‘1 ‘ . x . I. An .7170 .21; o .3. flux“ 551...; . fun“ t. if . 1),..V. fin: I: x 31.9”. a .. v «(fink .. ‘ c! 3. . . 30)} 7.5.5“: :. 3 . . - am 4 .9 it: 3: a to 31... .u u 5.4.. t... a.‘ .a, . $.1‘hflrz‘3. a. a , 3 3411:... , -32.??? ‘ letter! a 73?} .‘i‘nd. . rzi xiv... 7 I 13:95:. “v.90. .: 3...: an: .r :55??? f. I». 12,13. . V \ ‘5‘»)! x) i all. . .‘V r. t 193‘“ 1 .LJHHW : .t .. ‘0: 1 1:19.39 .1...th J Hare... if..- .I 3:3... .4 El“ r5445. ICHIGAN STATE UNIVERSITY L RARIES m lrlltuugrm ll 9 3 1 93 01388 2265 Will/Hill!Ill/ill!l This is to certify that the thesis entitled Evaluating The Performance of Distrubed Lysimeters Using an Undisturbed Lysimeter as a Control presented by Kevin John Kalmbach has been accepted towards fulfillment of the requirements for his degree in M. i W Major professor Date October 6, 1995 0-7639 MS U is an Affirmative Action/Equal Opportunity Institution LIBRARY Michigan State University PLACE ll RETURN BOX to moon thb checkout from your roootd. TO AVOID FINES totum on or baton dot. duo. DATE DUE DATE DUE DATE DUE l ||______I L_J__ U: : ”if—"h MSU In An Affirmative Mon/Equal Opportunity Institution W EVALUATING THE PERFORMANCE OF DISTURBED LYSIMETERS USING AN UNDISTURBED LYSIMETER AS A CONTROL By Kevin John Kalmbach A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Agricultural Engineering 1995 ABSTRACT EVALUATING THE PERFORMANCE OF DISTURBED LYSIIVIETERS USING AN UNDISTURBED LYSIMETER AS A CONTROL By O Kevin John Kalmbach Drainage rate and volume from each of four disturbed soil profile lysimeters were compared to that of the other three lysimeters. Drainage from the disturbed lysimeters was also compared to an undisturbed soil profile lysimeter. The five lysimeters were also used to evaluate leachate from four nitrate fertilizer schemes used on a seed corn crop. During the study, the four disturbed lysimeters went through five years of " settling" during which significant differences did exist in drainage rate and nitrate concentrations between them and the undisturbed lysimeter. The differences became less as the project progressed. No significant differences could be found among drainage rates or volumes in 1993. Investigation of the nitrogen fertilizer treatments showed that lower nitrogen application rates result in lower amounts of nitrate in leachate. Grain yield from a plant response fertilization treatment and the 101 kg N/ha treatment both showed no significant difference when compared to a 202 kg N/ha treatment. To my best friend, whom I am lucky to have as a wife, Tina. iii TABLE OF CONTENTS LIST OF TABLES ............................................................................................................. vi LIST OF FIGURES .......................................................................................................... vii INTRODUCTION ............................................................................................................... 1 BACKGROUND ............................................................................................................. 1 OBJECTIVES .................................................................................................................. 4 LITERATURE REVIEW .................................................................................................... 5 TYPES OF LYSIMETERS ............................................................................................. 5 DISTURBED VERSUS UNDISTURBED LYSIMETERS ............................................ 7 DRAINAGE IN LYSIMETERS ...................................................................................... 9 DRAINAGE SYSTEMS FOR LYSIMETERS ............................................................. 11 DRAINAGE MEASURING DEVICES ........................................................................ l3 TECHNIQUES FOR FILLING DISTURBED LYSIMETERS .................................... l3 TECHNIQUES FOR ENCASING UNDISTURBED SOIL MONOLITHS ................. 14 NITROGEN FLOW THROUGH SANDY SOILS ....................................................... l6 LITERATURE ON PIONEER PROJECT .................................................................... 18 METHODOLOGY ............................................................................................................ 20 UNDISTURBED LYSIMETER .................................................................................... 24 DISTURBED LYSIMETER .......................................................................................... 29 FIELD PRACTICES ................................................................ .. ..................................... 31 iv SAMPLING SYSTEM .................................................................................................. 39 LEACHATE TESTING PROCEDURE ........................................................................ 45 STATISTICAL ANALYSIS ......................................................................................... 45 RESULTS .......................................................................................................................... 46 COLLECTION OF DRAINAGE DATA ...................................................................... 46 EVALUATION OF DRAINAGE RATES .................................................................... 49 COMPARISON OF NITRATE FLUX WITHIN LYSIMETERS ................................ 74 RESULTS OF NITROGEN APPLICATION RATE AND TIMING ........................... 83 DISCUSSION .................................................................................................................... 92 CONCLUSIONS ................................................................................................................ 99 REFERENCES ................................................................................................................ 100 APPENDICES ................................................................................................................. 103 APPENDIX A. Lysimeter drainage volumes ..................................................... 103 APPENDDC B. Daily Precipitation and Irrigation .............................................. 143 APPENDD( C. Drainage sample volumes and nitrate concentration data ......... 179 LIST OF TABLES TABLE 1. TYPICAL SOIL PROFILES OF LYSIMETER AREAS .................................................... 27 TABLE 2. FIELD PRACTICES AT MSU PLOTS IN CONSTANTINE, MICHIGAN. ....................... 35 TABLE 3. DESCRIPTION OF CAMPBELL SCIENTIFIC, INC. WEATHER STATION SENSORS. ..... 39 TABLE 4. TIPPING BUCKET CALIBRATION VOLUMES. .......................................................... 47 TABLE 5. DATES FOR WHICH No AUTOMATED DATA WERE AVAILABLE .............................. 48 TABLE 6. DRAINAGE FROM INDIVIDUAL LYSIMETERS DURING THE DRAINAGE EVENT WHICH BEGAN NOVEMBER 4, 1990. ........................................................................................ 52 TABLE 7. VALUES OF T FROM STUDENT'S T-TEST COMPARING DAILY CUMULATIVE DRAINAGE BETWEEN DISTURBED LYSIMETERS FOR EACH YEAR ................................... 57 TABLE 8. CUMULATIVE DRAINAGE MAY 1 To APRIL 30. ................................................... 61 TABLE 9. STUDENT'S T-TEST RESULTS COMPARING DAILY DRAINAGE FROM EACH OF THE FOUR DISTURBED LYSIMETERS To THE UNDISTURBED LYSIMETER. .............................. 61 TABLE 10. ET VALUES FOR 1991 AND 1992. ..................................................................... 70 TABLE 11. STUDENT'S T-TEST RESULTS FOR NITRATE VALUES FOUND IN LEACHATE FROM LYSIMETER #3 (UNDISTURBED) AND LYSIMETER #5 (DISTURBED). {a = 0.10} .......... 82 TABLE 12. SOIL-PLANT NITROGEN BALANCE FOR THE PERIOD OF MAY 1, 1990 To APRIL 31, 1994 ...................................................................................................................... 83 TABLE 13. YIELD TAKEN AT HARVEST FOR INBRED 2. ........................................................ 91 vi LIST OF FIGURES Page FIGURE 1. SIDE VIEW OF LYSIMETER CASING AND ACCESS CHAMBER ................................. 22 FIGURE 2. TOP VIEW OF LYSIMETER CASING AND ACCESS CHAMBER .................................. 23 FIGURE 3. DIAGRAM OF PIVOT POINTS FOR THE LYSIMETER CONTAINER. ........................... 28 FIGURE 4. DIAGRAM OF PLOT TREATMENTS AND LOCATION. ............................................. 33 FIGURE 5. TIPPING BUCKET ASSEMBLY. ............................................................................. 42 FIGURE 6. SAMPLING SYSTEM WIRING DIAGRAM ................................................................ 43 FIGURE 7. SAMPLING PROGRAM FLOW CHART .................................................................... 44 FIGURE 8. DRAINAGE PRODUCED BY "BIG STORM" EVENT ON 10-30-89 AND 10-31-89. ...51 FIGURE 9. CUMULATIVE DRAINAGE MAY 1, 1992 THROUGH APRIL 30, 1993. .................. 53 FIGURE 10. DRAINAGE RATES FROM A SINGULAR DRAINAGE EVENT ............................... 54 FIGURE 11. CUMULATIVE DRAINAGE FOR 1991 THROUGH 1993 LEACHING YEARS. ........... 59 FIGURE 12. DRAINAGE EVENTS, SPRING OF 1990. .............................................................. 63 FIGURE 13. DRAINAGE EVENTS, FALL OF 1991. ................................................................. 64 FIGURE 14. SINGLE DRAINAGE EVENT, JUNE OF 1993. ....................................................... 65 FIGURE 15. COMPARISON OF 1991 CUMULATIVE MEASURED DRAINAGE AND CUMULATIVE CALCULATED .............................................................................................................. 68 FIGURE 16. COMPARISON OF 1992 CUMULATIVE MEASURED DRAINAGE AND CUMULATIVE CALCULATED DRAINAGE. ............................................................................................ 69 Vii FIGURE 17. GRAPH OF CUMULATIVE DRAINAGE AND CUMULATIVE PRECIPITATION, BY YEAR. .......................................................................................................................... 72 FIGURE 18. EVENT DRAINAGE EXPRESSED AS A PERCENTAGE OF THE EVENT’S PRECIPITATION. ........................................................................................................... 73 FIGURE 19. YEARLY CUMULATIVE NITRATE LOAD FROM LYSIMETERS 3 AND 5 EACH RECEIva 202 KG N/HA ............................................................................................. 76 FIGURE 20. AVERAGED NITRATE CONCENTRATIONS FOUND IN LEACHATE FROM DISTURBED AND UNDISTURBED LYSIMETERS RECEIVING 202 KG/HA N PER YEAR .......................... 77 FIGURE 21. N CONCENTRATIONS FOUND IN DRAINAGE FROM THE UNDISTURBED LYSIMETER(#3). .......................................................................................................... 79 FIGURE 22. N CONCENTRATIONS FOUND IN DRAINAGE FROM THE DISTURBED LYSIMETER (#5). ............................................................................................................................ 80 FIGURE 23. YEARLY CUMULATIVE NITRATE LOAD FOR ALL FIVE TREATMENTS (ALL FIVE LYSIMETERs). .............................................................................................................. 85 FIGURE 24. NITRATE LOAD PLOTTED AGAINST CUMULATIVE DRAINAGE FOR 5-1-92 THROUGH 4-3 0-93 ....................................................................................................... 87 FIGURE 25. NITRATE LOAD PLOTTED AGAINST CUMULATIVE DRAINAGE FOR 5-1-93 THROUGH 4-30-94 ....................................................................................................... 88 FIGURE 26. PERCENTAGE OF DRAINAGE SAMPLES TESTING BELOW 10 PPM NITRATE (5-92 T0 8-94). ..................................................................................................................... 90 FIGURE 27. YIELD AND 90% CONFIDENCE INTERVALS FOR 1990, 1991, 1992 & 1993 GRAIN HARVESTS. ....................................................................................................... 90 viii INTRODUCTION BACKGROUND Over the last century many technological advances have improved agriculture. Heavy machinery and a cheap supply of fertilizer have made it easier for a Single farmer to farm more land than ever before. Coupled with advances in technology is the responsibility for the care of the Earth's other precious resources which mandate a change in management practices. The most precious of the resources our Earth has to offer is water. Water is utilized by every living organism to survive. Unfortunately, some of our current agricultural practices might be harming the quality of our ground water resources. In an effort to understand the impact our agriculture has on ground water, a device called a lysimeter is being used by many agricultural scientists. A lysimeter is an enclosed block of soil with a drain at the bottom. From this drain, all the water that passes through the soil block can be collected, measured and tested to see what has been added to it in the soil environment. The soil at the top of a lysimeter is normally cropped to simulate real crop soil conditions. Lysimeters can be small and kept in a greenhouse on a bench, or, like the lysimeters at Pioneer Hi-Bred International, Inc. seed corn facility in Constantine, Michigan, can be very large and are installed directly into a farm field with a crop grown on top of it. 2 Pioneer Hi-Bred International, Inc. has a hybrid seed corn production plant in Constantine Michigan. The seed corn industry has become very important to St. Joseph County and other parts of southwest Michigan and northwest Indiana because of a favorable climate, abundant irrigation water, and soils that are predominately sandy loam and sands. These well-drained soils allow traffic over the field most of the season, regardless of the weather. Historically, farmers apply enough nitrogen fertilizer to make sure that the crop has an abundant supply of nitrogen to have a bountiful harvest. Seed producers in St. Joseph County also utilize irrigation as a supplement to precipitation to ensure that their crop will not suffer from a depleted water supply. For a number of years prior to the start of this project, the village of Constantine's water supply was tested for nitrogen, among other pollutants. The water supply was found to exceed the Public Health Standard of 10 parts per million nitrate-nitrogen. This raised concern about nitrate in ground water, particularly under seed corn growing areas. In response to this public concern, researchers at Michigan State University and at Pioneer acknowledged the need to study nitrogen management strategies and seek ways to minimize nitrate leaching in seed corn production areas like St. Joseph County. The researchers decided that to be able to provide growers information on an alternative nitrogen (N) fertilizer strategy, research would need to be conducted to identify best management practices to minimize leaching. The goal of this research was to develop management strategies for producing a quality product with acceptable profitability and at minimum risk to the environment. An equally important goal was to develop a 3 computerized simulation model for inbred seed corn production. One such model is CERES-1M. Martin (1992) discusses the CERES-1M model and the changes made to adapt the CERES-MAIZE model to production seed corn fields. This model is essential to make decisions in finding N management strategies to reduce leaching and maintain profitability over multiple years. Five large lysimeters were installed in Constantine, Michigan in seed corn plots to assist in the research. Each lysimeter spans five rows of seed corn and is 2.3 meters deep with a drain underneath. One of these five lysimeters was constructed around an undisturbed block of soil. The other four lysimeters contain disturbed soil profiles, filled one soil horizon at a time making sure the density was the same as when the soil was excavated. It is commonly believed that an undisturbed soil profile lysimeter is the preferred type to build, but they cost more and take much more time and equipment to install. Kohnke et al (1940) in a review of lysimeter research stated that: In the filled-in lysimeters it is fi'equently noticed that in the first year or two the nitrate content of the percolate is rather high, but afterwards it decreases to very low rates. They explain this phenomenon as a result of an increased number of macropores in recently disturbed soils of all types which tend to make conditions favorable for nitrification. It is assumed that these macropores later slowly close up, resulting in fewer macropores in the disturbed soil than occur in the natural soil. This later condition is less favorable for nitrification because less. OBJECTIVES The goal of this research is to determine differences in flow pattern and nitrate leachate concentration and amount between an undisturbed soil profile lysimeter and disturbed profile lysimeters installed in a sandy soil. The specific objectives of this research were: 1. To determine if significant differences have occurred in drainage rate and amount between the two different types of lysimeters. 2. To determine if significant differences have occurred in the transport of nitrogen in the form of nitrate between the two types of lysimeters. 3. To determine if significant differences in nitrate leaching or grain yield have occurred within four different nitrogen fertilizer treatment schemes. LITERATURE REVIEW Lysimeters are defined by Aboukhaled et a1 (1982) as large containers filled with soil (or enclosing a soil block) to represent the field environment. Lysimeters can have bare or vegetated surfaces for determining the evapotranspiration a growing crop, a reference vegetative cover, or evaporation from bare soil. Many other researchers have recently began using lysimeters to analyze irrigation schemes, ground water recharge and nitrate and pesticide leaching (Bergstrom, 1987; Dowdell & Webster, 1980; King et al, 1977; Martin et al, 1994; Watts & Martin, 1981; Prunty & Montgomery, 1991). Types of Lysimeters Lysimeters have been used as research tools since 1688. The first known lysimeter was built by Philippe De la Hire in Rungis, near Paris, France (Kohnke et al, 1940). These first lysimeters were described as being round with lead walls, filled with sandy loam soils. One hundred years later, John Dalton built a round lysimeter with tinned iron walls and filled it with " good fresh soil". Kohnke has discussed literature from 1688 up to 1939. Harrold & Dreibelbis (1958) reviewed literature on lysimeters for the period 1939 to 1955. Later, Harrold et a1 (1967) reviewed literature for the period 6 1955 to 1962. In these reviews, lysimeters were classified according to their construction. This yielded three major types; 1. Monolith, or undisturbed soil-block. 2. Ebermayer. 3. Filled in or disturbed. Aboukhaled et al (1982) categorized lysimeters as "weighing" or "non-weighing". Weighing refers to scales placed under a disturbed or undisturbed soil block in order to monitor changes in the mass of the lysimeter soil. This change in mass, over short time periods like hours or days, is mostly due to changes in water content in the soil. Monitoring this change hourly helps develop evaporation and transpiration equations and can also provide a reference ET for evapotranspiration (ET) estimations. This publication covers many special considerations in the selection, design and operation of lysimeters. Detailed descriptions of over a dozen lysimeters are discussed. Monolith, herein called "undisturbed", lysimeters are widely accepted as "natural" lysimeters because the soil structure is still as it was in nature. Undisturbed lysimeters are built by encasing a block of soil in an enclosure with a drainage system at the bottom. Ebermayer lysimeters consist of a plate inserted under an area of soil to catch vertical drainage. Unlike other lysimeters, Ebermayer lysimeters have no walls to control horizontal water movement. Disturbed lysimeters can be built to the same dimensions as the undisturbed lysimeters. The only difference between the two types of lysimeters is that in the final 7 construction of disturbed lysimeters they are filled, usually by hand, with mixed soil. The soil structure and pore structure are mostly or totally destroyed during this process. Bergstrom (1989) detailed the differences between the three major types of lysimeters; disturbed, undisturbed, and Ebermayer. He also discussed concerns which must be considered when using lysimeters in pesticide leaching studies. Disturbed versus Undisturbed Lysimeters Dowdell and Webster (1980) found higher nitrate in leachate from undisturbed lysimeters than in leachate from adjoining soils after installing twelve undisturbed lysimeters in a stone free loamy sand. This increase was presumably caused by the increased aeration, and subsequent mineralization of soil organic mater associated with the installation, and from plowing and planting activities. This increase has not reoccurred in these lysimeters. Kohnke et a1 (1940), in a broad review of lysimeters, noted that percolate from various disturbed soils tended to be high in nitrate content for a year or two, then the nitrate concentration decreased to very low rates.. He suggests that this decrease was due to aeration caused by stirring and mixing the soil, and also due to more large pore space which would tend to make conditions favorable for nitrification. Later these large pores closed up and nitrification slowed down. The soil in disturbed lysimeters does not have cracks and fissures that are found in natural soils. With the natural soil cracks and 8 fissures absent from the lysimeter, the lysimeter will have lower rates of nitrification than the natural soil because of reduced aeration. Aboukhaled et al (1982) remarked that breaking up any soil will change soil structure, aeration and soil moisture retention characteristics, leading to differences in soil water tension and soil water movement as well as differences in soil heat flux. Black et al (1968) showed that the temperatures in lysimeters placed in Plainfield sand were higher than that in the surrounding natural soils. This would imply that in winter months less water would be kept fiozen in the soil. Also, warmer temperatures could increase nitrification and other microbial activities. Aboukhaled et al (1982) also found what he called contradictory results among various reported research. Some researchers reported better growth on their disturbed lysimeters than found in the surrounding field. Other researchers reported poorer growth on disturbed lysimeters. It was suggested that most of the discrepancies found between lysimeter plots and field plots result fi'om treating the two plots differently. Aboulchaled believes that both disturbed and undisturbed lysimeters will mimic the natural soil evapotranspiration (ET) characteristics if the water content of the soil in the lysimeter is kept high and the same done for the entire surrounding research field. He also suggested that deep plowing or subsoiling of the rest of the border area and field plots will break up the soil and will yield more reliable data. Some research has been done to specifically investigate the effects of disturbing a soil profile. McMahon and Thomas (1974) investigated chloride flow through disturbed and undisturbed soil cores containing silt loams and silty clay loams. They found that 9 chloride movement was deeper in undisturbed cores than in disturbed cores. They concluded that ped structure influences ion, chloride and nitrogen, flow as well as water flow. The water flowed predominantly through macropores and carried ions with it. Some ions were carried deep into the soil. They give no indication of rates of water flows. Cassel et. al. (1974) investigated two loamy soils in disturbed and undisturbed soil cores representing moderate and strong soil structure. Their investigations Showed that, under experimental conditions, more water is required to displace a given quantity of N03 through a disturbed profile compared to that for an undisturbed profile. They also found that disturbed soils can have a capacity to hold more water than undisturbed soils. Bergstrom (1987) conducted an experiment in which tile drained plots were compared to lysimeter drainage. The soil profile consisted of four layers; a topsoil layer consisting of clay loam, a fine sand layer, an oxidized clay layer, and then a non oxidized clay layer. He found that water moved faster through disturbed soils in both cases. The greatest differences between disturbed and undisturbed soils occurred during dry periods. Drainage in Lysimeters Dreibelbis (1961) compared the moisture content of various soil layers within undisturbed monolith lysimeters to that of the surrounding watershed. He found that even in large, undisturbed lysimeters (3 lysimeters 2.4 m in depth with a 0.005 ha (0.002 10 acre) surface area) the moisture content is different in the lysimeter than that of the surrounding watershed. These lysimeters were in fine textured soils classified as Muskingum and Keene silt loams (Coshocton OH). In all the cases studied, the lysimeter contained more water than the watershed when the moisture content was high. When the soil drained and the moisture content lowered, the lysimeters contained less water than the watershed. When filled with Keene silt loam, the lysimeter and its watershed area agreed best among all profiles when around 30 mm of water was in the 0 - 0.13 m profile. He stated that the presence of any restricting layers in the natural soil or natural variations in soil type will cause a difference in soil water content between lysimeters and watersheds. A study of the conditions in four disturbed lysimeters located across the state of Oklahoma has supported Dreibelbis' findings that the moisture content is different inside the lysimeter than it is in the surrounding soil ( Fisher and Elliot, 1994). These lysimeters are 1.5 m deep with a surface area of 0.95 m2. The lysimeters were filled with multiple 0.3 - 0.4 m deep "soil blocks" cut from the soil with a flat spade. The soils used at the various sites included Silt loarns, a clay loam and a silty clay loam. A drain pipe was laid in the bottom of the. lysimeter and covered with gravel and then a 50 mm deep layer of sand. This study found that the moisture in the semi-undisturbed lysimeters was generally lower than that in the natural field. Macropores provide an easily accessible pathway for water to travel from the surface into the ground water. These pores are produced by soil fauna (such as worms, moles, gophers and wombats), live or decayed plant roots, cracks and fissures, and 11 natural soil pipes formed by subsurface flow of water (Beven and Germann, 1982). Macropore flow interacts with other soil water only to a limited extent. More mixing can be assumed with small precipitation events than with larger events (Thomas and Phillips, 1979). Drainage Systems for Lysimeters The reason researchers have contained soil in lysimeters is to confine the water to a known area of influence. The water in the lysimeter will percolate down to the bottom of the lysimeter from where it is then removed. There are two ways to remove the water: either provide an area for water to accumulate and allow free drainage into this area, or install a suction device at the bottom of the lysimeter to remove water from the soil. Suction can be achieved as simply as placing porous suction cups at the level in the soil where suction is desired (Brown et al, 1985). Suction created when the water is pumped out of these cups and a partial vacuum results causing water in the soil to enter the cup. Porous plates can also be used in the same fashion (Ritchie & Burnett, 1968). Black et a1 (1968) applied suction to a network of porous cups which was placed under a network of weighing lysimeters and electronically controlled. Black found that a suction of 200 - 300 mm of water was sufficient to stop abnormal water accumulation at the bottom of a lysimeters containing Plainfield sand. 12 Free drainage lysimeters usually have a layer of gravel or other porous media at the bottom to allow free water to have relatively unobstructed flow to a drain or sampling line. This gravel is sometimes separated fi'om the overlying soil by a geosynthetic fabric to keep the two from mixing. Distrubed lysimeters have been made with drain tile laid along the bottom of a lined trench (Bergstrom, 1987). In other lysimeters Bergstrom left water in the gravel layer under undisturbed monoliths and pumped this water out weekly. Some of the lysimeters in Coshocton, Ohio drain freely (Garstka, 193 7). These early lysimeters had surface runoff collectors to collect water which did not percolate through the soil. Litaor (1988) has reviewed different ways to collect soil water. These collection devices are called "soil solution samplers". Litaor exposes what he calls "contradictory results" between data obtained from suction and free drainage. Some sampling techniques such as free draining of lysimeters may predominantly collect water from macropores. Whereas suction collection devices installed at the bottom of a lysimeter might draw water out of the soil micropores which would not normally drain in natural conditions. In his paper he concludes with a cautionary note stating; "The user should realize that the composition and concentrations of soil solutions are not homogeneous and solute concentrations fiom macropores are probably ditfirentfi'om that collected fiom micropores. " 13 Drainage Measuring Devices The most straight forward method of sampling is letting the drainage collect and then pumping the water out and measuring this volume of water (Black et al, 1968; Martin et. al., 1994), or determining the weight of the water (Bergstrom, 1987). Garstka (193 7) reported that the original lysimeters in Coshocton, Ohio were free draining into a reservoir. The level of water in the reservoir was then recorded on a chart recorder through the use of floats and float position transmitters. Remote field locations and projects requiring hourly data require data loggers (small computers capable of recording data and operating electrical switches) to monitor lysimeter flow and possibly collect data. London et. a1. (1991) developed a sampling system and used it to monitor 2 to 5 lysimeters, monitor a weather station, pump out the lysimeter and collect multiple samples. (also, Martin et. al., 1994) Techniques For Filling Disturbed Lysimeters Many small disturbed lysimeters, also called "disturbed soil cores", are filled with soil which has been air dried and passed through a 2-mm sieve before being packed into the lysimeter container (Cassel et. al., 1974). Attention should be given to the location of the horizons in the original soil and this position kept when the soil is repacked into the lysimeter (Kohnke et al, 1940; Cassel et. al., 1974; London et. al., 1991). London also 14 suggests that the bulk density of the original undisturbed soil be recorded for comparison to that of disturbed lysimeters. Kohnke et a1 (1940) suggests that; "The heavier the soil and the more mature its profile the greater will be the disturbance created by digging and replacing, even if an attempt be made to keep the horizons in their original sequence. " He also thought that sandy soils with undeveloped soil profiles would be less likely to be affected by removal and replacing into a lysimeter. On advantage of disturbed lysimeters is that they can be fitted with monitoring equipment like temperature measuring devices or other monitoring devices during the site filling process (Black et al, 1968). Techniques For Encasing Undisturbed Soil Monoliths Undisturbed lysimeters encapsulate soil monoliths. The process used in encapsulating larger monoliths is costly and time consuming. This process usually involves digging around the soil to be encased and lowering a casing over a soil block or building an encasement around the soil block. This process was used for the In-Place lysimeters near Coshocton, Ohio (Garstka, 1937). Now, with the use of large machinery, soil monoliths can be encapsulated easier by forcing a casing down over the undisturbed soil monolith. Cylindrical lysimeter 1 5 casings have been made from PVC, fiberglass (Belford, 1979) and specially constructed steel barrels (Brown et al, 1985). All these methods employ some kind of vertical force, usually exerted by a back hoe bucket, to press the casing over the monolith. Along with this force, a process of excavating, trimming and pressing is repeated until the casings were full. These medium sized lysimeters can, after being encased, be moved to a research site which would be somewhat different than the highly disturbed site where they were captured. Many researchers have now accepted this process of pressing a container into the ground as the "traditional" or accepted approach (Schneider et al, 1993; Loudon, 1991; Brown et a1, 1974). Each researcher has used slightly different methods to press the container into the soil and remove it, each suitable for their unique case. Schneider et a1 (1993) also encapsulated soil by the "traditional" method of pressing down a casing and undercutting the monolith in order to remove it. Dead weight was use as the force to press down the casing. This weight was accomplished with water tanks placed on support members attached to the lysimeter, weight was constantly increased by the addition of water to the tanks. Schneider then made a disturbed lysimeter for the lower profile from saturated soil underneath the removed undisturbed monolith. He filled the lower tanks with 0.15-m increments of the soil, saturated the soil and drained the packed soil. His surface was 2-m by 4-m with a total depth of 2.5-m. Hand tools were used by Brown et. al. (1974) and others to trim the last bit of soil from the side of their monolith in order for the casing to slide down. Brown et al also wetted the sides of the monolith to lubricate the walls to help in the cutting process. 