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ABSTRACT

MULTIPLE COMPARISONS WITH THE BEST FOR INFERENCE

IN STOCHASTIC FRONTIER MODELS

SUBMODEL ESTIMATION FOR CagnNTERPACTUAL POLICY ANALYSIS

By

William Clinton Horrace

This is a dissertation in three chapters. In the first chapter we examine a

statistical method for performing simultaneous inference on all distances from the "best"

called multiple comparisons with the best or simply MCB. We find that MCB can be

used on a fixed effects stochastic production frontier model for panel data to construct

simultaneous confidence intervals for technical inefficiency and to perform inference on

maximum efficiency measures, where previously no methods had been suggested.

In the second chapter we use the MCB analysis of chapter one to perform

inference and point—estimation on some previously analyzed stochastic frontier data and

compare these results to the inference and point estimates currently suggested but never

exploited in the stochastic frontier literature.

The third chapter is a complete departure from the first two. In chapter three we

construct a subset limited-information maximum likelihood estimator for a vector error

correction model under the cointegration hypothesis for use in a counterfactual policy

analysis model.
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INTRODUCTION TO THE DISSERTATION

This is a dissertation in three chapters. It is an attempt to address topics in

econometric theory and applied econometrics in the cross sectional, panel data and time

series contexts. Each chapter contains its own introductory remarks, so this introduction

to the entire text is intended to briefly summarize the goals of this dissertation. The plan

of the dissertation is as follows.

Chapters one and two are concerned with performing inference on technical

efficiency estimates in stochastic frontiers models. These are cross sectional and panel

data models that predict or estimate technical efficiency for a set of productive or

decision-making units. Two different approaches dominate the efficiency measurement

literature: the aforementioned stochastic frontiers approach and a deterministic approach.

While the debate over which approach is "preferred" continues, a clear advantage of the

stochastic frontiers approach is that it allows quantification of the uncertainty associated

with the efficiency estimates while the deterministic approach does not. Therefore the

import of the first two chapters of this dissertation is that they detail procedures to

quantify this uncertainty in the stochastic frontiers model. This is accomplished through

confidence intervals construction.

The first chapter details a new technique for confidence intervals construction in

the fixed effects stochastic frontier model for panel data. To my knowledge this has

heretofore never been accomplished. This technique, called Multiple Comparisons with

the Best or MCB, allows simple confidence intervals construction that not only quantifies

the uncertainty of the individual technical efficiency estimates of the productive units but

also quantifies the uncertainty of which firm in the sample is the best in the population

1
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and suggests point estimates for technical efficiency which have less positive bias than

those currently exploited in the literature. Moreover, the fixed effects formulation of the

stochastic frontier model requires weaker distributional assumptions than any other

stochastic formulation, so the benefits of these MCB intervals are clear.

The second chapter discusses several other formulations of the stochastic frontier

model. Unfortunately, all of these formulations require stronger distributional

assumptions than the aforementioned fixed effects model, but the ability to construct

confidence intervals for their technical efficiency estimates has been well documented.

Strangely, this ability has never been systematically exploited in an empirical setting.

Therefore, chapter two details the interval construction techniques of these formulations

and, along with the MCB techniques of chapter one, presents a comprehensive empirical

study in which confidence intervals on technical efficiency measures are constructed

using various estimation and interval construction methods on three different data sets.

In doing so, chapter two advances our understanding of the various sources of uncertainty

inherent in econometric models for efficiency estimation.

Chapter three is a complete departure from the first two. This chapter presents

a new method for estimating the parameters in a conditional submodel for counterfactual

policy analysis under the cointegration hypothesis. Counterfactual analysis attempts to

analyze an economy (system of equations) in which new (counterfactual) policy rules

have been substituted for the historical policy rules which generated the data. The idea

is to see how the economy would have behaved had a different policy regime been in

effect. However, as we shall see, current counterfactual analysis techniques are limited
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in their scope, so chapter three suggests a technique that can be more universally

applicable in these types of analyses.

Finally, in the conclusion section of this dissertation I summarize the results of

the research and suggest areas for additional work.



CHAPTER 1

MULTIPLE COMPARISONS WITH THE BEST

AND THE FIXED EFFECTS MODEL

1 INTRODUCTION

It is often the case in empirical research that comparative studies are prescribed.

For instance, one may wish to compare the effectiveness of several drugs in the treatment

of a disease, or one may be interested in comparing the differences in crop yield for a

variety of fertilizers. Such experiments might involve collecting a sample of some

effectiveness or yield measure for each treatment or variety, calculating a summary

statistic for each treatment (such as a sample mean) to estimate some population

parameter, and then comparing these statistics using some inference techniques like an

F-test or t-tests to test hypotheses on comparisons between the population parameters.

As an example consider a controlled experiment where 3 different fertilizers (A,

B, and C) are each applied in the same quantity to 10 separate samples of the same soil,

all receiving the same md, sunlight and irrigation. At the end of the experiment crop

output is measured for each of the 30 soil samples, and mean output is calculated for

each of the 3 fertilizers. The three sample means are construed as estimates of

population means, so that comparative hypotheses on the populations can be tested. For

instance a typical comparative hypothesis would be that fertilizer A is better than

fertilizer B or, perhaps, that the difference in crop yield between fertilizer A and

fertilizer C is 20 units.
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Very often in these studies it is advantageous to test a hypothesis about several

comparisons between populations, simultaneously (i.e. a multiple hypothesis). To

continue our crop example, one may be interested in testing the hypothesis that fertilizer

A is better then fertilizer B and fertilizer A is better than fertilizer C. In these instances

the advantages of multiple comparison procedures (or MCP) over single or per

comparison testing have been well documented in the statistical literature. Basically,

MCP precludes what has been deemed the multiplicity efiect. Hochberg and Tarnhane

(1987) give an excellent exposition on the multiplicity effect and the justification for

MCP.

This chapter deals with a specific case of MCP ealled multiple comparisons with

the best (or MCB) in which simultaneous inference is performed on all differences from

the unknown ”best” population parameter. This procedure has been extensively exploited

in various forms in the natural science and statistics literatures to allow ranking and

selection of treatments. For example, see Becker (1961), Dalal and Srinivasan (1977),

Gupta and Hsu (1977) and McDonald (1977). While generally ignored in the

econometrics literature, MCB methods can be use to perform inference in stochastic

production frontier models for panel data. These are econometric panel data models that

produce estimates ‘of technical efficiency for a set of firms or productive units. Our

focus is the fixed effects estimate which produces a distinct intercept term for each firm.

The firm with the highest intercept estimate is deemed "best", and differences between

the best firm’s estimate and those of the less efficient firms are technical inefi'iciencies.

See Schmidt and Sickles (1984). These inefficiency estimates can be thought of as

comparisons with the best. If we are interested in testing the hypothesis that the firm
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with the highest efficiency estimate is, in fact, the true best, then we must test the

simultaneous hypothesis that all other firms have positive technical inefficiencies.

Therefore, our inference is necessarily simultaneous and constitutes multiple comparisons

with the best or MCB. Once MCB intervals are calculated their midpoints suggest point-

estimates of technical inefficiency and maximum efficiency which have less positive bias

than those currently exploited in the stochastic frontier literature.

It is important to stress the fact that this chapter deals with inference on the

maximal efficiency and on technical inefficiencies measured relative to this maximum.

Therefore, confidence intervals and inference on the technical inefficiencies are

necessarily complex due to the non-linearity associated with taking the maximum of the

individual efficiencies. This chapter uses a pre-existing theoretical methodology to

simplify construction of these intervals. It is also important to realize that determination

of the most efficient firm should not be approached as simple selection of the firm with

the largest technical efficiency estimate. This naive approach assumes that the estimation

procedure reveals with certainty the true efficiency rankings of the firms. Conversely,

simultaneous MCB inference on the technical inefficiency measures allows us to

determine a confidence level with which we can say that the firm with the highest

technical efficiency estimate is the true ”best".

Therefore, the importance of these procedures is that they allow us to make

confidence statements about the efliciency estimates relative to anWstandard and,

subsequently, a statement about the maximum efliciency estimate ’s ability to serve as that

standard. For practical purposes these inefficiency estimates, their intervals and any

inference on the efficient firm are measures of performance or success, and as such can
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aid in technological decisions and the evaluation of managerial performance.

Additionally, studying these intervals will provide insight into the sources of uncertainty

associated with productivity estimation.

This chapter is concerned with performing MCB in the fixed effects stochastic

frontier model. It is organized as follows. Section 2 briefly discusses estimation of the

stochastic frontier model and summaries the main algebraic and statistical results of a

fixed effects treatment. After a very brief historical account, section 3 explores

developments in MCB theory. Section 4 discusses theoretical considerations in applying

MCB theory to the stochastic frontier model. Finally, section 5 draws some conclusions

and introduces areas for additional research.

2 STOCHASTIC FRONTIER MODELS

2.1W

Stochastic frontier models were originally due to Aigner, Lovell and Schmidt

(1977) and Meeusen and van den Broeck (1977). These models were based on cross

sectional data and strong distributional assumptions. Similar models have also been

developed for panel data. Pitt and Lee (1981) and Schmidt and Sickles (1984) were the

first to exploit the advantages of a panel data over cross sectional data. Since this is not

intended to be a comprehensive survey, the reader is referred to Comwell and Schmidt

(1995), Greene (1995), Lovell (1993), Lovell and Schmidt (1988) and Schmidt (1985)

for further details.

This chapter deals with these models only in the context of panel data.

Specifically, only the fixed effects formulation of the stochastic frontier model will be
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detailed. However, we now present a more general discussion of the model to

incorporate alternative formulations to be used in chapter two. The basic model that we

will consider is as follows.

(1.1) yh=a+th +v,,-u,, ui 2 O; i=1,...,N, t= 1,...,T.

Here i indexes firms (or other productive units) and t indexes time periods. Typically

y, is the logarithm of output and x, is a vector of inputs or functions of inputs. v,, is

statistical noise and u, 2 0 represents technical inefficiency, assumed to be time invariant.

More specifically, if y, is the logarithm of output, technical efficiency of the i‘h firm is

TE, = exp(-u,) and technical inefficiency is l-TEi. We will refer to the composite error

as 6,, = v,, - u,. We will always assume the following:

(A.1) The v, are iid N(O, 02,).

(A.2) x, and v,, are independent fort, s = 1, ..., T, i,j = 1, ..., N.

We will sometimes but not always make the additional assumptions:

(A.3) The u, are independent of x and v.

(A.4) ui = | Ui | , where the Ui are iid N(O, 02,)
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Assumption (A.4) implies that the u,- are half-normal, but this assumption could be

replaced by other specific distributional assumptions, as in Stevenson (1980) or Greene

(1990).

Now define a, = a - u,, so that a, s 01 for all i. Then we can rewrite (1.1) as

the usual panel data model

(1.2) Yit = a, + Xi‘B + V“, i=1, ..., N, t: 1, ..., T.

We regard zero as the absolute minimal value of u,, and hence a as the absolute

maximal value of (1,, over any possible sample (essentially, as N—too). This can be

distinguished from the minimal value of u, and the maximal value of ozi in a given sample

of size N, and this distinction is relevant when N is small and the u, (hence 01,) are

treated as fixed. Let am 5 “[21 s 5 arm be the population rankings of the 02,, so

am = max?=1 (1,, and am] 5 0:. Similarly, let um S um,” _<. S “m be the

population rankings of the u,-, so um = minim” and um 2 0. Then “m = a - am. In

this case the technical efficiency measures u, are defined by comparing ozi to the absolute

standard a. We can consider the alternative of comparing a, to the within sample

standard am]. Define u'i = “on - a, = ui - um, so that 0 S u'i s u,. Then equation

(1.2) can be rewritten as:

(1.3) Yit = am1+ Xi‘fi + Vi, " ll.“ i=1, ..., N, t: 1, ..., T.

\n

l
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The difference between the two definitions of u is substantive and will be

considered further in chapter two.

Equation (1.2) is useful primarily as a basis for estimation that treats the a, (or

u,) as fixed. A fixed effects treatment may be useful because it relies only on

assumptions (A1) and (A.2), not (A.3) and (A.4), and because it is applicable when N

is small and T is large (as well as when N is large). Suppose we estimate (1.2) by the

usual fixed effects estimation involving the within transformation (or, equivalently,

dummy variables for firms), yielding estimates of a], ..., a”, B and 02,. Define

(1.4) a = maxfflaj

fi. = & ' a, I = 1, , N

U

Then, as '1‘“,m With N fixed, éi "’ 01-1, & —’ am and LQLaingj = am "" on, SO thgfii
  

measures inefficiency relative to the standard of the best firm in the sample. Now

consider what happens 3.53:9. Under the assumption (A.4) of half-normality, or in

fact under any mechanism for the generation of ui that allows u arbitrarily close to zero

with positive probability (density),fl» 0 and am —> a as N600 . _Thus, a a a and

it, -> u, as both N and Tag,““so that inefficiency is measured relative to its absolute (not
 

just within-sample) standard. This distinction will be important in the empirical analyses

in chapter two.

The statistical properties of the estimated u, are complicated because of the "max"

operation involved in the definition of d: and therefore of iii. Consistency as both N and

T -» on was argued heuristically (as above) by Schmidt and Sickles (1984). Park and
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Simar (1994) and Kneip and Simar (1995) established the rate of convergence of the

estimates. However, the asymptotic distributions of the estimates of a and the ui are

unknown, so that standard methods of construction of asymptotically-valid confidence

intervals based on these asymptotic distributions are currently not possible. Additionally,

the estimate 6: is essentially based on the presumption that we are certain that our

estimates of the 0:, reveal the true ranking of the corresponding population parameters.

Therefore any statistical inference or interval construction must be conditional on that

certainty, which seems dubious. Despite these problems, MCB methods allow

construction of confidence intervals and will be discussed in the next section. To this

end, we examine the covariance structure of the 6:, conditional on x,.

(1.5) Var(&,) = 0le + i,Var(B)3£,-’ i = 1, N

Cov(a,,aj) = ‘i,Var(B)'i,-’ i ¢j

It is important to note in equation ( 1.5) that the consistency of 3 implies that as

either N -’ on or T a co , Cov(&,,&,-) _. O, and Var(&9 —. 02/T or 0 respectively,

implying that asymptotically our estimates of a, are orthogonal. This orthogonality

greatly simplifies MCB analysis, so, as we will see, MCB methods are most readily

applied when N or T is large.

2.2 Conclusions and Extensions

The previous fixed effects analysis is for a balanced panel where the number of

periods of observation for each individual or firm is the same, T. Generalization to the
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unbalanced case is straightforward and will not be discussed here. However, for the

purposes of this chapter the generalization changes the variance of 61, to:

(1.6) Var(o‘z,) = oz/T, + E,Var(B)'i,’ i = 1, N

where: T, is the number of periods for the im firm.

Of course the Var(B) is slightly different in the unbalanced case, and all the previous

results hold with some minor algebraic modifications as well. Implications of the

unbalanced panel to MCB will be discussed in subsequent sections. The following

section is devoted to MCB procedures.

3 MULTIPLE COMPARISONS WITH THE BEST

3.1 mm

Multiple Comparisons with the Best (MCB) is a specific case of Multiple

Comparison Procedures (MCP) which is performance of simultaneous inferences or

construction of simultaneous confidence intervals in comparative analysis. MCB is a

procedure for constructing simultaneous confidence intervals of the form:

(1.7) u‘,= aim-a, i= 1, ...,N .

T"H E

opal-W; ot’. i’,‘

\J

1

l

.. T]

where the a, are unknown ”goodness” parameters for N populations, and the population

with the largest a, is considered "best". It is important to realize that the best population

is unknown. If this were not the case MCB procedures would not be required; some
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multiple comparison or single comparison technique would probably suffice, depending

on the experimenter’s requirements. Even then they would typically be based on the

estimate am, = max}i,&, which assumes that estimation reveals the true ranking of 01,.

The MCB intervals may also suggest consistent point-estimates with nice small sample

properties.

