

' gig}.
47...;
' :{nt’ u

‘Hl
‘

. .
‘
O
.
E
\
’
!
w

“
3
‘

.

x

«
I
n
f
r
x
‘

.
5
.

2
.

THESE

i. IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.III‘IIIII“
293 013887 9899

This is to certify that the

dissertation entitled

The Integration of an On-line Parallel Debugger

with a Visualization Methodology

for Modeling Expected Behavior

presented by

Joseph L. Sharnowski

has been accepted towards fulfillment

of the requirements for

PhD degree in Computer Sc ience

“5275614 “(C/W

lJlajor professor

Date (71/91/05

MSU is an Affirmative Actinnr’EquaI Opportunity Institution
0.12771

LIBRARY

Michigan State

University

PLACE N RETURN BOXto romovo thio chockout from your rooord.
TO AVOID FINES rotum on or botoro duo duo.

DATE DUE DATE DUE DATE DUE

usu loAnN'flnnotivo Action/Emu Oppommflylnofltuionm*

THE INTEGRATION OF AN ON-LINE

PARALLEL DEBUGGER WITH A

VISUALIZATION METHODOLOGY FOR

MODELING EXPECTED BEHAVIOR

By

Joseph L. Shamowskz'

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Computer Science Department

1995

ABSTRACT

THE INTEGRATION OF AN ON-LINE

PARALLEL DEBUGGER WITH A

VISUALIZATION METHODOLOGY FOR

MODELING EXPECTED BEHAVIOR

By

Joseph L. Sharnowskz'

Post-mortem visualizations of program execution are useful for debugging the

complex behavior of parallel programs. However, the effectiveness of the visualizations

is limited by the characteristics of the information that they present. First, the

monitor intrusion and data storage constraints restrict the amount of data that

may be recorded during the program execution, and thus restrict the corresponding

information presented in the visualizations. Second, the type of information presented

by visualizations often limits how well their representations match the programmer’s

conceptual model of the expected program behavior. The models used for visualizing

program behavior typically have focused on depicting low-level events, such as

message-passing or procedure calls. These models impose upon the programmer the

burden of establishing a match between the graphically-displayed events and the

patterns of expected behavior for the program.

This dissertation presents newly developed solutions that address these two

problems. In order to relax the problems associated with the acquisition of data, we

use an on-line approach to debugging in contrast to a post-mortem strategy. Based on

this approach, the first main contribution of this research is the development of new

strategies for applying visualization to the operation of an on-line parallel debugger.

In particular, we developed a visualization-based approach for the selection of causal

distributed breakpoints. In addition, we developed several techniques for improving

the scalability of visualizations that represent process communication and integrated

these techniques into a visualization-based debugging environment for supporting

top-down examination of program states.

The other main contribution of this research is the development of a methodology

for modeling visualizations based on the expected behavior of the program, where the

model of expected behavior is generated from the program’s formal specification. In

particular, we developed a technique for modeling expected behavior in visualizations

of communication between processing elements, as well as techniques for illustrating

the current location in a program execution in terms of the formal specification. In

addition, a technique has been developed for using the formal specifications of a

program’s data structures to guide the generation of data visualizations.

Copyright © by

Joseph L. Sharnowski

1995

Dedicated to the memory of my grandmothers,

Helen Lewandowski and Julia Sharnowski,

whose faith in God was an inspiration to everyone around them.

ACKNOWLEDGMENTS

I would sincerely like to thank my advisor, Dr. Betty H. C. Cheng, for all of her

help and guidance during my Ph.D. program. Beyond providing direction, she also

was an endless source of encouragement. It has indeed been both a pleasure and an

honor to have been her student.

I thank the other members of my committee, Dr. Lionel M. Ni, Dr. Diane Thiede

Rover, and Dr. David Yen, for their efforts on my behalf. I also wish to thank

NSF, as this work has been supported in part by the NSF Grants CCR-9209873 and

OCR-9407318.

I wish to thank my family and friends for always being there for me. In particular,

I thank my parents for being both supportive and for being ideal role models. I also

wish to thank my Goddaughter Sarah, for being a source of both pride and joy. Last,

but hardly least, I am deeply grateful to Rana, for everything she has added to my

life, and all she will still add.

vi

TABLE OF CONTENTS

LIST OF FIGURES

1 Introduction

1.1 Motivations

1.2 Research Contributions

1.3 Organization of Dissertation

Background Information

2.1 Specifying Parallel Programs with LOTOS

2.2 Cholesky Factorization Program

Overview of the GOLD Debugging Framework

3.1 A Top-down Debugging Procedure

3.2 The General Architecture of GOLD

Visualization-based Breakpointing

4.1 Distributed Breakpoints

4.2 Local Breakpoints

Scalable Visualization Techniques

5.1 Handling Large Numbers of Processes

5.2 Handling a Large Degree of Process Communication

Visualization-based Examination of Program States

6.1 Types of Visualizations Supported by GOLD

6.2 Top-down Coordination of Visualizations

The Modeling of Expected Behavior in Program Visualizations

7.1 Overview of Panorama

7.2 Data Collection Step

7.3 Graphical Depiction Step

7.4 Debugging Example: Cholesky Factorization

vii

ix

{
D
O
I
i
—
‘
H

10

10

21

25

26

27

34

34

43

46

46

48

54

54

64

69

70

71

77

80

7.5 Integration with GOLD 84

8 Data Visualizations from Formal Specifications 95

8.1 The Cell Model 95

8.2 Mapping Specifications to the Cell Model 99

8.3 An Example Application 104

8.4 Improvement to the Mapping Strategy 107

9 Related Work 110

9.1 On-line Parallel Debuggers Supporting Visualization 110

9.2 Models for Visualization of Program Execution 117

10 Conclusions and Future Investigations 123

BIBLIOGRAPHY 127

viii

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

4.5

4.6

5.1

5.2

5.3

5.4

5.5

6.1

6.2

6.3

6.4

LIST OF FIGURES

Simple parallel computing environment 15

Specification for transmitting a number between P1 and P2 16

Behavior expression for the overall specification 18

Recursive creation of worker nodes 19

Process definition for a channel 19

Specification of nodes for the number-doubling program 20

Header and behavior expression for For_Sub-Main-Loop 23

Specification of the For_Sub-Communication process 24

The central operations interface 28

The architecture of GOLD 29

The local operations interface 31

The status grid window 33

Stopping global execution using a triggering breakpoint 36

Example of a causal distributed breakpoint 37

Interface for insertion of causal distributed breakpoints 39

Overlapping causal distributed breakpoints 42

Example of a non-causal distributed breakpoint 44

Interface for insertion of local breakpoints 45

Popup used to filter the processes 47

Space—time diagram before process-filtering has been applied 49

Space-time diagram after process-filtering has been applied 50

Example of a single point-of-view communication graph 51

Modifying the time axis scale to “zoom in” 53

Example of a call graph 55

Example of a source code listing 56

Textual display of data structures 57

Interface for obtainng additional variable information 59

ix

6.5

6.6

6.7

6.8

6.9

6.10

6.11

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

8.1

8.2

8.3

8.4

8.5

8.6

8.7

9.1

9.2

Graphical depiction of a one-dimensional array 60

Graphical depiction of a two-dimensional array 61

Interface for filtering data values 62

Filtered version of a two-dimensional array 62

Examination of changing values for a two-dimensional array 63

Visualization hierarchy for examining a breakpoint state 65

Options for examining a breakpoint state from a space-time diagram 66

General execution flow of PANORAMA 71

Subtree of processes for the specification of the host node in the

number-doubling program 73

Example of the mapping procedure 76

BC-graph of the execution of the number-doubling program 79

BC-graph of only message-passing events 82

BC-graph of both active processes and message-passing events 83

BC-graph of the filtered events 84

Windows for specification and source code corresponding to

questionable process 85

The interface for the improved mapping tool 87

BC-graph interface for causal distributed breakpoints 89

The filtering/clustering interface 90

BC-graph interface for GOLD 92

Modeling expected behavior in a call graph 93

Comparison of specification listing to source code listing 94

Two-dimensional array trait 101

Technique for finding the dimension of an ADT from its trait 103

Maximum match with the minimum cost 104

Construction of the sort matrix from the match matrix 105

A visualization of column sorting for the implementation of the

assignment algorithm 106

The visualization of the match matrix after the misbehaving column sort107

A data visualization for a counter 108

Typical layout for an application-specific visualization of the sorting

problem 120

Sample class hierarchy of Voyeur visualizations 121

CHAPTER 1

Introduction

Parallel computing offers a promising approach for achieving the high performance

required by computationally-intensive applications. The widespread use of this

approach, however, has been limited by the difficulties associated with the

development of parallel programs. This dissertation addresses one of the main

difficulties, specifically the task of debugging a parallel program.

1 .1 Motivations

Debugging a sequential program is a difficult task, as it relies on insight for knowing

where to look for the cause of an error. Such insight is often only achieved after

years of experience in program development [1]. Debugging a parallel program

presents an even more difficult challenge [2], as communication between processing

elements complicates the task of locating the cause of an error. In order to

simplify the development of parallel programs, support tools must be developed

for handling this additional complexity. Several obstacles make the development

of such tools difficult, including the nondeterministic behavior of parallel programs,

where different executions may result in different sequences of interactions between

processing elements. In addition, parallel programs are also susceptible to the probe

effect, where an attempt to monitor a program’s behavior may actually change the

behavior by introducing delays that change the order of synchronizations.

1.1.1 Formal Methods

An indirect solution for addressing the difficulty of parallel debugging is to minimize

the number of errors that must be detected and corrected. The application of formal

methods to the process of software development provides a means for achieving this

solution. Formal methods are mathematically-based techniques that are used to

describe and reason about properties of software systems. The description of the

properties are presented using a notation called a formal specification language, and

the document in which the properties are described is called a formal specification

[3]. The formal specification is an abstraction of the software system, where

the implementation details are intentionally omitted. Using formal specifications

facilitates the early evaluation of a software design through the use of formal reasoning

techniques [3, 4, 5]. Additional benefits are that the well-defined syntax and semantics

of formal specification languages makes their manipulation amenable to automation.

The use of formal specifications is unfortunately unable to entirely eliminate the

possibility of errors in the implementation. For example, even if the specification

accurately represents a problem, the process of constructing an implementation for the

specification is subject to human coding errors. In particular, the expected behavior of

the program, as described by the formal specification, may be inconsistent with the

actual behavior, as revealed during the program’s execution. Thus, despite the benefits

of using formal methods for program development, we must still address the problem

of the additional complexity associated with parallel debugging, as debugging tools are

still necessary for eliminating errors that are introduced during the implementation

stage.

1.1.2 Using Visualization to Debug Errors

Visualization has been shown to be an effective approach for representing the complex

behavior of a parallel program [6, 7, 8, 9, 10, 11]. Large quantities of event data from

the program execution can be encapsulated in compact graphical representations.

Such visualizations convey program execution from a global perspective, where

the communication between processing elements is depicted graphically. These

visualizations reveal patterns and discrepancies in the event data more readily than

corresponding textual output.

One major difficulty in the use of visualization is that the nondeterministic

behavior of parallel programs and the probe effect have both hindered the

development of on-line visualization-based debugging tools. Such tools are intended

to visualize the execution of the program as it is running, but, in the case of the

probe effect, in particular, the overhead required to perform the visualization may

significantly alter the execution behavior of the program. The typical approach

to building visualization—based debugging tools has been, instead, to use a post-

mortem strategy, where trace data of important events is collected during program

execution, but the graphical depiction of the data is performed off-line after execution

is complete. By postponing the depiction of the event data until after the program

execution completes, the probe effect is not as large as compared to when the

visualizations are rendered on-line. The disadvantage to this approach, though, is

that the amount of collected data must be limited, else the probe effect will become

a significant factor, and, in addition, the generated data may potentially exceed the

available storage.

Recent advances have been made in the area of replay techniques, where

deterministic re-execution of a parallel program is guaranteed by forcing

communication between processing elements to occur in the same order as in the

original execution [12, 13, 14, 15]. Such techniques are useful for the construction

of on-line debuggers, where cyclic debugging strategies focus on running a program

repeatedly, each time making additional progress towards pinpointing the location of

an error. Since a cyclic debugging approach is only meaningful when deterministic

execution is guaranteed, the use of replay techniques for providing such determinism

is beneficial. In addition, since the replay mechanism guarantees that re-execution

of the program will be deterministic, the probe effect is prevented from altering the

behavior of the program.

Replay techniques facilitate the development of visualization-based, on-line

debuggers. Since execution behavior is not affected by the probe effect, on-line

visualization is able to produce meaningful results. An additional benefit of this

approach is that data storage constraints are no longer a factor since the data is

being visualized as it is generated, in contrast to a post-mortem strategy where the

data is first stored and then visualized after program execution is complete. Currently,

however, the use of visualization in on-line debugging environments has been limited

to the depiction of communication between processing elements [16, 17, 18, 19, 20],

mainly because replay-based techniques have only recently become well-established.

Another major difficulty in the use of visualization is finding a graphical

representation for the event data that fits the programmer’s conceptual model of

the problem at hand [21]. Event data often consists of low-level events such as

message-passing or procedure calls, yet visualizations based directly on these events

are often difficult to correlate with the expected behavior of the program. Such

visualizations lack any use of abstraction to model the low-level events in terms of

high-level behavior, such as stages in the algorithm. In order to debug any errors,

the programmer must manually establish a match between the graphically-displayed

events and the patterns of expected behavior for the program.

1.2 Research Contributions

Thesis Statement: Visualizations and formal specifications may be applied in new

ways to facilitate the difiicult task of parallel debugging. In particular, on-line,

replay-based debugging techniques offer new opportunities for applying visualization

to support typical debugging operations, such as setting breakpoints and examining a

program’s state. In addition, formal specifications may be applied to parallel debugging

for modeling a program’s expected behavior, facilitating a comparison between expected

and actual behavior.

This dissertation presents two major contributions to parallel debugging

technology:

1. The development of new visualization techniques for use in an on-line parallel

debugger.

2. The development of a methodology for using the formal specification of a

program as a basis for visualizing the program execution.

The research discussed in this dissertation specifically applies visualization to the

following tasks of an on-line parallel debugger:

o Visualization-based selection of distributed breakpoints: Many of the typical

on-line debugging operations are more complicated in a parallel debugger as

compared to a sequential debugger since multiple processes must be considered

instead of a single one. For example, causal distributed breakpoints [22] is one

approach that has been used for stopping a parallel program at a particular

point in its execution. In this approach, a sequential breakpoint in a single

process initiates the stop, where the remainder of the processes are halted

and restored to the earliest state reflecting all events that occurred before the

sequential breakpoint. A graphical representation for this type of breakpoint

scheme is superior to a textual representation, as the logical ordering of events

between processes is depicted well by a two-dimensional plot. This type of

two-dimensional plot is known as a space-time diagram [17, 23, 24], where

processes are on one axis and time is on the other, with communication shown

as lines between the relevant (process, time) pairs. This dissertation presents a

visualization—based approach for setting distributed breakpoints, where a space-

time diagram is used to graphically illustrate where each process is located in

its execution when a distributed breakpoint stops the program [9, 11]. The

programmer may use this interface to insert distributed breakpoints, simplifying

the otherwise difficult operation.

Scalable techniques for visualization of communication events: For the cases

of programs that use a large number of processes or have a large degree of

process communication, visualizations may become cluttered, thereby limiting

their benefit. The effectiveness of visualizations is determined by how well

they reveal patterns and discrepancies, regardless of how much information

is represented. This dissertation describes GUI-based filtering techniques

for scaling visualizations of communication [10, 11]. A unique characteristic

of these techniques is that they are integrated in a top-down debugging

framework, where filtering the degree of information presented in visualizations

of communication is the first step when converging towards the source of an

error .

Top-down use of visualizations for examination of program states: The

advantages of visualizing multiple aspects of program execution have been

discussed previously [23]. A replay-based, on-line debugging strategy is well—

suited for providing multiple visualizations, as the large volume of data required

to render the visualizations can be acquired without being limited by the probe

effect and data storage constraints. A top-down approach for using a variety

of visualizations to debug incorrect program behavior may thus be constructed

[9, 11, 25]. For example, in a case where incorrect communication between

processes is suspected, a visualization of communication events would be useful

for initially inspecting the message-passing behavior, where filtering may be

applied as described above. As the location of the suspected error is narrowed to

a single process or a small subset of processes, the execution of those particular

processes may individually be visualized using a (procedure) call graph or a

source code listing. Finally, if a particular data structure must be inspected,

data visualizations may be used. In the case of data visualizations, filtering

may be useful for highlighting particular instances of data. Several filtering

possibilities are provided, including choices for filtering values that exceed some

maximum value, that fall below some minimum value, that are equal to some

critical value, or that are within some critical range.

The task of debugging a parallel program is facilitated by an environment

that supports comparisons between the actual behavior of the program and its

expected behavior. The second contribution of this dissertation is a new approach to

visualizing the execution of a parallel program in the context of the program’s formal

specification, where the formal specification is used to model the expected behavior

of the program. The following items were addressed for this research contribution.

o Modeling expected behavior in program visualizations: Visualizations that depict

various aspects of the program state are useful for identifying inconsistencies

that may indicate the source of an error. In order for these visualizations to be

useful for debugging purposes, however, the programmer must be able to find a

match between the depicted behavior and the expected program behavior. To

facilitate this task, we developed an approach [8, 26] for visualizing the execution

of a parallel program in the context of the program’s formal specification,

written in the specification language LOTOS (Language of Temporal Ordering

Specifications) [27, 28]. A LOTOS specification is used to represent an

abstraction of the program, thus providing a model of the program’s expected

behavior. In the case of communication visualizations, each LOTOS process

may be used to represent a phase in the computation, and thus the correlation

of message-passing events with computation phases is established by overlapping

a representation of the active LOTOS processes onto the diagram. In the case

of graphically representing the current location in a single process, the location

may be represented within a visualization based on the formal specification. In

this latter case, a call graph visualization may be used to depict call relations

between the LOTOS processes, while a specification listing may be used to

portray the execution flow.

Selection of Data Visualizations Using Formal Specifications: Similar to the

item discussed above, visualizations of program data may also be generated

based on the formal specification of the program. In this case, however,

the formal specification is used to guide the selection of an appropriate data

visualization, rather than modeling the visualization in terms of items from the

formal specification. Specifically, a method for deriving appropriate parametric

data visualizations from formal specifications is presented, where this method

maps formal specifications of a program’s data structures to a graphical unit

termed a cell model [7, 29]. The cell model consists of several components used

to characterize a data structure. A rule-based system is used for selecting

appropriate debugging visualizations depending on the contents of the cell

model.

For both areas of research described above, we specifically considered the case

of programs written for distributed-memory systems, where communication between

nodes is via message-passing [30].

1.3 Organization of Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 gives background

information on the LOTOS specification language and the Cholesky factorization

program used to generate most of the visualizations shown in this dissertation.

Chapter 3 presents an overview of the Graphical On-Line Debugger (GOLD), a

prototype debugging environment that was developed as a testbed for several of the

research contributions discussed in this dissertation. The discussion of research results

is divided into several chapters, where each chapter presents results targeted towards

accomplishing one of the research contributions discussed above. In particular,

Chapter 4 describes a technique for using visualizations to guide the operation of

setting a causal distributed breakpoint for a set of processes. Chapter 5 presents a

scalable approach for using visualizations to represent process communication, where

this approach focuses on using simple, GUI-based filtering techniques. Chapter 6

introduces a strategy for coordinating the use of different types of visualizations when

examining a program state. Chapter 7 discusses a technique for modeling expected

behavior in program visualizations. Chapter 8 discusses a method for selecting data

visualizations based on the formal specifications of the program’s data structures.

Related work is presented in Chapter 9. Finally, conclusions and future investigations

are discussed in Chapter 10.

CHAPTER 2

Background Information

This chapter discusses background information relevant to concepts that appear later

in this dissertation. First, an introduction to the LOTOS specification language

is presented, in particular demonstrating how it may be used for the specification of

parallel programs. Second, a brief introduction to the Cholesky factorization program

is provided, where this program was used to generate most of the visualizations shown

in this dissertation.

2.1 Specifying Parallel Programs with LOTOS

LOTOS [27, 28] is a formal specification language specifically designed to specify

protocols and services. The concepts of LOTOS are general in nature, however,

thus making the language useful for a wide variety of other tasks, including the

specification of parallel programs. Several features of LOTOS influenced its use

for our research: it has been internationally standardized, thus promising a stable

definition; it is relatively user-friendly compared to other specification languages, as

provided through the usage of keywords and hierarchically-structured specifications;

and there exist public-domain tools for working with LOTOS, including syntax and

semantics checkers. In the following discussion, we present a brief introduction to

10

11

LOTOS, followed by a description of how the language may be used to specify a

parallel computing environment. We also include the specification of a simple parallel

program.

2.1.1 Introduction to LOTOS

The following is an abbreviated introduction to the LOTOS specification language.

We limit our overview to the concepts and notation relevant to the specification of

parallel and distributed systems. For a more thorough introduction to LOTOS, the

reader may refer to the tutorials provided in [28, 31].

LOTOS consists of two components:

o A data type component, based on the algebraic specification language ACT ONE

[32].

o A control component, based on the process algebras CCS [33] and CSP [34].

The data type component supports the specification of data structures. The

definition of a data type includes a sort name used to identify instances of the data

type, a list of operations that may be performed on the data type, and a set of

equations that describe properties of the operations. In order to facilitate the task of

constructing specifications, LOTOS supports a library of standard data types, such

as boolean and natural number.

The control component of LOTOS permits a system to be described in terms

1 is an entity that may execute either externalof process definitions, where a process

actions (events) or internal, unobservable actions. In the former case, synchronization

with the other processes in the system is required, taking place at synchronization

points called gates. The system as a whole is viewed as a single process, possibly

1The meaning of a LOTOS process is distinguished from the meaning of an operating system

process, where, in the latter case, a process refers to the execution of a sequential program.

12

composed of several subprocesses. Each subprocess is a process in itself, and thus the

entire system may be viewed as a hierarchy of processes.

The general form of a LOTOS action consists of three components:

o A gate name

o A list of attributes, where each attribute can either be a value offered at the

gate (labeled with “1”) or a variable accepted at the gate (labeled with “7”)

o An optional predicate that establishes a condition on the variables that can be

accepted

An example action is the following (where “Nat” is the natural numbers sort):

g l3 ?V:Nat [V < 2]

The predicate for this action asserts that the variable V can only accept values that

are less than 2, namely 0 or 1 since V is of sort natural number. Thus, the action is

equivalent to one that provides a choice between the two actions “g 13 10” and “g 13

ll”, offering the values 3 and 0 or 3 and 1, respectively, at gate g.

Processes communicate by synchronizing on common actions. For example, if a

process P is ready to execute the action “g 13” at the same time that a process Q is

ready to execute the action “g ?Y:Nat [Y < 7 j”, then synchronization may occur

between processes P and Q on the common action “g l3”.

