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ABSTRACT

MODELLING CYLINDRICAL DISCONTINUITIES IN RUNNING SHOE SOLES

USING A mNDENSEn FIN ITE ELEMENT FORMULATION

By

Andrew James Hull

This thesis presents modelling techniques that are useful to

analyze the effects of holes in running shoe soles. A.two dimensional

finite element analysis of a running shoe containing one to three

horizontal holes in the heel area was performed using condensed two

dimensional elements. The displacement results serve as a basis for

the effects of these holes during heel strike. A three dimensional

element program that condenses a twenty node solid into a ten node

solid and formulates the element stiffness matrix was written. The

practical and economical advantages of using condensed formulations

were demonstrated.
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INTRODUCTION

Shoe designers frequently place holes in running shoe soles. The

orientation of these holes is both vertical and horizontal in the shoe

sole. The number of holes also ranges considerably: some shoes do

not have them. and other shoes incorporate more than 35 holes into the

sole design. There are various reasons for including these holes.

ranging from weight reduction to aiding in manufacture of the shoe.

The effects of these holes has never been fully understood.

This thesis applies a finite element analysis to a two

dimensional shoe sole containing one to three holes orientated

horizontally in the wedge area. The radius of these holes is also

varied to study the effects of different size holes. Due to the

number of nodes required, the current finite element pragram in use

does not have the ability to model the three dimensional problem. A

three dimensional modelling technique is discussed using nodal

condensation to reduce the three dimensional problem to a manageable

size.





TEE FINITE ELEMENT’METEOD

Analytical methods in structural analysis have been studied for

many years. Exact solutions are usually not available to problems

with complicated geometry and/or boundary conditions. The emergence

of high speed computers. however. makes it possible to accurately

apply numerical methods to complex problems. A commonly used

numerical technique for structural analysis is the finite element

methodl1.8]. This method involves a discretization of a continuous

structure into a number of smaller parts (elements). Equations are

first formulated for each element with individual loading and boundary

conditions. then a set of equations are assembled modelling the entire

system. The resulting equations are then solved. yielding the

structural response.

For an elastic body. the stiffness matrix and load vector can be

formulated using the finite element method. and the displacements of

the body can be determined (Appendices A. B, C, and D). The best

'method to verify the results of any analytical technique is actual

testing. When testing is not feasible. a commonly used convergence

test is to reduce the element size and compare the results of a denser

grid of smaller elements to the base model. If the differences in

responses are small. then the base model probably has enough elements

to model the system. This was the verification technique used in this

paper. comparing solutions of variously populated grids to insure



analytical convergence.

The major tapic of this thesis is the effect of holes in running

shoe soles. therefore. a modelling technique was develOped to

determine the global effects of holes in materials. Consider the

three 2 dimensional element test grids shown in Figures 2.1. 2.2. and

2.3. All three were subjected to a single point load on the upper

right node. The four left hand nodes were constrained in the x and y

direction. The structure was six units long. six units high. and the

hole in the middle was one unit in diameter.

There was a choice of two dimensional models based on modelling

assumptions. The model assumption of plane strain was used. Plane

strain is a specialization of three dimensional linear elastic theory.

It represents the situation where the structures geometry and loading

are constant in the z direction and the component of displacement

perpendicular to the r-y.plane is zero. This is discussed in Appendix

E. Plane stress. the other two dimensional specialization of three

dimensional elastic theory. represents the situation of a very thin.

flat structure. whose loading occurs only in the x-y plane of the

plate. All three models were deve10ped and analyzed using ANSYS.

ANSYS is a general purpose finite element program developed by Swanson

Analysis Systems. Inc.

Figures 2.1 and 2.2 illustrate the five and eight node elements

used to model the hole in the middle of the soiid. Each element

bordering the hole had three active nodes on the hole boundary. The

midside node on the boundary of the hole was left on to insure a curve

was fitted thru this area for the element interpolation. Different
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Figure 2.1 Base grid with condensation
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Figure 2.3 Refined grid with linear elements



sources recommend different locations for this node[1,s], From a

theoretical standpoint. the midside node must be located near the

middle of the curve between the two end points. When the midside node

is too close to the end nodes of the curved side. the Jacobian matrix

becomes singular. and has no inverse. The inverse of the Jacobian

matrix must exist to insure a unique mapping from spatial coordinates

to natural coordinates (Appendix B).

Figure 2.1 was the base model. It consisted of 36 elements and

32 nodes. The four elements in the middle of the model were five node

isOparametric solid elements. They each had three nodes condensed out

of the element matrices (Appendix B). Figure 2.2 was the second base

model. consisting of 40 elements and 40 nodes. The four elements in

the middle of the model were eight node isoparametric solid elements.

This model was included so that the effects of nodal condensation

could be viewed. Figure 2.3 was the refined model. It consisted of

108 elements and 100 nodes. All the elements of Figure 2.3 used

linear interpolation. The results were compared in Tables 2.1 and

2.2. The displacements of the base models in Figures 2.1 and 2.2 were

compared to the displacements of the refined model in Figure 2.3.

Nodes l thru.8 were on the circle. and nodes 9 thru 12 were labeled on

each figure. Node 13 and 14 were the right corner nodes. node 13

being located directly under the load.

The results from.Thble 2.1 shows that the local convergence (the

displacements on the hole) in the x direction was very poor. The

grids in Figures 2.1 and 2.2 would not be adequate if the

displacements on the circle were desired. The global convergence (the

 



 

Table 2.1 X displacements for Figures 2.1, 2.2. and 2.3

Node Figure 2.3 Figure 2.1 Normalized Figure 2.2 Normalized

number -refined grid -base grid difference -base grid difference

a b b

1 ’.0029 -.0931 -2.5 -.0698 -1.9

2 -.0651 -.1863 -3.4 -.1742 -3.1

3 -.1735 -.2198 -1.3 -.2306 -1.6

4 -.2225 -.1816 1.4 -.2101 0.3

5 -.2172 -.1183 2.8 -.1485 1.9

6 -.1961 -.0682 3.6 -.0887 3.0

7 -.1464 -.0713 2.1 -.0940 1.5

8 -.0533 -.0636 -0.3 -.0627 -0.3

9 ‘.2631 -.3071 -1.2 -.2732 -0.3

10 -.6614 -.6891 -0.8 -.6689 -0.2

11 .2892 .3262 1.0 .2997 0.3

12 .1864 .2239 1.1 .1990 0.4

13 3.5680 3.5370 -0.9 3.5590 -0.3

14 ~2.2870 -2.2630 0.7 -2.2810 0.2

Table 2.2 Y displacements for Figures 2.1. 2.2. and 2.3

Node Figure 2.3 Figure 2.1 Normalized Figure 2.2 Normalized

number -refined grid -base grid difference -base grid difference

a b b

1 -1.858 -1.890 0.4 -1.889 0.4

2 -2.486 -2.429 -0.7 -2.455 -0.4

3 '3.104 -2.951 -1.8 -3.005 '1.2

4 -3.378 -3.174 -2.4 -3.232 -1.7

5 -3.112 -2.990 *1.4 -3.018 -1.1

6 -2.455 ~2.450 -0.1 -2.431 -0.3

7 -1.822 ~1.896 0.9 -1.855 0.4

8 -l.584 -1.682 1.1 -l.673 1.0

9 -l.283 -1.288 0.1 -1.275 -0.1

10 -3.758 -3.635 -1.4 -3.712 -0.5

11 -3.885 -3.745 1.6 -3.842 -0.5

12 -l.200 —1.196 ~0.0 -1.196 ~0.0

13 '8.590 -8.424 -1.9 -8.532 ~0.7

14 -5.578 -5.433 -1.7 “5.525 -0.6

Normalized difference = [(a1 - bi)/max(a)] X 100*





displacements at common points not on the hole) in the x direction was

fair in Figure 2.1 and good in Figure 2.2. The results from Table 2.2

shows that the local and global convergence were good to excellent for

Figures 2.1 and 2.2. For the two dimensional model. the modelling

technique in Figure 2.1 was used. For each hole modelled the number

of nodes needed using a five node element was eight. For the

conventional method of using many linear elements. the number of nodes

needed was 68. Since each node had two degrees of freedom (adding two

equations per node to the system of equations) the difference in

number of equations between the base grid and the refined grid was

128. Furthermore. the formulation time for four 5 node elements was

less than the formulation time for 64 four node elements. The use of

higher order elements in this case resulted in a time savings on the

computer while retaining the numerical accuracy in the the finite

element analysis.



TWO DIMENSIONAL ANALYSIS

The first analysis of the running shoe was a model of a Brooks

Supervillinova (Figure 3.1). A two dimensional model of the

heel/wedge area was developed (Figure 3.2). which consisted of 82

elements and 103 nodes subjected to a plane strain analysis. The shoe

in this model was cut with a plane that ran parallel to the longest

direction of the shoe and was perpendicular with the ground.

 

Figure 3.1 Brooks Supervillinova running shoe

The bottom row of elements in Figure 3.2 represented the outsole. the

middle three rows of elements represented the midsole, and the top row

of elements represented the sockliner. The sockliner was a removable

10
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layer of material placed in the running shoe to increase comfort. The

model was constrained in the x and y directions at the nodes marked

with triangles. Although there was a tread pattern on the outsole.

this area was modelled as a solid since the protrusions occupied over

85% of the volume under the loaded area. The material preperties were

determined using a Model 1331 Instrom Servohydaulic Materials Testing

Machine located in the Biomechanics Department at Michigan State

University. They are listed below in Table 3.1.

Table 3.1 Material properties of the Brooks Supervillinova

 

 

 

Layer Young's Modulus Poisson's Ratio

Outsole 260 psi .25

Midsole 130 psi .25

Sockliner 80 psi .25

“m
\K:\‘\.

 

 

 

               L.  
 

Figure 3.2 Base grid of a Brooks Supervillinova

The section of the size eight and a half shoe modelled (Figure 3.2)

was 5.2 inches long and 1.2 inches thick. Shoe designers who include
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horizontal holes in their midsole design normally locate them in the

heel area of the shoe. The model was developed to investigate the

effects of these holes.

The following assumptions were used: 1) All sole materials

behaved elastically. 2) the shoe upper provided negligible additional

stiffness to the sole 3) there was no slip between the ground and the

bottom of the shoe. 4) The runner struck the ground with the heel area

of his shoe. 5) Plane strain occured.

The loading for this model was derived from experimental

measurements of pressures exerted by running human subjects.

   
50 10b 150 2330 TIME

Figure 3.3 Average vertical component of ground reaction force

iFigure 3.3[4] was the vertical component of ground reaction force in

1L2 subjects. running at 6.5 minutes per mile. The solid line on the

Staph was the average value and the dashed lines were the maximum and

'minimum ranges. Units of force (Fr) were in body weight and the units

03 time were in milliseconds. The ground reaction force in the x

dii-xection was vertical. and a positive force was orientated in an
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upward direction. The first maxima of the curve had a value of 2.1

'units of body weight at approximately 25 milliseconds. Since this

finite element model only analyzed wedge area displacements. the first

local maxima was used as it corresponded to heel strike. Using a

subject weight of 150 lbs. the reaction force at heel strike in the

shoe was (-2.1 X 150)= -315 lbs. Since the width of the shoe was 3

inches. and a plane strain analysis has a unity thickness. the loading

for this model was (-315 / 3)= ~105 lbs total in the x direction.

Distributing the -105 pound lead over ten nodes resulted in a force

vector at each node equal to (-105 / 10)= -10.5 lbs per node in the x

direction.

 

Y // \\

;//\ \\
P \ 31* 1

1 \ F ' 7 '

\ \\\// //T|ME

/

\\’//

 -1 4—

Figure 3.4 Average shear component of ground reaction force

Figure 3.4[‘] was the average shear component of the ground

reaction force. The ground reaction force (Fy) in the longitudinal y

direction was determined using Figure 3.4. Positive force was

f01rward. At 25 milliseconds the average shear component was .2 units

°f bOdy weight. Using the same method of calculation as above. the

everage shear force per node was equal to 1.0 lbs in the y direction.
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The ten loaded nodes were denoted with vectors in Figure 3.2. For

convenience they were called nodes one thru 10. one being the left

most node. The analysis was also run using a finer grid of 326

elements and 346 nodes. shown in Figure 3.5. The results are listed

in Tables 3.2 and 3.3. With the exception of the left most node. the

y direction results were fairly close. The y direction displacements.

or the amount of compression of the sole. is the critical response in

the design of a shoe. This indicates that the base grid (Figure 3.2)

was fine enough to model the load and constraints that were being

applied to it. A grid modelling the entire sole was also analyzed.

using the constraints and loading conditions determined above. The

percent difference for the displacement of all common nodes was less

than one percent. This justified ignoring the forward part of the

shoe as in Figures 3.2 and 3.5.

  L.
X

Figure 3.5 Refined grid of a Brooks Supervillinova

‘Using five node two dimensional elements. the grid in Figure 3.2

Was modified to include the effects of holes running across the

midsole from the medial to the lateral part of the shoe. The
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Normalized difference

Displacement

-refined grid
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Normalized

difference

P
‘
b
fi
h
‘

\
O
t
n
c
s
s
a

O

I

O
O
O
H
H
N
u

c
>
e
z
h
a
e
-
l
~
l
¢
3
u
s
U
I
a
\

Thble 3.3 Displacments in the y direction

Normalized

difference

I

N

é
é
é
o
o
n
b
u
a

L
a
b
o
é
s
l
e
i
a
i
n
i
o
i
o
i
o
e
o

i

N
O

[(ai — bi)/max(a)] X 1005



16

displacement effects of one. two. and three holes were determined

using radius sizes ranging from .05 inches to .30 inches. incremented

by .05 inches. All of the holes had their center located at y=.55

inches from the origin shown in Figure 3.2. For the single hole. the

location was at x=2.05 inches. For the analysis using two holes. the

x locations were at 1.45 and 2.35 inches. The model that included

three holes used x locations of 1.15. 2.05. and 2.95 inches. A

displacement plot of a typical node is shown in Figure 3.6. The

tabular data for the nodal displacements of nodes one thru 10 for all

geometry modifications is listed in Appendix F.

