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ABSTRACT

LONGITUDINAL PLASTIC WAVE PROPAGATION

IN ANNEALBD ALUMINUM BARS

by

Leonard Efron

In this investigation aluminum rods were subjected to

dynamic compressive impact loading of duration of the order

of 500 microseconds in order to study the propagation of

longitudinal plastic waves, Two independent series of tests

were conducted, In the first, an electro-magnetic transducer

was used, while in the second, etched foil resistance strain

gages yielded records of surface strain at the same gage

locations. Strain rates on the order of IOOiran/sec were

reached.

Test results indicated that any given level of velocity

or strain propagates along the bar with a constant velocity,

not affected by the strain rate within the small range of

strain rates encountered. However, the velocities of propa-

gation observed differed noticeably from those predicted by

von Karman rate-independent theory based on the static curve,

Good agreement was found between the propagation speeds ob-

served for different levels of velocity (averaged over all

tests) and predictions of von Karman theory based on a single

dynamic stress-strain curve differing from the static curve°

That the apparent applicability of a single dynamic curve
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and rate-independent theory to this kind of plastic wave pro»

pagation is consistent with rate-dependent theory for a ma»

terial with a very slight rate dependence, was demonstrated

by the results of computer solutions for rate-dependent theory.

The wave propagation speed versus strain level plots

from the transient strain records showed consistently lower

propagation speeds than those based on the velocity records.

It is believed that the strain gage response actually lags

behind the strain in the material, but considerably more

evidence is needed before final conclusions can be drawn

about the lag in the strain measurements and the reasons for

it,

The velocity recording technique for non-magnetic materials

is believed to give good results, but it may be possible to

modify it to make it more nearly a routine type of test,

In order to apply the strain-rate-dependence theory to

the experimental measurements made, it is necessary to have

boundary values at x = 0. To avoid the threemdimensional

difficulties associated with the stress at the actual impacted

end of the bar and test one-dimensional theory in a region

where it should be applicable, it was decided to take the

first gage station (six diameters from the impacted end of

the bar) as x = O, and use the recorded velocity there as a

boundary condition to predict the velocity versus time at

gage stations further along the bar,

A numerical computer solution was obtained using the
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rate-dependent theory with a power law for rate dependence,

The computer solution did predict a constant wave propaga~

tion speed for any given level of velocity, but the constant

values predicted did not agree well with the experimental

values from the velocity records. This lack of agreement

appears to be mainly the result of using a rather poor fit

to the static curve in the computations, since von Karman

rate-independent theory using the same fitted static curve

also gave poor agreement with the experiments. Since the

computer solutions with rate-dependent theory were consistent

with a single dynamic curve, and since the velocity measure-

ments correlate with a single dynamic curve, it appears that

a little ingenuity in curve-fitting could produce agreement

between the rate theory and the experiments.

For the case of linear strain rate dependence, previously

considered by Malvern (1950), a new computer solution for a

constant stress boundary condition indicated the formation of

a plateau of constant strain in agreement with von Karman

rate-independent theory, if the load is applied for a duration

long enough for the material at the impacted end to reach

equilibrium.
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CHAPTER I

INTRODUCTION

1.1 Purpose

The mechanical behavior of engineering materials has

long been known to exhibit marked differences under condi-

tions of impact and high rates of loading as compared to

the results obtained during static testing. Theories taking

into account the effects of strain rate in stress-strain re-

lations were offered as early as 1909. The concept of a

rate-of-strain dependence in dynamic deformations of metals

was naturally extended to studies of stress wave propaga-

tion.

It is the purpose of this investigation to study the

propagation of longitudinal plastic waves in aluminum rods,

caused by dynamic compressive impact loading of duration of

the order of 500 microseconds. Cross section particle velo-

city and surface strains from two independent series of tests

are examined with special attention to the possible existence

of strain rate effects.

The data from the velocity transducers is compared with

predictions of a strain-rate-independent theory and also a

strain-rate-dependent theory. Consideration is given to the

possibility of using a single dynamic stress-strain curve

for the material to account for the wave propagation observed.

In order to apply the strain-rate-dependence theory
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to the experimental measurements made, it is necessary to

have boundary values at x = 0. However, at the actual end

of the bar, the stress state is three-dimensional and a load~

time history obtained from the transmitter bar would not be

the proper boundary condition for the one~dimensiona1 wave

* . .

27 has found that the one-dimen51onalpropagation. Bell

wave is formed in a distance along the bar equal to about

one diameter. In order to avoid the three-dimensional dif-

ficulties and test the one-dimensional theory in a region

where it should be applicable, it was decided to take the

first gage station (6 diameters from the impacted end of the

bar) as x = O, and use the recorded velocity there as a

boundary condition to predict the velocity versus time at

the other three gage stations further along the bar.

All calculations are for a semi-infinite rod and the

transient experimental data are all obtained before any re-

flections arrive from the far end.

Associated with this study is a remexamination, using

the high speed CDC-3600 digital computer, of some previous

solutions of strain—rate-dependent longitudinal plastic wave

propagation. Iterative procedures were used to solve the

governing system of nonlinear equations. Difficulties in

computation were encountered. The criteria for convergence

 

*Superscript numerals indicate references as listed in the

Bibliography.



I
L
-

 

I
I
I

I
I
n

in

to:

on

the

ini

91a

(17

Ven.

290'

teer



of the iteration process was found to be a function of strain-

rate and the degree of material strain rate dependence.

1.2 Backggound
 

Thomas Young (1773-1829) included in his Course of
 

Lectures on Natural Philosophy and the Mechanical Arts,
 

London, 1807, a discussion of one-dimensional waves in an

elastic bar due to longitudinal impact with another bar

and concluded that C7'= %¥ where C7'is the stress at impact

due to an imposed boundary velocity v. The quantities E

and c are Young's Modulus and the elastic wave propagation

speed respectively, which are material constants. This

correct result perhaps marks the beginning of the history

of stress wave propagation in solids.

In 1821 Navier (1785-1836), then Professor of Mechanics

in Paris, presented a memoir giving the equations for vibra-

tory motion of an elastic medium composed of particles acting

on one another with forces directed along the lines joining

them, and proportional to the product of displacement and

initial distance between them. This paper for a particular

elastic solid was followed by a series of works by Cauchy

(1789-1857), Poisson (1781-1840), Green (1792-1841), St.-

Venant (1797-1886), Stokes (1819-1903), Lord Kelvin (1824-

1907), Lord Rayleigh (1842-1919) and others during the nine-

teenth century.

Their researches were carried on not only in an attempt



to discover the laws governing vibrating bodies, but to un-

derstand the nature of light, the transmission of which was

believed due to the vibrations of a perfectly elastic aether.

Thus, many of the early studies of stress wave propagation in

an elastic medium were prompted by an interest in electro«

magnetic phenomena. The twentieth century opened with our

understanding of the governing equations for longitudinal

waves (irrotational dilatation), transverse waves (equi~

voluminal distortion) in extended elastic bodies and Rayleigh

surface waves in the form known to us today.*

In an extended elastic medium obeying Hooke's Law,

longitudinal waves are propagated with a velocity

c = M it (1.1)

p

where A and M are Lame's constants and p is the mass den-

'sity, whereas one dimensional wave analysis applied to longi-

tudinal vibrations of rods yields

c = ___.
(1.2)

where E is Young's Modulus.

 

*For a review of the early history of elastic wave propaga-

tion, see:

Whittaker, E. T., A History of the Theories of Aether and

Electricity, Vol.4I, Nelson, London, 1951 and Harper,

N. Y., 1960, Chapter V.

 

 

Love, A. E. H., The Mathematical Theoryof Elasticity,

Dover, N. Y., 1944, Introduction and Chapter XIII.
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This latter result is only approximate since we assume

that plane sections of the rod remain plane and the stress is

uniform across the section.

As physicists gave up their quest for the elusive aether,

interest in stress wave propagation slackened. However,

technological advances began making use of metals and other

materials past their proportional and elastic limits and into

the plastic region. It also became apparent that many ma-

terials of interest exhibited mechanical properties under

conditions of dynamic loading which differed significantly

from the properties determined during static loading tests.

L. H. Donnell1 (1930) introduced the first scheme for

treating longitudinal wave propagation in a medium with a

stress-strain relation deviating from Hooke's Law. Stress

waves in a long bar were analyzed by a superposition tech-

nique in which the stress wave was treated as a succession

of incremental steps in stress. Each increment was assumed

to travel at a velocity determined by the slope of the ma-

terial static stress-strain curve at the stress level of the

increment. The wave velocities thus obtained are

c= I (’0' ‘5‘ (1.3)

which reduces to Equation (1.2) for a Hookean material.

World War II brought a surge of interest in elastic-

plastic wave propagation. Studies were made in the light of

developments in armor-piercing shells and armor plates. The
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problem was treated independently by von Karmanza3 (1942)

in the United states, Taylor4 (1940) in England, and

Rakhmatulins (1945) in Russia. The von Karman-Taylor theory

assumes a single-valued strain-rate~independent stress«strain

curve which is concave towards the strain axis (thus pre~

cluding the possibility of shock waves being built up) and

assumes that radial inertia effects are negligible.

Whereas von Karman used Lagrangian co-ordinates, Taylor

treated the problem using an Eulerian co-ordinate system,

but later showed that by a suitable transformation, the two

solutions are identical.

Experiments were carried out shortly after the develop-

ment of this theory by Duwez and Clarkb. The results showed

some discrepancies from the predictions, which it was sug-

gested might be attributable to strain-rate effects in the

material.

The hypothesis of material strain-rate dependence had

already been offered. It had been suggested that stress

should be considered as a function of strain rate as well

as the level of strain as early as 1909.

Among the proposed functional relationships was a logaru

ithmic relationship suggested empirically by both P. Ludwik7

(1909) and H. Deutler8 (1932). L. Prandtlg (1928) reached

the same conclusion as the result of a physical theory of

plastic flow. The relation may be written

0(e'é)=0;(€)+k1né (1,4)
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where 0’; (E) is the stress at a strain of 6‘ when the strain

rate, é", is unity. The factor k could be a function of

strain.

Another relation which has been proposed is a power law

of the form

0'<€.€)=0;<€)é‘n (1.5)

where n may be a function of strain.

In a more general form the relation can be written

0' =¢<€puépo (1.6)

where the subscript refers to nominal plastic strain and

10’11 developed a one-dimensionalstrain rate. L. Malvern‘

theory for longitudinal stress-wave propagation as in a rod,

by rewriting Equation (1.6) as

O

Eo€p=g(0’,€) (1.7)

where EO (Young's Modulus) is introduced for convenience.

The elastic components of the deformation are considered

rate independent, and hence we obtain

0

5,66 =G’ A (1.8)

Thus, the constitutive equation which is the flow law when

plastic deformation occurs is given by

0 O

€=ce+ép

(1.9)

Eo€=0‘-tg(0’,€)
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Malvern gave a numerical solution for the case of a linear

strain-rate-dependence

0' =00 “it", (1.10)

where (76 represented the static stress-strain relation

0-,=f<€)

Thus

6'
p k [04(5)]

and

Eoé=&'+k[0'-f(€)] (1.11)

The relation f(€f) was chosen to represent approximately

a hardened aluminum alloy, and one result of the solution

is that small plastic strains propagate at a velocity greater

than that predicted by the strain-rate-independent theory,

whereas larger strains are progressively retarded.

The special case C76 = constant had previously been

treated numerically by Sokolovsky.1‘2'll

Most experimental work has shown the formation of a

plateau of uniform strain at the impact end of rods subjected

to constant velocity loadings, as predicted by the strain-

rate-independent theory. The numerical solution of Malvern

for a strain-rate-dependent theory, which was carried out

on desk calculators, did not indicate the formation of any

such region of uniform strain in the first 100 microseconds

of the impact.
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Experiments by Bell‘ on steel bars and Sternglass

and Stuart14 with copper strips involved the propagation of

incremental impact loads superimposed upon static loads in

excess of the elastic limit. The wave fronts were found to

propagate at the elastic wave velocity and not at the lower

speed predicted by von Karman theory.

15
Alter and Curtis subjected lead bars to impact loading

16 with a stepped increase inusing a Hopkinson Pressure Bar

diameter. Due to reflections within the bar, the result was

a plastic preloading to the lead followed by a second impact.

The wave front of the second disturbance was found to propa-

gate at the elastic wave velocity. More recent studies by

Bell and Stein17 of incremental loading waves in dynamically

pre-stressed aluminum, using a similar set-up in which the

increment exceeded the original elastic limit of the material,

indicated that only the initial portion of the subsequent

pulse travelled at the elastic wave speed. The remainder of

the pulse appeared to propagate at the plastic wave speeds

expected from rate-independent theory. All these results

appeared to contradict the rate-of—strain independent theory.

However, other studies of wave propagation in lead by Bodner

and Kolsky18 suggest that lead should be treated as a visco-

elastic material for small amplitude plastic waves.

Attempts to establish a physical basis of plastic wave

propagation in crystalline solids based on the laws governing

the generation and motion of dislocations have been made by
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Campbell, Dorn, Hauser, Simmons, et a1, 9 2 They have shown

that Equation (1.9) is a good approximation for the material

constitutive equation. The experiments conducted by this

group using a Hopkinson split pressure bar device showed that

g(0’,€) was independent of stress and strain histories, but

not a simple function of CTFf(ET). In discussion of these

theories, Dorn has said that they suggest a greater strain

rate effect in pre-strained aluminum than in annealed alumi-

num, and this agrees with their experimental observations.23’24

25m27 has
Using a diffraction grating technique, Bell

made studies of constant velocity impact on annealed aluminum

bars and found agreement with the strainurate-independent

theory on the basis of a "dynamic" rather than the static

28 made studies ofstress-strain curve° Kolsky and Douch

short bars of pure copper, pure aluminum and aluminum alloy.

They found no appreciable strain rate dependence for the alum

minum alloy. For the copper and pure aluminum their measure~

ments indicated a rate-of-strain dependence, but a rate—inde~

pendent theory gave reasonable agreement if a single dynamic

stress-strain relation appropriate to the actual range of

rates of straining in the test was used. The copper at low

strain rates did, however, exhibit a strain rate effect of

the nature predicted by Malvern.