Two special processes are defined in LOTOS: stop and exit. The process stop,

representing a completely inactive process, is invoked by an active process in order

to complete a transition to an inactive state. The process exit is a process with the

sole purpose of executing a successful termination action, after which it invokes the

process stop.

A behavior expression models the activity of a process. Behavior expressions

are built from actions and other behavior expressions by using a predefined set of

operators. The operators relevant to the specifications in this dissertation are the

following (where c and d are actions, and B is a behavior expression):

13

o Action prefix operator: written as a semicolon “;”

This operator supports the sequential composition of actions and behavior

expressions. For example, “c ; d ; B” means that action c is followed by action

d, which, in turn, is followed by behavior expression B.

o Choice operator: written as “[]”

This operator denotes the choice between two or more actions or behavior

expressions. For example, “(c ; B) [] (d ; B)” represents a choice between

either action c followed by behavior expression B, or action d followed by

behavior expression B.

o Parallel composition operators: written as “|[G]|”, III, and I]

The selective parallel operator “|[G]|” is used to express parallelism between two

behavior expressions, where G is the set of gates on which synchronization must

occur. Any actions in the two behavior expressions occurring at gates not in

the set C may interleave. The special case in which G is empty is represented

by the interleaving operator III, and the special case in which 6' contains the set

of all gates is represented by the full synchronization operator II. In order to

illustrate the use of the parallel composition operators, consider the case where

c denotes the action “g 13” and d denotes the action “g l2”. Then “(c ; exit

) |[g]| (d ; exit)” is equivalent to stop, since synchronization cannot occur

between “g l3” and “g l2”. However, “(c ; exit) ||| (d ; exit)” is equivalent

to “(c ; d ; exit) [] (d ; c ; exit)” since the interleaving operator requires

no synchronization.

A behavior expression may be preceded by a guard, where the guard must be true

in order for the expression to be invoked. The guard has the form of a predicate

followed by an arrow. For example, in the following guarded expression, behavior

expression B will only be invoked if the value of X is equal to 2:

[X = 2] -—» B

A typical structure for a LOTOS specification is of the following form, where

functionality is either exit or noexit, depending on whether the process is able to

successfully terminate [28]:

specification name_of_spec [gate list](parameter list): functionality

(type definitions)

behavior

(behavior expression for the overall specification)

where

14

(process definitions)

endspec

where each process definition has the form:

process name_of_process [gate list](parameter list): functionality :=

(behavior expression for the process)

where

(subprocess definitions)

endproc

2.1.2 Specification of the Parallel Computing Environment

A LOTOS specification for a parallel program requires the specification of the entire

environment of the program, where the environment consists of both the processing

elements where the computation occurs and the medium through which the processing

elements can communicate. For the research discussed in this dissertation, we

consider the case of parallel programs written for distributed-memory systems, where

communication channels interconnect the nodes to provide a medium for message-

passing. A general technique for the LOTOS specification of such environments has

been developed [35], from which we adapted our particular approach. We outline the

key aspects of our approach below.

A simple example of a parallel computing environment is two processing elements

P1 and P2 connected via two unidirectional channels Cl and C2, as shown in

Figure 2.1. The synchronization points between the processing elements and the

channels are the gates labeled send and recv. In accordance with previously developed

notation [35], an action that sends a message Mesg from a processing element labeled

Sender to a processing element labeled Rcvr may be formatted as:

send lSender chvr lMesg

Similarly, the action that receives the message that was sent as described above may

be formatted as:

15

recv lSender chvr ?Mesg:Message

where Mesg is a variable whose value is set through synchronization.

send C1 recv

recv C2 send

Figure 2.1. Simple parallel computing environment

Consider a program for the computing environment given in Figure 2.1, whose

purpose is to send a natural number from P1 to P2, and then send the same number

back again from P2 to P1. The specification for this program is shown in Figure 2.2.

The behavior expression for the overall specification states that the actions of the

processing elements (P1 and P2) may interleave, and the actions of the channels

(Cl and C2) may also interleave, but the actions between the processing elements

and the channels must fully synchronize (i.e., synchronize on both the send and recv

gates). By examining the behavior expressions in the four process definitions of the

specification, we observe that the first synchronization occurs between P1 and C1 at

the send gate. This synchronization causes the variable Msg in the action “send lPl

lP2 ?Msg:Nat” to accept the value Some_Num offered by the action “send lPl lP2

lSome_Num”, effectively representing the passing of a message from the processing

element P1 to the channel C1. Similarly, the next three synchronizations that occur

pass the message from Cl to P2, then from P2 to CZ, and finally from C2 to P1, at

which point all four of the LOTOS processes P1, P2, Cl, and C2 have successfully

16

specification simple_send-and_return(Some-Num:Nat): exit

library NaturalNumber endlib

behavior

(P1[send,recv](Some-Num) ||| P2[send,recv])

||

(C1[send,recv] III C2[send,recv])

)

where

process P1[send,recv](Some_Num:Nat):exit :2

send !P1 !P2 lSome_Num ; recv !P2 lPl ?ReturnMsg:Nat ; exit

endproc

process P2[send,recv]:exit :=

recv lPl lP2 ?Received_Num:Nat ; send 1P2 iPl lReceived_Num ; exit

endproc

process C1[send,recv]:exit :=

send lPl 1P2 ?Msg:Nat ; recv lPl lP2 lMsg ; exit

endproc

process C2[send,recv]:exit :=

send lP2 1P1 ?Msg:Nat ; recv lP2 lPl lMsg ; exit

endproc

endspec

Figure 2.2. Specification for transmitting a number between P1 and P2

terminated, such that the specification may also successfully terminate.

The model that we use for a general parallel computing environment supports an

unlimited number of processing elements, where each pair of processing elements is

connected by two unidirectional channels, as shown in Figure 2.1 for the case of P1

and P2. We assign each processing element with a natural number for its name, where

the advantage of this naming scheme is discussed below. The number zero is assigned

to a special processing element called the host node, whose purpose is to handle

management duties for the set of processing elements, such as assigning tasks or data

17

sets to the other processing elements. We refer to the other processing elements in the

environment as worker nodes, assigning them the names 1, . . . , TOTAL-WORKERS,

where T0TAL_ WORKERS refers to the number of worker nodes in the environment.

The purpose of worker nodes is to collectively complete the main computation for a

problem by each performing a portion of it. For clarity purposes, we distinguish

between the following types of channels: those that connect the host to the worker

nodes and those that connect pairs of worker nodes. We assume for simplicity that

processing elements do not fail, that messages are not lost, and that unbounded

message size is supported by the environment.

The behavior expression for the overall specification of the computing environment

indicates that the actions of the host and worker nodes interleave, and it also indicates

that the actions of the two types of channels interleave. But it requires the actions

between the nodes and the channels to fully synchronize, as was the case for the

specification shown in Figure 2.2. The behavior expression for the overall specification

is shown in Figure 2.3.

The individual instances of worker nodes and the two types of channels are created

using recursion, based on the naming scheme for the processing elements, as shown

in Figure 2.4. The NodeCtr variable is used to recursively count in descending order

through all the “names” of the worker nodes, from TOTAL_ WORKERS to one (the

process definitions for creating the instances of the channels are similar in nature).

The required behavior of a channel is to forward a message from a sender to a

receiver, and then make a recursive call to itself in order to wait for the next message

that needs to be forwarded. An example of the process definition for a channel for

the case of a channel from a host to a worker is shown in Figure 2.5.

The specification of the behavior of the Host_Node and Worker_Node processes

depends on the particular program that is being specified.

The full specification for the parallel computing environment is presented in the

l8

Host_Node[send,recv](TOTAL_WORKERS)

| I I

All_Worker_Nodes[send,recv](TOTAL-WORKERS,TOTAL_WORKERS)

All_Host_to_Worker_Channels[send,recv] (TOTAL_WORKERS)

| | |

All_Worker_to_Worker_Channels[send,recv](TOTAL_WORKERS,

TOTAL_WORKERS)

Figure 2.3. Behavior expression for the overall specification
Appendix.

2.1.3 Specification of a Simple Program

The specification discussed above for a parallel computing environment is generic

in nature, such that it may be used for specifying any parallel program that

communicates via message-passing. Each particular program will have unique process

definitions for the host and worker nodes, but the remainder of the specification will

be approximately the same.

A typical structure for a message-passing parallel program is for the host node to

distribute work to each of the worker nodes, where the worker nodes then perform

their assigned duties, perhaps communicating among themselves to do so. Finally,

the worker nodes return the results to the host nodes, thus completing that stage of

computation. In the case of multiple stages of computation, the host node may then

assign a new set of tasks to the worker nodes, and the cycle continues.

19

process All_Worker_Nodes[send,recv](NUM-WRKRS,NodeCtr:Nat):

noexit :=

[NodeCtr > 0] —+

Worker_Node[send,recv] (NUM_WRKRS,NodeCtr)

|||

All_Worker_Nodes[send,recv](NUM_WRKRS,NodeCtr - 1)

endproc (* All_ Worker_Nodes *)

Figure 2.4. Recursive creation of worker nodes

process Host_to_Worker_Channel[send,recv](Sender,Rcvr:Nat): noexit :=

send lSender chvr ?Msg:Message;

recv lSender chvr lMsg;

Host_to_Worker_Channel[send,recv](Sender,Rcvr);

endproc {”‘ Host_to- Worker_ Channel *)

Figure 2.5. Process definition for a channel

A simple example of a message-passing parallel program that fits the above

description is one in which the host node sends each worker node a natural number

equal to the value of the worker node’s name, where the worker node then doubles

the received number and returns the result to the host. The specifications for

the host and worker node processes of this number-doubling program are shown

in Figure 2.6. The behavior expression for the host node illustrates the use of

process decomposition, where the subprocesses Send_Numbers and Receive_Replies

perform the tasks of sending messages to the worker nodes and receiving the results,

20

process Host-Node[send,recv](NUM_WRKRS:Nat): exit :=

Send_Numbers[send,recv](NUM_WRKRS);

Receive_Replies[send,recv](NUM_WRKRS);

exit

)

where

(* Send_Numbers uses recursion to send a number to each worker node *)

process Send_Numbers[send,recv](NodeCterat): exit :=

[NodeCtr > 0] —+

(

send !0 lNodeCtr lNodeCtr ;

Send-Numbers[send,recv] (NodeCtr - 1)

)

[l

[NodeCtr = 0] —> exit

endproc (* Send_Numbers *)

(* Receive_Replies uses recursion to receive numbers from worker nodes *)

process Receive_Replies[send,recv](NodeCtr:Nat): exit :=

[NodeCtr > 0] —->

(* Since Sender is a variable, receive the replies in any order *)

recv ?Sender:Nat lO ?Reply:Nat ;

Receive_Replies[send,recv](NodeCtr - 1)

)

[l

[NodeCtr = 0] -i exit

endproc (* Receive_Replies *)

endproc (* Host-Node *)

process Worker_Node[send,recv](NUM_WRKRS,MY_NUM:Nat): exit z:

(* Receive a number from the host node *)

recv 10 lMY_NUM ?Value:Nat ;

(* Send twice the value of the number back to the host node *)

send lMY_NUM l0 l(Value+Value) ;

exit

endproc (* Worker_Node *)

Figure 2.6. Specification of nodes for the number-doubling program

21

respectively. The Send_Numbers process requires the messages to be sent to the

worker nodes in decreasing order of the value of the worker nodes’ names, but the

Receive_Replies process receives the results in any order.

2.2 Cholesky Factorization Program

The application we used to generate most of the visualizations shown in this

dissertation is the Cholesky factorization program supplied with the PVM 2.4 [36]

distribution, modified to run under PVM 3.3. The executions occurred on clusters

of identical, ethernet-connected SUN SPARCstation 10 workstations. In the brief

background discussion below, we present an informal description of the parallelized

program, followed by LOTOS specifications of relevant portions of the program.

2.2.1 Informal Description of the Program

Cholesky factorization considers the special case in which a matrix A is both

symmetric and positive definite. In this case, matrix A has a factorization of the

form A = LLT, where L is a lower triangular matrix. This factorization is known as

the Cholesky factorization.

The program that we use to compute the Cholesky factorization is a Column-

Cholesky [37] implementation, in which the processing elements are each assigned an

approximately equal number of columns for the computational tasks, although not

necessarily consecutive. The implementation consists of three phases: synchronous

Cholesky factorization, forward substitution, and backward substitution. A full

discussion of these phases is beyond the scope of this dissertation, although the

interested reader may refer to other references [37, 38]. In the following presentation,

we focus on the message-passing events for each of the phases. We do not discuss the

contents of the messages, but rather focus on the patterns in which they are sent. The

22

matrix we consider is of size n X n, where the columns are numbered 0, . . . , n — 1. The

number of available worker node processes is represented by TOTAL_ WORKERS.

All three phases of the program contain message-passing events within loops that

use the column number as the index variable. In the case of the synchronous Cholesky

factorization phase, the iteration is in order of increasing column number, from 0 to

n — 1. During each iteration of the loop, the processing element checks if it is assigned

the column corresponding to the value of the index variable. If so, the processing

element sends a broadcast message to the other processing elements. Otherwise, it

receives the message broadcast from the processing element that actually is assigned

the column corresponding to the value of the index variable.

The message-passing behavior in the backward substitution phase is similar to

that described above for the synchronous Cholesky factorization phase, except that

the iteration is in order of decreasing column number, from n — 1 to 1 (column zero

is skipped).

The forward substitution phase iterates in order of increasing column number,

from 1 to n — 1 (column zero is again skipped), but the message-passing behavior is

different from that of the other two phases. In this case, if the processing element

determines that it is assigned the column corresponding to the value of the index

variable, then it waits to receive values sent from each of the other processing elements.

Otherwise, it sends a message to the processing element that is assigned the column.

2.2.2 LOTOS Specifications for the Program

In this example, the host node process participates in the computation only during

initialization, where the worker node processes perform the majority of the work.

The behavior expression for the worker node processes consists of the sequential

composition of an initialization process with three processes corresponding to the

three stages of the program:

23

Initialization[send,recv]((List of Local Variables));

Synchronous_Cholesky_Factorization[send,recv]((List of Local Variables));

Forward_Substitution[send,recv]((List of Local Variables)) ;

Backward_Substitution[send,recv]((List of Local Variables))

The error we consider below is located within the Forward_Substitution process,

and so we focus our discussion on that process. Its behavior expression consists of

a set of initialization operations, followed by the main loop that iterates in order of

increasing column number:

For_Sub_Pre—loop[send,recv]((List of Local Variables));

For_Sub_Main_Loop[send,recv](l,n-l,(List of Local Variables))

where the header and behavior expression for the For_Sub_Main_Loop process is

shown in Figure 2.7. The CurrentCol variable within the For_Sub_Main_Loop process

is used to iterate in order of increasing column number through recursive calls to the

For_Sub_Main_Loop process.

process For_Sub_Main_Loop[send,recv](CurrentColzNat,MAX_COL:Nat,

(List of Local Variables)): exit :=

[CurrentCol S MAX_COL] —i

(

For_Sub_Pre—communication[send,recv]((List of Local Variables));

For-Sub_Communication[send,recv](CurrentCol,(List of Local Variables));

For,Sub_Post-communication[send,recv]((List of Local Variables));

For_Sub_Main_,Loop[send,recv](CurrentCol+1,MAX_COL,

(List of Local Variables))

)

[l

[CurrentCol > MAX_COL] —» exit

Figure 2.7. Header and behavior expression for For_Sub-Main-Loop
Finally, the specification of the For_Sub_Communication process is shown in

24

Figure 2.8. The behavior expression for this process is divided into two choices

process For_Sub_Communication[send,recv](CurrentColzNat,

(List of Local Variables)): exit :=

[CurrentCol E MY-COL_SET] —»

For_Sub_Receive_Messages[send,recv](0,TOTAL_WORKERS);

ll

([CurrentCol ¢ MY-COL_SET] —+

send lMY-NUM lOwner(CurrentCol) lMsgzMessage ;

exit)

where

process For_Sub_Receive_Messages[send,recv](NodeCtr:Nat,

TOTAL_,WORKERS:Nat): exit :2

[NodeCtr < (TOTAL-WORKERS - 1)] —»

(* Since Sender is a variable, receive messages in any order *)

(recv ?Sender:Nat lMY_NUM ?Msg:Message ;

For_Sub_Receive_Messages[send,recv](NodeCtr + 1,

TOTAL_WORKERS))

ll

[NodeCtr = (TOTAL_WORKERS - 1)] —+ exit

endproc (* For.Sub_Receive_Messages *)

endproc (* For.Sub_Communication *)

Figure 2.8. Specification of the For_Sub_Communication process

that determine whether the worker node should participate in send or receive

actions. The selection between the two choices is based on whether the CurrentCol

variable belongs to the set of columns assigned to the worker node that has invoked

the process. In the case where the column is assigned to a worker node, the

recursive For.Sub_Receive_Messages process is used to receive TOTAL_ WORKERS-

] messages sent by the other worker nodes.

CHAPTER 3

Overview of the GOLD Debugging

Framework

In order to provide a context for the presentation of the research results, this chapter

describes GOLD [11], a graphically-based debugger that we developed to give a proof

of concept demonstration of our research. GOLD may be used to debug parallel

and distributed programs written in C and compiled using the GNU compiler gcc,

and has currently been ported to Sun workstations running either SunOS 4.1.x or

Solaris. GOLD supports programs that have been written using PVM 3.3 [39]

message-passing primitives, where the programs consist of a single host process that

spawns a collection of worker processes. A PVM program is typically designed to

parallelize a computation by having the host process distribute work to a collection

of worker processes. In this chapter, the top-down procedure for debugging using

GOLD is presented. Next, the general architecture of GOLD, which facilitates top-

down debugging, is discussed.

25

26

3.1 A Top-down Debugging Procedure

GOLD is designed to support a top-down procedure for locating the source of an

error. The steps in the top-down procedure are as follows.

1. Construct a hypothesis regarding the potential location of the source of the

error.

2. Establish one or more program states to examine in order to prove or disprove

the hypothesis.

3. For each program state from Step 2:

(a) Execute the program until the desired program state is reached.

(b) Examine the program state using a top-down approach, such that the

state is investigated from a broad scope initially, but the scope narrows as

debugging proceeds in order to examine the potential source of an error in

greater detail.

4. If the source of the error has been located, then quit; Else, construct a new

hypothesis based on what has been learned so far, and return to Step 2.

Therefore, the procedure for debugging is top-down in two respects. First, the

overall procedure uses a top-down strategy for deriving hypotheses that incrementally

make progress towards the source of an error. Second, Step 3(b) of the procedure

uses a top-down strategy for examining a particular program state.

The visualization-based features of the GOLD debugging environment are

designed to support the top-down debugging procedure. In particular, the

visualization-based approach to breakpointing supports the task of stopping the

program in a specific state (Step 2), while the strategy for coordinating the application

of different types of visualizations supports the examination of a program state (Step

3(b)). The GUI-based techniques for filtering communication events are useful when

27

a hypothesis concerns incorrect message-passing behavior, where it is helpful to depict

only the relevant communication activity during Step 3(b).

3.2 The General Architecture of GOLD

The top-down procedure described above defines an iterative approach to debugging.

The basis for iterative debugging is to execute a program repeatedly, each time

gathering more information to be used towards identifying the source of an error. The

difficulty in using an iterative approach for parallel debugging is that any attempt to

monitor the behavior of a parallel program may actually change its behavior. Referred

to as the probe effect [40], the debugging routines could potentially cause the order

of message-passing transactions between processes to change such that the erroneous

behavior may be difficult to reproduce.

Replay strategies [12] have been devised for providing deterministic re-executions

of parallel programs. The basis of a replay strategy is to record the communication

order between processes during an initial program run. No additional debugging

operations are performed during the initial run, thus minimizing the possibility that

the erroneous behavior will be concealed. Any additional program runs are guaranteed

to be equivalent by forcing the communication to occur in the same order as in

the initial run. Replay strategies thus facilitate an iterative approach to parallel

debugging.

The basic operation of GOLD is based on a replay strategy. In order to debug a

PVM program, the program is recompiled with an instrumented version of the PVM

library, where the instrumentation handles all details of the replay-based operation.

An initial run of the recompiled program is first used to collect the necessary data

for supporting program replay, where the program is run using its normal command-

line parameters. During the re-executions, the program is executed by typing gold

28

followed by the name of the program and its command-line parameters. For example,

if the program is typically invoked by typing “host datafile”, then the following line

would be used to invoke the re-execution:

gold host datafile

The replay-based operation of GOLD ensures deterministic re—execution, and so

GOLD has been constructed as an on-line debugger, where debugging operations are

performed during the re-executions. This approach is in contrast to a post-mortem

strategy for debugging, where important events are recorded during a program

execution, but the examination of the event data is performed off-line after execution

is complete. Although the overhead required by GOLD to perform on-line debugging

operations may slow the execution of the program to a small degree, the replay-based

operation guarantees that the behavior will maintain its equivalence with the initial

run.

A Central Operations Module (COM) is used to control the global activity during

the execution of a parallel program. The interface for this module is given in

Figure 3.1. Menu items for setting or removing a breakpoint distributed across

is; .m:f Mg,

l File hekpoints Options Elp 7

,ilExewtion of the distributed processes:

[Continue | [Halt]

- Exeoinetion of Distributed State:

[Space-tine Diegreo] [Status Grid]

Fmsmbuted Status: nu processes are stopped. "

Figure 3.1. The central operations interface

29

the set of processes are accessible through the Central Operations Interface (C01),

and options are available for activating visualizations to examine the state of the

set of processes. The interface also provides options for controlling the execution

of the parallel program, including Continue for restarting the execution after the

processes have all stopped and Halt for terminating execution. (A “start” option is

not applicable for the case of PVM programs, since the host process is started when

gold is initially activated, and the worker processes are started during the execution

of the host process via a pvm_spawn system call.) A Status line indicates the current

execution status for the set of processes.

The execution of individual processes is managed by Local Operations Modules

(LOMs), one per process. An overview of the architecture for the GOLD debugging

environment is shown in Figure 3.2, where the relationship between the COM and

I (for Process 0)

LOM

(for Procea O)

LOM

CO. / (for Process 1)

00M

gdb debugger

(for Process n)

—— . AlwaysecliveduringaGOLDdebugglngsession

———— a Acflvetedonenopflonalbesisbymeprogrammer

Figure 3.2. The architecture of GOLD

30

the LOMs is illustrated. The LOM uses the GNU debugger gdb to perform low-level

debugging operations, such as inserting breakpoints and determining the values of

particular variables. As such, a gdb process directly controls the execution of the

PVM process, and the LOM controls the execution of the gdb process. The LOM

modules communicate with the COM in order to coordinate the execution of the

parallel program. For example, in order to continue execution after the processes

have all stopped, the programmer would select the Continue button from the COI

(Figure 3.1), and the COM will then send an appropriate message to each of the

LOMs. Each LOM will then request the local debugger to continue execution of its

PVM process.

