AN INVESTIGATION OF THE POWER FUNCTION FOR THE TEST OF INDEPENDENCE IN 2 x 2 CONTINGENCY TABLES

Thesis for the Degree of Ph. D.
MICHIGAN STATE UNIVERSITY
William Leonard Markness
1959

This is to certify that the

thesis entitled

An Investigation of the Power Function for the Test of Independence in 2 x 2 Contingency Tables

presented by

William Leonard Harkness

has been accepted towards fulfillment of the requirements for

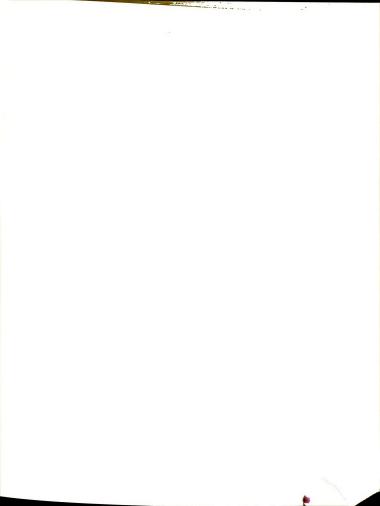
Ph. D. degree in Statistics

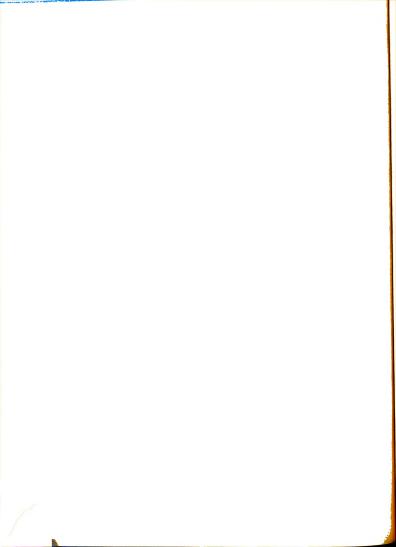
Major professor

Date August 15, 1959

0-169

ESIS


LIBRARY
Michigan State
University



RETURNING MATERIALS: Place in book drop to remove this checkout from your record. FINES will be charged if book is returned after the date stamped below.

OCT 1 8 1999		

; ; ;		

AN INVESTIGATION OF THE POWER FUNCTION FOR THE TEST OF INDEPENDENCE IN 2 x 2 CONTINGENCY TABLES

Ву

WILLIAM LEONARD HARKNESS

A THESIS

Submitted to the School of Graduate Studies of Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Statistics

William Leonard Harkness

Candidate for the degree of

Doctor of Philosophy

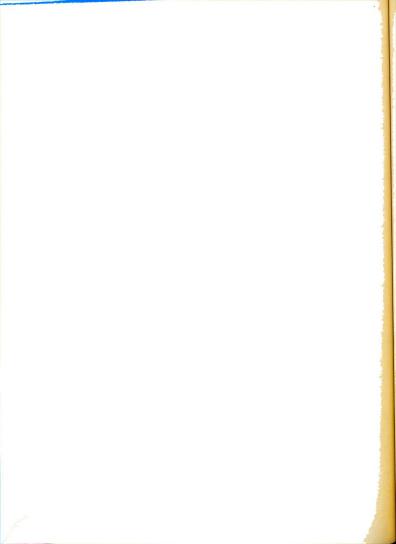
Final examination, July 29, 1959, 9:00 A.M., Physics-Mathematics Building

Dissertation: An Investigatinn of the Power Function for the Test of Independence in 2 x 2 Contingency Tables

Outline of Studies

Major subjects: Mathematical Statistics, Probability Minor subjects: Algebra, Analysis

Biographical Items

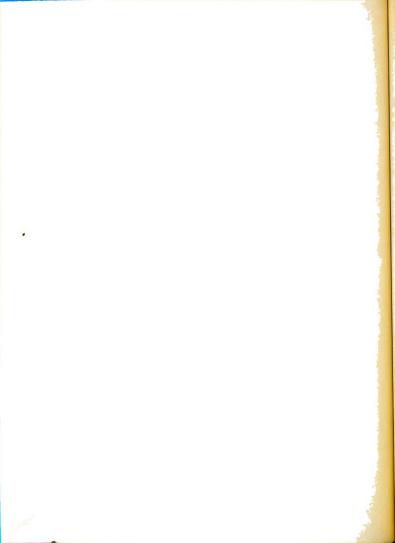

Born, June 25, 1934, Lansing, Michigan

Undergraduate Studies, Hillsdale College, 1951-52, Michigan State College, 1952-55

Graduate Studies, Michigan State University 1955-56, cont. 1957-59, University of Chicago, 1956-57.

Experience: Graduate Assistant, Michigan State College, 1955, Special Graduate Research Assistant 1955-56, cont. 1957-59, University Fellow, University of Chicago, 1956-57, Mathematician, Institute for Air Weapons Research 1957, Temporary Instructor, Michigan State University, 1959

Member of Phi Kappa Phi, Pi Mu Epsilon, Sigma Xi, Institute of Mathematical Statistics, American Mathematical Society

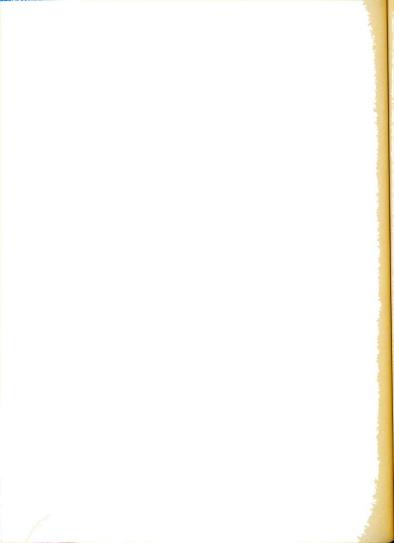


ACKNOWLEDGEMENTS

The author wishes to express his sincere gratitude to Dr. Leo Katz, his major professor, for suggesting the problem and for his continuous support, endless patience, and encouragement during the completion of the problem.

The writer also deeply appreciates the financial support of the Office of Naval Research which made it possible for him to complete this investigation.

The author also is very grateful to Dr. J. F. Hannan for several invaluable suggestions, and to Mrs. Helen Spence, who set up the machine computation of the tables.



The author wishes to dedicate this thesis to his wife, Mary Lou, for her kind understanding and patience during the course of the writing of this manuscript.

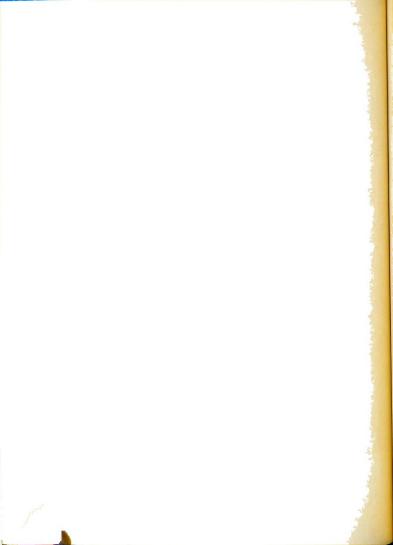
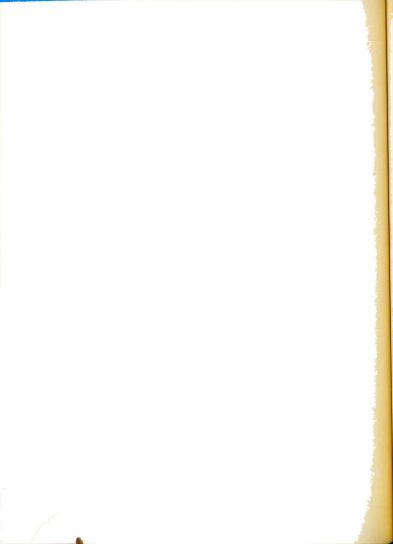


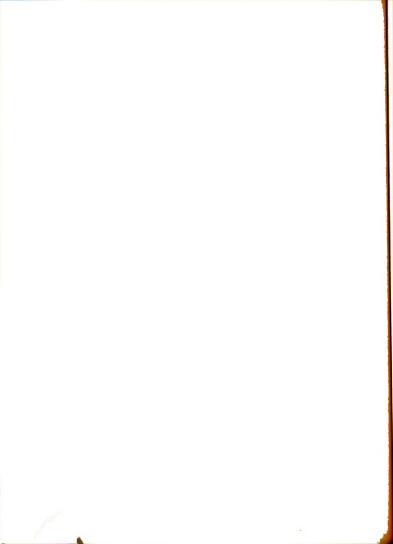
TABLE OF CONTENTS

CHAPTER 1	ANALYTICAL REVIEW OF PREVIOUS WORK 1
	1.1 Abstract Models in 2 x 2 Contingency Tables 1 1.2 Probability Models 3 1.3 Statement of Hypotheses, and the Problem of Testing for Independence 6 1.4 Order of Presentation 10 1.5 The Uniformly Most Powerful Unbiased Test for One-Sided Alternatives and Two-Sided Alternatives and Two-Sided Alternatives and Two-Sided Alternatives 12 1.6 2 x 2 Independence Trial 22 1.7 2 x 2 Comparative Trial 27 1.8 The Double Dichotomy 37 1.9 Results 39
CHAPTER 2	AN INVESTIGATION OF A PROBABILITY FUNCTION 41
	2.1 General Properties
CHAPTER 3	POWER FOR THE TEST OF INDEPENDENCE 71
	3.1 2 x 2 Independence Trial 71 3.2 2 x 2 Comparative Trial 75 3.3 Double Dichotomy 79 3.4 Asymptotic Power 84
CHAPTER 4	COMPARISON OF POWER FUNCTIONS 92
	4.1 Preliminaries
SUMMARY	97
APPENDIX A	. EXACT POWER FOR THE DOUBLE DICHOTOMY 100
	A.1 Tables of $P_{10}(\lambda, P_A, P_B)$ 103
	A.2 Tables of $P_{20}(\lambda, P_A, P_B)$ 108
	A.3 Tables of P ₃₀ (λ ,P _A ,P _B)
APPENDIX B	. EXACT POWER FOR THE 2 x 2 COMPARATIVE TRIAL 116
	B.1 Tables of P ₁₀ (p ₁ ,p ₂ ,m ₁) 118
	B.2 Tables of P ₂₀ (p ₁ ,p ₂ ,m ₁) 122
	B.3 Tables of P ₃₀ (p ₁ ,p ₂ ,m ₁)

APPENDIX	C. EXACT POWER IN THE 2 x 2 INDEPENDENCE TRIAL	145
	C.1 Tables of P ₁₀ (t m ₁ ,m ₂)	
	C.2 Tables of P ₂₀ (t m ₁ ,m ₂)	150
	C.3 Tables of $P_{30}(t \mid m_1 m_2)$	153
APPENDIX	D. COMPARISON OF POWER FUNCTIONS	158
	D.1 Tables of the Three Exact Power Functions and the Normal Approximation	159
APPENDIX	E. Approximations to Power in the 2 x 2 Comparative Trial	171
	E.1 Graphs	172
	E.2 Tables of Sillitto's and Patnaik's Approximation, and Values of	
	$P_n(p_1, p_2, m_1), P_n(t \mid m_1, m_2) \Big]_{t=\frac{p_1q_2}{p_2q_1}} \cdots$	175
BIBLIOGR	APHY	177



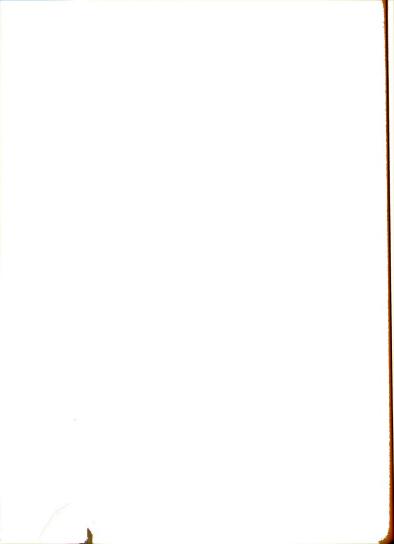
This thesis is concerned with an examination of the power function for the test of independence in 2 x 2 contingency tables. Three distinct types of experiments leading to the presentation of data in the form of a 2 x 2 table have been delineated, and several tests for independence for each have been proposed, but not much is known about the power functions of these tests.


In Chapter I, which is a systematic review of previous work in 2 x 2 tables, the uniformly most powerful unbiased test for independence is discussed quite thoroughly. All the results and computations in this thesis are based on this test. The content of Chapter 2 is a study of the probability function $k(m_1, m_2, n; t)$ $h(n_1 \mid m_1, m_2, n)$ t^{-1} , $0 < t < \infty$, where $h(n_1 \mid m_1, m_2, n)$ is the ordinary hypergeometric function, and $k(m_1, m_2, n; t)$ is the reciprocal of the sum of $h(n_1 \mid m_1, m_2, n)t^{-1}$ over all possible values of n_1 ; some asymptotic properties are included in this study.

The exact power function for the test of independence in each of the three cases is given in Chapter 3. In this chapter, the three power functions are related to one another, and asymptotic power is investigated. The asymptotic power function for the χ^2 -test of independence is given here. Also, several approximations to power are proposed in Chapter 3.

Finally, Chapter 4 serves to unify the results obtained in previous chapters, and some of the approximations proposed

in Chapter 3 are compared with the exact power. Rather extensive tables of exact power for each of the three cases are in the appendices. These exact computations provide the means for evaluation the adequacy of the various approximations.



Chapter 1. Analytical Review of Previous Work

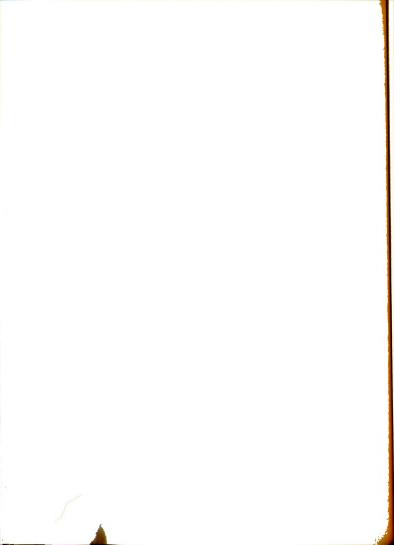
1.1 Abstract Models in 2 x 2 Contingency Tables.

One of the classical problems in mathematical statistics is that of testing for independence in 2 x 2 contingency tables. Karl Pearson's [17] 1900 paper in which he proposed the χ^2 test for independence, appears to be the first on the subject. Since that time, many other writers have devoted themselves to the same problem. For the most part, their attention has been directed at the case where the sample size is moderately large, and consequently, for this case, the problem can be said to be solved for all practical purposes. The problem of testing for independence in smell samples, however, has led to considerable controversy. Several tests have been proposed, but basic disagreement remains. This is partially due to the fact that there are three distinct experimental situations which lead to the presentation of data in the form of 2 x 2 contingency tables. Abstractly, these three experiments may be described in the following manner:

I. A total of n similar balls, m_1 marked A_1 and $n-m_1$ marked A_2 , are placed in an urn, then withdrawn randomly in order. They are then placed in order in a row of n cells, of which m_2 have been labeled B_1 , $n-m_2$ labeled B_2 . The result of the

experiment is presented in Table I, where $\mathbf{n_1}$ is the observed number of balls marked A_1 in receptables labeled B_1 . Both sets of marginal totals are fixed.

TABLE I


	B ₁	B ₂	1
A ₁	n ₁	ⁿ 3	m ₇
A ₂	n ₂	n _{l+}	n - m,
	^m 2	n - m ₂	n

II. From two urns, \mathbf{A}_1 and \mathbf{A}_2 , each containing a large number of balls marked $\mathbf{B_1}$ and $\mathbf{B_2}$ samples of $\mathbf{m_1}$ and \mathbf{n} - $\mathbf{m_1}$ are taken. It is observed that \mathbf{m}_2 of the balls are labeled \mathbf{B}_1 , and \mathbf{n} - \mathbf{m}_2 are labeled B_2 . It is assumed that the proportion of balls marked B_1 in urn A_1 is p_1 , i = 1,2. With this type of experiment, one set of marginal totals is fixed in Table I, namely, m_1 and n - m_1 . Table II gives the relevant probabilities of occurrence of the balls with specified markings.

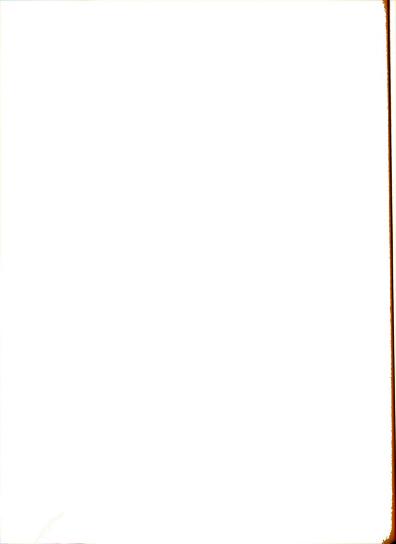
TABLE II

	_ B ₁	B ₂
_A ₁	p ₁	1 - p ₁
A ₂	p ₂	1 - p ₂

III. A total of n similar balls is randomly selected from an urn containing a large number of balls, each ball labeled ${ t A}_1$ or ${ t A}_2$ and also labeled ${ t B}_1$ or ${ t B}_2.$ An observed result of the experiment is represented in the form of Table I, where none

of the marginal totals are fixed. It is assumed that the probabilities of occurrence of the various markings of the balls is given by Table III, together with the marginal sums.

TABLE III


	B ₁	B ₂	1
A ₁	<i>π</i> ₁	<i>π</i> ₃	PA
A ₂	π2	$\pi_{\downarrow_{+}}$	1 - P_
	P_{B}	1 - PB	1

Following G. A. Barnard's [3] nomenclature, we will call I the 2 x 2 "independence trial", II the 2 x 2 "comparative trial", and III the double dichotomy.

1.2. Probability Models.

Let us now consider the appropriate probability model for each of the three experiments described above. It will be seen that these probability models have a natural "hierarchical order" in that the probability model for the 2 x 2 independence trial and the 2 x 2 comparative trial are obtained as conditional probabilities of the probability distribution in the double dichotomy. Considering first, then, the double dichotomy, the probability of observing the sample point (n_1, n_2, n_3, n_4) is, by the multinomial probability law,

(1.2.1)
$$\Pr\left\{n_1, n_2, n_3, n_{\downarrow\downarrow}\right\} = \frac{n!}{n_1! n_2! n_3! n_{\downarrow\downarrow}!} \pi_1^{n_1} \pi_2^{n_2} \pi_3^{n_3} \pi_{\downarrow\downarrow}^{n_{\downarrow\downarrow}}$$

If we replace π_1 by $\lambda P_A P_B$, π_3 by $P_A (1-\lambda P_B)$ $\pi_2 \text{ by } P_B (1-\lambda P_A) = \pi_{l_+} \text{ by } 1-P_A - P_B + \lambda P_A P_B$

where max
$$\left[0, \frac{P_A + P_B - 1}{P_A P_B}\right] < \lambda < \min \left[\frac{1}{P_A}, \frac{1}{P_B}\right]$$
,

and replace n_2 by $(m_2 - n_1)$, n_3 by (m_1-n_1)

and
$$n_{l_{1}}$$
 by $(n-m_{1}-m_{2}+n_{1})$

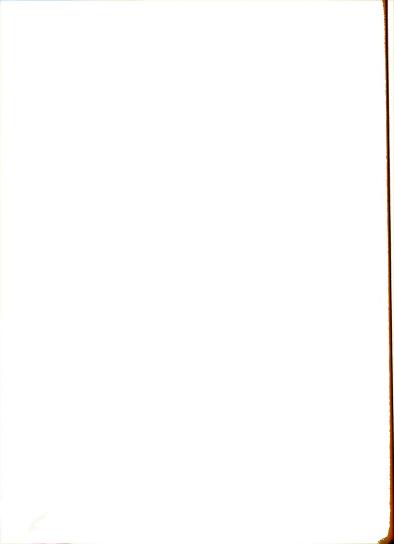
then (1.2.1) may be rewritten as

(1.2.2)
$$\Pr \left\{ n_1, m_1, m_2 \mid n, \lambda \right\}$$

$$= b(m_1, n, P_A)b(n_1, m_1, \lambda P_B)b\left(m_2 - n_1, n - m_1, \frac{P_B(1 - \lambda P_A)}{1 - P_A}\right)$$

where b(x;n,p) is the usual binomial probability.

Thus, (1.2.2) gives the probability of the sample point (n_1, m_1, m_2) , given n, λ , P_A, P_B . Computing the conditional probability of (n_1, m_2) , given m_1, n , λ , P_A , and P_B , one obtains (1.2.3) $Pr\left\{n_1, m_2 \mid m_1, n, \lambda\right\}$


$$= b(n_1; m_1, \lambda P_B) \cdot b\left(m_2 - n_1; n - m_1, \frac{P_B(1 - \lambda P_A)}{1 - P_A}\right)$$

Letting $p_1 = \lambda P_B$

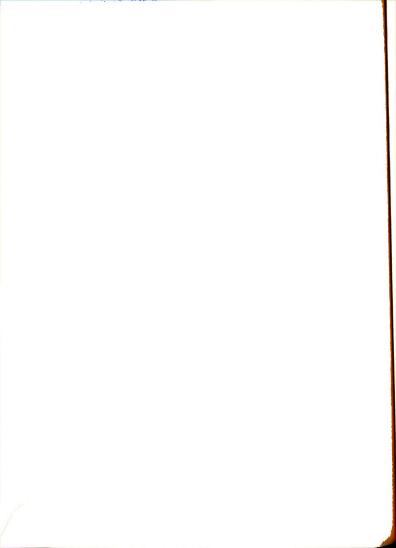
$$p_2 = \frac{P_B(1 - \lambda P_A)}{1 - P_A}$$
,

(1.2.3) yields the probability model for the 2 x 2 comparative ${\bf trial.}$

When the 2 x 2 comparative trial is discussed without

reference to the double dichotomy, $\Pr\left\{n_1, m_2 \mid p_1, p_2, m_1, n\right\}$ will be used to denote the probability function rather than $\Pr\left\{n_1, m_2 \mid m_1, n, \lambda\right\}$.

Summing (1.2.3) over all possible values of $\mathbf{n_1}$ gives the marginal probability for $\mathbf{m_2}$ as


(1.2.4)
$$\Pr \left\{ m_2 \mid m_1, n, \lambda \right\}$$

= $\sum_{n_1} b(n_1; m_1, \lambda_{P_B}) b\left(m_2 - n_1; n - m_1, \frac{P_B(1 - \lambda_{P_A})}{1 - P_A}\right)$.

 $\Pr\left\{ \text{m}_2 \mid \text{m}_1, \text{n}, \lambda \right\} \text{ is seen to be the convolution of two binomial distributions. Hence, from (1.2.3) and (1.2.4), we obtain the conditional probability}$

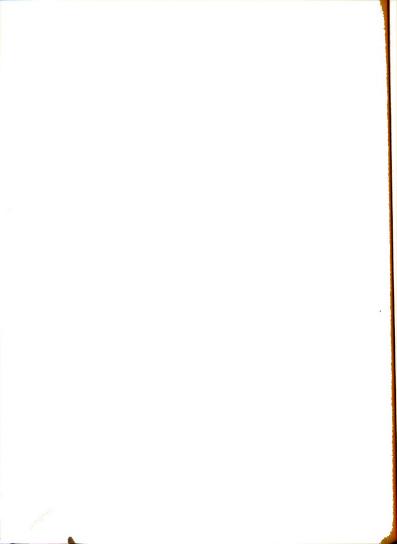
(1.2.5)
$$\Pr \left\{ n_{1} \mid m_{1}, m_{2}, n, \lambda \right\} = \frac{\Pr \left\{ n_{1}, m_{2} \mid m_{1}, n, \lambda \right\}}{\Pr \left\{ m_{2} \mid m_{1}, n, \lambda \right\}}$$
$$= \frac{\binom{m_{1}}{n_{1}} \binom{n - m_{1}}{m_{2} - n_{1}} \cdot t^{n_{1}}}{\sum_{j} \binom{m_{1}}{j} \binom{n - m_{1}}{m_{2} - j} \cdot t^{j}}$$

where t =
$$\frac{\lambda \, (1 \, - \, P_{A} \, - \, P_{B} \, + \, \lambda \, \, P_{A} P_{B})}{(1 \, - \, \lambda \, P_{A}) \, (1 \, - \, \lambda \, P_{B})} \, = \frac{p_{1} q_{2}}{p_{2} q_{1}} \quad ,$$

$$q_i = 1 - p_i$$
, $i = 1,2$.

It is thus natural to take (1.2.5) as the appropriate probability model for the 2 x 2 independence trial. Note that if t = 1, (1.2.5) will become

$$(1.2.6) \quad \Pr \left\{ n_1 \mid m_1, m_2, n \right\} = \begin{pmatrix} m_1 \\ n_1 \end{pmatrix} \begin{pmatrix} n & -m_1 \\ m_2 & -n_1 \end{pmatrix} \div \begin{pmatrix} n \\ m_2 \end{pmatrix} .$$


The distribution (1.2.5) is not new (see E. Sverdrup [24], E. Lehmann [11] and L. Katz [9]). However, no systematic study of its properties has been carried out. Because of its importance in investigating the power of the test of independence in 2 x 2 contingency tables, Chapter 2 has been devoted to a study of this distribution.

The probability function
$$\frac{\binom{m_1}{n_1}\binom{n-m_1}{m_2-n_1}}{\sum \binom{m_1}{n_1}\binom{n-m_1}{m_2-n_1}} t^{n_1}$$

was obtained here conditionally, but as a probability function it need not be regarded as depending on quantities λ , P_A , P_B , and when it is desired to indicate that it does not, the notation $\Pr\left\{n_1\mid m_1,m_2,n;t\right\}$ will be used.

Section 1.3. Statement of Hypotheses, and the Problem of Testing for Independence.

In each of the three experimental situations described in 1.1, statisticians are interested in carrying out a test of a statistical hypothesis. More specifically, they are interested in testing for independence. For the double

dichotomy, the hypothesis of independence takes the form

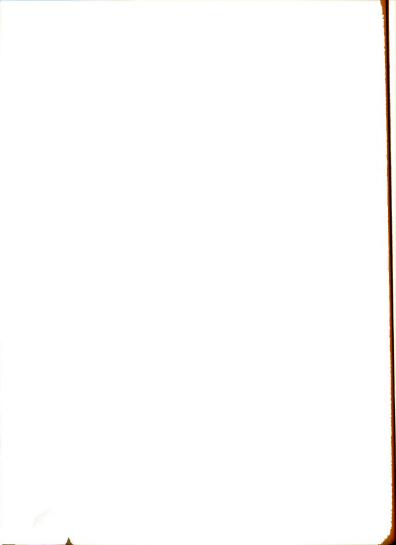
$$H_0: \pi_1 = P_A P_B$$
,

while for the 2 x 2 comparative trial, one has

In the 2 x 2 independence trial, the null hypothesis is that the markings A_1 or A_2 are independent of the labelings B_1 or B_2 . If the hypothesis is correct, the distribution of n_1 (i.e. the number marked A_1 and B_1) given m_1 and m_2 , is the hypergeometric distribution (1.2.6), corresponding to t = 1. Since $m_1 = P_A P_B \iff \lambda = 1$, $p_1 = p_2 \iff \lambda = 1$, and $m_2 = 1$, we may specify independence by $m_2 = 1$, for each case. If $m_1 = 1$, (1.2.2) and (1.2.3) reduce to

(1.3.1)
$$\Pr \left\{ n_1, m_1, m_2 \mid n \right\}$$

= $b(m_1; n, P_A) b(m_2; n, P_B) h(n_1 \mid m_1, m_2, n)$


where $h(n_1 \mid m_1, m_2, n)$ is the hypergeometric probability function.

(1.3.2)
$$\Pr \left\{ n_1, m_2 \mid m_1, n \right\}$$

= $b(m_2; n, P_n) h(n_1 \mid m_1, m_2, n)$

and the conditional distribution of n_1 , given m_1, m_2, P_A , P_B , and $\lambda = 1$, given by (1.2.6), holds for all three cases.

Any alternative hypothesis may be expressed as $H_1: \lambda \neq 1$,

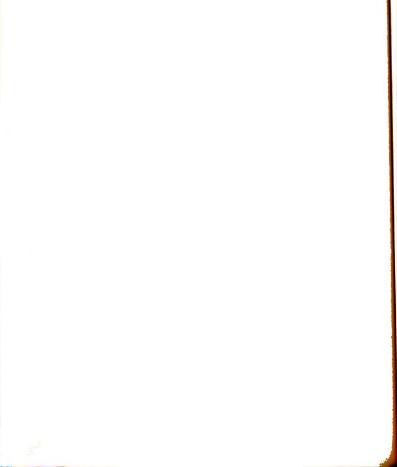
for any of the three cases, so that H_1 is composite.

In terms of λ , H_0 is simple. The nuisance parameters P_A and P_B make it composite.

Ideally, one would hope to find a uniformly most powerful test for the class of alternative hypotheses. The case for one-tailed tests has been disposed of for all practical purposes by Tocher [25], Sverdrup [24], and Katz [9]. They showed that the same test procedure should be used in each of the three situations, and that the test, which is a slight modification of Fisher's classic test, is most powerful, in the sense of Neyman and Pearson. This test procedure will be completely described in Section 1.5.

For two-tailed tests, no uniformly most powerful test exists. Several tests have been proposed, for each of the three cases, with disagreements as to the appropriate one. The main point about which the controversy hinges is whether the marginal totals are intrinsic or nuisance parameters.

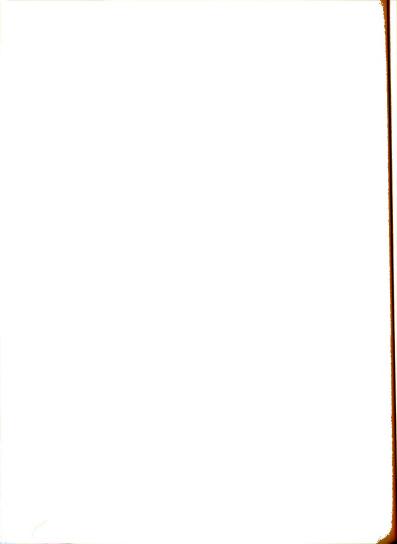
One school of thought, led by Fisher, maintains that the marginal totals per se furnish no relevant information as to the probabilities of the observed frequencies, and hence are nuisance parameters. Hence, Fisher would advocate a conditional test, given the marginal totals, so that each of the three cases would be handled in a similar way.


Another view is taken by E. S. Pearson [16], among others, who believes "it is an artificial procedure to restrict the experimental probability set to a linear set," as Fisher does. Barnard [3], 1947, page 136, expressed the opinion that "significance tests for the 2 x 2 independence trial will not

necessarily be appropriate for the 2×2 comparative trial," as well as the double dichotomy. He constructed an alternative test for the 2×2 comparative trial claiming this test had greater power than Fisher's "exact" test. However, Barnard [2], in 1949, wrote

"On the 2 x 2 table I arrived at a test, the CSM test, which seemed to be considerably more powerful than the "exact" test of Professor R. A. Fisher, by taking as a reference set a class of results different from that considered by Professor Fisher. This led to some controversy with Professor Fisher, in which he maintained that the Neyman-Pearson notion, that the reference set involved in a test of significance consists of the set of all results which could have arisen in the given circumstances, was ill-conceived. In private correspondence following on this controversy, Professor Fisher drew my attention to a particular case where there did seem to be some difficulty in using the Neyman-Pearson approach. I discussed this case in another paper (Barnard, 1947b), in which I attempted to show how the Neyman-Pearson approach could be extended to cover such a case. However, I was not myself satisfied with the position, and further meditation has led me to think that Professor Fisher was right after all."

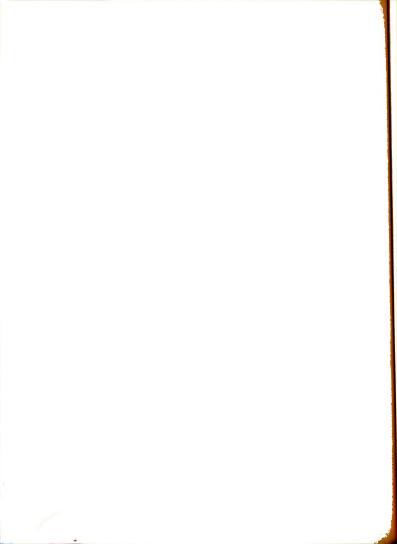
When uniformly most powerful tests do not exist, various procedures are available. A very commonly used technique is



to restrict the class of possible tests to a smaller class of tests, with the hope of finding in this smaller class of tests one which is uniformly most powerful. For example, one might require that the test be a "similar" test, or that it be "unbiased", or that it be an "invariant" test. There are circumstances in which making such restrictions would be quite reasonable, and then again, some statisticians might feel there is good reason why such tests should not be made. In restricting ourselves to a similar test of size \propto we are requiring that the test make incorrect decisions at not more than the full allowable rate for all hypotheses under $\rm H_0$. The principle of unbiasedness seems to be a very reasonable one requiring that a test should accept the alternative $\rm H_1$ more frequently when to accept is the correct decision than when it is incorrect.

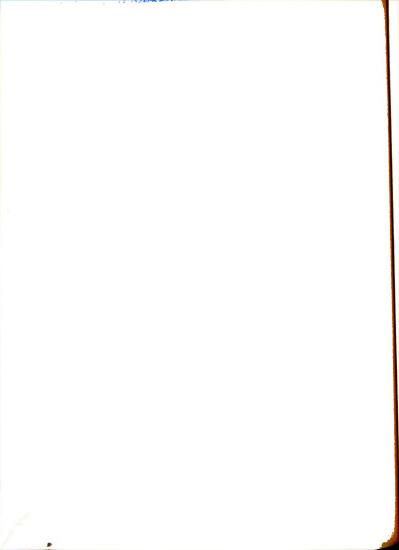
In the two-tailed tests which have been proposed for the test of independence, generally the class of tests has not been restricted, and more or less "subjective" criteria have been used to judge the efficacy of the test. Clearly, the merits of a test should be judged from its power function, and not by intricate intuitive processes.

1.4 Order of Presentation


While many people have written on 2 x 2 contingency tables, for the most part they have considered the three distinct types of experiments as separate problems, except for large sample sizes, where the χ^2 test becomes applicable in all three situations. As a result, there is an abundance

of papers on the subject, but no very unified treatment of the whole area. Thus, as a preliminary, in the remainder of Chapter I a comprehensive and systematic survey of past work is included. This survey reveals that there are still some unsolved problems left. It shows that whereas many tests for independence have been proposed, very little has been done on the power function. This is particularly true for the 2 x 2 independence trial and the double dichotomy. Our main concern, therefore, is an examination of the power function for the test of independence.

In section 1.5 of this chapter, the test on which we will be basing computations of power for all three cases is described. This test is the uniformly most powerful unbiased test, first proposed by Katz in 1942, and discussed in some detail by Sverdrup in 1953, and Tocher in 1950. Sections 1.6 and 1.7 and 1.8 are devoted specifically to past treatment of the 2 x 2 independence trial, 2 x 2 comparative trial and the double dichotomy.


In order to evaluate power for the above mentioned unbiased test of independence, some properties of the conditional distribution given by (1.2.5) are described in Chapter 2, including moments, asymptotic distributions, and several approximations. It will be shown in section 2.2 that the asymptotic distribution of (1.2.5) is normal, and this result will be the foundation and key tool in the study of the power function for the test of independence. The derivation of the asymptotic distribution is patterned after

Feller's normal approximation for the binomial distribution, and the assumptions made are essentially the same as for the binomial case.

In Chapter 3, the exact power function for each of the Problems I, II, and III is given. The order of presentation begins in section 3.1 with the 2 x 2 independence trial, and proceeds naturally to the 2 x 2 comparative trial and the double dichotomy in sections 3.2, and 3.3 respectively. Several approximations to the power are given in these sections, using in the case of the 2 x 2 comparative trial an approximation given by Sillitto [21]. Theorem 3.4.B in Chapter 3 shows that, asymptotically, there is no difference in the power functions, for "corresponding" alternative hypotheses and suitable choice of marginal totals in the 2 x 2 independence trial and the 2 x 2 comparative trial. As a consequence of this theorem, an additional approximation to power for the 2 x 2 comparative trial and the double dichotomy is proposed. Also in 3.4. the asymptotic power function for the χ^2 -test of independence is studied.

Finally, Chapter 4 serves to unify the results obtained in Chapter 3, and some of the approximations proposed in Chapter 3 are compared with the exact power. Rather extensive tables of exact power for each of the three cases are in the appendix. These exact computations provide the means for evaluating the adequacy of the various approximations.

1.5 The Uniformly Most Powerful Unbiased Test for One-Sided Alternatives and Two-Sided Alternatives.

As noted on page 11, Katz [9], Tocher [25], and Sverdrup [24] are responsible for the development of the tests to be described here.

Katz, in 1942, assumed that any alternative distribution to the null distribution for the 2 x 2 independence trial could be taken as that given in (1.2.5), i.e.

$$(1.5.1) \Pr \left\{ n_1 \mid m_1, m_2, n; \lambda \right\} = \binom{m_1}{n_1} \binom{n-m_1}{m_2-n_1} t^{n_1} \div \sum_{j} \binom{m_1}{j} \binom{n-m_1}{m_2-j} t^{j}$$
where $t = \binom{\lambda(1-P_A-P_B+\lambda P_B)}{m_2-j} + \binom{n-p_1}{m_2-j} + \binom{n-p_2}{m_2-j} + \binom{n-p_2}{m_2$

where t =
$$\frac{\lambda(1 - P_A - P_B + \lambda P_A P_B)}{(1 - \lambda P_A)(1 - \lambda P_B)}$$

Thus, the test for independence amounts to testing

$$H_0$$
: t = 1

vs.
$$H_1: t \neq 1$$

or, equivalently, to H_o : λ = 1 vs. $\lambda \neq 1$.

Considering first the special case

$$H_0: t = 1$$

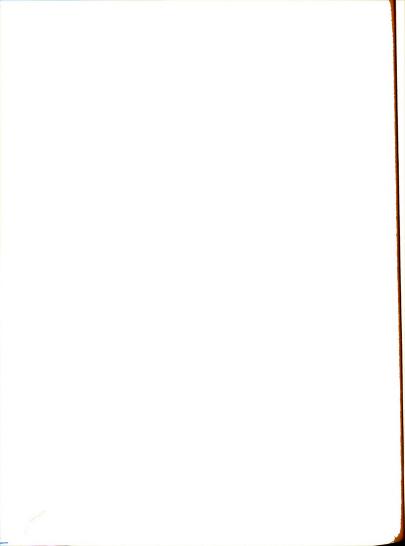
vs.
$$H_1: t = t_0 ; t_0 \neq 1$$

and applying the Neyman-Pearson lemma for testing a simple hypothesis against a simple alternative, Katz finds that H_0 should be rejected for all values of n_1 such that $t_0^{n_1} \geq k$, where k is some fixed constant chosen so that the test has size \propto . or

 $(1.5.2) n_1 \log t_0 > \log k$.

For all t < 1, the inequality (1.5.2) is satisfied for all $n_1 \le a$; for all t > 1, by all $n_1 \ge b$. Thus, if we wish to test the hypothesis t = 1 only with respect to one-sided alternative hypotheses t < 1 (or t > 1) the uniformly most powerful critical region is a tail of the conditional distribution (1.2.6), $n_1 \le a$ (or $n_1 \ge b$).

For testing alternatives $t \neq 1$, no uniformly most powerful test exists. Katz, therefore, restricts the class of tests to those which are unbiased, in the expectation that within this smaller class of tests a uniformly most powerful test exists. Katz notes that a necessary condition for unbiasedness is that the power function have a minimum at t = 1, or that

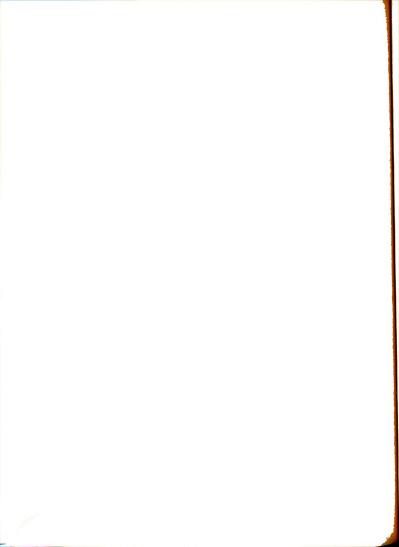

$$(1.5.3) \frac{\partial}{\partial t} \frac{\sum_{\mathbf{n_1} \in W(\mathbf{n_1}, \mathbf{n_2})} {\binom{\mathbf{m_1}}{\mathbf{n_1}} \binom{\mathbf{n_2} - \mathbf{m_1}}{\mathbf{n_2} - \mathbf{n_1}}} t^{\mathbf{n_1}}}{\sum_{\mathbf{j}} {\binom{\mathbf{m_1}}{\mathbf{j}} \binom{\mathbf{n_2} - \mathbf{m_1}}{\mathbf{n_2} - \mathbf{j}}} t^{\mathbf{j}}}} \right] t = 0$$

where $w(m_1, m_2)$ is the critical region for fixed m_1, m_2 , and n.

A little algebra reduces the necessary condition (1.5.3) for unbiasedness to the form

$$(1.5.4) \left[\sum_{j} \Pr \left\{ j | m_{1}, m_{2}, n \right\} \right] \left[\sum_{n_{1} \in w} n_{1} \Pr \left\{ n_{1} | m_{1}, m_{2}, n \right\} \right]$$

$$= \left[\sum_{j} j \Pr \left\{ j | m_{1}, m_{2}, n \right\} \right] \left[\sum_{n_{1} \in w} \Pr \left\{ n_{1} | m_{1}, m_{2}, n \right\} \right]$$


This requires that the mean value of n_1 in the critical region be the same as the mean value for the entire range of n_1 . Thus, the critical region $w(m_1,m_2)$ must contain values above the mean and below the mean, such that

(1.5.5)
$$\sum_{\substack{n_1 \in w(m_1m_2)}} n_1 | m_1, m_2, n \} = \frac{ \ll m_1m_2}{n} ,$$

since the expected value of $\mathbf{n_1}$ over the whole range of $\mathbf{n_1}$ is $\frac{\mathbf{m_1}\mathbf{m_2}}{\mathbf{n}}$.

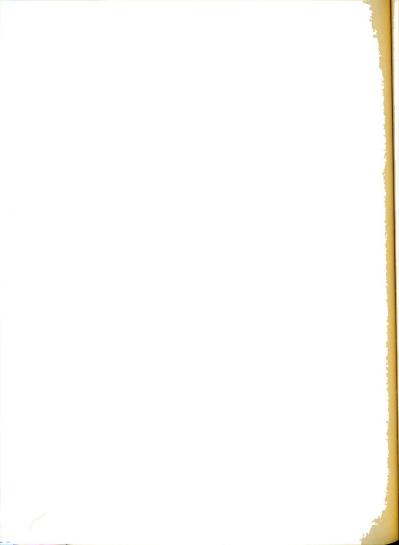
Because n_1 takes on only integer values, it is not always possible to obtain exact size \propto tests. In order to obtain such tests, a randomized decision rule must be employed. The final form for the unbiased test of independence as given by Katz is to reject H_0 against H_1 : $t \neq 1$ for those n_1 such that

(1.5.6)
$$\sum_{n_{1} < a} \Pr \left\{ n_{1} \mid m_{1}, m_{2}, n \right\} + \epsilon_{1} \Pr \left\{ a \mid m_{1}, m_{2}, n \right\} + \epsilon_{2} \Pr \left\{ b \mid m_{1}, m_{2}, n \right\} + \sum_{n_{1} > b} \Pr \left\{ n_{1} \mid m_{1}, m_{2}, n \right\}$$

and

where a,b, ϵ_1 , and, ϵ_2 are determined by these equations and $0 \le \epsilon_1$, $\epsilon_2 < 1$.

In the one-sided case (testing t=1 vs. t<1) we have that ${\rm H}_{\rm O}$ is to be rejected for values of ${\rm n}_1$ such that


$$(1.5.8) \sum_{n_1 < a} \Pr \left\{ n_1 | m_1, m_2, n \right\} + \epsilon \Pr \left\{ a | m_1, m_2, n \right\} = \infty,$$

where 0 \leqq ϵ < 1, and a and ϵ are determined such that the equality holds.

Tocher showed that the uniformly most powerful similar one-tailed test for any of the three problems is the conditional test given by Katz in (1.5.8), with, of course, the test in the 2 x 2 independence trial being uniformly most powerful among all tests. In order to establish this, Tocher proved the following lemma, which is a generalization of the Neyman-Pearson lemma to composite hypotheses.

Tocher's Lemma:

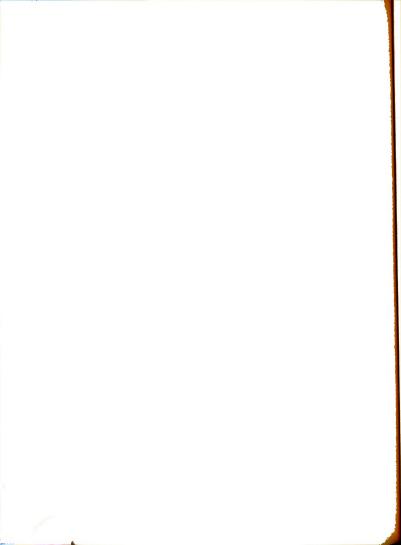
Let $p(j,\theta_0)$ be the probability of the j^{th} possible event in the countable set $I = \left\{1,2,\ldots\right\}$, under H_0 , and $p(j,\theta_1)$ be the probability under H_1 . Let $\beta(j,\theta_0) = \frac{\partial}{\partial \theta_0} \left\{\log p(j,\theta_0)\right\}$.

