (! = ! + ! , !! = !!!!!!!
!!! and

41

!!" = 2 !
!
!

!!! exp![−
!"
!!! ! − ! !]) are all pre-calculated and stored in GPU memory.

They will occupy most of the DRAM in the GPU with a usage scale of O(N2), trading

memory usage with speed. With these pre-calculated values, both DRAM data access

count and floating-pointing count is reduced significantly.

Similar to the CPU implementation, once a thread generates a series of integrals two

strategies are available. One is to store integrals to disk so that they will not be re-

calculated in further iterations, which is traditionally called a conventional SCF.

However, the drawback of this strategy is the slow CPU-GPU data-transfer speed and its

high scale. It has been proven for large systems with a huge number of integrals that data-

transfer time is greater than GPU kernel time7 and similar validation will be shown.

Another algorithm is direct SCF, which uses calculated integrals immediately and

recalculates those integrals on the fly. It is clearly desirable to implement the SCF

entirely in the GPU. In our implementation, once an integral is available, it is used to

assemble the Fock matrix. Traditionally, matrix-element-to-block mapping is adopted for

Fock matrix formation, however, that implementation produces 2-8 times more redundant

integrals, leading to low efficiency. In our code, the atomic function is introduced to

assemble the Fock matrix. The atomic function is a feature offered by NVIDIA since

CUDA 1.1, which performs a lock-and-set atomic operation on words residing in global

or shared memory (since CUDA 1.2). These operations are named atomic in the sense

that it is guaranteed to perform without interference from any other threads. After one

thread locks a memory address, no other thread has access privilege until the operation is

completed. This feature is used in our implementation: once a unique integral is evaluated

42

in a thread, it will be added to the corresponding Fock matrix elements forming the

Coulomb and exchange matrices simultaneously. A unique integral is usually required by

Fock matrix elements multiple times, depending on ERI symmetry. For example, because

of symmetry relations for ERIs (ij|kl)=(ji|kl)=(kl|ij)=etc., (ij|kl) can be reused 8 times if i,

j ,k, l are not equal to each other.

One concern for the atomic function is it only supports long integer operations in the

current version while the double-precision atomic operator is not available (due to

hardware limitations). This concern arise because, for integral arithmetic, there is no

stipulation about the order in which threads perform their operations. Hence, floating-

point arithmetic is not associative for the rounding of intermediate results. For instance,

(A+B)+C equals A+(B+C) if A, B, C are integers, but this is generally not true for

floating-point. Therefore, early hardware does not support floating-point and the newest

version only supports single-precision. A compromise approach is masking the double

precision type as a long-long integer and eventually unmasking the formed Fock matrix

when all ERIs are evaluated. However, this step reduces the accuracy of the Fock matrix

even though ERIs are evaluated using double-precision. Hence, we say this step is an

accuracy bottleneck and the main source of error. Another concern beyond accuracy is

efficiency.

43

Figure 3.1. Pre-sorting scheme for half ERIs. Row and column indices correspond to

bra and ket pairs of contracted integrals, and the colors reflect the estimated magnitude of

the ERI value. Sorting order is described in the text.

44

Figure 3.2. Flowchart for GPU implementation of ERI evaluation within an SCF cycle

45

If a thread is supposed to access an address that is locked by another thread that wants to

access the same memory, that thread will hold until the occupying thread unlocks the

memory address. In that case, the more threads that are idle and waiting to write to one

identical memory address in sequence, the lower the efficiency will be. This will be a

factor preventing better efficiency for small systems with crowded memory access.

However, in our implementation, a typical launch bound for a CUDA 2.0 card is a GPU

with 16 blocks and 512 threads, if one thread generates one integral and that integral is

used 8 times at maximum, then 8192 integrals are calculated in one loop and a maximum

value of 65536 memory addresses are requested to be modified. The Fock matrix has a

N*N elements where N is number of basis functions. For a system with 1000 basis

functions, only 6.6% of the memory addresses are on the list to be updated. So it is less

likely that two threads will want to write to the same address, especially for larger

systems, and actually only a few of the threads are active while others are waiting for

global memory access due to the memory latency or inactive due to lack of registers.

In conclusion, atomic operations will not lead to significant system inefficiency besides

what is expected for normal memory access. To demonstrate this, we compared two ways

to deal with ERIs: (1) form the Fock matrix in the CPU after transferring the ERIs from

the GPU (labeled as conventional SCF) and (2) form the Fock matrix in the GPU using

atomic operations (labeled as direct SCF). The model we used is an N * N hydrogen-

mesh with neighboring distance of 1 Å. The systems used here are “toy” models because

there are only s-orbitals required which exclude the overhead brought by thread

convergence. Table 3.1 shows the timing results produced by the two methods,

46

conventional SCF and direct SCF. All those results are based on 64-bit double-precision

computation on an NVIDIA M2090 graphic processing unit card. For our conventional

SCF code, we have modified it to avoid any disk I/O operations that may seriously reduce

computation efficiency so that the two methods can be compared fairly. Kernel time

includes floating-point calculation and data-fetch latency, and the majority of CPU-GPU

transfer time is ERI transfer for conventional SCF and the Fock matrix for direct SCF.

The first notable result in table 3.1 is the impressive speedup by GPU computation, and

both ways provide significant improvement compared to a CPU no matter the kernel or

wall time. If only kernel time is considered, direct SCF provides about a 40-fold speedup

while the conventional method provides a 150-fold increase. The 150-fold speedup can

be ruled as the maximum speedup that GPU can achieve in an ideal situation, without any

overhead such as data latency and thread convergence. However, the data transfer time of

conventional SCF is as much as the kernel time while it is less than 0.5% wall time and

negligible for direct SCF. The kernel time of direct SCF is about 3 times more than

conventional SCF, except it includes the Fock matrix assembly time, one of the reasons is

the penalty from the atomic operators. However, even the overall time of conventional

SCF is close to that of direct SCF in this case, data-transfer time and memory

requirement scale N4 for conventional SCF but N2 for direct SCF, therefore, memory will

be quickly exhausted for conventional SCF (the maximum number of basis functions is

<300 with a 6 GB GPU Memory) and takes more time for data transfer (via a PCI

Express slot, 2.0GB/s) which makes calculations on larger systems impossible. So, as

noted before, it is necessary to assemble the Fock matrix in the GPU and abandon

sophisticated code optimized for CPUs over years to avoid expensive copy operations.

47

Table 3.1. Timing for two SCF schemes for Hydrogen Atom System ERI Evaluation a

Hydrogen Number

Direct SCF Conventional SCF

CPU Time/s Kernel
Time/s

GPU-CPU
transfer/s

Kernel
Time/s

GPU-CPU
transfer/s

8*8
STO-3G 0.183 0.062E-3 0.051 0.008 6.30

6-31G 0.443 0.229E-3 0.127 0.086 14.97

10*10
STO-3G 0.454 0.049E-3 0.121 0.032 19.00

6-31G 1.178 0.289E-3 0.340 0.447 47.40

12*12
STO-3G 0.918 0.101E-3 0.274 0.139 46.18

6-31G 2.630 0.789E-3 0.770 1.942 121.83

a GPU timing refer to kernel time and GPU-CPU data transfer time. CPU time refers to
the Fock matrix formation time. Unit is second.

3.4. RESULTS AND DISCUSSION

Before we began tests on our GPU code, we implemented the same recurrence relations

for a CPU on QUICK27. Our test indicates it has competitive efficiency with GAMESS as

shown in Table 3.2. The GAMESS version is August 11, 2011 R1 64-bit under Linux

with Intel FORTRAN Compiler 10.1.15(shown as GAMESS/intel) and the GNU

FORTRAN compiler 4.1.2(shown as GAMESS/gnu) using the default configuration,

while QUICK is compiled using the same Intel compiler with optimization option level 3

(-O3). The test cases are Hartree-Fock SCF computation on sets of representative

molecules of small and medium size, such as a water cluster with 16 water molecules, an

(Alanine)3 chain, and a (Glycine)12 chain using the 6-31G, 6-31G* and 6-31G** basis

sets. In the calculations most setups are default except the direct option is selected for all

48

systems and the integral cutoff is set as 10-9 ensuring a fair comparison. The benchmark is

performed on the same machine with an AMD Opteron Processor 2427 CPU, and we list

their first iteration times in Table 3.2. QUICK performs competitively in most categories,

therefore, we conclude that QUICK’s implementation is as efficient as a standard

quantum chemistry package.

In the GPU version, all primitive ERIs are calculated on-the-fly due to register shortage

as previously described. In contrast, in the CPU version, because of the considerably

larger amount of memory provided, primitive ERIs are saved in memory temporarily to

form contracted ERIs, which leads to about a two- to four-fold speedup for split Gaussian

basis sets. In the following benchmark test, both CPU and GPU codes use the direct SCF

procedure with the 2-electron integral cutoff set as starting from 10-9 that will be changed

to tighter criteria after reach convergence threshold. A Schwarz upper bound cutoff is

used to pre-screen small ERI blocks.

49

Table 3.2. Time Comparisons Between QUICK and GAMESSa

 QUICK GAMESS/gnu GAMESS/intel

6-31G

(H2O)16 4.7 7.5 6.4

(Alanine)3 6.2 5.2 4.4

(Glycine)12 52.4 51.0 43.3

6-31G*

(H2O)16 11.3 17.4 14.9

(Alanine)3 21.4 17.3 15.0

(Glycine)12 175.6 183.2 154.1

6-31G**

(H2O)16 21.5 33.4 29.4

(Alanine)3 26.3 27.7 23.8

(Glycine)12 225.0 264.3 224.9

a. The number in the table indicates CPU time in the first iteration for the Fock
matrix formation time. All values are reported in seconds. Compiler and platform
information is described in the text.

The QUICK GPU code is rewritten in C++, using the Intel C++ Compiler 10.1.15 and

CUDA compiler 4.0 v0.2.1221 with optimization option level 3(-O3). In the CUDA

compiler, the fast math library option is on (-use_fast_math), CUBLAS 4.0 is used for

linear algebra especially matrix-matrix multiplication. Most efficient comparison-based

sorting algorithms have a complexity of !(!! ∗ log!), and in our case, n=N2, where N is

the number of unique shells, therefore, the scale of sorting is !(!! ∗ log!), which is

smaller than ERI scale and linear algebra; therefore, sorting will not be a bottleneck in

terms of scale. In the benchmark, we compare performance on one typical CPU processor

used in high-performance computation (AMD Opteron™ Processor 2427) and one of the

state-of-the-art GPU(TESLA M2090, with ECC off). An M2090 card has a specification

50

of 6 Gigabytes memory size, with 16 Streaming Multiprocessor and 512 CUDA cores.

We set the block number equal to the number of stream multiprocessors in a device, 16 in

this case. Timing is set for the Fock matrix formation time including CPU-GPU data

transfer except where mentioned otherwise.

The first set of test cases were linear (Alanine)n chains. We chose different Gaussian split

type basis sets varied from 3-21G to 6-311G**, and the chain length is from n = 1 to n =

30 (C90N30H152O30) with up to 3762 basis functions. The speedup comparison for GPU

and CPU to form the Fock Matrix in the first iteration is presented in Figure 3.3, while

we compare the energy deviation of the GPU relative to the CPU in the first iteration in

Figure 3.4. From Figure 3.3, an obvious trend is that the speed up increase is directly

related to the system size, for example, for the 6-31G* basis set, GPU calculation ranges

from 7.47 times faster for a single Alanine to as much as 27.40 times faster for 30

Alanine residues. This tendency can be explained by three factors. First, with larger

systems and larger basis sets, the threads in the GPU are better balanced, and therefore

less thread divergence occurs, which is important to avoid in CUDA programming.

Second, the density matrix is quadratic with respect to the number of basis functions

while the thread number is fixed in GPU, so if a larger number of basis functions are

used, there is less chance that two threads modify the same address when they finish ERI

evaluation. In contrast, threads will take atomic operations “crowdedly” if the density

matrix size is small, which leads some threads to adopt idle states that slows calculation

speed. The third reason is because of the better pre-screen strategy including the Schwarz

cutoff used in GPU and skipping a large amount of memory read requests or atomic write

51

requests, which are the bottleneck in GPU computation. The CPU also uses a similar

cutoff scheme, and its memory access is fast compared with the GPU memory access, so

the increased speedup is observed if more ERIs are treated as negligible by the cutoff.

An interesting observation is double-polarized basis sets are generally most accelerated

and their speedup increases fastest, while non-polarized basis sets are the least

accelerated but the speedup increase is second fastest. There is less of a speedup for small

molecules but a greater speedup for large molecules compared with single-polarized basis

sets. This is because polarized basis sets will have fewer integrals cutoff but possess a

large number of basis functions, which take advantage of reason 2 above but goes against

reasons 1 and 3. So for double-polarized basis sets, reason 2 dominates reasons 1 and 3,

while for single-polarized basis set this is switched.

In Figure 3.4, energy differences are shown. Since all of the calculations are double

precision except for atomic operations, the only error beyond numeric error is brought on

by atomic operations. We found all the absolute errors are within 10-10 Hartrees for a

system with a -105 Hartree electronic energy, so the relative error is on the order of 10-16,

which is approximately double-precision accuracy magnitude. This error increases with

the increase of system size and is due to error accumulation as expected. We analyze the

error growth and find the growth scale is about n2.5~3.0, particularly for 6-311G* and 6-

311G**, two big basis sets with significant enough error to provide a meaningful fit, the

scale is n3.01±0.05and n2.77±0.05 (both ignoring the first ten points). The error growth scale is

quite close to the ERI growth scale. Therefore, in conclusion, the ERI error is essentially

52

zero because they are calculated as double precision, and the main error is from the

atomic error. This is because to work with atomic operations, ERIs are masked as long-

long integers leading to approximate 10 decimal digits of accuracy which is less than

double-precision (~15.9), but more than single-precision (~7.2). These calculations are

far better than single-precision GPU ERI evaluation, which only has a 10-3 a.u. accuracy

because of error accumulation. The error order we achieve, 10-10
 Hartrees, is accurate

enough for most chemistry calculations especially considering the accompanying

speedup.

Figure 3.3. Speedup comparisons between different basis sets on Alanine chain series.

Timing for CPU and GPU are their first iteration Fock matrix formation time including

data transfer time. Platform and software details are described in text.

53

Figure 3.4. Energy deviation comparisons between different basis sets on Alanine

chain series. Logarithmic scale Y-axis is used.

Further tests are full SCF calculations on some prototypical systems such as the 310-helix

acetyl(ala)18NH2, the α-helix acetyl(ala)18NH2, the β-strand acetyl(ala)18NH2, an ice

crystal structure and a water-cluster together with some mid-size systems like taxol,

valinomycin, olestra and proteins with PDB28 ID of 1M2C(α -conotoxin mii), 1OMG(ω-

conotoxin mviia), 1VTP(vacuolar targeting peptide). The 6-31G*, 6-31G** and 6-311G

basis sets were used for the large systems and for some of the small systems the 6-311, 6-

311G** and cc-pVDZ basis sets were used. The system sizes range from 110 atoms to

453 atoms with up to 4015 basis functions. The geometries of the above-mentioned

molecules were taken from the literature or constructed and optimized in-house. In these

calculations, in addition to the calculation settings used in the Alanine chain series, we

turned on the DIIS (direct inversion in the iterative subspace) SCF29 option in order to

accelerate SCF convergence. The convergence criteria were set to a density matrix RMS

(root mean square) difference within 10-7, and an energy change of less than 10-9

Hartrees. The Fock matrix will be calculated using differences from the previous

54

iteration, which minimizes the number of Fock matrix elements that need to be updated,

especially for late iterations. A staged integral cutoff strategy was also used to save time

in the early stages of the SCF.

The results are presented in Table 3.3. We list first iteration time, last iteration time and

compare the converged total energy deviation between the CPU and GPU result. From

the table, we observe that a single GPU can speedup a SCF calculation by up to 130-fold

compared to a single CPU. For relatively small systems, GPU direct SCF calculations are

about 10 times faster than CPU calculations. The speedup, as discussed above, depends

on the basis set type and the number of basis functions: large basis sets and weakly-

interacting basis sets which lead to more integrals being cutoff will provide a higher

speedup. Moreover, if we compare the three different helix conformations, we note that

the speedup of the β-strand calculation outperforms that of the α-helix and 310-helix

calculations when same basis sets are used. This is because the α-helix structure is more

compact, while the β-strand structure is less compact benefitting from a higher amount of

integrals being cutoff. We also find that the olestra molecule and water cluster (H2O)100

yields impressive speedups, about 100 time faster for 6-31G, due to the large amount of

hydrogen atoms, where a large portion of the integrals are of the (ss|ss) type, which

requires the least computational cost and memory access. According to Table 3.1, for a

hydrogen mesh with the 6-31G basis set, in the conventional SCF scheme, the kernel time

in GPU versus CPU can reaches a 150 times speedup, which is the maximum speedup a

GPU of the type employed can achieve. Therefore, the speedup achieved for olestra and

water clusters are close to the ideal kernel efficiency with negligible atomic operation

55

penalties. The energy error including ERI error and CUBLAS error will accumulate with

iterations, therefore, for a full SCF calculation, the magnitude of energy error increases to

10-7 after error accumulation for a large system with more than 3000 basis functions.

