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ABSTRACT

DESIGN METHODOLOGY IN HIGH LEVEL SYNTHESIS

By

Sea H. Choz'

As the complexity of hardware components and the tools involved increases, design

process management becomes the key issue in improving productivity. Modeling the

hardware system to be designed is the first, and one of the most important, steps

of a design process for high level synthesis. In this thesis, new modeling techniques

and a novel design process management scheme for high level synthesis, which help

to increase the productivity and the quality of design, are presented.

The issues involved in the modeling of hardware systems and their integration with

a hardware description language (HDL), especially the fiery High Speed Integrated

Circuit (VHSIC) H_DL (VHDL), are addressed. First, several new techniques for

modeling Finite State Machines (FSMS) using VHDL are presented. Then, these

techniques are extended to parallel machines. It is shown that VHDL is an effective

way of modeling a wide range of systems from a simple FSM to the structure and

behavior of a parallel system. How different modeling techniques affect the quality of

design is also demonstrated.



This thesis also proposes an execution environment which efficiently handles the

design process. The environment evaluates design methodologies and assists design-

ers in selecting and executing appropriate tools and methodologies. It also supports

concurrent exploration of multiple design alternatives in a distributed environment.

A salient feature of the proposed execution environment is that the execution environ-

ment is separated from the specification of methodologies. The proposed execution

environment has been modeled using an Colored Petri-Net model. Both the imple-

mentation of the environment based on this modeling and benchmark results are

presented.
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Part I

Introduction



Chapter 1

Introduction

The increasing complexity of system design and the emergence of new technologies

make the design process the key issue in the micro-electronics and computer-aided

design (CAD) industries [1]. A complex system design has the following characteris-

tics: hierarchical design, multiple design representations, and a large design space. A

large system design typically includes multiple boards, a variety of implementation

technologies, and interfaces. Design engineers must deal with many issues, such as

partitioning among different boards, interface timing, and packaging.

There are three important issues in system design. The first issue is design mod-

eling. Design modeling defines the functionalities of the design and verifies its cor-

rectness by simulation. These models not only ensure design correctness but also

greatly affect synthesis results. Design methodology or workflow management in a

Computer-Aided Design Framework must support a seamless way of carrying out

the design process as well as a suitable way of representing the design process. It

must also support tool encapsulation in order to carry out the design process. Design

2
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data management deals with storing design data and capturing relationships such as

version control and configuration binding. Design modeling and methodology man-

agement in relation to a novel execution environment and framework developed by

this author (see description below) comprise the main issues discussed in this thesis.

For a detailed analysis of design data management, see Kim [2].

This thesis presents issues involved in the design process in high level synthesis.

First, design modeling techniques in the design process are discussed. Next, method—

ology management is discussed. Issues relating design modeling and methodology

management involve the modeling techniques of systems to be designed and their

integration with Mery High Speed Integrated Circuit (VHSIC) HDL (VHDL). This

thesis emphasizes the system modeling experiences and problems using VHDL (Part

II). Different modeling techniques affecting the design process and the quality of de-

sign will also be shown. Models written in VHDL will be used as input descriptions

to a proposed CAD framework (Part III).

In the relationship proposed by this thesis between modeling and design method-

ology management, modeling the prospective hardware system is the first, and one

of the most important, steps of the design process. The relationship between design

process and design hierarchies is represented by the Y-C’hart [3, 4] shown in Fig-

ure 1.1. The design process can be formulated as a methodology traversing through

the design space in a spiral fashion. More detailed information is added when we

traverse toward the center. Typically, complex systems are designed in a hierarchical

fashion using a top-down approach. Systems are modeled by building virtual proto-

types. Desired modules can be gradually replaced by hardware components until the
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final hardware is obtained. A top-down, hardware description language (HDL) based

design methodology reduces the overall design time by virtual prototyping, verifica-

tion, and synthesis. The pre—existing HDL model can be reused in the later design of

components.

This thesis has selected an HDL to model hardware systems based on the effect of

the particular language on design quality and time. VHDL was chosen because of its

wide use in modeling the micro-electronic systems at the behavioral and structural

levels. The virtual prototypes based on VHDL can be used in software components of

hardware/software co-design environments. The software model can be verified using

a software simulation environment or a hardware/software co—simulation environment.

As this thesis discusses later, standard modeling styles and guidelines are crucial issues

in concurrent design and integration as well as in hardware/software co-design and



integration.

This thesis illustrates the effectiveness of VHDL in modeling a wide range of sys-

tems, from a simple finite state machine (FSM) to complex parallel systems. Using the

FSM, one of the most ubiquitous, and therefore important, among micro-electronic

control devices, several new techniques of modeling FSMs using VHDL are presented.

These techniques are then used to model the architectures of parallel machines and

applications. The efficacy of these techniques is illustrated by implementing a real

time signal processing application on a Splash 2 computer system. The same ba-

sic technique is used to model and synthesize an application, an on-the-fiy sorting

algorithm, in a hardware system. This thesis shows that different synthesis results

are obtained from each different modeling approach and stresses the importance of

modeling style.

As the complexity of computer systems increases, not only the modeling of such

systems but also design methodology management take on critical importance. Ef-

fective design methodology management must support the following functions: spec-

ification and execution. Specification involves representing available methodologies

and encapsulating them so that they can be searched and used. Execution identifies

an appropriate methodology for a given task: this involves decomposing tasks hierar-

chically, selecting tools and invoking them, scheduling tasks with regard to hardware

resources and available data, handling parallel exploration of alternatives, and back-

tracking.

A CAD framework is defined as “a software infrastructure that provides a common

Operating environment for CAD tools [5].” In order to meet the criteria of effective
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design methodology management, the ideal CAD framework would provide a flexible,

reconfigurable, reusable, and controllable design environment to designers. First, the

separation of design methodology specification and execution should provide flexibility

to the framework. Second, controllability of the ideal framework would allow the

designer to intervene in the automatic execution of the existing framework. Third,

the execution model of the well-designed framework should allow formality in the

expression of the model itself.

Existing CAD Frameworks, such as ADAM [6, 7, 8], OCT [9], and Monitor [10]

have several shortcomings. Flexibility in these frameworks is lacking since the speci-

fication of design methodology and execution are not separate and methodologies are

fixed. Secondly, incorporating process metrics in methodology selection is difficult,

representing dependencies between design data and methodologies is impossible, and

systematic search of design space is problematic, all of which reduce controllability.

Finally, since these approaches lack formalism, representing and storing the selected

design process for reuse are not effective. These issues and their effect on high level

synthesis will be addressed later in this thesis.

The CAD framework proposed in this thesis provides unique solutions to the prob-

lematic aspects inherent in other CAD frameworks. First, the proposed framework is

highly flexible since it incorporates the separation of design methodology specification

and execution. Second, the execution model of the environment is based on a Colored

Petri-Net model [11, 12, 13], providing formality. Finally, this framework achieves a

high degree of controllability through feasibility of intervention, backtracking, and

simultaneous execution. Thus, this thesis presents a new execution environment for



7

managing the design process in high level synthesis which is able to support multiple

functions.

The thesis is organized as follows: In Part II, various modeling techniques and

examples are presented, showing how VHDL descriptions can be used in the design

process as input files. In Part III, the proposed CAD framework execution envi-

ronment is explained in detail. Related work and synthesis examples employing the

CAD framework are also presented. Finally, conclusions drawn from the research are

summarized in Part IV.



Part II

Modeling
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Modeling the micro-electronic system is the important first step in the design

process. Proper modeling technique is essential for rapid prototype and hard-

ware/software co—design. Properly modeled components facilitate design reusability.

Efficiently developed models can be used in the rapid prototyping of a system to be

designed and can be reused in hardware synthesis. The resulting hardware model is

not required to be synthesizable, although this is desirable. The hardware model can

be implemented quickly and inexpensively using an HDL such as VHDL [14, 15, 16]

or Verilog [17, 18]. The entire system model, both hardware and software, can now

be realistically simulated and tested.

An HDL is necessary for a designer to describe the functionality of micro-electronic

hardware parts. At each stage of the design, rapid prototyping using HDL can be

used to explore design options and ensure that specifications meet design function-

ality requirements. Functional verification is usually done by simulation of the HDL

specification. Initially, the prototype is entirely software, but as the design progresses,

the prototype includes hardware for more and more subsystems until the final imple-

mentation is developed. The HDL modeling of such a prototype reduces design errors

and integration risks.

The HDL under consideration is VHDL. Many engineering communities are us-

ing VHDL not only as a design documentation medium but also as a simulation

medium [19, 20, 21]. VHDL supports a top-down approach by allowing high-level

design abstractions as well as a bottom-up approach.

A single HDL such as VHDL captures the complete specification for design as well

as all necessary constraints. Many other design files may be derived from a single
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VHDL file as the design process progresses, but the designer only interacts with and

changes the single VHDL file. A single HDL file provides the following advantages:

0 Changing the control for a design involves changing only a single file rather than

several files.

a Design file management is easier because the design specification is contained

in one file and all other secondary design files are derived from the specification.

0 Design consistency is easily maintained for design data within a single file.

Since most design files are derived from a single VHDL file, different modeling

styles may produce different derived design files. Hence, the modeling style used is

another important issue in the design process.

In this part, several important issues relating to modeling are presented. New

FSM modeling techniques are proposed. These techniques are especially suitable

for the modeling of large FSMS. By carrying out the actual design process starting

from modeling to synthesis, it will be shown that different modeling techniques pro-

duce different synthesis results, thus highlighting the critical importance of modeling

style. Benchmark results for 1-D convolution in a FPGA-based custom computing

machine (CCM) and instrumentation system algorithm show trade-offs between mod-

eling styles and their synthesized results.

Modeling techniques for systems and integration with VHDL are addressed in Part

II, where system modeling experiences and the problems using VHDL are presented.

In Chapter 2, modeling techniques for finite state machines (FSMS) are discussed.

Parallel algorithms/architectures can be modeled using VHDL; this technique, along
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with several examples, is presented in Chapter 3. In Chapter 4, the modeling expe-

rience in a COM is considered. Finally, the relationship between the modeling styles

and the synthesis results are given in Chapter 5. In Chapter 6, conclusions for Part II

are presented.



Chapter 2

Finite State Machine

Almost all micro-electronic circuits are sequential circuits, i.e., they contain memory

or storage elements in the form of flip-flops or latches as well as combinational cir-

cuitry. These sequential circuits are most often modeled using Finite State Machines

(FSMS). A FSM is a mathematical model of a system with discrete inputs, discrete

outputs, and a finite number of internal states. FSMS are very important in the

micro-electronic devices, especially since the control circuitry of the system are usu-

ally implemented as FSMS. The choice of modeling technique is important because

different models create different synthesis results.

In this chapter, a modeling technique for FSMs using VHDL is presented. The ap-

plication of this technique to model systems has been demonstrated [22, 23, 24]. The

actual machine selected to model FSM is the Remote I/O Module in the SINCGARS

Radio [25, 26]. Figure 2.1 shows a block diagram of the Remote I/O Module in the

SINC'GARS Radio. Using VHDL, the current system, which uses a microprocessor,

has been retargeted to a behavioral description of an FSM. The modeling technique

12
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Figure 2.1: Block Diagram

has been successfully used to implement the SINCGARS circuit [19, 22].

The SINCGARS circuit was chosen for the following reasons. Since the final FSM

is large, it provides an appropriate demonstration of the suitability of this approach

to large FSMs. Furthermore, since the existing circuit has already been implemented

and tested, testing the new FSM after replacement of the existing microprocessor is

relatively less problematic.

2.1 Remote I/O Circuit Functionality

The current implementation of the Remote I/O Module consists of the GDP 1802

microprocessor, ROM, RAM, OUTPUT BUFFER, DEC/TIM, and the REMOTE

INTERFACE as shown in Figure 2.1. The microprocessor is used in the SINCG'ARS

Receiver- Tmnsmitter(RT) to control its status. It controls the inputting, decoding,

outputting, and encoding of remote control words sent from the other radio mod-
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ules. Thus, the radio can be controlled from a distance via a physical wire. The

ROM contains the stored program to perform the function of operating the GDP

1802. The RAM is used for temporary storage during operation of the CDP 1802

system. The OUTPUT BUFFER can be loaded with parallel data which can be

shifted out in a serial data stream. Output clocks and gates are also provided. The

DECODER/TIMER is designed to decode control signals to the microprocessor and

to provide timing for the system. The REMOTE INTERFACE contains two groups

of latches. One group of latch signals is fed to it by the CDP 1802. These signals are

used for output signals to the RT. The other group of latches is clocked and continu-

ally latches the latest state of its input lines. Figure 2.2 shows the state diagram of the

Remote 1/O module. During the microprocessor SCAN routine shown in Figure 2.2,

the latched signals are read by the microprocessor via the data bus. The signals are

analyzed, and appropriate action is taken. The microprocessor also provides direct

memory access to the RAM.

The Remote I/O Module controls the power on and initializes operation of the

RT in the remote configuration. It provides a self-test routine that tests the RAM,

ROM, and remote 2-wire controls. It also provides remote front-panel controls for

the RT: MODE, CHANNEL, RF POWER, FUNCTION, KEYBOARD CONTROL,

and COMSEC. The Remote I/O Module sets and maintains the operating mode

associated with the remote control units as listed above, and sends and receives the

control signal for both control words and baseband information. Control signals are

provided to modulate or demodulate an FSK carrier for control words.
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state_assign:PROCESS

BEGIN

-- see Figure:State Assign

END PROCESS;

fsm:PROCESS(present_state,x) PROCESS -- state 0

BEGIN BEGIN

CASE present-state IS WAIT ON elk;

WHEN 0 => IF (present-state-O

AND elk-’0’) THEN

output <- ’0’; output <- ’0’;

IF(x=’O’) THEN IF(x:’O’) THEN

transition <= 0; transition <- 0;

ELSE ELSE

transition <= 1; transition <2 1;

END IF; END IF;

ELSE

output <-I NULL;

transition <- NULL;

END IF;

END PROCESS;

WHEN 1 => PROCESS -- state 1

(A) Case Statement (B) Process Statement

 

Figure 2.3: FSM Implementation

2.2 VHDL Modeling of the Finite State Machine

In VHDL modeling of FSMS, the case statement is widely used and cited in the

literature [20, 27, 28]. An example is illustrated in Figure 2.3 (A) to model a simple

FSM. However, when the FSM is large, it is useful to decompose the whole FSM

into a number of small communicating FSMS so that each smaller FSM can then be

modeled separately. These smaller FSMS are shown as circles in Figure 2.2. The

modeling approach using case statements cannot handle this kind of decomposition

effectively. In a proposed new approach which is described in this chapter, each small



17

FSM is represented as a single process, as shown in Figure 2.3 (B). There are several

advantages to using the new approach: it is easy to decompose the large FSM into

smaller FSMS; it is easy to manage smaller FSMS instead of handling one huge FSM;

it is easy to update FSMS and maintain FSMS given the greater manageability of

smaller FSMS.

The microcode in the GDP 1802 processor is modeled as a set of FSMS using

VHDL. First, the overall behavioral description of the processor is represented with a

VHDL behavioral description. This description is divided into a number of states in

the finite state machine. In Figure 2.2, the circles represent main states, and the rect-

angles represent subroutines. These states and subroutines are further divided into

states based on the generation of output signals, accessing the RAM, and waiting for

the 640KHz clock input. The subroutines in the microprogram are also implemented

as states.

The decomposed states in the original finite state machine are implemented using

the process statements of VHDL. The FSMS are synchronized to the rising edge of

the 640KHz clock. The interrupt routine is executed when the interrupt signal as

well as the interrupt enable signal are both high.

The major disadvantage of using process is its extensive use of the null as-

signment. If the same signal is driven in more than one process block in VHDL, it

must have a bus resolution function associated with this driver. In the new design,

7

a signal (e.g., “transition,’ which selects the proper next state value) must be driven

from only one process at a time, in other words, the rest of the drivers should be

disconnected at the given simulation time. This resolution function is quite different
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from those known as “Wired-Or,” “Wired-And,” and “Wired-X” functions, where

all the drivers do not need to be disconnected. Their values are collected and used

to calculate an output signal value of the function. In this design, if all the drivers

except one are successfully disconnected, the resolution function simply returns the

first driver’s value because there is only one driver active at that time. In order to

achieve this, a null assignment statement for each driver must be used.

Once the microprocessor is eliminated, the ROM is no longer necessary. The new

block diagram is basically the same as the old one, except that there is no ROM, and

CDP 1802 is replaced by FSM.

2.2.1 Basic Structure of State Modeling Using VHDL

There are several ways of representing the finite state machine in VHDL. The case

statement is the most frequently used. An example of using a case statement is shown

in Figure 2.3 (A). The other method, recommended here, uses a process statement.

This method is illustrated in Figure 2.3 (B).

Each state has a fixed structure, as shown in Figure 2.4. One process represents

one state. Each process waits for the changing value of clk (wait on statement). The

next if statement controls the execution of the statements in that particular state.

