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ABSTRACT

MODELLING CYLINDRICAL DISCONTINUITIES IN RUNNING SHOE SOLES

USING A CONDENSED FINITE FLEMENT FORMULATION
By

Andrew James Hull

This thesis presents modelling techniques that are useful to
analyze the effects of holes in running shoe soles. A two dimensional
finite olement analysis of a running shoe containing omne to three
horizontal holes in the heel area was performed using condensed two
dimensional elements. The displacement results serve as a basis for
the effects of these holes during heel strike. A three dimensiomal
element program that condenses a twenty node solid into a ten node
solid and formulates the element stiffness matrix was written. The
practical and economical advantages of using condensed formulations

were demonstrated.
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INTRODUCTION

Shoe designers frequently place holes in running shoe soles. The
orientation of these holes is both vertical and horizontal in the shoe
sole. The number of holes also ranges comsiderably: some shoes do
not have them, and other shoes incorporate more than 35 holes into the
sole design, There are various reasons for including these holes,
ranging from weight reduction to aiding in manufacture of the shoe.
The effects of these holes has never been fully understood.

This thesis applies a finite element analysis to a two
dimensional shoe sole containing ome to three holes orientated
horizontally in the wedge area. The radius of these holes is also
varied to study the effects of different size holes. Due to the
number of nodes required, the current finite element program in use
does not have the ability to model the three dimensiomal problem. A
three dimensional modelling techmique is discussed using nodal
condensation to reduce the three dimensional problem to a manageable

size.






THE FINITE ELEMENT METHOD

Analytical methods in structural analysis have been studied for
many years, Exact solutions are usually not available to problems
with complicated geometry and/or boundary conditions. The emergence
of high speed computers, however, makes it possible to accurately
apply numerical methods to complex problems. A commonly used
numerical technique for structural analysis is the finite element
method([1,3], This method involves a discretization of a continuous
structure into a number of smaller parts (elements). Equations are
fir;t formulated fof each element with indiv#dnal loaAin; and boundary
conditions, then a set of equations are assembled modollingAthe entire
system, The resulting equations are then solved, yielding the
structural response.

For an elastic body, the stiffness matrix and load vector cam be
fo:nu;atod using the finite element method, and the displacements of
the body can be determined (Appendices A, B, C, and D). The best

.nethod to verify the results of any anniytical technique is actual
testing, When testing is not feasible, a commonly used convergence
test is to reduce the element size and compare the results of a demser
grid of smaller elements to the base model. If the differemces in
responsoes are small, then the base model probably has enough elements
to model the system. This was the verification technique used in this

paper, comparing solutions of variously populated grids to insure



analytical convergence.

The major topic of this thesis is the effect of holes in running
shoe soles, therefore, a modelling technique was developed to
determine the global effects of holes in materials. Consider the
three 2 dimensional element test grids shown in Figures 2.1, 2.2, and
2.3, All three were subjected to a single point load on the upper
right node. The four left hand nodes were constrained in the x and y
direction. The structure was six units long, six units high, and the
hole in the middle was one unit in diameter.

There was a choice of two dimensional models based on modelling
assumptions. The model assumption of plane strain was used. Plane
strain is a specialization of three dimensional linear elastic theory.
It represents the situation where the structures geometry and loading
are constant in the z direction and the component of displacement
perpendicular to the x—y. plane is zero. This is discussed in Appendix
E. Plane stress, the other two dimensional speciaslization of three
dimensional elastic theory, represents the situation of a very thin,
flat structure, whose loading occurs only in the x-y plane of the
plate. All three models were developed and analyzed using ANSYS,
ANSYS is a general purpose finite element program developed by Swanson
Analysis Systems, Inc.

Figures 2.1 and 2.2 illustrate the five and eight node elements
used to model the hole in the middle of the soiid. Each element
bordering the hole had three active nodes on the hole boundary. The
midside node on the boundary of the hole was left on to insure a curve

was fitted thru this area for the element interpolation. Differeat















sources recommend different locations for this node[1,3]., From a
theoretical standpoint, the midside node must be 1located near the
middle of the curve between the two end points. When the midside node
is too close to the end nodes of the curved side, the Jacobian matrix
becomes singular, and has no inverse. The inverse of the Jacobian
matrix must exist to insure a unique mapping from spatial coordinates
to natural coordinates (Appendix B).

Figure 2.1 was the base model. It comsisted of 36 elements and
32 nodes. The four elements in the middle of the model were five node
isoparametric solid elements. They each had three nodes condensed out
of the element matrices (Appendix B). Figure 2.2 was the second base
model, consisting of 40 elements and 40 nodes. The four elements in
the middle of the model were eight node isoparametric solid elements.
This model was included so that the effects of nodal condensation
could be viewed. Figure 2.3 was the refined model. It comsisted of
108 elements and 100 nodes. All the elements of Figure 2.3 used
linear interpolation. The results were compared in Tables 2.1 and
2.2, The displacements of the base models in Figures 2.1 and 2.2 were
compared to the displacements of the refined model in Figure 2.3.
Nodes 1 thru 8 were on the circle, and nodes 9 thru 12 were labeled on
each figure. Node 13 and 14 were the right corner nodes, node 13
being located directly under the load.

The results from Table 2.1 shows that theilocal convergence (the
displacements on the hole) in the x direction was very poor. The
grids in Figures 2.1 and 2.2 would not be adequate if the

displacements on the circle were desired. The global convergence (the




Table 2.1 X displacements for Figures 2.1, 2.2, and 2.3

Node Figure 2.3 Figure 2.1 Normalized Figure 2.2 Normalized
number -refined grid -base grid differemce -base grid difference
a b

1 -.0029 -.0931 -2.5 -.0698 -1.9
2 -.0651 -.1863 -3.4 -.1742 -3.1
3 -.1735 -.2198 -1.3 -.2306 -1.6
4 -.2225 -.1816 1.4 -.2101 0.3
5 -.2172 -.1183 2.8 -.1485 1.9
6 -.1961 -.0682 3.6 -.0887 3.0
7 -.1464 -.0713 2.1 -.0940 1.5
8 -.0533 -.0636 -0.3 -.0627 -0.3
9 -.2631 -.3071 -1.2 -.2732 -0.3
10 -.6614 -.6891 -0.8 -.6689 -0.2
11 .2892 .3262 1.0 .2997 0.3
12 .1864 .2239 1.1 .1990 0.4
13 3.5680 3.5370 -0.9 3.5590 -0.3
14 -2.2870 -2.2630 0.7 -2.2810 0.2

Table 2.2 Y displacements for Figures 2.1, 2.2, and 2.3

Node  Figure 2.3 Figure 2.1 Normalized Figure 2.2 Normalized
number -refined grid -base grid differemce -base grid differenmce
a b b

1 -1.858 -1.890 0.4 -1.889 0.4
2 -2.486 -2.429 -0.7 =2.455 -0.4
3 -3.104 -2.951 -1.8 -3.005 -1.2
4 -3.378 -3.174 -2.4 -3.232 -1.7
5 -3.112 -2.990 -1.4 -3.018 -1.1
6 -2.455 -2.450 -0.1 -2.431 -0.3
T -1.822 -1.896 0.9 -1.855 0.4
8 -1.584 -1.682 1.1 -1.673 1.0
9 -1.283 -1.288 0.1 -1.275 -0.1
10 -3.758 -3.635 -1.4 -3.712 -0.5
1 -3.885 -3.745 1.6 -3.842 -0.5
12 -1.200 -1.196 ~0.0 -1.196 ~0.0
13 -8.590 -8.424 -1.9 -8.532 -0.7
14 -5.578 -5.433 -1.7 -5.525 -0.6

Normalized difference = [(a; - b;)/max(a)] X 100%






displacements at common points not on the hole) in the x direction was
fair in Figure 2.1 and good in Figure 2.2. The results from Table 2.2
shows that the local and global convergence were good to excellent for
Figures 2.1 and 2.2. For the two dimensional model, the modelling
technique in Figure 2.1 was used. For each hole modelled the number
of nodes needed using a five node element was eight. For the
conventional method of using many linear elements, the number of nodes
needed was 68, Since each node had two degrees of freedom (adding two
equations per node to the system of equations) the difference in
number of equations between the base grid and the refined grid was
128, Furthermore, the formulation time for four 5 node elements was
less than the formulation time for 64 four node elements. The use of
higher order elements in this case resulted in a time savings on the
computer while retaining the numerical accuracy in the the finite

element analysis.



TWO DIMENSIONAL ANALYSIS

The first analysis of the running shoe was a model of a Brooks
Supervillinova (Figure 3.1). A two dimensional model of the
heel/wedge area was developed (Figure 3.2), which consisted of 82
elements and 103 nodes subjected to a planme strain analysis. The shoe
in this model was cut with a plane that ran parallel to the 1longest

direction of the shoe and was perpendicular with the ground.

Figure 3.1 Brooks Supervillinova running shoe

The bottom row of elements in Figure 3.2 represented the outsole, the
middle three rows of elements represented the midsole, and the top row

of elements represented the sockliner. The sockliner was a removable

10






layer of material placed in the running shoe to increase comfort. The
model was constrained in the x and y directions at the nodes marked
with triangles. Although there was a tread pattern on the outsole,
this area was modelled as a solid since the protrusions occupied over
85% of the volume under the loaded area. The material properties were
determined using a Model 1331 Instrom Servohydaulic Materials Testing
Machine located in the Biomechanics Department at Michigan State

University. They are listed below in Table 3.1,

Table 3.1 Material properties of the Brooks Supervillinova

Layer Young’'s Modulus Poisson’s Ratio
Outsole 260 psi .25
Midsole 130 psi .25
Sockliner 80 psi .25

Figure 3.2 Base grid of a Brooks Supervillinova

The section of the size eight and a half shoe modelled (Figure 3.2)

was 5.2 inches long and 1.2 inches thick. Shoe designers who include
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horizontal holes in their midsole design normally locate them in the
heel area of the shoe. The model was developed to investigate the
effects of these holes.

The following sssumptions were used: 1) All sole materials
behaved elastically, 2) the shoe upper provided negligible additional
stiffness to the sole 3) there was no slip between the ground and the
bottom of the shoe, 4) The runner struck the ground with the heel area
of his shoe, 5) Plane strain occured.

The loading for this model was derived from experimental

measurements of pressures exerted by running human subjects.

50 100 150 200 TIME

Figure 3.3 Average vertical component of groumd reactiom force

Figure 3.3[4] was the vertical component of ground reactiom force in
12 :nbjectsl running at 6.5 minutes per mile. The solid line on the
8T aph was the average value and the dashed lines were the maximum and
minimum ranges. Units of force (Fx) vere in body weight and the units
Of time were in milliseconds. The ﬁomd reaction force in the x

di yection was vertical, and a positive force was orientated in an
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upward direction., The first maxima of the curve had a value of 2.1
‘units of body weight at approximately 25 milliseconds. Since this
finite element model only analyzed wedge area displacements, the first
local maxima was used as it corresponded to heel strike. Using a
subject weight of 150 1lbs, the reaction force at heel strike in the
shoe was (-2.1 X 150)= -315 1bs. Since the width of the shoe was 3
inches, and a plane strain analysis has a unity thickness, the loading
for this model was (-315/ 3)= -105 lbs total in the x directionm.
Distributing the -105 pound load over tem nodes resulted in a force
vector at each node equal to (-105 / 10)= -10.5 1bs per node in the x

direction.

Y - J
‘.////\ \\\\1
t AY ¥ $ = }
NN~ -~~~ TIME
—~
\\.\\ — g

1+

Figure 3.4 Average shear compoment of ground reactiom force

Figure 3.4(+4] was the average shear component of the ground
reaction foice. The ground reaction force (Fy) in the longitudinal y
direction was determined using Figure 3“.' Positive force was
forward. At 25 milliseconds the average siteur component was .2 units
of body weight, Using the same method of calculation as above, the

&verage shear force per node was equal to 1.0 lbs in the y direction.
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The ten loaded nodes were denoted with vectors in Figure 3.2. For
convenience they were called nodes one thru 10, one being the left
most node., The analysis was also run using a finer grid of 326
elements and 346 nodes, shown in Figure 3.5. The results are listed
in Tables 3.2 and 3.3. VWith the exception of the left most node, the
y directioﬁ results Qero.fairly close. The y direction displacements,
or the amount of compression of the sole, is the critical response in
the design of a shoe. This indicates that the base grid (Figure 3.2)
was fine enough to model the load and constraints that were being
applied to it. A grid modelling the entire sole was also analyzed,
using the constraints and loading conditions determined above. The
percent difference for the displacement of all common nodes was less
than one percent. This justified ignoring the forward part of the

shoe as in Figures 3.2 and 3.5.

