
 

 

 

HARNESSING THE POWER OF GRAPHICS PROCESSING UNITS TO 
ACCELERATE COMPUTATIONAL CHEMISTRY 

 
By 

Yipu Miao 

 

 

 

 

A DISSERTATION 

Submitted to 
Michigan State University 

in partial fulfillment of the requirements 
for the degree of 

Chemistry - Doctor of Philosophy 

2015 



 

ABSTRACT 
 

HARNESSING THE POWER OF GRAPHICS PROCESSING UNITS TO 
ACCELERATE COMPUTATIONAL CHEMISTRY 

By 

Yipu Miao 

Electron Repulsion Integral (ERI) and its derivative evaluation is the limiting factor for 

self-consistent-field (SCF) and Density Functional Theory (DFT) calculations. Therefore, 

calculation of these quantities on graphical processing Units (GPUs) can significantly 

accelerate quantum chemical calculations. Recurrence relations, one of the fastest ERI 

evaluation algorithms currently available, are used to compute ERIs. A direct-SCF 

scheme to assemble the Fock matrix and gradient efficiently is presented, wherein ERIs 

are evaluated on-the-fly to avoid CPU-GPU data transfer, a well known architectural 

bottleneck in GPU specific computation. A machine-generated code is utilized to 

calculate different ERI types efficiently. However, only s, p and d ERIs and s, p 

derivatives can be executed on GPUs using the current version of CUDA and NVidia 

GPUs. Hence, we developed an algorithm to compute f type ERIs and d type ERI 

derivatives on GPUs. Our benchmarks shows the performance GPU enable ERI and ERI 

derivative computation yielded speedups of 10~100 times relative to traditional CPU 

execution. An accuracy analysis using double-precision calculations demonstrates the 

accuracy is satisfactory for most applications. Besides ab inito quantum chemistry 

methods, GPU programming can be applied to a number of computational chemistry 

applications, for example, The Weighted Histogram Analysis Method (WHAM), a 

technique to compute potentials of mean force. We present an implementation of 

multidimensional WHAM on Graphical Processing Units (GPUs), which significantly 



 

accelerates its computational performance. Our test cases, that simulate two-dimensional 

free energy surfaces, yielded speedups up to 1000 times in double precision.  Moreover, 

speedups of 2100 times can be achieved when single precision is used whose use 

introduces errors of less than 0.2 kcal/mol. These applications of GPU computing in 

computational chemistry can significantly benefit the whole computational chemistry 

community. 
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PREFACE 

 

I was fortunate enough to work on a multitude of projects in computational chemistry 

during my five-year studies towards my Ph.D. degree with Professor Kenneth Merz, Jr. I 

focused on Graphic Processing Units (GPU) acceleration on computational chemistry and 

computational biology methods, but also had great opportunities to explore the properties 

of molecules especially biochemical molecules with potential application for drug design. 

These projects, which were both interesting and challenging, allowed me to gain 

experience in several fields especially at the interface of computer science and 

computational chemistry.  

 

The fundamental idea of my research projects was to speed up traditional computational 

chemistry calculations using current generation computation technology with or without 

modification of the computational methods employed. It is my strong belief that 

computational chemistry will be a powerful tool for a broad range of chemistry disciplines, 

but many of these applications of computational chemistry methods continue to be limited 

by the speed of the computations rather than by their accuracy and theoretical justification.  

Therefore, I focused my efforts on the power of high-performance computing especially 

GPU-programming and its role in improving computational chemistry. 

 

My dissertation focuses on three computational chemistry problems that are relevant to 

scientific research in computational chemistry. I. Acceleration of electron repulsion integral 

(ERI) evaluation on GPUs. II. Acceleration of the first order derivatives of ERIs (including 
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high-angular momentum integrals) on GPUs. III. Acceleration of Molecular Dynamic 

trajectory analysis using WHAM on GPUs. 
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CHAPTER 1. INTRODUCTION TO GPU PROGRAMMING, AND 

ITS APPLICATION TO QUANTUM CHEMISTRY 
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1.1. INTRODUCTION TO GPU PROGRAMMING 

 

In the past few years, the computing capability of Graphic Processing Units or GPUs has 

increased dramatically as Figure 1.1 shows. From this figure we see that the GPU FLOPS 

(Floating-point Operations Per Second) of DP(double precision) and SP(single precision) 

have increased exponentially over the past 14 years, following Moore’s Law, while the 

corresponding CPU FLOPS counts have not. Meanwhile, as Figure 1.2 shown, the 

bandwidth of both GPUs and CPUs have dramatically increased largely driven by the 

insatiable demand for graphics and high-performance computing that involve highly 

parallel multithreaded processors with tremendous computational power and high 

memory bandwidth. The Telsa, Fermi and Kepler architectures were released by NVidia 

between the years of 2008 to 2013 and we were fortunate enough to have had early 

access to them for benchmarking purposes They feature fast double-precision computing 

and dynamic parallelism with the former being critical to scientific computing and the 

latter to maximize the potential of GPU computing. The next two generation NVidia 

GPUs, the Maxwell and Volta microarchitectures, have been announced by NVidia and 

are expected to be release in the near future. They will be  featured with Unified Virtual 

Memory and stacked DRAM that will make it easier for the CUDA developer and 

overcome some known drawbacks that have limited performance. 
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Figure 1.1. The FLOPS counts of CPU and GPU architectures as a function of time. 

Data is sourced from reference 1. 
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Figure 1.2. The bandwidth of CPU and GPU architectures as a function of time. Data is 

sourced from reference 1. 

 

 

The main reason for the discrepancy in FLOP count between GPUs and CPUs is the 

former is specialized for compute-intensive, highly parallel computing driven by the 

needs of graphical rendering. Hence, GPU’s are designed to have more transistors that 

are devoted to massive data processing rather than flow control as shown in Figure 1.3. 

Therefore, GPU’s are better suited to address problems that can be split into data-parallel 
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and data-independent computations; thus, massively parallel arithmetic threads instead of 

large data caches can mask memory access latency. CPUs on the other hand, with 

sophisticated flow control and data caching, are more suitable for calculations that are 

data dependent or are less arithmetically demanding.  

 

 

 

 

Figure 1.3. Simplified model of CPU and GPU architectures, illustrating that GPU’s 

are designed for massive data processing while CPUs depend more on flow control and 

data caching. 

 

 

With the growth of GPU computing power, computational chemists have ported a 

number of applications to GPU architectures, which are summarized in Figure 1.4 per 

NVidia. Computational chemists have used GPUs extensively to treat a wide range of 

problems4, including AMBER PMEMD5,6 (molecular dynamics simulation), quantum 

Monte Carlo7, DFT (density functional theory), SCF (self-consistent-field)8-11 and post 
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HF (Hartree-Fock) theory12. In this way, computationally intensive scientific applications, 

which previously required expensive supercomputing facilities, are now within reach to 

average users using relatively low-cost GPU cards. We will go into more detail regarding 

the current state of quantum chemistry on GPUs below. 

 

 

 
 

Figure 1.4. Number of Computational chemistry GPU applications published in the last 

few years. Numbers provided by NVidia.  
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A GPU is an example of the single-instruction, multiple data (SIMD) paradigm, which, 

unlike CPUs that are designed for rapid sequential code execution using a single thread, 

has a parallel architecture that executes many concurrent threads relatively slowly.  

Therefore, GPUs are well suited for high-performance computation with dense levels of 

data parallelism where the threads are data-independent from each other. CUDA is 

currently the most mature and widespread GPU computing platform for scientific 

applications. It provides developers direct access to parallel computational elements 

(GPUs) and enables code to run concurrently in CPUs. The assumption is that most 

numerically intensive components of a program will be executed in the GPU hardware 

with the remaining steps carried out in the CPU. The challenge in using GPUs lies in 

adapting the specialized hardware to take advantage of the expected performance 

increase. Moreover, memory allocation should be carefully handled to avoid memory 

latency issues. Single-precision should be carefully employed because its accuracy may 

be insufficient to handle the task at hand, and generally, single-precision is about 2-8 

times faster than double-precision (depending on the device), so double-precision code 

will give relatively poor performance. Another important consideration is the fact that 

most existing computational chemistry software is written in Fortran, and to create GPU 

code (particularly C/C++ code, but there are commercial Fortran or other programming 

language CUDA compilers available), requires the creation of new software or 

incremental inclusion of GPU kernels into the code base.  

 

GPU programming, especially the CUDA parallel programming model is designed to 

overcome the difficulty of developing application software that transparently scales its 
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parallelism in order to leverage the increasing number of processor cores. The core of 

CUDA involves three key abstractions, a hierarchy of thread groups, memory types and 

barrier synchronization that are exposed to the developer as a minimal set of C language 

extensions. With these core abstractions, a CUDA developer can partition a problem into 

several sub-problems that can be solved independently in parallel with a thread in a 

block, and the overall problem can be solved cooperatively, by all threads, in all blocks, 

once the sub-problems have each been solved. Each block of threads, which is a logic 

concept, can be scheduled on any of the available multiprocessor within a GPU providing 

automatic scalability and only the runtime system needs to be aware of the running 

multiprocessor as Figure 1.5 illustrates. This automatic scalability scheduler allows the 

GPU architecture to span a range of markets by simply scaling the number of 

multiprocessors, from high-performance gaming platforms such as the GeForce GPU 

card, the professional level Quadro and high-performance computing platform Tesla. 
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Figure 1.5. Illustration of the automatic scalability of CUDA. A block, a logical unit, 

can be executed in any available multiprocessor, which is a physical concept, by the 

CUDA scheduler.   

 

 

For computational chemistry, Electron Repulsion Integral (ERI) calculations for ab initio 

theory along with with basic linear algebra operations typically define the computational 

cost of the application. ERI calculations formally scale as N4 for the HF method where N 

is the number of basis functions, and typically it is reduced to N<3 with careful pre-
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screening, cutoffs and efficient computational schemes. So for most calculations with N 

less than several thousand basis functions, ERI evaluation is the most time-consuming 

part while linear algebra, with a cubic scaling, will eventually dominate with very large 

number of basis functions. However, ERI evaluations are not as general as linear 

algebraic manipulations, and are less optimized than basic linear algebra subroutines 

(BLAS). In addition, unlike linear algebra and some other common subroutines with 

predictable and well-defined memory access patterns, ERI evaluations have many 

different types of integral classes and thread divergence could jeopardize computing 

efficiency. In addition, ERI evaluations require large amounts of both registers and 

memory. In GPU computation, slow memory access and shortages in register space are 

two factors that affect computational speed and need be considered carefully during 

software development. Hence, careful software design and special procedures are 

necessary to accelerate ERI evaluation using a GPU. 

 

For the thread hierarchy, as illustrated in Figure 1.6, the most basic unit is the thread and 

threads are identified by the build-in variable threadIdx. This variable is a three-

component vector, so that threads can be identified using one-two or three-dimensional 

indices forming one-two or three-dimensional blocks depending on the specifications of 

the developer’s. The index scheme is especially suitable for the elements in a domain 

such as a vector or matrix. There is a limit to the number of threads per block since all 

threads of a block are expected to reside on the same multiprocessor and share limited 

memory. Blocks are further organized into a one-, two or three-dimensional grids of 

threads blocks. The number of thread blocks in a grid is usually decided upon by the size 
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of the data being processed or the number of processors. Similar to the thread variable, 

blockIdx is also provided to identify a block in a thread. It is worth noting that the thread, 

block and grid are all logical concepts that are straightforward to map to physical 

concepts such as a multiprocessor in GPU to maximize performance.  

 

In terms of the memory hierarchy, CUDA threads may access data from multiple memory 

spaces during execution as shown in Figure 1.7. First, each thread has fast and 

readable/writable local memory. Each thread block has shared memory that is visible to 

all threads within this block, which is also readable/writable with medium speed. 

Moreover, all threads have access to large, readable/writable but comparatively slow 

global memory. Two additional read-only memory spaces that are accessible by all 

threads (which are not displayed in Figure 1.7) are constant and texture memory. Texture 

memory also offers different addressing modes, as well as data filtering, for some 

specific data formats. The global, constant, and texture memory are persistent across 

kernel launches for the same application.  

 

GPU programming, unlike CPU parallel programing, has several basic principals and 

tricks to maximize performance that is unique because of the architecture of the GPU. 

For example, in CUDA programming, the best performance is obtained when the number 

of threads in one block is a multiple of 32. Each 32 threads are bundled as a warp, and 

threads in a warp execute the same instructions, leading to the possible execution of the 

code differently than when executed sequentially - a phenomenon termed thread 

divergence. This divergence results in performance degradation and should be avoided in 
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order to maximize parallel performance. Moreover, coalescing memory access ensures 

consecutive threads access consecutive memory addresses so that memory requests can 

be handled simultaneously and multiple active threads can hide memory latency by 

overlapping their computations. We will discuss these tuning procedures and show how 

to take full advantage of GPU architecture later on in this document. 
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Figure 1.6. Illustration of the CUDA thread hierarchies. One, two or three-dimensional 

threads bundled as a block while one, two or three-dimensional blocks form a grid. Two-

dimensional threads and two-dimensional blocks are presented. 
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Figure 1.7. CUDA Memory hierarchies. Local memory, shared memory and global 

memory are presented. While the texture and constant memory are not presented but are 

described in the text. 
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1.2. GPU APPLICATIONS IN QUANTUM CHEMISTRY 

 

Quantum Chemistry and solid-state physics code implement relatively complex 

algorithms13. The challenge in using GPUs and other parallel platforms lies in adapting 

these complex algorithms to take advantage of specialized hardware. For example, 

CUDA provides a swift way to utilize the power of GPUs by incorporating a CUDA 

library such as CUBLAS3 or CUFFT2 even without coding directly in CUDA, however, 

to maximize the performance, a careful consideration of memory hierarchy, thoughtful 

design of parallelism and maximization of memory access in order to minimize memory 

access latency14 should be taken. For example, when using single-precision GPUs, 

numerical accuracy is a central issue because it is usually insufficient to match the 

accuracy of the underlying theoretical model. For example, using single-precision 

computation in ab initio calculation has as much as a 1kcal mol-1 error9, however, for 

some other applications, such as GPU-WHAM, described in chapter 5, an error of 0.2 

kcal mol-1 is realized using single-precision but the resultant code is 2-8 times faster than 

double-precision depending on the GPU device chosen. It is important to realize that 

many of these considerations are not only important for GPU programming, but for other 

platforms, including standard CPU clusters. Thus, many of the techniques employed to 

improve the parallel efficiency of quantum chemistry codes are also useful in GPU 

programming.  

 

Hartree-Fock (HF) derived wavefunctions is the starting point for ab initio electron 

correlation method while Kohn-Sham Density Functional Theory(KS-DFT)15,16 is usually 



16 

used to calculate electronic ground states and their properties in chemistry due to its 

outstanding balance between accuracy and computing time. However, both KS-DFT and 

HF has two bottlenecks: 1) evaluation of the HF or DFT matrix elements, 2) solving the 

SCF equations. The latter relies on diagonalization of the Fock or KS matrix, which 

eventually dominates the computational cost because of its high order scaling (N3), but 

GPU application to addressing this bottleneck has not has been touched extensively. It 

potentially could be solved via alternative electronic structure methods17 or linear algebra 

librarys18. The former bottleneck is the major focus for quantum chemistry GPU software 

developers, which is dominated by the evaluation of the two-electron repulsion integrals 

(ERIs). ERIs are required by HF and the exchange-correlation (XC) contribution of DFT. 

Much work has been reported on the acceleration of ERI evaluation and these efforts are 

summarized in Table 1.1, including our own work. 

 

Table 1.1 Summary of Capability and Performance of GPU-based HF and DFT 

implementation 

Authors Software lmax ERIs J K XC Gradient Speedupa 

Ufimtsev and 
Martinez9-11 

 

TeraChem d Yes Yes Yes Yes Yes 100-
1000 

Yasuda8  p Yes Yes No No No 10 

Asadchev et al.19.31 GAMESS g Yes Yes Yes Yes No 17.5 

Miao and Merz QUICK f Yes Yes Yes Yes Yesb 10-100 

a. Compared to single core CPU.  b. Only supports up to d orbital   
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Yasuda8
 is the pioneer in porting ERI calculation to GPUs in 2008. In his work, he 

addressed the major problem for ERI evaluation on GPUs and presented the results for 

the Coulomb contribution to the KS matrix and the HF matrix with s and p type basis 

functions. Even tough the algorithm is not the most efficient due the Rys quadrature 

scheme20 he chose with low memory requirement, his program maximized the load 

balance of GPU’s SMs. At that moment in time, GPU’s only supported single precision, 

so a mixed-precision combined with CPUs and GPUs was introduced so that large ERIs, 

prescreened by the Schwarz cutoff up bound, were calculated in the CPU with double-

precision while, relatively small ERIs were evaluated on the GPU in single precision. 

This algorithm resulted in accurate DFT and SCF energies with errors within 10-3 kcal 

mol -1 while full-GPU calculation produced an error of 1 kcal mol -1. The contribution to 

the Coulomb matrix was directly computed from uncontracted ERIs to avoid one of the 

major bottlenecks of GPU computing, namely, data-transfer between CPU and GPU. If 

all ERIs are taken by the GPU, the resultant speedup using NVIDIA’s Geforce 8800 

GTX is around one order of magnitude for the formation of the Coulomb matrix for a 

system of over one hundred atoms (such as valinomycin, 168 atoms) with the 6-31G 

basis set when compared to a single core CPU. However, if mixed-precision was 

employed, the speedup drops to three-fold. Yasuda’s method only supported the 

Coulomb matrix and only supported low-angular momentum functions, and precision 

issues due to the hardware available at the time limited what he could do. However, he 

opened the door for researchers to explore the potential of GPUs for acceleration of ERI 

calculation. 

 



18 

Ufimtsev and Martinez9-11 later on published a series of papers developing a CUDA 

kernel for ERI evaluation and Fock matrix assembly. They wrapped and commercialized 

their code into a software package called TeraChem, and GPU computing is the biggest 

selling-point of this program. Their early paper supported s and p type basis functions 

and gradients, and later on support for d type and its gradient was reported29. Both HF 

and KS-DFT methods are able to execute on a GPU, and was coupled with AMBER for 

ab initio QM/MM calculations for small systems. They implement the McMurchie-

Davidson21 scheme for its relatively small footprint throughout ERI evaluation, resulting 

in low memory requirements, which is similar to the Rys quadrature scheme. Three 

different mapping were tested and the results showed that the optimal strategy is to 

calculate each primitive ERI batch on one thread. In order to maximize the load balance 

and reduce thread divergence, a pre-sorting strategy was introduced, which treated the N4 

integrals as an N2 * N2 matrix which was sorted along the N2 dimension using different 

criteria. As in Yasuda’s work, the Fock matrix elements are directly computed on the 

GPU.  

 

HF calculation with the 3-21G and 6-31G basis sets running on a NVIDIA GTX 280 card 

realized more than a 100-fold speedup compared with the quantum chemistry program 

package GAMESS. For small and medium size molecules, the Fock matrix time is the 

most time consuming part but for large molecules, such as Olestra (453 atoms), linear 

algebra required for the SCF solution emerged as a bottleneck since the Fock matrix 

formation time on the GPU is close to that of the linear algebra part. This algorithm 

places the s and p type functions in small integral blocks that can be treated entirely in 
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shared memory to achieve high performance, however, this situation changed for basis 

functions with higher angular momentum quantum numbers, such as d-type functions. 

Moreover, the Rys quadrature used by GAMESS in their comparisons is not an optimal 

ERI evaluation algorithm and much more efficient algorithms do exist and less favorable 

GPU speedup should be expected. Moreover, the speedup observed is mostly based on 

the comparison between single-precision GPU and double-precision CPU results, so the 

errors in the SCF energies quickly exceeded 10-3 au for mid-size molecule. However, for 

larger molecules computation for larger ERIs in DP will be required. Similar to Yasuda’s 

procedure, large ERIs in DP will be computed in double-precision, while smaller ones 

were carried out in SP. This mixed precision22 model is a compromise between 

computation speed and accuracy by providing 2-4-fold speedup over full double-

precision computing but reducing the error to about 10-6 au on Tesla C1060 and C2050 

cards.  

 

TeraChem also implemented the calculation of the analytical HF energy gradient with s- 

and p type basis function9-11, and later on supported d type basis function29. Using the 3-

21G basis set, GPUs achieved a speedup of 6-100 for small to larger molecules on 

NVIDIA 295 cards. Using the mixed precision model described above, the RMS (root 

mean square) error in the forces is about 10-5 au, which is close to the typical 

convergence threshold for geometry optimizations. With the aid of energy and gradient 

calculations on GPUs, small ab inito molecule dynamics simulations was feasible. For 

example, a MD simulation of the H3O+(H2O)30 Cluster with the 6-31G basis set in the 

microcanonical ensemble with a time step of 0.5 fs was realized. An energy drift of 0.022 
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kcal mol-1 ps-1 was observed over a simulation time of 20 ps. It is worth mentioning that 

TeraChem can run over multiple GPUs with a parallel efficiency of over 60% on three 

NVIDIA GeFrorce 8800GTX cards. 