MCB is similar to and can be adapted from Multiple Comparisons with a Control

(MCC) procedures which construct simultaneous confidence intervals of the form:

(1.8) aN—a, i= 1, (N-l)

where the N‘“ population is regarded as a control. Any population may be chosen for the

control, but the choice must be independent of the data.

This section is intended to serve as in introduction to procedures for performing

inference on equations (1.7) and (1.8). What follows is a brief historical survey of MCB

procedures. Sections 3.3 - 3.5 outline the main MCB results. Finally, section 3.6

extends sections 3.3 - 3.5 to a more general case and draws some conclusions on the

state of MCB literature as it pertains to stochastic frontier models.

3.2 Hi ' P r ’v

MCP theory evolved during the late 1940s and early 19503 primarily due to David

Duncan, S. N. Roy, Henry Scheffé and John Tukey. Harter (1980) gives a complete

historical account. Shortly thereafter a related body of literature called ranking and

selm surfaced with the work of Bechhofer (1954). Additional ranking procedures
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followed due to Gupta (1956, 1965), Fabian (1962) and Desu (1970). MCC procedures

were primarily due to Dunnett (1955, 1964). MCB evolved in the early 1980’s with the

work of Jason Hsu. The primary justification for MCB is that it not only allows

significance testing and interval estimation for differences between populations, but it

allows the experimenter to simultaneously determine which population is "best".

Hsu (1981) constructed parametric and non-parametric simultaneous one-sided

upper confidence intervals for equation (1 .7) under a location model. The parametric

confidence intervals were stronger than those suggested by Bechhofer, Gupta, Fabian and

Desu, while the non-parametric intervals were new to the literature.‘ Later Hsu (1984)

constructed simultaneous two-sided MCB confidence intervals for equation (1.7) which

implied his 1981 results. Additionally, Edwards and Hsu (1983) provide a general

technique for adapting MCC intervals in equation (1.8) to MCB intervals in equation

( 1.7). Hochberg and Tamhane (1987) nicely summarize the main results of these three

papers. The next section recaps those results that are germane to this chapter and

provides a few additional insights.

3.3 Hso (1281) - Moltiolo Comm’sons with tho Bost

Let 1,, ..., 1rN be N independent populations or treatments. Let the distributions

of the N populations differ only by location, so for i = 1, ..., N, F(x - 01,) is the

distribution of X in 1r. Let X51, ..., X,T be an i.i.d. random sample of size T from

 

Hsu’s intervals are stronger in several senses. See Hsu (1981) for specific comparisons with

Bechhofer (1954), Gupta (1956, 1965), Fabian (1962) and Desu (1970).
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population 1,. Let the "best" population be that with the largest location parameter, (1,.

Let

be the ordered location parameters. Let F(x) = <I>(x/(t), a normal distribution with mean

0 and standard deviation (7, unknown. Let

be the sample means of the N populations, so that E[&,] = a, for all i. Let s be the usual

pooled estimate of a with v = N(T-1) degrees of freedom. Then var(&,) = (FIT and the

independence of the populations implies cov(&,,&,) = 0 for all i =1: j. Simple calculations

show that var(o"z,, - 6:,) = 202/T and cov((3(,, - 6:,, (31,, - 62,) = 02/T for all i =16 j =11: k, so that

corr(&,, - (5,, (3:, - (1,) = ‘6, i #= j ¢ k. To perform inference on equation (1.7) select

(1.9) ’9, = am ' a, i: 1, ...,N; i¢[N],

where (31",, is any of the 62,. Then

(3017091, 3’5) = Pij = P = 1’5 H‘j-

Notice that this correlation structure will emerge regardless of which of the N sample

means we seleCt as (im, provided that the choice does not depend on the data. That is,
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the variance and covariances of the (3:, are M conditional on the rankings. This

equicorrelated structure facilitates calculation and tabulation of the necessary multivariate

critical values. Based on this structure, one-sided intervals are given by Theorem 3.1.

Theorem 3.1 (Hsu 1981).

Simultaneous (l - A) confidence intervals for am] - a, are given by:

an." - a, E {0, max(max,,., (it, - (3:, + d,0)}

where d = Tm», ,,.,,S(2/T)%

and TQ’N,,.,., is the solution in t for

a)

[0 I... 4’""[(Zp"’ + tS)(1-P)'”]d‘1’(2)dQ..(S) = 1 - A

where Q, is the distribution of a x,u"" random variable.

For a proof see Hsu (1981). Clearly, the critical point and hence the inference

hinges on the "y,’s being equicorrelated with correlation coefficient p = 1A. This means

that for more general correlation structures these intervals are less useful, but for the

purposes of this chapter they are instructive. Tables for the critical value 'I‘*’N,,,,.,, can

be found in Hochberg and Tamhane (1987), Bechhofer and Dunnett (1986) and Gupta,

Panchapakesan and Sohn (1985). T‘”N_,‘,‘p will be positive for values of A < 0.50, so
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for reasonable confidence levels, (1 will be positive. Since the lower bound is constrained

positive, these intervals are not as informative as the two-sided intervals discussed later.

However, they are of particular interest to those concerned with ranking and selection

of the treatments. Therefore, we now discuss this theorem in terms of the inference

implied by the intervals and defer any discussion of the uncertainty associated with our

estimates until we discuss two-sided intervals in section 3.5.

The constructed intervals imply statements about the ranking of the treatment

means and subsequently about the most efficient treatment mean. Notice that the upper

bound is constrained non-negative, so for any treatment to be in contention for the "best"

it is necessary that its upper bound be zero. We can make this point clear by examining

specific cases. If the difference between the largest and second largest sample means is

large relative to (1, then the treatment with the largest sample mean will have an upper

bound of zero and can be considered ”best" at an l-A confidence level. Conversely, if

this difference is small relative to (1, then the upper bound will be greater than zero and

the treatment is not "best". In fact, it is easy to show that the upper bounds for the

remaining treatments (1 = [l],..., [N-l]) will always be greater than zero, so, in this

case, none of the treatments is "best".

If we are only concerned with the hypothesis that the treatment with the largest

sample mean is best, then the notion of the remaining N—l treatments always being less

than best implies that we only need test the treatment with the largest sample mean to

perform this inference. What distinguishes this inference from a single t-test is the

selection of the critical value, which is drawn from a multivariate-t distribution to
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account for the uncertainty associated with the best treatment mean being unknown and

to account for the simultaneity associated with the ranking.

If our inference fails to produce a single "best" treatment, then we may also be

able to test additional hypotheses about the population by constructing two-sided

confidence intervals, the lower bounds of which will tell us which of the treatments

cannot be best at the 1-A level. This way if we cannot pick a single ”best” treatment,

at least we can determine the treatments that cannot be best, leaving us with a subset of

the treatments which might be best. Also, the two—sided intervals may suggest consistent

estimates with nice small sample properties. This particular inference technique is

explored in section 3.5, but first we examine construction of intervals for equation (1. 8)

using MCC procedures.

3.4 jlflgSidfl MCC Intervfls

Multiple comparisons with a control or MCC is primarily due to Dunnett (1955).

If one of the N treatments, say N, can be regarded as a control, then we can construct

intervals for equation (1.8). We use the same notation as section 3.3. We consider an

balanced layout where for each treatment 1 = 1...N the number of observations is T.

Theorem 3.2

Let I T | ‘*’N,,,,‘, be the solution in t for

f0 I... {‘PMKZO" + tS)(1-p)"‘l - 4’""[(Zo"‘ - tS)(1TOY/'1}d‘1’(l)dQ.(é‘>) = l - A
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A set of 1 - A simultaneous confidence intervals for

(1N ' (11, ..., C!" - (1N4

is given by

[ON-&,-d’,&N-&, +d’] i=1, ...,N—l

where

d, = 1 T 1 “’~-1,.,,S(2/1')"

Tables for l T | (”Mm can be found in Hochberg and Tamhane (1987), Dunnett

(1964), Hahn and Hendrickson (1971) and Dunn and Massey (1965). A few observations

on these intervals are in order. First, the critical value and hence the intervals are based

on the equicorrelated structure of the 62,, - 61,, but there are several approximation

technique for dealing with a more general correlation structure. We defer discussion of

these techniques until later. Second, if we restrict the bounds non—negative, these

intervals can be regarded as MCB intervals conditional on (1,, being the known best.

Third, the two-sided critical value I T | (”MN is necessarily larger than the one-sided

critical value Tom,” for equal values of N-l, v and p, meaning that if we want to make

statements about both upper and lower bounds, the upper bound is necessarily larger.

These intervals are important insofar as they lay the foundation for adapting MCC

intervals to MCB intervals which we address in the next section.

3.5 EWLLQS: and Hsu (1283) - MCB Intorvols from MCC Intervals

To perform two-sided inference on equation (1.7) we examine the 1983 paper of

Edwards and Hsu. If we can regard any of the N populations as a control and construct
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MCC intervals, they can be adapted to the MCB intervals of equation (1.7).

Computation of these MCB intervals only requires that the MCC intervals exist (i.e. can

be constructed); it does not require independence or equal variances for the N

populations, 1,. As mentioned earlier MCC intervals can be thought of as MCB intervals

conditional on the knowledge that the control is the best. Here Edwards and Hsu adapt

these to unconditional MCB intervals to incorporate uncertainty about the best treatment.

We use the same notation as section 3.3.

Let I represent the set of population indices, so I = {1, ..., N}. If there is any

reference group or control j E I such that a random confidence interval [L3, U9] exists

fori E I - {j} satisfying

P{L,i S aj-a, S U,"foreveryiEI-{j}}21->s,

and each joint distribution, P, is an element of some family of distributions at least

partially indexed by the a,, then MCC intervals on j exist and can be adapted to MCB

intervals using the following theorem.

Theorem (Edwards and Hsu 1983)

When MCC intervals on j E I exist as defined above,

P{[L, s u’, s U,vi€ I] n [[N]E 5'1}? l-A

where

f={j:U,520foriEI-{j}},
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and for each i E I

Li = O 1' = {i}

Li = max(minjer Lij: 0) 1' ‘fi {i}

U, = max(max,,., U,‘, 0).

For a proof see Edwards and Hsu (1983). A few observations are in order.

First, it is the set of all treatments that have all non-negative MCC upper bounds. If we

construct a set of simultaneous MCC intervals for each j E I, then those j that conform

to the selection criteria of g- must have all non-negative MCC upper bounds. Second, if

a treatment i is not in the set f, then its lower bound is max(min,er L3, 0). If the

treatment i is contained in I, then its lower bound is 0. So, a treatment’s lower bound

is 0 if it is in 3' or if it is close to being in (1 Third, the lower bound is constrained non-

negative. In their paper Edwards and Hsu give a normal distribution example of the

above theorem. While not an explicit theorem in their paper, the following theorem is

adapted from their normal example. It assumes that the "y,’s possess the aforementioned

equicorrelated structure.

Theorem 3.3 (Edwards and Hsu 1983)

A set of 1 - A simultaneous confidence intervals for

(1,," - (1,, ..., (1m - (1,,

is given by

P{[L, s u‘, s U,viE I] n [[N] E g']}21-A

where
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r = {j: (‘1, 2 max,!“=,(1,- d’}.

and for each i E I

L, = max(min,e,[&, - (‘1, - d’], 0)

U, = max(max,¢,[(‘1, - (1, + d’], 0)

where

d’ = IT I <*>N-...,.s(2m%

Edwards and Hsu refer to these as adaptive intervals. Again, tables for | T | (”N

,.,,, can be found in Hochberg and Tamhane (1987), Dunnett (1964), Hahn and

Hendrickson (1971) and Dunn and Massey (1965). Notice that the upper bound in this

case is the same as the one-sided upper bound derived by Hsu (1981), save for the

critical value, so its interpretation is the same. In terms of inference on which treatment

is best, the interpretation of these intervals is straightforward. If the lower bound for a

group of treatments is not zero (positive), these treatments can be eliminated as being

best at a l-A confidence level. If the upper bound for any single treatment is zero, then

it is best at the l-A confidence level. We now discuss the interpretation of the lower

bound.

The lower bound is based on the smallest treatment mean of those that satisfy the

selection criterion, the set t. g' is the set of all treatments in contention for the best

where selection is based on the MCC intervals for each treatment. A treatment is

eliminated from contention (excluded from n, if any one of its MCC upper bounds are

negative. Clearly, this means we need only test the interval that could result in the

largest negative upper bound for each treatment, namely the interval for (1, - mafo, 0:,
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for each treatment i. This leads to the definition of r in Theorem 3.3 which is the basis

for determining the MCB lower bounds.

Two polar examples help to illustrate the purpose of f. If g- consists of one

element, say {m}, then (1,, is the best treatment with confidence level 1-A. In this case

the MCB intervals reduce to MCC intervals with the lower bound constrained positive,

and the MCC intervals provide us with all the information we need to determine that m

is best, so the MCB intervals are narrow. If 5' consists of all N treatments, then all the

treatments will have an MCB lower bound of zero, meaning that none of the treatments

can be eliminated from being the best. In this case the MCC intervals have provided us

with little information and the MCB intervals are wide.

The lower bound is constructed so that it equals zero, when the treatment in

question is in the set I or when it is within d’ of the lowest value in this set. This means

that even if a treatment is not an element of r, it may still have zero as a lower bound

and might not be eliminated as being in contention for the best. This is due to the

uncertainty associated with the best treatment being unknown.

Since we have two-sided intervals a discussion of the factors which determine

their width is more instructive than in the case of one-sided intervals. The following

factors affect the bounds and hence the width of the intervals. T and 5 effect both

bounds in the usual way though (1’. The critical value, I T | “’N_,.,_,, merits some further

examination. When N is large, the critical value is larger making the intervals wider to

account for the added uncertainty associated with estimating more parameters. This

widening also compensates for additional multiplicity in the probability integral lest the

confidence level be diminished.
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The lower bound involves (and, as we have seen, is based on the smallest sample

mean with a positive MCC upper bound. As T gets large the probability that t contains

the single element [N] approaches 1. That is: as T—t on , P[§' = {[N]}] -’ 1 (provided that

there are no ties for the best in the population). Since this single element is the largest

in the population it will tend to be the largest in the sample as the accuracy of the

estimates improves; this forces the lower bound up, causing the intervals to get narrower.

So, increasing T narrows the lower bound in two ways: through d’ and through (2 The

former is due to improved accuracy of our estimates and the latter is due to improved

accuracy in the ranking of the sample means.

Figure 1 (in Tables and Figures Section) illustrates the relationship between MCC

intervals and MCB intervals. The width of the MCC interval (top) is determined solely

by the allowance, (1’. The width of the MCB interval (bottom) is determined by the

allowance and the uncertainty of the ranking, which is determined by the number of

elements contained in t“. So, when T is large enough that g' consists of a single element

then the uncertainty of the ranking vanishes, and the MCB interval is identical to the

MCC interval with the maximum population parameter known.

As previously stated the size of T has a direct effect on the number of elements

that satisfy the selection statement, 3'. As T gets large the probability that g' contains the

single element [N] approaches 1, meaning that the firm with the maximum sample mean

will ultimately be determined best by the confidence interval. If T is small, I will

probably consist of many elements, and we may not be able to say with any reasonable

degree of confidence that one treatment is significantly better than the rest.
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One must keep in mind that these intervals are not based on the estimator max,“=1

(1, - 61,, for this would imply that we are certain that our estimation procedure reveals the

true ranking of the population parameters. If we do regard these intervals as based on the

estimator max};l (1, - (1,, then (ignoring the max(., 0) operators in Theorem 3.3) these

intervals can be rewritten as follows:

L, = max-=,(‘1, - (1, - d’ - (maxf=,(1,- mime, (1,)

U1 = maxilla ' (i, + d,

If we consider the mid-point of the interval a point estimate for max?=1 (1, - (1,, then an

estimate for inefficiency, u,, based on the intervals is:

(1.10) ii, = (maxfgfi, + mime, &,)/2 - (3:,

suggesting the point estimate for am:

(1.11) am, = (max?=,(1, + minje, a,)/2

which has been shown to be consistent and have less positive bias than (‘1 (Edwards and

Hsu, 1983, p967). The bias of the estimate it, = (1 - 6:, is positive, is of magnitude

(maxEL, (Si, - mitt-6, o‘z,)/2 and is caused by the over estimation of the largest (3:, of the

sample. Notice that this bias is a function of the critical value which depends on our

confidence level. As the confidence level rises so does the critical value, potentially

making min,E , (1, smaller and the bias larger. This bias is eliminated when the difference



 

26

between the largest (1, and the second largest (1, is large, the probability of which

approaches 1 as T gets large. When T is small the probability that there are several (1,

near the maximum is large, so the bias is large.