M

X

Figure 3.5 Refined grid of a Brooks Supervillinova

Using five node two dimensional elements, the grid in Figure 3.2
was modified to include the effects of holes running across the

midsole from the medial to the lateral part of the shoe. The
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Table 3.2 Displacements in the x direction

Node Displacement Displacement Normalized
number -base grid -refined grid difference
b a
1 .01564 .02456 11.6
2 .00482 .02050 20.5
3 .01540 02712 15.3
4 .02995 .03743 9.8
5 .04409 .04843 5.7
6 .05633 .05842 2.7
7 .06533 06637 1.4
8 .07061 .07152 1.2
9 .07658 .07643 -0.2
10 8.0

.05822 .06437

Table 3.3 Displacments in the y direction

Node Displacement Displacement Normalized
number ‘~base grid ~refined grid difference
b s

1 -.2992 -.2268 -24.2

2 -.2909 -.2754 -5.2

3 -.2923 -.2836 -2.9

4 -.2867 -.2840 -0.9

5 -.2836 -.2826 -0.3

6 . -.2819 -.2815 -0.1

7 -.2807 -.2804 0.1

8 -.2779 -.2778 ~0.0

9 -.2691 -.2716 -0.8

10 -2.1

-.24217 -.2364

Normalized difference = [(a; - b;)/max(a)] X 100%
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displacement effects of one, two, and three holes were determined
using radius sizes ranging from .05 inches to .30 inches, incremeated
by .05 inches. All of the holes had their center located at y=.55
inches from the origin shown in Figure 3.2. For the single hole, the
location was at x=2.05 inches. For the analysis using two holes, the
x locations were at 1.45 and 2.35 inches. The model that included
three holes used x locations of 1.15, 2.05, and 2.95 inches. A
displacement plot of a typical node is shown in Figure 3.6. The
tabular data for the nodal displacements of nodes oﬁe thru 10 for all

geometry modifications is listed in Appendix F.

vy
’06' B

=55
-.50
=45
-4

'035

'.30‘

| i 1 | | 1

.85 .10 15 .20 25 38R

Figure 3.6 Displacements of node 5 versus radius size

A general trend of the data indicated that as hole radius or the

number of holes were increased, the absolute value of the displacement
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increased (Figure 3.6). ©For the geometry range tested, the
displacenent- was roughly proportional to the area of the hole (Figure
3.7). The nodal displacements were also semsitive to the location of
the bholes. Nodes above the holes deformed to a greater extent than

the nodes above solid material (Figures 3.8, 3.9, and 3.10).

uY
‘.60 B
——————— THREE HOLES
B T S ——— TWO HOLES //O
ONE HOLE 7 A

‘-ISG

-045

'04

'035

'030

1 | 1 1 1 |

.0108 .08225 . 0400 0625 0300 R332

Figure 3.7 Displacement of node 5 versus radius size squared

The main advantage of the two dimensional analysis was rapid
solution time, when compared to the three dimensionsl model, because
the grid was simpler und‘ fewer nodes were present in the model. This
modelling technique however, was a two dimensional approximation to a
three dimensional problem which had finite depth, hence plane strain

did ‘not occur. Furthermore, some shoes have the holes running in the
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Figure 3.8 Displacement plot of sole with one hole, R=.30

Figure 3.9 Displacement plot of sole with two holes, R=,30

Figure 3.10 Displacement plot of sole with three holes, R=.30







vertical direction which cannot be modelled using a two dimensional
approach. The two dimensional approximation agreed with measured
values because the out of plane shear force in the 2z direction was

very small and varied widely from one runner to another (Figure

3.11[4]),

05
/

A PN il S,
P ~—— —_— v

A TIME
\ - —
-05~

Figure 3.11 Out of plane shear force



THREE DIMENSIONAL ANALYSIS

The three dimensional analysis of structures is more complex than
the two dimensional counterpart. The extra degree—of—freedom at each
node causes the material stiffness matrix to emlarge from 3X3 to 6X6.

The stress components in the finite element formulation changes from

(c}T = {cx oy txy} (4.1a)
to
{a}T = {og Oy O Try Ty 'yz} . (4.1b)

The element considerations in the finite element formulation also
changes. Because three dimensional curved side elements require
midside nodes like their two dimensional counterparts, the definition
of a three dimensional curved side element with midside nodes requires
20 nodes instead of the eight present in the two dimensional curved
side element. The wave front limitation of the ANSYS educational
version is 200 and the connectivity of 20 node three dimensional
elements prevent an analysis of a three dimensional model that
incorporates vertical holes.

Condensation of the curreat 20 node solid into a smaller (in

terms of number of nodes) element is a technique that canm reduce this

20
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problem to a size where an analysis is possible. Quadratic behavior
on one side of the condensed element is desirable so the element face
can follow a curved surface such as a hole. Curved boundaries cannot
be followed by linear elements. The eight midside nodes that do not
lie on the hole can be removed through condensation because they do
not lie an curved boundaries. Two additional nodes that lie on the
hole can be condensed because the holes under consideration are
constant radius and do not have a curve in their axial direction. The
result is a ten node condensed element that can incorporate a quarter
of a hole on one side as a boundary condition. The quadratic
displacement behavior along the edges where condensation occurs
becomes linear. This is not undesirable since there is almost no loss
in accuracy.

Linear three dimensional elements attach to the condensed element
in a much more efficient pattern. This is due to element mesh
compatibility of the condensed sides of the ten node element with any
side of the eight node three dimensional linear element.

The condensation procedure started with a twenty node finite
element map to establish the Jacobian matrix. The 20 node element
equations that defined the mapping from natural coordinates (r,s,t) to
spatial coordinates (X,Y,Z) were
X =a, + asr + azs + a,t + a,rz

+ .“2 + t,tz + agst + a,3r + ajrt

2 2

+ ‘1;32t t 85,8 + ‘z:tz' + ‘aAtzr + oag,r%s

+ l,‘:zt + a,,rst + .,.szrt + a,,tzrs + a,.rzst (4.1a)
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Y =b1 + b’r+ b38+ b‘t+ b,!z

+ b,s? + b,t2 + b,st + bysr + by,rt
17 L] 1

2 2 2 2

£ + b,r“s

2

+ by,s2t + b,,s2r + by ,t2s + bt

2

+ bx‘rzt + by ,rst + bygs“rt + b, ,t“rs + b,,rzst (4.1b)

= 2
Z =c, + 0T+ Cy8 + Cc,t + C4

+ c,sz + c,tz + cygst + cyo8r + cyort

2 2 2

+ c;,szt + 0y,8°r + o, ,t%s + 014t22 + ¢y 41”8

+ c,,gzt + ¢, ,rst + c,.szrt + cx,tzrs + c,,:zst (4.1¢)

The vectors a, b, and ¢ defined the mapping and were constant for each
element defined. They were found by mapping the element back into
natural coordinates, which produced three systems of twenty linear
equations, the solution being the a, b, and ¢ vectors. This process
is similiar to the two dimensional mapping discussed in Appendix B.

To remove midside nodes and condense the element, the shape
functions were modified in their natural coordinates. This step
differs from most finite element formulations. The shape functions

defined by the 20 node element were condensed using[s]

ay = (1/2)(agq + ag3) (4.22)

where a represents r, s, or t, the subscript m denotes a condensed
midside node, and the subscripts ¢l and ¢2 demote the cormer nodes

that are collinear with node m. Applying this equation at the ten
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midside nodes changed the displacement field approximation in the &

direction from
-20
8(r,s,t) = }jgluj(z.s.:)sj (4.2p)
to
10
8(r,s,t) = Ej‘INj(x.s.t)sj . (4.2¢)

where & is either r,s, or t. The modified shape functions became

Np = Np + (Np/2) + (Ny/2) (4.24)
Ny = Ny + (Ng/2) + (Ng/2) (4.20)
Np = Ng + (Ng/2) + (Ng/2) + (Ny/2) (4.2£)
Ny = Ny + (Ng/2) + (Np/2) + (Ng/2) (4.2g)
Ny = Ny + (Ng/2) + (Ng/2) (4.2h)
Ny = Ny + (Ny/2) + (Ng/2) (4.24)
Ng = Ng + (Ny/2) + (Ng/2) + (Ny/2) (4.2§)
Np = Np + (Ng/2) + (Ng/2) + (Ng/2) (4.2k)
Ng = Ng (4.21)
Ng=Ng . (4.2m)

This modification eliminated ten nodes per element. Each node had
three degrees of freedom, therefore, the condensation technique
eliminated thirty equations per element. This technique is discussed

in Appendix B and an example of a two dimensional element condensed at
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three locations is included.

The derivatives of the shape functions were next multiplied by
the inverse of the Jacobian matrix. This step 1is described in
Appendix B. The Jacobian matrix and it’'s inverse were defined using a
twenty node map, while the derivatives of the shape functions were
defined using a ten node condensed element. The stiffness matrix was
then defined using the equations from Appendix B and numerically
integrated using a 3X3X3 grid and the Gauss—-Legendre quadrature method
(Appendix C).

The eolement program in Appendix G will build the element
stiffness matrix for tem node degraded elements. To insure program
accuracy, the stiffness matrix of an ANSYS defined twenty node element
was output and this stiffness -nt:ix.vas modified to incorporate the
linear constraints implied by the condensation process. A constraint

matrix was defined by
{v} = [C]{u}’ (4.3a)

where u is the vector comtaining the x, y, and z displacements of the
60X60 element matrix, u’ is the x, y, ;nd z displacements of the 30X30
matrix, and C is the coamstraint I-at:ix (60X60) that contains the
linear displacement constraints on the midside nodes. The constraints
were applied to the ANSYS stiffness matrix yielding a new system of

equations, as shown in equation (4.3b).

[Kl{u} = [CIT(KIICI(u}’ = [K]'(u}’ . (4.3b)
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This is best illustrated by the three by three system of equations

shown below

ki ki ky, Uy
k;y  kay kg, u; = [K]l{u} (4.42)
k;y k;, kg uy

which is constrained such that

U o= (4.4b)
u, = a, (4.4¢)
u, = (1/2)(uy + uy) . (4.4d)

The constraint matrix becomes

i 0 o0
cr=1.5 0 .5 (4.4e)
o o0 1

and assembling this according to equation (4.3b) produces a modified

stiffness matrix

X o+ 5kaat.5kya+.25ks; 0 kg +.5k;,+.5k,,+.25k,,
K] = 0 0 0 . (4.49)

3a+.5kaat.5k,3+.25k,, 0 k,,+.5Kk,,+.5k,,+.25k,,
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Using this method, the results of the condensed element program were
compared to a stiffness matrix multiplied by constraint matrices. The
percent difference averaged 0.11% at all nonzero 1locations in the
matrix. This method has the advantage of producing a stiffmness matrix
to compare to the ten node condensed element stiffness matrix without
tﬁnning an actual finite element analysis.

There is considerable advantages using condensed elements in
three dimensional analysis. A running shoe sole such as the Brooks
Supervillinova has 37 holes running vertically, The number of
;qnations for this problem without condensation is approximately
36000, which is too large for almost any finite element routine.
Since three layers of four elements are needed to model each hole, 544
condensed elements are needed to model this sole. Each condensed
element eliminates thirty equations, and the total savings for this
type of analysis is 31320 fewer equatioas. The size of the new
problem using condQnsed elements is approximately 4680 equations, or
roughly a magnitude smaller problem. The disadvantage is that the
quadratic behavior along the boundaries becomes 1linear. This,
however, is usually not a concern as long as the finite element grid
is distributed in a manner that several 1linear elements fit the
displacement curve. Unfortunately ANSYS does not currently have the
ability to accept elements input by the user and no actual anmalysis

was performed using this element.



CONCLUSIONS

This thesis has shown that using a condensed finite element
formulation can greatly reduce the problem size of three dimensional
models. The numerical accuracy using two dimensional condensed
formulations was retained, as demonstated by a two dimensional
analysis. A program that generates ten node condensed element
stiffness matrices is available now to be interfaced with finite
element programs that can accept user defined elements. The accuracy
of this element was compared to an ANSYS constrained 20 node element,
and the percent difference was found to average 0.11% at all nonzero
locations. The olement has the advantage of eliminating thirty
equations every time it is used instead of the base three dimensional
element.

The displacement effects of horizontal holes in the sole of a
shoe were calculated. The analysis included one to three holes
ranging in radius from .05 to .30 inches in the wedge area of the
shoe. No attempt was made to determine if these displacements were
favorable or detrimental to the runmner.

Factors not addressed in this thesis are the dynamic effects of
the shoe material, the dynmamic effects of the loading, the effect of a
ground strike in a location other than the heel area, and the
interaction of the shoe u@pei with the sole. Future topics also

include development of a program that nuses the three dimensional

27
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condensed eolement stiffness matrices, assembles them along with the
load vectors and linear three dimensional elements, and solves for the
displacements of the nodes, resulting in a finite element routine to

handle large scale problems.
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APPENDIX A

FORMULATION OF THE STIFFNESS MATRIX AND LOAD VECTOR

FROM THE MINIMUM COMPLEMENTARY ENERGY PRINCIPLE

The stiffness matrix corresponding to an elastic body can be
derived in a number of different ways. One way to formulate this
matrix is by starting with the complementary emergy principle, which
corresponds to a compatibility condition. The principle states that
the state of stress that satisfies the stress—strain relations in the
interior and all prescribed boundary conditions also minimizes the
system’s complementary energy in an elastic body. If

) is the complementary energy,

no(cx,cy,cz.txy,txz,tyz

Uc(cx.oy.cz,txy.txz.tyz) is the complementary stress energy, and Vc is

the work dome by the applied loads during stress changes, then,

according to the minimum complementary emergy primciple,

8x, = 8(U,-V,) (A.1)

=80, - 8V, =0 . (A.2)

To facilitate a finite element formulation, the variation is taken

30
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with respect to the stress components. The complementary stress

energy is defined as

Us(05,05,0,: %550 Txz:Ty) = IIZJIIV{GIT[DHGMV (A.3a)
where
()T = (o, Oy O Try Txz Tyzl (A.3b)

in a three dimemsional problem. The matrix [D] is the material
stiffness matrix that is used to relate the strains to the stresses.
In a three dimensional oproblem it is a 6X6 matrix. In a two
dimensional problem it is a 3X3 matrix and has differeat values
depending on if the problem definition is plane strain or plane

stress. It is defined by
{s} = [D]{c} (A.3¢)
where the strain vector

(1T = (6, 8y &; Vyy Txz Ty2) - (A.34)

The relationship between the stresses and the strains in equation

(A.3c) can also be written as

{e} = [Cl{e} (A.3e)
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where
[cl = [p]71 (A.3f)

Including the colummn vector of initial strains {e,} into the

complementary stress energy term results in

U, = 1/2ff[ [ (@1TD1@) - 2003T(s,) Jav . (A.4)
The work done by the external forces is

Vo = [[f[x%ne + ¥°ve + 2%, Jav + [fd[12me + Tpve + ToweJas (A.50)
or writtem in matrix terms

v, = [[fir*1Teiav + [ 1r*1083as (A.5b)
vhere {Ff}T are the body forces such as gravity, [Tf] are the boundary
traction components acting on the surface of the solid, and {8} is the

column matrix of the components of the displacement field.

