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ABSTRACT
LONGITUDINAL PLASTIC WAVE PROPAGATION
IN ANNEALED ALUMINUM BARS
by

Leonard Efron

In this investigation aluminum rods were subjected to
dynamic compressive impact loading of duration of the order
of 500 microseconds in order to study the propagation of
longitudinal plastic waves, Two independent series of tests
were conducted, In the first, an electro-magnetic transducer
was used, while in the second, etched foil resistance strain
gages yielded records of surface strain at the same gage
locations, Strain rates on the order of 100 in/in/sec were
reached,

Test results indicated that any given level of velocity
or strain propagates along the bar with a constant velocity,
not affected by the strain rate within the small range of
strain rates encountered, However, the velocities of propa-
gation observed differed noticeably from those predicted by
von Karman rate-independent theory based on the static curve,
Good agreement was found between the propagation speeds ob-
served for different levels of velocity (averaged over all
tests) and predictions of von Karman theory based on a single
dynamic stress-strain curve differing from the static curve,

That the apparent applicability of a single dynamic curve
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and rate-independent theory to this kind of plastic wave pro-
pagation is consistent with rate-dependent theory for a ma-
terial with a very slight rate dependence, was demonstrated

by the results of computer solutions for rate-dependent theory,

The wave propagation speed versus strain level plots
from the transient strain records showed consistently lower
propagation speeds than those based on the velocity records,
It is believed that the strain gage response actually lags
behind the strain in the material, but considerably more
evidence is needed before final conclusions can be drawn
about the lag in the strain measurements and the reasons for
it,

The velocity recording technique for non-magnetic materials
is believed to give good results, but it may be possible to
modify it to make it more nearly a routine type of test,

In order to apply the strain-rate-dependence theory to
the experimental measurements made, it is necessary to have
boundary values at x = 0, To avoid the three-dimensional
difficulties associated with the stress at the actual impacted
end of the bar and test one-dimensional theory in a region
where it should be applicable, it was decided to take the
first gage station (six diameters from the impacted end of
the bar) as x = 0, and use the recorded velocity there as a
boundary condition to predict the velocity versus time at
gage stations further along the bar,

A numerical computer solution was obtained using the
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rate-dependent theory with a power law for rate dependence,
The computer solution did predict a constant wave propaga-
tion speed for any given level of velocity, but the constant
values predicted did not agree well with the experimental
values from the velocity records, This lack of agreement
appears to be mainly the result of using a rather poor fit
to the static curve in the computations, since von Karman
rate-independent theory using the same fitted static curve
also gave poor agreement with the experiments, Since the
computer solutions with rate-dependent theory were consistent
with a single dynamic curve, and since the velocity measure-
ments correlate with a single dynamic curve, it appears that
a little ingenuity in curve-fitting could produce agreement
between the rate theory and the experiments,

For the case of linear strain rate dependence, previously
considered by Malvern (1950), a new computer solution for a
constant stress boundary condition indicated the formation of
a plateau of constant strain in agreement with von Karman
rate-independent theory, if the load is applied for a duration
long enough for the material at the impacted end to reach

equilibrium,
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CHAPTER 1
INTRODUCTION

1.1 Purpose

The mechanical behavior of engineering materials has
long been known to exhibit marked differences under condi-
tions of impact and high rates of loading as compared to
the results obtained during static testing, Theories taking
into account the effects of strain rate in stress-strain re-
lations were offered as early as 1909, The concept of a
rate-of-strain dependence in dynamic deformations of metals
was naturally extended to studies of stress wave propaga-
tion,

It is the purpose of this investigation to study the
propagation of longitudinal plastic waves in aluminum rods,
caused by dynamic compressive impact loading of duration of
the order of 500 microseconds, Cross section particle velo-
city and surface strains from two independent series of tests
are examined with special attention to the possible existence
of strain rate effects,

The data from the velocity transducers is compared with
predictions of a strain-rate-independent theory and also a
strain-rate-dependent theory, Consideration is given to the
possibility of using a single dynamic stress-strain curve
for the material to account for the wave propagation observed,

In order to apply the strain-rate-dependence theory
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to the experimental measurements made, it is necessary to
have boundary values at x = 0, However, at the actual end
of the bar, the stress state is three-dimensional and a load-~
time history obtained from the transmitter bar would not be
the proper boundary condition for the one-dimensional wave
propagation, Be1127* has found that the one-dimensional
wave is formed in a distance along the bar equal to about
one diameter, 1In order to avoid the three-dimensional dif-
ficulties and test the one-dimensional theory in a region
where it should be applicable, it was decided to take the
first gage station (6 diameters from the impacted end of the
bar) as x = 0, and use the recorded velocity there as a
boundary condition to predict the velocity versus time at
the other three gage stations further along the bar,

A1l calculations are for a semi-infinite rod and the
transient experimental data are all obtained before any re-
flections arrive from the far end,

Associated with this study is a re-examination, using
the high speed CDC-3600 digital computer, of some previous
solutions of strain-rate-dependent longitudinal plastic wave
propagation, Iterative procedures were used to solve the
governing system of nonlinear equations, Difficulties in

computation were encountered, The criteria for convergence

*Superscript numerals indicate references as listed in the
Bibliography,
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of the iteration process was found to be a function of strain-

rate and the degree of material strain rate dependence,

1,2 Background

Thomas Young (1773-1829) included in his Course of

Lectures on Natural Philosophy and the Mechanical Arts,

London, 1807, a discussion of one-dimensional waves in an
elastic bar due to longitudinal impact with another bar

and concluded that O = %} where (O is the stress at impact
due to an imposed boundary velocity v, The quantities E
and ¢ are Young's Modulus and the elastic wave propagation
speed respectively, which are material constants, This
correct result perhaps marks the beginning of the history
of stress wave propagation in solids,

In 1821 Navier (1785-1836), then Professor of Mechanics
in Paris, presented a memoir giving the equations for vibra-
tory motion of an elastic medium composed of particles acting
on one another with forces directed along the lines joining
them, and proportional to the product of displacement and
initial distance between them, This paper for a particular
elastic solid was followed by a series of works by Cauchy
(1789-1857), Poisson (1781-1840), Green (1792-1841), St,-
Venant (1797-1886), Stokes (1819-1903), Lord Kelvin (1824-
1907), Lord Rayleigh (1842-1919) and others during the nine-
teenth century,

Their researches were carried on not only in an attempt



to discover the laws governing vibrating bodies, but to un-
derstand the nature of light, the transmission of which was
believed due to the vibrations of a perfectly elastic aether,
Thus, many of the early studies of stress wave propagation in
an elastic medium were prompted by an interest in electro-
magnetic phenomena, The twentieth century opened with ocur
understanding of the governing equations for longitudinal
waves (irrotational dilatation), transverse waves (equi-
voluminal distortion) in extended elastic bodies and Rayleigh
surface waves in the form known to us today,*

In an extended elastic medium obeying Hooke's Law,

longitudinal waves are propagated with a velocity

c = [A+2ld) 1 (1.1)

0

7/ N
where ,l and [{ are Lamé's constants and QO is the mass den-
sity, whereas one dimensional wave analysis applied to longi-

tudinal vibrations of rods yields
c =2 (1.2)

where E is Young's Modulus,

*For a review of the early history of elastic wave propaga-
tion, see:

Whittaker, E, T., A History of the Theories of Aether and
Electricity, Vol, 1, Nelson, London, 1951 and Harper,
N. Y,, 1960, Chapter V,

Love, A, E, H,, The Mathematical Theory of Elasticity,
Dover, N, Y,, 1944, Introduction and Chapter XIII,
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This latter result is only approximate since we assume
that plane sections of the rod remain plane and the stress is
uniform across the section,

As physicists gave up their quest for the elusive aether,
interest in stress wave propagation slackened, However,
technological advances began making use of metals and other
materials past their proportional and elastic limits and into
the plastic region, It also became apparent that many ma-
terials of interest exhibited mechanical properties under
conditions of dynamic loading which differed significantly
from the properties determined during static loading tests,

L. H, Donne11l (1930) introduced the first scheme for
treating longitudinal wave propagation in a medium with a
stress-strain relation deviating from Hooke's Law, Stress
waves in a long bar were analyzed by a superposition tech-
nique in which the stress wave was treated as a succession
of incremental steps in stress, Each increment was assumed
to travel at a velocity determined by the slope of the ma-
terial static stress-strain curve at the stress level of the

increment, The wave velocities thus obtained are

c= [ 1L aT) 4 (1.3)

p d€
which reduces to Equation (1,2) for a Hookean material,
World War II brought a surge of interest in elastic-

plastic wave propagation, Studies were made in the light of

developments in armor-piercing shells and armor plates, The
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problem was treated independently by von Karmanzﬂ'3 (1942)

in the United States, Taylor? (1940) in England, and
Rakhmatulin5 (1945) in Russia, The von Karman-Taylor theory
assumes a single-valued strain-rate-independent stress-strain
curve which is concave towards the strain axis (thus pre-
cluding the possibility of shock waves being built up) and
assumes that radial inertia effects are negligible,

Whereas von Karman used Lagrangian co-ordinates, Taylor
treated the problem using an Eulerian co-ordinate system,
but later showed that by a suitable transformation, the two
solutions are identical,

Bxperiments were carried out shortly after the develop-
ment of this theory by Duwez and Clarké. The results showed
some discrepancies from the predictions, which it was sug-
gested might be attributable to strain-rate effects im the
material,

The hypothesis of material strain-rate dependence had
already been offered, It had been suggested that stress
should be considered as a function of strain rate as well
as the level of strain as early as 1909,

Among the proposed functional relationships was a logar-
ithmic relationship suggested empirically by both P, Ludwik’
(1909) and H, Deutler® (1932). L. Prandt1® (1928) reached

the same conclusion as the result of a physical theory of

plastic flow, The relation may be written

G(e,é)=0;(€)+k1né (1,4)
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where O‘; (€) is the stress at a strain of € when the strain
rate, é’, is unity, The factor k could be a function of
strain,

Another relation which has been proposed is a power law

of the form
0’<€,€)=o;<e)é“ (1.5)

where n may be a function of strain,

In a more general form the relation can be written

o =€, L€ (1.6)

where the subscript refers to nominal plastic strain and

10,11 developed a one-dimensional

strain rate, L, Malvern
theory for longitudinal stress-wave propagation as in a rod,
by rewriting Equation (1,6) as

[ ]

E, €, = 80, €) (1.7)

where E (Young's Modulus) is introduced for convenience,
The elastic components of the deformation are considered

rate independent, and hence we obtain
[ ]

E €, =0 (1.8)
Thus, the constitutive equation which is the flow law when

plastic deformation occurs is given by

€ = é'e + é'p
(1.9)
E,€ =0 +g(0,€)
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Malvern gave a numerical solution for the case of a linear

strain-rate-dependence

1 [ ]

g =0, +.k_€p (1.10)
where C76 represented the static stress-strain relation

G, = f(€)
Thus

[ ]

€, = x[0-f(€)]
and

EL € =0+ «[0-£CE)] (1.11)

The relation f(€ ) was chosen to represent approximately

a hardened aluminum alloy, and one result of the solution

is that small plastic strains propagate at a velocity greater
than that predicted by the strain-rate-independent theory,
whereas larger strains are progressively retarded,

The special case CTB = constant had previously been
treated numerically by Sokolovsky.lz’11

Most experimental work has shown the formation of a
plateau of uniform strain at the impact end of rods subjected
to constant velocity loadings, as predicted by the strain-
rate-independent theory, The numerical solution of Malvern
for a strain-rate-dependent theory, which was carried out

on desk calculators, did not indicate the formation of any

such region of uniform strain in the first 100 microseconds

of the impact,



Th

ga

Be
Pr:
in
ing
pul
the
exp
D
Howy
al]d

elag

Prop

the |



Experiments by Bell13

14

on steel bars and Sternglass
and Stuart with copper strips involved the propagation of
incremental impact loads superimposed upon static loads in
excess of the elastic limit, The wave fronts were found to
propagate at the elastic wave velocity and not at the lower
speed predicted by von Karman theory,

15

Alter and Curtis subjected lead bars to impact loading

16 with a stepped increase in

using a Hopkinson Pressure Bar
diameter, Dﬁe to reflections within the bar, the result was
a plastic preloading to the lead followed by a second impact,
The wave front of the second disturbance was found to propa-
gate at the elastic wave velocity, More recent studies by

Bell and Steinl’

of incremental loading waves in dynamically
pre-stressed aluminum, using a similar set-up in which the
increment exceeded the original elastic limit of the material,
indicated that only the initial portion of the subsequent
pulse travelled at the elastic wave speed, The remainder of
the pulse appeared to propagate at the plastic wave speeds
expected from rate-independent theory, All these results
appeared to contradict the rate-of-strain independent theory,
However, other studies of wave propagation in lead by Bodner

and Kolsky18

suggest that lead should be treated as a visco-
elastic material for small amplitude plastic waves,

Attempts to establish a physical basis of plastic wave
propagation in crystalline solids based on the laws governing

the generation and motion of dislocations have been made by
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. 19.-24
Campbell, Dorn, Hauser, Simmons, et al, 9-2 They have shown

that Equation (1,9) is a good approximation for the material
constitutive equation, The experiments conducted by this
group using a Hopkinson split pressure bar device showed that
g(0, €) was independent of stress and strain histories, but
not a simple function of O-f(€ ). 1In discussion of these
theories, Dorn has said that they suggest a greater strain
rate effect in pre-strained aluminum than in annealed alumi-

num, and this agrees with their experimental observations°23’24

25=27 has

Using a diffraction grating technique, Bell
made studies of constant velocity impact on annealed aluminum
bars and found agreement with the strain-rate-independent
theory on the basis of a "dynamic'" rather than the static
stress-strain curve, Kolsky and Douch28 made studies of
short bars of pure copper, pure aluminum and aluminum alloy,
They found no appreciable strain rate dependence for the alu-
minum alloy, For the copper and pure aluminum their measure-
ments indicated a rate-of-strain dependence, but a rate-inde-
pendent theory gave reasonable agreement if a single dynamic
stress-strain relation appropriate to the actuai range of
rates of straining in the test was used, The copper at low
strain rates did, however, exhibit a strain rate effect of
the nature predicted by Malvern,

Lindholm,29

in a series of tests in which short (length
to diameter ratios from 0,2 to 2,0) specimens of high purity

aluminum were subjected to strain cycling at widely variant
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strain rates, has shown that the prior strain rate history
of the specimen has a significant effect on plastic flow be-
havior when reloading is at a high strain rate, Dynamically
reloaded specimens indicated an annealing recovery effect
with a characteristic time on the order of seconds, These
findings do not agree with the concept of a single dynamic
stress-strain relation,

A strain-rate-dependent theory would result in the
higher increments of straim in a pulse being propagated at
slower speeds than predicted by the rate-independent theory
based on the static curve, Such apparent slowing has been
observed?0 but it is the contention of some researchers
that the apparent decrease in wave propagation speed for
large strains is due to the failure of the measuring devices
to faithfully follow the deformation,

Strain gages of both the wire and foil type have been
used to successfully monitor "static" strains into the plastic
range, but controversy still exists as to their ability to
respond accurately to large strains at high strain rates,

It has been suggested by Bell31

that the strain rate depen-
dence indicated from earlier wave propagation experiments
was due to a lag in the gage response, When compared to
measurements made with his diffraction grating technique,
he found that wire resistance strain gages gave errors which

were related to the maximum slope of strain-time curve,

Tests at a strain rate of 1000 in/in/sec and a maximum
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amplitude of 2,5% indicated errors of 26% at a point one-
half inch away from the impact end of a one-inch diameter
specimen, At a distance equal to 3% diameters from the
impact end (with a much lower strain rate) the error was on
the order of 10%,

The problem at hand is to determine the three dependent
variables (stress, strain, velocity) in terms of the two
independent variables x and t, With the exception of the
techniques of dynamic photoelasticity with birefringent
materials or use of the Hopkinson Pressure Bar, we are re-
stricted experimentally to techmiques for measuring strain
or particle velocity, The higher the strain rate and strain
magnitude, the higher the required frequency response of the
transducer,

For further background information concerning dynamic
stress-strain relations and anelastic stress waves, the
reader is referred to references 32 through 35 as listed in

the Bibliography,
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CHAPTER 1I
FUNDAMENTALS

2.1 Strain-Rate-Independent Theory

The rate-independent theory of von Karman was derived
for a long, thin unstretched wire subjected to an impulsive
tension load at one end, The analogous treatment for an
impulsive compressive load, also using Lagrangian co-ordin-
ates, is described below, The governing equations for one-
dimensional longitudinal stress wave propagation in a bar
are obtained by assuming that plane sections remain plane
and that the stress is uniform across them, Lateral inertia
effects are assumed negligible, These assumptions make the
one-dimensional theory incorrect in the immediate vicinity
at a suddenly impacted end of the bar, since, as Bell27
has shown, a three-dimensional wave pattern exists there,
Por this reason, in comparing experiments with one-dimen-
sional theory, we will take input data from the first gage
station three inches from the end,

Lagrangian Co-ordinates will be used, Let u(x,t) be

the displacement at time t of the cross section initially at

a distance x, Loading occurs at the section x = 0, Then

€- %% (2.1)

v = —%‘5 (2.2)

13



14

where € is the strain and v is the particle velocity at the
section under consideration, Compressive stress and strain
are reckoned positive, while displacement and particle velo-
city are considered positive when they are to the left
(negative x-direction), 1In the cases treated in Chapter 1V,
the compressive wave moving to the right produces negative
displacement and velocity,

Differentiating the first equation with respect to time

and the second with respect to x, we obtain the equation of

continuity
€ v
dt  dx (2.3

The equation of motion for an element of the bar gives
d0 dv
—_— = —_— 2.4
d X ‘)‘bt ¢ )

If strain is assumed to be a single valued function of

stress, we can rewrite (2.,4) as

bzu - d0 bzu
>.2 > (2.5)
t d€ ¥x
which we recognize as the one dimensicnal wave equation for
waves propagating with the velocity c = %%? ‘) . Oxe
obvious solution is36 '
u = vyt + €1x , (2.6)

which corresponds to a constant velocity impact at x = 0

on a semi-infinite bar and from Equation (2,1) represents a
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constant strain € 1°

Letting S = :ea we see that a compression wave of mag-
nitude 61 will propagate at a speed c; given by
2
2 X S
c = = = (2.7)
1 12 D

where S is evaluated at € = 61.