For each value of θ_0 divide I into sets S_1 with equal β , and assume $p(j,\theta_0)$ satisfies conditions such that this division is invariant with respect to θ_0 . Thus $I = \bigcup_{i=1}^{\infty} S_i$. Denote the events in S_1 for each 1 by s_{11}, s_{12}, \ldots , and form the conditional probability under H_0 of s_{1j} given $s_{1j} \in S_1$, denoted by $\Pr(s_{1j} \mid S_1, \theta_0)$. Then

$$\Pr(\mathbf{s}_{\underline{1},\underline{1}} \mid \mathbf{s}_{\underline{1}}, \boldsymbol{\theta}) = \frac{\Pr(\mathbf{j}, \boldsymbol{\theta}_{\underline{0}})}{\sum\limits_{\underline{j}=1}^{\infty} \Pr(\mathbf{s}_{\underline{1},\underline{j}}, \boldsymbol{\theta}_{\underline{0}})} = \frac{\Pr(\mathbf{j}, \boldsymbol{\theta}_{\underline{0}})}{\Pr(\mathbf{S}_{\underline{1}})} ,$$

where
$$p(S_1) = \sum_{j=1}^{\infty} p(s_{ij}, e_o)$$
.

Choose any set of constants $\mathbf{w}_{\mathbf{j}},~0\leq\mathbf{w}_{\mathbf{j}}\leq1,$ so that


$$\sum_{j=1}^{\infty} w_j \Pr(s_{ij} | S_i, \theta_0) = \infty, \quad (i = 1, 2, ...).$$

Let
$$\lambda_j = \frac{p(j, \theta_1)}{p(j, \theta_0)}$$
 be the likelihood ratio of the two

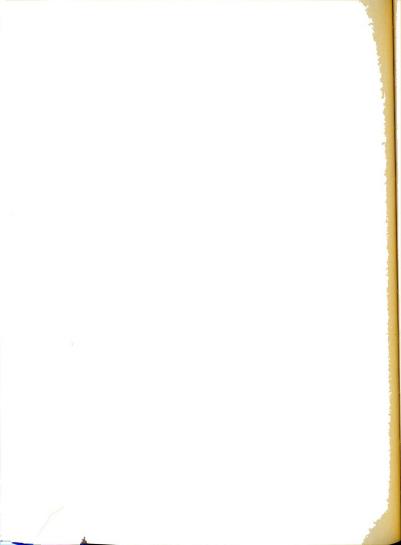
probability distributions under H_1 and H_0 respectively. Order the points in S_1 for each i by descending likelihood ratio, i.e., say $s_{i,j} \leq s_{i,k}$ if

$$\lambda_{\text{ij}} = \frac{p(s_{\text{ij}}, \theta_{\text{i}})}{p(s_{\text{ij}}, \theta_{\text{o}})} \geq \frac{p(s_{\text{ik}}, \theta_{\text{i}})}{p(s_{\text{ik}}, \theta_{\text{o}})} = \lambda_{\text{ik}} \quad .$$

Relabel the points of $S_{\underline{i}}$ according to their likelihood ratio

ordering, say s_{ij_1} , s_{ij_2} , s_{ij_3} , Then the procedure defined by

(1.5.9)
$$w_{ij_k} = 1$$
, $j_k = 1,2,...,a-1$


$$w_{ij_k} = 0$$
 $j_k = a+1, a+2, ...$

where a is determined by

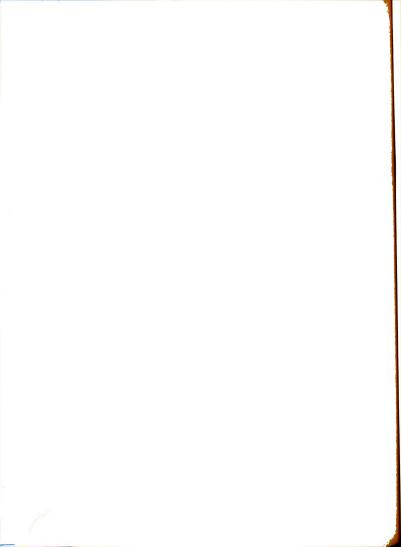
$$\sum_{\mathbf{j}_k=1}^{\mathtt{a-1}} \Pr(\mathbf{s_{i}_{j_k}} | \mathbf{s_{i},e}) \leq \propto < \sum_{\mathbf{j}_k=1}^{\mathtt{a}} \Pr(\mathbf{s_{ij_k}} | \mathbf{s_{i},e}),$$

is the best similar procedure to test the composite hypothesis $\mathbf{H}_{\mathbf{0}}$ against the alternative $\mathbf{H}_{\mathbf{1}}$.

Tocher then applied this lemma to finding the uniformly most powerful similar test (one-tailed) for the 2 x 2 comparative trial and the double dichotomy. We will now illustrate the application of this lemma in deriving his test for independence in the double dichotomy, noting beforehand that the test is the conditional test, for fixed marginal totals, with randomization on the boundaries. Let us recall (see page 7) that the hypothesis of independence in the double dichotomy takes the form

$$\begin{aligned} & \text{ H_0: } & \pi_1 = \text{ P_A} \\ \text{vs. } & \text{ H_1: } & \pi_1 = \lambda \text{ P_A} \\ \text{P_B: } & \text{ max} \left[\text{ O, } \frac{\text{ P_A} - \text{P_B} - 1}{\text{ P_A} \text{ P_B}} \right] \leq \lambda \leq \min \left[\frac{1}{\text{ P_A}} \text{ , } \frac{1}{\text{ P_B}} \right]. \end{aligned}$$

The probability of the sample point $(\mathbf{n}_1,\mathbf{m}_1,\mathbf{m}_2)$ under \mathbf{H}_1 may be written as


(1.5.10)
$$Pr\left\{n_1, m_1, m_2 \mid \lambda\right\} = b(m_1; n, P_A)b(m_2; n, P_B) h(n_1 \mid m_1, m_2, n).$$

$$\left\{ \left[\frac{1 - \lambda P_{A}}{1 - P_{A}} \right]^{m_{2}} \left[\frac{1 - \lambda P_{B}}{1 - P_{B}} \right]^{m_{1}} \left[\frac{1 - P_{A} - P_{B} + \lambda P_{A} P_{B}}{(1 - \lambda P_{A})(1 - \lambda P_{B})} \right]^{n - m_{1} - m_{2}} \cdot \left[\frac{1 - P_{A} - P_{B} + \lambda P_{A} P_{B}}{(1 - \lambda P_{A})(1 - \lambda P_{B})} \right]^{n_{1}} \right\}$$

When λ = 1, (1.5.10) clearly reduces to (1.3.1). Hence.

(1.5.11)
$$\emptyset = \begin{bmatrix} \frac{\partial}{\partial P_A} \log \Pr(n_1, m_1, m_2) \\ \frac{\partial}{\partial P_B} \log \Pr(n_1, m_1, m_2) \end{bmatrix} = \begin{bmatrix} \frac{m_1 - nP_A}{P_A(1 - P_A)} \\ \frac{m_2 - nP_B}{P_B(1 - P_B)} \end{bmatrix}$$

Thus the sets $S_{(m_1,m_2)}$ of equal p have equal m_1 and m_2 , and the decomposition of the sample space into sets $S_{(m_1,m_2)}$ is invariant with respect to P_A and P_B . The conditional probability of m_1 within these sets under H_0 is given by (1.2.6), namely,

(1.5.12)
$$\Pr\left\{n_1 \mid m_1, m_2, n\right\} = \frac{\binom{m_1}{n_1}\binom{n_2 - m_1}{m_2 - n_1}}{\binom{n_2}{m_2}},$$

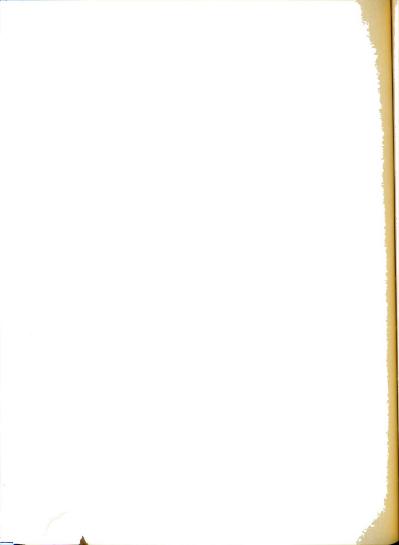
The likelihood ratio

(1.5.13)
$$L(\lambda) = \frac{\Pr\left\{ (n_1, m_1, m_2) \mid n, \lambda \right\}}{\Pr\left\{ n_1, m_1, m_2 \mid n \right\}} =$$
 the four factors enclosed in brackets in (1.5.10)

within each set $S_{(m_1,m_2)}$ is a monotone function of n_1 , increasing when $\lambda > 1$, decreasing when $\lambda < 1$. Thus, the common best similar procedure for the test against all alternatives $\lambda < 1$, say, is the conditional test, for fixed m_1 and m_2 , defined by

$$(1.5.14)$$
 $w(n_1, m_1, m_2) = 1$, $n_1 < a(m_1, m_2)$

$$w(a[m_1,m_2],m_1,m_2) = \propto - \sum_{\substack{n_1 \in w \ (m_1,m_2)}} \Pr \left\{ n_1 \middle| m_1,m_2,n \right\}$$


$$\Pr \left\{ a(m_1,m_2) \middle| m_1,m_2 \right\}$$

$$w(n_1, m_1, m_2) = 0$$
 , $n_1 > a(m_1, m_2)$

where $a(m_1, m_2)$, for fixed m_1 and m_2 , is determined by

$$\sum_{\mathbf{n_1} \in \, \mathbf{w}(\mathbf{m_1}, \mathbf{m_2})} \Pr \left\{ \mathbf{n_1} \mid \mathbf{m_1}, \mathbf{m_2}, \mathbf{n} \right\} \leq \boldsymbol{\alpha} < \sum_{\mathbf{n_1} \in \, \mathbf{w}} \Pr \left\{ \mathbf{n_1} \mid \mathbf{m_1}, \mathbf{m_2}, \mathbf{n} \right\}$$

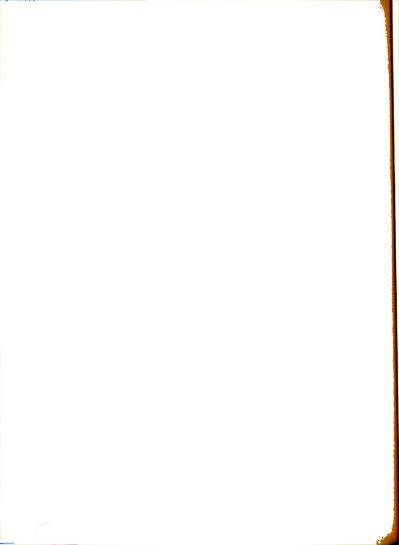
For fixed m_1 and m_2 , this test says to reject H_0 if $m_1 < a(m_1, m_2)$ with probability 1, $m_1 = a(m_1, m_2)$ with probability ϵ and to accept H_0 if $m_1 > a(m_1 m_2)$ where

 $a(m_1, m_2)$ and ϵ are determined such that

$$(1.5.15) \sum_{n_1 < a} \Pr \left\{ n_1 \mid m_1, m_2, n \right\} + \epsilon \Pr \left\{ a \mid m_1, m_2, n \right\} = \infty.$$

This is Katz' condition(1.5.8).

Before giving Sverdrup's results, let us summarize the various tests that may be of interest. There are six possible test situations for the three experimental models, with two distinct types for each model. That is, in all three problems, a test is to be made on $\lambda = 1$ against $\lambda < 1 \text{(or } \lambda > 1)$ or $\lambda = 1$ against $\lambda \neq 1$. Recalling the discussion on page 7 in Section 1.3, we can summarize the hypotheses, null and alternative, in the following table.

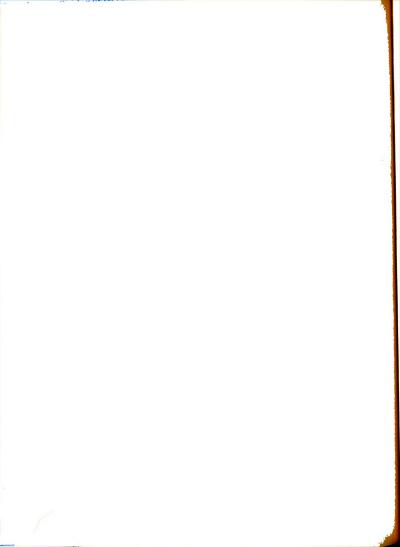

Table IV

		I	II	III
Null Hypothesis	λ=1	Independent	p ₁ = p ₂	$\pi_1 = P_A P_B$
One-tailed alternative	λ<1	"negative" dependence	p ₁ < p ₂	$\pi_1 < P_A P_B$
	λ>1	"positive" dependence	p ₁ > p ₂	$\pi_1 > P_A P_B$
Two-tailed alternative	λ≠1	Dependence	p ₁ ≠ p ₂	$\pi_1 \neq P_A P_B$

If we let T_1 be the one-tailed test defined by (1.5.8), and T_2 be the two-tailed test defined by (1.5.6) and (1.5.7), then Sverdrup has proven the following theorem:

Theorem:

For the one-tailed tests, test T $_1$ is the uniformly most powerful unbiased test at the level of significance \propto . For


two-tailed tests, T_2 is the uniformly most powerful unbiased test at the level of significance \propto . Test T_1 is also uniformly most powerful among all tests in the wider class of all similar tests, and T_1 is uniformly most powerful among all tests for independence in the 2 x 2 independence trial.

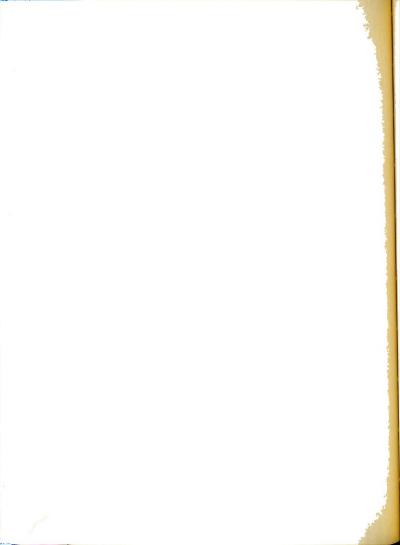
Thus Tocher and Sverdrup have shown that properties of the test procedures given by Katz extend to the 2 x 2 comparative trial and the double dichotomy with each of Tocher and Sverdrup obtaining similar results for one-tailed tests.

In the remainder of this chapter, a description will be given of some other tests which have been proposed, for each of the three problems, beginning in the next section with the 2 x 2 independence trial, and in sections 1.7, and 1.8 discussing the 2 x 2 comparative trial and the double dichotomy.

1.6 2 x 2 Independence Trial

The situation in the 2 x 2 independence trial is best illustrated by Fisher's tea-tasting experiment. A lady is given n cups of tea, m_1 of which had milk added first, then the tea, and $n-m_1$ cups with tea put in first, followed by the milk. The cups are presented to her in random order. Her problem is to sort the cups. If she is told the number of cups with milk added first presumably she will guess that m_1 of the cups had milk added first, and the rest with tea added first. It is therefore natural to regard both sets of marginal totals as fixed, in repeated sampling.

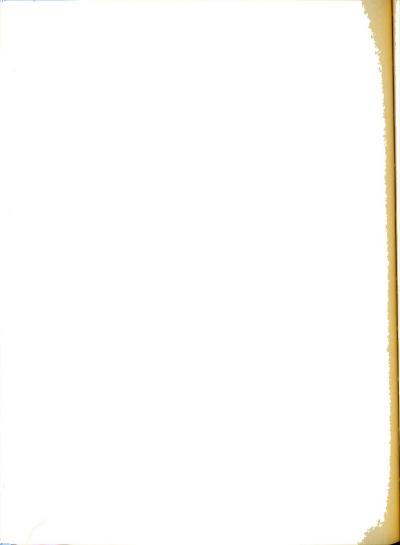
In the 2 x 2 independence trial, the null hypothesis is that the markings A_1 or A_2 are independent of the labelings B_1 or B_2 . If the hypothesis is correct, the distribution of n_1 , the number marked A_1 and B_1 , given m_1 and m_2 is the hypergeometric distribution(1.2.6), i.e.


(1.6.1)
$$\Pr\left\{n_1 | m_1, m_2, n\right\} = \frac{\binom{m_1}{n_1} \binom{n_1 - m_1}{m_2 - n_1}}{\binom{n_1}{m_2}}$$

where the range of n_1 is given by

$$\max[0,m_1 + m_2 - n] \le n_1 \le \min[m_1,m_2]$$

Equation (1.6.1), for the null hypothesis, has been described by Yates as Fisher's "exact" distribution based on the hypergeometric probability law. It is a completely known one-variate discrete probability distribution. Except for specifying non-independence, the only clearly defined alternatives to independence are those proposed by Katz.


For one-tailed tests, the region of rejection of H_0 usually consists of extreme values in one of the tails, rejecting all those values in the tail whose probabilities sum to a number equal to or less than \propto , given in advance. By employing a randomized decision rule, we can make the test of exact size \propto . However, for a two-tailed test, several alternative regions are possible, since no uniformly most powerful test exists. Some criterion must therefore be adopted in order to determine which of the several possible critical

regions should be taken.

The usual convention is to make the probability associated with each tail region sum to $\propto/2$ or less. Because $\mathbf{n_1}$ assumes only discrete values it is not always possible to obtain critical regions of size exactly \propto in terms of integer values of $\mathbf{n_1}$. In order to obtain exact size \propto - tests, we must adopt a procedure of randomization for a decision. In this way, we can put probability $\propto/2$ in each tail, under $\mathbf{H_0}$.

- P. Armsen [1] suggests two other possible rules for the selection of points in the critical region, which are denoted by $\rm D_2$ and $\rm D_3$ in his paper.
- D₂. "Arrange the possible events in ascending order of the size of their probabilities under the null hypothesis; include in the 100 \propto %, two-tailed rejection region those events for which the cumulative sum of these ordered probabilities is smaller than or equal to \propto ."
- D₃. "Define F(E), or the 'first tail' probability, as the cumulative sum of the probabilities under the null hypothesis of all possible events which are more extreme, in the same direction, than given event E, including the probability of E itself. Define S(E), or the 'second tail' probability, as the cumulative sum of probabilities, starting with that of the event most extreme in the opposite direction as compared with E, and cumulating up to but not exceeding the value of F(E). If and only if, F(E) + S(E) ≤ ∞, include E in the rejection region for the two-tailed 100 ∞% level of significance."

One might also restrict the tests to a class of "nice" tests, and then look for one which is uniformly most powerful within this class as was done in 1.5. In any case, a class of alternative distributions for the alternative hypotheses must be specified. It is clear that in order to decide which test is "best", one must examine the power function of the test. Katz, Tocher and Sverdrup proposed their test with this consideration in mind.

Finally, as Armsen has pointed out, there are certain peculiarities in any of the first three definitions of the critical regions. It is possible, in certain cases, to construct, on the basis of his definitions, critical regions in which all points of the region come from one tail of the distribution.

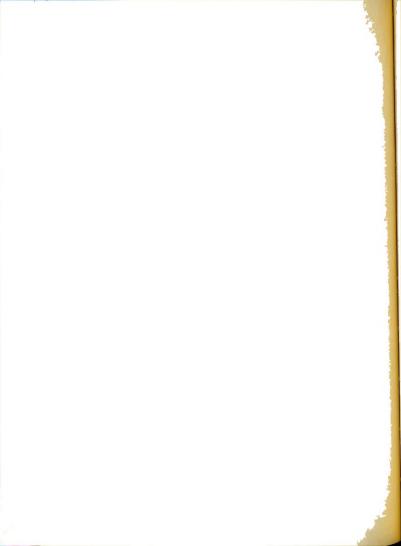
The classic test of the null hypothesis is that given by Fisher [7]. It consists in computing (1.6.1) for the probability of the observed value and all values less likely. If the sum of these probabilities is equal to or less than \propto , then H_O is rejected. Extensive tables have been prepared by Finney [6], Latscha [10], and others, for small n, indicating the critical points for which the hypothesis of independence is to be rejected. For small values of n, exact computation of the tail terms is practical, but for large n, it is quite tedious. One may, in this case, approximate the exact hypergeometric distribution by a normal distribution with a mean and variance corresponding to the mean and variance of (1.6.1).

(1.6.2)
$$E(n_1 \mid m_1, m_2, n) = \frac{m_1 m_2}{n} = \overline{n_1}$$

(1.6.3)
$$V(n_1 \mid m_1, m_2, n) = \frac{m_1(n - m_1)m_2(n - m_2)}{n^2(n - 1)} = n^2$$

(1.6.4)
$$u = \frac{n_1 - \frac{m_1 m_2}{n}}{\sqrt{\frac{m_1 (n - m_1) m_2 (n - m_2)}{n^2 (n - 1)}}} = \frac{n_1 - \overline{n_1}}{n} ,$$

and write u_{∞} for the 100 \propto -percent point of the standard normal distribution, i.e., u_{∞} is defined by the equation


(1.6.5)
$$\int_{u_{\infty}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du = \infty.$$

Then, for a one-tailed test, reject H_0 if $u>u_{\infty}$ or $u< u_{1-\infty}$, depending on the appropriate case. For two-tailed tests, reject if $|u|>u_{\infty}$. Very often a correction

factor for continuity is included in u, i.e., the absolute value of the numerator of u is reduced by $\frac{1}{2}$. If this is done, then for very large n, we get the usual χ^2 test in a 2 x 2 table, with one degree of freedom, if we square the corrected u, i.e.,

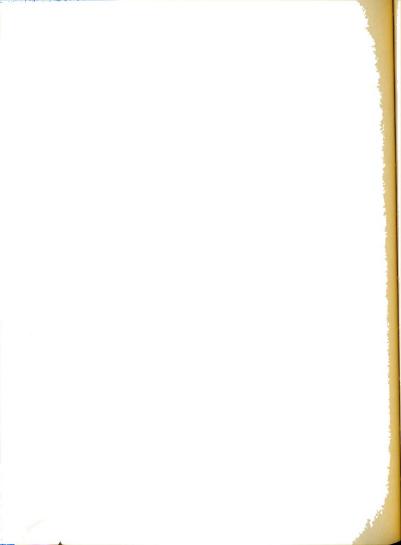
$$\alpha.6.6) \quad \chi^2 = \frac{n(\mid n_1 \mid n - m_1 m_2 \mid -\frac{n}{2})^2}{m_1(n - m_1) m_2(n - m_2)}$$

We reject if $\chi^2 \geq \chi^2_{\alpha}$, where χ^2_{α} is the α^{th} percent point of χ^2 with one degree of freedom.

1.7 2 x 2 Comparative Trial

To fix the notion of a 2 x 2 comparative trial, we give an example. Groups of m_1 men and $n-m_1$ women are randomly selected. They are then examined to see whether they are smokers or non-smokers. It is assumed that the proportion of men smokers is p_1 , and the proportion of women smokers is p_2 . In repeated sampling, it is supposed that we always take the same number of men in each sample, and the same number of women, but that the number of smokers in each sub-sample is free to vary.

In the 2 x 2 comparative trial, the hypothesis to be tested is the composite hypothesis $p_1 = p_2 = p$, against-alternatives $p_1 \neq p_2$.


The probability of observing (n1,n2) is, in general,

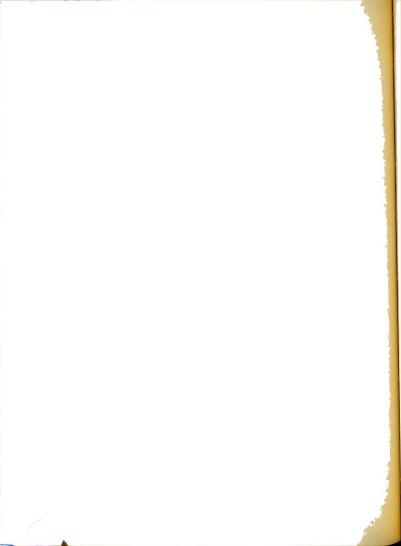
(1.7.1)
$$Pr \{(n_1,n_2) | p_1,p_2,m_1,n\} = b(n_1,m_1,p_1) b(n_2,n-m_1,p_2)$$

$$= b(n_1; m_1, p_1) \ b(m_2 - n_1; n - m_1, p_2)$$

In contrast to the 2 x 2 independence trial, the probability distribution (1.7.1) is over a two-dimensional lattice of points. This distinguishes the problem from the one discussed previously. It is necessary for testing purposes to decide whether m_2 is an intrinsic parameter or a nuisance parameter. Several tests for the null hypothesis have been proposed.

Barnard's test [3] may be described as follows. "Taking rectangular axes in a plane, one can represent an observed result (as in Table I) as the point whose coordinates are

 (n_1, n_2) , where $0 \le n_1 \le m_1$, $0 \le n_2 \le n - m_1$ $(n_1, n_2 \text{ integral})$. Call the totality of possible points a lattice diagram. The points in this lattice diagram will be given a total ordering. First, the same rank should be given to the point $(m_1 - n_1, n - m_1 - n_2)$ as to the point (n_1, n_2) . This is called the symmetry condition, or condition S. Secondly, two points which, respectively, have the same abscissa or the same ordinate as (n_1, n_2) , and which lie farther from the diagonal line joining (0,0) and $(m_1, n - m_1)$ should be considered as indicating a wider difference than (n_1, n_2) . This is called the 'convexity' condition, or condition C. Conditions S and C generate a partial ordering. To make it a total ordering, one further condition, called the maximum condition, or condition M, is imposed. Conditions C and S require that the points (m_1 ,0) and (0,n - m_1) be given the lowest rank. Associate a function $\ \ P$ with these two points defined by


(1.7.2)
$$P(0,n-m_1,p) = p^{m_1}(1-p)^{n-m_1} + p^{n-m_1}(1-p)^{m_1}$$

where $p_1 = p_2 = p$ in (1.7.1)

Let

(1.7.3)
$$P_m(0,n-m_1) = \max_{0 \le p \le 1} P(0,n-m_1,p)$$
.

Considering only points for which $\frac{n_1}{m_1} < \frac{n_2}{n-m_1}$ (by symmetry) , if the first (K - 1) points (a_1,b_1) , (a_2,b_2) , . . . , $(a_{K-1}$, b_{K-1}) in order of increasing rank have been chosen, and (a_{K-1}, b_{K-1}) is associated with

the function

(1.7.4)
$$P(a_{K-1}, b_{K-1}, p) = P(a_{K-2}, b_{K-2}, p)$$

 $+ {m_1 \choose n_1} {n-m_1 \choose n_2} \left[p^{m_2} (1-p)^{n-m_2} + p^{n-m_2} (1-p)^{m_2} \right],$

then the Kth point, (a_K, b_K) , is that point, of all points (n_1, n_2) permitted by the C condition, for which

(1.7.5)
$$P_m(n_1,n_2) = \max_{0 \le p \le 1} P(a_K,b_K,p)$$

is least; $(a_{\overline{K}}, b_{\overline{K}})$ is then associated with the function

$$\begin{array}{l} \text{(1.7.6)} \ \ P(a_{K},b_{K},p) \ = \ P(a_{K-1},b_{K-1},p) \\ \\ + \ {n \choose n_1} {n-n \choose n_2} \Bigg[p^{m_2} {(1-p)}^{n-m_2} + p^{n-m_2} {(1-p)}^{m_2} \Bigg] \ . \end{array}$$

If r points give the same value of $P_m(n_1,n_2)$ and this value is less than that associated with any other permissible point, assign the same rank to each and replace the second term in $P(a_K,b_K,p)$ by the corresponding sum over all these points. The next point after them will be denoted as the (K+r)th point in the ordering. Barnard then associates the $P_m(a_K,b_K) = \max_{0 \le p \le 1} P(a_K,b_K,p)$ as the significance level of $0 \le p \le 1$ the point (a_K,b_K) . This test is called the C S M test, for obvious reasons, by Barnard. Barnard's procedure leads to the assignment of significance levels to points generally quite a bit smaller than those assigned by Fisher, in his conditional test.

If the marginal totals are large, Barnard's test is difficult to apply, since the computation becomes prohibitive, When this is the case, a normal approximation may be used.

If the null hypothesis is true, then, from (1.7.1)

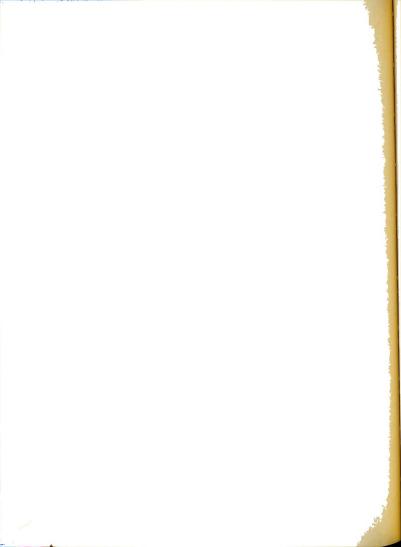
(1.7.7)
$$\Pr \left\{ n_1, m_2 \mid p_1 m_1, n \right\} = h \left\{ n_1 \mid m_1, m_2, n \right\} b \left\{ m_2 \mid n, p \right\}$$

where $p_1 = p_2 = p$.

Using the normal approximation to the hypergeometric distribution given by

(1.7.8)
$$\Pr\left\{n_1 \mid m_1, m_2, n\right\} \simeq \int_{n_1 - \frac{1}{2}}^{n_1 + \frac{1}{2}} \frac{1}{\sqrt{2\pi} \mid_h} e^{-\frac{1}{2}\left(\frac{x - \overline{n}_1}{h}\right)^2} dx$$

a critical region is constructed containing all those points $(n_1, m_2 - n_1)$ such that


(1.7.9)
$$\frac{n_1 + \frac{1}{2} - \overline{n_1}}{h} \le -u_{\frac{\infty}{2}} \text{ and } \frac{n_1 - \frac{1}{2} - \overline{n_1}}{h} \ge u_{\frac{\infty}{2}}.$$

Let $L_1 = \bigcup_{m_2 = 0}^{n} \left\{ (n_1, m_2 - n_1) : \frac{n_1 + \frac{1}{2} - \overline{n_1}}{h} \le -u_{\frac{\infty}{2}} \right\}$

and $L_2 = \bigcup_{m_2 = 0}^{n} \left\{ (n_1, m_2 - n_1) : \frac{n_1 - \frac{1}{2} - \overline{n_1}}{h} \ge u_{\frac{\infty}{2}} \right\}$

and put L = L1 U L2.

Then, if a one-tailed test is performed, H $_0$ is rejected at level $\frac{\infty}{2}$ if the observed sample point falls in the

appropriate component of the critical region, either L_1 or L_2 , while for two-tailed tests, H_0 is rejected at level \propto if the sample point is in L.

Pearson notes that since the probability density is discrete, the "true" probability of rejection will quite generally be much smaller than \propto . For each value of m_2

let
$$\propto_{m_2} = \sum_{n_1 \in L} \Pr \left\{ n_1 \mid m_1, m_2, n \right\}. \text{ Then } \propto_{m_2} \leq \infty,$$

for each m_2 = 0,1, ...,n, and hence $\sum_{m_2=0}^{n} \Pr\left\{m_2 \mid p,n\right\} \propto_{m_2} \leq \infty$

He then remarks that whereas the $\frac{1}{2}$ - correction for continuity is appropriate for the Problem I, "it is not helpful for the Problem II where we are concerned with a two-dimensional experimental probability set." He proposes, therefore, that the correction for continuity be omitted in(1.7.8). If this is done, then new critical regions L_1 ' and L_2 ' are obtained,

$$L_1' = \bigcup_{m_2=0}^n \left\{ (n_1, m_2 - n_1) \colon \frac{n_1 - \overline{n_1}}{h} \le -u_{\underline{\infty}} \right\} \text{ and }$$

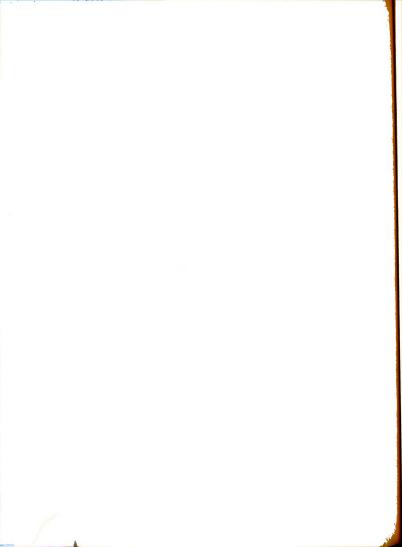
$$\mathtt{L}_{2}^{\, \prime} \, = \, \bigcup_{\mathtt{m}_{2} = 0}^{n} \, \left\{ (\mathtt{n}_{1}, \mathtt{m}_{2} - \mathtt{n}_{1}) \colon \, \frac{\mathtt{n}_{1} - \overline{\mathtt{n}_{1}}}{\mathtt{h}} \, \geq \, \mathtt{u}_{\underbrace{\alpha'}{2}} \right\} \cdot$$

Corresponding to \propto_{m_2} , one has

$$\propto_{m_2} = \sum_{n \in L} \Pr \{n_1 \mid m_1, m_2, n\}, L' = L_1' \cup L_2'.$$

With this modification, \propto'_{m_2} will be sometimes less and sometimes greater than \propto , and, hence, "in the balance, it seems likely that the chance of the point $(n_1, m_2 - n_1)$ falling in L' will lie closer to \propto than when the correction is used." We note, however, that one can obtain regions similar to the sample space by use of a randomized test.

If u is defined as in(1.6.4), then E(u) = 0, V(u) = 1, independently of p. The distribution of u depends on p, but Pearson feels "we may not in the long run do too badly by assuming u to be normal."


It is Pearson's opinion that the test of H_0 against H_1 should be performed as follows:

- (a) If any of the marginal totals are "small", apply Barnard's test.
- (b) If the marginal totals are all large, use the normal approximation, with the $\frac{1}{2}$ factor for continuity omitted.

Patnaik [14] has given two approximations to the power of the test described by Pearson. The exact power function for this test is

(1.7.10)
$$\sum_{m_2=0}^{n} \sum_{n_1} \Pr \left\{ (n_1, m_2) \mid p_1, p_2, m_1, n \right\}$$

where the inner sum is over $n_1 \in L_1$ or L_2 as the case may be for one-tailed tests, and over $n_1 \in L^1$ for two-tailed tests. His approximation is derived thru the normal approximations of the type involving hypergeometric and binomial

distributions. In the process of deriving his approximation to the power function, Patnaik also gives an approximation to the conditional distribution of n_1 given m_1 and m_2 under H_1 , which is quite interesting, but unfortunately may give absurd results, and which casts serious doubts on the validity of his approximation to the power. Patnaik's procedure in deriving the approximation follows below.

Rewriting (1.7.1), one has

(1.7.11)
$$\Pr \left\{ n_1, m_2 - n_1 \mid p_1, p_2, m_1, n \right\}$$

$$= \binom{n}{m_2} q_1^{m_1} p_2^{m_2} q_2^{n-m_1-m_2} \frac{\binom{m_1}{n_1} \binom{n}{m_2-n_1}}{\binom{n}{m_2}} t^{n_1}$$
where $t = \frac{p_1 q_2}{p_2 q_1}$, $q_1 = 1 - p_1$, $1 = 1, 2$.

For m_1, m_2 , and n large, the hypergeometric probability term in (1.7.11) is approximately equal to the ordinate of a

normal distribution with mean $\frac{m_{\underline{1}}m_{\underline{2}}}{n}$ and variance

$$h^{2} = \frac{m_{1}m_{2}(n-m_{1})(n-m_{2})}{n^{2}(n-1)}$$
 (see Feller [5] page 180) and so

Patnaik replaces this term by the ordinate of a normal distribution with this mean and variance, obtaining as an approximation for (1.7.11)

$$(1.7.12) \binom{n}{m_2} q_1^{m_1} p_2^{m_2} q_2^{n-m_1-m_2} \frac{1}{\sqrt{2\pi} h} e^{-\frac{1}{2h^2}(n_1 - \frac{m_1 m_2}{h})^2} t^{n_1}$$

Writing t as e 1 and then completing the square

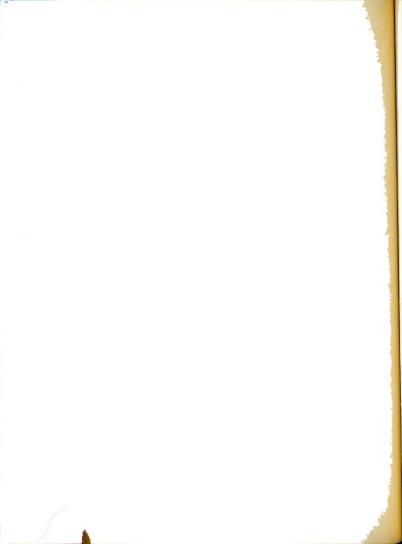
in n_1 , Patnaik finds that (1.7.12) may be written as

(1.7.13)
$$\left[\binom{n}{m_2} q_1^{m_1} p_2^{m_2} q_2^{n-m_1-m_2} \frac{m_1 m_2}{t^{n-m_1-m_2}} + h^2 \log t \right]$$

$$\cdot \left[\frac{1}{\sqrt{2\pi} h} e^{-\frac{1}{2} (n_1 - \frac{m_1 m_2}{n} - h^2 \log t)^2} \right]$$

and notes that the first factor in brackets is independent of n_1 , so that the last factor is approximately the conditional distribution of n_1 given m_1, m_2, n , and t, i.e., a normal distribution with mean $\frac{m_1 m_2}{n} + h^2 \log t$ and variance h^2 . With this result, he then assumes that the conditional power function of the Pearson test, for fixed m_2 , is approximately given by

(1.7.14)
$$\beta(m_2) = 1 - \int_{-u_{\frac{\infty}{2}}}^{u_{\frac{\infty}{2}} - h(m_2)} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy$$
.


where, following his notation, $\beta(m_2)$ denotes the conditional

power function, and
$$h(m_2) = \sqrt{\frac{m_1(n-m_1) m_2(n-m_2)}{n^2(n-1)}} \log t$$
. Next

he approximates the distribution of m_2 by a normal distribution with mean $\gamma = m_1 p_1 + (n-m_1)p_2$,

and variance

$$\sigma^2 = m_1 p_1 (1-p_1) + (n-m_1) p_2 (1-p_2) = \sigma_1^2 + \sigma_2^2;$$
% and σ^2 are the exact mean and variance of m_2 . This

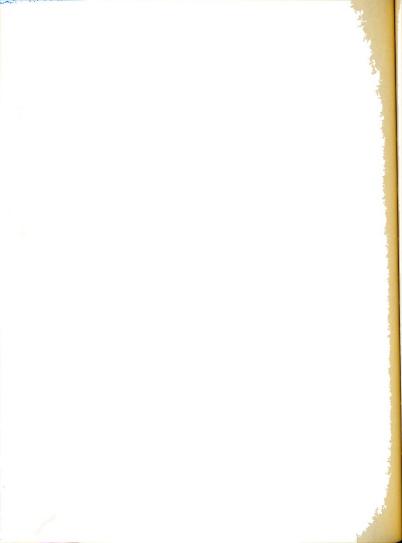
leads to the approximation

(1.7.15)
$$\beta \sim \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{1}{2}(\frac{m_2 - \chi}{\sigma})^2} \beta(m_2) dm_2$$
,

where β denotes the unrestricted power function. Since this still represents no essential simplication, he considers two approximations to (1.7.15). The first consists in expanding $\beta(m_2)$ in a Taylor's Series (about Υ) to obtain

(1.7.16)
$$\beta \sim \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi} \sigma} e^{\frac{1}{2} \left(\frac{m_2 - \gamma}{\sigma}\right)^2} \left[\sum_{j=0}^{\infty} \frac{\beta^{(j)}(\gamma)}{j!} (m_2 - \gamma)^j \right]$$

$$=\beta(\mathcal{X})+\frac{\sigma^2\beta''(\mathcal{X})}{2!}+\frac{3\sigma^4\beta^{(1\mathbf{v})}(\mathcal{X})}{4!}+\cdots$$


and then taking $\beta(\ \ \)$ as a first term approximation. Thus, his first approximation to power is given by

$$(1.7.17) \quad \beta \sim 1 \, - \int_{-u_{\text{eff}}}^{u_{\text{eff}}} \frac{1}{\sqrt{2\pi}} \, \, \mathrm{e}^{-\frac{y^2}{2}} \, \mathrm{d}y \ .$$

The second approximation is derived thru using the method of approximate product-integration developed by R. E. Beard. This leads to his second approximation, given by

(1.7.18)
$$\beta \sim 1/6 \beta(\chi - \sqrt{3} \sigma) + 2/3\beta(\chi) + 1/6\beta(\chi + \sqrt{3} \sigma)$$
.

Patnaik claims that (1.7.18) gives a better approximation than by using the first three or four terms of the above-

mentioned Taylor's series. Thus, Patnaik chooses (1.7.18) as his approximation to the power function for the test of independence in the 2 x 2 comparative trial. It should be noted, however, that the assumption that m₂ is normally distributed is irrelevant as far as the first two terms of (1.7.16) are concerned, since

(1.7.19)
$$\sum_{m_2=0}^{n} \Pr\left\{m_2 \mid p_1, p_2, m_1, n\right\} \sum_{j=0}^{\infty} \beta^{(j)} \frac{(\delta)(m_2 - \delta)^j}{j!}$$

$$= \beta(\delta) + \frac{\sigma^2 \beta''(\delta)}{2!} + \left[(q_1 - p_1)\sigma_1^2 + (q_2 - p_2)\sigma_2^2\right]$$

$$\cdot \frac{\beta^{(1)}(\delta)}{3!} + \cdots$$

Both of Patnaik's approximations rely heavily on the approximation to the conditional distribution of $\mathbf{n_1}$ given $\mathbf{m_1}, \mathbf{m_2}, \mathbf{n}$, and t. In section 2.2, it will be shown that this approximation may lead to rather non-sensical results, and hence that both of Patnaik's approximations may be unreliable. The implication of the results in 2.2 on Patnaik's approximations will be discussed in section 3.2.

Sillitto [21] also obtained an approximation to power for the same test. The approximation is based on the arc sine transformation for a binomial variable. Let

(1.7.20)
$$c(p_1, p_2, m_1) = \frac{\arcsin \sqrt{p_2} - \arcsin \sqrt{p_1}}{\sigma}$$

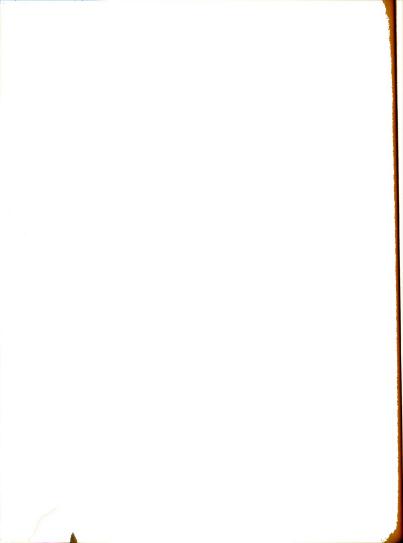
where $\sigma=\frac{1}{2}\,\sqrt{\frac{1}{m_1}\,+\,\frac{1}{n-m_1}} = \frac{1}{2}\,\sqrt{\frac{n}{m_1\,(n-m_1)}}$, and the

angle is measured in radians. Then Sillitto gives as an approximation to power

$$(1.7.21) \quad \beta \sim 1 - \left\{ \phi \left[u_{\underline{\underline{\alpha}}} - c(p_1, p_2, m_1) \right] - \phi \left[-u_{\underline{\underline{\alpha}}} - c(p_1, p_2, m_1) \right] \right\}$$

for two-tailed tests, and

(1.7.22)
$$\beta \sim 1 - \phi \left[u_{\infty} - c(p_1, p_2, m_1) \right]$$


for one-tailed tests.

For comparisons of Patnaik's and Sillitto's approximations, see table E.2.1 and E.2.2 in appendix E. It appears from the available data that Sillitto's approximation is much more satisfactory than Patnaik's.

One could also make a conditional test, for fixed m_2 and put probability $\propto /2$ or less in each tail, and then compute the power function. C. C. Sekar[20] and others, have given tables of the power function for the special case where $m_1 = n - m_1 = \frac{n}{2}$, and the critical region for each m_2 is symmetric, i.e., if $(n_1, m_2 - n_1)$ is in the critical region, then so is $(m_2 - n_1, n_1)$.

1.8 The Double Dichotomy

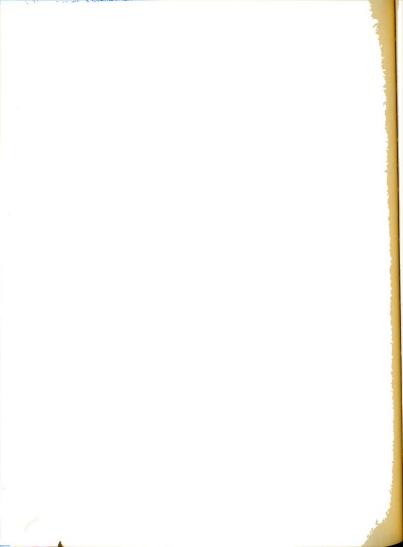
As in the previous two sections, an example of an experiment illustrating the situation in the double dichotomy is given.