3.6 Extonsions goo Conglosions

Clearly, the inference of the preceding theorems hinges on a specific form for the

correlation of the (1,: the correlation matrix must have identical off—diagonal elements, so

the equicorrelated structure can emerge. If the correlation matrix is of a more general

form, one must appeal to a more robust inference technique. This section briefly

summarizes a few of these techniques.

If the data are unbalanced, things become more complicated. In general,

unbalanced data lead to a lack of the equicorrelated structure, making determination of

the critical value more cumbersome. In fact, we would have to calculate a more general

critical value, T‘”,.,_,.,,,,(,D or | T | “’N,,.,.p(,,, where p(ij) is the correlation between the '1,

and 1, in the unbalanced case and is not constant over all i 9‘: j. (This notation, p(ij), is

to distinguish this correlation from that of the balanced case, p,,). Tabulation of such a

critical value would be impractical, and even computation with a computer would be

costly, since it would require solving N-l dimensional integrals. Allis not lost however,

for if the correlation matrix of the '1, takes on a product structure where:

(1.12) p(ij) = 5,5,. i,j 1E N

where (5, = [T,/(T, + T,.,)]'[5 i =15 N
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then the N-1 dimensional probability integral reduces to a lower dimensional iterated

integral, so T"°N,,,,,, and | T | (MN-1,...) are the solutions in t of:

[0 I... 111"“‘1’[(5az + tS)(1-5;’)""ld4>(2)dQ.(S) = 1 - A

and

f0 I... nimbl’lwsz + tS)(1-5;’)"”] - PIGS-,1 - tS)(1-5;2)'“l}d‘1>(2)dQ.(S) = 1 - A

respectively. These can be solved using an iterative search technique or simulated. If

this is the case, then the respective allowances for the MCC and MCB intervals become:

(1.13) d,, = TWN_,.,,,S(l/T, + 1/T,)"’ d,,’ = | T | “’N,,,,,,S(1/T, + 1/T,)"5

If we cannot appeal to this special structure in the unbalanced case (or for that

matter, in the balanced case) than we must use a conservative approximation technique.

Matejcik (1992) suggests techniques for adaptive MCB intervals that are robust to a

generalization of the correlation matrix and compares their performance using computer

simulation. These techniques are based on several MCC methods that are themselves

robust and include: an MCC method based on Banjeree’s Inequality due to Tamhane

(1977), a procedure using a moment-based approximation to the Behrens-Fisher problem

due to Tamhane ( 1977), a method using all-pairwise procedures due to Dunnett (1980)
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and lastly his own technique based on a heteroscedastic selection procedure. The

techniques will not be discussed here; the reader is referred to the above citations. An

obvious line for further research is to examine the applicability of these techniques to

stochastic frontier models.

The adaptive MCB intervals of Theorem 3.3 (Edwards and Hsu 1983) imply the

one-sided results of Theorem 3.1 (Hsu 1981), so the rest of this chapter will be in terms

of Theorem 3.3. To construct adaptive MCB intervals one need only be able to construct

the MCC intervals. So the questions remains, can we construct MCC intervals in the

fixed effects stochastic production frontiers context? The answer to this question is yes,

and the following section seeks to explain why.

4 APPLYING MCB METHODS TO STOCHASTIC FRONTIER MODELS

4.1W

The motivation for MCB stems from the problems specified in section 2.2. MCB

methodology eliminates these problems. First, we can perform comparative inference

on the best population mean with only a normality assumption (no half normals,

exponentials or extreme value distributions). Second, MCB allows construction of

intervals for an unknown best treatment, so we don’t have to assume that the sample

rankings coincide with the population rankings. Additionally, the point estimates of

equations (1. 10) and (1.11) are consistent as T —. co and may have less positive bias than

those of equation ( 1.4) when T is small.

To use Theorem 3.3 we must be able to construct MCC intervals for the u,, so

we would like to identify the circumstances under which MCC is the most readily
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applicable to constructing intervals for stochastic frontiers. First, it is important to point

out that the MCB intervals are not intervals constructed on the fr, but instead on 5",, for

we are not certain which firm is the true best. However, the MCC intervals (from which

the MCB intervals are adapted) are for (1N - 01,, where N is not necessarily the index of

the best firm in the population, but merely a control. Therefore, a priori knowledge of

the best firm is not necessary, and MCC intervals constructed on o, are perfectly

acceptable. This is the strength of the adaptive intervals: the experimenter first assumes

that the estimation reveals the true best firm and constructs MCC intervals. Then she

drops this assumption and adapts the intervals to accommodate this uncertainty.

Consequently one would expect MCC intervals with the lower bound constrained non-

negative to be narrower than the subsequent MCB intervals.

Construction of the MCC and MCB intervals is simple, however determination

of the appropriate critical value is non-trivial. When we can appeal to the equicorrelated

structure the critical value can be drawn from the aforementioned references, but even

then the existing tables are for small values of N only (N s 20, typically). For large

values of N the critical value would have to be calculated using a iterative search

technique or simulated. Failing the equicorrelated case, if the product structure of

equation (1.12) emerges, then we can again calculate a critical value using a iterative

search. When we cannot appeal to the equicorrelated or product structures,

approximation techniques can be employed as noted in section 3.6, but even then one

runs into problem of no critical value tables for large N.

To construct MCB intervals we must examine the correlation structure of the 1,,

which entails calculating the variance and the covariances of the 6:, in equation (1.5). If
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the firm efficiencies are orthogonal (e.g when B is known and Var(B) = 0), and we have

a balanced panel, then var(&,) = 201/T and p,, = p = ‘A. The equicorrelated structure

emerges; the critical value can be looked up or calculated, and the MCB intervals can

be constructed directly from Theorem 3.3 without appealing to an approximation

technique. The problem is that the firm efficiency estimates are, in general, not

orthogonal as evidenced by equation (1.5), so the equicorrelated structure is unlikely to

emerge in small samples. All is not lost however, for we can appeal to the large sample

properties of the (1,. Another potential problem arises when the panel is unbalanced. If

the panel is unbalanced then the '1, do not possess the equicorrelated structure. In this

case we would like to appeal to product structure of equation (1.12). Again,

unfortunately, the lack of orthogonality within the firm efficiencies, as evidenced in

equation (1.6), precludes us from appealing to this simpler structure. However, again

we may be rescued by the large sample properties of (1,. What follows are summaries

of the properties of the MCB intervals under different configurations of the panel data

set in both the balanced and unbalanced contexts.

4.2 MM

For a balanced panel, when N gets large the covariance matrix of B approaches

zero, causing the off-diagonal elements of Var((1) to approach zero and the diagonal

elements to approach ale, hence var(y,) —> 202/T, cov('y,,'y,) » 0le and p,, -» p = 96:,

giving us the equicorrelated structure. In this case MCB procedures can be directly

applied using Theorem 3.3 (Edwards and Hsu). If the critical constant I T | (MN-1.7.9

eannot be found in the aforementioned references, because N is too large, then it can be
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calculated or simulated. If the panel is unbalanced, as N gets large the product structure

of equation (1.12) will emerge, and we can apply Theorem 3.3 as modified by equation

(1.13) with critical value I T | (MN-1,1,6 calculated or simulated. In either case, balanced

or unbalanced, point-estimates based on these intervals follow directly; since T is small

the point estimates will have smaller positive bias than u, and (1.

4.3 14%ng

For a balanced panel, if T is large, the variance of our estimate of B is small, so

the of diagonal elements elements of the covariance matrix of the (1, become negligable.

Additionally, the bias of 0, and (1 will be minimal. In the unbalanced case, as T, gets

large for all i similar results arise. In either case MCB procedures can be directly

applied using Theorem 3.3 (or as modified by equation (1.13)) and should result in

narrow intervals for the u, and a strong statement about which treatment is best.

4.4 Small N and T

If N is less than large, the covariance matrix of (1 is non-spherical, and Theorem

3.3 can no longer be used to perform MCB inference on the estimates. However, if the

variance structure of the (1, takes on the special form;

(1.14) Var((1,) = al/T + C Cov((1,,(1,) = C C = constant

then again Var(r‘y,) = 202/T, Cov('y,, 1,) = ol/T, p,, = p = 1/2 and the correlation

structure of the ifs is the same as when N is large. Again Theorem 3.3 can be directly
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applied. Since T is small the bias of a, and (1 will be large, so we will need to rely on

the point estimates suggested by the intervals. Similarly for the unbalanced case, if

then we can use Theorem 3.3 as modified by equation (1.13). If the special forms of

equations (1.14) or (1.15) cannot be assumed we must appeal to an approximation

technique as suggested in section 3.6.

5 CONCLUSIONS AND EXTENSIONS

In the broadest sense this chapter has attempted to provide some insight into the

sources of uncertainty in the estimation of inefficiency measures in the fixed effects

model. Specifically, we find that MCB methodology is a useful tool for understanding

this uncertainty in the panel data context. For the econometric theorist the brief MCB

survey should shed some light on the issues surrounding this uncertainty. We conclude

that the assumption that the sample rankings reveal the true population rankings may be

dubious, particularly when T is small.

Consideration of this ranking uncertainty has strong implications for the overall

productivity modelling approach. This uncertainty uncovers additional inaccuracy

inherent in the efficiency estimates of these models, which heretofore has gone

unnoticed. If we are interested in preserving the accuracy of our estimates and reducing

this uncertainty, then we would typically have to sacrifice model flexibility to achieve it.
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Therefore, this MCB methodology may argue for more accurate and less flexible

productivity models. Of course this remains to be seen.

The next chapter is concerned with applying this MCB methodology to real data

sets and comparing the resulting intervals with those generated under other techniques

that are fairly well-established in the stochastic frontiers literature.



CHAPTER TWO

CONFIDENCE STATEMENTS FOR EFFICIENCY ESTIMATES

1 INTRODUCTION

This chapter is a comprehensive study of methods of inference associated with

technical efficiency estimates in the stochastic frontier model. We seek to characterize

the nature and the empirical magnitude of the uncertainty associated with the usual

estimates of efficiency levels.

From our perspective, deterministic approaches (e.g. , DEA) produce efficiency

measures, while statistical approaches (stochastic frontier models) produce efficiency

estimates. The relative strengths and weaknesses of these approaches have been

vigorously debated, and will continue to be. However, the strongest argument in favor

of a statistical approach has always been that it provides a straightforward basis for

inference, not just for point estimates. Thus, for example, one can construct standard

errors and confidence intervals for estimates of technical efficiency. A statistical

approach recognizes that uncertainty exists and is capable of quantifying it. In our view,

uncertainty also exists within the deterministic approach, but methods of characterizing

and quantifying it are still not well developed. Consistency of the DEA estimates has

been established by Banker (1993) and by Korostelev, Simar and Tsybakov (1992, 1995).

Korostelev, Simar and Tsybakov also establish the rate of convergence of the estimates,

and Banker (1995) considers certain types of hypothesis tests. These results are

important but they do not lead to confidence intervals. Confidence intervals can be

34



35

constructed by bootstrapping the DEA estimates; for example, Simar and Wilson (1995)

give some theoretical results and an empirical example. However, in our view

bootstrapping procedures are an imperfect substitute for an adequately developed

distributional theory.

Ironically, the ability to conduct inference on efficiency estimates in stochastic

frontier models has previously been noted approvingly, but has never been systematically

exploited in an empirical setting. This chapter seeks to fill this void and, in doing so,

advances our understanding of the various sources of uncertainty inherent in econometric

models for efficiency estimation.

Of course, the strength of the econometric approach comes at a cost: strong and

often arbitrary distributional assumptions are necessary to extract technical efficiency

estimates and ultimately to construct confidence intervals. Therefore, a major aim of this

chapter will be to show how to perform inference on efficiency estimates under different

sets of assumptions that range from the very strong to the relatively weak, and to see

how the degree of uncertainty associated with these estimates relates to the strength of

the assumptions made. Some of the methods we discuss require panel data. Most make

specific distributional assumptions for statistical noise and technical inefficiency.

However, we also make use of the methodology of Multiple Comparisons with the Best

(MCB), developed by Edwards and Hsu (1983) and described in chapter one, which uses

panel data to construct confidence intervals without the need for strong distributional

assumptions.

In this chapter, technical efficiency estimates and their confidence intervals are

generated for three different panel data sets with different dimensional characteristics,
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using several formulations of the stochastic frontier model. We analyze these panel data

as complete data sets and also in some cases broken down into their component cross

sections to construct confidence intervals for technical efficiency estimates using different

interval construction techniques. The results highlight the relevant strengths and

weaknesses of the various techniques and data configurations. The chapter addresses

practieal aspects of interval construction that may present problems for the data analyst.

The plan of the chapter is as follows. Section 2 briefly reviews the stochastic

frontier model as it relates to this chapter. Section 3 reviews two interval construction

techniques: the Jondrow, Lovell, Materov and Schmidt (JLMS) (1982) method and the

Battese-Coelli (BC) (1988) method. Section 4 is an empirical analysis of three panel data

sets for which we construct confidence intervals for technical efficiency estimates.

Section 5 summarizes and concludes.

2 STOCHASTIC FRONTIER MODELS

In this section we detail various estimation techniques for the stochastic frontier

model of equation (1.1). Since chapter one detailed fixed effects estimation in the panel

data context, this section concentrates on other estimation techniques in both the cross-

sectional and panel data contexts.

2.1W

In the case of a single cross-section, T = 1 and t is irrelevant and can be

suppressed. Under assumptions (A. 1)-(A.4), the model as given in equation ( 1.1) can

be estimated by maximum likelihood (MLE). Details of this estimation, including the
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likelihood function, can be found in Aigner et al. (1977) and will not be addressed here.

MLE of equation (1.1) yields (1, B, (1,, and 6,, which are consistent as N—>oo.

Define p. = E(u,) 2 0. Under assumption (A.4), ,u. = (1r/2)"2(r,,. Ordinary Least

Squares (OLS) applied to equation ( 1.1) yields consistent estimates of (oz-p) and B. The

Corrected Ordinary Least Squares (COLS) method constructs a consistent estimate of (1

by adding a consistent estimate of u to the OLS intercept. This requires a consistent

estimate of u,,, say (1,,, which can be derived from the third moment of the OLS residuals.

Also a consistent estimate of or, can be derived from the second moment of the OLS

residuals. See Olson et a1. (1980) for details.

So, in summary, both COLS and MLE yield consistent estimates of a, B 0,, and

(1,,. COLS is less efficient than MLE. In either case, point estimates for u, and TE, =

exp(-u,) can be obtained, as described in section 3.1.

2.2 PaneLIAata

We now turn to the case of panel data with T > 1. Under assumptions (A. 1)-

(A.4) equation (1.1) can be estimated by MLE. See Pitt and Lee (1981) for the

likelihood function and other details. MLE yields estimates of the same parameters as

in the cross-sectional case: (1, B, (7,, and (1,,. These estimates are consistent as N—>oo;

therefore MLE is appropriate when N is large. Large T is not a substitute for large N.

