)IHUIWIWNMNlllllmNW“HHWHWWIWI 123 504 [NI“NIH!||||Nl\lHllIllIUHll|||4IIIIIHUI1||1JH1IIM 3 1293 012603 PLACE IN RETURN BOX to roman this checkout flom yam noord. TO AVOID FINES return on or Moro duo duo. DAIEBQE DATE DUE DATE DUE FTC—7m MSU I: An Afflmaflvo Mum/Equal Opportunity lm W M‘_ LIBRARY Michigan State University This is to certify that the thesis entitled Ilower- Color Inheritance. in SIG/vim éplendeg presented by Elizabeth firm Rober‘i’so/Q has been accepted towards fulfillment of the requirements for meskr‘ 04: Wdegree in Haeiiculturc. Major professor Date :fi-A 51/71“? 0-7539 MS U is an Affirmative Action/Equal Opportunity Institution MSU LIBRARIES \- RETURNING MA' Place 1'"! 5! rem’\ you be V FLOWER COLOR INHERITANCE IN SALVIA SPLENDENS By Elizabeth Ann Robertson A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Horticulture 1985 ABSTRACT FLOWER COLOR INHERITANCE IN SALVIA SPLENDENS By Elizabeth Ann Robertson Eight distinct flower color classes of Salvia splendens were intercrossed.. The F1 plants were self-pollinated to produce the F2 generation and backcrossed to both parents. The F2 and backcross pOpulations were statistically analyzed and compared. Seven genes were found to control flower color inheritance. The R and L genes control the colors red, R_L_, rose, rrL_, salmon, R_ll, and pink, rrll. The Int gene had no effect on the R and L genes when dominant, but when reces- sive with dominant R and L, it produces rose color. The P gene controls colored, P_, versus white, pp, flowers. Purple color is produced by the V gene and burgundy color is control- led by the B gene. The E gene dilutes the colors produced by the other loci. The R, L, Int, and P genes exhibit complete dominance while the V, B, and E genes are incompletely dom- inant. The R, B, and E genes were discovered in this study. ACKNOWLEDGMENTS Very special thanks are due to my generous mentor, Dr. Lowell Ewart. Through his guidance I drew inspiration and motivation for my work. I would also like to thank my other committee members, Dr. A. Iezzoni and Dr. J. Kelly, for their interest and counsel. ii List of Tables. . . . List of Figures . . . Introduction Literature Review . . Materials and Methods Results . . . Discussion . Summary . . Appendix. . . Bibliography TABLE OF CONTENTS. iii Rage iv 12 31+ 37 38 79 Table 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. LIST OF TABLES Salvia Parents Used in This Study Color of the F1 Plants Description of the Salvia Flower Color Genes Segregation Data for the R, L, and Int Genes Segregation Data for the P Gene Orange X Pink F2 Segregation Segregation Data for the V Gene Burgundy X Pink F2 Segregation Parent Genotypes Summary of Crosses Status of Genes iv 1. 2. 3. 1+. 5. Interaction Interaction Interaction Interaction Interaction of the of the of the of the of the LIST OF FIGURES <"U"U"U!U w> magnum omom eseaaaoeeH >> masses haH a n .m has; sex manage Aeeaea>v > ooSmSHSQQ mpoamaou A a m saws com A a m sea: mmom manozo AmmsopoHv uSH mocosaaon a Sufi: xoam Aqoaumuaanooq maonSoo m Sofia tom m Sufi: sosaom :oSHom umuflsflqv A ooSSSHSon a Sofia xSHm opoHQSoU A Sufi; com A sea; omom mmom Aowomv m moomswson muoansoo uoaoaoo mean; cyan; Apomsmamv m soapo< snow usmzason o>awmoomm monsom noaoo meow omhuoconm wmsmw aoaoo aoaoah oa>anm map mo soaumaaomoo .m manna 15 The R and L genes control the colors red R_L_, rose rrL_, salmon R_ll, and pink rrll (Table 4). Aside from these colors, dominant R and L genes are found in all other parent colors. The Int gene was discovered from the parent cultivar Carabiniere Cherry. Rose and cherry are the same color but they are designated separately due to different genotypes. The cherry genotype results when recessive int int is com- bined with dominant R and L genes. A cross of cherry X salmon segregated the color ratio 9 red: 3 cherry: 3 salmon: 1 pink (Table A). The pink color from cherry X salmon is indistinguishable from the pink color by rose X salmon. Thus, rose and pink colors can be formed in two ways. Rose color is Int_rrL_ or int int R;L_ while pink color is Int_rrll or int int R_ll. Recessive int int with recessive rr produces a shriveled flower stalk. The color is either rose or pink depending upon the status of the L gene. The shriveled condition is characterized by reduced and distorted flower buds which tend to fall off before Opening. Those that do open have pollen but fail to set seed when pollinated. The P gene controls colored (P_) versus white (pp) flowers. ReceSSive pp is totally epistatic to the R, L, Int, and E genes and partially epistatic to the V and B genes (Table 5). Recessive epistasis with two genes produces a 9:3:A ratio where A/16 would be white. White crossed with purple separates the white portion into 1 pure white (VVpp) 16 Table 4. Segregation Data for the R, L, and Int Genes Color Genotype Ratio Obs. Exp. e se F2 Red 1 R_ Int_, 9 129 133.9 Rose/Cherry rr Int_ & R_ int int 6 94 89.2 Rose Shriveled rr int int ‘1 15 15,9 16 238 238.0 D2/e : .438 P > .80 Rose Salmon F2 Red R_ L_, 9 132 135.6 Rose rr L_ 3 39 45.2 Salmon R_ ll 3 54 45.2 Pink rr 11 l, 15 15,0 16 241 241.0 DZ/e = 2.724 p > .30 Chagry X Salmon F2 Red L_ Int_ 9 135 133.31 Cherry L_ int int 3 44 44.44 Salmon 11 Int_ 3 ,45 44.44 Pink 11 int int 1| 13 1S,§1 16 237 237.00 DZ/e = .233 P > .95 Pink X Cherry F2 Red R_ L_ Int_ 27 44 54 Rose/Cherry rr L_ Int_ & R_ L_ int int 18 35 36 Salmon R_ ll Int_, 9 27 18 Pink rr 11 Int_ & R_ ll int int 6 15 12 Rose Shriveled rr L_ int int 3 4 6 Pink Shriveled rr 11 int int 1 3 2 64 128 128 Da/e==8.294 P) .10 17 Table 5. Segregation Data for the P Gene Color Genotype Ratio Obs. Exp. 2i2§.