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{I in each of the three cases is given in Chapter 3. In this

  

  
   William‘Léonard’Harkness

This thesis is concerned with an examination of the

power function for the test of independence in 2 x 2

contingency tables. Three distinct types of experiments }i_'i

leading to the presentation of data in the form of a 2 x 2 2;

table have been delineated, and several tests for independ- 'ifz ' J

ence for each have been proposed, but not much is known PI‘ ‘ a

about the power functions of these tests. if}; ‘é

In Chapter I, which is a systematic review of previous ";;‘

work in 2 x 2 tables, the uniformly most powerful unbiased Sir

test for independence is discussed quite thoroughly. All the

results and computations in this thesis are based on this

test. The content of Chapter 2 is a study of the probability

»“ n

; function k(ml,m2,n;t) h(nl [ml,m2,n) t l, 0 < t < 00, where

1 h(n1I m1,m2,n) is the ordinary hypergeometric function, and

' n

k(m1,m2,n;t) is the reciprocal of the sum of h(nl Im1,m2,n)t 1

over all possible values of n1; some asymptotic properties are

1 included in this study.

The exact power function for the test of independence

ilchapter, the three power functions are related to one another,y :9

'Fvand asymptotic power is investigated. The asymptotic power

r 2

function for the i!' -test 0f independence is giVen here.

 _;_ a ”a, l. «ac-h



 



 

in Chapter 3 are compared with the exact power. Ratherextensive tables of exact power for each of the three casesare in the appendices. These exact computations provide the

  



 

 



  

Chapter 1. Analytical Review of Previous Wbrk

subject. Since that time, many other writers have devotedthemselves to the same problem.

is moderately large, and consequently, for this case, theproblem can be said to be solved for all practical purposes.- The problem of testing for independence in small samples,however, has led to considerable controversy. Several testshave been proposed, but basic disagreement remains. This ispartially due to the fact that there are

experimental situations which lead to the presentation ofdata in the form of 2 x 2 contingency tables. Abstractly,these three experiments may be described in the following
manner:

I. A total of n similar balls, m1 marked A1 and n - m
are placed in an urn,

1 marked A2,

then withdrawn randomly in order. Theyare then placed in order in a row of n cells, of which m2

1, n - m2 labeled B2. The result of the

have been labeled B





   

  experiment is presented in Table I, where n1 is the observed
number of balls marked A1 in receptables labe
sets of marginal totals are fixed.

TABLE I

 

II. From two urns, A1 and A2, each containing a large numberof balls marked B1 and B2 samples of :1:1

It is observed that m

are labeled B

and n - m1 are taken.

2 of the balls are labeled B1, and n - m2
. It is assumed that the proportion

2

of ballsmarked
B in urn1

A1 is pi, i = 1,2. With this type ofexperiment, one set of marginal totals is fixed in Table I,namely, m1 and n - m1. Table II gives the relevant probabil-ities of occurrence of the balls with specified markings.

TABLE II

 

 
I 311 B2

A1 [pill‘pl

‘2 [92’1‘3’2

III. A total of n similar balls is randomly selected froman urn containing a large number of balls
A

, each ball labeled1 or A2 and also labeled B1 or B2. An observed result of theexperiment is represented in the form of Table I, where none



 

 



   

Following G. A. Barnard' s [3] nomenclature, we will call

e trial"

, and III the double dicho

I the 2 x 2 "independenc
, II the 2 x 2 "comparativetrial"

tomy.

1.2. Probability Models.

Let us now consider the appropriate probability modelfor each of the three experiments described above. It willbe seen that these probability models haVe a natural
"hierarchical order" in that the probability model for the2 x 2 independence trial and the 2 x 2 comparative trial areobtained as conditional probabilities of the probabilitydistribution in the double dichotomy. Considering first, then,the double dichotomy, the probability of observing the samplepoint (n1, n2, n , nu) is, by the multinomial probability law,

(1.2.1) Pr { n3
n1 n2 n3 112+“1’ “2' “3' nu} = n1":"n'2:"‘n3'Thp. "1 ”2 ”3 "n





 

If we replace #1 by A PAPB’
773 by PA(1- APB)

1r2 by PB(l-7\PA) 173+ by 1~PA- PB+ 7xPAPB

\

P
4' P

- 1i ' where max [-0, -AL--§--w] < K < min [jl— , if]
P P

PA ,

_ AB

PB
and replace n2 by (zn‘2 - n1), n3 by (ml-n1)

d
_ -an n1+ by “1 n‘1 “‘2”?

then (1.2.1) may be rewritten as

(1.2.2) Pr {nymlnm2 In, A}'

PB(1- 7. P )

E
= b(m13n,PA)b(n1 “111, l PB)b m2- l;n-ml,\L

l-PA

where b(x;n,p) is the usual binomial probability.
Thus, (1.2.2) gives the probability of the sample point(n1,m1,m2), given 11 , A , PA’PB° Computing the conditionalprobability of (n1,m2), given ml,n', X ,

(1.2.3) Pr {n1,m2l ml,n, 7x}

A’ and PB, one obtains

= b(n1;m , l PB)°b m2-n1; n-ml , l _ PA

Letting p1 = R PB

p _ PB(1 - APA) ’
c. s
“
.

2 1 PA

(1.2.3) yields the probability model for the 2 x 2 comparative
trial.

When the 2 x 2 comparativa trial is discussed without

 





 

reference to the double dichotomy,

will be used to denote t

Pr {nvmz ' m1,n, A} .

Pr {n1,m2 'P19P29m11n}

he probability function rather than

Summing (1.2.3) over all possibl
marginal probability for m2 as

(1.2.11) Pr{m2 [1111,11, R}

I

e values of nl gives the

n1

P (l-ZP )

= z b(n13ml,?\PB ) bé2- 13n-m1’M> .

l-PA

Prém2 [m1,n, 7x} is seen to be the convolution of twobinomial distributions. Hence, from (1.2.3) and (1.2.10, weobtain the conditional probability

.
Pr n ,m2l ,n, A

(1.2. 5) Pr {n1 'm1,m2,n, 7t} =
1

m1
}

Pr {m2 1 ml,n,>‘\}

(:1) (n ‘ m1) tnl

1 m2'ni

= )1?) (n :2) t3
m2

M1 - PA - PB + A PAPB) _ plqg
where

t =

‘- ‘~(1 - XPA)(1 - x PB)
p2‘31

Q131-pi,i=1,20

0<t<oo

  





 

 

It is thus natural to take (1.2.5) as the appropriate

probability model for the 2 x 2 independence trial. Note

that if t = 1, (1.2.5) will become

(1.2.6) Pr-{nl lml,m2,n:} = (:3) (:é : 2:) + (:é) .

The distribution (1.2.5) is not new (see E. Sverdrup

[2n], E. Lehmann [11] and L. Katz [9]).However, no systematic

study of its properties has been carried out. Because of its

importance in investigating the power of the test of

independence in 2 x 2 contingency tables, Chapter 2 has been

devoted to a study of this distribution.

n -m n

(z?) (m ~n1) t 1
l 2 1

2(2) (22313:)

was obtained here conditionally, but as a probability

The probability function 

function it need not be regarded as depending on quantities

3» PA’ PB , and when it is desired to indicate that it

does not, the notation Pr{nl |m1,m2,n;t} will be used.

Section 1.3. Statement of Hypotheses, and the Problem of

Testing for Independence.

In each of the three experimental situations described

in 1.1, statisticians are interested in carrying out a test

of a statistical hypothesis. More specifically, they are

interested in testing for independence. For the double





 

 

dichotomy, the hypothesis of independence takes the form

Ho: Ni = PAPB ,

while for the 2 x 2 comparative trial, one has

he: p1 = p2.

In the 2‘x 2 independence trial, the null hypothesis is that

the markings A1 or A2 are independent of the labelings B1 or

B2. If the hypothesis is correct, the distribution of 111

(i.e. the number marked A1 and B1) given m1 and m2, is the

hypergeometric distribution (1.2.6), corresponding to t = 1.

Since v1 = PAPB(:==>7\ = 1. p1 = Pg<=>x = 1, and t = 1<==>A = 1,

we may specify independence by Ho: A = 1, for each case.

If A = 1, (1.2.2) and (1.2.3) reduce to

(1.3.1) Pr<{nl,m1,m2 ln}

= b(m1;n,PA) b(m2;n,PB) h(n1 lm1,m2,n)

where h(n1 [m1,m2,n) is the hypergeometric probability

function.

(1.3.2) Pr {n1,m2 lml,n}

= b(m2;n,pB) h(nl (m1,m2,n)

and the conditional distribution of n1, given ml,m2,P ,

PB, and -R = 1, given by (1.2.6), holds for all three cases.

Any alternative hypothesis may be expressed as

H1: 72% 1,

for any of the three cases, so that H1 is composite.





 
 

 

In terms of 71, H0 is simple. The nuisance parameters

PA and PB make it composite.

Ideally, one would hope to find a uniformly most

powerful test for the class of alternative hypotheses. The

case for one-tailed tests has been disposed of for all

practical purposes by Tocher [25], Sverdrup [2k], and

Katz [9]. They showed that the same test procedure should

be used in each of the three situations, and that the test,

which is a slight modification of Fisher's classic test, is

most powerful, in the sense of Neyman and Pearson. This test

procedure will be completely described in Section 1.5.

For two-tailed tests, no uniformly most powerful test

exists. Several tests have been proposed, for each of the

three cases, with disagreements as to the appropriate one.

The main point about which the controversy hinges is whether

the marginal totals are intrinsic or nuisance parameters.

One school of thought, led by Fisher, maintains that the

marginal totals per se furnish no relevant information as to

the probabilities of the observed frequencies, and hence are

nuisance parameters. Hence, Fisher would advocate a conditional

test, given the marginal totals, so that each of the three

cases would be handled in a similar way.

Another view is taken by E. 8. Pearson [16], among others,

who believes Fit is an artificial procedure to restrict the

experimental probability set to a linear set," as Fisher does.

Bernard [3], l9h7, page 136, expressed the opinion that

”significance tests for the 2 x 2 independence trial will not

_‘i‘
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necessarily be appropriate for the 2 x 2 comparative trial,"

as well as the double dichotomy. He constructed an alternative

test for the 2 x 2 comparative trial claiming this test had

greater power than Fisher's "exact" test. However, Barnard [2],

in l9h9, wrote

"On the 2 x 2 table I arrived at a test, the

CSM test, which seemed to be considerably more

powerful than the "exact" test of Professor R. A. Fisher,

by taking as a reference set a class of results

different from that considered by Professor Fisher.

This led to some controversy with Professor Fisher,

in which he maintained that the Neyman-Pearson

notion, that the reference set involved in a test

of significance consists of the set of all results

which could have arisen in the given circumstances,

was ill-conceived. In private correspondence follow—

ing on this controversy, Professor Fisher drew my

attention to a particular case where there did seem

to be some difficulty in using the Neyman—Pearson

approach. I discussed this case in another paper

(Barnard, 19%7b), in which I attempted to show how

the Neyman-Pearson approach could be extended to

cover such a case. However, I was not myself satisfied

with the position, and further meditation has led me

to think that Professor Fisher was right after all."

When uniformly most powerful tests do not exist, various

procedures are available. A very commonly used technique is
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to restrict the class of possible tests to a smaller class

of tests, with the hope of finding in this smaller class of

tests one which is uniformly most powerful. For example, one

might require that the test be a "similar" test, or that it

be “unbiased", or that it be an "invariant" test. There are

circumstances in which making such restrictions would be

quite reasonable, and then again, some statisticians might

feel there is good reason why such tests should not be made.

In restricting ourselves to a similar test of size o< we are

requiring that the test make incorrect decisions at not more

than the full allowable rate for all hypotheses under Ho. The

principle of unbiasedness seems to be a very reasonable one -

requiring that a test should accept the alternative H1 more

frequently when to accept is the correct decision than when

it is incorrect.

In the two—tailed tests which have been proposed for

the test of independence, generally the class of tests has

not been restricted, and more or less "subjective" criteria

have been used to judge the efficacy of the test. Clearly,

the merits of a test should be judged from its power function,

and not by intricate intuitive processes.

l.h Order of Presentation

While many people have written on 2 x 2 contingency

tables, for the most part they have considered the three

distinct types of experiments as separate problems, except

for large sample sizes, where the :(.2 test becomes applicable

in all three situations. As a result, there is an abundance
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of papers on the subject, but no very unified treatment of

the whole area. Thus, as a preliminary, in the remainder of

Chapter I a comprehensive and systematic survey of past work

is included. This survey reveals that there are still some

unsolved problems left. It shows that whereas many tests for

independence have been proposed, very little has been done

on the power function. This is particularly true for the

2 x 2 independence trial and the double dichotomy. Our main

concern, therefore, is an examination of the power function

for the test of independence.

In section 1.5 of this chapter, the test on which we

will be basing computations of power for all three cases is

described. This test is the uniformly most powerful unbiased

test, first proposed by Katz in l9h2, and discussed in some

detail by Sverdrup in 1953, and Tocher in 1950. Sections 1.6

and 1.7 and 1.8 are devoted specifically to past treatment

of the 2 x 2 independence trial, 2 x 2 comparative trial and

the double dichotomy.

In order to evaluate power for the above mentioned

unbiased test of independence, some preperties of the

conditional distribution given by(l.2.5)are described in

Chapter 2, including moments, asymptotic distributions, and

several approximations. It will be shown in section 2.2

that the asymptotic distribution of(l.2.5)is normal, and this

result will be the foundation and key tool in the study of

the power function for the test of independence. The

derivation of the asymptotic distribution is patterned after

i. , ___ A A 77 fl ’ _I‘i
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Feller's normal approximation for the binomial distribution,

and the assumptions made are essentially the same as for the

binomial case.

In Chapter 3, the exact power function for each of the

Problems I, II, and III is given. The order of presentation

begins in section 3.1 with the 2 x 2 independence trial, and

proceeds naturally to the 2 x 2 comparative trial and the

double dichotomy in sections 3.2, and 3.3 respectively.

Several approximations to the power are given in these

sections, using in the case of the 2 x 2 comparative trial

an approximation given by Sillitto [21]. Theorem 3.4.B in

Chapter 3 shows that, asymptotically, there is no difference

in the power functions, for "corresponding" alternative

hypotheses and suitable choice of marginal totals in the

2 x 2 independence trial and the 2 x 2 comparative trial. As

a consequence of this theorem, an additional approximation

to power for the 2 x 2 comparative trial and the double

dichotomy is proposed. Also in 3.h. the asymptotic power

function for the 3K 2--test of independence is studied.

Finally, Chapter h serves to unify the results obtained

in Chapter 3, and some of the approximations proposed in

Chapter 3 are compared with the exact power. Rather extensive

tables of exact power for each of the three cases are in the

appendix. These exact computations provide the means for

evaluating the adequacy of the various approximations.
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1.5 The Uniformly Most Powerful Unbiased Test for One-SidedAlternatives and Two-Sided Alternatives.

As noted on page 11, Katz [9], Tocher [25], and Sverdrup[2%] are responsible for the development of the tests to bedescribed here.

Katz, in l9#2, assumed that any alternative distribution

\

\

i
i

to the null distribution
for the 2 x 2 independence

trial

\

i

could be taken as that given in (1.2.5), i.e.

(1.5.1)Pr{nl [ml,m2.n; A} = (2962:2915’11 é z(?l)(g2:§‘1) tJ

where t = A(l - PA - FBI? KPhPB)

(1 - APAMl - APB)

Thus, the test for independence amounts to testing

Ho: t = 1

vs. H1: t ,1 l

or, equivalently, to Ho: A = 1 vs. 1 # 1.

Considering first the special case

Ho: t = 1

vs. Hl:t=to;t°;!1

and applying the Neyman-Pearson lemma for testing a simple
hypothesis against a simple alternative, Katz finds that Ho

n
Should be rejected for all values of I11 such that to1 2 k,

where k ‘is some fixed constant chosen so that

size o( , or

the test has

  





  

(1.5.2) nllog to > log k .

For all t < l, the inequality (1.5.2) is satisfied for
all 111 g a; for all t > 1, by all n1 2 b. Thus, if we wish
to test the hypothesis t = 1 only with respect to one-sidedalternative hypotheses t < 1 (or t > 1) the uniformly most
powerful critical region is a tail of the conditional dis-
tribution (1.2.6), n1 5 a (or 111 2 b).

For testing alternatives t ;=’ 1

powerful test exists. Katz,

, no uniformly most

therefore, restricts the class
of tests to those which are unbiased, in the expectation thatwithin this smaller class of tests a uniformly most powerful
test exists. Katz notes that a necessary condition for

unbiasedness is that the power function have

t = 1, or that

a minimum at

2 (29(32: 1) J11 _

 

 

(l 5 3) a n16w(ml:m2) 1
fi

= o

at Z CW" "”1) aJ m2-j
t = 1

. 3

where w(m1,m2) is the critical region for fixed m1,m2, and n.

A little algebra reduces the necessary condition (1.5.3)

for unbiasedness to the form

(1.5.10 2: Prij'mlmzm} 2 n1 ‘Prgnllm1,m2,n}

J
n16 wfinlmg)

; —ijr{jlml,m2,n} X Pr inl|m1,m2:n}

J
“lswmi’mfl





 

  This requires that the mean value of n1 in the critical

region be the same as the mean value for the entire range

of n . Thus, the critical region w(m1,m2) must contain values

above the mean and below the mean, such that

o<m1m2
(1.5.5)

Z 111 Prinll ml,m2,n} =x
n 3

n1 5 w(m1m2)

since the expected value of n

m1"“2
n O

1 over the whole range of n1 is

Because n1 takes on only integer values, it is not

always possible to obtain exact size 04 tests. In order to

obtain such tests, a randomized decision rule must be

employed. The final form for the unbiased test of independence

as given by Katz is to reject Ho against H1: t f’ 1 for

those nl such that

(1.5.6) 2 Pr inll m1,m2,n} + £1 Pr ia I ml,m2,n}

n1< a

+ 82 Pr {bim1,m2,n} + Z Pr {n1{m1,m2,n}

n1>b

=o(
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and

(105-7) Z n1 Pr inll mlsm2rn} 4’ a 81 Pr{a I ml,m2,n}

n1<a

+ ba2 Pr{b I m1,m2,n} + Z n:L I’r{m1,m2,n}

n >b
1

m1m2

“X? ’

where a,b, £1, and, 52 are determined
by these equations

andog 51, 52(1.

In the one-sided case (testing t=1 vs. t<l) we have

that H0 is to be rejected for values of n1 such that

(1.5.8) 2 Pr {nlIml,m2,n} + ePriaImJ-myn} =o(,

n1<a

where 0 g s < l, and a and e are determined such that the

equality holds.

Tocher showed that the uniformly most powerful similar

one-tailed test for any of the three problems is the condi-

tional test given by Katz in (1.5.8), with, of course, the

test in the 2 x 2 independence trial being uniformly most

powerful among all tests. In order to establish this, Tocher

proved the following lemma, which is a generalization of the

Neyman-Pearson lemma to composite hypotheses.

Tocher's Lemma:

Let p(J,90) be the probability of the jth possible event

in the countable set I = {1,2,...}- , under Ho, and p(J,el)

 

abe the probability under H1. Let n(j,60) = 690 108 P(J,90)



 



 

 

 

For each value of Go divide I into sets S1 with equal a,
assume p(j,90) satisfies conditions such that this divisi

onis invariant with respect to 90. Thus I =

1:

events in S1 for each i by 511,512,..., and form the

conditional probability under Ho of $13 given sij a Si,

denoted by Pr(sij [81,90). Then

D(J,90)
p(J,90)

Pr(siJ [81.6) = —E;-—-—"—————' = p Si .

Z p<sij’eo)

J=1

00

where p(Si) = E: p(sij’eo)°

i=1

Choose any set of constants
wj, 0 3 WJ g 1, so that

on

E: wJ Pr(sij lsi,eo) = ca , (1 = 1,2,...).
J:

p(J.91)

Let R =
th lik lihood ratio of the two

imbeee

Probability.distributions under H1 and Ho respectively.

Order the points in S1 for each 1

ratio, i.e., say 3

13 5 51k if

p(8 ,9 ) p(sik.91)A = _T_ll__l7
A .ii p sij,eo 2 p(sik,90) ik

Relabel the points of S

  

Si’ Denote the

‘ l

and

on

w
by descending

likelihood
1

1 according to their likelihood ratio

;‘

‘1
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ordering, say 8131, $132, 5113 , ... . Then the procedure

 

defined by-

(1-509) wijk = 1 : Jk = 1:2: ooo : 8'1

a-l

O<- Z Pr(Sijkl31,9)

J =1
k

w = j - a
is k

Pr(silsi,e)

wijk = 0 3k = 8+1, 8+2, .0.

where a is determined by

a-l a

El Pr(SiJkl 81,9) _<. °< < Z Pr(sijk| Si, 9),

Jk=1 jkzl

is the best similar procedure to test the composite hypothesis

Ho against the alternative H1 .