Lindholm,29 in a series of tests in which short (length

to diameter ratios from 0.2 to 2.0) specimens of high purity

aluminum were subjected to strain cycling at widely variant
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strain rates, has shown that the prior strain rate history

of the specimen has a significant effect on plastic flow be-

havior when reloading is at a high strain rate. Dynamically

reloaded specimens indicated an annealing recovery effect

with a characteristic time on the order of seconds. These

findings do not agree with the concept of a single dynamic

stress-strain relation.

A strain-rate-dependent theory would result in the

higher increments of strain in a pulse being propagated at

slower speeds than predicted by the rate-independent theory

based on the static curve. Such apparent slowing has been

observed?0 but it is the contention of some researchers

that the apparent decrease in wave propagation speed for

large strains is due to the failure of the measuring devices

to faithfully follow the deformation.

Strain gages of both the wire and foil type have been

used to successfully monitor "static" strains into the plastic

range, but controversy still exists as to their ability to

respond accurately to large strains at high strain rates.

It has been suggested by Bell31 that the strain rate depen-

dence indicated from earlier wave propagation experiments

was due to a lag in the gage response. When compared to

measurements made with his diffraction grating technique,

he found that wire resistance strain gages gave errors which

were related to the maximum slope of strain-time curve.

Tests at a strain rate of 1000 in/in/sec and a maximum
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amplitude of 2.5% indicated errors of 26% at a point onem

half inch away from the impact end of a one-inch diameter

specimen. At a distance equal to 3% diameters from the

impact end (with a much lower strain rate) the error was on

the order of 10%.

The problem at hand is to determine the three dependent

variables (stress, strain, velocity) in terms of the two

independent variables x and t. With the exception of the

techniques of dynamic photoelasticity with birefringent

materials or use of the Hopkinson Pressure Bar, we are re»

stricted experimentally to techniques for measuring strain

or particle velocity. The higher the strain rate and strain

magnitude, the higher the required frequency response of the

transducer.

For further background information concerning dynamic

stress-strain relations and anelastic stress waves, the

reader is referred to references 32 through 35 as listed in

the Bibliography.
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CHAPTER II

FUNDAMENTALS

2.1 Strain-Rate-Independent Theory

The rate-independent theory of von Karman was derived

for a long, thin unstretched wire subjected to an impulsive

tension load at one end. The analogous treatment for an

impulsive compressive load, also using Lagrangian co-ordin-

ates, is described below. The governing equations for one-

dimensional longitudinal stress wave propagation in a bar

are obtained by assuming that plane sections remain plane

and that the stress is uniform across them. Lateral inertia

effects are assumed negligible. These assumptions make the

one-dimensional theory incorrect in the immediate vicinity

at a suddenly impacted end of the bar, since, as Bell27

has shown, a three-dimensional wave pattern exists there.

For this reason, in comparing experiments with one-dimen-

sional theory, we will take input data from the first gage

station three inches from the end.

Lagrangian Co-ordinates will be used. Let u(x,t) be

the displacement at time t of the cross section initially at

a distance x. Loading occurs at the section x = 0. Then

€= % (2.1)

v = -%¥ (2.2)
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where he is the strain and v is the particle velocity at the

section under consideration. Compressive stress and strain

are reckoned positive, while displacement and particle veloa

city are considered positive when they are to the left

(negative x-direction). In the cases treated in Chapter IV,

the compressive wave moving to the right produces negative

displacement and velocity.

Differentiating the first equation with respect to time

and the second with respect to x, we obtain the equation of

continuity

b6 av

bt -. bx (2°3)

The equation of motion for an element of the bar gives

If strain is assumed to be a single valued function of

stress, we can rewrite (2.4) as

Ozu = fl bzu
. (2.5)

at2 de 3x2

which we recognize as the one dimensional wave equation for
 

waves propagating with the velocity c =‘\[—3%: p . One

obvious solution is

u = vlt + 61x . (2.6)

which corresponds to a constant velocity impact at x s 0

on a semi-infinite bar and from Equation (2.1) represents a
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constant strain 61.

d C7

(1 €

nitude 61 will propagate at a speed. c1 given by

 Letting S = we see that a compression wave of mag-

2
2 x S

c = =1— (2.7)

1 t2

where S is evaluated at E = 61.

Thus, the complete solution requires the consideration

of three regions for the case of constant velocity impact

at x = 0.

(a) 0<x<c1t where €=€1

(b) c t<x<cot where the relation 9%- =‘\/B— holds
1

and co is the elastic wave propagation velocity

(c) x) cot where E = 0

In the field of the solution [region (b) above] , C7'and

6 are positive, decreasing toward the right, while u and v

are negative, increasing toward the right (i.e. decreasing

in magnitude), and v is decreasing with time at any one

point (increasing in magnitude).

Unless the constant velocity imposed at x = 0 has a

finite rise time from v = 0, we have a discontinuity in strain

at x = cot. Here, S = E0 (Yourg's Modulus) and we have A

2 Bo. . .
co = ZT'Wh1Ch 15 the result in the elastic case.

Fig. (2.1) shows the relation between 6 and B =%

in the three regions.
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242 Strain-Rate-Dependent Theory

In addition to Equations (2.3) and (2,4) a third equa-

tion is provided by the constitutive equation of the material.

We will assume the flow law in the general form given by

Equation (1.9)

so. g—f— = Pr??- ‘+ g(0’,'€) (2.8)

Thus, we now have a system of three quasi-linear first

order differential equations. Although the equations are

linear in the derivatives, the term g(0’,€) may be non-_

linear in G'and € ,

The system is rewritten

-_fi_ = 0 (2.9)

which we see is of the form

i i Summed i l,2,..,,N

Lk [11] = akiux + bkiut = Gk . (2,10)

N Eqs. k l,2,..,,N

where the subscripts x and t denote partial derivatives.

The system will be shown to be hyperbolic and hence

suitable for numerical solution by the method of character-

37’38 We seek a combinationistics.

L2 AkLk = 41:91: Summed k = l,2,..,,N

(2.11)
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such that it represents interior differentiation in only

X

one direction, the direction given by the ratio ‘3? =.¥2_ ,

P

where the subscripts denote differentiation with respect to

the parameter p along the curve being sought. If such a

direction exists, we have

 

dx

Akaki 33

Xkbki 9.1

(113

Thus,

Ak(akidt - bkidx) = o (2.12)

which represents N equations for i = l,2,..,,N.

Returning to Equation (2.11) we multiply by dx to ob-

tain

de as AK aki dxnx1 t Ak'bkid’i 11t1

and then substitute from Equation (2.12) to obtain

i i
de Akakiux dx + Akakiut dt

A kakidui = AkadX

with the final result

Ak(akidu1 - dex) = 0 (2.13)

Equation (2.11) is now multiplied by dt and the pro-

cedure repeated to obtain an additional relation

Akwkidul-det) s o (2.14)
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Equations (2,12), (2,13), (2.14) are N + 2 homogeneous

linear algebraic equations for the N multipliers )Ak, For

these equations to be satisfied by a non-trivial solution,

it is required that all the NxN determinants of the co-

efficients of Ak vanish,

The determinant obtained from Equation (2.12) will de-

fine the characteristic base curves in the base x,t-plane,

while the others furnish the interior differential equations,

holding along the characteristic base curves.

For the system of Equations (2.10) we have

q I. . I 1

      

IO’ 0 o o -1 E00

ui= 6 an: 00-1 bu: 010

v 1 0 ol 0 0-D

_- 4

3(0’,€).

Gk: o

o   

From Equation (2.12)

A1(a11dt-b11dx) + 12(a21dt-b21dx) + A3(a31dt-b31dx) = 0

I O

A1(‘113‘1t‘1’13d’0 t 42(323dt-b23dX) + II 3(a33dt—b33dx) = o
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(dx)}t1 41(0)).2 + (aw/I3 = o (2.15)

C-Eodx)Al + («m/12 + (0M3 = o (2.16)

(0) A1 + (-dt)/I2 + (pdx)/{3 = 0 (2,17)

and we require

dx

-Eodx

O 

0

-dx

-dt

dt

0

l)dx  

= dx(-pdx2 + Eodtz) = 0

Hence, the characteristic curves are

dx

dx

dx

0

+cdt (2.18)

-cdt

- [E

where c = 2; represents the speed of propagation of the

wave front,

Since there are as many distinct families of character-

istics (all of which are real) as the order of the system,

the system is completely hyperbolic, The method of charac-

teristics is therefore applicable for the solution.

Equations (2.13) and (2.14) are

(-gdx)/\1 + (-dv)/\2 +(c10')A3 = o (2.19)

("dJ‘i' Bode ~ gdt)A1 ‘I' (d€)A2 + (-pdV)A3 = O

(2.20)
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The determinant formed by Equations (2.19), (2.16)

and (2,17) is

-gdx -dv dCr

2 ._
-Eodx -dx 0 = dx(EodC7dt + pgdx - EOKDdxdv) _ o

  
0 -dt pdx

We now examine the conditions required for the bracketed

term to vanish along the characteristic curves. Along

dx = cdt we have

2
Bodo’dt + pgczdt - Eopcdtdv = 0

or

d0' - p cdv = -gdt

since

>_ 2
Eo -,£)c

Along dx = -cdt we similarly obtain

dCT'+l)cdv = ~gdt

Finally, we consider the determinant formed by Equa-

tions (2.15), (2.20) and (2.17)

  

dx 0 dt

-d0’+Bod€ -gdt- ..d€ -p dv- = dx(pd €dxspdvdt)

0 -dt pdx +dt2(d0’-Eod€+gdt) = 0

Thus, along dx = 0, we have

dG’ - Eod€ = -gdt
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The differential equations defining the characteristics

and the interior differential equations holding along them

are summarized below,

Characteristic Interior Diff, Equation

Diff, Equation Along the Characteristic

dx = cdt d0’ -‘ pcdv = -g(0’,€)dt (2.21)

dx = -cdt dO’ + pedv = -g(0’,€)dt (2.22)

dx = 0 do' - Bode = -g(0',€)dt (2.23)

The form of g(0‘, 6) will not in general permit an ex-

plicit integration of the interior differential equations.

However, the system can be treated by numerical integration

procedures. For this purpose, the following transformations

to non-dimensional variables is introduced.

3:30...

0

13:6

Vzi

co

T = kt

Xzix

co

_ 1
G - TEE-g 8(0'.€)

/E

where co = 2;. is the elastic wave propagation speed and

o -1 o u

k has units of sec and a magnitude chosen for convenience
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depending on the form of g(CT,€').

The characteristic curves and interior differential equa-

tions are now given by

dS - dV = -GdT along the curve dX = dT (2,25)

dS + dV = -GdT " " " dX = -dT (2.26)

dS - dE = -GdT " ” " dX = 0 (2.27)

From Fig. (2.2) we see that there are three characteris-

tics passing through each point in the X,T-plane. Thus, the

solution at any point P can be obtained if we have knowledge

of the dependent variables at points A, B and C by solving

three difference equations along the appropriate characteris-

tics.

The conditions across the leading edge of an elastic

shock wave traveling in the positive direction, represented

by the line x = cot in the x,t-plane are

A 0’ = -~p coAv (2.28)

A v = - COAE (2.29)

A 0": pcOZAG‘ = EOA€ (2.30)

where A7, A6 and Av are the jumps in stress, strain

and velocity as the wave passes. The first condition results

from equating impulse to change of momentum for the traversing

of an element of the bar by the shock wave, The second re-

sults from continuity of the displacement across the shock,

and the third follows from the first two and co =1/E9- .
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Thus, in a semi-infinite bar with an undisturbed region pre»

ceding the shock, we obtain 0': pc02€ = -pcov on x = cot

just after the shock passes, and the interior differential

equation along the characteristic can be integrated to obtain

(see Malvernll)

do...

   6', (2.31)

along x = cot where C70 =~[Dcovo is the stress at x = 0,

t = 0.

If there is no shock wave, but rather a gradual transi-

tion from an elastic to a plastic stress wave, we have

0' = 0’}, = ,Ocozé' = -pcov

all along the curve x = co(t-ty) where t = ty is the time

that the loading at the boundary x = 0 reaches the yield

stress Cry.

For the case of point P along x = 0, we assume at least

one of the dependent variables to be prescribed and hence

the equations along X = 0 and dx = -dT will be sufficient

for solution,

In writing the finite difference equations, we must

use the average value of G along the element of the appro-

priate characteristic curve.
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2.3 Numerical Procedure
 

Rewriting Equations (2.25), (2.26) and (2.27) as dif-

ference equations along the appropriate characteristics as

shown in Fig. (2.3) we obtain

I
I I

D o
-
a

a
)

.
0

I I

H

C
)

'
0

N
‘
l
'
N
-
l
-

G
)

0

(SP "' Sa) " (VP - Va)

(Sp "' Sc) + (Vp - Vc) - (2.32)

-(SD - sb) + (up - Eb) = Aucp + Gb)

These equations are solvable by iteration techniques

in the form

(3,,1 - s.) - (v,i - v.) = -%AT(Gpi'1 + Ga) (2.33)

(Spi - 3,) + (vpi - vc) = -%AT(Gpi'1 + cc) (2.34)

-(spi - sb) + (Epi - Eb) = [jrccpi‘l + ab) (2.35)

We begin with an initial guess for the value of Gp

i i i . i _ i i i
and solve for SD , Ep , Vp after which Gp - Gp (Sp ,Ep )

may be evaluated,

i+l

p 9

the iteration continued until the new values of Sp, Ep, and

Vp differ by less than some pre-determined amount from the

The process is then repeated to obtain S etc, and

values in the preceding iteration, Three types of “typical

points" must be considered for a wave propagating in a semi-

infinite bar, or before reflections occur in a finite bar:

(a) general interior point, (b) impacted end (x = 0) and
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(c) plastic wave front.

(a) General Interior Point

The equations for a general interior point are

1 s, - va - %AT(Ga + Gpl'l)U
)

H
o

I

< H

U
)

’
U

H

+ <
:

'
U

hi - sC 4. vC - t-Arcec + Gpi‘l) <2-36>

‘S i + E i 2 ”Sb + Eb + [XT(Gb + Gpi-l)

the solution of which is

s1 %(D +D
; 1-1

a C) - .ATcp
p

Epi = in)a + DC) + Db + %Z)TGpi”1 (2.37)

i _ 1vp - sC + vC - 2A‘TGC

where

._ .1.pa — sa - va - ZZXTGa

Db = -sb + Eb-+ [Ircb (2.38)

_ .2».
DC - sC + vc - ZZXTGC

(b) Impact End Point

Since we are not involved with any reflections from

the striker bar, we need only consider propagations along

dX = 0 and dX = -dT at the boundary X = 0. Thus, we will

have only two equations available. We consider individually

the solution for three possible boundary conditions.