Thus, the complete solution requires the consideration
of three regions for the case of constant velocity impact
at x =0,

(a) 0<x<c,t where €=€1

(b) c1t<x <cot where the relation -’tf =’\/S_ holds
and c, is the elastic wave propagation velocity

(c) x>c,t where €=o0 .

In the field of the solutionA[region (b) above] , G and
€ are positive, decreasing toward the right, while u and v
are negative, increasing toward the right (i,e, decreasing
in magnitude), and v is decreasing with time at any one
point (increasing in magnitude),

Unless the constant velocity imposed at x = 0 has a
finite rise time fron v = 0, we have a discontinuity in strain
at x = cot, Here, S = Bo (Young's Modulus) and we have

2

Eo .
c,o = ZT'WhiCh is the result in the elastic case,

Fig. (2.1) shows the relation between € and /9 = %
in the three regions,
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2.2 Strain-Rate-Dependent Theory

In addition to Equations (2,3) and (2,4) a third equa-
tion is provided by the constitutive equation of the material,
We will assume the flow law in the general form given by

Equation (1.9)
B, 35 = 3T + 5o, € (2.8)

Thus, we now have a system of three quasi-linear first
order differential equations, Although the equations are
linear in the derivatives, the term g( O, € ) may be non-
linear in G and €,

The system is rewritten

€ O~ _

EO bt - bt —8(0’.6)
%f - g; =0 (2.9)

$ - P30

which we see is of the form

Summed i 1,2,...,N

Lk Dq = aki“xl + bki“t1 = Gy (2,10)

N Eqs. k = 1,2,,..,N

where the subscripts x and t denote partial derivatives,
The system will be shown to be hyperbolic and hence

suitable for numerical solution by the method of character-

istics.37’38 We seek a combination

L= XL = A6, Summed k = 1,2,,,.,N
(2.11)
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such that it represents interior differentiation in only

X
one direction, the direction given by the ratio —g% = ?2— ,
p

where the subscripts denote differentiation with respect to
the parameter p along the curve being sought, If such a

direction exists, we have

dx
’{kaki dp
AkDki at
dp
Thus,
A2y dt - byydx) = 0 (2.12)

which represents N equations for i = 1,2,,..,N,.
Returning to Equation (2,11) we multiply by dx to ob=-
tain

Ldx = Ak aki dX’l.‘l'x1 + Akbkid:xutl
and then substitute from Equation (2,12) to obtain

Ldx = Akakiuxldx + /\kakiutldt

A kakidui = AkadX

with the final result

A ((ag dut - Gydx) = 0 (2.13)

Equation (2,11) is now multiplied by dt and the pro-
cedure repeated to obtain an additional relation

A (b sdui-Gat) = 0 (2.14)
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Equations (2,12), (2,13), (2,14) are N + 2 homogeneous
linear algebraic equations for the N multipliers 'kk- PFor
these equations to be satisfied by a non-trivial solution,
it is required that all the NxN determinants of the co-
efficients of Ak vanish,

The determinant obtained from Equation (2,12) will de-
fine the characteristic base curves in the base x,t-plane,
while the others furnish the interior differential equations,
holding along the characteristic base curves,

Por the system of Equations (2,10) we have

FO'q 0 0 O -1 E, 0
ul = | € ag; = |0 0 -1 by = [ 0 1 0
v 1 00 o o -0
g(o, €)
Gy = 0
0

Prom Equation (2,12)

l\l(alldt-blldx) + Az(azldt-bm_dx) + /{3(a31dt~b31dx) =0

I
o

Al(a13dt-bl3dx) + /‘.2(a23dt-b23dx) + /\ 3(a33dt-b33dx) =0
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Substituting from above

(@A + (DA, + (@) A, =0 (2.15)
(-Egan) Ay + (<ax)A, + (A, =0 (2.16)
A, + (-at) A, + (Pax)Az = 0 (2.17)

and we require

dx 0 dt

-E dx -dx 0 = dx(-,[)dx2 + E dtz) =0
o o
0 -dt I)dx

Hence, the characteristic curves are

dx =0
dx = +cdt (2.18)
dx = -cdt

where ¢ = \/;; represents the speed of propagation of the
wave front,

Since there are as many distinct families of character-
istics (all of which are real) as the order of the system,
the system is completely hyperbolic, The method of charac-
teristics is therefore applicable for the solution,

Equations (2,13) and (2,14) are

(-gd)A |+ (-a) A, + (@OHA, = 0 (2.19)

(-d0 + Egd€ - gdt) Ay + (€)X, + (-pav) A5 =0 ooy
2,20
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The determinant formed by Equations (2,19), (2,16)

and (2,17) is

-gdx -dv 40"

2 -
-E,dx -dx 0 = dx(EodO'dt + pgdx® - E,Qdxdv) = 0

0 -dt pdx

We now examine the conditions required for the bracketed
term to vanish along the characteristic curves, Along
dx = cdt we have

2
E,dgdt + pgc?dt® - E Pcdtdv = 0

or
d0 - P cdv = -gdt
since ‘
Eo = ﬁ)cz
Along dx = -cdt we similarly obtain

d0 +Pcdv = -gdt
Finally, we consider the determinant formed by Equa-

tions (2,15), (2.20) and (2,17)

dx 0 dt
-d0 +E,d€ -gdt  d€  -Ppdv | = dx(Pd€dx-Qdvdt)
0 -dt [ ax +dt2(d0-Ed € +gdt) = 0

Thus, along dx = 0, we have

dG - E,d€ = -gdt
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The differential equations defining the characteristics

and the interior differential equations holding along them

are summarized below,

Characteristic Interior Diff, Equation

Diff, Equation Along the Characteristic
dx = cdt d0 - Pecdv = -g(T, €)dt (2.21)
dx = -cdt dG + Pcdv = -g(0, € )at (2.22)
dx = 0 a0 - E_d€ = -g(O, €)adt (2,23)

The form of g(G~, €) will not
plicit integration of the interior
However, the system can be treated

procedures, For this purpose, the

in general permit an ex-
differential equations,
by numerical integration

following transformations

to non-dimensional variables is introduced,

S:Ez-
(o]
E =€
V:l..
Co
T = kt
X:.E_x
Co

(2.24)

- 1
G--ﬁ;g(O‘.G’)

/E
where Co = Z; is the elastic wave propagation speed and

. -1 . .
k has units of sec and a magnitude chosen for convenience
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depending on the form of g(0,€ ).
The characteristic curves and interior differential equa-

tions are now given by

dS - dVv = -GdT along the curve dX = dT (2.25)
dS + dv = -GdT " " " dX = -dT (2,26)
dS - dBE = -GAdT " " " dX =0 (2,27)

Prom Pig. (2.2) we see that there are three characteris-
tics passing through each point in the X,T-plane, Thus, the
solution at any point P can be obtained if we have knowledge
of the dependent variables at points A, B and C by solving
three difference equations along the appropriate characteris-
tics,

The conditions across the leading edge of an elastic
shock wave traveling in the positive direction, represented

by the line x = c t in the x,t-plane are

A g = - pcoAv (2,28)
Av=-c A€ (2.29)
Ao =pc’A€ = e A€ (2.30)

where AO’, AE and Av are the jumps in stress, strain

and velocity as the wave passes, The first condition results
from equating impulse to change of momentum for the traversing
of an element of the bar by the shock wave, The second re-
sults from continuity of the displacement across the shock,

and the third follows from the first two and Co = %? .
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X

FIG (2.2) THE CHARACTERISTICS IN THE X,T-PLANE



Tht
ce
ju

eq!

alo

tio

all
that

Stre

One
the

for

Use

pti31



25

Thus, in a semi-infinite bar with an undisturbed region pre-
ceding the shock, we obtain O = pc02€ = -pcov on x = c_t
just after the shock passes, and the interior differential

equation along the characteristic can be integrated to obtain

11) o
-3t = a0
3(5’, g (2.31)
C
O; o

along x = c,t where C76 = -[Dcovo is the stress at x = 0,

(see Malvern

t =0,
If there is no shock wave, but rather a gradual transi-

tion from an elastic to a plastic stress wave, we have

T =0y = Pc,2€ = -Pegv

all along the curve x = co(t-ty) where t = ty is the time
that the loading at the boundary x = 0 reaches the yield
stress CTy.

Por the case of point P along x = 0, we assume at least
ong of the dependent variables to be prescribed and hence
the equations along X = 0 and dX = -dT will be sufficient
for solution,

In writing the finite difference equations, we must
use the average value of G along the element of the appro-

priate characteristic curve,
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2.3 Numerical Procedure

Rewriting Equations (2,25), (2,26) and (2,27) as dif-
ference equations along the appropriate characteristics as

shown in Fig, (2,3) we obtain

Gp + Ga
\'s v - p
(Sp - Sa) - ( p - a) - A

_ AT GP * Gc (2.32)

(Sp - S¢) + (Vp - Vo)
(S, - Sp) + (Bp - Ep) = AT(G, + Gp)

These equations are solvable by iteration techniques

in the form

(s, -5 - (1 - vy = -3ATG, T+ 6y) (2.33)
(st - 80 + (Vpt - Vo) = -3ATGpIT + 6o (2.34)
-(Spi - Sp) + (Epi - Ep) = [&T(Gpi'l + Gp) (2.35)

We begin with an initial guess for the value of Gp

i i i . i _ i i i
and solve for Sp » BT, ¥, after which G,” = Gp, (85" ,Ep™)
may be evaluated,

The process is then repeated to obtain Sp1+1, etc, and
the iteration continued until the new values of Sp, Ep, and

Vp differ by less than some pre-determined amount from the
values in the preceding iteration, Three types of "typical
points'" must be considered for a wave propagating in a semi-
infinite bar, or before reflections occur in a.finite bar:

(a) general interior point, (b) impacted end (x = 0) and
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FIG (2.3) FINITE DIFFERENCE GRID USED IN
NUMERICAL SOLUTION
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(¢) plastic wave front,

(a) General Interior Point

The equations for a general interior point are

St - V' =5, - Vo - $ATG, + 60D

steviz=s. av. - 2ATG,. + i1 (2.36)
p p = Sc c 2 c p .

-spl + Epl = =S, + Ep + AT(G, + Gpl‘l)

the solution of which is

- '-1
sp* = 3(D, + D) - $ATG,*

P

E,t = (D, + Do) + Dp + $ATG, "1 (2.37)
i_

vyt = 5. + v - $AT6,

where

= 1

p, =5, - v, - /16,

D, =S, + V. - $ATG,

(b) Impact End Point

Since we are not involved with any reflections from
the striker bar, we need only consider propagations along
dX = 0 and dX = -dT at the boundary X = 0, Thus, we will
have only two equations available, We consider individually

the solution for three possible boundary conditions,
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These boundary conditions are described here for the im-
pact end of the bar, according to the one-dimensional theory,
In the solution presented in Art, 4,5(b), we will use the velo-
city boundary condition applied at the first gage station
three inches from the impact end,

(i) Velocity Boundary Condition: V(O,T) = Vo(t)

The equations for this point are

3 . - i-l
s,2t+vi=p, - %[\TGP

p p
-spi + E1 = Dy + Argyi-? (2.39)
Vp = Vg
The solution here is
spi = (D, - V) - $A16, 7!
Epi =(D_+D_=-V)+ %Z&Tepi'l (2.40)
Vv =V,

(ii) Stress Boundary Condition: S(0,T) = So(t)

The equations for this boundary condition are

s v iz _ i-1
S, + V D. }[}TGP

P
-s, + E,* =D, + AT6 P! (2.41)
Sp = S,

solution of which yields
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s, =S,
i i-1
- 4
Ep D, + S + ATGp (2.42)
i i-1
V' =D - So - 2416,

(iii) Strain Boundary Condition: E(O0,T) = El(t)
This final boundary condition enables us to obtain the solu-
tion S(0,T) for all T by solving Equation (2,27) which is
now an ordinary differential equation for S in the indepen-

dent variable T, For the complete solution, we write the

equations
i T _ i-1
Spt + V,7 =D, ~ $ATG,
_spl + Ep = Dy + Z&TGpi'l (2,43)
Ep = El

whose solution 1is

n
M
n

i-1
(-p, + Ey) - Ate,

E, = E; (2.44)

]

i i-1
v (D, + D - Ep) + /16,

(c) Plastic Wave Pront

FPor an impact loading with a finite rise time, the
conditions at the leading edge have already been described

and transformed to
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along

where ty is the time at which O = Cry at x = 0,

A shock wave propagating along X = T is treated by
transforming Equations (2,28), (2,29) and (2,30) to obtain
As = -/Av ' (2,45)
Av = -A\E (2.46)
As = AE (2.47)
Rewriting Equation (2,25)

o _ dS - dv _ 2dS
T = =F%— =%

we obtain

S
ir o ds
2T aCs, ) (2.48)
$(0,0)

along X = T which is the transformation of Equation (2,31),

2.4 The Iteration Scheme

A system of equations
{fk(xl’ Xoseoes xn) = 0} k=1,2,,..,m (2.49)
is called normal if m = n, If the system is reduced to the

form

{xj = ¢j(x1, Xoseees xn)} J=12,...,n (2.50)

we can use the method of iteration to construct a series of

solutions
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by means of the formula

x 31 = b oxd, xzi.....xni>} i=1,2,,..,0-1 (2,51

where, under certain conditions, the solution may be made
as accurate as one pleases for sufficiently large r,

The iterative scheme for non-linear equations will al-
ways converge if the following two conditions are satisfied.39

1., Denoting the system solution as
v} - {0}
{ J CxJ

it is required that {xji} be "close'™ to the solution with

the degree of proximity determined by the functions '{ij} .
2, The second condition, which is the only one re-

quired of linear systems, is associated with the Jacobian

matrix of the system

3¢1 3¢1 L. b¢1

d X1 X2 d Xn
YO
J{XJ-} - | ?® | : (2.52)
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For a linear system the elements %gzh— of the matrix are
X .
J

constants, whereas for non-linear equations they will, in
general, be functions of X1s Xoseees X

A necessary and sufficient condition (if the first con-
ditio? is satisfied) for iterative convergence is that all
the eigenvalues of the matrix J evaluated at {xj} = {QJ}
have moduli less than unity, This is a difficult condition
to check, It can only be hoped that if the moduli of the
eigenvalues of J {xjo} are less than unity, the eigenvalues
of J {O(J} will be likewise for -{xjo} sufficiently close
to {C!j} .

An alternative, less difficult, sufficient (but not
necessary) condition for convergence of the iteration process
is that the sum of the elements of every column or every row
of the Jacobian matrix J(Q{, X ,,..., O(,) be less than

unity, Thus, at least one of the following two systems of

inequalities must be satisfied.

Z 5| <1 (2.53)
iTh ’
or
dP; '
i: , %I <1 (2.54)
i=1 J
for
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A second iterative scheme known as Seidel's method

carries out the calculations according to

xp**1 = ¢1(X11: PR

- . i i
xpt*t =¢2(X11+1: X237y« « « s Xp)

(2,55)

xn1+1 - qﬁn(x11+1’ x21+1’ L xn-11+1: x, 1)

using in each line those values of in+1 which are available,
The conditions of convergence for Seidel's method are

different from the previous iteration method, and hence,

one scheme may converge while the other diverges for the

same set of initial estimates, It is however known that

when any of the inequalities of Equation (2,53) are satis-

fied, the speed of convergence in Seidel's method is more

rapid than for conventional iteration.39
In the numerical solution Seidel's method was utilized

and the grid mesh size was determined by the choice of ZST.

