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ABSTRACT

ADIABATIC PROPAGATION OF PHASE BOUNDARIES IN A
THERMOELASTIC BAR

By

Ralph Worthington

A Helmholtz free energy function is introduced for a one dimensional two phase
solid. The free energy accounts for both thermal and mechanical effects. Phase transfor-
mations can occur between two distinct phases, one in which the stress response is depen-
dent on the both the deformation and current temperature, while the other is independent
of any thermal effects. The model admits a thermomechanical coupling parameter o,
which can be associated with a coefficient of thermal expansion in the thermomechanical
phase. If the coupling parameter o, is set to zero, then one retrieves results from what is
known as the separable theory.

A set of initial conditions are proposed such that a single phase boundary is present
in a stable equilibrium configuration. Such configurations are shown to be a two parameter
family of states. The initial configuration is disturbed by a set of dynamic boundary condi-
tions that give rise to a wave pulse, the wave propagates from one of the boundaries into
the interior of the bar. This travelling wave eventually encounters and interacts with the
phase boundary, and it is shown that the encounter is characterized by a one parameter
family of solutions. The fully thermomechanical theory is treated analytically in the small
o, limit, and thermal effects are shown to play a major role in the interaction. The Clau-

sius-Duhem inequality is shown to restrict the family of solutions.
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This is a graphical representation in the (xt)-plane showing the initial interac-
tion of an incoming pulse with a stationary phase boundary for the purely
mechanical problem. The wave speed of the phase boundary is assumed pos-
itive  (t) > O in this figure. There exist six distinct regions during this inter
action: E; & E, are the equilibrium configurations in phase-1 and phase-2
respectively, IW represents the region carrying the incoming wave pulse
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reflected wave travels, while S arises from the interaction of the incoming
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This is a schematic representation of the solution region in the

(AY, 8) -plane for the purely mechanical problem with Maxwellian initial
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Figure 6.1
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Figure 7.1

This is a graphical representation in the (xt)-plane of the initial interaction of
a wave pulse with a stationary phase boundary in the fully thermodynamical
theory. Regions E; and E, are the initial equilibrium states separated by the
phase boundary at x=s(t). The incoming wave (IW) strikes the phase bound-
ary setting it into motion, where § > 0 is assumed. The IW-phase boundary
interaction gives rise to the regions S, So and R in phase-1, and T and the
centered simple wave fan in phase-2. The region R represents a reflected
wave, while S arises from the interaction of the IW and the reflected wave.
So is that material which has undergone a phase transformation from phase-1
to phase-2. The IW striking the phase boundary also produces a transmitted
wave in phase-2, this is designated by the letter T. Finally the transition from
the E, state to the T state is a centered simple wave, which requires ¢, < Cg, -

The other possibility, that of a shock transition from the E, to the T-state, is
not considered here but is discussed briefly in Appendix B. Comparing this

diagram to figure 5.1 shows the additional complexity inherent in the fully
thermodynamical theory. . ......... ... .. ... ... i i, 125

This is a representation of the fan transition in phase-2. The point (x;,t*) is

located on the contiguous line between T and the fan, where dx _ A =204

dt
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% = A, = Cg, - Correct ordering of the speeds in the fan requires that

Cg,>Crs which becomes an admissibility condition on the fan solution
investigatedin Section 7.3. . ...... ... ... il 126

This is a schematic plot which shows the admissible region for a self cen-
tered wave for the case where ¢, = c,. The region that lies between the line

$ = 0 and the curve £ = 0 is the admissible region for the purely mechani-
cal case with Maxwellian initial conditions as previously encountered in Fig-
ure 5.2. The region above the curve @ = 0 is the region in which the self
centered wave may exist. Therefore the region of existence for the centered
simple wave is the area between the two curves. Values for the material
parameters were chosentobec = 2 andy, -y, = 5............... 145






Figure B.1 This is a graphical representation in the (xt)-plane where the transition in the
phase-2 regions gives rise the formation of a shock. Regions E; and E, are
the initial equilibrium states separated by the phase boundary at x=s(t). The
incoming wave (IW) strikes the phase boundary setting it into motion, where
$ >0 is assumed. The IW-phase boundary interaction gives rise to the
regions S, So and R in phase-1, and T and the shock in phase-2. The region R
represents a reflected wave, while S arises from the interaction of the IW and
the reflected wave. So is that material which has undergone a phase transfor-
mation from phase-1 to phase-2. The IW striking the phase boundary also
produces a transmitted wave in phase-2, this is designated by the letter T.
Finally the transition from the E, state to the T state is a shock, and so

involves 3 shock conditions, and the introduction of an yet unknown shock
speed A, whose value must be between Cg, and C, where C. > Cg, .This fig-

ure, in conjunction with figure 6.1, give the two essential ways in which the
purely mechanical situation displayed in Figure 5.1 are complicated by ther-
mal effects in the adiabatic limit.. . .............. ... ... ... ... 182
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1. Introduction

1.1 Overview

Recently, the topic of solids able to undergo phase transitions has received a great
deal of attention from the mechanics community. In this section we will briefly introduce
topics pertaining to phase transformations in order to familiarize the reader with the
research to be presented. It is well known that certain materials which behave elastically
can be modeled with a stress-strain response derivable from a potential function. Classi-
cally this potential function is defined as the material’s strain energy density and is usually
a convex function, resulting in the equilibrium equations being elliptic in nature. Typically
this gives rise to a stress-strain response which is one to one, i.e. associated with each
stress there exists a unique strain. However, if the materials potential function is not con-
vex, then the equilibrium equations may lose ellipticity. This may result in the stress-strain
response losing the one to one behavior, and for certain levels of stress the associated
strains may not be unique. It is this non-determinacy which makes these problems both
mathematically challenging and representative of phase transformation phenomena.

Figure 1.1 is a schematic diagram of a hypothetical material in which the strain
energy density W is not a convex function of some strain component ¥, say tensile strain.
If one were to consider a tensile test of a specimen composed of such a material, with a
load being applied to the specimen resulting in the stress being contained in the range
0, S0 (Y) <Gy, then itis seen from this figure that the material need not be in a state of
homogeneous deformation. It may be that the specimen contains regions of strain that dif-

fer radically, some regions being in a state of “low” strain adjacent to one in a different

1
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2
state of “high” strain. Thus, the possibility exists that within the body there exist surfaces

that separate regions of low strain from high strain, and across such surfaces the strain suf-
fers a discontinuity. These surfaces are called phase boundaries, while the material itself
on either side is said to occupy a particular phase. A region of a material undergoes a
phase transition when it transforms from one phase into another.

For materials capable of undergoing these types of transitions the study of equilib-
rium configurations, quasi-static and dynamic motions is possible. In all three areas, the
ability of the body to transform between different phases and generate phase boundaries is
of interest. For quasi-static and dynamic problems one must consider the possibility of a
moving phase boundary, and the interaction of such a boundary with other surfaces.

Further complicating the issue is the addition of temperature effects. In general,
research into the purely mechanical motions of such materials has received more attention
then the modeling of thermal motions. The latter, however, is now also becoming an area

" of increasing research activity.

1.2 Literature Review

In general a material can be thought of undergoing a phase transition when proper-
ties that characterize the material change in response to a state variable reaching a critical
value. Examples of such transitions are between liquid and gas, solid and liquid, as well as
solid to solid and other combinations. The model for the van der Waals fluid captures such
behavior, where at constant temperature it is either a fluid or vapor depending the level of

its specific volume. In the case of solids, the generic ausenite/martensite transition comes
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3
to mind, where depending on the level of temperature and stress the solid may be in either

state, the states having different material properties. Furthermore this type of solid to solid
transition is the mechanism for the shape memory effect. In what is to follow we will dis-
cuss an elastic solid in which the stress strain response is not monotone, and allows for
discontinuous field quantities which may be interpreted as a solid undergoing a phase
transformation.

The study of elastic solids experiencing discontinuous field variables has received
a great deal of attention in previous decades and the literature concerning this topic is now
quite extensive. From a mechanistic point of view, one may think of three different classes
of problems: equilibrium, quasi-static, and the fully dynamical problems. Some of the
more relevant literature which addresses these types of problems will be explored below.

In (1975), Ericksen discussed an elastic bar in equilibrium having a non-mono-
tonic stress-strain relation. For a range of stresses and displacements this type of response
allows for more than one strain to be realized. When the bar is subjected to the boundary
conditions of a controlled load or displacement (soft or hard device) it is shown that infi-
nitely many equilibrium configurations are possible. In an attempt to rectify this defi-
ciency, the author studies an energy minimization criterion in a attempt to determine a
unique and stable solution. Thus he demonstrated that for certain nonlinear elastic materi-
als, a bar composed of such a material subjected to specific load/displacement boundary
data may not support an unique solution. The author states that one may interpret this abil-
ity of the solid elastic material to accommodate a range of strain for the associated speci-
fied stress as a solid undergoing a solid to solid transformation. This ability to model a

phase transformation in a solid via the nonmonotone stress-strain response has greatly
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4
contributed to research efforts in this phenomena.

Knowles and Sternberg (1978), in the setting of plane non-linear elastostatics,
demonstrate that a certain set of deformations having continuous displacements posses the
property that the displacement gradients may be discontinuous In elastostatics, the equa-
tions of equilibrium which govern the deformation fields are classified as elliptic partial
differential equations, and when discontinuities in the deformation gradients arise, the
classification of these governing equations changes from elliptic to hyperbolic; the equa-
tions are said to lose their ellipticity. Thus within a hyperelastic solid one can construct
solutions such that the displacement field is everywhere continuous, yet the deformation
gradients may be piecewise continuous as long as the equilibrium equations suffer a loss
of ellipticity. Therefore surfaces may exist such that the deformation gradients suffer a
jump in value when passing from one side of the surface to the other, and these jumps in
field quantities may be attributed to the material undergoing a phase transformation. The
authors refer to such a singular surfaces as an *“equilibrium shock”, however now the term
phase boundary is more widely used. The existence of such a discontinuous surface leads
to an additional system of equations which connect the field quantities adjacent to the sur-
face, these equations are the Rankine-Huginot equations.

If one considers a body capable of containing these types of discontinuities, then
families of equilibrium states parameterized by time may be constructed so as to yield the
quasi-static evolution of a phase boundary. During such quasi-static motions the total
energy may change, thus the passage of a phase boundary may dissipate the energy within
the body. Knowles and Sternberg explore the quasi-static evolution of a phase boundary

through an elastic body and the dissipation of energy which occurs during such processes.
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5
They demonstrate that the equations which govern such processes are similar in form to

those of steady irrotational flows in a compressible inviscid fluid.

The dissipation of energy during the motion of a phase boundary directs one to
inquire as to the use of certain evolution criteria during these types of motions. For quasi-
static motions Knowles (1979) investigates the dissipation of energy, and from the second
law of thermodynamics derives a dissipation inequality for a three dimensional body. He
demonstrates for all motions of a phase boundary that the dissipation should be nonnega-
tive. A dissipation function is derived and shown to be a function of the energy momentum
tensor, also known as the driving traction or force on the defect, whose effects in a differ-
ent context where previously studied by Eshelby (1975).

For such quasi-static evolution problems, the lack of uniqueness of a solution is
found to be even more extreme than the equilibrium problem. The reason being that each
equilibrium configuration is indeterminate for the reasons outlined above, and the speed of
the phase boundary through the material inherits this indeterminacy. Various procedures
have been proposed to resolve this issue of determining a unique solution among the infi-
nite number of admissible candidates. One type of selection criterion is to impose an
energy minimization condition to each equilibrium configuration during the evolution of a
phase boundary. This results in the driving traction being equal to zero for each equilib-
rium state. Another approach requires all motions to occur with maximum dissipation of
energy. Instead of using an energy platform, one may introduce an additional set of consti-
tutive relations, a nucleation criterion and kinetic relation. The former imposes conditions
on the emergence of phase boundary, while the later governs the actual evolution of the

boundary. Abeyaratne and Knowles (1988) use this method to resolve the issue of nonu-
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6
niqueness for a one-dimensional, isothermal, elastic bar whose stress strain response is

non-linear.

In the fully dynamical motion of a phase boundary, the governing equations are
different from the quasi-static case due to the additional inertia terms. Within the dynam-
ics of elastic bars, James (1980) studies some general properties of solids containing prop-
agating phase boundaries. Abeyaratne and Knowles (1990a), investigate the Riemann
problem of a bar which has a non-monotonic, tri-linear stress strain response. They show
that the lack of a unique solution can be rectified by the use of a kinetic relation and a
nucleation criterion, as for the quasistatic case. With these two additional criteria the
authors study the solution for the propagation and interactions of phase boundaries within
the bar.

For a body consisting of a elastic layer of finite thickness Pence (1991a) investi-
gates the initial interaction of a incoming shear pulse with a single stationary phase bound-
ary and the subsequent ringing of shear waves between the external boundaries and the
internal phase boundary. The author specifies that a single phase boundary is initially
present, and pursues a treatment that excludes additional phase boundary nucleations. He
then proceeds to investigate the family of solutions parameterized by the phase boundary
speed. Various impedance criteria are used as a selection technique for the phase boundary
speed. It is shown for the special case of a completely reflecting or transmitting wave
interaction with the phase boundary, that the motion of the phase boundary is periodic in
nature. In another study, Pence (1991b) examines the same problem from the perspective
of energy and dissipation. Using a criterion based on the dissipation within the layer, it is

shown that there are exactly two motions which permit no dissipation, and one motion that
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7
maximizes the dissipation rate. In Abeyaratne and Knowles (1992a), (1992b) a set of sim-

ilar problems of the interaction of a wave pulse and a stationary boundary are treated.

Another approach for resolving the issue of nonuniqueness is to attribute structure
to the phase boundary, essentially giving it a finite thickness and matching conditions
within the boundary to the conditions at the interface. Slemrod (1983) uses this approach
for isothermal motions of a van der Waals fluid. Although the material model is nominally
for a fluid, the equations which govern the processes are mathematically similar to those
of a solid and thus the associated ideas apply to solid-solid modeling. The reader inter-
ested in all the above techniques should see Truskinovsky’s (1991) paper which compre-
hensively discusses the formulation and results using these methods for a broad class of
problems.

So far all of the above papers cited concerned motions, whether quasi-static or
dynamic, which were assumed to proceed isothermally. The literature for motions which
occur without the isothermal constraint is more limited. James (1983) considers the steady
propagation of a phase boundary within a thermoelastic bar, allowing for changes in tem-
perature during a dynamical process. Under the assumption that all motions within the bar
are close to an equilibrium state, he is able to show for adiabatic motions that the govern-
ing equations are unable to determine a unique solution, and thus the addition of thermal
effects does not resolve the issue of uniqueness.Truskinovsky (1985) is one of the first to
investigate thermal effects for motions within a heat conducting nonlinear elastic bar. He
resolves the issue of nonuniqueness by attributing structure to the phase boundary. Gurtin
(1991) explicitly formulates the general laws which govern all motions for the thermome-

chanical propagation of a phase boundary. In Abeyaratne and Knowles (1993a) a stress-
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8
strain-temperature response function is introduced for a material able to undergo phase

transitions. This response function is piecewise continuous for the different phases of the
material. From the appropriate stress response function the free energy density is con-
structed for either phase using thermodynamic arguments. They introduce a kinetic rela-
tion and then study the hysteretic response of the material for quasi-static motions.

The Clausius-Duhem inequality is a thermodynamic restriction on all admissible
motions for the above mentioned problems. It can be used to eliminate possible candidates
for solutions produced from the other field equations, but it will not provide a unique solu-
tion. This inequality may be reformulated by the construction of an entropy production
function for processes occurring within a body, and for all admissible motions the entropy
production must be nonnegative. Abeyaratne and Knowles (1990b) show for a three
dimensional body with a continuous temperature field that the rate of entropy production
occurring during the motion of a phase boundary consists of three parts: one from the
material dissipation away from phase boundary, a second part which arises from heat con-
duction, and a contribution from the moving phase boundary. Restricting the class of
materials to that which is thermoelastic they show that the rate of entropy production is
due only to heat conduction and the motion of the phase boundary.

Mathematically, the above equilibrium problems give rise to a system of elliptic
partial differential equations (PDE). When these equations admit solutions which have
continuous displacements, but displacement gradients which are discontinuous, then the
form of these equations changes from elliptic to hyperbolic. In the case of fully dynamic
phase boundary motion one has the additional inertia terms and the classification of the

governing equations is now normally hyperbolic. With respect to engineering applications



9
and applied mathematics, hyperbolic PDE’s were studied extensively in the context of gas

dynamics, see Courant and Friedrichs (1956) or Landau and Lifshitz (1987).

The class of boundary value problems presented in this document are typically
found in the studies of systems of hyperbolic equations. Lax (1973) considers a very gen-
eral form for systems of hyperbolic PDE’s or conservation laws, and displays certain
aspects of their nature and also addresses the admissability criteria for weak solutions of
such systems. Hattori (1986) considers the Van der Waals fluid, governed by a specific
system of conservation laws, for which he proposes a maximum entropy rate admissability
criterion for all solutions. Truskinovsky (1991) also works with discontinuous solutions
which occur in these types of systems, and explores the implications of various physical
models which may be taken as a basis for the conservation laws.

Thermodynamically, a phase transformation is classified according to the type of
discontinuity present m the materials free energy (Rao and Rao 1978). A first order phase
~ transformation is characterized by a material free energy that is continuous, but whose first
derivatives are not. A second order transformation is similarly described by a continuous
first derivative, but a discontinuous second derivative. One may also speak of mixed order
transformations. However in this document the problems considered will be exclusively
first order.

Various authors have proposed models for the material in which the materials free
energy possesses the required continuity, and yet still allows for transitions to occur. Falk
(1980) proposes a function for a Helmholtz free energy to model the phase transition
between Austenite/Martensite. The function is of the Landau-Devonshire type and is capa-

ble of supporting first order transitions. The author derives the fundamental properties of

e
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such a material, and discusses the phenomena of shape memory and hysteresis which the

model allows. Niezgodka and Sprekels (1988) derive the necessary equations which gov-
ern a thermomechanical dynamical phase transition. Introducing a Landau-Devonshire
model for the material’s free energy into the governing equations results in a system of
coupled non-linear partial differential equations.

The free energy function introduced in this document will not be of the Landau-
Devonshire type. Since we wish to focus our attention on that subset of the material’s
response for which a transformation can take place, and not the entire spectrum, we utilize
an efficient method of constructing a material model. By constructing a free energy func-
tion composed of a set of discrete functions, one for each phase, and requiring the continu-
ity of this function at transition points, the model is able to capture first order phase
transitions. This discreteness allows us to use a lower order polynomial for the free energy,

which in turn simplifies the mathematics.

1.3 Problem Statement

The material within this document can be thought of as being composed of two
major parts. The first part consists of Chapters 1-4, the second consists of Chapters 5-9.
We begin by first introducing the field equations for a one dimensional continuum, we
consider a bar, where the equations are specialized to account for adiabatic motions only.
Since we wish to consider the motion of phase boundaries, the Rankine-Hugoniot equa-
tions are presented. These being jump conditions for the field variables between regions

separated by a discontinuitys surface. Here this surface is initially motionless and so con-
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stitutes an equilibrium phase boundary. Eventually it is set in motion via the introduction

of a wave pulse.

In Chapter 3 we develop a 1-D constitutive model for a solid able to undergo phase
transformations. A model for the Helmholtz free energy model is developed, it is a func-
tion of the strain and temperature, and can be thought of as a “potential well”. The free
energy is constructed in such a manner so as to accommodate two distinct phases. One of
the major differences between the two phases is that only one possesses a shape strain.
The stress response is derived from the free energy, one phase has a stress response that is
independent of temperature while the other is temperature dependent. From it’s two phase
nature, the stress-strain curve is nonmonotonic. One feature of the nonmonotonic behavior
is the lack of uniqueness involved in a equilibrium configuration, even by specifying the
temperature and stress, or temperature and elongation, the state of strain within the bar is
not unique. We show that the equations of equilibrium characterize a two parameter fam-
ily of configurations.

In Chapter 4 we investigate this lack of uniqueness in equilibrium configurations
in detail. There we introduce three canonical equilibrium configurations, each configura-
tion having a separate criterion in addition to the equations of equilibrium.These canonical
states are families of one parameter equilibrium configurations. We then demonstrate that
when any two of the three states coincide, then the resulting equilibrium configuration is a
unique state. These unique equilibrium states play a central role in understanding the con-
nection between the present fully thermomechanical description, and simpler descriptions
that are purely mechanical in nature

To begin the second part of this document we formulate and impose a set of initial
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conditions such that a single phase boundary is present in an equilibrium configuration.

This initial configuration is then disturbed by a set of dynamic boundary conditions which
give rise to a wave pulse that propagates into the bar from one of the boundaries. This
travelling wave eventually encounters and interacts with the phase boundary, it is this
interaction that we later investigate in detail. In general, this interaction causes the phase
boundary to move, leading to phase transformations as particles pass through the moving
phase boundary.

A temperature-independent version of this problem was considered by Pence
(1991a, 1991b). In his work a layer was composed of a two phase elastic material, but the
stress response was independent of thermal effects in both phases. The mathematical
equations which compose Pence’s problem are identical to ours. In Chapter 5 we modify
this purely mechanical problem so that we may compare any solutions from our problem
with those from the purely mechanical problem. One of the major goals of this research is
to extend this previous work so as to encompass thermal effects, and demonstrate any new
features of our more complete physical theory.

The interaction of the incoming wave pulse with the phase boundary gives rise to
two possible scenarios regarding the transmitted wave that becomes the leading distur-
bance after the interaction. The first involves a shock, the other involves a centered simple
wave fan. We only consider the latter case in this document. In Chapters 6 and 7 we
develop a system of algebraic equations which completely characterizes the initial interac-
tion. This system of equations is indeterminate, there being more unknown field quantities
than equations. Considering the phase boundary speed as a parameter, we are able to

reduce the system of equations to a singe master equation, a nonlinear algebraic equation
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for a single field variable. A solution to this equation not being evident, we develop a solu-

tion, albeit a family of solutions, for the unknown field variable via a perturbation from the
purely mechanical state. We show once this perturbation solution is constructed that we
can than calculate all the remaining field quantities. By comparing our results with those
from the purely mechanical problem we are able to determine the leading order thermal
effects, which is one of the major objectives of this research.

In Chapters 8 and 9 we demonstrate how the second law of thermodynamics
restricts this family of solutions. Finally, we consider an additional constitutive relation, a
kinetic relation between the phase boundary speed and the driving traction acting on the
phase boundary. We show that this additional criterion singles out a unique solution to the

interaction.
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Y)

Figure 1.1 Displayed is the nonmonotonic stress strain response for the material model
describing phase transformations. Note for the prescribed level of stress in T S T< 1),

that there are three possible values for the strain vy



2. Balance Laws

Consider a body B which is a bar of length L and of constant unit cross section.
Let ¢, denote the triad of mutually orthogonal unit vectors associated with the reference
configuration, where ¢, is parallel to the rod’s axial direction. Denote the position vector
of a particle in the reference configuration by x, then
B = {(x,Xp,Xy) lIx;€ [0,L] }.
Let the position of the particle x at time t be y (x, t), the deformation of the bar, and con-

sider motions of the type:

y(x,t) = x+u(x;t)e,, 2.0

where the function u (x,, t) is the displacement of the particle. Deformations of the form
(2.1) describe longitudinal deformations of the bar. The problem is essentially one dimen-
sional, therefore let x, = x for notational convenience.

In what is to follow the displacement u (x;,t) is assumed to be a continuous func-
tion almost everywhere with first and second derivatives which are piecewise continuous.

Denote the strain in the bar as y and the velocity v, then by definition

— au

'Y — (22)
- au

v —t . (2.3)
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The strain Y is required to satisfy y > —1 in order for the deformation (2.1) to be invert-

ible.
Introduce the following notation, let

T denote the stress,
¢ the internal energy per unit volume,
7 the entropy per unit volume,
q the heat flux,
0 the absolute temperature,
r the heat supply per unit mass, and
p the mass density.

Using a Lagrangian description, the local equations of motion (Dunn and Fosdick 1988)

for the bar are:

Y

| &

(2.4

& &

dn
dt 2

Dl

gt

The first of these,(2.4),, ensures compatibility of the displacements, (2.4), is the balance
of linear momentum. Equation (2.4); is the balance of energy or the first law of thermody-

namics, while (2.4), is the second law of thermodynamics.
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If within the bar an interface exists, X = s (t) , where the fields suffer a disconti-

nuity then these field quantities must satisfy certain jump conditions across such an inter-
face. These jump conditions are the Rankine-Hugoniot equations, which in this one

dimensional setting are

(vl = -s(lv]],

[{x]] = -sp[[v]],

(2.5)

((wv11 + [lal] = -s(ee1] -5[[v]],

solm1] +|[3]] 0.

