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ABSTRACT

ELLIPTIC FUNCTIONS, THETA FUNCTION,

AND SUBMANIFOLDS IN SPACE FORMS

By

Jz'e Yang

In the first part of the thesis(Chapter 1), we study slant surfaces in C2. The

complete classification for all proper slant surfaces with constant Gaussian curvature

and nonzero constant mean curvature in C2 is obtained in this part.

In 1993, B. Y. Chen introduced an important Riemannian invariant 6M for a

Riemannian n-manifold M", namely take the scalar curvature and subtract at each

point the smallest sectional curvature. He proved that every submanifold Mn in a

Riemannian space form Rm(e) satisfies a sharp inequality:

n2(n — 2)

6M 3 2(n_1) H2+(n+1)(n-2)e.

In the second part of the thesis (Chapter 2 and 3), first we classify hypersurfaces

with constant mean curvature in a Riemannian space form which satisfy the equality

case of the inequality. Next, by utilizing Jacobi’s elliptic functions and Theta function

we obtain the complete classification of conformally flat hypersurfaces in Riemannian

space forms which satisfy the equality.
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CHAPTER 0

INTRODUCTION

Let (N, 9, J) denote an almost Hermitian manifold equipped with an almost complex

structure J and almost Hermitian metric g. A submanifold M of N is called slant if

its Wirtinger angle is constant. Complex submanifolds and totally real submanifolds

are two special classes of slant submanifolds which have Wirtinger angle 0 and 1%,

respectively. It is known that there exist ample examples of slant submanifolds other

than complex and totally real submanifolds. The first part of the thesis studies slant

surfaces in the complex 2-plane (22.

It is well—known that helical cylinders in (C2 are flat proper slant surfaces with

nonzero constant mean curvature. Conversely, we prove that every flat proper slant

surface with nonzero constant mean curvature in C2 is an open portion of a helical

cylinder.

Although it is known that there exist abundant examples of slant surfaces with

constant mean curvature and constant Gaussian curvature in non-fiat complex-space-

forms. However, we prove that there do not exist prOper slant surfaces in C2 with

constant mean curvature and nonzero constant Gaussian curvature.

According to the well-known Nash imbedding theorem, every Riemannian n-

manifold can be realized as a submanifold in a Riemannian space form, in particular,

in a Euclidean space. For a submanifold in a Riemannian space form, Chen proved



in 1993 a general inequality involving sectional curvature, scalar curvature and the

squared mean curvature of the submanifold. Chen’s inequality has some important

applications. For example, it gives rise to the second Riemannian obstruction for a

Riemannian manifold to admit a minimal isometric immersion into a Euclidean space.

It also gives rise to an obstruction to Lagrangian isometric immersions of compact

Riemannian manifolds with finite fundamental group 7r1 into complex space forms.

Since Chen’s inequality is very general and sharp, it is natural and interesting

to understand submanifolds which satisfy the equality case of this inequality. Re-

cently, there are several interesting papers which investigate submanifolds satisfying

Chen’s equality. In this thesis, we investigate the most fundamental case; namely,

hypersurfaces satisfying Chen’s equality. First, we give a complete classification of

hypersurfaces with constant mean curvatures satisfying the equality. Next, by uti-

lizing the Jacobi elliptic functions and the Theta function, we completely classify

conformally flat hypersurfaces satisfying the equality.

Let M be an n-dimensional (n > 2) hypersurface in a Riemannian space form

Rn+1(e), (e = 1, —1 or O) which satisfies the equality. We show that, if e = 0, M

is either minimal or an open portion of a spherical hypercylinder; if e = 1, M is

either totally geodesic or a tubular hypersurface with radius g about a 2-dimensional

minimal surface; and if c = —1, M is either totally geodesic, or an open portion of a

tubular hypersurface with radius cosh’1(\/2) about a 2-dimensional totally geodesic

surface of R"+1(—1), or a “suitable tubular hypersurface” about a minimal surface in

the de Sitter space-time S?+1(1).

In order to classify conformally flat hypersurfaces satisfying the equality, we need

to define some special families of Riemannian manifolds: P: (a > O), 02((1 > 1),

D2 (0 < a < 1), F", L", A: (a > 0), B2 (0 < a < 1), G", H: (a. > 0), W3, (0. > 0) and

Ya"(0 < a < 1) via warped products of IR ( or an open interval ) and some Riemannian

space form by some warp functions that may involve the Jacobi elliptic functions. For



example, Pg, 0:, are the warped productszl X,“ Sn‘1(“4—4‘l), R X”, [In—1“:—1

pa = ak cn(a:r, 4/5?) and 17,, = fidnfi-x, 78%), and cn(a:c, k), dn(%, k) are the Jacobi

 ), where

elliptic functions with modulus k. Topologically, S" is the two point compactification

of P}, C]: as well as of B: and the Riemannian metrics defined on Pf, C}: or B: can

be extended smoothly to S". Let 13:, C2 and B2 denote the n-sphere together with

the Riemannian metrics given by the smooth extensions of the metrics on Pf, C:

and B}: to S", respectively.

We prove that if M is a conformally flat hypersurface of a Riemannian space

form which satisfies the basic equality, then either M is totally geodesic or M is an

open portion of one these ten special families of Riemannian manifolds. Furthermore,

we are able to determine these immersions explicitly. If the the ambient space is

spherical, there exist three families of such hypersurfaces. One of the families is

the immersion of P2 into 54(1) and its local expression involves the Jacobi elliptic

functions and the Theta function. In order to get the expression, we have to solve a

family of second order ODEs of Picard type whose coeffients involve the Jacobi elliptic

functions, namely. u” (:r) +2asc(ax)dn(a3:)u’(:1:) — u(:L') = 0. We call such an equation

a differential equation of Picard type since a similar equation was studied by E. Picard

in 1879. However the method of Picard does not work for our equations, so we need

to develop a new approach to obtain the general solutions for this type of ODEs.

Our results seem to have independent interest by themselves. If the ambient spaces

are hyperbolic, we are able to obtain the complete classification via nine families of

immersions from the following Riemannian manifolds Ag, G", H2, Ya", L3, C2, D2,

etc, to the ambient space. In order to establish the local expressions of the immersions

of C2 and D2, we need to solve two families of ODEs similar to the one mentioned

above.



CHAPTER 1

SLANT SURFACES WITH

CONSTANT MEAN

CUEVATURE IN C2

In this chapter, we completely classify proper slant surfaces with constant Gaussian

curvature and nonzero constant mean curvature in C2.

1 . 1 Introduction

Let M be a Riemannian n-manifold and (M , 9, J) an almost Hermitian manifold with

almost complex structure J and almost Hermitian metric 9. Let TPM be the tangent

space to M at p. An isometric immersion f : M —> M is called holomorphic if at

each point p E M we have J(TPM) = TPM. The immersion is called totally real

if J(TpM) C TiM for each 1) E M, where TiM is the normal space of M in M

at p. For each nonzero vector X tangent to M at p, the angle 7(X) between JX

and TpM is called the Wirtinger angle of X. The immersion f : M —> M is said

to be slant if 7(X) is a constant (which is independent of the choice of p E M and



X E TpM. see [1] for details). The Wirtinger angle 7 Of a Slant immersion is called

the slant angle. Homolorphic and totally real immersions are slant immersions with

slant angle 0 and 325, respectively. A slant immersion is said to be proper slant if it is

neither holomorphic nor totally real.

The simpliest and most important examples of slant submanifolds are Slant sur-

faces in C2 , where C2 is the Euclidean 4-space 1R4 equipped with its canonical complex

structure. In [2], B. Y. Chen constructed ample examples of such surfaces. He also

proved that there is no proper slant surface in C2 with parallel mean curvature vector

(cf. also [3]). Thus the following open problem proposed in [2] by B. Y. Chen is very

interesting:

Problem: Classify slant surfaces in (C2 with nonzero constant mean curvature.

It is known that helical cylinders in C2 are flat proper Slant surfaces with nonzero

constant mean curvature [2]. The first result of this chapter is to prove that the

converse of this fact is also true. Namely we prove the following:

Theorem 1.1. A flat proper slant surface with nonzero constant mean curvature in

C2 is an open portion of a helical cylinder.

B. Y. Chen and L. Vrancken Show in [4] that there exist many proper slant surfaces

with constant mean curvature or with constant Gaussian curvature in complex-space-

forms. However, in this paper we prove the following nonexistence theorem:

Theorem 1.2. There do not exist proper slant suraces with nonzero constant mean

curvature and nonzero constant Gaussian curvature in C2.



1 .2 Preliminaries

Let C2 be R4 equipped with its complex structure J and M be a proper slant surface

isometrically immersed in C2 .

For any vector X tangent to M, set

JX=PX+FX

where PX and FX are respectively the tangential and normal components of JX.

It is clear that P is an endomorphism of the tangent bundle TM and that F is a

normal-bundle—valued 1-form on TMp.

Let 61 be an unit local vector field in TM. We choose a canonical orthonormal

local frame €1,82,83,€4 such that

62 = (sec 7)Pel, e3 2 (csc ’y)Fel, 64 = (csc ’7)F82.

Such an orthonomal frame is called an adapted Slant frame.

Let w1,w2,w3, an be the dual frame of 61,82,63,€4. Then the structure equations

are given by

de = —wAB /\ 013, deB = —wAC /\ was, MAB + wBA = 0-

where A, 821, 2, 3, 4. 7‘, 3:3, 4. i,j=1, 2. Restricting to M, w, = 0. Then we have

_ 1' _ 1‘ _ T

(Uri — hijwj, hij —- hJ‘l'



A helical cylinder in 1&4 is defined by

(1.2.1) :r(u,v) = (u, kcosv,mv, ksin v)

where m and k are nonzero constants. With complex structure Jo in IR", (1.2.1)

defines a proper Slant surface in C2 with slant angle cos-1(77—ngn—T—g), where

Jo 3 ($1,$2,333,$4) *——> (—173, —$4,$1,$2)

If we choose

1

W"2'+" E

63 = (O, — cos 2}, O, ——- sin n),

61: (0, —ksinv,m,kcos v), 62 = (1,0,0, 0),

1

.3, — _.m(
0, —m sin v, ——k, m cos 2)),

then 61, 62, 63, 64 form an adapted slant frame with respect to J0, where 63 is in the

direction of mean curvature vector. The connection form of ( 1.2.1) is given by

  

{ 0 0 Egg—gull 0 \

0 0 O 0

(1.2.2) (wAB) = k

WW1 0 0 ‘W’i—flwl

K O 0 #021 0 )

1.3 Basic Equations

Let M be a proper slant surface with constant mean curvature 5 ¢ 0. We recall from

[2] that

(1-3-1) hi2 : hi1, hgz = hi2:



(1.3.2) w34 — (4112 = cot 7{(trh3)w1 + (trh4)w2}.

where "y is the slant angle. We can choose an adapted slant frame such that 63 is

parallel to the direction of mean curvature vector. Thus the Shape Operator A3 and

A4 take the following forms:

c—Aa a /\

a A /\—0z

Let a = ccot'y > 0. By (1.3.2), we have

(.034 — (4)12 = awl.

Using the structure equations, we get dwl = 0. So, locally, there exists a variable a:

such that d1: 2 col. Since

dwl = —w12 /\ (.02,

we Obtain that

can = ,8602, and (1134 2 3w + awl.

Assume tag 2 f (:r,y)dy, where f (2:,y) is a C"2 function and nowhere zero on a

neighborhood U of (0,0). SO, on U, the metric tensor is

g = (1172 + f2(:v, y)dy2.

Since (S31 2 (c —- A)w1 + am, we have

dLU31 = (62A “I" 810 — afl)w1/\ (4)2.



On the other hand,

dw31 = —w32 /\ W21 — w34 /\ 6041

= (2015 — aA)w1 /\ wg,

So, by comparing these two expressions, we deduce that 62A + em: = 3afi — 01A.

Similarly, we have 61A — 820 2 —CB + 3A6 + 0.0.

Let K denote Gaussian curvature of M, then

K011 /\ £02 2 dang —_- (61,6 — B2)w1/\w2.

But

(10112 = —w13 A 0132 — a114 /\ W42

2 (CA — 2A2 — 2&2)w1 /\ (.02,

therefore

Kzelfl—fizch—2A2—2a2.

Consequentely, we have

elA — 620 = —cfi + 3A3 + no,

(1-3-3) 62) + 610 = 3016 — a/\,

K=elfl—52=c/\—2/\2—2a2.

In particular, (1.3.3) implies K S Cg. Since tag 2 f(:1:,y)dy,



10

gidmdy = dwg = —w21 /\ wl

0:2:

2 —fifd:rdy.

Therfore fl = _§-f,{, and

0’_f _ _,,2f_ _ a:
83:2 — 8x 01:

(1.3.4) = 52f - f(fi2 + K)

= —Kf.

1.4 Proof Of Theorem 1.1

Now, we consider the flat case, i.e. K = 0.

By (1.3.4), we have

f($, y) = p(y)$ + (1(31)

on some open neighborhood U of (0, 0). Let a, 6, '7 as in the previous section.

First, if a E 0 and then A E 0 on U by (1.3.3) since 0 ¢ 0. In this case, we can

compute its connection form as follows:

__ ._ _ 3 3 _ _
wlg — fiwg —— 0, (.4131 — huwl + hlgwg — (c — A)w1 + awg — cw],

_ _ _ 3 3 _ ._
w34 — ng + awl — awl, c032 — hmwl + h22w2 — awl + Awg — 0,

_ h4 h4 _ - A

c041 — 11+ 12w; — aw1+ L02,

4
(1242 = h‘]1w1 + h22w2 = Awl — am 2 0.
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Thus we have

  

( 0 0 —cw1 0 \

0 0 0 0

(WAR) =

can 0 0 awl

K 0 0 —aw1 0 /

Therefore, we can chose m and k such that c = fig. Let

— COS—1 _____7n_.__

7 W‘

By assumption,

__ _ m

a — CCOL ’Y — —m.

Thus we get (1.2.1). i.e., ll! is helical cylinder on U. So we have proven the theorem

in this case.

If there exists a point z E U such that a(z) aé 0, we can find an Open subset V Of

U such that a is nowhere zero on V.

Lemma Let V as be chosen above, then p(y) E 0 on V.

Proof. Let us assume that p(y) does not vanish identically. Let z’ E V be a point

such that p(z') 76 0, we can choose an open subset of V, say W, such that p(y) is

nowhere zero on W. Thus on W,

— 2 a: Mf(1r,y)—p(./)( +p(y))-

So, without loss of generality (by replacing p(y)dy by dY if necessary), we can assme

f(:v.y) = x + 9(y) on W-
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21

In this case, ,6 2 —%§- = -%. From (1.3.3), we have

 ' anew-3A,
(9:1: fay—- f aa,

1Q+£9£_ Ba a)‘

a a ‘"__ ’

(1.4.1) ] f y a: go

(C—4A)5}-—4aa—$=O,

6A Ba

\ (C — 4A)??? — 40—8—37 — 0. 

Solving (1.4.1) and noticing that CA — 2A2 — 2a2 2 O, we have

8A_4aa (9A_ 40

  

  

(42) a_—C_(7+af)v 'a_y—_?(C—A+aaf)a

1.
' 8a c-4/\ 0 6a c—4A

—= — —=— —A .
ax C (f af)? 6!! C (C +a’af)

Let A = % +aa, and B = c— a+aaf. Since 5:53} = 5:23, we have

40 BA BB

"flag”:‘aal—O

Since a 75 0 on W,

Q1. + 9.1.3. — 0

By (91: _ '

Using (1.4.1), this implies

(1.4.3) Pa : QA — D,

where

(*) P:£;-+3av Q:§_a2fa Dz:

f f f
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Therefore P2 2 = 622A2 — 2QDA + D2. By (1.3.3), we have

(1.4.4) 2(102 + 622))? — (c1D2 + 4QD)A + 21)2 = 0.

From (1.4.3),

619 aa _ 8Q ax an

EQ+P5§~8$+ 03: 82:

By (1.4.4) and (1.4.1), this implies

(1.4.5) (a‘o’f4 — 2a2g’f2 — 2g' — ag’2)/\ — 2acf2 = 0.

Thus (1.4.4) and (1.4.5) give

(1.4.6) ((ag')2 + 3ag' + 2)(9a2f4 + 6ag’f2 + 9’2) = 0.

SO, if there exists a point zo E W such that ((ag’)2 + 3ag’ + 2)(z0) 75 O, we can

choose an open neighborhood W’ of zo in W such that (ag’)2 + 3ag’ + 2 is nowhere

zero on W’. Thus, by (1.4.6), we have

9a2f4 + 6ag’f2 + g’2 = O on W’,

i.e., (:r + g(y))2 =2 f2 = :gggfll on W’. This is a contradiction.

In the following, we assume

(ag’)2 + 3ag’ + 2 = 0 on W.

Thus, 9’ = l or —% on W, then f(a:,y) = x+by+C on W, where b = —% or —Z.
a a
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Now, from (1.4.3), we have

Qfa+p§2_ 99- Qé_§2_0

3y 6y 0y 0y 0y _

By doing similarly computations as before, we have

(—4afDP + 3cP2 — 4DQ + acfPQ + cpyo + 4cQ2 — ciao,»

(1.4.7)

+2D2 + achP + chP — c2P2 — cDPy — 4cDQ = 0

Notice that, in this case

P—i+3a, Q=—f2 —a2fa D:

i E

f f'

Substituting the above and (1.4.7) back in (1.4.4) and simplifying, we have

(1.4.8) 3a6c4f8 + (—8a"c4 — 38a5c4b — 1241661112”6

+ (—276a?c4 — 706a3c4b — 532a4c4b2 — I20c15c“123)f4

+ (36c4 — 144ac4b — 43201254112 — 338a2c4b3 — 74a4c4b4)f2

— 2064b2 — 66ac”b3 — 55a264b4 — 12a3c4b5 = 0.

The leading term of (1.4.8) is 3a6c4 75 0, and the other coefficients are constants.

Thus we get f E constant on W. This contradicts f = :1: + by + C. So, we have

completed the proof of the lemma.

Returning to the proof of Theorem 1, From the above lemma, we know f (51:, y) =

91

q(y) on W. By (at), we can see that P, Q and D are functions of y. Also ,6 2 ~13;— = 0.

