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ABSTRACT
MULTIPLE COMPARISONS WITH THE BEST FOR INFERENCE
IN STOCHASTIC FRONTIER MODELS
SUBMODEL ESTIMATION FOR cggDNTERFACTUAL POLICY ANALYSIS
By

William Clinton Horrace

This is a dissertation in three chapters. In the first chapter we examine a
statistical method for performing simultaneous inference on all distances from the "best"
called multiple comparisons with the best or simply MCB. We find that MCB can be
used on a fixed effects stochastic production frontier model for panel data to construct
simultaneous confidence intervals for technical inefficiency and to perform inference on
maximum efficiency measures, where previously no methods had been suggested.

In the second chapter we use the MCB analysis of chapter one to perform
inference and point-estimation on some previously analyzed stochastic frontier data and
compare these results to the inference and point estimates currently suggested but never
exploited in the stochastic frontier literature.

The third chapter is a complete departure from the first two. In chapter three we
construct a subset limited-information maximum likelihood estimator for a vector error
correction model under the cointegration hypothesis for use in a counterfactual policy

analysis model.
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INTRODUCTION TO THE DISSERTATION

This is a dissertation in three chapters. It is an attempt to address topics in
econometric theory and applied econometrics in the cross sectional, panel data and time
series contexts. Each chapter contains its own introductory remarks, so this introduction
to the entire text is intended to briefly summarize the goals of this dissertation. The plan
of the dissertation is as follows.

Chapters one and two are concerned with performing inference on technical
efficiency estimates in stochastic frontiers models. These are cross sectional and panel
data models that predict or estimate technical efficiency for a set of productive or
decision-making units. Two different approaches dominate the efficiency measurement
literature: the aforementioned stochastic frontiers approach and a deterministic approach.
While the debate over which approach is "preferred” continues, a clear advantage of the
stochastic frontiers approach is that it allows quantification of the uncertainty associated
with the efficiency estimates while the deterministic approach does not. Therefore the
import of the first two chapters of this dissertation is that they detail procedures to
quantify this uncertainty in the stochastic frontiers model. This is accomplished through
confidence intervals construction.

The first chapter details a new technique for confidence intervals construction in
the fixed effects stochastic frontier model for panel data. To my knowledge this has
heretofore never been accomplished. This technique, called Multiple Comparisons with
the Best or MCB, allows simple confidence intervals construction that not only quantifies
the uncertainty of the individual technical efficiency estimates of the productive units but

also quantifies the uncertainty of which firm in the sample is the best in the population

1
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and suggests point estimates for technical efficiency which have less positive bias than
those currently exploited in the literature. Moreover, the fixed effects formulation of the
stochastic frontier model requires weaker distributional assumptions than any other
stochastic formulation, so the benefits of these MCB intervals are clear.

The second chapter discusses several other formulations of the stochastic frontier
model. Unfortunately, all of these formulations require stronger distributional
assumptions than the aforementioned fixed effects model, but the ability to construct
confidence intervals for their technical efficiency estimates has been well documented.
Strangely, this ability has never been systematically exploited in an empirical setting.
Therefore, chapter two details the interval construction techniques of these formulations
and, along with the MCB techniques of chapter one, presents a comprehensive empirical
study in which confidence intervals on technical efficiency measures are constructed
using various estimation and interval construction methods on three different data sets.
In doing so, chapter two advances our understanding of the various sources of uncertainty
inherent in econometric models for efficiency estimation.

Chapter three is a complete departure from the first two. This chapter presents
a new method for estimating the parameters in a conditional submodel for counterfactual
policy analysis under the cointegration hypothesis. Counterfactual analysis attempts to
analyze an economy (system of equations) in which new (counterfactual) policy rules
have been substituted for the historical policy rules which generated the data. The idea
is to see how the economy would have behaved had a different policy regime been in

effect. However, as we shall see, current counterfactual analysis techniques are limited
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in their scope, so chapter three suggests a technique that can be more universally
applicable in these types of analyses.
Finally, in the conclusion section of this dissertation I summarize the results of

the research and suggest areas for additional work.



