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ABSTRACT 
 

EFFECTS OF DATA PRETREATMENT ON THE MULTIVARIATE STATISTICAL 
ANALYSIS OF CHEMICALLY COMPLEX SAMPLES 

 
   By 

 
John William McIlroy 

 

 Multivariate statistical procedures, such as principal component analysis (PCA), 

are often utilized to differentiate and associate a large number of complex samples 

consisting of thousands of variables.  When samples with similar chemical compositions 

are compared, chemical differences between samples are often overshadowed by non-

chemical variation.  Therefore, in order to provide meaningful statistical comparisons and 

differentiate complex and highly similar samples, these non-chemical sources of variation 

must be minimized, often accomplished by implementing data pretreatment procedures. 

 In this work, ten diesel samples from different service stations were analyzed in 

triplicate by gas chromatography-mass spectrometry.  The resulting chromatograms were 

processed with data pretreatment procedures, including baseline correction, smoothing, 

retention time alignment, and normalization, to evaluate the enhanced discrimination in 

PCA achieved by minimizing non-chemical variation.  For each pretreatment procedure, 

metrics were developed to evaluate the effect on the chromatogram as well as the PCA 

results.  Normalization and alignment resulted in the greatest enhancement in association 

of replicate samples, while smoothing and baseline correction were shown to have 

minimal effect.   By applying data pretreatment procedures, replicate samples were 

closely associated with one another and differentiated from the other diesel samples, 

allowing for differentiation of complex and similar samples.    
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1. CHAPTER 1: INTRODUCTION 

 Chemical Analysis of Forensically Significant Samples  

Evidence found at a crime scene is a crucial aspect of many police investigations 

and is often required in court to establish guilt or innocence.  Forensics scientists examine 

the evidence, draw a conclusion from the results obtained, and provide their conclusion 

in court as an expert’s opinion.  The examination of the evidence often consists of an 

identification or a comparison between a questioned and known sample [1-3]. Often the 

comparisons are facilitated by instrumental analyses, which generate a chemical 

fingerprint of the samples for comparison [2, 4]. The forensic scientist must then make 

the determination whether the question and known samples are consistent with one 

another (i.e. a “match”).   

Even when the conclusions that forensic scientists draw are based on scientific 

tests, all testing has errors and uncertainties associated with the measurement.  These 

must be taken into account by the forensic scientist when forming their expert opinion.  In 

addition, the opinions of the forensic scientists are susceptible to outside influence and 

human bias [3].  A 2009 report from the National Academies of Science (NAS) identified 

the need to address the “accuracy, reliability, and validity” of forensic testing to help 

reduce testing error and bias [3].  In order to address this concern, forensic research 

began to focus on the use of statistical procedures to aid in comparison of chemical 

fingerprints, assign a statistical confidence to forensic tests, and to help minimize errors 

and human bias [5-18].  
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1.1.1. Forensic Chemistry 

The area of forensic science that is of most interest to analytical chemists is the 

application of instrumental analysis to forensically relevant samples, either in forensic 

toxicology or forensic chemistry [2].  Forensic toxicologists generally examine biological 

fluids for the presence of drugs or poisons and relevant metabolites.  Forensic chemists 

generally utilize analytical techniques such as gas chromatography-mass spectrometry 

(GC-MS) and infrared spectroscopy to analyze physical evidence such as fire debris, 

explosives, and controlled substances [2].   

Due to the expansive range of evidence types that a forensic chemist may analyze, 

this work will focus on a single, complex example, the GC-MS analysis of ignitable liquids 

(specifically diesel) for the detection of accelerants in fire debris.   GC-MS is one of the 

most common analytical instruments in a forensic laboratory.  It encompasses a 

separation and identification aspect (discussed in Section 1.1.2) and is used to confirm 

the identity of a compound [2, 4, 19].  Diesel fuel will provide a forensically relevant sample 

that is chemically complex, consisting of hundreds of compounds. Further, diesels from 

different sources vary in chemical composition, based on the refinery at which the fuel 

was produced and additives from the individual service stations at which the fuel was 

obtained.  The composition and properties of diesel fuel used for this work will be further 

discussed in Chapter 2.   
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1.1.2. Gas Chromatography-Mass Spectrometry  

GC-MS is a hyphenated technique that combines gas chromatography, which 

separates compounds in a mixture based on boiling point or polarity, and mass 

spectrometry, which breaks compounds into fragments that are characteristic of the 

compound.  Each compound has a reproducible retention time and as well as a unique 

and reproducible fragmentation pattern, under specific and controlled conditions.  The 

retention time and fragmentation pattern are then utilized to determine the identity of the 

compound [1, 20]. The GC-MS instrument (Figure 1-1) used in this research is similar to 

those found in forensic laboratories.  The output from the GC-MS is a chromatogram, 

which contains peaks for compounds present in the sample.  Example chromatograms of 

several ignitable liquids including diesel fuel (a), lighter fluid (b), and gasoline (c) are 

shown in Figure 1-2.  Characteristic compounds are labeled in each chromatogram.   

1.1.2.1. Gas Chromatography Theory 

Chromatography is a broad class of analytical techniques that is used to separate 

sample mixtures.  In all chromatography methods, the mixture is dissolved into a mobile 

phase which is moved across a stationary phase. Compounds in the mixture interact 

differentially with the stationary phase [19].  Compounds that interact more with the 

stationary phase are more retained, while compounds that interact less with the stationary 

phase move through the chromatography system quickly and are retained to a lesser 

extent [19]. As a result of the different extents of interaction with the stationary phase, 

compounds in a sample mixture are separated, resulting in a chromatogram (Figure 1-2).  

Compounds with similar chemical properties will generally elute close to one another.   
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One of the most common chromatography systems is the gas chromatograph.  In 

GC analysis, the sample is volatized into the gas phase, using high temperatures, in the 

injector port of the instrument (Figure 1-1).  The gaseous mixture is transferred onto a 

column using a carrier gas, typically helium, hydrogen, or nitrogen, which is the mobile 

phase in the separation [19-21].  The stationary phase is contained on the inside of the 

column.  The column is typically inside a temperature-controlled oven, and temperature 

can be varied during the analysis to change the speed and efficiency of the separation 

[19].  The compounds from the sample interact with the stationary phase in the column, 

causing separation.  The same compound should have the same retention time from 

sample to sample on the same instrument and under the same experimental conditions.  

The effluent from the column then travels into a detector.   

1.1.2.2. Mass Spectrometry Theory 

One of the most common detectors in forensic science is the mass spectrometer 

[1, 2].  The MS not only detects the compound as it elutes from the GC, but it can also 

help to identify the compound [19].  In GC-MS, the end of the column is positioned directly 

into the ion source of the MS, via a transfer line (Figure 1-1).  The MS is under high 

vacuum, in order to allow molecules from the column to traverse the MS, without colliding 

with air molecules.  While samples are introduced at atmospheric pressures, the low flow 

rates utilized in capillary GC allow the vacuum pumps in the MS to remove the air and 

mobile phase molecules, resulting in a high vacuum.   

In order to be analyzed by MS, the compounds must first be ionized.  In this work, 

compounds were ionized using electron ionization (EI).  In the ion source, a heated 



 7 
 

filament produces high energy electrons which are accelerated across the ionization 

space, towards an anode [19, 22].  The molecules from the sample traverse the ionization 

space perpendicular to the electron beam.  As the sample molecules pass close to the 

beam, some of the energy is transferred from an electron to a molecule, which causes 

the molecule to ionize (for a positive ion by removing an electron).  However, often more 

energy is imparted to the molecule than is required for ionization.  The additional energy 

causes the molecule to fragment.  Each compound fragments in a unique and 

reproducible manner under these conditions, allowing for identification of the compound 

using a known standard or a reference database [19, 22].   

After the molecules have been ionized, the mass of each ion is determined using 

a mass analyzer.  In this work, a quadrupole mass analyzer was used.  The quadrupole 

typically has four cylindrical metal rods.  Positive ions are directed from the ion source 

through a series of electrostatic lenses and focused into the quadrupole [20].  The 

quadrupole has a direct current (DC) applied to each rod as well as an oscillating radio 

frequency (RF) current.  Opposite pairs of rods are electrically connected, with adjacent 

rods always having opposite charges for both the DC and RF currents [20].  The electric 

field cause by the combination of DC and alternating RF potentials results in ions moving 

along the quadrupole in a corkscrew trajectory [19].  Only ions with a narrow range of 

mass-to-charge (m/z) ratio can pass through the quadrupole at a given set of DC and RF 

potentials.  The DC and RF potentials can be scanned, which allow a range of m/z to 

pass [22].  Ions that pass through the mass analyzer strike the conductive surface of an 

electron multiplier, creating a cascade of electrons which are then detected and converted 

into an electronic signal [20].   
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1.1.2.3. GC-MS Chromatogram 

After GC-MS analysis, a chromatogram of the data is generated, consisting of an 

array of abundances at discrete retention time points.  The chromatogram indicates the 

time at which individual compounds elute from the GC.  The abundance at each retention 

time point in the chromatogram originates from the mass spectrum generated in the MS.  

Each spectrum shows the ions resulting from the fragmentation of the compound that 

eluted at that point.  The fragmentation pattern relates to the structure of that compound, 

which allows for identification.  The total ion chromatogram is the sum of the abundance 

of all m/z at each retention time point [1].   

Another example of a GC-MS chromatogram of diesel fuel is shown in Figure 1-3a.  

This diesel fuel was analyzed using a slower temperature program than the fuels shown 

in Figure 1-2.  The major normal alkane peaks are labeled for reference.  Figure 1-3b 

shows an expanded region of the pentadecane (C15) peak.  The points indicate where 

mass spectra were collected and summed to create the total ion chromatogram (TIC) 

abundance.  The red line shows where the mass spectrum in Figure 1-4 was obtained.  

The mass spectrum shows the m/z value of the molecular ion and fragment ions resulting 

from this compound.  
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Figure 1-3. A representative chromatogram of diesel fuel with the normal alkane
peaks labeled (a) and an expanded region of the pentadecane (C15) peak (b).  The 
blue circles indicate points where mass spectra were collected.  The red line
indicates the point which the mass spectrum in Figure 1-4 was taken.    
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Figure 1-4.  The mass spectrum (scan at retention time = 39.219 min, indicated by 
the red line in Figure 1-3b) of pentadecane (molecular weight = 212 amu).   
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1.1.3. Data Pretreatment Procedures Applied to Chromatographic Data 

The signals in the GC-MS chromatogram can vary from one analysis to the next.   

Data pretreatment procedures are often employed to correct for these non-chemical 

variations in chromatographic data [9, 23, 24].  Differences in overall abundance between 

chromatograms analyzed on the same instrument can result from variation in sample 

preparation, sample injection, chromatographic conditions, and instrument response [23, 

25].  In order to correct this problem, normalization procedures are commonly applied.  

Another source of variation that occurs in the baseline at the end of the chromatogram, 

particularly at high temperature, is from the degradation of compounds in the septum, 

injection port, and GC stationary phase.  Differences in stationary phase age and wear 

can lead to a rise and variation in the signal over time [23].  It is often necessary to apply 

baseline correction procedures to minimize this variation.  Noise, the high-frequency 

fluctuation in the signal, is another source of variation, which is hard to identify visually 

when there is a high signal-to-noise ratio.  Noise is often the result of instrumental and 

electronic variation, and can be corrected using a smoothing procedure [23].  Peaks in 

the chromatogram can elute at slightly different retention times, due to instrumental 

variation in flow rates, column degradation, and manual injection procedures.  These 

variations can be corrected by applying a retention time alignment algorithm [8, 23].   
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 Statistical Analysis of Chromatographic Data 

After generating the chemical fingerprint, multivariate statistical procedures can be 

utilized to compare many samples simultaneously.  Multivariate statistical procedures are 

widely used as a research tool and have been applied to a variety of complex samples to 

help reveal underlying patterns in the data, including applications in lipidomics, 

metabolomics, proteomics, and petroleomics [12, 25-35].  The most commonly applied 

multivariate statistical procedure is principal component analysis (PCA).  PCA serves as 

the basis of many other multivariate statistical procedures [36, 37].   Often data 

pretreatment procedures are applied prior to any multivariate statistical analysis to 

minimize non-chemical sources of variation.   

1.2.1. Principal Component Analysis 

PCA is an unsupervised multivariate statistical procedure that helps to identify 

underlying relationships within complex datasets without any prior knowledge about the 

data [37].  Often, PCA can identify small differences between samples, which can be 

over-looked by simple visual inspection of the data [8, 24].  In PCA, latent variables are 

used to reduce the dimensionality of the data, allowing for the visualization of 

relationships between samples [9, 36, 38].  The main outputs from PCA are scores plots, 

which show relationships between samples, and loadings plots, which show the 

importance of each variable.   

In PCA, variables that vary together (covariance) are identified and grouped using 

eigenanalysis.  These groups are identified as the principal components (PCs), which are 

orthogonal and uncorrelated linear combinations of the original dataset.  From the 
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covariance matrix, the eigenvector and eigenvalue are calculated.  The eigenvector for 

each PC contains the weights of each variable that define that PC, while the eigenvalue 

is a measure of the amount variance a particular eigenvector describes [9].  The 

eigenvector with the highest eigenvalue is the first PC.  The eigenvector is then multiplied 

by the mean-centered data in order to obtain the scores for the samples [9, 13, 23, 36, 

37]. In this work, the entire chromatogram of each sample was utilized, so each retention 

time point serves as a variable.   

The scores for each sample on the first few PCs can be plotted, which allows for 

the visualization of clustering patterns.  These scores plots (Figure 1-5a), which are a 

projection of the data onto a lower dimensional space, can then be used to infer 

relationships among samples [23].  Samples positioned close together in the new PC 

space are more similar and are associated, while samples that are positioned further 

apart are different and discriminated from one another [23].  Generally, the chemical 

differences between samples provide the greatest sources of variance [37].  However, 

when PCA is applied to chemically similar and highly complex samples, non-chemical 

sources of variation tend to be the greatest sources of variation.   

The eigenvector, or weight, for each PC can also be plotted against each variable 

resulting in a loadings plot (Figure 1-5b) [23].  Variables with the highest or lowest 

weightings contribute the most to the positioning of the samples on the scores plot [23, 

39].  Loadings plots can be used to infer which variables in the sample are changing or 

differing among the samples, as these variables will be given the most weight [6].  
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The PCA plots shown in Figure 1-5 were performed using diesel fuel, lighter fluid, 

and gasoline, each extracted in triplicate with each extract analyzed in triplicate, creating 

nine total samples for each fuel (Figure 1-2).  On the PCA scores plot (Figure 1-5a) 

replicates are positioned close together, while different fuel samples are positioned further 

apart from one another.  This demonstrates that chemically similar samples are clustered 

(i.e. the replicates), while chemically different samples are positioned further apart (i.e. 

the different fuels).   

The loadings plot in Figure 1-5b can be used to identify the variables that are 

differentiating the samples on the scores plot.   For example, many of the compounds 

found in gasoline (Figure 1-2) are loading negatively on the PC1 loadings plot.  This 

explains why gasoline is positioned negatively on PC1 in the scores plot (Figure 1-5a).  

Many of the compounds found in diesel fuel (Figure 1-2) are loading positively on PC1, 

explaining why diesel fuel is positioned positively on PC1 in the scores plot.  Similar logic 

can be used to explain the position of the lighter fluid and all of the samples on PC2.   

1.2.2. Application of PCA to Differentiate Complex Samples 

There are many areas of research in which PCA and other multivariate statistical 

procedures are used to differentiate complex samples.  As an example, an on-going 

project in our lab focuses on the use of PCA to associate fire debris with a corresponding 

ignitable liquid reference standard for use in fire debris analysis [5, 7, 40-42].  Hupp et al. 

demonstrated that TICs and EICs were useful in differentiating diesel fuels from different 

service stations using PCA, after applying alignment and normalization [7].  However, in 

this work, distinguishing between chemical variation and non-chemical variation was 
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challenging because no replicates were used in the PCA.  This also made evaluating the 

improvements from data pretreatment very challenging.   

Marshall et al. utilized the TIC and extracted ion profiles (EIPs) for the 

differentiation of five diesel fuels, analyzed in triplicate [5].  EIPs are the sum of several 

extracted ion chromatograms (EICs) that are characteristic for a compound class.  EICs 

are the plot of the abundance of a single m/z at each retention time.  In addition, Marshall 

investigated association of a diesel residue, extracted from a cloth matrix, to the neat 

diesel using PCA.  Marshall showed that replicates of diesel samples could be clustered, 

but only after retention time alignment and normalization.  However, association of the 

diesel residue to the neat liquid was not possible and the authors suggested that 

additional data pretreatment procedures would be necessary to further minimize non-

chemical sources of variation [5].  In addition, this work demonstrated strategies for 

identifying retention time misalignments, including a characteristic derivative-shaped 

peak in the PCA loadings plot.   

Baerncopf et al. used PCA to differentiate replicate GC-MS chromatograms of six 

different ignitable liquids (gasoline, diesel, lamp oil, adhesive remover, torch fuel, and 

paint thinner).  By applying only retention time alignment and normalization, 

chromatograms of residues of each liquid were associated to the neat fuel after being 

spiked onto carpet and burned, which simulated burning at an arson scene [40].  This 

shows promise for associating fire debris to a neat source.  However, the fuels used in 

this study are very different in chemical composition, making the chemical variation much 

greater than the non-chemical variation in the data.   
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Prather et al. investigated the effects of weathering the fuel in addition to matrix 

interferences on association of burned fire debris samples to a neat liquid, again using 

PCA [42].   Unevaporated and evaporated samples of gasoline and kerosene were spiked 

onto a carpet matrix and burned, then the residues were analyzed by GC-MS.  After 

alignment and normalization, the simulated fire debris was associated with the correct 

ignitable liquid, even in the presence of interference compounds.   However association 

to the correct extent of evaporation was not possible.  The authors suggested that a larger 

dataset with fuels from different chemical classes would be necessary to test the 

robustness of these procedures for forensic analyses [42].   