However, since time used in the linear algebra subroutines, especially matrix-matrix

multiplication (we use the DGEMM subroutine from NVIDIA CUBLAS) and the

diagonalization routine (we do this calculation on the CPU), scale cubically with the

number of the basis functions (these calculations scale larger than does ERI computation)

for large systems, indicates that linear algebra plays a significant role in the total

calculation time. For example, in the SCF calculation for olestra with the 6-31G** basis

set, in the first iteration, the time for ERI evaluation is 371.51s (37.7% of Fock matrix

formation time) while diagonalization is 323.68 seconds (32.9% of Fock matrix

formation time) and the DIIS time (excluding the diagonalization time) is 289.45 seconds

(29.38% of Fock matrix formation time), while the ERI evaluation and DIIS times in

CPU were 50009.94 seconds and 16079.17 seconds. Hence, the GPU achieves a 134.6

and a 55.6 times speedup respectively, while the diagonalization time is almost

unchanged, and, indeed, it is almost as much as the ERI evaluation time on a GPU. Thus,

because of the diagonalization routine the maximum achievable speedup will not be

realized.

In this series of benchmark computations, the largest peak DRAM usage is 1.25

Gigabytes, which is for olestra using 6-31G**. Peak memory usages for some larger

systems were tested as well, and the results are listed in Table 3.5. Memory usage is in a

56

trade off with speed as described above by storing pre-calculated values and they,

together with necessary molecule basis set and electron structure information such as

one-electron operator matrix and density matrix, represent most of the memory usage.

Ideally, memory usage is quadratic with the number of unique shells, so for an M2090

card with 6.0 Gigabytes, the maximum systems are about 10000 basis sets because of

well-designed pre-screening strategies. We could avoid the pre-calculation step to reduce

memory usage but this will sacrifice speed for large systems.

In addition, we did more test cases using different devices, and we find the speed up is

not significantly different (~10-20%) when lower level cards were used (M2070,

GTX580 for example), as shown in Table 3.4. For some small basis sets, 6-31G for

instance, about a 20% advantage over GTX 580 is realized using a M2090, but for some

larger basis sets, such as 6-311G**, the advantage is less obvious. This is because the

bottleneck for GPU calculation is memory bandwidth rather than floating-point

calculation, and in terms of registers and shared memory, the Tesla M2090 card does not

have a significant advantage over GTX GPUs, and so the test result matches our

expectations. But we do recommend Telsa or better cards for their stability and fault

tolerance.

57

Table 3.3. Accuracy and Performance Comparison Between CPU and GPU calculation a

Molecule

(atom number)

Basis sets

(function number)

1st iteration/s Last iteration/s Energy

CPU GPU speedup CPU GPU speedup CPU/a.u. GPU/*10-

9 a.u.

Taxol(110)

6-311G(940) 513.26 70.74 7.26 823.86 76.53 10.77 -2909.149312868 -2

6-311G**(1453) 1789.80 203.97 8.77 3611.05 277.49 13.01 -2910.445038007 -1

cc-pvDZ (1160) 1201.54 116.87 10.28 2694.33 174.99 15.40 -2910.042418906 1

Valinomycin(168)

6-311G(1284) 1343.53 153.67 8.74 2031.90 182.15 11.16 -3770.243737052 -4

6-311G**(2022) 4694.71 393.55 11.93 8601.67 612.14 14.05 -3772.058214363 -5

cc-pvDZ (1620) 3451.95 340.87 10.13 6089.49 458.61 13.28 -3771.439946125 6

Ice-like (H2O)80(240)

6-311G(1520) 3073.54 109.57 28.05 3153.74 109.48 28.81 -6082.305528935 5

6-311G**(2480) 9953.00 246.84 40.32 10241.20 300.18 34.12 -6084.520235828 3

cc-pvDZ (2000) 6776.11 93.51 72.46 10684.27 295.63 36.14 -6083.023206911 -1

Ice-like (H2O)96(288)

6-311G(1824) 6639.24 165.18 40.19 9518.88 325.39 29.25 -7298.891219499 7

6-311G**(2976) 20754.41 366.43 56.64 29402.37 925.64 31.76 -7301.528543939 6

cc-pvDZ (2400) 14534.58 136.77 106.27 20173.25 449.68 44.86 -7299.732249179 -2

(H2O)32(96)

6-311G(608) 134.77 14.40 9.36 128.77 10.78 11.95 -2431.716629896 2

6-311G**(992) 379.50 34.05 11.15 957.65 66.14 14.48 -2432.703288503 1

cc-pvDZ (800) 254.58 14.21 17.92 674.14 32.37 20.83 -2432.055391595 2

(H2O)100(300)

6-311G(1900) 7157.31 104.32 68.61 8728.88 141.65 61.62 -7602.094350092 -1

6-311G**(3100) 25236.82 252.80 99.83 31204.21 486.81 64.10 -7605.175710929 2

cc-pvDZ (2500) 16049.72 100.04 160.43 20052.53 200.23 100.15 -7603.361888329 22

58

Table 3.3. (cont’d)

310-helix acetyl(ala)18NH2(189)

6-311G(1507) 1923.62 173.75 11.07 2842.48 227.14 12.51 -4632.003799593 -17

6-311G**(2356) 6639.98 472.74 14.05 11533.48 799.10 14.43 -4634.169869157 -7

cc-pvDZ(1885) 5800.82 541.90 10.70 11243.90 806.39 13.96 -4633.502073111 11

α-helix acetyl(ala)18NH2(189)

6-311G(1507) 2053.30 194.58 10.55 3164.16 233.21 13.57 -4632.315977523 -7

6-311G**(2356) 7083.52 507.06 13.97 11889.02 822.49 14.45 -4634.476339611 -13

cc-pvDZ(1885) 6004.15 541.96 11.08 10230.45 726.92 14.07 -4633.816772135 3

β-strand acetyl(ala)18NH2 (189)

6-311G(1507) 1499.20 89.95 16.67 2101.61 123.06 17.08 -4632.231275219 -6

6-311G**(2356) 5572.93 263.14 21.18 9102.65 499.50 18.22 -4634.420919368 2

cc-pvDZ(1885) 4970.84 440.33 11.29 8287.50 575.00 14.41 -4633.750359062 147

α -conotoxin mii

(PDBID: 1M2C, 3+1-)(220)

6-31G*(1964) 3978.10 345.70 11.51 13309.37 973.75 13.67 -7106.869678943 15

6-31G**(2276) 5453.77 409.36 13.32 18046.87 1299.04 13.89 -7107.108358427 27

6-311G(1852) 4485.98 359.74 12.47 11311.33 902.68 12.53 -7105.597849172 3

ω-conotoxin mviia

 (PDB ID: 1OMG, 7+2-) (353)

6-31G*(3035) 17473.01 730.71 23.91 23381.07 1081.33 21.62 -11122.046450828 5

6-31G**(3563) 26247.84 869.72 30.18 33451.28 1439.35 23.24 -11122.460728457 16

6-311G(2885) 28709.47 812.89 35.32 30734.31 1171.02 26.25 -11120.201936663 -13

Olestra(453)

6-31G*(3181) 22626.95 306.09 73.92 25706.94 539.59 47.64 -7491.143229057 -165

6-31G**(4015) 53992.79 402.68 134.08 58037.78 853.27 68.02 -7491.573825553 -250

6-311G(3109) 51047.04 358.01 142.59 59152.48 1035.48 57.13 -7489.506716913 1

59

Table 3.3. (cont’d)

vacuolar targeting peptide

(PDB ID: 1VTP, 4+7-) (396)

6-31G*(3418) 24196.66 1041.92 23.22 31079.79 1382.36 22.48 -10014.756057438 16

6-31G**(4000) 38460.44 941.06 40.87 51952.78 1849.08 28.10 -10015.181384177 23

6-311G(3208) 34865.17 895.09 38.95 51292.98 1305.71 39.28 -10012.680303881 -15

a GPU energy column lists relative energies with respect to corresponding CPU calculation. Platform and software details
are described in text. b PDB ID and number of positive and negative charge center included in parentheses.

60

Table 3.4. Timing for GPU version calculation using different devices a

 (Glycine)12 Chain Taxol

 6-31G 6-31G* 6-31G** 6-311G 6-311G* 6-311G** 6-31G 6-31G* 6-31G** 6-311G 6-311G* 6-311G**

M2090(6.0 GB)b 7.92 24.70 29.48 18.30 47.93 61.48 28.63 81.22 96.91 70.73 171.37 215.64

M2070(6.0 GB) 9.16 28.50 33.89 21.03 55.19 65.55 32.82 94.09 112.22 80.99 194.59 232.30

GTX580(1.5 GB) 10.00 26.06 30.82 22.25 51.08 60.48 35.10 87.00 102.61 85.54 183.57 217.39

CPUc 73.33 275.22 342.79 175.16 495.83 628.43 257.80 828.51 987.13 582.52 1622.83 1389.97

a. Number in the table shows the Fock Matrix formation time in GPU in seconds. b. global memory size(also know as DRAM)
included in parentheses. c. CPU calculation is on AMD Opterontm Processor 2427.

Table 3.5. Peak Memory Usage Comparison a

Molecule Number
of
Atoms

6-31G 6-31G* 6-31G** 6-311G 6-311G* 6-311G**

Number
of Basis
Functions

Peak
Memory
Usage

Number
of Basis
Functions

Peak
Memory
Usage

Number
of Basis
Functions

Peak
Memory
Usage

Number
of Basis
Functions

Peak
Memory
Usage

Number
of Basis
Functions

Peak
Memory
Usage

Number
of Basis
Functions

Peak
Memory
Usage

1VTP 396 2206 674MB 3418 880MB 4000 1049MB 4420 963MB 5002 1224MB 4000 1427MB

Crambin 642 3597 1796MB 5559 2338MB 6509 2785MB 5244 2589MB 7206 3279MB 8151 3818MB

1BQ9 765 4318 2570MB 6694 3357MB 7801 3985MB 6287 3687MB 8663 4686MB 9770 5441MB

a. All calculations are on Telsa M2090 6.0 GB GPU.

61

3.5. CONCLUSIONS

In this chapter, we evaluate ERIs on a GPU using recurrence relations and form the Fock

matrix entirely in the GPU. Our full SCF benchmark calculations (along with earlier

work described in the introduction) demonstrate that GPU ERI implementations achieve

impressive speedups compared to traditional CPU architectures. The energy error

associated with double-precision calculations in our implementation is on the order of 10-

7 a.u. compared to the CPU result, which meets most chemical calculation accuracy

requirements. A well-sorted integral grid that reduces thread divergence and provides an

optimized memory access pattern boosts the performance in terms of accuracy and

efficiency. This speedup is also achieved by optimizing the Fock matrix formation

scheme by introducing the atomic-operation to significantly reduce data transfer from N4

to N2, which is one of the most time-consuming steps in conventional GPU SCF

programming. Moreover, this approach also reduces redundant ERI calculation by

reusing ERI data. Our benchmarks show the speedup increases with increasing system

size, and our code now is applicable to s, p and d orbital functions which are in most most

organic or biochemistry calculations.

Even with the observed performance increases there are several avenues for

improvement. In full SCF calculations, diagonalization is executed on the CPU largely

because it is hard to efficiently implement on a GPU. In some systems, this dominates

computation time, so it is necessary to introduce highly efficient GPU-based

diagonalization routines. Moreover, like most other GPU ERI evaluation schemes,

62

register shortage is a crucial factor that limits GPU speedup, and this can be improved by

even more aggressive memory caching and shared memory usage. As shown in our

benchmarks, atomic operators bring considerable penalties especially for small

molecules. Also it brings along a major energy error because of the limited function

support.

Our future work will focus on two aspects. First is the ERI derivative with which

geometry optimization or molecular dynamics can be implemented and we are working to

integrate this work with the AMBER MD package so that large-scale ab initio QM/MM

is readily available. Another direction we are working on is post-HF methods such as

MP2 and Coupled-Cluster methods. However, most post-HF methods reuse ERIs in

different stages so a proper strategy is to store ERIs in external files, but in GPU

implementation this treatment of ERIs will inevitably transfer calculated ERIs from the

GPU to CPU, which as mentioned above, is very slow. So how to create efficient post-HF

methods entirely in GPUs is still an open question. In addition, higher angular

momentum function ERI evaluation is under development. We will refer to these

questions in the next chapter.

63

APPENDIX

64

MANUAL AND SAMPLE INPUT FILE OF QUICK

The input file of QUICK follows the philosophy “Simple is better”, so software designer

tried to minimize user’s learning cost.

Installation

To install QUICK, first you may need to configure make.in file. Intel Fortran compiler is

recommanded.

! Copy corresponding make.in file from makein folder and rename it to make.in.

Then type

make quick

If you want to install GPU QUICK, NVIDIA CUDA COMPILER is required, which uses

make.in.gnu.cuda. You may test 'nvcc --version'. Copy make.in.gnu.cuda to from makein

folder to your directory and remane it to make.in

cp ./makein/make.in.gnu.cuda ./make.in

Before compiler, you must set CUDA_HOME in make.in file if not set in bashfile,

otherwise, CUBLAS and other libraries can not been compiled or linked. Notice, if you

want to support f orbital, set CUDA_SPDF=y in make.in file you copied from

make.in.gpu.cuda, which will take a little bit long time and memory to compile,

otherwise, set CUDA_SPDF=n for s, p and d orbital. (Default is not)

! Modify CUDA_HOME=(your cuda home) in make.in file

! Modify CUDA_SPDF=y or n in make.in file if you want or do not want to

support gpu f function

Then type

65

make quick.cuda

in ./bin directory, you can find executable files.

Usage and input file

We suggest you to export install directory into PATH. Edit ~/.bashrc, then add this line

export PATH=(YOUR QUICK DIR)/bin:$PATH

and add basis set path

export QUICK_BASIS=(YOUR QUICK DIR)/basis

where (YOUR QUICK DIR) is your directory.

In the input file, the first line is calculation card. For example

HF ncyc=3 energy BASIS=6-31gs denserms=1.0e-7

This means HF calculation is wanted, and after 3 cycle, we only calculate difference of

Fock matrix, basis set is 6-31g**, and the convergence criteria is 1.0E-7. If you don't

know anything about quantum chemistry, this card is recommended. After first line, you

input your molecule geometry after a empty line. For example

“

HF ncyc=3 energy BASIS=6-31gs denserms=1.0e-7

C 4.5916 2.6127 4.3145

H 6.8049 4.5138 -2.5775

H 8.3134 7.7325 -1.0688

H 4.3547 2.9911 3.3201

H 4.5176 3.5187 3.7129

66

”

which is the element and x,y,z coordinates respectively. Save the file as CH4.in for

example, next, type

quick CH4.in

or GPU version

quick.cuda CH4.in

or MPI version

 quick.MPI CH4.in

These will generate CH4.out as output file (to master node if MPI version is used).

More comments about GPU version

Currently, QUICK support CUDA version 2.0 and up GPU, that supporting double-

precision. We tested on GTX580, M2090, K20 and K40 on minimum Linux system. We

can't guarantee our program is flawless, and it is experimental now. If you have any

question feel free to email the author.

67

REFERENCES

68

REFERENCES

(1) NVIDIA. Compute Unified Device Architecture(CUDA).
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Pro
gramming_Guide.pdf (accessed October 31, 2012)

(2) Götz, A. W.; Wölfle, T.; Walker, R. C. In Annual Reports in Computational
Chemistry; Ralph, A. W., Ed. 2010; Vol. 6, p 21-35.

(3) D.A. Case; T.A. Darden; T.E. Cheatham, I.; C.L. Simmerling; J. Wang; R.E.
Duke; R. Luo; R.C. Walker; W. Zhang; K.M. Merz; B.P. Roberts; B. Wang; S. Hayik; A.
Roitberg; G. Seabra; I. Kolossváry; K.F. Wong; F. Paesani; J. Vanicek; J. Liu; X. Wu;
S.R. Brozell; T. Steinbrecher; H. Gohlke; Q. Cai; X. Ye; J. Wang; M.-J. Hsieh; G. Cui;
D.R. Roe; D.H. Mathews; M.G. Seetin; C. Sagui; V. Babin; T. Luchko; S. Gusarov; A.
Kovalenko; Kollman, P. A. AMBER11,University of California, San Francisco. 2010.

(4) Case, D. A.; Cheatham, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M.;
Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. J. Comput. Chem. 2005, 26, 1668-
1688.

(5) Anderson, J. A.; Lorenz, C. D.; Travesset, A. J. Comput. Phys. 2008, 227, 5342-
5359.

(6) Yasuda, K. J. Comput. Chem. 2008, 29, 334-342.

(7) Ufimtsev, I. S.; Martinez, T. J. J. Chem. Theory Comput. 2008, 4, 222-231.

(8) Ufimtsev, I. S.; Martinez, T. J. J. Chem. Theory Comput. 2009, 5, 1004-1015.

(9) Ufimtsev, I. S.; Martinez, T. J. J. Chem. Theory Comput. 2009, 5, 2619-2628.