If the conditions are satisfied, the sequential statements inside of the if statement

are executed. Each process can have any number of sequential statements. If the

conditions are not satisfied, the null assignment statements are executed. At any

given point of simulation time, only one process among all the processes actively
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PROCESS

-- local variables declarations here if needed

BEGIN

WAIT ON clk;

IF(present-state 8 ? AND clk 8

-- ? represents the current

-- Sequential statements

output <8 new_output; --

transition <= next_state; --

-- Sequential statements

ELSE

output <= null;

transition (8 null;

END IF;

END PROCESS;

’0’) THEN

state number

output assign

state transition

 

Figure 2.4: Basic State Implementation

  1 ..........................

clk

['2

0 ...............
g

i
t+ At

v
thachycle

V

t+half_cycle+ A t

Figure 2.5: Timing Diagram

updates the new signal values; the rest of them simply disconnect all the signal

drivers because of the if statement.

The new present state value is assigned at time t, which is the rising edge of the

clock. For VHDL simulation, this value is available after At time interval. This

timing diagram is shown in Figure 2.5. Thus, when the clock is low, the new value is

already available to the process.

I—
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state-assign : PROCESS

BEGIN

WAIT ON clk;

IF(c1k 8 ’1’ AND NOT clk’STABLE) THEN --

IF(interrupt-enable = ’1’ AND interrupt 8 ’1’) THEN --

present_state <8 900; -- interrupt routine --

state-save (8 next-state; --

ELSE

present-state (8 next_state; -- 5

END IF;

-- Output assignments -- 6

END IF;

END PROCESS;

A
t
o
m
»

 

Figure 2.6: State Assign And Output Assign

2.2.2 State Transition and Output Generation

A state transition occurs at the rising edge of the clock, i.e., at the time t in

Figure 2.5. This condition is checked by statement 1 of Figure 2.6. This new state

value is available after At time delay, specifically, after the time t+At in Figure 2.5.

Thus, when the clock is ‘0,’ this new value is already available to all the processes in

which the conditions can be checked. This is the case in the normal state assignment

(statement 5) in Figure 2.6. However, if an interrupt request is made (conditions in

statement 2), the next state value is saved (statement 4), and the flow of control goes

to the state “900” (the beginning state of the interrupt handling routine) to serve the

interrupt routine (statement 3).

Any output can be generated at the rising edge of clock at the same time that the

state transition occurs. All the output Signals can be assigned at statement 6.
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2.2.3 Subroutine Handling

Subroutines are also implemented as FSM states. The execution of a subroutine is

accomplished by assigning the beginning state number of the subroutine to transi-

tion and saving the return state number onto the stack. There is an independent

process which handles the stack Operation, shown in Figure 2.7. RETURN can be

implemented by assigning the state “1000” to transition. At the state “1000,” it

simply pops the return address and makes the next transition available, as shown in

Figure 2.7.

Since the procedure in VHDL cannot directly generate the output signal to the

outside of the FSM, it is not possible to use procedures if there is output from the

subroutines. This is one reason why subroutines are implemented by the FSM instead

of using procedures. Each subroutine consists of several states, with the last state

of each subroutine simply restoring the return state to the transition from the stack.

Using the same technique as the main finite state machine, subroutine calling can be

easily implemented.

The nested subroutine call uses the stack. Since the return address must be saved

somewhere in order to return to the right place, the stack is an effective data structure.

Every time a subroutine is called, the return address is saved onto the stack.

2.2.4 Interrupt Handling

If the interrupt request occurs while the program is executing in any of the states, as

is shown in statement number 2 of Figure 2.6, the next state value is saved and the
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stack-0peration : PROCESS

VARIABLE pointer : INTEGER :8 O;

VARIABLE stack : stack_ty :8 (others 8> 0);

BEGIN

WAIT 0N clk;

IF( clk 8 ’0’) THEN

IF(stack-operation 8 push) THEN

stack(pointer) :8 return_state;

pointer :8 pointer + l;

next-state <= transition;

ELSIF(stack_operation 8 pop) THEN

pointer :8 pointer - 1;

next_state <8 stack(pointer);

ELSE

next_state <8 transition;

END IF;

ELSE

next_state <8 null;

END IF;

END PROCESS;

PROCESS -- RETURN

BEGIN

WAIT ON elk;

IF(present_state 8 1000 AND clk 8 ’0’) THEN

stack_operation <8 pop;

memory_operation<8 no;

ELSE

stack-operation <8 null;

memory_operation<8 null;

END IF;

END PROCESS;

 

Figure 2.7: Stack Operation and State 1000 RETURN
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transition is changed to state “900,” the start of the interrupt handling routine. At

the end of the service, the saved state is restored to the signal transition in order to

resume execution.

In the microprocessor, the execution of an instruction is divided into three phases:

fetching, decoding, and executing the instruction. The interrupt request can occur

during any of these three phases. When this happens, the current status is saved, the

interrupt handling routine is invoked, and upon completion of the interrupt handling

routine, the saved status is restored and the control is returned to the point where it

was halted.

In VHDL simulation, no suitable way of implementing this situation can be found.

Interruption can only occur when an instruction is finished executing. Although

conditions are restricted so that interruption can occur after executing an instruction,

this is not suitable for FSM modeling. Since several microinstructions were grouped

into one state instead of allowing a single instruction per state, interruption should

be allowed after finishing all instructions in a state.

The interrupt handler is implemented as is a finite state machine and can be viewed

as a subroutine. When the interrupt request is given and when intermpLenable = ’1, ’

the next state transition is saved onto the signal variable called state.save, the new

present state then becomes 900, or the beginning of the interrupt handling routine.

Upon completion of the interrupt handling routine, the next state is 1000, which pops

the saved state and restores the right transition information onto the signal variable

present.state.
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2.3 Discussion

How VHDL can be used to model the FSM and retargeting the current design into a

new design have been shown. Since each state is modeled as one process in VHDL,

this method has several advantages over use of a case statement. Using process

statements gives better readability: each state may contain complicated sequential

statements, decomposition can be easily performed, and only some states can be

compiled and simulated independently within the whole system. Since this approach

is modular, it is easy to manage smaller FSMS instead of handling one large FSM,

and it is easy to update and maintain FSMS because only partial re-compilation is

needed. This style, however, has the limitation of leading to excessive use of NULL

assignment statements, which needs a bus-resolution function [22].

This FSM model is used to implement a hardware/software co—design system [24],

which is explained in Chapter 5. Different synthesis results from several different

FSM models are also summarized in Chapter 5.



Chapter 3

Modeling of Parallel Architectures

and Algorithms

High-performance computing requires both parallel architectures and algorithms that

work well on those architectures. To design a high-performance system, architectures

and their suitable algorithms must also be designed. VHDL can be used to model

parallel architectures and algorithms. For parallel algorithms, actual hardware with

the desired architecture is usually not available and must be simulated. The tight

coupling between architecture and algorithm requires a language that can describe

both effectively.

For parallel architectures, two computing models are commonly used. In the single

instruction, multiple data (SIMD) model, all of the processing elements (PEs) execute

the same instruction synchronously. In multiple instruction, multiple data (MIMD)

model, each PE has its own program and PBS only synchronize periodically. In either

model, memory may be globally shared so that any PE can access any variable, or

25
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memory may be local tO each PE. In the latter case, PES communicate by passing

messages.

In general, a parallel algorithm on a specific architecture can be modeled as follows.

At the top level, a structural description is used to create the processing elements and

connect them using the chosen topology or architecture. A behavioral description in

the architecture of each PE describes the activities of individual nodes. The memory

Of each node is modeled by variables within this architectural body of the VHDL

description of the PEs.

For regular topologies, such as LINEAR ARRAY, RING, STAR, TREE, COM-

PLETELY CONNECTED, MESH, TORUS, and HYPER-CUBE [29, 30], VHDL generate

statements work well. However, it may take some practice to correct the port maps

using only the indices Of the generate statements. Once a topology is developed, it

usually can be easily extended to a larger system.

In the MIMD algorithm, individual PES may be programmed independently. One

way to handle this is to define different entities for each. This may preclude the use

Of the generate statement to describe the topology. Another solution is to lump the

programs into one architecture and select a program using the if or case statement.

Figure 3.1 illustrates the general structure Of a VHDL model for a SIMD parallel

algorithm. The control unit for SIMD algorithms is modeled using a process at

the top level. To be completely faithful to the SIMD model, most Of the algorithm

would have to reside in the control unit, and the PE architecture should only define

the handling of individual instructions. However, individual instructions are of too

fine a granularity. Instead, the algorithm must be divided into meta-instructions-
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-- Top Level

FOR i IN 0 T0 ... GENERATE

pe PORT HAP(1ocal-clk, command,

..);

END GENERATE;

contrl: process

end contrl;

-- Individual Node

ENTITY pe IS

PORT(loca1-c1k : IN BIT;

command : IN INTEGER;

..);

END pe;

ARCHITECTURE arch-pe 0F pe IS

BEGIN

PROCESS(local_clk)

VARIABLE k: INTEGER:=O;

BEGIN

CASE command IS

WHEN ... =>

WHEN ... 8)

END;

END;

 

Figure 3.1: General Structure Of SIMD Algorithm Model
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which handle sections of the code between necessary synchronization points. The

process for the control unit issues these meta-instructions and the process for each

PE executes the corresponding section of code.

3.1 Examples

In order to solve a given problem, finding a suitable algorithm and the best parallel

architecture associated with the algorithm is needed. This is the driving program of

each processing element. In MIMD, each PE executes different programs, while in

SIMD, each PE executes the same instructions one at a time.

The first problem is finding the minimum among n different numbers, each Of

which is assigned to one node in a HYPERCUBE. The algorithm is a typical example

of reduction. In each cycle k, every PE compares its data with its neighbor’s data

along the k — th dimension, then saves the smaller number. After log(n) cycles, every

PE has the smallest number that is the solution. The VHDL code in Figure 3.2

implements the algorithm when n = 8.

The implementation of the algorithm in VHDL requires the modeling Of a HY-

PERCUBE. A diagram of a HYPERCUBE with dimension 4 (called 4-Cube) is shown in

Figure 3.3, and the VHDL code for the 4-Cube interconnection is shown in Figure 3.4.

Here, dim0 is used as the first dimensional connection such as X direction, dim] is

used Y direction, dim? is used Z direction, and finally, dim3 is used for the fourth

dimension. The individual PE’S id number is set by using id(i), and inidata(i) is used

to initialize the data for simulation if necessary.
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LIBRARY WORK;

USE WORK.ALL;

ENTITY pe IS

PORT(00,01,o2: OUT INTEGER;

iO,i1,i2: IN INTEGER;

id: IN INTEGER;

loca1_clk: IN BIT;

1: IN INTEGER);

END pe;

ARCHITECTURE arch_pe OF pe IS

BEGIN

PROCESS (loca1-clk)

VARIABLE k: INTEGER:80;

VARIABLE data: INTEGER;

TYPE int_array IS ARRAY(0 T0 2) OF INTEGER;

VARIABLE in_temp, out-temp: int_array;

BEGIN

in_tempfO) :8 iO;

in_temp(1) :8 il;

in-temp(2) :8 i2;

IF ((local,clk’EVENT) AND (loca1_clk 8 ’0’ )) THEN

IF (k80) THEN

data :8 x;

END IF;

out_temp(k) :8 data;

k :8 k+1;

END IF;

IF ((local_clk’EVENT) AND (loca1_c1k 8 ’1’ )) THEN

IF ( in_temp (k-l) < data ) THEN

data :8 in_temp(k-1);

END IF;

END IF;

00 <8 out_temp(0);

01 <8 out_temp(1);

02 <8 out-temp(2);

END PROCESS;

END arch_pe;

 

Figure 3.2: Smallest Number Finding Problem
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Figure 3.3: 4-Cube Connection

 

3: FOR 1 IN 0 T0 15 GENERATE

id(i) <8 1;

p0: pee PORT MAP(dim0(i), dim1(i), dim2(i), dim3(i) “-(1) OUT’s

dim0(i+(1-2*(i mod 2)», "(2) IN’B

dim1(i+(1-2*((i/2) mod 2))*2 ),

dim2(i+(1-2*((i/4) mod 2))84 ).

dim3(i+(1-2*((i/8) mod 2))* 8 ).

id(i), clk, inidata(i));

END GENERATE;

 

Figure 3.4: 4-Cube Connection in VHDL
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0010

 
 

 

Figure 3.5: Bit Configuration of Connected PBS in 4-Cube

Since each PE has the same hardware configuration and executes the same pro-

gram, there is only one PE description, which is saved in the design library. The

network of PBS can be instantiated using PORT MAP statements. In addition, since

the structure of the connection is regular, the GENERATE statement is used to instan—

tiate all PES.’ Each PE is connected to 4 PEs whose id differs only in one bit position.

Figure 3.5 illustrates the connections of PE 0. The formula, i+(1-2*((i/281m) mod

2))8288n, in (2) Of Figure 3.4, is used to find such a bit configuration. Here i rep-

resents the relative id number Of each PE, and n represents the n-th bit position Of

id.

The next example implements Butcher’s Sorting Algorithm on a TORUS network.

The VHDL code segment shown in Figure 3.6 is an implementation of the algorithm

based on Nassimi’s paper [31]. Each PE receives commands from the top module,

which may be regarded as an SIMD controller, and responds to those commands.

The commands are very simple, such as shift.data_left, ..right, -up, and -down, or
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change_data between different components within the same PE. Operations related

to a single PE are implemented by sending corresponding commands and parameters

to each PE.

A 5-by-5 TORUS is shown in Figure 3.7, and its VHDL code is shown in Figure 3.8.

Again, the regularity of TORUS permits the use Of a generate statement to instantiate

all the components. In the VHDL code, the signals eonO, con1, eon2, and con3

are used to connect each PE in all four directions. The wrap-around is implemented

using integer mod functions.

The second program shown in Figure 3.6 describes the implementation Of an actual

SIMD PE. A PE receives a command, such as left.shift or changeOandZ. The execution

Of this instruction is synchronized at the control signal locaLclk.

Note that the VHDL implementation of the second problem more closely model

the behavior Of SIMD machines than the implementation Of the first problem. In

SIMD machines, a PE has no program to run. Each PE only responds to instructions

sent from the controller or control signals such as clock. However, this implementation

in the second example still uses some meta command characteristics. For example,

the command changeOand2 contains more than one instruction. In the first example

(Figure 3.2), however, each PE contains most Of the algorithmic code. The controller

sends only synchronization signals as Opposed to instructions.

Describing MIMD machines is not an easy task, especially when the machine is

dynamically configured. Each PE may have a different program (instruction) tO run;

thus, it may not be feasible to use the generate statement. Each PE must be coded

independently and connected separately.
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-- ... deleted

ARCHITECTURE areh-pe OF pe IS

BEGIN

PROCESS(local_clk)

-- ... deleted

rowin_right_temp :8 rowin-right;

CASE command IS

WHEN left-shift 8>

IF(loeal-e1k 8 ’0’ AND local_c1k’EVENT) THEN

IF(colid MOD (2*par1) + par2 <8 2*par1) THEN

rowout-1eft_temp :8 pel;

END IF;

END IF;

IF(local-clk 8 ’1’ AND local-elk’EVENT) THEN

IF(par2 + colid MOD (2*par1) - parl >8 0) THEN

pe1 :8 rowin_right_temp;

END IF;

END IF;

-- ... deleted

WHEN changeOand2 =>

IF(loca1_clk 8 ’0’ AND local-elk’EVENT) THEN

IF(rowid MOD (2*par1) < parl) THEN

IF(sort_order 8 1) THEN

IF(pe2 < peO) THEN

temp :8 peO; peO :8 pe2; pe2 :8 temp;

END IF;

END IF;

IF(sort_order 8 -1) THEN

IF(pe2 > peO) THEN

temp :8 peO; pe0 :8 pe2; pe2 :8 temp;

END IF;

END IF;

END IF;

END IF;

-- ... deleted

WHEN OTHERS 8> NULL;

END CASE;

-- ... deleted

result <8 p60;

rowout-left :8 rowout_1eft_temp;

END PROCESS;

END arch_pe;

 

Figure 3.6: PE Behavior Of Batcher’s Sorting Algorithm
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Figure 3.7: 5X5 Torus Connection
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g:FOR i IN 0 TO 4 GENERATE

31: FOR j IN 0 TO 4 GENERATE

id(i*5+j) <8 1*5+j;

p0: pee PORT MAP(con0(i*5+j), --(1) EAST out

eon1(i*5+j), --(2) SOUTH out

con2(i*5+j), --(3) WEST out

con3(i*5+j), --(4) NORTH out

eon0(((i*5+j-1) mod 5) + 185), --(5) WEST in

con1(((i-1)*5+j) mod 25). --(6) NORTH in

eon2(((i*5+j+1) mod 5) + 185), --(7) EAST in

con3(((i+1)*5+j) mod 25), --(8) SOUTH in

id(i*5+j), Clk); --(9) PE id and Clock

END GENERATE;

END GENERATE;

 

Figure 3.8: TORUS Connection

VHDL has been shown tO be powerful enough to describe various parallel architec-

tures and their timing behaviors. Using VHDL, parallel algorithms can be simulated

and the performance of parallel architectures measured. TO model a specific parallel

application and synthesize to a specific parallel hardware, Splash 2 was used as a

signal processing application. This application is covered in the next chapter.