$lfl2$£2 F2 Red P_ R_ L_ 27 159 144 White pp -- -- 16 77 85 Rose P_ rr L_ 9 43 48 Salmon P_ R_ 11 9 48 48 Pink P_ rr ll 3 _1_5 _1_§_ 64 341 341 132/e : 3.084 P > .50 W F2 ' Rose Purple P_ Vv 6 113 110.6 Purple P_ VV 3 62 55.3 Red P_ vv 3 67 55-3 Purple-White pp V_ 3 42 55.3 White pp vv 1. _ll 1§,§ 16 293 295.0 DZ/e=9.576 P >.01 W F2 Red Burgundy P_ Bb 6 77 79.0 Red P_ bb 3 48 39.6 Burgundy P_ BB 3 37 39.6 Pink-White pp B_ 3 31 39.6 White pp bb _1_ fl 13,2 16 211 211.0 DZ/ez5.613 P) .20 18 to 3 purple-tinged whites (VvPP). Likewise, white X burgun- dy segregated pure whites and pink-tinged whites (Table 5). -The E gene dilutes the color produced by the other genes. The only source of the E gene was the parent color orange which was found to be a dilution of red. Since E is incompletely dominant, there are three shades of every color: intense color ee; light shades Be; and dilute shades EE (Table 6). For example, rose X orange (Cross # 24) seg- regated red, light red, and orange, plus rose, light rose, and dilute rose. The E gene also dilutes the purple and burgundy colors, but, Since they are incompletely dominant as well, the ratios are greatly expanded. In the case of orange X purple (Cross # 34), the diluted forms of VV and Vv were identical in color so they were combined into a single class called dilute purple. Similarly, diluted BB and Bb were combined into one color class (Cross # 33). The incompletely dominant V gene controls purple versus red color. Homozygous dominant VV with dominant L and Int genes produces purple color while VvL_Int_ is rose purple color. Salmon X purple and purple X pink crosses segregated a new light violet color with the genotype V_llInt_ indicat- ing 11 dilutes V in some way (Table 7). The Int gene also effects purple color. Cherry X purple segregated dusty purple, VVR_L_int int, and dusty rose purple, VvR_L_int int (Table 7). The color in both cases was greyed and the flower stalk was somewhat reduced but not shriveled. The R 19 Table 6. Orange X Pink F2 Segregation Color Genotype Ratio Obs. Exp. WFZ Light Red Ee R_ L_ 18 65 67.50 Red ee R_ L_, 9 40 33.75 Orange EE R_ L_ 9 33 33.75 Light Rose Ee rr L_ 6 22 22.50 Light Salmon Ee R_ 11 6 21 22.50 Rose as rr L_, 3 15 11.25 Salmon ee R_ ll 3 11 11.25 Dilute Rose EE rr L_ 3 9 11.25 Dilute Salmon EE R_ 11 3 12 11.25 Light Pink Ee rr ll 2 6 7.50 Pink ' ee rr ll 1 3 3.25 Dilute Pink. EE rr ll 1 __3 3,25 64 240 240.00 D2/e23.731 P>.975 20 Table 7. Segregation Data for the V Gene Color Genotype Ratio Obs. Exp. Eurp;e X Pink F2 Rose Purple Vv -- L_ 24 79 90.00 Purple VV -- L_ 12 53 45.00 Light Violet V_ -- ll 12 42 45.00 Red vv R_ L_, 9 41 33-75 Rose vv rr L_ 3 11 11.25 Salmon vv R_ 11 3 7 11.25 Pink vv rr ll 1 __2 3,23 64 240 240.00 DZ/e:8.9l+9 P>.10 W F2 ' Rose Purple Vv Int_, 6 75 72 Purple VV Int_ 3 36 36 Red vv Int_ 3 34 36 Dusty Rose Purple Vv int int 2 22 24 Dusty Purple VV int int 1 14 12 Cherry vv int int 1 11 _lg 16 192 192 132/e: .819 P>.975 21 gene seems to have no effect on the V gene since the rose X purple cross showed no new segregates. The B gene also had no effect on the V gene, at least in the presence of dominant R, L, and Int genes which both parents carried. The burgundy color is rather unique because it is actu-. ally two colors. The body is burgundy (or wine) colored while the upper lip is intense red. Burgundy body coloring is produced by the B gene with dominant R, L, and Int genes. In the hybrid condition (Bb), the body color becomes more reddish than burgundy. The R, L, and Int genes determine the basic color of the flower while the B gene lends a purple cast to the body, thus red becomes burgundy and rose becomes fuchsia (Table 8). -The lip color is generally as it would appear if the B gene were recessive._ The H.C.C. numbers given to the burgundy related colors represent the body color only. By analyzing the F2 and backcross populations, it was possible to determine the parent genotypes presented in Table 9; as they were all homozygous, only the haploid genotypes are given. A summary of crosses is presented in Table 10. For each cross, the F2 ratio tested, the Chi Square value, and the probability is given. Table 11 gives the segregating genes for each cross. The complete F2 and backcross segrega- tions can be found in the appendix by using the cross number. 22 Table 8. Burgundy X Pink F2 Segregation Color Genotype Ratio Obs. Exp. Burgggdy x Eink F2 Red Burgundy Bb R_ L_, 18 127 112.50 Burgundy BB R_ L_. 9 51 56.25 Red , bb R_ L_, 9 53 56.25 Peach-Rose B_ R_ 11 9 41 56.25 Fuchsia Bb rr L_ 6 42 37.50 Maroon BB rr L_, 3 23 18.75 Rose-Pink B_ rr ll 3 21 18.75 Rose bb rr L_ 3 9 18.75 Salmon bb R_ 11 3 23 18.75 Pink bb rr ll 1’ 1O §,23 64 400 400.00 Da/e=16.735' P>.05 Table 9. Parent Genotypes Parent Color Class Genotype White p v b e R L Int Purple P V b e R L Int Burgundy P v B e R L Int Orange P v b E R L Int Red P v b e R L Int Rose P v b e r L Int Salmon P v b e R 1 Int Pink P v b e r 1 Int Cherry P v b e R L int 23 axon SH popsomoam omam name mm a mo. om:.m _"mumum seas x eem m— mum. _ms.m _"_umumumumumumumumumuw. . Seam x emsuao m. 0.. :mm.w _"mumumum_num . Sheena x ream _— om. Smo. _um seem x Read 0. 