Moreover, from (*), we see that P , Q and D can not be simultaneously zero at any

point on W, otherwise we have c = 0 at this point. Thus A is a fuction of y, and so
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is a. By using (1.3.3), we have

Id_a_
fdy

1dA_
—aa, and

SO, a 2 CIA, where 01 is some constant. By (1.4.1), we get

2(1+ of»? — CA = 0

then

C

A—O, OI” A—m.

If A = 0, we have a = 0. This contradicts our assumption that (1 ¢ 0 on W.

If A = W???) # 0, by (1.4.9) and g(y) 76 0, we get a = 0. This contradicts our

assumption. Thus we have completed the proof of Theorem 1.1. E]

1.5 Proof Of Theorem 1.2 for K a Positive Con-

stant

From (1.3.4), we have g} = —12f. For simplicity, we assume I = 1, i.e. K = 1. Thus,

in a neighborhood U of (0, 0),

f(:r,y) = 91(31) sin$+g2(y) COS-”II

1

= —— sin(-r + 51(30)-
9? + 9%

where g(y) = cos‘1g1(y). Since 92(0) # 0 (otherwise f(0, 0) = 0), therefore, without

loss of generality, we may assume f(:1:, y) = sin(:z: + g(y)).

From (1.3.3) we have c2 2 8. if c2 = 8, we have 01 = 0 and A = i, and then a = 0.
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This contradicts the assumption of a > 0. Thus we assume c2 — 8 > 0.

 

 

Let 6 = a: + g(y), since f = sin 0, so 5 = _§-ff_ = —cot 6. Thus, from (1.3.3), we

have

’ (9A 1 0a

53; — sinOUy- — (c— 3A) cot0+aa,

'._1_§"A' + 6_a = —3acot0 — (IA,

(1 5 1) ] SInQBy 0:1:

. . 0A BO:

(0 — 4A)a—x — 4015; _ 0,

8A Ba

c—4A ——4a—=O.

. ( lay 6y

Solving (1.5.1) and taking (1.3.3) into account, we obtain

 

f

g; 2 —4Aa(a cot 0 + (M — Ba),

8A
-.8— : —4Aa((c — A — 3B) c056 + aas1n6),

(1.5.2) 4 8y

.9. = (c — 4A)A(a cot6 + aA — Ba),
(91:

Ba
-8—3; = —(c — 4A)A((c — A — 3B) cosl9 + aa sm 6),

\

whereA= Eff—3 and B: E.

If a E 0 on U, we have A E g on U, then a = 0 by (1.3.3). This contradicts our

assumption.

If there exists a point z E U such that (1(2) 75 O, we can find an open subset

V C U such that oz nowhere zero on V. Thus, on V, by using 8133 = 8222, (1.4.2)
 

and (1.3 .3), we have

(1.5.3) Pa 2 QA — D
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where

3a sin2 6 cos 6 + g’ _ —-3B sin2 6 + 0

sin2 6 _

P=3acos6+g’csc26= ,

sm6

 , D 
’

(1 — a2)sin26+3cosz6 _ 3 — (2+a2)sin26
  

Q 2 sin26 sin6

Also, by (1.3.3), we have

(1.5.4) 2(P2 + Q2)/\2 + (P2c + 4DQ)A — 2D2 — P2.

From (1.5.3),

6P 6a 6Q 6A BD

‘53”5; — 53*+Qa;"a7

Consider (1.3.3), (1.5.3) and (1.5.4). This implies

(1.5.5) KA+F=0,

where

K 2 OP, — AP2ca + 4ABaQ2 + 4AP2Ba — PQ’ + 4APD cot 0 — 4AQDa

—AQPc cot 6,

F = —P,D — APDc cot 6 — 4ABDQa + 2AQP cot 6 + DxP + 4AaD2.

Putting (1.5.5) back into (1.5.4) gives

(1.5.6) 2(P2 + Q2)F2 + (P2c + 4DQ)FK + (21)2 + P2)K2 = 0.
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, and t = g’(y).

6
._ - 2_

U—SlIl 2

Then (1.5.6) becomes the following polynomial equation in a,

(1.5.7) blg’ulB + (21711.17 + ‘ ° ' + blu + ()0 = 0,

where b, are functions of a, c and t. That is to say that they are functions of y.

The followings are some coefficients we will use later:

he

bu

bra

b16

18874368(a — 1)2a2(1 + a)2(a2 + c2 — 9) .

-(576 — 64c2 — 88a2c2 + 8a"‘c2 + 9a2c4),

169869312(a — 1)2a2(1+ a)2(a2 + c2 — 9) -

-(576 — 64c2 — 88a2c2 + 8a4c2 + 9a204),

49152a(192471552a - 492549120a3 + 331043328a5 - 30965760a7

—14684544ac” + 38083584a3c2 + 23807616a5c2 — 56238336a7c2

+9461760a902 — 430080allc2 — 3647616ac" + 5267976a63c4

—1O946376a50" + 10212216a7c4 — 886200a9c" + 298368ac6

—17913a3c6 + 138138a5c” — 418593a7c6 + 2688a308 + 37527715738

—3939840t + 8607744a2t — 4953600a4t451584a6t + 83404802t

45539271281 —- 4953600a4t + 45158465621 — 195008638:

+6272a’0c2t — 39424511: -— 133576a2c" + 469344a4c4t

—7293432a6c4t + 20416a8c4t - 51206t + 10902a2c6t — 26721a4c6t

+14063a6cfit + 162a2c8 — 81a408t,

1179648(a — 1)a2(a + I)(a.2 + c2 — 9)(—32716 + 334080a2 + 34048c2
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13536a262 — 55680a462 + 464067.602 + 256a4 — 4916a2c4 + 52006464

-270.2C6.

We will Show that, for any a and c, the coefficients of (1.5.7) cannot be identically

zero simultaneously on W. If this is true, let bk be the biggest 2', (0 S i g 18), such

that bk is not identically zero on W . Thus there exists an open subset W’ of W such

that bk is nowhere zero on W’, So, on W’ we have

with all coefficients as function Of y and leading coefficient 1. Thus, we can write

u = F(y) on W’, i.e., sin2 x—‘Lg—w = F(y) on W’, where F(y) is some function Of y.

This is a contradiction.

Thus, to prove the theorem, it is sufficient to prove that, for any b and c, the

coeficients b,, i = 0, 1, 2, . - - , 18, can not be identically zero Simultaneously on W.

Case 1. a 76 1 and a2+c2 # 9. In this case, U18 and b17 can not be zero simultaneously.

Otherwise, we have

(1.5.8) 576 — 64c2 — 88a2c2 + 80.402 + 96%“ = 0,

—327168 + 334080a2 + 3404862 + 13536a”c2 — 55680a"c2

(1.5.9)

+4640a602 + 256C4 — 4916a2c4 + 5200a4c" — 27a206 = O.

Solve (1.5.8) for 02 gives

 

64 + 88a2 — 864 :t @07360? + (—64 — 88a2 + 8a")2

1.5.10 2

( ’ C 18612
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Putting the above back into (1.5.8), we get

I43327232(a2 — 4)(a.2 — N466 = 0.

Thus a2 = 4 since a2 76 1 and a # 0. Now put a2 = 4 back into (1.5.10), we get

62 = 4. This contradicts the assumption C2 > 8.

Case 2. a = 1. In this case, we have D18 = b17 : b15 : b15 = b14 : 0. But

b13 = 49152(165888t — 10368062t + 23328c4t — 2268c2t + 81c8t

= 3981312(c — 2)(c + 2)(c2 —- 8)3t.

So if b13 E 0 on W, we have t E 0 on W since 02 > 8. Thus ( 5.7) becomes

(-6115295232 + 4586471424c2 — 1242169344c4 + 14332723206 — 59719682652112

+... + (47775744c2 — 2583705664 + 4064256c6 — 198144c8)u4

+(373248c4 — 82944c6 + 4608c8)u3 = 0.

where

b12 = —5971968(c
2 _ 4)2(c2 _ 8)2,

2
which is not zero since 0 > 8. Therefore b12 and b13 can not be identically zero

simultaneously on W.

Case 3. a2 + c2 = 9. In this case, C2 = 9 — a2. Substituting into (1.5.7), it becomes

(—1179648a6 + 2359296718 — 117964871104112 +

+(—3276288a6 +1317888a.8 — 105984a’0)u4

+(373248a6 — 82994408 + 4608a’0)u3 = 0.



21

But by) = —1179648(a2—1)2a6. Thus if b12 = 0, a = 1 since a > 0. So 02 = 9—a2 = 8.

This contradicts the assumption c2 > 8. Thus b12 79 0. [:1

1.6 Proof Of Theorem 1.2 for K a Negative Con-

stant

Now we consider K = ——12 76 0. For Simplicity, we assume I = 1, i.e. K = ——1.

AS we did in the last section, we have 3.5 = —6f and 3?; = f, and thus

f (at, y) = 91(9)ear + 92(0)”

in a neighborhood U of (0,0) and f 75 0 on U.

Since gl and 92 are not simutaneously vanished at 0, otherwise f (0, O) = 0. Thus

without loss of generality, we assume 9(0) ¢ 0. Therefore there exists an Open subset

V of U such that 91 (y) is nowhere zero on V, so on V

 

SO, without loss of generality, by replacing gl(y)dy by dY if necessary, we can

assumef(a:, y) 2 ex + g(y)e‘$. Therefore

From (1.3.3) and

(1.6.1) cA — 2A2 -— 2012 = —1,
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we have

V 8A 2
6—11: ... 4Aa(2a + acA - [3001):

6A
2.6— : —4Aoz(c6A + aca — 66 — 5C )f,

(1.6.2) l 3”
a

6—2: _ A(c — 4A)(2a + acA — 650‘),

80
2

6—3] = —A(c — 4A)(c)6A + aca — 66 — 36 )f-

where A = 271;? Ifa E 0 on V, by (1.6.1) we have

,/ 2
A __-—_ C :l: 4C "l” 4 on V,

which is a nozero constant. So by (1.3.3), we have a E 0. This contraducts with our

assumption.

If there exists a point z E V such that 07(2) ;£ 0, we can find an open subset W

  Of V such that or is never zero on W. Thus, on W, 03:6,, 2 £26: and (1.3.3) gives

(1.6.3) Pa : QA — D,

where

_ 66 6f

P — (acf6+3acf6 Cay +acax),

= (3cf62—a2cf+-a—fflc+fc§g,

6:1: (91:

= 672? + (6 + 853,024).

From (1.3.3) and (1.6.3), we have

(1.6.4) 2(1D2 + Q2)A2 - (ch2 — 4QD)A + 21)2 — P2 = 0.
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On the other hand, from (1.6.3),

BP 80 6Q 8A 6D

By (1.6.1), (1.6.4), this implies

(1.6.5) GA + F = 0,

where

G = PIQ — PQAfic2 — 8aQ2A — 4DPA66 + 4DQAac + I’zAac2

—8P2Aa — PQI + 2QA,662

F = —PID + PDAflc2 + 8aQDA + 2QPA6C + 2P2Aac + PQI.

Combining (1.6.4) and (1.6.6), we have

(1.6.6) 2(P2 + (22)}?2 + (P2c + 4DQ)FG + (2D2 — P"’)G2 = 0.

Let

Then (1.6.6) becomes

(1.67) 0351136 + 6352135 + + blu + b() = 0,

where

60 = 18a2A2c4(5184 + 1555262 + 8640a" + 576a6 + 64(1202
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—1872a4c2 — 2016a6C2 — 2400.862 — 80.1062 — 810.264 — 567a“c4

—459a6c4 — 29a8c4 — 27a"c6 — 27a6c”)g18

9a3A2c5(576 + 576a2 — 72a2c2 — 128a”c2 — 8a6c2 — 9azc4 — 15a4c4)g’7,

536 = 962426400368 + 21888a2 + 1267264 + 1152a6 —— 1152c2 + 1424a2c2

800a"c2 —— 2112a”c2 — 352a’3c2 — 16awc2 + 32c4 — 34a2c4 —— 6a4c"

—646a6c4 — 58a8c4 + 27a"c6 — 54a6c6),

535 = 96(62 — 2)A2c5(—576 — 576a2 + 32c2 -— 240.262 + 960462

+8a6c2 — 3a2c4 + 15a4c”).

By the same argument as in the last section, it is sufficient to prove that, for any

a and c, the coefficients of (1.6.7) can not simultaneously be identically zero on V.

Case 1. g E 0 on V. In this case, t = g’ E 0 on V . and (1.6.7) becomes

(1.6.8) 130 +816 + 132212 = 0.

where

b0 2 (a2 — 2)2c2(8 — a2c2), b1

Also it is easy to compute

P = 3acu Q = (2 — a2)cu, and D = —6u.

We will prove b,, 2' = 1, 2, 3, can not be zero simultaneously.
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Subcase 1.1. a2 = 2. By Pa 2 QA — D, we have 3acua = 611 , i.e.,

2

(1.6.8)
a = — =

by (1.6.1), we have A _=. constant on V. But 6 = —i = —1. Fro m(1.3.3), we get
61'

Ba + aA = 0. By using (1.6.8), this implies

(1.6.9) A = ——.

Putting (1.6.8) into (1.6.1) gives c2 + 11 = 0. This is a contradiction.

Subcase 1.2. 0202 = 8 but a2 # 2. In this case, put a2 = 385 in bl We have

_ 8
51 = —,(512 +192c2 + 24c4 + 06)

C

which is never zero.

Case 2. There exists 2 E V such that g(z) ¢ 0. Thus we can find an Open subset V’

of V such that g(y) is nowhere zero on V’. We will prove that b0, b1, b35 and b36 can

not be zero Simultaneously on V’.

To this end, we assme b0 2 bl = b35 = b36 = 0. Then by b35 = 0, we have

(1.6.10) a2 = 2,

or

(1.6.11) —-576 — 576a2 + 32c2 — 246%2 + 96a4C2 + 80.662 -— 36%“ + 15647:“ = 0.
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Subcase 2.1. If (1.6.10) is true, we put a2 = 2 back to b36 = 0, it gives

324(11+ c4)(32 — 8c2 — c4) = 0.

Thus c2 = ‘—8—+§8—@ z 2.9282. On the other hand, put a2 = 2 in bl = 0 gives

6(—288 +12062 +136) 2 0,

so c2 = :Li’bggifl x 1.9767. This is a contradiction.

Subcase 2.2. if (1.6.11) is true. From bl = 0, we have

(1.6.12) 576 + 576a2 — 720.262 — 1280.462 — 86%2 — 90.264 — 156%“ = 0.

Then (1.6.11)+(1.6.12) gives 4c2(—8 + 24a2 + 8a4 + 3a2c2) = 0, then

c2 = 8(1- 3a2 — a4).

3a2

 

Put the above into (1.6.12) and b35 = 0, we have

(1.6.13) 3 — 34a2 — 1364 +1066 + 468 = 0,

and

(1.6.14) 16 — 309a2 +1768a4 + 520(16 -— 992a8 — 293a10 + 144a12 + 46a14 = 0.

Solving (1.6.13), we have

(12 3 0.08523 or a2 x 1.8009
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Putting the above back into the left hand side of (1.6.14) to

LHS of (1.6.14)z2.7704 or —15.3325

respectively. Both give contradictions. Cl



CHAPTER 2

HYPERSURFACES WITH

CONSTANT MEAN

CURVATURE SATISFYING

CHEN’S EQUALITY

In this chapter, we will completely classify hypersurfaces in real space forms with

constant mean curvature satisfying Chen’s equality.

2.1 A Remannian Invariant and Chen’s Equality

According to the well-known Nash imbedding theorem, every Riemannian n-manifold

admits an isometric immersion into the Euclidean space IE"("+1)(3"+“)/2. In general,

there exist enormously many isometric immersions from a Riemannian manifold into

Euclidean spaces if no restriction on the codimension is made. Associated to sub-

manifold Of a Riemannian manifold there are several extrinsic invariants beside its

intrinsic invariants. Among intrinsic invariants, sectional curvature and scalar curva-

ture are the most fundamental ones. On the other hand, among extrinsic invariants,

28
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the mean curvature function and shape operator are most fundamental.

One of the most fundamental problems in submanifold theory is to obtain simple

relationships between the main extrinsic invariants and the main intrinsic invariants of

a submanifold and to find applications. Many famous results in differential geometry

such as the isoperimetric inequality and Gauss-Bonnet’s theorem, among others, are

results in this direction.

Let Mn be an n—dimensional Riemannian manifold. In 1993, Chen introduced an

important Riemannian invariant 6M of Mn by 6M (p) = 7(p) — inf K(p), where inf K

is the function which assigs to each p E M” the infimum of K(7r), where 7r runs over

all 2-planes in TPM and 7' is defined by 7' = 2K,- K(e,~ A 6,), where {e1,.. .,en} is

an orthonormal basis of TPM". For n z: 2, this invariant vanishes trivially. If M"

is any submanifold immsersed in an m—dimensional Riemannian space form R’"(e) of

constant sectional curvature 6, Chen proved in [7] a sharp inequality involving Chen

invariant 6M and the squared mean curvature H2, namely

n2

(”—2) 2

Inequality (2.1.1) is known as Chen’s inequality and has some important appli-

cations, for example, it gives rise to the second Riemannian obstruction for a Rie-

mannian manifold to admit a minimal isometric immersion into a Euclidean space.

It also gives rise to an Obstruction to Lagrangian isometric immersions from compact

Riemannian manifolds with finite fundamental group 771 into complex space forms

(see [9] for details).

Since (2.1.1) is a very general and sharp inequality, it is natural and important to

investigate and to understand submanifolds in a Riemannian space form which satisfy
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the equality case Of Chen’s inequality, which is known as Chen’s equality:

- _ n2(n " 2) 2
(2.12) 6M — m}! + (H +1)(n — 2)€.

Submanifolds satisfying this basic equality were studied recently in many papers

(cf. for instant, [7],[8],[9],[11],[12],[14],[19],[22],[23]). In this respect, we would like to

point out in particular that 3-dimensional totally real submanifolds satisfying Chen’s

equality in the nearly Kahler 6-sphere 86(1) have been completely classified in [23]

by F. Dillen and L. Vrancken; and minimal hypersurfaces in non-flat Riemannian

space forms satisfying Chen’s equality were classified completely in [14] by B. Y.

Chen and L. Vrancken; roughly speaking they proved that a non-totally geodesic

minimal hypersurface Of S"+1(1) satisfies equality (2.1.2) if and only if it is a tubular

hypersurface with radius % about a 2-dimensional minimal surface in 5"“(1) and a

non-totally geodesic minimal hypersurface of the hyperbolic (n + 1)-space H"+’(—1)

satisfies equality (2.1.2) if and only if it is a “suitable tubular hypersurface” about a

minimal surface in the de Sitter space-time S?+’(1) (cf. [14] for details).