Chapter 4

Signal Processing in a Custom

Computing Machine

Signal processing applications are computation-intensive, primarily because Of the

large amount of data to be handled in a very short time. Single processor machines

cannot attain the desired performance, parallel machines and application-specific in-

tegrated circuits (ASICS), therefore, are used to Obtain the desired speed. However,

these options are costly, moreover, once the ASIC is built, the design is very difficult

to be changed.

Field Programmable Gate Arrays (FPGAS) have gained considerable attention

recently because Of their reconfigurability. FPGAs allow a new form of computing

where the architecture of a computer may evolve over time, changing tO fit the needs

of each application it executes. With an FPGA-based machine, architecture can be

tailored to meet the desired performance for a given application.

The reconfigurable architecture, which has been adopted, is Splash 2, developed
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and built by the Supercomputing Research Center (SRC). Splash 2 is a special pur-

pose attached parallel processor having processing elements (PES) based on user pro-

grammable Xilinx 4010 FPGA chips. The Splash 2 system consists Of a Sun SPARC-

station as a host, an interface board, and Splash array boards ranging from one to

sixteen boards. Each array board consists Of 16 PBS with linear connections as well

as a reconfigurable crossbar interconnection between PBS.

The Splash 2 system can be used to enhance existing applications by using its mul-

tiple PBS. The applications Should be modeled appropriately to the Splash 2 system.

The Splash 2 system does not have any fixed instructions; any sets of instructions

can be designed in this system. Thus, modeling is very important step in the design

process when using the Splash 2 system.

VHDL is used to model computational algorithms as well as architectures. Sim-

ulation is used to verify the parallel model. Then, from the VHDL description, the

compiler retargets the algorithms and architectures into FPGAs. The role Of VHDL

in this system is multifaceted: it is used as both the specification (modeling) lan-

guage and the implementation language. VHDL describes both algorithms within

user applications and the necessary hardware to realize them (including processing

units, memories, and interconnections) [32].

In this chapter, research work to model and synthesize a signal processing appli-

cation using VHDL targeted tO a parallel custom computing machine, Splash 2, is

described. Different modeling approaches are greatly affected in the final synthesized

results: this aspect is summarized in Section 4.4.



38

4.1 Splash 2

Splash 2 [33] is an attached special purpose parallel processor where each processing

element is a user programmable FPGA chip. The architecture of Splash 2 can easily

support parallel applications, such as systolic or data-parallel computations. Splash

2 has been developed and modified from the Splash 1 system [34], which consisted

Of a fixed size linear array of Xilinx 3090 FPGA chips. Splash 2 incorporates several

improvements over Splash 1. Splash 2 is based on newer hardware technology, the

Xilinx XC4010 FPGA. A crossbar has been added to connect PES on a board in

any pattern. The linear path was the only configuration in Splash 1. The program-

ming environment Of Splash 2 centers on VHDL, in place of SRC’S Logic Description

Generator (LDG) [35, 36, 37].

4.1.1 Splash 2 Architecture

Splash 2 is attached to a Sun SPARCstation host. Figure 4.1 shows the Splash 2

architecture [38, 39]. The host is connected to Splash 2 via an interface board. The

host can read from and write to memories on the Splash processing boards via this

interface board.

Each Splash 2 processing board has 16 processing elements, X1 through X16, with

one special PE, X0, controlling the data flow into the processor board. Each X,- is a

PE built around a Xilinx 4010 FPGA chip. A crossbar connection can be programmed

by X0. The processing element organization is shown in Figure 4.2. Each PE has

512 KB of attached memory, which has a 16-bit word size. The host can access this
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Figure 4.1: Splash 2 Architecture
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Figure 4.2: Processing Element (PE) in Splash 2

memory via the SBus.

Each PE can communicate using the SIMD Bus (left-right neighbor data paths)

or the crossbar. Data can be broadcast using the crossbar. The Splash 2 architecture

supports systolic and pipeline modes Of computation, SIMD, or data-parallel mode

(PBS execute the same instructions on different data streams), or even MIMD mode

(PEs execute different instructions on different data streams). The Splash 2 system

can run at a maximum clock speed Of 40 MHz where the maximum is limited by the

FPGA technology. The actual Operating speed is determined when the FPGA logic

is synthesized.
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4.1.2 Programming Splash 2

The programming environment for Splash 2 is based on VHDL [14, 40]. The be-

havioral description is analyzed, simulated, and synthesized onto Xilinx FPGAs. An

application for Splash 2 is developed by writing its behavioral description in VHDL,

and the description is iteratively refined and debugged with the Splash 2 system sim-

ulator. After the description is verified to be functionally correct by simulation, it is

translated into a Xilinx net list form. The net list is then mapped onto the FPGA

architecture by an automatic partition, placement, and routing tool to form a load-

able FPGA Object module. A static timing analysis tool is then applied to the Object

module to determine the maximum Operating speed.

TO program Splash 2, each Of the PES should be programmed, i.e., X0 through X16,

and the host interface. The host interface is responsible for data transfers between

host and the Splash 2 board. For this purpose, the system provides a C-language

interface and C programs are written for the host’s tasks.

4.2 Convolution

An important class Of signal and image processing algorithms is based on the convolu-

tion of two Signals. For analog one-dimensional signals f (t) and g(t), the convolution

h(t) is defined as

h(t) = /+°°g(z)f(x — t>dz (4.1)
-CXD
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1. Input: A l-dimensional vector f(t), a mask vector g(t).

2. Output: A 1-dimensional result vector h(t).

3' Begin Assume k PEs are available.

The it" PE holds the g(i) mask value.

On each PE:

Receive from left neighbor: signal value f(i), partial sum S(i-l).

Compute new partial sum S(i) = S(i—l) + f(i) * g(i).

Send signal value f(i) and partial sum S(i) to right neighbor.

End.

Figure 4.3: Sequential Algorithm of Convolution

 

Discrete-time one-dimensional signals reduce to the following equation:

+oo

h(t) = 2 gene — t) (42)
-oo

Further, if the signal g(t) is a finite-time duration signal (called the mask signal),

then the summation range changes, so that

h(t) = Z 9($)f(1‘ - t) (43)

where k is the mask size.

On a sequential machine, convolution is easily implemented, as shown in Fig-

ure 4.3. However, a sequential computer may not be practical when convolution

needs to be done in real-time for a large number Of data points. For parallelizing a

convolution computation, two approaches can be taken [41]: (i) data parallel comput-

ing and (ii) systolic computing. Data parallel computing uses a divide—and-conquer

approach to deal with the large amount Of data. Usually f (t) has a large number
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Of data points (spread over a large time domain) compared to the mask signal g(t).

Hence, a set of processors can be used to compute on shorter segments of the data

in parallel. This computational model assumes that each PE is powerful enough to

carry out all computations and that signal values are already available at each PE. If

this latter assumption is not the case, then the data path from host to PBS becomes

a bottleneck, preventing the distribution Of data to the PEs. This problem can be

overcome by using a systolic approach. This requires only that a single data path

exist between the host and 1: PBS and that the PEs be powerful enough to perform

the add and multiply operations.

A set of PBS are used as a linear array. The basic convolution algorithm translates

into the above systolic algorithm. The input is fed into the PE array at the left input

of the first PE with the partial sum initialized to zero. At the output of the last PE,

the final result is Obtained.

Clearly, the algorithm outputs one result every clock cycle after the initial pipeline

latency. The overall model is schematically described in Figure 4.4. If the number

of PBS available is smaller than the number Of mask values, several virtual PBS to a

physical PE should be mapped, in which case, the PEs need wider communication

paths and require more cycles to produce results.

4.3 VHDL Implementation

In this section, the implementation Of a 1-D convolution using VHDL is described. In

the implementation Of this convolution, the PEs are configured as a linear array and
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left_in -—" right_out <= left_in; r——* right_out

sum_right <= lefLin ‘ mask + sumJeft; ,

sum_left —' —. sum_nght

Memory Memory Memory Memory Memory

left_in —8I —-> right_out

PE PE PE PE PE _

sum_left —H ‘-—‘> sum_nght
    

               

Figure 4.4: PE Behavior and Configuration for 1-D Convolution (k = 5)

a systolic method is used. In a 1-D convolution, each signal value (ranging from 0

through 255 in the applications being targeted) is input into the left-most PE at each

clock cycle, and this input is multiplied by the mask value. For each signal value, the

input value and partial sum are passed to the next PE tO the right for accumulation.

4.3.1 I-D Convolution

A signal value, left.in, is received at each clock cycle and is multiplied by the mask

value, mask. The partial sum, psum, is simultaneously received and is added to this

newly-formed product. The signal value and the new partial sum, sum, are then

passed to the right PE for accumulation. The VHDL program representing this PE

behavior is shown in Figure 4.6. The configuration is shown in Figure 4.5.

In the program, the calculation Of the accumulation is shown at line 4 in Figure 4.6.

Synchronization with the clock is achieved by waiting for the clock transition (line 1)

in Figure 4.6.





45

 

   

 

  
 

 

 

   

 

 
 
 

 

Memory

Amhafi’ f”“

’18 ’ 16

/ value(7 downto 0) ‘ value(7 downto 0)

1’8 1’8 >

m—i“(35,d°“‘° 0.) ] partial sum(23 downto 3) K partial sum(23 downto 8) assumes downto 0)
I I I .1 l _

36 716 Buf + 7 16 r r 36 V

unused(35 downto 24) unused(35 downto 24)

1 I L

\ ’ 12 ’ 12 '   
PE

Figure 4.5: Splash PE Input/Output Data Paths

 

WAIT ON valid_elk;

psum :8 sum-left;

IF (left_in>0) AND (psum>80) THEN

sum :8 mask * left_in + psum;

ELSE

sum :8 psum2;

END IF;

right_out <8 1eft_in;

sum_right <8 sum;

1 1

w
h
e
e
l
e
r
-
8

 

Figure 4.6: Behavioral Modeling
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ENTITY Xilinx_Proeessing_Element IS

GENERIC(

bd-id : INTEGER :8 0; -- Splash Board ID

pe_id : INTEGER :8 0); -- Processing Element ID

PORT (

XP_Left : INOUT DataPath; -- Left Data Bus

XP_Right: INOUT DataPath; -- Right Data Bus

XP_Xbar : INOUT DataPath; -- Crossbar Data Bus

XP_Xbar_EN_L : OUT BIT_VECTOR(4 DOWNTO 0);

-- Crossbar Enable (low-true)

XP,Clk : IN BIT; - Splash System Clock

XP_Int : OUT BIT; - Interrupt Signal

XP-Mem-A: INOUT MemAddr; - Splash Memory Address Bus

XP_Mem_D: INOUT MemData; -- Splash Memory Data Bus

XP_Mem-RD-L : INOUT RBit3; -- Memory Read Signal

XP-Mem_WR_L : INOUT RBit3; -- Memory Write Signal

XP_Mem_Disab1e: IN BIT; -- Splash Memory Disable

XP_Broadcast : IN BIT; -- Broadcast Signal

XP_Reset : IN BIT; -- Reset Signal

XP_HSO : INOUT RBit3; -- Handshake Signal Zero

XP_HSl : IN BIT; -- Handshake Signal One

XP-GOR-Result : INOUT RBit3; -- Global OR Result Signal

XP_GOR_Valid : INOUT RBit3; -- Global OR Valid Signal

XP_LED : OUT BIT); -- LED Signal

END Xilinx_Proeessing-Element;

 

Figure 4.7: PE Entity Description

4.3.2 Splash 2 Implementation

The 1-D convolution program is ported to the Splash simulator in order to simulate

and synthesize for the Splash architecture and for Xilinx FPGAs. The entity descrip-

tion [36] of each PE is shown in Figure 4.7. The signals are self-explanatory and are

shown schematically in Figure 4.2.

The behavioral code for a 1-D convolution using VHDL cannot be directly syn-

thesized into a Xilinx FPGA chip, since an FPGA consists of a finite, and therefore,
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WAIT until XP_Clk’EVENT AND XP_Clk 8 ’1’; -- 1

psum :8 psum1;

psuml :8 bvtoi(left_in(23 downto 8)); --

-- sum :8 mask8bvtoi(1eft-in(7 doento O))+psum; --

Address(7 downto 0) <8 left_in(7 downto 0); --

sum :8 bvtoi(Data)+psum; --

right_out(7 downto 0) <8 left_in(7 downto 0); --

right_out(23 downto 8) <8 itobv(sum,16); -- #
0
1
0
1
.
t
h

 

Figure 4.8: PE Behavioral Description

limited number Of logic devices. The logic synthesized directly from the VHDL de-

scription includes 8-bit multiplication, which consumes too many gates to fit into the

Xilinx chip. To reduce the logic requirements, the multiplication Operation is con-

verted into a table look-up Operation using the memory Of the PBS. The VHDL code

segment for the Splash PE is shown in Figure 4.8. A diagram of the PE input/output

data paths is shown in Figure 4.5.

Each PE is synchronized by the rising edge of the clock, XP..C1k (line 1) Of Figure

4.8. The effect Of lines 4 and 5 is shown in the comment of line 3: a memory look-up is

used in place Of multiplication. Since each signal is 8 bits wide, there are 256 distinct

values possible for each data point. The 8-bit input is Shown in line 4. It is used

as an address of a 256-word look-up table, which holds the results Of the 256 values

times the mask value (a single constant for that PB). The 256 multiplications can

be calculated in advance and load these values into the PE’S memory. The loading

of these values is done from the host of the Splash system before the convolution

execution starts. The signal value is used as the look-up table address.





48

Once the Address is set to a certain value (line 4), the value in the memory location

pointed to by Address is loaded into a variable Data at the next clock cycle. Thus the

multiplication result is available at the next clock cycle in Data (line 5). One buffer

is used for restoring a temporary result (psumI at line 2) since Data is available one

clock cycle later. Before the partial sum is calculated, conversion of the signal Of the

bit-vector type into an integer type is needed. This is done by using the function

bvtoi. Similarly, itobv is used to convert an integer to a bit-vector. The input signal

value and partial sum are packed and passed to the right neighbor (lines 6 and 7).

Once the PE program is complete, the Splash system can be configured. This

is done by programming the VHDL top model. A portion Of this code is shown

in Figure 4.9. A predefined interface board configuration is used. By assigning the

generic constants such as input. dot, the system can be tailored (line 1). Line 2 specifies

one Splash board. A specific interconnection between PEs is Obtained by loading the

initial configuration from a file, here named zerossbar (line 3). Each PE is configured

by using a predesigned component. Line 4 marks the section Of code for PE 1, line 5

for PE 2; the rest of the PEs are defined similarly.

4.4 Experimental Results

Splash simulation indicates the correct behavior of the model, as determined by ana-

lyzing Figure 4.10, the simulation waveform. The synthesized result achieves a clock

rate of 18.5 MHz for the 1-D convolution, as shown in Figure 4.11.

The timing results show that different Operations can run at various maximum
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CONFIGURATION top OF Splash_System IS

USE ENTITY Interface.Interfaee_Board(Structure) -- 1

GENERIC MAP (Input_file1 8> "input.da ",

Output_filel 8> "result.dat",

Fi1e_Type 8) Hex, Clock_Freq 8> 20);

USE ENTITY S2Board.Splash2_Boards(Structure) -- 2

GENERIC MAP (Number_0f_Boards 8> 1);

USE ENTITY S2Board.Splash_Crossbar(Behavior) -- 3

GENERIC MAP (Config_File => "xcrossbar“);

FOR xparts(1) -- PE 1 i -- 4

FOR ALL : Xilinx_Processing_part

USE ENTITY WORK.Xilinx-Processing_Part(conv_1d);

END FOR;

FOR ALL : Memory_Part

USE ENTITY S2Board.Memory_Part(Dynamic)

GENERIC MAP (Load_File 8> "lookup01.dat");

END FOR;

END FOR;

FOR xparts(2) -- PE 2 -- 5

FOR ALL : Xilinx-Processing_part

USE ENTITY WORK.Xilinx_Processing_Part(conv_1d);

END FOR;

FOR ALL : Memory_Part

USE ENTITY S2Board.Memory_Part(Dynamic)

GENERIC MAP (Load_File 8) "lookup02.dat");

END FOR;

END FOR;

 

Figure 4.9: Top Module Configuration Description
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Figure 4.10: Simulation Result for 1-D Convolution
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Figure 4.11: Timing Result Using Memory Lookup

clock rates. For example, in Figure 4.11 several operations can run at a maximum

clock rate of 18.5 MHz, while other operations can run at a maximum rate of 40 MHz.

