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ABSTRACT

ELLIPTIC FUNCTIONS, THETA FUNCTION,
AND SUBMANIFOLDS IN SPACE FORMS

By

Jie Yang

In the first part of the thesis(Chapter 1), we study slant surfaces in C?>. The
complete classification for all proper slant surfaces with constant Gaussian curvature
and nonzero constant mean curvature in C? is obtained in this part.

In 1993, B. Y. Chen introduced an important Riemannian invariant §,; for a
Riemannian n-manifold M", namely take the scalar curvature and subtract at each
point the smallest sectional curvature. He proved that every submanifold M”™ in a
Riemannian space form R™(e) satisfies a sharp inequality:

n?(n — 2)

om < 2= 1) H?+ (n+1)(n - 2)e.

In the second part of the thesis (Chapter 2 and 3), first we classify hypersurfaces
with constant mean curvature in a Riemannian space form which satisfy the equality
case of the inequality. Next, by utilizing Jacobi’s elliptic functions and Theta function
we obtain the complete classification of conformally flat hypersurfaces in Riemannian

space forms which satisfy the equality.
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CHAPTER 0

INTRODUCTION

Let (N, g, J) denote an almost Hermitian manifold equipped with an almost complex
structure J and almost Hermitian metric g. A submanifold M of N is called slant if
its Wirtinger angle is constant. Complex submanifolds and totally real submanifolds
are two special classes of slant submanifolds which have Wirtinger angle 0 and 7,
respectively. It is known that there exist ample examples of slant submanifolds other
than complex and totally real submanifolds. The first part of the thesis studies slant
surfaces in the complex 2-plane C2.

It is well-known that helical cylinders in C? are flat proper slant surfaces with
nonzero constant mean curvature. Conversely, we prove that every flat proper slant
surface with nonzero constant mean curvature in C? is an open portion of a helical
cylinder.

Although it is known that there exist abundant examples of slant surfaces with
constant mean curvature and constant Gaussian curvature in non-flat complex-space-
forms. However, we prove that there do not exist proper slant surfaces in C? with
constant mean curvature and nonzero constant Gaussian curvature.

According to the well-known Nash imbedding theorem, every Riemannian n-
manifold can be realized as a submanifold in a Riemannian space form, in particular,

in a Euclidean space. For a submanifold in a Riemannian space form, Chen proved



in 1993 a general inequality involving sectional curvature, scalar curvature and the
squared mean curvature of the submanifold. Chen’s inequality has some important
applications. For example, it gives rise to the second Riemannian obstruction for a
Riemannian manifold to admit a minimal isometric immersion into a Euclidean space.
It also gives rise to an obstruction to Lagrangian isometric immersions of compact
Riemannian manifolds with finite fundamental group 7, into complex space forms.

Since Chen’s inequality is very general and sharp, it is natural and interesting
to understand submanifolds which satisfy the equality case of this inequality. Re-
cently, there are several interesting papers which investigate submanifolds satisfying
Chen’s equality. In this thesis, we investigate the most fundamental case; namely,
hypersurfaces satisfying Chen’s equality. First, we give a complete classification of
hypersurfaces with constant mean curvatures satisfying the equality. Next, by uti-
lizing the Jacobi elliptic functions and the Theta function, we completely classify
conformally flat hypersurfaces satisfying the equality.

Let M be an n-dimensional (n > 2) hypersurface in a Riemannian space form
R™"*1(¢), (e = 1,—1 or 0) which satisfies the equality. We show that, if e = 0, M
is either minimal or an open portion of a spherical hypercylinder; if ¢ = 1, M is
either totally geodesic or a tubular hypersurface with radius 7 about a 2-dimensional
minimal surface; and if e = —1, M is either totally geodesic, or an open portion of a
tubular hypersurface with radius cosh™(v/2) about a 2-dimensional totally geodesic
surface of R"*!(—1), or a “suitable tubular hypersurface” about a minimal surface in
the de Sitter space-time S7+(1).

In order to classify conformally flat hypersurfaces satisfying the equality, we need
to define some special families of Riemannian manifolds: P! (a > 0), C? (e > 1),
Di(0<a<1),F" L* A% (a>0),B*(0<a<1),G", H"(a > 0), W2, (a > 0)and
Y (0 < a < 1) via warped products of R ( or an open interval ) and some Riemannian

space form by some warp functions that may involve the Jacobi elliptic functions. For



example, P}, C?, are the warped products:I x,, S™! (“44—'1), Rx, H™! (“4—4‘1—), where
te = akcn(az, 3%?) and 7, = {dn(%{r, %), and cn(az, k), dn(§, k) are the Jacobi
elliptic functions with modulus k. Topologically, S™ is the two point compactification
of PP, CI as well as of B} and the Riemannian metrics defined on P!, C? or B? can
be extended smoothly to S™. Let P*, C* and BP denote the n-sphere together with
the Riemannian metrics given by the smooth extensions of the metrics on P}, CZ
and B to S", respectively.

We prove that if M is a conformally flat hypersurface of a Riemannian space
form which satisfies the basic equality, then either M is totally geodesic or M is an
open portion of one these ten special families of Riemannian manifolds. Furthermore,
we are able to determine these immersions explicitly. If the the ambient space is
spherical, there exist three families of such hypersurfaces. One of the families is
the immersion of P? into S%(1) and its local expression involves the Jacobi elliptic
functions and the Theta function. In order to get the expression, we have to solve a
family of second order ODEs of Picard type whose coeffients involve the Jacobi elliptic
functions, namely. u"(z) + 2asc(az)dn(az)u'(z) — u(z) = 0. We call such an equation
a differential equation of Picard type since a similar equation was studied by E. Picard
in 1879. However the method of Picard does not work for our equations, so we need
to develop a new approach to obtain the general solutions for this type of ODEs.
Our results seem to have independent interest by themselves. If the ambient spaces
are hyperbolic, we are able to obtain the complete classification via nine families of
immersions from the following Riemannian manifolds A?, G*, H?, Y, L3, C3, D3,
etc, to the ambient space. In order to establish the local expressions of the immersions
of C2 and D3, we need to solve two families of ODEs similar to the one mentioned

above.



CHAPTER 1

SLANT SURFACES WITH
CONSTANT MEAN
CUEVATURE IN C?

In this chapter, we completely classify proper slant surfaces with constant Gaussian

curvature and nonzero constant mean curvature in C2.

1.1 Introduction

Let M be a Riemannian n-manifold and (M, g, J) an almost Hermitian manifold with
almost complex structure J and almost Hermitian metric g. Let T, M be the tangent
space to M at p. An isometric immersion f : M — M is called holomorphic if at
each point p € M we have J(T,M) = T,M. The immersion is called totally real
if J(T,M) C T+M for each p € M, where T*M is the normal space of M in M
at p. For each nonzero vector X tangent to M at p, the angle v(X) between JX
and T, M is called the Wirtinger angle of X. The immersion f : M — M is said

to be slant if y(X) is a constant (which is independent of the choice of p € M and



X € T,M. see [1] for details). The Wirtinger angle y of a slant immersion is called
the slant angle. Homolorphic and totally real immersions are slant immersions with
slant angle 0 and 7, respectively. A slant immersion is said to be proper slant if it is

neither holomorphic nor totally real.

The simpliest and most important examples of slant submanifolds are slant sur-
faces in C2, where C? is the Euclidean 4-space R* equipped with its canonical complex
structure. In [2], B. Y. Chen constructed ample examples of such surfaces. He also
proved that there is no proper slant surface in C?> with parallel mean curvature vector
(cf. also [3]). Thus the following open problem proposed in [2] by B. Y. Chen is very

interesting:
Problem: Classify slant surfaces in C2 with nonzero constant mean curvature.

It is known that helical cylinders in C? are flat proper slant surfaces with nonzero
constant mean curvature [2]. The first result of this chapter is to prove that the

converse of this fact is also true. Namely we prove the following:

Theorem 1.1. A flat proper slant surface with nonzero constant mean curvature in

C? is an open portion of a helical cylinder.

B. Y. Chen and L. Vrancken show in [4] that there exist many proper slant surfaces
with constant mean curvature or with constant Gaussian curvature in complex-space-

forms. However, in this paper we prove the following nonexistence theorem:

Theorem 1.2. There do not exist proper slant suraces with nonzero constant mean

curvature and nonzero constant Gaussian curvature in C2.



1.2 Preliminaries

Let C? be R? equipped with its complex structure J and M be a proper slant surface

isometrically immersed in C2.

For any vector X tangent to M, set

JX =PX+FX

where PX and FX are respectively the tangential and normal components of JX.
It is clear that P is an endomorphism of the tangent bundle TM and that F is a

normal-bundle-valued 1-form on T M,

Let e; be an unit local vector field in TM. We choose a canonical orthonormal

local frame ey, e,, €3, e4 such that

e, = (secy)Pey, e3 = (cscy)Fe, es = (cscy)Fe,.

Such an orthonomal frame is called an adapted slant frame.

Let wy,ws,ws,ws be the dual frame of e, e, €3,e4. Then the structure equations

are given by

dwp = —wap ANwp, dwap = —wac Awep, wap+wps=0.

where A, B=1, 2, 3, 4. r,s=3, 4. i,j=1, 2. Restricting to M, w, = 0. Then we have

— T . T T
wri —_ hijw], hi] - h]1



A helical cylinder in R? is defined by
(1.2.1) z(u,v) = (u, k cosv, mv, k sinv)

where m and k are nonzero constants. With complex structure Jp in R*, (1.2.1)

defines a proper slant surface in C2 with slant angle cos‘l(—\/—;lﬂﬁ;), where

JO : (xl’xi’ax37x4) — (—.’L'3, —$4,$1,$2)

If we choose

1
Wy

e3 = (0, — cosv, 0, —sinv),

e = (0, —k sinv, m, k cos v), e; = (1,0,0,0),

1
4= TR

0, —msinv, —k, mcosv),

then ey, ey, e3, e4 form an adapted slant frame with respect to Jy, where e3 is in the

direction of mean curvature vector. The connection form of (1.2.1) is given by

0 0 m%wwl 0
0 0 0 0
(122) (wAB) = x
—mewr 00 ~ W
0 0 #wl 0

1.3 Basic Equations

Let M be a proper slant surface with constant mean curvature $ # 0. We recall from

[2] that

(1-3-1) h?2 = h?l’ hgz = h?za



(1.3.2) wag — wiz = cot Y{(trh®)w; + (trh*)w,}.

where v is the slant angle. We can choose an adapted slant frame such that e; is
parallel to the direction of mean curvature vector. Thus the shape operator A; and

A, take the following forms:

c— ) « a A

« A A —«

Let a = ccoty > 0. By (1.3.2), we have

W34 — W12 = AWg.

Using the structure equations, we get dw; = 0. So, locally, there exists a variable
such that dr = w,. Since

dw, = —wiz A wo,

we obtain that

W2 = ﬂwg, and W34 = ﬂLUQ + aw;.

Assume w, = f(z,y)dy, where f(z,y) is a C? function and nowhere zero on a

neighborhood U of (0,0). So, on U, the metric tensor is

g = dz* + f*(z,y)dy’.

Since w3; = (¢ — A)w; + aws, we have

d{.d31 = (62/\ +ea— aﬂ)wl A Wwsy.



On the other hand,

dws; = —wsp Awy — wig A wyy

= (2af — a\)w;, A w,,

So, by comparing these two expressions, we deduce that e, A + e;a = 3a3 — aA.
Similarly, we have e, A — e;a = —cf8 + 3\G + aa.

Let K denote Gaussian curvature of M, then

le A Wy = du.)lz = (61,3 et ,32)(.01 /\(/.12.

But

dwiy = —wiz Awsy — wig Aws

= (ch —2)\2 = 2a))w; A w,,

therefore

K=e3-03%=c\—2)?—-2a%

Consequentely, we have

(

e1A — e = —cf + 3N\ + aq,

(1.3.3) { e) +ea =308 — a),

K=¢€8-[3%=c)\—2)\—2a%

In particular, (1.3.3) implies K < %2-. Since wy = f(z,y)dy,
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—a—fdl'dy = d(dg = —w9 AN wy
oz
= —f(fdzdy.
Therfore § = —g_;, and
Pf _ 08 08
oz2 "oz oz
(1.3.4) =p*f - f(B*+ K)
=—-Kf.

1.4 Proof of Theorem 1.1

Now, we consider the flat case, i.e. K = 0.

By (1.3.4), we have

f(z,y) = p(y)z + q(y)

on some open neighborhood U of (0, 0). Let a, 8, as in the previous section.

First, if @ = 0 and then A = 0 on U by (1.3.3) since ¢ # 0. In this case, we can

compute its connection form as follows:

3 3 _
wip = Pw, =0, w31 = hjjw; + hjyws = (¢ — Nw; + aws = cwy,
3 3 —
w34 = Pw, + aw; = awy, w3y = hiow) + hjws = awy + Aw, = 0,
=ht + htw, = A
Wa1 = hyp + w2 = aw) + Awg,

Wyg = h‘flwl + hézu& = /\wl — QWwy = 0.
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Thus we have

0
0
(waB) =
cw; O 0 aw
0

0 —aw 0
Therefore, we can chose m and k such that ¢ = mz_k“w Let
fy — Cos'_l L.
vm? + k%
By assumption,
t m
a=ccoty= —————.
7 m?2 + k?

Thus we get (1.2.1). i.e., M is helical cylinder on U. So we have proven the theorem

in this case.

If there exists a point z € U such that a(z) # 0, we can find an open subset V' of

U such that « is nowhere zero on V.
Lemma Let V as be chosen above, then p(y) =0 on V.

Proof. Let us assume that p(y) does not vanish identically. Let z' € V be a point
such that p(z') # 0, we can choose an open subset of V, say W, such that p(y) is

nowhere zero on W. Thus on W,

atw),

f(z,y) =p(y)(z + o)

So, without loss of generality (by replacing p(y)dy by dY if necessary), we can assme

flz,y)=z+g(y) on W
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a
In this case, 8 = —Efé = —$. From (1.3.3), we have

(O _loa_c-m,
6z foy [ ™
l@+a_a—_3_a_a)\

(1.4.1) ! foy oz |
o Ja

(6—4/\)'6—1:'—408—1:—0,
o Oa

¢ —4)\)— — da— = 0.
{ ( )By Jy

Solving (1.4.1) and noticing that cA — 202 — 2a? = 0, we have

6/\_4aa 8/\_ 4oy

TR - A Tl
o oa c—4) «a Oa c— 4\
F il (?+af), 517:— . (c = A+ aaf).

—a — : 9r< _ %)
Let A = 7 +aa, and B =c — a+ aaf. Since ey = ogon> We have

400 0A OB

oy ta) =0

Since a # 0 on W,

@_ + Qg =0

oy O0r
Using (1.4.1), this implies
(1.4.3) Pa=Q\ - D,
where
(%) P-% 43, Q=3-af D=1

f f f
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Therefore P2a? = Q2)? — 2Q D) + D?. By (1.3.3), we have
(1.4.4) 2(P? 4+ Q*)A\? — (cP?* +4QD)A +2D* = 0.

From (1.4.3),
oP 0o 0Q ox 06D

a+ P =4 Q -2

oz or Oz Jr Oz

By (1.4.4) and (1.4.1), this implies
(1.4.5) (a®f* — 2a%¢'f2 — 2¢' — ag'*)A = 2acf? = 0.
Thus (1.4.4) and (1.4.5) give

(1.4.6) ((ag')? + 3ag’ + 2)(9a*f* + 6ag' f2 + ¢'°) = 0.