UY

-060 '-

—————THREE HOLES

-.55- ----------TMOIKAES }D

-.58

-.45

-.48

‘035

 ‘03“. l l l l l L

.85 .18 .15 .28 .25 .38 R

Figure 3.6 Displacements of node 5 versus radius size

.A general trend of the data indicated that as hole radius or the

number of'holes were increased. the absolute value of the displacement
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increased (Figure 3.6). For the geometry range tested. the

displacement was roughly proportional to the area of the hole (Figure

3.7). The nodal displacements were also sensitive to the location of

the holes. Nodes above the holes deformed to a greater extent than

the nodes above solid material (Figures 3.8. 3.9. and 3.10).

UY

' 060 '-

———————THREE HOLES

- .55 - ------------- Two HOLES /

ONE HOLE // ,A 

"050

-045

-040

.035

-030  L l l l l l

. 8188 . 8225 . 8488 . 8625 . 8988 RNZ

 

Figure 3.7 Displacement of node 5 versus radius size squared

The main advantage of the two dimensional analysis was rapid

solution time. when compared to the three dimensional model. because

the grid was simpler and] fewer nodes were present in the model. This

modelling technique however. was a two dimensional approximation to a

three dimensional problem which had finite depth. hence plane strain

did 'not occur. Furthermore. some shoes have the holes running in the
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Figure 3.8 Displacement plot of sole with one hole. R=.30

 

 

 
 

Figure 3.9 Displacement plot of sole with two holes. R=.30

 

 

  

Figure 3.10 Displacement plot of sole with three holes. R=.30

 



 

 



vertical direction which cannot be modelled using a two dimensional

approach. The two dimensional approximation agreed with measured

values because the out of plane shear force in the z direction was

very small and varied widely from one runner to another (Figure

  

 

3.11141),

0.5 "I

F2 /<;:;>r_.‘~/’ ”:-_"—'=é§;553===:=,.
L

\_’ ’ \;__\\:’:’: / _ ' TIME

-O.5 "

Figure 3.11 Out of plane shear force



THREE DIMENSIONAL ANALYSIS

The three dimensional analysis of structures is more complex than

the two dimensional counterpart. The extra degree-of-freedom at each

node causes the material stiffness matrix to enlarge from 3X3 to 6X6.

The stress components in the finite element formulation changes from

161T - fox oy txy} (4.1a)

to

{air = {orx oy o t t t l . (4.1b)

The element considerations in the finite element fonmulation also

changes. Because three dimensional curved side elements require

midside nodes like their two dimensional counterparts. the definition

of a three dimensional curved side element with midside nodes requires

20 nodes instead of the eight present in the two dimensional curved

side element. The wave front limitation of the ANSYS educational

version is 200 and the connectivity of 20 node three dimensional

elements prevent an analysis of a three dimensional model that

incorporates vertical holes.

Condensation of the current 20 node solid into ,a smaller (in

terms of number of nodes) element is a technique that can reduce this

20
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problem to a size where an analysis is possible. Quadratic behavior

on one side of the condensed element is desirable so the element face

can follow a curved surface such as a hole. Curved boundaries cannot

be followed by linear elements. The eight midside nodes that do not

lie on the hole can be removed through condensation because they do

not lie an curved boundaries. The additional nodes that lie on the

hole can be condensed because the holes under consideration are

constant radius and do not have a curve in their axial direction. The

result is a ten node condensed element that can incorporate a quarter

of a hole on one side as a boundary condition. The quadratic

displacement behavior along the edges where condensation occurs

becomes linear. This is not undesirable since there is almost no loss

in accuracy.

Linear three dimensional elements attach to the condensed element

in a much more efficient pattern. This is due to element mesh

compatibility of the condensed sides of the ten node element with any

side of the eight node three dimensional linear element.

The condensation procedure started with a twenty node finite

element map to establish the Jacobian matrix. The 20 node element

equations that defined the mapping from natural coordinates (r.s.t) to

spatial coordinates (X.Y.Z) were '

X = a1 + agr + a,s + "t + a,r2

+ tgsz + t7t2 + e.st + a,sr + a,.rt

2
+ ‘1132t + 913323 I ‘ast23 + ‘aatzr I ‘asr 3

+ a1‘:2t + a1,rst + a1.32rt + a,,t2rs + a3.r28t (4.1a)
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Y =b1 + bzr+ b38+ b4t+ bsrz

+ b :2 + b t2 + b.st + b sr + b .rt
‘ 7 9 1

+ b11s2t + blzszr + b13t2s + bljtzr + b15r2s

+ b1‘r2t + b17rst + b1gs2rt + b1,t2rs + baorzst (4.1b)

- 2
Z - c1 + c,r + c,s + cgt + c,r

2 + c,st + c,sr + exort

2 2

+ c.s2 + c,t

2

+ caa‘zt + “123 r + °sst 3 + c1‘t2r + °isr s

2rt + c1,t2rs + c,,:2st (4.1s)+ casrzt + °1133t + cis‘

The vectors a. b. and c defined the mapping and were constant for each

element defined. They were found by mapping the element back into

natural coordinates. which produced three systems of twenty linear

equations. the solution being the a. b. and c vectors. This process

is similiar to the two dimensional mapping discussed in Appendix.B.

Tb remove midside nodes and condense the element. the shape

functions were modified in their natural coordinates. This step

differs from most finite element formulations. The shape functions

defined by the 20 node element were condensed using[91

9m = (1/2)(“c1 + “c2) (4.2a)

where n represents r. s. or t. the subscript m denotes a condensed

midside node. and the subscripts c1 and c2 denote the corner nodes

that are collinear with node m. Applying this equation at the ten





midside nodes

direction from

20

8(r.s.t)=§1Nj(r,s.t)8j

10 .

5(1’.S.t) = N'( a Dt)6'

where 5 is either r.s.

N1 +

NJ +

Nx +

NL +

NH +

NN +

N0 +

NP +

No

NB 0

(NT/2)

(NR/2)

(NR/25

(NS/2)

tux/2)

(NV/2)

(NV/2)

(NW/2)

+

+

+

+

+

+

+

+

changed the

or t.

(NY/2)

(NZ/2)

(NS/2)

(NT/2)

(NY/2)

(NZ/2)

(“w/2)

(Nx/z)
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displacement field approximation in the 6

(4.2h)

. (4.2c)

The modified shape functions became

(4.2d)

(4.2c)

+ (NA/2) (4.2i)

+ (NB/2) (4.2g)

(4.2h)

(4.2i)

+ (NA/2) (4.2j)

+ (NB/2) (4.2k)

(4.21)

(4.2m)

This modification eliminated ten nodes per element. Each node had

three degrees of freedom. therefore. the condensation technique

eliminated thirty equations per element. This technique is discussed

in Appendix B and an example of a two dimensional element condensed at
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three locations is included.

The derivatives of the shape functions were next multiplied by

the inverse of the Jacobian matrix. This step is described in

Appendix B. The Jacobian matrix and it's inverse were defined using a

twenty node map. while the derivatives of the shape functions were

defined using a ten node condensed element. The stiffness matrix was

then defined using the equations from Appendix B and numerically

integrated using a 3X3X3 grid and the Gauss-Legendre quadrature method

(Appendix C).

The element program in Appendix G will build the element

stiffness matrix for ten node degraded elements. To insure pregram

accuracy. the stiffness matrix of an ANSYS defined twenty node element

was output and this stiffness matrix was modified to incorporate the

linear constraints implied by the condensation process. A constraint

matrix was defined by

{u} = [Cliul' (4.3a)

where u is the vector containing the x. y. and z displacements of the

60160 element matrix. u' is the x. y. and z displacements of the 30X30

matrix. and C is the' constraint 'matrix (60X60) that contains the

linear displacement constraints on the midside nodes. The constraints

were applied to the ANSYS stiffness matrix yielding a new system of

equations. as shown in equation (4.3b).

mm = [eiTmtcuui' =- [Kl'Iul' . (4.31.)
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This is best illustrated by the three by three system of equations

shown below

k11 k1: R1: “1

kn kn k3: n. = [xltul (4.4a)

kll ks: kss “a

which is constrained such that

u, = n; (4.4c)

u, = (mm; + u;) . (4.4.1)

The constraint matrix becomes

1 0 0

[C] = .5 0 .5 (4.4a)

0 0 1

and assembling this according to equation (4.3b) produces a modified

stiffness matrix

k11+a5k31+e5k13+e25k13 0 k13+05k13+05k23+'25k33

[X] 8 0 0 0 (4.4f)

k31+.5k3;+.5k33+.25k33 0 k33+.5k31+'5k33+°25k33
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Using this method. the results of the condensed element pregram were

compared to a stiffness matrix multiplied by constraint matrices. The

percent difference averaged 0.11% at all nonzero locations in the

matrix. This method has the advantage of producing a stiffness matrix

to compare to the ten node condensed element stiffness matrix without

running an actual finite element analysis.

There is considerable advantages using condensed elements in

three dimensional analysis. A.running shoe sole such as the Brooks

Supervillinova has 37 holes running vertically. The number of

equations for this problem without condensation is approximately

36000. which is too large for almost any finite element routine.

Since three layers of four elements are needed to model each hole. 544

condensed elements are needed to model this sole. Each condensed

element eliminates thirty equations. and the total savings for this

type of analysis is 31320 fewer equations. The size of the new

problem using condensed elements is approximately 4680 equations. or

roughly a magnitude smaller problem. The disadvantage is that the

quadratic behavior along the boundaries becomes linear. This.

however. is usually not a concern as long as the finite element grid

is distributed in a manner that several linear elements fit the

displacement curve. Unfortunately ANSYS does not currently have the

ability to accept elements input by the user and no actual analysis

was performed using this element.



CONCLUSIONS

This thesis has shown that using a condensed finite element

formulation can greatly reduce the problem size of three dimensional

models. The numerical accuracy using two dimensional condensed

formulations was retained. as demonstated by a two dimensional

analysis. A program that generates ten node condensed element

stiffness matrices is available now to be interfaced with finite

element programs that can accept user defined elements. The accuracy

of this element was compared to an ANSYS constrained 20 node element.

and the percent difference was found to average 0.1rs at all nonzero

locations. The element has the advantage of eliminating thirty

equations every time it is used instead of the base three dimensional

element.

The displacement effects of horizontal holes in the sole of a

shoe were calculated. The analysis included one to three holes

ranging in radius from .05 to .30 inches in the wedge area of the

shoe. No attempt was made to determine if these displacements were

favorable or detrimental to the runner.

Factors not addressed in this thesis are the dynamic effects of

the shoe material. the dynamic effects of the loading. the effect of a

ground strike in a location other than the heel area. and the

interaction of the shoe upper with the sole. Future tepics also

include development of a program that uses the three dimensional

27
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condensed element stiffness matrices. assembles them along with the

load vectors and linear three dimensional elements. and solves for the

displacements of the nodes. resulting in a finite element routine to

handle large scale problems.
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APPENDICES



 

APPENDIX A

FORMULATION 0F ms STIFFNESS MATRIX AND LOAD VECTOR

FROM THE MINIMUM COMPLEMENTARY ENERGY PRINCIPLE

The stiffness matrix corresponding to an elastic body can be

derived in a number of different ways. One way to formulate this

matrix is by starting with the complementary energy principle. which

corresponds to a compatibility condition. The principle states that

the state of stress that satisfies the stress-strain relations in the

interior and all prescribed boundary conditions also minimizes the

system's complementary energy in an elastic body. If

“c1“x'°y'°z'txy'txz"yz? is the complementary energy.

Uc(ax'ay'°z'txy’txz'tyz) is the complementary stress energy. and Vc is

the work done by the applied loads during stress changes. then.

according to the minimum complementary energy principle.

bnc = 6(Uc-Vc) (A.1)

= 60° - avc = o . (A.2)

Tb facilitate a finite element formulation. the variation is taken

30
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with respect to the stress components. The complementary stress

energy is defined as

Uc(ox.ey.ez.txy.txz.tyz) = l/ZJIIvfoITIDlioldV (A.3a)

where

y 2 xy txz tyz} (A.3b)161T 3 {ex 6 o t

in a three dimensional problem. The matrix [D] is the material

stiffness matrix that is used to relate the strains to the stresses.

In a three dimensional problem it is a 6X6 matrix. In a two

dimensional problem it is a 313 matrix and has different values

depending on if the problem definition is plane strain or plane

stress. It is defined by

{c} = [D1161 (A.3c)

where the strain vector

MT = {a (11.3.1)
x ‘y 8z 7xy 7xz Vyz} '

The relationship between the stresses and the strains in equation

(A.3c) can also be written as

{o} = {Clio} (A.3e)
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where

[c] = [01'1 . (A.3f)

Including the column vector of initial strains is.) into the

complementary stress energy term results in

n. = 1(2m.,[taiTin1iai — 2ia}T{..i]av . (11.4)

The work done by the external forces is

Vc . ”Lb.“ + r‘v. + z‘w.]dv + fl,[r;u. + 1;“ + T;w.]dS (A.5a)

or written in matrix terms

vc .. jflvuzfi'rrsidv + ILH‘libldS (11.51.)

where {FIIT are the body forces such as gravity. [TI] are the boundary

traction components acting on the surface of the solid. and {6} is the

column matrix of the components of the displacement field.

