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ABSTRACT

The Discretized Korteweg-de Vries Equation
By

Michael J. Nizon

In this dissertation, we study a discretized version of the (generalized) Korteweg-
de Vries equation, 8,u + 83u + u*d,u = 0. After a number of estimates, we utilize the
Contraction Mapping Principle to prove the global well-posedness of this equation
in a certain discrete Banach space. Our results are analogous to those of Kenig,
Ponce, and Vega in the continuous setting. However, due to the nature of the Fourier
multipliers, the proofs of several of these estimates in the discrete setting require
new techniques. Our results yield a numerical procedure for computing the solution.
We present a numerical algorithm which is based on successive iterations to obtain
a fixed point guaranteed by the Contraction Mapping Principle. This fixed point is

the desired solution which we demonstrate with several numerical experiments.
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Introduction

Let S'(R) be the set of tempered distributions on the real line. Let B denote a Banach
space such that B C S'(R). The following initial value problems which arise in the
study of water waves are called the (generalized) Korteweg-de Vries equations,

Ou+Bu+uo,u=0 zeR,teRkeN
(KdV)

U|t=0 = ug € B.

We say that (KdV); is globally well-posed in B if there exists a unique u = u(z,t)

such that the following holds:

e u € C((—o0,+00); B), i.e., u(-,t) € Bforallt € R and t — u(-,t) is continuous

from R to B.
e u(-,0) = up.
e For t € R, ,l,in(l, ulst+h) —u(,t) exists as an element of S’ (R). Define
—

h
u(t 4 h) —u(t
du(-,t) = '1‘1_13(,) u( }), u( )

The nonlinear term u*(-,t)8,u(-,t) € S'(R) for all t € R.

u is a solution to (KdV); in the distributional sense.

e The mapping uy — u is continuous from B to C((—o00, +00); B).

We say that (KdV); is locally well-posed if the above holds with C((—o0, +00); B)
replaced by C((Ao, A1); B) for some Ay < 0 and A4; > 0.
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For F € §'(R), let F' be the Fourier Transform of F, defined by

F(¢) = %LF(m)e'i“dm.

For s € R, the Sobolev Space of order s, denoted H*(R), is the set of tempered

distributions F for which F' is a function and

IFIG. = [ IF@F(1+€)de < oo.

The homogeneous Sobolev Space of order s, denoted H*(R), is the set of tempered

distributions F for which F' is a function and

IFIG. = [ 1F(©PEde < co.

Obviously, H* (R) C H*(R) for s > 0. It is well known that H*(R) and H*(R) are
Hilbert spaces with inner product in H*(R) defined by

<F.G>= [ FOGEQ+¢e)d

and in H*(R) by
<F,G>= [ FGE)Ed.

In their 1976 paper [1], using energy methods, J. Bona and R. Scott proved that
(KdV) is locally well-posed in H*(R) for s > 3/2, for all kK € N. By the Sobolev
Imbedding Theorem for s > 3/2, H*(R) C C'(R), the set of all continuously dif-
ferentiable functions on R. Hence, this result is restrictive in the sense that it can
not guarantee a solution to (KdV); if the initial data v, has, say, a jump discontinu-
ity. However, the homogeneity of the nonlinear term suggests that well-posedness in

H*(R) may hold for smaller values of s. That is, if u solves (KdV), then for A > 0,



so does

ux(z,t) = A *u( Az, \3t)

with initial data

ux(z,0) = A*u()z,0).

Since we are using a scaling argument, let us assume that these solutions are in the

homogeneous Sobolev space, H*(R). Note that

lua(z, 0l 72 = NEX° X712 Ju(, )] -

This suggests that the optimal s for (KdV); is

Sk =

N =
[
Ll

Note that sy > 0 if and only if k£ > 4.

In their 1993 paper [5], Kenig, Ponce, and Vega proved that (KdV); is globally
well-posed in H**(R) for k > 4 provided that the initial data is small, i.e., |[uo|| gor < &
for some & > 0. If the initial data is not small, they proved local well-posedness in
H*(R). Note that by Plancherel’s Theorem, H°(R) = L2?(R), the set of square
integrable functions on R. Thus, for k = 4, the smallest value of k& for which Kenig,
Ponce, and Vega obtained well-posedness in H** (R), we have global well-posedness
in the familiar function space L2(R). Because of this, the remainder of this thesis

will focus on the Korteweg-de Vries equation with k = 4 and with B = L?(R), i.e.,

Ou+u+u'd,u=0 reR,teR
U|t=0 =1Ug € L2(R)

(KdV)4



We now give a brief outline of the proof in [5] for k = 4. Consider the associated

homogeneous linear equation

ow + Bw =0
H)

'w|t=o =wp € L2(R)

and the corresponding inhomogeneous equation

O + GZv =
(]H) tU v g

’Ulgzo =0.

One can easily verify that (H) is globally well-posed in L?(R) and the solution is
given by
w(,t) = W(Bwo(z) = [ i ()de. M

Note that W(t) is a Fourier multiplier operator with multiplier e e,
(W (t)wo)"(€) = "o (£).

Using Duhamel’s Principle, one can obtain that (IH) is globally well-posed in L?(R.)
for g such that g(-,t) € L2(R) for all t € R with the solution given by

oz, t) = | ‘Wit —t)g(-, 1) (z)dt . 2)
To see the connection with (KdV),, if
Su(z,t) = W(tuo(a) - [ Wt = ) (o) (-, £) (z)dt, (3)

then (1) and (2) imply that u solves (KdV), if and only if v = Su, provided Su

makes sense as a distribution. In other words, u is a solution of (KdV'), if and only



if u is a fixed point of the nonlinear operator S.

More precisely, for T € (0, +0o0], define

Zr = {veC((-T.T); ’(R) N L>((-T,T); L*(R)) :

|[vlLs 10 < oo and [|8;v]|pep2 < oo},

where

pla \ /P
lvllzzes = (/R (/_:, |v(z, t)lth> : d-’C)

for 1 < p,q < . If ¢ = 00, then

1/p
Iollzer = ( , sup_Iotz,0Pc)

with a similar definition for p = co. The norm for these Banach spaces is

|lv]|zr = max{ sup {[[v(:,¢)l|L2; |[v]|LsLyo; 10| rgor2 }-
te[-T,T) T T

)

By proving various estimates with these mixed norms involving the terms
W (t)uo(z) (4)

and

[wie- )o@, ©)

Kenig, Ponce, and Vega were able to show that given small initial data, S is a con-
traction mapping on B, = {v € Z, : ||v||z,, < r} for some r > 0. For arbitrary initial
data, they were able to find a T > 0 for which S is a contraction on B, C Zr. Hence,

the Contraction Mapping Principle guarantees a solution to u = Su in this ball in

Z7.



Contraction mappings and fixed point iterations are useful tools in the numerical
study of differential equations. Can the method developed in [5] be adapted to show
that a discrete version of (KdV'), is well-posed? Is the solution a fixed point of some
operator in some space? If so, does this lead to a method that can be implemented
numerically? In this dissertation, we answer these questions in the affirmative.

The general outline of the proof for the discrete setting is analogous to that of
the continuous setting. However, there are major differences that make the discrete
proofs different and in some cases quite a bit more involved than their continuous
counterparts.

The first step in this process is to discretize (KdV)4 in a natural way. To his end,
fix h > 0 and let us first consider the associated linear equation (H). Let w(n,m)
be a discrete function defined on Z x Z. The obvious replacement for d3u(z,t) is
33 jw(n,m) (see Definition 1.6). However, the replacement of d,u is not so clear.
Assuming m > 0, on the one hand, we could replace d,u(z,t) with

w(n,m+ 1) —w(n,m)
B3

and (H) becomes

w(n,m+ 1) —w(n,m)
13

+ 82 yw(n,m) = 0. (6)

Note, for homogeneity purposes we are letting h be the step size in the z-direction,
while A3 is the step size in the t-direction. On the other hand, we could replace

Oyu(z,t) with
w(n,m) — w(n,m — 1)
13




and (H) becomes

w(n,m) —w(n,m—1)
B3

+ 83 jw(n,m) = 0. (7

The scheme in (6) is referred to as an explicit scheme, because, given the values
w(n,m) at height m, one can solve explicitly for the values of w(n,m + 1) at height
m+ 1. The other is called an implicit scheme since the values w(n, m) at height m are
determined implicitly by the values w(n,m —1) at height m — 1. It may seem that the
explicit scheme is the more convenient of the two. However, considering the Fourier
multiplier which corresponds to '€’ we will see that the implicit scheme is the better
choice. Here, the Fourier Transform takes functions defined on Z to functions defined
on [—m/h,n/h] (see Definition 1.2).

Let wp be the initial data. If we discretize explicitly, taking the Fourier Transform

of both sides in the first variable, (6) becomes

o6, m+1) — a6, m) . i sin®(h6)

h3 h3 "Dl(ll) (6,m) =0,

which implies

o8, m +1) = (1 — isin®(hf))a} (8, m)

and hence,

&0(6,m) = (1 - isin®(h9))"a("(6).

Notice the multiplier (1 — isin®(h#))™ has magnitude (1 + sin®(h))™/2, which blows
up for 0 < |f| < m/h as m — oco. Hence, by Plancherel’s Theorem (Proposition 1.3),
the norms of w(-,m) in the discrete space 12(Z) (see Definition 1.1) go to infinity with

m. This is undesirable both mathematically and physically.