 Evaluation of Data Pretreatment to Enhance Multivariate Statistical Analysis 

The previous work described here demonstrates the utility of applying multivariate 

statistics to forensic analyses.  However, the authors all commented on the small size of 

the dataset and the need for more thorough investigation of data pretreatment 

procedures.  When chromatograms are collected over a long period of time (several 

months), data pretreatment procedures become crucial because instrumental drift over 

time introduces more non-chemical variation.  Therefore, it is important to have data 

pretreatment procedures that can minimize or eliminate these variations as well as having 

metrics that can be used to evaluate the effect of the applied pretreatment procedures.   

Often, data pretreatment procedures are applied to data with little discussion of 

how the parameters were selected or evaluated [43, 44].  Selection of data pretreatment 

procedures are facilitated by understanding the sources of the signals that require 

correction.  Incorrect selection of data pretreatment procedures can result in amplifying 
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small variations in the data and lead to erroneous results [45].  Therefore, data 

pretreatment cannot be carried out using a “black-box” approach; instead, care must be 

taken to understand how and the extent to which each data pretreatment procedure 

corrects the non-chemical sources of variation in the chromatogram [43].  It is critical that 

the original relationships between variables are preserved even after data pretreatment 

[46].  

There have been many algorithms designed to minimize non-chemical sources of 

variation in chemical analyses and are too numerous to discuss here [47, 48].  However, 

in many cases, there is little quantitative assessment of the effect of each procedure on 

the original chromatographic data.  Many of the comparisons are based on a visual 

examination of the pretreated chromatograms compared to the original chromatograms 

[25].  This is problematic when trying to optimize the data pretreatment procedure 

because visual comparison is time consuming and subjective [49].   

Common metrics for monitoring data pretreatment are based on a measure of a 

correlation coefficient or variance, either between samples or among replicates [8, 50-

54].  The extent of non-chemical variation can be compared by examining replicate 

injections of the same sample.  As replicates are chemically the same, the only variation 

must be non-chemical, arising from fluctuations and variations in the instrument [27].  

Chromatograms from different samples are also compared, but differences could arise 

from variation in chemical composition.   

Pearson product-moment correlation (PPMC) coefficients, which measure 

correlation between two samples, have been applied evaluate the effect of data 
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pretreatment.  PPMC coefficients (r) are calculated by dividing the covariance between 

two sets of variables (x and y) by the product of each variables standard deviation 

(equation 1) [55].    
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 Equation 1-1 

High positive correlation indicates that variables increase and decrease together [55, 56].   

In the case of chromatographic data, a high correlation coefficient indicates that the 

variables, which for chromatographic data is the abundance at each retention time, 

increase and decrease together [51, 57].  This makes PPMC coefficients an effective 

metric for evaluating data pretreatment procedures, especially retention time alignment 

procedures [45, 50, 54, 58].  An increase in the PPMC coefficient is observed when 

alignment improves.  However, due to the large number of data points in chromatographic 

data, PPMC coefficients can be insensitive to small changes in the chromatogram.  In 

addition, correlation coefficients are unaffected by relative changes in magnitude of the 

variables, and therefore, could not be utilized to evaluate normalization [56].    

Another common method for evaluating data pretreatment procedures is to 

compare sample or replicate variance before and after pretreatment [8, 50, 53].  The 

variance (s2) is calculated using the sum of the squared differences between two sets of 

values divided and the number of observations (n) using equation 2 [55].   
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Another metric reported in the literature for evaluating data pretreatment is the standard 

deviation, or the square root of the variance, which measures deviation from the mean 

[57].  A smaller variance or standard deviation indicates less variation between samples 

[55].  In most cases, the variance is calculated based on selected features from the 

chromatogram, such as retention time or peak height.   

In the comparison of three retention time alignment algorithms, van Nederkassel 

et al. utilized PPMC coefficients and the standard deviation of selected peaks to optimize 

the alignment parameters [50].  Gong et al. utilized a correlation coefficient and similarity 

index to compare aligned chromatograms to a target chromatogram in order to evaluate 

alignment [54].  Johnson et al. employed the average PPMC coefficient of all 

chromatograms and the standard deviations of selected peaks to optimize alignment 

parameters [51].   PPMC coefficients are the metric utilized in the correlation optimized 

warping (COW) alignment algorithm, which aligns chromatograms by maximizing the 

correlation between a sample and reference chromatogram [58].  Malmquist and 

Danielsson evaluated a single alignment and normalization using the residual sum of 

squares between each chromatogram before and after data pretreatment and the 

average chromatogram [8].  While the authors differ on the “best” alignment algorithm to 

use, it is generally agreed that alignment is necessary when chromatograms have been 

collected over a long period of time.   

The ratio of the noise in a smoothed verses unsmoothed peak was used to 

compare parameters of the Savitzky-Golay smoothing algorithm [53, 59] and to compare 

the result of different smoothing algorithms [52].  In addition, the residual sum of squares 

between smoothed and unsmoothed voltammograms was utilized by Jakubowska and 
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Kubiak to evaluate distortion of the signal [53].  The precision of the peak area and height 

as well as the limit of detection have also been used to compare the effect of different 

smoothing algorithms, without regard to any peak distortion that may have occurred [60].   

In addition to evaluating the raw data, the scores and loadings plots after PCA can 

also be used to evaluate the effect of each pretreatment procedure.  Visual assessment 

of the clusters on the scores plot is a common method to evaluate data pretreatment 

procedures [8, 24, 45, 51].  However, visual assessment provides limited quantifiable 

information.  Moreda-Pineiro et al. suggested the use of the percent variance accounted 

for uisng the first three PCs as a method for evaluating data pretreatment [44].  This 

method is an indirect measure of the association and discrimination of samples and is 

highly susceptible to influence by outliers.  Degree-of-class-separation has been utilized 

for evaluating the clustering of samples on a scores plot based on a distance between 

clusters and the distance between samples within each cluster [49].   

Despite the critical need for data pretreatment procedures, there has been no 

direct comparison of applying sequential data pretreatment procedures.  When data 

pretreatment procedures are compared, there typically is not a quantitative comparison 

because visual examination of the PCA scores plot is used rather than a metric. The 

development of metrics for the comparison of these data pretreatment procedures would 

allow for parameter optimization and a means to evaluate the effectiveness of each 

pretreatment.   
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 Research Objective 

Multivariate statistical procedures are widely utilized in chemical analyses and 

show great promise for applications in forensic science.  However, additional research is 

still required to develop appropriate methodologies for forensic applications.  As 

previously demonstrated, data pretreatment is a critical aspect of successfully applying 

multivariate statistical procedures capable of identifying minute differences in the 

chemical fingerprints of forensic evidence. 

The goal in this work is to develop methods for evaluating and optimizing data 

pretreatment procedures in order to minimize non-chemical sources of variation, resulting 

in enhanced discrimination of complex samples using multivariate statistical analysis.  

The goal is not to compare every possible method of data pretreatment, but rather to 

provide a general overview of common pretreatment procedures and to provide a uniform 

set of metrics for evaluating these procedures, using both the raw data and the resulting 

PCA scores and loadings plots.  In order to attain this goal, the following aims were 

outlined: 

• Demonstrate methods for objectively selecting and optimizing different data 

pretreatment methods and associated parameters. 

 

• Develop metrics for evaluating the effect of data pretreatment on the 

chromatographic data and the PCA results of chemically complex and highly similar 

samples.   
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• Demonstrate, using proper data pretreatment procedures, that non-chemical 

variation in chromatograms can be minimized without altering the discriminatory 

chemical information.   

 Impact on the Forensic Science Community 

Multivariate statistics have not been widely applied in a legal setting.  In order to 

be accepted in court, these statistical procedures must pass a Frye or Daubert standard 

[1].  As part of the basis for meeting these standards, it will be critical to demonstrate that 

these statistical procedures and the data pretreatment that accompanies them, do not 

change the fundamental chemical information in the analyses.  This research aids in that 

goal by providing a fundamental understanding of the data pretreatments and metrics to 

evaluate their effectiveness. 
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2. CHAPTER 2: INITIAL ANALYSIS OF DIESEL SAMPLES 

  Introduction 

The focus of this work is to evaluate strategies for enhancing the differentiation of 

complex and chemically similar samples for multivariate statistical analysis.  Many 

statistical procedures have been applied to forensically relevant data, with the goal of 

implementing those procedures into forensic laboratories to assist in comparisons and 

assigning a statistical confidence to the forensic analysis [1-5].  One of the most 

commonly utilized multivariate statistical procedure is principal component analysis 

(PCA), which discriminates samples based on the greatest sources of variance within the 

dataset.   

Typical data generated in forensic laboratories, including chromatograms of fire 

debris from gas chromatography-mass spectrometry (GC-MS), are highly complex 

making differentiation challenging.  For example, the chromatograms of different fuel 

samples can appear similar when compared visually.  Often, minute differences, which 

are hard to find by eye, are necessary to distinguish between samples.  Statistical 

procedures can be introduced to assist in the differentiation.  Additionally, by utilizing 

statistical approaches to analyze forensic samples, there is less subjectivity and greater 

consistency across forensic laboratories.  Moreover, the application of statistical analyses 

allow for comparisons with statistical confidence rather than simply the analyst’s opinion.   

In any chemical investigation, variation due to sample preparation and instrumental 

procedures is often introduced prior to the statistical analysis [6, 7].  When applying PCA 

to samples with different chemical composition, such as diesel and gasoline, the variation 
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introduced from sample preparation and analysis is small compared to the chemical 

differences between the samples.  However, when utilizing PCA to differentiate highly 

similar samples, such as diesel samples from different sources that contain the many of 

the same compounds, non-chemical differences between analyses are often the largest 

source of variation, which can mask the chemical differences necessary for differentiation.  

Data pretreatment procedures are then applied to minimize these variations.   

In this chapter, the challenges in differentiating complex and similar samples are 

demonstrated.  First, thirty chromatograms of diesel fuel, a very complex sample, were 

generated.  Then, PCA was applied to highlight the difficulties in discriminating these 

complex and similar samples.  Subsequent chapters will focus on selecting pretreatment 

procedures, methods to evaluate and select appropriate parameters for each procedure, 

and the resulting effect of the procedure on the ability to discriminate chemically similar 

samples.  

 Selection of Samples  

Diesel fuel was chosen as the model sample due to its complex chemical 

composition.  Diesel fuel consists of small and relatively non-polar molecules, with boiling 

points ranging from approximately 80 - 350 °C, which is well suited for GC-MS analysis. 

Diesel fuel consists of hundreds of different chemical compounds, present at varying 

concentrations, which adds to the complexity of the sample.  Diesel fuel is widely available 

from local service stations and can be used as an accelerant in arson, making diesel fuel 

forensically relevant.  During an arson investigation it is necessary to identify whether an 

accelerant is present.  With additional research, small differences between fuel samples 
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may provide statistical confidence in a comparison between an accelerant found at a 

crime scene and an accelerant found in the possession of a suspect.  However, an 

accelerant found at a crime scene cannot be traced to a single service station or brand 

because diesel fuel found at different service stations (even different brands) are often 

purchased from the same refinery.   

Ten different diesel fuels were collected from service stations in the Lansing, 

Michigan area during June 2007 and were stored in acid-washed amber bottles at 3 °C 

until analysis (Table 2-1).  Prior to analysis, each sample was diluted 200:1 in 

dichloromethane (spectrophotometric grade, Sigma-Aldrich, St. Louis, MO), and then 

analyzed in triplicate using GC-MS, resulting in 30 chromatograms [1, 2, 8]. 

 GC-MS Parameters 

All analyses were performed on an Agilent 6890N gas chromatograph coupled to 

an Agilent 5975 mass spectrometer detector (Agilent Technologies, Santa Clara, CA). 

The GC was equipped with an HP-5MS capillary column with a 5% phenyl- 95% methyl- 

polysiloxane stationary phase (30 m x 0.25 mm x 0.25 μm, Agilent Technologies). Ultra-

high purity helium was used as the carrier gas with a nominal flow rate of 1 mL/min. A 

manual injection with a 10 µL syringe (Hamilton, Reno, NV) was used to deliver 1 µL of 

diluted diesel with a split ratio of 50:1.  A slow, two-step temperature ramp was used in 

order to maximize the chromatographic resolution. The oven temperature program was 
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Table 2-1. Diesel samples collected for this work, including the service station and 
the date of collection.   

Sample 
Identifier 

Service Station Location Date 

Diesel 1 Sunoco 
2139 Haslett Road 
East Lansing, MI 

05/31/07 

Diesel 2 Sunoco 
3000 Dunckel Road 

Lansing, MI 
06/06/07 

Diesel 3 Meijer 
550 Hull Road 

Mason, MI 
06/07/07 

Diesel 4 Meijer 
2055 W. Grand River Ave 

Okemos, MI 
06/11/07 

Diesel 5 Mobil 
1500 Haslett Road 

Haslett, MI 
06/12/07 

Diesel 6 Speedway 
16819 Marsh Road 
Bath Township, MI 

06/13/07 

Diesel 7 Mobil 
2704 Lake Lansing Road 

Lansing, MI 
06/15/07 

Diesel 8 Marathon 
3010 W. Lake Lansing Road 

East Lansing, MI 
06/18/07 

Diesel 9 Marathon 
401 S. Pennsylvania Ave 

Lansing, MI 
06/19/07 

Diesel 10 Speedway 
1659 Grand River Avenue 

Okemos, MI 
06/20/07 
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as follows: 50 °C to 150 °C at 2 °C/min, then 150 °C to 280 °C at 3 °C/min with a final 

hold of 15 min. The inlet and transfer line were maintained at 300 °C. The mass 

spectrometer utilized electron ionization (70 eV) with a quadrupole mass analyzer, which 

scanned mass-to-charge (m/z) ratios of 40-550 at a scan rate of 2.91 scans/s [1, 2, 8]. 

 Visual Assessment of Diesel Chromatograms  

After GC-MS analysis, the resulting chromatograms were exported from 

Chemstation (version E.01.01.335, Agilent Technologies, Santa Clara, CA) and 

regenerated in Excel (Office 2013, version 15.0, Microsoft Corporation, Redmond, WA).  

Representative chromatograms of all ten diesel samples are shown in Figure 2-1.  The 

normal alkanes are labeled for reference.  The same scale is utilized so that differences 

in overall abundance can be observed.  The overall differences in abundance are likely 

not chemical, but rather a result of injecting slightly different volumes of sample.   

Visual examination of the chromatograms indicates slight chemical differences 

among each diesel sample.  There is a lower abundance of short-chain alkanes (C9-C11) 

in Diesels 1 and 2, relative to the other samples.  A low abundance of short-chain alkanes 

is characteristic of summer diesel fuel.  In order to increase the cloud point in the winter, 

diesel fuel is blended with kerosene or jet fuel, which increases the concentration of short-

chain alkanes.  Therefore, Diesels 1 and 2 are likely summer diesel fuels, due to their 

lower abundance of short-chain alkanes, while samples 3 - 10 are potentially winter diesel 

blends.  Even though all samples were collected in June, the winter diesel fuel is likely 

left over from the winter and being distributed until depleted.     
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Figure 2-1.  A representative diesel chromatogram of each diesel fuel sample (1
- 10) with the normal alkanes labeled.  Octane was detected at low abundance, 
but was not labeled.  Labels y and z are used to indicate two clusters of peaks
from substituted aromatic compounds observed in diesel 1 and 2.   
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Diesels 1 and 2 also have a higher abundance of two clusters of peaks, 

provisionally identified as branched and substituted aromatic compounds, labeled as y 

and z in Figure 2-1.  Diesel 2 also has a higher abundance of more volatile (early eluting) 

aromatic compounds, which is not observed in any of the other samples.  The origin of 

these differences is not known, but may be a result of the starting material or additive, as 

these compounds were only at higher abundance in samples from Sunoco Service 

stations (Table 2-1).   

Three characteristic groups were observed within the provisionally identified winter 

diesel fuels (Figure 2-1, samples 3 - 10).  Diesel samples 3 and 7 have a unimodal 

distribution of the normal alkanes, which maximizes at a retention time of approximately 

40 minutes (C15).  Diesel samples 4, 5, 6, 8, 9, and 10 have a bimodal distribution.   Diesel 

samples 6 and 8 maximize at retention times of approximately 20 and 40 minutes (C12 

and C15), while diesel samples 4, 5, 9, and 10 maximize at retention times of 

approximately 28 and 40 minutes (C13 and C15).  These differences are likely due to 

differences in the crude oil starting material, refining processes, and blending for each 

brand as well as the refinery from which the fuel was purchased.      

Small chemical differences (such as those described above) that are observed 

through visual assessment are often overshadowed by non-chemical sources of variation 

when PCA is utilized.  Examples of non-chemical variation are highlighted in Figure 2-2 

and Figure 2-3, which shows an overlay of replicate chromatograms and representative 

chromatograms of Diesels 3 – 10, respectively.  In the replicate chromatograms,  
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Figure 2-2.  Chromatograms of three replicates of diesel 5 (a) and an expanded 
region of the chromatogram on the undecane peak (b).  The inset shows the 
baseline at the end of the chromatogram. 
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Figure 2-3.  An overlay of one chromatogram from each of the eight diesel
samples (a) and an expanded region of the chromatogram on the undecane peak
(b).  The insets in part a show the baseline at the end of the chromatogram.  Each
color represents a different diesel sample 
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differences in peak height are observed.  In addition, there is also variation in the rise in 

the baseline and noise observed at the end of each chromatogram.  Figure 2-2b and 

Figure 2-3b show an expanded view of the undecane peak (between 14.65 and 14.85 

minutes) where misalignments are observed, both between replicates and between 

sample chromatograms.   

 PCA of Diesel Chromatograms  

In this work, PCA was initially performed using three replicates of ten diesel 

chromatograms.  Based on the chemical composition of each fuel in the chromatogram, 

three clusters are expected on the PCA scores plot.  One cluster would contain the 

summer diesel fuels (Diesels 1 and 2).  The second cluster would contain Diesels 3 and 

7, which have the unimodal distribution of normal alkanes and the final cluster would 

contain the winter diesel samples (Diesels 4, 5, 6, 8, 9, and 10) that contain the bimodal 

distribution. 