16 London et. al. (1991) describes a tool designed to carve the soil nearly to the plane of the inside face of each side wall. The weight of the container was then enough to encase 0.3 m depth of soil before added force became necessary. Nitrogen Flow Through Sandy Soils Nitrogen is found in soils in mainly four forms; Organic Matter, Nitrate (N 03), Nitrite (N02), and Ammonium-Nitrogen (NH4). Testing has shown that leachate commonly contains less than 1% N02 + NH4 (Shaw and Jones, 1974; Bergstrom, 1987). Nitrate, the most common form of nitrogen in soils, is soluble in water and therefore is carried through the soil matrix by water. These nitrate ions can move in water either by diffusion or convection. Diffusion can take place over a 10 mm distance, while convection can move ions great distances. (Wild and Babiker, 1976; Greencorn, 1983). Because of the fact that nitrate is transported with water, leaching loss of nitrate can not be reduced to zero (Watts and Martin, 1981). When the soil is at field capacity or greater moisture content, the pattern of movement of nitrogen through sandy soils is that of a diffuse band moving downward with each precipitation event (Shaw and Jones, 1974). Prunty and Montgomery (1991) found this same occurrence in 2.3 m deep lysimeters filled with a reconstructed loamy fine sand and noted that it took one year to see excess nitrates in leachate after the addition of fertilizers. Dowdell and Webster (1980) reported an excess the first winter l 7 after fertilizers were applied to grass swards on; twelve 0.11 m deep undisturbed lysimeters containing a loamy sand. Wild and Babiker (1976) studied the variability of nitrate leaching depths under field conditions in a weakly structured loamy sand and found considerable asymmetry in the vertical distribution of nitrate in soil profiles. Calcium nitrate and calcium chloride were applied to individual plots which were initially at field capacity. Four inigation rates were used, the lowest being 2.5 mm on twenty successive days and the highest rate being 25 mm on days 3 and 7. They found that the modal depth of movement, the depth of highest concentration of the two ions (nitrate and chloride), was about half the mean depth of movement, indicating a highly skewed distribution and a pronounced leading tail of chloride and nitrate. These findings fit a hypothesis that water was carrying nitrate and chloride down macropores within the soil, and that only part of the solutions moved uniformly through the rrricropores. No significant difference could be found in leaching due to irrigation period. Other research has shown that isolated extremes in solute displacement rates can occur at various depths in a field plot (Van De Pol et al, 1977; Biggar and Nielsen, 1976). Richter and Jury (1986) studied indiVidual lysimeters filled with coarse sandy loam which showed evidence of water and solute movement through preferential pathWays. The lysimeters were 0.2 m in diameter and 0.19 m deep. These rrricro- lysimeters were brought to field capacity, then they were irrigated with a bromide water solution at 5.5 mm/h and 9.5 mm/h three times a week, both rates were controlled to apply typically 10 - 30 mm of water. Preferential water movement moved solution 1 8 through a small part of the wetted pore space in the lysimeters and allowed deep penetration of the solute. Bromide was detected in most lysimeters in the first drainage event. There was also a lack of correlation between drainage flux and solute concentration at a given depth within any plot. The theory that a portion of the solute moves through larger pore spaces has been investigated by other researchers (Mc Mahon and Thomas, 1974; Thomas and Phillips, 1979). These researchers have postulated that if water moves through macropores, it interacts with solutes in the relatively immobile soil water in micropores to only a limited extent. Thomas and Phillips suggested that leaching occurs when a small quantity of N03 diffuses fiom the smaller pores to the surfaces of the macropores and then is moved through the soil profile. Literature On Pioneer Project Much of the literature published to date based on the research being carried out in Constantine, Michigan has been in the form of internal reports. Much knowledge regarding the fate of nitrogen applied to seed corn production has been acquired. This has prompted other research within the seed production industry to evaluate fertilizer cost and effectiveness (Martin, 1992). Martin modified the CERES-MAZE model to better model seed corn and take seed corn cultural practices into account. The new model is called CERES IM. A three l 9 year report (Ritchie et al., 1993) covered the first three years of the project and concluded that nitrogen fertilizer application rates for seed corn production can be reduced to 80 to 110 kg/ha without a reduction in profit. A split nitrogen application is also recommended in order to supply most of the nitrogen to the plant when the plant is most likely to use it (Martin et al., 1994). Much was learned during the planning and set-up of the lysimeters for Pioneer Hi- Bred International, Inc. Loudon et al. (1991) described the process used for the seed corn projects. METHODOLOGY The lysimeters used for this analysis were located at the Pioneer Hi-Bred International, Inc. seed corn processing plant at the south edge of Constantine Michigan. Ground water in this area is at a depth of approximately 5 to 6 meters. This ground water is the only aquifer in the area and also acts as the primary source for domestic water. The soil at the study site is mapped as Elston sandy loam (coarse-loamy, mixed, mesic Typic Argiudolls). The five lysimeters used in this study were installed in the fall of 1988, one of which was an undisturbed profile (soil monolith) lysimeter. The other four were disturbed profile lysimeters. The four disturbed profile lysimeters had dimensions of 0.91 m by 3.81 m by 1.83 In deep (Figures 1 & 2). An access chamber measuring 1.22 m by 1.22 In by 1.83 m deep was attached to the long side of the lysimeter to collect drainage and house collection equipment. This chamber was placed 0.61 m lower than the lysimeter to allow collection containers to fit under lysirrreter drains. These drains were 13 mm steel pipes attached to the side wall at the bottom of the lysimeter to provide a drain from the bottom of the lysimeter. The undisturbed lysimeter container had the same horizontal dimensions as the disturbed lysimeters. The first attempt to encapsulate 1.83 m of soil resulted in cracking the soil monolith. The second attempt was to only encapsulate 1.53 In of soil. This resulted with the bottoms of the disturbed lysimeters being 0.3 m deeper than the undisturbed lysimeter. The access chamber was bolted onto the undisturbed lysimeter 20 21 instead of welding as was used for the disturbed lysimeters. All the lysimeters were buried approximately 0.3 m below the soil surface so they would not interfere with normal field operations. 22 0.91 m 0.81 In .___-‘ Collection eree ecceee . — 1 a 0.61 m Soil profile E comm 133 m W \ Dreinege collection 1.83 In ‘ eree L Slloht grade needed tor drelneoe Dreineoe collection L meeeurernem devicee j 1.22 In 1P Figure l. Sldevtewoflylt-eureutundeccaechnber. 0.91 m 23 1.23 m 3.81 m .I / Drainage collection area i/, 71/ Drainage collection was 1.22m Soil profile containment area Figure 2. Top View of lysimeter casing and acccaa chamber. 24 Undisturbed Lysirneter The undisturbed soil profile lysimeter container was designed by Phil Gerrish, a student in Agricultural Engineering at Michigan State University. This container needed to be designed to retain its intended shape during movement and also during an inversion. After the container had encapsulated the monolith, the container and monolith needed to be removed, rotated 180° to weld a bottom plate on the lysimeter, and finally rotated back and transported to another part of the field where it was permanently installed. Calculations done by the designer estimated the deflections of the sidewalls of the soil container to be less than 10 mm during inversion. Steel was used for the walls, bottom and support members of the lysimeter. Rough welds inside the container were ground smooth and any other imperfections such as weld splatter which might provide a source of friction as the sidewalls were slid over the soil monolith were removed. The metal surfaces of the lysimeter were then coated with an epoxy paint and sprayed with silicon. (Loudon et al, 1991) This lysimeter was installed in the same soil as the four disturbed lysimeters. A borrow area was prepared outside the field boundary by first removing the top 0.3 m of soil down to the level desired for the top of the lysimeter. The undisturbed monolith was taken outside the field to avoid compaction and preserve the structure of the soil in the field. The bottomless lysimeter container was then placed on the excavated soil surface of the borrow area, and gradually lowered over a soil monolith as the surrounding soil was removed. This soil was removed by trenching with a back hoe around the area of the 25 lysimeter container then removing the last 200 - 300 mm of soil near the monolith by hand with shovels. A carving tool was used to reach under the edge of the lysimeter container and remove soil leaving a vertical soil face just 1 - 2 mm larger than the container. The container wall cut the last few grains of soil off the monolith to form the monolith block to the exact size and shape of the lysimeter container. After the first 300 - 400 mm were contained, it was necessary to push on the container with a back hoe. A press bar made from 152.4 mm I-bearn was placed across the top of the container to distribute the force from the back hoe evenly on both sides. It was moved back and forth on the container so that force could be applied wherever needed to move the container down evenly over each short section of monolith. The undisturbed lysimeter encapsulated 1.5 m (5 ft) of soil. When this soil had been containerized Six steel I-beams, twice the width of the container in length, were forced under the container using the teeth on the back hoe bucket to push it under. It was then leveled and set 4 - 5 mm below the bottom edge of the container. Then, two sections of bottom plate were slid individually along the I-beams to shear the sand at the elevation of the container bottom and hold the sandy soil in the bottom of the lysimeter while it was lifted out of the borrow area. I The top of this container was covered with plywood and the entire block was securely wrapped with chains. The chains were trussed out (figure 2) on one side to provide extra support against deflection to the lower, long side of the container while the block was being rotated. Pivot points were constructed on the lysimeter walls (figure 3) to allow easy removal from the borrow area, inversion, and reinstallation at its final 26 destination. After the soil block was inverted, bottom side up, the bottom plates were removed to expose the bottom of the soil block. With the bottom exposed, 50 mm of sand were removed in order to have room for a 50 mm layer of peastone. The peastone was separated from the sand by a geosynthetic fabric. This stone layer was installed to ensure good drainage at the bottom surface of the soil block, the same as was done for the undisturbed lysimeter installations. A new bottom plate, coated with marine epoxy paint, was welded to the bottom of the lysimeter. As the bottom plate was welded in place, it was not possible to avoid burning paint off a short distance around the welds, inside the container. The outside surface of the corner welds were painted with epoxy paint, the inside surface of the container was not repainted. An excavation similar to that done for the disturbed lysimeter installations was dug, making extra room for the I-beams which were replaced to stabilize the bottom of the lysimeter as it was lowered into place. The lysimeter was set upright and placed in the new hole. The access chamber for the undisturbed lysimeter was added after the lysimeter was in place. To avoid burning additional paint on the interior of the lysimeter, the access chamber in the undisturbed lysimeter was bolted to the lysimeter container instead of being welded on as were the access holes for the disturbed lysimeters. Table 1 presents a summary of the results from soil borings taken close, but not in, the soil borrow area for the undisturbed monolith. 27 Table 1. Typical Soil Profiles of lysimeter areas. Undisturbed Lysirneter (as installed Fall, 1988) Soil depth (from soil borings) mm loam 0 - 360 clay loam 360 - 560 gravely sandy loam "' 560 - 940 gravely loamy sand * 940 - 1140 fine sand“ 1140- 1600 med sand * 1600 - 1935 geotextile fabric 1935 pea gravel 1935 - 1986 * gravely mixtures found as close to the surface as 560 nrrn by soil borings Disturbed Lysimeters (as installed Fall, 1988) mm loam 0 - 270 mm clay loarrr 270 - 580 sandy loam / loamy sand mix 580 - 1600 fine sand 1600 - 2235 geotextile fabric 2235 pea gravel 2235 - 2286 Lysirneter Top \ \ 28 Steel I-Bearn Spoo/l with movable colar // Left and rig“ sides of container are the same Figure 3. Diagram of pivot points for the lysimeter container. 29 DISTURBED LYSIMETER The disturbed lysimeter containers were easier to designed than the container for the undisturbed lysimeter, and they were inherently easier to install. Since these containers did not have to support the soil during handling and transport, the only concern in this design was that the container did not collapse before they were filled with soil. Installation of the disturbed profile lysimeters began by first analyzing the soil at the lysimeter site by doing soil borings to determine the location and depth of all the soil horizons present. This was done ahead of installation to plan for the number of layers to be excavated and handled separately. When installation began, the soil was removed layer by layer and placed in individual piles on plastic sheets (6 mil PE) by horizon so that the soil could be returned to approximately the same depth from which it was removed. This process involved significant manual labor in conjunction with a back hoe to carefully remove the soil to the exact level of a Significant textural change. This soil is mapped as an Elston Sandy Loam (USDA, 1983). Several soil borings were performed in 1988 which helped further describe the soil composition. Results of these borings were used to develop the representative soil description in Table 1. In these soil borings, small stones (10-20 mm) were found as close to the surface as 560 mm below the surface, in the B horizon. The C horizon for the research site is mostly medium sand. Occasional stony areas were found in the C horizon also. 30 After the excavation was dug to the proper depth, the lysimeter container was hung from a back hoe bucket and lowered into the excavation. After the lysimeter was in place, the filling of the lysimeter occurred as follows (Loudon, 1991): 1. A 50 mm (2 in.) layer of peastone was placed in the bottom of the lysimeter to provide free drainage for water to move from the bottom soil surface of the lysimeter to the outlet pipe. 2. A layer of geosynthetic fabric typical of that used as a wrap for agricultural drainage tile was placed over the peastone. 3. Soil was then replaced horizon after horizon in approximately 100 mm layers and "walked in " to simulate the original soil density. In this process the back hoe operator sat in one location and "spooned" the soil into the excavation using the backhoe bucket. The operator could place the soil most places around the hole without moving the backhoe which would have increased surface soil compaction. The rate of delivery of soil to the hole was about right to keep up with men in the hole who were moving soil around to keep each addition to 100 - 150 mm and walk on the soil to pack it into place. Each layer was repacked keeping soil inside and outside the lysimeter container at the same level to aVoid stress on the container walls. 4. After all subsoil horizons were repacked, top soil was then replaced and finished to original grade by a small dozer. 3 1 Field Practices Seed corn (inbred maize) in a small plot layout has been grown on the lysimeter Sites since 1989. Previous to the seed com, the site was a field of grasses with a sparse population of alfalfa. The seed corn plots were planted as typical Pioneer seed com fields with 4 rows of corn designated as "female" for every 1 row designated as "male". The field was planted with 3 inbreds to test for differences in genetic coefficients and nitrogen response. The sarrre inbred was planted on all 5 lysimeters to be able to compare leaching. Figure 4 is a plot diagram showing the location, nitrogen treatment and variety of seed corn planted. At tassel initiation, the tassels were removed from the plants designated as "female", forcing the female plants to be fertilized by the male plants. This is normally done with 2 inbreds to provide the desired cross for a hybrid, but to simplify planting and timing of pollen shed, the same variety was used for both "male" and "female" plants in any given plot. The four disturbed lysimeters were the primary nitrogen management research plots and each was fertilized differently. Four different nitrogen application schemes were used. pd . Control plot received 0 kg/ha, except in the first year when 34 kg/ha as pre-plant and 168 kg/ha as side dress were applied. 2. Model treatment received nitrogen as needed. 3. 202 kg/ha {all as pre-plant}. 4. 101 kg/ha {34 kg/ha as pre-plant and 67 as side dress}. 32 Lysirneter 3 (the undisturbed profile lysimeter) and lysimeter 5 both have received the same nitrogen treatments of 202 kg/ha (180 lb./ac) applied before planting. The first year 90 kg N/ha was added to the model, then in 1990 and 1991 no fertilizer was applied to the model treatment. In 1992 and 1993, 55 kg/ha was added to the model treatment plots. The model treatment plots received nitrogen as soon as the plants showed a need for it. There are various methods of determining when the plants are starting to need nitrogen, before it is nitrogen deficient. These methods have included, visual determination of leaf color change, chlorophyll meter detection of leaf color change, height / growth change and aerial photography. Using each of these methods the color or growth rate of the field or field plot was compared to a well fertilized block. Any difference was assumed to indicate the beginning of a nitrogen deficiency. Fertilizer was added soon after the difference was observed. The fertilization rate was determined by the stage of grth of the plant. With the exception of the first year, the plots were chisel plowed in April of each year to prepare the soil for planting. The soil profile disturbance on and around the lysimeters before the first planting was major due to the operations associated with installing the five lysimeters. The topsoil was removed and replaced on and around the lysimeters during installation. The entire field was chisel plowed in the spring before planting. The plots were chisel plowed in the fall of 1989 after installation. 33 .25.:th Lei—2.8.. .5on: can 35:3 .623... 53...; ”5.52? Esau—5. .2.— .v 9...»:— m .3 v .3 n .3 a .3 . .3 5 3 m- z n— N— = 3 a a A. w n v n n n . a _ n . . n A n a . n n a _ 5... S. 8.. Sn 2...: ._86 s... S. :86 an S" 28: .86 28: .3 Se .12.: .86 all... 28: 8.. an n _ u _ n _ _ n a . n a . n n a _ s... s. 8.. 8" 2...: .86 .12.: .86 2... «a 28: .86 2:: 2.. «3 a... s. .86 .122 2...: 2.. «a a n . u a n n u _ . n a _ _ n a . .1. 3. 8.. Sn 2...: :86 i. .3 .86 2.. 8n 2...: .86 2...: .2. «2 x13... .86 .122 2...: 2... 3n — a n n u n u u n u — n a n n n s... S. 2.. Sn :3: 386 .122 .86 8.. Sn 2...: B86 2...: 8.. S" s... S. .86 5... 3. 2...: 2... 8n _ a n n _ a a _ a a . n a a . n =1: 2: 9.: Sn .032 630 2...- 3- sooao 2.— 3a .013: .810 1.32 e... «3 in :z 8930 in 3— 132 e... «an .838; a 3D: 38. 24050—2 22.—MED gn— “HE—ma— 34 Each year the plots were planted in May, cultivated in June and harvested in September. The harvest for plot yield was done by hand. The field was then combined to remove the remainder of the com from the plot edges and border area of the field. A listing of plot activity is given in Table 2 for 1989 through 1993. The first planting occurred on May 16, 1989 along with an application of fertilizers including nitrogen. Afier being combined in late October 1989, the research site was chopped with a flail to reduce the size of the stalks which were left in the field, then chisel plowed . In 1990 and following years fall tillage was considered unnecessary and the field was only chisel plowed in the spring before planting. Plant samples were taken four times a year to determine the nitrogen content in various parts of the plant. These samples were taken every year at stage V-6, detasseling, grain filling and at harvest. The whole plant was tested in four parts; grain, cob, tassel, and the remaining plant tissue. These plant samples were all kept by Pioneer personnel and ground. Then, all four samples were sent to the Michigan State University Soil Testing Service where they were tested for TKN (Total Kj eldahl Nitrogen). All plots were irrigated in an attempt to keep the soil available water capacity above 50%. Irrigation and precipitation dates and amounts are tabulated in Appendix B. SCHEDULER, a program produced by Michigan State University Department of Agricultural Engineering (Shayya & Bralts, 1993), was used with weather data from Centerville and precipitation data from the research site to estimate soil water content. This information was then used for irrigation scheduling. Each irrigation cycle applied approximately 25 mm of water. 35 Table 2. Field Practices at MSU plots in Constantine, Michigan. Date 16-May-1989 22-June-l 989 26-June- l 989 28-June-1989 18-July- 1 989 19-July-1989 22-July- 1 989 27-July-l 989 1-Aug-l989 18-Aug-1989 21 -Aug-1989 27-Sep-l 989 2-Oct-1989 Mid-October 30-Oct-1989 25-Apr-1990 27-Apr-199O 2-May-199O 8-May-l 990 1 S-June-l 990 Operation Performed on Field Plots First planting and preplant N application Sprayed herbicide Thinned plots, soil samples taken Sidedress nitrogen treatment applied, cultivated plots, first plant samples Weeded plots . 50 lb. N applied to model treatment (ammonium Nitrate) Inbred l detasseled Second plant samples taken Soil sampled, close to lysimeters (collected at tasseling) Third Plant samples collected Removed male corn rows from plots Harvested plots Collect test plant samples Fall tillage "Big Rain" event applied through irrigation system this day and next. Soil samples taken Chisel plowed field Preplant N applied, plots planted Sprayed plots Cultivated plots Table 2 cont. 18-June-l990 25-June-1990 1 O-July- 1 990 1 7-July-1 990 20—July-l 990 23-July- 1 990 27-July-l 990 2-Aug-l 990 l4-Aug-1990 1 6-Aug- l 990 23-Aug-1 990 1 2-Sep- l 990 25-Sep-l 990 9-Nov-1 990 29-Nov-l 990 2-Apr-1 991 20-Apr-1 99 1 26-Apr-1 991 4-May-l99l 36 Removed volunteers and thinned plots Plots treated for corn borer with Dipel, nitrogen applied to plots, first plant samples taken Plots treated for Japanese Beetle with Sevin Plots rouged Detasseled Inbred 1 Applied 40 kg N/ac to Inbred 1 Model plots Detasseled Inbred 2 and 3, Plots weeded, second plant sample taken Hoed weeds Male rows removed Third plant sample taken on Inbred 1 Third plant sample taken on Inbred 2 and 3 Harvested Inbred 1, Fourth plant sample taken on Inbred l Harvested Inbreds 2 and 3, Fourth plant sample-taken on Inbred 2 and 3 Plots gleaned off Soil samples taken Soil samples taken for P & K Lasso-Atrazine P applied to rep 1 and 2 Chiseled plot E to W 0.25 meters deep 37 Table 2. (con’t) 8-May-1991 3-June-1991 3-June-1 991 lZ-June-199l 13-June-1991 8-July- l 99 1 26-July-l 991 29-July- 1 991 3 1 July-1 99 1 2-Apr-1 992 6-Apr-1 992 4-May-1992 6-May- l 992 1 1 June-1 992 1 July-1 992 2-July-1992 8-July-1992 3-Aug-1992 Field cultivated plots, applied N, planted plots Cultivated plots Treated for ECBl (J aveline) Thinned plots V6 plant samples taken, Sidedress N applied, check treated for ECBl (Pounce) Detassled P02, plant samples taken Sprayed plot for Japanese beetles (Peneap 3pt) Detassled P38 Detassled T10 Took soil samples for P & K Rototilled residue. Broke up stalks to prevent plugging of field cultivator. Chisel plowed Planted and fertilized plots Cultivated plots Fertilized 101 kg/ha plots and irrigated F ertilized Model treatment with 10] kg/ha. Irrigated Destroyed male P02 Detassled P38 & T10 38 Table 2. (con’t) 8-Aug-1 992 l l-Aug- l 992 20-Aug-l 992 24-Aug-1992 S-Nov- l 992 8-May- l 993 1 8-May-1993 6-June- l 993 2-July-1 993 1 3-July-l 993 20-July-1993 20-July-1 993 28-July-1993 1 1 -Aug-1993 13-Aug- l 993 1 6-Aug-1 993 l 6—Aug- l 993 Destroyed male P38 Destroyed male T10 Irrigated Irrigated Harvested grain and took 4th plant samples Gleaned com off plots F ertilized, Tilled and Planted plots Corn emerged Hoed 3/4 of field Applied Nitrogen to Model plots Hoed rogues Silk and Shed (POZ is 50% shed) Took plant and tassel samples Detasseled P38 and T10 Plant Sample #3 .P02 "Male" rows destroyed P38 "Male" rows destroyed ' T10 "Male" rows destroyed 39 Sampling System The leachate sampling system employed a Campbell Scientific CR-lO micro- datalogger to monitor and sample drainage from five drainage lysimeters. Along with the sampling procedures, the CR-lO was also used to log data from a weather station. The weather station included sensors for relative humidity, air temperature, soil temperature, wind speed and direction, rainfall, and solar radiation (Table 3). The sensors were mounted 2 m above ground, except for the precipitation gauge which was set on a concrete pad at ground level. Table 3. Description of Campbell Scientific, Inc. weather station sensors. Description Tipping Bucket Rain Gauge R.M. Young Wind Sentry Anemometer R.M. Young Wind Sentry Vane Pyranometer Temperature and Relative Humidity Probe Temperature Probe {Soil} CS Model # 6011-A 03101-5 03301-5 LIZOOS 207 107B Accuracy +/- 0.25 mm per tip +/- 0.5 m/s +/- 5 deg. Temp. +/- 0.2 deg. C RH +/- 5% +/- 0.2 deg. C 40 The data were recorded hourly for mean air temperature, mean RH, total solar radiation, total precipitation, mean wind speed, soil temperature, battery volts and accumulated drainage tips from all 5 lysimeters. Daily max and min values were recorded for temperature, RH, battery voltage, wind speed, wind speed and box temperature. Also recorded daily were total solar radiation, total precipitation, mean wind speed, wind vector magnitude, wind direction (with standard deviation), maximum wind speed, mean soil temperature and mean box temperature. The stored data, daily and hourly output, in the datalogger was read nightly by a VAX computer located at Michigan State University's Kellogg Biological Station located near Hickory Corners. Programs were written for the VAX to retrieve the datalogger information and organize this data in a more usable form. Programs were also written which clean up and recognize faulty data. A tipping bucket rain gauge (Sierra Misco PN SP2501-BA) was mounted under the drain pipe in each lysimeter, on top of a 38 liter bucket to measure and contain the volume of drainage coming from the lysimeter (Figure 5). The five tipping bucket assemblies were monitored by the CR-IO by using an eight channel pulse counter (SDM- SW8A) produced by Campbell Scientific to increase the capabilities of the CR-10, which normally has only 2 pulse channels. The CR-l 0 counted tips from the tipping buckets. Then the volume of drainage was calculated from the total number of tips and a calibrated volume per tip. The CR-IO started a sequence to sample drainage from any lysimeter afier a preset amount of drainage, set at 0.56 cm (0.25 inches), had passed through the tipping bucket. 41 Figure 6 is a wiring diagram of the sampling system. The CR-lO controlled 3 relays for each lysimeter, 15 relays total, through another add-on device (Campbell Scientific's SDM-CD16). These relays in turn controlled 3 12 volt water pump (F lowjet 2100) at each lysimeter which pumped the water from under the lysimeter through a sampling box and into a drywell. In the pump line, a solenoid diverting valve (Spraying Systems PM AA144 Directovalve) was installed and controlled by the CR-lO to send 500 ml to a sample bottle during the middle of the pumping cycle. After the CR-lO turned the pump off, a motor in the sampler was turned on which moved the sampler to a new bottle, preparing for the next sampling sequence. The Campbell Scientific CR-lO was programmed by Thomas Olmsted, a student at Michigan State University at the time the lysimeters were built. Figure 7 is a flow chart of the sampling portion of the program. When the datalogger approached 10 minutes before the hour, counts from the tipping buckets would be counted but no action to take or log a sample would be performed until afier the datalogger had time to write an hourly output file. 42 Lysirneter drain Permanent \ a O Magnet Micro switch . vd Figure 5. Tipping bucket assembly. 43 iii... It... la... {la a 2...... Sous-.33676I313381 =19!» rmmw\\\\\\\\\\\\\\\ 3.2523385: .: £833... .5... a ._ L... .. - M .3. w T - w... .8 7...... 32:32:80.0-0-3. 580068 =§3§=8 'iigzeelfi Tipping bucket pulses to us VAX —>—i——* > 1 Datalogger h . l ."° yes 1 Begin Pm'upingSequeuce j, i i Delay 2 min v E Open Solenoid vuwfl it [ Delay lOsec. J i Close Solenoid Valve l/ [ DelayJSOsec. J _i_ | 5:0mean [ Motor linesupnextsarnple boulq i 1 Writesmrpleinformliou todataloggaoutputfile, 1 Figure 7. Sampling program flow chart. 