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ABSTRACT

ADIABATIC PROPAGATION OF PHASE BOUNDARIES IN A

THERMOELASTIC BAR

By

Ralph Worthington

A Helmholtz free energy function is introduced for a one dimensional two phase

solid. The free energy accounts for both thermal and mechanical effects. Phase transfor-

mations can occur between two distinct phases, one in which the stress response is depen-

dent on the both the deformation and current temperature, while the other is independent

of any thermal effects. The model admits a thermomechanical coupling parameter (12

which can be associated with a coefficient of thermal expansion in the thermomechanical

phase. If the coupling parameter a2 is set to zero, then one retrieves results from what is

known as the separable theory.

A set of initial conditions are proposed such that a single phase boundary is present

in a stable equilibrium configuration. Such configurations are shown to be a two parameter

family of states. The initial configuration is disturbed by a set of dynamic boundary condi-

tions that give rise to a wave pulse, the wave propagates from one of the boundaries into

the interior of the bar. This travelling wave eventually encounters and interacts with the

phase boundary, and it is shown that the encounter is characterized by a one parameter

family of solutions. The fully thermomechanical theory is treated analytically in the small

002 limit, and thermal effects are shown to play a major role in the interaction. The Clau-

sius-Duhem inequality is shown to restrict the family of solutions.
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ary setting it into motion, where s > 0 is assumed. The lW-phase boundary
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to phase-2. The IW striking the phase boundary also produces a transmitted

wave in phase-2, this is designated by the letter T. Finally the transition from

the E2 state to the T state is a centered simple wave, which requires CT < CE.

The other possibility, that of a shock transition from the E; to the T-state, is

not considered here but is discussed briefly in Appendix B. Comparing this

diagram to figure 5.1 shows the additional complexity inherent in the fully

thermodynamical theory. ...................................... 125

This is a representation of the fan transition in phase-2. The point (x1,t*) is

located on the contiguous line between T and the fan, where 31—: = A1 = CT.
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Figure B.l This is a graphical representation in the (xt)-plane where the transition in the

phase-2 regions gives rise the formation of a shock. Regions E1 and E; are

the initial equilibrium states separated by the phase boundary at x=s(t). The
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represents a reflected wave, while S arises from the interaction of the 1W and

the reflected wave. So is that material which has undergone a phase transfor-

mation from phase-1 to phase-2. The IW suiking the phase boundary also

produces a transmitted wave in phase-2, this is designated by the letter T.
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1. Introduction

1.1 Overview

Recently, the topic of solids able to undergo phase transitions has received a great

deal of attention from the mechanics community. In this section we will briefly introduce

topics pertaining to phase transformations in order to familiarize the reader with the

research to be presented. It is well known that certain materials which behave elastically

can be modeled with a stress-strain response derivable from a potential function. Classi-

cally this potential function is defined as the material’s strain energy density and is usually

a convex function, resulting in the equilibrium equations being elliptic in nature. Typically

this gives rise to a stress-strain response which is one to one, i.e. associated with each

stress there exists a unique strain. However, if the materials potential function is not con-

vex, then the equilibrium equations may lose ellipticity. This may result in the stress-strain

response losing the one to one behavior, and for certain levels of stress the associated

strains may not be unique. It is this non-determinacy which makes these problems both

mathematically challenging and representative of phase transformation phenomena.

Figure 1.1 is a schematic diagram of a hypothetical material in which the strain

energy density W is not a convex function of some strain component 7, say tensile strain.

If one were to consider a tensile test of a specimen composed of such a material, with a

load being applied to the specimen resulting in the stress being contained in the range

cm 5 a (y) S cm , then it is seen from this figure that the material need not be in a state of

homogeneous deformation. It may be that the specimen contains regions of strain that dif-

fer radically, some regions being in a state of “low” strain adjacent to one in a different

1
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2

state of “high” strain. Thus, the possibility exists that within the body there exist surfaces

that separate regions of low strain from high strain, and across such surfaces the strain suf-

fers a discontinuity. These surfaces are called phase boundaries, while the material itself

on either side is said to occupy a particular phase. A region of a material undergoes a

phase transition when it transforms from one phase into another.

For materials capable of undergoing these types of transitions the study of equilib-

rium configurations, quasi-static and dynamic motions is possible. In all three areas, the

ability of the body to transform between different phases and generate phase boundaries is

of interest. For quasi-static and dynamic problems one must consider the possibility of a

moving phase boundary, and the interaction of such a boundary with other surfaces.

Further complicating the issue is the addition of temperature effects. In general,

research into the purely mechanical motions of such materials has received more attention

then the modeling of thermal motions. The latter, however, is now also becoming an area

' of increasing research activity.

1.2 Literature Review

In general a material can be thought of undergoing a phase transition when proper-

ties that characterize the material change in response to a state variable reaching a critical

value. Examples of such transitions are between liquid and gas, solid and liquid, as well as

solid to solid and other combinations. The model for the van der Waals fluid captures such

behavior, where at constant temperature it is either a fluid or vapor depending the level of

its specific volume. In the case of solids, the generic ausenite/martensite transition comes
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3

to mind, where depending on the level of temperature and stress the solid may be in either

state, the states having different material properties. Furthermore this type of solid to solid

transition is the mechanism for the shape memory effect. In what is to follow we will dis-

cuss an elastic solid in which the stress strain response is not monotone, and allows for

discontinuous field quantities which may be interpreted as a solid undergoing a phase

transformation.

The study of elastic solids experiencing discontinuous field variables has received

a great deal of attention in previous decades and the literature concerning this topic is now

quite extensive. From a mechanistic point of view, one may think of three different classes

of problems: equilibrium, quasi-static, and the fully dynamical problems. Some of the

more relevant literature which addresses these types of problems will be explored below.

In (1975), Ericksen discussed an elastic bar in equilibrium having a non-mono-

tonic stress-strain relation. For a range of stresses and displacements this type of response

allows for more than one strain to be realized. When the bar is subjected to the boundary

conditions of a controlled load or diSplacement (soft or hard device) it is shown that infi-

nitely many equilibrium configurations are possible. In an attempt to rectify this defi-

ciency, the author studies an energy minimization criterion in a attempt to determine a

unique and stable solution. Thus he demonstrated that for certain nonlinear elastic materi-

als, a bar composed of such a material subjected to specific load/displacement boundary

data may not support an unique solution. The author states that one may interpret this abil-

ity of the solid elastic material to accommodate a range of strain for the associated speci-

fied stress as a solid undergoing a solid to solid transformation. This ability to model a

phase transformation in a solid via the nonmonotone stress-strain response has greatly
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4

contributed to research efforts in this phenomena.

Knowles and Stemberg (1978), in the setting of plane non-linear elastostatics,

demonstrate that a certain set of deformations having continuous displacements posses the

property that the displacement gradients may be discontinuous In elastostatics, the equa-

tions of equilibrium which govern the deformation fields are classified as elliptic partial

differential equations, and when discontinuities in the deformation gradients arise, the

classification of these governing equations changes from elliptic to hyperbolic; the equa-

tions are said to lose their ellipticity. Thus within a hyperelastic solid one can construct

solutions such that the displacement field is everywhere continuous, yet the deformation

gradients may be piecewise continuous as long as the equilibrium equations suffer a loss

of ellipticity. Therefore surfaces may exist such that the deformation gradients suffer a

jump in value when passing from one side of the surface to the other, and these jumps in

field quantities may be attributed to the material undergoing a phase transformation. The

authors refer to such a singular surfaces as an “equilibrium shock”, however now the term

phase boundary is more widely used. The existence of such a discontinuous surface leads

to an additional system of equations which connect the field quantities adjacent to the sur-

face, these equations are the Rankine-Huginot equations.

If one considers a body capable of containing these types of discontinuities, then

families of equilibrium states parameterized by time may be constructed so as to yield the

quasi-static evolution of a phase boundary. During such quasi-static motions the total

energy may change, thus the passage of a phase boundary may dissipate the energy within

the body. Knowles and Stemberg explore the quasi-static evolution of a phase boundary

through an elastic body and the dissipation of energy which occurs during such processes.
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5

They demonstrate that the equations which govern such processes are similar in form to

those of steady irrotational flows in a compressible inviscid fluid.

The dissipation of energy during the motion of a phase boundary directs one to

inquire as to the use of certain evolution criteria during these types of motions. For quasi-

static motions Knowles (1979) investigates the dissipation of energy, and from the second

law of thermodynamics derives a dissipation inequality for a three dimensional body. He

demonstrates for all motions of a phase boundary that the dissipation should be nonnega-

tive. A dissipation function is derived and shown to be a function of the energy momentum

tensor, also known as the driving traction or force on the defect, whose effects in a differ-

ent context where previously studied by Eshelby (1975).

For such quasi-static evolution problems, the lack of uniqueness of a solution is

found to be even more extreme than the equilibrium problem. The reason being that each

equilibrium configuration is indeterminate for the reasons outlined above, and the speed of

the phase boundary through the material inherits this indeterminacy. Various procedures

have been proposed to resolve this issue of determining a unique solution among the infi-

nite number of admissible candidates. One type of selection criterion is to impose an

energy minimization condition to each equilibrium configuration during the evolution of a

phase boundary. This results in the driving traction being equal to zero for each equilib-

rium state. Another approach requires all motions to occur with maximum dissipation of

energy. Instead of using an energy platform, one may introduce an additional set of consti-

tutive relations, a nucleation criterion and kinetic relation. The former imposes conditions

on the emergence of phase boundary, while the later governs the actual evolution of the

boundary. Abeyaratne and Knowles (1988) use this method to resolve the issue of nonu-
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niqueness for a one-dimensional, isothermal, elastic bar whose stress strain response is

non-linear.

In the fully dynamical motion of a phase boundary, the governing equations are

different from the quasi-static case due to the additional inertia terms. Within the dynam-

ics of elastic bars, James (1980) studies some general properties of solids containing prop-

agating phase boundaries. Abeyaratne and Knowles (1990a), investigate the Riemann

problem of a bar which has a non-monotonic, tri-linear stress strain response. They show

that the lack of a unique solution can be rectified by the use of a kinetic relation and a

nucleation criterion, as for the quasistatic case. With these two additional criteria the

authors study the solution for the propagation and interactions of phase boundaries within

the bar.

For a body consisting of a elastic layer of finite thickness Pence (1991a) investi-

gates the initial interaction of a incoming shear pulse with a single stationary phase bound-

ary and the subsequent ringing of shear waves between the external boundaries and the

internal phase boundary. The author specifies that a single phase boundary is initially

present, and pursues a treatment that excludes additional phase boundary nucleations. He

then proceeds to investigate the family of solutions parameterized by the phase boundary

speed. Various impedance criteria are used as a selection technique for the phase boundary

speed. It is shown for the special case of a completely reflecting or transmitting wave

interaction with the phase boundary, that the motion of the phase boundary is periodic in

nature. In another study, Pence (1991b) examines the same problem from the perspective

of energy and dissipation. Using a criterion based on the dissipation within the layer, it is

shown that there are exactly two motions which permit no dissipation, and one motion that
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7

maximizes the dissipation rate. In Abeyaratne and Knowles (1992a), (1992b) a set of sim-

ilar problems of the interaction of a wave pulse and a stationary boundary are treated.

Another approach for resolving the issue of nonuniqueness is to attribute structure

to the phase boundary, essentially giving it a finite thickness and matching conditions

within the boundary to the conditions at the interface. Slemrod (1983) uses this approach

for isothermal motions of a van der Waals fluid. Although the material model is nominally

for a fluid, the equations which govern the processes are mathematically similar to those

of a solid and thus the associated ideas apply to solid-solid modeling. The reader inter-

ested in all the above techniques should see Truskinovsky’s (1991) paper which compre-

hensively discusses the formulation and results using these methods for a broad class of

problems.

So far all of the above papers cited concerned motions, whether quasi-static or

dynamic, which were assumed to proceed isothermally. The literature for motions which

occur without the isothermal constraint is more limited. James (1983) considers the steady

propagation of a phase boundary within a therrnoelastic bar, allowing for changes in tem-

perature during a dynamical process. Under the assumption that all motions within the bar

are close to an equilibrium state, he is able to show for adiabatic motions that the govern-

ing equations are unable to determine a unique solution, and thus the addition of thermal

effects does not resolve the issue of uniqueness.Truskinovsky (1985) is one of the first to

investigate thermal effects for motions within a heat conducting nonlinear elastic bar. He

resolves the issue of nonuniqueness by attributing structure to the phase boundary. Gurtin

(1991) explicitly formulates the general laws which govern all motions for the thermome-

chanical propagation of a phase boundary. In Abeyaratne and Knowles (1993a) a stress-
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strain-temperature response function is introduced for a material able to undergo phase

transitions. This response function is piecewise continuous for the different phases of the

material. From the appropriate stress response function the free energy density is con-

structed for either phase using thermodynamic arguments. They introduce a kinetic rela-

tion and then study the hysteretic response of the material for quasi-static motions.

The Clausius-Duhem inequality is a thermodynamic restriction on all admissible

motions for the above mentioned problems. It can be used to eliminate possible candidates

for solutions produced from the other field equations, but it will not provide a unique solu-

tion. This inequality may be reformulated by the construction of an entropy production

function for processes occurring within a body, and for all admissible motions the entropy

production must be nonnegative. Abeyaratne and Knowles (1990b) show for a three

dimensional body with a continuous temperature field that the rate of entropy production

occurring during the motion of a phase boundary consists of three parts: one from the

material dissipation away from phase boundary, a second part which arises from heat con-

duction, and a contribution from the moving phase boundary. Restricting the class of

materials to that which is therrnoelastic they show that the rate of entropy production is

due only to heat conduction and the motion of the phase boundary.

Mathematically, the above equilibrium problems give rise to a system of elliptic

partial differential equations (PDE). When these equations admit solutions which have

continuous displacements, but displacement gradients which are discontinuous, then the

form of these equations changes from elliptic to hyperbolic. In the case of fully dynamic

phase boundary motion one has the additional inertia terms and the classification of the

governing equations is now normally hyperbolic. With respect to engineering applications
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and applied mathematics, hyperbolic PDE’s were studied extensively in the context of gas

dynamics, see Courant and Friedrichs (1956) or Landau and Lifshitz (1987).

The class of boundary value problems presented in this document are typically

found in the studies of systems of hyperbolic equations. Lax (1973) considers a very gen-

eral form for systems of hyperbolic PDE’s or conservation laws, and displays certain

aspects of their nature and also addresses the admissability criteria for weak solutions of

such systems. Hattori (1986) considers the Van der Waals fluid, governed by a specific

system of conservation laws, for which he proposes a maximum entropy rate admissability

criterion for all solutions. Truskinovsky (1991) also works with discontinuous solutions

which occur in these types of systems, and explores the implications of various physical

models which may be taken as a basis for the conservation laws.

Therrnodynamically, a phase transformation is classified according to the type of

discontinuity present in the materials free energy (Rao and Rao 1978). A first order phase

' transformation is characterized by a material free energy that is continuous, but whose first

derivatives are not. A second order transformation is similarly described by a continuous

first derivative, but a discontinuous second derivative. One may also speak of mixed order

transformations. However in this document the problems considered will be exclusively

first order.

Various authors have proposed models for the material in which the materials free

energy possesses the required continuity, and yet still allows for transitions to occur. Falk

(1980) proposes a function for a Helmholtz free energy to model the phase transition

between Austenite/Martensite. The function is of the Landau-Devonshire type and is capa-

ble of supporting first order transitions. The author derives the fundamental properties of
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such a material, and discusses the phenomena of shape memory and hysteresis which the

model allows. Niezgodka and Sprekels (1988) derive the necessary equations which gov-

ern a thermomechanical dynamical phase transition. Introducing a Landau-Devonshire

model for the material’s free energy into the governing equations results in a system of

coupled non-linear partial differential equations.

The free energy function introduced in this document will not be of the Landau-

Devonshire type. Since we wish to focus our attention on that subset of the material’s

response for which a transformation can take place, and not the entire spectrum, we utilize

an efficient method of constructing a material model. By constructing a free energy func-

tion composed of a set of discrete functions, one for each phase, and requiring the continu-

ity of this function at transition points, the model is able to capture first order phase

transitions. This discreteness allows us to use a lower order polynomial for the free energy,

which in turn simplifies the mathematics.

1.3 Problem Statement

The material within this document can be thought of as being composed of two

major parts. The first part consists of Chapters 1-4, the second consists of Chapters 5-9.

We begin by first introducing the field equations for a one dimensional continuum, we

consider a bar, where the equations are specialized to account for adiabatic motions only.

Since we wish to consider the motion of phase boundaries, the Rankine-Hugoniot equa-

tions are presented. These being jump conditions for the field variables between regions

separated by a discontinuitys surface. Here this surface is initially motionless and so con-
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stitutes an equilibrium phase boundary. Eventually it is set in motion via the introduction

of a wave pulse.

In Chapter 3 we develop a 1-D constitutive model for a solid able to undergo phase

transformations. A model for the Helmholtz free energy model is developed, it is a func-

tion of the strain and temperature, and can be thought of as a “potential well”. The free

energy is constructed in such a manner so as to accommodate two distinct phases. One of

the major differences between the two phases is that only one possesses a shape strain.

The stress response is derived from the free energy, one phase has a stress response that is

independent of temperature while the other is temperature dependent. From it’s two phase

nature, the stress-strain curve is nonmonotonic. One feature of the nonmonotonic behavior

is the lack of uniqueness involved in a equilibrium configuration, even. by specifying the

temperature and stress, or temperature and elongation, the state of strain within the bar is

not unique. We show that the equations of equilibrium characterize a two parameter fam-

ily of configurations.

In Chapter 4 we investigate this lack of uniqueness in equilibrium configurations

in detail. There we introduce three canonical equilibrium configurations, each configura-

tion having a separate criterion in addition to the equations of equilibrium.These canonical

states are families of one parameter equilibrium configurations. We then demonstrate that

when any two of the three states coincide, then the resulting equilibrium configuration is a

unique state. These unique equilibrium states play a central role in understanding the con-

nection between the present fully thermomechanical description, and simpler descriptions

that are purely mechanical in nature

To begin the second part of this document we formulate and impose a set of initial
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conditions such that a single phase boundary is present in an equilibrium configuration.

This initial configuration is then disturbed by a set of dynamic boundary conditions which

give rise to a wave pulse that propagates into the bar from one of the boundaries. This

travelling wave eventually encounters and interacts with the phase boundary, it is this

interaction that we later investigate in detail. In general, this interaction causes the phase

boundary to move, leading to phase transformations as particles pass through the moving

phase boundary.

A temperature-independent version of this problem was considered by Pence

(1991a, 1991b). In his work a layer was composed of a two phase elastic material, but the

stress response was independent of thermal effects in both phases. The mathematical

equations which compose Pence’s problem are identical to ours. In Chapter 5 we modify

this purely mechanical problem so that we may compare any solutions from our problem

with those from the purely mechanical problem. One of the major goals of this research is

to extend this previous work so as to encompass thermal effects, and demonstrate any new

features of our more complete physical theory.

The interaction of the incoming wave pulse with the phase boundary gives rise to

two possible scenarios regarding the transmitted wave that becomes the leading distur-

bance after the interaction. The first involves a shock, the other involves a centered simple

wave fan. We only consider the latter case in this document In Chapters 6 and 7 we

develop a system of algebraic equations which completely characterizes the initial interac-

tion. This system of equations is indeterminate, there being more unknown field quantities

than equations. Considering the phase boundary speed as a parameter, we are able to

reduce the system of equations to a singe master equation, a nonlinear algebraic equation
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for a single field variable. A solution to this equation not being evident, we develop a solu-

tion, albeit a family of solutions, for the unknown field variable via a perturbation from the

purely mechanical state. We show once this perturbation solution is constructed that we

can than calculate all the remaining field quantities. By comparing our results with those

from the purely mechanical problem we are able to determine the leading order thermal

effects, which is one of the major objectives of this research.

In Chapters 8 and 9 we demonstrate how the second law of thermodynamics

restricts this family of solutions. Finally, we consider an additional constitutive relation, a

kinetic relation between the phase boundary speed and the driving traction acting on the

phase boundary. We show that this additional criterion singles out a unique solution to the

interaction.
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1(7)

 
     

Figure 1.1 Displayed is the nonmonotonic stress strain response for the material model

describing phase transformations. Note for the prescribed level of stress in rm 5 t 5 1M

that there are three possible values for the strain 7



2. Balance Laws

Consider a body 3 which is a bar of length L and of constant unit cross section.

Let el denote the triad of mutually orthogonal unit vectors associated with the reference

configuration, where 91 is parallel to the rod’s axial direction. Denote the position vector

of a particle in the reference configuration by x , then

B = { (x1, x2, x3) II x1 6 [0, L] }.

Let the position of the particle x at time t be y (x, t) , the deformation of the bar, and con-

sider motions of the type:

y(x, t) = x+u(xl,t)el, (2.1)

where the function 11 (x1, I) is the displacement of the particle. Deformations of the form

(2.1) describe longitudinal deformations of the bar. The problem is essentially one dimen-

sional, therefore let x1 = x for notational convenience.

In what is to follow the displacement u (x1, t) is assumed to be a continuous func—

tion almost everywhere with first and second derivatives which are piecewise continuous.

Denote the strain in the bar as y and the velocity v , then by definition

—IY _ ’
(2.2)

-v —t .
(2.3)
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The strain 7 is required to satisfy 7 > —1 in order for the deformation (2.1) to be invert-

ible.

Introduce the following notation, let

1: denote the stress,

8 the internal energy per unit volume,

it the entropy per unit volume,

q the heat flux,

0 the absolute temperature,

r the heat supply per unit mass, and

p the mass density.

Using a Lagrangian description, the local equations of motion (Dunn and Fosdick 1988)

forthebarare:

iY -91

8t - Bx’

iv _ 31:

pat "a?

(2.4)

de _ 3v _Bq

a: ' is?“ 5;:

992:_l_?_(9)
t 6 pax 0

The first of these,(2.4)1, ensures compatibility of the displacements, (2.4)2 is the balance

of linear momentum. Equation (2.4)3 is the balance of energy or the first law of thermody-

namics, while (24),; is the second law of thermodynamics.
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If within the bar an interface exists, x = s (t) , where the fields suffer a disconti—

nuity then these field quantities must satisfy certain jump conditions across such an inter-

face. These jump conditions are the Rankine-Hugoniot equations, which in this one

dimensional setting are

[[V]] = -S[[Y]].

[[1]] -$Pl[V]].

(2.5)

[[tvll + [[ql] -stteii-§[[v’]].

Spllnll + [[3]] so.

Here s denotes the speed in which the surface of discontinuity propagates, s = gis (t) .

The square brackets denotes the jump in the enclosed quantity, say f, across s(t):

[ [f] ] = f (s+) - f (s') ; while ((0) is the average of the function f across the inter-

face: ((0) = %[f(s+) +f(s')] .

The class of problems to be investigated is now restricted to those which describe

adiabatic motions, in so doing the internal energy production r and the heat flux q are

required to vanish. One may regard adiabatic motions as idealized processes which occur

quickly with respect to the continuum thermodynamic time scales associated with the

transfer of heat by diffusion and radiation. Isothermal motions may be considered to

occupy the other end of the spectrum, where events occurs so slowly that the body has

enough time for the transfer of heat such that the temperature can equilibrate with an

external ambient temperature. Under the adiabatic assumption, the equations of motion
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and jump conditions simplify into the final form which will be used throughout the

remainder of this document:

(2.6)

[[V]] +S[[7]] = 0.

[[t]]+Sp[[v}] =0.

(2.7)

S([[£]1—<<t>>llvl]) =0.

Spllflll-SO-

When working within the context of the mechanics of solids it is often convenient to uti-

lize the Helmholtz free energy function \v (y, 9) . The internal energy and Helmholtz free

energy are not independent, but are related through the expression

8 = timer]. (2.8)
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From standard thermodynamic definitions (Ziegler 1988, Ericksen 1993) the stress and

entropy may be derived from the Helmholtz free energy

_ 8v _ 8v
1.3—7, 1] _-50' (2.9)

. de dry (1 .
From (2.8) the left hand srde of (2.6)3 can be expressed a = a + a{(971) . Wthh from

the definitions (2.9) and (2.6)1 is simplified 31—: = 1%;- + 03—1]. Therefore the first law of

thermodynamics (2.6)3 in the adiabatic setting can be expressed in the alternative fashion

2
4
3
2

II .o (2.10)

which requires a particle’s entropy to remain constant
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3. Material Model

3.1 Construction of the Material Response Functions

The purely mechanical problem of a packet of shear waves interacting with a

phase boundary has been previously studied (Pence 1991a, 1991b). However during such

processes a more complete description necessitates accounting for thermal as well as

mechanical effects (James 1983,Truskinovsky 1985). Recently, a material model has been

developed which may be used to describe a multi-phase therrnoelastic solid (Abeyarame

and Knowles 1992c). The model considered in this document is similar in form to theirs,

but we more fully use its ability to model thermomechanical motions by less simplifica-

tion of material parameters. One major goal of this research is to introduce this model and

demonstrate its ability of capturing nonlinear elastic adiabatic motions. We also will dem-

onstrate its ability to collapse into a form which is purely mechanical, and for which cer-

tain previously determined results are shown to fall under a more complete

thermomechanical framework.