A group of n college students, selected at random from the totality of all college students, are classified according to sex and according to whether or not they are drinkers or non-drinkers. The result of the classification is represented in the form of Table V, along with the hypothetical proportions of all students having the double classification:

TABLE V

	Male	Female	
Drinker	n ₁	n ₃	m ₁
Non-drinker	n ₂	n ₄	n-m ₁
	m ₂	n-m ₂	n

TABLE VI


	Male	Female	1
Drinker	<i>π</i> 1	π ₂	PA
Non-Drinker	<i>π</i> 3	π ₁₄	1-PA
	PB	1-P _B	1

It is natural to regard both sets of marginal totals as free to vary in repeated experimentation.

The hypothesis of independence takes the form

$$H_0: \pi_1 = P_A P_B$$
.

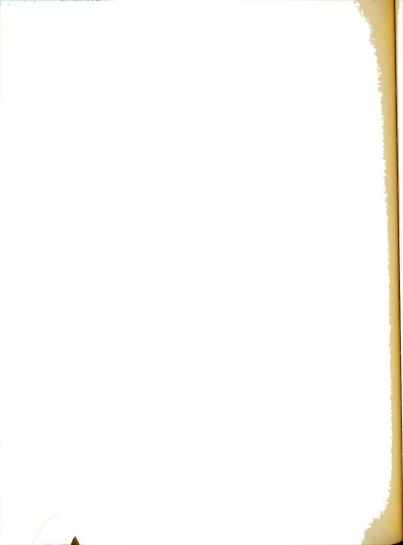
If ${\rm H}_{\rm O}$ is true, the two classifications are independent. As previously noted (page 7) any alternative hypothesis may be

expressed as

$$H_1: \pi_1 = \lambda P_A P_B$$
,

where \(\lambda \) satisfies the inequalities

$$\frac{P_A + P_B - 1}{P_A P_B} \le \lambda \le \frac{1}{\max[P_A, P_B]}$$

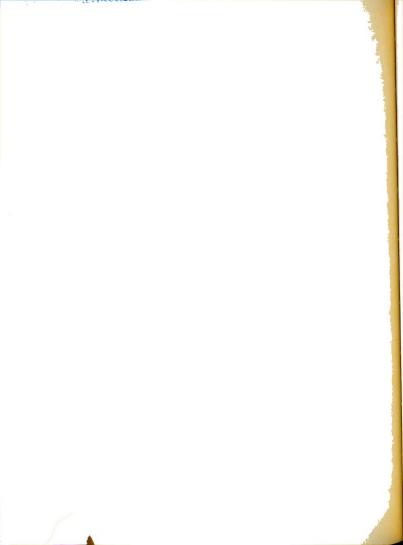

The double dichotomy appears to have received the least attention of the three cases. For small samples, Fisher, as in the previous cases, asserts the test should be performed regarding the marginal totals as fixed by the observed sample totals; in other words, the conditional test for fixed \mathbf{m}_1 and \mathbf{m}_2 is the appropriate test. Pearson [16] suggests that Barnard's method be extended, for small n, to this double dichotomy, and for large n suggests the use of the normal approximation in an analogous fashion to the 2 x 2 comparative trial.

There is no available literature on the power of any test in the double dichotomy.

1.9 Results

In concluding this survey of past work, one sees that while much has been done with 2×2 contingency tables, there are some aspects which have not been investigated. Thus, in the remainder of this thesis, the author proposes to do the following:

1. Investigate the properties of the conditional distribution $\Pr\left\{n_1\mid m_1,m_2,n;t\right\}$ given by equation (1.2.5),



including its asymptotic distribution and several approximations to it. As a part of this investigation, it is shown by Theorem (2.2.F) that there are at least two published results in the literature which may be invalid, namely, the results of Patnaik [14] on the power function for the test of independence in the 2 x 2 comparative trial, and Moore's [13] power function for a test for randomness in a sequence of two alternatives involving a 2 x 2 table.

- 2. Give the exact power functions for the test of independence based on the uniformly most powerful unbiased test described in Section 1.5, for each of the 2 x 2 independence trial, 2×2 comparative trial, and the double dichotomy, and some approximations to these exact power functions.
- 3. Investigate some relations between these exact power functions, and prove that for large sample sizes there is little difference in power between the three cases for appropriately chosen alternative hypotheses and marginal totals.

Theorem (3.4.A) in Chapter 3 gives the limiting power function in the 2 x 2 independence trial, with modest conditions, and Theorem (3.4.B) shows that asymptotically the power functions for the test of independence in the 2 x 2 independence trial, 2 x 2 comparative trial, and double dichotomy, are equal.

- 4. Study the asymptotic power function for the χ^2 -test.
- 5. Investigate the adequacy of various approximations by making comparisons between the various approximations.

2.1 General Properties

The conditional probability of n_1 , given the two marginal totals m_1 and m_2 , and the dependence parameter t, 0 < t < ∞ , obtained in section 1.2 and given by (1.25) takes the form

$$(2.1.1) \operatorname{Pr} \left\{ n_{1} \middle| m_{1}, m_{2}, n; t \right\} = \frac{\binom{m_{1}}{1}\binom{n_{2}-m_{1}}{m_{2}-n_{1}} t^{n_{1}}}{\sum_{1} \binom{m_{1}}{1}\binom{n_{2}-n_{1}}{m_{2}-1} t^{1}} = \frac{\operatorname{Pr} \left\{ n_{1} \middle| m_{1}, m_{2}, n \right\} t^{n_{1}}}{\sum_{1} \operatorname{Pr} \left\{ i \middle| m_{1}, m_{2}; n \right\} t^{1}}$$

where $\max [0, m_1 + m_2 - n] \le n_1 \le \min [m_1, m_2], 0 \le m_1, m_2 \le n$.

In order to evaluate power for the various models, some of the properties of this distribution will be useful. Let

$$a = -m_1$$
; $b = -m_2$, $c = n - m_1 - m_2 + 1$.

Then

$$\sum_{j=0}^{m_1} {m \choose j} {n \choose m_2 - m_1} t^j = \sum_{j=0}^{m_1} \frac{\Gamma(1-a)\Gamma(c-b)t^j}{\Gamma(j+1)\Gamma(c+j)\Gamma(1-a-j)\Gamma(1-b-j)}$$

$$= \frac{\Gamma(c-b)}{\Gamma(1-b)\Gamma(c)} \Gamma(1-a)\Gamma(c)\Gamma(1-b)$$

$$\cdot \sum_{j=0}^{m_1} \frac{t^j}{\Gamma(j+1)\Gamma(c+j)\Gamma(1-a-j)\Gamma(1-b-j)}$$

$$= \frac{\prod (c-b)}{\prod (1-b) \prod (c)} \quad F(a,b;c;t) \quad \text{where } F(a,b;c;t) = {}_{2}F_{1}(a,b;c;t)$$

is the well-known hypergeometric function (see [22], page 1).

In this notation, the probability generating function defined by

(2.1.3)
$$P(\theta) \equiv \prod_{n_1, m_2, n; t} \theta^{n_1}$$

may be expressed as the ratio of two hypergeometric functions

(2.1.4)
$$P(\theta) = \frac{F(a,b;c;t\theta)}{F(a,b;c;t)} = \frac{\sum_{n_1} Pr\{n_1 | m_1, m_2, n\} (\theta t)^{n_1}}{\sum_{n_1} Pr\{n_1 | m_1, m_2, n\} (t)^{n_1}}$$
.

Differentiating $\,k\,\,$ times with respect to $\theta,$ one has, upon setting θ = 1,

(2.1.5)
$$P^{(k)}(1) = \frac{(a)_k (b)_k}{(c)_k} \frac{F(a+k, b+k; c+k; t)}{F(a, b; c; t)}$$

where $(d)_{k} = d(d-1)\cdots(d-k+1)$.

In particular, denoting the $k^{\mbox{th}}$ moments about the origin and the mean by $\mu_k{}^{\mbox{\tiny L}}$ and $\mu_k{}$ respectively,

$$\mu_1' = P'(1) = \frac{ab}{c} t \frac{F(a+1, b+1; c+1; t)}{F(a, b; c; t)}$$

$$(2.1.6) \quad \mu_{2}' = P''(1) + P'(1) = \frac{a(a+1) b(b+1)}{c(c+1)} \quad t^{2} \frac{F(a+2,b+2;c+2;t)}{F(a,b;c;t)}$$

$$+ \frac{ab}{c} \quad t \frac{F(a+1,b+1;c+1;t)}{F(a,b;c;t)}$$

$$\mu_{2} = P''(1) + P'(1) - (P')^{2} = \mu_{2}' - (\mu_{1}')^{2}$$

$$\mu_3' = P'''(1) + 3P''(1) + P'(1)$$

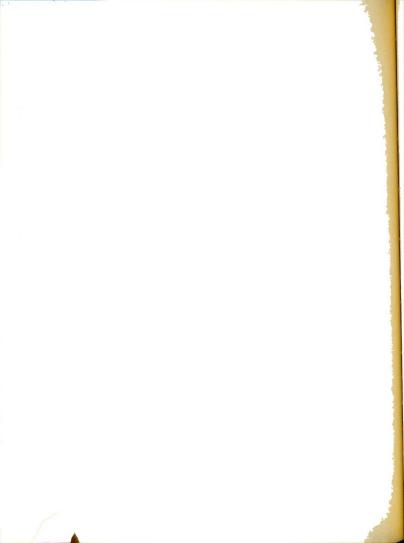
and in general, using the relation

(2.1.7)
$$t^k = \sum_{j=0}^k s(k,j) (t)_j$$

where S(k,j) is the Sterling number of the 2nd kind, defined by (2.1.7) (see Riordan [18], pages 32-33), one has

(2.1.8)
$$\mu_{k}^{!} = \mathbb{E}(n_{1}^{k}) = \mathbb{E}\sum_{j=0}^{k} S(k,j) (n_{1})_{j} = \sum_{j=0}^{k} S(k,j) \mathbb{E}(n_{1})_{j}$$

$$= \sum_{j=0}^{k} S(k,j) P^{(j)}(1)$$


$$= \sum_{j=0}^{K} S(k,j) \frac{(a)_{j}(b)_{j}}{(c)_{j}} t^{j} \frac{F(a+j, b+j; c+j; t)}{F(a, b; c; t)}.$$

The central moments are found from the well-known

relations

(2.1.9)
$$\mu_{k} = \sum_{i=0}^{k} (-1)^{k-i} {k \choose i} \mu_{i} (\mu_{1}^{i})^{k-1}, k = 2,3,4, \dots$$

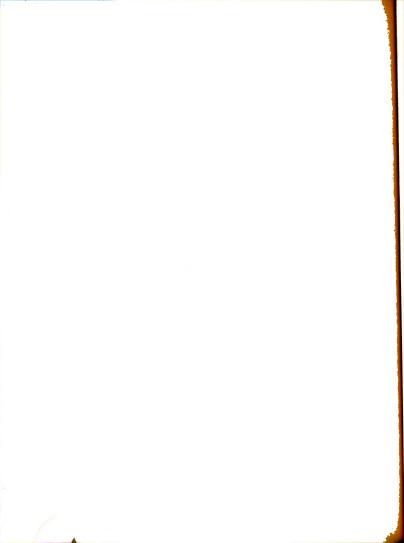
Computationally, we would probably prefer to use

(2.1.10)
$$\mu_{k}' = \frac{\sum_{j} j^{k} {m \choose j} {n - m \choose m_{2} - j^{1}} t^{j}}{\sum_{j} {m \choose j} {n - m \choose m_{2} - j^{1}} t^{j}}$$
$$= \frac{\sum_{j} j^{k} \operatorname{Pr} \left\{ j \mid m_{1}, m_{2}, n \right\} t^{j}}{\sum_{j} \operatorname{Pr} \left\{ j \mid m_{1}, m_{2}, n \right\} t^{j}}$$

in calculating moments about the origin.

The moment $\;\mu_{k}^{}\;$ is a function of t. Differentiating $\;\mu_{k}^{}\;$, as given by (2.1.10), with respect to t, one gets

(2.1.11)
$$\frac{d}{dt} \mu_{k}^{i} = \frac{\mu_{k+1}^{i} - \mu_{k}^{i} \mu_{1}^{i}}{t}$$
, $k = 1,2,3, ...$


Setting k = 1, we find in particular that

$$(2.1.12) \quad \frac{d}{dt} \; \mu_1' = \frac{\mu_2' \; - \; (\mu_1')^2}{t} \; = \frac{\mu_2}{t} \; > 0$$

since t > 0, which confirms the obvious fact that μ_1 is a monotone increasing function of t. Putting k = 2 in (2.1.11), obtaining

$$\frac{d}{dt} \mu_2' = \frac{\mu_3' - \mu_2' \mu_1'}{t}$$

noting that $\mu_2 = \mu_2' - (\mu_1')^2$, and using (2.1.9) and (2.1.12), it is easily seen that

(2.1.13) (a)
$$\frac{d}{dt} \mu_2 = \frac{\mu_3' - 3\mu_2' \mu_1' + 2(\mu_1')^3}{t} = \frac{\mu_3}{t}$$

(2.1.13) (b)
$$\frac{d^2}{dt^2} \mu_l' = \frac{\mu_3 - \mu_2}{t^2}$$
.

Using well-known linear relations between hypergeometric functions (see Snow [22], pages 31-32), one derives some recurrence relations between moments. For example, using the linear relation

$$(2.1.14)$$
 t(1-t) (a+1) (b+1) F(a+2, b+2; c+2; t) + (c+1)[c-(a+b+1)t]

•F(a+1, b+1; c+1; t) =
$$c(c+1)$$
 F(a,b;c;t)

and (2.1.5) and (2.1.6), it follows, after some simplication, that

(2.1.15)
$$\mu_2' = P''(1) + P'(1) = \frac{ab}{1-t} t - \frac{[c-(a+b+1)t]^{\mu_1}}{1-t} + \mu_1'$$

$$= \frac{m_1 m_2 t - [n - (m_1 + m_2) (1-t)] \mu_1'}{1-t} .$$

Using this form for μ_2 , one then obtains,

$$(2.1.16) \quad \mu_2 = \frac{m_1 m_2 t - \left[n - (m_1 + m_2)(1 - t) + (1 - t)\mu_1'\right] \mu_1'}{1 - t}.$$

Using the same relation (2.1.14), of contiguity above, after some algebra, one finds that

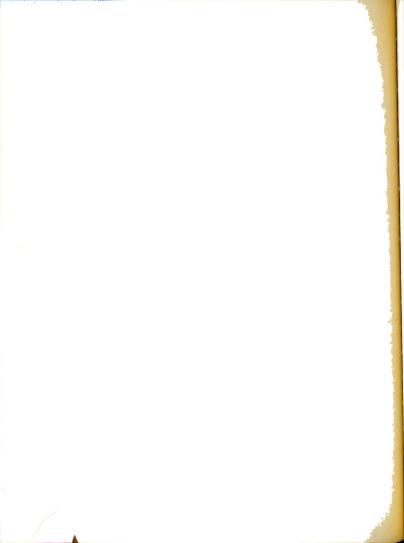
$$(2.1.17) \quad \mu_3 = \frac{\left[m_1 m_2 t + n - m_1 - m_2\right] \mu_1 - \left[(n-1) - (m_1 + m_2)(1-t)\right] \mu_2}{1 - t}$$

and

$$\begin{aligned} \text{(2.1.18)} \quad \mu_{\text{L}}^{\text{I}} &= \left\{ \left[\mathbf{m}_{\text{L}} \mathbf{m}_{\text{2}} \mathbf{t} + 2 (\mathbf{n} - \mathbf{m}_{\text{L}} - \mathbf{m}_{\text{2}}) \right] \boldsymbol{\mu}_{\text{L}}^{\text{I}} \right. \\ &+ \left[\left(\mathbf{m}_{\text{L}} - 2 \right) (\mathbf{m}_{\text{2}} - 2) \mathbf{t} + 3 (\mathbf{n} - \mathbf{m}_{\text{L}} - \mathbf{m}_{\text{2}} + 3) + 3 \mathbf{t} \left(\mathbf{m}_{\text{L}} + \mathbf{m}_{\text{2}} - 5 \right) - 11 (1 - \mathbf{t}) \right] \boldsymbol{\mu}_{\text{2}}^{\text{I}} \\ &- \left[\left(\mathbf{n} - \mathbf{m}_{\text{L}} - \mathbf{m}_{\text{2}} - 3 \right) + \left(\mathbf{m}_{\text{L}} + \mathbf{m}_{\text{2}} + 1 \right) \mathbf{t} \right] \boldsymbol{\mu}_{\text{3}}^{\text{I}} \right\} \ \, \\ \text{(1-t)}^{-1} \end{aligned}$$

Other recurrence forms may also be derived, using linear relations between hypergeometric functions. Using (2.1.14) again, one finds the relation (2.1.19)

$$\mathbb{E}\left\{\mathbf{n_{1}}\big|\,\mathbf{m_{1},m_{2},n;t}\right\} = \frac{\mathbf{m_{1}}\,\mathbf{m_{2}}\,\mathbf{t}}{(1-t)\big[\,\mathbb{E}(\mathbf{n_{1}}\big|\,\mathbf{m_{1}-1,m_{2}-1,n-1;t}) - (\mathbf{m_{1}+m_{2}-1})\big] + \mathbf{n}}$$


from which one can compute $\mathbf{E}\left\{n_1\mid_{m_1,m_2,n;t}\right\}$ from smaller values of m_1,m_2 , and n.

As soon as μ_1 is computed, we can obtain μ_2 , μ_3 , and μ_{\downarrow} by substituting this value into the recurrence relations given by (2.1.16),(2.1.17), and (2.1.18) respectively, and once these moments are known, μ_3 and μ_{\downarrow} can be calculated using (2.1.9). The variance μ_2 could also be obtained using (2.1.12), which asserts that

$$\mu_2 = t \frac{d}{dt} \mu_1'.$$

An example illustrating the computation of the first four moments about the origin, and the central moments μ_2,μ_3 , and μ_4 , is given at the end of this section.

The procedure just outlined for computed moments is still quite tedious, even for small values of m_1, m_2 , and n. Therefore, we now consider approximations for the moments.

Solving for $\mu_1^{'}$ in (2.1.16), the relation between μ_2 and $\mu_1^{'}$ takes the form

$$\mu_{1}^{\prime} = \left[\frac{n - (m_{1} + m_{2})(1 - t)}{2(t - 1)}\right] \pm \sqrt{\left[\frac{n - (m_{1} + m_{2})(1 - t)}{2(1 - t)}\right]^{2} + \frac{m_{1} m_{2} t}{1 - t} - \mu_{2}}$$

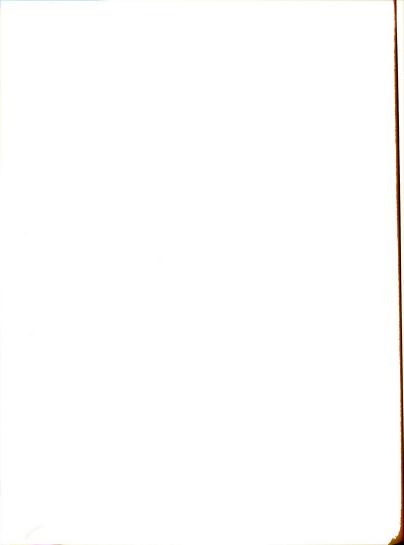
where the negative square root is taken if t > 1 and the positive root if t < 1. If t = 1, then we have

$$\mu_1 = \frac{m_1 m_2}{n}$$
.

Defining $\lambda_{(n)}^{+}$ by

$$\lambda_{(n)}^{+} = \frac{n}{m_1 m_2} \left\{ \left[\frac{n - (m_1 + m_2)(1 - t)}{2(t - 1)} \right] + \sqrt{\left[\frac{n - (m_1 + m_2)(1 - t)}{2(1 - t)} \right]^2 + \frac{m_1 m_2 t}{1 - t}} \right\}$$

and $\lambda_{(n)}^-$ in the same manner, except the negative square root replaces the positive square root, we obtain the inequalities


(2.1.22)(a)
$$\mu_1^{\bullet} \leq \lambda_{(n)}^{+} \frac{m_1 m_2}{n} \quad \text{if } t \leq 1,$$
 and

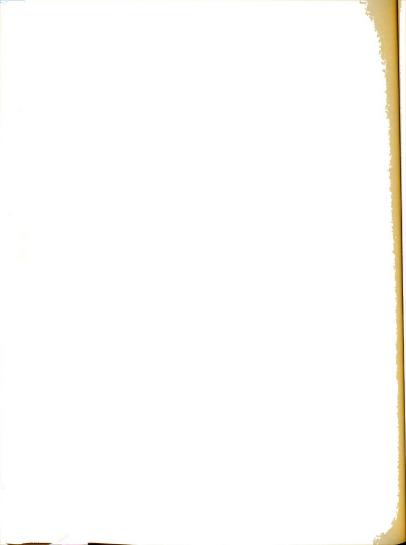
(2.1.22)(b) $\mu_1 \geq \lambda_{(n)} \frac{m_1 m_2}{n}$ if $t \geq 1$,

using the fact that $\mu_2 \geq 0$. It is easily verified that

 $\lambda_{(n)}^+$ and $\lambda_{(n)}^-$ satisfy the quadratic equation in $\lambda_{(n)}$ (so that $\lambda_{(n)}^+$ and $\lambda_{(n)}^-$ are the roots of the equation)

$$\frac{\lambda_{(n)} \left(1 - \frac{m_1}{n} - \frac{m_2}{n} + \lambda_{(n)} \frac{m_1 m_2}{n^2}\right)}{(1 - \lambda_{(n)} \frac{m_1}{n})(1 - \lambda_{(n)} \frac{m_2}{n})} = t, \quad t \text{ fixed.}$$

If, now, we suppose that $\frac{m_1}{n} \longrightarrow P_A$ and $\frac{m_2}{n} \longrightarrow P_B$ as $n \longrightarrow \infty$, then


and $\lambda^{\,\,+}$ and $\lambda^{\,\,-}$ are roots of the equation

(2.1.24)
$$\frac{\lambda (1-P_{A}-P_{B}+\lambda P_{A}P_{B})}{\lambda (1-\lambda P_{A})(1-\lambda P_{B})} = t.$$

We recall from section 1.2 that this constant arose in deriving the conditional probability of n_1 , given $n_1, n_2, n, \lambda, P_A$, and P_B . The implication of (2.1.22)(a),(2.1.22)(b), (2.1.23) is that

(2.1.25)
$$\lim_{n \to \infty} \frac{\mu_1^{-1}}{n} \le \lambda^{+} P_A P_B \qquad \text{if } t \le 1$$

$$\lim_{n \to \infty} \frac{\mu_1^{-1}}{n} \ge \lambda^{-} P_A P_B \qquad \text{if } t \ge 1.$$

In the next section, it will be shown that the equality sign holds in (2.1.25). Hence, for m_1, m_2 , and n moderately large, μ_1 can be approximated very well by

(2.1.26)
$$\theta_{(n)}^{+} = \lambda_{(n)}^{+} \frac{m_1 m_2}{n}$$
 if $t \le 1$, $\theta_{(n)}^{-} = \lambda_{(n)}^{-} \frac{m_1 m_2}{n}$ if $t \ge 1$.

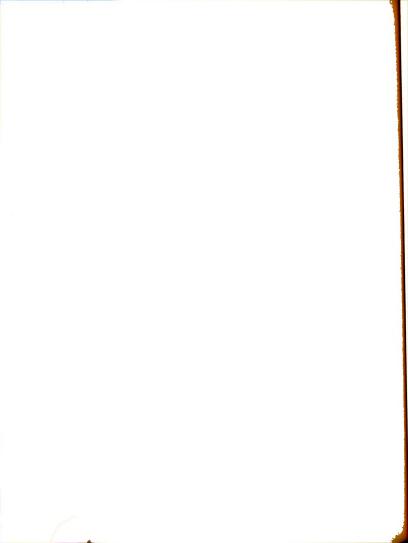
Furthermore, it will be proven that, under the same hypotheses on the order of magnitude of m_1 and m_2 ,

(2.1.27)
$$\lim_{n \to \infty} \frac{\mu_2}{n} = \left[\sum_{i=1}^{4} \frac{1}{\pi_i} \right]^{-1}$$

where

$$\pi_1 = \lambda P_A P_B$$

$$\pi_2 = P_B - \lambda P_A P_B$$

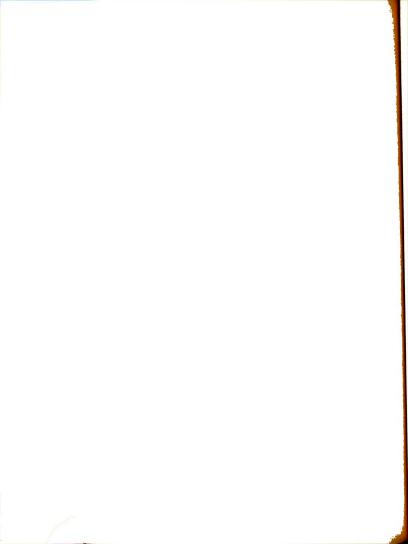

$$\pi_3 = P_A - \lambda P_A P_B$$

$$\pi_4 = 1 - P_A - P_B + \lambda P_A P_B.$$

Hence, as an approximation to μ_2 we have

(2.1.28)
$$\hat{\mu}_2 = n \left[\sum_{i=1}^{l_+} \frac{1}{\pi_i^{-1}} \right]^{-1}$$

where π_1 is obtained from π_1 by replacing P_A and P_B by $\frac{m_1}{n}$ and $\frac{m_2}{n}$ respectively, and λ by $\lambda_{(n)}^+$ if $\lambda \leq 1$, and by $\lambda_{(n)}^-$ if $\lambda \geq 1$.


For small values of m_1, m_2 , and n, the approximation (2.1.26) can be improved if we replace μ_2 by $\hat{\mu}_2$ in (2.1.20), i.e., we approximate μ_1' by (2.1.29)

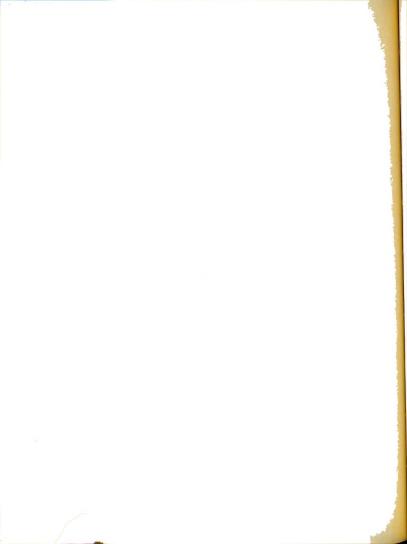
$$\hat{\boldsymbol{\mu}}_{1}^{\prime} = \begin{bmatrix} \frac{n - (m_{1} + m_{2})(1 - t)}{2(t - 1)} + \sqrt{\frac{n - (m_{1} + m_{2})(1 - t)}{2(t - 1)}} + \frac{m_{1} m_{2} t}{1 - t} - \hat{\boldsymbol{\mu}}_{2} \end{bmatrix}$$

where the positive square is taken if t < 1, and the negative square root if t > 1.

If it is desired to approximate μ_3 , μ_4 , μ_3 , and μ_4 , then the recurrence relations given in(2.1.17) and(2.1.18), together with(2.1.9), may be used with μ_1 replaced by $\hat{\mu}_1$, being sure to take the correct root. However, these approximations, especially for μ_4 and μ_4 , will not be as close to the true values as $\hat{\mu}_1$ is to $\hat{\mu}_1$, since a very small error in approximating $\hat{\mu}_1$ can build up to a sizable error when $\hat{\mu}_4$ is approximated.

For small values of m₁,m₂, and n, (2.1.1), (2.1.10), and (2.1.16) may be used to compute exact probabilites, moments about the origin, and the variance, using tables of the hypergeometric probability distribution. Roksar [19] has four-place tables of the hypergeometric distribution for selected values of m₁,m₂, and n, ranging to n = 100. To approximate the moments, (2.1.28) and (2.1.29) may be used. We now give two examples illustrating some of the recurrence relations, approximations and other properties of the probability function (2.1.1).

Example 1. We take $m_1 = 6$, $m_2 = 8$, n = 20, t = 2. The individual probabilities, accurate to nine decimal places, are given in Table VII


	Table VII						
n ₁	Pr {n ₁ 6,8,20;2}						
0	•003	489	268				
1	•047	852	816				
2	•209	356	071				
3	•372	188	572				
4	•279	141	429				
5	.081	204	779				
6	.006	767	065				

Exact computation of the moments about the origin and the mean value μ_1^{i} , using (2.1.10) and (2.1.9), yield

$$\mu_{1}' = 3.14632267$$
 $\mu_{2} = 10.974970922$
 $\mu_{3}' = 41.24912768$
 $\mu_{4}' = 164.52813316$
 $\mu_{1} = 3.27492641$

Since in the next section we will show that $\mathbf{n_1}$ is asymptotically normally distributed, as an indication of the rate of convergence to the normal distribution, we compute

also
$$\beta_1 = \frac{\mu_3^2}{\mu_2^3} = .002025$$
 and $\beta_2 = \frac{\mu_4}{\mu_2^2} = 2.83061$.

These values compare very well with the values 0 and 3 for a normally distributed random variable. The two constants β_1 and β_2 are measures of the skewness and peakedness of a distribution.

Using (2.1.21) we find that $\lambda_{(20)}^- = .1553778$, and so as a first approximation to μ_1^+ we have $\theta_{(20)}^- = 3.107556$ From (2.1.28), we find that $\hat{\mu}_2 = 1.018620$, so that the improved approximate value of μ_1^+ employing (2.1.29) is given by

 $\hat{\mu}_1^*$ = 3.144265. The higher moments about the origin are approximated by using the recursion relations between moments; thus, from (2.1.15),(2.1.17), and(2.1.18),we find successively that

$$\hat{\mu}_{2}^{i} = 10.9050$$

$$\hat{\mu}_{3}^{i} = 39.1503$$

$$\hat{\mu}_{1}^{i} = 104.8391$$

Except for μ_{\downarrow} , the approximations seem to be adequate.

Example 2. Let $m_1=12$, $m_2=15$, n=30, t=6. The exact probabilities $\Pr\left\{n_1 \middle| 12, 15, 30; t\right\}$ are given in Table VIII The procedure for computing the exact and approximate values was given in Example 1, so only the numerical data is presented here.

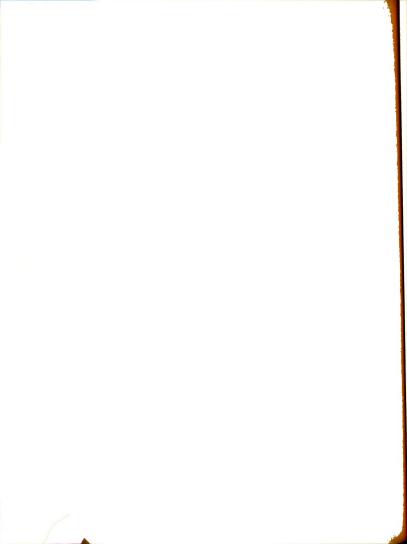
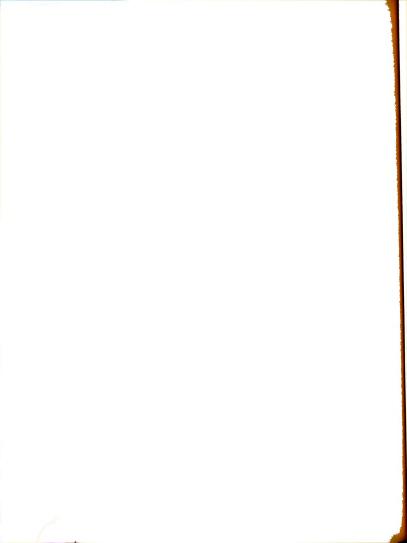



Table VIII

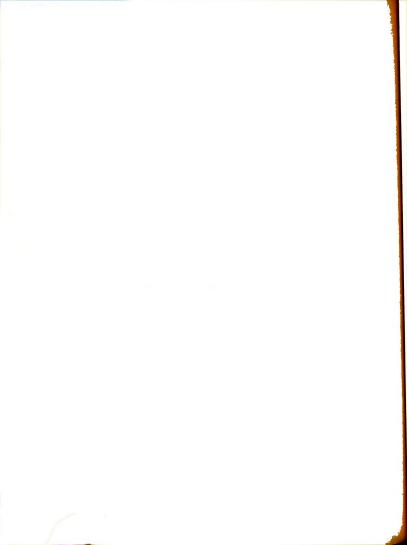
	n ₁	$Pr\left\{ n_{1} 12,15,30;6 \right\}$				ⁿ ı	Pr {n ₁ 12,15,30;6}		
	0	.0000	0000			7	.0752	0799	
	1	.0000	0002			8	.2051		
	2	.0000	0016			9	.3190		
	3	.0000	0684			10	.2650		
	4		5827			11	.1032		
	5	.0020	8911			12	.0137	6980	
	6	.0162	4864						
μ1 μ2 μ3	= 7	9.099 ¹ 84.2822 793.5130 ,584.7469	20 章 23 章 21 章	1 = 2 = 3 = 4 = 5	82 791	.09660 .44000 .03628 .10768	μ ₂ μ ₃	= 9.00000 = 1.48202 =38066 = 6.46250	
	β	= .0445	2	β	2 = 2.	94234	λ	(30)= 1.5	

2.2 Limiting Distributions and Approximations

The asymptotic properties of the probability function (2.1.1) will be of great importance in finding approximations for both the individual probabilities and the corresponding distribution function. In this section, three limit theorems, (2.2.D), (2.2.E) and (2.2.F), are given for (2.1.1).

Since (2.1.1) is of the form

(2.2.1)
$$\Pr\left\{n_1|m_1,m_2,n_it\right\} = k(m_1,m_2,n_it) \Pr\left\{n_1|m_1,m_2,n\right\} t^{n_1}$$
, where $\Pr(n_1|m_1,m_2,n)$ is the ordinary hypergeometric function as given by (1.2.6), and $k(m_1,m_2,n_it)$ is the reciprocal of the sum of $\Pr\left\{n_1|m_1,m_2,n\right\} t^{n_1}$ over all possible values of n_1 , it would seem plausible that limit theorems for (2.1.1) would follow readily from corresponding limit theorems for $\Pr\left\{n_1|m_1,m_2,n\right\}$. Three such limit theorems have been established by Feller for the hypergeometric function.


Th. 2.2.A. (Normal Convergence: Feller [5], page 180).

If
$$\frac{m_1}{n} \longrightarrow r$$
, $\frac{m_2}{n} \longrightarrow s$, $(0 < r, s < 1)$, and
$$\frac{n_1 - m_1 m_2 n^{-1}}{h} = x_{n_1} \xrightarrow{} x$$
, where $h = \sqrt{\frac{m_1 m_2 (n - m_1) (n - m_2)}{n^2 (n - 1)}}$,

then

(2.2.2)
$$Pr\left\{n_1|m_1,m_2,n\right\} \sim h^{-1} / (x_{n_1})$$

where the symbol " \sim " means that the ratio of the two sides

tends to unity, and ϕ is the normal density $(2\pi)^{-\frac{1}{2}} \exp \left[\frac{-u^2}{2} \right]$.

Th. 2.2.B (Binomial Convergence: Feller [5], page 180).

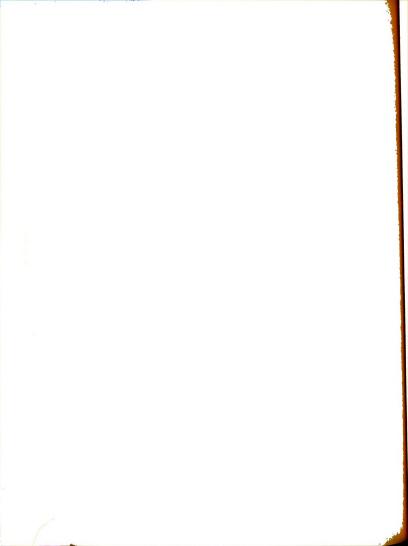
If
$$\frac{m_1}{n} \longrightarrow r > 0$$
, $\frac{n-m_1}{n} \longrightarrow 1-r > 0$, then for each

fixed m2

$$(2.2.3) \quad \lim_{n} \Pr \left\{ n_{1} \big|_{m_{1}, m_{2}, n} \right\} = {m \choose n_{1}} r^{n_{1}} (1-r)^{m_{2}-n_{1}}.$$

Th. 2.2.C (Poisson Convergence: Feller [5], page 180).

$$\text{If } \frac{^m\!1^m\!2}{n} \; \longrightarrow \; v \text{, } \; 0 < v < \infty \text{, as } \; ^m\!1,^m\!2,^n \; \longrightarrow \infty \text{,}$$


then

(2.2.4)
$$\lim_{n} \Pr \left\{ n_{1} | m_{1}, m_{2}, n \right\} = \frac{e^{-\mathbf{v}} v^{n_{1}}}{n!}$$
.

In the next few pages, similar theorems on convergence to the normal, binomial, and Poisson laws will be proven for (2.1.1), with convergence to the binomial and Poisson Laws following almost trivially from Theorems 2.2.B and 2.2.C., whereas convergence to the normal density will be proven by suitably modifying Feller's proof of the convergence of the binomial distribution to the normal distribution.

Theorems 2.2.D and 2.2.E below are easy consequences of (2.2.3) and (2.2.4), and are therefore given first.

Th. 2.2.D If
$$\frac{m_{\underline{1}}}{n} \longrightarrow r > 0$$
, $\frac{n-m_{\underline{1}}}{n} \longrightarrow 1-r > 0$, then for

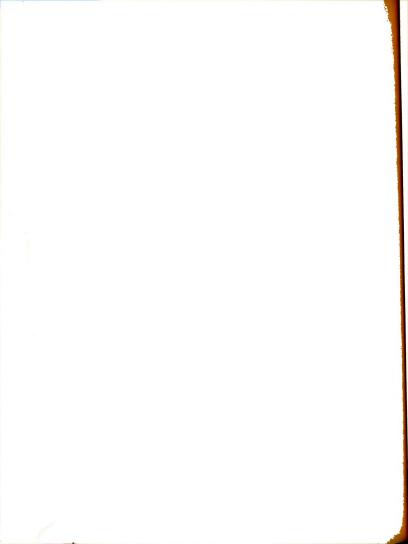
each fixed mo,

$$\lim_{n \longrightarrow \infty} \Pr \left\{ n_1 \big| \, m_1, m_2, n; t \right\} \ = \binom{m_2}{n_1} \left(\frac{tr}{tr+1-r} \right)^{n_1} \ \left(\frac{1-r}{tr+1-r} \right)^{m_2-n_1} \ .$$

Proof: In proving Th. 2.2.B, Feller has shown that

$$(2.2.5) {\binom{m}{2} \binom{m}{1} - \frac{n}{1}} {\binom{m}{1} - \frac{n}{1}}^{n} {\binom{n-m}{1} - \frac{m_2-n_1}{n}}^{m_2-n_1}^{m_2-n_1}$$

$$< \Pr \left\{ n_1 | m_1, m_2, n \right\} < {\binom{m}{2} \binom{m}{1}} {\binom{n}{1}}^{n} {\binom{n-m}{1}}^{m_2-n_1} {\binom{n-m}{1}}^{m_2-n_1} {\binom{n-m}{2}}^{m_2-n_2} .$$


Since
$$\Pr\left\{n_{1}|_{m_{1},m_{2},n;t}\right\} = \frac{\Pr\left\{n_{1}|_{m_{1},m_{2},n}\right\} t^{n_{1}}}{\sum_{j} \Pr\left\{j|_{m_{1},m_{2},n}\right\} t^{j}}$$
,

the following two inequalities, using (2.2.5), are obtained:

$$(2.2.6)(a) \quad \Pr\left\{n_{1} \middle| m_{1}, m_{2}, n; t\right\} > \frac{\binom{m_{2}}{n_{1}} \left(\frac{m_{1}t}{n} - \frac{n_{1}t}{n}\right)^{n_{1}} \left(\frac{n-m_{1}}{n} - \frac{m_{2}-n_{1}}{n}\right)^{m_{2}-n_{1}}}{\sum_{j} \binom{m_{2}}{j} \left(\frac{m_{1}t}{n}\right)^{j} \left(\frac{n-m_{1}}{n}\right)^{m_{2}-j} \left(1 - \frac{m_{2}}{n}\right)^{-m_{2}}};$$

$$\Pr \left\{ n_1 \middle| m_1, m_2, n; t \right\} < \frac{{m_2 \choose n_1} \left(\frac{m_1 t}{n} \right)^{n_1} \left(\frac{n - m_1}{m} \right)^{m_2 - n_1} \left(1 - \frac{m_2}{n} \right)^{-m_2}}{\sum_j {m_2 \choose j} \left(\frac{m_1 t}{n} - \frac{jt}{n} \right)^j \left(\frac{m - m_1}{n} - \frac{m_2 - j}{n} \right)^{m_2 - j}} .$$

For each fixed mo both of the sums in the denominators in

(2.2.6)(a) and (2.2.6)(b) are finite and positive, so that

$$(2.2.7)(a) \xrightarrow[n \to \infty]{\Pr} \left\{ n_1 |_{m_1, m_2, n; t} \right\} \ge \frac{\binom{m_2}{n_1} (r_t)^n_{(1-r)}^{n_2-n_1}}{\sum_{j} \binom{m_2}{j} (r_t)^j_{(1-r)}^{m_2-j}}$$

$$= \left[\binom{m_2}{n_1} \left(\frac{r_t}{r_t+1-r} \right)^{n_1} \left(\frac{1-r}{r_t+1-r} \right)^{m_2-n_1} \right]$$

Similarly, it is easily shown that

$$(2.2.7) \text{ (b) } \lim_{n \to \infty} \Pr \left\{ n_1 \big| \, m_1, m_2, n; t \right\} \leq \binom{m_2}{n_1} \left(\frac{rt}{rt+1-r} \right)^n 1 \left(\frac{1-r}{rt+1-r} \right)^{m_2-n_1} 1 \right\}$$

Thus, (2.2.7)(a) and (2.2.7)(b) imply the desired result.

Th.2.2.E If
$$\frac{m_1m_2t}{m_1t+n-m_1} = v_n \longrightarrow v$$
, (0 < v < ∞), as

 $m_1, m_2, n \longrightarrow \infty$


then

$$\lim_{n \to \infty} \Pr \left\{ n_1 \middle| m_1, m_2, n; t \right\} = \frac{e^{-v} v^{n_1}}{n!} .$$

Proof: Let $p_n = \frac{m_1 t}{m_1 t + n - m_1}$. Then the hypotheses imply

 $p_n \longrightarrow 0$ in such a way that $m_2 p_n \longrightarrow v$, and the Poisson limit theorem for the binomial distribution implies the conclusion of the theorem.

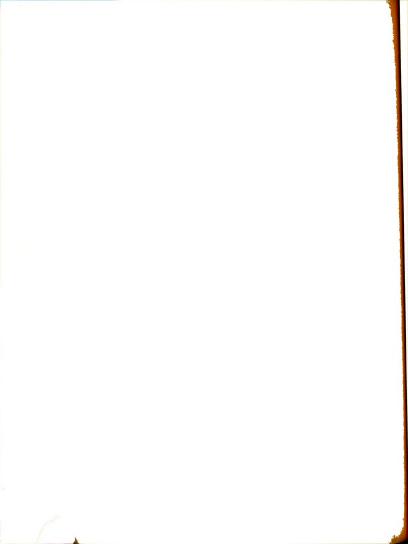
One would probably suspect that convergence of (2.1.1),

suitably normalized, to the normal density would follow directly from Theorem 2.2.A, according to the heuristic argument below.

Write (2.1.1) in the form (2.2.1), and replace $\Pr\left\{n_1|m_1,m_2,n\right\} \text{ by its asymptotic equivalent normal form, i.e., replace } \Pr\left\{n_1|m_1,m_2,n\right\} \text{ by the ordinate of a normal distribution with mean } \frac{m_1m_2}{n} \text{ and variance}$

$$h^2 = \frac{m_1 m_2 (n-m_1) (n-m_2)}{n^2 (n-1)}$$
, obtaining

(2.2.8)
$$\Pr\left\{n_1|_{m_1,m_2,n;t}\right\} \sim k(m_1,m_2,n;t)$$


$$-\frac{1}{2h^2}(n_1-\frac{m_1m_2}{n})^2$$

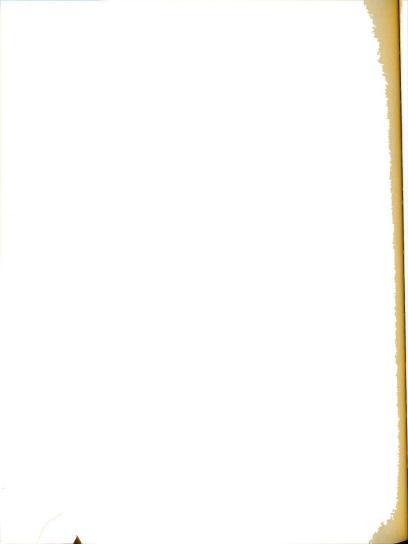
$$-\frac{1}{\sqrt{2\pi}h}e^{-\frac{1}{2h^2}(n_1-\frac{m_1m_2}{n})^2}e^{n_1\log t}$$

Completing the square in $\ n_1$ in the exponent and integrating to determine the constant $\ k(m_1m_2,n;t)$, one would obtain as an approximation,

(2.2.9)
$$\Pr\left\{n_1|_{m_1,m_2,n;t}\right\} \sim \frac{1}{\sqrt{2\pi}h} e^{-\frac{1}{2}\left(\frac{n_1-y_1}{h}\right)^2}$$

where $x_1 = \frac{m_1 m_2}{n} + h^2 \log t$, so that for large values of m_1, m_2 and n, n_1 would be approximately normal, with mean x_1 and variance h^2 .