 

To support d orbitals for both the energy and gradient29, as mentioned above, a meta-

programming strategy that leverages the computer algebra system to generate correct and 

efficient code was employed. Since the capability of a compiler to identify the best code 

transformation and permutations of data accesses is limited by the need to carry out 

source code to machine code translation efficiently, full code optimization needs to be 

dealt with at the source code level. Therefore, their code-generator, translated both the 

mathematical formalism of Coulomb and exchange integral computation to modern 

programming language such as Fortran and C, but also simplified the algebraic 

expressions by factoring out and eliminating common sub-expressions and by divying 

expressions into groups of intermediates. By using meta-programming, not only were d-

type basis sets supported, but s- and p- type basis sets were re-written and further 

optimized. Moreover, the resultant CPU code also tokk advantage of meta-programming 

optimization. Similar to previous publications, the realized speedup on GPUs involving 

d-type basis functions was a factor of 10-100 using a NVIDIA GTX 580 card with an 

error of 10-3-10-2 kcal mol-1 when compared to the corresponding CPU calculations. 

 

Asadchev et al. presented algorithms and CUDA implementations for uncontracted ERI 

evaluation up to g-type functions based on the GAMESS package19,31. The Rys 

quadrature was chosen for its low memory requirement and efficiency for higher order 
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angular momentum. Rys quadrature has complex memory access patterns especially for 

high angular momentum. (ff|ff) for example, requires 5376 FLOPS for intermediate 

quantities which are reused and 104 FLOPS for the final ERIs. So with DP, the memory 

requirement is larger than the device memory so that slow global memory access is 

mandatory. Therefore, the author re-arranged the parallel calculation of the ERIs to 

minimize memory loads. The code also processes ERIs, such as the Fock Matrix 

formation, on the GPU device to avoid CPU-GPU communication. Moreover, similar to 

TeraChem, the complex code must be machine generated to ensure correctness and 

efficiency. The authors therefor selected Python Cheetah30 to adopt a template-based 

approach to generate automated code. As was seen for the TeraChem implementation, 

machine-generated code also boosts the performance of the CPU code.  

 

The improved CPU and GPU code was tested on NVIDIA GTX 275’s and Tesla T10’s 

and was then compared with the performance of ERI evaluation with the original Rys 

quadrature implemented in GAMESS. More than a 30% improvement was gained using 

the new C++ Rys quadrature code on the CPU, even though some of test cases showed 

other ERI evaluation algorithms in GAMESS outperformed this approach. The GPU 

implementation, on the other hand, observed a speed-up of up to 17.5-fold when 

compared with the new C++ Rys quadrature code on a CPU with double-precision. Their 

code not only can execute in parallel on multiple-CPUs, but also on a multi-CPU-single-

GPU hybrid platform.  
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The main objectives of this work were: 

A. Develop a novel algorithm to execute ab initio quantum chemistry methods 

including energy calculation using the Hartree-Fock method and Density 

Functional Theory on GPUs using the CUDA platform. As described above, the 

peak FLOPs count and bandwidth of GPUs are about 10x of that of a CPU, so we 

expected significant speedup could be realized. For most of these calculations, s, 

p and d orbitals are sufficient for second row elements that are essential in organic 

chemistry and biochemistry; hence, the support of s, p and d orbital calculations 

was initially focused on. 

B. Develop novel algorithms to execute the gradient calculation of ab initio quantum 

chemistry methods including HF and DFT methods. Support for s, p and d 

orbitals is the target, but to support the d orbital gradient, we needed f orbital 

energies as well. Hence, we also aimed to support f orbital energy calculations as 

well. 

C. Integrate the above-mentioned main features into our quantum chemistry software 

package, Quick, and further GPU-ize the software by introducing CUDA library 

calls into linear algebra calculations to further speedup HF and DFT calculations. 

D. Benchmark the software for a series of representative molecules and calculations 

including energy, gradient, and geometry optimization calculations on GPUs and 

CPUs and then compare and discuss the result. 

E. Develop GPU-based WHAM (The Weighted Histogram Analysis Method), a 

Molecular Dynamics trajectory analysis software. The one-dimensional WHAM 

is very fast, but multi-dimensional WHAM is time-consuming for some real tasks 
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in our group, therefore, a GPU-ized WHAM accelerated our research.
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3.1. INTRODUCTION 

 

Quantum theory has been utilized in many roles, including interpreting chemical 

phenomena and predicting new molecules with novel functions. To achieve this, 

computational and theoretical chemists constantly make compromises between accuracy 

and computational expense. However, we are witnessing a new era in computational 

quantum chemistry, sparked by an interest in harnessing the capabilities of heterogeneous 

computing, especially modern graphics processing units (GPUs), which afford impressive 

price versus performance characteristics. Early GPUs were not widely accepted by the 

computational chemistry community because of limited precision and programming 

difficulties. Recently, though, these difficulties have been largely remedied by the 

development of the latest generation of GPU cards from NVIDIA, which support up to 

64-bit floating-point arithmetic, and through the introduction of the Compute Unified 

Device Architecture (CUDA)1, which is a simple interface extension based on the 

standard C/C++ language.  

 

So in this chapter, we will focus on the acceleration on ERI evaluation using GPU so that 

the calculation of HF energy can be speedup. This chapter is organized as following. 

First, we briefly describe the ERI evaluation algorithm employed, which uses vertical and 

horizontal recurrence relations and is one of the most efficient methods for ERI 

evaluation. Next we describe a general approach for GPU evaluation of ERIs using 

recurrence relations, and describe the details regarding Fock matrix assembly in our 

direct SCF implementation. To study the efficiency of our direct SCF scheme, we 
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compare it to a conventional SCF implementation on a GPU. In the next section, we 

provide more detailed benchmarks in order to compare our GPU and CPU 

implementations. With double-precision ERI evaluation, the accuracy of the SCF 

calculation is 10-7
 a.u. or better for moderate systems with thousands of basis functions, 

suitable for most applications. We have applied these ideas in a series of typical proteins 

(up to 4000 basis functions) with high-angular momentum Gaussian basis sets and show 

performance increases of up to 100 fold, but more typical speedups are approximately 10 

to 20 fold. Memory usage is shown in this section, where we show that systems with up 

to ~10000 basis function are feasible with a typical GPU. Finally, we conclude the 

chapter with a brief discussion and conclusions. 

 
 

3.2. ELECTRON REPULSION INTEGRALS 

 

In computational chemistry field, the Hatree-Fock(HF) method is one of the most popular 

ab initio quantum chemistry method, which is based on approximation for the 

determination of wave functions and energy in a stationary state. By assuming N-Body 

wave function of a system can be approximated expressed by a single Slater determinant, 

HF method invokes the variational method that minimizes N-body HF energy to be close 

to real energy. A solution yielding HF wave function and energy, can be derived from a 

series of equation called HF equation as an approximate solution of Schrödinger 

equations and the solution of HF equation required to be a self-consistent mean charge 

field. Most HF calculation can be solved iteratively although iteration algorithm does not 
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guarantee to converge and advanced method can remedy the issue that is not in the scope 

of this chapter’s discussion. 

 

On the other hand, Density functional theory (DFT) is a computational quantum 

mechanical modeling method that also based on an approximation of Schrödinger 

equation for N-body. With this theory, the properties of N-body system are determined 

and described by the spatially electron density of the N-body using functional. For most 

modern DFT method, iteratively solution is necessary based on Kohn-Sham equation in a 

self-consistent fashion.  

 

For ab initio including HF and DFT methods, one of the major time-consuming steps is 

the evaluation of a large number of two-electron repulsion integrals that have the form:  

!ν κλ = φ! r φ! r !
!!!!φ! r! φ! r! drdr!   ( 1 ) 

where the !! are one-electron basis functions and r refers to the coordinates of the 

electron. In practice, linearly combined contracted Gaussian functions made up of 

primitive atom-centered Cartesian Gaussian functions of the form: 

!! ! = !!!!! !!
!!!     ( 2 ) 

are used to represent the one-electron basis functions. The contribution of the primitive p 

to the contracted function is denoted by the coefficient!!!". An unnormalized primitive 

Cartesian Gaussian function centered at ! = (!! + !! + !!) with exponent ! is given 

by 

!! ! = (! − !!)!!(! − !!)!!(! − !!)!!!!!(!!!)!   ( 3 ) 

where  
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! = (!! ,!! ,!!)      ( 4 ) 

and p is a set of integers indicating angular momentum and the direction of the Gaussian 

function. Therefore, the contracted two-electron integral is constructed from integrals 

over primitive functions and coefficients. A primitive ERI will be denoted by [pq|rs], and 

a contracted ERI will be distinguished from a primitive ERI by: 

!" !" = !!"!!"!!"!!"[!"|!"]!"#$       ( 5 ) 

ERIs possess eight-fold symmetry ( !" !" = !" !" = !" !" , etc.), meaning one 

can be computed and used for the remainder, providing a reduction in computational 

effort by roughly 6-fold. It would be more efficient to compute all of the primitive ERIs 

involving four shells for which ! has the same !!. For example, 3 [ps|ss] type integrals 

can be computed at the same time where ! = 1,0,0 , 0,1,0 !and 0,0,1 . The ERI 

bottleneck formally has N4 scaling, but many approaches have been devised to reduce 

scaling to N<3, however, even with these algorithms, ERI computation can still consume 

the majority of the computational time (typically 80-90% of the overall CPU time for 

systems with less than a thousand basis functions). Once contracted ERIs are generated as 

given in equation (1), it is straightforward to form the Fock matrix with  

!!" = !!"!"#$ + !!"[ !" !" − !
!!" !" !" ] = !!"!"#$ + !!" − !

!!!" ( 6 ) 

where P is density matrix and J and K are the Coulomb and exchange matrices 

respectively. 

 

3.2.1. RECURRENCE RELATIONS FOR ERI EVALUATION 

The primitive integrals can be evaluated in many ways and most of them are based on 

Boys’ seminal work13. Recurrence relation is one of the most efficient and most widely 
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used methods. Obara and Saika(OS)14 first derived a recurrence relation for ERI 

evaluation which related a given ERI to other integrals. Head-Gordon and Pople (HGP)15 

optimized this method by storing some common ERIs to reduce floating point operation 

counts. In their derivation, the vertical recurrence relation (VRR) is given as: 

! + 1! ! !" ! = !! − !! !" !" ! + !! − !! !" !" !!!  

+ !!
2! ! − 1! ! !" ! − !

! + ! ! − 1! ! !" !!!  

+ !!
2! ! ! − 1! !" ! − !

! + ! ! ! − 1! !" !!!  

+ !!
2(! + !) !" ! − 1! ! !!! + !!

2(! + !) !" ! ! − 1!
!!!  

    ( 7 ) 

where i is x, y or z, and 

1! = (!!" , !!" , !!"),      ( 8 ) 

! = ! + !, ! = ! + !,     ( 9 ) 

and !,!, !, ! are exponents of a, b, c and d respectively. 

!! = !!!!!!!
!!! ,!!! = !!!!!!!

!!! ,!!! = !!!!!!!
!!! .     ( 10 ) 

The superscript index (m) in eq (7) is an auxiliary index, with m=0 yielding true ERIs. 

The VRR shows that primitive ERIs of higher angular momentum are linear 

combinations of lower angular momentum ERIs ultimately depending on s type ERIs. 

The quantities requiring evaluation are [ss|ss](0)
 to [ss|ss](n), where the max n value is: 

! = (!! + !! + !! + !!)!
!!!     ( 11 ) 

We can evaluate [ss|ss](m) with analytical formality: 

[!!|!!](!) = !
!!!!!"!!"!!(!)     ( 12 ) 
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where 

! = !"
!!! (! − !)

!    ( 13 ) 

!! ! = !!!!!!!!!"!
!     ( 14 ) 

!!" = 2 !
!
!

!!! exp![−
!"
!!! ! − ! !]    ( 15 ) 

and KCD is analogous to KAB. HGP noted further that 

[!(! + 1!)|!"](!) = [(! + 1!)!|!"](!) + (!! − !!)[!"|!"](!)  ( 16 ) 

This equation relates one integral with another of the same total angular momentum but 

with a shifted position from the first to the second, and is termed as a horizontal 

recurrence relation (HRR). Since this relation does not involve the exponent partial, it 

may be applied to contracted ERIs. 

(!(! + 1!)|!")(!) = ((! + 1!)!|!!)(!) + (!! − !!)(!"|!")(!)  ( 17 ) 

For example, using the previous equation to evaluate (ab|cd), integrals from (a0|b0) to 

((a+b)0|(c+d)0) are constructed using VRR and then (ab|cd) are evaluated using HRR. 

This algorithm greatly reduces floating-point operation counts, especially for basis 

functions with high angular momentum. In practice, temporary integrals, with auxiliary 

index m = 0, are used in other ERI evaluations, and should be stored in memory 

temporarily for higher efficiency. For double zeta Gaussian basis sets, hybrid functions, 

sp for example, are used, and to treat this type of function, primitive ERIs such as [a0|b0] 

to [(a+b)0|(c+d)0] can be stored instead of contracted ERIs because s and p share the 

same primitive ERI exponent values, this treatment speeds up calculations, but requires 

large memory resources in exchange. Because of their different architectures, the 
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required memory is attainable for CPUs but is too large to implement efficiently for 

GPUs. We will return to this issue in the coming sections. 

 

3.3. IMPLEMENTATION 

 

3.3.1. COMPUTE UNIFIED DEVICE ARCHITECTURE 

GPU technology, typically used to handle computation for computer graphics and video 

gaming, has been adapted to perform computations for applications that are traditionally 

handled by CPUs. This is termed General-Purpose computing on Graphics Processing 

Units or GPGPU. GPU is a good example of a massive parallel stream-processing 

architecture that uses the single-instruction multiple data (SIMD) model.  Currently, as 

we described above, the most widely used language environment for GPGPU technology 

is NVIDIA Compute Unified Device Architecture (CUDA). CUDA is a programming 

model for graphics as well as general-purpose computation using a relatively simple 

extension of the standard C language to develop scalable and efficient parallel programs. 

 

The CUDA device architecture has a scalable array of streaming multiprocessors that 

consist of 8 scalar processors. Note that all technical specifications referred to in this 

paragraph are for CUDA 2.x unless otherwise noted. With this design, GPUs are 

especially well suited for compute-intensive and highly parallel computations.  

 

As introduced in chapter 1, within the CUDA framework, a batch of threads is 

hierarchically arranged into a one-, two- or three-dimensional grid of blocks up to 65535 
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blocks, and each block of threads further consists of one-, two-, or three-dimensional 

grids (shown in 1.6). The number of threads in a block cannot exceed 512 and should be 

specified explicitly in the code. The CUDA framework introduces the built-in variables 

threadIdx and blockIdx to identify a thread in a block. The best performance is obtained 

when the number of threads in one block is a multiple of 32. Each 32 threads are bundled 

as a warp, so that thread in the same warp will execute the same instruction that may 

result divergence when occur branches. Divergence results in performance degradation, 

and should be avoided in order to maximize parallel performance, an issue that will be 

touched on later. The thread scheduler switches active warps to balance the load so that 

the overall performance will be maximized.  Although only one thread block can be 

executed at any given time on an SM (two for the Fermi architecture), multiple thread 

blocks can be active. For the memory hierarchies (as shown in 1.7), each thread has 

access to its local register on the processor, and shared data in a block is visible to threads 

in this block via a parallel data cache with medium data latency but limited resources. 

Furthermore, all threads have access to the relatively large global memory (also known as 

dynamic random-access memory, DRAM) but with high data access latencies. Also, 

GPUs provide fast and high visibility but limited and read-only constant and texture 

memories. The global, constant, and texture memory spaces are persistent across kernel 

launches by the same application. Because of the architecture of the CUDA platform, 

main memory has high latency, on the order of hundreds of cycles. Therefore, in order to 

achieve high bandwidth, coalesced memory access to DRAM is recommended. 

Coalescing ensures consecutive threads access consecutive memory addresses so that 
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memory requests can be served simultaneously.  Multiple active threads can hide 

memory latency by overlapping their computations. 

 

When the GPU kernel function is called in the CUDA implementation, the CPU waits 

until the kernel function completes and is returned. Most GPU kernel functions only 

access GPU memory, therefore the CPU must copy the required data from the CPU 

memory to the GPU memory. Because of the relatively slow 2.0 Gb/s transfer speeds 

between the CPU and GPU memories, it is important to avoid large amounts of CPU-

GPU data transfer.  We will discuss a scheme to reduce CPU-GPU data transfer below. 

 

In addition, subroutine libraries are available that provide common solutions for problems 

in quantum chemistry and solid-state physics such as the Fourier transform (CUFFT)16 

and linear algebra (CUBLAS)17 operations that are used in our implementation. One of 

the most notable accelerations these libraries afford is in matrix-multiplication, providing 

a six- to ten-fold speedup for large GEMMs over the INTEL MKL library. 

 

3.3.2. RELATED WORK 

As introduction chapter mentioned, Yasuda6 was the first to evaluate ERIs on GPUs for s 

and p functions in single precision. He chose the Rys quadrature scheme18 for its low 

memory requirements even though it is not the most efficient algorithm for low angular 

momentum quantum numbers. A mixed-precision (MP) scheme was introduced to 

calculate the largest ERIs in double precision (DP) on the CPU and the remainder in 

single-precision (SP) on the GPU. This scheme led to SCF energy errors of the order of 
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10-3 au. If all ERIs are computed on the GPU, speedups of ~1 order of magnitude for 

molecules as big as valinomycin with 6-31G basis set (168 atom, 882 basis sets) have 

been realized. Asadchev19,20 further adopted the Rys quadrature scheme on GPUs for ERI 

evaluation in GAMESS21 and extended it up to g functions. Their implementation on 

NVIDIA Tesla T10 cards showed speedups of around 25 times for DP and 50 for SP 

compared with a single CPU; however, no timings were given for data transfer between 

the GPU DRAM and CPU main memory which may take several times longer than the 

actual execution time of the ERI kernel.  

 

Ufimtsev and Martinez7-9 have developed a CUDA-based program for ERI evaluation and 

Fock matrix formation involving s and p basis functions on GPUs, using the McMurchie-

Davidson22 scheme for its relatively few intermediate steps per integral and its memory 

requirements, similar to the Rys quadrature18. HF SCF calculations with 3-21G and 6-

31G basis sets using their implementation and a NVIDIA GTX280 card7-9 was, in some 

cases, more than 100 times faster than the quantum chemistry software GAMESS21 on a 

CPU. However, most of their comparisons were between single-precision GPU result and 

double-precision CPU results so the SCF energy error observed with UM’s code quickly 

exceeded 10-3 au. Later, a mixed SP/DP approach was described as a compromise 

between accuracy and speed23. 

 

3.3.3. IMPLEMENTATION DESIGN 

In our work, in order to implement the ERI evaluation in the GPU, code was created 

using our code generator to express the recurrence relation given in eq (7). Current GPU 
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code will use registers to store the auxiliary integrals and automatically delete and flag 

them as available once they are not needed in the subsequent steps, increasing register 

usage efficiency by keeping as many registers busy as possible. 

 

As discussed above, GPU architecture is very different from that of CPU, and one of the 

most important concerns is thread divergence, that is to say, every thread in a warp will 

execute the same instruction sets and, therefore, threads may be idle when they do not go 

into the same branching or conditional statement as other threads in the warp. So it is 

necessary to classify ERI type and subsequently reorder them so that threads in one warp 

will likely undergo the same ERI or loop (or all of them bypass ERI evaluation because 

of the Schwarz upper bound cutoff24,25). We treat the ERIs in the direct SCF procedure as 

an N2*N2 integral matrix problem with row and column indices as half ERIs in the form 

of bra ( !"  ) and ket ( |!"] ), where an ERI corresponds to an element in this matrix. 

[!"|!"] evaluation can be skipped if index a is greater than index c due to ERI 

symmetry. We find that by sorting bra and ket (including tiebreakers) a well-ordered 

integral grid can be obtained that leads to generally optimal performance for most 

systems. Figure 3.1 illustrates our approach using a water cluster with 4 water molecules 

employing the cc-pVDZ26 basis set with 100 basis functions. We use coloration to denote 

the magnitude of the ERI estimation value. First, sorting in |!"] half ERIs type, for 

instance, the highest angular momentum in this system with cc-pVDZ basis set is a d-

orbital, so we have nine combinations as shown in figure 3.1. We identify the angular 

momentum criterion as the most important. Second, half ERIs are sorted by Primitive 

Gaussian function number. The cc-pVDZ basis set has a maximum of seven primitive 
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Gaussian functions for Oxygen used to construct the contracted basis set. Contracted 

ERIs of type (ss|ss), for example, require various numbers of primitive ERIs [ss|ss] from 

2401 to 1 (from 74 to 14), so if it is not sorted, it is quite possible that one thread takes 

2401 loops and others in the warp take significantly fewer loops and wait in an idle state. 