CHAPTER 1
MULTIPLE COMPARISONS WITH THE BEST

AND THE FIXED EFFECTS MODEL

1 INTRODUCTION

It is often the case in empirical research that comparative studies are prescribed.
For instance, one may wish to compare the effectiveness of several drugs in the treatment
of a disease, or one may be interested in comparing the differences in crop yield for a
variety of fertilizers. Such experiments might involve collecting a sample of some
effectiveness or yield measure for each treatment or variety, calculating a summary
statistic for each treatment (such as a sample mean) to estimate some population
parameter, and then comparing these statistics using some inference techniques like an
F-test or t-tests to test hypotheses on comparisons between the population parameters.

As an example consider a controlled experiment where 3 different fertilizers (A,
B, and C) are each applied in the same quantity to 10 separate samples of the same soil,
all receiving the same seed, sunlight and irrigation. At the end of the experiment crop
output is measured for each of the 30 soil samples, and mean output is calculated for
each of the 3 fertilizers. The three sample means are construed as estimates of
population means, so that comparative hypotheses on the populations can be tested. For
instance a typical comparative hypothesis would be that fertilizer A is better than
fertilizer B or, perhaps, that the difference in crop yield between fertilizer A and

fertilizer C is 20 units.
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Very often in these studies it is advantageous to test a hypothesis about several

comparisons between populations, simultaneously (i.e. a multiple hypothesis). To
continue our crop example, one may be interested in testing the hypothesis that fertilizer
A is better then fertilizer B and fertilizer A is better than fertilizer C. In these instances
the advantages of multiple comparison procedures (or MCP) over single or per
comparison testing have been well documented in the statistical literature. Basically,
MCP precludes what has been deemed the multiplicity effect. Hochberg and Tamhane
(1987) give an excellent exposition on the multiplicity effect and the justification for
MCP.

This chapter deals with a specific case of MCP called multiple comparisons with
the best (or MCB) in which simultaneous inference is performed on all differences from
the unknown "best" population parameter. This procedure has been extensively exploited
in various forms in the natural science and statistics literatures to allow ranking and
selection of treatments. For example, see Becker (1961), Dalal and Srinivasan (1977),
Gupta and Hsu (1977) and McDonald (1977). While generally ignored in the
econometrics literature, MCB methods can be use to perform inference in stochastic
production frontier models for panel data. These are econometric panel data models that
produce estimates of technical efficiency for a set of firms or productive units. Our
focus is the fixed effects estimate which produces a distinct intercept term for each firm.
The firm with the highest intercept estimate is deemed "best", and differences between
the best firm’s estimate and those of the less efficient firms are technical inefficiencies.
See Schmidt and Sickles (1984). These inefficiency estimates can be thought of as

comparisons with the best. If we are interested in testing the hypothesis that the firm
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with the highest efficiency estimate is, in fact, the true best, then we must test the
simultaneous hypothesis that all other firms have positive technical inefficiencies.
Therefore, our inference is necessarily simultaneous and constitutes multiple comparisons
with the best or MCB. Once MCB intervals are calculated their midpoints suggest point-
estimates of technical inefficiency and maximum efficiency which have less positive bias
than those currently exploited in the stochastic frontier literature.

It is important to stress the fact that this chapter deals with inference on the
maximal efficiency and on technical inefficiencies measured relative to this maximum.
Therefore, confidence intervals and inference on the technical inefficiencies are
necessarily complex due to the non-linearity associated with taking the maximum of the
individual efficiencies. This chapter uses a pre-existing theoretical methodology to
simplify construction of these intervals. It is also important to realize that determination
of the most efficient firm should nor be approached as simple selection of the firm with
the largest technical efficiency estimate. This naive approach assumes that the estimation
procedure reveals with certainty the true efficiency rankings of the firms. Conversely,
simultaneous MCB inference on the technical inefficiency measures allows us to
determine a confidence level with which we can say that the firm with the highest
technical efficiency estimate is the true "best".