Tocher then applied this lemma to finding the uniformly

most powerful similar test (one-tailed) for the 2 x 2

comparative trial and the double dichotomy. We will now

illustrate the application of this lemma in deriving his

test for independence in the double dichotomy, noting before-

hand that the test is the conditional test, for fixed

marginal totals, with randomization on the boundaries. Let

us recall (see page 7 ) that the hypothesis of independence

in the double dichotomy takes the form
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Ho: vi = P P

A B

P -P -1vs. H1: "1 = l PAPB’ max [ , fiik
A _<_ min [%A

The probability of the sample point (nl

may be written as

 

(1.5.10)

m1_ 2 - m1 _ _
n-m -m

iPA 1 APB 1 PA PB+iPAPB
1 2

_

“"‘
1 PA

l-PB
(l-KPAXl-l

PB)

- - n
. 1 PA PB+XPAPB

1

(l- RPA)(1- APB)

When A = 1, (1.5.10) clearly reduces to (1.3.1).

Hence,

3)

ml - nP:55; log Pr(nl,m1,m2)
P (l-P )

A A(1.5.11) ,5 =
=

5)

m2 - nP
log Pr(n m ) -———-——£L-NB 1"”1’ 2 pBu—pB)

Thus the sets S(ml,m2) of equal o'have equal m1 and m

and the decomposition of the sample space into sets S(m

1
is invariant with respect to P

probability of n

(1.2.6), namely,

i
\

Pr-{n1,m1,m2
l).} = b(m ;n,PA)b(m2;n,PB)

h(n

 

:mlng) under H1

1 ”1,312,“-

2’

91112)

A and PB. The conditional

1 within these sets under H0 is given by



 



 

(1.5.12) Pr {n1 |m1,m2,n} = ___1__2__L

The likelihood ratio

Pr {(n1,ml,m2) Imp} = the four factors

1 (1‘5'13): L(’~) = enclosed in brackets

*- Pr {n1,ml,m2 l n} in (1.5.10)

within each set S(m1,m2) is a monotone function of nl ,

[ increasing when 1. > 1, decreasing when k < 1. Thus, the

common best similar procedure for the test against all

alternatives x < 1, say, is the conditional test, for fixed

1 m1 and m2, defined by

‘ (l.5.l‘+) w(n1.m1,m2) = l , n1 < a(ml,m2)

w(a[m1,m2],ml,m2) = O( - Z Pr{nllm];,m2,n}

nlsw (mlfln2)

1‘.
Pr{a(ml,m2) lml,m2}

w(nl,ml,m2) = O , n1 > a(ml,m2)

 

1 where 8(m1,m2), for fixed m1 and m2, is determined by

\‘ Z Prinl ‘ml,m2,n} _<_0(< z Pr inllml,m2,n}

\

\‘ n12 w(m1,m2) nlsw (1111,1112)

For fixed m1 and m2, this test says to reject Ho if

n1 < a(ml,m2) with probability 1, n1 = a(m1,m2) with

probability 5 and to accept Ho if n1 >a(mlm2) where

   



 



  

a(m1,m2) and a are determined such that

(1.5.15) 2 Prin1|ml,m2,n} + e Pr{a |m1,m2,n = o( . ‘1

n1<a

This is Katz' condition(1.5.8). ‘

Before giving Sverdrup's results, let us summarize the ‘

various tests that may be of interest. There are six possible

test situations for the three experimental models, with two

distinct types for each model. That is, in all three problems,

a test is to be made on K = 1 against 7K< l(or l) l) or

R = 1 against A i l. Recalling the discussion on page'7

in Section 1.3, we can summarize the hypotheses, null and

alternative, in the following table.

Table IV

I II III

; Null Hypothesis i=1 Independent pl

 

= p2 vi = PAPB

 

One-tailed alternative l<l "negative" pl < p2 v1 < P P

dependence A B

l>l "positive" p1 > p2 Hi > PAPB

dependence

 

Two-tailed alternative 7\%l Dependence p1 % p2 v1 # PAP    
 

If we let Tl be the one-tailed test defined by (1.5.8),

and T2 be the two-tailed test defined by (1.5.6) and (1.5.7),

then Sverdrup has proven the following theorem:

Theorem:

For the one-tailed tests, test T1 is the uniformly most

Powerful unbiased test at the level of significance C<.. For

 





  

 

two-tailed tests, T2 is the uniformly most powerful unbiasedtest at the level of significance C< . Test T1 is also
uniformly most powerful among all tests in the wider class
of all similar tests, and T1 is uniformly most powerful
among all tests for independence in the 2 x 2

trial.

independence

Thus Tocher and Sverdrup have shown that properties of
the test procedures given by Katz extend to the 2 x 2 com-
parative trial and the double dichotomy with each of Tocher
and SVerdrup obtaining similar results for one-tailed tests.

In the remainder of this chapter, a description will be
given of some other tests which have been proposed, for each
of the three problems, beginning in the next section with

the 2 x 2 independence trial, and in sections 1.7, and 1.8

discussing the 2 x 2 comparative trial and the double dichotomy.

1.6 2 x 2 Independence Trial

The situation in the 2 x 2 independence trial is best

illustrated by Fisher's tea-tasting experiment. A lady is

given n cups of tea, ml of which had milk added first, then

the tea, and n ~ m1 cups with tea put in first, followed by

the milk. The cups are presented to her in random order. Her
problem is to sort the cups. If she is told the number of cups
with milk added first presumably she will guess that ml of the

cups had milk added first, and the rest with tea added first.

It is therefore natural to regard both sets of marginal totals
as fixed, in repeated sampling.
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In the 2 x 2 independence trial, the null hypothesis

is that the markings A1 or A2 are independent of the

labelings B1 or B2. If the hypothesis is correct, the

distribution of n1, the number marked A1 and B1’ given_

m1 and m2 is the hypergeometric distribution(l.2.6), i.e.

m n - m1

(1.6.1) Pr{nllm1’m2’n} -.-w

(“12)

where the range of n1 is given by

max[0,ml + m2 — n] 3 111 < min[m1,m2]

Equation(l.6.l),for the null hypothesis, has been

described by Yates as Fisher's "exact“ distribution based

on the hypergeometric probability law. It is a completely

known one-variate discrete probability distribution. Except

for specifying non-hummenwmme, the only clearly defined

alternatives to independence are those proposed by Katz.

For one-tailed tests, the region of rejection of Ho

usually consists of extreme values in one of the tails,

rejecting all those values in the tail whose probabilities

sum to a number equal to or less than <>( , given in advance.

By employing a randomized decision rule, we can make the test

of exact size c< . However, for a two—tailed test, several

alternative regions are possible, since no uniformly most

powerful test exists. Some criterion must therefore be adopted

in order to determine which of the several possible critical

Eh.
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regions should be taken.

The usual convention is to make the probability

associated with each tail region sum to G<./2 or less.

Because nl assumes only discrete values it is not always

possible to obtain critical regions of size exactly CK. in

terms of integer values of n1. In order to obtain exact

size C<_- tests, we must adopt a procedure of randomization

for a decision. In this way, we can put probability' C(/2 in

each tail, under Ho‘

P. Armsen [1] suggests two other possible rules for the

selection of points in the critical region, which are denoted

by D2 and D3 in his paper.

D2. "Arrange the possible events in ascending order of

the size of their probabilities under the null hypothesis;

include in the 100 0(35, two—tailed rejection region

those events for which the cumulative sum of these

ordered probabilities is smaller than or equal to 0L 3'

D3. " Define F(E), or the 'first tail' probability, as the

cumulative sum of the probabilities under the null

hypothesis of all possible events which are more

extreme, in the same direction, than given event E,

including the probability of E itself. Define S(E),

or the 'second tail' probability, as the cumulative

sum of probabilities, starting with that of the event

most extreme in the opposite direction as compared with E,

and cumulating up to but not exceeding the value of F(E).

If and only if, F(E) + S(E) 5. oc , include E in the

rejection region for the two-tailed 100 o<7e1eve1 of

significance."
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One might also restrict the tests to a class of "nice"

tests, and then look for one which is uniformly most powerful

within this class as was done in 1.5. In any case, a class

of alternative distributions for the alternative hypotheses

[must be specified. It is clear that in order to decide which

test is "best", one must examine the power function of the

test. Katz, Tocher and Sverdrup proposed their test with this

consideration in mind.

Finally, as Armsen has pointed out, there are certain

peculiarities in any of the first three definitions of the

critical regions. It is possible, in certain cases, to construct,

on the basis of his definitions, critical regions in which all

points of the region come from one tail of the distribution.

The classic test of the null hypothesis is that given

by Fisher [7]. It consists in computing(l.6.l)for the

probability of the observed value and all values less likely.

If the sum of these probabilities is equal to or less than CK.,

then H0 is rejected. Extensive tables have been prepared by

Finney [6], Latscha [10], and others, for small n, indicating

the critical points for which the hypothesis of independence

is to be rejected. For small values of n, exact computation

of the tail terms is practical, but for large n, it is quite

tedious. One may, in this case, approximate the exact

hypergeometric distribution by a normal distribution with a

mean and variance corresponding to the mean and variance of(l.6.D.

m1m2
(1'6.2) E(n1‘ml’m2’n) = n = a;
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(106.3) V (n1 'ml,m2,n) = m1(n ' mlhnz (11 - m2) = 112
 

 

 

 

n2(n - 1)

Let m m

. _l.2 _ -

(1.6.4) u = n1 n = El_h-El ’
/ m1(n - m1) m2(n - m2)

n2(n - l)

and write uc,< for the 100 o( ~percent point of the

standard normal distribution, i.e., no< is defined by

the equation

2
oo _ u

0.6.5) 3 1 e :— du = c( .

v’ESF‘

uo(

Then, for a one-tailed test, reject Ho if u > u

 

GK or

u < u1_C( , depending on the appropriate case. For two-tailed

tests, reject if [u I > “on . Very often a correction

2

factor for continuity is included in u, i.e., the absolute

value of the numerator of u is reduced by % . If this is

done, then for very large n, we get the usual 7K’2 test in a

2 x 2 table, with one degree of freedom, if we square the

corrected u, i.e.,

n 2

m1(n - m1) m2(n - m2)

2 2

We reject if X2 2 xx . where 7(0< is the 06*

2

percent point of 7( with one degree of freedom.

is, ,
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1.7 2 x 2 Comparative Trial

To fix the notion of a 2 x 2 comparative trial, we give

an example. Groups of m1 men and n - m1 women are randomly\

selected. They are then examined to see whether they are

smokers or non-smokers. It is assumed that the proportion of

men smokers is p1, and the proportion of women smokers is p2.

In repeated sampling, it is supposed that we always take the

same number of men in each sample, and the same number of

women, but that the number of smokers in each sub-sample is

free to vary.

In the 2 x 2 comparative trial, the hypothesis to be

tested is the composite hypothesis p1 = p2 = p, against-

alternatives p1 # p2.

The probability of observing (n1,n2) is, in general,

(1.7.1) Pr {(n1,n2) |p1.p2.m1.n_} = b(n13m1.p1) b(n2;n-m1.p2)

= b(n1;m1,p1) b(mZ-nl;n-m1,p2)

In contrast to the 2 x 2 independence trial, the

probability distribution(l.7.l)is over a two-dimensional

lattice of points. This distinguishes the problem from the

one discussed previously. It is necessary for testing purposes

to decide whether m2 is an intrinsic parameter or a nuisance

parameter. Several tests for the null hypothesis have been

proposed.

Barnard's test [3] may be described as follows. "Taking

rectangular axes in a plane, one can represent an observed

result (as in Table I) as the point whose coordinates are
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(n1,n2), where 0 S n1 3 m1, 0 S n2 5 n - m1 (n1,n2 integral).
Call the totality of possible points a lattice diagram.
points in this lattice diagram will be given a total ordering.First, the same rank should be given to the point
(m1 - n1, n - m1 - n2) as to the point (n1,n2). This is
called the symmetry condition, or conditinn S. Secondly, two
points which, respectively, have the same

same ordinate as (n

abscissa or the

1,n2), and which lie farther from the
diagonal line joining (0,0) and (m1,n - ml) should be
considered as indicating a wider difference than (n1,n2).
This is called the 'convexity'

condition, or condition C.
Conditions S and C generate a partial ordering. To make it
a total ordering, one further condition, called

condition, or condition M,

the maximum

is imposed.
Conditions

C and S
require that the points (ml,0) and (O,n - m1

lowest rank.

) be given the

Associate a function P with these two points

defined by

m
n-

n‘m(10702) P(O’n ' ml’p) = P7 1(l-p) m1 + p 1(1-p)m1’

where p1 = p2 = p in (1.7.1)

Let

fl.7.3) Pm(0,n - m1) 8 ogggi P(0.n - mloP)0

n n
l 2

Considering only points for which a; < H—:—;;

(by symmetry) , 1f the first (K - 1) points (81,101),

(a2 ,b2 ), . . . , (aK-l , bK-l ) in order of increasing

rank have been chosen, and (ax-1, bK-l) is associated with

 



 



 

 

the function

047.”) P(8K_1:bx_lrp) = P(aK-2’bK-2’p)

11'
m

n-m n-m
m

+ (:3)(n2mi> [p 2(l-p) 2+p 2(l-p) %]

K,bK), is that point, of all points
(n1,n2) permitted by the C condition, for which

then the Kth point, (a

CL7.5) P (n ,n ) = max P( ,b , )m 1 2 O<p<l 8K KP

is least; (aK,bK) is then associated with the function

(”'6’ Hereby”) = P(aK-l’bK-l’p)

NPR] 11: n- n-m m

+ (2:)(122 151; 2(1‘13) m2 + p 2(l-p) 2] .

If r points give the same value of Rm(n1,n2) and this value
is less than that associated with any other permissible point,
assign the same rank to each and replace the second term in

P(a ,bK,p) by the corresponding sum over all these points.

The next point after them will be denoted as the (K + r)th

point in the ordering. Barnard then associates the

Pm(aK,bK) = ogggl P(aK,bK,p) as the significance level of

the point (aK,bK). This test is called the C S M test, for

ObVious reasons, by Barnard. Barnard's procedure leads to

the assignment of significance levels to points generally

quite a bit smaller than those assigned by Fisher, in his

conditional test.
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If the marginal totals are large, Barnard' 3 test is
difficult

to apply, since the computation becomes prohibitive,

e, a normal approximation may be used.
If the null hypothesis is true, then,

When this is the cas

from (10701)

i
w

\

(1.7.?)
Pr {nlm2

'plml’n}
= hinl 'm1,m2,n}

b {m2 Imp}

where p1 = p2 = p.

Using the normal approximation to the hypergeometric
distribution given by

- 2
n +

- — ~—1 2 1 2 h

-====r—
e

N(10708)
Pr {n1 Ital-9312311}

- S
l J 2-"- h

dx,

nJ. ' 2

a critical region is constructed containing all those points
(nl,m2-nl) such that

 

l “
l - ‘—

+ -

n - :1
(1.7.9) n1 1,21 n1 5 - u<>< and J‘H

 

2 u“ C

‘5
2

n
n + l - 3—Let L1 = K.) (n1,m2-n1
:dL-—-§-—-—l—

g_- uc‘

m2=0

2

n

l “n - - n

\
2 l

and L2 = U (n1.m2-n1):
l h 2 ucx

1
m2=0

2

and put L = L1 \J L2.

Then, if a one-tailed test is performed, H0 is rejected

at'level 925 it the observed sample point falls in the



 



 

 

appropriate component of the critical region, either 1.1

while for two-tailed tests, Ho is rejected at level (X if

the sample point is in L.

Pearson notes that since the probability density is

discrete, the "true" probability of rejection will quite

generally be much smaller than 0( . For' each value of In2

let °<

m2 = Z Pr {n1 |m1,m2,n} . Then 0(m2 _<_o< ,

nleL n

for each 1112 = 0,1, ...,n, and hence z Pr {m2lp,n “m2 $o( .

m2=0

He then remarks that whereas the 32‘ - correction for continuity

is appropriate for the Problem I, "it is not helpful for the

Problem II where we are concerned with a two-dimensional

experimental probability set.“ He proposes, therefore, that

the coreection for continuity be omitted in(l.7.8). If this

is done, then new critical regions L1' and L2' are obtained,

 

where __

n n - n

Ll' = U (nl,m2-n1): -l-—l‘h _<,_ - u“ and

m2=0 '2—

n ”1"“:
L2. = U (111,1112'1‘11): h Z 115 o

m2=0 2

Corresponding to 0(m2, one has

' — I I U

o(m2 " Z 'Pr{n1 |m1,m2,n}, L = L1 U L2 .

naL
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IWith this modification,<><m2

will he sometimes
less and

sometimes greater than C(., and, hence, "in the balance, itseems likely that the chance of the point (nl,m2-nl) falling

\

\

\

\

\

\

\

t

‘
in L will lie closer to o< than when the correction

is used."
we note, however, that one can obtain regions similar to the
sample space by use of a randomized test.\

If u is defined as in(l.6.h% then E(u) = 0, V(u) = 1,
independently of p. The distribution of u depends on p, but
Pearson feels "we may not in the long run do too badly byassuming

u to be normal."

against B

It is Pearson's opinion that the test of H6
1

should be performed as follows:

(a) If any of the marginal totals are "small"

Barnard's test.

. apply

(b) If the marginal totals are all large, use the normal

approximation, with the %

omitted.

- factor for continuity

Patnaik [It] has given two approximations to the power

or the test described
by Pearson.

The exact power function

for this test is

(1.7010) 55 Z PP{(nlpm2) 'Plspesmlsn}

m2=0 n1

I lwhere the inner sum is over n1 5 L1 or L2 as the case may

be for one-tailed tests, and over n1 5 L' for two-tailed

tests. His approximation is derived thru the normal approx-
imations of the type involving hypergeometric and binomial
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distributions. In the process of deriving his approximation
to the power function, Patnaik also gives an approximation
to the conditional distribution of I11 given m1 and m

H1, which is quite interesting,

g may give absurd results, and

2

but unfortunately

under

which casts serious doubts on
the validity of his approximation to the power. Patnaik's‘-
procedure in deriving the approximation follows below.

Rewriting (1.7.1), one has

(1.7.11) Pr-{nlma-n1 [p1,p2,m1,n}

n .-

(21) (m 3‘1)(11) m1 m2 n-ml-m2
l 2 1 n1

= m2 q1 p2 q2
(n‘) t

m2

P q
where t = p q , q1 = l - pi, i = 1,2.

2 1

For m1,m2, and n large, the hypergeometric
probability

term in (1.7.11) is approximately equal to the ordinate of a

and variance

- )( - )
h2 = 212§£2_21__2_2§.

(see Feller [5] page 180) and son (n-l)

m
normal distribution

with mean S§~a

\

\

\

1 Patnaik replaces this term by the ordinate of a normal

distribution
with this mean and variance,

approximation for(1.7.ll)

obtaining as an

 

- 1 ( _. fl) 2

m1 m n-ml'm2 1 “2112' n1 :1n

2

—-
e

t

(1.7.12) (m2) <11 P2 ‘12 ./ 217 h

l

n logt
e 1

n

Writing t 1
and then completing the square
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in mi, Patnaik finds that(l.7.12) may be written as

n "’1 m2 n"“1"“‘2 mlmz + he log ’6‘
(1.7.1.3) (1112) q]. P2 ‘12 t n

m

1 2

- —_"'_."— e h

v'2w h

 

 
2

log t)-

and notes that the first factor in brackets is independent

of n1, so that the last factor is approximately the

conditional distribution of n1 given m1,m2,n, and t, i.e.,

m

a normal distribution with mean 2132. + h2 log t and

variance h2. With this result, he then assumes that the

conditional power function of the Pearson test, for fixed m2,

is approximately given by

 

'uc( - h(m2) y2

__ 1 —.__

10 011+ = 1 " 2 __ e 2 dy o( 7 ) m2) j J 2”

-uc>< - h(m2)

7

where, following his notation, B(m2) denotes the conditional

m (n-ml) m2(n-m2)

power function, and h(m2) = -;-—-—§-—---+—-log t. Next

n (n-l)

he approximates the distribution of 1112 by a normal

distribution with mean 1‘: mlp1 + (n-m1)92 .

and variance

2 2

r2 = m1p1(1-p1) + (n-m1)p2(1-p2) = 6’1 + 0'2 s

‘K and a-2 are the exact mean and variance of mg. This
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leads to the approximation

00 - l(fl)2

(107015) flNS l e 2 a- B(m2) dm2 ,
 

J21rr

-oo

where {3 denotes the unrestricted power function. Since

this still represents no essential simplication, he considers

two approximations to (1.7.15). The first consists in

expanding B(m2) in a Taylor's Series (about t”) to obtain

 

2

co m - X

43 {-2——) °° (J) g
1 0* 15—4—1 - :1

(107.16) BN8 my 9 32 3‘ (m2 ‘6' )

-m =0

2 " ‘6‘ 1+ (iv) 7;

= $( X) + LgTL—J + Jug—ILL- + ace

and then taking 5(8‘) as a first term approximation. Thus,

his first approximation to power is given by

1107/2 ' h(fi)

(107017) BN 1 "'

 

-u072 - h(x)

The second approximation is derived thru using the

method of approximate product-integration developed by

R. E. Beard. This leads to his second approximation, given by

(1.7.18) p~1/6 an; - «‘3 r) + 2/3wf) + 1/6B(2f+~/_3 r >.