 

pa:

In

(11

thl

The

The

The (

Solutj



29

These boundary conditions are described here for the im~

pact end of the bar, according to the one-dimensional theory.

In the solution presented in Art, 4,5(b), we will use the velo~

city boundary condition applied at the first gage station

three inches from the impact end.

(i) Velocity Boundary Condition: V(0,T) = Vo(t)

The equations for this point are

i i .. 1-1
s +v _Dc-tAer
p p

-spi + Epi = D1) + Arcpi‘l (2.39)

vp = v0

The solution here is

i _, 1-1
sp - (I)C - v0) - é-ATGP

i _ __ 1-1
up - (D0 + Db v0) + tA’er (2.40)

vp = vo

(ii) Stress Boundary Condition: S(O,T) = So(t)

The equations for this boundary condition are

S + v i = D _ 11"].

p . me.p

-sp + Epl = D1) + Arcpi‘”1 (2.41)

sp = so

solution of which yields



3O

sp = 50

Epl = Db + 30 + Amp“1 (2.42)

i i-l
vp = Dc - sO - %ATGP

(iii) Strain Boundary Condition: E(0,T) = E1(t)

This final boundary condition enables us to obtain the solu-

tion S(O,T) for all T by solving Equation (2.27) which is

now an ordinary differential equation for S in the indepen-

dent variable T, For the complete solution, we write the

equations

Spi + Vpi = Dc .. %ATGpi'1

-5p1 + up = ob + [tropi'l (2.43)

Ep = El

whose solution is

sp1 = (-1)b + E1) - [)TGpi'l

Ep = E1 (2.44)

Vpi = (Db + I)C - E1) + g—A'rcpi'l

(c) Plastic Wave Front

For an impact loading with a finite rise time, the

conditions at the leading edge have already been described

and transformed to
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along

where ty is the time at which C7'= Cry at x = 0,

A shock wave propagating along X = T is treated by

transforming Equations (2.28), (2.29) and (2.30) to obtain

[35 = -[Xv , (2.45)

[5v = -[§E (2.46)

As = AB (2.47)

Rewriting Equation (2,25)

_dT = dS - dV 2ds

G = G

bt 'W8 0 am S d

_1 = 5

2T 6(3737 (2°48)
S(o.o)

along X = T which is the transformation of Equation (2.31),

2.4 The Iteration Scheme

A system of equations

f (x x ,,,., x ) 0 k = l 2 ,..,m
{ k 1' 2 n } ' ' (2.49)

is called normal if m = n. If the system is reduced to the

form

‘(xj = QDjCXI. x2..... Xn)} j = 1.2.....n (2.50)

we can use the method of iteration to construct a series of

solutions
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by means of the formula

{le‘I’l = ¢j<x11’ le'...'xn1)} i : 1,2,...,r_1 (2.51)

where, under certain conditions, the solution may be made

as accurate as one pleases for sufficiently large r.

The iterative scheme for non-linear equations will al-

ways converge if the following two conditions are satisfied.39

1. Denoting the system solution as

..}.{ .}
{J or.

it is required that ‘{xji} be "close" to the solution with

the degree of proximity determined by the functions {¢j} ,

2. The second condition, which is the only one re-

quired of linear systems, is associated with the Jacobian

matrix of the system

' MIDI .3911 5951 

 

 

OX1 3X2 an

M132

J{Xj} = 9x1 . : (2.52)

0 o

b¢n o 3" a‘ _.' . ‘1 . 0‘. a¢n

EIXI I b):

L -.
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For a linear system the elements %§za~ of the matrix are

x O

J

constants, whereas for non-linear equations they will, in

general, be functions of x1, x2,,,,, xn,

A necessary and sufficient condition (if the first con-

dition is satisfied) for iterative convergence is that all

the eigenvalues of the matrix J evaluated at {xi} = {(Xj}

have moduli less than unity. This is a difficult condition

to check. It can only be hoped that if the moduli of the

eigenvalues of J {xjg} are less than unity, the eigenvalues

of J {0(j} will be likewise for {xjo} sufficiently close

to {ozj} .

An alternative, less difficult, sufficient (but not

necessary) condition for convergence of the iteration process

is that the sum of the elements of every column or every row

of the Jacobian matrix J( a1, “2“... an) be less than

unity. Thus, at least one of the following two systems of

inequalities must be satisfied.

  
Z bx <1 (2.53)

5= 1 J

or

b - '

: l-Sigil < 1 (2.54)

i = 1 J

for
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A second iterative scheme known as Seidel's method

carries out the calculations according to

X11+1 = ¢1CX11o X21: . - . » an)

- - i iX21+l =¢2(X11+1, x2 ’ . . . , Xn )

(2.55)

xn1+1 = qanX11+1, X21+1, . . . ' Xn-11+1a an)

using in each line those values of xj1+1 which are available.

The conditions of convergence for Seidel's method are

different from the previous iteration method, and hence,

one scheme may converge while the other diverges for the

same set of initial estimates. It is however known that

when any of the inequalities of Equation (2.53) are satis»

fied, the speed of convergence in Seidel's method is more

rapid than for conventional iteration.39

In the numerical solution Seidel's method was utilized

and the grid mesh size was determined by the choice of (ST.

As ZXT appears in the terms 52x3 it was chosen so that at

least one of the two sets of inequalities (2.53) and (2.54)

were satisfied. For any given flow law the required incre-

ment Z)T will decrease with increasing strain rate.

An additional aid to improving convergence was to in-

corporate a technique knowm as "Aitken'sfs2 - process."
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This permits an improvement in the solution after five itera-

tions better than that which would be obtained by the usual

next iteration, The method is particularly suited where

convergence is oscillatory or like that of a geometrical

progression, which appeared to be the case for the problem

under consideration,

The equations were programmed in Fortran for the CDC-3600

computer at the Michigan State University Computer Center.

The program is described in the Appendix,



CHAPTER III

THE EXPERIMENT

3.1 General Description
 

An adaption of a commercial Hyge shock tester was used

to apply a compressive impact load having a duration of

approximately 560 microseconds to aluminum bars of half-

inch diameter. Two independent series of tests were con-

ducted. In the first series, transient surface particle

velocity records were obtained at four stations along the

plastically deforming specimen by means of electromagnetic

transducers. In the second series, etchednfoil strain

gages were used to monitor surface strains at the four sta»

tions.

Ideally, the strain and velocity measurements should

have been conducted simultaneously on each specimen. This

was impossible since the magnetic field would have induced

an error signal in the foil gages as they translated during

the passage of the wave,

The basic system is shown schematically in Fig. (3,1).

Both the transmitter and striker are made of 9/16 inch dia-

meter steel drill rod. The Hyge shock tester is capable of

accelerating its piston and a five pound mass to a maximum

velocity of 1200 in/sec in a distance of about 12 inches.

At this point the piston is decelerated to zero in an addiu

tional four inches, while the striker is free to travel in

36
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its Omring guides. When the striker makes contact with the

transmitter bar AB, a compression wave is propagated outward

from A to both the right and left. Since the striker is

shorter in length than the transmitter, the bars remain in

contact until the wave reflected from the left end of the

striker returns to the interface, A wave normally incident

to a free surface is reflected with a change in sign and hence

the outgoing compression wave returns to the interface as a

tension wave, Tension waves cannot be passed across the

interface and hence the striker moves to the left with respect

to the transmitter after the reflected tension wave arrives.

The length of the compression wave transmitted is therefore

twice the length of the striker bar.

We now turn our attention to the transmitter bar. When

the wave front arrives at B, the acoustic and geometric mis-

match will cause part of the pulse to be reflected and part

to be transmitted as a compression wave into the specimen,

‘The transmitter and specimen remain in contact until the

tension wave reflected from the nearest free surface, C,

returns to B, The specimen then begins moving to the right

and is caught in the cotton filled tube, Sufficient energy

is still trapped in the transmitter to cause it to also trans-

late to the right, but the bumper, which is formed of a

wrapping of plastic electrical insulating tape, prevents it

from making a second contact with the specimen,

Friction in the O-ring guides and the spring action of
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the cotton decelerator bring the specimen to rest without

introducing additional plastic strains.

3,2 Specimens
 

~ The specimens were all prepared from extruded Alcoa

1100 P aluminum (28 aluminum) bars with a nominal diameter

of 0.5005 inches. Each bar was on the order of 58 inches

long and had both faces turned to provide a flat surface

perpendicular to the longitudinal axis. A one-inch piece

was cut from each end of the bar before facing and this in

turn was turned to a length of 1.000 2 .005 inches and also

faced, Both bars and short specimens were then annealed at

650° F for one hour and furnace cooled,

Employing a chemical balance, several of the inch long

pieces were weighed, first in air and then in water. The

density of the aluminum was thereby found to be

p = 2.531(10"4 lb sec/in4.

Static stress-strain curves were obtained, after anneal-

ing, from seven of the one-inch specimens. Four of them came

from opposite ends of two specimens to serve as a check on

the uniformity of material properties along each specimen as

well as between specimens,

3.3 Velocity Transducer

It is well known that a current will flow in a conductor
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moved through a magnetic field (for example, see reference 40).

The relation between the voltage generated and the magnetic

field is

e=—f/§--v—xd-I. (3.1)

where [3 is the magnetic field vector,‘f'is the vector

representation of length measured along the conductor and'V

is the velocity of the conductor with respect to the field,

Figs. (3,2) and (3,3) show a permanent horseshoe magnet

in position about a bar so that the magnetic field is per-

pendicular to the longitudinal axis of the bar. Two Nyclad-

covered strands of #30 copper wire are attached to the bar

as indicated so that when the cross-section at which they

are located has a velocity imparted to it by the passing stress

wave, a current will flow in each. This method has previously

been used by Ripperger and Yeakley41 to detect particle

velocities in aluminum bars subjected to short elastic pulses.

Earlier efforts at developing a similar magnetic-inductive

transducer were reported by Ramberg and Irwin,42

If the field is constant over the entire cross section,

the effectivelength of the conductor is the diameter of the

bar, Thus,}9 ,

tudinal waves and Equation (3.1) reduces to the scalar

L, and'v'are mutually perpendicular for longi-

product

e=flLv

where e is the potential difference between points B and E
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FIG (3.2) SCHEMATIC OF THE VELOCITY TRANSDUCER
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FIG (3.3) WIRE ARRANGEMENT AT GAGE SECTION
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in each wire for L = 2R. Thus, the induced voltage is direct-

ly proportional to the particle velocity,

Points A, C, D and P are rigidly fixed and hence, the

four sections AB, DC, DE and BF can only rotate when the

cross section translates. With these sections moving in

horizontal planes, we find Eat-I: perpendicular to Vand hence

their dot product vanishes and no contribution is made to

the voltage generated in each loop, The sections AP and CD

are rigidly cemented to a non-magnetic jig and hence do not

move. Above points A and C the leads are twisted together

so that any vibrations or motions will cause no additional

signal to be generated, Two semi-circular loops of wire

are used to eliminate any possible effects of bending in the

bar.

The leads are connected as indicated in Figs. (3,2) and

(3,3) to the input of a Tektronix D-Unit differential pre-

amplifier, thus giving a two-fold increase in signal to

e = gfgdv (3.2)

where d is the diameter of the semi-circular loop of wire.

Pour such measuring stations were set up using two

sets of magnets from military-surplus magnetron tubes.

Fig, (3.4) shows the gage arrangements and Figs. (3,5) and

(3.6) are views Of the physical set up.

3,4 Surface-Strain Transducer

Annealed constantan etched-foil resistance strain gages
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manufactured by Micro—Measurement, Inc, were selected for

the dynamic tests, Type EP403-125CA-120 gages having a length

of 0,125 inch and width of 0,182 inch were chosen, Series

EP gages are rated as accurate to 7% strain under static

loading conditions, Dynamic strains on the order of 2-3%

were anticipated,

The gages were mounted in pairs, diametrically opposed

to cancel any effects due to bending, at four stations which

corresponded to the spacing used in the velocity transducer

tests, The gages at each station were connected in series

and then installed as one arm of a Wheatstone bridge,

Fig, (3,7) is a schematic of the strain gage bridge set up,

3,5 Static Test Procedure
 

The one-inch samples were subjected to compressive load-

ing in an Instron testing machine, Recording accuracy of the

Instron load measuring system was calibrated at better than

1% in the range of interest, Strain was measured to 5%

using etched-foil strain gages mounted on the specimens,

Three combinations of gages and cements were used as an added

check, Load was applied at a strain rate on the order of

4 x 10"5 in/in/sec, Two tests were carried out with continu-

ous loading while two others involved alternate loading and

unloading as an aid in the determination of the apparent

Young's modulus of the material,



49

 

   

ACTIVE

GAGES‘

PASSIVE

RESISTANCE

TO

’DETECTOR ‘E

TE MPERATUR PASSIVE .