Therefore, the importance of these procedures is that they allow us to make
confidence statements about the efficiency estimates relative to an unknown standard and,
subsequently, a statement about the maximum efficiency estimate’s ability to serve as that
standard. For practical purposes these inefficiency estimates, their intervals and any

inference on the efficient firm are measures of performance or success, and as such can
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aid in technological decisions and the evaluation of managerial performance.
Additionally, studying these intervals will provide insight into the sources of uncertainty
associated with productivity estimation.

This chapter is concerned with performing MCB in the fixed effects stochastic
frontier model. It is organized as follows. Section 2 briefly discusses estimation of the
stochastic frontier model and summaries the main algebraic and statistical results of a
fixed effects treatment. After a very brief historical account, section 3 explores
developments in MCB theory. Section 4 discusses theoretical considerations in applying
MCB theory to the stochastic frontier model. Finally, section 5 draws some conclusions

and introduces areas for additional research.

2 STOCHASTIC FRONTIER MODELS

2.1 Introduction

Stochastic frontier models were originally due to Aigner, Lovell and Schmidt
(1977) and Meeusen and van den Broeck (1977). These models were based on cross
sectional data and strong distributional assumptions. Similar models have also been
developed for panel data. Pitt and Lee (1981) and Schmidt and Sickles (1984) were the
first to exploit the advantages of a panel data over cross sectional data. Since this is not
intended to be a comprehensive survey, the reader is referred to Cornwell and Schmidt
(1995), Greene (1995), Lovell (1993), Lovell and Schmidt (1988) and Schmidt (1985)
for further details.

This chapter deals with these models only in the context of panel data.

Specifically, only the fixed effects formulation of the stochastic frontier model will be



8

detailed. However, we now present a more general discussion of the model to
incorporate alternative formulations to be used in chapter two. The basic model that we

will consider is as follows.

(1.1) Ya=a+x0+ve-u, y=0; i=1,..,.N, t=1..T.

Here i indexes firms (or other productive units) and t indexes time periods. Typically
Yy« is the logarithm of output and x, is a vector of inputs or functions of inputs. v, is
statistical noise and u; =0 represents technical inefficiency, assumed to be time invariant.
More specifically, if y, is the logarithm of output, technical efficiency of the i® firm is
TE; = exp(-u) and technical inefficiency is 1-TE;. We will refer to the composite error

as ¢, = v, - U;.. We will always assume the following:

(A.1) The v, are iid N(0, ).

(A.2) X, and v,, are independent fort,s = 1, ..., T, i,j=1,...,N.

We will sometimes but not always make the additional assumptions:

(A.3) The u; are independent of x and v.

(A.4) y, = | U; |, where the U; are iid N(0, ¢°)



9

Assumption (A.4) implies that the u; are half-normal, but this assumption could be
replaced by other specific distributional assumptions, as in Stevenson (1980) or Greene
(1990).

Now define a; = a - u;, so that a; < o for all i. Then we can rewrite (1.1) as

the usual panel data model

(1.2) Yo = o; + X8 + vy, i=1,...,N, t=1,..,T.

We regard zero as the absolute minimal value of u;, and hence « as the absolute
maximal value of «;, over any possible sample (essentially, as N-»o). This can be
distinguished from the minimal value of y; and the maximal value of ¢; in a given sample
of size N, and this distinction is relevant when N is small and the u; (hence «;) are
treated as fixed. Let ap; < ap < ... < apy be the population rankings of the o;, so
opq = maxis, o;, and apg < o. Similarly, let upy < upy < ... < yy, be the
population rankings of the u;, so up; = miniL,u;, and up; = 0. Then yy = o - a. In
this case the technical efficiency measures u; are defined by comparing «; to the absolute
standard «. We can consider the alternative of comparing «; to the within sample
standard apy;. Define u’; = apy - a; = U; - Uy, so that 0 < u’; < u;. Then equation

(1.2) can be rewritten as:

(1.3) Y = oy + xi‘ﬂ + Vi - u.j, i= 1, ceey N, t = 1, ey T.
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The difference between the two definitions of u is substantive and will be
considered further in chapter two.