Therefore, sorting by primitive Gaussian function number in the same ERI type will 

greatly improve thread usage percentage. Correlation-consistent basis sets benefit most 

from this sorting criterion as our benchmark results show below.  The third sorting 

criterion is the Schwarz cutoff, or upper bound. The size of an individual ERI can be 

estimated using Cauchy-Schwarz inequality24,25, 

[!"|!"] ≤ !" !" [!"|!"]        (18) 

With this cutoff bound sorting, sparse populated regions are gathered to certain areas so 

that threads in a warp that are responsible for this area could possibly skip ERI evaluation 

simultaneously and set as available for future computation. These three sorting orders 

create a well-balanced grid as shown in Figure 3.1 and guarantee that threads are kept 

busy and at or near maximum usage.  

 

Most streaming-type architectures, such as CUDA, do not provide efficient tools for 

inter-thread data communication except for threads that are in the same block. We find 

that the most efficient mapping strategy is to have one thread working on one contracted 

ERI. This mapping strategy is efficient based on our well-sorted scheduling combined 

with thread divergence avoidance in order to keep threads under dense computation. 

Variables in eqs. (9), (10) and (15) ( ! = ! + ! , !! = !!!!!!!
!!!  and 
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!!" = 2 !
!
!

!!! exp![−
!"
!!! ! − ! !] ) are all pre-calculated and stored in GPU memory. 

They will occupy most of the DRAM in the GPU with a usage scale of O(N2), trading 

memory usage with speed. With these pre-calculated values, both DRAM data access 

count and floating-pointing count is reduced significantly. 

 

Similar to the CPU implementation, once a thread generates a series of integrals two 

strategies are available. One is to store integrals to disk so that they will not be re-

calculated in further iterations, which is traditionally called a conventional SCF. 

However, the drawback of this strategy is the slow CPU-GPU data-transfer speed and its 

high scale. It has been proven for large systems with a huge number of integrals that data-

transfer time is greater than GPU kernel time7 and similar validation will be shown. 

Another algorithm is direct SCF, which uses calculated integrals immediately and 

recalculates those integrals on the fly. It is clearly desirable to implement the SCF 

entirely in the GPU. In our implementation, once an integral is available, it is used to 

assemble the Fock matrix. Traditionally, matrix-element-to-block mapping is adopted for 

Fock matrix formation, however, that implementation produces 2-8 times more redundant 

integrals, leading to low efficiency. In our code, the atomic function is introduced to 

assemble the Fock matrix. The atomic function is a feature offered by NVIDIA since 

CUDA 1.1, which performs a lock-and-set atomic operation on words residing in global 

or shared memory (since CUDA 1.2). These operations are named atomic in the sense 

that it is guaranteed to perform without interference from any other threads. After one 

thread locks a memory address, no other thread has access privilege until the operation is 

completed. This feature is used in our implementation: once a unique integral is evaluated 
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in a thread, it will be added to the corresponding Fock matrix elements forming the 

Coulomb and exchange matrices simultaneously. A unique integral is usually required by 

Fock matrix elements multiple times, depending on ERI symmetry. For example, because 

of symmetry relations for ERIs (ij|kl)=(ji|kl)=(kl|ij)=etc., (ij|kl) can be reused 8 times if i, 

j ,k, l are not equal to each other.  

 

One concern for the atomic function is it only supports long integer operations in the 

current version while the double-precision atomic operator is not available (due to 

hardware limitations). This concern arise because, for integral arithmetic, there is no 

stipulation about the order in which threads perform their operations. Hence, floating-

point arithmetic is not associative for the rounding of intermediate results. For instance, 

(A+B)+C equals A+(B+C) if A, B, C are integers, but this is generally not true for 

floating-point. Therefore, early hardware does not support floating-point and the newest 

version only supports single-precision. A compromise approach is masking the double 

precision type as a long-long integer and eventually unmasking the formed Fock matrix 

when all ERIs are evaluated.  However, this step reduces the accuracy of the Fock matrix 

even though ERIs are evaluated using double-precision. Hence, we say this step is an 

accuracy bottleneck and the main source of error. Another concern beyond accuracy is 

efficiency.  
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Figure 3.1. Pre-sorting scheme for half ERIs. Row and column indices correspond to 

bra and ket pairs of contracted integrals, and the colors reflect the estimated magnitude of 

the ERI value. Sorting order is described in the text.   
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Figure 3.2. Flowchart for GPU implementation of ERI evaluation within an SCF cycle 
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If a thread is supposed to access an address that is locked by another thread that wants to 

access the same memory, that thread will hold until the occupying thread unlocks the 

memory address. In that case, the more threads that are idle and waiting to write to one 

identical memory address in sequence, the lower the efficiency will be. This will be a 

factor preventing better efficiency for small systems with crowded memory access. 

However, in our implementation, a typical launch bound for a CUDA 2.0 card is a GPU 

with 16 blocks and 512 threads, if one thread generates one integral and that integral is 

used 8 times at maximum, then 8192 integrals are calculated in one loop and a maximum 

value of 65536 memory addresses are requested to be modified. The Fock matrix has a 

N*N elements where N is number of basis functions. For a system with 1000 basis 

functions, only 6.6% of the memory addresses are on the list to be updated. So it is less 

likely that two threads will want to write to the same address, especially for larger 

systems, and actually only a few of the threads are active while others are waiting for 

global memory access due to the memory latency or inactive due to lack of registers.  

 

In conclusion, atomic operations will not lead to significant system inefficiency besides 

what is expected for normal memory access. To demonstrate this, we compared two ways 

to deal with ERIs: (1) form the Fock matrix in the CPU after transferring the ERIs from 

the GPU (labeled as conventional SCF) and (2) form the Fock matrix in the GPU using 

atomic operations (labeled as direct SCF). The model we used is an N * N hydrogen-

mesh with neighboring distance of 1 Å. The systems used here are “toy” models because 

there are only s-orbitals required which exclude the overhead brought by thread 

convergence.  Table 3.1 shows the timing results produced by the two methods, 
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conventional SCF and direct SCF. All those results are based on 64-bit double-precision 

computation on an NVIDIA M2090 graphic processing unit card. For our conventional 

SCF code, we have modified it to avoid any disk I/O operations that may seriously reduce 

computation efficiency so that the two methods can be compared fairly. Kernel time 

includes floating-point calculation and data-fetch latency, and the majority of CPU-GPU 

transfer time is ERI transfer for conventional SCF and the Fock matrix for direct SCF. 

The first notable result in table 3.1 is the impressive speedup by GPU computation, and 

both ways provide significant improvement compared to a CPU no matter the kernel or 

wall time. If only kernel time is considered, direct SCF provides about a 40-fold speedup 

while the conventional method provides a 150-fold increase. The 150-fold speedup can 

be ruled as the maximum speedup that GPU can achieve in an ideal situation, without any 

overhead such as data latency and thread convergence. However, the data transfer time of 

conventional SCF is as much as the kernel time while it is less than 0.5% wall time and 

negligible for direct SCF. The kernel time of direct SCF is about 3 times more than 

conventional SCF, except it includes the Fock matrix assembly time, one of the reasons is 

the penalty from the atomic operators. However, even the overall time of conventional 

SCF is close to that of direct SCF in this case, data-transfer time and memory 

requirement scale N4 for conventional SCF but N2 for direct SCF, therefore, memory will 

be quickly exhausted for conventional SCF (the maximum number of basis functions is 

<300 with a 6 GB GPU Memory) and takes more time for data transfer (via a PCI 

Express slot, 2.0GB/s) which makes calculations on larger systems impossible. So, as 

noted before, it is necessary to assemble the Fock matrix in the GPU and abandon 

sophisticated code optimized for CPUs over years to avoid expensive copy operations.  
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Table 3.1. Timing for two SCF schemes for Hydrogen Atom System ERI Evaluation a 

Hydrogen Number 

Direct SCF Conventional SCF 

CPU Time/s Kernel 
Time/s 

GPU-CPU 
transfer/s 

Kernel 
Time/s 

GPU-CPU 
transfer/s 

8*8 
STO-3G 0.183 0.062E-3 0.051 0.008 6.30 

6-31G 0.443 0.229E-3 0.127 0.086 14.97 

10*10 
STO-3G 0.454 0.049E-3 0.121 0.032 19.00 

6-31G 1.178 0.289E-3 0.340 0.447 47.40 

12*12 
STO-3G 0.918 0.101E-3 0.274 0.139 46.18 

6-31G 2.630 0.789E-3 0.770 1.942 121.83 

a GPU timing refer to kernel time and GPU-CPU data transfer time. CPU time refers to 
the Fock matrix formation time. Unit is second. 

 

3.4. RESULTS AND DISCUSSION 

 
Before we began tests on our GPU code, we implemented the same recurrence relations 

for a CPU on QUICK27. Our test indicates it has competitive efficiency with GAMESS as 

shown in Table 3.2. The GAMESS version is August 11, 2011 R1 64-bit under Linux 

with Intel FORTRAN Compiler 10.1.15(shown as GAMESS/intel) and the GNU 

FORTRAN compiler 4.1.2(shown as GAMESS/gnu) using the default configuration, 

while QUICK is compiled using the same Intel compiler with optimization option level 3 

(-O3). The test cases are Hartree-Fock SCF computation on sets of representative 

molecules of small and medium size, such as a water cluster with 16 water molecules, an 

(Alanine)3 chain, and a (Glycine)12 chain using the 6-31G, 6-31G* and 6-31G** basis 

sets. In the calculations most setups are default except the direct option is selected for all 
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systems and the integral cutoff is set as 10-9 ensuring a fair comparison. The benchmark is 

performed on the same machine with an AMD Opteron Processor 2427 CPU, and we list 

their first iteration times in Table 3.2. QUICK performs competitively in most categories, 

therefore, we conclude that QUICK’s implementation is as efficient as a standard 

quantum chemistry package. 

 

In the GPU version, all primitive ERIs are calculated on-the-fly due to register shortage 

as previously described. In contrast, in the CPU version, because of the considerably 

larger amount of memory provided, primitive ERIs are saved in memory temporarily to 

form contracted ERIs, which leads to about a two- to four-fold speedup for split Gaussian 

basis sets.  In the following benchmark test, both CPU and GPU codes use the direct SCF 

procedure with the 2-electron integral cutoff set as starting from 10-9 that will be changed 

to tighter criteria after reach convergence threshold.  A Schwarz upper bound cutoff is 

used to pre-screen small ERI blocks. 
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Table 3.2. Time Comparisons Between QUICK and GAMESSa 

 QUICK GAMESS/gnu GAMESS/intel 

6-31G 

(H2O)16  4.7 7.5 6.4 

(Alanine)3  6.2 5.2 4.4 

(Glycine)12  52.4 51.0 43.3 

6-31G* 

(H2O)16 11.3 17.4 14.9 

(Alanine)3 21.4 17.3 15.0 

(Glycine)12 175.6 183.2 154.1 

6-31G** 

(H2O)16 21.5 33.4 29.4 

(Alanine)3 26.3 27.7 23.8 

(Glycine)12 225.0 264.3 224.9 

a. The number in the table indicates CPU time in the first iteration for the Fock 
matrix formation time. All values are reported in seconds. Compiler and platform 
information is described in the text. 

 
 
 
The QUICK GPU code is rewritten in C++, using the Intel C++ Compiler 10.1.15 and 

CUDA compiler 4.0 v0.2.1221 with optimization option level 3(-O3). In the CUDA 

compiler, the fast math library option is on (-use_fast_math), CUBLAS 4.0 is used for 

linear algebra especially matrix-matrix multiplication. Most efficient comparison-based 

sorting algorithms have a complexity of !(!! ∗ log!), and in our case, n=N2, where N is 

the number of unique shells,  therefore, the scale of sorting is !(!! ∗ log!), which is 

smaller than ERI scale and linear algebra; therefore, sorting will not be a bottleneck in 

terms of scale. In the benchmark, we compare performance on one typical CPU processor 

used in high-performance computation (AMD Opteron™ Processor 2427) and one of the 

state-of-the-art GPU(TESLA M2090, with ECC off). An M2090 card has a specification 
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of 6 Gigabytes memory size, with 16 Streaming Multiprocessor and 512 CUDA cores. 

We set the block number equal to the number of stream multiprocessors in a device, 16 in 

this case. Timing is set for the Fock matrix formation time including CPU-GPU data 

transfer except where mentioned otherwise. 

 

The first set of test cases were linear (Alanine)n chains. We chose different Gaussian split 

type basis sets varied from 3-21G to 6-311G**, and the chain length is from n = 1 to n = 

30 (C90N30H152O30) with up to 3762 basis functions. The speedup comparison for GPU 

and CPU to form the Fock Matrix in the first iteration is presented in Figure 3.3, while 

we compare the energy deviation of the GPU relative to the CPU in the first iteration in 

Figure 3.4. From Figure 3.3, an obvious trend is that the speed up increase is directly 

related to the system size, for example, for the 6-31G* basis set, GPU calculation ranges 

from 7.47 times faster for a single Alanine to as much as 27.40 times faster for 30 

Alanine residues. This tendency can be explained by three factors. First, with larger 

systems and larger basis sets, the threads in the GPU are better balanced, and therefore 

less thread divergence occurs, which is important to avoid in CUDA programming. 

Second, the density matrix is quadratic with respect to the number of basis functions 

while the thread number is fixed in GPU, so if a larger number of basis functions are 

used, there is less chance that two threads modify the same address when they finish ERI 

evaluation.  In contrast, threads will take atomic operations “crowdedly” if the density 

matrix size is small, which leads some threads to adopt idle states that slows calculation 

speed. The third reason is because of the better pre-screen strategy including the Schwarz 

cutoff used in GPU and skipping a large amount of memory read requests or atomic write 



51 

requests, which are the bottleneck in GPU computation. The CPU also uses a similar 

cutoff scheme, and its memory access is fast compared with the GPU memory access, so 

the increased speedup is observed if more ERIs are treated as negligible by the cutoff. 

 

An interesting observation is double-polarized basis sets are generally most accelerated 

and their speedup increases fastest, while non-polarized basis sets are the least 

accelerated but the speedup increase is second fastest. There is less of a speedup for small 

molecules but a greater speedup for large molecules compared with single-polarized basis 

sets. This is because polarized basis sets will have fewer integrals cutoff but possess a 

large number of basis functions, which take advantage of reason 2 above but goes against 

reasons 1 and 3. So for double-polarized basis sets, reason 2 dominates reasons 1 and 3, 

while for single-polarized basis set this is switched.  

 

In Figure 3.4, energy differences are shown. Since all of the calculations are double 

precision except for atomic operations, the only error beyond numeric error is brought on 

by atomic operations. We found all the absolute errors are within 10-10 Hartrees for a 

system with a -105 Hartree electronic energy, so the relative error is on the order of 10-16, 

which is approximately double-precision accuracy magnitude. This error increases with 

the increase of system size and is due to error accumulation as expected. We analyze the 

error growth and find the growth scale is about n2.5~3.0, particularly for 6-311G* and 6-

311G**, two big basis sets with significant enough error to provide a meaningful fit, the 

scale is n3.01±0.05and n2.77±0.05 (both ignoring the first ten points). The error growth scale is 

quite close to the ERI growth scale. Therefore, in conclusion, the ERI error is essentially 
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zero because they are calculated as double precision, and the main error is from the 

atomic error. This is because to work with atomic operations, ERIs are masked as long-

long integers leading to approximate 10 decimal digits of accuracy which is less than 

double-precision (~15.9), but more than single-precision (~7.2). These calculations are 

far better than single-precision GPU ERI evaluation, which only has a 10-3 a.u. accuracy 

because of error accumulation. The error order we achieve, 10-10
 Hartrees, is accurate 

enough for most chemistry calculations especially considering the accompanying 

speedup. 

 

 

 

Figure 3.3. Speedup comparisons between different basis sets on Alanine chain series. 

Timing for CPU and GPU are their first iteration Fock matrix formation time including 

data transfer time. Platform and software details are described in text. 
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Figure 3.4.  Energy deviation comparisons between different basis sets on Alanine 

chain series. Logarithmic scale Y-axis is used. 

 
 
Further tests are full SCF calculations on some prototypical systems such as the 310-helix 

acetyl(ala)18NH2, the α-helix acetyl(ala)18NH2, the β-strand acetyl(ala)18NH2, an ice 

crystal structure and a water-cluster together with some mid-size systems like taxol, 

valinomycin, olestra and proteins with PDB28 ID of 1M2C(α -conotoxin mii), 1OMG(ω-

conotoxin mviia), 1VTP(vacuolar targeting peptide). The 6-31G*, 6-31G** and 6-311G 

basis sets were used for the large systems and for some of the small systems the 6-311, 6-

311G** and cc-pVDZ basis sets were used. The system sizes range from 110 atoms to 

453 atoms with up to 4015 basis functions. The geometries of the above-mentioned 

molecules were taken from the literature or constructed and optimized in-house. In these 

calculations, in addition to the calculation settings used in the Alanine chain series, we 

turned on the DIIS (direct inversion in the iterative subspace) SCF29 option in order to 

accelerate SCF convergence. The convergence criteria were set to a density matrix RMS 

(root mean square) difference within 10-7, and an energy change of less than 10-9 

Hartrees. The Fock matrix will be calculated using differences from the previous 
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iteration, which minimizes the number of Fock matrix elements that need to be updated, 

especially for late iterations. A staged integral cutoff strategy was also used to save time 

in the early stages of the SCF.   

 

The results are presented in Table 3.3. We list first iteration time, last iteration time and 

compare the converged total energy deviation between the CPU and GPU result. From 

the table, we observe that a single GPU can speedup a SCF calculation by up to 130-fold 

compared to a single CPU. For relatively small systems, GPU direct SCF calculations are 

about 10 times faster than CPU calculations. The speedup, as discussed above, depends 

on the basis set type and the number of basis functions: large basis sets and weakly-

interacting basis sets which lead to more integrals being cutoff will provide a higher 

speedup. Moreover, if we compare the three different helix conformations, we note that 

the speedup of the β-strand calculation outperforms that of the α-helix and 310-helix 

calculations when same basis sets are used. This is because the α-helix structure is more 

compact, while the β-strand structure is less compact benefitting from a higher amount of 

integrals being cutoff. We also find that the olestra molecule and water cluster (H2O)100 

yields impressive speedups, about 100 time faster for 6-31G, due to the large amount of 

hydrogen atoms, where a large portion of the integrals are of the (ss|ss) type, which 

requires the least computational cost and memory access. According to Table 3.1, for a 

hydrogen mesh with the 6-31G basis set, in the conventional SCF scheme, the kernel time 

in GPU versus CPU can reaches a 150 times speedup, which is the maximum speedup a 

GPU of the type employed can achieve. Therefore, the speedup achieved for olestra and 

water clusters are close to the ideal kernel efficiency with negligible atomic operation 



55 

penalties. The energy error including ERI error and CUBLAS error will accumulate with 

iterations, therefore, for a full SCF calculation, the magnitude of energy error increases to 

10-7 after error accumulation for a large system with more than 3000 basis functions.  

 

However, since time used in the linear algebra subroutines, especially matrix-matrix 

multiplication (we use the DGEMM subroutine from NVIDIA CUBLAS) and the 

diagonalization routine (we do this calculation on the CPU), scale cubically with the 

number of the basis functions (these calculations scale larger than does ERI computation) 

for large systems, indicates that linear algebra plays a significant role in the total 

calculation time. For example, in the SCF calculation for olestra with the 6-31G** basis 

set, in the first iteration, the time for ERI evaluation is 371.51s (37.7% of Fock matrix 

formation time) while diagonalization is 323.68 seconds (32.9% of Fock matrix 

formation time) and the DIIS time (excluding the diagonalization time) is 289.45 seconds 

(29.38% of Fock matrix formation time), while the ERI evaluation and DIIS times in 

CPU were 50009.94 seconds and 16079.17 seconds. Hence, the GPU achieves a 134.6 

and a 55.6 times speedup respectively, while the diagonalization time is almost 

unchanged, and, indeed, it is almost as much as the ERI evaluation time on a GPU. Thus, 

because of the diagonalization routine the maximum achievable speedup will not be 

realized.  

 

In this series of benchmark computations, the largest peak DRAM usage is 1.25 

Gigabytes, which is for olestra using 6-31G**. Peak memory usages for some larger 

systems were tested as well, and the results are listed in Table 3.5. Memory usage is in a 
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trade off with speed as described above by storing pre-calculated values and they, 

together with necessary molecule basis set and electron structure information such as 

one-electron operator matrix and density matrix, represent most of the memory usage. 