So, if there exists a point 2o € W such that ((ag’)? + 3ag’ + 2)(20) # 0, we can
choose an open neighborhood W’ of zy in W such that (ag')? + 3ag’ + 2 is nowhere

zero on W'. Thus, by (1.4.6), we have
9a°f* +6ag' f2+¢g°=0 on W',

le, (z+g)*=f2= :39%(21’-2 on W'. This is a contradiction.

In the following, we assume

(ag')*+3ag'+2=0 on W.

Thus, ¢’ = —2 or —2 on W, then f(z,y) =z + by + C on W, where b = —;11— or —2,

a a
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Now, from (1.4.3), we have

oP O oQ o\ 08D
Lo+ P\ _pl2 Y2 _
R Vi v v Wi

By doing similarly computations as before, we have

: (—4afDP + 3cP? — 4DQ + acf PQ + cP,Q + 4cQ? — cPQ,) A
1.4.7)

+2D? + acfDP + ¢DyP — ¢*P? — ¢cDP, — 4¢cDQ =0

Notice that, in this case

P—i+3a, Q:

—'f2 _a2f1 D =

3 ¢
f f

Substituting the above and (1.4.7) back in (1.4.4) and simplifying, we have

(1.4.8) 3abc* 8 + (—8a’c! — 38a’c'b — 18a°c*v?) f°
+ (—276a%c* — 706a%c'd — 532a’c'b? — 120a°c*b?) f*
+ (36c! — 144ac’d — 432a%c"b? — 338a%c'b® — T4a'cb?) f2

— 20c*h? — 66acth® — 55a2c*b — 1243’ = 0.

The leading term of (1.4.8) is 3a®c* # 0, and the other coefficients are constants.
Thus we get f = constant on W. This contradicts f = = + by + C. So, we have

completed the proof of the lemma.

Returning to the proof of Theorem 1, From the above lemma, we know f(z,y) =

af
g(y) on W. By (x), we can see that P, Q and D are functions of y. Also § = —2 =0.
Moreover, from (*), we see that P , Q@ and D can not be simultaneously zero at any

point on W, otherwise we have ¢ = 0 at this point. Thus ) is a fuction of y, and so
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is a. By using (1.3.3), we have

lda _ 1d)

1.4.9 — = —aaq, and —— = —al.
(1.4.9) Fdy

So, @ = C} A, where C is some constant. By (1.4.1), we get
20+ CHN —cA =0

then
c
A =0, or - )‘_—_2(Clz+1)'

If A =0, we have o = 0. This contradicts our assumption that o # 0 on W.

If A= 2(_c;§+—x) # 0, by (1.4.9) and g(y) # 0, we get a = 0. This contradicts our

assumption. Thus we have completed the proof of Theorem 1.1. O

1.5 Proof of Theorem 1.2 for K a Positive Con-

stant

From (1.3.4), we have 2y — —I%f. For simplicity, we assume [ = 1, i.e. K = 1. Thus,

az2

in a neighborhood U of (0, 0),

f(z,y) = gi(y)sinz + go(y) cosz

1
= ———sin(z + g(y)).
9t + 93

where g(y) = cos™! g;(y). Since g5(0) # 0 (otherwise f(0,0) = 0), therefore, without

loss of generality, we may assume f(z,y) = sin(z + g(y)).

From (1.3.3) we have ¢* > 8. if ¢ = 8, we have @ = 0 and A = 1, and then a = 0.
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This contradicts the assumption of a > 0. Thus we assume ¢ — 8 > 0.

Let 8 = z + g(y), since f = sinf, so § = —z_fé = —cot#. Thus, from (1.3.3), we
have
2 1 Oa
9z 00y (¢ —3X) cot 0 + aa,
LB_/\ + 6_a = —3acotf — al,
(1.5.1) : sinfdy Oz
1)) Oa
(C - 4/\)6_1‘ - 4(16—1; = O,
1)) Oa
c—4))— —4a— =0.
( ( )ay dy

Solving (1.5.1) and taking (1.3.3) into account, we obtain

g—;\ = —4Aa(acot§ + aX — Ba),

o\ .

P —4Aa((c — A — 3B) cos @ + aasin§),
(1.5.2) T

e (c —4X)A(acotf + aX — Ba),

Oa :

3 = —(c—4))A((c — A = 3B) cos b + aasin 8),

where A = 3% and B = %

If o =0on U, we have A = { on U, then a = 0 by (1.3.3). This contradicts our

assumption.

If there exists a point z € U such that a(z) # 0, we can find an open subset

V C U such that a nowhere zero on V. Thus, on V, by using ;’:(,;\y = a‘fé‘r, (1.4.2)

and (1.3 .3), we have

(1.5.3) Pa=Q)x-D
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where

3asin?fcosf + g’
sin? @

’ D= —3Bsin20+c’

P =3acosf + g'csc?6 = .
sin 6

(1 —a?)sin’f +3cos?0 3 — (2+ a?)sin’0
sin? @ B sin 0 '

Q=

Also, by (1.3.3), we have
(1.5.4) 2(P? + Q*)A\? + (P%c+ 4DQ)) — 2D? — P2,

From (1.5.3),

P _da _ 8Q dx aD
o P % % o

Consider (1.3.3), (1.5.3) and (1.5.4). This implies
(1.5.5) K\+F =0,
where

K = QP,— AP%ca+ 4ABaQ? + 4AP?Ba — PQ' + 4APDcot§ — 4AQDa
—AQPccot b,

F = —P,D- APDccotf — 4ABDQa + 2AQP cot 6 + D, P + 4AaD?.

Putting (1.5.5) back into (1.5.4) gives

(1.5.6) 2(P? + Q*)F? + (P* + 4DQ)FK + (2D* + P)K? = 0.
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u = sin

Then (1.5.6) becomes the following polynomial equation in ,

(1.5.7)

blg’u,ls + b17u" +--+ b1U + bo = 0,

where b; are functions of a, ¢ and t. That is to say that they are functions of y.

The followings are some coefficients we will use later:

b18

bl7

b13

bie

18874368(a — 1)%a®(1 + a)?(a®> + 2 - 9) -

(576 — 64c* — 88a’c? + 8a’c® + 9a’c?),

169869312(a — 1)%a*(1 + a)?*(a® + > - 9) -

(576 — 64c? — 88a’c? + 8a'c? + 9a’c?),

49152a(192471552a — 492549120a% + 331043328a° — 30965760a’
—14684544ac? + 38083584a3c? + 23807616a°c? — 56238336a’c?
+9461760a°c? — 430080a'!c? — 3647616ac* + 5267976a63c*
—10946376a%c* 4+ 10212216a"c* — 886200a°c* + 298368ac®
—17913ac® + 138138a5c® — 418593a”c® + 2688a3c® + 37527a°c®
—3939840t + 8607744a’t — 4953600at451584a5t + 834048t
—755392a2c%t — 4953600a’t + 451584a®c’t — 195008a®c*t
+6272a'%c%t — 39424c*t — 133576a%c* + 469344a’c*t
—7293432a%¢c*t + 20416a8c't - 512¢% + 10902a%c5t — 26721a c°t
+14063a°c®t + 162a’c® — 81a’c®t,

1179648(a — 1)a*(a + 1)(a? + ¢® — 9)(—32716 + 3340804’ + 34048¢?



19

13536a%c? — 55680a*c? + 4640a°c? + 256¢* — 4916a%c* + 5200a’c?

—27a°c8.

We will show that, for any a and c, the coefficients of (1.5.7) cannot be identically
zero simultaneously on W. If this is true, let by be the biggest i, (0 < i < 18), such
that by is not identically zero on W . Thus there exists an open subset W' of W such

that by is nowhere zero on W', So, on W' we have

with all coefficients as function of y and leading coefficient 1. Thus, we can write
u = F(y) on W, i.e., sin? %ﬂ = F(y) on W', where F(y) is some function of y.

This is a contradiction.

Thus, to prove the theorem, it is sufficient to prove that, for any b and c, the

coeficients b;, 1 = 0,1,2,---, 18, can not be identically zero simultaneously on W.
Case 1. a # 1 and a®?+c® # 9. In this case, b;g and b;7 can not be zero simultaneously.

Otherwise, we have

(1.5.8) 576 — 64c® — 88a*c? + 8a'c? + 9a’c* = 0,

—327168 + 334080a2 + 34048¢2 + 13536a%c? — 55680a’c?
(1.5.9)

+4640a%c? + 256¢* — 4916a%c* + 5200act — 27a%c® = 0.

Solve (1.5.8) for c? gives

64 + 88a% — 8a* & /—20736a2 + (—64 — 88a? + 8a*)?

1.5.10 2
( ) ¢ 18a?
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Putting the above back into (1.5.8), we get

143327232(a® — 4)(a® — 1)%a® = 0.

Thus a? = 4 since a® # 1 and a # 0. Now put a? = 4 back into (1.5.10), we get

c? = 4. This contradicts the assumption c? > 8.

Case 2. a = 1. In this case, we have b;g = b;7 = bjg = bi5 = b4 = 0. But

biz = 49152(165888¢ — 103680c*t + 23328¢*t — 2268¢t + 81c®¢

= 3981312(c — 2)(c + 2)(c* — 8)%t.

So if b3 =0 on W, we have t = 0 on W since ¢ > 8. Thus ( 5.7) becomes

(—6115295232 + 4586471424¢* — 1242169344c* + 143327232¢% — 59719682¢%)u'?
+... + (47775744¢% — 25837056¢* + 4064256¢° — 198144c%)u?

+(373248¢* — 82944c° + 4608c®)u® = 0.

where

bio = —5971968(c? — 4)%(c® — 8)?,

2

which is not zero since ¢* > 8. Therefore b, and b;3 can not be identically zero

simultaneously on W.

Case 3. a2 +¢? = 9. In this case, ¢? = 9 — a%. Substituting into (1.5.7), it becomes

(—1179648a® + 235929648 — 1179648a'%)u'? + ...
+(—3276288a® + 1317888a% — 105984a')u*

+(373248a® — 829944a® + 4608a'°)u® = 0.
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But b, = —1179648(a?—1)%a5. Thus if b =0, a = 1sincea > 0. So ¢? = 9—a? = 8.

This contradicts the assumption ¢ > 8. Thus b, #0. O

1.6 Proof of Theorem 1.2 for K a Negative Con-

stant

Now we consider K = —I? # 0. For simplicity, we assume [ =1, i.e. K = —1.

As we did in the last section, we have gé = —f(f and g—i_é = f, and thus

f(z,y) = qi(y)e” + ga(y)e™

in a neighborhood U of (0,0) and f # 0 on U.

Since g; and g, are not simutaneously vanished at 0, otherwise f(0,0) = 0. Thus
without loss of generality, we assume g(0) # 0. Therefore there exists an open subset

V of U such that g,(y) is nowhere zero on V', so on V

f=aly)(e +

So, without loss of generality, by replacing g;(y)dy by dY if necessary, we can

assumef(z,y) = e* + g(y)e~%. Therefore

From (1.3.3) and

(1.6.1) ch — 202 — 20% = 1,
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we have
( oA 2
i 4Aa(2a + ach® — faa),
1)) 2
— = —4Aa(cf) + aca — 63 — Bc°) f,
Oy
(1.6.2) 1 o
i A(c—4X)(2a + acA — cfa),
Oa 2
% = —A(c — 4X\)(cfA + aca — 68 — Bc*)f.
where A = Sz Ifa =0 on V, by (1.6.1) we have

+/ZT 4
,\=C——4i+—onv,

which is a nozero constant. So by (1.3.3), we have a = 0. This contraducts with our

assumption.

If there exists a point z € V such that a(z) # 0, we can find an open subset W

of V such that « is never zero on W. Thus, on W, a(fa'\y = aayz(.;\z and (1.3.3) gives

(1.6.3) Pa=QA-D,
where
P = -(acfﬂ+3acfﬁ—c%§+acg—£),
= (30f[32—a20f+g—£ﬂc+f0%y

D = czfﬁ2+(6+c2)%(f,3).
From (1.3.3) and (1.6.3), we have

(1.6.4) 2(P? + Q%A% — (cP* - 4QD))\ + 2D* — P? = 0.
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On the other hand, from (1.6.3),
A il P Al P
By (1.6.1), (1.6.4), this implies
(1.6.5) G\+ F =0,
where

G = P.Q- PQABc — 8aQ*A — 4DPABc + 4DQAac + P?Aac?
—8P?Aa — PQ, + 2QApc?

F = —P,D+ PDABC + 8aQDA + 2QPAfc + 2P%Aac + PQ;.
Combining (1.6.4) and (1.6.6), we have

(1.6.6) 2(P% + Q*)F? + (P’c +4DQ)FG + (2D* — P*)G? = 0.

Let

Then (1.6.6) becomes
(1.6.7) basu®® + bysu® + ...+ byu+ by =0,
where

bo = 18a®>A%c*(5184 + 15552a* + 8640a* + 576a° + 64a’c?
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—1872a%c? — 2016a%c® — 240a8¢* — 8a'%c? — 81a%c! — 567a’c!
—459a8¢* — 29a8¢* — 27a%c® — 27a8¢%)¢"®

by = 9a*A%c3(576 + 576a% — 72a%c? — 128ac? — 8a®c? — 9a%c? — 15a%c?) g7,

bss = 9a2A%c*(10368 + 21888a’ + 12672a* + 1152a® — 1152¢% + 1424a%c?
800a’c? — 2112a°c? — 352a%c* — 16a'°c? + 32¢* — 34a’c* — 6a’c?
—646a°c* — 58a%c? + 27a'c® — 54a5cP),

bss = 9a(a® — 2)A%c* (=576 — 576a® + 32¢* — 24a*c® + 96a’c?

+8a%c? — 3a’c* + 15a'c?).

By the same argument as in the last section, it is sufficient to prove that, for any

a and c, the coefficients of (1.6.7) can not simultaneously be identically zero on V.

Case 1. g=0on V. In thiscase,t = ¢’ =0o0n V . and (1.6.7) becomes

(1.6.8) bo + byu + byu? = 0.

where

bo = (a® — 2)%c*(8 — a®c?), b

Also it is easy to compute

P = 3acu Q = (2 - a®)cu, and D = —6u.

We will prove b;, i = 1,2, 3, can not be zero simultaneously.
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Subcase 1.1. a? = 2. By Pa = Q) — D, we have 3acua = 6u , i.e.,
2
(1-6.8) o= — =

by (1.6.1), we have A = constant on V. But 8 = —& = —1. Fro m(1.3.3), we get

el‘

3a + a) = 0. By using (1.6.8), this implies
(1.6.9) A= —-.

Putting (1.6.8) into (1.6.1) gives ¢ + 11 = 0. This is a contradiction.

Subcase 1.2. a’c® = 8 but a? # 2. In this case, put a®> = & in b; We have

b = %(512 +192¢% + 24c* + )
C

which is never zero.

Case 2. There exists z € V such that g(z) # 0. Thus we can find an open subset V'
of V such that g(y) is nowhere zero on V'. We will prove that by, b;, b3s and bzs can

not be zero simultaneously on V'.

To this end, we assme by = b; = bzs = bzg = 0. Then by b35 = 0, we have
(1.6.10) a® =2,
or

(1.6.11)  —576 — 576a% + 32c® — 24a’c® + 96a‘c? + 8a®c? — 3a’c* + 15a’c* = 0.
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Subcase 2.1. If (1.6.10) is true, we put a? = 2 back to bzs = 0, it gives
324(11 + ¢*)(32 — 8¢* — ¢*) = 0.
Thus 2 = ‘—8—7‘58—@ ~ 2.9282. On the other hand, put a? = 2 in b; = 0 gives
6(—288 + 120c* + 13¢*) = 0,

so ¢ = %‘@ ~ 1.9767. This is a contradiction.