The top-down procedure for debugging facilitates the programmer’s ability to

move towards the source of an error. As such, the programmer will often narrow

the search to the execution of a particular process. In order to examine this local

execution more closely, a local operations interface (LOI) is supplied, as shown in

Figure 3.3. Various options are provided for controlling the execution of the single

process, including Start for initiating execution, Continue for restarting execution

after the process has been stopped at a local breakpoint, and Step and Next for

continuing execution one line at a time, where Step sequences through the individual

statements of a called function and Next treats a function call as a single line.

A Status line indicates the execution status for the process, and additional fields

indicate the current point of execution in terms of the source code, including the

function, the source code file, and the line number within the source code file. The

LOI also offers options for managing breakpoints and for examining the state of the

local process. In particular, menu items are available for setting or removing a local

breakpoint, and call graphs and source code listings may be activated to examine the

current state of the process. The bottom portion of the LOI displays messages that

are generated by the local debugger or by the execution of the program (e.g., output

31

' f???ff“‘fié‘ii‘i‘fif*im‘i'' In *r‘.;';f?i-'jif ,z -- ~- = - -

Breakpoints Options

éExecution of this process only:

iiCurrent Point of Execution:

Function: nain

Source Code File: cholhost.c

Line Number: 43

iExaoination of Current State:

1 l 9611 GFGPh I] Source Code Listing]

aStatus: Stopped at a breakpoint.

MESSAGES FROM gdb & PROGRAM EXECUTION:

: GOD is Free software and you are welcome to distribute copies of it

.3 under certain conditions: type "show copying” to see the conditions.

é There is absolutely no warranty For GDB: type “show warranty" for details

3 GDB 4.12 (spare-sun-solar132.3),

5; Copyright 1994 Free Software Foundation, Inc...

 OUTPUT 2:

Breakpoint 1. oain (argc=4, argv=0xeFFFF464) at ../cholhost.c:24
24 ii (ergo < 4) {

INPUT 3:

i Breakpoint 2, nain (argc=4, argv=0xeFFFF470) at ../cholhost.c:43

I 43 osgtype = 13001:

Figure 3.3. The local operations interface

32

from a call to printf).

The LOI for a process is activated as an option by the programmer, such that

it remains deactivated by default. By using this approach, the potential problem

of flooding the windowing environment with a large number of active interfaces

(windows) is avoided. In contrast, however, the COI remains active throughout the

debugging session, as it is required for controlling the overall execution of the parallel

program.

A status grid window is provided via the COI for displaying the current status

of each of the PVM processes used in a particular program execution, where

different color shadings represent different status values (e.g., running, stopped by

a breakpoint, etc.). A LOM notifies the COM whenever a change in the status of its

local process occurs, and the status grid is then updated accordingly. An example

of the status grid for an execution using a host process and eight worker processes is

shown in Figure 3.4. (The host process is always assigned the node number 0, while

the worker processes are assigned the node numbers 1, . . . , n for the case of n worker

processes.) In the case shown in Figure 3.4, process 6 is currently running, while the

remainder of processes are each stopped at a breakpoint.

33

. ' (A': .

“. 7A,!" \

.1. ‘:. ,{rx

1.: ,' ‘-

. .v I-V

u r'

Stopped (via a bredtpoint or single-stepping)

m1..., misuse gid- -- lulu

STRTLB [F Tl-E lNOIVIIlH. PRIIIESSES:

*o (Hoeti

1 .2‘ "iii 3 i“. "f 5 7 s

LEGEND:

Not stated I Process died

l

Disoiss I [Help

Figure 3.4. The status grid window

CHAPTER 4

Visualization-based Breakpointing

When attempting to determine the source of an error, the programmer marks a

particular program state for examination by placing a breakpoint at that state. This

chapter discusses the graphically-based approaches for establishing breakpoints using

GOLD [9, 11].

4.1 Distributed Breakpoints

The task of setting a distributed breakpoint for a set of processes has been considered

previously [22, 41, 42, 43]. The novelty of our approach is the use of visualization

for supporting the operation of setting a breakpoint. The discussion of distributed

breakpoints is presented in two parts, where we first present background information,

and then discuss the visualization—based approach used by GOLD.

4.1.1 Background Information

Process communication in a message-passing parallel program occurs via send and

receive events. Other types of events that occur local to a single process are referred

to as internal events [42]. The entire collection of events that occur during a program

execution is partially ordered by the “happened before” relation, denoted “—r” [44].

34

35

This relation is defined as follows.

1. If a and b are events in the same process, and 5 follows a, then a —+ b.

2. If a is a send event in one process, and b is the corresponding receive event in

another process, then a —+ b.

3. Ifa—rbandb—rc,thena—+c.

If a 71+ b, b 71+ a, and a 75 b, then a and b are referred to as concurrent events.

The state of a process (or a collection of processes) that has been stopped is

referred to as the breakpoint state. A common technique for stopping the execution

of a group of processes is to have a breakpoint located in a single process trigger

the operation. We refer to this particular process as the triggering process, and

the relevant breakpoint is known as the triggering breakpoint. When the triggering

breakpoint is reached, the remaining processes may be stopped using a variety of

strategies. One such strategy is to have the triggering process send an appropriate

message to each of the other processes requesting them to stop. However, this strategy

is unfavorable for debugging purposes, as it may hide the source of an error. For

example, consider the case of the two processes P and Q shown in Figure 4.1. For

this case, a triggering breakpoint occurs in process P at the location marked with

an “X”, where a message (indicated by a dotted arrow) is then sent to process Q in

order to stop it at time tq,. However, in order to determine if process communication

led to an error at point “X” in process P, process Q should be examined at time tq,,

as that was its state when it last had a causal effect on process P. By waiting until

tq, to examine process Q, any state information regarding the message that was sent

at tq, may change in the intervening time.

Another strategy by which a process may stop the global execution when it reaches

a triggering breakpoint is to simply let the other processes run until they block waiting

36

tPI ”2 s

P b x c

': — : Normal ' event

Processes / \ . 's ' WWW

Q a ‘ d top request

to‘ 102 toa

Time

Figure 4.1. Stopping global execution using a triggering breakpoint

for some event to occur in the triggering process. For example, in the case shown

in Figure 4.1, the triggering breakpoint at point “X” will eventually cause process Q

to block when it attempts the receive event d, since the send event c will not have

occurred yet. We can also observe from this example that process Q is again allowed

to proceed beyond the last state that had a causal effect on process P, and thus this

strategy for stopping the global execution has the same disadvantage as the previous

one.

In contrast, the strategy we use for stopping the global execution of a group of

processes is based on a causal distributed breakpoint [22]. This type of breakpoint is

one in which a single process stops at a triggering breakpoint and the remaining

processes are stopped at the last event that “happened before” the triggering

breakpoint. This last event is referred to as a causal breakpoint event. A causal

distributed breakpoint stops each process at the last point that had a causal effect on

the execution of the triggering process. An example of a causal distributed breakpoint

is shown in Figure 4.2. The triggering breakpoint is located at point “X” of process P,

and the dashed line indicates where each process is stopped by the causal distributed

breakpoint.

GOLD computes a causal distributed breakpoint by first executing the initial

program run. At the end of the normal execution of the initial run, each process

completes a post-processing stage before it terminates, where a dependency vector is

37

I

a d h I

" \ i
f / : Message-passing event

Processes O b I r/

/ //’ 9 ——— : Locationotbreakpointstates

R c 0:

Time

Figure 4.2. Example of a causal distributed breakpoint

recorded for each send and receive event performed by that process. The send and

receive events for a process are assigned consecutively—numbered event indices, such

that a dependency vector for event e,- of process i is defined as follows [22]:

Dl/ic = (61,62, . . . , 6”)

where n is the number of processes. Component 6.- of the vector is set equal to 6;.

Each message is appended with the value of the current event index from the sender,

such that the value of component 61', j 75 i, is set equal to the value of the event index

from the last message received by process i from process j. For the case in which no

message has been passed from process j to process i yet, the value of 6, is set equal

to l, a value less than all possible event indices.

At the end of the post-processing stage, the dependency vectors from each process

are copied to a common location accessible by the COM. The combined collection

of dependency vectors is used for computing the causal distributed breakpoints. A

dependency vector, however, only records the direct causal dependencies that exist

at a particular event position. In order to compute a causal distributed breakpoint,

transitive dependencies must also be considered. The visualization-based operation

for setting a causal distributed breakpoint uses an algorithm that was specifically

designed to consider transitive dependencies during the computation of a causal

38

distributed breakpoint [22].

4.1.2 Using Visualizations to Set Causal Distributed

Breakpoints

GOLD uses a visualization-based approach to support the operation of setting a causal

distributed breakpoint [9, 11]. We refer to the operation of setting a breakpoint

as the insertion of the breakpoint. The breakpoint menu from the COI (shown

in Figure 3.1) may be used to activate the breakpoint insertion interface shown in

Figure 4.3. A primary component of this interface is the communication graph,

referred to as a space-time diagram [44]. A space-time diagram plots processes along

one axis and time along the other, where messages are shown as lines between the

relevant (process, time) pairs. In this particular case, the displayed communication

events are those that were recorded in the replay data during the initial program

run. The outcome is a graph of communication patterns that is used to assist the

programmer in appropriately placing causal distributed breakpoints.

Only event indices are recorded during the collection of replay data. In particular,

the time that each event occurs is not recorded. The relative placement of the events

in the space-time diagram-is thus based solely on the “happened before” relation,

where the “time” of an event is based on its relative time. The time between a send

event and its corresponding receive event is one time unit, and concurrent events are

plotted at the same position in time. An alternative technique for the collection of

replay data would be to record a timestamp with each send or receive event, such

that the space-time diagram could more accurately represent the relative occurrence

of the events. However, the disadvantage of capturing timestamps during the initial

program run is that the level of monitoring intrusion is increased, likewise increasing

the possibility of a probe effect, and thus this technique is not used.

39

. : I:\\\III”

Iris4.":.iI-“ul

'71!:I-I“

IM/II

I/ I

n

b
0
‘

“
’
-
—

I
“

(
’
1

i
i

. ‘

\‘I

I
U

i

I

1

O

O

I
 (

D

N

I
i

x \

g '4 ”

I
I

i

l

I .-
i

i

I

E e

V

S a ii

18 35

r I H E

L-- :

o triggering breakpoint event I Between calls to oholFo and Forstb

OGeusolbredeointevent Inetueen callstot‘orstbandbacksib

O Progenitor-defined bredtpoint event

[um] {Ra-oval

Carnal Distributed Breakmints that are Ctrrently lmerted:

TRIGSERIK; PREIZESS THE (F TRIGGEle REFKPOINT

y

I
I
i O 35

l

I

E

[Oisniss I [Help I

L’Q‘ffih“WWWW \'u~\'\-o-v.‘,. aux-."~\‘n ..I,-,..' .~-... - ... u. t- - I”. M, u... --r-...,-,....; nu H... .; ,

Figure 4.3. Interface for insertion of causal distributed breakpoints

40

A potential location for a causal distributed breakpoint may be evaluated by

selecting an appropriate send or receive event in the space-time diagram. Scroll

bars have been included on both axes of the space-time diagram so that it can be

completely examined for potential locations of breakpoints. Upon selection of a send

or receive event, a dark-colored, filled circle is placed at the position of the event to

mark it as the location of the triggering breakpoint. The algorithm for computing the

causal distributed breakpoint is then executed, where the result of this computation

is depicted by placing an empty circle along each of the other process lines at the

location of the last event that had a causal effect on the execution of the triggering

process. (The lighter-colored, filled circles represent the location of programmer-

defined breakpoint events, which will be discussed below.) For example, in Figure 4.3,

the triggering breakpoint is at a receive event for process 8, and empty circles for

depicting the causal breakpoint events have been drawn accordingly along the other

process lines. (The causal breakpoint event for process 0 is located at an event earlier

than the displayed time frame.)

Setting causal distributed breakpoints based solely on a visualization of message-

passing events may be difficult, as it depends on the ability to locate relevant message-

passing patterns. In order to simplify the task, we offer an option for generating

programmer-defined marker events when the replay data is captured. Specifically, a

GOLD-supported system call may be added to the source code in appropriate places,

where this system call includes a textual description of the marker event as one of

its parameters. During the initial program run, the corresponding marker events are

collected along with the replay data. When the space-time diagram is rendered, the

marker events are depicted using shaded boxes, where different colors shadings are

used to distinguish marker events. For example, Figure 4.3 shows a case in which

two marker events were used, highlighting when the program is between the Cholesky

factorization and forward substitution phases, and between the forward substitution

41

and backward substitution phases. A legend of the different marker events is depicted

below the space-time diagram, where the textual descriptions of the marker events

are used to label the corresponding shaded boxes. The marker events may also be

selected as the triggering breakpoint event for a causal distributed breakpoint.

The selection of an event in the space-time diagram gives the programmer an

opportunity to evaluate the causal dependencies for a triggering breakpoint, but

does not actually set the causal distributed breakpoint, such that it would stop the

program during an execution. In order to complete the insertion of the breakpoint,

the programmer may select the Insert button. At that time, the list of inserted

breakpoints will be updated. For example, in the case of Figure 4.3, the causal

distributed breakpoint depicted in the space-time diagram has already been inserted,

as indicated by the entry in the list (lower window of Figure 4.3). When the Insert

button is selected, the COM also records the event number at which each process

should stop in order to satisfy the causal distributed breakpoint. As the program is

running, each LOM maintains a counter that tallies the number of message-passing

and marker events that have occurred for the particular PVM process, and will stop

the execution of the process when the value of the counter matches the event count

for a distributed breakpoint. If the programmer decides an inserted breakpoint is no

longer necessary, then the appropriate entry in the list of inserted breakpoints may

be selected and the Remove option chosen.

One of the special cases addressed by GOLD is when causal distributed

breakpoints overlap. During an execution where multiple breakpoints are set, the

program stops at the breakpoints according to the relative order of the triggering

breakpoints, where this order is computed according to the “happened before” relation

for events recorded in the replay data. In a case where causal distributed breakpoints

overlap, however, particular processes may not be able to stop at the appropriate

location for a later breakpoint after the stopping location of an initial breakpoint has

42

been reached. For example, consider the two causal distributed breakpoints shown

in Figure 4.4, where the triggering breakpoints are located at points “X” and “0”.

If the execution initially stops at the causal distributed breakpoint triggered at point

“X” (i.e., process P stops at point “X”, process Q stops after executing event 6, and

process R stops after executing event a), process P has already passed its stopping

location for the second breakpoint triggered at point “0” (i.e., event c), and so the

requirements of that causal distributed breakpoint cannot be satisfied. A similar

conflict occurs for process R if the program initially stops at the breakpoint triggered

at point “0”. In order to avoid this type of conflict, GOLD checks for overlapping

causal distributed breakpoints when the Insert button is selected, and prevents the

insertion of a breakpoint that it determines to be overlapping with a breakpoint that

was inserted earlier.

— : Message-passingevem

——— :Locafiondbmakpolntstates

Time

Figure 4.4. Overlapping causal distributed breakpoints

GOLD provides the programmer with an option for stopping the execution of

a process at an event time different from that computed by the causal distributed

breakpoint algorithm} This option is useful for stopping the program at non-causal

1The interface for inserting causal distributed breakpoint supports this option by using the

different mouse buttons for separate purposes. Specifically, the left mouse button is used to select

the location of a triggering breakpoint, and the middle mouse button is used to mark an alternative

breakpoint event.

43

distributed breakpoints. For example, Figure 4.5 illustrates a case where processes

1—8 are each stopped after the first message-passing event (initiated by process 8)

in the backward substitution phase. (The causal breakpoint event for process 0 is

again located at an event earlier than the displayed time frame.) The location of

programmer-defined breakpoint events are marked by lighter-colored, filled circles.

4.2 Local Breakpoints

An operation for inserting a local breakpoint is provided by the LOI, accessible from

the breakpoint menu. The interface that is activated for inserting a local breakpoint

consists of three main regions, as shown in Figure 4.6. The top region contains a

call graph that the programmer uses to select the appropriate function in which the

breakpoint should be placed. When the function is selected, the source code for that

function is displayed in the middle window. The programmer may set a breakpoint

by selecting the appropriate location in the source code listing, and then choosing the

Insert button. The bottom region of the interface is a list of the local breakpoints

that have been inserted for the process. For example, in the case shown in Figure 4.6,

a local breakpoint has been inserted for process 0 (i.e., the host process) immediately

after the call to pvm_spawn. An option for removing a breakpoint is also provided.

A particular case in which setting local breakpoints may be useful is when a process

has stopped at a distributed breakpoint event, but it is then desirable to examine the

sequence of states immediately following that event. In that case, local breakpoints

may be inserted for controlling the execution of the process. The process may then

be run separately from the other processes in the system, using the execution options

accessible from the LOI. The process may be run on an individual basis in this manner

until it blocks, waiting to receive a message from another process, or until completion

if no other receive events occur.

44

D Triming bredtpoint event I Betwen calls to cholf‘o and For-sub

0 Canal bredtpoint event I Betwen calls to Forstb and backed:

D Wanner-defined bredcpoint event

Vmi’rgllwéwm

Distributed Breakpoints that re erently Inserted:

TRIGGERING PROCESS TIME OF TRIGGER“: BRERKPOINT

8 44

Dismiss
Figure 4.5. Example of a non-causal distributed breakpoint

45

w
‘

‘
V
W
C
A
‘
S
'

exit“):
4t

}

blksize = etoi(*++ergv):

if (blksize > n/p) blksize = n/p :

lt enroll in pvn */

so = pvn_ngtid():

; pvn_speun('cholnode', (cherI*)0, 0. ", nprocs, tids): 5;;i

—55

’ nsgtgpe = 16001: 3;}

pvn_initsend(PvnDataDeFault)z ijg

[Insert I l Renove I

: Breekpoint inserted in Function ’nein' (line 42 0F cholhost.c)

éLocel Breakpoints that are Currently Inserted:

In nein (cholhoshc): at line 42

P

5
‘

i Dismiss Help i

Figure 4.6. Interface for insertion of local breakpoints

CHAPTER 5

Scalable Visualization Techniques

We have developed several techniques for improving the scalability of visualizations

that represent process communication [10, 11]. The basis for these techniques are

filtering mechanisms, where the programmer is provided with a simple interface for

controlling the information that is depicted. Two cases in particular have been

considered. First, we developed a set of visualization-based features to handle

programs that make use of a large number of processes. Second, we deveIOped

an approach for visualizing program executions that incur a large degree of process

communication. These two orthogonal sets of features may also be used cooperatively

for the case of programs that grow in size in both dimensions.

5.1 Handling Large Numbers of Processes

Space-time diagrams are used by GOLD to depict process communication during a

program execution. Previously, we described how a space-time diagram is used to

facilitate the insertion of causal distributed breakpoints. The space-time diagram

that depicts communication during the program execution is similar, except that the

time of an event is based on actual time, in contrast to a relative time. Each LOM

sends a message to the COM whenever a send or receive event occurs. The COM

46

47

orders these messages as they are received, waiting to record receive events until

the corresponding send events arrive, and ensuring that the events at each node are

recorded in the order that they occur. When an event is able to be recorded (i.e.,

all events that “happened before” the event are already recorded), a timestamp is

recorded with the event, where this timestamp is used as the time of the event when

constructing the space-time diagram. This timestamping mechanism ensures accurate

event ordering, which is critical for debugging.

Programs that use large numbers of processes particularly influence the

effectiveness of a space-time diagram, as it becomes difficult to detect patterns and

inconsistencies in a space-time diagram when the number of elements plotted along the

process axis grows large. In order to handle this shortcoming of space-time diagrams,

we take advantage of a strategy used by many programmers when debugging. That

is, in most cases, the programmer has a general idea of the location of the source of

an error, which means that typically the behavior of only a subset of the relevant

processes is of interest during debugging. When this case occurs, the “Process Filter”

window shown in Figure 5.1 may be activated for filtering what processes are depicted

 ml ~31}: 'ProcessFil-ter ' '[9 g

Select the:
.

if ODepict all processes

: ¢Depict only processes For which marker events occw

5; Q Depict only processes in the Following ren9e(s):

IHI

e 4-

Figure 5.1. Popup used to filter the processes

48

along the process axis. One of the selections shown in the window is an option to

specify one or more ranges of processes that should be depicted along the process

axis. For the case shown in Figure 5.1, processes 3—6 were selected as the range of

processes to be depicted, where the scenario was for an execution of the Cholesky

factorization program that used 16 worker processes. The unfiltered version of the -

space-time diagram is shown in Figure 5.2, while the space-time diagram that has had

filtering applied is shown in Figure 5.3. (The depicted time frame is the same in both

figures.) Clearly, the visualization shown in Figure 5.2 is too congested to be useful,

where, in contrast, the programmer may readily locate patterns of communication in

Figure 5.3.

An additional option shown in the popup in Figure 5.1 is one to depict only the

processes for which a programmer-defined marker event occurs. This option is useful

when only a subset of processes participate in some phase of the program execution,

where a marker event has been added to record participation in the phase. As in the

above case, the number of processes along the process axis of the space-time diagram

may be significantly reduced by using this option.

5.2 Handling a Large Degree of Process

Communication

Similar to the case above, the effectiveness of space-time diagrams is affected when a

program incurs a large degree of process communication. In this case, the detection

of patterns and inconsistencies is complicated since the space-time diagram becomes

“cluttered” with a large quantity of activity. Filtering options are again useful for

handling this situation, where, for this case, the filters are designed to eliminate

the depiction of all but a subset of messages. In particular, a single process is

selected as the process of interest, and a visualization referred to as a “Single Point-

49

Filters Options

p

L
D
C
)
‘
I
O
'
)
U
'
I
#
W
M
H
O

H
H
H
H
H
H
H

m
m
A
-
N
N
H
O

T I H E (nsec)

For Herker Events:

I Detueen cells to cholFo and Forsub

I Between cells to Forsd: and becksub

Figure 5.2. Space-time diagram before process-filtering has been applied

P

3

a;

e
?

-:
-
V
'

'
:
—
T
‘
I
'
.
"
"
’
.
"
'
3
3
5
0

'-
:v
.'
-'
.-
'.
'

M
W
N
-
t

I
?
:
"
k
0
“

'
2
5
-
”
:

A
:
(
1
%
?
“

A
‘
.
‘
.
.
5
.
V
.
fi
’
P
Y
/
X
s

.
'

.
‘
i
~
.
¢
‘
-
a
~
'
o
.
-
c
a
l
m
/
x
x

$
6
.
9
9

'
.
'
-
"
.
’
.
"
-
Z
¢
“
<
¢
'
a
.
'
.
‘
—
,
\
'
Y
.
¢
r
'
-

50

Filters Options

.t

_, Yuk? _.-/-. 3.1 1.3g, r: .-\ ,\;1)':‘r.’~ ' ,

9.111,; 3(1),“);.;.~.;j~:-;.;._-‘n-.~’1v~ -.;,/x‘.//),’% ‘“

43319 63859

T I H E (nsec)

Legend For Marker Events:

,i
.
5
I

.
w
W
W
W
W
J
N
M
Y
-
m
fi
-
m

t
w
e
e
“
.