Substituting equations (A.5b) and (A.4) into equation (A.2) results in

1’2111v1“’T[”1{‘i’Z‘“’T“°’1“”.111v‘F-‘fl‘5mv'fls“.1{WSW (A. 6)

Substituting equation (A.3e) into (A.6) yields
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1/2Ifjv[(rc1(.iiTinitciia} - 2[[Cl(s}lT{c.}]dv

- ”Lue‘fl'isidv - ”,[r‘ltsms = ac . (Ac?)

Now defining the relationship between the strains and the

displacements as

{a} - [31(6) (A.8)

where [B] is a 3NX6 matrix (for a three dimensional solid with N nodes

per element) that contains the derivatives of the shape functions.

Appendix B discusses the shape functions and their derivatives. Using

equation (A.8) in equation (A.7) produces

1(2IIIV[[[31(611TICJTIDJ[cits]is} - zltslieiithiTie.1]av

- ”Ltp‘itsidv - ”'[Ifitsias - no . (A.9)

Since the material properties are isotropic. the material stiffness

matrix is symmetric. i.e..

[c] . [CIT . (A.10)

Substituting equations (A.3f) and (A.10) into equation (A.9) will give

the following result

ilzfjjv[ts}TIBIthilsiis} - 2(siTrsiTrcir.,}]dv

- j'ILIF‘iTtsidv - ”.[r‘ltsids - no . " (5,11)
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For a single element (e) the discretized functional is

fl(°)({8}(°)) 3 “(e)(u1.u3.....ur.v1.vz.....Vr.w1.'3.....wr) (A012)

or in terms of equation (A.11) the functional is

“(e)({5}(e)) g 1/2IIIF[{8}T(°)[B]T(°)[C](°)'5}(°)

- 2{5)T(e)[B]T(e)[c](e)(8.}(e)]dv(e)

.. IIIV{F.}T(°)'5} (O)dv(e) .. II8[T’](O){5}(O)ds(¢) . (A.13)

At equilibrium the potential energy of a system is stationary. The

discretized system is stationary when the first variation of the

discretized functional vanishes. thus

I (e)
5n(u.v.w) 8 2 [6n (u.v.w)] 8 0 (A.14a)

. . 931

where

6n(’)(u.v.w) 8 2:'1[(3n(°)laui)6ui]

-1 . . -1 .

(e) ‘ (e)+ 2i-1l(an lavi)6vi] + 21'1“” la'iis'i] , ”.141”

Th0 531. bvi. and the bwi are independent (they may or may not be

zero) therefore. the individial parts of the summation are forced to

zero. i.e..

«kW/ani = “(Q/avi = 3n(°)/8wi = o i=1.2.....r (A.15)
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Since the displacements of the body are approximated by the shape

functions. the distributed displacement field in the u direction of an

r node element can be expressed as

Iu<x.y.z>‘°’) = I}: Nitx.y.z)ui}(°) = {INIT{u}}(°) . (A.16a)

The v and w distributed displacements are transformed into discrete

displacements in the same manner u is. and the resulting discrete

displacement field becomes

n(x.y.z) W [NTtuii W

{a} ‘0 = v(x-.y.z) [NTtvn (A.16b)

'(XIysZ) [NT{'}]

Using equations (A.14) and (A.16b) equation (A.13) becomes

{an‘°’/as} = {o} = jjj;(nir<°?ic1€°>(si<°>(.;$°?.v<e>

' IIJVIBJT(°'[CJuj‘hol‘Q'dV'e'

~jfl,tnmf1‘°?av$°? -Ij,[n]{rf}f°?d81°? (A.17a)

where

{an‘°)/as}T = [8n(°)/3u an‘°)/av au‘°’/aw} . (A.17b)

Equation (A.17a) is sometimes simplified to the following form





3‘?

[k](°)(si‘°> = (F,}(°) + {FB}(°) + (FT.(o) (A.17c)

where

[k](°? - stiffness matrix at element e

{5}(°) = displacement vector at element e

{F.}(°) = initial force vector at element e

{FB}(°) = body force vector at element e

{FT}(°) 8 surface loading force vector at element e.

/\

Y.V

   
X.U

Figure A.l Two dimensional triangular element

Equation (A.17a) is best illustrated by a two dimensional example

shown in Figure A.1. The problem consists of a single triangle
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subjected to three leading cases. To formulate the stiffness matrix.

the shape functions must first be defined. This is accomplished by

using a linear variation of displacements u and v across the element.

resulting in two equations.

u(x.y) = N1111 + Na“: + N,u, (A.18a)

v(x.y) a N1“ + mg, + N3v, (A.18b)

In addition to equations (A.18a) and (A.18b). a third condition is

imposed. requiring the shape functions to sum to one.

N1 + N: + N, a 1 (A.18c)

Solving equations (A.18a). (A.18b). and (A.18c) for N1, N,, and N,

gives the shape functions in terms of the Cartesian coordinates. They

are

N,(x.y) 8 (1/2A)(a1 + bix + c1y) (A.19a)

N,(x.y) 8 (1/2A)(az + b,x + c,y) (A.19b)

N,(x.y) 8 (l/2A)(a, + b,x + c,y) (A.19c)

where

5 :1 Ya

2A 8 Det 1 x, y, 8 2(Area of triangle 133) (A.19d)

1 xs Ys
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and

aa 3 x1?: ' xsis: b1 3 Ya ' Va: 01 3 x3 ' xs (A.19e)

‘s ' xs71 ' XaYs: be 3 Ya ' Yin cs 3 xi ' xs (A.19f)

‘s ' 3173 ' ‘aYin be 3 Ya ’ Ys- cs ‘ xs ' x1 . (A.19g)

Applying the (A.19) equations to the triangle in Figure A.1 results in

the following shape functions:

N; 8 (1/46)( 75 - 7x - 5y) (A.20a)

N, 8 (1/46)( -1 + 5x - 3y) (A.20b)

N, 8 (1/46) (-28 + 2x + 8y) H.200)

The matrix relating the strains to the displacements from equation

(ANS) is formed using

3N./ax o aN./ax o aN./ax o

[B] 8 0 3N1/ay 0 ‘ 3N3/8y 0 8N,/3y (A.21a)

3N1/ay aN./ax aN,/ay aN,/ax aN./ay aN,/ax

which is

1 o b. o b, o

[s] = (1/2A) 0 c1 0 c, o o. (A.21b)

c1 b1 c, be c, be
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Applying equation (A.21b) to the element shown in Figure A.l produces

the following [B] matrix

-7 0 5 0 2 0

[B] = (1/46) 0 -$ 0 -3 0 8 (A.210)

-5 -7 -3 5 8 2 .

If the element is considered in plane strain. then the material matrix

[C] is

l-u p 0

[C] 8 E/[(1+u)(1-2u)] u 1*“ 0 (A.22a)

0 0 (l-2u)/2

where E is Young's modules and u is Poisson's ratio. If E#1000 and

“8.25 then the material matrix in equation (A.22a) becomes

1200 400 0

[C] = 400 1200 0 (A.22b)

0 0 400 .

The stiffness matrix from equation (A.17a) is

In“) - “LINN”[C](°)[B](°)dv(°) (A.23a)

but since neither the [B] matrix or the [C] matrix in this case are
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functions of the volume. the element stiffness matrix can be rewritten

[k](°) = [BJT‘°’ICJ‘°’[B]‘°?IIIEV

g [B]T(e)[c](e)[3](e)f(e)A(e) (A.23b)

where A(°) is the element area and t(°) is the element thickness,

which usually assumes a value of one for plane strain problems. Using

the matrices in equations (A.21c) and (A22.b) in equation (A.23b) and

knowing the area of the element is 23 units. the element stiffness

matrix for the element shown in Figure A.1 becomes

' 747.8 304.4 -391.3 -17.4 -356.5 -287.0'"

304.4 539.1 -17.4 43.5 -287.0 -582.6

[k](e) . ,-391.3 -17.4 365.2 -130.4 26.1 147.8 (A.23c)

V i -17.4 43.5 -130.4 226.1 147.8 -269.6

-356.5 -287.0 26.1 147.8 330.4 139.1

  .r287.0 “582.6 147.8 ~269.6 139.1 852.2.“ .

The global stiffness matrix of a structure is the sum of the element

stiffness matrices. and is found by

[K] - E“ [k](°) (A.24)

where [k](°) is summed with respect to the node numbers. The initial

force vector at element (e) is (from equation (A.17a)
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{Fo}(e) 3 II v[B]T(°)[C](°)[8,}(°)dv(°) . (A.258)

For this element. [B] and [C] are not functions of the volume. and

since the column vector of initial strains is rarely a function of the

volume. equation (A.25a) can be expressed as

{F.1‘°’ = [81T‘°’[c1‘°>{a.1‘°’j]]6v

= [81T“?[c1‘°’{6.}‘°)£(°)A‘°’ . (A.25b)

Using an initial element strain of

[8,}T = [sxo 8y. nyo}

= [.005 .004 .001} (A.25c)

and the values of [B] and [C] as defined in equations (A.21b) and

(A.22b). the initial force vector at element (e) is

{F.}T$°) = [-28.6 —19.8 17.8 -8.2 10.8 28.0] . (A.25d)

The second type of loading that the element can undergo is body force

loading. This type of loading is usually gravity. he body force

term from equation (A.17a) is

{FB}‘°) - III;INJ{33}‘°’dv<e) (A.26a)

where





 

-n—o q-h*-‘*‘-m .. .-
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"N1 0

0 N1

' o N,

N,o

  

and

{F‘}T= {x‘ 1"} . (A.26c)

If the element shown in Figure A.l has a density of p = .0075 and

gravity (g8 -386.4) is acting in the y direction. then the body force

is

um'r . {o ”mum

Equation (A.26a) becomes

(1'31“) =- [Lia lug-66.7) o N,(-66.7) o N,(-—66.7) 0}Tt(°’dA‘°’ (A.260)

and transforming the shape functions back into natural coordinates the

integration for a typical entry of (A.26e) is

”‘NiCJWdAM = t(°)A(')C./3 . (A.26d)
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Applying the equation (A.26d) to all the entries of equation (A.26e)

results in the following body force vector

{FB}T(°’ = { o -22.2 o -22.2 o -22.2} . (A.26e)

The third force vector to be evaluated is the surface loading force

vector which is caused by boundary traction. The boundary traction

vector from equation (A.17a) is

{FT](°) = I];[NJ{I‘1‘°>aS{<e)1 . (1.27.)

The most common boundary traction term is a point load. If point 2 on

the element is loaded with point loads of

{1‘} = {-20, 15.1 . (A.27b)

Then the matrix [N] becomes

 

-0 0.

o o

[N] - 1 0 (A.27c)

o 1

o o

o o_, 

since the shape functions. by definition, have the following property
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1 at node i

N- = (A.27d)

0 at node j

the surface leading force vector will be the point loads. i.e,

{FT}T(°>= {o 0 -2o. 15. o 0} . (A.27e)

If the boundary traction term is a pressure. then it is represented by

equivalent point loads on the nodes which share the face the pressure

is acting on. Once all of the force terms have been calculated for

the element. they are added together.

m“) = um“? + {8319? + {Ir-r1“? (A.28a)

A global force vector is constructed in the same manner as the global

stiffness matrix is. thus

F a (a) . .2

U. 2.1??? . M .1.)

In the global force vector. as in the global stiffness matrix. the

element vectors are summed with respect to the nodes. The final

equation relating the global stiffness matrix and the global force

vector is

[K]{5} = [F] (A.29)
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where {5} is the column vector of all displacements of the system.





APPENDIX,B

SHAPE FUNCTIONS OF SOLID ISOPARAMETRIC ELEMENTS

The shape functions for all solid isoparametric elements are

derived using the same method. For any n node isoparametric solid

element. the displacement in any axis direction is approximated by

. z I =- 2‘ mm - mm) (8.1)
- ‘ 1:1 . . .

where a 3 actual displacement value

3 a approximated displacement value

Ni 8 shape function of the ith node

‘i = displacement of the ith node in the direction of interest.

Th0 functions N1. Nj..... and Ni are chosen to give the appropriate

nodal displacements when the coordinates of the corresponding nodes

are inserted into equation (8.1). For a three dimensional element.

the shape function will have the following property:

1 for i equal to j

Ni]’j"j'tj)_ 3 (3.2')

0 for i not equal to‘j.
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Furthermore. the shape functions will always sum to unity at any

location in the element.

Nifr.s.t) + Nj(r.s.t) + .... + Nm(r.8.t) = 1 . (B.2b)

One way to derive the shape function. is by assuming the variation of

the shape function is dependent on r. s, and t.

3 c d e
Nj(r.s.t) 2:;1bir s t . (B.2c)

The application of equations (3.2) is best illustrated by the element

shown in Figure 8.1.

/N

Y.V

 

T NODE K

(S=1.T=1)

 

  

  

 

   

L
n

 

NUDE [

(5"15T"[)

NODE J

(S'loTa’l)

 

x.u 7

Figure 8.1 Four node two dimensional solid element
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This element consists of a four node two dimensional solid orientated

in it's natural coordinates (all of the examples in this appendix are

located in natural coordinates. the transformation back into spatial

coordinates will be discussed later). Equation (B.2c) applied to

Figure 3.1 will produce four equations. Using the smallest values of

d and e possible. the equations are

N1 = 1:1 + b’s + b,t + b‘st (B.3a)

NJ 3 b1 + bzs + b,t + b‘st (B.3b)

Nx - b1 + bzs + b,t + b‘st (B.3c)

NL = b1 + b,s + b,t + b‘st (B.3d)

and since the nodal values in natural coordinates are either 1 or -1.

the values 0f b3 thru b. can be solved for using equation (B.2a).