(10) Vogt, L.; Olivares-Amaya, R.; Kermes, S.; Shao, Y.; Amador-Bedolla, C.;
Aspuru-Guzik, A. J. Phys. Chem. A 2008, 112, 2049-2057.

(11) Olivares-Amaya, R.; Watson, M. A.; Edgar, R. G.; Vogt, L.; Shao, Y.; Aspuru-
Guzik, A. J. Chem. Theory Comput. 2010, 6, 135-144.

(12) Ma, W.; Krishnamoorthy, S.; Villa, O.; Kowalski, K. J. Chem. Theory Comput.
2011, 7, 1316-1327.

(13) Boys, S. F. Proceedings of the Royal Society of London. Series A. Mathematical
and Physical Sciences 1950, 200, 542-554.

(14) Obara, S.; Saika, A. J. Chem. Phys 1988, 89, 1540-1559.

69

(15) Head-Gordon, M.; Pople, J. A. J. Chem. Phys 1988, 89, 5777-5786.

(16) NVIDIA. The NVIDIA CUDA Fast Fourier Transform library.
http://developer.nvidia.com/cufft (accessed October 31, 2012)

(17) NVIDIA. The NVIDIA CUDA Basic Linear Algebra Subroutines (cuBLAS)
library. http://developer.nvidia.com/cublas (accessed October 31, 2012)

(18) Rys, J.; Dupuis, M.; King, H. F. J. Comput. Chem. 1983, 4, 154-157.

(19) Asadchev, A.; Allada, V.; Felder, J.; Bode, B. M.; Gordon, M. S.; Windus, T. L.
J. Chem. Theory Comput. 2010, 6, 696-704.

(20) Wilkinson, K. A.; Sherwood, P.; Guest, M. F.; Naidoo, K. J. J. Comput. Chem.
2011, 32, 2313-2318.

(21) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.;
Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis,
M.; Montgomery, J. A. J. Comput. Chem. 1993, 14, 1347-1363.

(22) McMurchie, L. E.; Davidson, E. R. J. Comput. Phys. 1978, 26, 218-231.

(23) Luehr, N.; Ufimtsev, I. S.; Martinez, T. J. J. Chem. Theory Comput. 2011, 7, 949-
954.

(24) Almlof, J. Lecture Notes in Quantum Chemistry II, European Summer School in
Quantum Chemistry 1994, 1–90.

(25) Strout, D. L.; Scuseria, G. E. J. Chem. Phys 1995, 102, 8448-8452.

(26) Dunning, T. H. J. Chem. Phys. 1989, 90, 1007-1023.

(27) Y. Miao, X. He, K. Ayers, Ed. Brothers, K.Merz, QUICK(version 0.09_120306),
University of Florida, Gainesville, FL, 2011

(28) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.;
Shindyalov, I. N.; Bourne, P. E. Nucleic Acids Res 2000, 28, 235-242.

(29) Pulay, P. Chem Phys Lett 1980, 73, 393-398.

70

CHAPTER 4. GPU ACCELERATION ON ERI DERIVATIVE
EVALUATION

71

4.1. INTRODUCTION

As we shown last chapter, Graphical Processing Units (GPUs) provide fast and accurate

computational performance for a wide range of problems at a reasonable cost.

Environments for developing general purpose computing on graphical processing units

(GPGPU), such as the Compute Unified Device Architecture (CUDA), facilitate the

creation of high-performance software for a wide range of applications even though

GPUs were originally designed to render images on a monitor. Meanwhile, traditional

quantum chemistry methods, such as the Hartree-Fock Self-Consistent field method (HF-

SCF) and Density Functional Theory method (DFT) are widely used to rationalize the

behavior of molecular systems. However, the broad application of these methods, to large

systems containing 1,000s of atoms, has been limited by their high computational

requirements using traditional CPUs.

GPUs, on the other hand, have recently become widely available as a general purpose-

processing platform. With GPU technology, it is possible to bring supercomputing power

to the desktop and achieve trillions of peak floating point operations per second (FLOPS)

outperforming desktop CPUs by over an order of a magnitude. Another key factor in

GPU’s is becoming widely used in scientific areas is the release of NVIDIA’s Computer

Unified Device Architecture (CUDA) platform that eases the coding burden for GPUs

with an extension of the standard C/C++ language. Several papers describing the use of

GPU Computing, especially with CUDA, have demonstrated impressive speedups for a

range of computational chemistry applications, including ab intio quantum chemistry1-12

72

and its application to the simulation of biochemical reactions13-18, post-HF methods19-23 as

well as empirical force-field and ab initio molecular dynamics24-26 simulations.

The applications of ab initio computational chemistry methods are not limited to the

study of the single point energetics or electronic structure of large molecular systems, but

can also be used in molecular geometry optimization and molecular dynamics

simulations which help scientists to simulate chemical reactions in silico rather than in

the laboratory. However, for HF and DFT methods, not only is the single point energy

required but also the computation of the energy gradients requiring significant

computational resources especially in the study of large biochemical systems. Gradient

calculation requires approximately the same computational effort as the SCF calculation,

hence, GPU acceleration of this step will further benefit to computational chemistry

community in its ongoing effort to study larger chemical systems.

In last chapter, we reported the GPU acceleration of the Electron Repulsion Integral

(ERI) evaluation for s, p and d orbitals8 to compute the HF and DFT single point energy,

which further demonstrated the potential of GPU use in ab initio quantum chemistry

methods. The realized speedup was 10~20-fold (with excellent accuracy) compared with

a single core CPU for moderately sized molecular systems including proteins. However,

two more challenging problems still need to be tackled for broader application of GPUs

in quantum chemistry: efficient implementation of electron-correlation methods and

efficient gradient computation for geometry optimization and MD simulation. GPU

application to address electron-correlation has already been reported using MP222 and

73

Coupled-Cluster method19,20,27-29 with impressive overall performance. Herein, we focus

on the latter issue.

For energy computation the evaluation of ERIs with higher-angular momentum functions

such as f orbitals (and beyond) becomes necessary. Due to the complexity of high-

angular momentum ERIs, GPU code to compute them is especially difficult to create and

fine tune because of the difference in the architectures of GPUs relative to CPUs.

Another challenge is the calculation of ERI derivatives, the bottleneck of HF gradient

computing, that also depend on high-angular momentum ERIs, which is the problem

faced for large basis set computations, but with a memory access pattern different from

that of normal ERI computations. Therefore, these challenges and the ever increasing

demands from computational chemists provide the main motivation for the present work,

which is an implementation and calculation of high-angular momentum ERIs and ERI

derivatives on GPUs. Efforts aimed at computing high-angular momentum functions and

their associated gradients on GPUs have been reported using different ERI algorithms6,30.

In this chapter, we describe a new algorithm to overcome issues surrounding the

computation of higher-angular momentum functions and their gradients using recurrence

relationships carried out on current-generation GPUs with negligible loss of efficiency.

In this chapter, we first describe the algorithm we applied to evaluate ERIs, which is

based on recurrence relations, one of the fastest ERI evaluation algorithms available

especially for ERIs with high-angular momentum functions, and then its extension to

analytical gradient computation will be introduced. In the next section, we will briefly

74

describe how to implement ERIs with high-angular momentum functions on GPUs and

apply this to direct HF and DFT calculations. Moreover, a new strategy to assemble the

gradient within the HF framework is introduced. In the last section, detailed benchmarks

will be presented. We performed a series of small, medium and large molecule

calculations to profile the speed and accuracy performance for problems requiring

thousands of Gaussian-type basis functions. Finally we conclude the chapter with a brief

discussion and conclusions.

4.2. THEORY

Within the framework of Hartree-Fock theory, the total energy of a closed-shell system

can be expressed as the sum of electron-nucleus interactions (the first term), electron-

electron interactions (the second term) and nucleus-nucleus interactions (the third term)

within the Born–Oppenheimer approximation

!!"! = !!"!!"!"#$ + !
! !!"!!" !"| !" + !!!!"#$!" (1)

Here we use the notation !"| !" = !" !" − !" !" to describe the electron

repulsion integrals (ERIs), which represent the most expensive part in equation 1

contributing to both the Coulomb and Exchange ERI terms. Four-centered ERIs are given

by:

!ν κλ = φ!(r)φ!(r) !
!!!!φ!(r′)φ!(r′)drdr′ (2)

and the derivative of the total energy with respect to nuclear coordinate XA can be written

as:

75

!!!"!
!!!

= !!" !!!"
!"#$

!!!!" + !
! !!"!!" ! !"| !"

!!!
− !!" !!!"!!!!" + !!!!

!!!!"#$ (3)

Where the density matrix is !!" = 2 !!"!!"!/!
! and !!" ≡ 2 !!!!"!!"!/!

! . As in

electronic energy calculations, the major bottleneck in equation 3 is the evaluation of the

ERI derivative. These can also be efficiently computed using recurrence relations in an

analogous way to ERI computation as the following sections describe.

4.2.1. ELECTRON REPULSION INTEGRALS AND RECURRENCE

RELATIONS

To evaluate ERIs, many different and efficient algorithms have been developed31,32, for

example, Dupuis, Rys and King (DRK)33 developed the first algorithm for integral

evaluation involving high-angular momentum functions, McMurchie and Davidson(MD)

34 later on used Hermite polynomials to efficiently evaluate integrals over Gaussians-type

basis functions, Obara and Saika (OS)35 and Head-Gordon and Pople (HGP)36 developed

new recursion relationships with fewer terms by focusing on shifting work outside of the

contractions loops. In this work, we employed an adapted OS and HGP algorithm to

generate a general algorithm that is applicable to a wide range of integral types and

offered an efficient implementation on GPUs.

We represent ERIs using a linear combination of contracted Gaussian functions because

of their well-known mathematical advantages.

!! ! = !!"!! !!
!!! (4)

76

A primitive Cartesian Gaussian function centered at ! = (!! + !! + !!) with exponent

! is given by

 !! ! = (! − !!)!!(! − !!)!!(! − !!)!!!!!(!!!)! (5)

and the contracted two-electron integrals are constructed from primitive ERIs by:

!" !" = !!"!!"!!"!!"[!"|!"]!"#$ (6)

in equation 5, ! = (!! ,!! ,!!), and ax, ay and az are a set of integers indicating angular

momentum and the direction of the Gaussian function. These sums are restricted to

functions with the same quantum number. It would be more efficient to compute all of

the primitive ERIs involving four shells for which ! has the same !!. For example, 3

[ps|ss] type integrals can be computed at the same time where ! = 1,0,0 , 0,1,0 !and

0,0,1 . This will lead to complex conditions for high-angular momentum ERIs, for

example, [dd|dd] will have 1296 kinds of different ERIs because each index can have 6

different integer combinations to satisfy the pre-condition that the sum of these three

direction integers equals 2. Therefore, the calculation complexity grows dramatically

with the introduction of high-angular momentum functions such as f orbitals.

To efficiently evaluate the value of ERIs, Head-Gordon and Pople (HGP)36 optimized the

recurrence relation algorithm described by Obara and Saika (OS)35 to reduced the floating

point operation count. It is based on the recurrence equation:

! + 1! ! !" ! = !! − !! !" !" ! + !! − !! !" !" !!!
+ !!
2! ! − 1! ! !" ! − !

! + ! ! − 1! ! !" !!!

+ !!
2! ! ! − 1! !" ! − !

! + ! ! ! − 1! !" !!!

+ !!
!(!!!) !" ! − 1! ! !!! + !!

!(!!!) !" ! ! − 1!
!!! (7)

77

Where i is x, y or z, and

1! = (!!" , !!" , !!"), (8)
! = ! + !, ! = ! + !, (9)

!! = !!!!!!!
!!! ,!!! = !!!!!!!

!!! ,!!! = !!!!!!!
!!! . (10)

and !,!, !, ! are exponents of a, b, c and d respectively. Technically, all the integrals can

be ultimately computed from [ss|ss] integrals, which can be analytically evaluated

efficiently35,37.

[!!|!!](!) = !
!!!!!"!!"!!(!) (11)

where

! = !"
!!! (! − !)

! (12)

!! ! = !!!!!!!!!"!
! (13)

!!" = 2 !
!
!

!!! exp![−
!"
!!! ! − ! !] (14)

In, equation 7, the summation of the four indices decreases as ERIs with higher angular

momentum functions are constructed from lower ones, so it is termed a vertical

recurrence relation (VRR). Moreover, a horizontal recurrence relation (HRR) is also

applicable for Gaussian-type ERIs

[!(! + 1!)|!"](!) = [(! + 1!)!|!"](!) + (!! − !!)[!"|!"](!) (15)

and can be applied to contracted ERIs,

! ! + 1! !" ! = ! + 1! ! !"
! + !! − !! !" !" !

 = !!" !0 !0 !!!!!!!!!!,!!!!!!! (16)

Which hints that an ERI can always be expressed as a linear combination of (k0|l0) type

ERIs. Therefore, a general strategy for evaluation of (ab|cd) is to calculate them from a

set of integrals from (a0|b0) to ((a+b)0|(c+d)0). For example, for an ERI with a four d

orbital index, (dd|dd), first we compute (ds|ds) (36 total), (fs|fs) (100 total) and (gs|gs)

78

(225 total) via a VRR and then assemble (dd|dd) using an HRR. Therefore, for the VRR

step, only the b = 0 and d = 0 situation will be considered in equation (7), and we can

obtain the (half) coefficient analytically as well from equation (16).

! + 1! 0 !0 !

= !! − !! !0 !0 ! + !! − !! !0 !0 !!! + !!
2! ! − 1! 0 !0 ! − !

! + ! ! − 1! 0 !0 !!!

+ !!
2 ! + ! !0 ! − 1! 0 !!!

(!!!!!| =
!!!
!

!!!
!

!!!
! !! − !! !!!!! !! − !!

!!! !! !! − !! !!!!! ! !(!!!!)(!!!!)(!!!!)0
!!!

!!!

!!!

!!!

!!!

!!!

(17)

4.2.2. CALCULATION OF DERIVATIVE ERIS

The derivative of a primitive Gaussian function !! ! is a linear combination of a higher

and a lower angular momentum Gaussian function:

!!!
!!!

= 2!! !!!!! − !!(!!!!!) (18)

Here A is the function center and i can be x, y or z. Similarly, the first derivative of a

primitive ERI is also a combination of a higher and a lower primitive ERIs.

!
!!!

[ab|cd] = 2!![! + 1! !|!"]− !![! − 1! !|!"] (19)

The recurrence algorithm described in the last section can be adapted to this equation

except higher angular momentum ERIs are needed to compute the first derivative. For

example, the first derivative of [dd|ss] requires [ps|ss] and [hs|ss] along with [ds|ss],

[fs|ss] and [gs|ss] where the latter three are needed in the ERI evaluation as well. It is

worth noticing that, to evaluate [dd|dd] type derivatives, for instance, [gs|gs], the integral

with the most expensive computing cost, does not need to be evaluated because the first

and third indices do not require higher ERIs simultaneously.

79

Also, because of translational invariance38, the sum of the gradients of four indices equals

to 0:

!
!!!

+ !
!!!

+ !
!!!

+ !
!!!

ab cd = 0 (20)

So, in the worst case, only three rather four centers must be evaluated, and thus, we can

skip the one with the largest estimated computational resource requirement to optimize

the calculation. For the most optimal case, the contraction step can be applied to equation

(19) using

!
!!!

(ab|cd) = ! + 1! ! !" ! − !!(! − 1! !|!") (21)

where the subscript ! in the first term of the RHS of above equation indicates that it has

been formed with a contraction coefficients scaled by two. However, this strategy may be

limited by the fact that the GPU may not have sufficient registers or/and memory to hold

auxiliary integrals for high angular momentum ERIs. For equation 19, if three centers are

evaluated simultaneously, only one set of temporary ERIs is needed, which is of [ab|cd]

type, while equation 21 requires 4 sets ((ab|cd)a, (ab|cd)b, (ab|cd)c and (ab|cd)). Therefore,

efficiency has to be sacrificed in this situation, and we will return to this issue and discuss

the details in the next section.

4.3. IMPLEMENTATION

4.3.1. CUDA

GPUs offer a tremendous amount of computing power in terms of FLOPS while being

relatively efficient in terms of heat produced and overall energy costs. However,

increased complexity and reduced flexibility are the shortcomings of GPUs when

80

compared with traditional CPU platforms. A GPU is an example of a massively parallel

stream-processing architecture using a single-instruction multiple data (SIMD) model.

GPUs process threads in blocks, with 16 to 1024 threads per block, which a programmer

can specify in their code and the GPU executes the threads in warps. In the current

generation of GPUs the warp size is 32. Threads in one warp must execute the same

instruction in the same clock cycle due to the fact each streaming multi-processor

executes in a Single Instruction Multiple Thread (SIMT) fashion. Therefore, branching

must be addressed to avoid instruction divergence, which significantly affects overall

performance. These thread blocks logically map to streaming multiprocessors (SM) in the

GPUs; for example, 16 SMs for a NVIDIA M2090 (Fermi architecture) and 15 SMs for a

NVIDIA K40 (Kepler architecture). These specifications are useful for optimum

performance for code vectorization. Moreover, the Fermi architecture has compute

capability of CUDA 2.x, which features fast double-precision computing and atomic

operations, while Kepler has CUDA 3.x, which features even faster double-precision

computing, in-warp communication and dynamic parallelism.