Subcase 2.2. if (1.6.11) is true. From b; = 0, we have
(1.6.12) 576 + 576a% — 72a%c® — 128a*c? — 8a®c? — 9a’c* — 15a'c! = 0.

Then (1.6.11)+(1.6.12) gives 4c*(—8 + 24a® + 8a* + 3a*c?) = 0, then

2 8(1 — 3a® — a“)'
3a?

Put the above into (1.6.12) and bzs = 0, we have

(1.6.13) 3 — 34a” — 13a* + 10a® + 4a® = 0,

and

(1.6.14) 16 — 309a? + 1768a* + 520a% — 992a® — 293a'® + 144a'? + 46a'* = 0.

Solving (1.6.13), we have

a’® ~ 0.08523 or a® ~ 1.8009
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Putting the above back into the left hand side of (1.6.14) to

LHS of (1.6.14)~2.7704 or —15.3325

respectively. Both give contradictions. O



CHAPTER 2

HYPERSURFACES WITH
CONSTANT MEAN
CURVATURE SATISFYING
CHEN’S EQUALITY

In this chapter, we will completely classify hypersurfaces in real space forms with

constant mean curvature satisfying Chen’s equality.

2.1 A Remannian Invariant and Chen’s Equality

According to the well-known Nash imbedding theorem, every Riemannian n-manifold
admits an isometric immersion into the Euclidean space EM»+1)(3n+11)/2 In general,
there exist enormously many isometric immersions from a Riemannian manifold into
Euclidean spaces if no restriction on the codimension is made. Associated to sub-
manifold of a Riemannian manifold there are several extrinsic invariants beside its
intrinsic invariants. Among intrinsic invariants, sectional curvature and scalar curva-

ture are the most fundamental ones. On the other hand, among extrinsic invariants,

28



29

the mean curvature function and shape operator are most fundamental.

One of the most fundamental problems in submanifold theory is to obtain simple
relationships between the main extrinsic invariants and the main intrinsic invariants of
a submanifold and to find applications. Many famous results in differential geometry
such as the isoperimetric inequality and Gauss-Bonnet’s theorem, among others, are

results in this direction.

Let M™ be an n-dimensional Riemannian manifold. In 1993, Chen introduced an
important Riemannian invariant §y of M™ by dx(p) = 7(p) — inf K(p), where inf K
is the function which assigs to each p € M" the infimum of K (7), where 7 runs over
all 2-planes in T,M and 7 is defined by 7 = 3, ; K(e; A ¢;), where {e;,...,e,} is
an orthonormal basis of T,M™. For n = 2, this invariant vanishes trivially. If M"
is any submanifold immsersed in an m-dimensional Riemannian space form R™(¢) of
constant sectional curvature ¢, Chen proved in [7] a sharp inequality involving Chen

invariant §p; and the squared mean curvature H?, namely

n?(n — 2)

(2.1.1) om < 2 1) H?+ (n+1)(n - 2)e.

Inequality (2.1.1) is known as Chen’s inequality and has some important appli-
cations, for example, it gives rise to the second Riemannian obstruction for a Rie-
mannian manifold to admit a minimal isometric immersion into a Euclidean space.
It also gives rise to an obstruction to Lagrangian isometric immersions from compact
Riemannian manifolds with finite fundamental group m; into complex space forms

(see [9] for details).

Since (2.1.1) is a very general and sharp inequality, it is natural and important to

investigate and to understand submanifolds in a Riemannian space form which satisfy
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the equality case of Chen’s inequality, which is known as Chen’s equality:

n?(n — 2)

(2.1.2) | Sap = 2 =T

H? + (n+1)(n — 2)e.

Submanifolds satisfying this basic equality were studied recently in many papers
(cf. for instant, [7],[8],[9],[11),[12],[14],(19],[22],[23]). In this respect, we would like to
point out in particular that 3-dimensional totally real submanifolds satisfying Chen’s
equality in the nearly Kahler 6-sphere S¢(1) have been completely classified in [23]
by F. Dillen and L. Vrancken; and minimal hypersurfaces in non-flat Riemannian
space forms satisfying Chen’s equality were classified completely in [14] by B. Y.
Chen and L. Vrancken; roughly speaking they proved that a non-totally geodesic
minimal hypersurface of S"*1(1) satisfies equality (2.1.2) if and only if it is a tubular
hypersurface with radius 5 about a 2-dimensional minimal surface in S"*!(1) and a
non-totally geodesic minimal hypersurface of the hyperbolic (n + 1)-space H"*!(—1)
satisfies equality (2.1.2) if and only if it is a “suitable tubular hypersurface” about a

minimal surface in the de Sitter space-time SP*!(1) (cf. [14] for details).

We will investigate the most fundamental case; namely hypersurfaces satisfying
Chen’s equality. We will deal with hypersurfaces with constant mean curvature in
this chapter and conformally flat hypersurfaces in the next chapter. Since Chen’s

equality is trivial when n = 2, we will consider n-dimensional submanifolds for n > 2.

2.2 Main Results

Theorem 2.1 A hypersurface M™ (n > 2) of a Euclidean (n + 1)-space E**' with
constant mean curvature satisfies equality (2.1.2) if and only if either M™ is minimal
or M™ is an open portion of a spherical hypercylinder R x S™!(r).

Theorem 2.2 Let M™ (n > 2) be a hypersurface with constant mean curvature in the
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sphere S™*1(1). Then M™ satisfies equality (2.1.2) if and only if one of the following

two cases occurs.
1. M™ is a totally geodesic hypersurface.

2. There is an open dense subset U of M™ and a non-totally geodesic, isometric,
minimal immersion ¢ : B> = S™*!(1) from a surface B? into S™*'(1) such that

U is an open subset of the unit normal bundle NB? defined by

NpB? = {€ € Ty(» S™' (1) < €,€ >=1 and < &,4,(T,B%) =0},

Let Ef*? denote the (n + 2)-dimensional Minkowski space-time with the Lorenzian
metric g = —dz? +dz3 +---+dz?_,. Recall that the unit hyperbolic space H**!(—1)
and the unit de Sitter space-time S}*!(1) are isometrically imbedded in E}*? respec-

tively in the following standard ways:

H™"™ ! (=1) = {x = (z1,...,Tns2) € EJT?| <x,x >= -1},

StH(1) = {x e E*?| < x,x >=1}.

Theorem 2.3 Let M™ (n > 2) be a hypersurface with constant mean curvature in the
hyperbolic space H"*!'(—1). Then M™ satisfies equality (2.1.2) if and only if one of

the following three cases occurs.
1. M"™ 1s a totally geodesic hypersurface.

2. M™ is a tubular hypersurface with radius r = coth™ (v/2) about a 2-dimensional

totally geodesic surface of H"*'(—1).

3. There is an open dense subset U of M™ and a non-totally geodesic, isometric,

minimal immersion ¢ : B2 — ST*! from a surface B? into the de Sitter space-
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time SP*'(1) such that U is an open subset of the unit normal bundle NB? of

B? defined by

NoB? = {€ € Ty St (1)] < €,€ >= -1 and < €, 6.(T,B?) >=0}.

2.3 Prelimilaries

Assume that M™ is a hypersurface in real-space-form R"*!(¢), e = 1, 0, or -1. We

shall make use of the following convention on the ranges of indices:

1<A,B,C<n+l; 1<4,5,k < 3<a,B,y<n

Denote by A = A¢ the shape operator of M™ in R"*!(¢) with respect to a unit normal
vector £ and by h the second fundamental form M™ in R**(e). Let A, Ay, ..., A be
the eigenvalues of A with respect to orthonormal eigenvector field e,,e,, ..., €, ie.,

we have

(231) A(:‘,' = /\,‘6,‘.

If M™ satisfies the Chen’s equality (2.1.2), then, by rearranging e, es, ..., €, if neces-

sary, we have ([7])

(2.3.2) A =a, A2 = p—a, Aa = I,
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Let w!,w?, ...,w™ denote the dual frame of e, ey, ..., ,. Then Cartan’s structure equa-
tions give

(2.3.3) dw' = —w; AW, dw;- = wi A w;-c + (€ + Aidj)w' AW,

where (wi) are the connection forms. From (2.3.3) and Codazzi equation, we have

eid; = (A — X))l (e,
(2.3.4) i = v (e)
(A = Aws(e) = (\i — M)wi(e))
for distinct ¢, j, k.
Let T}, be defined by V..e; = ¥}_, ['};ex, where V is the Levi-Civita connection

on M™. Then we have
k _ k. kE _ k(,. E _ i
wi—'zrzjwa Fij—wi(ej)’ I =T
k

In this way, (2.3.4) becomes

6,‘)\"—' )\,—)\F:
(2.3.5) 1= T
(A7 = A)Th = (M = AT,

for distinct 7,7,k. Let H denote the mean curvature of M™ in R"*!(¢). Then

H=n—1

n

In the following, Let V' denote the open subset of M™ on which M has exactly

three distinct principle curvatures, i.e.

(2.3.6) V = {z € Mla(z) # 0, a(z) # 1 a(z) # g},

where a and p are given by (2.3.2). From (2.3.2) and (2.3.5) we obtain the following
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lemma.
Lemma 2.1 Let M™ be a hypersurface in a Riemannian space form R**!(e). If M™

satisfies (2.1.2), then on V we have

la = 5 Aa, FLQ# Aa, r r 0 a=/0
e37) {ra =2t g oo, o -alnd)
F:ln = u6202aa F?ﬂ = Ca(#a— a), F:xl - :a_aa
Wl = €a_ 1 al, , e a
Lw—a L—a L—a .
(2.3.8) { wy = ue_;azawl + elﬂ(u_;:)uﬂ + p _(_12(1 é/\aw",
| wf, — A ea(pa— a) , ez/twa,

where A, =T,
Proof. 1t is clear by (2.3.5). O
We also need the following lemma.
Lemma 2.2 Let M™ be a hypersurface in R**!(¢). If M™ satisfies equation (2.1.2),

then on V we have

iy €all (eqa)? B 2aA? B (e1p)?
(2.3.9) el(” 2 e°(#—a) (p—a)? p-2a (p-—a)?
3. ((620_)(26’;;1 e lg: ega)ly, +ap + ¢,
€11 alq aon(faa) €a (a - /L)Ao
) e ) - T sma
(2.3.10)

ea(p —a) (e1p)(e2p) _ eila — p)(ean) 1 & 8
- 2a (1 —a)a (1 — 2a)a u—aazﬂ, g
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ex( al, ) = e €a ) — (eqa)(e20) _ phaei(p —a)
(2.3.11) H—a n—a (w—a)(p—2a) (p—a)(p-2a)
0. (/l - 20)1\061# (e2a)ea(# a) n g0 aAﬂ ,
(k—a) — a(u—20) o;j u— P P Fal)

Proof. By applying the second Cartan’s structure equation and by using Lemma 2.1,
we may compute dw, in two different ways. Formulas (2.3.9), (2.3.10) and (2.3.11)
are obtained by comparing the coefficients of w! A w?®,w? A w®, and w! A w? of dw],
respectively. O

Similarly, by computing dw$ in two different ways and by comparing the coeffi-
cients of w! A w®, w? A w®, w! A w? of dw?, respectively, we obtain
Lemma 2.3 Let M™ be a hypersurface in a Riemainnian space form R"*!(e). If M"

satisfies equality (212), then on V we have

o eala—p) 2PN (eali—a)? _ (ean)?
. o) o T Ll 2n)
e _am—alar) ~eslw=a)s o N,

-au-20) % o e tleete

Ly Maa pma o (o)
- ) et = L el = )
" (e2a)(e1p)  aMaesa Z ASTE

T -d-20) w-ok-20 [
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alp—a), _\  phaesa  (e(n—a))(ea(p - a))
s al A P Y a(u — 20)
< (1 —2a)As(e2p) _  (er(p—a))(ead) & s _es(p—a) g
N 7 B R D

2.4 Proof of Theorems 2.1, 2.2 and 2.3

Let M™ be a hypersurface with constant mean curvature H in a Riemannian space
form R**'(e) (n > 2,e = 1, -1, or 0 ) which satisfies Chen’s equality (2.1.2). If M™ is
not minimal, then 4 = -5 H is a nonzero constant. In this case, (2.3.9) and (2.3.12)

reduce respectively to

2 _ 2aA% (- a)®

(a — p)(eqeqa) — 2(eqa)? = — e + (e + pa) (1 — a)?
(2.4.1) n
— Y (esa)l50 (1 — a),
B#a
R 20°A, € —a))a?
a(eqeqa) — 2(eqa)’ = =) 2a) + (e + (1 —a))
(2.4.2) n
+a Y (ega)l?,.
B#a

From (2.4.1) and (2.4.2) we obtain on V that

2aA?(u? — 3pa + 3a?)
(1 —a)(u — 2a)

€a€al = — + (1 — 2a)(a® — ap — €)

n

(2.4.3) + ) (esa)T5,,
a#f

(eat)’ = ~a*(A2 + (1 - 0)?) — Za(u — a).
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Since p is constant, (2.3.13) reduces to

Ao(eqa)(p? — 3ap + 20%) &
2.4.4) eala = + Y AgIE .
( (-a-2) T2

Now, by applying Lemma 2.1 and Cartan’s structure equations, we can compute
dw!l and dw? in two dofferent ways. Afetr that, by comparing the coefficients of

w! A w? and w? A w? with 8 # o in the formulas of dw! and of w2 so obtained, we

find respectively the following two formulas:

2(eqa)(ega)  2a(p—a)AoAp &
a = F‘Y ’
es€ad + i —a + % -,2:23(87(1) op
2(eqa)(ega) 2a3AaAp n
€g€al — + =) (eqa)l25.
: A TR P

By taking the difference of these two equations, we obtain on V' that
(2.4.5) (eaa)(ega) = —a®AqAg, a# f.
Now, by applying (2.4.3), we may also obtain

~(eaa)? = *(A% + (u - a)?) + 5a(u - a),

~(e50)” = a*(A} + (u — )*) + Sa(u — a).

By taking the difference of these two equations, we get

(2.4.6) (eaa)? — (ega)? = a®(A4 — A2).
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Combining (2.4.5) and (2.4.6), we obtain, on V/,

(2.4.7) (eqa)? = a?A%, a # 0.

Case (i): ¢ = 1, R**!(1) = S"*!(1). If M" is non-minimal, follow the exact
arguments as in Case (iii) by replacing ¢ = —1 by € = 1, we know that a is constant
on each component of V. Therefore (2.4.7) implies A, = 0. Then the second identity
of (2.4.3) implies that V is an empty set. Thus, M™ is an isoparametric hypersurface
of R"*1(1) with at most two distinct principle curvatures given either by A\; = 0, Ay =
we = Adp=porby Ay =X = %u, A3 = ... = A\, = p. Both cases are impossible
according to a well-known result of E. Cartan [5]. Consequently, M™ is minimal
in S"*1(1). Let U denote the open subset of M™ consisting of non-totally geodesic
points. Then U is an open dense subset of M™. Now, by a result of [7], U has relative
nullity n — 2. Thus, by applying a result of Dajczer and Gromoll (Lemma 2.2 of [18]),
the Gauss image B? of U is a minimal surface in the unit shpere. Consequently, U is
an open subset of unit bundle NB? defined in Theorem 2.2.