COMPENSATOR RESISTANCE

V

STORAGE

BATTERIES

 
 

'l
ll

'l
'l

ll
Il

-w
lu

ll
l'

l'
l'

H

 
 

FIG (3.7) SCHEMATIC 0F STRAIN GAGE BRIDGE
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The test combinations are tabulated below,

 

 

    

Parent Micromeasurement

Test Specimen Gage Type Bonding Cement Loading

1 ll EP-03-l25AD-120 Eastman 910 continuous

2 11 EA-13-125AD-120 W,T, Bean RTC alternate

3 13 EP-03-125AD-120 '" n " continuous

4 l3 EA-l3-125AD-120 " " " alternate

5 5 A EA-13-125AD-120 Eastman 910 continuous

6 7 EA-13-125AD-120 " " "

7 8 EA-l3-125AD-120 " " I "  
 

Strain was read with a Baldwin Type-N static strain

indicator, This instrument has a range of t 3%, In order to

use the N unit over a range from zero to minus five percent

strain, the device illustrated in Figs, (3,8) and (3,9) was

used,

The linearly tapered cantilever beam within the channel

is made of beryllium copper which, after machining, was heat

treated to a Rockwell hardness of C-43, This indicated a

proportional limit on the order of 75,000 psi and a yield

strength of well over 100,000 psi, Ultimate strength is

about 175,000 psi, Young's modulus is 15 x 106 pSi,

Due to the taper, the maximum bending stress in the

beam, when loaded by the screw, occurs at a point two inches

to the right of the support, With the beam loaded as shown
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'FIG (3.9) RANGE EXTENDER-LOADED
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in Fig, (3,9), foil gages were mounted to both the upper

and lower surfaces of the beam at the critical cross section,

After appropriate curing of the bonding agent, the load was

removed and the gages successively coated with Gagekote 1,

2 and 5* to provide electrical moisture and mechanical

protection respectively, The beam was then rotated 180

degrees about its longitudinal axis, replaced in the fixture,

and reloaded,

The type N unit indicated a total of about 21,000 micro-

strain for the sum of the magnitudes of strains on the two

surfaces. Stability was excellent, Switching to four ex—

ternal arm operation, the fixture gages were used for one-

half of the bridge, The one-inch sample specimen with its

two 120 ohm diametrically opposed gages connected in series

and an appropriate temperature compensator completed the

circuit as illustrated in Fig, (3,10),

With no load on the Instron, the fixture was adjusted

to permit the N unit to be balanced at a reading of +32,000

micrOstrain, As the Instron loaded the specimen, the con-

.tinuous load curve traced by the machine was marked at pre—

-detérmined increments of strain and a load-versus-strain

record obtained until the N-unit indicated a reading of

-l8,000 microstrain, A stress-strain curve to 5% strain

was thereby obtained,

 

*Supplied by w. T, Bean, Detroit, Michigan
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(a) Instron, specimen, temperature compensator,

range extender and N-Unit

  

  

  

120 .n. 240 n.

ACTIVE

GAGES LOWER CANTILEVER

120 [1 SURFACE

240 .0. 240 .n.

TEMPERATURE UPPER CANTILEVER

COMPENSATOR SURFACE

(b) Strain Gage Bridge Elements

Fig. (3.10) Details of the Static Stress-Strain

Test Set Up
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In order to check the linearity of the Nuunit when

using the cantilever fixture, the active gage was replaced

by a second temperature compensator loaded elastically in

bending, A balanced reading of +3l,360 microstrain, i,e,,

a strain of 640 microstrain, was attained, The copper

cantilever was then removed and the N-unit converted to two

arm operation, balanced, and the reading recorded, The

load was removed from the active gage and the N-unit balanced

again, The change was found to be 640 microstrain which

agreed with the previously obtained result, Changes in con—

tact resistance were found to be negligible,

3,6 Velocity Transducer Calibration

Two pairs of magnetron magnets were rigidly mounted within

magnesium spacers to an aluminum plate, Fig. (3.11) shows

the general set up, The magnets were locked in place with

the pole pieces aligned along parallel planes one inch apart,

The field mapping was done at the M,S,U° Cyclotron

Laboratory, The system made use of a Rawson rotating-coil

flux meter which was mounted on the crOSSmfeed of a servo-

controlled milling-machine carriage, A volume with a grid

spacing of 0,1" was mapped within each pole gap,

The output of the flux meter is proportional to the

magnetic field intensity, This signal was passed through

a voltageuto-frequency converter and the frequency was then

counted, As a count was finished, a coupler (built by the
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Cyclotron Lab) read the digital output of the frequency

counter and the digits were then punched out by an: IBM

card punch,

Calibration of the system was performed by checking

frequency counts against a bridge which can be used directly

with the flux meter and a null galvonometer to Obtain the

flux density to the nearest gauss for the fields being

mapped, The arrangement is described in Fig. (3,12),

The centers of the magnetic fields are shown in Pig.

(3,13), If the wired cross sections on the specimen are

located 0,1 inch forward of this point, a translation of

0.2 inch would result in a variation in the magnetic field

through which the wire passes of less than 1%.

However, the field was not uniform across any section.

Hence, the loop Of wire was approximated by a circumscribed

dodecagon and we have

12 — — _.

eo = Z 931 X Aw 'v (3.3).___1
1

where £3: is taken as the value of [B at the midpoint of

[XLi. Referring to Fig. (3.14) we have

e, = 1-2- [<32 +36 +38 wows (3 4)

+(B3 +35 + 9 +Bll)cos 30° +34 +310“:-

The appropriate units are eO in volts, [3 in webers/meter2

(l weber/m2 = 104 gauSS), [XL (hence d) in meters.
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Equation (3.4) can be solved for v in the form

v = keo (3.5)

The following table gives the constants obtained for

the four gage stations.

 

 

 

 

 

x (m/Eec/' Max. Variation [gayerage

Station, ,(in) volt)»r‘ in 0.2 inch (gauss)

+1 3.000 118.6 eO.2 = -O.2% 3350

2 ' £56,250 131.0 -0.6 = -O.5% 3250

3 9.S75 6138.8 -o.4 = -0.3% 2850

4 12.725 . 120.8 -o.4 = -o,4% 3275'       
Slight errors in either vertical or lateral placement

of the wires would also result in variations in k on the

order of less than 1%.

3.7'5Velocity-Gage Tests

Circumferential scribe marks were made on the specimens

at the appropriate intervals with the first mark three inches

(Six diameters) from the impact end. The wires were then

bonded to the bar at the scribe marks using Armstrong C-4

epoxy cement with activator D. Curing was at room tempera-

ture for at least 36 hours. Heat from an incandescent lamp
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was used to aid curing during the first 12 hours. .An alu-

minum jig served to maintain proper alignment during both

cementing and testing. Special spacers which prevented

lateral motion during cementing and moving were removed

just prior to testing. In order to minimize the possibility

of vibrations of the horizontal portions of the lead wires

[see Figs. (3,2) and (3,3)] mass was added at these sections

by applying a liberal coating of vaseline.

It was found that eddy currents were set up within the

specimen in the region between the pole pieces during the

passage of the stress wave, These currents modified the

magnetic field so that when an uninstrumented aluminum bar

was subjected to loading, a signal was detected in a free

hanging loop of wire placed near it. NO such signal was

detected when a non-conducting polyethylene rod was substi-

tuted in place of the aluminum. The wave form generated was

similar to that produced by a conventional magnetic pickup

and is shown in Fig. (3.15). The maximum amplitude of the

spikes was less than one-half millivolt and their presence

was never detected on any of the records from instrumented

specimens. '

A series of tests were run in which particle velocities

in the range 250 to 650 in/sec were obtained. The electronic

circuitry and recording equipment used also monitored the

strain gage tests and will be discussed later.
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3.8 Strain Gage Tests

To increase the output of the strain gage bridge used

in the dynamic tests, the passive half of the bridge con-

sisted of 352-ohm resistors in the form of foil strain gages.

The entire bridge was thus made relatively current insensi-

tive. With two 120-ohm gages in series on the specimen and

a 240-ohm temperature compensator, a 50% increase in output

over a 240-ohm resistor bridge was attained. Two 12-volt

storage batteries in series powered the bridge and kept power

dissipation in the acceptable range for these gages.

The two 352-Ohm gages for each station were mounted

on opposite sides Of l/l6-inch-thick strips of spring steel.

These were mounted as cantilever beams in the fixture illus-

trated in Fig. (3.16). The beam was loaded until the bridge

was nulled (possibly requiring a 1800 rotation of the beam

about its longitudinal axis). A sensitive center-zero gal-

vonometer was used for this purpose.

The Baldwin Type-N static strain indicator was used to

record the residual longitudinal strain by recording before

and after balanced readings at each gage station.

A digital voltmeter was connected across the batteries

to monitor voltage immediately prior to and after each test,

but was not in the circuit during the test itself to prevent

any possible noise in the system from this source.

A series Of four tests were conducted in which the

maximum dynamic strains varied over the range from about
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0.5% to 1.0%. The first two were at the lower value, one

using Eastman 910 and the second W. T. Bean RTC epoxy as

bonding agents. No noticeable difference in response was

noted. Eastman 910 was then used for the tests at higher

strain levels because it simplified the specimen preparation.

All gages were coated to provide electrical insulation and

moisture and mechanical protection as in the static tests.

3.9 Electronics and Recording Equipment
 

Output from both the velocity and strain transducers was

fed to Tektronix D—unit plug-in differential amplifiers in

rack-mounted Tektronix 127 pre-amplifier power supplies.

The frequency response (t3db) of the D-unit is 350kc at

a gain of 100 and increases to 2mc at a gain of 2 when used

with the 127 power supply with the push-pull output cables

terminated in l70-ohms. Using single ended output reduced

the signal gain by half. -For all tests the D-unit was set

at 20 mv/cm, and the single ended output resulted in a gain

of 2%.

The signal from each D=unit was then input to a Tektronix

M-unit in a Tektronix Type 551 oscilloscope. The M-unit is

an electronic switching unit which enables four signals to

be displayed simultaneously on one beam of a scope. When

all four channels are used in the chopped mode, the switching

rate was found to be 960kc. This rate was found to be relia

ably constant and thereby provided a timing mark.
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A Polaroid camera was used to make a permanent record

of each test. After the graticule markings were photographed,

the grid intensity was set to zero and the shutter locked

open in the bulb position with the scope set on single sweep~

external trigger. The trigger was provided by a barium

titanate element clamped to the steel transmitter bar. The

exact position was chosen so as to allow for any delay in the

scope sweep mechanism,

The entire system was calibrated prior to each test

using the internal square wave calibration signal in the

scope. Several photOs of square waves applied to each channel

revealed that "eye error" was less than the rated t3% cali-

bration accuracy of the square wave.



CHAPTER IV

RESULTS

fig; Static Stress-Strain Curves

Five of the one-inch sample specimens tested produced

load-Strain curves which varied by an amount on the order

of the trace width of the Instron continuous pen recorder.

These are shown as a single curve, the lower curve in i i

Fig. (4.1). The two samples from parent specimen no.ll

produced stress-strain curves which agreed with one another,

but appeared to indicate a condition of work hardening when

compared to the curve from the other specimens. This

curve is shown as the upper curve in Fig. (4.1), but was

ignored in the least squares curve fitting in Obtaining

0;, = f( 6 ).

It should be noted that the slope of the upper cUrve

is very nearly equal to that of the lower curve everywhere

except for the region in the neighborhood of E = 0.005.

d0'
Since the slope 3?? will determine the speed of propagation

of any level of strain in strain-rate independent theory,

the speed predicted for most strain levels would still be

about the same for both curves, according to the rate-inde-

pendent theory. From the static tests involving alternate

loading and unloading, Young's Modulus was found to be

E0 = 9,4x106 psi and hence, the specimens had a predicted

elastic wave propagation speed of 1.93x105 in/sec.

66
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A best fit in the form

0’, = mm = A63 (4,1)

was Obtained for the lower stress-strain curve data for

strains up to two percent, as this is the range of the

strains in all the dynamic tests. The resulting power law

relation between stress and strain is

0’0: 39,4006‘0-366 (4.2)

The fitted curve of Equation (4.2) is compared in

Fig. (4.13) to the lower experimental static curve of

Big. (4.1). For strains in the range from yield to about

E = 0.001 in/in, the fitted curve exhibits a steeper slope

than the experimental curve, and therefore, the rate-inde-

pendent theory based on this fitted curve will predict higher

propagation speeds for these levels of strain than would be

predicted with the actual experimental curve.

A second fit was made using only the data between

6’: 0.005 and €’= 0.02. This gave the power law

0'0 = 29,40060'311.

4.2 Velocity Test Results

The translation of the bar during the passage of the stress

pulse resulted in strain in the horizontal elements AB, BC,

DE and,EF of Fig. (3.2) at each gage station. Translation of

two tenths of an inch results in a 10% strain in these
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elements. The change in resistance of the copper wires

for the time interval of interest was small with respect

to the one Megohm input resistance of the Duunit,

Each specimen translated about one foot before being

brought to a rest by the braking action of the cotton filled

tube. The copper wires would invariably shear at the point

where they enter the aluminum support jig, The epoxy bond

appeared to hold up well except for occasional yielding at

the points B or E indicated in Figs, (3,2) and (3,3),

Fig. (4.2) shows three typical oscilloscope trace rem

cords obtained with the velocity transducer. Fig. (4,2a)

illustrates a test in which gage failure occurred after the

sweep was completed. The gain for gage station one in the

test was half of that for the other three channels, and each

station has a different calibration factor due to differences

in magnetic field strength. In Fig, (4,2b) we note slight

disturbances occurring simultaneously at stations one and

two and later at station three, The final trace record,

Fig. (4.2c), illustrates transducer failure occurring first

at the magnet forming stations one and two followed by failure

at stations three and four. Failure occurs with catastrophic

suddenness,and its onset is thus readily detectable,

The initial step, which propagates with no attenuation,

is the leading elastic wave. This is then followed by the

moreslowly rising plastic stress wave. The reduced data

in Fig, (4.3) for specimen No.7 shows that a nearly constant
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level of final velocity is reached, but in general, this

value showed a slight decrease with increasing x. Station 4

did not appear to have reached equilibrium in any of the

tests.

Negligible variation was noted in the speed of wave

propagation for a given level of velocity on any single

specimen. A larger variation was found between specimens.

This scatter did not appear to be associated with the maxi-

mum velocity (and hence, strain rate) of the specimen as is

shown in the table below.

 

 

 

Particle Max. Variation in Wave Prop. Vel. Number

Velocity Of

m/sec Along Spec. Between Spec. Specimens

2 19.6% 18.5% 5*

3 12 % 37.5% o

4 12.5% :5 % 6

5 :1.5% 35.7% o

o 1-2 % :2 % 4

7 32.5% :3 % 4

8 12.5% 34.7% 3      
 

*The reading obtained from one spGCimen, in the region of the

"knee," was discarded. The slope was small and hence, the

errors in reading horizontal distances between traces was

arge.
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No data is presented for particle velocities representa-

tive of the elastic range of the material, since a variation

of i1 microsecond (the approximate limit of trace reada-

bility) in horizontal distance between station records

represents a variation of about 28% in wave propagation speed.

The data for all these tests was averaged and the rela-

tion between c and v thus obtained is shown in Fig. (4.4).

The elastic wave speed appears to be 196,500 in/sec giving

E0 = 9.77): 106 psi for the apparent dynamic Young's Modulus.

This is approximately four percent greater than the value,

E0 = 9.4x106 psi, determinedrfrom the static stress-strain

records.