The model to be presented intuitively seems more realistic than a description

which allows only mechanical motions, and the use of this more complex energetic

description should enable one to gain a better understanding of observed physical phe-

nomena such as thermal softening and the Austenite/Martensite transformation, the later

being more in the focus of this research. This section explains the model while latter sec-

tions modify it, the final form being the basis for the remainder of this work.

Assume the internal energy to be a state function with thermodynamic variables of

temperature and strain. For a linear elastic stress strain response, the internal energy a

20
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should be a quadratic function in strain 7 at constant temperature 9:

e=é<v,e) =§u<6> ty-a<e)12+b(e>. (3.1)

Here and throughout this manuscript the tilde superscript will be used to indicate a func-

tional dependance on strain 7 and temperature 0. From this initial form of the internal

energy we will construct the Helmholtz free energy from which the stress and entropy may

be derived. An alternative approach is to begin with the internal energy using the strain

and entropy as the appropriate thermodynamic variables from which the stress and tem-

perature follow. In this setting, any material whose internal energy can be additively

decomposed into a function of strain alone and a function of entropy alone will be referred

to as separable. This special form of the internal energy ensures that the stress is indepen-

dent of the entropy and results in the mechanical jump conditions (2.5)13 being indepen-

dent from the energy jump condition (2.5)3. Knowledge of this special form for the

internal energy function will prove useful in future development within this document.

From (2.9) the Helmholtz free energy u! can be expressed

\II = MN?) = é—efi. (3.2)

where 1] (y, 6) , the entropy of the material, is also a function of strain and temperature.

The entropy can be developed by using the following results from (3.2) and (2.9)



" — 91". (3.3)

[“—-2—(°’ti— awn 41(9) [7 a(9)1a".(e)+b(e)] (3.4)

here the superimposed prime denotes differentiation with respect to the function’s lone

variable.

Equation (3.4) may be integrated thereby giving the entropy to within an arbitrary

function of the strain

9

fitme) =j [—Lg—m— a(§)1 -u(§)lv— a(§)1a(§)+b'(§)]d—§+F(v) ..(35>

where F (7) resulting from the integration is a function of the strain 7 only. Combining

the internal energy (3.1) and the entropy (3.5) to construct the free energy (3.2) one may

then calculate the stress via definition (2.9)]

$01.9) = M9) [v—a(9)]- (3.6)

9 950] we) [Y-a(§)l -u(§)a’(§)l g -eF'm.

or in the alternative form
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H19) = €1(9)7+C2(9) —6F’(v). (3.7)

where

l31(9) = M9) 49? we)? (3.8)

- , d§ , d5
C209) — -t1(9)a(9) +0? 11 (ONO-5+9? u(§)a (i)? (3.9)

The following restrictions are now placed on the response functions so that certain desir-

able features may be incorporated into the material model. These assumptions are guided

by the desire for a model with enough generality to capture the phenomena of interest in a

mathematically tractable fashion.

(Al) The slope of the stress-strain curve is independent of temperature.

(A2) The internal energy has a linear dependance on the temperature at constant strain.

2

Formally the restriction (Al) states: —a—7t' (y, 0) = 0. Carrying out this differentiation

893v

using equations (3.7) and(3.8) leads to

d2

—2
F(y) = Cl’(0) = x = constant. (3.10)

dt
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After performing the necessary integration, the expression for F (7) is found to be:

2

F(y) = gnaw}. (3.11)

Equations (3.8) and (3.10) yield: )5 = (1(0) = 316016)) -9Itt' (5) %),where upon

9

rearranging one finds

a

x = -I u’(§)d—§. (3.12)

From (3. 10)-(3. 12)

x = 0. 11(9) = u = constant. PM = EH12. (3.13)

2

Assumption (A.2) states that 2-2-2 (7, 0) = 0, so that (3.13) coupled with (3.1) require

86

that the functions a (0) and b (0) satisfy

a(0) = a, 13(9) = 59+6, (3.14)

where a , 5 , and b are material constants. Inserting expressions (3.13) and (3.14) into

equations (3.1), (3.5), and (3.6) for the internal energy, entropy and stress yields

e=é(y,0)=%u(y—a)2+50+b, (3.15)
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Tl = 00“” = 51MB) +ky+k, (3.16)

t=i(y,0) =1r(y—a)—k0, (3.17)

where a, 5, b, u, k, k are constants which characterize the material.

The non-dimensionalization of the argument within the logarithmic function is

implicit in the integration of the function F(y) of (3.13)3. This can be achieved by recog-

nizing that the integration constant k may be redefined in any convenient manner. To

make this explicit, let k = - bln(6t) + k , where the normalization temperature 0‘ is

E’ E). (3.18)9. 5 6Xp(—6-

This temperature will be defined more precisely in later sections of the document. The log-

arithmic function in the entropy (3.16) can now be normalized using (3.18)

it (7. 9) = 51n(

°
.
|
<
D

)+ky+k. (3.19)

The constant k is then by definition k = k + 61MB.) , a physical interpretation of k is

ambiguous, from (3.19) one might think of it as the low entropy limit. For notational ease,

the constant a in (3.14), and contained in both the internal energy (3. 15) and stress (3. 17),

will be defined as:
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" E9 . (3.20)

Using this slight modification of the material parameters the Helmholtz free energy can be

written from its defintion (3.2) and equations (3.15), (3.19), and (3.20) as

W(7.9)=%[Y-(Y‘-ETO.)]2+56[1—ln(

°
.
|
<
D

)] —Eey—Ee+t’5. (3.21)

The stress reduces to

iota) = %W(Y.9) = utv-v’)-R(e-e'). (3.22)

In both (3.21) and (3.22) the term 7' appears, it is an “offset” strain whose role will

become more apparent later in this document.

The constitutive model for the material may now be utilized in the dynamical bal-

ance equations (2.6), which yield

(3.23)

37 42% (3.24)
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u[v—(v‘- E3)]g—f+5—= [utv— v)-m- 9)]a—V (3.25)

Egg-+£31.20. (3.26)

The above development has shown that (3.15)-(3.19) is the most general constitutive

model for an energy function of the form (3.1) subject to assumptions (A.1) and (A2).

The material parameters 1.1, y‘, 0*, b, b, k, k , which arose naturally in the construc-

tion of the above model, can be interpreted in terms of measurable thermodynamic param-

eters. First, (3.22) gives that it = a—z‘g and so 11 is the isothermal elastic modulus, which

is considered a positive quantity. Second, the specific heat for constant strain C1 is

defined (Truesdell and Toupin 1960) as

2..

JUN) _ -923!
CY-p E Y — 9392, (3.27)

so that (3.16) gives

5

Thus 5 = pC7 is a material parameter analogous to the materials specific heat, the heat

capacity, and is also a positive quantity. Third, the constant k may be interpreted in a sim-

ilar manner since (3.17) allows us to write the strain as a function of stress and tempera-
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.. lam-e")
1,9 = 5 —.Y( ) 'Y +ll+ 11 (3.29)

Choosing as a reference state 1 = 0, 6 = 0 it follows from (3.29) that if the stress free

state persists for temperatures above the reference temperature 0, then there will occur a

proportional increase in the strain, 7 (0, 0) — y (0 , 0) = Emu—29) . Thus the quantity

k/tr is the material’s coefficient of thermal expansion, which is, in general, a positive

quantity. If we denote the coefficient of thermal expansion as or , then

(3.30)9 ll

T
i
l
?
“

By definition (Truesdell and Toupin 1960) the coefficient of thermal expansion is written

or 5 $6 I , performing the prescribed differentiation on (3.28) also yields (3.30). In terms

of various derivatives of the material’s free energy, the coefficient of thermal expansion

1 32
can be expressed as or = 11%.

The parameter b interpretation is that of a contribution to the intemal energy’s

“base level”. For constant temperature the vertex of e (y, 0) is located at y = a , which

may be expressed somewhat more precisely using (3.20), the value of the energy at this

particular temperature and strain is 50 + b . Thus 13 is always an additional contribution to

the internal energy’s base level at temperature 0 , and one could let this quantity vanish

without much loss in the model.Table l consolidates the above information for the mate-

rial constants 11,7: 0‘, 5, b, k, k and provides dimensional information for these con-

stants.
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Table 1: Material parameters

 

Units in terms of

 

 

 

 

 

 

   
 

 

  

 

 

 

Material Constant [mass], [length], [time], Physical Interpretation

[temperature]

11 [mass] Isothermal elastic modu-

[length] [time] 2 lus.

7. [length] The relaxed (I = 0)

[length] strain when 0 = 9..

Normalization tempera-

9" [temperanrre] ture which can be chosen

as convenient.

6 [mass] Heat capacity.

[length] [temperature] [time]2

The ground state for the

13 [mass] internal energy.

[length] [time] 2

Product of the isothermal

E [mass] elastic modulus and coeffi-

[length] [temperature] 2 [time] 2 crent of thermal expansron.

Value of entropy when

E [mass] 9 = 0' andy = 0. [length] [temperature] 2 [time] 2    
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It will henceforth be convenient to abandon the parameters 5,12 which arose natu-

rally in the model’s development, in favor of the more common thermodynamic parame-

ters C7 and or. The free energy, entropy and stress are written out below utilizing these

parameters

2
as t 2

Vol.9) = Ll(tr-(r -a0 )) +pC e l-ln(
2 1 0

II —tt0tey—k0+b,

3note) = t>C,1n(e )+uay+k, (3.31)

inns) = u(v—r')—ua(9—9').

The reader is reminded that 0' is essentially a free parameter in this description since any

redefinition of the value for 0‘ can be compensated for by a redefinition of the values k

and y. by

.. .. .. - 9;", -

eold -) enew => kold _> kold + prln :- 5 knew ’

old

701d —) Yold - (1( 9old - 6new) 5 Ynew ‘

(3.32)
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3.2 Separable Energy

In the above analysis we have chosen to use the stain y and temperature 0 as the

relevant thermodynamic variables, whereas in a more traditional thermomechanical analy—

sis one would work with the strain 7 and entropy n as the independent variables. We now

recast the above model in terms of the strain and entropy, then the internal energy, (3.15)

may be expressed

§(Y.9) = 5(7.é(Y.Tl)) = é(v.n). (3.33)

assuming that one may invert the entropy function f] (y, 0) for the temperature:

6 = 0 (y, 11) . Using (3.16) one finds that the temperature as a function of strain and

entropy is given by

ln(%) = Tl-lla'Y-k

0 pCY

where upon inverting

6 (7,11) = e'exp("—’—“—°-‘1Ll-‘). (3.34)

PC,

Thus by substituting from equation (3.34) into (3.33), the internal energy may be

expressed as a function of the strain and entropy. An analogous procedure can be per-

formed on the stress, the results of these operations gives
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* at: 2 t __ ._~ A

e = é(y,n) =L2-1(y—(y —0t9 )) +pCYO exp(n—E%Lk)+b, (3.35)

‘Y

I = Wm) = u(7—r‘)—ua9’[exp(%)— 1]. (3.36)

‘Y

Equation (3.35) demonstrates that if the coefficient of thermal expansion or vanishes

(or —> 0) then the internal energy can be written as the additive combination of a function

of the strain alone and a function of the entropy alone, i.e.

é (7,11) = 3(7 —y’)2 + pC e'exp('li‘) +13 (or = 0). (3.37)
2 7 pC7

Recall that (3.37) is the special form of the internal energy that we termed separable in

Section 3.1. If the internal energy is separable then the equations governing the mechani-

cal evolution of the body are independent of those controlling the thermal evolution (Cou-

rant and Freidrichs 1956). Since this decoupling between thermal and mechanical

processes will play a significant role in this research, we temporarily proceed by develop-

ing the associated material response functions under this specialization. Setting or = 0

the stress and temperature reduce to

em = 3%étm) = rue—v").

_ 3~ .. : 11:3
9(11) - Eaten) - 0 exp( pC‘Y )
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In this specialized form the equations of motion (3.23)-(3.25) reduce to

8y _ 3v _

- —

p'a‘i - Isl-a; (0t - 0) 9 (3-40)

" 11;]2 3'1 _. _
0 exp( PC, )at — 0 (or — 0). (3.41)

Since the normalization temperature 9. need not vanish, one draws Otexp( 12);?) at 0

“r

and (3.41) reduces to

@ = o (a = 0). (3.42)
at

which, when coupled with (3.38), gives rise to

39 _ -
ill—t _ 0 (or — 0). (3.43)

Thus, in the absence of discontinuities such as shocks, (3.43) shows that boundary value

problems which have isothermal initial conditions will proceed isotherrnally. Furthermore,

considering this special (or = 0) case, the entropy for each particle will persist from the
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initial state.

From (3.39)-(3.41), it is seen that if the internal energy is separable, then the gov-

erning equations for the body simplify into two distinct sets of governing equations, one

being (3.39) and (3.40), which are a purely mechanical in nature, i.e. they only involve the

velocity and strain fields, the other set is (3.42), which govems the thermal evolution

within the body. For materials with such a separable energy one could envision boundary

value problems in which a specific thermomechanical problem is posed and from the

above results we see that the mechanical fields develop independently of the thermal

fields. For such boundary value problems, the mechanical fields being independent of the

thermal fields, the investigation can completely ignore the thermal evolution which occurs

and concentrate on the purely mechanical problem.

3.3 Characteristies and Riemann Invariants

It is observed that the governing equations(3.23)-(3.25) are a system of homoge-

neous quasi-linear first order partial differential equations in terms of the three indepen—

dent field quantities: v, y and 0. One may derive a different yet equivalent set of

governing equations by use of the method of characteristics (Renardy and Rogers 1992).

This technique yields an alternative set of governing equations which are linear combina-

tions of the original system of equations, such that the dependent variables in each result-

ing equation are differentiated in the same direction in the (x,t)-plane. The directions of

differentiation are called the characteristic directions or characteristics of the system, and

the alternative equations are the characteristic equations of the system. In general this
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method of construction (Renardy and Rogers 1992) proceeds as outlined in the next para-

graphs.

Consider a system of first order partial differential equations written in the form

AUX+BUt = C. (3.44)

where the column vector U consists of the unknown functions to be determined, and A, B,

and C are the coefficient matrices, which may be functions of x, t, and the components of

the vector U, but not UK or Ut. In this study U = [7, v, 0] T. The characteristic directions

and equations for (3.44) are obtained from the solutions to the eigenvalue problem

AT(A-AB) = 0, (3.45)

where the scalars A are the eigenvalues for the above problem, and the column vectors A

are the left eigenvectors for the system. The eigenvalues it. are the characteristic directions

for the original system of equations

3:1. 3%)

For each eigenvalue the associated eigenvector A is used to determine the characteristic

equation by forming linear combinations of the original system in the form
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ATAUX+ ATBUt = ATC, (3.47)

where the dependent variables in the resulting equation are all differentiated in the same

direction, the directional derivatives being the characteristic directions of the system.

3.3.1 Separable Materials

We begin by considering the method of characteristics for a material having a separa-

ble energy. We use our original set of PDE’s (3.23)—(3.25), setting or = 0 , the goveming

equations are then

17:?!
at 8x

EV- 3)! = 495E 41;; (a 0) (3. s)

t 36 _ * 8v

11(7-7 )fi +13%; — 110-7 )5;

Analyzing the system of equations (3.48) it is not immediate that the mechanical field

quantities are decoupled form the thermal field quantities. However, by recasting the sys-

tem of equations using the method of characteristics, the temperature is shown to decouple

from the strain and velocity. Proceeding with the method of characteristics for the above

case in which or = 0, produces an alternative system of governing equations, the charac-

teristic equations and the characteristic directions of the original system. Written in matrix

form as in (3.44), where the vector U = [7, v, 0] T , the governing equations are now
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l 0 0 Vx O —l O vt 0

O u 0 YX + —p 0 0 VI = O (a = 0) -

(rt-7*) 0 0 f), _0 410—7 )-pC1 _e,_ 0

Performing the calculations described above, the characteristic equations and characteris-

tic directions are found to be:

d0 dx
— = _ = .4dt Oon dt 0, (3 9)

((1:0)

FL" E97- 2‘- fl(“fl/gm — Oon dt — :t p' (3.50)

The system of equations (3.49)-(3.50) is composed of a characteristic equation, which is

the left equation of either set, and the associated characteristic direction, the right equa-

tion. Equation (3.49) was to be expected since it was derived in an alternative manner, see

(3.42). Along each characteristic direction it follows that the associated characteristic

equation may be integrated, providing an algebraic relationship along the characteristic

direction

0 = constant ong—J: = 0, (3.51)

(0:0)

3 = 91‘: J9 2vxj;7 constant on dt :1: p’ (3-5)
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the constants of integration in the above equations are known in the literature as the Rie-

mann Invariants of the system (c.f. Renardy and Rogers 1992). For ease of notation we

introduce the material constant

C = .lll/p, (3.53)

which is the acoustic wave speed of the material, this allows (3.39) to be expressed as

v :1: c7 = constant on 31—: = :|:c. (or = 0) (3.54)

Through the use of (3.52) one can calculate the strain and velocity fields independently of

the temperature field, and vice-versa. In fact from the above results it is seen that all

motions which begin from a constant temperature proceed isothermally, if the formation

of shocks are excluded. Thus if or = 0 then the mechanical and thermal evolution of the

material proceeds independently of one another.

Consider an initial-boundary value problem such that the above set of characteris-

tic equations hold. If the initial-boundary data is given then the Riemann invariants can be

calculated along the associated characteristic directions. One could then proceed with the

initial-boundary value problem and formulate a set of algebraic equations relating the Rie-

mann invariants in different regions within the domain, where the different regions are

connected along one or more of the associated characteristic directions. Pence in his inves-

tigations (l991a,b) demonstrated the use of this technique in formulating families of solu-

tions for a set of problems under this purely mechanical framework.
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3.3.2 Nonseparable Materials

Consider now the more general problem in which the thermal-mechanical

responses are coupled, from the earlier development this occurs when the coefficient of

thermal expansion does not vanish, at at 0. The method of characteristics will now be

developed for this case. The equations of motion in terms of field variables 7 ( x, t) ,

0 (x, t) and v (x, t) are found by inserting the constitutive response,(3.15)-(3.21), into

(3.23)-(3.25), and using (3.53)

i=9:
at 8x'

c237 2 86_3v

“axCOLE—x-EI’

c(7- (7——oze))g"+ca =c2((v—v’)-a(e-e’))g"—x.

(3.55)

(3.56)

(3.57)

The first step in finding the characteristic directions and equations is to cast (3.55)-(3.57)

     

inmauixform

r'
1 _ .. _

1 O O vx 0 _1

0 c2 -czot Y, + ‘1 0

t g.
2 It at:

_c2((7—7 )—a(e—e )) o o _ _6,_ _0 —c (7—(7 —ae )) 4:1

0

0

-

   

ll

C
O

.58)

as before the characteristic directions and equations as well as the eigenvalues and eigen-
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vectors for are to be determined. Performing the necessary calculations one finds that the

characteristic equations and directions are

d" 0, (3.59)

4 2 2 2
’2 cade 2d7 2d0 dx / c019

i —. —— —= _= —. 3.60c + C7 dt+cdt cordt 00ndt ti 1+ C1 ( )

Equation (3.59) is equivalent to requiring that a particle’s entropy remain unchanged dur-

 

ing smooth processes. This can be shown by differentiating equation (3.16) with respect to

time and comparing the result with

_-__ it- d_x_
— +pc adt —0 on dt —0. (3.61)

One can integrate the expression (3.61) along its characteristic direction and arrive at the

conclusion that a particle’s entropy is conserved along its characteristic direction. This

constant would be one of the Riemann invariants for this thermomechanical problem, i.e.

)+ pc2a7 + k = constant on _d_x = 0. (3.62)
2

' (II
n = fi (7. 9) = 9Cyln(

O
D

The wave speed in (3.60) is no longer constant, as in (3.52), but now is dependent on the

material’s temperature. It is seen that the wave speed is a monotonically increasing func-
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tion of the temperature for the model under consideration here. In general equations (3.60)

and (3.46) cannot be integrated, and hence the other two Riemann invariants are not

known in advance. However, it is possible to calculate these two Riemann invariants if the

initial data are specified in a particular manner. Since the knowledge of these invariants

will enable us to construct a solution to the problem defined in Chapter 6, the discussion of

this special case will be pursued in the following paragraphs.

Consider the problem just outlined above and in addition suppose that the entropy

is initially constant on a region contained within the domain. As a result of equation (3.62)

the entrOpy within this region is constant for all time. Under these assumptions we may

manipulate (3.61) and find a relationship between 7 and 0 in this same region

d7 _ _ C1 99 dx -
a _ czaedt on dt — 0. (3-63)

Since 1] does not vary in the region for all time we can substitute from (3.63) into equa-

tions (3.60), resulting in

4 2 C 4 2 2 2

i’cz+caegv_ 27 [c2+c—a6:lg—0=0 ond—x==t:c ’1+c__0t6. (3.64)

C1 t 9C a C7 I (1! C1

The two equations (3.64) may now be integrated along their characteristic directions to

 

produce two additional Riemann invariants, the results of which are shown below:
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d>(9) —<I>(O)

<b(9) +<I>(O)

 iv—A/EYPO (9) + d) (0) ln( II = constant, (3.65)

on

 

2 2
dx_ core
a —=t=c (1+ C7 , (3.66)

where

I C

<r>(e) = 04-712. (3.67)

cor

In general, if the assumption of constant entropy is not met, then integration of equations

(3.64) is not possible and the results (3.65) need not hold.

The form of the characteristic speed in (3.66) shows that it is monotonically

increasing with temperature 0 and coincident with the isothermal sound speed only in the

limit 6 -> 0. This can be viewed as the adiabatic correction to a purely mechanical iso-

thermal theory (in which the sound speed is formally temperature independent). Presum-

ably an adiabatic correction to an isothermal theory with a temperature dependent sound

speed would behave similarly. A familiar example is provided by flow in a compressible

fluid (Landau and Lifshitz (1987), Whitharn (1974)), where the sound speed is, in general,

given by Jill—ll: where p is pressure and p is density. For a polytropic gas, the sound speed

in an isothermal setting follows from the ideal gas law p = Rp0 , where R is the ideal

I
p

where l = CP/Cv = 1 + R/Cv , Cp and Cv give the specific heats at constant pressure

gas constant, as c a ./R_0 . For adiabatic conditions, the entropy Cvln( 3) is constant,
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and volume. This gives the adiabatic sound speed as J? = JIRO .=. cadiabatic . Thus

2

= c 1 + 33—9 , which displays a similar temperature dependance to the adia-

Cvc

batic correction of isothermal sound speed.

cadiabatic

3.4 Multiphase Materials

We now broaden the class materials considered to those which allow for the exist-

ence of different phases and the transformation between phases. At each point within the

body the material is said to occupy a phase, this being determined by the value of strain

and temperature at that location. In light of the previous derivations, consider a multiphase

material for which each distinct phase can be modeled using the Helmholtz free energy

function (3.21) developed earlier in this chapter. For first order phase transitions it is

_ required that the free energy be a continuous function of strain and temperature, but its

derivatives may suffer discontinuities. Begin the construction of the multiphase model by

assuming that the internal energy, stress, entropy, and free energy functions in any phase

has the form as provided by equations (3.15)-(3.21). Assume for generality that there are it

possible phases and that from (3.21) the free energy in phase i is

.2
.. PC? at t 2

v,(7.e) = Th-(n-aie )] +,sc,ita[1.rn(e )] — pcizai97 — 12,0 +131. (3.68)

Thus each phase is characterized by material constants ci, 7:, bi, 5,, ki, 12,, and the normal-

ized temperature 0‘ is chosen to be the same for all phases. The relations (3.32) between
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the material parameters It , 7‘ and 0*, ensures that there is a no loss in generality in

requiring 0‘ to be the same for all phases. A slightly modified form of thefree energy

(3.68) can be written which displays its “potential well” structure

2 2 2

_ pCi t t 2 0 pCi (Xi * 2

WM) = -2—[7-(7,+ot,(e—e ))] +pCYi0[l—ln(?)]——2—(6—0) (3.69)

2 as 2

pc,(a,e) +62 -= ~

-(pci0ti7i +ki)0+ 2 i.