Here s denotes the speed in which the surface of discontinuity propagates, § = gis (t).
The square brackets denotes the jump in the enclosed quantity, say f, across s(t):

[[f1] = f(s*) —f(s") ; while ((f)) is the average of the function f across the inter-
face: ((£)) = 5[ (s*) +1(s)].

The class of problems to be investigated is now restricted to those which describe
adiabatic motions, in so doing the internal energy production r and the heat flux q are
required to vanish. One may regard adiabatic motions as idealized processes which occur
quickly with respect to the continuum thermodynamic time scales associated with the
transfer of heat by diffusion and radiation. Isothermal motions may be considered to
occupy the other end of the spectrum, where events occurs so slowly that the body has
enough time for the transfer of heat such that the temperature can equilibrate with an

external ambient temperature. Under the adiabatic assumption, the equations of motion
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and jump conditions simplify into the final form which will be used throughout the

remainder of this document:

o _ v
ot ox’
v _ ot
Pat = ax’
(2.6)
de _ ov
dt = ox’
dn
a20,
[[VI] +$[[Y]] =0,
[[x]] +sp[[v]] =0,
2.7

S([le]] - [[¥1]) =0,

spl(n]] <0.

When working within the context of the mechanics of solids it is often convenient to uti-

lize the Helmholtz free energy function v (y, 0) . The internal energy and Helmholtz free

energy are not independent, but are related through the expression

€ =y+0n. (2.8)
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From standard thermodynamic definitions (Ziegler 1988, Ericksen 1993) the stress and

entropy may be derived from the Helmholtz free energy

_ oy - .oy
T= aY ’ Tl - ae (2~9)
. de dy  d .
From (2.8) the left hand side of (2.6); can be expressed T = I + a (6m), which from
the definitions (2.9) and (2.6), is simplified g—f = 'c-g—;i + O-g—?. Therefore the first law of

thermodynamics (2.6) in the adiabatic setting can be expressed in the alternative fashion

(2.10)

¥y
"
e

which requires a particle’s entropy to remain constant.
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3. Material Model

3.1 Construction of the Material Response Functions

The purely mechanical problem of a packet of shear waves interacting with a
phase boundary has been previously studied (Pence 1991a, 1991b). However during such
processes a more complete description necessitates accounting for thermal as well as
mechanical effects (James 1983,Truskinovsky 1985). Recently, a material model has been
developed which may be used to describe a multi-phase thermoelastic solid (Abeyaratne
and Knowles 1992c¢). The model considered in this document is similar in form to theirs,
but we more fully use its ability to model thermomechanical motions by less simplifica-
tion of material parameters. One major goal of this research is to introduce this model and
demonstrate its ability of capturing nonlinear elastic adiabatic motions. We also will dem-
onstrate its ability to collapse into a form which is purely mechanical, and for which cer-
tain previously determined results are shown to fall under a more complete
thermomechanical framework.

The model to be presented intuitively seems more realistic than a description
which allows only mechanical motions, and the use of this more complex energetic
description should enable one to gain a better understanding of observed physical phe-
nomena such as thermal softening and the Austenite/Martensite transformation, the later
being more in the focus of this research. This section explains the model while latter sec-
tions modify it, the final form being the basis for the remainder of this work.

Assume the internal energy to be a state function with thermodynamic variables of

temperature and strain. For a linear elastic stress strain response, the internal energy €

20
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should be a quadratic function in strain vy at constant temperature 0 :

e = E(1,0) = ;1(8) [Y-2(8)] +b(8). @3.1)

Here and throughout this manuscript the tilde superscript will be used to indicate a func-
tional dependance on strain y and temperature 6. From this initial form of the internal
energy we will construct the Helmholtz free energy from which the stress and entropy may
be derived. An alternative approach is to begin with the internal energy using the strain
and entropy as the appropriate thermodynamic variables from which the stress and tem-
perature follow. In this setting, any material whose internal energy can be additively
decomposed into a function of strain alone and a function of entropy alone will be referred
to as separable. This special form of the internal energy ensures that the stress is indepen-
dent of the entropy and results in the mechanical jump conditions (2.5), , being indepen-
dent from the energy jump condition (2.5);. Knowledge of this special form for the
internal energy function will prove useful in future development within this document.

From (2.9) the Helmholtz free energy y can be expressed

v =vy(1.6) =¢&-6n, (3.2)

where 7 (7, 0) , the entropy of the material, is also a function of strain and temperature.

The entropy can be developed by using the following results from (3.2) and (2.9)



-_a-_a-_ B
-1 “E""éﬁe n e%n, 3.3)

By manipulating equations (3.1)-(3.3) the following expression for the entropy is found

dp_ 10z _1rw(®) 2_ i} , '
57 = B35E = 5| [Y-a (@)1= (®) [Y-a(®)]a’(®) +b'(8) |, (3.4

here the superimposed prime denotes differentiation with respect to the function’s lone
variable.
Equation (3.4) may be integrated thereby giving the entropy to within an arbitrary

function of the strain

0 .
A0 = [ B 1y-a @1 -u® [1-®10' @) +v @) [T +F ) 65
where F (y) resulting from the integration is a function of the strain iy only. Combining

the internal energy (3.1) and the entropy (3.5) to construct the free energy (3.2) one may

then calculate the stress via definition (2.9),

T(7,0) = pn(8) [Y-a(B)]- (3.6)

( at
6 (W [r-a®)]-pEa" E)]1F-0F 1,

or in the alternative form



bl

by s

Mmat)

(Al

A2,

Fom, |

Usin g




23

T(,8) =, (8)Y+L,(8) —6F (7), (3.7)
where
§,(8) = (o) —9? u’(&)%, (3.8)
_ / dé s gy 96
£,(8) = -p(6)a(od) +9f 1} (é)a(i)-g—w? n(Ea (&)—g-- (3.9)

The following restrictions are now placed on the response functions so that certain desir-
able features may be incorporated into the material model. These assumptions are guided
by the desire for a model with enough generality to capture the phenomena of interest in a

mathematically tractable fashion.

(A1) The slope of the stress-strain curve is independent of temperature.

(A.2) The internal energy has a linear dependance on the temperature at constant strain.

2
Formally the restriction (A1) states: 3_68Wi (v,0) = 0. Carrying out this differentiation

using equations (3.7) and(3.8) leads to

2
d—zF () =§,’(8) = x = constant. (3.10)
dy
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After performing the necessary integration, the expression for F (y) is found to be:

2
F(y) = l;’—+lzy+fc. (3.11)

Equations (3.8) and (3.10) yield: x, = {’,(0) = a%(u(e) —Bju’(ﬁ)%),where upon
9

rearranging one finds

9
x = wek (3.12)
From (3.10)-(3.12)

X=0,  W(8) =p =constant,  F(y) = ky+k. (3.13)

2
Assumption (A.2) states that izé (v,9) = 0, so that (3.13) coupled with (3.1) require
20

that the functions a (8) and b (0) satisfy

a(f) = a, b(68) = bO+b, (3.14)

where a, b, and b are material constants. Inserting expressions (3.13) and (3.14) into

equations (3.1), (3.5), and (3.6) for the internal energy, entropy and stress yields

£=E(y,6)=%u(y—a)2+56+8, (3.15)
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n = N(y,0) =bIn(0) +ky +k, (3.16)

T=1(Y,0) =p(y-a) -ko, (3.17)

where a, b, b, i, k, k are constants which characterize the material.

The non-dimensionalization of the argument within the logarithmic function is
implicit in the integration of the function F(y) of (3.13)3. This can be achieved by recog-
nizing that the integration constant k may be redefined in any convenient manner. To

make this explicit, let k = - Bln(e') + k, where the normalization temperature 9 is

0 = exp(‘%‘). (3.18)

This temperature will be defined more precisely in later sections of the document. The log-

arithmic function in the entropy (3.16) can now be normalized using (3.18)

M (1.0) = sm(

@l

)+Ey+1'c. (3.19)

The constant k is then by definition k=k+ sm(e') , a physical interpretation of k is
ambiguous, from (3.19) one might think of it as the low entropy limit. For notational ease,
the constant a in (3.14), and contained in both the internal energy (3.15) and stress (3.17),

will be defined as:
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+_ke (3.20)

Using this slight modification of the material parameters the Helmholtz free energy can be

written from its defintion (3.2) and equations (3.15), (3.19), and (3.20) as

V(1.0 = %[Y-(Y‘—%)]2+Be[l—ln(

@l

)] —kOY-kO+b. (3.21)

The stress reduces to

#(1,0) = :—Yw(v, 0) = n(y-v)-k@©-0"). (3.22)

In both (3.21) and (3.22) the term 'y‘ appears, it is an “offset” strain whose role will

become more apparent later in this document.

The constitutive model for the material may now be utilized in the dynamical bal-

ance equations (2.6), which yield

(3.23)

dy 98 (3.24)
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u[v (v'——)]g—Y 62 = [u(y-v)-k@-0"1%, (3.25)
gg?+ligy_0 (3.26)

The above development has shown that (3.15)-(3.19) is the most general constitutive
model for an energy function of the form (3.1) subject to assumptions (A.1) and (A.2).
The material parameters 1, 'y‘, 9', b, b, K, k, which arose naturally in the construc-
tion of the above model, can be interpreted in terms of measurable thermodynamic param-
eters. First, (3.22) gives that u = a—z‘g and so p is the isothermal elastic modulus, which

is considered a positive quantity. Second, the specific heat for constant strain CY is

defined (Truesdell and Toupin 1960) as

2.
f(;) _ 09¥
CY_p 30y = Pag?’ (3.27)
so that (3.16) gives
b
C, = 5 (3.28)

Thus b = pCY is a material parameter analogous to the materials specific heat, the heat
capacity, and is also a positive quantity. Third, the constant k may be interpreted in a sim-
ilar manner since (3.17) allows us to write the strain as a function of stress and tempera-

ture
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R(O 6)
9) = T
Y(5,8) =7 W

(3.29)
Choosing as a reference state T = 0,0 = @ it follows from (3.29) that if the stress free
state persists for temperatures above the reference temperature 8, then there will occur a
proportional increase in the strain, ¥ (0, 0) —y (0, 8) = g%_e) . Thus the quantity
k/u is the material’s coefficient of thermal expansion, which is, in general, a positive

quantity. If we denote the coefficient of thermal expansion as o, then

(3.30)

Q
]
TR

By definition (Truesdell and Toupin 1960) the coefficient of thermal expansion is written

=9
00|’
of various derivatives of the material’s free energy, the coefficient of thermal expansion

131
can be expressed as a = - 13790

The parameter b interpretation is that of a contribution to the internal energy’s

o= performing the prescribed differentiation on (3.28) also yields (3.30). In terms

“base level”. For constant temperature the vertex of € (y, 0) islocatedaty = a, which
may be expressed somewhat more precisely using (3.20), the value of the energy at this
particular temperature and strain is 68 + b. Thus b is always an additional contribution to
the internal energy’s base level at temperature 6, and one could let this quantity vanish
without much loss in the model.Table 1 consolidates the above information for the mate-
rial constants |, 'y‘, 9., b, b, k, k and provides dimensional information for these con-

stants.
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Table 1: Material parameters

Units in terms of

Material Constant [mass], [length], [time], Physical Interpretation
[temperature]
1] [mass] Isothermal elastic modu-
[length] [time] 2 lus.
y‘ [length] The relaxed (t = 0)
[length] strain when © = 0 .
Normalization tempera-
0 [temperature] ture which can be chosen
as convenient.
b [mass] Heat capacity.
[length] [temperature] [time] 2
The ground state for the
b [mass] internal energy.
[length] [time] 2
Product of the isothermal
k [mass] elastic modulus and coeffi-
[length] [temperature] 2 [time] 2 | cient of thermal expansion.
Value of entropy when
k [mass] =6 andy = 0.

[length] [temperature] 2 [time] 2
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It will henceforth be convenient to abandon the parameters b, k which arose natu-

rally in the model’s development, in favor of the more common thermodynamic parame-
ters CY and a. The free energy, entropy and stress are written out below utilizing these

parameters

L ] * 2 -~ A
y(y,0) = %(y-(y -06)) +pCYB[l—ln(2,)] -pofy-k6+0b,
0
- 0 -
n(e = pC,ln(—.)+uow+k, (3.31)
0

T(1,0) = p(y-y)-pHo(8-6).

The reader is reminded that 8 is essentially a free parameter in this description since any
redefinition of the value for 8 can be compensated for by a redefinition of the values k

and y‘ by

* * L v e;ew =
0514 = Opew = Kota = ko1 + PCyIn| == |=kpew
old

Yoid = Yo1d a’( 9old - enew) =Ynew -

(3.32)
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3.2 Separable Energy

In the above analysis we have chosen to use the stain y and temperature 0 as the
relevant thermodynamic variables, whereas in a more traditional thermomechanical analy-
sis one would work with the strain yy and entropy 1 as the independent variables. We now
recast the above model in terms of the strain and entropy, then the internal energy, (3.15)

may be expressed

£(7,0) =E(0(vM) = (v, M), (3.33)

assuming that one may invert the entropy function 7 (y, ©) for the temperature:
0=26 (7, m) . Using (3.16) one finds that the temperature as a function of strain and

entropy is given by

0 PCy
where upon inverting
8(v,n) = O'exp(T—"—m—;k)- (3.34)
pCy

Thus by substituting from equation (3.34) into (3.33), the internal energy may be
expressed as a function of the strain and entropy. An analogous procedure can be per-

formed on the stress, the results of these operations gives
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* * 2 * - — N
e=e(rm) =5(r-(r -a8)) +pC,0 em('%u‘)w. (3.35)
Y
T=%(y,M) = u(v—v')—uae'[em(%)— l]- (3.36)
h{

Equation (3.35) demonstrates that if the coefficient of thermal expansion o vanishes
(oo — 0) then the internal energy can be written as the additive combination of a function

of the strain alone and a function of the entropy alone, i.e.

e, =By’ PCYO.CXP(?)—E:) +b  (a=0). (337)
Recall that (3.37) is the special form of the internal energy that we termed separable in
Section 3.1. If the internal energy is separable then the equations governing the mechani-
cal evolution of the body are independent of those controlling the thermal evolution (Cou-
rant and Freidrichs 1956). Since this decoupling between thermal and mechanical
processes will play a significant role in this research, we temporarily proceed by develop-
ing the associated material response functions under this specialization. Setting . = 0

the stress and temperature reduce to

i(y) = ;—Yé(v,n) = py-7v),
- (a=0) (3.38)

_ 95 — 0 exp( =K
oMm) = ;ﬁe(v,n) =0 exp( pCY)'
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In this specialized form the equations of motion (3.23)-(3.25) reduce to

_.gtY =5 (a=0), (3.39)
Y _
p—at = u—ax (a=0), (3.40)
* 'I_‘E on _ -
0 exp( pCY )at =0 (a=0). (3.41)

Since the normalization temperature 8" need not vanish, one draws G‘CXP(T:);) #0
Y

and (3.41) reduces to

Mm_, (a=0), (3.42)
ot

which, when coupled with (3.38), gives rise to
a0 _ -
5 = 0 (a=0). (3.43)

Thus, in the absence of discontinuities such as shocks, (3.43) shows that boundary value
problems which have isothermal initial conditions will proceed isothermally. Furthermore,

considering this special (a = 0) case, the entropy for each particle will persist from the
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initial state.

From (3.39)-(3.41), it is seen that if the internal energy is separable, then the gov-
erning equations for the body simplify into two distinct sets of governing equations, one
being (3.39) and (3.40), which are a purely mechanical in nature, i.e. they only involve the
velocity and strain fields, the other set is (3.42), which governs the thermal evolution
within the body. For materials with such a separable energy one could envision boundary
value problems in which a specific thermomechanical problem is posed and from the
above results we see that the mechanical fields develop independently of the thermal
fields. For such boundary value problems, the mechanical fields being independent of the
thermal fields, the investigation can completely ignore the thermal evolution which occurs

and concentrate on the purely mechanical problem.

3.3 Characteristics and Riemann Invariants

It is observed that the governing equations(3.23)-(3.25) are a system of homoge-
neous quasi-linear first order partial differential equations in terms of the three indepen-
dent field quantities: v, y and 6. One may derive a different yet equivalent set of
governing equations by use of the method of characteristics (Renardy and Rogers 1992).
This technique yields an alternative set of governing equations which are linear combina-
tions of the original system of equations, such that the dependent variables in each result-
ing equation are differentiated in the same direction in the (x,t)-plane. The directions of
differentiation are called the characteristic directions or characteristics of the system, and

the alternative equations are the characteristic equations of the system. In general this
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method of construction (Renardy and Rogers 1992) proceeds as outlined in the next para-

graphs.

Consider a system of first order partial differential equations written in the form

AU_+BU, = C. (3.44)

where the column vector U consists of the unknown functions to be determined, and A, B,
and C are the coefficient matrices, which may be functions of x, t, and the components of
the vector U, but not U, or U,. In this study U = [y, v, 6] T The characteristic directions

and equations for (3.44) are obtained from the solutions to the eigenvalue problem

AT(A-AB) =0, (3.45)

where the scalars A are the eigenvalues for the above problem, and the column vectors A
are the left eigenvectors for the system. The eigenvalues A are the characteristic directions

for the original system of equations

(3.46)

&
]
>

For each eigenvalue the associated eigenvector A is used to determine the characteristic

equation by forming linear combinations of the original system in the form
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ATAU_+ATBU, = A'C, (3.47)

where the dependent variables in the resulting equation are all differentiated in the same

direction, the directional derivatives being the characteristic directions of the system.

3.3.1 Separable Materials

We begin by considering the method of characteristics for a material having a separa-
ble energy. We use our original set of PDE’s (3.23)-(3.25), setting o = 0, the governing

equations are then

(o =0) (3.48)

k-1 +pC, R = iy -y

¥y Y
|
sy ¥

Analyzing the system of equations (3.48) it is not immediate that the mechanical field
quantities are decoupled form the thermal field quantities. However, by recasting the sys-
tem of equations using the method of characteristics, the temperature is shown to decouple
from the strain and velocity. Proceeding with the method of characteristics for the above
case in which o = 0, produces an alternative system of governing equations, the charac-
teristic equations and the characteristic directions of the original system. Written in matrix

form as in (3.44), where the vector U = [, v, 0] T , the governing equations are now
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l 00 vx O "l O Vt 0
0 mO|yf+p 0 0 Hlyl=1o  (a=0).
y-y)oo|le| |0 -uy-v)-pClle| [0

Performing the calculations described above, the characteristic equations and characteris-

tic directions are found to be:

de _ dx _
i 0 on - = 0, (3.49)
(a=0)
dv judy _ dx _ JE‘
dﬁfpdt oo gt (3.50)

The system of equations (3.49)-(3.50) is composed of a characteristic equation, which is
the left equation of either set, and the associated characteristic direction, the right equa-
tion. Equation (3.49) was to be expected since it was derived in an alternative manner, see
(3.42). Along each characteristic direction it follows that the associated characteristic
equation may be integrated, providing an algebraic relationship along the characteristic

direction

0 = constant on g—’: =0, 3.51)

(aa=0)

By = dx _ »,/E 2
vq:J;y constant on i + o’ (3.52)
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the constants of integration in the above equations are known in the literature as the Rie-

mann Invariants of the system (c.f. Renardy and Rogers 1992). For ease of notation we

introduce the material constant

c = Jup, (3.53)

which is the acoustic wave speed of the material, this allows (3.39) to be expressed as

vV ¥ cy = constant on g—: = *c. (a=0) (3.54)

Through the use of (3.52) one can calculate the strain and velocity fields independently of
the temperature field, and vice-versa. In fact from the above results it is seen that all
motions which begin from a constant temperature proceed isothermally, if the formation
of shocks are excluded. Thus if a = O then the mechanical and thermal evolution of the
material proceeds independently of one another.

Consider an initial-boundary value problem such that the above set of characteris-
tic equations hold. If the initial-boundary data is given then the Riemann invariants can be
calculated along the associated characteristic directions. One could then proceed with the
initial-boundary value problem and formulate a set of algebraic equations relating the Rie-
mann invariants in different regions within the domain, where the different regions are
connected along one or more of the associated characteristic directions. Pence in his inves-
tigations (1991a,b) demonstrated the use of this technique in formulating families of solu-

tions for a set of problems under this purely mechanical framework.



39
3.3.2 Nonseparable Materials

Consider now the more general problem in which the thermal-mechanical
responses are coupled, from the earlier development this occurs when the coefficient of
thermal expansion does not vanish, a # 0. The method of characteristics will now be
developed for this case. The equations of motion in terms of field variables y (x, t) ,

0 (x,t) and v(x,t) are found by inserting the constitutive response,(3.15)-(3.21), into

(3.23)-(3.25), and using (3.53)

gy _ ov
3% " 3x’ (3.55)
20y 2 .00 _ v
C;;—C aa—x—;, (3.56)
-0 -a0NT+c,® = Fr-1)-a@-0 . (3.57)

The first step in finding the characteristic directions and equations is to cast (3.55)-(3.57)

in matrix form
1 0 0 ||v, 0 -1 0 ||v, 0
0 c2 _C2a Yx + -1 0 0 Yt = 10|,
* - 2 - *
H(r-v)-a@-6) 0 0 ||8) [0 < -0 -a8)-Cylle] Ol

as before the characteristic directions and equations as well as the eigenvalues and eigen-
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vectors for are to be determined. Performing the necessary calculations one finds that the

characteristic equations and directions are

C
co—+—— =0on-— =0, (3.59)

4 2 2 2
’2 cof6dv  2dy 2 do dx )
i —_ —_— - = _— = . 3.60
c + C-, dt+cdt cntdl Oondt Fc |1+ C-, ( )

Equation (3.59) is equivalent to requiring that a particle’s entropy remain unchanged dur-

ing smooth processes. This can be shown by differentiating equation (3.16) with respect to

time and comparing the result with

dn_PCydo 2 dy _ dx _
at =0 on T 0. 3.61)

One can integrate the expression (3.61) along its characteristic direction and arrive at the
conclusion that a particle’s entropy is conserved along its characteristic direction. This
constant would be one of the Riemann invariants for this thermomechanical problem, i.e.

6 dx

)+ pczay +k =constanton = =0. (3.62)

n=n(7,6) = pcyln( it

D

The wave speed in (3.60) is no longer constant, as in (3.52), but now is dependent on the

material’s temperature. It is seen that the wave speed is a monotonically increasing func-
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tion of the temperature for the model under consideration here. In general equations (3.60)

and (3.46) cannot be integrated, and hence the other two Riemann invariants are not
known in advance. However, it is possible to calculate these two Riemann invariants if the
initial data are specified in a particular manner. Since the knowledge of these invariants
will enable us to construct a solution to the problem defined in Chapter 6, the discussion of
this special case will be pursued in the following paragraphs.

Consider the problem just outlined above and in addition suppose that the entropy
is initially constant on a region contained within the domain. As a result of equation (3.62)
the entropy within this region is constant for all time. Under these assumptions we may

manipulate (3.61) and find a relationship between y and 0 in this same region

C
g_Y - _2_72_9 onE =0 (3.63)
t c‘ad t dt

Since 1 does not vary in the region for all time we can substitute from (3.63) into equa-

tions (3.60), resulting in

4 2 C 4 2 2 2
i’cz_‘_caegv_ —21 [c2+9ﬂ]:—9=00nd—x= 1+¢28 (3.64)
C‘Y t oc‘a C'Y t dt C‘Y

The two equations (3.64) may now be integrated along their characteristic directions to

produce two additional Riemann invariants, the results of which are shown below:
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®(8) - (0)

£v-[C,[20.(®) + @ 0) 1o D=2

)] = constant, (3.65)

on
2 2
dx _ cof
i ’l+ c (3.66)
Y
where
C
d(0) = e+—27—2. (3.67)
ca

In general, if the assumption of constant entropy is not met, then integration of equations
(3.64) is not possible and the results (3.65) need not hold.

The form of the characteristic speed in (3.66) shows that it is monotonically
increasing with temperature 0 and coincident with the isothermal sound speed only in the
limit ® — 0. This can be viewed as the adiabatic correction to a purely mechanical iso-
thermal theory (in which the sound speed is formally temperature independent). Presum-
ably an adiabatic correction to an isothermal theory with a temperature dependent sound
speed would behave similarly. A familiar example is provided by flow in a compressible
fluid (Landau and Lifshitz (1987), Whitham (1974)), where the sound speed is, in general,
given by N/% where p is pressure and p is density. For a polytropic gas, the sound speed

in an isothermal setting follows from the ideal gas law p = Rp®©, where R is the ideal

[
p

where | = CP/Cv = 1+R/C_, Cp and C, give the specific heats at constant pressure

gas constant, as ¢ = J/R8. For adiabatic conditions, the entropy Cvln( P—) is constant,
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and volume. This gives the adiabatic sound speed as «/% = JIRO =C, ;01 aic - Thus

2
=c [l1+ B—ea , which displays a similar temperature dependance to the adia-
C,c
batic correction of isothermal sound speed.