~
.
.
a
.
\
v
s
a
e
c
o
s
fi
n
e
v
z
‘

"
v
i
-
“
-
K
I
M
-

n
-
J
'
fi
f
m
'
l
r
f
f

,
‘
f

.
‘
h
”
.
7
“

5
6
!
.

‘2
'
c

-
'
.
'
1
"
{
1
1

.
-
.
"
~
‘
.

I Between cells to cholFo end Forstb

.Betueencellstoi-‘orsibmdbeckstb

{
A
i
m
e
a
r
m
‘
s

P
:
<
\
K
t
\
'
h
"
:
-
'
_
r
'
-
‘
.
'

‘u.

I Disniss I I Help I

Figure 5.3. Space-time diagram after process-filtering has been applied

a
v
a
x
e
x
e
x
n
k
o
r
a
m
N
t
-
é
-
m
v
k
v
x
i
-
r
u
v
m
m

a
w
n
“
.
w

.
-

r
>
.
¢
M
X
¢
N
£
-
F
u
a
'
J
N

V
'
s
v
-
-
.
<
~
w
‘
5
s

A
V
“
A

I
"
;

5
6
5
.
M
fl
W
M
W
W
W
M
E
W
A
’
K
v
A
W
“

n
u
n
:
-
M

W
e
;
A
r
c
-
x
;

51

of-View (SPV) communication graph” is activated to depict only the messages that

are either received at or sent from that particular process. An example of this type

of visualization is shown in Figure 5.4, where process 10 has been selected as the

process of interest. (The event data for Figure 5.4 is the same as that used to render

the visualizations shown in Figures 5.2 and 5.3, where approximately the same time

frame is depicted.)

yam . 3' , . .'.‘ .'. '-'.‘-‘\.'<‘ , ._ J. .‘-'. '._._ 3. _._ $.39", '.' _.

"
m

)
h
'
A
V
E
W
‘
E

‘
k
'
o
w
fi
‘
M
‘
Q
W
h
‘
C
M
a
v
/
K
W
U

'
3
3
:
:

N
a
m
e
'
s
.

.
_

~
_-

."
.
4
7
3
'
.
f
-
o
-

'.
-.

3
!
)
‘
-
I
‘
-
‘
"
.
'
<
>
'
.
'

.
-
"
.
.
‘
.
"
I

_
~

:
-
:
-
‘
-
'
J

‘
6
r
m
»
:

c
a
m

X
W
i
-
I
V

3
1
3
'
)

”
3
“
.
"

 i-
N'
l.

a

I Biseiss I I Help I

{
1
0
6
w
}
V
A
W
W
M
W
W
W
m
m
m
m
m
m
w
m
m
»
n
w
a
m
%
x
e

M
M
W
W
’

{
K
B
K
O
M
W
.
$
M
W
W
J
N
~

u
k
W
\
’
£
W
€
Q
”
>
x
V
A
-
‘

E

Figure 5.4. Example of a single point-of-view communication graph

52

One of the features of an SPV graph is the simple approach for activating it. An

SPV graph may initially be activated by selecting the appropriate process axis in a

space—time diagram with the middle mouse button. In order to change the process

of interest, the applicable process axis may be selected in the SPV graph, and the

SPV graph will then be updated accordingly. This visualization-based approach for

filtering messages provides the programmer with a simple, efficient mechanism for

examining process communication when a large degree of communication occurs.

Additional options are offered for changing the scale of either the process or time

axes. These options are useful for either the case of a large number of processes or

a large degree of process communication. The programmer may use these options

to “zoom in” towards a particular region of a space-time diagram. For example,

Figure 5.5 illustrates a case in which the time axis scale for the space-time diagram

shown in Figure 5.3 was modified. By changing the time axis scale, the message-

passing events immediately before the backward substitution phase could be examined

more closely.

53

I
m

A

v

W
h
m
>
l
o
m
<
m
m
m
W
-
E
W
W
W
W
W
"
-

2
3
v
.
W
W
W

1
0
H
!
m

U
)

m

0
|

'
0
'

Filters Options

Legend f‘or Marker Events:

T I H E {nsec)

. I Between cells to cholFo end Forsib

Figure 5.5. Modifying the time axis scale to “zoom in”

CHAPTER 6

Visualization-based Examination

of Program States

Distinct types of visualizations are used to represent different characteristics of a

parallel program execution. For example, space-time diagrams are designed to depict

the communication between processes across time, whereas other visualizations are

targeted towards representing the execution in terms of the source code structure

[45, 46]. These different types of visualizations each have individual advantages,

and so may be applied for different purposes during debugging. In this chapter, we

present guidelines for coordinating the use of the different visualizations for examining

program states [9, 11, 25]. We first introduce the different types of visualizations

supported by GOLD, and we then discuss how they are applied in a top-down,

integrated manner.

6.1 Types of Visualizations Supported by GOLD

The initial execution of a program using GOLD is dedicated to the collection of

replay data, but the programmer may then run the program any additional number

of times in order to examine particular states. The different visualizations used for

54

55

examining program states may be categorized into four types, described as follows.

First, communication graphs are used to examine communication patterns during a

program execution. Both space—time diagrams and SPV graphs are supported for

depicting message-passing events as they occur. In the case of space-time diagrams,

any programmer-defined marker events are also depicted.

Second, a call graph is used to depict the current location in the execution of a

particular process. The function hierarchy (i.e., a tree structure) is used to graphically

represent the location, where the path from the root node to the node representing

the current function is highlighted. An example of a call graph is shown in Figure 6.1,

where the current location in the execution is within the function forsub.

1

I Dismiss I I Help I

Figure 6.1. Example of a call graph

56

A third type of visualization supported by GOLD is a source code listing. This

type of visualization is also used to depict the current location in the execution of a

particular process. In this case, however, the location is displayed via a listing of the

relevant source code, where the current location is highlighted. Although source code

listings have a textual format, as opposed to a graphical format, they are handled

as a visualization since their use is consistent with the use of the graphically-based

visualizations. An example of a source code listing is illustrated in Figure 6.2, where

the current location within the function forsub is shown.

)

pvn_ukaloet(tt2, . 1):

t+=t2:

}

}

else {

pvn_initsend(PvnDataDeFault):

pvn_kaloat(at, 1. 1):

nsgtype = k:

pvn_send(tids[nep[k]], nsgtype):

}

bl,” -= t :

bIJ] /= icoIIJ] ,

J++ 0
I

O

i becksub (n, nrows, nap, nyrows, row, b ,ne, nprocs)

: int me, n, nrows, leap, Inyrows :

Float "row, Ilb :

int nprocs:

Source Code File: mime LExenine Selected Variable I

 I Dismiss I l H°1P I

Figure 6.2. Example of a source code listing

57

Finally, data visualizations are used to inspect the contents of data structures.

They are especially useful for the case in which the other types of visualizations

have been used to narrow the source of a suspected error to the operations on a

particular data structure. The values of one- and two-dimensional arrays are depicted

graphically, while the values of other types of data structures are printed textually.

For the latter case, the contents of data structures located in the same process are

displayed in a common window. For example, Figure 6.3 shows a case in which the

values of several of the variables from the function forsub are displayed.

Process Index: 3

ne = 2

t = -o.ooez7515225

n = 24

Figure 6.3. Textual display of data structures

For the depiction of one— or two-dimensional arrays, each array is displayed in a

separate window. If the selected array has been declared with static dimension(s)

in the current function, then the size of that array is accessible via local debugger

commands. However, if the array is dynamically allocated, or passed as a pointer to

58

the current function, the size is not readily accessible, and so a separate interface is

activated to obtain additional information from the programmer. For example, in the

case of the source code listing in Figure 6.2, the variable map was passed as a pointer

to the function forsub. Upon selecting that variable for examination, the “Additional

Variable Information” interface shown in Figure 6.4 was activated. This interface lets

the programmer indicate whether the selected variable (i.e., a pointer) points to a

single element, a one-dimensional array, a two—dimensional array, or to some other

data structure. If the selection for a one-dimensional array or a two-dimensional array

is chosen, then additional size information must also be entered in the appropriate

textfield. In the case shown in Figure 6.4, the selection for a one-dimensional array

has been chosen for the variable map, and the size has been set equal to the variable

11. (The variable n is also passed as a variable to the function forsub.) By entering

this size information in the appropriate textfield and selecting the Apply button, the

LOM has enough information to query the local debugger for the values of the array

elements.

The one-dimensional array visualization corresponding to the variable map is

shown in Figure 6.5. In this case, the array values are plotted as a bar chart, where

the length of a bar represents its relative magnitude. The precise values of particular

elements may be examined by selecting the corresponding bar (thus highlighting

the bar), such that a key benefit of the array visualization is that it provides a

simple format for probing the values of the array elements. In the case shown in

Figure 6.5, the value of element 21 has just been probed, where the bar for element

21 is highlighted and its value is displayed.

An example of a two-dimensional array is shown in Figure 6.6. In this case,

the array values for the variable output are plotted in a two-dimensional grid,

where different color shadings represent different ranges of values. (In the particular

case shown in Figure 6.6, all the array values fall in either the top or the bottom

59

 :1 - ' i

mI mg): Additional Variable InFornation . [a In

Process Index: 3

Not enough inFornation was available to Fully determine the type

oF variable "nap . Please choose the wmriate selection

that corresponds to "nap“:

0 Single element

9 [he-dimeional array

0 Two-dimensional array

0 Other

Enter umber oF elements in First dimension (nay be an

expression that includes local integer variables):

first-er want-er a? ailments In seam likewise: {may he or:

ewe-r seal-.34: that iralissiea Ian's}. image! as: wales} ;

 - 99919 I Cancel .

Figure 6.4. Interface for obtaining additional variable information

range of the four possibilities listed in the legend.) Similar to the case of a one-

dimensional array, the precise value of a particular element may be examined by

selecting the corresponding rectangle, where the rectangle is then highlighted and the

corresponding value is displayed.

One of the features of the array visualizations is an option for filtering the values

in order to highlight particular instances of data. Several filtering possibilities are

provided, including choices for filtering values that exceed some maximum value,

that fall below some minimum value, that are equal to some critical value, or that

60

cl €6.11; flue-Dimional My Visualization lalaII

Process Index: 3

Saree Code File: cholnode.c Vridale: up I Filter Date I I Save Visualization I

23

l

V iR i

L L

u I

E l

S i

o _ l

0

MERRY INDICES 23

Value 0F nap[21] = 21.000000

I “am” I ”'MHZF' -

Figure 6.5. Graphical depiction of a one—dimensional array

are within some critical range. The interface for filtering data values is shown in

Figure 6.7, where a filter has been selected for highlighting negative data values in

the two-dimensional array visualization that was shown in Figure 6.6. The filtered

version of the two—dimensional array visualization is shown in Figure 6.8.

An additional feature of the array visualizations is an option for saving the current

contents of a visualization. This option is useful for examining changes in an array as

the program executes. The saved version of the array visualization may be compared

to an array visualization that is activated at a later point in the program execution.

For example, Figure 6.9 illustrates a case in which the array visualization shown in

Figure 6.8 was saved, and then compared to an array visualization for the variable

output at a later point in the program execution.

61

43L EOLD: Tau "' ‘ ‘ May Visualization l“I-_J1I

Process Index: 2

SareetodeFile: cholnode.c Variable: wtput IFilter Data | ISaveVisualizationI

LEGEND:

u

I Value >= 1.06

I [:1 1.06 > Value >= 0.71

N

n [:I 0.71 > Value >= 0.35

I I 0.35 > Value

c

E

s

COLUMN INDICES

Value oF wtputiZlIiil = —0.002337

o. ~

Figure 6.6. Graphical depiction of a two-dimensional array

The depiction of the space-time diagram used for state examination is handled by

the COM. The LOMs notify the COM whenever a message-passing or marker event

occurs, such that the space-time diagram may be updated. In contrast, the LOMs

handle the rendering of the other three types of visualizations. The information that

is contained in call graphs, source code listings, and data visualizations is confined to

a single process, and therefore communication with the COM is unnecessary.

The communication graphs are continuously updated during program execution.

When the program stops at a causal distributed breakpoint, scroll bars along the

time axes of the space-time diagram and the SPV graph may be used to examine the

communication events throughout the execution history. As such, the COM stores an

62

L—‘I GOLD: Filter Prra Data 9 1.! I

Process Index: 2

Please select the appropriate Filter to apply, where only

values matching the selected Filter should be shown:

0 None

C) Value >

0 Value =

Q value < ”M... .WMWH V.W.,........l

ORange: < Value < i

_ in 04.8321 I I

Soiree Code File: cholnode.c Vriable: output 5 Filter Data I iSave Visualization I

H
6
2

m
m
n

I Hatch

.Noflatch

COLUMNINDICES

FilteringsuccessFul.

 l Dis-is: M

Figure 6.8. Filtered version of a two—dimensional array

9.11:7...“ ‘Maw ' ' lJleI

Figure 6.9. Examination of changing values for a two-dimensional array

S
a
r
e
e

C
o
d
e

F
i
l
e
:

c
h
o
l
n
o
d
e
.
c

V
c
i
t
l
e

Mag '4me

/

3
:
.

r

.
V
r

.

i
.

'
\

e
’
v
'
f

v

o
.-

i
.

.

,
e

a
..

‘
a
f

A‘

<
.‘
I.
-
:

‘z

,
_
r

J
”

O O

S
o
i
r
e
e

C
o
d
e

F
i
l
e
:

c
h
o
l
n
o
d
e
.
c

V
a
r
i
a
b
l
e
:

o
u
t
p
u
t
I

F
i
l
t
e
r
D
a
t
a
]

I
S
a
v
e

V
i
s
u
a
l
i
z
a
t
i
o
L
l
I

.
\
I
l
l
l
l

HZQ I-i

1.)th

C
O
L
U
M
N
I
N
D
I
C
E
S

V
a
l
u
e

0
F
o
u
t
p
u
t
[
5
]
[
2
0
1
=
4
.
0
0
2
1
3
2

C
O
L
U
M
N
I
N
D
I
C
E
S

I

D
i
s
-
i
s
:

I
L
:

V
a
l
u
e

o
F
m
t
s
n
z
o
l

=
0
.
0
0
0
0
0
0

L
H

I
D
i
e
-
i
s
:

I
I

H
e
l
p

I

63

64

entry for each communication event that occurs in order to enable the programmer to

browse through the entire collection at any point during the execution of the program.

In contrast, call graphs, source code listings, and data visualizations are only updated

when the execution reaches a breakpoint (either a causal distributed breakpoint or a

local breakpoint). These visualizations reflect the current state of the program, and

so do not require the storage of execution data across time, yielding a savings in data

storage requirements. This feature is a side-effect of using an on-line approach to

visualization as opposed to a post-mortem approach. In the case of a post-mortem

strategy, any data that is potentially of interest must be stored during the program

execution, such that it may later be visualized after execution is complete.

6.2 Top-down Coordination of Visualizations

The different types of visualizations are applied in a top-down manner for examining

a program state. That is, the communication graphs and status grid are used as

the top-level visualizations, where the application of the other types of visualizations

is based on the selection of process axes or events from a communication graph.

Visualizations may be applied according to the hierarchy shown in Figure 6.10. Upon

selection of a process axis in a communication graph, the programmer is given the

options listed in the “Process Selection Window” shown in Figure 6.11, where the

program is currently stopped at the causal distributed breakpoint that was illustrated

in Figure 4.5. In particular, options are provided for activating an SPV graph, an

LOI, an LOI and a call graph, or an LOI and a source code listing for the selected

process. The advantage of activating the LOI at the same time as a call graph or a

source code listing is that the relevant process may be executed independently of the

other processes for examining a particular sequence of states. Alternatively, a call

graph or source code listing may be activated as an option from the LOI.

65

3
3

g? 5‘ 4g

3

5

C
a
l
l

G
r
a
p
h

C
o
m
m
u
n
i
c
a
t
i
o
n
G
r
a
p
h
s

S
p
a
c
e
-
t
i
m
e
D
i
a
g
r
a
m

S
P
V
G
r
a
p
h
.

C
a
u
s
a
l
0
m
m

4
B
r
e
a
k
p
o
i
n
t
s
I
n
t
e
r
f
a
c
e

L
o
c
a
l

r
a
t
i
o
n
s

“2
2:

..
.

Figure 6.10. Visualization hierarchy for examining a breakpoint state

Figure 6.11. Options for examining a breakpoint state from a space-time diagram

F
C
T
I
V
R
I
E
:

0
5
m
p
h

P
o
i
n
t
~
o
f
~
V
i
e
e
C
o
m
m
i
e
a
t
i
a
n

G
r
‘
q
a
h

O
L
o
c
a
l
M
u
t
t
o
n
:

I
n
t
e
r
f
a
c
e

(
L
O
I
)

f
o
r

P
r
o
c
e
e
e

0
L
0
!

a
i
d

C
e
l
l

G
r
‘
q
r
h
F
o
r

P
r
o
c
e
s
s

0
L
0
!

e
n
d
S
a
r
e
e

C
o
d
e

L
i
s
t
i
n
g

F
o
r

P
r
o
c
e
e
e

m
m

66

L
e
g
e
n
d

f
o
r

H
e
r
-
k
e
r
-
E
v
e
n
t
s
:

T

I
H

E
(
a
e
e
c
)

I
B
e
t
w
e
e
n

c
a
l
l
s

t
o

c
h
o
l
F
o

e
n
d
F
a
r
a
h

.
B
e
t
u
e
e
n
c
a
l
l
a
t
o
r
m
m
b
a
u
k
a
b

W

67

The “Process Selection Window” may also be activated by selecting the

appropriate process from the status grid. This option may be useful, for example, if

the status grid indicates a process has died. The relevant LOI, call graph, or source

code listing may be activated for determining the point at which the particular process

died.

An additional option is provided when an endpoint of a message-passing event

is selected from a communication graph, where the causal distributed breakpoint

interface will then be activated. In that case, the causal distributed breakpoint that

has the selected event as its triggering breakpoint is illustrated. If the programmer

decides to insert the illustrated breakpoint, then the breakpoint will not have any

effect on the current execution (since the relevant point in the execution has already

passed), but will apply for future re—executions.

The hierarchy shown in Figure 6.10 indicates that additional levels of visualizations

may be activated based on the selection of items in call graphs and source code listings.

If a function node is selected in a call graph, then a source code listing corresponding

to that function is displayed. If a variable name is selected from the source code

listing, then an appropriate data visualization is depicted.

The hierarchy for applying visualizations shown in Figure 6.10 is based on the

scope of the different visualizations. As the scope of the visualizations narrows,

the level of detail revealed by them increases. For example, space-time diagrams

depict global program activity (i.e., a broad scope), but they reveal only a low level

of detail regarding the execution of each process. In contrast, a data visualization

depicts detailed information regarding the contents of a data structure for a particular

process, but its scope is consequently limited to that data structure.

Therefore, we coordinate the use of numerous types of visualizations in order

to obtain a top-down approach for the examination of a program state, where the

examination initially proceeds from a broad scope, but where the scope narrows as

68

the potential source of an error is investigated. Specifically, a communication graph

is initially used to depict the overall message-passing activity in the system, where

increasingly greater detail is revealed by examining lower-level visualizations, such as

call graphs, source code listings, and data visualizations, all of which can be activated

at the local process level. By using this approach, the programmer may systematically

converge towards the source of an error.

CHAPTER 7

The Modeling of Expected

Behavior in Program

Visualizations

This chapter discusses a method for using the LOTOS specification of a parallel

program to model expected behavior in visualizations of the program’s execution

[8, 26]. For the case of visualizing communication between processing elements}

each LOTOS process represents a phase in the computation, where we overlap a

graphical representation of the phases onto a space-time diagram. For the case

in which a program is stopped at a breakpoint, we have developed techniques for

visualizing the current location in terms of the formal specification, either via a

visualization of the LOTOS process hierarchy or via a specification listing. This

overall methodology facilitates the task of debugging a parallel program by supporting

graphical comparisons between the actual behavior of the program and its expected

behavior. Prior to the development of GOLD, we developed a prototype debugging

environment, PANORAMA, to implement the expected behavior methodology. An

1Throughout this chapter, “processing element” refers to an operating system process, while

“process” refers to a LOTOS process.

69

70

overview of PANORAMA is presented in Section 7.1. Section 7.2 discusses how

PANORAMA supports the collection of data, and Section 7.3 discusses how it supports

the modeling of expected behavior in program visualizations. Section 7.4 considers

a practical example where we demonstrate how PANDRAMA can be used to detect

message-passing errors. Section 7.5 discusses the integration of the expected behavior

modeling techniques into the GOLD debugging environment, including improvements

and extensions to the original methodology.

7.1 Overview of Panorama

PANORAMA is a tool for visualizing the execution of a message-passing parallel

program within a model of the program’s expected behavior. There are two main

steps required to visualize program execution using PANORAMA: data collection and

graphical depiction. Below, we present an overview of how these two steps may be

used to generate program visualizations, while the details regarding each of the steps

are discussed in turn in the subsequent subsections.

The general execution flow for PANORAMA is shown in Figure 7.1. PANORAMA

incorporates a post-mortem visualization strategy, where trace data of important

events is collected during program execution, while the graphical depiction of the

data takes place off-line after execution is complete. Post-mortem approaches such

as this one have been widely applied by visualization tools [24, 47, 48, 49, 50].

The first step towards visualizing program execution is to collect the appropriate

data for rendering the visualizations. Both the LOTOS specification and the

source code of the program are required as input for accomplishing this task. The

specification is analyzed during the data collection step to derive a model of the

expected behavior for the program, where this model is recorded in the form of

expected behavior data. This expected behavior model is not only used in the

71

LOTOS Expected

S eci cation Behavior Data ,

p fl Data > (3139111931 Visualizations

Collection | Depiction >

Step F Step

Source Trace Data

Code (Based on the Expected

Behavioral Model)

Figure 7.1. General execution flow of PANORAMA

graphical depiction step, but it also guides the instrumentation of relevant events

in the source code. The instrumented version of the source code is then compiled

and executed, where the instrumentation generates trace data during the program

execution.

Both the expected behavior data and the trace data generated by the data

collection step are used as input to the graphical depiction step. The graphical

depiction step uses the two types of data to render a visualization of the program

execution that models the expected behavior of the program. Specifically, a mapping

is maintained between the expected behavior model and the trace data, thus providing

a means for visualizing the trace data in terms of high-level events from the LOTOS

specification. Such a visualization strategy is useful for debugging communication

errors, which we illustrate by example in Section 7.4.

7.2 Data Collection Step

The collection of data is the first step towards visualizing program execution using

PANORAMA. In this subsection, we discuss the collection of the two types of data

used by PANORAMA’S graphical depiction step: the expected behavior data and the

trace data. In particular, we discuss how these two types of data are generated using

72

the LOTOS specification and source code of the program as input.

7.2.1 Collection of Expected Behavior Data

A LOTOS specification is an abstraction of a program, from which a model of the

program’s expected behavior may be derived. In order to facilitate the task of

debugging message-passing errors, PANORAMA’S expected behavior model focuses

on capturing the occurrences of the message-passing events in a program. By

concentrating on the aspects of a specification related to message-passing events, the

expected behavior model forms an abbreviated representation of the specification,

while retaining a level of abstraction in the specification.