Ideally, memory usage is quadratic with the number of unique shells, so for an M2090 

card with 6.0 Gigabytes, the maximum systems are about 10000 basis sets because of 

well-designed pre-screening strategies. We could avoid the pre-calculation step to reduce 

memory usage but this will sacrifice speed for large systems.  

 

In addition, we did more test cases using different devices, and we find the speed up is 

not significantly different (~10-20%) when lower level cards were used (M2070, 

GTX580 for example), as shown in Table 3.4. For some small basis sets, 6-31G for 

instance, about a 20% advantage over GTX 580 is realized using a M2090, but for some 

larger basis sets, such as 6-311G**, the advantage is less obvious. This is because the 

bottleneck for GPU calculation is memory bandwidth rather than floating-point 

calculation, and in terms of registers and shared memory, the Tesla M2090 card does not 

have a significant advantage over GTX GPUs, and so the test result matches our 

expectations. But we do recommend Telsa or better cards for their stability and fault 

tolerance. 
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Table 3.3. Accuracy and Performance Comparison Between CPU and GPU calculation a 

Molecule 

(atom number) 

Basis sets 

(function number) 

1st iteration/s Last iteration/s Energy 

CPU GPU speedup CPU GPU speedup CPU/a.u. GPU/*10-

9 a.u. 

Taxol(110) 

6-311G(940) 513.26  70.74 7.26  823.86  76.53 10.77  -2909.149312868 -2 

6-311G**(1453) 1789.80  203.97 8.77 3611.05  277.49  13.01  -2910.445038007 -1 

cc-pvDZ (1160) 1201.54  116.87  10.28  2694.33  174.99 15.40  -2910.042418906 1 

Valinomycin(168) 

6-311G(1284) 1343.53  153.67  8.74  2031.90  182.15  11.16  -3770.243737052 -4 

6-311G**(2022) 4694.71  393.55  11.93  8601.67  612.14  14.05 -3772.058214363 -5 

cc-pvDZ (1620) 3451.95  340.87  10.13  6089.49 458.61 13.28 -3771.439946125 6 

Ice-like (H2O)80(240) 

6-311G(1520) 3073.54  109.57  28.05  3153.74  109.48  28.81  -6082.305528935 5 

6-311G**(2480) 9953.00  246.84  40.32  10241.20  300.18  34.12 -6084.520235828 3 

cc-pvDZ (2000) 6776.11  93.51 72.46 10684.27  295.63  36.14 -6083.023206911 -1 

Ice-like (H2O)96(288) 

6-311G(1824) 6639.24  165.18  40.19  9518.88  325.39  29.25 -7298.891219499 7 

6-311G**(2976) 20754.41  366.43  56.64  29402.37  925.64  31.76  -7301.528543939 6 

cc-pvDZ (2400) 14534.58  136.77  106.27  20173.25  449.68  44.86 -7299.732249179 -2 

(H2O)32(96) 

6-311G(608) 134.77  14.40  9.36  128.77  10.78  11.95  -2431.716629896 2 

6-311G**(992) 379.50  34.05  11.15  957.65  66.14  14.48 -2432.703288503 1 

cc-pvDZ (800) 254.58  14.21  17.92  674.14  32.37  20.83 -2432.055391595 2 

(H2O)100(300) 

6-311G(1900) 7157.31  104.32  68.61  8728.88  141.65  61.62 -7602.094350092 -1 

6-311G**(3100) 25236.82  252.80  99.83  31204.21  486.81  64.10  -7605.175710929 2 

cc-pvDZ (2500) 16049.72 100.04  160.43  20052.53  200.23  100.15 -7603.361888329 22 
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Table 3.3. (cont’d) 

 

310-helix acetyl(ala)18NH2(189) 
 
 

6-311G(1507) 1923.62  173.75  11.07  2842.48  227.14  12.51  -4632.003799593 -17 

6-311G**(2356) 6639.98  472.74  14.05  11533.48  799.10  14.43 -4634.169869157 -7 

cc-pvDZ(1885) 5800.82 541.90 10.70 11243.90 806.39  13.96 -4633.502073111 11 

α-helix acetyl(ala)18NH2(189) 

6-311G(1507) 2053.30  194.58  10.55  3164.16 233.21  13.57 -4632.315977523 -7 

6-311G**(2356) 7083.52  507.06  13.97  11889.02  822.49  14.45 -4634.476339611 -13 

cc-pvDZ(1885) 6004.15 541.96 11.08 10230.45 726.92  14.07 -4633.816772135 3 

β-strand acetyl(ala)18NH2 (189) 

6-311G(1507) 1499.20  89.95  16.67  2101.61  123.06  17.08 -4632.231275219 -6 

6-311G**(2356) 5572.93  263.14  21.18  9102.65  499.50  18.22 -4634.420919368 2 

cc-pvDZ(1885) 4970.84 440.33 11.29 8287.50  575.00 14.41 -4633.750359062 147 

α -conotoxin mii  

(PDBID: 1M2C, 3+1-)(220) 

6-31G*(1964) 3978.10 345.70  11.51  13309.37  973.75  13.67 -7106.869678943 15 

6-31G**(2276) 5453.77 409.36 13.32  18046.87 1299.04 13.89 -7107.108358427 27 

6-311G(1852) 4485.98  359.74  12.47  11311.33  902.68  12.53  -7105.597849172 3 

ω-conotoxin mviia 

 (PDB ID: 1OMG, 7+2-) (353) 

6-31G*(3035) 17473.01 730.71  23.91  23381.07 1081.33  21.62 -11122.046450828 5 

6-31G**(3563) 26247.84  869.72  30.18  33451.28  1439.35  23.24 -11122.460728457 16 

6-311G(2885) 28709.47  812.89  35.32  30734.31  1171.02  26.25 -11120.201936663 -13 

Olestra(453) 

6-31G*(3181) 22626.95  306.09  73.92  25706.94  539.59  47.64  -7491.143229057 -165 

6-31G**(4015) 53992.79  402.68  134.08  58037.78  853.27 68.02 -7491.573825553 -250 

6-311G(3109) 51047.04 358.01  142.59  59152.48 1035.48  57.13  -7489.506716913 1 
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Table 3.3. (cont’d) 
 

vacuolar targeting peptide  

(PDB ID: 1VTP, 4+7-) (396) 

6-31G*(3418) 24196.66  1041.92  23.22  31079.79  1382.36 22.48 -10014.756057438 16 

6-31G**(4000) 38460.44  941.06  40.87  51952.78  1849.08  28.10 -10015.181384177 23 

6-311G(3208) 34865.17  895.09 38.95  51292.98  1305.71  39.28 -10012.680303881 -15 

 
a GPU energy column lists relative energies with respect to corresponding CPU calculation.  Platform and software details  
are described in text. b PDB ID and number of positive and negative charge center included in parentheses. 
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Table 3.4. Timing for GPU version calculation using different devices a 

 (Glycine)12 Chain Taxol 

 6-31G 6-31G* 6-31G** 6-311G 6-311G* 6-311G** 6-31G 6-31G* 6-31G** 6-311G 6-311G* 6-311G** 

M2090(6.0 GB)b 7.92 24.70 29.48 18.30 47.93 61.48 28.63 81.22 96.91 70.73 171.37 215.64 

M2070(6.0 GB) 9.16 28.50 33.89 21.03 55.19 65.55 32.82 94.09 112.22 80.99 194.59 232.30 

GTX580(1.5 GB) 10.00 26.06 30.82 22.25 51.08 60.48 35.10 87.00 102.61 85.54 183.57 217.39 

CPUc 73.33 275.22 342.79 175.16 495.83 628.43 257.80 828.51 987.13 582.52 1622.83 1389.97 

a. Number in the table shows the Fock Matrix formation time in GPU in seconds. b. global memory size(also know as DRAM) 
included in parentheses. c. CPU calculation is on AMD Opterontm Processor 2427. 

 
 

Table 3.5. Peak Memory Usage Comparison a 

Molecule Number 
of 
Atoms 

6-31G 6-31G* 6-31G** 6-311G 6-311G* 6-311G** 

Number 
of Basis 
Functions 

Peak 
Memory 
Usage 

Number 
of Basis 
Functions 

Peak 
Memory 
Usage 

Number 
of Basis 
Functions 

Peak 
Memory 
Usage 

Number 
of Basis 
Functions 

Peak 
Memory 
Usage 

Number 
of Basis 
Functions 

Peak 
Memory 
Usage 

Number 
of Basis 
Functions 

Peak 
Memory 
Usage 

1VTP 396 2206 674MB 3418 880MB 4000 1049MB 4420 963MB 5002 1224MB 4000 1427MB 

Crambin 642 3597 1796MB 5559 2338MB 6509 2785MB 5244 2589MB 7206 3279MB 8151 3818MB 

1BQ9 765 4318 2570MB 6694 3357MB 7801 3985MB 6287 3687MB 8663 4686MB 9770 5441MB 

a. All calculations are on Telsa M2090 6.0 GB GPU.  
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3.5. CONCLUSIONS 

 
In this chapter, we evaluate ERIs on a GPU using recurrence relations and form the Fock 

matrix entirely in the GPU. Our full SCF benchmark calculations (along with earlier 

work described in the introduction) demonstrate that GPU ERI implementations achieve 

impressive speedups compared to traditional CPU architectures. The energy error 

associated with double-precision calculations in our implementation is on the order of 10-

7 a.u. compared to the CPU result, which meets most chemical calculation accuracy 

requirements. A well-sorted integral grid that reduces thread divergence and provides an 

optimized memory access pattern boosts the performance in terms of accuracy and 

efficiency. This speedup is also achieved by optimizing the Fock matrix formation 

scheme by introducing the atomic-operation to significantly reduce data transfer from N4 

to N2, which is one of the most time-consuming steps in conventional GPU SCF 

programming. Moreover, this approach also reduces redundant ERI calculation by 

reusing ERI data. Our benchmarks show the speedup increases with increasing system 

size, and our code now is applicable to s, p and d orbital functions which are in most most 

organic or biochemistry calculations.  

 

Even with the observed performance increases there are several avenues for 

improvement. In full SCF calculations, diagonalization is executed on the CPU largely 

because it is hard to efficiently implement on a GPU. In some systems, this dominates 

computation time, so it is necessary to introduce highly efficient GPU-based 

diagonalization routines. Moreover, like most other GPU ERI evaluation schemes, 
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register shortage is a crucial factor that limits GPU speedup, and this can be improved by 

even more aggressive memory caching and shared memory usage. As shown in our 

benchmarks, atomic operators bring considerable penalties especially for small 

molecules. Also it brings along a major energy error because of the limited function 

support.  

 

Our future work will focus on two aspects. First is the ERI derivative with which 

geometry optimization or molecular dynamics can be implemented and we are working to 

integrate this work with the AMBER MD package so that large-scale ab initio QM/MM 

is readily available. Another direction we are working on is post-HF methods such as 

MP2 and Coupled-Cluster methods. However, most post-HF methods reuse ERIs in 

different stages so a proper strategy is to store ERIs in external files, but in GPU 

implementation this treatment of ERIs will inevitably transfer calculated ERIs from the 

GPU to CPU, which as mentioned above, is very slow. So how to create efficient post-HF 

methods entirely in GPUs is still an open question. In addition, higher angular 

momentum function ERI evaluation is under development. We will refer to these 

questions in the next chapter.  
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MANUAL AND SAMPLE INPUT FILE OF QUICK 
 

The input file of QUICK follows the philosophy “Simple is better”, so software designer 

tried to minimize user’s learning cost.  

 

Installation 
 
To install QUICK, first you may need to configure make.in file. Intel Fortran compiler is 

recommanded.  

! Copy corresponding make.in file from makein folder and rename it to make.in.  

Then type  

make quick  

If you want to install GPU QUICK, NVIDIA CUDA COMPILER is required, which uses 

make.in.gnu.cuda. You may test 'nvcc --version'. Copy make.in.gnu.cuda to from makein 

folder to your directory and remane it to make.in  

cp ./makein/make.in.gnu.cuda ./make.in  

Before compiler, you must set CUDA_HOME in make.in file if not set in bashfile, 

otherwise, CUBLAS and other libraries can not been compiled or linked. Notice, if you 

want to support f orbital, set CUDA_SPDF=y in make.in file you copied from 

make.in.gpu.cuda, which will take a little bit long time and memory to compile, 

otherwise, set CUDA_SPDF=n for s, p and d orbital. (Default is not)  

! Modify CUDA_HOME=(your cuda home) in make.in file  

! Modify CUDA_SPDF=y or n in make.in file if you want or do not want to 

support gpu f function  

Then type  
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make quick.cuda  

in ./bin directory, you can find executable files. 

 

Usage and input file 
 

We suggest you to export install directory into PATH. Edit ~/.bashrc, then add this line  

export PATH=(YOUR QUICK DIR)/bin:$PATH  

and add basis set path  

export QUICK_BASIS=(YOUR QUICK DIR)/basis 

where (YOUR QUICK DIR) is your directory.  

In the input file, the first line is calculation card. For example  

HF ncyc=3 energy BASIS=6-31gs denserms=1.0e-7  

This means HF calculation is wanted, and after 3 cycle, we only calculate difference of 

Fock matrix, basis set is 6-31g**, and the convergence criteria is 1.0E-7. If you don't 

know anything about quantum chemistry, this card is recommended. After first line, you 

input your molecule geometry after a empty line. For example 

“ 

HF ncyc=3 energy BASIS=6-31gs denserms=1.0e-7 

 

C 4.5916 2.6127 4.3145  

H 6.8049 4.5138 -2.5775  

H 8.3134 7.7325 -1.0688  

H 4.3547 2.9911 3.3201  

H 4.5176 3.5187 3.7129  
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” 

which is the element and x,y,z coordinates respectively. Save the file as CH4.in for 

example, next, type  

quick CH4.in  

or GPU version  

quick.cuda CH4.in  

or MPI version 

 quick.MPI CH4.in 

These will generate CH4.out as output file (to master node if MPI version is used).  

 

More comments about GPU version  
 
Currently, QUICK support CUDA version 2.0 and up GPU, that supporting double-

precision. We tested on GTX580, M2090, K20 and K40 on minimum Linux system. We 

can't guarantee our program is flawless, and it is experimental now. If you have any 

question feel free to email the author. 
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CHAPTER 4. GPU ACCELERATION ON ERI DERIVATIVE 
EVALUATION 
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4.1. INTRODUCTION 

As we shown last chapter, Graphical Processing Units (GPUs) provide fast and accurate 

computational performance for a wide range of problems at a reasonable cost. 

Environments for developing general purpose computing on graphical processing units 

(GPGPU), such as the Compute Unified Device Architecture (CUDA), facilitate the 

creation of high-performance software for a wide range of applications even though 

GPUs were originally designed to render images on a monitor. Meanwhile, traditional 

quantum chemistry methods, such as the Hartree-Fock Self-Consistent field method (HF-

SCF) and Density Functional Theory method (DFT) are widely used to rationalize the 

behavior of molecular systems. However, the broad application of these methods, to large 

systems containing 1,000s of atoms, has been limited by their high computational 

requirements using traditional CPUs. 

GPUs, on the other hand, have recently become widely available as a general purpose-

processing platform. With GPU technology, it is possible to bring supercomputing power 

to the desktop and achieve trillions of peak floating point operations per second (FLOPS) 

outperforming desktop CPUs by over an order of a magnitude. Another key factor in 

GPU’s is becoming widely used in scientific areas is the release of NVIDIA’s Computer 

Unified Device Architecture (CUDA) platform that eases the coding burden for GPUs 

with an extension of the standard C/C++ language. Several papers describing the use of 

GPU Computing, especially with CUDA, have demonstrated impressive speedups for a 

range of computational chemistry applications, including ab intio quantum chemistry1-12 
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and its application to the simulation of biochemical reactions13-18, post-HF methods19-23 as 

well as empirical force-field and ab initio molecular dynamics24-26 simulations. 

 

The applications of ab initio computational chemistry methods are not limited to the 

study of the single point energetics or electronic structure of large molecular systems, but 

can also be used in molecular geometry optimization and molecular dynamics 

simulations which help scientists to simulate chemical reactions in silico rather than in 

the laboratory. However, for HF and DFT methods, not only is the single point energy 

required but also the computation of the energy gradients requiring significant 

computational resources especially in the study of large biochemical systems. Gradient 

calculation requires approximately the same computational effort as the SCF calculation, 

hence, GPU acceleration of this step will further benefit to computational chemistry 

community in its ongoing effort to study larger chemical systems. 

 

In last chapter, we reported the GPU acceleration of the Electron Repulsion Integral 

(ERI) evaluation for s, p and d orbitals8 to compute the HF and DFT single point energy, 

which further demonstrated the potential of GPU use in ab initio quantum chemistry 

methods. The realized speedup was 10~20-fold (with excellent accuracy) compared with 

a single core CPU for moderately sized molecular systems including proteins. However, 

two more challenging problems still need to be tackled for broader application of GPUs 

in quantum chemistry: efficient implementation of electron-correlation methods and 

efficient gradient computation for geometry optimization and MD simulation. GPU 

application to address electron-correlation has already been reported using MP222 and 
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Coupled-Cluster method19,20,27-29 with impressive overall performance. Herein, we focus 

on the latter issue. 

 

For energy computation the evaluation of ERIs with higher-angular momentum functions 

such as f orbitals (and beyond) becomes necessary. Due to the complexity of high-

angular momentum ERIs, GPU code to compute them is especially difficult to create and 

fine tune because of the difference in the architectures of GPUs relative to CPUs. 

Another challenge is the calculation of ERI derivatives, the bottleneck of HF gradient 

computing, that also depend on high-angular momentum ERIs, which is the problem 

faced for large basis set computations, but with a memory access pattern different from 

that of normal ERI computations. Therefore, these challenges and the ever increasing 

demands from computational chemists provide the main motivation for the present work, 

which is an implementation and calculation of high-angular momentum ERIs and ERI 

derivatives on GPUs. Efforts aimed at computing high-angular momentum functions and 

their associated gradients on GPUs have been reported using different ERI algorithms6,30. 

In this chapter, we describe a new algorithm to overcome issues surrounding the 

computation of higher-angular momentum functions and their gradients using recurrence 

relationships carried out on current-generation GPUs with negligible loss of efficiency. 

 

In this chapter, we first describe the algorithm we applied to evaluate ERIs, which is 

based on recurrence relations, one of the fastest ERI evaluation algorithms available 

especially for ERIs with high-angular momentum functions, and then its extension to 

analytical gradient computation will be introduced. In the next section, we will briefly 
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describe how to implement ERIs with high-angular momentum functions on GPUs and 

apply this to direct HF and DFT calculations. Moreover, a new strategy to assemble the 

gradient within the HF framework is introduced. In the last section, detailed benchmarks 

will be presented. We performed a series of small, medium and large molecule 

calculations to profile the speed and accuracy performance for problems requiring 

thousands of Gaussian-type basis functions. Finally we conclude the chapter with a brief 

discussion and conclusions. 

 

4.2. THEORY 

 
Within the framework of Hartree-Fock theory, the total energy of a closed-shell system 

can be expressed as the sum of electron-nucleus interactions (the first term), electron-

electron interactions (the second term) and nucleus-nucleus interactions (the third term) 

within the Born–Oppenheimer approximation 

!!"! = !!"!!"!"#$ + !
! !!"!!" !"| !" + !!!!"#$!"          (1) 

Here we use the notation !"| !" = !" !" − !" !"  to describe the electron 

repulsion integrals (ERIs), which represent the most expensive part in equation 1 

contributing to both the Coulomb and Exchange ERI terms. Four-centered ERIs are given 

by:  

!ν κλ = φ!(r)φ!(r) !
!!!!φ!(r′)φ!(r′)drdr′   (2) 

and the derivative of the total energy with respect to nuclear coordinate XA can be written 

as: 
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!!!"!
!!!

= !!" !!!"
!"#$

!!!!" + !
! !!"!!" ! !"| !"

!!!
− !!" !!!"!!!!" + !!!!

!!!!"#$   (3) 

Where the density matrix is !!" = 2 !!"!!"!/!
!  and !!" ≡ 2 !!!!"!!"!/!

! . As in 

electronic energy calculations, the major bottleneck in equation 3 is the evaluation of the 

ERI derivative. These can also be efficiently computed using recurrence relations in an 

analogous way to ERI computation as the following sections describe. 