Patnaik claims that (1.7.18) gives a better approximation

than by using the first three or four terms of the above-
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mentioned Taylor's series. Thus, Patnaik chooses (1.7.18) as

i .

l

g

his approximation to the power function for the test of

;. independence in the 2 x 2 comparative trial. It should be

noted, however, that the assumption that m2 is normally

distributed is irrelevant as far as the first two terms of

(1.7.16) are concerned, since

n 00 j
(U)(m -'K)

(1.7.19) 5” Prim2 |p1,p2,m1,n} Z 5(J)__J_f__

m2: J=O

. 2 u —

= £3”) + LETLZ-Q * qupflfie * (q2‘92)°’22_l

HI

. _Lgill. .,

Both of Patnaik's approximations rely heavily on the

approximation to the conditional distribution of n1 given

m1,m2,n, and t. In section 2.2, it will be shown that this

approximation may lead to rather non-sensical results, and

hence that both of Patnaik's approximations may be unreliable.

The implication of the results in 2.2 on Patnaik's

approximations will be discussed in section 3.2.

'Sillitto [21] also obtained an approximation to power

for the same test. The approximation is based on the arc sine

transformation for a binomial variable. Let

arc sin ~73; - arc sin ~/_p-l

(107.20) C(pl’pasml) = r

(

 

  



 



 

 

 

\

_l l_. *1 -l . n
where a‘— 2 m + n-m — 2 E‘YETE'T , and the1 l

1 1

angle is measured
in radians.

Then Sillitto
gives as an

approximation
to power

(1.7.21) fl~l - (DLug- c(pl,p2.m1)
-¢ -uE- c(p1.p2.m1)

2

2
‘

1

for two-tailed tests, and

(107.22) BN1 ‘ ¢ [11“ — C(plsp29m1)]

for one-tailed tests.

For comparisons of Patnaik's and Sillitto's approximations,
see table E.2.1 and E.2.2 in appendix E. It appears from the

available data that Sillitto's approximation is much more

satisfactory than Patnaik's.

One could also make a conditional test, for fixed m2

and put probability °(/2 or less in each tail, and then

compute the power function. G. C. Sekar[20] and others,

have given tables of the power function for the special case

nwhere m1 = n - m1 = 2 , and the critical region for each m2

is Symmetric, i.e., if (n1,m2- 1) is in the critical region,

then so is (m2-n1,n1).

1.8 The Double Dichotomy

As in the previous two sections, an example of an

GXDeriment illustrating the situation in the double dichotomy

is given.
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A group of n college students, selected at random

from the totality of all college students, are classified

according to sex and according to whether or not they are

drinkers or non-drinkers. The result of the classification

is represented in the form of Table V, along with the

hypothetical proportions of all students having the double

 

  

   
 

 

 

 

    

classification:

TABLE‘V

Male Female

Drinker n1 n3 m1

Non-drinker n2 nu n-ml

m2 n—m2 ' n

TABLEVI

Male I Female

Drinker "l #2 PA

Non-Drinker n3 nu l-PA

PB '2 l-PB 1 
It is natural to regard both sets of marginal totals as free

to vary in repeated experimentation.

The hypothesis of independence takes the form

HO: 1T1 = PAPB o

If H0 is true, the two classifications are independent. As pre-

V1°US1Y noted (page?) any alternative hypothesis may be
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expressed as

Hi‘ "i = A PAPB ’

where 1 satisfies the inequalities

m.,<_i___

PAPB . ‘ ‘ max[PA.PB]

The double dichotomy appears to have received the least

attention of the three cases. For small samples, Fisher, as

in the previous cases, asserts the test should be performed

regarding the marginal totals as fixed by the observed sample

totals; in other words, the conditional test for fixed m1 and

m2 is the appropriate test. Pearson [16] suggests that

Barnard's method be extended, for small n, to this double

dichotomy, and for large n suggests the use of the normal

approximation in an analogous fashion to the 2 x 2 comparative

trial.

There is no available literature on the power of any

test in the double dichotomy.

1.9 Results

In concluding this survey of past work, one sees that

while much has been done with 2 x 2 contingency tables, there

are some aspects which have not been investigated. Thus, in

the remainder of this thesis, the author proposes to do the

following:

1. Investigate the properties of the conditonal distri-

bution Pr‘inll m1,m2,n;t}- given by equation (1.2.5).



 

 



 

E

'
P
'
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r
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w
w
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including its asymptotic distribution and several approxima-

tions to it. As a part of this investigation, it is shown by

Theorem (2.2.F) that there are at least two published results

in the literature which may be invalid, namely, the results

of Patnaik [1%] on the power function for the test of

independence in the 2 x 2 comparative trial, and Moore's [13]

power function for a test for randomness in a sequence of

two alternatives involving a 2 x 2 table.

2. Give the exact power functions for the test of

independence based on the uniformly most powerful unbiased

test described in Section 1.5, for each of the 2 x 2

independence trial, 2 x 2 comparative trial, and the double

dichotomy, and some approximations to these exact power

functions.

3. Investigate some relations between these exact power

functions, and prove that for large sample sizes there is

little difference in power between the three cases for

appropriately chosen alternative hypotheses and marginal

totals.

Theorem (3.#.A) in Chapter 3 gives the limiting power

function in the 2 x 2 independence trial, with modest conditions,

and Theorem (3.#.B) shows that asymptotically the power functions

for the test of independence in the 2 x 2 independence trial,

2 x 2 comparative trial, and double dichotomy, are equal.

h. Study the asymptotic power function for the )(2-test.

5. Investigate the adequacy of various approximations by

making comparisons between the various approximations.
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Chapter 2. An Investigation of 8 Probability Function —kl-

2.1 General Properties

The conditional probability of n , given the two

marginal totals ml and m2, and the dependence parameter

t, 0 < t < 00, obtained in section 1.2 and given byfl.25)

takes the form

@)(mfi tnl Fran [m In n}tnl
2 n1 1’ 2’
 

”‘1‘“ prim1;|ml,m2:n t}: (ELMWall)2:11” = Z Pr )1 lh’mz’n}

where max [0,ml + m2 - n] S n1 3 min [ml,m2], 0 g m1,m2 g n.

In order to evaluate power for the various models, some

of the properties of this distribution will be useful. Let

 

 

a = -ml; b = —m2, c = n - m1 - m2 + 1.

Then

m

1 —r

7 (“if ”‘11) .3 z ”1 . WW
.4 J “2‘3 P<j+1)r’(c+3)P<1-a-3)F<1-b—j)

i=0 3:0

[[c-b)

(2.1.2) =-————————— ["1- )W Fi—b

[’(1-bH—Ic) ( a C) < )

m

1

O tj

3.20 ["(J+1)F‘(c+5)F(1-a-j) F‘u-b-J)

= —-[:&£:21———— F(a,b;c;t) where F(a,b;c;t) =2F (a,b;c;t)

F'cl-bfl‘m 1

is the well-known hypergeometric function (see [22],page 1),
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In this notation, the probability generating function

defined by

(2.1.3) He) '5 Z; Pr {rill m1,m2,n;t} enl

may be expressed as the ratio of two hypergeometric functions

ZPI‘ {n11 mlnnesn} (9t)nl

(2.1.h) P(e) = F(a.b;c;te) = n1

F(a,b;c;t ) EZPr inllm1:m2,n } (t)n1

n
l

Differentiating k times with respect to 9, one has,

upon setting 9 = l,

(a) (b)
(k) - k k F(a+k, b+k3 c+k; t)

(2'1'5) P (1) - (C)k F( a, b; c; t)

where (d)k = d(d-1)°"(d-k+1).

th
In particular, denoting the k moments about the

origin and the mean by pk' and pk respectiVely,

' ab F(a+1 b+1' c+1~ t)
n = P'(1) = -—- t ’ ’ 2

1 C F( a, b; c; t)

a(a+l) b(b+l) t2 F(a+2,b+2;c+2;t)
I

2. . = " ' =
( 1 6) p2 P (1) + P (1) C(c+1) F( a, 3 c; t)

ab t F(a+l, b+l; c+1; t)

C F( a, b; c; t)

 .9.

2

P2 = P"(1) + P'(l) - (P')2 = 92 - (vi)

“3' = P"'(1) + 3P"(1) + P'(1)

 



 

 



 

 

and in general, using the relation

(2.1.7) tk =

5
"
]
w

S(k,3) (t)J

J 0

where S(k,j) is the Sterling number of the 2nd kind, defined

by (2.1.7) (see Riordan [18], pages 32—33), one has

(2.1.8)

k k

PL E(nlk) = E Zsom) (n1)J = isms) Eml)J

J=0 i=0

1:

Zsum) P‘3)(1)

J=o

(a )j (b)

1205(k.j)_.(_y_
3 t5 “ML b”; 0+3: '0)

F(as b; C; t)

The central moments are found from the well-known

relations

k
. k v _

(2.1.9) pk = Z (‘1)k-1 (i) P-i (fll)k i 5' k = 2,391+) 00.

' i=0

Computationally, we would probably prefer to use

   



 

 



 
 

 

 

 

ZJK Pr {j lm1,m2,n} t“I

J

Prij lml,m2,n} tj

J

 
 

in calculating moments about the origin.

' .

The moment pk is a function of t. Differentiating

l

”k , as given by (2.1.10), with respect to t, one gets

0 l I

ll ' p P'
(2.1.11)

-%t- “I; ; lfl‘t_k__l_
, k = 1,2,3, 0..

Setting k = 1, we find in particular that

2

u; - (#1)g_ '
- 32.(2.1.12) dt :11 t — ,6 >0

 

since t > 0, which confirms the obvious fact that "1' is a

monotone increasing function of t. Putting k = 2 in (2.1.11),

obtaining ' , 9

t P3 ' P2 “1

#2 - -————17———————an
“

2
O

noting that #2 = ”2' - (pl) , and using(2.l.9)and(2.l.12),

it is easily seen that

   



 

 



 

  

-us-

gg- 3u2 21 + 2(ul)3

(2.1.13) (a) g? 22 = t = Eta

u - u

(2.1. 13) and...,1,’= —3——-2——2 .
t

Using well-known linear relations between hypergeometric

functions (see Snow [22], pages 31—32), one derives some

recurrence relations between moments. For example, using

the linear relation

(2.1.1h) t(1-t) (a+1) (b+1) F(a+2, b+2; c+2; t) + (c+1)[c-(a+b+l)t]

°F(a+l , b+1; c+l; t) = c(c+l) F(a,b;c;t)

and (2.1.5) and (2.1.6), it follows, after some simplication,

_that
I

' - b 1 t ”
(2.1.15) p; = p' (1) + pl(l) _ .2? t _ [c 1?: + ) ] 1 + ”i

 

= 111112 t— [n - (m1+m2) (1—t)] “1'

l - t °

I

Using this form for p2 , one then obtains,

m1m2 t - [n - (ml+m2)(l--t) + (l--t)u1] “'1

(2.1-16) P2: 1 — t

Using the same relation (2.1.1h), of contiguity above,

after some algebra, one finds that

. [mlmzt + n - m1 - m2]p£ -[(n-l) - (m1+m2)(1-t)]ué

p3 = 1 - t

(2.1.17)

and

 



 



   

 

 

 

(2.1.18) P1: ={[m1m2t + 2(n-ml-m2)]ul.

+ [(m1-2)(m2-2)t 4- 3(n-m1-m2+3)+3t(m1+m2-S)-ll(l-t)]pz'

- [(n-ml-m2-3) + (ml+m2+l)t]u3'} (l-t)_l

Other recurrence forms may also be derived, using linear

relations between hypergeometric functions. Using (2.1.lh)

again, one finds the relation

(2.1.19)

m m t
E inllml,m2,n;t}

=
1 2

 

(l-t)[E(nl [ml-1,m2-l,n-1;t)-(m1+m2-1)]+n

from which one can compute E'inllml,m2,n;t:} from smaller

values of m1,m2, and n.

As soon as pi is computed, we can obtain p2, u; , and a;

by substituting this value into the recurrence relations given

by (2.1.16),(2.l.l7), and (2.1.18) respectively, and once

these moments are known, p3 and uh can be calculated using

(2.1.9). The variance p2 could also be obtained using (2.1.12),

which asserts that

“$1337.“;-

An example illustrating the computation of the first four

moments about the origin, and the central moments p2,p3, and “h’

is given at the end of this section.

The procedure just outlined for computed moments is still

quite tedious, even for small values of m1,m2, and n. Therefore,

we now consider approximations for the moments.

 



 



 

   

   

 

  

   

   
   

 

  

    

   

   

   

Solving for p1 in (2.1.16),

and p1 takes the form

the relation between 92

(2.1.20)

' n-(ml+m2)(l-t)+ -(m1+m2)(l-t) +m1m2t
#1 = 2t-1 ' 2(1't)"" ' "2

where the negative square root is taken if t > 1 and the

 

positive root if t < 1. If t = 1, then we have

' m1m2

F1 = n ‘

 

Defining 11* by

 

 

(n)

(2.1.21)

2

+ - n n-(ml+m2)(l~t)
n-(m1+m2)(l-t)

m! met

l(n) ‘ mlm2 [: 2(t-1) + 2(1-t) + l-t

and J\(;) in the same manner, except the negative square root

replaces the positive square root, we obtain the inequalities

m

(2.1.22)(a)
u; S 7‘-(;)nm12

 

if t g l,

and

(2.1.22)(b) p; 2 1 (a) 3%22 12 t 1,I
v

using the fact that p2 2 0. It is easily verified that +

-

.h(n) and ' X(n) satisfy the quadratic equation in h(n)

l(;) are the roots of the equation)

ml _ m2 Elfg)

"<n)( "n— F?“ *(n) 2
n

(so that 1(;) and

= t, t fixed.
m m

(1-Mn)n—1)<1- Mum—g)
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If, now, we suppose that :1—1 -——> PA and

B
I
B

N

as n —> 00, then

(2.1.23)

4-
1 1‘(P +PB)(l-t)

" (n) m>m [7%

l(P +PB )(1-t)—

2t-l

  

    

2

 

'(P +PB )(l-t)

R (n)n———>oo> 37‘21)‘

PAPBIii-(P +PB)(1-t1]2tPAPB
- 4—“ +

2(t-1)

 

 

and 7s + and X- are roots of the equation

x (l—P -P RP P

(2.1.2h) A B+ A B) =

1(1— APA)(1- APB)

 

r’

We recall from section 1.2 that this constant arose in

deriving the conditional probability of n1, given

 

m1:m2,n, IMPA, and PB. The implication of (2.1.22)(a),(2.1.22)(b),

(2.1.23) is that

P'1 + .(2.1.25) 11m — g i PAPB if t g 1
n —> con

P"

. 1 — .
11m —n 2 R PAPB 1f tgl.

n—>oo





 

   

  

 

In the next section, it will be shown that the

equality sign holds in(2.1.25).

 

Hence, for ml,m2, and n

moderately large, "1' can be approximated very well by

 

m m

(2.1.26) 90:): 10:) I]; 2 if t g 1,

_ _ - mlm

9(n)- 1\(n) —n—2
if t 2 1‘

Furthermore, it will be proven that, under the same

hypotheses on the order of magnitude of m1 and m2,

_ n —1

(2 1 27) 11 ”2 Z 1
. .

m — =
—

n ->oon 1Ti

i=1

where

HI = KPAPB

172 = PB - K PAPB

1T3 = PA - A PAPB

7T1+=1-PA-PB+
kPAPB.

Hence, as an approximation to p2 we have

_’+ —1

A 1

(2.1.28) 112 = n '—'—

”1
i=1 _

where "i. is obtained from Tri by replacing PA and P]3 by

m m
+ .3']; and 11—2 respectively, and 7\ by h(n) if A _<_ l, and by

101) if 1 _>_1.
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For small values of m1,m2, and n, the approximation (2.1.26)

can be improved if we replace p2 by 32 in

(2.1.20),i.e., we approximate pi by

(2.1 .29)

A. = n - (m1+m2)(l-t) + n-(m1+m2)(l—t) + mlm2t - A
“1 ' 2(t-l) " " 2 t-l '1'-' "2

square root if t > 1.

If it is desired to approximate pg , p; , p3 , and “h ,

then the recurrence relations given in(2.l.l7)and(2.l.18),

together with(2.l.9),may be used with p; replaced by fii,

being sure to take the correct root . However, these

approximations, especially for p; and “n2 will not be as close

to the true values as 3; is to Hi : Since a very small

error in approximating “1 can build up to a sizable error

when p; is approximated.

where the positive squariZgg taken if t < l, and the negative

For small values of ml,m2, and n, (2.1.1), (2.1.10),

and(2.l.16)may be used to compute exact probabilites, moments

about the origin, and the variance, using tables of the

hypergeometric probability distribution. Roksar [19] has

four-place tables of the hypergeometric distribution for

selected values of ml,m2, and n, ranging to n = 100. To

approximate the moments,(2.1.28)and(2.l.29)may be used. We

now give two examples illustrating some of the recurrence

relations,approximations and other properties of the probability

function (2.1.1).



 

 



 

Example 1. we take m1 = 6, me

are given in Table VII

.003

 

=8nn=20,t=2.The

individual probabilities, accurate to nine decimal places,

Table VII

Pr {n1’6,8,20;2}

M89

 

.047 852

 

.209 356
 

.372 188

  .279 1H1

 

.081 20%

 

O
\
\
J
‘
1
4
7
w

N
H

O

 

 

.006

“1

“2

p3 = -.05019623

”h

767

Exact computation of the moments about the origin and

the mean value p; , using(2.1.10)and(2.l.9),yield

in the next section we will show that n

asymptotically normally distributed, as an indication of

the rate of convergence to the normal distribution, we compute

p.

= .002025 and 32 = —55 = 2.83061.

“2

= 1.07562k55

= 3.27h926h1
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These values compare very well with the values 0 and 3

for a normally distributed random variable. The two constants

fll and 32 are measures of the skewness and peakedness of a

distribution.

b Using(2.l.2l) we find that *(20) = .1553778, and

so as a first approximation to pi we have 6620): 3.l07556

From(2.l.28),we find that 92 = 1.018620, so that the improved

approximate value of pi employing(2.l.29)is given by

A.

p1 = 3.1hh265. The higher moments about the origin are

approximated by using the recursion relations between moments;

thus, from(2.l.l§%(2.l.l7),and(2.l.l8),we find successively 
‘{ that

15 i; = 10.9050

\2 fl; = 39.1503

\

E 3; = 10h.8391 .

Except for p;, the approximations seem to be adequate.

1 Example 2. Let m1 = 12, m2 = 15, n = 30, t = 6. The exact

\ probabilities Pr{nlll2, 15, 30; t} are given in Table VIII

The procedure for computing the exact and approximate values

was given in Example 1, so only the numerical data is present-

ed here.

 

1.. \





 

 

 

.0000

.0000

.0000

.0000

.0001

.0020

.0162O
‘
W
-
F
'
W
N
H
O

1
:

N

l

"3

9.099%6 "

8h.2822o a;

793.51303 0'

0000

0002

0016

068%

5827

8911

h86h

I

at = 7,58u.7u691 a;

31 = .ontsa

 

Table VIII

n1 Pr-{n1l12,1s,3o;6} n1

9.09660

= 82.HHOOO

= 791.03628

7,9h0.10768

B2 = 2.9h23t

Pr.{nll12,15,30;6}

.0752

.2051

.3190

.2650

.1032

.0137

 

0799

1270

6h21

6873

7353

6980

9(30) = 9.00000

p2 = 1.H8202

p3 = -.38066

7&(30)= 105





 

 

 

 

2.2 Limiting Distributions and Approximations

The asymptotic properties of the probability function

(2.1.1) will be of great importance in finding approximations

for both the individual probabilities and the corresponding

distribution function. In this section, three limit theorems,

(2.2.D), (2.2.E) and (2.2.F), are given for (2.1.1).

Since (2.1.1) is of the form

n(2.2.1) Pr-{nllm1,m2,n;t'}
= k(ml,m2,n;t) Pr {nllm1,m2,n}-t 1,

where Pr(nllm1,m2,n) is the ordinary hypergeometric function

as given by (1.2.6), and k(m1,m2,n;t) is the reciprocal of

the sum of 'Pr inllml’m2’n} tnl over all possible values

of n1, it would seem plausible that limit theorems for

(2.1.1) would follow readily from corresponding limit theorems

for Pr inllml,m2,n} . Three such limit theorems have been

established by Feller for the hypergeometric function.