As Z&T appears in the terms > x% it was chosen so that at
least one of the two sets of ine;ualities (2,53) and (2,54)
were satisfied, For any given flow law the required incre-
ment ZXT will decrease with increasing strain rate,

An additional aid to improving convergence was to in-

corporate a technique known as "Aitken's (52 - process."
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This permits an improvement in the solution after five itera-
tions better than that which would be obtained by the usual
next iteration, The method is particularly suited where
convergence is oscillatory or like that of a geometrical
progression, which appeared to be the case for the problem
under consideration,

The equations were programmed in Fortran for the CDC-3600
computer at the Michigan State University Computer Center,

The program is described in the Appendix,



CHAPTER I1II

THE EXPERIMENT

3.1 General Description

An adaption of a commercial Hyge shock tester was used
to apply a compressive impact load having a duration of
approximately 560 microseconds to aluminum bars of half-
inch diameter, Two independent series of tests were con-~
ducted, 1In the first series, transient surface particle
velocity records were obtained at four stations along the
plastically deforming specimen by means of electromagnetic
transducers, In the second series, etched-foil strain
gages were used to monitor surface strains at the four sta-
tions,

Ideally, the strain and velocity measurements should
have been conducted simultaneously on each specimen, This
was impossible since the magnetic field would have induced
an error signal in the foil gages as they translated during
the passage of the wave,

The basic system is shown schematically in Fig, (3.1).
Both the transmitter and striker are made of 9/16 inch dia-
meter steel drill rod, The Hyge shock tester is capable of
accelerating its piston and a five pound mass to a maximum
velocity of 1200 in/sec in a distance of about 12 inches,
At this point the piston is decelerated to zero in an addi-

tional four inches, while the striker is free to travel in

36
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its O~ring guides, When the striker makes contact with the
transmitter bar AB, a compression wave is propagated outward
from A to both the right and left, Since the striker is
shorter in length than the transmitter, the bars remain in
contact until the wave reflected from the left end of the
striker returns to the interface, A wave normally incident

to a free su:face is reflected with a change in sign and hence
the outgoing compression wave returns to the interface as a
tension wave, Tension waves cannot be passed across the
interface Qnd hence the striker moves to the left with respect
to the transmitter after the reflected tension wave arrives,
The length of the compression wave transmitted is therefore
twice the length of the striker bar,

We now turn our attention to the transmitter bar, When
the wave front arrives at B, the acoustic and geometric mis-
match will cause part of the pulse to be reflected and part
to be transmitted as a compression wave into the specimen,
The transmitter and specimen remain in contact until the
tension wave reflected from the nearest free surface, C,
returns to B, The specimen then begins moving to the right
and is caught in the cotton filled tube, Sufficient energy
is still trapped in the transmitter to cause it to also trans-
late to the right, but the bumper, which is formed of a
wrapping of plastic electrical insulating tape, prevents it
from making a second contact with the specimen,

Friction in the O-ring guides and the spring action of
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the cotton decelerator bring the specimen to rest without

introducing additional plastic strains,

3.2 Specimens

The specimens were all prepared from extruded Alcoa
1100 P aluminum (2S aluminum) bars with a nominal diameter
of 0,5005 inches, Each bar was on the order of 58 inches
long and had both faces turned to provide a flat surface
perpendicular to the longitudinal axis, A one-inch piece
was cut from each end of the bar before facing and this in

turn was turned to a length of 1,000 ¥ 005 inches and also

faced, Both bars and short specimens were then annealed at
650° P for one hour and furnace cooled,

Employing a chemical balance, several of the inch long
pieces were weighed, first in air and then in water, The
density of the aluminum was thereby found to be

-4 11 sec/in4.

P = 2,53x10

Static stress-strain curves were obtained, after anneal-

ing, from seven of the one-inch specimens, FPFour of them came
from opposite ends of two specimens to serve as a check on

the uniformity of material properties along each specimen as

well as between specimens,

3.3 Velocity Transducer

It is well known that a current will flow in a conductor
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moved through a magnetic field (for example, see reference 40),
The relation between the voltage generated and the magnetic

field is

e = -IE.VXET. (3.1)

where Z; is the magnetic field vector, L is the vector

representation of length measured along the conductor and V

is the velocity of the conductor with respect to the field,
Figs. (3.2) and (3,3) show a permanent horseshoe magnet

in position about a bar so that the magnetic field is per-

pendicular to the longitudinal axis of the bar, Two Nyclad-

covered strands of #30 copper wire are attached to the bar

as indicated so that when the cross-section at which they

are located has a velocity imparted to it by the passing stress

wave, a current will flow in each, This method has previously

been used by Ripperger and Yeakley41 to detect particle

velocities in aluminum bars subjected to short elastic pulses,

Earlier efforts at developing a similar magnetic-inductive

transducer were reported by Ramberg and Irwin.42
If the field is constant over the entire cross section,

the effective length of the conductor is the diameter of the

bar, Thus,Z?,.f, and v are mutually perpendicular for longi-

tudinal waves and Equation (3,1) reduces to the scalar

product

e=ﬁLv

where e is the potential difference between points B and E
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SINGLE STRAND

# 30 NYCLAD _ S—
COPPER WIRE

LEADS TWISTED _
TOGETHER

~

ALUMINUM BAR

FIG (3.2) SCHEMATIC OF THE VELOCITY TRANSDUCER
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LEADS TWIS'I'EDi
TOGETHER

FIG (3.3) WIRE ARRANGEMENT AT GAGE SECTION
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in each wire for L = 2R, Thus, the induced voltage is direct-
ly proportional to the particle velocity,

Points A, C, D and F are rigidly fixed and hence, the
four sections AB, BC, DE and EF can only rotate when the
cross section tranélates. With these sections moving in
horizontal planes, we find Exf perpendicular to v and hence
their dot product vanishes and no contribution is made to
the voltage generated in each loop, The sections AF and CD
are rigidly cemented to a non-magnetic jig and hence do not
move, Above points A and C the leads are twisted together
so that any vibrations or motions will cause no additional
signal to be generated; Two semi-circular loops of wire
are used to eliminate any possible effects of bending in the
bar,

The leads are connected as indicated in Pigs, (3,2) and
(3,3) to the input of a Tektromix D-Unit differential pre-
amplifier, thus giving a two-fold increase in signal to

e = ?f?dv (3.2)
where d is the diameter of the semi-circular loop of wire,

Four such measuring stations were set up using two
sets of magnets from military-surplus magnetron tubes,

Pig, (3.,4) shows the gage arrangements and FRigs., (3.5) and

(3,6) are views of the physical set up,

3.4 Surface-Strain Transducer

Annealed constantan etched-foil resistance strain gages
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Fig, (3.5a) General View - Hyge and Test Set Up
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Fig. (3,5b) General View - Electronics and Recording Equipment
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manufactured by Micro-Measurement, Inc, were selected for

the dynamic tests, Type EP-03-125CA-120 gages having a length
of 0,125 inch and width of 0,182 inch were chosen, Series

EP gages are rated as accurate to 7% strain under static
loading conditions, Dynamic strains on the order of 2-3%
were anticipated,

The gages were mounted in pairs, diametrically opposed
to cancel any effects due to bending, at four stations which
corresponded to the spacing used in the velocity transducer
tests, The gages at each station were connected in series
and then installed as one arm of a Wheatstone bridge,

Fig, (3,7) is a schematic of the strain gage bridge set up,

3.5 Statib Test Procedure

The one-inch samples were subjected to compressive load-
ing in an Instron testiﬁg machine, Recording accuracy of the
Instron load measuring system was calibrated at better than
1% in the range of interest, Strain was measured to 5%
using etched-foil strain gages mounted on the specimens,
Three combinations of gages and cements were used as an added
check, Load was applied at a strain rate on the order of

4 x 10-5

in/in/sec, Two tests were carried out with continu-
ous loading while two others involved alternate loading and
unloading as an aid in the determination of the apparent

Young's modulus of the material,
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The test combinations are tabulated below,

Parent Micromeasurement

Test| Specimen Gage Type Bonding Cement Loading
1 11 EP-03-125AD-120 Eastman 910 continuous
2 11 EA-13-125AD-120 W,T. Bean RTC alternate
3 13 EP-03-125AD-120 " " " continuous
4 13 EA-13-125AD-120 " " " alternate
5 5 EA-13-125AD-120 Eastman 910 continuous
6 7 EA-13-125AD-120 " " n
7 8 EA-13-125AD-120 " " "

Strain was read with a Baldwin Type-N static strain

indicator,

This instrument has a range of ¥ 3%,

In order to

use the N unit over a range from zero to minus five percent

strain, the device illustrated in Pigs, (3,8) and (3,9) was

used,

The linearly tapered cantilever beam within the channel

is made of beryllium copper which, after machining, was heat

treated to a Rockwell hardness of C-43,

This indi

cated a

proportional limit on the order of 75,000 psi and a yield

strength of well over 100,000 psi,

about 175,000 psi.

Young's modulus is 15 x 10

Ultimate strength is

6

psi,

Due to the taper, the maximum bending stress in the

beam, when loaded by the screw, occurs at a point two inches

to the right of the support,

With the beam loaded as shown
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in.Fig.‘(3,9), foil gages were mounted to both the upper

and lower surfaces of the beam at the critical cross section,
After appropriate curing of the bonding agent, the load was
removed and the gages successively coated with Gagekote 1,

2 and 5* to provide electrical moisture and mechanical
protection respectively, The beam was then rotated 180
degrees about its longitudinal axis, replaced in the fixture,
and reloaded,

The type N unit indicated a total of about 21,000 micro-
strain for the sum of the magnitudes of strains on the two
surfaces, Stability was excellent, Switching to four ex-
ternal arm operation, the fixture gages were used for one-
half of the bridge, The one-inch sample specimen with its
two 120 ohm diametrically opposed gages connected in series
and an appropriate temperature compensator completed the
circuit as illustrated in Fig, (3,10),

With no load on the Instron, the fixture was adjusted
to permit the N unit to be balanced at a reading of +32,000
micrbstrain. As the Instron loaded the specimen, the con-
tinuous load curve traced by the machine was marked at pre-
-detérmihed increments of strain and a load-versus-strain
record obtainea until the N-unit indicated a reading of
-18,000 microstrain, A stress-strain curve to 5% strain

was thereby obtained,

*Supplied by W, T. Bean, Detroit, Michigan
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(a) Instron, specimen, temperature compensator,
range extender and N-Unit

120N 240 Q1
ACTIVE
A GEs LOWER CANTILEVER
120 0 SURFACE
240 51 24000
TEMPERATURE UPPER CANTILEVER
COMPENSATOR SURFACE

(b) Strain Gage Bridge Elements

Pig, (3.10) Details of the Static Stress-Strain
Test Set Up
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In order to check the linearity of the N-unit when
using the cantilever fixture, the active gage was replaced
by a second temperature compensator loaded elastically in
bending, A balanced reading of +31,360 microstrain, i.,e,,
a strain of 640 microstrain, was attained, The copper
cantilever was then removed and the N-unit converted to two
arm operation, balanced, and the reading recorded, The
load was removed from the active gage and the N~unit balanced
again, The change was found to be 640 microstrain which
agreed with the previously obtained result, Changes in con-

tact resistance were found to be negligible,

3.6 Velocity Transducer Calibration

Two pairs of magnetron magnets were rigidly mounted within
magnesium spacers to an aluminum plate, PFig, (3,11) shows
the general set up, The magnets were locked in place with
the pole pieces aligned along parallel planes one inch apart,

The field mapping was done at the M,S.U, Cyclotron
Laboratory, The system made use of a Rawson rotating-coil
flux meter which was mounted on the cross-feed of a servo-
controlled milling-machine carriage, A volume with a grid
spacing of 0,1'" was mapped within each pole gap,

The output of the flux meter is proportional to the
magnetic field intensity, This signal was passed through
a voltage-to-frequency converter and the frequency was then

counted, As a count was finished, a coupler (built by the
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Cyclotron Lab) read the digital output of the frequency
counter and the digits were then punched out by an IBM
card punch,

Calibration of the system was performed by checking
frequency counts against a bridge which can be used directly
with the flux meter and a null galvonometer to obtain the
flux density to the nearest gauss for the fields being
mapped, The arrangement is described in Fig, (3,12),

The centers of the magnetic fields are shown in PRig,
(3,13), If the wired cross sections on the specimen are
located 0,1 inch forward of this point, a translation of
0.2 inch would result in a variation in the magnetic field
through which the wire passes of less than 1%,

However, the field was not uniform across any section,
Hence, the loop of wire was approximated by a circumscribed
dodecagon and we have

= T (Bix ALp v (3.3)
i=1
where Zii is taken as the value of Z§ at the midpoint of

[SE;. Referring to Fig, (3.14) we have

€ = —71% (B2 +fB6 +Ss +Prz)cos 60° (3.0
+(/93 +/95 f[;g +/911)cos 30° +[?4 *}QIOJV.‘

The appropriate units are ey in volts, [? in webers/meter2

(1 weber/m2 = 104 gauSs), Z&L (hence d) in meters,
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Equation (3.4) can be solved for v in the form

v = keo (3.5)

The following table gives the constants obtained for

the four gage stations,

x (m/zec/ Max, Variation fgaverage
station!’,(in) volt) | in 0,2 inch (gauss)
1 3;000 118,6 -0.2 = -0,2% 3350
2 ;f6.250 131,0 -0,6 = -0,5% 3250
3 9,575 138.8 -0,4 = -0,3% 2850
4 12,725 120,8 -0,4 = -0,4% 3275°

Slight errors in either vertical or lateral placement
of the wires would also result in variations in k on the

order of less than 1%,

3.7' Velocity-Gage Tests

Circumferential scribe marks were made on the specimens
at the appropriate intervals with the first mark three inches
(six diameters) from the impact end, The wires were then
bonded to the bar at the scribe marks using Armstrong C-4
epoxy cement with activator D, Curing was at room tempera-

ture for at least 36 hours, Heat from an incandescent lamp
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was used to aid curing during the first 12 hours, An alu-
minum jig served to maintain proper alignment during both
cementing and testing, Special spacers which prevented
lateral motion during cementing and moving were removed

just prior to testing, 1In order to minimize the possibility
of vibrations of the horizontal portions of the lead wires
[see PFigs, (3,2) and (3,3)] mass was added at these sections
by applying a liberal coating of vaseline,

It was found that eddy currents were set up within the
specimen in the region between the pole pieces during the
passage of the stress wave, These currents modified the
magnetic field so that when an uninstrumented aluminum bar
was subjected to loading, a signal was detected in a free
hanging loop of wire placed near it, No such signal was
detected when a non-conducting polyethylene rod was substi-
tuted in place of the aluminum, The wave form generated was
similar to that produced by a conventional magnetic pickup
and is shown in Fig, (3,15), The maximum amplitude of the
spikes was less than one-half millivolt and their presence
was never detected on any of the records from instrumented
specimens, |

A series of tests were run in which particle velocities
in the range 250 to 650 in/sec were obtained, The electronié
circuitry and recording equipment used also monitored the

strain gage tests and will be discussed later,
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3.8 Strain Gage Tests

To increase the output of the strain gage bridge used
in the dynamic tests, the passive half of the bridge con-
sisted of 352-ohm resistors in the form of foil strain gages,
The entire bridge was thus made relatively current insensi-
tive, With two 120-ohm gages in series on the specimen and
a 240-ohm temperature compensatof, a 50% increase in output
over a 240-ohm resistor bridge was attained, Two 12-volt
storage batteries in series powered the bridge and kept power
dissipation in the acceptable range for these gages,

The two 352-ohm gages for each station were mounted
on opposite sides of 1/16-inch-thick strips of spring steel,
These were mounted as cantilever beams in the fixture illus-
trated in Pig, (3,16), The beam was loaded until the bridge
was nulled (possibly requiring a 180° rotation of the beam
about its longitudinal axis), A sensitive center-zero gal-
vonometer was used for this purpose,

The Baldwin Type-N static strain indicator was used to
record the residual longitudinal strain by recording before
and after balanced readings at each gage station,

A digital voltmeter was connected across the batteries
to monitor voltage immediately prior to and after each test,
but was not in the circuit during the test itself to prevent
any possible noise in the system from this source,

A series of four tests were conducted in which the

maximum dynamic strains varied over the range from about
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0.5% to 1,0%, The first two were at the lcwer value, one
using Eastman 910 and the second W, T, Bean RTC epoxy as
bonding agents, No noticeable difference in response was
noted, Eastman 910 was then used for the tests at higher
strain levels because it simplified the specimen preparation,
All gages were coated to provide electrical insulation and

moisture and mechanical protection as in the static tests,

3,9 Electronics and Recording Equipment

Output from both the velocity and strain transducers was
fed to Tektronix D-unit plug-in differential amplifiers in
rack-mounted Tektronix 127 pre-amplifier power supplies,

The frequency response (%¥3db) of the D-unit is 350kc at

a gain of 100 and increases to 2mc at a gain of 2 when used
with the 127 power supply with the push-pull output cables
terminated in 170-ohms, Using single ended output reduced
the signal gain by half, - For all tests the D-unit was set
at 20 mv/cm, and the single ended output resulted in a gain
of 2%.