Cadiabatic

3.4 Multiphase Materials

We now broaden the class materials considered to those which allow for the exist-
ence of different phases and the transformation between phases. At each point within the
body the material is said to occupy a phase, this being determined by the value of strain
and temperature at that location. In light of the previous derivations, consider a multiphase
material for which each distinct phase can be modeled using the Helmholtz free energy
function (3.21) developed earlier in this chapter. For first order phase transitions it is
_ required that the free energy be a continuous function of strain and temperature, but its
derivatives may suffer discontinuities. Begin the construction of the multiphase model by
assuming that the internal energy, stress, entropy, and free energy functions in any phase
has the form as provided by equations (3.15)-(3.21). Assume for generality that there are n

possible phases and that from (3.21) the free energy in phase i is

2

V,(1,0) = p—;i[v-(v;-aie')]2+pcﬁe[1 -1n(3,

)] —pclaBy -k +b;. (3.68)
0

Thus each phase is characterized by material constants c,, y:, b, b, k, k;, and the normal-

ized temperature 9‘ is chosen to be the same for all phases. The relations (3.32) between



N



44
-~ * *
the material parameters k, y and © , ensures that there is a no loss in generality in

requiring 8" to be the same for all phases. A slightly modified form of the free energy
(3.68) can be written which displays its “potential well” structure
2 2 2

- pCi * * 2 0 pCi a.i . 2
¥ (1,8 = S [y-( +a(0-67)] +pCﬁ6[l—ln(?)]— —(6-0") (3.69)

2 * 2

—(pcizaiy; + f(i )0+ 5 i

At a fixed temperature 0 it is seen from (3.69)that the free energy is a quadratic function
in strain 7, and the associated energy ; (v, 8) may be thought of as a “potential well”,
whose strain-vertex is located at y = 'y: +0,(0- 6‘) . The location of each of these verti-
ces changes as the temperature varies (the wells movie up and down). By definition a first
order phase transformation process that advances through equilibrium states requires that
the free energy be a continuous function during the phase transition. Therefore for a first

order equilibrated transformation, say between phase-i and phase-j, it is required that

Consider a material which has n phases, then at each set of temperature and strain,
(7, ©) , there are n values of the free energy y, (v, 8) i=1,....,n. The minimum value of the
collection of free energies y, defines the energy minimal phase-i associated with the pair

(77, ) . This energy minimum implies a phase indicator function I, where

(Ie [1,...,n] =1(1,0)),

1(Y,0) 3¥y(y ) (1.0) = min,_,  ¥;(Y,6).
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From this discussion it is evident that a particular set (7, 8) exists for which two distinct

phase’s free energies will have equal values. The collection of these sets may be thought
of as curves in the (Y, ©) plane where the different phase’s free energy functions inter-
sect. This gives rise to an intersection strain,*?i.j = ?i'j (), the strain 7“. (8) at temper-
ature O where the free energy between phase i and j have the same value. One may think
of this as that level of strain where the potential wells intersect. This intersection of free
energies naturally leads to a method of determining which phase a material would inhabit
given a value of (, 0) . If one considers the principle of energy minimization as the crite-
rion for selection between two phases, the intersection strain indicates that point in (y, 6)
where two phases would exchange favorably, and the possibility of a phase change exists.
For the material represented by (3.69) two distinct possibilities for '?i’ j (0) exist:
one in which ¢, #¢ i and that for which ¢, = ¢ i When such intersections exist, the former
case, in general, yields two roots for the intersection strain, while the later yields a single
root. This discrepancy between the number of roots is simple to understand. Recall for a
fixed temperature that the free energy is a quadratic function of strain, and when the wave
speeds are not equal then the curvatures of the two free energy functions are not equal.
Because these curvatures are not the same, the quadratic nature of the two free energies
functions gives rise to intersections which occur at two different locations (real roots) or
which do not intersect at all (imaginary roots). However, when the wave speeds are the
same, and thus the curvatures are equivalent, then there is at most one location where the

two free energies intersect.
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A direct calculation yields the two intersection strains for ¢, # ¢ i

1
= 2
£© @& ® -E®)

7,;(8) = (3.70)
" (c; -¢)) 2p(c; -¢})
where
£(0) = (cjzy; - cizy: + (OLJ.cj2 - aicf)(e -8"),

= 2 2 Aooa 2.+ 2.° 2. 2, % 00
E (8) = 4p(c; —cj)(2(bi—bj) +p(C;Y; — ;Y )-2p(ac,y; —04C;7;)0 +

P(aizcizy'z _ (;szcjzkr-z)e'2 +2p(C,;-Cy) 9( 1- ln( 2_)) ~2(k;- 1-!,-) ] )
)

The other case ¢; = ¢ i produces the single root

2(6i- By +pc’(r;’ -7, ) -2 (ki k)0
20°(Y; - ¥ + (- ) (8-6"))

. s = 2 » . *
2 (C.ﬁ—C.n-)O(l _ ln(-eg,))—chz(a;Yi -ay;)0 + p¢;2(mi Yi2_ajzyj2)6 2

2pc’(y; - ¥; + (0;-0) (0-8"))

?i'j(e) =

3.71)

For future reference we define phase-1, index i=1 in equation (3.69), as the parent phase.
The material model will now be restricted such that phase-1 has a free energy that is sym-

metric with respect to the strain for a fixed temperature. Formally, this assumption is

stated:
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(A.3) Phase-1, the parent phase, has a free energy W, which is symmetric with respect

to the strain vy at fixed temperature 6.

Satisfaction of assumption (A.3) gives

Y, +0,(8-8") = 0. (3.72)

Since the temperature 6 may vary, this requires that o, = 0 and 'y; = 0. Therefore, in
the parent phase the coefficient of thermal expansion vanishes and the reference state is
strain free. Furthermore, since a zero value for the coefficient of thermal expansion repre-
sents a material which has been deemed separable, implying that the mechanical equations
of motion decouple from the equations of thermal evolution, the parent phase material
response is referred to as separable.

Henceforth it will be assumed that the bar is composed of a two phase material,
one being the separable parent phase defined in (A.3), the other phase being the more gen-
eral material, i.e. of the nonseparable type, also called fully thermal. Formally we express

this assumption:

(A.4) The number of phases will be restricted to two, which we will call phase-1 and

phase-2 (phase-1 being the parent phase).

Together (A.3) and (A.4) state that the bar consists of a two phase solid, the two phase’s

having different thermomechanical properties. The reference state for the parent phase
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was defined to be strain free, and for notational convenience the offset strain in phase-2 is

designated y‘ = 'y;. Figure 3.1 displays the two phase material’s free energy functions for
constant temperature, as mentioned earlier these two functions can be visualized as dis-

tinct potential wells. Each vertex can be thought of as that energy’s ground state, since it is
the minimum value for that energy. Shown in Figure 3.1 are arrows located at the vertex of
each well, these arrows are to indicate that the vertices are not stationary but may change

positions depending on the value of the temperature 6.

3.4.1 The ground-state equivalence temperature

We define the ground-state equivalence temperature as that temperature for which
the y- value of the free energy vertices, or ground states, have the same value. At all other
temperatures the vertices involve different y- values, and thus one phase has a free energy
ground state whose - value is less than the other. Thus a ground state equivalence tem-
perature separates temperature intervals associated with a natural change in stability of the
ground states. To inquire further into this issue we construct the function AV (8) which is
defined as the difference between the free energy vertex in phase-2 and that in phase-1

AV (0) =,

— V| (3.73)

vertex vertex

In phase-2 the free energy vertex is located at y = y‘ +0,(0- 0‘) , while in phase-1 it is

aty = 0, hence AV (0) is expressed
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Pzz

AV (8) = -—229-8") +p(C,, CY,)e[l-ln(ﬂ,)] (3.74)

)

c,(0,0)
(pczazy +k, -k )9+p—2(72———+62—61.

From the freedom inherent in selecting the normalization temperature 9 (3.18), the nor-
malization temperature is now chosen as the ground-state equivalence temperature. This
choice of 8 requires that AV(B‘) =0, which in turn provides a quadratic equation that

®
0 must satisfy

) 2 2 s ~ - . 2 - R
8 " +— 2(p(cyz‘cyl) = pc,y0,Y —k2+kl)e +—5—(by-b;) =0. (375
PC%y pc, 0,

Since, in general, there are two roots for equation (3.75), there exists two ground-state

equivalence temperatures. Solving (3.75) for ) yields

0 = 21 2(p (Cyz ) - chaﬂ‘ —122 + f(l)i e , (3.76)
pc,0,
where
1
* 1 2 * ~ o~
== 2((p (Cy2=Cyp) —py0,Y —ky "’kl) ~2pc;a; (b, - f71))
pc,o,

The model naturally gives rise to phase transformations provided that @ isareal quantity

and we henceforth only consider parameter values for which this is the case. For conve-
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nience, the two ground-state equivalence temperatures are distinguished from one another

based on their relative values, i.e. 9: < 9; . This ordering depends on the relative values of
the material parameters.

From the ordering of the ground-state equivalence temperatures, three distinct
temperature intervals naturally arise: 6 < 9: , 9: <B< 9; , and B; < 0. One of the phases
will have the lower energy ground state in the two intervals 6 < 9; and 6; < 0, while the
other phase will have the lower energy ground state for the interval 9: <B< 9;. Table 2

summarizes the preferred phase for each of these intervals.

Table 2: Temperature intervals for preferred phase

Temperature interval Phase with lower energy ground state
0<0 phase-2
8;<0<6, phase-1
g phase-2
6,<6

To verify this table note from an asymptotic analysis of AV (8) for “6 - 6.“ » 0, that the
quadratic component of AV (0) is the dominant term. Under such conditions AV (0)
behaves like a parabola, and the value of this function is either positive or negative
depending on the coefficient of the quadratic term, which according to (3.74) is

—pciai/ 2 <0. Therefore phase-2 has the lower ground state for temperatures which are
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much greater or less than both 9; and 9; , which is precisely the two intervals 6 < 6; and

8,<6.

Figure 3.2 schematically shows how the two free energy functions behave for the
different temperature intervals. Note that the ground-state equivalence temperature 9;
separates a low temperature stable phase-2 material with a shape strain y + o,(0- 9;)
from a high temperature stable phase- 1 material with no shape strain. This type of material
behavior is similar to Austenite/Martensite systems.

It will prove useful for latter purposes to display the ground-state equivalence tem-
peratures for two special cases. The first case being when the specific heats are equal,

Cyz = C,,, the ground-state equivalence temperatures (3.76) then simplify to

e

0 = +2(pc§azy' + l-cz - f:l) te, 3.77)
pc,0,
9'_1(2'~-2 22..)2
= ——\| PCo,Y +ky -k ) -2pcya, (by—-by) | .
pc,a,

Note that ©" is real if b, - b, is negative, or if b, - b, is positive but sufficiently small,
The other case is where both phases are separable and thus o, = 0. Multiplica-

tion of (3.75) by ag followed by letting o, — 0 yields a first order equation for 8 . Thus

one of these two roots 8 becomes infinite as a result of the singular perturbation. For-

mally expressing (3.76) in the form
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2 * 7 v
. C.,-C,,)-pc,o,y -k, +k = *
0" = (P( y2~ Cy1) 21’2 2Y X2 1)(_119 )’ (3.78)
pc, o,
2 2~ N %
o -, 2pc,0, (by - by)

2 * -~ ~ \2 |
(p (CYZ—C_“) - pc,0,Y —k2+k1)

performing a Taylor series expansion for é‘ about a, = 0, and collecting similar powers

*
of a,, gives the two different series expansions for 6 :

. 2[k,—k;~p(Cy,-C ’ b, - b
0 = (k2 -k, Pz( 272 71)]+2l+ b2 - by —— +0(a,),
pc, 0, %2 P(Cpp-Cy) ~katky
and
0 = _ b,-6, — +0(a,)

Here, as is standard, O(z) denotes a quantity that, after division by z, is finite as z — 0.
In the limit as ., — O there are two distinct cases depending on the relative values

of material parameters, the results are

B, = —o
o _ 6,6, if p(Cy,-C,y) >kp-ky,
2 p(CYz—Cyl) —f:2+1}1
(o, = 0) (3.79)
9: _ Bz—bl

P(Cy—-Cy) -ka+ky if p(C,,-C,y) <kp—k;.

L]

62=oo
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Application of this result would in general restrict attention to a limited temperature range,

and the material parameters entering the model would then be chosen as the basis of this
temperature range. In particular, temperatures 0 are regarded as positive on some absolute
temperature scale. However in this section, and from time to time in what follows, it is
convenient to treat © as an arbitrary real number purely for the purpose of clarifying the
global mathematical structure of a physical description that would certainly be localized in
an application setting. This is the sense in which results like 6: = —oo should be consid-

ered.

3.4.2 The Latent Heat

Any heat produced or absorbed from the transformation between two equilibrated
phases is the latent heat of transformation A.. The latent heat of transformation from

phase-2 to phase-1 is expressed

Ay = %[ﬁz(y', 8")-#,(0,8"]. (3.80)

In particular for 8 >0 , p > 0 it follows that the transformation from phase-2 to phase-1
is exothermic if A > 0 and is endothermic if A < 0.

From definition (3.80) and the existence of two ground-state equivalence tempera-
tures we conclude the existence of two latent heats, one for each ground-state equivalence

temperature. The general expression for the latent heat can be computed from (3.19)
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O 2 .+ - -
A = F[Pczazy +ky—ki]
which motivates the definition A, and A, where

ei 2 . -~ ~ .
Ay = F[pczmzy +k,-k]  (i=1,2). (3.81)
The difference between the two latent heats is
200 2+ - =
AA'T = A’TZ - A'Tl = T [pc2a27 + k2 - kl] R

which does not, in general, vanish. Note however, that AL, = 0 when @ = 0 which
corresponds to the existence of a single ground-state equivalence temperature. We hence-
forth use the generic terms 8 and A, where the specific ground-state equivalence tem-
perature and latent heat is inferred, when necessary, from the appropriate temperature

interval under consideration.

3.5 Summary of the Two Phase Material Model

For future reference the free energy, entropy and stress response for both phases
are given below in terms of the more familiar thermodynamic variables, these relation-
ships between the different forms having just been developed. These forms will utilized

throughout the remainder of this document.
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Phase-2 material:

2

. pc . * 2

¥, (1.0) = S2[1-(r' +0,(8-0")] +5,0 [1 - 1n(§;)] (3.82)
pc20t2 2 pcz(a 6‘)2
- ; 20-96) —(pciazy +k, )6+—2—22—+52,
- 0 2 -
n,(v,08) = len( ;) +pc,a,Y +kj, (3.83)
T,(1,8) = pca(y—7 ) -pcao,(6-6). (3.84)
Phase-1 material:
pei

¥, (1.0) = T‘yz+5,e[1-1n(ﬂ,)]-ile+81, (3.85)

)

-~ 0 ~
7, (8) = B,In(e—.) +ky, (3.86)

(1) = peyy. (3.87)
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In the more familiar thermodynamic variables p, K, y', 6', CYi, o,, XT, l-(l, Bi these func-

tions are

Phase-2 material:

2

- ° » . 2 7 H,O * 2
V,(1,0) = 5%(7-(7 +0,(0-0 ))) +pC729[l—ln(§) -2 20-06")

.2
- ) 0 R
—( pAT e+u2(a2 ) +b

k, + o | —— *h,
AT (3.88)
- . P -
n,(7,0) = przln((%)wzaz(v-v ) + o +ky,
T (1,0) = Wy(Y-7) - p,0,(6-8") .
In the Phase-1 material:

v, (1,9) = %yz+pcﬂﬂ[l -ln(%)]—fcleﬂ‘)l,

(3.89)

-~ (3] -
() = pCypln( ) +ky,

o=}

T, (Y) = H,Y.

Although we have not as yet defined a phase selection criterion, given some (Y, 0) , we
now state that the intersection strains y; (6) (3.70)-(3.71) define the upper/lower limits of

strain that the material can support in a particular phase given a temperature 6 . This
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assumption is based on the principle of energy minimization as was discussed earlier in

calculating (3.70)-(3.71).
We now turn our attention to the stress response for the two phase solid and restrict

attention to a single intersection strain y; . Then from (3.84) and (3.87) one obtains

T,(1,.0) = pcfy for phase 1:0<y <y,

(3.90)
7,(1,0) = pcz(y - y‘) - pciaz(e - 6‘) for phase 2:y 2 v,,

The characteristic feature of the stress-strain response (3.90) is that it is not monotonic.
For a fixed temperatures the graph of the material’s stress strain response appears like Fig-
ure 3.3. Figure 3.3 shows for T€ [t_, T)\] that the strain does not have a unique value.
One can imagine a bar composed of such a two phase material and loaded so that the stress
. T€ [1,, Ty,] , from Figure 3.3 we see that the deformation of the bar is not unique, and
for such a load the bar can accommodate a variety of different deformed configurations.
Thus under a prescribed load T € [7,, T),] one may only state the possible maximum
and minimum deformations.

All of the concepts and ideas concerning the thermodynamic model presented thus
far draw upon many of the sources reviewed in Chapter 1. For example, Abeyaratane and
Knowles (1993a) have presented a model for the free energy similar to that outlined
above. Their model is a three phase solid for which one phase is unstable while the other
two are stable. Comparing the free energy models presented in this document with that in

Abeyaratane and Knowles (1993a), one finds that the functional dependance on the two
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field quantities of strain y and temperature 0 is similar. Namely for both models the free

energy in either phase can be expressed in the potential well form

V(1,8 = A(y-B(e))2+C(e-e')2+De(1-m(ﬂ,))n«:ew, (3.91)
o

where 8’ is the ground-state equivalence temperature and A, C, D, E, F, are constants and
B (0) is a function. All of these involve various combinations of the material parameters
H, C.{, o, 7. , b, k! Each phase may have different material parameters A, C, D, E, F
and function B (0) associated with (3.91). For the model presented in this document, we
have assumed a general form for the two phase solid, where the two phases have distinct
material parameters p, C.;, &, b;, k; . Abeyaratane and Knowles consider a model which
is somewhat less general, the material parameters W, C.ﬁ, o, are the same for both of their
phases, e.g. the isothermal elastic modulus in phase-1 is equal to that in phase-2,

H; = W, = u.Table 3 is a list of the various material parameters in phase-1, A-F, for
both the model presented in this document and that in Abeyaratane and Knowles. Table 4

is an analogous presentation for phase-2.

1. Recall from that the isothermal elastic modulus and the acoustic wave speed are related through
¢; = .Ju,/p, and for this comparative analysis we choose to use the form of the free energy which
contains the isothermal elastic modulus.
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Table 3: Material parameters in phase-1 for y (v, 0) .

Parameter Abeyaratne and Knowles (3.88);
o !
A 2 2
B(6) o(8-0) 0
po’
C - 0
D pC, pCy,
E 0 -k,
F 0 b,

From Table 3 we note that, besides L1, # 1, as mentioned above, the difference in the
function B(0) and the parameter C stems from assumption A.3, i.e having chosen phase-1
to have a separable form: o, = 0. The difference in the parameters E and F arises
because we have not assumed that the value of the free energy in phase-1 is null at the

transformation point ('y., 9') .



Table 4:

Material parameters in phase-2 for y (v, 0) .

Parameter Abeyaratne and Knowles (3.76),
W Ha
A 2 2
B(0) y' +a(6—9') y‘ + az(e-e')
2 2
C ko 2%
2 2
D pCY pC.{2
~ A
E pA:[ {kl + P .T)
0 0
(0,0
H,(o o
F —pAy % +b,

We see from Tables 3 and 4 that A, B(0), C, and D for both models are essentially the

same, the only difference being our assumption that the two phases do not have the same

parameters M, O, C7 . The constant E and F are somewhat different. Thus we see from this

comparison that the model presented in this document is of a similar character to that

developed by Abeyaratne and Knowles, however the differences just discussed will play a

significant role in the future development.

After developing their model, Abeyaratane and Knowles (1993a) demonstrate its
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use in a series of numerical simulations for quasi-static processes. The simulations con-

sider the hysteretic response due to stress cycling at constant temperature, temperature
cycling at constant stress, and a combination of the two. This same model is used in a later
paper, Abeyaratane and Knowles (1993b), where fully dynamical adiabatic motions are
considered. They consider a Riemann problem for subsonic phase boundary motion, and
they investigate solutions for both a single moving phase boundary and that involving
three moving phase boundaries. However, a major simplification in their model is made
for the dynamical analysis, namely the coefficient of thermal expansion is assumed to van-
ish. This assumption, corresponding to a separable material, greatly reduces the complex-
ity of the model and reduces its ability in capturing many thermal effects by limiting all
coupling between the temperature and mechanical fields to the jump conditions.

The work presented in this document has the effect of extending that of Abeyara-
tane and Knowles in a number of directions. We do not make the assumption that both
phases possess the same material parameters. Moreover, we investigate the problem for
which the primary concemn is the analysis of effects when the thermomechanical coupling
constant o, is a finite quantity. In so doing we clarify the relation between the purely
mechanical description and the fully thermomechanical description, especially as regards
the dynamics and kinetics of phase boundary motion.

To make this explicit, it will be convenient to introduce a two part decomposition
of the field variables into a component which is completely independent of o, and a sec-
ond term which is the a., correction. Thus for the generic field variable f the two part

decomposition is defined



f=f+f2, (3.92)
where
f° = lim f, (3.93)
a2—>0
f2=f_f° (3.94)

In general, f is a function representing the fully coupled material, which collapses to f °
when considering a separable material. The function f % is seen to provide the bridge
between these two materials. It is to be emphasized that this so far generic function f
could represent quantities that are known a-priori, such as the free energy function. Alter-
natively f could represent quantities that are determined as part of the solution to a prob-
lem, such as the field variables (Y, v, 0) that describe physical processes. In the latter
case, an exact determination of the function may not be possible in a fully coupled mate-
rial, but the exact determination may be possible in the reduced problem involving a sepa-
rable material. In such cases f is unobtainable, whereas f° is obtainable. This, in turn,
renders £ unobtainable. In such instances it will be extremely useful to understand the
leading order effects of thermomechanical coupling by investigating £ in the small
a,-limit. In such instances, the perturbation expansion for f * becomes a natural object

of study.
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fixed temperature 6

varo |

N Y

Figure 3.1 This figure is a schematic representation of the Helmholtz free energy function
V¥ (v, 0) plotted against the strain y at a constant temperature 6 . Shown are the two free
energy functions ¥, and v, , each represents a distinct phase of the material. The arrows,
which are shown at each of the vertices, acknowledge that the location of these vertices
shift as the temperature changes. At each temperature there exists a level of strain for
which the values of the free energies are equivalent, this strain is designated 7y,



0> 9‘2
v(r.9) V, is preferred
Vi VY2
? 9‘ 1< 0 <9'2
A V9 vy, is preferred
V2
V1
>
Y
V(1.9)
Vi * .
WZ 6<9 1
\, is preferred
-
Y

Figure 3.2 This schematically shows how the two free energy functions interrelate for the
three temperature intervals. In the intervals 6 < 9: and 6 > 6; the phase-2 free energy has
a lower vertex and in this sense is the preferred phase. For the interval 0: <B< 6; phase-
1 is the preferred interval.
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1(v,6)

Fixed temperature 6

Figure 3.3 The stress-strain response for fixed temperature for the two phase material con-
sidered in this document. Both phases have a linear stress strain response, but the overall
stress strain response is non-monotonic. From this figure one observes that the strain is not
unique for a prescribed stress T € [1.,, Ty(] , and thus the bar can accommodate a multi-

tude of different deformed configurations.



4. The Initial Boundary Value Problem

Thus far we have derived a specific constitutive model for a two phase solid, and
stated a set of assumptions which we wish to work under. Certain features of the model
were then analyzed in order to gain insight into its nature. In this section of the document
we define a specific initial boundary value problem for the material with this two-phase
constitutive response. The problem to be described is similar to the one considered by
Pence (1991a, 1991b), who investigated a purely mechanical problem involving a set of
two equations for the two unknown field quantities y and v, the temperature field being of
no concern to that investigation. However in this thesis the major thrust is the consider-
ation of thermal effects.This motivates a more detailed study of two-phase equilibrium ini-
tial conditions, which becomes a major focus of this chapter (Section 4.4). A wave pulse is
then introduced into this system by imposing an end displacement (Section 4.5). In later

chapters we explore the interaction of the pulse with the phase boundary.