Th. 2.2.A. (Normal Convergence: Feller [5], page 180).

m m

If n—l- —>r,r—1-2» -—>s,(0<r, 5(1), and

m m (n- ) (n-m )

> x , where h =\// 1 2 2 m1 2 ,

n (n-l)

 _ -1

n1 1an _

 

 

x

n1

then

‘1(2.2.2) Prinllmlmyn} N h #0511)

where the symbol "rv " means that the ratio of the two sides
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1

-— 2tends to unity, and 0' is the normal density (2v) 2 exp [%%— ,

Th. 2.2.B (Binomial Convergence: Feller [5], page 180).

m1 ““1If H- --> r > O, —E- -—-> l—r > 0, then for each

fixed m2

m n ‘(2.2.3) 11:: Pr {nllmrmyn} = (n5) r l (l-r)n12 n1 .

Th. 2.2.0 (Poisson Convergence: Feller [5], page 180).

 

In1““2
If -;;- --> v, 0 < v < 00, as m1,m2,n ———> 00,

then
n

.
e.v v 1(2.2.4) 11m Pr inllmlmzn} = n! .

I1

In the next few pages, similar theorems on convergence

to the normal, binomial, and Poisson laws will be proven

for (2.1.1), with convergence to the binomial and Poisson Laws

following almost trivially from Theorems 2.2.B and 2.2.C.,

whereas convergence to the normal density will be proven by

suitably modifying Feller's proof of the convergence of the

binomial distribution to the normal distribution.

Theorems 2.2.D and 2.2.E below are easy consequences

or (2.2.3) and (2.2.H), and are therefore given first.

n

 

Th. 2.2.D If gfi —-> r > 0, nm1 —> l-r > 0, then for

  



 

 

 



 

 

 

 

each fixed m2,

 

m
m2-nli P - = 2 (xIll—F1 - rn goo r{nllml,m2,n,t} (n1) tr4-tl - r) tr4- l - r

Proof: In proving Th. 2.2.B , Feller has shown that

n
m -nm m n l n- m -n 2 12 ( 1 _ 1) < E; _ 2 1)

(2°2'5) (n1) n n n n

 

<1» {simian} <<m2>e>nl<ngmlfaml<l 12)n1

{nlimymzm} tn1

Prj,m,ntj’Z {'n 2}

the following two inequalities, using (2.2.5). are obtained:

Since Prgn1;.m1.m2.nt}:

n
1 n n n

(2.2.6)(a) Pr {nllmymymt} >

(2.2.6) (b) m2-n

n1
(m2)(m1t - lt> (n-ml - m2-nl

n

m.)).

g Gastfefifijé- 1'

 
Pr {nllml,m2,n;t} <

 
 

(::)(3§)n1 (131) 1(1 - 33—2)

232890,? - ‘31:) J03“ - “TV

For each fixed m.2 both of the sums in the denominators in

'J

1

”n1

 

i



 

 

 



   

 

.
.

.
.
-
.
_
_
_
_
—
.

 

 

(2.2.7)(a) 112mm lPr{n1|m1.m2.nst}

{(39 use) -1.)2]
Similarly, it is easily shown that

V (2.2.7)(b) lim Pr'in1lm1,m2,n;t}<

n->oo

Thus, (2.2.7)(a) and (2.2.7)(b)

 

result.'

m m t

Th.2.2.E If 4—2——- = vn —> v,
m1t+n-ml

m1,m2,n > 00,

then
n

'V 1

Lim Pr-in lm m ,n°t = 2—-X—-n_>oo l 1’ 2 ’ } n:

mlt

Proof: Let pn =Eitifitfi‘ .

Pfi‘—-> 0 in such a way that m2pn -> v, and the Poisson

limit theorem for the binomial distribution implies the

conclusion of the theorem.

One would probably suspect that convergence of (2.1.1),

(2.2.6)(a) and (2.2.6)(b) are finite and positive, so that

(3%) (rt)nl(1-r)mz-nl

 
 

Z<?2)(rt)j(1-r)m2-j

J

<($ <rt+1-tr)n1(rt+1-rfi

imply the desired

(O<v<m),as

Then the hypotheses imply

  



 



   

 

 

 

 

suitably normalized, to the normal density would follow

directly from Theorem 2.2.A, according to the heuristic

argument below.

write (2.1.1) in the form (2.2.1), and replace

Pr-{nllm1,m2,n}- by its asymptotic equivalent normal form,

i.e., replace Prinllmlmzm} by the ordinate of a normal

 

and variance

m1m2distribution with mean n

2 = mlm2 (“‘11) (n-ma)
V

obtaining

n2(n—1) ,

(2.2.8) Pr 3 n1|m1,m2,n;t}ru k(ml,m2,n;t)

mlmz)

 

Ill—Eml-

1

4/21rh

n log t
e l

 

e

Completing the square in nl in the exponent and integrating

to determine the constant k(m1m2,n;t) , one would obtain as

an approximation,

_ 2

n1 (5

h

 

l_ §(

 

(2.2.9) Pr {n1Im1'm2’n’t}~./':'1r h

 

m m

where ‘61 = i 2 + h2 log t, so that for large values of

mlsm2 and n, nl would be approximately normal, with mean {1

and variance h2.

  



I
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This is purely an heuristic argument, but at first

sight it seems plausible that a limit theorem could be ob—

tained using the above as a rough outline. That this is not

the case, however, is evident upon further consideration. If

the above procedure were valid, than the same procedure

applied to a binomial random variable should also be valid.

However, if the binomial probability law is modified in the

same manner that the hypergeometric law was modified, one

would have

(k)pkqn-k tk

Z (1;) p3 qn-a' t3

 (2.2.10) Pr-ék;n,p;t}=

i=0

2

”1.13221.

2 c-
- 2

Since (n) pkpn k “J -::%-— e , r = nPQ.

J 2n r

one would find, following the procedure outlined above, that

2 2

_ l (k-n -a- 10 t)

1 2 r2

(2.2.11) Pr {Inn,p,t}~———— e

M 2n r

i.e., k would be approximately normal, with mean and

variance

2

K=np+¢zlogt . 6' =npq



  



 
 

 

 

 

  
But, (2.2.10) can be written as

(2.2.12) Pr {k;n,p;t} = (§)(p—tEE—) k (5%,?) HI .

and it follows from the well-known limit theorem for the

binomial distribution that k is asymptotically normal

with mean

 

X; = -%£§—- and variance 0'2 = npqt 2

p q (pt+q)

Comparing the two means '6 and X2 and the two

variances «22 and c‘2 , one has

2
L_Lvtgq)[1+glogt] L2_(pt_+_q)__ t , -

2 2 t

’2

so that If and 0'2 will depart monotonically away from

the true mean and variance as t varies away from 1. In

the neighborhood of t = 1, however, the results are not too

dissimilar. It will be seen later that a similar result is

obtained for the modified hypergeometric probability law. For

very small values of t, the heuristic approximation (2.2.9)

gives absurd results. For example, suppose log t < - h,

n
and m1 = m2 = 2 . Then

79= E + $1 10g t = n[.25 + .0625 log t] < n(.25 - ..25) = 0,

SO that an everywhere positive random variable would have a

negative expection, which is impossible. Nevertheless, the

approximation (2.2.9) has been used on at least two occasions

  



 

 



  

 

 

in approximating a power function; once by Moore [13] and

again by Patnaik [1%] in deriving an approximation to the

power for the test of independence in the 2 x 2 comparative

trial. Patnaik's approximation will be discussed later in

section 3.2.

The crux of the matters discussed above is that an

alternative approach towards finding the correct limit theorem

corresponding to Th. 2.2.A must be adopted. This will be

, accomplished by following Feller's argument in his normal

rapproximation to the binomial.

The asymptotic distribution could also be obtained by

using a theorem due to Steck [23, Th. 2.2, page 2H8], but

the following argument is less difficult and more direct; in

addition, it gives an asymptotic formula for the individual

terms. Before proceeding to the derivation, however, it will

first be necessary to observe that Feller's binomial limit

theorem can be stated in a stronger form than is usually

given.

I
H

Putting h = (npq) 2 and xk = (k-np)h, Feller's

binomial-approximation theorem asserts that b(k;n,P).A)hfl(xk)

if n -—>oo , and k -—>00 in such a way that hxk3 --> 0,

and where p is held fixed. However, if p is free to vary

but still hxk3 -—> 0 as n ->oo , k ->u> and n-k -—>oo,

Feller's theorem still holds since the proof remains the same,

except p is to be replaced by pn, h by hn = (npnqn) 2 ,

and xk by (k-npn)hn. In the derivation of the asymptotic
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formula for the individual probabilities Prgnl\m1,m2,n;t}

below, the quantities p1 and 132 to be introduced are not

fixed, depending on n , but the notation will not show this.

The quantity t in Pr inlIml,m2,n;t} is a positive

constant and independent of m1,m2, and n. Write

Pr {nllm1,m2,n;t} in the form

b(n ;r ,p ) b(m -n ;n- ,p )

(2.2.13) Pr {n1|ml,m2,n;t} = 1 “1 1 2 1 m1 2

E: b(nl;m1,pl) b(m2-n1;n-m1,p2)

n1

\ mm;“3W

2 zeta-ma“
1: n1

  
piqz

where p1 and p2 are chosen so that -——=t and

P2q1

!

‘; m2 = mlpl + (n-ml)p2.

\- Letting l

N
I
H

2
2 _

(2.2.1)-D h1 = (mlplql) , h2 = [(n-m1)p2q2] , h « hl + h2

xl,n1 = h1(n1-mlpl), X2,nl = h2[nl'(n'ml)p2]!

Xn1 h(n1-mlp1)

  





 

 

 

and noting that since 1112 - (n-m1)p2 = m
1P1 ’

(2.2.15)
X2’m2_n1

= h2[(m2-n1)
-(n-ml)p2]

= ”1120111" lpl),

two applications of the extended Feller—binomial-approximation

yield

(2.2.16) b(n13m12P1)b(m2'n13n'm1’p2)’NIh1%(xl,nl)h2d(x2,m27n1)

as h ->O, hxg -—>0. This is true since h1 g h, so that

l

 

3 ____ 3 3hxn1 >0 obviously implies h1x1,n >0 and hx2 __>0.

1 'mz‘nl

Conversely, if hlxi n —-->0, and hzxg m _n--->0, then

’ 1 ’ 2. l

3 3 1393 3hxnl ——>0 follows from hlxl,n1 - hl (11 xnl

h 3
3 _ _ (_2) 3

and h2x2,m2_n1 — h2 h xn1 , and the fact that

h -—>o <::::j> hl and h2 ——>o. Using the definition of

h and (2.2.15), (2.2.16) is easily transformed to

l

(2.2.17) b(nl;m1,pl)b(m2- 1;n-m1,p2) N (2n) 2 h1h2 ,5 (xnl)

Ix ,,
i i,nl

and hence I

' - h

(2.2.18) (2w) 2 @ b(nl;ml,pl)b(m2-nl;n-ml,p2)N h if (xnl)

as h,hxi -—->0. Just as in Feller's treatment of the

1

binomial case, it follows that

 





   

F
w
y
-

 
 

~6h-

p 1

5 _h_ . .(2.2.19) 2 (277) 111112 b(n13m11Pl)b(m2‘nl :n'mlapz)

n1: 0(

B

NZhfi{(xn)N§(x 1)-_§(x 1)

c1 1 3* 5 °“ 5

as h, bx; , MB3 —> 00

Thus, if there exists tails n:L < ex and n1) B, with

X
3_ _ ___. 4.

: > oo xB > 00 while still hx and

th3 --> 0, such that the sum of the left handlside of

(2.2.17) over these tail values converges to zero, then

$- h
2 (21r) F132 b(n1;m1,p1)b(m2-n1;n-m1,p2) —> 1, and so

n1

(2.2.20) Pr {rill m1,m2,n;t} n) h d(xn1)

as h, hit:

1

 

>0.

But if B > mlp1 and is such that XB --> 00 while

hxp3 —> 0, then

2 b(nl;m1,p1)b(m2-n‘l;n-ml,p2) < b(Bimlml) X b(m2-n1;n-m1:P2)

< b(Bgm1,pl)~ hlp'(x1,fl), and therefore  
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1
‘ h

(2.2.21) ES (2")2 5132 b(n13m1,p1)b(m2—n1;n-m1.p2)

nl>B ‘

i A hl
«210 t: mxmxmnfiu + E ) mm) —> o,

1
. 5 h

l- and similarly for Z (21f) F171; b(nl3mlip1)b(m2-nlin-m1:P2)o

n1< 0L

Therefore (2.2.19) is established.

5 The remaining question, since (2.2.19) is expressed in 
 

\

terms of m1,m2,n, and t only thru the parameters p1 and p2,

1 > o inis to try to interpret the conditions h, hxf’1

terms of m1,m2, and n for t fixed in (0,00).

\' The condition h % 0 clearly implies that hl and

112 -—> 0, or mlplql ---> co and (n-m1)p2q2 --> co, and

therefore mlpl, mlql, (n—ml)p2, (n-ml)q2 —> 00. But then

7 m2 = mlpl * (n‘m1)P2 7") a’

i and

1 (n-m2 = mlq1 + (n-m1)q2 ——-> oo

‘ Conversely

“ m‘2 —> oo‘<’—_=) max. [m1p1, (n-m1)p2] —> a)

1‘ n—m2—> 00 :) max. [m1q1, (n—m1)q2] -—> oo  





 

_
_
—
-
—
-
.
—

-
-

 

 

P q
and with t held constant and equal to 1 2 , if m

and n-m2 —-> 00 then either m

 

 

p2q1 2

lplq1 or (n-m1)p2q2 -—> 00.

Finally, if both m1 and n—m1 --> oo , then obviously

mlplq1 and (n-m1)p2q2 -—-> 00.
Hence, it remains only to

determine the values of n1 such that hxn 3 --> O, or

1

3
h x _ > 0.
2 2,m2 n1

In general it may be rather

equivalently, those n1 such that both h x 3 and

\

l l,n1

difficult to determine the

values of n1 for which hxn 3 -—-> 0 , but for the important

1

special case when m1 and m2 are both of the same order

of magnitude as n , it is very easy. Thus, suppose

El > P
n A ’

plq

 

> PB.
 Then the two conditions,

t = “—g (0 < t < co) and m2 = mlpl + (n-m1)p2 imply

l
qu

 

2— n __ 2: n —>C

nhl - m1P1Q1 > c1 ’ nh2 (n-m1)p2q2 2 '

where c1 and c2 are finite positive constants and consequently

3 __ m1
hxnl = h1+(n1-mlpl)3 — [(B-plql)

3

n

and hence hx

3
2_ n-m _ (n - p )l + [0‘a‘l’P2q2] ] __l_E%_l__

n

——9 0 if and only if -l-§-—l- -—-> 0,

1
I1



 



  

 

 

 

 

which is the same condition as in Feller's binomial case.

The above results are collected in the following theorem.

Th.2.2.F. If «1 and {31 vary so that th3 —> o and
1

‘31

Pr inl|m1,m2,n;t} u h d (xnl).

uniformly for all 0<1 < n1 < B1 , and

‘31

(2.2.22) Z Pr-{nllmlmlz’nflz} N Q(x51+ l) " @(X o(1_% ).

n1= °<1
2

The last assertion of Th.2.2.F follows exactly as in

Feller. Finally, it follows, again as in Feller, that for

every fixed a < b,

(2.2.23) Pr {a g h(nl-mlpl) g b} —> § (lb) - t (a).

The quantities p1 and p2 have not yet been expressed

in terms of m1,m2,n, and t. Solving first for p‘2 in terms

01‘ p1 and t, one has p2 = p1(p1 4- qlt)-1, and then

solving for p1 in the resulting quadratic equation

'1
m2 = 1111131 + (n-m1)p1(pl+q1t) , it is found that

-1
7\ + m2 m A + m1 m1

(2.2.219 p1 = 49..., p2 =<n_2) <-_JnnL 1'?—

 



 

 

 



 

   

 

 

 

+

(n)

if t < 1, Elf t > 1, 7%; is to be replaced by Rub] where Z

and ;K(n) are given by (2.1.21), and satisfy the equation

, 1 _ ii _ i .,&)
up n n

. Routine algebra

( _ A2m1>2<1_ firs—"12>

 

 

, shows that. putting 6‘2 = h—2 . omitting the + and - signs,

1+ -1

(2.2.25) o—2=n Z —l—,—

1Ti
i=1

Where "1 =7‘(n)(£n])(:3’")2'=(:1il)< ‘ 7\(1'1):_2 ,

_m2 ,_ m1 m2 1m2

”3' (n)( ’ M?) and "1. ~1'a‘"n—* ”(MGLXH‘

so that the asymptotic mean and variance, expressed as

functions of m1,m2,n, and t, are given by

A m

(2.2.26) 9 = mlpl = 4%.1—2 and r2 = n 1
(n)

 i
1:

m1 ”‘2
Therefore, if H— —> PA , H- —> PB ,

  





  

 

 

 

 

 

O
i, __1

(2.2.27) lim g}— = AtpAPB, lim E3 = 1 ,
n ->oo n -->00 11 1T1

i=1

where ,A = 11m .A verifying the assertions made in
n ->oo (n)

section 2.1 in equations numbered (2.1.25) and (2.1.27),

with #1 as defined in (2.1.27).

Finally, in concluding this chapter, several approxima—

tions to the probability function (2.1.1), based on the limit

theorems established above, are given below. If n is large,

m1
and h— = r, with m2 small as compared to n , then the

binomial approximation

m n m -n, 2) rt 1 1-2 2 1(2.2.28) Pr {nllml’m2’n’ti}~(nl
(rt+1'r) (rt+l-r)

tmm

1 2
should be suitable. If g1 is small and vn = m islt+n-ml

0f moderate magnitude, then the Poisson approximation

'Vn n1
9 V

(2.2029) Prinl m1,m2,n3t} N n1!

may be used. Finally, if m1,m2,n-m1, and n-m2 are all

moderately large, then the normal approximation

- 9
1 1 n1 (n)

(2.2.30) Pr-inllm1,m2,n3t} AJJngrzl exp - 2 ___;r———-

  





 

I will give satisfactory results.    
It is recommended that Patnaik's approximation not be

used.

 

 





   

 

 

 

Chapter 3. Power for the Test of independence

3.1 2 x 2 Independence Trial

In all subsequent discussion of power functions, the

power will be evaluated for the unbiased test described in

section 1.5.

For the 2 x 2 independence trial, the exact power of

this test is given by

nl

w(m1’m2) (mi)(mm2m;) t

2 (39623559
n1

2: Pr‘inllml,m2,n} tn1

(3-l.l) PD(2,
 

A’P"13””1'n‘12)

 

 

n§w(ml,m2)

n

:E: Pr {nllml,m2,n} t 1

n1

A(1-P -P +APP)
A B A B

=
and w( ,m ) is the

where t (l -APA)(1 ’M’B) : m1 2

region of rejection of Ho , for fixed m1 and m2 , defined

by equations (1.5.6) and (1.5.7). The notation Pn(t Im1,m2)

  





.
‘
—
V
,‘
4

 
 

  
'
r
V
-
v

.

 

will also be used to denote the power function in the

2 x 2 independence trial, since it is much easier to

tabulate power as a function of t.

Using tables of the hypergeometric distribution,(3.l.l)

is easily evaluated for small values of the parameters.

Notice that

(3.1.2) Pn(7t,PA,PB,ml,m2) = Pn(7\,PA,PB,m2,m1)

Pn(A ’PA,PB,n-m1,n—m2)

using the symmetry of Pr‘inllml,m2,n}-.

When n is large, and m1 and m2 are both fairly

large, the computation of (3.1.1) becomes laborious. There-

fore, there is a need of approximating this expression.

Fortunately, such approximations may be immediately obtained

from the corresponding approximations to Pr'inilml,m2,n,}t} .

If all of m1,m2,n-m ,n—m2 are large enough to require

approximations, but are of moderate magnitude, then the

II n

normal approximation (2.2.30) may be used. Employing a %

factor for continuity, this approximation becomes

(3.1.3)

a- -e
Pn(A,PA,PB,m1,m2) N¢ <

n

q
N
I
H

+8113) a+%-9‘n) -9 (a- %-e§n2]

l l — -9
b+z -9(n) b 2 9( __(n>,(_......)-t( , Libi—
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1 l
a+—-9() b-I- —-Q

)+ £1¢< 3- n)_ (1- £2)¢ 3- (n)

 

=(1- 61) d) a- 5

l

-s2¢b_2‘_9_(n)
O"  

 

where a, b, 81, and 62 are determined by equations (1.5.6)

and (1.5.7), and em) and 0'2 are given by (2.2.26).

If m2 is small compared to n, the bin0mial approximation

(2.2.28) can be used, while if both ml and m2 are small

relative to n, the Poisson approximation (2.2.29) is suitable.

The summations may be performed with the aid of tables of the

computations of the power function are included for the

Poisson and binomial approximations.

One can also approximate the power for the test of

.r independence by using the test procedure described in section

1.6, based on assuming a normal approximation under the null

hypothesis. The test consists of rejecting Ho when lul) u

M
I
R

incomplete beta function or the incomplete gamma function. No

\

where u and ucfi are defined by (1.6.4) and (1.6.5)

2 respectively. Evaluating the power of this test assuming the

normal approximation (2.2.30):fim (2.1.1), yields

(3.1.1).) Pn(A,PA,PB,m1,m2) N

m

hues +(1' A “hu§+(l‘ h(n) )fl'n_‘2

1-¢ 2 0. -¢ 2 ,
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(n-m )m (n-m )

where h2 = El__§_l__2____3_ , ;\(n) is given by(2.l.21),

n (n-1)

and a— 2 by (2.2.26).