This is purely an heuristic argument, but at first sight it seems plausible that a limit theorem could be obtained using the above as a rough outline. That this is not the case, however, is evident upon further consideration. If the above procedure were valid, then the same procedure applied to a binomial random variable should also be valid. However, if the binomial probability law is modified in the same manner that the hypergeometric law was modified, one would have


(2.2.10)
$$\Pr\left\{k;n,p;t\right\} = \frac{\binom{n}{k}p^k \ q^{n-k} \ t^k}{\sum_{j=0}^{n} \binom{n}{j} \ p^j \ q^{n-j} \ t^j}$$
.
Since $\binom{n}{k}p^k \ p^{n-k} \sim \frac{1}{\sqrt{2\pi} \ \sigma} e^{-\frac{1}{2} \frac{(k-np)^2}{\sigma}}$, $\sigma^2 = npq$,

one would find, following the procedure outlined above, that

(2.2.11)
$$\Pr\left\{k;n,p;t\right\} \sim \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{1}{2} \frac{\left(k-np-\sigma^2 \log t\right)^2}{\sigma^2}}$$

i.e., k would be approximately normal, with mean and variance

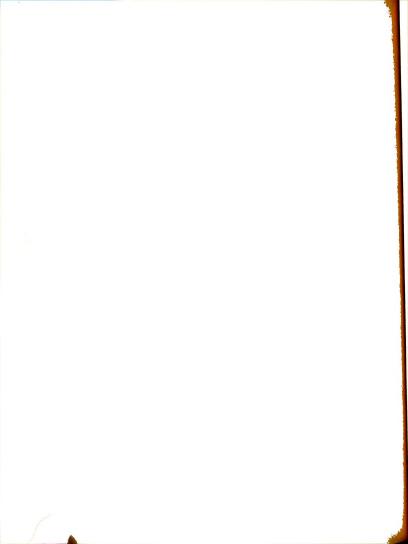
$$\chi' = np + \sigma^2 \log t$$
, $\sigma^2 = npq$

But, (2.2.10) can be written as

(2.2.12)
$$\Pr\left\{k;n,p;t\right\} = \binom{n}{k} \left(\frac{pt}{pt+q}\right)^k \left(\frac{q}{pt+q}\right)^{n-k}$$
,

and it follows from the well-known limit theorem for the binomial distribution that k is asymptotically normal with mean

$$Y_2 = \frac{\text{npt}}{\text{pt + q}}$$
 and variance $\sigma_2^2 = \frac{\text{npqt}}{(\text{pt+q})^2}$.

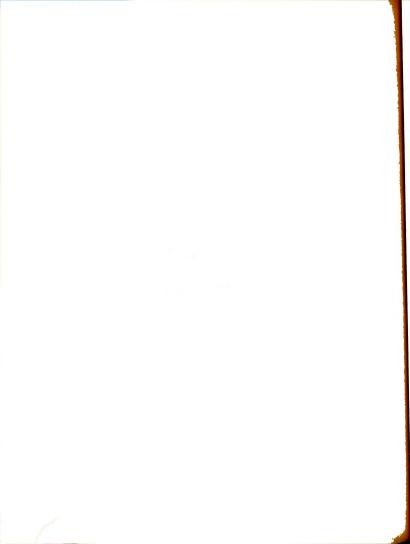

Comparing the two means % and $\%_2$ and the two variances $\sigma_2^{\ 2}$ and $\sigma^{\ 2}$, one has

$$\frac{\sqrt[8]{g}}{\sqrt[8]{g}} = \frac{(\text{pt+q})[1+q\log t]}{t}, \frac{\sigma^2}{\sigma_2^2} = \frac{(\text{pt+q})^2}{t}$$

so that % and σ^2 will depart monotonically away from the true mean and variance as t varies away from 1. In the neighborhood of t = 1, however, the results are not too dissimilar. It will be seen later that a similar result is obtained for the modified hypergeometric probability law. For very small values of t, the heuristic approximation (2.2.9) gives absurd results. For example, suppose $\log t < -4$,

and
$$m_1 = m_2 = \frac{n}{2}$$
. Then

 $0 = \frac{n}{4} + \frac{n}{16} \log t = n[.25 + .0625 \log t] < n(.25 - ..25) = 0,$ so that an everywhere positive random variable would have a negative expection, which is impossible. Nevertheless, the approximation (2.2.9) has been used on at least two occasions



in approximating a power function; once by Moore [13] and again by Patnaik [14] in deriving an approximation to the power for the test of independence in the 2 x 2 comparative trial. Patnaik's approximation will be discussed later in section 3.2.

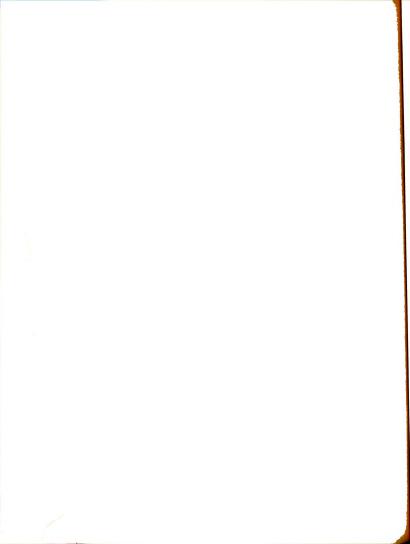
The crux of the matters discussed above is that an alternative approach towards finding the correct limit theorem corresponding to Th. 2.2.A must be adopted. This will be accomplished by following Feller's argument in his normal approximation to the binomial.

The asymptotic distribution could also be obtained by using a theorem due to Steck [23, Th. 2.2, page 248], but the following argument is less difficult and more direct; in addition, it gives an asymptotic formula for the individual terms. Before proceeding to the derivation, however, it will first be necessary to observe that Feller's binomial limit theorem can be stated in a stronger form than is usually given.

Putting $h=(npq)^{-\frac{1}{2}}$ and $x_k=(k-np)h$, Feller's binomial-approximation theorem asserts that $b(k;n,p) \sim hp(x_k)$ if $n\longrightarrow\infty$, and $k\longrightarrow\infty$ in such a way that $hx_k^3\longrightarrow 0$, and where p is held fixed. However, if p is free to vary but still $hx_k^3\longrightarrow 0$ as $n\longrightarrow\infty$, $k\longrightarrow\infty$ and $n-k\longrightarrow\infty$, Feller's theorem still holds since the proof remains the same, except p is to be replaced by p_n , h by $h_n=(np_nq_n)^{-\frac{1}{2}}$, and x_k by $(k-np_n)h_n$. In the derivation of the asymptotic

formula for the individual probabilities $\Pr\left\{n_1|m_1,m_2,n;t\right\}$ below, the quantities p_1 and p_2 to be introduced are not fixed, depending on n, but the notation will not show this.

The quantity t in $\Pr\left\{n_1|m_1,m_2,n;t\right\}$ is a positive constant and independent of m_1,m_2 , and n. Write $\Pr\left\{n_1|m_1,m_2,n;t\right\} \text{ in the form}$


(2.2.13) Pr
$$\left\{n_{1}\mid m_{1}, m_{2}, n; t\right\} = \frac{b(n_{1}; m_{1}, p_{1}) b(m_{2}-n_{1}; n-m_{1}, p_{2})}{\sum_{n_{1}} b(n_{1}; m_{1}, p_{1}) b(m_{2}-n_{1}; n-m_{1}, p_{2})}$$

$$=\frac{\binom{m_1}{n_1}\binom{n_1-m_1}{m_2-n_1}t^{n_1}}{\sum\limits_{n_1}\binom{m_1}{n_1}\binom{n_1-m_1}{m_2-n_1}t^{n_1}}$$

where p_1 and p_2 are chosen so that $\frac{p_1q_2}{p_2q_1} = t$ and

 $m_2 = m_1 p_1 + (n-m_1)p_2$

$$x_{n_1} = h(n_1 - m_1 p_1)$$

and noting that since $m_2 - (n-m_1)p_2 = m_1p_1$,

(2.2.15)
$$x_{2,m_2-n_1} = h_2[(m_2-n_1) - (n-m_1)p_2] = -h_2(n_1-m_1p_1),$$

two applications of the extended Feller-binomial-approximation yield $% \left(\mathbf{r}\right) =\left(\mathbf{r}\right)$

$$(2.2.16) \quad b(n_1;m_1,p_1)b(m_2-n_1;n-m_1,p_2) \sim h_1 / (x_1,n_1)h_2 / (x_2,m_2-n_1)$$

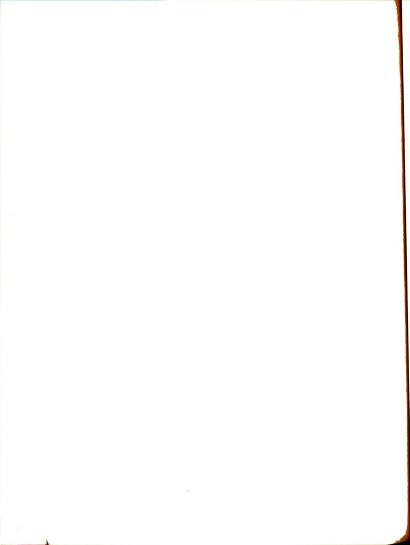
as h \longrightarrow 0, $hx_{n_1}^3$ \longrightarrow 0. This is true since $h_1 \le h$, so that

$$hx_{n_1}^3$$
 \longrightarrow 0 obviously implies h_1x_{1,n_1}^3 \longrightarrow 0 and $hx_{2,n_2-n_1}^3$ \longrightarrow 0.

Conversely, if $h_1x_1^3, n_1 \longrightarrow 0$, and $h_2x_2^3, m_2-n_1 \longrightarrow >0$, then

$$\text{hx}_{n_1}^3 \longrightarrow 0 \quad \text{follows from} \quad \text{h}_1 x_{1,n_1}^3 = \text{h}_1 \left(\frac{\text{h}_1}{\text{h}}\right)^3 \, x_{n_1}^3$$

and $h_2 x_{2,m_2-n_1}^3 = -h_2 \left(\frac{h_2}{h}\right)^3 x_{n_1}^3$, and the fact that


 $\mathbf{h_i},~\mathbf{x_{i,n_i}}$, and (2.2.15), (2.2.16) is easily transformed to

(2.2.17)
$$b(n_1; m_1, p_1)b(m_2-n_1; n-m_1, p_2) \sim (2\pi)^{-\frac{1}{2}} h_1 h_2 \not o (x_{n_1})$$

and hence $(2.2.18) \quad (2\pi)^{-\frac{1}{2}} \frac{h}{h_1 h_2} \; b(n_1; m_1, p_1) b(m_2 - n_1; n - m_1, p_2) \sim h \not o (x_{n_1})$

as h, $hx_{n_1}^3 \longrightarrow 0$. Just as in Feller's treatment of the

binomial case, it follows that

$$(2.2.19) \sum_{n_1=\infty}^{\beta} (2\pi)^{\frac{1}{2}} \frac{h}{h_1 h_2} b(n_1; m_1, p_1) b(m_2-n_1; n-m_1, p_2)$$

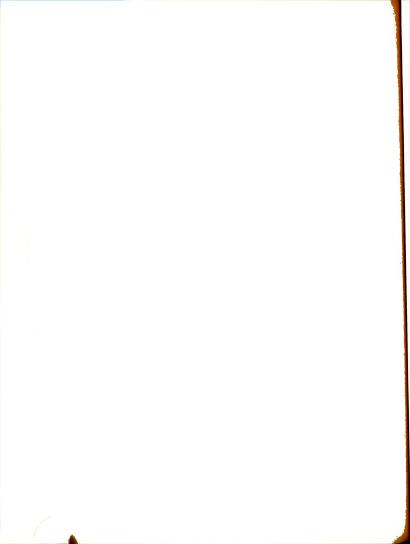
$$\sim \sum_{\infty}^{\beta} h \not \circ (x_{n_1}) \sim \stackrel{a}{\Phi} (x_{\beta + \frac{1}{2}}) - \stackrel{a}{\Phi} (x_{\infty - \frac{1}{2}})$$

as h, hx $\frac{3}{\propto}$, hx_{\beta}³ \longrightarrow 0.

Thus, if there exists tails $n_1 < \infty$ and $n_1 > \beta$, with $x_{\infty} \longrightarrow -\infty$ $x_{\beta} \longrightarrow +\infty$ while still hx_{∞}^3 and $hx_{\beta}^3 \longrightarrow 0$, such that the sum of the left hand side of (2.2.17) over these tail values converges to zero, then

$$\sum_{n_1} (2\pi)^{\frac{1}{2}} \frac{h}{h_1 h_2} b(n_1; m_1, p_1) b(m_2 - n_1; n - m_1, p_2) \longrightarrow 1, \text{ and so}$$

(2.2.20) Pr
$$\left\{ n_1 \middle| m_1, m_2, n; t \right\} \sim h \phi(x_{n_1})$$


as h,
$$hx_{n_1}^3 \longrightarrow 0$$
.

But if $\beta > m_1 p_1$ and is such that $x_{\beta} \longrightarrow \infty$ while

$$hx_{\beta}^{3} \longrightarrow 0$$
, then

$$\sum_{\mathbf{n_1} > \beta} b(\mathbf{n_1}; \mathbf{m_1}, \mathbf{p_1}) b(\mathbf{m_2} - \mathbf{n_1}; \mathbf{n} - \mathbf{m_1}, \mathbf{p_2}) < b(\beta; \mathbf{m_1}, \mathbf{p_1}) \sum_{\mathbf{n_1} > \beta} b(\mathbf{m_2} - \mathbf{n_1}; \mathbf{n} - \mathbf{m_1}, \mathbf{p_2})$$

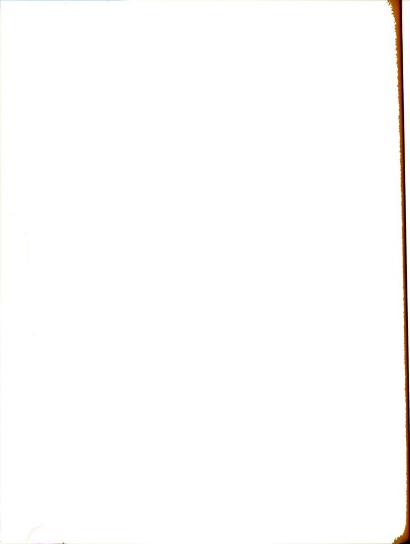
< b(
$$\beta$$
;m1,p1) \sim h1%(x1, β), and therefore

$$(2.2.21) \sum_{n_1 > \beta} (2\pi)^{\frac{1}{2}} \frac{h}{h_1 h_2} b(n_1; m_1, p_1) b(m_2 - n_1; n - m_1, p_2)$$

$$<(2\pi)^{\frac{1}{2}} \frac{h}{h_2} \phi(x_1, \beta) \le (2\pi)^{\frac{1}{2}} (1 + \frac{h_1}{h_2}) \phi(x_1, \beta) \longrightarrow 0,$$
and similarly for
$$\sum_{n_1 > \beta} (2\pi)^{\frac{1}{2}} \frac{h}{h_1 h_2} b(n_1; m_1, p_1) b(m_2 - n_1; n - m_1, p_2).$$

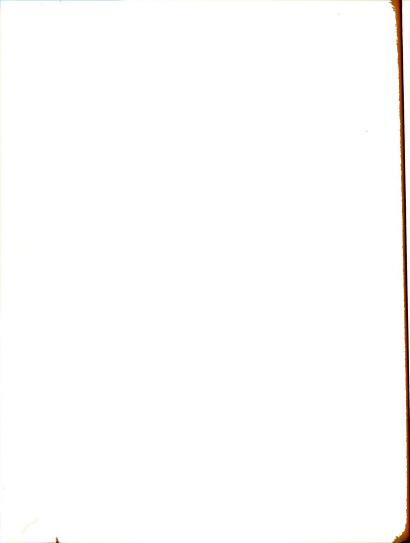
Therefore (2.2.19) is established.

The remaining question, since (2.2.19) is expressed in terms of m_1, m_2, n , and t only thru the parameters p_1 and p_2 , is to try to interpret the conditions h, $hx_{n_1}^3 \longrightarrow 0$ in terms of m_1, m_2 , and n for t fixed in $(0, \infty)$.


The condition $h \longrightarrow 0$ clearly implies that h_1 and $h_2 \longrightarrow 0$, or $m_1 p_1 q_1 \longrightarrow \infty$ and $(n-m_1) p_2 q_2 \longrightarrow \infty$, and therefore $m_1 p_1$, $m_1 q_1$, $(n-m_1) p_2$, $(n-m_1) q_2 \longrightarrow \infty$. But then

$$m_2 = m_1 p_1 + (n-m_1) p_2 \longrightarrow \infty$$

and


$$(n-m_2 = m_1q_1 + (n-m_1)q_2 \longrightarrow \infty$$

Conversely

and with t held constant and equal to $\frac{p_1q_2}{p_2q_1}$, if m_2 and $n-m_2 \longrightarrow \infty$ then either $m_1p_1q_1$ or $(n-m_1)p_2q_2 \longrightarrow \infty$. Finally, if both m_1 and $n-m_1 \longrightarrow \infty$, then obviously $m_1p_1q_1$ and $(n-m_1)p_2q_2 \longrightarrow \infty$. Hence, it remains only to determine the values of n_1 such that $hx_{n_1}^{\ 3} \longrightarrow 0$, or equivalently, those n_1 such that both $h_1x_{1,n_1}^{\ 3}$ and $h_2x_{2,m_2-n_1}^{\ 3} \longrightarrow 0$.

In general it may be rather difficult to determine the values of n_1 for which $hx_{n_1}^{3} \longrightarrow 0$, but for the important special case when m_1 and m_2 are both of the same order of magnitude as n , it is very easy. Thus, suppose $\frac{m_1}{n}$ \longrightarrow P_A , $\frac{m_2}{n}$ \longrightarrow P_R . Then the two conditions, $t = \frac{p_1 q_2}{p_2 q_2}$ (0 < t < ∞) and $m_2 = m_1 p_1 + (n-m_1) p_2$ imply $nh_1^2 = \frac{n}{m_1 p_1 q_2} \longrightarrow c_1$, $nh_2^2 = \frac{n}{(n-m_1)p_2 q_2} \longrightarrow c_2$, where c_1 and c_2 are finite positive constants and consequently $hx_{n_1}^3 = h^{l_1}(n_1 - m_1 p_1)^3 = \left[\frac{m_1}{n} p_1 q_1 \right]^{-1} + \left[\frac{n - m_1}{n} \right] p_2 q_2 \left[-1 \right]^2 \frac{(n_1 - m_1 p_1)^3}{2} ,$ and hence $hx_{n_1}^3 \longrightarrow 0$ if and only if $\frac{(n_1-m_1p_1)^3}{2} \longrightarrow 0$,

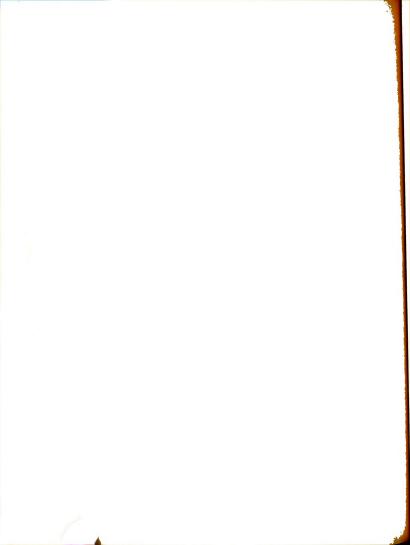
which is the same condition as in Feller's binomial case.

The above results are collected in the following theorem.

Th.2.2.F. If \propto_1 and β_1 vary so that $hx_{\stackrel{3}{\sim}_1}$ \longrightarrow 0 and $hx_{\stackrel{3}{\beta}_1}$ \longrightarrow 0, then

$$\Pr\left\{ {{{\bf{n_1}}{\rm{|}}}{{\bf{m_1}},{{\bf{m_2}},{\bf{n}};t}}} \right\} \sim {\rm{h}} \; \emptyset \; ({{\bf{x_{n_1}}}}).$$

uniformly for all $\;\; \boldsymbol{\simeq}_{1} \; < \; \boldsymbol{n}_{1} \; < \; \boldsymbol{\beta}_{1} \;$, and


$$(2.2.22) \sum_{n_1=\alpha_1}^{\beta_1} \Pr\left\{ n_1 \big| \, m_1, m_2, n; t \right\} \sim \phi(x_{\beta_1 + \frac{1}{2}}) - \phi(x_{\alpha_1 - \frac{1}{2}}).$$

The last assertion of Th.2.2.F follows exactly as in Feller. Finally, it follows, again as in Feller, that for every fixed a < b,

$$(2.2.23) \quad \Pr \left\{ a \leq h(n_1 - m_1 p_1) \leq b \right\} \longrightarrow \bar{\phi} \ (b) - \bar{\phi} \ (a).$$

The quantities p_1 and p_2 have not yet been expressed in terms of m_1, m_2, n , and t. Solving first for p_2 in terms of p_1 and t, one has $p_2 = p_1(p_1 + q_1t)^{-1}$, and then solving for p_1 in the resulting quadratic equation $m_2 = m_1 p_1 + (n - m_1) p_1(p_1 + q_1t)^{-1}$, it is found that

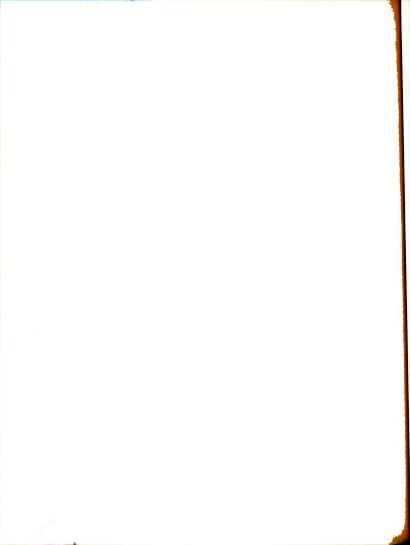
$$(2.2.24) p_1 = \frac{\lambda_{(n)}^{+} m_2}{n}, p_2 = \left(\frac{m_2}{n}\right) \left(1 - \frac{\lambda_{(n)}^{+} m_1}{n}\right) \left(1 - \frac{m_1}{n}\right)^{-1}$$

if t < 1, if t > 1, $\lambda_{(n)}^+$ is to be replaced by $\lambda_{(n)}^-$ where $\lambda_{(n)}^+$ and $\lambda_{(n)}^-$ are given by (2.1.21), and satisfy the equation

$$t = \frac{\lambda_{\text{(m)}} \left(1 - \frac{m_1}{n} - \frac{m_2}{n} + \frac{\lambda_{\text{(m)}} m_2}{n^2}\right)}{\left(1 - \frac{\lambda_{\text{(m)}} m_1}{n}\right) \left(1 - \frac{\lambda_{\text{(m)}} m_2}{n}\right)}.$$
 Routine algebra

shows that, putting $\sigma^2 = \frac{1}{h^2}$, omitting the + and - signs,

(2.2.25)
$$\sigma^2 = n \left[\sum_{i=1}^{4} \frac{1}{\pi_i^{i}} \right]^{-1}$$


where
$$\pi_1' = \lambda_{(n)} \left(\frac{m_1}{n}\right) \left(\frac{m_2}{n}\right)$$
, $\pi_2' = \left(\frac{m_1}{n}\right) \left(1 - \lambda_{(n)} \frac{m_2}{n}\right)$,

$$\pi_3' := \left(\frac{\underline{m_2}}{n}\right) \left(1 \ - \quad \lambda_{00} \cdot \frac{\underline{m_1}}{n}\right), \quad \text{and} \quad \pi_{l_1}' := 1 \ - \frac{\underline{m_1}}{n} \ - \frac{\underline{m_2}}{n} \ + \quad \lambda_{(n)} \left(\frac{\underline{m_1}}{n}\right) \left(\frac{\underline{m_2}}{n}\right) \ ,$$

so that the asymptotic mean and variance, expressed as functions of m_1, m_2, n , and t, are given by

(2.2.26)
$$\theta_{(n)} = m_1 p_1 = \frac{\lambda_{(n)} m_1 m_2}{n}$$
 and $\sigma^2 = n \begin{bmatrix} \frac{1}{4} & \frac{1}{\pi_1^*} \\ \frac{1}{2} & \frac{1}{\pi_1^*} \end{bmatrix} - 1$.

Therefore, if $\frac{m_1}{2} \longrightarrow P_A$, $\frac{m_2}{2} \longrightarrow P_B$,

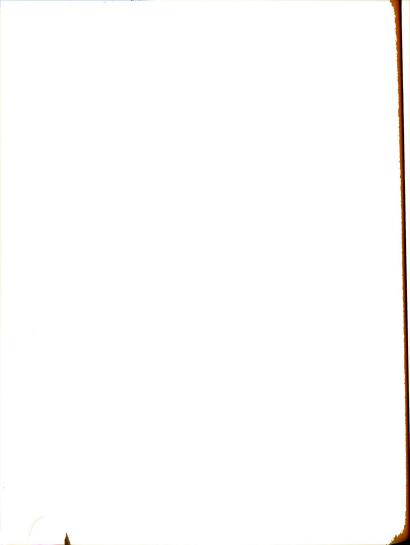
(2.2.27)
$$\lim_{n \to \infty} \frac{\mu_{1}}{n} = \lambda P_{A} P_{B}, \lim_{n \to \infty} \frac{\mu_{2}}{n} = \left(\sum_{i=1}^{l_{+}} \frac{1}{\pi_{i}} \right)^{-1},$$

where $\lambda = \lim_{n \to \infty} \lambda_{(n)}$ verifying the assertions made in

section 2.1 in equations numbered (2.1.25) and (2.1.27), with π_1 as defined in (2.1.27).

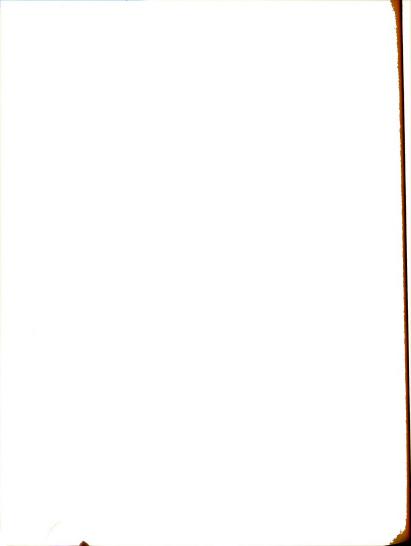
Finally, in concluding this chapter, several approximations to the probability function (2.1.1), based on the limit theorems established above, are given below. If n is large, and $\frac{m_1}{n} = r$, with m_2 small as compared to n, then the binomial approximation

$$(2.2.28) \quad \Pr\left\{n_{1} \middle| m_{1}, m_{2}, n; t\right\} \sim {m_{2} \choose n_{1}} \left(\frac{rt}{rt+1-r}\right)^{n_{1}} \left(\frac{1-r}{rt+1-r}\right)^{m_{2}-n_{1}}$$


should be suitable. If $\frac{m_1}{n}$ is small and $v_n = \frac{m_1 m_2 t}{m_1 t + n - m_1}$ is

of moderate magnitude, then the Poisson approximation

(2.2.29)
$$Pr\{n_1 m_1, m_2, n; t\} \sim \frac{e^{-v_n} v_n^{n_1}}{n_1!}$$


may be used. Finally, if $m_1, m_2, n-m_1$, and $n-m_2$ are all moderately large, then the normal approximation

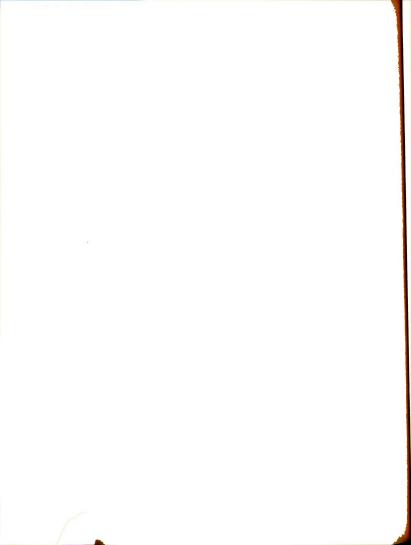
(2.2.30)
$$\Pr\left\{n_1 | m_1, m_2, n; t\right\} \sim \frac{1}{\sqrt{2\pi} \sigma} \exp\left[-\frac{1}{2} \left(\frac{n_1 - \theta(n)}{\sigma}\right)^2\right]$$

will give satisfactory results.

It is recommended that Patnaik's approximation not be used.

Chapter 3. Power for the Test of Independence

3.1 2 x 2 Independence Trial


In all subsequent discussion of power functions, the power will be evaluated for the unbiased test described in section 1.5.

For the 2 x 2 independence trial, the exact power of this test is given by

$$(3.1.1) \quad P_{n}(\lambda, P_{B}, P_{B}, m_{1}, m_{2}) = \frac{\sum_{\mathbf{w}(\mathbf{m}_{1}, m_{2})} \binom{m_{1}}{n_{1}} \binom{n_{2} - m_{1}}{m_{2} - n_{1}} t^{n_{1}}}{\sum_{n_{1}} \binom{m_{1}}{n_{1}} \binom{n_{2} - m_{1}}{m_{2} - n_{1}} t^{n_{1}}}$$

$$= \frac{\sum_{n_{E}w(m_{1},m_{2})} \Pr\left\{n_{1}|_{m_{1},m_{2},n}\right\} t^{n_{1}}}{\sum_{n_{1}} \Pr\left\{n_{1}|_{m_{1},m_{2},n}\right\} t^{n_{1}}}$$

where $t = \frac{\lambda (1 - P_A - P_B + \lambda P_A P_B)}{(1 - \lambda P_A)(1 - \lambda P_B)}$, and $w(m_1, m_2)$ is the region of rejection of H_0 , for fixed m_1 and m_2 , defined by equations (1.5.6) and (1.5.7). The notation $P_n(t \mid m_1, m_2)$

will also be used to denote the power function in the 2 x 2 independence trial, since it is much easier to tabulate power as a function of t.

Using tables of the hypergeometric distribution,(3.1.1) is easily evaluated for small values of the parameters. Notice that


$$\begin{aligned} \text{(3.1.2)} \quad & \text{P}_{\text{n}}(\boldsymbol{\lambda}, \text{P}_{\text{A}}, \text{P}_{\text{B}}, \text{m}_{\text{1}}, \text{m}_{\text{2}}) = & \text{P}_{\text{n}}(\boldsymbol{\lambda}, \text{P}_{\text{A}}, \text{P}_{\text{B}}, \text{m}_{\text{2}}, \text{m}_{\text{1}}) \\ & = & \text{P}_{\text{n}}(\boldsymbol{\lambda}, \text{P}_{\text{A}}, \text{P}_{\text{B}}, \text{n} - \text{m}_{\text{1}}, \text{n} - \text{m}_{\text{2}}) \end{aligned}$$

using the symmetry of $Pr\{n_1|m_1,m_2,n\}$.

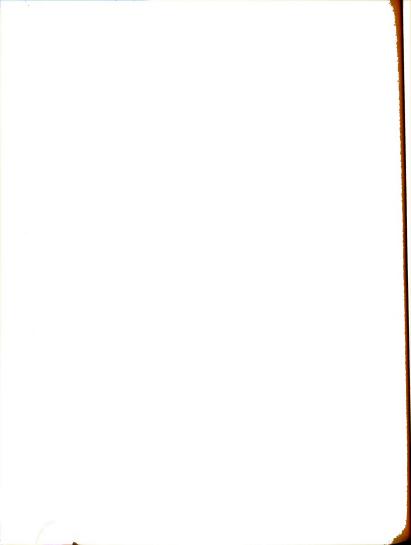
When n is large, and m₁ and m₂ are both fairly large, the computation of (3.1.1) becomes laborious. Therefore, there is a need of approximating this expression. Fortunately, such approximations may be immediately obtained from the corresponding approximations to $\Pr\left\{n_1 \mid m_1, m_2, n, \lambda\right\}$.

If all of $m_1, m_2, n-m_1, n-m_2$ are large enough to require approximations, but are of moderate magnitude, then the normal approximation (2.2.30) may be used. Employing a "1" factor for continuity, this approximation becomes

$$\begin{aligned} & \text{(3.1.3)} \\ & \text{P}_{\text{n}}(\lambda, \text{P}_{\text{A}}, \text{P}_{\text{B}}, \text{m}_{1}, \text{m}_{2}) \sim \phi \left(\frac{a - \frac{1}{2} - \theta_{(\text{n})}}{\sigma} \right) \\ & + \mathcal{E}_{1} \left[\frac{1}{\phi} \left(\frac{a + \frac{1}{2} - \theta_{(\text{n})}}{\sigma} \right) - \frac{1}{\phi} \left(\frac{a - \frac{1}{2} - \theta_{(\text{n})}}{\sigma} \right) \right] \\ & + \mathcal{E}_{2} \left[\frac{1}{\phi} \left(\frac{b + \frac{1}{2} - \theta_{(\text{n})}}{\sigma} \right) - \frac{1}{\phi} \left(\frac{b - \frac{1}{2} - \theta_{(\text{n})}}{\sigma} \right) \right] + \left[1 - \frac{1}{\phi} \left(\frac{b + \frac{1}{2} - \theta_{(\text{n})}}{\sigma} \right) \right] \end{aligned}$$

$$= (1 - \varepsilon_1) \phi \left(\frac{a - \frac{1}{2} - \theta_{(n)}}{\sigma} \right) + \varepsilon_1 \phi \left(\frac{a + \frac{1}{2} - \theta_{(n)}}{\sigma} \right) - (1 - \varepsilon_2) \phi \left(\frac{b + \frac{1}{2} - \theta_{(n)}}{\sigma} \right) + 1$$
$$- \varepsilon_2 \phi \left(\frac{b - \frac{1}{2} - \theta_{(n)}}{\sigma} \right)$$

where a, b, ϵ_1 , and ϵ_2 are determined by equations (1.5.6) and (1.5.7), and $\theta_{(n)}$ and σ^2 are given by (2.2.26).

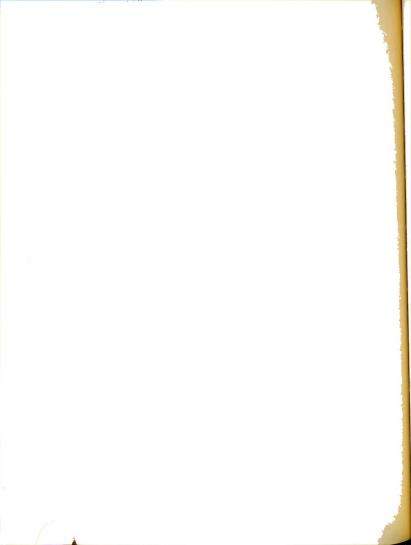

If m_2 is small compared to n, the binomial approximation (2.2.28) can be used, while if both m_1 and m_2 are small relative to n, the Poisson approximation (2.2.29) is suitable. The summations may be performed with the aid of tables of the incomplete beta function or the incomplete gamma function. No computations of the power function are included for the Poisson and binomial approximations.

One can also approximate the power for the test of independence by using the test procedure described in section 1.6, based on assuming a normal approximation under the null hypothesis. The test consists of rejecting H_0 when $|u| > u_{\frac{\infty}{2}}$

where u and u are defined by (1.6.4) and (1.6.5)

respectively. Evaluating the power of this test assuming the normal approximation (2.2.30) for (2.1.1), yields

$$(3.1.4) \quad P_{n}(\lambda, P_{A}, P_{B}, m_{1}, m_{2}) \sim \\ 1 - \left[\phi \left(\frac{\ln_{\frac{\infty}{2}} + (1 - \lambda_{(n)}) \frac{m_{1} m_{2}}{n}}{\sigma} \right) - \phi \left(\frac{-\ln_{\frac{\infty}{2}} + (1 - \lambda_{(n)}) \frac{m_{1} m_{2}}{n}}{\sigma} \right) \right]$$



where $h^2 = \frac{m_1(n-m_1)m_2(n-m_2)}{n^2(n-1)}$, $\lambda_{(n)}$ is given by (2.1.21),

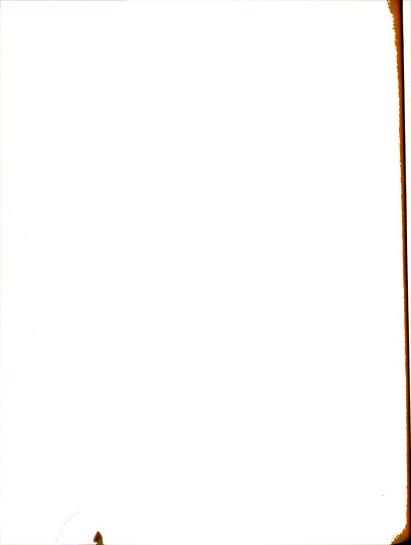
and σ^2 by (2.2.26).

Exact values have been computed from (3.1.1) for various values of m_1, m_2, n , and t, and compared with approximate values from (3.1.3) and (3.1.4). These exact and approximate values may be found in the appendix in tables D.3.1, D.3.2, and D.3.3.

In section 3.4 there is further discussion of the power function (3.1.1) including the relation between the power function for the 2×2 independence trial and the 2×2 comparative trial and double dichotomy. In Chapter 4, the adequacy of the approximations (3.1.3) and (3.1.4) is discussed.

3.2 2 x 2 Comparative Trial

The probability distribution of the sample point (n_1, m_2-n_1), is given by


$$\mathbf{p_r}\left\{n_1, \mathbf{m_2} \middle| \mathbf{m_1}, \mathbf{n}, \lambda, \right\} = {\binom{m_1}{n_1}} \mathbf{p_1}^{n_1} (1 - \mathbf{p_1})^{m_1 - n_1} \left(\mathbf{m_2}^{n_2} - \mathbf{m_1}^{m_1} \right) \ \mathbf{p_2}^{m_2 - n_1}$$

where
$$p_1 = \lambda P_B$$
, and $p_2 = \frac{P_B(1 - \lambda P_A)}{1 - P_A}$.

Using the unbiased test procedure discussed in section 1.5, the exact power function for

$$\begin{split} & \text{H}_{0} \text{: } \text{P}_{1} = \text{P}_{2} \\ & \text{H}_{1} \text{: } \text{P}_{1} \neq \text{P}_{2}, \text{ or, since } \text{t} = \frac{\text{P}_{1}(1-\text{P}_{2})}{\text{P}_{2}(1-\text{P}_{1})} = \frac{\lambda(1-\text{P}_{A}-\text{P}_{B}+\lambda \text{ P}_{A}\text{P}_{B})}{(1-\lambda \text{ P}_{A})(1-\lambda \text{ P}_{B})}, \text{t} \neq 1 \end{split}$$
 is
$$(3.2.2) \quad & \text{P}_{n}(\lambda,\text{P}_{A},\text{P}_{B},\text{m}_{1}) = \sum_{\text{m}_{2}=0}^{n} \sum_{\text{n}_{1} \in \text{W}_{m_{1}}(\text{m}_{2})} \text{Pr}\left\{\text{n}_{1},\text{m}_{2}|\text{m}_{1},\text{n},\lambda\right\}, \end{split}$$

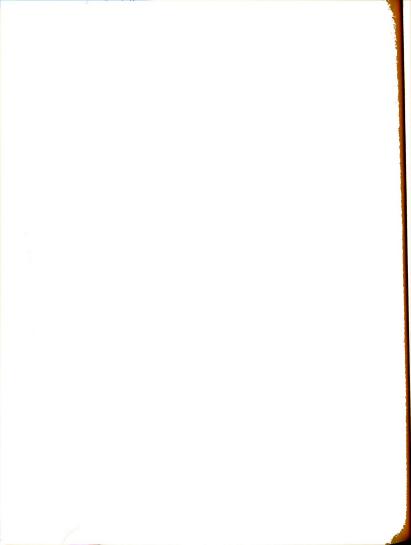
where w_{m_1} (m_2) is the critical region with m_1 fixed. It is convenient to use the notation $P_n(\lambda, P_A, P_B, m_1)$ to denote the power function, but the notation $P_n(p_1, p_2, m_1)$ will also be used to indicate that the power function is a function of p_1 and p_2 when it is desired to think in terms of the 2×2 comparative trial by itself.

Since

(3.2.3)
$$\Pr\left\{ \mathbf{m}_{2} | \mathbf{m}_{1}, \mathbf{n}, \lambda \right\} = \sum_{n_{1}} \Pr\left\{ \mathbf{n}_{1}, \mathbf{m}_{2} | \mathbf{m}_{1}, \mathbf{n}, \lambda \right\}$$

$$= (1-p_1)^{m_1} p_2^{m_2} (1-p_2)^{n-m_1-m_2} \sum_{n_1} {m \choose n_1} {n \choose n_2-n_1} t^{n_1}$$

and


(3.2.4) $\operatorname{Pr}\left\{n_{1}, m_{2} \middle| m_{1}, n, \lambda\right\} = \operatorname{Pr}\left\{n_{1} \middle| m_{1}, m_{2}, n, \lambda\right\} \operatorname{Pr}\left\{m_{2} \middle| m_{1}, n, \lambda\right\}$ where $\operatorname{Pr}\left\{n_{1} \middle| m_{1}, m_{2}, n, \lambda\right\}$ is given by(1.2.5), one sees that the expression in (3.2.2) for the exact power function may be rewritten as (3.2.5)

$$P_{\mathbf{n}}(\lambda, P_{\mathbf{A}}, P_{\mathbf{B}}, m_{1}) = \sum_{m_{2}=0}^{n} Pr \left\{ m_{2} | m_{1}, n, \lambda \right\} \sum_{n_{1} \in w_{m_{1}}(m_{2})} Pr \left\{ n_{1} | m_{1}, m_{2}, n, \lambda \right\}$$

$$= \sum_{m_{2}=0}^{n} Pr \left\{ m_{2} | m_{1}, n, \lambda \right\} P_{\mathbf{n}}(\lambda, P_{\mathbf{A}}, P_{\mathbf{B}}, m_{1}, m_{2})$$

where $P_n(\lambda, P_A, P_B, m_1, m_2)$ is the power function in the 2 x 2 independence trial.

This last form of the power function is interesting but not very useful for computing. In disguised form, (3.2.3) is the convolution of two independent random variables X and Y with X and Y distributed binomially $b(n_1; m_1, p_1)$ and $b(m_2-n_1; n-m_1, p_2)$ respectively.

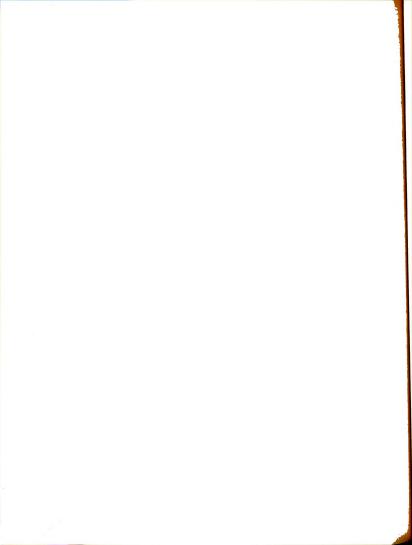
It is thus seen that either one must evaluate the exact power function by forming sums of products of binomial probabilities, or by finding suitable approximations. The tabled exact values in the appendix of the power function (3.2.1) were computed by forming such sums, and three approximations are suggested below; the first has already appeared in the literature, whereas the last two have not.

First, there is Sillitto's approximation (1.7.21) which is repeated for the sake of completeness. Letting

$$\mathbf{c}(\mathbf{p}_1,\mathbf{p}_2,\mathbf{m}_1) = \frac{\sin^{-1}\sqrt{\mathbf{p}_2} - \sin^{-1}\sqrt{\mathbf{p}_1}}{\frac{1}{2}\sqrt{\frac{1}{m_1} + \frac{1}{n-m_1}}}$$

Sillitto's approximation is

$$(3.2.6) P_n(p_1,p_2,m_1) \sim 1 - \int_{-u_{\frac{\infty}{2}}^- c(p_1,p_2,m_1)}^{u_{\frac{\infty}{2}}^- c(p_1,p_2,m_1)} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy,$$


where the angles are measured in radians.

A second approximation which is considerably easier to evaluate than Sillitto's but perhaps not as good may be obtained as follows.