PANORAMA generates the expected behavior model by calculating the hierarchy

of processes within the LOTOS specification. The hierarchy forms a tree structure,

where the name of the specification is at the root of the tree. As each process is

added to the tree, the message-passing actions that occur in the behavior expression

of that process are recorded with it. For example, Figure 7.2 shows the subtree

of processes for the specification of the host node in the number-doubling program

from Section 2.1.3, where the message-passing actions that occur in the specification

are listed with their corresponding processes. After finishing the calculation of the

expected behavior model (i.e., the tree structure), PANORAMA stores the model,

where the stored version is known as expected behavior data.

Recording the message-passing actions according to where they appear in the

process hierarchy structure enables message-passing actions to be categorized. This

approach effectively treats the message-passing actions that occur in separate process

definitions as being of different types. For example, in the specification of the number-

doubling program that was shown in Figure 2.6, PANORAMA categorizes the action

to send a message located in the Send_Numbers process differently from the action

to send a message located in the Worker_Node process, where the names of the

73

process definitions are used to identify these different categories of message-sending

actions. Later, we will show how this approach allows us to visualize the different

types of message-passing events that occur during a program execution in terms of

their corresponding locations in the expected behavior model.

The strategy for generating the expected behavior model is based primarily on

the nesting of process definitions, where this nesting structure is provided by default

in a LOTOS specification. One aspect of LOTOS specifications that PANORAMA

considers during the generation of the model is that there are no reserved names for

the gates used in message-passing actions. Because LOTOS does not have reserved

keywords for this case, the programmer is allowed to explicitly declare gate names,

or, by default, send and recv will be used. Given the names of the gates, PANORAMA

is then able to identify the message-passing actions in the behavior expression of each

process definition.

7.2.2 Collection of Trace Data

In order to visualize a program’s execution, instrumentation must be used to identify

relevant events for the program to record when it is executed. The trace data

l Host_Node

l l

Send_Numbers Receive_Replies

send !0 !NodeCtr !NodeCtr recv ?Sender:Nat l0 ?Reply:Nat

Figure 7.2. Subtree of processes for the specification of the host node in the number-

doubling program

74

generated via instrumentation may later be graphically depicted in the form of

visualizations. In the following discussion, we explain how PANORAMA supports

each of the three stages of trace data collection: instrumentation, program execution

(during which trace data is generated), and post-processing.

Instrumentation

PANDRAMA uses a software instrumentation approach for the collection of trace data,

where appropriate statements are added to the source code in order to generate the

relevant trace data during program execution. The method for adding these data

collection statements is based directly on the expected behavior model. Specifically,

the method allows the programmer to map items from the expected behavior model

to their corresponding instrumentation points in the source code via a graphical

interface. The benefit of this approach is that the generated trace data may be

graphically depicted in terms of the expected behavior model, which will be discussed

in detail in Section 7.3. The programmer begins the mapping procedure by selecting

an entry from a nested listing of the processes, where the selection of the particular

process is based on the programmer’s decision to instrument the source code events

corresponding to that process. The programmer is then requested by PANORAMA to

indicate instrumentation points in the source code for each of the following events:

1. Entry point of the process: The location in the source code at which point the

implementation of the process’ behavior expression begins

2. Exit point of the process: The location in the source code at which point the

implementation of the process’ behavior expression ends

3. Message-sending actions for that process: The message-sending statements in

the source code that correspond to each of the message-sending actions in the

behavior expression of the process

4. Message-receiving actions for that process: The message-receiving statements

in the source code that correspond to each of the message—receiving actions in

the behavior expression of the process

75

Given that a LOTOS specification is an abstract representation of the

implementation, there may not be a direct correspondence between the specification

and the source code. Therefore, for each of the events listed above, the programmer

may indicate an approximate location in the source code if an exact location is

not available. For example, broadcasts are often implemented within a parallel

programming environment as a single procedure call, but LOTOS requires each

message that is sent to be specified as a separate action. In this case, PANORAMA

provides the programmer with a special option for indicating a many-to-one mapping.

After selecting instrumentation points for each of these events, the programmer

may then start the mapping procedure again for a new process from the expected

behavior model. An example of this mapping procedure is shown in Figure 7.3, where

the Receive-Replies process from the number-doubling program is being handled. The

upper window lists the events to be instrumented for the Receive_Replies process,

while the lower window displays the source code for the node program of the number-

doubling program. The button labeled “Instrument Program” is used to perform a

specific event instrumentation after items have been selected from both the upper

and lower windows. The button labeled “Select new process” allows a new process

to be chosen for instrumentation from a nested listing of the processes.

After the programmer has performed the mapping procedure for each process

of interest, PANORAMA handles the underlying details of adding the data

collection statements to the source code. Currently, PANORAMA provides software

instrumentation support for programs that use PVM (Parallel Virtual Machine)

version 2.4 [36] message-passing primitives. Both C and Fortran coding options are

handled by PANORAMA.

A significant advantage to PANORAMA’S support of a software instrumentation

approach is that the data collection statements are capable of generating auxiliary

information as part of a traced event, where the auxiliary information is used to map

O O l U I O I ‘ U

: y‘u' . .. -' , 1 e

. ooooooooo

-:-:-:- :- t-bH-H-S-t-M-z - - .
0 II. ..tIII'OOI I 0.10 .I .I

o u'u 9 ° I O'I't"'0'0‘l...l‘ '0' e‘e'l'c'o “I .50., "4" . .,.,._._._._.,.,-..,.,._. ._.‘ . . _ . .
l'. I C .I.I'I.C.I.o'-.'.n'1.l'p.-.- U'I‘I.h'h.~.l'l O U . I I O O V l I
'0‘...‘ ..O‘I-Q.O.IIQ.‘.O‘IIO.I.I C lllllll

Events to instrunent:

Receive_Replies : Entry Point

Receive_Replies : Exit Point

Receive_Replies : Receive action: recv ?Sender:Net l0 ?Replg:Net §

3

l

l

i
i

i

l

l
t
i

5

u
.
-
"
c
a
n
I
m
m
e
n
s
e

s
o
.
u
s
e

Select an event Fran the above list and then indicate

the corresponding instrunentetion point in the source code:

n

In

Node program.

c
o
o
-
e
c
u
“

m
.
D
u
o
-
0
0
.
.
.
.
0
.
0
I
0
.
0
D
.
0
.
”
I
.
.
.
“
D
I
I
‘
O
m
O
“
O
t
o
.
.
m
u
o
fl
o
m
o
o
l
c
«
C
O
-
“
M
I
D
“
.
.
-
M
t
u
l
t
u
l
.
”
o
u
t
“
.
.
.
I
m
o
t
n
m
m
l
m
t
m
o
u
l
m
‘
m
l
m
n
n
m
o
n
o
l
u
i
m

o
n

n
o
n

o .
-

o
n

O
.

o
n

I
O
N
”
.
.
.

a
.
.
.
c
o
c
o
o
n
.
-
e
n
a
m
e
-
m
o
o
o
o
n
I
I
o
-
o
u
n
e
u
m

Figure 7.3. Example of the mapping procedure

the event to its corresponding location in the source code and formal specification.

However, the disadvantage of software instrumentation is that it shares the processor

with the application program, and therefore may produce interference in terms of

both execution time and the ordering of message—passing events between processors.

Less-intrusive forms of program instrumentation are possible, such as hardware

instrumentation where specialized components are used to collect trace data. The

disadvantage of using hardware instrumentation is the difficulty of establishing a

mapping between the low-level form of the collected data and the high-level form

of the source code and program specification. Our visualization strategy relies

on the existence of a mapping between the collected trace data and the expected

behavior model, and thus a software instrumentation approach has been chosen for

77

PANORAMA. Although this approach may potentially alter the execution behavior

of the program, PANORAMA attempts to avoid this possibility by allowing the

programmer to selectively add instrumentation for only the processes in the expected

behavior model that are of interest.

Program Execution

The instrumented version of the source code may be compiled and executed, where

each processing element produces a file of trace data during the program execution.

The merging of these trace files is performed by PANORAMA in the post-processing

stage.

Post-processing of the Trace Data

The post-processing stage performs a time-ordered merge of the trace files that were

generated by the processing elements during the program execution stage. Since

distributed-memory systems generally lack a synchronized global clock, additional

analysis is then performed to adjust the ordering to be consistent with the happened-

before relation. In the PANORAMA framework, it is guaranteed that no message-

passing events are listed in the time-ordering as being received before they are sent.

7.3 Graphical Depiction Step

The graphical depiction step of PANORAMA uses both the expected behavior data

and the trace data to render a visualization of the program execution that models the

expected behavior of the program. In this subsection, we discuss the visualization

strategy used by PANORAMA, including a description of the major features available

for generating visualizations.

Space-time diagrams display communication events between processing elements

78

across time. One axis of the diagram represents the processing elements, while the

other axis represents time. PANORAMA uses an enhanced version of a space-time

diagram for graphically depicting program execution, where the enhancement is an

overlapping of the active LOTOS processes onto the diagram. (A process is considered

“active” between its recorded entry and exit times.) Since both message—passing

events and process entry/exit times are depicted by the diagram, it effectively displays

each of the items from the expected behavior model across time as the corresponding

events appear in the trace data. By graphically depicting the trace data in terms

of items from the expected behavior model, the diagram facilitates a comparison

between the actual behavior and expected behavior of the program. Thus, we call

this diagram a Behavior Comparison graph, or BC—graph for short.

The BC-graph is constructed by using arcs to represent message-passing events

and shaded rectangles to represent the active processes. (The shaded portion of a

rectangle represents the interval between the entry and exit times of the corresponding

process.) Different shading patterns are used to distinguish between active processes.

The graphical depiction of the events is performed by a playback strategy, where the

programmer may choose either to sequence through the events in a step mode or have

PANORAMA provide a simulated replay. For example, a BC-graph of the execution of

the number-doubling program is illustrated in Figure 7.4. This visualization shows

that six processing elements were involved in the computation, consisting of one

host (by default, labeled “0”) and five worker nodes (labeled “1-5”). The shaded

rectangles represent the intervals of time throughout the program execution during

which the Send_Numbers, Receive_Replies, and Worker_Node processes were active.

The message-passing events that occurred during the program execution are depicted

in the model of active processes, thus facilitating a visual mapping of the message—

passing events to their corresponding location in the expected behavioral model.

PANORAMA’s visualization strategy offers several features that facilitate the

79

El““filialllfiititmllfiii l? 1...?- 221=

l Beta Control:

Replay Control:

.1. \ \

0 ,1 »

s4 41?
T I H E (in as)

Filtered Processes:

- Send.Nunbers - Receive_Replies

aHorkerJlode

O
Z
H
U
D
C
D
M
G
O
W
'
U

m
—
t
z
m
x
m
r
m

M

Figure 7.4. BC-graph of the execution of the number-doubling program

debugging of message-passing errors. One of the key features is that the graphical

elements that represent the items from the expected behavior model may be selected

using the cursor, at which time windows are activated that display the portions of

the source code and LOTOS specification that correspond to the selected element.

This feature provides a simple method for the programmer to investigate a potential

error that was detected in the visualization. Another feature is the ability to perform

selective filtering of the events to be depicted, where the processes in the expected

behavioral model are used as the basis for the selection. PANORAMA’s default

graphical depiction strategy is to display the entire set of events recorded in the

trace data, potentially leading to congestion. In order to reduce the congestion, the

80

programmer may choose relevant processes from a listing of the hierarchy of processes,

such that the events will be displayed exclusively for the chosen processes. Filtering

options are also provided for displaying only the active processes or only the message-

passing events. Finally, a BC-graph provides an abstraction (clustering) mechanism

for displaying a subtree of active processes by their parent process, thus reducing

the congestion that may be caused by displaying the individual active processes (as

depicted by the shaded rectangles). This last feature may be used in combination with

the selective filtering option to provide a top-down approach to debugging. Examples

of several of these debugging features are given in the following section.

7.4 Debugging Example: Cholesky Factorization

Space—time diagrams are useful for locating errors in simple message-passing patterns.

However, for cases in which the message-passing patterns between processing elements

are either complex or nonexistent, the benefit of space-time diagrams is limited. In

this section, we illustrate an example in which PANORAMA facilitates the task of

debugging a message-passing error, where the error is not readily detected when

viewing space-time diagrams. The application we use is the Cholesky factorization

program. The trace data for this example was obtained by running the program on a

cluster of eight identical ethernet-connected SUN SPARCstation l workstations. In

the course of the discussion, we provide several PANORAMA-generated visualizations

that demonstrate the debugging features of PANORAMA.

The error that we investigate is located in the communication step of the forward

substitution phase. Specifically, the processing element that is assigned the column

corresponding to the current value of the index variable must wait to receive messages

from TOTAL_ WORKERS - 1 worker node processes, where a looping construct is

used to implement the receipt of multiple messages. We consider the case in which

81

the looping construct is implemented erroneously, such that it waits for messages

from TOTAL_ WORKERS worker node processes instead of TOTAL_WORKERS —

1. Since only TOTAL_WORKERS — 1 worker nodes send messages, the processing

element that is assigned the column enters a deadlock state since it is waiting for a

message that will never arrive. The other worker nodes are able to proceed to the

next iteration, but each one eventually enters the deadlock state upon executing an

iteration in which it is assigned the current column. Since the processing elements

enter deadlock states, our discussion below considers partial trace files that were

generated by the worker nodes before they entered the deadlock state.

The complexity of the message-passing patterns complicates the task of locating

the error in the forward substitution phase. For example, a BC-graph of only message-

passing events at the point of deadlock is shown in Figure 7.5. (The host node,

represented by processing element “0”, does not communicate with the worker nodes

after the initialization phase, and, thus, there are no message-passing events shown

for processing element “0”.) This particular visualization perspective is equivalent to

that provided by space-time diagrams.

By using the clustering mechanism, the BC-graph may be used to display the

communication behavior in a model of the high-level stages of the program. For

example, Figure 7.6 shows the message-passing behavior in the synchronous Cholesky

factorization and forward substitution phases of the program, where phases are

distinguished by the level of shading. By using this type of visualization perspective

for initially examining the program execution, the source of the problem may be

narrowed down to the forward substitution phase.

In order to gain a better understanding of the erroneous message-passing behavior

in the forward substitution phase, filtering may be used to depict key events. For

example, Figure 7.7 shows the case in which filters have been applied to depict only the

active For.Sub_Receive_Messages processes along with the relevant message-passing

82

Data Control:

Replay Control:

8

m
—
d
z
m
z
m
t
-
r
n

p

R

0

C

E

S

S

I

N

G

T I H E (in ms)

Filtered Processes:

SgnchronousJZholeskgjactorization

g Forwa‘d_5tbstitution
Figure 7.5. BC-graph of only message-passing events

events.

The visualization in Figure 7.7 shows that the processing elements are each waiting

in the For_Sub_Receive_Messages process at the point where the information in the

partial trace files is exhausted. (The depicted events are the last events recorded for

each of the processing elements, at which point progress apparently stops since none

of the processing elements completed the execution of the program.) The behavior of

processing element “1” is of particular interest, as we see that it received one message

from each of the other processing elements (i.e., the expected behavior, as defined

by the For_Sub_Receive_Messages process for a worker node whose CurrentCol

E MY_ COL_SET), yet it failed to exit the For_Sub_Receive_Messages process as

83

Date Control:

Replay Control:

8

P

R

D

C

E

S

S

l

N

G

m
—
t
z
m
z
r
n
I
—
r
n

T I H E (in ms)

Filtered Processes:

Sgnchronous_Choleskg_Fectorizetion

aForuard_Substitution
Figure 7.6. BC-graph of both active processes and message-passing events

it should have at approximately the time 994 milliseconds. Upon locating this

questionable behavior, the programmer may use the cursor to select any of the

graphical elements that represent the process, at which time windows are displayed

showing the specification and source code corresponding to the questionable event,

as is shown in Figure 7.8. Through a comparison of the contents of the two windows,

an inconsistency may be detected in the bound for the number of messages to be

received, where the specification states a bound equal to TOTAL_WORKERS — 1,

but the source code states a bound equal to TOTAL_ WORKERS. This inconsistency

explains the cause of the deadlock problem.

84

Date Control:

Replag Control:

8

m
—
I
z
m
z
m
r
-
r
n

p

R

0

C

E

S

S

l

N

G

T I H E (in ns)

Filtered Processes:

aFor_Stb_Receive_Hesseges
Figure 7.7. BC-graph of the filtered events

7.5 Integration with GOLD

GOLD is designed as on-line debugger, in contrast to PANORAMA, which is a

post-mortem debugger. As such, several features were added to the expected

behavior modeling approach when it was integrated into GOLD, where these features

specifically take advantage of the on-line debugging framework. In addition, some

improvements to the interfaces were made, in particular for the mapping tool. These

improvements and extensions are discussed below.

process

Figure 7.8. Windows for specification and source code corresponding to questionable

p
r
o
c
e
s
s

F
o
r
_
$
1
b
_
R
e
o
e
i
v
e
_
H
e
s
s
e
g
e
s
[
s
e
n
d
,
r
e
c
v
l
(
N
o
d
e
C
t
r
:
N
e

[
N
o
d
e
C
t
r

(
(
T
O
T
K
J
K
R
K
H
Z
S
-
D
J

-
>

(

r
e
c
v

‘
7
S
e
n
d
e
r
:
N
e
t
M
Y
-
”

'
M
s
g
z
fl
e
s
s
a
g
e
:

F
n
r
_
S
t
b
_
R
e
e
e
i
v
e
_
H
e
s
s
e
g
e
s
[
s
e
n
d
,
r
e
c
v
]
(
W
u

s
1
.
T
E

) I
]

[
N
o
d
e
C
t
r

=
(
T
O
T
fl
.
_
m
<
I
-
R
S
-
1
)
I

-
>

e
x
i
t

«
w
r
c
h
F
o
t
-
j
t
b
fi
e
o
e
i
v
e
j
e
e
s
e
g
e
s
i
)

e
n
t
r
e
e

(
l
f
o
r
_
S
I
b
_
C
o
r
n
n
i
c
e
t
i
o
n
l
)

e
n
d
a
r
o
c
(
f
w
j
i
b
fi
a
i
n
i
o
o
p
l
)

e
n
d
a
m
c
(
fi
m
m
t
i
t
u
t
i
o
n
l
)

w
I
k
l
=

n
o
)

{

F
a
‘
(
i
=
0
:
i
(
(
T
U
T
W
)
:
f
“
)

(

|.u_i|.u::|uzr—¢n

LKDUWWWHZU

w
w
(
k
)
:

r
c
v
(
k
)
:

g
e
t
n
f
l
o
a
t
(
&
t
2
,
1
)
:

w
e
:

 g
1
C
0
0
V
‘

T
l
H
E
(
i
n
-
s
)

F
i
l
t
e
r
e
d

P
r
o
c
e
s
s
e
s
:

—
F
o
r
_
S
t
b
_
R
e
o
e
i
v
e
-
H
e
s
s
e
9
e
s

85

86

7.5.1 An Improved Mapping Tool

Several improvements were made for the expected behavior mapping tool when it

was integrated into the GOLD debugging environment. For example, the PANORAMA

version of the mapping tool used a nested listing to show the different levels in the

hierarchy of a LOTOS specification. The nested listing has been replaced with a call

graph structure, that graphically illustrates the hierarchical structure. For example,

the interface for the improved mapping tool is shown in Figure 7.9, where the top

left window depicts the hierarchy of processes from the LOTOS specification of the

Cholesky factorization program. The structure of the source code is also illustrated

via a call graph, as shown in the top right window. By selecting a node from the

specification call graph, the events that may be instrumented for the corresponding

process are shown in the lower left window. By selecting a node from the program call

graph, the corresponding location in the source code listing is displayed in the lower

right window. An event is instrumented by making a selection from both the lower

left and lower right windows, and then selecting the Instrument Program button.

An additional improvement to the mapping tool is that it now assists the

programmer in finding the appropriate mapping between an expected behavior event

and the corresponding source code. In particular, when the programmer selects a

node from the specification call graph, the mapping tool searches for a matching

node in the program call graph, and will update the “Program Call Graph” and

“Source Code” displays accordingly if it finds a match. If no match is found, the

“Program Call Graph” and “Source Code” displays are left unchanged.

Figure 7.9. The interface for the improved mapping tool

m

W
3
1
5
i
“

F
w
d
j
d
n
u
t
u
t
i
o
n
j

[
i
a
c
k
u
a
d
_
5
u
b
s
t
i

T
S
u
e
-
"
L
I
E

E
m
a
i
l
-
fl
]

[
m
a
m
—
i
n
i

W
S
M
L
-
W
I

E
o
n
s
m
j
e
i
x
i
v
e
fi
e
u
l

u
:
.
.
a
s

.
.

F
o
r
(
k
=
1
:
k
<
n
:
k
“
)
(

t
=

0
:

F
o
r

(
i
=
0
:
1
(
J
:
l
“
)
t

r
:
i
n
I

e
“
m
u
l
l
e
t
-
m
i
e
n
:

3

i
f
(
w
a
s

=
=

n
o
)

<

m

F
o
r
(
l
=
0
:
i
<
(
m
1
)
:
i
»
)

(

W
=

k
:

'

M
fl
m
(

-
1
,
n
g
t
u
a
o

,
1
1
.

1
1
8
)
:

M
l
p
k
f
l
o
e
u

“
:
2
.

1
.

1
)
1

t
+
=
t
2
:

}

m
s
s

E
N
D
:

F
o
r
_
S
I
.
h
_
R
e
o
e
i
v
e
_
H
e
s
s
a
g
e
s

R
E
C
E
I
V
E

E
V
E
N
T
:

r
e
c
v
S
e
n
d
e
r
-
m
a
t
"
W
M

'
M
s
g
fl
i
e
s
s
a
g

}

p
v
n
.
i
n
i
t
s
e
n
d
(

P
v
-
I
l
e
t
e
l
l
e
t
‘
u
l
t

)
:

m
m
.
“

t
t
.

1
.

1
)
:

87

88

7.5.2 A BC-graph Interface for Causal Distributed

Breakpoints

The trace data generated during the initial program run is used to support program

replay. For programs that have been instrumented using the mapping tool, additional

trace data is generated by each instrumented event. This additional trace data

is used to render a BC-graph interface for setting causal distributed breakpoints.

An example of this interface is shown in Figure 7.10 for the case of the Cholesky

factorization program. The breakpoint that was originally illustrated in Figure 4.3

has now been inserted using the BC-graph interface, where different color shadings

distinguish between LOTOS processes. The advantage of using a BC-graph interface

for setting causal distributed breakpoints is that the modeling of expected behavior

can assist the programmer in determining the appropriate breakpoint location.