The signal from each D-unit was then input to a Tektronix
M-unit in a Tektronix Type 551 oscilloscope, The M-unit is
an electronic switching unit which enables four signals to
be displayed simultaneously on one beam of a scope, When
all four channels are used in the chopped mode, the switching
rate was found to be 960kc, This rate was found to be reli-

ably constant and thereby provided a timing mark,
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A Polaroid camera was used to make a permanent record
of each test, After the graticule markings were photographed,
the gfid intensity was set to zero and the shutter locked
open in the bulb position with the scope set on single sweep-
external trigger, The trigger was provided by a barium
titanate element clamped to the steel transmitter bar, The
exact position was chosen so as to allow for any delay in the
scope sweep mechanism,

The entire system was calibrated prior to each test
using the internal square wave calibration signal in the
scope, Several photés of square waves applied to each channel
revealed that 'teye error" was less than the rated t3% cali-

bration accuracy of the square wave,



CHAPTER 1V
RESULTS

4,1 Static Stress-Strain Curves

Five of the one-inch sample specimens tested produced
load-étrain curves which varied by an amount on the order
of the trace width of the Instron continuous pen recorder,
These are shown as a single curve, the lower curve in }
Fig, (4;1). The two samples from parent specimen no,ll
produced stress-strain curves which agreed with one another,
but appeared to indicate a condition of work hardening when
compared to the curve from the other specimens, This
curve is shown as the upper curve in Fig, (4,1), but was
ignored in the least squares curve fitting in obtaining
Oy = £(€),

It should be noted that the slope of the upper curve
is very nearly equal to that of the lower curve everywhere
except for the region in the neighborhood of € = 0,005,

aag

Since the slope EET will determine the speed of propagation
of any level of strain in strain-rate independent theory,
the speed predicted for most strain levels would still be
about the same for both curves, according to the rate-inde-
pendent theory, FPFrom the static tests involving alternate
loading and unloading, Young's Modulus was found to be

Bo = 9,4x106 psi and hence, the specimens had a predicted
elastic wave propagation speed of 1.93x105 in/sec.

66
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A best fit in the form
O, = f(€) = AEP (4.1)

was obtained for the lower stress-strain curve data for
strains up to two percent, as this is the range of the
strains in all the dynamic tests, The resulting power law

relation between stress and strain is
O, = 39,400 € 0-366 (4.2)

The fitted curve of Equation (4,2) is compared in
Fig. (4,13) to the lower experimental static curve of
ﬁig, (4.1), Por strains in the range from yield to about
€ = 0,001 in/in, the fitted curve exhibits a steeper slope
than the experimental curve, and therefore, the rate-inde-
pendent théory based on this fitted curve will predict higher
propagation speeds for these levels of strain'than would be
predicted with the actual experimental curve,

A second fit was made using only the data between
€ = 0,005 and € = 0.02. This gave the power law
0, = 29,400€ %311,

4.2 Velocity Test Results

The translation of the bar during the passage of the stress
pulse resulted in strain in the horizontal elements AB, BC,
DE and EF of Fig, (3,2) at each gage station, Translation of

two tenths of an inch results in a 10% straiﬁ in these
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elements, The change in resistance of the copper wires
for the time interval of interest was small with respect
to the one Megohm input resistance of the D-unit,

Bach specimen translated about one foot before being
brought to a rest by the braking action of the cotton filled
tube., The copper wires would invariably shear at the point
where they enter the aluminum support jig, The epoxy bond
appeared to hold up well except for occasional yielding at
the points B or E indicated in Figs, (3.,2) and (3.3).

Pig, (4.2) shows three typical oscilloscope trace re-
cords obtained with the velocity transducer, Fig, (4.2a)
illustrates a test in which gage failure occurred after the
sweep was completed, The gain for gage station one in the
test was half of that for the other three channels, and each
station has a different calibration factor due to differences
in magnetic field strength, 1In Fig, (4.2b) we note slight
disturbances occurring simultaneously at stations one and
two and later at station three, The final trace record,

Pig, (4,2c), illustrates transducer failure occurring first

at the magnet forming stations one and two followed by failure
at stations three and four, Failure occurs with catastrorhic
suddenness, and its onset is thus readily detectable,

The initial step, which propagates with no attenuation,
is the leading elastic wave, This is then followed by the
more slowly rising plastic stress wave, The reduced data

in Pig, (4,3) for specimen No,7 shows that a nearly constant
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PIG, (4,2) TRACE RECORDS - PARTICLE VELOCITY TRANSDUCER
(SWITCHING RATE 960 KC)
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level of final velocity is reached, but in general, this

H

value showed a slight decrease with increasing x, Station
did not appear to have reached equilibrium in any of the
tests,

Negligible variation was noted in the speed of wave
propagation for a given level of velocity on any single
specimen, A larger variation was found between specimens,
This scatter did not appear to be associated with the maxi-
mum velocity (and hence, strain rate) of the specimen as is

shown in the table below,

Particle Max, Variation in Wave Prop, Vel, Number
Velocity of
m/sec Along Spec, Between Spec, Specimens

2 *9.6% +8.5% 5%

3 +2 % +7.5% 6

4 +2,5% +5 % 6

5 *1,5% *+5.7% 6

6 +2 % +2 % 4

7 t2.5% +3 % 4

8 %2.5% ta.72 3

*The reading obtained from one specimen, in the region of the
""knee," was discarded, The slope was small and hence, the
irrors in reading horizontal distances between traces was

arge,
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No data is presented for particle velocities representa-
tive of the elastic range of the material, since a variation
of *1 microsecond (the approximate limit of trace reada-
bility) in horizontal distance between station records
represents a variation of about *8% in wave propagation speed,

The data for all these tests was averaged and the rela-
tion between c and v thus obtained is shown in Fig, (4.4),

The elastic wave speed appears to be 196,500 in/sec giving

6 psi for the apparent dynamic Young's Modulus,

E, = 9,77x 10
This is approximately four percent greater than the value,

E, = 9.4::106 psi, determined from the static stress-strain
records,

The vertical bars indicate the scatter in the experimen-
tal records, There was virtually no scatter for values of
particle velocity up to about 50 in/sec, An examination of
Pig, (4,3) shows that between particle velocities of 50 in/sec
and 100 in/sec, the velocity versus time records exhibit a
region in which we have an inflection point, This region of
rapidly decreasing, then increasing, slopes increases in
length at successive stations, Determination of wave propa-
gation speeds here, for any level of particle velocity, is
therefore subject to maximum error and this explains the
greater scatter in this regiom,

This curve was examined in light of the von Karman

theory by taking the derivative of Equation (2.1)
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in the form

T Av (4.4)
d€

Thus, PFig. (4.5) of g%;’versus € was obtained, This curve

was infegrated with respect to € and the resulting dynamic
stress-strain cur?e is plotted in Pig, (4,6) with the pre-
viously obtained static stress strain curve,
In Pig, (4,7) the € versus v curves are compared for
(1) von Karman theory based on the experimental
static curve
and
(2) von Karman theory applied to work backward from
the observed c versus v, This could be interpreted
as based on von Karman theory using the single
dynamic stress-strain curve of Fig, (4,6).
Comparison of the two shows that disagreement between
them is slight, The single dynamic curve predicts propa-
gation speeds in agreement with the averaged velocity test
data, since it was in fact derived by working backward from
the averaged velocity test data, The deviations of the
measured propagation velocities in the individual tests from

these averaged values did not appear to have any systematic
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relation to the strain rate levels, as was shown in the

tabulated comparisons at the beginning of this section,

4.3 Surface Strain Results

Records from the four strain gage tests are shown in
Fig. (4.8), We note the initial elastic wave followed by
the more slowly rising plastic portion of the pulse, The
final negative step in two of the trace records indicates the
arrival of the unloading wave front, The records end before
the reflection from the far end has yet reached station 4,

At no gage station in any test did the strain appear to reach
equilibrium, This condition is readily noticeable at station 4,

The residual strains in specimens 9 and 10, for which
static measurements were made with the N-unit immediately
prior to ;nd after the dynamic tests, are tabulated on page 81
and compared with the final level of the transient record
photo,

Post-test micrometer measurements of bar diameter
indicated a plateau of residual strain extending from x = 0
to beyond the fourth gage station in all tests, The slight
slope of the plateau indicated by the strain gage readings
from specimens nos.9 and 10 was too small to be detecte& by
this means, The bar then tapered until a point was reached
which had no detectable residual strain, The lengths of
the total region of residual strain and of the plateau were

related to the magnitude of the impact loading,



80

(04096 = FLVY ONIHOLIMS)
STOVO NIVYLS FONVISISTY TIOd QIHILT - SQI0DTY IOWVIL (8°v) “OId

ERCR R E ]
oas)fce I 2asy] og I




81

RESIDUAL MICROSTRAIN

10

N-Unit

8965

8725

8560

AT STATION
Specimen
1 2 3 4
N-Unit 7110 6995 6830 - 6520
9
Photo 7170 7080 6940 6760

8245

Photo

8950

8780

8710

8490

4.4 Discussion of Test Results

One feature of the test records on which some attention
should be focused is the '"knee™ in the curve marking the
transition from elastic to plastic wave propagation, All
strain levels in the elastic range propagate at a single

speed, Such a "knee'"™ is not indicated in any of the results

26,27

reported by Bell using his diffraction grating technique

on amnealed aluminum bars, A comparison of my static stress-
strain curve with that of Be1127’43 for "dead-annealed™
aluminum shows that his was relatively softer, and had a

much lower yield point,
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Wave propagation speeds for various levels of strain
as found from the velocity and surface strain tests are
compared to those predicted by the rate-independent theory
from the static stress-strain relation in PRig, (4.,9), The
curve for the velocity tests is obtained from Fig, (4.,5)
and the relation c ='\/%%: . This is equivalent to
using the single dynamic curve of Fig, (4,6), and shows
that the single dynamic curve predicts that strains below
about € = 0,0055 have higher propagation speeds than pre-
dicted with the static curve, while strains above € = 0,0055
have lower propagation speeds,

It is readily seen that the foil gages indicated markedly
lower propagation speeds than the velocity transducer at all
levels of plastic strain, It should, however, be noted that
the rise time of the strain pulse was fairly constant for
all tests, and hence, the maximum strain and the straié rate

at any gage section varied proportionately, The average e
strain rates for the four foil gage tests are approximately

in the ratio 3,5:4:6:9, The apparent lag in the strain record
at any propagation speed for a constant rise time pulse ap-
pears to be inversely related to the strain rate, This does
not appear to agree with Bell's observations31 (see Art, 1,2)
that the lag in resistance strain gage records is propor-
tional to strain rate, Again noting that rise times of the
strain pulse in all tests are fairly constant and that records

of residual strain from the trace records and static N-Unit



83

13A37 NIVHLS 'SA 033dS NOILYOVLOMd 3AVM (64) 914
(NI/NI) NiVdlS
010’ 800 900 00 800’ 0

+

T T T T 7 T T T Y T

NIVYLS TTVYNI4 OGNV 31wy 7
NIVYLS ONISY3INONI 40 ¥3QNO

NI S1S31 39V9 NIVNlS #'e'2"

* + | £ '

<+

\h«w 31 ALI00T3A

(Vviva Nivilis
= SS3YULS JILVLS NOYd S3NTVA+)

(038/y, 409 (33dS NOILYOVIONd IAVM



84

measurements show closec agreement, we see that the gages
seem to have a time constant which causes them to lag be-

hind in response,

4.5 Numerical Results

(a) Linear Overstress Rate Dependence Theory

It has been noted in Section 1.2 that the numerical
solution obtained by Malvern10 for a hardened aluminum alloy
subjected to constant velocity impact did not indicate the
formation of a constant strain plateau in the neighborhood

of x = 0, The material constants used were

O, = £(€) = 20,000 - -1é9
E, = 107 psi
CT; = 10% psi

P =2.5x10"% 1b sec?/in*

The constitutive equation then becomes

Eoé =0+ KO - zo,ooo/,%Q)

The assumed value of the constant k was

6sec"1

k = 10
which gives an increase in stress over the static value of
approximately ten per cent for a strain rate of 200 in/in/sec.

The boundary condition imposed at x = 0 was
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The strain distribution in the bar at t = 102.4 ﬁ(sec
is shown in PRig, (4,10), Attempts to carry out the solution
further into the x,t-plane using the CDC-3600 computer re-
sulted in an oscillatory behavior of the solution in the
neighborhood of x = 0, This may have been due to an accumu-
lation of errors in the finite difference method used,

As an alternative to this solution, the constant stress
boundary condition was investigated with the aid of the
CDC-3600 computer., The boundary condition O (0,t) = 18,650 psi
(which is the asympotically approached value of stress at
x = 0 according to von Karman theory for v(0,t) = -600 in/sec)
gave results similar to Malvern in that no plateau seemed
to appear even after 300 /.( sec, However, lowering the impact
stress to 0°(0,t) = 17,500 psi and then to O(0,t) = 15,000 psi
did produce the sought-for plateau, The results are illus-
trated in Figs, (4,11) and (4,12), The curves for the rate-
independent solution are for von Karman theory based on the
static curve,

It is seen that the velocity at x = 0 very quickly
asymptotically approaches a constant, The value is that
which would be predicted by von Karman rate-independent theory,
The significant feature of the solution is the appearance
of the constant strain plateau, Hence, contrary to what
has long been thought, the Malvern formulation for a rate-of-
strain dependence does predict the formation of a region of

constant strain near the impact end of the bar for a nearly
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constant velocity imposed at x = 0, if the pulse is long
enough for the material near the impact face to reach equili-

44 By

brium, as has been previously pointed out by Mercado,
applying the method of characteristics to a non-linear visco-
elastic model (with a linear plastic strain rate dependencé)
representative of Fort Peck sand, Mercado has demonstrated
that a plateau of residual strain occurs close to x = 0 for

a constant stress boundary comndition with appropriate values
of the dynamic constants,

It is not;d from Pigs, (4,11) and (4,12) that as the
stress (and hence velocity) boundary condition increases in
magnitude, the time required for a plateau to form increases
so that the time required for the boundary condition
U = 18,500 psi would certainly be considerably greater than
100 microseconds,

As seen in Pig, (4,10), Malvern found a strain at x = 0
greater than that indicated from rate independent theory,

but this may have been due to the error accumulation,

(b) Power Law Rate Theory with Input Data from Velocity
Transducer

(i) Convergence Difficulties

The velocity record from station 1, specimen
No,7 [see Pig, (4,3)] obtained from the velocity transducer
was considered as a velocity boundary condition for a bar,

A strain-rate dependence of the form

0'=0"1én
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was assumed, and the constant value of n = 0,017 used was
that obtained by Chiddister45 for strains on the order of
five per cent in the same material at room temperature,

Due to a problem of convergence of the numerical itera-
tive scheme, the static stress;strain curve was assumed to

be valid for € = lo'zin/in/sec and thus
O, = G (100"

where Crb is the static stress-strain relation

O, = f(€) = 39,400€ °+3%® Thus, we finally arrive at

G = 39,400 € °+366 (100€)°:°%7

for use in the numerical solution,

For the computer solution, yield was chosen at
v=1,3 m/sec = 51,18 in/sec because this point on the velo-
city records had been observed to propagate at the elastic
wave speed, This choice was made, since what was being
studied was the post yield behavior, and there was no obvious
point on the fitted static curve to choose for the yield
value, Conditions along the leading wave front are those
previously discussed in Art, (2,2) for a gradual transition
from an elastic to a plastic wave, except that the fitted
static curve implies a non-linear elastic behavior before
yield,

From Equations (2,38) for a general interior point and

Equations (2,40) for an impact end point with a velocity
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boundary condition, we have
E ) =cC, + 3ArG,
S, =C, - 316,

and hence, from Equation (2,51)

dbl = X1

E =C; + +ATG(E,s)

s=c, - 1 AT G(E,Ss)

©
N

n

w
\S]

]

with
¢, _ At dc 2, _ Ar 3
dE 2 E ds 2 ds
22 _ _Ar 2 22 _ _Ar 3¢
dE 2 E - 2 dS

and the inequalities of Equations (2,53) and (2,54) become

bif* 1£1= ( 2|, %§)=5fu
3;/:1; ' bbdiz =A?',T,(‘bp. ' "%%) At | 32| = Bs<
- 1) e
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. - Q
From 0= O, €" we obtain G = 10 8 [C -S-] where

BB
C = %? and Q = n~1, For G(E,S) in this form we obtain
dG BQ d6G
= - G = g
dE E ’ dS S G

In order to satisfy the sufficiency conditions for conver-

gence of the iteration process, we desire

= -B
B, QATGl :

<1

or

Bi=B:=4B3+Bn<1

Thus, we note that as the strain rate, é', increases
and the degree of rate dependence, n, decreases (i.e, in-
creasing Q) we may require a decrease in the mesh grid as

determined by our choice of [XT. Por specimen No,7 the

choice A’I‘ = 0,26 (At = 0,26 /1 sec) allowed a complete
solution, but a value twice as large was found to be too
large for convergence everywhere in the X,T-plane for the
input data described,

A check on the propagation of errors in the solution
due to round off in the computer was obtained by obtaining
a solution with AT = 0,13 (At = 0.13 | sec). The results
for stress, strain and velocity agreed with those of the

previous solution with [&T = 0,26 to five or six digits at
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all points in the X,T~plane,

(ii) Discussion of Calculation Results Based on
Power Law Rate Theory with Input Data from