0.. mom._ _"m sonata x read m _o. mum.m _"mumumuo . manned x means a om. n_o.m _"munumuw . assemasm x eras; S on. rem. _um sum x than; 6 om. sum. numuduw emeuao x mass; m on. us... manna assess x seas; : om. mms._ musum enom x than; n on. .__._ mueum desaem x mass; m on. Smo.n mnmumum_uum . even; x Adam _ nomwmwm maosdm H20 oanmm mm mmoao Amnssz m mocha mommoao mo hamsssm .O— manna 24 N axon as vopaomohm owam Sump m a 0m. mm..e .u..mum.m"0 seesmasm x seem 0m 0m. .wu. .un sem x emom mm 0.. ssm.s .u..mum.m.m emasao x seem em 00. one. ..0.0 . seem x saneno mm 0m. s0m.m ."mumumum manned x dosaem mm on. mon.. .umumumnm sessmasm x aosaem .m 00. mmo. ."m sem x seaHsm 0m 0.. 000.S .....m.m.m”0 emeeao x sesaem 0. mm. mmm. .“m.m.m . sesaem x aaaeno 0. 0m. nmu.m .unumum . eeaasm x enom S. 00. nan. .umunum damn maxed 0. 0.. 020.0 .umumuaum..m.usm . read x manned 0. m0. mmu.0. ..m.m.m.mumumumumum. . Read x.»asemasm S. nowwwww mamzwm Hno oaaom mm mmoao 909852 m . mmoao A.0.neoev 0. eases 25 4x0» SH umpsmmoam omHn 0000 mm * 00. 000.. .4..m.0.0 044404 0 00000400 mm 00. 00.. ....m 000 x e40404 0m 00. 000. , .4..m 000 0 00000400 00 00. 00..m .u....m.m.m.m"0 044404 x 000040 00 00. 000.0 .4....mumum.m.0 00000400 0 000040 00 00. ..m. .4..m 000 x e00040 mm 000. 0.0. .4."m.m.m"0 . 040404 x 044000 .m 00. 000.0 .u..m.m.m.0 00000400 x 044000 00 00. 00.. ..m 000 x 444000 00 00. 000.0 .u..m.mum.0 044000 x 000040 00 .0. 000.0 ..m.:.0 044404 x 0000 mm ammwwww oawsvm Hno 0Huum NH 00040 409832 m mmoho A.u.u:oov 0— 0H968 26 Table 11. Status of Genes Cross Status of Genes * Number cross P v B E R L Int 1 Pink X White S r r r S S d 2 White X Salmon S r r r d S d 3 White X Rose S r r r S d d 4 White X Cherry S r r r d d S 5 White X Orange S r r S d d d 6 White X Red S r r r d d d 7 White X Burgundy S r S r d d d 8 White X Purple S S r r d d d 9 Pink X Salmon d r r r S .r d 10 Pink X Rose d r r r r S d 11 Pink X Cherry d r r r S S S 12 Orange X Pink d r r S S S d 13 Red X Pink d r r r S S d 14 Burgundy X Pink d r S r S S d 15 Purple X Pink d S r r S S d 16 Pixie self d r r r S S d 17 Rose X Salmon d r r r S S d 18 Cherry X Salmon d r r r d S S 19 Salmon X Orange d r r S d S d 20 Salmon X Red d r r r d S d * S -segregating gene 1' -recessive in both parents d -dominant in both parents Table 11 (cont'd.) 27 Cross Status of Genes * Number cmss P v B E R L Iii't' 21 Salmon X Burgundy d r S r d S d 22 Salmon X Purple d S r r d S d 23 Cherry X Rose d r r r S d S 24 Rose X Orange d r r S S d d 25 Rose X Red d r r r S d d 26 Rose X Burgundy d r S r S d d 27 Rose X Purple d S r r S d d 28 Orange X Cherry d r r S d d S 29 Cherry X Red d r r r d d S 30 Cherry X Burgundy d r S r d d S 31 Cherry X Purple d S r r d d S 32 Orange X Red d r r S d d d 33 Orange X Burgundy d r S S d d d 34 Orange X Purple d S r S d d d 35 Burgundy X Red d r S r d d d 36 Purple X Red d S r r d d d 37 Burgundy X Purple d S S r d d d * S -segregating gene r -recessive in both parents d -dominant in both parents 28 Line charts were developed in order to clearly demon- strate the gene interactions. Figure 1 shows the interaction of the R, L, and Int genes. The genes being considered are listed horizontally across the t0p of the chart with the color phenotype and H.C.C. number at the far right. The chart works like a botanical key for each gene. There are either two choices if the gene is dominant, or three choices if it is incompletely dominant. To find the genotype of a color, start at the t0p left corner with the first gene Shown. In the case of Figure 1, there is R, or moving down- ward recessive r.- If the genotype for the pink shriveled phenotype is desired, then r would be selected. By following the lines downward and across the chart, the genotype for pink shriveled is found to be rrllint int. Only the haploid genotypes are shown on the charts, but homozygosity is as- sumed unless the gene is incompletely dominant, in which case, the intermediate class is also given. Figures 2, 3, and 4 Show the interaction of the E, B, and V genes with R, L, and Int. The interactions of V with B, V with E, and B with E are Shown in Figure 5. Figure 1. Genes R L Int int 1 Int int r L Int int 1 Int int Color Red Cherry Salmon Pink Rose Rose Shriveled Pink Pink Shriveled Interaction of the R, L, and Int Genes H.C.C.# 18/0 oZO/l 620/1 21/2 oZO/l oEO/l 21/2 21/2 30 Genes P E R L Int int 1 r L I 1 Es R L Int int 1 r L l e P Figure 2. Color Orange Dilute Cherry Dilute Salmon Dilute Rose Dilute Pink Light Red Light Cherry Light Salmon Light Rose Light Pink Figure 1 All White H.C.C.# 619/0 o621/2 520/3 0621/2 623/3 17/1 20/2 621/2 20/2 623/2 Interaction of the P, E, R, L, and Int Genes 31 L L t“ H Int int Int int Genes P B R r Bb -- 1R r b p B Figure 3. Interaction of the P, Color Burgundy/red lip Maroon/rose lip Peach-Rose Maroon/rose lip Rose-Pink Red Burgundy Fuchsia Peach-Rose Fuchsia Rose-Pink Figure 1 Pink-White White B, R, L, and Int Genes H.C.C.