Applying the same argument to (7), it follows that

&$"(6)
(1 + isin3(h6))™

@;(8,m) =

(for the proof of this see §1.2). Note that the multiplier (1+isin3(h8))~™ has magni-
tude which is bounded by one for all @ € [—n/h, 7 /h] and hence, the norm of w(-,m)
in 12(Z) will be bounded by |lwol|;z for every m. Therefore, we choose the implicit

scheme in (7) and the resulting multiplier

1
T+ s (h0) ©

The fact that the multiplier is not a pure exponential, like e’ causes difficulties in
the proofs of the discrete case that do not arise in the continuous case. For example,
consider the following estimate proved in [5], which is used in establishing that S is

a contraction mapping.

Lemma 0.1 Let wy € L?(R). Then
18z W (t)woll Loz < Cllwol|Lz,

where

1/2
lolligrz = sup ([ oGz, 0)Pdt) " .
zeR \VR
Proof: Recall, W (t)wy(z) = /R '@EHE) g (£)dE. Tt follows, after the change of vari-
ables £3 = 7, that

8. W (Buo(z) = i [ £ (€)de

1 R Vi .
— §/ ettTelx‘r T 2/3+1/3w0(7'1/3)d7'.
R



Thus, using Plancherel’s Theorem in the t-variable,

eixrl/:’,’_—l/fiwo(,’.l/fi)

2
\dr

1
oWy, = 5 [

¢ [ ldo(€) e,

again using £ = 7'/3, which finishes the proof.

This proof is simplified by the fact that the multiplier e'® has magnitude one for
all £ € R, and the fact that after the substitution 7 = £3, the term €**" is just what is
needed to regard the integral as a Fourier transform in the ¢-variable. The multiplier
(1 + isin3(h8))~™ is not exactly of this form, so when we proceed as in the proof of
Lemma 0.1 we encounter an “error” term after the change of variables. The proof

will be reduced to the following inequality (see Proposition 2.9):

>

meZ

“<ef lopar ©)

7" .
/ e™"™ cos!™lr g(1)dr
-7

where the cos/™! 7 is the anticipated extra term. If the proof was completely analogous
to the proof of Lemma 0.1, we would not have this term and (9) would become
a statement of Plancherel’s Theorem involving Fourier series. Instead, the proof
requires some additional techniques including a combinatorial identity (see the proof
of Claim 2.11 following Proposition 2.9) pointed out to us by Bruce Sagan.

Next, consider m < 0. The implicit scheme in this case is

w(n,m+1) —w(n,m)
h3

+ 83 yw(n,m) = 0. (10)
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After applying the argument in §1.2, (10) becomes

~(1)
o _ @ (0)
@n(6,m) (1 — isin3(h@))Im!

and the resulting multiplier is
1
1= isi®(b) (1D

Notice that because of our need to control the size of the multiplier, we now have two
multipliers, (8) for m > 0 and (11) for m < 0.

Recall that the Fourier multiplier in the continuous case associated with W (t) is
€€, Since

ei(t+s)£3 — euz" eis§3
the family of operators {W(t)}icr forms a group under composition, i.e.,
W(t+ s)wo = W(t)W(s)wo for all s,t € R.

This plays an important role in the proof of the key estimate

, Scllgllzycs (12)
LeL?

x

& [t )gl,¢) @)t

needed in [5]. If

oy (70)n(9)
(Hr(m)mo)"(8) = (1 + sgn(m)isin3(h6))Im!’

then it follows for m;, m, € Z that

Hy(mq + ma)no # Hp(my) Hp(ma)no

if m; -my < 0. This forces the corresponding proof in the discrete setting (see Lemma

1.17(ii)) to proceed along different lines than the proof of (12) in [5]. This necessitates
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the technically difficult proof of Proposition 2.19 in addition to the relatively simple
proof of Proposition 2.17 (see Remark 2.20).

Despite the additional difficulties resulting from the multiplier in the discrete
formulation, we are still able to obtain the full analog of the results in [5]. We now
turn to the formal statement of the problem and our results. Since the nonlinear term

1
of (KdV), can be written as ga,(uf'), we discretize (KdV), as follows:

7’("” m) - 7)(", m— 1)

+ aﬁ,h’?(n, m) + %6n,h(775)(n, m)=0 m>0

h3
(KdV)${ n(n,0) = no(n) m =
i m + D=0 | 53w, m) + $0uatr?)(mm) =0 m <0,

where 7) is the discrete initial data. If

Hp(m)mo(n)

is the analog of (4) and solves the discrete version of (H) and

1
gAhan,h(ns) (n,m)

is the analog of (5) (see Definitions 1.12 and 1.14), then the analog of the operator S
in (3) is
1
®gon(n,m) = Hy(m)mo(n) — = Andn(n°) (n, m).

It will follow (see §1.4) that 7 solves (KdV )4 if and only if

n= <I)'1077-

Analogous to the space Z, from [5], we will define a discrete space X}, (see Definition

1.16). The primary conclusion of this thesis is the following:
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Main Result: Suppose the initial data 1y is small, i.e.,

nezZ

1/2
|I7ollez = (h > |n0(n)|2) < do

for some &g > 0. Then there ezists r > 0 such that the operator ®,, is a contraction
mapping in

B, ={ne Xu:|Inllx, <t}

with &y and r independent of h > 0. Consequently, by the Contraction Mapping Prin-
ciple, there ezists a unique solution n € B, of (KdV)3. Moreover, n € I1®°(I3(Z); Z)

and the map

o >N

is continuous from 12(Z) to X,. Hence, (KdV)4 is well-posed in Xj,.

This result lends itself to a numerical procedure for computing the solution to
(KdV)$. To do this, we first numerically implement the operator ®,,. This will be
done by using the coefficients Q[n, m] which have been precomputed and stored (see
§3.2). Then, by picking the initial guess to be the zero function on Z x Z, we run
the fixed point iteration. If the initial data is small enough, then the main result
guarantees that the iterates <I>$,';)(0) converge to the solution of (KdV)3 as n — oo.
Also, because the contraction mapping constant is less than one, the convergence is
exponential. The fact that the operator ®,, and the iteration scheme are easy to
implement is the motivation for this thesis.

This approach differs from the standard approach in several ways. The standard

approach is to solve the difference equations iteratively going up one level at a time,
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while we work on the entire space Z x Z for each iteration. A disadvantage of our
approach is the amount of computer storage required. Each global iteration has to
be stored in order to define the next iteration, whereas when solving the difference
equations level by level, one can discard the data at each level. However, the advan-
tages of our method include the rapid computation of the entire solution on the entire
grid, and the fact that we avoid problems with ill-conditioning and accumulation of
round-off error. In addition, our approach guarantees certain size estimates on the
iterations, namely the three norms of the space X} (see Definition 1.16) including a
bound on the /2 norms of each level. Finally, note that our result holds for all A > 0
not just, for example, small h. This distinguishes our approach from another possible
approach in which one tries to compare ®,,, for small h, with S, which is known to
be contraction map in the continuous setting. Thus what we have obtained is a true
difference equation result.

In Chapter 1, we state several definitions which are used throughout this the-
sis. After this, we show that our choice of discretization yields a nonlinear discrete
operator whose fixed point solves (KdV)4. Then, we state the crucial estimates and
define the discrete Banach space X} in which we find our solution. Finally, with these
estimates, we establish that we have a contraction mapping, which quickly leads to a
solution of (KdV)§. This part of the proof follows the same general outline as in [5].
Chapter 2 contains the proofs of the main estimates. It is here that techniques dif-
ferent from those in [5] are required to overcome the difficulties noted above related
to the the multipliers in the discrete setting. Finally, results of various numerical
experiments are presented in Chapter 3. An explanation of the numerical algorithm

is included there as well.



CHAPTER 1

The Main Result

1.1 Preliminaries

Let h > 0. In the following definitions, let 0 and o denote functions defined on Z and

w denote a function defined on Z x Z.

Definition 1.1 o € I2(Z) if

llollz = (b Y lo(n)[*)'/? < oo.

neZ

If h represents the step size and o(n) = f(nh) for, say, f € C(R) NL?(R), then ||0||12',|

represents a Riemann sum of |f|?. Hence, llolliz ~ || f]|L2 for small .

Definition 1.2 For 8 € [-7/h,n/h], let

on(0) = h Y o(k)e*h.

kez

14
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Note that by Fourier inversion,

n/h .
o(n) = L/ o1 (8)e~h4g.

2T -n/h

Proposition 1.3 If o € I3(Z), then

1 1/2
lellg = (55 /" on(@)Fap) -

Proof:
1 n/h 1 n/
— Gr(0)?d0 = — RS o(k)e*h® §)eiihe
21r/-1r/h|h( ) 27!'/1r/h.( ,%; (k) JEZZ
— /” 2 Z Z O'(k 1(k—_1)h0d0
T/h kezZjez
1 /b
= — h? k)|2do
37 |t 1ok
= hY |o(k)
kez
= llolf%.

Definition 1.4 For o and g € I2(Z), let

(@*o)(n)=h}_ o

kez

be the convolution of o and p.

Remark 1.5 One can see as in the standard case with h = 1 that

nezZ keZ

(cxon (@) =h> (h > a(k)o( ) e'nh?
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= h Z a(k)eikhﬂh Z g(n _ k)ei(n—k)ho
keZ nez

= dn(0)on(0)

for € [-7/h,7/h).