45 Leachate Testing Procedure The automatic sampling system took a 500 ml sample every 6.35 mm (0.25 inches) of drainage (approximately 22 liters). From this 500 ml sample, a 20 - 30 ml subsample was later taken and fi'ozen. When there were approximately 30 to 40 frozen samples, these samples were taken to Michigan State University to be analyzed for N03 at the Soil Testing Lab. The Soil Testing Lab used a Lachat QuikChem Automated Flow Injection Ion Analyzer with QuikChem Method No. 10-107-04-1-A to determine the concentration of nitrate contained in the samples. The concentration data were then input into a spreadsheet along with the sample date, volume sampled and sample number. With this data in a spreadsheet, nitrogen loads were calculated and drainage trends were charted. (Appendix C) Statistical Analysis Mean comparisons of drainage and nitrogen leaching were made between the five lysimeters for the 1990, 1991, 1992 and 1993 leaching years. Significant mean differences were determined using two tailed Student's t Test criteria assuming equal variance and an alpha of 0.10. 46 RESULTS Collection Of Drainage Data The evaluation of the performance of the disturbed profile lysimeters at the Pioneer plant near Constantine Michigan included comparison of the drainage volume passing through each of the four disturbed lysimeters at the site. Drainage through each of the disturbed lysimeters was compared to the other disturbed lysimeters. Drainage through the disturbed lysimeters was also compared to the drainage through the undisturbed lysimeter. The initial hypothesis was that no significant difference in drainage is present between the disturbed profile lysimeters and the undisturbed profile lysimeter installed at Constantine. An agreement at the 90% confidence level between drainage data sets was chosen as acceptable. Drainage from the five lysimeters was measured by the tipping bucket setup described earlier. This data consisted of a record of the number of tipping bucket tips on an hourly basis. Each tipping bucket was calibrated so the volume of one tip was known (Table 4). The calibration on these tipping buckets were checked periodically, but no cause for a change in calibration was ever found. Ia 47 Table 4. Tipping bucket calibration volumes. Lysirneter 1 0.00824 liters/tip Lysimeter 2 0.00868 liters/tip Lysirneter 3* 0.00770 liters/tip Lysirneter 4 0.00824 liters/tip Lysimeter 5 0.00824 liters/tip * Lysirneter 3 is the undisturbed lysimeter. Data were lost for all lysimeters on the dates listed in Table 5. These losses occurred due to power loss (dead batteries), computer down time (from lightning strikes) and sampler system malfunctions. Other causes might also be present, but not diagnosed. The largest time period from which data were lost was January 10, 1991 to April 1, 1991. These data were lost during computer repairs. No samples were taken during this time by the automated system. Some drainage volumes were estimated by measuring the volume which accumulated in the manhole attached to the lysimeter. Data were also lost for individual lysimeters from time to time due to tipping bucket failure. This failure can be attributed to the moist location in which the tipping buckets were located and damage from the indigenous population (mice) of the area in which the lysimeters were located. These lost data were replaced with the average volume drained from the other lysimeters for the time in question. Appendix A contains a tabulation of the tips, volumes and missing value estimates used for the five lysimeters. 48 Table 5. Dates for which no automated data were available. lS-Jan.-1990 to 5-Feb.-1990 l-Jul.-l990 20-Sep.-l990 27-Sep-1990 4-Oct-1990 lO-Dec-l990 to 18-Dec-1990 25-Dec-1990 to 29-Dec-199O 10-Jan-199l to l-Apr-l991 8-Apr-l991 22-Apr-1991 26-Apr-1991 9-May-1991 to l4-May-l 991 22-Apr-l993 2-Jun-1993 23-Jul-1993 25-Aug-1993 Automatic Computer Controlled sampling ended September 16, 1993. 3' ' Aer 31-33 49 Evaluation Of Drainage Rates The plot on which the lysimeters are located received precipitation and, if needed, supplemental irrigation during dry periods in the growing season. Precipitation and Irrigation amounts are tabulated in Appendix B. The ideal result of drainage measurements through the lysimeters would be exact agreement between drainage rates on an hourly basis. In a field situation soil infiltration and percolation rates, as well as soil moisture holding capacity, vary over the entire field even if the soil type does not change. This soil variation causes variation in measurements of drainage rates, but total flows over along period of time should still agree within some range of natural variation. Due to soil variations and other natural variations such as precipitation and irrigation distribution uniformity, drainage data agreement within +/- 10% between the two types of lysimeters was taken as an acceptable level. The smallest time periods investigated were single storm events. Daily drainage data were fused to compare drainage between lysimeters. Although hourly data were accumulated, they were only used to evaluate time to peak for single storm events. Logging of drainage data began June 23, 1989. Before October 30, 1989 there was no substantial drainage due to a dry summer. This low flow of drainage prompted the researchers to attempt to test the lysimeters and data acquisition system with an artificial "Big Storm" which was applied with the solid set irrigation system at the site on October 30 and 31, 1989. There was a variation in depth of irrigation water applied to the lysimi Tris ; mm as fol 50 lysimeters due to an inadvertent use of sprinklers with different sized nozzles and heads. This produced different irrigation depths on each lysimeter. The uniformity of this untested system was very poor for this irrigation. Rain gauge catch at each lysimeter was as follows: . Lysirneter 1 72.4 mm o Lysirneter 2 90.2 mm . Lysimeter 3 133.4 mm . Lysirneter 4 77.5 mm . Lysirneter 5 85.1 mm This lack of uniformity lends error to observations based on this event. As is seen in Figure 8, drainage from the event starting on October 30, 1989 is radically different from lysimeter to lysimeter. 51 .232: E... 34...-.. a. .5: :58: an... 3 8.3.2.. 82...... .a 9...»... 289593 . I I. v5.8.3.3 B .m 8.8.3.3 I I I 288.53 I I :88..qu $502.0 $507; $5024.. mm->oZ..m aw->oZ.N '1‘ a u — Il'l'll-ll II [I'll $507: $-60; m o v-‘W O N In v—II ll/llllll afieuguq 2 52 Instantaneous flows and total flows for many singular events from each of the lysimeters did not agree with each other (Appendix A). It is only afier the total drainage from a few storm events had been accumulated that agreement could be seen (Figure 9). A few relatively singular events occurred which were only minimally effected by the previous or the next storm event. In Figure 10 the most isolated event recorded is shown. The precipitation which started this event was 13.5 mm on November 4 with an additional amount of 34 mm received on November 5, 1990. Toward the end of this drainage event 6.4 mm fell on November 22, 1990. In this event the total water drained from each lysimeter was within 10% of the average water drained from all five lysimeters (Table 6). The flow from one disturbed lysimeter, lysimeter 5, lagged behind and did not peak at as high a rate as the flow for the other four lysimeters. Table 6. Drainage from individual lysimeters during the drainage event which began November 4, 1990. mm Drained Lysirneter l 43. 12 Lysirneter 2 37.99 Lysirneter 3* 40.94 Lysirneter 4 39.41 Lysirneter 5 39.89 Average 40.27 " Lysimeter 3 is undisturbed. 53 .82 .2 .8... fine... a... .. 6.3. 8.8.29 03.2386 .. 2%.... a as... 82 I I 8:886... .52.... 8... u I I .252. .. .. I u 93.8211131g 83 :3 8.3.8 8.2: . a 3R .2 . $8.23 8828 $5.28 N... . 22 J. . . ii. . IT ,i T: .. - ,. a $11.31.... 8. m i + com m. m. m. 9 [11.31 .--l-i:-I:i-l, 8. m ... 1 3- w 2.. m m I I I- ‘ Infilt- 1 g l r - - 8m 5111.. iii? :1- c8 .235— owafiaun— usawfim < EB...— uouam awn—:95 .3 0.5»:— 8v 2?. 83 I l l u ascooél a: «£9. Nomi". I I u _%o2-m ........ 2:9. 3: 4 5 8-32-8 8-32-: 8-32-2 8-32-: 3-32-0 8-52-. T * # LA I?! « » C on m r ow am ) I 8 W ,8 ,m 55 As can be seen from the graph of cumulative drainage during 1992 for the five lysimeters (Figure 9), the yearly cumulative drainage is within 10% of the average drainage (including the undisturbed lysimeter). Total drainage for this period was 367 mm, 341 mm, 359 mm, 360 mm, 390 mm for lysimeters 1-5 respectively. The 1990 and 1991 years showed the largest differences between the total annual drainage flows for the various lysimeters. Flow volumes for early 1991 are not as accurate as for other years. Drainage volumes for January through March of 1991 were acquired manually three times over three months before the datalogger was back on-line in April 1991. Manual drainage volmnes were obtained by measuring the depth of accumulated water in the drainage collection chamber adjacent to the lysimeter and calculating the volume present. This period effects the end of 1990 cumulative results and the beginning of 1991 results. (Appendix A) The times to peak drainage for the five lysimeters do not agree with each other on individual storm events. Every drainage event which occurred during 1989 through 1993 was investigated (Appendix A). The events shown here were chosen because events occurring in the fall are generally larger than other times during the year and showed differences to a greater extent. The lag seen in time to peak between lysimeters in the fall can be as great as one or two days early in the life of the lysimeter. When the first big drainage event was forced on October 30, 1989 (“Big Storm”) lysimeter 1 peaked first. Lysirneter 3 (the undisturbed lysimeter) peaked 34 hours after lysimeter 1 (Figure 8). The other lysimeters peaked within 5 hours after lysimeter 1. In the November 1990 event (Figure 10), which was triggered by 13.5 mm of precipitation on November 4 and 56 34 mm on November 5, lysimeters 3 and 5 peaked 26 hours after lysimeter 2, but only 16 hours afier lysimeters l and 4. In an event in October and November 1991, triggered by 14 mm of precipitation on October 24, 37 mm on October 25 and 17 mm on October 26, lysimeter 3 peaked first. The other lysimeters peaked within 16 to 19 hours after lysimeter 3. In an event triggered by 45 mm of precipitation on October 14, 1992, lysimeters 3 and 4 peaked first, followed 4 hours later by lysimeter 2, and 29 hours later by lysimeters 1 and 5. Comparisons were made of the four disturbed lysimeters looking at the mean difference in cumulative flow from June 8, 1989 to September 16, 1993, and also cumulative flow on an annual basis, May 1 to April 30 for each leaching year (June 8, 1989 to April 30, 1990 for the first year). Each lysimeter was compared to each of the other four lysimeters, including a comparison to the undisturbed lysimeter. A Student's t-test with equal variance assumed was performed on the daily cumulative drainage data from each of the lysimeters, comparing them to each of the other disturbed lysimeters, one year at a time (Table 7). The Students t-test was performed using a = 0.10. If the absolute value of t is less than the t critical for that comparison, the two lysimeters compared are, with 90% confidence, yielding the same drainage amounts. Table 7. Values of t from Student's t-test comparing daily cumulative drainage 57 between disturbed lysimeters for each year. Lysimeters 1989 1990 1991 1992 1993 lvs.2 2.07 5.25 3.29 -O.48 0.62 lvs.4 0.53 -001 -023 -1.70 -0.05 lvs.5 1.12 3.17 1.79 -0.17 0.99 2vs.4 -151 -531 -3.52 -1.24 -O.66 2vs.5 -0.94 -2.19 -l.46 0.29 0.37 4vs.5 0.57 3.20 2.02 1.50 1.01 mmm=010 t Critical two-tail = 1.65 Early in the life of the lysimeters, drainage volume agreement was less than expected among the five lysimeters. An agreement of at least 90% was hoped for but not achieved until the 1992 season. In 1992, lysimeters 1,2, and 5 were in agreement. Lysirneter 4 was in agreement with lysimeters 2 and 5 but not with lysimeter 1. The 1993 season was the best year for agreement in drainage amount. Based on the Student's t-test for two sets of means with equal variances, total flows for all four disturbed lysimeters in the 1993 season were statistically the same. 58 Figure 11 is a graph of cumulative drainage for the 1991, 1992 and 1993 seasons for the four disturbed lysimeters and the undisturbed lysimeter. This graph shows the drainage trends and shows that the trends are the same in all four disturbed lysimeters, as well as with the undisturbed. The volume of drainage produced by the individual lysimeters is expected to be the same over a few precipitation events, but this drainage is not equal on a daily time frame. The 1992 summer was unseasonably wet, with less solar radiation than Michigan normally receives. This year showed little resemblance to 1991 and 1993 which were more characteristic of Michigan weather. The 1993 season shows distinctly that late spring and fall are when drainage rates peaked. 59 6...qu unions. maa— 5.5.5. 33 a8 own—:95 952.550 .3 0.53..— é «Emu—Nemé I I 8:9acooéll Busby—N84” I I I _§2-~ I I I I 9.38:2-— vaQ S 3323 ma:m\m_ 83:8 3R C _ _ 5:23 4. -- . . c . oc— - can . com mm afiaurarq aAnalnumg com 11 1111 1111111111.. 80 60 A major factor in the analysis of the drainage rates from the disturbed lysimeters was the comparison of these lysimeters to a control. The control in this case was the undisturbed lysimeter, lysimeter 3, of the same surface area and in the same field as the disturbed lysimeters. The only differences between the undisturbed lysimeter and the disturbed lysimeters were the method used to fill the containers with soil and the fact that the bottom of the undisturbed lysimeter was 0.3 meter higher due to problems encountered while encapsulating the monolith of soil. The upper edge of the lysimeter containers are approximately the same depth below the soil surface. The average total annual drainage over a five year period across all five lysimeters (Table 8) is 340 mm (13.5 inches) of drainage. The maximum difference in total annual drainage between any two lysimeters was 131 mm in 1991 (when measurements were questionable) between lysimeters 3 and 2. There was also a difference of 80 mm between lysimeter 3 (undisturbed) and the next highest lysimeter (lysimeter l) in 1991. The difference between lysimeters in other years was much less, 23 to 49 mm each year. Of the five years studied the most precipitation occurred during 1992 but the maximum difference in drainage was only 23 mm between lysimeters 1 and 5. 61 Table 8. Cumulative drainage May 1 to April 30. From To Lysimeter Lysirneter Lysimeter Lysimeter Lysirneter l 2 3 4 5 mm mm mm mm mm 7-June-89 30-Apr-90 396 369 352 384 385 1-May-90 30-Apr-91 254 211 205 219 246 l-May-9l 30-Apr-92 460 409 540 454 446 l-May-92 30-Apr-93 367 341 359 360 390 l-May-93 28-Apr-94 387 413 434 431 399 Table 9. Student's t-Test results comparing daily drainage from each of the four disturbed lysimeters to the undisturbed lysimeter. Lysl t LysZ t Lys4 t LysS t 1990 3.36(1 2.3?! -3406 -0.01 1991 -3294 -6.33d 3.07d 4.93d 1992 0.25 0.73 -1954 -0.41 1993 1.18 0.56 -1.19 -019 d Significantly different than undisturbed lysimeter t critical two-tail = 1.65 62 The results of t-tests performed on daily cumulative drainage data from 1990 and 1991 show poor agreement between the disturbed lysimeters' drainage and the undisturbed lysimeter's drainage (Table 9). Since the beginning of the 1992 leaching year (May 1992) drainage from all of the disturbed lysimeters show agreement with the undisturbed lysimeter at the 90% confidence level, except for lysimeter 4 which was not in agreement in 1992. Graphs of Drainage events early in the experiment, from February of 1990 until June of 1990, show that drainage flow rates peaked in the four disturbed lysimeters earlier and at a higher flow rate than the drainage rate peaked in the undisturbed lysimeter (Figure 12). The drainage rate through all five lysimeters behaved about the same for the next few months with the drainage through the disturbed lysimeters beginning to slow down compared to the drainage rate through the undisturbed lysimeter. After July of 1991 the disturbed lysimeters drained at a much slower rate than the undisturbed lysimeter. The largest differences in peak drainage rate occurred during the period from July 1991 through October 1991 (Figure 13). After these events, the drainage began slowly agreeing better with the passing of each season. During the 1993 leaching year the drainage pattern from the undisturbed lysimeter and the disturbed lysimeters was almost the same. The larger volume drainage events still flowed through the undisturbed lysimeter .83 mo mew—mm .553 nag—MEG .2 05me Tixch-n11118:225-.. magi: 83- . . ._8oz-~:2:..2_mm_EHI11l1111! encnn enema e_cmm vaomn QBQNM «noNM vnamm v_o~n r n > . p b . _ > bll > > #1 lrl p > r o 3 . a I 6 111 N .w 2. ~ . a a V n . ., 4 o m w. . m . a a 2 W ( r u 1. 2 & #— . - 1w @— .1111111 -.-11-l.l-,1.-1111l1. 11 1.11111... 11 ”— .33 he :5 .355 emu-:95 .m— PSME § 2.3 83 I 1| I .2250-.. a: 23 82 .. . - .. Essa ........ 23 57. 8-80-: 8-80-.. 3-33” 3-8%: 3-83 3.952 3.952 . V“- 1.-.... 1..- 1-1-11... .. t. ,, we... Mitzi-..» - - o I II I.\ 1 h /l r a . .4 . 2 .0. Hie. . in N m. b 0 B ,. . . n m a A a a n V \n/ a c a 11 u . an n W p a 1|11 .- .. .. 0 pm 0 m h - . m 65 .33 he 0:5. 4:95 own—:.:.. 29.5 .v— 0.59..— fim .2059: 1 l 1 9. 8.2593] n 5.2.593 I I I I N 23251... ..... _ 5.25:.— | 111111 ($13111) ammo 66 fastest (Figure 14), but differences in drainage from most storm events was indistinguishable. As can be seen in this figure, the peak drainage rate through the disturbed lysimeters approached the rate seen in the undisturbed lysimeter. We can also compare the average drainage from all five lysimeters to drainage which should be expected given the precipitation, irrigation and evapotranspiration (ET) for the comparison period. To calculate what drainage is expected, a simple water balance was performed, based on the following daily calculation; Soil Storage = Precipitation + Irrigation - Evapotranspiration - Drainage. Drainage was assumed to occur if the previous days Soil Storage exceeded 225 mm of water. This 225 mm of water is the maximum available water capacity of the soil for a 1.52 m depth of soil. The maximum available water capacity of 225 mm of water was based on a soil textural analysis performed during the installation of the lysimeters. Calculations were performed as if all drainage and precipitation happened at the same time, once a day. Cumulative drainage graphs, calculated and measured, for 1991 and 1992 are presented in Figures 15 and 16. Figure 15 starts on April 1, 1991 in order to miss three months of uncertain drainage amounts are presented in Table 10. Values of ET used in calculating expected drainage. Daily ET values during the growing season were calculated by SCS-Scheduler V. 3.00 (Shayya & Bralts, 1994) using actual weather data. 67 Off season ET was calculated by the same software package but using an “historical” weather option which calculates an average monthly ET based on long term average weather data and the present crop type. The off season crop was assumed to have a 250 mm root zone, typical of weeds present for part of the year, with a constant crop coefficient of Kc = 0.10. The value Kc is a coefficient relating the ET of a crop to that of a reference crop, in this case, irrigated mowed grass. The value of 0.10 was chosen for the off season Kc value because it is the lowest value of Kc which could be chosen, representing a sparse weed population on bare ground. 68 awn—:.:.. 6823.3 95¢...an was owe—:96 60.528:— o>€2=E=u 33 he aging—.30 .m— 953..— SAEN .62-: scan 333 main 33m .572 $2-: $2-. .3... -+|111111T:111- n 1 L. n 1+1---!1--.1T1.-11-|--+1I| 1% 86 code— 8.9m— ccdom ocdmm 989mm JO mm -2 8.2:” -1 8.3 m owasflo guano—a0 .111 11 -1 klx owusfia 35302 8.2:. as. 1 8.84 69 dun—:96 33.3.3 Pia—=83 can own—:.:.. 3.5238 Pia—=53 33 me neutaafieo .3 9.5»:— eofi gum-R 92-3 33“ 5.7% 22.2 3.2 32-: a2; 52.: 52 1-1 1+ a t w + ,-1---T-,,-..11111-1 . 8o -- 8.2: \1 LKKIL 8.8” m w 1. .o.. - 8.8... m w 8 9 j 1 oodov emaEEQ 3.2330 1- 1.11: .7 oodom owQEEQ 3.5302 70 Table 10. ET values for 1991 and 1992. Average ET (mm/day) 1991 1992 January“ 0.00 0.00 February“ 0.00 0.00 March“ 0.00 0.00 April" 0.25 0.25 May" 0.51 0.57 May 1.66 1.15 June 4.62 2.84 July 6.86 4.22 August 3.12 4.60 September 1 .78 2.22 September" 0.25 0.25 October“ 0.25 0.25 November“ 0.00 0.00 December“ 0.00 0.00 * ET for mostly bare soil surface. 71 In Figure 17 it is seen that cumulative annual rainfall and irrigation far exceed cumulative drainage. Most of the difference occurs during the growing season when crops are using most of the available water. Figure 18 is a graph of drainage from individual "storm events" expressed as a percentage of the precipitation for the event. Each "storm event" is defined as starting on any day which received 15 mm of precipitation or more. At least 10 days were required before the event ended and the next event could begin (no time was lost between events). The event time of 10 days allows most of the drainage from a storm to drain. One large event (November 4, 1990) drained 72% of its total drainage in 10 days, other events investigated drained 65% to 100% in 10 days. These graphs show that during the growing season, less of the precipitation ends up as drainage. Figure 18 also shows an increase in percent of precipitation drained each fall. Increased precipitation results in higher percentages of precipitation which drained. 72_ can.» .3 50:52:99..— oZE-ESU can own—:95 25298.5 .3 :.:..—U .5 95»:— S-a<-2 8-5-3 8-32.: 5-9%: Saga-n - - - $-57: .1 A -.l l. v .8— ; 8N .- 8m 1 fie .. +- 8? W \\ Kc \ + 8n m: 1. a M L a m 4 8o \ - 8N. - \- LI 8” i- - l\\ .8333??— II! H ownsfia owEo>< T 8o 15mm, lOdays 100 -. 73 .I I I I I I I I I I .: I . H I I I I I I I. 5 I I I I I I uonmtdgoaid JO %) 9820ng 1 +_J.__L_LL_._.+_J._J_L_L-+__L_.L_L__L_..+_.L__J.4L__.J +__J__L.J_-._i_+_LJ_J-_4_l A 4 P__L__L_J_.+.i__i__l__i__+_4__i_4_a- l _.L_.L_a.__._ +_J_L_._L__.L__+, 1 1 A £6-Jdv-oe £6‘Wf'0‘5 Z6‘AON' I zs-an-s Z6-Kew-s Z6'qad'9 I 6'AON'L Is-finv-s Is-Kew-I I I 6'q9d'01 O6'AON'Z l 06-3nv-H os-Kew-9I 06'q9:l'§ I 68‘AON'L I 68-3nv-6I ss-Kew-lz Figure 18. Event Drainage expressed as a percentage of the event’s precipitation. 74 Comparison Of Nitrate Flux Within Lysimeters The flow of water and the concentration of nitrates in that water work together to move nitrates through the soil and produce nitrate leaching. The yearly cumulative nitrate loads found in leachate from lysimeters 3 and 5 (undisturbed and disturbed with same fertilization scheme) are graphed in Figure 19. The nitrate leaching rate is represented by the slope of the cumulative nitrate load curve. This curve tends to have the same shape every year. The steepest parts of the curve, the largest leaching rates, are found in the late fall of each year. The relatively dry, warm summer months cause soil nitrogen mineralization which makes nitrate available to leach, but during the growing season much of what is produced is taken up by the corn crop. In the fall, the crop, at the end of its life cycle, stops removing nitrogen and the concentration of nitrate found in drainage increases. When the soil cools with winter weather, N-mineralization slows and less leaching occurs because of less nitrogen available to leach. Figure 19 also shows a difference between leaching rates from the undisturbed lysimeter and the disturbed lysimeter even though both received 202 kg N/ha each year. The differences are mostly produced during November and December of each year where the curves diverge and are non-parallel. Little difference can be seen in 1989. The disturbed lysimeter leaching rates were close to that of the undisturbed lysimeter until November of 1990 when leaching in the undisturbed lysimeter began to slow down, but leaching continued at a higher rate in the disturbed lysimeter. This difference was recorded automatically, before the three month long computer system failure. 75 This trend switched in the fall of 1991 and 1992 with leaching rates in the disturbed lysimeter slowing before that in the undisturbed lysimeter. This switch is due to a difference in nitrate concentration in drainage. In November of 1990 the nitrate concentration in drainage water leveled off in drainage from the undisturbed lysimeter (#3) but concentrations continued to rise in the disturbed lysimeter (#5). In the fall of 1991 and 1992 the concentration of nitrate found in drainage from both lysimeters behaved the same, but with concentration in the undisturbed lysimeter being slightly higher than that for the disturbed lysimeter. In the 1993 leaching rate slowed at about the same time in both lysimeters and nitrogen leached for the year was reduced. 76 éez w: new ”5339. :23 m an: m E8988». 8?: ES. 82:: 952.559 >_._ao> .a— 953% Stag—Namé I I BdfichNél I l I“ .33ch vQSRo 33:: mons NQm—Ro "QwQN— 32:8 8).-N:— oQSRc 33:2 .r IV “I Ll + r4 + + I; . “ cod ‘\ \ ‘ h\§ \|\\ V b t - iii:- :l|t\lll.tl$ . a . s. \ . 8 8 L \. \ . K .. fl \. - \\. . . I. \ .. \Iq M ii! . Elsi-I54}..- 88 m \- ls . \ I. I liNi‘ l ...... 3.13.- 8.8 m . I a \ ‘ \ N W... .l i ill-II .-llll|l¢u Ill. It‘ll- Ill-11 -:lllli- Ils- rli- u-m-l-.-.|Ilt- cad» a l .. . .~. -- - 8.8_ m I l a 9 Iii-ill!!! . ~~ - .- 8.82 W \ m. s . - 8.8: \ 8.8. \ cadm— 77 use» .8.— Z «£9. «3 ”£239. 289833121583: ES «.3588 Be...— 8332 E .::..... 22.23359 82:: cows—95V .:N 953...— .c_ 88593 0 83.3858 - _ L 88%: 538 88%: 88mg N888: N338 58:: 538 888: 8885 $32 8:28 v w l- . .11;\2-i-|fi I!:.T1£.\. cad . O .l t. 00 Av - 8% o&|-z|-lo@ “awhiwitwu- ol$fiwvlmw 8.2 I .. 11...] J--..li.i..i-110u10 . a o o ..|.Qw.%l-.% Aw- I 0% OWWWMV awwsl 8 8 .m 9 I oib ,-l--.¢ooioo 0:0 -o.,..u.%l. - - 8.8 3 AM w 0.. m rll-|--l%1ui -lilw - 8.8 a “W - - o - o- m w. -..willi--11-\-l! 88 m. - ii - I. - . 8.8 d . .. .m... -‘I- [4| b l . N 8 8 o 09 Aw . 8.8 O 'II- ., coda 78 Figures 20, 21 and 22 are graphs of nitrate concentrations in leachate from the 202 kg/ha treatment disturbed and undisturbed lysimeters. These graphs show that the seasonal concentration peaks occur at approximately the same time for both lysimeters and concentrations are generally higher in the fall. In 1989 and 1990 the disturbed lysimeter leachate concentration peaked higher than that for the undisturbed lysimeter. Starting in the fall of 1991 and continuing through 1994, the undisturbed lysimeter nitrate concentration was generally higher than that for the disturbed on the same sample dates. There was little precipitation in the spring and summer of 1989. The first drainage events happened in the late fall and winter of 1989 - 1990, the largest of which was induced using irrigation on October 30 and 31, 1989. 79 Concentration pun-N03 ,8 8 8 8 o o o '0‘. 1". o . . .a O 8 O O 3 0 $ a ‘ + § 4 0.“) + . . . . 04/06/92 07/15/92 10(23/92 01/31/93 05/11/93 W19/93 11/27/93 03/07/94 06/15/94 CB/23/94 * 7 Figure 21. N Concentrations found in drainage from the undisturbed lysimeter(#3). 80 Concentration ppm—No3 O ‘ O O : O Q 0. . 00’ 0 ° . o, o O 0 0.00 . .3 . '0'; o . . 4: mg J T 04/06/92 07/15/92 10/23/92 01/31/93 MIN/93 (Elm/93 11/27/93 03/07/94 06/15/94 W23/94 Figure 22. N Concentrations found in drainage from the disturbed lysimeter (#5). 81 The leachate concentrations found in samples from events during the fall of 1990 are 50% greater than any fall season since (Figure 20). These unusually high concentrations are believed to have been caused by the installation process for the lysimeters. Bergstrom (1987) also found similar occurrences and attributed this to increased aeration and subsequent mineralization of soil organic matter caused by the lysimeter installation process. The higher concentrations could also have been from a build up of nitrates in the soil from 1989 when flow to move nitrate through the soil was slow. The results from a comparison of nitrate leaching amounts between the undisturbed lysimeter and disturbed lysimeter receiving the same N-fertilizer rate (202 kg/ha) using Students t-Test criteria, assuming equal variances and a = 0.10, is tabulated in Table 11. Samples for leachate were collected about every 6.4 mm (0.25 inch or 22 liters) of drainage, values are tabulated in Appendix C. These results show that in the 1989 leaching year (June 7, 1989 to April 31, 1990), when the lysimeters were new, there was no significant difference in nitrogen leaching amounts between the undisturbed and the disturbed lysimeter. Both were fertilized at a rate of 202 kg/ha preplant starting in 1989. Students t-test results for the 1990, 1991 and 1992 leaching years show that we could not be 90% confident that the nitrate loads from the two lysimeters, were the same. In 1993 and 1994 the amounts leached from the two lysimeters were not different at the 90% confidence level. 82 Table 11. Student's t-Test results for nitrate values found in leachate from lysimeter #3 (undisturbed) and lysimeter #5 (disturbed). {a = 0.10} t Critical t two-tail Result 1989 -0.047 1.97 pass 1990 2.463 1.97 fail 1991 -4.947 1.97 fail 1992 ~6.066 1.97 fail 1993 0.523 1.97 pass 1994 -0.134 2.03 pass For the purpose of this analysis, the 1994 season data ended in September. This made the '94 data set smaller than previous years which went from May 1 to April 31 of the next year. The size of the data set determines t-critical. 83 Results Of Nitrogen Application Rate And Timing Table 12 contains a summary of the overall nitrogen balance for the 1990 through 1993 seasons. This balance was performed using data from one of the three plant inbreds (entry 2). This was the only inbred which was planted on a lysimeter. The first year of data, July 1989 through April 1990, was not utilized for this comparison for two reasons. First, the control plot received 202 kg/ha of nitrogen in 1989. Second, the field in which the plots were located was not under cultivation for many years prior to the installation of the lysimeters, but a sparse population of alfalfa still existed. The presence of alfalfa tilled under and the soil disturbance during the installation of the lysimeters lefi uncertainties of the origin of the nitrogen occurring in drainage during the first year, and to some extent the following years also. Table 12. Soil-plant nitrogen balance for the period of May 1, 1990 to April 31, 1994. Tot Tot Fert Leach“ Tot Tot Net Soil N Lys. Treatment N N N N N N Change Cob grain added removed kg/ha kg/ha kg/ha kg/ha kg/ha kg/ha kg/ha kg/ha 1 101 19 354 403 123 403 496 -93 2 Model 16 320 112 114 112 449 -337 3 202 19 31 l 806 340 806 670 137 4 O# 15 259 202 77 202 352 ~150 5 202 29 362 806 342 806 733 73 * estimated for dates listed in Table 2. # The first year of the study (1989) the zero treatment received 202 kg/ha and the model received 90 kg/ha. 84 The nitrogen balance for the 202 kg/ha (180 lb./ac) treatment showed that the addition of nitrogen at this rate was greater than the total removal of nitrogen from the soil for the period of May 1, 1990 to May 1, 1993. The Model, 101 kg/ha (9O lb./ac) and the Control (0 kg/ha) treatments resulted in a net removal of nitrogen from the soil while maintaining profitable yields (Martin, 1992). Figure 23 is a graph of cumulative nitrate leached through each lysimeter during each year for July 1989 to September 1994. This graph shows the differences between the four nitrogen application rates as measured with disturbed profile lysimeters along with the undisturbed lysimeter which received a 202 kg/ha preplant application. There is little difference in the leaching loss between treatments early in each season, but after harvest the cumulative nitrate curves diverge with the 202 kg/ha treatments leaching more than twice that for the control treatment. The Model and 101 kg/ha treatments result in about the same amount of nitrate leaching after a few years of continuous growing of corn on the same plot. The first year 90 kg N/ha was added to the model, then in 1990 and 1991 no fertilizer was applied to the model treatment and the first year 202 kg/ha was applied to the Control (0 kg/ha) plots. .AEoBEmnb gm“ :3 3:253... 