# 82¢} 824/3 25/2 824/3 27/2 820/0 22/ 1 25/2 22/ 1 27/2 427/3 32 Genes P V R L Int int 1 r L I 1 VV R L ' Int int 1 r L l v R V. <— Figure 4. Color Purple Dusty Purple Light Violet Purple Light Violet Rose Purple H.C.CO# 931/2 834/3 30/2 931/2 30/2 928/2 Dusty Rose Purple 033/0 Light Violet Rose Purple Light Violet Figure 1 Purple-White White 30/2 928/2 30/2 433/2 Interaction of the P, V, R, L, and Int Genes Genes V B I Eh I b e I Be I E Vv B I Bb I b e I Ee I E v B e I Be I E Bb e I Ee I E b e I Be I E Figure 5. 33 Color Purple Light Purple Dilute Purple Rose Purple Light Rose Purple Dilute Purple Burgundy Light Burgundy Dilute Burgundy Red Burgundy Light Red Burgundy Dilute Burgundy Red Light Red Orange Interaction of the V, B, and E Genes H.C.C.# 931/2 830/1 ..31/1 928/2 ..31/0 ..31/1 82MB 722/0 25/2 820/0 20/0 23/2 18/0 17/1 619/0 DISCUSSION The L and Int genes were discovered by Hendrychova- Tomkova (7). Salmon (L gene) crossed with white, red, rose, and purple produced data confirming Hendrychova-Tomkova's (7) results. She also found that rose X purple segregated a light violet color. The R gene did not segregate any light violet shades when combined with V, but the Int gene did, therefore her rose color must have been due to the Int gene. Since she had no other source of rose color, She would not have discovered the R gene. Hendrychova-Tomkova (7) also discovered the pigment, P, and violet, V, genes. She found these genes to be closely linked, but in this study, the cross white X purple showed no indication of linkage. Possibly in the twenty years since her study, the linkage between the P and V genes has been broken, at least in cultivated p0pulations. Crosses of salmon, rose, and red with white and purple produced data substantiating her results. The R, B, and E genes are new to this study. The R and Int genes both produce rose color and segregate identical colors when combined with the B and E genes. Only the V gene is affected differently. Recessive int int with V pro- duces dusty purple, while recessive rr has no effect on the 34 35 V gene. The R and Int genes are deleterious when their recessive alleles are combined. The shriveled flower stalk phenotype is not lethal but effectively unreproductive. The B gene can be considered a variegation gene since it primarily affects the body color of the flower. The lip color is the same as if the B gene were recessive. The R, L, and Int genes determine the basic color of the flower while the B gene adds a purple cast to the body. Hendrychova- Tomkova (7) did a pigment analysis and found small amounts of purple cyanidin in the red color. Theoretically, the B gene could increase the cyanidin content and cause the pelar- gonidin colors to be purple-tinted. Obviously, a pigment study is needed to verify this hypothesis. The E gene dilutes the colors produced by the other genes. Since E is incompletely dominant, there are three Shades of every color: intense color ee, light Shades Be, and dilute shades EE. The E gene had limited effect on the B gene. The light burgundy and light red burgundy colors were not greatly different from their intense forms. A side by side comparison was necessary to differentiate them. If the E gene acts primarily on the pelargonidin pigment and burgundy color is due to cyanidin, then this could explain the limited dilution of B by E. Another possibility is modifier genes. All of the incompletely dominant genes (V, B, and E) were somewhat variable in their coloring, particularly within the intermediate class. The colors were 36 always within their color chart designations, but minor differences were apparent in the intensity of the colors. All parents except rose, salmon, and pink carried domin- ant R and L genes, and the other five genes were each found from different colors. With this situation, only three genes could be segregating in any single cross, and consequently, all gene combinations were not recovered. For example, both purple and burgundy parents carried dominant R, L, and Int genes, and the B gene seemed to have no effect on the V gene in the cross purple X burgundy. If B, however, was combined with V and recessive 11 or int int, then the effect of B might be seen. The orange (E gene) parent also carried dominant R, L, and Int genes, therefore the effect of B and/ or V on the diluted colors was not seen. The potential for new colors is very high. SUMMARY This study was undertaken to determine the number of genes for flower color in Salvia splendens. The colors were divided into eight distinct classes and intercrossed. The resulting F2 and backcross populations for each cross were grown and analyzed genetically. Seven genes were identified and line charts were deve10ped to Show their interaction. R produces red with L; rr produces rose with L L produces red with R; 11 produces salmon with R Int produces red with R and L; int int produces rose with R and L produces colored flowers; pp produces white produces purple; vv produces red with L and Int produces burgundy; bb produces red with R, L, and Int produces dilute colors; ee produces intense colors mw