The BC-graph supported by PANORAMA offers filtering and clustering options for

controlling the display of events. The BC-graph interfaces supported by GOLD also

offer filtering and clustering options, where the interface for this feature is shown

in Figure 7.11. (The operation of the interface differs depending on whether it was

activated via the Filter or Cluster menu options.) In the case shown in Figure 7.11,

the highlighted processes represent those for which events have been filtered. In

addition, the subtree of processes rooted at the Synchronous_ChoIesky node have

been clustered, such that events that occur for any of the processes in the subtree

will be displayed as occurring for the Synchronous_ Cholesky process.

7.5.3 Expected Behavior Visualizations

Several visualizations were integrated into the GOLD debugging environment for

modeling expected behavior. The BC-graph was one of these, where it is now used to

depict communication activity as the events occur, rather than from a post-mortem

89

‘__._..-,.‘-_:. ,r.._..,... -q;b ..o --..-_-. -_ , \Jat‘U-(lI--. . .‘e.' . . 4 .

. . ,-_- . .v , . H ,. .. 5.‘ .‘. 3 -.. 3...: H‘.,-._ . ..4 , . . , . . _-,',-.'_-_'-_ ' .,..-...._.,... . .‘.

' '- .. ' . ' . ‘ . . . ’ . .. i .a'h_:.'-“.‘ ' ,x' ‘ '.'. 'u, . I - ‘

‘ #33 III 1‘ ' n-mam I . 0 t J- . o. ,v . .- -’ " 1 o r I i

‘ 4 "'l-i‘ “-' '. ' -' ‘.‘. -' - . K - - ‘-'.~'- ' r, ‘ ' A A .‘ -- '- . -‘ - v- . t .d

Filter Cluster

‘ ’1'-'.'-'.'~‘.' '.‘.‘.' ..‘............

a:

A

:
‘
W
A
w
fl
-
m
e

u
m
w
.
+
z
a
m
-
:
W

R E 1

o L 2

C E 3

is H , III‘I‘II_

s E 5 -II\IIEII*

S N 6 .Imuluini—

I T 7 -I-I-I-I‘\

N S a —-_--.

. A-w' yeww- I,- 1'. '13 I to4 . {'“Y’RZI'”. ‘0(I\)14\:1;‘-11 2

" U. "y; 5‘" .t‘ /< r5 S53$§3§fl5§jfiz\fiyfigf: 5131’: :x u,

' him-1M (Mfirbtd‘tceéofl; ,5:.;.;.‘.‘._z.,;a ‘

- For LOTUS processes:

0 Triggering breakpoint event I ijholeskgjactorizatim

O Causal breakpoint event I Fmabstitutim

o manner-dorms: mount. event I Beckeardjtbstitutiomfactorizatim

Causal Distributed Breakpoints that re Currently Inserted:

TRIGGEle PRIIIESS TII‘E (I: TRIGGERINS RENO-“DIM

8 S2

)

 ‘

m
e
m
m
w
m
m
m
m
m
fl
m
m
w
w
w
.
m
m
w
m
m
a
m
w
n
m
m
m
w
a

W
W
A
V
M
I
k
K
‘
7
M
W
A
V

'
.
(
‘
v
.
\
\
&
‘
(
o
x
\
‘
.
¢
<
a

 [Disniss I l Help I

L.
..

Figure 7.10. BC-graph interface for causal distributed breakpoints

Figure 7.11. The filtering/clustering interface

I

l

W
H
o
s
u
o
j
o
r
-
k
o
n
t

|
F
1
1
_
H
o
r
k
e
r
_
t
o
_
l
i
o
r
k
fl

I
|

F
m
L
t
o
fi
o
r
k
e
r
j
h
a
n
]

F
i
n
g
l
e
j
o
r
k
e
r
j
h
m

r
l

l

fi
x
t
r
o
n
o
u
s
j
h
o
l
e
s
k
y
l

f
m
d
j
t
b
s
t
i
t
u
t
l
o
n

p
a
c
k
u
a
‘
d
fi
u
b
s
t
i
t
u
t
i
o
l

l
J

I
F
o
r
_
5
d
)
_
H
a
i
n
_
L
o
o
p

I
c
h
j
u
b
fi
a
i
n
i
o
o
p

I

l
l

F
o
r
_
5
t
b
_
C
o
u
u
n
i
c
a
t
i
o

I
p
a
c
k
j
t
b
j
o
n
u
n
i
c
a
t
i
]

l

f
o
r
-
$
t
b
_
R
e
i
:
e
i
v
e
_
H
e
s
s
l

p
e
c
k
_
S
t
b
_
S
e
n
d
-
H
e
s
s
a
g
l

m
”

90

91

perspective. An example of the BC—graph interface is shown in Figure 7.12, where

the program is currently stopped at the causal distributed breakpoint illustrated in

Figure 7.10.

Call graphs and source code listings have been shown to be effective for illustrating

the current point in the program execution. Similar to these, additional visualization

have been developed for illustrating the current location in the specification. When

the program stops at a breakpoint, visualizations may be activated for depicting

both the current location within the expected behavior call graph and the current

location within the specification listing. These locations are computed according to

the last instrumented event that occurred. An example of an expected behavior call

graph is shown in Figure 7.13, where the program is currently stopped at the causal

distributed breakpoint illustrated in Figure 7.10. Figure 7.13 illustrates that the last

instrumented event that occurred for processing element 5 was within the process

For_Sub_ Communication.

Figure 7.14 shows an example of a specification listing. In this case, the last

instrumented event that occurred was a send event. Figure 7.14 also shows the

source code listing for the same point in the execution, illustrating the portion of

the program that implements the send event. This scenario demonstrates a simple

approach for comparing expected behavior, as represented by the specification listing,

to the corresponding implementation, as represented by the source code listing.

mi

Filter Cluster

a L gl-IIlI—lllll_

I'll-Wilm-lillVIIII-i

,Ih‘llfllllll—dl'lflllllmllIllll-

I“I’llli'ilVl‘llllll/lfillfl-IIIlllll-

filulmraian/nmsnlIlunl

:ILIIMWIHI/lasiiv‘lllllm

leIIlIV—II/A—l-ll

it :fizioo’dg/I'MWQeK

Legend For LOTOS processes:

T I M E (nsec)

7 Host_Node

I Sgnchronous_Choleskg_Factorizat

I Foruard_Substitution

ion

I Backusrdjubst i tut i on_Factor i zat i on

 (until; | if"," Help I

Figure 7.12. BC-graph interface for GOLD

93

 .. ._ _=_ 3_-_._ . ..i _._ ». . W”. ._..'.l._.fl_-.._-\:I... _‘ __..,-. __.--‘..._,.-__. ._- _..._..;... -_u...,.h__.r. “HI...”

. . .. - . ~ . . w, - ' , r.’ ._. . ._, .. ”_._. g. < _. _-,_ .- v.-_.,-_._ ,‘r ._. .1 K .‘.-,-~_-,-,.> ,n ._'. ,'. . J, _ _.r'.“...-,“_-.-A4‘~...-.._r_n.'.l... .‘ , .._-y..:

, - -- " w'a 4 -1' a.El1" ‘. ‘ g A“:-'-:-': :-: ;:.:.:.-..,-.-.;.;.;:;5:531:95;.-._-.;.;._-.;.;.;:;._-:;:;:-:-:,_-.-,.1-;.:.;:;:;:::-,, . 1- --. _ at" Ll». .;. A a.» . ”Au-3......" .- ~.._.-....-, __....

I Genera1_PVH_Prog‘anI

I

E HostINode I Intimirjodooj

I
I HorkerJlode I

l

Wham] FMStiietitutimI WSihstitutioI

l
i

rWfiimLoop I rForjthleirLLooPI [Mi-EbrinioopI I:

I Wilmicatiml for-Slb_Colnmicatio] [DaclLSdLConnicatiI

|

[mmmng] Fw.$tb.ReLeive_HeasI Resonating]

Figure 7.13. Modeling expected behavior in a call graph

94

_
r
n
v
.
s
w
a
r
m
-
W
W
.

I
6
m

I
I

m
u
m

I
g

-
.
v
v

-.--
«
m
a
m
m
m
m
m
w
m
m
m
x
w
w
«
W
K
W
E
R
W

“
y
a
-
$
3

W
E
‘
W
W
W
'
W
W

l
e
m
m
a
s
w
e
!

W
W

"
1
m
m
m

m

’ ’mmwm WE?

' mg

n
-

:3
‘
1

..:

$
8
0
0
4
6
0

a
u
x

(
W
a
t
m
'
q
r
'
s
‘
w
m
m

3
1
x
0

<
-

[
(
I

-
S
E
B
M
U
U
H
’
1
3
1
0
1
)

=
J
1
J
°
P
°
N
I
J

(

4
1
3
9
9
0
"
)
[
0
0
0
4
’
P
0
9
9
J
3
3
5
9
9
3
0
H
'
0
0
1
0
0
9
3
'
q
0
5
’
4
0
3

_
:
0
6
n
s
s
a
u
:
6
0
u
¢

H
fl
N
'
A
H
I

n
o
u
z
u
e
p
u
o
s
g

h
O
O
J

;
s
q
:

a
n
y
o
n
e
;

'
o
t
q
n
x
a
a
n
e

s
:
a
n
u
o
s

c
o
a
t
s

.
)

)

<
-

[
(
t
-
S
H
E
X
H
D
H
'
T
U
L
D
l
)

>
_
4
1
3
°
P
°
N
]

)
[
n
o
o
a
'
p
u
o
s
j
s
a
a
n
s
s
a
u
’
o
n
r
o
o
a
u
'
q
n
s

4
0
3

s
s
o
o
o
a
d

(

i
g
fi
i

:
s
a
n
d
a
l
.
'
a
n
.

'
c
n
o
a
u

'
u

'
0
.

a
n
;

.

g
é
i

(
s
o
o
a
d
u

'
o
u
'

q
'
n
o
a

'
s
a
o
a
fi
u

’
d
n
u

'
s
n
o
u
u

'
u

)
q
n
s
x
o
e
q

5

3;
I

<
r

3'
:
(
9
3

'
3
)
p
u
o
:
s
s
o
o
o
a
d
'
q
o
l
'
l
n
d

3:
1
(
3
0
1

’
O
I
)
P
“
°
3
3
9
0
0
4
5
1
0
1
-
'
5
5

E
<

{
:

2;
1'
H
P

3
[
V
J
I
O
O
I

=
/

[
F
I
G

1
1

=
-
[
q
u

}
(
9
'
=
=
[
fl
l
d
"
)

5
1

_
_
;
f

3
*3

z
i
l
l
:

:
(
o
n

’
o
r
’
m
s
u
'
w
u
d
m
s
m
e
J
M
'
E
W

.
9
|

=
0
:
5
1
5
“

1:
:
(

r
'
r

'
1
:
)
m
m
d
‘
w

«
c

:
(
“
W
W
W

>
m
x
u
t
w

}
0
8
1
°

<
-

[
l
H
S
‘
1
D
U
’
A
H

"
I

1
0
“

I
O
J
Q
U
Q
J
J
n
fl
l

)

n
m
m
r
o
n
m
u
’
m
i
w
w
m
s
‘
m

_
<

f
<
-
t
i
a
s
‘
m
'
m

u
:
1
0
3
M
]

:
(
m

'
m
p
u
o
W
W
W

.j
_

_
>

I
n
”
:

{
1:
m
m
g
n
m
'
p
t
m
j
m
r
m
w
m
o
g

Q
‘
s

.
3
5
0
:
0
0
o
n

a
a
o
q
n

:
<

I
’
I
'
m
>
1
0
0
!
s
t

1
1
x
0

i

z
e
s
t
"
<
1
W
>
M
i
m
m
:
m
—

i

'
7
~
‘
¢
‘
*
¥
£
¥
fi
fi
fi
§
%
fi
fi
a
f
fi
i
fi
7
:
;
;
3
?
.
:

.
1
1
“
i
1
:
r
'
7
fi
:
.
u

.
E
i
i
i

S
:
X
B
P
U
I

S
S
O
O
O
J
d

I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
;
t
r
x
;
x
;
;
:
¥
3
3
9
?
i
x
g
;
;
;
;
3
§
E
Q
?
.
g
;

1

§
=
fi
§
s
v
i
w
z
a
s
a
s
s
s
y
y
z
fi
n
a
a
a
a
s
s
r
<
*
e
u
a
s
a
a
i
e
a
f
~
x
;
~
w
:
'
a
.
f
?
*
i
;
f
.
s
a
r
:
g
a
i
‘
r
{
J
a
g
g
e
i
b
x
a
m
a
s
s
s
e
é
s
s
s
s
e
u
n
m
w
v

3
3
?

‘
(
S
T
T

’
I
I

’
o
d
fi
q
e
s
u

’
I
-

)
6
3
9
4
'
fl
3
'
U
fi
d

i
g

:
x
a
p
u
l

q
u
o
u
o
l
g
S
u
r
s
s
e
o
o
q
d

Figure 7.14. Comparison of specification listing to source code listing

CHAPTER 8

Data Visualizations from Formal

Specifications

The Lockheed Integrated Visualization Environment (LIVE) project [7, 29, 51] uses

formal specifications to facilitate the selection of data visualizations. LIVE maps

formal specifications of a program’s data structures to a graphical unit termed a

cell model. The cell model consists of several components used to characterize a

data structure. LIVE uses a rule-based system for selecting appropriate debugging

visualizations depending on the contents of the cell model. In this chapter, we describe

the cell model, show how the formal specification of a data structure is mapped to the

cell model, and illustrate how the cell model is used to select visualizations that are

useful for debugging. We conclude with the discussion of an improvement to the cell

model approach, where the programmer may provide input regarding the selection of

the application-specific visualization appropriate for the particular case.

8.1 The Cell Model

The cell model is used to formally capture the characteristics of a data structure

so that the mapping from data structure specification to visualization is feasible

95

96

[7, 29, 51]. The model contains several components that cumulatively provide enough

information to distinguish among data structures with different visual representations.

Four components are used to accomplish this task: dimension, size, complexity, and

access ports. Each of these four components are discussed in detail below.

8.1.1 Dimension

The dimension component of the cell model is used to categorize the structural layout

of the overall data structure. The value of the dimension component is used to

determine the layout of the visualizations used for a particular data structure. The

value for this component is a natural number if the data structure layout contains an

array-like ordering, as is the case with arrays, stacks, queues, and deques. If the data

structure does not contain an array-like ordering, then it is considered dimensionless

and therefore classified according to its cell-connectivity, i.e., the relationship between

the cells in the data structure. There are many different types of cell-connectivity,

with the following high-level classification:

0 None: There is no relation between the cells in the data structure. The set

data structure is an example of such a case since the elements in a set are not

necessarily related.

0 Hierarchical: The relation between cells is such that when a new cell is added to

the data structure, it must be at the lowest level in the hierarchy and it cannot

have as a child a cell that was added earlier to the data structure. A tree is one

example of a data structure with this type of cell-connectivity. This type can

be further decomposed by differentiating according to the maximum number of

children a cell can have.

0 Random, symmetric: A cell can have a relation to any other cell in the data

structure. The symmetric property indicates that if there is a relationship

97

between two cells, then that relationship holds in both directions (i.e., it is

directed in both directions). For example, an undirected graph fits in this

category.

0 Random, antisymmetric: A cell can have a relation to any other cell in the data

structure. The antisymmetric property indicates that if there is a relationship

between two cells, it must be in only one direction.

0 Random, not necessarily symmetric: A cell can have a relation to any other cell

in the data structure. The not necessarily symmetric property indicates that if

there is a relationship between two cells, then it may be in either one or both

directions. A directed graph is an example of a data structure with this type of

cell—connectivity.

8.1.2 Size

The size component is used to denote the capacity of the data structure. The

determination of this particular component is optional since the data structure

capacity is not always available from the specification. If the capacity of a data

structure is available from the specification, then it may be used to fix the boundaries

of the visualizations of that data structure. The availability of the capacity is

especially advantageous in the case of data structures usually considered to have

a static size, as is the case, for example, with arrays.

8.1.3 Complexity

The complexity component is used to denote the number of values that are stored

within each cell of the data structure. An appropriate glyph (graphical object) may

be chosen to represent the cell values given the complexity of the cell as well as the

dimensions of the values within the cell. It should be noted that the values within

98

each cell need not be simple data types with dimension zero (e.g. integers, floats,

etc.). For example, given a one-dimensional array of queues (i.e., each element in the

array is an entire queue), the complexity of each cell is one and yet the value within

a cell is an entire queue (dimension equal to one). In this particular case, the value

within a cell can be visualized using a representation for a queue of cells.

For cases in which the dimensions of the values within a cell are all zero, relatively

simple glyphs (compared to the above example) may be used to model the values.

Depending on their design, such glyphs may have several distinguishable features,

where each feature may be used to model a different property. For example, a height

tile from a height field visualization has at least two distinguishable features: its height

and its color. A height tile may thus be used as the glyph for data structures with a

complexity of one or two, where the data values within the cells each have dimension

zero. As another example, an arrow has at least four distinguishable features: its

height, its color, and its a: and y directions. An arrow may thus be used as the glyph

for data structures with a complexity of one, two, three, or four, where the data values

within the cells once again each have dimension zero.

8.1.4 Access Ports

Access ports are the constraints placed on entering or removing data elements from

a data structure. This component was added to the cell model to differentiate

between data structures such as stacks, queues, and one-dimensional arrays, where

the dimension, size, and complexity may all be identical yet different visual

representations are desirable. Currently, the classification of access ports are limited

to the following types, although additional types may be added in the future as the

visualization of more complex data structures are investigated:

0 Input/Output (I/O) access from a single cell: A single cell in the data structure

99

is used for input and output to the overall data structure. The particular cell

may change, but we will still have only a single cell handling 1/0 at any time.

This scenario is applicable in the case of a stack.

0 I/O access from two cells: This type of access is the same as the previous,

except that two cells are handling 1/0 at any time. This scenario would apply

in the case of a deque.

0 I/O access from greater than two but less than all cells: This case is the

generalization of the above two.

0 Random I/O access: Each cell has input/output access. This type of access

would apply in the case of an array, where indices are used to map to a particular

cell.

0 Input access from one cell in the data structure and output access from another

cell: This type of access permits the input and output functions to be separated.

This scenario is applicable to a queue.

The limitation of the cell model approach is that it considers only structural

characteristics of data types. In order to obtain a complete understanding of the

manipulation of data in a parallel program, operations on the data structures should

also be considered.

8.2 Mapping Specifications to the Cell Model

This section defines a mapping from the formal specification of a data structure to

the dimension component of the cell model, considering only data structures that

have a dimension that can be represented by a natural number (i.e., that are not

dimensionless). Extensions to the procedure for mapping to the size, complexity,

100

and access ports components of the cell model have not yet been considered. For

this particular work, the formal specification is written using the Larch specification

language [52]. (Although we used Larch for this portion of the investigations, we

favor LOTOS for the other investigations. The features of LOTOS that influenced

this decision are discussed in Section 2.1.)

Larch is a two-tiered specification language, where each Larch specification has

components written in two languages: one designed for a specific programming

language (interface) and the other common to all programming languages (shared).

The former is referred to as a Larch Interface Language (LIL), and the latter is the

Larch Shared Language (LSL). The LSL is an algebraic specification language that

allows a programmer to formally specify data abstractions, known as traits, that are

independent of program state and programming language. A significant advantage

to using traits is that they are reusable when writing new specifications. The LIL is

used to specify what can be observed about the behavior of components written in

a particular programming language. In the following discussion, we limit our use to

the LSL. A further discussion of the LIL portion of Larch specifications is presented

by Wing [53].

Each Larch trait corresponds to an abstract data type (ADT). An ADT is a class

of values and an associated collection of operators that act on those values, where the

properties of the operators are specified using only axioms [54]. The operators of an

ADT may be grouped into three sets: constructors, modifiers, and observers. The set

of constructors are used to produce all possible values of the particular ADT, where

the range of each constructor is of a type known as the distinguished sort} The set

of modifiers are the non—constructor operators whose range is the distinguished sort.

Lastly, the observers are those operators that contain the distinguished sort in their

1The term “sort” is used in order to avoid confusion with the similar concept “type” from

programming languages.

101

domain, while their range consists of a sort other than the distinguished sort.

An example of a Larch trait is shown in Figure 8.1 for the case of a two-dimensional

Array(A, DX, DY, E) : trait

introduces

{}z —+ A

bind : A, DX, DY, E —» A

apply : A, DX, DY—> E

defined : A, DX, DY—i Bool

asserts

A generated by {}, bind

A partitioned by apply, defined

V a : A, di, d1i, d2i : DX, dj, de, d2j: DY, e: E

apply(bind(a, d2i, d2j, e), d1i, dlj) == if d1i = d2i /\ d1j= d2j

then 6 else apply(a, d1i, de)

- defineda}, dz; dj)
defined(bind{a, d2i, d2j, e), d1i, de) ==

(d1i = d2i /\ d1j= d2j) V defined(a, d1i, de)

implies

converts apply, defined

exempting ‘v’ di: DX, dj : DY apply{{},di,dj)

Figure 8.1. Two-dimensional array trait

array. The portion of the trait labeled by the introduces clause contains a list of the

operators for the particular trait. The operators for the two-dimensional array trait

are {}, bind, apply, and defined. Each operator is immediately followed by its signature

that specifies the sorts of the operator’s domain and range. The range is always a

single sort (3;), but the domain may consist of zero or more sorts (55,1, . . ”SQ-,1“).

Algebraically, It,- represents the number of sorts in the domain of the signature for the

operator op,, where the signature is represented by:

102

Si,la'-°aSi,k.' —> 5;, k; 2 0

The “A generated by” clause indicates that the set of operators immediately

following it are the constructors for the sort (in the case of the two—dimensional array

trait, {} and bind).

The above description of the Larch specification language is a high-level overview,

where many details have been omitted for the sake of brevity. For further details

regarding the language, the relevant technical reports [52, 55] may be consulted.

The procedure that is used to map from a Larch trait to the dimension component

of the cell model is shown in Figure 8.2. Step 2 of the procedure tests for the case in

which there exists a single constructor of the form op :—> M for the sort M, where

the domain of the signature is empty. This situation occurs when the data structure

can only be assigned a single value, in which case its dimension is zero. An example

of this type of data structure is the Boolean value true.

Step 4 of the procedure tests for the existence of a constructor for which a “new”

value of the data structure is generated by joining two or more “old” values; for

instance, the insertion of a tree at the leaf of another tree. The computation of

the dimension for this case is beyond the current scope of our technique, and so,

consequently, the procedure returns a value of DIMENSIONLESS.

Step 6 of the procedure tests for the existence of indices. Two is subtracted from

the total count of domain sorts in a signature in order to account for one occurrence

of M, plus one occurrence of a sort representing an element to be added to M. Only

one of the sorts is an element to be added since the operators have been constructed in

an abstract fashion. (If it were possible to add two different types of elements to the

data structure, then two different constructor operators would have been used.) The

other sorts in the domain of this particular constructor are thus indices for placement

of the element, and so the number of these other sorts is equal to the dimension of

103

INPUT: The trait that defines the sort M corresponding to the ADT.

OUTPUT: The dimension of the ADT, where the value DIMENSIONLESS indicates

that the data structure lacks a dimensional ordering computable by this

technique.