Definition 1.6 Let
o(n+1)—-o(n- 1)

Ono(n) = 2h

For k € N, define 8%a(n) inductively, i.e.,

o(n+3)—-30(n+1)+30(n—-1) —o(n - 3).

For example, 0;0(n) =

8h3
Proposition 1.7 Let o € [2(Z). Then
. —isin(h0) .
(6),0’)],(0) = —%O’h(g)

Proof: By definition,

(Bh0)i8) = hY. Bna(k)ekh?
kez

kGZ h’

= 2 (k+1) 'kho—%z:a(k—le

kEZ kez

) ikho .
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By setting 7 = k + 1 in the first sum and setting j = k — 1 in the second sum, we

have

@) = 5T ol)e (e )
sinslhﬁ) &n(6).

= —i

By induction on k, it follows that

Definition 1.8 For o € I3(Z), f € C, let

n/h B

DPo(n) = 51; /'_ sin(hé)

| on(O)e= ™ dp.

n/h

Remark 1.9 Due to the homogeneity of the associated linear equation, if A is the
step size in the z-direction, then h3 will be the step size in the t-direction. This

motivates the following definition.

Definition 1.10 For 1 < p,q < oo, w € IBl¥ ,(Z x Z) if

nez meZ

pla\ /P
Hw“,g,gn'h = (h Z <h3z |w(n, m)lq) ) < 00.

If p = oo, then

1/q
Hw”zgotfnh = sup (h“Z |w(n, m)|q)
! nez

meZ
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and if ¢ = oo, then

1/p
lwllizee, = (h > sup |w(n, m)|p) -

Definition 1.11 Let

wn+1,m)—w(n-1,m)

On pw(n, m) = oh

and define B,f,,,w(n, m) inductively as above.

1.2 Discretization of (KdV),

Recall our discretization of (KdV)y,

n(n,m) - n(n,m — 1)

+ 8 un(n,m) + 20 () (nm) =0 m >0

h3
(KdV)4 n(n,0) = no(n) m =0
n(n,m + lh)s_ n(n,m) + 83 yn(n,m) + -;—3,.,;:(775)(", m)=0 m <O0.

We discretize the linear equation implicitly as well,

w(n,m) —w(n,m—1)

+ 83 w(n,m)=0 m>0

h3
w(n,0) = wy(n) m=0 (1.1)
w(n,m + 1h)3— w(n, m) + 83 w(n,m)=0 m<O0.

Assume m > 0 and let w(-,m) € I2(Z) for all m € Z be a solution to (1.1). By
taking " of both sides of (1.1) in the first variable, we have
o(0,m) —V(@,m—1) isin®(ho)

B3 T

o6, m) =0,
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with
“(l) (0,m) = E w(n, m)e™h?.
nez
This implies
(1)
20, @y’ (8,m —1)
(6,m) = 1+ isin®(hg)’
and hence,
~(1) 9 — (@o)n(6)
@p(6,m) (1+ isin3(hO))™"

If m < 0, reasoning as above, it follows that

(@o)n(6)
& (6,m) = 1- z:?ng(ho))lml'

This leads to the following definition.

Definition 1.12 For m,n € Z and wy € 12(Z), let

UL e m™(00)(0)
Hp(m)wo(n) = -2_7F/-‘-1r/h (1 + sgn(m)i Sin3(h0))I'n|d0'

Remark 1.13 Note,

(@o)n(0)
(1 + sgn(m)isin3(h@))iml’

(Hn(m)wo) (6) =

Hence, by Plancherel’s Theorem, Hy(m) : 12(Z) — [2(Z) is bounded with operator
norm less than or equal to 1. Also, H,(0) = I where I is the identity operator on

I2(Z). Moreover, by the argument above and Fourier inversion, if

w(n, m) = Hy(m)wo(n),

then w is the unique solution to (1.1) for w(-,m) € 2(Z) for all m € Z.
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1.3 A Discretized Version of Duhamel’s Principle

Proceeding along the same path as [5], we now consider a discretized version of the

inhomogeneous linear equation.

Definition 1.14 For w such that w(-,m) € 12(Z) for allm € Z, let

' h3§:Hh(m +1—jw(-,5)(n) m > 0
j=1

Apw(n,m) =< 0 m=0
—h? i Hy(m —1-j)w(-,j)(n) m<O0.

\

Proposition 1.15 Let n be such that n(-,m) € 12(Z) for allm € Z. Let w(n,m) =

Apn(n,m). Then w solves

w(n,m) —w(n,m— 1)

+ 85 yw(n,m) = n(n,m) m>0

h3
w(n,0)=0 m=0

wn7m+1 —w\n,m
( h)a () + 85 pw(n,m) = n(n,m) m<O0.

Moreover, w is unique for w(-,m) € 12(Z) for all m € Z.

Proof: The case m = 0 is trivial by definition of Ay7. Assume m > 0. Then

(“’"’"’) —ubmo ai,,.w(-,m))“(a)

Jj=1 J=1

+hsg 3 Ha(m+1 -j)n<-,j>> (6)

_ ¥ 1 ~(1) (S (1) .
- Jz=:1 1+ z'Sins(ho))m“_jn g 1+ isin (hO))"“J i (9,7)
1

(0,
1+zsm3(h0))’"+1‘1 (6,4)

+isin®(h8) Z
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_ v 1 )/ -
- E +zsm ho))m_H_jnh (03.7)
—(1 + 4sin’( hO)mZ-1 1 ~(1)(9 >
“ (1 +1isin®(hg))m+1- =5 %]
 sin® S 1 A(1) .
+isin (he)jgl (1+isin3(h0))m+1-in" (6, 7)
A1) m-1
— T’h. (07m) i3 1 A(l)
- 1+ZSID3(h0) Lsin ho) ; (1+zsm3(h9))"‘“’1 ( ,])
S 1 (1) p -
0
+’LSID h0 ; 1+£Sln3(h0))m+l ]Uh ( a])
_ 1+isin®(h6) .
= Txisni(mg)™ O™
= 718, m).
Thus, .
w(-,m) —w(-,m-1 )
( ) hs( )+aﬁ,hw(-,m)) (6) = i, (6,m),

with ﬁ,(,l)(O,m) =h>_ nk, m)e**®. The proposition follows after integrating both
. k€Z
sides against €. The proof for m < 0 is very similar.

1.4 The Operator ¢,

Our goal is the following: given 7 € 12(Z), find 7 such that n(-,m) € 12(Z) for all

m € Z and
n(n,m) = Hy(m)no(n) — §An8nn(n°)(n, m)

n(n,0) = no(n)

(1.2)

for m,n € Z. Combining Remark 1.13 and Proposition 1.15, such an 7 solves (KdV')3.

To find an 7 solving (1.2), we will prove that the operator

By, ) = Ha(m) () — 5 s (1), )
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is a contraction mapping on a ball centered at the origin in a particular Banach space.

1.5 The Space X,

We now define the discrete Banach space upon which we will show ®,, is a contraction.

Definition 1.16 Let
Xn = {w(n,m) € I°(5(Z); Z) : [|wlligsre, < 00, [|Onpwlligosz , < 00},

with

[lwllx, = max{sup [lw( m)llg; llwlkgne,; [10nnwlliz, , }-
m : .

Obviously, X}, is a Banach space with the above norm. Using the estimates below,
we can find the solution to (1.2) in this Banach space X}. This will be done by proving
that ®,, is a contraction map from a small ball around the origin in the space X to

itself. The estimates needed are the following:

Lemma 1.17 For h > 0,

2) |18npHa(m)mollierz, , < cllmolliz

n'mh T

and

1) Haz,h/\hw||l;,-°13nlh < cllwllpe,,,

with ¢ independent of h > 0.
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Lemma 1.18 For h > 0,

i) ||Ha(m)molligizo, < cllmolliz

n'm,h

and

i) |[Apwlligie, < C||w||,g/4,,1'g'/h9,

with ¢ independent of h > 0.

Before proceeding, we need the following proposition.

Proposition 1.19 Ifw € X4, then 8, 4(w®) € 14107, with

1004w gra0r9 < 5[]l

Proof: By definition,

5 + 1, - Wb - 1)
) = L)~ nz L)
_ w(n+1,m) 2—hw(n —-1,m) (w4(n +1,m) +w?(n+ 1,m)w(n —1,m)

+w?(n+1,m)w*(n — 1,m) + w(n + 1,m)w?(n — 1,m) + w(n — l,m))

= Oppw(n,m) (w“(n +1,m) + w?(n+1,m)w(n — 1,m)

+w?(n+1,m)w?*(n - 1,m) + w(n+ 1,m)w*(n — 1,m) + wi(n - l,m)) .