4.1 Governing Equations

To begin we state the governing equations of motion for the body in each of the

two phases:

4.1)

Y
STk 1
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oav _ 209y 2_0d0

m = Ci 5{ - Ci aia—x (42)
ci2 [y - ('y: - aie')]g—ty + Cyig_? = ci2 [(y - y;) -0,(0- 9')]3—1 4.3)
Cd0, 2,95, 4.4)

0 dt iigt '

where i=1 or 2 and in the parent phase c, = 0 and ¥, = 0, and in the second phase

o, 20 andy = ¥,. The set of equations (4.1)-(4.3) for the unknown field variables

Y, v, 0 is a system of quasi-linear partial differential equations, and in general is hyper-
bolic in nature. It is well known that hyperbolic systems with initially smooth fields may
at later times break into solutions that are discontinuous (Lax (1973), Renardy and Rogers
(1992)). Thus given a set of smooth initial conditions the system (4.1) - (4.3) may admit a
solution for the (7, v, 0) fields which is discontinuous at later times. Here a set of initial/
boundary data will proposed and the subsequent initial boundary value problem will be
investigated. If solutions can be determined then inequality (4.4) is used to certify admis-

sibility which may either eliminate or place restrictions on the range of the solutions.

4.2 Initial Configurations

Attention is restricted to an initial state with uniform temperature @ that contains a single
phase boundary, the initial fields y (x, 0), v (x, 0) are taken to be piecewise homoge-

neous. The initial position of the phase boundary is designated to be s,,. In the initial con-
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figuration the material to the left of the phase boundary (0 <x<s_) isin phase-1, and the

material to the right of the phase boundary (s, <x <L) isin phase-2.

For the two phases the constitutive response is not the same, and thus they have
different sets of governing equations; the significant difference is that the coefficient of
thermal expansion 0., vanishes in phase-1, which decouples the mechanical evolution of
the fields from the thermal evolution. Mathematically the two distinct phases will interact
across the phase boundary through the Rankine-Hugoniot equations (2.7). In what is to
follow the initial temperature and displacement field within the bar are prescribed, this

type of initial boundary data is referred to as a hard device.

4.3 Static Configurations

Consider the initial configuration where the strain, velocity and temperature are
prescribed. We define an initial configuration to be a static configuration if the initial
velocity everywhere within the bar vanishes and if the initial temperature field is constant
throughout the bar. Thus an initial piecewise-homogeneous configuration that is static and

contains a single phase boundary is summarized by

0<x<s,,

Y1
= = 4.5
Y(x,0) =7v,(x) (72 s, <x<L, 4.5)

v(x,0) =0,

" 4.6)
0(x,0) = 6.
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For a single phase boundary to exist it is required that the strains ¥, and vy, satisfy ¥, <1,

and vy, >y, where y; = ¥,(0) is the intersection strain introduced in Section 3.4. The

strain field (4.5) is compatible with the displacement boundary conditions

u(0,t) = -3,
u(L,t) =0

fort<O, 4.7

provided that & is suitably restricted. To obtain this restriction, consider the average

strain y_

L
Yo=1[odx = 2. 48)
0

From (4.5) and (4.7) the initial displacement field is then

u(x,0) =u (x) = v;x+ (¥,-7,)8,-7,L on0<x<s,,

4.9)
u (x) =7v,(x-L) ons <x<L.
The initial location of the phase boundary s, is then, according to (4.7), given by
(Y2 -7, L
S, = ﬁ where v, <7¥,<7,. (4.10)

The restriction that the phase boundary is constrained to the interior of the bar, 0<s <L,
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requires that the displacement of the left end of the bar, §_, satisfy Ly, <8 <LyY,.

In summary, the temperature 8 and the displacement & of the left end of the bar
are prescribed in a static configuration, while the right end of the bar remains fixed. To
ensure that a single phase boundary is present within the bar requires that the initial dis-
placement § be restricted to a range of values 8, € [Ly,, Ly,] . In general, for a given
8, the values of Y, and y, may vary independently (over some range) while still satisfy-
ing this criterion. Thus specification of & may in general be compatible with a two param-
eter family of strains (y,,Y,) for the initial configuration. Clearly the inability to specify
the strains (Yy,,Y,) indicates that the initial location of the phase boundary cannot be

determined from & and 8, alone.

4.4 Equilibrium Configurations

Within this framework an initial equilibrium configuration is an initial static con-

figurations which also satisfies the equations of equilibrium

=0 and [[7]] =0. (4.11)

¥

Recall that the [[-]] notation denotes the jump in the enclosed quantity across the phase
boundary. The initial conditions (4.5) and (4.8) can satisfy the additional equilibrium crite-
ria (4.11), but in so doing the possible range of the initial state of strain will be restricted.
The initial strains in a static configuration already satisfy requirement (4.11);, but (4.11),

generates an additional relationship between the initial strains (;,Y,) and the temperature
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@ in the initial configuration:

PCIY) = Pey(¥y =Y )~ Pes0,(B-0)). (4.12)

From (4.12) it is seen that in an initial equilibrium configuration, two of the three quanti-
ties in the triplet (y,, Y,, @) are independent, the third may be explicitly calculated from
the requirement of equilibrium (4.12). Alternatively, at any temperature 8 there exists a
one parameter family of strain pairs (Yy,,Y,) that satisfy (4.12). The set of initial states
(Y Yoo ) which satisfy the criteria of an equilibrium configuration may be categorized,
and in what is to follow three special types of equilibrium configurations are defined for

later use in this study.

4.4.1 Maxwellian Configurations

Considering the set of equilibrium states it is natural to inquire what initial states
are energy minimal. For a bar which can support more than one phase, Ericksen (1991)
investigated the issues of equilibrium, energy minimization, and stability for both the hard
and soft loading devices. For the hard device (the problem under consideration here) he
demonstrates that minimization of the Helmholtz free energy requires that the bar must be
in an equilibrium configuration, i.e. minimization of the free energy dictates that the fields
in the bar must satisfy (4.6) and (4.11). Since this process does not define an unique equi-
librium state, further investigation into the absolute minimizer amongst all the possible

equilibrium candidates lends itself naturally to defining a stable equilibrium state. Requir-
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ing that the equilibrium state be the minimizer for the set of equilibrium states, and thus

the most stable, defines the so called Maxwellian state. Mathematically the definition of

the Maxwellian state is an equilibrium configuration which also satisfies the condition

[lvl] = ((H [[y]] (MX) . (4.13)

For notational purposes when identifying the Maxwellian state the abbreviation (MX) will
be used. To the extent that (4.12) and (4.13) provide two restrictions on the triplet
Yy Yo é) one may surmise that a Maxwellian configuration is a one parameter family of
initial states. That is if any one of the triplet (y,, ¥,, 0) is specified then the remaining two
field quantities are determined from (4.12) and (4.13). Thus, at some fixed temperature 8
one anticipates that the strains y, and ¥, (and hence the stress T) are determined for the
Maxwellian state. We shall denote these strains and stresses as 'y:"x ) y;'{x and tMX .
Interpreting equation (4.13) graphically one observes that, in a Maxwellian config-
uration, the Maxwell strains are the two strains joined by common tangent line to the free
energy as depicted in Figure 4.1. Figure 4.1 shows the graph of the free energy along with
the common tangent line which together graphically identifies the location of the two
strains.

By definition (2.9), and (4.13) an analogous definition of a Maxwellian state is

Y2
[Tané)dy = IV (MX), (4.14)
T
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from its graphical construction (4.14) is the so called equal area rule. The equal area rule

defines the Maxwell stress as that level of stress such that shaded area under the stress-
strain curve but above the line T = 1"~ is equal to that area below the line T = =™ but
above the stress-strain curve. This is depicted graphically in Figure 4.2.

For the two phase material considered here a short calculation finds that there are
two pairs of Maxwell strains if ¢, # c,. The double roots occur because, as recalled from
Chapter 3, the case c, #c, gives rise to two intersection strains (a result of the Helmholtz
free energy function being quadratic in strain) and each of these will in general support the
tangent line construction. The general results for the Maxwell strains (c, #c,) will not
be required in what is to follow and thus are not presented.

We will, in what follows, focus particular attention on the case where the acoustic
speeds are equal (c, = c, = c) . This simplifies much of the resulting algebra. In this case
there is exactly one intersection strain (3.71) and hence a pair of Maxwell strains (one
strain for each phase)

.y

2(by-6;) - — +pc2mz(29°—§)+2p(C_ﬂ-C.,l)(l-lﬂ(—e;))é
0 0

(@) = ——s :
2pc(Y +0,(0-6))
4.15)

Yo (8) =7y (8) +7 +0,(B-8").

At this point it is useful to discuss the differences in equilibrium states between two
classes of material: a separable material and a fully coupled material. Continuing with the

Case ¢, = c,, we now carry out the two part decomposition (3.92) for the Maxwell
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strains. First that part of a Maxwell strain which is independent of «, is determined by

letting o, = 0 in (4.15), this process yields

A - C,-C 6 )~
"X ®) = (6226.‘)—( 2 .“)(( M1 .-1)+ln(2.))6.
pcy cy - (CYZ—CYl)G 0

(4.16)

MXO0 A MX0 A . _*
Y, (8) =7, (8)+y.

From (4.16) it is interesting to note that, when the MX equilibrium state is specified, the
difference in the two strains as o, — 0 is just the transformation strain y . Both strains
display a complicated logarithmic temperature dependance.

The second part of the two part decomposition (3.92), for the ¢, = ¢, case, isto

determine the ., dependance for the Maxwell strains. Using results (4.15) and (4.16) in

% Mx“z

(3.93), one finds the expressions for y;‘x and vy, are:

o oot 6
7 @) = P :

1 s = .
pc’y ( +0a,(8-0") 028(20 - 8)
+

2y +0,(8-8"))
4.17)

MX A MX A ~ *®
Y, (@) =y, ‘@) +a,®-6)

The strains (4.17) also show a complicated logarithmic temperature dependance. The dif-
ference in these strains is seen to be the value a2(§ - 6‘) .
For future reference it will also be useful to obtain the Maxwell strains for the

€1 = c, case with the additional condition that the specific heats of the two phases are
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equal. Letting CYl = C72 = CY in (4.15) leads to

2(by-b;) + Zp(czaie' - };—T)é - pczozg(:)2

2pc’(y +0,(8-0"))
(4.18)

T () = ¥\ () +y +ayB-0).

For this special case, the temperature dependance of the strains is no longer logarithmic, in

fact the numerator is quadratic while the denominator is linear in the temperature 6 .

4.4.2 Mechanically Neutral Configurations

The second canonical equilibrium configuration is the mechanically neutral state,
for notational purposes it will be abbreviated (MN). Along with the condition of equilib-

rium (4.12), a mechanically neutral state must satisfy the additional requirement

[[e]] = (KN (Y]] (MN) . (4.19)

Note from (2.5); that this condition must be satisfied for dynamical processes whenever
$# 0. Howeverif $ = 0 then (4.19) need not hold, this accounts for the possibility of
equilibrium configurations that are not mechanically neutral. One would thus anticipate
that an initial state satisfying (4.19) would allow for a relatively smooth transition from
the initial configuration into a dynamic state.

From its definition in terms of an additional restriction on the two parameter fam-
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ily of initial equilibrium states, one anticipates that a mechanically neutral state also

defines a one parameter family of initial configurations. Namely, by specifying any one of

the triplet (Yy,, ¥,, @) the criteria (4.19) coupled with the conditions of equilibrium should

determine the other two. Thus, analogous to a Maxwellian configuration, for an initial

equilibrium temperature 8 the mechanically neutral criteria (4.19) determines the two

strains ¥, and vy, .

An alternative definition of a mechanically neutral state, in terms of the free energy

and entropy, can be derived via (3.2) and (4.19)

[[y]] - (D [[¥11 +6[In]] =0 (MN) .

If we assume the initial configuration to be mechanically neutral then the triplet
(Y ¥, 6) must satisfy both

2
PCy, 2

2
pc * * 2 A
(= (Y —0,0)) -1 +p(C)y—C,) 8+ 6,5, =

2

1 2 * 2 A ot 2
5(002(72-7 )—Pczaz(e"e )+PC171)(72_71)

(4.20)

(4.21)

and condition (4.12). If the initial temperature 8 is specified, then calculating the roots for

produces two pairs of roots for the case c, # c, . Like the MX state, the MN state has two

roots because of the quadratic nature of the free energy function and the difference in cur-

Vatures c, # C,. Furthermore, the general results for the MN strains (c, #c,) will not be

required in what is to follow and thus are not presented.

Turning our attention to the more tractable case of ¢, = c,, we calculate the
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mechanically neutral strains when the two phases have a common acoustic wave speed,

and like the MX case this calculation yields only a single root for both phases

2pc2(y‘—a26‘) ’
(4.22)

@) =y (B) +y +a,B-0).

From (4.22) both MN strains are seen to vary quadratically with the temperature 8 . It is
interesting to note that the difference in these two strains is y + o, (6 - 0'), this differ-
ence changing linearly with the temperature 6.
Continuing with the case ¢, = c,, it will prove useful to determine the two part
decomposition (3.92) for the MN strains (4.22). Proceeding with the decomposition, let
O, — 0 in (4.22) and simplify the resulting expressions to find

. b,-b,) +p(C,,-C,,) 0
N @) = (by-b,) Pz( 12 1) ’
pcy

(4.23)

Yoo @) =y @)+

As in the MX case (4.16), the difference between the two strains (4.23) is the transforma-
tion strain y . Also note that the temperature dependance in both (4.23) 1,2 i linear.
Continuing with the two part decomposition for the MN strains (c, = c,) , that
Partof the strains which depend on the o, coefficient is found by using definition (3.93)

with res wlts (4.22) and (4.23). Carrying out this calculation yields
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- N a2
MNe, o _ ,0 [ (b,-6,) +p(C,,-C,,) 8] . o

1

Pczv'(v'—aze') 20y -0,0)
(4.24)

MNa, . MNa, . A *
Y, (0) =7, "(8) +a,(6-6).

It is seen that the difference between these two strains is a quantity which is linearly
dependent on the temperature.

Like the Maxwellian case it will also prove useful to calculate the MN strains for
the ¢, = c, case when the specific heats of the two phases are equal. By requiring that
C.{l = C.i2 = Cy in (4.22) the MN strains simplify into

2(b,-b,) +a? 5
Y:AN(G) _ 2— 0 2P

2pc2(y'—a26')
(4.25)

(@) = v\ (8) +7 +0,B-8).

For this case the MN strains (4.25) are seen to differ by the temperature function

v +0,6-0).

4.4.3 Entropically Neutral Configurations

The third type of canonical type of equilibrium states is the entropically neutral state,
which wi11 be referred to with the abbreviation (EN). An initial equilibrium configuration

isdefined to be entropically neutral if it satisfies the additional criteria
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[(m]] =0 (EN) . (4.26)
From (4.26) an entropically neutral configuration requires that (y,, v, 8) satisfy
n . P R
pC.ﬂln( (%J +PCI0, (Y, -7 ) + %}T = pcﬂln(g] 4.27)

and (4.12).
Like the Maxwellian and mechanically neutral initial configurations, an entropi-

cally neutral initial configuration defines a one parameter family of initial states, by speci-
fying any one of the triplet (y,, Y5, 8) the conditions of equilibrium and (4.27) determines
the other two. However, unlike the other two canonical equilibrium configurations, for the
case ¢, #C, the entropically neutral criterion yields a single root for the two strains
('ny (é) , 'ny (é) ) for a given initial temperature 8.

Once again we consider the simpler case of equal wave speeds ¢, = c,. Under
such an assumption (4.27) gives rise to an algebraic equation for which ny can be deter-
mined, this result coupled with the equilibrium equaﬁon (4.11), allows for the calculation

EN
of v, . The expressions for the entropically neutral strains are:

T (8) = _2L( (Cy2-Cyy) 1n(§) + AJ) —0,(8-8"),

ca, 6
(4.28)

Y5 (8) = 77 (8) +7 +a,(B-80").

Itis intel‘esting to note that these equilibrium strains are of a different o., dependency than
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either the Maxwellian and the mechanically neutral cases. From (4.28) it is seen that the

entropically neutral strains are singular in the o, — 0 limit, whereas for both the mechan-
ically neutral and Maxwellian cases a finite quantity results from the limit process. The
EN strains also display a logarithmic dependance on the temperature 6, and thus have a
complex temperature dependance.

For the entropically neutral configuration the two part decomposition (3.92) yields
some interesting results. Still considering the ¢, = c, case, we first investigate the case of
a separable material. Thus let a., = 0 in (4.27), and note that this process removes all
dependency on the deformation in condition (4.27). Carrying out the details of this limit-

ing process provides a specific temperature for the entropically neutral configuration

6N = e'exp( _ M ] (4.29)

First, note that the temperature GENO depends only on specific values of material parame-
ters, and thus is a constant value. Second, when o, = 0, the entropically neutral strains
are found via the equations of equilibrium, criterion (4.27) plays no part in their determi-
nation. Together these strains form a one parameter family. Thus for a separable material
the entropically neutral case is quite different than either of the other two canonical con-
figurations. Recall that the MN and MX configurations generated a one parameter family
of strains based on specifying an initial temperature, whereas for the EN configuration the
initial temperature is specified via (4.29), while the accompanying two strains form an one

parameter family of solutions.
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Continuing with the focus on materials where ¢, = c,, we consider the case when

the two phases have identical values for their respective specific heats, then (4.28) simpli-

fies to

(4.30)
Y3 (8) = y; (8) +y +0a,6-0").

Under this restriction the strain 'ny (6) has a linear temperature behavior, while if one

inserts ny (é) into (4.30), the strain y.fN is seen to be the constant value
EN * Ar
Yz = ‘Y - 2 -
c a,0

4.4.4 Omnibalanced Configurations

All three of the canonical equilibrium states just introduced (MX, MN, EN) are
characterized by a set of strains (y,,Y,) once the temperature 8 is specified. Thus the ini-
tial temperature & parameterizes three equilibrium states. In addition since (4.13), (4.19)
and (4.26) are distinct equations, these special types of equilibrium states will not, in gen-
eral, coincide. However there may exist special temperatures for which these states do
coincide. These special temperatures, if they exist, will be called omnibalanced (OB).
Here it is significant to note that an omnibalanced initial state implies any two of (4.13),
(4.19) and (4.26) which in turn requires satisfaction of the third. Thus at the special omni-
balanced temperatures (if they exist) there exist equilibrium states that are simultaneously

MX, MN and EN. Finally, an omnibalanced state, being the intersection of two one
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parameter families, is an unique initial state (Y,, Y, 8).

To formulate the equations which define this configuration, recall that the OB state
must simultaneously satisfy the conditions for the MX, MN and EN configurations. Thus,
one can choose any pair of strains for either phase-1 or phase-2, say MX and MN, and the
difference between theses two strains is required to vanish. Such equations define the OB
temperature.This process of obtaining an equation for the OB temperature can proceed
using six different pairs:yrx = 'y:'m , yrx = ny , yi’m = ny plus the three others
that are generated under 1 — 2. Once an OB temperature is determined from one of the
six equations, the strains (ylon, V?B) can be calculated by inserting this temperature into
one of the three equations (MX, MN, EN) for the strains (Yy,, ¥,) . When considering the
fully thermal material the calculation of the OB state is algebraically intractable due to the
fact the temperature is involved in a logarithmic manner in the strains for both the MX and
EN configurations. In fact this algebraic problem persists to the case when the acoustic
wave speeds are the same for both phases. Figures 4.3 and 4.4 are graphical representa-
tions of all three canonical equilibrium strains versus temperature for both phase-1 and
phase-2 respectively. These figures demonstrate that for both phases the three strains inter-
sect at two locations, and it is precisely these locations that represent the omnibalanced
state.

However there are two specific cases for which this state can be found, the first
being when the acoustic wave speeds and the specific heats are identical for both phases,
the second case is when the acoustic wave speeds are identical and both materials are sep-

arable.

Consider first the case when ¢, = ¢, and C7 | = C.,2 , then one may determine
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the OB state from the strains (4.18), (4.25) and (4.30) and the knowledge that at an OB

temperature all three sets of strains must be equivalent. Using this criterion for the calcula-

tion we find the OB criterion provides two sets of initial states, this OB configuration is

*+ _.OB
R Ay A
a, o,
. (431)
o,c'0

OB O ~OB
Y9 =Y, +Y

where

?OB _ ,/asz' [— 2p}‘1(y‘ - azet) + 2(126‘ (b, -b,) + c:zze'pcz('y'2 - aie‘z)]

azpc9‘

From (3.76) and result (4.31), we see that there exists two OB temperatures for each of the
ground-state equivalence temperatures 9. Since, in Chapter 3, it was shown that there
exists two ground-state equivalence temperatures 6: and 6; , given by (3.76), this implies
the possibility of four OB temperatures.

Consider now the second case, when both phases are a separable material so that
a, = 0 with ¢, = c,. The OB temperature is now the entropically neutral temperature
éEN (4.29), since by definition the OB state must satisfy all criteria which define the three
canonical equilibrium configurations. The strains are found using this OB temperature and

the expression for either the MX strains (4.16) or the MN strains (4.23), since both MX



and M

This cas,

0B lempy

However
States, M,
and OB
¥hich
lence (op,

Motiong F:

bere.



84
and MN criteria must be satisfied. To summarize, this OB state consists of

A . A
6%%° _ o exp( _ T )
8 (C,,-C,)

52—81+p9. (CYz—C_ﬂ) CXP(O. CA'T c )
o = O G gm0 @

2
pcy

OBO *+ _OBO
Y2 =Y Y .

This case differs from the previous OB results (4.31), because now there exist only two
OB temperatures, one for each value of the ground-state equivalence temperatures (3.76).
With result (4.32) we end any further analysis and development of the OB state.
However, there remains a number of open issues concerning the canonical equilibrium
states. Most notably would be a study of the correspondence between the transformation
and OB temperatures, which should include an analysis of any symmetry relationships
which might exist between the four OB temperatures and the two ground-state equiva-
lence temperatures. However, the main focus of this research topic concerns dynamical
motions and not equilibrium states, and therefore our study of the equilibrium states ends

here.
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4.5 Initial Disturbance

So far we have required the bar to be in an initial equilibrium configuration con-
taining a single phase boundary at s,,. A special set of boundary conditions will now be
introduced such that a wave pulse will emerge from the left boundary (x = 0) and travel
into the body so as to eventually reach and interact with the phase boundary. The wave
pulse originates in phase-1, the phase in which the energy is separable.

The dynamic boundary conditions to be described are active for the period
0 <t<T,. During this interval the left boundary (x = 0) undergoes a smooth ramp-type
displacement to a final value SF , while the right boundary (x = L) remains fixed. Fur-
thermore, for all time t> T it will be required that the displacement at each end remains
fixed. This set of initial and boundary conditions corresponds to controlling the displace-
ment and temperature of the ends of the bar, and are commonly referred to as a hard
device.

Mathematically this set of boundary conditions is expressed

t
~8,- (8,-8,) = for 0StST,,
u(0,1) = Foo'T,

b

-8, for t>T, “33)

u(L,t) =0 for t20.

From the prescribed displacement field (4.33) the corresponding velocities on the two

boundaries during the interval 0 S t< T are
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-[SF—SO]/TOEAV 0<t<T,

v (0,1) =( 0 for (>T

(4.34)
v(L,t) =0 fort=20.

The conditions described by equations (4.33) and (4.34) are such that during the interval
0<t<T, the left boundary x = 0 undergoes the ramp deformation u (0, t) , while
simultaneously the boundary x = L remains fixed. The deformation along the lower
boundary generates a wave pulse of width ¢, T , which subsequently propagates into that
part of the bar which is in phase-1.

Turning attention to the entrance of the initial wave pulse into the body, the wave
pulse’s velocity and strain can be mathematically related to the adjacent equilibrium con-
ditions using the Riemann invariants in phase-1. For the period 0 <t< T, equations
(3.49) and (3.50), must be satisfied between the initial equilibrium state and the dynamic
state within the wave pulse. More precisely, equation (3.49) restricts changes in entropy,
and states that the temperature within the region occupied by the incoming wave packet
remains equal to that in the equilibrium state 6 . The.second equation (3.50), produces a
relationship between the initial equilibrium conditions and the strain and velocity fields in

the incoming wave. Writing out this second equation gives:

C,Y; = Av+cyy,, ong—: =-C,. (4.35)

Here Av is the velocity and y,, is the strain carried by the wave pulse, the velocity Av is
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defined by (4.34). The strain y,, can be determined by using (4.35) since the strain y, and

the velocity within the wave pulse Av are prescribed.

For future convenience we define the driving strain increment Ay to be:

AY=Y, -7, (4.36)

from (4.35) and (4.36) we find the relationship between the driving strain increment and

prescribed velocity Av is

Ay = 2, 4.37)

Here the driving strain increment Ay can be thought of as the forcing input to the initial
conditions.