The memory hierarchy of GPUs originates from its graphics lineage. Main memory,

known as dynamic random-access memory (DRAM) or global memory, is visible to all

threads in all multiprocessors, is relatively large (for example, 6GB for a M2090, 12 GB

for a K40c) but comparatively slow such that that frequent data retrieval from DRAM

should be avoided. Shared memory is accessible to all threads within a multiprocessor,

but it is small (typically 48kB), but faster than DRAM, hence, it plays a critical role for

thread communication or memory buffering when frequently fetching from DRAM is

81

necessary. Besides this type of memory, all threads have a small amount of private and

fast registers, and in the recent Kepler platform, threads can gain access to registers of

other threads in a same warp and avoid thread communication via shared memory. To

maximize the potential of GPU computing, some further suggestions include (1)

coalesced memory to access DRAM is recommended, (2) the chance of thread

divergence should be minimized utilizing shared memory to store intermediate results,

and (3) threads can hide memory latency by overlapping computations. Moreover, the

CPU and GPU are in different physical address spaces and DRAM is the only way to

synchronize the data between the host (mostly CPU) and the attached devices (GPUs),

but this comes with a significant performance penalty due to the slow PCIe bus. Thus,

CPU and GPU communication should be avoid if not necessary. In the following sections,

we will describe an implementation based on the GPU programming philosophy

described above.

4.3.2. MACHINE GENERATED ERI CODE

The code to evaluate ERIs, especially with high-angular momentum values, is extremely

complicated with many different scenarios and possible coding tricks for optimization, so

it is very difficult or even impossible to write ERI code by hand efficiently. In this case

automated code generation is almost a requirement6,9. Our major focus is on the VRR

step, which is based on equation 17, while the HRR step, which is given in equation 16,

is relatively easy to write because the branching condition only depends on one index

although it requires different subroutines for ERI evaluation and ERI gradient evaluation.

82

First of all, meta-classes were written by a code-generator that describes how an ERI

class is related to up to 5 other classes via the determination of the necessary coefficients

(using equation 17). The class description is presented in Figure 4.1. The class, named Cij

, or relation class, represents the relation between the ERI class [i0|j0](m) and ERI classes

with lower i and j values and higher m values with explicit i and j values but an implicit

m value. The functions, Fij, evaluates the integral [i0|j0](0) starting from a set of starting

integrals ranging from [00|00](0) to [00|00](i+j), and the [00|00] type integrals or C00 class

can be analytically evaluated from equation 11 (the C00 class and the F00 function are

actually assigned values in our code). The path from starting integrals to integral [i0|j0](0)

can be easily patterned using a breath-first search by knowing the tree-like vertical

recurrence relation as expressed in equation 17. Our code traces the required relation

class Cij starting from Fij with a starting queue with Cij and an empty pool, then pop Cij

into the queue and adding a dependent relation classes of Cij into the pool, after that, it

repeatedly pushes all relation classes in the pool into the queue and pops them all while

adding their dependent relation classes into the pool until only the C00 classes remains in

the pool. As noted, in class Cij of Figure 4.1, the j index is downgraded while the i value

is constant except for [(i-1)0|(j-1)0](m+1), however, we can also downgrade the i index and

produce the same ERI value, so the final selection depends on which one has the fewest

FLOPs and the same selection is made for Fij. These selections are made empirically. We

hide some parameters such as P, Q, W and Gaussian function information in Figure 4.1

for brevity.

83

The last, but quite important step, is the final optimization. We simplified the code by

eliminating variables that are only used once by replacing the variables with their

expressions and factoring out common sub-expression. For CUDA, eliminating variables

may offer a greater benefit because it reduces register usage which otherwise could

utilize slow global memory and jeopardize performance. Therefore, factorization may

have a deleterious effect according to our tests.

Using the procedure outlined above we generate an efficient ERI evaluation code for

[i0|j0] with i and j values up to 6 respectively. This is sufficient for [ff|ff] ERIs and

[dd|dd] gradient ERIs. These subroutines are relatively complicated in terms of numbers

of lines, for example, F44, which calculates [h0|h0], has 344 lines and F66 has 8568 lines,

which illustrates the necessity of using machine-generated code.

84

Figure 4.1. Class and Function description for the ERI code. (i,j)m
 represent an ERI

class for [i0|j0](m) and class Ci,j is built to express its relation with other classes with lower

i, j, same m and higher m values The goal of Function Fi,j is to generate [i0|j0](0) from

[00|00](m) where the m value varies from 0 to i+j by using classes to express its path.

Class Ci,j

Member: !×!, where !⃗ in A and !!⃗ in B satisfy

 !⃗ = (!! , !!, !!) that !! + !! + !! = !

and !!⃗ = (!! , !!, !!) that !! + !! + !! = !

Constructor:

Input parameters:

 Ci,(j-1) (i, j-1)m+1 Ci,(j-1) (i, j-1)m Ci,(j-2) (i, j-2)m+1

 Ci,(j-2) (i, j-2)m C(i-1),(j-1) (i-1, j-1)m+1

 !, !, !!⃗ ,!!!⃗ and !!!!⃗

Content: using input parameters to express each member of class Ci,j

Function Fi,j

C0,1 (0,1)0 : C0,0 (0,0)0 , C0,0 (0,0)1 // express (0,1)0 constructs from (0,0)0 , (0,0)1

C0,1 (0,1)1 : C0,0 (0,0)1 , C0,0 (0,0)2 // !, !, !!⃗ ,!!!⃗ and !!!!⃗ should also include but not listed

here

…

85

4.3.3. ERI EVALUATION FOR LOW-ANGULAR MOMENTUM VALUES

It is relatively straightforward to evaluate ERIs with quantum numbers less than 2.

Technically, F00 to F44 (F00 is not a subroutine but a value) are all that is needed to

calculate the most complex integral [dd|dd], and it is possible to combine all of these 24

subroutines to one large subroutine, and NVIDIA's CUDA Compiler (NVCC) can

successfully compile and execute this subroutine. In last chapter8, we showed the speedup

and accuracy of this unoptimized subroutine, and below we illustrate the performance

with optimized code. Moreover, this subroutine can calculate the gradient of s and p

orbital integrals. We provide benchmark details below.

4.3.4. ERI EVALUATION FOR HIGH-ANGULAR MOMENTUM VALUES

For ERIs with higher-angular momentum, for example ERIs with f orbitals and ERI

gradients of d orbitals, large numbers of registers are required and NVCC can neither

compile nor execute if we include subroutines beyond F44. However, since we have

equation 16, which suggests ERIs can be expressed as a linear combination of [k0|l0] or

(k0|l0), we can divide these combination into several parts, for example,

!b !" ! = !!" !0 !0 !!!!
!!!

!!!
!!! = !!" !0 !0 !!,!∈!! (22)

Which implies the additivity of ERIs. The subscript Z indicates that these ERIs are only

contributing to VRR ERIs within zone Z. For example, we can manually setup two zones

for [a0|c0] that Z1={a<3 and c<3}, Z2={a >=3 or c >= 3}. Then, Z1 includes s and p

orbital only ERIs and Z2 contains ERIs involved with d and higher angular momentum

86

values. Moreover, it does not involve the exponent part so the contraction step can be

applied.

! ! + 1! !" ! = !!" !0 !0 !

!,!∈!!

= (((! + 1!)!|!")(!)! + (!! − !!)(!"|!")(!)!)! (23)

The previous equations demonstrate that if we separate the VRR step into several parts

and count contributions from each part rather than compute all VRR ERIs as a batch, we

can still produce the same results without introducing extra FLOPs into the VRR and a

just a few extra FLOPs into the HRR. In addition, the derivatives of ERIs can be

computed in this fashion as well, which we will use later.

!
!!!

[ab|cd] = (2!! ! + 1! ! !" ! − !! ! − 1! ! !" !)! (24)

and if a contraction step is feasible on the GPU, then

!
!!!

(ab|cd) = ((! + 1! ! !" !)! − !! ! − 1! ! !" !)! (25)

With these equations, we can further consider a partition scheme. For now, we only

consider F00 to F66, which computes ERIs up to [ff|ff]. All of these 48 subroutines

(again, F00 is a value rather than a subroutine) can be merged into one subroutine.

However, this fails in the compilation stage as described previously. The basic principal

of our partition scheme is to try to bind as many subroutines into one subroutine as

possible. Therefore, we developed the partition design presented in Figure 4.2. This

scheme is the best fit for device of CUDA compute capability 3.x (3.0 and above) and

2.x(2.0 and above but 3.0 below), within which, 9 and 5 subroutines or zones are

separated from the global subroutine respectively, and functions that fall within the same

zone will be warped into the same subroutine corresponding to one kernel during the

87

VRR step. Addition of other subroutines to a zone (combining zone 3 and zone 1 in

Figure 4.2(a) for example) cannot compiled nor executed on current generation GPUs.

These series of subroutines can be further optimized at the HRR step by pre-excluding

select ERIs.

As we described in last chapter and, indeed, most GPU-based SCF implantations, a pre-

sorting algorithm developed by Ufimtsev and Martinez1,2 is used prior to ERI evaluation

to ensure that threads can execute the same or similar instructions with their neighboring

threads within a warp. We again employed pre-sorting in our implementation, and we

only describe the outline of this treatment with the full details being given in our previous

publication. Since it is impossible to sort or vectorize N4 ERIs but it is possible to do so

for N2 half ERIs, a feasible strategy is to replace the four-index ERI with a N2*N2 matrix

problem with two dimensions represented by a bra (such as [ij|) and ket (such as |kl]).

And once we have this type of ERI matrix, we can “thread walk” - searching from one

element of the matrix to another, calculating the assigned ERI and continue to work on

the next one until all elements have been evaluated. A thread will evaluate a contracted

ERI rather than a primitive ERI since it has been shown that this strategy is very

effective3. Each dimension, bra or ket, of the ERI matrix can be rearrange by three kinds

of criteria, ERI type is the criteria with highest priority, with the primitive Gaussian

function number and Schwarz cutoff as the second and third criteria, respectively. To try

to minimize thread divergence, the selection of these three criteria was based on 1)

different ERI types call different ERI subroutines which will take the majority of the

calculation time, and is the innermost loop in the ERI subroutine. 2) The primitive

88

Gaussian function number determines the number of loops calling the ERI subroutine,

and is the second innermost loop. 3) Sorting by the Schwarz cutoff maximizes the

possibility of an all-cutoff or all-pass scenario for the ERIs evaluated in a warp, which is

the outermost loop. The Schwarz cutoff is a method to estimate the upper bound of an

ERI value by using a Cauchy-Schwarz inequality39

[!"|!"] ≤ !" !" [!"|!"] (26)

Herein, we improve this treatment in two ways: First, before sorting by ERI types, we

split the bra or ket into two parts, one with a high Schwarz value (dense region, expecting

large integral values) and another with a low value (sparse region, expecting small

integral values). The cutoff can then be manually chosen, and we select a value of 10-4

because we found that it gives the best balance between efficiency and accuracy. For the

dense region, the ERI values are typically too big to be ignored and the dominant factors

are its ERI types and primitive Gaussian function numbers if a contraction step is feasible

on the GPU. A hidden filter arises because of the symmetry of the ERI,

[ij|kl]=[ji|kl]=[ij|lk] and so on, so only ERIs with i<=j and i<=k and k<=l need to be

calculated. Therefore, if the Schwarz cutoff is an upper bound criteria, this does not

impact the dense regions of the ERI matrix (see Figure 4.3). Via this, the order of the half

matrix will be randomized resulting in instances where i>j which will be ignored by

symmetry (i≤j are retained). If this conditional check is not made with the Schwartz

cutoff divergence may occur. Without the Schwarz cutoff i≤j is always true which

eliminates the need for the conditional check. So in the dense region, the Schwartz cutoff

is not needed. On the other hand, for the sparse region ERIs will have a greater chance to

be small enough to encounter the Schwarz cutoff so that once threads in one warp fall

89

into this region, it is very likely that all threads in the same warp will skip the ERI

evaluation. Hence, in the sparse region, after sorting by ERI types, sorting the half ERI

by the Schwarz cutoff upper bound is an efficient strategy.

This strategy is illustrated in Figure 4.3, using an example of a water cluster with 4

molecules 6 Å from each other such that both the inter and intra molecular interactions

are considerable but neither very strong nor very weak. This clearly splits the half ERIs

into dense and sparse regions. This system includes 212 basis functions, 64 shells and

1187 eligible half ERIs. We used a color scheme to illustrate the magnitude of the ERI

upper bound. It is comparatively easy to discern the dense*dense and sparse*sparse

region and the other two areas (dense*sparse) in between in Figure 4.3. The

sparse*sparse area, mostly colored with purple and black regions are crowded with ERIs

with a small upper bound while the dense*dense area is filled with orange that represents

ERIs expected to have large values. However, the boundary for ERI types is hard to tell

for the dense area because the Schwarz cutoff is not introduced in that area, however, the

boundary for ERIs in the sparse area can be easily identified. The table next to the ERI

matrix in Figure 4.3 indicates the boundaries for the half ERIs.

90

(a) (b)

 (c) (d)

Figure 4.2. Optimized subroutine partition pattern for (a) CUDA 3.0 and (b) CUDA

2.0 architectures. All Fij functions that are within one zone will be warped in one

subroutine and called in a kernel. (c) (d) Kernel call pattern for ERI type [ij|kl] with the

partition strategy (a) for CUDA 3.0 and (b) for CUDA 2.0. See text for details.

91

Figure 4.3. Pre-sorting and thread walking illustration. The test case is a water cluster

with 4 water molecules. The color scheme indicates the upper bound of ERIs,

dense*dense, sparse*dense and sparse*sparse areas can be visually identify in the ERI

matrix. The table on the right is the boundary for different ERI types. See details in the

text.

Besides this change, a second change is the thread walk was altered from a linear search

to a circular search as shown in Figure 4.3. This adaptation is especially suitable to the

first change because the large-valued and small-valued regions are most likely distributed

circularly at the origin or at the edge of the ERI matrix. So at the beginning, the thread

walk ensures almost every ERI is not cutoff and at the last steps of the walk, almost every

visited ERI will be smaller than the cutoff criteria. Both changes yield a ~30%

improvement for small systems and ~15% for large systems (typically for system with

92

more than 1000 basis functions) because of the smaller possibility of thread divergence.

We compare other walk strategies, like linear and snake, on alanine chains with lengths

of 1, 5, 9 and 13 using the 6-31g** basis set in Figure 4. The circular is faster for the

smaller systems, but for larger all methods explored performed similarly. Other thread

walk strategies might offer significant improvements as well but generally are not as

good as the circular search and suffer more significant degradations when applied to large

systems as well. Another note is that most SCF calculations will only evaluate the

difference between iterations so in the final several iterations, the ERI matrix will be

much more sparse than in the initial iterations. Thus, when applying the thread walking

changes, the time needed to calculate later iterations will be slightly increased when

compared with the original thread walking strategy. Nonetheless, the overall time

required after these modifications is better than when these computational tricks are not

employed.

93

 (a) Linear (b) Snake (c) Circular

 Performance comparison between different thread walk strategies

Molecule
Name(Atom

Number)

α-helix
acetyl(ala)18NH2

(189)

β-strand
acetyl(ala)18NH2

(189)

Taxol

(110)

Valinomycin

(168)

Basis Set 6-31g 6-31g** 6-31g 6-31g** 6-31g 6-31g** 6-31g 6-31g**

(a) Linear 144.7 435.1 64.7 203.4 49.3 149.9 106.8 312.1

(b) Snake 142.0 433.2 63.1 201.2 49.0 148.2 105.8 310.7

(c) Circular 135.2 424.1 57.0 191.8 45.2 145.2 98.7 301.4

Improvement % 6.6 2.5 11.9 5.7 8.2 3.1 7.6 3.4

Figure 4.4. Thread walk strategy comparison. Three different thread walk strategies

are presented for GPU calculations. Time used to calculate the 2nd iteration for four

examples of alanine chains of different lengths using 6-31g** are reported. Unit is

seconds. Improvement % row indicates performance improvement of circular strategy

over linear strategy.

94

We visualize the kernel call pattern in Figure 4.2(c) and (d) for an ERI type [ij|kl] with

two axes with i+j value and j+k values, respectively. We show the partition strategies for

CUDA capability of 3.x and 2.x in Figure 4.2(a) and (b), respectively. Each cube

corresponds to a kernel run for this type. For example, if i+j equals 5 and k+l equals 6,

kernel 0,1,2,4,5 and 7 are necessary to compute its value. From a kernel perspective, a

kernel does not contribute to every ERI type but only for certain types. For example, for

subroutines in zone 1 warped as kernel 1 in Figure 4.2(a) (designed for the device of

CUDA compute capability 3.x) the kernel containing subroutines F(5~6)(0~6), is needed by

ERI types [ij|kl] that fulfill the condition ! + ! ≥ 5, and similarly, for zone 3, threads only

need to search ! + ! ≥ 5 and ! + ! ≥ 5. Therefore, only going through those regions that

may produce these types of ERIs can minimize redundant thread walks and further

improve performance. These calls are statically determined at the compilation stage to

avoid unnecessary branching during runtime.