We will investigate the most fundamental case; namely hypersurfaces satisfying

Chen’s equality. We will deal with hypersurfaces with constant mean curvature in

this chapter and conformally fiat hypersurfaces in the next chapter. Since Chen’s

equality is trivial when n = 2, we will consider n-dimensional submanifolds for n > 2.

2.2 Main Results

Theorem 2.1 A hypersurface 1V1" (n > 2) of a Euclidean (n + 1)-space 1E"+’ with

constant mean curvature satisfies equality (2.1.2) if and only if either M" is minimal

or Mn is an open portion of a spherical hypercylinder R x Sn’1(r).

Theorem 2.2 Let Mn (n > 2) be a hypersurface with constant mean curvature in the
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sphere S”+’(1). Then M" satisfies equality (2.1.2) if and only if one of the following

two cases occurs.

1. Mn is a totally geodesic hypersurface.

2. There is an open dense subset U of Mn and a non-totally geodesic, isometric,

minimal immersion ¢ : B2 —> S”+1(1) from a surface B2 into 5"“(1) such that

U is an open subset of the unit normal bundle NB2 defined by

NpB2 : {g E T¢(,,)S"+1(1)| < {,5 >= 1 and < 5,6.(Tsz) = 0}.

Let IE]1+2 denote the (n + 2)-dimensional Minkowski space-time with the Lorenzian

metric g = —da:f +dzr§ + - - 1+ (trim. Recall that the unit hyperbolic space H"+1(—1)

and the unit de Sitter Space-time SI’+1(1) are isometrically imbedded in IE?+2 respec-

tively in the following standard ways:

H”+I(—1)={x = ($1,...,:rn+2) E IE?+2| < x,x >= —1},

Sf+1(1) : {x E IE’I’+2| < x,x >= 1}.

Theorem 2.3 Let M” (n > 2) be a hypersurface with constant mean curvature in the

hyperbolic space H"+1(—1). Then M" satisfies equality (2.1.2) if and only if one of

the following three cases occurs.

1. M” is a totally geodesic hypersurface.

2. M" is a tubular hypersurface with radius r = coth_’(\/2) about a 2-dimensional

totally geodesic surface of H"+’(—1).

3. There is an open dense subset U of M" and a non—totally geodesic, isometric,

minimal immersion (b : B2 —> S?“ from a surface B2 into the de Sitter space-
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time Si’+’(1) such that U is an open subset of the unit normal bundle NB2 of

B2 defined by

N1082 = {E E T¢(p)S[’+l(1)|<€,€ >= —1 and < §,¢*(TpB2) >= 0}.

2.3 Prelimilaries

Assume that M" is a hypersurface in real-Space-form R"+1(e), e = 1, 0, or -1. We

shall make use of the following convention on the ranges of indices:

15A,B,CSH+1; 152393113371; 33046.73”-

Denote by A = A); the Shape Operator of Mn in R"+1(c) with respect to a unit normal

vector 5 and by h the second fundamental form Mn in R"+1(6). Let A1, A2, ..., An be

the eigenvalues of A with respect to orthonormal eigenvector field e1,e2, ..., en, i.e.,

we have

(2.31) Ac, 2 /\,‘6,‘.

If M" satisfies the Chen’s equality (2.1.2), then, by rearranging e1, 62, ..., en if neces-

sary, we have ([7])

(2.3.2) A1 = 0., A2 = ,u — a, An = p,
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Let 021, 022, ..., w" denote the dual frame of e1, e2, ..., en. Then Cartan’s structure equa-

tions give

(2.3.3) dw’ = —w; /\ 02’, d6);- = w}, /\ a): + (e + A,A,-)w’ A to],

where (623) are the connection forms. From (2.3.3) and Codazzi equation, we have

e,-A-= A,—,\. of e(2.34) J ( J) ( 2)

(A1 ‘ Ak)w;-°(e,-) = (A1" Ak)w,”(ej)

for distinct i, j, k.

Let F]; be defined by Ve,ej 2 22:1 I‘fjek, where V is the Levi-Civita connection

on M". Then we have

k_ k j k _ k , k __ i
w, -— XII-,0), I}, — (1),-(e3), I}, — PM.

I:

In this way, (2.3.4) becomes

e,A-= Ai—AI‘}

(2.3.5) ’ ( ” ’

(A7 - 29113;: (A.- - A9113-

for distinct i, j,k. Let H denote the mean curvature of M" in R"+’(e). Then

it — 1
 

H: p.

n

In the following, Let V denote the Open subset of M" on which M has exactly

three distinct principle curvatures, i.e.

(2.3.6) V = {x E M|a(;t) 75 0,a(:1:) 96 u,a(:c) 74 g},

where a and a are given by (2.3.2). From (2.3.2) and (2.3.5) we obtain the following
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lemma.

Lemma 2.1 Let Mn be a hypersurface in a Riemannian space form Rn+1(e). If M"

satisfies (2.1.2), then on V we have

 

 

  

 

Ia 261‘: Ann F312,” Am F60 — F 0 a = 6

82ft 32H 2 610‘" a)
2.3.7 F“ = , F0 = ———, F = ———‘—_,

( ) “a a —)u 20 CE ) 12 H- 2a

ega ea u— a eaa
P1 = , P2 _ P1 _

21 2a 02 a 1 011 ,u _ a

0, AG, ,

lug: e wk+fl——2+ 9” u
11—0 u-(a ) ”—0 n

820. 1 61 u—a 2 a a

2.3.8 4 1: ———-— + —— +—— A. .
( ) L02 ,u—2aw p—2aw fi—2a(],z::3 w

(412‘—_ A (4)1 800‘ _ a) 2 BQHWO

\ a a a 1 

where A0, 2 F21

Proof. It is clear by (2.3.5). C]

We also need the following lemma.

Lemma 2.2 Let M" be a hypersurface in R"+’(6). If .M" satisfies equation (2.1.2),

then on V we have

   

   

el/i eaa (eaa)2 2aA§ (elu)2

€1( ) — 6’1( )_ 2 — _ 2

(23) 14-0 14—0 (u- a) 14-20 (1.4-a)

. .9 _(e 11

2a) (62/1)_ _Z(

—— efla)F 0+ an + e,

(1“ _ 2a)": ——/‘ “3;“,

2(u-a’ (14-0) (14 2(14-20) u-a

(2.3.10)

 

_€a(fl - a’Aa _ (flfllkzzfll = 81(0 — H)(€2#) __ 1 Z aAgl‘ga,

(4 - 2a In - CW (14 - 20)a u — a 0,1),
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61( aAa ) _ e2( 80a ) _ (eaa)(e2a) _ “A0610, _ a)

(2311) ”—a’ ”'a (I‘ ’“W 2a) (u-a)(u—2a)’

’ l (M _ 20)A061” (”Gleam ‘0) " esaa aAs B

(fl—a)?
— 0’01- 20.) —C§(I«L"

Flt—01““).

Proof. By applying the second Cartan’s structure equation and by using Lemma 2.1,

we may compute did}, in two different ways. Formulas (2.3.9), (2.3.10) and (2.3.11)

are Obtained by comparing the coefficients of w1 A 020,612 /\ w“, and 011 A w2 of d013,,

respectively. [:1

Similarly, by computing do)? in two different ways and by comparing the coeffi-

cients of wl A a)", 022 A 020,021 A w2 of dwg, respectively, we obtain

Lemma 2.3 Let A!" be a hypersurface in a Riemainnian space form R"+I(€). If M"

satisfies equality (2.1.2), then on V we have

   

 

 

e 62_/4 e ..(a — 74) 2am: _ (4.07 — ..))2 _ (e217)?
(2312) 2( )+ a( ) (fl—(1.)(ll—2a) 0.2 0.2 )

' ' = 810‘ " a)(€1#) _ n 660‘ _ a) 60 6

(waxy—2a) :6. a P 1"“ l“

8 Egg _ e _ Aaeaa _ 14-6 _ a _ (82H)(€1#)

1( a) “A“ 44-0 a-(u 2a)A a( ) dbl-a)

(2'3'13) (820.)(81/1.) aAaega
  

= (ll—aXu—Za)
_ (ll-aXu-Qa)

_;Afiraai
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e (M) __ e A _ ”A032“ _ (€101 — a))(ea(;i — a))

(2 314) 1 a 2 a (’1’ _ a)(l‘l’ — 2a)
a(/1. — 2a)

. . (f‘ — 2a)Aa(e2fll _ _(€1(H - a))(eaa) _ ” fl _ 660‘ _ a) fi

+ am — a) ‘ (I. — am. _ 2..) @9402 ———-,,1“...)-

2.4 Proof Of Theorems 2.1, 2.2 and 2.3

Let Mn be a hypersurface with constant mean curvature H in a Riemannian space

form R"+’(e) (n > 2, e = 1, -1, or 0 ) which satisfies Chen’s equality (2.1.2). If M" is

not minimal, then a = fill is a nonzero constant. In this case, (2.3.9) and (2.3.12)

reduce respectively to

2 _ ZaAfl/J - “)2
 

 

(a _ “Xeaeaal _ 2(eaa) — I14 _ 2a + (5 + ”(1)0" " a)2

(2.4.1) n

- Z (Baalfgam - a),

16¢a

a(eaeaa) — 2(eaa)2 = — (M £12: 2a) + (e + ()1 — 6))62

(2.4.2) 5

+a 2 (@6650.

(#0

From (2.4.1) and (2.4.2) we obtain on V that

2aA2",,(u2 — 36a + 3a?)

(14 - a) (M - 2a)

 eaeaa = — + (u — 2a)(a2 — an — e)

n

(2.4.3) + 2(640)F€a,

0¢fl

(......)2 = -5263, + 01 — .52) — gum - a).
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Since ,u is constant, (2.3.13) reduces to

 

A a 2 - 3 2 2 "

(2.4.4) 60A,, = “(e “X” a“ + a ) + Z Aflrga.

Now, by applying Lemma 2.1 and Cartan’s structure equations, we can compute

do); and drugI in two dofferent ways. Afetr that, by comparing the coefficients of

w1 /\ wfl and w2 A w5 with fl 79 a in the formulas of dad}, and of to: so obtained, we

find respectively the following two formulas:

  

  

2(eaa)(ega) 2a(u — a)AaAfl "

a = P7 awe a + H _ a + l1 _ 2a 72::3(870) afi

2(eaa)(ega) 20,3A0A3 "

e eaa — + = e a I“; .

fl a (u—a)(u-2a) .24.“) "

By taking the difference of these two equations, we obtain on V that

(2.4.5) (eaa)(ega) = —a2AOA5, a # fl.

Now, by applying (2.4.3), we may also obtain

—(e..a)2 = «HA: + (u - an?) + gum — a),

4m)? -—- aw + (u — am + 3am — a).

By taking the difference of these two equations, we get

(2.4.6) (eaa)2 — (830.)2 = a2(A?3 -— A3,).
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Combining (2.4.5) and (2.4.6), we obtain, on V,

(2.4.7) (eaa)2 = a2A2, a ¢ 6.

Case (i): e = 1, R"+1(1) = 5"“(1). If M” is non-minimal, follow the exact

arguments as in Case (iii) by replacing e = —1 by c = 1, we know that a is constant

on each component of V. Therefore (2.4.7) implies A0 = 0. Then the second identity

of (2.4.3) implies that V is an empty set. Thus, Mn is an isoparametric hypersurface

of R"+1( 1) with at most two distinct principle curvatures given either by A1 = 0, A2 =

= An = ,u or by A1 = A2 = 211', /\3 = = An = p. Both cases are impossible

according to a well-known result of E. Cartan [5]. Consequently, M" is minimal

in 5"“(1). Let U denote the open subset of M" consisting of non-totally geodesic

points. Then U is an open dense subset of M". Now, by a result of [7], U has relative

nullity n — 2. Thus, by applying a result of Dajczer and Gromoll (Lemma 2.2 of [18]),

the Gauss image 82 of U is a minimal surface in the unit shpere. Consequently, U is

an open subset of unit bundle NB2 defined in Theorem 2.2.

Case (ii): 6 = 0, R"+1(0) 2 En“. If Mn is non-minimal, then the second equation

in (2.4.3) implies a = 0 or a = p on V which contradicts the definition of V. Thus

V is an empty set. Hence, M is a non-minimal isoparametric hypersurface with at

most two distinct principle curvatures given either by A1 = 0, A2 = = An = ,u or

by A1 = A2 = %u,)\3 = = An = n. It is well-known that the first case occurs if

and only if M" is an open portion of a spherical hypercylinder IR x Sn‘1(r) for some

1' > 0. It is also known that the latter case cannot occur.

Case (iii): 6 = —1,R"+1(—1) = H"+1(—1). First we assume that M" is non-

minimal. We claim that the function a is constant on each component of V. We

divide the proof of this claim into three cases.
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Case (iii-1): n 2 5. From (2.4.7) we have

(2.4.8) (63(1)2 2 (640.)2 = = (ena)2 = a2Ag, a = 3, ..., 71..

Without loss of generality, we may assume 630. = aA3. By using (2.4.5), we have

640. = —aA4 and 65a 2 —aA5 which imply

(64a)(e5a) = a2A4A5.

Thus eaa = A0, = 0 on V by (2.4.5) and (2.4.8). Hence, by applying the first equation

in (2.4.3), we obtain a2 — up — c = 0 on V. Since a is constant, this implies that a is

constant on each component of V.

Case (iii-2): n = 4. from (2.4.5) and (2.4.7) we may assume, without loss of

generality, that 63a 2 (LA, and 64a 2 —aA3. By differentiating the second equation

of (2.4.3) with respect to 63, we get

(2.49) —2(€30)(6363a) = 2(esa)a(A§ + (u — (2)2) + a2(2A3(e3A3)

—2()u — a)(e3a) + §(,u - 2a)e3a.

On the other hand, since A4 = e3(ln a), (2.4.4) yields

(63a)A3(/l2 —3au+4a2) 63a 4

A = —I‘ .

e3 3 (u-ZaXu-ala + a 33
 

Substituting this into (2.4.9), we find

 _. e a e e a = a 20A§(fl2 - 3au+3a2)

(2.4.10) ( 3 )( 3 3 ) (e3 )( (u-a)(#‘2“)
+201 — 2a) — (€4G)F§3)°

+ aw - 20W - a)

If 63a does not vanish identically on V, there exists an Open set W C V such that
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63a is nowhere zero on W. Thus, on W, (2.4.8) becomes

 

—e3e3a = 2c1.A§(p2 — 3au + 3a?)

(2.4.11) (11 - a)(# - 2a)
6

+101 — 2a) — (64a)F§3.

+ aw - (1)04 — 20)

Combining (2.4.3) and (2.4.11), we obtain ,u = 2a. which implies that a is ocnstant on

W. This contradicts the assumption that 63a 7E O on W. So 83a E O on V. A similar

argument yields 64a 5 0 on V. Thus by applying (2.4.5), we know that A3 vanishes

identically on V. Hence, by applying (2.4.3) again, we have a2 —— an + g = 0 on V.

Consequently, a is constant on each component of V. 8

Case (iii-3): n = 3. From (2.4.3), we have

—2(e3a)(e363a) = a2(2A3(63A3) — 2(63a)(u — a))

+2a<e3a)<A§ + (u — a?) + g—(esaxu — a).

By using (2.4.4), this equation becomes

_ ea eea 2 ea 4aA§(u2—3au+3a2)

(2.4.12) 2(3)(33) (3M (ll-GWI‘ZG)

+2a<u — am -— 2a) + 32 — 2a)}.

 

We claim that 63a E 0 on V. Since, otherwise there exists an Open subset W of

V such that 63a is nowhere vanished on W. Then, on W, (2.4.12) becomes

4aA§(p2 —— 3ap + 3a?)

(14 - a)(u - 2a)

 (2.4.13) —2(ege3a) = + 2a(;1 — a)(11 — 2n) + $04 — 2a).

Combining this with the first equation in (2.4.3), we conclude that a is constant onW

which is a contradiction. Therefore, e3a vanishes identically on W. Consequently,
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from the second equation of (2.4.3), we obtain

(2.4.14) a2A§ = —a2(p — a)2 — gam — a).

On the other hand, from the first equation in (2.4.3), we have

_ 2aA§(/12 -— 311/2 + 3(12)

(14 - a)(u - 20)

 (2.4.15) + (,u — 2a)(a2 — up. — 6) = 0.

(2.4.14) and (2.4.15) imply that (1 satisfies a polynomial equation of degree 4 with

constant coefficients on V. Hence, a is constant on each component of V.

Therefore, we know that, for any dimesion n > 2, every component of V is an

isoparametric hypersurface of the hyperpolic space. On the other hand, according to

a well-known result of Cartan, every isoparametric hypersurface of H"+1(—1) has at

most two distinct principle curvatures. Therfore we conclude that each component of

V has at most two distinct principle curvatures. This contradicts the definition of V.

Thus, V must be the empty set. Consequently, M" is an isoparametric hypersurface

of H"+1(—1) with exactly two distinct principle curvatures. Therefore, by applying

Cartan’s classfication theorem of isoparametric hypersurfaces in hyperbolic spaces,

M" is an open set of the Riemannian product of H2(—%) and Sn’2(1) isometrically

imbeded in the hyperbolic (n. + 1)-space in the standard way. Such a hypersurface

is a tubular hypersurface with radius r = coth‘1(\/2) about a 2-dimensional totally

geodesic surface (cf. [8]).

Now, assume Mn is a non-totally geodesic minimal hypersurface. Let U denote

the open subset of M" consisting of non-totally geodesic points. Then U is an open

dense subset of M". Now, by a result of [7], U has relative nullity n — 2. In this

case, by applying an argument similar to-spherical case, we may conclude that the

Gauss image B2 of U is a minimal surface in the unit de Sitter space-time S?+1(1).
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Consequently, U is an open subset of the unit bundle NB2 defined in Theorem 2.3.

The converses are easy to-verify. El



CHAPTER 3

COMFORMALLY FLAT

HYPERSURFACES SATISFYING

CHEN’S EQUALITY

In this chapter, we will study conformally flat hypersurfaces satisfying Chen’s equality

(2.1.2) in Riemannian space forms. By utilizing the Jacobi elliptic functions and the

Theta function we obtain the complete classification of such hypersurfaces.