Exact values have been computed from (3.1.1) for various

values of m1,m2,n, and t, and compared with approximate

values from (3.1.3) and (3.1.h). These exact and approximate

values may be found in the appendix in tablesIh3.l, D.3.2,

and'ID.3.3.

In section 3.h there is further discussion of the power

function (3.1.1) including the relation between the power

function for the 2 x 2 independence trial and the 2 x 2

comparative trial and double dichotomy. In Chapter h, the

adequacy of the approximations (3.1.3) and (3.1.h) is

discussed.

 
 



 



  

 

 

3.2 2 x 2 Comparative Trial  
The probability distribution of the sample point

(3.2.1)

Prin1,m2|m1,n,l,}=(m
1)plnll(l-p )ml-n1(n2: m1) p2m2

n-m -m +n

PB(1 -l P )

where p1 = 1 PB, and p2 = --I-:-§;A* °

Using the unbiased test procedure discussed in section

1.5, the exact power function for

Ho: p1 = p2

p1<1—p2) 1(1-pA- B+ x PAPB )

p2(1-p1) = (1-1AP:)(1- APB) ’15 7‘ 1

  H1: p1 % p2, or, since t =

is _n

(3.2.2) Pn(7\ ’PA’PB’ml) = Z Z Pr inl,m2ln1_l_,n,7\ 3',

m2=0 nl ewm1(m2)

where wm (m2) is the critical region with m1 fixed. It

1

is convenient to use the notation Pn(l.,PA,PB,m1) to denote

the power function, but the notation Pn(p1,p2,m1) will

also be used to indicate that the power function is a function

0f p1 and p2 when it is desired to think in terms of the

2 x 2 comparative trial by itself.

 





   

 

 

 

Since

(3.2.3) Pr {m2'm1.n, K}= Z Pr inl,m2lml,n,7\}

. n1

m m n-m -m
n_ l 2 l 2 n -m 1- (l-p ) p (l-p ) E m1 ( 1 t1 2 2 (n1) m2-nl)

n1

and

(3.2.11») Pr invmzlmlm, x}: Pr {nllml,m2,n,R}Primz‘mlm, K}

where Pr finl'mlmzm, A} is given by(l.2.5), one sees that

the expression in (3.2.2) for the exact power function may

be rewritten as

(3.2.5)

n

Pn(1\,PA,PB,m1)= z Pr {mzlmrm X} Z Pr inl|m1,m2,n, L}

m2=0 n1 8 wml(m2)

n

= E Pr im2lml,n, R} Pnu’PA’PB’ml’mZ)

m2=0

where Pn(x,3A,BB,ml,m2) is the power function in the

2 x 2 independence trial.

This last form of the power function is interesting but

nOt very useful for computing. In dnguised form, (3.2.3) is

the convolution of two independent random variables X and Y

with x and Y distributed binomially b(n13ufi.Dl) and

b(mZ-n1;n-m1,p2) respectively.
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It is thus seen that either one must evaluate the exact

power function by forming sums of products of binomial

} probabilities, or by finding suitable approximations. The

tabled exact values in the appendix of the power function

(3.2.1) were computed by forming such sums, and three

approximations are suggested below; the first has already

appeared in the literature, whereas the last two have not.

First, there is Sillitto's approximation (1.7.21) which

is repeated for the sake of completeness. Letting

 sin“1 J p2 - sin."1 4/ p1

C(p19p2aml) = 1 1

- - —— + -l-—
2 m1 n-ml

Sillitto's approximation is

2

ui-C(plapzsm1) _Y?

1

4/21T

 

fig: C(p1.p2.ml)

2

a. where the angles are measured in radians.

A second approximation which is considerably easier to

i evaluate than Sillitto's but perhaps not as good may be

obtained as follows.

1 x -x
n m2-n1

‘ Letu=-;_;x—-x—2-,wher
e
xlzfi’x2zfli’

and

1'2
\

\

P P q P ' P

\ «2- “4312—2 .ThenEcu)=.L_2:,v(u,=l

If H0 is true, E(u) = 0. Assume that u is normally
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distributed. If H0 is rejected whenever Iul > ucy , then

 

2

an approximation to power is given by

1124. -E(u) _ t_2

(3.2.7) Pn(p1aP2,m1)N 1- 2 1 e 2 dt
‘ ~‘2w

2

To Obtain the third approximation, we assume the normal

approximation (3.1.h) for the conditional power function

Pn(A,PA,PB,ml,m2) and expand it as a function of m2 in a

Taylor Series about the mean if of m2 , where

X = mlpl + (n-ml)p2. Then from (3.2.5), one has

n

(3.2.8) Pn(x,PA,PB,ml) NZ Pr im2 m1,n,x} En(X,PA,PB,m1,‘o’)

m2=0

   
ll 2

P (lip ’13 9 220011 -3) ‘
' x n A B m1 2 ,

+ Pn (xipA2PB’mlix)(m2'-X)+ 2! +000‘ 

II 2

P (X’RA’PB’m ,X)r 1

n l ...Pn(x,PA, B,m1,b‘) + 2! + 

2 .
where f = mlplq1 + (n-m1)p2q2, and Pn(j)(k,PA,PB.m.X) is

the jth derivative of Pn(2.,PA,PB,m1,m2) evaluated at m2 = X .

Then as a first term approximation, one has

(3.2.9) Pn(R,PA,PB,ml)/v Pn(}L,PA,PB,m1, X).

It will be recalled from section 1.7 that Patnaik also

gave an approximation to the power function. In view of

Theorem 2.2.F and the remarks preceding and following the

proof of the theorem, it is seen that there is considerable
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doubt as to the validity of the approximation. Perhaps the

approximation can be justified on the grounds that as the

sample size gets larger one is interested in only those

values of t near one (since for any fixed value of t the

power of the test for independence tends to l as the integers

1111 ——> a>,n -—> 00, which means that the test is consistent),

in which case the mean and variance of Patnaik's approxima-

tion to the conditional distribution of n1, given m1,m2,n,t,

may not differ significantly from the true mean and variance.

Nevertheless, there is nothing in the way of simplicity in

his approximation which recommends its use over (3.2.9),

which is based on sound considerations.

3.3 Double Dichotomy

For the double dichotomy classification, the probability

of observing the sample point (n1,m1,m2), given K’PA’PB’

and n, is

(3.3.1) Pr-{n1,ml,m2 In,z.}

PBCL' X P )
A

= b(m;n,PA)b(n1;m1o3»PB)b<g2'n15n'm1’
(1-pA)

and the exact power function for the test of independence,

given in section 1.5., is

(3.3.2) pn(x,pA,pB)= X Z Z Prin1,m1,m2

m1=0 m2=0 nIEwml’m2

 
n,k:}
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where Vm1,m2 is the set sum

the critical region for fixed ml and m2 as determined by

(1.5.6) and (1.5.7). Since

mijLZ w(ml,m2) with w(m1,m2)

(3.3.3) Pr {n1,m1,m2 ln,)\}= Pr {mllPAm} Prin1,m2lm1,n,7t} .

m n-m
where Pr fiml IPA,n} =(31) PA1(1-PA) 1 and Pr inl,m2lml,n,)t}

is given by (3.2.1), with p1 = 7LPB and p2 = E§£%;;:EAZ ,

it follows that (3.3.2) can be rewritten as

n

(3.31» pn<x,pA,pB) = z pr{mlln,pA} Pn(?x,PA,PB,m1)

m1 = 0

with Pn(R,PA,PB,m1) given by (3.2.2).

Thus, the power function can be evaluated by weight-

ing the power function in the 2 x 2 comparative trial

with binomial probabilities. However, even for n quite

small, exact evaluation of (3.3.2) is very tedious, and for n

moderately large the computation of (3.3.2) becomes pro-

hibitive.

With the aid of the Michigan State university electronic

computer, exact values were computed for n = 10,20, and 30,

with PA and PB assuming the values .l,.2,.3,.#,.5. PB 5 PA’

and with x = .1,.2,.3,..., -%— , with the exception that
A

for n = 30 exact values are not available for PA = .2, RB = .2;

PA = .2, EB = .l; and PA = .1, PB = .1. These exact values

 



 



 
  

 

are given in Appendix A.

 

In section 3.h, it is shown that the ratio of

PnQ’PA’PB’mlfl and Pn(k’PA'PB’ml’m2):l ml=nPA

ml=nPA — Pm2—n B

converges to l as n -> oo,and also the ratio of %1(X’PA’PB)

and Pn(k,PA,PB,ml,m2)] m1=nPA goes to l as n ——> 00. This

m2=nPB

suggests several approximations for Pn(k,PA,PB), namely,

the exact power function Pn(h,PA,PB,m1)] m1=nPA in the

2 x 2 comparative trial and any of the three approximations

in 3.2 for Pn(R,PA,PB,m1)] m1 . Also, one may use the
=nPA

exact power function Pn(A,PA,PB,m1,m2)] ml=nPA for the test

m2=nPB

of independence in the 2 x 2 independence trial.evaluated for

marginal totals equal to the expected values of ml and m2, as

an approximation.

In appendix D.1, Pn(R,PA,PB)3 Pn(x:PA:PB’m1)] ml=nPA

and Pn(h,PA,PB,ml,m2)] m1=nPA are compared for several

m2=nPB

values of n’PA’PB’ and A . Finally, one can use the normal

approximation 3.1.h, with. h(n) replaced by R . Thus, as a

very easily computed approximation to Pn(R,PA,PB), we have
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(3.3-5)

—u‘xh+(1- 7L)nPAPB udh+(1— 7\)nPAPB

Pn(7L,PA,PB)rV¢ 2 + 1 - (b 2
0‘ 0'

The approximate values given by (3.3.5) are compared

with the exact values as computed from (3.3.2) for a large

number of cases, and judging from the simplicity of the 
approximation and the accuracy, (3.3.5) should be quite.

adequate. These comparisons may be found in appendix D.
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3.h Asymptotic Power

We shall be concerned in this section with an investi-

gation of the asymptotic power function for the test of

independence in the 2 x 2 independence trial, the 2 x 2

comparative trial, and the double dichotomy. The results

which are to be presented in this section are not surprising,

but rather they confirm what statisticians have believed for

some time about the nature of the power function for the test

of independence in 2 x 2 contingency tables for large sample

sizes, i.e., that there is probably very little difference in

power for the test of independence in the 2 x 2 independence

trial, the 2 x 2 comparative trial, and the double dichotomy.

Thus, our main contribution to the theory of the 2 x 2

contingency table given in this section is the limiting

power function for the test of independence in the 2 x 2

independence trial. It follows almost trivially from this

result that, asymptotically, power for the test of independence

is the same for each of the three possible experimental

situations leading to the presentation of data in the form

of a 2 x 2 contingency table. In turn, the limiting power

function in the 2 x 2 independence trial is almost a trivial

consequence of Th.2.2.F on the asymptotic distribution of the

conditional distribution of n1, given m1,m2,n, and t. The main

results of this section are contained in Theorems 3.h.A and 3.k.B.

  



 



 

 

  

 

 

We recall that the hypothesis of independence takes

the form Ho:t = 1, while any alternative to independence is

given by H1:t % 1; Ho and H1 may be expressed also by'Ho:5\= 1

vs. 111:3}! 1.

Under the null hypothesis (by Th.2.2.F) the conditional

distribution of n1, given ml,m2, and n, is asymptotically

m m (nem )m (n-m )

2 and variance h2 = E:;__.%?_ii___ii_

n (n-l)

 
normal with mean

if the conditions of Th.2.2.F, with t=l, are satisfied.

This implies that, asymptotically, the unbiased test for

independence described in 1.5 consists of rejecting H0 at

level CK if

m

n1-——mgz

u= T— 211w
"2’

The main tool in studying power for large samples will

be Th. 2.2.E on the asymptotic distribution of 111 under the

alternative hypothesis that t #'1. If t > 0 is arbitrary

but fixed, and the conditions of Th. 2.2.E are satisfied,

then it follows that.

 

 

 

 

l 2

.-u&h+ n -mlp1

2

(3ehol) Pn(t|m1,m2)rd ¢ r
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1 2

+ l ‘ ¢ 2 f’ 9
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2 l l 1 ’
wh = + and and areere 6‘ mlplql Zn_ml)p2q2 5 131 p2
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p1(l-p2)

determined such that t = my 1 m2 = mlpl + (n'm1)P2°

Here the assumptions of Th. 2.2.F require that

m m 3
l 2

(11% h+-—-—-n -m1p1)

U"

 

1
as r- -—> 0. We shall limit ourselves to values of

m1,m2,n, and t for which (3.1+.2) is satisfied, since this

will cover most cases of interest.

If t is kept fixed as ml,m2,n -->oo, then for fixed

level of significance on it turns out in the cases we shall

examine that the power of the test for independence tends to 1.

In order to examine the situation in which the power is not

close to l in large samples, we must either let the significance

probability decrease to O as ml,m2, and n increase, or consider

a sequence of alternative hypotheses converging to the null

hypothesis. We shall discuss the second case. In the 2 x 2

independence trial, we shall let t -—> 1 in such a way that

MPH (l-t) -—> c, where c is any arbitrary but fixed constant,

and for the 2 x 2 comparative trial and double dichotomy, we

shall let 7L —> 1 such that a/‘r'f (l—X) converges to a constant.’

Before proceeding to the main results of this section on

asymptotic power, it will be necessary to first note that the

assumption that t is fixed in Th. 2.2.F is superfluous, as

1
long as a- -1 —-> O and r_ X}? -> O. In all that follows it

1

PB’ and A are positive; also, theis assumed that t, PA’

quantities p1 and p2 used in the proof of Th.3.'+.A depend on

 



 



    

 

 

 

m1,m2,n, and t but this dependence will not be indicated by

the notation.

Th. 3.h.A. For all real numbers a,b(o < a,b < 1) such that

  

m1 - na f ( ) m2 -’nb ( )
----- g n and ---—-—- g f n where f

Vna(1-a) 1 an(1-b) l 2 ’ 1

and f2 are such that n f1 -> O, n % f2 -> 0, we have

 

(3.k.3) Pn(tlml,m2i] n-——>oo > ?(-uo(+ S) + l - @(u°(+ S).

t=l:g_ 2 2

~65

where S = M ail-aSbZI-b5 c .

Proof: First we note that the hypotheses of the lemma imply

m In

El _+> a , _g ——> b. We will show that

n

m1m2

ugi h + n - mlpl

2

 

 _>ud+s, l
2

(3.#.%)

where p1 and a are as given in (3.h.l). Since t is assumed

to be positive, the choice of p1 and p2 such that

' ELSE ‘ l d — m + (n-m )p
t ‘ ‘ ‘° an m2 ‘ 191 1 2

2
implies p1,p2,q1 and q2 are positive so that a~ -——> 00. It

will be shown below that (3.h.2) is satisfied, so that (3.h.l)

holds. To establish the theorem it is only necessary to show

that (3.h.h) holds.
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_ p1‘12
Puttin t = l - 3L ' ' —-

g #3 pqu , it is clear that as n ><n ,

 

  

 

I pl-p2 |-—> 0, so that using the fact that m2 = mlpl+(n-m1)p2

and E— -—> a, E— -> b, it follows that pl,p2 -—-> b,

and therefore, since

_ c ‘1

“2h '71,: ’
vnpqc

Vn(p-p)=———l--1— --—>b(l-b).
2 l "E _ c c

-l

 

f A130, from the above, it follows that

 

ELE ' n + n '-—-> a(l—a)b(l-b)

n mlplql (n‘m15P2q2 '

Therefore
1

‘ u h E“ 1

1 %% uc‘ 1111(n—ml)m2(n-m2)cr2 }

; f n (n-l) n 7?

and }

 
m m m \

l 2 —1 _ .1 _ _ -l

L n ' m1131] °‘ ‘ n [:mlpl + (n m1)1’2 np1]" 

N
fl
d

-

l
m -m

2

.2.

- 1 1 r
_

- - O

_ (IT) (“n )(n ) “Fl-(92 P1) —> [8(1 a)b(1 b)]

we have thus GStabliShed (3.1+.’+). It follows immediately

that (3.h.2) holds, so that the theorem is proven.

We now consider a sequence of 2 x 2 tables with fixed

marginal probabilities PA and PB. Applying Th. 3.H.A. with

 



 



 

   
A(l-PA-PB+APAPB) ’ 7t: 1 _ £—

(l-APA)(1-7x13gf ME ’

a = PA’ b = PB, and t =

we have that, upon rewriting the expression for t with }\= l— 4-.

ch

i -L i

 

 

i n ‘ 1 ' a

-_i
and VéK(1 t) > QAQB ,

(301*05) Pn(A’PA’PB’ml’m2)
y
|
_
J L

*
9
"

C

N
W .
0

’
1
'
.
)

2
0
b

\
‘
1
/

corollaries:

}

Corollary 1. For all values of m
g

l

w

‘ We immediately infer from Th. 3.N.A the following two

such that

\

  

l

where n 3 fl(n) -> O,

F .

P P
1

g
__ _ 43.12 i

t
___sL

A—l/fi 
P P

+1-4)u+\/-A-Bd e
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Corollary 2 .

 (3.l+.7) an ’PA’PB):|

P P

> _u + fl d

4’ % VQAQB 5

P P

+l-¢u3£+\—Q-:§d ,

2

:1-

94
.

Th. 3.1+.A also shows that the limiting power function

2 2

for the 7‘. -test for independence is the non-central 7C -

P

A B d2, assuming 
P

distribution with non-centrality parameter Q Q

A B

that the conditions of the normal-approximation Theorem 2.2.F

are satisfied, and A: l - -d— .

ME

AS a particular case of (3.1+.l), we put m1 = nPA,m2 = nPB

and obtain, after some algebra,

I

l -u°Lh + n(1-7L)PAPB

 

  

‘ '2-

1i

h“ ugih + n(l- 7UPA

‘ + l - 2t (P a}

i L. -l
' ___——_’—‘ 2

t where m1 = nPA,m‘2 = nPB, h = V nPAPBQAQB , r" = n Z i: ,

i=1

d

and 7T1, 11= 1,2,3,1+, is given by (2.1.27). Setting 7k: 1 - -—

in (3.1+.8), it is easily seen that

‘IPEPE

(3.1+.9) Pn(7"PA'PB .1111,1112)“ (l 'utx\[1QAQB d + l¢Q°‘+ QAQBnd>
2

 



 



   
  

 

' ..-_£1_ .. _
where }\.— 1 “5' , m1 - nPA, m2 - nPB.

Therefore, from (3.1+.5), (3.1+.6), (3.1+.7), and (3.1+.9),

we obtain the following three asymptotic relations, which

we group together in Th.3.1+.B.

Th. 3.’+.B For all m1,m2 such that

m --nPE m -nP

1__ S f1(n), 2__"‘L— S f2(n)

“nPAQA “nPBQB

__ 1

where n 3 rim) —-> o, 1 = 1,2,

(3.4.10) Pfi(A,PA,PB,ml,m2;] N Pn(7\,PA,PB,m1,m2)

=1 '--d_

“a .

(3.lr.11) Pn(;\,PA,PB,m1) N Pn(z,PA,PB,ml,m2)

d
7\=l-/‘?

(3.1+.12) Pn(a,PA,PB) N Pn(7t,PA,PB,ml,m2)

d
fi~=l- JE—

where Pn(A,PA,PB,m1,m2) on the right-hand-side of

(3.1%.10),(3.1+.ll), and (3.’+.l2) is evaluated at 7t= 1 - J:-

Jr?

m1 = nPA, and m2 = nPB in each case.

(3.1+.l2) implies that for n moderately large we can

approximate the power function for the test of independence

in the double dichotomy quite well by evaluating the power

  



 



 

  function in the 2 x 2 independence trial with marginal totals

at their expectations, i.e., with m1 = nPA, m2 = nPB. The

implication of (3.1+.11) is that the power function in the

2 x 2 comparative trial can similarly be approximated by the

power function in the 2 x 2 independence trial, this time

with marginal totals ml and m2 = mlp1 + (n-m1)p2, where

PB(1- 71 PA) ti

P = AP and P = ———_——— . Also, the power func on
1 B 2 1 PA

Pn(A,PA, B,m1):] , may also be used to approximate

m1=nPA'

Pn( 7k ’PA’PB)°

For numerical illustrations of these last approximations,

see appendix D.

  



  



  

 

 

-92-

Chapter h. Comparison of Power Functions

h.1 Preliminaries

In Chapter 3 we gave the exact power function for the

uniformly most powerful unbiased test of independence in the

2 x 2 independence trial, 2 x 2 comparative trial, and the

double dichotomy. we proposed several approximations for

these exact power functions, including some based on asymp-

totic properties as described in section 3.h. We also

suggested that the exact power functions for the 2 x 2

independence trial and 2 x 2 comparative trial might be used

as approximations for the power function in the double

dichotomy. In this chapter we shall examine the adequacy of

some of these approximations. We shall also see how the

various exact power functions compare for small values of

m1,m2, and n, knowing from the results in section 3.h that

for large values of m1,m2, and n there is little difference

between them.