P> .50 (Pink X White) X Pink Red 21 Rose 17 Salmon 16 Pink 15 7O .90) P) .80 (Pink X White) X White Red 12 White _1_8_ 30 .30>P> .30 pgp, 144 85 48. 48 .16 341 17.5 17.5 17.5 1205 70.0 15 12 30 p312 1.362 .732 .320 .000 3.084 .700 .014 .128 ,lgg .970 .416 .832 * ESEQEXRE P L pp—- P_ll P_Ll P_ll df::1 P L PP" df::1 40 Cross 2 White X Salmon non-segregating genes - v, b, e, R, Int Ratio 9 4 .3 16 d 9242.1: 04s.. 'Red 156 White 63 Salmon _55 263 .70 >P > .50 (White X Salmon) X Salmon Red 37 Salmon ' SS 65 .50>P> .30 (White X Salmon) X White Red 29 White g3 52 .50) P > .30 E_xp_. 2310 148.0 .432 65.7 .110 .4903. .552 263.0 1.111 32.5 .492 32.2 .422 65-0 .984 * 26 .240 25 .249 52 .480 * P R PP" P_rr df:2 P Rr P_rr df:=1 P R PP" df::1 41 Cross 3 White X Rose non-segregating genes - v, b, e, L, Int Ratio 9 4 .3 16 9.9.1.9.: 012.4... 'Red 211 White 81 Rose .19. 366 .50>P>.30 (White X Rose) X Rose Red 43 Rose ' 33 78 .50)P> .30 (White X Rose) X White Red 38 White SS 64 .20>P>.10 Egg. 205.9 91-5 §8.§ 366.0 39 78 32 3g 64 pi; .126 1.204 .0425 1.755 .314 .628 * .945 1.890 * .92221122 P_Int__ PP" P_int int df II N P_Int int P_int int df=1 P_In t_ PP"- dle 42 Cross 4 White X Cherry non-segregating genes - v, b, e, R, L Ratio 9 4 .3 16 -. M 20s... 'Red 105 White 41 Cherry _32 185 .70>P> .50 (White X Cherry) X Cherry Red 39 Cherry ;5 64 .20>P>.10 (White X Cherry) X White Red 22 White S3 45 .90>P) .80 002.2% 104.0 .009 46.3 .606 .3402 0232 185.0 1.147 32 1.320 3; 1. 20 64 2.640 22.5 .011 2203 0911 45.0 .022 1511 (D *0 0 I I F1 F1 PP-- P_Ee P_ee df 11 N White X Orange 43 Cross 5 non-segregating genes - v, b, R, L, Int Ratio 00100 16 d Color White Red 'Light Red Orange Light .90)P> .80 Red Orange White Light Red .95 >P ) .90 Red .975 >P> .95 Obs, 58 35 30 .25 148 (White X Orange) X Orange 33 34 67 (White X Orange) X White 02010220 55.50 .112 37.00 .108 27.75 .182 22025 0222 148.00 .674 33.5 .007 3305.. 0992 67.0 .014 23 .043 11.5 .021 1105. 0921 46.0 .085 44 Cross 6 White X Red non-segregating genes - v, b, e, R, L, Int _XP..Gen0t e 3041.0 9010.1: 900.. 0:20.. Pie. P_ 3 Red 100 104.25 .134 pp _1_ White _32 35.22 33.19 4 139 139.00 .544 * df=1 .50>P).3O (White X Red) X White Pp 1 Red 15 I5 .000 pp 1 White _12 12 _._9_Q_Q 30 30 .000 df = 1 P) .99 (White X Red) X Red P 1 Red 30 30 -- 45 Cross 7 White X Burgundy non-segregating genes - v, e, R, L, Int ___1LGen0t e 302.10 9.9.10.1: 900... .1202. 2200 P_Bb 6 Red Burgundy 77 79.0 .050 P_bb 3 Red 48 39.6 1.781 P_BB 3 Burgundy. 37 39.6 .170 ppB_ 3 Pink-White 31 39.6 1.745 ppbb ._1 White .19. .1302. 10992 16 211 211.0 5.613 df:4 .30>P>.20 (White X Burgundy) X White PpBb 1 Red Burgundy 20 17.75 .285 Ppbb 1 Red 20 17.75 .285 ppBb 1 Pink-White 15 17.75 .426 ppbb 1 White ;§_ 12,23 0122 71 71.00 1.168 df=3 .80>P>.W) (White X Burgundy) X Burgundy P_Bb 1 ' Red Burgundy 31 31.5 .007 P_BB I Burgundy 3S 3133 .00 63 63.0 .014 (if-:1 095>P>090 #6 Cross 8 White X Purple non-segregating genes - b, e, R, L, Int mu 1: e Rail). .922: 9.1%.. 829.. 13312. P_VV 6 Rose Purple 115 110.6 .052 P_VV 5 Purple 62 55.5 .811 P_vv 5 Red 67 55-3 2.475 ppV_ 5 Purple-White 42 55.5 5.198 ppvv _1_ White _1_1 M £0.49 16 295 295-0 9.576 (if-:4 .05)P>.01 (White X Purple) X White Pva 1 Rose Purple ‘ 18 16 .250 vav 1 Red 14 16 .250 pva 1 Purple-White 20 16 1.000 ppvv 1 White _1_; _15 M90 6h 64 2.500 df=3 .50>P>.30 (White X Purple) X Purple P_VV 1 Rose Purple 58 51 1.562 P_VV 1 Purple 23 1; 1,562 62 62 2.720 * #7 Cross 9 Pink X Salmon non-segregating genes - v, b, e, L, Int, P 8.113.213 01.1.2; size. 1222. file 5 Salmon 76 69.75 .070 .1. Pink 12 wine; 4 93 95.00 1.896 * .20)P).10 (Pink X Salmon) X Pink 1 Salmon 15 15.5 .016 1 Pink 5 11,2 ,016 51 51.0 .052 .90 > P ) .80 (Pink X Salmon) X Salmon ‘ Salmon 21 21 -- df::1 Ll ll df::1 48 Cross 10 Pink X Rose non-segregating genes - v, b, e, R, Int, P Ratio 3 1 4 QQLQE QQR. Rose 149 Pink _5; 201 .90) P ) .80 (Pink X Rose) X Pink Rose 11 Pink _2 20 .90)P>.80 (Pink X Rose) X Rose Rose 33 emf/.2 130.7 .009 .29.3 .Qéfl 201.0 .037 * 10 .023 1.0. .922 20 .050 * 33 22222122 R_L_Int_ rrL_Int_ & R_L_int int R_llInt_ rrllInt_ & R_llint int rrL_int int rrllint int df H W R_L_Int int R_L_int int df::1 RrLlInt_ rrLlInt_ erlInt_ rrllInt_ df H \N non-segregating genes - v, b, e, P Ratio 27 18 64 1+9 Cross 11 Pink X Cherry Color Obs, Red 44 Rose/Cherry 35 Salmon 27 Pink 15 Rose Shriveled 4 Pink Shriveled 5 128 .20>P).10 (Pink X Cherry) X Cherry Red 20 Cherry 12 39 .90 )P ) .80 (Pink X Cherry) X Pink Red 3 Rose 5 Salmon 4 Pink ._1 11 .70>P> .50 £22. 54 36 18 12 6 ._2 128 19.5 12.5 39.0 2.75 2.75 2.75 g,z§ 11.00 Dale 1.851 .027 4.500 .750 .666 8.294 .012 .012 .024 .022 .022 .568 1.1.11 1.725 Genotype EeR_L_ eeR_L_ EER_L_ EerrL_ EeR_ll eerrL_ eeR_ll EErrL_ EER_ll Eerrll eerrll EErrll df==11 EeR_L_ EER_L_ df::1 50 Cross 12 Orange X Pink non-segregating genes - v, b, Int, P Egp. D219 Ratio 18 NW'WWKJJmmOO d 64 1 9212: 922. Light Red 65 Red 40 Orange 33 Light Rose 22 Light Salmon 21 Rose 15 Salmon ‘ 11 Dilute Rose 9 Dilute Salmon 12 Light Pink 6 Pink 5 Dilute Pink _1 240 .99 ) P > .975 (Orange X Pink) X Orange Light Red 17 Orange 14 31 .80>P> .70 67.50 33.75 33.75 22.50 22.50 11.25 11.25 11.25 11.25 7.50 3.25 .092 1.157 .016 .011 1.250 .005 .450 .050 .500 .150 5,25 2120 240.00 5.751 1505 0061+ 12.2. .2é4 51.0 .128 * Genotype EeRrLl EerrLl Eeerl Eerrll eeRrLl eerrLl eeerl eerrll df I1 Q R‘L_ rrL RLll rrll df II \N R L 51 Cross 12 (cont'd.) (Orange X Pink) X Pink 82112 99.12.12 9.1.11. 