3. 1 Main Results

In order to state our results, we recall three families of Riemannian manifolds, P:(a >

1), Cg(a > 1), D2(O < a < 1) and the two exceptional spaces F", L", first introduced

by Chen in [10].

Let cn(u, k), dn(u, k) and sn(u, k) denote the three main Jacobi’s elliptic functions

with modulus k. The nine other elliptic functions nd(u, k), nc(u, k), ns(u, k), sc(u, k),

cd(u,k), ds(u,k), cs(u,k), dc(u,k), sd(u,k) are defined by taking reciprocals and

quotients. For example, sd(u, k): sn(u, k)/dn(u, k), nd(u, k)=1/dn(u, k) (cf. [24]

and the next section for details).
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We define

2 _

(3.1.1) pa = akcn(a:r, k), k = —:l/_2—1, a > 0,

a

a 0. 2a

(31.2) 770 = Edn(;x,k), k = w, 0 < G <1,

2

(2.1.3) pa = akcn(a:1:,k), k = a +1 (1 >1.

fia’

Let S"+1(c) and H"+1(—c) denote the n-sphere with constant sectional curvature

c and the hyperbolic n-space with constant sectional curvature —c, respectively. For

n > 2,Pg‘, D2 and C: are the Riemannian n-manifolds given by the warped prod-

uct manifolds I x“, Sn‘1(¢;—1),IR xna H""1(9ff—l) and I xpa S”“1(94—4=i) with warp

functions pa, 77a and pa, respectively, where I denote the open interval on which the

corresponding warp function is positive. The two exceptional spaces Fn and L" are

) and IR x 111"“, respectively.the warped product manifolds IR Xi/fi H"‘1(—% S€Ch(;r:)

D2, F" and L" are complete Riemannian n-manifolds, but P: and C: are not com-

plete. Topologically, S" is the two point compactfication of both P: and C2. From

[13] we know that the Riemannian metrics defined on P: and C]: can be extended

smoothly to their two point compactifications S". We denote by 15: and (53 the sphere

S" together with the Riemannian metrics given by the smooth extensions of the met-

rics on P: and C: to 3", respectively. We remark that PI, D2, C: are indeed isometric

to the wraped products n-manifolds I X), Sn'1(1), I xi, H"‘1(—1), I x), S"’1(1) with

warped functions 2pa/(a2 + 1), 2/1a/ (a2 — 1), 2110/ (a2 + 1), respectively.

Let A2(a > 1),B;‘(0 < a < 1),G”,H;‘(a > 0) and Ya"(0 < a < 1) denote
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respectively the following warped product manifolds:

n— 1 1 n-

1R)<\fla—7——lcosh:z:S 1(1), (_§I§) X\/1———O7COS$S 1(1)?

R XCOShfl? [En—1’ R XWCoshx Hn_1(—1)1 (07 00) XWsinhx Sn—1(1)'

When n = 2, the second factor S"’1 or H"‘1 in each of the wraped product manifolds

will be replaced either by 81(1) or by IR. The geometry of A3112 and Ha2 is similar in

the sense that one can be obtained from the others by applying some suitable scalings

on the first factor IR.

Clearly, Ag, G", HI: are complete Riemannian manifolds. Topologically, S" is the

two point compactification of Bf. As for P: and CZ, the warped metric on B",1 can be

extended smoothly to its two point compactification, a fact that follows from (3.1.6).

We denote by B]: the shere S" together with the Riemannian metrics on 8" extended

from the metric on Bf.

For n 2 2 and any real number a > 0, there is a well-known Lagrangian immersion

from the unit n-sphere S" into a complex Euclidean n-space C" defined by

a

3.1.4 to , n =——— n. 1 ,( ) ..(yo 211 y) 1+yg(yl y 310.11 you.)

where yg 41 y? + + yf, = 1. The immersiom 1110, due to Whitney, has a unique self-

intersection point wa(—1,0, ...0) = wa(1,0....,0). The S" together with the metric

induced from Whitney’s immersion wa, denoted by Wg‘, is called a Whitney n-sphere.

In this chapter, we first sharpen a result of [22] (Propositon 2) to the following

Theorem 3.1. Let x : M" —> IE"+1(n > 2) be an isometric immersion of a confor-

mally fiat n-manifold into a Euclidean (n+1)-space. Then it satisfies Chen’s equality

(2.1.2) if and only if one of the following four cases occurs:

1. M" is totally geodesic.
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2. M" is an open portion of a spherical hypercylinder 5'"1 x IR.

3. M" is an open portion of a round hypercone.

4. n = 3 and M3 is an open portion of a Whitney 3—sphere Wu3 for some a > 0

and, up to rigid motions, the immersion x : W: —-> IE4 is given by

(3.1.5)

1 V2 V2x \f2— x/2
x(:c,y1,y2,y3) = (2/0 sd2(—a—:r)d:z:,aylsd(—a—:r),aygsd(—7‘—:r),aygsd(—E—x)),

where yf+y§+y§ = % and k = f is the modulus of the Jacobi elliptic functions.

Our main results in this chapter are the following.

Theorem 3.2. Let x : M" —) S"+1(1) C 15”” (n > 2) be an isometric immersion of

a conformally flat n-manifold. Then it satisfies Chen’s equality (2.1.2) if and only if

one of the following three cases occurs.

1. M" is an open portion of S"(1) and the immersion x : M" —-> Sn+1(1) is totally

geodesic.

2. M" is an open portion of B: —> S"+1(1) C 15"” given by

(3.1.6) x(:1:,y1, ..., yn) = (sin :r,acos:1:, \/1 — agyl cos :5, ..., \/1 — a231,, cos 1:)

with gfi+y§+...+y,21 = 1.

3. n = 3, M3 is an open portion of 15: for some a > 1 and, up to rigid motions,

the immersion x : 132 ——> 54(1) C If3 is given by

1

(31-7) Mai/1,112,313) = J(y1cn(a$),y2cn(a$), yacn(a$),Jcos X,Jsin X),

 

where J = (/a2k’2—cn2(ax),yf + y; + 31% = 1,7 = sn“l(§), and k =

x/a2 — 1/(\/2a),k’ = \/a2 +1/(\/§a) are the modulus and the complementary
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modulus of Jacobi ’s elliptic functions respectively, and

X = %x+ -—2——-1—(ln
9W - 7)
9(aa: + 7) + 2mm».

where 9(a) = O(u,k) is the Theta function and Z(u) = Z(u,k) is the Zeta

function.

Theorem 3.3. Let x : M” -—) H”+I(—1) C IET‘2 (n > 2) be an isometric immersion

of a conformally flat n-manifold. Then it satisfies Chen’s equality (2.1.2) if and only

if one of the following nine cases occurs.

1. M" is an open portion of H"(—1) and the immersion x : M" —> H"+1(—1) is

totally geodesic.

2. M" is an open portion of A: for some a > 1 and, up to rigid motions, the

immersion x : A: -—> H"+l(—1) C IE]1+2 is given by

(3.1.8)

x(a:,y1, ...,yn) = (acosh 2:,sinh 2:,Wmcosh :r, ..., My" cosh so)

with yf+y§+m+yfi = 1.

3. M" is an open portion of G" and, up to rigid motions, the immersion x : G" —+

H"+1(—1) C IE]l+2 is given by

ug+... +u3,

h ,2 )cos a: x(a:,u2,...,u,,) = ((1+

(3.1.9) 2 2
u + + u ,

2 2 " cosh :1:,smh :r,u2 cosh :1:, ...,un cosh :13).
 

4. M" is an open portion of H: for some a > 0, and, up to rigid motions, the
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immersion x : H: —+ H"+1(——1) C IE]1+2 is given by

(3.1.10)

x(:r,y1, ...,yn) = (\/a2 +1y1 coshx, ..., \/a2 + 1y" cosh 2:, acosh 11:,sinhx)

with yf—yg—u. —-y,2, = 1.

. M" is an open portion of Y0" for some 0 < a < 1, and, up to rigid motions, the

immersion x : Ya" ——> H"+1(—1) C IE]l+2 is given by

(3.1.11)

x(:r,y1, ...,yn) = (cosh 3:, asinh 2,Wmsinh :13, ..., \/1———c12y,, sinh :r)

with yf+y§+...+y3, = 1.

. n = 3, M" is an open portion of F3 and, up to rigid motions, the immersion

x : F3 —> H4(—1) C IE? is given by

(3.1.12) x(:1:,u,v) = (\/2coshucosh v, \/2coshusinh v, \/23inh u,cos (E, sin :12).

. n = 3, M" is an open portion of L3 and, up to rigid motions, the immersion

x : L3 —> H4(—1) C IE? is given by

(3.1.13)

1 1

x(:c, u, v) = secha:(:z:2 + u2 + v2 + cosh2 a: + 1,3732 + u2 + v2 + cosh2 a: — 1,213, a, v).

. n = 3, M" is an open portion of C: for some a > 1 and, up to rigid motions,

the immersion x : C2 —> H4(—1) C IE," is given by

(3.1.14) x(:r;,y1,y2, milk—[(6 cosh )7, E sinh y, ylcn(a:t), yzcn(aa:), y3cn(a:c))
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with y? + yg + y§ = 1, where l = \/a"’lc'2 + cn2(aat),

where 7 = sn‘1(1/(ak2)),k = \,/a2 +1/(x/2a) and k’ = x/a2 —1/(\/2a).

9. n = 3, M" is an open portion of D2 and, up to rigid motions, the immersion

x : D: —> H4(—1) C IE? is given by x(:2:,u,v) 2

(3.1.15)

1

acfikdnéx) cosh u cosh v, kdn(%:r) cosh u sinh v, kdn(%x) sinh u, go cos Z, (9 sin Z),

where k = Via/«Ha? and k' = f—l—a2/\/_1+a2, 7 = sn’1(k/a), p =

\/lc2dn2(%x) — a2k’2, and

 

3.2 The Jacobi Elliptic Functions, Theta Function

and Zeta Function

We review very briefly some known facts on Jacobi’s elliptic functions, Theta function

and Zeta function for later use (see [1], [24] or [26] for details).

Let 0 be the temperature at time t at any point in a solid material whose con-

ducting properties are uniform and isotropic. If p is the material’s density, 3 its

specific heat, and k its thermal conductivity, 0 satisfies the heat conduction equation:

nV20 = BO/Bt, where n = k/sp is the diffusivity. In the special case where there is

no variation of temperation in the 2:- and y-directions, the heat flow is everywhere
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parallel to the z-axis and the heat equation reduced to the form:

029 _ as
0 = 0(z,t).

Consider the boundary conditions: 0(0, t) = 0(7r, t) = O and 0(2, 0) = 7ré(z — 7r/2)

for O < z < 7r, where 6(2) is Dirac’s unit impulse function. Then the solution of the

boundary value problem is given by

(3.2.2) 0(2, t) = 2 2(—1)"e"(2"+1)2'“ sin(2n +1)z.

11:0

By writing e“"‘ = q, the solution of (3.2.2) assume the form

(3.2.3) 91(2, q) = 2 Z(—1)"q<"+1/2)2 sin(2n +1)z,

n=0

which is the first of the four theta functions. For simplicity, we shall often suppress

the dependance on q.

If one changes the boundary conditions to 80/02 = O on 7. = 0 and z = 7r with

6(2, 0) = n6(z — 7r/2) for 0 < z < 7r, then the corresponding solution of the boundary

value problem of the heat equation (3.2.1) is given by

(3.2.4) 04(2) = 64(2, q) = 1+ 2 Z(—1)"q"2 cos 2712.

71:1

The theta function 01(2) of (3.2.3) is periodic with period 27r. Incrementing 2 by

%7r yields the second theta function:

(3.2.5) 62(2) = 02(2, q) = 91(2 + Q, q) = 2 Z (WW/2)? cos(2n +1)z.

n20
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Similarly, incrementing 2 by g for 64 yields the third theta function:

71'

2,q) =1+2an2cos2nz.

n=l

(3.26) 63(2) 2 63(2, Q) 2 04(2 +

The four theta functions 01, 02, 63, 04 can be extended to complex values for z and

q such that [q] < 1.

The elliptic functions snu, cnu and dnu are defined as ratios of theta functions:

_ 03(0)01(z) _ 64(0)02(z) _ 64(0)03(z)
(3.2.7) snu — W, cnu —W, dnu —- W,

where z = u/6§(0). Define parameters It and k' by

k = 92(0)/9§(0), k' = 03(0)/0§(0)

which are called the modulus and the complementary modulus of the elliptic function.

It and k’ satisfy k2 + k’2 = 1. When it is required to state the modulus explicitly, the

elliptic functions of Jacobi will be written sn(u, k), cn(u, k), dn(u, k).

The elliptic functions snu, cnu and dnu satisfy the following relations:

(3.2.8) sn2u + cn2u = 1, dn2u + kgsn2u = 1, k2cn2u + k'2 : dn2u,

2snucnvdnv
 (3.2.9) sn(u + v) + 3110‘ — v) = 1 _ k28n2usn2v’

(3.2.10) sn'(u) = cn(u)dn(u), cn'(u) = —sn(u)dn(u), dn'(u) = —kzsn(u)cn(u).
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The Theta function, 9(a), and the Zeta function, Z(u), are defined by

(3.2.11) e(u) = 04%), Z(u) = 8%(1n04), K = 913(0),

and satisfy the following identities:

 

(3.2.12) Z(u + v) = Z(u) + Z(v) - k2snusnvsn(u + v),

(3.2.13) Z(u) = 38)) ,

From (3.2.12) we have

(3.2.14) k2snusnv[sn(u + v) + sn(u -— v)] 2 Z(u — v) — Z(u + v) + 22(v).

3.3 Two Lemmas

Lemma 3.1. Let W: denote the warped product manifold I x a Sd Sn‘l(1),

27‘ I («23715)

with the warped product metric given by

2 fl 1

3..31 —_ d 2 + _a d2 _. ,_ ,
( ) g I S ( (1. I fi)90

2

where I denotes the largest open interval containing 0 such that sd(€$) is nowhere

zero on I and go is the standard metric on the unit (n — 1)-sphere. Then the Whitney

n—sphere W: is topologically the two point compactification of 14’: Moreover, the

metric on W: is the smooth extension of the warped product metric on W: to its two

point compactification.
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Proof. Let S" denote the unit n-sphere with the north and south poles, {N, S}, being

removed and let {u1, ug, ..., un} denote the spherical coordinate system on S" given

by

310 = COS U1, 311 = Sin ul cos U2,

(3.3.2)

yn_1 = sin ul... sin un_1 cos un, y, = sin v.1... sin un_1 sin an.

From (3.1.4) and (3.3.2) we know that the metric induced from Whitney’s immer-

sion wa on S" is given by

 

a2 a2 sin2 u1

. . = ___._____._ d 2 —

(333) g (1+cos2u1) ful4h(1+cos2u1)g0

Put

(3.3.4) m(ul) = [In ——-2——dt.

o M???

Then

a "I a a 1

3.3.5 :1: u = —/ dt = —sn_l sinu ,—.

Thus

. x/i 1
(3.3.6) S111 ul — sn(7x, :5).

From (3.2.8), (3.3.3), (3.3.4) and (3.3.6), we obtain (3.3.1). This shows that W:

is the S" endowed with the metric induced from Whitney’s immersion wa. Hence,

topologically, the Whitney n-sphere W: is two point compactification of W: and,

moreover, the metric on W: is the smooth extension of the warped product metric

on W: to its two point compactification. E]
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The following Lemma is important in this chapter.

Lemma 3.2. Let M3 C 124(6) be a conformally fiat hypersurface of a Riemannian

space form R4(e) satisfying Chen’s equality (2.1.2), then M3 has at most two distinct

principle curvatures.

Proof. Assume M3 is a conformally flat hypersurface in a 4-dimensional Riemannian

space form 124(6) satisfying equality (2.1.2).

Let L be the symmetric 2-tensor defined by

(3.3.7) L = —Ric + £9,

where Ric, r and 9 denote respectively the Rice tensor, the scalar curvature and the

metric tensor of M3 . Then by a result of H. Weyl we have

for vectors Y, Z, W tangent to M3. Let /\1 = a, A2 = u — a, A3 = u be the principle

curvatures of M3 with their corresponding principle directions e1,e2, e3 given as in

Section 2.3. Thus, from the equation of Gauss and (3.3.8), we have

(339) (A: — ADI—€1- = 3(e,-H)/\J — %e,-T — eiAg,

(A? - Almi- = (A? - Ain‘t-3.

(3.3.10) r = 36 + ,u2 + all — a2,

for distinct i, j, k(i, j, k = 1, 2, 3), where H = gu is the mean curvature function.



55

Equation (3.3.9) and (3.3.10) imply

1 .

2(e,u)Aj — 261.012 + an — a2) — e,/\§ = (A: —- A?)I‘{j = —(A,- + Aj)e,/\j.

Thus

1 1

(AI: — Aj)e,-/\j = (*2/\j + [.l + 5a)e,u + (ill - (1)610“

By taking (i, j) equal to (1, 2), (2, 3) and (3, 1) respectively, we obtain

(3.3.11) (u -— 2a)e1a = aelu,

(3.3.12) (u — 2a)e2a = (2a — 3a)e2u,

(3.3.13) new 2 (2p — 3a)e3u.

Let V denote the open subset of M3 on which M3 has exactly three distinct

principle curvatures, i.e., V is given by (2.3.6). Suppose that V is not empty. In

this remaining part of the proof, we shall work on this non-empty subset to obtain a

contradiction.

From (2.3.5) and (3.3.9) we obtain

(3.3.14) r31, = 0,

for distinct i, j, k. Equation (3.3.14) implies

 (3.3.15) a); = e2aaw1 + we);
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By taking the exterior derivative of (3.3.15) and by applying Cartan’s structure equa-

tions, we obtain the following formulas on V by comparing the corresponding coeffi-

cients in the resulting formula of do);

  

61(61(u-a))_e( e20 )_ (624)2 (8104-0))2

 

  

  

(3.3.16) (53% — a) u - 2a ([1 — 2‘02 (,1 _ M2
: a(u-a) +a(u—a)+e,

€20 (€2a)(€30) _ (€30)(€2#)

(3'3”) 63(0 - 2a) (u — c004 — 24) 404 — a) ’

€10“ — a) €10I — a)(€3(fl * a) _ (elflleslu - 0)
(3.3.18) e3(———#_ 2a )+ a(#_ 20) — 04/1 _ a) .