Let
$$u = \frac{x_1 - x_2}{\sigma_{x_1 - x_2}}$$
 , where $x_1 = \frac{n_1}{m_1}$, $x_2 = \frac{m_2 - n_1}{n - m_1}$, and

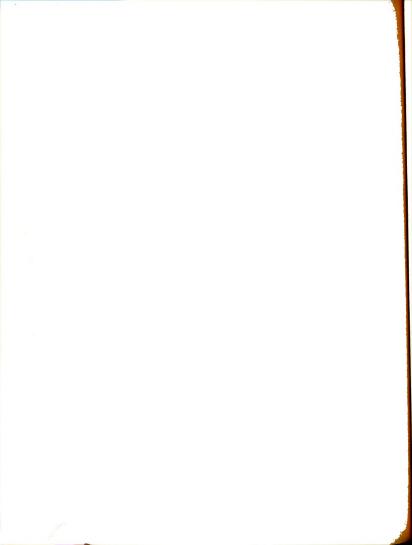
$$\sigma_{x_1-x_2}^2 = \frac{p_1 q_1}{m_1} + \frac{p_2 q_2}{n-m_1} \text{ . Then } E(u) = \frac{p_1 - p_2}{\sigma_{x_1}-x_2} \text{ , } V(u) = 1$$

If H_0 is true, E(u) = 0. Assume that u is normally

distributed. If H_0 is rejected whenever $\left|u\right|>u_{\underline{\propto}}$, then an approximation to power is given by

$$(3.2.7) \quad P_{\mathbf{n}}(\mathbf{p_{1}},\mathbf{p_{2}},\mathbf{m_{1}}) \sim 1 - \int_{-\mathbf{u}}^{\mathbf{u}} \frac{\mathbf{z}}{2} = \mathbf{E}(\mathbf{u}) \qquad \frac{1}{\sqrt{2\pi}} e^{-\frac{\mathbf{t}^{2}}{2}} d\mathbf{t}$$

To obtain the third approximation, we assume the normal approximation (3.1.4) for the conditional power function $P_n(\lambda,P_A,P_B,m_1,m_2)$ and expand it as a function of m_2 in a Taylor Series about the mean \forall of m_2 , where $\forall = m_1 p_1 + (n-m_1) p_2.$ Then from (3.2.5), one has


$$(3.2.8) \quad P_{n}(\lambda, P_{A}, P_{B}, m_{1}) \sim \sum_{m_{2}=0}^{n} Pr \left\{ m_{2} m_{1}, n, \lambda \right\} \left[P_{n}(\lambda, P_{A}, P_{B}, m_{1}, \lambda) + P_{n}'(\lambda, P_{A}, P_{B}, m_{1}, \lambda) (m_{2}-\lambda) + \frac{P_{n}''(\lambda, P_{A}, P_{B}, m_{1}, \lambda) (m_{2}-\lambda)^{2}}{2!} + \cdots \right]$$

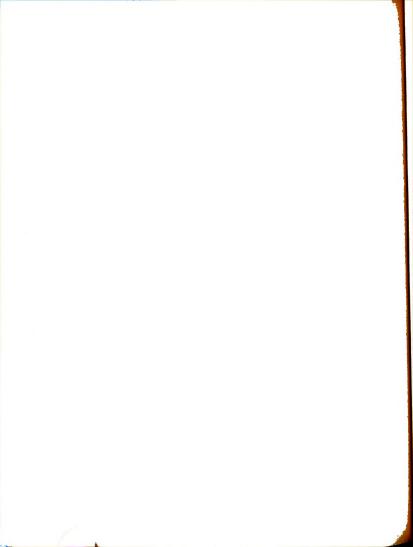
$$= P_{n}(\lambda, P_{A}, P_{B}, m_{1}, \lambda) + \frac{P_{n}''(\lambda, P_{A}, P_{B}, m_{1}, \lambda) \sigma^{2}}{2!} + \cdots,$$

where $\sigma^2 = m_1 p_1 q_1 + (n-m_1) p_2 q_2$, and $P_n^{(j)}(\lambda, P_A, P_B, m, \chi)$ is the jth derivative of $P_n(\lambda, P_A, P_B, m_1, m_2)$ evaluated at $m_2 = \chi$.

Then as a first term approximation, one has $(3.2.9) \quad P_n(\lambda,P_A,P_B,m_1) \sim P_n(\lambda,P_A,P_B,m_1,\gamma).$

It will be recalled from section 1.7 that Patnaik also gave an approximation to the power function. In view of Theorem 2.2.F and the remarks preceding and following the proof of the theorem, it is seen that there is considerable

doubt as to the validity of the approximation. Perhaps the approximation can be justified on the grounds that as the sample size gets larger one is interested in only those values of t near one (since for any fixed value of t the power of the test for independence tends to 1 as the integers $m_1 \longrightarrow \infty$, $m_1 \longrightarrow \infty$, which means that the test is consistent), in which case the mean and variance of Patnaik's approximation to the conditional distribution of m_1 , given m_1, m_2, m_1, m_2 , may not differ significantly from the true mean and variance. Nevertheless, there is nothing in the way of simplicity in his approximation which recommends its use over (3.2.9), which is based on sound considerations.


3.3 Double Dichotomy

For the double dichotomy classification, the probability of observing the sample point (n_1,m_1,m_2) , given λ,P_A,P_B , and n, is

(3.3.1)
$$\Pr\left\{n_{1}, m_{1}, m_{2} \mid n, \lambda\right\}$$

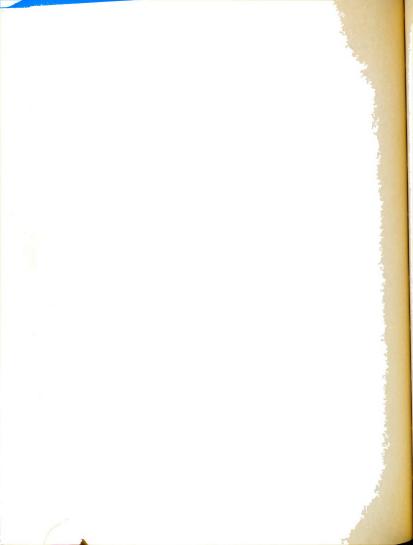
= $b(m; n, P_{A})b(n_{1}; m_{1}, \lambda P_{B})b\left(m_{2}-n_{1}; n-m_{1}, \frac{P_{B}(1-\lambda P_{A})}{(1-P_{A})}\right)$

and the exact power function for the test of independence, given in section 1.5., is

(3.3.2)
$$P_n(\lambda, P_A, P_B) = \sum_{m_1=0}^{n} \sum_{m_2=0}^{n} \sum_{n_1 \in W_{m_1, m_2}} Pr\{n_1, m_1, m_2 \mid n, \lambda\}$$

where w_{m_1,m_2} is the set sum $\bigcup_{m_1,m_2} w(m_1,m_2)$ with $w(m_1,m_2)$ the critical region for fixed m_1 and m_2 as determined by (1.5.6) and (1.5.7). Since

$$\begin{array}{lll} \text{(3.3.3)} & \Pr\left\{n_{1}, m_{1}, m_{2} \mid n, \lambda\right\} = \Pr\left\{m_{1} \mid P_{A}, n\right\} & \Pr\left\{n_{1}, m_{2} \mid m_{1}, n, \lambda\right\} \\ \text{where} & \Pr\left\{m_{1} \mid P_{A}, n\right\} & = \binom{n}{m_{1}} P_{A}^{m_{1}} (1 - P_{A})^{n - m_{1}} & \text{and } \Pr\left\{n_{1}, m_{2} \mid m_{1}, n, \lambda\right\} \\ \text{is given by (3.2.1), with } p_{1} & = \lambda P_{B} & \text{and } p_{2} & = \frac{P_{B} (1 - \lambda P_{A})}{1 - P_{A}} \end{array} \right. ,$$


it follows that (3.3.2) can be rewritten as

(3.3.4)
$$P_n(\lambda, P_A, P_B) = \sum_{m_1 = 0}^{n} Pr\{m_1 | n, P_A\} P_n(\lambda, P_A, P_B, m_1)$$

with $P_n(\lambda, P_A, P_B, m_1)$ given by (3.2.2).

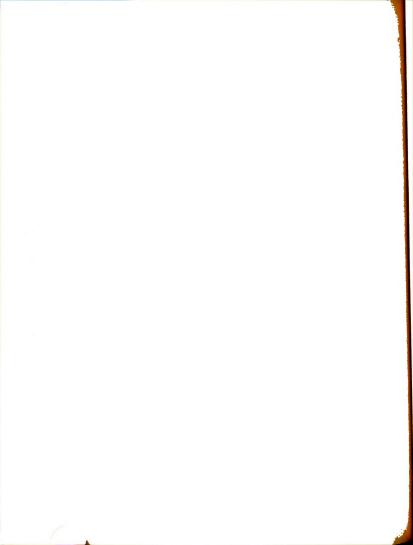
Thus, the power function can be evaluated by weighting the power function in the 2 x 2 comparative trial with binomial probabilities. However, even for n quite small, exact evaluation of (3.3.2) is very tedious, and for n moderately large the computation of (3.3.2) becomes prohibitive.

With the aid of the Michigan State University electronic computer, exact values were computed for n = 10,20, and 30, with P_A and P_B assuming the values .1,.2,.3,.4,.5, $P_B \leq P_A$, and with λ = .1,.2,.3,..., $\frac{1}{P_A}$, with the exception that for n = 30 exact values are not available for P_A = .2, P_B = .2; P_A = .2, P_B = .1; and P_A = .1, P_B = .1. These exact values

are given in Appendix A.

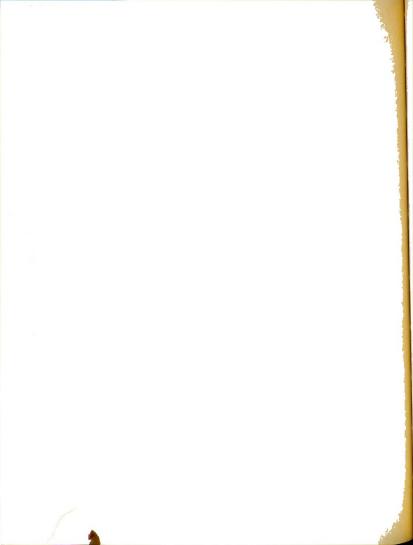
In section 3.4, it is shown that the ratio of $P_n(\lambda,P_A,P_B,m_1) \bigg]_{\substack{m_1=nP_A\\ m_2=nP_B}} and P_n(\lambda,P_A,P_B,m_1,m_2) \bigg]_{\substack{m_1=nP_A\\ m_2=nP_B}} and P_n(\lambda,P_A,P_B,m_2,m_2) \bigg]_{\substack{m_1=nP_A\\ m_2=nP_B}} and P_n$

converges to 1 as n \longrightarrow ∞ , and also the ratio of $P_n(\lambda,P_A,P_B)$ and $P_n(\lambda,P_A,P_B,m_1,m_2)$ $\Big]_{\substack{m_1=nP_A\\m_2=nP_B}}$ goes to 1 as n \longrightarrow ∞ . This

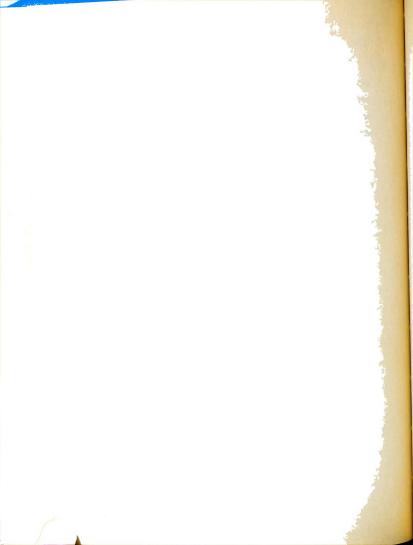

suggests several approximations for $P_n(\lambda, P_A, P_B)$, namely, the exact power function $P_n(\lambda, P_A, P_B, m_1) \Big]_{m_1 = nP_A}$ in the

2 x 2 comparative trial and any of the three approximations in 3.2 for $P_n(\lambda,P_A,P_B,m_1)$ $\Big]_{m_1=nP_A}$. Also, one may use the exact power function $P_n(\lambda,P_A,P_B,m_1,m_2)\Big]_{m_1=nP_A}$ for the test $\Big[m_2=nP_B\Big]$

of independence in the 2 x 2 independence trial, evaluated for marginal totals equal to the expected values of \mathbf{m}_1 and \mathbf{m}_2 , as an approximation.


In appendix D.1, $P_n(\lambda, P_A, P_B)$; $P_n(\lambda, P_A, P_B, m_1)$ $\Big]_{m_1=nP_A}$ and $P_n(\lambda, P_A, P_B, m_1, m_2)\Big]_{m_1=nP_A}$ are compared for several $\Big[m_2=nP_B\Big]_{m_2=nP_B}$

values of n,P_A,P_B, and λ . Finally, one can use the normal approximation 3.1.4, with $\lambda_{(n)}$ replaced by λ . Thus, as a very easily computed approximation to P_n(λ ,P_A,P_B), we have


$$(3.3.5) \\ P_{n}(\lambda, P_{A}, P_{B}) \sim \phi \left(\frac{u_{\infty} h + (1 - \lambda) n P_{A} P_{B}}{\sigma} \right) + 1 - \phi \left(\frac{u_{\infty} h + (1 - \lambda) n P_{A} P_{B}}{\sigma} \right)$$

The approximate values given by (3.3.5) are compared with the exact values as computed from (3.3.2) for a large number of cases, and judging from the simplicity of the approximation and the accuracy, (3.3.5) should be quite adequate. These comparisons may be found in appendix **D**.

3.4 Asymptotic Power

We shall be concerned in this section with an investigation of the asymptotic power function for the test of independence in the 2 x 2 independence trial. the 2 x 2 comparative trial, and the double dichotomy. The results which are to be presented in this section are not surprising, but rather they confirm what statisticians have believed for some time about the nature of the power function for the test of independence in 2 x 2 contingency tables for large sample sizes, i.e., that there is probably very little difference in power for the test of independence in the 2 x 2 independence trial. the 2 x 2 comparative trial, and the double dichotomy. Thus, our main contribution to the theory of the 2 x 2 contingency table given in this section is the limiting power function for the test of independence in the 2 x 2 independence trial. It follows almost trivially from this result that, asymptotically, power for the test of independence is the same for each of the three possible experimental situations leading to the presentation of data in the form of a 2 x 2 contingency table. In turn, the limiting power function in the 2 x 2 independence trial is almost a trivial consequence of Th.2.2.F on the asymptotic distribution of the conditional distribution of n, given m, mo, n, and t. The main results of this section are contained in Theorems 3.4.A and 3.4.B.

We recall that the hypothesis of independence takes the form H_0 :t = 1, while any alternative to independence is given by H_1 :t \neq 1; H_0 and H_1 may be expressed also by H_0 : λ = 1 vs. H_1 : $\lambda \neq$ 1.

Under the null hypothesis (by Th.2.2.F) the conditional distribution of n₁, given m₁,m₂, and n, is asymptotically normal with mean $\frac{m_1m_2}{n}$ and variance $h^2 = \frac{m_1(n-m_1)m_2(n-m_2)}{n^2(n-1)}$

if the conditions of Th.2.2.F, with t=1, are satisfied. This implies that, asymptotically, the unbiased test for independence described in 1.5 consists of rejecting $\rm H_{0}$ at level \propto if

$$u = \left| \frac{n_1 - \frac{m_1 m_2}{n}}{h} \right| \ge u_{\underline{\alpha}}.$$

The main tool in studying power for large samples will be Th. 2.2.F on the asymptotic distribution of n_1 under the alternative hypothesis that $t \neq 1$. If t > 0 is arbitrary but fixed, and the conditions of Th. 2.2.F are satisfied, then it follows that

determined such that $t = \frac{p_1(1-p_2)}{p_2(1-p_1)}$, $m_2 = m_1p_1 + (n-m_1)p_2$. Here the assumptions of Th. 2.2.F require that

$$(3.4.2) \qquad \frac{\left(u_{\frac{\infty}{2}} \quad h + \frac{m_1 m_2}{n} - m_1 p_1\right)^3}{\sigma^{l_1}} \longrightarrow 0$$

as σ^{-1} \longrightarrow 0. We shall limit ourselves to values of m_1, m_2, n , and t for which (3.4.2) is satisfied, since this will cover most cases of interest.

If t is kept fixed as $m_1, m_2, n \longrightarrow \infty$, then for fixed level of significance \propto it turns out in the cases we shall examine that the power of the test for independence tends to 1. In order to examine the situation in which the power is not close to 1 in large samples, we must either let the significance probability decrease to 0 as m_1, m_2 , and n increase, or consider a sequence of alternative hypotheses converging to the null hypothesis. We shall discuss the second case. In the 2 x 2 independence trial, we shall let $t \longrightarrow 1$ in such a way that \sqrt{n} (1-t) \longrightarrow c, where c is any arbitrary but fixed constant, and for the 2 x 2 comparative trial and double dichotomy, we shall let $\lambda \longrightarrow 1$ such that \sqrt{n} (1- λ) converges to a constant.

Before proceeding to the main results of this section on asymptotic power, it will be necessary to first note that the assumption that t is fixed in Th. 2.2.F is superfluous, as long as $\sigma^{-1} \longrightarrow 0$ and σ^{-1} $x_{n_1}^3 \longrightarrow 0$. In all that follows it is assumed that t, P_A, P_B , and λ are positive; also, the quantities p_1 and p_2 used in the proof of Th.3.4.A depend on

 $\mathbf{m}_1, \mathbf{m}_2, \mathbf{n}$, and t but this dependence will not be indicated by the notation.

Th. 3.4.A. For all real numbers a,b(0 < a,b < 1) such that

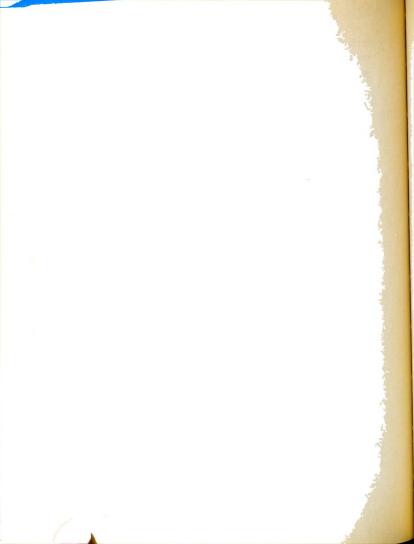
$$\left| \frac{m_1 - na}{\sqrt{na(1-a)}} \right| \le f_1(n) \text{ and } \left| \frac{m_2 - nb}{\sqrt{nb(1-b)}} \right| \le f_2(n), \text{ where } f_1$$

and f_2 are such that $n^{-\frac{1}{6}}f_1 \rightarrow 0$, $n^{-\frac{1}{6}}f_2 \rightarrow 0$, we have

$$(3.4.3) \quad P_{n}(\mathbf{t}|_{m_{1},m_{2}}) = \frac{n \longrightarrow \infty}{1 - \frac{1}{2}} \Rightarrow \tilde{\phi}(-u_{\underline{\alpha}} + \delta) + 1 - \tilde{\phi}(u_{\underline{\alpha}} + \delta).$$

where $\delta = \sqrt{a(1-a)b(1-b)} c$.

Proof: First we note that the hypotheses of the lemma imply


 $\frac{m_1}{n} \rightarrow a$, $\frac{m_2}{n} \rightarrow b$. We will show that

$$(3.4.4) \quad \frac{u_{\underline{\alpha}} h + \frac{m_1 m_2}{n} - m_1 p_1}{\sigma} \longrightarrow u_{\underline{\alpha}} + \S,$$

where p_1 and σ are as given in (3.4.1). Since t is assumed to be positive, the choice of p_1 and p_2 such that

$$t = \frac{p_1 q_2}{p_2 q_1} = 1 - \frac{c}{\sqrt{n}}$$
 and $m_2 = m_1 p_1 + (n - m_1) p_2$

implies p_1, p_2, q_1 and q_2 are positive so that $\sigma^2 \longrightarrow \infty$. It will be shown below that (3.4.2) is satisfied, so that (3.4.1) holds. To establish the theorem it is only necessary to show that (3.4.4) holds.

Putting t = $1 - \frac{c}{\sqrt{n}} = \frac{p_1 q_2}{p_2 q_1}$, it is clear that as $n \longrightarrow \infty$, $|p_1 - p_2| \longrightarrow 0, \text{ so that using the fact that } m_2 = m_1 p_1 + (n - m_1) p_2$ and $\frac{m_1}{n} \longrightarrow a$, $\frac{m_2}{n} \longrightarrow b$, it follows that $p_1, p_2 \longrightarrow b$,

and therefore, since

$$p_2 = p_1 \left(1 - \frac{c}{\sqrt{n}}\right)^{-1},$$

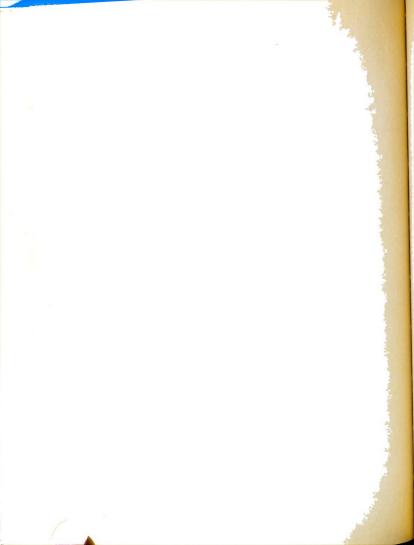
$$\sqrt{n} (p_2 - p_1) = \frac{\sqrt{n} p_1 q_1 c}{\sqrt{n} - c} \longrightarrow b(1 - b)c.$$

Also, from the above, it follows that

$$\frac{\sigma^{-2}}{n} = \left[\frac{n}{m_1 p_1 q_1} + \frac{n}{(n-m_1) p_2 q_2} \right]^{-1} \longrightarrow a(1-a)b(1-b).$$

Therefore

$$\frac{\mathbf{u}_{\infty}^{\mathbf{h}}}{\frac{2}{\sigma}} = \mathbf{u}_{\infty}^{\mathbf{K}} \left[\frac{\mathbf{m}_{1}(\mathbf{n} - \mathbf{m}_{1})\mathbf{m}_{2}(\mathbf{n} - \mathbf{m}_{2})\sigma^{2}}{\mathbf{n}^{3}(\mathbf{n} - \mathbf{1})} \right]^{\frac{1}{2}} \longrightarrow \mathbf{u}_{\infty},$$


and

$$\left[\frac{m_1 m_2}{n} - m_1 p_1\right] \sigma^{-1} = \frac{m_1}{n} \left[m_1 p_1 + (n - m_1) p_2 - n p_1\right] \sigma^{-1}$$

$$=\left(\frac{m_1}{n}\right)\left(\frac{n-m_1}{n}\right)\left(\frac{\sigma^2}{n}\right)^{-\frac{1}{2}}\sqrt{n}\left(p_2-p_1\right) \longrightarrow \left[a(1-a)b(1-b)\right]^{\frac{1}{2}}.$$

We have thus established (3.4.4). It follows immediately that (3.4.2) holds, so that the theorem is proven.

We now consider a sequence of 2 x 2 tables with fixed marginal probabilities P_A and P_B . Applying Th. 3.4.A. with

$$a=P_{\underline{A}},\;b=P_{\underline{B}},\;\text{and}\quad t=\frac{\lambda\,(1-P_{\underline{A}}-P_{\underline{B}}+\lambda\,P_{\underline{A}}P_{\underline{B}})}{(1-\lambda\,P_{\underline{A}})(1-\lambda\,P_{\underline{B}})}\;,\;\lambda=1-\frac{d}{\sqrt{n}}\;\;,$$

we have that, upon rewriting the expression for t with $\lambda = 1 - \frac{d}{\sqrt{n}}$,

$$t = \frac{(1 - \frac{d}{\sqrt{n}})(Q_A Q_B - \frac{d}{\sqrt{n}})}{(Q_A + \frac{d}{\sqrt{n}}P_A)(Q_B + \frac{d}{\sqrt{n}}P_B)} = 1 - \frac{\frac{d}{\sqrt{n}}}{(Q_A + \frac{d}{\sqrt{n}}P_A)(Q_B + \frac{d}{\sqrt{n}}P_B)}$$

and \sqrt{n} (1-t) $\longrightarrow \frac{d}{Q_A Q_B}$,

$$(3.4.5) \quad P_{\mathbf{n}}(\lambda, P_{\mathbf{A}}, P_{\mathbf{B}}, \mathbf{m}_{1}, \mathbf{m}_{2}) = -\frac{d}{\sqrt{\pi}} \quad \oint \left(-\mathbf{u}_{\underline{\alpha}} + \sqrt{\frac{P_{\mathbf{A}}P_{\mathbf{B}}}{Q_{\mathbf{A}}Q_{\mathbf{B}}}} d \right)$$

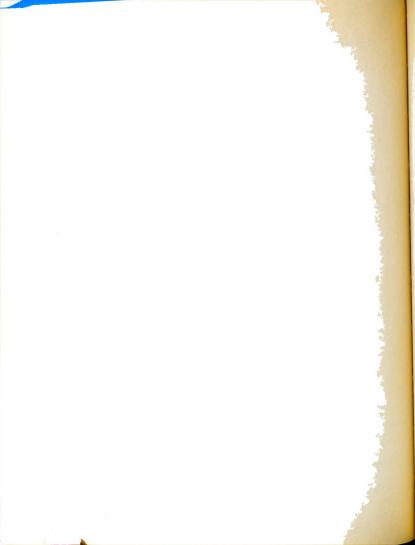
$$+ \ 1 \ - \ \phi \left(\underbrace{u_{\stackrel{\textstyle \propto}{\underline{}}}}_{\frac{\textstyle \sim}{\underline{}}} + \sqrt{\frac{P_{\stackrel{\textstyle \wedge}{\underline{}}} P_{\stackrel{\textstyle \wedge}{\underline{}}}}{Q_{\stackrel{\textstyle \wedge}{\underline{}}} Q_{\stackrel{\textstyle \wedge}{\underline{}}}}}_{\stackrel{\textstyle d}{\underline{}}} \right) ,$$

We immediately infer from Th. 3.4.A the following two corollaries:

Corollary 1. For all values of m_1 such that $\left| \frac{m_1 - nP_A}{\sqrt{nP_AQ_A}} \right| \le f_1(n)$

where
$$n = \frac{1}{6} f_1(n) \rightarrow 0$$
,
 $(3.4.6) P_n(\lambda, P_A, P_B, m_1) = \frac{1}{\lambda} = 1 - \frac{1}{\sqrt{2}} \rightarrow \phi \left(-u_{\underline{\alpha}} + \sqrt{\frac{P_A P_B}{Q_A Q_B}} d \right)$

+ 1 -
$$\phi \left(u_{\underline{\alpha}}^+ \sqrt{\frac{P_A P_B}{Q_A Q_B}} d \right)$$
 •



Corollary 2.

Th. 3.4.A also shows that the limiting power function for the χ^2 -test for independence is the non-central χ^2 -distribution with non-centrality parameter $\frac{P_A P_B}{Q_A Q_B} d^2$, assuming that the conditions of the normal-approximation Theorem 2.2.F are satisfied, and λ = 1 - $\frac{d}{\sqrt{n}}$.

As a particular case of (3.4.1), we put $m_1 = nP_A, m_2 = nP_B$ and obtain, after some algebra,

where $m_1 = nP_{A}, m_2 = nP_{B}$, $h' = \sqrt{nP_{A}P_{B}Q_{A}Q_{B}}$, $\sigma_{\pi}^2 = n\left[\sum_{i=1}^{h} \frac{1}{\pi_i}\right]^{-1}$, and π_i , i = 1,2,3,h, is given by (2.1.27). Setting $\lambda = 1 - \frac{d}{\sqrt{n}}$ in (3.4.8), it is easily seen that $(3.4.9) P_n(\lambda, P_A, P_B, m_1, m_2) \sim \phi\left(-u_{\frac{\infty}{2}} + \sqrt{\frac{P_A P_B}{Q_A Q_B}} d\right) + 1 - \phi\left(u_{\frac{\infty}{2}} + \sqrt{\frac{P_A P_B}{Q_A Q_B}} d\right)$

where $\lambda = 1 - \frac{d}{\sqrt{n}}$, $m_1 = nP_A$, $m_2 = nP_B$.

Therefore, from (3.4.5), (3.4.6), (3.4.7), and (3.4.9), we obtain the following three asymptotic relations, which we group together in Th.3.4.B.

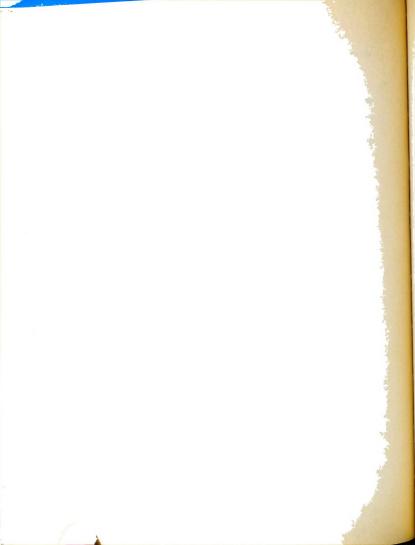
Th. 3.4.B For all m_1, m_2 such that

$$\left| \frac{\frac{m_1 - nP_A}{\sqrt{nP_A Q_A}}}{\sqrt{nP_A Q_A}} \right| \leq f_1(n), \left| \frac{m_2 - nP_B}{\sqrt{nP_B Q_B}} \right| \leq f_2(n)$$

where $n^{-\frac{1}{6}} f_{i}(n) \longrightarrow 0$, i = 1,2,

$$(3.4.10) \quad P_{n}(\lambda, P_{A}, P_{B}, m_{1}, m_{2})] \sim P_{n}(\lambda, P_{A}, P_{B}, m_{1}, m_{2})$$

$$\lambda = 1 - \frac{d}{\sqrt{n}}$$

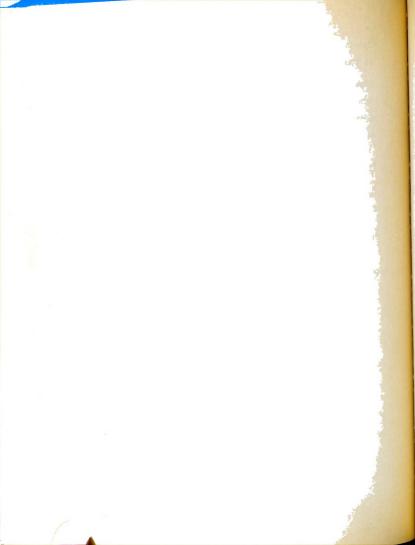

(3.4.11)
$$P_n(\lambda, P_A, P_B, m_1) \int_{\lambda=1-\frac{d}{\sqrt{n}}} P_n(\lambda, P_A, P_B, m_1, m_2)$$

$$(3.4.12) \quad P_{\mathbf{n}}(\lambda, P_{\mathbf{A}}, P_{\mathbf{B}}) = 1 - \frac{d}{\sqrt{n}} \quad P_{\mathbf{n}}(\lambda, P_{\mathbf{A}}, P_{\mathbf{B}}, m_{\mathbf{1}}, m_{\mathbf{2}})$$

where $P_n(\lambda, P_A, P_B, m_1, m_2)$ on the right-hand-side of

(3.4.10),(3.4.11), and (3.4.12) is evaluated at
$$\lambda = 1 - \frac{d}{\sqrt{n}}$$

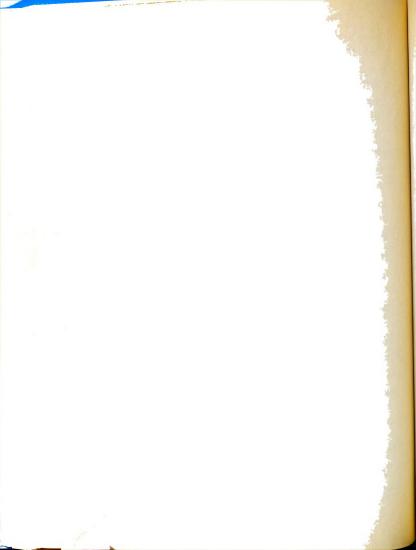
 $m_1 = nP_A$, and $m_2 = nP_B$ in each case.


(3.4.12) implies that for n moderately large we can approximate the power function for the test of independence in the double dichotomy quite well by evaluating the power

function in the 2 x 2 independence trial with marginal totals at their expectations, i.e., with m_1 = nP_A , m_2 = nP_B . The implication of (3.4.11) is that the power function in the 2 x 2 comparative trial can similarly be approximated by the power function in the 2 x 2 independence trial, this time with marginal totals m_1 and m_2 = m_1P_1 + $(n-m_1)p_2$, where $p_1 = \lambda \, P_B \quad \text{and} \quad p_2 = \frac{P_B(1-\lambda \, P_A)}{1-P_A} \quad \text{Also, the power function}$ $P_n(\lambda, P_A, P_B, m_1) \bigg] \qquad , \text{ may also be used to approximate}$

 $P_n(\lambda, P_A, P_B)$.

For numerical illustrations of these last approximations, see appendix \mathbf{D}_{\bullet}



4.1 Preliminaries

In Chapter 3 we gave the exact power function for the uniformly most powerful unbiased test of independence in the 2×2 independence trial, 2×2 comparative trial, and the double dichotomy. We proposed several approximations for these exact power functions, including some based on asymptotic properties as described in section 3.4. We also suggested that the exact power functions for the 2×2 independence trial and 2×2 comparative trial might be used as approximations for the power function in the double dichotomy. In this chapter we shall examine the adequacy of some of these approximations. We shall also see how the various exact power functions compare for small values of m_1, m_2 , and n, knowing from the results in section 3.4 that for large values of m_1, m_2 , and n there is little difference between them.

The notation $P_n(\lambda, P_A, P_B)$ was used to denote the exact power function in the double dichotomy. The conditional power function, with one set of marginal totals fixed, say m_1 and $n-m_1$, was denoted by $P_n(\lambda, P_A, P_B, m_1)$, and is the exact power function in the 2 x 2 comparative trial, with $p_1 = \lambda P_B$,

and $p_2 = \frac{P_B(1 - \lambda P_A)}{1 - P_A}$. Going one step further, we denoted the conditional power function with both sets of marginal totals fixed by $P_n(\lambda, P_A, P_B, m_1, m_2)$, which is the exact power function in the 2 x 2 independence trial. It is hoped that

this choice of notation emphasizes the relation between the three exact power functions, i.e., that the exact power functions in the 2 x 2 independence trial and 2 x 2 comparative trial are conditional power functions with respect to the exact power function in the double dichotomy. In the 2 x 2 comparative trial, we will use the alternative notation $P_n(p_1,p_2,m_1)$ to denote the power function when p_1 and p_2 are not related to λ , P_A , and P_B .

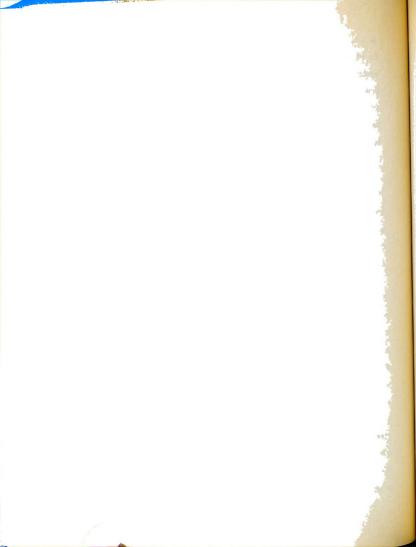
4.2 Comparison of Exact and Approximate Power Functions.

Probably the most interesting tables of power which have been computed are given in Appendix D, pages 159-170. In these tables, values of the three exact power functions have been tablulated for certain combinations of n, P_A , and P_B together with a few approximate values using the normal approximations (3.1.4) and (3.35). The power function in the 2 x 2 independence trial is evaluated at $m_1 = nP_A$, and $m_2 = nP_B$, and the power function in the 2 x 2 comparative trial is evaluated at $m_1 = nP_A$. There are two important observations to be made from the data given there. The first is that these cases in which

$$P_{n}(\lambda,P_{A},P_{B}) < P_{n}(\lambda,P_{A},P_{B},m_{1}) \Big] < P_{n}(\lambda,P_{A},P_{B},m_{1},m_{2}) \Big]$$

$$m_{1}=nP_{A}$$

$$m_{2}=nP_{B}$$

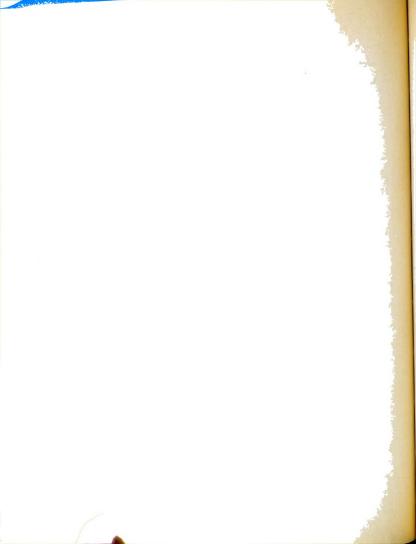

and also cases for which there are inequalities in the opposite direction, with the exception that there is no case in the tables for which power in the double dichotomy is greater than that in the 2 x 2 comparative trial. However, if $nP_A = 1$, then $P_n(\lambda, P_A, P_B, m_1) = \infty$ for all λ . From table $m_1 = nP_A$

A.1.1, $P_{10}(\lambda,.1,.1) > .05$ for all $\lambda \neq 1$, so that no theorem is possible concerning the order of the power functions. The second observation is that the functional values of the three power functions draw together as n increases; for n = 10, there are wide differences; at n = 20, the differences decrease, still being fairly large, and for n = 30, the differences are smaller, but there are cases where the differences are large enough to be considered seriously.

It is also rather interesting to examine the pairwise differences between the power functions. It appears that the differences between power in the 2 x 2 independence trial and the 2 x 2 comparative trial tend to be somewhat than the differences between power in the 2 x 2 comparative trial and the double dichotomy.

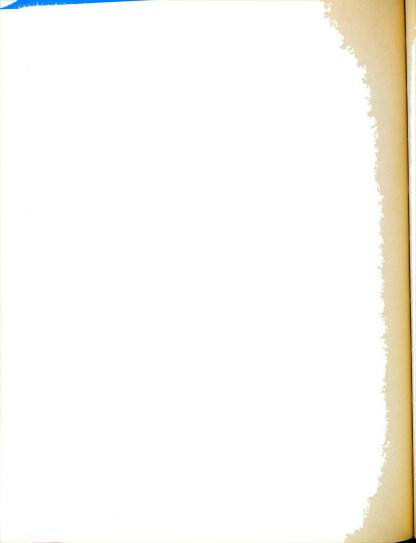
The adequacy of the normal approximation (3.3.5) to $P_n(\lambda,P_A,P_B)$ is reflected in the tables in Appendix D, section D.1. Values computed from (3.3.5) tend to overestimate $P_n(\lambda,P_A,P_B)$ for small and large values of λ , and underestimate for values of λ in the neighborhood of 1. Overall, the approximation seems to be quite adequate. Values of power in the 2 x 2 comparative trial, computed using Sillitto's and Patnaik's approximations, are given in E.2, together with the exact values $P_n(P_1,P_2,m_1)$. The tables given are for the special cases $m_1 = 10$, $m_1 = 20$ and $m_1 = 15$, $m_1 = 30$, since for these cases the region for rejecting H_0 is about the same for the unbiased test, and the Pearson test, on which Sillitto and Patnaik based their computations of

power. Pearson's test is described in section 1.7. It is very apparent that Patnaik's approximation is uniformly worse than Sillito's approximation, which tends to overestimate the correct values. The exact power function $P_n(t|\mathbf{m}_1,\mathbf{m}_2)$ in the 2 x 2 independence trial may also be used to approximate


$$P_n(p_1,p_2,m_1)$$
 by putting $t = \frac{p_1q_2}{p_2q_1}$ and $m_2 = m_1p_1 + (n-m_1)p_2 = \%$.

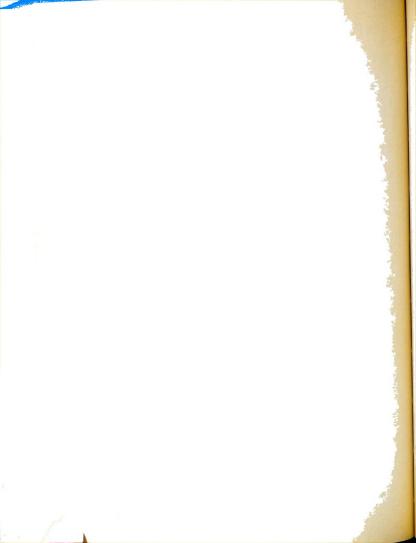
is the expected value of m_2 . A few values were computed from $P_n(t|m_1,\chi)$, and the values compared with those obtained from Sillitto's approximation. These values were sometimes closer to the correct values than Sillitto's, but there is not enough data to draw any conclusions. These values may also be found in E.2. In all, Sillitto's approximation appears to be quite accurate, and isn't difficult to compute, so for small integral values of m_1 and n it is probably to be preferred as an approximation. In the 2 x 2 independence trial, the normal approximation (3.1.4) should be satisfactory, as indicated by the data in D.1.

In view of Th.3.4.B we have that


$$P_n(t | m_1, X) \sim P_n(p_1, p_2, m_1)$$

for a wide range of values of ${\tt m_1}$ and with $t=\frac{p_1q_2}{p_2q_1}$. This implies that power in the 2 x 2 comparative trial should be nearly constant for all combinations of ${\tt p_1}$ and ${\tt p_2}$ for which t is constant.

On the basis of the data in the appendices, we suggest that the following approximations to the power functions be used, considering both ease of computation and accuracy:

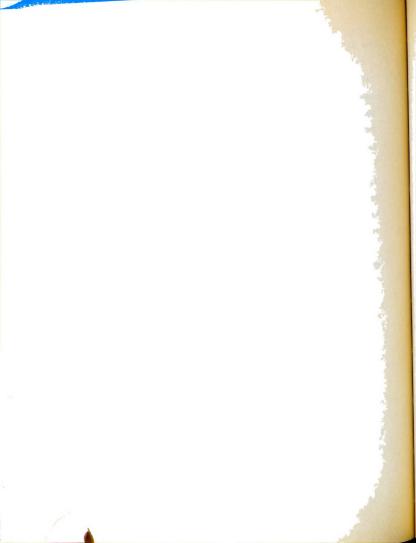

- I. 2×2 Independence Trial use the normal approximation given by (3.1.4).
- II. 2 x 2 Comparative Trial— use either Sillitto's approximation given by (3.2.6), or the normal approximation (3.1.4), with m_2 evaluated at its expected value, given by $\gamma = m_1 p_1 + (n-m_1) p_2.$
- III. Double Dichotomy use the normal approximation given in (3.3.5).

Summary


We have re-examined one of the oldest problems in mathematical statistics, a problem which has become classical within its field -- that of testing for independence in 2 x 2 tables. At various times in the past few years, it has been thought that the theory of 2 x 2 contingency tables was completely known, that it was dead as a subject of research. In view of the controversy that has stirred the attention of such noted statisticians as R. A. Fisher, E. S. Pearson, and G. A. Barnard, it is difficult to understand how the problem can be considered as solved in all its many facets. This is particularly true when we realize that very little was previously known about the power for the test of independence in small samples. This appears to be very surprising. since practicing statisticians and research workers have used the results of tests for independence in 2 x 2 tables for many years as a basis for making decision.

We have undertaken the task of remedying this situation. Throughout this thesis, our one underlying objective was to thoroughly examine the power for the test of independence in small samples, even though we have investigated power for large samples also. In preparation for this examination, we first tried to determine precisely what had been accomplished previously in 2 x 2 tables. It was discovered that only in one of three possible cases had much been done in the way of studying power for a test of independence, this case being the 2 x 2 comparative trial. Therefore, we chose a particular

test for independence, the uniformly most powerful unbiased test first proposed by Katz [9] in 1942, and were able to use Katz' formulation of alternative hypotheses as a basis for investigating power for this test of independence. The unique feature of Katz' formulation was that it provided a logical and consistent method for examining and comparing power in each of the three cases corresponding to both sets of marginal totals fixed, one set fixed, and neither fixed. It was necessary first to study some properties of the conditional distribution for fixed marginal totals under the class of alternative hypotheses. Once these properties were known, it was fairly easy to examine systematically power for the test of independence, and that is what we hope we have done in this paper. Briefly, we will now summarize what we have done.


- 1. In section 2.1 of Chapter 2, we gave expressions for computing moments of the modified hypergeometric probability function $\Pr\left\{n_1|m_1,m_2,n;t\right\}$, including also several recursion relations between the moments of the distribution, and were able to indicate the form of the asymptotic mean and variance of this distribution.
- 2. In section 2.2 of the same chapter, it was shown that the limiting distribution of the conditional distribution of n₁ for fixed marginal totals was binomial, Poisson, or normal, depending on the mode in which the marginal totals m₁ and m₂ increased. As a result of Theorem 2.2.F, it was suggested that there are at least two published results in

the literature which may be invalid.

- 3. We gave the exact power function for the test of independence in the 2 x 2 independence trial, 2 x 2 comparative trial, and the double dichotomy in the first three sections of Chapter 3, and suggested several approximations for these power functions. We investigated the adequacy of these approximations in Chapter 4.
- 4. We examined asymptotic power for the test of independence in 3.4, and confirmed what many statisticians have believed for sometime that for very large sample sizes, the difference in power between the three cases corresponding to the nature of the marginal totals is negligible.
- 5. We provided extensive tables of power for each of the three cases and used the values of exact power to evaluate the adequacy of the various approximations proposed in Chapter 3. The tables of exact power are in appendices A, B, C, and D. On the basis of these exact values, we suggested three specific approximations for the exact power functions.