These values will not necessarily be the same for the different (B.3)

equations. Solving for the b's and rearranging the terms. the shape

functions become

"I - (l/4)(1-s)(1-t) (B.3e)

NJ - (1/4)(1+s)(1-t) (B.3f)

"I = (1/4)[1+s)[1+t) (B.3g)

NL - ulna-3711”) . (3.81.)

A typical shape function for this element is shown graphically in

Figure 3.2. The next shape function to be considered is an eight node

two dimensional isoparametric solid as shown in Figure 3.3. The shape
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functions are formulated in the same way as before. only this element

has eight of them.

 

  

  

Figure B.2 Shape function of a four node element

   
X.U

Figure 3.3 Eight node two dimensional solid element
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The shape functions for the eight node solid are

2

H

II
(1/4)(1-s)(l-t)(-s-t-1)

N3 = (174)[1+s)(1-t)[ s-t-l)

a. - unsung... as.)

NL = (l/4)[1—s)[1+t)[-s+t-1)

N, - (172571-357.-.)

NN - (1]2)(1+s)[1-tz)

"o = <1/2>(1-.2$<1+t5

NP = (1/2)(l-s)(1-t2) .

(B.4a)

(B.4b)

(B.4c)

(B.4d)

[B.4e)

(B.4f)

(B.4g)

(B.4h)

A typical shape function for this element is shown graphically in

Figure B.4.

 

Figure B.4 Shape function for an eight node element
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The three dimensional theory for the shape functions is a continuation

of the two dimensional theory. Another variable is added to the shape

function formulation. An eight node. three dimensional solid is shown

in Figure 3.5.

   

X.U

Figure 8.5 Eight node three dimensional solid element

The shape functions for the three dimensional eight node solid element

are

N; . (ll8)(l-s)(l-t)(1-r) (B.5a)

"I = (1/8)(1+s)(1-t)(l-r) (B.5b)

N‘ = (l/8)(1+s)(1+t)(l-r) (B.5c)

NL ' (1/8)(1-s)(1+t)(l—r) (B.5d)

Nu - (1/8) (1-s)(l-t)(l+r) (B.5e)
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NN = (1/8)(1+s)(1-t)(1+r) (8.58)

"o = (1I8)(1+s)(1+t)(1+r) (3.58)

Np = (1/8)(l-s)(l+t)(1+r) . (3.51:)

A twenty node. three dimensional solid is shown in Figure 3.6.

 

 

 
 

 
 

X.U

Figure 3.6 Twenty node three dimensional solid element

The shape functions for the twenty node three dimensional solid

element are

"I = (1/8)(l-s)(1-t)(l-r)(-s-t-r-2) (3.6a)

NJ 8 (l/8)(l+s)(1-t)(l-r)( s-t-r-2) (B.6b)

"x - (1/8)(1+s)(1+t)(1-r)( s+t-r-2) (B.6c)
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FL = (1/8)(1-s)(l+t)(1-r)(-s+t-r-2) (B.6d)

NM = (1/8)(l-s)(1-t)(1+r)(-s-t+r-2) [B.5e)

N" = (1/8)(1+s)(1-t)(1+r)( s-t+r-2) (3.6:)

N0 = (1/8)(1+s)[1+t)(1+r)( s+t+r-2) (3.6g)

”p = (1/8)(1-s)(1+t)(1+r)(—s+m—2) (B.6h)

NQ = (1/4)(1-.2)(1-c)(1-:) (B.6i)

NR = (1/4)(l+s)(l-t2)(1-r) (B.6k)

N. = ..)....-.2;..+.,;.-.s

NT . (1)4)(1-s)(1-t2)(1-:) (B.6m)

Nu = (ll4)(l-s2)(1-t)(1+r) (B.6n)

NV 3 (l/4)(1+s)(1-t2)(1+r) (B.6o)

N, . (1/4)(1-.2)(1+:)(1+:) (B.6p)

Nx - (l/4)(l-s)(1-t2)(l+r) (8.68)

N, - (1/4)(1-s)(1-t)(1-r2) (B.6r)

NZ - (1/4)(l+s)(1-t)(1-r2) (8.6s)

NA - [174)[l+s)[1+t)[1-r2) (8.61:)

"8 - (1/4)(1-s)[1+t)[1-r2) . (B.6u)

Condensing the above elements to new elements with less nodes is based

on the following equation

a1. = (1/2)(acl + acz) (8.7a)

where n represents r. s. t. u. v. or w. the subscript m denotes a

midside node. and the subscripts c1 and 02 denote the nodes that are

collinear with node n. An eight node solid condensed into a five node
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solid is shown in Figure 3.7.

 

 
 

XAJ

Figure 3.7 Five node two dimensional solid element

The displacement in the u direction for the eight node solid is

The five node element has three condensed sides. which will produce

three equations from equation (B.7a) in the u direction.

nu '3 (1,2) (“I 4' Ex) (3.70)

“o - (1/2)(ux + uL) (B.7d)

up - (1/2)(u.L + u1) (3.70)
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Inserting equations (B.7e). (B.7d). and (B.7e) into equation (B.7b)

and rearranging the terms yields

u = [N1 + (Np/2)}:I + [NJ + (NN/2)]u1 + [NK + (NN/z) + (No/2)]ux +

[NL + (No/2) + (NP/2)}.L + um, (B.7f)

and the shape functions for the five node element becomes

NI --- N1 + (NP/2) (3-78)

N5 .-. N, + (Nu/2) (B.7h)

"1': = NI + (Nu/2) + (No/2) (8.71)

“f. = NL + (No/2) + (Np/2) (B.7j)

N," .. Nu . ' ‘ (B.7k)

The new shape functions derived in the v direction are exactly the

same.

If the displacements within an element are known. the strains at

any point can be determined. The displacements and strains are

related by the equation

{8} = [L]{a} (3.8:)

where [L] is a linear operator. Since the displacements are

approximated by equation (B.1). equation (B.8a) becomes

[a] 2 [lelm (B.8b)
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where

[B] = [L][N] . (B.8c)

The entries of matrix [B] are called the strain shape functions. The

linear operator [L] varies depending on if the problem is two or three

dimensional. In a two dimensional problem. [L] is defined as

alas O

[L] ' 0 a/at .

a/at alas

At node i. equation (Bs8c) becomes

[Bi] 3 [Lqu

or

381/38 0

[Bi] 3 0 aNi/at e

aNi/at aNiZOs

For a p node element. the [B] matrix is

[81 = [[811 raj] .... [Bpl] .

(B.8d)

(B.8e)

(3.8 f)

(B.8g)
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If the finite element formulation is a three dimensional problem. the

linear operator [L] is

“alar 0 0 '

0 a/as 0

[L] = 0 0 an): . (3.811)

a/a: ale. 0

0 a/as a/at

  _a/a: 0 aldt-

At node i. the strain shape function matrix is

  

’aNi/a: 0 0 ‘

0 aNi/as 0

[81] - o o aNi/at . (B.8 1)

aNi/a. aNi/a: o

o aNi/dt aNi/as

.aNi/at 0 aNi/a:.

For a three dimensional problem. the element [B] matrix assembles

according to equation (B.8g).

The above elements have all been defined in natural coordinates.

They are frequently called parent elements. Transformation of all

isoparametric elements from spatial domain to natural domain occur

using the shape functions. i.e.. the shape functions defining

displacements will also be the same function used to map the element
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from a spatial coordinate system to a natural coordinate system. The

element shown in Figure B.8 is mapped into the parent element.

 

 

       

Figure 8.8 Four node element mapped into natural coordinates

This usually consists of a change of area. and a rotation. The

equations defining this mapping are

I = a1 + .3; + ht + a.“ (B.9a)

Y = 171 + 1),: + b,t + b‘st (3.91))

with the boundary conditions of

X(S.t) " X(-1.-1) = xI a: 4



'X( 1.

X(-1.

Y(s.t)

Y( 1.

Y("15

Solving equations

£1 8 (1/4)( :1

C, 8 [1I4)(-x1

u=iuan

a‘ 8 (1/4)( x1

b1 8 (1/4)( yI

b3 - (1/4)(-y1

b3 - (1/4)(-y1

b4 8 (1/4)[ yI

0!

X( 1,-1) 8-

1)8

1)8

Y(-1.-l) 8

Y( 1,-1) 8

l)8

1) =

H
a
. ll

s
o

59

(3.9 a) and (8.91))

- XI

X(s.t) 8 (ll4)(12 -

Y(s.t) 8 (1/4)(12 -

+xx+

+xx-

+xx+

.q-

+yx+

+yx-

+yx+

xL)

xi)

:1)

xx)

FL)

7L)

571,)

71..)

6s - 2st)

6t 4- 2st)

results in

12/4

«A

6

-2/4

12/4

-6/4

2/4

(B.9c)

(B.9d)

[B.9e)

(B.9 f)

(B.9g)

(8.9 h)

(B.9 i)

(B.9J)

(B.9k)

(3.91)

Once the mapping has been defined. the relationship between the strain

shape function in natural coordinates and the strain shape function in
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spatial coordinates can be established. Using the rules of

differentiation. the strain shape functions at node B become

ENS/as = (aNfl/ax)(3x/as) + (3NB/ay)(3y/as)

aNB/at 8 (BNB/ax)(3x/3t) + (BNB/ay)(3y/3t)

or in matrix form

{Mia/6:} [ax/3s ay/as] {aura/ax}

ONB/a ax/at Bylat aNB/ay -

The above matrix equation is also written as

BNB/as aNBIGx

. = [:1
aNfl/at BNB/ay

partial

(B.10a)

(B.10b)

(B.10c)

(B.10d)

where [J] is the Jacobian matrix. To find the spatial derivatives.

the Jacobian matrix is inverted.

ORB/ax aNB/as

- [,fl .

ass/a, 3813/81;

The mapping in three dimensional problems (is similar

dimensional problems. equation (B.10c) becomes

(B.10e)

to two
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3NB/as ax/as Bylas az/as ONB/ax

ONB/at = 3x/at Bylat az/at BNB/ay (B.10f)

aNB/ar axlar ay/Br az/ar aNB/Bz

or

BNB/as aNfl/ax

aNfl/at; = l J ] BNB/ay‘ . (3.108)

BNB/ar aNfl/az

The Jacobian matrix is inverted as in equation (B.10e). and the result

is

ans/ax aNB(as

'1

aNB7ay = [ J ] ans/at (B.10h)

aNB/az GNB/ar

where the Jacobian matrix (and it’s inverse) are 313 in size. With

the transformation from spatial coordinates to natural coordinates

defined. the element stiffness matrices can be transformed into

natural coordinates. the benefit being easier numerical integration of

the element stiffness matrix.





APPENDIX C

NUMERICAL INTEGRATION USING THE GAUSS-

LEGENURE.QUADRATURE METHOD

The stiffness matrix in most finite element routines is

numerically integrated by a technique called the Gauss-Legendre

Quadrature method. This method estimates the value of the integral.

f(x) by approximating the actual function with an nth-degree

interpolating polynomial pn(x) and integrating.

- d + lb 6 (C.1)£f(x)dx Epnk) x .En(x) x

The error term is En(x) for the numerical integration. The

interpolating polynomial is of Lagrangian form. i.e.

pn(x) = f[x.] + (xrx.)f[x1.x.] + (x-x.)(x-x1)f[x,.x1.x.]

+ °"°°" + (x-x0)(x-x1)eeeee(x-xn.1)f[xnlo001:1DXo] (Cez‘)

or. expanding the first three terms

Pn(x) = f(x.) + [(:-:.)/(:.-:.)]t(:.) + [(x-x.)/(x,-x.)]r(x,) +

[(x-x.)(x-x,)/(x.-x.)(x.-x,)]£(x.) + [(x-x.)(x-x.)/(x,-x.)(x.-x.)]f<x.)