The notation Pn(;\,PA,PB) was used to denote the exact

power function in the double dichotomy. The conditional

power function, with one set of marginal totals fixed, say

1111 and n-ml, was denoted by Pn(7\,PA,PB,ml), and is the exact

power function in the 2 x 2 comparative trial, with p1 = 7\PB,

P(1-7\P)

and p = —lL——————-Ji- . Going one step further, we denoted
2 1 - PA

the conditional power function with both sets of marginal

totals fixed by Pn( A’PA’PB ,m1,m2), which is the exact power

function in the 2 x 2 independence trial. It is hoped that
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this choice of notation emphasizes the relation between the

three exact power functions, i.e., that the exact power

functions in the 2 x 2 independence trial and 2 x 2 compar-

ative trial are conditional power functions with respect to

the exact power function in the double dichotomy. In the

2 x 2 comparative trial, we will use the alternative notation

Pn(pl,p2,m1) to denote the power function when p1 and p2 are

not related to A ’PA’ and PB'

h.2 Comparison of Exact and Approximate Power Functions.

Probably the most interesting tables of power which have

been computed are given in Appendix D, pages 159-170. In these

tables, values of the three exact power functions have been

tablulated for certain combinations of n, PA’ and PB together

with a few approximate values using the normal approximations

(3.1.h) and (3.35). The power function in the 2 x 2 independence

trial is evaluated at :111 = nPA, and m2 = nPB, and the power

function in the 2 x 2 comparative trial is evaluated at m1 = nPA. 1

There are two important observations to be made from the data

given there. The first is that these cases in which

Pn(A’ A’PB) < Pn(}L ’PA’PB’ml)] < Pn(7L,PA ’PB ,m1,m2)J ,

m1=nPA m1: A

”12:an

and also cases for which there are inequalities in the

Opposite direction, with the exception that there is no

case in the tables for which power in the double dichotomy is

greater than that in the 2 x 2 comparative trial. However, if

nPA = 1: then Pn(7\,PA,PB,m1)] 5% for all A . From table

ml=nPA



 



   

 

 

 

 

301°1' P10(;‘:-1201) > ~05 for all 7‘? 1, so that no theorem

is possible concerning the order of the power functions. The

second observation is that the functional values of the three

power functions draw together as n increases; for n = 10, there

are wide differences; at n = 20, the differences decrease, still

being fairly large, and for n = 30, the differences are smaller,

but there are cases where the differences are large enough to

be considered seriously.

It is also rather interesting to examine the pairwise

differences between the power functions. It appears that

the differences between power in the 2 x 2 independence trial

and the 2 x 2 comparative trial tend to be somewhat

than the differences between power in the 2 x 2 comparative

trial and the double dichotomy.

The adequacy of the normal approximation (3.3.5) to

Pn(A,PA,PB) is reflected in the tables in Appendix 1:,

section D.l. Values computed from (3.3.5) tend to overes-

timate Pn(7\,PA,PB) for small and large values of 7L, and

underestimate for values of JR in the neighborhood of 1.

Overall, the approximation seems to be quite adequate. Values

of power in the 2 x 2 comparative trial, computed using

Sillitto's and Patnaik‘s approximations, are given in E.2,

together with the exact values Pn(p1,p2,m1). The tables

given are for the special cases m1 = 10, n = 20 and 1111 = 15,

n = 30, since for these cases the region for rejecting H0

is about the same for the unbiased test, and the Pearson test,

on Which Sillitto and Patnaik based their computations of
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power. Pearson's test is described in section 1.7. It is

very apparent that Patnaik's approximation is uniformly worse

than Sillito's approximation, which tends to overestimate the

correct values. The exact power function Pn(tlm1,m2) in the

2 x 2 independence trial may also be used to approximate

quz

p2q1

 
Pn(p1,p2,m1) by putting t = and m2 = mlpl + (n-ml)p2 =‘K.

'X is the expected value of m2. A few values were computed

from Pn(tlm1,K‘), and the values compared with those obtained

from Sillitto's approximation. These values were sometimes

closer to the correct values than Sillitto's, but there is

not enough data to draw any conclusions. These values may

also be found in E.2. In all, Sillitto's approximation

appears to be quite accurate, and isn't difficult to compute,

so for small integral values of m1 and n it is probably

to be preferred as an approximation. In the 2 x 2 independ-

ence trial, the normal approximation (3.1.h) should be

satisfactory, as indicated by the data in.D.l.

In view of Th.3.h.B we have that

price lm M) ~ Pn(p1,p2,ml)

P q

for a wide range of values of m and with t = -l-g . This

1 p2‘11

implies that power in the 2 x 2 comparative trial should be

nearly constant for all combinations of p1 and p2 for which

t is constant.
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  0n the basis of the data in the appendices, we suggest

that the following approximations to the power functions be

used, considering both ease of computation and accuracy:

I. 2 x 2 Independence Trial - use the normal

approximation given by (3.1.H).

II. 2 x 2 Comparative Trial-— use either Sillitto's

approximation given by (3.2.6), or the normal approximation

(3.1.h), with 1112 evaluated at its expected value, given by

X= mm + (n'mflpo-

III. Double Dichotomy - use the normal approximation

given in (3.3.5).
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Summary

We have re-examined one of the oldest problems in

mathematical statistics, a problem which has become classical

within its field -- that of testing for independence in

2 x 2 tables. At various times in the past few years, it

has been thought that the theory of 2 x 2 contingency tables

was completely known, that it was dead as a subject of research.

In view of the controversy that has stirred the attention of

such noted statisticians as R. A. Fisher, E. S. Pearson, and

G. A. Barnard, it is difficult to understand how the problem

can be considered as solved in all its many facets. This is

particularly true when we realize that very little was pre-

viously known about the power for the test of independence

in small samples. This appears to be very surprising, since

practicing statisticians and research workers have used the

results of tests for independence in 2 x 2 tables for many

years as a basis for making decision.

We have undertaken the task of remedying this situation.

Throughout this thesis, our one underlying objective was to

thoroughly examine the power for the test of independence in

small samples, even though we have investigated power for

large samples also. In preparation for this examination, we

first tried to determine precisely what had been accomplished

previously in 2 x 2 tables. It was discovered that only in

one of three possible cases had much been done in the way of

studying power for a test of independence, this case being

the 2 x 2 comparative trial. Therefore, we chose a particular
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test for independence, the uniformly most powerful unbiased

test first proposed by Katz [9] in l9h2, and were able to

. use Katz' formulation of alternative hypotheses as a basis

for investigating power for this test of independence. The

unique feature of Katz' formulation was that it provided a

logical and consistent method for examining and comparing

power in each of the three cases corresponding to both sets

of marginal totals fixed, one set fixed, and neither fixed.

It was necessary first to study some properties of the

conditional distribution for fixed marginal totals under the

class of alternative hypotheses. Once these properties were

known, it was fairly easy to examine systematically power

for the test of independence, and that is what we hope we

have done in this paper. Briefly, we will now summarize

what we have done.

1. In section 2.1 of Chapter 2, we gave expressions

for computing moments of the modified hypergeometric prob~

ability function Pr-{nllm1,m2,n;t}- , including also several

recursion relations between the moments of the distribution,

and were able to indicate the form of the asymptotic mean

and variance of this distribution.

2. In section 2.2 of the same chapter, it was shown

that the limiting distribution of the conditional distribution

of n1 for fixed marginal totals was binomial, Poisson, or

normal, depending on the mode in which the marginal totals

m1 and m2 increased. As a result of Theorem 2.2.F, it was

suggested that there are at least two published results in

 



  

 



 
 

the literature which may be invalid.

3. We gave the exact power function for the test of

independence in the 2 x 2 independence trial, 2 x 2

comparative trial, and the double dichotomy in the first

three sections of Chapter 3, and suggested several approx-

imations for these pOWer functions. We investigated the

adequacy of these approximations in Chapter h.

h. We examined asymptotic power for the test of

independence in 3.h, and confirmed what many statisticians

have believed for sometime - that for very large sample sizes,

the difference in power between the three cases corresponding

to the nature of the marginal totals is negligible.

5. We provided extensive tables of power for each of

the three cases and used the values of exact power to

evaluate the adequacy of the various approximations proposed

in Chapter 3. The tables of exact power are in appendices A,

B, C, and D. On the basis of these exact values, we suggested

three specific approximations for the exact power functions.

We hope that we have succeeded in thoroughly examining

the power for the tests of independence, and that the results

and computations, which we have presented in this thesis, will

be useful for applied statisticians and research workers.
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Appendix A. Exact Power for the Double Dichotomy.

we consider a given population in which the members of

the population are classified by two attributes, each having

two categories, so that there are four distinct classes of

members. We denote these classes by A1B1,A2B1,A1B2, and 1232.

The proportions of members in these four classes are "1’72’" ,

and up respectively, Putting PA = v1 + w3 and PB = F1 + #2,

we propose to test the null hypothesis Ho of no association

in the occurrence of one attribute and the occurrence of the

second, i.e., that "l = PAPB’ by selecting a sample of size n,

and making use of the observed numbers in the four classes.

Any alternative hypothesis may be expressed in the form

vi = }\PAPB. We use the uniformly most powerful unbiased

test, given in section 1.5, of Chapter 1, to test Ho’ The

tables in this appendix give the exact values of the power

function for this test. This power function is denoted by

Pn(;\,PA,PB), and its functional form is given by (3.3.2) on

page 79. The significance level C! is .05 in all the tables.

The values of Pn(2.,P ,PB) were obtained by first com—

puting the conditional power function Pn(;\,PA,PB,m1) for

the 2 x 2 comparative trial, and then weighting these values

with binomial probabilities, as suggested in 3.3, equation

(3.3.H). All the computations were performed on the Michigan

State university digital computer, MISTIC.
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The tables are divided into three sections, A.l, A.2,

‘and A.3. correSponding to n = 10, 20, and 30 respectively.

In A.1 and A.2, tables of P10(7\,PA,PB) and P20(7"PA’PB) are

given for all 15 combinations of P and PA withng
B B A’

PA,PB =.1, .2, .3, .h, .5, and in A.3 tables of P30(7(,PA,PB)

are given for the same combinations of P and PB, except the

A

three cases PA = PB = .2, PA = .2, PB = .l, and P = P .1

AB:

are not available. For the combinations of PA and PB with

PA = .3, .h, and .5, Pn(?\,PA,PB) was computed for 7\= .l,.2,

.3, 0", [}%—] . For PA = .2, the range on 5K was from .2

A

to %.8 with an increment of .2; for P = .1 and n = 10, the
A

range of 5k is .h to 9.6, the increment being .k, while for

n = 20, the range on PR is .3 to 9.9, increasing by .3 .

To check the accuracy of the computations, we used the

fact that the test of independence is a conditional test. Thus,

since

Pn,(7\ PA’PB ) = Z ZPr {m1,m2ln,}\} Pn(7t, PA,PB,m1,m2)

H=O m2=0

n

= > Pr {mllmpA} Pn(?L,PA,PB,ml),

ml=0

where Pn(}l,PA,PB,ml,m2) is the exact conditional power function
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for fixed m1 and me, we obtained a partial check on the exact

computations for Pn(}l,PA,PB) by checking the values of the

two conditional power functions, at certain selected points.

In particular, we have that each of the power functions is

equal to .05 for 5\ = 1. Finally for PA = .5, Pn(?\,PA,PB)

should be symmetric about )1 = l, which provided one further

check on the accuracy of the computations. All of the comput-

ed values were given to nine decimal places, and rounded off

to five places in the table.

For n = 10, P10(7\,PA,PB) evaluated at A = l was exact

to nine decimal places for all 15 combinations of PA’ and PB,

for n = 20 it was accurate to 7 places, and for n = 30, there

was 6-place accuracy. The partial check on the exact values

obtained by computing the conditional power functions for

certain selected values indicated that the exact computations

were probably accurate to at least five decimal places for

all 5L , with h-place accuracy virtually certain.

The table numbers indicate the value of n and PA ,

with the first number giving the value of 31—0 , and the

second number PA. For example, A.2.h gives values of

P20( A’.,+,pB )_e



 

 



 

 

    

 

Table A.1.1

P10(A’91’PB)

.18005

 



 



 

 

1.2

1.h

1.8

2.0

2.2

2.1;

2.6

2.8

3.0

3.2

3.6

3.8

h'.o

m2

 

Table A.l.2

P100 ,.2,PB)

  



  



 

Table A.1.3

 

1310(A a 03.9133)

 

X
PB : .3 PB = .2 PB : .1

‘ f .1; .08116 .06320 .05323

‘ g .5 .07151 .05920 .05226

1 ‘ .6 .06372 .05591 .051h5
‘ . .7 .05771 .05335 .05082

i l .8 .053hb. .05150 .0503?

b

.9 .05086 .05038 .05009

1.0 .05000 .05000 .05000

1.1 .05088 .05039 .05009

1.2 .05356 .05156 .05038

1.3 .0581h .05355 .05086

1.1; .06h72 .osoho .051Sh

1.5 .o73hh .060 .0523

1.6 .oshhh .06h83 .05353

1.? .09790 .07051 .05118

1.8 .11398 .07723 .05639

1.9 .1328? .08505 .0581?

2.0 .1Sh7b .09h02 .06018

2.1 .1797h .10h21 .062hh

2.2 .20802 .1156? .06h95

2.3 .23968 .12815 .06773

2.1; .27h78 .1b263 .0707?

2.5 .3131; .1582; .o7h09

, 2.6 .3552? .17533 .07769

; 2.? .hooho .19396 .08159

.8 .1118 oZJJ-fl-h .08579

2 L 1‘7 .23592 .09030

.25930 .09513

.28h28 .10029

.31085 .10578

.33898 01.1162
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Table Aeloh

P10 (2 , .h’PB)

PB='3 PB='2 PIE-'1 1

.1927? .10626 .0626? 1

.15980 .09390 .06000

.13202 .0832? .05766

.10896 .07h2h .05563

.09020 .06673 .05392

.07535 .0606? .05251

.06h12 .05599 105m

.0562; .0526? .05063 f

.05156 .0506? .05016 1

.05000 .05000 .05000

.05158 .05068 .05016

.05638 .05271. .0506

.06h59 .05623 .051h6

.076h6 .06122 .05262

.09230 .06781 .05h12

.11th .07608 .05599

.137hl .08615 .05822

.167h6 .0981h .06083

.2030h .11219 .06385

.2hhh6 .128h3 .0672?

229191; '.lh699 .07112

.3h55h .16801 .075h1

' 10513 .19162 .08016

: 70211 .21793 .08538
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Table A.1'.5

P10(2 5 OS’PB)

 

 

.29699 3116111; .0707?

.23832 .1210? .0662?

'.1891h .1056? .0623? ‘

.Jl;8?8 .09008 .05903 i

\

.116h6 .0??3h .05623 ‘

.0913? .0672. .0539?

.07275 .05958 .05223

.0599h .05h22 .05099

.052h6 .05105 .05025

.05000 .05000 . 000

.052h6 .0510; .05025 i

I

.0599h .05h22 .05099 ;

.07275 .05958 .05223 ‘

.0913? .0672; .0539?

.116h6 .0773h .05623

.111878 .09008 .05903 I

.1893; .1056? .0623?

.23832 .12h3? .0662? *

.29699 41.611. .0707? g

I

   





 

 

 

 

Table A.201

1320‘ ’7" ‘1’PB)

 



 

 



 

  Table 11.2.2

 

 

P20(1’.2’PB)

i

3

PB = 02
PB " .1 l

E

.0898h .0608h ‘

.072h8 .0562h

.06010 .0528h I

.0525? .05073 I

005000 005000

.05271 .0507?

.06115 '.05315

.0758; .05726

.09731 .06321‘
.

1 2.0 .12593' 'j'.07113
7 2.2 .16190, ".0811;

2.h .20519 .0932;

I

1 . 2.6 .25539 £10759
‘ 2.8 .3117? .12 21
‘ 3.0 .37323 . 312

‘ 3-2 .h3831 .16h31

30
o 0531

.18776

3.6 .57237 .21339

3.8 .63762 2
1.0 .6993h .27078
h.2 .75613 30223

hob 080712 .3352?

14.6 .85212 .36966

 



 
a”.[Tm .-

I

 



  

Table A.2.3

P20( 2,.3,PB)

005910

~05537

.05333

.05150

.05038

$05000

.05039

.0515?



 

 



  

1.9

2.0

2,2

2&3

2.

 

 

Table A.2.h

P20( 2, ,Oh,PB)

.m.



 



 

  

Table A.2.5

P20” "S’PB)

PB=.h PB=.3 PB=.2

.9hh59 .75763 .h336o

.8192 .62362 .3hh3h

.71369 .h9071 .2 00

.55819 .3692? .20h65

.h0553 .26593 .15373

.27353 .1836? .

.17173 .12265 .0851?

.1022; .0813h .06530

.06271 .05768 .0537?

.05000 .05000 .05000

.06271 .05768 .0537?

.10223 .0813h .06530

.17173 .12265 .0851?

.27352 .18366 .

.1052 .2659? .15373

.55818 .3692? .20h65

.71368 .h9070 .26800

.8h922 '.62362 .3hh3h

.9hb59 .75762 .h3360

.312—



 



 

 

2.0

2.3

2.1.

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

 

Table A.3.3

P30(1,.3,23)

.08735

.07736

.06900

.06219

  





  
 

Table 11.3.1;

1330(13 0,4323)

 



 

 



   

Table 2.3.5

P30(2 ,.S’PB)

PB=°5 PBS-.1}, PB=.3 PB=.2 PB:.1

.99999 .99565 .9396h .70h78 .26299

.99889 .96969 .8hh01 .5728h .212h5

.98h85 .89698 .71078 .hh751 .17016

.92299 '.76575 .55793 .33608 .13516

.7805h .59101 .h0683 .2h282 .10759

.57085 .80716 .27511 .16923 .08591

.18073 .13532 .10278 .07801 .05865

.08131 ".07061 .06285 .0568? .05211.

_'.05000 .05000 .05000 .05000 .05000

.0813]. .07061 .06285 .0568? .05211.

.18073 .13532 .10278 ".07801 .05865

.35181 .28866 .1728? .mau .06978

.57085 .h0716 .27511 .16923 .08591

.7805h .59101 .h0683 .2h282 .10759

.92299 .76575 .55793 .33608 .135h5

.98h85 .89698 .71078 #1751 .1701 1

.99889 .9696? .8hl101 .5728); .212145 ,

.99999 .99565 .93961; .70h78 .26299 :

 





   

  

 

 

Appendix B. Exact Power for the 2 x 2 Comparative Trial.

In the 2 x 2 comparative trial, one set of marginal

totals is fixed, say m1 and n-ml, which we may regard as the

sizes of two independent random samples from two different

populations A1 and A2. The probability that an observation

from A1 falls in B1 is pi, i = 1.2. The null hypothesis

states that p1 = p2, and the alternative hypothesis is that

pBu -AP)
pl # p2. If we put p1 = 2.83 and p2 =--jffirii:JL-, then

the probability that nl of the observations from pupulation

A1 fall in B1 and m2-nl of the observations from A2 fall in

B1 is the conditional probability, given m1, of the probability

distribution in the double dichotomy. We thus use two notations

for the power function for the test that p1 = p2, against

alternatives pl‘fi p2, namely, Pn()"PA’PB’ml) and Pn(p1:P2:m1)o

It is convenient for tabulating purposes to give tables

for Pn(p1,p2,m1) Where p1,p2 = 01, 12, 03, ... 9 .9, p2 S p1.

In Appendix D, when we compare power among the three cases

corresponding to the number of restrictions on the marginal

totals m1 and m2, it will be convenient to tabulate Pn(A,PA,PB,m1).

As in appendix A, we have divided this appendix into three

sections, B.l, 3.2, and B.3, corresponding to n = 10, 20, and

30 respectively. The tables in these sections contain exact

values of Pn(pl,p2,ml) for m1 = l,2,...,% , and all combina-

tions of pl,p2 with p2 5 pl. These values are rounded to
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five decimal places, and are virtually certain to be accurate

to this number of figures.

The table numbers indicate the value of 7111 and n, with

the first number being %5 and the sec0nd the value of m1.

For example, table B.3.ll contains computed values of n = 30,

m1 = 11.
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Table 3.1.2..

P10(P19P292)

g .91 .1 ..2 ..3 .1 .5 .6 .7 .8 .9

1"2
1 ;; . . . .

'- .1 .05000 .05316 .06266 .078h8 .10063 .12910 .16391 .2050h .25250

1

j

1 .

j .2 .05000 .05260 .060h0 .o73hl .09161 .11502 .18363 .177h3

%

.3 .05000 .0522; .0589? .07019 .08590 .10609 .1307?