The scores plot obtained from the PCA of ten diesel samples is shown in Figure 

2-4.  The x-axis is the first principal component (PC1), while the y-axis is the second 

principal component (PC2).  The number in parentheses indicates the percent variance 

for each principal component (47.1% by PC1 and 19.1% by PC2, 66.2% for both PCs).  

Replicates of each sample are not positioned close together, indicating that there are 

non-chemical sources of variation present.  The only replicate samples positioned close 

together are those of Diesel 2 (grey 4-point stars).  Two general clusters are observed, 

one with the summer diesels: (Diesels 1 and 2), and one with the winter diesels (Diesels 

3 - 10).  The other 8 diesels are intermingled, even though differences in the distribution 

of the normal alkanes were observed in the chromatograms.   
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Figure 2-4.  PCA scores plot of 10 diesel samples in triplicate.  Each diesel
sample is represented by a different color and shape: Diesel 1 (dark red 
ovals), Diesel 2 (grey 4-point stars), Diesel 3 (red circles), Diesel 4 (orange
squares), Diesel 5 (yellow diamonds), Diesel 6 (light blue triangles), Diesel
7 (green crosses), Diesel 8 (dark blue inverted triangles), Diesel 9 (purple
pentagons), and Diesel 10 (pink 5 point-stars). 



 44 
 

This demonstrates that there is as much variation between replicates as there is between 

samples.  This also demonstrates that when PCA is applied to a dataset of chemically 

similar samples, the non-chemical differences are often identified as the greatest sources 

of variation between chromatograms.   

The loadings plots, which shows the weighting or importance of each variable, can 

be used to determine which variables are affecting the positioning of the samples on the 

scores plot.  In this work, the loadings plots are presented with the loadings on the y-axis 

and the variable on the x-axis, which for chromatographic data, is retention time.  The 

loadings plots for PC1 and PC2 are shown in Figure 2-5.  In the loadings plot for PC1 

(Figure 2-5a), the normal alkanes have the largest influence and contribute most to the 

positioning of samples on the scores plot.  Several short-chain alkanes (C11, C12, and C13) 

are loading negatively on PC1, affecting the samples with the highest abundance of short-

chain normal alkanes.  Therefore, winter Diesels 3 – 10, which have a higher abundance 

of short-chain alkanes, are positioned more negatively on PC1 than the summer diesels.   

In the loadings for PC2 (Figure 2-5b), several short-chain normal alkanes (C10-C14) 

are loading positively.  Therefore, compounds with higher abundance of short-chain 

normal alkanes (the winter diesels) are positioned more positively on PC2 in the scores 

plot.  The two small clusters of peaks on either side of C12 (at approximately 17 and 24 

min, labeled y and z in Figure 2-1) are present in the loadings plot of both PC1 and PC2 

(Figure 2-5).  This shows that these peaks were identified as a major source of variation  
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provisionally as branched alkanes and substituted aromatic compounds.    
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between samples.  However, these peaks only appear in Diesels 1 and 2, which also 

explain why these samples are separated from Diesels 3 - 10.   

The replicates from Diesels 3 - 10 cluster together, except for one replicate of 

Diesel 7 (green cross on the left side of Figure 2-4).  When the chromatogram of this 

replicate is compared to all other chromatograms, it has the lowest overall abundance.  

As most variables in the loadings plot of PC1 and PC2 are loading positively, and this 

replicate has the lowest abundance, it is positioned most negatively on this PC in the 

scores plot.  This replicate’s low abundance is likely due to a lower volume of sample 

injected into the GC-MS during analysis.   

The goal of this work is to investigate different data pretreatment procedures to 

minimize non-chemical sources of variation, and thereby enhance the discrimination of 

chemically similar samples, using PCA.  To make the differentiation as challenging as 

possible for this work, samples with no clustering on the scores plot were selected.  

Therefore, as Diesels 1 and 2 contained chemical differences that were identified by PCA 

prior to pretreatment, these two samples were omitted from the dataset, and PCA was 

performed using only replicates of Diesels 3 - 10.  Diesel samples 1 and 2 were included 

in some pretreatment parameter optimization in subsequent chapters, but were omitted 

from all subsequent PCA scores plots.   

The scores plot resulting from PCA of Diesels 3 - 10 is shown in Figure 2-6.  No 

clustering of diesels is observed and most of the replicates are spread along PC1.  The 

loadings plots for PC1 and PC2 are shown in Figure 2-7a and Figure 2-7b, respectively.  

All compounds are positioned positively in the loadings plot for PC1 and negatively in the 

loadings plot for PC2.  When the overall abundance in the chromatogram varies between 
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samples, loadings plots that are mostly positive or mostly negative are common. Further, 

replicates of each diesel are spread mostly across PC1 in the scores plot, indicating that 

there are likely differences in abundance among replicates. Hence, the scores and 

loadings plots indicate that the greatest sources of variation in this dataset are from overall 

abundance, a non-chemical source of variation, rather than chemical differences.   

The loadings plots can provide insight into other non-chemical sources of variation.  

Derivative-shaped peaks are observed for C11, C12, and C13 in PC1 and PC2 (inset Figure 

2-7a).  The derivative-shaped peaks in the loadings plots result from the peaks in the 

chromatograms maximizing at slightly different retention times in each sample, indicating 

retention time misalignment [1, 9].  Therefore, the loadings plots indicate that abundance 

and alignment are the major sources of variation between chromatograms.  The baseline 

and noise are not prevalent in the loadings plots, indicating that these are not major 

sources of variation.  However, as the largest non-chemical variations are minimized, 

these lesser sources of variation may become more prominent.   

 Summary 

Diesel fuel was selected to evaluate the effect of data pretreatment on the PCA of 

highly similar and chemically complex samples.   Eight diesel samples were selected, as 

they were chemically indistinguishable using PCA, prior to application of data 

pretreatment.  This indicates that the variation from non-chemical sources, such as 

sample preparation and instrumental analysis, are more discriminatory than the chemical 

differences between the fuel samples.  By minimizing these non-chemical sources of 

variation, the chemical differences can be utilized to differentiate different diesel samples. 
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3. CHAPTER 3: NORMALIZATION  

 Introduction 

Differences in sample abundance are the most common variation observed 

between chromatograms and can arise for many reasons [1].  In chromatographic data, 

instrumental fluctuations in flow and injection port temperature can result in abundance 

differences among samples and even among replicates.  The method of injection, 

including the speed of injection, the amount of time the syringe remains in the injection 

port, and syringe volume can also result in differences from analysis to analysis.  Manual 

injection is particularly problematic as the injection method (the volume injected, the 

speed that it was injected, etc.) can vary widely for each analysis [2].   

Normalization is the most widely applied data pretreatment procedure, even when 

not utilizing multivariate statistics.  Normalization procedures are often used to correct 

systematic variations in abundance between samples [1, 3].  For chromatographic data, 

this can be done using some part of the chromatogram, often the height or area of a single 

peak, or the total area of the chromatogram [4].  However, normalization is often 

challenging for chromatograms of complex mixtures.  Care must be taken when choosing 

a normalization procedure to ensure that important differences in relative peak 

abundance among the samples are not lost.  In addition, accurate integration to determine 

peak area for normalization is challenging in complex samples due to co-eluting peaks.  

Normalization is generally applied after other data pretreatment procedures; however, in 

this work it is discussed first as this procedure was found to have the greatest effect on 

the clustering of replicates and discrimination among samples in the scores plot.   
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 Methods Tested and Evaluation Metrics  

In normalization, each data point in a sample (in this work, the abundance at each 

retention time in each diesel chromatogram) is divided by a unique factor, derived from 

the sample.  There are many methods for determining the normalization factor(s) that are 

applied: the two most common are the total area and the height from a specific peak in 

the chromatogram [1, 2, 5-8].  For this work, manual injections were used and no internal 

standard was included in order to simulate the most challenging normalization scenario.   

3.2.1. Total Area Normalization 

Total area normalization (also called unit area normalization or constant sum 

normalization) is performed by dividing the abundance at each retention time (At) by the 

total sum of the abundances in the chromatogram, resulting in the normalized abundance 

(At’).   

' t
t

t

A
A

A
=


 Equation 3-1 

In this work, the total area of each chromatogram was approximated by summing the 

abundance at each retention time in the total ion chromatogram.   The abundance at each 

retention time was then divided by this sum to normalize the chromatogram.  Each point 

in every chromatogram was multiplied by the average total area across all 

chromatograms in the dataset to return them to the original order of magnitude.   

The major assumption using total area normalization is that the total signal 

response from one sample is equivalent to the total signal from another.  In other words, 

this method assumes that the same volume of each sample has the same instrument 
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response [2].  While this is rarely true, because response factors differ between 

compounds, when a large number of compounds are present, this is often a reasonable 

approximation.  A major drawback of this method is that when one peak decreases in 

size, another peak necessarily increases, which can result in misleading correlations 

between samples [6].  Area normalization is a good initial method for normalization 

because it is generally fast and easy to apply and often results in adequate normalization.  

Additionally, for complex samples, where there are unresolved peaks or a high baseline, 

area normalization often results in the best minimization of the variation introduced from 

injection [9].    

3.2.2. Single Peak Normalization  

In single peak normalization (also called maximum peak or internal standard 

normalization), each data point is divided by the amplitude of a specific peak of interest 

(AI) in the data.   

 Equation 3-2 

 

For chromatographic data, the peak height or peak area of a selected peak (which is 

constant across all samples) is used for normalization by dividing each data point by the 

peak height or peak area of the selected peak.   

The most common single peak normalization utilizes an internal standard.  Prior to 

analysis, the same concentration of a non-native compound is spiked into each sample.  

An ideal internal standard for chromatographic data should have similar physical 

properties to the compound being analyzed, elute close to the compound of interest.  In 
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addition, the internal standard should be completely resolved in the chromatogram 

(avoiding increased signal from co-elution), and be at a similar concentration to the 

compound(s) of interest [7, 8].  Selection of an appropriate internal standard is 

challenging, especially for a complex mixture where there are compounds with many 

different properties and at different concentrations [2].  In many cases, a deuterated 

analogue of each compound is utilized.  However, this type of internal standard can be 

expensive and very challenging to obtain for all compounds in a complex sample, as there 

are a large number of compounds present.  If the internal standard is not properly 

selected, is present at an inappropriate abundance, or co-elutes with another compound, 

the internal standard itself can become a major source of variance in PCA.  This highlights 

the need to think about proper data pretreatment procedures, even before sample 

collection.   

When an internal standard is not added, a compound within the sample can be 

used for single peak normalization.  This peak could be the highest abundance peak in 

each sample, or could be a peak that is common to each sample.  However, single peak 

normalization can skew the relative abundance between samples because the 

abundance of the selected peak may not truly be the same in all samples.  Therefore, 

normalization to a peak in the sample is often problematic if the abundance of that peak 

changes between samples.  

For this work, each point was divided by the peak height of heptadecane (C17) (at 

approximately 50.3 min) and multiplied by the average heptadecane peak height across 

all samples [2].  Heptadecane was chosen because it is a large, retained peak and is less 

affected by evaporation or variation introduced during injection, due to its lower volatility. 
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3.2.3. Evaluation Metrics 

In order to evaluate the effect of normalization, all 24 diesel chromatograms 

(Diesels 3 - 10 analyzed in triplicate) were normalized using both total area and single 

peak normalization methods.  Initially, to assess the effect of normalization, a visual 

inspection of overlaid chromatograms before and after normalization was used.  However, 

comparing overlaid chromatograms is subjective and time consuming as it requires 

observing only small regions of the chromatograms at one time.  In order to quantitatively 

compare normalization methods, the percent change in total sum of squares of the 

residuals for replicates (SSR) was developed.  To calculate the SSR, an average 

chromatogram of the triplicates for each diesel sample was calculated.  The residual was 

calculated by subtracting each replicate chromatogram from the corresponding average 

chromatogram.  The residuals were squared and then summed for all 24 chromatograms.  

The percent change in the SSR between the untreated and the normalized data was then 

calculated.  Using the residuals of replicates allows for monitoring both the peaks and the 

baseline.  Theoretically, for instrument replicates, which are chemically the same, the 

SSR should be zero.  When any variation among replicates is present, the differences 

must arise from injection and instrumental analysis.  Ideally, normalization would remove 

all differences in peak height, making the replicate samples have the same height at each 

retention time.   

Evaluation of how normalization affected the association of replicates on the PCA 

scores plot was performed using a visual inspection of clustering patterns.  Additionally, 

the effect of normalization on the clustering or grouping of replicates was quantitatively 

assessed using the average percent change in the clustering of replicates (PCC).  The 
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PCC was calculated by summing the variance in PC1 and PC2 for replicates of each 

diesel.  The standard deviation was then calculated by taking the square root of the 

variance.  The standard deviations were averaged and the PCC was calculated as the 

percent change in the standard deviation between the scores plot generated from the 

chromatograms after data pretreatment and the scores plot generated from 

chromatograms prior to pretreatment.   

 Effect of Normalization on Chromatographic Data 

3.3.1. Visual Assessment 

An expanded region near the hexadecane (C16) peak of three representative diesel 

chromatograms is shown in Figure 3-1 before (a) and after each normalization method (b 

- c).  The inset in each figure shows the further expanded baseline, just after the 

hexadecane peak.  Without normalization (Figure 3-1a) there is spread in the abundance 

along the baseline as well as at the peak maxima.  Because these are replicates of the 

same sample, these differences are due to small differences in injection volume and 

instrumental variation.  After total area normalization (Figure 3-1b), there is less spread 

in the baseline of the three samples; however, spread in the abundance is still observed 

at the peak maxima.  Using single peak normalization (Figure 3-1c), the peak maxima are 

close together, while spread is still observed along the baseline.  This demonstrates that 

the normalizations investigated in this work could not correct all of the variation observed.  
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Figure 3-1.  An expanded region of the hexadecane peak (C16) in triplicate analysis
of a diesel sample, before normalization (a), after total area normalization (b), and
after selected peak normalization (c).     
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3.3.2. Quantitative Assessment 

Both normalization methods resulted in a reduction in the spread in the abundance 

between replicate chromatograms (Figure 3-1).  Using the quantitative metric, there is a 

92% decrease in the SSR using the area normalization procedure and an 87% decrease 

using peak normalization.  These percent decreases in the SSR are very similar, 

indicating that both methods result in a large reduction in the variation.  However, in this 

work, the majority of the chromatogram consists of an unresolved baseline; therefore, 

area normalization resulted in a larger improvement than single peak normalization.   

 Effect of Normalization on PCA Scores Plot 

Because normalization was determined to be the most important pretreatment 

procedure for this dataset, both total area and single peak normalization were utilized 

prior to PCA.  Triplicate chromatograms of the eight diesels (Diesels 3 - 10) were 

normalized using each method, then PCA was performed.   

3.4.1. Visual Assessment  

Both normalization methods resulted in enhanced clustering of replicates when 

compared to the PCA scores plot prior to data pretreatment (Figure 3-2a).  Using total 

area normalization (Figure 3-2b), PC1 accounts for 57.9% of the variation and PC2 

accounts for 21.4%.  After area normalization, there is still spread among replicates, 

mostly along PC2 on the scores plot, indicating additional sources of non-chemical 

variation (Figure 3-2b).  The loadings plot of PC1 after total area normalization (Figure 3-

3a) shows mostly the normal alkane peaks positioned positively, likely due to the variation 

in peak height shown in Figure 3-1b.  However, the largest peaks in the PC1 loadings plot  
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the application of data pretreatment (a) and after total area normalization (b).
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Figure 3-3.  Loadings plot for PC1 (a) and PC2 (b) after PCA with total area 
normalization.  The inset in part b shows a derivative shaped peak,
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are the short-chain alkanes, C11 - C13, with the largest peak at C12, corresponding to the 

peaks that maximize in the bimodal distribution (see Chapter 2, Figure 2-1).  Therefore, 

some information contained in PC1 is also chemical differences between samples.  The 

loadings plot of PC2 (Figure 3-3b) shows the most dominant peaks as derivative-shaped 

curves (see inset), indicating that the greatest source of variation on PC2 is retention time 

misalignments [10].  Most of the spread among replicates occurs on PC2 on the scores 

plot because misalignments are dominating PC2.   

To demonstrate the correction of non-chemical sources of variation, Diesel 5 

(yellow diamonds) was chosen and the change in clustering will be highlighted throughout 

the subsequent chapters.  In order to observe the changes in the chromatogram, three 

replicates of Diesel 5 (labeled R1, R2, and R3) were overlaid and the region around the 

dodecane peak (C12) was expanded (Figure 3-4).  Prior to any pretreatment (Figure 3-4a), 

R1 is shifted to the left of the other two replicates and R2 is at a higher abundance than 

the other replicates.  After total area normalization, all replicates were at approximately 

the same height, while R1 was still shifted to the left of the other replicates.  This results 

in the spread in the replicates observed in Figure 3-2b.  In the scores plot prior to data 

pretreatment (Figure 3-2a), the three replicates of Diesel 5 were spread along PC1.  From 

the loadings plot shown in Chapter 2 (Figure 2-7), PC1 included differences in height and 

misalignments.  However, after normalization, peaks were at approximately equal heights 

(Figure 3-4b).  Therefore when PCA was performed, the variation in height was minimized 

(Figure 3-2b), and R2 and R3 were positioned close together.  R1 was still separated 

along PC2, due to the misalignments.  This is supported in the PC2 loadings plot  
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Figure 3-4.  An expanded region of dodecane in three replicate chromatograms of 
diesel 5 before (a) and after (b) area normalization (R2 and R3 are directly on top 
of one another).  Each replicate is indicated by a different color (R1: red, R2: blue, 
R3: green).   
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(Figure 3-3b), which shows derivative-shaped curves for many of the normal alkanes that 

are present.   