Case (ii): € = 0, R**!(0) = E**!. If M™ is non-minimal, then the second equation
in (2.4.3) implies @ = 0 or @ = p on V which contradicts the definition of V. Thus
V is an empty set. Hence, M is a non-minimal isoparametric hypersurface with at
most two distinct principle curvatures given either by A\; = 0,A, = ... = A, = p or
by A\ = A = %u, A3 = ... = Ay = p. It is well-known that the first case occurs if
and only if M™ is an open portion of a spherical hypercylinder R x S"~!(r) for some
r > 0. It is also known that the latter case cannot occur.

Case (iii): ¢ = —1, R"*!(-1) = H™*!(-1). First we assume that M™ is non-
minimal. We claim that the function a is constant on each component of V. We

divide the proof of this claim into three cases.
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Case (iii-1): n > 5. From (2.4.7) we have

(2.4.8) (e3a)? = (e4a)* = ... = (ena)? = a?A2, a=3,..,n.

Without loss of generality, we may assume e;a = al;. By using (2.4.5), we have

esa = —al4 and esa = —aAs which imply

(64(1) (650.) = (12A4A5.

Thus eqa = A, = 0o0n V by (2.4.5) and (2.4.8). Hence, by applying the first equation
in (2.4.3), we obtain a® —au — e = 0 on V. Since p is constant, this implies that a is
constant on each component of V.

Case (iii-2): n = 4. from (2.4.5) and (2.4.7) we may assume, without loss of
generality, that esa = aA4 and eqa = —aA3. By differentiating the second equation
of (2.4.3) with respect to e3, we get

(2.4.9) —2(esa)(esesa) = 2(esa)a(A3 + (1 — a)?) + a®(2A3(e3A3)

—2(p — a)(esa) + 5(u — 2a)esa.
On the other hand, since A4 = e3(Ina), (2.4.4) yields

(esa)s (1 — 3o +40%) _ esa,
A; = —T'5;.
R PR PR

Substituting this into (2.4.9), we find

e — (ong)( 2203 (4? — 3ap + 30%)
(2410) ( 30)(63630) - ( 3(1)( (p’ _ a)(ﬂ _ 2(1)

+§(ll — 2a) — (640)F§3)-

+a(p —2a)(p — a)

If e3a does not vanish identically on V, there exists an open set W C V such that
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esa is nowhere zero on W. Thus, on W, (2.4.8) becomes

2aA3(u? — 3ap + 3a?)
—eze3a =
(2.4.11) (1 —a)(p — 2a)
€
+Z(” ~ 2a) - (esa)T3,.

+a(p - a)(p - 2a)

Combining (2.4.3) and (2.4.11), we obtain p = 2a which implies that a is ocnstant on
W. This contradicts the assumption that eza # 0 on W. So e3a =0 on V. A similar
argument yields eqa = 0 on V. Thus by applying (2.4.5), we know that Aj; vanishes
identically on V. Hence, by applying (2.4.3) again, we have a*> —ap+ §=0onV.
Consequently, a is constant on each component of V.

Case (iii-3): n = 3. From (2.4.3), we have

—2(e3a)(ezeza) = a?(2A3(e3A3) — 2(eza)(u — a))

+2a(e3a) (A3 + (1 — 0)?) + £(e3a) (1 — a).

By using (2.4.4), this equation becomes

B orend) = (ena 4aA%(u? — 3ap + 3a?)
2412) slenaerese) = (o, o=
+2a(n — a)(n — 2a) + 5 (1 — 2a) }-

We claim that eza = 0 on V. Since, otherwise there exists an open subset W of

V such that esa is nowhere vanished on W. Then, on W, (2.4.12) becomes

4aA2(u? — 3ap + 3a?)

(2.4.13)  —2(esesa) = (n— a)(p — 2a)

+ 2a(p — a)(p — 2a) + %(u — 2a).

Combining this with the first equation in (2.4.3), we conclude that a is constant onW

which is a contradiction. Therefore, e;a vanishes identically on W. Consequently,
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from the second equation of (2.4.3), we obtain
(2.4.14) a’A2 = —a*(p —a)? — %a(u —a).

On the other hand, from the first equation in (2.4.3), we have

_ 2aAj(4® — 3ap + 3a?)
(1 — a)(p — 2a)

(2.4.15) + (1 — 2a)(a® — ap — €) = 0.

(2.4.14) and (2.4.15) imply that a satisfies a polynomial equation of degree 4 with
constant coefficients on V. Hence, a is constant on each component of V.

Therefore, we know that, for any dimesion n > 2, every component of V is an
isoparametric hypersurface of the hyperpolic space. On the other hand, according to
a well-known result of Cartan, every isoparametric hypersurface of H"*!(—1) has at
most two distinct principle curvatures. Therfore we conclude that each component of
V has at most two distinct principle curvatures. This contradicts the definition of V.
Thus, V must be the empty set. Consequently, M" is an isoparametric hypersurface
of H"*!1(—1) with exactly two distinct principle curvatures. Therefore, by applying
Cartan’s classfication theorem of isoparametric hypersurfaces in hyperbolic spaces,
M™ is an open set of the Riemannian product of H2(—%) and S™~%(1) isometrically
imbeded in the hyperbolic (n + 1)-space in the standard way. Such a hypersurface
is a tubular hypersurface with radius 7 = coth™'(v/2) about a 2-dimensional totally
geodesic surface (cf. [8]).

Now, assume M" is a non-totally geodesic minimal hypersurface. Let U denote
the open subset of M™ consisting of non-totally geodesic points. Then U is an open
dense subset of M™. Now, by a result of [7], U has relative nullity n — 2. In this
case, by applying an argument similar to-spherical case, we may conclude that the

Gauss image B2 of U is a minimal surface in the unit de Sitter space-time SP+!(1).
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Consequently, U is an open subset of the unit bundle N B? defined in Theorem 2.3.

The converses are easy to verify. O



CHAPTER 3

COMFORMALLY FLAT
HYPERSURFACES SATISFYING
CHEN’S EQUALITY

In this chapter, we will study conformally flat hypersurfaces satisfying Chen’s equality
(2.1.2) in Riemannian space forms. By utilizing the Jacobi elliptic functions and the

Theta function we obtain the complete classification of such hypersurfaces.

3.1 Main Results

In order to state our results, we recall three families of Riemannian manifolds, P}*(a >
1),Cr(a > 1),D?(0 < a < 1) and the two exceptional spaces F™, L", first introduced
by Chen in [10].

Let cn(u, k), dn(u, k) and sn(u, k) denote the three main Jacobi’s elliptic functions
with modulus k. The nine other elliptic functions nd(x, k), nc(u, k), ns(u, k), sc(u, k),
cd(u, k), ds(u,k), cs(u, k), dc(u, k), sd(u, k) are defined by taking reciprocals and
quotients. For example, sd(u, k)= sn(u, k)/dn(u, k), nd(u, k)=1/dn(u, k) (cf. [24]

and the next section for details).
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We define

(3.1.1) Ue = aken(az, k), k= ——— a>0,

(3.1.2) Ne = %dn(%z,k), k= ﬂ 0<ac<l,

Vaz+1’

vaz+1
V2a ’

(2.1.3) Pa = aken(az, k), k= a>1.

Let S"*!(c) and H"*!(—c) denote the n-sphere with constant sectional curvature
¢ and the hyperbolic n-space with constant sectional curvature —c, respectively. For

n > 2, P} D7 and C} are the Riemannian n-manifolds given by the warped prod-

uct manifolds I x,, S"“(“";‘),IR X 1o H"‘l(#) and I x,, S"“‘(ﬂi;—l) with warp
functions 4,7, and p,, respectively, where I denote the open interval on which the
corresponding warp function is positive. The two exceptional spaces F™ and L" are
the warped product manifolds R x,, 5 H n-1(-1) and R Xsech(z) R"~!, respectively.

D7, F™ and L™ are complete Riemannian n-manifolds, but P} and C are not com-
plete. Topologically, S™ is the two point compactfication of both P}! and C?. From
[13] we know that the Riemannian metrics defined on P} and C} can be extended
smoothly to their two point compactifications S™. We denote by 15;' and (f{; the sphere
S™ together with the Riemannian metrics given by the smooth extensions of the met-
rics on P} and C7 to S™, respectively. We remark that P, D7, C? are indeed isometric
to the wraped products n-manifolds I x;, S*~1(1),I xy, H*"}(-1),I x5, S*~!(1) with
warped functions 2p,/(a® + 1), 2u,./(a® — 1),2n,/(a* + 1), respectively.

Let A%(a > 1),B?(0 < a < 1),G*, H*(a > 0) and Y*(0 < a < 1) denote
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respectively the following warped product manifolds:

e 11 -
lRx\/¢17—lcoshzs l(l)a (—5’5) choszS 1(1),
R xCOShI]En—l’ R x\/mcosthn—l(_l)v (0100) X /T=a%sinhz Sn_l(l).

When n = 2, the second factor S*~! or H"~! in each of the wraped product manifolds
will be replaced either by S'(1) or by R. The geometry of A2, G? and H? is similar in
the sense that one can be obtained from the others by applying some suitable scalings
on the first factor R.

Clearly, A%, G", H? are complete Riemannian manifolds. Topologically, S™ is the
two point compactification of B]. As for P} and C7, the warped metric on B7 can be
extended smoothly to its two point compactification, a fact that follows from (3.1.6).
We denote by B? the shere S™ together with the Riemannian metrics on S™ extended
from the metric on BJ.

For n > 2 and any real number a > 0, there is a well-known Lagrangian immersion

from the unit n-sphere S™ into a complex Euclidean n-space C* defined by

a

(314) wa(y01 Y1y -y yn) = iTy_g(yla <oy Yn-YoVY1, --- yoyn)a

where y2 +y2 + ... + y2 = 1. The immersiom w,, due to Whitney, has a unique self-
intersection point w,(—1,0,...0) = we(1,0....,0). The S™ together with the metric
induced from Whitney’s immersion w,, denoted by W2, is called a Whitney n-sphere.
In this chapter, we first sharpen a result of [22] (Propositon 2) to the following
Theorem 3.1. Let x : M™ — E**!(n > 2) be an isometric immersion of a confor-
mally flat n-manifold into a Fuclidean (n+1)-space. Then it satisfies Chen’s equality

(2.1.2) if and only if one of the following four cases occurs:

1. M™ is totally geodesic.
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2. M™ is an open portion of a spherical hypercylinder S™™! x R.
3. M™ s an open portion of a round hypercone.

4. n =3 and M3 is an open portion of a Whitney 3-sphere W2 for some a > 0
and, up to rigid motions, the immersion x : W2 — E! is given by
(3.1.5)
1 V2 V2 V2 V2

x(z, 1,92, ¥3) = (5/0 Sdz(Tx)dx,aylsd(Tx),ayzsd(Tx),aygsd(Tx)),

where y? +y2+y2 = % and k = % is the modulus of the Jacobi elliptic functions.

Our main results in this chapter are the following.
Theorem 3.2. Let x : M™ — S"*1(1) C E"*2(n > 2) be an isometric immersion of
a conformally flat n-manifold. Then it satisfies Chen’s equality (2.1.2) if and only if

one of the following three cases occurs.

1. M™ is an open portion of S™(1) and the immersion x : M™ — S™"*1(1) is totally

geodesic.

2. M™ is an open portion of B? — S"+1(1) C E**? given by
(3.1.6) x(z,y1,.-,Yn) = (sinz,acosz, V1 — a?y; cosz, ..., V1 — a%y, cos x)

withy} +y3 + ... +y2 = 1.
3. n =3, M3 is an open portion of 133 for some a > 1 and, up to rigid motions,

the immersion x : P> — S*(1) C E® is given by

1 )
(3.1.7)  x(z,y1,y2,¥3) = %(ylcn(am),ygcn(am), yscen(azx), ycos X, gsin X),

where j = \/azk”—cnz(a:v),yf +yr+y: =1,y = sn‘l(aﬁ,:,z), and k =

Va2 —1/(v/2a),k' = VaZ +1/(V/2a) are the modulus and the complementary
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modulus of Jacobi’s elliptic functions respectively, and

R
X ==
PR

(In ggzz :_ 3; + 2aZ(7)x)),

where ©O(u) = O(u, k) is the Theta function and Z(u) = Z(u,k) is the Zeta

function.

Theorem 3.3. Let x : M™ — H"!(-1) C E;*?(n > 2) be an isometric immersion
of a conformally flat n-manifold. Then it satisfies Chen’s equality (2.1.2) if and only

if one of the following nine cases occurs.

1. M™ is an open portion of H"(—1) and the immersion x : M™ — H"*1(-1) is

totally geodesic.

2. M™ is an open portion of A} for some a > 1 and, up to rigid motions, the
immersion x : A? = H"*'(—1) C E}*? is given by
(3.1.8)
x(Z, Y1, ..., Yn) = (acosh z,sinh z, va? — 1y, coshz, ..., va? — 1y, cosh x)

withy} +yi+ ... +y2=1.

3. M™ is an open portion of G™ and, up to rigid motions, the immersion x : G* —

H™1(—1) C E}*? is given by

2 2
x(z, ug, ..., up) = ((1 + W) cosh z,

(3.1.9) ) )
+ ... .
%ﬁﬁ cosh z,sinh z, u; cosh z,, ..., u, cosh ).

4. M™ is an open portion of H} for some a > 0, and, up to rigid motions, the
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immersion x : H' — H™1(—1) C E}*? is given by
(3.1.10)
X(Z, Y1,y Yn) = (Va? + 1y, cosh z, ..., Va? + 1y, cosh z, a cosh z, sinh 1)

withy? —y2 — ... —y2 = 1.

. M™ is an open portion of Y for some 0 < a < 1, and, up to rigid motions, the
immersion x : Y — H""'(=1) C E}*? is given by
(3.1.11)

X(Z,91, -, Yn) = (coshz,asinh z, V1 — a2y, sinhz, ..., V1 — a2y, sinh z)

withy? +y2 +...+y2=1.
. n =3, M™ is an open portion of F3 and, up to rigid motions, the immersion

x: F3 - HY(-1) C E is given by

(3.1.12) x(z,u,v) = (V2 cosh ucosh v, V2 cosh usinhv, v2sinh u, cos z, sin z).

. n =3, M™ is an open portion of L* and, up to rigid motions, the immersion
x: L¥ - HY(-1) C E is given by
(3.1.13)

1 1
x(z,u,v) = sechz(z? + u® 4+ v? + cosh® z + Z,:ﬂ +u?+v? 4 cosh’z — 7w v).

. n=3,M" is an open portion of C’g for some a > 1 and, up to rigid motions,

the immersion x : C3 — H4(—1) C E is given by

(3.1.14)  x(z,y1,y2,¥3) a—lk—,(é cosh Y, £sinh Y, y;cn(az), yocn(az), ysen(azx))
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with y? + y3 + y3 = 1, where ¢ = \/a2k’2 + cn?(azx),

yo k1, 6z-9

kK~ 2 Oaz+1v) az(v)e,

where v = sn~!(1/(ak?)), k = Va2 +1/(v/2a) and k' = Va? —1/(\/2a).