Equation (1.2) is useful primarily as a basis for estimation that treats the «; (or
u) as fixed. A fixed effects treatment may be useful because it relies only on
assumptions (A.1) and (A.2), not (A.3) and (A.4), and because it is applicable when N
is small and T is large (as well as when N is large). Suppose we estimate (1.2) by the

usual fixed effects estimation involving the within transformation (or, equivalently,

dummy variables for firms), yielding estimates of ), ..., ay, 8 and ¢%,. Define
(1.4) & = maxy,q
ﬁ. =a- ai 1= 1; ’ N
Q

Then, as T with N fixed, & = a;, & = ap and §; > u’; = apy - @;, so that §

measures inefficiency relative to the standard of the best firm in the sample. Now

consider what happens as N-»o0. Under the assumption (A.4) of half-normality, or in
fact under any mechanism for the generation of u; that allows u arbitrarily close to zero

with positive probability (density), up; = 0 and ap; » o as N»o. Thus, @ » a and

@i, = u; as both N and T—oo, so that inefficiency is measured relative to its absolute (not

just within-sample) standard. This distinction will be important in the empirical analyses
in chapter two.

The statistical properties of the estimated u; are complicated because of the "max"
operation involved in the definition of & and therefore of 0;. Consistency as both N and

T — oo was argued heuristically (as above) by Schmidt and Sickles (1984). Park and
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Simar (1994) and Kneip and Simar (1995) established the rate of convergence of the

estimates. However, the asymptotic distributions of the estimates of a and the u; are
unknown, so that standard methods of construction of asymptotically-valid confidence
intervals based on these asymptotic distributions are currently not possible. Additionally,
the estimate & is essentially based on the presumption that we are certain that our
estimates of the a; reveal the true ranking of the corresponding population parameters.
Therefore any statistical inference or interval construction must be conditional on that
certainty, which seems dubious. Despite these problems, MCB methods allow
construction of confidence intervals and will be discussed in the next section. To this

end, we examine the covariance structure of the &; conditional on x;.

(1.5) Var(a) = 4T + x,Var(B)x;’ i=1,.., N

Cov(&,a) = x;Var(R)x;’ i#j

It is important to note in equation (1.5) that the consistency of 8 implies that as
either N » o or T -» o , Cov(&,&) —» 0, and Var(&) — o*/T or 0 respectively,
implying that asymptotically our estimates of «; are orthogonal. This orthogonality
greatly simplifies MCB analysis, so, as we will see, MCB methods are most readily

applied when N or T is large.

2.2 Conclusions and Extensions

The previous fixed effects analysis is for a balanced panel where the number of

periods of observation for each individual or firm is the same, T. Generalization to the
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unbalanced case is straightforward and will not be discussed here. However, for the

purposes of this chapter the generalization changes the variance of &; to:

(1.6) Var(&) = /T, + x;Var(B)x;’ i=1,...,N

where: T; is the number of periods for the i*® firm.

Of course the Var(B) is slightly different in the unbalanced case, and all the previous
results hold with some minor algebraic modifications as well. Implications of the
unbalanced panel to MCB will be discussed in subsequent sections. The following

section is devoted to MCB procedures.

3 MULTIPLE COMPARISONS WITH THE BEST
3.1 Introduction
Multiple Comparisons with the Best (MCB) is a specific case of Multiple
Comparison Procedures (MCP) which is performance of simultaneous inferences or
construction of simultaneous confidence intervals in comparative analysis. MCB is a

procedure for constructing simultaneous confidence intervals of the form:

(1.7) ll.i = arN-] - Q4 l = 1, ceny N

)

=) ::
Wi o Wi o b

where the o; are unknown "goodness" parameters for N populations, and the population

with the largest o is considered "best". It is important to realize that the best population

is unknown. If this were not the case MCB procedures would not be required; some
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multiple comparison or single comparison technique would probably suffice, depending

on the experimenter’s requirements. Even then they would typically be based on the
estimate &gy, = maxj.,&; which assumes that estimation reveals the true ranking of ;.
The MCB intervals may also suggest consistent point-estimates with nice small sample
properties.