9:.— =« .8 one. 83:: 95...:an >13 > .MN 253 85 a: .39. N88- .. . . .. eBEN ......... 98:2..i _ 98s. N8-“ I I I § .8804 nah. _\ _ _ mQ SEC 3% S: maRQmo 332$ _o\ _ who onoEo cat. :5 aw\ .98 t. l--llli+llill-liil‘v1 cod ,, w 8.8 ... 8.8 o 8.8 W. a... 8.82 x. 8.8: .m 8.8. . coda— 86 In Figures 24 and 25, cumulative nitrate leached is plotted against cumulative drainage. These graphs show drainage from May 1, 1992 through April 30, 1993 and from May 1, 1993 through April 30, 1994, respectively. Cumulative values were reset to zero on May 1 for each year, this allows the reader to see the difference between lysimeters and differences between years. The slopes of these lines are proportional to the nitrate concentration in the drainage water. The steeper the slope, the higher the concentration of nitrate. The steepest portions of these graphs, thus the heavier concentrations, happen after approximately the first 100 mm of drainage following planting and initial fertilization each year. During the initial drainage after May 1 graphs of drainage from all four treatments take about the same path, but through the steepest parts of the curve the 202 kg/ha treatment line result in a much steeper curve than does 87 .3506 598.5. Na-_-m .Su own—:.:.. 93.2383 85:»: cote—n ES. 8952 .3 0.5!...— AEEV owe—:.:: 952.550 88 com 2:. 28 SN 2: c 8.8 8.2 11----- ll 8 cm 3 --. i T . n 23 N8.“ all 8 an m. 823 N84“ u u .. n x\ .--.-.l------.. .-l l!!! .1. 8.3 W fies-N .\\\ \i l - -- -I!- 8.8 a 2} 83 I. II - i.- .. X -- ,- l- 8.3 W . . 0 illle ii . 8.8 \ \ .. u t u I i- 8.8 .. .. .. .. 8.3.4. 8 N38 - 8.2: 88 fill-l!| 1|]. -lllvlllll l I: 23.. 83 II II 8:380... 823 83 I .. l.. 3.2.N . u .. - 53:2; litl‘ln .353 .32.... 2-3 .2 02.53.. 33:83 :.::»: 3...... 3... 8.52 .3 2a»: QB: 32:95 «>52:an cod , ood— ; oodm com omN com \\\\\\ l1 ‘0‘ lift \ \ \ ~ \ \ \ \\ I \ lzll \\ \“ \ \. \\\\I 3.34. 8 8-7m Ill-L - . .. coda - oodv oodm code (Bil/3x) 91mm Manama 89 the lines for the Model and the 10] kg/ha treatments. The line for the Control treatment always has the flattest curve, meaning that the concentration of nitrate fiom the Control treatment is the lowest. The concentration of nitrate in public water, or ground water for public consmnption, must be less than 10 PPM nitrate. Figure 26 is a graph showing the percentage of leachate samples which tested to be less than 10 PPM nitrate for each treatment for the period May 1992 through April 1994. This time period was chosen for presentation because leachate from more recent years is closer to natural field situations than earlier data which was influenced more by soil disturbances from filling the lysimeters. This leachate is an indication of what is being sent to the ground water. This water will be diluted by water from non-farmed land. There has been little difference in yield between the 202 kg/ha application and the Model treatment. Table 13 contains the stover, cob and grain yield for the inbred on the lysimeters for growing seasons 1990 through 1993 averaged over four replications. Figure 27 is a graphical representation of the grain yields with the 90% confidence intervals shown. From Table 13 and Figure 27 it is seen that the model treatment produced slightly more than the conventional 202 kg/ha treatment 3 out of the 4 years, but confidence intervals overlap making differences not significant. Grain yield from the 101 kg/ha treatment was consistently higher than that for the 202 kg/ha treatment. 90 {Undisturbed} Percentage of Samples Below 10 ppm \A o 202 kg/ha 202 kg/hl l0l 1:th Model 0 kg/ha Figure 26. Percentage of drainage samples testing below 10 ppm nitrate (5-92 to 8- 94). ’3 i 5 3 .2 >— .E . . l i ‘ J 1000 l l i l l ' I990 I I991 l I992 1993 ; ol , 1 N _ - _ N — — "6 N — - '5 N _ — 3 a ‘E e g 2. § 9. g 2 § 2 g 8 § 2 g o e 2 o 2 O u u u 0 Figure 27. Yield and 90% confidence intervals for 1990, 1991, 1992 & 1993 grain harvests. 91 Table 13. Yield taken at harvest for inbred 2. Year Treatment Total Total Total Dry Stover Dry Cob Dry Grain kg N/ha kg/ha kg/ha kg/ha 90 202 7236 1260 5229 90 0 (model) 7666 1386 5749 90 101 7404 1345 5450 90 0 6760 l 193 5137 91 202 9144 1350 4929 91 0 (model) 8436 1133 4605 91 101 9996 1378 5511 91 0 8571 1 101 4558 92 202 9285 1328 4247 92 (model) 8156 1378 4427 92 101 8474 1234 4777 92 0 6798 1 146 3706 93 202 9881 1352 5253 93 (model) 8602 1369 5268 93 101 9322 1549 6036 93 0 7596 1219 5051 DISCUSSION The initial hypothesis was: No significant difference in drainage amounts is present between data from the disturbed profile lysimeters and the undisturbed profile lysimeter installed near Constantine. Agreement with a 90% level of confidence was chosen as an acceptable agreement. This hypothesis is true for the last year of data analyzed, but significant differences did exist before 1993. Student's t-test results have shown that drainage data and nitrogen leachate data from the disturbed lysimeter for 1989 through 1992 are significantly different, at a 90% confidence level, than drainage and leachate from the undisturbed lysimeter over the same time period. The first sizable drainage event was forced by irrigation on October 30, 1989. This event drained differently through the disturbed lysimeters than it did through the undisturbed lysimeter. Although the undisturbed lysimeter received more water than any of the disturbed lysimeters, the drainage flow through the undisturbed lysimeter peaked approximately 35 hours after the peak flow in the disturbed lysimeters. This trend of time to peak in the undisturbed lysimeter lagging that of the disturbed lysimeters continued until October 1991 with a gradual lessening of the difference between peak flows, with each disturbed lysimeter slowing at different rates. Drainage events peaked very close together in May, June, July and August of 1991. But in October and November of 1991, the drainage flow from the disturbed lysimeters began arriving at peak flow, 16 to 19 hours, after the drainage peaked in the undisturbed lysimeter (lysimeter 3). The largest lag which occurred in the period fi'orn October 1991 to September 16, 1993 was a 29 hour difference during October of 1992 92 93 between the undisturbed lysimeter and lysimeters 1 and 5. This difference in time to peak has gradually decreased to a point were all lysimeters peak within 10 hours of each other, not in any repetitive order. These three phases of diflefing times to peak support a theory that filled-in lysimeters will drain faster than expected through a weak macropore structure for the first few years. After the soil has settled, the filled in lysimeters may drain more slowly due to reduced macropore area. Drainage through soil flows through pores of various sizes in the soil at different rates. In an undisturbed lysimeter the soil pores remain unaltered preserving whatever macropores exist, except for the top layer of soil which is normally plowed. In the disturbed lysimeters the soil is dug out and replaced by horizon, maintaining as closely as possible the same density and horizon thickness, but it is not currently possible to reestablish soil pore structure to its original state. Soil structure and texture work together to form the pores which water flows through. In disturbed soils most micropores have been altered, but many new macropores are believed to be present. The macropores which are initially formed from repacking disturbed soils are short-lived and eventually are reduced in size by fines from the soil above (Kohnke et al, 1940). This is what is believed to have happened to the soil in the disturbed lysimeters at Constantine. Great care was taken with this soil to repack the soil in the disturbed lysimeters to the original location and soil density. But, soil density was not the only factor affecting drainage. The proportion of macropores and micropores determines soil porosity. Changing in these proportions will change soil porosity. As can be seen from the time to peek data, water flowed through the disturbed lysimeters faster than through the undisturbed lysimeter from 1989 until the summer of 1991. One possible reason for slowing of the water flow is that macropores in the disturbed lysimeters could have closed up enough in 1991 so that the flow through the 94 disturbed lysimeters was close to that seen in the undisturbed lysimeter. Then, as shown by drainage flows through the disturbed lysimeters peaking afier the flow peaked in the undisturbed lysimeter, the disturbed lysimeters drained slower starting in the summer of 1991. The depth of encased soil is different between the disturbed lysimeters and the undisturbed lysimeter. The undisturbed lysimeter is only 84% the depth of the disturbed lysimeters. This could change the time to peak drainage in the lysimeter and also change the timing and amount of peak nitrogen leaching. Since 1992, differences in the time to peak flow through the lysimeters have continually decreased to the point where in 1993 no one lysimeter consistently lags the other four. This improvement in drainage could be due to improved soil structure in the disturbed soil profiles. The soil has been undergoing a natural process of rebuilding macropores and micropores since installation. While the macropores created during installation were degrading and filling in, roots, worms and other soil fauna along with water draining, freezing and thawing have been continually moving soil particles, forming the soil pore matrix. The author now believes that the soil is regaining a balance between macropores and micropores which will eventually stay as stable as the structure in the undisturbed lysimeter. This process may take several years before better correlation-between the disturbed lysimeter soils and the undisturbed lysimeter soil is achieved. Average drainage from the five lysimeters was also compared to a calculated drainage. This estimate of drainage was based on actual rainfall and irrigation data, and calculated evapotranspiration data generated using an irrigation scheduling package titled "SCS-Scheduler Version 3.00" (Shayya & Bralts, 1994). This comparison allowed the author to place more confidence in the overall accuracy of the measured drainage from 95 the lysimeters. The calculated drainage shows the trends seen in the fall in the actual drainage, but also shows no drainage during summer months. However, drainage in the lysimeters continued even during the driest part of the year when irrigation was required. The equation utilized to calculate drainage incorporated one soil storage term for the entire depth of the lysimeter. Better correlation might be achieved with two or more soil storage terms, or one for each horizon, incorporating each horizon's water holding capacity and initial water content. Two term equations could be made with a macropore transport term and a separate term for micropores, allowing for rapid transport of some water through a macropore system and slowly moving other water through a micropore system. Nitrate loads found in drainage were significantly different between the two types of lysimeters for the period 1989 through 1992. During the 1990 season, before the errors associated with January through March 1991, the disturbed soil leached about 50% more nitrate than the undisturbed soil. Then, in the 1991 and 1992 seasons the disturbed lysimeter leached much less than the undisturbed soil. In 1993 the two lysimeters leached, and drained about the same. Differences in nitrate concentrations the first year were not detectable. There was below normal precipitation and due to this, drainage was minimal the first summer and fall. The disturbed lysimeter leached higher nitrate concentrations than was seen from the undisturbed lysimeter the second year and part of the third year (1990 and 1991). The disturbed lysimeter then began leaching lower concentrations of nitrate than was found in the undisturbed lysimeter in 1991. This disagreement then slowly lessened and in 1993 and 1994 there was no significant difference (based on a two-tailed Student's t-test with a = 0.10) between leachate from the disturbed lysimeter and undisturbed lysimeter. 96 The data from the disturbed and undisturbed lysimeters near Constantine seem to support the statement which Kohnke et al (1940) made which stated that: "In the filled-in lysimeters it is frequently noticed that in the first year or two the nitrate content of the percolate is rather high, but aflerwards it decreases to very low rates. " With the long study, which has so far incorporated five years of lysimeter study at the same sight with one of the objectives being to compare a disturbed soil profile lysimeter to an undisturbed profile lysimeter. It has appeared in the last year that soil characteristics of the disturbed soil can eventually be considered the same as the undisturbed soil profile for drainage studies. In this study, with a loamy sand, it took five years for the soil in a disturbed lysimeter to adjust to approximately the same drainage characteristics as was found in the undisturbed lysimeter. As was seen with the first large drainage events, much more nitrate leached fi'om the disturbed soil than leached from the undisturbed soil. This could be due to the fact that the nitrogen held in organic matter was exposed to oxygen and water and mineralized faster than organic matter in the undisturbed soil. The undisturbed lysimeter also potentially suffered from the effect of aeration of organic soil because the top horizon of the soil in the lysimeter was disturbed. After the newly mineralized nitrogen washed out, leaching decreased, possibly due to the reduced supply of nitrate-nitrogen along preferential water flow pathways. As the soil structure is slowly rebuilt, the nitrogen balance is expected to become closer to that found in undisturbed soils. 97 The best type of lysimeter to build is of course the undisturbed soil profile lysimeter. This lysimeter is costly to build on a large scale, but is the most reliable over a wide range of soils and can confidently be compared to entire field operations with minimal error. Undisturbed lysimeter installations should still undergo a year of operation before data is used to compare to real field situations. This is due to the disturbance of the top soil. Disturbed soil profile lysimeters can be used with confidence for comparing treatments in sandy soils. The disturbed lysimeters are much less time consuming to install and much cheaper. Afier a few years have passed and the disturbed lysimeters have matured and regained pore structure, they can then be confidently used as a model for the natural soil conditions. In the Constantine case an undisturbed lysimeter of the same surface area was available in the same field for comparison. When aging process in the disturbed lysimeters had progressed far enough, the lysimeters drained and leached nitrate similarly. Soil structure, as well as soil type must be considered when choosing a site for a group of disturbed lysimeters. The results of the first five years of nitrogen application rate and timing studies which used the disturbed lysimeters show that disturbed lysimeters can definitely be used for comparisons of cultural practices on sandy soils. The nitrate load data for 1990 shows the 0 kg/ha plot, which received 202 kg N/ha in 1989, leaching more than the model plot, which received 90 kg N/ha in 1989 and no nitrogen in 1990. In 1991, 1992 and 1993 most trends between the four disturbed lysimeters are relatively unchanging from year to year. One trend, which attention should be drawn to, is the closeness of the nitrate load results between the 101 kg/ha split application and the model. Yield is very close between all treatments, but nitrate leaching is very close between the model and the 101 kg/ha treatments. The 202 kg/ha treatments leach two to three times more nitrate than the model or the 101 kg/ha treatments. 98 Grain yields for the Model treatment and the 101 kg N/ha treatment have not shown significant differences when compared to the 202 kg N/ha treatment. The last year of the study, 1994, the control was beginning to show a significant grain yield difference. This work shows that a treatment such as the Model treatment or even a 101 kg N/ha split application will reduce the nitrogen added to the ground water supply without significantly reducing yields. There definitely exists significant nitrate concentration differences in leachate from the four nitrogen treatments. The zero nitrogen treatment still produced nitrate leachate, but over 90% of the leachate samples fiom May 1, 1992 through August 31, 1994 tested below 10 PPM, which is the public water supply standard for nitrogen. About 40% of the leachate samples from the conventional 202 kg N/ha treatment tested below the 10 PPM level. For the 101 kg N/ha treatment about 65% of the samples were below 10 PPM nitrogen and for the Model over 70% were below 10 PPM. These nitrogen rate and timing results show that better nitrogen management leads to less nitrate loss through leaching. The best nitrogen management practice will be multiple applications of small quantities of nitrogen at periods in the plants life cycle when the plant needs nitrogen. CONCLUSIONS Objective 1: During the first three years, 1989 through 1991, the disturbed lysimeters drainage rates were not the same as the undisturbed lysimeters rates. After this three year period of aging, we are confident that the disturbed lysimeters drained the same amount at the same rate. Objective 2: Differences in nitrate concentrations the first year were not detectable. The second year and part of the third year (1990 and 1991), the disturbed lysimeter leached higher nitrate concentrations than was seen from the undisturbed lysimeter. The disturbed lysimeter then began leaching lower concentrations of nitrate than undisturbed lysimeter in 1991. This disagreement then slowly lessened and in 1992 and 1993 there were no significant differences between leachate concentrations from the disturbed lysimeter and the undisturbed lysimeter. Objective 3: There exists significant nitrate concentration differences in leachate from the four nitrogen treatments. Grain yields for the Model treatment and the 101 kg N/ha treatment did not show significant differences when compared to the 202 kg N/ha treatment. The last year of the study, 1994, the control (0 kg/ha) was beginning to show a grain yield difference. 99 REFERENCES Aboukhaled, A., Alfaro, A. & Smith, M. 1982. Lysimeters. FAO Irrigation and Drainage Paper 39. Food Agric. Org., Rome, Italy. pp 68. Belford, R. K. 1979. Collection and evaluation of large soil monoliths for soil and crop studies. J. Soil Sci. 30:363-373. Bergstrom, L. 1987. Nitrate leaching and drainage from annual and perennial crops in tile drained plots and lysimeters. J. Environ. Qual. 16:11-18. Bergstrom, L. 1989. Use of lysimeters to estimate leaching of pesticides in agricultural soils. Michigan State University Dep. Crop and Soil Science Brown Bag Seminar (1 989). Beven, Keith and Germann, Peter. 1982. Macropores and Water Flows in Soils. Water Resour. Res. 18(5): 1 31 1-1325 Biggar, J. W. and Nielsen, D. R. 1976. The spatial variability of the leaching characteristics of a field soil. Water Resour. Res. 12:78-84. Black, T. A., Thurthell, G. W. & Tanner, C. B. 1968. Hydraulic Load cell lysimeters; construction, calibration and tests. Soil Sci. Soc. Am. Proc. 32:623-629. Brown, K. W., Thomas, J. C. & Aurelius, M. W. 1985. Collection and testing barrel sized undisturbed soil monoliths. Soil Sci. Soc. Am. J. 49:1067-1069. Brown, K. W., Gerrard, C. J ., Hipp, B. W. & Ritchie, J. T. 1974. A procedure for placing large undisturbed monoliths in lysimeters. Soil Sci. Soc. Am. Proc. 38:981-983. Cassell, D. K., Kreuger, T. H., Schroer, F. W. & Norum, E. B. 1974. Solute movement through disturbed and undisturbed soil cores. Soil Sci. Soc. Am. Proc. 38:36-40. Dowdell, R. J. & Webster, C. P. 1980. A lysimeter study using nitrogen-15 on the uptake of fertilizer nitrogen by perennial ryegrass swards and losses by leaching. J. Soil Sci. 31:65-75. Dreibelbis, F. R. 1961. Comparison of soil moisture regimen in lysimeters with that on adjacent watersheds. U.S. Agric. Res. Serv. ARS. 41-47. 100 101 Fisher, D. K. & Elliot, R L. 1994. Experiences with remote, low-cost, weighing lysimeters. ASAE paper. 94-2077. Garstka, W. U. 193 7. Design of the automatic recording in-place lysimeters near Coshocton, Ohio. Soil Sci. Soc. Proc. 2555-559. Harrold, L. L. & Dreibelbis, F. R. 1958. Evaluation of agricultural hydrology by monolithic lysimeters 1944 - 1955. USDA Tech. Bull. 1179. 166p. illus. King, L. D., Leyshon, A. J. & Webber, L. R. 1977. Application of municipal refuse and liquid sewage sludge to agricultural land: H. J. Environ. Qual. 6(1):67-71. Kohnke, H., Dreibelbis, F. R. & Davidson, J. M. 1940. A survey and discussion of lysimeters and a bibliography on their construction and performance. USDA Misc. Pub]. 374. 68p. Litaor, M. I. 1988. Review of soil solution samplers. Water Resour. Res. 24(5):727- 733. Loudon, T. L., Ritchie, J. T., Lupkes, S., Henningsen, F. J. & Gerrish, P. 1991. Design and Installation of drainage lysimeters for sandy soils. ASAE paper. 91-2144. Martin, E, C. 1992. Management Strategies to minimize nitrate leaching in seed corn production. Dissertation. Michigan State University. Martin, E. C., Loudon, T. L., Ritchie, J. T. & Werner, A. 1994. Use of drainage lysimeters to evaluate nitrogen and irrigation management strategies to minimize nitrate leaching in maize production. Trans. Am. Soc. Ag. Eng. 37(1):79-83. McMahon, M. A. & Thomas, G. W. 1974. Chloride and tritiated water flow in disturbed and undisturbed soil cores. Soil Sci. Soc. Am. Proc. 38:727-732. Prunty, L. & Montgomery, B. R. 1991. Lysirneter study of nitrogen fertilizer irrigation rates on quality of recharge water and corn yield. J. Environ. Qual. 20:373-380. Richter, G. & Jury, W. A. 1986. A microlysimeter field study of solute transport through a structured sandy loam soil. Soil Sci. Soc. Am. J. 50:863-868. Ritchie, J. T. et. al. 1993. Irrigation water and nitrogen management project for hybrid seed corn production at Constantine, Michigan. Three year report, 1989-1991. Published by author. Ritchie, J. T. & Burnett, E. 1968. A precision weighing lysimeter for row crop water use studies. Agron. J. 60:545-549. 102 Schneider, A. D., Ayars, J. E. & Phene, C. J. 1993. Combining monolithic and repacked soil tanks for high water table lysimeters. ASAE paper. 93-25 52. Shaw, K. & Jones, E. 1974. Lysirneter studies on movement of applied mineral nitrogen through soil. Ministry of Agriculture, Fisheries and Food, Tech. Bull. 32:223-236. Shayya, Walid H. & Bralts, Vincent F. 1994. SCS-Microcomputer Irrigation Scheduling Package. SCS-Scheduler Version 3.00. Department of Agricultural Engineering, Michigan State University. Thomas, Grant W. and Phillips, E. 1979. Consequences of Water Movement in Macropores. J. Environ. Qual. 8(2):149-152. USDA. 1983. Soil Survey of St. Joseph County Michigan. USDA. pp 108. Van De Pol, R. M., Wierenga, P. J. and Nielsen, D. R. 1977. Solute Movement in a Field Soil. Soil Sci. Soc. Am. J. 41:10-13. Watts, D. G., & Martin, D. L. 1981. Effects of water and nitrogen management on nitrate leaching loss from sands. Trans. Am Soc. Ag. Eng. 25:911-916. Webster, C. P. & Dowdell, R. J. 1985. A lysimeter study of the fate of nitrogen applied to perennial ryegrass: soil analysis and the final balance sheet. J. Soil Sci. 36:605-611. Wild, A. & Babider, I. A. 1976. The Asymmetric Leaching Pattern Of Nitrate and Chloride In A Loamy Sand Under Field Conditions. J of Soil Sci. 27:460-466. APPENDICES APPENDIX A APPENDIX A. Lysirneter drainage volumes. Daily drainage by lysimeter Date Lysirneter Lysimeter Lysirneter Lysirneter Lysirneter Lysimeters 1 2 3 4 5 (M) (m!!!) (min) (min) (In!!!) Changed 23-Jun-89 8 8 6 5 9 24-Jun-89 8 8 6 5 9 25-Jun-89 8 8 6 6 9 26-Jun-89 8 9 6 6 9 27-Jun-89 7 8 5 5 8 28-Jun-89 6 7 5 3 7 29-Jun-89 6 6 4 4 6 30-Jun-89 7 8 4 6 7 1-Jul-89 6 7 4 5 6 2-Jul-89 6 7 3 4 6 3-Jul-89 5 6 3 4 5 4-Ju1-89 5 6 2 4 5 5-Jul-89 5 5 3 3 5 6-Jul-89 5 6 3 4 5 7-Jul-89 5 6 3 3 5 8-Jul-89 5 6 3 5 5 9-Jul-89 5 6 3 5 5 10-Ju1-89 4 6 3 3 5 11-Ju1-89 4 4 2 3 4 12-Ju1-89 4 5 2 4 4 13-Ju1-89 4 5 2 4 4 14-Jul-89 4 4 2 2 4 103 104 Date Lysirneter Lysirneter Lysirneter Lysirneter 4 Lysirneter Lysimeters 1 2 3 5 (mm) (mm) (mm) (mm) (mm) Changed 15-Jul-89 l6-Jul-89 1 7-Jul-89 1 8-Jul-89 1 9-Jul-89 20-Jul-89 21-Jul-89 22-Jul-89 23-Jul-89 24-Jul-89 25-Ju1-89 26-Jul-89 27-Jul-89 28-Jul-89 29-Jul-89 30-Jul-89 3 1-Jul-89 l -Aug-89 2-Aug-89 3-Aug-89 4-Aug-89 5-Aug-89 6-Aug-89 7-Aug-89 8-Aug—89 9-Aug-89 lO-Aug-89 1 1-Aug—89 12-Aug-89 1 3-Aug-89 14-Aug-89 1 5-Aug-89 l 6-Aug-89 1 7-Aug-89 1 8-Aug-89 l9-Aug-89 20-Aug-89 2 1 -Aug-89 22-Aug-89 _——~———NN_————~—NwAwwmwwwwwNNNNNwwhh-hhw MNMAWWNWUJUJAWNWWMF—NNWUNNNw-‘AMNNNCfl—nhuwww ww-thMh-b-bhilthbe-hUtUIQO‘O‘UIMQOb-hAwwwwwwh-bbbb u—nn—nn—o-uu—nu—nu—tn—In-doooooooocooo—u—I—u—tu—n—ni—ot—II—u—nu—nu—tNNNNNv—t 105 Date Lysirneter Lysimeter Lysirneter Lysirneter 4 Lysirneter Lysimeters l 2 3 5 (mm) (mm) (mm) (mm) (mm) Changed 23-Aug-89 24-Aug-89 25-Aug-89 26-Aug-89 27-Aug-89 28-Aug—89 29-Aug-89 30-Aug-89 3 1-Aug-89 1 -Sep-89 2-Sep-89 3-Sep-89 4-Sep-89 5-Sep-89 6-Sep-89 7-Sep-89 8-Sep-89 9-Sep-89 10-Sep-89 1 1-Sep-89 12-Sep-89 1 3-Sep-89 l4-Sep-89 1 5-Sep-89 16-Sep-89 1 7-Sep-89 1 8-Sep-89 19-Sep-89 20-Sep-89 2 1-Sep-89 22-Sep-89 23-Sep-89 24-Sep-89 25-Sep-89 26-Sep-89 27-Sep-89 28-Sep-89 29-Sep-89 30-Sep-89 1-0ct-89 1,3, 1,3, 1,3, 1,3, 1,3, 1,3, 1,3, 1,3, 1,3, N-N-N~o—Nun-—--NNNMNNo—-~Nu-~mwuwu~o~u wabN—‘bNCM-th—fi--NNWNfl-‘CNNNNNw—IowkNWWNUMNN a—na—‘n—o—u—nuu—a—ot—I—n—au—o—n—u—u—n—n—H—nr—n—NNN—np—au—nu—su—NNNNNNNNNN u—nu—o—n—n cooooooooccooooooooocooooooooo——~—-—-—~— N-u—~—--u—owooooooooooooooooo~o--~—----—---- 106 Date Lysirneter Lysirneter Lysirneter Lysirneter 4 Lysirneter Lysimeters 1 2 3 5 (nun) (mm (min) (min) (nun) Changed 2-0ct-89 1 0 l 1 1 1,3 ,4. 3-Oct-89 0 0 0 0 0 1,3,4, 4-Oct-89 0 0 0 O 0 1,3,4, 5-0ct-89 0 0 0 0 0 1,3,4, 6-0ct-89 0 0 0 0 l 1,3 ,4, 7-Oct-89 O 0 0 0 0 1,3,4, 8-0ct-89 0 0 0 0 0 1,3,4, 9-0ct-89 0 0 0 0 0 1,3,4, 10-Oct-89 0 0 0 0 0 1,3 ,4, ll-Oct-89 0 0 0 0 0 1,3,4, 12-Oct-89 0 0 0 O 0 1,3,4, 13-Oct-89 0 0 0 0 0 1,3,4, 14-0ct-89 0 0 0 0 0 1,3,4, 15-Oct-89 0 O O 0 0 1,3,4, l6-Oct-89 0 0 0 0 0 1,3,4, l7-Oct-89 0 0 0 0 0 1,3,4, 18-Oct-89 0 0 0 0 0 1,3,4, 19-0ct-89 0 O O 0 0 3,4, 20-Oct-89 0 0 0 0 0 3,4, 21-0ct-89 0 0 0 0 0 3,4. 22-0ct-89 0 0 0 0 0 3,4, 23-Oct-89 0 0 0 0 0 3,4, 24-Oct-89 0 0 0 0 0 3.4. 25-Oct-89 0 O 0 0 0 3,4, 26-Oct-89 0 0 0 0 0 3,4, 27-Oct-89 1 l 1 1 0 3,4, 28-Oct-89 0 0 0 2 0 3 29-0ct-89 0 O 0 2 0 3 30-Oct-89 1 0 0 5 O 3 31-Oct-89 245 118 17 164 91 1-Nov-89 366 275 101 324 371 2-Nov-89 136 179 1 17 144 147 3-Nov-89 80 79 101 84 79 4-Nov-89 54 43 86 59 57 5-Nov-89 43 32 78 46 46 6-Nov-89 32 25 71 31 36 7-Nov-89 28 24 65 28 29 8-Nov-89 24 22 59 26 26 9-Nov-89 20 1 7 57 2 l 22 lO-Nov-89 l6 13 55 17 18 107 Date Lysimeter Lysirneter Lysimeter Lysirneter 4 Lysirneter Lysimeters 1 2 3 5 (mm) (min) (mm (mm (min) Changed 1 l-Nov-89 20 18 53 25 18 12-Nov-89 22 20 47 26 19 13-Nov-89 24 23 43 27 24 14-Nov-89 23 20 35 23 24 15-Nov-89 23 22 32 23 23 16-Nov-89 3 5 29 3 1 47 42 17-Nov-89 8 1 98 54 104 60 18-Nov-89 99 77 70 99 83 19-Nov-89 76 54 68 79 72 20-Nov-89 55 39 59 54 53 21-Nov-89 42 29 46 41 41 22-Nov-89 36 26 40 35 35 23-Nov-89 32 23 36 3 l 30 24-Nov-89 3O 22 33 29 27 25-Nov-89 28 21 30 27 26 26-Nov-89 24 17 28 23 23 27-Nov-89 24 20 26 27 24 28-Nov-89 18 13 29 14 18 29-Nov-89 18 14 27 20 1 8 30-Nov-89 16 13 23 18 17 1-Dec-89 15 12 19 18 16 2-Dec-89 14 11 17 16 16 3-Dec-89 12 9 17 14 13 4-Dec-89 14 12 18 18 15 5-Dec-89 12 9 17 13 12 6-Dec-89 10 7 15 10 11 7-Dec-89 9 6 14 9 8 8-Dec-89 11 8 14 13 9 9-Dec-89 11 9 14 14 10 10-Dec-89 10 8 13 10 9 11-Dec-89 9 6 12 9 8 12-Dec-89 9 7 11 10 8 13-Dec-89 9 7 10 10 7 l4-Dec-89 8 6 10 8 7 15-Dec-89 8 6 9 9 7 16-Dec-89 7 5 8 6 6 17-Dec-89 7 5 8 7 5 18-Dec-89 7 5 7 7 5 19-Dec-89 7 5 6 8 5 20-Dec-89 6 5 6 6 5 108 Date Lysimeter Lysirneter Lysirneter Lysirneter 4 Lysirneter Lysimeters l 2 3 5 (mm) (mm) (mm) (mm) (mm) Changed 2 1 -Dec-89 22-Dec-89 23-Dec-89 24-Dec-89 25-Dec-89 26-Dec-89 27-Dec-89 28-Dec-89 29-Dec-89 30-Dec-89 3 1-Dec-89 1 Jan-90 2-Jan-90 3-Jan-90 4-Jan-90 5-Jan-90 6-Jan-9O 7-Jan-90 8-Jan-90 9-Jan-90 1 0-Jan-90 1 1-Jan-90 12-Jan-90 1 3-Jan-90 l4-Jan-90 1 5-Jan-90 1 6-Jan-90 1 7-Jan-90 1 8-Jan-90 19-Jan-90 20-Jan-90 2 1-Jan-90 22-Jan-90 23-Jan-90 24-Jan-90 25-Jan-90 26-Jan-90 27-Jan-90 28-Jan-90 29-Jan-90 \OGMM bwubqaxhhh Oxw NN—wa qua-03») N smqmmhhwhha‘mbsxb 00 W N A omeeqquhbabbumuma Ur N—a— NQVO u—nu—n “DJ u—nu—nN \qu \lO‘Q [3 H w — 5:: NU) Mum all all all all all all all all all all all all all all all cooooocoooocooowhb\rmooxruaaooooaqoouuhmbqqmmm OOOCCOOOOOOOOOONWAQON COCOOOOOOOOOCOOI—NNNN COOOOOOOOOCOOOO-—NMNO\ OOOOCOOOOOOOOOOO Date SO-Jan- 31-Jan- l-Feb-‘. 2-Feb—S 3-Feb—‘. 4-Feb-‘. 5-Feb-S 6-Feb-l 7-Feb-‘. 8-Feb—‘. 