Velocity Transducer

Pig. (4,15) shows level lines of velocity in
the x,t-plane, Since the level lines are straight (except
for some slight curvature for v = 300 in/sec and
v = 350 in/sec near x = Q) the propagation speed for any
given level of particle velocity is predicted to be constant
as the pulse travels down the bar and thus independent of
the variations in strain rate encountered, The dashed lines
in Pig, (4.,15) are the level lines predicted by the von
Karman rate-independent theory based on the fitted power-
law static curve of Equation (4,2), Comparison with the
solid curves shows that the rate-dependent solution predicts
higher propagation speeds for velocity increments up to a
little above 300 in/sec, The level lines of stress and
strain are not shown separately in the figure since they
so nearly coincide with velocity level lines as to be indis-
tinguishable in plotting, What this means is that for the
range of strain rates actually encountered in this solution
and for the very slight rate dependence implied by the rate
law with n = 0,017, the level lines are the same as would
be predicted by using a single dynamic stress-strain curve
instead of the static curve in the von Karman theory, except

for very slight differences observable where the level lines
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plotted show a slight curvature, It was pointed out in

Art, (4.4) that the average strain rates at the first and
last gage stations were approximately in the ratio 3,5:9,

It is not surprising, therefore, that the predictions of the
rate-dependent theory can be correlated with a single dynamic
curve, since there is so little variation in the strain rates
in the solution, all of them being of the order of magnitude
of 10,000 times the rate of é = 10'2in/in/sec assumed for
the "static" curve,

Additional information about the solution is contained
in Figs, (4,16) and (4,14), Fig, (4,16) shows calculated
stress versus time at x = 0 where the velocity input was
taken from the first velocity gage station for specimen No,7,

The solid curves in Pig, (4,14) show the input velocity at

X 0 and the calculated velocity versus time at x = 3,07 in,
x = 3,58in, x = 6,141in, and x = 9,21in, The dashed curve
is the experimental record from the second gage station at

x = 3,25in. on specimen No,7, Comparison of this with an
interpolation between the two calculated curves for

X = 3,07in and x = 3,58 in indicates that the calculated
propagation velocities are greater than the méasured velo-
cities, The greater part of the discrepancy is believed to
be due to the use of the fitted power law for the static
curve, As is seen in Fig, (4,13), the slopes of the fitted

curve deviate considerably from those of the actual static

curve, The curve in Fig, (4,14) indicated by the small



95

S3AYND NIVHLS -SS3YLS

O11V1S IVIN3IWIN3dX3 ONV G311id 40 NOSINVINOD (€i¥) 9id

(NI/ND) NIVHlS
010’ 800" 900" »00° 200 0
1 T T T

3ANND JI4ViS Q31114

—-—

— /ll JANND JILVLS IVAINIWNINILX3 ’

-

(1ISd) SS3NLS



PARTICLE VELOCITY (IN/SEC)

8

96

VELOCITY RECORD
GAQGE STATION |

X=0 ~

Xe3.07 IN

VELOCITY RECORD
/ja—— GAGE STATION 2
Xe3.28 IN

X844 IN

© VON KARMAN SOLUTION
AT X3.28 IN

«¢—— YIELD ASSUMED AT V=818 IN/SEC

A ' A <A
° 80 100 180 200 280
o TIME ( A SEC)
P16 (4.14) COMPUTER SOLUTION COMPARED WITH VON KARMAN
SOLUTION AND EXPERIMENT




97

380 IN/SEC
300 IN/SEC
200 IN/SEC

200

oy 180 A
w
(7]
-8
Q
-
W
>
a 100 1
w
-
w
<
w
z
-

80 1

—— RATE DEPENDENT SOLUTION
— —— VON KARMAN SOLUTION
0 X (INCHES)
L 1 | | A
[] 10 18 20 28

FIG (4.18) LEVEL LINES OF VELOCITY FOR SOLUTIONS
WITH VELOCGITY TEST DATA



98

00s

OsX 1V G13IA 8314V 3NIL SA SS3¥LS A3LNdWNOID (91'v)9old
(@134 ¥314v 23s177) 3INL

o]0} 4 00¢ ¢ Jo 4 00l o

v

(isd gOl) SS3YLS



99

circles is the predicted curve at the second gage station
according to the von Karman rate-independeht theory based

on the fitted power-law static curve, The predictions are
for levels of strain from € = 0,0005 to € = 0,0065 in
increments of 0,0005 in/in, The rate-independent theory
based on the fitted static curve thus also predicts a higher
propagation velocity than was measured on specimen No,7,

The small circles fall in between the dashed experimental
curve and the interpolated solid curve (not shown) between
x = 3,07in and x = 3,58 in, but they fall closer to the
interpolated curve than to the experimental curve, so that
neither theoretical prediction agrees very well with the
experimental curve, Part of this discrepancy may be due to
variation of the experimental behavior of specimen No,7

from the averaged velocity behavior of all the specimens,
which was seen in Art, (4.2) to correlate well with a single
dynamic stress-strain curve prediction and fairly well with
a static curve prediction, The greatest part of the dis-
crepancy is, however, believed to be due to the use of the
fitted power law instead of the actual static curve,

The computer solution may also be rather sensitive to
the way the conditions representing yield were introduced
into the solution, Picking a slightly higher value to
represent yield seems likely to move the computed curves

nearer to the experimental curve,
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It was, however, considered not worthwhile to repeat
the computer solution with a better fit on the static curve
or to adjust the assumed yield value, since it was already
clear from the results of Art, (4,2) that the averaged velo-
city data from the velocity experiments can be represented

by a single dynamic curve,



CHAPTER V
SUMMARY AND CONCLUSIONS

Two independent series of dynamic plastic compression
impact tests were performed on half-inch diameter bars of
commercially pure aluminum, In the first series, an
electro-magnetic transducer was used to obtain measurements
of particle velocity at four stations along the bar, while
in the second series, etched foil resistance strain gages
yielded records of surface strain at the same gage locations,
Strain rates on the order of 100 in/in/sec were reached,

Test results indicated that any given level of velocity
or strain propagates along the bar with a constant velocity,
not affected by the strain rate within the small range of
strain rates encountered, However, the velocities of propa-
gation observed differed noticeably from those predicted by
von Karman rate-independent theory based on the static curve,
Good agreement was found between the propagation speeds ob-
served for different levels of velocity (averaged over all
tests) and predictions of von Karman theory based on a single
dynamic stress-strain curve differing from the static curve,

That the apparent applicability of a single dynamic
curve and rate-independent theory to this kind of plastic
wave propagation is consistent with rate-dependent theory
for a material with a very slight rate dependence, was

demonstrated by the results of computer solutions for rate-

101
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dependent theory in Art, (4,5), The nature of the process

is such that the range of strain rates encountered for most
of the observations is covered by a 3:1 ratio of strain rates,
and almost all of the plastic deformation occurs at rates

in the range from 3,000 to 10,000 times the "static curve"
strain rate,

The wave propagation speed versus strain level plots
from the transient strain records showed consistently lower
propagation speeds than those based on the velocity records,
It is believed that the strain gage response actually lags
behind the strain in the material, as previously observed

by Be11,3?!

but our records are not consistent with a lag
proportional to strain rate as reported by Bell, since, in
fact, the higher strain rate tests came nearer to agreeing
with the velocity measurements and the rate-independent
theory than did the lower strain rate tests, Considerably
more evidence is needed before final conclusions can be
drawn about the lag in the strain measurements and the reasors
for it,

Using the velocity records obtained from the first gage
station (six diameters from the impact end of the bar) as
an input boundary condition to predict values at stations
farther along the bar, a numerical computer solution was
obtained using the rate-dependent theory with a power law
for rate dependence and the power n = 0,017 found in dynamic

stress-strain tests on short specimens of the same material
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performed by Chiddister 4’

This computer solution did pre-
dict a constant wave propagation speed for any given level
of velocity, but the constant values predicted did not agree
well with the experimental values from the velocity records,
This lack of agreement appears to be mainly the result of
using a rather poor fit to the static curve in the computa-
tions, since von Karman rate-independent theory using the
same fitted static curve also gave poor agreement with the
experiments, Since the computer solutions with rate-dependent
theory were consistent with a single dynamic curve, and since
the velocity measurements correlate with a single dynamic
curve, it appears that a little ingenuity in curve-fitting
could produce agreement between the rate theory and the
experiments, This did not seem to be worth the effort,

Such agreement between rate theory and the experiments
would not of course prove that the rate theory was correct
and von Karman theory based on a single dynamic curve was
incorrect, since the two would predict virtually the same
thing for a material with little rate sensitivity, The
rate-independent theory is easier to apply and therefore
preferable for a situation like this, Any real test of
the rate-dependent theory must come in a situation with a
greater range of strain rates in the test and for a material
with more strain-rate sensitivity than annealed aluminum,

Further study in this area should include experimental

and theoretical wave propagation studies and dynamic tests
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on materials not in the soft annealed condition, which may
exhibit more strain rate dependence as suggested by Dorn et al,

Rerrous materials are also known to be rate sensitive,
but in wave propagation tests of the kind described in this
report, anomalies occur because of the yield delay time,6
It might be possible to study tensile pulse propagation in
bars pre-loaded statically into the work-hardening range and
impacted while the static loading was continuing, Further-
more, the magnetic velocity transducer could not be used
on ferrous specimens, Further study is also in order on
transient strain recording in dynamic plasticity to develop
a simple strain recording technique not subject to the lag
exhibited by the strain gage records,

The velocity recording technique might be improved by
using stronger and more uniform magnetic fields, These would
yield an increase in output signal level as well as allow
the use of wider gaps between pole pieces, The wider gap
would enable construction of a wire support system capable
of a greater translation during the passage of the wave,

The velocity recording technique for non-magnetic ma-
terials is believed to give good results, but if possible,
it would be desirable to modify it to make it more nearly

a routine type of test,
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APPENDIX
THE COMPUTER PROGRAM

In the following pages an asterisk (*) will denote
multiplication and a slash(/) will denote division so that
the equations in which they appear will be similar to the

corresponding Portran statements in the computer programs,

A.1 Leading Wave Front

For a transition from an elastic to plastic impact,

the conditions along the leading wave front are given by
0"=a"y

€-¢€,

where the subscript y refers to the values at yield,
Assuming rate independent theory applicable until

yield occurs, we have

€§
= v, = L a0
v v .I; 0 d€,¢i€

When the impact is initially plastic, we must consider

a shock wave propagating along X = T (x = cot).

(a) Linear Overstress Rate Dependence (MALRATE)
From Equation (1,11)

E,€ = O+ k[0~ £(€)]
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8(0r, €) = K[ - £C€)]

K = 10° sec”!

(i,e. 107% sec = unit dimensionless time)

£C€) = 20,000 - X2

€
10
- 20,000 +
¢ 8 T 20,00+F
k‘Eo EO
= g - 20,000 , 10
E, E B
— A
= - P —-
S B B
where
10 2 X 104

From Equation (2,48)

1
(N ]

S s
‘= ds = sds
—e-f
s(o,0) S - B+ 3 S, s2 - Bs + A

which yields

- - 10,000 10,000
T =kt = 2 -
g - 10,000 0’(0,0) - 10,000

+

1n [C€0,0) - 10,000 , __ 10,000
10,000 O - 10,000

= 2[P - Q + 1n (P/Q)]
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where
P = 10,000
g - 10,000
10,000
Q = 9,

~ 0(0,0) - 10,000
At any mesh point along X = T we have T = (J=-1) * T,
Hence,

= 2
AT
T

Thus, —-E = f(P) is solved by the ''Method of PFalse

TAX = J - 1 [P - Q + 1n(P/Q)]

Position™ and = @ (P) = O’(cot,t) = @ (T,T) is obtained

along X =T,

T/AT

B2

TAX p-——-——-=- - ——<

Fl
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ivl _ p i i B2 - TAX
When Pzﬂ'l - le <@ we assume that Pzﬂ'1 is suffi-

ciently close to P; giving us the value of stress at any
given time (TAX * [\T) along the leading wave shock front,
(b) ~Power Law Rate Dependence (POWRATE)
TC€E, €)= Ox€E,DE"

Assuming that the static-stress strain curve is

applicable at é'= 1072 sec™! we have
g, = T,¢0,01)"
Oy = O 0.00)7"
and
O'(G,é) = (100 ép)“ for ‘égo,m sec”!
agce, é) =0, €"0..'01 sec™!
Hence
€ ool [T1E . 102 [Z)
p = 0.0 AE 107 |52

And the constitutive equation becomes
; .

E €=0+ 1072 BO‘%,Q
(-]

o

Therefore,
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Choosing k = 10® sec™! so that unit T is 107° second,

we obtain

- 108 (| ©
6= (a:,)

Por a static stress-strain relation expressible in

the form
B
O, =A€ , B<1
we have Q
-8 EgS
G =10 -3
AE
=108 [c & Q
BB
where
E
= -0
c A

Por a plastic shock wave along X = T, we substitute

into ﬁquation (2.,48) to obtain

S
T = =2 x 1oij. —4ds
s CestByQ

o

8 .
=210 S -
QI8 1 {—T[c<sil‘3 7 7}

where
So

DOT =
[cespytB] @

» S, = 5(0,0)
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For BL1, Q>1, C>>1 and 0<S << 1 we note that

daT 2
—_— I e = 0
ds G <

Hence, the graph of T/[\T versus s appears as shown

below,
/AT
B2
TAX
F1l
. . | S
Sl 53 521+1 821 SO

and

i+1 i F2 - TAX
s, %t =5, 4+ (s, - s,) E2 - TAX
2 1 2 1 B2 - Fl

The process is repeated as has been described previously

for the case of linear rate dependence,
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A.2 Computational Procedure

~
w
\

5 \\\\——. Computation Row 2
Computation Row 1

Point P is denoted by the array identification (2,N),
Points A, B and C are identified by (1,N), (1,N-1) and
(2,N-1) respectively, The variable N is given by the

"column" number, K,
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The solution works outwards from the origin and
proceéds along a "“row," J = constant, Por K = N =1, we
make use of the equation for a gradual elastic-plastic
wave transition interface (see last equation of Art, 2.2)
or use the schemes of Sec, A.1 for shock waves, For
K = N = J the boundary conditions will determine the
appropriate relations [Equations (2.40), (2.42) or (2.44)]
to be solved,

If we have not reached the last row, we will proceed
to the next row and the values just obtained in the former
"computation row 2" become the elements of the next '‘compu-
tation row 1"

In the vicinity of the origin, we chose the values of
variables at B or C as initial estimates of the variables
at P. Elsewhere, initial estimates in the field for K<S5
make use of the first and second' derivatives of the variable
along the column K = comstant, PFor K>5 we make use of the
derivatives along J = constantr

The iterations appeared to converge as an oscillatory
geometric progression, Hence, the following Aitkin - 6 2
process was used.36

Assume the solution is »{a} and iterated estimate {ak} .
For oscillatory convergence, a - a) is assumed to decrease

approximately as the sequence of numbers

prk cos(k¢ + @)
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Such a sequence is the sum of two geometrical progressions

with complex conjugate ratios

r (cos ¢ + i sin¢)
r (cos¢ -i sin¢)

ags1 - ak decreases approximately as the sequence

q

9,

plrK cos (k¢+ 01)
1 1 . .
where p~ and 9 are in general different from p and 9 .
but r and ¢ are the same for the sequence {a - ak} .