After application of single peak normalization (using hexadecane), PC1 accounted 

for 60.2% of the variance and PC2 accounted for 21.4%.  Peak normalization results in 

the spread among replicates occurring along both PC1 and PC2 (Figure 3-5b), indicating 

that non-chemical variation is present in both principal components.  This is supported by 

the loadings plot for the peak normalized chromatograms (Figure 3-6).  Derivative-shaped 

peaks are observed for many of the alkanes in PC1, indicating that misalignments are still 

a major source of variation.  Additionally, the loadings plot for PC1 shows a large portion 

of the unresolved region of the chromatogram (20 - 65 min) contributing to the loadings, 

indicating that the differences in the unresolved baseline region are a major contribution 

to the variance.  This agrees with the visual assessment of the chromatograms, which 

shows that after peak normalization, variation in the baseline between replicates was still 

present (Figure 3-1).  The loadings plot of PC2 (Figure 3-6b) is very similar to the PC1 

loadings plot after area normalization (Figure 3-3).  As with the area normalization, this 

pattern is likely due to the chemical differences between diesel samples with the unimodal 

and bimodal distribution of normal alkanes.   

The dodecane peak (C12) in replicates of Diesel 5 can again be utilized to explain 

the spread on the PCA scores plot present in the samples and replicates (Figure 3-7).  

After peak normalization (Figure 3-7b), there are still some differences in the height 

between R1, R2, and R3.  In the PC1 loadings plot (Figure 3-6a), many of the peaks from 

the normal alkanes, including the dodecane peak, are derivative-shaped peaks, indicating 
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Figure 3-7.  An expanded region of dodecane in three replicate 
chromatograms of diesel 5 before (a) and after (b) peak normalization.  Each 
replicate is indicated by a different color (R1: red, R2: blue, R3: green).   
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retention time misalignment.  After normalization, Diesel 5 R1 (shown in red in Figure 3-7) 

is still misaligned to the other two replicates, explaining some of the spread observed in 

PC1.  The dodecane peak and several other normal alkane peaks are heavily weighted 

in the loadings plots (before and after each normalization), indicating that dodecane is 

greatly influencing the positioning of samples on the scores plot.  When large peaks are 

not well aligned and normalized, there is variation in the resulting PCA scores plot.  This 

explains why R1, R2, and R3 are spread even after normalization, in both PC1 and PC2.   

After application of area normalization, chemical differences between samples are 

beginning to become useful in differentiating samples, based on the loadings plot of PC1.  

Non-chemical sources of variation are still observed on PC2, resulting in some spread 

among replicates.  Using peak normalization, misalignments and variation in the baseline 

are observed on the loadings plot of PC1 and chemical differences are observed on PC2.  

This demonstrates that area normalization minimizes more of the non-chemical 

variations, thus allowing chemical differences between samples to become the greatest 

source of variation. However, with peak normalization, additional pretreatment 

procedures are required to minimize the non-chemical sources of variation.     

While differences in the baseline may be small (generally less than 3% of the 

signal), they contribute to the variation because the differences occur over the entire 

chromatogram (Figure 2-2).  In this work, both a large number of relatively small peaks 

(compared to the baseline) and a large, unresolved region were present, complicating 

normalization (Figure 2-1).  The baseline must be well normalized, because the baseline 

accounts for most of the points in the chromatogram.  However, the peaks also need to 

be well normalized because most of the chemical differences in complex samples will 



69 
 

come from differences in peak heights.  After utilizing area normalization, real chemical 

differences were identified as the greatest source of variation, followed by other non-

chemical sources of variation.  After single peak normalization, the greatest source of 

variation was still non-chemical, followed by chemical differences between the samples.  

This demonstrates that area normalization is more effective at correcting the major 

sources of variation.   

3.4.2. Quantitative Assessment  

The average percent change in the clustering of replicates (PCC) between the 

unnormalized and normalized chromatograms was calculated to assess improvements in 

clustering attained using each normalization procedure. After applying total area 

normalization, the PCC was 45.1%, indicating that replicates on the scores plot were 

closer together after normalization than without normalization.  Similar results were 

observed for the single peak normalization, where the PCC was 58.9%.   The higher PCC 

using the single peak is likely due to Diesel 5 (yellow diamonds, Figure 3-2 and Figure 

3-5).  After area normalization, one replicate of this sample became further separated due 

to misalignments, resulting in a negative PCC for that sample.  If this sample is removed, 

the average PCC for the area normalization increases to 52.9%, demonstrating similar 

clustering of replicates as observed using peak normalization.   

 Summary 

Proper normalization of complex chromatographic data can be challenging; 

however, normalization is a critical data pretreatment procedure to minimize non-

chemical sources of variation.  Small differences in abundance, caused by variation in 
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injection, are often the greatest source of variation for complex and similar samples.  In 

this work, both normalization methods resulted in a reduction in the non-chemical 

variation.  Based on the chromatographic metric, the percent change in the sum of 

squares of the residual, total area normalization resulted in a larger reduction in variation.  

However, using the metric for the PCA scores plot, the percent change in the clustering 

of replicates showed that single peak normalization resulted in better clustering of 

replicates for this data.  This demonstrates that selection of the proper normalization 

method is dependent on the data and non-chemical variation that is present.  The most 

important point demonstrated in this work is that selection of the particular normalization 

method is not critical; however, the application of normalization procedures drastically 

improves discrimination of highly complex samples using PCA.  Even though the 

performance of each normalization method is similar for these data, it is still important 

that analysts consider selection of an appropriate normalization method, to ensure that 

the method that is chosen does not skew the data.  In some cases, one or more of the 

assumptions that are made may not always be valid and can lead to erroneous results.   
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4. CHAPTER 4: BASELINE CORRECTION 

 Introduction 

In temperature-programed gas chromatography (GC), the rise of the baseline at 

the end of the chromatogram (at high temperature) can vary widely between analyses.  

This rise is due to the degradation of the polysiloxane stationary phase in the column as 

well as breakdown of the silicone septum [1]. As these baseline differences are not from 

the sample, minimizing the baseline should not change the chemical information 

contained in the chromatogram [1, 2].  In the chromatograms in this work, the unresolved 

portion in the middle of the chromatogram between 15 and 65 minutes also has an 

elevated baseline which can introduce variation into the chromatograms.  However, for 

the data considered here, the unresolved portion is sample dependent, originating from 

the large number of compounds with similar boiling points, which were not well separated 

by gas chromatography-mass spectrometry (GC-MS).  Hence, these variations are 

chemically important and should not be removed.   

There are a number of different baseline correction methods that can be applied.  

These methods generally fall into one of four categories: (1) transformation of the signal, 

(2) subtraction of a chromatogram, (3) subtraction of a modeled function, or (4) removal 

of specific signals in the sample chromatogram [1-4].  Each of these correction methods 

is discussed in more detail below. 

Signal transformation is an indirect method of baseline correction, in which the 

baseline is not removed, but rather transformed, so that it is no longer meaningful.  

Although many transforms are available, the most common is using the first-derivative of 
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the chromatogram [2, 4].  However, this method can often enhance the noise in the 

chromatogram [4].   

In chromatogram subtraction, a chromatogram that does not contain the sample 

(generally the chromatogram of a solvent blank) is subtracted from each sample 

chromatogram.  This is a fast and simple correction method [1].  However, when the 

baseline varies between injections, specifically between the blank and sample 

chromatogram, this method cannot be used because subtraction of a single blank 

chromatogram will not correct for variations in baseline among all samples and may result 

in additional variations.  This method would then require running a blank after every 

sample, which would greatly increase analysis time.   

Another baseline correction method utilizes a mathematical function to model the 

baseline in each chromatogram, which is then subtracted from each sample 

chromatogram [1-4].   The age of the stationary phase, the solvent, and the temperature 

program can all affect the shape of the baseline and hence, functions used for fitting can 

range from a simple linear fit to more complex high-order polynomials.  As this method is 

specifically modeled to fit each sample chromatogram, it will more accurately correct for 

variations in the baseline among samples.  However, care must be taken to ensure that 

the model only accounts for non-chemical signals of the baseline.  This is often difficult to 

achieve, particularly in chromatograms of complex samples where resolution is poor or in 

cases where peaks of relevance elute during the rise in the baseline.   

Removal of individual signals in the chromatogram is specific for data generated 

by mass spectrometry, where the total signal is the sum of individual ions.  In this method, 
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specific ions are subtracted from the total ion chromatogram (TIC); typically these ions 

correspond to column degradation and septum bleed.  Common mass-to-charge (m/z) 

ratios for ions resulting from column and septum degradation include m/z 73, m/z 147, 

m/z 207, and m/z 281 [5].  However, these ions could also result from fragmentation of 

chemical compounds in the sample.  Therefore, removal of these ions can alter the 

chemical signal.   

The selection of appropriate baseline correction methods is highly sample 

dependent.  Considerations for selecting a baseline subtraction method include the 

complexity of the sample, the source of the baseline signal, and the compounds present 

in the sample.  Care must be taken to ensure that only signal from the baseline is being 

removed, and not signal from compounds in the sample.   

 Methods Tested and Evaluation Metrics 

Three different baseline correction methods were compared in this research.  

Preliminary results indicated that transformations and subtraction of a solvent blank 

chromatogram were not appropriate for these data.  Using a first-derivative transform led 

to challenges in applying other data pretreatment procedures, particularly alignment as 

the peaks were no longer the traditional Gaussian-shaped peaks that are typically 

observed in chromatography.  Subtracting the background from a solvent blank 

chromatogram resulted in an incomplete reduction of the baseline and was therefore 

discounted.  The methods selected for this work all utilized extracted ion chromatograms 

(EICs) to remove specific background signals from the chromatogram and included the 
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background subtracted baseline, subtraction of extracted ion profiles of the background 

signal, and subtraction of a the baseline using a modeled function.   

4.2.1. Background Subtracted Baseline (BSB) 

The background subtracted baseline (BSB) method for correcting the baseline 

involves removing individual ions from the TIC and is included as a function in the 

instrument software.  Chemstation (Version E.02.01.1177, Agilent Technologies, Santa 

Clara, CA) was used to select a specific mass spectrum, which was then subtracted from 

each individual mass spectral scan in the chromatogram [6]. For this work, the last scan 

in the TIC of each chromatogram was used for subtraction (Figure 4-1).  Generally, scans 

at the end of the chromatogram contain ions from only column degradation and septum 

bleed, making this region useful for evaluating the baseline.  Column degradation occurs 

more readily at high temperature.  The GC oven is at the highest temperature at the end 

of the analysis, resulting in the end of the chromatogram containing most of the ions 

resulting from degradation.  Multiple scans can also be subtracted by repeating this 

procedure, if additional reduction is required.  The BSB function does not allow for 

negative ion intensities, so the subtraction of any ion that would result in a negative 

number becomes zero.  The function can also be used to remove other background 

interferences in the chromatogram, such as impurities, by selecting a scan containing the 

ions characteristic of the interference.   
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Figure 4-1. Representative mass spectrum from a diesel chromatogram (Diesel 1) at 
retention time 108.335 minutes, the last scan in the chromatogram.   
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4.2.2. Subtraction of Extracted Ion Profiles  

As some ions in the spectra used for BSB subtraction may also be fragment ions 

of some of the compounds in the sample, resulting in a reduction in a reduction in the 

peaks that also contained those ions.  Therefore, other subtraction methods may be 

necessary to prevent the loss of chemical information.   

In this work, rather than removing all ions in a given spectrum, the removal of 

selected ions was also investigated.  The EICs of the ions of interest from the baseline 

were generated in the Chemstation software.  The m/z that were investigated were the 

ions present in the last scan of the chromatogram: m/z 73, m/z 96, m/z 133, m/z 191, m/z 

207, m/z 208, m/z 209, m/z 281, and m/z 282, all of which are characteristic polysiloxane 

fragments [5].  The EIC of each m/z of interest from Diesel 1 is shown in Figure 4-2.  Each 

EIC was examined to determine if any ions of that m/z were also generated from 

compounds in the sample.  As shown in Figure 4-2, m/z 96 and m/z 133 had high 

abundances in the peak region of the chromatogram (prior to 70 minutes), which were 

not present in the same EIC of a solvent chromatogram, demonstrating that these ions 

also resulted from fragmentation of compounds that are in the sample.  Therefore, m/z 

96 and m/z 133 should not be removed from the TIC and were eliminated from further 

consideration.   

The six most abundant EICs were chosen to create a baseline extracted ion profile 

(EIP) that could be subtracted from the TIC, in order to minimize the baseline.   As m/z 

73 had a relatively low abundance, it was also excluded from the EIP.  The selected EICs  
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Figure 4-2. Extracted ion chromatograms for ions present in the last mass
spectral scan (from Figure 4-1) including mass-to-charge (m/z) 73 (a), m/z 96 (b),
m/z 133 (c), m/z 191 (d), m/z 207 (e), m/z 208 (f), m/z 209 (g), m/z 281 (h), and m/z
282 (i).  The extracted ion profile generated from these ions is also shown (j) 



80 
 

 

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100

A
b

u
n

d
an

ce

Retention Time (min)

0

400

800

0 20 40 60 80 100

A
b

u
n

d
an

ce

Retention Time (min)

c d 

Figure 4-2 (cont’d).  
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Figure 4-2 (cont’d).  
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Figure 4-2 (cont’d).  
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(m/z 191, m/z 207, m/z 208, m/z 209, m/z 281, and m/z 282) were exported from the 

Chemstation software and imported to Excel (Office 2013, version 15.0, Microsoft 

Corporation, Redmond, WA).  Once in Excel, the EICs were summed at each retention 

time to generate an EIP (Figure 4-2j).  The EIP was then subtracted from the original TIC 

for each chromatogram of diesel fuel. 

4.2.3. Subtraction of a the Baseline using a Modeled Function 

A third method for baseline correction was developed and tested in which a model 

was generated to fit the baseline, using the EIP of the baseline described in Section 4.2.2.  

When the EIP was generated for the previous method, some ions were not included 

because those ions also resulted from the fragmentation of compounds in the sample. 

This resulted in incomplete removal of the baseline.  In order to model the EIP, the EIP 

for each diesel chromatogram was fit in TableCurve 2D (Version 5.01, Jandel Scientific, 

San Rafael, CA) in order to determine an appropriate equation for the model.  An 

asymmetrical sigmoid function (Equation 4-1) was selected based on the highest 

coefficient of determination (r2) value when used to fit a solvent blank.  As the solvent 

blank is the shape of the baseline that is being removed without any other signal present, 

this can be used to identify the appropriate function to model the EIP of each 

chromatogram.  

( )1ln 12
1 exp

d

b
y a

ex c b

c

= +
  − − −  + −      

 Equation 4-1 
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The y term is the resulting abundance at each retention time, x.  The a term is the 

initial height of the function and the b term is the transition height (the final height of the 

function subtracted from the initial height).  The c term is the retention time that where the 

inflection point of the curve occurred, while the d and e terms control the shape of the 

curved portion of the function.  An asymmetric sigmoid allows for different curvature at 

the top and the bottom of the function, allowing for more flexibility when fitting the 

baseline.  An example of the modeled baseline is shown in Figure 4-3. 

The baseline EIP for each chromatogram was imported into TableCurve 2D and fit 

to generate appropriate c-e terms.  The a term was selected as zero so that no signal 

was removed from the beginning of the chromatogram  The b term was the average value 

of the last eight minutes of the chromatogram.  This region of the chromatogram is where 

the baseline is at highest abundance and generally at a constant value.   The b term was 

determined from the TIC, rather than the EIP, in order to remove as much of the baseline 

as possible.  The asymmetrical sigmoid function was then regenerated in Excel using 

Equation 4-1 and subtracted from the original chromatogram, generating a baseline 

corrected chromatogram. This was repeated for each chromatogram.    
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4.2.4. Evaluation Metrics  

Chromatograms were visually examined to assess reduction in baseline as a result 

of correction.  The reduction in the baseline was also quantitatively evaluated using the 

last 40 minutes of the chromatogram, where the rise in the baseline occurs.  Ideally, the 

baseline in this region should be zero.  The sum of squares of the abundance for all points 

in this baseline region was used to measure the magnitude of the baseline.  The percent 

change in the magnitude of the baseline before and after baseline correction was then 

used to quantitatively compare each baseline reduction method.  Visual inspection of the 

PCA scores plot and average percent change in the clustering of replicates (PCC) was 

also applied as previously discussed.   

 Effect of Baseline Correction on Chromatographic Data 

4.3.1. Visual Assessment 

Prior to applying any baseline correction method, the chromatograms were 

overlaid and only very slight differences were observed in the baseline among the sample 

chromatograms.  The percent difference between the average signals in this region was 

less than 10%, indicating that there were only small differences in the baseline.  While it 

is important to minimize non-chemical sources of variation, this variation is not likely to 

have a major impact on the resulting PCA.   

4.3.1.1. Background Subtracted Baseline 

The EICs of each m/z present in the baseline of a diesel chromatogram (Figure 

4-2) demonstrates the largest drawback with the BSB subtraction.  Because the operator 
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cannot select which m/z to remove, all m/z in a single scan will be removed.  A 

reconstructed chromatogram, showing the signals that are subtracted using the BSB 

method is shown in Figure 4-4a.  This method resulted in a reduction of the signal in the 

TIC within the peak region, due to the signals between 30 and 60 minutes in Figure 4-4a.  

Figure 4-5a shows a representative diesel chromatogram prior to any pretreatment, with 

an insert showing an expended region of the chromatogram from approximately 70 to 108 

minutes, where the rise in baseline occurs.  Figure 4-5b shows the same chromatogram 

after applying the BSB method (removing the signals shown in Figure 4-4a).  As shown 

in Figure 4-5b, after subtraction with the BSB method, not all of the baseline is removed.  

Therefore, this method removes signals arising from chemical differences in the samples, 

while not completely removing the baseline.   

4.3.1.2. Subtraction of Extracted Ion Profiles  

The subtraction of an extracted ion profile allows for the selection of ions to include 

in the subtraction, permitting the analyst to tailor the subtraction to the sample, thereby 

overcoming the main limitation in the BSB method described above.  In this work, the ions 

chosen for the baseline EIP (from Section 4.2.2) were selected based on having a large 

contribution to the rise in the baseline in the noise region but low abundance in the peak 

region (Figure 4-2).  The EIP subtracted from the TIC using this method is shown in Figure 

4-4b.  Even when selecting specific ion to remove, there is still a reduction in the peak  
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region in the middle of the chromatogram.  Figure 4-5c shows a diesel chromatogram 

after subtracting the EIP (removing the signals shown in Figure 4-4b).  The subtraction of 

the EIP also did not completely remove the baseline (Figure 4-5c).  More of the baseline 

remains than when using the BSB method, because several m/z were excluded from the 

EIP.  Ions formed from the fragmentation of compounds in the sample will also be 

removed from the chromatogram, resulting in the observed signal reduction in the peak 

region.  Therefore, for these particular data, subtraction of the EIP is also not effective at 

baseline correction.   