9-Feb-l lO-Feb- l l-Feb- l2-Feb— l3-Feb— 14-Feb— 1.5-Feb- l6-Feb— l7-Feb. 18-F eb- l9-Feb. 2Cl-Feb- 21-Feb. ill-Feb. 2.3-Feb. 24-Feb. 35-Fe1} 26'Feb 27:1: eb- 28~Feb. 109 Date Lysirneter Lysimeter Lysimeter Lysirneter 4 Lysirneter Lysimeters 1 2 3 5 ' (m!!!) (min) (mm) (nun) (min) Changed 30-Jan-90 0 0 0 0 0 all 3l-Jan-90 0 0 0 0 0 all l-Feb-90 0 0 0 0 0 all 2-Feb-90 0 0 0 0 0 all 3-Feb-90 0 0 0 0 0 all 4-Feb-90 0 0 0 0 0 all 5-Feb-90 0 0 O 0 0 all 6-Feb-90 18 18 16 21 13 7-Feb-90 25 16 22 19 20 8-Feb-90 26 23 22 27 24 9-Feb-90 23 19 22 21 23 10-Feb-90 20 17 21 19 21 11-Feb—90 18 15 20 17 19 12-Feb-90 17 14 19 17 18 l3-Feb-90 15 14 18 13 17 14-Feb-90 14 11 17 13 14 15-Feb-90 15 13 16 15 16 l6-Feb-90 12 11 15 9 13 l7-Feb-90 10 8 14 8 10 18-Feb-90 12 11 13 13 12 19-Feb-90 9 9 12 7 11 20-Feb-90 9 8 12 9 10 21-Feb-90 10 10 11 11 11 22-Feb-90 97 41 14 1 1 1 32 23-Feb-90 121 140 30 127 78 24-Feb-90 85 94 42 77 8 1 25-Feb-90 68 66 51 57 84 26-Feb-90 54 53 50 49 7O 27-Feb-90 43 39 45 37 53 28-Feb-90 35 31 38 31 43 1-Mar-90 31 28 35 29 38 2-Mar-90 26 24 32 24 32 3-Mar-90 22 1 8 28 26 25 4-Mar-90 25 17 25 27 23 5-Mar-90 23 15 23 21 19 6-Mar-90 20 13 22 17 16 7-Mar-90 19 14 21 18 16 8-Mar-90 19 17 20 19 17 9-Mar-90 91 66 29 90 17 10-Mar-90 74 127 44 80 73 D: 110 Date Lysimeter Lysirneter Lysirneter Lysirneter 4 Lysirneter Lysimeters l 2 3 5 (mm) (mm) (mm) (mm) (mm) Changed ll-Mar-9O 61 204 58 72 169 12-Mar-90 58 118 71 48 128 13-Mar-90 62 78 75 48 96 14-Mar-90 58 5 8 70 47 74 15-Mar-90 48 43 58 40 57 16-Mar-90 41 36 47 37 47 17-Mar-90 34 30 39 30 39 1 8-Mar-90 29 23 36 24 32 19-Mar-90 24 20 33 20 27 20-Mar-90 22 19 28 20 25 21-Mar-90 16 13 18 13 18 22-Mar-90 16 14 20 13 19 23-Mar-90 14 1 1 19 1 1 15 24-Mar-90 14 12 18 13 15 25-Mar-90 13 1 1 17 12 14 26-Mar-90 11 9 17 9 13‘ 27-Mar-90 l l 9 15 10 12 28-Mar-90 10 9 14 10 14 29-Mar-90 9 8 1 3 9 12 30-Mar-90 8 12 8 10 31-Mar-90 8 7 1 1 8 9 l-Apr-90 12 9 1 5 5 8 2-Apr-90 1 9 12 l 6 6 8 3-Apr-90 20 14 15 8 10 4-Apr-90 19 1 5 15 8 1 1 5-Apr-90 1 6 14 13 7 1 1 6-Apr-90 1 5 13 12 7 1 1 7-Apr-90 1 3 12 1 2 6 1 1 8-Apr-90 12 1 1 1 1 6 10 9-Apr-90 12 1 1 1 1 9 11 10-Apr-90 15 14 14 14 12 11-Apr-90 13 12 14 12 11 12-Apr-90 13 1 1 14 15 12 13-Apr-90 19 17 15 23 12 14-Apr-90 3 1 32 1 8 30 16 15-Apr-90 33 3 1 20 3 l 24 16-Apr-90 3 1 28 22 29 30 17-Apr-90 27 22 23 22 27 18-Apr-90 27 23 23 24 26 l9-Apr-90 28 25 24 N 05 29 111 Date Lysirneter Lysirneter Lysimeter Lysirneter 4 Lysirneter Lysimeters 1 2 3 5 (mm) (mm) (mm) (mm) (mm) Changed 20-Apr-90 26 23 ' 23 24 27 2 l-Apr-90 23 19 23 2 1 24 22-Apr-90 22 19 22 20 23 23-Apr-90 20 18 22 22 2 1 24-Apr-90 21 24 24 28 20 25-Apr-90 23 27 25 28 22 26-Apr-90 24 26 26 27 25 27-Apr-90 22 23 26 24 25 28-Apr-90 21 2 l 25 2 1 24 29-Apr-90 1 9 1 7 23 1 7 2 1 30-Apr-90 17 16 22 16 19 l-May-90 1 5 14 20 15 17 2-May-90 14 13 19 13 16 3-May-90 13 12 17 13 15 4-May-90 14 14 17 l6 l6 5-May-9O 11 ll 16 10 13 6-May-90 10 10 1 5 1 0 12 7-May-90 10 10 14 10 1 1 8-May-90 9 8 13 8 11 9-May-90 10 10 12 1 1 1 1 lO-May-90 8 9 12 6 10 ll-May-90 6 5 11 4 7 12-May-90 8 8 10 10 9 l3-May-90 6 6 10 5 8 l4-May-90 8 7 27 7 15-May-90 28 3 1 48 21 1 1 l6-May-90 46 45 51 38 32 17-May-90 56 58 59 69 54 18-May-90 177 146 96 143 177 19-May-90 1 03 85 94 91 1 1 3 20-May-90 67 54 80 56 7] 21-May-90 49 40 66 42 52 22-May-90 3 8 32 57 33 4 1 23-May-90 33 27 49 28 34 24-May-90 27 23 4 1 24 28 25-May-90 24 20 36 22 25 26-May-90 2 1 18 3 1 19 22 27-May-90 18 16 25 16 19 28-May-90 1 6 l 5 26 1 5 1 7 29-May-90 1 3 1 3 26 12 15 7.]l 8.1L 112 Date Lysirneter Lysirneter Lysirneter Lysirneter 4 Lysirneter Lysimeters l 2 3 5 (mm) (mm) (mm) (mm) (mm) Changed 30-May-90 12 l 1 21 12 13 31-May-90 12 ll 19 12 13 1-Jun-9O 11 11 17 12 12 2-Jun-90 12 1 l 16 13 12 3-Jun-90 1 0 9 4-Jun-90 9 5-Jun-90 6-Jun-90 7-Jun-90 8-Jun-90 9-Jun-90 10-Jun-90 1 1-Jun-90 12-Jun-90 13-Jun-90 14-Jun-90 1 5-Jun-90 l 6-Jun-90 1 7-Jun-90 1 8-Jun-90 19-Jun-90 20-Jun-90 2 l-Jun-90 22-Jun-90 23-Jun-90 24-Jun-90 25-Jun-90 26-Jun-90 27-Jun-90 28-Jun-90 29-Jun-90 30-Jun-90 1 -Ju1-90 2-Jul-90 3-Jul-90 4-Ju1-90 5-Ju1-90 6-Jul-90 7-Jul-90 8-Jul-90 fl O Hid Q05 U) —l _ U‘ 0 ~ {It — _ all bhwwhb43>°$bAb$abbAO5UtUIUtUIONO~ONO~OQQGQOOOOOO Awwwhbe-hbbhbAbO‘QK/IO‘QGO‘O‘GQQQGO‘QOONOOOO uhwwwuboItsAubmbwwmumomqaomamqaxammm Awww-hbbobbbbhhhONO\UtO\O\O\O\O\O\\I\I\I\I\IOOOOOO\O\O\D wwwuwwwcanaawuuao‘aqqmmmooc Date 9-Jul- lO-Jul ll-Jul 12-Jul l3-Jul l4-Jul lS-Jul 16-Ju3 l7-Ju' 18-Ju' l9-Ju 20-lu 21-Ju 22-Ju 23-Ju 24-Ju 25-Ju 26-Ju 27-Ju 28-Ju 29-Jt 30—JL 3 1 -JL l-Au 2-Au 4-Au 13‘A 14-A. 15‘A 17‘A 113 Date Lysirneter Lysirneter Lysirneter Lysirneter 4 Lysirneter Lysimeters 1 2 3 5 (mm) (mm) (mm) (mm) (mm) Changed 9-Jul-90 3 4 3 3 4 10-Jul-90 3 3 3 3 3 11-Ju1-90 3 3 3 4 3 12-Jul-90 3 3 3 2 3 l3-Jul-90 3 3 3 4 3 l4-Jul-90 3 4 3 4 4 15-Jul-90 2 3 2 2 3 16-Jul-90 2 2 2 2 3 l7-Jul-90 2 2 2 2 3 18-Jul-90 3 2 2 3 3 19-Jul-90 3 3 2 3 3 20-Jul-90 3 3 2 3 3 21-Jul-90 2 2 2 5 3 22-Ju1-90 2 2 2 6 3 23-Jul-90 2 2 2 l9 2 24-Jul-90 4 2 2 22 2 25-Jul-90 9 2 2 21 2 26-Jul-90 12 2 2 21 2 27-Jul-90 13 3 3 20 3 28-Jul-90 13 4 3 19 4 29-Ju1-90 l3 5 4 17 4 30-Jul-90 11 5 4 14 4 31-Jul-90 10 4 4 13 3 1-Aug-90 10 4 4 12 3 2-Aug-90 9 5 5 l2 4 3-Aug-90 9 5 5 11 4 4-Aug-90 9 5 5 11 4 5-Aug-90 7 4 5 8 4 6-Aug-90 7 4 5 8 3 7-Aug-90 7 4 5 9 4 8-Aug-90 7 4 5 8 4 9-Aug-90 7 4 5 8 4 10-Aug-90 6 4 4 7 4 11-Aug-90 6 4 4 6 4 12-Aug-90 6 4 4 6 3 13-Aug-90 5 3 4 10 3 l4-Aug-90 6 3 7 18 3 lS-Aug-90 8 3 12 19 4 16-Aug-90 8 3 14 19 5 17-Aug-90 8 4 16 20 6 Date l8-Aug-' 19-Aug- ZED-Aug- 21-Aug- ZZZ-Aug- 2.3-Aug- 2.4-Aug- 25-Aug- 26-Aug- 27-Aug- 28-Aug 29—Aug 30-Aug 31-Aug l-Sep- 2-Sep- 3-Sep- 4-Sep 5-Sep 6-Sep 7-Sep 3-Sep 9-Sep lO-Se] 1 1‘36] 12‘Se‘. 22-S< 35-s. 114 Date Lysirneter Lysirneter Lysirneter Lysimeter4 Lysirneter Lysimeters 1 2 3 5 (mm (mm) (min) (mm (mm) Changed 18-Aug-90 8 4 16 18 7 19-Aug-90 7 4 16 15 8 20-Aug-90 8 4 16 15 8 21-Aug-90 8 5 15 14 9 22-Aug-90 8 5 14 15 9 23-Aug-90 10 5 15 18 9 24-Aug-90 12 6 15 23 1 1 25-Aug-90 14 8 16 23 14 26-Aug-90 15 9 16 21 16 27-Aug-90 1 5 9 16 20 1 7 28-Aug-90 15 10 l6 17 16 29-Aug-90 14 9 15 15 15 30-Aug-90 13 8 14 14 14 31-Aug-90 12 8 14 13 13 1-Sep-90 12 8 13 12 12 2-Sep-90 11 7 12 11 11 3-Sep—90 11 6 ll 10 10 4-Sep-90 11 7 11 11 10 5-Sep-90 10 7 10 10 10 6-Sep-90 10 7 10 11 9 7-Sep-90 8 6 9 6 8 8-Sep-90 8 5 8 8 7 9-Sep-90 8 6 8 7 7 10-Sep-90 7 5 7 7 7 ll-Sep-90 7 4 7 7 6 12-Sep-90 7 5 7 7 6 13-Sep-90 7 5 6 8 6 14-Sep-90 7 6 6 7 7 15-Sep-90 6 4 6 6 6 l6-Sep-90 5 3 5 4 5 17-Sep-90 5 2 5 4 4 l8-Sep-90 6 3 5 7 5 l9-Sep-90 5 4 4 5 5 20-Sep-90 0 0 0 0 0 all 21-Sep-90 5 3 4 6 5 22-Sep-90 4 3 4 4 4 23-Sep-90 3 2 3 8 4 24-Sep-90 6 2 3 14 4 25-Sep-90 11 3 3 15 5 26-Sep-90 10 3 3 10 5 Dar Date 27-Sep-90 28-Sep-90 29-Sep-90 30-Sep-90 1 -Oct-90 2-Oct-90 3-Oct-90 4-Oct-90 5-Oct-90 6-Oct-90 7-Oct-90 8-Oct-90 9-Oct-90 10-0ct-90 1 1-Oct-90 1 2-Oct-90 1 3 -Oct-90 14-Oct-90 1 5-Oct-90 16-Oct-90 1 7-Oct-90 1 8-Oct-90 1 9-Oct-90 20-Oct-90 2 1 -Oct-9O 22-Oct-90 23-Oct-90 24-0ct-90 25-Oct-90 26-Oct-90 27-Oct-90 28-Oct-90 29-Oct-90 30-Oct-90 3 1-0ct-90 1 -Nov-90 2-Nov-90 3-Nov-90 4-Nov-90 5-Nov-90 Lysirneter Lysirneter Lysirneter Lysimeter4 Lysirneter 1 (mm 309 237 111 72 51 39 33 28 22 l9 17 15 14 13 12 ll 11 ll 10 11 ll 10 10 10 2 (mm) OOOM-hbbbwo ~w——— iN—nu—n—n 179 115 3 (min) \OflambchhA-bbbhc 103 ooqqqooooso (mm) 0 10 10 40 30 24 22 55 303 203 I—Iq—Ie—I—I—I—l—i-‘NNWAMO O o—‘NNMONQ-ch—‘ON WNNIWWVOOQO — O 5 (mm) mhwuowwwuwwo OK 119 127 Lysimeters Changed all all 0 ' i ' 0 U a O I O U wwwwwwwywwwwww ' 17-1 13-1 19-1 20-1 21-1 22-1 23-) 24-} 2M 26.1N 27+ 23-5 -5 30-1\ l-D 2-D. 3- 4.0, 5.3. 116 Date Lysirneter Lysirneter Lysirneter Lysirneter 4 Lysirneter Lysimeters 1 2 3 5 (mm) (mm) (mm) (mm) (mm) Changed 6-Nov-90 30 42 72 41 10 7-Nov-90 75 79 9O 87 47 8-Nov-90 68 56 62 61 61 9-Nov-90 52 41 45 44 53 lO-Nov-90 39 30 33 32 42 1 1-Nov-90 31 24 26 25 34 12-Nov-90 25 20 21 20 27 13-Nov-90 22 17 17 17 23 14-Nov-90 20 16 15 1 6 2 1 15-Nov-90 18 14 l3 14 18 16-Nov-90 16 13 11 12 [7 17-Nov-90 14 10 10 11 14 18-Nov-90 13 1 1 10 l 1 14 19-Nov-90 12 10 8 9 l3 20-Nov-90 11 9 7 9 11 21-Nov-90 11 10 8 10 11 22-Nov-90 10 9 7 8 10 23-Nov-90 10 9 7 8 10 24-Nov-90 9 7 6 8 9 25-Nov-90 7 6 5 4 8 26-Nov-90 8 6 5 7 7 27-Nov-90 32 22 8 8 25 28-Nov-90 296 161 99 255 285 29-Nov-90 1 66 1 64 0 l 64 1 82 30-Nov-90 94 80 48 87 103 1-Dec-90 61 50 37 52 66 2-Dec-90 44 36 26 38 48 3-Dec-90 36 32 22 47 41 4-Dec-90 27 21 16 42 27 5 5-Dec-90 25 25 1 8 29 24 5 6-Dec-90 25 24 17 21 22 5 7-Dec-90 25 22 19 22 22 5 8-Dec-90 22 21 19 20 20 5 9-Dec-90 21 21 19 21 20 5 lO-Dec-90 0 0 O 0 0 all 11-Dec-90 0 0 0 0 0 all 12-Dec-90 0 0 0 0 0 all 13-Dee-90 0 0 0 0 0 all 14-Dec-90 0 0 0 0 0 all 15-Dec-90 0 0 0 0 0 all 117 Date Lysirneter Lysimeter Lysirneter Lysirneter 4 Lysirneter Lysimeters l 2 3 5 (mm) (mm) (mm) (mm) (mm) Changed 16-Dec-90 0 0 0 0 0 all l7-Dec-90 0 0 0 0 0 all 18-Dec-90 0 0 0 0 0 all 19-Dec-90 9 7 7 6 10 20-Dec-90 ll 9 8 10 11 21-Dec-90 33 30 26 28 34 22-Dec-90 8 7 9 8 8 23-Dec-90 6 6 9 8 24-Dec-90 8 9 12 12 9 25-Dec-90 0 0 0 0 0 all 26-Dec-90 0 0 0 0 0 all 27-Dec-9O 0 0 0 0 0 all 28-Dec-90 0 0 0 O 0 all 29-Dec-90 0 0 0 0 0 all 30-Dec-90 280 221 300 325 286 31-Dec-90 148 141 136 136 152 Han-91 89 77 77 79 95 2-Jan-91 57 50 49 51 63 3-Jan-91 44 37 36 39 48 4-Jan-91 36 30 27 32 39 5-Jan-9l 30 26 22 27 33 6-Jan-91 23 20 17 20 25 7-Jan-91 , 21 17 15 19 22 8-Jan-9l 14 15 19 18 14 9-Jan-91 14 17 19 16 13 lO-Jan-91 0 0 0 0 0 all ll-Jan-9l 0 0 0 0 0 all 12-Jan-9l 0 O 0 0 0 all 13-Jan-91 O 0 0 0 0 all 14-Jan-91 0 0 0 0 0 all 15-Jan-91 0 0 0 0 0 all 16-Jan-91 0 0 0 0 0 all 17-Jan-91 0 0 0 0 0 all 18-Jan-91 0 0 0 0 0 all 19-Jan-91 0 0 0 0 0 all 20-Jan-91 0 0 0 0 0 all 21-Jan-91 0 0 0 0 0 all 22-Jan-91 0 0 0 0 0 all 23-Jan-91 O 0 0 O 0 all 24-Jan-91 0 0 0 0 0 all D: 25-1: 2.6-]. 27-1 28-1 2.9-] 30-1 31-1 l-F 2-F 3-F 4-F S-F 6-F 7-F 8-F 9-F 10-1 1 1-1 12-1 l3-I 15- l6- l7- 18- I\) N IQ OJ J N a—0 Z .1. .2. 9° 7’ S" 9' LI. 0 118 Date Lysirneter Lysirneter Lysirneter Lysirneter 4 Lysirneter Lysimeters 1 2 3 5 (mm) (mm) (mm) (mm) (mm) Changed all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all 25-Jan-91 26-Jan-91 27-Jan-91 28-Jan-91 29-Jan-91 30-Jan-91 3 1-Jan-91 1 -Feb-9 l 2-Feb-91 3-Feb-91 4-Feb-9 1 5-Feb-91 6-F eb-91 7-Feb-9 1 8-Feb-9 1 9-Feb-91 10-Feb-91 1 1-Feb-91 12-Feb-91 13-Feb-91 l4-Feb-91 l 5-Feb-91 l6-Feb-91 1 7-Feb-91 1 8-Feb-91 19-Feb-91 20-Feb-91 2 1-Feb-9l 22-Feb-91 23-Feb-91 24-Feb-91 25-Feb-91 26-Feb-91 27-Feb-91 28-Feb-91 l-Mar-9l 2-Mar-91 3-Mar-91 4-Mar-91 5-Mar-91 "2." OOOOOOCOCOOCOCOOOCOOOOOOOCOOCCOOOOOCOOOO OOOOOOCOOOOOOOOOOOOOCOOOOOOOOOOOOOOOOOOO OCOOOOOOOOOOOOOOOOOOOOOOOOOCOOOOOOOOOOOO OOOOOOOOOOOOOCOOOCOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOCOOOOOOOOCOOOOOOOOOCOOOOOOOOOOO ‘ Q (“J 'J Ix) I ("1 Ir) 7‘ .o h) i‘ J U: o IJ i” 27-: 28- 29! 304 314 1-; 2-t 3-; 44! 5-A 7-A 824. H lO-g 1 1.) 12. ,1 13-; 119 Date Lysirneter Lysirneter Lysirneter Lysirneter 4 Lysirneter Lysimeters l 2 3 5 (mm) (mu!) (Inna) (turn) (nun) Changed 6-Mar-9l 0 0 0 0 0 all 7-Mar-91 0 0 0 0 0 all 8-Mar-9l 0 0 0 0 0 all 9-Mar-91 0 0 0 0 0 all 10-Mar-91 0 0 0 0 0 all 11-Mar-91 O 0 0 0 0 all 12-Mar-9l 0 O 0 0 0 all l3-Mar-9l 0 0 0 0 0 all 14-Mar-9l 0 0 0 0 0 all 15-Mar-9l 0 0 0 0 0 all 16-Mar-91 0 0 0 0 0 all 17-Mar-91 0 0 0 0 0 all 18-Mar-91 0 0 0 O 0 all 19-Mar—91 0 0 0 0 0 all 20-Mar-91 0 0 0 0 0 all 21-Mar-9l 0 0 0 0 0 all 22-Mar—9l 0 0 0 0 0 all 23-Mar-91 0 0 0 O 0 all 24-Mar-91 0 0 0 0 0 all 25-Mar-91 0 0 0 0 0 all 26-Mar-91 0 O 0 0 0 all 27-Mar-91 0 0 O 0 0 all 28-Mar—91 0 0 O O 0 all 29-Mar-91 0 0 0 0 0 all 30-Mar-9l 0 0 O 0 0 all 3l-Mar-91 -0 0 O 0 0 all 1-Apr-91 0 0 0 0 0 all 2-Apr-91 19 12 16 6 8 3-Apr-91 20 14 15 8 10 4-Apr-91 19 15 15 8 11 5-Apr-91 16 14 13 7 1 1 6-Apr-9l 15 13 12 7 11 7-Apr-91 13 12 12 6 11 8-Apr-9l 0 0 0 0 0 all 9-Apr-91 12 11 11 9 11 lO-Apr-9l 10 8 10 7 9 ll-Apr-91 10 8 11 9 9 12-Apr-91 11 9 12 11 9 l3-Apr-91 11 10 11 10 10 14-Apr-9l yd .— ~ O .— ~ — ~ ~ O 120 Date Lysirneter Lysirneter Lysirneter Lysirneter 4 Lysirneter Lysimeters 1 2 3 5 (min) (min) (m!!!) (m!!!) (In!!!) Changed 15-Apr-91 23 29 20 31 10 16-Apr-91 115 114 115 61 58 17-Apr-91 40 83 85 46 70 18-Apr-91 29 54 59 30 56 19-Apr-91 48 41 44 32 44 20-Apr-91 38 33 35 22 43 21-Apr-91 55 69 60 35 50 22-Apr-91 0 0 0 0 0 all 23-Apr-91 54 44 47 24 49 24-Apr-91 41 33 36 17 39 25-Apr-91 38 35 38 20 37 26-Apr-91 O 0 0 0 0 all 27-Apr-91 52 46 45 25 42 28-Apr-91 44 37 39 21 39 29-Apr-91 42 37 35 23 37 30-Apr-91 40 33 34 33 33 1-May-91 40 35 34 34 34 2-May-91 38 32 32 32 3 1 3-May-91 34 29 28 29 29 4-May-91 30 26 24 26 25 5-May-9l 28 25 21 25 25 6-May-91 23 19 17 19 21 7-May-91 19 17 15 17 18 8-May-91 l9 16 14 17 17 9-May-91 0 0 0 0 0 all lO-May-91 0 0 0 0 0 all 11-May-9l 0 0 0 0 0 all 12-May-91 0 0 0 0 0 all l3-May-91 0 0 0 0 0 all 14-May-91 0 0 0 0 0 all 15-May-91 11 10 8 10 11 16-May-91 11 11 8 11 10 17-May-91 10 9 7 8 10 18-May-91 9 8 7 9 9 19-May-91 10 9 7 9 9 20-May-91 9 9 8 9 9 21-May-91 9 9 9 9 9 22-May-91 9 8 10 9 8 23-May-91 9 8 12 10 8 24-May-91 9 8 12 10 8 25+ 26-1V 2.7-5 228-11 291 30-lr 31-h l-J 4-1 A (J N L) (‘J t—J _ I fit Date 25-May-91 26-May-9 1 27-May-9 l 28-May-9 1 29-May-9 1 30-May-9 1 3 1-May-91 1-Jun-9 1 2-Jun-9 1 3-Jun-91 4-Jun-9 1 5-Jun-91 6-Jun-9 l 7-Jun-9 1 8-Jun-91 9-Jun-9 l 1 0-Jun-9 1 1 1-Jun-91 12-Jun-91 1 3-Jun-9 1 14-Jun-91 1 5-Jun-9 1 1 6-Jun-9 l 1 7-Jun-91 1 8-Jun-9l l 9-Jun-9 l 20-Jun-9 l 2 1 Jun-9 1 22-Jun-9 1 23 Jun-9 1 24-Jun-91 25-Jun-9 1 26-Jun-91 27-Jun-91 28-Jun-9 1 29-Jun-9 1 30-Jun-91 1-Ju1-9 1 2-Jul-9 1 3-Jul-91 Lysirneter Lysimeter Lysirneter Lysirneter 4 Lysirneter 1 (mm 0000000000 n—nu—eu—Iu—no—nu—o—u—n—NNu—n—u—n ONWNAMQWQOOQQW MMMMO‘O‘O‘O‘O\\I\I\IOON N 92 59 2 (mm) OOO\O\O\O\O\\J\IO\\I\I\I I—Il—l—lI—I—Iu—d—nu—a—nl— O—‘O—‘wwbbbN GONOGGGQQO‘QWOOOOMOOO ~ on 121 3 (nun) 12 12 11 ll 11 10 10 10 19 34 37 32 27 23 l9 17 15 14 12 - o— bwuwwwhbhmuoaqmo O5 Ur 221 \O N (m!!!) 10 10 10 10 ll 10 ooaaaqqqqqoemooo: \JCh Au—I 5 (mm OOQONO‘ONO‘QQQQNWQ u—n-nu—n—eu—u—e—u—a— OOO-NNN—‘O O‘O‘O‘ONO‘O‘ONO‘QQOOWQWOOVO O‘Q DJUI Lysimeters Changed ‘0 U i I U U I v V. O V . U V. 0 ~ ~ ~ ~ ~ _ ~ ~ _ — _‘ ~ ~ ~ _ ~ ~ ' U 122 Date Lysirneter Lysirneter Lysirneter Lysirneter 4 Lysirneter Lysimeters 1 2 3 5 (m!!!) (Inn!) (min) (min) (min) Changed 4-Jul-91 49 49 49 51 47 1,2,3, 5-Jul-91 37 37 37 38 35 1,2,3, 6-Ju1-91 30 30 30 31 28 1,2,3, 7-Ju1-91 25 25 25 25 25 1,2,3,5, 8-Ju1-91 20 20 20 20 20 1,2,3,5, 9-Jul-91 19 19 19 19 19 1,2,3,5, lO-Jul-91 16 16 16 16 16 1,2,3,5, ll-Ju1-9l 15 15 15 15 15 1,2,3,5, 12-Ju1-91 14 14 14 14 14 1,2,3,5, 13-Jul-91 11 11 11 ll 11 1,2,3,5, 14-Ju1-91 10 10 10 10 10 1,2,3,5, 15-Jul-91 10 10 10 10 10 1,2,3,5, 16-Jul-91 1 1 2 10 4 5 l7-Jul-9l 5 5 3 10 6 5 18-Jul-91 8 8 3 9 7 5 19-Jul-91 7 7 2 7 6 5 20-JuI-91 6 6 2 7 5 5 21-Jul-91 6 6 2 7 5 5 22-Jul-91 6 6 2 8 6 5 23-Jul-91 5 6 2 6 5 5 24-Jul-91 5 5 2 6 5 5 25-Jul-91 5 5 1 5 3 26-Jul-91 4 4 1 5 5 27-Jul-91 5 5 1 6 5 28-Ju1-9l 5 5 1 6 5 29-Ju1-91 4 5 1 5 5 30-Jul-91 3 4 1 4 5 31-Jul-91 4 4 1 5 5 1-Aug-91 3 4 1 4 4 2-Aug-91 3 4 1 5 4 3-Aug-9l 3 4 l 3 4 4-Aug-9l 3 3 1 3 4 5-Aug-91 3 3 1 3 3 6-Aug-91 3 3 1 3 3 7-Aug-91 3 3 1 4 3 8-Aug-91 3 4 1 5 4 9-Aug-91 3 3 1 3 3 10-Aug-91 2 3 0 2 3 11-Aug-91 2 2 0 2 3 lZ-Aug-9l 3 2 0 3 3 123 Date Lysimeter Lysirneter Lysirneter Lysirneter 4 Lysirneter Lysimeters l 2 3 5 (mm) (mm) (mm) (mm) (mm) Changed 13-Aug-91 4 14-Aug-91 4 15-Aug-91 4 16-Aug-91 4 17-Aug-91 5 1 8-Aug-91 4 l9-Aug-91 4 20-Aug-91 13 21-Aug-91 32 22-Aug-91 3 1 23-Aug-91 24 24-Aug-91 19 25-Aug-91 1 6 26-Aug-91 1 3 27-Aug-91 12 28-Aug-91 10 29-Aug-91 30-Aug-91 3 1-Aug-91 1-Sep-91 2-Sep-91 3-Sep-91 4-Sep-91 5-Sep-91 6-Sep-91 7-Sep-91 8-Sep-91 9-Sep-91 10-Sep—91 1 l-Sep-9l 12-Sep-91 13-Sep-91 14-Sep-91 15-Sep-91 16-Sep-91 17-Sep-91 18-Sep-91 19-Sep-91 20-Sep-91 21-Sep-91 ©UMW§WWWM .— N Id _ —‘ .— NNNNNNNMMMNWMWWWA&M&thMMMMbWNNNNNNwwwww WNNNNww54bb-hUJ-bk-5AMMGQNQOOVO WWNUUJbeJb-hM-kbQMMMMONQWQO‘QOO MNNWWWWWWNWQhbbeMO‘O‘aflflmmo 124 Date Lysirneter Lysimeter Lysirneter Lysirneter 4 Lysirneter Lysimeters l 2 3 5 (mm) (mm) (mm) (mm) (mm) Changed 22-Sep-91 2 2 1 3 3 23-Sep-91 1 2 1 l 2 24-Sep-91 2 2 1 3 2 25-Sep-91 2 3 l 4 3 26-Sep-91 1 2 l 0 2 27-Sep—91 1 1 0 0 1 28-Sep-91 2 1 0 1 1 29-Sep-91 1 1 O l 1 30-Sep-91 2 1 1 3 2 1-0ct-91 2 1 1 3 2 2-Oct-91 2 2 1 2 2 3-Oct-9l 2 1 l 1 1 4-0ct-91 2 1 1 3 2 5-Oct-91 l 2 44 1 2 6-Oct-91 12 1 88 9 l 7-Oct-91 23 5 67 29 1 8-Oct-91 29 13 49 31 4 9-Oct-91 27 15 38 28 7 10-0ct-91 25 15 32 26 10 11-Oct-91 21 16 27 23 15 12-Oct-91 18 13 22 18 15 l3-Oct-91 16 12 20 18 14 14-Oct-91 16 14 l7 17 15 lS-Oct-91 13 11 14 13 13 16-Oct-91 12 10 12 13 12 17-Oct-91 12 11 12 12 12 18-Oct-91 10 9 11 10 10 19-Oct-91 10 8 11 10 9 20-Oct-91 10 9 12 11 10 21-Oct-91 9 9 12 10 10 22-Oct-91 8 8 12 8 9 23-0ct-91 8 8 12 9 9 24-Oct-91 8 8 13 9 8 25-Oct-91 17 8 106 18 8 26-Oct-91 176 179 285 212 1 1 1 27-Oct-91 140 150 169 145 132 28-Oct-91 124 126 128 128 133 29-Oct-91 74 74 70 75 87 30-Oct-91 51 50 43 51 62 3 l -Oct-9l 56 57 82 60 52 125 Date Lysirneter Lysimeter Lysirneter Lysirneter 4 Lysimeter Lysimeters 1 2 3 5 (turn) (nun) (mm (mm) (M) Changed 1-Nov-91 82 86 92 85 82 2-Nov-9l 56 54 60 55 67 3-Nov-91 41 41 46 42 53 4-Nov-91 36 35 40 35 45 5-Nov-91 3O 32 33 34 38 6-Nov-91 26 28 25 27 3 1 7-Nov-91 23 23 19 24 27 8-Nov-91 20 20 1 5 2 l 24 9-Nov-91 1 8 19 1 3 19 22 10-Nov-91 17 17 11 17 20 11-Nov-91 15 14 9 13 17 12-Nov-91 13 13 8 13 15 13-Nov-91 12 13 8 12 14 14-Nov-91 11 11 7 10 12 15-Nov-91 10 10 6 9 11 l6-Nov-9l 8 8 5 7 9 17-Nov-91 9 9 6 10 10 18-Nov-91 9 10 6 9 10 19-Nov-91 7 8 5 7 9 20-Nov-91 7 8 5 7 8 21-Nov-91 15 18 75 19 8 22-Nov-91 47 77 84 74 3 1 23-Nov-91 50 56 55 58 45 24-Nov-91 43 4 1 3 8 41 40 25-Nov-91 34 32 31 31 35 26-Nov-91 29 27 25 28 3 1 27-Nov-91 25 23 20 22 27 28-Nov-91 21 20 18 20 23 29-Nov-9l 19 18 15 18 21 30-Nov-91 16 15 12 13 18 1-Dec-91 14 13 11 14 15 2-Dec-91 14 14 13 15 16 3-Dec-91 13 13 13 11 13 5, 4-Dec-91 11 11 15 10 12 5, 5-Dec-91 15 18 18 17 17 5, 6-Dec-91 16 17 17 15 16 5, 7-Dec-91 17 18 18 16 17 5, 8-Dec-91 18 18 23 18 19 5, 9-Dec-91 19 18 51 39 32 5, 10-Dec-91 31 38 53 47 42 5 126 Date Lysimeter Lysirneter Lysirneter Lysirneter 4 Lysimeter Lysimeters 1 2 3 5 (mm) (mm) (mm) (mm) (mm) Changed 11-Dec-9l 37 40 45 40 41 5, 12-Dec-9l 39 40 40 38 39 5, 13-Dec-91 32 29 31 29 30 5, 14-Dec-91 27 25 29 23 26 5, 15-Dec-91 32 34 38 31 34 5, 16-Dec-9l 37 39 35 35 36 5, 17-Dec-91 33 31 29 27 30 5, 18-Dec-91 26 22 23 20 23 5, 19-Dec-91 24 20 20 19 21 5, 20-Dec-91 22 20 19 19 20 5, 21-Dec-91 19 17 15 14 16 5, 22-Dec-91 18 17 15 15 16 5, 23-Dec-91 15 14 12 11 13 5, 24-Dec-91 13 12 1 1 10 1 l 5, 25-Dec-91 12 10 10 9 10 5, 26-Dec-91 11 11 9 9 10 5, 27-Dec-91 10 9 8 7 9 5, 28-Dec-91 11 11 9 10 10 5, 29-Dec-91 10 10 8 9 5, 30-Dec-9l 8 7 7 5 7 5, 31-Dec-91 15 15 14 13 14 5, 1-Jan-92 8 8 8 7 8 5, 2-Jan-92 8 8 8 8 8 5, 3-Jan-92 7 8 8 6 7 5, 4-Jan-92 7 7 9 5 7 5, 5-Jan-92 8 7 10 6 8 5, 6-Jan-92 8 7 12 7 8 5, 7-Jan-92 9 7 16 9 10 5, 8-Jan-92 12 13 19 17 11 9-Jan-92 14 17 19 16 13 10-Jan-92 15 17 17 15 14 11-Jan-92 16 17 16 15 16 lZ-Jan-92 15 16 19 15 17 13-Jan-92 16 17 21 17 18 14-Jan-92 15 19 19 15 17 15-Jan-92 18 19 18 16 17 16-Jan-92 17 18 17 17 19 17-Jan-92 16 16 15 l3 l9 18-Jan-92 14 13 13 12 17 19-Jan-92 16 15 14 14 18 Date 20-Jan-92 2 l Jan-92 22-Jan-92 23-Jan-92 24-Jan-92 25-Jan-92 26-Jan-92 27-Jan-92 28-Jan-92 29-Jan-92 30-Jan-92 3 1-Jan-92 1 -Feb-92 2-Feb-92 3-Feb—92 4-Feb-92 5-Feb-92 6-Feb-92 7-Feb-92 8-Feb-92 9-Feb-92 1 0-Feb-92 1 1-Feb-92 1 2-Feb-92 1 3-Feb-92 1 4-Feb—92 1 5-Feb-92 l 6-Feb-92 1 7-Feb-92 1 8-Feb-92 1 9-Feb-92 20-Feb-92 2 1 -Feb-92 22-Feb-92 23-Feb-92 24-Feb-92 25-Feb-92 26-Feb-92 27-Feb-92 28-Feb-92 Lysirneter Lysirneter Lysirneter Lysimeter4 Lysirneter 1 (mm) \OOQGOOQOOQO‘OOQQC -NNNMN- \Immefi-‘NQN 2 (mm) 13 12 13 13 9 9 8 10 9 ll 13 11 10 11 11 10 9 maqomooqooqqooaxqsog m—NNNWWN \JQHNoN—‘O‘w 127 3 (mm) 12 12 12 ll 9 10 18 24 23 21 19 16 l4 13 12 ll 10 10 9 9 10 12 11 11 ll 10 10 8 ll 17 24 40 50 44 35 30 25 23 20 18 (min) 10 10 1 a 10 \OUOOOONOOO‘OGQOO 5 (mm) 17 16 15 15 12 12 12 15 17 20 22 20 18 18 17 15 14 14 12 11 9 ll 10 10 12 ll 12 9 9 11 ll 12 12 14 16 19 20 21 19 18 Lysimeters Changed 128 Date Lysirneter Lysirneter Lysirneter Lysirneter 4 Lysirneter Lysimeters 1 2 3 5 (min) (mm (mm) (min) (mm Changed 29-Feb-92 14 12 15 12 15 1-Mar-92 15 15 15 14 16 2-Mar-92 13 13 14 12 14 3-Mar-92 12 12 13 12 13 4-Mar-92 12 12 12 1 1 l3 5-Mar-92 11 12 12 12 12 6-Mar-92 l 1 12 12 12 12 7-Mar-92 10 12 10 10 12 8-Mar-92 10 10 10 9 11 9-Mar—92 12 l 1 11 12 1 1 lO-Mar—92 10 10 9 8 11 11-Mar-92 10 9 8 8 10 12-Mar-92 9 9 8 7 10 13-Mar-92 10 8 15 8 9 14-Mar-92 12 10 23 10 10 lS-Mar-92 20 16 24 15 11 16-Mar-92 28 ' 23 23 21 16 17-Mar-92 28 21 21 18 20 l8-Mar-92 27 20 3 '1 l 8 23 19-Mar-92 24 17 53 14 37 20-Mar-92 22 17 42 13 46 21-Mar-92 23 18 33 15 43 22-Mar-92 23 19 26 15 36 23-Mar-92 21 17 22 15 30 24-Mar-92 20 1 6 1 9 15 25 25-Mar-92 19 16 1 8 15 23 26-Mar-92 17 14 16 14 21 27-Mar-92 15 12 15 10 19 28-Mar-92 19 13 19 12 19 29-Mar-92 22 16 26 13 20 30-Mar-92 24 19 28 12 20 3 1-Mar-92 27 24 26 15 22 1-Apr-92 27 23 23 14 22 2-Apr-92 24 20 20 13 22 3-Apr-92 22 19 20 15 22 4-Apr-92 19 15 19 11 19 5-Apr-92 17 14 18 1 1 17 6-Apr-92 18 16 18 14 18 7-Apr-92 17 16 17 14 17 8-Apr-92 1 6 1 5 1 6 14 1 6 129 Date ,Lysimeter Lysirneter Lysirneter Lysirneter 4 Lysirneter Lysimeters 1 2 3 5 (mm) (mm) (mm) (mm) (mm) Changed 9-Apr-92 16 15 15 14 16 10-Apr-92 15 14 15 15 15 11-Apr-92 14 13 13 11 14 12-Apr-92 12 10 1 1 10 12 13-Apr-92 13 12 12 13 13 14-Apr-92 13 12 11 12 13 15-Apr-92 12 1 1 10 12 12 16-Apr-92 11 11 9 ll 12 17-Apr-92 10 9 8 9 10 18-Apr-92 10 9 8 10 10 19-Apr-92 10 9 7 10 10 20-Apr-92 9 9 7 10 10 21-Apr-92 8 9 6 8 9 22-Apr-92 8 7 5 6 8 23-Apr-92 9 8 7 9 8 24-Apr-92 8 8 6 8 8 25-Apr-92 8 7 6 7 8 26-Apr-92 7 7 5 7 7 27-Apr-92 7 6 5 7 7 28-Apr-92 7 7 6 8 7 29-Apr-92 7 7 6 8 7 30-Apr-92 6 6 5 6 7 1-May-92 7 7 6 8 7 2-May-92 6 6 5 5 6 3-May-92 6 5 5 5 6 4-May-92 6 6 6 6 6 5-May-92 5 5 5 5 5 6-May-92 6 5 5 5 5 7-May-92 6 5 6 6 5 8-May-92 7 6 6 8 6 9-May-92 6 6 5 5 6 10-May-92 6 5 5 5 5 11-May-92 7 6 6 7 5 12-May-92 7 6 5 6 5 13-May-92 7 6 5 5 5 14-May-92 7 5 5 6 5 15-May-92 7 6 5 6 5 16-May-92 7 6 5 6 5 17-May-92 7 6 4 6 5 18-May-92 7 5 4 5 5 130 Date Lysirneter Lysirneter Lysirneter Lysirneter 4 Lysirneter Lysimeters 1 2 3 5 (mm) (mm) (mm) (mm) (mm) Changed 1 9-May-92 20-May-92 2 1-May-92 22-May-92 23-May-92 24-May-92 25-May-92 26-May-92 27-May-92 28-May-92 29-May-92 30-May-92 3 1-May-92 l-Jun-92 2-Jun-92 3-Jun-92 4-Jun-92 5-Jun-92 6-Jun-92 7-Jun-92 8-Jun-92 9-Jun-92 1 0-Jun-92 1 1-Jun-92 1 2-Jun-92 1 3-Jun-92 14-Jun-92 1 5-Jun-92 16-Jun-92 1 7-Jun-92 1 8-Jun-92 1 9-Jun-92 20-Jun-92 2 1 Jun-92 22-Jun-92 23-Jun-92 24-Jun-92 25-Jun-92 26-Jun-92 27-Jun-92 Us UI U! 0‘ \l 0‘ O5 0‘ Us 05 05 U! 4h LII Ur Ur & h b b'& A U: U: U! Ur 'J’t Ur 0‘ 0\ Ch 0\ 05 \l \l \l \l \l \I \I MMMO‘QO‘MMMO‘O\UIbumbbb-fihb-AUIMUIMUIUIGMUIOGO‘O‘flO‘GO‘O‘ aasb4'smmumaauaaooammmamwwwwmmwwwwwubAha-AAA bkAthflbekmfimwhmmh&M&W&&O\O\MMMO\O\MO\O\\IO\O\\I\IO\O\ wwubbwwwwhhwwacshAhhkbhhbhbbbubhmmummmmmm 131 Date Lysirneter Lysirneter Lysirneter Lysimeter 4 Lysimeter Lysimeters 1 2 3 5 (min) (M) (m) (min) (min) Changed 28-Jun-92 6 5 4 5 3 29-Jun-92 5 5 4 5 3 30-Jun-92 5 5 3 5 3 1-Ju1-92 5 5 3 5 3 2-Ju1-92 5 5 4 6 3 3-Jul-92 4 5 3 3 3 4-Jul-92 5 5 3 5 3 5-Jul-92 5 5 3 4 3 6-Jul-92 4 4 2 4 3 7-Jul-92 5 4 3 5 3 8-Jul-92 5 5 3 5 4 9-Jul-92 4 4 2 3 3 lO-Jul-92 4 4 2 4 3 11-Jul-92 4 4 2 4 3 12-Jul-92 5 4 2 5 3 l3-Jul-92 4 4 2 4 3 l4-Ju1-92 4 5 9 5 3 15-Jul-92 20 23 71 42 4 16-Ju1-92 45 61 75 66 16 17-Jul-92 42 53 51 57 32 l8-Jul-92 35 38 36 43 29 19-Ju1-92 30 3O 34 34 25 20-Ju1-92 27 3 1 33 3 1 24 21-Ju1-92 26 30 28 31 23 22-Jul-92 26 27 23 29 23 23-Jul-92 26 49 37 58 23 24-Ju1-92 54 1 16 94 1 13 75 25-Ju1-92 55 69 65 72 74 26-Ju1-92 44 45 43 48 53 27-Jul-92 33 33 30 34 38 28-Ju1-92 28 27 23 28 32 29-Jul-92 23 22 19 23 26 30-Ju1-92 2O 19 16 20 23 31-Ju1-92 17 16 13 16 19 1-Aug-92 22 54 23 34 19 2-Aug-92 30 67 33 58 39 3-Aug-92 30 45 33 46 44 4-Aug-92 28 32 29 34 37 5-Aug-92 24 26 23 27 30 6-Aug-92 N u—I 23 ~ VD 23 N 05 132 Date Lysirneter Lysimeter Lysirneter Lysirneter 4 Lysirneter Lysimeters 1 2 3 5 (mm (min) (mm) (min) (mm) Changed 7-Aug-92 19 20 16 21 23 8-Aug-92 16 17 13 17 20 9-Aug-92 15 15 11 15 17 10-Aug-92 14 14 9 14 16 l 1-Aug-92 12 12 7 12 13 lZ-Aug-92 1 1 1 1 6 l 1 12 13-Aug-92 11 l 1 6 10 1 1 l4-Aug—92 1 0 1 0 5 1 0 1 0 15-Aug-92 9 9 4 9 10 l6-Aug-92 8 9 4 9 9 17-Aug-92 8 8 3 8 9 18-Aug-92 8 8 3 8 8 l9-Aug-92 7 7 3 7 7 20-Aug-92 7 7 2 6 7 21-Aug-92 6 6 2 6 6 22-Aug-92 6 6 2 6 6 23-Aug-92 6 7 2 6 6 24-Aug-92 5 8 2 5 6 25-Aug-92 5 8 2 5 5 26-Aug-92 - 5 8 2 5 5 27-Aug-92 5 8 2 6 5 28-Aug-92 4 8 2 4 5 29-Aug-92 5 13 16 7 5 30-Aug-92 4 16 1 9 1 5 5 31-Aug-92 4 14 17 19 6 1-Sep-92 6 13 14 20 7 2-Sep-92 9 14 13 21 8 3-Sep-92 8 11 10 15 8 4-Sep-92 8 10 9 14 8 5-Sep-92 8 10 8 14 8 6-Sep-92 7 10 7 12 8 7-Sep-92 7 9 7 12 8 8-Sep-92 7 8 5 9 7 9-Sep-92 7 9 6 12 7 10-Sep-92 57 121 195 148 32 1 1-Sep-92 97 96 1 10 120 94 12-Sep-92 65 57 58 68 65 l3-Sep-92 47 40 35 45 45 l4-Sep-92 36 30 24 34 35 lS-Sep-92 80 35 1 12 123 84 Date 16-Sep-92 1 7-Sep-92 1 8-Sep-92 l 9-Sep-92 20-Sep-92 2 l -Sep-92 22-Sep-92 23-Sep-92 24-Sep-92 25-Sep-92 26-Sep-92 27-Sep-92 28-Sep-92 29-Sep-92 30-Sep-92 1 -Oct-92 2-Oct-92 3-Oct-92 4-Oct-92 5-Oct-92 6-0ct-92 7-Oct-92 8-Oct-92 9-Oct-92 1 0-Oct-92 1 1-Oct-92 1 2-Oct-92 1 3-Oct-92 14-Oct-92 1 5-Oct-92 16-Oct-92 1 7-0ct-92 1 8-0ct-92 1 9-Oct-92 20-Oct-92 2 1 -Oct-92 22-0ct-92 23-0ct-92 24-0ct-92 25-Oct-92 Lysirneter Lysimeter Lysirneter Lysirneter 4 Lysimeter 1 (nun) 305 113 65 43 34 27 22 19 18 l8 l7 14 13 13 13 13 12 ll 9 2 (nun) 175 119 61 41 33 28 21 19 19 17 16 13 ll 11 11 11 ll 10 8 133 3 (nun) 325 90 47 30 24 23 20 17 14 l3 l3 AAAumoxiooooooooxoxoxoooor-lso: W O 136 103 63 41 28 20 17 15 13 12 (nun) 316 108 61 41 34 29 22 21 20 l8 17 13 12 13 13 13 12 ll 9 10 133 105 67 46 34 24 21 21 15 s (nun) 318 127 75 50 39 31 24 21 21 19 17 15 13 12 12 12 12 qua-4900000000000; ~NNNWAM~IWU~ ”OMQNWOMO‘Q Lysimeters Changed 134 Date Lysirneter Lysirneter Lysirneter Lysirneter 4 Lysirneter Lysimeters 1 2 3 5 (min) (nun) (min) (min) (min) Changed 26-Oct-92 15 14 11 12 16 27-0ct-92 14 12 10 12 14 28-Oct-92 13 12 9 11 14 29-0ct-92 11 10 8 9 12 30-Oct-92 11 10 8 9 11 3l-Oct-92 10 9 7 8 10 1-Nov-92 1 1 10 8 1 1 10 2-Nov-92 14 1 3 16 12 1 1 3-Nov-92 52 98 87 81 25 4-Nov-92 66 74 65 68 64 5-Nov-92 56 50 45 48 57 6-Nov-92 43 35 3 1 36 44 7-Nov-92 35 29 24 3 1 37 8-Nov-92 29 24 19 25 30 9-Nov-92 24 20 15 21 26 lO-Nov-92 21 18 13 19 23 ll-Nov-92 18 16 12 16 19 12-Nov-92 18 17 17 16 19 l3-Nov-92 82 144 160 93 87 l4-Nov-92 103 98 100 80 12 1 15-Nov-92 70 59 57 58 79 l6-Nov-92 5 1 43 3 8 44 58 17-Nov-92 38 32 27 31 43 1 8-Nov-92 3 1 26 22 26 34 1 9-Nov-92 27 22 19 23 29 20—Nov-92 25 2 1 1 8 22 27 21-Nov-92 21 19 18 18 23 22-Nov-92 2 1 20 1 8 2 1 22 23-Nov-92 17 16 15 14 27 24-Nov-92 20 2 1 1 7 1 8 29 25-Nov-92 25 38 26 27 28 26-Nov-92 30 34 30 28 3 1 27-Nov-92 30 29 26 27 32 28-Nov-92 27 25 22 24 30 29-Nov-92 24 21 1 8 22 27 30-Nov-92 2] 20 16 19 24 1-Dec-92 19 17 14 17 21 2-Dec-92 17 15 12 13 19 3-Dec-92 15 12 10 13 16 4-Dec-92 14 1 3 9 13 1 6 135 Date Lysirneter Lysirneter Lysimete'r Lysirneter 4 Lysirneter Lysimeters l 2 3 5 (mm) (mm) (mm) (mm) (mm) Changed 5-Dec-92 ' 12 10 7 10 13 6-Dec-92 13 11 8 12 14 7-Dec-92 11 ‘10 6 9 12 8-Dec-92 10 9 6 11 9-Dec-92 11 10 6 11 11 10-Dec-92 10 10 6 9 11 11-Dec-92 8 7 4 6 9 12-Dec-92 8 7 5 6 8 13-Dec-92 8 7 5 7 8 14-Dec-92 8 7 5 8 8 15-Dec-92 9 9 6 10 9 16-Dec-92 7 7 6 4 18 17-Dec-92 14 16 13 7 17 1 8-Dec-92 1 8 27 24 17 15 19-Dec-92 25 30 27 21 22 20-Dec-92 26 24 24 19 27 21-Dec-92 27 24 23 22 30 22-Dec-92 23 20 19 19 26 23-Dec-92 20 1 7 16 l 5 22 24-Dec-92 18 15 15 16 19 25-Dec-92 17 16 13 14 19 26-Dec-92 14 11 11 11 15 27-Dec-92 14 12 1 1 l3 1 5 28-Dec-92 12 1 1 9 10 13 29-Dec-92 1 3 1 1 10 12 14 30-Dec-92 12 1 1 13 1 1 13 3l-Dec-92 0 O 0 0 all l-Jan-93 127 116 121 101 122 2-Jan-93 79 65 66 67 82 3-Jan-93 55 45 42 46 58 4-Jan-93 118 104 158 97 101 5-Jan-93 183 193 189 154 188 6-Jan-93 1 12 113 106 100 128 7-Jan-93 70 66 62 64 82 8-Jan-93 47 44 4O 44 56 9-Jan-93 38 33 29 33 43 10-Jan-93 32 27 23 27 35 l 1-Jan-93 26 22 18 23 29 12-Jan-93 23 2 1 16 22 26 l3-Jan-93 19 18 12 16 22 136 Date Lysirneter Lysirneter Lysirneter Lysirneter 4 Lysirneter Lysimeters l 2 3 5 (mn) (min) (mm) (min) (mm Changed 14-Jan-93 16 14 10 14 18 15-Jan-93 15 14 10 14 16 16-Jan-93 15 13 10 14 16 17-Jan-93 12 11 7 9 14 18-Jan-93 11 9 6 . 8 11 19-Jan-93 10 9 6 9 1] 20-Jan-93 11 10 7 11 11 21-Jan-93 11 10 6 10 12 22-Jan-93 9 8 12 8 11 23-Jan-93 9 1 1 17 23 23 24-Jan-93 10 16 17 26 27 25-Jan-93 18 29 25 41 3O 26-Jan-93 33 40 29 45 43 27-Jan-93 35 34 26 35 45 28-Jan-93 34 29 24 30 40 29-Jan-93 28 21 20 23 3 1 30-Jan-93 27 22 20 25 30 31-Jan-93 23 19 17 20 25 1-Feb-93 17 13 14 13 19 2-Feb—93 17 14 14 15 18 3-Feb-93 15 13 12 13 17 4-Feb-93 13 11 11 12 15 5-Feb-93 13 12 10 13 15 6-Feb-93 12 10 9 10 13 7-Feb-93 12 10 8 11 13 8-Feb-93 9 8 7 8 10 9-Feb-93 10 9 7 9 10 10-Feb-93 9 8 6 7 9 ll-Feb-93 9 8 6 8 9 12-Feb-93 9 9 6 9 9 l3-Feb-93 8 7 5 6 8 14-Feb-93 7 6 4 5 7 15-Feb-93 7 6 4 6 7 16-Feb-93 7 7 4 6 7 17-Feb-93 6 6 4 6 6 18-Feb-93 6 6 4 6 6 19-Feb-93 7 6 4 6 6 20-Feb-93 6 6 3 6 6 21-Feb-93 7 7 4 8 7 22-Feb-93 4 5 2 2 5 137 Date Lysirneter Lysirneter Lysirneter Lysimeter 4 Lysirneter Lysimeters l 2 3 5 (mm (mm (min) (nun) (M) Changed 23-Feb-93 4 4 2 3 5 24-Feb-93 4 3 2 3 4 25-Feb—93 5 4 2 5 4 26-Feb-93 4 4 2 3 4 27-Feb-93 5 4 2 4 4 28-Feb-93 5 4 2 5 4 1-Mar-93 5 5 2 5 5 2-Mar—93 4 5 2 4 4 3-Mar-93 4 4 2 3 4 4-Mar-93 4 4 2 4 4 5-Mar-93 3 4 1 2 4 6-Mar-93 4 3 1 3 5 7-Mar-93 4 4 2 5 4 5 8-Mar-93 2 3 1 2 2 5 9-Mar-93 9 3 1 2 4 5 10-Mar-93 11 4 2 4 5 5 ll-Mar-93 9 3 0 1 3 5 12-Mar—93 9 3 l 3 4 5 13-Mar-93 9 4 2 5 5 5 14-Mar-93 6 3 1 2 3 5 lS-Mar-93 7 3 l 5 4 5 l6-Mar-93 6 3 1 4 3 5 17-Mar-93 l 2 7 1 3 5 18-Mar-93 0 3 24 4 8 5 19-Mar-93 3 4 21 7 9 5 20-Mar-93 6 4 109 6 31 5 21-Mar-93 5 4 84 5 25 5 22-Mar—93 5 4 118 6 33 5 23-Mar—93 6 6 6 6 6 1,3,5, 24-Mar-93 4 3 4 4 4 1,3,5, 25-Mar—93 9 3 9 15 9 1,3,5, 26-Mar-93 20 3 20 37 20 1,3,5, 27-Mar-93 22 4 22 41 22 1,3,5, 28-Mar-93 23 4 23 43 23 1,3,5, 29—Mar—93 20 4 20 36 20 1,3,5, 30-Mar—93 17 3 17 31 17 1,3,5, 3 l -Mar—93 21 4 16 27 17 3,5, l -Apr-93 18 4 12 20 13 3,5, 2-Apr-93 l7 3 10 18 12 3,5, 3-Apr-93 26 3 16 28 23 3 138 Date Lysirneter Lysirneter Lysirneter Lysirneter 4 Lysirneter Lysimeters l 2 3 5 (min) (M) (mm) (mm (min) Changed 4-Apr-93 34 8 21 - 34 29 3 5-Apr-93 33 14 23 3 1 34 3 6-Apr-93 30 16 21 26 3 1 3 7-Apr-93 26 16 20 24 28 3 8-Apr-93 23 17 19 22 26 3 9-Apr-93 20 1 6 1 7 19 23 3 10-Apr-93 1 8 14 1 5 16 20 3 ll-Apr-93 17 14 ' 15 16 19 3 12-Apr-93 14 12 12 12 15 3 13-Apr-93 14 12 13 13 15 3 14-Apr-93 13 13 13 14 15 3 15-Apr-93 13 13 13 14 14 3 16-Apr-93 10 l 1 10 9 1 l 3 17-Apr-93 1 1 1 1 10 10 10 3 18-Apr-93 13 14 14 14 11 3 19-Apr-93 16 18 18 17 12 3 20-Apr-93 17 18 16 14 11 3 21-Apr-93 32 51 44 38 13 3 22-Apr-93 0 0 0 0 0 all 23-Apr-93 48 46 46 47 48 3 24-Apr-93 37 35 36 36 42 3 25-Apr-93 29 26 26 26 32 3 26-Apr-93 24 22 22 22 27 3 27-Apr-93 21 20 21 21 25 3 28-Apr-93 20 1 8 19 19 22 3 29-Apr-93 17 17 17 17 20 3 30-Apr-93 15 14 14 14 17 3 1-May-93 14 13 13 14 16 3 2-May-93 14 13 13 14 15 3 3-May-93 15 18 16 14 14 3 4-May-93 19 24 20 16 13 3 5-May-93 21 22 20 17 13 3 6-May-93 34 62 53 44 15 3 7-May-93 57 64 63 62 34 3 8—May-93 46 46 46 46 46 3 9-May-93 37 35 36 36 41 3 1 0—May—93 31 30 31 31 35 3 l 1 -May-93 27 26 23 27 30 l 2-May-93 24 23 20 24 27 I 3-May-93 20 l9 17 21 22 Date 14-May-93 15-May-93 16-May-93 1 7-May-93 1 8-May-93 l9-May-93 20-May-93 2 1 -May-93 22-May-93 23-May-93 24-May-93 25-May-93 26-May-93 27-May-93 28-May-93 29-May-93 30-May-93 3 1-May-93 l-Jun-93 2-Jun-93 3-Jun-93 4-Jun-93 5-Jun-93 6-Jun-93 7-Jun-93 8-Jun-93 9-Jun-93 10-Jun-93 1 1-Jun-93 12-Jun-93 1 3-Jun-93 14-Jun-93 1 5-Jun-93 16-Jun-93 1 7-Jun-93 18-Jun-93 19-Jun-93 20-Jun-93 2 1 Jun-93 22-Jun-93 Lysirneter Lysirneter Lysirneter Lysirneter 4 Lysirneter 1 (mm \IGQQQCOOOO A N 237 127 71 48 45 37 31 27 27 28 28 27 25 23 2 (mar) 19 15 14 14 14 12 11 10 10 mmmaaoaqooqqooqqo‘s M LII 212 136 74 50 37 3O 27 28 25 22 21 20 18 17 139 3 (mm) 16 13 12 ~— C— wwwwwowwu&&.b&&m0sa~o\\ioo 210 275 124 65 42 30 24 19 20 21 21 21 l9 18 15 (mun) 21 16 15 16 15 13 qoxhqascqu: \I 00 223 121 73 52 39 32 28 29 28 24 23 21 19 18 5 (mm 22 18 16 16 16 14 1 10 10 mmhaaxoasoooaxqooooqoos \O O5 237 127 71 48 38 31 56 58 25 24 23 22 20 18 Lysimeters Changed MMMMM 140 Date Lysirneter Lysirneter Lysirneter Lysirneter 4 Lysirneter Lysimeters l 2 3 5 (mm) (mm) (mm) (mm) (mm) Changed 23-Jun-93 21 15 13 17 17 5 24-Jun-93 20 15 ll 16 16 5 25-Jun-93 18 14 10 15 14 5 26-Jun-93 17 13 9 15 13 5 27-Jun-93 15 13 8 13 12 5 28-Jun-93 14 1 1 7 12 1 1 5 29-Jun-93 13 1 0 6 1 1 10 5 30-Jun-93 12 10 6 1 1 10 5 l-Jul-93 12 9 6 10 9 5 2-Jul-93 11 9 5 10 9 5 3-Jul-93 10 9 4 9 8 5 4-Jul-93 10 8 4 8 8 5 5-Jul-93 10 8 4 9 8 5 6-Ju1-93 9 7 3 7 7 5 7-Ju1-93 9 7 4 7 7 5 8-Jul-93 8 7 3 7 6 5 9-Ju1-93 8 7 3 7 6 5 10-Ju1-93 8 6 3 7 6 5 11-Jul-93 8 7 3 7 6 5 12-Ju1-93 7 6 2 6 5 5 13-Jul-93 7 6 3 6 5 5 l4-Ju1-93 6 6 2 5 5 5 15-Jul-93 7 5 2 6 5 5 16-Ju1-93 7 6 2 6 5 5 17-Jul-93 6 5 2 6 5 5 18-Jul-93 6 6 2 6 5 5 19-Jul-93 5 5 2 6 5 5 20-Jul-93 6 5 2 6 5 5 2l-Ju1-93 5 5 2 6 5 5 22-Ju1-93 5 5 2 7 5 5 23-Ju1-93 0 O 0 0 0 all 24-Jul-93 5 5 2 7 5 25-Jul-93 5 5 2 7 5 26-Jul-93 4 5 2 6 4 27-Jul-93 5 4 2 6 4 28-Jul-93 4 4 2 6 4 29-Jul-93 4 4 1 5 4 30-Jul-93 4 3 1 5 4 31-Ju1-93 5 4 2 6 4 1-Aug-93 5 4 2 7 4 141 Date Lysirneter Lysirneter Lysirneter Lysirneter 4 Lysirneter Lysimeters 1 2 3 5 (mm) (mm) (mm) (mm) (mm) Changed 2-Aug-93 3 4 1 4 4 3-Aug-93 4 3 l 4 2 4-Aug-93 3 3 1 4 3 5-Aug-93 5 3 1 5 3 6-Aug-93 4 4 l 5 4 7-Aug-93 3 3 l 3 3 8-Aug-93 3 3 1 4 3 9-Aug-93 4 3 1 5 3 10-Aug-93 3 3 1 4 3 ll-Aug-93 3 3 1 4 3 12-Aug-93 3 3 1 4 3 13-Aug-93 3 3 1 3 3 l4-Aug-93 2 2 1 3 2 lS-Aug-93 2 3 1 4 3 16-Aug-93 2 3 1 3 3 l7-Aug-93 1 2 l 3 2 18-Aug-93 3 2 1 4 2 19-Aug-93 3 3 1 4 3 20-Aug-93 3 3 1 3 2 21-Aug-93 3 2 O 3 2 22-Aug-93 3 2 l 4 2 23-Aug-93 3 3 1 4 2 24-Aug-93 1 2 5 3 1 25-Aug-93 0 0 0 0 0 all 26-Aug-93 3 3 3 6 1 27-Aug-93 2 4 2 7 1 28-Aug-93 2 4 3 7 1 29-Aug-93 3 7 3 12 1 30-Aug-93 3 14 18 32 1 31-Aug—93 3 19 29 53 2 1-Sep-93 5 30 48 63 2 2-Sep-93 16 72 165 13 1 6 3-Sep-93 122 194 247 234 67 4-Sep-93 8 1 101 90 96 73 5-Sep-93 59 59 50 58 52 6-Sep-93 41 41 31 40 40 7-Sep-93 33 32 22 32 32 8-Sep-93 28 27 18 27 27 9-Sep-93 23 23 18 24 24 lO-Sep-93 18 18 16 18 19 142 Date Lysirneter Lysirneter Lysirneter Lysirneter 4 Lysirneter Lysimeters l 2 3 5 (mm) (mm) (mm) (mm) (mm) Changed 1 1-Sep-93 17 18 16 20 19 12-Sep-93 16 18 l3 18 18 13-Sep-93 14 15 11 16 16 14-Sep-93 13 15 9 15 15 15-Sep-93 12 77 1 10 82 17 l6-Sep-93 47 108 102 106 60 APPENDIX B Appendix B. Daily Precipitation and Irrigation Date 6/23/89 6/24/89 6/25/89 6/26/89 6/27/89 6/28/89 