The vertical bars indicate the scatter in the experimen-

tal records. There was virtually no scatter for values of

particle velocity up to about 50 in/sec. .An examination of

Fig. (4.3) shows that between particle velocities Of 50 in/sec

and 100 in/sec,, the velocity versus time records exhibit a

region in which we have an inflection point. This region of

rapidly decreasing, then increasing, slopes increases in

length at successive stations. Determination of wave propa-

gation speeds here, for any level of particle velocity, is

therefore subject to maximum error and this explains the

greater scatter in this region.

This curve was examined in light of the von Karman

theory by taking the derivative of Equation (2.1)
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in the form

D n
} C
>

<
:

‘
0

 = = ..._ 4,4c(€,) .QQE. [SV' ( )

d€

Thus, Fig. (4.5) of g—g—I’versus 6 was obtained, This curve

was integrated with respect to 6' and the resulting dynamic

stress-strain curve is plotted in Fig. (4.6) with the pre-'

viously obtained static stress strain curve.

In Fig. (4.7) the 6 versus v curves are compared for

(1) von Karman theory based on the experimental

static curve

and

(2) von Karman theory applied to work backward from

the observed c versus v. This could be interpreted

as based on von Karman theory using the single

dynamic stress-strain curve of Fig. (4.6).

Comparison of the two shows that disagreement between

them is slight. The single dynamic curve predicts propa»

gation speeds in agreement with the averaged velocity test

data, since it was in fact derived by working backward from

the averaged velocity test data. The deviations of the

measured propagation velocities in the individual tests from

these averaged values did not appear to have any systematic
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relation to the strain rate levels, as was shown in the

tabulated comparisons at the beginning of this section,

fi,§ Surface Strain Results

Records from the four strain gage tests are shown in

Fig. (4.8). We note the initial elastic wave followed by

the more slowly rising plastic portion of the pulse. The

final negative step in two of the trace records indicates the

arrival of the unloading wave front. The records end before

the reflection from the far end has yet reached station 4,

At no gage station in any test did the strain appear to reach

equilibrium. This condition is readily noticeable at station 4,

The residual strains in specimens 9 and 10, for which

static measurements were made with the N-unit immediately

prior to and after the dynamic tests, are tabulated on page 81

and compared with the final level of the transient record

photo.

Post-test micrometer measurements of bar diameter

indicated a plateau of residual strain extending from x = 0

to beyond the fourth gage station in all tests. The slight

slope of the plateau indicated by the strain gage readings

from specimens nOS.9 and 10 was too small to be detected by

this means. The bar then tapered until a point was reached

which had no detectable residual strain. The lengths of

the total region of residual strain and of the plateau were

related to the magnitude of the impact loading.
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RESIDUAL MICROSTRAIN

AT STATION

Specimen

1 2 3 4

N-Unit 7110 6995 6830 ’ 6520

9

Photo 7170 -7080 6940 f 6760

‘ N-Unit 8965 8725 8560 8245

10 C

Photo 8950 8780 8710 8490        
 

fi,fl_ Discussion of Test Results

One feature of the test records on which some attention

should be focused is the "knee" in the curve marking the

transition from elastic to plastic wave propagation. A11

strain levels in the elastic range propagate at a single

speed. Such a "knee" is not indicated in any of the results

reported by Be1126'27 using his diffraction grating technique

on annealed aluminum bars. A comparison of my static stress-

strain curve with that of Be1127'43 for "dead-annealed"

aluminum shows that his was relatively softer, and had a

much lower yield point.
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Wave propagation speeds for various levels of strain

as found from the velocity and surface strain tests are

compared to those predicted by the rate-independent theory

from the static stress-strain relation in Fig. (4.9). The

curve for the velocity tests is obtained from Fig. (4.5)

and the relation c =1/%g: p . This is equivalent to

using the single dynamic curve of Fig. (4.6), and shows

that the single dynamic curve predicts that strains below

about €'= 0.0055 have higher propagation speeds than pre-

dicted with the static curve, while strains above 6': 0.0055

have lower propagation speeds.

It is readily seen that the foil gages indicated markedly

lower propagation speeds than the velocity transducer at all

levels of plastic strain. It should, however, be noted that

the rise time of the strain pulse was fairly constant for

all tests, and hence, the maximum strain and the straih rate

at any gage section varied proportionately. The average e

strain rates for the four foil gage tests are approximately

in the ratio 3.5:4:6:9. The apparent lag in the strain record

at any propagation speed for a constant rise time pulse ap-

pears to be inversely related to the strain rate. This does

not appear to agree with Bell's observations31 (see Art. 1.2)

that the lag in resistance strain gage records is propor-

tional to strain rate. Again noting that rise times of the

strain pulse in all tests are fairly constant and that records

of residual strain from the trace records and static N-Unit
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measurements Show Close agreement, we see that the gages

seem to have a time constant which causes them to lag be-

hind in response.

4,5 Numerical Results

(a) Linear Overstress Rate Dependence Theory

It has been noted in Section 1.2 that the numerical

solution Obtained by Malvern10 for a hardened aluminum alloy

subjected to constant velocity impact did not indicate the

formation of a constant strain plateau in the neighborhood

of x = 0. The material constants used were

0:, = {(6) = 20,000 - 39-

E0 = 107 psi

0', = .104 psi

2.5 x 10'"4 1b secZ/in4,o

The constitutive equation then becomes

Eoé=0.'+k(0'-20,000+11é9.)

The assumed value of the constant k was

6 -1

seck = 10

which gives an increase in stress over the static value of

approximately ten per cent for a strain rate of 200 in/in/sec.

The boundary condition imposed at x = 0 was

v(0,t) = v0 = -600 ips
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The strain distribution in the bar at t = 102.4 ’1 sec

is shown in Fig. (4.10). Attempts to carry out the solution

further into the x,t-plane using the CDC-3600 computer re-

sulted in an oscillatory behavior of the solution in the

neighborhood of x = 0. This may have been due to an accumu-

lation of errors in the finite difference method used,

As an alternative to this solution, the constant stress

boundary condition was investigated with the aid of the

CDC-3600 computer. The boundary condition Cr(0,t) = 18,650 psi

(which is the asympotically approached value of stress at

x = 0 according to von Karman theory for v( 0,t) = -600 in/sec)

gave results similar to Malvern in that no plateau seemed

to appear even after 300 [1 sec. However, lowering the impact

stress to 67(0,t) = 17,500 psi and then to Cr(0,t) = 15,000 psi

did produce the sought-for plateau. The results are illus-

trated in Figs. (4.11) and (4.12). The curves for the rate-

independent solution are for von Karman theory based on the

static curve.

It is seen that the velocity at x = 0 very quickly

asymptotically approaches a constant. The value is that

which would be predicted by von Karman rate-independent theory.

The significant feature of the solution is the appearance

of the constant strain plateau. Hence, contrary to what

has long been thought, the Malvern formulation for a rate—of-

,strain dependence does predict the formation of a region of

constant strain near the impact end of the bar for a nearly
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constant velocity imposed at x = 0, if the pulse is long

enough for the material near the impact face to reach equili»

brium, as has been previously pointed out by Mercado.44 By

applying the method of characteristics to a non-linear visco-

elastic model (with a linear plastic strain rate dependencE)

representative of Fort Peck sand, Mercado has demonstrated

that a plateau of residual strain occurs close to x = 0 for

a constant stress boundary condition with appropriate values

of the dynamic constants.

It is noted from Figs. (4.11) and (4.12) that as the

stress (and hence velocity) boundary condition increases in

magnitude, the time required for a plateau to form increases

so that the time required for the boundary condition

(7': 18,500 psi would certainly be considerably greater than

100 microseconds.

As seen in Fig. (4.10), Malvern found a strain at x = 0

greater than that indicated from rate independent theory,

but this may have been due to the error accumulation,

(b) Power Law Rate Theory with Input Data from Velocity

Transducer

(i) Convergence Difficulties
 

The velocity record from station 1, specimen

No.7 [see Fig. (4.3)] obtained from the velocity transducer

was considered as a velocity boundary condition for a bar.

A strain-rate dependence of the form

0'=0’1én
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was assumed, and the constant value of n = 0.017 used was

that obtained by Chiddister45 for strains on the order of

five per cent in the same material at room temperature.

Due to a problem of convergence of the numerical itera-

tive scheme, the static stressestrain curve was assumed to

be valid for 6 = 10'"2 in/in/sec and thus,

0'1 = (70(100)n

where CT; is the static stress-strain relation

0'0 = f(€) = 39,40060‘366. Thus, we finally arrive at

0.: 39,4096 0.366(100é)0.017

for use in the numerical solution.

For the computer solution, yield was chosen at

v = 1.3 m/sec = 51.18 i'n/sec because this point on the velo-

city records had been observed to propagate at the elastic

wave speed. This choice was made, since what was being

studied was the post yield behavior, and there was no obvious

point on the fitted static curve to choose for the yield

value. Conditions along the leading wave front are those

previously discussed in.Art. (2.2) for a gradual transition

from an elastic to a plastic wave, except that the fitted

static curve implies a non-linear elastic behavior before

yield,

From Equations (2.38) for a general interior point and

Equations (2.40) for an impact end point with a velocity
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boundary condition, we have

BP
= C 1 +~%ZXTGP

.. .2».
sp .. C2 - 2ATGp

and hence, from Equation (2.51)

9191
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0 - Q

From 0': 0.16m we obtain G = 10 8 [C "'S—B'] where

B

C = a?» and Q = n-1, For G(E,S) in this form we obtain

3:-EG ’ —b-—g=QG

0 E as s

In order to satisfy the sufficiency conditions for conver-

gence of the iteration process, we desire

’83=QATG --:-<1

  

B4 = Q AT Glél<l

or

I81 =32 = 5983 +£45<1

Thus, we note that as the strain rate, é', increases

and the degree of rate dependence, n, decreases (i.e. in-

creasing Q) we may require a decrease in the mesh grid as

determined by our choice of (ST. For specimen No.7 the

choice AT = 0.26 (At = 0.26 ,1 sec) allowed a complete

solution, but a value twice as large was found to be too

large for convergence everywhere in the x,T-p1ane for the

input data described.

A check on the propagation of errors in the solution

due to round Off in the computer was obtained by obtaining

a solution with AT = 0.13 (At = 0.13# sec). The results

for stress, strain and velocity agreed with those of the

previous solution with [5T = 0.26 to five or six digits at
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all points in the X,T~p1ane,

(ii) Discussion of Calculation Results Based on

Power Law Rate Theory with Input Data from

Velocity Transducer

Fig. (4.15) shows level lines of velocity in

the x,t-plane. Since the level lines are straight (except

for some slight curvature for v = 300 in/sec and

v = 350 in/sec near x = 0) the propagation speed for any

given level of particle velocity is predicted to be constant

as the pulse travels down the bar and thus independent of

the variations in strain rate encountered. The dashed lines

in Fig. (4.15) are the level lines predicted by the von

Karman rate-independent theory based on the fitted power-

law static curve of Equation (4.2). Comparison with the

solid curves shows that the rate-dependent solution predicts

higher propagation speeds for velocity increments up to a

little above 300 in/sec. The level lines of stress and

strain are not shown separately in the figure since they

so nearly coincide with velocity level lines as to be indis»

tinguishable in plotting, What this means is that for the

range of strain rates actually encountered in this solution

and for the very slight rate dependence implied by the rate

law with n = 0.017, the level lines are the same as would

be predicted by using a single dynamic stresswstrain curve

instead of the static curve in the von Karman theory, except

for very slight differences observable where the level lines
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plotted show a slight curvature, It was pointed out in

Art. (4.4) that the average strain rates at the first and

last gage stations were approximately in the ratio 3,5:9.

It is not surprising, therefore, that the predictions of the

rate-dependent theory can be correlated with a single dynamic

curve, since there is so little variation in the strain rates

in the solution, all of them being of the order of magnitude

of 10,000 times the rate of E = 10"2 in/in/sec assumed for

the "static" curve.

Additional information about the solution is contained

in Figs. (4.16) and (4.14). Fig. (4.16) Shows calculated

stress versus time at x = 0 where the velocity input was

taken from the first velocity gage station for specimen No.7.

The solid curves in Fig. (4.14) show the input velocity at

x 0 and the calculated velocity versus time at x = 3,07in,

x = 3.58 in, x = 6.14 in, and x '2 9.21in. The dashed curve

is the experimental record from the second gage station at

x = 3.25iIL on specimen No.7. Comparison of this with an

interpolation between the two calculated curves for

x = 3.07511 and x = 3.58iII indicates that the calculated

propagation velocities are greater than the mEasured velo-

cities. The greater part of the discrepancy is believed to

be due to the use of the fitted power law for the static

curve. As is seen in Fig. (4.13), the slopes of the fitted

curve deviate considerably from those of the actual static

curve. The curve in Fig. (4.14) indicated by the small
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circles is the predicted curve at the second gage station

according to the von Karman rate-independent theory based

on the fitted power-law static curve. The predictions are

for levels of strain from 6': 0.0005 to 6:: 0.0065 in

increments of 0.0005 in/in. The rate-independent theory

based on the fitted static curve thus also predicts a higher

propagation velocity than was measured on specimen No.7.

The small circles fall in between the dashed experimental

curve and the interpolated solid curve (not shown) between

x = 3,07i11 and x = 3,5854% but they fall closer to the

interpolated curve than to the experimental curve, so that

neither theoretical prediction agrees very well with the

experimental curve, Part of this discrepancy may be due to

variation of the experimental behavior of specimen No.7

from the averaged velocity behavior of all the specimens,

which was seen in.Art. (4.2) to correlate well with a single

dynamic stress-strain curve prediction and fairly well with

a static curve prediction. The greatest part of the dis-

crepancy is, however, believed to be due to the use of the

fitted power law instead of the actual static curve,

The computer solution may also be rather sensitive to

the way the conditions representing yield were introduced

into the solution. Picking a slightly higher value to

repreSent yield seems likely to move the computed curves

nearer to the experimental curve.

 



100

It was, however, considered not worthwhile to repeat

the computer solution with a better fit on the static curve

or to adjust the assumed yield value, since it was already

clear from the results of Art. (4.2) that the averaged velo-

city data from the velocity experiments can be represented

by a single dynamic curve.