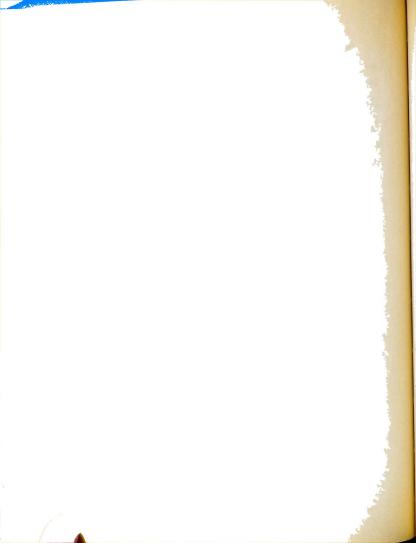
We hope that we have succeeded in thoroughly examining the power for the tests of independence, and that the results and computations, which we have presented in this thesis, will be useful for applied statisticians and research workers.

Appendix A. Exact Power for the Double Dichotomy.

We consider a given population in which the members of the population are classified by two attributes, each having two categories, so that there are four distinct classes of members. We denote these classes by A1B1, A2B1, A1B2, and A2B2. The proportions of members in these four classes are π_1, π_2, π_3 , and π_{\downarrow} respectively, Putting $P_A = \pi_1 + \pi_3$ and $P_B = \pi_1 + \pi_2$, we propose to test the null hypothesis Ho of no association in the occurrence of one attribute and the occurrence of the second, i.e., that $\pi_1 = P_A P_B$, by selecting a sample of size n, and making use of the observed numbers in the four classes. Any alternative hypothesis may be expressed in the form $\pi_1 = \lambda P_A P_B$. We use the uniformly most powerful unbiased test, given in section 1.5, of Chapter 1, to test Ho. The tables in this appendix give the exact values of the power function for this test. This power function is denoted by $P_n(\lambda, P_A, P_B)$, and its functional form is given by (3.3.2) on page 79. The significance level ∝ is .05 in all the tables.

The values of $P_n(\lambda, P_A, P_B)$ were obtained by first computing the conditional power function $P_n(\lambda, P_A, P_B, m_1)$ for the 2 x 2 comparative trial, and then weighting these values with binomial probabilities, as suggested in 3.3, equation (3.3.4). All the computations were performed on the Michigan State University digital computer, MISTIC.

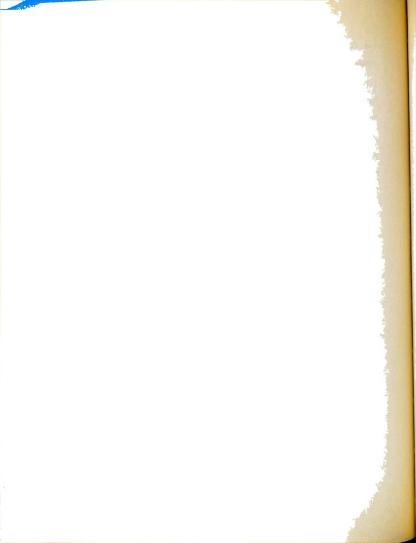
The tables are divided into three sections, A.1, A.2, and A.3, corresponding to n = 10, 20, and 30 respectively. In A.1 and A.2, tables of $P_{10}(\lambda,P_A,P_B)$ and $P_{20}(\lambda,P_A,P_B)$ are given for all 15 combinations of P_A and P_B with $P_B \leq P_A$, $P_A,P_B = .1$, .2, .3, .4, .5, and in A.3 tables of $P_{30}(\lambda,P_A,P_B)$ are given for the same combinations of P_A and P_B , except the three cases $P_A = P_B = .2$, $P_A = .2$, $P_B = .1$, and $P_A = P_B = .1$ are not available. For the combinations of P_A and P_B with $P_A = .3$, .4, and .5, $P_n(\lambda,P_A,P_B)$ was computed for $\lambda = .1$, .2, .3, ..., $\left[\frac{1}{P_A}\right]$. For $P_A = .2$, the range on λ was from .2


to 4.8 with an increment of .2; for P_A = .1 and n = 10, the range of Δ is .4 to 9.6, the increment being .4, while for n = 20, the range on Δ is .3 to 9.9, increasing by .3 .

To check the accuracy of the computations, we used the fact that the test of independence is a conditional test. Thus, since n - n

$$P_{n}(\lambda, P_{A}, P_{B}) = \sum_{m_{1}=0}^{n} \sum_{m_{2}=0}^{n} P_{r} \left\{ m_{1}, m_{2} \mid n, \lambda \right\} P_{n}(\lambda, P_{A}, P_{B}, m_{1}, m_{2})$$

$$= \sum_{m_1=0}^{n} P_r \{m_1 | n, P_A\} P_n(\lambda, P_A, P_B, m_1),$$


where $P_n(\lambda, P_A, P_B, m_1, m_2)$ is the exact conditional power function

for fixed m_1 and m_2 , we obtained a partial check on the exact computations for $P_n(\lambda,P_A,P_B)$ by checking the values of the two conditional power functions, at certain selected points. In particular, we have that each of the power functions is equal to .05 for $\lambda=1$. Finally for $P_A=.5$, $P_n(\lambda,P_A,P_B)$ should be symmetric about $\lambda=1$, which provided one further check on the accuracy of the computations. All of the computed values were given to nine decimal places, and rounded off to five places in the table.

For n=10, $P_{10}(\lambda,P_A,P_B)$ evaluated at $\lambda=1$ was exact to nine decimal places for all 15 combinations of P_A , and P_B , for n=20 it was accurate to 7 places, and for n=30, there was 6-place accuracy. The partial check on the exact values obtained by computing the conditional power functions for certain selected values indicated that the exact computations were probably accurate to at least five decimal places for all λ , with 4-place accuracy virtually certain.

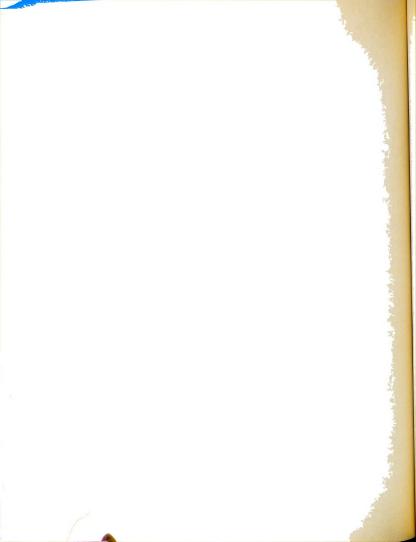

The table numbers indicate the value of n and P_A , with the first number giving the value of $\frac{n}{10}$, and the second number P_A . For example, A.2.4 gives values of $P_{20}(\lambda, 4, P_R)$.

Table A.1.1

P₁₀(λ,.1,P_B)

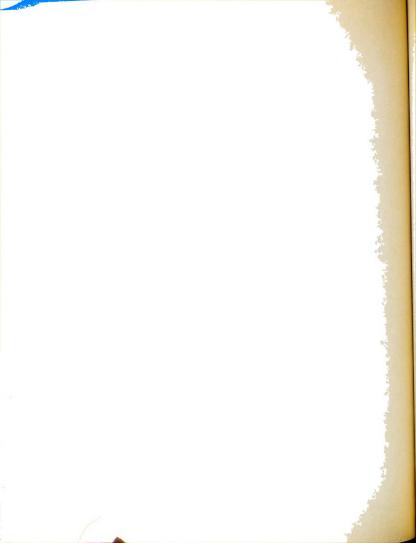

λ	P _B = .1
	+
.4	.05043
.8	.05005
1.2	.05005
1.6	.05046
2.0	•05129
2.4	•05258
2.8	•05434
3.2	•05661
3.6	.05940
4.0	.06273
4.4	.06665
4.8	.07116
5.2	•07630
5.6	•08208
6.0	•088514
6.4	•09569
6.8	•10356
7.2	•11216
7.6	•12151
8.0	•13164
8.4	•14254
8.8	•15424
9.2	•16674
9.6	•18005

Table A.1.2

$P_{10}(\lambda,.2,P_{B})$

.2 .4 .05588 .6 .05265	•05269 •05 1 54 •05 0 69
.8 .05068	.05018
1.0 .05000	.05000
1.2 .05070	.05018
1.4 .05288	•05073
1.6 .05665	•05167
1.8 .06212	•05302
2.0 .06943	•05480
2.2 .07874	•05702
2.4 .09018	•05970
2.6 .10390	•06287
2.8 .12006	•06655
3.0 .13878	•07075
3.2 3.4 3.6 3.6 18042 21150	•07551 •08084 •08677
3.8 .21,11,9	•09331
1.0 .271,37	•10048
1.2 .31006	•10832
հ.կ .3կ6կ3	.11683
հ.6 .38926	.12603
կ.8 .կ3221	.13595

Table A.1.3

$P_{10}(\lambda,.3,P_B)$

2	$P_B = .3$	P _B = .2	$P_B = .1$
.1	•12249	•07968	•05715
•2	•10650	.07343	.05568
.3 .4	•09277	•06794	•05437
•4	•08116	•06320	•05323
•5	.07151	•05920	•05226
.6	•06372	•05591	.05145
•7	•05771	•053 3 5	•05082
.8	•05344	•05150	•05037
•9	•05086	•05038	•05009
1.0	•05000	•05000	•05000
1.1	•05088	•05039	•05009
1.2	•05356	.05156	•05038
1.3	•058 1 /4	•05355	•05086
1.4	•06472	•05640	•05154
1.5	•07344	•06011/1	.05243
1.6	•08/1/1/1	•06483	•05353
1.7	•09 7 90	•07051	.05485
1.8	•11.398	•07723	•05639
1.9	.13 287	08505	.05817
2.0	.15474	.09402	.06018
2.1	•17974	•10421	•06244
2.2	•20802	•11567	•06495
2.3	•2 396 8	.12845	•06773
2.4	.27478	·14263	•07077
2.5	•31334	• 1 5824	•07409
2.6	•35527	•17533	•07769
2.7	·1400H0	•19396	•08 1 59
2.8	.44.847	بالتبالته.	•08579
2.9	•49905	•23592	•09030
3.0	•55155	•259 3 0	•09513
3.1	.60521	•28428	•10029
3.2	•65903	•31085	.10578
3.3	•71175	•33898	•11162

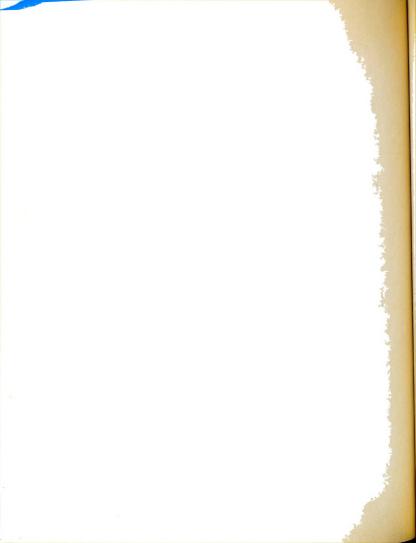


Table A.1.4

P₁₀ (2,.4,P_B)

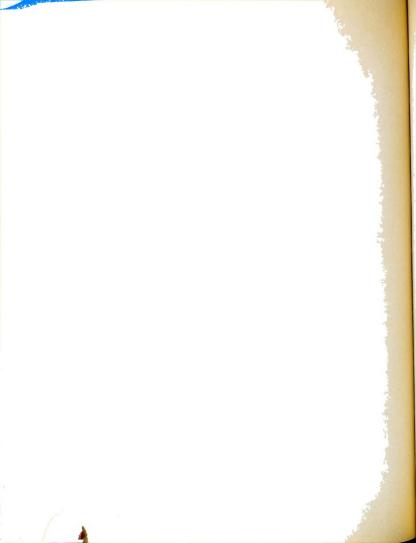

ર	$P_{\rm B} = -14$	$P_B = .3$	$P_B = .2$	P _B = .1
.1 .2 .3	•33312 •26580 •20936 •16309	•19277 •15980 •13202 •10896	•10626 •09390 •08327 •07424	.06267 .06000 .05766 .05563
.5	•12608	•09020	•06673	.05392
.6	•09738	•07535	•06067	.05251
.7	•07608	•06112	•05599	.05142
.8	•06141	•05621	•05267	.05063
.9	•05283	.05156	•05067	.05016
1.0	•05000	.05000	•05000	.05000
1.1	•05285	.05158	•05068	.05016
1.2	•06157	.05638	.05274	.05065
1.3	•07659	.06459	.05623	.05146
1.4	•09855	.07646	.06122	.05262
1.5	•12826	.09230	.06781	.05412
1.6	.16659	.11249	.07608	•05599
1.7	.21/140	.13741	.08615	•05822
1.8	.27240	.16746	.09814	•06083
1.9	.31 09 5	.20304	.11219	•06385
2.0	•141985	.214446	.12843	.06727
2.1	•50806	.29194	.14699	.07112
2.2	•603314	.34554	.16801	.07541
2.3	•70187	.40513	.19162	.08016
2.4	•79766	.47024	.21793	.08538

Table A.1.5

$$P_{10}(\lambda,.5,P_B)$$

λ	P _B = •5	$P_B = .4$	$P_B = .3$	$P_B = .2$	$P_B = -1$
.1 .2 .3	.80107 .64688 .49672 .36521	•52724 •41557 •31927 •23957	.29699 .23832 .18914 .14878	.11,61,1, .121,37 .10567 .09008	.07077 .06627 .06237 .05903
.6 .7 .8	.25826 .17650 .11779 .07897	.17609 .12749 .09209 .06821	.05994	.07734 .06724 .05958 .05422	.05623 .05397 .05223 .05099
.9	.05706	.05447	.05246	.05105	•05025
1.0	.05000	.05000	.05000	.05000	•05000
1.1	.05706	.05447	.05246	.05105	•05025
1.2	•07897	.06821	.05994	•05422	•05099
1.3	•11779	.09209	.07275	•05958	•05223
1.4	•17650	.12749	.09137	•06724	•05397
1.5	•25826	.17609	.11646	•07734	•05623
1.6	•36521	•23957	•14878	.09008	•05903
1.7	•49672	•31927	•18914	.10567	•06237
1.8	•64688	•41557	•23832	.12437	•06627
1.9	•80107	•52724	•29699	.14644	•07077

Table A.2.1

P₂₀(2, .1,P_B)

.1

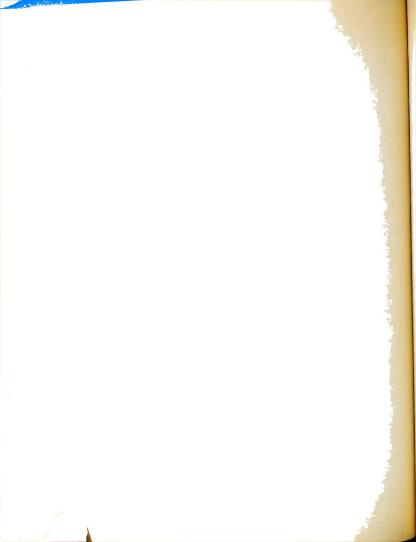

λ	P _B =
•3	•0526
•6	•0508
•9	•0500
1•2	•0502
1.5	•0515
1.8	•0539
2.1	•0576
2.4	•0625
2•7	.0689
3•0	.07661
3•3	.08583
3•6	.09640
3.9	•10860
4.2	•12223
4.5	•13735
4.8	•15391
5.1	•17197
5.4	•19140
5.7	•21218
6.0	•23424
6.3	•25752
6.6	•28193
6.9	•30740
7.2	•33383
7.5	.36114
7.8	38925
8.1	413807
8.4	414752
8.7	•47756
9.0	•50812
9.3	•53918
9.6	•57072
9.9	•60278

Table A.2.2

P₂₀(2,.2,P_B)

ર	P _B = •2	$P_B = .1$
•2	.08984	•06084
•4	.07248	•05624
•6	.06010	•05284
1.0 1.2	•05257 •05000 •05271	•05073 •05000 •05077
1.4	.06115	.05315
1.6	.07585	.05726
1.8	.09731	.06321
2.0	.12593	.07113
2.2	.16190	.08111
2.4	.20519	.09324
2.6	•25539	.10759
2.8	•31177	.12421
3.0	•37323	.14312
3•2	•43831	.16431
3•4	•50531	.18776
3•6	•57237	.21339
3.8	•63762	•21,111
4.0	•69934	•27078
4.2	•75613	•30223
4.4	.80712	•33527
4.6	.85212	•36966
4.8	.89173	•40517

Table A.2.3

P₂₀(\(\lambda_{\cdot, \cdot, 3}, P_B^{\cdot)}\)

λ .	P _B = •3	$P_B = .2$	P _B = •1
.1	•34262	.17163	.07892
.2	•27224	.114383	.07291
.3	•21375	.12040	.06761
.4	•16609	.10080	.06301
•5	•12811	.08491	•05910
•6	•09868	.07216	•05587
•7	•07683	.06242	•05333
•8	•06176	.05552	•05150
.9	•05292	•05138	.05038
1.0	•05000	•05000	.05000
1.1	•05293	•05141	.05039
1.2	.06186	•05571	.05157
1.3	.07708	•06303	.05359
1.4	.09897	•07353	.05647
1.5	.12791	•08739	.06027
1.6	•16420	•10478	.06502
1.7	•20792	•12584	.07076
1.8	•25892	•15069	.07754
1.9	•31666	•17938	.08539
2.0	• 38024	•21191	•09438
2.1	• 144830	•24817	•10452
2.2	• 51913	•28799	•11586
2.3	• 59067	•33106	•12844
2.4	.66072	•37698	.14227
2.5	.727∞	•42527	.15739
2.6	.78745	•47530	.17380
2.7	.84038	•52639	.19153
2.8	.88469	•57778	.21056
2.9	.91.98	•62866	.23089
3.0	.94663	•67820	.25251
3.1	.96577	•72560	.27538
3.2	•97910	.77009	•29948
3.3	•98864	.81100	•324 7 5

Table A.2.4

P₂₀(2,.4,P_B)

2	$P_B = .4$	$P_B = .3$	$P_B = .2$	P _B = •1
.1	.80606	•56085	•28613	•10424
.2	.66881	• มิปปเด7	•22988	•09234
.3	.52824	• 31230	•18303	•08211
.4	.39746	•25710	•14468	•07342
.6 .7 .8	•28514 •195144 •12893 •08400	.18851 .13552 .09663 .07023	.11395 .09000 .07211 .05972	.06618 .06033 .05581 .05259
1.0 1.1	•05832 •05000 • 05 829	.05498 .05000 .05498	.05242 .05000 .05244	.05065 .05000 .05066
1.2	•08374	.07017	•05986	.05268
1.3	•12781	.09625	•07256	.05610
1.4	•19201	.13408	•09090	.06101
1.5	•27674	.18440	•11531	.06748
1.6	•38016	.24748	.11622	.07561
1.7	•49724	.32280	.18100	.08551
1.8	•61969	.40870	.22885	.09729
1.9	•73686	.50226	.28078	.11107
2.0	.83781	.59933	•33955	•12695
2.1	.91118	.69179	•40456	•14505
2.2	.96293	.78313	•47487	•16549
2.3	.98758	.85918	•54914	•18836
2.4	.99666	.91905	•62 5 66	•21375

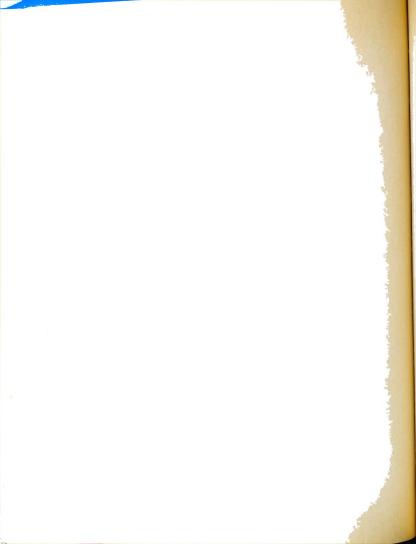


Table A.2.5

1	r _B = •5	P _B - •4	$P_{B} = .3$	$P_{\rm B} = .2$	$P_{B} = .1$
.1	•99776	94459	.75763	.43360	·14390
•2	•9 7491 •89875	.84922 .71369	.62362 .119071	•34434 •26800	•12233
•3 •4	•09075 •758hh	•71309 •55819	.49071 .36927	•20465	.10409 .088 9 0
•4	•13044	•33013	•30721	•20405	•00090
•5	.57672	•40553	.26593	.15373	.07652
.6	•39250	•27353	•18367	•11428	.06671
•7	•23853	•17173	.1 2265	.08517	•05928
•8	•13056	•10224	.08134	•06530	•05409
•9	•06943	-06271	-05768	•05377	•05102
1.0	•05000	.05000	•05000	•05000	•05000
1.1	•06943	.06271	•05768	•05377	•05102
1.2	•13056	.10223	.08134	•06530	.05401
1.3	-23853	.17173	.12265	.08517	.05928
1.4	•39250	•27352	. 18366	28بلتد.	.06671
1.5	•57672	.40552	•26592	•15373	.07652
1:6	-75844	. 55818	.36927	.20465	08890
1.7	89875	.71368	.49070	.26800	.10409
1.8	.97491	.84922	.62362	•34434	.12233
1.9	•99776	•94459	.7 5762	•43360	.14390

Table A.3.3

P₃₀(2,.3,P_B)

2	$P_B = .3$	$P_B = .2$	P _B = .1
.1	.60156	•31493	.11263
.2	.47297	•25013	.09906
.3	.36179	•19696	.08735
.4	.26957	•15400	.07736
.5	•19602	•11.993	.06900
.6	•13972	•09360	.06219
.7	•09872	•07403	.05689
.8	•07107	•06055	.05308
.9	.05517	•05261	•05077
1.0	.05000	•05000	•05000
1.1	.055114	•05263	•05079
1.2	.07078	.06063	•05323
1.3	.09738	.07421	•05740
1.4	.13558	.09365	•06337
1.5	.18561	.11.918	•07124
1.6	•24721	•15097	.08110
1.7	•31926	•18903	.09304
1.8	•39967	•23318	.10713
1.9	•48544	•28298	.12345
2.0	•57286	•33775	.14203
2.1	•65791	•39652	.16293
2.2	•73672	•45813	.18613
2.3	•80609	•52118	.21162
2.4	.86392	•58422	•23935
2.5	.90936	•64574	•26925
2.6	.914289	•70429	•30119
2.7	.96602	• 7 5861	•33504
2.8	.98086	.80765	•37061
2.9	.98973	.85070	•40770
3.0	.99467	.88738	•44607
3.1	.99727	.91764	•48545
3.2	•99862	•94178	•52556
3.3	•99936	•96034	•56609



Table A.3.4

P₃₀(2,.4,P_B)

λ	$P_B = .4$	$P_B = .3$	$P_B = .2$	PB = .1
.1	•95914	.82329	.51971	.17364
.2	•87368	.68111	.40857	.11499
.3	•74398	.514015	.31307	.12096
.4	•58794	.140623	.23610	.10106
.5 .6 .7	•1+2955 •28966 •18063 •10598	.29079 .19868 .1305l .08463	•17411 •12654 •09173 •06811	.08487 .07204 .06230 .05544
1.0 1.1	•06359 •05000 •06353	.05846 .05000 .05841	.05446 .05000 .05445	•05136 •05000 •05138
1.2	.10542	.08117	.06803	.05560
1.3	.17818	.12851	.09126	.06280
1.4	.28245	.19262	.12h83	.07318
1.5	.41343	.27621	.1693h	.08695
1.6	.55911	.37693	.22505	.10136
1.7	.70185	.48938	.29165	.12567
1.8	.82343	.60570	.36804	.15110
1.9	.91155	.71664	.45220	.18087
2.0	.96420	.81339	•54125	.21512
2.1	.98895	.88962	•63156	.25395
2.2	.99751	.94293	•71905	.29737
2.3	.99952	.97519	•79958	.34528
2.4	.99983	.99144	•86950	.39747

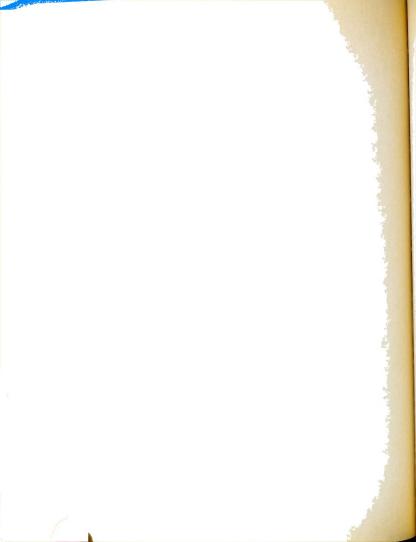
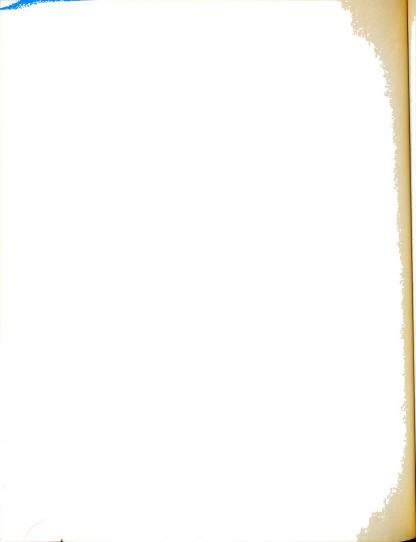
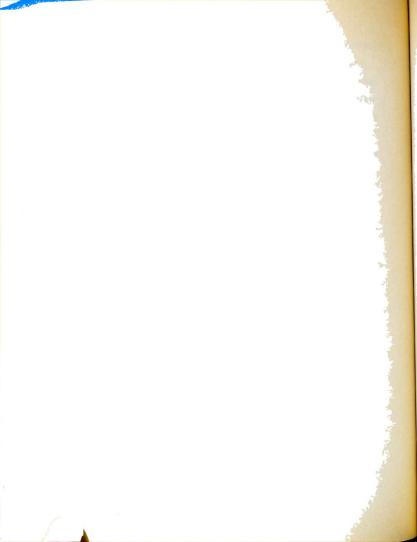



Table A.3.5

	$P_B = .4$	$P_B = .3$	P _B = •2	P _B = .1
•99999	•99565	•93964	•70478	•26299
•99889	•96969	•84401	•57284	•21245
•92299	•09090 •765 7 5	•55793	•33608	•17016 •13545
•78054	.59101	.40683	•24282	.10759
•57085	.40716	.27511	•16923	.08591
•35181	.24866	.17287	•11484	.06978
•18073	.13532	.10278	•07801	.05865
.08131	.07061	.06285	.05687	.05214
.05000	.05000	.05000	.05000	.05000
.08131	.07061	.06285	.05687	.05214
.18073	.13532	.10278	.07801	.05865
.35181	.24866	.17287	.11484	.06978
.57085	.40716	.27511	.16923	.08591
.78054	.59101	.40683	.24282	.10759
•92 2 99	•76575	•55793	•33608	•13545
•98 4 85	•89698	•71078	•44751	•17016
•99889	•96969	•84401	•57284	•21245
•999 99	•99565	•93964	•70478	•26299
	.99889 .98485 .92299 .78054 .57085 .35181 .18073 .08131 .05000 .08131 .18073 .35181 .57085 .78054		59689 56969 5840 5840 58485 58485 58698 71078 57085 40716 27511 35181 24866 17287 18073 13532 10278 18073 13532 10278 18073 13532 10278 18073 13532 10278 18073 13532 10278 18073 13532 10278 18073 13532 10278 18073 13532 10278 18073 13532 10278 18073 13532 10278 18073 13532 10278 18073 13532 10278 18073 13532 10278 18073 13532 10278 18073 13532 10278 18073 13532 10278 18073	96,969 96,969 81,110 57,281 98,185 89,698 7,1078 11,1751 9,2299 7,6575 55,793 3,3608 7,8051 5,7085 1,0716 27,511 1,6923 3,5181 2,1866 1,7287 1,11,18073 1,3532 1,0278 0,7801 1,8073 1,3532 1,0278 0,7801 1,8073 1,3532 1,0278 0,7801 1,8073 1,3532 1,0278 0,7801 1,8073 1,3532 1,0278 0,7801 1,8073 1,3532 1,0278 0,7801 1,8073 1,3532 1,0278 0,7801 1,8073 1,3532 1,0278 0,7801 1,8073 1,3532 1,0278 1,11,814 5,7085 1,0476 2,7511 1,6923 1,70514 5,9101 1,0683 2,1282 1,0289 9,2299 7,6575 5,5793 3,3608 9,8485 9,6969 8,11,078 1,14751 9,9889 9,6969 8,11,078 1,14751 9,9889 9,6969 8,11,078 1,14751 9,9889 9,6969 8,11,078 1,14751 1,9234 1,14751 1,9234 1,14751 1,9234 1,14751 1,9234 1,14751 1,9234 1,14751 1,9234 1,14751 1,147


Appendix B. Exact Power for the 2 x 2 Comparative Trial.

In the 2 x 2 comparative trial, one set of marginal totals is fixed, say m_1 and $n-m_1$, which we may regard as the sizes of two independent random samples from two different populations A_1 and A_2 . The probability that an observation from A_1 falls in B_1 is p_1 , i=1.2. The null hypothesis states that $p_1=p_2$, and the alternative hypothesis is that

 $p_1 \neq p_2$. If we put $p_1 = \lambda \, P_B$ and $p_2 = \frac{P_B(1 - \lambda \, P_A)}{1 - P_A}$, then the probability that n_1 of the observations from pupulation A_1 fall in B_1 and m_2 - n_1 of the observations from A_2 fall in B_1 is the conditional probability, given m_1 , of the probability distribution in the double dichotomy. We thus use two notations for the power function for the test that $p_1 = p_2$, against alternatives $p_1 \neq p_2$, namely, $P_n(\lambda, P_A, P_B, m_1)$ and $P_n(p_1, p_2, m_1)$.

It is convenient for tabulating purposes to give tables for $P_n(p_1,p_2,m_1)$ where p_1,p_2 = .1, 12, .3, ..., .9, $p_2 \le p_1$. In Appendix D, when we compare power among the three cases corresponding to the number of restrictions on the marginal totals m_1 and m_2 , it will be convenient to tabulate $P_n(\lambda,P_A,P_B,m_1)$.

As in appendix A, we have divided this appendix into three sections, B.1, B.2, and B.3, corresponding to n = 10, 20, and 30 respectively. The tables in these sections contain exact values of $P_n(p_1,p_2,m_1)$ for $m_1=1,2,\ldots,\frac{n}{2}$, and all combinations of p_1,p_2 with $p_2\leq p_1$. These values are rounded to

five decimal places, and are virtually certain to be accurate to this number of figures.

The table numbers indicate the value of m_1 and n, with the first number being $\frac{n}{10}$ and the second the value of m_1 . For example, table B.3.11 contains computed values of n = 30, $m_1 = 11$.

Table B.1.2.

P₁₀(p₁,p₂,2)

p ₂	.1	.•2	. •3	•4	•5	.6	•7	.8	•9
.1	.05000	.05316	•06266	.07848	.10063	.12910	•16391	•20504	•25250
•2		•05000	.05260	•06040	•07341	.09161	•11502	•14363	.17743
•3			•05000	•05224	•05897	•07019	•08590	.10609	•13077
•4				•05000	•05205	•05819	.06842	•08275	.10117
•5					•05000	.05198	•05794	•06786	.08175
.6						•05000	•05205	.05819	•06842
•7							•05000	•05224	•05897
.8								•05000	.0526Q
•9									.05000

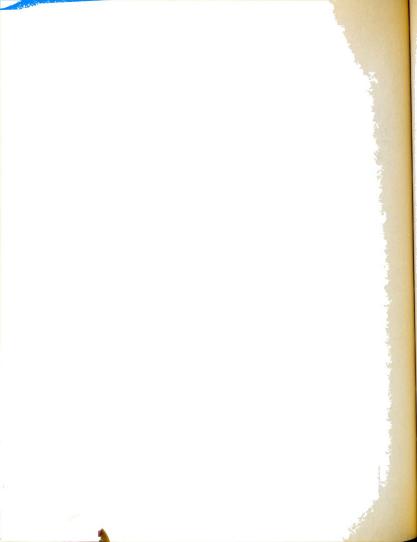


Table B.1.3

$P_{10}(p_1,p_2,3)$

P ₁	.1	•2	•3	•4	•5	.6	•7	.8	•9
•1	•05000	•05557	•07377	•10685	•15704	.22659	•31773	•43270	•57376
•2		•05000	.05554	•07333	.10515	•15277	•21795	•30246	•40809
•3			•05000	.05551	.07284	.10321	.1 4784	•20793	•28469
•11				•05000	•05545	•07222	•10093	.14218	•19659
.5					•05000	•055 3 7	•07147	•09830	•13587
.6						•05000	•05525	•07059	•09540
.7							•05000	•05510	•06961
.8								•05000	•05495
•9									•05000

Table B.1.4

P₁₀(p₁,p₂,4)

p ₂	.1	•2	•3	•14	•5	•6	•7	.8	•9 .
.1	.05000	•05744	.08192	.12638	.19332	.28481	•40250	•54760	•72092
•2		•05000	•05775	.08266	•12735	.1 9472	•28 7 90	.41027	•56545
•3			•05000	•05800	•08326	.12813	•19560	•2892 4	.41328
-4				.05000	•05814	.08343	•12777	•19386	•28519
.5					•05000	.05811	.08288	.12556	.18826
.6						•05000	•05790	.08152	•12134
•7							•05000	•05752	•07943
.8								•05000	•05700
•9									.05000

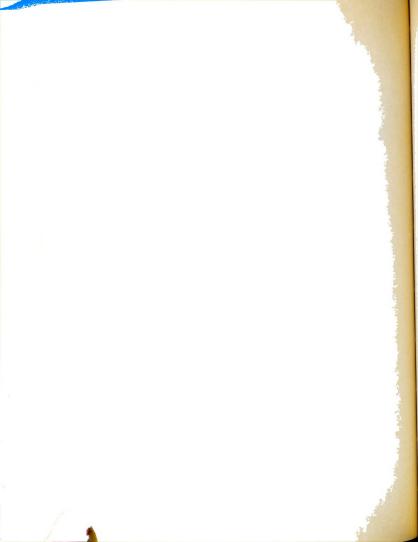


Table B.1.5

P₁₀(p₁,p₂,5)

P ₂	.1	•2	•3	.4	•5	•6	•7	.8	•9
.1	•05000	.05812	.08544	. 13664	•21566	•32433	.46102	.61919	•78608
•2		.05000	.05881	.08719	.1 3814	.21576	.32153	•45653	•61919
•3			•05000	•05913	.08780	•13873	•21537	•32153	•46102
•4				•05000	•05922	.08791	•13873	•21576	•32433
•5					.05000	•05922	.08780	.13 844	.21566
.6						•05000	.05913	.08719	.13664
•7							•05000	.05881	•085144
.8								•05000	.05812
•9									•05000

Table B.2.2

P₂₀(p₁,p₂,2)

P ₂	•1	•2	•3	÷η	•5	•6	•7	.8.	•9.
.1	• 0 5000	•05472	•06889	•09250	•12555	•16804	•21998	•28136	•35219
•2		•05000	•05307	.6227	•07762	•09910	•12672	•16047	•20037
•3			•05000	•05238	•05951	•07139	•08803	•10943	.13 557
. 4				•05000	•05208	•058 33	•06875	•08333	•10208
•5					•05000	•05200	•05800	•06800	•08200
•6						•05000	•05208	•05833	•06875
•7							•05000	•05238	•05951
.8								•05000	•05307
•9									.05000

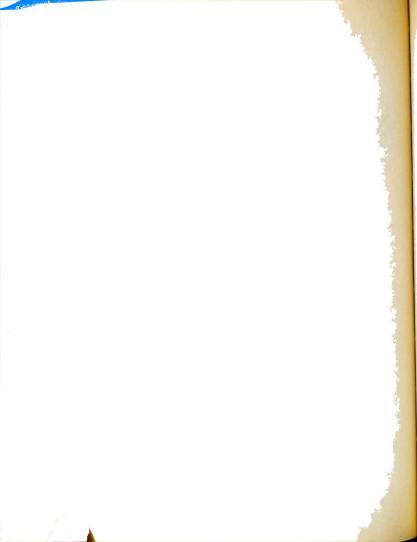


Table B.2.3

P₂₀(p₁,p₂,3)

P ₁	.1	•2	•3	•4	•5	•6	•7	.8	•9
.1	•05000	•05823	.08430	•13024	•19810	•28993	•40776	•55 36 5	•72964
•2		•05000	•05725	•08083	•12346	.187 88	•27681	•39299	•53915
•3			•05000	•05673	•07825	•11650	•17345	•25107	•35131
•4				•05000	•05625	•07561	•10903	.15745	•22180
•5					•05000	•05596	•07382	.10360	14528
•6						•05000	•05593	•07311	.10060
•7							•05000	•05608	•07301
.8								•05000	•05634
•9									•05000

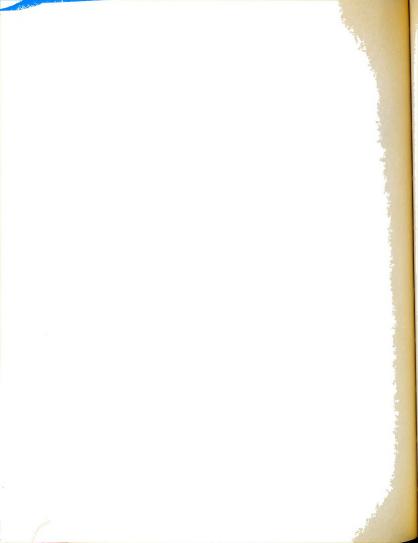


Table B.2.4

P₂₀(p₁,p₂,4)

P ₁	•1	•2	•3	•4	•5	•6	•7	.8	•9
.1	•05000	•06299	•10458	•17664	•27817	•40539	•55 1 69	•70764	.86098
•2		•05000	•06116	•09680	•159 7 3	•25222	• 37 598	•53216	•72135
•3			•05000	•06060	•09461	.1 5599	•24961	•38117	•55729
•14				•05000	•06076	•09485	•15607	•24959	•38198
•5					•05000	•06072	•09363	.1 5096	•23645
. 6						.05000	•06020	•09037	092بلاء
•7							•05000	•05972	•08753
.8								•05000	•05994
.9									•05000



Table B.2.5

P₂₀(p₁,p₂,5)

P1 P2	•1	•2	•3	•4	•5	•6	•7	.8	•9
.1	•05000	•06699	.12073	•21175	•33591	. 48452	•6144,52	•79860	•92536
•2		•05000	•06487	•11176	•19311	•30912	. 45662	.62792	•80969
•3			•05000	•06l <u>1</u> 6	.10854	• 1 8665	.30219	•45825	•65643
•4				•05000	•06396	.10771	.18623	•30716	.48051
•5					•05000	•06393	.10767	•18715	•31219
•6						•05000	•06382	•10672	. 1836 1
•7							•05000	•06360	.1 0437
.8								,05000	•06362
-9									•05000

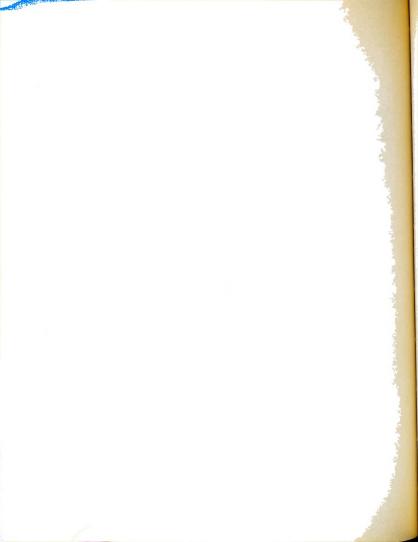


Table B.2.6

P₂₀(p₁,p₂,6)

P ₁	,1	•2	•3	•4	•5	•6	•7	.8	•9
.1	. •05000	.07143	•13834	•24882	•39355	•55703	•71948	.85953	•95758
•2		•05000	•06857	•12584	•22270	•35650	•5 1 924	•69622	.86495
•3			•05000	•06725	.12025	.21192	·314465	•51782	•72528
•4				•05000	•06655	•11807	•21046	•35268	•55521
•5					•05000	•06647	•11909	•21751	•37787
.6						•05000	.06694	.12170	•22574
•7							•05000	•06742	.12252
.8								•05000	•06779
•9									•05000

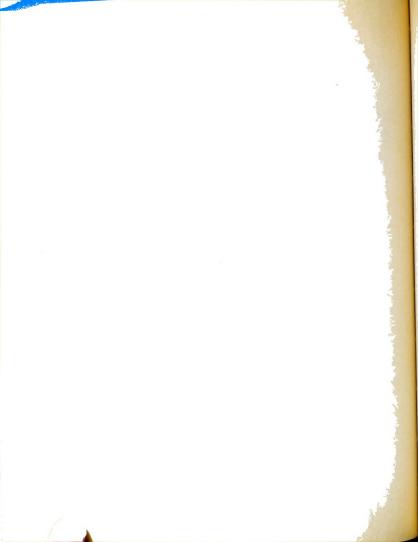


Table B.2.7

P₂₀(p₁,p₂,7)

p ₂	. •1	. •2	. •3	. •4	. •5	. •6	. •7	. •8	. •9
•1	.05000	•07402	•14855	.27081	. 42876	.60213	•76587	89543	•97383
•2		•05000	•071142	.13661	•24558	•39325	•56684	•74491	.89882
•3			•05000	•06967	.12959	•23240	•37887	•56350	•77029
•4				•05000	•06863	.12656	•23012	•38715	.60293
•5					•05000	•06851	.12791	•23959	·l;216l;
•6						•05000	•06930	•13300	•25 7 90
•7							•05000	•07055	•13842
.8								•05000	44110.
•9									•05000

Table B.2.8

P20(p1,p2,8)

p ₂	•1	•2	•3	-14	•5	.6	•7	.8	•9
.1	•05000	.07661	.1 5872	•29174	.45922	.63602	•79472	•91296	•97984
•2		•05000	•07347	•1/13/18	•26865	المورو.	•59051	•76877	.91607
•3			•05000	.07112	•13484	. 24 3 87	•39884	•59 1 82	•79988
-4				•05000	•06995	.13208	.24364	.41234	.63885
•5					•05000	•06992	•13440	•25678	.45642
.6						.05000	.07098	71172ء	•284 3 9
.7							•05000	•07297	.1 5226
.8								•05000	.07482
.9									. •05000

Table B.2.9

P₂₀(p₁,p₂,9)

P ₂	.1	•2	•3	•4	•5	•6	•7	.8	•9	
•1	•05000	•07850	.1 6489	•30176	•47055	•64620	•8025 7	•91804	. 98 18 4	
•2		•05000	•07465	687د.	•26452	•42107	•60119	•77940	•92264	
•3			•05000	.071 88	•13750	.24963	. 40859	.60475	.81096	
•ħ				•05000	•07062	-13485	•25028	•1421402	. 6522 7	
•5					•05 000	•07063	•13767	•26502	. 47022	
•6						.05 000	•0 71 85	.1461 8	•29691	
•7							•05000	•07436	•16062	
.8								•05000	•07738	
.9									•05000	

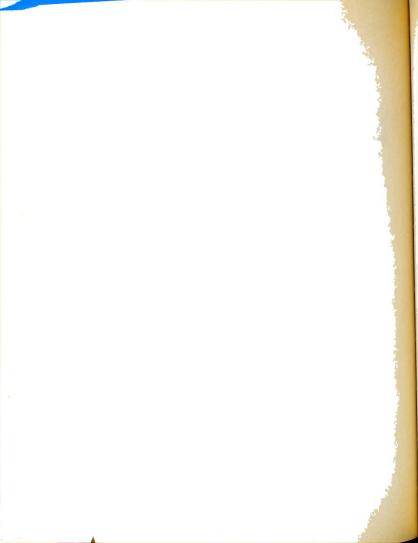


Table B.2.10

P₂₀(p₁,p₂,10)

P ₂	•1	•2	•3	•4	•5	•6	•7	•8	•9
.1	•05000	.07827	• 1 61440	•30357	•47734	•65690	بلبا218.	•92306	•98260
•2		•05000	.07492	832بلا•	•26845	•42747	•60785	•78338	•92306
•3			•05000	•07224	.13 890	•25239	.41219	. 60 7 85	بلبادده.
•14				•05000	.07089	.13584	•25239	•42747	•65690
•5					.05000	•07089	.13 890	•26845	•47734
.6						•05000	•072214	.1 4832	•30357
•7							•05000	. 07492	.1 6440
.8								•05000	•07827
•9									•05000

Table B.3.2

P₃₀(p₁,p₂,2)

p ₂	•1	•2	•3	. 4	•5	•6	•7	.8	.9
.1	.05000	•05497	•06990	•09477	•12958	•17435	•22906	•29373	•36834
•2		•05000	.0 5310	.06242	•07795	.09969	•12763	•16 17 9	•20216
•3			•05000	•05238	•05952	•07142	•08809	•10951	•13569
-11				•05000	•05208	•05833	•06875	•08333	•10208
•5					•05000	.05200	.05800	•06800	•08200
.6						•05000	•05208	•05833	•06875
.7							.05000	.05238	•05952
.8								.05000	•05310
•9									•05000