By (3.3.13) we have A3 = F31 = 0. Thus, by applying (2.3.10), (2.3.13), (3.3.11),

(3.3.12) and (3.3.13), we find

(3.3.19) em = Hewett),

(3.3.20) em = (jgggfiemxewl

On the other hand, by Lemma 2.1, (3.3.11) and (3.3.12), we have

  

[61162]” :: _P%181# +
Ff2e2’u : _#

Combining this with (3.3.19) and (3.3.20) we find

(3-3-21) (at/Maw) = 0- '
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Therefore, (elp)(e2u) :2 0 on V.

If e211 i 0 on V, there exists an open subset W C V on which 62p 72E 0. On W,

we have 6111 = 0 identically. Moreover, from (2.3.11) and (3.3.17) we have

3a2 — 3au + 2p2
 

 

(3.3.22) (213 — 3a)ege3u = — ap. (egu)(e3,a),

(3.3.23) (2p — 3a)e3e2p = 6a2 _ 3:: - 2’12 (eou)(e3u).

Combining the above two equations we obtain

(3.3.24) (2p — 3a)[eg, e3],u = 3(ii;flll(eou)(e3u).

On the other hand, we also have

8301 — 0) 62# 3

[62.63114 = 1336214 - P321230 = — 63/4 - 71—6314 = -;(62#)(63u)-

Therefore, we find

(3-3-25) (2/1 - 3a)(62u)(63u) = 0-

If (egu)(e3u) aé 0 on W, then on an open subset W’ of W on which (egu)(egp) 75 0,

we have

(3.3.26) 2p — 3a 2 0.

Since 2p — 3a 2 0 on W’, (3.3.12) and (3.3.13) imply ega = e3a = 0 on W’. On

the other hand, since e1 p = 0 on W, (3.3.11) yields ela = 0, Therefore, we obtain

em = 62” = e3u = 0 which is a contradiction. Consequently, we must have e3/i E 0
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on W, from which we obtain (ela)(e3a) E 0 on W by virtue of (3.3.13). Thus, by

(3.3.15) and (3.3.12), we obtain

(3.3.27) (2h — 3o.)(egh)2 = 0.01. — 2a)2(a,a + 6).

On the other hand, from (3.3.11), we know that 2p — 3a # 0 on W. Thus, there

is an open subset W1 C W on which 2p - 3a # 0. On W1, we have (3.3.27) yields

4: am + om - 20)?
(3.3.28) (62/!) 2]}. _ 3a
 

By using (3.3.12) and (3.3.28) we obtain

1

egegu = ( [—6a5 — 15a4u + 38a3u2 — 23a2p3 + 4ap4

2p — 3a)2

+e(—16a3 + 27a2u — Map2 + 2p3)].

(3.3.29)

On the other hand, (3.3.12) and (3.3.16) imply that on W1 we have

2p -— 3a 12,112 —- 33au + 23a2

(ll _ 2a)2e2€2/1 (,u _ 2(1)? (82/1) = —a(,u - a) — e.
 

By using (3.3.28), the above equation becomes

_ 1 5 4 3 2 2 3 4
—e2e2p—W[12a —9ap—2a u —au +2au

-I~e(11a3 — 13a2p + an2 + 2113)].

(3.3.30)

Combining (3.3.30) and (3.3.29) we get

(3.3.31) 6a3 — 12a2u + 6a,a2 + 6(4/1 — 5a) 2 0.
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Differentiating (3.3.31) and applying (3.3.12) we find

(3.3.32) -—30a3 + 72a2p — 54a,u2 + 12”3 + 6(70. —— 6,.) = 0.

Also, by combining (3.3.31) and (3.3.32) we get

(3.3.33) 6a2u + 6p3 — 12cm2 + 6(7u — 9a) 2 0.

The above implies

 

a _ 96 +12,u2 :l: \/81 + 486p2

3.3.34( ) 12”

By substituting (3.3.34) into (3.3.32) we conclude that )u must satisfy the following

polynormial equation with constant coefficients:

(3.3.35) 162 + 120,.2 + 886,14 + 32,16 = d:\/3(9 + 85/1 + BMW/27 + 165p?

which is impossible since otherwise it is locally a constant function. Thus we must

have 62;; E 0.

Similarly, we may prove that 81/}, E 0, too. Hence, by applying (3.3.11) - (3.3.13),

we obtain

(3.3.36) ela = 620. = 61p 2 62/1. 2 0.

Now we claim that 83/1. E O on V, also. In fact, otherwise there exists an open

subset 01 C V on which 63/; ¢ 0.

If 2;; — 3a = O on V, then (3.3.13) implies 63a = 0. Thus, by (3.3.16), we get

a(u — a) + 6 = 0. Thus 2112 + 96 = 0 which is impossible.
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If ,u = 3a, then (3.3.13) yields [1.83/1 = 0, which is also a contradiction. Hence, we

have 2p 75 3a and 41 ;£ 3a on V.

Now, from (3.3.16) we get

(244 - 3a)(u - 3a)

flaw — 0)

 (3.3.37) (63402 = (1(44 — a) + 6.

Thus there exists an open subset 02 C 01 on which

2 _ (am - a) + 6)n2a(u - a)
(3.3.38) (6344) —- (ZH- 30“” _ 3a) . 

On the other hand, (2.3.9) and (3.3.13) imply

(214 - 3a)63u _ (€3#)2(2H - 3a)2

(3339) _€3( Mu - a) (M - 602442

  
=a/J.+C.

Equations (3.3.38) and (3.3.39) yield

6a5 — 15a3 2 + 11oz);3 — Zap4y.
 

u

e e p =

(3.3.40) 3 3 (u — 3a)(2u — 3a)2

+c(3a.3 — 15oz); + 11cm2 — 2p3)].

Similarly, by applying (2.3.12), (3.3.13) and (3.3.38), we have

6363/2 2 gap — 3a)(u — 3a)2[6a5 - 30a4p + 45a3/L2 + 26a2p3

(3.3.41) 14

+5a/44 + 6(3a3 + 6a2p — 10a);2 + 3443)].

Summing the above two equations yield

(3.3.42) #201 — 2a)[—24a4 + 48a3u —- 30a2u2 + 6a,.3 + €(15a2 — 15cm + 42.2)] = 0.

On the other hand, from (3.3.14), we know that the distribution fl spanned
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by 81,632 is integrable. Also, the distribution .7: spanned by 63 is clearly integrable.

Therefore, there exists a local coordinate system {x1,x2,x3} such that 63 = B/Bt,

where t = 2:3. Hence, by applying (3.3.36), we know that both a and p depend only

on t. Therefore, (3.3.13) yields

da

.3.43 —-— = 2 — .(3 ) Md“ .11 3a

By solving (3.3.43) we obtain

_ l1 —3
(3.3.44) a _ 5 + Ca

for some constant C. By substituting the above into (3.3.42), we know that u must

satisfies a polynomial equation with constant coefficients. Therefore, 63;; = 0 on 02

which is a contradiction.

Consequently, both ,u and a. are constants on each component of V. Hence, by

(2.3.9), (2.3.12) and (3.3.16), we get up = (u — (3)41 = —e which is clearly impossible.

Therefore, we know that V is an empty set. Hence, M3 has at most two distinct

principle cuevatures. This complete the proof of the Lemma. D

3.4 Proof of Theorem 3.1

If x : M" —-) IE"+1 is an isometric immersion of a conformally fiat n-manifold with

n > 2 which satisfies Chen’s equality (2.1.2). Then, by Lemma 3.2 and a well-known

result of E. Cartan and J. A. Schouten on confromally flat hypersurfaces (cf. p154 of

[6]), we know that M" has a principle curvature with multiplicity at least n -— 1 for

n = 3 as well as for n 2 4. Thus, by applying (2.3.2), we know that either (i) the

principle curvatures of Mn are given by A1 = 0, A2 = = An = p, or (ii) n = 3 and
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then the principle curvatures of M3 are given by A1 = A2 = p/2, A3 = )1 7A 0.

If Case (i) occurs, M" is either totally geodesic, or an open portion of spherical

hypercylinder, or an open portion of a round hypercone (cf. [22]).

Now, we assume case (ii) occurs. Denote by U the open subset of M3 on which

the mean curvature function is nonzero. Then U is a non-empty open subset of M3.

We shall work on U unless mentioned otherwise.

From (2.3.5) we obtain

(3.4.1) 1‘31 2 A3 = 0, 61/1. 2 82/1. 2 0, F§3 2 P33 2 0.

Denote by .7: and .751 the distributions spanned by {61, 62} and {63}, respectively.

By (3.4.1) we know that the integral curves of fl are geodesics and the distribution

7: is integrable. Consequently, there exist local coordinate systems {2311,21} such that

f is spanned by {63/821, (9/81)} and e3 = (9/022.

From (3.4.1) we know that ,u depends only on 2:, i.e., 11 = 11(2). Also, from (2.3.8)

and (3.4.1), we have

  

I I

(3.4.2) to; = u (37)..)1, a); = “ (”412.

Using the above we obtain

(3.4.3) we3 = {figep j = 1, 2.

Therefore, each integral submanifold of .7 is an extrinsic sphere of E4. Hence, by

applying a result of Hiepko [21] (cf. also Remark 2.1 of [20]), we know that M3 is

locally the warped product I x “3) 32(1), where f (:5) is a suitable warped function.
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So, the metric of M3 is given by

(3.4.4) 9 = (1352 + f2(:1:)go,

where go is the standard metric of 82(1). In particular, if we choose the spherical

coordinate system {0, (15} for 52(1), we have

(3.4.5) 9 2 d2:2 + f2(:13)(al(f>2 + cos2 ¢d02).

Applying the above equation, we obtain

a _ a -43 2 1'2:
V%ax—O’ Vfi86_f66’ V§30¢=fa¢

8 , 8 8 __ 8

(3.4.6) Vgflz—ff 7:, VEQBF—_tan65—6’

8 a
V955-2 —ff' cos256%$+sin¢cos¢—¢.

By computing dwé and by using (3.4.2) and Cartan’s structure equations, we find

 

3

(3.4.7) ,u"(:1:) + ,1 g”) = 0.

Integrating once (3.4.7) yields

4

(3.4.8) 41/2 + 114 = 217’

for some real number a > 0.

Now, we claim that U is dense in M3. If it is not, then M3 — U has nonempty

interior. From the definition of U, we know that the squared mean curvature function,

u and 11’ vanish identically on the interior of M3 —— U. On the other hand, (3.4.8) says
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that this is impossible due to the continuity of the squared mean curvature function.

Thus, U must be an open dense subset of M3.

Solving (3.4.8) yields 11 = 1:42stan + b, -\}3) for some constant b. By applying a

translation in a: if necessary, we obtain

\/2 «2 1
3.4.9 =—-———d—-— k 192—.( ) #(zv) aS(ax.), 2

From (3.4.5) and from our assumption on the the principle curvatures, we know

that the second fundamental form h of M3 in IE4 satisfies

60_ 23_12 23_122

' ' 3 a a a (9 8

M29}, 5(5) = (1982,55) " Mag, 66) " 0.

where E is a unit normal vector field of M3 in LB4 and p is given in (3.4.9).

Applying (3.4.6), (3.4.10) and the equation of Codazzi, we may obtain [1’f = pf’ .

Therefore,

(3-4-11) f($) = 014113),

for some nonzero constant c.

On the other hand, using (3.4.6) we can compute the sectional curvature K23 of

the plane section spanned by {8/845, 6/60}. We also can compute K23 by using the

equation of Gauss. By comparing these two different expressions of K23, we find

u4f2 = 4(1 — f’2). Thus by using (3.4.9) and (3.4.11), we find

(3.4.12) f(x) = {333({33 k), k =

[
\
D
I
H

From (3.4.5) and (3.4.12) and Lemma 3.2 we know that M3 is an open portion of
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the Whitney 3—sphere W: for some a > 0.

(3.4.5), (3.4.6), (3.4.9), (3.4.12) and the formula of Gauss imply that the immersion

x satisfies the following system of partial differential equations:

(3.4.13)

(3.4.14)

(3.4.15)

(3.4.16)

(3.4.17)

(3.4.13)

62x a fi fi \/2- 0x a 3 fl

W _fiCd(—;$)Sd(7$)nd(7 )5— de (_a113K,

32x 2 (92x . 3X
_862 _ cos (lb—6452 +sm¢cos¢5fiy

 

 

 

Solving (3.4.18) yields

(3.4.19) x(a:,9, (b) = B(:r, l9) c0343 + 0(1), (15),

for some function B(:z:, 0), C(zr, (b) of two variables. Substituting (3.4.19) into (3.4.16)
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yields

63 _ v2 «2 v2
52:— — Tcs(—a—x)nd(—x)B,

(3.4.20) 0C \/2 \/2 \/2 0C

830$ = 7cs(7$)nd(—a—x)-a—¢.

Solving the above system yields

(3.4.21) B(:r, 6) = G(0)sd(—\—c/l——gx), C(x, (1’)) = F(¢)sd(—\—/d—2x) + H(:1:).

Combining (3.4.19) and (3.4.21) gives

(3.4.22) x(a:, <15, 0) = G(6)sd(—\:—§z) cos ¢ + F(¢)sd(—\:—§-$) + H(:c).

By taking the partial derivatives of (3.4.14) and (3.4.15) with respect to ()5 and 0

respectively, we find

(3.4.23) F"'(q§) + F'(¢) = 0, G"'(6) + (7(0) 2 0.

From (3.4.22) and (3.4.23) we find

(3.4.24) x(:z:, 65, 9) = sd(¥$)(c1 cos qb cos 0+c2 cos (6 sin 0+03 cos ¢+c4 sin (b) +A(:1:),

where c1, ..., c4 are constant vectores.

Substituting (3.4.24) into (3.4.14) and using (3.4.13) yields

(3.4.26)

«22

x(:c, (b, 0) = sd(—‘:::r)(cl cos ()5 cos 0+C2 cos cf) sin 0+c3 cos 6+c4 Sin ¢)+c5 fsd3(—(;—a:)d:1:,

where 01,...,c5 are constant vectors in IE4.
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By choosing suitable initial conditions, we obtain (3.1.5) from (3.4.26). Conse-

quently, up to rigid motion of E4, the immersion x is given by (3.1.5).

The converse can be verified by straight-forward computation. E]

3.5 Exact Solutions of Differential Equations of Pi-

card Type

For the proof of Theorem 3.2 and Theorem 3.3, we need the exact solutions of some

differential equations with Jacobi’s elliptic functions in their coefficients. The results

obtained in this section seem to be of independent interest in themselves.

Proposition 5.1. For any real number a > 0, the general solution of the second

order differential equation:

(3.5.1) y"($) + 2asc(aa:)nd(ax)y'(a:) — y(:1:) = 0

is given by y(x) = c1y1(a:) + egg/20:) with

 

 

311(33) = \/a2kl2_ cn2(a$) cos (lg—Ia: +2———1—————:;_;k(:_k’_ 111% + 2aZ(’7)23)),

and

312(3) = (/a2kr2_ cn2(a:r) sin (kin: +2——1——1\/\/C;::_k’(1nw+ 2aZ(7)a:)),

where k = Va? — 1/(\/2a) and k' = \/a2 + 1/(x/2a) are the modulus and the comple-

mentary modulus of the Jocobi elliptic functions, 9 the Theta function, Z the Zeta

function, and ”y = sn‘1(\/—1/(ak2)).

Proof. The trick to solve (3.5.1) is to make two key transformations. First we make
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the transformation:

(3-5-2) 31(27) = f($) exp(\/-_19(IL‘)).

where f (:13) and g(:1:) are real-valued functions. Then

(3-5-3) 21’ = (f’ + \/——1fg’)exp(\/-_lg).

(36.4) 1": (f” - f (9’)2 + \/-_1(2f'9’ + fg")) ex136/719)-

substituting (3.5.3) and (3.5.4) into (3.5.1) we get by taking the imaginary part

(3.5-5) f (2)9”(2) + 2(f'(1?) + aSC(0413)<1n(a£l?)f (17))9'($) = 0.

and

(3-5-6) f"($) - f(3:)(g'(:1:))2 + 2060(afvldn(antlf'(i1?) — f($) = 0-

Equation (3.5.5) can be written as

(3.5.7) (ln g'(:r))' = -2(1n f(:z:))' + 2(ln cn(az))'

which yields

(3.5.8) g'(:2:) —

for some constant a.
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Substituting (3.5.8) into (3.5.6) we obtain a second order nonlinear equation:

(3.5.9) f"(:I:) + 2asc(a:c)dn(a:r)f'(:1:) — f(:1:) = M.

f3($)

We make the second transformation by putting

(3.5.10) f(:1:) = h(sc), u = cn2(a:r).

From (3.5.9) and (3.5.10) we obtain another nonlinear equation:

(3.5.1,) (aadn (ax)sn2<ax>(2h(u)h"(u) — (6(a)?)

+a2(k2cn2(ax)sn2(az) — dn2(aa:))h(u)h’(u) = h2(u) + azcn4(a:c),

which, by (3.2.8), is equivalent to the following nonlinear equation:

209141 - 1006214 + l6’2)h(U)h"(U) - 02062142 + k'2)h(U)h'(U)

—a2(k2u + k'2)(u — u2)h’2(u) = h2(u) + 012112.

(3.5.12)

If h = b — cu is a linear function in u with constant coefficients, then (3.5.12)

becomes

(3.5.13) b(b — azck'z) + 2c(a2clc'2 — b)u + (a2 + c2 — a2bcl~c2 + a262(k2 — 16'2))u2 = 0.

It is straight-forward to verify that (3.5.13) holds if and only if a = ca2kk’ and

b = azck’z. This shows taht h(u) : C(a2k’2 — u) is a solution of (3.5.12).

If we choose 0 = 1, we obtain a = azkk’ and

 

(3.5.14) f(:1:) = \/a2k’2 — cn2(a:r).
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By computing (3.5.8) and (3.5.14) we obtain

 

(3.5.15) g(z)= [0 62366112612) dz,

a2 k’2 — cn2(aa:)

On the other hand, from (3.2.8) and (3.2.9) we have

  

 

azkk’cn2(aa:) _ k’ _ azk’3sn2(a$)

azlrc’2 — cn2(a:1:) _ k k(a2k2 + sn2(a$))

_ _k_’ _ ak’2 cn(7)dn(7)sn2(a$) )

_ k (/a2k4 + 1 1 — k2sn2(7)sn2(ax)

(3.5.16) I ’2

— k— —- ——aL—-(sn(a:1: + )+ sn(aa: — ))sn(a:1:)

k 2\/a2k4 + 1 7 7

\/—1a2k'2

— I + W(W(sn(am + ’7) + sn(aa: — 7))sn(7)sn(a:r)),

where sn(7) = \/—1/(ak2),dn(7) = k’/k,cn(7) = k’2/k2.