6/29/89 6/30/89 7/1/89 7/2/89 7/3/89 7/4/89 7/5/89 7/6/89 7/7/89 7/8/89 7/9/89 7/10/89 7/1 1/89 7/12/89 7/13/89 7/14/89 7115/89 7/16/89 7/17/89 7/18/89 7/19/89 7/20/89 7/21/89 7/22/89 7/23/89 7/24/89 7/25/89 7/26/89 Pioneer Pioneer CR-10 Manual 3rivers (mm) (mm) (mm) 25 com —I (DO 143 Irrigation (mm) 21 26 total daily mm goooBaumooooooooog’oooooooooooouooo Date 7127/89 7128/89 7129/89 7130/89 7131/89 811 189 812189 813/89 814/89 815/89 816/89 817/89 818/89 819/89 811 0189 8/1 1/89 8112/89 811 3189 811 4189 8115/89 8116/89 8117/89 811 8189 811 9189 8120/89 8121/89 8122/89 8123/89 8124/89 8125/89 8126/89 8127/89 8128/89 8129/89 8130/89 8131/89 9/1/89 9/2/89 913/89 9/4/89 915/89 9/6/89 917/89 918/89 Pioneer CR-10 (mm) 20 11 (0 Pioneer Manual (mm) 144 3rivers (mm) Irrigation (mm) 1 33 total daily mm oooooooooooooowogoooooooemooooogaogoomoo- mm: Date 919/89 911 0189 911 1189 9/1 2189 9/1 3189 911 4189 9/1 5189 9116189 911 7189 911 8189 9119/89 9120/89 9121 189 9122/89 9123/89 9124/89 9125189 9126189 9127/89 9128/89 9129/89 9130189 1011189 1012189 1013/89 1014/89 1015/89 1016189 1017189 1018189 1019189 10110189 1011 1189 10112189 10113189 10114189 10115189 10116189 10117189 10118189 10119189 10120189 10121189 10122189 145 Pioneer Pioneer CR-1O Manual 3rivers (mm) (mm) (mm) 7 1 O 6 9 0 O Irrigation 1mm) total daily mm OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO’BOON Date 10123189 10124189 10125189 10126189 10127189 10128189 10129189 10130189 10131 189 1111 189 1112189 1113189 1 114189 1 115189 1 116/89 1117/89 1118/89 1 119189 11110189 1111 1189 1 1112189 1 1113189 1 1114/89 1 1/1 5189 1 111 6189 1 111 7189 1 1118189 1 111 9189 1 1120/89 1 1121 189 1 1122/89 1 1123/89 1 1124/89 1 1125/89 1 1126189 11127189 1 1128189 11129189 1 1130189 1211/89 1212/89 1213/89 1214189 1215189 Pioneer CR-1o (mm) d—bo; 10 Pioneer Manual (mm) 146 3rivers 1mm) Irrigation (mm) 90 total daily owoaoogoooooooo g _a (a) oooooooosoooooooaooa'jooooo-s-ao Date 1216/89 1217/89 1218/89 1219189 12110189 1211 1189 12112189 12113189 12114189 12115189 12116189 12117189 12118189 12119189 12120189 12121189 12122189 12123189 12124189 12125189 12126189 12127189 12128189 12129189 12130189 12131 189 111 190 112/90 113/90 114/90 115/90 116/90 117/90 118190 119190 1110190 111 1190 1112190 111 3190 1114/90 111 5190 111 6190 111 7190 111 8190 Pioneer CIR-10 (mm) 010) .aapq Pioneer Manual (mm) 147 3rivers (mm) \IN-‘OOO-‘OU'IHOOOCOCDOOOCD-eo-‘ONOOO-a-fiNNOOOO-‘OO-‘OOOOO Irrigation (mm) total daily 3 3 OOOOmOOOOO-‘gddh\IOUICDOOOOOOOOOOOOOOOOOOOOOOOOO Date 111 9190 1120190 1121 190 1122190 1123/90 1124/90 1125/90 1126/90 1127190 1128190 1129/90 1130/90 1131 190 211 190 212/90 213/90 214/90 215/90 216/90 217190 218190 219190 2110190 211 1190 2112190 2113190 211 4190 211 5190 2116190 2117190 2118190 211 9190 2120190 2121190 2122190 2122190 2122/90 2122/90 2122/90 2122190 2122190 311 190 312/90 313/90 Pioneer CR-1O (mm) d MN Pioneer Manual (mm) 148 3rivers (mm) oooooragooooomoooooogmooooojsooomoo 0‘ PM OOOOOO-h-b Irrigation (mm) total daily 3 3 OOOOOOOOOODgQOONN-‘OOOOOOHOOOOOOOOOOOOOOOOOOOOO Date 314/90 315190 316190 317/90 318190 319190 3110190 311 1190 311 2190 311 3190 311 4190 311 5190 311 6190 311 7190 311 8190 311 9190 3120/90 3121 190 3122/90 3123/90 3124/90 3125190 3126/90 3127/90 31 28190 3129/90 3130/90 3131 190 411 190 412/90 413/90 414/90 415/90 416/90 417190 418190 419190 411 0190 411 1190 411 2190 4113190 4/1 4190 411 5190 4116190 Pioneer CR-1o (mm) 10 13 w—l Pioneer Manual (mm) 149 3rivers (mm) 000900 A d .3020: DOOM-40000001 .a N 00000 Irrigation (mm) total daily 3 0000 3 d d o‘w 41400-wooawaaooooooaooonoomooow a \l dONNON 150 Pioneer Pioneer Irrigation total daily Date CR-10 Manual 3rivers (mm) . (mm) (mm) (mm) mm 411 7190 0 411 8190 4/1 9190 4120/90 16 4121 190 0 4122/90 4123/90 4124/90 4125/90 4126/90 4127190 4128190 1 4129/90 4130/90 511 190 512190 513/90 1 514190 18 515190 516/90 517190 518190 519190 511 0190 16 511 1190 511 2190 511 3190 511 4190 5115190 5/1 6190 511 7190 5118190 5119/90 5120/90 5121 190 0 5122/90 5123/90 5124/90 5125/90 1 1 5126/90 5127/90 5128/90 5129190 5130190 000 a O) \lNOB; a N—a a a OCCCOJOCOOOOOO\JNOANOmOOCOOm-‘CCOC-‘OCOOOOO Date 5131 190 611 190 612190 613/90 614/90 615/90 616/90 617190 618190 619190 611 0190 611 1190 6/1 2190 6113190 611 4190 611 5190 611 6190 611 7190 611 8190 611 9190 6120/90 6121 190 6122/90 6123/90 6124/90 6125/90 6126/90 6127190 6128190 6129/90 6130190 711/90 712/90 713/90 714/90 715/90 716/90 717190 718190 719190 711 0190 711 1190 7/1 2190 711 3190 151 Pioneer Pioneer CR-1O Manual 3rivers (mm) (mm) (mm) ‘0) 11 01 11 irrigation (mm) 18 total daily 3 3 :oooo-woo O-‘OOOOWOQOOOOCOJOOOOO —| d doaogooooooooom Date 711 4190 7/1 5/90 711 6190 7/1 7190 711 3190 7/1 9190 7120/90 7121 190 7122/90 7123/90 7124/90 7125/90 7126/90 7127/90 7/28/90 7/29/90 7130/90 7/31 190 9/1 190 8/2/90 813/90 814/90 815/90 816/90 8/7/90 818190 919190 811 0/90 8/1 1/90 9/1 2190 311 3190 3/14/90 811 5190 3/1 6190 911 7/90 911 8190 8/1 9190 3/20/90 8/21 /90 8122/90 8123/90 8124/90 8/25/90 8126/90 152 Pioneer Pioneer Irrigation total daily CR-1O Manual 3rivers (mm) (mm) (mm) (mm) mm 2 2 O 0 16 1 6 0 3 3 5 5 1 9 19 M NO N ‘10 0 0 0 0 0 0 22 22 0 0 0 0 0 15 15 0 0 0 22 22 0 0 8 8 16 16 4 4 0 0 0 0 2 2 0 0 22 22 6 6 0 0 0 0 0 Date 8127190 8128190 8129/90 8130/90 8131190 911190 912190 913190 914/90 915/90 916/90 917190 918190 919190 911 0190 911 1190 911 2190 9113/90 9114/90 911 5190 911 6190 911 7190 911 8190 9/1 9190 9120/90 9121 190 9122190 9123/90 9124/90 9125/90 9126190 9127/90 9128/90 9129/90 9130/90 1011190 1012190 1013190 1014/90 1015/90 1016/90 1017/90 1018/90 1019/90 153 Pioneer Pioneer CR-1O Manual 3rivers (mm) (mm) (mm) 0 1 17 11 30 --| 46 Irrigation (mm) total daily 3 3 oooooogwo-aOOOOOan cub —I ‘0‘. goo-aooo‘goono-soooo-amgoano Date 10110190 10111190 10112190 10113190 10114190 10115190 10116190 10117190 10118190 10119190 10120190 10121 190 10122190 10123190 10124190 10125190 10126190 10127190 10128190 10129190 10130190 10131190 1 111190 1 112190 1 113190 1 114190 1 115190 1 1/6/90 1 117190 1 118190 1 119190 11110190 1 1111190 11112190 11113190 11114190 11115190 11116190 11117190 11118190 11119190 11120190 1 1121 190 11122190 154 Pioneer Pioneer 3rivers lmml Manual (mm) CR-1O (mm) 0 14 34 G’s—I Irrigation (mm) total daily mm oa-aooooooooooooooo‘g3'ooooooooooooooooooooooooo Date 11123190 11124190 11125190 1 1126190 11127190 11128190 1 1129190 11130190 1211 190 1212190 1213190 1214/90 1215/90 1216/90 1217/90 1218/90 1219190 12110190 1211 1190 12112190 12113190 12114190 12115190 12116190 12117190 12118190 12119190 12120190 12121 190 12122190 12123190 12124190 12125190 12126190 12127190 12128190 12129190 12130190 12131190 111 191 112/91 113/91 114/91 115/91 Pioneer CIR-1O (mm) 1 59 13 12 Pioneer Manual (mm) 155 3rivers (mm) Irrigation (mm) total daily mm oooooooa‘ooooooomooooooooooooooooogoooo(3g-oo- Date 116/91 117191 118/91 119/91 1110191 1111191 1112191 1113191 1114191 111 5191 1116/91 1117/91 1118/91 1119/91 1120/91 1121/91 1122/91 1123/91 1124/91 1125/91 1126/91 1127/91 1128/91 1129/91 1130/91 1131191 211/91 212/91 213191 214191 215191 216/91 217191 218191 219191 2110/91 2111/91 2112/91 211 3191 2/1 4191 211 5191 211 6191 211 7191 2118191 Pioneer CR-1O (mm) 0 7 Pioneer Manual (mm) 156 3rivers (mm) 6 OO-INIDOOOOOOOOOOOOOdNOOOOOOOOHOOOPmOO-‘ZPOO Irrigation (mm) tetal daily mm #00000) —D —| 00‘NCDOOOOOOOOOOOOO-iNOOOOOOOOdOOO'meOd Date 211 9191 2120/91 2121/91 2122/91 2123/91 2124191 2125191 2126191 2127/91 2128/91 311 191 312191 313191 314191 315191 316191 317191 318191 319191 3110191 311 1191 3/1 2191 311 3191 3/1 4191 311 5191 3116191 3117191 311 8191 311 9191 3120191 3121/91 3122/91 3123/91 3124/91 3125/91 3126191 3127191 3128/91 3129/91 3130/91 3131191 411191 412191 413191 Pioneer CIR-10 (mm) Pioneer Manual (mm) 157 3rivers (mm) 000000»ngoursoooogooooooomooewoonuomaoooooooa Irrigation (mm) total daily OOOOOOONOOdNOONVON-fiOOOOOOO-fi g .3 OD oowoomgmoowisoooo Date 414191 415191 416/91 417191 418191 419191 4110191 4/1 1191 411 2191 411 3191 4114191 411 5191 4/1 6191 4/1 7191 4118191 4119/91 4120/91 4121 191 4122191 4123/91 4124/91 4125/91 4126/91 4127/91 4128191 4129/91 4130/91 511 191 512191 513191 514191 515191 516/91 517191 518191 519191 5110191 511 1191 511 2191 5113191 511 4191 511 5191 511 6191 5117191 Pioneer CR-1O (mm) 7 1 53 20 _a 0190 13 —3 24 Pioneer Manual (mm) 158 3rivers (mm) 00,230 ogooaggmaooma 0§0 NooooowMN-aggo Irrigation (mm) total daily mm 00,30 95.000333100000010 0520 nomooowmmaao 19 159 Pioneer Pioneer Irrigation total daily Date CR-10 Manual 3rivers (mm) (mm) (mm) (mm) mm 511 8191 5119/91 5120/91 5121/91 5122/91 5123/91 1 5124/91 1 1 5125/91 8 5126191 5127/91 5128/91 5129/91 5130/91 5 5131 191 27 611 191 0 612191 613/91 614/91 615/91 616/91 617191 618191 619191 611 0191 611 1191 13 6112191 611 3191 611 4191 6/1 5191 2 6116191 6/1 7191 611 8191 611 9191 6120191 6121/91 6122/91 1 6123191 6124/91 6125/91 6126/91 6127191 6128191 6129/91 6130/91 55 00000 #00000 —I d 00000000003900000‘3‘a000000 I: 0000000a000000~00050000000000fi01000000 OOOOOOO-‘OOOOOOCDOOO 01 0'1 Date 711 191 712191 713/91 714/91 715/91 716/91 717191 718191 719191 7110191 7111191 711 2191 711 3191 7114/91 711 5191 711 6191 711 7191 711 8191 711 9191 7120/91 7121 191 7122191 7123/91 7124/91 7125/91 7126/91 7127/91 7128191 7129/91 7130/91 7131191 811191 812191 813191 814/91 815/91 816191 817191 818191 819191 8110191 811 1191 8112191 811 3191 Pioneer CR-10 (mm) 17 42 Pioneer Manual (mm) 42 0 4 160 3rivers (mm) 39 71 0 12 OOOvb-*OOOOO-‘fiOOOOOOOOOOOOONOOO _n \I 0000‘53-0000 Irrigation (mm) 29 total daily 4:03 3 000::-08000‘2300000000000000000; —I N 0000‘53‘0000 Date 8114191 8115191 811 6191 8/1 7191 811 8191 811 9191 8120191 8121 191 8122/91 8123/91 8124/91 8125/91 8126/91 8127191 8128191 8129/91 8130/91 8131 191 911191 912191 913191 914191 915191 916191 917191 918191 919191 911 0191 911 1191 9112191 911 3191 9114/91 911 5191 911 6191 911 7191 911 8191 911 9191 9120191 9121/91 9122/91 9123/91 9124191 9125191 9126191 Pioneer CR-l 0 (mm) 10 10 43 29 —I HO) Pioneer Manual (mm) 161 3rivers (mm) 0‘000004000010:;30amoo00g0004000000000080~0000 Irrigation (mm) total daily mm 00-00000-s000010:'o‘o-smoooogoooa000000000030100000 Date 9127191 9128191 9129191 9130191 1011 191 1012191 1013191 1014/91 1015/91 1016191 1017191 1018/91 1019191 10110191 10111191 10112191 10113191 10114191 10115191 10116191 10117191 10118191 10119191 10120191 10121 191 10122191 10123191 10124191 10125191 10126191 10127191 10128191 10129191 10130191 10131191 1111 191 1112191 1113191 1114/91 1115191 1116191 1117191 1118191 1119191 Pioneer CIR-10 (mm) ‘0) 14 38 17 17 Pioneer Manual (mm) 162 3rivers (mm) 00~00N0000300033000000000000-a0#wooowwfia‘fioooooo Irrigation (mm) total daily 3 3 @58000000 00~0000003000330000000000040910000020 Date 11110191 11111191 11112191 11113191 11114191 11115191 11116191 11117191 11118191 11119191 11120191 11121191 11122191 11123191 11124191 11125191 11126191 11127191 11128191 11129191 11130191 1211191 1212191 1213191 1214/91 1215191 1216191 1217191 1218/91 1219191 12110191 12111191 12112191 12113191 12114191 12115191 12116191 12117191 12118191 12119191 12120191 12121191 12122191 12123191 Pioneer CR-10 (mm) 27 wd§d Pioneer Manual (mm) 163 3rivers (mm) 0000:000a9300930000ano-sw'gmwomao-s-aoo —I —| #OVOO-JON-BO Irrigation (mm) total daily mm 0000000-s930003000a~040§-0~30a-s00 —I —I PONOO-‘ON-SO Date 12124191 12125191 12126191 12127191 12128191 12129191 12130191 12131 191 1/1 192 112/92 113/92 114/92 115192 116192 117192 118192 119/92 1110192 1/1 1192 1112192 1113192 1114192 111 5192 1/1 6192 111 7192 1/1 8192 1119192 1120/92 1121/92 1122/92 1123/92 1124/92 1125/92 1126/92 1127/92 1128/92 1129/92 1130/92 1131192 211/92 212192 213192 214192 215192 Pioneer CR-I 0 (mm) Pioneer Manual (mm) 164 3rivers (mm) OOOOOOOOOONdwOOOOOOOwOCDdOO-‘SCOOOOGOOOOCDOOOOO Irrigation Imml total daily mm OOOOOOOOOONdwOOOOOOOwO‘D-‘OO-‘800000OOOOOQOOOOO Date ~ 216192 217192 218192 219192 211 0192 211 1192 2112192 211 3192 2/1 4192 211 5192 2116192 211 7192 2/1 8192 2119192 2120192 2121192 2122/92 2123/92 2124/92 2125/92 2126/92 2127/92 2128/92 2129/92 311 192 312192 313192 314/92 315/92 316/92 317/92 318192 319192 3110192 311 1/92 311 2192 3/1 3192 3114192 3115192 311 6192 311 7192 3118192 311 9192 3120/92 Pioneer CR-10 (mm) Pioneer Manual (mm) 165 3rivers (mm) OOOOON-‘OO 900000a00000a000~0003 _a N 00000000000300 Irrigation (mm) total daily mm OOOOON-‘OO 900000a00000a000~0003 .0 N 00000000000300 Date 3121 192 3122/92 3123/92 3124/92 3125/92 3126/92 3127/92 3128/92 3129/92 3130/92 3131 192 411 192 412192 413/92 414/92 415/92 416/92 417192 418192 419192 411 0192 411 1192 411 2192 4/1 3192 411 4192 4/1 5192 411 6192 4/1 7192 4/1 8192 4/1 9192 4120/92 4121192 4122/92 4123/92 4124/92 4125/92 4126/92 4127/92 4128/92 4129/92 4130192 511192 512192 513192 Pioneer CIR-10 (mm) Pioneer Manual (mm) 166 3rivers Imml _I ‘10 #OOUI-‘OOO Irrigation (mm) total daily mm _-| \‘O «bOOm-‘OOO Date 514/92 515/92 516/92 517192 518192 519192 511 0192 511 1192 5112192 511 3192 511 4192 511 5192 5116192 511 7192 5118192 511 9192 5120/92 5121 192 5122192 5123192 5124192 5125192 5126/92 5127/92 5128/92 5129/92 5130/92 5131 192 611 192 612192 613/92 614/92 615192 616/92 617192 618192 619192 6110192 611 1192 611 2192 6113192 6114192 611 5192 6116192 167 Pioneer Pioneer Irrigation CIR-10 Manual 3rivers (mm) (mm) (mm) (mm) 0 N 14 total daily 3 3 WOOOOO\INOOOO-‘OOOOODOOH‘OOOO .0 (D 0<>0<30<30c>0<33<30<30<30 Date 611 7192 611 8192 6119/92 6120/92 6121/92 6122/92 6123192 6124192 6125192 6126/92 6127/92 6128/92 6129/92 6130192 711192 712192 713192 714192 715192 716192 717192 718192 719192 711 0192 711 1/92 7/1 2192 7/1 3192 7/1 4192 711 5192 7116/92 7117/92 7118192 7119192 7120192 7121 192 7122/92 7123192 7124192 7125/92 7126/92 7127/92 7128/92 7129/92 7130/92 168 Pioneer Pioneer Irrigation CR-I 0 Manual 3rivers (mm) (mm) (mm) (mm) 1 9 1 4 1 3 5 O 3 1 3 9 O 1 2 6 5 O 1 4 34 37 1 7 24 5 O 1 0 6 3 O 1 44 4O 1 O 8 1 2 8 31 total daily mm _a (D 00-afi00000030fig;000N000000000000010-aa0000 0c>0;; (.0 _s Date 7131 192 811192 812192 813192 814/92 815/92 816/92 817192 818192 819192 8110192 8/1 1192 8112192 8/1 3192 811 4192 8115192 8116192 8117192 8118192 811 9192 8120192 8121 192 8122192 8123192 8124/92 8125192 8126192 8127192 8128192 8129192 8130/92 8131/92 911 192 912192 913192 914192 915/92 916/92 917192 918192 919192 911 0192 911 0192 911 0192 Pioneer CR-IO (mm) 23 0 169 Pioneer Irrigation Manual 3rivers (mm) (mm) (mm) 12 15 34 14 total daily mm 00000; _0 U1 0000300001000;000030000032000000000000000 Date 911 0192 911 0192 9110/92 9110192 9110192 9/1 0192 911 0192 9120192 9121192 9122/92 9123/92 9124/92 9125/92 9126/92 9127/92 9128/92 9129192 9130192 1011192 1012192 1013192 1014/92 1015/92 1016192 1017192 1018/92 1019192 10110192 1011 1192 10112192 10113192 10114192 10115192 10116192 10116192 10116192 10116192 10116192 10121 192 10122192 10123192 10124192 10125192 10126192 Pioneer CR-1O (mm) 71 10 O) _|_|_|o 46 11 170 Pioneer Irrigation Manual 3rivers (mm) (mm) (mm) 81 11 O) 15 total daily 00000003002200 3 _a U" MOO-'d-‘OOOOOOOOOOO a9 do: OOOOOOPOOOO) 171 Pioneer Pioneer Irrigation total daily Date CIR-10 Manual 3rivers (mm) (mm) (mm) (mm) 3 3 10127192 10128192 10129192 10130192 10131192 1111192 1112192 1113192 1114192 1115/92 1116/92 1117/92 1118/92 1119192 11110192 11111192 11112192 11113192 11114192 11115192 11116192 11117192 11118192 11119192 1 11120192 11121192 2 11122192 13 11123192 11124192 11125192 11126192 11127192 11128192 11129192 0 11130192 1211 192 1212192 3 1213192 1214192 1215192 1216192 1217/92 1218/92 1219/92 N...) 4‘9 220.0100 0-:00 (1000 00000000000000000a;M0-00000030¢~0004002300000 Date 12110192 1211 1192 12112192 12113192 12114192 12115192 12116192 12117192 12118192 12119192 12120192 12121192 12122192 12123192 12124192 12125192 12126192 12127192 12128192 12129192 12130192 111 193 112/93 113/93 114/93 115/93 116193 117193 118/93 119/93 111 0193 111 1193 1112193 1113193 1114193 1115193 1116193 111 7193 1118193 111 9193 1120193 1121193 1122193 1123193 172 Pioneer Pioneer 3rivers (mm) CR-1O Manual (mm) (mm) 0000-900 Irrigation (mm) total daily 3 3 0-~000000000000000-a30100300000000-00N000c000-000 Date 1124/93 1125/93 1126193 1127/93 1128/93 1129/93 1130/93 1131 193 211 193 212/93 213/93 214/93 215/93 216/93 217193 218193 219193 211 0193 211 1193 211 2193 211 3193 211 4193 2115193 211 6193 2117193 2118193 2/1 9193 2120/93 2121 193 2122193 2123193 2124193 2125/93 2126193 2127193 2128193 311193 312193 313193 314193 315193 316/93 317/93 318/93 Pioneer CPI-10 (mm) (D-‘ONOO —l Pioneer Manual (mm) 173 3rivers (mm) Irrigation (mmI total daily 3 3 N-*000-.ON0000000000OOOOOOOOOOOOOOOOOOOOOOOdOOOO Date 319193 311 0193 3/1 1193 311 2193 311 3193 311 4193 311 5193 3116193 311 7193 3/1 8193 311 9193 3120/93 3121193 3122/93 3123/93 3124/93 3125/93 3126/93 3127/93 3128/93 3129/93 3130/93 3131 193 411 193 412193 413/93 414/93 415/93 416/93 417193 418193 419193 4110193 411 1193 4112193 4113/93 4114/93 411 5193 4/1 6193 4/1 7193 411 8193 411 9193 4120193 4121 193 Pioneer CIR-10 (mm) 010 010 Pioneer Manual (mm) 174 3rivers (mm) Irrigation (mm) total daily mm OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOwOmOOOGOOOw-hd0 Date 4122/93 4123/93 4124/93 4125/93 4126193 4127193 4128193 4129/93 4130/93 511 193 512193 513193 514/93 515/93 516/93 517193 518193 519193 511 0193 511 1193 5112193 5113193 511 4193 5/1 5193 511 6193 5/1 7193 5/1 8193 5119193 5120193 5121193 5122/93 5123/93 5124/93 5125/93 5126193 5127/93 5128/93 5129/93 5130/93 5131 193 611 193 612193 613193 614193 175 Pioneer Pioneer Irrigation CIR-10 Manual 3rivers (mm) (mm) (mm) (mm) 13 20 total daily #mOOOOOOOOOO g 00000004400000‘0000: 0-a0030a00003 N O Date 615193 616193 617193 618193 619193 611 0193 611 1193 6112/93 611 3193 611 4193 611 5193 6116193 611 7193 6/1 8193 6119193 6120193 6121 193 6122193 6123/93 6124/93 6125/93 6126/93 6127/93 6128/93 6129193 6130193 711 193 712193 713193 714/93 715/93 716/93 717193 718193 719193 711 0193 7/1 1193 711 2193 7/1 3193 7114193 7/1 5193 7/1 6193 7117193 711 8193 176 Pioneer Pioneer Irrigation CR-1O Manual 3rivers (mm) (mm) (mm) (mm) 41 41 15 total daily 3 3 400000080g00000000010—s~10000003000000000003300 Date 711 9193 7120/93 7121 193 7122/93 7123/93 7124/93 7125/93 7126/93 7127/93 7128/93 7129193 7130193 7131 193 811193 812193 813193 814/93 815/93 816/93 817193 818193 819193 811 0193 811 1193 8112193 8/1 3193 811 4193 811 5193 8/1 6193 811 7193 8118193 811 9193 8120/93 8121193 8122193 8123193 8124193 8126193 8127193 8128193 8129193 8130193 8131 193 911193 Pioneer CR-IO (mm) 20 21 19 14 177 Pioneer Irrigation Manual 3rivers (mm) (mm) (mm) 8 25 5 1 3 8 4 30 25 34 1 55 14 total daily {300001000000005000000000 g ‘01 0310 w O#mOOO-'¢mOOOOOOOOO#mOO Date 912193 913193 914/93 915/93 916/93 917193 918193 919193 911 0193 911 1193 9112193 911 3193 911 4193 9/1 5193 911 6193 Pioneer CR-IO (mm) 41 2 10 -I 34 178 Pioneer Irrigation Manual 3rivers (mm) (mm) (mm) 48 14 58 total daily 3 3 00$0000000§0030 APPENDIX C APPENDD( C. Drainage sample volumes and Nitrate concentration data. 07/04/89 07/23/89 08/08/89 0813 1189 10130189 10131/89 1013 1189 1013 1189 1 I/Ol/89 1 I/OI/89 1 I/Ol/89 1 1101/89 1 1102/89 1 1102/89 1 1103/89 1 1/04/89 1 1105/89 1 1108/89 1 1112189 1 1/1 5189 1 111 7189 1 1118/89 1 1119/89 1 1120/89 1 112 1139 1 1124/89 1 I/26/89 1 1130/89 I2/06/89 12114139 12125189 01106/90 01119190 01129190 Lys# SampIe# Hi—II—IHI—Ii—II—IHHHHHi—IHHI—Ii—IHHHHi—IHHHHHHHHHHHH --~Hfl~I—~ \OOOxleL/iAwN_O\OOO\IO\UiAwN wNNNIQNNNNNN OOOOQGUIAMN—‘O 31# 32# 33 34 35 Vol liters 22.12 22.12 22.12 22.12 16.00 22.13 22.13 22.14 22.13 22.13 22.22 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 # Estimates were made in drainage amount. Drain mm 5.94 5.94 5.94 5.94 4.29 5.94 5.94 5 .94 5.94 5.94 5.96 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 179 N03 -N ppm 2.90 9.37 6.77 1 1.41 12.06 12.63 16.41 14.92 19.58 7.61 18.32 16.57 18.23 23.55 18.47 21.27 20.56 27.23 27.94 15.69 22.07 21.79 13.10 14.80 20.07 30.42 32.81 22.72 26.28 24.37 24.37 22.45 36.29 35.76 Load kg/ha 0.172 0.556 0.402 0.677 0.518 0.750 0.975 0.886 1.163 0.452 1.092 0.984 1.082 1.398 1.096 1.263 1.220 1.616 1.659 0.931 1.310 1.293 0.778 0.879 1.191 1.806 1.948 1.349 1.560 1.447 1.447 1.333 2.154 2.123 cum drain (mm) 5.94 1 1.87 17.81 23.74 28.04 33.98 39.91 45.86 51.79 57.73 63.70 69.63 75.57 81.50 87.44 93.38 99.31 105.25 1 1 1.18 1 17.12 123.06 128.99 134.93 140.86 146.80 152.74 158.67 164.61 170.54 176.48 182.42 188.35 194.29 200.22 cum load kg/ha 0.17 0.73 1.13 1.81 2.33 3.08 4.05 4.94 6.10 6.55 7.64 8.63 9.71 1 1.1 1 12.20 13.47 14.69 16.30 17.96 18.89 20.20 21.50 22.27 23.15 24.34 26.15 28.10 29.45 31.01 32.45 33.90 35.23 37.39 39.51 02/0 1190 02/04/90 02/08/90 02/ 1 1190 02/17/90 02/22/90 02/23/90 02/23/90 02/24/90 02/25/90 02/26/90 02128190 03103190 03106190 03109190 0311 0190 0311 1190 031 12190 031 13190 031 1 5190 031 16190 031 19190 03123190 03129190 04108190 04/ 13190 0411 6190 04/ 1 8190 04/2 1190 04/25/90 04/28/90 05/03/90 05/ 10190 05/ 16190 05/ 17190 05/ 1 8190 05/1 8190 05/ 19190 05/20/90 0512 1190 05/23/90 05/25/90 05/30/90 06/06/90 Lys# Sample# HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 36 37 38 39 40 41 42 43 44 45 46 47# 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 Vol liters 22.12 22.12 22.12 22.12 22.12 22.12 22.36 22.26 22.12 22.12 22.12 22.12 22.13 22.12 22.33 22.12 22.12 22. 15 22.12 22.12 22.12 22. 12 22.12 22.14 22. 14 22.16 22.25 22.17 22.16 22.16 22.15 22.14 22.14 22.20 22.35 22.45 22.37 22.48 22.25 22.20 22.17 22. 16 22. 15 22.14 # Estimates were made in drainage amount. Drain mm 5.94 5.94 5.94 5.94 5.94 5.94 6.00 5.97 5.94 5 .94 5.94 5 .94 5.94 5.94 5.99 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.95 5.97 5.95 5.95 5.95 5.94 5.94 5.94 5.96 6.00 6.02 6.00 6.03 5.97 5.96 5.95 5.95 5.94 5.94 180 N03 -N PPm 16.72 31.15 19.48 30.76 32.04 26.72 20.13 14.64 28.54 35.37 36.80 42.72 48.64 43.29 45.66 1 1.59 4.54 41.67 8.19 22. 15 30.06 23.16 19.65 31.76 25.76 20.45 31.51 24.96 19.35 21.56 21.24 29.55 12.29 32.54 16.17 22.89 21 .79 18.73 20.02 32.65 20.00 20.00 27.37 10.23 Load kg1ha 0.992 1.849 1.156 1.826 1.902 1.586 1.208 0.875 1.694 2.100 2.184 2.536 2.889 2.570 2.736 0.688 0.269 2.477 0.486 1.315 1.784 1.375 1.166 1.887 1.530 1.216 1.881 1.485 1.151 1.282 1.263 1.756 0.730 ' 1.939 0.970 1.379 1.308 1.130 1.195 1.945 1.190 1.189 1.627 0.608 cum (M) 206.16 212.09 218.03 223.97 229.90 235.84 241.84 247.81 253.75 259.68 265.62 271.56 277.50 283.43 289.42 295.36 301.30 307.24 313.18 319.11 325.05 330.98 336.92 342.86 348.80 354.75 360.72 366.67 372.62 378.56 384.51 390.45 396.39 402.35 408.34 414.37 420.37 426.40 432.37 438.33 444.28 450.23 456.17 462.11 cum load kg/ha 40.50 42.35 43.51 45.33 47.23 48.82 50.03 50.90 52.60 54.70 56.88 59.42 62.30 64.87 67.61 68.30 68.57 71.05 71.53 72.85 74.63 76.01 77.17 79.06 80.59 81.81 83.69 85.17 86.32 87.60 88.87 90.62 91.35 93.29 94.26 95.64 96.95 98.08 99.27 101.22 102.41 103.60 105.22 105.83 06/1 8190 07/06/90 07/27/90 08/03/90 08/ 14190 08/23/90 08/29/90 09/04/90 09/ 14190 10108190 10110190 10110190 10110190 10110190 1011 1190 10/ 1 1190 1011 1190 10112190 10112190 10113190 10115190 10117190 1012 1190 10127190 1 1104/90 1 1107/90 1 1108/90 1 1109/90 1 1/1 1190 1 1/1 5190 1 1120/90 1 1127/90 1 1128190 1 1128/90 1 1128190 1 1128/90 1 1129/90 1 1129/90 1 1130190 12101190 12102190 12105190 12105190 01123191 Lys# Sample# #1 HHHHHHHHHHHHHI—‘HHHI—‘HHHHHHHHHHHHHHHHHHHHHHHHH 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 Vol liters 22. 13 22.12 22.14 22.13 22.12 22.13 22. 14 22. 14 22.13 22.21 22.78 23.15 23.06 22.87 22.78 22.99 22.41 22.33 22.26 22.22 22.18 22.18 22.15 22.14 22.13 22.24 22.22 22.20 22.17 22.17 22. 16 22.15 22. 14 22.13 22.12 22.14 22.13 22.12 22.13 22. 14 22.14 22.13 22.21 161.36 # Estimates were made in drainage amount. Drain mm 5.94 5 .94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.96 6.11 6.21 6.19 6.14 6.1 1 6.17 6.01 5.99 5.97 5.96 5.95 5.95 5.94 5.94 5.94 5.97 5.96 5.96 5.95 5.95 5.95 5.94 5.94 5.94 5.94 ' 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.96 43.30 181 NOB-N . ppm 23.63 25.47 25.45 20.23 20.05 22.40 15.63 41.35 33.00 32.77 39.80 26.93 29.48 34.90 38.80 40.76 41.40 41.55 41.06 40.38 38.96 35.00 35.00 25.99 22.22 29.10 27.65 42.75 43.39 46.20 46.20 41.10 41.70 35.90 36.30 39.30 38.50 40.30 40.30 41.80 43.30 41.70 38.20 25.30 Load kg/ha 1.403 1.512 1.512 1.201 1.190 1.330 0.929 2.457 1.960 1.953 2.433 1.673 1.824 2.142 2.372 2.515 2.490 2.490 2.453 2.408 2.319 2.083 2.080 1.544 1.320 1.737 1.649 2.547 2.581 2.749 2.747 2.443 2.478 2.132 2.155 2.335 2.286 2.392 2.393 2.483 2.573 2.476 2.277 10.955 cum drain (M) 468.05 473.99 479.93 485.87 491.80 497.74 503.68 509.63 515.56 521.52 527.64 533.85 540.04 546.17 552.29 558.46 564.47 570.46 576.44 582.40 588.35 594.30 600.25 606.19 612.13 618.10 624.06 630.02 635.97 641.91 647.86 653.81 659.75 665.69 671.62 677.56 683.50 689.44 695.38 701.32 707.26 713.20 719.16 762.46 cum load kg/ha 107.24 108.75 110.26 111.46 112.65 113.98 114.91 117.37 119.33 121.28 123.71 125.39 127.21 129.35 131.72 134.24 136.73 139.22 141.67 144.08 146.40 148.48 150.56 152.11 153.42 155.16 156.81 159.36 161.94 164.69 167.43 169.88 172.35 174.49 176.64 178.98 181.26 183.66 186.05 188.53 191.10 193.58 195.86 206.81 1 82 Lys# Samp1e# V01 Drain NO3-N Load cum cum liters mm ppm kg/ha drain load (mm) kg/ha 02/01/91 11 124 87.94 23.60 24.80 5.853 786.06 212.67 03106191 11 125 44.72 12.00 21.60 2.592 0 0 04101191 1 1 22.17 5.95 17.77 1.057 5.95 1.06 04106191 1 2 22.14 5.94 13.33 0.792 11.89 1.85 04116191 1 3 22.25 5.97 11.52 0.688 17.86 2.54 04116191 1 4 22.57 6.06 6.57 0.398 23.92 2.93 0411 7/91 1 5 22 .26 5.97 1 1.49 0.686 29.89 3.62 04/19/91 1 6 22.18 5.95 11.50 0.684 35.84 4.31 04121191 1 7 22.38 6.01 5.14 0.309 41.85 4.61 04122191 1 8 22.22 5.96 6.30 0.376 47.81 4.99 04/24/91 1 9 22.19 5.95 11.22 0.668 53.77 5.66 04/27/91 1 10 22.12 5.94 14.41 0.855 59.70 6.51 04129191 1 1 1 22.18 5.95 14.45 0.860 65.66 7.37 04130191 1 13 22.18 5.95 12.82 0.763 71.61 8.14 05/02/91 1 14 22.17 5.95 13.62 0.810 77.56 8.95 05/05/91 1 15 22.18 5.95 13.62 0.81 1 83.51 9.76 05/12/91 1 16 22.15 5.94 13.62 0.810 89.45 10.57 05/19/91 1 18 22.14 5.94 8.98 0.534 95.39 11.10 05/27/91 1 19 22.13 5.94 9.02 0.536 101.33 11.64 06/17/91 1 21 66.43 17.83 6.51 1.161 119.16 12.80 09/15/91 1 21 22.14 5.94 20.79 1.235 125.10 14.03 10108191 11 22 22.17 5.95 15.00 0.892 131.05 14.92 10110191 11 23 22.17 5.95 15.00 0.892 137.00 15.82 10115191 11 24 22.15 5.94 15.00 0.892 142.94 16.71 10122191 11 25 22.13 5.94 15.00 0.891 148.88 17.60 10126191 1 26 22.46 6.03 26.65 1.606 154.91 19.21 10126191 11 22.45 6.02 15.00 0.904 160.93 20.11 10127191 11 22.37 6.00 15.00 0.900 166.94 21.01 10127191 11 22.38 6.01 15.00 0.901 172.94 21.91 10128191 11 22.46 6.03 15.00 0.904 178.97 22.81 10128191 11 22.31 5.99 15.00 0.898 184.96 23.71 10129191 11 22.25 5.97 15.00 0.896 190.93 24.61 10130191 11 22.20 5.96 15.00 0.894 196.88 25.50 1 1101/91 11 22.26 5.97 15.00 0.896 202.86 26.40 1 1102/91 11 22.24 5.97 15.00 0.895 208.83 27.29 11103191 11 22.22 5.96 15.00 0.894 214.79 28.19 1 1105191 11 22.17 5.95 15.00 0.892 220.74 29.08 1 1108191 11 22.16 5.95 15.00 0.892 226.69 29.97 1 1113191 11 22. 14 5.94 15.00 0.891 232.63 30.86 11121191 11 22.17 5.95 15.00 0.892 238.58 31.76 1 1123/91 11 22.26 5.97 15.00 0.896 244.55 32.65 1 1125191 11 22.18 5.95 15.00 0.893 250.50 33.54 1 1127191 11 22.16 5.95 15.00 0.892 256.45 34.44 12102191 11 22.17 5.95 15.00 0.892 262.40 35.33 # Estimates were made in drainage amount. 183 Lys# Sample# Vol Drain NO3-N Load cum cum liters mm ppm kg/ha drain load (mm kg/ha 12/07/91 1 27 22.15 5.94 17.14 1.019 268.34 36.35 12/1 1/91 1 28 22.18 5.95 21.40 1.274 274.29 37.62 12/13/91 # 22.17 5.95 15.00 0.892 280.24 38.51 12/15/91 # 22.17 5.95 15.00 0.892 286.19 39.41 12/17/91 # 22.17 5.95 15.00 0.892 292.14 40.30 12/21/91 # 22.18 5.95 15.00 0.893 298.09 41.19 12/26/91 # 22.14 5.94 15.00 0.891 304.04 42.08 01/03/92 # 22.13 5.94 15.00 0.891 309.97 42.97 01/11/92 # 22.17 5.95 15.00 0.892 315.92 43.87 01/15/92 # 22.15 5.94 15.00 0.892 321.87 44.76 01/20/92 # 22. 14 5.94 15.00 0.891 327.81 45.65 01/28/92 # 22.13 5.94 15.00 0.891 333.75 46.54 02/04/92 # 22.14 5.94 15.00 0.891 339.69 47.43 02/13/92 1 30 22.13 5.94 8.50 0.505 345.63 47.94 02/21/92 1 31 22.16 5.95 9.80 0.583 351.57 48.52 02/24/92 1 32 22.17 5.95 6.60 0.393 357.52 48.91 02/28/92 1 33 22.15 5.94 18.20 1.082 363.47 49.99 03/04/92 1 34 22. 14 5.94 18.00 1.069 369.41 51.06 03/1 1/92 1 35 22. 13 5.94 9.42 0.559 375.35 51.62 03/16/92 1 36 22.20 5.96 14.07 0.838 381.30 52.46 03/19/92 # 37 22.16 5.95 15.00 0.892 387.25 53.35 03/22/92 1 3 8 22. 17 5.95 1 1.70 0.696 393.20 54.05 03/26/92 1 39 22. 15 5.94 8.30 0.493 399.14 54.54 03/30/92 1 40 22. 16 5.95 10.86 0.646 405.09 55.19 04/02/92 1 41 22.16 5.95 2.07 0.123 411.04 55.31 04/06/92 1 42 22. 15 5.94 10.32 0.613 416.98 55.92 04/1 1/92 1 43 22. 14 5.94 12.31 0.731 422.92 56.66 04/17/92 1 44 22. 15 5.94 13.26 0.788 428.87 57.44 04/26/92 1 45 22. 13 5.94 10.76 0.639 434.81 58.08 05/08/92 1 46 22. 13 5 .94 1 1.61 0.689 440.74 58.77 05/19/92 1 47 22. 15 5.94 7.21 0.429 446.69 59.20 05/31/92 1 48 22.13 5.94 7.91 0.470 452.63 59.67 06/ 1 6/92 1 49 22.13 5.94 4.67 0.277 458.57 59.95 06/30/92 1 50 22. 12 5.94 6.07 0.360 464.50 60.31 07/15/92 1 51 22.21 5.96 6.47 0.386 470.46 60.69 07/17/92 1 52 22.20 5.96 4.31 0.257 476.42 60.95 07/19/92 1 53 22.17 5.95 1 1.00 0.654 482.37 61.60 07/22/92 1 54 22.17 5.95 6.09 0.362 488.32 61.97 07/24/92 1 55 22.22 5.96 9.68 0.577 494.28 62.54 07/25/92 1 56 22.20 5.96 8.10 0.483 500.24 63.03 07/27/92 1 57 22.17 5.95 9.19 0.547 506.19 63.57 07/31/92 1 58 22. 15 5.94 6.31 0.375 512.13 63.95 08/03/92 1 59 22.17 5.95 8.91 0.530 518.08 64.48 08/03/92 1 60 22.17 5.95 5.31 0.316 524.03 64.79 # Estimates were made in drainage amount. 08/06/92 08/10/92 08/18/92 09/01/92 09/10/92 09/1 1/92 09/12/92 09/13/92 09/15/92 09/15/92 09/16/92 09/16/92 09/16/92 09/16/92 09/17/92 09/18/92 09/19/92 09/21/92 09/25/92 09/30/92 10/07/92 10/15/92 10/16/92 10/17/92 10/ 1 8/92 10/20/92 10/22/92 10/26/92 1 1/01/92 1 1/04/92 1 1/05/92 1 1/22/92 1 1/25/92 1 1/28/92 12/01/92 12.’07/92 12/15/92 12/20/92 12/23/92 Lys# HHl—‘HHHHI—‘HHHHHHHHHHHHHHHHHHHHHHPH HHHHHH Sample# 61 62 63 54 65 66 67 68 69 n? n? n? n? 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 # sampler caught on wires and missed 8 samples 89 90 9 1 92 93 94 95 Vol liters 22. 16 22.17 22. 13 22. 14 22.23 22.51 22.41 22.23 22.17 23.07 22.99 22.76 23.23 22.42 22.32 22.42 22.19 22.17 22. 15 22. 14 22. 13 22. 19 22.25 22.26 22.22 22.28 22.16 22.15 22.15 22.23 22.22 177.87 22.17 22.17 22.18 22.14 22.13 22.22 22.15 # Estimates were made in drainage amount Drain NO3-N mm ppm 5.95 14.23 5.95 14.22 5.94 14.36 5.94 15.29 5.97 15.11 6.04 15.78 6.01 15.32 5.97 14.02 5.95 13.76 6.19 10.00 6.17 10.00 6.1 1 10.00 6.23 10.00 6.02 7.29 5 .99 5.40 6.02 8.23 5.95 10.28 5.95 10.99 5.94 9.02 5.94 12.32 5.94 10.95 5.95 13.1 1 5.97 11.63 5.97 12.51 5.96 12.18 5.98 13.80 5.95 13.34 5.94 12.45 5.94 8.68 5.97 10.32 5.96 5.54 47.73 4.61 5.95 7.30 5.95 6.64 5.95 5.23 5.94 6.13 5.94 5.91 5.96 5.21 5.94 5.15 184 Load kg/ha 0.846 0.846 0.853 0.908 0.901 0.953 0.921 0.836 0.819 0.619 0.617 0.61 1 0.623 0.439 0.323 0.495 0.612 0.654 0.536 0.732 0.650 0.781 0.694 0.747 0.726 0.825 0.793 0.740 0.516 0.616 0.330 2.200 0.434 0.395 0.31 1 0.364 0.351 0.31 1 0.306 cum (mm) 529.98 535.93 541.87 547.81 553.77 559.81 565.83 571.79 577.74 583.93 590.10 596.21 602.44 608.46 614.45 620.47 626.42 632.37 638.31 644.25 650.19 656.15 662.12 668.09 674.06 680.03 685.98 691.93 697.87 703.83 709.80 757.53 763.48 769.43 775.38 781.32 787.26 793.22 799.17 cum load kg/ha 65.64 66.49 67.34 68.25 69.15 70.10 71.02 71.86 72.68 73.30 73.91 74.53 75.15 75.59 75.91 76.41 77.02 77.67 78.21 78.94 79.59 80.37 81.07 81.81 82.54 83.36 84.16 84.90 85.41 86.03 86.36 88.56 88.99 89.39 89.70 90.06 90.42 90.73 91.03 185 Lys# Sample# Vol Drain NO3-N Load cum cum liters mm ppm kg/ha "drain load (mm) kg/ha 12/28/92 1 96 22. 