Set v(n,m) = w(n + 1,m) and u(n,m) = w(n — 1,m). It follows that
4

18 p(@)lsrapore < D [1(Bapw)v* 17l 14070
m,h j=0 " "m,h

4 9/8 4/5
5 (v (5 ) )

3=0 nez me Z
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5/8 1/2\ 4/5
4 (hz (ha Z |an,hw|2) (h3 Z |V4_jﬂj|5/2) )

<
7 nez meZ meZ
12 1/2\ 4/5
< sup (h‘* Yo 10aswl?] YA (R Y AP
nezZ mezZ i=0 \ nez mezZ
4
S HwHXh Z A11
Jj=0

with

nez meZ

1/2 4/5
Aj — (h Z (h3 z ll/4_jﬂj|5/2) ) )

Note that the second inequality above follows from an application of Holder’s Inequal-

9
ity on the sum in m with p = g and ¢ = 7

Claim 1.20 Forv,u € X, and 0 < j <4,

i
A; < Il e, -

Proof:(of Claim 1.20) Fix j. Set p = 2 4

4
and ¢ = 7 (p or ¢ = oo when dividing by

zero). Then using Holder’s Inequality on each sum, it follows that

= 0
4 < (ns (s e (mzw)
nez meZ meZ

a—j

) (hﬂ;z(hs;ez.u.m)‘”)‘“‘(h%zz(ha;aw)‘”)*

4—i .
”UHX;,J”I'I’”JX',

IA

/11
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Since ||v||x, = ||ullx, = llwl|x,, it follows that A; < ||w||%,. Therefore,
||3n,h(w5)l|,g/4,33/ho < 5llwllk,

which concludes the proof of Proposition 1.19.

1.6 Contraction Mapping Theorem

In this section, assuming Lemmas 1.17 and 1.18, we prove ®,, is a contraction map-

ping on a ball centered about the origin in the Banach Space Xj,.

Theorem 1.21 There ezists 6o > 0 and r > 0 such that, if B, = {w € X} :

wllx, <7} and linolliz < o, then
i) ®,, : B, = B, continuously and

1) || @ (¥) = Byo(W)l|x, < Allv — pil|x,, for some A <1 and v, p € By,

with A, &g, and r independent of h > 0.

Proof(i): Recall, the operator ®,, has two terms, Hy(m)no(n) and A8, 4(n°)(n, m).
In order to establish the existence of an r > 0 such that ®,, : B, — B,, we need six
estimates, three involving each term.

First, we focus on Hy(m)noe(n). Since the multiplier associated with the operator

Hp(m) is bounded by one, we have

sup [ Ha(m)molliz < [|molliz < do. (1.3)
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By Lemma 1.17(i),

|18n n Hi(m) o101z, < cllmolliz < edo (1.4)
and by Lemma 1.18(i),
|| Hn(m)mollizio, < ellmolliz < cbo, (1.5)

with ¢ independent of h > 0. Combining (1.3), (1.4), and (1.5), we can conclude
Hy(m)no € X), and

”Hh(m)nOHXh S 050’ (16)

with ¢ independent of A > 0.
Next, consider the nonlinear term Ax8, 4(7°)(n,m). Fix m > 0. For a sequence
7o, let

Smo(n, ) = Hp(j — m — 1) a0 (n) X1<j<m-

Again, by Lemma 1.17(i),

||Sr‘n"70”l$’,°lf,h < C“UOH:g,

with ¢ independent of m > 0. By duality, S, : [112,(Z x Z) — I{(Z) is bounded with

bounds independent of m > 0 where

S,,,w(n) = h3iHh(m+1_j)an,hw('aj)(n)

ij=1
= ApOppw(n,m).

Therefore,

|| AnBnpw (-, m)||1§ < CHWHQJ}‘,‘, (1.7)
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with ¢ independent of m > 0 and A > 0. Letting w = n° in (1.7) and taking the

supremum over m > 0, it follows that

sup ||Andun(®) (s m)llz < cln®lle,
m>0 7
= cllnlligne
< clnllk,-

The same proof can be used for m < 0 (by definition, Ay8, »(7°)(n,0) = 0). Hence,
sup | AR p (%) (- )iz < cllmll%, - (1.8)
Next, by Lemma 1.17(ii),

0nsAnBan()lie, = 1824 An () lliets ,

IN

ellnllye,,
= clinlfu,

clinllx,- (1.9)

IN

Finally, by Lemma 1.18(ii) and Proposition 1.19,

IN

18880 (1) ligio, < clldan(m®)lgrspors

< 5c||n||§(h. (1.10)

Thus, if n € X4, combining (1.8), (1.9), and (1.10), it follows Apd, x(1n°) € X} as well.

Furthermore,

1AROn 1 (n°)lx, < cllnll, (1.11)
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with c independent of A > 0. To conclude the proof of (i), if n € X, with ||n||x, <,

then by (1.6) and (1.11) there exists ¢; and ¢, such that

[|®ronllx, < €160 + cor>.

If 6o and r are chosen small enough, then

|| ®@nonllx, < €100 + cr® <1

which implies

®,, : B, = B,.

Proof(ii): Let v and p be in B, C Xj. To prove ®,, is a contraction mapping on

B, for some r > 0, we need three estimates, one for each norm in the definition of

|- |lx,- First,
1
sup || ®pov (-, m) — Qpopu(-, M)z = 5 Sup A8 a(v® = p°)(-,m)] |2
m>0 m>0
1 o ) .
= zsup [|h*Y Ha(m +1 - )0n(v* = #) (- 5)llg
m>0 j=1
<l = wllya .

where the last inequality follows from (1.7) with w replaced with v® — u®. As before,

this can be proven for m < 0 as well. Thus,

up ||@gv(+, m) = Brops(ym)lg < el (v — W)W+ Pu+ v +op + e
m

1/2
= ch). <h3 S |(V -+ P+ 2 v + u4)|2)

nez meZ
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1/10 a/s
< ch}, (h3 > Iv- ﬂllo) ’ (h3 > |+t v ot + u4|5/2)

nez meZ meZ

1/2 1/5
c|hd h32|u—,u|1°)
nez meZ

1/2 4/5
. (h > (h3 > Iu“ + 3+ v+ v + u4|5/2) )

IN

nezZ meZ
< C”I/ - N”X;.(AO + A +A+ A3+ A4),

with

1/2\ 4/5
g

nezZ meZ

for 0 < j < 4. By Claim 1.20, A4, < 4. Therefore,
sup || Brov (M) = Brops(,m)lly < crtllv — pllx,- (1.12)
Note,
Onn(af)(n,m) = O, pa(n,m)B(n + 1,m) + a(n — 1,m)0, 4 B(n, m).
Thus,

1
|| @ — q’ml‘“zgt},ﬂh = gHAhan,h(V5 - #5)||1gt},?l,.

< cllBnnlv® — 1) llgragos
n “m,h

nez meZ

9/8\ 4/5
c (h« 2 (h3 Z ian,h [(l/ - p)(y“ + 1/3/1. + V2,Lt2 + Vﬂa 4 N4)] |10/9) )

nez meZ

< c (h > (h3 > 18nn(v — 1) (n,m)

4, .3 2 2 3 4 10/9 9/8) /°
(W +rip+ vt +vp +u)(n+1,m)| )
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nez meZ

+c (hz (h3 > (v = p)(n—1,m)

4, .3 2 2 3 4 10/9Y9/8 ¥/°
Bun(V + v+ VP + v 4 ), )|

= I+1I,

where the first inequality follows from Lemma 1.18(ii). By applying Hélder’s inequal-

9 9
ity to the sum on m with p = 5 and q = T it follows that

5/8
I<c (h 3 (h3 2 |8y — p)(n, m)lz)

nezZ meZ
172\ 4/5
5/2
.| A3 Z |(1/4 + 3+ 02+ Vll3 + #4)(" + l,m)l ! )
meZ
1/2
< csup (h3 Z |Onp(v — p)(m, m)l2)
neZ mez
4/5

nez meZ

1/2
. (h > (h3 > |(l/4 + 3+ V2 + v + p*)(n, m)|5/2) )

IN

C”l/ — “”Xp.(AO + A +A+ A3+ A4)

< erfllv = plix,, (1.13)

with the last inequality following from Claim 1.20. Next, we consider /1. By applying
Holder’s Inequality to both the sum in m with p =9 and ¢ = g and to the the sum

inn withp=4and q= %, we have

e (hz (o .,,_mm)"“’)

nez meZ

nez mezZ

4/3\ 3/5
| (h % (h3 2 ‘a"”‘(”4 + A+ 2+ + #4)|5/4) )
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4 4/3 3/5
< v =ullx X2 hZ(h"‘ZIB 15/4) )

j=0 \ nez mezZ
3/5

) 5/4 e
< v -pllx Y (hz(h32|anh 4-j nm)u(n+1m)|/) )

j=0 nez mez

nez meZ

AN Ve
+ (hz (h3 > Iy“‘j(n —1,m)8, n(17)(n, m)l / ) ) : (1.14)

Claim 1.22 Let v and pu be in X,. Then for an integer j such that 0 < j < 4,

4/3\ 3/5
(hE(hszl“’anh i ) ) < Ikl

nez meZ

Proof: Fix j such that 1 < j < 4 (the case j = 0 s trivial). Using Holder’s Inequality

. . 8
on the sum in m with p, = -and q; = m then using Holder’s Inequality again

on the sum in n with p, = 1 - and ¢; = (p,, g;i = oo for i = 1,2 when dividing

by zero), it follows that

3/5
|5/4) 4/3\

)

4_;‘,-_ 1_%_4_ 3/5
< [RY (h“ > IV|‘°) : (h3 > 18 n ()5
nezZ mezZ mez

nez mez

(h ) (h3 > |78 nln

172\ i 5
_L -
< hz(h3\2|u|l°) RS h32|a,.h +
nez meZ nezZ meZ
< |wll%?
e\
2j-2

j-1 7+
hY (h“ )3 (Z Ot )7+ 1, m) | 1,m)|) )

nez meZ \k=0
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< il
-1 #4\F
J- g )~
| BB X 18nnss(n, m) 75 a4+ 1,m)| 5 (i — 1,m)
k=0\ ne€z\ mez
= HI/HXJZBJk’
with
o -
Bix=|h 'S (B 3 [Bnnssln, m) | s(n + 1,m)] 55 |u(n — 1,m)[$% :
nez meZ
. . N . . 4
Fix k. Again, apply Holder’s Inequality to the sum on m with p, = and
4 . 1
0 =;i—1 andtothesumonnwithpg=jil_k andq2='7T. This gives
j;l
2 21%2 10(j—1-k 10k 12 :
Bix < |RY_|AY |0nnul” | Ry |u(n+1,m)|” 7T |u(n —1,m)|-1
nez meZ mezZ
L;_l

neZ

1/2 o 1/2
< Sup<h32|6nnul2) (hz (hSZIu(nH,m)Il =T |p(n - 1, m)|’0k) )

mezZ nez mezZ
i—1—k k J;—I
2(-1 G-
< lwllx, (hE (h3 > lp(n+ l,m)l“’) (h“ > lu(n Im) )
nez meZ meZ
1/2\ T 12\ &
< lellxa (hZ (h3 ) lul“’) ) (hZ (h3 > Iul"’) )
nez meZ nez \ meZ
< lell,
Therefore,

5/4 . -3 j
(m;(mg 300 (4)| ) ) < I il

nezZ meZ
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which concludes Claim 1.22.