Combining, (3.2.14) and (3.5.16), we obtain

ank’cn2(a$) _ k’ \/—1a2k’2

3. .17 — — ——

( 5 ) azli"2 — cn2(a:1:) k +2W

 

(Z(aa: — 7) — Z(aa: + ’7) + 2Z('y)).

From (3.5.15) - (3.5.17), we find

go): 24++,——‘/\/_k—'c”126 —7)Z(aa: + 11+ 2Z(’7))dx

(3.5.18) +_\/:_;_ak’2 9(ax— )

_ _+2\/a2k4+—_1119(1W(+7) + 26‘2””),

where we applied (3.2.13) and the fact that O is an even function. Therefore, by

(3.5.2), (3.3.14) and (3.5.18), we conclude that the functions y1, y2 defined in Propo-

sition 5.1 are independent solutions of (3.5.1). Consequently, the general solution of

(3.5.1) is given by the linear combination of y1,y2. El
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Proposition 5.2. For any real number a > 1, the general solution of

(3.5.19) y"(:r) + 2asc(a2:)dn(a2:)y'(a:) + y(:c) 2: 0

is given by y(:c) = c1y1(2:) + 02y2(:1:) with

 
k' 1

y1($) : \/a2k’2 + CD2(CL.’L‘) COSh (E — 5 nW

and

 

y2(3:) = \/a2k’2 + cn2(a:1:) sinh (g — élnw-— aZ(7)a:)

where k 2 V0.2 + 1/(\/2a) and k’ = x/a2 - 1/(\/§a) are the modulus and the comple-

mentary modulus of the Jacobi elliptic functions and 7 = sn‘1(1/ak2)).

Proof. This can be proved by using the same trick given in the proof of Proposition

5.1. After making the key transformation (3.5.2) for (3.5.19), we obtain (3.5.5) and

(3.5.20) f"(:2:) — f(:t)(g'(:z:))2 + 2asc(a:r)dn(a:z:)f'(:c) + f(:c) = 0.

Solving (3.5.5) yields

, _ acn2(a2;)

(3.5.21) 9 (2:) — —f2($) .

for some constant a. By substituting (3.5.21) into (3.5.20) we obtain

(3.5.22) f"(a:) + 2asc(ax)dn(aa:)f'(:1:) + f(:1:) = W.

After making the second key transformation f (2:) : (/h(u) with u = cn2(a.r) for
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(3.5.22), we find

(3 5 23) 2a2u(1 — u)(k2u + k'2)h(u)h”(u) — a2(162u2 + k’2)h(u)h’(u)

—a2(k2u + k'2)(u — u2)h’2(u) = -—h2(u) + azuz.

It is then straight-forward to verify that a linear function h = b — cu is a solution

of (3.5.23) if and only ifb = -—a2ck’2 and a2 = 62(1—(14)/4. In particular, if we choose

0 = —-1, we obtain

 _ 2kkl 2

(3.5.24) 1(4) = (£2142 +cn2<ax>, g’(:v) = QZ+C§§(§;‘§’-
 

On the other hand, from (3.2.8), (3.2.9) we have

azkk’cn2(a$) __ k_’ _ azk’zsmasc)

azk’2 + cn2(a:r — k 13(an2 — sn2(a.’r))

_ k_’ _ cn(7)dn(1)sn2(a$)

— k 1 - k2sn2(ax)sn2(a:r)

  

 

(3.5.25) k, 1

= h — §(sn(a:1: + 'y) + sn(aa: — 7))sn(a:r)

= % _ g(k2(sn(ax + 7) + sn(aa: — 7))sn(’y)sn(a:r)).

where sn(y) = 1/(ak2),dn(’y) = k’/k,cn(’y) = (k’/k)2. Combining (3.2.14) and

(3.4.25), we obtain

aZkk’cn2(a:c) _ k’ a

(3.5.26) a216,? + cn2(a$) — I — §(Z(aa: —- 'y) — Z(aa: + 7) + 2Z(7)). 
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From (3.5.24) and (3.5.26), we have

go) — % —§ imam — 7) — Z(ax + "1) + 2261112:

3.5.27 1

( ) = k—x — ll ____O(a:c_ 7) — aZ('y):1:,

where we applied (3.2.13) and the fact that O is an even function. Therefore, by

(3.5.2), (3.5.24) and (3.5.27) we conclude that

 

21 (:17) : (/a2k’2 + cn2(a.1:) exp ( — [122:1+ 21D g——————E:::+— Z; + aZ(7):1:)

is a solution of (3.5.19). By applying the method of reduction of order, we know that

 

22(37): \/a2k’2 + cn2(aa:) exp (k—g; _ lln @(cm: _ 7)

k 2 O(a:1: + ’y) — aZ(’7):1:)

is a second independent solution of (3.5.19). Consequently, the functions y1,y2 defined

in Proposition 5.2 are two independent solutions of (3.5.19). Hence, the general

solution of (3.5.19) is given by the linear combination of y1,y2. [2]

Proposition 5.3. For any real number 0 < a < 1, the general solution of

(3.5.28) y".(1:)+ 2akcn(::z:)sd(::1:y:1:)y':1:() + y(:1:) = 0

is given by y(:1:) = clyl(a:) + 02y2(:1:) with

 

 y1(:1:) = \/k2dn2(%:r) — a2k’2 cos (k'x—

a
} H

9
9

F
I
D
R
‘
I
Q

B
H :
i

I

fit
-
J I
Q

B
4

:
9
:

H

v

and

 

 
312(37) = \/k2dn2(%x) - a2k’2 Sin (k'a: — ' —1 1n Egg—ii; ._ ,/_1

E
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where k = x/2a/sqrt1 + a2 and k’ 2 v1 — a2/\/1 + a2 are the modulus and the com-

plementary modulud of the Jocobi’s elliptic functions and 7 = sn‘1(k/a).

Proof. This can also be proved by using the same trick. After making the key

transformation (3.5.2) for (3.5.28), we obtain

(3.5.29) f(rc)g”(:v) + 2012) + akcn(%x)sd(%x)f(m))g’(rv) = o,

and

(3.5.30) f”(:z:) — f(:1:)(g'(:1:))2 + 2akcn(%zz:)sd(%:r)f’(a:) + f(x) = 0.

Solving (3.5.29) yields

(3.5.31) 9'01?) _ _,

for some constant 01. By substituting (3.5.31) into (3.5.30) we obtain

,, a a , _ azdn4(9:r)

(3.5.32) f (2:) + 2akcn(;:1:)sd(;$)f (2:) + f(:1:) — W.

After making the second key transformation f (1:) = (/h(u) with u = dn2(a:r/k)

for (3.5.30), we find

2a2u(1 — u)(u -— k'2)h(u)h"(u) + (12(16’2 —— u2)h(u)h’(u)

—a2(u — k’2)(u — u2)h’2(u) = —k2h2(u) + a2k2u2.

(3.5.33)

It is then straight-forward to verify that a linear function h = b + cu is a solution

of (3.5.33) if and only if b = —a2ak'2/lc2 and a2 = a2k’2. In particular, if we choose



75

c 2 162,0 = azk”, we obtain

 

_ azk’dn2(%:1:)

’ 14261.2(?) — a2k'2'

 (3.5.34) f(:1:) = \/kzdn2(%x) — 62km, g'(:c)

On the other hand, from (3.2.8), (3.2.9) we have

  

a22k'dn2(%:1:) : k’ _ \/_—1k2cn(7)dn(7)sn2(%x)

kzdn (fix) — a2k’2 1 — k2sn2(%x)

(3.5.35)
a a a a

= k’ _ ,/_. ._ 2 _ .. _ _12k(k (sn(kx+:y) +sn(k:1: 7)sn(7)sn(k:1:)),

where sn(y) = k/a,dn(7) = k'2, cn(y) = \/-1k’. Combining (3.2.14) and (3.5.33), we

obtain

azk’dn2(%:1:)

3.5.36
( ) k2dn2(7‘:-:1:) — 6211'?

 

= k' — flfimfiz — 7) — 26:4 + 7) + 2Z6».

From (3.5.21), (3.5.24) and (3.5.34), we have

9(2) = k'x — «:15; f0$12122: — 7) — min + 1) + 22(1)2=)drr
16

(3.5.37) \/:1‘ 9G3; _ ,7) a

2 ln — \/——1= k :1: — O(%x + 7) ;Z('y)x. 

Therefore, by (3.5.2), (3.5.34) and (3.5.37), we conclude that the functions y1,y2

defined in Proposition 5.3 are independent solutions of (3.5.28). Hence, the general

solution of (3.5.28) is given by the linear combinatin of y1, yr). 1:]

Corollary 1. For any real number a > 0, the general solution of

a2—1

Via

 (3.5.38) z"(:r) = (a2 + 1)nc2(a:1:, k)z, k =

is given by z(:1:) = clcn(aa:, k)y1(:1:) + cgcn(aa:,k)y2(:1:) where y1(:1:),y2(:1:) are defined
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in Proposition 5.1.

Proof. This follows from Proposition 5.1 and the fact that equation (3.5.38) can be

obtained from (3.5.1) by making the transformation y(1:) = cn(ax, k)z(:1:). [:1

Corollary 2. For any real number a > 1, the general solution of

Va2+1

(3.5.39) z"(:1:) = (a2 — 1)nc2(az, k)z, k = x/2a 

is given by z(:1:) = clcn(a:1:, k)y1(:1:) + cgcn(a:1:,k)y2(:1:) where y1(:r), y2(:1:) are defined

in Proposition 5.2.

Proof. This follows from Proposition 5.2 and the fact that equation (3.5.39) can be

obtained from (3.5.19) by making the transformation y(2:) = cn(ax, k)z(:1:). E]

Corollary 3. For any real number 0 < a < 1, the general solution of

(3.5.40) z"(::)=(az—1)nd2(fix,k)z, 1.: «2... k.____./r——62

k \/1+a2 x/l-i-a2

 

is given by 2(32) 2 cldn(a:1:/k, k)y1(:1:) + cgdn(a:1:/k, k)y2(:r) where y1, y2 are defined in

Proposition 5. 3.

Proof. This follows from Proposition 5.3 and the fact that equation (3.5.40) can be

obtained from (3.5.28) by making the transformation y(:1:) = dn(ax/k, k)z(:1:). E]

Remark 1. Conversely, since

d (-)(u-’y) _

@(InW - Z(u — 7) — Z(au — ’7)

(3.5.41) = k28n(U)Sn(1)(sn(u - 7) + sn(u + 7)) - 2Z(or)

 

_ 2k2cn(i)dn(i)sn(7)sn2(u)

_ 1 — kzsn2(7)sn2(u) - 2Z(7),

it is straight-forward to verify that two functions y1,y2 defined in Proposition 5.1

(respectively, in Proposition 5.2 and 5.3) are indeed independent solutions of (3.5.1)
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(respectively, of (3.5.19) and of (3.5.28)).

Remark 2. In 1879, E. Picard discovered in [25] a method for solving the differential

equation:

(3.5.42) y”(:1:) + nk2cn(:1:)sd(:r)y’(:1:) + erg/(2:) = 0,

where n is a positive integer and 01 a constant.

Although equation (3.5.42) is quite similar to the equations (3.5.1), (3.5.19) and

(3.5.28), unfortunely, Picard’s method does not apply to these equations.

3.6 Proof of Theorem 3.2

Let x : M" —> 5"“(1) C 1E"+2 be an isometric immersion of a conformally flat

n-manifold with n > 2 which satisfies Chen’s equality (2.1.2). Then, by Lemma

3.2 and a well-known result of E. Cartan and J. A. Schouton on conformally flat

hypersurfaces(cf. p.154 of [6]), we know that Mn has a. principle curvature with

multiplicity at least n — 1 for n = 3 as well as for n 2 4. Thus, by applying

(2.3.2), we know that either (i) the principle curvatures of Mn are given by A1 =

0,/\2 = = An = 11, or (ii) 11 = 3 and the principle curvature of M3 are given by

A1 = A2 = 11/2, A3 = ,u # 0. We treat these two cases separately.

Case (i): A1 = 0 and A2 = : An = 11. If u = 0 identically, then M" is totally

geodesic in 8"“(1).

Now, suppose that M" is not totally in 8"“(1). Denote by U the open subset of

Mn on which the mean curvature function is nonzero. Then U is non-empty. We will

prove in the following that U is the whole manifold Mn in this case.

We denote by ’D and ’Di the distributions on the open subset U spanned by {el}

and {e2, ..., en}, respectively.
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Now, by puttingj = Li = 2,3, ...,n in (2.3.5), we get w](e1) = 0 which implies

that integral curves of ’D are geodesics.

Also by using the first equation of (2.3.5), we find

(3.6.1) e211 2 = emu = 0.

It is easy to see from (2.3.4) that

(3.6-2) 411(6)): 0. 1 s z‘ aéj s n,

which implies that Di is integrable. Consequently, there exist local coordinate sys-

tems{:1:1,a:2,...,:1:n} such that (9/8362, ...,6/8xn span Di and e1: (9/33 with :1: = 3:1.

From (3.6.1), we know that )1 depends only on 0:, i.e., u = 11(2).

Choosing i = 1 for the first equation in (2.3.4), we get u’(:1:) = —u(x)w{(ej) for

anyj Z 2. Thus

(3.6.3) Vejel = :wf(ej)ek = w{(ej)ej = —(ln ,u)'ej.

k=2

Using (3.6.3) we know that each integral submanifold of ’D‘L is an extrinsic sphere

of 8"“(1), i.e., it is a totally umbilical submanifold with nonzero parallel mean

curvature vector in 5"“(1). Hence, the distribution Di is a spherical distribution.

Therefore, by applying a result of Hiepko [21] (cf. Remark 2.1 of [20]), we know that

U is locally the warped product I Xftr) Sn‘1(1), where f(:1:) is a suitable warped

function. Therefore, the metric on U is given by

(3.6.4) g 2 do:2 + f2(:1:)g0,

where go is the metric of ism—1(1). In particular, if we choose the spherical coordinate
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system {u2, ...,un} on S"“1(1), then we have

(3.6.5) g = d2:2 + f2(:1:)(du§ + cos2 uzdug + + cos2 112... cos2 un_1du?,).

By (3.6.5) we obtain

 

 

(3.6.6)

o a f’ a a ,6

V555”, V253... 7‘5; V-u—a_ ‘ffif’

a a
___=_ — <'Vfiauj (tanu,)auj, 2 z<g,

a 1'“ 2 6 11511126,, H 2 a
_=_ I _ — <" <viii-flu,- (ff 132cm “dam—+1.2; 2 eglcos ug)auk,2_i,g,k_n,

From (3.6.5) and the assumption on the principle curvature, we know that the

second fundamental form h of Mn in 5"“(1) satisfies

a a _ a a _ 2
h(égi 0—23) _ 0) h(au21 6712) — #f 61

3 8 _ 2 2 a a _ 2"“ 2

(3.6.7) Mans, 0113) —uf cos U26. h(aun’ au,)_“f kllcos 111.4.

a 6 (9 a

—— —— = — — = < ' °<
h(a$,an) 0’ h(auiaauj) 0) 2_Z#]_n,

where g is a unit normal vector field of M" in S“1(1).

Let 9h denote the covariant derivative of the second fundamental form h. Then

by the equation of Codazzi, we have

v h a a =(v3h)(a a(3-6-8) ( 5%)(5i13’0—uz) M 55.51;). 
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From (3.6.6) - (3.6.8)we obtain u’f = —uf’. Therefore

 (3.6.9) 11(33) =

for some nonzero constant a.

Now, by applying (3.6.6), we know that the sectional curvature K12 and K23 of

the plane section spanned by 6/611:, 0/611.2 and B/Buz, B/Bug are equal to —f”/f and

(1 — f'2) /f2, respectively. On the hand, from equation of Gauss and our assumption

on principle curvatures, we have K12 = 1 and K23 = 1 + 112. Therefore, by combining

these facts with (3.6.9), we obtain

(3.6.10) f” + f = 0, f’2 + f2 =1— a2,

which implies in particular that 0 < a < 1.

Solving the first differential equation in (3.6.10) yields f (3:) = Ccos(:1: + b) for

some constants b, and C. By applying a translation in :1: if necessary, we have

(3.6.11) f($) = Ccos :1:.

Substituting (3.6.11) into the second differential equation in (3.6.10), we obtain C =

\/1 — a2. Consequently, we have

 

(3.6.12) f(:1:) = V1 — a2 cos :1:, - a sec :1:,

where a is a constant satisfying 0 < a < 1.

(3.6.12) implies u Z a/\/ 1 — a2 > 0 on U. Hence, by the continuity of the squared

mean curvature function H2 = (n — 1)2u2/n2, we know that the mean curvature

function is nowhere zero and therefore U is the whole manifold M". Consequently,
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(3.6.4) and (3.6.12) imply that M" is isometric to an open portion of the Riemannian

manifold B: which was defined in Section 3.1.

By applying (3.6.5), (3.6.6), (3.6.7), (3.6.12) and the formula of Gauss, we conclude

that the isometric immersion x : Mn —> Sn'1(1) C EH2 satisfies the following system

of partial differential equations:

 

 

82x

(3.613) "a? Z “X,

Bzx Bx .

(3.6.14) 828112- — -—(tan :1:)8—uj, ] — 2,3, ...,n,

62x (9x

. .1 = — t i —a 2 S . .1
(3 6 5) 8122an (anu )Buj 1, < J

2

(3.6.16 9—3;— = 1(1— a2) sin 22:9E + a\/1— a2 cos 2:6 —- ((1 — a2) cos2 2:)x,

6112 2 62:

82x 2 32x 1 , ax .

(3.617) 671?; : (COS Uj)'a—UJ§ + §(Sll’l 2Uj)5;;, ] = 2, ...,n — 1.