4.3.1.3. Subtraction of a the Baseline using a Modeled Function 

The modeling of the baseline also provides the analyst with control over the 

removal of signals from different regions of the chromatogram.  However, the parameters 

for fitting or modeling the baseline must be determined, which is more labor intensive than 

other methods.  Figure 4-4c shows an example of the modeled baseline that was removed 

from each chromatogram.  Using this method, there is no reduction of signal in the peak 

region.  Figure 4-5d shows a representative diesel chromatogram after subtraction of the 

modeled baseline.  This method results in a more complete removal of the baseline.  

However, there is a small artifact at approximately 80 minutes (circled in Figure 4-5d) due 

to improper modeling of the baseline.  The c, d, and e terms in the asymmetric sigmoidal 

fit could be further optimized to reduce this artifact, but would be labor intensive.  For 

these data, this artifact will have little influence in future analyses because of its low 

abundance.   
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This method is the only one of the methods investigated that results in both positive 

and negative baseline signal.  The point-to-point fluctuation observed in signal is noise.  

This is important for evaluation of smoothing, discussed in Chapter 5.  In addition, this 

method did not result in a reduction of signal in the peak region and resulted in the most 

complete reduction in the baseline.   

4.3.2. Quantitative Assessment 

As expected from the visual assessment of chromatograms, similar percent 

changes in the sum of squares of the baseline regions were observed for each of the 

baseline correction methods that were tested.  The BSB method resulted in a 90% 

reduction in the magnitude of the baseline, and the subtraction of the EIP resulted in an 

88% reduction in the baseline compared to the non-corrected chromatograms.  The 

subtraction of the baseline using a modeled baseline EIP resulted in a 92% reduction in 

the baseline.  Because the BSB method contained more ions than the subtracted EIP, 

the BSB method resulted in a larger reduction in the baseline than the subtraction of the 

EIP.  More ions could have been included in the EIP to increase the reduction of the 

baseline; however, this could also result in a larger reduction of the signal in the peak 

region.  Employing the fitted EIP allowed for the greatest reduction, due to the overall 

abundance (b term) being from each TIC.  Additionally, this method reduces the chance 

of removing chemical signal as a result of the baseline subtractions.   
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 Effect of Baseline Correction on PCA Scores Plot 

4.4.1. Visual Assessment 

Figure 4-6 shows the scores plot for replicates of the eight diesel samples prior to 

any pretreatment (a), and after baseline correction only (b).  There are no differences 

observed in the positioning of samples on the scores plot after baseline correction.  The 

loadings plots for PC1 and PC2 (Figure 4-7a and Figure 4-7b, respectively) also show no 

difference before (Figure 2-7) and after baseline correction.  In this work, even though the 

baseline was elevated across a large portion of the chromatogram, this elevation was 

consistent between samples, and was not a major source of variation.  This is likely due 

to the short period of time over which the samples were analyzed.   As expected, because 

there was no change in the loadings plot, there was also no change in the positioning of 

samples on the scores plot.   
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PCA was then performed after baseline correction and total area normalization of 

the data.  Figure 4-8 shows the scores plot after area normalization only (a) and after 

baseline correction followed by area normalization (b).  All of the samples were slightly 

shifted on the scores plot after baseline correction and normalization.  This resulted in a 

few samples appearing to be better clustered (i.e. Diesel 10, pink stars), while other 

samples appeared to be less clustered (i.e. Diesel 4, orange squares).  The loadings plots 

for PC1 and PC2 after baseline correction followed by normalization are shown in Figure 

4-9a and Figure 4-9b, respectively.  Compared to the raw data (Figure 2-7), there is a 

slight decrease in the baseline in the loadings plots of both PC1 and PC2. The small 

differences in the loadings plots after baseline correction explains why only small shifts in 

the samples were observed.  After applying baseline correction, the percent variance for 

PC1 increased from 57.9% to 58.9%, while the percent variance for PC2 decreased from 

21.4% to 21.1%.  The total percent variance accounted for using the first two PCs 

increased form 79.3% to 80.0%.  In general, the increase in percent variance accounted 

for using PC1 and PC2 is important because the more variance accounted for on the first 

two PCs, the more random error is being removed.   The few changes in the PCA results 

after baseline correction indicate that the baseline is not a major source of variation in 

these data.  
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4.4.2. Quantitative Assessment  

Based on the percent change in the clustering of replicates (PCC), baseline 

correction alone had no measurable effect on the variance of replicates samples in the 

PCA scores plot (Table 4-1).  However, when used in conjunction with either 

normalization method, there was a slight decrease in the PCC, indicating that baseline 

correction resulted in slightly poorer clustering of replicates.  The PCC using only area 

normalization was 45.1% and 59.0% for peak normalization.  After baseline correction, 

the PCC decreased slightly to 44.6% and 58.7%, respectively.  As previously discussed, 

baseline correction may not be necessary for this work.  However, this is not always the 

case.  If different chromatographic columns were used or the samples were analyzed 

over a longer time period, there may be greater variability in the baseline.  However, in 

this work, the samples were collected over a few weeks and only small, insignificant 

variation was observed in the baseline.  Also, baseline correction may have been 

necessary if peaks eluted during the rise in the baseline.    
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Table 4-1. The average percent change in the clustering (PCC) of replicates after 
the listed pretreatment procedures including baseline correction using the 
extracted ion profiles (EIP fit) and normalization using total area (Area) and single 
peak (Peak) normalization methods.   

 

Baseline 
Correction 

Normalization PCC 

- Area 45.1 

- Peak 59.0 

EIP fit - 0.0 

EIP fit Area 44.6 

EIP fit Peak 58.7 
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 Summary  

The baseline extends over a large number of data points in the chromatogram and 

therefore could be a major source of variation in PCA, even though the baseline is often 

small compared to the peaks.  In this work, there was little quantifiable difference in the 

baseline correction methods examined. Additionally, baseline correction was shown to 

have little effect on the clustering of replicates when analyzed using PCA.  This is likely 

due to the similarity of the rise in the baseline for the different diesel samples tested.  

Baseline correction may be useful when applied to other datasets.  Based on the three 

methods evaluated in this work, the fitted EIP to remove the baseline provides the analyst 

with the most control when selecting the signals to remove.    
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5. CHAPTER 5: SMOOTHING 

 Introduction 

Noise, or point-to-point fluctuations in signal, is another source of non-chemical 

variation.  Like the baseline, the noise must also be minimized to allow for comparison of 

chemical variations between samples [1].  The goal of smoothing is to minimize the 

random fluctuations in the chromatogram without distorting the chemical signal.  

Smoothing methods can be classified into two general categories: running and filtering 

smoothers [1-4].   Running smoothers remove point-to-point fluctuation using the data 

points around a central point (called a window).  The position of the central point is 

calculated using an average of the data points in the window (called a boxcar smooth) or 

by fitting the data points in the window using a polynomial function (called the Savitzky-

Golay smooth) [3, 4].  The center point is incremented along the chromatogram and the 

process is repeated for each point, resulting in a smoothed chromatogram.  The filtering 

smoothers removes specific signals from the chromatogram.  The most common example 

is the fast Fourier transform smoother, which filters the high-frequency signals from the 

chromatogram. Noise is rapid changes in signal that occurs from point to point and 

therefore is high frequency in nature [3].   

 Methods Tested and Evaluation Metrics 

One smoothing algorithm from each of the general types of smoothers was 

compared.  The Savitzky-Golay (SG) smooth was utilized as the running smoother and 

the fast Fourier transform (FFT) smooth served as the signal filtering smoother.  These 

smoothing algorithms were selected due to their popularity and wide availability [1, 3, 4].  
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Many commercially available data analysis and chemometric software packages contain 

one or more of these smoothing algorithms.  Origin Pro (version 7.5 OriginLab 

Corporation, Northampton, MA) contains both the Savitzky-Golay and the fast Fourier 

transform and was used to compared both algorithms using a single diesel 

chromatogram.  TICs were exported from Excel after baseline correction and imported 

into Origin for smoothing.   

5.2.1. The Savitzky-Golay Smooth 

The Savitzky-Golay algorithm uses a moving average with a least-squares 

polynomial equation to fit the chromatogram [5].  The order of the polynomial and the 

number of data points in the smooth can be varied.  For this work, different combinations 

of polynomial order and number of points were investigated.  The order of the polynomial 

ranged from 1 to 6 and the total number of data points varied from 3 to 25, with equal 

number of points on each side of the central point.  Only even-order polynomials (after 

the first order) were considered, as the central point smooth results in the equivalent 

smoothing for even and the following odd-order polynomial [6].  The SG smoothing 

algorithms were applied in Origin and exported back to Excel for further investigation.   

5.2.2. The Fast Fourier Transform Smooth 

To apply a FFT smooth, the data are transformed from the time domain to the 

frequency domain using a fast Fourier transform.  Then, a low-pass filter is applied to the 

data in the frequency domain to remove the high-frequency noise component.  The point 

at which the filter is applied is called the cutoff frequency.  The cutoff frequency for the 

low-pass filter is inversely related to the number of points in the chromatogram [7], at a 

fixed scan rate.  This means that the number of points in the chromatogram, which is 
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affected by the temperature program, the solvent delay, and the scan rate, will result in 

different degrees of smoothing.  Many software packages favor the running smoothers, 

because their performance is not dependent on the number of points or scan rate.  For 

this work, FFT smooth from 1 to 10 points was applied in Origin, corresponding to cutoff 

frequencies between approximately 2.91 and 0.29 Hz.   

5.2.3. Metrics Used for Evaluation 

The performance of each smoothing algorithm was evaluated based on the signal 

enhancement and extent of peak distortion.  The signal enhancement was quantitatively 

measured by calculating the percent change in the noise and the signal-to-noise ratio in 

the TIC before and after smoothing.  The standard deviation of the last 13 minutes of the 

TIC was defined as the noise (snoise), because only noise is present in this region of the 

chromatogram.  The signal-to-noise (S/N) was calculated by dividing the maximum 

abundance of the pentadecane peak (AC15) in each TIC by the previously defined noise. 

15C

noise

AS

N s
=  Equation 5-1 

 The percent change in the noise was also used to determine the degree of smoothing.  

A higher degree of smoothing resulted from a larger reduction in the noise.   

Smoothing can result in peak broadening, which can be observed as a widening 

of the peak and a reduction in the peak height.  EICs were used to determine peak 

distortion, as EICs provide better resolution and enhanced signal-to-noise, allowing for a 

more sensitive evaluation of peak distortion.  In order to monitor peak distortion, the 

percent change in the peak height, peak width, and resolution before and after smoothing 
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were calculated.  The maximum peak height of the pentadecane peak in the EIC of m/z 

71 was utilized for the peak height.  The pentadecane peak was selected because it was 

the largest peak in the chromatogram, resulting in a high signal.  The ion with m/z 71 was 

selected because it was the highest abundance ion with baseline resolution for 

pentadecane.  The peak width for pentadecane was determined using the second 

statistical moment (M2), which measures the variance of the peak, using the abundance 

(A) at each retention time (t) in the peak [8, 9].   

2

0
2

0

t

t

t A dt
M

A dt

∞

∞


=


 Equation 5-2 

When peaks become broader, there is also a reduction in the resolution between peaks.  

The resolution (Rs), or separation between peaks, [10] was calculated between tetralin 

and pentylbenzene using the retention time (t) and width (w) of each peak [11].   

( )
( )

2 1

1 2

2
s

t t
R

w w

−
=

+
  Equation 5-3 

In the TIC, these two peaks overlap; however, by utilizing EICs of m/z 132 (for tetralin) 

and m/z 148 (for pentylbenzene), the peaks can be separated, allowing an accurate 

calculation of resolution (Figure 5-1).  The resolution of these peaks in Diesel 1a prior to  
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Figure 5-1.  A representative diesel chromatogram showing the TIC (black) (a) 
and EICs (b) of m/z 132 for tetralin (blue) and m/z 148 for pentylbenzene (red). 

b

a 



110 
 

smoothing is 0.9.  Baseline resolution is 1.5.  Ideally, smoothing should enhance signal-

to-noise while only causing minimal peak distortion (i.e., minimal reduction in height and 

broadening of peaks, resulting in loss of resolution).   

 Effect of Smoothing on Chromatographic Data 

5.3.1. Visual Assessment 

The small fluctuations that are due to noise are often difficult to visually identify in 

the chromatogram.  Figure 5-2 shows an expanded region of a diesel chromatogram 

before (a) and after (b) smoothing using a 2-point FFT smooth.  The inset on the left 

shows an expanded view of the baseline.  Prior to smoothing, the peak and baseline are 

jagged, showing point-to-point variation in the signal.  After smoothing, the random 

fluctuations have been reduced.  The inset on the right shows the end of the 

chromatogram where the signal is approximately constant and the point-to-point 

fluctuations are due to noise.  After smoothing, the noise at the end of the chromatogram 

is also reduced.  The higher degree of smoothing that is applied, the more the noise is 

reduced.  However, the small differences resulting from different smoothing parameters 

were challenging to identify using visual assessment. 
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Figure 5-2.  An expanded region of 1, 3, 5-trimethylbenzene in a representative 
diesel chromatogram after baseline correction (a) and after baseline correction
and smoothing, using FFT 2 (b).  The inset on the left is a further expanded
region of the baseline, demonstrating the point-to-point variation before and 
after smoothing.  The inset on the right shows the region at the end of the
chromatogram, including the region defined as noise.  
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For some of the diesel samples, after smoothing had been applied, undesirable 

changes were observed in the chromatogram.  At higher degrees of smoothing, 

reductions in peak heights and increases in peak widths were observed.  These changes 

were often small, but could be identified after the chromatograms were overlaid.  

Additionally, artifacts were often observed on the edges of the peaks.  Figure 5-3 shows 

an expanded region of Diesel 1a overlaid before (black line) and after smoothing (red line) 

with a Savitzky-Golay, 4th-order polynomial with 11 total points (a) and a 6th-order 

polynomial with 31 points (b).  In Figure 5-3a, there were only slight differences observed 

between the unsmoothed and smoothed chromatograms, using a moderate level of 

smoothing.  When a high degree of smoothing was applied, the peaks became broader 

and peak heights decreased.  In addition, artifacts were usually observed near the edges 

of large peaks and appeared as valleys in the negative direction on either side of the 

peak.  In Figure 5-3b, the artifacts are shown on the red trace between 4.40 and 4.90 

minutes.  These artifacts, which are characteristic of over-smoothing, are not easily 

identified using the metrics, so visual inspection may be still be necessary to ensure that 

over-smoothing is not occurring.  These artifacts are not usually observed at low degrees 

of smoothing.     
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Figure 5-3.  An expanded region of a diesel chromatogram without smoothing
(black line) and with smoothing (red line) using a Savitzky-Golay smoothing
algorithm.  Part a shows a good smooth (polynomial order of 4 and 11 total
points) while part b shows the broadening of peaks, decrease in peak height,
and artifacts on the peak edges associated with oversmoothing (polynomial
order of 6 and 31 total points).   
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5.3.2. Quantitative Assessment 

The specific smoothing parameters that were tested and the results of the 

quantitative assessment are shown in Table 5-1.   The percent change in the noise and 

signal-to-noise were used to evaluate the degree of smoothing, while the percent 

reduction in the peak height, peak variance, and resolution were used to indicate the 

extent of peak distortion.  Similar percent reductions in noise were observed for different 

combinations of the smoothing parameters for both the fast Fourier transform and 

Savitzky-Golay smoothing algorithms.  For example, a fast Fourier transform smooth with 

1 point had a similar reduction in noise and increase in signal-to-noise to a Savitzky-Golay 

smooth with a 4th-order polynomial with 7 points (Table 5-1).  Parameters were grouped, 

based on the degree of smoothing.  Different parameters that resulted in the same 

reduction in noise (degree of smoothing) were assigned to the same group (groups 1 - 5, 

Table 5-1).  Each group has a similar reduction in noise but contains both smoothing 

algorithms and several different combinations of parameters for the SG smoothing 

algorithm.  These relationships are more apparent in Figure 5-4, when the standard 

deviation in the noise is plotted versus the number of points in the smooth, on a log-log 

scale.  Each group (Figure 5-4, represented by color) has approximately the same noise, 

but a different number of points included in the smooth.  Having several combinations of 

parameters at each smoothing level provides the analyst with more control over the 

smoothing and the ability to minimize some peak distortion that may be observed.   
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Group 
Applied 
Smooth Noisea 

Signal-to-

Noise Ratiob
Peak 

Heightc 

Peak 

Variancec 
Resolutiond

 

FFT 1e -20 24 -1.7 0.6 -0.2 

SG 2,5f -25 34 -2.8 0.2 2.1 

SG 4,7 -21 26 -2.1 0.2 2.1 
       

 

FFT 2 -38 58 -5.1 4.9 1.7 
SG 1,3 -35 53 -5.0 4.5 -0.3 
SG 2,7 -35 54 -4.7 1.8 2.8 
SG 4,11 -35 54 -4.6 2.7 2.6 
SG 6,15 -35 54 -5.0 2.9 2.6 

       

 

FFT 3 -45 79 -7.0 7.8 -0.7 
SG 1,5 -45 78 -8.5 10 -1.5 
SG 2,11 -45 80 -5.5 3.1 -0.7 
SG 4,17 -45 80 -4.5 2.5 1.6 
SG 6,23 -43 75 -4.2 2.1 1.6 

       

 

FFT 4 -50 92 -9.0 12 -3.5 
SG 1,7 -50 91 -11 18 -7.3 
SG 2,15 -50 94 -7.5 3.7 0.5 
SG 4,25 -50 98 -7.8 2.7 0.1 

       

 
FFT 10 -58 91 -31 58 -22 

SG 1, 15 -57 88 -31 74 -25 
       

Table 5-1.  Percent change in each metric for different smoothing parameters.  
The parameters are grouped based on the level of smoothing. 

a. Calculated as the standard deviation of the last 13 minutes of the chromatogram. 
b. The maximum height of the C15 peak divided by the noise. 
c. Using the EIC of m/z 132 for Tetralin. 
d. Between EIC of Tetralin (m/z 132) and EIC of pentylbenzene (m/z 148).  Baseline 

resolution corresponds to a value of 1.5.  
e. FFT: Fast Fourier transform smoothing.  The number indicates how many points 

were used for the smooth. 
f. SG: Savitzky-Golay smoothing.  The first number indicates the order of the 

polynomial, while the second number indicates the total number of points in the 
smooth.  
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order polynomial (), SG 4th order polynomial (), SG 6th order polynomial 
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Over all 5 groupings, the percent reduction in noise ranged from 20 - 58%, with 

similar reductions in noise observed within each group.  Both the FFT and SG algorithms 

performed similarly within each group (Table 5-1).  This demonstrates the wide range of 

smoothing options available.  Group 1 had the smallest reduction in noise (20 - 25%) 

while group 5 had the greatest reduction (57 - 58%).  Group 1 also had the smallest 

improvement in the signal-to-noise ratio (24 - 34%) while groups 4 and 5 had similar 

improvement in the signal-to-noise ratio (88 - 98%).  This shows that fewer points and a 

lower order polynomial result in a lower degree of smoothing and more points and a higher 

order polynomial result in a higher degree of smoothing.   