At a fixed temperature 6 it is seen from (3.69)that the free energy is a quadratic function

in strain 7, and the associated energy {iii (7, 0) may be thought of as a “potential well”,

whose strain-vertex is located at 7 = 7: + ori(0 - 0.) . The location of each of these verti-

ces changes as the temperature varies (the wells movie up and down). By definition a first

order phase transformation process that advances through equilibrium states requires that

the free energy be a continuous function during the phase transition. Therefore for a first

order equilibrated transformation, say between phase—i and phase-j, it is required that

\l’i - ‘I’,- = 0-

Consider a material which has n phases, then at each set of temperature and strain,

(7, 0) , there are n values of the free energy iii (7, 0) i=l,...,n. The minimum value of the

collection of free energies it}, defines the energy minimal phase-i associated with the pair

(7, 0) . This energy minimum implies a phase indicator function I, where

(IE [Ln-.11] =1(7.9)).

1(7: 9) 3 $1”, 0) (Yr 9) = mini=1,uqni’i(yv 6) .
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From this discussion it is evident that a particular set (7, 0) exists for which two distinct

phase’s free energies will have equal values. The collection of these sets may be thought

of as curves in the (7, 6) plane where the different phase’s free energy functions inter-

sect. This gives rise to an intersection strain?“ = 7L]. (0) , the strain 7M. (0) at temper-

ature 0 where the free energy between phase i and j have the same value. One may think

of this as that level of strain where the potential wells intersect. This intersection of free

energies naturally leads to a method of determining which phase a material would inhabit

given a value of (7, 0) . If one considers the principle of energy minimization as the crite-

rion for selection between two phases, the intersection strain indicates that point in (7, 0)

where two phases would exchange favorably, and the possibility of a phase change exists.

For the material represented by (3.69) two distinct possibilities for 7i, J. (0) exist:

one in which ci ¢ cj and that for which ci = c). . When such intersections exist, the former

case, in general, yields two roots for the intersection strain, while the later yields a single

root. This discrepancy between the number of roots is simple to understand. Recall for a

fixed temperature that the free energy is a quadratic function of strain, and when the wave

speeds are not equal then the curvatures of the two free energy functions are not equal.

Because these curvatures are not the same, the quadratic nature of the two free energies

functions gives rise to intersections which occur at two different locations (real roots) or

which do not intersect at all (imaginary roots). However, when the wave speeds are the

same, and thus the curvatures are equivalent, then there is at most one location where the

two free energies intersect.
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A direct calculation yields the two intersection strains for ci at cj

l

3(6) (232(9) 9(9))2
7,,,-(e)=‘; 1:9“ ”'7 . (3.70)

(ci —cj) 2p(ci2-cj2)

where

a 2 * 2 s 2 2 *-
.-.-.(0) = (ej7j -ci7i -t-(0tjcj —0tici)(0—6 )),

c: 2 2 . .. 2 s 2 s 2 s 2 r t-
.: (9) = 4p(ci —cj)(2(bi—bj) +p(ci7i -cj7 )—2p(orici7i -0tjcj7j )6 +

p(0ti2ci2.y’2 _ “icfr'he‘z + 2p (c1, — cfi)e(1—1n(3,))— 2 (iii - 121-)9 ).

0

The other case ci = cj produces the single root

A A 2 $2 .2 ~ ~

_, 2 b-—b- + c . — . -2 k-—ks 0mm): (, 9967,71) (. ,)+
2 ,_ , , (3.71)

2pc (7, —7,- + (ai-ajHO—G ))

6 2 e e t 2 2 $2 2 e2 :2

2p(Cyi—Cyj)0(l-ln(;))-2pc (cti7i -orj7j)0 +pc (ori7i —otj7j )0

2pc2(Y: —7: + (oni —aj) (9 - 9') )

For future reference we define phase-l, index i=1 in equation (3.69), as the parent phase.

The material model will now be restricted such that phase-1 has a free energy that is sym-

metric with respect to the strain for a fixed temperature. Formally, this assumption is

stated:
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(A3) Phase-1, the parent phase, has a free energy it'll which is symmetric with respect

to the strain 7 at fixed temperature 0.

Satisfaction of assumption (A.3) gives

7: + «1(9— 9*) = 0. (3.72)

Since the temperature 9 may vary, this requires that or 1 = 0 and 7: = 0. Therefore, in

the parent phase the coefficient of thermal expansion vanishes and the reference state is

strain free. Furthermore, since a zero value for the coefficient of thermal expansion repre-

sents a material which has been deemed separable, implying that the mechanical equations

of motion decouple from the equations of thermal evolution, the parent phase material

response is referred to as separable.

Henceforth it will be assumed that the bar is composed of a two phase material,

one being the separable parent phase defined in (A.3), the other phase being the more gen-

eral material, i.e. of the nonseparable type, also calledfitlly thermal. Formally we express

this assumption:

(A.4) The number of phases will be restricted to two, which we will call phase-l and

phase-2 (phase-l being the parent phase).

Together (A3) and (A.4) state that the bar consists of a two phase solid, the two phase’s

having different thermomechanical properties. The reference state for the parent phase
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was defined to be strain free, and for notational convenience the offset strain in phase-2 is

designated 7" a 7;. Figure 3.1 displays the two phase material’s free energy functions for

constant temperature, as mentioned earlier these two functions can be visualized as dis-

tinct potential wells. Each vertex can be thought of as that energy’s ground state, since it is

the minimum value for that energy. Shown in Figure 3.1 are arrows located at the vertex of

each well, these arrows are to indicate that the vertices are not stationary but may change

positions depending on the value of the temperature 0.

3.4.1 The ground-state equivalence temperature

We define the ground-state equivalence temperature as that temperature for which

the w- value of the free energy vertices, or ground states, have the same value. At all other

temperatures the vertices involve different \y- values, and thus one phase has a free energy

ground state whose w- value is less than the other. Thus a ground state equivalence tem-

perature separates temperature intervals associated with a natural change in stability of the

ground states. To inquire further into this issue we construct the function AV (0) which is

defined as the difference between the free energy vertex in phase-2 and that in phase-1

AV (9) 5 “’2' (3.73)
vertex 1 IVGTIBX

In phase-2 the free energy vertex is located at 7 = 7. + a2(0 — 0.) , while in phase-l it is

at 7 = 0, hence AV (0) isexpressed
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2a2

AV(0) = _pc2012 (9 9'2) +p(C72 —C,,)e[1—1n(-9,)] (3.74)

e

c a0) ,.

(—pc2a27 +k2-k1)0+p—i(—2—2-——--+62—b1.

From the freedom inherent in selecting the normalization temperature 0‘ (3.18), the nor-

malization temperature is now chosen as the ground-state equivalence temperature. This

choice of 0* requires that AV(0‘) .-:- 0 , which in turn provides a quadratic equation that

0 must satisfy

*2

0+  

.1 ~ ~ :1- 2 A A

2(“CW—C71) ~pc§0t27 —k2 +k1)0 + 2 2(b2-b1) = 0. (3.75)

pczor2 pczot2

Since, in general, there are two roots for equation (3.75), there exists two ground-state

equivalence temperatures. Solving (3.75) for 0. yields

t__1 3 ~ ~ e

0 = 2——i(p (Cyz—C71) - pc§a27 — k2 + k1) :1: 9 , (3.76)

pczaz

where

l

at 1 e ~ ~

6 = ——((p(C,fl—CC71) —pc§az7 —k2+k1)2—2pc2a2(62— 61))2.

pczot2

The model naturally gives rise to phase transformations provided that 9. is a real quantity

and we henceforth only consider parameter values for which this is the case. For conve-
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nience, the two ground—state equivalence temperatures are distinguished from one another

based on their relative values, i.e. 9: < 6; . This ordering depends on the relative values of

the material parameters.

From the ordering of the ground-state equivalence temperatures, three distinct

temperature intervals naturally arise: 9 < 6: , 6: < 9 < 0; , and 9; < 6. One of the phases

will have the lower energy ground state in the two intervals 0 < 0: and 9; < 0 , while the

other phase will have the lower energy ground state for the interval 0: < 9 < 6;. Table 2

summarizes the preferred phase for each of these intervals.

Table 2: Temperature intervals for preferred phase

 

 
 

 

 

 

Temperature interval Phase with lower energy ground state

9 < 9: phase-2

e: < e < e; Phase'l

* phase-2
92 < 6   
 

To verify this table note from an asymptotic analysis of AV (9) for "6 — d.“ » 0 , that the

quadratic component of AV (0) is the dominant term. Under such conditions AV (6)

behaves like a parabola, and the value of this function is either positive or negative

depending on the coefficient of the quadratic term, which according to (3.74) is

—pc§a§/2 < 0. Therefore phase-2 has the lower ground state for temperatures which are
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much greater or less than both 9: and 6; , which is precisely the two intervals 9 < 9: and

92<9.

Figure 3.2 schematically shows how the two free energy functions behave for the

different temperature intervals. Note that the ground-state equivalence temperature 9:

separates a low temperature stable phase-2 material with a shape strain 7‘ + a2(6 — 9:)

from a high temperature stable phase-l material with no shape strain. This type of material

behavior is similar to Austenite/Martensite systems.

It will prove useful for latter purposes to display the ground-state equivalence tem-

peratures for two special cases. The first case being when the specific beats are equal.

C72 = C the ground-state equivalence temperatures (3.76) then simplify to
71’

0' = _;_2(pc§a2y'+122—E2);to‘, (3.77)

2 2

l(C22=C,“)

(_3'*_1(2w~~2 22~~)2
— _2§ pczaz’y +k2—k1 -2pC2a2(b2—bl) .

pc20t2

Note that 9‘ is real if 52 — 51 is negative, or if 52 — 51 is positive but sufficiently small.

The other case is where both phases are separable and thus a2 = O. Multiplica-

tion of (3.75) by a: followed by letting a2 —) 0 yields a first order equation for 0‘ . Thus

one of these two roots 6“ becomes infinite as a result of the singular perturbation. For-

mally expressing (3.76) in the form
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2 * - ~

3 C —C — c or -k +k ..

9 = (N 72 7‘) 22227 2 1)(—1i9), (3.78)

pc20t2

2 2 l

(I). _ l- 2pc20t2(b2—b1) 2

 

2 it ~ ~ 2

(p (C72 — C12) - pc2a2y — k2 + k1)

performing a Taylor series expansion for é about a2 = O, and collecting similar powers

*

of a2 , gives the two different series expansions for 0 :

  

.. 2 12 —ii — C —C " " _"
9 ___ [2 1 92(272 71)]+2l+ b2 191?. ~ +O(a2),

pc20t2 “2 P(C72-C71)-k2+k1

and

:- 6 —5

e =- 2 11 T+0(a2) 

Here, as is standard, 0(z) denotes a quantity that, after division by z , is finite as z —-) O.

In the limit as a2 -) 0 there are two distinct cases depending on the relative values

of material parameters, the results are

 

91 = —oo

(«2 = 0) (3.79)

.. B -A
91 = 2 bl;
 

Q

62:00
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Application of this result would in general restrict attention to a limited temperature range,

and the material parameters entering the model would then be chosen as the basis of this

temperature range. In particular, temperatures 6 are regarded as positive on some absolute

temperature scale. However in this section, and from time to time in what follows, it is

convenient to treat 9 as an arbitrary real number purely for the purpose of clarifying the

global mathematical structure of a physical description that would certainly be localized in

an application setting. This is the sense in which results like 9: = —oo should be consid-

ered.

3.4.2 The Latent Heat

Any heat produced or absorbed from the transformation between two equilibrated

phases is the latent heat of transformation AT. The latent heat of transformation from

phase-2 to phase-l is expressed

AT = %[fi2(y',e')—fil(o,e’)]. (3.80)

In particular for (It > O , p > 0 it follows that the transformation from phase-2 to phase-1

is exothermic if AT > O and is endothermic if AT < O.

From definition (3.80) and the existence of two ground-state equivalence tempera-

tures we conclude the existence of two latent heats, one for each ground-state equivalence

temperature. The general expression for the latent heat can be computed from (3.19)
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9‘ 2 ' ~ --

M = 3[P°2°‘27 +k2-k1] .

which motivates the definition A.“ and 1.1.2 where

9i 2 .. - _, 2

7m = flpczazr +k2—kl] (1:1,2). (3.31)

The difference between the two latent heats is

29‘ 2 . ~ ~

AAT = 11.2—le = T[pc2a2y +k2 -k1] ,

which does not, in general, vanish. Note however, that A)».r = 0 when 6“ = 0 which

corresponds to the existence of a single ground-state equivalence temperature. We hence-

forth use the generic terms 9’ and L2 , where the specific ground-state equivalence tem-

perature and latent heat is inferred, when necessary, from the appropriate temperature

interval under consideration.

3.5 Summary of the Two Phase Material Model

For future reference the free energy, entropy and stress response for both phases

are given below in terms of the more familiar thermodynamic variables, these relation-

ships between the different forms having just been developed. These forms will utilized

throughout the remainder of this document.
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Phase—2 material:

2

.. C t at: 2

W2(7,9) = 922[Y_(y +a2(0-6 ))] +52e[1—1n(

‘
D
J
C
D

)] (3.82)

 

pczaz 2 pc2(a 9:32

— 32(9-9 ) —(pc§a2y +k2)6+——2—§2——+B2,

132(7) 6) = bzln(§) + pc§a2y +122 , (3.83)

762 (y, 6) = pcgw - 7') - pc§a2(6 —- 9‘). (3.84)

Phase-1 material:

pc2
in (7. 9) = 7172+528[1-1n(%)]—E19+61, (3.85)

6

.. 9 ..

111(9) = Blln(e—;)+k1. (3.86)

761(7) = pcfy. (3.87)
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In the more familiar thermodynamic variables p, hi, 7., 91C a2, 27,121, 52 these func-
Yi’

tions are

Phase-2 material:

~ '1 at: t 2 2

W2(Y.9)'= {(7—(7 +a2(9—9 ))) +pC229[1-1n(-.)] 2 (9—9)

.2

.. a6 .
_[kl+pA—r]e+u_2_(_2__2_+b

 

If 2 2’
31. (3.88)

- .. p ..

71201.9) = PC721n(2;)+l12%(Y-Y )+ . +kl’

6 9

home) = u2(7—7')-u2a2(e-e') .

In the Phase-l material:

{4'11 (7, 0) = E2372+pC716[1—ln(-:;)]—k10+bl,

(3.89)

{11(0) = pCYlln(%)+kl ,

Q

i, (7) = 1117.

Although we have not as yet defined a phase selection criterion, given some (7, O) , we

now state that the intersection strains 71 (6) (3.70)-(3.71) define the upper/lower limits of

strain that the material can support in a particular phase given a temperature 0 . This
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assumption is based on the principle of energy minimization as was discussed earlier in

calculating (3.70)-(3.71).

We now turn our attention to the stress response for the two phase solid and restrict

attention to a single intersection strain 71. Then from (3.84) and (3.87) one obtains

’t'l(y,6) = pcfy forphase 1:O<y<yl,

(3.90)

%2 (7. 6) = pciw -7') — pegazm - 0‘) for phase 2:7 2 71,

The characteristic feature of the stress-strain response (3.90) is that it is not monotonic.

For a fixed temperatures the graph of the material’s stress strain response appears like Fig-

ure 3.3. Figure 3.3 shows for r e [12“, 1”] that the strain does not have a unique value.

One can imagine a bar composed of such a two phase material and loaded so that the stress

- 1: e [‘m' 1M] , from Figure 3.3 we see that the deformation of the bar is not unique, and

for such a load the bar can accommodate a variety of different deformed configurations.

Thus under a prescribed load 1: e hm, 1M] one may only state the possible maximum

and minimum deformations.

All of the concepts and ideas concerning the thermodynamic model presented thus

far draw upon many of the sources reviewed in Chapter 1. For example, Abeyaratane and

Knowles (1993a) have presented a model for the free energy similar to that outlined

above. Their model is a three phase solid for which one phase is unstable while the other

two are stable. Comparing the free energy models presented in this document with that in

Abeyaratane and Knowles (1993a), one finds that the functional dependance on the two
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field quantities of strain 7 and temperature 0 is similar. Narnely for both models the free

energy in either phase can be expressed in the potential well form

2.
“((7,9) = A(y-B(6))2+C(9-9*)2+D9(1—ln(e ))+E9+F, Gen

where 9‘ is the ground-state equivalence temperature and A, C, D, E, F, are constants and

B (0) is a function. All of these involve various combinations of the material parameters

tr , C7 , 0t , 7. , l3 , 121. Each phase may have different material parameters A, C, D, E, F

and function B (9) associated with (3.91). For the model presented in this document, we

have assumed a general form for the two phase solid, where the two phases have distinct

material parameters pi, C72, a2, 52, k2 . Abeyaratane and Knowles consider a model which

is somewhat less general, the material parameters pi, Cvi’ ori are the same for both of their

phases, e.g. the isothermal elastic modulus in phase-l is equal to that in phase-2,

111 = tt2 = tt . Table 3 is a list of the various material parameters in phase-l, A-F, for

both the model presented in this document and that in Abeyaratane and Knowles. Table 4

is an analogous presentation for phase-2.

 

1.Remll from tlnt the isothermal elastic modulus and the acoustic wave speed are related through

ci = pi/p , and for this comparative analysis we choose to use the form of the free energy which

contains the isothermal elastic modulus.
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Table 3: Material parameters in phase-1 for w (y, 9) .

 

 

 

 

 

 

 

 

Parameter Abeyaratne and Knowles (3.88)1

E h
A 2 2

13(9) 01(6) — 9') o

uaz
C ‘7 0

D pr pCY1

E o -12,

F 0 r3,     
From Table 3 we note that, besides ”r at 1.12 as mentioned above, the difference in the

function B(6) and the parameter C stems from assumption A.3, i.e having chosen phase-1

to have a separable form: or] = O. The difference in the parameters E and F arises

because we have not assumed that the value of the free energy in phase-l is null at the

transformation point (7‘, 9').



 

 

 

 

 

 

 

 

 

 

Table 4: Material parameters in phase-2 for w (y, 6) .

Parameter Abeyaratne and Knowles (3.76)1

E '2
A 2 2

B(9) 7‘ +or(6-6') 7* +0t2(6—0‘)

2 2

c -a 123.2
2 2

D pC7 pC72

.. A

E p}? {k1 + p f]

9 G

< 6')2[.1 0t 2

F -pA.T —2—iz-— 4' b2    
We see from Tables 3 and 4 that A, B(0), C, and D for both models are essentially the

same, the only difference being our assumption that the two phases do not have the same

parameters tr, 0:, C7. The constant B and F are somewhat different Thus we see from this

comparison that the model presented in this document is of a similar character to that

developed by Abeyaratne and Knowles, however the differences just discussed will play a

significant role in the future development

After developing their model, Abeyaratane and Knowles (1993a) demonstrate its
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use in a series of numerical simulations for quasi-static processes. The simulations con-

sider the hysteretic response due to stress cycling at constant temperature, temperature

cycling at constant stress, and a combination of the two. This same model is used in a later

paper, Abeyaratane and Knowles (1993b), where fully dynamical adiabatic motions are

considered. They consider a Riemann problem for subsonic phase boundary motion, and

they investigate solutions for both a single moving phase boundary and that involving

three moving phase boundaries. However, a major simplification in their model is made

for the dynamical analysis, namely the coefficient of thermal expansion is assumed to van-

ish. This assumption, corresponding to a separable material, greatly reduces the complex-

ity of the model and reduces its ability in capturing many thermal effects by limiting all

coupling between the temperature and mechanical fields to the jump conditions.

The work presented in this document has the effect of extending that of Abeyara-

tane and Knowles in a number of directions. We do not make the assumption that both

phases possess the same material parameters. Moreover, we investigate the problem for

which the primary concern is the analysis of effects when the thermomechanical coupling

constant (12 is a finite quantity. In so doing we clarify the relation between the purely

mechanical description and the fully thermomechanical description, especially as regards

the dynamics and kinetics of phase boundary motion.

To make this explicit, it will be convenient to introduce a two part decomposition

of the field variables into a component which is completely independent of a2 and a sec-

ond term which is the a2 correction. Thus for the generic field variable f the two part

decomposition is defined



f = f°+r°‘2, (3.92)

where

f° = lim f, (3.93)

a2—>0

r“’ a f — r° (3.94)

In general, f is a function representing the fully coupled material, which collapses to f0

when considering a separable material. The function f“2 is seen to provide the bridge

between these two materials. It is to be emphasized that this so far generic function f

could represent quantities that are known a—priori, such as the free energy function. Alter-

natively f could represent quantities that are determined as part of the solution to a prob-

lem, such as the field variables (7, v, 6) that describe physical processes. In the latter

case, an exact determination of the function may not be possible in a fully coupled mate-

rial, but the exact determination may be possible in the reduced problem involving a sepa-

rable material. In such cases i is unobtainable, whereas r° is obtainable. This, in turn,

renders f“2 unobtainable. In such instances it will be extremely useful to understand the

leading order effects of thermomechanical coupling by investigating f0L2 in the small

a2-limit. In such instances, the perturbation expansion for f“2 becomes a natural object

of study.
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fixed temperature 9

V1

W2

   
Figure 3.1 This figure is a schematic representation of the Helmholtz free energy function

\v (7, 9) plotted against the strain 7 at a constant temperature 0. Shown are the two free

energy functions w] and W2 , each represents a distinct phase of the material.The arrows,

which are shown at each of the vertices, acknowledge that the location of these vertices

shift as the temperature changes. At each temperature there exists a level of strain for

which the values of the free energies are equivalent, this strain is designated 71

 



 

 

 

  

 

6 > 9*2

Mme) W2 is preferred

‘Vl W2

TY> 0‘1? 6 (6‘2
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W1
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Y

W(Y.9)

W1 + 2
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1112 is preferred

>

'Y    
Figure 3.2 This schematically shows how the two free energy functions interrelate for the

three temperature intervals. In the intervals 6 < 0: and 6 > 6; the phase-2 free energy has

a lower vertex and in this sense is the preferred phase. For the interval 0; < 6 < 0; phase-

1 is the preferred interval.



 

i
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10(6)
Fixed temperature 6

  

 

    
Figure 3.3 The stress-strain response for fixed temperature for the two phase material con-

sidered in this document Both phases have a linear stress strain response, but the overall

stress strain response is non-monotonic. From this figure one observes that the strain is not

unique for a prescribed stress I e [12“, 1M] , and thus the bar can accommodate a multi-

tude of difl'erent deformed configurations.



4. The Initial Boundary Value Problem

Thus far we have derived a specific constitutive model for a two phase solid, and

stated a set of assumptions which we wish to work under. Certain features of the model

were then analyzed in order to gain insight into its nature. In this section of the document

we define a specific initial boundary value problem for the material with this two-phase

constitutive response. The problem to be described is similar to the one considered by

Pence (l991a, 1991b), who investigated a purely mechanical problem involving a set of

two equations for the two unknown field quantities y and v , the temperature field being of

no concern to that investigation. However in this thesis the major thrust is the consider-

ation of thermal effects.This motivates a more detailed study of two-phase equilibrium irri-

tial conditions, which becomes a major focus of this chapter (Section 4.4). A wave pulse is

then introduced into this system by imposing an end displacement (Section 4.5). In later

chapters we explore the interaction of the pulse with the phase boundary.

4.1 Governing Equations

To begin we state the governing equations of motion for the body in each of the

two phases:

(4.1)

9
.
4
.
?

9:
1
2
’
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; = of?“ cfotig—g (4.2)

89
c.12—[y (y:—i"ote)]gY+Ca— =cf[(y—y:)—ai(9-e*)]g—: (4.3)

(3336+ 2 3y

e‘a “i“‘atzo “-4)

where i=1 or 2 and in the parent phase (11 = O and y: = 0 , and in the second phase

ot2 at o and y' = 72. The set of equations (4.1)-(4.3) for the unknown field variables

7, v, 6 is a system of quasi-linear partial differential equations, and in general is hyper-

bolic in nature. It is well known that hyperbolic systems with initially smooth fields may

at later times break into solutions that are discontinuous (Lax (1973), Renardy and Rogers

(1992)). Thus given a set of smooth initial conditions the system (4.1) - (4.3) may admit a

solution for the (7, v, 6) fields which is discontinuous at later times. Here a set of initial]

boundary data will proposed and the subsequent initial boundary value problem will be

investigated. If solutions can be determined then inequality (4.4) is used to certify admis-

sibility which may either eliminate or place restrictions on the range of the solutions.

4.2 Initial Configurations

Attention is restricted to an initial state with uniform temperature 6 that contains a single

phase boundary, the initial fields 7 (x, 0) , v (x, O) are taken to be piecewise homoge-

neous. The initial position of the phase boundary is designated to be so. In the initial con-



68

figuration the material to the left of the phase boundary (0 < x < so) is in phase- 1, and the

material to the right of the phase boundary (80 < x < L) is in phase-2.