9. n = 3, M™ is an open portion of D3 and, up to rigid motions, the immersion
x: D3 - HY(-1) C E is given by x(z,u,v) =

(3.1.15)
1

o (kdn(ic-x) cosh u cosh v kdn(k z) cosh usinh v, kdn(%z) sinhu, pcos Z, psin Z),

where k = V2a/V1+a? and k' = V1 -a2/V1+a? v = snY(k/a), p =
V/k2dn?(2z) — a2k, and

V)
=
o~
[
yb
2

CD
~~
e |xIe

+
2
>
N
2
8

8 H
3,
|
ﬁ
—

3.2 The Jacobi Elliptic Functions, Theta Function

and Zeta Function

We review very briefly some known facts on Jacobi’s elliptic functions, Theta function
and Zeta function for later use (see [1], [24] or [26] for details).

Let 0 be the temperature at time ¢ at any point in a solid material whose con-
ducting properties are uniform and isotropic. If p is the material’s density, s its
specific heat, and k its thermal conductivity, @ satisfies the heat conduction equation:
kV?20 = 060/8t, where k = k/sp is the diffusivity. In the special case where there is

no variation of temperation in the z- and y-directions, the heat flow is everywhere
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parallel to the z2-axis and the heat equation reduced to the form:

0’60 96

(3.2.1) Hz;;a = E;z,

6 = 6(z,1).

Consider the boundary conditions: (0,t) = 6(w,t) = 0 and 6(2,0) = 7é(z — 7/2)
for 0 < z < m, where §(z) is Dirac’s unit impulse function. Then the solution of the

boundary value problem is given by

(3.2.2) 0(z,t) =23 (~1)"e~ @+ "t sin(2n 4 1)z.

n=0

—4kt

By writing e = ¢, the solution of (3.2.2) assume the form

(3.2.3) 01(z,q) =23 (=1)"¢" /2 sin(2n + 1)z,

n=0

which is the first of the four theta functions. For simplicity, we shall often suppress
the dependance on gq.

If one changes the boundary conditions to 39/0z = 0 on z = 0 and z = 7w with
6(z,0) = w6(z — n/2) for 0 < z < 7, then the corresponding solution of the boundary

value problem of the heat equation (3.2.1) is given by

o o)
(3.2.4) 0a(z) = 64(z,q) = 1+ 23 (=1)"¢"" cos 2nz.

n=1

The theta function 6, (z) of (3.2.3) is periodic with period 27. Incrementing z by

%w yields the second theta function:

T

(o o]
5 q) =23 "2 cos(2n + 1)z

n=0

(3.2.5) 02(2) = 02(2,9) = 0, (2 +
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Similarly, incrementing z by § for 64 yields the third theta function:

(3.2.6) 03(2) = 03(2,q) = 64(z + -72[, g)=1+2) g’ cos 2nz.

n=1

The four theta functions 6,65, 03,0, can be extended to complex values for z and
g such that |g| < 1.

The elliptic functions snu, cnu and dnu are defined as ratios of theta functions:
(3.2.7) sny = —————=, cnu = dnu =
where z = u/6%(0). Define parameters k and k' by

k=03(0)/65(0), K =065(0)/65(0)

which are called the modulus and the complementary modulus of the elliptic function.
k and k' satisfy k2 4+ k2 = 1. When it is required to state the modulus explicitly, the
elliptic functions of Jacobi will be written sn(u, k), cn(u, k), dn(u, k).

The elliptic functions snu, cnu and dnu satisfy the following relations:

(3.2.8) sn?u + cnu =1, dn?u + k%sn’u = 1, k%cn?u + k" = dn?u,

2snucnvdnv

(3.2.9) sn(u +v) +sn(u —v) = 1 — k2sn2usn?v’

(3.2.10) sn’(u) = cn(u)dn(u), cn'(v) = —sn(u)dn(u), dn'(v) = —k?*sn(u)cn(u).
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The Theta function, ©(u), and the Zeta function, Z(u), are defined by

Tu

(3.2.11) O(u) = bs(5

) Zw)= e, K =1630)

and satisfy the following identities:

(3.2.12) Z(u 4 v) = Z(u) + Z(v) — k*snusnvsn(u + v),
(3.2.13) Z(u) = 2'((;‘)),

From (3.2.12) we have

(3.2.14) k*snusnv(sn(u + v) + sn(u — v)] = Z(u — v) — Z(u + v) + 2Z(v).

3.3 Two Lemmas

in ; n—1
Lemma 3.1. Let W} denote the warped product manifold I x?";“’(’?xvﬁ‘;) S*1(1),

with the warped product metric given by

a? V2 1
(331) g = dl‘2 + ?Sdz('?l', ﬁ)go,

where I denotes the largest open interval containing 0 such that sd(?m) 1s nowhere
zero on I and g is the standard metric on the unit (n — 1)-sphere. Then the Whitney
n-sphere W} s topologically the two point compactification of W:. Moreover, the
metric on WD is the smooth extension of the warped product metric on W;‘ to its two

point compactification.
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Proof. Let S™ denote the unit n-sphere with the north and south poles, {N, S}, being

removed and let {u,,uy, ..., u,} denote the spherical coordinate system on gn given
by

Yo = COS Uy, Y = sin u; cos ugy, ...
(3.3.2)

Yn—1 = SIN U;... SIN Uy, _1 COS Uy, Yn = SINU;...SIN Uy, _1 SIN U,,.

From (3.1.4) and (3.3.2) we know that the metric induced from Whitney’s immer-

sion w, on S™ is given by

2 2 cin2

_ a 9 a”®sin® u,
(3.3.3) 9= (1 + cos?u; ) + (1 + cos? u; )90
Put

u a

3.3.4 - / S S—T)
( ) z(w) 0 V1+-cos?t
Then

a W a a 1
3.3.5 z(uy) = ——/ ———dt = —sn"!(sinu;, —=).
Thus

. 2 1

(3.3.6) sinu; = sn(%x, %)

From (3.2.8), (3.3.3), (3.3.4) and (3.3.6), we obtain (3.3.1). This shows that W
is the S™ endowed with the metric induced from Whitney’s immersion w,. Hence,
topologically, the Whitney n-sphere W} is two point compactification of W: and,
moreover, the metric on W] is the smooth extension of the warped product metric

on Wa" to its two point compactification. O



54

The following Lemma is important in this chapter.
Lemma 3.2. Let M3 C R*(¢) be a conformally flat hypersurface of a Riemannian
space form R%(e) satisfying Chen’s equality (2.1.2), then M® has at most two distinct
principle curvatures.
Proof. Assume M? is a conformally flat hypersurface in a 4-dimensional Riemannian
space form R*(¢) satisfying equality (2.1.2).

Let L be the symmetric 2-tensor defined by
(3.3.7) L = —Ric + %g,

where Ric, 7 and g denote respectively the Ricc tensor, the scalar curvature and the

metric tensor of M3. Then by a result of H. Weyl we have
(3.3.8) (VyL)(Z,W) = (VzL)(Y, W),

for vectors Y, Z, W tangent to M3. Let A\, = a,\, = u — a, A3 = p be the principle
curvatures of M3 with their corresponding principle directions e, es, e3 given as in
Section 2.3. Thus, from the equation of Gauss and (3.3.8), we have

(A2 - A?)F{j = 3(e;:H)\; — jei7 — e\2,

(3.3.9) 2

(A7 = ADTS = (A7 = A)TE

i)

(3.3.10) T =3¢+ u® + ap — a?,

for distinct ¢, 7, k(Z, j, k = 1,2,3), where H = %u is the mean curvature function.
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Equation (3.3.9) and (3.3.10) imply
1 .
2(eipu) A — §e,~(;ﬂ +ap—a®) —eX) = (A = A% = —(A + Aj)e;.

Thus

1 1
(/\,' — )\j)ei/\j = (-—2/\]' +u+ Ea)e,-u + (5[1 - a)e,-a.

By taking (7, 5) equal to (1, 2), (2, 3) and (3, 1) respectively, we obtain

(3.3.11) (L — 2a)ea = aeyp,
(3.3.12) (£ — 2a)esa = (2p — 3a)eaps,
(3.3.13) pesa = (2pu — 3a)esp.

Let V denote the open subset of M3 on which M3 has exactly three distinct
principle curvatures, i.e., V is given by (2.3.6). Suppose that V is not empty. In
this remaining part of the proof, we shall work on this non-empty subset to obtain a
contradiction.

From (2.3.5) and (3.3.9) we obtain
(3.3.14) I =0,
for distinct i, j, k. Equation (3.3.14) implies

(3.3.15) wy = €20 wr + ek — a)wg.
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By taking the exterior derivative of (3.3.15) and by applying Cartan’s structure equa-
tions, we obtain the following formulas on V' by comparing the corresponding coeffi-

cients in the resulting formula of dwj.

el(el(l" - a)) — e €20 ) — (e20)? (e1(4 — a))?

2 2 2
(3.3.16) p-2 7 Tp-20" (- 2a) (1 — 2a)
= —————(632;3(_;‘(1) %) +a(p —a) + ¢,
€20 (e20)(esa) _  (esa)(ezps)
(3.3.17) ea(u 2 V-2 a-a)
(3.3.18) es(el(u - a)) Lalb=a(e(p—a) _ (epes(n—a)

a(p—2a) a(p-a)
By (3.3.13) we have A3 = I'2, = 0. Thus, by applying (2.3.10), (2.3.13), (3.3.11),

(3.3.12) and (3.3.13), we find

2p -3
(3.3.19) ereap = h%(elu)(egp),

(3:3.20) erean = s eon)ean)

On the other hand, by Lemma 2.1, (3.3.11) and (3.3.12), we have

e1, ea]p = —Tg1e1p + Tipeap = - - (e12)(e2p).

— 2a

Combining this with (3.3.19) and (3.3.20) we find

(3.3.21) (e1p2)(e2p) = 0. )
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Therefore, (eyp)(e2n) =0 on V.
If e # 0 on V, there exists an open subset W C V' on which e;u # 0. On W,

we have e = 0 identically. Moreover, from (2.3.11) and (3.3.17) we have

3a? — 3ap + 2u?

(3.3.22) (21 — 3a)esezp = — ” (e2p)(€3ps),
(3.3.23) (201 — 3a)eseqn = 25— 3:: = 22 o) ean).
Combining the above two equations we obtain
(3.3.24) (21 — 3a)[e, €3] = M(egu)(egu).
On the other hand, we also have
es(p — a)

e/l 3
[e2, €3] = Tozeap — Tpe3p = — €3 — %—eaﬂ = —;(6211)(63/1)-

Therefore, we find

(3.3.25) (21 — 3a)(eap) (e3p) = 0.

If (eap)(e3pe) # 0 on W, then on an open subset W’ of W on which (eqp)(esp) # 0,

we have
(3.3.26) 2p—3a=0.

Since 2 — 3a = 0 on W', (3.3.12) and (3.3.13) imply e;a = e3a = 0 on W'. On
the other hand, since e;u = 0 on W, (3.3.11) yields e;a = 0, Therefore, we obtain

eip = eop = egp = 0 which is a contradiction. Consequently, we must have ezt = 0
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on W, from which we obtain (e;a)(eza) = 0 on W by virtue of (3.3.13). Thus, by
(3.3.15) and (3.3.12), we obtain

(3.3.27) (21 — 3a)(eap)? = a(p — 2a)(ap + €).

On the other hand, from (3.3.11), we know that 2p — 3a # 0 on W. Thus, there
is an open subset W; C W on which 2 — 3a # 0. On W, we have (3.3.27) yields

a(ap + €)(p — 2a)’
2u — 3a ’

(3.3.28) (eap)* =

By using (3.3.12) and (3.3.28) we obtain

1
egeaft = W[—Gas — 15a*y + 38a%u? — 23?3 + dap?

+e(—16a® 4 27’y — 14ap® + 2u3)].

(3.3.29)

On the other hand, (3.3.12) and (3.3.16) imply that on W, we have

2u — 3a 12u% — 33au + 23a®
" eserps
(1 — 2a)? (1 — 2a)?

(e2p)” = —ap — a) €.

By using (3.3.28), the above equation becomes

1
—egeafl = m[lzaf’ —9a'y — 2a%u? — a?13 + 2ap°

+e(11a® — 13a?p + ap® + 243)].

(3.3.30)

Combining (3.3.30) and (3.3.29) we get

(3.3.31) 6a3 — 12a%u + 6au® + €(4p — 5a) = 0.



99

Differentiating (3.3.31) and applying (3.3.12) we find

(3.3.32) —30a3 + 72a%u — 54ap® + 124 + €(7a — 6p) = 0.

Also, by combining (3.3.31) and (3.3.32) we get

(3.3.33) 6a’u + 6u® — 12ap® + €(7u — 9a) = 0.

The above implies

o= 9¢ + 12u% + /81 + 48¢u?

3.34
(3.3.34) o

By substituting (3.3.34) into (3.3.32) we conclude that x must satisfy the following

polynormial equation with constant coefficients:
(3.3.35) 162 + 120p2 + 88eu? + 32u° = +/3(9 + 8epw + 8ut) (/27 + 16€p2

which is impossible since otherwise y is locally a constant function. Thus we must
have e, = 0.
Similarly, we may prove that e;u = 0, too. Hence, by applying (3.3.11) - (3.3.13),

we obtain
(3.3.36) e1a =ea =epu=eypu=0.

Now we claim that ez = 0 on V, also. In fact, otherwise there exists an open
subset O; C V on which e3u # 0.
If 24 — 3a = 0 on V, then (3.3.13) implies esa = 0. Thus, by (3.3.16), we get

a(p — a) + € = 0. Thus 2u? + 9¢ = 0 which is impossible.
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If 4 = 3a, then (3.3.13) yields pezu = 0, which is also a contradiction. Hence, we
have 2 # 3a and u # 3a on V.
Now, from (3.3.16) we get

(2u — 3a) (1 — 3a)
Hra(p — a)

(3.3.37) (esp)* = a(p — a) + €.

Thus there exists an open subset O, C O; on which

2 (a(p—a)+e)p’a(p - a)
(3.3.38) (est) = = s )

On the other hand, (2.3.9) and (3.3.13) imply

e (2u — 3a)eapr,  (esp)*(2p — 3a)?
(3.3.39) S s e R

=ap +e.

Equations (3.3.38) and (3.3.39) yield

_ p
(3.3.40) = (W= 3a) (25 - 3a)

+€(3a® — 15’ + 11ap® — 243)).

5 [6a° — 15a3u® + 11a®y® — 2ap*

Similarly, by applying (2.3.12), (3.3.13) and (3.3.38), we have

€€zl = E(2;1 — 3a)(p — 3a)?*[6a® — 30a*u + 4503 u® + 264 u°
(3.3.41) "

+5apu® + €(3a® + 6a’u — 10au® + 3u3)).

Summing the above two equations yield
(3.3.42) p?(u — 2a)[—24a* + 48a3u — 30a%u? + 6apu® + €(15a% — 15ap + 4u?)] = 0.

On the other hand, from (3.3.14), we know that the distribution F* spanned
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by ej, e, is integrable. Also, the distribution F spanned by ej is clearly integrable.
Therefore, there exists a local coordinate system {z;,z,,z3} such that e; = 9/,
where t = z3. Hence, by applying (3.3.36), we know that both a and u depend only
on t. Therefore, (3.3.13) yields

da
.3.43 — =2u — 3a.
(3.3.43) W = 2 3a
By solving (3.3.43) we obtain
_H -3
(3.3.44) a=g +Cu

for some constant C. By substituting the above into (3.3.42), we know that p must
satisfies a polynomial equation with constant coefficients. Therefore, e3x = 0 on O,
which is a contradiction.