 

4.2.1. ELECTRON REPULSION INTEGRALS AND RECURRENCE 

RELATIONS 

To evaluate ERIs, many different and efficient algorithms have been developed31,32, for 

example, Dupuis, Rys and King (DRK)33 developed the first algorithm for integral 

evaluation involving high-angular momentum functions, McMurchie and Davidson(MD) 

34 later on used Hermite polynomials to efficiently evaluate integrals over Gaussians-type 

basis functions, Obara and Saika (OS)35 and Head-Gordon and Pople (HGP)36 developed 

new recursion relationships with fewer terms by focusing on shifting work outside of the 

contractions loops. In this work, we employed an adapted OS and HGP algorithm to 

generate a general algorithm that is applicable to a wide range of integral types and 

offered an efficient implementation on GPUs. 

 

We represent ERIs using a linear combination of contracted Gaussian functions because 

of their well-known mathematical advantages. 

!! ! = !!"!! !!
!!!      (4) 
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A primitive Cartesian Gaussian function centered at ! = (!! + !! + !!) with exponent 

! is given by  

 !! ! = (! − !!)!!(! − !!)!!(! − !!)!!!!!(!!!)!      (5)  

and the contracted two-electron integrals are constructed from primitive ERIs by: 

!" !" = !!"!!"!!"!!"[!"|!"]!"#$     (6) 

in equation 5, ! = (!! ,!! ,!!), and ax, ay and az are a set of integers indicating angular 

momentum and the direction of the Gaussian function. These sums are restricted to 

functions with the same quantum number. It would be more efficient to compute all of 

the primitive ERIs involving four shells for which ! has the same !!. For example, 3 

[ps|ss] type integrals can be computed at the same time where ! = 1,0,0 , 0,1,0 !and 

0,0,1 . This will lead to complex conditions for high-angular momentum ERIs, for 

example, [dd|dd] will have 1296 kinds of different ERIs because each index can have 6 

different integer combinations to satisfy the pre-condition that the sum of these three 

direction integers equals 2. Therefore, the calculation complexity grows dramatically 

with the introduction of high-angular momentum functions such as f orbitals. 

 

To efficiently evaluate the value of ERIs, Head-Gordon and Pople (HGP)36 optimized the 

recurrence relation algorithm described by Obara and Saika (OS)35 to reduced the floating 

point operation count. It is based on the recurrence equation:  

! + 1! ! !" ! = !! − !! !" !" ! + !! − !! !" !" !!!  
+ !!
2! ! − 1! ! !" ! − !

! + ! ! − 1! ! !" !!!  

+ !!
2! ! ! − 1! !" ! − !

! + ! ! ! − 1! !" !!!  

+ !!
!(!!!) !" ! − 1! ! !!! + !!

!(!!!) !" ! ! − 1!
!!!                 (7) 
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Where i is x, y or z, and 

1! = (!!" , !!" , !!"),      (8) 
! = ! + !, ! = ! + !,     (9) 

!! = !!!!!!!
!!! ,!!! = !!!!!!!

!!! ,!!! = !!!!!!!
!!! .   (10) 

and !,!, !, ! are exponents of a, b, c and d respectively. Technically, all the integrals can 

be ultimately computed from [ss|ss] integrals, which can be analytically evaluated 

efficiently35,37. 

[!!|!!](!) = !
!!!!!"!!"!!(!)     (11) 

where 

! = !"
!!! (! − !)

!    (12) 

!! ! = !!!!!!!!!"!
!     (13) 

!!" = 2 !
!
!

!!! exp![−
!"
!!! ! − ! !]    (14) 

In, equation 7, the summation of the four indices decreases as ERIs with higher angular 

momentum functions are constructed from lower ones, so it is termed a vertical 

recurrence relation (VRR). Moreover, a horizontal recurrence relation (HRR) is also 

applicable for Gaussian-type ERIs 

[!(! + 1!)|!"](!) = [(! + 1!)!|!"](!) + (!! − !!)[!"|!"](!)  (15) 

and can be applied to contracted ERIs, 

! ! + 1! !" ! = ! + 1! ! !"
! + !! − !! !" !" !  

        = !!" !0 !0 !!!!!!!!!!,!!!!!!!         (16) 

Which hints that an ERI can always be expressed as a linear combination of (k0|l0) type 

ERIs. Therefore, a general strategy for evaluation of (ab|cd) is to calculate them from a 

set of integrals from (a0|b0) to ((a+b)0|(c+d)0). For example, for an ERI with a four d 

orbital index, (dd|dd), first we compute (ds|ds) (36 total), (fs|fs) (100 total) and (gs|gs) 
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(225 total) via a VRR and then assemble (dd|dd) using an HRR. Therefore, for the VRR 

step, only the b = 0 and d = 0 situation will be considered in equation (7), and we can 

obtain the (half) coefficient analytically as well from equation (16). 

! + 1! 0 !0 !

= !! − !! !0 !0 ! + !! − !! !0 !0 !!! + !!
2! ! − 1! 0 !0 ! − !

! + ! ! − 1! 0 !0 !!!

+ !!
2 ! + ! !0 ! − 1! 0 !!!  

(!!!!!| =
!!!
!

!!!
!

!!!
! !! − !! !!!!! !! − !!

!!! !! !! − !! !!!!! ! !(!!!!)(!!!!)(!!!!)0
!!!

!!!

!!!

!!!

!!!

!!!
 

(17) 
 

 

4.2.2. CALCULATION OF DERIVATIVE ERIS 

The derivative of a primitive Gaussian function !! !  is a linear combination of a higher 

and a lower angular momentum Gaussian function: 

!!!
!!!

= 2!! !!!!! − !!(!!!!!)    (18) 

Here A is the function center and i can be x, y or z. Similarly, the first derivative of a 

primitive ERI is also a combination of a higher and a lower primitive ERIs. 

!
!!!

[ab|cd] = 2!![ ! + 1! !|!"]− !![ ! − 1! !|!"]  (19) 

The recurrence algorithm described in the last section can be adapted to this equation 

except higher angular momentum ERIs are needed to compute the first derivative. For 

example, the first derivative of [dd|ss] requires [ps|ss] and [hs|ss] along with [ds|ss], 

[fs|ss] and [gs|ss] where the latter three are needed in the ERI evaluation as well. It is 

worth noticing that, to evaluate [dd|dd] type derivatives, for instance, [gs|gs], the integral 

with the most expensive computing cost, does not need to be evaluated because the first 

and third indices do not require higher ERIs simultaneously.  
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Also, because of translational invariance38, the sum of the gradients of four indices equals 

to 0: 

!
!!!

+ !
!!!

+ !
!!!

+ !
!!!

ab cd = 0    (20) 

So, in the worst case, only three rather four centers must be evaluated, and thus, we can 

skip the one with the largest estimated computational resource requirement to optimize 

the calculation. For the most optimal case, the contraction step can be applied to equation 

(19) using  

!
!!!

(ab|cd) = ! + 1! ! !" ! − !!( ! − 1! !|!")  (21) 

where the subscript ! in the first term of the RHS of above equation indicates that it has 

been formed with a contraction coefficients scaled by two. However, this strategy may be 

limited by the fact that the GPU may not have sufficient registers or/and memory to hold 

auxiliary integrals for high angular momentum ERIs. For equation 19, if three centers are 

evaluated simultaneously, only one set of temporary ERIs is needed, which is of [ab|cd] 

type, while equation 21 requires 4 sets ((ab|cd)a, (ab|cd)b, (ab|cd)c and (ab|cd)). Therefore, 

efficiency has to be sacrificed in this situation, and we will return to this issue and discuss 

the details in the next section. 

4.3. IMPLEMENTATION 

4.3.1. CUDA 

GPUs offer a tremendous amount of computing power in terms of FLOPS while being 

relatively efficient in terms of heat produced and overall energy costs. However, 

increased complexity and reduced flexibility are the shortcomings of GPUs when 
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compared with traditional CPU platforms. A GPU is an example of a massively parallel 

stream-processing architecture using a single-instruction multiple data (SIMD) model. 

GPUs process threads in blocks, with 16 to 1024 threads per block, which a programmer 

can specify in their code and the GPU executes the threads in warps. In the current 

generation of GPUs the warp size is 32. Threads in one warp must execute the same 

instruction in the same clock cycle due to the fact each streaming multi-processor 

executes in a Single Instruction Multiple Thread (SIMT) fashion. Therefore, branching 

must be addressed to avoid instruction divergence, which significantly affects overall 

performance. These thread blocks logically map to streaming multiprocessors (SM) in the 

GPUs; for example, 16 SMs for a NVIDIA M2090 (Fermi architecture) and 15 SMs for a 

NVIDIA K40 (Kepler architecture). These specifications are useful for optimum 

performance for code vectorization. Moreover, the Fermi architecture has compute 

capability of CUDA 2.x, which features fast double-precision computing and atomic 

operations, while Kepler has CUDA 3.x, which features even faster double-precision 

computing, in-warp communication and dynamic parallelism.  

 

The memory hierarchy of GPUs originates from its graphics lineage. Main memory, 

known as dynamic random-access memory (DRAM) or global memory, is visible to all 

threads in all multiprocessors, is relatively large (for example, 6GB for a M2090, 12 GB 

for a K40c) but comparatively slow such that that frequent data retrieval from DRAM 

should be avoided. Shared memory is accessible to all threads within a multiprocessor, 

but it is small (typically 48kB), but faster than DRAM, hence, it plays a critical role for 

thread communication or memory buffering when frequently fetching from DRAM is 
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necessary. Besides this type of memory, all threads have a small amount of private and 

fast registers, and in the recent Kepler platform, threads can gain access to registers of 

other threads in a same warp and avoid thread communication via shared memory. To 

maximize the potential of GPU computing, some further suggestions include (1) 

coalesced memory to access DRAM is recommended, (2) the chance of thread 

divergence should be minimized utilizing shared memory to store intermediate results, 

and (3) threads can hide memory latency by overlapping computations. Moreover, the 

CPU and GPU are in different physical address spaces and DRAM is the only way to 

synchronize the data between the host (mostly CPU) and the attached devices (GPUs), 

but this comes with a significant performance penalty due to the slow PCIe bus. Thus, 

CPU and GPU communication should be avoid if not necessary. In the following sections, 

we will describe an implementation based on the GPU programming philosophy 

described above.    

 

4.3.2. MACHINE GENERATED ERI CODE 

The code to evaluate ERIs, especially with high-angular momentum values, is extremely 

complicated with many different scenarios and possible coding tricks for optimization, so 

it is very difficult or even impossible to write ERI code by hand efficiently. In this case 

automated code generation is almost a requirement6,9. Our major focus is on the VRR 

step, which is based on equation 17, while the HRR step, which is given in equation 16, 

is relatively easy to write because the branching condition only depends on one index 

although it requires different subroutines for ERI evaluation and ERI gradient evaluation. 
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First of all, meta-classes were written by a code-generator that describes how an ERI 

class is related to up to 5 other classes via the determination of the necessary coefficients 

(using equation 17). The class description is presented in Figure 4.1. The class, named Cij 

, or relation class, represents the relation between the ERI class [i0|j0](m) and ERI classes 

with lower i and j values and higher m values with explicit i and j values but an implicit 

m value. The functions, Fij, evaluates the integral [i0|j0](0) starting from a set of starting 

integrals ranging from [00|00](0) to [00|00](i+j), and the [00|00] type integrals or C00 class 

can be analytically evaluated from equation 11 (the C00 class and the F00 function are 

actually assigned values in our code). The path from starting integrals to integral [i0|j0](0) 

can be easily patterned using a breath-first search by knowing the tree-like vertical 

recurrence relation as expressed in equation 17. Our code traces the required relation 

class Cij starting from Fij with a starting queue with Cij and an empty pool, then pop Cij 

into the queue and adding a dependent relation classes of Cij into the pool, after that, it 

repeatedly pushes all relation classes in the pool into the queue and pops them all while 

adding their dependent relation classes into the pool until only the C00 classes remains in 

the pool. As noted, in class Cij of Figure 4.1, the j index is downgraded while the i value 

is constant except for [(i-1)0|(j-1)0](m+1), however, we can also downgrade the i index and 

produce the same ERI value, so the final selection depends on which one has the fewest 

FLOPs and the same selection is made for Fij. These selections are made empirically. We 

hide some parameters such as P, Q, W and Gaussian function information in Figure 4.1 

for brevity. 
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The last, but quite important step, is the final optimization. We simplified the code by 

eliminating variables that are only used once by replacing the variables with their 

expressions and factoring out common sub-expression. For CUDA, eliminating variables 

may offer a greater benefit because it reduces register usage which otherwise could 

utilize slow global memory and jeopardize performance. Therefore, factorization may 

have a deleterious effect according to our tests. 

 

Using the procedure outlined above we generate an efficient ERI evaluation code for 

[i0|j0] with i and j values up to 6 respectively. This is sufficient for [ff|ff] ERIs and 

[dd|dd] gradient ERIs. These subroutines are relatively complicated in terms of numbers 

of lines, for example, F44, which calculates [h0|h0], has 344 lines and F66 has 8568 lines, 

which illustrates the necessity of using machine-generated code. 
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Figure 4.1. Class and Function description for the ERI code. (i,j)m
 represent an ERI 

class for [i0|j0](m) and class Ci,j is built to express its relation with other classes with lower 

i, j, same m and higher m values The goal of Function Fi,j is to generate [i0|j0](0) from 

[00|00](m) where the m value varies from 0 to i+j by using classes to express its path. 

 

 

Class Ci,j 

Member: !×!, where !⃗ in A and  !!⃗  in B satisfy 

 !⃗ = (!! , !!, !!) that !! + !! + !! = !  

and !!⃗ = (!! , !!, !!) that !! + !! + !! = ! 

Constructor: 

Input parameters: 

 Ci,(j-1)  (i, j-1)m+1 Ci,(j-1)  (i, j-1)m  Ci,(j-2)  (i, j-2)m+1 

 Ci,(j-2)  (i, j-2)m  C(i-1),(j-1)  (i-1, j-1)m+1 

 !, !, !!⃗ ,!!!⃗  and !!!!⃗  

Content: using input parameters to express each member of class Ci,j 

 

Function Fi,j 

C0,1 (0,1)0 : C0,0 (0,0)0 , C0,0 (0,0)1       // express (0,1)0 constructs from (0,0)0 , (0,0)1   

C0,1 (0,1)1 : C0,0 (0,0)1 , C0,0 (0,0)2     // !, !, !!⃗ ,!!!⃗  and !!!!⃗  should also include but not listed 

here 

… 
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4.3.3. ERI EVALUATION FOR LOW-ANGULAR MOMENTUM VALUES 

It is relatively straightforward to evaluate ERIs with quantum numbers less than 2.  

Technically, F00 to F44 (F00 is not a subroutine but a value) are all that is needed to 

calculate the most complex integral [dd|dd], and it is possible to combine all of these 24 

subroutines to one large subroutine, and NVIDIA's CUDA Compiler (NVCC) can 

successfully compile and execute this subroutine. In last chapter8, we showed the speedup 

and accuracy of this unoptimized subroutine, and below we illustrate the performance 

with optimized code. Moreover, this subroutine can calculate the gradient of s and p 

orbital integrals. We provide benchmark details below. 

 

4.3.4. ERI EVALUATION FOR HIGH-ANGULAR MOMENTUM VALUES  

For ERIs with higher-angular momentum, for example ERIs with f orbitals and ERI 

gradients of d orbitals, large numbers of registers are required and NVCC can neither 

compile nor execute if we include subroutines beyond F44. However, since we have 

equation 16, which suggests ERIs can be expressed as a linear combination of [k0|l0] or 

(k0|l0), we can divide these combination into several parts, for example,  

!b !" ! = !!" !0 !0 !!!!
!!!

!!!
!!! = !!" !0 !0 !!,!∈!!  (22) 

Which implies the additivity of ERIs. The subscript Z indicates that these ERIs are only 

contributing to VRR ERIs within zone Z. For example, we can manually setup two zones 

for [a0|c0] that Z1={a<3 and c<3}, Z2={a >=3 or c >= 3}. Then, Z1 includes s and p 

orbital only ERIs and Z2 contains ERIs involved with d and higher angular momentum 
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values. Moreover, it does not involve the exponent part so the contraction step can be 

applied.  

! ! + 1! !" ! = !!" !0 !0 !

!,!∈!!
 

= (((! + 1!)!|!")(!)! + (!! − !!)(!"|!")(!)!)!   (23) 

The previous equations demonstrate that if we separate the VRR step into several parts 

and count contributions from each part rather than compute all VRR ERIs as a batch, we 

can still produce the same results without introducing extra FLOPs into the VRR and a 

just a few extra FLOPs into the HRR. In addition, the derivatives of ERIs can be 

computed in this fashion as well, which we will use later. 

!
!!!

[ab|cd] = (2!! ! + 1! ! !" ! − !! ! − 1! ! !" !)!   (24) 

and if a contraction step is feasible on the GPU, then 

!
!!!

(ab|cd) = (( ! + 1! ! !" !)! − !! ! − 1! ! !" !)!   (25) 

With these equations, we can further consider a partition scheme. For now, we only 

consider F00 to F66, which computes ERIs up to [ff|ff]. All of these 48 subroutines 

(again, F00 is a value rather than a subroutine) can be merged into one subroutine. 

However, this fails in the compilation stage as described previously. The basic principal 

of our partition scheme is to try to bind as many subroutines into one subroutine as 

possible. Therefore, we developed the partition design presented in Figure 4.2. This 

scheme is the best fit for device of CUDA compute capability 3.x (3.0 and above) and 

2.x(2.0 and above but 3.0 below), within which, 9 and 5 subroutines or zones are 

separated from the global subroutine respectively, and functions that fall within the same 

zone will be warped into the same subroutine corresponding to one kernel during the 
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VRR step. Addition of other subroutines to a zone (combining zone 3 and zone 1 in 

Figure 4.2(a) for example) cannot compiled nor executed on current generation GPUs. 

These series of subroutines can be further optimized at the HRR step by pre-excluding 

select ERIs. 

 

As we described in last chapter and, indeed, most GPU-based SCF implantations, a pre-

sorting algorithm developed by Ufimtsev and Martinez1,2 is used prior to ERI evaluation 

to ensure that threads can execute the same or similar instructions with their neighboring 

threads within a warp. We again employed pre-sorting in our implementation, and we 

only describe the outline of this treatment with the full details being given in our previous 

publication. Since it is impossible to sort or vectorize N4 ERIs but it is possible to do so 

for N2 half ERIs, a feasible strategy is to replace the four-index ERI with a N2*N2 matrix 

problem with two dimensions represented by a bra (such as [ij|) and ket (such as |kl]). 

And once we have this type of ERI matrix, we can “thread walk” - searching from one 

element of the matrix to another, calculating the assigned ERI and continue to work on 

the next one until all elements have been evaluated. A thread will evaluate a contracted 

ERI rather than a primitive ERI since it has been shown that this strategy is very 

effective3. Each dimension, bra or ket, of the ERI matrix can be rearrange by three kinds 

of criteria, ERI type is the criteria with highest priority, with the primitive Gaussian 

function number and Schwarz cutoff as the second and third criteria, respectively. To try 

to minimize thread divergence, the selection of these three criteria was based on 1) 

different ERI types call different ERI subroutines which will take the majority of the 

calculation time, and is the innermost loop in the ERI subroutine. 2) The primitive 
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Gaussian function number determines the number of loops calling the ERI subroutine, 

and is the second innermost loop.  3) Sorting by the Schwarz cutoff maximizes the 

possibility of an all-cutoff or all-pass scenario for the ERIs evaluated in a warp, which is 

the outermost loop. The Schwarz cutoff is a method to estimate the upper bound of an 

ERI value by using a Cauchy-Schwarz inequality39  

[!"|!"] ≤ !" !" [!"|!"]     (26) 

Herein, we improve this treatment in two ways: First, before sorting by ERI types, we 

split the bra or ket into two parts, one with a high Schwarz value (dense region, expecting 

large integral values) and another with a low value (sparse region, expecting small 

integral values). The cutoff can then be manually chosen, and we select a value of 10-4 

because we found that it gives the best balance between efficiency and accuracy. For the 

dense region, the ERI values are typically too big to be ignored and the dominant factors 

are its ERI types and primitive Gaussian function numbers if a contraction step is feasible 

on the GPU. A hidden filter arises because of the symmetry of the ERI, 

[ij|kl]=[ji|kl]=[ij|lk] and so on, so only ERIs with i<=j and i<=k and k<=l need to be 

calculated. Therefore, if the Schwarz cutoff is an upper bound criteria, this does not 

impact the dense regions of the ERI matrix (see Figure 4.3). Via this, the order of the half 

matrix will be randomized resulting in instances where i>j which will be ignored by 

symmetry (i≤j are retained). If this conditional check is not made with the Schwartz 

cutoff divergence may occur. Without the Schwarz cutoff i≤j is always true which 

eliminates the need for the conditional check. So in the dense region, the Schwartz cutoff 

is not needed. On the other hand, for the sparse region ERIs will have a greater chance to 

be small enough to encounter the Schwarz cutoff so that once threads in one warp fall 
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into this region, it is very likely that all threads in the same warp will skip the ERI 

evaluation. Hence, in the sparse region, after sorting by ERI types, sorting the half ERI 

by the Schwarz cutoff upper bound is an efficient strategy.  