The improved value, ';k+1’ 'is given by -

2

Aali.l(Aj}_(_ - % Nag_yp)
2 .2

A2y - ¢ A~ 2k-2

Agsl T 8 -

Here

Aak-z AL

Z&a - a |
, ol A2y _Avip Asy - (Any 132 2
T Aex-3 Aak-1 - (Aag-2)

Azy.> ALY

where

]
o
i
o

Aai
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Thus,
~ (aq - a3) [(a5 - ag) - rz(a4 - a3)]
a5=a4— —
[(a5 - ag) - (a4 - a3)] - r? [(a4 - a3) - (a3 - az)]
where

o _ (az - ay) (a5 - ag) - (agq - a3)2

r
(ay - ay) (ag - a3) - (a3 - az)2
If necessary, this process is repeated after four more
Seidel iterations, Each time the Aitkin - (§ 2 process is
used, the magnitude of the correction term denominator in
the equations for ag is checked to make sure that it is
greater than zero, If the denominator vanishes, we omit

the Aitkin - 6 2 process and perform another Seidel itera-

tion,
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A.,3 1Interpretation of Code Words

Words Common to Both Programs
Grid Row Number

Grid Column Number

( =1 Vv(0,T) = VOL = constant
=2 V(0,T) is a known variable
LOOK ¢
=3 S(0,T) is a known variable
L =4 E(0,T) is a known variable
/ S(0,T) is tabulated
=1 {
V(0,T) is tabulated
JAZZ {
{ s(0,T) is 0'; - then zero
= 2
\

V(0,T) has exponential rise

MAX Maximum permissible iterations
M1 _ First Row to be printed after initial
impact point (1,1)
M2 First Column in first row to be printed out
M3 Ihcrement along column for print out
M4 Increment along row for print out
LL Last row after which
stress = 0 for LOOK = 3, JAZZ = 2
or

strain = constant for LOOK = 4

= 1 Plastic Impact - Calculations Required
Along X =T
IMPACT
= 2 Elastic-Plastic transition - Conditions
Constant along X =T
MARK 1,2 Value changes from 1 to 2 when O = f(€)

at an interior or impact boundary point




EO
RHO
YIELD
VMAX
TRIX
CENT

VOL
STRS
ALPHA
BETA
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AT = 10° At

Young's Modulus (psi)
Mass Density (lb/secz/in4)
Yield Stress (psi)

Voax(in/sec)
(Por case of exponential
teixC(Msec) p velocity rise at X = 0,
V| x=o = a% of vpax when
.01a t = trix)

v(0,t) = constant (in/sec)

g (0,t) = constant (psi)
- e'(B +aT)]

Constants in v(0,t) = v _[1
(calculated in computer)

Program Malrate

(v2)

v O . m O

= §- A
G S-B + E
| S -C 104
Along X =T, P = , C = =
. Cc EO

[&P, Increment in P along X =T

T = 2[P - Q + Ln(F*P)] ; p=Ql

Program Powrate

>

O, = A€B
E
= 9
c A

ZSP, Increment in P along X = T




TIM

]
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P =S along X =T
- &N -1

0" a'le ’ Q = ;1'

NOT USED

Normal Run

Program will restart after last row
with new mesh

Program is a restart (] ;! 1)

Factor by which AT is multiplied in
going from MAD = 2 to MAD = 3
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A.,4 Computation Plow Chart

The computation flow chart on the following page gives
a schematic representation of the process by which the actual
computer program carries out the solution in the characteristic
X,T-plane, Using the flow chart and the "comment™ cards
within the actual program, it is hoped that the reader will
be able to follow the Fortran coding,

The routine for changing the mesh size (i,e, increasing
[&T) during computation is presently only found in PROGRAM
POWRATE but could easily be incorporated in PROGRAM MALRATE.
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A.5 PBortran Programs

The following Fortran programs (with illustrative data
cards) have been programmed for the CDC-3600 and use an
iteration convergence criteria of agreement to ten signifi-
cant figures for two successive iterations, The following
items should be taken into account before attempting to use
either program;

1; The programs are presented with the warning that
all of the possible boundary conditions have not been used
to date, and hence, errors may exist,

2, Computer must provide a minimum of ten digit
storage capability plus sufficient storage for program and
variables,

3, Beware of time requirements,

Approximate
Impact Machine Time
PROGRAM L B.C, on CDC-3600
MALRATE 401 0 (0,t) = constant 4% minutes
velocity data from
POWRATE 501 Gage Station One 20 minutes
Spec, No,7

4, Proper choice of AT is not necessarily known
d’priori. Given an initial set of input data for which the

choice of Z&T gives convergence only into a small (or not
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at all) region of the characteristic X,T-plane, interpola-
tion of already punched data may be used with another choice
of Z&T; The illustrative examples given below were the schemes
actually used with the velocity input data from the velocity
transducer,
TO HALVE ALT
201 READ 4, (V(2,N), N=J,L,2)
DO 202 N=]J,L,2
202 V(2,N) = V(2,N)/CO
LLL = L-1
DO 203 N=2,LLL,2
203  V(2,N) = 0;5*(V(2,N-1) + V(2,N+1))
CONTINUE

To QUARTER AT
201  READ 4,(V(2,N), N=],L,4)
DO 202 N=J,L,4
202  V(2,N) = -V(2,N)/co
LLL = L-3
DO 203 N=2,LLL,4
TEMP = V(2,N+3) - V(2,N-1)
V(2,N) = V(2,N-1) + 0,25*TEMP

V(2,N+1) = V(2,N-1) + O,50*TEMP

203  V(2,N+2) = V(2,N-1) + 0,75*TEMP

CONTINUE




1
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PROGRAM MALRATE

FORMAT (1Xe3HROW ¢ 3X+e6HCOLUMN 49X+ 6HSTRESS+13X+6HSTRAIN,
111X+8HVELOCITY 49X+ 10HG FUNCTION,8X4s 10HITERATIONS/)
FORMAT (1XeI3e5XeI3¢4Xe4(E16610+43X)e3Xe13)

FORMAT (14(14,1X))

FORMAT (5(E16.10))

FORMAT (1 X e2HIY=4 I13+43X12HK=4 13¢3X e THNUMBER=,13)

FORMAT (1Xe2HJI=413+8XsSHLOOK=41244X¢s3HM1=413 44X ¢3HM3=,
113e4Xe4HMAX=+ I3/ 1Xe2HK=91318X+SHJAZZ=,412+4X+3M72=,13,

248X s3HMA= ¢ [ 304X s 2HL =9 I3 e3X ¢ 3HLL=Z 4 I3 43X 7HIMPACT=,413¢3X,
34HMAD=,13/)

6

7

FORMAT (1Xe3HEO=4E16¢10+4X+8HRHO=4E16¢10+4X¢3HCO=,
1E16¢10+44X+2HT=4E16410/)

FORMAT (1Xes2HA=3E16e¢10+4X+2HB=9E16e610¢4X+2HC=9E16¢10+
14X+ 2HD=3E16¢10+¢4X e 2HP=4E16¢10/ s/ 1X+6HYIELD=sE16e10+4X,

25HVMAX=+1E16e¢10+4X+SHTFIX=9E16610+4X+SHCENT=41E16610/

8

3/1Xe2HQA=¢E1661044X+2HF=9E16¢10¢4Xs4HTIM=,E16¢10/4+/)

FORMAT (1X+s6HALPHA=¢E16¢10+4XSHBETA=4E16010+4X
116HYIELD REACHED AT+1XsE16¢10¢2X0

225HMICROSECONDS AFTER IMPACT/ /)

9

98

FORMAT (/1X+25HG FUNCTION = o1E-07 AT J=414+3Xe2HK=,
114/)

DIMENSION S(2+401)+E(2+401)3V(2+401)9G(2+401)¢SP(5)
1SPP(S)+EP(5)+EPP(5)

READ 34J4KoL +LOOK,JAZZ MAX M] M2,M3 ,M4q,LL,IMPACT
READ 4+T+EOWRHOsA4BeCoDsP+YIELDsVMAXSTFIXsCENT4Q4F
CO=SQRTF (EO/RHO)

PRINT S¢JsLOOK M] M3 MAX K JAZZ M2,Mg,L LL,IMPACT
PRINT 6+EO4RHO.CO,T

PRINT. 7¢A¢BeCoDsPHYIELDsVMAXSTFIXsCENT 4G F
NUMBER=0

MARK=1

E1=0.0

E2=00

E3=0.0

E4=z0.0

S1=0.0

S2=0.0

S§3=0.0

S4=0.0

DO 98 N=1+401

S(1sN)=0e0

S(2+N)=0e0

E(1eN)=0.0

E(2+N)=0e0

V(1eN)=0e0

V(2+sN)=0e0

G(1sN)=0.0

G(2+N)=0.0

DO 99 N=1,5



99

100

101

200
201

202

210

220
225

300
301

302

310

311
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EP(N)=0.0

EPP(N)%0+0Q

SP(N)=0.0

SPP(N)=0.0

VELOCITY o+ STRESS OR STRAIN BOUNDARY CONDITIONS AT X=0
GO TO (100+200+300+400) +L.O0OK

IMPACT VELOCITY IS CONSTANT

READ 4,VOL

V(1ls1)=VOL/CO

E(lel)==V(14l)

S(1e1)==V(1el)

DO 101 N=1,L

V(2sN)=V(1s1)

GQ TO S00

IMPACT VELOCITY 1S A KNOWN VARIABLE
GO TO (201+210)+JAZZ

IMPACT VELOCITY IS A TABULATED VARIABLE IN/SEC
READ 44(V(2+sN) oN=1,4L)

DO 202 N=1,0L

V(2+N)=V(2sN)/CO

GO TO 225

IMPACT VELOCITY IS GIVEN AS AN EXPONENTIAL FUNCTION
TEMP=1¢0/(10-CENT) "
ALPHA= OGF (TEMP) /TFIX

TEMP=EO®VMAX

BETA=LOGF (TEMP/(TEMP+CO#*YIELD))
TEMP=BETA/ALPHA

PRINT 8+ALPHA +BETA TEMP

DO 220 N=1.L

WER=2%(N-1)
TEMP=EXPF (ALPHA®* T*WER+BETA)
V(29eN)=VMAX#%#(160—1 0/ TEMP)/CO
V(lel1)EV(24+1)

S(l1e1)a=V(1sl)

E(1e1)==V(1e1)

S(2+1)=S(141)

E(2+s1)2E(141)
G(2+1)=S(24¢1)-BH+A/E(2+1)

GO TO S00

IMPACT STRESS IS A KNOWN VARIABLE
GO TO (301:310)9+JA2Z2

IMPACT STRESS 1S TABULATED PSI
READ 4¢(S(2¢N)sN=] L)

DO 302 N=1,L

S(2«N)=S(2+N)/EO

GO TO 325

IMPACT STRESS 1S A CONSTANT —-- THEN ZERO
READ 4,+STRS

DO 311 N=1i1,LL

S(2+N)=STRS/EOQO
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LL=sLlL+1
IF(LL-L) 312+312+32%
312 DO 313 N=zLlL L
313 S(2«N})=0.0
325 S(1+1)=S(241)
E(1¢1)=aS(1e1)
V(1+1)==S(141)
WILL BE RECOMPUTED BELOW IF INITIAL IMPACT IS PLASTIC
E(2+s1)=E(141)
V(2e¢1)xV(1ls1)
G(2+1)=S(2+1)~-B+A/E(2+1)
GO TO 500
STRAIN HISTORY 1S GIVEN
400 READ 4,(E(2+N) N=1,LL)
IF(LL-L) 412¢425.425
STRAIN IS NOW CONSTANT
412 LLL=LL+1
DO 413 N=LLL L
413 E(2.N)=E(2.LL)
425 S(1+1)=E(241)
E(1es1)=E(241)
V(lel)==E(24¢1)
WILL BE RECOMPUTED BELOW IF INITIAL IMPACT 1S PLASTIC
S(2+s1)3E(241)
V(2:1)==E(241)
G(2¢1)=S(2:1)-B+A/E(241)
GO TO S00
PRINT OUT OF IMPACT CONDITIONS
500 PRINT 1
STRESS=S(1+1)#*EO
VELOC=V(1+1)%CO
G(101)=2S(141)-B+A/E(1+1)
PRINT 2¢JsKeSTRESSWE(1+1)eVELOCsG(101)
GO TO FIRST POINT AFTER IMPACT
JaJ+1
GO TO (1000+1045) ¢ IMPACT
CALCe ALONG X=CO#T FOR PLASTIC INITIAL IMPACT
1000 TT=2.0/T
Fl1zTT#(P-Q+LOGF (F#P))
1001 TAX=J-1

1002 P1=P
P=P+D
F2=TTH#(P—Q+LOGF (F#P))
DI=F2-TAX
IF(DI) 1010+1010+1020
1010 F1=F2
GO TO 1002

1020 IF(DI-e1E~09) 1040+1040+1030
FALSE POSITION I1TERATION
1030 R=F2-F1
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PaP-(P«P1)#DI/R
F2a2TTH#(P“Q+LOGF (F*#P))
Di=F2=TAX
NUMBER=NUMBER+ 1
GO TO 1020
1040 S(2+1)=C+C/P
E(2¢1)=S(2+1)
V(24+s1)==S(241)
G(2+1)=S(241)-B+A/S(2+1)
Fl=F2
D=1.01%D
C DO WE PRINT THIS ROW
1045 [F(JU-M1) 1060+1050+1060
c DO WE PRINT THIS COLUMN
1050 IF(K—-M2) 1060+:1055+1060
C PRINT THIS POINT
1055 M2=M2+M3
STRESS=EO#S(2+K)
VELOC=CO®*V(2+K)
PRINT 2¢JiKeSTRESSIE(2:K) s VELOCsG(2 +K) s NUMBER
C MOVE TO THE NEXT POINT IN COLUMN
1060 K=K+1
NO=0Q
NUMBER=Q
GO TO 1100
Cc ARE WE IN THE FIRST FIVE ROWS
1100 IF(K-5) 1110+1110+1120
(o] ARE WE IN THE LAST TWO ROWS IN THIS COLUMN
1110 IF(U-K=2) 1114+1112+1112
C INITIAL ESTIMATES FOR THE FIRST FIVE ROWS
1112 DELS=SP(K)+SPP (K)
DELE=EP(K)+EPP(K)
DELG=DELS—-A#DELE/(E(1K)¥*E (1 +K))
Z=G(1K)+DELG
GO TO 1130

C INITIAL ESTIMATES FOR THE LAST TWO ROWS IN THIS COLUMN
1114 Z=G(2+K=-1)
GO TO 1130
C ESTIMATE FOR GENERAL INTERIOR POINT

1120 DELS=2+0%#S(2¢K=1)=3,0%#S(2:K=2)4+S(2¢K=-3)
DELE=240*E(2+1K=1)~30%¥E(2:K=-2)+E (2¢K~3)
DELG=DELS~A®DELE/(E(2.K-1)*E(2.K=-1))
Z=G(2+K~1)+DELG
GO TO 1130

C CONSTANTS WHICH ARE FUNCTIONS OF ADJACENT STATE POINTS

1130 DC=S(2¢K=1)4V(2+K=1)=eSHTHG(2+K=]1)
DB=—=S (] oK=1)+E (1 +K~-1)+THG(1eK-1)
DA=S(1¢K)=V(]1 1K) =eSHTHG(]¢K)

INTERIOR OR END POINT
IF(U-K) 2047+1150+1140




1140

1150

1160

1180

1190

1220

1221

1223
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INTERIOR POINT CALCULATION
C2=.5%#(DA+DC)

Ci=C2+08

TEMP= 82 T#2Z

E4=aC1+TEMP

S4=C2-TEMP

Z2=S4~B+A/E4

GO TO 1240

END POINT —-= CHECK BOUNDARY CONDITION
GO TO (1160+1160¢1180+1190) +LO0OK
VELOCITY BOUNDARY CONDITION
Ca=DC-V(2+K)

C3=C4+40B

TEMP= S#T#2

E4=C3+TEMP

S4=C4-TEMP

Z2=S4-B+A/E4

GO TO 1260

STRESS BOUNDARY CONDITION
X=S(2+K)

CS=DB+X

E4=C5+T#2

C6=X-B

Z=C6+A/EQ

GO TO 1280

STRAIN BOUNDARY CONDITION
X=E(2+K)

C7=X-DB

C8=~-C7+DC

S4=C7~-T#Z

C9=-B+A/X

Z=S4+Co

GO TO 1220

END POINT —- STRAIN Be Ce -— SEIDEL OR AITKEN CORRECTION
IF(NO-4) 1224,1224.1221

AITKEN CORRECTION METHOD
DELS1=S2~-S1

DELS2=53-52

DELS3=S4~S3

DELS4=55-S4

RSSQ= (DELS2#DEL.S4-DELS3*DELS3)/(DELS ] #DELS3-DEL.S2%*DELS2)
DEL SS2=DELS3-DEL S2
DELSS3=DELS4-DELS3

DENOMS =DEL SS3-RSSQ*#DEL.SS2
DENOMINATOR CHECK

IF(ABSF (DENOMS)) 1224+1224+1223
DENOMINATOR DOES NOT VANISH
S5=S4-DELS3# (DEL S4-RSSQ*DELS3) /DENOMS
Z2=S5+C9

NO=1
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NUMBER=NUMBER+ |
GO TO 1220
c SEIDEL ITERATION
1224 S1=S2
S2=S3
S3=S4
S4=SS
1225 S5=C7-T*Z
Z=S5+C9
NUMBER=NUMBER+ 1
DIFF=ABSF (S5-5S4)
C CONVERSION CHECK TO TEN DIGITS
IF(SS=0.01) 1226+12284+1228
1226 IF(S5~0.001) 1227+1229+1229
1227 1IF(S5-0.0001) 1231+1230+1230
1228 IF(DIFF-~e1E~-10) 1235123541237
1229 IF(DIFF=e1E~11) 12354+1235+1237
1230 IF(DIFF=e1E-12) 1235412351237
1231 IF(DIFF=e1E-13) 1235+¢1235.:1237
1235 V(2+K)=CB8+S5*THZ
S(2+K)=S5
G(2+K)=Z
C SEARCH FOR FIRST POINT WHERE G-FUNCTION VANISHES
GO TO (2030+2032) + MARK
2030 IF(Z) 2031+2031+2032
2031 PRINT 9sJeK

MARK=2
2032 CONTINUE
C ARE WE IN THE FIRST FIVE ROWS
IF(K-5) 1236+1236.1300
C NEW PARTIAL DERIVATIVES ALONG THE ROW

1236 TEMP=S(2+K)=S(14K)
SPP(K)=TEMP-SP (K)
TEMP=E(2+K)-E(1+K)
EPP(K)=TEMP-EP (K)

EP(K)=TEMP
GO TO 1300
C COUNTER FOR AITKEN CORRECTION
1237 NO=NO+1
c ARE THE ITERATIONS BOUNDED
IF (NUMBER~-MAX) 1220+1220+2047
C INTERIOR POINT -- SEIDEL OR AITKEN DELTA SQUARE ITERATION
1240 IF(NO-4) 1244,1244,1241
C AITKEN CORRECTION METHOD