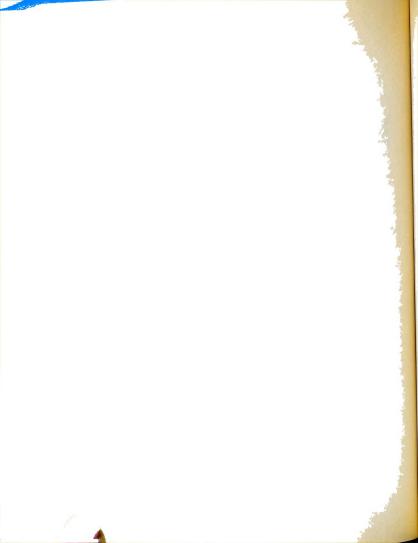


Table B.3.3

P₃₀(p₁,p₂,3)

P ₂	.1	•2	•3	.4	•5	•6	•7	.8	•9
•1	•05000	•05909	•08757	•13723	•20990	•30738	8بلادباء	•58399	.76674
•2		•05000	•05778	•08332	•12993	•20090	•29954	.42915	•59 302
•3			•05000	•05711	•07995	.12082	.18200	•26577	•37442
•11				•05000	•05637	•07617	•11040	•16008	•22662
•5					•05000	•05600	•07398	•10396	.1 4593
.6						•05000	•05604	•07347	•10130
.7							•05000	•05635	•07386
.8								•05000	•05668
.9									•05000

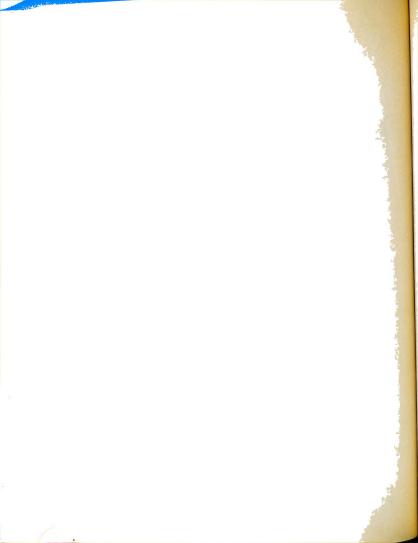


Table B.3.4

P₃₀(p₁,p₂,4)

p ₂	•1	•2	•3	•4	•5	.6	•7	.8	•9
,1	.05000	•06f19f1	.11109	.19057	•30090	.43647	•58827	•74389	.88750
.2		•05000	•06 1 89	•09992	.16705	•26537	•3 961 9	•55996	•75634
•3			•05000	•06118	•09747	•16380	•26621	86تتا.	•60898
•11				•05000	.06152	.09848	.16572	.26976	.41883
.5					•05000	641160.	.09671	.1 58 3 4	•25065
.6						.05000	•06075	•09232	90بلبلا.
•7							•05000	•06009	•08870
.8								•05000	•06050
.9									•05000

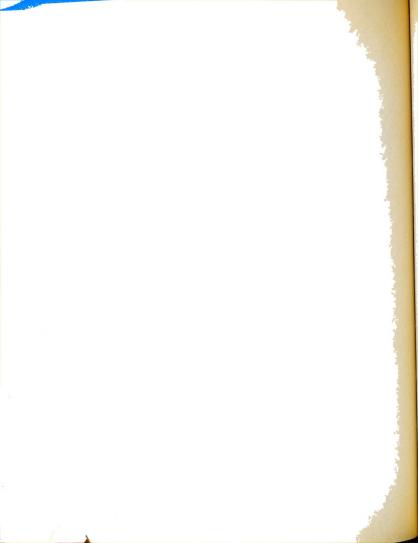


Table B.3.5

P₃₀(p₁,p₂,5)

P ₂	•1	•2	•3	•4	•5	•6	•7	.8	•9
•1	•05000	•07015	•13309	•23731	•37520	•53401	•69687	.84377	•95257
•2		•05000	•06657	•11932	•21101	•34o76	•50229	•68225	. 85850
•3			•05000	•06559	93بلدد.	•20222	•33109	•50326	•71726
•4				•05000	•06546	ביויורבני	•20342	•34242	•54436
•5					•05000	•06558	•11/91	•20577	•3511)4
.6						•05000	.06517	.11221	.19681
.7							•05000	•06466	.10805
.8								•05000	•06482
.9									.05000

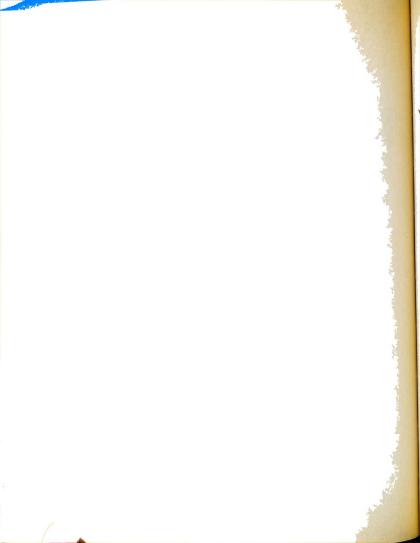


Table B.3.6

P₃₀(p₁,p₂,6)

P ₁	.1	•2	•3	•4	•5	•6	•7	.8	•9
.1	. •05000	07549	.1 5420	. 281 1µ8	444304	•61732	•7 791 8	.90490	•97862
•2		•05000	•07121	•13748	•249 67	. 40226	•58136	•76369	.91671
•3			•05000	•06978	•13140	•23856	•39189	•284444	•79674
•#				•05000	.06910	.12890	•23638	.40048	. 6289 5
•5					•05000	•0689 3	.12987	•24529	•43597
•6						•05000	•06942	1 321بل	•25354
•7							•05000	. 06946	.13030
.8								•05000	•06964
•9									•05000

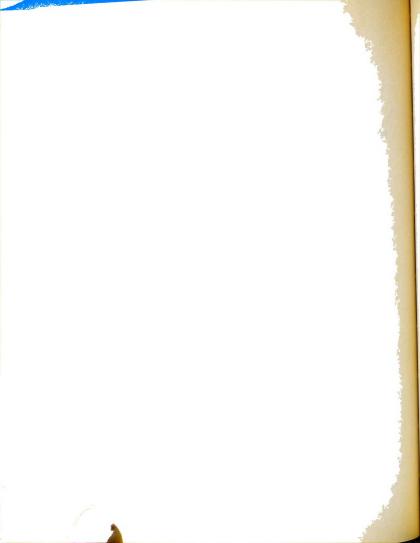


Table B.3.7
P30(p1,p2,7)

p ₂	.1	•2	•3	. 4	•5	•6	•7	.8	•9
.1	•05000	.08103	•17550	•32392	•50361	. 68145	•83692	•94035	.•98986
•2		•05000	•07571	•154 54	•28482	.45551	·644435	.81978	•94715
•3			•05000	•07349	•14552	•26856	•43957	•6h3h8	.84759
. 4				•05000	•07213	•14130	•26486	0.00 وبالبا	•69050
•5					.05000	.07189	•14274	•27752	•149911
•6						•05000	.07295	975ء	•30420
•7							•05000	•07422	•15421
.8								.05000	•07486
•9									.05000

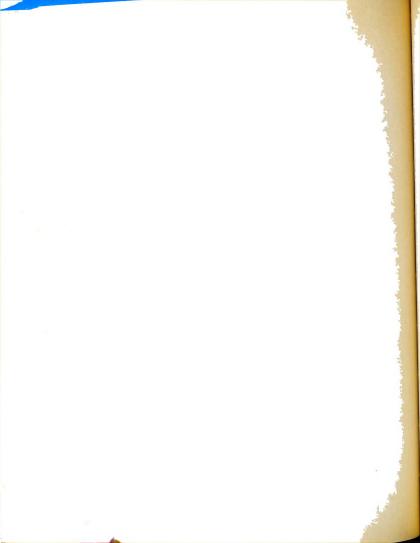


Table B.3.8

P₃₀(p₁,p₂,8)

P ₁	•1	•2	•3	•4	•5	•6	•7	.8	•9
.1	.05 000	•08655	•19508	•35994	•55093	•73232	.87370	•95960	•99hh8
•2		•05000	•07963	.16866	•31256	•49528	.68807	.85483	•96319
•3			.05000	•07636	•15636	•29149	•47526	•68536	.87972
•4				•05000	•07454	.1 5124	•28 76 5	•48667	•73361
•5					.05000	.07430	.15317	.30263	•542 7 7
.6						•05000	•07566	.16281	•34169
•7							•05000	.07818	.17573
.8								•05000	•08022
•9								1	.05000

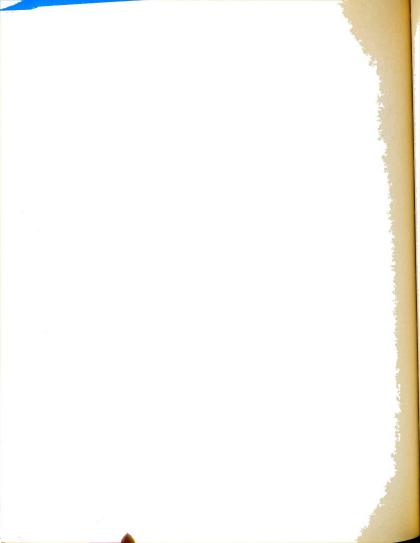


Table B.3.9

P₃₀(p₁,p₂,9)

P ₁	•1	•2	•3	•4	•5	•6	•7	.8	•9
.1	•05000	•09138	•21293	•39314	•59345	•77265	. 90 1 58	•97207	•99685
•2		•05000	•08324	•18129	•33664	•52858	•72301	.88103	•97391
•3			•05000	•07885	•16590	•31178	•50655	•72089	•90503
•11				.05000	.07676	. 1604 9	•30893	•52 158	•77202
•5					•05000	•07658	.16325	•32702	•58280
•6						.05000	.07817	.17479	•37428
•7							•05000	.08167	•19529
.8								•05000	•08563
•9									•05000

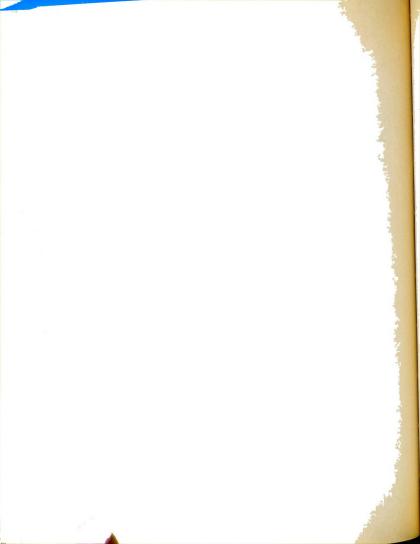


Table B.3.10

P₃₀(p₁,p₂,10)

P ₁	•1	•2	•3	•4	•5	•6	•7	.8	•9
.1	•05000	.09464	•55/1/15	با7بلتبا.	•62167	•79961	•91991	•97987	•99817
•2		.05000	•08606	•19146	•35689	•55 7 48	•75360	•90328	•98193
•3			•05000	.08109	.1 7495	•33172	•53 72 0	•75348	•92408
•4				•05000	.07890	•16953	.32913	•55181	•79971
•5					•05000	•07870	.17 224	•34737	.61319
•6						•05000	•08 0 38	.1 8496	. 40086
•7							•05000	.08461	•21200
.8								•05000	•09037
•9									•05000

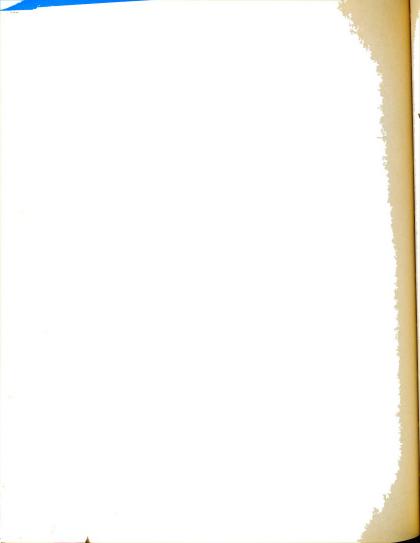


Table B.3.11

P₃₀(p₁,p₂,11)

P2 P2	.1	•2	•3	•4	•5	•6	•7	.8	•9
•1	•05000	•09804	•23541	•43283	•64210	.81655	•92997	•98355	•99865
•2		•05000	.08801	•19786	•36903	•57410	•76987	•91353	.98486
•3			•05000	.08255	.18043	•34299	•55324	•76932	•93305
•4				•05000	.08019	.17 472	•340 73	•56 979	.81739
•5					•050∞	•08002	.17 826	•36218	•6 3 659
.6						•05000	•08200	.1 9309	. 42277
•7							•05000	•08692	•22617
.8								•05000	•09470
.9									•05000



Table B.3.12

P₃₀(p₁,p₂,12)

p_2	.1	. •2	•3	•4	•5	•6	•7	.8	•9
.1	.05000	.10216	•24911	•45530	•66722	.83705	68ــــــــــــــــــــــــــــــــــــ	•98743	•99906
.2		•05000	•09026	•20590	.38432	•59383	.78748	•92346	•98736
•3			•05000	•08409	•18629	•35470	•56922	• 78 ↓1 8	•94053
.4				•05000	•0871/1	•17981	•35183	•58603	.83153
•5					•05000	.08127	.18379	•37504	. 65446
.6						•05000	•08347	.19997	. 4386 1
•7							•05000	.08892	•23668
.8								•05000	•09858
•9									•05000

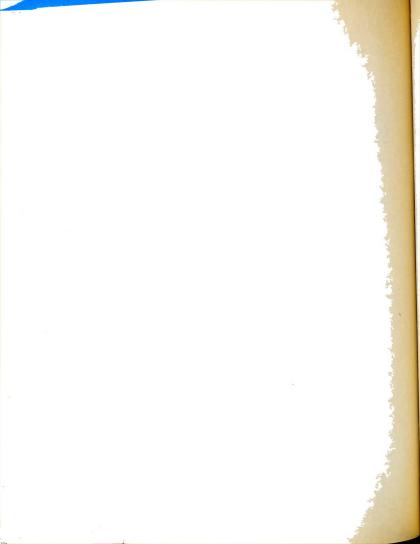


Table B.3.13

P₃₀(p₁,p₂,13)

p ₂	.1	•2	•3	•4	•5	•6	•7	.8	•9
.1	•05000	•10290	•24960	•45571	•66896	•83987	•94390	•98830	•99918
•2		•05000	•09064	•20683	•38658	•59819	•79312	•92789	•98882
•3			•05000	.08461	.1 8835	•35988	•57815	•79397	•94588
•14				•05000	•08216	•18304	•35964	•59826	.84271
•5					.05000	.08212	.18785	•385 17	•66988
•6						•05000	•08/1/1/1	•20526	•45253
•7							•05000	•09015	•514162
.8								•05000	•10089
.9									•05000

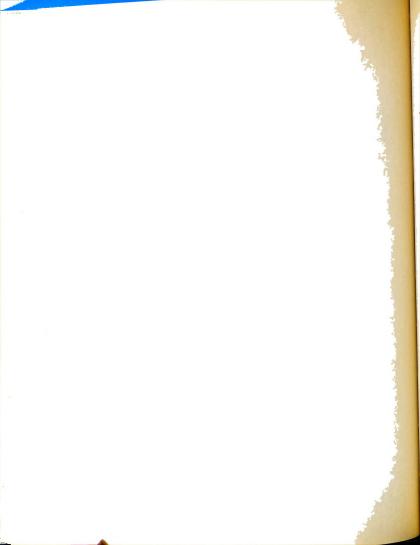


Table B.3.14 P30(p1,p2,14)

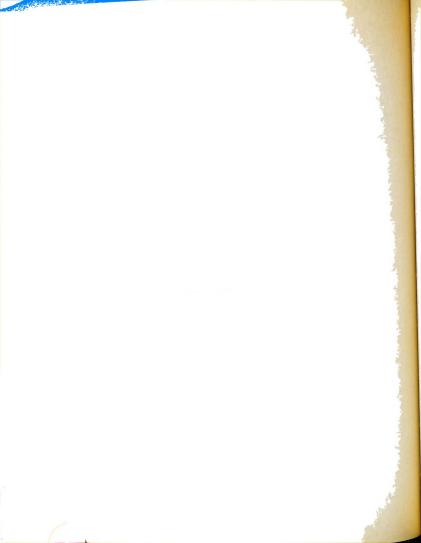

					•				
p ₂	•1	•2	•3	•4	•5	•6	.7	.8	.•9
.1	•05000	•10361	•25268	•46201	.67596	.84463	.94601	•98890	•99925
•2		•05000	•09136	•20 91 9	•39064	•60315	•79768	•93070	•98955
•3			•05000	.08513	•19025	•36381	•58390	•79959	•94826
•4				•05000	•08265	•18508	•36436	.60501	•84659
•5					•05000	•08266	•19031	•39040	ـ دليار6.
.6						•05000	•08506	•2080 1	.45762
•7							•05000	•09098	.24917
.8								•05000	.10266
•9									•05000

Table B.3.15

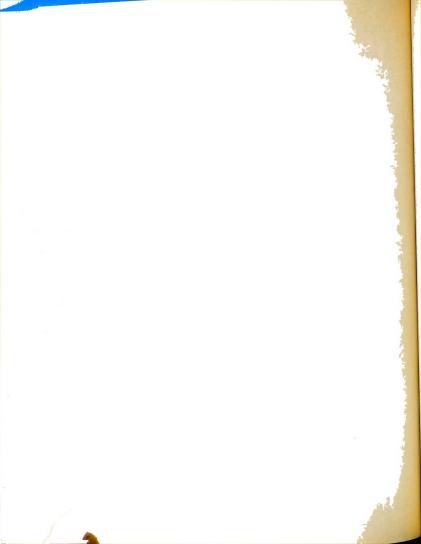
P₃₀(p₁,p₂,15)

P ₁	•1	•2	•3	•71	•5	•6	•7	.8	•9
•1	•05000	. 10 39 6	•25347	•46462	•68196	•85 1 59	•94997	•98980	•99928
•2		•05000	•09165	•21097	•395144	. 60946	. 8020 1	•93215	•98980
•3			•05000	.08561	•19201	•36671	•58686	. 80201	•94997
•4				.05000	.08295	.18612	.36671	•60946	.85159
•5					•05000	•08295	•19201	•395/1/1	. 68196
•6						•05000	•08561	•21097	. 46462
•7							•05000	•09165	•25347
.8								•05000	.103 96
•9									•05000

Appendix C. Exact Power in the 2 x 2 Independence Trial.

In the 2 x 2 independence trial, both sets of marginal totals are fixed. The classic example of an experiment in which the marginal totals should be so regarded is Fisher's tea-tasting experiment described earlier in section 1.6. The appropriate probability distribution is obtained conditionally from the multinomial distribution, and is given by (1.2.5) in Chapter 1. The exact power function for the test of independence is a conditional power function, for fixed m₁ and m₂, and is given by

is given by
$$P_{n}(t \mid m_{1}, m_{2}) = \frac{\sum_{n_{1} \in w(m_{1}, m_{2})} Pr \{n_{1} \mid m_{1} m_{2}, n\} t^{n_{1}}}{\sum_{j} Pr \{j \mid m_{1}, m_{2}, n\} t^{j}}, \quad 0 < t < \infty.$$


In order to relate $P_n(t\,|\,m_1,m_2)$ to the exact power function in the double dichotomy, we put

$$t = \frac{\lambda (1-P_A-P_B+\lambda P_AP_B)}{(1-\lambda P_A)(1-\lambda P_B)},$$

and to relate it to the power function in the 2 x 2 comparative trial, we set

$$t = \frac{p_1(1-p_2)}{p_2(1-p_1)}$$

Exact values of $P_n(t|m_1,m_2)$ were computed using a distinctly different program than that used for the previous two cases. The

accuracy of these values was checked by direct hand computation for several cases, which indicated that the values computed were accurate to a minimum of five decimal places in every case given in the tables. The machine computed results were given to 11 decimal places, but were rounded off to five places. When t = 1, $P_n(t \mid m_1, m_2)$ is equal to .05. This served as a check also on the values computed on the digital computer. For all combinations of m_1, m_2 , and n for which computations were made, the computed value of $P_n(t \mid m_1, m_2)$ for t = 1 was accurate to 10 decimal places, which again indicated that the values of power given in this appendix are certainly correct to five decimal places.

The tables in this appendix are divided into three sections, C.1, C.2, and C.3, corresponding to n = 10, 20, and 30. Since there are many combinations of m_1 and m_2 for each value of n, exact values for $P_n(t\mid m_1,m_2)$ are given for selected combinations of m_1 and m_2 .

It was convenient to tabulate the power function as a function of t rather than as a function of λ . For this reason it is necessary first to determine t from the relation

$$\mathbf{t} = \frac{\lambda (1 - P_A - P_B + \lambda P_A P_B)}{\lambda (1 - \lambda P_A) (1 - \lambda P_B)}$$

where $P_A = \frac{m_1}{n}$, $P_B = \frac{m_2}{n}$. Then exact power may be found by looking in the table for which m_1, m_2 , and n are the marginal totals and sample size. More values of power in the 2 x 2 independence trial may be found in Appendix D.

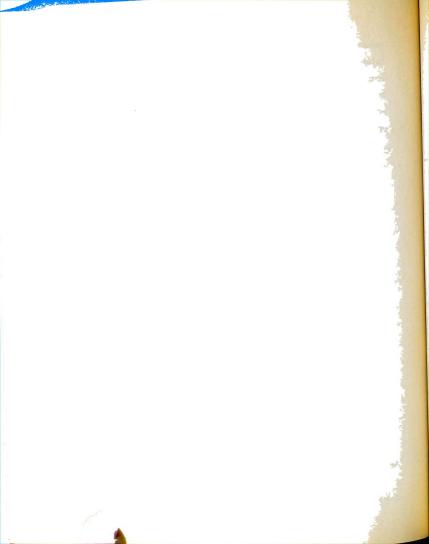


Table C.1.1

P₁₀(t | 5 ,m₂)

t	$m_2 = 5$	m ₂ = 4	m ₂ = 3	m ₂ = 2
00.02	.71781	.82859	•27223	410714
00.03	•62896	•75971	•25985	10466
00.04	•55944	69941	24835	•10229
00.05	-50346	·64626	23763	10003
00.075	40157	•53773	.21383	.09482
00.10	.33254	-45480	19362	.09018
00.125	.28253	.38981	.17629	.08603
00.15	•24459	•33783	.16133	.08231
00.175	.21481	•29557	.14832	.07898
00.20	•1908h	-26072	.13696	•07597
00.25	-15478	-20716	.11818	.07083
00.30	12915	.16855	.10349	•0666L
00.40	.09591	11830	.08261	.06042
00.50	.07629	.08883	.06923	.05625
00.60	.06428	.07098	.06064	•05 3 50
00.70	•05697	.06019	•05524	.05174
00.80	.05273	•05398	.05207	•05069
00.90	.05061	•05089	•05046	05015
01.00	•05000	•05000	•05000	•05000
01.10	•05050	.05072	•05038	.05013
01.20	.05182	.05265	•05138	.05046
01.30	•05377	• 9 5550	.05285	•05095
01.40	•05620	•05906	.05467	.05155
01.50	•05900	•06318	•05676	.05223
02.00	.07629	.08883	•06923	.05625
03.00	11595	·14858	•09545	.06429
04.00	·15478	•20716	•11818	.07083
05.00	.19084	.26071	.13696	•07597
06.00	•22399	•30873	.1524 6	.08005
07.00	•25446	·35157	. 165 3 8	.08333
08.00	•28253	.38981	.17629	.08603
09.00	.30848	1,2404	18559	•08828
10.00	•33254	•45480	.1 9362	.09018
15.00	. 43086	•57057	.22133	.09649
20.00	•50346	.64626	.23763	.10003
25.00	•55944	·699hī	. 248 3 5	.10229
30.00	•60399	•73873	•25593	.10386
40.00	•67049	•79297	.26593	.1 0589
50.00	.71781	-82859	.27223	•10714
60.00	.75322	.85376	. 2765 7	.10800
70.00	•78072	.87249	•27973	•10862
80.00	.80270	. 88696	.28215	•10909

Table C.1.2 P₁₀(t | 4,m₂)

t	m ₂ = 4	m ₂ = 3	m ₂ = 2
00.02	•31458	-16970	•08722
		16489	.08590
00:03	• 2 99 37 • 2 8528	•16031	.08463
00:04	•20520 •27220		.08340
00.05		·15592	•08050
00.075	•24331 •21893	.14577 .13664	•07784
00.10		-12842	.07539
00.125	-19816	•12098	•07314
00.15	.18031	•12090 •121121	•07107
00.175	.16487	•10813	.06916
00,20	·151/4	•09749	.06579
00.25	12935	•08863	.06293
00.30	.11217		05845
00.110	.08786	•07505 •06555	.05526
00.50	•07236	•05898	.05304
00.60	.06240	•05460	05155
00.70	05614	•05187	•05063
00.80	.05243	•05043	•05014
00.90	•05055	•05000	•05000
01.00	•05000	•05037	.05012
01.10	.05045		.05046
01.20	•05166	•05139	.05096
01.30	•05346	•05293	•05159
01.40	•05570	•05490	•05233
01.50	.05831	.05721 .07215	.05690
02,00	.07452		.06702
03.00	•11228	·10823	.07609
04.00	979يلاه	-143 96	.08368
05.00	•18499	.17651	.09000
06.00	-21760	20551	09528
07.00	•24777	-23121	09975
08.00	•27570	•25400 •27428	10356
09.00	•30162	29241	10684
10.00	•32573	•52577	.11817
15.00	-42478	•35984	12482
20.00	. 49828	.40327	.12918
25.00	•55505	•1433147	•13225
30.00	•60023	.45566	.13630
40.00	•66767	. 48606	13884
50.00	.71 562	•50589	-14059
60.00	.751 46	•51985	•14055 •14187
70.00	•77928	•53020	-14284
80.00	وبلده.	.53819	•111501

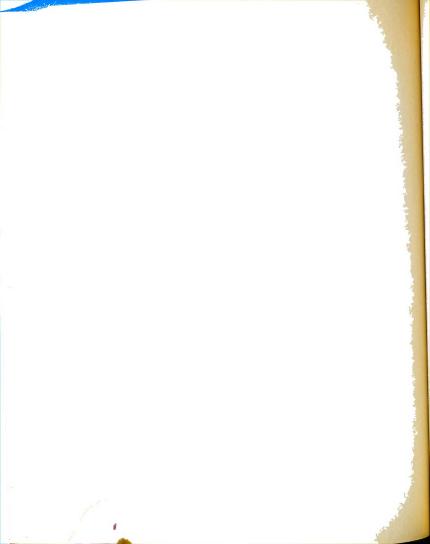


Table C.1.3

ţ	P ₁₀ (t 3,3)	P ₁₀ (t 3,2)	P ₁₀ (t 2,2)
00.02	-10 179	•07354	2/272
00.03	•10299	•07283	•06357
00.04	10124	07215	.06321
00.05	-09955	.07148	.06287
00.075	09555	•0714b •06988	.06253
00.10	-09186		.06172
00.125	-08843	•06839	•06094
00.15	•08526	•06698	•06020
00.175	•08232	•06566	•05950
00-20		•06/4/43	•05883
00.25	•07959	•06327	•05819
	. 07471	•06117	•05702
00.30	•07050	•05933	•05596
00.110	•06375	•05633	•05417
00.50	•05878	•05407	•05276
00.60	•05520	•05242	•05169
00.70	•05272	•05127	•05091
00.80	•05113	•05053	•05039
00.90	•05027	.05012	•05009
01.00	•05000	•05000	•05000
01.10	-05024	.05011	•05009
01.20	•05090	.05042	05033
01.30	.05191	•05089	.05071
01.40	-05324	•05149	.05122
01.50	-05482	•05222	.05184
02.00	.06561	•05700	.05625
03.00	09455	.06892	-06882
04.00	12664	. 08088	.08333
05.00	15880	.09179	.09812
06.00	18989	10147	11250
07.00	21948	11000	12619
08.00	24743	11752	.13910
09.00	27375	12417	.15119
	-2 9849	13008	16250
10.00	-LO185	15178	20903
15.00	. 40105	16549	24305
20.00		17491	26880
25.00	•53949	.18176	-28892
30.00	•58722	19106	31825
40.00	65822		•33858
50.00	•70844	.1 9707	•35349
60.00	. 74581	•20127	•36488
70,00	•77470	•20438	
80,00	•79770	•20676	•37387

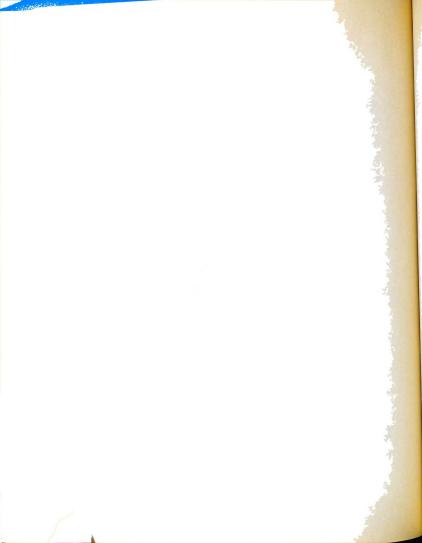


Table C.2.1

P20(t | 10,m2)

t	m ₂ = 10	m ₂ = 8	m ₂ = 6	m ₂ = 4
00.02	•97393	•95526	.85200	•51582
00.03	94258	91540	•79039	.48869
00.04	90501	87179	•73535	-46352
00.05	.86438	82719	•68592	44012
00.075	. 76099	•71998	-58213	.38835
00.10	66501	62502	49995	.34466
00.125	-58054	-54363	43361	.30747
00.15	•50770	47460	•37920	27560
00.175	44537	41613	•33398	.24811
00.20	.39210	36652	29601	.22428
00.25	30744	28813	•23630	.18533
00.30	24477	23031	.19217	.15528
00.40	.16200	.15398	.13322	.11333
00.50	.11336	.10900	•09778	•08699
00.60	-08407	.08179	•07597	.07033
00.70	.066Ь8	.06541	•06266	.05998
00.80	.05642	.05601	.05495	.05392
00.90	.05143	.05134	•05110	•05088
01.00	.05000	.05000	•05000	•05000
01.10	•05117	.05109	•05090	.05072
01.20	05428	.05401	. 05331	•05262
01.30	05889	.05831	•05685	.05542
01.40	•06466	.06370	•06127	•05889
01.50	.07135	.06995	•06636	.06287
02.00	11336	.10900	.09778	.08699
03.00	21198	•20008	•16895	.13902
04.00	.30744	.28813	•23630	.18533
05.00	39210	. 36652	.29601	.22428
06.00	46507	-43455	•34817	25684
07.00	-52738	. 49 31 6	. 39 8 70	.28422
08.00	58054	•54363	.43361	.30747
09.00	62599	-58722	46878	•32740
10.00	66501	62502	. 49995	.31,466
15.00	79505	.75458	.613 96	40462
20.00	86438	82719	•68592	14,012
25.00	90501	87179	•73535	46352
30.00	93056	90111	.77136	.48009
40.00	.9 59 2 9	.93604	. 82 03 0	.50200
50.00	•97393	95526	85200	51582
60:00	98224	296695	.87419	•525 33
70.00	98732	97460	.89060	•53228
80.00	99062	.97986	•90322	•53757

Table C.2.2

P₂₀(t | 8,m₂)

t	m ₂ = 8	m ₂ = 6	m ₂ = 4
00.02	. 86891	.87 554	•25687
00.03	-81285	.82113	24821
00.04	•76196	.77121	•23995
00.05	•71558	•72529	23207
00.075	•61597	.62551	-21390
00.10	•53485	•54328	19767
00.125	•46780	•47484	.18313
00.15	•41174	•41737	.17006
00.175	•36439	.3 68 7 5	.15828
00,20	.32408	•32734	.14765
00.25	. 25968	•26127	.12929
00.30	•21127	•21178	.11/17
00.40	•14552	.14501	.09125
00.50	.1 0535	.10465	.07544
00,60	•08033	•07975	.06463
00.70	•06490	•06454	.05747
00.80	•05588	•05571	•05303
00.90	•05132	.05128	•05070
01.00	•05000	.05000	.05000
01.10	•05110	•05105	•05060
01.20	•05405	•05387	•05225
01.30	•05844	•05806	.05475
01.40	•06398	•06332	•05794
01.50	•07044	•069144	.06170 .08620
02.00	•11154	.10809	
03.00	•2096 1	.19958	.1465 7 .20761
04.00	•30550	.28887	•26 3 96
05.00	.3 9090	.36863	•20390 •3145 7
06.00	•46459	-43787	•31457 •35963
07.00	.5275 5	.49744 .54864	• 3 99 7 0
08,00	•58123		.43540
09.00	.62709	•59 27 5 •6 3 091	. 46733
10.00	.666h3	•76079	58597
15.00	•79709	.83278	66204
20,00	.8 66 <u>3</u> 5	.87662	71470
25.00	•90674	90524	75324
30.00	.93204	•93909	80580
40.00	•96035	•95757	83994
50.00	.97471	•96876	.86388
60.00	•98282	.97604	.88160
70.00	•98776	·98104	89524
80.00	•99096	• 70104	



Table C.2.3

t	P ₂₀ (t 6,6)	P ₂₀ (t 6,4)	P ₂₀ (t 4,4)
00.02	•33466	•34384	.09543
00.03	•32200	.14081	09428
00.04	•30998	.13787	09315
00.05	•2 98 57	•13502	09204
00:075	·272hh	.12825	.08936
00.10	•24932	•12197	.08680
00.125	-22879	بالـ1161	.08436
00:15	.21049	.11073	.08203
00.175	•19413	.10570	.07981
00,20	•17945	.10102	.07770
00.25	-1 5438	•09263	•07378
00.30	. 13395	•085 3 8	.07024
00.40	. 10342	•07372	.06421
00.50	•08269	•06514	•05945
00.60	•06869	•05895	•05580
00.70	•05949	•05467	•05313
00.80	-05384	•05194	•05134
00.90	•05088	•05045	.05032
01.00	•05000	.05000	•05000
01.10	•05076	05040	•05030
01.20	.05282	•05151	.05115
01.30	•05593	•05322	•05250
01.40	•05989	•05542	.05429
01.50	•06456	•05805	.05648 .07212
02.00	•09469	•07555	11689
03.00	.1 6767	12028	16821
04.00	•23997	16709	-21973
05.00	•3055 7	•21165	26891
06.00	.36357	. 25286	.31477
07.00	53بلتبا.	29058	.35708
08.00	.45931	•32502 •35648	39591
09.00	149881	•38526	.43247
10.00	•53379	•49826	56962
15.00	•66084	•57647	.66193
20.00	•73949	•63367	72657
25.00	•79224	•67729	.77369
30.00	-82969	•73938	.83667
40.00	.87862	•783JJJ	87594
50.00	•90859	.81181	90219
60.00	. 928lılı	.834 7 7	92068
70.00	•94234	.85274	93423
80.00	•95248	•05214	•/)442

Table C.3.1

P₃₀(t | 15, m₂)

ţ	m ₂ = 15	m ₂ = 14	m ₂ = 13	m ₂ = 12	m, = 11
00.02	.99810	•99679	•99703	•99 <u>4</u> 97	-
00.03	•99224	•98960	98996	•99497 •98609	•99259
00.01	.98173	•97779	97784	•97257	•980 12
00.05	96672	96170	96093	•95494	•96192
00.075	91217	90681	•9023L	•89732	•93903
00.10	.84256	.83922	.83012	•82839	-86848
00.125	.76726	.76687	•75356	•75567	-78945
00.15	-69231	69488	67837	•68 3 90	.71034
00.175	-62110	.62618	60759	•6 1 576	63549
00.20	•55533	.56229	•54265	•55263	•56680
00.25	44203	45101	43149	•144303	•50488
00.30	•35185	.36112	•34349	•44303 •35475	-40071
00-40	22610	•23355	•22118	•35475 •229 7 2	•31937
00.50	14978	.15474	14705	•15256	•20722
00,60	10350	1 06h0	10208	•1032h	•13937
00.70	•07580	07727	•07513	•07672	•09808
00.80	06002	06061	•05977	•06070	•07325
00.90	.05223	.05236	•05217	•05231	•05905
01.00	•05000	05000	.05000	.05000	.05210
01.10	.05182	05193	05178	•05189	.05000 .05164
01,20	.05668	•05707	05651	•05693	•05604
01.30	.06388	•06h69	•06353	.06439	•06253
01.40	.07293	.07425	.07234	•07375	.07068
01.50	.08345	.08533	•08258	.08461	.08013
02.00	·14978	.15474	.14705	.15256	•13937
03.00	.30282	.31171	.29576	.30629	•27553
04.00	.44203	45101	.43149	.44303	.40071
05.00	•55533	-56229	-54265	.55263	.50488
06.00	.64429	·64860	63058	•63797	•58895
07.00	.71345	.71521	•69950	70112	.656 3 0
08.00	.76726	.76687	•75356	·75567	.71034
09.00	.80937	80729	.7962 2	79620	•75 3 97
10.00	.84256	.83922	.83012	82839	78945
15.00	93254	.92701	.92396	.91825	89351
20.00	96672	.96170	.96093	95494	•93903
25.00	.98173	97779	•9778L	97257	.96192
30.00	98926	98620	98649	98208	.97464
40.00	.99563	•99376	99413	.99113	98713
50.00	•99810	.99679	99703	99497	99259
60.00	•99899	99809	•998 3 6	99688	•995 3 5
70:00	•99937	.99888	•99901	•99793	•99690
80.00	·99952	•99 9 22	•999 3 5	.99856	•99782

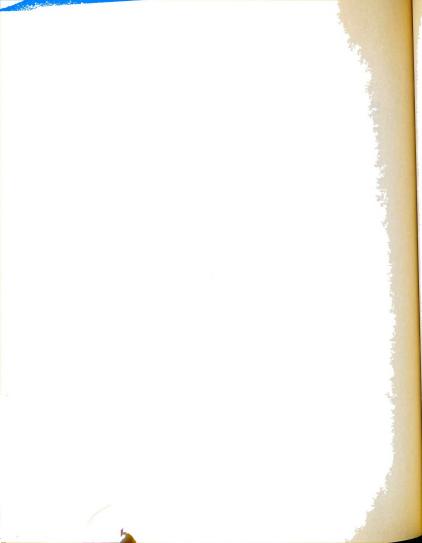


Table C.3.2

P₃₀(t | 15, m₂)

t	$m_2 = 10$	m ₂ = 9	m ₂ = 8	$m_2 = 7$	m ₂ = 6
00.02	•99467	.97416	•97623	90784	.87206
00.03	.98534	.94839	•95200	.86432	.81654
00.04	.97120	•91806	•92307	.82267	.76578
00:05	•95279	. 88502	.89118	.78292	.71928
00.075	89296	.79818	.80596	69181	-61875
00.10	82195	.71316	.72115	-61191	•53643
00.125	·74766	.63453	·64186	-54215	.46826
00.15	·67L88	-56374	.57001	.48132	41724
00.175	.60625	•50089	•50597	42829	.36315
00.20	-54303	.44547	0با9بابا	.3820 0	-32227
00.25	-43404	.35404	.35605	.30612	25722
00.30	.34693	.28364	-28431	-24772	.20857
00-40	22445	18705	.18648	16708	.14303
00.50	14935	.12837	.12761	-117L8	-10343
00.60	10346	.09239	.09180	.08671	.07904
00.70	07584	.07058	•07023	•06790	.06L15
00.80	•06005	.05803	.05788	•05700	.05554
00.90	•05223	.05179	.05175	•05156	.05123
01.00	•05000	•05000	•05000	•05000	.05000
01.10	.05183	.05146	.05143	.05128	.05101
01.20	.05670	•05536	05526	.05467	.05369
01.30	.06392	.06111	.06091	.0 5968	.05765
01.40	07297	.06830	.06799	.06593	.06259
01.50	08348	-07663	.07620	.07313	.06829
02.00	14935	.12837	.12761	.11748	.10343
03.00	29934	24586	-24595	.21628	.18283
04.00	113404	.35404	.3 5605	.30612	.25722
05.00	-54303	44547	.44940	.38200	.32227
06.00	62857	-52098	.52646	-44517	.37830
07.00	69533	.58314	-58974	.49786	.42654
08.00	. 74 7 66	63453	.6 4186	.54215	.46826
09:00	.78899	•67729	.685 06	•57972	•50459
10.00	821.95	71316	72115	.61191	•53643
15.00	.91463	.82729	.83472	.72089	•65000
20.00	95279	.88502	.89118	.78292	•71928
25.00	97120	.91806	-92307	.82267	•76578
30.00	-98114	.93868	94279	.85023	.79912
40.00	99063	96199	-96484	.88585	. 84367
50.00	99467	.97416	97623	.90784	.87206
60.00	99667	.98130	-98287	92275	.89174
70.00	99778	98584	98707	93351	.90617
80.00	99845	98891	-98990	.94165	.91721
00.00	• 27042	•,,,,,	•,-,,-		