4.3.5. IMPLEMENTATION OF ERI DERIVATIVE EVALUATION

Besides the single point energy, the Hartree-Fock method can provide analytical

expression for the energy gradient. Similar to the single point energy, the bottleneck is, as

shown in equation 3, the evaluation of the ERI derivatives, which accounts for more than

80%~90% of the CPU depending upon system size. To implement the HF gradient

calculation on GPUs, two general steps are necessary: the ERI derivative evaluation and

final gradient assembly.

95

For ERI derivative evaluation, similar to normal ERI evaluation, a recurrence relation is

used in our implementation. The difference between normal ERI evaluation and the

derivative evaluation, as discussed above (see equation 19), is the presence of two extra

classes of ERIs one with higher index and another with a lower one. If, for example, we

want the d orbital gradient, the derivative of [dd|dd] requires a series of subroutines

F(0~5)(0~5) but F55 is not needed. However, as described in the last section, the compiler

cannot handle all subroutines at once, therefore, a similar, but simpler, partition strategy

was developed as shown in Figure 4.5, which represents a subset of the normal ERI

evaluation process. As Figure 4.5 shows, three zones are indicated, and this partition is

suitable for both the CUDA compute capability 2.x and 3.x architectures. The kernel call

pattern is quite similar to that of the CUDA compute capability 2.x ERI evaluation but

simpler so we do not present it herein. The thread walk is similar to that used in the

normal ERI evaluation. Moreover, the HRR step for zone 1 and 2 are simpler than zone

0. For zone 0, the most efficient algorithm is to evaluate twelve derivatives classes (four

centers and three directions, but nine classes need to be computed (see equation 20)

simultaneously once the value of the auxiliary ERIs from [00|00] to [(i+j+1)0|(k+l)0] and

[(i+j)0|(k+l+1)0] are obtained. For the derivative of a primitive ERI, the HRR is applied

as much as 18 times because there are 9 classes and each class has two ERIs (a higher

and lower function). However, if the contraction step is possible on the GPU significant

computational savings can be achieved. Zone 1, for example, is called when (1) (i+j)

equals 4, (2) for the derivative of center i or j and (3) only when an ERI with a higher

function is involved, hence, only 6 and 3 HRR computes are required at most for zone 1

and zone 2.

96

Figure 4.5. Optimized Subroutine Partition for ERI Derivatives. This partition strategy

works for both CUDA 3.0 and CUDA 2.0. The kernel call mapping is similar to Figure

4.2 but simplified so it is not shown here.

However, the contraction step, sacrificing space usage for reduced FLOP counts, given

by equation 25 cannot be applied to zones 1 and 2 which are wrapped as two separate

kernels. This is caused by insufficient register and memory resources available on the

GPU. If the contraction step is applied, as given in equation 21, an efficient way to

implement this is to store 4 sets of auxiliary classes whose class size increases

exponentially with the growth in quantum number: For example, because the degeneracy

number of s,p,d,f,g,h,i orbitals are 1,3,6,10,15,21,28, so for [dd|, L=4, we have

1+3+6+10+15 = 35, therefore, [dd|dd] requires 35×35 for each class and 56×56 for the

derivative; [ff|ff] requires 84×84 if each thread computes one contracted ERI, which is

97

infeasible for ERIs with higher-angular momentum functions even though one set is

possible as discussed in the last section regarding [ff|ff] evaluation. So for zone 1 and

zone 2, the contraction step is skipped because it is computationally infeasible. In this

way CUDA executes the subroutines and each thread will work on a primitive ERI

instead of a contracted one. We show below that with or without the contraction step we

can achieve impressive performance.

Another stage is assembling the gradient. In the HF energy implementation, we used

atomic operations, a set of lock-set-unlock operations to void thread conflicts and

assemble the Fock matrix in global memory. However, the drawback of atomic

operations in our hands was their speed and accuracy. The clock cycle of atomic

operations was generally two-fold less than that of registers and one-fold with respect to

shared memory, even though this penalty could be reduced by coalescing memory access

and thread access.

Atomic operations are not particularly fast on Fermi GPUs but for Kepler GPUs they are

~3x faster than the previous generation of cards. Therefore, we expect a similar accuracy

using atomic operations for the SCF energy and gradient but with increased performance

from the Kepler GPUs. Compared to the HF energy calculation, the number of atomic

operations is significantly less for the HF gradient. This is because for the HF energy, an

ERI class contains many individual ERIs (e.g., (pp|pp) contains 81 ERIs) and each ERI

contributes to up to six elements to the density matrix via atomic operations (e.g., the

(pp|pp) class, in the worst case scenario, requests up to 486 atomic operator calls). But for

98

assembling the gradient, an ERI class shares common centers which means they

contribute to the same gradient elements, thus, the contribution from the ERI derivative

can be assembled locally at the thread level. The gradient is then updated using a single

atomic operator call regardless if the contraction step is introduced, so a thread calls at

most 12 atomic operators at once for zone 0, 1 and 2. We use a presorting step for the

energy computation and reutilize this for the gradient computation. We could have

created a pre-sorting strategy for the gradient computation as well, but this added

overhead would eliminate the realized computational gains.

4.4. BENCHMARK RESULTS AND DISCUSSION

We implemented and benchmarked our ERI and ERI derivative code in our quantum

chemistry package QUICK40 for both CPUs and GPUs. The QUICK CPU code was

originally written in FORTRAN and the GPU code is rewritten in C++ together with the

machine-generated code described above. We built the CPU version with the INTEL

FORTRAN Compiler (version 12.1.5 20120612) with optimization option level 3 (-O3).

For the GPU version, the Intel C++ Compiler (version 12.1.5 20120612) and CUDA

compiler 4.2 V0.2.1221 with optimization option level 3(-O3) was used. Moreover, the

fast math library option was used (-use_fast_math) and all calculations used double

precision unless otherwise indicated. In our benchmarks, the CPU we used was a single

core 3.07GHz Intel Xeon CPU X5675. The GPU test platform was a NVIDIA TESLA

K40. This GPU card features 12 Gb of global memory, 15 streaming multiprocessors and

2880 CUDA cores built based on the KEPLER architecture. In addition, we turned the

99

ECC off and clocked to 875MHz to maximize the performance. The K40 card has

compute capability 3.5, so the kernel partition and kernel call pattern will follow Figures

2(a) and (c).

First, we present the tests we carried out on SCF energy calculations involving f orbital

ERI contributions. In the SCF energy GPU implementation, all primitive ERIs were

calculated on-the-fly and the Fock matrix was assembled in global memory, while for the

CPU version, the primitive ERIs can be saved in memory to form contracted ERIs for

higher efficiency which cannot be done on GPUs due to a shortage of register space. Both

the CPU and GPU versions used the direct SCF procedure, which has been shown1,2,7,8 to

be suitable for GPU-based SCF calculations. Any integrals smaller than 10-9 were

neglected both in the CPU and GPU benchmark studies. ERI evaluation with f orbital

contributions on GPUs will be treated with several kernel runs as discussed above, while

for the CPU we ran in a traditional manner.

We studied linear alanine chains with lengths ranging from 1 to 26 with the 6-31G(df, pd)

basis set (with 280 to 4702 basis functions). The results are summarized in Figure 4.6.

We plotted the time used for the second iteration to form the Fock Matrix with the

superposition of atomic densities (SAD) initial guess.41,42 We exclude the one-electron

contribution in the plot, which is relatively small and does not need to be calculated every

iteration. Besides the time to form the Fock Matrix, diagnalization is another critical step

for each iteration, and while it is relatively small for small systems it will ultimately

dominate for very large systems because it scales as O(N3) which is larger than the

100

scaling dependence of direct SCF calculations. We use the second iteration for our

benchmark studies because comparing with first iteration timings can lead to misstating

the overall GPU performance. Meanwhile, besides the time to run a single iteration, the

time cost associated with different kernels is plotted as well. As observed in Figure 4.6, a

GPU yields an 8-18 times speedup when compared to a single core of a CPU with the

speedup increasing with an increase in system size. This tendency was observed in last

chapter8 and in the work of other groups9. This tendency is due to three reasons: (a) larger

systems means larger ERI matrices that lead to less thread divergence; (b) larger systems

produce more ERIs that are small enough to be cutoff and (c) reduction in chance

collisions of thread requests to the same density matrix element in larger systems, which

reduces the atomic operation penalty. The most time consuming kernel is kernel 0 (see

Figure 4.6), which is not surprising since every ERI including ERIs with f-type Gaussian

function contributions calls this kernel. Besides kernel 0, kernels 1-8 are called when the

ERI has an f Gaussian function contribution with the accumulated time taking roughly 30%

of the total time.

101

Figure 4.6. Calculation Time profiles for the CPU and GPU calculations on alanine

chains. Timings for the CPU and GPU kernel time (top two curves) are based on the Fock

matrix formation excluding the one-electron contribution. Timings for kernel 0 to kernel

8 are given as well and the kernel call mapping corresponds to Figure 4.2. Platform and

software details are described in the text. A logarithmic scale is used for the Y axis.

The SCF energy error between the CPU and GPU calculation using double-precision is

within 10-7 a.u. for the alanine chain test set which is quite accurate given the different

execution order of the floating point operations for the GPU and CPU implementations.

To further analyze our implementation, we examined several systems with different basis

sets with (6-31G(df,pd) and 6-31G(2df,2pd)) and without f orbital contributions (6-

102

31G**). The systems we tested include relatively small molecules such as taxol,

valinomycin, and small proteins containing around 200 atoms including the PDB43 ID’s

of 1AKG, 1CNL, 1M2C and 1PEN. The results are presented in Table 4.1. The number

of basis functions varies from more than a thousand (taxol at the 6-31G** level) to more

than five thousand (1M2C at the 6-31G(2df, 2pd) level). The realized speedup is11-13

times and varies slightly with the basis set employed. The listed times used for kernel 1-8

accounts for approximately 9.6%, 12.0%, 1.2%, 1.1%, 1.7%, 0.6%, 0.6%, and 1.0% of

the total time and ~27% overall. According to Table 4.1, the performance of f orbital

computing with a GPU is not significantly impacted by our partition treatment. Actually,

6-31G(df,pd) and 6-31G(2df,2pd) calculations benefit from GPU usage because of the

“large basis set effect” described above and along with our partition treatment (which

goes against some conventional thinking on this topic44). The partition scheme might also

be applied to kernel 0, where we separate kernel 0 into several smaller kernels, to

potentially gain better performance. However, we found this idea did not work because

these subroutines are relatively small so the overhead penalty of GPU kernel initialization,

repeated ERI screening calculations and extra calculations to select the corresponding

subroutine reduces the benefit brought about by our partitioning scheme. In sum, to

evaluate ERIs with f Gaussian functions, we need slightly more time for the calculations,

but the overall speedup, even considering the extra time used, is still impressive,

demonstrating the accuracy, feasibility and efficiency of our treatment of ERIs with

contributions from f functions.

103

The next benchmark is focused on SCF gradient calculation using the same test systems

(polyalanines) as before. The GPU is used only to accelerate the most time-consuming

part, which is the derivative of 4-center ERIs while other contributions such as the one-

electron integral derivatives are calculated on the CPU since they only take a minor

portion of the overall computation time. In this test, for both the CPU and GPU gradient

calculations, the energy calculation itself was performed on the GPU to ensure we are

using the same density matrix. The speedup of the GPU over the CPU calculation is

illustrated in Figure 4.7(a) by comparing the time used to evaluate the derivative ERI part

of the gradient calculation. As Figure 4.7(b) indicates, the accuracy of the GPU gradient

compared to the CPU as indicated by the root mean squared deviation (RMSD) of

calculated gradients and the max difference (bolded) is quite good. The first 6 points for

6-31G are not presented because the difference is smaller than 10-12. In terms of accuracy,

the RMSD of the gradient difference between the CPU and GPU is less than 10-10 and 10-

11 a.u. for the 6-31G** and 6-31G basis sets while the maximum difference is within 10-9

and 10-10 a.u. respectively. According to Figure 4.7(a), we find that our GPU

implementation speeds up the gradient calculation by as much as 19 times ((alanine)30

with the 6-31G** basis set and 3010 basis functions). When compared to the GPU

speedup of the SCF energy, the observed speedup here is slightly better due to the

reduced number of atomic operations.

To further analyze the differences in kernel time usage, we used the same set of systems

used in the analysis of the energy calculation. The results are summarized in Table 4.2.

Generally, the extra calculation (kernel 1 and kernel2) arising from the partition strategy

104

represents about 12% of the total time (previously it was ~30% on average). Overall the

speedup of the gradient calculation on the GPU relative to the CPU was between 12.9-

16.1 times, which, as expected due to the reduction in atomic operations, is slightly better

than what we observed for the realized speedups in the HF energy calculation on a GPU.

One important application of the energy gradients is geometry optimization. To test our

implementation we optimized the (glycine)12 chain with the 6-31G and 6-31G** basis set

using the L-BFGS algorithm and profiled the performance and measured the accuracy of

the geometries obtained using the CPU or GPU code base. These calculations involve 87

atoms and 514 and 925 basis functions, respectively. The starting geometry was initially

optimized with the STO-3G basis set using the GPU code. In order to compare the

accuracy of the GPU gradient along with the GPU energy, three sets of computations

were carried out. These include CPU (energy) + CPU (gradient), GPU (energy) + CPU

(gradient), and GPU (energy) + GPU (gradient). We present the geometry RMSDs of the

GPU+CPU and GPU+GPU relative to the CPU+CPU result from the same step in Figure

4.8. As expected the error observed using the GPU energy and gradient calculation

increases as the number of steps increases. The error in the 6-31G** result is slightly

larger than that of 6-31G due to the larger number of basis functions employed. At

geometry convergence, the RMSD is mostly within the 10-4 magnitude for both the

GPU+CPU and GPU+GPU calculations with 6-31G and 6-31G** basis sets. The energy

differences obtained for the GPU+CPU and GPU+GPU optimizations relative to the

CPU+CPU result (in atomic units) are 1.80×10-6 and 3.21×10-6 for 6-31G and 7.46 ×10-6

and 4.28×10-7 for 6-31G**.

105

 (a)

 (b)

Figure 4.7. (a) Speedup comparison and (b) gradient deviation comparison between

CPU and GPU calculations with different basis sets for alanine chain lengths from 1 to

30. Timing for CPU and GPU are based on the gradient generation time including data

transfer but excludes the one-electron integral contribution. Platform and software details

are described in text. For (b) RMSD and maximum difference (bolded) between the GPU

and CPU result are presented. First 6 points are not presented because the difference is

smaller than 10-12. A logarithmic scale is used for the Y-axis.

106

We also explored the memory usage of the GPU calculations. ERI evaluation with high-

angular momentum functions does not allocate extra memory, and therefore, the peak

memory usage is the same as in our earlier efforts8. For the gradient calculation on the

GPU, a relatively small amount of memory is required to store the gradient value and it

scales linearly with the number of atoms. For the K40 card with 12 gigabytes, for

example, calculation of the (alanine)28 chain using the 6-311G(2df, 2pd) basis set with

6780 basis functions uses almost every bit of global memory, which is one of the largest

systems that the K40 is able to handle in our hands. Hence, with Quick, GPU global

memory is the limiting factor for larger systems currently. This limit, together with

bandwidth and the number of registers that limit calculation speed and size will be

mitigated with incoming GPU technologies such as NVLink which will boost bandwidth

and available memory.

107

Figure 4.8. Accuracy of geometry optimization using a GPU versus a CPU. The test

molecule was (Glycine)12 with the 6-31G and 6-31G** basis sets. Three sets of

computations were executed including CPU+CPU, GPU+CPU, GPU+GPU. The curves

indicate geometry RMSD relative to the CPU+CPU results at the same step.