 



CHAPTER V

SUMMARY.AND CONCLUSIONS

Two independent series of dynamic plastic compression

impact tests were performed on half-inch diameter bars of

commercially pure aluminum. In the first series, an

electro-magnetic transducer was used to obtain measurements

of particle velocity at four stations along the bar, while

in the second series, etched foil resistance strain gages

yielded records of surface strain at the same gage locations.

Strain rates on the order of 100 in/in/sec were reached.

Test results indicated that any given level of velocity

or strain propagates along the bar with a constant velocity,

not affected by the strain rate within the small range of

strain rates encountered. However, the velocities of propa-

gation observed differed noticeably from those predicted by

von Karman rate-independent theory based on the static curve.

Good agreement was found between the propagation speeds ob-

served for different levels of velocity (averaged over all

tests) and predictions of von Karman theory based on a single

dynamic stress-strain curve differing from the static curve,

That the apparent applicability of a single dynamic

curve and rate-independent theory to this kind of plastic

wave propagation is consistent with rate-dependent theory

for a material with a very slight rate dependence, was

demonstrated by the results of computer solutions for rate=

101
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dependent theory in Art, (4,5), The nature of the process

is such that the range of strain rates encountered for most

of the observations is covered by a 3:1 ratio of strain rates,

and almost all of the plastic deformation occurs at rates

in the range from 3,000 to 10,000 times the "static curve"

strain rate,

The wave propagation speed versus strain level plots

from the transient strain records showed consistently lower

propagation speeds than those based on the velocity records,

It is believed that the strain gage response actually lags

behind the strain in the material, as previously observed

by Bell,31 but our records are not consistent with a lag

proportional to strain rate as reported by Bell, since, in

fact, the higher strain rate tests came nearer to agreeing

with the velocity measurements and the rateaindependent

theory than did the lower strain rate tests. Considerably

more evidence is needed before final conclusions can be

drawn about the lag in the strain measurements and the reasons

for it.

Using the velocity records obtained from the first gage

station (six diameters from the impact end of the bar) as

an input boundary condition to predict values at stations

farther along the bar, a numerical computer solution was

obtained using the rate-dependent theory with a power law

for rate dependence and the power n m 0,017 found in dynamic

stress-strain tests on short specimens of the same material
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performed by Chiddister.45 This computer solution did pre»

dict a constant wave propagation speed for any given level

of velocity, but the constant values predicted did not agree

well with the experimental values from the velocity records.

This lack of agreement appears to be mainly the result of

using a rather poor fit to the static curve in the computa~

tions, since von Karman rate-independent theory using the

same fitted static curve also gave poor agreement with the

experiments. Since the computer solutions with rate-dependent

theory were consistent with a single dynamic curve, and since

the velocity measurements correlate with a single dynamic

curve, it appears that a little ingenuity in curve-fitting

could produce agreement between the rate theory and the

experiments. This did not seem to be worth the effort.

Such agreement between rate theory and the experiments

would not of course prove that the rate theory was correct

and von Karman theory based on a single dynamic curve was

incorrect, since the two would predict virtually the same

thing for a material with little rate sensitivity. The

rate-independent theory is easier to apply and therefore

preferable for a situation like this. Any real test of

the rate-dependent theory must come in a situation with a

greater range of strain rates in the test and for a material

with more strainurate sensitivity than annealed aluminum,

Further study in this area should include experimental

and theoretical wave propagation studies and dynamic tests
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on materials not in the soft annealed condition, which may

exhibit more strain rate dependence as suggested by Dorn et a1,

Ferrous materials are also known to be rate sensitive,

but in wave propagation tests of the kind described in this

report, anomalies occur because of the yield delay time,6

It might be possible to study tensile pulse propagation in

bars pre-loaded statically into the workuhardening range and

impacted while the static loading was continuing. Further-

more, the magnetic velocity transducer could not be used

on ferrous specimens. Further study is also in order on

transient strain recording in dynamic plasticity to develop

a simple strain recording technique not subject to the lag

exhibited by the strain gage records.

The velocity recording technique might be improved by

using stronger and more uniform magnetic fields, These would

yield an increase in output signal level as well as allow

the use of wider gaps between pole pieces. The wider gap

would enable construction of a wire support system capable

of a greater translation during the passage of the wave.

The velocity recording technique for nonumagnetic mam

terials is believed to give good results, but if possible,

it would be desirable to modify it to make it more nearly

a routine type of test,
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APPENDIX

THE COMPUTER PROGRAM

In the following pages an asterisk (*) will denote

multiplication and a slash(/) will denote division so that

the equations in which they appear will be similar to the

corresponding Fortran statements in the computer programs.

A.1 Leading Wave Front

For a transition from an elastic to plastic impact,

the conditions along the leading wave front are given by

0"=0’y

6:6,,

where the subscript y refers to the values at yield.

Assuming rate independent theory applicable until

yield occurs, we have

6;

-_-v-_- 1.9.9.:v y .1; £7 d6, d6?

When the impact is initially plastic, we must consider

a shock wave propagating along X = T (x = cot),

(a)_Linear Overstress Rate Dependence (MALRATE)

From Equation (1.11) I

1506‘ = +k[0'- f(€)]
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g(0’o€) = k[a"/f(€)]

k = 106 sec"1

(i.e. 10'6 sec = unit dimensionless time)

((6) 20,000 - 19—

 

€

0"- 20,000 + 10

G = _g_. = . I.

k‘EO E0

= s _ 20,000 , 10

E0 EOE

= - B +‘é

S a

where

10 2 x 104
A=~§;, B-T

From Equation (2.48)

 

l
1

m
w
a

S S

‘=' ds = sds

. ——-x f 2
S(0,0) 5 ' B +‘§ s - 85 + A

which yields

1‘ .. ._ __10.000 10.000

0’- 10,000 070,0) - 10,000

, 1n 0’(0.0) - 10.000 * 10,000 )]

10,000 (7' - 10, 000

= 2[P - Q + 1n (P/Q)]
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where

P = 10.000

0’- 10,000

Q _ 10,000

‘ 0’(0.0) - 10,000

At any mesh point along X = T we have T = (J-l) * T.

Hence,

TAX = J [P - Q + IMP/9)]
2

_1=—_

AT

Thus, 7%; = f(P) is solved by the "Method of False

Position" and »0'= 0’(P) = 0’(cot,t) = 0’(T,T) is obtained

along X = T,"

 

TAX

 P1
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. . . _ TAX
P 1+1 = P 1 _ P 1 _ F2

2 2 ( 2 P1) 92 - F1

i+1 1 1+1 . .
When P2 - P2 <6 we assume that P2 is suffi

ciently close to P3 giving us the value of stress at any

given time (TAX *‘ZSTO along the leading wave shock front,

(b) ~Power lam: Rate Dependence (POWRATE)

0’<€,é) = 0'1<€.1>é“ '

Assuming that the static-stress strain.curve is

O

-1
applicable at €= 10.2 sec we have

0;, = 0'1(0.01)n

01 == 0’,<o.01>'n

and

076.61) -"-’ 00(100 ftp)" for ~é§0.01 sec"l

O’(€ , 6") = (7'o é¢0.01 sec-1

Hence 5

O

. n
p (76 .

And the constitutive equation becomes

0 . '

Bo€=0'+10‘213 [i,q
0

Therefore,

g(0'.€) = 10'2130 ‘%) Q
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Choosing k = 106 sec'"1 so that unit T is 10'6 second,

we obtain

._._ -8_Q_’_Q

61°(03)

For a static stress-strain relation expressible in

the form

B

0’0=A€ ,B<l

we have Q

- E S

0:108 £5

AE

=10”8 (Ci)Q

EB

where

E

=_9.

C A

For a plastic shock wave along X = T, we substitute

into Equation (2.48) to obtain

S

T=-2x108I ___.Cl§_

S (csl‘B)Q
O

8 .

= .2449.— S -

Q<1-B> - 1{——_j‘[c(s:1-BQ m}

where

_ SO

- [ccs )1'B] Q ' 8° = S(O'O)
O
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For B<1, Q>1, C>>l and 0<S ((1 we note that

dT 2
__=_—<0

dS G

Hence, the graph of T/[ST versus 5 appears as shown

      

below.

'r/AT

F2

TAX

P1

S

and

 

'1 ' F2-TAX
$1+=S+(81-S)

2 1 2 1132-91

The process is repeated as has been described previously

for the case of linear rate dependence.
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A.2 Computational Procedure

 

 

 

 

V ’

, $21 J

2’» \_\go:::::::::°;:°:2

Point P is denoted by the array identification (2,N),

Points A, B and C are identified by (1,N), (1,N-1) and

(2,N-1) respectively. The variable N is given by the

"column" number, K.
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The solution works outwards from the origin and

proceeds along a "row," J = constant. For K = N = 1, we

make use of the equation for a gradual elastic-plastic

wave transition interface (see last equation of Art, 2.2)

or use the schemes of Sec. A.1 for shock waves. For

K = N = J the boundary conditions will determine the

appropriate relations [Equations (2.40), (2.42) or (2.44)]

to be solved.

If we have not reached the last row, we will proceed

to the next row and the values just obtained in the former

"computation row 2“ become the elements of the next "compu-

tation row 1."

In the vicinity of the origin, we chose the values of

variables at B or C as initial estimates of the variables

at P. Elsewhere, initial estimates in the field for K<:5

make use of the first and second0 derivatives of the variable

along the column K = constant, For K2>5 we make use of the

derivatives along J = constantr

The iterations appeared to converge as an oscillatory

geometric progression. Hence, the following Aitkin 16 2

process was used.36

Assume the solution is {a} and iterated estimate {3k} .

For oscillatory convergence, a - ak is assumed to decrease

approximately as the sequence of numbers

prk cos(k¢ + 9)
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Such a sequence is the sum of two geometrical progressions

with complex conjugate ratios

r (cos ¢ + i sin¢)

r (cos ¢ - i sin¢>

ak*1 - ak decreases approximately as the sequence

k cos (k¢+ 91)

where p1 and 61 are in general different from p and 0 ,

q1

q2

but r and ¢ are the same for the sequence {a - ak} ,

The improved value, 2H1. I is given by .

2

Aak_!(Aak ' r Aak-l)

2 2

Azak-l " r A ak-Z

 

ak+1 = 3k '

Here

Aak-z Aak-l

Aa _ a

2 k 1 ; A‘k 7.. Aak-ZA31: - (A9-

_. Aak 3 i Aak 2 Aak-3 Aak-1 ' (Aakiz2)2

 
 

 Aak-Z Aak-l  
where

Aai = ai+1 ' 31

2 _

A ai " Aaia-l " Aai
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Thus,

._ (a4 — a3) [(a5 - a4) - r2(a4 - 213)]
as = a4 " 1 j.

[(a5 - a4) - (a4 - a3)] - r2 [(a4 - a3) - (a3 - 32)]

where

2 _ (a3 " 32) (a5 ‘1' a4) " (a4 " 3.3)2

 r

(a2 - a1) (a4 - a3) - (a3 - a2)2

If necessary, this process is repeated after four more

Seidel iterations. Each time the Aitkin - 6 2 process is

used, the magnitude of the correction term denominator in

the equations for as is checked to make sure that it is

greater than zero. If the denominator vanishes, we omit

the Aitkin - 6 2 process and perform another Seidel itera-

tion,



120

Interpretation of Code Words

Words Common to Both Programs

LOOK

JAZZ

M1

M2

M3

M4

LL

IMPACT

MARK

 

II
II

II
II

-
b

b
.
)

N

Grid Row Number

Grid Column Number

V(0,T) = VOL = constant

V(0,T) is a known variable

S(O,T) is a known variable

E(0,T) is a known variable

S(O,T) is tabulated

V(0,T) is tabulated

S(O,T) is 0:) - then zero

V(0,T) has exponential rise

Maximum permissible iterations

First Row to be printed after initial

impact point (1,1)

First Column in first row to be printed out

Increment along column for print out

Increment along row for print out

Last row after which

stress = 0 for LOOK = 3, JAZZ = 2

or

strain = constant for LOOK = 4

Plastic Impact - Calculations Required

Along X = T

Elastic-Plastic transition - Conditions

Constant along X = T

Value changes from 1 to 2 when 0": f(€)

at an interior or impact boundary point
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T AT = 106 At

EO Young's Modulus (psi)

RHO Mass Density (lb/secz/in4)

YIELD Yield Stress (psi)

VMAX Vmaan/seC)

(For case of exponential

TFIX tfix(llsec) velocity rise at X = 0,

v|x=o = a% of vmax when

CENT ,Ola t = tfix)

VOL v(0,t) = constant (in/sec)

STRS 0’(0.t) = constant (psi)

ALPHA Constants in v(0,t) = vmax[1 - e'€£?+ch)]

BETA (calculated in computer)

Program Malrate

A

G = S-B + A.
B E

' s - c 104
C Along X = T, P = , C =.__.

C E
. o

D (SP, Increment in P along X = T

P 1

Q A T = 2[P - Q + Ln(F*P)] , F = q‘1

P .

4

Program Powrate

A

Jo = A68

B

E

C = .2

C A

D (SP, Increment in P along X = T

 



TIM
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P=SalongX=T

€=alén.Q=%

NOTUSED

Normal Run

Program will restart after last row

with new mesh

Program is a restart (J )l 1)

Factor by which AT is multiplied in

going from MAD = 2 to MAD = 3
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5:4 Computation Flow Chart

The computation flow chart on the following page gives

a schematic representation of the process by which the actual

computer program carries out the solution in the characteristic

X,T-p1ane. Using the flow chart and the "comment" cards

within the actual program, it is hoped that the reader will

be able to follow the Fortran coding.

The routine for changing the mesh size (i.e. increasing

lXT) during computation is presently only found in PROGRAM

POWRATE but could easily be incorporated in PROGRAM MALRATE.
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£1; Fortran Programs

The following Fortran programs (with illustrative data

cards) have been programmed for the CDC-3600 and use an

iteration convergence criteria of agreement to ten signifi-

cant figures for two successive iterations. The following

items should be taken into account before attempting to use

either program,

1. The programs are presented with the warning that

all of the possible boundary conditions have not been used

to date, and hence, errors may exist,

2. Computer.must provide a minimum of ten digit

storage capability plus sufficient storage for program and

variables.