The 18.5 MHz clock rate becomes the maximum operating speed. Figure 4.12 shows a

different timing profile obtained by using a different PE implementation. Specifically,

multiplication is performed as a series of additions. For non-negative mask values, the

signal value is repeatedly added a number of times equal to the mask value. Using

this method, the performance decreases to a maximum clock rate of 9.5 MHz, as

shown in Figure 4.12.





Figure 4.12: imlng Result Using Loop Statement
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Chapter 5

FSM Modeling Styles and

Synthesis Results

A single FSM, which represents a software component of a hardware/software co-

design Of an Instrumentation System (IS) [42], is implemented using VHDL in several

different ways. The same FSM modeling style presented in Chapter 2 is used to

implement the software component of an IS. A hardware/software approach using

reconfigurable hardware and software modules to design an IS for improving system

performance in a real-time system is presented in the literature [24]. This approach is

different from well-known hardware and hybrid (hardware and software) monitoring

approaches. The Splash 2 custom computing machine (CCM) is used, transferring

the critical parts of the analysis modules of an IS to programmable logic to ensure

that other real-time analysis and Optimization tasks are not affected by the latency

of these modules.

Three different modeling styles were implemented and to synthesize each design.
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# Of Clock

Max. Clock Cycles Needed % Utilization

Rate in MHz for each # of States of Available

PE # (Clock Period) Iteration Needed CLBS

0 18.9 (52.8 nsec) 13 21 73

1-16 17.9 (56 nsec) 13 28 50
 

Table 5.1: Synthesis Statistics Critical to the Performance and Realization of the

Hardware Subsystem

In this chapter, the different synthesis results Obtained from the different modeling

styles are presented. State diagrams are used to model the behavior Of the subsystems

in VHDL. Figure 5.1 shows the state diagram for each PE in Splash 2. Commercial

synthesis tools from Synopsis and Xilinx, integrated into the Splash 2 environment

directly, use this representation to generate logic configurations for the PEs in Splash

2. This synthesis process provides various statistics regarding the design of the hard-

ware subsystem critical tO its performance, for instance, timing information. Different

VHDL representations of the same function may result in different timing behaviors.

The maximum clock rate at which each PE can Operate is represented in the

second column Of Table 5.1. PE 0 can Operate slightly faster than the rest of the

PEs; however, the overall performance is restricted by the slower PEs, i.e., PES 1 to

16. Thus PEs 1 to 16 affect the final Operating speed, 17.9 MHz (56.0ns), though

PE 0 can Operate at a maximum speed Of 18.9 MHz. The number Of cycles needed

(13 cycles) for handling each event record is the same for all PEs (as shown in the

column three Of the table), despite the total number of states in PE 0 and PBS 1 to

16 are 21 and 28, respectively, shown in the column four. The last column shows the

utilization rate Of the configurable logic blocks (CLBS) of Xilinx 4010 chips. PE 0
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Figure 5.1: State Transition Diagram for the Splash 2 Implementation Of On—The-Fly

Order Algorithm for PE 1 to 16
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utilizes more logic than the other PBS.

The actual execution latency of the hardware subsystem implementing the on-

the—fly algorithm can be found from the number Of states for each iteration of the

algorithm. As shown in Table 5.1, every PE goes through 13 states during each

iteration of the algorithm. A transition occurs at every rising edge of the clock. Since

the feasible Operating clock rate is 17.9 MHz (i.e., 56 nsec period), the latency per

iteration of the algorithm is 56nsec * 13 = 728nsec. One iteration of the algorithm

that returns one output (valid or NULL event record) takes the same amount of time,

regardless Of the number of states.

Some PES stay in waiting states several times. These states are needed either

for waiting for the completion of Read Operation or for synchronization with other

PBS. The actual code of these states is the same, except for their state numbers.

These waiting states can be implemented in two different ways: by using as many

separate waiting states as possible or by using counters to stay in the same state for

the required number of cycles. In the remainder of this chapter, different modeling

approaches and their synthesis results are summarized. Three different modeling

approaches, (1) using Crossbar connection Of Splash 2 to broadcast data and no

counter is used, (2) using Crossbar and with counter, and (3) using Serial connection

instead Of using crossbar, are described below:

0 Approach 1: Using Crossbar without Counter

This approach utilizes the crossbar connection of Splash 2. Many duplicate

waiting states, e.g., states 3, 4, and 20 through 27 in Figure 5.1, are used in
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PROCESS

BEGIN

WAIT ON elk;

IF (present_state 8 "10100" AND elk 8 ’1’) THEN

transition <8 "10101"; -- state 21

ELSE

transition <8 NULL;

END IF; -- end of state 20

END PROCESS;

PROCESS

BEGIN

WAIT ON elk;

IF (present_state 8 "10101" AND clk 8 ’1’) THEN

transition <8 "10110"; -- state 22

ELSE

transition <8 NULL;

END IF; -- end of state 21

END PROCESS;

 

Figure 5.2: Sample VHDL Code for a Waiting States Without Counter (Approach 1)

this approach. Input data are broadcasted to all PES via the crossbar. Thus,

each datum is processed in 13 cycles. All PEs examine the same input data

concurrently. Sample waiting states are shown in Figure 5.2. The result Of this

approach is summarized in Table 5.1. The corresponding synthesis results for

PEO and the rest Of the PES are shown in Figure 5.3 and Figure 5.4, respectively.

0 Approach 2: Using Crossbar with Counter

This is a modification of approach 1. Here, the VHDL model uses an integer

counter to repeat the waiting states. Counters, which are mapped to adders,





58

 

Maximum clock speed: 18.9 MHz (52.8ns)

Number of states: 21

Number of cycles needed: 13

No. Used Max Available 2 Used

 

  

Occupied CLBS 293 400 73%

Packed CLBs 139 400 34%

Bonded I/D Pins: 115 160 71%

F and G Function Generators: 105 800 13%

H Function Generators: 26 400 6%

CLB Flip Flops: 279 800 34%

IOB Input Flip Flops: 0 160 0%

IOB Output Flip Flops: 0 160 0%

Memory Write Controls: 0 400 0%

3-State Buffers: O 880 0%

3-State Half Longlines: 0 80 0%

Edge Decode Inputs: 0 240 0%

0Edge Decode Half Longlines: 32 0%

 

Figure 5.3: Approach 1 Synthesis Results of PEO for Broadcasting Data using X—Bar
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Maximum clock speed: 17.9 MHz (56.0ns)

Number of states: 28

Number of cycles needed: 13

No. Used Max Available % Used

Occupied CLBS 200 400 50%

Packed CLBs 95 400 23%

Bonded I/D Pins: 82 160 51%

F and G Function Generators: 80 800 10%

H Function Generators: 18 400 4%

CLB Flip Flops: 191 800 23%

IOB Input Flip Flops: 0 160 0%

IOB Output Flip Flops: 13 160 8%

Memory Write Controls: 0 400 0%

3-State Buffers: 0 880 0%

3-State Half Longlines: 0 80 0%

Edge Decode Inputs: 0 240 0%

Edge Decode Half Longlines: 0 32 0%

 

Figure 5.4: Approach 1 Synthesis Results (PEi) for Broadcasting Data using X—Bar
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PROCESS

VARIABLE counter : INTEGER :8 0;

BEGIN

WAIT ON elk;

IF (present_state 8 "10100" AND elk 8 ’1’) THEN

IF counter 8 5 then

XP_Mem_RD_L <8 ’1’;

XP_Mem_WR_L <8 ’1’;

-- ... other operations

transition <8 "11001"; -- go to state 25

ELSE

counter :8 counter + 1;

transition <8 "10100"; -- same state

END IF;

ELSE

transition <8 NULL;

END IF; -- end of state 20

END PROCESS;

 

Figure 5.5: Sample VHDL Code for a Waiting State Using Counter (Approach 2)

are used to reduce the total number of waiting states. Although the number of

states can be reduced to 21 (compare to approach 1, which requires 28 states),

the synthesis result from this approach operates a slightly more slowly than the

previous approach and occupies more space because Of adders and comparators

(50% vs. 58% CLB occupancy rate). The portion Of the VHDL code used in

this approach is shown in Figure 5.5; synthesis results are shown in Figure 5.6.

0 Approach 3: Using Splash 2’s Serial Connection

In Splash 2, the system can be used for systolic application by using its left-

tO-right serial connections. In this approach, a crossbar connection is not used;

instead, PEs are connected serially. Input data are fed from PE1, and after 8
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Maximum clock speed: 15.0 MHz (66.5ns)

Number of states: 21

Number of cycles needed: 13

No. Used Max Available % Used

 

  

Occupied cuss 233 400 58%

Packed CLBS 94 400 23%

Bonded I/O Pins: 82 160 51%

F and G Function Generators: 188 800 23%

H Function Generators: 55 400 13%

CLB Flip Flops: 172 800 21%

IOB Input Flip Flops: 0 160 0%

IOB Output Flip Flops: 1 160 0%

Memory Write Controls: 0 400 0%

3-State Buffers: 0 880 0%

3-State Half Longlines: 0 80 0%

Edge Decode Inputs: 0 240 0%

0Edge Decode Half Longlines: 32 0%

 

Figure 5.6: Approach 2 Synthesis Result for PEi for Broadcasting Data using X-Bar
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Maximum clock speed: 11.2 MHz (89.4ns)

Number of states: 15

Number of cycles needed: 8816

No. Used Max Available % Used

 

  

Occupied CLBS 304 400 76%

Packed CLBs 120 400 30%

Bonded I/D Pins: 118 160 73%

F and G Function Generators: 241 800 30%

H Function Generators: 82 400 20%

CLB Flip Flops: 232 800 29%

IOB Input Flip Flops: 160 0%0

IOB Output Flip Flops: 13 160 8%

Memory Write Controls: 0 400 0%

3-State Buffers: 0 880 0%

3-State Half Longlines: 0 80 0%

Edge Decode Inputs: 0 240 0%

Edge Decode Half Longlines: 0 32 0%

 

Figure 5.7: Approach 3 Synthesis Results (PEi) for Systolic Modeling Approach

cycles each datum is passed to the right neighbor. An integer counter is used

to reduce the number of waiting states. The synthesis results of this approach

are shown in Figure 5.7.



Chapter 6

Discussion

In Part II, modeling is shown to be an important first step in the design process. The

modeling techniques described in the previous chapters are used to implement such

system components, and these models are used in high-level synthesis process.

The importance Of modeling issues has been demonstrated in Part 11. Several mod-

eling techniques Of FSM and the implementing FSM based on VHDL modeling are

presented in Chapter 2. Different modeling styles affect not only design reusability

and simulation results but also the synthesized results. In particular, a rapid pro-

totype of a signal convolution application has been developed, and it is synthesized

and realized using Xilinx FPGAS for the Splash 2 system. It is described in Chapter

4. Another example of modeling styles affecting synthesized results is illustrated in

Chapter 5 with the on-the-fly sorting algorithm in an Instrumentation System.

VHDL has been shown to be suitable to model a system component, parallel

architectures, and parallel algorithms. Several parallel architectures and algorithms

are modeled using VHDL and these are described in Chapter 2 and 3.
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Part III

CAD Framework
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Computer-Aided Design Frameworks are design environments consisting of design

tools that aid design activities. The CAD framework’s support for the design process

has three parts: specification, execution, and services. Specification corresponds to

how tasks can be decomposed, what tools are available, and how they may be used.

Execution is concerned with what methodology or process to select for a given task,

what tool to invoke, and how to invoke it. Services support the coordination of

subprocesses and enforce consistency. Although the concept of the CAD framework

can be applied to many different engineering design disciplines, the discussion here is

concerned with high-level synthesis only.

Part III describes a proposed execution environment for a CAD framework high-

lighting the selection and execution Of design methodologies by system guidance, as

well as the separation of the proposed execution environment from design process

specification, unique to this system.

Part III is organized as follows: In Chapter 7, existing CAD frameworks are re-

viewed and their strengths and weaknesses summarized. In Chapter 8, high level

synthesis processes are discussed. Chapter 9 presents an overview of methodology

management and summarizes design process specification. The proposed CAD frame-

work’s execution environment is presented in Chapter 10. Finally, in Chapter 11, the

synthesis example using the implemented CAD framework is illustrated.





Chapter 7

Previous Work

Research efforts in design methodology management have been made as part of the

CAD framework. One approach to finding a methodology is to utilize information

about individual tools and to search for a sequence that accomplishes the overall task.

The Design Planning Engine, which is an expert system, is used to build a design

plan. The Design Planning Engine Of the ADAM system [6, 7, 8] produces a plan

graph using a forward chaining approach. Acceptable methodologies are specified

by listing preconditions and post-conditions for each tool in a lisp-like language.

Also, estimation programs are used to guide the chaining. The shortcomings Of the

ADAM system are that it is not amenable to simultaneous exploration of multiple

alternatives, and it is difficult to modify with predictable results.

Another system with a Similar approach is Chippe [43, 44, 45], in which Brewer

et al. proposed the concept Of “knobs and gauges. ” The evaluator generates design

quality measures (gauges) such as area, delay, performance, component usage fre-

quency, and others. The planner then uses these measures to set the design style
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and strategies (knobs), such as connectivity style, pipelining level, and Optimization

order. A design critic uses the “knobs and gauges” paradigm to reach design goals.

In this approach, iterative design procedures are applied at the design hardware com-

ponent level only, since the design process is fixed. Iteration is done by changing

design parameters and/or constraints. The iterative application of different design

methodologies is not supported.

Ulysses [46, 47] and Cadweld [41, 48] use blackboard systems to control design pro-

cesses. A knowledge source, which encapsulates each tOOl, views the information on

the blackboard and determines when the tool would be appropriate. Ulysses [46, 47]

uses blackboard architecture to construct the methodology. In CADWELD [41, 48],

task requests are posted to a blackboard; CAD Tool Objects (CTOS) then volunteer,

and the requester chooses among them. Here, CTOS describe tool applicability and

invocation mechanisms. This system may also have the same shortcomings as stated

above.

MINERVA [49] and the OCT task manager [9] use hierarchical strategies for plan-

ning the design process. Hierarchical planning strategies take advantage of knowledge

about performing complex tasks involving several subtasks. Hierarchical planning, as

used in MINERVA [49], is more effective because knowledge about how to perform

logical subtasks can be applied more naturally. However, a severe limitation of this

system is that it only allows a manual mode: every selection decision must be made

by the designer.

NELSIS [50, 51, 52] provides Flowmaps for representing sets Of methodologies.

Flowmaps can be exponentially large if there are many alternatives. In the NELSIS
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system, the flow plan is fixed. Rules are used to invoke a particular tool. A procedural

language in which tasks are defined is used. Since tasks are executed manually by

designers in the sequence they choose, this system does not possess the ability to

define flow dynamically. Furthermore, no parallelism is allowed.

Kleinfeldt et al. review some important concepts in the design process manage-

ment area and give an extensive overview of the existing systems [53].

Recently, Martin-Marietta and Lockheed have developed CAD frameworks to sup-

port the design process of Rapid Prototyping of Application Specific Signal Processors

(RASSP) [54, 55, 56]. In both systems, a workfiow shows possible ways a task can be

carried out. Alternative methodologies are represented by OR nodes in a workflow.

During the execution time, one of the nodes joined by OR is selected. Therefore, the

actual execution and the specification of design methodology are not separate. TO

specify methodologies, Lockheed uses its own internal representation. In the RASSP

Design Environment developed at Martin-Mariette, Integration DEFinition (IDEF)

language [57, 58] is used to represent a workflow, and a datafiow graph is generated

from the workflow to show the dependency between the tasks. IDEF includes both a

definition Of a graphical modeling language (syntax and semantics) and a description

Of a comprehensive methodology for developing models. Both systems are targeted

mainly for environments in which methodologies are fixed. Both systems have several

shortcomings:

o It is not easy tO incorporate process metrics in selecting methodologies.

Methodologies must be selected based on the trade-Off determined by process
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metrics in an ideal system. Examples Of the process metric entries are relia-

bility, development time, manufacturing cost, life cycle, system defects, soft-

ware/hardware reuse, inter-Operability, physical constraints such as volume and

weight, and power constraints. These process metrics are usually known as the

design process proceeds and cannot be determined in advance. However, in both

approaches, workfiow is determined in advance before actual design starts.

Representing dependencies between design data and methodologies is not pos-

sible.

Methodologies selected during the design process depend on what data are avail-

able and how previous tasks have been carried out. For example, when there

are multiple tools for the same tasks which are not interchangeable at the lowest

level, representing this situation is problematic in either approach. Sometimes,

one tool or methodology selected in the previous step may affect the tools to

be selected later. Since dependency cannot be represented in either system, the

CAD framework cannot help the designer to select methodologies which satisfy

such constraints.

Systematic search of the design space is very difficult.