Equation (1.1) can also be estimated by Generalized Least Squares (GLS). This

requires assumptions (A. 1)-(A.4), except that it does not rely on specific distributional

assumptions (normality of v, or half-normality of u). The standard panel data GLS

procedure yields estimates of (oz-a), B, 03,, and var(u,) that are consistent as N—eoo. Care
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must be taken to distinguish var(u,) and 02,; the usual GLS procedure uses var(u,), not

02,. Under the half-normal distributional assumption, 02,, = var(u,)rr/(rr—2), so that the

estimate of var(u,) is easily converted to an estimate of 02,. This is required to estimate

a = E(u,) and to convert the intercept, exactly as in the discussion of COLS above. We

will refer to GLS with this intercept correction as the CGLS method. Point estimates for

u, and TE, can be obtained, as described in section 3.2.

3 TECHNIQUES FOR CONSTRUCTION OF CONFIDENCE INTERVALS

We use two different techniques to construct confidence intervals for technical

efficiency estimates in stochastic frontier models. The first technique is based on the

(conditional) distribution 11, | 6,, where e, = [e,,, (,2, ...,e,,~]. It was developed for the

cross-sectional case by Jondrow, Lovell, Materov and Schmidt (JLMS) (1982) and later

generalized to the panel data case by Battese and Coelli (BC) (1988). The second

technique is based on the MCB procedures described on chapter one. The MCB method

will be based on fixed effects estimates described in chapter one, while the JLMS and

BC methods will be applied to the results of the other estimation techniques described

above; this choice is primarily driven by the difference in distributional assumptions of

the models.

3.1 Cross-sootionol Data: JLMS Mothgi

For either cross-sectional estimation method, MLE or COLS, we use the JLMS

method for interval construction. The JLMS technique follows from the distribution of

u, conditional on e, (which is a scalar, since T=l for a cross section). JLMS show that
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given distributional assumptions (A.1) and (A.4), the distribution of u, | 5, is that of a

N(p',, 02.) random variable truncated (from the left) at zero, where a', = (12,5,(02u + 02,)"

and 01. = 02,02,102, + 02“)". They evaluate E(u, | 5,), which is regarded as a point

estimate for u,. A point estimate for TE,, due to Battese and Coelli ( 1988), is given by:

(2.1) TB; = E(exp(-u,) I 5,] = expht'a + le-H 1 - <1’(Uo - H's/0-)}{1 - 4’(-u's/U.)}",

where <I> is the standard normal cdf. Implementing this procedure requires estimates of

p', and (12.; this in turn requires estimates of (12,, and (12,, and the use of e, = y, - (1 - x-B.

Empirical implementations of the JLMS technique have focused on the point

estimate E(u, | 5,). However, confidence intervals for u, or TE, are easily constructed

from the density of u, | 5,. Critical values can be extracted from a standard normal

density to place lower and upper bounds on u, | 5,. Because TB, is a monotonic

transformation of u,, the lower and upper bounds for u, | 5, translate directly into upper

and lower bounds on TE, | 5, = exp(-u,) | 5,. Specifically, a (l-A)100% confidence

interval (L,, U,) for TB, | 5, is given by:

(2.2) L, = eXP(-u’s - 2(a),

U1 = CXP('#.1 " 200.),

where: Pr(Z > 2,) = (A/2)[1 - <I>(-p',/a.)],

Pr(Z > 2”) = (1 - A/2)[l - Q(-u',/o.)],
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with Z distributed as N(0, 1); so that

ZL = ‘1’"{1 -(N2)[1 - PPM/00]} and

lo = ‘1’"{1 -(1 - N2)[1 - ‘M‘MYUJU-

As a semantic point, we will refer to the implementation of equation (2.2) in the

cross-sectional context as the JLMS method, since it relies on the JLMS result for the

distribution of u, | 5,, even though equation (2.1) is due to BC. The BC method will refer

to the corresponding calculations in the panel—data case, described in the next section.

It should be noted that both the JLMS and the BC methods treat a, B, 02,, and 02,, as

known, so that the confidence intervals do not reflect uncertainty about these parameters.

For large N, this is probably unimportant, since the variability in the parameter estimates

is small compared to the variability intrinsic to the distribution of the u, | 5, (and due to

the presence of the statistical noise v,,).

32WW

The BC method for construction of confidence intervals is a generalization of the

JLMS method and also follows from the distribution of u, | 5,. The BC technique can be

based on the MLE or CGLS estimates of or, B, 01,, and 02,. It extends the JLMS method

to accommodate the case of panel data (T > 1), so that now 5, = (5,,, ..., 5,7) = (v,, -

u,, ..., v,r - 11,). DefineE, = (1/T)22,5,,, p', = 02,5,(02u + (12,,/T)'l and oz. = (9,02,,(02, +

Tozu)“. The latter expressions are essentially the same as in JLMS, with 5, replacing 5,

and ozv/T replacing 02,. Then the distribution of u, | 5, is that of a N(;(',, 02.) random
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variable truncated at zero, a point estimate for TB, is given by equation (2.1) above, and

confidence intervals are constructed as in equation (2.2) above.

The Battese-Coelli method can also accommodate the case of an unbalanced panel,

in which there are different numbers of time-series observations per firm. Suppose that

for firm i there are T, observations, where the notation reflects the fact that T, varies over

i. We simply have to replace T by T, in the definition of p', and 02. above, so that p',

= (12,5,(02u + 02,,IT,)'l and 02., = ozuazv(az,, + T,az,,)"; note that now 03., varies over i.

Then equations (2. 1) and (2.2) hold exactly as before, except that (12., replaces 03.. Thus

an unbalanced panel causes no real problems for the BC method.

3.3BMW

MCB intervals are naturally based on the fixed effects estimates of chapter one

and use only assumptions (A. l) and (A.2) above; they do not require a distributional

assumption for the u,. In this study, when we cannot appeal to asymptotics, the condition

for the special covariance structure of equations (1.14) and (1. 15) is met or nearly met,

so MCB is at least approximately applicable.

We note in passing that several recent models in the frontiers literature have

featured time-varying technical inefficiency. For example, see Comwell, Schmidt and

Sickles (1990), Kumbhakar (1990), Battese and Coelli (1992), and Lee and Schmidt

(1993). These models imply intercepts (1,, that vary over i and t. For a given value of

t, it is natural to proceed as before to consider comparisons relative to the maximum

(over i) of these intercepts, so that we essentially have a separate MCB problem for each

t. However, there is no apparent reason to expect the equicorrelatedness condition to
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hold for the estimated (1,, from any of these models, and if it does not hold the methods

surveyed above would not apply.

3.4 Comoag'son of Diffosont Tfihnigoos

A discussion of the differences between the interval construction techniques is in

order. First, it should be noted that MCB provides joint confidence intervals for u', =

(1m, - (1, of equation (1.3), whereas JLMS and BC provide marginal intervals for u, =

(1 - (1, of equation (1.2). The difference between u', and u, is u,,." = minim, which may

be non-trivial when N is small. Conversely, the difference between joint and marginal

intervals may be substantial when N is large. For example, one of our data sets has N

= 171. Although independence would be a poor assumption, it is instructive to note that

a set of 171 independent intervals, each holding with a marginal probability of 0.95,

would hold jointly with a probability of only (.95)‘71 = 0.000116. Conversely, joint

confidence intervals that hold with a probability of 0.95 would correspond to marginal

intervals with a confidence level far in excess of 0.95. Other things equal, we would

certainly expect joint confidence intervals to be wider than corresponding marginal

intervals, for a given level of confidence like 0.95.

The MCB and JLMS/BC methods also differ substantially in the way they handle

estimation error. One sense in which this is true is that, assuming that the equicorrelated

structure emerges for the (1,, the MCB intervals reflect the variability of B, which the

JLMS and the BC intervals ignore. This is probably not an important difference, since

uncertainty about B is not the only source, or in most cases the major source, of
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uncertainty about u,. To be more specific, consider the following expression for the

fixed effects estimate of (1,:

ai=yi'ifi=a+(Vi'uJ';i(B’B)=ai+Vi “E(B‘B)

The term §,(B - B) reflects estimation error in B. As noted above, BC ignores this source

of uncertainty while MCB does not. This term disappears as oimg N or T—too , and is

probably not important empirically for most data sets. More fundamentally, (1, contains

the error '6, = (1/T)E,v,,; the fixed effects procedure separates u, from v,, by averaging

away the v,,. The significance of V, depends on T and on the relative sizes of 02,, and 02,;

it is most troublesome when T is small and/or 02,, is large relative to 02,. It is important

to realize that the fixed effects estimate of u',, namely (1,", - (1,, is generally biased

upward (inefficiency is overstated), because the larger (1,, such as (1m, will on average

contain positive estimation error 17,, while the smaller (1, will on average contain negative

estimation error. (That is, the (1, will obviously be more variable than the (1,.) MCB

recognizes this variability by including the sample equivalent of 0,,(2/T)"" in the formula

for the allowance, (1, above. Also, the MCB intervals can be thought of as removing the

bias just described; they are not centered on the value (1,", - (1,.

The BC method uses distributional assumptions to remove estimation error more

effectively. The first Step in the BC procedure is to calculate 5, = V, - u, (ignoring

estimation error in B), so that the v, are averaged away, as in the fixed effects procedure.

The second step is to construct p',, which equals 5, times the shrinkage factor 02,,(02u +

(12,,IT,)‘1 < 1. This corresponds to the "best linear predictor" in the random-effects panel
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data literature; see Schmidt and Sickles (1984). It reflects the relative variability of u,

and 3,. Finally, the distributional assumptions are used to imply the further shrinkage

factor {1 - <I>((r. - p',/a.)}{1 - <I>(-p',/(r.)}" < 1 in the calculation of the expectation of

T131151-

4 EMPIRICAL ANALYSES

4.1 ' ' - i 1

We analyze data previously analyzed by Erwidodo (1990), Lee (1991) and

Schmidt and Lee (1993). For a complete discussion of the data see Erwidodo (1990).

171 rice farms in Indonesia were observed for six growing seasons. The data were

collected by the Agro Economic Survey, as part of the Rural Dynamic Study in the rice

production area of the Chimanuk River Basin, West Java and obtained from the Center

for Agro Economic Research, Ministry of Agriculture, Indonesia. The 171 farms were

located in six different villages and the six growing seasons consisted of three wet and

three dry seasons. Thus the data configuration features large N and small T.

Inputs to the production of rice included in the data set are seed (kg), urea (kg),

trisodium phosphate (TSP) (kg), labor (labor-hours) and land (hectares). Output is

measured in kilograms of rice. The data also include dummy variables. DP equals 1

if pesticides were used and 0 otherwise. DVl equals 1 if high yield varieties of rice

were planted and DV2 equals 1 if mixed varieties were planted; the omitted category

represents that traditional varieties were planted. DSS equals 1 if it was a wet season.
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The are also 5 region dummy variables, DRl, DR2, DR3, DR4 and DR5, for the six

different villages in the survey.

COLS and MLE were performed on each of the six different periods (cross-

sections) in the panel. DSS, the dummy for wet season, had to be excluded for the cross

section models, because it was constant across farms for a single period. Results are in

Table 1. Unfortunately, periods 2, 3, 4 and 5 produced a positive third-order moment

of the residuals, causing the MLE estimate to coincide with the OLS estimate as

discussed in Waldman (1982). Additionally, this problem precludes COLS estimation

since (1,, is negative. Therefore only periods 1 and 6 are analyzed as cross-sections for

this data set. Since the results for the two periods were similar only the period 1 results

are reported. Technical efficiencies and confidence intervals were produced using the

JLMS technique; i.e. , equations (2.1) and (2.2) above. Confidence levels are 95 % , 90%

and 75%. These results are contained in Tables 2A and ZB. Due to the large number

of firms in the sample (171), only nine firms are reported here and subsequently: the

three firms with the highest (1,, the three firms with the lowest (1,, and the three firms

with the median (1,.

The choice of the estimation procedure (COLS versus MLE) made very little

difference, so we will discuss only the MLE results in Table 2B. Efficiency levels are

not estimated as precisely as one might hope. The firm with the highest estimated

efficiency level had estimated efficiency of 0.9452, but a 95% confidence interval ranged

from 0.8322 to 0.9982. The median firm had estimated efficiency of 0.9053, with a

95% confidence interval of (0.7576, 0.9957); and the worst firm in the sample had

estimated efficiency of 0.8040 with a 95% confidence interval of (0.6415, 0.9694).
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These are fairly wide confidence intervals. In fact the uncertainty about the inefficiency

level of a given firm is definitely not small relative to the within-sample variability of the

efficiency measures, and we would have little reason to have much faith in our efficiency

rankings. The reason for this lack of precision is straightforward - most of the variation

in 5, = v, - u, is due to v,, not u,. We have (for MLE, t=1) var(v,) = 02,, = 0.0579 and

var(u,) = 02,,(1-2)/1r = 0.00633, so the variance of v is over nine times as large as the

variance of 11. This makes it very difficult to estimate u, precisely.

Next, CGLS and MLE were performed on the entire panel. The variable DSS

could now be included. Results are in Table 3. Technical efficiencies and confidence

intervals were produced using the BC technique. These results are contained in Tables

4A and 4B. Efficiency levels based on the CGLS and MLE estimates are again similar.

Not surprisingly, the panel data confidence intervals are tighter than their cross sectional

counterparts, because var(u, I 5,) is smaller with six observations than with one.

Nevertheless, the confidence intervals do not shrink as much as one might hope -

compare a 95% confidence interval for the median firm of (0.7638, 0.9945) in Table 48

to (0.7576, 0.9957) in Table 2B. This is partly due to having only six observations per

firm, and partly to getting a larger value of 02,, for the panel than for the t=l cross

section, which diminishes the value of the panel.

The fixed effects estimates were calculated for the panel, with time invariant

regressors excluded to preclude multicolinearity. These results are also in Table 3. The

covariance matrix for the (1, very nearly exhibited the equicorrelated structure necessary

to justify the MCB procedure:
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Mean of i,Var(B)1,' = .04572

Standard deviation of §,Var(B)i,’ = .002211

Maximum of §,Var(B)x',’ = .05523

Minimum of §,Var(B)x',’ = .03918

95 %, 90% and 75 % MCB intervals were constructed for technical inefficiencies using

critical values of | T | (”170,345,111 = 3.42, 3.18 and 2.71, respectively, and are given in

Table 5A. The intervals are too wide to be of much use. For example, the firm with

the highest (1, (and hence with estimated efficiency of 100% by the usual calculation) has

a confidence interval ranging from 0.5613 to 1. Every firm in the sample has a

confidence interval with upper limit equal to one; that is, at the 95 % confidence level,

no firm is revealed to be inefficient. In fact, this is still true at the 75% confidence

level.

The MCB intervals are much wider than their BC counterparts based on CGLS

and MLE. We next attempt to determine the relative importance of three sources of

width: estimation error, uncertainty of the identity of the most efficient firm, and the

multiplicity of the probability statement. The easiest of these factors to investigate is

uncertainty about the identity of the most efficient firm. To do so we simply assume that

firm 164, which is the firm with the largest (1,, is most efficient in the sense of having

the largest 0:, (equivalently, smallest u,). Under this assumption we construct the MCC

intervals with firm 164 as the control. 95%, 90% and 75 % confidence intervals required

critical values of | T | (”170,846.15 = 3.42, 3.18 and 2.71, respectively. Results are in

Table SB. The MCC intervals are necessarily tighter than the MCB intervals, but not
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tight enough to be useful. In other words, the width of the MCB intervals is not

significantly decreased by knowing which firm is best. We can conclude that the width

is primarily due to either estimation error or multiplicity or both.

To disentangle the effect of multiplicity on the interval width, we would like to

be able to construct marginal intervals for each firm. In the case where MCB reveals

a single firm as efficient, this can be accomplished with a simple application of the

Bonferroni inequality. This will be demonstrated later. In the present case, where there

is no single firm revealed as most efficient, the construction of marginal intervals is less

clear, because it is necessary to make a simultaneous statement about the firms to

determine a subset of firms that may be efficient, and then to reduce this joint statement

to a marginal statement about a single firm. However, we can get some idea of the

effect of the multiplicity of the intervals just by reducing the number of confidence

intervals created, which we can do by considering a subset of the firms. We therefore

redid MCB for only the nine firms for which we have reported results in Table 5A.