For the two phases the constitutive response is not the same, and thus they have

different sets of governing equations; the significant difference is that the coefficient of

thermal expansion a1 vanishes in phase-1, which decouples the mechanical evolution of

the fields from the thermal evolution. Mathematically the two distinct phases will interact

across the phase boundary through the Rankine-Hugoniot equations (2.7). In what is to

follow the initial temperature and displacement field within the bar are prescribed, this

type of initial boundary data is referred to as a hard device.

4.3 Static Configurations

Consider the initial configuration where the strain, velocity and temperature are

prescribed. We define an initial configuration to be a static configuration if the initial

velocity everywhere within the bar vanishes and if the initial temperature field is constant

throughout the bar. Thus an initial piecewise-homogeneous configuration that is static and

contains a single phase boundary is summarized by

71 O<x<so,

= = 4.'Y(X,0) 700‘) [72 so<x<L, (5)

v(x,O) = 0,

. (4.6)

0 (x, 0) = 9.
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For a single phase boundary to exist it is required that the strains 71 and 72 satisfy 71 < y]

and 72 > 71 , where 71 = 71 (0) is the intersection strain introduced in Section 3.4. The

strain field (4.5) is compatible with the displacement boundary conditions

u(0,t) = —80

u(L,t) = 0

for t < 0 , (4.7)

provided that 50 is suitably restricted. To obtain this restriction, consider the average

strain 70

(4.8)

From (4.5) and (4.7) the initial displacement field is then

u(x,0) = 1100!) = Y1x+ (72-71)so-72L on0<x<so, 49

‘100‘) = 72(X-L) ODSO<X<L.

(-)

The initial location of the phase boundary s0 is then, according to (4.7)1, given by

_ (72 '70) L

s —-——where < < . 4.10)

° (72-7,) 7‘ 7° 72 (

The restriction that the phase boundary is constrained to the interior of the bar, 0 < so < L,
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requires that the displacement of the left end of the bar, 80 , satisfy Lyl < 80 < L72.

In summary, the temperature 0 and the displacement 50 of the left end of the bar

are prescribed in a static configuration, while the right end of the bar remains fixed. To

ensure that a single phase boundary is present within the bar requires that the initial dis-

placement 80 be restricted to a range of values 80 e [Lyp L72] . In general, for a given

0 , the values of 71 and 72 may vary independently (over some range) while still satisfy-

ing this criterion. Thus specification of 0 may in general be compatible with a two param-

eter family of strains (71, 72) for the initial configuration. Clearly the inability to specify

the strains (71, 72) indicates that the initial location of the phase boundary cannot be

determined from 0 and 60 alone.

4.4 Equilibrium Configurations

Within this framework an initial equilibrium configuration is an initial static con-

figurations which also satisfies the equations of equilibrium

3
4
3
’

=0 and [[1]] =0. (4.11)

Recall that the [ [-] ] notation denotes the jump in the enclosed quantity across the phase

boundary. The initial conditions (4.5) and (4.8) can satisfy the additional equilibrium crite-

ria (4.11), but in so doing the possible range of the initial state of strain will be restricted.

The initial strains in a static configuration already satisfy requirement (4.11)], but (4.11)2

generates an additional relationship between the initial strains (71,72) and the temperature
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6 in the initial configuration:

pcf'yl = pc§(y2—y‘) - pcia2(0—0‘). (4.12)

From (4. 12) it is seen that in an initial equilibrium configuration, two of the three quanti-

ties in the triplet (72, 72, 0) are independent, the third may be explicitly calculated from

the requirement of equilibrium (4.12). Alternatively, at any temperature 0 there exists a

one parameter family of strain pairs (72, 72) that satisfy (4.12). The set of initial states

(71’ 72, 0) which satisfy the criteria of an equilibrium configuration may be categorized,

and in what is to follow three special types of equilibrium configurations are defined for

later use in this study.

4.4.1 Maxwellian Configurations

Considering the set of equilibrium states it is natural to inquire what initial states

are energy minimal. For a bar which can support more than one phase, Ericksen (1991)

investigated the issues of equilibrium, energy minimization, and stability for both the hard

and soft loading devices. For the hard device (the problem under consideration here) he

demonstrates that minimization of the Helmholtz free energy requires that the bar must be

in an equilibrium configuration, i.e. minimization of the free energy dictates that the fields

in the bar must satisfy (4.6) and (4.11). Since this process does not define an unique equi-

librium state, further investigation into the absolute minimizer amongst all the possible

equilibrium candidates lends itself naturally to defining a stable equilibrium state. Requir-
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ing that the equilibrium state be the minimizer for the set of equilibrium states, and thus

the most stable, defines the so called Maxwellian state. Mathematically the definition of

the Maxwellian state is an equilibrium configuration which also satisfies the condition

[[W]] = {(0)1171} (MX). (4.13)

For notational purposes when identifying the Maxwellian state the abbreviation (MX) will

be used. To the extent that (4.12) and (4.13) provide two restrictions on the triplet

(71, 72, 0) one may surmise that a Maxwellian configuration is a one parameter family of

initial states. That is if any one of the triplet (71, 72, 0) is specified then the remaining two

field quantities are determined from (4.12) and (4.13). Thus, at some fixed temperature 0

one anticipates that the strains 71 and 72 (and hence the stress 1:) are determined for the

Maxwellian state. We shall denote these strains and stresses as y?“ , yrx and IN”.

Interpreting equation (4. 13) graphically one observes that, in a Maxwellian config-

uration, the Maxwell strains are the two strains joined by common tangent line to the free

energy as depicted in Figure 4.1. Figure 4.1 shows the graph of the free energy along with

the common tangent line which together graphically identifies the location of the two

strains.

By definition (2.9)1 and (4.13) an analogous definition of a Maxwellian state is

72

j to. 6) d1 = ((1)) [(111 (MX). (4.14)

‘Yr
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from its graphical construction (4.14) is the so called equal area rule. The equal area rule

defines the Maxwell stress as that level of stress such that shaded area under the stress-

strain curve but above the line I = 1"“ is equal to that area below the line 1: = “CMX but

above the stress-strain curve. This is depicted graphically in Figure 4.2.

For the two phase material considered here a short calculation finds that there are

two pairs of Maxwell strains if cl ¢ c2. The double roots occur because, as recalled from

Chapter 3, the case c 1 at c2 gives rise to two intersection strains (a result of the Helmholtz

free energy function being quadratic in strain) and each of these will in general support the

tangent line construction. The general results for the Maxwell strains (cl at c2) will not

be required in what is to follow and thus are not presented.

We will, in what follows, focus particular attention on the case where the acoustic

speeds are equal (cl = c2 = c) . This simplifies much of the resulting algebra. In this case

there is exactly one intersection strain (3.71) and hence a pair of Maxwell strains (one

strain for each phase)

 

2 8 .. ,. * .

2 (82 - bl) - p121. + pc2a2(20 — 0) + 2p (C72 - C12) [1 — ln(-9-2D0

e e

Zocztv' + a2(6 - 9'» ’

(4.15)

MX A Mx A 9' a. t

72 (9) =7, (0)” +a2(0-9).

At this point it is useful to discuss the differences in equilibrium states between two

Classes of material: a separable material and a fully coupled material. Continuing with the

Case cl = c2 , we now carry out the two part decomposition (3.92) for the Maxwell
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strains. First that part of a Maxwell strain which is independent of a2 is determined by

letting 012 —> 0 in (4.15), this process yields

. _ C —C " .
Y¥x0(e) = (52 26.1) _( 722 ,2 yl)[[ A"I” *_1]+ 111(2)]9 9

PC 7 C 7 ‘ (Cw—C709 9

   

(4.16)

MXO * MXO A “

72 (9) = 71 (9) +7 -

From (4.16) it is interesting to note that, when the MX equilibrium state is specified, the

difference in the two strains as a2 —) 0 is just the transformation strain 7'. Both strains ‘

display a complicated logarithmic temperature dependance.

The second part of the two part decomposition (3.92), for the cl = c2 case, is to

determine the Q2 dependance for the Maxwell strains. Using results (4.15) and (4.16) in

“‘2 MK“:

(3.93), one finds the expressions for 7;“ and 72 are:

(12(6 — 9')[pé[:—T— (C12-C11) [I - ln[§)]) - (62- 61)]

2 t I A ‘
l Apc 7 (y +a2(0-9 )) “goats —e)

+

MX a

71 a2 (9) =
 

 

2(7’ + ot2(é — e'))

(4.17)

MX A MX A a e

72 %(9)=71 “’(6)+a2(9-6)

The strains (4.17) also show a complicated logarithmic temperature dependance. The dif-

ference in these strains is seen to be the value a2(0 — 0.).

For future reference it will also be useful to obtain the Maxwell strains for the

c1 = c2 case with the additional condition that the specific heats of the two phases are
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equal. Letting C2,1 = C72 = C7 in (4.15) leads to

A . .. A .

2(b2—b1)+2p[c2a§0 ——T]0-pc 0120

6
 

2pc2(y' + o2(é — (9'))

(4.18)

MX " MX A 'F A It

72 (9) = 71 (9) +7 +a2(9-0 ).

For this special case, the temperature dependance of the strains is no longer logarithmic, in

fact the numerator is quadratic while the denominator is linear in the temperature 0.

4.4.2 Mechanically Neutral Configurations

The second canonical equilibrium configuration is the mechanically neutral state,

for notational purposes it will be abbreviated (MN). Along with the condition of equilib-

rium (4.12), a mechanically neutral state must satisfy the additional requirement

[[8]] = ((1))[17ll (MN) . (4.19)

Note from (2.5)3 that this condition must be satisfied for dynamical processes whenever

s a: 0. However if s = 0 then (4.19) need not hold, this accounts for the possibility of

equilibrium configurations that are not mechanically neutral. One would thus anticipate

that an initial state satisfying (4.19) would allow for a relatively smooth transition from

the initial configuration into a dynamic state.

From its definition in terms of an additional restriction on the two parameter fam-
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ily of initial equilibrium states, one anticipates that a mechanically neutral state also

defines a one parameter family of initial configurations. Namely, by specifying any one of

the triplet (71, '72, 0) the criteria (4.19) coupled with the conditions of equilibrium should

determine the other two. Thus, analogous to a Maxwellian configuration, for an initial

equilibrium temperature 0 the mechanically neutral criteria (4. 19) determines the two

strains '71 and 72.

An alternative definition of a mechanically neutral state, in terms of the free energy

and entropy, can be derived via (3.2) and (4.19)

[[v]l—<<t>>[[7]] +értn11 = 0 (MN). (4.20)

If we assume the initial configuration to be mechanically neutral then the triplet

(71, '72, 0) must satisfy both

PC pc22
_2_Z(72 (7 —a26)) - yf2+p(c2 —Cyl)é+b2—b,=

l 2 * 2 * 2 (4°21)

5(P°2(72 " 7 )‘ PC2°‘2<6 ’ 9 )4” 93171) (72 ’ 71)

and condition (4.12). If the initial temperature 0 is specified, then calculating the roots for

produces two pairs of roots for the case c1 at c2. Like the MX state, the MN state has two

roots because of the quadratic nature of the free energy function and the difference in cur-

vatures cl ¢ c2. Furthermore, the general results for the MN strains (cl at c2) will not be

required in what is to follow and thus are not presented.

Turning our attention to the more tractable case of cl = c2 , we calculate the
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mechanically neutral strains when the two phases have a common acoustic wave speed,

and like the MX case this calculation yields only a single root for both phases

2pc2(7*—a20*)

(4.22)

MN A MN A 9' A It:

72 (9) = 71 (0)+7 +a2(6—6 ).

From (4.22) both MN strains are seen to vary quadratically with the temperature 8. It is

interesting to note that the difference in these two strains is '7‘ + a2(0 - 0‘) , this differ-

ence changing linearly with the temperature 0.

Continuing with the case cl = c2 , it will prove useful to determine the two part

decomposition (3.92) for the MN strains (4.22). Proceeding with the decomposition, let

a2 —9 0 in (4.22) and simplify the resulting expressions to find

. 8—6 + C —C 6Y1114mm) = ( 2 1) 92(222 71) ’

pc 7

(4.23)

72"”(6) = 7'1"”(6) +7'.

As in the MX case (4. 16), the difference between the two strains (4.23) is the transfonna-

tion strain 7. . Also note that the temperature dependance in both (4.23)” is linear.

Continuing with the two part decomposition for the MN strains (cl = c2) , that

part Of the strains which depend on the (12 coefficient is found by using definition (3.93)

with results (422) and (4.23). Carrying out this calculation yields
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,. ae’6—6+c—cé azéyrlerazw): 2 [(2 1) P( 72 71) ]+ 2
 

9027‘” 4129‘) 2(7 ‘0‘29 )

(4.24)

MNo.2 A MNoz2 . A a-

72 (6) = 71 (9) +oc2(9-6 ).

It is seen that the difference between these two strains is a quantity which is linearly

dependent on the temperature.

Like the Maxwellian case it will also prove useful to calculate the MN strains for

the c1 = c2 case when the specific heats of the two phases are equal. By requiring that

C71 = C12 = C7 in (4.22) the MN strains simplify into

MN . _ 2 (52 431) + oripczé‘)2

71 (e) "" 2 . . 9

2pc (7 —a29 )

 

(4.25)

72‘" (6) = 7'1“" (6) + y" + «2(6 - e').

For this case the MN strains (4.25) are seen to differ by the temperature function

7' + a2(é — 9‘).

4.4.3 Entropically Neutral Configurations

The third type of canonical type of equilibrium states is the entropically neutral state,

Which will be referred to with the abbreviation (EN). An initial equilibrium configuration

is defined to be entropically neutral if it satisfies the additional criteria
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[[11]] = 0 (EN) . (4.26)

From (4.26) an entropically neutral configuration requires that (71, 72, 6) satisfy

. .. p .

pC721n[§] + pcfiazwz — y )+ (T)? = pCYlln[§-] (4.27)

and (4.12).

Like the Maxwellian and mechanically neutral initial configurations, an entropi-

cally neutral initial configuration defines a one parameter family of initial states, by speci-

fying any one of the triplet (71, 72, 6) the conditions of equilibrium and (4.27) determines

the other two. However, unlike the other two canonical equilibrium configurations, for the

case cl at c2 the entropically neutral criterion yields a single root for the two strains

('71m (6) , 75'" (6)) for a given initial temperature 6.

Once again we consider the simpler case of equal wave speeds cl = c2. Under

such an assumption (4.27) gives rise to an algebraic equation for which YEN can be deter-

mined, this result coupled with the equilibrium equation (4. 1 DZ allows for the calculation

EN

0f 71 . The expressions for the entropically neutral strains are:

7f" (6) = ——21—[(cn—cyl)rn[§]+g—I)-a2(é—e‘),

c (12

(4.28)

EN .. EN .. . . '-

72 (9) = 71 (6)+'Y +(12(9—9 )

It is interesting to note that these equilibrium strains are of a different a2 dependency than
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either the Maxwellian and the mechanically neutral cases. From (4.28) it is seen that the

entropically neutral strains are singular in the a2 —> 0 limit, whereas for both the mechan-

ically neutral and Maxwellian cases a finite quantity results from the limit process. The

EN strains also display a logarithmic dependance on the temperature 9 , and thus have a

complex temperature dependance.

For the entropically neutral configuration the two part decomposition (3.92) yields

some interesting results. Still considering the cl = c2 case, we first investigate the case of

a separable material. Thus let a2 —-) 0 in (4.27), and note that this process removes all

dependency on the deformation in condition (4.27). Carrying out the details of this limit-

ing process provides a specific temperature for the entropically neutral configuration

 

. .. A.
GEN = 9 exp[ , T ]. (4.29)

o (Cw-C72)

First, note that the temperature éENO depends only on specific values of material parame-

ters, and thus is a constant value. Second, when a2 = 0 , the entropically neutral strains

are found via the equations of equilibrium, criterion (4.27) plays no part in their determi-

nation. Together these strains forrn a one parameter family. Thus for a separable material

the entropically neutral case is quite different than either of the other two canonical con-

figurations. Recall that the MN and MX configurations generated a one parameter family

of strains based on specifying an initial temperature, whereas for the EN configuration the

initial temperature is specified via (4.29), while the accompanying two strains form an one

parameter family of solutions.
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Continuing with the focus on materials where cl = c2 , we consider the case when

the two phases have identical values for their respective specific heats, then (4.28) simpli-

fies to

M
2 t

0 a29

 7:5”(6) = - -a,(é—e'),

(4.30)

Y§N(é) = ny(é) +y* +a2(é-0‘).

Under this restriction the strain 7f“ (6) has a linear temperature behavior, while if one

inserts 7f” (6) into (4.30)2 the strain 'yg‘N is seen to be the constant value

EN :- AT

72 = Y _ 2 1r ‘

c «29

 

4.4.4 Omnibalanced Configurations

All three of the canonical equilibrium states just introduced (MX, MN, EN) are

characterized by a set of strains (71, '72) once the temperature 6 is specified. Thus the ini-

tial temperature 6 parameterizes three equilibrium states. In addition since (4.13), (4.19)

and (4.26) are distinct equations, these special types of equilibrium states will not, in gen-

eral, coincide. However there may exist special temperatures for which these states do

coincide. These special temperatures, if they exist, will be called omnibalanced (OB).

Here it is significant to note that an omnibalanced initial state implies any two of (4.13),

(4.19) and (4.26) which in turn requires satisfaction of the third. Thus at the special omni-

balanced temperatures (if they exist) there exist equilibrium states that are simultaneously

MX, MN and EN. Finally, an omnibalanced state, being the intersection of two one
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parameter families, is an unique initial state (71,72, 9).

To formulate the equations which define this configuration, recall that the OB state

must simultaneously satisfy the conditions for the MX, MN and EN configurations. Thus,

one can choose any pair of strains for either phase-1 or phase-2, say MX and MN, and the

difference between theses two strains is required to vanish. Such equations define the OB

temperature.This process of obtaining an equation for the OB temperature can proceed

using six different pairsrygdx = vim , 7'1“ = 7?" , 72m = 7113" plus the three others

that are generated under 1 -) 2. Once an OB temperature is determined from one of the

six equations, the strains (vim, 7?) can be calculated by inserting this temperature into

one of the three equations (MX, MN, EN) for the strains (71, 72). When considering the

fully thermal material the calculation of the OB state is algebraically intractable due to the

fact the temperature is involved in a logarithmic manner in the strains for both the MX and

EN configurations. In fact this algebraic problem persists to the case when the acoustic

wave speeds are the same for both phases. Figures 4.3 and 4.4 are graphical representa-

tions of all three canonical equilibrium strains versus temperature for both phase-1 and

phase-2 respectively. These figures demonstrate that for both phases the three strains inter-

sect at two locations, and it is precisely these locations that represent the omnibalanced

state.

However there are two specific cases for which this state can be found, the first

being when the acoustic wave speeds and the specific heats are identical for both phases,

the second case is when the acoustic wave speeds are identical and both materials are sep-

arable.

Consider first the case when cl = c2 and C71 = C72 , then one may determine
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the OB state from the strains (4.18), (4.25) and (4.30) and the knowledge that at an OB

temperature all three sets of strains must be equivalent. Using this criterion for the calcula-

tion we find the OB criterion provides two sets of initial states, this OB configuration is

 

- -03

603 = e'-7—iY—,

0‘2 0‘2

v?” = v’- ’2 .. (4.31)
azc 0

on on -on

71 = 72 'Y r

where

 

 

i013 _ Jazpe' [- Zpkrw‘ — aze‘) + 2or29t (51 - $2) + orzempczwm2 — 069.5]

orzpcem

From (3.76) and result (4.31), we see that there exists two OB temperatures for each of the

ground-state equivalence temperatures 6. . Since, in Chapter 3, it was shown that there

exists two ground-state equivalence temperatures 6: and 6; , given by (3.76), this implies

the possibility of four OB temperatures.

Consider now the second case, when both phases are a separable material so that

(12 = O with cl = oz. The OB temperature is now the entropically neutral temperature

BEN (4.29), since by definition the OB state must satisfy all criteria which define the three

canonical equilibrium configurations. The strains are found using this OB temperature and

the expression for either the MX strains (4.16) or the MN strains (4.23), since both MX
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and MN criteria must be satisfied. To summarize, this OB state consists of

 

. . A90130 = 9 exp[ ‘ T J

9 (cw—cw)

 52—bl+p0‘(C72—Cyl)exp[e, CAT C )

v?“ = ( t" 72’ .(a2=0) (4.32) 

This case differs from the previous OB results (4.31), because now there exist only. two

OB temperatures, one for each value of the ground-state equivalence temperatures (3.76).

With result (4.32) we end any further analysis and development of the OB state.

However, there remains a number of open issues concerning the canonical equilibrium

states. Most notably would be a study of the correspondence between the transformation

and OB temperatures, which should include an analysis of any symmetry relationships

which might exist between the four OB temperatures and the two ground-state equiva-

lence temperatures. However, the main focus of this research topic concerns dynamical

motions and not equilibrium states, and therefore our study of the equilibrium states ends

here.
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4.5 Initial Disturbance

So far we have required the bar to be in an initial equilibrium configuration con-

taining a single phase boundary at so. A special set of boundary conditions will now be

introduced such that a wave pulse will emerge from the left boundary (x = O) and travel

into the body so as to eventually reach and interact with the phase boundary. The wave

pulse originates in phase-1, the phase in which the energy is separable.

The dynamic boundary conditions to be described are active for the period

0 S t 5 To. During this interval the left boundary (x = 0) undergoes a smooth ramp-type

displacement to a final value 5,; , while the right boundary (x = L) remains fixed. Fur-

thermore, for all time t > To it will be required that the displacement at each end remains

fixed. This set of initial and boundary conditions corresponds to controlling the displace-

ment and temperature of the ends of the bar, and are commonly referred to as a hard

device.

Mathematically this set of boundary conditions is expressed

I

—so— (5 —so)— for osrsro,
u(0,t) = F To

—5F for t>To, (4 33)

u(L,t) = O for tZO.

From the prescribed displacement field (4.33) the corresponding velocities on the two

boundaries during the interval 0 5 ts T0 are
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-[5F—50]/T05Av OSISTO

for ,

v(O,t) =[ () t>T

(4.34)

v(L,t) = O fortZO.

The conditions described by equations (4.33) and (4.34) are such that during the interval

0 < ts To the left boundary x = O undergoes the ramp deformation u (0, t) , while

simultaneously the boundary x = L remains fixed. The deformation along the lower

boundary generates a wave pulse of width cho , which subsequently propagates into that

part of the bar which is in phase-l.

Turning attention to the entrance of the initial wave pulse into the body, the wave

pulse’s velocity and strain can be mathematically related to the adjacent equilibrium con-

ditions using the Riemann invariants in phase-l. For the period 0 5 ts T0 , equations

(3.49) and (3.50)2 must be satisfied between the initial equilibrium state and the dynamic

state within the wave pulse. More precisely, equation (3.49) restricts changes in entropy,

and states that the temperature within the region occupied by the incoming wave packet

remains equal to that in the equilibrium state 8 . The'second equation (3.50)2 produces a

relationship between the initial equilibrium conditions and the strain and velocity fields in

the incoming wave. Writing out this second equation gives:

c171 = Av-I-cl'yw ong-:=-cl. (4.35)

Here Av is the velocity and 7“, is the strain carried by the wave pulse, the velocity Av is
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defined by (4.34). The strain 7“, can be determined by using (4.35) since the strain 71 and

the velocity within the wave pulse Av are prescribed.

For future convenience we define the driving strain increment A7 to be:

A7 a ‘yw — 71 , (4.36)

from (4.35) and (4.36) we find the relationship between the driving strain increment and

prescribed velocity Av is

A7 = $31. (4.37)

Here the driving strain increment A7 can be thought of as the forcing input to the initial

conditions.