Solving (3.6.13) yields

(3.6.18) x = P(u2, .., un) sin2: + Q(u2, .., un) cos :3,

foe some IE"+1-valued functions P = P(u2, ..., un) and Q = Q(u2, ..., 11"). Substituting

(3.6.18) into (3.6.14), we know that P is a constant vector, we denote it by c1. Thus

(3.6.19) x = 01 sin2: + Q(u2, ..., 11") cos 2:,
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Substituting (3.6.19) into (3.6.15) with 2' = 2, we obtain

6%)
 

86) _ ._
(3.620) aujauz + (tan U2)a—uj — 0, j —- 3, ..., n

which implies

a ..

(3.621) ‘82 + (tan U2)Q = $2013),

“2

for some function $2 = 62(212). Therefore, by solving (3.6.21), we have

(3.6.22) Q = ¢2(u2) + Q3(U3, ..., un) cos U2

for some function 452 = ¢2(u2) and Q3 2 Q3(u3, ..., un).

Similarly, by substituting (3.6.19) and (3.6.22) into (3.6.15) with z' = 3 andj > 3,

we find

(3-6-23) Q3 = $3013) + Q4(U4. ..., Un) 005713,

for some function (253 = (153(212) and Q4 2 Q4(u4, ...,un). Repeating such procedure

n — 2 times, we obtain

Q = (152%) + Q3(U3. un) cos u2,

Q3 = ¢3(U3) + Q4014, "'aun) COS U3,

(3'624) Q4 : $4014) + Q5016, "'a un) cos “’4:

Qn—l : ¢n—1(un—1) + ¢n(un) COS un—la
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with ¢n(un) = Qn(u,,). Substituting (3.6.24) into (3.6.19) we get

(3.6.25) x = Cl sin :1: + (15204.2) 008$ +
¢3(U3) COS U2 Cosx +

+¢n_1(un_1) cos U2... cos un_2 cos a: + (15,,(un) cos U2... cos un_1 cos :1:.

Substituting (3.5.25) into (3.5.17) with j = n — 1, we obtain

(5.6.26) qfiflun) + ¢n(un) = cos un_1¢2_1 + sin un_1¢;,_1(un_1),

which implies that

(3.6.27) (bflun) + ¢n(un) 2 kn,

(3.6.28) cos un_1¢x_1(un_1) + sin un_1q5;,_1(un_1) = k,,,

for some constant vector kn. Solving (3.6.27) yields

(3.5.29) (15,, = c,,+1 sin un + cn+2 cos u" + kn,

for some constant vectors cn+1,,cn+2. Combining (3.6.25) and (3.6.29) we obtain

x = 01 sinx + (152(u2) cosa: + (153(u3) cos U2 cosrr

(3-6-30) +¢n_1(un_1) cos U2... cos un_1 cos 33+

+cn+1 cos 1L2... cos un_1 sin u” cos a: + cn+2 cos U2... cos un cos :1:,

for some constant vectors cl, ..., an”.
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Now, we choose the initial condition at 0=(0, ..., 0) as follows:

x(0) = (162 + V1 -— a2en+2, 23(0) 2: 61,

(3.6.32) 3x 3x

672(0) = \/1 — a262, au = \/1 — a2en+1,
 

where {61, ..., en”) is the natural coordinate basis of 1153"”. Then, by applying (3.6.31)

and (3.6.32), we obtain

(3.6.33) 01 = 61, 82 = (162, C3 = \/1— a263, ..., cn+2 = \/1 — a26n+2.

Consequently, by (3.6.31) and (3.6.33) we conclude that, up to rigid motions of 1173"”,

the immersion x is given by (3.1.5) in Theorem 3.1. It is clear from (3.1.5) that the

immersion x can be extended to the two point compactification 132 of B2.

Case (ii): A1 = A2 = p/2 and A3 = u 75 O. In this case (2.3.5) yields

(3.6.34) r3, = A3 = 0, 61/1 = e2” = 0, 111,, = r33 = 0.

Denote by .7: and fl the distributions spanned by {81, 82} and {63}, respectively.

By (3.6.34) we know that the integral curves of fl are geodesics and the distribution

.7 is integrable. Consequently, there exist a local coordinate system{a:, u, 22} such that

f is spanned by {B/Bu, 0/0v} and 83 = 0/033.

From (3.6.34) we know that )1 depends only on :1:, i.e., p = h(zr). Also, from (2.3.8)

and (3.6.34), we have

  (3.6.35) w; = w , to; = w .
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Using (3.6.35) we obtain

(3.6.36) we3 = figej, j = 1,2.

Therefore, each integral submanifold of .7: is an extrisic sphere of 84(1). Hence,

by applying a result of Heipko, we know that M3 is locally the warped product

I x fix) 82(1), where f(x) is a suitable warp function. In particular, if we choose the

spherical coordinate system {0, (25} for 82(1), we have

(3.6.37) 9 = dx2 + f2(1:)(d¢2 + cos.2 6662).

By computing do); and by using (3.6.35) and Cartan’s structure equations, we find

W17)
(3.6.38) u"(x) + 2 + p(a:) = 0.

Let 2/2 = 2u(x). Then (3.6.38) becomes 1/2”(a:)+21/J3(1:)+2p(:r) = 0. Hence, by applying

Lemma 5.3 of [10], we obtain

 

2 _ a2 — 1

(3.6.39) 13(3) 2 (/2(a — 1)cn(a;z:,k), k — x/2a ,

where a > 1 is real number.

Now, by applying (3.6.37), (3.6.39) and the equation of Codazzi, we obtain ,u’f =-

,uf’. Therefore

(3.6.40) 16:) = cm),

for some IlOIl-ZGI‘O constant C.

On the other hand, using (3.6.37) we can compute the sectional curvature K23 of
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the plane section spanned by {ii/8(1), {9/30}. On the other hand, we may also compute

K23 by using the equation of Gauss. Comparing the two different expressions of K23

so obtained, yields

1

(3.6.41) 0260 = 1 — c2p2 -— 102434.

Substituting (3.6.39) into (3.6.41) we have (:2 = 1/(a4 — 1). Therefore

  (3.6.42) f = figijcnmx, k), u = 2(a2 — 1)cn(a:r;, k), k = $2.; 1.

(5.6.37) and (5.6.42) imply that M3 is an open portion of the warped product

manifold I Xfi/mcmax) 52(1) which is isometric to P3, first introduced by B. Y.

Chen in [10] (also see [13]).

(3.6.37), (3.6.39), (3.6.42) and the formula of Gauss imply that the immersion x

satisfies the following system of partial differential equations:

(3.6.43) % = (/2(a2 — 1)cn(a.:z:, k)€ — x,

 

 

(92x 2a

5255 = Clz—H-cn(azr)dn(a$)sn(am)5;

(3.6.44) 2(02 _ 1) 3 2

—a2—+—1—cn (ax)€ — a2 +1cn (ax)x,

2

(9379; = a223- 1 cos2 ¢cn(ax)dn(a:r)sn(a$)% + sin ¢cos¢g—:

(3.6.45)
2(a2 — 1)

+.__—___

a2 +1

 cos2 ¢cn3(a:1:)£ —— cos2 q§cn2(a:1:)x,

a2+1



62x
 

 

 

(3.6.46) 638$ = —asc

82x

(3.6.47) 82:80 — —asc

82x
. .4(3 6 8) (908(1)

(ax)dn(a:1:) g,

(ax)dn(a:z:)gx—,

6%

60

= —- tan (fig—3.

By taking the partial derivative of (3.6.44) with respect to d) and by applying the

equation of Weingarten, we obtain

3

(3.6.49) 6 x

by virtue of (3.2.8), (3.2.10) and

(12—1

2a2 ’

(3.6.50) k2 =

Solving (3.6.49) yields

(3.6.51)

0?—
8x

_%,

 

x(:r, (15, 6) = A(:1:,0) sin (3 + B(:1:, 6) cos (b + C(x, 6),

for some [fi-valued functions A,B,C of two variables. Substituting (3.6.51) into

(3.6.46) yields

8A

(3.6.52) E

Solve the above, we have

(3.6.53)

2 —asc(a:r)dn(a:13)A,

A(a:, 0) = E(6)cn(a:z:),

8—15:

33:

= —asc(a2:)dn(a:z:)B.

B(:r, 0) = D(0)cn(a:1:)
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for some IEfi-valued functions E, D. Thus,

(3.6.54) x(2:, ()5, 0) = E(0)cn(a:r) sin (15 — D(6)cn(a:c) cos 45 + 0(2), 6).

Substituting (3.6.54) into (3.6.47) yields

2

8 C - —asc(aa:)dn(a$)a—C—

611369 — 86 '

 (3.6.55)

By solving (3.6.55) we find C(cc,6) = G(0)cn(a:z:) + K(:2:) for some Ei-valued

functions G(0) and K(3:) Thus, (3.5.54) gives

(3.6.56) x(x, (b, 6’) = E(6)cn(aa:) sin (b + D(0)cn(a:z:) cos <15 + G(6)cn(a2:) + K(:r).

Substituting (3.6.56) into (3.6.48) yields E’ (6’) = 0(0) = 0. Thus, E and G are

constant vectors in E5. Consequently, from (3.6.56) we know that x takes the form:

(3.6.57) x(a:, <15, 9) = clcn(a2:) sin <15 + D(6)cn(a:c) cos Q5 + F(;r).

where c1 ia a constant vector. From (3.6.43) we have

(3.6.58) 6: 1 (82x + x).

,/2(..2 — 1)cn(a$) 6102

By (3.6.45), (3.6.57), (3.6.58) and a long computation, we obtain

 

(5.6.59) F”(:I:) + 2asc(ax)dn(a:r)F'(:z:) — F(:1:) = 0,

(3.6.60) D”(0) + 19(9) = 0,
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by virtue of (3.2.8), (3.2.10) and (3.6.50). Solving (3.6.60) yields

(3.6.61) D(6) = c2 cos 6 + c3 sin 6,

for some constant vectors 02, c3 in E5. Therefore, by applying Proposition 5.1, (3.6.57)

and (3.6.61), we have

x(:1:, d), 6) 2 c1 sin ¢cn(a:z:) + C2 cos ()5 cos 6cn(a:1:) + 03 cos ((5 sin 6cn(a2:)

F1k12

+c.4\/a2k’2 — cn2(a$) COS(-k-$ + g—m—TZ—(ln 9(62: + 7 )

\/—1k’2 9 _

+65 \/a2kl2 ._ cn2(a:z:) sin(7c-:r + 2;———21———ij (1n —O(::- + Z;

 

(3.6.62)

 

where O and Z are the Theta function and Zeta functions.

Now, if we choose the initial conditions at 0=(0, 0, 0) as follows:

6x 1 6x 1

(3-6-63) X(0)= am) = gig-Kl, 55(0) = $63,

6x

a(€2—k—, + 64), Egan = 65,

where {61, ..., 65} is the standard basis of E5, then we obtain

1

3H4 az—aa
(66) c ak’e a =1,...,5.

Therefore, up to rigid motions, the immersion x is given by (2.1.7) in Theorem 3.2.

The converse can be verified by straigh-forward but long computations. D

3.7 Proof of Theorem 3.3

Let x : Mn —> H"+1(—1) C 1E}1+2 be an isometric immersion of a conformally flat

n-manifold with n > 2 which satisfies Chen’s equality (2.1.2). By Lemma 3.2 and a
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result of Cartan and Shouten, either (a) the principle curvatures of M" are given by

A1 = 0, A2 = = An = p, or (b) n = 3 and the principle cuevatures of M3 are given

by A1 = A2 = p/2, A3 = ,u aé 0. We treat these two cases separately.

Case (a): A1: 0 and A2 = = An = u.

If p = 0 identically, then M" is totally geodesic. This yields Case 1 of Theorem

3.3.

Now, suppose that M" is not totally geodesic in H"+1(-—1). Denote by U the

open subset of Mn on which the mean curvature function is nonzero. We shall work

on this open subset of M" unless mentioned otherwise. Clearly, ,u aé 0 on U.

We denote by D and Di the distributions on the open subset U apanned by {81}

and {82, ...,en}, respectively. Then, as in the proof of Theorem 3.2, we can prove

that integral curves of D are geodesics and Di is integrable. Thus, there exist a local

coordinate system {3131,22, ...,xn} such that 6/622, ..., 6/6rrn span Di and 61 = 6/63:

with :1: = :61. Also, using (2.3.5) we can prove that ,u depends only on :1:, i.e., ,u = h(ay).

If we choose 2’ = 1 for the first equation of (2.3.4), we get p’(:c) = —/3($)w{(ej) for

anyj 2 2. Thus

11

(3.7.1) V8181 = wa(ej)ek = w{(ej)ej = (ln p)'eJ-.

k=2

Hence, each integral submanifold of DL is an extrinsic sphere of H"+1(—1), i.e.,

the distribution Dl is spherical. Therefore, U is locally a warped product manifold

I x [(x) N"‘1(5), where f (:r)(> 0) is the warp function and N"'1(E) ia a Riemannian

space form of constant sectional curvature 6.

Since N"’1(E) is of constant curvature, it is conformally flat. Thus, there exists a

local coordinate system {132, ..., un} such that metric tensor of N"”1(E) is given by

(3.7.2) go = E2(du§ + dug + + d213,).
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With respect to the coordinate system {23, U2, .. gun} on I x f(:v) N”1(c), we have

(3.7.3) 9 = dx2 + f2E2(du§ + + dug).

From the above, we have

 

  

 

 

  

  

 

 

8 _ f’ 6 E.- a E,- 6

V%6x_0’ V6 6 _af6 a..au,-E'a—u;+73‘au;

(3.7.4) 6 6 +E E 6

2 _ _ __’:___

V8162“: ..,-ffE 62: +E 13:,é; E Buk’

for distinct z',j, k(2 S i,j, k S n), where E,- = 6E/6u,.

Codazzi’s equation, (3.7.4) and our assumption on principle curvatures imply

(3.7.5) 7. = ;

for some constant a > 0. Also, from (3.7.4), it follows that the sectional curvatures

K12 and K23 of M" associated with the plane section spanned by 6/623, 8/6132 and

B/Bug, (9/6233 are given by —f”/f and (E — f’2)/f2, respectively. On the other hand,

Gauss equation yields K12 = —1 and K23 = —1 + 13- Comparing these facts with

(3.7.5), we get

(3.7.6) f” — f = 0, f2 — f’2-_ a2 — 6.

Solving the first equation of (3.7.6) yields f (:r) = 01 cosh a: + c2 sinh :1:, where c1, 62

are constants, which we can write as either f (2:) = a sinh(:r+b) or f (:1:) = a cosh(a:+b),

for some constant a, b. Thus , by applying a translation in x if necessary, we have

f (:1:) = asinha: or f (2:) = acosh :1:. We consider these two cases separately.

Case (1): f (:1:) = acosh :1:. In this case, the second equation of (3.7.6) yields
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a2 = a2 — 6. Thus, after applying a scaling on E if necessary, we have

(3.7.7) 5 = 1, f(x) 2 Va? -—1cosha:, u = sechx, a > 1,

 

a _

or

(3.7.8) 5 = 0, f(:1:) = cosh :1:, u = sechx,

or

(3.7.9) 6 = —1, f(:z:) = Mcosh :1:, ,u z a2 +188Ch$, a > 0.

Case (Li): 6 = 1,f(;r) 2 Va? — 1cosh 3:,” = fisechxfi > 1. In this case,

the open subset U is the whole manifold M". Therefore, M" is an open portion of

the warped product manifold A: = R XJE’TT Sn‘1(1). By choosing spherical
cosh :1:

coordinates {71.2, ..., an} on Sn'1(1), we obtain (3.7.3) and (3.7.4) with

sechcr.
 (3.7.10) f 2 Va2 - 1cosh 3:, u = fin

Therefore, the equation of Gauss implies that the isometric immersion x satisfies the

following system of partial differential equations:

(3.7.11) ————- = x,

 (3.7.12)
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62x
3.7.13 —-—— = —t ,-—, 2 <' ',

( ) 611,611,- anu Bu]- — Z < J

62 1 — 2 6x

(3.7.14) —-—§ 2 ___a sinh 223— + aVa2 - 1cosh 336 + ((a2 — 1) cosh2 :1:)x,

8112 2 8:1:

62x 2 82x 1 . .
(3.115) au§+1 = COS 117—6713 + g Sln 2Uja—u;, ] = 2, ...,n — 1.

where f is a unit normal vector field of M" in H"+1(—1).

Solving equation (3.7.11) yields

(3.7.16) x = P(u2, ..., un) sinha: + Q(u2, ..., un) cosh :1:,

for some IE’1'+1-valued functions P = P(u2, ..., an) and Q : Q(u2, ...,un). By substi-

tuting (3.7.16) into (3.7.12), we know that P is a constant vector, denoted by c1.

Thus

(3.7.17) x 2 c1 sinh :1: + Q(u2, ..., un) cosh :6.

Substituting (3.7.17) into (3.7.13) with 2' = 2 yields

(3.7.18) 3% + (tan 62m = (132072),

for some function (52 = (252012). Therefore, after solving (3.7.18), we obtain

(3.“9) Q = 652(712) + Q3(U3, ..., U") COS Hg

for some functions (1)2 = ¢2(u2) and Q3 2 Q3(u3, ...,un). Repeating this procedure
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n — 2 times, we obtain

Q = (152012) + Q3(u3, ..., un) cos 112,

(3.120)
'Q3 : ¢3(U3) + Q4014, "'7 un) COS U3,

Qn—l : ¢n—l(un—1) + ¢n(un) cosun_1,

where 45,,(un) = Qn(un).

Substituting (3.7.20) into (3.7.17), we find

(3.7.21) x = Cl Sinh 3” + Mu?) C0511 1’ + 853%) cos U2 cosh :1: +

+¢n_1(un_1) cos 71.2... cos u,,_2 cosh :1: + ¢n(un) COS 112... cos un_1 cosh 2:.

Now, by applying (3.7.21) and (3.7.15), we may obtain in the same way as given

in the proof of Theorem 3.1 that

x = (:1 sinhx + c2 coshx + 03 sin U2 coshx +

(3.7.22)

+cn+1 cos U2... cos un_1 sin 21,, cosh at + Cn+2 cos 212... cos un cosh :1:,

for some constant vectors c1, ..., on”.

If we choose suitable initial conditions for x, fix/62, Bat/Bug, ..., fix/Bun at 0=(0,

..., 0), we will obtain (3.1.8) from (3.7.22). Consequently, up to rigid motions, the

immersion x is given by (3.1.8).