The CAD framework should help the designer select the design methodology

that best satisfies the requirements. If the chosen methodology is not satisfac-

tory, alternative methodologies must be pursued. Also, the designer should be

able to investigate multiple alternatives simultaneously (with different design

parameters or with different versions). However, the lack of formalism in both
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approaches makes it difficult for the CAD frameworks to search the design space

efficiently.

In [59, 60], a formal approach to design methodology management has been pro-

posed. In contrast to many other approaches, this new approach separates the spec-

ifications Of methodologies and the execution environment. In [59, 60], the process

grammar is used to define all possible methodologies. The details of how method-

ologies are selected and executed are left to the designers. Designers must supply

manager programs to select and execute methodologies.

Several research efforts have used high-level Petri Nets [11] to model the execution

environment of software systems. DECOR [61] and HILDA [62] each use an extension

of Predicate Transition Nets to Specify a design process, such as tOOl invocation

sequences and their relations. In DECOR, design process monitoring and control is

realized by interpretation Of the net. Hierarchical places and transitions are used to

decompose the net into several subnets.

In HILDA, production rules are used to select alternatives, and these rules are

attached to the Petri Net. Static dependencies between tools, scheduling decisions,

conflicts, exception handling and backtracking, and tool parameter selection are ex-

amples of knowledge types for making rules. Alternative selections are made by the

user, making it difficult to modify rules after backtracking.

A system called Monitor has been implemented for CAD tools using a Petri

Net [10]. The Monitor uses fixed design methodologies. This system has been very

limited in terms Of system functionalities and services. Monitor’s design flow graph
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is represented as a fixed Petri Net, and the design flow follows this graph. Some of

the main features of the system are (1) graphical display of tools, files, and their

relationships, (2) automatic invocation of selected tools and report Of termination

status, and (3) the tracking of the overall system state.

Development of a Colored Petri Net (CPN) is described in [63], in which CPN is

used to speed up the design and validation of VLSI chips at the register transfer level.

The chip design process is broken down into several pipe-lined stages and each stage

is modeled as a transition in CPN. A similar system can be found in [64], where the

task of modeling and validating the behavior Of a VLSI chip using Hierarchical CPN

is presented.

Related works related to design data management can be found extensively in the

literature. In [65, 66], Katz et al. described their data model Version Server, which

provides a complete range of services needed to control the versions and configurations

of a complex design as it evolves over time. Checking in and checking out design

Objects, selecting the preferred design version, and binding dynamic configurations

are some of the system’s Operations.

Kim elaborated further on configuration and version problems in the CAD design

environment in his dissertation [2]. He adopted the Object-oriented concept and

applied this concept to his hierarchical data model. This model was applied to VLSI

design data such as VHDL design environments.

For distributed design environments, managing design data is a more challenging

problem since design data have various relations and are shared by several users or

several tOOls at the same time.
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By managing persistent data and run time data, the creation of a new version is

detected and saved in the persistent database in a distributed design environment [67].

In order to support the handling of concurrent accesses, a Server-Client scheme is

used to arbitrate the accesses and control versions Of design data in the distributed

environment. A server is a process which handles persistent design data and arbitrates

requests from many CAD tools, each of which is a client. Any change is notified by

the server to all the clients who need to use the new data. In [68], Schettler et al.

also presented a data model for the persistent design data storage and manipulation

in a CAD framework.

Design flow management is another field which has been concentrated upon by

many researchers in CAD frameworks. Earlier efforts used a fixed design flow. For

example, Monitor used a predefined design flow which was represented as a Petri

Net [10]. Flowmap was used to control the design flow [51]. Similar approaches can

be found in [69]. In their work, Miyazaki et al. used a flow-chart based design task

flow graph. Most of these flow-based approaches used a fixed design flow, which lacks

flexibility and the capability to dynamically construct design flow.

To overcome such limitations, a CAD framework should support the dynamic

construction Of design flow. A task graph, a directed acyclic graph with each node in

the graph corresponding to an entity in the task schema and each edge corresponding

to a dependency, is generated dynamically [70]. In their work, Sutton et al. used the

task schema which specifies the dependencies between design entities, both tools and

data. Based on the task schema (the dependency between tools and data) designers
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can expand the abstract node in the task graph or execute a tool if the node is a

primitive task.



Chapter 8

High Level Synthesis

In this chapter, the steps involved in the high-level synthesis are briefly explained.

The proposed CAD framework helps designers in selecting the right tools and right

methods in each Of these steps. High-level synthesis takes as inputs a high-level

description or an abstract behavioral specification Of a hardware behavior and a set

of constraints, and produces, as a result, a structural description which implements

the behavior satisfying the goals and constraints. The output Of high-level synthesis

is usually a register transfer level (RTL) description. Many steps are involved in

high-level synthesis. Typical high level synthesis steps are shown inside of the broken

lined box in Figure 8.1.

The first step is usually the compilation of the formal languages into internal

representations (Flow Graph Generation). The next steps comprise the scheduling

of operations, functional unit allocation, and controller generation. These steps are

represented as Architectural Synthesizer in Figure 8.1. In the compilation step, most

approaches use variations of graphs containing both the data and control flow implied
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by the behavioral specification. The data flow graph shows the essential ordering Of

Operations in the behavioral specification. At this step, some initial Optimizations,

such as dead—code elimination, inline expansion of procedures, and loop unrolling, are

performed.

Scheduling involves assigning the Operations to specific control steps, and allo-

cation is actually assigning hardware components to the Operations. The goal of

scheduling is to minimize the number Of control steps needed for given hardware re-

sources, while the goal Of allocation is to minimize the amount Of necessary hardware.

Thus, scheduling and allocation are closely interrelated and dependent on each other.

In most systems, Optimization of these two steps is done separately, and iterative

refinements are applied until the desired goal is reached.

Controller synthesis is done after the schedule and data path have been chosen.

Most systems produce FSMS for the controllers. The choice between the different

hardware implementations, such as a hardwired FSM and a microcoded controller

with microprogram steps, influences the final product.

There are many existing tools or programs capable Of performing the same task;

however, each tool may produce different results in terms Of the quality of the output,

time requirements for the task, resource requirements, etc. Thus, some mechanism is

required to Optimize tool selection in terms of type, time, and order. Managing such

a task is one Of the most important roles in a CAD framework.



Chapter 9

Methodology Management

Methodology is a set of processes or approaches used to solve a given problem.

Methodology management is a technique employed to control these processes or ap-

proaches so that a better solution can be found. In the CAD area, design methodology

management provides “the definition, presentation, execution, and control Of design

methodologies in a flexible, configurable way” [53]. The goals of design methodology

management are to help the designer reduce the design time and to produce a better

design.

In the last couple Of decades, there has been a change in trends in the CAD

community. The main focus of the CAD framework has shifted from managing data

and tools to managing the design process itself.

Design methodology management should provide specification methods, an exe-

cution environment, and miscellaneous services. TO choose appropriate specification

methods, the following questions must be answered: How can tasks be decomposed?

What tools are available? How will they be used? In the execution environment,
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the management system must provide a means of selecting the appropriate design

methodology or process for a given task and must determine the choice and method

of tool invocation. Miscellaneous services, such as graphical user interface for com-

municating between the user and system, supporting cooperating subprocesses in the

system, and enforcing consistent designs, should also be included in the execution

environment.

The basic building blocks Of a design methodology management system or a CAD

framework are tools. In general, a tool cannot be decomposed into any subcompo—

nents; thus, the CAD framework has no way to break a tool down into smaller tools.

Each tool performs a specific function. A design methodology management system

determines how to use these tools as well as when to use them. The sequence of tool

usage is viewed as a design flow.

A large electronic design has the following characteristics:

0 Hierarchical Design: A large design can itself be hierarchically organized, and

the same is true for the design process. The whole design process can be bro-

ken down into several steps of subprocesses, where each subprocess can again

be decomposed into multiple sub-subprocesses. A large system design can be

partitioned into smaller functional subcomponents. Each of these subcompo—

nents can be composed of other components. Multiple design teams can work

together to produce this design.

0 Multiple Design Representations: A design process can be viewed as a series Of

data transformations from one representation to another. Each transformation
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produces a different type of design data. Furthermore, the same design trans-

formation can be used with different sets Of constraints and design parameters.

Consequently, each of these transformations creates a different version of the

data.

Large Design Space: Many alternative processes for a task create many different

versions of data, just as different values of design parameters lead to different

results. As the size of design data increases, the time required to search the de-

sign database increases as well. Thus, a large design space Should be maintained

such that an efficient way of searching through the database is possible.

Large Number Of Tools: Many tools are involved in the system design process.

These tools should be well maintained so that the right tool is used at the right

time.

These characteristics lead to the use of an integrated design environment or CAD

framework that can manage such issues effectively and guide designers to produce a

viable designs.

In [5], a CAD framework is defined as “a software infrastructure that provides

a common Operating environment for CAD tools.” In order for such a software in-

frastructure to provide a good integrated design environment, the CAD framework

should support the following services: Design data management, Design methodology

management, Tool integration/encapsulation, and User interface [71]:

0 Design data management: Design data management deals with the methods

used to store and retrieve design data as well as maintain relationships (such
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as version, transformation, and configuration) and consistencies between de-

signs. In the CAD design process, many difl'erent data files (either different

intermediate results or different versions from the same task) must be stored

and retrieved as needed. Thus, an efficient way Of managing design data is

necessary. This also includes version and configuration management. Design

data management assists in the use of technology-independent design data. If

the data is technology-independent, these data can be reused in different design

processes without changing them.

Design methodology management: This should provide a formal representation

method of the design process and a seamless way of carrying out the design pro-

cess. Design methodology management selects the best tool for a given input

and constraints, and guides the designer to produce the best design. In other

words, design methodology management is responsible for selecting and execut-

ing an appropriate sequence Of tools to produce a desired design adhering tO the

given specifications. Thus, it guides the user in selecting the right tools in the

correct order. The CAD framework Should also support concurrent engineering

concepts. For these reasons, design methodology management has gained a lot

Of attention in the past couple Of decades.

Tool integration: CAD tools can be integrated into the design environment by

using a well-defined tool integration method. In order to handle many different

tools which accept different types of input and produce different types of output,

the CAD framework must provide an inter-tool communication mechanism.
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This facility ensures that all tools in the system can communicate with each

other.

0 User interface: The user interface should be easy to use and effective. It should

also hide low-level implementation details as much as possible from the end user

(e.g., tool-invoking sequences and commands).

The block diagram Of such a CAD framework is shown in Figure 9.1. The CAD

framework helps the designer to reduce design time and errors tO produce a better

solution.
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9.1 Design Process Specification

Managing the design process necessitates the specification of the design process. The

design process consists of a series of transformations, from input to output speci-

fications. A process flow graph describes which tools and/or subtasks are used to

transform input into output specifications, and shows the tasks as well as the infor-

mation flow of the design process. A task can be decomposed into several subtasks,

which may in turn be recursively decomposed into several sub—subtasks. For a given

task, a process flow graph (called a workflow in other literature) shows the decom-

position and the dependency between subtasks and design data. This hierarchical

decomposition of processes enables a system to capture the design process efficiently.

A graph grammar, also called a process grammar [72, 73], provides a convenient

means of transforming process flow graphs into progressively more detailed process

flow graphs. The user indicates the goals Of the design exercise by supplying a start

graph, which indicates what input specifications are available, what output spec-

ifications are desired, and what logical tasks are to be performed. This graph is

progressively modified by applying productions of the process grammar. Logical task

nodes are replaced by subgraphs composed Of smaller logical tasks and intermediate

specifications.

9.1.1 Process Flow Graphs

Process flow graphs describe the information flow of a design process. Process flow

graphs describe which tools or subtasks transform input into output specifications.
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Figure 9.2: Production Graph Example

Formally, a process flow graph is a bipartite acyclic directed graph of the form C =

(T, S, E), where T is the set of task nodes (drawn as a ellipse in Figure 9.2), S is the

set Of specification nodes (drawn as a rectangle in Figure 9.2), and E is the set Of

edges indicating which specifications are used and produced by each task.

There are two types of task nodes: terminal and logical. A terminal task node

represents the execution of an application program, commonly called a tool invoca-

tion. Non-terminal task nodes represent logical tasks, which could potentially be

completed by using several different tools or a combination thereof. A logical task

node is represented by a single-line ellipse, while a terminal task node is represented

by a double-line ellipse. Process flow graphs can describe design processes with vary-

ing levels Of detail. A graph containing many logical task nodes indicates what should

be done, in abstract terms, without describing exactly which tools should be used.
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Conversely, a graph in which all nodes are terminal describes a methodology com-

pletely.

9.1.2 Design Process Grammars

Graph grammars provide a convenient means for transforming process flow graphs

into more detailed process flow graphs. Baldwin and Chung defined design process

grammar [72]. Productions using a design process grammar permit the replacement Of

one subgraph by another. A production in a design process grammar can be expressed

as a tuple P = (GLHSIGRH5103fl100ut)) where

01,115, G335 are process flow graphs for the left and right side of the production,

respectively, such that GLHS is a single, logical task node representing the logical

task to be replaced.

a,“ is a mapping from input specifications of GRHS to input specifications of GLHS.

Each input specification must be mapped to one with the same type or subtype.

am is a mapping of output specifications from the left hand side Of the production

to the right hand Side of the production. Each output specification must be

mapped to one with the same type or subtype.

A design process can be specified using design process grammar. In the proposed

CAD framework, the specification Of the design process is separated from design flow

management, a feature that is absent from all other existing CAD frameworks.

Figure 9.2 illustrates some productions for the Behavioral Synthesis task. As

shown in this figure, the logical design task BehavSyn is carried out by control
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data flow graph (CDFG) generation CDFCgen, followed by module selection ModSel

and the architectural synthesis Arch.Syn. Each of these tasks, such as BehavSyn or

Arch.Syn, may be another logical or terminal task which invokes a tool.

The logical task Arch.Syn, which represents the architectural synthesis process,

can be carried out by one Of three alternatives: Prod. A1, Prod. A2, or Prod. A3

shown in Figure 9.3. The vertical bar is a shorthand notation indicating multiple

productions with the same CLHS but different 0335’s. In this example, alternative

1, alternative 2, and alternative 3 explain how Scheduling, Allocation, and Controller

Synthesis can be carried out.

In the production graph 9.2, the task Arch.Syn, enclosed by a broken rectangle,

is replaced by the selected production if alternative 2 (Prod. A2 in Figure 9.3) is

applied. An expansion example of Arch_Syn is shown in Figure 9.4. Process flow

graphs in general are discussed in more detail in [72, 73].
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9.1.3 Specification Hierarchy

Task specifications are defined and organized into a specialization and generalization

class hierarchy. Properties Of general task specifications are also available in a special

task specification where the general task specification is a parent of the special task

specification. A child specification inherits its parent’s specification properties. For

example, pre— and post-evaluation conditions can be inherited by children; however,

any child specification can have its own condition through specialization.

' It is possible to decompose tasks hierarchically into simpler tasks until the indi-

vidual tasks can be performed by single tool invocations. Methodologies are devised

by hierarchically decomposing logical tasks until all tasks are terminal. A Single tool

selection can be considered to be a special case Of decomposition in which the set

Of subtasks is a single terminal task. A specification node definition editor window

is shown in Figure 9.5. An example Of task hierarchy, the Layout Synthesis Task,

is shown in Figure 9.6. Among many layout design styles, three common layout de—

sign styles are Gate Array, Standard Cell, and Full Custom. These design styles can

be applied to any level of layout synthesis hierarchy. These style conditions can be

passed on tO children tasks in the hierarchy. However, MCM Layout should have dif-

ferent conditions to be imposed than the conditions for PCB layout and Chip Layout

because in MCM layout, inter-chip delay can be ignored.
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9.2 Execution Environment

The CAD framework execution environment is a software environment which helps

designers in selecting and executing design methodologies by allowing the systematic

exploration Of the design planning space. The execution model within the execution

environment is modeled based on Petri Net. When inputs are available, tasks are

executed and outputs are created.

The execution environment allows backtracking, which occurs when the task can-

not be accomplished. If the execution environment detects unsatisfactory results, the

system is allowed to go back and try different alternatives. Another advantage of

the execution environment is that it allows parallel exploration of the design space.

Details Of the execution environment are covered in Chapter 10.

9.3 Tool Encapsulation

Tool integrations can be challenging because every tool vendor has its own batch Of

command line Options and environment variables which must be correctly set. Tool

invoker programs that invoke corresponding tools must set the environment variables

and command line options appropriately. Electronic CAD vendors and users have

recognized the importance of inter-Operable tools and created the CAD Frameworks

Initiative (CFI) to facilitate the development Of CAD frameworks which integrate

tools. CFI helps to address this problem, suggesting standards for data interchange,

inter-tool communication, and tool encapsulation [74, 75, 76, 77]. CFI proposed a

Lisp-like Tool Encapsulation Specification (TES) language providing a uniform format
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for vendors to specify how tO set environment variables, compose command lines, and

interpret exit codes. CFI standards do not govern the selection of tools.