1241 DELE1l=E2-E1
DELE2=E3-E2
DELE3=E4-E3
DELEA4A=ES~-E4
DELS1=x=S2-~S1
DELS2=S3-S2
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DELS3=54-5S3
DELS4=55-S4
RESQ= (DELE2#DELEA4-DELE3*DELE3)/(DELE ] ¥DELLE3-DELE2¥*DELE2)
RSSQ=(DELS2#DELS4~DELS3I*DELS3)/(DELS] *DELS3-DELS2¥DELS2)
DELEE2=DELE3-DELE2
DELEE3=DELE4—-DELE3
DELSS2=DELS3-DELS2
DELSS3=DELS4—-DELS3
DENOME =DELEE3-RESQ#*#DELEE2
DENOMS=DEL SS3—~-RSSQ*DEL SS2
DENOMINATOR CHECK IN AITKEN METHOD
IF (ABSF (DENOMS)) 1244¢1244+1242
1242 IF(ABSF(DENOME)) 1244,1244+1243
DENOMINATORS DO NOT VANISH
1243 ES=E4-DELE3#(DELE4-RESQ¥*DELE3) /DENOME
S5=S4-DELS3# (DELS4-RSSQ*DELS3) /DENOMS
2=S5-B+A/ES
NO=1
NUMBER=NUMBER+ 1
GO TO 1240
SEIDEL ITERATION
1244 E1=E2
E2=E3
E3=E4
E4=ES
S1=S82
S2=S3
S3=S4
S4=SS
1245 TERM=,5#T*Z
ES=C1+TERM
TEMP1=-B+A/ES
Z=S4+4+TEMP]
TERM= ¢ S*TH#Z
S5=C2~-TERM
Z2=SS+TEMP1
NUMBER=NUMBER+1
DIFF=ABSF (ES—-E4)
CONVERGENCE CHECK TO TEN DIGITS
IF(ES5=-0¢01) 1246+1248+1248
1246 [F(E5-0.001) 1247+1249,1249
1247 IF(ES-040001) 1251+1250+1250
1248 IF(DIFF~¢.1E-10) 1255+1255+1257
1249 IF(DIFF-e1E-11) 12554¢1255+1257
1250 IF(DIFF~,1E-12) 1255+:1255:1257
1251 IF(DIFF=e1E-13) 125541255+1257
1255 S(2+K)=S5
E(2+.K)=ES
V(2+K)=eS5S*(~-DA+DC)
G(2¢K)=2Z
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SEARCH FOR FIRST POINT ATTAINING STATIC S-E VALUE
GO TO (2000+:2002) ¢ MARK

IF(Z) 2001+2001+2002

PRINT 94JsK

MARK =2

CONT INUE

ARE WE IN THE FIRST FIVE ROWS

IF(K=5) 1256+1256+1045

NEW PARTIAL DERIVATIVES ALONG THE ROW
TEMP=S(2+K)=S(14+K)

SPP(K)=TEMP-SP (K)

SP(K)=TEMP

TEMP=E(2+K)=-E(1+K)

EPP(K)=TEMP-EP (K)

EP(K)=TEMP

GO TO 104S

COUNTER FOR AITKEN CORRECTION

NO=NO+1

ARE THE ITERATIONS BOUNDED

IF (NUMBER=-MAX) 1240+1240+,2047

END POINT =- VELOCITY Be Ce —— SEIDEL OR AITKEN CORRECTION
IF(NO=-4) 1264:1264+1261

AlTKEN CORRECTION METHOD

DELE1=E2-E1l

DELE2=E3~-E2

DELE3=E4-E3

DELE4=ES-E4

DELS1=S52-51

DELS2=53-S52

DELS3=54-S3

DELS4=85-5S4
RESQ=(DELE2#DELE4~-DELE3®*DELE3)/(DELE1 *#*DELE3-DELE2*DELE2)
RSSQ=(DELS2#DEL.S4-DELS3*DELS3)/(DELS1 #DELS3-DELS2%DELS2)
DELEE2=DELE3-DELE2

DELEE3=DELE4-DELE3

DELSS2=DELS3-DEL S2

DELSS3=DELS4~-DELS3
DENOME=DELEE3-~-RESQ#DELEE2

DENOMS =DEL SS3-RSSQ#DEL. SS2

DENOMINATOR CHECK

IF (ABSF (DENOMS)) 1264+1264+1262
IF(ABSF(DENOME)) 126441264+1263
DENOMINATORS DO NOT VANISH
ES=E4-DELE3# (DELE4~-RESQ*DELE3) /DENOME
S5=S4-DEL S3* (DELS4-RSSQ¥DELS3) /DENOMS
2=S5-B+A/ES

NO=1

NUMBER=NUMBER+1

GO TO 1260

SEIDEL ITERATION
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1264 E1l1=E2
E2=E3
E3=E4
Ea=ES
S1=82
S2=83
S3=xS4
S4=SS
1265 TERM= (S%#T*2Z
ES=C3+TERM
TEMP1=-B+A/ES
Z=S4+TEMP1
TERM= (S%*T#2Z
SS=C4-TERM
2=SS+TEMP 1
NUMBER=NUMBER+1
DIFF=ABSF (ES-E4)
(o] CONVERSION CHECK TO TEN DIGITS
IF(ES-0¢01) 1266+1268+1268
1266 IF(E5-0.001) 1267+1269+1269
1267 IF(ES5~00001) 1271+1270+1270
1268 IF(DIFF=¢1E~10) 1275127541277
1269 IF(DIFF=e1E-11) 1275412751277
1270 IF(DIFF=-e1E-12) 1275¢1275+1277
1271 IF(DIFF=-e1E-13) 1275¢1275+1277
1275 S(2.K)=85
E(2+K)=ES
G(2+K)=2Z
C SEARCH FOR FIRST POINT ATTAINING STATIC S—-E VALUE
GO TO (2010+,2012) s MARK
2010 1IF(Z) 2011,2011+2012
2011 PRINT 9e¢Je¢K

MARK =2
2012 CONTINUE
C ARE WE IN THE FIRST FIVE ROWS
IF(K=5) 1276+1276,+1300
C NEW PARTIAL DERIVATIVES ALONG THE ROW

1276 TEMP=S(2.K)=-5(1+K)
SPP(K)=TEMP-SP (K)
SP(K)=TEMP
TEMP=E(2.K)-E (1K)
EPP(K)=TEMP-EP (K)
EP(K)=TEMP

GO TO 1300
C COUNTER FOR AITKEN CORRECTION
1277 NO=NO+1
C ARE THE ITERATIONS BOUNDED
IF (NUMBER-MAX) 126041260+2047
C END POINT —=- VELOCITY Be Ce —— SEIDEL OR AITKEN CORRECTION

1280 IF(NO-4) 1284.1284,1281
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C AITKEN CORRECTIGN METHOD

- 1281 DELEl=ER«E1l
DELE2=E3~E2
DELE3=E4~E3
DELE4=ES~Es
RESQ=(DELE2¥DELEA-DELE3*DELE3)/(DELE] *DELE3-DELE2*DELE2)
DELEE2=DELE3-DELE2
DELEE3=DELEA-DELES3
DENOME=DELEE3-RESQ¥*DELEE2

C DENOMINATOR CHECK
IF (ABSF(DENOME)) 1284+1284+1283
C DENOMINATOR DOES NOT VANISH
1283 ES= E4—DELE3*(DELE4JRESQ*BELE3)/DENOME
Z=X-B+A/ES
NO=1
NUMBER=NUMBER+1
GO TO 1280
C SEIDEL ITERATION
1284 E1=E2
E2=E3
E3=E4
E4=ES
1285 E5=CS5+T#*2Z
Z2=C6+A/ES
NUMBER=NUMBER+1
DIFF=ABSF (ES—-E4)
C CONVERSION CHECK TO TEN DIGITS

IF(ES—0e01) 1286:1288+1288
1286 IF(ES-0.001) 1287+1289+1289
1287 IF(ES5=00001) 1291+1290+1290
1288 IF(DIFF=elE=10) 129541295+1297
1289 IF(DIFF=¢1E=-11) 1295¢1295.1297
1290 IF(DIFF=-61E-12) 1295+1295+1297
1291 IF(DIFF=¢1E-13) 1295+1295¢1297
1295 V(2+K)aDC—=X=eSHTH#Z
E(2.K)=ES
G(2¢K)=Z
C SEARCH FOR FIRST POINT ATTAINING STATIC S~E VALUE
GO TO (2020+2022) s MARK
2020 IF(Z) 2021+2021+2022
2021 PRINT 94JsK

MARK=2
2022 CONTINUE
C ARE WE IN THE FIRST FIVE ROWS
IF(K-5) 1296+1296+1300
C NEW PARTIAL DERIVATIVES ALONG THE ROW

1296 TEMP=S(2+K)=S5(1+K)
SPP(K)=TEMP-SP (K)
SP(K)=TEMP
TEMP=E(2K)=E(1+K)
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EPP(K)=TEMP-EP (K)

EP(K)=TEMP

GO TO 1300

COUNTER FOR AITKEN CORRECTION
NO=NO+1

ARE THE ITERATIONS BOUNDED

IF (NUMBER-MAX) 1280+1280+2047
ARE WE PRINTING THIS ROW

IF(J-M1) 1330+1310.1330

DO WE PRINT THIS COLUMN

IF(K-M2) 13304+1320+1330

PRINT THIS POINT

STRESS=EO#S(2+K)

VELOC=CO#V(2+K)
PRINT2¢JsKoeSTRESSIE(24K) s VELOC+G(2+K) s NUMBER
NEXT ROW AND COLUMN TO BE PRINTED
M1 =M]+M4

M2=1

HAVE WE CALCULATED THE LAST ROW

IF(J=-L) 1340+2047.2047

STORAGE TRANSFER BEFORE MOVING ON TO NEXT COLUMN
DO 1350 N=1,+J

S(1+N)=S(2¢N)

E(1«N)=E(2¢N)

V(1 eN)=V(2¢N)

G(1+N)=G(24sN)

GO TO FIRST POINT IN NEXT COLUMN

JeJ+1

K=1

NUMBER=0

CHECK Be Ce —— IS LEADING WAVE FRONT CALCe. NEEDED
GO TO (1001+1045)+IMPACT

HAVE WE REACHED LAST ROW

IF (J-L) 2046+2045+2046

ERROR STOP -- OUTPUTS STORAGE

PRINT 41 +Je¢KsNUMBER

PROGRAM OVER

STOP

END

END
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PROGRAM POWRATE

1 FORMAT (1X+s3HROW¢3Xe6HCOLUMN 99X ¢ 6HSTRESS +13X«6HSTRAIN
111X+s8HVELOCITY +9Xe10HG FUNCTION,8Xe10HITERATIONS/)

2 FORMAT (1I1X+I395X013¢4Xe4(E16e¢1043X)e3Xe13)

3 FORMAT (14(14.1X))

31 FORMAT (10(1Xs14))
32 FORMAT (6(1X+E16+10))
33 FORMAT (4(E16.10))

4 FORMAT (S(E16.10))

41 FORMAT (1Xe2HJU=913¢3Xe2HK=4913+3X e 7THNUMBER=,13)

S FORMAT (1Xe2HJIz s I3 44X SHLOOK= 4 1244X ¢3HM1 =413 44X ¢3HM3=,
113084XsAHMAX=s [3/1X12HK=9]1304XsSHJAZZR ¢ [2:4X3MT72=,13,
24X s3HMG= 4 I3 44X 2HL=¢ I3 ¢3Xe3HLL=4 I3 43X THIMPACT=,13,3X,
34HMAD=,13/)

6 FORMAT (1X¢s3HEO=9sE16¢10+4X+4HRHO=E16¢100¢4X+3HCO=,
1E16¢10¢4X+2HTZ=4E16410/)

7 FORMAT (IXQZHAtyEléo1004X12Ha=oEl6o1004X02HC805160100
14X 2HDRE16610¢4X 1 2HP=4E16¢10/ ¢/ 1XsEHYIELDEE16610+¢4X,
2SHVMAX=4E1661044X+SHTFIX=9E16¢10+4X+SHCENT=4sE16,10/
3/1Xe2HQ=4E16¢10¢4Xs2HF=9E16610¢4Xe4HTIM=9E16610/4/)

8 FORMAT (I1X+6HALPHA=¢E16610+4X SHBETA=E16610¢4X,
116HYIELD REACHED ATe1XeE16e10¢2X
225HMICROSECONDS AFTER IMPACT/e/) -

9 FORMAT (/1Xe25HG FUNCTION = o1E=07 AT J=s14¢3Xe2HK=014/)

91 FORMAT (/+/)
DIMENSION S(2¢601)+E(2+601)¢V(2:601)¢G(2¢601)+SP(601)
1SPP(601)+EP(601)+EPP(601)
MARK=1
El1=0.0
E2=0.0
E3=0.0
E4=060
S1=0.0
S2=0.0
S3=0.0
‘S4=0.0
DO 98 N=1+401
S(1eN)=060
S(2+N)=0e0
E(1eN)=0e0
E(2+sN)=20,0
V(1+N)=0.0
V(2+sN)=0.0
G(1eN)=0e0

98 G(2+N)=0.0
DO 99 N=1,401
EP(N)=0e0
EPP(N)=0+0
SP(N)=0.0

99 SPP(N)=0.0
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READ 3¢J KoL+ LOOK s JAZZ MAXIM]1 M2 4M3 ¢M& skl s IMPACT ¢MAD
READ #4¢T+EQORHOJABsCoDePoYIELDsVMAXITFIXCENTIQeFoTIM
C=EQrA

CO=aSQRTF (EO/RHO)

PRINT S5¢J.LOOK M1 M3 ,MAX KyJAZZ M2,M4g,L,LL, IMPACT MAD
PRINT 6+EORHOCO.T

PRINT 7¢AsBeCoiDsPsYIELD«VMAXsTFIXeCENT+Q4F o TIM
NUMBER=0

VELOCITY + STRESS OR STRAIN BOUNDARY CONDITIONS AT X=0
GO TO (100+20043004¢400) +LOOK

IMPACT VELOCITY 1S A CONSTANT

READ 4,VvOL

V(1s1)==VOL/CO

EC(lel)==V(1lsl)

S(le1)==V(lsl)

DO 101 N=1,L

V(2sN)=V(1lel)

GO TO S00

IMPACT VELOCITY IS A KNOWN VARIABLE

GO TO (201+210)+JAZZ

IMPACT VELOCITY IS A TABULATED VARIABLE IN/SEC
READ 4+(V(2sN) sN=Josl 1)

DO 202 N=Jelool

V(2«N)=V(2+N)/CO

GO TO 225

IMPACT VELOCITY IS GIVEN AS AN EXPONENTIAL FUNCTION
TEMP=160/(10-CENT)

ALPHA=LOGF (TEMP)/TF1IX

TEMP=EO®VMAX

BETA=LOGF (TEMP /(TEMP+CO*Y1ELD))

PRINT 8+.ALPHABETA.TEMP

DO 220 N=JeL.

WER=2# (N-1)

TEMP=EXPF (ALPHA®*T*WER+BETA)
V(2+N)aVMAX% (] ¢0—10/TEMP)/CO

V(l1e1)a3V(2s1)
E(1¢1)=(-SARTF (RHO/(A¥B) ) #B+1e¢0)%*¥V(141)%#0e5SHCO) *%

1(2.0/7(B+10))

S(1¢1)=(AR(E(]1+1)%%B))/EO
S(2+1)=S(141)

E(2+s1)=E(1e1)

G(241)me 1E~O7H(CHS(2¢1)/7(E(2+1)%%B) )*%Q
GO TO 8500

IMPACT STRESS IS A KNOWN VARIABLE
GO TO (301¢310)+JAZZ

IMPACT STRESS IS TABULATED PS1t
READ 4+(S(2¢N) sN=aJsl)

DO 302 N=JsL.