MCB is similar to and can be adapted from Multiple Comparisons with a Control

(MCC) procedures which construct simultaneous confidence intervals of the form:

(1.8) ay - o; i=1,..,(N-1)

where the N® population is regarded as a control. Any population may be chosen for the
control, but the choice must be independent of the data.

This section is intended to serve as in introduction to procedures for performing
inference on equations (1.7) and (1.8). What follows is a brief historical survey of MCB
procedures. Sections 3.3 - 3.5 outline the main MCB results. Finally, section 3.6
extends sections 3.3 - 3.5 to a more general case and draws some conclusions on the

state of MCB literature as it pertains to stochastic frontier models.

3.2 Historical Perspective

MCP theory evolved during the late 1940s and early 1950s primarily due to David
Duncan, S. N. Roy, Henry Scheffé and John Tukey. Harter (1980) gives a complete
historical account. Shortly thereafter a related body of literature called ranking and

selection surfaced with the work of Bechhofer (1954). Additional ranking procedures
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followed due to Gupta (1956, 1965), Fabian (1962) and Desu (1970). MCC procedures

were primarily due to Dunnett (1955, 1964). MCB evolved in the early 1980’s with the
work of Jason Hsu. The primary justification for MCB is that it not only allows
significance testing and interval estimation for differences between populations, but it
allows the experimenter to simultaneously determine which population is "best".

Hsu (1981) constructed parametric and non-parametric simultaneous one-sided
upper confidence intervals for equation (1.7) under a location model. The parametric
confidence intervals were stronger than those suggested by Bechhofer, Gupta, Fabian and
Desu, while the non-parametric intervals were new to the literature.! Later Hsu (1984)
constructed simultaneous two-sided MCB confidence intervals for equation (1.7) which
implied his 1981 results. Additionally, Edwards and Hsu (1983) provide a general
technique for adapting MCC intervals in equation (1.8) to MCB intervals in equation
(1.7). Hochberg and Tamhane (1987) nicely summarize the main results of these three
papers. The next section recaps those results that are germane to this chapter and

provides a few additional insights.

3.3 Hsu (1981) - Multiple Comparisons with the Best
Let x,, ..., 7y be N independent populations or treatments. Let the distributions
of the N populations differ only by location, so fori = 1, ..., N, F(x - o) is the

distribution of X in x. Let X;;, ..., X;; be an i.i.d. random sample of size T from

Hsu’s intervals are stronger in several senses. See Hsu (1981) for specific comparisons with
Bechhofer (1954), Gupta (1956, 1965), Fabian (1962) and Desu (1970).
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population «;. Let the "best" population be that with the largest location parameter, o;.

Let

a[l] Sooo S al’N]

be the ordered location parameters. Let F(x) = $(x/0), a normal distribution with mean

0 and standard deviation ¢, unknown. Let

be the sample means of the N populations, so that E[&;] = «; for all i. Let s be the usual
pooled estimate of o with v = N(T-1) degrees of freedom. Then var(a) = ¢*/T and the
independence of the populations implies cov(a;,&;) = 0 for all i # j. Simple calculations
show that var(&, - &) = 2¢%/T and cov(&, - &;, & - &) = o*/T forall i # j # k, so that

corr(qy - &;, &, - &) = '4,i # j # k. To perform inference on equation (1.7) select

(1.9) ’Ayi = &[N] - &i i= 1, ...,N; i#[N],

where apy, is any of the &;. Then

corr(¥, ) = oy =0 =4 1#j.

Notice that this correlation structure will emerge regardless of which of the N sample

means we select as i, provided that the choice does not depend on the data. That is,
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the variance and covariances of the &; are not conditional on the rankings. This
equicorrelated structure facilitates calculation and tabulation of the necessary multivariate

critical values. Based on this structure, one-sided intervals are given by Theorem 3.1.