Substituting equations (A.5b) and (A.4) into equation (A.2) results in
1/2f[[ [ (1701012003 Tte,} Jav- [ [ [ F*1 T s 3av-[ [, 1*1 B1as=n,  (a.6)

Substituting equation (A.3e) into (A.6) yields
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afff.[trertenTmiterts) - 20rc1e1Tte,) Jav
- [ffiEiTeav - [[ir*1050as = x, . (A.T)

Now defining the relationship between the strains and the

displacements as
{e} = [B]{5} (A.8)

where [B] is a 3NX6 matrix (for a three dimensional solid with N nodes
per element) that contains the derivatives of the shape functionms.
Appendix B discusses the shape functions and their derivatives. Using

equation (A.8) in equation (A.7) produces

12f[[ [ 181 e11TtcITmI ICI BT (8} - 201818117 1CI Lo, ) Jav
- [[foEti@iav - [[lir* 108008 = 5, . (A.9)

Since the material properties are isotropic, the material stiffness

matrix is symmetric, i.e.,
(c1 = [c1T . (A.10)

Substituting equations (A.3f) and (A.10) into equation (A.9) will give

the following result

12(ff [ 51781 IC1 B1 (8) - 2(8)TLBITICI (2} Jav
- [[fy*1Terav - [ ir°1083a8 = n, . (A.11)
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For 8 single element (e} the discretized functional is
n(°)(f8}(°)) = n(°)(n1.n,.....ur.vl.v,.....vr.w,.w,.....wr) (A.12)
or in terms of equation (A.ll? the functional is

n(e)([a}(e)) = 1/2IIIV[{8}T(O)[B]T(e)[c](e){s}(e)
- 2[5}1’(0)[3]1‘(0)[(:](0'){,.}(e)]dv(e)
- [[foEtiT@) @y @avie) — ([ r*1(0) (53 elasle) (A.13)

At equilibrium the potential enmergy of a system is stationary. The
discretized system is stationary when the first variation of the

discretized functional vanishes, thus
N (e)
Sn(u,v,w) = 2 [5u (n.v.v)] =0 (A.14a)
. o=]
where

61((‘) (u.v:') = 2:'1[(3n(°)/3ui)6ni]

- - i o .
(e) : (e)
AR CCERLEATA B NN [T AL N (A.14b)
The 8u;, 5v;, and the Sw; are independent (they may or may not be
zero) therefore, the individial parts of the summation are forced to

zero, i.e.,

Bn(°)/aui = au(°)lavi = an(°)/awi =0 i=1,2,...,1 (A.15)
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Since the displacements of the body are approximated by the shape
functions, the distributed displacement field in the u direction of an

r node element can be expressed as
T
xy.2 () = ) N(x,y,291® = (N1T@nl® | (A.16a)
. . i mj=] . . o
The v and w distributed displacements are transformed into discrete

displacements in the same manner u is, and the resulting discrete

displacement field becomes

u(x,y,2)) () INT(m1 1) (@)

81(e) =9 v(x,y,2) INT(v}) (A.16b)

w(x,y,2) INT(w}]
Using equations (A.14) and (A.16b) equation (A.13) becomes
(an(®)/35) = {0} = fjjv[an<°?[c]§°?[B]‘°?{s}(°?dv‘°)
- IIIVIBJT(‘?[CJ(‘;;3°}‘°)dv(°)
- [[fomor @ - [foat oo
where

(ane)/381T = (an'®)/au oax(®)/av an(®)/aw} . (A.170)

Equation (A.17a) is sometimes simplified to the following form
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[x1(e) (g} (e) = {F°}(e) + {FB}(O) + {FT}(O) (A.17¢)
where

[k](°? = stiffness matrix at element e
{51(°) = displacement vector at element e
{F.}(°) = jpitial force vector at element e
{FBi(°) = body force vector at element e

{FT}(°) = gurface loading force vector at element e.

NODE J
(10,1

X,u
Figure A.1 Two dimensional triangular element

Equation (A.17a) is best illustrated by a two dimensional example

shown in PFigure A.1, The problem consists of a single triangle
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subjected to three loading cases. To formulate the stiffness matrix,
the shape functions must first be defined. This is accomplished by
using a linear variation of displacements u and v across the element,

resulting in two equations.

u(x,y) = Nyu, + N,u, + N,u, (A.183a)

vix,y) = Nyv, + N,v, + N,v, (A.18b)

In addition to equations (A.18a) and (A.18b), a third ocondition is

imposed, requiring the shape functions to sum to one.

N, + N, + Ny =1 (A.18¢)

Solving equations (A.18a), (A.18b), and (A.18¢c) for N,, N,, and N,

gives the shape functions in terms of the Cartesian coordinates. They

are
N; (x,y) = (1/2A)(a; + byx + c,y) (A.193)
N,(x,y) = (1/2A)(a, + b,x + ¢,y) (A.19b)
N,(x,y) = (1/2A)(a; + b,x + ¢,y) (A.19¢)
where
; U £
2A =Det |1 x, y,| = 2(Area of triangle 1123) (A.194)

1zx,y,
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and

8, = X353 ~ X3¥3, bas = ¥3 < Vs, Ci = X3 ~ X3 (A.19¢)
8; = X3¥1 ~ X1¥3>» b, = ¥s ~ Vi Ca ¥ X3 ~ X, (A.19f)
&, = x,¥;, - X3¥1, b3 T ¥1 - ¥a, €3 =X3 X4 . (A.19g)

Applying the (A.19) equations to the triangle in Figure A.1 results in

the following shape functioas:

N, = (1/46)( 75 - 1x - 5y) (A.20a)
N, = (1/46)( -1 + 5x - 3y) (A.20b)
N; = (1/46) (-28 + 2x + 8y) (A.20¢)

The matrix relating the strains to the displacements from equation

(A.8) is formed using

N, /ax 0 aN,/3x 0O aN;/3x ©
(Bl =| o0 aN,/3y o ~9N;/3y 0 aN,/dy (A.21a)

ON, /3y aN,/dx oN,/dy ON,/3x oN,/dy dN,/ax

which is

[B] = (1/24) |0 e, 0 ¢, O o, (A.21b)

€3 by ¢3 b; ¢; b,
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Applying equation (A.21b) to the element shown in Figure A.1 produces

the following [B] matrix

-7 0 S§ 0 2 O
[Bl =(1/46) | 0 -5 0 -3 0 8 (A.21c)

-5 -7 -3 5 8 2 .
If the element is considered in plane strain, then the material matrix
[C] is
[C]l = E/{(1+p)(1-2)} | p 1-p 0 (A.22a)

0 0 (1-2p)/2

where E is Young’s modulas and p is Poisson's ratio. If PB=1000 and

p=.25 then the material matrix in equation (A.22a) becomes

1200 400 0
[C] = | 400 1200 0 (A.22b)
0 0 400 .

The stiffness matrix from equation (A.17a) is
(x](e) = ”L[B]T(o)[c](e)[n](e)dv(e) (A.23a)

but since neither the [B] matrix or the [C] matrix in this case are
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functions of the volume, the element stiffness matrix can be rewritten

(x](e) = [B]T(e)[c](e)[B](e)jjjhv
= [B1T(e)[c1(e) B (e)¢(elple) (A.23b)

where A(®) j5 the element area and t{®) is the eclement thickmess,
which usually assumes a value of one for plane strain problems. Using
the matrices in equations (A.21¢) and (A22.b) in equation (A.23b) and
knowing the area of the element is 23 units. the element stiffness

matrix for the element shown in Figure A.1 becomes

- 747.8 304.4 -391.3 -17.4 -356.5 -287.0 ]
304.4 539.1 -17.4  43.5 -287.0 -582.6
xj(e) = | -391.3 -17.4 365.2 -130.4 26.1 147.8 | (A.23¢)
o 17.4  43.5 -130.4 226.1 147.8 -269.6 |

-356.5 -287.0 26,1 147.8 330.4 139.1

L-287.0 -582.6 147.8 -269.6 139.1 852.2.1 .

The global stiffness matrix of a structure is the sum of the element

stiffness matrices, and is found by
(K] = (e) A.24
2:-1“‘1 (A.24)

where [k](®) is summed with respect to the node numbers. The initial

force vector at element (o) is (from aqn;tioi (A.172)
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(F,3(e) = ” LBIT(O) 1) (g 3 (Oay(e) (A.25a)
For this element, [B] and [C] are not functions of the volume, and

since the column vector of initial strains is rarely a function of the

volume, equation (A.25a) can be expressed as

(F,3(®) = [B]T“’[c1‘°’{a.}‘°’jj_[dv

= [B1T(e)[c(e) (g j(e)¢(e)p(e) | (A.25b)

Using an initial element strain of

()T = (o0 850 7450)

= {.005 .004 .001} (A.25¢)

and the values of [B] and [C] as defined in equations (A.21b) and

(A.22b), the initial force veotor at element (e) is

(Fo}T(e) = (—28.6 -19.8 17.8 -8.2 10.8 28.0} .  (A.25d)
The second type of loading that the element can undergo is body force
loading. This type of 1loading is usually gravity. The body force

term from equation (A.17a) is

{FB}(e) = I]];[N]{F.}(°)dv(°) (A.26a)

where
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-Nz o-
0N,
0 N,

N, o

0 N,
and
T = x* '3 . (A.26¢)

If the element shown in Figure A.1 has a density of p = ,0075 and
gravity (g= -386.4) is acting in the y direction, them the body force

is

F*)T = (0 pelelalely

= {0 -66.7} . (A.264)
Equation (A.26a) becomes

(F) () = [fato Mc-66.7) 0 N,(-66.1) 0 N,(-66.7) 01Te(®)aal®) (a.266)

and transforming the shape functions back into natural coordinates the

integration for a typical entry of (A.26e) is

II‘NiC.t(°)dA(°) = tlelalede /3 | (A.264)
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Applying the equation (A.26d) to all the entries of equation (A.26e¢)

results in the following body force vector

(FgiT(®) = (0 -22.2 0 -22.2 0 -22.2} . (A.266)
The third force vector to be evaluated is the surface 1loading force
vector which is caused by boundary traction. The boundary tractiom
vector from equation (A.17a) is

®p (@) = ([ v1r*)(@asien . (A.270)

The most common boundary traction term is a point load. If point 2 on

the element is loaded with point loads of
{(T*} = {-20. 15.} . (A.27b)

Then the matrix [N] becomes

-0 0-
0 o

IN] =|1 0 (A.27¢)
[ 0o 1
0o o0
[0 0

since the shape functions, by definition, have the following property
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1 at node i

N, = (A.274d)

0 at node j
the surface loading force vector will be the point loads, i.e,
(Fp)T€®) = (0 0o -20. 15. 0 o0} . (A.27¢)

If the boundary traction term is a pressure, then it is represented by
equivalent point loads on the nodes which share the face the pressure
is acting on. Once all of the force terms have been calculated for

the element, they are added together.
(F1(®) = (F,3(®) + (mp3e) + (rp}le) (A.284)

A global force vector is constructed in the same manner as the global

stiffness matrix is, thus
F)} = (0) . A.2
E) = Jy (h.28%)

In the global force vector, as in the global stiffness matrix, the
element vectors are summed with respect to the nodes. The final
equation relating the global stiffness matrix and the global force

vector is

(K1{8} = (F} (A.29)
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where {8} is the column vector of all displacements of the system.






APPENDIX B

SHAPE FUNCTIONS OF SOLID ISOPARAMETRIC ELEMENTS

The shape functions for all solid isoparametric elements are
derived using the same method. For any m node isoparametric solid

element, the displacement in anmy axis direction is approximated by

s=i=) Ny = (NT(a) (B.1)
- i=1 oo :
where a = actual displacement value
T = approximated displacement value
N; = shape function of the ith node

a, = displacement of the ith node in the direction of interest.

The functions N;, Njseeo. and Ny are chosen to give the appropriate
nodal displacements when the coordinmates of the corresponding nodes
are inserted into equation (B.1). For a three dimensional element,

the shape function will have the following property:
1 for i equal to j

Ni‘rj“j’tj) = (B.2a)

0 for i not equal to j.

46
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Furthermore, the shape functions will always sum to wunity at any

location in the element,

Ni(r.s.t) + Nj(r,s,t) + ... + Nplr,s,t) =1 . (B.2b)

One way to derive the shape function, is by assuming the variation of

the shape function is dependent on r, s, and t,
c.d.e

The application of equations (B.2) is best illustrated by the element
shown in Figure B.1l.