3. Beware of time requirements.

 

 

 

 

Approximate

Impact Machine Time

PROGRAM L B.C. on CDC-3600

MALRATB 401 0’(0,t) = constant 4%: minutes

velocity data from

POWRATE 501 Gage Station One 20 minutes

Spec, No.7      
4, Proper choice of [ST‘is not necessarily known

a'priori. Given an initial set of input data for which the

choice of [ST gives convergence only into a small (or not
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at all) region of the characteristic X,T-p1ane, interpola-

tion of already punched data may be used with another choice

of (ST. The illustrative examples given below were the schemes

actually used with the velocity input data from the velocity

transducer.

To HALVBéLT

201

202

203

READ 4, (V(2,N), N=J,L,2)

00 202 N=J,L,2

v(2,N) = -v<2,N)/bo

LLL = L-l

no 203 N=2,LLL,2

V(2,N) = 0.5*CV(2,N-1) + V(2,N+1)>

CONTINUE

To QUARTER [ST

201

202

203

READ 4,(V(2,N). N=J.L.4)

no 202 N=J,L,4

V(2,N) = —V(2,N)/CO

LLL = L-3

DO 203 N=2,LLL,4

TEMP = V(2,N+3) - V(2,N-l)

V(2,N) = V(2,N-1) + 0,25*TEMP

V(2,N+1) V(2,N-1) + 0.50*TEMP

V(2,N+2) V(2,N-l) + 0,75*TEMP

CONTINUE
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PROGRAM MALRATE

1 FORMAT (1X03HR0U93X96HC0LUMN09X96HSTRESSo13X96HSTRAIN9

lllXcBHVEhOCITYo9XoIOHG‘FUNCTIONoBXolOHITERATIONS/)

FORMAT c1x.13.5x.13.4x.4(516.10.3X).3x.13>

FORMAT (14(14.1X))

FORMAT (5(816.10))

FORMAT(IXQZHJ=91393X92HK=91303X97HNUMBER89I3)

m
e
U
N

1I394X94HMAX=O13/1X92HK39I394X95HJAZZ‘O1294X93M72=0I39

FonflAT CngZHJzo1304X05HLOOK391294X93HM1=91304X03HM3=9

24X03HM4=9I304X02HL=91393X93HLL30I393X07H1MPACT301303X9

34HMAD=QI3/) ’

6 FORMAT (1X93HEO=9E1601004X04HRH03951601094X93HC0‘9

151601094X92HT=9516010/1

7 FORMAT (IXQZHA=9EI60lOo4XoZHB=QEIGo1094X92HC=QEI60109

14X92HD=QEI6Q1004X92HP=9516010/9/1X96HYIELDSQE160IOQ4XO

25HVMAX=951601094X95HTFIX=9E160IOO4X05HCENT=9E16010/9

3/1X92H030E1601094X92HF=951601004X94HTIM=95160IO/C/)

8 FORMAT (IXO6HALPHA=QE1601094XO5HBETA=QE1601094X9

116HYIELD REACHED ATOIXQEIéOlOOZXQ

225HMICROSECONDS AFTER IMPACT/0/)

9 FORNAT ‘/IXO25HG FUNCTION = olE‘O7 AT J=OI493X92HK=9

114/)

DIMENSION 5(29401)9E(294°1)0V(29401’OG(29401)OSP(5)9

ISPP(5)9EP(5)QEPP(5)

READ 3gJ9K.LgLOOK.JAZZ.MAX.M1.M2.M3.M4,LL.IMPACT

READ 4.T.EO.RHO.A.B.C.D.P.YIELD.VMAX.TFIX.CENT.G.F

CO=SORTF(EO/RHO)

FRINT SOJOLOOKQMIOMSOMAXQKOJAZZOM29M4OLQLLOIMPACT

PRINT 69EOoRHOQC09T

FRINT.ToAcaocoDsp9YIELD0VMAX9TFIX9CENTcooF

NUMBER=O

MARK=1

E13000

528000

E33000

E48000

$13000

$23000

53:000

54:000

DO 98 N=194Ol

S(ION)=OOO

S(ZqN)=OoO

E(ION)=OOO

E‘ZON)=OOO

V(ION)3OOO

V(ZvN)=OoO

5(19N)=OoO

98 G‘ZQN):OOO

DO 99 Nzlos



00

~00

~O~

NCO

Non

NON

Nuo

mmo

N8

UOO

U0—

UON

Uuo

U»—

Hmm

muaZwIOoO ,

muuazv§000

MUAZuIOoO

M‘vazvlcoo

<mr00~4< o Mdnmwm OD M4D>~Z mOCZU>D< 0020—4uozm >4 XIO

GO #0 «HQOoNOOoUOOo&OOv¢FOOK

~3UD04 <mr00~4< mm OOZM4>24

DM’U bo<OF

(Auoqu<OF\OO

mauouvli<auowv

mawonull<apo~v

DO “0» Zu~or

<~NoZ~I<A~oHv

00 40 WOO

—ZU)Ofi <MFOO~H< um ) KZOIZ (Pnubmrm

GO #0 ANO~oNpouoL>NN

uznbnfi <mr00~4< mm D 4DWCF>4ND <>D~>mrm ~Z\mmn

DNPO boa<nNdZVoZflnon

DO NON Zfl—or

<amo2vfl<amo2v\00

GO 40 WNW

~3U>04 <mr00n4< ~M D~<mz PM >2 mxuozm24u>r WCZD4~OZ

4m3UfluoO\nuoOlnm24~.

>FUI>NFOOW«%MIU.\4W~X

fiMIOINO$<3>X

WN4>WFOGW~4m3U\nfim3n+OO*<HmrUuv

flmznumm4>\>FUI>

UHnZd moDFUIFoWN4>ofim3U

UO NNO ZNHoF

Emnum*.ZI~.

4M3OMNXU1«DFUID*fl*IND+WM4PV

<aN32~n<3>X*AuoOlnoO\4mznv\nO

<a~o~OI<ANonu

Mapouvfll<n~ouv

maneuvll<auouv

MANoHvWMawouu

mamouuflmnuouv

@aNouvflmaN.~v|m+)\mANauv

00 do WOO

~33DOH MHUNMM mm ) KZO£Z <>Dn>mrm

DO 40 aUOuoUHOVoLbNN

uznbnd Minmmw am 4>WCF>4MU Dma

DNPD boAMAmozvoZflnorv

DO UON Zu~or

mamozvumamozv\m0

00 40 UNW

mznbnd Mdnmmm mm D OOZMdDZfi ll HImZ NNDO

DWPD beMfiDM

CO New Zfl—orr

wamovaM4DM\mO
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313

325

400

412

413

425

500

1000

1001

1002

1010

129

LLzLL+1

IF(LL’L1 31293120325

DO 313 N=LLOL

5(20N13000

S(l.1)=$(2.1)

E(191)=S(101)

V110113‘SIICI)

WILL BE RECOMPUTED BELOW IF INITIAL IMPACT IS PLASTIC

E1291)*E(191)

V(201)8V(191)

6129118512911‘8+A/E(201)

GO TO 500

STRAIN HISTORY IS GIVEN

READ 40(EIZIN19N319LL)

IFILL-L) 41294259425

STRAIN IS NOW CONSTANT

LLL=LL+1

DO 413 NSLLLOL

E(20N18EIZQLL1

$119118E(291)

E11911=E(201)

V(191)8-E(201)

WILL BE RECOMPUTED BELOW IF INITIAL IMPACT IS PLASTIC

S(291)8E(291)

V(291)8-E(291)

6(201):S(201)‘B+A/E(2011

GO TO 500

PRINT OUT OF IMPACT CONDITIONS

PRINT 1

STRESS=SIIOI)*EO

VELOC=V(191)*CO

GIlol)BS(Iol)-B+A/E(191)

PRINT ZOJQKQSTRESSOE(191)OVELOCOG(I91)

GO TO FIRST POINT AFTER IMPACT

J8J+1

GO TO (10000104519IMPACT

CALC. ALONG X:CO*T FOR PLASTIC INITIAL IMPACT

TT=2.0/T

FISTT*(P-O+LOGF(F*P))

TAX=J“1

PIBP

P3P+D

F2=TT*(P-O+LOGF(F*P)1

DISFZ'TAX

IF(DI) 10109101091020

F1=F2

GO TO 1002

1020 IF(DI-01E-09) 10409104091030

FALSE POSITION ITERATION

1030 R=F2-F1
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AuObm

pomo

nomm

”000

quO

muwo

nunm

uuub

uuNO

uuuo

Hwo

UIUIAUEUu»*Un\D

wmn44*.Uto+romw.mtu..

0~l1N14DX

ZCZWMDflZCZWND+u

G0 40 pONO

mnNonvfln+O\U

NANouvflmnNonv

<0Nou»!1MaNa~v

mam.~.umaw.pvlm+>\m.m.~v

Wuflflm

UN—OO~*0

00 (m un~24 41~M 30‘

~1ALIZHV pOOOowomOouOOO

00 (W 03—24 41mm OOPCZZ

”WAKIINV HOOOoncmmo~OOO

UD~24 fiImM UOHZH

3Nfl3N+3w

Mdnmmmflm0*mamoxv

<mr00u00*<nNoKv

UD~24 NeLoKoMfiDmMMomaNoKvo<mr00ofiamoxuoZCIWMD

30<m 40 41m ZMXA UGuZd ~Z norcxz

Kflx+u

ZONO

ZCIDMDIO

G0 40 pHOO

>Dm Em mz 41m 1~DM4 1~<m ”01M

Hmaxlmv unuOouppOounNO

PEN Em HZ HIM r>m4 4:0 ”GEM HZ 41mm OOFCZZ

nflaLIKINv uuubowpumouuum

nzmflmbr NM4~3)fimm “OD 41m 1~DM4 W~<m DOIM

UNVMNMUAKV+MUUAKV

Umrmumnaxv+mnvaxv

omrfiuomrm1>*0mrm\amauoxvfimnnoxu.

Nflfiauofiv+omr0

GO #0 unUO

~Z~4~DV mm4—Zbfimm 103 HIM F>M4 4E0 DO‘M ~Z 41mm OOFCIZ

NHOANoxluv

O0 40 "—00

MM4~3>4m W03 OMZNDDF ~24MD~On DOHZfl

UNFMNNQO*MAN0KIHVIUOO*MAN0XINV+MANoKIU.

UNFMNN.O*N~N¢KI~.onO*MANoKINu+maN.KIUv

Umrmuomrm1b*0mrm\amamoxln.*maNoK1~uv

NMGAN-KI~.+ONFQ

00 40 quO

002m4>24m (InnI DEN WCZOflnOZM on DOLDONZA Mdbfim UOmZHw

Uh"MaN¢K1~v+<aNoK|~vlom*4*O«NoKIuv

omnlmauoxluv+mauoxiuv+4*0~—0XI~V

U>umapoxv1<awoKvlom*4*0auoKv

~ZfimnuOn OD mZO UO~24

awaLlKv NO§4o~~mOo~ubO
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INTERIOR POINT CALCULATION

1140 C2895’IDA+DC1

CItC2+DB

TEMP890’T*Z

E48C1+TEMP

S48C2‘TEMP

Z=S4~B+A/E4

GO TO 1240

END POINT -- CHECK BOUNDARY CONDITION

1150 GO TO (1160911609118091190)9LOOK

VELOCITY BOUNDARY CONDITION

1160 C4=DC-V(29K1

C3=C4+DB

TENP=95*T*Z

E4=C3+TEMP

S4=C4-TEMP

Z=S4-B+A/E4

GO TO 1260

STRESS BOUNDARY CONDITION

1180 X=S(29K1

C5:DB+X

E4=CS+T*Z

C68X-B

Z=C6+AIE4

GO TO 1280

STRAIN BOUNDARY CONDITION

1190 X=E(29K)

C7=X~DB

CBc-C7+DC

S4=C7-T*Z

C9=-B+A/X

ZSS4+C9

GO TO 1220

END POINT *- STRAIN B. C. -- SEIDEL OR AITKEN CORRECTION

1220 IFINO-4) 12249122491221

AITKEN CORRECTION METHOD

1221 DELSl=SZ-SI

DEL52=$3-52

DEL53=S4-53

DELS4855-S4

RSSQ:(DEL$2*DELS4-DEL53*DEL53)IIDELSI*DELSS-DEL$2*DEL52)

DEL55280EL53-DEL52

DELSSBzDELS4~DEL53

DENOMSBDELSS3~RSSOiDEL$52

DENOMINATOR CHECK

IFIABSFIDENONSI) 12249122491223

DENOMINATOR DOES NOT VANISH

1223 SS=S4~DEL53*(DELS4-RSSO*DEL83)/DENOHS

ZBSS+C9

NO=1
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NUMBERINUNBER+I

GO TO 1220

C SEIDEL ITERATION

1224 $1252

$2353

$3854

$4855

1225 $5=C7‘T*Z

2355+C9

NUMBERtNUMBER+I

DIFF=ABSF155‘S4)

C CONVERSION CHECK TO TEN DIGITS

IF(55-0901) 12269122891228

1226 IF(SS~O9OOI) 12279122991229

1227 IFISS-090001) 12319123091230

1228 IFIDIFF~oIE-IOI 12359123591237

1229 IFIDIFF-olE-II) 12359123591237

1230 IF(DIFF-9lE-12) 12359123591237

1231 IFIDIFF-9IE-13) 12359123591237

1235 V(29K18C8+95*T*Z

5129K1355

GI29KI=Z

C SEARCH FOR FIRST POINT WHERE G‘FUNCTION VANISHES

GO TO (20309203219MARK

2030 IFIZ) 20319203192032

2031 PRINT 99J9K

MARK=2

2032 CONTINUE

C ARE WE IN THE FIRST FIVE ROHS

IFIK-S) 12369123691300

C NEH PARTIAL DERIVATIVES ALONG THE ROW

1236 TEMP=S(29K)-S(19K)

SPPIK18TEMP-SPIK)

TEMP=E(29K1-E(19K)

EPPIK18TEMP-EPIKI

EPIK1=TEMP

GO TO 1300

C COUNTER FOR AITKEN CORRECTION

1237 NO=NO+1

C ARE THE ITERATIONS BOUNDED

IFINUMBER-MAX) 12209122092047

C INTERIOR POINT -— SEIDEL 0R AITKEN DELTA SQUARE ITERATION

1240 IFINO-4) 12449124491241

C AITKEN CORRECTION METHOD

1241 DELEI=E2~EI

DELE2=E3~E2

DELE3=E4-E3

DELE4=E5~E4

DELSIISZ~SI

DEL52853-52
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1243

1244

1245

1246

1247

1248

1249

1250

1251

1255
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DELS3854-S3

DELS4=55-S4

RE$Q=(DELE2*OELE4-DELE3*DELE3)/(DELEI*DELE3‘DELE2*DELE21

RSSO:(DEL52*DELS4*DELS3*DELS3)IIDELSI*DELS$'DEL$2*DELSZ)