/1]

Notice the second term of (1.14) can be bounded as above by switching the roles
of v and p. Hence,

II< C7'4||V - /J”Xh‘

Combining this with (1.13), it follows that

|1 @sov — Bmopellige, < ertllv — pllx,- (1.15)

n'm,h

Finally,

1
||6,.,;,(<I>,,0V - q)no/‘)Hl?flfn'h = 5”33,1;/\'!(”5 - M5)||1;,-°13,",,

< o - llga,

1/2

2

= ch) (R l(l/ — )+ P+ o + u4)| )
ncz meZ

IA

nezZ meZ meZ

e[S (1T v —
nez meZ

1/2 4/5
. (h > (h3 > |1/4 + 2+ 02+ v + u4|5/2) )

\1/10 2/5
ch ) (h3 S lv- u|1°/ . (h3 > |1/4 + 3+ 02 o + u4|5/2)

IN

nez meZ

INA

c|lv — pl|x, (Ao + Ay + Az + A3 + Ay)

IA

crillv — pllx,., (1.16)

where the first inequality follows from Lemma 1.17(ii) and the last follows from Claim

1.20. Finally, (1.12),(1.15), and (1.16) imply that for v and u € B,

”(I)noV - q’ﬂol‘l’”xh < C’IAHV - /J'”Xh'
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By picking r small enough, i.e., cr* = A < 1, it follows that ®,, is a contraction map

on B,, which concludes the proof of Theorem 1.21(ii).

1.7 Well-Posedness of (KdV)¢ in X,

If the initial data is small, the Contraction Mapping Principle guarantees the existence
of a unique 7 € B, C X}, such that n = ®,,n. By definition of ®,,, n solves (1.2).
Also, by definition of the space X3, n € I*°(12(Z) ; Z). Moreover, we have the following

theorem.

Theorem 1.23 Let &y andr be as in Theorem 1.21. Let ng € I3(Z) such that ||no||z <
8o and let n € B, be the unique solution of (KdV)?4 guaranteed by Theorem 1.21. Then

the map

Mo — 1

is continuous from B(0;do) to B, with B(0;60) = {0 : ||o]|iz < o}

Proof: Fix h > 0. Let wy, mo € B(0; ). Then the unique solutions to (KdV)$ in B,

with initial data wp and 7 are w and 7, respectively, which satisfy
1 5
w(n,m) = Hywo(n) — gAhah(w )(n, m)

and

n(n,m) = Hyo(n) = £ A0 (), m).

Thus,

(o, ) = 10, m) = H(m) (o — ) (n) — £ ArBa(e = 7°) (m,m),
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which implies

llw=nllx, < |[Ha(m)(wo = mo)llx, + cllAndn(w® = 7°)|x,-

= I+11I.
It follows from the proof of Theorem 1.21 that
I < cllwo — molls2,

and

IT < erfllw = nllx, < Allw = nllx,,

with A < 1 (by the choice of r). Hence,

llw = nllx, < cllwo = molliz + Allw — nl|x,

which implies

c
|lw = 7llx, < 1_—/\”‘00 — olliz2-

This concludes the proof of Theorem 1.23.

Remark 1.24 By definition of X}, the map 7y — 7 is continuous from B(0;d) to
1°(1%(2) ; Z).



CHAPTER 2

The Estimates

In this chapter, we will prove the estimates stated in the previous chapter, namely

Lemmas 1.17 and 1.18.

2.1 A Discrete Version of Fractional Integration
Before proceeding, we need the following lemma.
Lemma 2.1 Let k be a sequence such that

C
k < —F.
| (Tl)l - ln|1/2+ 1

Let
T(b) = b % k

for a sequence b. Then

T : IP(Z) — 19(Z)

DO -

1
isboundedifl<p<q<ooand5=

=

36
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Proof: Fix A > 0. Let u > 0 which is yet to be determined. Set k; = k - x{o<nj<u}»
ka = k - X{n|>u}> and let b € IP(Z) with ||b||;» = 1. Then b* k = b * k; + b * k3, both

of which are well defined. This leads to

#{n:|(bxk)(n)] >22} < #{n:|(b*k)(n)] > A} +#{n:|(b*k)(n)] > A}

= Iy+11,. (2.1)
Now,
b* kil _ [Kallf _ ew?’?
I, < X < Y < IR (2.2)
Let p = pf ] be the conjugate exponent of p. Then
116 * kallice < |[Rallr < 179,
since p < 2 hence, p' > 2. Pick p such that ¢;u~1/9 = ), i.e., p = c;A79. Thus,
#{n:|(bxkz)(n) > A} =0, (2.3)

which implies IT, = 0. Therefore, combining (2.1), (2.2), and (2.3), it follows that

' ew? ¢ ¢
#{n:|(bxk)(n)| > 2} < v + iRy
. .. 1 1 1
Hence, T is weak-type (p,q) for 1 < p < ¢ < oo with E: 5 —3 By the
Marcinkiewicz Interpolation Theorem, T is strong-type (p,q) for 1 < p < 2 and ¢
such that 1 =-— 1
g p 2
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2.2 A Lemma Involving Fractional Differentiation

We now proceed with proving the main estimates. To this end, we make use of the
operators D? and complex interpolation. The following lemma provides half of the

necessary results.

Lemma 2.2 Fory € R,

. —1/4+1
i) 1105 Hy (m)mo i, < cllmolliz

n'mh —

and

i) || Dy Al

n"m,h

< C‘r'lwlll;“/"[,lmh’
with C, = ¢(|y| + 1) where c is independent of v and h > 0.

Remark 2.3 Before proving (i), we check to see if the homogeneity is correct. As-

sume (i) is true for h = 1. Then

1/4
1D /4 Hy (m)molligiee, = (h Y (sup IDE1/4+”Hh(m)no(n)I)4)

e a 1/4
n
= |h) |sup— l/

p1/2 1 | o 1o —1/4+i7(hz:kezﬂo(k)eikha)e_i"”"da 4\ 1/4
B E:z(ilé‘éﬁu_x/h'sm( ) (1 + sgn(m)isin’ (h6))I™ )

—1/4+41y (ﬁo)h(e)e_i"ha
(1 + sgn(m)i sin®(hG))m!

sin(h0)

H do

S —in| 4\ /4
T ein gl=1/4+iv (70)1(0)e b
/—1r |sin 6| (1 + sgn(m)i sin3 §)Im| d

= h!/2 (Z (sup 2i

nez meZ i

< ch?(Y Imo(n)?)?
nezZ

= c(h Y Im(n)?)"/2.

nez
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Proof(i): By Remark 2.3, the case h = 1 implies all other cases with A > 0. Hence,

we can assume h = 1 and drop the subscript notation. Note that

3 Y D VHYH (m)ny(n)w(n, m)

meZ neZ
L™ ey 7o (6) OIS
— il /] 1/4+1y (1)
mze:z 2m /-n |sin| (1 + sgn(m)isin® 9)""lw (6,m)d0

= Z 2—];r- /;" ﬁo(e) (l sin 0[-—1/4—,’7 (1 (2}(1)(0’ m) ) -

= — sgn(m)i sin® §)Im|

= 2 2 m(n)D-VA="H(-m)w(-,m)(n).