108

Table 4.1. Performance Comparison between CPU and GPU SCF Calculationa,b

Molecule/
Atom

Number

Basis Sets/
No. of Basis

Function

Kernel Time/s GPU
total/s

CPU
total/s

Speedu
p 0 1 2 3 4 5 6 7 8

taxol
(110)

6-31G**/1160 132.11 - - - - - - - - 132.11 1735.13 13.1
6-31G(df,dp)/2064 607.57 86.23 114.41 10.79 10.63 17.22 4.78 5.25 4.68 861.55 13178.28 15.3

6-31G(2df,2dp)/2577 1488.60 221.32 283.74 20.05 20.22 38.49 8.95 9.28 9.05 2099.70 28856.43 13.8
valinomyc

in
(168)

6-31G**/1620 276.29 - - - - - - - - 276.29 3397.98 12.3
6-31G(df,dp)/2940 1206.36 158.77 205.08 21.29 19.24 29.98 10.56 11.00 16.77 1679.05 24905.01 14.9

6-31G(2df,2dp)/3678 3014.18 411.14 513.33 41.63 37.88 68.08 21.46 21.73 36.03 4165.46 56135.19 13.4

1AKG
(209)

6-31G**/2171 616.04 - - - - - - - - 616.04 7290.80 11.8
6-31G(df,dp)/3839 2874.78 370.15 469.47 53.39 47.25 68.28 28.20 28.47 47.67 3987.67 49457.74 12.4

6-31G(2df,2dp)/4829 6220.36 841.31 1055.04 90.57 81.01 141.26 48.86 48.28 86.58 8613.27 107771.61 12.5

1CNL
(169)

6-31G**/1771 424.36 - - - - - - - - 424.36 5054.76 11.9
6-31G(df,dp)/3149 2033.50 263.78 335.74 35.90 32.47 48.86 17.67 18.57 26.28 2812.77 34725.38 12.4

6-31G(2df,2dp)/3929 4405.82 597.59 743.98 62.04 56.40 97.97 29.60 30.72 49.02 6073.13 75738.14 12.5

1M2C
(220)

6-31G**/2276 704.04 - - - - - - - - 704.04 7969.27 11.3
6-31G(df,dp)/4060 3245.16 410.62 511.75 61.66 52.59 76.42 33.30 34.26 60.80 4486.57 53311.56 11.9

6-31G(2df,2dp)/5068 7055.35 937.31 1158.67 107.66 95.43 156.81 57.60 57.60 110.93 9737.35 119672.64 12.3

1PEN
(203)

6-31G**/2131 607.46 - - - - - - - - 607.46 7537.26 12.4
6-31G(df,dp)/3789 2812.73 365.32 464.97 54.55 48.75 69.25 28.03 28.10 46.13 3917.83 48023.12 12.4

6-31G(2df,2dp)/4728 6101.39 829.10 1034.71 88.97 80.81 138.65 46.94 46.85 82.34 8449.76 106282.32 12.6
a. Time listed in the table indicates the time used to form the Fock Matrix in the 2nd iteration of the SCF calculation excluding the one-

electron contribution and the diagonalization time.
b. Platform and software details are described in the text.

109

Table 4.2. Performance Comparison between CPU and GPU HF-Gradient Calculation a,b

Molecule/
Atom Number

Basis Sets/
No. of Basis

Function

Kernel Time/s GPU
total/s

CPU
total/s Speedup 0 1 2

taxol
(110)

6-31G/647 98.00 - - 98.00 1345.82 13.7
6-31G**/1160 379.70 18.65 33.78 432.13 6939.49 16.1

valinomycin
(168)

6-31G/882 183.47 - - 183.47 2584.33 14.1
6-31G**/1620 691.03 35.75 57.62 784.40 12538.55 16.0

1AKG
(209)

6-31G/1211 444.66 - - 444.66 5729.57 12.9
6-31G**/2171 1522.28 75.22 132.96 1730.46 25422.03 14.7

1CNL
(169)

6-31G/991 303.96 - - 303.96 3914.50 12.9
6-31G**/1771 1078.59 49.77 90.32 1218.67 17861.00 14.7

1M2C
(220)

6-31G/1268 477.74 - - 477.74 6238.65 13.1
6-31G**/2276 1677.16 86.20 146.89 1910.26 27997.59 14.7

1PEN
(203)

6-31G/1192 423.68 - - 423.68 5616.09 13.3
6-31G**/2131 1500.19 74.27 132.99 1707.45 25548.42 15.0

a. Time listed in the table indicates the time used to calculate the gradient using the
HF method excluding the one-electron contribution

b. Platform and software details are described in the text.

110

4.5. CONCLUSIONS

In this chapter, we implemented the evaluation of ERIs up to f orbitals and ERI

derivatives up to d orbitals using GPU technology and ERI recurrence relations. Our SCF

and gradient calculations demonstrate the efficiency of GPUs where speedups of 10~20

times faster are expected over modern CPUs. A partition strategy is introduced to solve

the difficulties encountered in computing ERIs including f orbitals and was further

applied to d orbital gradient calculation. Importantly, we observed a very limited

efficiency decrease after employing this strategy. A well-sorted pre-sorting strategy and

several other improvements boost overall GPU performance and atomic operations are

used to reduce data transfer which is particularly effective on a Kepler GPU. Moreover,

like other GPU-enabled quantum chemistry software4,14, GPU-based DFT calculation is

also available in QUICK although we did not touch on this topic. For pure DFT methods,

such as BLYP and LDA, the difficulty of GPU coding is significantly easier than

encountered in HF while the speedup that a GPU can bring is at the same level seen for

HF. Now with the help of ERI acceleration, hybrid DFT methods, such as B3LYP, is

available by simply calculating the HF and BLYP contributions to exchange-correlation

part, respectively, using the GPU.

Even with the observed performance increase using GPUs, there is still room to improve.

Our long-term goal is to efficiently and accurately investigate complex biological

systems with GPUs and most calculations will involve s, p and d orbitals and f orbitals

when large basis sets or calculations involving metal ions are employed. Hence, f orbital

111

gradients is currently the next piece of the puzzle. However, even though we have

generated the F(0~7)(0~7) code with an automatic code generator, which is sufficient for the f

orbital gradient calculation, the difficulty is that even if the partition strategy is used as

well, a kernel that only calls the subroutine F76, for example, will fail at the compilation

stage because the memory requirements are beyond the current generation of GPU cards.

We developed a compromise approach to deal with this dilemma that split a given

subroutine into several kernels but find that the overall performance is quite poor. So we

currently run this part of the calculation on the CPU. However, GPU cards and software

continues to improve so solutions to this problem are likely to be available in the near

future.

Our future work will focus on following aspects. First we are integrating our source code

with the AMBER MD package to further enable ab initio QM/MM simulations15. Second

is to develop GPU enabled correlated ab initio methods such as MP2 and coupled-cluster

methods. Moreover, GPU enabled second order derivatives would also be helpful for

scientists who want to calculate frequencies or other properties. Additionally, a multi-

GPU implementation and implementation of the code on INTEL PHI platform is on

going in order to have another option to accelerate ab initio calculation1,9.

112

APPENDIX

113

SAMPLE OF MACHINE GENERATED CODE

The goal of the machine-generated code is to generate a function such as

void h_2_2(QUICKDouble* store, arguments)

where store is an double-precision float(type name QUICKDouble, a redefined double

type) array that saved ERIs. The purpose of above function is to evaluate (20|20) or

(ds|ds) integrals and save them to the ERI container store. Arguments are some constant

parameters that describes molecular and basis sets information.

Within h_2_2,

__device__ __inline__ void h_2_2(QUICKDouble* store,arguments)

{

// call for L = 0 B = 1

f_0_1_t f_0_1_0 (VY(0), VY(1), arguments);

// call for L = 0 B = 1

f_0_1_t f_0_1_1 (VY(1), VY(2), arguments);

// call for L = 0 B = 2

f_0_2_t f_0_2_0 (f_0_1_0, f_0_1_1, VY(0), VY(1), arguments);

// call for L = 0 B = 1

f_0_1_t f_0_1_2 (VY(2), VY(3), arguments);

….

 // call for L = 2 B = 2

f_2_2_t f_2_2_0 (f_1_2_0, f_1_2_1, f_0_2_0, f_0_2_1, f_1_1_1, arguments);

114

// WRITE LAST FOR I = 2 J= 2

LOC2(store, 4, 4, STOREDIM, STOREDIM) += f_2_2_0.x_4_4 ;

LOC2(store, 4, 5, STOREDIM, STOREDIM) += f_2_2_0.x_4_5 ;

…

}

Here, VY(i) stands for F00 classes with m value equals to i because they are a set of value

rather than classes. f_[i]_[j]_t class is a ERI (i0|j0) type with each member of the class is

one combination of the ERI, for example,

// Class for L = 0 B = 2

class f_0_2_t { // (ss|sd) ERI type

public: QUICKDouble x_0_4 ; // (s=0, s = 0, s=0, d = xx)

QUICKDouble x_0_5 ; // (s=0, s = 0, s=0, d = yy)

QUICKDouble x_0_6 ; // (s=0, s = 0, s=0, d = zz)

QUICKDouble x_0_7 ; // (s=0, s = 0, s=0, d = xy)

QUICKDouble x_0_8 ; // (s=0, s = 0, s=0, d = xz)

QUICKDouble x_0_9 ; // (s=0, s = 0, s=0, d = yz)

__device__ __inline__ f_0_2_t(f_0_1_t t_0_1_0, f_0_1_t t_0_1_1,

QUICKDouble t_0_0_0, QUICKDouble t_0_0_1, arguments);

};

115

Size of this class is enormous for ERIs with higher angular momentum value. And the

inline function, expresses the relation between one ERI type and ERIs with lower angular

momentum value. For example,

__device__ __inline__ f_0_2_t :: f_0_2_t (f_0_1_t t_0_1_0, f_0_1_t t_0_1_1,

QUICKDouble t_0_0_0, QUICKDouble t_0_0_1, arguments)

{

x_0_4 = Qtempx * t_0_1_0.x_0_2 + WQtempx * t_0_1_1.x_0_2 ;

x_0_5 = Qtempy * t_0_1_0.x_0_3 + WQtempy * t_0_1_1.x_0_3 ;

x_0_6 = Qtempx * t_0_1_0.x_0_3 + WQtempx * t_0_1_1.x_0_3 ;

x_0_7 = Qtempx * t_0_1_0.x_0_1 + WQtempx * t_0_1_1.x_0_1 + CDtemp * (

t_0_0_0 - ABcom * t_0_0_1) ;

x_0_8 = Qtempy * t_0_1_0.x_0_2 + WQtempy * t_0_1_1.x_0_2 + CDtemp * (

t_0_0_0 - ABcom * t_0_0_1) ;

x_0_9 = Qtempz * t_0_1_0.x_0_3 + WQtempz * t_0_1_1.x_0_3 + CDtemp * (

t_0_0_0 - ABcom * t_0_0_1) ;

}

In sum, function h_[i]_[j] is to calculate ERI type (i0|j0) by the assistant of sets of

f_[i]_[j]_t classes to evaluate the value from VY(i), a set of F00 or (00|00)(m) values. The

code is extremely long and complicated, for example, 788 lines for f_6_6_t, and 124

f_[i]_[j]_t is constructed and computed as auxiliary ERIs for h_6_6 to calculate (60|60)

ERI type containing 28*28 = 784 elements.

116

REFERENCES

117

REFERENCES

(1) Ufimtsev, I. S.; Martinez, T. J. J. Chem. Theory Comput. 2009, 5, 1004-1015.

(2) Ufimtsev, I. S.; Martinez, T. J. J. Chem. Theory Comput. 2009, 5, 2619-2628.

(3) Ufimtsev, I. S.; Martinez, T. J. J. Chem. Theory Comput. 2008, 4, 222-231.

(4) Yasuda, K. J. Chem. Theory Comput. 2008, 4, 1230-1236.

(5) Yasuda, K. J. Comput. Chem. 2008, 29, 334-342.

(6) Asadchev, A.; Allada, V.; Felder, J.; Bode, B. M.; Gordon, M. S.; Windus, T. L.
J. Chem. Theory Comput. 2010, 6, 696-704.

(7) Asadchev, A.; Gordon, M. S. J. Chem. Theory Comput. 2012, 8, 4166-4176.

(8) Miao, Y. P.; Merz, K. M. J. Chem. Theory Comput. 2013, 9, 965-976.

(9) Titov, A. V.; Ufimtsev, I. S.; Luehr, N.; Martinez, T. J. J. Chem. Theory Comput.
2013, 9, 213-221.

(10) Luehr, N.; Ufimtsev, I. S.; Martinez, T. J. J. Chem. Theory Comput. 2011, 7, 949-
954.

(11) Wilkinson, K. A.; Sherwood, P.; Guest, M. F.; Naidoo, K. J. J. Comput. Chem.
2011, 32, 2313-2318.

(12) Götz, A. W.; Wölfle, T.; Walker, R. C. In Annual Reports in Computational
Chemistry; Ralph, A. W., Ed. 2010; Vol. 6, p 21-35.

(13) Kulik, H. J.; Martinez, T. J. Abstr Pap Am Chem S 2012, 244.

(14) Kulik, H. J.; Luehr, N.; Ufimtsev, I. S.; Martinez, T. J. J Phys Chem B 2012, 116,
12501-12509.

(15) Isborn, C. M.; Gotz, A. W.; Clark, M. A.; Walker, R. C.; Martinez, T. J. J. Chem.
Theory Comput. 2012, 8, 5092-5106.

(16) Ufimtsev, I. S.; Luehr, N.; Titov, A.; Martinez, T. Abstr Pap Am Chem S 2011,
242.

(17) Ufimtsev, I. S.; Luehr, N.; Martinez, T. J. J Phys Chem Lett 2011, 2, 1789-1793.

(18) Kulik, H. J.; Isborn, C. M.; Luehr, N.; Ufimtsev, I.; Martinez, T. J. Abstr Pap Am
Chem S 2011, 242.

118

(19) Bhaskaran-Nair, K.; Ma, W. J.; Krishnamoorthy, S.; Villa, O.; van Dam, H. J. J.;
Apra, E.; Kowalski, K. J. Chem. Theory Comput. 2013, 9, 1949-1957.

(20) Ma, W. J.; Krishnamoorthy, S.; Villa, O.; Kowalski, K. J. Chem. Theory Comput.
2011, 7, 1316-1327.

(21) Isborn, C. M.; Luehr, N.; Ufimtsev, I. S.; Martinez, T. J. J. Chem. Theory
Comput. 2011, 7, 1814-1823.

(22) Vogt, L.; Olivares-Amaya, R.; Kermes, S.; Shao, Y.; Amador-Bedolla, C.;
Aspuru-Guzik, A. J. Phys. Chem. A 2008, 112, 2049-2057.

(23) Isborn, C. M.; Luehr, N.; Gour, J. R.; Ufimtsev, I. S.; Martinez, T. J. Abstr Pap
Am Chem S 2011, 242.

(24) Gotz, A. W.; Williamson, M. J.; Xu, D.; Poole, D.; Le Grand, S.; Walker, R. C. J.
Chem. Theory Comput. 2012, 8, 1542-1555.

(25) Salomon-Ferrer, R.; Götz, A. W.; Poole, D.; Le Grand, S.; Walker, R. C. J. Chem.
Theory Comput. 2013, 9, 3878-3888.

(26) D.A. Case; T.A. Darden; T.E. Cheatham, I.; C.L. Simmerling; J. Wang; R.E.
Duke; R. Luo; R.C. Walker; W. Zhang; K.M. Merz; B.P. Roberts; B. Wang; S. Hayik; A.
Roitberg; G. Seabra; I. Kolossváry; K.F. Wong; F. Paesani; J. Vanicek; J. Liu; X. Wu;
S.R. Brozell; T. Steinbrecher; H. Gohlke; Q. Cai; X. Ye; J. Wang; M.-J. Hsieh; G. Cui;
D.R. Roe; D.H. Mathews; M.G. Seetin; C. Sagui; V. Babin; T. Luchko; S. Gusarov; A.
Kovalenko; Kollman, P. A. AMBER11,University of California, San Francisco. 2010.

(27) DePrince, A. E.; Hammond, J. R. J. Chem. Theory Comput. 2011, 7, 1287-1295.

(28) DePrince, A. E.; Kennedy, M. R.; Sumpter, B. G.; Sherrill, C. D. Mol Phys 2014,
112, 844-852.

(29) Asadchev, A.; Gordon, M. S. J. Chem. Theory Comput. 2013, 9, 3385-3392.

(30) Titov, A. V.; Ufimtsev, I.; Martinez, T.; Dunning, T. H. Abstr Pap Am Chem S
2010, 240.

(31) Gill, P. M. W. Adv Quantum Chem 1994, 25, 141-205.

(32) Fletcher, G. D. Int J Quantum Chem 2006, 106, 355-360.

(33) Rys, J.; Dupuis, M.; King, H. F. J. Comput. Chem. 1983, 4, 154-157.

(34) McMurchie, L. E.; Davidson, E. R. J. Comput. Phys. 1978, 26, 218-231.

(35) Obara, S.; Saika, A. J. Chem. Phys 1988, 89, 1540-1559.

(36) Head-Gordon, M.; Pople, J. A. J. Chem. Phys 1988, 89, 5777-5786.

119

(37) Boys, S. F. Proceedings of the Royal Society of London. Series A. Mathematical
and Physical Sciences 1950, 200, 542-554.

(38) Komornicki, A.; Ishida, K.; Morokuma, K.; Ditchfield, R.; Conrad, M. Chem
Phys Lett 1977, 45, 595-602.

(39) Strout, D. L.; Scuseria, G. E. J. Chem. Phys 1995, 102, 8448-8452.

(40) Miao, Y; He, X; Ayers, K.; Brothers, E.; Merz, K.M. QUICK, version
2.0.140304; University of Florida: Gainesville, FL, 2013, Download free at:
http://www.merzgroup.org/quick.html

(41) He, X.; Merz, K. M. J. Chem. Theory Comput. 2010, 6, 405-411.

(42) Van Lenthe, J. H.; Zwaans, R.; Van Dam, H. J. J.; Guest, M. F. J. Comput. Chem.
2006, 27, 926-932.