DELEEZsDELEB-DELE2

DELEE3=DELE4~DELE3

DELSSZcDELSB-DELSZ

DELSSB:DELS4*DELS3

DENOMESDELEE3-RESO*DELEE2

DENOMSaDELSS3~RSSO*DELS$2

DENOMINATOR CHECK IN AITKEN METHOD

IFIABSFIDENOMS)I 12449124491242

IF(ABSF(DENOME)) 12449124491243

DENOMINATORS DO NOT VANISH

E5=E4*DELE3*(DELE4-RESO*DELE3)/DENOME

SS=S4-DELSB*(DELS4-RSSO*DELS3)/DENONS

Z=SS-B+A/E5

NO=1

NUMBERBNUMBER+I

GO TO 1240

SEIDEL ITERATION

E1=E2

E2=E3

E3=E4

E4=E5

$1=$2

52:53

53:54

54:55

TERN=95*T*Z

E5=C1+TERM

TEMPI=~B+A/E5

Z=S4+TEMPI

TERM=95*T*Z

$58C2~TERM

Z=55+TEMP1

NUMBERaNUMBER+I

DIFF:ABSF(E5-E4)

CONVERGENCE CHECK T0 TEN DIGITS

IFIE5-0901) 12469124891248

IF(E5-09001) 12479124991249

IFIE5-090001) 12519125091250

IFIDIFF~9IE-10) 12559125591257

IF(DIFF-9lE-11) 12559125591257

IF(DIFF-91E-12) 12559125591257

1F(DIFF-91E-I3) 12559125591257

S(29K1355

E(29KISE5

V(29K)=95*(~DA+DC)

6(29K)=Z
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1264 E1=E2

E2tE3

E3=E4

E4885

51:52

$2=53

53854

84:55

1265 TERM=.5*T*Z

E5=C3+TERM

TEMPI=~B+A/E5

Z=S4+TENPI

TERM=95*T*Z

$58C4-TERM

Z=SS+TEMP1

NUMBERaNUMBER+1

DIFF=ABSFIE5-E4)

C CONVERSION CHECK T0 TEN DIGITS

IFIES-Oool) 12669126891268

1266 IF(E5-09001) 12679126991269

1267 IFIE5-090001) 12719127091270

1268 IF(DIFF-91E-IO) 12759127591277

1269 IFIDIFF-olE-Il) 12759127591277

1270 IFIDIFF-olE-IZI 12759127591277

1271 IF(DIFF-olE-I3) 1275.1275.1277

1275 S(29K)=SS

E(29K)=E5

G(29K)8Z

C SEARCH FOR FIRST POINT ATTAINING STATIC S-E VALUE

GO TO (20109201219MARK

2010 IFIZ) 20119201192012

2011 PRINT 99J9K

MARK=2

2012 CONTINUE

C ARE WE IN THE FIRST FIVE ROUS

IF(K-5) 12769127691300

C NEW PARTIAL DERIVATIVES ALONG THE ROW

1276 TEMP=S(29K)~S(I9K)

SPPIK):TEMP-$P(K)

SPIK)=TEMP

TEMP=E(29K)-E(19K)

EPP(K)=TEMP~EP(K)

EP(K)=TEMP

GO TO 1300

C COUNTER FOR AITKEN CORRECTION

1277 NO=N0+1

C ARE THE ITERATIONS BOUNDED

IF(NUMBER~MAX) 12609126092047

C END POINT -- VELOCITY 89 C9 -- SEIDEL 0R AITKEN CORRECTION

1280 1F(NO-4) 12849128491281
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PROGRAM POURATE

1 FORMAT IIX93HROW93X96HCOLUNN99X96HSTRE$$913X96HSTRAIN9

111X98HVELOCITY99X9IOHG FUNCTION98X9IOHITERATIONS/)

2 FORMAT I1X9I395X9I394X94IE1691093X)93X9I3)

3 FORMAT (14(1491X11

31 FORMAT (10(1X9I411

32 FORMAT (6(1X9E16910)I

33 FORMAT (4(E1691011

4 FORMAT (5(E16910)’

41 FORMAT (IX92HJ39I393X92HK=9I393X97HNUMBER=9I31

5 FORMAT IIX92HJ89I394X95HLOOK89I294X93HM1=9I394X93HM3=9

11394X94HMAX=9I3/1X92HK=9I394X95HJAZZB9I294X93M72=9139

24X93HM439I394X92HL=9I393X93HLL=9I393X97H1MPACT=91393X9

34HMAD=913/) ‘

6 FORMAT I1X93HEO=9E1691O94X94HRH039E1691094X93HC0=9

1EI691094X92HT89E16910/1

7 FORMAT I1X92HA89E1691094X92HB=9E169IO94X92HCI9E169109

14X92HD39E1691094X92HP89E16910/9/IX96HYIELDB9E1691094X9

25HVMAX=9E1691094X95HTFIX=9E1691094X95HCENT89E16910/9

3/1X92HO39E1691094X92HF39E169IO94X94HTIM=9EI6910/9/)

8 FORMAT I1X96HALPHA=9E169IO94X95HBETAB9EI691094X9

II6HY1ELD REACHED AT91X9E1691092X9

225HMICROSECONDS AFTER IMPACT/9/I’

9 FORMAT 1/1X925HG FUNCTION a .1E~07 AT JBJI493X92HK=9I4/)

91 FORMAT (/9/)

DIMENSION S(29601)9E1296OI)9V(29601)96129601195PI6OI)9

ISPPI60119EPIOOII9EPPI601I

MARK=1

E13090

E23000

E33090

E43090

$13090

$23000

S3=090

1548090

DO 98 N319401

S(I9N18090

3(29N13000

E(I9N13090

E(29N)‘090

V(I9N18090

V(29N13090

GII9NI=000

98 GI29NI=OOO

DO 99 N319401

EPINI=090

EPPIN18000

SPINIFOOO

99 SPPIN)'090
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1010

1020

1030

1031

1040

1041

1045

1050

'1055

1060

1100

1110

1111

1113

1120

, “25

1129

142

IFIDI) 10109101091020

F1=F2

GO TO 1002

IF(DI‘9IE“09)

P2=Pl

PI=P

R=F2-FI

P2=P1+IP2-PI)*DI/R

TEMP=P2/(C*P2**(190‘B))**O

F1=TT*(TEMP-DOT)

DIGTAX~FI

NUMBERaNUMBER+I

IFIDI-olE‘09) 10409104091031

P=P2

512911=P

E129II=P

V1291)3*P

6(291)=9IE~07*(C*P/IP**B))**Q

F1=F2

08999*D

DO WE PRINT THIS ROW

IF (J-MI) 10609105091060

00 NE PRINT THIS COLUMN

IF(K-M2) 10609105591060

PRINT THIS POINT

M2=M2+M3

STRESSIEO*S(29K)

VELOC=CO*V(29K)

PRINT 29J9K9$TRE$S9EI29K19VELOC9G129K)9NUMBER

MOVE TO THE NEXT POINT IN COLUMN

K=K+I

N0=O

NUMBERSO

GO TO 1100

IFIJ-K~3) 11109112091125

IF(J-K-I) 11119111391113

E4=E119K-I)-EP(K-1)

S4=SII9K-1)-SP(K-I)

GO TO 1129

E4=ECI9K)+EP(K-1)-EPP(K‘I)

$435119K)+SP(K~I)-SPP(K‘II

GO TO 1129

E4=E119K)+EP(K)

5485(19K)+SP(K)

GO TO 1129

E4=E(19K)+EP(K)+EPP(K)

S4=SLI9K)+SP(K)+SPP(K)

GO TO 1129

IMPACT STRESS IS A CONSTANT -- THEN ZERO

ZzolE-07*(C*54/(E4**B))**O

10419104191030

 



1130

1140

1150

1160

1180

1190

1191

1192

1193

1235

2030

2031

2032

143

CONSTANTS WHICH ARE FUNCTIONS OF ADJACENT STATE POINTS

-DC=S(29K¢1)+V(29K~1)‘.5*T*G(29K*11

DBa-SII9K‘1)+E119K“I1+T*G(19K‘11

DA=SI19K)‘V(19K1‘95*T*6119K1

INTERIOR OR END POINT

IFIJ-K) 20479115091140

INTERIOR POINT CALCULATION

C2=95*(DA+DC)

C1=C2+DB

TEMP=95*T*Z

E4=C1+TEMP

S4=C2-TEMP

Z391E‘07*(C*54/(E4**B))**O

GO TO 1245

END POINT “- CHECK BOUNDARY CONDITION

GO TO (11609116091IBO9II9OI9LOOK

VELOCITY BOUNDARY CONDITION

C4=DC‘V(29KI

C38C4+DB

TEMP:= 95*T*Z

E48C3+TEMP

S4=C4-TEMP

ZSoIE‘07*IC*S4/IE4**B)1**Q

GO TO 1265

STRESS BOUNDARY CONDITION

X=S(29K1

C5=DB+X

E4=C5+T*Z

Z=9IE-O7*(C*x/(E4**BI)**O

GO TO 1285

STRAIN BOUNDARY CONDITION

X=E129K) ’

C7:X*DB

C88-C7+DC

SUN=C/(X**BI

IFIJ‘L) 11929119191192

S5=((950E+08*ABSF(EIZ9K)-E(l9K4}))/T)**(1.0/Q))/SUN

GO TO 1193

$5=((925E+08*ABSF(E(29K+1)‘EII9K’1)I/T)**(190/O))/SUN

Z=91E-07*(S5*SUN)**O

V(29KI=C8*95*T*Z.

S(29K1855

GI29KI=Z

SEARCH FOR FIRST POINT ATTAINING STATIC S~E VALUE

GO TO (20309203219MARK

IF‘Z-olE-07I 20319203192032

PRINT 99J9K

MARK=2

CONTINUE

ARE WE IN THE FIRST FIVE ROUS

 



1236

1240

1241

1242

1243

1244

1245

144

IFIK-5) 12369123691300 .

NEH PARTIAL DERIVATIVES ALONG THE ROI

TEMP=SI29K)*$(I9KI

SPPIKIITEMP~SPIK1

TEMP=E(29K)»E(19K)

EPPIKIITEMP-EPIK)

EPIK)'TEMP‘

G0 T0-1300

INTERIOR POINT ~~ SEIDEL 0R AITKEN DELTA SQUARE ITERATION

1F(N0-4) 12449124491241

AITKEN CORRECTION METHOD

DELEI=E2~E1

DELE2=E3-E2

DELE3=E4-E3

DELE4=E5~E4

DELSIBSZ-SI

DEL52=S3-$2

DEL53=S4-53

DELS4=SS~S4

RESO:(DELEZGDELE4-DELE3*DELE3)/(DELE1*DELE3-DELE2*DELE21

RSSQ:(DEL52*DELS4-DELSB*DEL53)/(DELSI*DELSB-DEL52*DEL52)

DELEEZIDELES-DELEZ

DELEE3=DELE4~DELE3

DELSSZIDELSB-DELSZ

DELSSB=DELS4~DEL83

DENOMEIDELEE3-RESOiDELEE2

DENOMS=DELSS3-RSSO*DELSSZ

DENOMINATOR CHECK IN AITKEN METHOD

IFIABSF(DENOMS)) 12449124491242

IFIABSFIDENOMEJI 12449124491243

DENONINATORS DO NOT VANISH

E5=E4~DELE3*(DELE4-RESO*DELE3)/DENOME

SS=S4-DEL53*(DELS4-RSSO*DEL53)IDENOMS

Z:.1E-07*(C*SS/(E5**B)1**Q

NO=1

NUMBERSNUMBER+1

GO TO 1240

SEIDEL ITERATION

E1362

£2153

E3254

E4=E5

$1852

$2853

S3854

S4855

TERM=95*T*Z

E5=C1+TERM

TEMP1=CIIE5**B)

Z=9IE-07*(S4*TENP1)**G

 



1246

1247

1248

1249

1250

1251

1255

2000

2001

2002

1256

1257

1260

1261

145

TERM395*T*Z

S53G2‘TERM

2891E‘O7*I$5*TEMP11.*O

NUMBERINUMBER+1

DIFFSABSFIE5‘E4)

CONVERGENCE CHECK TO TEN DIGITS

IFIE5“0901) 12469124891248

IFIE5‘09001) 12479124991249

1F1E5‘0000011 12519125091250

IFIDIFF~9IE‘10) 12559125591257

IFIDIFF-olE-III 12559125591257

IFIDIFF-91E-12) 12559125591257

IFIDIFF‘olE‘13) 12559125591257

S(29KISS5

E(29K18E5

V(29K1895*(-DA+DC)

G(29K)3Z

SEARCH FOR FIRST POINT ATTAINING STATIC S‘E VALUE

GO TO (20009200219MARK

IFIZ'91E‘O7) 20019200192002

PRINT 99J9K

MARK=2

CONTINUE

ARE WE IN THE FIRST FIVE ROWS

IFIK-5) 12569125691045

NEW PARTIAL DERIVATIVES ALONG THE ROW

TEMPSSI29K)-S(19K)

SPPIKISTEMP-SPIK)

SPIKIPTEMP

TEMP=EI29K)-E(19K)

EPPIKIBTEMP-EPIKI

EPIK13TEMP

GO TO 1045

COUNTER FOR AITKEN CORRECTION

NO=N0+1

ARE THE ITERATIONS BOUNDED

IFINUMBER“MAXI 12409124092047

END POINT -- VELOCITY B9 C0 ‘* SEIDEL OR AITKEN CORRECTION

1FINO‘4) 12649126491261

AITKEN CORRECTION METHOD

DELEI3E2‘E1

DELE2=E3-E2

DELE3=E4-E3

DELE43E5*E4

DELSI=S2-SI

DELS2=S3-52

DELS3354-S3

DELS4355-S4

RESOBIDELEZ‘OELE4*DELE3*DELE3I/IDELEI*DELE3-DELE2*DELE21

R5508(DEL52*OELS4-DELS3*DELS3I/(DELSI*DELS3-OELS2*DELS2I
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