meZneZ

To prove (i), by duality, we need to show that

I S DA H m)w(, )l < cllwll s, (2.4)
meZ

with ¢ independent of . The square of the left hand side of (2.4) equals

z Z Z DY H(m)w(n, m) D-V4+7H(v)w(n, v)

neZmeZ veZz
el & (0, )5V F0)
- Z Z o _/;" |Sln0| (]_ + Sgn(m)isina 0)|m|(1 — Sgn(l/)’t sin3 0)'”' d0

meZveZ
= X 5 o [ aW(,m)|sin6|2T(m, v) (6)5(F, 5)do
meZveZ 2w Jon
= E Z Z w(n,m)D'l/sz’uw(n, v)
meZveZ neZ
= Z Z w(n,m) Z D'1/2Tm‘,,w(n, v), (2.5)
meZneZ veZ

where the operator T,,, is the operator with Fourier multiplier T'(m, v)(0) on the first

variable with

T(m,v)(0) = (14 sgn(m)isin®@)~™!(1 — sgn(v)isin®g)~
1 1
(1% isin®6)? (1 + sin® )"’
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where p > 0 and r > 0 depend on m and v. By (2.5) and duality, we need to show

that
1Y DT o, gt < ellllyy, (2.6)
VvEZ
Now,
ED‘I/QT,,,,,,w(n, V)| = i/ e ™| sin 0| Y/2T (m, v)(8)>V (6, v)do
VvEZ 2
= |3 = / =] sin 6 "1/2T(m, v)(8) 3" w(k, v)e**d6
vez 2m J-n kEZ
< YN / e' k=™ 5in §|~1/2T (m, v) 0)d0| lw(k, v)
kEZ veZ 2n
Claim 2.4
C,

inf 1/2+4y It S
V_" | sin @]~ T(m,v) d0' ST

with C, = ¢(|y| + 1) and c independent of m,v, andn € Z

Remark 2.5 Assume Claim 2.4 for the moment. It follows that

sup|2D1/2Tm,,w(nu|<k2; n|1/2+12|wk1/
€

By Lemma 2.1,

llsup 3= D72 T 0(m, 1)y < ell 3 lw(n, )] a2 = ellwllray
veZ

meZ ycz,
which is (2.6). Hence, we can conclude the proof of Lemma 2.2(i) once we have proven

Claim 2.4.
Proof:(of Claim 2.4) Obviously, the left hand side of the claim is bounded indepen-

dent of v, m,v, and n. Hence, we can assume n # 0. Let A,(0) € C°(R) supported
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in [-7/4,7/4] and A\; = 1 on [—7/8,7/8]. Set A\3(8) = A1(6—7) and Ay = 1—A; — ).
Then

l [ emsino| T (m, u)(0)d0’

<

/4 . .
/;"/4 ™| sin 8|~/ \ ()T (m, u)(O)dO'

™| sin 8| 71/2+7 1, (6)T (m, 1/)(0)d9|

+|/
n/8<|0|<7n/8

57/4 )
inf| . —1/24iy
+ /3"/4 ¢ sin ) /\3(0)T(m,u)(0)d0‘

= Iy, + 1L, +1II,,

First, consider I1,,. Since @l sin 8]~/ < ¢(1 + |7])| sin 6] 3/2, after integrating

by parts, we obtain

d ; . — i
e = o /1r/s<|a|<71r/s @(e‘"")|sm0| (0T (m, V)(o)da|

. d .
—_ inf = : —1/241y
|n| /1r/s<|o|<71r/s ¢ dé (l sinf| A2(9)T (m, U)(o)) dB‘

—_ ind ¥ : —1/2+iy

L inf| . —1/2+4ivy/
+|n| /1r/8<|0|<71r/se |sin| A2(0)T (m, v)(6)do
i né e _]_/24,1‘.7 d
+|”| /1r/4<|t9|<31r/4e |sind)| do’\Z(a)T(m, v)(0)do
C, c c P
_r in6 —3/2d0 c < 4. ol a0
& /"/8<|9'<7"/8|5m | 11 ¥ Tl Jesciorcrass | ap T (M) O)) 48,

where C, = ¢(|y| + 1). Thus,

(o

Inl do 2.
n| ‘/7"/8<|0|<71r/8 (2.7)

C
I, < =+
Y "I’ll

i 1
dd \ (1 + isin®)?

: de.

d 1
df \ (1 +sin® )

m n/8<|60|<7n/8
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The second integral in (2.7) is easily bounded independent of r by a bounded variation

argument. For the first integral in (2.7),

i/ -d—<____£___.) do = i/ 3psin? 6| cos 0| &0
Inl Jas<ioi<rnsa |df \ (1 ésin’ 6)7 In| Ja/s<ip1<7x/8 (1 + sin® §)(p+1)/2
< £ 6(”;—1)|Sin50cos0|d0
~  |n| Jx/s<ipi<7n/8 (1+sin60)(p+l)/2
- £ d ( 1 ) i
|n| Jx/8<|61<77/8 | dO (1+sin60)(p—1)/2
c
= T

for p # 1 (with a similar proof for p = 1) which is again bounded independent of p

using a bounded variation argument. Thus,

C C.
II, ., < el < — T —. 2.
e (o) < s 29
Next,
etip arctan(sin® 8)

w/4 . .
I, = | / /4e'""|sino|—1/2+"f,\1(0) do)

(1 + sin® g)r+e/2
' sin 0|—1/2+i‘7 }

w/4 .
_ i(nf+parctan(sin3 ). (0
1/_,,/46 1 )(1+sin60)q

with ¢ = r + p/2. Let @y be a C*™ function such that o = 1 on |#] > 2 and

suppyo C {|6] > 1}. Then

/4 | sin ]~ 1/2+7
"/’p,n(O)__
fna /—m e T+ st gyr 1 O)ol|nlO)df (2.9)
/4 | sin §|~1/2+
Wen@® 1271y (p _
+ ./—"/46 (1 + sin6 0)9 ’\1( )(1 <po(|n|0))d0 ,

with

Vpn(0) = nf £ parctan(sin® ).
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Since sin@ ~ 6 for 8 € [—m/4,7/4], the second integral in (2.9) is easily seen to be

less than . We now focus on the first integral in (2.9). Set

_°
72 + 1
Apn =10 [4,(0)] < Inl/2}

and

By ={0:19,,(6)] < Inl/3}.

Let (1,{2 € C® with (; + (=1, (; =1 on B,, and supp(; C A,,. Note, ¢(; and (;
can be chosen such that ¢; and ¢, change sign only a finite number of times. If p = 0,

then ¢{; = 0 and ¢, = 1. The first integral in (2.9) equals

/1[/4 eiiﬁp'n(a)w
P

._.1|’/4 (1 + sin 0)q

/4 . | sin 0'—1/2+i7
Won(@) 1271
/“"/4 ° (1 + sin® §)9 A1(0)po(|n|0)¢1(0)do

Alwxoo(tnlo)de]

<

+

/4 | sin §|~1/2+iv
iwpn(@) SO 4
/—f/4e (1 +sin®@)e 1(0)#o(|n|6)¢2(6)d8

— 1 2
= I +13.

Note, ¥,,(8) = n + (parctan(sin® )" with (parctan(sin®6))" ~ p§? and v, ,(6) =
(parctan(sin3 )" ~ pf for € [—n/4,7/4], both of which can be easily verified.
In|

Since |¢'| < 5 on the set A, ,, it follows p#? ~ |n| on supp(;. Hence,

|0]~ﬂ
N

for 0 € supp(;. Since zj);,"n(e) ~ pB, there exists ¢ > 0 such that

¥ ()] > ¢y/Inlp (2.10)
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supp(i C {0 : cl\/l—Z—l <10] < Cz\/%}. (2.11)

Before proceeding, we need the following lemma [10, pg. 342].

on

Lemma(van der Corput) Suppose ¢ is C® and compactly supported. Let

1 be a real-valued function so that, for some k € N, k > 2,
|D*yp| > Cr > 0
throughout the support of ¢. Then

—00

) /°° V@ g(z)dz| < W (@]l + || D|]11).

Applying van der Corput’s Lemma to I,(f)y with k = 2 and appealing to (2.10) and
(2.11), it follows that

Cc ’
18 < farigin (”F”Loo(supp(,) + Lo I (0)|d0) , (2.12)
with
F(8) = LSO 000 (116G (6)
(1 +sin® 9)e '
Note that
pl/A
|F(6)] < CW (2.13)
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on supp(;. Furthermore,

|F'(0)] < C,|sin6]~*/?

A1(0)po(|nl0)¢1(8) -1/
(1 + sin® 6)9 '+ | sin §|~1/2

1/4

(Alw)soo(mw)cl(o))"
(1 + sin® §)¢

INA

C, |07 + ¢

|n|1/4 (1 + sin® §)9

(Al(o)soo(|n|o)cl(0))’|

for 6 € supp(;. Therefore,

: 14 M (0)po(In18)¢1(8)\
< ~3/249 p 1 0 1
/suppcl IF'(6)ld6 < / N 6] e /lals«/4 ( s ) |40
p1/4
< C”W (2.14)

again using a bounded variation argument. Finally, combining (2.12),(2.13), and

(2.14), we have

N < __C_L__
"= a1

Next, we need to show
@<« G

— 2.1
oy S n[72 41’ (2.15)

with C, = ¢(]y| + 1) and ¢ independent of p, g, and n. It follows that

/4 1 d sin @|-1/2+i7
2 = |f 5 () R @i

~n/4 1, ,(0) dO (1 + sin® §)9
x/4 —1/2+iy
= /_:/4 "”M“’);é( 1( )I(Sl"flm 55y A1(80)po(|n|0)¢2(6 )do‘
< /_’;//“4 05,0 (0) (Zp:(( ))) | (sl"fli;:z; 1(8)po(|n|6)¢2(6)) do}
0| [7 cvrnr 2L LI O nic0as]

+

/”/4 ei'/’p.n(e)'Slnel V27 [ 31(8)o(|n]6)2(6) o
—n/4 Y, (0) (1 + sin® 8)¢ '
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Recall, ), ,(6) = n % p(arctan(sin®@))" with p(arctan(sin®6)) ~ p6* on [—m/4,/4].
Since prn(0)| > — l | on supp(y, it follows that |7,b;,,n(0)| > cpb? on supp(,. This and

the fact that lzpp,n( )| < ¢p|f| implies

c plol, C _
19 < 24 + =X 0|~%2dg
m = ] Jyimi<iol p0"’|| Inl /1/|n|sw|||
¢ [ | (A(8)po(Inl8)Ga(8))
M /_,/4 ( Atsinoe)y ) |
C,
S |n|1/2'

Since |I{?)| < c, this finishes the proof of (2.15) which implies

c
Iy € — 21—
T2 (a2 ¥ 1

The estimate for I11, . can be obtained from the estimate for I, , using a change of
variable, namely 7 = § — 7. These facts and (2.8) conclude the proof of Claim 2.4

and hence concludes the proof of Lemma 2.2(i).