13112. 1 Light Red 6 5 1 Light Rose 6 5 1 Light Salmon 3 5 1 Light Pink 4 5 1 Red 6 5 1 Rose 6 5 1 Salmon 5 5 .1. Pink .11 .2 8 110 110 p '> .995 Cross 15 Red X Pink non-segregating genes - v, b, e, Int, P 9 Red 142 155 5 Rose 55 45 5 Salmon 33 45 _1_ Pink _12. .12 16 240 240 .10 > P > .05 (Red x Pink) x Red 1 Red 72 72 .05 .05 .00 [9 .75 * .562 2.222 3.200 1.666 7.450 52 Cross 15 (cont'd.) (Red X Pink) X Pink __xn_Genot e m acne}: 9.11s... £151.. 113/.12 RrLl 1 Red 15 15 .000 rrLl 1 Rose 11 15 .507 erl 1 Salmon 12 15 .076 rrll 1 Pink 16 15 152; 52 52 1.075 df::5 .80>P).70 Cross 14 Burgundy X Pink non-segregating genes - v, e, Int, P BbR_L_ 18 Red Burgundy. ' 127 112.50 1.868 BBR_L_ 9 Burgundy 51 56.25 .490 bbR_L_ 9 Red 53 56.25 .187 B_R_ll 9 Peach-Rose 41 56.25 4.154 BbrrL_ 6 Fuchsia 42 57.50 .540 BBrrL_ 5 Maroon 25 18.75 .965 B_rrll 5 Rose-Pink 21 18.75 .270 bbrrL_ 5 Rose 9 18.75 5.070 bbR_ll 3’ Salmon 23 18.75 .963 bbrrll _1 Pink __]_0_ __§:_2_5 2.2 0 64 400 400.00 16.755 df=9 JO>P>JB 9.9221129. BbRrLl BbrrLl Bberl Bbrrll bbRrLl bbrrLl bberl bbrrll df 11 fl BbR_L_ BBR_L_ df::1 Ratio 1 1 1 53 Cross 14 (cont'd.) (Burgundy X Pink) X Pink Color . Obs. Red Burgundy Fuchsia Peach-Rose Rose-Pink Red Rose Salmon Pink 5L.» O \J'IO\\]\N\‘1-P'\n .90>P> .80 (Burgundy X Pink) X Burgundy Red Burgundy 25 Burgundy g3 48 .90)P >.80 $~ Ln Pd <3 U1 \n \m U1 \n \n \fi x O g3 48 o o o o o o 0 UN 0 N (I) (I) (I) N O (0 IE» 3.6 .0104 ,0104 .0208 * 921.121.29.12 Vv--L_ VV--L_ V_r-ll vvR_L_ vvrrL_ vvR_ll vvrrll 11 ON df Vv--L_ Vv--ll verLl vvrrLl verll vvrrll df 11 U1 54 Cross 15 Purple X Pink non-segregating genes - b, e, Int, P Ratio 24 12 12 9 5 5 _1_ 64 92122 .222. Rose Purple 79 Purple 53 Light Violet 42 Red 41 Rose 11 Salmon 7 Pink .__2 240 .20>P>.10 (Purple X Pink) X Pink Rose Purple 11 Light Violet 8 Red 7 Rose 8 Salmon 5 Pink ._5 42 .70>P> .50 21.112. 90 45 45 33.75 11.25 11.25 240.00 10.50 10.50 5.25 5.25 5.25 42.00 93,4; 1.344 1.422 .200 1.557 .005 1.605 8.949 .025 .595 .583 1.440 .964 ,012 3.617 .QEBQEIEE VvR_L_ VVR_L_ df::1 55 Cross 15 (cont'd.) (Purple X Pink) X Purple 2111i. 2.1.2:. 9.1.1... 1 Rose Purple 25 1 Purple 25 ' 48 .90>P> .80 £591. 24 214 48 Genotype R_L_ rrL_ R_ll rrll RrL rrL_ df d R_Ll R_ll df:1 56 Cross 16 Pixie self (Rose X Salmon) non-segregating genes - v, b, 6, Int, P Ratio 9 .2212; .222. Red 154 Rose 40 Salmon 40 Pink _1§ 250 .90>P > .80 (Rose X Salmon) X Rose Red 17 Rose 15 52 .90 >P > .80 (Rose X Salmon) X Salmon Red 12 Salmon 11_ 23 .90 >P >.80 2122.11.21. 129.4 .165 45.1 .222 43.1 .222 ..12.4 ..122 230.0 .784 16 .015 12 .215 32 .030 11.5 .021 11.5. .221 23.0 .042 57 Cross 17 Rose X Salmon non-segregating genes - v, b, e, Int, P me e 22.1.1.0. 921.02 9.1.12. 222.. 2.21. R_L_ 9 Red 132 135. 6 .095 rrL_ 5 Rose 59 45.2 .850 R_ll 5 Salmon 54 45.2 1.715 rrll _1_ Pink _1_§ __1_5_,_o ..226 16 241 241.0 2.724 df::3 .50>P>.3O (Rose X Salmon) X Rose RrL_ 1 Red 25 ' 23 .097 rrL_ 1 Rose _2_1_ 25 1991 46 46 .194 * df::1 .70>P>.50 (Rose X Salmon) X Salmon R_Ll 1 Red 50 25 .810 R_ll 1 Salmon 20 25 .810 50 50 1.620 * df:1 .50>P>.20 58 Cross 18 Cherry X Salmon non-segregating genes - v, b, e, R, P Manet e 22.1.1.9 29.1.02 91.12. .422. 22.42 L_Int_ 9 Red 155 155.51 .021 L_int int 5 Cherry 44 44.44 .004 llInt_ 5 Salmon . 45 44.44 .007 llint int ._1_ Pink __15 14,51 1.521 16 237 237-00 .253 df=3 .975>P>.95 (Cherry X Salmon) X Salmon LlInt_ 1 Red 1 1 12 .020 llInt_ 1 Salmon 15 1g, ,ogo 24 24 .040 dfz1 . .90>P>.80 (Cherry X Salmon) X Cherry L_Int int 1 Red 52 52.5 .007 L_int int 1 Cherry 55 5§15, 1992 65 65.0 .014 df::1 .95>P>.9O Ge 0 EeL_ eeL_ EEL Eell eell EEll df=5 EeLl eeLl Eell eell df:5 EeL EEL df::1 e 59 Cross 19 Salmon X Orange non-segregating genes - v, b, Int, R, P Ratio 6 NKNKN d 291% 222.. Light Red 111 Red 61 Orange 58 Light Salmon 35 Salmon 15 Dilute Salmon __5 288 .20>P>.10 (Salmon X Orange) X Salmon Light Red 14 Red 10 Light Salmon 8 Salmon 1Q 42 .70>P>.50 (Salmon X Orange) X Orange Light Red 20 Orange 12 39 .90 >P>.80 222. 108 54 54 36 18 .12 288 1005 10.5 10.5 10,5 42.0 19.5 12.2 39.0 1.166 .023 .595 ,025 1.807 .012 ,012 .024 60 Cross 20 Salmon X Red non-segregating genes - v, b, e, R, Int, P _meenot e 2212.19. 29.1.2; 212. 2.1.1.. .1231. L. 3 Red 168 169.5 .005 ll _1_ Salmon _55 _5§_,5 £11 4 226 226.0 .022 1 df::1 .90>P>.80 (Salmon X Red) X Salmon Ll 1 Red 37 35.5 .028 ll 1 Salmon 54 5515, .02 71 71.0 .056 * df=1 .90>P>.80 (Salmon X Red) X Red L 1 Red 47 47 -- 61 Cross 21 Salmon X Burgundy non-segregating genes - v, e, R, Int, P _meenot e 2211.112 92.1.9.1; 2122. .1211. Die BbL_ 6 Red Burgundy 68 75 .653 BBL_ 5 Burgundy 41 57.5 .526 bbL_ 5 Red 56 57.5 .060 B_ll 5 Peach-Rose 40 57.5 .166 bbll _1_ Salmon _1_5 __1_2_,_5 1E 16 200 200.0 1.705 df:_4 .80>P>.7O I (Salmon X Burgundy) X Salmon BbLl 1 Red Burgundy 12 11 .090 bbLl 1 Red 1 1 1 1 .000 Bbll 1 Peach-Rose 10 11 ,.090 bbll 1 Salmon 1_1_ 1_1_ ,999 44 44 .180 df=5 .99>P>.975 (Salmon X Burgundy) X Burgundy BbL_ 1 Red Burgundy 15 14 .017 BED_ 1 Burgundy 15 14 .4132 28 28 .054 * Genotype VVL_ VVL_ V_ll VVL_ vvll df::4 Vle Vvll val vvll VVL_ VVL_ df::1 Ratio 6 3 3 3 .l 