A

Y.V T NODE K

(S=1,T=1)

NODE [
(S-'lnT"l)

NODE J
(S=1,T=-1)

X.u
Figure B.1 Four node two dimensional solid element
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This element consists of a four node two dimensional solid orientated
in it’'s natural coordinates (all of the examples in this appendix are
located in natural coordinates, the transformation back into spatial
coordinates will be discussed 1later). Equation (B.2¢) applied to
Figure B.1 will produce four equations. Using the smalles£ values of

d and e possible, the equations are

Ny =b, + bys + b,t + b,st (B.3a)
Ny = b, + bys + b,t + b,st (B.3b)
Ng = b, + bys + b,t + b,st (B.3¢)
N, =b, + b,s+ bt + b,st (B.3d)

and since the nodal values in natural coordinates are either 1 or -1,
the values of b, thru b, can be solved for using equation (B.2a).
These values will not necessarily be the same for the differemt (B.3)
equations. Solving for the b's and rearranging the terms, the shape

functions become

Ny = (1/4)(1-s)(1-¢) (B.3e)
Ny = (1/4)(1+s)(1-t) (B.3f)
Ng = (1/4) (1+s) (1+¢) (B.3g)
Ny = (1/4)(1-3)(1+t) . (B.3h)

A typical shape function for this element is shown graphically in
Figure B.2. The next shape functiom to be considered is an eight node

two dimensional isoparsmetric solid as shown in Figure B.3. The shape
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functions are formulated in the same way as before, only this element

has eight of them,

Figure B.2 Shape function of a four node element

X.u
Figure B.3 Eight node two dimensional solid element
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The shape functions for the eight node solid are

-
L]

(1/4) (1-3) (1-t) (-s-t-1)
Ny = (1)4)(1+s$(i-t)k s-t-1)
Ng = -(i/4ikl+sik1+t)( s+t-1)
N, = (1/45(1-s)i1+t)(-c+t-15
Ny = (1/2) (1-52) (1-t)
Ny = (1/2) (1+3) (1-¢2)
Ng = (1/2) (1-82) (1+4)

Np = (1/2) (1-s) (1-t2) .

(B.4a)
(B.4b)
(B.4¢c)
(B.44d)
kB.4ei
(B.4fi
(B.4g)

(B.4h)

A typical shape function for this element is shown graphically in

Figure B.4,

Figure B.4 Shape function for an eight node element
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The three dimensional theory for the shape functions is a continuationm
of the two dimensional theory. Another variable is added to the shape
function formulation. An eight node, three dimensional solid is shown

in Figure B.S.

W

X,u

Figure B.5 ERight node three dimensional solid element

The shape functions for the three dimensional eight node solid element

are
Ny = (1/8) (1-s) (1-t) (1-2) (B.5a)
Ny = (1/8) (1+s) (1-t) (1-r) (B.5b)
Np = (1/8) (1+s) (1+t) (1-1) (B.5¢)
N, = (1/8)(1-3) (1+t) (1-2) (B.5d)

Ny = (1/8) (1-8) (1-t) (1+1) (B.Se)
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Ny = (1/8) (1+5s) (1-t) (1+1) (B.5f)
No = (1/8) (1+s) (1+¢) (1+x) (B.5g)
Np = (1/8) (1-3) (1+t) (1+1) . (B.5h)

A twenty node, three dimensional solid is shown in Figure B.6.

X.u
Figure B.6 Twenty node three dimensional solid element

The shape functions for the twenty node three dimensional solid

element are

N = (1/8) (1-s) (1-t) (1-1) (-s—t-1-2) (B.6a)
Ny = (1/8) (1+s) (1-t) (1-7) ( s-t-1-2) (B.6b)

Ng = (1/8) (1+s) (1+t) (1-1) ( s+t-r-2) (B.6¢c)
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N, = (1/8) (1-3) (1+£) (1-1) (-s+ t-1-2) (B.6d)
Ny = (1/8) (1-3) (1-t) (1+r) (-s—t+r-2) (B.ée)
Ny = (1/8) (1+8) (1-£) (1+2)  s-t+2-2) (B.6£)
No = (1/8) (1+s) (1+¢t) (1+1) ( s+ t+r-2) (B.6g)
Np = (1/8)(1-s)(1+t)(1+r) (-8t t+2-2) (B.6h)
Ng = (1/4) (1-8) (1-8) (1-1) (B.64)
N = (1/4) (1+8) (1-43) (1-1) (B.6k)
Ng = (i/4>ii‘825£1+t5k1-!5 (B.61)
Np = (1/4) (1-8) (1-t2) (1-7) (B.6m)
Ny = (1/4)(1-:2)(1-t)(1+r) (B.6n)
Ny = (1/45(1+s)(1-t2)(1+:) (B.60o)
Ny = (1/4) (1-s2) (1+t) (1+r) (B.6p)
Ny = (1/4)(1-3) (1-3) (1+2) (B.6q)
Ny = (1/4) (1-s) (1-t) (1-£2) (B.61)
N, = (1/4)(1+s) (1-t) (1-c2) (B.63)
Ny = (i)45k1+s)i1+tiki-r2) (B.6t)
N = (1/4) (1-8) (1+8) (1-22) . (B.6u)

Condensing the above elements to new elements with less nodes is based

on the following equation

ay = (1/2)(agq + ag3) (B.7a)

where a represents r, s, t, u, v, or w, the subscript m denotes a
midside node, and the subscripts cl and ¢2 denote the nodes that are

collinear with node m. An eight node solid condensed iito a five node






54

solid is shown in Figure B.7.

7

X.u

Figure B.7 Five node two dimensional solid element

The displacement in the u direction for the eight node solid is

Q= NIUI + NJIIJ + anx + NLBL + Nunu + NNIIN + Noﬂo + NPIIP . (B. Tb)

The five node element has three condensed sides, which will produce

three equations from equation (B.7a) in the u direction.

uy = (1/2) (uy + ug) (B.7e)

up = (1/2) (uy, + uy) (B.7e)
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Inserting equations (B.7¢), (B.7d), and (B.7e) into equation (B.7b)

and rearranging the terms yields

w=[Np+ 2 Jup + [Ny + 2 Joy + [Ng + 2 + (NG/2) Jug +

[y + (Ng/2) + (Np/2) Jug, + Nymy (B.7¢)

and the shape functions for the five node element becomes

Ny = Ny + (Np/2) (B.7g)
Ny = Ny + (NN)zi (B.7h)
Ng = Ng + (Ny/2) + (Ng/2) (8.74)
N, = N + (No)zi + (Nplzi (B.73)
Ny = Ny . (B.7k)

The new shape functions derived in the v direction are exactly the
same,

If the displacements within an element are known, the strains at
any point can be determined. The displacements and strains are

related by the equation
{e} = [L]{a} (B.8a)

where ([L] is a linear operator. Since the displacements are

approximated by equation (B.1), equation (B.8a) becomes

{e} = [LIIN]{a} (B.8b)
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where

[B] = [LIIN] .

The entries of matrix [B] are oillod the strain shape functions.

(B.8¢)

The

linear operator [L] varies depending on if the problem is two or three

dimensional. In a two dimensional problem, [L] is defined as

d/ds 0
[L] = 0 8/t .
a/3t 9/ds

At node i, equation (B.8c) becomes
[Bil = [L?Ni
or

aNilat 0
[Bi] = 0 aNi/at o

ON;/at  aNj/ds

For a p node element, the [B] matrix is

(B] = [1B;] (B;] .... [B,]] .

(B.8d)

(B.8e)

(B.8 1)

(B.8g)
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If the finite element formulation is a three dimensional problem, the

linear operator [L] is

"d/dr (1} 0
0 d/ds 0
[L] = 0 0 alat | . (B.8h)

a/dr 9/9s 0

0 a/as 3/t

(a/3ar O 3/at

At node i, the strain shape function matrix is

'3Ni/a: 0 0 7
0 3Ni/as 0
[Bi] = 0 0 aNi/at . (B.8i)

9N, /3s ani/a: 0

LoN;/at 0 aN;/dz_

For a three dimensional problem, the element [B] matrix assembles
according to equation (B.8g).

The above elements have all been defined in natural coordinates.
They are frequently ocalled parent elements, Transformation of all
isoparametric elements from spatial domain to mnatural domain occur
using the shape functions, i.e., the shape functions defining

displacoements will also be the same function used to map the element
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from a spatial coordinate system to a natural coordinate system. The

element shown in Figure B.8 is mapped into the parent element.

Figure B.8 Four node element mapped into natural coordinmates

This usually consists of a change of area, and a rotation. The

equations defining this mapping are

X =a, + a,8+ agt + a,st (B.9a)

Y = b1 + bys + bt + b,st (B.9b)
with the boundary conditions of

X(s,t) = X(-1,-1) = x; = 4



X(1,

X(-1,

Y(s,t)

Y( 1,

Y(-la

X( 1,-1)

1)

1)

Y(-l 0-1)

Y( 13'1)

1)

1)
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Solving equations (B.9a) and (B.9b)

a, = (1/4)( x3
a, = ii/4)(-xl
2, = (1/4)(-x3
a8, = (1/4)( xg
b, = (1/4)( yg
b, = (1/4) (-yg
b, = (1/4) (-yg

b, = (1/4)( yp

or

|
Xy
Xy
Xy
¥y
Iy
Iy

Iy

X(s,t) = (1/4)(12 -

Y(s,t) = (1/4)(12 -

+ xg + x1)
+ xp - x1)
+xp+ 1)
g -ox)
+ g+ v
+ yg - yL)
+yg t yL)

+ yg - yp)

6s - 2st)

6t + 2st)

results in

12/4
-6/4
o
-2/4

12/4

-6/4

2/4

(B.9¢)
(B.§d)
(B.éc’
(B.9f)
(B.9g)
(B.91)
(B.91)

(B.9j)

(B.9k)

(B.91)

Once the mapping has beoen defined, the relationship between the strain

shape function in natural coordinates and the strain shape fumctioam in
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spatial coordinates can be established. Using the rules of

differentiation, the strain shape functions at node § become

aNplas = (aNB/ax)(axlas) + (aNﬁlay)(aylas)

aNﬂlat = (aNﬁlax)(Gx/at) + (BNB/Gy)(ay/Bt)

or in matrix form

{GNBIG:} [3:/33 ay/as] {BNB/ax}
aNB/a ax/at dy/at BNB/Oy .
The above matrix equation is also written as

\ - [s]

3Nﬁ{3t BNB/Gy

partial

(B.10a)

(B.10b)

(B.10c)

(B.104d)

where [J] is the Jacobian matrix., To find the spatial derivatives,

the Jacobian matrix is inverted,

aNg/ay aNg/at

The mapping in three dimensional problems is similar

dimensional problems, equation (B.10c) becomes

(B.10e)

to two
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aN,,/a. 3ax/ds dy/ds  3z/ds BNplax
3“3/0! = |ax/at dy/at adz/at aNslay (B.10f)
aNB/a: dx/dr dy/or  dz/ar. BNBIBz

or
Ng/as aNg/ax
aNg/atp = | 1] aNglayp . (B.10g)
dNg/ax aNg/dz

The Jacobian matrix is inverted as in equation (B.10e), and the result

is
aNB/ax BNﬁlal
-1
aNgraye = [ 1] aNg/at (B.10n)
3NB/31 3N§/Br

where the Jacobian matrix (and it's inverse) are 3X3 in size. With
the transformation from spatial coordinates to natural coordinates
defined, the element stiffness matrices can be transformed into
natural coordinates, the benefit being easier numerical integration of

the element stiffness matrix,






APPENDIX C

NUMERICAL INTEGRATION USING THE GAUSS-

LEGENDRE QUADRATURE METHOD

The stiffness matrix in most finite element routines is
numerically integrated by a technique called the Gauss-Legendre
Quadrature method. This method estimates the value of the integrall
f(x) by approximating the actual function with an nath-degree

interpolating polynomial pn(x) and integrating.

= dx + jb )d (C.1)
I:f(x)dx f:pn(x) x ‘En(x x

The error term is E (x) for the numerical integration. The

interpolating polynomial is of Lagrangian form, i.e,

Pp(x) = flxe] + (x-x4)flx,,x0] + (x-x.)(x—x;)f[x,.x;.x.]