14 5.94 6.61 0.393 805.11 91.43 01/01/93 1 97 22.32 5.99 4.77 0.286 811.10 91.71 01/02/93 1 98 22.26 5.97 5.98 0.357 817.07 92.07 01/03/93 1 99 22.22 5.96 5.06 0.302 823.03 92.37 01/04/93 1 100 22.18 5.95 5.89 0.351 828.99 92.72 01/04/93 1 101 22.55 6.05 8.00 0.484 835.04 93.20 01/05/93 1 102 22.46 6.03 3.15 0.190 841.06 93.39 01/05/93 1 103 22.40 6.01 3.78 0.227 847.08 93.62 01/06/93 1 104 22.35 6.00 6.08 0.365 853.07 93.99 01/06/93 1 105 22.29 5.98 5.05 0.302 859.05 94.29 01/07/93 1 106 22.31 5.99 5.21 0.312 865.04 94.60 01/09/93 1 107 22.19 5.95 4.82 0.287 871.00 94.89 01/1 1/93 1 109 22.17 5.95 4.70 0.280 876.95 95.17 01/15/93 1 ?date 22. 14 5.94 5.39 0.320 882.89 95.49 01 /2 1/93 1 ? 22. 16 5.95 4.23 0.252 888.83 95.74 01/26/93 1 ? 22.18 5 .95 4.61 0.274 894.79 96.01 01/29/93 1 ? 22.22 5.96 4.46 0.266 900.75 96.28 01/31/93 1 N? 22.15 5.94 5.00 0.297 906.69 96.58 02/05/93 1 N? 22. 14 5.94 5.00 0.297 912.63 96.87 02/13/93 1 N? 22.13 5.94 5.00 0.297 918.57 97.17 02/26/93 1 N? 22. 13 5.94 5.00 0.297 924.51 97.47 03/12/93 1 N? 22.13 5.94 5.00 0.297 930.45 97.76 03/31/93 1 N? 22.10 5.93 5.00 0.297 936.38 98.06 04/04/93 1 N? 22. 17 5.95 5.00 0.297 942.33 98.36 04/06/93 1 N? 22.16 5.95 4.00 0.238 948.28 98.60 04/10/93 1 N? 22.18 5.95 4.00 0.238 954.23 98.83 04/15/93 1 N? 22. 14 5.94 4.00 0.238 960.17 99.07 04/20/93 1 N? 22. 14 5.94 4.00 0.238 966.1 1 99.31 06/02/93 1 24.73 6.64 4.23 0.281 972.75 99.59 06/08/93 1 22.44 6.02 2.86 0.172 978.77 99.76 06/13/93 1 22.20 5 .96 3.71 0.221 984.73 99.98 06/14/93 1 22. 17 5.95 4.48 0.267 990.68 100.25 06/17/93 1 22.19 5.95 4.17 0.248 996.63 100.50 06/20/93 1 22. 16 5.95 5.22 0.310 1002.58 100.81 06/23/93 1 1 120 22.17 5.95 4 0.221 1008.53 101.03 06/27/93 1 1121 22.14 5.94 4 0.216 1014.47 101.25 07/03/93 1 1 122 22. 16 5.95 5 0.277 1020.42 101.52 07/12/93 1 1123 22.13 5.94 4 0.214 1026.35 101.74 07/13/93 1 ?date 22. 13 5.94 8 0.467 1032.29 102.20 07/14/93 1 ?date 22. 13 5 .94 7 0.395 1038.23 102.60 10/01/93 1 126 0.00 12 0.000 1038.23 102.60 10/01/93 1 127 0.00 18 0.000 1038.23 102.60 10/04/93 1 200 9 2.28 19 0.434 1040.51 103.03 10/07/93 1 201 12 3.22 17 0.559 1043.73 103.59 # Estimates were made in drainage amount. 10/08/93 10/1 1/93 10/13/93 10/15/93 10/18/93 10/20/93 10/21/93 10/22/93 10/25/93 10/28/93 10/3 1/93 1 1/04/93 1 1/10/93 12/21/93 01/03/94 02/23/94 07/20/89 10/30/89 1 1/01/89 1 1/01/89 1 1/02/89 1 1/03/89 1 1/09/89 1 l.’ 1 7/ 89 1 1/18/89 1 1/23/89 12/03/89 12/31/89 01/18/90 01/28/90 02/05/90 02/09/90 02/13/90 02/21/90 02/23/90 02/23/90 02/24/90 02/25/90 02/25/90 02/28/90 03/04/90 Lys# Samp1e# HHHHHHHHHHHHHHHH NNMNNNNNMNNNNNMNNNNNNNNNN 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 \OMQOKUIkwN Vol liters 10 39 39 15 13 34 26 l8 14 16 14 43 100 37.66 44.24 44.24 44.24 44.24 44.24 44.24 44.24 44.24 44.24 44.24 44.24 44.24 44.24 44.24 22.12 22.13 22.12 22.40 22.12 22.12 22.12 22.13 22.12 22.12 # Estimates were made in drainage amount. Drain mm 1.48 2.68 1.88 2.15 10.47 10.47 4.03 3.49 9.12 6.98 4.83 3.76 4.29 3.76 11.54 26.84 0.00 0.00 0.00 10.11 11.87 11.87 11.87 11.87 11.87 11.87 11.87 11.87 11.87 11.87 11.87 11.87 11.87 11.87 5.94 186 5.94 ‘ 5.94 6.01 5.94 5.94 5.94 5 .94 5.94 5.94 NO3-N 1’1”“ 20 16 18 15 19 20 18 17 15 16 12 16 12 7 7 5 5.20 4.21 11.00 5.22 14.81 13.91 16.79 13.97 13.29 22.85 17.95 13.60 30.62 12.95 21.65 11.80 17.95 18.74 15.93 13.14 11.40 19.63 5.75 10.61 23.89 Load kg/ha 0.289 0.431 0.342 0.324 1.950 2.063 0.710 0.577 1.352 1.084 0.591 0.585 0.509 0.274 0.848 1.318 0.526 0.500 1.306 0.620 1.758 1.651 1.993 1.659 1.578 2.713 2.131 1.615 3.635 1.537 2.570 0.700 1.066 1.1 12 0.958 0.780 0.677 1.165 0.341 0.630 1.418 cum drain (nun) 1045.21 1047.89 1049.77 1051.92 1062.38 1072.85 1076.87 1080.36 1089.49 1096.46 1 101.29 1105.05 1 109.34 1113.10 1 124.64 1 151.48 10.1 1 21.98 33.85 45.72 57.59 69.47 81.34 93.21 105.08 1 16.95 128.83 140.70 152.57 164.44 176.31 182.25 188.19 194.12 200.13 206.07 212.01 217.94 223.88 229.82 235.75 cum load kg/ha 103.88 104.31 104.65 104.98 106.93 108.99 109.70 1 10.28 1 1 1.63 1 12.71 1 13.30 1 13.89 114.40 1 14.67 1 15.52 1 16.84 0.53 1.03 2.33 2.95 4.71 6.36 8.35 10.01 11.59 14.30 16.43 18.05 21.68 23.22 25.79 26.49 27.56 28.67 29.63 30.41 31.08 32.25 32.59 33.22 34.64 03/09/90 03/ 1 0/90 03/10/90 03/ 1 1/90 03/ 1 1/90 03/ 1 1/90 03/ 12/90 03/ 13/90 03/14/90 03/ 1 6/90 03/ 1 8/90 03/29/90 03/29/90 04/09/90 04/ 14/90 04/ 1 7/90 04/20/90 04/24/90 04/27/90 05/01/90 05/07/90 05/ 1 5/90 05/ 17/90 05/ 1 8/90 05/ 1 8/90 05/1 9/90 05/20/90 05/22/90 05/25/90 05/29/90 06/06/90 06/1 7/90 07/02/90 07/28/90 08/ 16/90 08/28/90 09/08/90 10/ 10/90 10/ 1 1/90 10/ 1 1/90 1 0/1 1/90 10/12/90 10/ 1 3/90 10/16/90 # Estimates were made in drainage amount. Lys# Sample# NNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNMNNNNNNNNNNN 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 Vol liters 22.12 22. 12 22.12 22.12 22.52 22. 12 22.12 22.12 22.12 22. 12 22.12 22.12 22.13 22.13 22.17 22.15 22.15 22.15 22.16 22.15 22.13 22.19 22.18 22.42 22.34 22.27 22.21 22.17 22.15 22.16 22.13 22.13 22.12 22. 12 22. 12 22.13 22. 12 22.28 22.54 22.64 22.63 22.26 22.20 22.16 Drain mm 5.94 5.94 5.94 5.94 6.04 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.95 5.94 5.94 5.94 5.95 5.94 5.94 5.95 5.95 6.02 5.99 5.98 5.96 5.95 5.94 5.95 5.94 5.94 5.94 5 .94 5.94 5.94 5.94 5.98 6.05 6.08 6.07 5.97 5.96 5.95 187 NO3-N 1’1”“ 1 1.59 l 1.71 14.72 34.45 1 1.58 13.94 13.66 12.21 15.50 14.63 18.67 19.69 10.79 11.49 13.57 12.72 16.34 16.24 15.52 14.96 18.62 21.75 25.58 28.62 27.82 27.95 28.46 15.97 17.30 8.72 19.71 24.05 13.53 20.55 19.64 18.85 23.97 24.52 19.07 24.46 19.47 20.08 25.28 25.41 Load kg/ha 0.688 0.695 0.874 2.045 0.700 0.827 0.81 1 0.725 0.920 0.868 1.108 1.169 0.641 0.682 0.807 0.756 0.971 0.965 0.923 0.889 1.106 1.295 1.523 1.722 1.668 1.670 1.696 0.950 1 .028 0.519 1.171 1.428 0.803 1 .220 1.166 1.1 19 1 .423 1 .466 1.153 1.486 1.182 1.199 1.506 1.51 1 241.69 247.62 253.56 259.50 265.54 271.48 277.41 283.35 289.28 295.22 301.16 307.09 313.03 318.97 324.92 330.86 336.81 342.75 348.70 354.64 360.58 366.53 372.49 378.50 384.50 390.47 396.43 402.38 408.33 414.27 420.21 426.15 432.09 438.02 443.96 449.90 455.83 461.81 467.86 473.94 480.01 485.98 491.94 497.89 cum load kg/ha 35.33 36.02 36.90 38.94 39.64 40.47 41.28 42.00 42.92 43.79 44.90 46.07 46.71 47.39 48.20 48.96 49.93 50.89 51.82 52.70 53.81 55.1 1 56.63 58.35 60.02 61.69 63.38 64.33 65.36 65.88 67.05 68.48 69.28 70.50 71.67 72.79 74.21 75.68 76.83 78.32 79.50 80.70 82.20 83.72 10/20/90 10/27/90 1 1/04/90 1 1/07/90 1 1/08/90 1 1/09/90 1 1/12/90 1 1/18/90 1 1/27/90 1 1/28/90 1 1/28/90 1 1/29/90 1 1/29/90 1 1/30/90 12/01/90 12/03/90 12/06/90 12/09/90 12/31/90 01/23/91 02/01/91 03/06/91 04/03/91 04/09/91 04/16/91 04/16/91 04/18/91 04/20/91 04/21/91 04/23/91 04/25/91 04/27/91 04/29/91 05/01/91 05/04/91 05/07/91 05/20/91 07/03/91 07/25/91 08/01/91 08/27/91 09/17/91 10/10/91 10/16/91 Lys# Sample# :88: NNNNbJNNNNMNNNNNNNNN NNNNNNNNNNNMNNNN NNNNN \DOOOONOOOOMWOOOOOOQQQQQQQQQ OVDOOQO‘thubJN—‘COOOQO‘UIAMN— SJESQZEQQObuN—fgf NNNNNNN GMAwN—O Vol liters 22. 16 22.14 22.13 22.28 22.41 22.19 22.19 22.14 22.14 22.14 22.14 22.14 22.14 22.14 22.14 22.14 22.14 22.14 22.14 161.36 87.94 44.72 22.14 22.12 22.12 22.58 44.24 22.12 22. 12 22.12 22.14 22.12 22. 19 22.18 22.18 22.14 22.13 110.65 22.00 22.12 22.13 22.12 22.13 22.13 # Estimates were made in drainage amount. Drain mm 5.95 5.94 5.94 5.98 6.01 5.95 5.95 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 43.30 23.60 12.00 5.94 5.94 5.94 6.06 1 1.87 5.94 5.94 5.94 5 .94 5.94 5.95 5.95 5.95 5.94 5.94 29.69 5.90 5.94 5.94 5.94 5.94 5.94 188 N03 -N PM“ 25.30 14.96 24.69 29.19 18.05 23.53 23.69 24.00 24.00 22.60 22.70 22.30 22.10 23.00 23.30 23.00 22.80 22.20 20.70 11.98 9.10 14.42 14.59 9.10 14.42 1 1.03 13.80 1 1 . 12 14.76 1 1.84 13.04 7.72 9.77 6.42 16.56 1 1.59 5.57 22.51 10.50 6.50 9.59 6.19 9.47 1 1.41 Load kg/ha 1.505 0.889 1.466 1.745 1.085 1.401 1.41 1 1.426 1.426 1.343 1.349 1.325 1.313 1.367 1.384 1.367 1.355 1.319 1.230 5.187 2.148 1.730 0.867 0.540 0.856 0.668 1.638 0.660 0.876 0.703 0.775 0.458 0.582 0.382 0.986 0.689 0.331 6.684 0.620 0.386 0.570 0.367 0.562 0.678 cum drain 503.83 509.78 515.71 521.69 527.71 533.66 539.62 545.56 551.50 557.44 563.38 569.32 575.26 581.21 587.15 593.09 599.03 604.97 610.91 654.21 677.81 5.94 1 1.88 17.81 23.87 35.74 41.68 47.62 53.55 59.49 65.43 71.38 77.34 83.29 89.23 95.17 124.86 130.77 136.70 142.64 148.58 154.51 160.45 cum load kg/ha 85.22 86.11 87.58 89.32 90.41 91.81 93.22 94.64 96.07 97.41 98.76 100.09 101.40 102.77 104.15 105.52 106.87 108.19 109.42 1 14.61 1 16.75 0.87 1.41 2.26 2.93 4.57 5.23 6.1 1 6.81 7.58 8.04 8.62 9.01 9.99 10.68 11.01 17.69 18.31 18.70 19.27 19.64 20.20 20.88 1 89 Lystt Samp1e# Vol Drain NO3-N Load cum cum liters mm ppm kg/ha drain load (mm) kg/ha 10125191 2 27 22.13 5.94 12.78 0.759 166.39 21.64 10/26/91 2 28 22.46 6.03 10.16 0.612 172.42 22.25 10/26/91 2 29 22.39 6.01 8.43 0.507 178.43 22.76 10127191 2 30 22.30 5.98 12.11 0.725 184.41 23.48 10127191 2 31 22.41 6.01 13.03 0.784 190.43 24.26 10128191 2 32 22.42 6.02 6.90 0.415 196.44 24.68 10/28/91 2 33 22.26 5.97 8.38 0.501 202.42 25.18 10129191 2 34 22.20 5.96 10.25 0.61 1 208.37 25.79 10131191 2 35 22.17 5.95 11.06 0.658 214.32 26.45 1 1101191 2 36 22.26 5.97 10.85 0.648 220.30 27.10 1 1102191 2 37 22.20 5.96 14.50 0.864 226.25 27.96 1 1103191 2 35 22.17 5.95 12.02 0.715 232.20 28.67 11106191 11 36 22. 16 5.95 12.00 0.714 238.15 29.39 1 1109191 11 37 22.14 5.94 12.00 0.713 244.09 30.10 1 1115191 2 38 22.13 5.94 12.85 0.763 250.03 30.86 1 1122191 2 39 22.29 5.98 10.23 0.612 256.01 31.48 1 1123191 2 40 22.21 5.96 9.26 0.552 261.97 32.03 1 1124191 2 41 22.17 5.95 9.20 0.547 267.92 32.58 1 1127191 2 42 22.15 5.94 12.02 0.714 273.86 33.29 12101191 2 43 22.13 5.94 15.22 0.904 279.80 34.19 12106191 2 44 22.13 5.94 13.70 0.814 285.74 35.01 12110191 2 - 22.17 5.95 9.80 0.583 291.69 35.59 12112191 2 45 22.18 5.95 18.36 1.093 297.64 36.68 12114191 2 46 22.15 5.94 14.75 0.877 303.59 37.56 12/16/91 2 47 22.17 5.95 12.83 0.763 309.54 38.32 12120191 2 48 22.14 5.94 8.95 0.532 315.48 38.86 12124191 2 49 22.13 5.94 7.12 0.423 321.42 39.28 01102192 2 50 22. 13 5.94 1 1.75 0.698 327.35 39.98 01110192 2 51 22.16 5.95 5.95 0.354 333.30 40.33 01114192 2 52 22.13 5.94 9.16 0.544 339.24 40.87 01119192 2 53 22.13 5.94 7.26 0.431 345.18 41.30 01125192 2 54 22.13 5.94 10.87 0.646 351.12 41.95 02102192 2 55 22.14 5.94 6.91 0.411 357.06 42.36 02110192 2 56 22.13 5.94 1 1.60 0.689 363.00 43.05 02123192 2 57 44.34 1 1.90 8.90 1.059 374.90 44.1 1 02126192 2 58 22.14 5.94 6.90 0.410 380.84 44.52 03102192 2 59 22.13 5.94 7.40 0.439 386.78 44.96 03109192 2 60 22.13 5.94 13.30 0.790 392.71 45.75 03116192 2 61 22.15 5.94 10.30 0.612 398.66 46.36 03120192 2 62 22.13 5.94 9.08 0.539 404.60 46.90 03124192 2 63 22.13 5.94 1 1.82 0.702 410.54 47.60 03130192 2 64 22.14 5.94 4.71 0.280 416.48 47.88 04102192 2 65 22.14 5.94 8.16 0.485 422.42 48.37 04107192 2 66 22.13 5.94 12.72 0.755 428.36 49.12 # Estimates were made in drainage amount. 04/12/92 04/ 19/92 04/3 0/92 05/1 3/92 050692 06/ 1 0/92 06/25/92 07/ 1 1/92 07/ 1 6/92 07/ 1 7/92 07/20/92 07/22/92 07/24/92 07/24/92 07/25/92 07/27/ 92 07/3 0/92 08/0 1/92 08/03/92 08/05/92 08/08/92 08/ 1 5/92 08/25/92 09/01/92 09/08/92 09/ 1 0/92 09/1 1/92 09/ 1 1/92 09/ 1 3/92 09/ 1 5/92 09/1 6/92 09/16/92 09/ 1 7/92 09/ 1 7/92 09/ 1 8/92 09/20/92 09/23/92 09/28/92 10/06/92 10/ 1 5/92 10/ 16/92 1 0/ 16/92 10/ 1 7/92 10/ 1 8/92 Lys# Sample# NNNNNNNNNNNMNNNMNNNNNNNNNNMNNNNMNNNNNNMNNNNN 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82.00 83.00 84.00 85.00 86.00 87.00 88.00 89.00 90.00 91.00 92.00 93.00 Vol liters 22.13 22.13 22.13 22.13 22.13 22. 12 22. 12 22.12 22.22 22.18 22.23 22. 16 22.33 22.31 22.21 22.17 22. 18 22.24 22. 19 22. 16 22. 14 22.13 22.13 22. 16 22.13 22.36 22.31 22.24 22. 19 22.17 22.92 22.44 22.69 22.50 22.22 22. 19 22. 16 22. 14 22. 13 22.19 22.32 22.31 22.29 22.22 # Estimates were made in drainage amount Drain mm 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.96 5.95 5.97 5.95 5.99 5.99 5.96 5.95 5.95 5.97 5.95 5.95 5.94 5.94 5.94 5.95 5.94 6.00 5.99 5.97 5.95 5.95 6.15 6.02 6.09 6.04 5.96 5.95 5.95 5.94 5 .94 5.95 5.99 5.99 5.98 5.96 190 NO3-N PPm 10.73 10.65 5.21 8.95 5.72 4.57 6.39 10.10 2.74 6.51 6.44 4.14 6.06 3.43 1 1.46 10.21 9.86 10.26 13.27 8.72 7.72 8.21 l 1.76 17.78 17.31 16.07 15.83 kg/ha 0.637 0.632 0.309 0.532 0.340 0.271 0.379 0.600 0.163 0.387 0.384 0.246 0.363 0.205 0.000 0.000 0.682 0.609 0.587 0.610 0.788 0.518 0.458 0.488 0.698 1.067 1.036 0.959 0.943 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 cum (min) 434.30 440.23 446.17 452.1 1 458.05 463.99 469.92 475.86 481.82 487.77 493.74 499.69 505.68 51 1.66 517.62 523.57 529.53 535.49 541.45 547.40 553.34 559.28 565.21 571.16 577.10 583.10 589.09 595.06 601.01 606.96 613.1 1 619.13 625.22 631.26 637.22 643.18 649.12 655.06 661.00 666.96 672.95 678.93 684.92 690.88 cum load kg/ha 49.76 50.39 50.70 51.23 51.57 51.84 52.22 52.82 52.99 53.37 53.76 54.00 54.37 54.57 54.57 54.57 55.25 55.86 56.45 57.06 57.85 58.37 58.83 59.31 60.01 61.08 62.1 1 63.07 64.02 64.02 64.02 64.02 64.02 64.02 64.02 64.02 64.02 64.02 64.02 64.02 64.02 64.02 64.02 64.02 10/20/92 10/22/92 10/27/92 1 1/03/92 1 1/03/92 1 1/04/92 1 1/06/92 1 1/09/92 1 1/13/92 1 1/13/92 1 1/14/92 1 l/14/92 1 1/16/92 1 1/18/92 1 1/21/92 1 1/25/92 1 1/27/92 1 1/30/92 12/06/92 12/15/92 12/19/92 12/23/92 12/28/92 01/01/93 01/02/93 01/03/93 01/04/93 01/05/93 01/05/93 01/05/93 01/06/93 01/07/93 01/08/93 01/10/93 01/ 1 4/93 01/21/93 01/26/93 01/28/93 01/3 1/93 02/06/93 02/16/93 03/03/93 03/26/93 04/07/93 Lys# Sample# NNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNN 94.00 95.00 96.00 97.00 98.00 99.00 100.00 101.00 102.00 103.00 104.00 105.00 106.00 107.00 108.00 109.00 110.00 11 1.00 112.00 113.00 114.00 115.00 116.00 1 17.00 118.00 119.00 ? n ? n ? 11 120.00 ? 11 121.00 122.00 123.00 124.00 Vol liters 22.19 22.16 22.14 22.32 22.44 22.22 22.21 22.16 22.31 22.40 22.32 22.24 22. 19 22.17 22.15 22. 19 22.17 22.15 22.16 22.13 22.23 22.15 22.14 22.52 22.25 22.19 22.43 22.48 22.58 22.72 22.31 22.24 22.19 22.16 22. 14 22.13 22.19 22.21 22.15 22.13 22.13 22.13 22.13 22.14 # Estimates were made in drainage amount. Drain mm 5.95 5.95 5.94 5.99 6.02 5.96 5.96 5.95 5.99 6.01 5.99 5 .97 5.95 5.95 5.94 5.95 5.95 5.94 5.95 5.94 5.97 5.94 5.94 6.04 5.97 5.95 6.02 6.03 6.06 6.10 5.99 5.97 5.95 5.95 5.94 5.94 5.95 5.96 5.94 5.94 5.94 5.94 5.94 5.94 191 NO3-N PPm 9.00 7.19 6.95 8.56 6.47 6.23 5.62 4.62 6.90 6.98 6.09 6.13 5.85 5.57 5.36 5.35 5.44 6.81 7.28 4.67 3.27 4.43 6.15 4.32 5.97 3.32 3.77 4.13 3.49 3.58 2.67 Load kg/ha 0.000 0.000 0.000 0.539 0.433 0.414 0.510 0.385 0.373 0.338 0.277 0.412 0.416 0.362 0.364 0.000 0.000 0.000 0.348 0.331 0.320 0.318 0.000 0.000 0.000 0.324 0.410 0.439 0.283 0.199 0.265 0.367 0.257 0.355 0.197 0.000 0.000 0.000 0.224 0.000 0.245 0.207 0.213 0.159 cum (mm) 696.83 702.78 708.72 714.71 720.73 726.70 732.66 738.60 744.59 750.60 756.59 762.56 768.51 774.46 780.41 786.36 792.31 798.25 804.20 810.14 816.1 1 822.05 827.99 834.03 840.00 845.96 85 1.98 858.01 864.07 870.17 876.15 882.12 888.08 894.02 899.97 905.90 91 1.86 917.82 923.76 929.70 935.64 941.58 947.52 953.46 cum load kg/ha 64.02 64.02 64.02 64.56 64.99 65.40 65.91 66.30 66.67 67.01 67.29 67.70 68.1 1 68.48 68.84 68.84 68.84 68.84 69.19 69.52 69.84 70.16 70.16 70.16 70.16 70.48 70.89 71.33 71 .61 71.81 72.08 72.44 72.70 73.06 73.25 73.25 73.25 73.25 73.48 73.48 73.72 73.93 74.14 74.30 192 Lys# Sample# Vol Drain NO3-N Load cum cum liters mm ppm kg/ha drain load (mm) kg/ha 04/12/93 2 125.00 22.13 5.94 4.45 0.264 959.40 74.57 04/18/93 2 22.18 5.95 0.000 965.35 74.57 04/21/93 2 22.41 6.01 0.000 971.36 74.57 06/02/93 2 26.07 7.00 0.000 978.36 74.57 06/08/93 2 22.38 6.01 0.000 984.36 74.57 06/09/93 2 22.44 6.02 0.000 990.39 74.57 06/09/93 2 22.90 6.15 0.000 996.53 74.57 06/10/93 2 22.70 6.09 0.000 1002.62 74.57 06/10/93 2 2.32 0.62 0.000 1003.25 74.57 06/1 1/93 2 22.34 5.99 0.000 1009.24 74.57 06/12/93 2 22.20 5.96 0.000 1015.20 74.57 06/14/93 2 126.00 22.18 5.95 4 0.216 1021.15 74.78 06/16/93 2 127.00 22.17 5.95 3 0.190 1027.10 74.97 06/20/93 2 22.17 5.95 0.000 1033.05 74.97 06/24/93 2 128.00 22.15 5.94 3 0.192 1038.99 75. 16 07/01/93 2 22.13 5.94 0.000 1044.93 75.16 07/1 1/93 2 129.00 22.13 5.94 5 0.278 1050.87 75.44 10/01/93 2 130.00 0.00 6 0.000 1050.87 75 .44 10/01/93 2 131.00 0.00 7 0.000 1050.87 75 .44 10/01/93 2 132.00 - 0.00 12 0.000 1050.87 75.44 10/04/93 2 200.00 12 3.22 1 1 0.358 1054.09 75.80 10/07/93 2 201.00 15 4.03 1 1 0.437 1058.12 76.24 10/08/93 2 202.00 6 1.61 1 1 0.175 1059.73 76.41 10/1 1/93 2 203.00 10 2.68 1 1 0.293 1062.41 76.70 10/13/93 2 204.00 8 2.01 10 0.194 1064.42 76.90 10/15/93 2 205.00 1 1 2.95 10 0.308 1067.37 77.21 10/18/93 2 206.00 39 10.47 1 1 1.182 1077.84 78.39 10/20/93 2 207.00 39 10.47 13 1.370 1088.31 79.76 10/21/93 2 208.00 12 3.22 13 0.415 1091.53 80.17 10/22/93 2 209.00 1 1 2.95 14 0.417 1094.48 80.59 10/25/93 2 210.00 37 9.93 11 1.133 1104.41 81.72 10/28/93 2 21 1.00 22 5.90 1 1 0.675 1 1 10.31 82.40 10/31/93 2 212.00 15 4.03 12 0.494 1114.34 82.89 11/04/93 2 213.00 13 3.49 13 0.455 1117.82 83.35 11/10/93 2 214.00 14 3.76 9 0.356 1121.58 83.70 12/21/93 2 215.00 13 3.49 - 10 0.344 1125.07 84.05 01/03/94 2 216.00 35 9.39 1 1 0.996 1134.46 85.04 02/23/94 2 217.00 100 26.84 1 1 3.067 1 161.30 88.11 0.00 0.00 0 07/10/89 3 22. 12 5.94 1.27 0.08 5.94 0.08 10/30/89 3 20.00 5.37 1.61 0.09 1 1.30 0.17 11/01/89 3 22.12 5.94 11.64 0.74 17.24 0.91 # Estimates were made in drainage amount. 1 1/02/89 1 1/02/89 1 1/03/89 1 1/04/89 1 1/05/89 1 1/06/ 89 1 1/07/89 1 1/08/89 1 1/10/89 1 l/ 1 1/89 1 1/13/89 1 1/15/89 1 1/17/89 1 1/18/89 1 l/ 1 9/89 1 1/21/89 1 1/22/89 1 l/25/89 1 1/28/89 1 1/30/ 89 12/05/89 12/10/89 12/18/89 01/04/90 01/28/90 02/01/90 02/04/90 02/08/90 02/12/90 02/16/90 02/22/90 02/25/90 02/26/90 02/28/90 03/02/90 03/05/90 03/08/90 03/10/90 03/12/90 03/13/90 03/14/90 03/15/90 03/17/90 03/19/90. Lys# Sample# uwwwwwwuwuwwwwwwuwuuwwwwwwwwwuwwwwwwwwwwwwww Vol liters 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.15 22.12 22.12 22.12 22.18 22.12 22.12 22.13 22.12 22.12 22.12 22.12 22.12 22.12 22.25 22.12 22.12 # Estimates were made in drainage amount. Drain mm 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5 .94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.95 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.97 5.94 5.94 193 NO3-N PPm 14.00 10.29 12.1 1 20.36 11.63 22.41 24.32 25.85 27.84 31.79 35.07 22.31 30.73 20.07 26.63 38.30 39.72 39.54 31.15 28.12 36.30 32.56 32.56 28.82 44.41 9.19 15.87 26.17 28.30 32.83 26.20 13.99 17.12 35.69 25.08 38.53 11.99 ‘ 11.71 14.72 34.45 1 1.58 13.94 28.03 22.47 Load kg/ha 0.89 0.65 0.77 1.29 0.74 1.42 1.54 1.64 1.77 2.02 2.23 1.42 1.95 1.27 1.69 2.43 2.52 2.51 1.98 1.79 2.30 2.07 2.07 1.83 2.82 0.58 1.01 1.66 1.80 2.08 1.66 0.89 1.09 2.27 1.59 2.45 0.76 0.74 0.93 2.19 0.74 0.89 1.78 1.43 (turn) 23.17 29.1 1 35.05 40.98 46.92 52.85 58.79 64.73 70.66 76.60 82.53 88.47 94.41 100.34 106.28 1 12.21 1 18.15 124.09 130.02 135.96 141.89 147.83 153.77 159.70 165.64 171.57 177.51 183.45 189.39 195.33 201.26 207.21 213.15 219.09 225.02 230.96 236.90 242.83 248.77 254.70 260.64 266.61 272.55 278.48 cum load kg/hil 1.80 2.45 3.22 4.52 5.25 6.68 8.22 9.86 11.63 13.65 15.88 17.29 19.24 20.52 22.21 24.64 27.16 29.67 31.65 33.44 35.74 37.81 39.88 41.70 44.52 45.1 1 46.12 47.78 49.58 51.66 53.32 54.22 55.30 57.57 59.16 61.61 62.37 63.11 64.05 66.23 66.97 67.86 69.64 71.07 “.1... 03/21/90 03/25/90 03/30/90 04/07/90 04/12/90 04/16/90 04/20/90 04/23/90 04/26/90 04/29/90 05/03/90 05/08/90 05/ 14/90 05/ 16/90 05/ 1 7/90 05/ 1 8/90 05/19/90 05/20/90 05/21/90 05/22/90 05/23/90 05/25/90 05/28/90 05/ 3 1/90 06/05/90 06/ 1 1/90 06/20/90 07/08/90 08/05/90 08/ 17/90 08/22/90 08/27/90 09/01/90 09/08/90 10/ 10/90 10/12/90 10/ 13/90 10/ 15/90 10/ 1 7/90 1 0/24/90 1 1/02/90 1 1/06/90 1 1/07/90 1 1/08/90 Lys# Sample# woouwwwwwwuwwuwuwwwwuwuwuwuwwwwwwuwwwwwwwuuww Vol liters 22.12 22.15 22.14 22.14 22.14 22.15 22.15 22.15 22.16 22.15 22.15 22.14 22.17 22.21 22.36 22.29 22.28 22.26 22.31 22.21 22.26 22.23 22.15 22.15 22.15 22.14 22.13 22. 12 22. 12 22.12 22.17 22.15 22.14 22.13 23.24 22.17 22.12 22. 12 22.12 22.12 22.13 22.28 22.25 22.21 # Estimates were made in drainage amount. Drain mm 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.95 5.94 5.94 5.94 5.95 5.96 6.00 5.98 5.98 5.97 5.99 5.96 5.97 5.97 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.95 5.94 5.94 5.94 6.24 5.95 5.94 5.94 5.94 5.94 5.94 5.98 5.97 5.96 194 NO3-N 131”“ 24.61 21.85 24.99 32.15 21.31 9.34 12.58 17.94 18.54 15.57 21.91 10.65 15.00 18.85 19.86 20.31 19.90 20.01 10.90 14.17 8.59 16.55 17.91 15.25 14.59 20.07 15.60 1 1.68 12.75 1 1.21 15.26 1 1.68 16.43 18.60 24.15 30.87 37.00 45.00 52.00 59.00 60.04 55.38 55.00 55.00 Load kg/ha 1.56 1.39 1.59 2.04 1.35 0.59 0.80 1.14 1.18 0.99 1.39 0.68 0.95 1.20 1.27 1.30 1.27 1.28 0.70 0.90 0.55 1.06 1.14 0.97 0.93 1.28 0.99 0.74 0.81 0.71 0.97 0.74 1.04 1.18 1.61 1.96 2.35 2.86 3.30 3.75 3.81 3.54 3.51 3.51 cum drain (M) 284.42 290.36 296.30 302.25 308.19 314.13 320.07 326.02 331.97 337.91 343.85 349.79 355.74 361.70 367.70 373.69 379.66 385.64 391.63 397.59 403.56 409.52 415.47 421.41 427.36 433.30 439.24 445.17 451.1 1 457.04 462.99 468.94 474.88 480.82 487.05 493.00 498.94 504.88 510.81 516.75 522.69 528.66 534.64 540.60 cum load kg/ha 72.63 74.02 75.61 77.65 79.00 79.60 80.40 81.54 82.72 83.71 85.10 85.78 86.73 87.93 89.21 90.51 91.78 93.06 93.76 94.66 95.21 96.26 97.40 98.37 99.30 100.58 101.57 102.31 103.12 103.83 104.80 105.54 106.59 107.77 109.38 1 l 1.34 113.69 116.55 119.85 123.60 127.41 130.95 134.47 137.97 1 1/10/90 1 1/13/90 1 1/20/90 1 1/28/90 1 1/28/90 12/01/90 12/04/90 01/23/91 02/01/91 03/06/91 03/08/91 04/05/91 04/16/91 04/16/91 04/17/91 04/18/91 04/20/91 04/21/91 04/23/91 04/24/91 04/28/91 04/30/91 05/03/91 05/06/91 05/13/91 05/28/91 06/05/91 06/08/91 06/14/91 06/29/91 07/03/91 09/12/91 10/05/91 10/06/91 10/07/91 10/09/91 10/ 1 1/91 10/14/91 10/21/91 10/25/91 10/26/91 10/26/91 10/26/91 10/26/91 Lys# Samp1e# wwwwwwwwwwwwuwwwwwwwwwwwwwwwwwwwwwuwuwwwwuww Vol liters 22.17 22. 15 22.13 22.14 22.13 22. 12 22. 12 161.36 87.94 44.72 22.15 22. 14 22.55 22.85 22.25 22.23 22.18 22.22 22.28 22.17 22.18 22.21 22.21 22. 16 22.14 22.15 44.46 22. 18 22.15 22. 12 1 12.43 22.13 22.23 22.25 22.21 22.18 22.16 22. 14 22.14 22.58 23.11 23.49 22.69 22.84 # Estimates were made in drainage amount. Drain mm 5.95 5.94 5.94 5.94 5.94 5.94 5.94 43.30 23.60 12.00 5.94 5.94 6.05 6.13 5.97 5.97 5.95 5.96 5.98 5.95 5.95 5.96 5.96 5.95 5.94 5.94 1 1.93 5.95 5.94 5.94 30.17 5.94 5.97 5.97 5.96 5.95 5.95 5.94 5.94 6.06 6.20 6.30 6.09 6.13 195 NO3-N PPm 55.00 67.28 65.80 65.80 62.30 51.10 49.40 24.40 24.40 24.40 8.20 8.46 1 1.24 13.90 9.79 12.19 12.00 12.00 14.70 6.45 22.63 14.26 23.10 1 1.54 14.60 13.29 1 1.56 10.58 14.12 14.53 1 1.38 7.06 15.00 15.00 15.00 15.00 37.82 30.00 23.67 20.00 20.00 20.00 20.00 20.00 Load kg/ha 3.50 4.28 4.18 4.18 3.96 3.24 3.14 1 1.30 6.16 3.13 0.52 0.54 0.73 0.91 0.63 0.78 0.76 0.77 0.94 0.41 1.44 0.91 1.47 0.73 0.93 0.84 1.48 0.67 0.90 0.92 3.67 0.45 0.96 0.96 0.96 0.95 2.41 1.91 1.50 1.30 1.33 1.35 1.30 1.31 cum drain (nun) 546.55 552.49 558.43 564.37 570.31 576.24 582.18 625.48 649.08 661.08 0.00 5.94 1 1.99 18.12 24.10 30.06 36.01 41.98 47.95 53.90 59.86 65.82 71.78 77.72 83.66 89.61 101.54 107.49 1 13.44 1 19.37 149.54 155.48 161.45 167.42 173.38 179.33 185.28 191.22 197.16 203.22 209.42 215.72 221.81 227.94 cum load kg/ha 141.47 145.75 149.93 154.1 1 158.07 161.3 1 164.45 175.75 181.91 185.04 0.00 0.54 1.27 2.18 2.80 3.58 4.34 5.1 1 6.05 6.46 7.90 8.81 10.28 1 1.02 1 1.94 12.79 14.26 14.94 15.84 16.76 20.43 20.88 21.84 22.79 23.75 24.71 27.1 1 29.02 30.52 31.82 33.14 34.49 35.80 37.1 1 196 Lys# Samp1e# Vol Drain NO3-N Load cum cum liters mm ppm kg/ha drain load (mm) kg/ha 10/27/91 3 22.42 6.02 20.00 1.29 233.96 38.39 10/27/91 3 22.91 6.15 20.00 1.32 240.1 1 39.71 10/27/91 3 22.78 6.1 1 20.00 1.31 246.22 41.02 10/28/91 3 22.31 5.99 20.00 1.28 252.21 42.30 10/29/91 3 22.24 5.97 20.00 1.28 258.17 43.57 10/30/91 3 22.18 5.95 20.00 1.27 264.13 44.85 10/31/91 3 22.45 6.02 23.40 1.51 270.15 46.36 1 1/01/91 3 22.26 5.97 48.25 3.08 276.12 49.44 1 1/02/91 3 22.21 5.96 20.00 1.28 282.08 50.71 1 1/03/91 3 22.18 5.95 20.00 1.27 288.04 51.99 1 1/06/91 3 22. 18 5.95 20.00 1.27 293.99 53.26 1 1/10/91 3 22.14 5.94 20.00 1.27 299.93 54.53 1 1/21/91 3 22.21 5.96 20.00 1.28 305.89 55.81 1 1/22/91 3 22.55 6.05 20.00 1.29 311.94 57.10 1 1/23/91 3 22.23 5.97 20.00 1.28 317.91 58.38 1 1/24/91 3 22.27 5.98 20.00 1.28 323.88 59.66 1 1/27/91 3 22. 15 5.94 20.00 1.27 329.83 60.93 12/02/91 3 22.14 5.94 20.00 1.27 335.77 62.20 12/07/91 3 22.15 5.94 28.01 1.78 341.71 63.98 12/09/91 3 22.21 5.96 20.00 1.28 347.67 65.25 12/1 1/91 3 22.22 5.96 20.00 1.28 353.63 66.53 12/13/91 3 22.21 5.96 20.00 1.28 359.59 67.80 12/15/91 3 22.18 5.95 20.00 1.27 365.55 69.08 12/17/91 3 22.16 5.95 20.00 1.27 371.49 70.35 12/21/91 3 22.15 5.94 20.00 1.27 377.44 71.62 12/28/91 3 22. 14 5.94 14.97 0.95 383.38 72.57 01/06/92 3 22. 14 5.94 8.98 0.57 389.32 73.14 01/10/92 3 22.15 5.94 13.33 0.85 395.26 73.99 01/15/92 3 22. 15 5.94 10.54 0.67 401.21 74.66 01/20/92 3 22.15 5.94 14.88 0.95 407.15 75.61 01/26/92 3 22. 17 5.95 14.97 0.95 413.10 76.56 01/30/92 3 22.15 5.94 8.98 0.57 419.05 ' 77.13 02/04/92 3 22. 14 5.94 13.33 0.85 424.99 77.98 02/1 1/92 3 22. 14 5.94 10.54 0.67 430.93 78.65 02/18/92 3 22. 15 5.94 14.88 0.95 436.87 79.59 02/21/92 3 22.20 5.96 14.97 0.95 442.83 80.55 02/22/92 3 22.18 5.95 10.00 0.64 448.78 81.18 02/25/92 3 22. 16 5.95 10.00 0.64 454.73 81.82 02/28/92 3 22.15 5.94 8.98 0.57 460.67 82.39 03/05/92 3 22. 16 5.95 10.00 0.64 466.62 83.03 03/12/92 3 22. 14 5.94 8.15 0.52 472.56 83.55 03/16/92 3 22.16 5.95 4.12 0.26 478.51 83.81 03/19/92 3 22.22 5.96 6.59 0.42 484.47 84.23 03/20/92 3 22.19 5.95 10.00 0.64 490.42 84.86 # Estimates were made in drainage amount. 03/23/92 03/27/92 03/30/92 04/03/92 04/07/92 04/12/92 04/2 1/92 05/04/92 05/20/92 06/12/92 06/26/92 07/ 1 5/92 07/16/92 07/1 7/92 07/19/92 07/2 1/92 07/24/92 07/24/92 07/26/92 07/28/92 08/01/92 08/03/92 08/07/92 08/ 1 5/92 08/3 1/92 09/08/92 09/ 10/92 09/10/92 09/1 1/92 09/ 1 1/92 09/ 13/92 09/ 1 5/92 09/15/92 09/16/92 09/ 16/92 09/ 16/92 09/16/92 09/1 7/92 09/17/92 09/19/92 09/22/92 09/27/92 10/06/92 10/ 1 5/92 # Estimates were made in drainage amount. Lys# Samp1e# wwwwwwwwwwwwwwwwwuwwwuwwuwwwwwwwwwwwwwwwuwww Vol liters 22. 16 22. 15 22. 16 22.15 22.15 22. 14 22. 13 22.12 22.12 22. 12 22.13 22.22 22.24 22.19 22.25 22.16 22.28 22.25 22.26 22.15 22.15 22. 18 22. 18 22. 13 22.15 22.13 22.60 22.48 22.37 22.27 22.25 22.92 25.43 23.40 23.71 22.81 22.49 22.34 22.23 22.17 22.15 22.14 22. 14 22.28 Drain mm 5.95 5.94 5.95 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.96 5.97 5.95 5.97 5.95 5.98 5.97 5.97 5.94 5.94 5.95 5 .95 5.94 5.94 5.94 6.06 6.03 6.00 5.98 5.97 6.15 6.82 6.28 6.36 6.12 6.04 5.99 5.97 5.95 5.94 5.94 5.94 5.98 197 NO3-N PPm 10.51 3.76 10.65 10.00 10.00 9.03 10.00 10.00 0.15 10.00 4.33 5.45 2.41 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.48 12.77 9.1 1 9.29 10.00 10.00 18.67 21.84 25.42 28.13 30.13 32.44 30.00 30.00 30.00 30.00 38.00 38.52 36.78 46.30 32.93 37.08 37.81 Load cum kg/ha 'drain (mm) 0.67 496.37 0.24 502.32 0.68 508.26 0.64 514.21 0.64 520.15 0.57 526.09 0.64 532.03 0.63 537.97 0.01 543.90 0.63 549.84 0.28 555.78 0.35 561.74 0.15 567.71 0.51 573.66 0.51 579.63 0.51 585.58 0.51 591.56 0.51 597.53 0.51 603.50 0.51 609.45 0.51 615.39 0.54 621.34 0.81 627.30 0.58 633.23 0.59 639.18 0.64 645.12 0.65 651.18 1.20 657.21 1.40 663.22 1.62 669.19 1.80 675.16 1.98 681.31 2.37 688.14 2.02 694.42 2.04 700.78 1.96 706.90 1.94 712.94 2.44 718.93 2.46 724.90 2.34 730.85 2.94 736.79 2.09 742.73 2.36 ‘ 748.67 2.42 754.65 cum load kg/ha 85.53 85.77 86.45 87.09 87.72 88.30 88.93 89.57 89.58 90.21 90.49 90.83 90.99 91.50 92.01 92.52 93.03 93.54 94.05 94.56 95.07 95.61 96.42 97.00 97.59 98.22 98.87 100.08 101.48 103.10 104.90 106.88 109.25 1 1 1.27 1 13.31 1 15.27 1 17.21 1 19.65 122.10 124.44 127.39 129.48 131.84 134.26 10/16/92 10/16/92 10/17/92 10/18/92 10/19/92 10/22/92 10/29/92 1 1/03/92 1 1/04/92 1 1/05/92 1 1/08/92 1 1/13/92 1 1/13/92 1 1/13/92 1 1/14/92 1 1/15/92 1 1/17/92 1 1/21/92 1 1/25/92 1 1/28/92 12/04/92 12/16/92 12/20/92 01 /04/93 01/04/93 01/05/93 01/05/93 01/05/93 01/06/93 01/07/93 01/08/93 01/12/93 01.’20/93 01/25/93 01/28/93 02/01/93 02/09/93 03/03/93 03/20/93 03/20/93 03/21/93 03/22/93 03/22/93 06/02/93 Lys# Sample# wwwwwwwwwwwwwwwuwwwuuwwwwwwwuwwwuwwwuwwwwuww Vol liters 22.38 22.31 22.30 22.25 22.29 22.15 22.15 22.28 22.25 22.21 22.17 22.55 22.46 22.50 22.31 22.32 22.19 22.17 22. 19 22.18 22.15 22.15 22. 18 134.04 22.73 23.21 22.48 22.41 22.35 22.25 22.20 22. 17 22.14 22. 18 22.18 22.20 22. 14 22. 13 22.36 22.96 22.33 26.65 22.52 23.12 # Estimates were made in drainage amount. Drain mm 6.01 5.99 5.98 5.97 5.98 5.94 5.94 5.98 5.97 5.96 5.95 6.05 6.03 6.04 5.99 5.99 5.95 5.95 5.95 5.95 5.94 5.94 5.95 35.97 6.10 6.23 6.03 6.01 6.00 5.97 5.96 5.95 5.94 5.95 5.95 5.96 5.94 5.94 6.00 6.16 5.99 7.15 6.04 6.20 198 NO3-N PPm 32.18 28.13 34.91 29.53 29.40 18.64 20.04 23.50 20.59 27.21 20.36 26.00 27.84 25.00 25.00 25.00 25.00 25.00 30.44 21.62 29.20 23.35 25.03 18.25 5.80 5.81 5.81 7.62 5.71 3.58 5.87 5.78 5.34 6.52 6.15 5.48 3.67 4.67 6.47 5.65 6.97 0.52 0.93 1 . 15 Load kg/ha 2.07 1.80 2.23 1.89 1.88 1.19 1.27 1.50 1.31 1.73 1.30 1.68 1.79 1.61 1.60 1.60 1.59 1.59 1.94 1.38 1.86 1.48 1.59 7.02 0.38 0.39 0.37 0.49 0.37 0.23 0.37 0.37 0.34 0.42 0.39 0.35 0.23 0.30 0.42 0.37 0.45 0.04 0.06 0.08 cum drain (min) 760.66 766.65 772.63 778.60 784.58 790.53 796.47 802.45 808.42 814.38 820.33 826.38 832.41 838.45 844.43 850.42 856.38 862.33 868.28 874.23 880.18 886.12 892.07 928.04 934.14 940.37 946.40 952.42 958.42 964.39 970.34 976.29 982.23 988.19 994.14 1000.10 1006.04 101 1.98 1017.98 1024.14 1030.13 1037.28 1043.32 1049.53 cum load kg/ha 136.32 138.12 140.36 142.24 144.13 145.31 146.58 148.09 149.40 151.14 152.43 154.12 155.91 157.53 159.13 160.73 162.32 163.91 165.85 167.23 169.08 170.57 172.16 179.18 179.56 179.95 180.32 180.81 181.18 181.41 181.78 182.15 182.49 182.90 183.30 183.64 183.88 184.17 184.59 184.96 185.41 185.45 185.51 185.59 199 Lys# Sample# Vol Drain NO3-N Load cum cum liters mm ppm kg/ha drain load (mm kg/ha 06/08/93 3 23.04 6.18 0.88 0.06 1055.71 185.64 06/08/93 3 23.02 6.18 2.86 0.19 1061.89 185.83 06/09/93 3 23.38 6.27 2.21 0.15 1068.16 185.98 06/09/93 3 22.69 6.09 13.59 0.89 1074.25 186.87 06/09/93 3 23.14 6.21 0.00 1080.46 186.87 06/09/93 3 22.51 6.04 0.00 1086.50 186.87 06/10/93 3 22.37 6.00 0.00 1092.51 186.87 06/10/93 3 22.28 5.98 0.00 1098.48 186.87 06/1 1/93 3 31 12 22.21 5.96 0.00 1104.44 186.87 06/13/93 3 31 13 22. 17 5.95 0.00 1 110.39 186.87 06/17/93 3 31 14 22.15 5.94 10.07 0.64 11 16.34 187.51 06/21/93 3 3115 22.15 5.94 5.63 0.36 1 122.28 187.86 06/27/93 3 31 16 22. 14 5.94 12.97 0.82 1128.22 188.69 07/01/93 3 3117 22. 12 5.94 10.63 0.67 1134.16 189.36 07/02/93 ? dat 31 18 0.00 62.14 0.00 1134.16 189.36 e 07/03/93 ?dat 31 19 0.00 49 0.00 1134.16 189.36 e 10/04/93 3 200 20 5.37 63 3.59 1 139.53 192.96 10/07/93 3 201 17 4.56 62 3.04 1 144.09 195.99 10/08/93 3 202 6 1.61 63 1.08 1 145.70 197.08 10/1 1/93 3 203 10 2.68 62 1.77 1148.38 198.84 10/13/93 3 204 13 3.49 60 2.24 1151.87 201.08 10/15/93 3 205 13 3.49 48 1.80 1155.36 202.89 10/18/93 3 206 36 9.66 46 4.80 1 165.02 207.69 10/20/93 3 207 34 9.12 47 4.59 1174.14 212.28 10/21/93 3 208 11 2.95 38 1.21 1177.10 213.49 10/22/93 3 209 1 1 2.95 40 1.27 1 180.05 214.76 10/25/93 3 210 36 9.66 41 4.26 1189.71 219.02 10/28/93 3 21 1 23 6.04 35 2.29 1 195.75 221.31 10/31/93 3 212 13 3.35 33 1.19 1199.10 222.50 1 1/04/93 3 213 15 4.03 41 1.75 1203.13 224.26 11/10/93 3 214 10 2.68 19 0.53 1205.81 224.79 12/21/93 3 215 15 4.03 31 1.32 1209.83 226.1 1 01/03/94 3 216 30 8.05 19 1.66 1217.88 227.77 02/23/94 3 217 100 26.84 5 1.33 1244.72 229.10 0 0 0 08/09/89 4 2 44.24 1 1.87 0.71 0.08 1 1.87 0.08 10/29/89 4 3 36.01 9.66 2.23 0.22 21.54 0.30 1 1/01/89 4 4 44.24 1 1.87 3.22 0.38 33.41 0.68 1 1/01/89 4 5 44.24 1 1.87 5.09 0.60 45.28 1.29 1 1/02/89 4 6 44.24 1 1.87 6.47 0.77 57.15 2.05 1 1/03/89 4 7 44.24 1 1.87 6.14 0.73 69.02 2.78 # Estimates were made in drainage amount. 