62
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+ [(x-x.)(x-x1)/(x,-x.)(x,-x,)]f(x,) + .. ...... (C.2b)

The terms in equation (C.2b) can be collected and the equation can be

rewritten as

Pn(x) a [ Tngo'j*o[(x-xj)l(x.-xj)]]f(x.)

n

+ [”j:o'j*1[l(lx-xj)l(x1~xj)]]f(x,_)

+ + [HF0 j“I(:;-:.:J.)/(::,,-:.J.)flux“)

Equation (C.2c) is sometimes compressed to

Pn(x) 8 §:‘o[‘rT:;o’j#1[[x-xj)((xi-xj)]]f(xi)

or

n

Pn[x) - 21'0L1[x) f[xi)

where

L n

in) . n1=0.1*i[(x-xj)/(xi-xj)]

The error term from equation (C.1) is

n

En(x) 8 [.Tri‘ofx-xi)]f[x.xn.xn_1....

or

(C.2c)

(C.2e)

(C.2f)

(C.2g)

(C.3a)
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n

Enu) = [TTigo(x-xi)]f(n+1)(n)((mtl)! (C.3b)

where u must lie on or within the limits of integration. The value of

n. however. is unknown. The next step is to transform the function

and the limits of integration into a natural coordinate system. This

is accomplished by defining a new coordinate system r as

r 8 [2x-(e+b)]/(b-a) . (C.4a)

The new function in natural coordinates will be

F(r) 8 f(x) 8 f((l/2)((b-a)r+(a+b)) . (C.4b)

Equation (C.1) in natural coordinates becomes

F(r) . 2:01'1““+[T]':80(r-ri)]Fn+1[fi)[(n+l)! (C.5a)

where

Li(r) 8 W310 jii [(r---rj)/(ri-rj )] (0.51))

and

-1 < 'i <1 . (C.5c)

T30 ti's are point transformations of the 11's. Assuming f(x) is a
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polynomial of degree 2n&1. then 23=0Li(r)F(ri) is a polynomial of

degree n at most. Furthermore.‘TT2go(r-ri) is a polynomial of degree

n+1. thus forcing the term F(n+1)(fi)/(n+1)! to a polynomial of degree

n. This is represented by

F(“l’(fi)/(n+1)z = gn(r) (c.6)

where gn(r) is a polynomial of degree n. Equation (C.5a) becomes

F(r) 8 2:;0Li(r)F(ri) + [IrT:;o(r-ri)]gn(r) (C.7)

Integration of both sides of (C.7) yields

2““ ' ]:1§:.0L1‘r>F<=i>dr + I:1[n:go(r'ri)]xn(r)dr . (C.8)

Dropping the error term and taking the summation operator outside of

the integral produces

11%)"? F( )jlum
-1 r " 1-0 ti -1ir r

1: 280'1F(ri)
(C698)

where

w [1 1. ( )dr [1 TTIII [( )/( - )]d (c 9b)1 _1 i r -1 iso’jfii r rj V Ii Ij ‘ r. e

The term 'i is frequently called the weighing function. The location



66

of the numerical integration points is determined by the error

function. The error function is

Ii1[‘TT:;o[r-ri)]gn(r)dr . (C.10)

The best way to make the error function vanish is to select values of

‘1 that drive the function to zero. The first step is to expand the

two Polynomials (gn(r) and 'TT?.1(r-ri)) into Legendre polynomials.

The first part of the error term becomes

n

11-1'0(r-ri) 8 c.Q.(r) + c101(r) +

‘ n+1

.... + chn(r) + cn+‘03+:(r) 8 EigociQi(r) (C.11a)

and the second part of the error term becomes

3n(r) 8 d.Q.(r) + d101(r) + ... + ann(r)

' . (C.11b2-041%“) )

Substituting equations (C.11a) and (C.11b) into the error term.

equation (C.10) results in

fi1[§:.oz.o°idjqi(r)qj(r) + cmizsodififirmmdflkx . ((3.12)

Since the Legendre polynomials have the following orthogonal

preperties
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1

I;10n(r)qm(r)dr = 0 n 8 m (C.13a)

1

Llonumnum as o n = m (C.13b)

all terms of equation (C.12) that are of the form

1

cidleoiumJ-(nar 1 7‘ j (C.13c)

will be zero. The error term will then become

Ii1[‘rr:;o(r-ri)]gn(r)dr 8 §:=ocidiI:1[Qi(r)]2dr (C.14)

One way to make equation (C.14) equal zero is to assign a zero value

to the first n+1 01's. The coefficient cn+1 is not known. but

equation (C.11a) produces

11

TT 0(r-ri) = swank) . (c.1s)
is

In order for the left hand side of equation (C.15) to be zero. r1 must

be the roots of the Legendre polynomial. The general recursion

formula for Legendre polynomials is

Qn(r) 8 [(2n-1)/n]r0n_1(r) - [(n-l)/n]0n_,(r) (C.16a)

with
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Gl.(r) 8 1 (C.16b)

Q,(r) 8 r . (C.16c)

lost finite element routines use a three point integration scheme. and

the Legendre polynomial corresponding to n83 is

93(2) = (1/2)(5r3 — 3:) . (C.16d)

The roots of equation (C.16d) are

r, = -0.77459 66692 41483 .

r, - 0.00000 00000 00000

r, 8 0.77459 66692 41483

and the weight factors from equation (C.9b) are

'1 8 0.55555 55555 55556

'3 8 0.88888 88888 88889

w 3 8 0.55555 55555 55556

The transformation from one dimensional functions to three dimensional

functions is an extension of one dimensional theory. The function is

evaluated in the other two directions in the same manner it was

evaluated in the first direction.

[i1ji1Ii1f]r"'t?drd’dt 7'2:.1§:.1§:.1'i;1;k3(r1"j(‘1’ (C-17)
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In equation (C.17) the same number of integration points don't have to

be used in each direction. but for most three dimensional elements. an

integration grid of 31313 is used. When the stiffness matrix is

transformed from spatial to natural coordinates. a constant term is

multiplied into the entire stiffness matrix to preserve equality. The

term

IZIYI;[B(x.y.z)]T[C][B(x.y.z)]dxdydz (0.18)

will be transformed into natural coordinates as

1 1

I11] 1! 1[B(r.s.t)]T[C][B(r.s.t)]Det[J]drdsdt (C.19)

where DetIJ] is the determinant of the Jacobian matrix.



APPENDIX D

WAVE FRONT'SOLUTTON

The ANSYS finite element program uses a wave front solution

procedure.' This is a solution technique for a system of simultaneous

linear equations derived by the finite element method. The wave front

at any point is the number of equations which are active at that

instant. The ordering of elements is critical to minimize the' wave

front. for reasons of efficiency and problem size. The node numbering

is arbitrary. The active equations are

EE‘IKkjuj 3 Pk
(D.1)

where xkj 8 stiffness term kj

uj 8 nodal displacement j

Fk 8 nodal force k

k 8 row number

j 8 column number

L 8 number of equations.

The elimination of an equation (i8k) begins by normalizing the first

equation in the following manner

70
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L

§j=1(xij/Kii)uj = (Pi/xii) . (0.2)

If the finite element formulation is correct. the diagonal entry xii

will never be zero. Equation (D.2) is rewritten as

L 0 o -

Ejslxijuj = pi (0.3)

where

Kij ' Kij/Kii (B.4)

and

F1 8 171/311 . (0.5)

Equation (0.3) is saved for a back substitution solution. The

remaining equations are modified such that

a o

Kkj 3 xkj - In!“ (D . 6)

where k 8 i. These equations are assembled as '

L o o

8 F D.8§j_zxkjuj 1 ( )

where k.varies from 2 to L. Once the first row is eliminated. the
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other rows are eliminated by repeating the process. An example of

this solution technique is shown below. using a three by three system

of equations. The equations are

kii kis kis “1 f1

ksi tax has “a ‘ f3 . (D.9)

ksi ks: kss “a f:

The first equation is normalized so that

“i + (his/kin)“: + (k13/k11)u3 = fi/kii (D.103)

The normalized.components are then

k;, a k13/k11 (D.10b)

kis ' kll/k11 (D.10c)

f; - £,/k11 . (D.10d)

The second iteration using the wave front solution produces the

following components:

ké. = [1,, - k..<k../k..)1 (D.11a)

his - [has - k31<k1./k..)1 (D.11b)

k]. - [k,, - k,,(k,./k,.)] (D.11c)

k1. - [1,. - 1,1(k,./k,.)1 (D.11d>

f; ' [fa ‘ ksi(fs/kii)] (D.110)
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f; = [f5 ’ k31(f3/k11)]

which are assembled as

[14. kéj {as} {:2}

his k; ns t: -

The first equation of (D.11g) is modified to become

na + [[kss ' k21(kss/k11H/[kss ’ k31(k11/k11)]]n3

a [£3 ’ k31<f1lk11)]/[k33 - k31(k13/k11)]

while the second equation becomes

stns ' f:

The term u, is solved for as

us 3 fg/k:

where

f: I [[k33 ’ k::(k13/k1i)][fg - k,1(f;(k11)]]

' [[kss ' k81(k13/k11)][f3 ' k21(£1/k11)]]

and

(D.11f)

(D.113)

(D.12a)

(D.12b)

(D.12c)

(D.12d)
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k2. = [[kss ’ k31(k13’k11)][k81 ’ k31(k13/k11)]]

- [[kgg ’ kgg(kgglkgg)][kgg ’ k31(kgg/k11)]] (”.120)

The result is the same that would be obtained using some other method

such as Cramer's Rule. The advantage of the wave front technique is

the optimization of computer time during the equation solution phase

of the finite element analysis.



 

  



APPENDIX E

PLANE STRAIN

Plane strain is a specialization of three dimensional linear

elastic theory. It represents the situation where the component of

displacement normal to the x-y plane is zero. The material stiffness

matrix for the three dimensional case is

  

~1-p p u 0 0 0 ‘

u 1-u p 0 0 0

[C] = E/{(1+n)(1-Zu)} n u 1-n 0 0 0 - (E-l)

. [.40 ". I. 0 0 0 (1-28)/2 0 0

0 0 0 i 0 (1-2u)/2 0

L.o 0 0 0 L 0 2(1-2p)/2.

Using the fact that there are no out of plane displacements. the

material stiffness matrix compresses to

_88 u 0

[C] 8 E/[(1+u)(1-2p)] u 1-p 0 (E.2)

0 O (1-2n)/2
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where [C] is expressed in Hooke's law as

[a] 8 [C][s] (E.3a)

where

{a)T= [ox 6y rxy] (B.3b)

and

{slT 8 [81 By Try] . (E.3c)

 



APPENDIX F

TWO DIMENSIONAL DISPLACEMENT DATA

The following tables correspond to the two dimensional model of

the wedge area from Chapter 3. They are the displacements for the

loaded nodes of the Brooks Supervillinova

modifications of various size holes.

Table F.l Y direction displacements of

Node 380.05

1 8.2990

2 8.2909

3 8.2930

4 8.2888

5 8.2870

6 8.2851'

7 8.2825

8 8.2785

9 8.2692

10 8.2427

Table F.2 I

Node 380.05

1 8.2997

2 8.2929

3 8.2959

4 8.2909

5 8.2877

380.10

8.2984

8.2911

8.2952

8.2954

8.2977

8.2953

8.2882

8.2804

8.2696

8.2427

RPO.10

-.3013

8.3075

8.3043

’.3003

380.15

8.2973

8.2917

8.2997

8.3086

8.3180

8.3148

8.2995

8.2840

8.2704

8.2425

380.15

”.3049

-.3301

‘.3308

8.3274
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380.20

8.2957

8.2919

8.3042

8.3269

8.3569

8.3515

8.3155

8.2876

8.2709

8.2420

direction displacements of

380.20

8.3088

8.3321

8.3736

8.3771

8.3659

380.25

8.2937

8.2933

8.3128

8.3542

8.4075

8.3994

8.3386

8.2944

8.2725

8.2417

380.25

-.3170

8.3622

8.4336

8.4445

-.4268

including the

380.30

8.2914

8.2953

8.3246

-.3916

-04798

-0‘679

8.3701

8.3036

8.2748

8.2414

R-OO3O

8.3297

8.4068

8.5253

8.5502

8.5219

geometry

model with one hole

model with two holes
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Table F.2 (cont'd)

6 8.2858 8.2988 8.3239 8.3685 8.4328 8.5324

7 8.2840 8.2946 8.3152 8.3529 8.4050 8.4829

8 8.2797 8.2853 8.2964 8.3122 8.3360 8.3694

9 8.2696 8.2713 8.2745 8.2777 8.2842 8.2932

0 8.2427 8.2429 8.2432 8.2431 8.2440 8.2453

Table F.3 Y direction displacements of model with three holes

Node 3=0.05 3=0.10 3=0.15 380.20 380.25 3=0.30

1 8.3014 8.3084 8.3234 8.3480 8.3840 8.4383

2 8.2947 8.3066 8.3302 8.3784 8.4437 8.5450

3 8.2966 8.3103 8.3378 8.3878 8.4594 8.5726

4 8.2908 8.3043 8.3317 8.3718 8.4356 8.5365

5 8.2877 8.3012 8.3282 8.3749 8.4460 8.5605

6 8.2859 8.2993 8.3261 8.3711 8.4405 8.5526

7 8.2847 8.2978 8.3241 8.3619 8.4225 8.5183

8 8.2819 8.2947 8.3192 8.3648 8.4288 8.5281

9 8.2723 8.2825 8.3019 8.3403 8.3913 8.4680

10 8.2442 8.2490 8.2588 8.2730 8.2941 8.3237

Table F.4 X direction displacements of model with one hole

Node 380.05 380.10 3=0.15 380.20 380.25 380.30

1 .01655 .01983 .02560 .03178 .04197 .05457

2 .00590 .00972 .01669 .02463 .03737 .05351

3 .01703 .02252 .03221 .04480 .06294 .08629

4 .03164 .03718 .04820 .06638 .08989 .1210

5 .04502 .04811 .05307 .06277 .07507 .09260

6 .05578 .05409 .05202 .04549 .03880 .02901

7 .06417 .06053 .05306 .03978 .02387 .00318

8 .06960 .06639 .06091 .05330 .04330 .03089

9 .07606 .07430 .07114 .06761 .06206 .05532

10 .05793 .05687 .05521 .05373 .05114 .04833

Table F.5 X direction displacements of model with two holes

Node 380.05 380.10 380.15 380.20 380.25 380.30

H .01776 .02535 .03837 .05591 .08309 .1211

2 .00711 .01506 .03013 .05396 .08804 .1368
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Table F.5 (cont'd)

3 .01718 .02341 .03411 .05170 .07827 .1191

4 .03084 .03413 .04083 .04626 .05869 .07768

5 .04440 .04566 .04801 .05145 .05790 .06804

6 .05612 .05554 .05411 .05454 .05425 .05432

7 .06423 .06065 .05499 .04387 .02942 .00783

8 .06914 .06441 .05509 .03947 .01942 8.00773

9 .07536 .07135 .06463 .05521 .04230 .02579

10 .05765 .05564 .05217 .04836 .04206 .03441

Table F.6 X direction displacements of model with three holes

Node 380.05 380.10 380.15 380.20 380.25 380.30

1 .01760 .02484 .03794 .05867 .08965 .1348

2 .00627 .01185 .02061 .03472 .05818 .09553

3 .01617 .01953 .02573 .02892 .04087 .06010

4 .03041 .03259 .03617 .04011 .05092 .06977

5 .04452 .04641 .04947 .05532 .06650 .08599

6 .05667 .05812 .06125 .06195 .06608 .07233

7 .06549 .06617 .06755 .06961 .07253 .07652

8 .07036 .06952 .06762 .06792 .06613 .06388

9 .07551 .07193 .06694 .05549 .04140 .01922

10 .05702 .05311 .04546 .03253 .01640 8.00431





APPENDIX G

THREE DIMENSIONAL CONDENSED ELEMENT'ROUTTNE

This appendix contains the computer program to generate condensed

three dimensional element stiffness matrices. The pragram was written

and run on a PRIME 750 computer.