Case (l-ii): E = 0, f (:13) = cosh :1:, p = sechzr. Again, the open subset U is the

whole manifold M". Thus, M" ia an open portion of the warped product manifold

G" 2 IR xcoshx En‘l. Hence, the metric tensor of M" is given by

(3.7.23) 9 = dx2 + cosh? m(dug + + d233,).
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In this case, the equation of Gauss implies that the isometric immersion x satisfies

the following system:

(3.7.24) —— = x,

 

82x 6x

3.7.25 — = t h — '= 2

(92x

3.7.26 2 0 2 < ' < '( ) 8%an , _ z .7,

2

(3.7.27) 59—); = sinhxcosh 1123(- + cosh 175 + cosh"2 xx, j : 2, ..., n.

Bu]- 8:2:

After solving this system, we obtain

(3.7.28) x(x, ug, ..., U”) = 01 sinh :1: + (02213 + + £13,113, + @212 + + flnun +7) cosh 1:,

for some constant vectors cl, 012, ..., an, fig, ..., fin, ’7.

If we choose suitable initial conditions for x, Bat/6.7:, ant/Bug, ..., Bx/aun, we may

obtain (3.1.9) from (3.7.28). Thus, up to rigid motions, the immersion is given by

(3.1.9).

Case (l-iii): a = —1, f(:2:) =mcosh x, u = asechx/m,a > 0. Again,

the open subset U is the whole manofold M" and M" is an open portion of the warped

product manifold H: = 1R choshx H"‘1(—1). Thus, the metric tensor of M" is

given by

(3.7.29) 9 = das2 + (a2 + 1)(cosh2 :1:)go,
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where

(3.7.30) go = dug + sinh2 u2(du§ + cos2 u3dui + + cos2 u3... cos2 un_1du,2,).

If we apply (3.7.29), (3.7.30), and our assumption on the second fundamental

form and the equation of Gauss, we know that the isometric immersion x satisfies the

following system:

 

 

  

 

(3.7.31) 2:3:- = x,

(3.7.32) 6:27:1- = tanhxat? j = 2, ..., 72.,

(3.7.33) 85321,- = coth 212-517;, j = 3, ...,n,

(3.7.34) 0:25;,- : __ tan ujgxm, 3 g z‘ < j g n,

(3.7.35) gin); = —92—;-1 sinh 22:22 + ax/Ez2—+_1 cosh x6 + (a2 + 1) cosh2 xx,

(3.7.36) 2:73; 2 sinh2 27222535 —- sinhsrcosh 23583;,

(3.7.37) 83:2: 2 cos2 mfg—:3;- — sin n, cos (1,-~53, j = 2, ..., n — 1.
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After solving this system in the same way as in Case (1-i) we obtain

x = Cl sinh :1: + c2 cosh :I: + 03 cosh 11,2 cosh a: + c4 sinh 11.2 cos u3 sinh a:

(3-7-38) +... + cn+1 sinh U2 cos u3... cos un_1 sin un cosh x

+cn+2 sinh U2 cos U3... cos un cosh :13,

for some constant vectors c1, ..., on”.

If we choose suitable initial condition for x,6x/8:v,8x/8u2, ...,ax/Oun, we will

obtain (3.1.10) from (3.7.38).

Case (2): f(:1:) = asinh x. In this case, (3.7.6) yields 5 = 012 + a2. Thus, 5 > 0.

By applying a scaling on E if necessary, we have 5 = 1 and a = m. In summary,

we have

(3.7.39) 5 = 1, f(x) = v1 — a2 sinhm, cschx, 0 < a < 1.

a

”771:7

From (3.7.39) and continuity, we know that U is a dense open subset of M".

Moreover, locally, U is an open subset of the warped product manifold Ya". Thus the

metric tensor of Mn is given by

11—]

(3.7.40) g = (12:2 + (1 — (12)sinh2 m(dug + cos2 u2du§ + + (H cos2 uj)du,2,).

1:2

Therefore, by applying the equation of Gauss, we know that the isometric immersion

x satisfies the following system:

(3.7.41) — = x,

62x

. . 2

(3 7 4 ) Basauj au,’
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82x 6x

3.7.43 2 -t h — < ' '( ) 8u26uj an ugauj, 2 _ z < j

2 2
- 1

(3.7.44) 9—);- = 9—— sinh ZxQX— + aVl — a2 sinh xf + (1 — a2) sinh2 xx,

811.2 2 (9x

(3 7 45) 32" 62x_ 2 , ° . . '— _
5—5——cos 14,6 2+smchoqua , 1—2,...,n 1.

Uj+1 Uj Uj

After solving this system in the same way as in Case (1-i) we obtain

x = c1 cosx + Cg sinhx + 0;; sin u2 sinhx +

(3.7.46)

+cn+1 cos u2... cos un_1 sin u" sinh x + cn+2 cos ug... cos un sinh x,

for some constant vectores cl, ..., cu”.

If we choose suitable initial conditions for x, 6x/8x, 8x/011.2, ..., 6x/(9un at 02(0,

..., 0), we will obtain (3.1.11) from (3.7.46). Therefore, up to rigid motions, the

immersion is given by (3.1.11).

Case (b): n = 3, A1 = A2 = p/2,)\3 = u 75 0. Let f and fl denote the

distributions spanned by {81,62} and {63}, respectively. Then as Case (ii) in the

proof of Theorem 3.1, we can prove that the integral curves of fl are geodesics and

the distribution .7: is a spherical integrable distribution. Thus, there exist a local

coordinate system {x, u, U} such that .7: is spanned by {a/Bu, (9/61)} and e3 = B/Bx.

As in the proof of Theorem 3.1, we may also prove that u = h(x) depends only on x.

Again, according to a result of Hiepko, M3 is locally a warped product manifold

I x f(x) N2(E), where f(x) > 0 is the warp function and N2(E) is a surface of constant

curvature 6. So, the metric of M3 can be written as

(3.7.47) 9 = dx2 + f2(x)E2(du2 + dv2),
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where {u,v} is an isothermal coordinate system on N2(E). Applying (3.7.47) we

obtain

8 _ 8 _ f’ ('3 0 _ f’ 0

V%ax_0’ V%6u_ fau’ Va‘irav‘ fav’

V 2-133 3.:
£627 E822 Eav’

(3.7.48) v 3 —ff’E2_a_+§l—6__ 5:13

831.- 32; Eau Eav’

6 , 28 E, 8 ”6

Vszx— ”Ea—4‘23; ‘57;

From (3.7.47) and the hypothesis on the principle curvatures, we know that the

second fundamental form h of M3 in H4(-1) satisfies

8 ('3 _ _ __1_ 2 2 22 _l 2 2

“3;" a) = “as." a) ‘ “an, a.) = ’

where g is a unit normal vector field of M3 in H4(-1).

From (3.7.48), (3.7.49) and equations of Gauss and Codazzi, we find

 

 

(37-50) f (a?) = OWE),

(3.7.51)
#”(:1:) + 14351?) _ ”(33) = 0,

2 II L2 _ _ ,2

(3.7.52) K13=_1+%:_f7’ K12:_1+%:Cf2f ’

where oz is a nonzero real number and K12,K13 are sectional curvatures of M3 of

plane sections spanned by {81, 62}, {61, e3}, respectively.
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Put 112(x) = 2p(x). Then (3.7.51) becomes z/J"(x) + 21/23(x) - 212(x) = 0. Hence, by

applying Lemma 5.4 of [10], we know that p = p(x) is one of the following functions:

(1) u = fl,

(2) p = 2sech(x),

(3) h(x) = Mcnmx, T), a > 1,

7—471 «2..

«2 x’ M”
We consider these four cases separately.

 

0<a<1.
 (4) h(x) = 2(a2 +1)cn(

Case (b-l): u = J2,f = J20. In this case, (3.7.52) yields 5 = —a2 < 0. By

choosing (‘3 = —1, we obtain a = 1,f = \/2. Therefore, U = M3 and M3 is an

open portion of the warped product manifold IR xfi H2(—-1) which is isometric to

F3. Therefore, if we choose the hyperbolic coordinate system {4), 6} on H2(-—1), we

obtain

(3.7.53) 9 = dx2 + 2(qu2 + cosh2 (M162).

By (3.7.53), [2 = \/2 and formula of Gauss, we know that the immersion satisfies

the following system:

82x 82x

   

wdfim aTsz'zfi‘m’

02x , 6x 2 2

(3.7.54) (9—02— — — srnh qbcosh 43:93 + \/2cosh $6 + 2 cosh qu,

62X 62X 62x 8x

04:39 ’ 0x8¢ ‘ 0’ 3336 " tanh ‘f’fi'

After solving (3.7.54), we obtain

x(u, (15,0) 2 c1 cos x + C2 sin x + (:3 sinh (15 + c4 cosh 0 + c5 cosh absinh 6.
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for some constant vectors c1, c2, ..., c5. Thus, by choosing suitable initial conditions,

we obtain (3.1.12).

Case (b—2): ,u = 2sechx, f = 2asechx. In this case, (3.7.52) yields 5 = 0. By

choosing a = 1/2, we obtain f = sechx. Therefore, M3 is an open portion of the

warped product manifold IR XSBChx In“.2 which is isometric to F3. Thus

(3.7.55) 9 = dx2 + sechzx(du2 + dv2).

By (3.7.55), )2 = 2sechx and formula of Gauss, we know that the immersion

satisfies the following system:

  

 

(3.7.56) 3:132: = 2sechx€ + x,

(3.7.57) 2:3:— = sech2x tanh x2: + sech3x§ + sech2xx,

(3.7.58) g—j}; = sechzx tanh x2; + sech3x€ + sech2xx,

(3.7.59) 88:ch = — tanthx—u, 68;; = — tanh x-a—J,

(3.7.60) 68:; =

Solving (3.7.59) yields

(3.7.61) x(x, u, v) = A(x) + B(u, v)sechx,
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for some IE‘5-valued functions A(x),B(u,v). Substituting (3.7.61) into (3.7.60), we

have B(u, v) = C(u) + D(v) for some Elf-valued functions C(u), D(v). Thus

(3.7.62) x(x, u, v) = A(x) + (C(u) + D(v))sechx.

Substituting (3.7.62) into (3.7.57) and (3.7.58) yields

(3.7.63) 2C"(u) = sechx(A"(x) + 2 tanh xA'(x) + A(x)),

(3.7.64) 2D"('v) = sechx(A"(x) + 2 tanh xA'(x) + A(x)),

which imply that there exists a constant vector c1 such that

(3.7.65) CW) : DW) : 262’

A”(x) + 2 tanh xA’(x) + A(x) : 461 cosh x.

Solving (3.7.65) yields

C(u) = c1142 + cgu + b1, D(v) = c1222 + 032) + ()2,

(3.7.66) cosh 2x

A(x) = sechx(c1(x2 — )+C4.’L‘ +b3)

for some constant vectors 02, c3, 04, b1, b2, b3. Combining (3.7.62) and (3.7.66) yields

(3.7.67) x(u, <15, 6) = sechx[c1(x2 + U2 + v2 — cosh2 x) + cgu + c321 + 04x + c5]

for some constant vector c5. Thus, by chosing suitable initial conditions, we will

obtain (3.1.12) from (3.7.67). Consequently, up to rigid motions, the immersion x is

given by (3.1.12).
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Case (b-3): p = 2(a2 +1)cn(ax, Va2 + 1/(x/2—a)),a > 1. In this case, (3.7.52)

yields 5 = 02(04 — 1) > 0. By choosing 'c' = 1, we have

_\/a2+1 k,_\/a2—11
, . = 2 k k = — — __ — —__°

(3768) ,u(x) a cn(alT, ), f ak,cn(ax,k), k \/2a ’ \/2a

Thus, locally, U is an open portion of the warped product manifold 03. If we choose

the spherical coordinate system {(15, 6} on 52(1), we have

cn2(ax, 1:)

(3.7.69) 9 : dx2 + a216,, (dd)2 + cos2 ¢d62).

By (3.7.68), (3.7.69) and formula of Gauss, we know that the immersion satisfies

the following system:

02x

  

 

 

(3.7.70) 5;; = 2akcn(ax)§ + x,

(3.7.71) 3:;- = 01:, cn(ax)dn(ax)sn(ax)g-x; + Egg—€23 + C::(I:f::)x,

(3.7.72) :27): = cos2 gig—g; + sin aficos 45%,

(3.7.73) 6:2qu 2 ‘GSC(a$)dn(ax)gX—¢,

(3.7.74) 68:; = —asc(ax)dn(ax)-870-,



 (3.7.75)

By taking the partial derivative of (3.7.71) with respect to ¢, by applying (3.2.8),

(3.7.73) and Weingarten equation, we obtain 63x/8653 + 3x/qu = 0, from which we

get

(3.7.76) x(x, 65, 6) : A(x, 6) sin (15 + B(x, 6) cos ¢ + C(x, 6),

for some E?-valued functions A, B, C. Substituting (3.7.76) into (3.7.73) and (3.7.74)

yields

A(x, 6) = cn(ax)D(6), B(x, 6) = cn(ax)E(6), C(x, 6) = cn(ax)F(6) + C(x)

for some IE?-valued functions D, E, F and G. Thus, we obtain

(3.7.77) x = D(6)cn(ax) sin (I) + E(6)cn(ax) cos <2 + F(6)cn(ax) + G(x).

Substituting (3.7.77) into (3.7.75) yields D’(6) = F’(6) = 0. Thus, (3.7.77) implies

(3.7.78) x = clcn(ax) sin cf) + E(6)cn(ax) cos d) + K(x)

for some constant vector c1 and IE?-valued function K(x)

By substituting (3.7.78) into (3.7.72) and by applying (3.2.8) and (3.7.70), we find

E”(6) + E(6) = 0. Thus, E(6) = 62 cos6 + 6;, sin 6, for some constant vectors Cg, C3.

Substituting this into (3.7.77) yields

(3.7.79) x = clcn(ax) sin (15 + cgcn(ax) cos gbcos 6+ c3cn(ax) sin 65 cos 6 + K(x).
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Substituting (3.7.79) into (3.7.70), we have

(3.7.80) K"(x) + 2asc(ax)dn(ax)K'(x) + K(x) = 0.

Therefore, by applying (3.7.79), (3.7.80) and Proposition 5.2, we know that x takes

 

 

the form:

x(x, 65, 6) = clcn(ax) sin 63 + cgcn(ax) cos 42605 6 + cgcn(ax) sin 66603 6

k’ 1 8 —

(3.7.81) +C4 3216’2 + cn2(ax) cosh(;x — §lnneg—3%+—————::—;—- aZ(’y)x)

+c5\/a2k’2 + cn2(ax) sinh(%x — én g————E::_:Z; — aZ(’y)x),

where k = W/(fia) and k’ = W/(fia) are the modulus and the com-

plementary modulus of the Jacobi elliptic functions and 7 = sn’1(1/(ak2)). Now, by

choosing suitable initial conditions, we obtain (3.1.14) from (3.7.81). Therefore, up

to rigid motions, the immersion is given by (3.1.14).

Case (b-4): h(x) = WCMWx/fi, \/2a/\/1—+717),0 < a < 1. In

this case, (3.7.52) yields 6 = —4cr.2672k’2/k2 < 0. By choosing a = —1, we obtain

  

k
,/ _ 2

(3.7.82) u(x) = —k—dn(:x, k), f—- ?dn(kx, k), k = fi, 16’: V1725.

Thus, U = M3 which is an open portion of the warped product manifold D2 =

2 o c

X(Ic/(ak’))dIl(ax/k) H (-—1). If we choose the hyperbollc coordinate system {65, 6} on

H2(—1), we get

162an (7‘: x)

(3.7.83) 9 = dx2 + a2k’2 (462 + cosh2 6662).

By (3.7.88) and (3.7.89) and formula of Gauss, we know that the immersionsatisfies
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the following system:

(3.7.34)

(3.7.85)

(3.7.86)

(3.7.37)

(3.7.88)

(3.7.89)

62X 261 a

8—1172- — —k—dn(;x)§ + X,

62x 163 a a a 3x kdn3(%x) k2dn2(%x)
 $2— : aklzcn(gx)dn(gx)sn(-Ex)5; + _——ak’2 ——_—a2k’2x,

82x
__ 2

66 cosh (1)93—

, 0x

3452—81111) ()5 cosh (ta—é,

62x 8x

6x665 -——ak‘cn(:x)sd(kx)5—¢,
 

62x

8x86

 

$)Sd(%$)::,= —akcn(—

(92x 6x

.6766 — tanh (6'55.

Solving (3.7.89) yields

(3.7.90) x,(x 65, 6:) B(,x 6)coshq§+C(x,¢).

for some [BE-valued functions B (x, 6), C(x, 65). Substituting (3.7.90) into (3.7.87) yields

(3.7.91)
BB a a

a; — —akcn(Ex)sd(-l;x)B,
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02C a a 8x

(3.7.92) 3$3¢ — -akcn(;x)sd(;x)-ég,

Solving the above two equations, we get

(3.7.93) B(x, 6) = G(6)dn(%x), C(x, 6) = K(¢)dn(%x) + W(x).

for some Ei-valued functions G(6), K(65), W(x). Thus, we obtain

a

(3.7.94) x(x, 6, 6) = G(6)dn(%x) cosh 6 + K(¢)dn( k

By subsituting (3.7.94) into (3.7.85) and (3.7.86), by applying (3.2.8) and (3.7.84),

we have

(3.7.95) G”(6) — 0(6) = 0, K”(¢) -— 13(6) = 0,

(3.7.96) W”(x) + 2akcn(36)sd(36)w'(x) + W(x) = 0.
k k

Therefore, by applying (3.7.94) - (3.7.96) and Proposition 5.2, we know that x takes

 

 

 

 

the form:

x = cldn(%x) cosh 63 cosh 6 + cgdn(;:—x) cosh 65 sinh 6

+c3dn(%x) cosh ¢ + c4dn(-:—x) sinh 65

(3.7.97) +Cs\/k2dn2(%x) — a2k’2 cos(k’x — T ln SEE: ; Z; — \/——1%Z(’y)x)

+Cs\/k2dn2(%$) — a2k’2 sin(k'x — \/2__11n SEE: ; Z; — \/——1_%Z('y)x),

 

where k = \/2a/\/1 + a2 and k’ = \/1 - a2/\/1 + a2 are the modulus and the com-
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plementary modulus of the Jacobi’s elliptic functions and 'y = sn‘1(k/a). Now, by

choosing suitable initial conditions, we obtain (3.1.15) from (3.7.97). Therefore, up

to rigid motions, the immersion is given by (3.1.15).

The converse can be verified by straight-forward long computation. C]
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