(43) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.;
Shindyalov, I. N.; Bourne, P. E. Nucleic Acids Res 2000, 28, 235-242.

(44) "Megakernels Considered Harmful: Wavefront Path Tracing on GPUs" Samuli
Laine (NVIDIA), Tero Karras (NVIDIA), Timo Aila (NVIDIA), in High-Performance
Graphics 2013, July 2013

120

CHAPTER 5. GPU ACCELERATION ON HISTOGRAM ANALYSIS

121

5.1. INTRODUCTION

The concept of the potential of mean force (PMF) [1] !(!) with coordinate ! , was

originally introduced by Kirkwood and is frequently used to understand the mechanism

of “rare” transitions in solid, fluids or complex biochemical systems. To obtain accurate

estimates of a free energy barrier along a reaction coordinate that is substantially higher

than the minima, a standard canonical (NVT) simulation provides little or no sampling in

the barrier region. In order to address this issue, a set of N separate “umbrella” sampling

[2,3] windows are created using a biasing potential, ! ! ,!in order to confine the system in

the neighborhood of position ! in order to enhance sampling. A typical umbrella biasing

potential uses the harmonic form:

!! ! = !!!! (! − !!)
! (1)

which restrains the system at position !! with a force constant !!. The windows created

along a reaction path are then “unbiased” and combined to obtain the PMF over the

whole region of interest.

The weighted histogram analysis method (WHAM) described by Kumar et al[4-6] is an

algorithm that unbiases a set of simulations that have sampled different regions of !! and

then assembles the free energy profile. This method is based on the histogram method

proposed by Ferrenberg and Swendsen [7], whose central idea is an optimal estimate of an

unbiased distribution function as a weighted sum over data extracted from simulations

using the maximum overlap method and statistical error minimization. Not only single

122

coordinate [8,9] but also multidimensional free energy surfaces [5] can be determined with

this method, and many successful applications have been reported [10-12]. However, one of

the difficulties of multidimensional WHAM is its cost which is O(Nm), where N is the

number of simulations and m is the number of grid points. Here grid points are defined

by the WHAM calculation itself and represent a further parsing of the region between

umbrella sampling points. Hence, depending on the data set size the computational cost

can range into days on a single processor for high-resolution WHAM calculations.

The use of graphics processing units (GPUs) in computational chemistry and biology has

rapidly expanded over the past decade due to the availability of GPU software

development tools and because GPUs offer massively parallel computing at a reasonable

cost. Compared with traditional parallel approaches, such as OpenMP or MPI, which are

designed for sequential execution, GPU programming is especially suitable for

calculations that require massive data parallelism where thread computation is

independent from each other. The most widely used GPU programming interface, which

was introduced by NVIDIA, is the Compute Unified Device Architecture (CUDA) [13].

Within the CUDA framework, the most basic units called threads are arranged into one-,

two- or three-dimensions to form a block, and blocks then form one-, two- or three-

dimensional grids. Configuration of blocks and threads are logical concepts, so they can

be tuned to maximize performance. CUDA provides threads “private” and fast, albeit

limited registers, and threads in a block can communicate with each other via shared

memory, which has medium access speed. Global memory (also know as DRAM) and

constant memory are two types of memory that CUDA provides that are visible to every

123

thread. Global memory has a large capacity (e.g., 6.0 GB for the NVIDIA FERMI

M2090) but large access latency, while constant memory is fast but read-only.

In this chapter, we implement Grossfield’s WHAM program[14] to run on a GPU. We will

briefly describe the theory of WHAM and then introduce the algorithm and strategy used

in the GPU implementation. We then demonstrate the performance improvement by

calculating the energy surface for a typical enzyme reaction. Finally, we draw

conclusions in the final section of this chapter. Our GPU tests were performed on the

widely used NVIDIA K40 with 12.0 GB of DRAM.

5.2. THEORY AND METHODS

In this section, we will first briefly review the theoretical basis of WHAM. WHAM deals

with a set of histograms obtained using the same grid size from the N independent

window simulations. The independent simulations are generally called windows, that

have been collected via molecular dynamics simulations biased with an umbrella

potential like that given in eq (1). Generally, like most statistical methods, the accuracy

of the calculation and cost are dependent on the numbers of windows and the amount of

sampling done at each window.

From the ith biased ensemble, suppose that the distribution function along the ! is a

Boltzmann distribution, then the unbiased distribution function obtained is

!!(!"#$%&'() ! = !![!! ! !!!]!!(!"#$%&) ! (2)

124

Where !! is the umbrella potential perturbation constant, and the b is the inverse

temperature ! = 1/!!!. It has been shown[4,7] that the optimal estimate of ! ! , the

unbiased probability distribution at position!! is:

! ! = !!!!![!! ! !!!]!!
(!"#$%&'() !!

!!!

!!!!![!! ! !!!]!
!!!

 (3)

where !! is the number of data points obtained from ith the umbrella simulation used to

construct the biased distribution function. We assume the probability distribution is

normalized, and if it is not, we can simply normalize it in the end. Combining eqs(2) and

(3),

! ! = !!!!
!"#$%& !!

!!!

!!!!! !! ! !!!!
!!!

 (4)

For the constant !!, we have

!!!!! = !! ! ! !!!!! ! (5)

Eqs(4) and (5) are the WHAM equations, and they depend on each other, so in practice

the unbiased potential is achieved through an iterative procedure by starting with an

initial guess for the !! !(usually set as 0) and then generating new estimates of ! ! and !!

until convergence is achieved. When implementing this algorithm, we divide the

coordinates into very small grids that have the same size (not to be confused with the

points used in the umbrella simulations). We can rewrite eqs (4) and (5) as:

! ! = ! !! !!
!!!

!!!!! !! ! !!!!
!!!

 (6)

!!!!! = ! ! !!!!! !
! (7)

125

where !! ! is the number of sample points located on the same grid point with !, and !!

is the average additional free energy.

Up to this point, eq (6) and (7) are applicable to a general N-dimensional space, but we

have only implemented the two-dimensional case because 1-D is relatively fast and 2-D

analyses are the most widely used. Higher dimensions can be analyzed in an analogous

fashion, but have not been explored herein. However, extensions to 1-D or higher

dimensions involve similar algorithms and can be readily implemented if needed. For

two-dimensions, eq(6) yields Ngrid_x*Ngrid_y equations, where, Ngrid_x stands for the number

of x axis grid points in each WHAM histogram. Each equation requires two summations,

and each of them has N terms that need to be added up. Therefore, for eq(6), the

computation cost is O(N*Ngrid_x*Ngrid_y). Eq(7) represents N independent equations and

each one has Ngrid_x*Ngrid_y elements to be gathered up yielding a computational cost of

O(N*Ngrid_x*Ngrid_y) as well. Its worth noting that the computational cost is only relative to

the number of umbrella windows and the number of WHAM grid points, and not to the

number of sample points obtained in the constrained MD trajectory, but the accuracy

depends on all the three factors.

126

Figure 5.1. Psudo-code for implementation of part 1.

Below, we describe the details of the present implementation on the CUDA platform. The

description is presented using C++ pseudocode in C++ (see Figure 5.1). The lines after

“//” in pseudocode are comments.

__global__ void calc_rou(){

// array numerator and denominator are stored in shared
// memory so that thread in this block can have access
__shared__ numerator[THREAD_PER_BLOCK];

 __shared__ denominator[THREAD_PER_BLOCK];
 for(int i = blockIdx.x; i < Ngrid_x; i+= gridDim.x){
 for(int j = blockIdx.y; j < Ngrid_y; j+= gridDim.y){
 k = threadIdx.x; // k is the thread ID
 //numerator for one thread is the

// histogram value fetched from global
//memory

 numerator[k] = get_histogram_val(i, j, k);

 // denominator requires potential calculation

 denominator[k] = get_number_points(k)
 * exp(-beta*(calc_potential(i, j, k) –

f[k]));
 __syncthreads();

 // thread 0 will summarize

 if (k ==0){
 summarize numerator array to numerator[0];
 summarize denominator array to denominator [0];

// rou is two-dimensional array that store in global
 // memory as eq6 calculated
 rou[i][j] = numerator[0]/denominator[0];
 }
 }

127

Figure 5.2. Psudo-code for implementation of part 2.

To begin with, we call the implementation of eq(6) and eq(7) as Part 1 and Part 2 in the

following discussion (see Figure 5.1 and 5.2). For eq(6), as the pseudocode shown in

Figure 5.1 indicates, our strategy was to assign a block to an equation, then all threads in

a block calculate !!!!! !! ! !!! and fetch !! ! from global memory, where k is the

thread id. Therefore, within the two-dimensional WHAM framework, we configure a

two-dimensional block to map each equation with a one-dimensional thread. For

example, Block (0,0) will work on!! (0,0) , and, for example, the very first thread with

threadID equals 0, will fetch !! (0,0) and calculate !!!!! !! (!,!) !!! . After that, a

reduction in a block is executed to sum the denominator and numerator. As a result,

__global__ void calc_F(){
 // array F are 2-dimensional and stored in shared memory so that
 // every thread in this block can access it
 __shared__ F_cache[THREAD_PER_BLOCK][THREAD_PER_BLOCK];
 for(int i = blockIdx.x; i < Nwindows; i+= gridDim.x){
 for(int j = threadIdx.x; j < Ngrid_x; j+= blockDim.x){
 for(int k = threaIdx.y; k < Ngrid_y; k+= blockDim.y){
 F_cache[j][k]=get_rou(j,k)*exp(-beta*calc_potential(j,k,i));
 }
 }
 __syncthreads();
 if(threadIdx.x == 0 && threadIdx.y == 0) {
 summarize F_cache to F_cache[0][0];
 // F is one-dimensional array that store F in global memory that
 // eq(7) wants to calculate.
 F[i] = F_cache[0][0];
 }
 }

128

! ! !can be computed in one block and stored in global memory so that it is visible to all

threads on the GPU. Similarly for eq(7), as the pseudocode listed in Figure 5.2 describes,

each block works on one equation, and threads in this block generate

! !(!,!) !!!!! !(!,!) , where !(!,!) is the assigned grid point. The most suitable

configuration in this case will be a one-dimensional block with two-dimensional threads.

The configuration utilized is illustrated in Figure 5.3. It is worth noticing that the data

transfer from CPU to GPU is carried out once before the first iteration starts rather than at

every iteration, which includes the histogram and force constant(s), and the variables

reside in the GPU until the probability distribution reaches convergence, and data is

transferred from the GPU to CPU to download the distribution and ! ! and !! .

Therefore, data transfer time is negligible compared to the full calculation.

129

Figure 5.3. Configuration used for the first step in a WHAM calculation. Blue

rectangles indicate a block unit, while orange rectangles represent threads.

130

Figure 5.4. Configuration used for the second step in a WHAM calculation. Blue

rectangles indicate a block unit, while orange rectangles represent threads.

5.3. RESULTS AND DISCUSSION

In this section, we benchmarked our GPU implementation by evaluating the energy

surface of CusF metallochaperone. CusF is a periplasmic metallochaperone exist in

Escherichia coli, encoded by cus-CFBA operon[30]. It was hypothesized to capture

Cu+/Ag+ ions and transfer them to CusCBA pump in order to expel them out of the

cell[31]. It is related to metal ion and antibiotic resistance, which makes it a potential

pharmaceutical target.

131

Figure 5.5. Benchmark reaction studied: CusF metallochaperone. Open(top) and

close(bottom) state exist for CusF protein. Umbrella sampling carried on for two

dimensions with x axis as one distance (Cu+--Trp44@CZ3 distance) and y axis as one

dihedral angle (Glu36-Met47 Phi angle, highlighted in black). See text for details.

132

In recent simulations of our group, we found there is an open state structure exist for the

CusF protein, while the transition between the closed and open states may play a

significant role in the metal ion transfer process between CusF and CusCBA complexes

(unpublished results). Just like the former work[32], we modeled the system based on the

PDB entry 2VB2. AMBER ff99SB force field4 was employed for the protein system

while the SPC/E water model5 was used to solvate the system. A hybrid metal model was

utilized to model the metal binding site. The interaction of Cu+ ion and Trp44 residue

was treated with nonbonded model while the interactions between Cu+ ion and the other

three ligating residues (His36, Met47 and Met49) were represented by the bonded model.

The bonded model are parameterized by Metal Center Parameter Builder (MCPB)6

software in Modeling ToolKit++ (MTK++) in AmberTools[33]. During the research we

found there are one distance (Cu+--Trp44@CZ3 distance) and one dihedral angle

(Glu36-Met47 Phi angle) in the metal binding site, as shown in Figure 5.5, could

distinguish the closed and open state remarkably. For example, in a closed state structure

we found the distance is 2.33 Å while the dihedral angle is -147.53°. In an open state

structure the corresponding distance is 17.42 Å while the dihedral angle is 47.61°. To

further clarify the free energy differences between the closed and open state, we

processed a 2D potential of mean force (PMF) simulations by treating the Cu-

Trp44@CZ3 distance as the reaction coordinate (RC) X axis while the Glu46-Met47 Phi

dihedral angle as RC Y axis. We began the umbrella sampling from a closed state

structure of metal loaded CusF. The harmonic potential of all the simulations is set as 10

kcal/mol-1Å-2 for the distance and 500 kcal/mol-1Rad-2 for the dihedral angle. The initial

closed state structure has a RC as (X=2.33Å, Y=-147.52°) while the PMF termination has

133

RC as (X=17.83 Å, Y=98.72°). The X-axis has 0.50 Å increased and Y- axis has 6.48°

increased and in sum there are 32 * 39 =1408 windows for the whole umbrella sampling

map. There are 6 ns sampling for each window with stepsize as 1 fs. The data points were

stored for each 1 ps during the simulation so that sample data is uncorrelated.

As mentioned before, our implementation is based on Grossfield’s WHAM program[14],

so the original code is used for the CPU calculations and we directly ported this code to

run on GPUs. Our code can be downloaded under a GNU general public license. The

GPU benchmarks were executed on an NVidia K40 card. This card has 6 Gigabytes of

memory, 12 Streaming Multiprocessors and 2880 CUDA cores. For comparison, the CPU

version was run on a single core of an Intel Xeon X5675 CPU with 3.07GHz frequency.

Both codes were compiled using the Intel C++ Compiler 10.1.15 using optimization level

3(-O3) and the CUDA compiler 4.0 v0.2.1221 is used for the GPU code. We used the fast

math library option (-use_fast_math) for better performance on the GPUs. Using a CPU,

a single iteration takes 90 s on average, and each calculation takes more than two

thousand iterations to reach convergence, which requires more than 50 hours in total to

reach convergence on this data set. In most of our calculations, the grid was fine enough

to obtain accurate results and in fact, but the effect of using coarser grids is examined

below as well.

For GPU computations, single-precision (SP) should be carefully used because it may

produce significantly less accurate results when compared with double-precision (DP),

but offers a two-fold speed-up. In contrast, for a CPU, single and double-precision have

134

similar performance on 64-bit hardware. So in our benchmarks, we do identical

calculations for both single and double-precision in order to fairly compare their speed

and accuracy.

The calculation efficiency is greatly dependent on the block and thread configuration. To

find the most suitable one to maximize the performance, for first step, eq(6), we used

different block sizes from (32*32) to (256*256) blocks per grid and thread sizes from 64

to 256 threads per block. Figure 5.6 shows the time spent in one iteration using different

thread per block parameters for step 1. As it indicates, for the Tesla platform, the most

suitable configuration is (256*256) blocks per grid and 128 threads per block for both

precision options. For the second step, eq(7), we tested the same example making a

similar comparison, and we find that the configuration with 192 blocks per grid and

(32*32) threads per block performs best (see Figure 5.7). It is worth noting that the total

time cost for single iteration decreased to 86.4 ms, which roughly represents more than

1000 times speedup relative to the CPU calculation.

In order to further compare the computational efficiency of GPU-WHAM, we examined

another data set using various levels of WHAM grids, from 32*44 to 2048 * 2816. The

profiling results are summarized in Figure 5.8. According to the benchmark results, the

speedup achieved by a GPU compared to a single CPU reaches about 1200 times for

double-precision and 2020 times for single-precision. The speedup is dependent on

system size when the number of grid points is large enough. The grid used for this case is

256*352 and this resolution was used for plotting the PMF surface below. However, an

135

artificially too high-resolution grid choice will produce unreliable results if the sampling

was insufficient. However, we still profile the speedup of very fine grids since the

computation time is independent to the thorough sampling of the data points. This

exercise, while not physically justified given the amount of data we have does serve to

show that even finer grids can be used with our GPU code. The largest grid choices in

this test require about 1.39 second per iteration (single-precision) and about a half hour to

complete the full calculation (3760 second GPU time and 3784 second total wall time),

which covers 2061 iterations to reach convergence. The CPU implementation of WHAM

is projected to finish the same task in about 814 hours. Besides WHAM grid point

influence, when we compare the speedup horizontally between calculations with different

numbers of umbrella windows but with the same number of grid points, the speedup

increased slightly with more umbrella windows.