80





81

C

C

C-8This is the driver program. STIFlONOD. that determines the

C stiffness matrix to a condensed ten node 3D isoprametric

C element. '

C

C883EAL variables

Matrix of X values of element 8 There are 20 since

a condensed 10 node element maps 20 nodes.

1(20) Matrix of T values of element

2(20) 8 Matrix of 2 values of element

X(20)

A(20) 8 Mapping coefficient from RST * A

8(20) 8 Mapping coefficient from RST ‘ B

C(20) 8 Mapping coefficient from RST ‘ C

RST(20.20) 8 Mapping matrix (see above)

I
l
l
!
"

N
H
M

l033(21.21) 8 Work.matrix

MU - Poissons ratio

E‘- Youngs modulas0
0
0
0
0
0
0
0
0
0
0
0
0
0
!
)

88INTEBER variables

ITERM - The terminal location

ITYPE 8 The terminal type

IRATE 8 The terminal baud rate

ICODE - Error flag for subroutine call

0
0
0
0
0
0
0
0
0
0
0

REAL X(20).Y(20).Z(20).A(20).B(20).C(20)

REAL WORK(21.21).RST(20.20).MD

GARACI‘ERH IANS

C

C

C-8Determine the terminal type and baud rate

C

CALL TERM (ITEM. ITYPE. IRATE. ICODE)

IF (ICODE.NE.0) IRATE 8 4800

N = 20

NPl 8 21

C

C-8Input the data and material properties

C

100 CALL INPUT'(X.Y.Z,E,MU)

C. . . . . ..

C88Find the location of the condensed nodes. assuming

C they lie halfway between the endpoints in all

C three directions
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C

CALL LOCATE (X.Y.Z)

C - .

C883uild the coefficient matrix RST where

C the mapping is dependent on RST ‘ A =

C RST ..R 8 Y . RST ‘ C 8 Z

CALL ASMBL (RST)

88Solve for A. B. and C from above.

'This uses the linear equation solver

in the Math Library on the Prime.

The calling sequence is (A.X.RST.WORK.

N.NP1.IERR). The last variable. IERR.

is an error flag that indicates if

the matrix RST is singular.

O
O
G
O
O
O
O
O
O
O

CALL LINEQ (A.X.RST.WORK.N.NPI.IERR)

CALL LINEQ (B.Y.RST.WORR.N.NP1.IERR)

CALL LINEQ (C.Z.RST.WORK.N.NP1.IERR)

C

C—-Check the error messgage.

C

IF (IERR.EQ.1) WRITE (1.110)

’110 FORMAT (/.1X.'888> MATRIX IS SINGULAR (888')

c. . , .- . - .

C-86ive the user the opportunity to view the

C element. This is done by mapping the element

C from natural coordinates to spatial coordin.

C

120 WRITE (1.130)

130 FORMAT (/.1X.'Would you like to see the element? ')

. READ (1.140) IANS

140 FORMAT (A1)

IF (IANS. 3031') CALL DRELE (A. B. C. IRATE)

IF (IANS. EQ.'Y') GOTO 150 ‘

IF (IANS. EQ. 'N') GOTO 150

WRITE (1.900) IANS

GOTO 120 '

C

C8-Let the user integrate the element

C

150 WRITE (1.160)

160 FORMAT (/.1X.'Would you like to integrate this element? ')

" READ (1.140) IANS

IF (IANS. EQ.'Y') CALL INTER (A. B. C. E. MD)

IF (IANS. En.'Y') GOTO 170 ‘

IF (IANS. 30. 'N') GOTO 170

WRITE (1.900) IANS '

GOTO 150 ‘

C ,

C-8Let the user input another element if they wish.





170

180

190

900

C

C
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WRITE (1.180)

FORMAT (/ .1x.'Would you like to input another element? ')

READ (1.140) IANS

IF (IANS. BO. 'Y' ) 6010100

IF (IANS.EQ.'N') GOTO 190

WRITE (1.900) IANS

GOTO 170

CONTINUE

FORMAT (/.IX.A1.' is not a legal response. The only'.

' legal responses are Y(Yes) and N(No).')

CELL EXIT

END

C8-This subroutine. INPUT. will read in element data

C

C

C

100

110

120

130

140

150

160

170

180

and material data concerning the ten node degraded

element.

SDBROUTINE INPUT'(X. Y. 2. E. MD)

CEARACI'ER‘l IANS '

REAL X(20).Y(20).Z(20).MD

WRITE (1.110)

FORMAT (/.1X.'Enter Youngs modulas: ')

READ (1.3.ERR8120) E ‘

GOTO 130 '

WRITE‘(1.900)

GOTO 100 '

WRITE (1.140)

FORMAT (/.1X.'Enter Poissons ratio: ')

READ (1.‘.ERR8150) MU ‘

GOTO 160'

WRITE'(1.900)

GOTO 130 ' '

DO 210 J 8 1. 10. 1

IF (J.EQ. 1) IANS 8 'I'

IF (1.80. 2) IANS 8 '1'

IF (1.30. 3) IANS 8 '3'

IF (J.EQ. 4) IANS 8 'L'

IF (J.EO. 5) IANS 8 'M'

IF (1.30. 6) IANS 8 'N'

IF (1.33. 7) IANS 8 '0'

IF (1.80. 8) IANS 8 'P'

IF (1.33. 9) IANS 8 '0'

IF (1.30.10) IANS 8 'R'

WRITE (1.180) IANS. IANS. IANS

FORMAT (I. 1X. 'Enter X('.M.’). Y(' .M .'). and Z('.A1.'): ')





190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

900

910

990

C
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READ (1.‘ .ERR8190) X(J) .Y(J). 2(1)

GOTO 200

WRITE (1.900)

GOTO 170

CONTINUE

CONTINUE

WRITE (1.230)

FORMAT (/.1X.'The following options are available: ')

WRITE (1.240) _ '

FORMAT (/.7X.'I 8 Input new element and material data')

WRITE (1.250)

FORMAT (7X.'V 8 View current element and material data' )

WRITE (1.260)

FORMAT (7X.'E 8 Exit input mode')

WRITE (1.270)

FORMAT (I. 1X. 'Which option would you like? ')

READ (1.280) IANS

FORMAT (A1)

IF (IANS.EQ.'I') GOTO 100

IF (IANS.EQ.'V') GOTO 290

IF (IANS.EQ.'E') GOTO'990

WRITE (1.910) IANS

GOTO 220 '

WRITE (1.300) E

FORMAT (/.1X.'Youngs modulas 8 '.F12.3)

WRITE (1.310) MU

FORMAT (1X.'Poissons ratio 8 '.F8.5)

WRITE (1.320) X(1).Y(l).Z(1) '

FORMAT (/.11.'X( 1)8 '.F12.3.4X.'Y( 1)8 '.F12.3.4X.

'Z( 1)8 '.F12.3)

D0 340 J 8 2. 10. 1

WRITE (1.330) J.X(J).J.Y(J).J.Z(J)

FORMAT (IX.'X('.12.')8 '.F12.3.4X.'Y('.I2.')8 '.F12.3.4X.

'Z('.I2.')8 '.F12.3)‘ '

CONTINUE ‘

GOTO 220

FORMAT (/.1X.'Error 8 Data incompatible with program 8 '.

'Try again')‘

FORMAT (/.1X.A1.' is not a legal response. Try again.')

CONTINUE

RETURN

END' '

C88This subroutine. LOCATE. determines the location

C

C

C

C

of the condensed nodes. Their location is important

to insure complete mapping.

SUBROUTINE LOCATE (X. Y. Z)
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DIMENSION X(20).1(20).2(20)

C , , . . , . _ _

C88First move the 3 node to it's pr0per

C twenty node location

C

X(13) 8 X(IO)

1(13) 8 1(10)

2(13) 8 2(10)

C88Node between I and K

c .

X(IO) 8 (X(2) + X(3)) / 2.0

1(10) 8 (1(2) + 1(3)) I 2.0

2(10) 8 (2(2) + 2(3)) I 2.0

C88Node between K and L

c .

X(11) 8 (X(3) + X(4)) I 2.0

1(11) 8 (1(3) + 1(4)) / 2.0

2(11) 8 (H3) + 2(4)) / 2.0

c - -. . .1 - .. .

C88Node between L and I

C

X(12) 8 (X(4) + X(l)) I 2.0

1(12) 8 (1(4) + 1(1)) I 2.0

2(12) 8 (2(4) + 2(1)) I 2.0

c ... . . . . - . .

C88Node between N and 0

C . .

X(l4) 8 (1(6) + X(7)) I 2.0

1(14) 8 (1(6) + 1(7)) I 2.0

2(14) 8 (2(6) + 2(7)) I 2.0

C88Node between 0 and P

C .

X(IS) 8 (X(7) + X(8)) I 2.0

1(15) 8 (1(7) + 1(8)) I 2.0

2(15) 8 (2(7) + 2(8)) I 2.0

c . . . . . . .

C88Node between P and M

C .

X(16) 8 (X(8) + X(5)) I 2.0

1(16) 8 (1(8) + 1(5)) I 2.0

2(16) 8 (2(8) + 2(5)) I 2.0

C .- .. - . . - . . .

C88Node between I and M

C ,

X(17) 8 (X(1) + X(5)) I 2.0

1(17) 8 (1(1) + 1(5)) / 2.0

2(17) 8 (2(1) + 2(5)) I 2.0

C , . ,

C88Node between I and N

C
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X(18) 8 (X(2) + 1(6)) I 2.0

1(18) 8 (1(2) + 1(6)) I 2.0

2(18) 8 (2(2) + 2(6)) I 2.0

c . . . . . . .

C88Node between K and 0

C

X(l9) 8 (X(3) + X(7)) I 2.0

1(19) 8 (1(3) 8 1(7)) I 2.0

2(19) 8 (2(3) + 2(7)) / 2.0

C88Node between L and P

C

X(20) 8 (X(4) + X(8)) I 2.0

1(20) 8 (1(4) + 1(8)) I 2.0

2(20) 8 (2(4) + 2(8)) / 2.0

C

RETURN

END' °

C

C88This subroutine. ASMBL. assembles the coefficient

C matrix for the mapping of the function between

C natural coordinates and spatial coordinates.

C It is built on a twenty point map and passed back to

C the driver program.

C

SUBROUTINE ASIBL (RST)

REAL RST(20.20).3(20).S(20).T(20)

C88Matrices R. S. and.T are the nodal positions

C in natural coordinates.

C

DATA (3(1).131.2O)[81.0.1.0.1.0.81.0.81.0.1.0.1.0.81.0.

1 0.0.1.0.O.O.81.0.O.0.1.0.0.O.81.0.81.0.1.0.1.0.81.0/

DATA.(T(I).I‘l.20)/81.0.81.0.1.0.1.0.81.0.81.0.1.0.1.0.

1 81.0.0.0.1.O.O.0.81.0.0.0.1.0.0.0.81.0.81.O.1.0.1.0I

DATA (X(1)91.1920)[-100s-leoa-leop-1a0.1e0)1.0,1e0.1.0,

1 81.0.81.0.81.0.81.0.1.O.1.0.1.0.1.O.0.0.0.0.0.0.O.O/

C . .

m100181. 20. 1

RST(J. 1) ' 1.0

RST(J. 2) 3 3(1)

RST(J. 3) 3 8(1)

RSTU. 4) 8 TU)

RST(J. 5) ' R(J)“2

RST(J. 6) 8 S(J)“2

RST(J. 7) 8 T(J)“2

RST(J. 8) ' S(J)‘T(J)

RSTIJ. 9) ' S(J)‘R(J)

RST(J.10) 3(1)‘T(J')
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RST(1.11) 8 S(1)“2 ‘ T(1)

RST(1.12) 8 S(1)“2 8 3(1)

RST(1.13) 8 T(1)"2 ‘ 8(1)

RST(1.14) 8 T(1)’*2 * 3(1)

RST(1.15) 8 3(1)“2 8 8(1)

RST(1.16) 8 R(1)“2 ' T(1)

RST(1.17) 8 3(1) ' S(1)"‘T(1)

RST(1.18) 8 S(1)“2 8 3(1) ‘ T(1)

RST(1.19) 8 T(1)“2 8 3(1) * 8(1)

RST(1.20) 8 R(1)“2 8 8(1) ‘ T(1)

100 CONTINUE' ' "' ' ' "

C' ..

RETURN

END~ -

C _

C

c8411. subroutine. BREE. draws the degraded twenty

C node axis by using the mapping vectors A. B. and

C C and remapping the element back from natural

C coordinates to spatial coordinates.