Using a similar analysis as that leading to result (4.35), it can be shown that once

the initial wave has passed through a particular point in the bar, that point retums to its

equilibrium configuration, and remains in that state until another disturbance occurs.
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Fixed temperature 9

when W

  

 

  
 ' >

71Mx 72m 7  
 

Figure 4.1 This figure is the Helmholtz free energy function \y ('y, 0) at a constant tem-

perature 6. Shown is one pair of Maxwell strains 7:“ and 7;“. These strains are deter-

mined from the requirement that an equilibrium configuration satisfy the criterion

[ [w] ] — ((1)) [ [y] ] = O. Schematically this criterion is shown by the line of slope

( (1)) which is tangent to both free energy functions, the points of tangency identify the

locations of the Maxwell strains.
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mom
Stress response for constant temperature

phase 2

  

     
Figure 4.2 Shown is the two phase stress strain response at constant temperature. The

‘Yz

Maxwell criterion, It (7, 6) dy — ( (1)) [ [y] ] = O , can be interpreted graphically as the

71

equal area rule. This rule states for the Maxwellian configuration that the area below the

phase-l stress-strain curve but above the line tMX is equal to the area above the phase-2

stress strain curve but below the line 1'“. On this figure the equal area rule identifies one

pair of Maxwell strains 711m: and 7;“.
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Figure 4.3 This is a schematic representation for the three canonical phase-1 strains for

different temperatures. The mutual intersection of all three strains is the location of the

.03

omnibalanced temperature 6 . Here the acoustic speeds are the same cl = c2 = 2 , and

thevaluesforthematerialparametersarep = 1,6‘ = 1,7. = 2,C.fl—CYl = 3,

a2 = 1,21. = 5.
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Figure 4.4 This is a schematic representation of the three canonical phase-2 suains for dif-

ferent temperatures. The mutual intersection of all three strains is the location of the omni-

.03

balanced temperature 6 . This diagram is the complement of Figure 4.3 in that all the

. material parameters remain the same as in that figure.
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5. The Interaction of the Initial Wave Pulse with the Phase Boundary

In Chapter 4 a set of initial and boundary data were described, these conditions

generate a wave pulse from the left boundary. The pulse travels at speed cl from this

boundary into the purely mechanical phase (phase-l). At time t = so/cl the pulse will

reach the phase boundary and interact with it in some way. In general, the initial interac-

tion of the wave and the phase boundary will set the phase boundary in motion while giv-

ing rise to the possibility of a wave being transmitted into the phase-2 region and a wave

being reflected back into the phase-1 region. The complexity of such a problem may be

understood if the reader recalls similar problems occurring in elastic materials involving

the reflection and transmission of a wave striking a boundary, and the subsequent genera-

tion and interaction of reflected and transmitted waves (Achenbach 1990).

Pence (l991a,1991b) proposed a similar initial boundary value problem in a two

phase elastic solid. In his study Pence considered an infinite layer of material which under-

went simple shearing motions. Furtherrnore, the material model Pence studied was purely

mechanical in nature and thus did not consider any contributions of thermal effects.

Although geometrically a bar undergoing longitudinal deformations is different than

shearing within a layer, mathematically the governing equations for the two different

problems are identical. Like Pence we assume that the interaction of the wave pulse and

the stationary phase boundary will set the phase boundary in motion, and that the phase

boundary will come to rest when the encounter is over. In the following subsection we will

compare and contrast the problem Pence investigated with the one under study here, so as

to clarify the role that thermal effects play in such a problem.The intention is to identify

92
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the similarities and differences between the purely mechanical problem and the fully ther-

mal problem to be considered later.

5.1 The Wave Pulse-Phase Boundary Interaction

In order to explore the temperature effects in the fully thermal problem, while uy-

ing to keep the problem under consideration here somewhat similar to Pence’s, the follow-

ing assumptions are made:

(A5) The initial wave pulse is generated before any interaction with the phase

boundary.

(A6) The interaction of the initial wave pulse with a phase boundary will not lead to

the creation of additional phase boundaries.

(A.7) The phase boundary will not encounter either of the boundaries x = 0 or

x = L during the interaction process.

(A.8) During the interaction the phase boundary will move with a constant speed

ds
8:...

dt'

(A.9) After the interaction the phase boundary comes to rest.
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Assumption (A.5) is satisfied if the time period in which the pulse is generated To is

restricted such that To < so/c1 . Assumption (A.6) requires that the material to left of the

phase boundary (0 < x < s (t) ) always remains in phase-l, while the material to the right

of the phase boundary (8 (t) < x < L) is in phase-2. It then follows that the strain field

must satisfy:

y(x, t) <71 for O<x<s(t),

(5.1)

y(x, t) >71 for s(t)<x<L.

Also, from (A6) the stress fields on either side of the phase boundary are of the form

t = pcfy on0<x<s(t),

(5.2)

‘C = pc§(y-y‘)-pc§a2(O-9') ons(t) <x<L.

According to assumption (A.6) the strains 7“, and A7 , given by (4.36) and (4.37), are

restricted in their range of values to the intervals 7w < 71 and A7 < 71 - 'Yr . We also note

for the interaction to end, and thus satisfy (A.9), that the speed of the phase boundary is

bounded by the wave speed on either side 3 < min (c 1, c2 ) .
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5.2 The Purely Mechanical Problem

In Chapter 3 it was demonstrated that the coupled therrnoelastic energy will sim—

plify into a separable energy in the limit a2 —) 0 in which case the thermal and mechani-

cal fields uncouple, yielding a purely mechanical problem and an associated thermal

problem. The purely mechanical problem is totally independent of all thermal consider-

ations, and within such a theory one can in principal solve for the mechanical field quanti-

ties,y (x, t) and v(x,t) ,without knowledge of the temperature field. However, the

converse is not true, in order to determine the temperature field one must have some

knowledge of the mechanical field quantities. Thus, one must first solve the purely

mechanical problem and then the thermal problem.

Pence (l991a,1991b) investigated problems similar to the one posed above, but

within the framework of a purely mechanical setting, so that no thermal effects were con-

sidered. At this time we wish to extract certain key results of his work that will prove most

useful in comparison with the results to be derived later in the document.

Temperature is not an issue in the purely mechanical setting, so that the indepen-

dent field variables are 7, v with the stress 1 = ‘E (y) . The notion of a separable energy as

introduced in this work was not employed by Pence. However, under the current thermo-

dynamic framework, one may classify his treatment as arising from the separable energy

function, employed here when a2 = 0 . This form of the energy function allows the con-

sideration of the purely mechanical problem, without any acknowledgment of the thermal

effects.

Starting with a stationary phase boundary separating the two distinct phases, his
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treatment introduces a similar wave pulse into the system albeit through the high strain

phase. In the current investigation the pulse is introduced through the low strain phase, the

high strain phase employed in this document has a temperature dependent stress strain law

while the low strain phase does not. By introducing the pulse though the low strain phase

we will demonstrate how one may easily solve the pulse propagation problem which com-

municates the pulse to the phase boundary, so that attention can be focused on the interac-

tion occurring at the phase boundary. Therefore, we first modify the problem studied by

Pence, where we again consider the purely mechanical problem but now introduce the

pulse into the low strain phase of the material. Henceforth, this problem will be dubbed

the purely mechanicalproblem.

The purely mechanical problem introduces the pulse through the low-strain phase;

the incoming pulse then strikes the stationary phase boundary and generates a transmitted

wave and a reflected wave. The reflected wave interacts with the incident wave in an inter-

action region. It is easily verified that this problem can be treated by following the exact

same procedures employed by Pence in his original problem, i.e. the use of Riemann

invariants between adjacent regions leads to a system of six equations. Figure 5.1 graphi-

cally depicts this situation in the (x,t)-plane. Furthermore, this figure shows the 6 distinct

regions which exist during the interaction: the two undisturbed initial equilibrium states,

the region in which the wave pulse exists, and the regions S, R and T. Region R occurs at a

later time then either S or T and thus decouples from both, reducing the number of regions

to five. Mathematically the field variables in these regions must satisfy the Riemann,

invariants (3.54) and the jump conditions (2.7)1,2.Treating the phase boundary speed as a

parameter generates a determinate system of linear equations for the field variables. Solv-



97

. . . . mech . mech .

ing this system of equations one finds the values of strain 7r and velocrty vT in the

 

 

 

 

transmitted region to be

2

c (6 -Sc )ZAY-SC (Y -Y)

Y$°b=72 1 1 1 .1 2, (5.3)
(c1+c2) (cz—s)

mech (S‘CI)ZAY+S(Yl-72):l

v = c c . 5.4

T 12': (c1+c2) (cz-S) ( )

The values of strain 7‘8”“ and velocity vi?"Ch in the interaction region are

0 2c c A +s 2c A —c -
yrsne h = 71+ 12 Y I: 1 7 2(71 72)] ’ (55)

(c1 +c2) (cl +S)

mob [- 2efAy + s (— 2c2A'y — c2 (y1 — 72))Jc1
v8 = . (5.6)

(C1 + c2) (01+ S)

Note that the phase boundary velocity s is treated as a parameter and is not specified in

the above forms, hence the nonuniqueness of solutions mentioned earlier still holds for the

slightly different problem just introduced.

The above analysis describes the initial interaction of the wave pulse with the

phase boundary. One may extend this problem to consider the case where the resulting

reflected and transmitted wave proceed through the material, eventually striking the end

boundaries, which in turn generate new reflected waves traveling back into the body. A
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similar problem concerning the hierarchy of ringing waves interacting with a phase

boundary was considered by Lin and Pence (1993a), within their study they also analyzed

the dissipation of energy resulting from a multitude of wave-phase boundary interactions.

As is well known (James (1983)) dynamical motions of this kind may involve

changes in the energy contained within the bar. Under a purely mechanical framework the

mechanical energy, E (t) , is the sum of two distinct components, the kinetic and strain

energies. The rate of change in the mechanical energy is found to be

_ d
E(t) — aF(t)-D(t) , (5.7)

where

t

F(t) = Jtt(r(h.t)>v(h.t)—i(r(0.§))v(0.§)}d§. (5.8)

O

7(8(t)+.t)

D(t) =S(t) j t(r)dr-(<t(r)>>[[vll}. (5.9)

1(8 (t) at)

In this purely mechanical setting the function F(t) represents the work being performed on

the external boundaries, while the function D(t) represents the rate change of energy due

to phase boundary motion. The expression inside the braces of (5.9) is commonly referred

to as the mechanical driving traction f (t) nub (viz. Abeyaratne and Knowles (1991)):
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h 7(s(t)+.t)

mm“ = j emdr- «em» um. (5.10)

‘r (s (t) at)

As seen from (5.10) the driving traction provides a source of information on the fields

adjacent to the phase boundary. From the definition of the mechanical driving traction the

expression (5.9) may be expressed

D(t) = s<0f<t>m°°“ (5.11)

If F (t) = O , then the second law of thermodynamics in this purely mechanical setting

motivates the requirement E < O . This gives the requirement that admissible motions must

mech

satisfy D (t) 2 O, which in turn restricts s (t) f (t) 2 0. Thus in this purely mechani-

cal setting the quantity D (t) represents the dissipation rate.

For the initial encounter calculating the dissipation rate via. (5.9) one obtains

D = {—8 [c§(c§ — S2) (7T — 72) 2 — of“: - 8.2) (”is - 71) 2] (5.12)

72

+ Jimmy-torn)

71

Furthermore, when the initial conditions are Maxwellian (4.14), as considered by Pence,

the second bracketed term vanishes and (5.12) reduces to
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D = -2118, [e§(c§—s2) (yT—yzf—cflcf—sz)(yS—yl)2] (MX). (5.13)

With significant algebraic manipulation, via. the computer program MATHEMATICA, we

express the field quantities 7r and 75 on the left hand side of (5.13) in terms of the driv-

ing strain A7 , the initial conditions, and the phase boundary speed s via. (5.3) and (5.5).

These operations give

—2£s [C§(C§ — 8'2) (YT-Y2) 2 - of“? - $2) (is -71) 2] =

(5.14)

pScfZ (Ay,$)

(c1"' c2) (c1 + S) (c2 - S)’

 

where the function 2‘. (Ay,s') is defined

2mm) ESZIZAYHCI-c2)Ar-cz(71-rz))]

—s'[2 (cl - c2) 2A72- 2c2(c1—c2) (y1 —72)Ay+ c: (71 42) 2] (5.15)

”[291C2A7((C1—c2)AY ‘C2(71"72))] -

This operation allows the dissipation (5.13) to be expressed

_ pScfZ (A7,S)

‘ (c1+c2) (cl-t-S) (CZ—S)

 (MX) . (5.16)

Requiring D 2 0 restricts s to an interval of values for each Ay. From (5.16) and the
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restriction on the phase boundary speed S < min (cl, c2) , the requirement D 2 0 implies

that

8'2 (A7, 3’) 2 O (MX) , (5.17)

and thus an analysis of S2 (A7, S) is sufficient to determine the admissible values S for

given A7 , that is the solution region in the (A7, s') -plane. Following the analysis in

Pence, it is seen that along the line S = 0 and locus of points 2‘. (A7, S) = 0 the dissipa-

tion vanishes, and thus bounds regions in the (A7, S) -plane to one sign. Figure 5.2 is a

plot of the admissability region in (A7, S) -plane for the special case where

c1 = c2 = c. Under these conditions the function 2 (A7,S) reduces to

Z(A7,s’) = —2S2cA7(71-72) —Sc2(7l —72)2+2c3A7(71—72) , (5.18)

which allows the dissipations function (5.16) to be expressed

D _ pcS [—2S2cA7 (‘Yl - 72) - 302(71- 72) 2 4’ 203137 (71 ‘ 72)]
(5.19)

2(c2 - S2)

 

Figure 5.2 also illustrates curves of constant dissipation, i.e. D = constant. However, the

requirement of positive dissipation does not yield a unique solution for the various field

quantities, but only reduces the range of possible values for the parameter s‘ for given ini-

tial conditions. In particular, if A7 > 0 then S is confined to a range of nonpositive values

where both the extreme values S = O , S = S (A7) |min give D = 0. Similarly if A7 < 0

then S is confined to a range of nonnegative values where given the boundary values
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S = O, S = s'(A7)|max givesD = 0.

To find a unique solution for the results (5.3)-(5.6) one must introduce some addi-

tional criterion. Pence (1991a, 1991b) uses a variety of different of selection criteria to

determine a unique solution. In the first paper this is achieved by enforcing various

requirements on the reflectivity versus transmissivity (a phase boundary impedance),

while in the later paper motions are determined under the extremum principle that the dis-

sipation, defined in (5.11), is maximized at each instant.

Another method for selecting physically meaningful solutions is the introduction

of a kinetic relation, this being an additional constitutive relation which relates the speed

of the phase boundary to the various field quantities on either side of the phase boundary.

This information is typically provided by the driving traction (5.11). In this purely

mechanical setting a standard functional form for a kinetic relation is

s = firm").

where ,‘F is a functional form motivated by the phase boundary kinetics.The simplest form

of a kinetic relation is that of a linear kinetic relation, which implies that the phase bound-

ary speed S is a linear function of the driving traction fun“. Mathematically this can be

expressed as

s = xfm°°", (5.20)

where x is the phase boundary mobility, a material parameter that is here assumed to be
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constant. Since D 2 0 implies 1c(fmch)2 2 0, via (5.20), this requires that the mobility K

be a nonnegative quantity. In a similar setting to that of Pence (199la,b), Lin and Pence

(1993a) utilize such a linear kinetic relation and are able to construct an implicit relation

between the phase boundary speed and the initial conditions. Furthermore, they are able to

show for infinitesimal wave pulses that the maximally dissipative solution is equivalent to

the linear kinetic relation for one value of the mobility, and that, in general, this maximally

dissipative solution is quantitatively similar to the criterion based on the use of a linear

kinetic relation.

For the purely mechanical problem, the use of a linear kinetic relation is now pro-

posed. From (5.11) and (5.16) the driving traction during the initial encounter is

 

 

2

mech p012(A7,S)

= MX . 5.21
“0 (cl +c2) (cl +S) (cz-s') ( ) ( )

Equations (5. 16) and (5.20) give rise to

2 .

Kpc‘z (M’s) (MX) , (5.22)
= (c1+c2) (c1+S) (cz-S)

which in turn provides an implicit expression for the phase boundary speed. Equation

(5.22) admits a unique solution (A7, S) for the initial encounter, i.e. given a set of initial

conditions and the mobility 1:, one can determine the phase boundary speed S via (5.22).

If, following Lin and Pence (l991a), one assumes cl = c2 = c then this implicit equa-
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tion takes the simplified form

. g _

A7 = S + c(71 72) (MX). (5.23)

rcpc2 (71 - 72) 2(02 - 92)

 

Figure 5.3 is a graph in (A7, S) -space of the linear kinetic relation (5.20) for a range of

mobilities x . .The graph also shows the criterion D 2 0 which describes the region that

contains solutions to (5.23).

For the purely mechanical problem, we have shown for the initial interaction of the

wave pulse with the phase boundary that a solution exists if the phase boundary is treated

as a parameter. Furthermore, the linear kinetic relation singles out a unique solution. At

this point we end our discussion of the purely mechanical problem and return to the fully

thermal theory we have developed.

5.3 New Features of the Fully Thermomechanical Interaction

We now turn our attention to the initial interaction of the incoming pulse with the

phase boundary under the framework of a fully thermomechanical theory. In this setting,

the problem increases in complexity from the purely mechanical theory in essentially

three ways.

First, at each point in the domain there are three field variables (7, v, 0) that must

be determined, rather than simply the two mechanical field variables (7, v) ; only in the

limit as the coefficient of thermal expansion vanishes does the temperature field decouple

from the mechanical fields.

Second, the new family of characteristic directions :1: = 0 obtained in (3.63),
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which are essentially particle paths, introduces a new region into the solution. Recall for

the mechanical theory that the interaction gives rise to 5 regions: incident wave, incident!

reflection interaction zone, transmitted wave, and the undisturbed initial equilibrium

states. In particular, a single region will, in general, encompass both transformed and

untransformed material (interaction zone if S > 0, transmitted wave if S < 0 ). In the ther-

momechanical theory this single region bifurcates into two regions (untransformed inter-

action zone, transformed interaction zone if S > 0; untransformed transmitted wave,

transformed transmitted wave if S < 0 ).

Third, in the second phase the wave speed associated with Riemann invariant

(3.64) is no longer a constant, but instead is a monotonically increasing function of the

temperature

 

(1 (220.29
x 2 2
— = =Fc 1+ .

dt 2 C72

Thus, in phase-2 the interface between two wave regions supporting different tempera-

tures need not be a contact discontinuity]. In particular, this is the case for the interface

between the T-region, arising from a transmitted wave, and the initially equilibrated

phase-2 state, henceforth referred to as the TIE; interface (Figure 5.1). Besides the contact

discontinuity, the two additional possibilities are a classical shock and the centered simple

wavefan (Whitham (1974)). A centered simple wave fan is also known as a rarefaction

 

1. To avoid confusion, we define a contact discontinuity as a discontinuous surface separating same

phase regions that travels at one of the characteristic speeds of the materialflhis definition is commonly used

by mathematicians (Smoller (1983) page 334), investigators in gas dynamics would likely call this a Chap-

man-Jouget wave (Dunn and Fosdick (1988)). In the problem under study here, the wave speed in phase-l is

given by (3.53) and so any interface between the various regions are again contact discontinuities. Across

such contact discontinuities the integration of the characteristic equations yields the Riemann invariants,

which can be used to help formulate a solution.
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wave in gas dynamics. A shock occurs if the characteristic speed associated with the right

propagating Riemann invariant is greater in the T-region than that in the phase-2 equilib-

rium configuration. In view of the temperature dependance of the speed (3.64), the shock

occurs if 9T > 0. The case of a centered simple wave fan, henceforth simply afan, occurs

when the characteristic speed associated with the right propagating Riemann invariant is

less in the T-region than that in the phase-2 equilibrium configuration. By use of (3.64) the

case of a fan occurs when 9r < 0.
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\TIE) interface

IW

t

W Riemann invariant

x 3 m... Jump condition

t
E1 . E;   

Figure 5.1 This is a graphical representation in the (xt)-plane showing the initial interac-

tion of an incoming pulse with a stationary phase boundary for the purely mechanical

problem. The wave speed of the phase boundary is assumed positive S (t) > 0 in this fig-

ure. There exist six distinct regions during this interaction: E1 & E2 are the equilibrium

configurations in phase-1 and phase-2 respectively, IW represents the region carrying the

incoming wave pulse traveling through phase-l, region R is that region in phase-1 where

the reflected wave travels, while S arises from the interaction of the incoming wave and

the reflected wave; finally region T represents that phase-2 region containing a transmitted

wave. The forward movement of the phase boundary transforms phase-2 material into

phase-1 material.
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Figure 5.2 This is a schematic representation of the solution region in the (A7, S) -plane

for the purely mechanical problem with Maxwellian initial conditions.This region is

defined by the criterion of positive dissipation, D 2 0 , thus the lines 2:0 and S = 0 pro-

vide the boundaries for the admissibility region. Also shown are curves of constant dissi-

pation given by (5.16). The values for the material parameters were chosen to be

c1 =c2 =2,p = 1,72—71 = 5.
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Figure 5.3 This is a schematic representation of the linear kinetic relation with various

mobilities x for the purely mechanical problem with Maxwellian initial conditions. The

solid line 2:0 is the line of zero dissipation ,where 2 is given by (5. 18), which divides the

plane into regions of positive and negative dissipation. Therefore, under the criterion of

positive dissipation, the line 2:0 also restricts the solution space in the (A7, S) -

planeThe values for the material parameters were chosen to be cl = c2 = 2 , p = 1 .

72-71: 5-



 

 

6.1

will

Sll't?

him

the

side

 

Cases:

a fan,

face is

Phase.

into. I

111mmL

 



6. Analysis of the Initial Interaction Region

6.1 A Method for a Solution to the Initial Boundary Value Problem

The previous development of the characteristic equations and Riemann invariants

will now be utilized in an attempt to analyze the changes in the temperature, strain, and

stress fields in the proposed initial boundary value problem. Since this method of solution

hinges on using the Riemann invariants, any restrictions necessary for the integration of

the characteristic equations to produce the Riemann invariants in phase-2 need to be con-

sidered.

In view of (A9) we note that the phase boundary may move with either positive or

negative velocity: S > O or S < 0. For those cases where the phase boundary has negative

speeds S < 0 ,the characteristic equation (3.60) may no longer be integrated to give the

Riemann invariant (3.65). Since it is desired to use the integrated form (3.65) of the char-

acteristic equations to find a solution, the problems investigated are restricted to those for

which the phase boundary has a nonnegative value. Recall for the purely mechanical case

in which a2 = 0 that this requires that A7 5 0 if the initial state is Maxwellian.

Thus, the S 2 0 investigation of the initial interaction consists of two distinct

cases: (i) the phase boundary moves with positive velocity S > 0 , and the TIE/2 interface is

a fan, and (ii) the phase boundary moves with positive velocity S > 0 , and the TI52 inter-

face is a shock. For either case, the characteristic directions and Riemann invariants in

phase-l are given by equations (3.51) and (3.52), while in phase-2 they are given by (3.62)

and (3.65). In what is to follow we investigate the case of a fan, with emphasis on how the

thermal effects contribute to differences between the purely mechanical theory and the

110
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separable and fully thermal theories. The case where the interface is a shock is discussed

briefly in Appendix B.

The solution procedure we consider consists of utilizing the jump conditions

across the phase boundary along with the Riemann invariants to produce a set of algebraic

equations. The field during the initial interaction may be subdivided into five distinct

regions centered at (x, t) = (so, 50/c1) . Locally each is wedge shaped. Each region is

characterized by a triplet of field values (7, v, 9) . These five regions are given as follows:

S°-

The incoming wave in which (7, v, 9) I = (71 + A7, —c1A7, é) . This

region occupies the wedge

_oo< 

t — so/c 1 < c1 '

The region to the left of the initial position of the phase boundary in which

the initial pulse and the wave that has reflected back from the phase

boundary are interacting. The triplet values (7, v, 0) s are as yet not

known. This region occupies the wedge

, <0. cl <

The region to the right of the initial position of the phase boundary in

which the incoming pulse and the reflected wave are interacting. This

region represents the material that changes from phase-2 to phase- 1. The

triplet of values (7, v, 0) 5° are as yet not known. The region occupies the
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wedge

/ <S. 

T- The region in which some part of the initial pulse has transmitted through

the phase boundary. The triplet of values (7, v, 6) T are also as yet

unknown. This region occupies the wedge

t—sO/c1

 S< <cT (6.1)

where the significance of CT is explained below.

132- The initial phase-2 equilibrium state in which (7, v, e) E2 = (72, 0, 6).

This region occupies the wedge

 

C <

52 t-so/cl

<00.

The two velocities c1. and CE2 that participate in bounding regions T and Fr) are defined as

follows. Since we consider the TIE; interface to be a centered simple wave fan

 

 
 CT: 2+C,
c4039 04(120

c2 “T 2+22. (6.2)

72



1 13

The existence of a fan region requires that CT < (:82 which is equivalent to 0.1. < 0. It is to

be noted that (6.1) and (6.2) give

2

czazer
C (6.3) 

S<c2 1+

72

By use of the Riemann invariants and the Rankine-Hugoniot jump conditions these five

regions can be mathematically related to one another, and it is this algebraic dependence

that we incorporate. Figure 6.1 is a graphical aid in the assembly of these equations. This

figure represents the initial interaction in the xt-plane, shown are regions R, S, 8° and T,

the initial wave pulse in the phase-1 region, and the fan in phase-2. This figure also shows

the various characteristics and Riemann invariants which link the different regions of the

same phase separated by these characteristics, as well as the jump conditions across the

phase boundary.