In practice, after running the MD simulations, the number of windows and the number of

sample points is a constant, but the grid resolution can be specified in WHAM and grid

resolution impact the accuracy of the calculation. Because of the speed improvements

realized using GPU-WHAM, inaccuracies arising from low-resolution grids can be

reduced if sufficient sampling data is collected. However, in most case, data collection is

the most expensive part to generate an accurate result. However, this type of analysis is

beyond the scope of the present chapter, which focuses on the creation of GPU-WHAM.

For the benchmark cases studied the 160*640 grid scheme is fine enough that grid point

density is not the factor that limits calculation precision, but higher-resolution does

continue to offer some modest improvements.

136

Figure 5.6. Profiling of the GPU-WHAM code for step 1 with different thread and

block choices.

Figure 5.7. Profiling of the GPU-WHAM code for step 2 with different thread and

block choices.

137

Figure 5.8. Benchmark results for two sets of data with different numbers of windows

(1024 for top, 1533 for bottom) and different grid points (from 32*128 to 768*1024).

Profiling with CPU, GPU single-precision (SP) and GPU double-precision (DP)

calculation is presented. A logarithmic scale on the y-axis is used. Speedup by GPU SP

and GPU DP is also plotted. The benchmark reaction is described in the text.

In order to evaluate single versus double precision we present the PMF surface with both

single precision and double precision with the difference as well in Figure 5.9. As the

figure suggests, the two PMF surfaces have only minor differences arising from the use

of single precision. Our test results indicate that the average absolute energy difference

and RMS (Root Mean Square), which is defined as,

 !"# = (!!"#$%&(!,!)!!!"#$%&(!,!)!!!!,!!,!!!,!!
!!×!!

 (8)

138

between double and single-precision is 9.5 E-7 kcal/mol and 1.5 E-4 kcal/mol,

respectively. The maximum absolute difference between grid points is less than 0.4

kcal/mol with most of them being well under 0.01 kcal/mol. Most of the maximum of

deviations appear regions near the edge of the PMF map and in areas of little relevance to

the reactive process. These differences are acceptable for most applications of WHAM

especially considering single-precision provides a 2-fold speed up in return. For example,

the energy difference between the two minima of Figure 5.9 is 2.74 kcal/mol in SP and is

2.73 kcal/mol for DP, which is accurate enough for most chemical applications.

5.4. CONCLUSIONS

In this chapter, we accelerate WHAM using GPU technology by selecting a suitable

computational configuration to maximum efficiency. The GPU-WHAM performance is

as much as 1200 times in double precision faster for the Kepler card when compared with

a single CPU. Single-precision is two times faster than double-precision with up to 2020

time speedup compared with a single CPU, but reduces accuracy slightly, but for most

cases this will not be an issue because the introduced inaccuracy is generally less than the

inaccuracy of the method utilized. Nonetheless, even very high-resolution grids are now

affordable in a computationally reasonable amount of time.

139

Figure 5.9. The PMF surface and contour map produced using the GPU-WHAM code

140

Figure 5.9 (cont’d) with double-precision (top), single-precision (middle) and the

absolute energy difference (bottom). The energy unit is kcal/mol. X- and y-axes are Cu+-

-Trp44@CZ3 distance and Glu36-Met47 Phi angle the unit is Å and rad. Full

computational details are given in the text.

141

APPENDIX

142

MOLECULE DYNAMIC DETAILS OF CUSF

CusF is a periplasmic metallochaperone xist in Escherichia coli, encoded by cus-CFBA

operon36. It was hypothesized to capture Cu+/Ag+ ions and transfer them to CusCBA

pump in order to expel them out of the cell. 37 It is related to metal ion and antibiotic

resistance, which makes it a potential pharmaceutical target.

In recent simulations of our group, we found there is an open state structure exist for the

CusF protein, while the transition between the closed and open states may play a

significant role in the metal ion transfer process between CusF and CusCBA complexes.

Just like the former work38, we modeled the system based on the PDB entry 2VB2.

AMBER ff99SB force field39 was employed for the protein system while the SPC/E water

model40 was used to solvate the system. A hybrid metal model was utilized to model the

metal binding site. The interaction of Cu+ ion and Trp44 residue was treated with

nonbonded model while the interactions between Cu+ ion and the other three ligating

residues (His36, Met47 and Met49) were represented by the bonded model. The bonded

model are parameterized by Metal Center Parameter Builder (MCPB) 41 software in

Modeling ToolKit++ (MTK++) in AmberTools.

We found there are one distance (Cu+--Trp44@CZ3 distance) and one dihedral angle

(Glu36-Met47 Phi angle) in the metal binding site, could distinguish the closed and open

state remarkably. For example, in a closed state structure we found the distance is 2.33 Å

while the dihedral angle is -147.53°. In an open state structure the corresponding distance

143

is 17.42 Å while the dihedral angle is 47.61°. To further clarify the free energy

differences between the closed and open state, we processed a 2D potential of mean force

(PMF) simulations by treating the Cu-Trp44@CZ3 distance as the reaction coordinate

(RC) X axis while the Glu46-Met47 Phi dihedral angle as RC Y axis. We began the

umbrella sampling from a closed state structure of metal loaded CusF. Generally there are

three steps in the 2D PMF umbrella sampling process while the scheme of first two steps

are shown in Figure 5.10. The harmonic potential of all the simulations is set as 10

kcal/mol-1Å-2 for the distance and 500 kcal/mol-1Rad-2 for the dihedral angle. There is 1 ns

sampling for each window with stepsize as 1 fs. The data points were stored for each 10

fs during the simulation.

Step1: Firstly we performed the PMF simulations based on the conjugated changing the

distance and dihedral variables to “push” the structure from closed state to open state.

The initial closed state structure has a RC as (X=2.33Å, Y=-147.52°) while the PMF

termination has RC as (X=21.33 Å, Y=98.72°). The total RC pathway was divided into

39 windows with the each later window has 0.50 Å increased in the X axis and 6.48°

increased in the Y axis than the former window. The final snapshot of the former window

was treated as the initial structure of next window.

Step 2: We began from the RC windows finished in the former step, and scanned across

the Y axis for each certain X value individually. The scanning headed for two directions

at the same time with the ending points for the negative direction and positive directions

are -173.44° and 105.20° respectively. To be consistent with Step 1, the windows are

144

spaced by 6.48° apart along the Y axis as well. Totally there are 44 windows across the Y

axis for each certain X value. By multiplying the window numbers in X axis, in sum there

are 44*39 =1716 windows for the whole umbrella sampling map. Up to then, we have

finished the first 1 ns sampling of all the windows on the whole PMF profile map.

Step 3: The final umbrella samplings are performed independently for each window. By

treating the final structure of the first 1 ns sampling as the initial structure, another 5 ns

sampling was performed for each window. In total, there are 1716 windows with each

window has 6 ns umbrella sampling. There are more than 1 billion correlated data points

and more than 1 million uncorrelated data points (with treating 1 ps as the uncorrelated

timescale) were collected for the umbrella sampling simulations. Based on which the free

energy profile were generated by using the weighted histogram analysis method

(WHAM) software.

It is notable to mention that in MD simulation, for x axis, there is 44 sample, but we only

pick the first 32 to optimized and benchmark GPU-WHAM program because of the

architecture of GPUs.

145

Figure 5.10. The scheme of step 1 (left) and step 2(right) in CusF 2D PMF simulations.

The arrow indicated the direction of the reaction coordinate. The hollow circle on the

right figure was the windows have been finished in step 1. (Just to be symbolize, the

figure shows 5 windows on X axis and 7 windows on Y axis but actually there are 39

windows in the X axis and 44 windows in the Y axis)

146

REFERENCES

147

REFERENCES

(1) J. G. Kirkwood, J. Chem. Phys. 1935, 3, 300-313.

(2) G. M. Torrie, J. P. Valleau, Chem. Phys. Lett. 1974, 28, 578-581.

(3) G. M. Torrie, J. P. Valleau, J. Comput. Phys. 1977, 23, 187-199.

(4) S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, P. A. Kollman, J.
Comput. Chem. 1992, 13, 1021.

(5) S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, P. A. Kollman, J.
Comput. Chem. 1995, 16, 1350.

(6) S. Kumar, P. W. Payne, M. Vásquez, J. Comput. Chem. 1996, 17, 1269-1275.

(7) A. M. Ferrenberg, R. H. Swendsen, Phys. Rev. Lett. 1989, 63, 1195-1198.

(8) C. H. Bennett, J. Comput. Phys. 1976, 22, 245-268.

(9) E. M. Boczko, C. L. Brooks, J. Phys. Chem. 1993, 97, 4509-4513.

(10) G. Cui, B. Wang, K. M. Merz, Biochemistry 2005, 44, 16513-16523.

(11) G. Cui, X. Li, K. M. Merz, Biochemistry 2007, 46, 1303-1311.

(12) E. Rosta, M. Nowotny, W. Yang, G. Hummer, J. Am. Chem. Soc. 2011, 133,
8934-8941.

(13) NVIDIA. Compute Univied Device Architecture(CUDA).
http://www.nvidia.com/object/cuda_home_new.html

(14) Alan Grossfield,, "WHAM: the weighted histogram analysis method", version
2.06, http://membrane.urmc.rochester.edu/content/wham

(15) D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, R. Kaschner, Phys. Rev. B
1995, 51, 12947-12957.

(16) G. Seifert, D. Porezag, T. Frauenheim, Int. J. Quant. Chem. 1996, 58, 185-192.

(17) D.A. Case. T.A. Darden, T.E. Cheatham, I., C.L. Simmerling, J. Wang, R.E.
Duke, R. Luo, R.C. Walker, W. Zhang, K.M. Merz, B.P. Roberts, B. Wang, S. Hayik, A.
Roitberg, G. Seabra, I. Kolossváry, K.F. Wong, F. Paesani, J. Vanicek, J. Liu, X. Wu,
S.R. Brozell, T. Steinbrecher, H. Gohlke, Q. Cai, X. Ye, J. Wang, M.-J. Hsieh, G. Cui,
D.R. Roe, D.H. Mathews, M.G. Seetin, C. Sagui, V. Babin, T. Luchko, S. Gusarov, A.
Kovalenko, Kollman, P. A. AMBER11,University of California, San Francisco. 2010.

148

(18) P. Kollman, Chem. Rev. 1993, 93, 2395-2417.

(19) T. Bereau, R. H. Swendsen, J. Comput. Phys. 2009, 228, 6119-6129.

(20) B. Roux, Comput. Phys. Commun. 1995, 91, 275-282.

(21) D. Bouzida, P. A. Rejto, G. M. Verkhivker, , Int. J. Quant. Chem. 1999, 73, 113-
121.

(22) M. Souaille, B. Roux, Comput. Phys. Commun. 2001, 135, 40-57.

(23) E. Gallicchio, M. Andrec, A. K. Felts, R. M. Levy, J.Phys. Chem. B 2005, 109,
6722-6731.

(24) J. D. Chodera, W. C. Swope, J. W. Pitera, C. Seok, K. A. Dill, J. Chem. Theory
Comput. 2006, 3, 26-41.

(25) V. Hornak, R Abel, A. Okur, B. Strockbine, A. Roitberg, C. Simmerling,
Proteins: Struct., Funct., Bioinf. 2006, 65, 712-725.

(26) R.C. Walker, M.F. Crowley, D.A. Case, J. Comput. Chem. 2008, 29, 1019-1031.

(27) G.M. Seabra, R.C. Walker, M. Elstner, D.A. Case, A. Roitberg, J.Phys. Chem. A.
2007,111, 5655-5664.

(28) J. D. Chodera, W. C. Swope, J. W. Pitera, C. Seok, K. A. Dill, J. Chem. Theory
Comput. 2007, 3, 26-41

(29) H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N.
Shindyalov, P. E. Bourne, Nucleic Acids Res. 2000, 28, 235-242.

(30) S. Franke, G. Grass, C. Rensing, D.H. Nies, J. Bacteriol. 2003, 185, 3804-3812.

(31) I. R. Loftin, S. Franke, S. A. Roberts, A. Weichsel, A. Héroux, W. R. Montfort,
C. Rensing, M. M. McEvoy, Biochemistry 2005, 44, 10533-10540.

(32) D. K. Chakravorty, B. Wang, M. N. Ucisik, K. M. Merz, J. Am. Chem. Soc. 2011,
133, 19330-19333.

(33) D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A.
Onufriev, C. Simmerling, B. Wang, R. J. Woods, J. Comput. Chem. 2005, 26, 1668-1688.

(34) H. J. C. Berendsen, J. R. Grigera, T. P. Straatsma, J. Phys. Chem. 1987, 91, 6269-
6271.

(35) M. B. Peters, Y. Yang, B. Wang, L. s. Füsti-Molnár, M. N. Weaver, K. M. Merz,
J. Chem. Theory Comput. 2010, 6, 2935-2947.

149

(36) Franke, S.; Grass, G.; Rensing, C.; Nies, D. H. J. Bacteriol. 2003, 185, 3804-

3812.

(37) Loftin, I. R.; Franke, S.; Roberts, S. A.; Weichsel, A.; Héroux, A.; Montfort, W.
R.; Rensing, C.; McEvoy, M. M. Biochemistry 2005, 44, 10533-10540.

(38) Chakravorty, D. K.; Wang, B.; Ucisik, M. N.; Merz, K. M. J. Am. Chem. Soc.
2011, 133, 19330-19333.

(39) Case, D. A.; Cheatham, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M.;
Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. J. Comput. Chem. 2005, 26, 1668-
1688.

(40) Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 1987, 91,
6269-6271.

(41) Peters, M. B.; Yang, Y.; Wang, B.; Fu ̈sti-Molnár, L. s.; Weaver, M. N.; Merz, K.
M. J. Chem. Theory Comput. 2010, 6, 2935-2947.

150

CHAPTER 6. SUMMARY AND CONCLUSION REMARKS

151

In chapter 1, we briefly introduced GPU and CUDA programming by illustrating GPU

architecture, thread hierarchy and memory hierarchy. We also provided some details

about philosophy of GPU programming and tuning tricks, which enlighten the following

research projects to realize GPU programming on quantum chemistry.

In chapter 3, we evaluated ERIs on a GPU using recurrence relations and form the Fock

matrix entirely in GPU memory. And in full SCF benchmark calculations demonstrate

the impressive speedups GPU ERI implementations achieved and the energy error GPU

produced associated with double-precision calculations meets most of computational

chemistry calculation accuracy requirements. To realize the GPU implementations and

achieve the speedup, a well-sorted integral grid that reduces thread divergence and

provides an optimized memory access pattern boosts the performance in terms of

efficiency. This speedup is also achieved by optimizing the Fock matrix formation

scheme by introducing the atomic-operation to significantly reduce data transfer from N4

to N2, which was one of the most time-consuming steps in conventional GPU SCF

programming that limited by th CPU-GPU bandwidth. Moreover, this approach also

reduces redundant and unnecessary re-calculated ERI calculation by reusing ERI data.

Our benchmarks show the speedup increases with increasing system size, and our code

now is applicable to s, p and d orbital functions which are in most most organic or

biochemistry calculations.

In the chapter 4, based on the work we completed in last chapter, we implemented the

evaluation of ERIs up to f orbitals and ERI derivatives up to d orbitals using GPU

152

technology and ERI recurrence relations. Our SCF and gradient calculations demonstrate

the similar speedup of GPU implementation compared to over modern CPUs. A partition

strategy is introduced to solve the difficulties encountered in computing ERIs including f

orbitals and was further applied to d orbital gradient calculation. Importantly, we

observed a very limited efficiency decrease after employed this strategy. The code is

written efficiently by our machine-generated code which is almost impossible for human

to complete because its complicity. Similar to ERI evaluation, a well-sorted pre-sorting

strategy and several other improvements boost overall GPU performance and atomic

operations are used as well to reduce data transfer. Moreover, GPU-based DFT

calculation is also available in QUICK although we did not touch on this topic.

In chapter 5, to boost molecular dynamic simulation, we accelerate WHAM using GPU

technology by selecting a suitable computational configuration to maximum efficiency.

The GPU-WHAM performance is as much as 1200 times in double precision faster for

compared with a single CPU while single-precision is two times faster than double-

precision with up to 2020 time speedup reducing accuracy slightly. But according to our

test and observation, for most cases this will not be an issue because the introduced

inaccuracy is generally less than the inaccuracy of the method utilized. Nonetheless, even

very high-resolution grids are now affordable in a computationally reasonable amount of

time.

These projects utilized GPU as an economical accelerator to multiply areas of

computational chemistry calculations. Meanwhile, there is still plenty of room to apply

153

GPU technology. Therefore, our future work will focus on following aspects. First of all,

we are integrating our source code with the AMBER MD package to further enable ab

initio QM/MM simulations. Second, we are developing GPU-based ERI and ERI

derivative generator that computational chemist can use our tool to develop their own

algorithm by using GPU to accelerate ERI calculation, a very common step for most

advanced ab initio computational chemistry methods. Moreover, we are going to develop

GPU enabled correlated ab initio methods such as MP2 and coupled-cluster methods. In

addition, to calculate frequencies and other physical and chemical properties, GPU enable

second order derivatives would also be helpful. In terms of technology, a multi-GPU

implementation and implementation of the code on INTEL PHI platform is on our time-

line order to have another option to accelerate ab initio calculation.