(However, the parameter estimates are still from the whole sample of 171 firms.) 95 % ,

90% and 75% confidence intervals required critical values of | T | “9,346,, = 2.56, 2.38

and 1.96, respectively. Results are in Table 6A. AS was the case in the MCC

experiment, controlling for multiplicity did not result in a significant tightening of the

intervals. For example, for the median firm, compare the new interval (0.3354, 0.9837)

with N=9 to the old interval (0.2899, 1.0000) with N=171. We conclude that the

multiplicity component of the interval width is small, leaving only estimation error to

account for the large width of the intervals.
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Further evidence on this point is obtained by considering the smallest possible

subset of firms (N=2) and assuming that it is known that one of them is the most

efficient. Thus, as in our MCC calculations, we assert that firm 164 is most efficient

and we simply construct confidence intervals for 01,6, - (1, for a given value of i. This

is a standard calculation based on the estimate a,“ - (1, and its standard error, sew, =

[var(é,,,,) + var((1,) - 200v((1,,,,, 019]”, and using critical values from the standard normal

distribution. (Note that we have not imposed the equicorrelatedness assumption in this

calculation, so our results will be slightly different from the results for MCC with N=2,

which would impose this assumption.) These are called "per comparison” intervals; they

are given in Table 6B.

The per comparison intervals are indeed narrower than the MCB and the MCC

intervals, but they are still fairly wide. For example, for the median firm we still have

a 95% confidence interval of (0.3788, 0.8102). This confirms our conclusion that, for

this data set, the width of the confidence intervals is due primarily to the estimation

error. As noted above, estimation error is important for this data set because T is small

and 02,, is large relative to var(u,). There is Simply too much noise to get a clear picture

of the value of u,. The BC method does significantly better because it makes strong

distributional assumptions that allow a much better separation of v from u. For this data

set there does not seem to be a substitute for these strong assumptions.

4.2 fl'oxas Uo'lig'es - Komohflg (1294)

In this study we reanalyze data originally analyzed by Kumbhakar (1994).

Kumbhakar estimated a cost function, whereas we will estimate the production function.
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The data set consists of observations on 10 major privately-owned Texas electric utilities

observed annually over 18 years from 1966 to 1985, and includes information on annual

labor, capital and fuel (inputs) for electrical power generation (output). Due to the

relatively small number of firms a cross sectional study of the data was precluded.

However, with 18 periods of observation per firm we have T larger than N, the opposite

of the case with the Erwidodo rice farm data.

The model was estimated by CGLS and MLE with results given in Table 7.

Notice that now 02,, is small relative to 01,, so our estimates of technical efficiency should

be more reliable than for the previous data set. It is instructive to point out that

numerical accuracy became a problem in calculating TE, using equation (2.1). The small

value for (I. produced extremely large values of u°,/(r. which, when evaluated in the

standard normal cdf <I>(.), produced technical efficiencies greater then 100%. This was

due to rounding error in the software package we originally selected. Fortunately,

another package was found that evaluated the normal cdf more accurately. Tables 8A

and 8B give our results for all 10 firms.

As expected, the efficiency estimates are much more precise than for the previous

data set. For example, for firm 8 (one of the two median firms) and using MLE,

efficiency is estimated as 0.8472 with a 95% confidence interval of (0.8264, 0.8683).

These are useful results in the sense that the uncertainty about a given firm’s efficiency

level is small relative to the between-firm variation in efficiencies; we can have some

faith in our rankings.
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The fixed effects estimator was also calculated (Fable 7), and MCB intervals were

constructed (Table 9A). The covariance matrix for the (1, again exhibited an almost-

equicorrelated structure, so that MCB was applicable.

Mean of §,Var(B)'x,-’ = .06765

Standard deviation of i',Var(B)i,’ = .00289

Maximum of §,Var(B)§,’ = .07255

Minimum of §,Var(B)3E,’ = .06166

The MCB intervals successfully determined at the 95 % confidence level that firm 5 was

the most efficient firm in the sample and that all others were inefficient. Consequently,

the MCC intervals coincided with the MCB intervals and are not reported separately.

In fact, firm 5 was identified as most efficient at the 99.9% confidence level, so

essentially we were certain that it was the best. The confidence intervals for the other

firms are wider than the corresponding BC intervals, but still not nearly as wide as the

Erwidodo rice farm data. For example, for firm 8 compare the MCB intervals of

(0.7809, 0.8603) to the BC interval of (0.8264, 0.8683).

It is interesting to note that there is very little overlap between the BC and the

MCB intervals, with the MCB intervals being generally lower. Two opposing sources

contribute to this difference. The difference between u', and u, when N is small should

make the BC intervals lower, since BC constructs a confidence interval for exp(-u,) while

MCB constructs confidence intervals for exp(-u',), and since u', < 11, implies exp(-u,) <

exp(-u',). However, this is apparently more than offset by the BC technique’s more
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successful reduction of the effects of the estimation error. As noted above, the BC

technique can be viewed as a set of shrinkages of the fixed effects inefficiency measures,

leading to generally higher efficiency measures.

Marginal intervals were easily constructed for each firm using the Bonferroni

inequality. Since we knew the probability with which firm 5 could be identified as most

efficient, we simply constructed a joint probability statement with this and a per

comparison interval and selected the marginal confidence levels so that the Bonferroni

inequality produced the desired joint confidence level. Here, since we were essentially

certain that firm 5 was efficient, the joint probability statement essentially reduced to a

single per comparison probability statement. In the rice farm data the per comparison

intervals were conditional on firm 164 being efficient; we just assumed that this was the

case. However, for the current data, we knew with ”almost" certainty (99.9% certainty)

that firm 5 was efficient, so our marginal statement essentially coincides with the per

comparison statement, just as the MCB intervals coincide with the MCC intervals.

The marginal/per comparison intervals are contained in Table 93. Again the

actual standard errors were used, since we did not have to appeal to equicorrelatedness

to get our critical values. As a general statement, the marginal (per comparison)

intervals are comparable to the MCB intervals. Surprisingly, in many cases the marginal

intervals are actually wid_e_r than the MCB intervals. This must reflect failure of the

equicorrelatedness assumption underlying our MCB intervals, but it also is a reflection

of the relative sizes of N and T in the data. To be more specific, consider the following

expression for the standard error of the estimate (15 - (1,:
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565 = [var(és) '1' var(&,) " 200V(&5, (33)]115
J

= [202,/T + Ewan}; + 1',V(ii)§,' - 21,V(B)i,’]'/=

When T is small and N is large (e.g. T = 6 as in the rice farm data), the term 201,,/T

is large relative to the other three terms, so any differences between §5Var(B)§,’,

i,Var(B)i,’ and i,Var(B)§,’ ate unimportant. For MCB we assume i,Var(B)i,’ =

i,Var(B)§,’ = §5Var(B)§,’, so these insignificant differences are ignored. When T is

large, however, the term 202,,IT is small and the aforementioned differences may become

significant. However, if we ignore this difference in MCB, then the standard error for

MCB may be smaller than the standard error for the some of the marginal (per

comparison) intervals. This is less of a problem when both N and T are large, because

large N tends to shrink the V(B) term so any differences in the i,V(B)x',’ term will

become less pronounced.

In cases where equicorrelatedness of the (1, cannot be assumed, there are some

conservative MCB approximations available. Matejcik ( 1992) suggests techniques for

adaptive MCB intervals that are robust to a generalization of the correlation matrix and

compares their performance using computer simulation. These techniques are based on

several MCC methods that are themselves robust and include: an MCC method based on

Banjeree’s Inequality due to Tamhane (1977), a procedure using a moment-based

approximation to the Behrens-Fisher problem due to Tamhane (1977), a method using

all-pairwise procedures due to Dunnett (1980), and his own technique based on a

heteroscedastic selection procedure. An obvious line for further research is to examine

the applicability of these techniques to stochastic frontier models.
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4.3 E tianTilrie - cal 1

We analyze data previously analyzed by Scale (1990). For a complete discussion

of the data see Seale (1990). He observed 25 Egyptian small-scale floor tile

manufacturers over 3 week periods for 66 weeks, for a total of 22 separate observation

periods. The set contains some missing data points, so the number of separate

observation periods varies across firms, making this an unbalanced panel. The data were

collected by the Non-Farm Employment Project in 1982—1983. The firms were located

in Fayoum and Kalyubiya, Egypt. Inputs to the production of cement floor tiles are

labor (labor-hours) and machines (machine-hours). Output is in square meters of tile.

The model was estimated by OLS, fixed effects and CGLS. The third moment

of the OLS residuals was positive, so MLE was not attempted. Estimation results are

given in Table 10. It may be noted that 02,, and 02,, are of similar magnitude. For this

reason, and because the number of firms is similar to the number of periods per firm (for

most firms), this data set has characteristics that put it in the middle ground between the

Erwidodo rice farm data set (N much larger than T, 02, larger than 02,) and the

Kumbhakar utilities data set (T larger than N, 02,, larger than 02,). We should expect

confidence intervals wider than for the utilities but narrower than for the rice farms.

Table 11 gives the BC confidence intervals based on the CGLS estimates, for all

firms. As a general statement, these confidence intervals are considerably wider than for

the utility data. They are perhaps a little narrower than the confidence intervals for the

rice farm data, but this is not entirely clear because the general level of efficiency is

lower than it was for the rice farm data.
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We next consider the MCB intervals. Because the panel is unbalanced, different

(1, are based on different numbers of observations, and we cannot expect the

equicorrelated structure to hold. However, we can still proceed with MCB if the product

structure of equation (1.12) holds. This structure held approximately, and so we

calculated the MCB intervals, which are given in Table 12. As was the case for the BC

results, the confidence intervals are generally narrower then those for the rice farm data

but wider then those for the utility data.

MCC and per comparison intervals for the fixed effects estimation are contained

in Tables 13 and 14, respectively. Once again, they are not very different from the

MCB intervals.

5. CONCLUSIONS

In this chapter we have shown how to construct confidence intervals for efficiency

estimates from stochastic frontier models. We have done so under a variety of

assumptions that correspond to those made to calculate the efficiency measures

themselves. For example, given distributional assumptions for statistical noise and

inefficiency, the Jondrow-Lovell-Materov-Schmidt or Battese-Coelli estimates are

typically used, and confidence intervals for these estimates are straightforward. With

panel data but without distributional assumptions, efficiency estimates are commonly

based on the fixed—effects intercepts, and confidence intervals follow from the statistical

literature on multiple comparisons with the best.

In our analysis of three panel data sets, we found confidence intervals that were

wider than we would have anticipated before this study began. The efficiency estimates
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are more precise (and the confidence intervals are narrower) when T is large and when

0,2 is large relative to 0,2, and they are less precise when T is small and when 0,2 is

small relative to 0,2. However, frankly, in all cases that we considered the efficiency

estimates were rather imprecise. We suspect that, in many empirical analyses using

Stochastic frontier models, differences across firms in efficiency levels are statistically

insignificant, and much of what has been carefully ”explained" by empirical analysts may

be nothing more than sampling error.

This is a fairly pessimistic conclusion, though it may turn out to be overly

pessimistic when more empirical analysis is done. It is therefore important to stress that

deterministic methods like DEA are not immune from this pessimism. Efficiency

”measures” from DEA or other similar techniques are subject to the same sorts of

uncertainty as are our estimates. The only difference is that we can clearly assess the

uncertainty associated with our estimates while, at present, it is less clear how to assess

the uncertainty associated with the DEA measures. In our opinion this should continue

to be a high-priority item on the DEA research agenda.



CHAPTER THREE

ESTIMATION OF A CONDITIONAL VECTOR ERROR CORRECTION

SUBMODEL FOR COUNTERFACTUAL POLICY ANALYSIS

1. INTRODUCTION

Within the last few years there have been several analyses performed that

investigate the behavior of an economy under alternative sets of policy rules. These

exercises, called counterfactual policy analyses, typically involve estimation of a VAR

or VECM specification of an economy under a different set of monetary policy rules than

the historical rules that generated the data. See for example McCallum (1988, 1990,

1993), Judd and Motley (1992, 1993) and Bordo, Choudri and Schwartz (1994).

However, as Rasche (1995) points out "what is not acknowledged in these studies is that

the technique which is applied to the VAR (VECM) to construct the counterfactual

analysis severely limits the admissible structure of the economic model that could have

generated the historical data".

Rasche identifies pitfalls associated with the practice of "VAR transplantation"

where one a) estimates a reduced form VAR (VECM) in p variables, b) removes a

subset of n equations representing the policy rule(s), c) supplements the remaining p-n

equations with a new policy rule(s) and reanalyzes the system. He concludes that the

usefulness of VAR transplantation is quite limited. Specifically, "the selected policy

variable cannot enter contemporaneously into any of the equations of the economic

structure except the policy rule". This is clearly entirely too restrictive.

57
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In a subsequent note, Rasche proposes an alternative approach to the problem that

overcomes the aforementioned "pitfall" of transplantation. He proposes structural (as

opposed to reduced form) estimation of the remaining n-p equations using a subset

limited information maximum likelihood (LIML) technique introduced by Rubin (1948)

and further developed by Hood and Koopmans (1953) and Dhrymes (1970). This chapter

is concerned with detailing this estimator which involves concentration of a multivariate

Gaussian likelihood function. Under cointegration the resulting likelihood is the product

of two generalized least-variance ratios, one of which is exactly the likelihood derived

by Johansen (1988, 1991). The resulting estimator can be thought of as a generalization

of Johansen’s (1988, 1991) reduced form estimator to the structural case, where the

analyst is only concerned with estimating a subset of the equations in the system.

This chapter is organized as follows. Section 2 derives the LIML estimator for

counterfactual policy analysis under the cointegration hypothesis and then under no

cointegration. Section 3 summarizes and concludes.WW

11 II vivr.

2. ESTIMATION

2.1W

Consider the following error-correction representation of a structural VAR model

in p dimensions.

(3.1) AY,A + E?=,AY,_,I‘, + Y,,,B(1’ + x,e = 5, t = 1, T
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where 5, (t = 1, ..., T) are independent p—dimensional Gaussian variables with mean zero

and variance matrix 23, and X, are s-dimensional instruments appearing only in the last

11 < p equations. The Y, are cointegrated with B, the matrix of cointegrating vectors,

and (1’, the matrix of error correction coefficients, being pxr matrices. The first q data

points Y0, ..., Y,H are considered fixed, while the parameters A, I‘,, ..., 1‘, and 2 vary

without restriction. The last n equations represent the historical policy rules, while the

first m = p - n equations are the subset of interest. What is typically done in a

transplantation analysis is to estimate the reduced form of equation (3.1) and discard the

last n equations. We use limited information maximum likelihood techniques to estimate

the first m equations in structural form.

Let Y., = [AY,_,, ..., AYM], I‘.’ = [I‘,’, ..., I‘,’], and for the moment let us

suppress B by writing Z,_, = Y,,,B. Collecting t vertically, equation (3. 1) becomes,

(3.2) AYA + Y.I‘. + z,,a’ + x9 = 5

We are interested in estimating the coefficients of the first m = p-n equations (a

submodel). To this end we partition the coefficient matrices as follows,

A = [At A11]; A1 Gum): An (Pm)

1" = [P-r Fa]; I‘°1 (mxcvi Fe (NM)
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at, (mm), 0‘2, (rxn)(1’ = [01, 0‘2’]

O = [0, C] 9 (SW). C (sxn)

E = [£11 £12 ] E11 (Hum), 212 ("1X“), 221 (nxm), 222 (mm)

’32. 23a:

where C is unrestricted. The analyses that follow also require the following data

matrices:

w = [Y. X]; F = [Y. x 1,]; J = [Y. z,,];

N = [AY Y. x 2,];

R" = T'r’s r, s = AY, Y., Z_,, X, F, J, N;

)3 = Rayay ' RAYi(Rii)-lRiAY i = F, J-

We use a subset LIML technique to transform equation (3.2) to allow

concentration of the coefficients of the last 11 equations, while leaving the coefficients of

the first In equations undisturbed and ensuring that the two subsystems are mutually
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independent. This approach provides us with estimates of the structural parameters of

the m equations of interest, while purging the subsystem of the stochastic effects of the

n policy rules. This idea of subset LIML was first considered by Rubin (1948) and

Koopmans and Hood (1953). For a complete explanation of this technique, see Dhrymes

(1970). The resulting "concentrated" log-likelihood function per Dhrymes (equation

7.3.49, p335) is given by:

(3.3) (-2/T)lnL = c0 + 1n | AF | + 1n | 2,, | - In | A,’AFA, | + trL‘,‘, M’RNNM

where M’ = [A,’ T.,’ 0’ (1,]. To concentrate I‘., and u,, we examine the last term of

equation (3.3). Specifically,

M’RNNM = [A,’ I‘.,’ 0’ (1,]’(N’N/T)[A,’ I‘.,’ 0’ (1,]’

= [A1, 1"], at], [RAYAY Ravi ] [A], I"I, 0111’.