PROCEDURE:

1. Determine the set of sorts found in the domains of the constructors’

signatures.

2. If the set of sorts found in step 1 is empty, then return dimension equal to

zero and stop.

3. Count the maximum number of times that the sort M appears as a domain

sort within a constructor’s signature.

4. If the result from step 3 is greater than one, then return dimension equal

to DIMENSIONLESS and stop.

5. Count the maximum number of domain sorts within any of the

constructors’ signatures.

6. If the result from step 5 is greater than or equal to three, then return

dimension equal to the count minus two and stop.

7. If the set found in step 1 contains a sort not equal to M and that sort

appears as the range for one of the signatures, then return dimension equal

to one and stop.

8. Return dimension equal to DIMENSIONLESS and stop.

Figure 8.2. Technique for finding the dimension of an ADT from its trait

the data structure. For example, for the trait of a two-dimensional array, shown in

Figure 8.1, step 5 of the procedure determines the maximum number of domain sorts

within a constructor to be four for the case of the constructor bind. The procedure

will thus return the expected value of two.

Step 7 of the procedure tests if there is an ordering imposed on the data structure,

such that the cells of the data structure may be depicted in a one-dimensional layout.

In order to determine if there is such an ordering, we use the rule that if one of the

104

non-constructor operators permits access to a particular element within the container,

then that operator imposes an ordering. Examples of data structures for which this

rule applies are stacks and queues.

Finally, step 8 of the procedure handles the case in which no ordering was found

for the ADT. Specifically, the procedure returns dimension equal to DIMENSIONLESS.

8.3 An Example Application

This section describes how LIVE—generated visualizations based on Larch

specifications are used to detect an error in the implementation of a column-sorting

routine for the assignment problem. The assignment problem is identical to the

(weighted) bipartite graph matching problem, which is defined as: G = (V, E) is an

undirected bipartite graph such that V can be partitioned into two disjoint sets .5'

and T and all edges have one end point in S and the other in T. A set M of edges is a

matching for G if each vertex in G is the end point of at most one edge in M. In the

weighted bipartite matching, a weight w(i, j), is associated with each edge (i, j), and

the cost of a matching is the sum of the weights of its edges [56]. For this problem,

the maximum matching is the one with the minimum cost. For example, the arcs,

represented by ones in the match matrix, shown in Figure 8.3, produce the maximum

match with the minimum cost for the corresponding weight matrix.

ll 22 4 76

32 95 2 8

100 55 6 7

333 25 88 0 0

Weight Matrix Match Matrix

Figure 8.3. Maximum match with the minimum cost

105

A C/Paris [57] implementation of the algorithm was adapted for the case of Single

Instruction Multiple Data (SIMD) machines? A critical component of the algorithm is

the sorting routine. The strategy of this routine is to sort columns by the row position

of matches, where the first row equals 0, the second row equals 1, and so on. The row

positions of the matched arcs are used to label the columns of a sort matrix S, where

zeros are placed in the positions that do not contain a match. The preprocessing

of the sort matrix 5' involves spreading the row numbers of the matching arcs along

the columns. Next, infinity values, termed infinites, are substituted for zeros. An

example is shown in Figure 8.4. The columns of this sort matrix are then sorted in

ascending order. The weights matrix and the match matrix are sorted based on how

S' is sorted.

Row #

0

l

2

3

Match Matrix Sort Matrix Sort Matrix

Before Preprocessing After Preprocassing

Figure 8.4. Construction of the sort matrix from the match matrix

The underlying data structure for a matrix is a two-dimensional array, and so the

trait in Figure 8.1 applies. Using LIVE’s rule-based system [51], the programmer is

able to generate visualizations for this problem such as those in Figures 8.5 and 8.6.

An error is detected in the visualizations of the match matrix3 in Figures 8.5

and 8.6, where a white dot represents a match. More specifically, as the sorting

progresses, the white dot in the first row moves in the opposite direction of the other

2See [56] for details of this algorithm and the results obtained from its implementation.

3These visualizations are for a 128 x 128 matrix.

106

white dots (Figure 8.5) until it eventually ends up at the far right end of the matched

columns upon completion of the sorting (Figure 8.6). Since the columns are sorted

according to match row positions, this particular white dot should instead migrate to

the first column.

White dot from first row

Figure 8.5. A visualization of column sorting for the implementation of the assignment

algorithm

From our earlier discussion, we recall that a column without a match will contain

all zeros and, thus, be used to set the corresponding column of the sort matrix to

infinites. The sorting routine will position these columns to the right of the columns

containing a match, as is shown in Figure 8.6. Noting that the misbehaving column

is sorted similar to the columns that do not contain a match, we hypothesize that

the corresponding column in the sort matrix has been incorrectly filled with infinites.

107

White dot from first row

Figure 8.6. The visualization of the match matrix after the misbehaving column sort

(Visualizations of the sort matrix were used to confirm this hypothesis, as discussed

in [58].) Backtracking in the procedure to find an explanation for the error, we also

recall that row indices start at zero. Since any column of the match matrix containing

all zeros will trigger its corresponding column in the sort matrix to be set to infinites,

it is concluded that the bug was caused by infinites being incorrectly substituted for

the zeroth row position.

8.4 Improvement to the Mapping Strategy

The procedure for determining an appropriate data visualization can be improved by

letting the programmer guide the final selection of the visualization. The procedure

discussed earlier may be used to initially determine the correct category of data

visualizations, based on the static characteristics of the data structure. At that

108

point, a. graphical user interface may then be used to let the programmer select the

application-specific visualization appropriate for the particular case.

As an example, we consider the case in which the algorithm discussed earlier

determined that a particular data structure was of type ‘integer’, based on the

information in the trait. There are several possibilities for how an ‘integer’ may

be used, where, in each case, the programmer may have a different conceptual idea

of how the data visualization should illustrate the respective operations. Some of

the possible uses for an integer are the following, where the characteristics of an

appropriate data visualization are discussed in each case:

0 Counter: The basic operation is to increment the integer, where the initial value

of the integer is zero. A data visualization for illustrating this use of an integer

could be similar to that shown in Figure 8.7, where the increment operation is

illustrated by “filling” the gauge by one unit.

Dis-is:
Figure 8.7. A data visualization for a counter

109

0 Array index: An integer used as an array index may be either incremented

or decremented, although the value of the index should always lie within the

bounds of the array. If the array index extends outside the bounds, then the

application-specific visualization should highlight the error. (For example, this

case may occur if a program references position n + l of an array that contains

only n elements.) In order to illustrate this type of data visualization, the

number of elements in the array must be determined, in addition to the value

of the integer.

e Other uses for an integer: A default case should be provided, where the textual

value of the integer is simply printed.

CHAPTER 9

Related Work

In this chapter, we discuss work related to the thesis research. The discussion

is organized into two sections corresponding to the two main contributions of the

research. Specifically, we present investigations into the integration of visualization-

based functionality with on-line parallel debuggers, and we then present alternative

modeling techniques for visualizations of program execution.

9.1 On—line Parallel Debuggers Supporting

Visualization

Replay techniques offer a promising approach for providing deterministic execution

in on-line parallel debugging tools [12, 13, 14, 15]. However, many common debugger

operations, such as breakpointing and the testing of predicates, present problems of

their own for the case of a parallel programming environment, and thus must be

resolved before a completely functional on-line parallel debugger is feasible. Methods

for performing such operations have only recently been offered for the case of a

parallel environment [22, 41, 42, 59]. Consequently, the builders of visualization-

based parallel debuggers have typically designed their tools based on a post-mortem

approach, where development methods are better established than for the case of

110

111

on-line debugging [6]. Thus, the use of visualization in on-line parallel debuggers is

still relatively modest at this time. We discuss below the small number of cases where

visualization has been integrated into the design of an on-line debugger, illustrating

in each case how visualization has supplemented the usual operations of an on-line

debugger. In all cases, the use of visualization is mainly limited to the depiction of

message-passing behavior. Where applicable, we also discuss scalable techniques that

have been applied for handling executions with large numbers of processes.

9.1.1 Bugnet

Bugnet [16, 60] provides a variety of on-line debugging capabilities for the case of

distributed programs that communicate via message-passing. The design of Bugnet

is based on a replay strategy, where the messages along with their contents are

saved during an initial program execution. In addition, checkpoints are periodically

recorded during the initial execution so that replay can begin at intermediate program

states rather than from the beginning of the program. During replay, the user

can re—execute either a single processing element or a selected subset of processing

elements, where the messages from any processing elements not being replayed are

supplied by the message log. Although the replay mechanism of Bugnet is useful for

debugging, many other common on—line debugging operations are not offered, such

as breakpointing.

Bugnet supports visualization of program execution by allowing the user to

arrange groups of processing elements (depicted as boxes) in an arrangement desirable

for viewing the interaction between the processing elements. As the program executes,

the beginning of a message-passing event is shown by having the sending processing

element darken, followed by a line appearing between the sending processing element

and the receiving processing element, and then having the receiving processing

element darken. The ending of the message-passing event is shown by having

112

the sending processing element lighten, the line between the processing elements

disappear, and finally by having the receiving processing element lighten. The

limitations of this visualization strategy are that it does not scale well, it does not show

message-passing activity across time effectively, and it is difficult for the programmer

to relate the visualizations to the expected behavior for the program.

9.1.2 Idd

Idd [17] is another example of an on-line debugging tool for distributed, message-

passing programs. One of the key features of Idd is that it allows breakpoints to

be set in the source code, but with the limitation that processing elements are not

guaranteed to stop in a consistent state. Another feature of Idd is that it allows

the programmer to define assertions for the global message-passing activity, where

a supervisor program automatically stops program execution when an assertion is

violated. At that time, the programmer is able to inspect the various processing

elements in order to search for the error.

The monitoring component of Idd supports the visualization of message-passing

events as they occur. These events are displayed across time in the form of a space-

time diagram, where the y-axis of the diagram represents the processing element

number, the x—axis represents the time, and lines between points in the diagram

represent message-passing activity. Scroll bars are provided on each of the axes

to allow the programmer to go either forward or backward through the processing

elements or time. This visualization approach supports scalability and depiction of

behavior across time better than that provided by Bugnet, but the programmer is still

left with the task of finding a match between the expected behavior for the program

and the behavior that is actually depicted.

113

9.1.3 VISTOP/TOPSYS

The visualization tool VISTOP is part of the integrated tool environment TOPSY5 for

programming message-passing multiprocessors, designed specifically for the parallel

programming library MMK (Multiprocessor Multitasking Kernel) [18]. An on-

line mode for the TOPSYS monitoring system allows breakpoints to be set in an

application, where state inspection is possible when the breakpoint is reached during

program execution. An additional option provided by TOPSYS is that variables may

be modified when breakpoints are reached in order to test fixes. TOPSYS also offers

an alternative post-mortem mode, where traces are recorded during the program

execution to later be visualized off-line.

The visualizations provided by VISTOP depict program execution in terms of the

basic object types of MMK: the task, the mailbox, and the semaphore. Icons are

used to distinguish between each of these object types. The communication of a task

with a mailbox or a semaphore is indicated by an arrow. A thin arrow represents the

actual communication, while a thick arrow represents the case where a task is waiting

for a communication request to be satisfied. The limitations of VISTOP are the same

as for Bugnet: lack of scalability, poor depiction of behavior across time, and the

difficulty of relating the visualizations to the expected behavior of the program. In

addition, since VISTOP is specifically oriented towards depicting the basic objects

of MMK, its visualization approach is not easily portable to other message-passing

programming environments.

9.1.4 ParaRex

In the cases of Bugnet, Idd, and TOPSYS, program visualization was provided as

an additional feature of an on-line parallel debugging tool. In the case of ParaRex

[19], however, the design strategy was to integrate the post-mortem visualization tool

114

ParaGraph [24] with the on-line debugging capabilities of DECON, a debugger for the

distributed-memory machine iPSC/2. The result of this integration was a debugging

tool that used the features of ParaGraph to provide on-line visualization, while

simultaneously allowing examination of variables through the features of DECON.

An execution replay technique was used as the underlying mechanism for providing

deterministic execution, and, thus, meaningful results.

The visualization options offered by ParaRex are, of course, identical to those

of ParaGraph. Specifically, ParaGraph provides a large variety of visualizations,

covering many different aspects of a program’s execution. Examples of the

information visualized include message-passing activity, the degree of parallelism

at any instant, and statistical data, such as the total volume of messages.

One disadvantage of the visualization approach of ParaRex is that ParaGraph’s

visualizations are actually oriented towards locating performance problems rather

than debugging functional errors. In particular, as was the case for the three tools

discussed earlier in this section, the visualizations of ParaRex are not easily related

to the expected behavior of the program. Another disadvantage of ParaRex is that

DECON has been designed specifically for the iPSC/2, and thus the overall approach

used by ParaRex is not easily portable.

9.1 .5 Panorama

The design strategy of the tool Panorama [20] was similar to that of ParaRex, in

that visualization capabilities were integrated with the functionality of an on-line

debugger} However, in the case of Panorama, a key design goal was portability across a

variety of parallel platforms. Thus, the developers of Panorama have designed generic

1Despite the resemblance in names, the tool Panorama should not be confused with the tool

PANORAMA, discussed earlier in Section 7. Both tools were developed in approximately the same

time frame, and unfortunately were assigned similar names.

115

debugger functions to interface between the base debugger of a parallel machine

and the visualization component of Panorama. The base debuggers that Panorama

supports are the ipd debugger from the iPSC/860 and the ndb debugger from the

Ncube.

Two visualizations are offered by Panorama: a time-line visualization and a

processor map visualization. The time-line visualization is similar to a space—time

diagram, except that send and receive events are distinguished by using a circle to

represent a send and a square to represent a receive. The processor map visualization

is an alternative portrayal of message-passing activity, where the programmer may

place the processors (shown as boxes) in an arrangement desirable for viewing their

interaction, with the interconnections between processors shown as lines between the

boxes. In this case, message-passing activity is depicted by labeling each incoming

line with the number of messages waiting to be read from the neighboring processor.

Although this latter visualization provides a different perspective for viewing message-

passing behavior, neither visualization offered by Panorama relates such behavior to

the expected behavior of the program.

9.1.6 PPT/xipd

A program phase tree (PPT) [46] is a graphical representation of program structure,

where the programmer may modify this representation in order to portray program

activities in a particular manner. A PPT is, by itself, not a tool, but rather a type

of visualization. The research discussed in [46] illustrates how PPT visualization

capabilities were added to the xipd on-line debugger for the iPSC/860.

In contrast to the visualizations provided by the tools discussed above, a PPT

focuses on illustrating the entries and exits from the various phases of a program

rather than message-passing activity. The initial form of a PPT is a standard call

graph, but the programmer can delete nodes or edges and collapse subtrees until

116

a desired arrangement is achieved. During program execution, as each processing

element invokes a procedure corresponding to an entry point of a node, a new line

is drawn between the caller and callee nodes, where multiple colors are used to

distinguish between the invocations by different processing elements.

A key advantage of a PPT is that it provides the programmer with the flexibility

to visualize program execution in a format that resembles the expected behavior of the

program, although it is limited to structures based on the call graph of the program.

Some disadvantages of a PPT are that it does not illustrate behavior across time well,

nor does it show the interaction between processing elements.

9.1.7 Prism

Prism [61] provides on-line debugging capabilities for message—passing programs,

specifically developed for the CM-5. A main visualization supported by Prism is

a “where tree”, a call graph structure that illustrates where each process is located

in its execution. As such, the “where tree” shows the global status of the system

in a single visualization. However, a “where tree” does not illustrate communication

between the processes.

One of the features of Prism is an option for filtering which processes should be

targeted for debugging. A language is provided for specifying lists and ranges of

processes to which debugging commands should be issued. Although the language is

extensive, the disadvantage of this approach is that a programmer must first learn

the language before process filtering can be applied.

117

9.2 Models for Visualization of Program

Execution

In Section 7, we discussed a strategy for visualizing a parallel program’s execution

using a model of expected behavior, where the expected behavior model was

constructed based on the LOTOS specification of the program. We then showed

that debugging of incorrect message-passing communication is facilitated by modeling

visualizations in this manner. We also described, in Section 8, a method for generating

debugging visualizations of data structures, where, in that case, the visualizations

were modeled based on the Larch specifications of a program’s abstract data types.

We will now discuss additional models that have been used to construct visualizations

oriented towards debugging incorrect behavior in parallel programs.

9.2.1 Event-oriented Models

A common strategy for the construction of visualizations is to use a model based

directly on the event data generated during the program execution. The main

advantage of this approach is that little or no post-processing of the event data

is required, but the main disadvantage is that the programmer must manually

find a correlation between the graphically-represented events and the conceptual

understanding of the program. An example of a visualization constructed according

to an event-oriented model is a space-time diagram, as was discussed in Section 7.3.

In this case, the event data recorded during the program execution is used to directly

render a visualization of communication between processing elements across time.

Examples of visualization tools that offer space-time diagrams or other visualizations

constructed according to an event-oriented model are ParaGraph [24], Idd [17], the

Moviola system [23], and Radar [62].

118

9.2.2 Clustering Techniques

An approach that has been used to reduce the congestion in a visualization of event

data is to cluster groups of low-level events into user-defined high-level events. The

visualizations of program execution are then modeled in terms of these high-level

events. For example, the tool Belvedere [63, 64] visually abstracts low-level behavior

of a program by using the Event Definition Language (EDL) [65] to define the pattern

of low-level events that constitute a particular high-level event. An event recognizer

is used to identify occurrences of the high-level events among a stream of low-level

events. The visualizations produced by Belvedere depict program execution in the

context of the high-level events. There is an overhead cost in this approach, however,

since the programmer must learn and apply EDL to construct the high-level events. A

similar tool, Ariadne [66], also supports the definition of high-level events in terms of

low-level events, but suffers the same disadvantage in that the programmer must learn

and apply its event modeling language. The approach that we used in the PANORAMA

project avoids this additional overhead by modeling the high-level events of a program

in terms of the program’s formal specification, where this specification has already

been created during the design phase of the program.

9.2.3 Source Code Models

One approach that has been used to simplify the task of finding a correlation between

the program visualizations and one’s understanding of the program is to model the

visualizations in terms of the source code structure. An example of a visualization

constructed according to this approach is a dynamic call graph, where the nodes in the

graph represent high-level program objects such as subroutines and the lines between

nodes represent call relations. Tools which provide dynamic call graphs include Faust

[67], Schedule [68], and the visualization system of Zimmermann, Perrenoud, and

119

Schiper [69].

An enhanced version of a dynamic call graph is a program phase tree (PPT) [46],

as was discussed in Section 9.1.6. This type of visualization provides the programmer

with the flexibility to modify a standard call graph to more closely reflect a particular

understanding of the call relations in the program.

Another type of visualization modeled in terms of the source code structure is a

flow diagram. For example, PF-View [45] represents program execution as a series

of icons linked linearly to show the flow of execution, where each icon corresponds

either to a parallel construct or to serial code. The programmer may click on an

icon to expand it, revealing the individual processors involved in the corresponding

computation.

The disadvantage of using dynamic call graphs or flow diagrams is that the

level of insight that they can provide is limited to aspects of call or flow relations

within a program. If the incorrect behavior is not based entirely on these relations,

then these visualizations, when used alone, have limited utility. When used in an

environment that supports multiple visualization windows, however, the information

they provide may be correlated with the information from other visualizations to

provide a beneficial overall view of program execution. The advantages of using

multiple visualizations to depict a program’s execution are discussed by LeBlanc,

Mellor-Crummey, and Fowler [23].

9.2.4 Application-specific Techniques

Application-specific visualizations are those that have been designed to visually

model one’s natural understanding of a program. Examples of tools that support

application-specific visualizations are Voyeur [70], POLKA [71], and ParaGraph [24].

An example of a typical application-specific visualization is one used to depict the

execution of a sorting program, consisting of the graphical image of an aligned set

120

of bars (rectangles), where the height of each bar reflects the magnitude of the

corresponding number. The layout for such a visualization would be similar to that

shown in Figure 9.1, where ten bars (corresponding to numbers) are depicted in

a random order. As the sorting algorithm proceeds, the bars exchange positions

accordingly, until, at the end of the execution, they are all ordered in either increasing

or decreasing order.

MAGNITUDE

INDEX

Figure 9.1. Typical layout for an application-specific visualization of the sorting

problem

The main advantage of application-specific visualizations is that they are designed

to reflect one’s conceptual understanding of a problem, but the main disadvantage is

that a new visualization must be created for each new problem investigated. Since

window programming is tedious, the time requirements for creating application-

specific visualizations may outweigh their benefit. In order to make the application-

specific visualization approach feasible, tools are often developed to simplify the

task of creating new visualizations. For example, Voyeur [70] is an application-

121

specific visualization tool that provides a hierarchical library of visualizations. The

creation of new visualizations is simplified by starting with the inherited code from

a visualization higher up in the hierarchy. A sample of the class hierarchy of

visualizations for Voyeur is shown in Figure 9.2. As an example, the x,y class of

visualizations have the characteristic that they represent state by placing graphical

elements on an x ,y coordinate space that fills the drawing area. The icon visualization

is constrained to using a grid with integer-valued coordinates, while, in contrast, the

vector visualization is constrained to using real-valued coordinates. For both the icon

visualization and the vector visualization, the behavior may be derived from the base

x,y class. A time-savings is achieved by starting with the code from the base x,y

class when deriving the icon and vector classes.

/base\

x,y text boxes

vector icon trace linked-list

Figure 9.2. Sample class hierarchy of Voyeur visualizations

9.2.5 Property-oriented Models

In Sections 7 and 8, we discussed methods that we have used to model visualizations

in terms of the formal specification of a program. Another similar approach is to

model visualizations in terms of formal properties used in correctness proofs of a

program. For example, Roman and Cox have developed a method for mapping from

122

the shared dataspace paradigm to appropriate visualizations [72, 73]. The shared

dataspace paradigm is one in which processing elements have access to a common

content-addressable data structure (typically a set of tuples) whose components may

be examined, inserted, and deleted. The mapping used by Roman and Cox is from

shared dataspace program states to graphical objects that may be rendered as images.

In particular, formal properties expressed in a logical calculus are modeled within

the images, such that interpretation of the images may be done in the context

of the properties used to reason about the computation. A disadvantage of the

approach presented by Roman and Cox is that the mapping method is limited to

the shared dataspace paradigm. Popular parallel programming paradigms such as

shared variables and message-passing are not handled.

CHAPTER 10

Conclusions and Future

Investigations

This dissertation has discussed research that provided two main contributions to the

area of visualization-based parallel debugging. First, we developed new techniques

for using visualization to support the operation of an on-line parallel debugger

[9, 11]. The results included a visualization-based approach for the insertion of

distributed breakpoints, where the difficult task of setting distributed breakpoints

is reduced to a simple, graphical operation. For example, in order to insert a causal

distributed breakpoint, the programmer selects an appropriate event from a space-

time diagram, where the graphical interface is then updated to reflect the location of

the last event along each process axis that had a causal effect on the execution of the

triggering process. The programmer may use this interface to evaluate the location of

potential breakpoints, and to insert those breakpoints that are found to be relevant

to the current problem. In order to assist the programmer in setting a distributed

breakpoint, we also provided support for marker events. The programmer may use

marker events to instrument the program at appropriate points, where the generated

trace data from the marker events is then used to mark the relevant execution points

in the space-time diagram. This feature facilitates the task of finding the appropriate

123

124

location for inserting a distributed breakpoint.