From assumption (A.7) it is required that regions R, S, and 8° are all in phase-1,

while T is in phase-2; mathematically these conditions may be expressed as restrictions on

the value of various strains

78 < 71’ 78° < 719 71 < 71'. (6-4)

Region R, which contains the final reflected wave, occurs later in time than either S, S, or

T,° and thus its treatment decouples from these three regions. Thus, the analysis for the

initial interaction need only consider the three regions: S, 8°, and T.
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Using the method of characteristics one may show that the fields in the regions S,

8°, and T are connected to each other by the following mathematical conditions: across the

contact discontinuity between the incoming pulse and S the field variables must satisfy the

Riemann invariant conditions (3.51) and (3.52)1, across the contact discontinuity between

regions S and 8° the Riemann invariant conditions (352)”, across the moving phase

boundary between S° and T the 3 jump conditions (2.7)].23, and across the contact discon-

tinuity between T and the initial phase-2 equilibrium state the Riemann invariant condi-

tions (3.62) and (3.65)1.

The procedure outlined generates a system of nine equations for the nine field

quantities: 78, vs, 68, 75., Vs” 08., 71, VT, 61. and the phase boundary speed S. Guided

by Figure 6.1 and the above outline, the nine equations generated by this process are as

listed.

The incoming pulse and region S:

4101+ 24?) = vs 4:17,. (6.5)

6 - Gs ..

pCYlln —, + k1 = pCYlln —.- + k1. (6.6)

0 0

Region S and So:

VS°‘°178° = vS-cl7s, (6.7)

vs.+cl7s. = Vs+c175- (6.8)
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Region T and the phase-2 equilibrium state:

ipCY21n[e

2 .. _ 6.r 2 ..

+ pc20t272 + k2 — przln 0; + pc20t27T + k2,

 —jé:2[2<r>(é) +¢(0)ln(::g; 1:23)] =

MOT) —<I>(0)
vT_J&72[2¢(eT) +<r>(0) 1n[¢(eT) +<r>(0) H, 

where

C

ch (9) = e + 712—2.

c202

Region So and T:

401-73.) = vT- vso.

-s'p (vT — vs.) = with -7') - pciazwr - 9‘) — pcfrso.

l 2 ' ‘ 2 ~ 1 2 2 .

1
* a:

§[p°iYS° + PCiwr- v )— pciazw-r- 9 )] (7T- 75.) .

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

The equations, (6.5) through (6.13), are a system of nine equations for the ten quantities
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73’ VS, 05, 780, vs., 05., 71., VT, 0T, 3' . As it is not clear as to whether a solution for this

problem exists, we propose treating S as a parameter and investigating the family of solu-

tions resulting from the system of equations and field quantities.

6.2 The Master Equation for the Initial Interaction

By treating the phase boundary speed S as a parameter the problem presented by

(6.5)-(6.13) reduces to a system of nine equations and nine unknowns. Although a simple

algebraic elimination of the various field quantities is not immediate, it can be shown that

a laborious elimination process leads to a single master equation for the temperature at

which is independent of the other eight unknown field quantities. The other unknown field

quantities can then be written in terms of the temperature 9.1. and the phase boundary

speed S. Therefore, if a solution to this master equation can be found then we have deter-

mined one family of solutions to the system of equations. The reader is directed to Appen-

dix A for a discussion of the actual reduction technique.

The master equation for 61 is the nonlinear algebraic equation

 

2

C (Sc -c) 6

/C72(cl—S)fi(0.r) 72 l 21n[-;f)+c§or201.=

 

cgct2 9

c (. 2) (6.14)

.. sc -c ‘ .

./C72(c1- s) o (e) “'2 2‘ 2 ln[§;] + c§ot29+(scl — cf)2Ay + s'c1(71-72) .

C20‘2
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where

 15(9) = 2<l>(e) +o(0)1n[d’(°)"¢(0)].
<1>(0) +d>(0)

(6.15)

<I>(0) = 9 +

S
h
l
g
n

N
9
3
0
.
N

A closed form solution for this equation is not obvious.

Equation (6.14) may be viewed as an algebraic equation for the temperature 01..

Values 91. satisfying this equation will be a function of the incremental forcing strain A7

and the phase boundary speed S. Thus a complete knowledge of the initial and boundary

conditions does not provide sufficient information for the determination of a unique tem-

perature 91..

Once a value 0.1. satisfying (6. 14) is obtained, it can be shown that the other eight

field quantities (73, vs, 08, 75., Vs” 08., 71., V1.) will satisfy the nine governing equations

(6.5)-(6.13) if and only if they are given by the following expressions:

C A

- _rz 3
7T - Y2+c§azln(9r)’

(6.16)

VT = Jaime-F) 4(6)]. (6.17)

_ .. C "

73. = (91" S) 1[./C_~,2(‘3(91~)- 0 (0) ) + cl (71+ 2A7) + {72 + 7131n(§-)]],

czar2 T

(6.18)
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C A

vs. = $.71;[jc_n(o(eT) —13(9))+S[72+
é

-—72-ln(9—)]- S (71 + 2A7)], (6.19)

c2012

95. = Tl (9T) +T2(0T) + [T3 (9T) +T4(0T)]T5 (9T), (6.20)

vs = vs“ (6.21)

75 = 75.. (6.22)

as = a. (6.23)

The expression (6.20) for OS. makes use of the auxiliary functions:

2

pc C “

T1(6T) 5%.[_2_2[72++_2’l_1“(06-)-(7—4126))2 +pC29T+62—bl].

P 71 c232

 T2(0T)=(JCS—2[0(0T)-13(0)]+c(71+2A7)

2Cyl(cl+ss)

C126
7 +—ln — ,

“[2 czaz (0TN

T(0)= pcf fi0(6)— 13(0) +°1( +2A)+S +E—zln(-§-),3 'r -m 2[ r J 71 7 72 c202 e

C a .. ‘ .

T4 (01.) 2pc: [72+ jfl-ln(§-)-(7 —or20 )]—pc§or20.r,

c2‘3‘2
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T5 (131-) = 1 (@[tflflfi —fi(0)] +cl (S+2A7)

- 29C71(°r+ S)

C 6
—c1[72 + Tflln(9—):| ].

c2012 T

 

From the master equation (6.13) it is seen that A7 is a variable which acts as a forcing

parameter. For each A7, the freedom to vary S is anticipated to generate a family of solu-

tions, satisfying all the mathematical balance laws, for each initial-boundary value prob-

lem characterized by the forcing parameter A7.

For future discussion of the master equation it is convenient to rewrite (6.14) in the

form

‘1'(0T,S,cl,c2,C e',a2)—‘r(é,s,cl,cz,c o',ot,) (6.24)
72’

'0) (Av, S, 71—729 cl) = O

72’

This uses the functions

.. . c
we, 3, c1, c2, cyz, 9 ,(X2) -=- /c1,2 (cl - s) o (a) ——2l£(scl — c§)ln(%) + 0:029 ,

czar2 6

0) (Ar. 8'. 71 - 72. c1) '='(Sc1 — c5247 + $010, — 72). (6.25)

Since a) (0, 0, 7l - 72, cl) = 0 it follows that 0T = 0 provides a solution to (6.24)

whenever A7 = 0 and S = 0. This is simply the persistence of the initial state in the
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absence of a disturbance A7. However, neither A7 = 0 with S at 0 , nor S = 0 with

A7¢0, gives to = 0.Thus while 9,. = 6 is asolution of (6.14) when both A7 = o and

S = 0, in general 01. at 0 if either A7 at 0 or S at 0. Solutions 0.1. to (6.14) with A7 = 0

and S at 0 correspond to spontaneous motion of the phase boundary in the absence of an

initial disturbance. Solutions 6T to (6.14) with A7 at 0 and S = 0 generate dynamical

motions with an immobile phase boundary.

Once any solution to the master equation is determined, the strains 75,781.,7T must

comply with all restrictions on the transformation of new phases as given in (6.4), which

in turn will place resuictions on the range of the initial strain increment A7. An explicit

solution of (6.14) is not as yet known. However, later in this research we construct a solu-

tion for (6.14) under the constraint of a2 « l , for which more quantitative information on

the admissibility of A7 is presented.

It is interesting to note that (6.24) is satisfied when 0.1. = a and a) = 0, which

corresponds to phase boundary motion in the absence of a transmitted wave. This is seen

by letting 9.1. = 0 in equations (6.16) and (6.17). For this case the speed of propagation of

the phase boundary is determined from the satisfaction of a) = 0

S c12A7

- 2A7 2471-72).

 (6.26)
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6.3 Construction of the Centered Simple Wave Fan

Recall that the TIP/2 interface here is a centered simple wave fan, and within this

region it is required that the three field quantities 7, v, and 0 exist in self-similar form. In

order to construct the self-similar solution it is required that the slope 93‘ of the Riemann

dt

invariant (3.65) change smoothly from one edge of the fan to the other. Mathematically

this condition can be expressed as A = (if: , where A may vary throughout the fan region.

The fan is the wedge shaped region depicted in Figure 6.2, this region being contiguous

with the region T and the phase-2 equilibrium configuration. In Figure 6.2 it is shown that

at the time t* the two outer edges of the fan are located at x = x1 , for which the fan’s

reciprocal slope is A1 = 3—1: , and at x = x2 for the reciprocal slope A2 = 1% ; the order-

ing of these quantities being xl < x2 and Al < A2. One may express the three field quan-

tities as a function of the coordinate A, this yields 7 = 7(A) , v = i? (A) and

e = 6 (A) .

Any self similar solution must satisfy the appr0priate boundary conditions at the

edges of the fan envelope, these conditions are

7m) = is Wm) =vT, 6(A1)=6T. (6.27)

7 (A2) = 7,. v (A,) = 0. 60») = 6. (6.28)

To determine the temperature 0 (A) the unknown temperature function 0 (A) is substi-

tuted into the positive characteristic direction associated with the Riemann invariant (3.65)
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4 2“

A — a-t — JC2+——(-:-Y—2—, (6.29)

solving (6.29) for 6 (A) yields

0(A) = 77—2“ 42). (6.30)

Czaz

The two coordinates A1 and A2 can be expressed in terms of the temperatures OT and 0

via (6.27)3 and (6.28)3. From Figure 6.2 it is seen at x = xf,ror which A = A1 , that the

temperature is 0 = 0.1.. Thus Al must satisfy

 

(:72 22

c402 C

A1 = _22 —72 +0T . (6.31)

c2012

At the other edge of the fan x = x5, A = A2, and the temperature 0 = 0 , thus

 

c‘tct2 C

A2 = é—2[——7—2§+0]. (6.32)

12 6202

This knowledge of the two slope coordinates A1 and A2 now allows for the determina-

tion of the other two unknown functions 7 (A) and i} (A) .

To determine the strain 7 = 7 (A) the Riemann invariant condition (3.62) is uti-
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lized, where within the fan envelope it requires

A

cflln[ 5,] + c§a272 = Cyzln[ 2?) J + c262? (A) . (6.33)

2 2

O
!

 

Inserting the expression (6.30) into (6.33) allows for the strain 7 (A) to be expressed

 

C 610120

WA) = r,+—,’—2-ln[ 2 22 2 J. (6.34)

CYZ(A -c2)620.2

The boundary conditions (6.27) 1 and (6.28)1 require that 7' (A1) = 7T and 7 (A2) = 72.

Inserting (6.31)-(6.32) into (6.34) one can demonstrate that both these conditions are satis-

fied.

Finally the velocity field v = {I (A) can be determined through the use of the Rie-

mann invariant condition (3.65)2

«gnu-MO)

¢(0(A))+¢(0)

 —v(A)—JE:2[2<1>(6(A)) +<I>(0)ln( )] = constant. (6.35)

Utilizing the initial conditions allows this condition to be written

 minim»wwmtirhizizzit
(6.36)

 _JE’YZ[2¢(0) +¢(0)ln(::g: 12%)]
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From (6.36) the velocity v = v(A) is

 

d>(é)—<b(0))
out) = 2JC72(¢(6) -¢(6(A))) +f(:;¢(0)ln(¢(é) +<I>(O)

 

 

 

~ 6.37

_ <I>(9(A))—¢(O) ( )
/ 2th (0)ln - .

7 ¢(9(A))+¢(0)

where

.. .. c C

d>(e(A)) = 0(A) +7112 = 4—722A2.

czar2 czor2

Inserting the expression (D (6 (A) ) into the equation the velocity is

2C C A -c A—c

v(A) = —2—72(A2—A) +—E[ln[—2—2-]—ln[ 2]]. (6.38)
02% czar2 A2 + c2 A + c2

The boundary conditions (6.27)2 and (6.28) require that 6 (A1) = vT and v (A2) = 0

inserting into (6.28) both these conditions are shown to be satisfied.

Thus, in summary, within the centered simple wave fan the strain, the velocity and

temperature field are given by (6.34), (6.38), and (6.30) for all A obeying CT S A S c132.
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Phase 1. Phase 2.

 

 

/

fan

IW Er E;

t

W Riemann invariant

x=s(t)

x W Imp condition 
 

Figure 6.1 This is a graphical representation in the (xt)-plane of the initial interaction of a

wave pulse with a stationary phase boundary in the fully thermodynamical theory.

Regions E1 and E; are the initial equilibrium states separated by the phase boundary at

x=s(t). The incoming wave (IW) strikes the phase boundary setting it into motion, where

s > 0 is assumed. The IW-phase boundary interaction gives rise to the regions 8, 8° and R

in phase-1, and T and the simple centered wave (fan) in phase-2. The region R represents

a reflected wave, while 8 arises from the interaction of the IW and the reflected wave. 8°

is that material which has undergone a phase transformation from phase-l to phase-2. The

IW striking the phase boundary also produces a transmitted wave in phase-2, this is desig-

nated by the letter T. Finally the transition from the E2 state to the T state is a simple cen-

tered wave, which requires CT < CE .The other possibility, that of a shock transition from

the 52 to the T-state, is not considered here butrs discussed brieflyin Appendix B. Com-

paring this diagram to figure 5.1 shows the additional complexity inherentin the fully

thermodynamical theory.
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Figure 6.2 This is a representation of the fan transition in phase-2. The point (x1,t*) is

located on the contiguous line between T and the fan, where g = A1 = CT. The point

(x2,t*) is on the line between the fan and the F1 state, where (it = A2 = CEZ. Correct

ordering of the speeds in the fan requires that c132 > CT , which becomes an admissibility

condition on the fan solution investigated in Section 7.3.



7. Construction of a Solution for Small Coefficient of Thermal Expan-

sion

In this the chapter we examine the significance of the coefficient of thermal expan-

sion for the initial interaction. Recall that the coefficient of thermal expansion, a2 , is a

material constant responsible for the free energy being of the nonseparable form, and

when a2 vanishes the mechanical field variables 7, v decouple from the thermal field

variable 6 in the governing equations. In Chapter 4 the role of this material constant was

analyzed for the initial equilibrium configurations, using the two part a2 decomposition

(3.92)-(3.94). This two part decomposition will continue to be utilized in what is to follow.

The purely mechanical problem was introduced in Chapter 5, and explicit results

(5.3)-(5.6) were constructed for the initial interaction of a wave pulse with a phase bound-

ary. In the fully thermomechanical problem posed in Chapter 6, fully explicit solutions are

not obtained by virtue of the complexities of analyzing the master equation (6.14). For this

problem we now wish to investigate the effects for small non- zero values of a2 , in order

to garner insight into the first order temperature effects.

Recall that the two-phase model developed was for adiabatic motions, the possibil-

ity for heat transfer being excluded. Within this framework a finite value for the coefficient

of thermal expansion results in the thermal and mechanical field quantities being coupled,

and when this coefficient vanishes this coupling no longer exists. Ngan and Truskinovsky

(1994) investigate problems for phase transforming solids in which the role of heat con-

duction (the Fourier model) is also accounted for. It is interesting to note in their develop-

ment that the thermal conductivity is a coupling parameter similar to our (12. Whereas

here a2 was the parameter enabling one to examine the link between adiabatic and purely

127
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mechanical motion, in their paper the thermal conductivity provides a heat conduction-

adiabatic link.

Beginning with the equations which mathematically describe the initial interac-

tion, (6.14)-(6.23), the leading order temperature effects are to be extracted via the

assumption a2 « 1 . Furthermore, it must be determined what factors, if any, ensure the

retrieval of the previous results (5.3)-(5.6) when 0:2 —> 0. Accordingly, various perturba-

tion and asymptotic procedures will be used to determine the leading order temperature

effects}.

Recall that once a solution for 9.1. is found satisfying equation the master equation

(6.14), then the other field quantities relating to the initial interaction may be determined

explicitly from (6.16)-(6.23). Since it is not evident that a solution exists for the master

equation, we propose to investigate solutions to (6.14) under the additional assumption

that a2 is small. In particular since a2 = 0 yields the separable theory for which

6.1. = B , our interest is in solutions for which 6.1. —) 6 as a2 —> O.

7.1 Perturbation Analysis of the Master Equation

The master equation (6.14) may be expressed in a more useful form, one in which

all terms which have a temperature dependance are written on the left side of the equality

sign

 

1. It should be pointed out since or; has units of reciprocal temperature, that these procedures for-

mally require nondimensionalization of a; via multiplication by some characteristic temperatme in

the problem. It is in this sense that we operate, and which statements like a2->0 need to be under-

stood.
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. C (Sc— c2) ..

@(cl-sumefi-men *2 2‘ 21n(:2'T)+c§az(e.—e)=

c2012

(7.1)

(s'cl —cf)2Ay + s'cl (71—72) .

The difficulty in finding a solution for this equation lies primarily in the non-linearity con-

tained within the function 13 (9) , which from (6.15)1is

 6(9) = 2¢(e) +<r>(0)1n[¢(9) 4(0)].
¢(0) +<1>(O)

The function 19 (6) contains (b (9) in a linear and logarithmic manner, therefore the 012

analysis will begin with d) (9) . Expanding the function (D (0) about a2 = 0 produces

 

6

. .2

(320.2 C Czaz 2C,” 8C2 + 0(a2) (7 )

1

22- 22 244
/C Ocor2 /C Gca Oca

42(9) = 12[1+ 2__2] = 12[1+ 2 2_ 2 2

12
12

The logarithmic term of 19 (6) contains (1) (6) both in the denominator and in the numer-

ator. Use of (7.2) permits the expansion of the numerator and denominator about «2 = 0

which leads to

,/C72 Began: 9_2___c:or:

cor 2C72 2
c2 2 8C72

<r> (e)— <r> (0): + 0(62), (7.3)
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2 2 2 4 4

2 /C Oca 9c 01

<b(9)+<1>(0)= ——V2[1+ 2 2- c2 2 +O(or ) (7.4)

czaz 4C72 16C 2]
72

upon which division of (7.3) by (7.4) produces

 
 

¢(6)— ¢(
O)_ 1 902(12 62C4a4

eczaz 02c4a4
_1

_ 2 2_ 20L2 6 _2_2_2_2

(D(t)) “12(0) =2 2C2!2 2 +(“‘22) 1+ 4—_C2 —+O(or2) .05)

8C72
16C72

Expanding the denominator of (7.5) and collecting terms of similar order in 012 yields

me) <I>(0)_ 9°“2 Ozc‘a‘ ecza2 66262
- __2__2_ .—2..22 2 2 22

¢(0) +¢(0) 4C2 8C2 +O(aa2) = 4(312__[1 +0(°‘2)] (7 6)

72

Utilizing this result allows for the logarithmic part of the function 13 (6) to be expressed

 

1(¢(e)—¢(0))_ 90:“: "_Ciai

“ <1>(9)+<I>(O) '1“ F221 2—C2 +0(a“2)

2 2 2 2

— ln 6620‘2 +111 1 9°22“—+o.(a)
' 4C72 2C—_2 2

The second logarithmic expression in (7.7) may be expanded about a2 = 0 using a Taylor

(7.7)

 

series to the fourth order
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2

+ 0(04=)] 0c2a

a2 2C22

2 2

2 2
 

Sci-_a 4

1n 1— Z-C—2 +O(a2). (7.8)

Consolidating results (7.2), (7.7) and (7.8) permits the function 13(9) to be written to the

order 0mg):

 

2

2 C C file2a +6c 0t

13(9) = 72+ 4211142———2 27232+0m). (7.9)

c2a2 c2022 a2

Equation (7.9) is the final form for 13 (6) expansions, and will be used in what is to fol-

low.

Note that 13 (6) appears twice in equation (7.1), i.e. in the difference

13 (62.) - 13 (6) . From the expansion (7.9), this diflerence in 13(6) results in the Q21 sin-

gularity canceling out

 13(OT)—13(9)= c—Jfflln(e:+) 02a2.1.(0 —9)+O(a2). (7.10)

c0222 2J—2

Use of (7.10) in (7.1) gives

C72(c2(c1- S) + c2 — SCI)

2

c2‘2‘2

 

C —S A 3

1n( :J)+a2[-;—E;-+ l](6T—9) = m+0(a2), (7.11)

where a) -=— (Scl — cf)2Ay + Sc1 (‘yl — 72) , as defined previously in (6.27), depends upon
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the initial conditions, the material properties, and the phase boundary speed.To further

simplify (7.11) let

a = §(s',c1,c2) = (c2(c1—s') +c2—s’cl) = (c1+c2) (c2—s'), (7.12)

which allows (7. 1 l) to be expressed more simply

C 9 c —s ..
212§1n(;)+a2( 1 - + l](9T—O) = m+0(a:). (113)

2 2

Since a solution for 02. to (7.13) is not obvious, we propose the following representation

for 0;:

e —é[1+ C202”'1'" New C 2 . (7.14)

72

 

 

2

,. c a (0 .

Thus (p by definition is (p = (6.1./9)exp[-(23 : )- 1 . Hence if 012 -> 0 and 6.2-9 9,

7

then (1) -> 0. Thus q: is expected to be a small quantity whose small 012 representation

remains to be determined. If both 012 and (p vanish, then (7.14) demonstrates that the tem-

perature 02. —> 6 , the equilibrium temperature.
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Inserting the proposed representation (7.14) into master equation (7.13) yields

5C7; .. 2 cl—s pc2a2m
Ex—ln(1+(p) +6pc20t2[—Zc2 +1] exp Ty;— q):

2 2

. 2 (7.15)

. c —s c a to

6pc2a2[—;—C2— +1][1—exp[pc:zé D + 0(a2).

Equation (7.15) is now regarded as an equation for the quantity (p. The leading order a2

 

effect is determined by expanding (7.15) for small a2, and since (p is expected to be

small, the logarithm term is written using the expansion In (1 + (p) z (p + 0((p2) . From

these operations one can determine (p from (7.15)

5A

—a)c 6 c +2c -s

q) = 2 ( 1 22 )a2+o(a2). (7.16)
 

Here, as is standard, o(z) denotes a quantity, that after division by z , vanishes as 2 —) O.

From (7.16) it is observed that the quantity (p is of the third order in 012 , thus, for 012 « 1 ,

the logarithmic expansion for small (1) is valid.
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7.2 Small or, Decomposition of the Field Quantities

Inserting result (7.16) into (7.14) indicates that the temperature 9T admits the

expansion

  

2 5A

can) mc9(c +2c -S)

(2:2: )[1 2 1 i ai+o<a§). (7.17)

From (7.17) it is observed that 9.1. is dependent on the initial conditions by virtue of the

quantity 0). The temperature 6.1. may be thought of as a function of the forcing strain A7

and the phase boundary speed s’. From (7.17) we also see that the isothermal result,

at = 6, is retrievable in the small (12 limit; that is if a2 —9 0 then the temperature

0T -) é . Invoking the decomposition (3.92)-(3.94) for the temperature 0.1. , and expanding

(ocza

§C72

two part decomposition

 the expression exp[ about a2 = O , the temperature 6.1. can be expressed in the

o 0.

9T = 0T+9T’, (7.18)

where the two terms are found to be

of} = 6,

a2 mcié 2 (7.19)

9 — —a2 + 0(a2)
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Equation (7.18) represents a solution for the master equation (6.14) in the small a2 limit.

Recall that if a solution for 6.1. has been determined then the remaining strains and veloci-

ties in the interaction region may be computed using (6.17)-(6.24). We now proceed with

this process and determine the other eight field quantities.