Using a similar analysis as that leading to result (4.35), it can be shown that once
the initial wave has passed through a particular point in the bar, that point returns to its

equilibrium configuration, and remains in that state until another disturbance occurs.
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Fixed temperature 6

y(1,0)A vz

>
YlMx YzMx Y

Figure 4.1 This figure is the Helmholtz free energy function y (Y, 0) at a constant tem-
perature 6. Shown is one pair of Maxwell strains er and 'y:lx. These strains are deter-
mined from the requirement that an equilibrium configuration satisfy the criterion

[[v]l] - ({()) [[Y]] = 0. Schematically this criterion is shown by the line of slope

( (7)) which is tangent to both free energy functions, the points of tangency identify the
locations of the Maxwell strains.
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(y.0)A

Stress response for constant temperature

phase 2

Figure 4.2 Shown is the two phase stress strain response at constant temperature. The

Y2

Maxwell criterion, I‘t (7,0)dy- ((t)) [[y]] = 0, can be interpreted graphically as the
T

equal area rule. This rule states for the Maxwellian configuration that the area below the

phase-1 stress-strain curve but above the line ™ s equal to the area above the phase-2
stress strain curve but below the line t* . On this figure the equal area rule identifies one

pair of Maxwell strains 'y:"x and 'y;'{x.
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Figure 4.3 This is a schematic representation for the three canonical phase-1 strains for

different temperatures. The mutual intersection of all three strains is the location of the
~OB

omnibalanced temperature ® . Here the acoustic speeds are the same ¢, = ¢, = 2, and

the values for the material parameters are p = 1,9' = l,y' =2,C,-C, =3,
a, =1,A, =5.
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ii 15| %2
§
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H 10}
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-4 :--.2. ; 2 4 6
41
.1-10 :
—— EN Strain l
— Strain

seeses MX Strain

Figure 4.4 This is a schematic representation of the three canonical phase-2 strains for dif-
ferent temperatures. The mutual intersection of all three strains is the location of the omni-
balanced temperature éOB . This diagram is the complement of Figure 4.3 in that all the

material parameters remain the same as in that figure.
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S. The Interaction of the Initial Wave Pulse with the Phase Boundary

In Chapter 4 a set of initial and boundary data were described, these conditions
generate a wave pulse from the left boundary. The pulse travels at speed ¢, from this
boundary into the purely mechanical phase (phase-1). At time t = s,/c, the pulse will
reach the phase boundary and interact with it in some way. In general, the initial interac-
tion of the wave and the phase boundary will set the phase boundary in motion while giv-
ing rise to the possibility of a wave being transmitted into the phase-2 region and a wave
being reflected back into the phase-1 region. The complexity of such a problem may be
understood if the reader recalls similar problems occurring in elastic materials involving
the reflection and transmission of a wave striking a boundary, and the subsequent genera-
tion and interaction of reflected and transmitted waves (Achenbach 1990).

Pence (1991a,1991b) proposed a similar initial boundary value problem in a two
phase elastic solid. In his study Pence considered an infinite layer of material which under-
went simple shearing motions. Furthermore, the material model Pence studied was purely
mechanical in nature and thus did not consider any contributions of thermal effects.
Although geometrically a bar undergoing longitudinal deformations is different than
shearing within a layer, mathematically the governing equations for the two different
problems are identical. Like Pence we assume that the interaction of the wave pulse and
the stationary phase boundary will set the phase boundary in motion, and that the phase
boundary will come to rest when the encounter is over. In the following subsection we will
compare and contrast the problem Pence investigated with the one under study here, so as

to clarify the role that thermal effects play in such a problem.The intention is to identify

92
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the similarities and differences between the purely mechanical problem and the fully ther-

mal problem to be considered later.

5.1 The Wave Pulse-Phase Boundary Interaction

In order to explore the temperature effects in the fully thermal problem, while try-
ing to keep the problem under consideration here somewhat similar to Pence’s, the follow-

ing assumptions are made:

(A.5) The initial wave pulse is generated before any interaction with the phase

boundary.

(A.6) The interaction of the initial wave pulse with a phase boundary will not lead to

the creation of additional phase boundaries.

(A.7) The phase boundary will not encounter either of the boundaries x = 0 or

x = L during the interaction process.

(A.8) During the interaction the phase boundary will move with a constant speed

ds

s=a—t.

(A.9) After the interaction the phase boundary comes to rest.
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Assumption (A.5) is satisfied if the time period in which the pulse is generated T is

restricted such that T <'s_/c, . Assumption (A.6) requires that the material to left of the
phase boundary (0 <x <s(t)) always remains in phase-1, while the material to the right

of the phase boundary (s (t) <x <L) isin phase-2. It then follows that the strain field

must satisfy:

Y (x,t) <7y, for O<x<s(1),
5.1
Y(x,t) >y for s(t)<x<L.

Also, from (A.6) the stress fields on either side of the phase boundary are of the form

T = pcfy on0<x<s(t),
(5.2)

T = pci(v—y‘)—pciaz(O—e') ons(t)<x<L.

According to assumption (A.6) the strains Y, and Ay, given by (4.36) and (4.37), are
restricted in their range of values to the intervals Yy, <Y, and Ay <7y, -7, . We also note
for the interaction to end, and thus satisfy (A.9), that the speed of the phase boundary is

bounded by the wave speed on either side $§ <min(c ,,c, ) .
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5.2 The Purely Mechanical Problem

In Chapter 3 it was demonstrated that the coupled thermoelastic energy will sim-
plify into a separable energy in the limit 0., — 0 in which case the thermal and mechani-
cal fields uncouple, yielding a purely mechanical problem and an associated thermal
problem. The purely mechanical problem is totally independent of all thermal consider-
ations, and within such a theory one can in principal solve for the mechanical field quanti-
ties,y (x, t) and v(x,t) ,without knowledge of the temperature field. However, the
converse is not true, in order to determine the temperature field one must have some
knowledge of the mechanical field quantities. Thus, one must first solve the purely
mechanical problem and then the thermal problem.

Pence (1991a,1991b) investigated problems similar to the one posed above, but
within the framework of a purely mechanical setting, so that no thermal effects were con-
sidered. At this time we wish to extract certain key results of his work that will prove most
useful in comparison with the results to be derived later in the document.

Temperature is not an issue in the purely mechanical setting, so that the indepen-
dent field variables are vy, v with the stress T = T (YY) . The notion of a separable energy as
introduced in this work was not employed by Pence. However, under the current thermo-
dynamic framework, one may classify his treatment as arising from the separable energy
function, employed here when a, = 0. This form of the energy function allows the con-
sideration of the purely mechanical problem, without any acknowledgment of the thermal
effects.

Starting with a stationary phase boundary separating the two distinct phases, his
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treatment introduces a similar wave pulse into the system albeit through the high strain

phase. In the current investigation the pulse is introduced through the low strain phase, the
high strain phase employed in this document has a temperature dependent stress strain law
while the low strain phase does not. By introducing the pulse though the low strain phase
we will demonstrate how one may easily solve the pulse propagation problem which com-
municates the pulse to the phase boundary, so that attention can be focused on the interac-
tion occurring at the phase boundary. Therefore, we first modify the problem studied by
Pence, where we again consider the purely mechanical problem but now introduce the
pulse into the low strain phase of the material. Henceforth, this problem will be dubbed
the purely mechanical problem.

The purely mechanical problem introduces the pulse through the low-strain phase;
the incoming pulse then strikes the stationary phase boundary and generates a transmitted
wave and a reflected wave. The reflected wave interacts with the incident wave in an inter-
action region. It is easily verified that this problem can be treated by following the exact
same procedures employed by Pence in his original problem, i.e. the use of Riemann
invariants between adjacent regions leads to a system of six equations. Figure 5.1 graphi-
cally depicts this situation in the (x,t)-plane. Furthermore, this figure shows the 6 distinct
regions which exist during the interaction: the two undisturbed initial equilibrium states,
the region in which the wave pulse exists, and the regions S, R and T. Region R occurs at a
later time then either S or T and thus decouples from both, reducing the number of regions
to five. Mathematically the field variables in these regions must satisfy the Riemann
invariants (3.54) and the jump conditions (2.7), ,.Treating the phase boundary speed as a

parameter generates a determinate system of linear equations for the field variables. Solv-
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ing this system of equations one finds the values of strain Y3 " and velocity v

transmitted region to be

2 . .
mech (Cl - SC])ZAY_ 8C, (‘Yl _'Yz)
Y1 =Y, + e
(c, +¢,) (c,-8)

,

mech |:($—Cl)2AY+S(‘Yl—Yz)]
vVt = C,C, .

B (c,+¢y) (c,-8)

. mech . h . . . .
The values of strain y  and velocity v;m in the interaction region are

mech + 2C1C2AY+S[261A‘Y—CZ (71 _72)]
s =N (¢, +¢,) (¢, +8)

2
vmech _ [_ 2cAY+8(- 2¢,AY-¢, (Y, —7,) )]Cl
s - (c, +¢,) (c, +5) '

in the

(5.3)

(54

(5.5

(5.6)

Note that the phase boundary velocity § is treated as a parameter and is not specified in

the above forms, hence the nonuniqueness of solutions mentioned earlier still holds for the

slightly different problem just introduced.

The above analysis describes the initial interaction of the wave pulse with the

phase boundary. One may extend this problem to consider the case where the resulting

reflected and transmitted wave proceed through the material, eventually striking the end

boundaries, which in turn generate new reflected waves traveling back into the body. A
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similar problem concerning the hierarchy of ringing waves interacting with a phase

boundary was considered by Lin and Pence (1993a), within their study they also analyzed
the dissipation of energy resulting from a multitude of wave-phase boundary interactions.
As is well known (James (1983)) dynamical motions of this kind may involve
changes in the energy contained within the bar. Under a purely mechanical framework the
mechanical energy, E (t) , is the sum of two distinct components, the kinetic and strain

energies. The rate of change in the mechanical energy is found to be

_d
E(t) = aF(t) -D (1), 3.7
where
t
F(t) = j{%(v(h,i))V(h,é)—%(7(0,6))V(0.§)}d§. (5.8)
0
Y (s(t) +.t)
D =s(m) | ’t(v)dv—((‘t(v)»[[y]]}. (59

Y(s(1)-1)

In this purely mechanical setting the function F(t) represents the work being performed on
the external boundaries, while the function D(t) represents the rate change of energy due
to phase boundary motion. The expression inside the braces of (5.9) is commonly referred

mech

to as the mechanical driving traction f (t) (viz. Abeyaratne and Knowles (1991)):
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Y(s()+t)
mech _

FO™ = [ 2mdy-(EmNIMI. (5.10)
Y(s(t)-.)

As seen from (5.10) the driving traction provides a source of information on the fields
adjacent to the phase boundary. From the definition of the mechanical driving traction the

expression (5.9) may be expressed

D(1) = $(t) f()™ (5.11)
If F(t) = 0, then the second law of thermodynamics in this purely mechanical setting
motivates the requirement E < 0. This gives the requirement that admissible motions must

mech

satisfy D (t) 2 0, which in turn restricts § (t) f (t) 2 0. Thus in this purely mechani-
cal setting the quantity D (t) represents the dissipation rate.

For the initial encounter calculating the dissipation rate via. (5.9) one obtains

D = £ [c(e3-¢" (rp-v,) - ci(e -8 (45— 1)) ] (5.12)
Y2
H [T ay-T(r,-1y)
T

Furthermore, when the initial conditions are Maxwellian (4.14), as considered by Pence,

the second bracketed term vanishes and (5.12) reduces to
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D = -2ﬂ$ [c3cs-8%) (vp-1p) 2 -2 - ) (vg -7 ] (MX).  (5.13)

With significant algebraic manipulation, via. the computer program MATHEMATICA, we
express the field quantities Y1 and Y on the left hand side of (5.13) in terms of the driv-
ing strain Ay, the initial conditions, and the phase boundary speed § via. (5.3) and (5.5).

These operations give

"2£s [C§(C§— §%) (Yr-72) 2_ Cf(Cf -§%) (Ys—71) 2]=

5.14)
pScfZ (AY,$) (

(c;+¢,) (c;+8) (c,—-8)’

where the function X (Avy,s) is defined

£ (AY.8) =87 [287 ((c; - c,) AY—¢, (¥, - ¥,)) ]

~$[2(c; - ¢;) "My’ - 20, (¢, —¢y) (¥, - V) AV + 5 (1, -1y "] (5.15)

=[2¢,c,A7((c, “Cz) Ay -c,(Y,-79))] .

This operation allows the dissipation (5.13) to be expressed

) PSC T (AY.9)
"~ (cy+¢,y) (¢, +8) (c,—9)

(MX) . (5.16)

Requiring D 2 0 restricts § to an interval of values for each Ay. From (5.16) and the
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restriction on the phase boundary speed s < min (c,, ¢,) , the requirement D 2 0 implies

that

$Z (Ay,s) 20 (MX), (5.17)

and thus an analysis of $X (AY, §) is sufficient to determine the admissible values § for
given Ay, that is the solution region in the (AY, s) -plane. Following the analysis in
Pence, it is seen that along the line § = 0 and locus of points Z (Ay, s) = 0 the dissipa-
tion vanishes, and thus bounds regions in the (AY, ) -plane to one sign. Figure 5.2 is a
plot of the admissability region in (AY, ) -plane for the special case where

¢, = ¢, = c. Under these conditions the function Z (AYy,s) reduces to

. 2 .
T (AY,S) = —287CAY (¥, -¥,) ¢ (Y, -¥,) >+ 2C°AY (Y, - 1) » (5.18)
which allows the dissipations function (5.16) to be expressed

o _ pes[2s%eay (v, 1) -5t (1, - 1) P+ 25 AV (4, - 1) ]

(5.19)
2(c2-§%)

Figure 5.2 also illustrates curves of constant dissipation, i.e. D = constant. However, the
requirement of positive dissipation does not yield a unique solution for the various field
quantities, but only reduces the range of possible values for the parameter § for given ini-
tial conditions. In particular, if Ay > 0 then § is confined to a range of nonpositive values
where both the extreme values § = 0, § = $(AY)| . give D = 0. Similarly if Ay < 0

then § is confined to a range of nonnegative values where given the boundary values
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§ =0,8 =s(AY) |max gives D = 0.

To find a unique solution for the results (5.3)-(5.6) one must introduce some addi-
tional criterion. Pence (1991a, 1991b) uses a variety of different of selection criteria to
determine a unique solution. In the first paper this is achieved by enforcing various
requirements on the reflectivity versus transmissivity (a phase boundary impedance),
while in the later paper motions are determined under the extremum principle that the dis-
sipation, defined in (5.11), is maximized at each instant.

Another method for selecting physically meaningful solutions is the introduction
of a kinetic relation, this being an additional constitutive relation which relates the speed
of the phase boundary to the various field quantities on either side of the phase boundary.
This information is typically provided by the driving traction (5.11). In this purely

mechanical setting a standard functional form for a kinetic relation is

s = FUOY,

where ¥ is a functional form motivated by the phase boundary kinetics.The simplest form
of a kinetic relation is that of a linear kinetic relation, which implies that the phase bound-
ary speed § is a linear function of the driving traction f™°°" . Mathematically this can be

expressed as

§ = xfoer (5.20)

where x is the phase boundary mobility, a material parameter that is here assumed to be
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mech

constant. Since D 2 0 implies x(f )2 2 0, via (5.20), this requires that the mobility x
be a nonnegative quantity. In a similar setting to that of Pence (1991a,b), Lin and Pence
(1993a) utilize such a linear kinetic relation and are able to construct an implicit relation
between the phase boundary speed and the initial conditions. Furthermore, they are able to
show for infinitesimal wave pulses that the maximally dissipative solution is equivalent to
the linear kinetic relation for one value of the mobility, and that, in general, this maximally
dissipative solution is quantitatively similar to the criterion based on the use of a linear
kinetic relation.

For the purely mechanical problem, the use of a linear kinetic relation is now pro-

posed. From (5.11) and (5.16) the driving traction during the initial encounter is

2
mech pclz (AY-S)
= MX). 5.21
Equations (5.16) and (5.20) give rise to
2
Z (Ay,
Kpe, 2 (47.5) (MX), (5.22)

- (c; +¢5) (c; +8) (c,-9)

which in turn provides an implicit expression for the phase boundary speed. Equation
(5.22) admits a unique solution (AY, $) for the initial encounter, i.e. given a set of initial
conditions and the mobility x, one can determine the phase boundary speed § via (5.22).

If, following Lin and Pence (1991a), one assumes ¢, = ¢, = c then this implicit equa-
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tion takes the simplified form

[ —
Ay = S S0 -1 (MX). (5.23)

kpc’ (1,-1,) 2’ -§))

Figure 5.3 is a graph in (AY, $) -space of the linear kinetic relation (5.20) for a range of
mobilities x. The graph also shows the criterion D 2 0 which describes the region that
contains solutions to (5.23).

For the purely mechanical problem, we have shown for the initial interaction of the
wave pulse with the phase boundary that a solution exists if the phase boundary is treated
as a parameter. Furthermore, the linear kinetic relation singles out a unique solution. At
this point we end our discussion of the purely mechanical problem and return to the fully

thermal theory we have developed.

5.3 New Features of the Fully Thermomechanical Interaction

We now turn our attention to the initial interaction of the incoming pulse with the
phase boundary under the framework of a fully thermomechanical theory. In this setting,
the problem increases in complexity from the purely mechanical theory in essentially
three ways.

First, at each point in the domain there are three field variables (Y, v, 8) that must
be determined, rather than simply the two mechanical field variables (Y, v) ; only in the
limit as the coefficient of thermal expansion vanishes does the temperature field decouple
from the mechanical fields.

dx

Second, the new family of characteristic directio: il 0 obtained in (3.63),
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which are essentially particle paths, introduces a new region into the solution. Recall for

the mechanical theory that the interaction gives rise to 5 regions: incident wave, incident/
reflection interaction zone, transmitted wave, and the undisturbed initial equilibrium
states. In particular, a single region will, in general, encompass both transformed and
untransformed material (interaction zone if § > 0, transmitted wave if § <0). In the ther-
momechanical theory this single region bifurcates into two regions (untransformed inter-
action zone, transformed interaction zone if § > 0 ; untransformed transmitted wave,
transformed transmitted wave if § <0).

Third, in the second phase the wave speed associated with Riemann invariant

(3.64) is no longer a constant, but instead is a monotonically increasing function of the

temperature
2 2
dx c,a,0
— = ¥F¢C 2 1
dt C,,

Thus, in phase-2 the interface between two wave regions supporting different tempera-
tures need not be a contact discontinuity'. In particular, this is the case for the interface
between the T-region, arising from a transmitted wave, and the initially equilibrated
phase-2 state, henceforth referred to as the T/E, interface (Figure 5.1). Besides the contact
discontinuity, the two additional possibilities are a classical shock and the centered simple

wave fan (Whitham (1974)). A centered simple wave fan is also known as a rarefaction

1. To avoid confusion, we define a contact discontinuity as a discontinuous surface separating same
phase regions that travels at one of the characteristic speeds of the material. This definition is commonly used
by mathematicians (Smoller (1983) page 334), investigators in gas dynamics would likely call this a Chap-
man-Jouget wave (Dunn and Fosdick (1988)). In the problem under study here, the wave speed in phase-1 is
given by (3.53) and so any interface between the various regions are again contact discontinuities. Across
such contact discontinuities the integration of the characteristic equations yields the Riemann invariants,
which can be used to help formulate a solution.
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wave in gas dynamics. A shock occurs if the characteristic speed associated with the right

propagating Riemann invariant is greater in the T-region than that in the phase-2 equilib-
rium configuration. In view of the temperature dependance of the speed (3.64), the shock
occurs if 0> 8. The case of a centered simple wave fan, henceforth simply a fan, occurs
when the characteristic speed associated with the right propagating Riemann invariant is
less in the T-region than that in the phase-2 equilibrium configuration. By use of (3.64) the

case of a fan occurs when OT <é.
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wemenss - Riemann invariant

X momnnns. - JUMp condition

E, E,

Figure 5.1 This is a graphical representation in the (xt)-plane showing the initial interac-
tion of an incoming pulse with a stationary phase boundary for the purely mechanical
problem. The wave speed of the phase boundary is assumed positive § (t) >0 in this fig-
ure. There exist six distinct regions during this interaction: E; & E, are the equilibrium
configurations in phase-1 and phase-2 respectively, IW represents the region carrying the
incoming wave pulse traveling through phase-1, region R is that region in phase-1 where
the reflected wave travels, while S arises from the interaction of the incoming wave and
the reflected wave; finally region T represents that phase-2 region containing a transmitted
wave. The forward movement of the phase boundary transforms phase-2 material into

phase-1 material.
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Figure 5.2 This is a schematic representation of the solution region in the (AY, $) -plane
for the purely mechanical problem with Maxwellian initial conditions.This region is
defined by the criterion of positive dissipation, D 2 0, thus the lines Z=0 and § = 0 pro-
vide the boundaries for the admissibility region. Also shown are curves of constant dissi-
pation given by (5.16). The values for the material parameters were chosen to be

€, =¢=2,p=1,7,-7, = 5.



109

Figure 5.3 This is a schematic representation of the linear kinetic relation with various
mobilities x for the purely mechanical problem with Maxwellian initial conditions. The
solid line =0 is the line of zero dissipation ,where X is given by (5.18), which divides the
plane into regions of positive and negative dissipation. Therefore, under the criterion of
positive dissipation, the line Z=0 also restricts the solution space in the (AY, $) -

plane.The values for the material parameters were chosentobe ¢, = ¢, = 2,p = 1,
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6. Analysis of the Initial Interaction Region

6.1 A Method for a Solution to the Initial Boundary Value Problem

The previous development of the characteristic equations and Riemann invariants
will now be utilized in an attempt to analyze the changes in the temperature, strain, and
stress fields in the proposed initial boundary value problem. Since this method of solution
hinges on using the Riemann invariants, any restrictions necessary for the integration of
the characteristic equations to produce the Riemann invariants in phase-2 need to be con-
sidered.

In view of (A.9) we note that the phase boundary may move with either positive or
negative velocity: $ >0 or $ <0. For those cases where the phase boundary has negative
speeds $ < 0 ,the characteristic equation (3.60) may no longer be integrated to give the
Riemann invariant (3.65). Since it is desired to use the integrated form (3.65) of the char-
acteristic equations to find a solution, the problems investigated are restricted to those for
which the phase boundary has a nonnegative value. Recall for the purely mechanical case
in which a, = 0 that this requires that Ay < 0 if the initial state is Maxwellian.

Thus, the § 2 0 investigation of the initial interaction consists of two distinct
cases: (i) the phase boundary moves with positive velocity § >0, al;d the T/E, interface is
a fan, and (ii) the phase boundary moves with positive velocity § > 0, and the T/E, inter-
face is a shock. For either case, the characteristic directions and Riemann invariants in
phase-1 are given by equations (3.51) and (3.52), while in phase-2 they are given by (3.62)
and (3.65). In what is to follow we investigate the case of a fan, with emphasis on how the

thermal effects contribute to differences between the purely mechanical theory and the
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separable and fully thermal theories. The case where the interface is a shock is discussed

briefly in Appendix B.

The solution procedure we consider consists of utilizing the jump conditions

across the phase boundary along with the Riemann invariants to produce a set of algebraic

equations. The field during the initial interaction may be subdivided into five distinct

regions centered at (x,t) = (s, S,/C,). Locally each is wedge shaped. Each region is

characterized by a triplet of field values (Y, v, 8) . These five regions are given as follows:

S°-

The incoming wave in which (,v,8); = (y, + Ay, —c,Ay, 8) . This

region occupies the wedge

—00 <

t-s,/c, <€

The region to the left of the initial position of the phase boundary in which
the initial pulse and the wave that has reflected back from the phase
boundary are interacting. The triplet values (Y, v, 0) g are as yet not
known. This region occupies the wedge

<0.

¢, <
The region to the right of the initial position of the phase boundary in
which the incoming pulse and the reflected wave are interacting. This
region represents the material that changes from phase-2 to phase-1. The

triplet of values (Y, v, 8) (o are as yet not known. The region occupies the
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wedge

Y <S.

T- The region in which some part of the initial pulse has transmitted through
the phase boundary. The triplet of values (Y, v, 8) . are also as yet

unknown. This region occupies the wedge

$<

<y 6.1)

where the significance of C,. is explained below.

Ey  The initial phase-2 equilibrium state in which (¥, v,8) = (¥,,0,8).