Theorem 3.1 (Hsu 1981).

Simultaneous (1 - A\) confidence intervals for o, - o; are given by:
an - o € {0, max(max,y; &; - & + d,0)}

where d = T®, ,,s8(2/T)*

and T®,,,, is the solution in t for

oo

f 0 f = PV[(20" + ts)(1-p)*]dP(2)dQ,(s) = 1 - A

where Q, is the distribution of a x,v* random variable.

For a proof see Hsu (1981). Clearly, the critical point and hence the inference
hinges on the 4,’s being equicorrelated with correlation coefficient p = '4. This means
that for more general correlation structures these intervals are less useful, but for the
purposes of this chapter they are instructive. Tables for the critical value %y, ,, can
be found in Hochberg and Tamhane (1987), Bechhofer and Dunnett (1986) and Gupta,

Panchapakesan and Sohn (1985). T®,,,, will be positive for values of A < 0.50, so
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for reasonable confidence levels, d will be positive. Since the lower bound is constrained
positive, these intervals are not as informative as the two-sided intervals discussed later.
However, they are of particular interest to those concerned with ranking and selection
of the treatments. Therefore, we now discuss this theorem in terms of the inference
implied by the intervals and defer any discussion of the uncertainty associated with our
estimates until we discuss two-sided intervals in section 3.5.

The constructed intervals imply statements about the ranking of the treatment
means and subsequently about the most efficient treatment mean. Notice that the upper
bound is constrained non-negative, so for any treatment to be in contention for the "best"
it is necessary that its upper bound be zero. We can make this point clear by examining
specific cases. If the difference between the largest and second largest sample means is
large relative to d, then the treatment with the largest sample mean will have an upper
bound of zero and can be considered "best" at an 1-A confidence level. Conversely, if
this difference is small relative to d, then the upper bound will be greater than zero and
the treatment is not "best". In fact, it is easy to show that the upper bounds for the
remaining treatments (i = [1],..., [N-1]) will always be greater than zero, so, in this
case, none of the treatments is "best".

If we are only concerned with the hypothesis that the treatment with the largest
sample mean is best, then the notion of the remaining N-1 treatments always being less
than best implies that we only need test the treatment with the largest sample mean to
perform this inference. What distinguishes this inference from a single t-test is the

selection of the critical value, which is drawn from a multivariate-t distribution to
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account for the uncertainty associated with the best treatment mean being unknown and
to account for the simultaneity associated with the ranking.

If our inference fails to produce a single "best" treatment, then we may also be
able to test additional hypotheses about the population by constructing two-sided
confidence intervals, the lower bounds of which will tell us which of the treatments
cannot be best at the 1-A level. This way if we cannot pick a single "best" treatment,
at least we can determine the treatments that cannot be best, leaving us with a subset of
the treatments which might be best. Also, the two-sided intervals may suggest consistent
estimates with nice small sample properties. This particular inference technique is
explored in section 3.5, but first we examine construction of intervals for equation (1.8)

using MCC procedures.

3.4 Two-Sided MCC Intervals

Multiple comparisons with a control or MCC is primarily due to Dunnett (1955).
If one of the N treatments, say N, can be regarded as a control, then we can construct
intervals for equation (1.8). We use the same notation as section 3.3. We consider an

balanced layout where for each treatment i = 1...N the number of observations is T.