.1; .05000 .05205 .05819 .068h2 .08275 .1011?

.5 .05000 .05198 .0579h .06786 .08175

.6 .05000 .05205 .05819 .068h2

: .7 .05000 .0521; .0589?

.05000 .05260

.05000 
 



 

 



 

Table B.1.3

 

 

 

P10(p1,p233)

.1 .2 .3 .h .5 .6 .7 .8 .9

.05000 .0555? .0737? .10685 .1570h .22659 .31773 .83270 .57376

.2 .05000 .0555h .07333 -.10515 .1527? .21795 .302h6 .h0809

.3 .05000 .05551 .072Bh .10321 .11788 .20793 .28h69

.h .05000 .05585 .07222 .10093 .1h218 .19659

.5 .05000 .0553? .0711? .09830 .13587

.6 .05000 .05525 .07059 .095h0

.7 .05000 .05510 .06961

.8 .05000 .051195

.05000
.9  
  

 



 

 



Table B.1.h

 

 

 

1>10‘1’11’P2I’L‘)

.1 .2 .3 .b. .5 .6 .7 .8 .9 .

.05000 .05?L:h .08192 .12638 .19332 .28h81 1.0250 .5h760 .72092

.05000 .05775 .08266 .12735 .19872 .28790 .h102? .565h5

.3 .05000 .05800 .08326 .12813 .19560 .2892; .h1328

J. .05000 .0581h .08313 .1277? .19386 .28519

.5 .05000 .05811 .08288 .12556 .18826

.6 .05000 .05790 .08152 .1213h

.7 .05000 .05752 .079h3

.8  .05000 .05700

  





   

 

 

Table 3.1.5

 

 

210(p13p235)

.1 .2 .3 .h .5 .6 .7 .8 .9

.05000 .05812 .085hh .1366h .21566 .32h33 .116102 .61919 .78608

.2 .05000 .05881 .08719 {138111; .21576 .32153 .h5653 .61919

.3 .05000 .05913 .08780 .13873 .2153? .32153 .h6102

.8 .05000 .05922 .08791 .13873 .21576 .32133

.5 .05000 .05922 .08780 .138hh .21566

.6 .05000 .05913 .08719 .1366).

.7 .05000 .05881 .085hh

.8 .05000 .05812

.05000 



 

 



 

 

.1

.2

.3

.5

.6
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Table 3.2.2

P20 (P1313232)

.1 .2 .3 9h ’5 .6 I? _ .8 .9

.05000 .05h72 .06889 .09250 .12555 .16801. .21998 .28136 .35219

.05000 .0530? .622? .07762 .09910 .12672 .1608? .2003?

.05000 .05238 .05951 .07139 .08803 .109h3 .1355?

.05000 .05208 .05833 .06875 .08333 .10208

.05000 .05200 .05800 .06800 .08200

.05000 .05208 .05833 .06875

.05000 .05238 .05951

.05000 .0530?

.05000



 



"
u

M
”
’
*
”
“

.

 

 

Table 3.2.3

 

 

P20@1.p2.3)

.3 .h .5 .6 .7 .8 .9

.1 .05000 .05823 mm .1302. .19810 .28993 .10776 .55365 .7296h

.2 .05000 .05725 .08083 .123h6 .18788 .27681 .39299 .53915

.3' .05000 .05673 .07825 .11650 .173h5 .25107 .35131

”.1; .05000 .05625 .07561 .10903 .15725 .22180

.5 .05000 .05596 .07382 .10360 .111528

.6 .05000 .05593 .07311 .10060

.7 .05000 .05608 .07301

.05000 .0563};

.05000 
  



  



 

 

Table E.2.l;

 

 

.
1
.
.
a
.

32
:-
m
1
.
“

P20(pl.p2,h)

pl .1 .2 .3 .h .5 .6 .? .8 .9

1’2

.1 .05000 .06299 .1oh58 .1766h .2781? .h0539 .55169 .7076h .86098

.2 .05000 .06116 .09680 .15973 .25222 .37598 .53216 .72135

.3 .05000 .06060 .09h61_ .15599 . 961 .38117 .55729

.h .05000 .06076 .09h85 .1560? .28959 .38198

.5 .05000 .06072 .09363 .15096 .236h5

.6 .05000 .06020 .0903? .1h092

.7 .05000 .05972 .08753

.05000 .0599h 
 

.05000

  



 



 

.325.

  

Table 3.2.5

1’20“???”

.2 .3 .h .5 .6 .7 .8 .9

.1 .05000 .06699 .12073 .21175 .33591 .1852 .6hh52 .79860 .92536

.2 .05000 .0618? .11176 .19311 .30912 .15662 .62792 .80969

.3 .05000 .061;16 ..108511 .18665 .30219 .h5825 .65683

.1. .05000 .06396 .10771 .18623 .30716 .h8051

.5 .05000 .06393 .10767 .18715 .31219

.6 .05000 .06382 .10672 .18361

.7
.05000 .06360 .1013?

.8 .05000 .06362 
 

.05000

 



 

 



   
Table 3.2.6

 

 

 

.9  

P20 (pl.pz,6)

.1 .2 .3 .h .5 .6 .7 .8 .9

F2

.1 ..05000 .07113 .1383). .2h882 .39355 .55703 .719h8 .85953 .95758

.2 .05000 .0685? .1258h .22270 .35650 .5192. .69622 .86h95

.3 .05000 .06725 .12025 .21192 .3hh65 .51782 .?2528

.h .05000 .06655 .1180? .210h6 .35268 .55521

.5 .05000 .066h7 .11909 .21751 .3778?

.6 .05000 .0669h .12170 .22571.

.7 .05000 .067h2 .12252

.8 .05000 .06779

.05000
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Table 3.2.7

P20(p1,122,7)

.1 .2 . .3 . .h . .S . .6 . .7 .8 . .9

.05000 .07h02 .111855 .27081 .h2876 .60213 .7658? .895h3 .97383

.05000 .07112 .13661 .2558 .39325 .5668h .7hh91 .89882

.3 .05000 .0696? .12959 .232luo .3788? .56350 .77029

.8 .05000 .06863 .12656 .23012 .38715 .60293

.5 .05000 .06851 .12791 .23959 .12161.

.6 .05000 .06930 .13300 .25790

.? .05000 .07055 .138h2

.8
.05000 .071111; 

 
.05000

 
 



 

 



 

Table B.2.8

 

 

 

.3 .h .5 .6 .7 .8 .9

.1 .05000 .07661 .15872 .29171. .h5922 .63602 .79h72 .91296 .979Sh

.2 .05000 .073h7 .1113118 .26865 1.1255 .59051 .7687? .9160?

.3 .05000 .07112 .13h8h .2h387 .3988h .59182 .79988

E .1; .05000 .06995 .13208 .2h36h .h123h .63885

3

1‘ .5 .05000 .06992 .13th .25678 .5612

.6 .05000 .07098 .114172 .28h39

7 .7 . . .05000 .0729? .15226

.8 .05000 .07h82

..05000 
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Table 13.2.9

P20051317?”

.3 0’4- 05 O6 .7 .8 O9

.1 005% 307850 016,489 030176 0147055 0614620 .8025? 0918011» 098181}

T .2 .05000 .o7h65 .1868? .26h52 .h210? .60119 .77980 .9261.

1

f .3 .05000 .07188 .13750 .2h963 .h0859 .60h75 .81096

3

3 j J. .05000 .07062 .13h85 .25028 .h2h02 .6522?

1.7 ' '

j; .5 .05000 .07063 .1376? .26502 .h7022
‘ 1

17

.6 .05000 .07185 .1h618 .29691

.7 .05000 .07836 .16062

.3 - .05000 .07738

.05000 
  



 



 

Table 3.2.10

 

 

 

P20815510)

.3 .h .5 .6 .7 .8 .9

.1 .05000 .0782? .16’4110 .3035? .h773h .65690 .812hh .92306 .98260

.2' .05000 '.0?h92 .11832 .268h5 1.2714? .60785 ..78338 .92306

.3 .05000 .072211 .13890 .25239 .81219 .60785 .812hh

.1. .05000 .07089 .1358h .25239 .h27h? .65690

.5 .05000 .07089 .13890 .268h5 .h773h

.6 .05000 .072zh .111832 .3035?

.7 .05000 .07h92 .161410

.8 .05000 .0782?

.05000 
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Table 3.3.2

P3o(p1’P2’2)

.h .5 .6 .7 .8 .9

.1 .05000 .05h9? .06990 .09h77 .12958 .17h35 .22906 .29373 .3683h

.2 .05000 .05310 .062112 .07795 .0996? .12763 .16179 .20216

.3 .05000 .05238 .05952 .071112 .08809 .10951 .13569

.1: .05000 .05208 .05833 .06875 .08333 .10208

.5 .05000 .05200 .05800 .06800 .08200

.6 .05000 .05208 .05833 .06875

.7 .05000 .05238 .05952

.05000 .05310

.05000   
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Table 13.3.3

P30013172,»

.h .5 .6 .? .8 .9

.1 .05000 .05909 .0875? .13723 .20990 .30738 113188 .58399 .7667h

.2 .05000 .05778 .08332 .12993 .20090 .2995h .h2915 .59302

.3 .05000 .05711 .07995 .12082 .18200 .2657? .37hh2

.1; .05000 .0563? .07617 .110h0 .16008 .22662

.5 .05000 .05600 .07398 .10396 .11593

.6 .05000 .056oh .073h? .10130

.7 .05000 .05635 .07386

.8 .05000 .05668

.05000

 
 
 



  



 

Table B.3.h

 

 

P3o®l.p2.h)

.3 .h .5 .6 .7 .8 .9

.1 .05000 .0618. .11109 .19057 .30090 .h36h? .5882? .7h389 .88750

.2 .05000 .06189 .09992 .16705 .2653? .39619 .55996 .7563h

.3 .05000 .06118 .097h? .16380 .26621 .h1186 .60898

.h .05000 .06152 .098h8 .16572 .26976 .h1883

.5 - .05000 .061116 .09671 .1583h .25065

.6 .05000 .06075 .09232 .1hh90

.05000 .06009 .08870

.05000 .06050

.05000  
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Table 3.3.5

P30(p1.1>2.5)

p1 .1 .2 .3 .h .5 .6 .7 .8 .9

P2

.1 .05000 .07015 .13309 .23731 .37520 .5301 .6968? .8h377 .9525?

.2 .05000 .0665? .11932 .21101 .3h076 .50229 .68225 .85850

.3 .05000 .06559 .111193 .20222 .33109 .50326 .?1?26

J: .05000 .06586 .1311 .20312 .3h2h2 .5hh36

.5 .05000 .06558 .111191 .2057? .351111

.6 .05000 .0651? .11221 .19681

.7 .05000 .06h66 .10805

.8 .05000 .06882 
 

.05000
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Table 3.3.6

P30(P1.pg.6)

.h .5 .6 .7 .8 .9

.1 ..05000 ..075h9 -.15h20,..281118 ..hh3oh 1.61732 .77918 .90h90 .97862

.2 .05000 .07121 .13788 .2496? .h0226 .58136 .76369 .91671

.3 .05000 .06978 .13110 .23856 .39189 .5888: .7967h

.1: .05000 .06910 .12890 .23638 .170th .62895

.5 .05000 .06893 .1298? .28529 .1559?

.6 .05000 .069h2 .132hh .2535h

.7 .05000 .069h6 .13030

.05000 .0696h 
 

.05000

 



 

 



 

P30 (P1913237) . 1

1 .1 .2 .3 Ch .5 .6 .7 .8 .9

 

.1 .05000 .08103 .17550 .32392 .50361 .68hh5 .83692 .98035 ..98986

Table 3.3.7
1

1

 

.2 .05000 .07571 .lShSh .28h82 $5551 .6hh35 .81978 .9h715

.3 .05000 .07319 .11552 .2'6856 .1095? .61318 .81759 l

1 'J

1

1 .1 .05000 .07213 .11130 .26886 .hh901 .69050 1

1 .

1

1 ,5 .05000 .07189 .1h27h .27752 .h9911 I

1

‘1 .6 .05000 .07295 .11975 .3ohzo 1

13:

1? .7 “ .05000 .07822 .151.21

1..

1 .8
.05000

.07h86 
  



 



 

Table 3.3.8

 

 

P3o(pl,p2.8)

1’1 .1 .2 .3 .1 .5 .6 .7 .8- .9

92 ‘

.1 .05000 .08655 .19508 .3599h .55093 .73232 .87370 .95960 .99118

.2 .05000 .07963 .16866 .31256 .89528 .68807 .85183 .96319

.3 .05000 .07636 .15636 .29189 1.17526 .68536 .87972

.1 .05000 .0785); .1512h .28765 .1866? .73361

.5 .05000 .07130 .1531? .30263 .5127?

.6 .05000 .07566 .16281 .3h169

.7 .05000 .07818 .17573

.8
.05000 .08022

 
  



 



 

 

 

 

 

Table B.3.9

P306112»)

.3 .14 .5 .6 .7 .8 .9

.1 .05000 .09138 .21293 .393117 .593h5 .77265 .90158 .9720? .99685

.2 .05000 .0832). .18129 .3661; .52858 .72301 .88103 .97391

.3 .05000 .07885 .16590 .31178 .50655 .72089 .90503

.14 .05000 .07676 .16019 .30893 .52158 .77202

.5 .05000 .07658 .16325 .32702 .58280

.6 .05000 .0781? .17h79 .37h28

.7 .05000 .0816? .19529

 
 



 



 

Table B03010

-139-

 

 

  

P3o(p1.p2.10)

.h .5 .6 .7 .8 .9

.1 .05000 .09h6h .22812 11171; .6216? .79961 .91991 .9798? .9981?

.2 .05000 .08606 .19116 .35689 .557h8 .75360 .90328 .98193

.3 .05000 .08109 .17195 .33172 .53720 .753h8' .92108

.8 .05000 .07890 .16953 .32913 .55181 .79971

.5 .05000 .07870 .1722. .3h737 .61319

.6 .05000 .08038 .18896 .h0086

,7 .05000 .08h61 .21200

.8 .05000 .0903?

.05000 
 



 



 

 

 

Table B.3.11

 

P30(p1.p2,11)

P1 .1 .2 .3 .h .5 .6 .7 .8 .9

R2

.1 .05000 .0980h .235h1 .h3283 .6h210 .81655 .9299? .98355 .99865

.2 .05000 .08801 .19786 .36903 .5?hlo .7698? .91353 .981186

.3 .05000 .08255 .180h3 .3h299 .5532. .76932 .93305

.1. .05000 .08019 .17h72 .3h073 .56979 .81739

.5 .05000 .08002 .17826 .36218 .63659

.6 .05000 .08200 .19309 .h2277

.7 .05000 .08692 .2261?

.05000 .09h70

 
 .05000
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Table 3.3.12

Paofi’l’Pa’lz)

.1. .5 .6 .7 .8 .9

.1 .05000 .10216 .2911 .h5530 .66722 .83705 .98168 .987h3 .99906

.2 .05000 .09026 .20590 .38h32 .59383 .787h8 .923h6 .98736

.3 .05000 .oeho9 .18629 .35h70 .56922 .78h18 .9h053

.2: .05000 .0811): .17981 .35183 .58603 .83153

.5 .05000 .0812? .18379 .37501. .65bh6

.6 .05000 .083h7 .1999? .h3861

.7 .05000 .08892 .23668

.05000 .09858  .05000

 



 



 

Table B.3.13

.152. _

 

 

 

P30(pl,p2,13)

.h .5 .6 .7 .8 .9

.1 .05000 .10290 .2960 .85571 .66896 .8398? .98390 .98830 .99918

.2 .05000 .0906h .20683 .38658 .59819 .79312 .92789 .98882

.3 .05000 .08861 .18835 .35988 .57815 .7939? .9h588

.h .05000 .08216 .1830h .3596L; .59826 .88271

.5 .05000 .08212 .18785 .3851? .66988

.6 .05000 .oahhh .20526 1.5253

.7 .05000 .09015 .28862

.05000 .10089.8  
 



 



 

 

 

 

Table 3.3.114

1330(1’1’1’2'11‘)‘

.3 .h .5 .6 7 .8 .9

.1 .05000 .10361 .25268 .1620]. .67596 .8hh63 .9h601 .98890 .9992;

.2 .05000 .09136 .20919 .3906h .60315 .79768 .93070 .98955

. 3 .3 .05000 .08513 .1902; .36381 .58390 .79959 .9h826

.
\ E?

\ .h .05000 .08265 .18508 .36u36 .60501 .8h659

l .

; .

jf .5 _ .05000 .08266 .19031 .390h0 .67M.1

1 E _

‘ .6
.05000 .08506 .20801 .h5762

1.

.7
. ' .05000 .09098 .2191?

\

.8
.05000 .10266

.05000 
 



 

 



.2

.3

.1.

.5

.6

.7

.8

.1

 

 

.2 .3

Table B.3 015

P30(p1.p2.15)

.h .5 .9

 

 

.05000 .10396

.05000

.253h7

.09165

.05000

.h6h62

.2109?

.08561

.05000

.68196

.39Shh

.19201

.08295

.05000

.85159

.609h6

.36671

.18612

.08295

.05000

.9h997

.80201

.58686

.36671

.19201

.08561

.05000

.98980

.93215

.80201

.609h6

.395hh

.2109?

.09165

.05000

.99928

.98980

.9h997

.85159

.68196

.h6h62

.253h7

.10396

.05000

 



 

 



  

 

 
 

 

Appendix C. Exact Power in the 2 x 2 Independence Trial.

In the 2 x 2 independence trial, both sets of marginal

totals are fixed. The classic example of an experiment in

which the marginal totals should be so regarded is Fisher's

tea-tasting experiment described earlier in section 1.6. The

appropriate probability distribution is obtained conditionally

from the multinomial distribution, and is given by (1.2.5) in

Chapter 1. The exact power function for the test of independ-

ence is a conditional power function, for fixed m1 and me,

——I n

1
> Pr {nllm1m2,n} t

__l

n $w(m ,m )

P (t m1,m2) = 1 1 2 , o < t < a).

n E Pr {3 Iml,m2,n} t3

3

and is given by

 

In order to relate Pn(t|ml,m2) to the exact power function

in the double dichotomy, we put

 

t = 7L(l-PA-PB+ 7L PAPB)

(1- 7L PA)(1- 7k PB)

and to relate it to the power function in the 2 x 2 comparative

trial, we set

p2(1-p1)
.

Exact values of Pn(t|ml,m2) were computed using a distinctly

different program than that used for the previous two cases. The

  



 



   
 

 

~1h6-

accuracy of these values was checked by direct hand compu-

tation for several cases, which indicated that the values

computed were accurate to a minimum of five decimal places

in every case given in the tables. The machine computed

results were given to 11 decimal places, but were rounded

off to five places. When t = 1, Pn(t |ml,m2) is equal to .05.

This served as a check also on the values computed on the

digital computer. For all combinations of ml,m2, and n for

which computations were made, the computed value of

Pn(t lm1,m2) for t = l was accurate to 10 decimal places, i

which again indicated that the values of power given in this

appendix are certainly correct to five decimal places.

The tables in this appendix are divided into three

sections, 0.1, 0.2, and 0.3, corresponding to n = 10, 20,

and 30. Since there are many combinations of ml and m2 for

each Value of n, exact values for Pn(t| m1,m2) are given for

selected combinations of m1 and m2. ;

It was convenient to tabulate the power function as a E

function of t rather than as a function of 7\. For this reason L

it is necessary first to determine t from the relation

.. _ Z
2&(1 PA PB+ PAPB)

m m

where PA = H; , PB = 3g . Then exact power may be found by

looking in the table for which m1,m2, and n are the marginal

totals and sample size. More values of power in the 2 x 2

independence trial may be found in Appendix D.

I

’ Au- APA)(1- a PB)

‘1
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Table 0.1.1

1112 = ‘4 m2 : 3 m2 : 2

.82859 .27223 .1071h

.75971 .25985 .10h66

.699h1 ”.2h835 .10229

.6h626 .23763 .10003

.53773 .21383 .09h82

. 51480 .19362 .09018

.38981 .17629 .08603

.33783 .16133 .08231

.2955? .1h832 .07898 ‘

.20716 .11818 .07083

.16855 .103h9 .0666h

.11830 .08261 .060142

.08883 .06923 .0562;

.07098 .0606h .05350

.06019 .0552; .0517h

.05398 .0520? .05069

.05089 .050h6 .05015

.05000 .05000 .05000

.05072 .05038 .05013

.05265 .05138 .050h6

.05550 .05285 .05095

.05906 .05h6? .05155

.06318 . 5676 .05223

.08883 .06923 .05625

.1h858 .09505 . 29

.20716 .11818 .07083

.26071 .13696 .0759?