JAY R 11

Let 5’ = [r.,' 51,], then
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Substituting equation (3.4) into (3.3) and taking the derivative w.r.t 6

alnL/ab = -(T/2)[2R,AYA, + 2R,,5]E,‘, = 0

implying

(3-5) 5 = '(RJJ)-lRJAYAl°

Substituting equation (3.5) into (3.4),

(3-6) M’RNNM = AI’IRAYAY " RAYJ(RJJ).1RJAY]AI = A1,)‘JAI

Substituting equation (3.6) into (3.3) and taking the derivative w.r.t 2,,

(3an62“ = ‘(T/2)1'2111 '1' 271111°*1’>\JAIE111] = 0,

implying

(3.7) 2,, = A,’A’A, .
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Substituting equations (3.6) and (3.7) into (3.3),

(-2/T)lnL = c, + 1n I AF | + In | A,’A’A, | - In | A,’AFA, |

and suppressing c,

(3.3) L“(A0 = | Al,>‘JAl | I AF I
 

l At’AFAt |

If B is known a priori, then equation (3.8) represents the final likelihood function.

However, its form precludes a first derivative solution for A,. Fortunately, the function

is a generalized least variance ratio, solvable using the usual canonical techniques. We

defer its solution until latter. It is important to notice that the likelihood function in

equation (3.8) is only attainable because of the restrictions on 9; without them AI is not

identified. Now, in general, B is unknown so we make it explicit in our definition of A”.

First, let F = [W Y_,B], so,

RFF = (UT) W’W W’Ydfi
B’Y.I,w fi’Y.l,Y-lB

Let

Rial: = R2, n.3,

R211? R2525

Then
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FR,’,',, F’ = WR,‘,,'=W’ + WR,‘,,22 B’Y_,’ + BY,,R,2,,‘, ’ + BY_,R,§,2,Y_,’B’

Defining the projection matrix:

P, = i(i’i)"i’; i = W, J, F

and the sum of squared error matrix:

S,}=(1/T)i’[l- P, '; r = W, J, F; i,j = AY, Y,,, X

and using the rules of partitioned inverse,

FR,:',. F’

= (l/Dipw + PWY-IBIB,SYYlY-l31-16,Y-1,PW

" YdBm’SY‘YlY-IBTIB’Y-NPW ' PWY-IBIB,SYYlY-IBIJB’Y-l’

+ Y-1Bm’SYYlY-IB]-lB’Y—l,}

(3-9) PREP F’ = (1/T){Pw + (I - Pw)Y-tB[B’S¥Yw-tfil"B’Y-i’(1 - Pw)}

We can write AP = AY’[I/T - FR,;,§ F’]AY. Substituting equation (3.9) into this

expression,

(3-10) ”(3) = S‘AVYAY- SXVYY-l Blfi’Sl’m 31-13 ’SYI-rav

Using results for the determinant of a partitioned matrix, equation (3.10) yields:
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(3'11) 1 xF(B) I = I S‘Z'YAYI I B,{SYYlY-l - SYv-IAY [S‘AVYAY -ISXVYY-l I6 I

I B’SI‘SHB I

Substituting equation (3.11) into (3.8) and mah'ng B explicit in A’,

(3.12) L'2"(An B) = I S‘AVYAYI I At’A’(3)AtI I B’lsxtyu- SYv-lAY[S\XYA "SXVWJB I

I At’AF(B)At I I B’Si‘fm B I

 

Equation (3.12) is the product of two generalized least variance ratios: one in A,

and B and another in B only. The ratio in B only is the ratio derived by Johansen (1991).

So this problem can be thought of as a generalization of the Johansen likelihood. Indeed,

if we exclude instruments, X, from the specification, AF = A’, A, is not identified and

the problem reduces to the Johansen result. This raises the question of how many

instruments are required for identification. We defer the answer to this question until

later. Notice that

x? = (1/T)[AY’AY - AY’F(F’F)F’AY]

x" = (l/T)AY’[I - F(F’F)F’]AY

F_ F

A —SAYAY

and by similar logic A’ = S’mw

From the rules of projection matrices
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1 - P1: = 1 - Pl - (1 - Pi)X[X’(1 - P1)X]"X’(I - PI)

Premultiplying by AY’IT and postmultiplying by AY

N7 = )‘J ’ SAIYXISkxIleAY

Let (1’ = SA’YXISXXI-ISXAY

then, making B explicit.

(3-13) 13(6) = NIB) + <b(B)

Substituting (3.13) into equation (3.12) and suppressing the | S‘XYAY | term,

(3- 14) L'2"(An 13) =

I At’IX’IB) + ¢(B)}At I I B’ISQYm- 33m [S‘Xyay ]'1 SAVYY-lIB I

I A,’AF(3)A, I I H’SYYIY-rfl I

 

= 1(An B)g(B)

We now have symmetry in the two variance ratios and would like to minimize this

function, so the problem can be thought of as two eigenvalue problems. The double
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eigenvalue problem of equation (3.14) can be transformed to a single block diagonal

eigenvalue problem, which can generate a block diagonal solution. Define:

G =

0 B

_ >3:03) '1' 4K5) O

0 $331“ ' Syrav [S‘XYAY I'ISAVYY-r

A1203) 0

B = w

0 SY-lY-l

then equation (3.14) can be written as:

(3-15) L‘2”(An B) = I (”33 I I 6’30 I "

We now discuss solutions to equations (3.14) and (3.15) using the LIML estimator and

a 2-step estimator. LIML estimation of the parameters B and A, involves minimization

of equation (3.14). Equivalently, it involves minimization of equation (3.15) subject to

the block diagonality of G. The 2-step estimator involves i) estimating B by minimizing

g(B) into equation (3.14), then ii) using this estimate to minimize f(A,, B) with respect

to A,. Under certain conditions these estimators are equivalent.
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2.1.1 LIML Estimation

Ideally we would solve equation (3.15) for G using the usual multivariate techniques

from the theory of partial canonical correlations and reduced rank regression (see

Anderson (1951) and Tso (1981)). This is equivalent to solving for A, and B

simultaneously in equation (3.14). Since matrices D and B are functions of B, the usual

techniques to produce a solution are not applicable; some numerical optimization method

must be utilized to obtain a solution. Another complication is there are restrictions on

G and, ultimately, on any estimate, G. Specifically, the upper-right and lower-left blocks

of the matrix G are zero. This, we shall see, causes the value of the likelihood in

equation (3.15), L°Z’T(A,, B), to be larger than if G were allowed to vary without

restrictions.

For now assume B and D are not fuctions of B. We can use Theorem 1 of

Anderson (1951) to solve equation (3.15), yielding an estimate of the space spanned by

G, G = [0,, ..., 9,, (1,,“, ..., 9,”, ], where O = [9,, ..., 02,] are the eigenvectors of the

equation

(3.16) IaB-Dl =0.

normed by O’BO = land ordered0 < (‘1, < < 6, < (1,,, < < 6,, < (1,,, S

. s “p,,, 3 6pm,, _<. s (‘12,. Upon substituting matrices for B and D, equation

(3.16) becomes
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((7-1)AF - 0 O

O (O'DSYYlY-l + SIXIAY [SXYAY -rsszJ

Multiplying by Det [ 01, It: ] = (4)1 ¢ 0

yields

((rr-l)AF - d) O

(3.17) Det O = 0

(1'U)S)‘X1Y-1 ' SYYIAY [SYYAY -lSXYY-l

To minimize equation (3.15), subject to the restriction that G be block diagonal, we

select the two sets of eigenvalues ranked 6, < < (1, and (1,,, s S (1,,,“ and use

their corresponding eigenvectors to form G. Selecting the eigenvalues in this way is

necessary to ensure satisfaction of the block diagonal restrictions on G, while ensuring

a solution to equation (3.16) and minimization of the likelihood in equation (3.15). We

now justify the selection of these specific eigenvalues.

For any 0,, which is a solution to equation (3. 17),

(3. 18) D9, = 0,139,, or

(3.19) (0,13 - mi, = 0.
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Partition the eigenvectors so 9,’ = [95,, I 9,1,, ], and substituting for B and D, equation

(3.19) becomes

[ta-1W - «119..
(3.20) = O

[(W'DSY‘Iw-r '1' S‘YN-lAY [S‘AVYAY -ISXIYY-l 191.11

Premultiply by l: 01,, 1,), :|

to get

[(0,-1)AP ' “01,1

[(1‘01)SYY1Y-1 ' 3311M [SYYAY -ISXVYY-l 191,11

This is solved when 0, satisfies:

(3.21) (a) I («r-1N - (P I = 0 on

(b) I (1-0)S¢Yw-t- SXtayls‘Xyayl" SAVYY-II = 0

Assume AF positive definite and 4: positive semi-definite; then from equation (3.21a) it

is true that ((1,-1) 2 0 (Dhrymes (1978), Proposition 62), implying a, 2 1. There will

be p of these eigenvalues. Also from equation (3.21b), it is clear that if
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SIX,“ [S‘XYAY ]" Sr”, and 8X,“ are positive definite, then (1-0,) > 0, implying (t, < 1.

There will be p of these eigenvalues. So, any single 0, cannot simultaneously satisfy both

parts of equation (3.21) (i.e. a, 2 l and or, < 1). So, the p eigenvalues that solve

equation (3.21a) are distinct from those p eigenvalues that solve equation (3.21b).

Additionally, it is important to point out that the p eigenvalues that solve equation (3.21a)

will have p eigenvectors of the form 9,’ = [9,’,, I 0’ ], while the p eigenvalues that solve

equation (3.21b) will have p eigenvectors of the form 9,’ = [0’ I 9,’,, ]. This is due to

the block diagonal form of matricies B and D.

Now, we must select a, and the corresponding 9,, to ensure that the likelihood of

equation (3.15) is minimized while ensuring that the block diagonal restrictions on G are

not violated. Theorem 1 of Anderson (1951) shows that to minimize equation (3.15)

where the estimate of G is allowed to vary unrestricted, we select the m+r smallest

eigenvalues and let their corresponding eigenvectors form our estimate of G. However,

G is restricted block diagonal so some modification of this procedure is necessary.

Consider four sets of eigenvalues. Consider 6', < . .. < 6,, the smallest eigenvalues,

which are constrained between 0 and 1 by construction and which solve equation (3.21b).

To maximize the likelihood we select these smallest eigenvalues and their eigenvectors

which are of the form 9,’ = [0’ I 95,], for all i = 1, ..., 1. These r eigenvectors form

the basis for the B estimate. Now, consider (1,,, < < (1,,, the second smallest

eigenvalues, which are also constrained between 0 and l. Ideally, we would select these

next largest eigenvalues and their eigenvectors to minimize equation (3.15), but these

eigenvectors will not form a basis for an estimate of A,, since they are of the form
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9,’ = [0’ I 9,’_,,], for all i = r+1, ..., p. The form precludes an estimate of A,, because

of the position of the 0. Hence, none of these eigenvalues suffice. Consider (1,,“ s

5 (rpm, the next m largest eigenvalues. We select these eigenvalues and associated

eigenvectors which are of the form 9,’ = [9,1, I 0’ ], for all i = p+l, ..., p+m, forming

a basis for A,. The last set of eigenvalues (5pm,, 5 s (‘72,) is irrelevant.

This procedure produces a likelihood function

(3-22) [4-2/T0", m, P) = IIi=r1 at 11,13,321 55-

Equation (3.22) illustrates the effect of the block diagonal restriction. We can think of

the ordering of the eigenvalues as four ranked sets. The set of lowest ordered

eigenvalues (it, to (1,) has I members. The set of second lowest eigenvalues ((1,,, to (1,,)

has p—r members. The set of third lowest eigenvalues ((1,,, to (1,,“) has In members.

The set of largest eigenvalues (&,+m+, to (1,,) has 11 members. Selecting restricted G is

equivalent to selecting the set of smallest eigenvalues and the set of third smallest

eigenvalues. Examining the likelihood of equation (3.22) we see that its value is the

product of the eigenvalues of these selected sets. The first set of smallest eigenvalues

is optimal in the sense that they minimize L'2”(r, m, p), but the set of third smallest

eigenvalues is a deviation from the usual cononical techniques and reflects the effect of

the block diagonal restriction on G.

The assumption of positive semi-defmiteness for the matrix (b will be made clear.

Consider the rank of 0. When rank(¢) = 0, there are p eigenvalues equal to 1, and they
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represent the p largest eigenvalues. This causes the selection of the set of third smallest

eigenvalues (and their corresponding eigenvectors) to be ambiguous, so G is not uniquely

defined. When 0 < rank(¢) < 11, there are more than m eigenvalues equal to 1, and

again G is not uniquely defined. When rank(¢) = 11, there are exactly 111 eigenvalues

equal to l and G is unique. When rank(d>) > 11, there are less than m eigenvalues equal

to 1, and G is unique.

Now relax the assumption that B and D are not functions of B. Consider the case

where, rank(¢(B)) = 11. Not only does this produce a unique G, but all the eigenvalues

comprising the A, portion of G will be unity and, hence, independent of B. The

corresponding vectors of the A, portion of G will, in general, not be independent of B.

However, a two-stage estimate consisting of first estimating B in equation (3.21b), then

using this estimate in equation (3.21a) to solve for an estimate of A, is equivalent to

LIML when rank(4>(B)) = n. This can be shown by examining equation (3.20). To

minimize equation (3.15) while observing the restrictions on G, we select the set of first

smallest eigenvalues and the set of third smallest eigenvalues. As we have seen, the two

sets of eigenvalues have no common elements. In this sense their selections are

independent. This independence causes the problem to be separable, insofar as equation

(3.20) can be solved by independently solving the two characteristic equations (3.21).

The only complication is the fact that AF and (b are functions of B. So, finding the

eigenvectors of equation (3.20) reduces to finding the eigenvectors of equation (3.21),

namely 9,,, i = p+1, ..., p+m and 9,.,,, i = 1, ..., r. Suppose we are interested in the

estimate of B only and solve equation (3.21b) to get the set of smallest eigenvalues and

9,,“, i = 1, ..., r. This selection is optimal in the sense that these eigenvalues ensure that
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the likelihood is maximized. Now suppose we use this B estimate to solve equation

(3.21a), and based on this estimate, rank(d>) = n. Then the set of third smallest

eigenvalues will be optimal in the sense that these eigenvalues ensure that the likelihood

is maximized, because they all equal their lower bound of 1. Thus, both sets of

eigenvalues are optimal. The estimate of A, consists of the same 9,,, i = p+1, ...,

p+m, as before. Thus, when rank(¢(B)) = n, this two stage procedure produces a

maximized likelihood function, which is equal to the likelihood of the LIML estimate.

The equality of likelihoods of this two-stage estimate and the LIML estimate also

occurs when rank(¢>(B)) = 0 and when rank(4>(B)) < 11, but in these cases G is not

uniquely defined in the sense that the selection of the likelihood-maximizing eigenvalues

is ambiguous. When rank(¢(B)) > n, G is unique, but the selection of the estimate of

A, may not be optimal. Therefore, the case when rank(¢(B)) = n is of particular

interest. Specifically, when rank(¢(B)) = n, the LIML estimator of equation (3.15) is

equivalent to a two-stage estimator described in the following section.