F cececes * (!'x.)(x-x,_).....(x-xn_‘)f[xn.....x;.x,] (C.ZQ)
or, expanding the first three terms

Polx) = £(xg) + [(xx4)/(xg=2,) Jelxe) + [(x-20)/ (xyx0) JE(xy) +

[(xmxe) (xm20) 7 (xg=20) (xqx3) JE(xe) + [(xx0) (x-20)/ (2324 (x2-x,) JE(x0)

62
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+ [ (xmx0) (37230 / (x3720) (xyxy) JEx) + oivinin, (C.2b)

The terms in equation (C.2b) can be collected and the equation can be

rewritten as

Pu(x) = [ﬂ:'o.j*o[(x-xj)/(x.-xjn]f(m

n
. []Tjgo.j*llt(lx-xj)/(xl-xj)]]f(x‘)
e+ [T j*n[(x—xj)/(xn-xj)]]f(xn) : (C.2¢)

Equation (C.2¢c) is sometimes compressed to

Pp(x) = 2:;0[.TT:;o’jfi[fx—xj)/(xi-xj)]]f(xi) (C.2e)
or

Pylx) = Z.oLi(x)f(xi) (C.21)
where

Lo =TT g palmn)/ xymx)] (€.28)

The error term from equation (C.1) is

n
En(x) - [.Tri-o(x-xi)]f[x.xn.xn_l.....x.] (C.Sa)

or
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n

Byx) = [ TT_ Gz Je= D o/ aetny (C.3b)
where n must lie on or within the limits of integration. The value of
n, however, is wunknown. The next step is to transform the function
and the limits of integration into a natural coordinate system. This
is accomplished by defining a new coordinate system r as

r = [2x-(a+b)1/(b-a) . (C.4a)
The new function in matural coordinates will be

F(r) = £(x) = £((1/2) ((b-a)r+(a+b)) . (C.40)

Equation (C.1) in nmatural coordinates becomes

- n n _ o+l —
Fr) = 3 Ly + [T e =@/ ety (C.5a)
where
n
Li(r) = ]'[j_o’jﬁ[(z-rﬁ/(:i—zju (C.5b)
and
-1 ¢(q <1 ., (C.5¢)

The r;'s are point transformations of the x;’'s. Assuming f(x) is a
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polynomial of degree 2ntl, then EfgoLi(r)F(:i) is a polynomial of
degree n at most. Furthermore, Trf;o(r—ri) is a polynomial of degree
n+l, thus forcing the term F(n+1)(i)/(n+1)! to & polynomial of degree

n. This is represented by
FI1) (@) /(a+1)1 = g (r) (C.6)
vhere g, (r) is a polynomial of degree n. Equation (C.5a) becomes

Fe) = 3 LieRGey) + [T Gemep) Janto) (.7

Integration of both sides of (C.7) yields

ilp(:) - ﬁIX‘oLi(z)F(ri)d: + j'_l_l['['[:‘o(:-:i)]g,,(z)az : (C.8)

Dropping the error term and taking the summation operator outside of

the integral produces

1 1
LFE) =) Fap| Ly

= Ezso'iF(ri) (C.92)
where
v, = f L, (r)dr _[1 T [(e-1;)/(x;-2;) ldr (C.9b)
i -1 i T “1 jSO,j*i b 4 tj xi j . .

The term w; is frequently called the weighing function. The location



66

of the numerical integration points is determined by the error

function., The error functiomn is

El[ n:‘o(r—ri)]gn(t)dr : (C.10)

The best way to make the error function vanish is to select values of
r; that drive the function to zero. The first step is to expand the
two polynomials (g, (r) and T[jaj(z-r;)) into Legendre polynomials.

The first part of the error term becomes

n
11-i=0(r—ti) = GoQe(r) + c,Q,(r) +

' 1
ceee + 0 Q (2) + cn+xQn+1(r? = 2::ociQi(r) (C.11a)

and the second part of the error term becomes

8a(r) = doQe(x) + d,Q,(r) + ... + d,Q,(r)
- Z_odiqi(:) . (C.11b)

Substituting equations (C.11a) and (C.11b) into the error term,

equation (C.10) results in

ﬁl[z ‘oz‘ocidjﬁi(r)Qj(t) + cmzsodiqi(:m,,,(:)]a: . (C.12)

Since the Legendre polynomials have the following orthogonal

properties
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Elﬁn(r)(l,.(r)dr =0 n#m (C.132)
1
I_lQn(r)Q.(r)dr #0 n=m (C.13b)

all terms of equation (C.12) that are of the form

1
2T O THETERF (C.13¢)

will be zero. The error term will then become

f-l[ ‘”—:-o(r-ri) ]sn(r)dr = §:=ocidij.i1[Qi(r) 12dr (C.14)

One way to make equation (C.14) equal zero is to assign a zero value
to the first ntl c;'s. The coefficient 6n+1 is not known, but

equation (C.11a) produces

n
-IT o(t-ri) = cn.*,xan.,x(t) . (C.15)

i=

In order for the left hand side of equation (C.15) to be zero, r; must
be the roots of the Legendre polynomial. The gemneral recursion

formula for Legendre polynomials is
Q (z) = [(20-1)/n]zQ,_, (r) - [(n-1)/2]Q,_,(x) (C.16a)

with
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Q(r) =1 (C.16b)

Q(r) =r . (C.16¢)

Most finite element routines use a three point integration scheme, and

the Legendre polynomial corresponding to n=3 is

Q,(r) = (1/2)(5c3 - 31) . (C.16d)

The roots of equation (C.16d4) are

r, = —0.77459 66692 41483 .
r, = 0.00000 00000 00000

r, = 0.77459 66692 41483
and the weight factors from equation (C.9b) are

w, = 0.55555 55555 55556
v, = (0.,88888 838888 88889
w, = 0,55555 55555 55556

The transformation from one dimensional functions to three dimensional
functions is an extension of one dimensional theory. The functiom is
evaluated in the other two directions in the same manner it was

evaluated in the first direction.

11 1 1 -
I-lj—l_-lfsr"'t)drd‘dt = 2k-1§:-1 ,l'i'j'kr(‘i'rj"k) (C.17)
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In equation (C.17) the same number of integration points don’t have to
be used in each direcotion, but for most three dimensional elements, an
integration grid of 3X3X3 is used. Vhen the stiffness matrix is
transformed from spatial to natural coordinates, a constant term is
multiplied into the entire stiffness matrix to preserve equality. The

term

IZJ;I;IB(x.y.z)]T[C][B(x.y.z)]dxdydz (C.18)

will be transformed into natural coordinates as
jl Il Il [B(z,s t)]T[C][B(r.s.t)]Det[J]drdsdt (C.19)
-1d-g)

where Det[J] is the determinant of the Jacobian matrix.



APPENDIX D

VAVE FRONT SOLUTION

The ANSYS finite element program uses a wave front solution
procednre.'. ihi: is a solution technique for a system of simultaneous
linear equations derived by the finite element method. The wave fronmt
at any point is the number of equations which are active at that
instant., The ordering of elements is critical to minimize the wave
front, for reasons of efficiency and problem size. The node numbering

is arbitrary. The active equations are

2-1‘1‘1' 5 = Fy (0.1)
where xkj = gtiffness term kj

nj = nodal displacement j

Fy = nodal force k

k = row number

j = column number

L = number of equations.

The elimination of an equation (i=k) begins by normalizing the first

equation in the following manner

70
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}L
jsl(xijlxii)uj = (Fi/Kii) . (D.Z)

If the finite element formulation is correct, the diagonal entry K:s

will never be zero. Equation (D.2) is rewritten as

L ' ' :

Ejglx,‘juj = F; (D.3)
where

K;J = Kijlxﬁ (D.4)
and

F'

Equation (D.3) is saved for a back substitution solution. The

remaining equations are modified such that

' [
xkj = xkj - Knxij (D.6)
Fy = Fy - Ky3Fj (D.7)

where k # i. These equations are assembled as

L ’ '
= D.

where k varies from 2 to L. Once the first row is eliminated, the
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other rows are eliminated by repeating the process. An example of
this solution technique is shown below, using a three by three system

of equations. The equations are

Kia kia ki uy £,
ks k33 Ky, u,f =< £f(. (D.9)
K2 kya Ky u, f,

The first equation is normalized so that

o, + (k;,/ku_)n, + (k;,/k,;)u, = f,./k;; (D.10a)

The normalized components are then

ki, = kia/kaa (D.10b)
k;‘ = k;g/kg; (D.10¢)
£, = f,/k; (D.104)

The second iteration using the wave froant solution produces the

following components:

ki = [kys - kaz(kys/key)l (D.11a)
k3, = [kay = kaa(kys/kyy)] (D.11b)
kjy = [kys = Kya(kys/ky,y)] (D.11c)
Ky, = [kyy — kys(ky,/Kky4)] (D.11d)

f; = [f, - kzx(fz/kxa)j (D.11e)
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£, = [f; - kyy(£5/kq5)]
which are assembled as
[k;, kas u.}_ {f;}
ki, k;.] { sl

The first equation of (D.11g) is modified to become

u, + [[kzt - k331(ky;3/k54)1/[k5, - kzz(kxz/kxx)]]na

= [f, — ka3 (£3/k34)1/[k3;3 - ky35(ky5/ke4)]

while the second equation becomes
:an: = fz
The term u, is solved for as
U, = f:(k:
where

f’; = [[kzz - kzg(klllkli)][fi - k;;(f;/kx;)]]

- [[kaz = ksx(kxz/kxx)][fz = kz;(fx/kxx)]]

and

(D.11f)

(D.11g)

(D.12a)

(D.12b)

(D.12¢)

(D.124d)
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k:a = [[kzz - k3a(kyy/ky4)1[ksy - ksx(kzslkxx)]]

= [[kzz - ksa(kia/kis)1lkas - kzx(kxskax)]] (D.12e)

The result is the same that would be obtained using some other method
such as Cramer’s Rule. The advantage of the wave front technique is

the optimization of computer time during the equation solution phase

of the finite element analysis.






APPENDIX E

PLANE STRAIN

Plane strain is a specialization of three dimensional 1linear
elastic theory. It represents the situation where the component of
displacement normal to the x-y plame is zero., The material stiffness

matrix for the three dimensional case is

v1-p M M 0 0 0
M 1-n M 0 0 0
[C] = EB/{(1+p) (1-2p)]} 1 M 1-p 0 0 0 . (E.1)
| | 0 0 0 (1-2p)/2 0 0
0 0 0 | 0 k1-2u)/2 0
L0 0 0 0 | 0 k1~2u)/2.

Using the fact that there are no out of plane displacements, the

material stiffness matrix compresses to
“n n 0

(C] = BE/{(1+p) (1-2p)} | n 1-p 0 (E.2)

0 0 (1-2p)/2

75
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where [C] is expressed in Hooke's law as

{c} = [Cl{e}

where

and

(E.3a)

(E.3b)

(E.3¢c)



The following tables correspond to the two dimensional model

APPENDIX F

TWO DIMENSIONAL DISPLACEMENT DATA

of

the wedge area from Chapter 3. They are the displacements for the

loaded nodes of the Brooks Supervillinova

modifications of various size holes,

Table F.1 Y direction displacements of

Node

OV IJALME WL K

C

BR=0.05

-.2990
-.2909
-.2930
-.2888
-.2870

-.2851

-.2825
-.2785
-.2692
-.2427

Table F.2 Y

Node

VW =

R=0.05

-.29917
-.2929
-.2959
-.2909
-.2877

R=0.10

-.2984
-.2911
-.2952
-.2954
-.29717
-.2882
-.2804
-.2696
-.24217

R=0.15

-.2973
-.2917
-.2997
-.3086
-.3180
-.3148
-.2995
-.2840
-.2704
-.2425

R=0.20

-.2957
-.2919
-.3042
-.3269
-.3569
-.3515
-.3155
-.2876
-.2709
-.2420

direction displacements of

R=0.10

-.3013
-.2994
-.3075
-.3043
-.3008

R=0.15

-.3049
-.3124
-.3301
-.3308
-.3274

77

R=0.20

-.3088
"c3321
-.3736
-.37711
-.3659

including the geometry

model with ome hole

R=0.25

-.2937
-.2933
-.3128
-.3542
-0‘075
-.3994
-.3386
=.2944
-.2725
-.2417

model with two holes

R=0.25

-.3170
-.4336
-.4445
-.4268

R=0.30

-.2914
-.2953
-.3246
-.3916
-.4798
-.4679
-.3701
-03036
-.2748
-.2414

B=0.30

-.3297
-.4068
-.5253
-.5502
-.5219
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Table F.2 (cont’'d)

6 -.2858 -.2988 -.,3239 -.3685 -.4328 -.5324
7 -.2840 -.2946 -.,3152 -,3529 -.4050 -.4829
8 -.2797 -.2853 -.,2964 -.3122 -.3360 -.3694
9 -.2696 -.2713 -.2745 -.2777 -.2842 -.2932
0 —-.2427 -,2429 -.2432 -,2431 -,2440 -,2453

Table F.3 Y direction displacements of model with three holes

Node R=0.05 R=0.10 R=0.15 R=0.20 R=0.25 R=0.30

1 -.3014 -.3084 -.3234 -.3480 -.3840 -.4383
2 -.2947 -.3066 -.3302 -.3784 -.4437 -.5450
3 -.2966 -.3103 -.3378 -.3878 -.4594 -.5726
4 -.2908 -,3043 -.3317 -.3718 -.4356 -.5365
5 -.2877 -.3012 -.3282 -.3749 -.4460 -.5605
6 -.2859 -.2993 -.3261 -.3711 -.4405 -.5526
i -.2847 -.,2978 -.3241 -.3619 -.4225 -,5183
8 -.2819 -.2947 -.3192 -.3648 -.4288 -,5281
9 -.2723 -.2825 -.3019 -.3403 -.3913 -.4680
10 -.2442 -.,2490 -,2588 -.2730 -.2941 -,3237

Table F.4 X direction displacements of model with one hole

Node R=0.05 R=0.10 R=0.15 R=0.20 R=0.25 R=0.30

1 .01655 .01983 .02560  ,03178 .04197 .05457
2 .00590 .00972  .01669 .02463 .03737  .05351
3 .01703 .02252 .03221 .04480 .06294 08629
4 .03164  .03718 .04820  ,06638 .08989 .1210
5 .04502 04811 .05307 .06277  .07507  .09260
6 .05578 .05409 .05202  ,04549 .03880 .02901
7 .06417  ,06053 .05306 .03978 .02387 .00318
8 .06960  .06639 .06091 .05330  ,04330  .03089
9 .07606 .07430 .07114  ,06761 .06206  .05532
10 .05793 .05687 .05521 .05373 .05114  ,04833

Table F.5 X direction displacements of model with two holes
Node R=0.05 R=0.10 BR=0.15 R=0.20 R=0.25 R=0.30

1 .01776  .02535  .03837 .05591 .08309 1211
2 .00711  .01506  .03013 .05396 .08804  ,1368
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Table F.5 (cont'd)

3 .01718 .02341 .03411 .05170  .07827 1191

4 .03084 .03413 .04083 .04626 .05869 .07768
5 .04440 .04566 .04801 .05145 .05790 .06804
6 .05612 .05554  .05411 .05454 05425  .05432
7 .06423 06065 .05499 .04387 .02942 .00783
8 06914  ,06441 .05509 .03947 .01942 -.00773
9 ,07536 .07135  .06463 .05521 .04230  .02579
10

.05765 .05564 .05217 .04836 .04206 .03441

Table F.6 X direction displacements of model with three holes

Node R=0.05 BR=0.10 R=0.15 R=0.20 R=0.25 R=0.30

1 .01760 .02484  .03794 .05867 .08965  .1348
2 .00627 .01185 .02061 .03472 ,05818 .09553
3 .01617 .01953 .02573  .02892  .04087 .06010
4 03041  .03259 .03617 .04011 ,05092 .06977
5 .04452  .04641  .04947 .05532 .06650 .08599
6 05667 .05812 .06125 .06195 .06608 .07233
7 .06549 06617 .06755 .06961 .07253 .07652
8 .07036 .06952 .06762 .06792 .06613 .06388
9 07551  ,07193 06694  .05549 .04140 .01922
10

05702 .05311  ,04546 .03253 .01640 -.,00431






APPENDIX G

THREE DIMENSIONAL CONDENSED ELEMENT ROUTINE

This appendix contains the computer program to generate condensed
three dimensional element stiffness matrices. The program was written

and run on a PRIME 750 computer.
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C

C

C—This is the driver program, STIF10NOD, that determines the
C stiffness matrix to a condensed ten node 3D isoprametric
C element.