 

This strategy is illustrated in Figure 4.3, using an example of a water cluster with 4 

molecules 6 Å from each other such that both the inter and intra molecular interactions 

are considerable but neither very strong nor very weak.  This clearly splits the half ERIs 

into dense and sparse regions. This system includes 212 basis functions, 64 shells and 

1187 eligible half ERIs. We used a color scheme to illustrate the magnitude of the ERI 

upper bound. It is comparatively easy to discern the dense*dense and sparse*sparse 

region and the other two areas (dense*sparse) in between in Figure 4.3. The 

sparse*sparse area, mostly colored with purple and black regions are crowded with ERIs 

with a small upper bound while the dense*dense area is filled with orange that represents 

ERIs expected to have large values. However, the boundary for ERI types is hard to tell 

for the dense area because the Schwarz cutoff is not introduced in that area, however, the 

boundary for ERIs in the sparse area can be easily identified. The table next to the ERI 

matrix in Figure 4.3 indicates the boundaries for the half ERIs. 
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(a)        (b) 

     

    (c)       (d) 

Figure 4.2. Optimized subroutine partition pattern for (a) CUDA 3.0 and (b) CUDA 

2.0 architectures. All Fij functions that are within one zone will be warped in one 

subroutine and called in a kernel. (c) (d) Kernel call pattern for ERI type [ij|kl] with the 

partition strategy (a) for CUDA 3.0 and (b) for CUDA 2.0. See text for details. 
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Figure 4.3. Pre-sorting and thread walking illustration. The test case is a water cluster 

with 4 water molecules. The color scheme indicates the upper bound of ERIs, 

dense*dense, sparse*dense and sparse*sparse areas can be visually identify in the ERI 

matrix. The table on the right is the boundary for different ERI types. See details in the 

text. 

 

 

Besides this change, a second change is the thread walk was altered from a linear search 

to a circular search as shown in Figure 4.3. This adaptation is especially suitable to the 

first change because the large-valued and small-valued regions are most likely distributed 

circularly at the origin or at the edge of the ERI matrix. So at the beginning, the thread 

walk ensures almost every ERI is not cutoff and at the last steps of the walk, almost every 

visited ERI will be smaller than the cutoff criteria. Both changes yield a ~30% 

improvement for small systems and ~15% for large systems (typically for system with 
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more than 1000 basis functions) because of the smaller possibility of thread divergence. 

We compare other walk strategies, like linear and snake, on alanine chains with lengths 

of 1, 5, 9 and 13 using the 6-31g** basis set in Figure 4. The circular is faster for the 

smaller systems, but for larger all methods explored performed similarly. Other thread 

walk strategies might offer significant improvements as well but generally are not as 

good as the circular search and suffer more significant degradations when applied to large 

systems as well. Another note is that most SCF calculations will only evaluate the 

difference between iterations so in the final several iterations, the ERI matrix will be 

much more sparse than in the initial iterations. Thus, when applying the thread walking 

changes, the time needed to calculate later iterations will be slightly increased when 

compared with the original thread walking strategy. Nonetheless, the overall time 

required after these modifications is better than when these computational tricks are not 

employed.  
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               (a) Linear                          (b) Snake                               (c) Circular 

  Performance comparison between different thread walk strategies 

Molecule 
Name(Atom 

Number) 

α-helix 
acetyl(ala)18NH2 

(189) 

β-strand  
acetyl(ala)18NH2 

(189) 

Taxol 

(110) 

Valinomycin 

(168) 

Basis Set 6-31g 6-31g** 6-31g 6-31g** 6-31g 6-31g** 6-31g 6-31g** 

(a) Linear 144.7 435.1 64.7 203.4 49.3 149.9 106.8 312.1 

(b) Snake 142.0 433.2 63.1 201.2 49.0 148.2 105.8 310.7 

(c) Circular 135.2 424.1 57.0 191.8 45.2 145.2 98.7 301.4 

Improvement % 6.6 2.5 11.9 5.7 8.2 3.1 7.6 3.4 

 

Figure 4.4.  Thread walk strategy comparison. Three different thread walk strategies 

are presented for GPU calculations. Time used to calculate the 2nd iteration for four 

examples of alanine chains of different lengths using 6-31g** are reported. Unit is 

seconds. Improvement % row indicates performance improvement of circular strategy 

over linear strategy. 
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We visualize the kernel call pattern in Figure 4.2(c) and (d) for an ERI type [ij|kl] with 

two axes with i+j value and j+k values, respectively. We show the partition strategies for 

CUDA capability of 3.x and 2.x in Figure 4.2(a) and (b), respectively. Each cube 

corresponds to a kernel run for this type. For example, if i+j equals 5 and k+l equals 6, 

kernel 0,1,2,4,5 and 7 are necessary to compute its value. From a kernel perspective, a 

kernel does not contribute to every ERI type but only for certain types. For example, for 

subroutines in zone 1 warped as kernel 1 in Figure 4.2(a)  (designed for the device of 

CUDA compute capability 3.x) the kernel containing subroutines F(5~6)(0~6), is needed by 

ERI types [ij|kl] that fulfill the condition ! + ! ≥ 5, and similarly, for zone 3, threads only 

need to search ! + ! ≥ 5 and ! + ! ≥ 5. Therefore, only going through those regions that 

may produce these types of ERIs can minimize redundant thread walks and further 

improve performance. These calls are statically determined at the compilation stage to 

avoid unnecessary branching during runtime.  

 

4.3.5. IMPLEMENTATION OF ERI DERIVATIVE EVALUATION  

Besides the single point energy, the Hartree-Fock method can provide analytical 

expression for the energy gradient. Similar to the single point energy, the bottleneck is, as 

shown in equation 3, the evaluation of the ERI derivatives, which accounts for more than 

80%~90% of the CPU depending upon system size. To implement the HF gradient 

calculation on GPUs, two general steps are necessary: the ERI derivative evaluation and 

final gradient assembly. 
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For ERI derivative evaluation, similar to normal ERI evaluation, a recurrence relation is 

used in our implementation. The difference between normal ERI evaluation and the 

derivative evaluation, as discussed above (see equation 19), is the presence of two extra 

classes of ERIs one with higher index and another with a lower one. If, for example, we 

want the d orbital gradient, the derivative of [dd|dd] requires a series of subroutines 

F(0~5)(0~5) but F55 is not needed. However, as described in the last section, the compiler 

cannot handle all subroutines at once, therefore, a similar, but simpler, partition strategy 

was developed as shown in Figure 4.5, which represents a subset of the normal ERI 

evaluation process. As Figure 4.5 shows, three zones are indicated, and this partition is 

suitable for both the CUDA compute capability 2.x and 3.x architectures. The kernel call 

pattern is quite similar to that of the CUDA compute capability 2.x ERI evaluation but 

simpler so we do not present it herein. The thread walk is similar to that used in the 

normal ERI evaluation. Moreover, the HRR step for zone 1 and 2 are simpler than zone 

0. For zone 0, the most efficient algorithm is to evaluate twelve derivatives classes (four 

centers and three directions, but nine classes need to be computed (see equation 20) 

simultaneously once the value of the auxiliary ERIs from [00|00] to [(i+j+1)0|(k+l)0] and 

[(i+j)0|(k+l+1)0] are obtained. For the derivative of a primitive ERI, the HRR is applied 

as much as 18 times because there are 9 classes and each class has two ERIs (a higher 

and lower function). However, if the contraction step is possible on the GPU significant 

computational savings can be achieved. Zone 1, for example, is called when (1) (i+j) 

equals 4, (2) for the derivative of center i or j and (3) only when an ERI with a higher 

function is involved, hence, only 6 and 3 HRR computes are required at most for zone 1 

and zone 2. 
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Figure 4.5. Optimized Subroutine Partition for ERI Derivatives. This partition strategy 

works for both CUDA 3.0 and CUDA 2.0. The kernel call mapping is similar to Figure 

4.2 but simplified so it is not shown here.  

 

 

However, the contraction step, sacrificing space usage for reduced FLOP counts, given 

by equation 25 cannot be applied to zones 1 and 2 which are wrapped as two separate 

kernels. This is caused by insufficient register and memory resources available on the 

GPU. If the contraction step is applied, as given in equation 21, an efficient way to 

implement this is to store 4 sets of auxiliary classes whose class size increases 

exponentially with the growth in quantum number: For example, because the degeneracy 

number of s,p,d,f,g,h,i orbitals are 1,3,6,10,15,21,28, so for [dd|, L=4, we have 

1+3+6+10+15 = 35, therefore, [dd|dd] requires 35×35 for each class and 56×56 for the 

derivative; [ff|ff] requires 84×84 if each thread computes one contracted ERI, which is 
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infeasible for ERIs with higher-angular momentum functions even though one set is 

possible as discussed in the last section regarding [ff|ff] evaluation. So for zone 1 and 

zone 2, the contraction step is skipped because it is computationally infeasible. In this 

way CUDA executes the subroutines and each thread will work on a primitive ERI 

instead of a contracted one. We show below that with or without the contraction step we 

can achieve impressive performance.  

 

Another stage is assembling the gradient. In the HF energy implementation, we used 

atomic operations, a set of lock-set-unlock operations to void thread conflicts and 

assemble the Fock matrix in global memory. However, the drawback of atomic 

operations in our hands was their speed and accuracy. The clock cycle of atomic 

operations was generally two-fold less than that of registers and one-fold with respect to 

shared memory, even though this penalty could be reduced by coalescing memory access 

and thread access.  

 

Atomic operations are not particularly fast on Fermi GPUs but for Kepler GPUs they are 

~3x faster than the previous generation of cards. Therefore, we expect a similar accuracy 

using atomic operations for the SCF energy and gradient but with increased performance 

from the Kepler GPUs. Compared to the HF energy calculation, the number of atomic 

operations is significantly less for the HF gradient. This is because for the HF energy, an 

ERI class contains many individual ERIs (e.g., (pp|pp) contains 81 ERIs) and each ERI 

contributes to up to six elements to the density matrix via atomic operations (e.g., the 

(pp|pp) class, in the worst case scenario, requests up to 486 atomic operator calls). But for 
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assembling the gradient, an ERI class shares common centers which means they 

contribute to the same gradient elements, thus, the contribution from the ERI derivative 

can be assembled locally at the thread level.  The gradient is then updated using a single 

atomic operator call regardless if the contraction step is introduced, so a thread calls at 

most 12 atomic operators at once for zone 0, 1 and 2. We use a presorting step for the 

energy computation and reutilize this for the gradient computation. We could have 

created a pre-sorting strategy for the gradient computation as well, but this added 

overhead would eliminate the realized computational gains. 

 

4.4. BENCHMARK RESULTS AND DISCUSSION 

 
We implemented and benchmarked our ERI and ERI derivative code in our quantum 

chemistry package QUICK40 for both CPUs and GPUs. The QUICK CPU code was 

originally written in FORTRAN and the GPU code is rewritten in C++ together with the 

machine-generated code described above. We built the CPU version with the INTEL 

FORTRAN Compiler (version 12.1.5 20120612) with optimization option level 3 (-O3). 

For the GPU version, the Intel C++ Compiler (version 12.1.5 20120612) and CUDA 

compiler 4.2 V0.2.1221 with optimization option level 3(-O3) was used. Moreover, the 

fast math library option was used (-use_fast_math) and all calculations used double 

precision unless otherwise indicated. In our benchmarks, the CPU we used was a single 

core 3.07GHz Intel Xeon CPU X5675. The GPU test platform was a NVIDIA TESLA 

K40. This GPU card features 12 Gb of global memory, 15 streaming multiprocessors and 

2880 CUDA cores built based on the KEPLER architecture. In addition, we turned the 



99 

ECC off and clocked to 875MHz to maximize the performance. The K40 card has 

compute capability 3.5, so the kernel partition and kernel call pattern will follow Figures 

2(a) and (c). 

 

First, we present the tests we carried out on SCF energy calculations involving f orbital 

ERI contributions. In the SCF energy GPU implementation, all primitive ERIs were 

calculated on-the-fly and the Fock matrix was assembled in global memory, while for the 

CPU version, the primitive ERIs can be saved in memory to form contracted ERIs for 

higher efficiency which cannot be done on GPUs due to a shortage of register space. Both 

the CPU and GPU versions used the direct SCF procedure, which has been shown1,2,7,8 to 

be suitable for GPU-based SCF calculations. Any integrals smaller than 10-9 were 

neglected both in the CPU and GPU benchmark studies. ERI evaluation with f orbital 

contributions on GPUs will be treated with several kernel runs as discussed above, while 

for the CPU we ran in a traditional manner.  

 

We studied linear alanine chains with lengths ranging from 1 to 26 with the 6-31G(df, pd) 

basis set (with 280 to 4702 basis functions). The results are summarized in Figure 4.6. 

We plotted the time used for the second iteration to form the Fock Matrix with the 

superposition of atomic densities (SAD) initial guess.41,42 We exclude the one-electron 

contribution in the plot, which is relatively small and does not need to be calculated every 

iteration. Besides the time to form the Fock Matrix, diagnalization is another critical step 

for each iteration, and while it is relatively small for small systems it will ultimately 

dominate for very large systems because it scales as O(N3) which is larger than the 
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scaling dependence of direct SCF calculations. We use the second iteration for our 

benchmark studies because comparing with first iteration timings can lead to misstating 

the overall GPU performance. Meanwhile, besides the time to run a single iteration, the 

time cost associated with different kernels is plotted as well. As observed in Figure 4.6, a 

GPU yields an 8-18 times speedup when compared to a single core of a CPU with the 

speedup increasing with an increase in system size. This tendency was observed in last 

chapter8 and in the work of other groups9. This tendency is due to three reasons: (a) larger 

systems means larger ERI matrices that lead to less thread divergence; (b) larger systems 

produce more ERIs that are small enough to be cutoff and (c) reduction in chance 

collisions of thread requests to the same density matrix element in larger systems, which 

reduces the atomic operation penalty. The most time consuming kernel is kernel 0 (see 

Figure 4.6), which is not surprising since every ERI including ERIs with f-type Gaussian 

function contributions calls this kernel. Besides kernel 0, kernels 1-8 are called when the 

ERI has an f Gaussian function contribution with the accumulated time taking roughly 30% 

of the total time. 
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Figure 4.6. Calculation Time profiles for the CPU and GPU calculations on alanine 

chains. Timings for the CPU and GPU kernel time (top two curves) are based on the Fock 

matrix formation excluding the one-electron contribution. Timings for kernel 0 to kernel 

8 are given as well and the kernel call mapping corresponds to Figure 4.2. Platform and 

software details are described in the text. A logarithmic scale is used for the Y axis. 

 

 

The SCF energy error between the CPU and GPU calculation using double-precision is 

within 10-7 a.u. for the alanine chain test set which is quite accurate given the different 

execution order of the floating point operations for the GPU and CPU implementations. 

To further analyze our implementation, we examined several systems with different basis 

sets with (6-31G(df,pd) and 6-31G(2df,2pd)) and without f orbital contributions (6-



102 

31G**). The systems we tested include relatively small molecules such as taxol, 

valinomycin, and small proteins containing around 200 atoms including the PDB43 ID’s 

of 1AKG, 1CNL, 1M2C and 1PEN. The results are presented in Table 4.1. The number 

of basis functions varies from more than a thousand (taxol at the 6-31G** level) to more 

than five thousand (1M2C at the 6-31G(2df, 2pd) level). The realized speedup is11-13 

times and varies slightly with the basis set employed. The listed times used for kernel 1-8 

accounts for approximately 9.6%, 12.0%, 1.2%, 1.1%, 1.7%, 0.6%, 0.6%, and 1.0% of 

the total time and ~27% overall. According to Table 4.1, the performance of f orbital 

computing with a GPU is not significantly impacted by our partition treatment. Actually, 

6-31G(df,pd) and 6-31G(2df,2pd) calculations benefit from GPU usage because of  the 

“large basis set effect” described above and along with our partition treatment (which 

goes against some conventional thinking on this topic44). The partition scheme might also 

be applied to kernel 0, where we separate kernel 0 into several smaller kernels, to 

potentially gain better performance. However, we found this idea did not work because 

these subroutines are relatively small so the overhead penalty of GPU kernel initialization, 

repeated ERI screening calculations and extra calculations to select the corresponding 

subroutine reduces the benefit brought about by our partitioning scheme. In sum, to 

evaluate ERIs with f Gaussian functions, we need slightly more time for the calculations, 

but the overall speedup, even considering the extra time used, is still impressive, 

demonstrating the accuracy, feasibility and efficiency of our treatment of ERIs with 

contributions from f functions. 
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The next benchmark is focused on SCF gradient calculation using the same test systems 

(polyalanines) as before. The GPU is used only to accelerate the most time-consuming 

part, which is the derivative of 4-center ERIs while other contributions such as the one-

electron integral derivatives are calculated on the CPU since they only take a minor 

portion of the overall computation time. In this test, for both the CPU and GPU gradient 

calculations, the energy calculation itself was performed on the GPU to ensure we are 

using the same density matrix. The speedup of the GPU over the CPU calculation is 

illustrated in Figure 4.7(a) by comparing the time used to evaluate the derivative ERI part 

of the gradient calculation. As Figure 4.7(b) indicates, the accuracy of the GPU gradient 

compared to the CPU as indicated by the root mean squared deviation (RMSD) of 

calculated gradients and the max difference (bolded) is quite good. The first 6 points for 

6-31G are not presented because the difference is smaller than 10-12. In terms of accuracy, 

the RMSD of the gradient difference between the CPU and GPU is less than 10-10 and 10-

11 a.u. for the 6-31G** and 6-31G basis sets while the maximum difference is within 10-9 

and 10-10 a.u. respectively. According to Figure 4.7(a), we find that our GPU 

implementation speeds up the gradient calculation by as much as 19 times ((alanine)30 

with the 6-31G** basis set and 3010 basis functions). When compared to the GPU 

speedup of the SCF energy, the observed speedup here is slightly better due to the 

reduced number of atomic operations.  

 

To further analyze the differences in kernel time usage, we used the same set of systems 

used in the analysis of the energy calculation. The results are summarized in Table 4.2. 

Generally, the extra calculation (kernel 1 and kernel2) arising from the partition strategy 
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represents about 12% of the total time (previously it was ~30% on average). Overall the 

speedup of the gradient calculation on the GPU relative to the CPU was between 12.9-

16.1 times, which, as expected due to the reduction in atomic operations, is slightly better 

than what we observed for the realized speedups in the HF energy calculation on a GPU.  