CFI tries to achieve inter-operability between different tool vendors by proposing

standards, such as the Intertool Communication standard, the Message Dictionary

Specification standard, and TES. There are several issues associated with tool en-

capsulation. First of all, the current TES proposal may be changed as CFI further

modifies its requirements and methods. Another difficulty is that tool vendors do

not yet provide TES files. Finally, inter-Operability between different tools is very

problematic to maintain in terms Of communication since each tool may produce a

different form Of an intermediate file. If there were a standard intermediate file, then

at most 0(n) translations instead of 0(n2) translations would be necessary. This is

one reason why standards are recommendable. For example, an EDIF standard for-

mat were used in low level design representation, and any output at this level could

be translated into an EDIF format.



Chapter 10

The CAD Framework: Execution

Environment

In this chapter, the execution environment is discussed. The execution environment

of the proposed CAD framework is modeled based on Petri Nets. A new approach

to the execution environment, which dynamically constructs a process graph, auto-

matically selects design alternatives, and automatically backtracks if the result is not

satisfactory, is presented in this chapter. This chapter is organized as follows: First

an overview Of the proposed CAD framework architecture is given in Section 10.1.

Petri Nets are reviewed in Section 10.2. The formal model Of the execution model

is explained in Section 10.3. The backtracking mechanism is explained in detail in

Section 10.4, and in Section 10.5, the handling Of multiple alternatives is explained.

Other issues, such as constraints, process simulation, and version control, are covered

in subsequent sections.
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Figure 10.1: Block Diagram of System

10.1 Proposed CAD Framework Overview

The proposed system is composed Of several main components: Design Process Rep-

resentation, Constraints, a Design Library, an Execution Environment or Cockpit,

and Graphical User Interface. An overview Of the prOposed architecture of the CAD

framework is graphically depicted in Figure 10.1. Design Process Representation

represents design methodologies using the productions Of a process grammar. Pro-

ductions codify the possible hierarchical decomposition Of tasks, which designers use

to build a process flow graph. The process grammar naturally captures the hierar-
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chical character of the design process and allows systematic exploration Of the design

space.

Design constraints are provided by the user. The system performs a pre—evaluation

in order to select the best production or tOOl, and also performs a post-evaluation

after a task is finished. When pre—/post-evaluation processes are carried out, the

system uses the constraints as input parameters. Constraints are items such as area,

critical delay, die size, pin number, power consumption, etc. The Design Library

contains various design data.

The execution environment program, Cockpit, keeps track of the design status and

communicates with the designer via the Graphical User Interface (GUI). The GUI

helps users in several ways. Users can browse the available productions via the GUI

and assign one or more input design data files together with their control information.

The design progress can be displayed either in the form of a production or a Petri Net

structure. The design path is displayed if the user chooses the history menu. Design

data examination and a display of scoring results are additional features of the GUI.

10.2 Petri Net

Petri Net theory was developed by Carl Petri in 1962 to model a system by using a

mathematical representation of the system [11, 12, 13, 78]. Petri Nets Offer a means

to graphically and mathematically model discrete event systems. Moreover, Petri Net

models can be converted into computer control mechanisms that can be interfaced to

discrete event handling processes such as high-level synthesis processes. As a graphical
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tOOl, Petri Nets can be used as visual communication aids similar to flowgraphs.

DEFINITION 1 A Petri Net Structure, C, is a four-tuple, C = (P, T, I, O). P =

p1,p2,...,pn is a finite set of places, n 2 0. T = t1,t2,...,tm is a finite set of

transitions, m _>_ 0. The set of places and the set of transitions are disjoint, PflT =

0. I : T —+ P°° is the input function, a mapping from transitions to bags of places.

0 : T —) P°° is the output function, a mapping from transitions to bags ofplaces [13].

The execution Of a Petri Net is handled and controlled by the number and distribu-

tion Of its tokens. Tokens are primitive concepts Of Petri Nets and have no inherent

meaning. Tokens are assigned to the places Of Petri Nets. A transition is enabled

when there are tokens in each of the transition’s input places. A transition is ready

to be fired if all Of its input places have tokens in! them. A Petri Net executes by firing

enabled transitions. A transition fires by removing tokens from its input places and

creating new tokens which are distributed to its output places. After a task finishes

its execution, the input tokens are removed from input places and new tokens are

produced and placed in the output places.

Sequences Of firing enabled transitions in an ordinary Petri Net are nondetermin-

istic. An example sequence of firing transitions in an ordinary Petri Net is shown in

Figure 10.2. In this figure, Graph A Shows an initial graph with initial token distri-

butions. At this moment, transition t3 is the only one which is enabled since its input

place, p4, has one token. After transition t3 is fired, a new graph is created; this is

shown in Graph B. A new token is added in both p2 and p3. Now, two transitions,

t1 and t2, are enabled. In this case, the order Of firing transitions t1 and t2 is unde-
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(D) After 12 is fired

Figure 10.2: Petri Net Firing Sequences
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termined. Either transition can be fired first, both may also be fired concurrently. If

the transition t] is fired first, then Graph C becomes the new graph after transition

t1 is fired. The same situation, where both t1 and t2 are enabled, again occurs. At

this time, if the transition t2 is fired, then Graph D results. The execution continues

until there are no more transitions which can be fired.

Many different system models and applications have used Petri Net. Modeling

Of hardware, communication protocols, parallel programs, and distributed data bases

are several examples Of such applications [11, 78, 79, 80]. Different extensions have

been made for modeling Of different systems which have avoided its ordinary non-

deterministic behavior and allowed the extended semantic meanings of the ordinary

Petri Net. Jensen [63] uses an extended Petri Net to design VLSI chips. In his

extension, transitions correspond to hardware components, places hold design data,

and tokens correspond design data. Firing of transitions cause the execution Of the

hardware components using input data. Di Janni [10] describes similar extensions

for the VLSI circuit design system, Monitor. In Monitor, transitions are CAD tools

and tool invocations correspond firing of the transitions. In addition to these exten-

sions, conditional firing Of transitions, inhibitors, are also used. Kljaich et al. use an

extended Petri Net called flow nets to describe and verify the fault-tolerance capabil-

ities Of digital systems [81]. In their work, additional extensions are made: symbolic

token and user-supplied types. Token has a symbolic value, such as data and control

information, associated with it. Different types are associated with transitions, and

places. Different output tokens are generated depending on the transition type after

the transition is applied.
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There are several benefits to using a Petri Net model for the execution environ-

ment. The Petri Net model captures design processes naturally. Designers can see

the design progress easily. Moreover, by manipulating tokens, execution control is

much easier than that of ad hoc methods. For example, if the designer assigns three

tokens in an input place Of a production, three alternatives will be carried out.

The execution model proposed in this thesis is based on an Colored Petri Net.

The proposed execution model described in this thesis does not make any extension

to Colored Petri Nets, but it has adopted several extensions which had been made

by various people. Contribution of the execution model described in this thesis is the

application of Colored Petri Net for the process control execution model.

The extensions adopted by the proposed execution model will be described in the

subsequent paragraphs. First of all, in the proposed execution model, logical and

terminal tasks are modeled as transitions, and design data are modeled as tokens.

Tokens contain several data fields, such as a design data name list field, a version

history field, token color, and other control fields. Thus, tokens have both data and

control information.

In the proposed model, tokens are not consumed, but their states are changed as

transitions occur. In ordinary Petri Nets, tokens are consumed after transitions are

fired. In [63, 64], data values attached to tokens are referred to as token colors. The

values of token colors are predefined in a color set. In the proposed model, token

color represents the states Of token, such as used, not yet used, or used but failed.

Thus, in this Colored Petri Net, semantic meanings are assigned to tokens by their

colors. Semantic meanings Of token colors are explained in Section 10.3.4.
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Copy Transition

0 VHDL

37838818- — Simulation

_.>

 Simulation

Figure 10.3: Copy Transition

Two additional transitions are introduced, pre-evaluation and post-evaluation

transitions in this model. These transitions are not a part Of the actual design pro-

cess. After finishing a pre—evaluation transition, the system puts the different-colored

output tokens in the corresponding input places, depending on the pre—evaluation

function result. This transition makes the execution environment deterministic and

helps to select suitable production alternatives. After post-evaluation transitions, the

output tokens are generated conditionally depending on the result Of the evaluation.

If the post-evaluation fails (e.g., the result is not satisfactory), the token color Of

the starting production is changed in order to allow backtracking. If the transition

succeeds, the new result is placed in the normal output place.

Another transition is needed when an input datum is used in more than one

transition. For a production alternative, only one transition is selected and a single

input token is used for the transition. However, when there are several transitions in

a production which use the same token, the token needs to be copied and distributed

to the these transitions. , The token is duplicated by introducing a new transition

named Copy Transition shown in Figure 10.3.
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10.3 Execution Model

The execution model provides for dynamic execution Of tasks and the representation

of state information. At a minimum, the execution model allows the designer to access

tasks and designs by tracking the information required to invoke tasks. The execution

model constructs a process graph by selecting the proper production for each logical

task. This selection is guided by invoking a pre-evaluation Of the alternatives of the

logical task. When an appropriate task is selected, the execution model either expands

the graph or invokes a tool for the execution Of a terminal task. After executing the

tool, the execution model post-evaluates the result based on the criteria (constraints).

If the result is not satisfactory, it backtracks to try another alternative.

The execution model is based on an Colored Petri Net and performs the following

functions:

Dynamic Construction of a Process Graph

Pre—Evaluation Of the Alternatives

Selection of a Production for each Logical Task

Execution Of a Tool

Post-Evaluation of the Result

Backtracking if Needed

The execution model creates design flows by reading the production graph, de-

termines the possible design alternative processes, and invokes the right tOOl for exe-
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cution or expands the logical task. In order to choose the right alternative, Cockpit

performs a pre-evaluation of all available logical tasks. An evaluation function is as-

sociated with each logical task. When the pre—/post-evaluation process is carried out,

Cockpit uses the constraints as one of the input parameters.

Expansion is dynamically performed as the design process progresses. When the

production graph is read by Cockpit and is converted into a corresponding Petri Net

internal structure, a pre—evaluation function is called for each alternative and the

results are posted, such as the score Of each alternative, in the net. The highest

score enables a corresponding transition. The scheduler in Cockpit now schedules or

chooses which transition is to be fired based on resource availability. After finishing

one path, the result is checked; this is called post-evaluation. If this does not agree

with the anticipated result, the system backtracks to the selection point and tries

another alternative.

10.3.1 Cockpit

Cockpit is a routine Of the execution environment which performs the following func-

tions:

0 Creating Daemon processes (Initial Graph)

0 Keeping track Of the design process,

0 Dynamically constructing a process graph,

Scheduling task(s) by pre-evaluation,
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0 Performing the post-evaluation,

o Interacting with the user, and

o Controlling the GUI.

Cockpit is implemented using the algorithm described in Figure 10.4. Cockpit

initially creates several Daemon processes which maintain task specific knowledge.

Cockpit’s information about the design process comes entirely from an input file

indicating a set Of possible tasks and those decompositions that should be considered

for each logical task.

The user interacts with Cockpit, which keeps track Of the current status Of the

design process and informs the user Of possible actions. Cockpit’s display indicates

to the user what design tasks have been completed so far and what tasks remain.

TO assist the user in choosing an appropriate action, Cockpit invokes several evalu-

ation functions. The evaluation functions provide ratings for the possible task decom-

positions and check the results. The ratings help the system to select tools. Cockpit

determines what decompositions are available for the remaining logical tasks. This

information is then displayed to the user.

Cockpit supports two modes Of operation: manual and automatic. The manual

mode is normally used for high-level decisions and stepping through the design pro-

cess. The designer may wish to use the automatic mode for lower level decisions. In

the manual mode, Cockpit waits for the user to select a decomposition or execute a

task. In this mode, the system performs pre-/post-evaluation and the system guides

the user by Showing the results. The user makes the final decision for selection Of
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Initialization()

{

Start graph is selected;

Create initial Daemon process and place tokens (send message);

}

Wait for message;

IF the message is from Execution process THEN

{

IF the message is WANT-EXPAND THEN

{

Invoke Pre-Evaluation function;

Select Production based on Pre-Evaluation;

Display expanded process flow;

Send EXPAND-THIS or FAILED message to Execution process;

}

IF the message is POST_EVAL THEN

{

Post-evaluation;

Send result POST_EVAL-OK or -FAIL to Execution process;

}

IF the message is FAIL_EXPANSION THEN

Delete useless tokens;

IF the message type is FAILED THEN

Kill the child process;

}

ELSE /* Message from Daemon process */

{

IF the message is FAILED THEN

Kill the child process;

ELSE

{

Create a Daemon for the subsequent task;

Put the output token in the newly created Daemon’s input

place;

END IF;

Figure 10.4: Algorithm for Cockpit
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a production or backtracking based on the suggestions made by the system. When

the user selects a decomposition, Cockpit displays the new subtasks in place of the

original task. When the user requests that a task to be executed, Cockpit sends a

message to the corresponding Daemon process for execution. For terminal tasks, the

tool invoker responds by invoking a tool. The user invokes the automatic mode by

executing a logical task instead of selecting a decomposition. In response to an exe-

cution message for a logical task, the Daemon process uses encoded knowledge from

a process graph to select a decomposition and then executes the subtasks (also in

automatic mode). If necessary, the designer may reverse any decision made by the

Daemon process in the manual mode.

In the automatic mode, the execution model utilizes the Petri Net structure more

naturally since there is no human interaction. Cockpit dynamically creates design

flows by reading the production graph, determining possible design alternative prO-

cesses and invoking the correct tool for execution or expanding the logical task. In

the execution environment, Cockpit uses the evaluation function to determine the

alternative. After finishing the task execution, Cockpit post-evaluates the result.

When the output of a task is not satisfactory, it is necessary tO backtrack. Either

different parameters must be supplied to some Of the tools or diflerent tools must be

chosen; or alternatively, the task must be decomposed in an entirely different way. The

designer may request that certain task decompositions be reversed. Additionally, if a

decomposition was requested by a Daemon process, that process can direct Cockpit

to reverse it. Cockpit saves the state of the session before backtracking in case the

designer later decides tO cancel the reversal.
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10.3.2 Daemon Processes

Each Daemon process is invoked (created) by Cockpit and Execution process. Dae—

mon processes are dynamic repositories of task-specific knowledge. Each message

from the Daemon process indicates the task being evaluated or executed and pro-

vides all the inputs and outputs file names. The constraints may be included in one

of the input files or may be passed to the Daemon process directly.

Each Daemon process is activated by an event signaling the arrival Of a token in

its input or output places. If an input event occurs, the Daemon process creates an

execution process by sending the task name to Cockpit to create the process. For

an output event, the Daemon process checks the output token numbers, which is

assigned by the user. If the number of tokens does not reached the required number,

the Daemon process tries a yet untried alternative by changing the input token color.

The usage of colored tokens is explained in detail later in Section 10.3.4. If more

than enough tokens are generated, the Daemon process selects the best tokens. Each

Daemon process retains the following information:

1. Parent Task Name

2. Name of Input Places

3. Name Of Output Places

4. Child Task Names

5. Information about the required input and output token numbers (counters)

The procedure for Daemon process is shown in Figure 10.5.
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Wait for messages;

IF the message is from its parent (Execution) process THEN

{

IF the message is TOKEN_IN THEN

Create a child Execution process;

(Send the production name to the child process)

}

IF the message is from its child (Execution) process THEN

{

IF the message is FAILED THEN

Send the FAILED message to its parent (Execution) process;

IF the message is TOKEN_IN THEN

Send the TOKEN-IN message to parent (Execution) process;

Figure 10.5: Algorithm for Daemon Process

 

10.3.3 Execution Process

Each Execution process is created by Daemon and receives a production name. The

execution process is responsible for invoking a tool, asking for expansion, and asking

Cockpit to do a post-evaluation after finishing its job. Each Execution process handles

only one token at a time. For multiple tokens, one Execution process is created for

each token. The Execution process contains information about Input Places, Output

Places, and its Task Name. The corresponding algorithm is shown in Figure 10.6.

10.3.4 Token Semantics Extension

Tokens have different semantic meanings from those in the regular Petri Net model.

Tokens contain real design data as well as control information to control the design

process. For example, control information is used by the system to choose appropriate
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Execution()

{

IF Terminal task THEN

Execution of the terminal tool;

(Send TOKEN_IN message to parent Daemon process)

IF Logical task THEN

{

Send WANT-EXPAND message to Cockpit;

Wait reply from Cockpit;

IF the message is EXPAND_THIS THEN

{

Expand the graph by creating one Daemon process for

each task node in the production;

Send TOKEN_IN message to the child Daemon process;

Wait for messages from these children Daemon processes;

IF the message is from child Daemon process THEN

{

IF the message is TOKEN_IN THEN

{

Send POST_EVAL to Cockpit;

Wait for reply from Cockpit;

IF POST_EVAL-OK THEN

Send TOKEN-IN to parent Daemon process;

IF POST_EVAL_FAIL THEN

{

Send FAIL-EXPANSION, FAILED, WANT-EXPAND

to Cockpit;

}

IF the message is FAILED THEN

{

Send message to parent Daemon process;

Exit;

}

}

IF message is FAILED THEN

Send FAILED to parent Damon process and Exit;

Figure 10.6: Algorithm for Execution Process
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alternatives.