Theorem 3.2
Let | T | ®y,,, be the solution in t for

f 0 f = (V20" + ts)(1-p)"] - "'[(20" - ts)(1-p)*]}d(2)dQ,(s) = 1 - A
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A set of 1 - A\ simultaneous confidence intervals for
QN - Oy .oy QN - QN
is given by
[an -0 -d’,ay-& + d’] i=1, .., N-1

where

@ = | T| Oy, SQT"

Tables for | T | ¥y,,, can be found in Hochberg and Tamhane (1987), Dunnett
(1964), Hahn and Hendrickson (1971) and Dunn and Massey (1965). A few observations
on these intervals are in order. First, the critical value and hence the intervals are based
on the equicorrelated structure of the ay - &;, but there are several approximation
technique for dealing with a more general correlation structure. We defer discussion of
these techniques until later. Second, if we restrict the bounds non-negative, these
intervals can be regarded as MCB intervals conditional on ay being the known best.
Third, the two-sided critical value | T | ®y,,, is necessarily larger than the one-sided
critical value T®y, , , for equal values of N-1, » and p, meaning that if we want to make
statements about both upper and lower bounds, the upper bound is necessarily larger.
These intervals are important insofar as they lay the foundation for adapting MCC

intervals to MCB intervals which we address in the next section.

3.5 Edwards and Hsu (1983) - MCB Intervals from MCC Intervals

To perform two-sided inference on equation (1.7) we examine the 1983 paper of

Edwards and Hsu. If we can regard any of the N populations as a control and construct
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MCC intervals, they can be adapted to the MCB intervals of equation (1.7).

Computation of these MCB intervals only requires that the MCC intervals exist (i.e. can
be constructed); it does not require independence or equal variances for the N
populations, =;. As mentioned earlier MCC intervals can be thought of as MCB intervals
conditional on the knowledge that the control is the best. Here Edwards and Hsu adapt
these to unconditional MCB intervals to incorporate uncertainty about the best treatment.
We use the same notation as section 3.3.

Let I represent the set of population indices, so I = {1, ..., N}. If there is any

reference group or control j € I such that a random confidence interval [L}, U/] exists

fori € I - {j} satisfying

P{L; < oj-a; < U} foreveryi € I-{j}} = 1-\,

and each joint distribution, P, is an element of some family of distributions at least
partially indexed by the a;, then MCC intervals on j exist and can be adapted to MCB

intervals using the following theorem.

Theorem (Edwards and Hsu 1983)

When MCC intervals on j € I exist as defined above,

PIL,<u, < UViEIN[NIEH =1-A
where

t={:Ui=0fori €1- {j}},
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and foreachi € |
L,=0 ¢ ={i}
L, = max(min,c; L}, 0) ¢ # {i}

U; = max(max;,; U}, 0).

For a proof see Edwards and Hsu (1983). A few observations are in order.
First, { is the set of all treatments that have all non-negative MCC upper bounds. If we
construct a set of simultaneous MCC intervals for each j € I, then those j that conform
to the selection criteria of { must have all non-negative MCC upper bounds. Second, if
a treatment i is not in the set {, then its lower bound is max(min,e,; L/, 0). If the
treatment i is contained in {, then its lower bound is 0. So, a treatment’s lower bound
is 0 if it is in ¢ or if it is close to being in {. Third, the lower bound is constrained non-
negative. In their paper Edwards and Hsu give a normal distribution example of the
above theorem. While not an explicit theorem in their paper, the following theorem is
adapted from their normal example. It assumes that the 4;’s possess the aforementioned

equicorrelated structure.

Theorem 3.3 (Edwards and Hsu 1983)
A set of 1 - \ simultaneous confidence intervals for
oy - Oy .eey Oy - O
is given by
PIL,<u, < UViENN[NIEH =1-A

where
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¢ = {: & = maxy\, & - d’}.
and for eachi € I
L; = max(min, [q; - &; - d’], 0)
U; = max(max;.[@; - &; + d’], 0)
where

d, = I T | ()‘)N-l.'.;)8(2/'.1-')‘/s

Edwards and Hsu refer to these as adaptive intervals. Again, tables for | T | ®y.
1», can be found in Hochberg and Tamhane (1987), Dunnett (1964), Hahn and
Hendrickson (1971) and Dunn and Massey (1965). Notice that the upper bound in this
case is the same as the one-sided upper bound derived by Hsu (1981), save for the
critical value, so its interpretation is the same. In terms of inference on which treatment
is best,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>