Proof:(ii) We need to show that

1D 2 A |10

n"m,h

< Gy llollsy
with C, = ¢(|y]| + 1). Suppose m > 0. Then, by Claim 2.4,

|D,;1/2+"’A,,w(n m)|

3 —inh@
Z 2T /_w/h

h1/2

~1/2+1y . (1)(0 ])
(1 +sgn(m + 1 — j)isin®(h@))m+1-Jl

; —1/2+iy
3 i(k—n)f |sinf|~!
K S ulk g [ e T+ isnd (@)%

keZ j=1

sin(h@)

b do
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m ' 1 T | Sin0|—1/2+i—y
< hl/2h3 k _/ i(k—n)6 _do
- :‘;El‘d( »9)| 2m -—1re (1+isin3(0))m+1-1
i 1
< Cyh'h w(k, N
O B B

with C, = ¢(]7y| + 1) and independent of m. The same proof works for m < 0.

Therefore,

_ i 1
sup | Dy /" Apw(n, m)| < C,h7/? k,j)|——e— .
ml‘lég| h nw(n,m)| < Cy :gz]'ezzlw( J)||k—n|1/2+1

Hence, by Lemma 2.1,

||D,:l/2+i71\hw”t;‘.l;°:,. = (h Z(Sup ID;1/2+i7Ahw|)4)1/4
' nez meZ

< ChYARTR(R0(X |w(n, m)))*2)**

neZ meZ
= C7||w||l:/3l}n_h

and this concludes the proof of Lemma 2.2(ii).

2.3 Proof of Lemma 1.17

The following lemma implies Lemma 1.17.

Lemma 2.6 For vy € R,

1) ||D,l,+i"Hh(m)n0|],;.‘o,3n_h < cllmolliz

and

.. 24
i6) ||IDy T Awwlligz , < Collwllyee,

with C = ¢(|y| + 1) and c independent of v and h > 0.
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Remark 2.7 To see how this implies Lemma 1.17, first consider Lemma 1.17(ii)
which says

102 Anslign , < Collwllye
The multiplier associated with 92 , is

— sin?(h#)
h?

which is a constant multiple of the multiplier

| sin(h8)|?
)

associated with D2. Hence, Lemma 1.17(ii) reduces to Lemma 2.6(ii) with y = 0.

As for Lemma 1.17(i) which says

||1Onp Hi(m)io|ligor2,, < cllmolliz,

the multiplier associated with 0, j is

—isin(h0)
h

while the multiplier associated with D} is

| sin(h8)|
s

Let M (h@) = —isgn(h) for 6 € [—m/h, 7 /h]. Hence,

—1isin(hf)
h

| sin(h8)]

= M(h)—
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which implies for m € Z

Onp Hr(m)no = D) HyTho,

where T}, is the Fourier multiplier on [—7/h,n/h] associated with M(h6). Since
T : B(Z)— 12(Z) is bounded (with norm less than one for all A > 0), Lemma 2.6(i)

implies Lemma 1.17(i).

Remark 2.8 Before proving Lemma 2.6(i), we again check to see if the homogeneity

is correct. Assume (i) is true for h = 1. Then

1Dy Hy(m)mollieiz

1 w/h —inh6 e (ﬁﬂ)h(e)
% «/;ﬂ/h ¢ df

(1 + sgn(m)isin®(hg))Iml

sin(h6)
h

nez meZ

2) 1/2

= sup (h3 >

) 2 1/2
1 [ : | sin |17
— h1/2 - ind k ik0 0
"o (mzz o IR U e P Ok
< chA(Y Imo(n)|)V? = climolliz.-

nez

Proof(i): As before, assume h = 1 and drop the notation. For m,n € Z,

; 1 [ | sin 8]1+*77y ()
141y - ind
D H(m)mo(n) 27 /-1; ¢ (1 + sgn(m)i sin® g)Iml
1 (i, |sing]30(0)
= [T em d
21 /-n/4 ¢ (1 + sgn(m)i sin® §)Im|
1 / ¢inf | sin 6]'**77j (6)
21 Jxja<ipi<sn/a (1 + sgn(m)isin® §)Iml
L, |sind]*0(0)
tor /3.1r/4 ¢ (1 + sgn(m)i sin3 g)Iml df
= I(n,m)+ II(n,m)+ III(n,m).

do

do
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First,

v wOE o\
o
11( < /
ilég (E [ (m, m)| ) = ¢ (m 7 Jm/4<10]<3r/a ( (1 + sin® 0)lm|d0)

meZ
1 1/2
= DG DR = — 7
c(-[r/4SWIS37r/4|no( ) (,,,Ee:z (1+sin50)lml) )

< ([ mo(en?de)”z

= oY Ino(n)?)>. (2.16)

nez

Next, we need to show

Note that

1/2 1/2
sup (Z [I(n,m)]| ) <c (Z lno(n)|2) . (2.17)
/"/4 fn(0)

n€Z \mez nez
2\ 1/2
do
—n/4 (1 + sgn(m)isin® §)Iml )

1/2
) @)

1/2
sup (Z |I(n, m)|2) = csup (Zz

ne€Z \;mez nez

/ﬂ/4 e—im arctan(sin3 9) fnn (0) do
—n/4 (1 + sin® §)Iml/2

= csup (Z
n€zZ \ ez
with
far(0) = €™ sin 8|75 (6).
To motivate the proof of (2.17), consider Lemma 0.1 of [5] which is the continuous
analog of Lemma 2.6(i) (with 8, replaced with D'**7). The next logical step would

be to follow the proof of Lemma 0.1 by transforming the Fourier series variable from

n to m via a change in variables. Hence, by setting 7 = arctan(sin39), i.e

@ = arcsin(tan'/3 1) = h(7)
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and
sec2 T ,

1
= dr = h (1)dT,
3tan2/37\/1 —tan?/3 1

do =

(2.18) becomes

4

b . -
[ e cost™ fu ()R (r)dr

(2.19)

-

oz

meZ
with

fan(7) = fan(h(7))

and b = arctan(sin®(7/4)). Since h'(7) ~ 772/3, it follows that

(/ | fan(7) |2c1h-)1/2 < / o (r) Pr=203% (r)dr )1/2

,r/ 1/2
= c< /4[ fa~(8)|*(arctan(sin® §))~ 2/:’d@)

4
"/4 sin?6 40 172
L,V DEE

= c
arctan (sin®6

IN

(/_,,//4 70 (0 ”2"9) " (2.20)

Thus, (2.17) has been reduced to showing the following proposition.

Proposition 2.9

T . 2
> / e”"™ cos™r g(7)dr

meZ

< c/_7r lg(T)|dT.

Remark 2.10 By setting g(7) = f,,(7)h’ (T)x{-b<r<p} in (2.19), with (2.20), Propo-
sition 2.9 implies (2.17).
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Proof: Suppose g(r) € L*[—m,n]. Let ax be the k* Fourier coefficient of g, i.e.,

g(r) = 1 > ake*". Assume m > 0. Then
2T ez

/1r e "™ cos™r g(0)dd = /1r e i mT (__e re ) g(r)dr

—r - 2

= 2 [C(1-e)mg(r)dr

n

- [ 8 (et

J=

m
e )
i=0 \J

m
= Y Bmjayj,

Jj=0
. 1 (m .
with Bm’j=2_m(j> form>0and 0<j<m.

Claim 2.11 For allm > 1,
’L) 2 Bm,k, =1
k=0
and for all k > 0,

00
) Y Bmyx =2

m=k

Proof:(of Claim 2.11) To prove (i), observe

m— m __
k=0 k=0
. . 1 \* d™wO) (m+k-1
To prove (ii), consider gx(z) = (m) . It follows that =\ k-1 )

This implies that for |z| < 1,

1\ & m+k\
(l—a:) _1n2=0( k )x.
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Therefore,

m=k

Setting z = 1/2 completes the proof of (ii).

/1]
By Schur’s Lemma (see e.g., [2, pg. 394]),
. o\ 12 m 1/2
> / e™"™ cos™r g(7)dr = | Y13 Bmjassl?
m>0 'Y ~" m>0 ;=0
1/2
< V2 (Z |a,-|2)
JEZ
1r 1/2
= V([ lgiar) .
After making the change of variables ¢ = —0 we obtain a similar estimate with Z
m>0
replaced by Z and this concludes the proof of Proposition 2.9 and hence, concludes

m<0
the proof of (2.17). Notice that the same estimate works with (1 + sgn(m)isin® §)~I™!

replaced by (1 — sgn(m)isin®8)~™l, setting ¢ = § — 7 yields
sup( - [I1I(n,m))"/? < (3 |mo(n)[*)"/2.

n€Z ez nez

This fact along with (2.16) and (2.17) conclude the proof of Lemma 2.6(i).