16 d 62 Cross 22 Salmon X Purple 2329.1: 922.. Rose Purple 104 Purple 59 Light Violet 60 Red 53 Salmon _1; 288 .70>P>.50 (Salmon X Purple) X Salmon Rose Purple 10 Light Violet 9 Red 10 Salmon _2 38 .99 >P >.95 (Salmon X Purple) X Purple Rose Purple 25 Purple go 45 .70>P >.50 . non-segregating genes - b, e, R, Int, P 222.. .2342 108 .148 54 .462 54 .666 54 .018 ._18 2.929 288 3.294 9.5 .026 9.5 .026 9.5 .026 3.5.2.22 38.0 .104 22.5 .177 22.5. .122 45.0 .354 1 22222122 R_Int_ rrInt_ & R_int int rrint int II N df ernt_ rrlnt_ df::1 R_Int int R_int int df::1 63 Cross 25 Cherry X Rose non-segregating genes - v, b, e, L, P Ratio 9 Color Obs. Red 129 Rose/Cherry 94 Rose Shriveled 15 238 (Cherry X Rose) X Rose Red ~ - 19 Rose 15 52 .50 > P > .30 (Cherry X Rose) X Cherry Red 36 Cherry 5; 68 .80)P >.70 Eyp, Daze 133.9 .179 89.2 .258 14,9 .001 258.0 .438 16 .390 .12 . 390 52 .780 * 34 .066 54 -066 68 .152 * 212211.122 EeR_ eeR_ EER_ Eerr eerr EErr df” H U1 EeRr eeRr Eerr eerr df H \N EeR BER df=1 64 Cross 24 Rose X Orange non-segregating genes - v, b, L, Int, P Ratio 6 3 3 2 ad 16 dd Color Light Red Orang Light Rose Dilut Red e Rose e Rose .20>P>.10 Q11_s_, 92 64 49 32 (Rose X Orange) X Rose Light Red Light Rose Light Orang Red Rose .90>P >.8O Red .70>P>.50 C) (D \O '0 (Rose X Orange) X Orange 21 12 38 .Egpo 98.2 49.1 49.1 32.8 16.4 15,4 262.0 8.5 8.5 8.5 34.0 19 12. 38 .264 .029 .029 ,_2_§_4 .586 .118 .256 * 65 Cross 25 Rose X Red non-segregating genes - v, b, e, L, Int, P W 22.1.1.0 2.2.12.1: .122... 2.12. 2542 R_ 5 Red 225 216 .195 rr _1_ Rose £5 _2; 15% 4 288 288 .781 * df =1 .50>P >.30 (Rose X Red) X Rose Rr 1 Red 18 18 .000 rr 1 Rose 18 15 ,000 ' 36 36 .000 df::1 P>099 (Rose X Red) X Red R 1 Red 58 58 -- 222012112 BbR_ BBR_ bbR_ BBrr Bbrr bbrr df:5 BbRr bbRr Bbrr bbrr df:5 BbR BBR df::1 66 Cross 26 Rose X Burgundy non-segregating genes - v, e, L, Int, P mfia 112.50 1.175 56.25 1.521 32222 6 3 3 29.121: 222. Red Burgundy 124 Burgundy 47 Red 51 Maroon 16 Fuchsia 41 Rose _2_1_ 500 .70 >P >.50 (Rose X Burgundy) X Rose Red Burgundy 6 Red 6 Fuchsia 10 Rose _5 28 .70>P>.5O (Rose X Burgundy) X Burgundy Red Burgundy 16 Burgundy 1g 52 P>.99 56.25 18.75 37.50 .490 .405 .526 1§,25 ,220 500.00 4.185 gkflflfl 12 32 011-42 .142 1.285 1.711 .000 ,000 .000 Genotype Vv-- vv-- vvR_ vvrr df H \N Vv-- ver vvrr df H h) Vv—- VV-- df::1 67 Cross 27 Rose X Purple non-segregating genes - b, e, L, Int, P Ratio Ia 01 :- c» 16 QQLQE. QEE; Rose Purple 139 Purple 96 Red 50 Rose _;g 309 .05>P>.01 (Rose X Purple) X Rose Rose Purple 20 Red Rose 19 35 .50>P> .30 (Rose X Purple) X Purple Rose Purple 58 Purple 5; 80 .80>P> .70 EEE; 154.5 77.3 57.9 .1223 309.0 17.50 8.75 55.00 40 A9 80 gig 1.555 4.523 1.077 12134 8.299 .357 1.607 2.142 .056 .926 .112 * W _iLRa 0 EeInt_ eeInt_ EEInt_ Eeint eeint EEint df::5 EeInt eeInt Eeint eeint df 11 \N int int int int int int int EeInt_ EEInt_ df::1 68 Cross 28 Orange X Cherry non-segregating genes - v, b, R, L, P 6 NKNKN 16 992-9.; £02.. Light Red 113 Red 1 54 Orange 48 Light Cherry 28 Cherry 17 Dilute Cherry _1_l+_ 274 (Orange X Cherry) X Cherry Light Red 12 Red 12 Light Cherry 9 Cherry _1_; 44 . 95 > P > . 90 (Orange X Cherry) X Orange Light Red 15 Orange 15 28 .90 >P> .80 51.58 51.38 E22. .2342 102.75 1.022 .133 .222 54.25 1.140 17.12 m 1.4 28 .568 12,12 ,001 274.00 3.086 .090 .090 .363 ,999 .543 .017 ,012 .034 * 69 Cross 29 Cherry X Red non-segregating genes - v, b, e, R, L, P men t e 32.22 22.142 gm. 2m 2342 Int_ 3 Red 185 188.25 .040 int int 1_ Cherry _§§, _62‘25, 4129 4 251 251.00 .160 * df::1 .70>P).50 (Cherry X Red) X Cherry Int int 1 Red 55 51.5 .285 int int 1 Cherry 28 51,5 ,285 63 6300 0570 * df=1 050>P>030 (Cherry X Red) X Red Int 1 Red 54 54 -- 70 Cross 50 Cherry X Burgundy non-segregating genes - v, e, R, L, P m 32.2.2 20.1.2; 948.. 21.6.. 2242 BbInt_ 6 Red Burgundy 85 79.12 .456 BBInt_ 5 Burgundy 35 39.56 .525 bent_ 5 Red 58 59.56 .061 Bbint int 2 Fuchsia 55 26.58 .771 BBint int 1 Maroon 10 15.19 1.661 bbint int _1 Cherry . , _1_9 _1_1,_1_9 .4211 ' 16 211 211.00 4.225 df:5 .70>P>.50 (Cherry X Burgundy) X Cherry BbInt int 1 Red Burgundy 11 9 .444 Bbint int 1 Fuchsia 7 9 .444 bent int 1 Red 12 9 1.000 bbint int 1 Cherry _9 ‘_9’ 19999 36 56 2.888 df::5 .50>P>.50 (Cherry x Burgundy) x Burgundy- BbInt_ 1 Red Burgundy 15 15 .175 BBInt_ 1 Burgundy ll _11 4.1.2} 26 26 .546 * df=1 .70>P>050 gengtzpe VvInt_ VVInt_ vant_ Vvint int VVint int vvint int df 11 U1 VvInt int Vvint int vant int vvint int df 11 \N VvInt_ VVInt_ df::1 Cherry X Purple 71 Cross 51 non-segregating genes - b, e, R, L, P gatig legr Rose Purple Nkflkflm 16 d Purple Red Dusty Rose Purple Dusty Purple Cherry .99 >P > .975 QEE; 75 36 34 22 (Cherry X Purple) X Cherry Rose Purple Dusty Rose Purple Red Cherry .95 >P ) ~90 6 8 29 , (Cherry X Purple) X Purple Rose Purple Purple .80)P>.7O Egg; 72 36 36 24 12 _12, 192 7.25. 7.25 7.25 .4222: 29.00 23.5 2125 47.0 9213 .125 .000 .111 .167 .333 rQflfi .819 .215 .077 .008 ,gzz .377 .042 .042 .084 * 72 Cross 52 Orange X Red non-segregating genes - v, b, R, L, Int, P 9.929.002 32212 2242: are. Em 13.212 Be 2 Light Red 137 134.50 .008 ee 1 Red 68 67.25 .046 BE ‘1 Orange _94 _52995, 9152 4 269 269.00 .211 df=2 .90>P>.80 (Orange X Red) X Orange Be 1 Light Red 28 29 .008 BE 1 Orange ‘ 59 £2 9999 58 58 .016 * df=1 095>P>090 (Orange X Red) X Red Be 1 Light Red 16 14.5 .068 ee 1 Red 15 1_4_,_5 9969 29 29.0 .156 * df=1 .80>P>.70 73 Cross 55 Orange X Burgundy non-segregating genes - v, R, L, Int, P Ge e 222212. 