 

One important application of the energy gradients is geometry optimization. To test our 

implementation we optimized the (glycine)12 chain with the 6-31G and 6-31G** basis set 

using the L-BFGS algorithm and profiled the performance and measured the accuracy of 

the geometries obtained using the CPU or GPU code base. These calculations involve 87 

atoms and 514 and 925 basis functions, respectively. The starting geometry was initially 

optimized with the STO-3G basis set using the GPU code. In order to compare the 

accuracy of the GPU gradient along with the GPU energy, three sets of computations 

were carried out. These include CPU (energy) + CPU (gradient), GPU (energy) + CPU 

(gradient), and GPU (energy) + GPU (gradient). We present the geometry RMSDs of the 

GPU+CPU and GPU+GPU relative to the CPU+CPU result from the same step in Figure 

4.8. As expected the error observed using the GPU energy and gradient calculation 

increases as the number of steps increases. The error in the 6-31G** result is slightly 

larger than that of 6-31G due to the larger number of basis functions employed. At 

geometry convergence, the RMSD is mostly within the 10-4 magnitude for both the 

GPU+CPU and GPU+GPU calculations with 6-31G and 6-31G** basis sets. The energy 

differences obtained for the GPU+CPU and GPU+GPU optimizations relative to the 

CPU+CPU result (in atomic units) are 1.80×10-6 and 3.21×10-6 for 6-31G and 7.46 ×10-6 

and 4.28×10-7 for 6-31G**.  
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 (a) 

 (b) 

Figure 4.7. (a) Speedup comparison and (b) gradient deviation comparison between 

CPU and GPU calculations with different basis sets for alanine chain lengths from 1 to 

30. Timing for CPU and GPU are based on the gradient generation time including data 

transfer but excludes the one-electron integral contribution. Platform and software details 

are described in text. For (b) RMSD and maximum difference (bolded) between the GPU 

and CPU result are presented. First 6 points are not presented because the difference is 

smaller than 10-12. A logarithmic scale is used for the Y-axis.  
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We also explored the memory usage of the GPU calculations. ERI evaluation with high-

angular momentum functions does not allocate extra memory, and therefore, the peak 

memory usage is the same as in our earlier efforts8. For the gradient calculation on the 

GPU, a relatively small amount of memory is required to store the gradient value and it 

scales linearly with the number of atoms. For the K40 card with 12 gigabytes, for 

example, calculation of the (alanine)28 chain using the 6-311G(2df, 2pd) basis set with 

6780 basis functions uses almost every bit of global memory, which is one of the largest 

systems that the K40 is able to handle in our hands. Hence, with Quick, GPU global 

memory is the limiting factor for larger systems currently. This limit, together with 

bandwidth and the number of registers that limit calculation speed and size will be 

mitigated with incoming GPU technologies such as NVLink which will boost bandwidth 

and available memory. 
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Figure 4.8. Accuracy of geometry optimization using a GPU versus a CPU. The test 

molecule was (Glycine)12 with the 6-31G and 6-31G** basis sets. Three sets of 

computations were executed including CPU+CPU, GPU+CPU, GPU+GPU. The curves 

indicate geometry RMSD relative to the CPU+CPU results at the same step. 
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Table 4.1. Performance Comparison between CPU and GPU SCF Calculationa,b 

Molecule/ 
Atom 

Number 

Basis Sets/ 
No. of Basis 

Function 

Kernel Time/s GPU 
total/s 

CPU 
total/s 

Speedu
p 0 1 2 3 4 5 6 7 8 

taxol 
(110) 

6-31G**/1160 132.11 - - - - - - - - 132.11 1735.13 13.1 
6-31G(df,dp)/2064 607.57 86.23 114.41  10.79 10.63  17.22 4.78 5.25  4.68 861.55 13178.28 15.3 

6-31G(2df,2dp)/2577 1488.60 221.32 283.74 20.05 20.22  38.49 8.95 9.28 9.05 2099.70 28856.43 13.8 
valinomyc

in 
(168) 

6-31G**/1620 276.29 - - - - - - - - 276.29 3397.98 12.3 
6-31G(df,dp)/2940 1206.36 158.77 205.08 21.29 19.24 29.98 10.56 11.00 16.77 1679.05 24905.01 14.9 

6-31G(2df,2dp)/3678 3014.18 411.14  513.33  41.63  37.88  68.08  21.46  21.73  36.03  4165.46 56135.19 13.4 

1AKG 
(209) 

6-31G**/2171 616.04 - - - - - - - - 616.04 7290.80 11.8 
6-31G(df,dp)/3839 2874.78 370.15 469.47 53.39 47.25 68.28 28.20 28.47 47.67 3987.67 49457.74 12.4 

6-31G(2df,2dp)/4829 6220.36 841.31 1055.04 90.57 81.01 141.26 48.86 48.28 86.58 8613.27 107771.61 12.5 

1CNL 
(169) 

6-31G**/1771 424.36 - - - - - - - - 424.36 5054.76 11.9 
6-31G(df,dp)/3149 2033.50 263.78 335.74 35.90 32.47 48.86 17.67 18.57 26.28 2812.77 34725.38 12.4 

6-31G(2df,2dp)/3929 4405.82 597.59 743.98 62.04 56.40 97.97 29.60 30.72 49.02  6073.13 75738.14 12.5 

1M2C 
(220) 

6-31G**/2276 704.04 - - - - - - - - 704.04 7969.27 11.3 
6-31G(df,dp)/4060 3245.16 410.62 511.75 61.66 52.59 76.42 33.30 34.26 60.80 4486.57 53311.56 11.9 

6-31G(2df,2dp)/5068 7055.35 937.31 1158.67 107.66 95.43 156.81 57.60 57.60 110.93 9737.35 119672.64 12.3 

1PEN 
(203) 

6-31G**/2131 607.46 - - - - - - - - 607.46 7537.26 12.4 
6-31G(df,dp)/3789 2812.73 365.32 464.97 54.55 48.75 69.25 28.03 28.10 46.13 3917.83 48023.12 12.4 

6-31G(2df,2dp)/4728 6101.39 829.10 1034.71 88.97 80.81 138.65 46.94 46.85 82.34 8449.76 106282.32 12.6 
a. Time listed in the table indicates the time used to form the Fock Matrix in the 2nd iteration of the SCF calculation excluding the one-

electron contribution and the diagonalization time. 
b. Platform and software details are described in the text. 
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Table 4.2. Performance Comparison between CPU and GPU HF-Gradient Calculation a,b 

Molecule/ 
Atom Number 

Basis Sets/ 
No. of Basis 

Function 

Kernel Time/s GPU 
total/s 

CPU 
total/s Speedup 0 1 2 

taxol 
(110) 

6-31G/647 98.00 - - 98.00 1345.82 13.7 
6-31G**/1160 379.70  18.65  33.78 432.13  6939.49 16.1 

valinomycin 
(168) 

6-31G/882 183.47 - - 183.47 2584.33 14.1 
6-31G**/1620 691.03  35.75  57.62  784.40  12538.55  16.0 

1AKG 
(209) 

6-31G/1211 444.66 - - 444.66 5729.57 12.9 
6-31G**/2171 1522.28 75.22 132.96 1730.46  25422.03 14.7 

1CNL 
(169) 

6-31G/991 303.96 - - 303.96 3914.50 12.9 
6-31G**/1771 1078.59  49.77  90.32  1218.67  17861.00  14.7 

1M2C 
(220) 

6-31G/1268 477.74 - - 477.74 6238.65 13.1 
6-31G**/2276 1677.16  86.20  146.89  1910.26  27997.59  14.7 

1PEN 
(203) 

6-31G/1192 423.68 - - 423.68 5616.09 13.3 
6-31G**/2131 1500.19  74.27  132.99  1707.45  25548.42  15.0 

a. Time listed in the table indicates the time used to calculate the gradient using the 
HF method excluding the one-electron contribution 

b. Platform and software details are described in the text. 
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4.5. CONCLUSIONS 

 
In this chapter, we implemented the evaluation of ERIs up to f orbitals and ERI 

derivatives up to d orbitals using GPU technology and ERI recurrence relations. Our SCF 

and gradient calculations demonstrate the efficiency of GPUs where speedups of 10~20 

times faster are expected over modern CPUs. A partition strategy is introduced to solve 

the difficulties encountered in computing ERIs including f orbitals and was further 

applied to d orbital gradient calculation. Importantly, we observed a very limited 

efficiency decrease after employing this strategy. A well-sorted pre-sorting strategy and 

several other improvements boost overall GPU performance and atomic operations are 

used to reduce data transfer which is particularly effective on a Kepler GPU. Moreover, 

like other GPU-enabled quantum chemistry software4,14, GPU-based DFT calculation is 

also available in QUICK although we did not touch on this topic. For pure DFT methods, 

such as BLYP and LDA, the difficulty of GPU coding is significantly easier than 

encountered in HF while the speedup that a GPU can bring is at the same level seen for 

HF. Now with the help of ERI acceleration, hybrid DFT methods, such as B3LYP, is 

available by simply calculating the HF and BLYP contributions to exchange-correlation 

part, respectively, using the GPU.  

 

Even with the observed performance increase using GPUs, there is still room to improve. 

Our long-term goal is to efficiently and accurately investigate complex biological 

systems with GPUs and most calculations will involve s, p and d orbitals and f orbitals 

when large basis sets or calculations involving metal ions are employed. Hence, f orbital 
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gradients is currently the next piece of the puzzle. However, even though we have 

generated the F(0~7)(0~7) code with an automatic code generator, which is sufficient for the f 

orbital gradient calculation, the difficulty is that even if the partition strategy is used as 

well, a kernel that only calls the subroutine F76, for example, will fail at the compilation 

stage because the memory requirements are beyond the current generation of GPU cards. 

We developed a compromise approach to deal with this dilemma that split a given 

subroutine into several kernels but find that the overall performance is quite poor. So we 

currently run this part of the calculation on the CPU. However, GPU cards and software 

continues to improve so solutions to this problem are likely to be available in the near 

future.  

 

Our future work will focus on following aspects. First we are integrating our source code 

with the AMBER MD package to further enable ab initio QM/MM simulations15. Second 

is to develop GPU enabled correlated ab initio methods such as MP2 and coupled-cluster 

methods. Moreover, GPU enabled second order derivatives would also be helpful for 

scientists who want to calculate frequencies or other properties. Additionally, a multi-

GPU implementation and implementation of the code on INTEL PHI platform is on 

going in order to have another option to accelerate ab initio calculation1,9. 
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SAMPLE OF MACHINE GENERATED CODE 

 

The goal of the machine-generated code is to generate a function such as 

void h_2_2(QUICKDouble* store, arguments) 

where store is an double-precision float(type name QUICKDouble, a redefined double 

type) array that saved ERIs. The purpose of above function is to evaluate (20|20) or 

(ds|ds) integrals and save them to the ERI container store. Arguments are some constant 

parameters that describes molecular and basis sets information. 

 

Within h_2_2,  

__device__ __inline__ void h_2_2(QUICKDouble* store,arguments)  

{  

// call for L = 0 B = 1  

f_0_1_t f_0_1_0 ( VY(0), VY(1), arguments);  

// call for L = 0 B = 1  

f_0_1_t f_0_1_1 ( VY(1), VY(2), arguments);  

// call for L = 0 B = 2  

f_0_2_t f_0_2_0 ( f_0_1_0, f_0_1_1, VY(0), VY(1), arguments);  

// call for L = 0 B = 1  

f_0_1_t f_0_1_2 ( VY(2), VY(3), arguments);  

…. 

 // call for L = 2 B = 2  

f_2_2_t f_2_2_0 ( f_1_2_0, f_1_2_1, f_0_2_0, f_0_2_1, f_1_1_1, arguments);  
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// WRITE LAST FOR I = 2 J= 2  

LOC2(store, 4, 4, STOREDIM, STOREDIM) += f_2_2_0.x_4_4 ;  

LOC2(store, 4, 5, STOREDIM, STOREDIM) += f_2_2_0.x_4_5 ;  

… 

} 

Here, VY(i) stands for F00 classes with m value equals to i because they are a set of value 

rather than classes. f_[i]_[j]_t class is a ERI (i0|j0) type with each member of the class is 

one combination of the ERI, for example,  

 

// Class for L = 0 B = 2  

class f_0_2_t {    // (ss|sd) ERI type 

public: QUICKDouble x_0_4 ;  // (s=0, s = 0, s=0, d = xx) 

QUICKDouble x_0_5 ;  // (s=0, s = 0, s=0, d = yy) 

QUICKDouble x_0_6 ;  // (s=0, s = 0, s=0, d = zz) 

QUICKDouble x_0_7 ;  // (s=0, s = 0, s=0, d = xy) 

QUICKDouble x_0_8 ;  // (s=0, s = 0, s=0, d = xz) 

QUICKDouble x_0_9 ;  // (s=0, s = 0, s=0, d = yz) 

__device__ __inline__ f_0_2_t( f_0_1_t t_0_1_0, f_0_1_t t_0_1_1, 

QUICKDouble t_0_0_0, QUICKDouble t_0_0_1, arguments);  

}; 
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Size of this class is enormous for ERIs with higher angular momentum value. And the 

inline function, expresses the relation between one ERI type and ERIs with lower angular 

momentum value. For example,  

__device__ __inline__ f_0_2_t :: f_0_2_t ( f_0_1_t t_0_1_0, f_0_1_t t_0_1_1, 

QUICKDouble t_0_0_0, QUICKDouble t_0_0_1, arguments)  

{ 

x_0_4 = Qtempx * t_0_1_0.x_0_2 + WQtempx * t_0_1_1.x_0_2 ;  

x_0_5 = Qtempy * t_0_1_0.x_0_3 + WQtempy * t_0_1_1.x_0_3 ;  

x_0_6 = Qtempx * t_0_1_0.x_0_3 + WQtempx * t_0_1_1.x_0_3 ;  

x_0_7 = Qtempx * t_0_1_0.x_0_1 + WQtempx * t_0_1_1.x_0_1 + CDtemp * ( 

t_0_0_0 - ABcom * t_0_0_1 ) ;  

x_0_8 = Qtempy * t_0_1_0.x_0_2 + WQtempy * t_0_1_1.x_0_2 + CDtemp * ( 

t_0_0_0 - ABcom * t_0_0_1 ) ;  

x_0_9 = Qtempz * t_0_1_0.x_0_3 + WQtempz * t_0_1_1.x_0_3 + CDtemp * ( 

t_0_0_0 - ABcom * t_0_0_1 ) ;  

} 

 

In sum, function h_[i]_[j] is to calculate ERI type (i0|j0) by the assistant of sets of 

f_[i]_[j]_t classes to evaluate the value from VY(i), a set of F00 or (00|00)(m) values. The 

code is extremely long and complicated, for example, 788 lines for f_6_6_t, and 124 

f_[i]_[j]_t is constructed and computed as auxiliary ERIs for h_6_6 to calculate (60|60) 

ERI type containing 28*28 = 784 elements.  
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CHAPTER 5. GPU ACCELERATION ON HISTOGRAM ANALYSIS 
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5.1. INTRODUCTION 

 
The concept of the potential of mean force (PMF) [1] !(!) with coordinate ! , was 

originally introduced by Kirkwood and is frequently used to understand the mechanism 

of “rare” transitions in solid, fluids or complex biochemical systems. To obtain accurate 

estimates of a free energy barrier along a reaction coordinate that is substantially higher 

than the minima, a standard canonical (NVT) simulation provides little or no sampling in 

the barrier region. In order to address this issue, a set of N separate “umbrella” sampling 

[2,3] windows are created using a biasing potential, ! ! ,!in order to confine the system in 

the neighborhood of position ! in order to enhance sampling. A typical umbrella biasing 

potential uses the harmonic form: 

!! ! = !!!! (! − !!)
!   (1) 

which restrains the system at position !! with a force constant !!. The windows created 

along a reaction path are then “unbiased” and combined to obtain the PMF over the 

whole region of interest. 

 

The weighted histogram analysis method (WHAM) described by Kumar et al[4-6] is an 

algorithm that unbiases a set of simulations that have sampled different regions of !! and 

then assembles the free energy profile. This method is based on the histogram method 

proposed by Ferrenberg and Swendsen [7], whose central idea is an optimal estimate of an 

unbiased distribution function as a weighted sum over data extracted from simulations 

using the maximum overlap method and statistical error minimization. Not only single 
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coordinate [8,9] but also multidimensional free energy surfaces [5] can be determined with 

this method, and many successful applications have been reported [10-12]. However, one of 

the difficulties of multidimensional WHAM is its cost which is O(Nm), where N is the 

number of simulations and m is the number of grid points. Here grid points are defined 

by the WHAM calculation itself and represent a further parsing of the region between 

umbrella sampling points. Hence, depending on the data set size the computational cost 

can range into days on a single processor for high-resolution WHAM calculations.   

 

The use of graphics processing units (GPUs) in computational chemistry and biology has 

rapidly expanded over the past decade due to the availability of GPU software 

development tools and because GPUs offer massively parallel computing at a reasonable 

cost. Compared with traditional parallel approaches, such as OpenMP or MPI, which are 

designed for sequential execution, GPU programming is especially suitable for 

calculations that require massive data parallelism where thread computation is 

independent from each other. The most widely used GPU programming interface, which 

was introduced by NVIDIA, is the Compute Unified Device Architecture (CUDA) [13]. 

Within the CUDA framework, the most basic units called threads are arranged into one-, 

two- or three-dimensions to form a block, and blocks then form one-, two- or three-

dimensional grids. Configuration of blocks and threads are logical concepts, so they can 

be tuned to maximize performance. CUDA provides threads “private” and fast, albeit 

limited registers, and threads in a block can communicate with each other via shared 

memory, which has medium access speed. Global memory (also know as DRAM) and 

constant memory are two types of memory that CUDA provides that are visible to every 
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thread. Global memory has a large capacity (e.g., 6.0 GB for the NVIDIA FERMI 

M2090) but large access latency, while constant memory is fast but read-only.  

 

In this chapter, we implement Grossfield’s WHAM program[14] to run on a GPU. We will 

briefly describe the theory of WHAM and then introduce the algorithm and strategy used 

in the GPU implementation. We then demonstrate the performance improvement by 

calculating the energy surface for a typical enzyme reaction. Finally, we draw 

conclusions in the final section of this chapter. Our GPU tests were performed on the 

widely used NVIDIA K40 with 12.0 GB of DRAM. 

 

5.2. THEORY AND METHODS 

 
In this section, we will first briefly review the theoretical basis of WHAM. WHAM deals 

with a set of histograms obtained using the same grid size from the N independent 

window simulations. The independent simulations are generally called windows, that 

have been collected via molecular dynamics simulations biased with an umbrella 

potential like that given in eq (1). Generally, like most statistical methods, the accuracy 

of the calculation and cost are dependent on the numbers of windows and the amount of 

sampling done at each window. 

 

From the ith biased ensemble, suppose that the distribution function along the ! is a 

Boltzmann distribution, then the unbiased distribution function obtained is  

!!(!"#$%&'() ! = !![!! ! !!!]!!(!"#$%&) !      (2) 
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Where !!  is the umbrella potential perturbation constant, and the b is the inverse 

temperature ! = 1/!!!. It has been shown[4,7] that the optimal estimate of ! ! , the 

unbiased probability distribution at position!! is: 

! ! = !!!!![!! ! !!!]!!
(!"#$%&'() !!

!!!

!!!!![!! ! !!!]!
!!!

   (3) 

where !! is the number of data points obtained from ith the umbrella simulation used to 

construct the biased distribution function. We assume the probability distribution is 

normalized, and if it is not, we can simply normalize it in the end. Combining eqs(2) and 

(3), 

! ! = !!!!
!"#$%& !!

!!!

!!!!! !! ! !!!!
!!!

     (4) 

For the constant !!, we have 

!!!!! = !! ! ! !!!!! !     (5) 

Eqs(4) and (5) are the WHAM equations, and they depend on each other, so in practice 

the unbiased potential is achieved through an iterative procedure by starting with an 

initial guess for the !! !(usually set as 0) and then generating new estimates of ! !  and !! 

until convergence is achieved. When implementing this algorithm, we divide the 

coordinates into very small grids that have the same size (not to be confused with the 

points used in the umbrella simulations). We can rewrite eqs (4) and (5) as: 

! ! = ! !! !!
!!!

!!!!! !! ! !!!!
!!!

     (6) 

!!!!! = ! ! !!!!! !
!     (7) 
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where !! !  is the number of sample points located on the same grid point with !, and !! 

is the average additional free energy.  

 

Up to this point, eq (6) and (7) are applicable to a general N-dimensional space, but we 

have only implemented the two-dimensional case because 1-D is relatively fast and 2-D 

analyses are the most widely used. Higher dimensions can be analyzed in an analogous 

fashion, but have not been explored herein. However, extensions to 1-D or higher 

dimensions involve similar algorithms and can be readily implemented if needed. For 

two-dimensions, eq(6) yields Ngrid_x*Ngrid_y equations, where, Ngrid_x stands for the number 

of x axis grid points in each WHAM histogram. Each equation requires two summations, 

and each of them has N terms that need to be added up. Therefore, for eq(6), the 

computation cost is O(N*Ngrid_x*Ngrid_y). Eq(7) represents N independent equations and 

each one has Ngrid_x*Ngrid_y elements to be gathered up yielding a computational cost of 

O(N*Ngrid_x*Ngrid_y) as well. Its worth noting that the computational cost is only relative to 

the number of umbrella windows and the number of WHAM grid points, and not to the 

number of sample points obtained in the constrained MD trajectory, but the accuracy 

depends on all the three factors.  
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Figure 5.1. Psudo-code for implementation of part 1. 

 

Below, we describe the details of the present implementation on the CUDA platform. The 

description is presented using C++ pseudocode in C++ (see Figure 5.1). The lines after 

“//” in pseudocode are comments. 

 

 
 
__global__ void calc_rou(){ 

// array numerator and denominator are stored in shared  
// memory so that thread in this block can have access 
__shared__ numerator[THREAD_PER_BLOCK]; 

     __shared__ denominator[THREAD_PER_BLOCK]; 
     for( int i = blockIdx.x; i < Ngrid_x; i+= gridDim.x){  
          for( int j = blockIdx.y; j < Ngrid_y; j+= gridDim.y){ 
              k = threadIdx.x;  // k is the thread ID 
                       //numerator for one thread is the  

// histogram value fetched from global   
//memory 

            numerator[k] = get_histogram_val(i, j, k);  
 
              // denominator requires potential calculation 

            denominator[k] = get_number_points(k)  
     * exp(-beta*(calc_potential(i, j, k) – 

f[k])); 
       __syncthreads(); 

 
              // thread 0 will summarize 

             if (k ==0){ 
    summarize numerator array to numerator[0]; 
    summarize denominator array to denominator [0];   
     

// rou is two-dimensional array that store in global   
                     // memory as eq6 calculated 
    rou[i][j] = numerator[0]/denominator[0]; 
              } 
          } 
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Figure 5.2. Psudo-code for implementation of part 2. 