Consequently, both x and a are constants on each component of V. Hence, by
(2.3.9), (2.3.12) and (3.3.16), we get ap = (u — a)p = —e which is clearly impossible.
Therefore, we know that V is an empty set. Hence, M* has at most two distinct

principle cuevatures. This complete the proof of the Lemma. O

3.4 Proof of Theorem 3.1

If x : M® — E'*! is an isometric immersion of a conformally flat n-manifold with
n > 2 which satisfies Chen’s equality (2.1.2). Then, by Lemma 3.2 and a well-known
result of E. Cartan and J. A. Schouten on confromally flat hypersurfaces (cf. p154 of
[6]), we know that M™ has a principle curvature with multiplicity at least n — 1 for
n = 3 as well as for n > 4. Thus, by applying (2.3.2), we know that either (i) the

principle curvatures of M™ are given by A\; = 0,A; = ... = )\, = p, or (ii) n = 3 and
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then the principle curvatures of M3 are given by A\; = Ay = p/2, A3 = u # 0.

If Case (i) occurs, M" is either totally geodesic, or an open portion of spherical
hypercylinder, or an open portion of a round hypercone (cf. [22]).

Now, we assume case (ii) occurs. Denote by U the open subset of M3 on which
the mean curvature function is nonzero. Then U is a non-empty open subset of M3.
We shall work on U unless mentioned otherwise.

From (2.3.5) we obtain

(3.4.1) I3, =A; =0, el = e =0, 33 =T3 =0.

Denote by F and F* the distributions spanned by {e;,e;} and {e3}, respectively.
By (3.4.1) we know that the integral curves of F* are geodesics and the distribution
F is integrable. Consequently, there exist local coordinate systems {z, u, v} such that
F is spanned by {9/0u,d/0v} and e; = /0.

From (3.4.1) we know that p depends only on z, i.e., p = u(z). Also, from (2.3.8)
and (3.4.1), we have

(3.4.2) wy = ——w', wi= w?.

Using the above we obtain

(3.4.3) Vs = %e,, j=1,2.

Therefore, each integral submanifold of F is an extrinsic sphere of E!. Hence, by
applying a result of Hiepko [21] (cf. also Remark 2.1 of [20]), we know that M3 is

locally the warped product I X ;(;) S?(1), where f(z) is a suitable warped function.



63

So, the metric of M3 is given by

(3.4.4) g = dz* + f*(x)go,

where go is the standard metric of S?(1). In particular, if we choose the spherical

coordinate system {6, ¢} for S?(1), we have

(3.4.5) g = dz® + f*(z)(d¢? + cos® pdb?).

Applying the above equation, we obtain

9 _ o _fo 8 f 0
Vear =" Vewm~Te V#9506
0 , 0 0 0
(3.4.6) V%G_é:‘ff P V%%——tanéia—g,
O _ ool 4 sinpeossl.
Vs%gé— ff cos ¢ax+sm¢cosq§a¢.

By computing dw} and by using (3.4.2) and Cartan’s structure equations, we find

(3.4.7) p'(z) +

Integrating once (3.4.7) yields
(3.4.8) 4p + pt = 4
a

for some real number a > 0.
Now, we claim that U is dense in M3. If it is not, then M3 — U has nonempty
interior. From the definition of U, we know that the squared mean curvature function,

p and p' vanish identically on the interior of M3 —U. On the other hand, (3.4.8) says
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that this is impossible due to the continuity of the squared mean curvature function.
Thus, U must be an open dense subset of M3.
Solving (3.4.8) yields u = ?Sd(la@z + b, 715) for some constant b. By applying a

translation in z if necessary, we obtain

(3.4.9) p(z) = —\/:sd([—x k), k=

N | =

From (3.4.5) and from our assumption on the the principle curvatures, we know

that the second fundamental form h of M3 in E! satisfies

) - 2.0y L w2 2y L
| 9 9 9 o 9 8
Moz 36) = "oz 50) = "ag 5) =

where £ is a unit normal vector field of M3 in E* and p is given in (3.4.9).
Applying (3.4.6), (3.4.10) and the equation of Codazzi, we may obtain p'f = pf’.

Therefore,

(3.4.11) f(z) = ep(z),

for some nonzero constant c.

On the other hand, using (3.4.6) we can compute the sectional curvature K3 of
the plane section spanned by {9/0¢,0/06}. We also can compute K3 by using the
equation of Gauss. By comparing these two different expressions of K»3, we find

ptf? = 4(1 — f2). Thus by using (3.4.9) and (3.4.11), we find

(3.4.12) f(z) = £sd £z k), k=

N | =

From (3.4.5) and (3.4.12) and Lemma 3.2 we know that M?3 is an open portion of
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the Whitney 3-sphere W2 for some a > 0.
(3.4.5), (3.4.6), (3.4.9), (3.4.12) and the formula of Gauss imply that the immersion

x satisfies the following system of partial differential equations:

(3.4.13) =57 = (o),

(3.4.14) = ——cd(

%x , 0%x dox
(3.4.15) 207 = cos d)é-(p + sin ¢ cos qb%,

(3.4.16) 529 = Tcs(Tx)nd(——x)a(p,
x VI VI VI o
(3:4.17) 9000 = o g Imd2) 5
0%x ox
(3.4.18) 5505 =~ 255
Solving (3.4.18) yields
(3.4.19) x(z, 6, ¢) = B(z,0) cos ¢ + C(z, ¢),

for some function B(z, ), C(z, ¢) of two variables. Substituting (3.4.19) into (3.4.16)
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yields
?9—5 = ﬁcs(gz)nd(ﬁx)&
(3.4.20) oC V3 V3. 3 .oC
5205 ~ o =g IG5

Solving the above system yields
(3.4.21) B(z,0) = G(f))sd(\?:r), C(z,¢) = F(d))sd(-égx) + H(z).
Combining (3.4.19) and (3.4.21) gives

(3.4.22) x(z,d,6) = G(G)sd(—i—ix) cos ¢ + F(d))sd(?x) + H(z).

By taking the partial derivatives of (3.4.14) and (3.4.15) with respect to ¢ and 6

respectively, we find
(3.4.23) F"(¢) + F'(¢) = 0, G"(0) +G'(8) = 0.
From (3.4.22) and (3.4.23) we find
(3.4.24) x(z,9,0) = sd(?x)(cl €os ¢ cos +c, cos ¢ sin 6+ c3 cos p+cq4 sin @) + A(z),

where ¢, ..., c4 are constant vectores.
Substituting (3.4.24) into (3.4.14) and using (3.4.13) yields
(3.4.26)
V2

x(z, ¢,0) = sd(—a\/—?m)(cl cos ¢ cos 0+c; cos ¢ sin f+c3 cos +c4 sin @) +cs / sds(—a—z)d:r,

where cy, ..., c5 are constant vectors in E*.
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By choosing suitable initial conditions, we obtain (3.1.5) from (3.4.26). Conse-
quently, up to rigid motion of E!, the immersion x is given by (3.1.5).

The converse can be verified by straight-forward computation. O

3.5 Exact Solutions of Differential Equations of Pi-

card Type

For the proof of Theorem 3.2 and Theorem 3.3, we need the exact solutions of some
differential equations with Jacobi’s elliptic functions in their coefficients. The results
obtained in this section seem to be of independent interest in themselves.

Proposition 5.1. For any real number a > 0, the general solution of the second

order differential equation:
(3.5.1) y"(z) + 2asc(az)nd(az)y'(z) — y(z) =0

is giwen by y(z) = a1y () + coya(z) with

yi(z) = \/a2k'2 cn?(azx) cos (kl 2\/\/;;2_k+k’— In egz _:_ :; + 2aZ('y)z)),
and
2 T —
y2(z) = \/a?k’2 cn?(ar) sin ( 2\/\/(12_;—16(1 G(Z:c " ’:; + 2aZ('y)x)),

where k = Va2 — 1/(V/2a) and k' = Va + 1/(v/2a) are the modulus and the comple-

mentary modulus of the Jocobi elliptic functions, © the Theta function, Z the Zeta
function, and v = sn~'(v/-1/(ak?))

Proof. The trick to solve (3.5.1) is to make two key transformations. First we make



68

the transformation:

(3.5.2) y(z) = f(z) exp(V—1g(z)),

where f(z) and g(z) are real-valued functions. Then

(3.5.3) y' = (f' +V-1fg') exp(V-1g),

(3.5.4) y' = ("= f(g)? + V=-1(2f'q' + fg")) exp(vV-1g).

substituting (3.5.3) and (3.5.4) into (3.5.1) we get by taking the imaginary part

(3.5.5) f(2)g"(z) + 2(f'(z) + asc(az)dn(az) f(z))g'(z) = O,

and

(3.5.6) f"(z) = f(z)(g'(2))* + 2asc(az)dn(az) f'(x) — f(z) = 0.

Equation (3.5.5) can be written as

(3.5.7) (Ing'(z)) = —2(In f(z))" + 2(Incn(az))’

which yields

(3.5.8) g (z) = ————

for some constant a.
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Substituting (3.5.8) into (3.5.6) we obtain a second order nonlinear equation:

(3.5.9) f"(z) + 2asc(azx)dn(az) f'(z) — f(z) = %Sx).
We make the second transformation by putting
(3.5.10) f(z) = +/h(x), u = cn®(az).

From (3.5.9) and (3.5.10) we obtain another nonlinear equation:

a’cn?(az)dn®(az)sn?(az)(2h(u)h" (u) — (R'(u))?)

+a?%(k?%cn?(az)sn?(az) — dn®(az))h(u)h'(u) = h*(u) + o®cn*(az),

(3.5.11)

which, by (3.2.8), is equivalent to the following nonlinear equation:

20%u(1 — u)(k®u + K?)h(u)h"(u) — a®(k*u? + k) h(u)' (u)

—a?(k*u + k'?)(u — u?)h2(u) = h?(u) + a®u?.

(3.5.12)

If h = b— cu is a linear function in u with constant coefficients, then (3.5.12)

becomes

(3.5.13) b(b — a*ck™) + 2c(a’ck — b)u + (a® + ¢® — a®bck? + a*c*(k* — k"%))u® = 0.

It is straight-forward to verify that (3.5.13) holds if and only if @ = ca?kk’ and
b = a%ck”™. This shows taht h(u) = c(a®k"? — u) is a solution of (3.5.12).

If we choose ¢ = 1, we obtain a = a?kk’ and

(3.5.14) f(z) = \Ja2k” — cn?(az).
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By computing (3.5.8) and (3.5.14) we obtain

z a%kk'cn?(ar)
(3.5.15) g9(z) = /0 T —eran)

On the other hand, from (3.2.8) and (3.2.9) we have

a’kk'cn®(az) K B a’k”sn?(az)
a?k? —cn%(az)  k  k(a2k? + sn2(ax))
_ K ak”? ( cn(7y)dn(y)sn?(az) )
 k VaZki+1'1— k2sn2(y)sn(az)

(3.5.16) , P
_k_ L(sn(am + v) + sn(az — v))sn(az)
k 2Vt +1 7 !
! /1212

= % + EN/ ,Eﬁlk%(kz(sn(ax + ) + sn(az — v))sn(y)sn(az)),

where sn(y) = v/—1/(ak?),dn(y) = k'/k,cn(y) = k" /k2.
Combining, (3.2.14) and (3.5.16), we obtain

a’kk'cn?(ax) K /—1a%k"
S vV 9r —y)-Z .
a?k”? — cn2(az)  k + Wk + 1 (Z(az ) (az +17) + 22(7))

(3.5.17)

From (3.5.15) - (3.5.17), we find

K \/__la2kl2 T

o(@) = o+ g | (Blax — )2z + ) + 22()d
(3.5.18) B lc_lz N v—1lak"™ (ln O(az — v) + 2aZ( )17)

=< 2vVa?ki + 1\ O(az +7) D

where we applied (3.2.13) and the fact that © is an even function. Therefore, by
(3.5.2), (3.3.14) and (3.5.18), we conclude that the functions y,,y, defined in Propo-
sition 5.1 are independent solutions of (3.5.1). Consequently, the general solution of

(3.5.1) is given by the linear combination of y;,y,. O
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Proposition 5.2. For any real number a > 1, the general solution of

(3.5.19) y"(z) + 2asc(az)dn(az)y'(z) + y(z) = 0

is giwen by y(x) = a1y (z) + coyo(z) with

O(az — v)

/
1
y(z) = \/a2k"~’ + cn?(az) cosh (% ~3 In B(az 7 7)

— aZ(y)z)

and
'

ya(z) = \/a%’2 + cn?(azx) sinh (% - %

O(az — )
In m - GZ(’)’).’E)

where k = Va2 +1/(v/2a) and k' = va?> — 1/(V/2a) are the modulus and the comple-
mentary modulus of the Jacobi elliptic functions and v = sn~1(1/ak?)).
Proof. This can be proved by using the same trick given in the proof of Proposition

5.1. After making the key transformation (3.5.2) for (3.5.19), we obtain (3.5.5) and
(3.5.20) f"(z) = f(z)(¢'(z))?* + 2asc(az)dn(az) f'(z) + f(z) = 0.

Solving (3.5.5) yields

v _ acn’(ax)
(3.5.21) g'(z) = )

for some constant . By substituting (3.5.21) into (3.5.20) we obtain

(3522 F7(6) + 2aslaz)dn(a)f () + f(z) = L),

After making the second key transformation f(z) = /h(u) with u = cn?(az) for
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(3.5.22), we find

2a2u(1 — u)(k?u + k2)h(w)h"(u) — a?(k*u? + k2)h(u)k! (x)

—a?(k?u + k") (u — ©?)h?(u) = —h%(u) + a?u?.

(3.5.23)

It is then straight-forward to verify that a linear function h = b — cu is a solution
of (3.5.23) if and only if b = —a%ck™ and o? = c?(1—a*)/4. In particular, if we choose

¢ = —1, we obtain

—1a?kk’'cn?
(3.5.24) f(z) = \Ja?k? + cn?(az),  ¢'(x) = gﬁ&iﬁ?'

On the other hand, from (3.2.8), (3.2.9) we have

a’kk'cn®(az) K a’k”snlaz)
a?k? +cn2(ax k  k(a2k? — sn2(az))
_ K __en(y)dn(y)sn*(az)

"k 1-—k2sn2(az)sn2(az)

(3.5.25) y
=<~ %(sn(ax +7) + sn(ax — 7))sn(az)
= %' - g(kz(sn(ax + ) + sn(az — v))sn(7y)sn(axz)).

where sn(y) = 1/(ak?),dn(y) = k'/k,cn(y) = (k'/k)?. Combining (3.2.14) and
(3.4.25), we obtain
a’kk'cn’(az) K a

(3.5.26) R T ont(az) "k E(Z(aa: — ) — Z(az + v) + 2Z(v)).
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From (3.5.24) and (3.5.26), we have

o(@) = Sz~ 2 [*(Blaz ~ ) - 2laz +7) + 22(7))dr
3.5.27 '
( ) = k—z - 1ln Olaz —7) _ aZ(v)z,

where we applied (3.2.13) and the fact that © is an even function. Therefore, by
(3.5.2), (3.5.24) and (3.5.27) we conclude that

2 (0) = T e enp - £ L Q22 =0)

n e(az ) + aZ(’y)x)

is a solution of (3.5.19). By applying the method of reduction of order, we know that

K’ 1. O(az — )

2o(z) = \/a2k'2 + cn?(azx) exp (?z ~ 3 In Bty aZ(y)z)

is a second independent solution of (3.5.19). Consequently, the functions y,, y, defined
in Proposition 5.2 are two independent solutions of (3.5.19). Hence, the general
solution of (3.5.19) is given by the linear combination of y;,y,. O

Proposition 5.3. For any real number 0 < a < 1, the general solution of

(3.5.28) y'(z) + 2alccn(lC )Sd(k z)y'(z) +y(z) =0
is given by y(z) = cyy1 () + coya(x) with
a ) , \/_—1 O(%z — ) a
= \/k2dn2(E$) — a2k cos (k 5 9(%$+1) - \/:—IEZ('y)I)

and

y2(z) = \/k2dn (=) — a2k’ sin (k T — \/;__ @Ek:c n z; - \/—_I%Z('y)x)
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where k = /2a/sqrtl + a® and k' = /1 — a?/V/1 + a? are the modulus and the com-
plementary modulud of the Jocobi’s elliptic functions and v = sn~!(k/a).
Proof. This can also be proved by using the same trick. After making the key

transformation (3.5.2) for (3.5.28), we obtain

(3.5.29) f(@)g"(z) + 2(f' (@) + aken(L2)sd(32) f(2)g (@) = O,
and
(3.5.30) (z) - f(2)(g'(z))? + 2akcn(%x)sd(%m) f'(z) + f(z) = 0.