This region occupies the wedge

<oo,

Cp <

The two velocities ¢, and cliz that participate in bounding regions T and E, are defined as

follows. Since we consider the T/E, interface to be a centered simple wave fan

C30.20 coa2d
ep= [+ 22T o = e 2T (6.2)
C ; C
Y2 72
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The existence of a fan region requires that ¢, < Cg, which is equivalent to 6. < . 1Itisto

be noted that (6.1) and (6.2) give

2
C,0,0p

C (6.3)

$<c, 1+
Y2

By use of the Riemann invariants and the Rankine-Hugoniot jump conditions these five
regions can be mathematically related to one another, and it is this algebraic dependence
that we incorporate. Figure 6.1 is a graphical aid in the assembly of these equations. This
figure represents the initial interaction in the xt-plane, shown are regions R, S, S® and T,
the initial wave pulse in the phase-1 region, and the fan in phase-2. This figure also shows
the various characteristics and Riemann invariants which link the different regions of the
same phase separated by these characteristics, as well as the jump conditions across the
phase boundary.

From assumption (A.7) it is required that regions R, S, and S° are all in phase-1,
while T is in phase-2; mathematically these conditions may be expressed as restrictions on

the value of various strains

Ys <7 yso <Y Y1 <Yt (6.4)

Region R, which contains the final reflected wave, occurs later in time than either S, S, or
T, and thus its treatment decouples from these three regions. Thus, the analysis for the

initial interaction need only consider the three regions: S, S°, and T.
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Using the method of characteristics one may show that the fields in the regions S,

S°, and T are connected to each other by the following mathematical conditions: across the
contact discontinuity between the incoming pulse and S the field variables must satisfy the
Riemann invariant conditions (3.51) and (3.52),, across the contact discontinuity between
regions S and S° the Riemann invariant conditions (3.52), ,, across the moving phase
boundary between S° and T the 3 jump conditions (2.7); , 3, and across the contact discon-
tinuity between T and the initial phase-2 equilibrium state the Riemann invariant condi-
tions (3.62) and (3.65);.

The procedure outlined generates a system of nine equations for the nine field
quantities: Yg, Vg, Og, Ygeo» Vgo» Oge, Y» Vo O and the phase boundary speed s. Guided

by Figure 6.1 and the above outline, the nine equations generated by this process are as

listed.
The incoming pulse and region S:
—c, (Y, +24Y) = vg-c,¥,, (6.5)
6) - 65) -
pCylin[ = [+k; = pC, In| 5 | +k;. (6.6)
0 0
Region S and S:
Vgo—C{Y¥ge = Vg—C¥g>» 6.7)

Vgo+C;Ygo = Vg+C,Vg- (6.8)
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Region T and the phase-2 equilibrium state:

- ;) -
PCyzl“(g) + pcgmﬁ2 +k; = pC_ﬂln[ -e-'-f ] + pcioczy.r +ky, (6.9)
5 ®(6) -®(0) ]
-JC.. |20 (8) +®(0)1 = = 6.10
J ,2[ (8) + )"(¢(e)+d>(0)) (6.10)

®(67) - @ (0)
vT-Jc_Yz[m(eT) +®(0) 1n(°(eT) T50) )]

where
2
®©(0) = [8+15.
€20y
Region S, and T:
S (Yp="Yge) = Vp—Vge, (6.11)
; 2 * 2 * 2
—Sp (Vp—Vge) = PCy(Yp—7Y ) —PCy0,(0: -0 ) - pcC|¥geo, (6.12)

1 2 . *1)2 1 22 ~
[ipcz('y.r—(y - 0,0 )) +pC729T+52] - [-z-pc,ys.+anOs.+bl] =

(6.13)
1 . .
2 [PCsto + Pci(‘YT -Y)- chaz(e'r -6 )] (Y1 - Yse) -

The equations, (6.5) through (6.13), are a system of nine equations for the ten quantities
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Ys» Vg Og Ygo Vgor Oge, Yo Vo O §. As it is not clear as to whether a solution for this

problem exists, we propose treating § as a parameter and investigating the family of solu-

tions resulting from the system of equations and field quantities.

6.2 The Master Equation for the Initial Interaction

By treating the phase boundary speed § as a parameter the problem presented by
(6.5)-(6.13) reduces to a system of nine equations and nine unknowns. Although a simple
algebraic elimination of the various field quantities is not immediate, it can be shown that
a laborious elimination process leads to a single master equation for the temperature 6.
which is independent of the other eight unknown field quantities. The other unknown field
quantities can then be written in terms of the temperature 6. and the phase boundary
speed §. Therefore, if a solution to this master equation can be found then we have deter-
mined one family of solutions to the system of equations. The reader is directed to Appen-
dix A for a discussion of the actual reduction technique.

The master equation for 6y is the nonlinear algebraic equation

2
C.,(sc,-c,) (O
[C.; (c;—$)® (8y) L2 21n[—f)+c§azeT=
C,0, 0

e (6.14)

A sc,-¢C 6 R

JCys (e —$) 8 (8)-L2—1 2 1:{9;] +Co0,B8+(sc, — €247 +5¢, (Y, -7,) »
C,0, 0
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where

9(8) = 20(8) +®(0)ln[$ég; ;ggg;],
- (6.15)
®(0) = e+—2732.
€0y

A closed form solution for this equation is not obvious.

Equation (6.14) may be viewed as an algebraic equation for the temperature ...
Values 0. satisfying this equation will be a function of the incremental forcing strain Ay
and the phase boundary speed §. Thus a complete knowledge of the initial and boundary
conditions does not provide sufficient information for the determination of a unique tem-
perature 0.

Once a value 6, satisfying (6.14) is obtained, it can be shown that the other eight
field quantities (Y, Vg, O, Ygo» Vger Oge» Y» V) Will satisfy the nine governing equations

(6.5)-(6.13) if and only if they are given by the following expressions:

C R

Yr = Y+ 7’-2-ln(93), (6.16)
Cy 0y T

vp = JC,[8(8p) -8(8)], (6.17)

- R C 6

Tso = (¢, +9) ‘[Jc_yz(ﬁ(eT)-ﬂ(enw, (1, +24Y) +s(vz+—2-’iln(§))],
c2a2 T

(6.18)
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C 0
Vgo = s+c [«/—_2(13(91) 6(6))+s(yz+-zia—21 (9—)) S(yl+2A7)] (6.19)

8o = T, () +T,(87) + [T;(8p) +T,(0)1T,(6), (6.20)
Vg = Vgo, (6.21)
Ys = Vse» (6.22)
8 = 0. (6.23)

The expression (6.20) for 8. makes use of the auxiliary functions:

2
pc C . . )2
71 c,x, T

T,(8,) = JC2[8(8p) —8(8)] +c, (v, +24Y)

e S2u(2) ).

€&y

2c7,( ) (

2
c C :
T3(0p) = ——— © ad [J y2[0(61) - 9(8)] +c, (v, +247) +s[72 = n(Oﬂ)ﬂ'
C + ca0, O

c X .
T, (64) =pc, [72 + —Lln(ei) (‘Y -0,0 )] —pc2a2 T
C %,
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1 5 .
T (67) = TICTy (@[ﬁ(eT) ~9(8)] +c, (s+24Y)

C ]
Y¥2
-, |y +——ln(—) .
l|: 2 2 eT :| ]

Cxy

From the master equation (6.13) it is seen that Ay is a variable which acts as a forcing
parameter. For each Ay, the freedom to vary § is anticipated to generate a family of solu-
tions, satisfying all the mathematical balance laws, for each initial-boundary value prob-
lem characterized by the forcing parameter Ay .

For future discussion of the master equation it is convenient to rewrite (6.14) in the

form

W(By $, €1, €50 Crp 8, 0,) —¥(8,5,¢1,0,,Cp, 8, 1y) (6.24)

12
-® (AY9 S, YI-YZv cl) =0.

This uses the functions

N . C
¥(9,s,c¢,,c,, C.ﬂ, 6,0,)= /C,{2 (c,-$)0(0) ——273(3c1 - ci)ln(%) + cgaza ,
c,0, 0
® (A‘Y, s! 71 - er Cl) = (SCI - C:)ZA‘Y + SCI(YI - Yz) . (625)

Since ® (0, 0,7, —7v,,¢,) = 0 it follows that 8. = 8 provides a solution to (6.24)

whenever Ay = 0 and § = 0. This is simply the persistence of the initial state in the
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absence of a disturbance Ay. However, neither Ay = 0 with §#0,nor § = 0 with

Ay#0, gives ® = 0. Thus while 6, = 6 is a solution of (6.14) when both Ay = 0 and
$ = 0, in general 6 # 8 if either Ay# 0 or §# 0. Solutions 8. to (6.14) with Ay = 0
and s # 0 correspond to spontaneous motion of the phase boundary in the absence of an
initial disturbance. Solutions 6 to (6.14) with Ay#0 and § = 0 generate dynamical
motions with an immobile phase boundary.

Once any solution to the master equation is determined, the strains Yg,Ygo,Y must
comply with all restrictions on the transformation of new phases as given in (6.4), which
in turn will place restrictions on the range of the initial strain increment Ay . An explicit
solution of (6.14) is not as yet known. However, later in this research we construct a solu-
tion for (6.14) under the constraint of o, « 1, for which more quantitative information on
the admissibility of Ay is presented.

It is interesting to note that (6.24) is satisfied when 6, = 6 and © = 0, which
corresponds to phase boundary motion in the absence of a transmitted wave. This is seen
by letting 6., = 0 in equations (6.16) and (6.17). For this case the speed of propagation of

the phase boundary is determined from the satisfaction of ® = 0

C,2AY

S = . 6.26
ZA'Y + (71 - Yz) ( )
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6.3 Construction of the Centered Simple Wave Fan

Recall that the T/E, interface here is a centered simple wave fan, and within this
region it is required that the three field quantities v, v, and 0 exist in self-similar form. In
order to construct the self-similar solution it is required that the slope % of the Riemann

invariant (3.65) change smoothly from one edge of the fan to the other. Mathematically

dx
dt
The fan is the wedge shaped region depicted in Figure 6.2, this region being contiguous

this condition can be expressed as A = —, where A may vary throughout the fan region.
with the region T and the phase-2 equilibrium configuration. In Figure 6.2 it is shown that
at the time t* the two outer edges of the fan are located at x = x,, for which the fan’s

dx ,and at x = x, for the reciprocal slope A, = dx ; the order-

dt dt
ing of these quantities being x, <x, and A, <A, . One may express the three field quan-

reciprocal slope is A, =
tities as a function of the coordinate A, this yieldsy = y(A),v = V(A) and
8 = 0(A).

Any self similar solution must satisfy the appropriate boundary conditions at the

edges of the fan envelope, these conditions are

Y(AD =¥p V(A) =vy 8(A) =86, (6.27)

Y(A) =¥, ¥(A) =0, 8(A,) =8. (6.28)

To determine the temperature ) (A) the unknown temperature function ) (A) is substi-

tuted into the positive characteristic direction associated with the Riemann invariant (3.65)



, (6.29)
dt 2 C,,
solving (6.29) for O (A) yields
- C 2 2 2
8(A) = 15| A ——cz). (6.30)
c,0.,

The two coordinates A, and A, can be expressed in terms of the temperatures 6, and )
via (6.27); and (6.28)3. From Figure 6.2 itis seen at x = xf , forwhich A = A, that the

temperature is 6 = 6,. Thus A, must satisfy

caa( C
A = 22 2(—72 +9 ) (6.31)
C, |2 2%

At the other edge of the fan x = x'z, A = A,, and the temperature 6 = 8, thus

ca02( C
A= | &2 2—722+é]. (6.32)
12 C 0,

This knowledge of the two slope coordinates A, and A, now allows for the determina-
tion of the other two unknown functions 4y (A) and v (A) .

To determine the strain ¥y = ¥ (A) the Riemann invariant condition (3.62) is uti-
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lized, where within the fan envelope it requires

Cyzln( %) +Co0y, = CYzln( 6 ;‘_\) ] +C20,7 (A) . (6.33)
2 2

Inserting the expression (6.30) into (6.33) allows for the strain y (A) to be expressed

C cab
Y(A) = 7,+ 57 ln( e ) (6.34)
€20y

2
Cyz(A -C,)
The boundary conditions (6.27); and (6.28), require that y (A,) = Yy and Y (A) =7,.
Inserting (6.31)-(6.32) into (6.34) one can demonstrate that both these conditions are satis-
fied.

Finally the velocity field v = v (A) can be determined through the use of the Rie-

mann invariant condition (3.65),

®(B(A) - (0)
®(8(A)) +®(0)

-v(A)-@[m(é(A)) +<b(0)ln( )] = constant. (6.35)

Utilizing the initial conditions allows this condition to be written

S-G9 G + 0 O ZEAN -8,

(6.36)

_Jc_Y;[z¢(é) +¢(0)ln($§g; ;‘;Eg; )]
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From (6.36) the velocity v = v (A) is

d>(é)-d>(0))

V(M) = 2,[C,(®(®) -®(B(A) +JCT:°‘°"“(¢<6) +®(0)

~ 6.37
_ ® (B (M) -9 (0) (637
[C.,® (0)1In = ,
Y ®(6(A)) +®(0)
where
- _ C C
®B(A) = B(A) +=25 = A%
c,0, c,0,
Inserting the expression ® (6 (A)) into the equation the velocity is
2C C A,—C A—
V(A) = 52 (A-A) + *’(m( 2 2]-1:1( ZJJ (6.38)
cia, c,0, A2 +c, A+ c,

The boundary conditions (6.27), and (6.28) require that v (A;) = vy and V(A,) = 0
inserting into (6.28) both these conditions are shown to be satisfied.
Thus, in summary, within the centered simple wave fan the strain, the velocity and

temperature field are given by (6.34), (6.38), and (6.30) for all A obeying E <A< Cg, -
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Phase 1. Phase 2.

T
/
fan
I\ E; E
t
munsnee. - Riemann invariant
x=s(t)

X roverrRv—— Jllmp Condit.ion

Figure 6.1 This is a graphical representation in the (xt)-plane of the initial interaction of a
wave pulse with a stationary phase boundary in the fully thermodynamical theory.
Regions E; and E, are the initial equilibrium states separated by the phase boundary at
x=8(t). The incoming wave (IW) strikes the phase boundary setting it into motion, where
$ > 0 is assumed. The IW-phase boundary interaction gives rise to the regions S, S° and R
in phase-1, and T and the simple centered wave (fan) in phase-2. The region R represents
a reflected wave, while S arises from the interaction of the IW and the reflected wave. S°
is that material which has undergone a phase transformation from phase-1 to phase-2. The
IW striking the phase boundary also produces a transmitted wave in phase-2, this is desig-
nated by the letter T. Finally the transition from the E, state to the T state is a simple cen-
tered wave, which requires &, < Cg . The other possibility, that of a shock transition from
the E, to the T-state, is not consxdered here but is discussed briefly in Appendix B. Com-
paring this diagram to figure 5.1 shows the additional complexity inherent in the fully
thermodynamical theory.
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Figure 6.2 This is a representation of the fan transition in phase-2. The point (x;,t*) is
located on the contiguous line between T and the fan, where dx _ A, = C1. The point
(x4,t*) is on the line between the fan and the E, state, where X = A, = cEz' Correct
ordering of the speeds in the fan requires that Cg,> Cy» Which becomes an admissibility

condition on the fan solution investigated in Section 7.3.



7. Construction of a Solution for Small Coefficient of Thermal Expan-
sion

In this the chapter we examine the significance of the coefficient of thermal expan-
sion for the initial interaction. Recall that the coefficient of thermal expansion, a.,, is a
material constant responsible for the free energy being of the nonseparable form, and
when o, vanishes the mechanical field variables y, v decouple from the thermal field
variable 0 in the governing equations. In Chapter 4 the role of this material constant was
analyzed for the initial equilibrium configurations, using the two part o, decomposition
(3.92)-(3.94). This two part decomposition will continue to be utilized in what is to follow.

The purely mechanical problem was introduced in Chapter 5, and explicit results
(5.3)-(5.6) were constructed for the initial interaction of a wave pulse with a phase bound-
ary. In the fully thermomechanical problem posed in Chapter 6, fully explicit solutions are
not obtained by virtue of the complexities of analyzing the master equation (6.14). For this
problem we now wish to investigate the effects for small non- zero values of o, , in order
to garner insight into the first order temperature effects.

Recall that the two-phase model developed was for adiabatic motions, the possibil-
ity for heat transfer being excluded. Within this framework a finite value for the coefficient
of thermal expansion results in the thermal and mechanical field quantities being coupled,
and when this coefficient vanishes this coupling no longer exists. Ngan and Truskinovsky
(1994) investigate problems for phase transforming solids in which the role of heat con-
duction (the Fourier model) is also accounted for. It is interesting to note in their develop-
ment that the thermal conductivity is a coupling parameter similar to our «., . Whereas

here o, was the parameter enabling one to examine the link between adiabatic and purely
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mechanical motion, in their paper the thermal conductivity provides a heat conduction-

adiabatic link.

Beginning with the equations which mathematically describe the initial interac-
tion, (6.14)-(6.23), the leading order temperature effects are to be extracted via the
assumption ., « 1. Furthermore, it must be determined what factors, if any, ensure the
retrieval of the previous results (5.3)-(5.6) when a., = 0. Accordingly, various perturba-
tion and asymptotic procedures will be used to determine the leading order temperature
effects’.

Recall that once a solution for 8, is found satisfying equation the master equation
(6.14), then the other field quantities relating to the initial interaction may be determined
explicitly from (6.16)-(6.23). Since it is not evident that a solution exists for the master
equation, we propose to investigate solutions to (6.14) under the additional assumption
that o, is small. In particular since @, = 0 yields the separable theory for which

8, = O, our interest is in solutions for which 6r— 8§ asa,—0.

7.1 Perturbation Analysis of the Master Equation

The master equation (6.14) may be expressed in a more useful form, one in which
all terms which have a temperature dependance are written on the left side of the equality

sign

1. It should be pointed out since o, has units of reciprocal temperature, that these procedures for-
mally require nondimensionalization of &, via multiplication by some characteristic temperature in
the problem. It is in this sense that we operate, and which statements like o,->0 need to be under-
stood.



129

2
[C.z (¢, - $) (8 (8y) -0 (8))——L2—1 2 ln(g) + ciaz(eT-e)=

C, 0y

(7.1)
(S¢, —C2AY +5¢, (Y, - 7¥,) -

The difficulty in finding a solution for this equation lies primarily in the non-linearity con-

tained within the function ¥ (0) , which from (6.15),is

9(8) = 28 (6) +<b(0)1n[°‘°) ‘°(°)].

P (0) +P(0)

The function 9 (8) contains ® (0) in a linear and logarithmic manner, therefore the o,

analysis will begin with ® (0) . Expanding the function ¢ (6) about a, = 0 produces

1

2 2)\3 2 2 24 4
/C 8c,o, |2 ./C 6c,a, 6°coo
®(0) = 72(1+ 2 2) =L P42 2 _22,0(0p)|.  (12)

The logarithmic term of ¥ (8) contains ¢ (6) both in the denominator and in the numer-
ator. Use of (7.2) permits the expansion of the numerator and denominator about o, = 0

which leads to

2.2 24 4
/C.{2 9c2a2_6 C,0,

c,a,| 2C,, 8C.1;2

@ (8) -® (0) = +0(ay) |, (1.3)
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2 /C ec2a2 02c4a4

D(O) +D(0) = 2214+ -22__22,00)], (1.4)
c, 0 4C 2 2

22 1 16C,,

upon which division of (7.3) by (7.4) produces

24 4 2 2 2.4 4
YOEXIONE 2C,, 3C32 2|17, e,

-1
+ O(az)} .(1.5)

Expanding the denominator of (7.5) and collecting terms of similar order in o, yields

®(0) -d(0) _ 6c 0.2 92c4a4 Ocz(z2 0c2a2
- 22 2 2 o X%, %
() +®(0)  4C, g < +0(0xy) ic,, [l + O(az)] (7.6)

Utilizing this result allows for the logarithmic part of the function 9 (0) to be expressed

l(<:>(e)-<:>(0) _ 0cy0; [ Bcoo; 4 )
n ¢>(e)+¢(0))"" ic,, || "z, *O®

e2 2 2 2
= mn| 2% 1l 1- i’ —22,00h |.
~l4c,, 2C, 2

The second logarithmic expression in (7.7) may be expanded about o, = 0 using a Taylor

7.7

series to the fourth order
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2 2

2 .2
In| 1- 2%, ool | = - 22%2 4 o(a 7.8

Consolidating results (7.2), (7.7) and (7.8) permits the function 9 (6) to be written to the

order O(a;):

2,/C C oco 6c,a
9(6) = X124 J’m( 2 2) 2+O(a;). (7.9)

Equation (7.9) is the final form for 13 (8) expansions, and will be used in what is to fol-
low.

Note that ¥ (8) appears tw1¢e in equation (7.1), i.e. in the difference
¥ (0p) -0 (é) . From the expansion (7.9), this difference in 9 (0) results in the a;l sin-

gularity canceling out

C
8(68,) -8(8) = &m(e ) f2%

©2% 2/Cp2

(e e) +0(03). (7.10)

Use of (7.10) in (7.1) gives

c,(c,-§ +c -$c, c, -8 A
72( 2(C—8) +c, )ln( T)+a2 it S| (0;-6) = m+0(a;), (7.11)
i“z o 2

where o = (sc, - cf)ZA'y +8¢, (Y, —7,) , as defined previously in (6.27), depends upon
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the initial conditions, the material properties, and the phase boundary speed.To further

simplify (7.11) let

E = E(s,¢5,Cp) = (Cy(c;—8) +Ca—5C)) = (¢ +Cy) (,—6), (7.12)

which allows (7.11) to be expressed more simply

C ) c,-S A

—zYz—gln(TT)+a2(—‘—+ 1)(6T—e) = ©+0(03). (7.13)
c,o, -0 2¢,

272

Since a solution for 6. to (7.13) is not obvious, we propose the following representation

for By

0, = 0[1+ 0,0 4
T = ¢] exp C.E) (7.14)
Y2

2
" c,0.,® n
Thus @ by definition is ¢ = (OT/O)exp(— é 2’ )- 1. Hence if o, >0 and 6, — 8,
Y
then ¢ — 0. Thus @ is expected to be a small quantity whose small a., representation
remains to be determined. If both o, and @ vanish, then (7.14) demonstrates that the tem-

perature 8. — 8, the equilibrium temperature.
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Inserting the proposed representation (7.14) into master equation (7.13) yields

&C,, L 2 [c, -8 pCatL,®
S ZIn(1+0) +9pc2a2[—+1] exp| —=—=— | |[op=
c,0, 2c, C)28

¢ 2 (7.15)
Opc,o,| — +1|| 1-exp| ——— | |+ O(a)).

Pe 2[ 2c, ] P Cy28 2
Equation (7.15) is now regarded as an equation for the quantity @ . The leading order a.,
effect is determined by expanding (7.15) for small o, , and since @ is expected to be

small, the logarithm term is written using the expansion In (1 + @) =@ + O((pz) . From

these operations one can determine @ from (7.15)

S5a
-wc,0 (¢, +2¢, —-8)
0= —2—1 2 —aj+o(a3). (7.16)

Here, as is standard, o(z) denotes a quantity, that after division by z, vanishesas z — 0.
From (7.16) it is observed that the quantity @ is of the third order in a,, thus, for o, « 1,

the logarithmic expansion for small @ is valid.



134
7.2 Small o, Decomposition of the Field Quantities

Inserting result (7.16) into (7.14) indicates that the temperature 6. admits the

expansion

2 S5a
c,0,M wc.0(c, +2c,-§
22 )[1 29 (¢, : )a;+wxa;). 1.17)

From (7.17) it is observed that 6, is dependent on the initial conditions by virtue of the
quantity ®. The temperature 6., may be thought of as a function of the forcing strain Ay
and the phase boundary speed s. From (7.17) we also see that the isothermal result,

0r = 8, is retrievable in the small 0., limit; that is if o, — 0 then the temperature

0 - 8. Invoking the decomposition (3.92)-(3.94) for the temperature 6., and expanding
2
c,0,
gcyz
two part decomposition

the expression exp( about o, = 0, the temperature 6, can be expressed in the

6, = 83467, (7.18)

where the two terms are found to be

o A
02 = 8,
24 (7.19)
wc,0
0 = —2- a2+0(a§).
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Equation (7.18) represents a solution for the master equation (6.14) in the small o, limit.

Recall that if a solution for 8. has been determined then the remaining strains and veloci-
ties in the interaction region may be computed using (6.17)-(6.24). We now proceed with
this process and determine the other eight field quantities.