Peak distortion was also considered when evaluating the smoothing algorithms.  

For all levels of smoothing, there is a reduction in the peak height, ranging from 2% to 

30%.  Variations in peak height of 5% were observed for replicate analyses prior to 

smoothing; therefore, reductions in peak heights greater than 5% were considered 

significant and detrimental.  This only occurs in groups 3, 4, and 5.  The percent change 

in the peak variance ranged from 0.2% to 74% for groups 1 to 5; however, significant and 

detrimental changes (>5%) were also only observed in groups 3, 4, and 5.  In most cases, 

groups 1 - 4 had only small changes in resolution (generally less then ± 3%) and were 

likely not significant.  Larger and detrimental changes in resolution were observed when 

the change in peak variance exceeded 18%, which is observed in groups 4 and 5.  These 

metrics were not able to identify the artifacts that were visually observed on the edges of 

peaks (Figure 5-3) when the percent change in the noise exceeded approximately 40% 

(group 3).   
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In general, the FFT smoothing algorithm resulted in a monotonic decrease in noise 

when more points were considered in the smooth (Figure 5-4, diamonds).  When a higher 

degree of smoothing was used (i.e. more points, corresponding to a lower cutoff 

frequency), there was also more peak distortion observed.  The SG smoothing algorithm 

resulted in a decrease in noise when the order of the polynomial was decreased and the 

number of points was constant (Figure 5-4).  A decrease in noise was also observed when 

the number of points included in the smooth was increased while the order of the 

polynomial was constant (Figure 5-4, squares, triangles, and circles).  As with FFT 

smoothing, SG smoothing resulted in more peak distortion at higher degrees of 

smoothing.  However, within a group, there was less distortion using a SG smooth with a 

higher order polynomial and more points.  The performance of the corresponding FFT 

within that group usually fell in the middle of the SG parameters.  The smoothing 

parameters in group 2 result in the largest reduction of noise (35%), while introducing 

only minimal (5%) peak distortion.  For this work, the FFT smoothing algorithm with 2 

points (FFT 2) was selected and used for all subsequent pretreatments.   

Using the FFT smoothing algorithm, the ideal cutoff frequency was approximately 

half of the scan rate (in this work corresponding to FFT 2).  For the SG smoothing 

algorithm, a polynomial order of 2 or 4 is sufficient for smoothing most chromatographic 

peaks.  For a given order polynomial, an approximately 25% increase in signal-to-noise 

ratio is obtained by increasing the number of points in the smooth by 2n, where n is the 

order of the polynomial.  To decrease the peak distortion and maintain the same degree 

of smoothing, the order of the polynomial can be increased and the number of points in 
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the smooth increased by 2n.  After group 4, there is no increase in the signal-to-noise 

ratio and substantial peak distortion.   

 Effect of Smoothing on PCA Scores Plot 

5.4.1. Visual Assessment  

The PCA scores plots (Figure 5-5) after baseline correction only (a) and after 

baseline correction and smoothing (b) show little visual difference in the positioning of 

samples.  This indicates that the noise is not a major source of variation in the 

chromatograms of these samples.  After baseline correction and smoothing, PC1 and 2 

account for 78.3% of the variation, only slightly increased from 77.4% for baseline 

correction alone.   

The small change in the positioning of samples is also reflected in the loadings 

plots (Figure 5-6) of PC1 (a) and PC2 (b).  There is little visual difference between the 

loadings plots after only baseline correction (Figure 4-7) and after baseline correction and 

smoothing.  The only notable difference is that the point-to-point fluctuations observed in 

the noise region of the loadings plots (95 to 108 minutes) have been reduced.  The small 

effect that smoothing has on clustering of replicates is expected, given the small 

contribution of this region in both the chromatogram and the loadings plots.   However, if 

a lower signal-to-noise ratio was observed in the chromatogram, the noise would become 

a more significant source of variation.   
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Figure 5-5.  PCA scores plot of eight diesel chromatograms in triplicate
after baseline correction (a) and after smoothing using FFT 2 (b).   
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There are also only slight differences in the positioning of samples on the scores 

plot (Figure 5-7) after baseline correction and normalization (a) and after baseline 

correction, smoothing, and normalization (b).  The variance accounted for by PC1 and 

PC2 increased from 79.3% to 81% with the inclusion of normalization as a pretreatment.  

Additionally, the loadings plots after baseline correction, smoothing, and normalization 

(Figure 5-8) for PC1 (a) and PC2 (b), appear similar to the loadings plots after only 

baseline correction and normalization (Figure 4-9).  This again demonstrates that the 

noise is not a major contribution to the variance in this dataset.   

5.4.2. Quantitative Assessment 

To quantify the clustering of replicates on the scores plot, the percent change in 

the clustering of replicates (PCC) was again employed (Table 5-2).  After baseline 

correction using the fitting of the extracted ion profiles (EIP fit) and smoothing using the 

FFT with 2 points, only a very small improvement in replicate clustering was observed 

(0.5%), further confirming that noise was not a major source of variation in this dataset.  

When baseline correction, smoothing, and normalization were applied, there was an 

increase in the PCC over normalization alone and over baseline correction and 

normalization (Table 5-2).  The improvements that are observed are greater than the 

simple sum of the smoothing affect alone and are likely due to the decreased variation in 

the noise at the end of the chromatogram.  While these improvements were small, this 

highlights the power of combining data pretreatment procedures to enhance 

discrimination of highly similar samples.   
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Figure 5-7.  PCA scores plot of eight diesel chromatograms in triplicate after
baseline correction and normalization (a) and after baseline correction,
smoothing, and normalization (b).   
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Table 5-2. The average percent change in the clustering (PCC) of replicates after 
the listed pretreatment procedures including baseline correction using the 
extracted ion profiles (EIP fit), smoothing using fast Fourier transform smooth with 
2 points (FFT2) and normalization using total area (Area) and single peak (Peak) 
normalization methods.   

 

  

Baseline 
Correction 

Smoothing Normalization PCC 

- - Area 45.1 

- - Peak 59.0 

EIP fit - - 0.0 

EIP fit - Area 44.6 

EIP fit - Peak 58.7 

EIP fit FFT 2 - 0.5 

EIP fit FFT 2 Area 46.5 

EIP fit FFT 2 Peak 62.1 



126 
 

 Summary 

There are a wide array of smoothing methods, each with many parameters that 

can be applied, depending on the enhancement that is required.  However, care must be 

taken not to introduce peak distortion, particularly the negative-going peaks on the edges 

of peaks, which, when present, can be identified as a major source of variation between 

samples.   All smoothing parameter groupings led to a reduction in noise; however, 

different smoothing parameters resulted in different degrees of peak distortion.  Peak 

distortion was first identified when there was a greater than 35% reduction in the noise.   

In this work, there was little difference in the chromatogram or scores plot after 

applying a moderate degree of smoothing.  For this dataset, the contribution of the noise 

was small compared to the signal. Therefore, noise generally had a minimal effect on 

statistical comparisons.  For datasets where signal-to-noise ratio is lower, application of 

smoothing would be more critical.  The enhanced discrimination after applying baseline 

correction, smoothing, and normalization demonstrate the improved enhancement that 

can be achieved by applying several pretreatment procedures.   
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6. CHAPTER 6: ALIGNMENT 

 Introduction 

After appropriate minimization of the baseline and the noise in a chromatogram, 

ideally, only the analytical signal remains.  However, drift in the retention time of peaks in 

the chromatogram between analyses can remain, particularly in datasets that were 

collected over a relatively long time period (usually months or longer). This drift can arise 

from variation in injection mode, fluctuation in mobile phase pressure and flow rates, 

degradation of the stationary phase, variation in the oven of the gas chromatograph, 

among other sources.  All of these sources of drift effect how the analytes move through 

the column.  When performing principal component analysis (PCA) on these data, each 

retention time serves as a variable.  Therefore, peaks from the same compounds in 

different chromatograms must be well aligned so that the variables rise and maximize at 

the same retention time.  Any retention time misalignments will be identified as sources 

of variation between samples, which will be highlighted in the statistical analysis [1-4].  

Many factors can affect the severity of the misalignments.  Chromatograms analyzed on 

the same instrument immediately after one another will have smaller misalignments than 

chromatograms analyzed months apart or from different instruments [4].  Also, variation 

in alignment can be reduced by optimizing the injection parameters and by utilizing an 

auto-sampler.   

In order to correct misalignments, retention time alignment algorithms are 

employed.  All alignment algorithms utilize interpolation or extrapolation of points in the 

chromatogram to shift the peak in a sample chromatogram to the corresponding peak in 
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a target chromatogram.  The target chromatogram is considered to have the true retention 

times, and all sample chromatograms are then aligned so that the peaks from the same 

compounds in different chromatograms maximize at the same retention time.  Alignment 

algorithms can be generally classified into four types according to their mode of operation: 

scalar shifts, selected peak alignment, local alignment, and global optimized alignment 

algorithms [1, 5].  Considerations for choosing a target for alignment will be discussed 

later in this chapter.    

Alignment algorithms based on scalar shift apply a shift to the entire sample 

chromatogram, to maximize the similarity between the sample and target chromatogram.  

This simplistic alignment allows for a fast, but crude, alignment [1] and shift all of the 

peaks in the sample chromatogram in one direction and by the same number of points.  

This type of coarse alignment is sometimes performed to correct for large shifts in 

retention times prior to more robust alignment methods [6, 7].   

Selected peak alignment is performed by assigning a specific value for the 

retention time of known peaks in the chromatogram.  The retention times of the other 

peaks are then scaled between the known peaks.  This method is similar to scaling using 

the Kovat’s retention index [8].  However, in complex samples it is difficult for algorithms 

to identify known peaks and manual intervention is often necessary [1].  A target 

chromatogram is not needed for this type of alignment and specific peaks that are present 

in all samples serve as the bases for alignment.   

Local alignment algorithms are applied iteratively to regions of the sample 

chromatogram to maximize similarity to the target within each region [1].  Generally, this 
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method requires peak detection or other method of defining the local regions of interest 

in both the target and sample chromatograms [3, 5, 9].  This method requires no prior 

knowledge about the sample; however, it only aligns small regions of the chromatogram, 

such as selected peaks, rather than maximizing similarity between all peaks in the 

chromatogram [1, 10].   

The global optimized alignment algorithms are the most dynamic and robust as 

they maximize a local as well as a global measure of similarity [1-3, 7, 11-14].  This 

method allows for alignment of chromatograms with different numbers of data points and 

with severe shifts in retention time.  These methods are often computationally intensive 

and require optimization of several parameters [15].   

 Methods Tested and Evaluation Metrics  

The performance of two common retention time alignment algorithms was 

compared: a local alignment algorithm or peak-matching (PM) algorithm [10] and a global 

alignment algorithm, or correlation-optimized warping (COW) algorithm [11].  These two 

algorithms were selected as they are more robust and require less manual intervention 

than the other types of algorithms.  Many commercially available chemometric software 

packages include a COW alignment algorithm.  The PM algorithm was applied in Matlab 

(version 7.12 R2011a, MathWorks, Natick, MA) and the COW alignment was applied in 

LineUp (version 3.5, Infometrix, Inc., Bothwell, WA).  The performance of the alignment 

algorithms was evaluated using Diesels 1 - 3, which were analyzed in triplicate, after 

baseline correction and smoothing.   
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6.2.1. Peak-Matching Alignment Algorithm 

The PM algorithm identifies and matches individual peaks in a sample 

chromatogram to peaks found in a target chromatogram [10].  Peaks are detected in each 

chromatogram by identifying zero-crossings after an estimation of the first derivative of 

each chromatogram. The algorithm considers points starting at the beginning of the 

chromatogram and moves to the end.  The leading edge of a peak is identified when the 

point-to-point difference exceeds five times the standard deviation of the baseline.  When 

this threshold is met, the first zero-crossing that is encountered is considered the peak 

maximum.  The time point closest to the zero-crossing is then added to a list for each 

chromatogram (the target and all sample chromatograms).  The algorithm continues to 

locate peaks until the end of the chromatogram is reached, creating a list of time points 

closest to each zero-crossing identified.  The peaks found in each sample chromatogram 

are then compared to those found in the target chromatogram.   If a peak is present in 

both the target and sample chromatograms, within a user-defined window, then the peaks 

are considered a match.  The retention time axis is interpolated, so that the point closest 

to the zero-crossing in the sample chromatogram occurs at the same retention time as 

the point closest to the zero-crossing in the target chromatogram [10].   

In this work, the algorithm was used as described by Johnson et al. [10], except 

that the baseline subtraction step was omitted as baseline correction was performed as 

a separate pretreatment method, prior to alignment.  The threshold was calculated as five 

times the standard deviation of the noise, which was defined as the region in the 

chromatograms between 79.5 and 80.5 minutes.  This particular region was selected as 

there were no peaks present and the region was only minimally affected by baseline 
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correction.  The window size is the only user-defined parameter in the algorithm and 

window sizes ranging from 2 to 20 data points were evaluated.  

6.2.2. Correlation Optimized Warping Algorithm 

The COW algorithm optimizes the correlation coefficient (Equation 1-1) between a 

sample and target chromatogram [12].  As with the PM algorithm, each sample 

chromatogram is compared to a target chromatogram.  In order to align the 

chromatograms, both the target and sample chromatograms are divided into segments, 

based on a user-defined parameter of segment size.  The segment size is the number of 

data points in each segment.  Beginning at the end of the chromatogram and moving 

towards the beginning, each segment of the sample chromatogram is stretched or 

compressed by adding or removing points, using interpolation, in order to better align the 

peaks in the sample chromatogram to those in the target.  The maximum number of points 

added or removed is determined from the warp, which is also a user-defined parameter.  

The Pearson product-moment correlation (PPMC) coefficient is used to assess the 

similarity between data points in the segment of the sample chromatogram and the 

corresponding points in the segment of the target chromatogram.  The PPMC is 

calculated for each permutation of adding or removing up to the number of data points 

specified by the warp.  This process is repeated for each segment.  The alignment is 

based on the highest global correlation coefficient for all segments [11].   

In this work, the COW algorithm was tested using varying warps (1 - 4 data points) 

and segment sizes (25 - 120 data points).  For the COW alignment algorithm, the initial 

starting point recommended for the segment size is the approximate number of points 
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across a peak, with the warp typically being just a few points.  Peaks in this dataset were 

approximately 45 points across and generally peaks were shifted less than two points 

from the target chromatogram.  Hence, the starting point for the alignment was chosen to 

be a segment size of 45 and a warp of 2. During investigation of warp and segment size, 

one parameter at a time was varied while the other was held constant.   

6.2.3. Target Selection 

As discussed above, each alignment algorithm compares sample chromatograms 

to a target chromatogram.  Therefore, selection of the target is a critical and often a 

challenging aspect of alignment.  The ideal target chromatogram has well resolved peaks 

and is representative of the sample chromatograms [6, 10].  There are generally three 

targets that can be selected: one of the sample chromatograms, an average target, and 

a consensus target [16-20].  Generally, if a sample chromatogram is used as the target, 

the chromatogram is chosen at random from the dataset.  Using a sample chromatogram 

can be problematic if all of the compounds in the dataset are not present in the selected 

sample chromatogram.  An average target is generated mathematically from all 

chromatograms in the dataset. To do this, the abundance at each retention time is added 

from each of the sample chromatograms, then divided by the total number of 

chromatograms to yield the average.  The average target is advantageous because it 

includes peaks that may not be present in every sample.  However, averaging leads to 

peak broadening and a reduction in signal, which make alignment more challenging.  A 

consensus target is a separate sample that contains a mixture of all compounds of interest 

that are in the sample chromatograms.  This type of target is challenging to create 
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because trial and error is often required to create a mixture with all of the compounds at 

the correct abundance.   

In this work, a random target was used to investigate the alignment parameters for 

the COW and PM alignment algorithms using replicates (n=3) of Diesels 1 - 3.  The 

second replicate from Diesel 2 was randomly selected (using a random number generator 

in Excel) to serve as the target chromatogram.  The optimized parameters from this 

preliminary study were then used to align the dataset to evaluate different target 

chromatograms.   Each diesel chromatogram (from samples 1 - 10, analyzed in triplicate) 

and the average chromatogram were used to determine the most appropriate type of 

target chromatogram for alignment of these data. The success of alignment was 

evaluated for each target. 