Each token has one of several colors as control information. A color is assigned to a

token to indicate the status of the design data and control transitions. As a transition

is fired, the token is not consumed, but its color is changed, signifying a change Of

state. After finishing a task, the output is examined based on given constraints.

The token colors used in the system are as follows:

0 BLUE Token: Each BLUE token indicates that the corresponding alternative

must be tried and that the output token must be generated whether the output

is acceptable or not.

0 YELLOW Token: This token indicates that the corresponding alternative has

not yet been tried. When backtracking occurs, a YELLOW token is changed

to a BLUE token for an alternative trial.

a RED Token: If the output does not meet the constraints, the corresponding

input token is changed to RED, indicating that this production has failed.

In Figure 10.7, alternative 1 with a BLUE token is applied. Here, alternative 2

with a RED token has already been applied and failed, while alternative 3 with a

YELLOW token has not yet been applied.

Figure 10.9 illustrates the steps involved in the dynamic expansion of the Petri Net

using the productions shown in Figure 10.8. Figure 10.9 (A) shows an initial graph

with one Blue token in the input place of a transition, HLS. This token enables the

transition, and since the task is logical, the graph is expanded as shown in Figure 10.9

(B). When a logical task is expanded, pre-evaluation and post-evaluation transitions
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Figure 10.7: Token Color

   

        

   

        

  

i 81 82 S3

L1 L2 L3

Production A Produciton B Production C

Figure 10.8: Production Example for Expansion Steps
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I. A Blue token in place 1 enables the abstract transition HLS.

2. By firing the abstract transition HLS. the net is expanded.

 

  

  

  

  
  

  

     

  

3. The Blue token again enables

the Pro-evaluation transition for the

abstract production HLS.

4. The pro-evaluation function determines

that production A has the highest score.

 

5. A Blue token is produced and placed

in the input place of production A;

A Yellow token is placed in the remaining

input places. for productions B and C.

6. At the next cycle. the transition 81

of production A will be enabled because

there is a Blue token in its input place.

" For multiple tokens. each token is

handled separately.

Figure 10.9: Expansion Steps
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are added to the Petri Net. A Backtracking Path (shown in broken lines) is also

added, as seen in Figure 10.9 (B and C). The Blue token enables a pre—evaluation

transition. In Figure 10.9 (C), the preevaluation transition determines the best

alternative by invoking the evaluation function. If Production A receives the best

score, the transition places a new Blue token into its output place in order to pursue

Production A as a selected alternative. The remaining alternatives receive Yellow

tokens, and these tokens prevent the firing Of these alternative transitions.

The user can limit the maximum number of concurrently executed alternatives

through the number of tokens assigned to the production’s input place. Likewise, the

number of output tokens, which limits the number of output results, can be specified.

The strategy for selection among multiple production outputs is also specified by the

user. Currently available strategies are first-available (FA) or best-result (BC). Under

FA, the post—evaluation transition selects the output first generated and ignores all

other outputs; whereas under BC, all outputs are collected, compared and the best

result(s) is selected. For example, in Figure 10.9 (c), assume that two productions,

Production A and Production B, are concurrently applied. Under FA, the post-

evaluation accepts whichever result was generated first from either Production A or

B, while under BC, the post-evaluation postpones the comparison until both results

are available.
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10.4 Backtracking Mechanism

When the output Of a task is found to be unsatisfactory during post-evaluation, it

is necessary to backtrack. Different parameters must be supplied for some tools

or different tools must be chosen; alternatively the task must be decomposed in

an entirely different way. In the manual mode, the user controls the backtracking

mechanism by directing the productions to be tried; however, in the automatic mode,

Cockpit itself makes these selections based upon the given constraints.

Automatic backtracking is done by managing the token colors and traversing the

backtrack path. Figure 10.10 (A) shows some logical tasks, and Figure 10.10 (B)

illustrates the Colored Petri Net together with tokens when these tasks are fully

expanded. This figure shows that the tasks CDFG gen, Partitioning, and MCM Arch

Syn have 3, 2, and 2 production alternatives, respectively. For example, suppose that

Path-3 is first selected by the pre—evaluation transition when CDFG-gen is executed.

If the Post-evaluation-l result is not satisfactory, the system tries to backtrack, but all

the alternatives have already been tried, (in this case, there is only one path), and thus

the resulting failure token (the Red token) is deposited in its output place, Place-1.

Thus, in Figure 10.10 the system backtracks via the Back-2 loop and selects Path-2 for

its next attempt. After finishing Path-2, Post-Evaluation-2 evaluates the new output

from Path-2. If the result is satisfactory, the transition generates a successful token

to its output place. This new token in turn enables the pre-evaluation for Path-4 and

Path-5. The Yellow token in the unvisited path remains the same.
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Figure 10.10: Backtracking Example
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10.5 Multiple Alternatives

Several alternatives may be Simultaneously explored. This helps the user tO Obtain

better results by selecting the best solution among several solutions. There are two

forms of parallel exploration of alternatives in the design process: use Of multiple

parameter alternatives and multiple production alternatives. For a given production,

there may be several parameter choices available. If a production does not produce

an output which meets the design constraints, the same production should be tried

with different parameter sets until all possible parameter sets have been exhausted. In

addition, a given logical task may be accomplished in several ways. Each methodology

alternative represents a separate production for the logical task.

Multiple alternatives can be expanded and executed concurrently if the user spec-

ifies multiple tokens in the logical production’s input place and/or output place via

the GUI. The system assumes one token is in each place if the user does not place

any token in the input or output places of a production. There are two cases which

should be considered for multiple alternatives:

1. Multiple Tokens in the Input Place:

The number of tokens indicates the number of productions to be simultaneously

executed. If there is a child production which also has multiple tokens, it is

carried out simultaneously. The total number Of productions active at any

given time is controlled by a global control variable, Total.Production, and by

resource constraints.

2. Multiple Tokens in the Output Place:
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2 Tokens for task A generates

only one output.

1 (Each input tokens generate output,

and among two outputs, one is selected.)
 

   
A

7 However, if tokens are used in other

parallel path nodes, then two tokens

are generated.

(Ignore the user’s request.)

Figure 10.11: Smaller Number of Tokens in the Output

The number of tokens indicates the number of desired acceptable outputs. If

the number of acceptable outputs reaches the token number, the production is

considered a success. If not, the system backtracks and try other productions.

If the desired number has not been reached even after all the productions have

been tried, all acceptable outputs are used for the next step.

Basically, the number of multiple tokens in the output place dictates the number

Of alternatives that must be tried, unless the same input token is used as input tO

different transitions. These aspects are illustrated in Figure 10.11 and Figure 10.12.

When multiple alternatives are executed simultaneously and several compatible

outputs are produced, the system must select from among the requested number of

outputs. Selection is based on the chosen selection strategy, first-available (FA) or

best-choice (BC).

A problem can occur when multiple alternatives handle the output files. Since

each alternative production creates an output and the file names are the same for all



115

X Y 2Tokens.labeledasXandY.fortaskAgenerate

threeoutputs.EitherXorYisusedseveraltirnes

L mtilthenumberofordpmissatisfied.

(Possible outputs can be (X1, X2, Y1) or (X1. Y1, Y2).)
 

A
   

®

0.

Figure 10.12: Larger Number Of Tokens in the Output

alternatives, overwriting to an existing output file should be prevented. TO solve such

a problem, different working directories are used for each token.

10.6 Process Simulation

Based on the evaluation results, the execution environment makes suggestions as to

which production and/or tool is best suited for the given input. Using these functions,

together with all the values assigned to each production, design process simulations

are possible without actual design process invocation.

The input file type, the file size, the maturity of tools and productions in the CAD

community, and estimated time to finish a task given by the input file comprise several

examples Of parameters the evaluation function can use tO determine the suitability

of the production. Design process simulation allows the user to predict or expect

certain results.
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Figure 10.13: Production Editor Window

10.7 Graphical User Interface

Graphical User Interface (GUI) is used to establish communication between the user

and the execution environment. Through GUI, the user can do several things, such

as set the initial graph, partially expand the process graph, and browse through the

alternatives.

The Production Editor Main Window is used to create, browse, and edit pro-

ductions as well as to edit task node specifications and specify input/output node

information. A top view Of the editor window is shown in Figure 10.13.

In the case of a rollback, the display of the situation is as follows: First, the
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rollback message is displayed at the bottom of the Message window, ensuring that

the user can see what has happened in the system. Then, the parent production graph

(the graph displayed just before the expansion leading to this task) is redisplayed and

the same pre—evaluation process is invoked. Cockpit must record this history; that

is, when the user requests the execution history, the GUI displays the overall history

using different colors, e.g., a failed path is drawn with RED lines and a current

path/success path is drawn with BLUE lines.

10.8 Constraints and Checklist

Constraints are used to select a proper tool for a given task, to execute the tool,

or to verify the correctness of a design. Constraints must be managed properly so

that the CAD framework can function properly. Area, Maximum/Minimum Delay,

Power Consumption, Pin Number, Operating Condition, Maximum Fanout, Wire

Load, Clock Period, Technology Library, and Testability Requirement are several ex-

amples of such constraints in the computer hardware design.

Kim [2] categorized constraints into four different categories: Performance con-

straints, Environment constraints, Relativity constraints, and Selection constraints.

Some examples of performance constraints are area and delay; operating conditions

are environment constraints. Relativity constraints restrict what other designs can be

used in conjunction with a design when it is instantiated as a component, while selec-

tion constraints restrict what designs can be instantiated for a particular component

of a design. This classification of constraints is helpful for analyzing characteristics
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of the constraints themselves.

Baldwin introduced a new language to express constraints [73]. Although this

language has been claimed to be powerful enough to express any kind of constraint,

it has its drawbacks. Designers must learn the language syntax to express constraints,

not a simple task for hardware designers.

Kim [2] and Baldwin [73] considered constraints associated with design data only.

However, in order to form a good CAD framework, there should be some way of

answering a question like “Which tool (or program) produces a better result for a given

input .7” These kind of constraints, tool selection or production selection constraints,

should also be handled. Several examples of such constraints are tool release history,

size of the tool, average execution time, and user’s preference. These constraints are

used by pre-eualuation functions as illustrated in Figure 9.3.

The quality of a design result depends on the selection of tools, design method-

ology, and design data from certain design libraries. Each tool has different qualities

or capabilities, such as maturity of tools, the speed needed to produce output from

given input, and the output quality produced using the given input data. Each de-

signer can define any variable for a production and assign/modify a value in an ASCII

format. An example of such definition is shown in Figure 10.14. When a production

Arch.Syn is applied, the user uses a pre-evaluation function, named preevali, in

the current working directory. This routine is written by the user and precompiled.

Post-evaluation function routine can also be defined as well. The next three lines

consist of actual variables and values assigned by the designer.

Designers write pre-evaluation functions using these values. For example, a very
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Arch_Syn.PRE .lpreevall

Arch-Syn.POST .lhello

Arch_Syn.O time 9 pref 3 history 4

Arch_Syn.1 time 11 pref 2 history 5

Arch-Syn.2 time 4 pref 6 history 2

Figure 10.14: Production Scoring Example

 

simple but complete pre-evaluation function is shown in Figure 10.15. Here, if the

designer assigns different weights to the variables t, p, or h, a different evaluation

result is produced, where t represents the time to finish this production, p represents

the variable which holds the penalty value for converting the input file type, and h

represents the time the production has been available. The weights are assigned by

the designer based on experience or preference. In this example, the designer prefers

a long history of the production and shows very little concern about the translating

file type.

Similar functions can be written for post-evaluation functions. After each produc-

tion is completed, the post-evaluation function is invoked and determines whether to

accept the result or not.

In this way, the specification and the execution environment can actually be sep-

arated. Different designers can also use different ratings without modifying the pro-

ductions.

The checklist is a utility similar to reminder, in which a checklist can be created

by the designer. When the design process reaches a predefined point, the designer

can browse the contents of the checklist. This feature is not directly related to the
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#include <stdlib.h>

#include <stdio.h>

main(int argc,char **argv)

{

int t,p,h;

int score;

if (argc < 7 )

exit(-1);

tsatoi(argv[2]);

psatoi(argv[4]);

h-atoi(argv[6]);

score = t*0.2 + p*0.1 + h*0.7;

exit(score);

}

Figure 10.15: Pre—Evaluation Function Example

 

actual execution environment. The checklist helps the designer remember things that

must be done. The break-point feature can help the system stop at a certain design

point where the checklist can be examined. An example is shown in Figure 10.16.

10.9 Load Balancing

In a distributed environment, load balancing is one of the most important issues

in system performance. All system performance depends on resource contention.

In any computer system, there are three basic resources: CPU, memory, and the

Input/Output (I/O) subsystem. Among these three types of resource usages, CPU

usage is the main concern because most CAD tools are CPU intensive.



 
Figure 10.16: Break-Point and Checklist

Each process (or program) requires a certain number of CPU cycles to execute,

and it is not possible for a single process to use the CPU alone until execution is

finished. Usually, several processes share the CPU at one time. If loads are assigned

to machines which are already heavily loaded, then the overall system performance is

degraded: processes in a heavily loaded machine take a long time to finish, and the

remaining tasks may depend on the results of the previous processes.

There are several ways to measure CPU contention. The simplest one is the UNIX

load average, reported by the rup command, which shows the host status of remote

machines. The load average tries to measure the number of active processes at any

given time. A typical result of this command is

pixel up 12 days, 6:38, load average: 0.23, 0.19, 0.01
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The first load average (0.23) is measured over the last minute. The second and the

third load average are measured over the last 5 and 15 minutes, respectively.

In the proposed system, the machine with the smallest load average at the time of

task execution is used. Available machines are listed in the resource file. This at least

ensures that a particular machine is not overloaded before assigning it a task. The

selection criteria can be extended by examining the second and third load averages,

from which the load trend can be inferred.

Several problems remain associated with the method described above. First, the

command rup does not guarantee the correct result. For example, if the Network File

System (NFS) server crashes while a process is waiting for the disk I/O to complete

across NFS, the process is considered to have been running the entire time although

nothing was actually happening. Another problem is that the load average does not

account for priority. Finally, the load average cannot predict future events.

10.10 Version Control

A design task may produce multiple versions of an output specification for several

reasons: (i) the first one is not satisfactory, so another iteration is performed with

some changed decisions, (ii) multiple productions are applied in order to pursue alter-

natives, or (iii) there are multiple versions of input specifications. This thesis limits

itself to the problem of design process related version. In high-level synthesis process,

a version problem occurs when multiple tokens are allowed for an input place. Con-

sider the case of high-level synthesis in which the task is to schedule and allocate from
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the Optimized CDFG. One way of accomplishing the task is by pre-scheduling and

allocating the CDFG, and merging the two results for the final architectural synthe-

sis. Suppose that the previous transition of optimizing the CDFG has generated two

versions of output, namely A and B, as shown in Figure 10.17. If the scheduling uses

token A and generates output AS, and the other path uses B and generates B.L,

these two results cannot be merged because they are descendants of incompatible

data.

In the execution environment, a version number is assigned to each token to

distinguish the design data and solve the incompatibility problem. Consider the case

where the production has one input place and one output place. Suppose that a

token B is generated by applying a production P with input token A. Then, the

version number of B is assigned to VA.P, where VA is the version number of token

A. In general, if a task X has A1, ...,An input places and 81,...,B,, output places,

and production X with parameter a is applied to the task’s inputs having version

numbers VA,,...,VAH, then the version number of output B,- is (VA,,...,VA0).(P,a,

8,). The version number shows the history of productions applied to the input token

throughout the design process.

Data compatibility can be ensured by checking the version history. Consider task

X in a process flow graph. Suppose that a refined process flow graph by applying

production P is obtained. Let A be the token in the input place of X, and Y be a

subtask of X in production P. With token A, the task will be carried out, and Y

will generate a token which has the version number A.Z, where Z is the history of

productions applied to token A. For two tokens A and A’ in the input place of X,
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Two tokens: A and B

I,’“““““““““ ‘6; Each token: S and L

’ A and B are Version histories

' up to this point.

.’ S and L are attached to versions. 

     

I Scheduling
Allocation

  

  
 

  
 

  

    
  

Figure 10.17: Version History and Compatibility Checking

the corresponding output tokens generated by Y will have different version numbers.

Thus, if Y has two input places and has tokens B.Z and C.Z’ for each of these places,

where Z and Z’ are the attachments to production histories carried out as a subtask

of X, then 8.2 and C.Z’ are compatible if and only if B = C. If candidate tokens

are not compatible, they cannot be used together to make a transition. For example,

in Figure 10.17, the Scheduling-Allocation task is completed and successful only if

compatible tokens are merged, i.e., A.S and AL.