Solving (3.5.29) yields
(3.5.31) g'(z) = —=%—,

for some constant a. By substituting (3.5.31) into (3.5.30) we obtain

(3.5.32) f"(z) + 2akcn(%z)sd(%a:) fl(z) + f(z) = 9%(:6(;%—1).

After making the second key transformation f(z) = y/h(u) with u = dn®(az/k)
for (3.5.30), we find

2a%u(1 — u)(u — k"?)h(u)h" (u) + a?(k" — u?)h(u)h' (u)

—a?(u — k?)(u — u?)h?(u) = —k?h?(u) + a2k?u?.

(3.5.33)

It is then straight-forward to verify that a linear function h = b + cu is a solution

of (3.5.33) if and only if b = —a%ak”/k? and o? = a%k™. In particular, if we choose
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¢ = k?, a = a®k"?, we obtain

_ d’Kdn’(%z)
 k2dn®(2z) — a2k’

(3.5.34) f(z) = \/k2dn2(%:c) — a2, g(x)

On the other hand, from (3.2.8), (3.2.9) we have

a’k'dn’(8z) W \/:Tkzcn(*y)dn('y)snz(%z)
)

k2dn®(2z) — a2k 1 — k2sn2(2z
(3.5.35)
=k - \/—l—q—(k2(sn(gz + ) + sn(gx - 'y)sn('y)sn(gz))
2k k k k™7

where sn(y) = k/a,dn(y) = k"2, cn(y) = vV/—1k'. Combining (3.2.14) and (3.5.33), we

obtain

a’k'dn®(2z)
kzdnz(%m) — a?k"

(3.5.36) =K - \/—_1%(2(% —4) = Z(2z +7) + 2Z(7)).

k

From (3.5.21), (3.5.24) and (3.5.34), we have

g(z) =K'z - \/—_1% /:(Z(%l’ -5) - Z(%x +7) + 2Z(y)z)dz

(3.5.37) ’ V=1. (%1 — ) a
=k'z — 5 In 9(§z+'y) - \/—_IEZ('y):c.

Therefore, by (3.5.2), (3.5.34) and (3.5.37), we conclude that the functions yi, y2
defined in Proposition 5.3 are independent solutions of (3.5.28). Hence, the general
solution of (3.5.28) is given by the linear combinatin of y;,y,. O

Corollary 1. For any real number a > 0, the general solution of

a? -1

(3.5.38) 2"(z) = (a® + 1)nc*(az, k)2, k= 7

is giwen by z(z) = cien(az, k)yi(z) + coen(az, k)ya(z) where yy(z), y2(z) are defined
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in Proposition 5.1.
Proof. This follows from Proposition 5.1 and the fact that equation (3.5.38) can be
obtained from (3.5.1) by making the transformation y(z) = cn(az, k)z(z). O

Corollary 2. For any real number a > 1, the general solution of

va +1
V2a

(3.5.39) 2"(z) = (a® — 1)nc%(az, k)z, k=

is given by z(z) = cien(az, k)yi(z) + coen(az, k)y2(z) where yy(z), y2(z) are defined
in Proposition 5.2.

Proof. This follows from Proposition 5.2 and the fact that equation (3.5.39) can be
obtained from (3.5.19) by making the transformation y(z) = cn(az, k)z(z). O

Corollary 3. For any real number 0 < a < 1, the general solution of

2a V1 -—a?
5. " — 2__1 2 g k = \/— kK = ——
(3.5.40) 2'(z) = (a )nd (kz, )2, k T 3

is given by z(z) = cidn(az/k, k)y,(z) + codn(az/k, k)ys(z) where y;,y, are defined in
Proposition 5.3.

Proof. This follows from Proposition 5.3 and the fact that equation (3.5.40) can be
obtained from (3.5.28) by making the transformation y(z) = dn(az/k, k)z(z). O

Remark 1. Conversely, since

d, Ou-1)
az(ln Bty Z(u — ) — Z(au —v)
(3.5.41) = k’sn(u)sn(7y)(sn(u — 7) + sn(u + 7)) — 2Z(7)

_ 2k%cn(v)dn(y)sn(y)sn’(u)
1 — k2?sn?(7y)sn?(u)

- 2Z(v),

it is straight-forward to verify that two functions y;,y, defined in Proposition 5.1

(respectively, in Proposition 5.2 and 5.3) are indeed independent solutions of (3.5.1)
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(respectively, of (3.5.19) and of (3.5.28)).
Remark 2. In 1879, E. Picard discovered in [25] a method for solving the differential

equation:

(3.5.42) y"(z) + nk*cn(z)sd(z)y'(z) + ay(z) = 0,

where n is a positive integer and a a constant.
Although equation (3.5.42) is quite similar to the equations (3.5.1), (3.5.19) and

(3.5.28), unfortunely, Picard’s method does not apply to these equations.

3.6 Proof of Theorem 3.2

Let x : M™ — S"*!(1) C E"*? be an isometric immersion of a conformally flat
n-manifold with n > 2 which satisfies Chen’s equality (2.1.2). Then, by Lemma
3.2 and a well-known result of E. Cartan and J. A. Schouton on conformally flat
hypersurfaces(cf. p.154 of [6]), we know that M™ has a principle curvature with
multiplicity at least n — 1 for n = 3 as well as for n > 4. Thus, by applying
(2.3.2), we know that either (i) the principle curvatures of M™ are given by A\, =
0,X2 = ... = A\, = p, or (ii) n = 3 and the principle curvature of M3 are given by
A1 = A = p/2,A3 = p # 0. We treat these two cases separately.

Case (i): \; =0and \; = ... = A\, = pu. If u = 0 identically, then M™ is totally
geodesic in S™1(1).

Now, suppose that M™" is not totally in S"*!(1). Denote by U the open subset of
M™ on which the mean curvature function is nonzero. Then U is non-empty. We will
prove in the following that U is the whole manifold M™ in this case.

We denote by D and D+ the distributions on the open subset U spanned by {e;}

and {e,, ..., e, }, respectively.
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Now, by putting j = 1,7 = 2,3,...,n in (2.3.5), we get wi(e;) = 0 which implies
that integral curves of D are geodesics.

Also by using the first equation of (2.3.5), we find
(3.6.1) ept = ... = e pu=0.
It is easy to see from (2.3.4) that
(3.6.2) wi(e;) =0,  1<i#j<m,

which implies that D+ is integrable. Consequently, there exist local coordinate sys-
tems {z,, zs, ..., £} such that 8/0z,, ...,0/0z, span D+ and e; = §/8z with z = z;.
From (3.6.1), we know that u depends only on z, i.e., up = u(z).

Choosing i = 1 for the first equation in (2.3.4), we get u'(z) = —p(z)wi(e;) for

any j > 2. Thus
(3.6.3) Vee1 = wa(ej)ek = wi(e;)e; = —(Inp)'e;.
k=2

Using (3.6.3) we know that each integral submanifold of D' is an extrinsic sphere
of S"*1(1), i.e., it is a totally umbilical submanifold with nonzero parallel mean
curvature vector in S®*1(1). Hence, the distribution D+ is a spherical distribution.
Therefore, by applying a result of Hiepko [21] (cf. Remark 2.1 of [20]), we know that
U is locally the warped product I X ;) S®"!(1), where f(z) is a suitable warped

function. Therefore, the metric on U is given by
(3.6.4) g = dz* + f*(z)go,

where go is the metric of S*~!(1). In particular, if we choose the spherical coordinate
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system {u,,...,u,} on S*~1(1), then we have
(3.6.5) g = dz* + f*(z)(du3 + cos® updu? + ... + cos? uy... cos? u,_,du?).

By (3.6.5) we obtain

(3.6.6)
) o 0 d ,
£92 - 0  VEbu fou’  dhon o

0 0 .

V%‘—TJ (tanui)a, 2S1 <17,
0 sm2u,c ik 0 .
- — —2< <

VE%T—(?UJ —(ff Hcos ut +Z 5 C—I;]J:rlcos ug)awc,2_z,],k_n,

From (3.6.5) and the assumption on the principle curvature, we know that the

second fundamental form h of M™ in S"*!(1) satisfies

9 a, 9 0, _ o
o0 0 ) ) a )
(367) h(au au ) uf cos? uo€, ey h(ﬂ aun f H cos? ugé,
0 0 a 0
a'a. )= )= <1 ) <
h(ax,auj) 0, h(aui’au,-) 0, 2<i#j<n,

where ¢ is a unit normal vector field of M™ in S™*!(1).

Let Vh denote the covariant derivative of the second fundamental form h. Then

by the equation of Codazzi, we have

9 9
oz ’ 6112

0 0

6U2 6u2 ) '

(3.6.8) (Vah)(5— = (V2 h)(
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From (3.6.6) - (3.6.8)we obtain y'f = —uf’. Therefore
(3.6.9) p(r) = —

for some nonzero constant a.

Now, by applying (3.6.6), we know that the sectional curvature K, and Kj; of
the plane section spanned by 8/0z,d/0u; and 8/0u,,d/du; are equal to — f”/f and
(1 — £2)/ f2, respectively. On the hand, from equation of Gauss and our assumption
on principle curvatures, we have K, = 1 and K,3 = 1+ pu?. Therefore, by combining

these facts with (3.6.9), we obtain
(3.6.10) f"+f=0, P+ f2=1-d?

which implies in particular that 0 < a < 1.
Solving the first differential equation in (3.6.10) yields f(z) = C cos(z + b) for

some constants b, and C. By applying a translation in z if necessary, we have
(3.6.11) f(z) = Ccosz.

Substituting (3.6.11) into the second differential equation in (3.6.10), we obtain C =

V1 — a?. Consequently, we have

(3.6.12) f(z) = V1-a%cosz, u(z) = 2 sec z,

where a is a constant satisfying 0 < a < 1.
(3.6.12) implies 4 > a/v/1 — a2 > 0 on U. Hence, by the continuity of the squared
mean curvature function H2 = (n — 1)24%/n?, we know that the mean curvature

function is nowhere zero and therefore U is the whole manifold M™. Consequently,
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(3.6.4) and (3.6.12) imply that M" is isometric to an open portion of the Riemannian
manifold B® which was defined in Section 3.1.

By applying (3.6.5), (3.6.6), (3.6.7), (3.6.12) and the formula of Gauss, we conclude
that the isometric immersion x : M™ — S"~1(1) C E"*? satisfies the following system

of partial differential equations:

6.1 ==
(3.6.13) 522 X,
0*x ox

.6. = — — =2

(3 6 14) axau] (ta’n x)auja J ’3a y 1L,
0%x ox

6.1 = - i) 5 2<1<y,

(3.6.15) uidu, (tanu )Buj 1<J
2
(3.6.16 6—)—(2— = l(1 — a?%)sin 2x% +aV1 —a2cosz€ — ((1 — a?) cos® 1)x,
6'U-2 2 61:

(3.6.17) x _ (cos? )?i)_c + l(sin 2u)_6_x_ =2,..,n—1

s ou,, 4 ou? 2 7 Oy’ J= S '

Solving (3.6.13) yields

(3.6.18) x = P(uy, .., u,) sinz + Q(uy, .., u,) cos z,

foe some E™+-valued functions P = P(uy,...,u,) and Q = Q(uy, ..., u,). Substituting

(3.6.18) into (3.6.14), we know that P is a constant vector, we denote it by c¢;. Thus

(3.6.19) X =c¢;sinz + Q(ua, ..., up) COS T,
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Substituting (3.6.19) into (3.6.15) with i = 2, we obtain

Q 5Q -
(3.6.20) Bu;00 + (tan u2)6—uJ =0, j=3,..,n
which implies
P .
(3.6.21) ‘a—g + (tanug)Q = ds(uy),
U2

for some function ¢, = qug(uz). Therefore, by solving (3.6.21), we have

(3.6.22) Q = ¢2(u2) + Q3(us, ..., un) cOS uy

for some function ¢, = ¢2(uz) and Q3 = Q3(us, ..., u,).
Similarly, by substituting (3.6.19) and (3.6.22) into (3.6.15) with i« = 3 and j > 3,

we find

(3.6.23) Q3 = ¢3(u3) + Qa(ua, ..., un) cosus,

for some function ¢35 = ¢3(uz) and Q4 = Q4(uy,...,u,). Repeating such procedure

n — 2 times, we obtain

Q = ¢a(u2) + Q3(us, ..., uy,) COS ua,
Q3 = ¢3(u3) + Qa(us, ..., un) cosus,

(3.6.24) Q4 = d4(uq) + Qs(us, ..., un) cos uy,

Qn—l = ¢n—l(un—1) + ¢n(un) COSUp—1,
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with ¢, (un) = Qn(uy,). Substituting (3.6.24) into (3.6.19) we get

(3.6.25) X = c1SinT + @2(uz) cos T + ¢3(us) cosuzcosz + ...

+@n_1(Un_1) COS Us... COS Up_5 COS T + ¢ (Uy) COS Us... COS U,_ COS .

Substituting (3.5.25) into (3.5.17) with j = n — 1, we obtain

(5.6.26) & (up) + én(un) = cosup_1¢n_| +sinuy_ 105 _; (Un_1),

which implies that

(3627) ¢Z(un) + ¢n(un) = km

(3.6.28) CoS Un_1Pn_; (Un—1) + sinUz_10;,_; (Un—1) = kn,

for some constant vector k,. Solving (3.6.27) yields

(3.5.29) On = Cpy18inU, + Cpyo COSU, + ki,

for some constant vectors ¢, 41, Cchr2. Combining (3.6.25) and (3.6.29) we obtain

X = ¢ sinz + ¢2(uz) cos T + ¢3(uz) cosuy cosz
(3.6.30) +@n_1(un_1) coSuy... cOS u,_1 COS T+

+Cpy1 COS Usg... COS Uy _1 SIN Uy, COS T + C; 42 COS Us... COS Uy, COS T,

for some constant vectors cy, ..., Chyo.
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Now, we choose the initial condition at 0=(0, ..., 0) as follows:

x(0) = aes + V1 — a?€p 40, %(0) = ¢,

(3.6.32)
20 = VT @er, . X = VI,
2

du,
where {ey, ..., en42} is the natural coordinate basis of E**2. Then, by applying (3.6.31)

and (3.6.32), we obtain
(3.6.33) co=¢€, e =ae, c3=V1—a%;, .. Cpi2=V1—a%e .