6.2.4. Evaluation Metrics  

Two metrics were used to quantitatively evaluate retention time alignment.  These 

metrics were the percent change in the average of the standard deviation of the retention 

time of selected peak maxima (PC-SDRT) and the sum of the percent change in the 

PPMC coefficient for each chromatogram before and after alignment (PC-PPMC). 

Calculation of the PC-SDRT is performed using peak maxima selected using a peak-

finding algorithm, based on the peak-matching algorithm described previously [10].  In 

general, there were 100 - 200 peaks identified per chromatogram using this algorithm.  

The standard deviation in the retention time was calculated for each selected peak across 

all chromatograms in the dataset, and then averaged across all selected peaks, both 

before ( Us ) and after ( As ) alignment.   
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To determine the PC-PPMC, PPMC coefficients were first calculated in Excel, in a 

pair-wise fashion, between all chromatograms, both before and after alignment.  The 

percent change in the PPMC coefficient before (PPMCU) and after (PPMCA) alignment 

was calculated and summed.   
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 
 Equation 6-2 

 After proper retention time alignment, chromatograms become more similar, which 

results in a lower standard deviation of peak maxima and higher PPMC coefficient.  Each 

metric is similar to one of the methods used for alignment: the PC-SDRT is based on the 

peak finding algorithm while the PC-PPMC utilizes PPMC coefficients, similar to the COW 

algorithm. 

 Effect of Retention Time Alignment on Chromatographic Data  

6.3.1. Visual Assessment 

Visual assessment of alignment is challenging because multiple chromatograms 

must be overlaid and compared.  In this work, misalignments were considered small, often 

within 5 points (generally ± 0.02 min), and were difficult to visualize. Figure 6-1 shows the 

chromatograms of three diesel samples, each analyzed in triplicate, overlaid.  In this 

example, the peak maxima, as well as the leading and tailing edges of the peak, can vary  
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Figure 6-1.  An expanded region of chromatograms of three diesel samples 
analyzed in triplicate, each represented by a different color, before alignment.  
The peaks correspond to 1, 3, 5-trimethyl-benzene (9.20 min) and decane (9.48 
min).  
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slightly, even among replicates.  When multivariate statistical procedures are applied, 

these differences can be identified as sources of variation and hence, it is important to 

minimize or eliminate such differences.   

Selection of an appropriate window size (for the PM algorithm) or warp (for the 

COW algorithm) is facilitated by careful inspection of the chromatograms, as shown in 

Figure 6-2.  When the chromatograms are overlaid, the peaks resulting from the same 

compound in all chromatograms should be inspected.  In Figure 6-2, the peak shown 

corresponds to 1, 3, 5-trimethyl-benzene from Diesels 1 - 3, each analyzed in triplicate.  

The minimum window size or warp is the number of points that a peak would need to be 

shifted to align with peaks from the same compound in the other chromatograms.  In this 

example, the window size or warp would need to be at least 2.  The maximum window 

size or warp is the number of points a peak could be shifted before being aligned to the 

peak from another compound.  If the window size or warp is too small, the peaks cannot 

be aligned; if it is too large, then peaks from different compounds could be aligned.   

Figure 6-3 shows the same region as Figure 6-1, after alignment using the PM (a) 

and COW (b) alignment algorithms.  In order to compare the alignment algorithms, all 

diesel samples were aligned.  The PM alignment was performed using a window size of 

5 and the COW alignment was performed using a warp of 2 and a segment size of 75.  In 

both cases, an average chromatogram was utilized as the target.  After alignment, peak 

maxima and edges are generally more similar across all chromatograms, generally only 

varying by 1 or 2 points (approximately ± 0.005 min).  However, there are anomalies that  
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Figure 6-2.  An expanded region of  the 1, 3, 5-trimethyl-benzene peak in 
chromatograms of three diesel samples analyzed in triplicate, each 
represented by a different color, before alignment.  The individual data points 
are shown as black circles.  In this example, peak maxima are shifted by 
approximately three data points.   
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Figure 6-3.  The same expanded region of chromatograms of three diesel 
samples from Figure 6-1, each represented by a different color, after 
alignment using the peak-matching algorithm (a) and the correlation-
optimized warping algorithm (b).   
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are observed after some alignments.  Using the COW algorithm, the most commonly 

encountered anomaly is that peaks are often aligned to one of the edges of the peak, 

rather than to the peak maxima.  This can be seen in both peaks in Figure 6-3b.  Peaks 

that are approximately the same height and width are well aligned.  However, when 

comparing peaks across several chromatograms, most peaks are aligned to either the 

leading or tailing edge of the peak.  The first peak in all chromatograms (1, 3, 5-trimethyl-

benzene) is aligned to the tailing edge of the peak.  The leading edge of the peak and the 

peak maxima are not well aligned.  In the second peak (decane), most of the replicates 

are also aligned to the tailing edge of the peak.  However, one of the replicates shown in 

red is aligned to the leading edge of a peak in another diesel sample.  Even though these 

variations are often only 1 or 2 points, they can still be identified as a non-chemical source 

of variation in PCA.   

 The resulting alignment of the peak edges using the COW alignment algorithm is 

not surprising because optimization is based on maximizing correlation coefficients 

between the sample and target chromatograms.  The correlation is higher when the 

abundance from point to point increases and decreases at the same retention times 

across all chromatograms.   When the peaks being aligned are different width or height, 

alignment to the front or tail of the peak is common, so that correlation is optimized.   

 In the PM algorithm, peak maxima are identified and aligned (Figure 6-3a).  

Therefore, differences in peak size do not affect the alignment.  However, only peaks that 

have been identified by the algorithm in both the sample and target chromatogram are 

aligned.  Therefore, some low abundance or co-eluting peaks are often not aligned.  

Additionally, this can result in alignment of peaks that do not correspond to the same 
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compound, often making alignment worse.  The sensitivity of the algorithm to identify 

peaks is the major drawback of this method.  Figure 6-4 shows the phytane peak and 

another co-eluting peak in three diesel chromatograms, each analyzed in triplicate, before 

alignment (a) and after alignment using the PM algorithm with a window size of 10 (b).  

Using a large window size results in peak maxima of one replicate from each sample to 

shift, creating retention time misalignments. This problem can be minimized by selecting 

an appropriate window size, which requires manual optimization.   

6.3.1. Quantitative Assessment  

The PC-SDRT and the PC-PPMC were utilized as metrics to evaluate the 

alignment.  A decrease in the PC-SDRT or an increase in the PC-PPMC indicates an 

improvement in alignment.  The PM algorithm resulted in improved alignment for most of 

the window sizes that were investigated (Table 6-1).  The PC-SDRT ranged from -62 to 

49% and the PC-PPMC ranged from -2.8% to 9.3%.  Similar improvement in the quality 

of alignment was observed for window sizes 3 - 7 using both the PC-SDRT (-61% to -

62%) and the PC-PPMC (9.2% to 9.3%).  This indicates that windows of 3 - 7 resulted in 

similar alignment.  Window sizes of less than 3 were not able to shift peaks far enough to 

align them.  When the window size was greater than 7, peaks were shifted too far, 

resulting in improper alignment.   
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Figure 6-4.  An expanded region of the phytane peak in chromatograms of three 
diesel samples analyzed in triplicate, each represented by a different color, 
before alignment (a) and after alignment using the peak-matching algorithm with 
a window size of 10 (b).   
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Table 6-1. Percent change in the standard deviation of the peak maxima of selected 
peaks (PC-SDRT) and the sum of the percent change in the PPMC coefficients (PC-
PPMC) for different window sizes using the peak-matching alignment algorithm.  A 
decrease in the PC-SDRT of the retention time or an increase in the sum of the PC-
PPMC indicates an improvement in alignment.   

 

  

Window Size PC-SDRT PC-PPMC 
2 -55 9.2 

3 -61 9.2 

4 -62 9.2 

5 -62 9.2 

6 -62 9.3 

7 -61 9.2 

8 -61 8.4 

10 -46 8.5 

15 -19 5.8 

20 49 -2.8 
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There was a decrease in the quality of the alignment based on the PC-SDRT metric 

for window sizes below 3 and above 8 and a decrease based on the PC-PPMC using a 

window size greater than 7.  This reduction in quality of alignment is likely a result of a 

mixture of improved alignment for some peaks and a worsening in alignment for other 

peaks in the same chromatogram.  At a window size of 20, there is a positive PC-SDRT 

and a negative PC-PPMC, indicating that this window size actually resulted in worse 

alignment than prior to application of the alignment algorithms.  This is likely a result of 

additional misalignments caused by aligning peaks in the sample chromatogram to the 

improper corresponding peak in the target chromatogram.   

To compare the COW alignment algorithm, a range of segment sizes (20 – 120) 

and warps (1 – 4) were investigated.  The recommended segment size for this algorithm 

is the average number of points across a peak [6].  In this work, the number of points 

across a peak ranged from approximately 25 - 45 points.  The largest peaks were 

expected to be the most problematic, so an initial segment size of 45 data points was 

selected.   A warp of 2 was used to compare the various segment sizes.  This warp was 

chosen based on visual assessment of the unaligned chromatograms, which showed that 

most peaks were only misaligned by 1 or 2 data points.  

The COW alignment algorithm resulted in improved alignment over the range of 

segment sizes (20 – 120) that were investigated (Table 6-2).  The PC-SDRT ranged from 

-21 to -30% and the PC-PPMC ranged from 13 to 21%.  Both the decrease in the standard 

deviation in retention time and the increase in PPMC coefficient indicates an increase in  
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Table 6-2. Percent change in the standard deviation of the peak maxima of selected 
peaks (PC-SDRT) and the sum of the percent change in the PPMC coefficients (PC-
PPMC) for varying warp and segment sizes using the COW alignment algorithm.  A 
decrease in the PC-SDRT of the retention time or an increase in the sum of the PC-
PPMC indicates an improvement in alignment.   

 

 

 

  

Segment Warp PC-SDRT PC-PPMC 
20 2 -26 14 
25 2 -21 13 
37 2 -27 19 
45 1 -29 21 
45 2 -28 21 
45 3 -24 20 
45 4 -23 20 
50 2 -23 20 
60 2 -25 20 
75 2 -28 21 
90 2 -30 21 

100 2 -26 21 
120 2 -29 21 
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the quality of the alignment for all combinations. All segment sizes of 45 and larger 

resulted in a 20% to 21% increase in the PC-PPMC while segment sizes 45, 75, 90 and 

120 showed the highest decrease in the PC-SDRT (28% to 30%).   

Using the segment size of 45, the warp was varied between 1 and 4 data points.  

The greatest improvements in alignment were observed using a warp of 1 or 2 points.  

There was a 29% and 28% reduction in the PC-SDRT for warp sizes of 1 and 2, 

respectively.  There was also 21% increase in the PC-PPMC for both a warp 1 and 2 

points.  Using a warp of 3 and 4 points, there was a 24% and 23% reduction in the PC-

SDRT and a 20% increase in the PC-PPMC.  The smaller warps resulted in better 

alignment, as the chromatograms were collected over a short period of time, and only 

small differences in alignment were observed.  When larger warps were applied, 

chromatograms were shifted more, resulting in poorer alignment, due to more peaks 

aligning to the leading or tailing edge of the peak.   

Rather than selecting the ideal alignment parameters (which can only be obtained 

through optimization), adequate alignment parameters were selected for further analysis.  

For COW, a warp of 2 data points and a segment size of 75 data points were selected.  

Most peaks were misaligned by 1 or 2 points, making 2 a reasonable choice for warp.  A 

segment size of 75 corresponds to 1.5 to 2 times the number of points across a peak.  

For the PM algorithm, a window size of 5 was selected, to allow for slightly larger shifts 

that might be present when applying the pretreatment to the larger dataset.   

Each metric is based on the method used to align the chromatograms resulting in 

a potential bias when trying to comparison the alignment algorithms.  When comparing 
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the PM parameters (window size 5) and COW parameters (warp of 2, segment size 75), 

the PC-SDRT indicates greater improvement for the PM algorithm, while the PC-PPMC 

indicates greater improvement for the COW alignment algorithm.  Because each 

evaluation method is similar to the alignment algorithms, the evaluation favors the 

alignment algorithm from which the metric is derived.  In PCA, variation between samples 

must be minimized.  Therefore, the change in PPMC coefficients would be a more reliable 

indicator as coefficients account for more of a global change, rather than just selected 

peaks.  Additionally, when a peak is not correctly aligned using the COW algorithm, the 

misalignment is generally less severe than with the PM algorithm.  Lastly, the COW 

algorithm is widely available in a number of commercial software packages.  Therefore, 

the COW alignment algorithm with a warp of 2 data points and a segment size of 75 data 

points was utilized for the rest of this work.   

6.3.2. Target Selection  

After choosing the alignment algorithm and parameters, a method for choosing a 

target chromatogram was investigated. Each chromatogram contained all of the 

compounds, making each chromatogram a suitable target for consideration.  In addition, 

the average chromatogram was also utilized as the target.  Both metrics were again 

applied to evaluate the selection of a target.   

The PC-SDRT using each of the selected targets ranged from 12.1 to -14.2% 

(Table 6-3), where negative values indicate an improvement in the alignment and positive 

values indicate a worsening in the alignment.  The greatest improvement in alignment 

was observed when the average chromatogram was used as the target.  Additionally, 
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most of the possible target chromatograms resulted in an improvement in the quality of 

the alignment.  However, three chromatograms, when used as the target, resulted in a 

worsening in the quality of the alignment.  Upon visual inspection, this decrease in 

alignment quality was due to misalignments of several low abundance, co-eluting peaks.    

Using the PC-PPMC, all chromatograms when used as a target resulted in an 

improvement in the quality of alignment, ranging from 211% to 221% (Table 6-4).  This 

small range indicates that all chromatograms were more similar after alignment, 

regardless of which sample was selected as the target.  In addition, the similarity of the 

PC-PPMC demonstrates the insensitivity of this metric for when evaluating the COW 

alignment algorithm.  It is not clear why diesel samples 3 and 8 resulted in the best 

alignment.  However, the average chromatogram was still among the best choices for a 

target.  The use of the average chromatogram as the target is advantageous because it 

has been shown to result in good alignment, without requiring testing of all possible 

chromatograms.   
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Table 6-3. Percent change in the standard deviation of the peak maxima of selected 
peaks (PC-SDRT) using the correlation optimized warping alignment algorithm with 
a warp of 2 and a segment size of 75, with each sample chromatogram as well as 
the average chromatogram serving as the target. A decrease in the PC-SDRT of the 
retention time indicates an improvement in alignment.      

 

 

  

Target 
Chromatogram 

 
PC-SDRT 

Average -14.2 
D5B -11.8 
D6A -11.0 
D10A -10.9 
D9B -9.7 
D8B -9.4 
D3B -7.2 
D4C -6.8 
D7B -6.7 

D10C -6.7 
D9C -6.4 
D9A -6.2 
D8C -5.9 
D6B -5.7 
D5A -5.5 
D3A -4.7 
D8A -4.0 
D3C -4.0 
D4A -3.2 
D10B -2.2 
D7A -0.1 
D4B -0.0 
D5C 0.7 
D6C 5.8 
D7C 12.1 



151 
 

Table 6-4. The sum of the percent change of the Pearson product moment 
correlation coefficients (PC-PPMC) using the correlation optimized warping 
alignment algorithm with a warp of 2 and a segment size of 75, with each sample 
chromatogram as well as the average chromatogram serving as the target.  An 
increase in the sum of the PC-PPMC indicates an improvement in alignment.   

 

  
Target 

Chromatogram PC-PPMC 
D3B 221 
D8A 221 
D8B 220 
D3C 220 
D3A 219 

Average 219 
D4A 219 
D6A 219 
D7A 219 
D6C 218 
D4C 218 
D9A 217 
D5A 217 
D7B 216 
D4B 216 
D6B 216 
D7C 215 
D5C 215 

D10C 215 
D5B 214 
D10B 214 
D9B 214 
D10A 214 
D9C 212 
D8C 211 
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 Effect of Retention Time Alignment on PCA Scores Plot  

6.4.1. Visual Assessment 

PCA was performed after baseline correction, smoothing, and alignment.  In 

comparing the scores plot (Figure 6-5) with baseline correction and smoothing (a) and 

with baseline correction, smoothing, and alignment (b), only a small enhancement in 

clustering of replicates is observed, specifically in replicates of Diesel 4 (orange squares) 

and Diesel 5 (yellow diamonds).  The total variance accounted for in PC1 and PC2 

increased from 78.3% to 84.9% after alignment.  Similarly, there were only small changes 

observed in the loadings plots (Figure 6-6) of PC1 (a) and PC2 (b).  Prior to alignment 

(Figure 5-6 and Figure 5-8), the loadings plot for PC1 contained derivative-shape peaks, 

indicative of misalignments [18] for C10-C14.  After alignment, the negative portions are no 

longer observed, indicating that there is no longer misalignment of these peaks.  The 

loadings plot for PC2 remained largely unchanged after alignment.  
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Figure 6-5.  PCA scores plot of eight diesel chromatograms in triplicate after 
baseline correction and smoothing (a) and after baseline correction, 
smoothing, and alignment (b).   
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Figure 6-6.  Loadings plot for PC1 (a) and PC2 (b) after baseline correction, 
smoothing, and alignment.  
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Diesel 5, represented by the yellow diamonds was previously discussed in Chapter 

3 and will be again used to highlight the applied data pretreatment and resulting 

positioning on the scores plot.  Prior to alignment, the replicates of Diesel 5 are spread 

along PC 1 (Figure 6-5a).  After alignment using the COW algorithm with a window size 

of 2 and a segment size of 75, replicates 1 and 3 are closely clustered while replicate 2 

is not.  The source of this change in clustering of replicates 1 and 3 is due in large part to 

misalignments of several normal alkanes.  In Figure 6-7a, the dodecane peak in replicate 

1 (red) of Diesel 5 is misaligned from replicates 2 (blue) and 3 (green).  After alignment 

(Figure 6-5b), the three replicates are well aligned.  However, replicate 2 is still at a higher 

abundance than replicates 1 and 3.  This is reflected in the scores plot (Figure 6-5b) which 

shows that after alignment, replicates 1 and 3 are clustered together, while replicate 2 is 

still not clustered.   