C

C—REAL variables

Matrix of X values of element — There are 20 since
a condensed 10 node element maps 20 nodes.

Y(20) - Matrix of Y values of element

Z(20) - Matrix of Z values of element

X(20)

A(20) - Mapping coefficient from RST * A = X
B(20) - Mapping coefficient from RST * B =Y
C(20) - Mapping coefficient from RST * C = Z
RST(20,20) - Mapping matrix (see above)

WORK(21,21) - Work matrix

MU - Poissons ratio
E - Youngs modulas

(s e N Nr NN e N No R Ne e N Nr Ee N N Ko Ko

——INTEGER variables

ITERM - The terminal location

ITYPE - The terminal type

IRATE - The terminal baud rate

ICODE - Error flag for subroutine call

e N ErEeNrEr Nr Ko

REAL X(20),Y(20),Z(20),A(20),B(20),C(20)
REAL WORK(21,21),RST(20,20),M0
CHARACTER*1 IANS

C

C

C—Determine the terminal type and baud rate

C

CALL TERM (ITERM, ITYPE, IRATE, ICODE)

IF (ICODE.NE.O) IRATE = 4800

N =20

NP1 = 21
C
C—Input the data and material properties
C
100 CALL INPUT (X,Y,Z,E, MU)
C. . . . N
C—Find the location of the condensed nodes, assuming
C they lie halfway between the endpoints in all
C three directions
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(v

CALL LOCATE (X,Y,Z)

c - .

C—Build the coefficient matrix RST where

C the mapping is dependent on RST * A = X

C RBRST*B =Y, RST*C=2

c . .
CALL ASMBL (RST)

—Solve for A, B, and C from above.
This uses the linear equation solver
in the Math Library on the Prime.
The calling sequence is (A,X,RST, WORK,
N,NP1,IERR). The last variable, IERR,
is an error flag that indicates if
the matrix RST is singular.

s ErErEr N e Ko Nr Kz Kpl

CALL LINEQ (A,X,RST, WORK,N,NP1, IERR)
CALL LINEQ (B,Y,RST, WORK,N,NP1, IERR)
CALL LINEQ (C,Z,RST, WORK,N,NP1, IERR)
C
C—Check the error messgage.
C
IF (IERR.EQ.1) WRITE (1,110)
110  FORMAT (/,1X,'——) MATRIX IS SINGULAR <{—-')
c. . . -
C—Give the user the opportunity to view the
C element. This is done by mapping the element
C from natural coordinates to spatial coordin.
C
120 WRITE (1,130)
130 FORMAT (/,1X,'Would you like to see the element? ')
. READ (1,140) IANS
140 FORMAT (A1)
IF (IANS.EQ.'Y’) CALL DRELE (A,B,C,IRATE)
IF (IANS.EQ.’'Y’) GOTO 150 '
IF (IANS.EQ.'N') GOTO 150
WRITE (1,900) IANS

GOTO 120
C
C—Let the user integrate the element
C

150 VWRITE (1,160)
160 FORMAT (/,1X,'VWould you like to integrate this element? ')
e READ (1,140) IANS

IF (IANS.EQ.'Y’) CALL INTEG (A,B,C,E, MU)
IF (IANS.EQ.'Y’) GOTO 170
IF (IANS.EQ.’'N’) GOTO 170
WRITE (1,900) IANS
GOTO 150 -

C

C—Let the user input another element if they wish.
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170 WRITE (1,180)
180 FORMAT (/,1x,'VWould you like to input another element? ')
READ (1,140) IANS
IF (IANS.EQ.'Y’) GOTO 100
IF (IANS.EQ.’'N’) GOTO 190
WRITE (1,900) IANS
GOTO 170 :

190 CONTINUE

900 FORMAT (/,1X,Al1,’ is not a legal response. The only’,
1 ' legal responses are Y(Yes) and N(No).’)

CALL EXIT

END
c
c
C—This subroutine, INPUT, will read in element data
C and material data concerning the ten node degraded
C element,

c
SUBROUTINE INPUT (X,Y,Z,E, M0)
CHARACTER*1 IANS ’ '
REAL X(20),Y(20),Z(20),M0

C . . . . . .

100 WRITE (1,110)

110 FORMAT (/,1X,’Enter Youngs modulas: ')
READ (1,¢,ERR=120) E
GOTO 130 '

120 WRITE (1,900)
GOTO 100 - :

130 WRITE (1,140)
140 FORMAT (/,1X,'Enter Poissons ratio: ')
READ (1,¢,FRR=150) MU

GOTO 160

150 WRITE (1,900)
GOTO 130 -

c

160 DO 210J =1, 10, 1

o IF (J.EQ. 1) IANS = 'T’
IF (J.BQ, 2) IANS = 'J'
IF (J.EQ. 3) IANS = 'K’
IF (J.EQ. 4) IANS = 'L’
IF (J.BQ. 5) IANS = ‘N’
IF (J.EQ. 6) IANS = 'N’
IF (J.EQ. 7) IANS = ‘0’
IF (J.EQ. 8) IANS = 'P’
IF (J.BEQ. 9) IANS = ‘Q’
IF (J.BQ.10) IANS = 'R’

170 WRITE (1,180) IANS, IANS, IANS
180 FORMAT (/,1X,'Enter X(’,A1,’), Y(',A1,'), and Z(',A1,'):






190
200
210

220
230

240
250
260
2‘?0

280

290
300

310

320
330
340

900
910

990

c
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READ (1,*,ERR=190) X(J),Y(J),Z(J)
GOTO 200 A C
WRITE (1,900)

GOTO 170 -

CONTINUE

CONTINUE

WRITE (1,230)

FORMAT (/,1X,'The following options are available: ')
WRITE (1,240) .

FORMAT (/,7X,'I - Input new element and material data’)
WRITE (1,250)

FORMAT (7X,‘'V - View current element and material data’)
WRITE (1,260)

FORMAT (7X,’'E - Exit input mode’)

WRITE (1,270) ’

FORMAT (/,1X,'VWhich option would you like? ')

READ (1,280) IANS

FORMAT (A1)

IF (IANS.EFQ.'I') GOTO 100

IF (IANS.EQ.’'V’) GOTO 290

IF (IANS.EQ.’E’') GOTO 990

WRITE (1,910) IANS

GOTO 220

WRITE (1,300) E

FORMAT (/,1X,'Youngs modulas = ’',F12.3)

WRITE (1,310) MU

FORMAT (1X, 'Poissons ratio = ',F8.5)

WRITE (1,320) X(1),Y(1),Z(1) :

FORMAT (/,1X,°'X( 1)= ',F12.3,4X,'Y( 1)= ',F12.3,4X,
'Z( 1)= ',F12.3)

DO 340 J = 2, 10, 1

WRITE (1,330) J7,X(J),7,Y(),T,Z(J)

FORMAT (1X,°'X(’',I12,')= ',F12.3.,4X,°'Y(',I12,')= ',F12.3,4X,
'z(',12,')= ',F12.3) ’
CONTINUE

GOTO 220

FORMAT. (/,1X,’'Exrror — Data incompatible with program - ',
'Try again’)"
FORMAT (/,1X,Al1,’ is not a legal response. Try again.’)

CONTINUE
RETURN
mn . .

C—This subroutine, LOCATE, determines the location

c
C
C

C

of the condensed nodes. Their location is important
to insure complete mapping.

SUBROUTINE LOCATE (X,Y,Z)
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DIMENSION X(20),Y(20),Z(20)
C . . . . . - .
C—First move the R node to it’s proper
Cc twenty node location

C

X(13) = X(10)

Y(13) = Y(10)

Z(13) = Z(10)

C
C—Node between J and K
c .
X(10) = (X(2) + X(3)) / 2.0
Y(10) = (Y(2) + Y(3)) / 2.0
Z(10) = (Z(2) + Z(3)) / 2.0
c D o o
C—Node between K and L
c .
X(11) = (X(3) + X(4)) / 2.0
Y(11) = (Y(3) + Y(4)) / 2.0
Z(11) = (Z(3) + z(4)) / 2.0
c - P . - - .
C—Node between L and I
C
X(12) = (X(4) + X(1)) / 2.0
Y(12) = (Y(4) + Y(1)) / 2.0
Z(12) = (Zz(4) + Z(1)) / 2.0
c " . s N . P . -
C—Node between N and O
c . .
X(14) = (X(6) + X(7)) / 2.0
Y(14) = (Y(6) + Y(7)) / 2.0
Z(14) = (Z(6) + Z(7)) / 2.0
C—Node between O and P
C
X(15) = (X(7) + X(8)) / 2.0
Y(15) = (Y(7) + Y(8)) / 2.0
Z(15) = (z(7) + Z(8)) / 2.0
C s oo
C—Node between P and M
C .
X(16) = (X(8) + X(5)) / 2.0
Y(16) = (Y(8) + Y(5)) / 2.0
Z(16) = (Z(8) + Z(5)) / 2.0
c PR a e e e
C—Node between I and M
C
X(17) = (X(1) + X(5)) / 2.0
Y(17) = (Y(1) + Y(S5)) / 2.0
Z(17) = (Z(1) + Z(S5)) / 2.0
C

C—Node between J and N
C






X(18)
Y(18)
Z(18)

(X(2) + X(6))
(Y(2) + Y(6))
(Z(2) + Z(6))
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(o
C—Node between K and O
C
X(19) = (X(3) + X(7)) / 2.0
Y(19) = (Y(3) + Y(7)) / 2.0
Z(19) = (Z(3) + 2z(7)) / 2.0
C—Node between L and P
C
X(20) = (X(4) + X(8)) / 2.0
Y(20) = (Y(4) + Y(8)) / 2.0
Z(20) = (Z(4) + Z(8)) / 2.0
C
RETURN
END
C
C—-This subroutine, ASMBL, assembles the coefficient
C matrix for the mapping of the function between
C natural coordinates and spatial coordinates.
C It is built on a twenty point map and passed back to
C the driver program.
C
SUBROUTINE ASMBL (RST)
REAL RST(20,20),R(20),8(20),T(20)
C . . . . .
C—Matrices R, S, and T are the nodal positions
C in natural coordinates.
C
DATA (S(I)11.1020)/-100,100.1.0.’1;0.-10001nOploo.-I.O.
10.0,1,0,0.0,-1.,0,0.0,1.0,0.0,-1,0,-1.0,1.0,1.0,-1,0/
DATA (T(I)01'1.20)/'1.0.‘1.0.1.0.1.0.‘1.0,-1.0.1.0,1.0.
1 -10000000100'0001-1oonoooblooponob-IQO)'loo,lc°n1.°/
DATA (R(I),I=1,20)/-1.0,-1.0,-1.0,-1.0,1.0,1.0,1.0,1.0,
1 -1000-1000-1003-150.100p1005100.1o°.°¢°.°o°.°o°p000/
C . .
DO 100 J =1, 20, 1
C . .