Consequently, by (3.6.31) and (3.6.33) we conclude that, up to rigid motions of E**2,
the immersion x is given by (3.1.5) in Theorem 3.1. It is clear from (3.1.5) that the
immersion x can be extended to the two point compactification B? of B?.

Case (ii): A\j = Ay = p/2 and A3 = p # 0. In this case (2.3.5) yields
(3.6.34) 2, =A3=0, equ=epu=0, [}=T%=0.

Denote by F and F* the distributions spanned by {e;, e;} and {e3}, respectively.
By (3.6.34) we know that the integral curves of F* are geodesics and the distribution
F is integrable. Consequently, there exist a local coordinate system{z, u, v} such that
F is spanned by {9/0u,d/0v} and e; = 9/0z.

From (3.6.34) we know that u depends only on z, i.e., p = p(z). Also, from (2.3.8)
and (3.6.34), we have

(3.6.35) wy = w, wy = w*.
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Using (3.6.35) we obtain
(3.6.36) Voes= @, 10
u(z

Therefore, each integral submanifold of F is an extrisic sphere of S*(1). Hence,
by applying a result of Heipko, we know that M3 is locally the warped product
I X 4(z) S?(1), where f(z) is a suitable warp function. In particular, if we choose the

spherical coordinate system {8, ¢} for S?(1), we have
(3.6.37) g = dz* + f2(z)(d¢? + cos? ¢pdh?).

By computing dw} and by using (3.6.35) and Cartan’s structure equations, we find

()
2

(3.6.38) p'(z) + + u(z) = 0.

Let ¢ = 2u(z). Then (3.6.38) becomes ¢"(z)+2¢*(z)+v¢(z) = 0. Hence, by applying

Lemma 5.3 of [10], we obtain

a? -1
(3.6.39) p(z) = 1/2(a? — 1)cn(az, k), k= Joa

where a > 1 is real number.
Now, by applying (3.6.37), (3.6.39) and the equation of Codazzi, we obtain u'f =
uf'. Therefore

(3.6.40) f(z) = cu(z),

for some non-zero constant c.

On the other hand, using (3.6.37) we can compute the sectional curvature Ky;3 of
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the plane section spanned by {0/9¢,3/96}. On the other hand, we may also compute
K>3 by using the equation of Gauss. Comparing the two different expressions of Kj3

so obtained, yields

1
(3.6.41) At =1-cu? - Zc2,u4.

Substituting (3.6.39) into (3.6.41) we have ¢> = 1/(a* — 1). Therefore

(3.6.42) f= %cn(ax, k), u = 1/2(a? — 1)cn(az, k), k= f;i; 1.

(5.6.37) and (5.6.42) imply that M3 is an open portion of the warped product
manifold I X 3/ /aricn(az) S(1) Which is isometric to P2, first introduced by B. Y.
Chen in [10] (also see [13]).

(3.6.37), (3.6.39), (3.6.42) and the formula of Gauss imply that the immersion x

satisfies the following system of partial differential equations:

2
(3.6.43) % = /2(a? — 1)cn(az, k)€ — x,

0%*x %2 o
2% = =0 lcn(ax)dn(am)sn(az)a
(3.6.44) e |
ch (ax)€ — o JCcn (az)x,
2
%0—}2( = a22;1_ - cos? ¢cn(az)dn(az)sn(ax) % + sin ¢ cos ¢g—z
(3.6.45)

2(a2 - 1)
a?+1

cos? ¢cn(az)€ - cos? ¢cn? (ax)x,

a?+1
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2
(3.6.46) 5o = —osc(az)dn(az) 2%,
2
(3.6.47) 8(91:;0 = —asc(aa:)dn(ax)%,
*x ox
(3.6.48) 5995 = ~ 9

By taking the partial derivative of (3.6.44) with respect to ¢ and by applying the

equation of Weingarten, we obtain

2x ox

6.4 = __==

by virtue of (3.2.8), (3.2.10) and
2 2
g a°—1 p_ @ +1
(3.6.50) B=— K=
Solving (3.6.49) yields

(3.6.51) x(z,9,0) = A(z,6) sin ¢ + B(z,0) cos ¢ + C(z, 0),

for some Ej-valued functions A, B,C of two variables. Substituting (3.6.51) into

(3.6.46) yields

0A OB
(3.6.52) e —asc(az)dn(az)A, e —asc(az)dn(az)B.

Solve the above, we have

(3.6.53) A(z,0) = E(f)cn(azx), B(z,6) = D(f)cn(ax)
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for some E}-valued functions E, D. Thus,

(3.6.54) x(z, ¢,6) = E(f)cn(az)sin ¢ — D(f)cn(az) cos ¢ + C(z, b).

Substituting (3.6.54) into (3.6.47) yields

2
o0 _ —asc(az)dn(az)—.

(3.6.55) 3200 — 30

By solving (3.6.55) we find C(z,60) = G(6)cn(az) + K(z) for some E-valued
functions G(6) and K(z). Thus, (3.5.54) gives

(3.6.56) x(z,¢,0) = E(f)cn(az)sin ¢ + D(f)cn(azx) cos ¢ + G()en(az) + K(z).

Substituting (3.6.56) into (3.6.48) yields E'(f) = G'(f) = 0. Thus, E and G are

constant vectors in E°. Consequently, from (3.6.56) we know that x takes the form:
(3.6.57) x(z, ¢,0) = cicn(az) sin ¢ + D(f)cn(azx) cos ¢ + F(z).

where c; ia a constant vector. From (3.6.43) we have

1 9°x N
2(a? — 1)cn(ax) Oz?

(3.6.58) £ = x).

By (3.6.45), (3.6.57), (3.6.58) and a long computation, we obtain

(5.6.59) F"(z) + 2asc(az)dn(az)F'(z) — F(z) =0,

(3.6.60) D"(9) + D(§) = 0,
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by virtue of (3.2.8), (3.2.10) and (3.6.50). Solving (3.6.60) yields
(3.6.61) D(6) = cpcos + c3siné,

for some constant vectors c,, c3 in E°. Therefore, by applying Proposition 5.1, (3.6.57)

and (3.6.61), we have

x(z, ¢,6) = c; sin ¢cn(az) + ¢ cos ¢ cos fen(az) + c3 cos @ sin fen(ax)

/- ak'2 ar —
+c4\/a2k'2 — cn?(azx) COS(E.’E-F 2m(l 9Eax+’y

- 2 —
+c5\/a2k'2 — cn?(ax) sm(zm + \/(?k_(:li_(ln eEZi +z

(3.6.62) ; + 2aZ()a))

; + 2aZ(y)x)),

where © and Z are the Theta function and Zeta functions.

Now, if we choose the initial conditions at 0=(0, 0, 0) as follows:

1 ox ox 1 Ox 1
(3.6.63) x(0) = &—E(Q +€4), 55(0) = €5, %(0) = v 55(0) T

where {ey, ..., €5} is the standard basis of E°, then we obtain

1

.6.64 o = —€q,
(3.6.64) Ca = —€

a=1,..,9.

Therefore, up to rigid motions, the immersion x is given by (2.1.7) in Theorem 3.2.

The converse can be verified by straigh-forward but long computations. O

3.7 Proof of Theorem 3.3

Let x : M™ — H™*(-1) C E!*? be an isometric immersion of a conformally flat

n-manifold with n > 2 which satisfies Chen’s equality (2.1.2). By Lemma 3.2 and a
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result of Cartan and Shouten, either (a) the principle curvatures of M™ are given by
Al =0,) =..= )\, =y, or (b) n =3 and the principle cuevatures of M3 are given
by Ay = A2 = /2, A\3 = p # 0. We treat these two cases separately.

Case (a): Ay, =0and \; = ... =\, = .

If 4 = 0 identically, then M™ is totally geodesic. This yields Case 1 of Theorem
3.3.

Now, suppose that M™ is not totally geodesic in H"*!(—1). Denote by U the
open subset of M™ on which the mean curvature function is nonzero. We shall work
on this open subset of M™ unless mentioned otherwise. Clearly, u # 0 on U.

We denote by D and D+ the distributions on the open subset U apanned by {e;}
and {ey,...,e,}, respectively. Then, as in the proof of Theorem 3.2, we can prove
that integral curves of D are geodesics and D+ is integrable. Thus, there exist a local
coordinate system {z, Z, ..., Z,} such that 8/8z,, ...,0/0z, span D* and e, = §/9z
with £ = z,. Also, using (2.3.5) we can prove that 4 depends only on z, i.e., u = p(z).

If we choose i = 1 for the first equation of (2.3.4), we get p'(z) = —pu(z)w](e;) for

any j > 2. Thus

n

(3.7.1) Ve,e1 =Y wilej)ex = wi(ej)e; = (Inp)'e;.
k=2

Hence, each integral submanifold of D' is an extrinsic sphere of H"*'(-1), i.e.,
the distribution D+ is spherical. Therefore, U is locally a warped product manifold
I X7y N*"1(¢), where f(z)(> 0) is the warp function and N"~!(¢) ia a Riemannian
space form of constant sectional curvature c.

Since N™~1(¢) is of constant curvature, it is conformally flat. Thus, there exists a

local coordinate system {us,, ..., u,} such that metric tensor of N*~!(¢) is given by

(3.7.2) go = E*(du? + du + ... + du?).
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With respect to the coordinate system {z,uy, ...,un} on I X ;) N*~!(¢), we have

(3.7.3) g =dz? + fPE*(dul + ... + du?).

From the above, we have

o o 0 o E 0 E 0
Vf%ax =0, V%Gu, f Ou;’ Bu; Qu; —Ea_u]-*-fau,’
(3.7.4) P 8 E o E 0
L _ffE? ot S k 2
Visu = Pt Eo §Eauk’

for distinct ¢, 7, k(2 <1, j,k < n), where E; = 0F/0u;.

Codazzi’s equation, (3.7.4) and our assumption on principle curvatures imply

(3.7.5) p= %

for some constant a > 0. Also, from (3.7.4), it follows that the sectional curvatures
K3 and K, of M™ associated with the plane section spanned by 9/0z,3/0u, and
0/0uy,d/0u3 are given by —f”/f and (¢ — f'?)/f?, respectively. On the other hand,
Gauss equation yields K;, = —1 and K3 = —1 + 2. Comparing these facts with
(3.7.5), we get

(3.7.6) f"—f=0 fP-f?=a®-¢

Solving the first equation of (3.7.6) yields f(z) = ¢; cosh = + ¢, sinh z, where ¢;, c2
are constants, which we can write as either f(z) = asinh(z+b) or f(z) = a cosh(z+b),
for some constant a,b. Thus , by applying a translation in z if necessary, we have
f(z) = asinhz or f(z) = acoshz. We consider these two cases separately.

Case (1): f(z) = acoshz. In this case, the second equation of (3.7.6) yields
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a? = a? — ¢. Thus, after applying a scaling on E if necessary, we have

(3.7.7) c=1, f(z)=va®—-1lcoshz, p= \/c%sechz, a>1,
or

(3.7.8) c=0, f(z)=-coshz, p=sechz,

or

(3.7.9) c=-1, f(z)=va?®+1lcoshz, p=

= 1sech:r, a>0.
a

Case (1-i): ¢ =1, f(z) = Via> — Lcoshz,u = =f=sechz,a > 1. In this case,
the open subset U is the whole manifold M™. Therefore, M™ is an open portion of
the warped product manifold A7 = R X /r=ysnz 5™ '(1). By choosing spherical

coordinates {uy, ...,u,} on S"7!(1), we obtain (3.7.3) and (3.7.4) with

(3.7.10) f =+vVa%?—-1coshz,

sechz.

a
h=e-1

Therefore, the equation of Gauss implies that the isometric immersion x satisfies the

following system of partial differential equations:

(3.7.11) — =X,

(3.7.12)
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0%*x 0x .
—tanu;—, 2<1<}],

2 2
(3.7.14) ox ~1=a sinh 2$§ + ava? — 1cosh 7€ + ((a® — 1) cosh? z)x,

Ou? 2 Oz
9%x x 1 . .
(3715) m = COS2 Ujgu—? + 5 sin 2'U.ja—uj, ] = 2, ey — 1.

where £ is a unit normal vector field of M™ in H"*!(-1).

Solving equation (3.7.11) yields
(3.7.16) x = P(uy,...,up) sinhz + Q(uy, ..., u,) cosh z,

for some Ej*!-valued functions P = P(uy,...,u,) and Q = Q(ug, ..., u,). By substi-
tuting (3.7.16) into (3.7.12), we know that P is a constant vector, denoted by c¢;.

Thus
(3.7.17) x = ¢; sinhz + Q(ua, ..., uy,) cosh z.
Substituting (3.7.17) into (3.7.13) with i = 2 yields
oQ

(3.7.18) Bu; T (tanuz)Q = ¢(u),

for some function ¢, = ¢5(us). Therefore, after solving (3.7.18), we obtain

(3719) Q = ¢2(U2) + Qg(u;}, ceey Un) COS U9

for some functions ¢, = ¢(uz) and Q3 = Q3(us, ..., u,). Repeating this procedure
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n — 2 times, we obtain

Q = ¢o(uz) + Q3(us, ..., un) coS uy,
(3.7.20) ?3 = ¢3(us) + Qa(ug, ..., un) cos uz,

Qn—l = ¢n—l(un—1) + ¢n(un) COSUp—1,

where ¢n(un) = Qn(un)'
Substituting (3.7.20) into (3.7.17), we find

(3.7.21) X = ¢y sinh z + ¢2(uz) coshx + ¢3(u3) cosuzcoshr + ...

+@n—1(up_1) COS Us... COS Up_o cosh T + ¢, (u,) COS Us... COS U, _1 cOSh T.

Now, by applying (3.7.21) and (3.7.15), we may obtain in the same way as given

in the proof of Theorem 3.1 that

X = ¢;sinhx + ¢a cosh  + c3sinuycoshz + ...
(3.7.22)

+Cpn41 COS Us... COS Uy, SIN Uy, cOSh T + ¢;,42 COS Us... COS U, cosh T,

for some constant vectors ¢y, ..., Cnt2-

If we choose suitable initial conditions for x,0x/dz, dx/0u,, ...,0x/0u, at 0=(0,
..., 0), we will obtain (3.1.8) from (3.7.22). Consequently, up to rigid motions, the
immersion X is given by (3.1.8).

Case (1-ii): ¢ = 0, f(z) = coshz,p = sechz. Again, the open subset U is the
whole manifold M™. Thus, M™ ia an open portion of the warped product manifold

G™ = R Xcoshz E*"!. Hence, the metric tensor of M™ is given by

(3.7.23) g = dz* + cosh? z(du3 + ... + du?).
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In this case, the equation of Gauss implies that the isometric immersion x satisfies

the following system:

(3.7.24) — =x,

x ox

7.2 = hz— | =2, ...

(3.7.25) Sz, tan xauj, j=2,..,n,
0%*x

7.2 = 2< 1 )

(3.7.26) el <i<j,
2
(3.7.27) o7 ); = sinh z cosh x% + coshz€ + cosh?zx, j=2,...,n.
ou; or

After solving this system, we obtain

(3.7.28) x(z,uz,...,uy) = ¢y Sinh T+ (oul + ... + 021 4 Boug + ... 4 Bnun +7) cosh z,

for some constant vectors c¢;, as, ..., @y, B2, ..., Bn, -

If we choose suitable initial conditions for x, 9x/dz, 9x/du,, ..., 0x/0u,, we may
obtain (3.1.9) from (3.7.28). Thus, up to rigid motions, the immersion is given by
(3.1.9).<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>