Beginning with the equation for the strain Y, in the small o, limit Yy, can now be
determined via (7.17). Inserting result (7.17) into equation (6.14), and once again invoking

expansions for small a.,, the strain y.. written in the two part decomposition is

Yo = Yo+ Yo (7.20)

where the two components

(c2 - 8¢,)2A7 - 8¢, (Y, - 1)

o _ —9 =
Yr =Y, 3 Y, + (C, +¢,) (c,—9) , (7.21)
3a
wc,0 (c, +2¢c,-5§
= — €1 2% )a§+0(a§). (7.22)

2
28°Cy2

In (7.20)-(7.22) the strain Y has been decomposed into two distinct terms, (7.21) is that
part of the strain .. that is entirely independent of a.,, while (7.22) is the part that is
dependent on o, . The strain component y:. , representing the separable energy contribu-
tion to 7., is exactly the solution ¥1°" (5.3) for the purely mechanical case outlined in
Chapter 5. Thus, the separable energy contribution 'y:. is equivalent to the purely mechan-

ical contribution of the strain field y... The expression 'y;’ represents the leading order
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temperature effect in the y. field, this thermal effect originates from the inclusion of the

material constant o, . It is observed from (7.22) that y.(;’ is quadratic in o, and thus
y;’ — 0 as &, = 0. Thus, the purely mechanical field quantity is retrieved in the limit as
the constant o, vanishes, i.e. 0, = 0= Yy 73 = Yoo

Proceeding with similar calculations for the other field variables using the temper-
ature GT (7.19) in equations (6.18)-(6.24), along with the use of expansions for small o,,
one can write the other field quantities in the two part decomposition, as outlined in
(3.92)-(3.94). These expressions for the field variables are given in the equations listed

below, where all results are written in the form (8.18).

The velocity in the transmitted region, v.:

Vo = v;+v;’, (7.23)
where

(8—c))2AY+8 (Y, -7,)

[ - 1 1 2
v clcz[ (cl +c2) (cz-s') ], (7.24)

wcd(ct+c.$)
a

vy = —2—2" 162 4 0(a)). (7.25)

28°Cy,

The strain in region S°, yg.:

o o,
YS° = 750 + 'Yso ’ (726)
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where

2c,c,AY+8[2c,AY-¢c, (Y, - 7,) ]

0o
o = ’ 2
Tse =N 7 (c;+¢,y) (c; +5) (7.27)
3a
o -mc,0
Y = —52—0i; + O(03). (7.28)
)
The velocity in region S°, vg.:
Ve = Voo +Vgr, (7.29)
where
2
o o [-2¢]AY +$ (- 2¢,A7 - ¢, (¥, - 7,)) ¢, 130)
§° (c,+¢,) (¢, +5) ’ :
—wc,c0
o
Ve = ——a; +0(a3). (7.31)
28°C,,

Note that all of the above results (7.20)-(7.31) have a similar form, each quantity is
decomposed into two decoupled terms, the first being entirely independent of the coupling
constant ., , representing the separable energy contribution, while the second term is that
part of the field quantity that is the leading order o, effect. In all these expressions the
separable energy terms are exactly the same as those found in the purely mechanical prob-

mech

lem as outlined in Chapter 5, i.e.(5.3) -(5.6). Therefore, we see that vf;. =vr
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h ) .
Y(s)o = 'ylsn.e ", and v;o = vg'f ", and thus the separable theory predicts the same values

for the field quantities 'y and v as does the purely mechanical theory. The second part of
the decomposition, that which depends on o, , represents the thermal effect on that field
quantity, which may be further decomposed into the leading order temperature effect plus
higher order terms. For the mechanical field variables, the strain and velocity terms, the
leading order thermal effect is of the second order in a.,, while for the temperature 6. the
leading order thermal effect is linear in o., .

We now examine the temperature for the material which has undergone a phase
transformation, 6., and note that since this is not a mechanical field quantity, we have no
previous information from the purely mechanical problem. Therefore, in its two part
decomposition, the separable energy term has no mechanical analogue. From (6.24) the

temperature 8¢, can be written

0o =T, +T,+ (T;+T,) Ty (7.32)

where we now rewrite the expressions for the T;’s in equation (7.32) by representing each
field variable by its two part decomposition
2
1]

o * 2 o * * a, a, 2
T, = C_l(i(('h‘—y +a20 ) +2(Yr-Y +0.29 Wy +(¥p) )
Y

b,-6
b))

+C,, (83 +6.) +

2
—< 0,2 o, 0, 0, 2
T2 = fy_l-[(‘YS) +2YsYs +(Ys ) :l,
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o
T,y = pci(Ys+¥s).
* * a a
T, = pcg [(yoT— Y +0,0 )+yp - ocz(ef; + GTz)] ,

T = 2pC (13- 1 + (17 - 75D

The explicit expression for the two part decomposition of 6. is very large, and a more

explict display of its form will not be displayed. Rather it is illuminating to consider the

special case when the initial equilibrium configuration is mechanically neutral (viz.

(4.19)). In this case, the two part decomposition for the temperature 6.,

o [+
85 = B0 + O,

gives

nl_

2¢*

@, 2"‘2e
050 = (—czg +C (ys Y,) )+0(a2) (MN).
28 C

2 2
(—(cz—s )y5 - n)—z‘,(cf-s’)(v‘s’—vl)) (MN),

(7.33)

(7.34)

(7.35)

Note from (7.34) that, in general, Gg. #6 indicating that changes in temperature can occur

in the transformed material even in the o, — O limit. This issue of temperature changes
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for the purely separable energy problem will be addressed in more detail below.

Continuing with the mechanically neutral assumption a series of tedious algebraic

manipulations on 9;., , using the analogue of result (5.14), allows (7.34) to be written

cE(AY,$)

B = B+
§° C,; (¢, +¢;) () +8) (c,-)

(MN), (7.36)

where the function X (AYy,$) was defined earlier in the document as equation (5.15)

I (AY.S) = § [2A7((c;—Cp) AY—Cy (Y,-¥))] +
~s[2(c,-c,) Ay = 2¢, (c;—¢,) (¥, —¥,) AY +co (Y, =7, "]

—[2c,c,AY((c; =) AY—c, (Y, -75))] -

. Note that, as required, the temperature Gg is independent of the energy coupling constant
., . Comparing a separable material with the purely mechanical material result (7.36) pre-
sents one of the fundamental differences between the two cases, the separable material
accounts for changes in temperature arising from a phase transformation. The function
2 (AY,s) was introduced in Chapter 5 and analyzed by Pence (1991b), thus one may
gamer information on the transformed material’s temperature changes via (7.36) in con-
junction with the  (AY,S) analysis.

The representation for 9;. in (7.34) is somewhat paradoxical in that it contains the
function X (AY,S) which arose previously in (5.14) for the purely mechanical theory.

Furthermore, under the assumption that the initial conditions are Maxwellian, result (5.16)
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provided a relationship between the function X (AY,S) and the purely mechanical dissi-

pation function. Thus from (5.16) and (7.13) one may conclude that if the initial condi-
tions are both mechanically neutral and Maxwellian then one may utilize the dissipation

function from the purely mechanical theory to express the temperature Ogo as

1
pC

6;., =0+

D (AY.S) (0B), (1.37)
S
vl
where we have used notation to remind us that simultaneous satisfaction of MN and MX

equilibrium conditions are associated with the extremely special OB states. Alternatively

this result can be rewritten as

D (AY.$) = pC,8(6,,-6)  (OB). (1.38)

Since the dissipation function D (AY,$) is independent of a.,, result (7.38) demonstrates
one of the novel abilities of the free energy model used in this document, namely in the
case of a separable material, @, = 0, (7.38) accounts for the expected changes in temper-
ature for motions which are dissipative.

Previously it has been shown that if the material is separable then the mechanical
motions decouple from thermal effects, yielding a purely mechanical problem and the
associated thermal problem. Result (7.38) demonstrates one way in which the mechanical
fields influence the thermal fields for a separable material, for once the mechanical field

variables for the problem have been determined, and thus the dissipation function
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D (Av,8) is known, one may then proceed to calculate the thermal field variables. Fur-

thermore if, as in a purely mechanical setting, one assumes a positive dissipation criteria,
then (7.38) shows that the temperature of the material undergoing a phase transformation
may only increase.

Thus, for o, = 0 we do have a theory which is purely mechanical, in the sense
that information about the temperature fields are not needed to determine the mechanical
fields. Under such a separable energy criteria one may, at first glance, improperly interpret
the problem as being isothermal, which from the result (7.38), is clearly not always the
case. As seen from (7.38) isothermal motions occur only for nondissipative motions, i.e.
those motions for which D (Ay,s) = 0, and thus are a subset of the solution set for the

separable energy theory.

7.3 Existence of Fan

With the solution in hand we now wish to determine any necessary criteria for the
existence of a fan transition in phase-2. Recall from (6.31) and (6.32) that a necessary and
sufficient condition for the construction of this fan so.lution is that 6, < 6. It follows from
(7.18) and (7.19) that 8, = 67+ 0;’ where 87 = 8 so that the associated existence
condition reduces to 9;’ <0.

In the absence of a simple explicit form for 0;’ , We restrict attention to the small
0., limit. In this limit, which makes contact with the separable energy theory correspond-
ing to purely mechanical determination of strain and velocity, it follows from (6.3) that the

phase boundary speed s must obey § <c,. In the small o, limit, the leading order a.,
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effect for 6;’ is given in (7.19),, so that the requirement that Ozz <0 for small a, is

A0, < 0. (7.39)

Since 6> 0, C72 >0 and o, tends to zero through positive values, one may draw that
(7.39) is equivalent to the requirement that %) <0, where we recall that » and § are given
by (7.23) and (7.12). The latter, § = & (8, c,,¢c,) = (¢, +¢,) (c,—§) ,shows that £ 20
since $ <c, in the o, — 0 limit for fan existence. Therefore from (7.39) the criterion for
the existence of a fan is

w<O0 or

($c, - CH2AY + 8¢, (¥, -7,) <O0. (7.40)

This condition may be interpreted in various ways, in particular it may be used to obtain a

restriction on §, namely

-2Ayc,
$<
(Y,-7,) —-2AY
-2A
$> LA
(72 - 71) - ZAY

if y,-7v,-2Ay<0,
(7.41)

if y,-v,-2A7>0.

Now v, > v, and since the driving strain increment Ay would normally be much less than

Y, - Y, » the standard case in (7.41) would in general be (7.41),. Since it is already
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required that 0 < § < ¢, it follows that (7.41), may or may not further restrict the phase

boundary velocity. In particular if Ay > 0 then (7.41), provides no additional restrictions.
However if Ay <0 then (7.41), restricts the lowest phase boundary speed to a finite posi-
tive value.

Figure 7.1 is a schematic diagram in the (AY, §) -plane for the region satisfying
the fan criterion (7.41), this figure only considers positive values of §. This region lies
above the curve ® = 0, where the equation for the curve is given by (6.26). Also shown
in Figure 7.1 is the admissibility region for the purely mechanical problem defined by
(5.17), this region was previously displayed in Figure 5.2. In Figure 7.1 this admissability
region is below the curve £ = 0 and above the line § = 0, and from Figure 7.1 we see
that the curve @ = 0 is contained within the admissibility region. Therefore the area
between the two curves £ = 0 and ® = 0 defines the region for which the construction

of a centered simple wave fan solution is admissible for the o, = 0 limit.
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ds/dt

Figure 7.1 This is a schematic plot which shows the admissible region for a centered sim-
ple wave for the case where ¢, = c,. The region that lies between the line $ = 0 and the
curve £ = 0 is the admissible region for the purely mechanical case with Maxwellian ini-
tial conditions as previously encountered in Figure 5.2. The region above the curve

® = 0 is the region in which the centered simple wave may exist. Therefore the region of
existence for the centered simple wave is the area between the two curves. Values for the

material parameters were chosentobe ¢ = 2 andy, -y, = 5.






8. Entropy Production and Dissipation

In Chapter 7 it was shown that if the phase boundary speed is treated as a free
parameter then it parameterizes a family of solutions involving a centered simple wave
fan. It was the case that an explict solution, albeit a family of solutions, was determined
only when considering the small a, limit, which in turn provided insight into the leading
order thermal effects. Recall that the second law of thermodynamics (2.6)4 was not uti-
lized in determining the family of solutions, although it is one of the four governing field
requirements in each phase of the material. Thus, it is natural to inquire as to what restric-
tions this inequality places on the set of possible solution candidates in (AY, §) -space.

It is acknowledged that such a requirement is not directly given in the purely
mechanical theory, but is provided indirectly through the positive dissipation criteria
requirement, more specifically the dissipation function (5.9) must be nonnegative
D (AY, 8) 2 0. In this chapter we investigate any relationships that may exist between the
positive dissipation requirement for a purely mechanical material and the restrictions
imposed by the second law of thermodynamics for the fully thermal materials, with

emphasis on the separable material limit.

8.1 The Second Law of Thermodynamics.

The second law of thermodynamics in the absence of heat flux and internal energy
sources states that the rate of change in entropy for a system must be nonnegative during

all processes, globally this requires

146
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%J’ndvzo. @.1)
A"

The domain under consideration is a bar which contains a propagating surface of disconti-

nuity, the appropriate form for the above equation is written

s(t)

h

dn dn .

{adx+ !)adx—s[[n]]ZO. (8.2)
s(t

From (8.2) it is observed that the time rate of change in entropy arises from two distinct
sources, those resulting from local thermomechanical processes in the bulk material, and
that contribution from the movement of the surface of discontinuity through the domain.
Considering (8.2) in its local form one retrieves (2.6)4 and (2.7)4. Note that the jump in

entropy across a surface of discontinuity is not required to vanish, and thus this jump con-
dition must be applied across all phase boundaries, and if present, any shocks within the
domain. However, by use of the Riemann invariants (3.62), the jump in entropy vanishes
across all contact discontinuities.

Consider the initial interaction of the wave pulse with the stationary phase bound-
ary, and focus on the period of time for which the phase boundary is still in motion. To
implement equation (8.2) during this interval requires the consideration of 7 separate
regions within the bar: the parent phase equilibrium state, the region containing the incom-
ing wave, the regions labelled S, T and S°(the material having undergone a phase transfor-
mation), the phase-2 equilibrium state, and the region containing the centered simple wave

fan. Figure 6.1 depicts the initial interaction and shows the seven regions. Invoking
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restriction (8.2) to the various regions and the surfaces separating adjacent regions, one

recognizes that all the integral terms on either side of the phase boundary vanish as do the
terms involving jumps across all contact discontinuities. Therefore the only nonvanishing
contribution to (8.2) is that associated with the jump in entropy across the phase boundary,

thus (8.2) reduces to

=$[M (Y 6) —N (Y50 050)] 20, (8.3)

where the entropy function (3.19) is used to express

0.
N (Yger 0g0) = pCYlln ? +k,,

(8.4)

8 . php -
n(Yp6p) = pC.ﬂln(e—f)+pc§a2(yT—'y )+ ::r"'kl'

Inequality (8.3) implies that ng. 2 1 since § > 0, indicating as the material transforms,
from phase-2 in the T-region to phase-1 in the S°-region, that the transforming material’s
field variables must change in a manner such that the difference in entropy is nonnegative,

i.e.

N (Yge 0g0) =N (Y 6p) 20. (8.5)

Through the use of the Riemann invariant (3.62) between regions T and the material in the
phase-2 equilibrium configuration one may show that 1 (Y, 1) = n(Y,, 6,), which

written out 1in its full form is
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0 PAp -

pCYzln( _]+pc§a2(YT—y*)+ o +k; =

|5

(s o]

(8.6)

«  PA
)+pc§a2(yz—y )+ 9,T+k1.

@l

pC.ﬂln[

Equation (8.6) provides a relationship between the entropy in region T and the initial con-
figuration within the bar, while (8.5) restricts the difference in entropy between T and S°.
Therefore, instead of using the entropy N in inequality (8.5) we choose to use that from
the phase-2 equilibrium configuration, via equality (8.6), and thus write restriction (8.5) as
an equation between the regions S° and the phase-2 equilibrium state. Therefore, condi-

tion (8.5) is equivalent to

5. 5 .
cﬂln(-%] - Cyzln(g_)—ciaz(yz Y- Z—f 20. 8.7)

The inequality (8.7) is a restriction on the temperature 6., all other field quantities being
prescribed by specification of the initial conditions and material parameters. This restric-

tion (8.7) is equivalently expressed

12 l....J-2 2 .
C, » C o -
"exp{c2 2(Y2 =7 )+ XT } (8.8)

Cyl C.rle‘

Thus, given an admissible initial data set (y,, ¥,, 6), the second law of thermodynamics

states that all allowable motions must adhere to condition (8.8), where (8.8) restricts the
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possible range of values of the temperature 6. . It is interesting to note that since 6. is

the temperature of the material which has undergone a phase transformation, (8.8) is a
restriction on the transformed material’s temperature. It is also interesting to consider that
the second law of thermodynamics, a dynamic balance requirement without analogue in
the purely mechanical setting, places restrictions on a thermal field variable, a field vari-
able not having any mechanical analogue.

We now focus our attention on the special case when the different phases have

identical specific heats, C71 = C,,, then (8.8) simplifies to

Y2’

ca A
0.2 Bexp {%(72 Y+ } =0g| (C,;=Cp). (89
Y CYG

Table 5 summarizes the relation between the lower bound value of es.. and the initial tem-

perature 8 as a function of initial strain v, .
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Table S: Lower bound temperature of transformed material 6. when

- - lower bound
Value of Temperature 0.
Yz pe S lower bound
* Aﬂr "
<y - Oco <0
Yz Y 2 9‘ S Ilower bound
€0
- A‘T A
- -_— e o = e
'YZ v 2 * S Ilower bound
c,0.,0
® A
¥, >y - M S 6. >0
2 lower bound
c,0,0

As shown in Chapter 6, to explicitly calculate the temperature OS. one uses (6.20) after
determining a solution for the master equation (6.14) for the temperature 6. In order to
further quantify the restriction (8.7) we now consider the special case where the coeffi-

cient o, « 1. Inserting the decomposition 8., = 82, + 05 into (8.7) yields
2 S S S

6. X% 8) 2 .
C.{lln ?- +C.“ln l+§— —C.ﬂln = [0, (Y, - Y )—?20. (8.10)
so

All further discussion of (8.10) appears in the following sections for the case o, —= 0 and

(!2«1.
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8.2 The Entropy Restriction for Separable Materials

Recall that the limit o, — O reduces the free energy to its separable form, in

which case (8.10) reduces to

) :
cylln(-%)-cyzln(s-_)-i'-fzo. (8.11)

Once again considering the special case where the two phases have the same specific heats

then inequality (8.11) simplifies into the form

Bg. 2 Bexp {i,} =0,
CYO

lower bound (C‘YZ = C'yl) . (8.12)

The inequality (8.12) demonstrates that if the latent heat vanishes (l.r = 0) then the
transformed material’s temperature can not decrease below the initial equilibrium temper-

ature 8. For the case of a separable material, the value of the quantity - determines

Y
the magnitude of the temperature 6;, . As was the case for a., = 0 atable is

lower bound
constructed which outlines the range of values for (8.12) which the temperature
e‘;, may achieve, these values being listed in Table 6.

lower bound
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Table 6: Lower bound temperature 6. .. for separable material when
' ower bou
Cn=Cp=C
Magnitude of A/C.8" T ture 6.
agm e of Ay CYO emperature 6 owes bound
XTt < 0 ego < é
C‘Ye lower bound
AT. >0 ) >0
cCo lower bound

Y

Recall from (3.80) that if )1. > 0 then the 2 — 1 transformation is exothermic, whereas if
A1 <0 then the transformation is endothermic. If we consider C.{O‘ >0, then from Table
6 an exothermic transformation coincides with the transformed region’s lower bound tem-
perature being greater than its initial equilibrium temperature, which represents a heating
of the transformed material. Similarly an endothermic reaction corresponds to transformed
region’s lower bound temperature being less than its initial equilibrium temperature, a
cooling of the transformed material.

Consider the results found for the special case of mechanically neutral initial con-
ditions (4.19)-(4.25), this allows Ocs’. to be expressed in terms of the function X (AY, §)

by means of (7.36):

. ¢1Z (AY.9)

s = MN) .
S G O N ) N s B




154
Substituting this expression into (8.11) yields

2
6 c,Z (Ay,S C 6 A
1n(2.+ - 12 (47:9) ]- *%n(-e;)- T >0 (MN) ,
8 0 Cyi(c, +cy) (c; +5) (c,-3) y1 \0O CYIO
which in turn reduces to
2 .
c,Z (AY,$)
Cyi(cp+cy) (¢ +8) (c,-8)
* C 8 A A (8.13)
0 (exp {C_Y’ln(ﬁ,)+ T } -3,) (MN) .
n \6) C,6J) 6

The inequality (8.13), along with the condition § > 0, restricts the set of solutions in
(AY, 8) -space. Recall from Chapter 5, in a purely mechanical setting, a similar restriction
was derived, e.g. SZ (AY, §) 2 0. This was a consequence of the assumption that all
motions must have nonnegative dissipation, and like (8.13), reduced the set of solutions in

the (A, s) -space.

If we now consider the inequality (8.13) for the particular case Cy2 = C.Yl and
Ar = 0, then since $ <c, we find that
Z(Ay,8) 20 (C.{2 = CYI, Ar=0), (8.14)

which is essentially the same restriction found for the purely mechanical problem (see
(5.17)). However it is noted that one cannot directly compare the two conditions, because
result (5.17) was derived for the Maxwellian initial state while (8.14) is for the mechani-

cally neutral initial state.
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A more fundamental and less restricted result occurs for the case in which the ini-

tial state is omnibalanced. In Chapter 7 it was shown for an omnibalanced initial configu-
ration that 6;, can be written in terms of the purely mechanical dissipation function

D (Av,s) via (7.37). This reduces (8.11) to

. C ~OB A. ~OB
szcﬂe {exp{c’zln(e _ )+ T } _9 _ } (OB). (8.15)
71

Recall however that an OB-initial state must involve initial temperatures as given by

(4.32),. Substitution from (4.32), and invoking pC.ﬂs >0 in (8.15) gives

D (Ay,8) 20 (OB). (8.16)

Thus the positive dissipation criterion in the purely mechanical description has a strict
thermodynamic basis in terms of (2.7)4 in the separable material limit. In view of the com-
plexity encountered thus far in interpreting second law issues, any further consideration
into these issues would most profitably restrict attention to omnibalanced states. In partic-
ular, the first order o, -correction to (8.16) for the omnibalanced state is addressed in the

next section.
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8.3 The Entropy Restriction for Fully Thermal Materials

Our previous discussion has established that the o, — 0 admissibility region coin-
cides with the admissibility region for the purely mechanical problem provided that the
thermomechanical problem had omnibalanced conditions. It is of interest to determine
how the admissability region changes with the consideration of thermal effects. In what
follows we address this issue and concentrate on OB initial states when ¢, = c,.

To determine how the a., — 0 admissibility region changes for small but finite
o, , we evaluate (8.10) along all of the boundaries of the a, = 0 admissibility region.
Recall that these boundaries are defined by (5.17), which gives the line § = 0 and the

curve £ = 0. We here evaluate (8.10) along £ = 0. By definition (5.17) the quantity

Bge 5) A
C.ﬂln(—s,) - C,ﬂln(g_) - —'f
0 0 0

vanishes along £ = 0. Therefore to determine the thermal correction to the admissible
region we need only evaluate the remaining expression in (8.10) along £ = 0. Define the

function z as

@,
= Ose|_¢2 ’ 8.17
z=C,In l+eT -C0,(Y, - Y ), (.17
so

whereby evaluating z along £ = 0 provides the thermal correction. Locations where
z> 0 are points on the boundary where the purely mechanical admissibility criterion and

the thermal admissibility criterion are satisfied. Similarly at those points where z <0 the
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purely mechanical admissibility criterion is satisfied, but the thermal admissibility crite-

rion is not satisfied. In this manner one can show where addition of the thermal correction
(8.17) causes the admissibility region to “grow” (z>0) and “shrink” (z>0) in a point
wise fashion.

From (7.35) the temperature 6:3 can be expanded to the first order in a., , which in

turn allows for the logarithmic expression in (8.17) to be expanded

a, @,

eso eso 2
C_“ln 1+ ;o— = Cyl? +0(a,), (8.18)
So

where we evaluated (7.37) along £ = 0 to write 6;, =0. Using (7.35) and (8.18) in

(8.17) the function z can be expressed

cza c3s Y,-7Y,)
Z= —zz(c22A +—2—-2—-2—'——2s2(72—y )]+O(a§),
28 (c’-8")

where we have used (7.27) and the definitions for ® and & which are found in Chapter 7.
2
ca
Focusing on the leading order o, effect, we note the coefficient —22 is positive when
28
considering 0 < o, « 1, hence to determine the sign of z we need only consider the

expression

¢’ (1,-7))
c22A7+——2—le—
(c -s)

- 23'2(72 - y') (8.19)

evaluated along the curve £ = 0. Using (5.18) the curve £ = 0 yields the expression for



R
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the strain increment Ay

-SC -
247 = (szyll '
(c-8)
which when inserted into (8.19) yields
. . 2 .
sign[z|;_,] = sign [—23 (Y- )] . (8.20)

Using the OB phase-2 strain (4.31), in (8.20) yields

sign[z|2=0] = sign[-z—s-;'—j‘,:l . (8.21)

From (8.21) we see that the thermal correction depends entirely upon the sign of A/ 0 ,
since we have been operating under the assumption that o., is a small but finite quantity.
Since 8 > 0 it follows that (8.21) shows that it is the latent heat )‘1' which determines
how the admissible region changes in a global fashion near the boundary £ = 0. Namely
if A >0, corresponding to a 2 — 1 transformation being exothermic, then the function
z > 0 and globally the admissibility region expands beyond the curve £ = 0. Similarly if
A1 <0, an endothermic transformation, then the admissibility region contracts inward
from the boundary £ = 0.