2.1.2 A ngtstago Estimator

We investigate an estimator based on a likelihood function conditional on r in two

steps when rank(4>(B)) = n, as follows. First minimize the variance ratio, g(B), using

the usual Johansen (1991) technique. This yields 8, = [9,, 9,], where v = [0,,

1),] are the eigenvectors of the equation

I 983(qu ' 8311M [S‘XYAY 1-1 SAVYY-l I = 0,
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normed by V’sijt = land ordered 1 > p, > > a, > 0. Then the likelihood

is maximized by the usual eigenvalue product, and equation (3.14) becomes

(3.23) L-“(Anrlfin = IAI’{>\F(3r) + «Brim 11;, (1 to

1 Al,xP(Br)Al I

 

= f(AI’ Br)g(8r)

This procedure is that of Johansen, and (under additional restrictions) produces consistent

estimates of the eigenvalues p,, the dimension of the cointegrating space, sp(B), and the

estimates of (1 and 22. As proved in Johansen (1988), the restrictions necessary for

consistency are: 1) Y, is integrated of order 1, and 2) a and B are full column rank.

That is, under these restrictions,

plim(,0, , ..., (3,) = p,, ..., p, and plim(sp(B,)) = sp(B).

Additionally, Hargreaves (1994) points out that in the probability limit all the r

eigenvalues of the cointegrating space are distinct.

In a fashion analogous to Johansen (1991) we can find A, = [1,2 ..., 1;], where

U = [’r,', ..., if] are the eigenvectors of the equation

I (”XIXBI) - ¢(Br) I = 0
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normed by U’AF(B,)U = land ordered 0;, 2 ...2 a,,; > a; = u,,: =, a; = 0.

Notice that the eigenvalues and eigenvectors are functions of r, the number of

cointegrating vectors. This reflects the fact that the likelihood value is conditional on B,.

Also the order statistic for (it; is the reverse of that for B, (at; is the largest eigenvalue

while 5,, is the smallest), because AF(B,) and ¢(B,) are summed in f(A,, 9,), while the

analogous matrices are differenced in g(B). The maximized likelihood becomes

(3.24) EMU“, 1') = 531(1 ‘1' 111;) 11:1(1 ' 99

When rank((l>(B,)) = n, the m smallest eigenvalues selected, ‘,,', , , (21;, all equal zero

for all values of I, because ¢(B,) is not full-rank. This particular rank condition reduces

the problem to that of Johansen insofar as the likelihood function of equation (3.24) has

11,13, (1 + (21;) = 1 and becomes:

L'2"(m, 1') = 111;“ ' bi)

Since this two—stage procedure is equivalent to the LIML estimator when

rank(4>(B)) = n, we would like to derive the asymptotic properties of the estimates when

this condition holds. As previously stated, under certain conditions sp(¢(B,)) is

consistent. We claim that the space spanned by A, is also consistent. In lieu of a proof,

we present the following argument for why this may be. Johansen (1988) shows the T-

consistency of sp((b(B,)) in the presence of short-run dynamics (Y.I‘.). It is reasonable

to believe that if the instruments, X,, are stationary, then the same result of T-
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consistency of sp(¢(B,)) will hold in this analysis. Let us take this fact as given. Since

Johansen Shows this in the presence of short-run dynamics it is reasonable to believe that

an estimate of a short-run dynamic parameter, A,, would also be consistent when it is

based on a T-consistent estimate of an unknown long-run dynamic parameter, B. This

claim is supported by the fact that the usual LIML estimate of a structural parameter, say

A,, is T”—consistent (Dhrymes (1970), p335), while sp(¢(B,)) (the estimate upon which

A, estimate is based) is T-consistent. This claim is further supported by the fact that in

Johansen ( 1988) the T-consistent estimate of sp(d>(B,)) yields consistent estimates of

reduced form parameters in that particular model. Formal proof of this claim will be

undertaken in future research.

2.2MW

If there are no cointegrating relationships, then the problem reduces to subset

LIML, and the likelihood function is that of equation (3.3). If the same restrictions on

the 9 hold then the likelihood can be concentrated to the generalized least variance ratio

of equation (3.8) but with B suppressed. Suppressing the | AF | term, this ratio

becomes

(3.25) L-“(Ao = IAr’w + PM, I
 

1 Al, XI:AI 1

which can be solved as described above. The generalized least variance ratio of equation

(3.25) was first considered by Rubin (1948) and Koopmans and Hood (1953), but to our
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knowledge has never been solved using canonical correlations. If we have enough

instruments then, the maximized value of the likelihood is

(3.26) L'2”(m) = 11,3, (1 + 5,).

Notice that the (3:, are no longer a function of r. In the case where m = 1, this

problem reduces to single equation LIML which is identical to two-stage least squares

(ZSLS) under exact identification. So, an equally valid approach to this estimation when

m > 1 would be to estimate each of m single equations separately using 2815. Then

a meaningful question would be whether there any efficiency gains to the methods

detailed herein over the single equation approach. We plan to explore this question in

future research.

3. CONCLUSIONS

The structural estimates derived in the preceding section for B and A, can be used

to derive estimates for the other structural parameters of the submodel of interest by

substituting them back through the derivation. The resulting estimates are unique in that

they permit counterfactual policy analysis without the structural limitations presented by

Rasche (1995). However, this has come at a cost. Since the estimates are based on

limited information (i.e. we have concentrated out the parameters of the last n equations),

they are inefficient, but this is the price that is paid to ensure the mutual independence

of the two subsystems.
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We present a subset LIML estimator which is amenable to a numerical

optimization technique such as Newton—Raphson. An obvious starting value for B in such

an approach would be the estimate produced from the Johansen analysis of the reduced

form of equation (3.1). If rank(¢(B)) equals 11, the number of policy equations, then the

LIML solution is equal to the two-Stage estimator of section 2.1.2. If rank(¢(B)) > n,

the two estimators are, in general, not equal.

The two-stage estimate involves performance of a modified Johansen (1988)

technique involving the addition of stationary instruments in the first stage. This

produces a consistent estimate of the matrix of cointegrating vectors, B. In the second

stage A, is estimated using similar canonical methods. Another way to perform this

analysis would be to perform single equation LIML on each of the m equations in the

subset, given a first stage estimate of B. However we suspect that this would be less

efficient than the subset LIML estimate derived here.

The preceding analysis represents an initial attempt to solve the problems inherent

in counterfactual policy analysis. It does not profess to be comprehensive, but provides

the fodder for additional research. While there are many unanswered questions, a few

merit brief consideration here. First, equation (3.22) suggests likelihood ratio testing of

the number of cointegrating vectors that would be similar in structure to that of Johansen.

We would expect that such tests in this context to yield results consistent with the

reduced form tests of Johansen. If these tests are not consistent, what does this imply

about the tests and for the overall modelling approach? This, of course, remains to be

seen. Second, will the estimator of B produced in the numerical analysis of the LIML
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estimator be similar in magnitude and dimension to that of Johansen’s reduced form

estimate? If they are not, what can be inferred? Clearly there is much left to be done.
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CONCLUSIONS TO THE DISSERTATION

The primary goal of this dissertation has been to develop a method for inference

on technical efficiency estimates in the fixed effect formulation of the stochastic frontier

model. We find that under certain conditions the methodology of multiple comparisons

with the best is a useful tool in performing this inference. Additionally, the simultaneous

nature of the resulting intervals provides us with the added benefit of inference on the

best firm in the sample; a benefit not found in existing interval construction techniques.

Secondly, our comprehensive empirical analysis attempted to disentangle the

different sources of uncertainty in efficiency estimates and to provide us with a

quantification of this uncertainty. We found confidence intervals that were wider than

we would have anticipated before this study began. The efficiency estimates are more

precise (and the confidence intervals are narrower) when T is large and when 0,,2 is large

relative to (1,2. However, frankly, in all cases that we considered the efficiency estimates

were rather imprecise. We suspect that, in many empirical analyses using stochastic

frontier models, differences across firms in efficiency levels are statistically insignificant,

and much of what has been carefully "explained" by empirical analysts may be nothing

more than sampling error. This is a fairly pessimistic conclusion, though it may turn out

to be overly pessimistic when more empirical analysis is done.

Lastly, we provide an initial attempt at solving the counterfactual policy "pitfall"

with a subset LIML estimator. What comes out of the analysis are a seemingly useful

estimator and several questions about the characteristics of this estimator. It is our

intention to address these questions in subsequent research.
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TABLE 1

Rice Farms - Cross Sectional Estimation Results

 

Variable Period 1 COLS Period 1 MLE

5.8483 5.9540

Period 6 COLS

5.3327

Period 6 MLE

 

0.0572 0.0583 0.0983
 

0. 1036 0. 1028 0.2073

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

[ TSP 0.0033 0.0034 0.0674 0.0693

lbbor 0.1970 0.1970 0.2122 0.2007

Land 0.6372 0.6374 0.5194 0.5252

II DP 0.0143 0.0138 -0. 1480 -0. 1453

DVl -0.0857 -0.0861 0.0639 0.0568

DV2 0.0853 0.0853 0.1192 0.1175

DRl 0.2192 0.2173 -0.2642 -0.2695

DR2 -0.0325 -0.0330 -0.3744 -0.3712

DR3 0.1388 0.1385 -0.3815 -0.3712

DR4 0.0814 0.0817 -0.0613 -0.0591

DR5 0.1810 0.1829 -0.2864 -0.2668

02,, 0.0185 0.0174 0.0253 0.0462

62,. 0.0632 0.0579 0.0705 0.0564

E(u,) 0.1084 0.1053 0.1268 0.1714

0. 0.1195 0.1157 0.1364 0.1593

 

The constant term reported for COLS is before correction by E(u,).
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TABLE 2A

Rice Farms - Confidence Intervals Based on JLMS Method, COLS Estimates - Period 1

  

1mEfficiencyI 95% Lbnd 95% Ubnd90%Lbnd 90% UbndI75% Lbnd 75 96 Ubnd

. ———4—————+———:——,—————iI

 

 

 

 

 

 

  
     

    

164 0.9421 ' 0.8242 0.9981 I 0.8482 0.9962 - 0.8843 0.9902

1 118 0.9390 " 0.8173 0.9980 , 0.8417 0.9959 0.8786 0.9895 II

I 108 0.9380 I 0.8151 0.9979 0.8396 0.9958 0.8768 0.9892 II

92 0.9029 l 0.7514 0.9956 0.7777 0.9912 0.8196 0.9782

87 0.9027 0.7511 0.9955 I 0.7774 0.9911 0.8193 0.9781

I 61 0.9026 ' 0.7511 0.9955 : 0.7774 0.9911 0.8193 0.9781

I 79 0.8479 I 0.6811 0.9873 I 0.7067 0.9760 0.7484 0.9479

: 16 0.8441 I 0.6769 0.9863 ' 0.7024 0.9744 [I 0.7440 0.9450

'Ll 0.8066 ’ 0_ 0.9727 I 0.6642 _ 0.9531 , 0.7042 0.9129

TABLE 28

Rice Farms - Confidence Intervals Based on JLMS Method, MLE Estimates - Period 1

 

Firm Efficiency    

 

I 95% Lbnd 95% Ubnd

  
90% Lbnd 90% Ubnd 75% Lbnd 75% Ubnd
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0.9452 0.8322 0.9982 ! 0.8553 0.9964 0.8901 0.9908

118 0.9421 ’ 0.8253 0.9981 0.8489 0.9961 0.8845 0.9901

108 0.9411 0.8232 0.9980 0.8469 0.9960 0.8827 0.9899

19 0.9054 0.7578 0.9957 0.7835 0.9914 0.8243 0.9788

61 0.9053 0.7576 0.9957 0.7832 0.9914 I 0.8241 0.9787

87 0.9052 0.7575 0.9957 0.7832 0.9914 0.8240 0.9787

79 0.8481 0.6849 0.9866 0.7099 0.9750 II 0.7506 0.9465

0.8437 II 0.6803 0.9855 0.7051 0.9730 II 0.7457 0.9431

0.8040II0.6415 0.9694 I 0.6652 0.9487 II 0.7041 0.9078  
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TABLE 3

Rice Palms - Panel Data Estimation Results

 

Fixed Effects

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I Seed 0.1358 0.1208 0.1327 0.1332

Urea 0.1196 0.0918 0.1133 0.1127 II

TSP 0.0718 0.0892 0.0761 0.0769 I

Labor 0.2167 0.2431 0.2230 0.2194

Land 0.4819 0.4521 0.4771 0.4810

DP 0.0077 0.0338 0.0140 0.0093 II

DV1 0.1755 0.1788 0.1772 0.1767 II

DV2 0.1356 0.1754 0.1444 0.1410 ll

DSS 0.0489 0.0533 0.0492 0.0492

DRl 0.0500 0.0511 0.0594

DR2 0.0393 0.0441 0.0480

DR3 0.0623 0.0723 0.0799

DR4 0.0248 0.0119 0.0150

DR5 0.0818 0.0751 0.0826

01.. 0.0214 0.0215

02. 0.1076 0.1076 0.1070

E(uo 0.1166 0.1170

6. 0.0987 0.0987
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TABLE 4A

RiceFarms-ConfidencelntervalsBasedonBCMethod, CGLSEstimates-PanelData

   
75% Ubnd

 

 

 

  
 

 

 

 
 

 

 
 

 

       
 

IMMI 95% Lbnd 95% Ubnd 90% Lbnd 90% Ubnd I 75% Lbnd

164

118 0.9642

5 0.9608 0.8744 0.9988 0.8930 0.9976 0.9204 0.9938

51 0.9002 0.7628 0.9944 1 0.7857 0.9890 I 0.8224 0.9738

38 0.9002 0.7628 0.9944 0.7857 0.9890 “ 0.8224 0.9738

88 0.8999 0.7624 0.9943 0.7852 0.9889 0.8219 0.9737

142 0.76601 0.6287 0.9215 0.6485 0.8951 0.6810 0.8537

145 0.7615 “ 0.6249 0.9167 0.6447 0.8901 0.6769 0.8488

143 0.74224 0.6089 0.8951 1 0.6281 0.8683 ! 0.6595 0.8274 I

TABLE 48

Rice Farms - Confidence Intervals Based on BC Method, MLE Estimates - Panel Data

 

 

 

 

 

 

 

 

         

I
75% Ubnd

164 0.9643 0.8837 0.9990 0.9013 0.9979 0.9270 0.9945 I

118 0.9639 0.8825 0.9989 0.9005 0.9978 0.9263 0.9944

5 0.9609 0.8746 0.9988 0.8931 0.9976 0.9206 0.9938

88 0.9010 0.7638 0.9945 0.7867 0.9892 0.8234 0.9742

51 0.9010 0.7638 0.9945 0.7867 0.9892 0.8234 0.9742

102 0.9001 0.7626 0.9944 0.7855 0.9890 0.8222 0.9738

142 0.7602 0.6238 0.9153 0.6435 0.8887 0.6757 0.8473

145 0.7564 0.6207 0.9111 0.6403 0.8845 0.6723 0.8432

143 0.7370 0.6045 0.8891 0.6236 0.8624 0.6549 0.8217  
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TABLE 5A

Rice Farms - MCB Confidence Intervals - Panel Data

 

In%wm

 

 

 

 

 

 
 

 

  
       
 

 

 

 

 

 

 
 

 

 

    