RST(J,
RST(J,
RST(J,
RST(J,
RST(J,
RST(J,
RST(J,
RST(J,
RST(J,

1)
2)

8)
9)

RST(J,10)

1.0

R(J)

sS(J)

T(J)
R(J)*e*2
S(J)es2
T(J)*s2
S(J)*T(J)
S(J)*R(J)
R(J)*T(J)
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e N Er N NrEr Kol

(o}

C

RST(J,11) = S(J)**2
RST(J,12) = S(J)*s2
RST(J,13) = T(J)**2
RST(J,14) = T(J)*s2
RST(J,15) = R(J)**2
RST(J,16) = R(J)*s2
RST(J,17) =
RST(J,18) =
RST(J,19) =
RST(J,20) =
CONTINUE-

RETURN

END

*
L
*
 J
L 4

TJ)
R(J)
S(J)
R(T)
S(J)
TJ)
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R(J) * 8(J) * TQ)

S(J)s*2 s R(J) * T(J)
T(J)**2 » R(J) * S(J)
R(J)**2 * S(J) * T(J)

C and remapping the element back from natural

coordinates to spatial coordinates.
SUBROUTINE DRELE (A,B,C, IRATE)

REAL A(20),B(20),C(20)

CHARACTER*1 IANS

——This subroutine, DRELE, draws the degraded twenty
node axis by using the mapping vectors A, B, and

C—Set the initial scale value, the initial viewpoint
and the initial reference point.

C
C

100
110
120
130
140

145
150

160

SCALE = 2.
VP = 10.
YVP = 10.
ZvpP = 10.
IR =0,
IR = 0.
ZR =0,

CALL RECOVR

CALL INITT3 (IRATE/10)

CALL ANMODE -
WRITE (1,110)

FORMAT (/,1X,'Current graphic displays set at: ')
WRITE (1,120) XVP,YVP,ZVP

FORMAT (5X, 'Viewpoint set at (x, y.z)

WRITE (1,130) XR,YR,ZR
FORMAT (5X,'Reference point set at (x.y.z)

WRITE (1,140) SCALE

FORMAT (5X, 'Scaling factor set at:

WRITE (1,150)

',3F7.2)

',F7.2)

',3F7.2)

FORMAT (/,1X,'The following options are available: ')

WRITE (1,160)

FORMAT (/,5X,'D - Draw the element’)






C

170
180
190
260
210
220

230

240

250
260

270
280

290
300

310
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WRITE (1,170)
FORMAT (5X,'V
WRITE (1,180)
FORMAT (5X,'R - Change the reference point’)
WRITE (1,190)
FORMAT (5X,'S
WRITE (1,200)
FORMAT (5X,'P - View the graphic parameters’)

WRITE (1,210)

FORMAT (5X,'E - Exit the element draw mode’)

WRITE (1,220)

FORMAT (/,1X,'Which option would you like? ')

READ (1,230) IANS

FORMAT (A1)

IF (IANS.EQ.’'D’) GOTO 310

IF (IANS.EQ.'V’) GOTO 250

IF (IANS.EQ.’'R’) GOTO 270

IF (IANS.EQ.'S’) GOTO 290

IF (IANS.EQ.'P’) GOTO 100

IF (IANS.EQ.’'E’) GOTO 990

WRITE (1,240) IANS o

FORMAT (/,1X,Al1,’' is not a legal answer. Try again.')
GOTO 145

Change the viewpoint')

Change the scaling factor')

WRITE (1,260)

FORMAT (/,1X,'Enter the new viewpoint (x,y,z): ')
READ (1,+*,ERR=250) XVP,YVP,ZVP

GOTO 145 :

WRITE (1,280)

FORMAT (/,1X,’'Enter the new referemce poiant (x,y,z): ')
READ (1,#*,ERR=270) XR,YR,ZR

GOTO 145 ‘

WRITE (1,300)

FORMAT (/,1X, 'Enter the new scaling factor: ')
READ (1,¢,ERR=290) SCALE

GOTO 145 :

CALL RECOVR

CALL DVINDO (-10,.23,10.23,-7.8,7 8)
CALL CARTVP (XVP,YVP,ZVP)

CALL LOOKAT (XR,YR, zn)

CALL ZUpP

CALL MAGNFY (SCALE)

C—~Draw the bottom of the element
C
C

C

and then the top
DO 360K =1, 2,1

IF (K.FQ.1) R = -1,
IF (K.EQ.2) R = 1,
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T=-,
DO 320 S = -1,, 1,, .02
CALL FCT (X,Y,Z,A,B,C,R,S,T)
IF (S.EQ.-1.) CALL MOVEAS3 (x Y, Z)
CALL DRAWA3 (X,Y, Z)

320 CONTINUE C
Ss=1,
po330T=-1,, 1., .02
CALL FCT (XYZA.BCRST)
CALL DRAWA3 (X,Y, Z)

330 CONTINUE '
T= 1,
DO 340 S =1,, -1,, -.02
CALL FCT (X,Y,Z,A,B,C,R,S,T)
CALL DRAWA3 (X,Y,Z)

340 CONTINUE
S =-1.
DO 350 T = 1., -1., -.02
CALL FCT (X,Y,Z,A,B,C,R,S,T)
CALL DRAVA3 (X,Y,Z)

350 CONTINUE

c.
360 CONTINUE
C—Connect the top and bottom
C
DO 380K =1, 4, 1
C
IF (KOMOI) s = _1.
IF (K.EQ.1) T = -1,
IF (x‘m.z) s = 10
IF (E.EQ.2) T = -1,
IF (K.EQ.3) s = 1,
IF (K.EQ.3) T = 1,
IF (K.EQ.4) S = -1,
IF (K.EQ.4) T= 1,
C

DO 370 R = -1,, 1., .02
CALL FCT (X,Y,Z,A,B,C,R,S,T)
IF (R.EQ.-1.) CALL MOVEA3 (X Y,2)
CALL DRAVWA3 (X,Y,2)
370 CONTINUE

c

380 CONTINUE
CALL ANMODE

C
GOTO 145

C

990 CONTINUE

‘ RETURN -

END
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C—This subroutine, FCT, maps points in natural
coordinates back into spatial coordinates.

C

C
C
C

C
C

I O N e

W SRS

SUBROUTINE FCT (X,Y,Z,A,B,C,R,S,T)
REAL A(20),B(20),C(20)

X = A(1) + A(2)*R + A(3)*S + A(4)*T + A(5)*R*R

+ A(6)*S*S + A(7)%T*T + A(8)*S*T + A(9)%S*R +
A(10)%R*T + A(11)%S*S*T + A(12)*S*S*R + A(13)%S*T*T
+ A(14)%R*T*T + A(15)*R*R*S + A(16)*R*R*T + - :
A(17)%R*S*T + A(18)%S*S*R*T + A(19)*R*S*T*T +
A(20)*R*R*S*T

Y = B(1) + B(2)*R + B(3)*S + B(4)*T + B(5)*R*R

+ B(6)*S*S + B(7)%T*T + B(8)%S*T + B(9)%S*R +
B(10)*R*T + B(11)*S*S*T + B(12)*S*S*R + B(13)*SsTsT
+ B(14)*R*T*T + B(15)*R*R*S + B(16)*R*R*T +
B(17)*R*S*T + B(18)%S*S*R*T + B(D)‘R‘S‘T‘T +

B( 20) ‘R‘R‘S‘T ‘

Z = C(1) + C(2)*R + C(3)*S + C(4)*T + C(5)*R*R

+ C(6)%S*S + C(7)ST*T + C(8)%S*T + C(9)*S*R +
C(10)*R*T + C(11)*S*S*T + C(12)*S*S*R + C(13)8S*T*T
+ C(14)%R*T*T + C(15)*R*R*S + C(16)*R*R*T +
C(17)*R*S*T + C(18)*S*S*R*T + C(B)‘R‘S‘T‘T +
C(20)‘R‘R‘S‘T

RETURN
END

C——This subroutine, INTEG, integrates the element

C stiffness matrix and builds the matrix.

C The integration scheme used is a 3X3X3 Gauss
C Legendre quadrature method

C

C—Variable identification

C

C—REAL variables

A(20) - Mapping coefficients — X direction
B(20) - Mapping coefficients — Y direction
C(20) - Mapping coefficients — Z direction

R(3) - R natural coordinate integration points
S(3) -~ S natural coordinate integration points
T(3) = T natural coordinate integration points
WR(3) - Weight functions, r direction
WS(3) - Weight functions, s direction
WT(3) - Weight functions, t directiom

e N e N e N e N r N e N e K Ne Kr N Ne!






91

DSFRST(3,10) - Derivative of the shape functions with resp to RST
DSFXYZ(3,10) - Derivative of the shape functions with resp to XYZ

BMAT(6,30) - The B matrix used to form the stiffness matrix
BTMAT(30,6) — The transpose of the B matrix

CMAT(6,6) — The material matrix used to form the stiffness matrix
INVIAC(3,3) - The inverse of the Jacobian matrix

PART(30,30) - A partial sum of the stiffness matrix
STIF(30,30) — The element stiffness matrix

a0 nn

SUBROUTINE INTEG (A,B,C,E, MU)

(o}

REAL A(20),B(20),C(20),MU

REAL R(3),8(3),T(3),WR(3),¥S8(3),¥T(3)
REAL DSFRST(3,10),DSFXYZ(3,10)

REAL BMAT(6,30) ,BTMAT(30,6) ,CMAT(6,6)
REAL INVJAC(3,3)

REAL STIF(30,30),PART(30,30),WORK(30,6)

DATA (R(I),I=1,3)/-.7745966692,0.0,.7745966692/

DATA (S(I),I=1,3)/-.7745966692,0.0,.7745966692/

DATA (T(I),I=1,3)/-.7745966692,0.0,.7745966692/

DATA (WR(I),I=1,3)/.5555555556,.8888888889,.5555555556/
DATA (WS(I),I=1,3)/.5555555556,.8888888889,.5555555556/
DATA (WT(I),I=1,3)/.5555555556,.83888888889,.5555555556/
DATA STIF/900%0.0/

DATA PART/900%0.0/

DATA BTMAT/180%0.0/

DATA BMAT/180%0.0/

DATA CNAT/36%0.0/

c .
C—Start the integration loop
C .

DO 3301I=1, 3,1
DO 320 =1, 3,1
DO 310K =1, 3, 1
C—Get the derivatives of the shape functions
C in thier natural coordinates

C

CALL DERSF (DSFRST,R(I),S(K),T(J))
C—Determine the Jacobain matrix inverse, the Jacobian
C matrix determinant, for the numerical values of

C R, S, and T.

C

CALL JACOB (A,B,C,R(I),S(K),T(J),DEIJTAC, INVJAC)
c - . .
C—Transform the derivatives of the shape functions
C into XYZ spatial coordinates.






92

C This involves using the matrix multplication
C in the PRIME math library, called MMLT
C
CALL MMLT (DSFXYZ,INVJAC,DSFRST,3,3,10)
c .

C—Get the B matrix from DSFXYZ for the stiffness matrix
C Also find the transpose of the B matrix. These two
C matrices are stored in BMAT and BTMAT
C
CALL MAKEB (DSFXYZ, BMAT, BTMAT)
C
C
C—Get the material matrix, this is called inside
C the integration loop because some matrix routines
C destroy the product matrices.

C
CALL MAKEC (CMAT,E,MU)
C
C—Build the stiffness matrix parts
C
CALL MMLT (WORK,BTMAT, CMAT,30,6,6)
CALL MMLT (PART, WORK,BMAT,30,6,30)
C

C—Multiply the weight factors and DETJAC by the
C individual summation part of the stiffness matrix
C
CALL MSCL (PART, PART,30,30, ('R(I)"S(K)"T(J)))
CALL MSCL (PART.PART.SO 30,DETJ AC) '
C
C—Sum the partial stiffness matrix to the entire term
c .
CALL MADD (STIF, STIF, PART,30,30)
C . .
C
310 CONTINUE
320 CONTINUE
330 CONTINUE
c .
C—Output the results to a file named OUTPUT
c
OPEN (14,FILE='OUTPUT')
DO 516-I =1, 30, 1
DO 500 J =1, 30, 6
WRITE (14,*) STIF(I1,J),STIF(I, J+1) STIF(I J+2) STIF(I J+3),
1 STIF(I,J+4), S'I'IF(I J+5)
500 CONTINUE
510 CONTINUE

C
CLOSE (14)
c .
RETURN

END-
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C—This subroutine, MAKEC, assembles the material
C matrix in a location called CMAT.

c
SUBROUTINE MAKEC (CMAT,E, MU)
C
REAL CMAT(6,6) ,M0
c
CMAT(1,1) =1 - MU
CMAT(1,2) = MU
CMAT(1,3) = MU
c
CMAT(2,1) = MU
CMAT(2,2) =1 - MU
CMAT(2,3) = MU
c
CMAT(3,1) = MO
CMAT(3,2) = MO
CMAT(3,3) =1 - MU
C
CMAT(4,4) = (1 - (2.0*MU)) / 2.0
CMAT(5,5) = (1 - (2.0*MD)) / 2.0
CMAT(6,6) = (1 - (2.0*MU)) / 2.0
c 4
DO 110 I =1, 6, 1
D0 100 J =1, 6, 1
CMAT(I,J) = ( E / ((1+MU)*(1-(2.0*MU)))) * CMAT(I,J)

100 CONTINUE
110 CONTINUE

RETURN

END
C
C—This subroutine, DERSF, calculates the
derivatives of the shape functioms in
natural coordinates.

cnoana

SUBROUTINE DERSF (DSFRST,R,S,T)

a

REAL DSFRST(3,10)