Beginning with the equation for the strain 71. , in the small a2 limit 7.1. can now be

determined via (7 . l7). Inserting result (7 . 17) into equation (6.14), and once again invoking

expansions for small a2 , the strain 7.1. written in the two part decomposition is

 

 

h=fiw¥ (mm

where the two components

2

o (1) (c1 —SCl)2A’Y-SCI (71 -72)
= __ = + , 7.21

YT 72 E, 72 (cl-t-cz) (CZ—S) ( )

3A

(no 6(c +2c —s

7:2 = 2 1 2 ) a§+0(ai). (7.22)
2

25 C72

In (7.20)-(7.22) the strain 71. has been decomposed into two distinct terms, (7.21) is that

part of the strain 7'1“ that is entirely independent of a2 , while (7.22) is the part that is

dependent on a2. The strain component 7:. , representing the separable energy contribu-

tion to 7T , is exactly the solution 7?“ (5.3) for the purely mechanical case outlined in

Chapter 5. Thus, the separable energy contribution y; is equivalent to the purely mechan-

ical contribution of the strain field 7.1. . The expression 7:2 represents the leading order
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temperature effect in the VT field, this thermal effect originates from the inclusion of the

material constant a2. It is observed from (7.22) that 7:2 is quadratic in a2, and thus

7:2 —-) O as a2 —9 0. Thus, the purely mechanical field quantity is retrieved in the limit as

. . o mech

the constant (12 vamshes, 1e. (12 —-) 0 :9 7T ——) Y1. = 71.

Proceeding with similar calculations for the other field variables using the temper-

ature at (7.19) in equations (6.18)-(6.24), along with the use of expansions for small a2,

one can write the other field quantities in the two part decomposition, as outlined in

(3.92)-(3.94). These expressions for the field variables are given in the equations listed

below, where all results are written in the form (8.18).

The velocity in the transmitted region, VT!

vT — v.l.+vT ,

where

 

o _ (S-Cl)2A7+g(71-72)

VT — c164: (cl +c2) (cz—S) ]’

3.. 2

mc 9 c +c s

“2 - 2 (22 1 )a§+0(ag).

2: C72

 

VT—

The strain in region S° , 73.:

0 ‘12

73° = YS°+YS°t

(7.23)

(7.24)

(7.25)

(7.26)
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where

o 2c1c2A7+s [2clA\(-c2(y1 -yz)]

75° - 71+ (c1+c2) (c1+S) ’ (7'27)

 

3A

or -(0C 6 2 3

Vs: = -—2-2—a2+0(a2). (7.28)

2?, 72

The velocity in region 8°, vs.:

vs. = v2. +v:,2,, (7.29)

where

o _ [- 2cfAy + s (- 2c2Ay- c2 (71 — 72))]c1

 V . — , (7.30)

5 (c1+c2) (c1+S)

—roc csé0.

vs: = +a§+0(a§). (7.31)

2: c,2

Note that all of the above results (7.20)-(7.31) have a similar form, each quantity is

decomposed into two decoupled terms, the first being entirely independent of the coupling

constant a2 , representing the separable energy contribution, while the second term is that

part of the field quantity that is the leading order «2 effect. In all these expressions the

separable energy terms are exactly the same as thosefound in the purely mechanicalprob-

mech

lem as outlined in Chapter 5, i.e.(5.3) -(5.6). Therefore, we see that v; = v.r ,
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h h .
Ygo = 7:.” , and v; = v31” , and thus the separable theory predicts the same values

for thefield quantities y and v as does the purely mechanical theory. The second part of

the decomposition, that which depends on a2, represents the thermal effect on that field

quantity, which may be further decomposed into the leading order temperature effect plus

higher order terms. For the mechanical field variables, the strain and velocity terms, the

leading order thermal effect is of the second order in a2 , while for the temperature 9.1. the

leading order thermal effect is linear in (12.

We now examine the temperature for the material which has undergone a phase

transformation, 93. , and note that since this is not a mechanical field quantity, we have no

previous information from the purely mechanical problem. Therefore, in its two part

decomposition, the separable energy term has no mechanical analogue. From (6.24) the

temperature 68. can be written

as. = T1+T2+ (T3+T4)T5 (7.32)

where we now rewrite the expressions for the Ti’s in equation (7.32) by representing each

field variable by its two part decomposition

 

2

1 C t1- t1- 2 0 at: t 0. 2

T1 = E—[§3((Yg‘7 +0.29) +2('YT-Y +079 )Y?+(YTZ) )

'71

b —6
+Cyl(6.'}+9:z)+ 2p 1)

-C2 2 2
o 0.2 U-

71
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2 O 0.2

2 t t a. or

T4 = pc2[(y;—y +0.29 )+7T2-a2(0;+6T2)],

T5= 2—1—p‘C——[(7T— 72M), —v§)]

The explicit expression for the two part decomposition of 63. is very large, and a more

explict display of its form will not be displayed. Rather it is illuminating to consider the

special case when the initial equilibrium configuration is mechanically neutral (viz.

(4.19)). In this case, the two part decomposition for the temperature 65.,

o a

as. = os.+osi

gives

2 2

9;. =6—C[———(c§—S)(yf}— 72)—:1-—,(cf-s2)<v§-v,)) (MN).
282

2

(12 C a 6

2 2——(—c§(g+cl(y; y,))+0(ot§) (MN).

71

(7.33)

(7.34)

(7.35)

Note from (7.34) that, in general, 0;. ¢ 6 indicating that changes in temperature can occur

in the transformed material even in the (12 —-) 0 limit. This issue of temperature changes
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for the purely separable energy problem will be addressed in more detail below.

Continuing with the mechanically neutral assumption a series of tedious algebraic

manipulations on 9;, , using the analogue of result (5.14), allows (7.34) to be written

cfztAvs)
0°. = 6+ .
S Cyl(cl+c2) (c1+S) (cz—s)

 (MN) , (7.36)

where the function 2‘. (A7,S) was defined earlier in the document as equation (5.15)

Emits) = $212M te,—c2) 117-02(71-72)” +

—s [2 (c, -c,) 2sz - 2c2 (c, - c2) (7,-721M + c2 (71 4,) 2]

_[2C102A7( (Cl ‘92)A7-C2(71-72))] -

_ Note that, as required, the temperature 9; is independent of the energy coupling constant

a2. Comparing a separable material with the purely mechanical material result (7.36) pre-

sents one of the fundamental differences between the two cases, the separable material

accounts for changes in temperature arising from a phase transformation. The function

2 (A7,S) was introduced in Chapter 5 and analyzed by Pence (1991b), thus one may

garner information on the transformed material’s temperature changes via (7.36) in con-

junction with the ): (A‘Y,§) analysis.

The representation for 6;. in (7.34) is somewhat paradoxical in that it contains the

function 2 (A‘y,s') which arose previously in (5.14) for the purely mechanical theory.

Furthermore, under the assumption that the initial conditions are Maxwellian, result (5.16)
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provided a relationship between the function 2 (A7,S) and the purely mechanical dissi-

pation function. Thus from (5.16) and (7.13) one may conclude that if the initial condi-

tions are both mechanically neutral and Maxwellian then one may utilize the dissipation

function from the purely mechanical theory to express the temperature 9;. as

1

pC

9;. = 6+ SD (A7,S) (OB), (7.37)

11

where we have used notation to remind us that simultaneous satisfaction of MN and MX

equilibrium conditions are associated with the extremely special OB states. Alternatively

this result can be rewritten as

D(A'y,s') = pCYIS(0;,-é) (on). (7.38)

Since the dissipation function D (A7,S) is independent of 012 , result (7.38) demonstrates

one of the novel abilities of the free energy model used in this document, namely in the

case of a separable material, 012 = 0 , (7.38) accounts for the expected changes in temper-

ature for motions which are dissipative.

Previously it has been shown that if the material is separable then the mechanical

motions decouple from thermal effects, yielding a purely mechanical problem and the

associated thermal problem. Result (7.38) demonstrates one way in which the mechanical

fields influence the thermal fields for a separable material, for once the mechanical field

variables for the problem have been determined, and thus the dissipation function
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D (A7,S) is known, one may then proceed to calculate the thermal field variables. Fur-

thermore if, as in a purely mechanical setting, one assumes a positive dissipation criteria,

then (7.38) shows that the temperature of the material undergoing a phase transformation

may only increase.

Thus, for a2 = 0 we do have a theory which is purely mechanical, in the sense

that information about the temperature fields are not needed to determine the mechanical

fields. Under such a separable energy criteria one may, at first glance, improperly interpret

the problem as being isothermal, which from the result (7.38), is clearly not always the

case. As seen from (7.38) isothermal motions occur only for nondissipative motions, i.e.

those motions for which D (A7,S) = O, and thus are a subset of the solution set for the

separable energy theory.

7.3 Existence of Fan

With the solution in hand we now wish to determine any necessary criteria for the

existence of a fan transition in phase-2. Recall from (6.31) and (6.32) that a necessary and

sufficient condition for the construction of this fan solution is that 91‘ S 6. It follows from

(7.18) and (7.19) that at = 6;. + 0:2 where 6;. = 6 so that the associated existence

condition reduces to 9:2 < O.

In the absence of a simple explicit form for 6:2 , we restrict attention to the small

012 limit. In this limit, which makes contact with the separable energy theory correspond-

ing to purely mechanical determination of strain and velocity, it follows from (6.3) that the

phase boundary speed 3 must obey s < c2. In the small 012 limit, the leading order «2
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effect for 6:2 is given in (7 .19)2, so that the requirement that 9:2 < 0 for small (12 is

mczé

gcyz

< O. (7.39)

Since 9 > O , C72 > O and a2 tends to zero through positive values, one may draw that

(7.39) is equivalent to the requirement that %’s 0 , where we recall that (o and § are given

by (7.23) and (7.12). The latter, § = E,(s, c1, c2) = (C1 + c2) (c2 — s') , shows that § 2 0

since 5 < c2 in the 012 —) 0 limit for fan existence. Therefore from (7.39) the criterion for

the existence of a fan is

m<0 or

(so1 - cf)2Ay + Sc1(71—72) < o. (7.40)

This condition may be interpreted in various ways, in particular it may be used to obtain a

resuiction on 8, namely

-2Aycl

S <

(72 T 71) - 2A7

-2A*{cl

> if —

(72 - 7,) — 2A7 11 71

 

if 72—71-2Ay<0 ,

(7.41)

S
 —2A7>0.

Now 72 > 71 and since the driving strain increment A7 would normally be much less than

72 — ‘71 , the standard case in (7.41) would in general be (7.41)2. Since it is already
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required that O < s < c2 it follows that (7.41)2 may or may not further restrict the phase

boundary velocity. In particular if A)! > 0 then (7.41); provides no additional restrictions.

However if A'y < 0 then (7.41)2 restricts the lowest phase boundary speed to a finite posi-

tive value.

Figure 7.1 is a schematic diagram in the (A7, 8') -plane for the region satisfying

the fan criterion (7.41), this figure only considers positive values of s . This region lies

above the curve to = 0, where the equation for the curve is given by (6.26). Also shown

in Figure 7.1 is the admissibility region for the purely mechanical problem defined by

(5.17), this region was previously displayed in Figure 5.2. In Figure 7.1 this admissability

region is below the curve 2 = O and above the line s = 0, and from Figure 7.1 we see

that the curve to = 0 is contained within the admissibility region. Therefore the area

between the two curves 2 = O and to = 0 defines the region for which the construction

of a centered simple wave fan solution is admissible for the a2 —-> 0 limit.
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Figure 7.1 This is a schematic plot which shows the admissible region for a centered sim-

ple wave for the case where cl = oz. The region that lies between the line s = O and the

curve 2 = 0 is the admissible region for the purely mechanical case with Maxwellian irri-

tial conditions as previously encountered in Figure 5.2. The region above the curve

to = 0 is the region in which the centered simple wave may exist. Therefore the region of

existence for the centered simple wave is the area between the two curves. Values for the

material parameters were chosen to be c = 2 and 72 - 71 = 5.
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8. Entropy Production and Dissipation

In Chapter 7 it was shown that if the phase boundary speed is treated as a free

parameter then it parameterizes a family of solutions involving a centered simple wave

fan. It was the case that an explict solution, albeit a family of solutions, was determined

only when considering the small 012 limit, which in turn provided insight into the leading

order thermal effects. Recall that the second law of thermodynamics (2.6),, was not uti-

lized in determining the family of solutions, although it is one of the four governing field

requirements in each phase of the material.Thus, it is natural to inquire as to what restric-

tions this inequality places on the set of possible solution candidates in (A7, 8') -space.

It is acknowledged that such a requirement is not directly given in the purely

mechanical theory, but is provided indirectly through the positive dissipation criteria

requirement, more specifically the dissipation function (5.9) must be nonnegative

D (A7, 8) 2 0. In this chapter we investigate any relationships that may exist between the

positive dissipation requirement for a purely mechanical material and the restrictions

imposed by the second law of thermodynamics for the fully thermal materials, with

emphasis on the separable material limit.

8.1 The Second Law of Thermodynamics

The second law of thermodynamics in the absence of heat flux and internal energy

sources states that the rate of change in entropy for a system must be nonnegative during

all processes, globally this requires

146
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Ef—Jndvzo. (8.1)

V

The domain under consideration is a bar which contains a propagating surface of disconti-

nuity, the appropriate form for the above equation is written

5 (t) h

911 $1 _. >£dtdx+£1>dtdx s[[n]]_0. (8.2)

S!

From (8.2) it is observed that the time rate of change in entropy arises from two distinct

sources, those resulting from local thermomechanical processes in the bulk material, and

that contribution from the movement of the surface of discontinuity through the domain.

Considering (8.2) in its local form one retrieves (2.6),, and (2.7),. Note that the jump in

entropy across a surface of discontinuity is not required to vanish, and thus this jump con-

dition must be applied across all phase boundaries, and if present, any shocks within the

domain. However, by use of the Riemann invariants (3.62), the jump in entropy vanishes

across all contact discontinuities.

Consider the initial interaction of the wave pulse with the stationary phase bound-

ary, and focus on the period of time for which the phase boundary is still in motion. To

implement equation (8.2) during this interval requires the consideration of 7 separate

regions within the bar: the parent phase equilibrium state, the region containing the incom-

ing wave, the regions labelled S, T and S°(the material having undergone a phase transfor-

mation), the phase-2 equilibrium state, and the region containing the centered simple wave

fan. Figure 6.1 depicts the initial interaction and shows the seven regions. Invoking
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restriction (8.2) to the various regions and the surfaces separating adjacent regions, one

recognizes that all the integral terms on either side of the phase boundary vanish as do the

terms involving jumps across all contact discontinuities. Therefore the only nonvanishing

contribution to (8.2) is that associated with the jump in entropy across the phase boundary,

thus (8.2) reduces to

—s [n (7T, 9T) — 71(Yso,95o)] 2 o, (8.3)

where the entropy function (3.19) is used to express

es.

“(730, 080) = pCYlln ?' +k1,

(8.4)

6 .. p ..

“(715%) = pC721n[§]+pc§az(yT—y )+ 2:14-11]. 

Inequality (8.3) implies that us. 2 111. since s > O , indicating as the material transforms,

from phase-2 in the T-region to phase-l in the S°-region, that the transforming material’s

field variables must change in a manner such that the difference in entropy is nonnegative,

i.e.

n was.) —n (1,. 0,) 20. (85)

Through the use of the Riemann invariant (3.62) between regions T and the material in the

phase-2 equilibrium configuration one may show that 11 (71* 9.1.) = n (72, 62) , which

written out in its full form is
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6 pic].2 it: ~

pC721n( ,) + pc2a2(yT— y )+ —e;- + k1:

C
1
’
I
—
t

(8.6)

.. pk

]+pc§a2(yz—y )+ O‘T‘Fkl. 

°
.
l
0
»

pC721n[

Equation (8.6) provides a relationship between the entropy in region T and the initial con-

figuration within the bar, while (8.5) restricts the difference in entropy between T and 8°.

Therefore, instead of using the entropy 111. in inequality (8.5) we choose to use that from

the phase-2 equilibrium configuration, via equality (8.6), and thus write restriction (8.5) as

an equation between the regions S0 and the phase-2 equilibrium state. Therefore, condi-

tion (8.5) is equivalent to

9 o " .

Cylln[—S7] — C721n[%]—c§a2(72 — y )— :—'f 2 o. (8.7)

The inequality (8.7) is a restriction on the temperature OS. , all other field quantities being

prescribed by specification of the initial conditions and material parameters. This restric-

tion (8.7) is equivalently expressed

c c
_L2 1-4—1 2 '

AC‘ t C C a —

63.29 10 1"exp{ 2 2:2 Y)+ AT. .

71 C719

 (8.8)

Thus, given an admissible initial data set (71, 72, 6) , the second law of thermodynamics

states that all allowable motions must adhere to condition (8.8), where (8.8) restricts the
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possible range of values of the temperature 98.. It is interesting to note that since 9so is

the temperature of the material which has undergone a phase transformation, (8.8) is a

restriction on the transformed material’s temperature. It is also interesting to consider that

the second law of thermodynamics, a dynamic balance requirement without analogue in

the purely mechanical setting, places restrictions on a thermal field variable, a field vari-

able not having any mechanical analogue.

We now focus our attention on the special case when the different phases have

identical specific heats, C71 = C then (8.8) simplifies to
72’

czar L1.

95. 2 éexp {ZTZWZ —y )+ } a 93410wa d (c71 = (:72) . (8.9)

1 C76 1‘

 

Table 5 summarizes the relation between the lower bound value of OS. and the initial tem-

perature 6 as a function of initial strain 72.
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Table 5: Lower bound temperature of transformed material OS. when

 

 

 

 

 

 

 

 

 

 

.. - lower bound

Value of 72 Temperature 650 1 be ad

OWCT ll

. AT .

< - 6 . <9

72 Y 2 '1 S llower bound

czazfl

. L, .
= —- e o = 9

72 Y 2 1' S |lowerbound

czaze

.. AT ..

72>? — 2 1‘ es°lowerbound>e
czotze   
 

As shown in Chapter 6, to explicitly calculate the temperature 68. one uses (6.20) after

determining a solution for the master equation (6.14) for the temperature 9.1.. In order to

further quantify the restriction (8.7) we now consider the special case where the coeffi-

cient 012 « l . Inserting the decomposition Gs. = 6;. + 6:: into (8.7) yields

9:11 9:: 6 2 * A"r
Cylln ? +C711n 1+O—o— -Cyzln —, —cza2(12—y)—g;20. (8.10)

so

All further discussion of (8.10) appears in the following sections for the case a2 -> 0 and

a2«1.
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8.2 The Entropy Restriction for Separable Materials

Recall that the limit a2 —) 0 reduces the free energy to its separable form, in

which case (8.10) reduces to

9°. ..

cylln[—%]—Cyzln[9;]—§—Izo. (8.11)

Once again considering the special case where the two phases have the same specific heats

then inequality (8.11) simplifies into the form

9°. 2 éexp {37—} 2 9°.
S t S

C79
 

= . 8.12

lower bound (C72 C71) ( )

The inequality (8.12) demonstrates that if the latent heat vanishes (3.1. = 0) then the

transformed material’s temperature can not decrease below the initial equilibrium temper-

determines
 ature 8. For the case of a separable material, the value of the quantity

C79

the magnitude of the temperature 0;. . As was the case for 012 —) O a table is

lower bound

constructed which outlines the range of values for (8.12) which the temperature

6;. l bound may achieve, these values being listed in Table 6.
OWCI‘



Table 6: Lower bound temperature 9;. for separable material when

lower bound

C71 = C72 = C7

 

 

 

 

 

 

 

 

   

M 'tud r). /c 9" T t 6°.38“! e 0 T Y empera ure 8 lower bound

AT... < 0 9;. < 6

C79 lower bound

ATr > 0 9;. > 6
C79 lower bound

 

Recall from (3.80) that if 21 > 0 then the 2 —-> 1 transformation is exothermic, whereas if

2.1. < 0 then the transformation is endothermic. If we consider C79. > O , then from Table

6 an exothermic transformation coincides with the transformed region’s lower bound tem-

perature being greater than its initial equilibrium temperature, which represents a heating

of the transformed material. Similarly an endothermic reaction corresponds to transformed

region’s lower bound temperature being less than its initial equilibrium temperature, a

cooling of the transformed material.

Consider the results found for the special case of mechanically neutral initial con-

ditions (4.19)-(4.25), this allows 9;. to be expressed in terms of the function 2 (A7, 8')

by means of (7.36):

cf}; (A7,S)
(MN). 6;. = 6+

C71(c1+ c2) (c1 + 8) (c2 — S)
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Substituting this expression into (8.11) yields

 
 

 

 

2
" c 2 A ,s C ‘ A

1n[%+ ‘ 1 ( Y ) ]—(-:—721n[9;)— 1,20 (MN),

9 9 C71(cl+c2) (c1+S) (cz-S) 71 9 C716

which in turn reduces to

2 .
clE(Ay,s) >

C71(c1+c2) (c1+8) (CZ—S) '

s C " 2. . (8.13)

e [CXp{C-:;131n[-67.]+ T } —3,] (MN).

71 6 C710 6

The inequality (8.13), along with the condition 8 > O, resuicts the set of solutions in

(A7, 3') -space. Recall from Chapter 5, in a purely mechanical setting, a similar restriction

was derived, e.g. 82 (A7, 8) 2 O. This was a consequence of the assumption that all

motions must have nonnegative dissipation, and like (8.13), reduced the set of solutions in

1 the (A7, 8) -space.

If we now consider the inequality (8.13) for the particular case C72 = C71 and

AT = O , then since s 5 c2 we find that

2 (A7,S) 2 0 ((272 = C71, 2., = 0) . (8.14)

which is essentially the same restriction found for the purely mechanical problem (sec

(5.17)). However it is noted that one cannot directly compare the two conditions, because

result (5.17) was derived for the Maxwellian initial state while (8.14) is for the mechani-

cally neutral initial state.
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A more fundamental and less restricted result occurs for the case in which the ini-

tial state is omnibalanced. In Chapter 7 it was shown for an omnibalanced initial configu-

ration that 92. can be written in terms of the purely mechanical dissipation function

D (A7,S) via (7.37). This reduces (8.11) to

   

C C AOB A. AOB

D—MS—Yélzracfle {exp{J—21n[9 ]+ T,}—9 } (OB). (8.15)

Recall however that an OB-initial state must involve initial temperatures as given by

(4.32)1. Substitution from (4.32)1 and invoking pCYls > O in (8.15) gives

D (A7,S) 2 0 (OB) . (8.16)

Thus the positive dissipation criterion in the purely mechanical description has a strict

thermodynamic basis in terms of (2.7)4 in the separable material limit. In view of the com-

plexity encountered thus far in interpreting second law issues, any further consideration

into these issues would most profitably restrict attention to omnibalanced states. In partic-

ular, the first order 012 -correction to (8.16) for the omnibalanced state is addressed in the

next section.
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8.3 The Entropy Restriction for Fully Thermal Materials

Our previous discussion has established that the a2 —) 0 admissibility region coin-

cides with the admissibility region for the purely mechanical problem provided that the

thermomechanical problem had omnibalanced conditions. It is of interest to determine

how the admissability region changes with the consideration of thermal effects. In what

follows we address this issue and concentrate on OB initial states when cl = c2.

To determine how the 012 —> O admissibility region changes for small but finite

a2 , we evaluate (8.10) along all of the boundaries of the (12 = O admissibility region.

Recall that these boundaries are defined by (5.17), which gives the line 8 = 0 and the

curve 2 = 0. We here evaluate (8.10) along 2 = 0. By definition (5.17) the quantity

90

so

C7114?) - C721n[ ].

vanishes along 2 = 0. Therefore to determine the thermal correction to the admissible

‘
1
’
.
|
<
D
>

G
I
>
’

“
-
1

region we need only evaluate the remaining expression in (8.10) along 2 = 0. Define the

function 2 as

"'2

zaCYlln l+—S—° —c§ot2(vz—y'), (8.17)
O

65.

whereby evaluating z along 2‘. = 0 provides the thermal correction. Locations where

z > 0 are points on the boundary where the purely mechanical admissibility criterion and

the thermal admissibility criterion are satisfied. Similarly at those points where z < 0 the
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purely mechanical admissibility criterion is satisfied, but the thermal admissibility crite-

rion is not satisfied. In this manner one can show where addition of the thermal correction

(8.17) causes the admissibility region to “grow” (2 > 0) and “shrink” (z > 0) in a point

wise fashion.

From (7.35) the temperature 6:: can be expanded to the first order in a2 , which in

turn allows for the logarithmic expression in (8. 17) to be expanded

6a. 6a,

Cylln 1+ e—j— = C117;- + 0mg), (8.18)

so

where we evaluated (7.37) along 2 = o to write 9;. = 6. Using (7.35) and (8.18) in

(8.17) the function 2 can be expressed

 

c201 033(7 -Y )

z = —72[c22A + 22 21 -2$2(72—y )]+0(ot§).

2s (c -S )

where we have used (7.27) and the definitions for (n and § which are found in Chapter 7.

2

c or

Focusing on the leading order 012 effect, we note the coefficient -—23 is positive when

28

considering 0 < 012 « 1 , hence to determine the sign of z we need only consider the

expression

3.