C

SUBROUTINE URELE (A. B. C. IRATE)

C

REAL A(20) ..B(20) C(20)

CRARACTER‘I IANS

C _ .

C88Set the initial scale value. the initial viewpoint

C and the initial reference point.

C

SCALE 8 2.

XVP 8 10.

YVP 8 10.

ZVP 8 10.

X3 8 0.

1R 8 0.

ZR 8 0.

CALL RECOVR

CALL ENITT3 (IRATE/10)

100 CALL MIDDE '

WRITE (1.110)

110 FORMAT (/.1X.'Current graphic displays set at: ')

‘ WRITE (1.120) XVP.1VP. ZVP

120 FORMAT'(5X.'Viewpoint set at (x. y.z): '.3F7.2)

‘ WRITE (1.130) XR. ER. 23 '

130 FORMAT (5X. 'Reference point set at (x. y.z): '.3F7.2)

“ WRITE (1.140) SCALE '

140 FORMAT (5X. 'Scaling factor set at: '.F7.2)

145 WRITE (1.150)

150 FORMAT (I.1X.'The following options are available: ')

WRITE (1.160)

160 FORMAT (I.5X.'D 8 Draw the element')





C

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

88

WRITE (1.170)

FORMAT‘(SX.'V

WRITE (1.180)

FORMAT‘ (5X.'R - Change the reference point')

WRITE (1.190)

FORMAT (5X.'S - Change the scaling factor')

WRITE (1.200)

FORMAT (5X.'P - View the graphic parameters')

WRITE (1.210) ‘

FORMAT (5X.'E - Exit the element draw node')

WRITE (1.220) ‘

FORMAT (I.1X.'Which option would you like? ')

READ (1.230) IANS

FORMAT (A1)

IF (IANS.m.'D') 0010 310

IF (IANS.m.'V') 0010 250

IF (IANS.EQ.'R') G010 270

IF (IANS.m.'S') GOT!) 290

IF (IANS.m.'P') GOT!) 100

IF (IANS.m.'E') com 990

WRITE (1.240) IANS

FORMAT (I.1X.A1.' is not a legal answer. Try again.')

GOT!) 145

Change the viewpoint')

WRITE (1.260)

FORMAT (l. 11.'Enter the new viewpoint (x. y.z): ')

READ (1." .RR8250) XVP. YVP. ZVP

GOT!) 145

WRITE (1.280)

FORMAT (I. 1X. 'Enter the new reference point (x. y.z): ')

READ (1'.‘M8270) XR. YR. ZR ‘

60m 145

WRITE (1.300)

FORMAT (I.1X.'Enter the new scaling factor: ')

READ (1.8.M8290) SCALE ‘

6010 145 '

CALL REmVR

CALL DWINDO (810.23. 10.23. -7 .8.7 8.)

CALL CARTVP (XVP. YVP. ZVP)

CALL LOOXAT (13. YR. ZR)

CALL ZUP

CALL MAGNFY (SCALE)

C--Draw the bottom of the element

C

C

C

and then the top

W36OK81.2. 1

IF(K..m1)R8-l.

IF(K.EQ.2)3 1.



320

330

340

350

c.

360

c. .

C

C

370

380

990

89

T 8 81.

DO 320 S 8 81.. 1.. .02

CALL FCT (X. 1.2.A.B.C.3. S. T)

IF ($.30. 81. ) CALLDDVEA3 (X.1.Z)

CALL DRAWA3 (X.1.Z) '

CONTINUE ‘

S 8 1'.

DOB3OT881.. 1.. .02

CALLFCT (X.1.Z......ABCRST)

CALL DRAWAS (X. 1. 2)

CONTINUE '

T8 1.

D0 340 S 8 1.. 81.. 8.02

CALL FCT (X.1.Z.A.B.C.R.S.T)

CALL DRAWA3 (X.1.Z)

CONTINUE

S 8 81.

DOB5OT8 1..-1. 802

CALLFCT (X.1.....ZABCRST)

CALL DRAUAB (X. 1.2)

CONTINUE

CONTINDE

C—Connect the top and bottom

D038OX81.4.1

IF (1.39.1) S 8 81.

IF (X.m.1) T 8 81.

IF (3.30.2) S 8 1.

IF (X.m.2) T 8 81.

IF (LEQJ) S 8 1.

IF (3.30.3) T 8 1.

IF (1.30.4) S 8 81.

T8 1.IF (3.80.4)

D0 370 R 8 81.. 1.. .02

CALLFCT (X.1.2..AB.C3..ST)

IF (3'. m.81. ) CALL MVEA3 (X. 1.2)

CALL D3AWA3 (X. 1.2)

CONTINUE ‘

CONTINUE

CALL ANBDDE

6010 145

CONTINUE

RETURN ‘

END
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C

C-8This subroutine. FCT. maps points in natural

C coordinates back into spatial coordinates.

C

SUBROUTTNEIFCT (X.1.2.A.B.C.R.S.T)

C

REEL A(20).B(20).C(20)

C _

8 A(1) + A(2)8R + A(3)8S + A(4)8T + A(5)8R8R

+ A(6)8S8S + A(7)8T‘T 4' A(8)"S‘T + A(9)8S8R +

A(10)8R8T + A(11)8S8S8T-+ A(12)‘S8S83 + A(13)8S8T8T

+‘A(14)8R8T8T*+'A(15)8R8R8S'+ A(16)8R8R8T"+"‘ '

A(17)8R8S8T + A(18)8S8S8R8T + A(19)8R8S8T8T +

A(20)8R838S8Th
8
k
i
h
8
h
8
h
8

Y = 3(1) + B(2)8R + B(3)8s + B(4)8T + B(5)8R8R

+ B(6)8S8S + B(7)8'r8'r + B(8)8S8'r + B(9)8S8R +

B(lO)8R8T + B(ll)8S8S8T‘+ B(12)8S8S8R + B(13)8S8T8T

+ B(14)838T8T + 8(15)8R838S + B(16)8R8R8T +

B(l7)8R8S8T-+ B(18)‘S8S8R8T + B(19)8R8S8T8T +

B(20)83838S8T ‘

~
F
8
F
8
F
8
F
8
P
8

2 8 C(1) + C(2)8R + C(3)8S + C(4)8T'+ C(5)8R8R

+ C(6)8S8S +‘C(7)8T8T + C(8)8S8T"+ C(9)8S8R +

C(10)838T‘+ C(11)8S8S8T'+ C(12)‘S8S8R + C(13)8S8T8T

+ C(14)838T8T'+ C(15)8R8R8S + C(16)8R8R8T'+

C(17)8R8S8T'+ C(18)8S8S8R8T + C(19)8R8S8T8T +

C(20)8R8R8S8Th
8
h
i
k
8
h
8
h
8

RETURN

END

C

C

C-8This subroutine. INTEB. integrates the element

C stiffness matrix and builds the matrix.

C The integration scheme used is a 3X3X3 Gauss

C Legendre quadrature method

C

C88Variab1e identification

C

C-8REAL variables

A(20) - Mapping coefficients 8 X direction

B(20) 8 Mapping coefficients 8 1 direction

C(20) 8 Mapping coefficients 8 2 direction

3(3) 8 3 natural coordinate integration points

8(3) - 8 natural coordinate integration points

T(3) 8 T natural coordinate integration points

WR(3) 8 Weight functions. r direction

WS(3) 8 Weight functions. s direction

WT(3) 8 Weight functions. t direction

0
0
0
0
0
0
0
0
0
0
0
0
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DSFRST(3.10) 8 Derivative of the shape functions with resp to RST

DSFX12(3.10) 8 Derivative of the shape functions with resp to X12

BMAT(6.30) 8 The 3 matrix used to form the stiffness matrix

BTMAT(30.6) 8 The transpose of the 8 matrix

CMAT(6.6) 8 The material matrix used to form the stiffness matrix

INV1AC(3.3) 8 The inverse of the Jacobian matrix

PART(30.30) - A partial sum of the stiffness matrix

STIF(30.30) 8 The element stiffness matrix

0
0
0
0
0
0
0
0
6
0
0
6
0

SUBROUTINE mm; (A.B. C. E. MU)

0

REAL A(20).B(20).C(20).MU

REAL R(3).S(3).T(3).WR(3).WS(3).WT(3)

REAL DSFRST(3.10) .DSFX12(3.10)

REAL BMAT(6.30).BTMAT(30.6).CMAT(6.6)

REAL INV1AC(3.3) ‘

REAL STIF(30'.30) .PART(30.30).WORX(30.6)

DATA (3(1).I81.3)l8.7745966692.0.0..7745966692!

DATA (8(1).I81.3)l8.7745966692.0.0..7745966692/

DATA (T(I).181.3)l8.7745966692.0.0..7745966692/

DATA (“(1) . 181 .3) / .5555555556 . .8888888889 .‘ .5555555556/

DATA (WS(I) . I81 .3)/ .5555555556 . .8888888889 . . 5555555556!

DATA (WT(I) . I81 .3)/.5555555556. .8888888889 . .5555555556l

DATA STIF/90080.O/'

DATA PART/90080.0/

DATA EMT/18080.0/

DATA BMAT/1808O.OI'

DATA GMAT/3680.0/'

C .

C88Start the integration loop

C .

D0 330 I

DO 320 1

DO 310 K

1. 3. 1

1. 3. 1

l. 3. 1

C . .

C88Get the derivatives of the shape functions

C in thier natural coordinates

C

CALL DERSF (DSFRST.R(I) .S(X) .T(1))

C . . . . _.

C—Determine the Jacobain matrix inverse. the Jacobian

C matrix determinant. for the numerical values of

C 3. S. and T.

C

CALL JACOB (A.B.C.3(I).S(X).T(1).DETJAC.INV1A0)

C . . . .

C88Transform the derivatives of the shape functions

C into X12 spatial coordinates.
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C This involves using the matrix multplication

C in the PRIME math library. called MMLT

C

CALL MMLT (DSFX12.INV1AC.DSFRST.3.3.10)

c .

C88Set the B matrix from DSFXIZ for the stiffness matrix

C 'Also find the transpose of the B matrix. These two

C matrices are stored in BMAT and BTMAT

C

CALL MAKER (DSFX12.BMAT.BTMAT)

C

C

C88Get the material matrix. this is called inside

C the integration loop because some matrix routines

C destroy the product matrices.

C

CALL MAKEC (CMAT.E.MU)

C A

C—Build the stiffness matrix parts

C

CALL MIILT (WORK.BTMAT.CMAT.30.6.6)

CALL MILT (PART.WORX.BMAT.30.6.30)

C

C88Multiply the weight factors and DE'DAC by the

C individual summation part of the stiffness matrix

C

CALL MSCL (PART. PART. 30. 30. (W3(I)8WS(X)8WT(1)))

CALL MSG. (PART. PART. 30.30.DE'HAC) ‘ ‘

C

C88Sum the partial stiffness matrix to the entire term

c .

CALL MADD (STIF.STIF.PART.30.30)

C

310 CONTINUE

320 CONTINUE

330 CONTINUE

c .

C88Output the results to a file named OUTPUT

C

OPEN (14.FILE-'WTPUT')

D0 510*I 8 1. 30. 1'

DO 500 1 8 1.30. 6

WRITE (14.8) STIF(I.1). STIF(I. 1+1). STIF(I. 1+2). STIF(I. 1+3).

1 STIF(I.1+4). STIF(I. 1+5) ‘

500 CONTINUE

510 CONTINUE

C

CLOSE (14)

C . . a .

RETURN

EVID'





93

C88This subroutine. MAKEC. assembles the material

C

C

C

C

100

110

C

SUBROUTINE MAKEC (CMAT. E. MU)

REAL CMAT(6.6).MU

CMAT(1.1)

CMAT(1.2)

CMAT(1.3)

CMAT(2.1)

CMAT(2.2)

CMAT(2.3)

CMAT(3.1)

CMAT(3.2)

CMAT(3.3)

CMAT(4.4)

CMAT(5.5)

CMAT(6.6)

D0 110 I 8

D0 100 1 8

CMAT(I.J)

CONTINUE'

CONTINUE

RETURN

END

1

1

1 8 MU

MU

MU

MD

1 - MU

m .

MU

MD

1 8 MB

(1 8 (2.08MU)

(1 8 (2.08MB)

(1 8 (2.08MU)

. 6. 1

. 6. 1

( E

matrix in a location called CMAT.

) / 2

) / 2

) / 2

.0

I0

0

C-8This subroutine. DERSF. calculates the

t (183)

(183)

(1-T)

(18R)

(1+8)

(1-T)

(183)

(183)

O

derivatives of the shape functions in

(2.088

(S + 2.

+ T + R +

08T + R +

(S + T + 2.083 +

(2.088

(2.08T

(T _ 8

(s + 2.

C

C natural coordinates.

C

C

SUBROUTINE DERSF (DSFRST.R. S. T)

REAL DSFRST(3.10)

c . .