211.02 93.6.... BbEe 4 Light Red Burgundy 75 BBEe 2 Light Burgundy 25 Bbee 2 Red Burgundy 56 bbEe 2 Light Red 56 B_EE 5 Dilute Burgundy 59 BBee 1 Burgundy 16 bbee 1 Red 24 bbEE _l .Orange _19 16 283 df::7 .50>P>.30 (Orange X Burgundy) X Orange BbEe 1 Light Red Burgundy 8 BbEE 1 Dilute Burgundy 8 bbEe 1 Light Red 14 bbEE 1 Orange l9 4O df=5 .50>P>.50 Egg, 71.0 35.3 33.3 33.3 33.0 17.7 17.7 41.2 285.0 9312 .056 3.005 .013 .013 .679 .165 2.242 6.944 .400 .400 1.600 .000 2.400 74 Cross 55 (cont'd.) (Orange X Burgundy) X Burgundy Metemm 932.31.231.12 BbEe 1 Light Red Burgundy 14 15 .507 BBEe 1 Light Burgundy 11 15 .076 Bbee 1 Red Burgundy 15 15 .076 BBee 1 Burgundy 1;} 15’ 9192 52 52 .766 df::5 .90 >P>.80 Cross 54 Orange X Purple non-segregating genes - b, R, L, Int, P We t e 221.12 92.24.: 9.48.. 3.16.. 221.9 VvEe 4 Light Rose Purple 60 55.0 .454 VVEe 2 Light Purple 50 27.5 .227 Vvee 2 Rose Purple 25 27.5 .227 vae 2 Light Red 22 27.5 1.100 [_EE 3 Dilute Purple 37 41.25 .437 VVee 1 Purple 16 15.75 .568 vvee 1 Red 14 15.75 .004 vaE _1 Orange _1_6 .1112: _‘569 16 220 220.00 5.185 df:7 .90>P>.80 geggtype VvEe VvEE vae vaE df VvEe VVEe Vvee VVee df 11 \N 11 \N Ratio 1 1 1 75 Cross 54 (cont'd.) (Orange X Purple) X Orange 92l2£ Light Rose Purple Dilute Purple Light Red Orange .80>P > .70 Obs, 14 14 (Orange X Purple) X Purple Light Rose Purple Light Purple Rose Purple Purple .99 >P > .975 12 11 324.222 12.25 .250 12.25 .250 12.25 .127 2.25.413 49.00 1.040 11 .090 11 .000 11 .000 .ll .929 44 .180 Qeggtxpe Bb BB bb df=2 Bb bb df::1 Bb BB df::1 76 Cross 55 Burgundy X Red non-segregating genes - v, e, R, L, Int, P 38.12.19. 2 1 _1_ 4 2949.2 .046... Red Burgundy 112 Burgundy 56 Red _99 228 .90 >P > .80 (Burgundy X Red) X Red Red Burgundy 17 Red I lg 52 .90>P > .80 (Burgundy X Red) X Burgundy Red Burgundy 12 Burgundy 11 25 .90 >P >.80 E_xa. 9.242 114 .055 37 .017 .22 .122 228 .209 16 .015 la .21.: 52 .050 * 12.5 .020 .12.: .29 25.0 .040 Gengtype Vv VV VV df=2 Vv VV df=1 Vv df::1 77 Cross 56 Purple X Red non-segregating genes - b, e, R, L, Int, P Ratio 2 1 1 4 5291—02 9.48.. Rose Purple 84 Purple 45 Red _9; 171 .95 >P > .90 (Purple X Red) X Red Rose Purple 42 Red 59 8O .80 >P >.7O (Purple X Red) X Purple Rose Purple 21 Purple 19 4O .90) P > .80 32.221. 85.50 .026 42.75 .118 32.25.94: 171.00 .157 40 .056 49 .926 80 .112 * 20 .012 29. .942 40 .024 * Genotype Vv-- vv.- vab vaB vvbb df 1| :- VvB_ vab vaB df II N Vv-- df::1 78 Cross 57 Burgundy X Purple non-segregating genes - e, R, L, Int, P 9221.9 99.1.9.1; 0_b.§.. 8 Rose Purple 162 4 Purple 92 2 Red Burgundy 45 1 Burgundy 23 _1_ Red ._92 16 337 .80>P >.70 d (Burgundy X Purple) X Burgundy Rose Purple 19 Red Burgundy 9 Burgundy 19 38 .99>P >.95 (Burgundy X Purple) X Purple Rose Purple 18 Purple 19 36 P>.99 Egg; 168.5 84.2 42.1 21.1 21,1 337.0 19.0 9.5 .2.2 58.0 18 1g, 36 5342 .250 .722 .019 .171 ..229 1.958 , .000 .026 3029 .052 .000 ,000 .000 BIBLIOGRAPHY 1. 2. 5. 4. 5. 6. 7. 8. 9. 10. 11. BIBLIOGRAPHY Bailey, Liberty Hyde, and Ethyl Zoe Bailey. Hortus Iggrd. Macmillan Publ. Co., New York, 1976, p. 1000. Bhattacharya, S. 1978. Indian members of the genus Salvia. Cytol. 45:517-524. British Colour Council. Horticultural Colour Chg; . Volumes I and II. H. Stone and Son, Banbury, 1958 and 1941. D'Cruz, Rui and A.S. Jadhav. 1965. Flower colour in Salvia. Sci. and Cult. 51:201. Ewart, L.C. 1985. Personal communication. Gairdner, A.E. 1956. The inheritance of factors in Cheiranthus cheiri. Jour. Gen. 52:479-486. Hendrychova-Tomkova, Jarmila. 1964. Genetic analysis of colour mutants in Salvia splendens. Preslia (Praha) 56:217-225. Lawrence, W.J., R. Scott-Moncrieff, and v.0. Sturgess. 1959. Studies in Streptocarpus. I. Genetics and chemis- try of flower colour in garden strains. Jour. Gen. 58: 299-506. Mastalerz, J.W., ed. Bedding Plants. Penn. Flower Grow- ers, University Park, 1976, pp. 2-7. Mehlquist, Gustav A.L., and T.A. Geissman. 1947. Inher- itance in the carnation (Dianthus caryophyllus). Ann. MO. Bat. Gal‘d. 31+:39-720 Mantzing, Arne. 1950. Outline to a genetic monograph of the genus Gale0psis. Hered. 15:185-541. 79 12. 15. 14. 15. 16. 17. 18. 80 Paris, Clark D., W.J. Haney, and G.B. Wilson. A Survey of the Interactions of Genes for Flower Color. Michigan State University Technical Bulletin 281, Nov. 1960. Schnack, Benno, and Ada M. Castronovo. 1945. Genetica de los pigmentos florales del aleli. Rev. Argen. Agron. 12:105-114. Schnack, Benno, and Onofre Fernandez. 1947. 'Nuevos resultados en la genetica de los pigmentos florales del aleli. Rev. Invest. Agr. 1:105-111. Stansfield, William D. Iheory and Eroblems 9; Genetics. Schaum's Outline Series. McGraWbHill, New York, 1969, PP- 142-143- United States Department of Agriculture. Floriculture Cr0ps. Statistical Reporting Service. Cr0p Reporting Vavilov, N.I. 1922. The law of homologous series in variation. Jour. Gen. 12:47-90. Watts, Leslie. Flower and Vegetable Plant Breeding. Flower Growers, London, 1980, p. 28. "‘11111111111111111111111“ 312