Another technique that was developed to support the operation of an on-line

parallel debugger was scalable techniques for visualizing communication events [10,

11]. The basis for these techniques was to use filtering to reduce the amount of

information presented in the visualizations. The filtering options are provided via a

simple graphical user interface, such that the programmer may easily direct which

events should be filtered. A key outcome of this approach was a new visualization

referred to as a Single Point-of-View (SPV) communication graph, in which only the

events received at or sent from a selected process are depicted.

An additional outcome of our research is the integration of several types of

visualizations into a common environment for supporting the top-down examination

of program states [9, ll, 25]. These visualizations included communication graphs

(i.e., space-time diagrams and SPV graphs), call graphs, source code listings, and data

visualizations. In the case of the data visualizations, additional filtering options were

provided to highlight particular instances of data, such as all values that exceed some

maximum value, or all values that are within some range. These visualizations are

applied in a framework where program execution is initially examined from a broad

scope, using visualizations such as communication graphs. In order to determine

the potential source of an error, the user may narrow the scope of the visualizations

that are used, applying call graphs, source code listings, or data visualizations, in

that order. Graphical support is provided for coordinating the use of the individual

visualizations. This visualization-based framework is beneficial since it supports a

methodical approach for using visualizations to debug a parallel program.

The second main contribution of this dissertation was the development of a

methodology for visualizing a program’s execution using the formal specification of the

program as a model of expected behavior. One outcome of this research was a strategy

for modeling expected behavior in space-time diagrams [8, 26]. A visualization

125

referred to as a BC-graph was developed, where shaded rectangles representing

LOTOS processes were overlapped onto a space-time diagram of the message-passing

events. This visualization may be used to compare the expected behavior, as

represented by the LOTOS processes, to the actual behavior, as represented by the

message-passing events. We also developed techniques for visualizing the current

location in a program execution in terms of the formal specification. When the

program stops at a breakpoint, visualizations may be activated for depicting the

current location of a process either within the call graph of the specification or within

the specification listing. These visualizations provide a simple approach for visualizing

the current program activity within a model of the program’s expected behavior.

An additional outcome of this research was a technique for using the formal

specifications of a program’s data structures to guide the generation of data

visualizations [7, 29]. In particular, the formal specifications are mapped to a

graphical unit termed a cell model. The cell model consists of several components

used to characterize a data structure. A rule-based system is then used to select

appropriate debugging visualizations depending on the contents of the cell model.

The research contributions discussed above were implemented in prototype

debugging environments, where the main purpose of these environments was to give

a proof of concept demonstration of the research results. The debugging environment

in which most of the contributions were implemented was the Graphical On-Line

Debugger (GOLD), a parallel debugger for PVM message-passing programs. GOLD

may be used to debug a program as it is running, where a replay strategy is used

to guarantee that re—executions of the program will be deterministic. By developing

GOLD using a replay approach, visualization could be applied liberally, since events

were guaranteed to occur in the same relative order as in the initial execution.

Two other debuggers, PANORAMA and LIVE, were developed prior to the

development of GOLD, where the purpose of these debuggers was to demonstrate

126

various aspects of the methodology for using a program’s formal specification as a

model for visualizing the program’s execution. These debuggers were useful for these

demonstrations, but could not be used for the entire span of our research due to

certain limitations. In particular, PANORAMA was developed according to a post-

mortem approach, where monitor intrusion and data storage constraints limited the

visualization capabilities. In the other case, LIVE was developed for SIMD programs,

where a SIMD program has a single instruction stream. Thus, LIVE could not be

used to debug programs that use multiple instruction streams. These limitations

motivated the development of GOLD.

Future investigations should continue to address scalability issues for program

visualization, particularly considering the cases where programs use a large number

of processes or large data structures. Although this dissertation has presented several

filtering options for handling these cases, the scalability of parallel debuggers must

continue to improve in order to efficiently support the needs of parallel programmers.

For example, visualization-based techniques may be explored for clustering processes,

such that the number of separate items plotted along the vertical axis of a space-time

diagram is reduced. In addition, visualization-based techniques for examining large

data structures may be explored, such as improving the filtering techniques for one-

and two-dimensional arrays.

An additional area for future investigation is to strengthen the tool support

for parallel program specification. The specification of parallel programs is a

growing science, yet tool support must still be improved. In the particular case of

LOTOS, tools that would be beneficial for supporting the expected behavior modeling

techniques discussed in this dissertation include editors, syntax checkers, semantic

checkers, and simulators. (Although there exist tools that perform these functions

for LOTOS, they are mostly at a prototype level.)

BIBLIOGRAPHY

BIBLIOGRAPHY

[1] Keijiro Araki, Zengo Furukawa, and Jingde Cheng. A general framework for

debugging. IEEE Software, pages 14—20, May 1991.

[2] Charles E. McDowell and David P. Helmbold. Debugging concurrent programs.

ACM Computing Surveys, 21(4):593—622, December 1989.

[3] Jeannette M. Wing. A specifier’s introduction to formal methods. IEEE

Computer, pages 8—24, September 1990.

[4] Betty H. C. Cheng. Synthesis of procedural abstractions from formal

specifications. In Proc. of COMPSAC’QI, pages 149—154, Tokyo, Japan, Sept.

1991.

[5] Betty H. C. Cheng. Applying formal methods in automated software

development. Journal of Computer and Software Engineering, 2(2):]37-164,

1994.

[6] Eileen Kraemer and John T. Stasko. The visualization of parallel systems: An

overview. Journal of Parallel and Distributed Computing, 18:105—117, 1993.

[7] Mark V. LaPolla, Joseph L. Sharnowski, Betty H. C. Cheng, and Kevin

Anderson. Data parallel program visualizations from formal specifications.

Journal of Parallel and Distributed Computing, 18:252—257, 1993.

[8] Joseph L. Sharnowski and Betty H. C. Cheng. A formal approach to modeling

expected behavior in parallel program visualizations. In PARLE ’94: Parallel

Architectures and Languages Europe, Lecture Notes in Computer Science, vol.

817, pages 202-213, Athens, Greece, July 1994. Springer-Verlag.

[9] Joseph L. Sharnowski and Betty H. C. Cheng. A visualization—based environment

for top-down debugging of parallel programs. Accepted to appear in the

Proceedings of the 9th International Parallel Processing Symposium (IPPS ’95).

127

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

128

Joseph L. Sharnowski and Betty H. C. Cheng. A scalable approach to

visualization-based parallel debugging. Technical Report CPS-94-67, Michigan

State University, December 1994. Submitted for publication.

Joseph L. Sharnowski and Betty H. C. Cheng. GOLD: A Graphical, On-Line

Debugger for parallel programs. Technical Report CPS-95-16, Michigan State

University, April 1995.

Thomas J. LeBlanc and John M. Mellor-Crummey. Debugging parallel programs

with instant replay. IEEE Transactions on Computers, C-36(4):471-—481, April

1987.

Richard H. Carver and Kuo-Chung Tai. Replay and testing for concurrent

programs. IEEE Software, pages 86—74, March 1991.

Robert H. B. Netzer and Barton P. Miller. Optimal tracing and replay for

debugging message-passing parallel programs. In Supercomputing ’92, pages 502—

511, 1992.

Robert H. B. Netzer and Jian Xu. Adaptive message logging for incremental

program replay. IEEE Parallel 69' Distributed Technology, pages 32—39, November

1993.

Larry D. Wittie. Debugging distributed C programs by real time replay.

SIGPLAN Notices, 24(1):57—67, January 1989.

Paul K. Harter, Jr., Dennis M. Heimbigner, and Roger King. Idd: An interactive

distributed debugger. In Proc. of IEEE 1985 Distributed Computing Systems,

pages 498—506, 1985.

Thomas Bemmerl and Peter Braun. Visualization of message passing parallel

programs with the TOPSYS parallel programming environment. Journal of

Parallel and Distributed Computing, 18:118—128, 1993.

Eric Leu and André Schiper. Execution replay: A mechanism for integrating

a visualization tool with a symbolic debugger. In Proceedings of 2nd Joint

International Conference on Vector and Parallel Processing (CONPAR 92 -

VAPPV), Lecture Notes in Computer Science, vol. 634, pages 55—66, Lyon,

France, September 1992. Springer-Verlag.

John May and Francine Berman. Panorama: A portable, extensible parallel

debugger. In Proceedings of ACM/ONR Workshop on Parallel and Distributed

Debugging, pages 96—106, San Diego, California, May 1993.

129

[21] Cherri M. Pancake and Sue Utter. Models for visualization in parallel debuggers.

In Proceedings of 1989 Supercomputing Conference, pages 627—636, 1989.

[22] Jerry Fowler and Willy Zwaenepoel. Causal distributed breakpoints. In

Proceedings of 10th International Conference on Distributed Computing Systems,

pages 134—141, Paris, France, May 1990.

[23] Thomas J. LeBlanc, John M. Mellor-Crummey, and Robert J. Fowler. Analyzing

parallel program executions using multiple views. Journal of Parallel and

Distributed Computing, 9:203—217, 1990.

[24] Michael T. Heath and Jennifer A. Etheridge. Visualizing the performance of

parallel programs. IEEE Software, pages 29—39, September 1991.

[25] Joseph L. Sharnowski and Betty H. C. Cheng. A top-down approach to

visualization-based debugging of parallel programs, November 1994. Presented

at the poster session of Supercomputing ’94.

[26] Joseph L. Sharnowski and Betty H. C. Cheng. A formally-based expected

behavior model for parallel program visualizations, April 1994. Submitted for

publication.

[27] International Organization for Standardization, IS 8807. LOTOS: A formal

description technique based on the temporal ordering of observational behavior,

1989.

[28] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO specification

language LOTOS. Computer Networks and ISDN Systems, 14(1):25-59, 1987.

[29] Joseph L. Sharnowski, Betty H. C. Cheng, and Mark V. LaPolla. Mapping

formal specifications to parallel program visualizations. In Proceedings of

Minnowbrook Workshop on Software Engineering for Parallel Computing, pages

29—34, Minnowbrook Conference Center, New York, August 10-13, 1992.

[30] Geoffrey C. Fox, Mark A. Johnson, Gregory A. Lyzenga, Steve W. Otto, John K.

Salmon, and David W. Walker. Solving Problems on Concurrent Processors,

volume 1. Prentice Hall, Englewood Cliffs, New Jersey, 1988.

[31] Luigi Logrippo, Mohammed Faci, and Mazen Haj-Hussein. An introduction to

LOTOS: learning by examples. Computer Networks and ISDN Systems, 23:325—

342, 1992.

130

[32] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specification.

Springer-Verlag, Berlin, 1985.

[33] Robin Milner. A calculus of communicating systems. In Lecture Notes in

Computer Science 92. Springer-Verlag, 1980.

[34] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall International,

Englewood Cliffs, New Jersey, 1985.

[35] Mazen Haj-Hussein and Luigi Logrippo. Specifying distributed algorithms in

LOTOS. To appear in Revue reseaux et informatique repartie.

[36] Adam Beguelin, Jack Dongarra, Al Geist, Robert Manchek, and Vaidy

Sunderam. A users’ guide to PVM: Parallel Virtual Machine. Technical Report

ORNL/TM-11826, Oak Ridge National Laboratory, July 1991.

[37] Alan George, Michael T. Heath, and Joseph Liu. Parallel Cholesky factorization

on a shared-memory multiprocessor. Linear Algebra and Its Applications, 77:165-

187, 1986.

[38] A. Gaber Mohamed, Geoffrey C. Fox, Gregor von Laszewski, Manish Parashar,

Tomasz Haupt, Kim Mills, Ying-Hua Lu, Neng-Tan Lin, and Nang-kang Yeh.

Applications benchmark set for Fortran-D and High Performance Fortran.

Technical Report SCCS 327, Northeast Parallel Architectures Center, Syracuse

University.

[39] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and

Vaidy Sunderam. PVM 3 user’s guide and reference manual. Technical Report

ORNL/TM-12187, Oak Ridge National Laboratory, May 1994.

[40] Jason Gait. A probe effect in concurrent programs. Software — Practice and

Experience, l6(3):225—233, March 1986.

[41] Barton P. Miller and Jong-Deok Choi. Breakpoints and halting in distributed

programs. In 8th International Conference on Distributed Computing Systems,

pages 316—323, San Jose, California, 1988.

[42] Yoshifumi Manabe and Makoto Imase. Global conditions in debugging

distributed programs. Journal of Parallel and Distributed Computing, 15:62—

69, 1992.

131

[43] Dieter Haban and Wolfgang Weigel. Global events and global breakpoints in

distributed systems. In Proceedings of the 2lst Annual Hawaii International

Conference on System Sciences, Volume II, Software Track, pages 166-175,

January 1988.

[44] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7):558—-565, July 1978.

[45] Sue Utter-Honig and Cherri M. Pancake. Graphical animation of parallel Fortran

programs. In Proceedings of Supercomputing ’91, pages 491—500, Albuquerque,

New Mexico, November 1991.

[46] Cherri M. Pancake. Customizable portrayals of program structure. In Proceedings

of ACM/ONR Workshop on Parallel and Distributed Debugging, pages 64—74,

San Diego, California, May 1993.

[47] Alva L. Couch. Seecube user’s manual. Technical report, Tufts Univ. Dept. of

Computer Science, 1987.

[48] Jack Dongarra, Orlie Brewer, James Arthur Kohl, and Samuel Fineberg. A tool

to aid in the design, implementation, and understanding of matrix algorithms for

parallel processors. Journal of Parallel and Distributed Computing, 9:185—202,

1990.

[49] Daniel A. Reed, Ruth A. Aydt, Tara M. Madhyastha, Roger J. Noe, Keith A.

Shields, and Bradley W. Schwartz. The Pablo performance analysis environment.

Technical report, Department of Computer Science, University of Illinois, 1992.

[50] Allen D. Malony, David H. Hammerslag, and David Jablonowski. Traceview: A

trace visualization tool. IEEE Software, pages 19—28, September 1991.

[51] Mark V. LaPolla. Towards a theory of abstractions and visualizations for

debugging massively parallel programs. In Hawaii International Conference on

System Sciences-25, 1992.

[52] John V. Guttag, James J. Horning, and Jeannette M. Wing. Larch in five easy

pieces. Technical Report 5, Digital Equipment Corporation Systems Research

Center, July 1985.

[53] Jeannette M. Wing. Writing Larch interface language specifications. ACM

Transactions on Programming Languages and Systems, 9(1):1—24, January 1987.

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

132

John V. Guttag, Ellis Horowitz, and David R. Musser. Abstract data types and

software validation. Communications of the ACM, 21(12):1048—1064, December

1978.

John V. Guttag, James J. Horning, and Andrés Modet. Report on the

Larch shared language: Version 2.3. Technical Report 58, Digital Equipment

Corporation Systems Research Center, April 1990.

M.L. Brady, K.K. Jung, M.V. LaPolla, H.T. Nguyen, R. aghavan, and

R. Subramonian. The assignment problem on parallel architectures. In The

Ist DIMACS Intl. Algorithm Implementation Challenge: Problm Definitions and

Specifications, 1992.

Thinking Machines Corp., Cambridge, Massachusetts. Paris Reference Manual,

version 6.0 edition, Feb. 1991.

Mark Vincent LaPolla, Joseph L. Sharnowski, Betty H. C. Cheng, and Kevin

Anderson. Using formal specifications to generate visualizations of data

parallelism. Technical Report CPS-92-05, Michigan State University, July 1992.

Robert Cooper and Keith Marzullo. Consistent detection of global predicates. In

Proc. of the ACM/ONR Workshop on Parallel and Distributed Debugging, pages

167—174, 1991.

R. Curtis and L. Wittie. BugNet: A debugging system for parallel programming

environments. In Proc. of 1982 Distributed Computing Systems, pages 394—399,

1982.

Steve Sistare, Don Allen, Rich Bowker, Karen Jourdenais, Josh Simons, and

Rich Title. A scalable debugger for massively parallel message-passing programs.

IEEE Parallel 8 Distributed Technology, pages 50—56, Summer 1994.

Richard J. LeBlanc and Arnold D. Robbins. Event-driven monitoring of

distributed programs. In Proc. 5th International Conference on Distributed

Computing Systems, pages 515-522, May 1985.

Alfred A. Hough and Janice E. Cuny. Belvedere: Prototype of a pattern-oriented

debugger for highly parallel computation. In 1987 International Conference on

Parallel Processing, pages 735—738, 1987.

Alfred A. Hough and Janice E. Cuny. Initial experiences with a pattern-oriented

parallel debugger. In Proceedings of the ACM SIGPLAN/SIGOPS Workshop on

Parallel and Distr. Debugging, pages 195—205, January 1989.

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

133

Peter Bates. Debugging heterogeneous distributed systems using event-based

models of behavior. In Proceedings of the ACM SIGPLAN/SIGOPS Workshop

on Parallel and Distributed Debugging, pages 11—22, January 1989.

Janice Cuny, George Forman, Alfred Hough, Joydip Kundu, Calvin Lin,

Lawrence Snyder, and David Stemple. The Ariadne debugger: Scalable

application of event-based abstraction. In Proceedings of ACM/ONR Workshop

on Parallel and Distributed Debugging, pages 85—95, San Diego, California, May

1993.

Vincent A. Guarna, Jr., Dennis Gannon, David Jablonowski, Allen D. Malony,

and Yogesh Gaur. Faust: An integrated environment for parallel programming.

IEEE Software, pages 20-27, July 1989.

J.J. Dongarra and DC. Sorensen. SCHEDULE: Tools for developing and

analyzing parallel fortran programs. In L. Jamieson, D. Gannon, and

R. Douglass, editors, The Characteristics of Parallel Fortran Programs, pages

363—394. The MIT Press, Cambridge, MA, 1987.

M. Zimmermann, F. Perrenoud, and A. Schiper. Understanding concurrent

programming through program animation. In Proc. of 19th SIGCSE Technical

Symposium on Computer Science Education, pages 27—31, 1988.

David Socha, Mary L. Bailey, and David Notkin. Voyeur: Graphical views of

parallel programs. SIGPLAN Notices, 24(1):206—215, January 1989.

John T. Stasko and Eileen Kraemer. A methodology for building application-

specific visualizations of parallel programs. Journal of Parallel and Distributed

Computing, 18:258-264, 1993.

Gruia—Catalin Roman and Kenneth C. Cox. A declarative approach to visualizing

concurrent computations. IEEE Computer, pages 25—36, October 1989.

Gruia—Catalin Roman and Kenneth C. Cox. Declarative visualization in the

shared dataspace paradigm. In 1989 IEEE 11th Intl. Conf. on Software

Engineering, pages 34—43, 1989.

APPENDIX

134

APPENDIX: LOTOS Specification of the Parallel

Computing Environment

In this appendix, we provide the full LOTOS specification for the parallel computing

environment that was discussed in Section 2.1.2. The process definitions for

Host_Node and Worker_Node are intentionally left blank, since their behavior depends

on the particular program that is being specified.

specification Message-Passing_Program(TOTAL_WORKERS:Nat): noexit

(* List of Program-Specific Variables should be added to the parameter list *)

library NaturalNumber endlib

behavior

(

Host_Node[send,recv](TOTAL_WORKERS)

lll

All_Worker_Nodes[send,recv](TOTAL_WORKERS,TOTAL_WORKERS)

All_Host_to_Worker_,Channels[send,recv](TOTAL_WORKERS)

| | I

All_Worker_to_Worker_Channels[send,recv](TOTAL_WORKERS,

TOTAL_WORKERS)

)

where

process Host_Node[send,recv](NUM_WRKRS:Nat): exit :=

(

(* Fill in definition for Host Node *)

)

endproc (* Host_Node *)

process All_Worker_Nodes[send,recv](NUM-WRKRS,N0deCtr:Nat): noexit :=

[NodeCtr > 0] -—>

(

Worker_Node[send,recv] (NUM_WRKRS,NodeCtr)

Ill

All_Worker_Nodes[send,recv](NUM_WRKRS,NodeCtr - 1)

135

)

where

process Worker-Node[send,recv](NUM_WRKRS,MY_NUM:Nat): exit :=

(

)

endproc (* Worker_Node *)

endproc (* AIL Worker_Nodes *)

(* Fill in definition for Worker Node *)

process All_Host_to_Worker_Channels[send,recv](NodeCterat): noexit :=

[NodeCtr > 0] —;

(

Host_to-Worker_Channel[send,recv] (NodeCtr,0)

| | |

Host_to_Worker_Channel[send,recv] (0,NodeCtr)

Ill

All_Host_to_Worker_Channels[send,recv](NodeCtr - 1)

)

where

process Host_to-Worker_Channel[send,recv](Sender,Rcvr:Nat): noexit :=

(* Replace “Message” with the name of an appropriate sort *)

send lSender chvr ?Msg:Message;

recv lSender chvr lMsg;

Host_to_Worker_Channel[send,recv](Sender,Rcvr)

endproc (* Host_to_ Worker_ Channel *)

endproc (* All_Host_to_ Worker_ Channels *)

process All_Worker_to_Worker_Channels[send,recv](NodeCtr,

NUM-WRKRS:Nat): noexit :=

[NodeCtr > 0] —+

(

Single_Worker_Channels[send,recv] (NodeCtr,NUM_WRKRS)

Ill

All_Worker_to_Worker_Channels[send,recv] (NodeCtr - 1,NUM_WRKRS)

)

where

process Single_Worker_Channels[send,recv](S_Node,R_Ctr:Nat): noexit :=

(* Do not create a self-loop channel *)

[R_Ctr > 0 A S_Node 75 R-Ctr] —»

(

Worker_to_Worker_Channel[send,recv](S_Node,R-Ctr)

Ill

Single-Worker_Channels[send,recv](S_Node,R_Ctr - 1)

)

[l

136

[R_Ctr > 0 /\ S_Node = R_Ctr] ——>

(

)

where

process Worker_to_Worker_Channel[send,recv](Sender,

Rcvr:Nat): noexit :2

(* Replace “Message” with the name of an appropriate sort *)

send lSender !Rcvr ?Msg:Message;

recv lSender !Rcvr lMsg;

Worker_to-Worker_Channel[send,recv] (Sender,Rcvr)

endproc (* Worker_to_ Worker_,Channel *)

endproc (* Single_ Worker_ Channels *)

endproc (* All_ Worker_to_ Worker_ Channels *)

Single_Worker_Channels[send,recv](S_Node,R_Ctr - 1)

endspec (* Message-Passing-Program *)

HICHIGQN STATE UNIV. LIBRARIES

[HIHHIINHII][1]][I[[NIWIIIHH[Willi]
31293013879899