C S - e

c22Ay-i- 1:2 271) —25‘2(72-'y ) (8.19)

(c -S )

 

evaluated along the curve 2 = 0. Using (5.18) the curve 2 = 0 yields the expression for



.. - -—'-,.—~
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the strain increment A7

 

_gc _

2M = (272 27,) ,

(c -S )

which when inserted into (8.19) yields

. . 2 '-

srgn[z|2=0] = srgn [-28 (72—7 )J. (8.20)

Using the OB phase-2 strain (4.31)2 in (8.20) yields

sign[z|2=0] = sign[-2-S::'—1;:l. (8.21)

(12¢ 9

From (8.21) we see that the thennal correction depends entirely upon the sign of AT/(f,

since we have been operating under the assumption that 012 is a small but finite quantity.

Since 9* > 0 it follows that (8.21) shows that it is the latent heat KT which determines

how the admissible region changes in a global fashion near the boundary 2 = O. Namely

if X1. > 0 , corresponding to a 2 —> 1 transfonnation being exothermic, then the function

2 > O and globally the admissibility region expands beyond the curve 2‘. = 0. Similarly if

M< O , an endothermic transformation, then the admissibility region contracts inward

from the boundary 2 = 0.

Attention is now focused on the admissibility boundary s = O. The previous anal-

ysis for the boundary 2‘. = O is general up to (8.19), hence to determine how the boundary

S = 0 shifts we need to determine where z > O and z < 0 along s = 0. Evaluating (8.19)
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along 8' = 0 and inserting the result into (8.18) yields

sign[z|s=o] = sign [c22Ay] . (8.22)

Recall that for our problem 8' > 0 => 137 < O , thus (8.22) yields that z < 0 everywhere

along 3 = 0. Hence the admissibility region contracts inward from the boundary 3 = O.



9. Solutions Obeying a Thermal Version of the Kinetic Relation

9.1 Driving Traction

The driving traction was defined in the purely mechanical setting in (5.10). In the

fully thermomechanical setting the driving tractionf(t) is defined by

f(t) =}(Y.6)E[[£ll—<(t))[[7]]-((9)>llnll. (9.1)

Using the definition of the free energy, w = e—Bn , the jump in internal energy can be

expressed

[[8]] = [[111]] +((9))[[11]] +(<11))[[9]].

where the jump in the product 911 has been expressed

[[971]] =((9))[[11]]+((Tl))[[9]].

Substituting from these results into (9.1) produces the driving traction in the more useful

form

f(t) = [[v]]—<<t)>[[7]l +<<n>>[[9]l. (9.2)

The driving traction (9.2) is not what is commonly seen in the literature, the conventional

160
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definition of the driving traction (Abeyaratne and Knowles 1990b, Fried 1992) in terms of

the free energy and stress is

f(t) = [M] — ((1)) [[7]]. (9.3)

The difference between these driving tractions arises from assumptions on the temperature

fields. Form (9.3) assumes that the temperature fields are smooth, analogous to the dis-

placement field. This smoothness implies that across all interfaces the jump in temperature

vanish, including across any phase boundary. The form of the driving traction defined in

this document (9.2) was proposed to account for a temperature field with a discontinuous

nature. Note that (9.2) reduces to the form (9.3) if [ [0] ] = 0. It is also recognized that

for isothermal problems, and thus all purely mechanical problems, that the correct form of

the driving traction is given by (9.3). However, (9.3) is not necessarily correct for those

- problems with a separable energy, which allows for such temperature jumps.

A useful form of the driving traction may be obtained upon writing the first term

on the right hand side of (9.2) as

'0

‘1’

[[v1] = v1—v’ = jdv. (9.4)
C.

By invoking the fundamental definitions for stress and entropy the free energy differential

dth can be expressed
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dry = g—lldy-t-g—‘gde = tdy—nde, (9-5)

and thus the jump in free energy may be written

7. 9.

[[v1] = jrdy— jnde. (9.6)

7' 9'

which allows the driving traction (9.2) to be written

7. 9.

fa) = jrdr-<(t)>[[r]]— jndG—((n>)[[9]] . (9.7)

1' 0'

Once again for smooth temperature fields the term inside the brackets vanishes, retrieving

the more commonly used definition of the driving traction (9.3).

In Chapter 5 the driving traction (5.10) for the purely mechanical problem was

defined

f(t)m°°h = jitvldv-<<i(v)>>ttvll.

To understand relationship between the purely mechanical form (5.10) of the driving trac-

tion and the thermal/separable energy form (9.2), some consideration of the temperature

field within the body is required. In a purely mechanical setting the temperature is of no
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consideration, it is assumed that the problem is isothermal. Furthermore, in hyperelasticity

the stress is assumed to be derivable from a potential function, the strain energy function,

here denoted W (7) , and thus 1(7) = %W (7) . Recall in working with the Helmholtz

free energy that the stress is ‘C (y, 0) = 887‘" (y, 0) . Thus if the free energy does not

depend on temperature (as in the purely mechanical case), then the Helmholtz free energy

is equivalent to the strain energy function. Working under the assumption of hyperelastic-

ity, the integral term of the driving traction (5. 10) is

‘1’2 _ 728 _

[fitment - jyfiwom - 11w11.

the driving traction (5. 10) is

h .

mom“ = 11W]l-<<t<v)>>tlvli. (9.8)

Thus the definition of the driving traction (9.2) reduces to the proper form in the limit of

the purely mechanical case (9.8). Comparing (9.7) with definition (9.8) for the special case

of isothermal motions recovers the familiar form of the driving traction commonly pre-

scribed for those problems which are purely mechanical in nature

§

1

f (t) Immmm, = j tdy — ((1)) 1 [vi] a f (t) ””11. (9.9)

7-

Returning to definition (9.1) the local balance law (2.7)3 permits the driving traction to be
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expressed in its simplest form

f0) = —(<9>> [ [11]]. (9.10)

which is the form of the driving traction which we choose to use in the rest of this docu-

ment. Since ((0)) > 0 , the second law restriction (8.5) can be written

f(t) 20. (9.11)

Therefore, we conclude that the second law of thermodynamics states that the driving trac-

tion acting on the interface must be positive. Writing out the driving traction for initial

interaction via (9. 10) gives

1‘ = -%(9-r+98.)(nT—ns.). (9.12)

or since 11.1. = 112,

f = -%(9T+OS.)(n2—ns.). (9.13)

Since all field quantities can be decomposed into two parts via (3.92)-(3.94), the first

bracketed quantity in (9.13) may be written
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0., + 08, = 031+ 0:2 + 0:, + 0:3. (9.14)

The jump in entropy using (8.4) and (8.5) is

1'12 - "so =

A 0 or, A (9.15)
6 2 e pl 9 o + 9 o 9

pC721n[?] + pc2012(')(2 — y )+ f—pc1lm[£fi]_pcllm[g]

From this jump in entropy we foresee one of the major problems of this research t0pic, the

driving traction has field variables, which are themselves complex functions, in a logarith-

mic fashion. To avoid this difficulty, we limit our attention to the OB equilibrium state.

9.2 Driving Tl’action for Separable Materials with OB Initial Conditions

We conclude our analysis of the driving traction by considering separable materi-

als with OB initial states. Guided by the consideration of Chapter 8 it seems clear that con-

sistency with the purely mechanical theory only occurs in the case of an omnibalanced

initial state. In this case (7.19)1 and (7.37) give that

 

—1 A 1 mecb .

3(0T+08.)-—(0+ZSPCYID (47.8)) (OB). (9.16)
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while (7.37), (8.4), (8.6) yield

,. p .

112-71$. — przln[§]+ 2:1— Cylln[:;] (9.17)

1 mech

C ln(l+—,——D (A .80) (on).
p 1” Sp0C71 Y

Recall for C1 = c2 that omnibalanced states involve initial temperatures 0 obeying

(4.32)1 in the 012 -> 0 limit. In this case (9.17) further simplifies to

 

1 mech

n— .=—C 1n(1+ . D (A ,9) (c =c,OB). (9.18)

Thus for an omnibalanced initial state, the 012 —> 0 limit of the driving u'action is given by

  

o _ . D111°°11(Ay,s) D'“”"(Av.8) _
f - pC71[0+ 259C“ ln 1+ Spcylé (c1 —c2, OB). (9.19)

Recall that the omnibalanced temperature (4.32)1 is

 00130 = 0'exp[ , AT ].

0 (C71 — C72)

Note if the latent heat is nonvanishing then the limit C71 —-> C72 gives that the tempera-

.ono ‘

ture 0 -> oo . This limit permits the logarithmic expression in (9.19) to be expanded via

a Taylor series
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mech . mech .

ln[l+D _ (Arm) = D . (Al/'5) +o(é’2). (9.20)
spC710 spC710

 
 

Using result (9.20) simplifies (9.19)

  

C A mech mech .—

f" = ._EE[20+D (M’s) )[D (M’s) +019 2)] (OB) ’

 

2 Spcyl Sprlé

collecting like powers of 0 gives

mech

1'0 = D 3017.8) +0094) (OB). (9.21)

Thus for the case where the specific beats are the same and the initial state is omnibal-

anced we find that the separable form of the driving traction is

mech

f° = D 31“") (C,, = C7,. (013)). (9.22) 

Note that (9.22) is equivalent to the driving traction that was found for the purely mechan-

ical problem (5.11). Again we have demonstrated the close correspondence between the

purely mechanical and the separable theories.
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9.3 Kinetic Relation for Separable Materials

We now wish to consider the use of a kinetic relation to single out a particular

phase boundary speed for separable materials with OB initial conditions. In Chapter 5 the

use of a linear kinetic relation was investigated, and from (5.20) it is natural to assume that

the kinetic relation for the case of a separable material is

s = Kf°. (9.23)

Driven by result (9.22), we examine (9.23) for the same conditions. First, we note that for

these initial conditions the dissipation function is given by (5.16), then with a specified

mobility x and initial conditions, (9.22) and (9.23) give an implicit equation for 8

A7 = 2 S +SC (721-722) (OB) . (9.24)

1:99 (71—72) 2(c —S)

  

This is result (5.23) found for the purely mechanical case, which was to be expected.

Therefore Figure 5.3 being a graph in the (Av, 8) -plane of the linear kinetic relation

(5.23) also describes the linear kinetic relation for a separable material. This figure shows

the curve (9.24) for different values of the mobility x , from the figure it is seen that as the

mobility decreases the phase boundary speed decreases.
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9.4 Kinetic Relation for Fully Thermal Materials

We now wish to include thermal effects in the linear kinetic relation. This change

might yield a different value for the phase boundary speed from that determined in the

separable theory Just as the change in the admissibility region could be determined by

examining first order 012 effects in the 2nd law as discussed in section 8.3, we expect that

the change in the phase boundary speed can be accomplished by a similar analysis of the

driving traction.

The linear kinetic relation is

s = K(f°+ fa”), (9.25)

where in the 012 —-) 0 limit we retrieve the separable case (9.23). Thus the term 1(ch2 par-

ticipates in the thermal correction to the separable phase boundary speed (9.23). For OB

initial states we find the leading order thermal correction to the driving traction can be

 

 

expressed

6%

0. A * 0

f’=—p 0+ , D c§a2(yz-y)+C,flln 1+-—i—

2spc71 (9+ . D

89% (9.26)

0:“
a.

+ 0 f A “

_ —2_S_ [c721n[3,] + 11—I— C711n[9;]-C711n(1+ 43—7)] + 001:).
9 9 S13(1leQ
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Note in (9.26) that the mechanical field variable 0:3. and the dissipation function D, both

complicated functions, appear in the a logarithmic manner. Thus to determine the global

behavior of fa2 a numerical study might be in order. Since such an approach is not in the

a 0

same vein as the rest of this investigation, a detailed analysis of f 2 remalns to be

explored.



10. Conclusions and Recommendations for Future Work

10.1 Conclusions

From our analysis we have shown a number of results for the problem considered,

most of these demonstrated how the purely mechanical theory falls under a more complete

thermomechanical framework. Some of the more significant results are listed below.

1. For the mechanical field quantities of strain and velocity, a one to one correspondence

exists between the purely mechanical and separable theories.

2. The positive dissipation criterion for the purely mechanical theory is a direct conse-

quence of the second law of thermodynamics for the separable theory provided that the

initial configuration is omnibalanced. Thus, the purely mechanical criterion has a sound

thermodynamic foundation.

3. For a phase transformation occurring in a separable material, our model predicts the

possibility for a temperature change within the transformed material. If the initial configu-

ration is omnibalanced, then this change correlates directly with the dissipation function in

the separable theory limit.

4. The separable theory, a theory which was shown to account for temperature effects,

does not remove the nonuniqueness present in problems concerned with phase boundary

motion. Thus, a higher order theory is required to resolve this issue. A reasonable resolu-
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tion involves a separate kinetic relation.

10.2 Recommendations for Future Work

As with most research problems, there are a number of issues which we choose not

to address here, of these some of the more significant ones are listed below.

1. Investigation of the shock instead of the centered simple wave fan needs to be com-

pleted. This may provide a simplification in analysis.

2. For the case 012 « 1 , a more complete analysis of the admissible solution region needs

to be performed to determine how it changes in comparison to the solution region from the

separable theory. This may prove untenable due to the presence of complex functions con-

tained within logarithms expressions.

3. Although this was a purely analytic study, a numerical study of the transformed materi-

als temperature 93° might prove fruitful. The results of such a study could be directly

incorporated into a study of the admissible solution region. Recall that the growth of this

region depends solely on the temperature 05,.

4. For the case 012 « 1 , a study of the incorporation of thermal effects into the linear

kinetic relation needs to be performed. The results of such a study would determine if the

inclusion of thermal effects would cause the phase boundary speed to increase or decrease

from the speed found for a separable material.
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Appendix A. Algorithm for Reduction of Equations (6.5)-(6.13)

The algorithm outlined below expresses the eight field quantities Vs , Vs , 0s , Vs° ,

73° , 05. , VT, 7r as functions in terms of the initial conditions, temperature 0.1., and the

phase boundary speed. From (7.3) the temperature in region S

0S = 0. (M)

For later use we use (6.7) and (6.8) to relate the velocity and strain in regions S and So

v8 = vs. , (A2)

78 = 'Yso. (A3)

From (6.9) the strain 71 is found to be

C A

71.:72 + —12—ln( 09;.) (A.4)

c2°12

while from (6.10) the velocity vT is

vT = @[mep 41(0)] , (A5)

@(0) -<I>(O)

<1>(9)+<I>(O)

 where 0(0) = 24> (0) + <1) (0) ln( ).Using results (A2) and (A3) we

may rewrite (6.5)
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V3° = clyS.—c1('yl+ 2A7) . (A.6)

From (6.11) the velocity vs.

vs. = vT+s' (YT—75.) , (A7)

and from results (A.4) and (A5) the expression for the velocity

. C “

vs. = @(mep—ow))+s[yz+—2iln(é%)]—sys.. (A.8)

c2°12

Combining results (A6) and (A8) to find expressions for both the velocity and the strain

in region S0 in terms of the unknown temperature 0.1. one finds

c ,. C 6

vs. = (Ti—4@(8(019—0 (0) ) + {72 + —2—Ylln(6;)]-s (Yr + 2A7) ], (A.9)

c2°12

 

1 . C 6
73° = Cl+S[@(0(0T)—0(0))+s[72+-?7—2-1n(6:r)]+cl(71+2A7)]. (A.10)

c2°12

To express the field variable 93° in terms of the temperature 0T , insert results (A.4),

(A.10) into equation (6.13), and by simplifying one finds

05. = T1(0T) +T2(0T) + [T3(0T) +T4(0T)]T5(0T), (A.ll)
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where we have used the auxiliary functions

2

1 pc C 6 ¥ * 2 A A

71 020.2 T

2

T2 (9.1.) E (@[fHOfi —0(0)] +cl (y1 +2Av)+

C 6 2
. 72

1

, 2

2C71(C11’S)

c2°12

T 0 - 91:1 0 “ 2 C711“)3( T)=-(-61—+—S_)- @[fi( T)-fi(6)]+C1(Yl+ A'Y)+S 72+?azn '6; ,

C 6 .. ..

T4 (at) a pc§[yz + 7111n(-9—)— (y — 0120 )J-pciazar,

czor2 r

 

T5 (or) = l

A
c

”90.1 (or +S)(J5_12["(°T)
“WU +91 (8+2Avl-

C 2 0
c1[72++ln(§;)] ].

C2°12

Finally the master equation for the temperature 0.1. is found by inserting results (A.4),

(A5), (A9), (A.10) into equation (7.9) and simplifying

 

2

. C (SC —C ) 9 2

c20t2 0

C72(s'cl—c§)l [] (A.12)
 /c,2(c1— s) o (0) 2 —; + c§a20+(8cl —- cf)2Av + s'cl (71—72) .

c2°12



Appendix B. Transition in phase-2 is a shock

As discussed in Chapter 6, the characteristic curves in the phase-2 material are not

globally parallel as is the case in phase-l. Therefore transitions between different states

can occur through two types of mechanisms, a centered simple wave fan and a shock. As

the case of the centered simple wave fan was analyzed in detail in Chapter 6 we now turn

our attention to the case where the transition is a shock. The purpose of this appendix is to

formulate the necessary equations which mathematically describe the shock problem.

Recall that if the transition was a centered simple wave fan then the Riemann

invariants imposed a set of conditions between the field variables on adjacent sides of the

fan. For the case of a shock these conditions need not be satisfied, instead a new set of

constraints, the Rankine-Hugoniot equations, now must be satisfied. Recall that these

equations were the jump conditions (2.7) across the phase boundary. This is because the

phase boundary and the shock are discontinuity surfacest'he Rankine-Hugoniot equations

across the shock are:

[M] Hillvll = 0.

[[1]]+lip[[vll=0.

(13.1)

li([[e]]—<<t)>[[v]]) =0.

fipllnll $0.
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where Ii is the speed of the shock, which we assume to be constant, in view of the self-

similar nature of the square-wave pulse that initiates the process.

We wish to reconsider a boundary value problem outlined in Chapter 6, except

now where the T/Ez interface is a shock, all other assumptions are assumed the same as

the case of the centered simple wave fan. Thus, the dynamic boundary conditions (4.33)-

(4.37) and assumptions A.5-A.9 (Chapter 5) still hold. These conditions give rise to an ini-

tial wave pulse, originating in the phase-1 material, striking the phase boundary and set-

ting it in motion. Once again the pulse striking the phase boundary can generate a reflected

wave, giving rise to regions R, S, 8°, and a transmitted wave, creating region T. However,

now the TIP/z interface is a shock, across which equations (B.1) are required to be satis-

fied.

Figure B.1 is a graphical representation in (xt)-space of the temporal changes

within the body where the phase boundary speed is positive. During the initial encounter

there are four regions of interaction which are of interest, these four have been labeled

R,S,S° and T in Figure B. 1. One can think of these regions as follows: S is the region to

the left of the initial position of the phase boundary in which the initial pulse and the wave

which has been reflected from the phase boundary are interacting; 8" is that region to the

right of the initial position of the phase boundary in which the incoming pulse and the

reflected wave are interacting, R is the result of initial incoming pulse being reflected from

the phase boundary and clear of any further interactions, finally the region T is that region

in which some part of the initial pulse has transmitted through the phase boundary. The

shock is to occur between the phase-2 equilibrium state and the T region.

As was the case for the fan, region R, which contains the final reflected wave,



178

occurs later than either S or SO and thus decouples from the other three regions. Therefore,

when analyzing the initial interaction we only need to consider the regions S, 8°, and T.

We again use the method of characteristics to relate the various regions of the domain,

between S and the incoming pulse-the Riemann invariants (3.51) and (3.52); between

regions S and S°-the two Riemann invariants (3.52), across the moving phase boundary

between T and the S°-the 3 jump conditions (2.7), between T and the initial phase-2 equi-

librium state-the three shock conditions (B. 1). In Figure B.l the various characteristics

and Riemann invariants are shown, as well as the jump conditions across the phase bound-

ary, and the shock conditions in the phase-2 region.

From the procedure outlined above we generate ten equations between the nine

field quantities: GS, 630, 61-, 75, 130, yr, vs, v30, vT, the shock speed Ii , and the phase

boundary speed 8. Guided by Figure B.1 and the above outline, the ten equations which

ovem the interactions between the S, 8°, and T are written out below.g

Region S and the incoming pulse

vS—cl'ys = —c1(yl+2Ay) , (B.2)

9s .. é ..

pCYlln .91 +k1 = pCYlln ? +k1. (B.3)

Region S and S0

vso "' Cl‘YSo = VS — CIYS 9 (B°4)
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vso+clySo = vs+clys. (35)

Region T and the phase-2 equilibrium state, characterized by the formation of the shock

wave

46(72—71.) = vz— vT, (B.6)

5va = pain, _y’) _ pc§a2(é _ e‘) — pcin- 7") + pciasz— 9"). (13.7)

2 2
pC n: t 2 A DC it: t 2

[73(72—7 + aze ) + pCflO + 62] — [73(yT—y + aze ) + pC120T+ 52] =

(B.8)

1 " A * t n

5(PC§(72 - 'Y )- pciazw — 9 )+ pcin— 7 )—pc§a2(6T— 9 )) (72 .41.) ,

Region So andT

—S (YT " lYso) = VT "' vso ’ (3'9)

2 r 2 a 2
—Sp(vT—vs.) = pc2(yT—y )—pc2a2(6T-6 )—pcl'ys., (B.10)

2 2

pc2( ' e')2 C o 8 pc‘ 2 C o B — 11—2"’ 71""7 +02 +9 72 T+ 2 - TYS°+p 11 S"+ 1 " (B )

l :- .

§( pcfys. 4' Pciw'r " Y )-pc§a2(6T - 9 )) (YT — 78°) .

The above equations are a system of ten equations for the eleven quantities Vs , vs, BS,

75., Vso, 95° . 7r , vT , 0T, Ii, 8' this system of equations completely characterize the ini-
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tial interaction.

Comparing this set, to that of (6.5)-(6.13) for a fan, it is to be noted that we have

obtained an extra unknown 5, and an extra equation. The extra equation is due to the fact

that 3 shock conditions are given across a T/FQ shock interface, whereas only 2 character-

istic equations held across a T/Ez fan. On the other hand, the equations obtained here,

(B.9)-(B.11), are simpler than those which describe the fan, (6.9) and (6.10), because

those for the shock have no unknown field quantities appearing in a logarithmic fashion.

Preliminary studies indicate that an elimination procedure similar to that employed

in Chapter 6 yields a master equation which would be the analogue of (6.14). This master

equation is in terms of the strain VT, and is given by the following equation:
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—c2 s‘c

8+0 (‘YT- (v -oc29))+S-—c—IYT- c (71+2AY)+

1

2 2 at- t 2 t t 2 A

czaz More -229 >> -<vz—<v «129 >> ]—29C,29+

(S-Cr) (pcioc2 (72-71) —2pC72)

 

 

03a: [96in - (7‘ — «29'» + 963% - (7‘ - «29'» — poiazé] (72 -w )2
' _ 2

(8 C1) (Pczaz (72 ’ 7T) ’ ZPCyz)

—[pc§(v2 — (7' - a26'))—pc§a2é—pc§(v-r — (7‘ — a26‘))] (72 - 72) +

[pcim - (t!m - «129'» + pc222(v2 - (7' - «293) — 902029] (72 - YT)

(pc§a2 (v2 — 72) — 29C”)

 

2

[3020.2 (72 - YT)(

 

PC2[(YT- (7—cat—29)) -(YT-(Y a—29))]-—29C229]_ o

(962%(72—w-29C”)

‘ One would anticipate that this equation can be analyzed in a fashion similar to the case of

a fan.
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Phase 1. Phase 2.

 

shock

52

M Riemann invariant

x=s t

( ) W Jump conditions   
Figure B.1 This is a graphical representation in the (xt)-plane where the transition in the

phase-2 regions gives rise the formation of a shock. Regions E1 and 152 are the initial equi-

librium states separated by the phase boundary at x=s(t). The incoming wave (IW) strikes

the phase boundary setting it into motion, where s > 0 is assumed. The IW-phase bound-

ary interaction gives rise to the regions S, 8° and R in phase-l, and T and the shock in

phase-2. The region R represents a reflected wave, while S arises from the interaction of

the IW and the reflected wave. 8" is that material which has undergone a phase transfor-

mation from phase-1 to phase-2. The IW striking the phase boundary also produces a

transmitted wave in phase-2, this is designated by the letter T. Finally the transition from

the 52 state to the T state is a shock, and so involves 3 shock conditions, and the introduc-

tion of an yet unknown shock speed 5 , whose value must be between CE and CT , where

C]. > CE .This figure, in conjunction with figure 6.1, give the two essential ways in which

the purely mechanical situation displayed in Figure 5.1 are complicated by thermal effects

in the adiabatic limit
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