1 1/07/89 1 1/14/89 1 1/17/89 1 1/19/89 1 1/23/89 12/01/89 12/17/89 01/20/90 01/30/90 02/06/90 02/09/90 02/13/90 02/21/90 02/22/90 02123/90 02/23/90 02/24/90 02/26/90 02/27/90 03/02/90 03/05/90 03/09/90 03/09/90 03/10/90 03/1 1/90 03/13/90 03/15/90 03/17/90 03/20/90 03/25/90 04/03/90 04/12/90 04/15/90 04/18/90 04/21/90 04/24/90 04/27/90 05/01/90 05/08/90 05/16/90 05/17/90 05/18/90 05/18/90 05/19/90 # Estimates were made in drainage amount. Lys# Samp1e# bhbkhhbhhbhhhbééhkhbbbhfibbhhbhbhbfibfikfifiéhhhh 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 Vol liters ‘ 44.24 44.24 44.24 44.24 44.24 44.24 44.24 44.24 44.24 44.24 22.13 22.12 22.13 22.12 22.12 22.12 22.12 22.12 22.12 22.18 22.12 22.12 22.12 22.12 22.12 22.18 22.13 22.12 22. 12 22.14 22. 13 22.14 22.17 22.15 22.15 22.17 22.16 22.14 22.14 22.18 22.31 22.36 22.31 22.28 Drain NO3-N mm ppm 1 1.87 10.42 1 1.87 8.55 1 1.87 10.44 1 1.87 12.91 1 1.87 18.22 1 1.87 16.75 1 1.87 17.37 1 1.87 17.99 1 1.87 31.74 1 1.87 30.33 5.94 26.47 5.94 27.60 5.94 25.43 5.94 18.60 5.94 21.46 5.94 20.21 5.94 23.46 5.94 16.54 5.94 16.64 5.95 12.30 5.94 24.51 5.94 15.71 5.94 11.18 5.94 12.54 5.94 13.24 5.95 1 1.17 5.94 14.02 5.94 17.56 5.94 15.76 5.94 25.58 5.94 20.47 5.94 30.30 5.95 21.56 5.94 15.54 5.94 17.01 5.95 17.58 5.95 15.60 5.94 19.03 5.94 23.33 5.95 21.29 5.99 18.93 6.00 16.04 5.99 23.78 5.98 18.98 200 Load kg/ha 1.24 1.02 1.24 1.53 2.16 1.99 2.06 2.14 3.77 3.60 1.57 1.64 1.51 1.10 1.27 1.20 1.39 0.98 0.99 0.73 1.45 0.93 0.66 0.74 0.79 0.66 0.83 1.04 0.94 1.52 1.22 1.80 1.28 0.92 1.01 1.05 0.93 1.13 1.39 1.27 1.13 0.96 1.42 1 . 13 cum (mm 80.89 92.77 104.64 116.51 128.38 140.25 152.13 164.00 175.87 187.74 193.68 199.62 205.56 21 1.49 217.43 223.36 229.30 235.23 241.17 247.12 253.06 258.99 264.93 270.87 276.80 282.75 288.69 294.63 300.57 306.51 312.45 318.39 324.34 330.28 336.22 342.17 348.12 354.06 360.00 365.95 371.94 377.94 383.93 389.91 cum load kg/ha 4.02 5.04 6.27 7.81 9.97 1 1 .96 14.02 16.16 19.93 23.53 25.10 26.74 28.25 29.35 30.62 31.82 33.22 34.20 35.19 35.92 37.37 38.31 38.97 39.71 40.50 41.16 42.00 43.04 43.98 45.49 46.71 48.51 49.79 50.72 51.73 52.77 53.70 54.83 56.22 57.49 58.62 59.58 61.01 62.14 05/20/90 05/22/90 05/25/90 05/29/90 06/05/90 06/16/90 07/02/90 07/23/90 07/27/90 07/3 1/90 08/08/90 08/15/90 08/20/90 08/24/90 08/28/90 09/03/90 09/12/90 10/06/90 10/09/90 10/10/90 10/10/90 10/10/90 10/10/90 10/1 1/90 10/1 1 I90 10/12/90 10/12/90 10/14/90 10/16/90 10/20/90 10/27/90 1 1/05/90 1 1/07/90 1 1/08/90 1 1/09/90 1 1/12/90 1 1/17/90 1 1/26/90 1 1/28/90 1 1/28/90 1 1/28/90 1 1/29/90 1 1/29/90 1 1/30/90 Lys# Sample# ##4## bébhhhofihhbbhbtfibhhhthtbibibohibtbobbobibihubtbibuhtbtbtbobtbib 52 53 54 55 56 57 58 59 60 61 62 63 54 65 66 67 68 69 70 71 72 73 74 75 76 77 78 n I 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 Vol liters 22.21 22.24 22.15 22.13 22. 17 22.13 22.13 22.15 22.16 22. 17 22.13 22.15 22. 14 22.16 22.15 22. 13 22.13 22.17 22.23 22.36 22.95 22.87 23.43 22.54 22.41 22.31 22.24 22.23 22.17 22.14 22.13 22.14 22.26 22.22 22.19 22.16 22.14 22. 13 22.69 23.48 22.59 22.48 22.54 22.29 # Estimates were made in drainage amount. Drain mm 5.96 5.97 5.94 5.94 5.95 5.94 5.94 5.94 5.95 5.95 5.94 5.94 5.94 5.95 5.94 5.94 5.94 5.95 5.97 6.00 6.16 6.14 6.29 6.05 6.01 5.99 5.97 5.97 5.95 5.94 5.94 5.94 5.97 5.96 5.95 5.95 5.94 5.94 6.09 6.30 6.06 6.03 6.05 5.98 201 NO3-N PPm 16.03 14.00 20.01 10.09 14.12 25.38 26.61 27.86 23.12 24.30 26.55 25.17 23.33 14.92 28.08 23.68 25.97 26.08 19.18 22.89 23.32 25.02 21.90 12.43 13.25 1 1.93 13.49 17.81 19.22 15.30 17.65 13.83 17.87 20.68 20.00 20.68 21.70 17.80 19.60 19.70 20.00 20.00 20.00 20.00 Load kg/ha 0.96 0.84 1.19 0.60 0.84 1.51 1.58 1.66 1.37 1.45 1.58 1.50 1.39 0.89 1.67 1.41 1.54 1.55 1.14 1.37 1.44 1.54 1.38 0.75 0.80 0.71 0.81 1.06 1.14 0.91 1.05 0.82 1.07 1.23 1.19 1.23 1.29 1.06 1.19 1.24 1.21 1.21 1.21 1.20 cum drain (mm) 395.87 401.84 407.78 413.72 419.67 425.61 431.55 437.49 443.44 449.39 455.32 461.27 467.21 473.16 479.10 485.04 490.98 496.93 502.89 508.89 515.05 521.19 527.48 533.52 539.54 545.53 551.49 557.46 563.41 569.35 575.29 581.23 587.20 593.17 599.12 605.07 61 1.01 616.95 623.04 629.34 635.40 641.43 647.48 653.46 cum load kg/ha 63.10 63.93 65.12 65.72 66.56 68.07 ' 69.65 71.30 72.68 74.12 75.70 77.20 78.58 79.47 81.14 82.55 84.09 85.64 86.78 88.16 89.59 91.13 92.51 93.26 94.05 94.77 95.57 96.64 97.78 98.69 99.74 100.56 101.63 102.86 104.05 105.28 106.57 107.63 108.82 110.06 1 1 1.27 112.48 113.69 114.89 1 1/30/90 12/02/90 12/04/90 12/06/90 01/23/91 02/01/91 03/06/91 04/06/91 04/16/91 04/17/91 04/19/91 04/22/91 04/25/91 04/27/91 04/30/91 05/02/91 05/05/91 05/12/91 05/20/91 05/28/91 06/04/91 06/06/91 06/10/91 06/15/91 06/24/91 07/03/91 07/17/91 07/29/91 08/20/91 08/25/91 09/02/91 09/19/91 10/08/91 10/10/91 10/14/91 10/21/91 10/26/91 10/26/91 # Estimates were made in drainage amount. Lys# Sample# bibnhtbubibbkbbhbnfiufibhbhnfibfifibhbbhbbfi .h Vol liters 22.29 22.17 22.21 22.16 161.36 87.94 44.72 44.36 22.23 22.33 22.19 22.22 22.15 22.12 22.17 22.18 22.16 11.07 11.07 22.13 22.17 22.23 22.15 22.14 22.14 44.53 88.61 22.13 22.17 22.14 22.13 22.12 22.17 22.16 22.18 22.14 22.54 22.50 Drain mm 5.98 5.95 5.96 5.95 43.30 23 .60 12.00 1 1.90 5.97 5.99 5.95 5.96 5.94 5.94 5.95 5.95 5.95 2.97 2.97 5.94 5.95 5.97 5.94 5.94 5.94 l 1.95 23.78 5.94 5.95 5.94 5.94 5.94 5.95 5.95 5.95 5.94 6.05 6.04 202 NO3-N PPm 20.00 20.00 19.00 20.00 20.00 7.90 7.90 6.94 7.73 5.37 6.03 3.79 4.16 8.23 8.18 5.74 6.87 8.42 3.36 5.47 7.86 4.03 1.14 6.75 7.80 5.1 1 6.10 5.50 8.20 12.10 6.30 9.98 2.57 1 1.36 9.64 12.08 10.00 10.00 Load cum kg/ha drain (nun) 1.20 659.44 1.19 665.39 1 . 13 671.35 1.19 677.30 8.66 720.60 1.86 744.20 0.95 0.00 0.83 1 1.90 0.46 17.87 0.32 23.86 0.36 29.82 0.23 35.78 0.25 41.72 0.49 47.66 0.49 53.61 0.34 59.56 0.41 65.51 0.25 68.48 0.10 71.45 0.32 77.39 0.47 83.34 0.24 89.30 0.07 95.25 0.40 101 .19 0.46 107.13 0.61 1 19.08 1.45 142.86 0.33 148.80 0.49 154.75 0.72 160.69 0.37 166.63 0.59 172.56 0.15 178.51 0.68 184.46 0.57 190.41 0.72 196.35 0.60 202.40 0.60 208.44 cum load kg/ha 116.08 1 17.27 1 18.40 1 19.59 128.25 130.12 0.00 0.83 1.29 1.61 1.97 2.19 2.44 2.93 3.42 3.76 4.17 4.42 4.52 4.84 5.31 5.55 5.62 6.02 6.48 7.09 8.54 8.87 9.36 10.08 10.45 11.04 11.20 1 1.87 12.45 13.16 13.77 14.37 10/26/91 10/27/91 10/27/91 10/28/91 10/28/91 10/29/91 10/31/91 1 1/01/91 1 1/02/91 1 1/03/91 1 1/05/91 1 1/09/91 1 1/14/91 1 1/22/91 1 1/23/91 1 1/24/91 1 1/26/91 12/01/91 12/06/91 12/10/91 12/ 1 1/91 12/13/91 12/16/91 12/19/91 12/25/91 01/05/92 01/1 1/92 01/16/92 01/22/92 01/30/92 02/05/92 02/15/92 02/20/92 02/22/92 02/25/92 02/29/92 03/06/92 03/15/92 03/19/92 03/24/92 03/30/92 04/05/92 04/10/92 04/17/92 # Estimates were made in drainage amount. Lys# Sample# #bbbbbbbbhubbbhfibbbhfihbhéfifihbhhhbhbhhébhbbhnfih 4t1t4t3tt=tt3t4t=1t3t GM WN—OQOOQONUIbbJN—OOOOQO‘M WN—‘COOOQO‘UI-hWN Vol liters 22.41 22.31 22.40 22.36 22.28 22.22 22.23 22.50 22.22 22.18 22.17 22.15 22.13 22.36 22.22 22.26 22.17 22.14 22.15 22.21 22.18 22.17 22.26 22.16 22.14 22. 13 22.14 22.15 22.15 22.15 22.15 22.14 22.19 22.23 22.16 22.14 22.14 22.16 22.14 22.15 22.16 22.13 22.15 22.13 Drain mm 6.01 5.99 6.01 6.00 5.98 5.96 5.97 6.04 5.96 5.95 5.95 5.94 5.94 6.00 5.96 5.97 5.95 5.94 5.94 5.96 5.95 5.95 5.97 5.95 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.95 5.97 5.95 5.94 5.94 5.95 5.94 5.94 5.95 5.94 5.94 5.94 203 NO3-N PP“l 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 8.54 13.66 7.98 7.86 1 1.41 1 1 . 10 13.13 6.65 7.59 9.97 5.43 9.19 7.24 8.66 6.23 8.76 6.56 10.42 4.48 5.94 5.19 6.20 6.60 8.30 3.70 22.00 9.60 8.59 7.81 5.67 8.24 8.89 8.14 6.88 3.64 Load cum kg/ha drain (min) 0.60 214.45 0.60 220.44 0.60 226.45 0.60 232.45 0.60 238.43 0.60 244.39 0.60 250.36 0.60 256.39 0.60 262.36 0.51 268.31 0.81 274.26 0.47 280.20 0.47 286.14 0.68 292.14 0.66 298.10 0.78 304.08 0.40 310.03 0.45 315.97 0.59 321.91 0.32 327.87 0.55 333.82 0.43 339.77 0.52 345.75 0.37 351.69 0.52 357.64 0.39 363.57 0.62 369.52 0.27 375.46 0.35 381.40 0.31 387.35 0.37 393.29 0.39 399.23 0.49 405.19 0.22 411.15 1.31 417.10 0.57 423.04 0.51 428.98 0.46 434.93 0.34 440.87 0.49 446.81 0.53 452.76 0.48 458.70 0.41 464.64 0.22 470.58 cum load kg/ha 14.97 15.57 16. 17 16.77 17.37 17.97 18.56 19.17 19.76 20.27 21.08 21.56 22.03 22.71 23.37 24.16 24.55 25.00 25.60 25.92 26.47 26.90 27.41 27.78 28.31 28.69 29.31 29.58 29.93 30.24 30.61 31.00 31.50 31.72 33.03 33.60 34.1 1 34.57 34.91 35.40 35.93 36.41 36.82 37.03 04/27/92 05/09/92 05/22/92 06/04/92 06/21/92 07/07/92 07/ 1 6/92 07/1 7/92 07/ 1 8/92 07/20/92 07/23/92 07/24/92 07/24/92 07/25/92 07/27/92 07/30/92 08/02/92 08/03/92 08/06/92 08/ 10/92 08/ 1 8/92 08/30/92 09/03/92 09/09/92 09/10/92 09/1 1/92 09/ 1 1/92 09/ 1 2/ 92 09/ 13/92 09/1 5/92 09/1 5/92 09/ 16/92 09/ 16/92 09/ 16/92 09/ 16/92 09/ 1 7/92 09/17/92 09/ 1 8/92 09.’20/92 09/23/92 09/28/92 10/04/92 1 0/12/92 10/15/92 Lys# Sample# Ibnbubihibnbihnbbnbbubhnhnhbthnhuhibibtbnhibtbtbhbbhhhbfifibbbbhbéfifi 67 68 69 70 71 72 73 74 75 76 77 78 79 80 8 l 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 Vol liters 22.13 22.13 22.13 22. 13 22.12 22.13 22.22 22.36 22.18 22.17 22.19 22.44 22.26 22.21 22.17 22.15 22.21 22.22 22.17 22. 15 22.14 22.15 22.14 22. 14 22.45 22.64 22.57 22.22 22.18 23.67 23.66 23.15 22.86 22.64 22.48 22.36 22.26 22.20 22.19 22. 16 22.14 22.16 22.13 22.53 # Estimates were made in drainage amount. Drain mm 5.94 5.94 5.94 5.94 5.94 5.94 5.96 6.00 5.95 5.95 5.95 6.02 5.97 5.96 5.95 5.94 5.96 5.96 5.95 5 .94 5.94 5.94 5.94 5.94 6.02 6.08 6.06 5.96 5.95 6.35 6.35 6.21 6.13 6.08 6.03 6.00 5.97 5.96 5.95 5.95 5.94 5.95 5.94 6.05 204 NO3-N PPm 7.41 10.85 1.26 5.30 10.16 7.66 3.87 1.72 1.37 1.24 5.36 3.88 3.04 2.84 3.25 7.18 6.11 6.52 6.52 5.50 6.46 8.66 6.90 1 1.03 1 1.23 1 1.50 1 1.60 1 1.53 1 1.55 1 1.16 10.91 9.83 9.24 8.65 8.00 8.00 8.00 8.00 6.72 4.65 6.09 5.35 5.26 6.13 Load kg/ha 0.44 0.64 0.07 0.31 0.60 0.45 0.23 0.10 0.08 0.07 0.32 0.23 0.18 0.17 0.19 0.43 0.36 0.39 0.39 0.33 0.38 0.51 0.41 0.66 0.68 0.70 0.70 0.69 0.69 0.71 0.69 0.61 0.57 0.53 0.48 0.48 0.48 0.48 0.40 0.28 0.36 0.32 0.31 0.37 cum (mm) 476.52 482.46 488.40 494.34 500.27 506.21 512.17 518.17 524.13 530.08 536.03 . 542.05 548.03 553.99 559.94 565.88 571.84 577.80 583.75 589.70 595.64 601.58 607.52 613.46 619.49 625.56 631.62 637.58 643.54 649.89 656.24 662.45 668.58 674.66 680.69 686.69 692.67 698.62 704.58 710.52 716.47 722.41 728.35 734.40 cum load kg/ha 37.47 38.12 38.19 38.51 39.1 1 39.57 39.80 39.90 39.98 40.06 40.38 40.61 40.79 40.96 41.15 41.58 41.94 42.33 42.72 43.05 43.43 43.95 44.36 45.01 45.69 46.39 47.09 47.78 48.46 49.17 49.87 50.48 51.04 51.57 52.05 52.53 53.01 53.49 53.89 54.16 54.52 54.84 55.15 55.53 205 Lys# Sample# Vol Drain NO3-N Load cum cum liters mm ppm kg/ha drain load (mm) kg/ha 10/16/92 4 107 22.36 6.00 4.03 0.24 740.40 55.77 10/16/92 4 108 22.30 5.98 5.56 0.33 746.38 56.10 10/17/92 4 109 22.29 5.98 4.12 0.25 752.36 56.35 10/18/92 4 1 10 22.25 5.97 3.00 0.18 758.33 56.53 10/19/92 4 11 1 22.31 5.99 3.53 0.21 764.32 56.74 10/21/92 4 1 12 22. 16 5.95 3.92 0.23 770.27 56.97 10/25/92 4 1 13 22.14 5.94 4.45 0.26 776.21 57.23 11/01/92 4 114 22.13 5.94 3.46 0.21 782.15 57.44 1 1/03/92 4 115 22.26 5.97 3.55 0.21 788.12 57.65 1 1/04/92 4 1 16 22.22 5.96 2.49 0.15 794.08 57.80 1 1/06/92 4 117 22.17 ' 5.95 3.30 0.20 800.03 58.00 1 1/08/92 4 1 18 22.16 5.95 6.47 0.38 805.98 58.38 11/12/92 4 119 22.17 5.95 2.45 0.15 811.93 58.53 1 1/13/92 4 120 22.27 5.98 3.72 0.22 817.91 58.75 1 1/14/92 4 121 22.32 5.99 4.07 0.24 823.90 58.99 1 1/15/92 4 122 22.20 5.96 5.60 0.33 829.85 59.33 1 1/17/92 4 123 22.17 5.95 3.42 0.20 835.80 59.53 11/20/92 4 124 22.15 5.94 3.58 0.21 841.75 59.74 1 1/25/92 4 125 22. 16 5 .95 4.07 0.24 847.69 59.99 1 1/27/92 4 126 22.16 5.95 4.99 0.30 853.64 60.28 12/01/92 4 127 22. 15 5.94 3.23 0.19 859.58 60.47 12/07/92 4 128 22.13 5.94 3.02 0.18 865.52 60.65 12/17/92 4 129 22. 13 5.94 4.38 0.26 871.46 60.91 12/21/92 4 130 22.15 5.94 4.15 0.25 877.40 61.16 12/26/92 4 131 22.14 5.94 3.00 0.18 883.35 61.34 01/01/93 4 132 22.28 5.98 3.32 0.20 889.33 61.54 01/02/93 4 133 22.23 5.97 3.02 0.18 895.29 61.72 01/03/93 4 134 22.19 5.95 2.28 0.14 901.25 61.85 01/04/93 4 135 22.41 6.01 2.48 0.15 907.26 62.00 01/05/93 4 136 22.53 6.05 2.03 0.12 913.31 62.12 01/05/93 4 137 22.36 6.00 2.14 0.13 919.31 62.25 01 /O6/93 4 138 22.31 5.99 1.94 0.12 925.29 62.37 01/06/93 4 139 22.25 5.97 1.79 0.1 1 931.26 62.48 01/08/93 4 140 22.20 5 .96 1.31 0.08 937.22 62.55 01/10/93 4 141 22.17 5.95 1.63 0.10 943.17 62.65 01/13/93 4 142 22.15 5.94 1.18 0.07 949.11 62.72 01/19/93 4 143 22. 13 5.94 1.82 0.11 955.05 62.83 01/24/93 4 144 22.24 5.97 1.21 0.07 961.02 62.90 01/26/93 4 145 22.19 5.95 1.43 0.09 966.98 62.99 01/28/93 4 146 22.16 5.95 2.45 0.15 972.92 63.13 02/01/93 4 147 22. 13 5.94 2.52 0.15 978.86 63.28 02/07/93 4 148 22. 14 5.94 3.26 0.19 984.80 63.48 02/17/93 4 149 22.12 5.94 3.01 0.18 990.74 63.65 03/06/93 4 22.12 5.94 0.00 996.67 63.65 # Estimates were made in drainage amount. 206 Lys# Sample# Vol Drain NO3-N Load cum cum liters mm ppm kg/ha drain load (mm) kg/ha 03/25/93 4 22.14 5.94 0.00 1002.62 63 .65 03/27/93 4 22.22 5.96 0.00 1008.58 63.65 03/29/93 4 150 22.17 5.95 2.18 0.13 1014.53 63.78 04/01/93 4 151 22. 16 5.95 0.92 0.05 1020.47 63.84 04/04/93 4 152 22.23 5.97 3.83 0.23 1026.44 64.07 04/06/93 4 153 22. 16 5.95 2.18 O. 13 1032.39 64.20 04/10/93 4 154 22. 14 5.94 0.92 0.05 1038.33 64.25 04/16/93 4 155 22.13 5.94 0.00 1044.27 64.25 04/21/93 4 156 22.17 5.95 0.00 1050.22 64.25 06/02/93 4 157 24.75 6.64 0.00 1056.86 64.25 06/08/93 4 4155 22.53 6.05 1.85 0.11 1062.90 64.36 06/09/93 4 4156 22.51 6.04 4.03 0.24 1068.94 64.61 06/09/93 4 4157 22.49 6.04 3.77 0.23 1074.98 64.83 06/09/93 4 4158 22.85 6.13 3.27 0.20 1081.11 65.03 06/10/93 4 4159 22.33 5.99 4.31 0.26 1087.10 65.29 06/10/93 4 4160 22.45 6.02 1.07 0.06 1093.13 65.36 06/1 1/93 4 4161 22.21 5.96 3.89 0.23 1099.09 65.59 06/13/93 4 4162 22.26 5.97 6.53 0.39 1 105.06 65.98 06/15/93 4 4163 22.17 5.95 4.97 0.30 1 l 11.01 66.28 06/18/93 4 4164 22. 16 5.95 6.12 0.36 1116.96 66.64 06/22/93 4 4165 22.14 5.94 9.53 0.57 1122.90 67.21 06/23/93 4 22.17 5.95 8.98 0.53 1 128.85 67.74 07/04/93 4 22. 13 5.94 0.00 1 134.79 67.74 07/15/93 4 22.13 5.94 0.00 1 140.73 67.74 10/04/93 4 200 15 4.03 8.48 0.34 1 144.75 68.08 10/07/93 4 201 18 4.70 6.69 0.31 1 149.45 68.40 10/08/93 4 202 7 1.88 8.51 0.16 1151.33 68.56 10/11/93 4 203 11 2.82 8.17 0.23 1154.14 68.79 10/13/93 4 204 9 2.42 8.14 0.20 1 156.56 68.98 10/15/93 4 205 10 2.68 8.06 0.22 1 159.24 69.20 10/18/93 4 206 38 10.20 7.29 0.74 1 169.44 69.94 10/20/93 4 207 40 10.73 6.80 0.73 1 180.17 70.67 10/21/93 4 208 14 3.62 5.61 0.20 1 183.80 70.87 10/22/93 4 209 12 3.22 5.79 0.19 1 187.02 71.06 10/25/93 4 210 36 9.66 4.91 0.47 1196.68 71.54 10/28/93 4 211 24 6.44 4.52 0.29 1203.12 71.83 10/31/93 4 212 16 4.29 4.46 0.19 1207.41 72.02 11/04/93 4 213 14 3.76 5.07 0.19 1211.17 72.21 11/10/93 4 214 15 4.03 2.48 0.10 1215.19 72.31 12/21/93 4 215 14 . 3.76 3.80 0.14 1218.95 72.45 01/03/94 4 216 37 9.93 3.84 0.38 1228.88 72.83 02/23/94 4 217 100 26.84 3 .35 0.90 1255.71 73.73 0.00 0.00 # Estimates were made in drainage amount. 207 Lys# Sample# Vol Drain NOB-N Load cum cum liters mm ppm kg/ha drain load' (In!!!) 1‘8"“ 0.00 07/02/89 5 2 22. 12 5.94 13.02 0.773 5.94 0.77 07/21/89 5 3 22. 12 5.94 7.80 0.463 1 1.87 1.24 08/20/89 5 4 22. 12 5.94 12.36 0.734 17.81 1.97 10/30/89 5 5 18.00 4.83 14.73 0.712 22.64 2.68 10/31/89 5 6 22.13 5.94 8.87 0.527 28.58 3.21 11/01/89 5 7 22.13 5.94 6.02 0.358 34.52 3.57 1 1/01/89 5 8 22.13 5.94 21.03 1.249 40.45 4.81 11/01/89 5 9 22.13 5.94 22.49 1.336 46.39 6.15 11/01/89 5 10# 22.13 5.94 22.98 1.365 52.33 7.51 11/01/89 S 11# 22.12 5.94 22.98 1.364 58.27 8.88 1 1/02/89 5 12# 22. 12 5.94 22.98 1.364 64.20 10.24 1 1/03/89 5 13# 22.12 5.94 22.98 1.364 70.14 11.61 1 1/04/89 5 14 22. 12 5.94 23.46 1.393 76.08 13.00 1 1/05/89 5 15 22. 12 5.94 27.67 1.642 82.01 14.64 1 1/07/89 5 16 22. 12 5.94 28.72 1.705 87.95 16.35 1 1/10/89 5 17 22. 12 5.94 29.45 1.748 93 .88 18.09 1 1/14/89 5 18 22. 12 5.94 19.21 1.140 99.82 19.24 1 1/17/89 5 19 22.12 5.94 24.13 1.432 105.75 20.67 11/18/89 5 20 22.12 5.94 18.56 1.102 111.69 21.77 1 1/19/89 5 21 22. 12 5.94 7.49 0.445 117.63 22.21 11/20/89 5 22 22.12 5.94 15.12 0.898 123.56 23.11 1 1/21/89 5 23 22. 12 5.94 20.72 1.230 129.50 24.34 1 1/24/89 5 24 22. 12 5.94 31.25 1.855 135.43 26.20 11/27/89 5 25 22. 12 5.94 32.23 1.913 141.37 28.11 12/01/89 5 26 22. 12 5.94 24.29 1.442 147.31 29.55 12/07/89 5 27 22. 12 5.94 35.13 2.085 153.24 31.64 12/17/89 5 28 22.12 5.94 21.08 1.251 159.18 32.89 01/04/90 S 29 22. 12 5.94 23.66 1.404 165.1 1 34.29 01/26/90 5 #44 22. 12 5.94 15.47 0.918 171.05 35.21 01/29/90 S ' 45 22. 12 5.94 16.56 0.983 176.99 36.19 02/01/90 5 46 22. 12 5.94 19.83 1.177 182.92 37.37 02/04/90 5 47 22. 12 5.94 24.52 1.455 188.86 38.83 02/08/90 5 48 22. 12 5.94 21.57 1.280 194.79 40.1 1 02/ 1 1/90 5 49 22. 16 5.95 21.06 1.252 200.74 41.36 02/16/90 5 50 22. 12 5 .94 15.21 0.903 206.68 42.26 02/22/90 5 51 22. 12 5.94 18.88 1.121 212.61 43.38 02/23/90 5 52 22. 12 5.94 18.23 1.082 218.55 44.46 02/24/90 5 53 22. 12 5.94 12.02 0.714 224.48 45.18 02/25/90 5 54 22. 12 5.94 23.18 1.376 230.42 46.55 02/26/90 5 55 22.13 5.94 21.19 1.258 236.36 47.81 02/28/90 5 56 22. 12 5.94 31.81 1.888 242.30 49.70 03/02/90 5 57 22. 12 5.94 31.74 1.884 248.23 51.58 03/04/90 5 58 22. 12 5.94 47.67 2.830 254.17 54.41 # Estimates were made in drainage amount. 03/09/90 03/10/90 03/1 1/90 03/1 1/90 03/12/90 03/13/90 03/13/90 03/14/90 03/16/90 03/17/90 03/20/90 03/24/90 03/30/90 04/09/90 04/15/90 04/18/90 04/20/90 04/24/90 04/27/90 05/01/90 05/06/90 05/13/90 05/17/90 05/ 1 8/90 05/18/90 05/19/90 05/19/90 05/20/90 05/22/90 05/24/90 05/27/90 06/01/90 06/09/90 06/21/90 07/09/90 08/04/90 08/20/90 08/27/90 09/01/90 09/10/90 10/04/90 10/04/90 10/ 10/90 10/1 1/90 Lys# Sample# mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 59 60 61 62 63 54 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 34 85 86 87 88 89 90 91 92 93 94 95# 96# 97# 98# 99# 100# 101# 102# Vol liters 22.12 22.12 22.12 22.12 22.12 22.12 22. 12 22.26 22.13 22.19 22.17 22.16 22.14 22.16 22.20 22.22 22.17 22.15 22.16 22.15 22.14 22.13 22.18 22.45 22.84 22.34 22.28 22.22 22.19 22.17 22.15 22.14 22.13 22.12 22. 12 22.12 22.13 22.14 22.14 22.13 29.37 22.13 22.50 22.40 # Estimates were made in drainage amount. Drain NO3-N mm ppm 5.94 19.10 5.94 19.96 5.94 10.30 5.94 15.04 5.94 9.52 5.94 19.83 5.94 18.75 5.97 12.07 5.94 27.43 5.95 29.05 5.95 30.55 5.95 32.34 5.94 33.07 5.95 18.52 5.96 25.93 5.96 14. 17 5.95 20.86 5.94 24.92 5.95 32.05 5.94 25.92 5.94 26.34 5.94 18.16 5.95 17.94 6.02 25.96 6.13 23.54 5.99 29.48 5.98 8.73 5.96 15.79 5.95 10.79 5.95 12.40 5.94 5.76 5.94 13.56 5.94 24.93 5.94 16.78 5.94 29.40 5.94 31.44 5.94 22.50 5.94 22.50 5.94 22.50 5.94 22.50 7.88 22.50 5.94 22.50 6.04 22.50 6.01 22.50 208 kg/ha 1.134 1.185 0.611 0.893 0.565 1.177 1.1 13 0.721 1.629 1.730 1.818 1.923 1.965 1.101 1.545 0.845 1.241 1.481 1.906 1.541 1.565 1.078 1.068 1.564 1.443 1.767 0.522 0.942 0.643 0.738 0.342 0.806 1.481 0.996 1.745 1.866 1.336 1.337 1.337 1.336 1.773 1.336 1.359 1.352 cum drain (M) 260.10 266.04 271.98 277.91 283.85 289.78 295.72 301.69 307.63 313.59 319.54 325.48 331.42 337.37 343.33 349.29 355.24 361.18 367.13 373.07 379.02 384.95 390.91 396.93 403.06 409.05 415.03 421.00 426.95 432.90 438.84 444.79 450.72 456.66 462.60 468.53 474.47 480.41 486.35 492.29 500.17 506.1 1 512.15 518.16 cum load kg/ha 55.55 56.73 57.34 58.24 58.80 59.98 61.09 61.81 63.44 65.17 66.99 68.91 70.88 71.98 73.52 74.37 75.61 77.09 79.00 80.54 82.10 83.18 84.25 85.81 87.26 89.02 89.54 90.49 91.13 91.87 92.21 93.01 94.50 95.49 97.24 99.10 100.44 101.78 103.1 1 104.45 106.22 107.56 108.92 1 10.27 10/1 1/90 10/12/90 10/14/90 10/19/90 10/27/90 1 1/03/90 1 1/07/90 1 1/09/90 1 1/10/90 1 1/13/90 1 1/17/90 1 1/23/90 1 1/28/90 1 1/28/90 1 1/28/90 1 1/28/90 1 1/29/90 1 1/29/90 1 1/29/90 1 1/30/90 12/01/90 12/03/90 01/23/91 02/01/91 03/06/91 04/01/91 04/09/91 04/16/91 04/28/91 04/30/91 05/03/91 05/05/91 05/12/91 05/13/91 05/18/91 05/29/91 06/08/91 06/15/91 06/25/91 07/02/91 # Estimates were made in drainage amount. Lys# Sample# mmmmmmmmmmmmmmmmmmmmmm #dra in gues from rain data mmmmmmmmmmmmmm U" 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 15 16 17 18 19 Vol liters 22.28 22.22 22. 16 22. 14 22. 14 22. 14 22.21 22.21 22.23 22. 16 22. 14 22.14 22.40 22.65 23.62 22.60 22.49 22.39 22.31 22.26 22.22 22. 19 160.24 87.94 44.72 22.13 22. 14 22.30 157.05 22.18 22.17 22.16 7.38 7.38 7.38 22.13 22.14 22.13 22.13 22.26 Drain mm 5.98 5.96 5.95 5.94 5.94 5.94 5.96 5.96 5.97 5.95 5.94 5.94 6.01 6.08 6.34 6.06 6.04 6.01 5.99 5.97 5.96 5.95 43.00 23.60 12.00 5.94 5.94 5.98 42.14 5.95 5.95 5.95 1.98 1.98 1.98 5.94 5.94 5.94 5.94 5.97 209 NO3-N PPm 35.09 29.91 52.81 59.54 61.66 43.10 69.31 30.00 30.00 69.31 82.20 78.90 78.90 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 85.60 78.60 78.90 78.90 44.10 15.00 15.00 21. 10 15.70 22.80 23.61 21.10 33.90 11.19 8.88 12.20 10.51 3.90 24.66 Load kg/ha 2.098 1.783 3.140 3.537 3.663 2.561 4.131 1.788 1.790 4.122 4.884 4.688 4.743 1.823 1.902 1.819 1.811 1.803 1.796 1.792 1.789 5.097 33.798 18.620 9.468 2.619 0.891 0.898 8.893 0.934 1.356 1.404 0.418 0.671 0.222 0.527 0.725 0.624 0.232 1.473 cum (mm) 524.14 530.10 536.05 541.99 547.93 553.87 559.83 565.79 571.76 577.71 583.65 589.59 595.60 601.68 608.02 614.08 620.12 626.13 632.1 1 638.09 644.05 650.00 693.00 716.60 0.00 5.94 1 1.88 17.86 60.01 65.96 71.91 77.86 79.84 81.82 83.80 89.74 95.68 101.62 107.56 113.53 cum load kg/‘ha 1 12.37 114.15 1 17.29 120.83 124.49 127.05 131.18 132.97 134.76 138.88 143.77 148.45 153.20 155.02 156.92 158.74 160.55 162.35 164.15 165.94 167.73 172.83 206.63 225.25 0.00 2.62 3.51 4.41 13.30 14.23 15.59 17.00 17.41 18.08 18.31 18.83 19.56 20.18 20.41 21.89 07/03/91 07/05/91 07/07/91 09/12/91 09/26/91 10/13/91 10/20/91 10/26/91 10/26/91 10/27/91 10/27/91 10/28/91 10/29/91 10/30/91 10/3 1/91 1 1/01/91 1 1/03/91 1 1/05/91 1 1/08/91 1 1/ 1 1/91 1 1/ 1 8/91 1 1/23/91 1 1/25/91 1 1/27/91 1 1/30/91 01/07/92 01/13/92 01/17/92 01/2 1/92 01/27/92 01/3 1/92 02/04/92 02/ 1 1/92 02/18/92 02/24/92 02/28/92 03/04/92 03/10/92 03/17/92 03/20/92 03/21/92 03/24/92 03/27/92 03/31/92 # Estimates were made in drainage amount. Lys# Sample# 01010101mmmmmmmmmmmmmmtnmmmmmmmmmmmmmmmmmmmmmmmmm 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39 4o 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 Vol liters 22.22 22.22 22.16 66.39 22.12 22.14 22.13 22.47 22.37 22.33 22.39 22.67 22.28 22.24 22.20 44.49 22.20 22.24 22.16 22.15 22.14 22.20 22.18 22.17 22.14 22.26 22.15 22.16 22.14 22.15 22.16 22. 14 22.14 22.14 22.15 22.20 22.14 22.14 22.16 22.19 22.25 22.17 22.15 22.16 210 Drain mm 5.96 5.96 5.95 17.82 5.94 5.94 5.94 6.03 6.00 5.99 6.01 6.08 5.98 5.97 5.96 1 1.94 5.96 5.97 5.95 5.94 5.94 5.96 5.95 5.95 5.94 5.97 5.94 5.95 5.94 5.94 5.95 5.94 5.94 5.94 5.94 5.96 5.94 5.94 5.95 5 .95 5.97 5.95 5.94 5.95 NO3-N 131”“ 7.35 14.60 4.23 19.32 20.41 12.55 13.13 12.81 12.12 6.51 11.60 1 1.32 19.59 12.50 18.46 15.00 14.60 22.36 15.78 19.80 29.79 28.29 20.08 17.36 14.60 1 1.23 15.47 1 1.81 14.08 1 1.55 6.39 10.10 6.60 1 1.40 10.00 15.50 16.30 13.03 12.60 7.32 1 1.97 4.37 11.37 10.96 Load mm: 0.438 0.871 0.252 3.442 1.212 0.746 0.780 0.772 0.728 0.390 0.697 0.689 1.171 0.746 1.100 1.791 0.870 1.334 0.938 1.177 1.770 1.685 1.195 1.033 0.867 0.671 0.920 0.702 0.837 0.687 0.380 0.600 0.392 0.677 0.594 0.923 0.968 0.774 0.749 0.436 0.715 0.260 0.676 0.652 cum drain (nun) 1 19.49 125.45 131.40 149.22 155.15 161.09 167.03 173.06 179.07 185.06 191.07 197.15 203.13 209.10 215.05 226.99 232.95 238.92 244.87 250.81 256.75 262.71 268.66 274.61 280.55 286.53 292.47 298.42 304.36 310.30 316.25 322.19 328.13 334.07 340.02 345.97 351.91 357.86 363.80 369.76 375.73 381.68 387.62 393.57 cum load kg/ha 22.33 23.20 23.45 26.89 28. 10 28.85 29.63 30.40 31.13 31.52 32.21 32.90 34.07 34.82 35.92 37.71 38.58 39.91 40.85 42.03 43.80 45.48 46.68 47.71 48.58 49.25 50.17 50.87 51.71 52.40 52.78 53.38 53.77 54.45 55.04 55.96 56.93 57.71 58.46 58.89 59.61 59.87 60.54 61.19 211 Lys# Sample# Vol Drain NO3-N Load cum cum liters mm ppm kg/ha drain load (mm) kg/ha 04/03/92 S 62 22. 16 5.95 9.46 0.563 399.51 61.76 04/07/92 5 63 22.15 5.94 10.49 0.624 405.46 62.38 04/13/92 5 64 22. 14 5.94 10.75 0.639 41 1.40 63.02 04/19/92 5 65 22. 14 5.94 8.12 0.482 417.34 63.50 04/29/92 5 66 22. 13 5.94 1 1.55 0.686 423.28 64.19 05/12/92 5 67 22.12 5.94 1 1.50 0.683 429.22 64.87 05/28/92 S 68 22.13 5.94 9.14 0.543 435.15 65.41 06/16/92 5 69 22.13 5.94 4.23 0.251 441.09 65 .66 07/09/92 5 70 22. 13 5.94 5.27 0.313 447.03 65.98 07/18/92 5 71 22. 17 5.95 6.39 0.380 452.98 66.36 07/21/92 5 72 22. 16 5.95 1.95 0.1 16 458.93 66.47 07/24/92 S 73 22.24 5.97 1.41 0.084 464.90 66.56 07/25/92 5 74 22.27 5.98 2.08 0.124 470.87 66.68 07/26/92 5 75 22.28 5.98 1.33 0.080 476.85 66.76 07/27/92 S 76 22.18 5.95 3.67 0.218 482.80 66.98 07/30/92 5 77 22.17 5.95 6.52 0.388 488.75 67.37 08/02/92 5 78 22.20 5.96 1 1.66 0.695 494.71 68.06 08/04/92 S 79 22.19 5.95 10.12 0.603 500.66 68.66 08/07/92 S 80 22. 18 5.95 9.22 0.549 506.62 69.21 08/1 1/92 5 83 22. 14 5.94 7.38 0.438 512.56 69.65 08/19/92 5 84 22.15 5.94 14.37 0.854 518.50 70.51 09/01/92 5 85 22.13 5.94 16.42 0.975 524.44 71.48 09/10/92 5 86 22.24 5.97 17.74 1.059 530.41 72.54 09/1 1/92 5 87 22.29 5.98 18.64 1.1 15 536.39 73.65 09/12/92 5 88 22.23 5.97 18.78 1.120 542.36 74.77 09/13/92 5 89 22.19 5.95 24.18 1.440 548.31 76.21 09/15/92 S 90 23 .20 6.23 22.67 1.41 1 554.54 77.63 09/16/92 5 91 23.25 6.24 24.14 1.506 560.78 79.13 09/16/92 5 # 23.09 6.20 20.00 1.239 566.97 80.37 09/16/92 5 # 22.78 6.1 1 20.00 1.223 573.09 81.59 09/16/92 S # 22.63 6.07 20.00 1.215 579.16 82.81 09/16/92 5 # 22.50 6.04 18.00 1.087 585.20 83 .90 09/17/92 5 # 22.45 6.02 18.00 1.084 591 .22 84.98 09/17/92 5 # 22.30 5 .98 18.00 1.077 597.20 86.06 09/18/92 5 92 22.23 5.97 ’ 17.61 1.051 603.17 87.11 09/20/92 S 93 22.20 5.96 14.60 0.870 609.13 87.98 09/23/92 S 94 22. 16 5.95 15.13 0.900 615.07 88.88 09/27/92 S 95 22.15 5.94 17.78 1.057 621.02 89.93 10/03/92 5 96 22. 14 5 .94 20.66 1.227 626.96 91 .16 10/12/92 5 97 22.13 5.94 10.28 0.610 632.90 91.77 10/16/92 S 98 22.26 5.97 14.24 0.851 638.87 92.62 10/17/92 S 99 22.28 5.98 9.95 0.595 644.85 93 .22 10/18/92 5 100 22.24 5.97 16.80 1.003 650.82 94.22 10/20/92 S 101 22.21 5.96 15.47 0.922 656.78 95.14 # Estimates were made in drainage amount. 10/22/92 10/25/92 10/31/92 1 1/04/92 1 1/05/92 1 1/07/92 1 1/09/92 1 1/13/92 1 1/13/92 1 1 /14/92 1 1/15/92 1 1/16/92 1 1/17/92 1 1/20/92 1 1/23/92 1 1/26/92 1 1/28/92 12/01/92 12/06/92 12/13/92 12/19/92 12/22/92 12/25/92 12/30/92 01/01/93 01/01/93 01/02/93 01/03/93 01/04/93 01/05/93 01/05/93 01/05/93 01/06/93 01/07/93 01/08/93 01/09/93 01” 1/93 01/15/93 01/21/93 01/25/93 01/27/93 01/29/93 01/3 1/93 02/04/93 Lys# Sample# U1U'IUIU1U'1U'IUIU'IUIU101U1U'ILDUIU'IU'IU'IU1U1U1U1U101U1U1U1U'IU1UlU1UlU1U1U1UlUlUlU1mU1U1U1U1 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 Vol liters 22.17 22.15 22. 14 22.24 22.27 22.22 22.20 22.18 22.40 22.33 22.28 22.23 22.20 22.17 22.17 22. 17 22.19 ' 22.16 22.17 22.13 22.15 22.21 22.15 22. 14 22.37 22.32 22.26 22.22 22.54 22.54 22.46 22.43 22.36 22.30 22.25 22.26 22.17 22.15 22.14 22.17 22.20 22.18 22.17 22.15 # Estimates were made in drainage amount. Drain mm 5.95 5.94 5.94 5.97 5.98 5.96 5.96 5.95 6.01 5.99 5.98 5.97 5.96 5.95 5.95 5.95 5.95 5.95 5.95 5.94 5.94 5.96 5.94 5.94 6.00 5.99 5.97 5.96 6.05 6.05 6.03 6.02 6.00 5.98 5.97 5.97 5.95 5.94 5.94 5.95 5.96 5.95 5.95 5.94 212 N03 -N PM“ 11.95 20.44 17.76 14.08 11.05 12.32 16.48 16.27 14.36 9.73 13.86 13.64 14.10 25.56 18.66 19.81 19.11 6.41 14.24 11.25 14.16 7.74 12.03 9.52 14.27 13.54 10.94 2.40 2.44 4.06 1.24 3.32 1.86 1.91 1.63 1.83 1.95 3.09 1.53 3.25 3.34 3.38 3.35 3.38 Load kg/ha 0.71 1 1.215 1.055 0.840 0.660 0.735 0.982 0.968 0.863 0.583 0.829 0.814 0.840 1.521 1.1 10 1.179 1.138 0.381 0.847 0.668 0.842 0.461 0.715 0.566 0.857 0.81 1 0.654 0.143 0.148 0.246 0.075 0.200 0.1 12 0.1 14 0.097 0.109 0.116 0.184 0.091 0.193 0.199 0.201 0.199 0.201 cum (mm 662.73 668.67 674.61 680.58 686.56 692.52 698.48 704.43 710.44 716.43 722.41 728.38 734.34 740.28 746.23 752.18 758.14 764.09 770.03 775.97 781.92 787.88 793.82 799.76 805.77 81 1.76 817.73 823.69 829.74 835.79 841.82 847.84 853.84 859.82 865.79 871.76 877.71 883.66 889.60 895.55 901.51 907.46 913.41 919.35 cum load kg/ha 95.85 97.07 98.12 98.96 99.62 100.36 101.34 102.31 103.17 103.75 104.58 105.40 106.24 107.76 108.87 110.05 111.18 11 1.57 112.41 113.08 113.92 114.38 115.10 115.66 116.52 117.33 117.99 118.13 118.28 118.52 118.60 118.80 118.91 119.02 119.12 119.23 119.34 119.53 119.62 119.81 120.01 120.21 120.41 120.61 02/09/93 03/03/93 03/20/93 03/20/93 03/2 1/93 03/22/93 03/22/93 06/02/93 06/08/93 06/08/93 06/09/93 06/09/93 06/09/93 06/09/93 06/10/93 06/10/93 06/1 1/93 06/13/93 06/17/93 06/21/93 06/27/93 07/01/93 07/02/93 07/03/93 07/04/93 07/05/93 07/14/93 10/01/93 10/01/93 10/04/93 10/07/93 10/08/93 10/1 1/93 10/13/93 1 0/15/93 10” 8/93 10/20/93 10/21/93 10/22/93 10/25/93 10/28/93 10/31/93 1 1/04/93 # Estimates were made in drainage amount. Lys# Sample# ;# from #14 ~<: m w ############¢t### U'IU'1U1U'1U'IU'IU'IU'1WU'ILDU'ILHU'ILBWLDU‘ILHLHU‘IUILDLHLH 147 148 149 150 151 152 153 154 155 156 157 200 201 202 203 204 205 206 207 208 209 210 211 212 213 Vol liters 22.14 22.13 22.36 22.96 22.33 26.65 22.52 23.12 23.04 23.02 23.38 22.69 23.14 22.51 22.37 22.28 22.21 22. 17 22.15 22.15 22. 14 9.50 14.50 7.00 l 1.50 8.00 8.50 38.00 39.00 17.00 14.00 36.00 28.00 20.00 15.00 Drain NO3-N mm ppm 5.94 3.67 5.94 4.67 6.00 6.47 6.16 5.65 5.99 6.97 7.15 0.52 6.04 0.93 6.20 1 . 15 6.18 0.88 6.18 2.00 6.27 2.21 6.09 13.59 6.21 5.00 6.04 5.00 6.00 2.00 5.98 5.00 5.96 2.00 5.95 2.00 5.94 2.26 5.94 2.91 5.94 3.46 0.00 12.59 0.00 13.79 0.00 15.56 0.00 12.35 0.00 12.31 0.00 19.23 0.00 28.09 0.00 43.78 2.55 49.83 3.89 42.27 1.88 49.66 3.09 44.22 2.15 49.20 2.28 45.03 10.20 51.74 10.47 49.87 4.56 41.02 3.76 40.55 9.66 32.51 7.51 35.45 5.37 35.82 4.03 42.64 213 Load kg/ha 0.218 0.277 0.388 0.348 0.418 0.037 0.056 0.071 0.054 0.124 0.139 0.827 0.310 0.302 0.120 0.299 0.1 19 0.1 19 0.134 0.173 0.206 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.270 1.645 0.933 1.365 1.056 1.027 5.276 5.219 1.871 1.523 3.141 2.664 1.922 1.716 cum drain (M) 925.29 931.23 937.23 943.39 949.38 956.54 962.58 968.78 974.97 981.14 987.42 993.51 999.72 1005.76 101 1.76 1017.74 1023.70 1029.65 1035.59 1041.54 1047.48 1047.48 1047.48 1047.48 1047.48 1047.48 1047.48 1047.48 1047.48 1050.03 1053.92 1055.80 1058.88 1061.03 1063.31 1073.51 1083.97 1088.54 1092.29 1 101.95 1109.47 11 14.83 1 118.86 cum load kg/ha 120.83 121.11 121.50 121.84 122.26 122.30 122.36 122.43 122.48 122.61 122.74 123.57 123.88 124.18 124.30 124.60 124.72 124.84 124.98 125.15 125.35 125.35 125.35 125.35 125.35 125.35 125.35 125.35 125.35 126.62 128.27 129.20 130.57 131.62 132.65 137.93 143.15 145.02 146.54 149.68 152.34 154.27 155.98 1 1/10/93 12/21/93 01/03/94 02/23/94 # Estimates were made in drainage amount. Lystt Sample# 5 214 S 215 5 216 S 217 Vol liters 16.00 4 15.00 43.00 100.00 214 Drain NO3-N mm ppm 4.29 24.86 4.03 3 1.78 1 1.54 15.33 26.84 5.76 Load kg/ha 1.067 1.279 1.769 1.546 cum drain (mu!) 1123.15 1127.18 1138.72 1165.55 cum load kg/ha 157.05 158.33 160.10 161.64 "1111111111111111“