Figure 6-8 shows the scores plot after baseline correction, smoothing, and total 

area normalization (a) and after baseline correction, smoothing, alignment, and total area 

normalization (b).  The total percent variance accounted for on the first 2 PCs increased 

from 77.4% with no data pretreatment (Figure 2-6) to 88.7% after baseline correction, 

smoothing, alignment, and normalization.  After normalization, replicates are clustered 

and several groupings of the samples can now be observed.  Diesels 3 and 7 are 

positioned closely, as are Diesels 4, 9, and 10, as well as Diesels 6 and 8.  Diesel 5, 
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Figure 6-7.  An expanded region of dodecane in three replicate chromatograms 
of Diesel 5 before (a) and after (b) alignment.  Each replicate is indicated by a 
different color (replicate 1: red, replicate 2: blue, replicate 3: green).   
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Figure 6-8.  PCA scores plot of eight diesel chromatograms in triplicate after 
baseline correction, smoothing, and normalization (a) and after baseline 
correction, smoothing, alignment and normalization (b).   
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however, is discriminated from the other diesels.  Based on the loadings plots (Figure 

6-9), the positioning of samples on PC1 is based mostly on the abundance of the normal 

alkanes, particularly the short-chain normal alkanes, which load positively on PC1 (Figure 

6-9a).  The variation in the short chain alkanes could arise from differences in the 

distillation of the fuel or from the mixing of different summer and winter diesel blends in 

the storage tanks at each service station.  Also on PC1, a portion of the baseline between 

40 and 60 minutes is loading negatively.  This is the retention time region that shows an 

increase in the baseline for Diesel 5 (Figure 2-1).  This corresponds to the negative 

positioning of Diesel 5 on the PCA scores plot (Figure 6-8a).  The positioning of samples 

on PC2 is influenced most by the long-chain normal alkanes loading positively as well as 

a few of the most volatile compounds.  Most of the short chain normal alkanes as well as 

some branched alkane and aromatic compounds are loading negatively on PC2 (Figure 

6-9b).  PC2 is differentiating compounds using the unimodal versus bimodal distribution.    

Using the chromatograms (Figure 2-1), the scores plot (Figure 6-8b) and the 

loadings plots (Figure 6-9) the positioning of each diesel sample can be explained.  As 

mentioned previously, Diesels 3 and 7 have a unimodal distribution of the normal alkanes 

(rather than the bimodal distribution observed in the other diesel samples) and should be 

positioned close together.  Diesels 3 and 7 are closely associated on the scores plot and 

are positioned negatively on PC1 and positively on PC2.  Diesels 3 and 7 have a lower 

abundance of short-chain alkanes (which load positively on PC1), and a higher 

abundance of long-chain normal alkanes (which load positively on PC2).  Diesels 6 and 

8 are positioned positively on PC1, while Diesel 5 is positioned negatively on PC1.  For  
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smoothing, alignment, and normalization.  
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these samples, the distribution of peaks appears similar, however, Diesels 6 and 8 have 

an overall higher abundance while Diesel 5 has a lower abundance than other samples.  

Diesels 4, 9, and 10 are all positioned near the origin, which shows that they are not being 

well differentiated using PC1 and PC2 and are not well described by the variance on PC1 

or PC2.   

As discussed at the beginning of this section, alignment resulted in replicates 1 

and 3 of Diesel 5 becoming more closely clustered.  Also, after applying normalization 

(Chapter 3), replicates 2 and 3 became more closely clustered.  When alignment and 

normalization are both applied, all three replicates become closely clustered.  After 

alignment and normalization, non-chemical variation from shifts in retention time and 

differences in abundance have been minimized (Figure 6-10), resulting in replicates that 

are more similar and therefore clustered closer together.   

6.4.2. Quantitative Assessment  

The percent change in the clustering of replicates (PCC) on PC1 and PC2 was 

again used to assess the effect of data pretreatment on the samples in the PCA scores 

plot.  After baseline correction, smoothing, and alignment, there was a 5.9% increase in 

the clustering (Table 6-5), while there was only a 0.5% increase when smoothing and 

baseline correction were applied and no change in the clustering when baseline 

correction alone was applied.  The largest increase in the PCC was observed after 

normalization was also applied.  The PCC increased 85.1% when total area normalization 

was applied and 71.8% when single peak normalization was applied.  This shows that 

after normalization, alignment is the next most important data pretreatment. 
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Figure 6-10.  An expanded region of dodecane in three replicate 
chromatograms of diesel 5 after baseline correction, smoothing, and alignment 
(a) and after baseline correction, smoothing, alignment, and normalization (b).  
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Table 6-5. The average percent change in the clustering of replicates (PCC) after 
the listed pretreatment procedures including baseline correction using the 
extracted ion profiles (EIP fit), smoothing using fast Fourier transform smooth with 
2 points (FFT2), alignment using the correlation optimized warping algorithm with 
a warp of 2 and a segment of 75 (COW 2, 75) and normalization using total area 
(Area) and single peak (Peak) normalization methods.   

 

Baseline 
Correction 

Smoothing Alignment Normalization PCC 

- - - Area 45.1 

- - - Peak 59.0 

EIP fit - - - 0.0 

EIP fit - - Area 44.6 

EIP fit - - Peak 58.7 

EIP fit FFT 2 - - 0.5 

EIP fit FFT 2 - Area 46.5 

EIP fit FFT 2 - Peak 62.1 

EIP fit FFT 2 COW 2, 75 - 5.9 

EIP fit FFT 2 COW 2, 75 Area 85.1 

EIP fit FFT 2 COW 2, 75 Peak 71.8 
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 Summary 

Retention time misalignments were observed in overlaid chromatograms of diesel 

samples that were analyzed over the course of approximately two weeks.  After 

processing each chromatogram with a PM or a COW retention time alignment algorithm, 

these misalignments were reduced.  Both alignment algorithms resulted in a minimization 

of the non-chemical sources of variation when appropriate parameters were selected.  

For the PM algorithm, window sizes of 3 - 8 resulted in a similar quality alignment.  For 

the COW algorithm, many combinations of the warp and segment size resulted in 

improved alignment.  For both alignment algorithms, the selection of an appropriate target 

is critical.  Rather than testing every possible chromatogram as the target, the average 

target proved to be a fast and effective choice for the target.  This demonstrates that 

different alignment algorithms can result in a similar quality of alignment, even over a 

range of different parameters.   

These results indicate that the optimization of alignment is not necessary, at least 

for this work.  Because samples were collected over a short period of time using 

temperature-programmed GC, there is a reduced need for retention time alignment.  

However, when samples are collected over a long period of time or collected using other 

thermal modes, such as isothermal GC, there would likely be an increased need for 

optimization of the retention time alignment.      
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7. CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

 Conclusions 

Multivariate statistical analyses are being applied to complex data in a growing 

number of fields, including forensic science.  Discriminating complex profiles is critical in 

many areas of research from arson investigation to proteomics.  As shown from this work, 

complex and similar samples are not well discriminated using principal component 

analysis (PCA).  Identifying small differences in complex samples is often complicated by 

non-chemical sources of variation, such as differences in abundance, shifts in retention 

time, noise, and signals from background compounds, which can often be identified as 

the greatest sources of variance among samples.  This limitation can be overcome by 

utilizing appropriate data pretreatment methods to minimize the non-chemical sources of 

variation in a dataset.  Data pretreatment procedures cannot be treated with a “black box” 

approach.  Therefore, visual examination and metrics to monitor the application of data 

pretreatment are required.  The analyst must take care to ensure that proper pretreatment 

procedures are being applied and the assumptions that are made prior to applying the 

pretreatments are valid.   

In this work, eight different diesel samples were each analyzed in triplicate by gas 

chromatography-mass spectrometry (GC-MS).  Four data pretreatment procedures (i.e., 

baseline correction, smoothing, retention time alignment, and normalization) were applied 

to the chromatograms to minimize the non-chemical variation. For each type of data 

pretreatment applied, several different procedures were tested.  For baseline correction, 

the background subtracted baseline function, the subtraction of an extracted ion profile, 
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and the subtraction of the baseline using a modeled function were compared.  The 

Savitzky-Golay and the fast Fourier transform smoothing algorithms were compared for 

their ability to reduce noise in the chromatogram.  Misalignments were corrected using a 

correlation-optimized warping algorithm and a peak-matching algorithm.  Normalization 

was compared using a single peak normalization and a total area normalization.  After 

each pretreatment, chromatograms were compared using the developed metrics and 

PCA was performed.   

The metrics that were developed provide a rapid method for evaluating the effect 

of each pretreatment on the chromatograms.  Each metric was designed to evaluate the 

increase in similarity obtained by minimizing the non-chemical sources of variation among 

the replicates.   These metrics also allow for a comparison and optimization of parameters 

associated with each data pretreatment procedure.  The evaluations that were utilized 

include a visual examination of the chromatogram, a metric measuring the change in the 

chromatogram after pretreatment, a visual examination of the PCA scores plot, and the 

percent change in the clustering of replicate samples in the PCA scores plot.   

The minimization of non-chemical sources of variation improves the multivariate 

statistical analysis in two ways.   First, after data pretreatment, replicate chromatograms 

are more similar, therefore replicates will cluster more closely using PCA.  Second, and 

more importantly, when PCA is applied, more chemical (rather than non-chemical) 

differences will be identified as the greatest sources of variance.  Therefore, the loadings 

plots will contain variables that reflect chemical differences between samples, rather than 

non-chemical differences due to instrumental variation.  As replicate chromatograms are 
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chemically identical, replicates should cluster better and samples should be well 

discriminated from one another following appropriate pretreatment.   

In baseline subtraction, the background subtracted baseline, the subtraction of the 

extracted ion profiles, and the subtraction of the baseline using a modeled function all 

resulted in a reduction in the baseline.  The subtraction of the modeled function allowed 

for a reduction in the baseline, without any reduction in signal from the peaks in the 

chromatogram, ensuring that chemical information was not inadvertently removed from 

the chromatogram.  Therefore, it was selected as the most appropriate option for baseline 

correction.  The baseline of the chromatograms in this work was not a major source of 

variation, because the chromatograms were generated over a relatively short period of 

time.  However, when chromatograms that have been generated over a long period of 

time are compared, the difference in baseline may become more significant.  Additionally, 

when the GC is operated at high temperature or the column is old, stationary phase 

degradation is more prevalent and baseline correction will become more critical.   

The Savitzky-Golay and fast Fourier transform smoothing algorithms both resulted 

in noise reduction in the chromatogram.  By changing the number of points in the smooth 

and the polynomial order (only for the Savitzky-Golay smoothing algorithm) the degree of 

smoothing in each chromatogram was similar.  The similar reduction in noise will result in 

similar clustering of replicates on the scores plot after PCA.    Therefore, optimization and 

careful selection of the smoothing algorithm is not necessary; however, care must be 

taken to ensure that peak distortion does not occur.  Based on this work, significant peak 

distortion was not observed until there was more than a 45% reduction in noise.  For this 

work, the fast Fourier transform smoothing algorithm with 2 points was selected but this 
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algorithm has similar performance to several combinations of the Savitzky-Golay 

smoothing algorithm.   

A peak-matching and a correlation optimized warping algorithm were compared 

for peak alignment.  Nearly all combinations of window size (for the peak-matching 

algorithm) or warp and segment size (for the correlation optimized warping algorithm) 

resulted in an improvement in alignment.  Most parameters resulted in similar quality 

alignment.  The number of points the peaks could be shifted (called the window for the 

peak-match algorithm and the warp for the correlation optimized warping algorithm) is an 

important consideration.  Ideally, the chromatograms should be overlaid and visually 

inspected.  The window or warp should then be selected based on the number of points 

that each peak needs to shift in order to be aligned.  If the window or warp is too small, 

the peaks cannot be aligned; if it is too large, peaks may be shifted too far and aligned to 

the wrong compound.  Target selection can also influence the alignment.  The target must 

include all of the compounds that require alignment.  For this work, the average target 

was selected and resulted in good alignment, without the need for optimization.  The 

correlation optimized warping algorithm with a warp of 2 and segment size of 75 was 

selected.   

Two different normalizations were compared, a total area normalization and a 

single peak normalization.  Both normalization procedures resulted in the largest 

improvement of clustering of replicates compared to the other pretreatment procedures, 

but each normalization is based on a different assumption.  The total area normalization 

assumes that the total area is the same for all chromatograms.  The single peak 

normalization assumes that there is a single compound within each chromatogram that is 
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at the same concentration.  When choosing a normalization procedure, an analyst must 

decide which of these assumptions are correct for the specific application and data.  In 

this work, the total area normalization was selected.  Because each diesel sample is from 

a different source, there is no reason to assume that any single compound has the same 

concentration across all of the samples.  However, as there are so many different 

compounds, in this case, the total area would likely be equivalent.     

After applying data pretreatment procedures, replicates on the PCA scores plot 

were shown to cluster more closely.  This is due to the removal of non-chemical sources 

of variation.  The scores plot shown prior to data pretreatment (Figure 2-6) shows that the 

replicates are spread along PC1 and the samples are separated along PC2.  Replicates 

are chemically the same, so any spread along PC1 is due to non-chemical sources of 

variation introduced during the analysis.  This means that the loadings plot of PC1 prior 

to applying data pretreatment (Figure 2-7a) contains only non-chemical sources of 

variation.  Because the samples were separated along PC2 this indicates chemical 

differences were identified in PC2, prior to application of data pretreatment.  Therefore, 

the loadings plot of PC2 showed chemical differences between samples (Figure 2-7b and 

Figure 7-1a).  After applying data pretreatment procedures, the non-chemical sources of 

variation were minimized, which was reflected in the PCA scores plot (Figure 6-8).  

Replicates were positioned close together and samples were differentiated from one 

another, indicating that PC1 and PC2 contain chemical differences.  The loadings plot for 

PC1 after applying the data pretreatment procedures contained the same  
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Figure 7-1.  Loadings plot for PC2 prior to applying data pretreatment (a) and for 
PC 1 after applying baseline correction, smoothing, alignment, and normalization 
(b).   
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chemical differences that were identified on PC2, prior to data pretreatment (Figure 6-9a 

and Figure 7-1b).  This demonstrates that prior to the application of data pretreatment, 

PC1, which accounts for the most variance, was only accounting for non-chemical 

sources of variation.  After applying data pretreatment, the non-chemical sources of 

variation had been minimized and PC1 accounted for chemical differences between 

samples.    

Overall, this work has demonstrated that application of data pretreatment 

procedures can significantly enhance the discriminatory ability of PCA.  For this work, 

normalization was shown to provide the largest improvement in the clustering of replicates 

followed by retention time alignment.  Smoothing and baseline correction had relatively 

little effect on the clustering of replicates.  Overall, there was an 85% improvement in the 

clustering of replicates after applying all of the data pretreatment procedures.   

Additionally, this work has shown that when multiple pretreatments are applied to 

the same chromatogram, there is a larger increase in clustering than with a single 

pretreatment.  For example, normalization alone resulted in a 45% increase in clustering, 

however when baseline correction, smoothing, alignment and normalization were applied, 

there was an 85% increase in the clustering of replicates.   

This work has also shown that optimization of the data pretreatment procedures is 

not necessary to obtain enhanced clustering of replicates.  Most of the parameters tested 

resulted in a reduction of non-chemical sources of variation, based on the metrics used 

to evaluate each pretreatment procedure.  As previously discussed, not all non-chemical 

sources of variation were equally prevalent (e.g. normalization had a larger effect than 
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baseline correction, indicating that differences between injections were more variable 

than the baseline).  Therefore, pretreatment selection is more important for non-chemical 

sources of variation that are more prevalent in the chromatograms.   

The application of data pretreatment procedures results in an enhancement of the 

discrimination of complex and chemically similar mixtures by minimizing the non-chemical 

sources of variation.  In forensic science and many other fields, the comparison of 

complex samples is becoming more common.  Prior to applying multivariate statistical 

procedures, data pretreatment is commonly utilized.  However, for the data pretreatment 

procedures to be permitted into court, the procedures would have to be shown to not alter 

the chemical information contained in the chromatograms.  In addition, it is critical to 

demonstrate that samples can be differentiated using chemical information once the non-

chemical differences have been minimized.  This work provides methodologies for 

comparing and selecting appropriate pretreatment procedures.  It is critical to ensure that 

the chemical information is not being altered by the pretreatment procedures and to 

understand the effect of each pretreatment on the chromatographic data.   

 Future Work 

There are several areas presented in this research that could be further expanded.  

First, additional research could focus on novel data pretreatment procedures.  As shown 

in this work, each of the data pretreatment procedures did not remove all of the non-

chemical sources of variation.  Retention time alignment and normalization were shown 

to result in the largest reductions in non-chemical variation, and would benefit the most 

for additional investigation.  For alignment, developing an algorithm that is capable of 
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finding co-eluting and low abundance peaks would result in better alignment because 

more peaks would be identified and aligned.  Developing a normalization that is able to 

normalize the baseline and peak maxima would allow for a more complete normalization.   

As part of this work, the precision between replicates was evaluated using each 

metric.  An additional metric could be developed that is capable of demonstrating that 

chemical compounds between replicates are not changing as a result of the data 

pretreatment procedures.  The metric could be based on an average chromatogram 

created from multiple replicates.  If chemical information is not being lost, the average 

chromatogram should remain relatively unchanged after applying each data pretreatment 

procedure.  If the average remains unchanged, this will demonstrate that chemical 

information is remaining, even after applying data pretreatment.   

Another area in which this work could be expanded would be to evaluate the effect 

of data pretreatment on the output from other types of samples (i.e. drugs, paints, etc.) 

and instrumentation (i.e. infrared spectroscopy, scanning electron microscopy with 

electron dispersive spectroscopy).  Demonstrating that non-chemical variation can be 

minimized without altering the underlying chemical information would be a critical step in 

the use of multivariate statistic for forensic cases.   

The ultimate goal is to apply multivariate statistics to forensic data.  However, work 

is still required to develop statistical methods and ways to apply those methods to forensic 

data.  This will help to limit bias and assign statistical confidence to forensic comparisons, 

addressing concerns outlined in by National Academies of Science.  