Attention is now focused on the admissibility boundary § = 0. The previous anal-
ysis for the boundary £ = 0 is general up to (8.19), hence to determine how the boundary

$ = 0 shifts we need to determine where z> 0 and z < 0 along § = 0. Evaluating (8.19)
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along s = 0 and inserting the result into (8.18) yields

sign(z|,_,] = sign[c22Ay] . (8.22)

Recall that for our problem § >0 = Ay <0, thus (8.22) yields that z < 0 everywhere

along s = 0. Hence the admissibility region contracts inward from the boundary § = 0.



9. Solutions Obeying a Thermal Version of the Kinetic Relation

9.1 Driving Traction

The driving traction was defined in the purely mechanical setting in (5.10). In the

fully thermomechanical setting the driving traction £ (t) is defined by

F( = F(1,0) =[1el] - ((NIIYI] - (O[N] . 9.1)

Using the definition of the free energy, ¥ = €-6n, the jump in internal energy can be

expressed

[Le]] = [[wl]+(<8)) [[n]]+((m)L(6]],

where the jump in the product 1 has been expressed

([(6n]] = ((8)) [[m]1] + (M) [[6]]

Substituting from these results into (9.1) produces the driving traction in the more useful

form

£ = [Iwl]-D) [Iv]] + () [[6]]. 9.2)

The driving traction (9.2) is not what is commonly seen in the literature, the conventional

160
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definition of the driving traction (Abeyaratne and Knowles 1990b, Fried 1992) in terms of

the free energy and stress is

f@® = [[wl] - IIY]]. 9.3)

The difference between these driving tractions arises from assumptions on the temperature
fields. Form (9.3) assumes that the temperature fields are smooth, analogous to the dis-
placement field. This smoothness implies that across all interfaces the jump in temperature
vanish, including across any phase boundary. The form of the driving traction defined in
this document (9.2) was proposed to account for a temperature field with a discontinuous
nature. Note that (9.2) reduces to the form (9.3)if [[0]] = 0. It is also recognized that
for isothermal problems, and thus all purely mechanical problems, that the correct form of
the driving traction is given by (9.3). However, (9.3) is not necessarily correct for those

- problems with a separable energy, which allows for such temperature jumps.

A useful form of the driving traction may be obtained upon writing the first term

on the right hand side of (9.2) as

L d

v
[lv]] = v -y = [dy. 9:4)
v

By invoking the fundamental definitions for stress and entropy the free energy differential

dy can be expressed
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dy = a"'d7+a"’d9 = 1dy-ndo, 9.5)

and thus the jump in free energy may be written

70 90
[[wl] = [rdy- [nde. 9.6)
Y o

which allows the driving traction (9.2) to be written

- .
f = j tdy - (C) [[¥1] -| [nde—((n) [[6]] |. ©.7)
Y o

Once again for smooth temperature fields the term inside the brackets vanishes, retrieving
the more commonly used definition of the driving traction (9.3).
In Chapter 5 the driving traction (5.10) for the purely mechanical problem was

defined

O™ = A dy-(RMN L]

To understand relationship between the purely mechanical form (5.10) of the driving trac-
tion and the thermal/separable energy form (9.2), some consideration of the temperature

field within the body is required. In a purely mechanical setting the temperature is of no
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consideration, it is assumed that the problem is isothermal. Furthermore, in hyperelasticity

the stress is assumed to be derivable from a potential function, the strain energy function,
here denoted W (v) ,and thus t(y) = aa_yw (7) . Recall in working with the Helmholtz
free energy that the stressis T(y, 0) = a%\v (v, 0) . Thus if the free energy does not
depend on temperature (as in the purely mechanical case), then the Helmholtz free energy

is equivalent to the strain energy function. Working under the assumption of hyperelastic-

ity, the integral term of the driving traction (5.10) is

Y2 _ Y2 0 _
[ rmay = [ 'SWmdy = [IWI],
the driving traction (5.10) is

h A

FO™T = (W -(EMN L] 9.8)
Thus the definition of the driving traction (9.2) reduces to the proper form in the limit of
the purely mechanical case (9.8). Comparing (9.7) with definition (9.8) for the special case
of isothermal motions recovers the familiar form of the driving traction commonly pre-

scribed for those problems which are purely mechanical in nature

+

Y
£ () |eipermat motions = J T4 = (DY [[Y11 = £ (™" 9.9)
;

Returning to definition (9.1) the local balance law (2.7); permits the driving traction to be
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expressed in its simplest form

f@® =-eNIlinll, (9.10)

which is the form of the driving traction which we choose to use in the rest of this docu-

ment. Since ((0)) >0, the second law restriction (8.5) can be written

f @ 20. 9.11)

Therefore, we conclude that the second law of thermodynamics states that the driving trac-
tion acting on the interface must be positive. Writing out the driving traction for initial

interaction via (9.10) gives

f= —%(9T+Oso)(nrnso), 9.12)

or since Ny = 1N,,

f= —%(9T+980)(n2—nso). (9.13)

Since all field quantities can be decomposed into two parts via (3.92)-(3.94), the first

bracketed quantity in (9.13) may be written
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O+, =07 +0, +07,+6.. (9.14)
The jump in entropy using (8.4) and (8.5) is
le - nso =
A ° %2 ~\. (9.15)
) 2 s PA 0. + 00 2
pCYzln(?) +PpCy0, (Y, —Y )+ f-pcylm(% -pC.,In o

From this jump in entropy we foresee one of the major problems of this research topic, the
driving traction has field variables, which are themselves complex functions, in a logarith-

mic fashion. To avoid this difficulty, we limit our attention to the OB equilibrium state.

9.2 Driving Traction for Separable Materials with OB Initial Conditions

We conclude our analysis of the driving traction by considering separable materi-
als with OB initial states. Guided by the consideration of Chapter 8 it seems clear that con-
sistency with the purely mechanical theory only occurs in the case of an omnibalanced

initial state. In this case (7.19), and (7.37) give that

-1 A 1 mech .
7(ta,.wues‘,) - -(e+ % Cle (Ay,s)) (OB), (9.16)
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while (7.37), (8.4), (8.6) yield

2 o .
M- = pcyzln(§)+ ):T-pcylm((%) 9.17)
1 mech
C m(uf-n (A ,s)) (OB).
Pon $pbC,, 7

Recall for ¢, = c, that omnibalanced states involve initial temperatures 0 obeying

(4.32), in the o, > 0 limit. In this case (9.17) further simplifies to

1 mech
-Nn_ = -pC ln(1+ ——D A,s) ¢, =c,, OB). (9.18)
n, Tls Py SPOCYI (AY,8) ( 1 2

Thus for an omnibalanced initial state, the o, — O limit of the driving traction is given by

o . Dmech ( A‘Y S) ] Dmech ( A'Y S)
= pC,| 0+ —————=|In| 1 + ——=>= (¢, =c¢,,OB). (9.19)
f=e 71[ 25pCy, $pC,,9 b

Recall that the omnibalanced temperature (4.32), is

6°%° = O'exp[ M )

8 (C,,-C,)

Note if the latent heat is nonvanishing then the limit C,, — C,, gives that the tempera-

~OBO '
ture ©  — co. This limit permits the logarithmic expression in (9.19) to be expanded via

a Taylor series
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mech . mech .
ln( 1+ D—(AZ’—S)) = I)_(A'!,S) + O( 6_2) . (9.20)
spC,,0 spC,,0

Using result (9.20) simplifies (9.19)

o = SuPl 55, D77 1) | D™ (A1) o 52)]  (om)
© 2 s'pc-yl SPCylé |

collecting like powers of  gives

mech
fo _ D s(A‘Y,S) + 0(6"1) (OB) . (9.21)
Thus for the case where the specific heats are the same and the initial state is omnibal-

anced we find that the separable form of the driving traction is

mech

f = D—S(M’sl (Cy; =Cyp, (OB)). 9.22)

Note that (9.22) is equivalent to the driving traction that was found for the purely mechan-
ical problem (5.11). Again we have demonstrated the close correspondence between the

purely mechanical and the separable theories.
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9.3 Kinetic Relation for Separable Materials

We now wish to consider the use of a kinetic relation to single out a particular
phase boundary speed for separable materials with OB initial conditions. In Chapter S the
use of a linear kinetic relation was investigated, and from (5.20) it is natural to assume that

the kinetic relation for the case of a separable material is

$=xf. (9.23)

Driven by result (9.22), we examine (9.23) for the same conditions. First, we note that for
these initial conditions the dissipation function is given by (5.16), then with a specified

mobility x and initial conditions, (9.22) and (9.23) give an implicit equation for s

Ay = —2 +sc(72‘_722) (OB). (9.24)
kpc (Y, -7;) 2(c -%)

This is result (5.23) found for the purely mechanical case, which was to be expected.
Therefore Figure 5.3 being a graph in the (AY, §) -plane of the linear kinetic relation
(5.23) also describes the linear kinetic relation for a separable material. This figure shows
the curve (9.24) for different values of the mobility x, from the figure it is seen that as the

mobility decreases the phase boundary speed decreases.
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9.4 Kinetic Relation for Fully Thermal Materials

We now wish to include thermal effects in the linear kinetic relation. This change
might yield a different value for the phase boundary speed from that determined in the
separable theory Just as the change in the admissibility region could be determined by
examining first order o, effects in the 2nd law as discussed in section 8.3, we expect that
the change in the phase boundary speed can be accomplished by a similar analysis of the
driving traction.

The linear kinetic relation is

s=x(f+ 0, (9.25)

where in the a., = 0 limit we retrieve the separable case (9.23). Thus the term x f % par-
ticipates in the thermal correction to the separable phase boundary speed (9.23). For OB
initial states we find the leading order thermal correction to the driving traction can be

expressed

o,
A * e o
_fm2 = —p| 0+ = D ciaz(yz—y )+C,,In l+ﬁ
2spC +
Y1 0 3pC
71 (9.26)
0y’

[+
+0 . A A
5 (Cyzm[ﬁ,)+}‘_I_c7,1n(-°-_)-cﬂln(1+ D ,))+0(a§).
0 0 SpCYle

D
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Note in (9.26) that the mechanical field variable 6:3 and the dissipation function D, both

complicated functions, appear in the a logarithmic manner. Thus to determine the global
behavior of f % 2 numerical study might be in order. Since such an approach is not in the
same vein as the rest of this investigation, a detailed analysis of f % remains to be

explored.



10. Conclusions and Recommendations for Future Work

10.1 Conclusions

From our analysis we have shown a number of results for the problem considered,
most of these demonstrated how the purely mechanical theory falls under a more complete

thermomechanical framework. Some of the more significant results are listed below.

1. For the mechanical field quantities of strain and velocity, a one to one correspondence

exists between the purely mechanical and separable theories.

2. The positive dissipation criterion for the purely mechanical theory is a direct conse-
quence of the second law of thermodynamics for the separable theory provided that the
initial configuration is omnibalanced. Thus, the purely mechanical criterion has a sound

thermodynamic foundation.

3. For a phase transformation occurring in a separable material, our model predicts the
possibility for a temperature change within the transformed material. If the initial configu-
ration is omnibalanced, then this change correlates directly with the dissipation function in

the separable theory limit.

4. The separable theory, a theory which was shown to account for temperature effects,
does not remove the nonuniqueness present in problems concerned with phase boundary
motion. Thus, a higher order theory is required to resolve this issue. A reasonable resolu-
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tion involves a separate kinetic relation.

10.2 Recommendations for Future Work

As with most research problems, there are a number of issues which we choose not

to address here, of these some of the more significant ones are listed below.

1. Investigation of the shock instead of the centered simple wave fan needs to be com-

pleted. This may provide a simplification in analysis.

2. For the case a, « 1, a more complete analysis of the admissible solution region needs
to be performed to determine how it changes in comparison to the solution region from the
separable theory. This may prove untenable due to the presence of complex functions con-

tained within logarithms expressions.

3. Although this was a purely analytic study, a numerical study of the transformed materi-
als temperature Os, might prove fruitful. The results of such a study could be directly
incorporated into a study of the admissible solution region. Recall that the growth of this

region depends solely on the temperature es°'

4. For the case o, « 1, a study of the incorporation of thermal effects into the linear
kinetic relation needs to be performed. The results of such a study would determine if the
inclusion of thermal effects would cause the phase boundary speed to increase or decrease

from the speed found for a separable material.
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Appendix A. Algorithm for Reduction of Equations (6.5)-(6.13)

The algorithm outlined below expresses the eight field quantities vg, Yg, 05, Vgo,
Ygo» Ogo» Vo, Y as functions in terms of the initial conditions, temperature 6., and the

phase boundary speed. From (7.3) the temperature in region S

o = 0. (A1)

For later use we use (6.7) and (6.8) to relate the velocity and strain in regions S and So

Vg = Vgo, (A.2)

Ys = Yse- (A.3)

From (6.9) the strain . is found to be

C A
czaz T

while from (6.10) the velocity v, is

vr = JC, [0 (8y) -8(8)], (A.S)

®(8) - (0)
®(0) +D(0)

where 9 (0) = 29 (0) + D (0) ln( ).Using results (A.2) and (A.3) we

may rewrite (6.5)
173
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Vgo = C,Ygo—C, (7, +24Y) . (A.6)

From (6.11) the velocity Vgo

Vso = VT + S (’YT - ‘Yso) ’ (A.7)

and from results (A.4) and (A.S) the expression for the velocity

. Cpp (8§
Ve = @(a(e.r)_ﬁ(e))+s(yz+-2£1n(9%))-syso. (A8)

€,

Combining results (A.6) and (A.8) to find expressions for both the velocity and the strain

in region S° in terms of the unknown temperature 0. one finds

c A C )
Vgo = (ﬁ—s(jc_yz(ﬁ(e.r)-ﬁ(e))+s(72+—2£ln(q)]—s (Yl+2A7)], (A9)

€&,

1 A C ]
Ygo = 5175';( @(1&(91.)—6(9))+s(72+ c—iT—oiln(e—T)]+cl(yl+2Ay)). (A.10)

To express the field variable 8. in terms of the temperature 6., insert results (A.4),

(A.10) into equation (6.13), and by simplifying one finds

B0 = T, (87) + T, (8,) + [T,(6p) +T,(6)1T5(6y), (A11)



175
where we have used the auxiliary functions

2 R
L [Pef  Cp, 8 o' C,;8p+b,-b
Tl (e—r)=pT‘Y1 T 72 ln e_ (Y az ) +p T+ 2 V1|

c a2
T, (8,) = (j_z[as(eT) 8(8)] +c, (v, +2A7) +
ZCYI( L +5)

Cy2. (9

Y, + i LR P
[ i °2°‘2 (6 )} )

pc? C, )

=_Pa A 8
T, (6) =m(@[ﬁ(e1.) ~-9(8) ] +¢c, (v, +2AY) "’S[Yz 2a21n(6 )D

C é * * 2
T,(04) = pcg(y2 + —zﬁln(e—) -(y -a,0 ))—pczazeT,
C,0, T

1 A .
Ts(0p) = 25C, (cl+s)(j(—3.;;[ﬁ(9T)-ﬁ(6)]+c (s +24y)-

o[ S2n(2) ).

€0,

Finally the master equation for the temperature 6. is found by inserting results (A.4),

(A.5), (A.9), (A.10) into equation (7.9) and simplifying

C,,(sc, c)
[C.p(c,-8)0 (8 L2 u{ T)afczoczaT
2

c,0 )
ic.—cA) (& (A.12)
~ C.,(sc,-c,) n
[C.; (¢, —$)® (8) 2= zln(g)+c§a26+(s'cl cH2Ay +sc, (Y,-7¥,) -
C,0, )




Appendix B. Transition in phase-2 is a shock

As discussed in Chapter 6, the characteristic curves in the phase-2 material are not
globally parallel as is the case in phase-1. Therefore transitions between different states
can occur through two types of mechanisms, a centered simple wave fan and a shock. As
the case of the centered simple wave fan was analyzed in detail in Chapter 6 we now turn
our attention to the case where the transition is a shock. The purpose of this appendix is to
formulate the necessary equations which mathematically describe the shock problem.

Recall that if the transition was a centered simple wave fan then the Riemann
invariants imposed a set of conditions between the field variables on adjacent sides of the
fan. For the case of a shock these conditions need not be satisfied, instead a new set of
constraints, the Rankine-Hugoniot equations, now must be satisfied. Recall that these
equations were the jump conditions (2.7) across the phase boundary. This is because the
phase boundary and the shock are discontinuity surfaces.The Rankine-Hugoniot equations

across the shock are:
[[v]l] +AL[¥]] =0,

[[t]1]+4p[[v]1] =0,
(B.1)
A([Le]] - (N [IV1]) =0,

Ap[(n]]<0.
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where A is the speed of the shock, which we assume to be constant, in view of the self-

similar nature of the square-wave pulse that initiates the process.

We wish to reconsider a boundary value problem outlined in Chapter 6, except
now where the T/E, interface is a shock, all other assumptions are assumed the same as
the case of the centered simple wave fan. Thus, the dynamic boundary conditions (4.33)-
(4.37) and assumptions A.5-A.9 (Chapter 5) still hold. These conditions give rise to an ini-
tial wave pulse, originating in the phase-1 material, striking the phase boundary and set-
ting it in motion. Once again the pulse striking the phase boundary can generate a reflected
wave, giving rise to regions R, S, S°, and a transmitted wave, creating region T. However,
now the T/E, interface is a shock, across which equations (B.1) are required to be satis-
fied.

Figure B.1 is a graphical representation in (xt)-space of the temporal changes
within the body where the phase boundary speed is positive. During the initial encounter
there are four regions of interaction which are of interest, these four have been labeled
R,S,S° and T in Figure B.1. One can think of these regions as follows: S is the region to
the left of the initial position of the phase boundary in which the initial pulse and the wave
which has been reflected from the phase boundary are interacting; S° is that region to the
right of the initial position of the phase boundary in which the incoming pulse and the
reflected wave are interacting, R is the result of initial incoming pulse being reflected from
the phase boundary and clear of any further interactions, finally the region T is that region
in which some part of the initial pulse has transmitted through the phase boundary. The
shock is to occur between the phase-2 equilibrium state and the T region.

As was the case for the fan, region R, which contains the final reflected wave,
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occurs later than either S or S° and thus decouples from the other three regions. Therefore,

when analyzing the initial interaction we only need to consider the regions S, S°, and T.
We again use the method of characteristics to relate the various regions of the domain,
between S and the incoming pulse-the Riemann invariants (3.51) and (3.52); between
regions S and S°-the two Riemann invariants (3.52), across the moving phase boundary
between T and the S°-the 3 jump conditions (2.7), between T and the initial phase-2 equi-
librium state-the three shock conditions (B.1). In Figure B.1 the various characteristics
and Riemann invariants are shown, as well as the jump conditions across the phase bound-
ary, aﬁd the shock conditions in the phase-2 region.

From the procedure outlined above we generate ten equations between the nine
field quantities: g, 8o, 01, Y5 Yso» YT» Vs» Vso» VT» the shock speed £, and the phase
boundary speed $. Guided by Figure B.1 and the above outline, the ten equations which

govern the interactions between the S, S°, and T are written out below.

Region S and the incoming pulse

vVg—C,Y, = —¢, (v, +24Y), (B.2)
6] - ) -
pCYlln ? +kl = pCYlln ? 'I'kl. (B.3)

Region S and S,

vso - cl‘Yso = VS - clYS ’ (B'4)
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Vgo +C1¥ge = Vg+C¥s. (B.5)

Region T and the phase-2 equilibrium state, characterized by the formation of the shock

wave

'ﬁ('Yz"‘Y'r) = V=V, (B.6)
ﬁ 2 * 2 A . 2 . 2 *
PV = PCy(Y,—Y ) —pcy0,(0-0 ) —pcy(Yr—7v ) +pc,0,(6,-6 ),  (B.7)
pc; 2 pc; 2
[—23(72—7 + 0,0 ) +pC,,0 +62:| - [TZ(YT"Y + 0,0 ) +pC,,05+ 62] =

(B.8)
1 2 . 2 ot 2 2 .
5( PCy(Y,—Y ) - pcy0,(0-6 ) + pcy(Yr—Y )-pcy0, (6,0 )) (Y2-71) -

Region Syand T
-$ (Yp—"Yge) = Vp—Vge, (B.9)
2 . 2 . 2
—$p (Vo= Vgo) = PCy(Yp—7¥ )-PCy0,(07 -0 ) —pc Yo, (B.10)
2 2
2 hr-7" +0,8° ) +9C 07+ by | - | Sl 4 pCp 8 + By | = 11
= Y=Y +Q, +pC 0 +by | - TYS*""P 71950+ 01| = (B.11)

1 . .
(pelter #0200z 11-pC 0,01~ 0) ) =70

The above equations are a system of ten equations for the eleven quantities yg, vy, 65,

Yses Vgor Oge, Yr» Vs O, £, § this system of equations completely characterize the ini-
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tial interaction.

Comparing this set, to that of (6.5)-(6.13) for a fan, it is to be noted that we have
obtained an extra unknown £, and an extra equation. The extra equation is due to the fact
that 3 shock conditions are given across a T/E, shock interface, whereas only 2 character-
istic equations held across a T/E, fan. On the other hand, the equations obtained here,
(B.9)-(B.11), are simpler than those which describe the fan, (6.9) and (6.10), because
those for the shock have no unknown field quantities appearing in a logarithmic fashion.

Preliminary studies indicate that an elimination procedure similar to that employed
in Chapter 6 yields a master equation which would be the analogue of (6.14). This master

equation is in terms of the strain Yy, and is given by the following equation:
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—c, sc,
$+Cl(yT (y ocze ) + Y'r c, (v, +2AY) +

2 2 * x 2 * « 2 A
c,o, pc, [(yT—(y -0,0 ) -(y,-(y -,8)) ] —2pC_{29+
(8-¢1) (pc§a2 (Y2 -71) —2pC,y)

o, [peatyr— (¥ - 0,8)) + pca(y, - (¥ - ,8")) - pcs0,8] (¥, —¥) )2
(8-¢)) (pcgoc2 (Y, =¥p) —2pC,y)

“[pcatr, - (v - 0,0 ))-pcro,B-pca(yr— (v - 0,8 )] (Y, - ¥p) +

[Pty - (F — 0,8 ) +pca(y, - (¥ - ,07)) - pcra,B] (1, - ¥p)
(PC3ty (Y= V1) —2pCyy)

ch% (72 - YT) (

Pcz[('Y'r (0 ~0,8") - (= (' - 0,8 ] - ZPCYZé)-o
(pczaz('Yz ‘YT) zpC72)

- One would anticipate that this equation can be analyzed in a fashion similar to the case of

a fan.
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Phase 1. : Phase 2.

/

shock
E,

wemmesn  Riemann invariant

x=s(t)

wmmnmens  JUMP conditions

Figure B.1 This is a graphical representation in the (xt)-plane where the transition in the
phase-2 regions gives rise the formation of a shock. Regions E,; and E, are the initial equi-
librium states separated by the phase boundary at x=s(t). The incoming wave (IW) strikes
the phase boundary setting it into motion, where § > 0 is assumed. The IW-phase bound-
ary interaction gives rise to the regions S, S° and R in phase-1, and T and the shock in
phase-2. The region R represents a reflected wave, while S arises from the interaction of
the IW and the reflected wave. S° is that material which has undergone a phase transfor-
mation from phase-1 to phase-2. The IW striking the phase boundary also produces a
transmitted wave in phase-2, this is designated by the letter T. Finally the transition from
the E, state to the T state is a shock, and so involves 3 shock conditions, and the introduc-
tion of an yet unknown shock speed £, whose value must be between Cg and Crs where
Cy > ¢ .This figure, in conjunction with figure 6.1, give the two essential ways in which
the pure’ly mechanical situation displayed in Figure 5.1 are complicated by thermal effects
in the adiabatic limit.
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