.30873 .1526 .08005

.35157 .16538 .08333

.38981 .17629 .08603

.hzhoh .18559 .08828

.h5h80 .19362 .09018

.5705? .22133 .09 9

451.626 .23763 .10003

. 991:1 .2h835 .10229

.73873 .25593 .10386

.7929? .26593 .10589

.82859 .27 223 .1071h

.872b9 .27973 .10862

.88696 .28215 .10909

 



  



 

Table 0.1.2

 

P10“! h’m2) ,

1': m2 = 1112 g 3 m2 _—_ 2

00.02 .31b58 '_.16970 .08722

00.03 .2993? .16h89 .08590

‘ 00.01; .28528 .16031 .08h63

‘ 7 00.05 .27220 .15592 .083 0 _

» 00.10 .21893 .1366h .0778). I

. 00.125 .19816 .128h2 .07539 >

‘ 00.15 .18031 .12098 .073 g

\ F 000175 01611-8? 011112 007107 [

00.20 .151hh .10813 .0691

00.25 .12935 .097h9 . 79

00.30 .1121? .08863 .06293

00. 0 .08786 .07505 .058h5

00.50 .07236 .06555 .0552

. 00.60 .oézho .05898 .0530h

' “>070 0056111» 0051460 .0515

E 00.80 .052h3 .0518? 43506

' 00.90 .05055 .05oh3 .0501h

  



 

 

 



Table 0.1.3

.0735h

 

  



 

 



      

Table 0.2.1

P20“; ' 10’1“?)

mag-:8

 

 



 

 



  
   

 

Table 0.2.2

"29-6

  





Table 0.2.3

2200.! 6,6} onu I 6,1.) race I mu)

 

  



 

 
 



  

 

 

Table 0.3.1

P3005 '15: m2)

~2 - 2 '-

.99679 .99703

.98960 .98996

.97779 .9778h

.96170 '.9 3

.90681 .9023h

.83922 .83012

.7668? .75356

.69h88 .67837

.62618 .60759

.h5101 .h3lh9

.36112 .3 3119

.23355 .22118

.15h7h .JL?05

.1 0 .10208

.0772? .07513

. 1 .0597?

.05236 .0521?

.05000 .05000

.05193 .05178

.05707 _‘.05651

.06h69 .06353

.07h25 .0723h

.08533 .08258

.150717 .1h705

.31171 .29576

.h5101 $31179

.56229 .5h265

.60860 .63058

.71521 .69950

.7 7 .75356

.80729 .79622

.83922 .83012

.92701 .92396

.96170 .9

.97779 .9778h

.98620 .986h9

.9932? @3703o 9 .

.99809 .99836

.99888 .99901

 



 

 



 

Table 0.3.2

P

30

9

(t '15: 312)

.98990

 

.91721

 



 

 



  

Table 0.3.3

 

 

P30“; I 11" m2) P30“! I 13: m2)

m2 = 1h 211.2 a 12 m2 = 10 :11.2 = 13 m2 : 12

.99702; .99278 .97696 .99288 .9915?

.98999 .98062 .9536}; .9808? .9Sh9h

.97789 .9628h .9258? .96332 .97031

.96103 .9h0h8 ’.89530 .9 O .95130

.90262 .8713 .81355 .87278 .88976

.83063 .7936? .73185 .79570 .81720

.75h30 .7561 .65h95 .71810 .7h17h

.67929 .58h70 . .66822

.60 7 .5731? .521le .57612 .59921

1.382 . 116528 . .53591

113275 1.0703 .37132 .h0989 .h2733

.3hh71 .32508 .29805 .3276h .3

.22218 .2113? .1963l. .21321 .2201;

.114776 .10210 .1339? 41.330 . 685

.10253 .09973 .09552 .100h5 .10203

.07539 .07 .0721h .07h51 .07512

.05988 .059h2 .05866 .05958 .0597?

.05220 .05210 .05193 .052 .0521?

.05000 .05000 .05000 .05000 .05000

.05180 .05173 .05159 .05176 .0517?

.05662 .05635 .0558h .056119 .0 9

‘.o6376 .06323 .06211. .06352 .063h?

.07273 .07188 .07006 .07239 .07223

.08320 .08195 .07926 .08273 .08238

.1h923 .10570 .13726 .M832 .11592

.30201 .29373 .27170 .3009 .29081

1.11123 . 29148 .39632 .hho 6 1.2202

.5965 .5h095 ”.50059 .55h25 .529hh

.6h375 .62923 .58503 .60366 . 1h 3

.71303 .698h7 .6528h .7131? .68228

.76695 .75280 .70735 .7673h .73573

.80913 .79566 .75139 .80951 .77837

.8h239 .82972 .7872}; .8h282 . 12

.9325h .92393 .89286 .93292 .91063

.96673 . .938h9 .9670h .9515?

.98175 .97791 .96161 .98200 .9712?

.98928 .98655 .97hh6 .98908 .98182

.9958? .99h16 .98705 .99588 .99163

.997 .99706 .99255 .99818 .99556

.9985? .99835 .99533 .99879 .99705

.999 0 .99902 .99688 .999 .99 36

.99952 .9993? .99782 .9995? .9989?

 



 

 



  

     

Table 0.3.1;

P30(t'12, m2)

13:12 111-9 10-6

 

 



 

 



 

~257-

  

      

 

 

Twhcds

P300; l9.9) . P30“; l 9,6) P30“ '6,“

'88917 ' 029359 .13802

'83966
0281.08

.135”?

'79363 .2719? .13299

°6558h
.2,-L592

.12h76

.5756? .22758 .11931

~39921 .18220 .10h85

.35599 .16973 .10060

.28535 .18799 .09285

.23230 .12985 .08601

.15861 .1019h .o7h73

£81166 .06876 .05972

'06706 435961: .0551?

.0567h .0539b, .05218

.0515? .05091 .05052

.05000 .05000 .05000

.0512 .05079 .05017

.05h66 .ogg98 .ggiégg

. 7h .0 3o .

.059 .8205; .ggggé ‘

.0 6 . 5 .

.173 g .0988? .08295 ‘

.23560 ’lgiéé .21 23

. 8 .2 .

35; 8°27 57.28
. 2 o . 0702 .

39%; 1.6523 1.01136

.6h7h5 .51586 .05581

.69hh0 .55996 .5018

.73369 ‘.59889 .5829?

.85626 .73271 .69258

.91h62
.80961

.782314

.9h558 .85755 .839h8

.963h5
.889hl

.87773

7 781-3832. 8 .9 919 o

-;39§§i .96230 .963Bh

.9958h
.9709?

.973h3

.99713 .97689 .97986
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Appendix D. Comparison of Power Functions.

The three exact power functions Pn(?\,PA,PB),

Pn(}\,PA,PB,m1), and Pn(7\,PA,PB,m1,m2) are compared in

this appendix. More precisely, tables are given comparing

the three power functions simultaneously, with Pn(7\,PA,PB,m1)

evaluated at m1 = nPA, and Pn(?\,PA,PB,ml,m2) evaluated at

m1 = nPA and 1112 = nPB. Comparisons are made for n = 10,

20, and 30, with various combinations of PA and PB. The

first column gives the dependence parameter 2‘, and then

values of power for the double dichotomy, 2 x 2 comparative

trial, and the 2 x 2 independence trial are given in the

next three columns.

. In the last column values of the normal approximations

(3.1.H) and (3.3.5), which are identical for the particular

choices of PA’PB’ ml, and m2 in these tables, are given. This

last set of figures may be used to evaluate the adequacy of

either (3.1.h) as an approximation to Pn(?\,PA,PB,ml,m2),

or (3.3.5) as an approximation to Pn(7\,PA,PB).

  



 
 



 

 

 

Table D.l.l

I . 1:: _ 111

.93281. .8010?

.80866 .78609 .6h688

.62018 .61666 19672

_ .8870? .h5653 .36521

.5 .308h8 .3210? .25826 ,

.6 .20593 .2153? .17650 a

.7 68 .1387h .11779

. .08598 .08791 .0789?

1.0 .05000 .05000 .05000

1.1 .0 8 .05923 .05706

1.2 .08598 .08791 .0789?

1.3 368 .1387h .11779

1. .20593 .2153? .17650

1.5 .308h8 .3210? .25826

1.6 .1070? .85653 .36521

1.7 .62018 .61 1.9672

1.9 -—-- .9328h .8010?

Io P10(2,05905,535) mo P10<A ’05, 05)

II. P10(A,.5,‘.5,5)

 



 



 

2.1.x

 

$97796

1.- Plo( ) ,.h,.h,h,h)

11. 210mm,1,1.)

Table D.1.2

III. P10 (Agoh90h)

   



 



 

Table 13.1.3

 

A I II 11::

.1 .10065 .12872 .12289

.2 .09263 .10891 .10650

.3 .08h69 .09509 .0927?

.h .0770h .08320 .08116

.5 .06880 .07315 .07151

.6 .063h6 .06891 .06372

.7 .05799 .058h6 .05771

.0537 .05380 .053hh

.9 .05099 .05096 .05086

1.0 . .05000 .05000

. 1.1 .05110 .05099 .05088

7 1i2 .05862 .05h03 .05356 I L

i 1 1;3 .0581}; 0059214 006097 ‘

7 1.5 .0838? .0767? .073hh

1.6 .10186 .089hh .oauhh |

1.? .12390 .1011?? .09790 i

g 1.8 .15181 .12360 .11398

1.9 .18585 .m556 .1328?

2.0 .22662 .1713; .15h7h

2.1 .27868 .20053 .1797h

2.2 .33022 .23 .20802 g

2.3 .3933h .27211 .23968

2.11 .h6350 .31888 .27878

2.5 ..539119 .36271 .3133h

2.6 ".61929 .81593 .3552?

2.? .70002 .h7h85 .hooho

2.8 .77802 .53979 .1180?

2.9 .8h918 .61106 1.9905

3.0 .90952 .68896 .

3.1 .9557h .7737? .60521

30;
M

096518
.7117;

1

1

1

,

.

It. P10(2,03503,333,)
III. 1310(1903903)

II. P10( A 103,93)3)

 



 



Table D.2.1

 

 

I . 11 III

1.00000 .9991? .99776

.99088 .98260 .97h91

.93853 .91612 .89875

.81232 ;.?8338 .75881.

.62599 .60202 .57672

112593 1.1219 .39250

.25595 .25 .23853

.13729 .1358h .13056

.07101 .07072 .06903

.05000 .05000 .05000

007101 007072 e 3 [

.1358h .13056 1

.25595 .250hh .23853

112593 1.1219 .3950

.62599 .60202 .57672

' .81232 .78338 375811;

1.? .93853 » .916h2 .89875

1.8 .99088 .98260 .97h91

1.9 1.00000 .9991? .99776 I

I. P20(),.5,.5,10,10) III. P2o()\,.5,.5) !

II. P2O(R,a5,.5310)

  



  



 
 

o9 .05816

1.0 .05000

1.1 .05816

1.2 .08316

1.3 .126ho

1.h .18980

1.5 .27520

1.6 .38373

1.7 .51h90

1.8 .66586

1.9 .8306?

I. P20( 2 5 03, 05,6, 10)

no P20( 2, 03:05:10)

Table D.2.2

m. 920(a,.3,.s>

_ 131

.75763

.62362

.75763

 



 



 

I. P20( 2,0,4, 014,838)

:1. P20( 2.1.1.8)

 

Table 13.2.3

II

.85130

271252

.56531

.h2576

.9998);

P20< R, 01-19014)

   



 



 

 
 

I

.80315

.6257?

.87265

.38589

. 211525

.16882

.113811

.07732

.0566h

.05000

\ . 1.1 .05653

1.2 .07632

1.3 .11022

. 1.8 ' .15936

; 1.5 .22h66

= 1.6 .30608

1.7 1.0205

1.8 050891

1.9 .62080

2.0 0730014

2.1 .82809

2g .%NH:

2 .3 096199

2.h .9916?

I. P20(),,3,.h,6,8)

II. 220( ),.3,.u,6)

Table D.2.h

.63602

.73382

.82200

.89501

.9h895

III. P20(;\,.3,.h)

 

.50226

.59932

.69h79

.78313

.85918

.91905

 



  



 

 

 

Table D.2.5

.30596
036726

. 62

“51‘0" -28980 .3332.
.207 28 .2261? .21375

016616
.17h71

.1

013106
.13380

.12811

-10 .10231 .09363

~07953 .07886 .07633

.063
.06267

.0617

3531111 .05315 .05292

~88: 200° -
.

.0 317 o05293

o06398 .06281. .06186

.08199 .07933 .07708

.10783 .10305 .09897

. 77 1613 .12791

.18391 'j.1737h .16h20

o2 09
I.2

.20792

.291811 .27682 .25892

.35631 .33903 .31666

2 0796 .380214 I

.50011 1.8171. 11.830 r

.57589 .55810. .519 7

. 1112 .63559 .5906?

321131. .71063 . 72

.792214 .78076 .72700

.85276 .8h336 .7875

.90383 .89618 .8u038

.9 .9377h .88b69

.97210 .9675h .91998

.98916 .98630 .9 663 E

.99722 .99595 .9657?

--—-- .99913 .97910 }

""'"-
1.

098861-1-

1. P20( 1’03, 03.9696)
mo P20( 3’03, 03)

II. P20( A, 03,0336)

  



 

 



 
 

Table D.3.1

I II

1.00000 1.00000

.99929 .99928

.99130 .98788

.98201 .93215

.8093? .79571

.59762 .58686

.36830 .36323

.20028 .18612

.‘9 .08983 .08263

1.0 .05000 .05000

1.1 .08983 .08263

1.2 .20028 .18612

1.3 .36830 .36323

1.8 .59762 .58686

1.5 .8093? .79571

1.6 .98201 .93215

1.7 .99130 .98788

1.8 .99929 .99928

1.9 1.00000 1.00000

10- P30(A, 05305915915)

no 1330(2305, 05,15) IV.

.92299

'.98b85

.99889

.99999

III. P30(;\,.5,.5)

 

.180h9

.07832

.05000

.07832

.180h9

.3567?

.5852?

.80522

.9h695

.99501

Normal Approximation

 



 



 

 

 
1,2 41.682

1.3 .27391

1.1. 111675

1.5 .63796

1.6 .80775

1.7 .92823

1.8 .981h6

11.9 0 98314

I. P30(A,.h,.5,12,15)

II. P (A,.h,.5,15)

30

 

Table D.3.2

111. P30( A,.h, .5)

 

.13532

.07061

.05000

.07061



  

 



 

 

.6131?

115190

.30659

.19122

.11101

 .9h896

2.0 .98853

2.1 .99706

2.2 .99953

2.3 1.00000

2.1. 1.00000

I. P30(;\90h90h312312)

II. 2309,1112)

III.

IV.

III

.9591h

.87368

.7h398

.5879h

.9995?

c99983

P30( A ,.h,.h)

Nonnal Approximation

 

IV

.9958h

.92299

us.“

.591129

.2818?

 

.Iooh9

 

.05000

—-—-

.1279?

.2929h

m

.5838?

.85915

 

.985112

.99995

1.00000

 

 



 

 



 

 

Table D.3.h

71 I 11 III

.1 .779hl .6h201 .60156

02 . 7297 .50126 .h7297

.3 113930 .38103 .36179

.1. .31821 .2822? .2695?

.5 .22500 .20809 .19602

.6 .15572 311.51; .13972

.7 .10655 '.10131 .09872

. .07012 .07220 .07107

.9 .05585 .055h5 .0551?

1.0 .05000 .05000 .05000

1.1 .05568 .055142 .05

1.2 .07272 .07188 .07078

1.3 .101h0 .09990 .09738

1 .10219 .1h006 .13558 ,

1.5 .19536 .19266 .18561

1.6 .2606? .25738 .2h721

l 1.7 .33705 .33302 .21926

g 1.8 1.2238 1.1736 .3996?

. 1.9 .513h6 .50716 .

' 2.0 .60619 .59838 .57286

2.1 .69589 .68 .65791

2.2 .77793 .76751 .73672

2.3 .8 833 .83751 .80609

2.1. .9oh50 .89821. .86392

2.5 .9558 .93685 .90936

2.6 ‘.97269 .96613 .9h289

2.? .9883h .98816 .96602

2,3 .99605 .99383 .98086

2.9 ---- .99811. .98973

3.0 "v“- .99962 .9916?

3.1 *--- .9999? .9972?

3.2 __ 1.00000 .99862

3.3 .....— 1.00000 .99936

I. 230003.399) 111- 1”3001:3231

II. P30( A, .3, 03,9)

L— _ ~ \J
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Appendix E. Approximations to Power in the 2 x 2

Comparative Trial.

We discusSed the power for the test of independence in

the 2 x 2 comparative Trial in section 3.2, and gave tables

_ of exact power in Appendix B, and in Appendix D. In E.l of

this appendix, three graphs are given, two of which illustrate

how the power changes as m1 varies from O to g, and the third

graph contains some power curves for ml = 15 and n = 30. We

fix p2 and then plot P30(pl,p2,l5) as a function of p1. This

is done for p2 = 0]., .2, 03, too, .90

In E.2, Sillitto's approximation, given by (3.2.6)

and Patnaik's 2nd approximation, given by (1.7.18), are

compared with the exact values of power in the 2 x 2 com-

parative trial, for the two special cases 1111 = 10, n = 20,

and m1 = 15, n = 30. These values occur in groups of four

for each pl,p2 combination, with the top number being the

exact one, the second and third are obtained from Sillitto's

and Patnaik's approximations respectively, and the fourth

number is Pn(t lml, X), X‘= mlpl + (n-ml)p2, and

P q

t = -l-g . Not all P (t lml. K) values are given for

P2q1 n

each pl,p2 combination.
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Table 11.2 .1

   

Canparisons of Power in the 2 x 2 Comparative Trial

 

 

.2 .3 .1. .5 .6 .7 .8 .9

.0783 .1681; .3036 .8773 .6569 .8121; .9231 .9826

.0973 .2109 .3683 .5152 .7137 .8893 .939? .9856

.0500 .0977 .2273 .1011. .6183 .7930 .9118 .9785 .9983

.8688 .9909

.0500 .0789 .1883 .2681. .0275 .6078 .7831. .9231

.0500 .0813 .1671 .3015 .8722 .6550 .8206 .939?

.0500 .0820 .1717 .3162 .5018 .6999 .8703 .9785

.0500 1.3116 .8123

.0500 .0722 .1389 .2521. 2 .6078 .8121:

.0500 .0756 . 2 .2780 1.525 .6550 .8h93

.0500 .0? 1 .1535 2860 .8736 .6999 .9118

.0500 .h259

0 05w 007$ o 58 0 25214 018275 . 6569

. 00 .0736 . .2780 .8722 .713?

.0500 .07 .1h82 .2860 .5018 .7930

.0500 .1373 1.31:6

1 ' . .0500 .0709 .1389 .2681. .8773

1 5 .0500 .0736 .1512 .3015 .5852

1 ° .0500 .0781 .1535 .3162 .6113

1 .0500 . 688

1 .0500 .0722 .1183 .3036

1 6 .0500 .0756 .1671 .3683

1 ° .0500 .0761 .1717 .

‘ . . .0500

1 . ,

1 Fr“ N°°' P20(P1’Pe’m) .0500 08119 .1611;

1 . . .21

1‘ .7 Second No.= SillittO's Approx. .8538 .0820 .223;

1 Third No.: Patnaik's Approx. '0500

.0 00 . 8

1 _- Fourth NO.: P20(’Gl 10, r) .OEOO .8797;

1 '8 .0500 .099?

.0500

.0500

.0500

.0500

.0500
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Table E.2.2

Canparisons of Power in the 2 x 2 Comparative Trial

1’1

1’2 .1 .2 03 Ch 05 O6 '07 .8 O9

.0500 .1080 .2535 .8686 .6820 .8516 .9500 .98h8 .9993

.0500 .1216 .2927 .5117 .7193 .8711; .9560 .9905 .9991

.0500 .1285 .3163 .5663 .7872 .9251 .9828 .9982 1.0000

.0500 6773 .9595 . .9993

".0500 .0916 .2310 .3951: .6095 .8020 .9322 .9898

.0500 .0971; .2279 .18220 .6387 .82h0 .9 .9

.0500 .0982 .2339 .hlal .6715 .8598 .9668 .9982

.0500 - .6380 .9h20

.0500 .0888 .2036 .3897 .6161 .8280 .9560

.0500 .0892 .2069 . .6315 .8598 .9828

.0500 .2037 .5976 .9595

.0500 .0830. .1861 .3667 .6095 .8516

.0500 .0855 .1968 .3896 .6387 .8711;

.0500 .0862 .1993 016006 c 6715 O9251

.0500 .2003 .6380

.0500 .0830 .1920 .3951; .6820

.0500 08.55 .2036 . 220 .7193

.0500 .0862 .2069 . .7872

.0500 .2037 .6773

.0500 .0856 .2110 4.6116

5 .0500 .0888 .2279 .5117

. .0500 .0892 .2339 .5663

fp 15) .0500

First No.: P

' 30 1’p2’ .0500 .0916 .2535
Second No. : Sillitto's Approx. .0500 .0971; .2927

.0500 .0982 .3163

mix-d No.8 Patnaik's Approx. .0500

Fourth No.: P oft [15, 3‘) .0500 .101“)

' .0500 .th5

.0500

.0500

.0500
.9 .0500

.0500
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