75% Ubnd

163 5.4838 0.4868 1.0000 0.5094 1.0000 0.5568 1.0000

166 4.9667 0.2902 1.0000 0.3037 1.0000 0.3320 1.0000

15 4.9656 0.2899 1.0000 0.3034 1.0000 0.3316 1.0000

40 4.9646 0.2896 1.0000 0.3031 1.0000 0.3313 1.0000

143 4.5982 0.2008 1.0000 0.2101 1.0000 0.2297 1.0000

117 4.5859 0.1983 1.0000 I 0.2075 1.0000 0.2269 1.0000

45 4.5496 0.1913 1.0000 J 0.2001 1.0000 10.2188 1.0000

TABLE 53

Rice Fanns - MCC Confidence Intervals - Farm 164 as Control - Panel Data

Firm 6,. 95% Lbnd 95% Ubnd 90% Lbnd 90% Ubnd 75% Lbnd 75% Ubnd

164 5.5561 I

118 5.4860 0.4878 1.0000 0.5105 1.0000 0.5580 1.0000 II

163 5.4838 0.4868 1.0000 0.5094 1.0000 0.5568 1.0000

166 4.9667 0.2902 1.0000 0.3037 1.0000 I. 0.3320 0.9266

15 4.9656 0.2899 1.0000 0.3034 1.0000 0.3316 0.9256

40 4.9646 I 0.2896 1.0000 0.3031 1.0000 0.3313 0.9247

143 4.5982 I 0.2008 0.7332 0.2101 0.7007 0.2297 0.6410

117 4.5859 I 0.1983 0.7243 0.2075 0.6921 0.2269 0.6332

45 4M% I0wm 0w” L.02001 0w” L.02188 0am I     
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IUTENDD(

TABLE 6A

Rice Fanns - Subset MCB Confidence Intervals, N = 9 - Panel Data

95 96 Lbnd

 

95% Ubnd

  

 

    

90% Ubnd

   
75% Lbnd

 

75 96 Ubnd

 

   

    

   
  

  
   

 

 

 

 

 

   
       
 

Rice Farms - Per Comparison Confidence Intervals with a,“ - Panel Data

0.6494 1.0000 0.6835

118 5.4860 0.5644 1.0000 0.5940

163 5.4838 0.5632 1.0000 0.5927 1.0000 0.6418 1.0000

166 4.9667 0.3358 0.9849 0.3534 0.9358 0.3827 0.8642

15 4.9656 0.3354 0.9837 0.3530 0.9347 ILO.3822 0.8632

40 4.9646 0.3351 0.9828 0.3527 0.9338 0.3819 0.8624

143 4.5982 0.2323 0.6813 0.2445 0.6473 0.2647 0.5978

117 4.5859 0.2296 0.6730 0.2415 0.6394 0.2615 0.5905 II

45 4.5496 0.2213 0.6490 I 0.2329 0.6166 1. 0.2522 0.5695 II

TABLE 6B

 

  

95% Lbnd

 

95% Ubnd  90% Ubnd

 

75% Lbnd    75% Ubnd

     
 

 

 

 

 

 

 

         

118 0.1912 0.6409 1.0000 0.6807 1.0000 II 0.7483 1.0000

163 0.1898 0.6413 1.0000 0.6808 1.0000 II 0.7479 1.0000

166 0.1914 0.3812 1.0000 0.4049 0.7599 0.4451 0.6912

15 0.1940 0.3788 0.8102 0.4027 0.7622 0.4432 0.6924

40 0.1971 0.3761 0.8144 0.4002 0.7654 0.4412 0.6943

143 0.1915 0.2636 0.5584 0.2800 0.5257 0.3079 0.4782

117 0.1960 0.2581 0.5565 0.2745 0.5232 0.3025 0.4748

45 0.1941 0.2499 0.5347 0.2656 0.5030 0.2924 0.4569  
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Texas Utilities - Panel Data Estimation Results

   
 

APPENDIX

TABLE 7
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I__

I -5.0532

0.0775

0.3462 0.6275 0.5882 0.5856

0.6406 0.5652 0.5807 0.5838 II

61., 0.0079 0.0266 I

02‘, 0.0029 0.0029 0.0029

E(ui) 0.0709 0.1301

a. 0.0126 0.0126  
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TABLE 8A

Texas Utilities - Confidence Intervals Based on BC Method, CGLS Estimates - Panel Data

 

i

I

 

 

 

 

 

 

 
 

 

     

I Firm TE I 95% Lbnd 95% Ubnd 90% Lbnd 90% Ubnd I 75% Lbnd 75% Ubnd I
_____._. __ _.__ I ___-__. . .__,_I

5 0.9982 I 0.9938 1.0000 0.9949 0.9999 I 0.9964 0.9998 I

3 0.9960 . 0.9866 0.9999 I 0.9887 0.9999 I 0.9919 0.9994 I

10 0.9649 0.9413 0.9885 0.9451 0.9848 I 0.9510 0.9788 I

[ 1 0.9325 0.9097 0.9557 0.9133 0.9519 0.9190 0.9460 I

8 0.9167 . 0.8943 0.9396 3 0.8979 0.9358 0.9035 0.9300 I

9 0.8997 I 0.8777 0.9221 I 0.8812 0.9184 I 0.8867 0.9127 I

2 0.8973 '. 0.8754 0.9197 I 0.8788 0.9160 I 0.8843 0.9103 I

I 6 0.8835 I 0.8619 0.9055 0.8653 0.9019 I 0.8707 0.8963 I

I 7 0.8788 0.8573 0.9006 0.8607 0.8971 I 0.8660 0.8915 I

. _ °-8_ - _ __°-___ -_ 8881- __ _88 II

TABLE 8B

Texas Utilities - Confidence Intervals Based on BC Method, MLE Estimates - Panel Data

 

 

 

 

 

 

 

 

 

Mflt'--I

I 5 0.9880I0.9685 0.9994 I 0.9721 0.9989 I 0.9776 0.9973 ”I

I 3 0.9793 I 0.9566 0.9979 1 0.9604 0.9962 0.9663 0.9923

I 10 0.9095 I 0.8872 0.9322 0.8907 0.9285 0.8963 0.9227

I 1 0.8649 I 0.8437 0.8865 0.8471 0.8830 II 0.8524 0.8775

I 8 0.8472 I 0.8264 0.8683 | 0.8297 0.8649 II 0.8349 0.8595

I 2 0.8322 I 0.8118 0.8530 0.8151 0.8496 0.8202 0.8443

I 9 0.8269 I 0.8066 0.8475 II 0.8098 0.8442 0.8149 0.8389

II 6 0.8214 0.8013 0.8419 0.8045 0.8386 0.8095 0.8334

7 0.8181 0.7981 0.8385 0.8012 0.8352 0.8062 0.8300

II4 0.7873 II 0.7680 0.8069 II 0.7710 0.8037 n 0.7759 0.7987     
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TABLE 9A

Texas Utilities - MCB & MCC Confidence Intervals - Pand Data

_7

 

T v

 

 

 

 

 
 

 

 

 

      
   

.. _fi __ _9_ __UU’____9°_5__.I.__~“____5%___d

5 49952 I 1.0000 1.0000 ; 1.0000 1.0000 I 1.0000 1.0000

3 -5.0826 I 0.3730 0.9617 0.3772 0.9571 {I 0.3337 0.9500

. 10 -s.1451 'I 0.3201 0.9035 0.3241 0.3991 I 0.3302 0.3925

1 -5.1760 0.7951 0.3759 0.7990 0.3717 'I 0.3049 0.8653

3 51940 I 0.7309 0.3603 0.7347 0.3562 0.7905 0.3499

9 52105 I 0.7631 0.3462 0.7719 0.3421 I 0.7776 0.3359

I 2 -5.2176 I 0.7627 0.3402 0.7664 0.3362 0.7721 0.3300

7 -5.2362 I 0.7437 0.3243 0.7523 0.3203 I 0.7579 0.3143

6 -5.2366 I 0.7434 0.3245 0.7520 0.3205 'I 0.7576 0.3144

4 52669 I 0.7261 0.7999 07296 0.7960 I 0.7350 0.7901

TABLE 93

Texas Utilities - Marginal (Per Comparison) Intervals - Panel Data

 

F

90% Ubnd 1 75% Lbnd

 

 

 

 

 

 

 

 

 

imam: ...,...
I—fi—fl—WrwI—w—
I 5 I I

I 3 0.0653 0.8063 1.0000 0.8230 1.0000 I 0.8501 0.9877

I 10 0.0549 0.7729 0.9586 0.7864 0.9421 0.8081 0.9169

I 1 0.0380 0.7747 0.8991 0.7840 0.8884 0.7989 0.8718

I 8 0.0356 0.7644 0.8789 0.7730 0.8691 0.7868 0.8539

9 0.0316 0.7593 0.8561 0.7666 0.8479 0.7783 0.8351

2 0.0401 0.7400 0.8660 0.7494 0.8551 0.7645 0.8383

7 0.0431 0.7222 0.8551 0.7320 0.8435 0.7478 0.8257

6 0.0442 0.7203 0.8566 0.7304 0.8447 0.7466 0.8464

4 0.0352 |[ 0.7113 0.8164 .. 0.7293 0.8074 0.7319 0.7935      
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TABLE 10

Tileries - Panel Data Estimation Results

 

 

 

 

 

 

 

0.1147 0.1147
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APPENDIX

TABLE 11

Tileries - Confidence Intervals Based on BC Method, CGLS Estimates - Panel Data

   
75% Ubnd

  
   
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 

 

  
 

 

    

0.9499 I 0.9034 0.9903

[14 0.9433 I 0.8482 0.9976 0.8656 0.9952 n 0.8928 0.9881

I 25 0.9425 0.8457 0.9976 0.8635 0.9952 0.8911 0.9880

| 19 0.9365 0.8359 0.9971 0.8538 0.9942 0.8850 0.9858

3 0.9341 0.83085 0.9969 0.8491 0.9939 1 0.8779 0.9851

22 0.9323 0.8280 0.9968 0.8463 0.9936 0.8753 0.9843

18 0.9296 0.8266 0.9963 0.8444 0.9928 0.8765 0.9826

16 0.9151 0.7885 0.9958 0.8103 0.9916 0.8449 0.9797

5 0.9025 0.7791 0.9935 0.7993 0.9875 0.8315 0.9713

21 0.9017 0.7889 0.9919 0.8070 0.9848 0.8359 0.9670

2 0.8992 0.7841 0.9917 0.8024 0.9834 n 0.8319 0.9660

I 23 0.8866 0.7742 0.9871 0.7917 0.9769 0.8198 0.9544

4 0.8854 0.7688 0.9878 0.7870 0.9779 0.8162 0.9555

17 0.8813 0.7686 0.9850 0.7860 0.9738 0.8140 0.9498

15 0.8405 0.7296 0.9587 0.7462 0.9404 0.7731 0.9098

11 0.7228 0.6285 0.8271 0.6425 0.8091 0.6652 0.7815

I 13 0.6988 0.6077 0.7997 0.6212 0.7823 0.6431 0.7556

I 12 0.6872 0.5976 0.7864 0.6109 0.7693 0.6325 0.7431

6 0.6748 0.5868 0.7723 0.5999 0.7554 l 0.6211 0.7297

10 0.6620 0.5534 0.7855 0.5692 0.7637 ll 0.5950 0.7307

9 0.6437 0.5541 0.7436 0.5674 0.7262 0.5888 0.6998

1 0.6283 0.5314 0.7378 0.5456 0.7186 0.5686 0.6894

20 0.5973 0.5100 0.6952 II 0.5229 0.6781 JI 0.5437 0.6521

7 0.5818 0.5059 0.6657 JI 0.5172 0.6512 0.5354 0.6290

8 0.5399 n 0.4664 0.6216 ! 0.4773 0.6074 0.4949 0.5858    
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TABLE 12

Tileries - MCB Confidence Intervals - Panel Data

..._ _v. ___.__ _

 

95% Lbnd 95% Ubnd 90% Lbnd90% Ubnd75%Lbnd_ 75%Ubnd

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
   

-,,_ __ 1

14 0.9881 % 0.7373 0.7566 0.7892

24 0.9825 0.7291 1.0000 . 0.7484 1.0000 1 0.7803 1.0000

x 25 0.9770 1 0.7223 1.0000 0.7417 1.0000 1 0.7737 1.0000

3 0.9691 ‘ 0.7136 1.0000 0.7330 1.0000 0.7651 1.0000

19 0.9687 0.7164 1.0000 0.7356 1.0000 0.7673 1.0000

‘ 22 0.9685 ‘ 0.7132 1.0000 ' 0.7326 1.0000 ‘ 0.7647 1.0000

18 0.9399 : 0.6987 1.0000 0.7172 1.0000 0.7478 1.0000

, 5 0.9061 : 0.6557 1.0000 . 0.6748 1.0000 0.7064 1.0000

21 0.9043 3 0.6716 1.0000 0.6896 1.0000 0.7194 1.0000

16 0.9036 , 0.6386 1.0000 0.6585 1.0000 ' 0.6916 1.0000

2 0.8834 l 0.6550 1.0000 0.6728 1.0000 g 0.7023 1.0000

L 23 0.8811 0.6588 1.0000 0.6763 1.0000 . 0.7051 1.0000

4 0.8769 0.6508 1.0000 0.6684 1.0000 0.6977 1.0000

17 0.8497 0.6384 1.0000 0.6553 10000106833 1.0000

15 0.8121 0.6149 1.0000 0.6311 1.0000 0.6581 1.0000

11 0.6240 0.5113 1.0000 0.5246 1.0000 0.5468 1.0000

1 13 0.6071 0.5027 1.0000 6 0.5158 1.0000 : 0.5376 1.0000

12 0.5796 I 0.4891 1.0000 0.5018 1.0000 0.5230 1.0000

1 6 0.5494 I 0.4745 1.0000 x 0.4870 1.0000 1 0.5074 0.9772

: 10 0.5190 0.4387 1.0000 0.45207 1.0000 f 0.4741 0.9843

‘ 9 0.4604 0.4291 0.9673 I 0.4408 0.9417 0.4601 0.9022

1 0.4475 0.4146 0.9757 ; 0.4266 0.9482 9 0.4466 0.9058

20 0.4256 0.4104 0.9433 ; 0.4219 0.9176 i 0.4409 0.8779

7 0.3987 0.4081 0.8990 1 0.4188 0.8760 ' 0.4365 0.8406

8 0.2818 F3604 0.8057 1 0.3701 0.7848 { 0.3861 0.7522   
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TABLE 14

Tileries - Per Comparison Confidence Intervals - Panel Data
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I Firm Std Err 95% Lbnd 95% Ubnd 1 90% Lbnd 90% Ubnd 1 75% Lbnd 75% Ubnd

14 1 1 ‘ l

24 0.1045 1 0.7958 1.0000 1 0.8248 1.0000

25 0.1137 1 0.7940 1.0000 1 0.8225 1.0000

3 0.1120 1 0.7950 1.0000 1 0.8223 1.0000

I 19 0.1100 1 0.7907 1.0000 0.8185 1.0000

[22 0.1075 1 0.7943 1.0000 1 0.8216 1.0000

18 0.1225 1 0.7496 1.0000 0.7791 1.0000

11 5 0.1277 1 0.7173 1.0000 0.7468 1.0000

'21 1.0000 0.7725 1.0000 11

16 1.0000 0.7198 1.0000

l 2 1.0000 0.7543 1.0000

r23 1.0000 0.7556 1.0000

4 1.0000 0.7408 1.0000

17 1.0000 0.7151 1.0000 0.7587 0.9994

15 1.0000 0.7059 0.9962 0.7435 0.9459

11 0.8603 0.5808 0.8313 0.6130 0.7876

13 0.1034 0.5578 0.8367 0.5763 0.8098 0.6066 0.7694

12 0.1118 0.5339 0.8275 0.5530 0.7989 0.5845 0.7558

6 0.1090 0.5208 0.7984 0.5390 0.7715 0.7310

10 0.1223 0.4922 0.7950 0.5116 0.7650 0.7200

9 0.1194 0.4669 0.7456 0.4848 0.7181 0.6768

1 0.1258 0.4552 0.7453 0.4736 0.7163 0.6731

20 0.1115 0.4579 0.7089 0.4728 0.6844 0.6477

7 0.1056 0.4510 0.7822 0.4662 0.6599 0.6263

8 0.1173 110.3921 0.6210 11 0.4069 0.5985 0.5648       
 

95



APPENDIX

MCC INTERVAL
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FIGURE ]. MCC and MCC Intervals
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