DNDSI
DNDTI
DNDRI

DNDSJ .125 * (1-T) * (1-R) * (2.0*s -
DNDTY .125 ¢ (1-R) * (1+8) * (2.0°T -
DNDRJ = .125 * (1+S) * (1-T) * (T - S +

DNDSK = ,125 * (1+T) * (1-R) * (2.0%S +
DNDTK = .125 * (1+S) * (1-R) * (S + 2.0
DNDRK = ,125 * (1+8) * (1+T) * (2.0*R -

m’-.!v-l

* (1-T) * (1-R) * (2.0%s + T+ R +
* (1-S) * (1-R) * (S + 2.0°T + R +
* (1-8) * (1-T) * (S+ T+ 2.0*R +







DNDSL =
DNDTL =
DNDRL =

DNDSM =
DNDTN =
DNDRM =

DNDSN =
DNDIN
DNDRN =

DNDSO =
DNDTO =
DNDRO =

DNDSP =
DNDTP =
DNDRP =

DNDSQ =
DNDTQ =
DNDRQ =

DNDSR =
DNDIR =
DNDRR =

DNDSS =
DNDTS =
DNDRS =

DNDST =
DNDIT =
DNDRT =

DNDSU =
DNDTU =
DNDRU =

DNDSV =
DNDTV =
DNDRV =

DNDSW =
DNDIVW =
DNDRW =
DNDSX =
DNDTIX =
DNDRX =

DNDSY =

125
125
.125

125
125
125

125
JA25
125

125
125
125

125
125
125

25
.25
25

.25
25

.25

.25
25
25

.25
25
25

25
25
25

.25
.25
.25

25
.25
.25

25
25

.25

25

® &

(1+T)
(1-8)

(1-8)

(1-T)
(1-8)
(1-8)

(1-T)
(1+8)
(1+8)

(1+T)
(1+8)

(1+8)

(1+T)
(1-8)
(1-8)

(1-T)
(1-R)
(1-T)

(1-R)
(1+8)
(1+8)

(1+T)
(1-R)
(1+T)

(1-R)
(1-8)
(1-8)

(1-T)
(1+R)
(1-T)

(1+R)
(1+8)
(1+8)

(1+T)
(1+R)
(1+T)

(1+R)
(1-8)

(1-8)

(1-T)
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(1-R)
(1-R)
(1+T)

(2.0%S - T+ R +
(2.0T - S - R -
(S -T+ 2,0%R +

(1+R) * (2.0%S +

T-R+

(14R) * (S + 2.0*T - R +

(1-T) * (2.0*R -
(1+R) * (2.0%s -
(1+R) * (2.0°T -
(1-T) ¢ (S - T+

(1+R) * (2.0%s +

S-T-
T+ R -
S-R+

2.0°R -

T+ R

(1+4R) * (S + 2.0*T + R -

(1+4T) *» (S+ T +

2.0*R -

(1+R) * (2.0*S - T- R +

(1+R) * (2.0°*T -

S+ R-

(1+4T) * (T - S + 2,0*R -

(1-R) * (-2.0)*s

(1-(S**2)) * (-1.0)
(1-(S*+2)) * (-1.0)

(1-(T*+2))
(1-R) * (~2.0)*T

(1-(T**2)) * (-1.0)

(1-R) * (-2.0%S)
(1-(S*+2))

(1-(S**2)) * (-1.0)

(1-(T*+2)) * (-1.0)

(1-R) -* (-2.0)*T

(1-(T**2)) * (-1.0)

(1+R) * (-2.0)ss

(1-(S*s2)) * (-1.0)

(1-(S*+2))

(1-(T**2))
(1+R) ¢ (-2.0)*T
(1-(T**2))

(1+R) * (-2.0)*s
(1-(S#*2))
(1-(S®+2))

(1-(T**2)) * (-1.0)

(1+R) -* (-2.0)°T
(1-(T**2))

(1-(R**2)) * (-1.0)



C

DNDTY =
DNDRY =

DNDSZ =
DNDTZ =
DNDRZ =
DNDSA =

DNDTA =
DNDRA =

DNDSB =
DNDTIB =

25
.25

.25
.25
.25

.25
.25
.25

.25
25
DNDRB = .25

(1-8) *
(1-8)

(1-T) *
(1+8) =
(1+8) *

(1+T) »
(1+8) *=
(1+8) *

(1+T) *
(1-8) =
(1-S) =

C—Load the derivatives into

C

DSFRST(1, 1) = DNDSI +
DSFRST(2, 1) = DNDTI +
DSFRST(3, 1) = DNDRI +
DSFRST(1, 2) = DNDSJ +
DSFRST(2, 2) = DNDIJ +
DSFRST(3, 2) = DNDRJ +
DSFRST(1, 3) = DNDSK +
DSFRST(2, 3) = DNDIXK +
DSFRST(3, 3) = DNDRK +
DSFRST(1, 4) = DNDSL +
DSFRST(2, 4) = DNDIL +
DSFRST(3, 4) = DNDRL +
DSFRST(1, 5) = DNDSM +
DSFRST(2, 5) = DNDTN +
DSFRST(3, 5) = DNDRM +
DSFRST(1, 6) = DNDSN +
DSFRST(2, 6) = DNDIN +
DSFRST(3, 6) = DNDRN +
DSFRST(1, 7) = DNDSO +
DSFRST(2, 7) = DNDTO +
DSFRST(3, 7) = DNDRO +
DSFRST(1, 8) = DNDSP +
DSFRST(2, 8) = DNDTP +
DSFRST(3, 8) = DNDRP +
DSFRST(1, 9) = DNDSQ
DSFRST(2, 9) = DNDTQ
DSFRST(3, 9) = DNDRQ
DSFRST(1,10) = DNDSU
DSFRST(2,10) = DNDTU
DSFRST(3,10) = DNDRU
RETURN

END
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(1-(R**2)) * (-1.0)
(1-T) -* (<2.0)*R

(1-(R**2))

(1-(R**2)) * (-1.0)
(1-T)-* (~2.0)*R

(1-(R**2))
(1-(R**2))

(1+T) * (-2.0)*R

(1-(R**2)) * (-1.0)

(1-(R**2)) -

(1+T) * (-2.0)*R

(DNDST/2.0)
(DNDTT/2.0)
(DNDRT/2.0)
(DNDSR/2.0)
(DNDTR/2.0)
(DNDRR/2.0)
(DNDSR/2.0)
(DNDTR/2.0)
(DNDRR/2.0)
(DNDSS/2.0)
(DNDTS/2.0)
(DNDRS/2.0)
(DNDSX/2.0)
(DNDTX/2.0)
(DNDRX/2.0)

(DNDSV/2.0)
(DNDTV/2.0)
(DNDRV/2.0)
(DNDSV/2.0)
(DNDTV/2.0)
(DNDRV/2.0)
(DNDS¥/2.0)
(DNDIVW/2.0)
(DNDRW/2.0)

R R R E R

RN

the matrix DSFRST

(DNDSY/2.0)
(DNDTY/2.0)
(DNDRY/2.0)
(DNDSZ/2.0)
(DNDTZ/2.0)
(DNDRZ/2.0)
(DNDSS/2.0)
(DNDTS/2.0)
(DNDRS/2.0)
(DNDST/2.0)
(DNDTT/2.0)
(DNDRT/2.0)
(DNDSY/2.0)
(DNDTY/2.0)
(DNDRY/2.0)

(DNDSZ/2.0)
(DNDTZ/2.0)
(DNDRZ/2.0)
(DNDSW/2.0)
(DNDTIVW/2.0)
(DNDRW/2.0)
(DNDSX/2.0)
(DNDTX/2.0)
(DNDRX/2.0)

++++++

+ 4+ ++++

(DNDSA/2.0)
(DNDTA/2.0)
(DNDRA/2.0)
(DNDSB/2.0)
(DNDTB/2.0)
(DNDRB/2.0)

(DNDSA/2.0)
(DNDTA/2.0)
(DNDRA/2.0)
(DNDSB/2.0)
(DNDTB/2.0)
(DNDRB/2.0)
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C—This subroutine, JACOB, determines the Jacobian
matrix of the twenty node map. It also finds
the determinant of the Jacobian and it’s inverse.

C
C
C

C

C

[

WY

(W

SUBROUTINE JACOB (A,B,C,R,S,T,DETIAC, INVJAC)
REAL A(20),B(20),C(20),INVJAC(3,3),JAC(3,3),WORK(4,6)

DXDS = A(3) + A(6)%2.0%*S + A(8)*T + A(9)*R +
A(11)%2,0%S*T + A(12)%2.0%S*R + A(13)*T**2 + A(15)%R**2 +
A(17)%R*T + A(18)%2.0°R*S*T + A(19)*R*T**2 + A(20)*T*R**2
DXDT = A(4) + A(7)%2.0%T + A(8)%S + A(10)*R +

A(11)%S**2 + A(13)%2.0%S*T + A(14)%2,0%R*T + A(16)*R**2 +
A(17)*R*S + A(18)%R*S**2 + A(19)%2.0%R*S*T + A(20)*S*R**2
DXDR = A(2) + A(5)%2.0*R + A(9)*S + A(10)*T +

A(12)%S%%2 + A(14)%T**2 + A(15)%2,0%R*S + A(16)%2.0%R*T +
A(17)%S*T + A(18)*Te8%*2 + A(19)S*T**2 + A(20)*R*S*T

DYDS = B(3) + B(6)*2.0%S + B(8)*T + B(9)*R +
B(11)%2,0*S*T + B(12)%2,0*S*R + B(13)%T**2 + B(15)%R*+2 +
B(17)*R*T + B(18)%2.0*R*S*T + B(19)*R*T**2 + B(20)%T*R**2
DYDT = B(4) + B(7)%2.0T + B(8)*S + B(10)*R +

B(11)*S**2 + B(13)*2.0°S*T + B(14)%2,0*R*T + B(16)*R**2 +
B(17)*R*S + B(18)*R*S**2 + B(19)%*2.0*R*S*T + B(20)*S*R**2
DYDR = B(2) + B(5)%2.0%R + B(9)%S + B(10)*T +

B(12)¢S**2 + B(14)*T**2 + B(15)%2.0%R*S + B(16)%2.0%R*T +
B(17)*S*T + B(18)%T*S%*2 + B(19)*S*T*+2 + B(20)*R*S*T

DZDS = C(3) + C(6)*2.0*S + C(8)*T + C(9)*R +
C(11)%2.0%S*T + C(12)%2.0*S*R + C(13)*T**2 + C(15)*R**2 +
C(17)%R*T + C(18)%2.0*R*S*T + C(19)%R*T*s2 + C(20)‘T‘R"2
DZDT = C(4) + C(7)*2.0*T + C(8)*S + C(10)*R +

C(11)%S*%2 + C(13)%2.0%S*T + C(14)%2.0%R*T + C(16)*R**2 +
C(17)%R*S + C(18)*R*S**2 + C(19)%2.0*R*S*T + C(20)*S*R**2
DZDR = C(2) + C(5)%2,0%R + C(9)*S + C(10)sT +

C(12)*S**2 + C(14)*T**2 + C(15)%2.0%R*S + C(16)*2.0%R*T +
C(17)*S*T + C(18)9T*S**2 + C(19)S*T*+2 + C(20)*R*S*T

C—Assemble the Jacobian matrix

C

JAC(1,1) = DXDS
JAC(1,2) = DYDS
JAC(1,3) = DZDS

JAC(2,1) = DXDPT
JAC(2,2) = DYDT
JAC(2,3) = DZDT

JAC(3,1) = DXDR
JAC(3,2) = DYDR
= DZDR

JAC(3,3)
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C—Use the matrix inversion routine on the PRIME.
The calling sequence is

call minv (OUTPUT, INPUT, ISIZE, WORK, ISIZE+1,
ISIZE+ISIZE, ERROR FLAG)

rEeNr Nz Xe!

N=3

NP1 = 4

NPN = 6

C .
CALL MINV (INVJAC,JAC,N, WORK,NP1,NPN, IERR)

C

C—Solve for the Determinant of the Jacobian

C

+

DETIAC = (JAC(1,1)*JAC(2,2)*JAC(3,3))
(JAC(1,2)*JAC(2,3)*JAC(3,1))
(JAC(2,1)%JAC(3,2)%JAC(1,3))
(JAC(3,1)%JAC(2,2)%JAC(1,3))
(JAC(2,1)%JAC(1,2)*JAC(3,3))
(JAC(3,2)*JAC(2,3)*JAC(1,1))

+

(WP WS

IF (IERR.NE.O) WRITE (1,100)
100 FORMAT (/,1X,’———)> JACOBIAN IS SINGULAR <{—-')

RETURN
END -

C—This subroutine, MAKEB, builds the B matrix
C (called BMAT) in the stiffness matrix.

C The transpose of B (called BTNAT) is also
C assembled and passed back in INTEG.
C

SUBROUTINE MAKEB (DSFXYZ,BMAT, BTMAT)
c . .
REAL DSFXYZ(3,10) ,BMAT(6,30) ,BTMAT(30,6)
C—Build the B matrix from the matrix DSFXYZ
C

E=1

DO 100 I =1, 30, 3

BMAT(1, I) = DSFXYZ(1,K)

BMAT(2,I+1) = DSFXYZ(2,K)

BMAT(3,I+2) = DSFXYZ(3,K)
BMAT(4, I) = DSFXYZ(2,K)
BMAT(4,I+1) = DSFXYZ(1,K)
BMAT(5,I+1) = DSFXYZ(3,K)
BMAT(S5,I+2) = DSFXYZ(2,K)
BMAT(6, I) = DSFXYZ(3,K)
BNAT(6,1+2) = DSFXYZ(1,K)
K=K+1

100 CONTINUE
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C--Find the transpose of the B matrix and place it
C in the location BTMAT
C
po 120 1 =1, 30, 1
DO 110 T =1, 6, 1
BTMAT(I,J) = BMAT(J,I)
110 CONTINUE -
120 CONTINUE

RETURN
END