DNDSI = .125 8 (1—T)

DNDTI 8 .125 8 (188)

DNDRI 8 .125 8 (188)

C

DNDSI 8 .125 8 (18T)

DNDTU 8 .125 8 (183)

DNDRI 8 .125 8 (1+8)

C

DNDSI = .125 8 (1+T)

DNDTI 8 .125 8 (1+8)

DNDRI 8 .125 8 (1+8) (1+T) (2.0.x

- T _ R _

- s + n +

+ 2.083 +

+ T — R 8

08T — R 8

8 S 8 T +

/ ((1+MU)8(18(2.08MU)))) 8 CMAT(I.1)

 





DNDSL 8

DNDTL 8

DNDRL 8

DNDSM 8

DNDTM 8

DNDRM 8

DNDSN 8

DNDTN 8

DNDRN 8

DNDSO 8

DNDTO 8

DNDRO 8

DNDSP 8

DNDTP 8

DNDRP 8

DNDSQ 8

DNDTQ 8

DNDRQ 8

DNDSR 8

DNDTR 8

DNDRR 8

DNDSS 8

DNDTS 8

DNDRS 8

DNDST'8

DNDTT

DNDRT'8

DNDSU 8

DNDTU 8

DNDRU 8

DNDSV 8

DNDTV 8

DNDRV 8

DNDSW 8

DNDTW 8

DNDRW 8

DNDSX 8

DNDTX 8

DNDRX 8

DNDS1 8

.125

.125

.125

.125

.125

.125

.125

.125

.125

.125

.125

.125

.125

.125

.125

.25

.25

.25

.25

.25

.25

.25

.25

.25

.25

.25

.25

.25

.25

.25

.25

.25

.25

.25

.25

.25

.25

.25

.25

(1+T)

(188)

(188)

(18T)

(188)

(188)

(1—1‘)

(1+8)

(1+8)

(1+T)

(1+8)

(1+8)

(1+T)

(188)

(188)

(181‘)

(183)

(18T)

(18R)

(1+8)

(1+8)

(1+T)

(183)

(1+T)

(183)

(188)

(188)

(181')

(1+3)

(18T)

(1+R)

(1+8)

(1+8)

(1+T)

(1+3)

(1+T)

(1+3)

(188)

(188)

(181‘)
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(18R) 8 (2.088 8 T'+ R.+

(18R) 8 (2.08T 8 8 8 R 8

(1+T) 8 (s -:'r+ 2.08R
...

(1+3) 8 (2.088 + T - R +

(1+3) 8 (S + 2.08'1‘ - R +

(18T) ‘ (2.083 8 8 8 T

(1+R) 8 (2.088 - 'r + R

(1+3) 8 (2.08'1' 8 S 8 R +

(18T) 8 (S 8 T-+ 2.083

(1+3) 8 (2.088 + T + 3

(1+3) 8 (S + 2.08T + R

(1+T) 8 (S'+ T'+ 2.083

(1+3) 8 (2.088 8 T‘8 3

(1+3) 8 (2.08T 8 S'+ R

(1+T) 8 ('1‘ 8‘s + 2.0811

(183) 8 (82.0)88

(18(8882)) 8 (81.0)

(18(8882)) 8 (81.0)

(18(T882))

(183) 8 (82.0)8T

(18(T882)) 8 (81.0)

(183) 8 (82.088)

(18(8882)) '

(18(8882)) 8 (81.0)

(1-(T882)) 8 (81.0)

(18R)‘8 (82.0)8T

(18(T882)) 8 (81.0)

(1+R) 8 (82.0)88

(18(8882)) 8 (81.0)

(18(8882))

(1-(‘1‘882H

(1+R) '8 (82.0)8'1‘

(1801882))

(1+R) 8 (82.0)88

(18(8882))

(18(8882))

(18(T8e2)) 8 (81.0)

(1+R)" (82.0)8T

(18(T882))

(18(3882)) 8 (81.0)



C

DNDTY 8

DNDRY 8

.25 .

.25 8

DNDSZ 8

DND'IZ 8

DNDRZ 8

.25 8

.25 8

.25 .

.25 8

.25 8

.25 8

”(BSA 8

DNDTA 8

DNDRA 8

.25 8

.25 8

.25 8

DNDSB 8

DND'IB 8

DNDRB 8

(188) 8

(188) 8

(1-T) 8

(1+8) 8

(1+8) 8

(1+T) 8

(1+8) 8

(1+8) 8

(1+T) 8

(1-S) 8

(1—S) 8

C88Load the derivatives into

C

DSFRSTU. 1) 8

DSFRST(2. 1)

DSFRST(3, 1)

DSFRSTU. 2)

DSFRST(2. 2)

DSFRST(3. 2)

DSFRSTU. 3)

DSFRST(2. 3)

DSFRST(3. 3)

DSFRST(1. 4)

DSFRST(2. 4)

DSFRST(3. 4)

DSFRSTU. 5)

DSFRST(2. 5)

DSFRST(3. 5)

DSFRS'NI. 6)

DSFRST(2. 6)

DSFRST(3. 6)

DSFRSTU. 7)

DSFRST(2. 7)

DSFRST(3. 7)

DSFRSTU. 8)

DSFRSTQ. 8)

DSFRST(3. 8)

DSFRSTU. 9)

DSFRS'I'(2. 9)

DSFRST(3. 9)

DSFRST(1.10)

DSFRST(2.10)

DSFRST(3.10)

RETURN

mu ‘

DNDSI +

DNDTI +

DNDRI +

DNDSI 8-

DNDTI +

DNDRI +

DNDSI 8-

DNDTI 4-

DNDRI +

DNDSI. +

DNDTI. +

DNDRL +

DNDSI +

DNDTI! +

DNDRI! +

DNDSN +

DND'IN +

DNDRN +

DNDSO +

DNDTO +

DNDRO +

DNDSP 4-

DNDTP +

DNDRP +

DNDSQ

DNM‘Q

DNDRQ

DNDSI]

DNDTU

DNDRI]
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(1-(R..2)) . (-1.0)

(1413-8 (82.0)":

(18(R882))

(18(8882)) 8 (81.0)

(1-T)‘8 (82.0)8R

(1—(R882))

(18(8882))

(1+T) 8 (82.0)8R

(1-(R882)) 8 (81.0)

(1-(R882)) '

(1+T) 8 (82.0)8R

the nut: ix DSFRST

(DNDSI/2.0) + (DNDSY/2.0)

(DNDTI/2.0) + (DNDTY/2.0)

(DNDRT/2.0) + (DNDRY/2.0)

(DNDSR/2.0) + (DNDSZ/2.0)

(DNDTR/2.0) 8 (DNDI'Z/2.0)

(DNDRR/2.0) 8 (DNDRZ/2.0)

(DNDSR/2.0) '8 (DNDSS/2.0)

(DNDTR/2.0) 8' (DNDTS/2.0)

(DNDRR/2.0) + (DNDRS/2.0)

(DNDSS/2.0) + (DNDSI/2.0)

(DNDTS/2.0) + (DNDTI/2.0)

(DNDRS/2.0) + (DNDTI/2.0)

(DNDSX/2.0) 8’ (DNDSI/2.0)

(DNDTI/2.0) + "mm/2.0)

WWII/2.0) + (DNDRY/2.0)

(DNDSV/2.0) 8’ (DNDSZ/2.0)

(DNDTV12.0) + (DNDTZ/2.0)

(DNDRV/2.0) 8' (DNDRZ/2.0)

(DNDSV/2.0) 8' (DNDSW/2.0)

(DNDTV/2.0) 4’ (DNDTI/2.0)

(DNDRV/2.0) + (DNDRI/2.0)

(DNDSW/2.0) + (DNDSI/2.0)

(DNDTI/2.0) 8’ (DNDTI/2.0)

+
“MRI!2 .0) (DNDRI/2.0)

+
+
+
+
+
+

+
+
+
+
+
+

(DNDSA/2.0)

(DNDTA/2.0)

(DNDRA/2.0)

(DNDSB/2.0)

(DNDTR/2.0)

(DNDRB/2.0)

(DNDSA/2.0)

(DNDTA/2.0)

(DNDRA/2.0)

(DNDSB/2.0)

(DNDTR/2.0)

(DNDRB/2.0)
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C-‘l‘hia subroutine. IAmB. determines the Jacobian

matrix of the twenty node map. It also finds

the determinant of the Jacobian and it's inverse.

C

C

C

C

C

H
H

SUBBOUTINE JACOB (A.B.C.R.S.T.DE'DAC.INVIAC)

REAL A(20).B(20).C(20).INVJAC(3.3).JAC(3.3).WORK(4.6)

Dxns 8 A(3) + A(6)82.08s + A18)8T‘+ A(9)8R +

A(11)82.08S8T + 'A(12)82.08S8R + A(13)8'1‘882 + A(15)8R882 +

A(17)8R8‘r'+'A(18)82.08R8S8T‘+ A(19)8R8T882 + A(20)8T8R882

DXDT‘8 M4) + A(7)82.08'1' + A(8)8s + A(10)8R +

A(11)8S882‘+ A(13)82.08S8T + A(14)82.08R8T + A(16)8R882 +

A(17)8R8S + A(18)8R8S882-+ A(19)82.08R8S8T + A(20)8S8R882

DDR8 A(2) + A(5)82.08R + A(9)8s + A(10)8'r +

A(12)8S882‘+ A(14)8T882 + A(15)82.08R8S + A(16)82.08R8T +

A(17)888T + A(18)8'r88882 + A(19)8S8'r882 4- A(20)8R8S8T

DYDS = 3(3) + B(6)82.08s + B(8)8'r + B(9)8R +

B(11)82.08S8T + B(12)82.08S8R +'B(13)8T882 + B(15)8R882 +

B(17)8R8T'+ B(18)82.08R8S8T + B(19)8R8T882 + B(20)8T8R882

DYDT'8 3(4) +'B(7)82.08T + B(8)8S + B(10)8R +

B(11)8S882'+ B(13)82.08S8T + B(14)82.08R8‘l‘ + B(16)8R882 +

B(17)8R8S + B(18)8R8S882 + B(19)82.08R8S8‘I' + B(20)8S8R882

BID! 8 3(2) + B(5)82.08R + B(9)8S 4- B(10)8T +

B(12)8S882 + B(14)8T882 + B(15)82.08R8S + B(16)82.08R8T +

B(17)8S8T + B(18)8T8S882 + B(19)8S8T882 + B(20)8R8S8T‘

M138 8 C(3) + C(6)82.08S + C(8)8T + C(9)8R +

C(11)82.08881‘ 4' C(12)82.08888 + C(13)8T882 + C(15)8R882 +

C(17)8R8T + C(18)82.08R8S8‘l'+ C(19)8R8T882 + C(20)8T8R882

DZDT 8 (1(4) + C(7)82. 081' + C(8)8S + C(10)8R +

C(11)8S882 + C(13)82. 08S8T + C(14)82. 0838'! + C(16)8R882 +

C(17)8R8S + C(18)8R8S882 + C(19)82.08R8S8T + C(20)8S8R882

DZDR 8 C(2) + C(5)82.08R + C(9)88 + C(10)8T +

C(12)8S882 + C(14)8T882 + C(15)82.08R8S + C(16)82.08R8T +

C(17)8S8T + C(18)8T8S882 + C(19)8S8T882 + C(20)8R8S8T

C-8Assemb1e the Jacobian matrix

C

JAC(1.1) 8 DXDS

JAC(1.2) 8-DYDS

JAC(1.3) 8 DZDS

JAC(2.1) 8 DXDT

JAC(2.2) 8 DYDT

JAC(2.3) 8 DZDT

JAC(3.1) 8 DXDR

JAC(3.2) 8 DYDR

JAC(3.3) 8 DZDR
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C88Use the matrix inversion routine on the PRIME.

C The calling sequence is

C call minv (OUTPUTuINPUT,ISIZE,WORX.ISIZE+1,

C ISIZE-I-ISIZEJERROR FLAG)

C .

C

N 8 3

NP1 8 4

NPN 8 6

C _

CALL MINV (INVJAC.JAC.N.WORK.NP1,NPN.IERR)

C

C88Solve for the Determinant of the Jacobian

C

+DETIAC 8 (JAC(1.1)8JAC(2.2)8JAC(3.3))

(JAC(1,2)8JAC(2.3)8JAC(3,1))

(JAC(2.1)8JAC(3.2)8IAC(1.3))

(JAC(3.1)8JAC(2.2)8IAC(1.3))

(JAC(2.1)8JAC(1.2)8JAC(3.3))

(JAC(3.2)8JAC(2.3)8JAC(1.1))

..
.

F
8
P
8
F
8
F
8
F
8

IF (IERR.NE.0) WRITE (1.100)

100 FORMAT (I.1X. 0......) JACOBIAN ' IS SINGULAR (888')

RETURN

END‘

88This subroutine. MAKER. builds the B matrix

(called.BMAT) in the stiffness matrix.

The transpose of B (called.BTlAT) is also

assembled and passed back in INTEG.

O
O
O
O
O
O
G

SUBROUTINE MAKER (DSFXIZ.BMAT.BTMAT)

O

REML DSFX!Z(3.10).BMAT(6.30).BTNAT(30.6)

C88Build the B matrix from the matrix DSFXIZ

C ,

K 8 1

00100181.30.3

BMAT(1. I) 8 DSFXIZ(1.K)

BMAT(2.I+1) 8 DSFX!Z(2.K)

BMAT(3.I+2) 8 DSFXYZ(3.R)

BIAT(4. I) 8 DSFXYZ(2.K)

BMAI(4.I+1) 8 DSFXYZ(1.K)

BNAT(5.I+1) 8 DSFXTZ(3.K)

BMAT(5.I+2) 8 DSFX!Z(2.K)

BIAI(6. I) 8 DSFIIZ(3.K)

BNAT(6.I+2) 8 DSFX!Z(1.K)

I 8 K'+ l

100 CONTINUE



98

C88Find the transpose of the B matrix and place it

C in the location BTMAT

C

no 120 I 8 l. 30. 1

D011018 1. ‘6. 1

BTNAT(I.J) 8 BNAT(J.I)

110 CONTINUE ' ’

120 CONTINUE

RETURN

END ‘



 

 



 

 

“WRuin?