S(2«N)=S(2¢N)/EQ

@9 ‘70 32%
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READ 44STRS

DO 311 N=JsLl

S(2+N)=STRS/ZEO

LL=LL+}

IF(LL~L) 312¢3124:325

DO 313 N=LL L

S(2«N)=0.0

S(1+1)=S5(2+1)

E(1¢1)=S(141)

V(iel)==S(1s1)

WILL BE RECOMPUTED BELOW IF INITIAL IMPACT IS PLASTIC
E(2+1)=E(1,1)

V(2¢1)=V(1ls1l)

G(2+1)2e 1E~OTH(CRS(2e1)/7(E(2+1)#%B) ) *%Q
GO TO S00

STRAIN HISTORY IS GIVEN

READ 4+(E(2sN) ¢N=J,oLL)

IF(LL-L) 412+:425,425

STRAIN IS NOW CONSTANT

Ll =LL+1

DO 413 N=LLL L

E(2+N)=E(2.LL)

S(1+1)=E(241)

E(1¢1)=E(241)

V(lel)==E(241)

WILL BE RECOMPUTED BELOW IF IMPACT IS INITIALLY PLASTIC
St2+1)3E(141)

V(2+¢1)aV(1s1)
G(241)21E~O7%H(CH#S(2:1)/7(E(2¢1)#%#B))RRQ
GO TO S00

PRINT OUT OF IMPACT CONDITIONS

PRINT 1
G(101)2elE-O7H(CRS(1e1)/7(E(1+1)%#%B))*%Q
STRESS=S(1+1)%*EO :

VELOC=V(14+1)%*CO

PRINT 2¢JsK+STRESSWE(1+1)+VELOCG(141)
GO TO FIRST POINT AFTER IMPACT

J=J+1

GO TO (1000+¢1045) .+ IMPACT

CALCe ALONG X=CO#T FOR PLASTIC INITIAL IMPACT
TT=(2¢0/T)*,1E+09/(Q%(10-B)-1.0)
DOT=S(1+1)/7(CAS(141)%¥%(1,0-B))#%Q

TEMP =P/ (CRP#* (1 ,0-B) ) *¥#Q
Fl=eTT*(TEMP-DOT)

TAX=J—-1

P2=P

P=P+D

TEMP=zP/ (CRP#¥ (1 ,0~-B) ) *##Q
F2=TT*(TEMP-DOT)

DI=F2-TAX
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IF(DI) 1010+41010+1020
1010 Fi=F2
GO TO 1002
1020 IF(DI-+1E«09) 10414+41041+1030
1030 P2=P1
Pi1=P
1031 R=F2-F1
P2=P1+(P2-P1)¥DI/R
TEMP=P2/ (CH*P2%#%#(],0-B) ) **Q
Fi1sTT®#(TEMP~-DOT)
DI=TAX=-F1
NUMBER=NUMBER+ 1
IF(DI=e1E~-09) 1040+1040+1031
1040 P=P2
1041 S(2+1)=P
E(241)=P
V(2+s1)==P
G(201)=e 1E=O7%(CHP/ (PR%B) ) ®#¥Q
Fl=F2
D= ¢ 99#D
C DO WE PRINT THIS ROW
1045 IF (J=M1) 1060+41050+1060
: DO WE PRINT THIS COLUMN
1050 IF(K-M2) 1060+10554+1060
C PRINT THIS POINT
1055 M2=M2+M3
STRESSsEO#S(2+K)
VELOC=CO®V(2+:K)
PRINT 2¢JsKesSTRESSE(2+K) ¢+ VELOC+G(2+K) +NUMBER
C MOVE TO THE NEXT POINT IN COLUMN
1060 K=K+1
NO=0Q
NUMBER=0
GO TO 1100
1100 IF(U—K-~3) 1110+1120+1125
1310 IF(U—K-1) 1111111391113
1311 Ea4=E(] +K=-1)-EP(K-1)
S4=5(1+K~-1)-SP(K-1)
GO TO 1129
1113 EA4=E(]1+K)+EP(K=-1)-EPP(K-1)
S4=5(1 K)4+SP(K=1)-SPP(K-1)
GO TO 1129
1120 EA=E(1..K)+EP(K)
S4=S(1+K)+SP(K)
GO TO 1129
1125 EA=E(1+K)+EP(K)+EPP(K)
S4=S(]1+K)+SP(K)+SPP(K)
GO TO 1129
€ © IMPACT STRESS IS A CONSTANT -- THEN ZERO
1129 Zzo IE-Q7*# (CRSQ/ (E4*#B) ) #%Q
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CONSTANTS WHICH ARE FUNCTIONS OF ADJAGENI S1AI1E POINIS

DCES(24K=«]1 ) +V(21K=]1 )= SHTRG(24K=1)

DB2=S (] +K=1)+E(]1 +K=1)+THG(]1 ¢eK=])
DAES (1K) =V(]1 +K) = SRTHG(] ¢K)
INTERIOR OR END POINT

IF(JU—-K) 2047+1150+1140

INTERIOR POINT CALCULATION
C2=¢5#(DA+DC)

C1=C2+08B

TEMP=S5%T%Z

E4=C1+TEMP

S4=C2~-TEMP

Zz= o 1E-Q7#(CXSQ/(E4#%B) ) #1Q

GO TO 1245

END POINT —-- CHECK BOUNDARY CONDITION
GO TO (1160+1160+1180+1190) +L.OOK
VELOCITY BOUNDARY CONDITION
Ca4=DC-V(2+K)

C3=C4+DB

TEMP= ¢ SHTH#Z

E4=C3+TEMP

S4=C4~-TEMP

Zz= o 1E-OT7R#(CXS4/(E4#2B) ) #2Q

GO TO 1265

STRESS BOUNDARY CONDITION
X=S(2+K)

CS5=DB+X

E4=CS+TH*Z

Z=e 1E-O7% (CRX/ (E4Q%#B) ) ##Q

GO TO 1285

STRAIN BOUNDARY CONDITION
X=E(2¢K)

C72X«-DB

C8=~-C7+DC

SUN=C/(X¥%#%#B)

IF(J=L) 1192+1191+1192

SS=( ( «SOE+08*ABSF(E(2+sK)=E(]1 +K=1))/T)#*#(]1.0/Q))/SUN
GO TO 1193

S5=(( « 2SE+08*ABSF(E(24K+1)=E(1+sK=1))/T)##(1.0/Q))/SUN
Z= o 1E-O7# (SS*SUN) #%Q

V(2+K)=CB++S5*#THZ

S(24+K)=55

G(2.K)=2Z

SEARCH FOR FIRST POINT ATTAINING STATIC S—-E VALUE
GO TO (2030+2032) +MARK

IF(Z-¢1E~07) 2031+2031+2032

PRINT 9sJeK

MARK=2

CONTINUE

ARE WE IN THE FIRST FIVE ROWS
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IF(K=S) 1236+1236+:1300 .

C NEW PARTIAL DERIVATIVES ALONG THE ROW

1236 TEMP=S(2+K)=S(1+K)

SPP(K)=TEMP~-SP (K)
TEMP=E(2+.K)-E (1K)
EPP(K)sTEMP-EP (K)
EP(K) =TEMP

s GO 7O 1300

C " INTERIOR POINT —-- SEIDEL OR AITKEN DELTA SQUARE ITERATION

1240 IF(NO-4) 1244,1244,1241
(o AITKEN CORRECTION METHOD

1241 DELE1=E2~E1
DELE2=E3~E2
DELE3=E4-E3
DELE4A=ES~-E4
DELS1=S2-S1
DELS2=83-S2
DELS3=S4-S3
DELS4=55~S4
RESQ=(DELE2®#DELE4-DELE3*DELE3)/(DELE 1 #DELE3-DELE2*DELE2)
RSSQ= (DELS2*DEL.S4-DELS3*DELS3)/(DEL.S1 #DELS3~DELS2*DELS2)
DELEE2=DELE3-DELE2
DELEE3=DELE4-DELE3
DELSS2=DELS3-DELS2
DELSS3=DELS4-DELS3
DENOME =DELEE3-RESQ#DELEE2
DENOMS =DEL SS3-RSSQ*DEL SS2
C DENOMINATOR CHECK IN AITKEN METHOD
IF(ABSF(DENOMS)) 1284+1244+1242
1242 IF(ABSF(DENOME)) 1244+1244+1243
(o DENOMINATORS DO NOT VANISH
1243 ES=EA4-DELE3#(DELE4-RESQ#*DELE3) /DENOME
S5=S4-DELS3# (DELS4~RSSQ*DELS3)/DENOMS
Zz o 1E-O7RH (CHS5/(ESH#B) ) #%#Q
NO=1
NUMBER=NUMBER+ 1
GO TO 1240
C SEIDEL ITERATION
1244 E}=E2
E22E3
E3=E4
EAa=ES
S1=S2
S2=S3
S3=54
S4=z=S5
1245 TERM= (SHTH*Z
ES=C1+TERM
TEMP 1 =C/ (ES*¥%B)
Z=o 1E-QOTH (SQAHTEMP] ) #%#Q
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TERM= ¢ §%#TH*Z

SSuC2aTERM

2= 1E=QOTH(SSHTEMP] ) ##Q
NUMBER=NUMBER+ 1

DIFF=ABSF (E5-E4)

CONVERGENCE CHECK TO TEN DIGITS
IF(ES=0.01) 1246+1248+1248
IF(ES5=0¢001) 1247+1249+1249
IF(ES=0.0001) 1251+1250+1250
IF(DIFF~¢1E~10) 1255+1255,1257
IF(DIFF-e¢1E-11) 1258+1255+1257
IF(DIFF=+1E~-12) 1255+1255:1257
IF(DIFF=+1E~13) 1255412551257

S(2+K) =S5

E(2.K)=ES

V(2:K)2e 5% (~-DA+DC)

G(2+K)=Z

SEARCH FOR FIRST POINT ATTAINING STATIC S-E VALUE
GO TO (2000+2002) s MARK

IF(Z-+1E=07) 2001+2001+2002

PRINT 9sJK

MARK =2

CONT I NUE

ARE WE IN THE FIRST FIVE ROWS

IF(K=5) 12569+1256,+1045

NEW PARTIAL DERIVATIVES ALONG THE ROW
TEMP=S(2+K)=S(14+K)

SPP(K)=TEMP-SP (K)

SP(K)=TEMP

TEMP=E (2.K)-E(1+K)

EPP(K)=TEMP-EP (K)

EP(K)=TEMP

GO TO 1045

COUNTER FOR AITKEN CORRECTION

NO=NO+1

ARE THE ITERATIONS BOUNDED

IF (NUMBER~MAX) 1240+131240+2047

END POINT —~- VELOCITY Be Ce ~— SEIDEL OR AITKEN CORRECTION
IF(NO=4) 1264+1264+1261

AITKEN CORRECTION METHOD

DELE1=E2~E1

DELE2=E3-E2

DELE3=E4-E3

DELE4A=ES~-ES

DELS1=S2-S!

DELS2=8S3-5S2

DELS3=S4~S3

DELS4=S5~S4

RESQ= (DELE2#DELEA4~-DELE3*#DELE3)/(DELE]1 *DELE3-DELE2#*#DELE2)
RSSQ= (DELS2#DEL S4~-DELS3*DELS3)/(DELS1#DELS3-DELS2#DELS2)
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DELEE2sDELE3-~-DELE2
DELEE3=DELE4A-~-DELE3
DELSS2=2DELS3~-DELS2
DELSS3=DELS4~-DELS3
DENOME =DELEE3-RESQ#*DELEE2
DENOMS =DEL.SS3-RSSQ#DEL SS2
C DENOMINATOR CHECK
IF (ABSF(DENOMS)) 1264+1264+1262
1262 IF(ABSF(DENOME)) 1264¢1264¢1263
Cc - DENOMINATORS DO NOT VANISH
1263 ES=E4-DELE3#(DELE4—-RESQ¥*DELE3)/DENOME
S5=S4-DELS3*# (DELS4-RSSQ*DEL.S3 ) /DENOMS
Zx o 1E~OT7# (CHSS/ (ES##B ) ) #%Q
NO=1
NUMBER=NUMBER+1
GO TO 1260
C SEIDEL ITERATION
1264 El1=E2
E2=E3
E3=zE4
E4=ES
S1=sS2
S2=S3
S3=S4
S4=S5
1265 TERM=z= (S#TH#Z
ES=C3+TERM
TEMP 1 =C/ (ESH#D)
Z2 o 1E~O7# (S4*TEMP] ) #4Q
SS=Ca-TERM
2z 1E=~QOT7# (SSHTEMP] ) ##Q
NUMBER=NUMBER+ 1
DIFF=ABSF (E5-E4)
C CONVERSION CHECK TO TEN DIGITS
IF(ES=0.01) 1266+,1268,1268
1266 IF(E5-0¢001) 1267+1269+1269
1267 IF(ES-=0.0001) 1271+1270+1270
1268 IF(DIFF=e1E~10) 1275¢127%841277
1269 IF(DIFF=e1E~=11) 1275:1275:1277
1270 IF(DIFF=61E~12) 1275:1275.1277
1271 IF(DIFF~¢.1E~13) 1275127541277
1275 S(2.K)=$5
E(2.K)=ES
G(2+K)=Z
c SEARCH FOR FIRST POINT ATTAINING STATIC S-E VALUE
GO TO (2010+2012) s MARK
2010 JF(Z-41E-07) 2011+¢2011+2012
2011 PRINT 9+JeK
MARK =2
2012 CONTINUE
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C ARE WE IN THE FIRST FIVE ROWS
IF(K=5) 1276+1276+1300
C NEW PARTIAL DERIVATIVES ALONG THE ROw

1276 TEMP=aS(24+K)-=S(1+K)
SPP(K)=TEMP-SP (K)
SP(K)=TEMP
TEMP=E(2,.K)-E( 1K)
EPP(K)=TEMP-EP (K)
EP(K)=TEMP
GO TO 1300
C COUNTER FOR AITKEN CORRECTION
1277 NO=NO+1
Cc ARE THE ITERATIONS BOUNDED
IF (NUMBER-MAX) 1260+1260+2047
C END POINT -~— STRESS Be Ce —— SEIDEL OR AITKEN CORRECTION
1280 IF(NO-4) 1284,1284,1281
C AITKEN CORRECTION METHOD
1281 DELE1=E2-E1l
DELE2=E3-E2
DELE3=E4-E3
DELE4=ES-E4
RESQ= (DELE2#DELE4-DELE3#DELE3)/(DELE] *DELE3-DELE2*DELE2)
DELEE2=DELE3~-DELE2
DELEE3=DELE4-DELE3
DENOME =DELEE3-RESQ*#DELEE2

c DENOMINATOR CHECK
IF(ABSF(DENOME)) 1284+1284+1283
C DENOMINATOR DOES NOT VANISH

1283 ES=E4~DELE3% (DELE4A-RESQ*DELE3)/DENOME
Zz o 1E-O7# (CXX/ (ESH%B) ) #%#Q
NO=1
NUMBER=NUMBER+1
GO TO 1280
C SEIDEL ITERATION
1284 El1=E2
E2=E3
E3=E4
E4=ES
1285 ES5=CS+T#Z
Z=o 1E~QO7* (CHX/ (ES*%B) ) #%Q
NUMBER=NUMBER+ 1
DIFF=ABSF (ES-E4)
C CONVERSION CHECK TO TEN DIGITS
IF(ES-0.01) 1286+1288+1288
1286 IF(ES5-0.001) 1287+1289,1289
1287 IF(ES5-00001) 12914+1290+1290
1288 IF(DIFF-¢1E=10) 129541295.1297
1289 IF(DIFF-e¢1E-11) 129541295+1297
1290 IF(DIFF-¢1E~-12) 1295+129541297
1291 IF(DIFF=el1E=~13) 1295412951297




1295

2020
2021

2022

1296

1297

1300

1310

1320

1330

1340

1350

2047
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- V(2¢K)DE=X=eS#THZ

E(2+K)=ES

G(2:K)nZ

SEARCH FOR FIRST POINT ATTAINING STATIC S-E VAWLUE
GO TO (2020+:2022) + MARK

IF(Z-=6¢1E=-07) 2021+20214+2022

PRINT 94¢JeK

MARK =2

CONT INUE

ARE WE IN THE FIRST FIVE ROWS

IF(K~=5) 1296+1296+1300

NEW PARTIAL DERIVATIVES ALONG THE ROW
TEMP=S(2+:K)=S(1K)

SPP(K)=TEMP-~SP (K)

SP(K) =TEMP

TEMP=zE(2.K)-E (1K)

EPP(K)=TEMP-EP (K)

EP(K)=TEMP

GO TO 1300

COUNTER FOR AITKEN CORRECTI]ION
NO=NO+1

ARE THE ITERATIONS BOUNDED

IF (NUMBER-MAX) 1280+1280:2047

ARE WE PRINTING THIS ROW

IF(JU-M1) 1330,1310+1330

DO WE PRINT THIS COLUMN

IF(K—=M2) 1330+41320+1330

PRINT THIS POINT

STRESS=EO#S (2 +K)

VELOC=CO®#V(2+K)
PRINT2¢JeKeSTRESSE(24K) + VELOC+G(24K) s NUMBER
Mi=M1+Me

M2=]

HAVE WE CALCULATED THE LAST ROW
IF(JU=L) 1340+2047+,2047

STORAGE TRANSFER BEFORE MOVING ON TO NEXT COLUMN
DO 1350 N=1+J

S(1eN)=S(2«N)

E(1eN)=E(2¢N)

V(1 eN)=V(2+N)

G(1sN)=G(24N)

GO TO FIRST POINT IN NEXT COLUMN
JuJ+l

K=}

NUMBER=0

CHECK Be Ce == 1S LEADING WAVE FRONT CALCe NEEDED
GO TO (1001+1045) ¢ IMPACT

HAVE WE REACHED THE LAST ROW

IF(J=h) 2046+204542046

ERROR STOP -- OUTPUTS STORAGE

o e



c

2046

2045
2044

2043

2042
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PRINT 41 ¢J:K+NUMBER
PROGRAM OVER
IF(MAD=~2) 204220442042
MIT=TIM

DO 2043 N=1 L MIT
NN=z1+(N=-1)/MIT
SP(NN)=TIM®SP (N)
SPP(NN)=TIM#SPP(N)
EP(NN)=EP(N)¥*TIM
EPP (NN)=EPP(N)#TIM
S(1sNN)=S(2¢N)
E(1+NN)=E(2¢N)

V(1 eNN)=V(2¢N)
G(1eNN)=G(24N)
S(2+NN)=S(2¢N)
E(2+NN)=E(2¢N)
VI(2eNN)=V(24N)
G(2«NN)=G(24+N)
PRINT 91

GO TO 999

CONT INVE

STOP

END

END
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