Chapter 11

Synthesis Example

11.1 FPGA Synthesis

In this chapter, a synthesis scenario illustrates how the proposed CAD framework can

be used. The tools and decompositions employed are intended to be representative,

however, not exhaustive.

The circuit, being synthesized into a Field Programmable Gate Array (FPGA)

chip, is a convolver for a signal processing application. The primary output is a point

multiplication result of input pixels. The objective is to design an FPGA chip from a

VHDL behavioral description of the convolver. There are constraints on the number

of connections between the FPGA chips and on timing. There is also a constraint on

the area of the chip, the most serious limitation of FPGA design.

The functional behavior of the component can be verified via simulation. This

simulation and debugging cycle is not part of the synthesis example. Prior to the

beginning of synthesis, Cockpit is running with an input file indicating the standard

125



126

tools and task decompositions available at our site. The primary task, called FPGA

Synthesis, is initially displayed since this is a goal task. Upon selecting this task,

Cockpit tells the user that it can be decomposed into the subtasks VHDL Compile,

Place and Route, and Bit Generation. The user asks Cockpit to apply this de-

composition and the FPGA Synthesis icon is replaced in the display by the others.

The production is shown in Figure 11.1.

11.1.1 VHDL Compilation

The transformation of the VHDL behavioral description into the Xilinx netlist file

(XNF) and symbol report file generation is the first step of VHDL compilation. When

the VHDL Compile is expanded, Cockpit uses the production, elaborate, shown in

Figure 11.2. When this production is applied, Elaborate checks the VHDL syntax

and transforms the VHDL description into the proper Xilinx netlist file. A portion

of the initial VHDL description is shown in Figure 11.3.

11.1.2 Placement and Routing

Once the XNF file generation has been completed, the next step is Placement and

Routing. In this step, the FPGA logic cells are defined, placed, and routed. Cockpit

invokes two tools sequentially: xnfprep followed by ppr using the production shown

in Figure 11.4. The first tool, xnfprep, takes the XNF file as an input and generates

the FPGA logic cell definition and PRP report file. Then the second tool, ppr, is

called to place and route the logic cells onto a FPGA chip.
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PROCESS

BEGIN

WAIT until XP_Clk’EVENT AND XP_Clk = ’1’;

multtemp(31 downto 0) <= itobv(bvtoi(1eft_in(15 downto 0))

* bvtoi(left_in(31 downto 16)).32);

addtemp(31 downto 0) <= itobv(bvtoi(addtemp(31 downto 0))

+ bvtoi(multtemp(31 downto 0)),32);

right_out(31 downto 0) <8 addtempl(31 downto O);

right-out(35 downto 32) <8 left_in(35 donate 32);

END PROCESS;

Figure 11.3: Initial VHDL Description
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Figure 11.4: Decomposition of Placement and Route
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At this time, ppr cannot finish its placement since the whole logic cannot be fitted

into a single Xilinx 4010 FPGA chip. Cockpit detects ppr’s failure after Cockpit per-

forms the post-evaluation function, e.g., by examining the ppr output file. Cockpit

tries to backtrack to the Place and Route production to see if there is another alter-

native for this production, which it tries if available. For this example, however, there

is no other alternative, therefore, Cockpit now moves up to the previous production,

VHDL Compile. This production also lacks another alternative, whereupon the whole

process fails. Thus, the design should be modified and the process should also be

retried.

11.1.3 Modified Design

The original design is changed so that the new design can fit into a single FPGA

chip while maintaining functionality. Since a single 16-bit multiplier takes up a large

amount of space, this multiplier is decomposed into 4 8-bit multipliers and several

adders. A partial description of this decomposition is shown in Figure 11.5. The new

description is used for the same process.

11.1.4 Synthesis Results

Bit Generation decomposition and all its steps are shown in Figure 11.6 and 11.7.

Although the modified design is used for a new synthesis process, the designer can

try different constraints and parameters using the original design. For example, one of

the constraints subject to change is the operating condition, which is set to WCCOM
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PROCESS

BEGIN

WAIT until XP_Clk’EVENT AND XP_Clk = ’1’;

addtempl(15 downto 0) <= itobv(bvtoi(1eft_in(23 downto 16))

* bvtoi(left-in(7 downto 0)),16);

addtemp2(23 downto 8) <= itobv(bvtoi(left_in(31 downto 24))

* bvtoi(1eft_in(7 downto 0)),16);

addtemp5(23 downto 8) <= itobv(bvtoi(addtemp1(15 donate 8))

+ bvtoi(addtemp2(23 downto 8)),16);

addtemp5(7 downto 0) <= addtempl(7 downto 0);

addtemp3(15 downto 0) <= itobv(bvtoi(left_in(23 downto 16))

* bvtoi(1eft_in(15 downto 8)),16);

addtemp4(23 downto 8) <= itobv(bvtoi(left_in(31 downto 24))

* bvtoi(left_in(15 downto 8)),16);

addtemp6(23 donate 8) <= itobv(bvtoi(addtemp3(15 donate 8))

+ bvtoi(addtemp4(23 downto 8)),16);

addtemp6(7 downto 0) <= addtempl(7 donate 0);

right-out(35 downto 32) <= 1eft_in(35 downto 32);

END PROCESS ;

Figure 11.5: Modified VHDL Description
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Figure 11.6: Decomposition of Bit Generation

(Worst-Case-Commercial). Examples of parameters are random seed, placenefiort,

and router.efi’ort. As shown in Figure 11.8, the final design occupies about 98% of

CLBs and 68% of function generators. The maximum speed at which this chip can

operate is about 8 MHz, as shown in Figure 11.8 and 11.9. In Figure 11.9, the graph

shows that most of the assignments of the nets are done at about a 10 MHz clock

rate, although a few of them can operate at a 40 MHz rate. The slowest operations

determine the overall rate of the chip’s operation speed.
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Partitioned Design Utilization Using Part 4010P0191-6

No. Used Max Available % Used

Occupied CLBs 395 400 98%

Packed CLBS 275 400 63%

Bonded I/O Pins: 77 160 48%

F and G Function Generators: 551 800 68%

H Function Generators: 58 400 14%

CLB Flip Flops: 64 800 8%

IOB Input Flip Flops: 0 160 0%

IOB Output Flip Flops: 36 160 22%

Memory Write Controls: 0 400 0%

3-State Buffers: 0 880 0%

3-State Half Longlines: 0 80 0%

Edge Decode Inputs: 0 240 0%

Edge Decode Half Longlines: 0 32 0%

Minimum Clock Period : 125.9ns

Estimated Maximum Clock Speed : 7.9MHz

Figure 11.8: PPR and Timing Report Summary
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Chapter 12

Conclusion

Design process management is an issue of critical importance. More and more virtual

prototyping techniques are used to reduce design time and error. In the process or

virtual prototyping, modeling is one of the key issue. The modeling style greatly

affects not only the quality of final design but also the design process.

This thesis has proposed new techniques for FSM modeling using VHDL. The

proposed techniques improve the readability of FSM description and allow a large

FSM to be easily decomposed into smaller FSMS. These techniques are illustrated by

modeling the micro-controller in SINCGARS radio circuit as a set of FSMS. The same

techniques are used to model software component of an Instrumentation System and

a signal processing application. Different synthesis results are obtained from different

FSM models: the quality, such as operating speed and area used, of the design is

greatly affected by the modeling style; a particular modeling style may not produce

a synthesized result because of given constraints; thus, a different model must be

developed, and this new model has to be used in the design process again.
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VHDL is also shown to be a suitable and highly effective hardware description

language to describe parallel architectures and algorithms specific to these parallel

architectures. A signal processing application is implemented for a parallel machine,

Splash 2. This VHDL model is then synthesized to Xilinx FPGAs in order to run on

Splash 2 hardware.

An execution environment for high-level synthesis is proposed. A Colored Petri

Net is used to model the execution environment. The proposed execution environment

utilizes this formalism to assist designers in selecting and executing appropriate design

processes. The proposed environment is especially applicable to a design environment

where a hardware design is carried out hierarchically and many alternative processes

are possible for the same task.

A prototype of the proposed execution environment has been implemented. The

execution environment has been found to be quite useful and elegant. Several design

methodologies, including design processes for high level synthesis, have been modeled

using design process grammars [73]. Design exercises have been successfully carried

out using these grammars. Design process grammars are shown to be useful methods

to describe design processes. Currently, more tools are being integrated and to im-

prove encapsulated knowledge. This CAD framework will become more practical as

CAD vendors adopt the practice of open software systems and allow for greater tool

inter-operability.
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12.1 Contributions

Several contributions are made. Specifically,

0 An execution model based on the Colored Petri Net has been proposed. Al-

though the Colored Petri Nets are used in many applications, no existing CAD

frameworks are modeled based on the net. The execution environment has also

been implemented and several design exercises have been performed using the

proposed CAD framework.

0 The execution environment allows specifications of design methodologies and

execution of design methodologies separately, a factor lacking in existing CAD

frameworks. The execution environment does not need to know the details of

the design process. Even if a new design process is introduced to the system,

the existing execution environment does not need to be changed.

0 Flexible means of pre-/post-condition representation and checking mechanisms

have been defined and implemented. The selection of an alternative produc-

tion or a tool is done by examining pre—evaluation results. Users assign ratings

for each alternative, including terminal tasks, when the process graph is built.

Users may also change these ratings as they gain more experience using tools

and productions. Users can write their own evaluation functions and easily

incorporate these functions into the execution environment, which allows back-

tracking if post-condition is not satisfactory.
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0 Specification hierarchies have also been proposed. Task and specification are

organized into a class hierarchy. Features of tasks, such as pre-condition and

post-condition, can be inherited.

o Concurrent execution of multiple alternatives is allowed in our execution envi-

ronment. By dynamically creating Daemon processes, all alternatives can be

tried simultaneously.

0 The execution environment allows users to construct a partially expanded pro-

cess graph at the beginning of a design exercise. The execution environment

takes this graph as the start graph and dynamically completes it until the de-

sign goal is reached. The execution environment also allows process evaluation

without actually starting the design activity. Users can see the possible design

flow by process simulation.

0 The execution environment allows execution of tools in a distributed environ-

ment. The CAD framework’s scheduler utilizes a resource file containing neces-

sary information to invoke tools, such as full path information, environment in-

formation, and input/output requirements, and decides which processes should

be run under which domains. Static load balancing is maintained between given

domains.

0 New modeling techniques have been proposed for FSMS using VHDL. These

techniques are successfully used to model an existing circuit and are especially

useful when the target FSM is large and needs to be decomposed into several
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FSMS. The existing techniques are not suitable for this case.

0 Modeling styles for parallel architectures have been suggested and several algo-

rithms have been implemented for given parallel architectures using VHDL.

o It has also been empirically proved that modeling styles has a great impact on

the quality of the synthesis results.

12.2 Current Implementation Status

The proposed execution environment is implemented using C/C++ under Solaris Op-

erating System. Functionalities completely implemented are summarized as follows:

0 Major components such as Cockpit and GUI

Separation of Specification and Execution environment

Automatic selection and execution of methodologies

0 Dynamic expansion of productions

Automatic backtracking

Concurrent execution of multiple alternatives

Independent Pre—evaluation and Post-evaluation functions

Display of design history information

Miscellaneous features, such as Break-point, Checklist, and Resource file
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0 Selection of any start graph and partial expansion of the design process graph

at the beginning of the design time

0 Process Simulation

12.3 Future Work

Further research and improvement are needed in the following areas:

0 Tool encapsulation must be improved or redesigned as CFI defines new stan-

dards. Several translation tools should be developed and added to the current

CAD framework.

0 Parameter change representation and its usage should be further investigated

and implemented. Design knowledge gained from design experiences should be

captured and used in the subsequent design. Even when backtracking occurs,

the design knowledge should be consulted and used to modify the parameters

based on the previous results and experiences.

0 Currently, static average load is checked before a task is assigned to the lightly

loaded machine. Dynamic load balancing and redistribution of loads if certain

resources are overloaded should be further studied and implemented. Another

limitation of current implementation is that available machines must be listed

before they can be used. Ability to check all available machines should be

developed and implemented.
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0 Specification hierarchy through specialization/generalization has been proposed

and needs to be implemented.

0 Modeling techniques and styles should be further studied for different hard-

ware components, such as memory, bus, and ALU. These component modeling

techniques should be suitable for not only description and simulation but also

synthesis.
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Appendix A

Glossary

CFI : See Section 9.3.

CAD Frameworks Initiative is a consortium of electronic computer aided design

(CAD) users, integrators, and vendors that provides interoperable solutions

through industry standards.

Cockpit : See Section 10.3.1.

The coordinator between the designer, the daemon process, and execution pro-

cesses in the proposed execution environment. Cockpit keeps track of the cur-

rent status of the design process and informs the user of possible actions.

Computer Aided Design Framework: See Part III.

CAD Frameworks are design environments consisting of many different design

tools that aid design activities.

Daemon Process: See Section 10.3.2.

Daemon process of a task is a process that waits for input event (input token)
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and performs its task by creating an execution process and communicating with

the Cockpit.

Design Data Management : See Chapter 9.

Design data management captures relationships between design data, such as

versions and configurations [2]. Design data management deals with methods

used for storing and retrieving design data, maintaining relationships (such as

version, transformation, and configuration) between designs, and maintaining

consistencies among them.

Design Methodology : See Chapter 9.

Design methodology is a sequence of tool invocations used to transform given

input specifications into desired output specifications [72].

Design Methodology (Workflow) Management: See Chapter 9.

Design methodology management is the selection and execution of an appropri-

ate sequence of tools to produce a desired design from a given specification.

Design Process : See Part III.

Design process is a series of operations to produce micro-electronic hardware

systems.

Execution Environment : See Section 9.2.

The framework execution environment is a software environment which helps

designers in selecting and executing design methodologies by allowing the sys-

tematic exploration of the design planning space. The execution environment
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helps designers select proper design methodologies and execute them dynami-

cally and automatically.

Execution Model: See Section 10.3.

Model of dynamic execution of process flow is called the execution model. Our

execution model is based on the extended Petri Net.

Execution Process : See Section 10.3.3.

Execution process of a task is a Unix process that either invokes a tool to

perform the terminal task or creates another daemon process for the execution

process’ logical task.

Field Programmable Gate Array (FPGA) : See Chapter 4.

FPGA is an integrated circuit whose configuration can be dynamically deter-

mined not by a mask pattern but by external information.

Hardware/Software Co-design : See Chapter 5.

Hardware/software co-design is a system designing method in which the system

contains both hardware and software components. Hardware/software co-design

is concerned with partitioning a system into higher quality hardware and soft-

ware components, in shorter time and at lower cost than existing systems.

High Level Synthesis : See Chapter 8.

High-level synthesis takes an HDL-based behavioral description and automati-

cally translates it into a RTL-level description.
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IDEF : See Chapter 7.

IDEF is the specification language for Integration DEFinition for function mod-

eling. IDEF includes both a definition of a graphical modeling language (syntax

and semantics) and a description of a comprehensive methodology for develop-

ing models.

Instrumentation System (IS) : See Chapter 5.

An instrumentation system is a collection of those modules that can be used to

collect runtime information from distributed processes.

Petri Net : See Section 10.2.

Petri Net is a mathematical representation of a system to be studied.

Post-condition: See Section 10.8.

Post-condition is a condition which must be satisfied after a methodology fin-

ishes its execution.

Pre-condition: See Section 10.8.

Pre-condition is a condition which must be satisfied in order for a methodology

to be selected for execution.

Process Flow Graph: See Section 9.1.

Process flow graph is a graphical representation of a design methodology.

Process Grammar: See Section 9.1.

Process grammar is a formal method of representing the transformation of pro-

cess flow graphs into progressively more detailed process flow graphs [73].
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Process Metric : See Chapter 7.

Process metrics are quantifiable measures of either the design process or the

products. thdamental performance measures include design cycle time, ease

of use, reusability, and dependability.

Production : See Section 9.1.2.

Production is a substitution rule that permits the replacement of a logical task

with a graph that represents a possible way of performing the task [72].

Task: See Chapter 1.

Terminal Task: Task in the design methodology representing a tool invoca-

tion.

Logical Task: Abstract task that could be accomplished by different tools or

tool combinations.

Version Control: See Section 10.10.

Version control is a control method that handles different versioning problems

in micro-electronic hardware design process.

VHDL : See Chapter 1.

VHSIC Hardware Description Language

VHSIC: Very High Speed Integrated Circuit

VHDL is a language for hardware design, documentation, simulation, and syn-

thesis. VHDL had been adopted as a standard HDL in 1987 by IEEE.
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Virtual Prototyping: See Chapter 1.

The concept of virtual prototyping is to develop an effective modeling capability,

including reusable models of proven designs coupled with hardware synthesis to

produce a hardware model.

Workflow : See Chapter 1.

A workflow or methodology is a representation of how the design process should

be carried out.
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