Table C.3.3

00.02		P ₃₀	(t 114, m ₂)		P ₃₀ ((t 13, m ₂)
00.01	ţ	m ₂ = 14	m ₂ = 12	m ₂ = 10	m ₂ = 13	m ₂ = 12
00.03 >8999 98062 .9536L .98087 .98187 00.04 .97789 .9628L .92587 .96332 .97031 00.05 .96103 .94048 .89530 .94120 .95130 00.10 .83663 .79367 .73185 .79570 .81728 .88976 00.125 .75130 .7156L .65195 .71810 .71111 00.15 .67929 .61146 .58170 .61125 .56820 00.175 .60867 .51382 .51111 .46528 .51412 .57612 .59921 00.25 .13275 .40703 .37132 .40989 .12733 00.30 .314171 .32508 .29805 .32764 .31401 00.50 .11776 .11210 .13337 .11330 .11630 00.50 .11776 .11210 .13337 .11330 .11635 00.50 .11776 .11210 .13337 .11330 .11651 00.50<	00.02	- 9970h	. 99278 .	.97696		
Oo. 04 97789 9628h 92587 96332 97031 OO. 075 90262 87136 81355 87278 88976 OO. 10 83063 71361 681355 87278 88976 OO. 15 67929 61216 56495 71810 71210 OO. 15 67929 61216 56495 71810 71217 OO. 20 51332 51311 16528 51411 55921 OO. 25 133275 10703 37132 10989 12733 OO. 30 34471 32508 29805 32764 31401 OO. 40 22218 21137 19634 21321 22010 OO. 50 14776 14120 13397 141330 14685 OO. 70 75759 07143 0721h 07451 10201 OO. 70 07598 05912 05866 05958 05971 OO. 90 05200 05200 05103 05119 05214 </td <td></td> <td></td> <td>98062</td> <td>.95364</td> <td>98087</td> <td>.98494</td>			98062	.95364	98087	.98494
00.05		97789	96284	92587	•96332	.97031
00.00 00.0262 87136 81355 87278 88976 00.10 .83663 .79367 .73185 .79570 .83120 00.125 .75130 .71251 .65185 .71310 .71110 00.175 .60867 .57317 .52151 .57612 .57921 00.20 .51382 .51111 .16528 .51111 .55571 00.25 .133275 .10703 .37132 .10989 .1273 00.30 .31171 .32508 .29805 .32764 .31100 00.40 .22218 .21137 .19634 .21321 .22010 00.50 .11776 .11210 .09552 .10045 .10203 00.70 .07539 .07143 .07211 .07151 .0752 00.90 .05220 .05210 .05986 .05986 .05986 .05986 .05981 .05771 00.90 .05220 .05210 .05193 .05211 .07152 .01500 .050			94048	89530	-94120	.95130
00.10		90262	.87136	.81355	.87278	.88976
00.125 75130 71561 65195 71810 714110 0.125 67929 61016 581170 61125 66822 0.175 60867 57317 52151 61625 57632 55921 0.220 51382 51311 16528 51111 15089 14273 0.20 51382 51311 16528 51111 16528 51111 15089 14273 0.20 51382 51311 16528 51111 16528 51111 15089 14273 0.20 50 51382 51311 16528 51111 16528 51111 16528 51111 16528 51111 16528 51111 16528 51111 16528 51111 16528 51111 16528 51111 16528 51111 16528 5121 16				.73185	•79570	.81720
00.15				65495	.71810	.74174
00.1075				-58470	.64425	.66822
00.20					.57612	.59921
00.55				. 46528	.51441	.53591
00.10			40703		-40989	•42733
00.50			-32508		.32764	.34204
00.50						.22041
00.60 1023 09973 09552 100Ls 12020 00.70 07539 07113 0721L 07151 077512 00.80 05988 059L2 05866 05958 05977 00.90 05220 05210 05193 0521L 05807 00.90 05220 05210 05193 0521L 05810 05173 05159 05176 05173 05180 05173 05159 05176 05177 01.20 05662 05635 0558L 0661L 06327 05160 05173 05159 05176 05177 01.20 05662 05635 0558L 0661L 06352 05616 05180 05173 07128 07026 0619 05170 01.20 05602 05615 0558L 0621L 06352 0661L 06352 0					·14330	-14685
00.70 07(59) 07(1)3 07(21)1 07(151) 07(51)					10045	.10203
0.\$0					.07451	.07512
00.90						
01.00						
01.10 05180 05173 05159 05176 05176 01.20 05662 05635 05581 05649 05649 01.30 06376 06323 05211 06352 06317 01.10 07273 07188 07006 07239 07223 01.50 .08320 06195 07926 08273 0823 02.00 .11923 .11570 .13726 .14832 .11592 03.00 .30201 .29373 .27170 .3009h .2900 04.00 .14123 .12948 .39632 .14046 .1229 05.00 .55465 .54095 .50059 .55425 .52914 06.00 .64375 .62923 .5503 .1366 .13137 .68281 .71317 .68226 .6503 .76734 .73573 .09,00 .00 .71317 .68228 .7603 .776734 .73573 .00 .00 .00 .93251 .73573 .70 .00						
0.5662 0.5635 0.5581 0.5619 0.5619 0.5619 0.5611 0.5619						.05177
01.30						.05649
01.40					-06352	.06347
01.50						.07223
02.00						.08238
03.00 29373 27170 3009l 29071 04.00 14.1123 1.2948 39632 14.1046 1.2200 05.00 554.65 51.095 50059 554.25 5594 06.00 64.375 62923 58503 64.366 64.185 07.00 71303 69814 65281 713.17 68226 08.00 76.95 75.280 70735 76734 73573 08.00 76.95 75.280 70735 76734 73573 10.00 81.239 82.972 78724 81.282 81.266 15.00 93254 92.333 89216 93292 93052 15.00 96673 9608 89216 93292 97127 25.00 981.75 97791 961.61 98200 971.27 25.00 9828 98655 71116 98918 99165 10.00 98928 98655 71116 98918 99165 10.00 99787 99116 98705 99588 99165 10.00 99785 99706 99255 99818 99555 0600 99857 99835 99958 99958 99958 99958 99958 09081 99968 99668 99958 99958 99958 99958 99958						.14592
01.00					.30094	29081
05.00 55165 51095 50059 55185 52911 06.00 61375 62923 55503 61366 61185 07.00 71303 69817 65281 71317 68226 08.00 76695 75280 70735 76734 73573 09.00 80913 79566 75139 80951 77837 10.00 81239 82972 78721 81282 81266 15.00 93251 92333 89216 93292 91063 20.00 96673 96098 93819 96701 95157 25.00 98175 97791 96161 98200 97127 30.00 98928 98655 971416 98918 99185 10.00 99787 99116 98705 99588 99165 10.00 99785 99706 99255 99588 99165 60.00 99857 99835 99588 99595 00.00 99857 99835 99588 99595 00.00 99857 99835 999588 99958 999588 00.00 99857 99835 99688 99959 99883				39632		.42202
06.00 61.375 62923 55503 61.3666 611.85 07.00 71.303 6981.7 65281 71.317 68228 08.00 7.6695 75280 70735 7.6734 7.3573 09.00 80913 7.9566 75239 80951 77831 10.00 81.239 82972 78724 81.282 81.266 15.00 93254 92393 89216 93292 93062 00.00 96673 96098 93819 96704 95157 25.00 98175 97791 96161 98200 97127 30.00 9828 98655 97146 98918 9818 10.00 97587 99116 98705 99588 99165 00.00 99785 99706 99255 99818 99556 00.00 99857 99835 99533 99879 99718					.55425	.52944
07.00 71303 698lu7 6528lu 71317 6828 08.00 76695 75280 70735 76731u 73573 09.00 80913 79566 75139 80951 77837 10.00 81239 82972 7872lu 01,262 81266 15.00 93251 92393 89246 93292 71062 20.00 96673 36098 93819 96704 95157 25.00 98175 97791 96161 98200 97127 30.00 9828 98655 97146 98905 9918 9918 10.00 99587 99106 99255 99818 9256 99818 9256 50.00 99857 99835 99533 99879 99712 99836 99837 99879 99836					.64366	.61483
08.00 .76695 .75280 .70735 .76734 .73573 09.00 .80913 .79566 .75139 .80951 .77837 10.00 .81239 .82972 .78724 .81262 .81266 15.00 .93254 .92393 .89216 .93292 .91065 20.00 .96673 .96098 .93819 .96704 .95157 25.00 .98175 .97791 .96161 .98200 .97127 30.00 .9828 .98655 .97146 .98914 .98184 .99185 10.00 .99587 .99116 .98705 .99588 .99165 50.00 .99785 .99706 .99255 .99818 .99516 60.00 .99857 .99835 .99533 .99879 .99714					.71317	.68228
09.00 80913 79566 75139 80951 77831 10.00 81239 82972 78724 81282 81266 15.00 93254 92393 89216 93292 91063 20.00 96673 96098 93819 96704 95157 25.00 98175 97791 96161 98200 97127 30.00 98928 98655 97146 98948 9818 10.00 99587 99116 98705 99588 9916 10.00 99785 99706 99255 99818 99556 60.00 99857 99835 99533 99879 99718					.76734	•73573
10.00 814239 82272 78724 814282 81265 15.00 93254 92393 89246 932292 91665 20.00 96673 96098 938149 96704 9557 25.00 98175 97791 96161 98000 97127 30.00 98928 98655 971446 98944 98185 10.00 99587 99146 98705 99588 99165 50.00 99785 99706 99255 99818 99568 60.00 99857 99835 99553 99879 99714					.80951	•7783 7
15.00						.81266
20.00 ,96673 ,96698 ,93819 ,96704 ,95157 25.00 ,98175 ,97791 ,96161 ,98200 ,97127 30.00 ,98928 ,98655 ,971446 ,98948 ,98188 10.00 ,99587 ,99146 ,98705 ,99588 ,99165 50.00 ,99785 ,99706 ,99255 ,99518 ,99556 60.00 ,99857 ,99835 ,99533 ,99879 ,97146 60.00 ,99857 ,99835 ,99533 ,99879 ,97148					93292	.91063
25.00 ,981.75 ,971.91 ,961.61 ,982.00 ,971.27 ,90.00 ,982.8 ,986.55 ,971.14 ,989.14 ,981.8 ,10.00 ,995.87 ,991.16 ,987.05 ,995.88 ,991.6 ,990.00 ,997.85 ,997.06 ,992.55 ,981.8 ,995.60 ,00 ,997.85 ,998.36 ,995.33 ,998.79 ,997.14 ,998.36 ,999.26 ,996.88 ,999.50 ,998.36 ,999.50 ,998.37 ,998.38 ,999.50 ,998.38 ,9					.96704	.95157
100 100						.97127
10.00 99587 9911.6 98705 99588 991.6 50.00 99785 99706 99255 99818 995706 60.00 99857 99835 99533 99879 997145 70.00 99810 99902 99688 99950						.98182
00.00 99785 99706 99255 99818 99556 00.00 99785 99706 99255 99818 995716 00.00 99857 99835 99533 99817 997145 00.00010 99002 99688 99950 99836						.99163
60,00 99857 99835 99533 99879 99745 70,00 99810 99902 99688 99950 99836					99818	•99556
70.00 999057 99902 99688 99950 99836						99745
						-99836
10.00 .77740	70.00					-99897
80.00 .99952 .99937 .99782 .99951 .99091	00.00	•33352	•77731	•///02	•////	, .

Table C.3.4

P₃₀(t | 12, m₂)

ţ	m ₂ = 12	m ₂ = 9	m ₂ = 6
00.02	. 98089	.91472	•75464
00.03	96093	87393	-71550
00.04	•93663	83457	67892
00.05	•90937	.79674	·64471
00.075	83433	.70901	56833
00.10	. 75683	63092	50312
00.125	68200	. 56185	713ليا.
00.15	-61226	•50096	.39882
00.175	•54855	.44736	.35692
00.20	49106	-40019	.32044
00-25	39366	•32205	.26058
00.30	.31661	-261.22	.27/122
00-40	20831	.17619	·14928
00.50	1/121	.12325	.108 36
00.60	09961	•09010	•08233
00.70	.07421	•06966	•06602
00.80	0 5950	.05773	.05634
00.90	05213	.05173	بلبلا50.
01.00	05000	•05000	.05000
01.10	-05176	•052114	.05120
01.20	05649	•05528	.05444
01.30	•06354	.06101	.05929
01.40	072114	.06821	.06542
01.50	08283	.07660	.07258
02.00	14893	.12958	.11806
03.00	30299	•25 3 36	•22490
04.00	144364	.36990	.32610
05.00	. 55803	. 46930	·41328
06.00	.6 <u>4</u> 762	•551/4	.48633
07.00	71706	.61870	.54718
	.77092	.67377	.59797
08.00 09.00	.812 92	•71905	.640 61
10.00	84593	.7 5650	.67666
15.00	93477	. 87053	•79 3 59
	.96811	.92323	. 85470
20.00	98265	•95079	.89077
25.00	98993	•96657	.91398
30.00	99595	.98254	.94132
40.00	•998 1 8	•98975	.95644
50.00	99910	•99347	.96582
60,00	•99925	99559	.97210
70.00	•99956	•99688	.97656
80.00	•7777		

Table C.3.5

ţ	P ₃₀ (t [9,9)	P30(t 9,6)	P ₃₀ (t 6,6)
00.02	.88917	•29359	.13802
00.03	.83966	-28408	.13547
00.04	• 793 63	.27497	-13299
00.05	•75077	. 2662h	.13056
00.075	•65584	-24592	12476
00.10	•57567	•22758	.11931
00.125	•50753	•21096	11/19
00.15	44928	.19 589	-10938
00.175	•39921	.18220	.10485
00.20	•35599	.16973	.10060
00.25	-28585	-11.799	.09285
00.30	•23230	.12985	.08601
00.40	15861	.10194	.07473
00.50	•11313	-08234	.06612
00.60	-08466	.06876	.05972
00.70	•06706	.05964	.05517
00.80	.05674	05394	05218
00.90	05152	.05091	.05052
01.00	•05000	.05000	-05000
01.10	.05126	•05079	.05047
01.20	05466	.05298	.05180
01.30	.05974	•05630	•05388
01.40	.06615	•06058	•05661
01.50	.07365	.06564	•05992
02.00	.12147	•09887	.08295
03.00	•23560	.181/4	.14623
04.00	•34589	•26456	.21606
05.00	217يليل	•34027	•28403
06.00	-52340	.40702	.34710
07.00	•59112	•46523	.40436
08.00	64745	•51586	-45581
09.00	•691440	•55996	•50184
10.00	73369	•59849	•54297
15.00	85626	•73271	. 69258
20.00	91462	.80961	.78234
25.00	94558	.85755	.83948
30.00	.963 45	.88941	.87773
	•98144	92781	92368
40.00	98943	94919	.94882
50.00	99354	96230	.96384
60:00	99584	97092	.97343
70,00	•997 13	.97689	•97986
80.00	•391±3	•,,,,,,	

Appendix D. Comparison of Power Functions.

The three exact power functions $P_n(\lambda, P_A, P_B)$, $P_n(\lambda, P_A, P_B, m_1)$, and $P_n(\lambda, P_A, P_B, m_1, m_2)$ are compared in this appendix. More precisely, tables are given comparing the three power functions simultaneously, with $P_n(\lambda, P_A, P_B, m_1)$ evaluated at $m_1 = nP_A$, and $P_n(\lambda, P_A, P_B, m_1, m_2)$ evaluated at $m_1 = nP_A$ and $m_2 = nP_B$. Comparisons are made for n = 10, 20, and 30, with various combinations of P_A and P_B . The first column gives the dependence parameter λ , and then values of power for the double dichotomy, 2 x 2 comparative trial, and the 2 x 2 independence trial are given in the next three columns.

In the last column values of the normal approximations (3.1.4) and (3.3.5), which are identical for the particular choices of P_A , P_B , m_1 , and m_2 in these tables, are given. This last set of figures may be used to evaluate the adequacy of either (3.1.4) as an approximation to $P_n(\lambda, P_A, P_B, m_1, m_2)$, or (3.3.5) as an approximation to $P_n(\lambda, P_A, P_B)$.

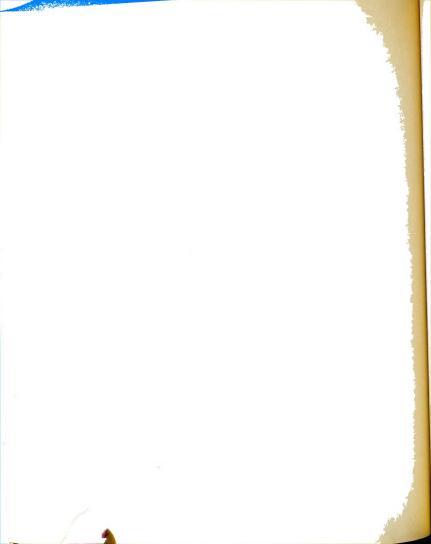


Table D.1.1

λ	I	п	m
.1 .2 .3 .4	.80466 .62018 .144.707	•93284 •78609 •61666 •45653	.80107 .64688 .49672 .36521
.5 .6 .7 .8	.30848 .20593 .13368 .08598	•32107 •21537 •13874 •08791	•25826 •17650 •11779 •07897
.9 1.0 1.1	.06888 .05000 .06888	•05923 •05000 •05923	.05706 .05000 .05706
1.2 1.3 1.4 1.5	.08598 .13368 .20 593 .30848	.08791 .13874 .21537 .32107	•07897 •11779 •17650 •25826
1.6 1.7 1.8 1.9	.62018 .80466	•45653 •61666 •78609 •93284	•36521 •49672 •64688 •80107

Table D.1.2

λ	I	II	III
.1 .2 .3 .4	.30922 .26623 .22250 .18054	.41038 .32312 .25084 .19211	•33312 •26580 •20936 •16309
.6 .7 .8	•14248 •10993 •08396 •0 6 516	.14543 .10937 .08267 .06430	•12608 •09738 •07608 •061/11
.9 1.0 1.1	•05380 •05000 •05385	•05355 •05000 •05358	•05283 •05000 •05285
1.2 1.3 1.4 1.5	•06557 •08563 •11481 •15433	.06451 .08334 .11079 .14779	.06157 .07659 .09855 .12826
1.6 1.7 1.8 1.9	.20582 .27126 .35262 .15091	•19526 •25406 •32474 •40732	.16659 .21440 .27240 .34095
2.0 2.1 2.2 2.3 2.4	.561,89 .68852 .80978 .91173	.50104 .60392 .71242 .82083 .92069	.41985 .50806 .60334 .70187 .79766

I. P₁₀(λ,.μ,.μ,μ)II. P₁₀(λ,.μ,.μ,μ)

III. P₁₀ (λ,.4,.4)



Table D.1.3

λ	I	II	III
.1	.1006 5	•12h72	.12249
•1 •2	•09263	.10891	.10650
• 2	.08469	•09509	.09277
.3 .4	.07704	-08320	-08116
•4	-01104	•00,20	•00220
.6	•06880	•07315	.07151
.6	.06346	·06491	•06372
•7	•05799	•05846	•05771
.8	•05375	•05380	•05344
.9	•05099	•05096	.05086
1.0	.05000	-05000	.05000
1.1	.05110	•05099	.05088
TeT	•0)110		•
1.2	•05462	•05403	•05356
1.3	•05814	•05924	.06097
1.4	.07056	•06677	·06472
1.5	.08387	.07677	.07344
	-101146	•08914	بليليل80.
1.6	•10146 •12390	•10497	•09790
1.7	-12390 27292	.12360	-11398
1.8	.15181 .18585	•14556	-13287
1.9	•10505	•14550	
2.0	•22662	.17111	.15474
2.1	•27464	•20053	.17974
2.2	•33022	23 409	•20802
2.3	39334	.27211	•23968
2.3	•3/354		1-0
2.4	-146350	.31488	•27478
2.5	53949	•36271	•31334
2.6	.61929	•141593	•35527
2.7	•70002	. 1471485	.40040
201	F		11015
2.8	.77802	•53979	•44847
2.9	81918	.61106	•49905
3.0	.90952	68896	. 55 1 55
3.1	95574	•77377	60521
J.I	• • • • • • • • • • • • • • • • • • • •		.65903
3.2		. 86576	.71175
3.3		-96518	.11119
200			
		TTT P (3 3 3)	
I.	P ₁₀ (λ,.3,.3,3,3,)	III. $P_{10}(\lambda,.3,.3)$	
	10		

II. P₁₀(λ,.3,.3,3)

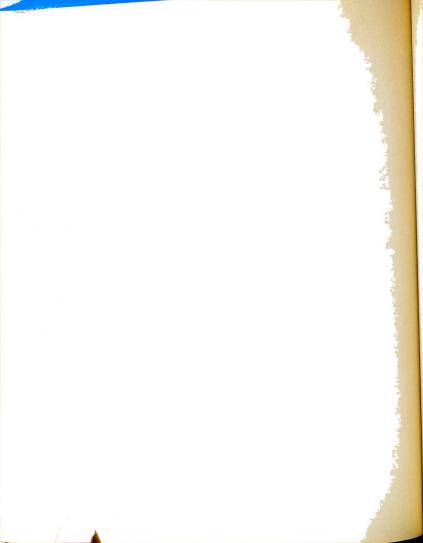


Table D.2.1

.λ	ı	. II	ш
.1	1.00000	•99917	•99776
.1 .2 .3	•99088	- 98260	.97491
.3	•93853	91642	89875
•11	-81232	•78338	•75844
.6 .7 .8	. 62599	•60202	•57672
.6	•42593	.41219	•39250
•7	•25595	.25044	.23853
.8	.13729	.13584	•13056
•9	•07101	•07072	.06943
1.0	•05000	•05000	.05000
1.1	.07101	.07072	.06943
1.2	.13729	.13584	-13056
1.3	25595	•25044	-23853
1.3	-42593	.41219	.39250
1.5	.62599	.60202	.57672
1.6	.81232	•78338	·75844
1.7	93853	91642	89875
1.8	99088	98260	97491
1.9	1.00000	•99917	•99776
		TT P (3 5 5	

III. P₂₀(λ,.5,.5)

Π. P₂₀(λ,.5,.5,10)

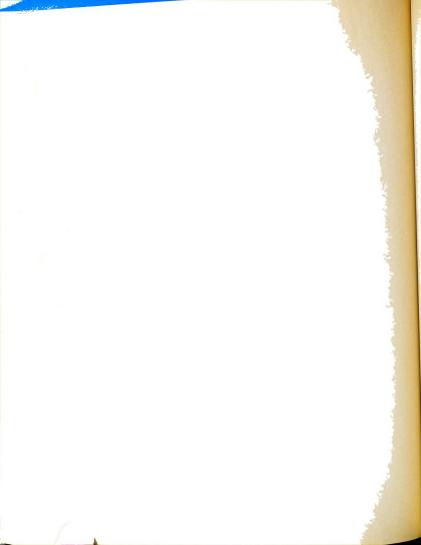


Table D.2.2

λ	I	п	, m
.1	.83067	•79297	•75763
.2	.66586	•65873	•62362
.3	.511,90	•52151	•19071
	•38373	•39360	•36927
.5	.27520	.28330	.26593
.6	.18980	.19476	.18367
.7	.12640	.12877	.12265
.8	.08316	.08400	.08134
.9	•05816	•05833	•05768
1.0	•05000	•05000	•05000
1.1	•05816	•05833	•05768
1.2	.08316	.08400	•08134
1.3	.12640	.12877	•12265
1.4	.18980	.19476	•18367
1.5	.27520	.28330	•26593
1.6	•38373	.39360	•36927
1.7	•511490	.52151	•49071
1.8	•66586	.65873	•62362
1.9	•83067	.79297	•75763
I. P ₂₀ (λ,.3	,.5,6,10)	III. P ₂₀ (λ,.3,.5)	

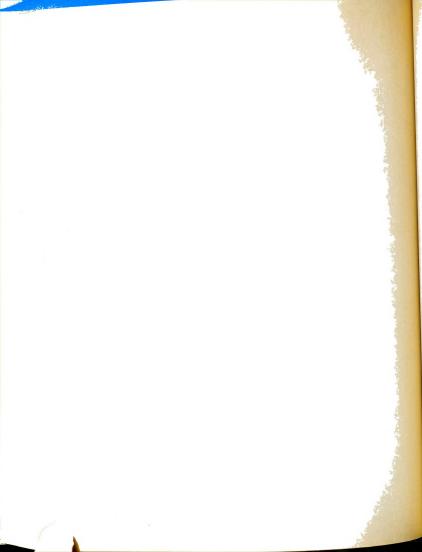


Table D.2.3

λ	1	п	ш
-1	.84901	85130	80606
2	69467	71252	66881
•3	54656	-56531	52824
.1 .2 .3 .4	الباعتباء	.42576	•39746
.5 .6 .7	•29767	•30471	-28514
.6	.20510	. 20 7 59	.19544
•7	.13528	.13547	.12893
.B	•08721	•08678	•06400
•9	•05922	.05899	.05832
1.0	•05000	•05000	•05000
1.1	•05941	•05895	.05829
1.2	.08871	08639	.08374
1.3	•1402h	•13385	.12781
1.4	.21618	•20284	.19200
1.3 1.4 1.5	•31681	•29357	.27674
1.6	.43861	.40357	.38016
1.7	57300	•52681	-49724
1.8	. 70664	•65 3 68	.61969
1.9	.82416	.77215	•73686
2.0	-91273	.870hl	.83781
2.1	96712	94025	.91418
2.2	99200	.98018	.96293
2.3	99912	•99638	98758
2.4		•99984	•99666
I. P ₂₀ (λ,.4	(8,8,4,8)	111. P ₂₀ (λ,.4,.4)	

Π. P₂₀(λ,.4,.4,8)

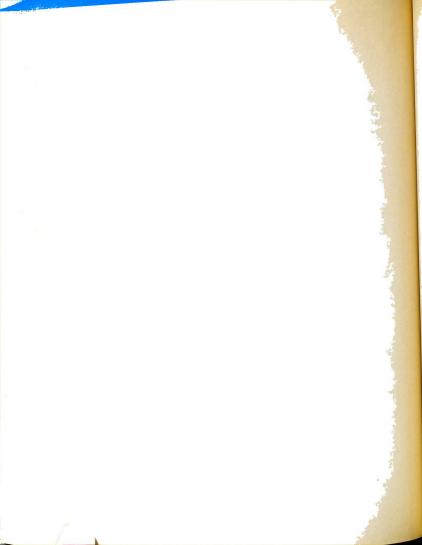


Table D.2.4

λ	I	n	III
.1 .2 .3	.80315 .62577 .47265 .34589	•61344 •18458 •37202 •27780	.56085 .141407 .321430 .25710
.5 .6 .7	•24525 •16882 •11384 •07732	•20207 •11;371 •10099 •07208	.18851 .13552 .09663 .07023
1.0 1.1	.05664 .05000 .05653	•05543 •05000 •05541	.05498 .05000 .05498
1.2 1.3 1.4 1.5	.07632 .11022 .15936 .22466	.07193 .10024 .114124 .19565	.07017 .09625 .13408 .18440
1.6 1.7 1.8 1.9	.30608 .40205 .50891 .62080	•23180 • 1360 0 •37172 •36162	•24748 •32280 •40870 •50226
2.0 2.1 2.2 2.3 2.4	.7300l .82809 .9071l .96199 .99167	.63602 •73382 •82200 •89501 •94895	.59932 .69479 .78313 .85918 .91905
I.	P ₂₀ () ,.3,.4,6,8)	III. P ₂₀ (λ,.3,.h)	
II.	P ₂₀ (λ,.3,.4, 6)		



Table D.2.5

λ	I.	п	1 11
.1 .2 .3 .4 .5 .6 .7 .8	•30596 •25407	•36726	•34262
2	•25407	.28980	.27224
•3	•20728	•22617	.21375
•4	.16616	•17471	.16609
•5	.13106	•13380	.12811
.6	-10216	.10231	.09868
-7	•07953	•07886	.07683
.8	•06324	•06267	.06176
-9	•05344	•05315	-05292
1.0	•05000	•05000	.05000 .05293
1.1	05344	•05317	.05293
1.2	06398	06284	06186
1.3	-08199	•07933	.07708
111	10783	.10305	.09897
1.4 1.5 1.6 1.7 1.8	111177	13442	12791
1.6	18391	•17374	.16420
7.7	23409	-22113	.20792
7.8	29184	.27642	.25892
1.9	35631	•33903	.31666
2.0	•35631 •42627	40796	.38024
	50011	48174	. 144830
2.1	5758 9	-55841	-51967
2.2	6571/2	63559	•59067
2.3	.65142 .72434	.63559 .71063	. 66072
2.14 2.5 2.6 2.7	79224	.78076	.72700
2.5	85276	.84336	.78745
2.0	90383	89618	.84038
2.7	. 94385	93774	.88469
2.8	.97210	96754	91998
2.9	•98916	98630	94663
3.0		99595	.96577
3.1	•99722	•99943	97910
3.2		1.00000	98864
3.3		1.00000	•,,,,,,,

I. P₂₀(λ,.3,.3,6,6)

III. P₂₀(λ,.3,.3)

Π. Ρ20 (λ,.3,.3,6)

Table D.3.1

λ	I	II	III	IV
.1 .2 .3	1.00000 .99929 .99130 .94201	1.00000 •99928 •98788 •93215	•99999 •99889 •98485 •92299	1.00000 .99997 .99501 .94695
.5 .6 .7	.80937 .59762 .36830 .20028	•79571 •58686 •36323 •18612	•78054 •57085 •35181 •18073	.80522 .58527 .35677 .18049
.9 1.0 1.1	•08983 •05000 •08983	•08263 •05000 •08263	.08131 .05000 .08131	.07832 .05000 .07832
1.2 1.3 1.4 1.5	•20028 •36830 •59762 •80937	.18612 .36323 .58686 .79571	•18073 •35181 •57085 •78054	.18049 .35677 .58527 .80522
1.6 1.7 1.8 1.9	.94201 .99130 .99929 1.00000	.93215 .98788 .99928 1.00000	•92299 •98485 •99889 •9999 9	.94695 .99501 .99997 1.00000
ı.	P ₃₀ (\(\lambda\),.5,.5,15,15)	III.	P ₃₀ (),. 5,.5)	
	P. (2,.5,.5,15)	IV.	Normal Approximati	.on

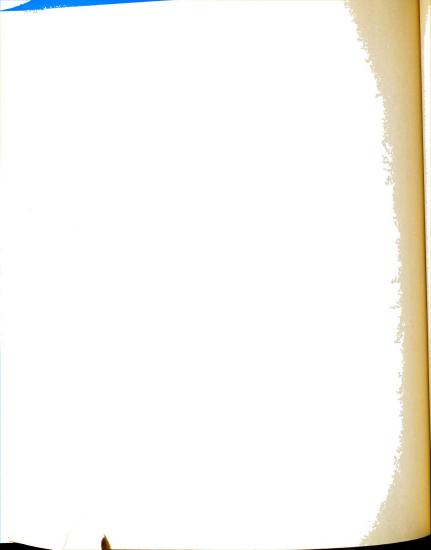


Table D.3.2

λ	I	п	ш
.1	•99834	•99717	99565
.2	•98146	•97587	96969
.3	•92423	•90988	89698
.4	•80775	•78372	•76575
•5	.63796	.60946	.59101
•6	.144675	.42173	.40716
•7	.27391	.25754	.24866
•8	.14682	.13925	.13532
.9	•07343	.07156	.07061
1.0	•05000	.05000	.05000
1.1	•07343	.07156	.07061
1.2	•14682	•13925	.13532
1.3	•27391	•25754	.24866
1.4	•44675	•42173	.40716
1.5	•63796	•60946	.59101
1.6	.80775	.78372	•765 7 2
1.7	.92423	.90988	•89698
1.8	.98146	.97587	•96969
1.9	.99834	.99717	•99565

I. P₃₀(λ,.4,.5,12,15)

III. P₃₀(λ,.4,.5)

Π. P₃₀(λ,.4,.5,15)

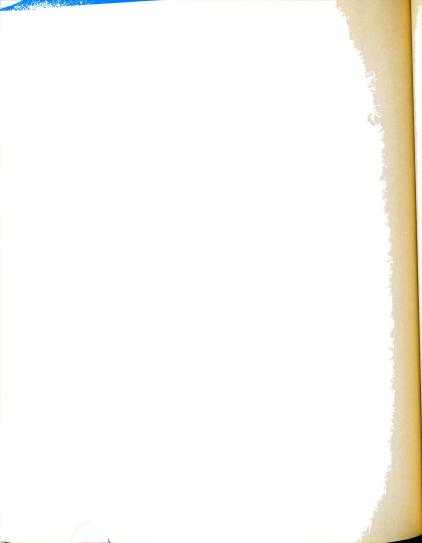


Table D.3.3

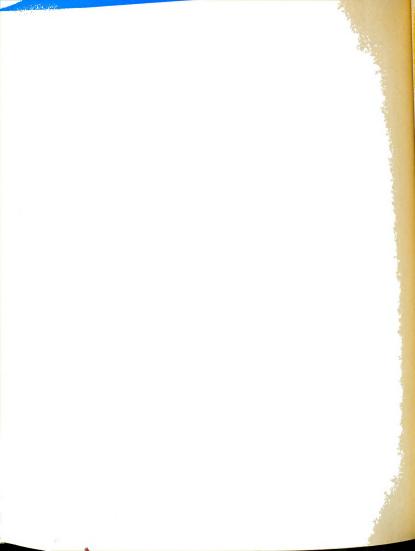
λ	I	п	III	TV
		11	111	IV
.1 .2 .3	•97462	•96884	•95914	.99584
.2	.89547	.89000	.87368	•92299
•3	.76891	•76312	•74398	
•4	.61317	.60586	.58794	•59429
.6 .7 .8	.45190	•44364	•42955	
.6	•30659	29912	.28966	.28187
7	.19122	-18596	.18063	******
.8	וסנוני	.10832	.10598	.10049
•9	.06493	.06419	•06359	
1.0	.05000	•05000	.05000	•05000
1.1	•06509	.06417	.06353	
1.2	.11224	.10799	.10542	.12797
1.3	.19578	.18415	.17818	
1.4	•31299	-29309	-28245	-29294
1.5	•45941	•42922	•41343	
1.6	.61705	•57914	•55911	•58387
1.7	.76298	.72366	.70185	
1.8	.87673	. 84365	.82343	.85915
1.9	.94896	.92723	•91155	
2.0	•98453	.97407	•96420	.98542
2.1	•99706	•99382	•98895	
2.2	•99953	.99940	.99751	•99995
2.3	1.00000	1.00000	•99952	
2.4	1.00000	1.00000	,99983	1.00000
I. I	² 30(λ,.4,.4,12,12)	III.	P ₃₀ (λ,.4,.4)	

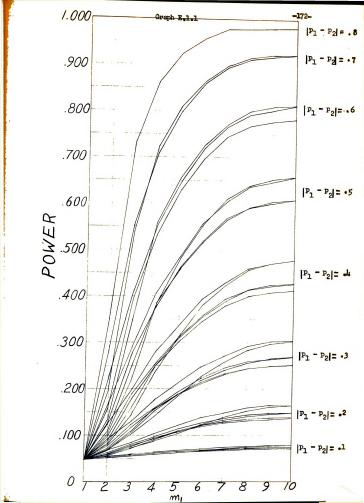
IV. Normal Approximation

II. $P_{30}(\lambda,.4,.4,12)$

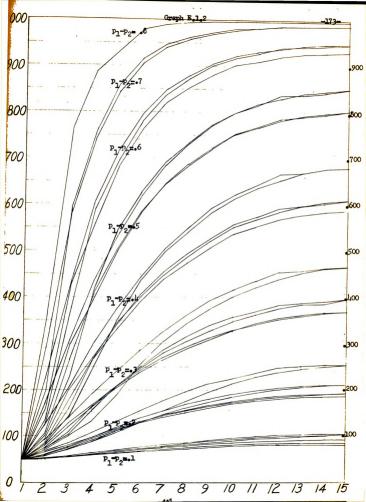
Table D.3.4

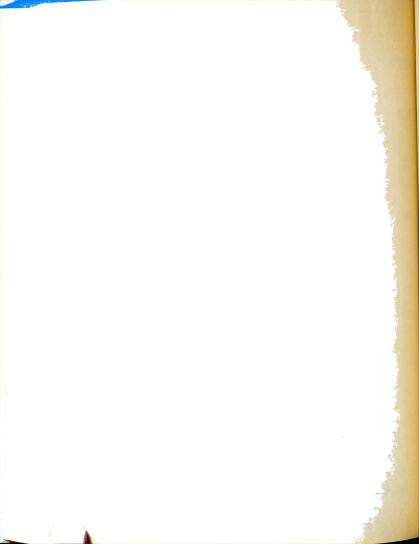
λ	I	п	пі
.1	•77941	•64201	.60156
•2	•47297	.501 26	.47297
•3	. 43930	•38103	.36179
•3 •4	-31821	•28227	•26957
.6	-22500	•20409	•19602
•6	.1 5572	.1 14454	.13972
.7 .8	•10655	.10131	.09872
•8	.07412	•07220	.07107
.9	•05585	•05545	•05517
1.0	•05000	•05000	.05000
1.1	•05568	•05542	•05514
1.2	•07272	•07188	•07078
1.3	•101/10	•09990	•09 73 8
1.4	14219	•11,006	•13558 •18561
1.5	.19536	.1 9266	•10501
1.6	•2 6 067	•25738	.24721
1.7	•33705	•33302	•21926
1.8	-42238	.41736	•39967
1.9	•51346	•50716	•48544
2.0	•60619	·598 3 8	•57286
2.1	•69589	.68660	.65791
2.2	•77793	.76751	•73672
2.3	.84833	.83751	.80609
2.4	•90450	.89424	.86392
2.5	-94558	•9 3 685	•90936
2.6	97269	.96613	94289
2.7	•9883h	·98416	.96602
2.8	99605	•99383	.98086
2.9		•99814	•98973
3.0		•99962	•99467
3.1		•999 97	•99727
3.2		1.00000	.99862
3.3		1.00000	•99 93 6
ر•ر			
ı.	P30(A,.3,.3,9,9)	III. P ₃₀ (λ,.3,.3)	
		5 *	
\mathbf{II}_{\bullet}	P ₃₀ (λ,.3,.3,9)		

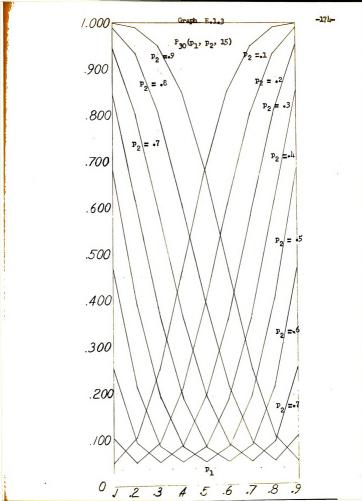



Appendix E. Approximations to Power in the 2 x 2 Comparative Trial.

We discussed the power for the test of independence in the 2 x 2 comparative Trial in section 3.2, and gave tables of exact power in Appendix B, and in Appendix D. In E.1 of this appendix, three graphs are given, two of which illustrate how the power changes as m_1 varies from 0 to $\frac{m}{2}$, and the third graph contains some power curves for m_1 = 15 and n = 30. We fix p_2 and then plot $P_{30}(p_1,p_2,15)$ as a function of p_1 . This is done for p_2 = .1, .2, .3, ..., .9.

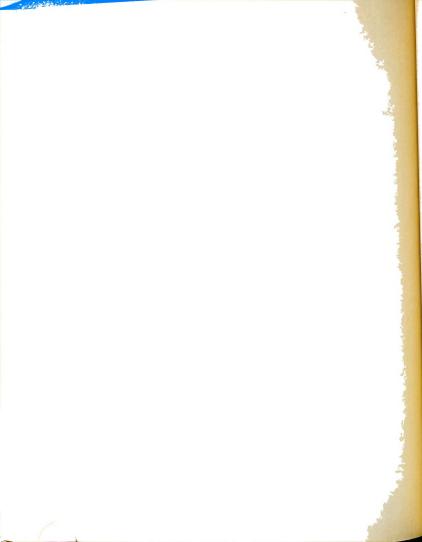

In E.2, Sillitto's approximation, given by (3.2.6) and Patnaik's 2nd approximation, given by (1.7.18), are compared with the exact values of power in the 2 x 2 comparative trial, for the two special cases m_1 = 10, n = 20, and m_1 = 15, n = 30. These values occur in groups of four for each p_1, p_2 combination, with the top number being the exact one, the second and third are obtained from Sillitto's and Patnaik's approximations respectively, and the fourth number is $P_n(t \mid m_1, \forall)$, $\forall m_1 p_1 + (n-m_1)p_2$, and


 $t = \frac{p_1 q_2}{p_2 q_1} . \text{ Not all } P_n(t \mid m_1, \gamma) \text{ values are given for each } p_1, p_2 \text{ combination.}$

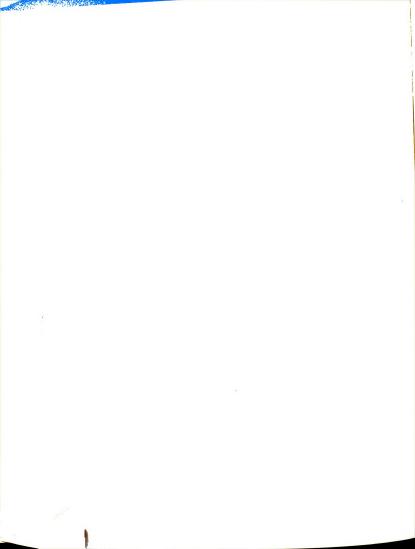


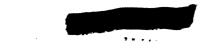
 $\label{eq:table E_2.1}$ Comparisons of Power in the 2 x 2 Comparative Trial

p ₂	.1	•2	•3	- lı	•5	.6	•7	•8	.9
.1	.0500 .0500 .0500	.0783 .0973 .0977	.1614 .2109 .2273	.3036 .3683 .4114	.14773 .51452 .61143 .14688	.6569 .7137 .7930	.8124 .8493 .9148	.9 231 .9 39 7 .9785	•9826 •9856 •9983 •9909
•2		.0500 .0500 .0500	.0749 .0813 .0820	.1483 .1671 .1717	.2684 .3015 .3162	.14275 .14722 .5018 .143146	.6078 .6550 .6999	.7834 .8206 .8703 .8123	.9231 .9397 .9785
•3			.0500 .0500 .0500	.0722 .0756 .0761	.1389 .1512 .1535	.2524 .2780 .2860	.4122 .4525 .4736 .4259	.6078 .6550 .6999	.8124 .8493 .9148
• 1 † ·				.0500 .0500 .0500	.0709 .0736 .0741	.1358 .1468 .1482 .1373	.2524 .2780 .2860	.4275 .4722 .5018 .4346	.6569 .7137 .7930
•5					.0500 .0500 .0500	.0709 .0736 .0741	.1389 .1512 .1535	.2684 .3015 .3162	.4773 .5452 .6143 .4688
.6						.0500 .0500 .0500	.0722 .0756 .0761	.1483 .1671 .1717	.3036 .3683 .4114
•7	First No.: P ₂₀ (p ₁ ,p ₂ ,10) Second No.: Sillitto's Approx. Third No.: Fatnaik's Approx.						.0500 .0500 .0500	.0749 .0813 .0820	.1644 .2109 .2273
.8		Fourth No.: P ₂₀ (t 10, 8')						.0500 .0500 .0500	.0783 .0973 .0997
.9									.0500 .0500 .0500


 $\label{eq:comparison} Table \ E_\bullet 2_\bullet 2$ Comparisons of Power in the 2 x 2 Comparative Trial

P ₂ P ₁	.1	•2	•3	•4	•5	•6	·•7	.8	•9
.1	.0500 .0500 .0500	.1040 .1216 .1245	.2535 .29 27 .3163	•4646 •5117 •5663	.6820 .7193 .7872 .6773		.9560	.9905	•9993 •9991 1.0000 •9993
•2		.0500 .0500 .0500	.0916 .0974 .0982	.2110 .2279 .2339	•3954 •14220 •1441	.6095 .6387 .6715 .6380	.8020 .8240 .8598	.9322 .9414 .9668 .9420	.9898 .9905 .9982
3			.0500 .0500 .0500	.0856 .0888 .0892	.1920 .2036 .2069 .2037	•3667 •3897 •4006	.5869 .6161 .6345 .5976	.8020 .8240 .8598	•9500 •9560 •9828 •9595
•Ħ				.0500 .0500 .0500	.0830 .0855 .0862	.1861 .1968 .1993 .2003	.3667 .3896 .4006	.6095 .6387 .6715 .6380	.8516 .8714 .9251
.5					.0500 .0500 .0500	.0830 .0855 .0862	.1920 .2036 .2069 .2037	.3954 .4220 .4411	.6820 .7193 .7872 .6773
.6						.0500 .0500 .0500	.0856 .0888 .0892	.2110 .2279 .2339	.4646 .5117 .5663
7 S	First No econd No nird No.	: Patn	aik's A	Approx.			.0500 .0500 .0500	.0916 .0974 .0982	.2535 .2927 .3163
For	urth No.	.: P ₃₀ (t	15,8	1)				.0500 .0500 .0500	.1040 .1216 .1245
									.0500 .0500 .0500




BIRLIOGRAPHY

- Armsen, P., "A new form of table for significance tests in a 2 x 2 Contingency Table," <u>Biometrika</u>, Vol. 42 (1955). pp. 494-511.
- 2. Barnard, G. A., "Statistical inference," <u>Journal Royal</u>
 <u>Statistical Society</u>, Vol. 11 (1949), Series B, pp. 115-139.
- Barnard, G. A., "Significance tests for 2 x 2 tables," <u>Biometrika</u>, Vol. 34 (1947), pp. 123-138.
- 4. Cochran, W. G., "The χ^c -test of goodness of fit," Annals Mathematical Statistics, Vol. 23 (1952), pp. 315-345.
- Feller, W., "An Introduction to Probability Theory, and <u>Its Applications</u>," and edition, John Wiley and Sons, New York, 1957.
- Finney, D. J., "The Fisher-Yates test of significance in 2 x 2 contingency tables," <u>Biometrika</u>, Vol. 35, (1948), pp. 145-156.
- 7. Fisher, R. A., "Statistical Methods for Research Workers," 2nd edition, Oliver and Boyd Ltd., Edingurgh, 1934.
- Fisher, R. A., "The logic of inductive inference," <u>Journal Royal Statistical Society</u>, Vol. 98 (1935), pp. 39-54.
- Katz, Leo, "The test of the hypothesis of no association in the four-fold table in light of the Neyman-Pearson Theory," <u>Unpublished memorandum</u>, Michigan State University, 1942.
- Latscha, R., "Tests of Significance in 2 x 2 tables: extension of Finney's Table," <u>Biometrika</u>, Vol. 40 (1953), pp. 74-86.
- Lehmann, E. L., "Significance level and power," <u>Annals of Mathematical Statistics</u>, Vol. 29 (1958), pp. 1167-1176.
- 12. Loeve, M., "Probability Theory," D. Van Nostrand Co., Inc., 1950.
- Moore, P. G., "A test for randomness in a sequence of two alternatives involving a 2 x 2 table," <u>Biometrika</u>, Vol.36 (1949), pp. 305-316.
- 14. Patnaik, P. B., "The power function of the test for the difference between two proportions in a 2 x 2 table," <u>Blometrika</u>, Vol. 35, (1949), pp. 157-175.

- 15. Patnaik, P. B., "The Non-Central χ^2 and F-distirbutions and their applications," Biometrika, Vol. 36 (1949), pp. 202-232.
- Pearson, E. S., "The choice of statistical tests illustrated on the interpretation of data classed in a 2 x 2 table," <u>Blometrika</u>, Vol. 34 (1947, pp. 139-167.
- 17. Pearson, K., "On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling," <u>Philosophical Magazine Series</u> 5, Vol. 50 (1900), pp. 157-172.
- 18. Riordan, J., "An <u>Introduction to Combinatorial Analysis</u>," John Wiley and Sons, Inc., New York, 1958.
- Rokhar, A. E., "The effect of hypergeometric probability distribution on the design of sampling plans for small lot sizes," <u>Master's Thesis Lehigh University</u>, 1958.
- 20. Sekar, C. C., Agarwala, S. P., and Chakraborty, P. N., "On the power function of a test of significance for the difference between two proportions," <u>Sankhya</u>, Vol. 15, (1955), pp. 381-390.
- Sillitto, G. P., "Note on approximation to the power function of the 2 x 2 comparative trial," <u>Biometrika</u>, Vol. 36, (1949), pp. 347-352.
- Snow, C., "Hypergeometric and Legendre Functions with Applications to Integral Equations of Potential Theory," National Bureau of Standards Applied Mathematics Series 19, 1952.
- Steck, G. P., "Limit Theorems for Conditional Distributions," (1957), <u>University of California Publications in Statistics</u>, Vol. 2, No. 12, pp. 237-284.
- 24. Sverdrup, E., "Similarity, unbiasedness, minimaxibility and admissibility of statistical test procedures," <u>Skandinavisk Actuarietidskrift</u>, Vol. 36 (1953), pp.64-86.
- Tocher, K. D., "Extension of the Neyman Pearson Theory of tests to discontinuous nariates," <u>Biometrika</u>, Vol. 37 (1950), pp. 130-144.
- 26. Yates, F., "Contingency tables involving small numbers and the X²-test," <u>Supplement</u>, <u>Journal</u> <u>Royal</u> <u>Statistical</u> <u>Society</u>, Vol. 1 (1934), pp. 217-235.

MICHIGAN STATE UNIV. LIBRARIES
31293011037169