 

To begin with, we call the implementation of eq(6) and eq(7) as Part 1 and Part 2 in the 

following discussion (see Figure 5.1 and 5.2). For eq(6), as the pseudocode shown in 

Figure 5.1 indicates, our strategy was to assign a block to an equation, then all threads in 

a block calculate !!!!! !! ! !!!  and fetch !! !  from global memory, where k is the 

thread id. Therefore, within the two-dimensional WHAM framework, we configure a 

two-dimensional block to map each equation with a one-dimensional thread. For 

example, Block (0,0) will work on!! (0,0) , and, for example, the very first thread with 

threadID equals 0, will fetch !! (0,0)  and calculate !!!!! !! (!,!) !!! . After that, a 

reduction in a block is executed to sum the denominator and numerator. As a result, 

 
__global__ void calc_F(){ 
  // array F are 2-dimensional and stored in shared memory so that  
  // every thread in this block can access it 
    __shared__  F_cache[THREAD_PER_BLOCK][THREAD_PER_BLOCK]; 
    for( int i = blockIdx.x; i < Nwindows; i+= gridDim.x){  
        for( int j = threadIdx.x; j < Ngrid_x; j+= blockDim.x){  
            for( int k = threaIdx.y; k < Ngrid_y; k+= blockDim.y){ 
                 F_cache[j][k]=get_rou(j,k)*exp(-beta*calc_potential(j,k,i)); 
            } 
        } 
         __syncthreads(); 
         if(threadIdx.x == 0 && threadIdx.y == 0) { 
              summarize F_cache to F_cache[0][0]; 
             // F is one-dimensional array that store F in global memory that 
            // eq(7) wants to calculate. 
              F[i] = F_cache[0][0]; 
         } 
     } 
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! ! !can be computed in one block and stored in global memory so that it is visible to all 

threads on the GPU. Similarly for eq(7), as the pseudocode listed in Figure 5.2 describes, 

each block works on one equation, and threads in this block generate 

! !(!,!) !!!!! !(!,!) , where !(!,!) is the assigned grid point. The most suitable 

configuration in this case will be a one-dimensional block with two-dimensional threads. 

The configuration utilized is illustrated in Figure 5.3. It is worth noticing that the data 

transfer from CPU to GPU is carried out once before the first iteration starts rather than at 

every iteration, which includes the histogram and force constant(s), and the variables 

reside in the GPU until the probability distribution reaches convergence, and data is 

transferred from the GPU to CPU to download the distribution and ! !  and !! . 

Therefore, data transfer time is negligible compared to the full calculation. 
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Figure 5.3. Configuration used for the first step in a WHAM calculation. Blue 

rectangles indicate a block unit, while orange rectangles represent threads. 
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Figure 5.4. Configuration used for the second step in a WHAM calculation. Blue 

rectangles indicate a block unit, while orange rectangles represent threads. 

 

 

5.3. RESULTS AND DISCUSSION 

 
In this section, we benchmarked our GPU implementation by evaluating the energy 

surface of CusF metallochaperone. CusF is a periplasmic metallochaperone exist in 

Escherichia coli, encoded by cus-CFBA operon[30]. It was hypothesized to capture 

Cu+/Ag+ ions and transfer them to CusCBA pump in order to expel them out of the 

cell[31]. It is related to metal ion and antibiotic resistance, which makes it a potential 

pharmaceutical target. 
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Figure 5.5. Benchmark reaction studied: CusF metallochaperone. Open(top) and 

close(bottom) state exist for CusF protein. Umbrella sampling carried on for two 

dimensions with x axis as one distance (Cu+--Trp44@CZ3 distance) and y axis as one 

dihedral angle (Glu36-Met47 Phi angle, highlighted in black). See text for details. 
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In recent simulations of our group, we found there is an open state structure exist for the 

CusF protein, while the transition between the closed and open states may play a 

significant role in the metal ion transfer process between CusF and CusCBA complexes 

(unpublished results). Just like the former work[32], we modeled the system based on the 

PDB entry 2VB2. AMBER ff99SB force field4 was employed for the protein system 

while the SPC/E water model5 was used to solvate the system. A hybrid metal model was 

utilized to model the metal binding site. The interaction of Cu+ ion and Trp44 residue 

was treated with nonbonded model while the interactions between Cu+ ion and the other 

three ligating residues (His36, Met47 and Met49) were represented by the bonded model. 

The bonded model are parameterized by Metal Center Parameter Builder (MCPB)6 

software in Modeling ToolKit++ (MTK++) in AmberTools[33]. During the research we 

found there are one distance (Cu+--Trp44@CZ3 distance) and one dihedral angle 

(Glu36-Met47 Phi angle) in the metal binding site, as shown in Figure 5.5, could 

distinguish the closed and open state remarkably. For example, in a closed state structure 

we found the distance is 2.33 Å while the dihedral angle is -147.53°. In an open state 

structure the corresponding distance is 17.42 Å while the dihedral angle is 47.61°. To 

further clarify the free energy differences between the closed and open state, we 

processed a 2D potential of mean force (PMF) simulations by treating the Cu-

Trp44@CZ3 distance as the reaction coordinate (RC) X axis while the Glu46-Met47 Phi 

dihedral angle as RC Y axis. We began the umbrella sampling from a closed state 

structure of metal loaded CusF. The harmonic potential of all the simulations is set as 10 

kcal/mol-1Å-2 for the distance and 500 kcal/mol-1Rad-2 for the dihedral angle. The initial 

closed state structure has a RC as (X=2.33Å, Y=-147.52°) while the PMF termination has 
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RC as (X=17.83 Å, Y=98.72°). The X-axis has 0.50 Å increased and Y- axis has 6.48° 

increased and in sum there are 32 * 39 =1408 windows for the whole umbrella sampling 

map. There are 6 ns sampling for each window with stepsize as 1 fs. The data points were 

stored for each 1 ps during the simulation so that sample data is uncorrelated. 

 

As mentioned before, our implementation is based on Grossfield’s WHAM program[14], 

so the original  code is used for the CPU calculations and we directly ported this code to 

run on GPUs. Our code can be downloaded under a GNU general public license. The 

GPU benchmarks were executed on an NVidia K40 card. This card has 6 Gigabytes of 

memory, 12 Streaming Multiprocessors and 2880 CUDA cores. For comparison, the CPU 

version was run on a single core of an Intel Xeon X5675 CPU with 3.07GHz frequency. 

Both codes were compiled using the Intel C++ Compiler 10.1.15 using optimization level 

3(-O3) and the CUDA compiler 4.0 v0.2.1221 is used for the GPU code. We used the fast 

math library option (-use_fast_math) for better performance on the GPUs. Using a CPU, 

a single iteration takes 90 s on average, and each calculation takes more than two 

thousand iterations to reach convergence, which requires more than 50 hours in total to 

reach convergence on this data set. In most of our calculations, the grid was fine enough 

to obtain accurate results and in fact, but the effect of using coarser grids is examined 

below as well.  

 

For GPU computations, single-precision (SP) should be carefully used because it may 

produce significantly less accurate results when compared with double-precision (DP), 

but offers a two-fold speed-up. In contrast, for a CPU, single and double-precision have 
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similar performance on 64-bit hardware. So in our benchmarks, we do identical 

calculations for both single and double-precision in order to fairly compare their speed 

and accuracy. 

 

The calculation efficiency is greatly dependent on the block and thread configuration. To 

find the most suitable one to maximize the performance, for first step, eq(6), we used 

different block sizes from (32*32) to (256*256) blocks per grid and thread sizes from 64 

to 256 threads per block. Figure 5.6 shows the time spent in one iteration using different 

thread per block parameters for step 1. As it indicates, for the Tesla platform, the most 

suitable configuration is (256*256) blocks per grid and 128 threads per block for both 

precision options. For the second step, eq(7), we tested the same example making a 

similar comparison, and we find that the configuration with 192 blocks per grid and 

(32*32) threads per block performs best (see Figure 5.7). It is worth noting that the total 

time cost for single iteration decreased to 86.4 ms, which roughly represents more than 

1000 times speedup relative to the CPU calculation. 

 

In order to further compare the computational efficiency of GPU-WHAM, we examined 

another data set using various levels of WHAM grids, from 32*44 to 2048 * 2816. The 

profiling results are summarized in Figure 5.8. According to the benchmark results, the 

speedup achieved by a GPU compared to a single CPU reaches about 1200 times for 

double-precision and 2020 times for single-precision. The speedup is dependent on 

system size when the number of grid points is large enough. The grid used for this case is 

256*352 and this resolution was used for plotting the PMF surface below. However, an 
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artificially too high-resolution grid choice will produce unreliable results if the sampling 

was insufficient. However, we still profile the speedup of very fine grids since the 

computation time is independent to the thorough sampling of the data points. This 

exercise, while not physically justified given the amount of data we have does serve to 

show that even finer grids can be used with our GPU code. The largest grid choices in 

this test require about 1.39 second per iteration (single-precision) and about a half hour to 

complete the full calculation (3760 second GPU time and 3784 second total wall time), 

which covers 2061 iterations to reach convergence.  The CPU implementation of WHAM 

is projected to finish the same task in about 814 hours. Besides WHAM grid point 

influence, when we compare the speedup horizontally between calculations with different 

numbers of umbrella windows but with the same number of grid points, the speedup 

increased slightly with more umbrella windows.  

 

In practice, after running the MD simulations, the number of windows and the number of 

sample points is a constant, but the grid resolution can be specified in WHAM and grid 

resolution impact the accuracy of the calculation. Because of the speed improvements 

realized using GPU-WHAM, inaccuracies arising from low-resolution grids can be 

reduced if sufficient sampling data is collected. However, in most case, data collection is 

the most expensive part to generate an accurate result. However, this type of analysis is 

beyond the scope of the present chapter, which focuses on the creation of GPU-WHAM. 

For the benchmark cases studied the 160*640 grid scheme is fine enough that grid point 

density is not the factor that limits calculation precision, but higher-resolution does 

continue to offer some modest improvements. 
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Figure 5.6. Profiling of the GPU-WHAM code for step 1 with different thread and 

block choices. 

 

 

 
 

Figure 5.7. Profiling of the GPU-WHAM code for step 2 with different thread and 

block choices. 
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Figure 5.8. Benchmark results for two sets of data with different numbers of windows 

(1024 for top, 1533 for bottom) and different grid points (from 32*128 to 768*1024). 

Profiling with CPU, GPU single-precision (SP) and GPU double-precision (DP) 

calculation is presented. A logarithmic scale on the y-axis is used. Speedup by GPU SP 

and GPU DP is also plotted. The benchmark reaction is described in the text. 

 

 

In order to evaluate single versus double precision we present the PMF surface with both 

single precision and double precision with the difference as well in Figure 5.9. As the 

figure suggests, the two PMF surfaces have only minor differences arising from the use 

of single precision. Our test results indicate that the average absolute energy difference 

and RMS (Root Mean Square), which is defined as, 

 !"# = (!!"#$%&(!,!)!!!"#$%&(!,!)!!!!,!!,!!!,!!
!!×!!

    (8) 
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between double and single-precision is 9.5 E-7 kcal/mol and 1.5 E-4 kcal/mol, 

respectively. The maximum absolute difference between grid points is less than 0.4 

kcal/mol with most of them being well under 0.01 kcal/mol. Most of the maximum of 

deviations appear regions near the edge of the PMF map and in areas of little relevance to 

the reactive process. These differences are acceptable for most applications of WHAM 

especially considering single-precision provides a 2-fold speed up in return. For example, 

the energy difference between the two minima of Figure 5.9 is 2.74 kcal/mol in SP and is 

2.73 kcal/mol for DP, which is accurate enough for most chemical applications.  

 

5.4. CONCLUSIONS 

 
In this chapter, we accelerate WHAM using GPU technology by selecting a suitable 

computational configuration to maximum efficiency. The GPU-WHAM performance is 

as much as 1200 times in double precision faster for the Kepler card when compared with 

a single CPU. Single-precision is two times faster than double-precision with up to 2020 

time speedup compared with a single CPU, but reduces accuracy slightly, but for most 

cases this will not be an issue because the introduced inaccuracy is generally less than the 

inaccuracy of the method utilized. Nonetheless, even very high-resolution grids are now 

affordable in a computationally reasonable amount of time. 
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Figure 5.9. The PMF surface and contour map produced using the GPU-WHAM code  
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Figure 5.9 (cont’d) with double-precision (top), single-precision (middle) and the 

absolute energy difference (bottom). The energy unit is kcal/mol. X- and y-axes are Cu+-

-Trp44@CZ3 distance and Glu36-Met47 Phi angle the unit is Å and rad. Full 

computational details are given in the text. 
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MOLECULE DYNAMIC DETAILS OF CUSF 

 

CusF is a periplasmic metallochaperone xist in Escherichia coli, encoded by cus-CFBA 

operon36. It was hypothesized to capture Cu+/Ag+ ions and transfer them to CusCBA 

pump in order to expel them out of the cell. 37 It is related to metal ion and antibiotic 

resistance, which makes it a potential pharmaceutical target.  

 

In recent simulations of our group, we found there is an open state structure exist for the 

CusF protein, while the transition between the closed and open states may play a 

significant role in the metal ion transfer process between CusF and CusCBA complexes. 

Just like the former work38, we modeled the system based on the PDB entry 2VB2. 

AMBER ff99SB force field39 was employed for the protein system while the SPC/E water 

model40 was used to solvate the system. A hybrid metal model was utilized to model the 

metal binding site. The interaction of Cu+ ion and Trp44 residue was treated with 

nonbonded model while the interactions between Cu+ ion and the other three ligating 

residues (His36, Met47 and Met49) were represented by the bonded model. The bonded 

model are parameterized by Metal Center Parameter Builder (MCPB) 41 software in 

Modeling ToolKit++ (MTK++) in AmberTools.  

 

We found there are one distance (Cu+--Trp44@CZ3 distance) and one dihedral angle 

(Glu36-Met47 Phi angle) in the metal binding site, could distinguish the closed and open 

state remarkably. For example, in a closed state structure we found the distance is 2.33 Å 

while the dihedral angle is -147.53°. In an open state structure the corresponding distance 
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is 17.42 Å while the dihedral angle is 47.61°. To further clarify the free energy 

differences between the closed and open state, we processed a 2D potential of mean force 

(PMF) simulations by treating the Cu-Trp44@CZ3 distance as the reaction coordinate 

(RC) X axis while the Glu46-Met47 Phi dihedral angle as RC Y axis. We began the 

umbrella sampling from a closed state structure of metal loaded CusF. Generally there are 

three steps in the 2D PMF umbrella sampling process while the scheme of first two steps 

are shown in Figure 5.10. The harmonic potential of all the simulations is set as 10 

kcal/mol-1Å-2 for the distance and 500 kcal/mol-1Rad-2 for the dihedral angle. There is 1 ns 

sampling for each window with stepsize as 1 fs. The data points were stored for each 10 

fs during the simulation. 

 

Step1: Firstly we performed the PMF simulations based on the conjugated changing the 

distance and dihedral variables to “push” the structure from closed state to open state. 

The initial closed state structure has a RC as (X=2.33Å, Y=-147.52°) while the PMF 

termination has RC as (X=21.33 Å, Y=98.72°). The total RC pathway was divided into 

39 windows with the each later window has 0.50 Å increased in the X axis and 6.48° 

increased in the Y axis than the former window. The final snapshot of the former window 

was treated as the initial structure of next window.  

 

Step 2: We began from the RC windows finished in the former step, and scanned across 

the Y axis for each certain X value individually. The scanning headed for two directions 

at the same time with the ending points for the negative direction and positive directions 

are -173.44° and 105.20° respectively. To be consistent with Step 1, the windows are 
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spaced by 6.48° apart along the Y axis as well. Totally there are 44 windows across the Y 

axis for each certain X value. By multiplying the window numbers in X axis, in sum there 

are 44*39 =1716 windows for the whole umbrella sampling map. Up to then, we have 

finished the first 1 ns sampling of all the windows on the whole PMF profile map.  

 

Step 3: The final umbrella samplings are performed independently for each window. By 

treating the final structure of the first 1 ns sampling as the initial structure, another 5 ns 

sampling was performed for each window. In total, there are 1716 windows with each 

window has 6 ns umbrella sampling. There are more than 1 billion correlated data points 

and more than 1 million uncorrelated data points (with treating 1 ps as the uncorrelated 

timescale) were collected for the umbrella sampling simulations. Based on which the free 

energy profile were generated by using the weighted histogram analysis method 

(WHAM) software. 

 

It is notable to mention that in MD simulation, for x axis, there is 44 sample, but we only 

pick the first 32 to optimized and benchmark GPU-WHAM program because of the 

architecture of GPUs. 
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Figure 5.10. The scheme of step 1 (left) and step 2(right) in CusF 2D PMF simulations. 

The arrow indicated the direction of the reaction coordinate. The hollow circle on the 

right figure was the windows have been finished in step 1. (Just to be symbolize, the 

figure shows 5 windows on X axis and 7 windows on Y axis but actually there are 39 

windows in the X axis and 44 windows in the Y axis)  
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CHAPTER 6. SUMMARY AND CONCLUSION REMARKS 
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In chapter 1, we briefly introduced GPU and CUDA programming by illustrating GPU 

architecture, thread hierarchy and memory hierarchy. We also provided some details 

about philosophy of GPU programming and tuning tricks, which enlighten the following 

research projects to realize GPU programming on quantum chemistry.   

 

In chapter 3, we evaluated ERIs on a GPU using recurrence relations and form the Fock 

matrix entirely in GPU memory. And in full SCF benchmark calculations demonstrate 

the impressive speedups GPU ERI implementations achieved and the energy error GPU 

produced associated with double-precision calculations meets most of computational 

chemistry calculation accuracy requirements. To realize the GPU implementations and 

achieve the speedup, a well-sorted integral grid that reduces thread divergence and 

provides an optimized memory access pattern boosts the performance in terms of 

efficiency. This speedup is also achieved by optimizing the Fock matrix formation 

scheme by introducing the atomic-operation to significantly reduce data transfer from N4 

to N2, which was one of the most time-consuming steps in conventional GPU SCF 

programming that limited by th CPU-GPU bandwidth. Moreover, this approach also 

reduces redundant and unnecessary re-calculated ERI calculation by reusing ERI data. 

Our benchmarks show the speedup increases with increasing system size, and our code 

now is applicable to s, p and d orbital functions which are in most most organic or 

biochemistry calculations.  

 

In the chapter 4, based on the work we completed in last chapter, we implemented the 

evaluation of ERIs up to f orbitals and ERI derivatives up to d orbitals using GPU 
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technology and ERI recurrence relations. Our SCF and gradient calculations demonstrate 

the similar speedup of GPU implementation compared to over modern CPUs. A partition 

strategy is introduced to solve the difficulties encountered in computing ERIs including f 

orbitals and was further applied to d orbital gradient calculation. Importantly, we 

observed a very limited efficiency decrease after employed this strategy. The code is 

written efficiently by our machine-generated code which is almost impossible for human 

to complete because its complicity. Similar to ERI evaluation, a well-sorted pre-sorting 

strategy and several other improvements boost overall GPU performance and atomic 

operations are used as well to reduce data transfer. Moreover, GPU-based DFT 

calculation is also available in QUICK although we did not touch on this topic.  

 

In chapter 5, to boost molecular dynamic simulation, we accelerate WHAM using GPU 

technology by selecting a suitable computational configuration to maximum efficiency. 

The GPU-WHAM performance is as much as 1200 times in double precision faster for 

compared with a single CPU while single-precision is two times faster than double-

precision with up to 2020 time speedup reducing accuracy slightly. But according to our 

test and observation, for most cases this will not be an issue because the introduced 

inaccuracy is generally less than the inaccuracy of the method utilized. Nonetheless, even 

very high-resolution grids are now affordable in a computationally reasonable amount of 

time. 

 

These projects utilized GPU as an economical accelerator to multiply areas of 

computational chemistry calculations. Meanwhile, there is still plenty of room to apply 
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GPU technology. Therefore, our future work will focus on following aspects. First of all, 

we are integrating our source code with the AMBER MD package to further enable ab 

initio QM/MM simulations. Second, we are developing GPU-based ERI and ERI 

derivative generator that computational chemist can use our tool to develop their own 

algorithm by using GPU to accelerate ERI calculation, a very common step for most 

advanced ab initio computational chemistry methods. Moreover, we are going to develop 

GPU enabled correlated ab initio methods such as MP2 and coupled-cluster methods. In 

addition, to calculate frequencies and other physical and chemical properties, GPU enable 

second order derivatives would also be helpful. In terms of technology, a multi-GPU 

implementation and implementation of the code on INTEL PHI platform is on our time-

line order to have another option to accelerate ab initio calculation. 

 

 

 

 

 