The following is a useful corollary of the proof of (2.17).

Corollary 2.12

(5

/"/4 f(6)

—/4 (1 + sgn(m)isin® §)Im!

2\ 1/2 1/2
/4 |£(6)°
< —_— .
df ) = (/_w/4 sin® @ a8
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The following proposition is a consequence of Lemma 2.6(i) via duality.

Proposition 2.13

IR 3 D" Hu(—m)w(-,m)llz < ellwllye
mezZ

with ¢ independent of v € R and h > 0.

Before we prove Lemma 2.6(ii), we define three functions on Z x Z.

Definition 2.14

(1 Y Hym+1-j)w(i)n) ifm>0
jEm+1
Apw(n,m) =< 0 ifm=0
—h* Y Hy(m—1-j)u(-3)n) ifm<0.
L j#Fm-—1

Definition 2.15

(1 S sgn(m+1-j)Hy(m+1— j)w(j)(n) fm>0

j#m+1
Brw(n,m)={ 0 ifm=0
h® Y sgn(m—1—j)Ha(m —1—j)w(,,5)(n) ifm<0.

\ j#m—1

Definition 2.16

B Y Halmt 1= i)l )(n) ifm >0

===
Eyw(n,m) =1 o ifm=20
K'Y Hylm — 1= (- 5)(m) ifm <0.

\ J=0

It follows that
Brw = 2Apw — Apw + 2Fw,
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which implies

Dy Byw = 2D Apw — Dyt Apw + 2D By, (2.21)

Proposition 2.17
||D;‘),+i7Ehw||,$,3n'h < cllwllie

with ¢ independent of v and h > 0.

Remark 2.18 For the last time, we check the homogeneity. Assume Proposition

2.17 is true for h =1 and let m > 0. Then

0 1 ( 0) 241y " (1)(0 ) 2 1/2
B3 —inhg | SiD J 46
ne ( mz>:0 ]—z—:oo 2m /—"/h h | (1 + isin®(h6))m+1-3
M 2\ /2
1 - (0, 5)
— h3/2h3 iné 0 241y ) dO
(m%:o ];oo o e | sin | (1 + iSin3 0)m+1._1

INA

1/2
chh®/? > (Z |w(n, m)|2)

neZ \meZ
= CHW||13,13"‘,l

The same proof works for m < 0. Combining these and the case h = 1 implies all

other cases for h > 0.

Proof: Assume h = 1 and assume m > 0. Then

D**YEw(n,m) = D**"H(m) [ (1) (Z D'H(-5)xg<oyw (- ])])] :

jEZ
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This implies

”X{"'ZO}DHhalhﬁﬂ,’n < c||H(1) (EDIH(—j)[X{jso}w(',j)]) (2.22)
jEZ 2
< oY D'H(—5)[xg<opw (- )]l (2.23)
JEZ
< llxgm<oyw(n, m)|lus, (2.24)
< cllwlline,,

where (2.22) follows from Lemma 2.6(i), (2.23) follows from fact that H(1) is bounded
on [2(Z), and finally (2.24) follows from Proposition 2.13. The case m < 0 is similar.
Combining these two cases and applying the triangle inequality finishes the proof of

Proposition 2.17.
Proposition 2.19
||D,21+i7Ahw||,;.lo,3"lh < cllwllez

with ¢ independent of v € R and h > 0.

Remark 2.20 If the set of operators { H,(m)}mez did form a group under composi-
tion, i.e.,

Hh(ml + mg) = Hh(ml)Hh(mg) (225)

for all m;, my € Z, then the proof of Proposition 2.19 would proceed exactly as the
proof of Proposition 2.17, which used the fact that (2.25) is true if m; and m, are
the same sign. However, because of our choice of discretization, we do not have the

group structure in general. Hence, our proof will require different methods.
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Proof: By a similar homogeneity argument as in Remark 2.18, we can assume h = 1.

Suppose m > 0. Then

D*** Aw(n, m)

w'(8, j) 0

J¢m+1

oo

1 . .
= lim— / e | sin 0|2+ (1 — isin®0)
€0 27 Je<||<m—e

—inf l sin 0|2+i7

—inf 241
o|*t* :
Z 2n / |sind| (1+ sgn(m + 1 — j)isin® §)Im+1-il

S (1 -isin®g)™ o) (g, j)) do

Jj=m+2

w0, 5)

+ lim /
e—0 2 <|8)<m—e

m
1+isin®6 (F"oo (1+isin®g)m

) do
—j

.(p) w (8, p)dpdl

. )(2)(0, p)dfdy

= lim — e—inO/‘,r e—imgp I sin 012+i7 + | sin 0|2+i‘7€—-i2<p
=0 A2 Je<|o|<n—e J-n 1+i4sin®0—ev 1—isin®0—et
~ lim 1 e“"‘“’ / —ind | sin 0)2+% | sin §|2+*7e~2¢
e—0 472 J_ e<lfl<r—e \l+isin3f@ —ei¥ 1—isinf— et
— 1 r" e~ ime o)\ (4
= lim / K{;Km(n — 5, P)@ (5, p)dy,
with
1 | sin 6|2+%7 | sin §|2+i7e~12¢
K. (m,p) = — / e~ imé ‘ — | df,
n(m: ¢) 27 Je<ipl<n—e (1 +isind@—ev 1 —isin®0—ei
0?5, 0) = Y- w(j, k)e*?,
kEZ
and

@(8,¢) = 3 @, p)e®.

J€Z

Before proceeding with the proof of Proposition 2.19, we need the following defi-

nition and a few claims concerning it.

Definition 2.21 For ¢ #0, let

| sin |2+

1o
K ’ — _/ —imb :
v(m, ¢) o J_a® (1 TS0 —ev |

: 2+iy ,—12¢
| sin §|*+7e )dG.

1 —isin6 — e-iv
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Note, lim Ke(m, ) = K,(m, ) for all m € Z and for all ¢ € [—m, 7] with ¢ # 0.

Since K, ,(m,0) =0 for all e > 0,m € Z, and v € R, set K,(m,0) = 0. Hence,
lg% Ke,’y(ma (p) = K‘Y(ma SO)

for all m € Z and ¢ € [—7, 7).

Claim 2.22 There exists C such that
HKe,’y(ma ')HL’[—-w,w] < C,

with C independent of €, m, and 7.

Proof:(of Claim 2.22) By definition,

- 1 —
Kealm, ) () = o= [ Kelm, p)e¢dp
L (Lm0 anoine
T 4An? J_ox Je<loj<n—e 1+isin®0—ev  1—1isind0—e-iv

1 " . . )
= —2/ / e ™| sin 9|2+
472 Jn e<|fl<m—e

) dfe "dyp

1 1
. .3 eiv
1+1isin"f (1* m)

s 1 dfe=id
1—i4sin®9 \1 - —=—*— v

. 1—isin® @
L g 00 i
= ﬁ /_,r /¢<|o|<H e |sin [ [1 n 'ilsin3 ] ,§, 1+ :si; DL

—i2 —ik

1 —e i;it13 ] ,:0 (1 —ei ;i:a a)k] e dody
= Z:?E £<|0|<ﬂf¢_im0| sin 9|2+* _1; g; ((1 +‘3;:;22)k+1 + a i_;(:::;);kﬂ) dpdl
| % ‘/el<|01<1r—e e (1 l-si;lsigrllz+0l;‘+ld0 ift=0

=<0 ifl=-1

1 _ime  |sin@|2t? ,
— i do ifl < -2
\ 27 ‘/c‘<|0|<1r—ce (1 — isin® 0)“'_’1 ne=
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By Plancherel’s Theorem,

1/2
”Ke.'r(ma ')”L’[—'rr,‘lr] = (Z IKG,’Y(mv ')A(l)|2)

lez

IN

1/2 1/2
(Z |K e, (m, ')A(l)|2) + (Z | Key(m, ')A(l)|2) (2.26)

1<-2 1>0

First, consider the second sum in (2.26). Assuming ¢ is small,

2 1 |singpr 2\
R 2 — - —im@
(Z |Keiy(m, ) (D) ) (Z 37 Loen ™ Tt )

1>0

1 | sin 6]2+%7 2\ /2
< _/ —imé do
- (;ZZO o Jectpiansa® {1+ isin® )1 )
. 1/2
1 —im6 | sin 0'2-"'7 2
2o / o — df
(g 2m Jx/a<|0l<3r/4 ¢ (1 + isin® g)i+?
. 1/2
1 —im@ lsin0|2+‘7 2
Sl P2 / " — df
(,220 21 Je<|o-n|<n/4 ¢ (1 + isin® g)i+
= I+IT+1II

By Jensen’s Inequality,

3r/4  |sinf|* \ V2 3/4 | sin 6| 2
< S a7 S / __tsmol
ITse (E [r/4 (1 + sin® 0)‘+1d )' ¢ ( /4 g; (1 + sin® 0)’+1d0)

1>0
/a1 1/2
= dé
¢ ( x/4 sin’@ )

C,

IN

with C independent of m, €¢;,and . Next, turning to I, it follows that

9\ 1/2
I=c¢ (Z )
150

/ " 1 8)do
s (T T emat
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e—im0| sin 9|2+i7

1+isin®@

| fema O 2\ 4 sinte 1\
< _— <
I'se (./—-w/4 sin® @ df = ¢ /;1/4 1 + sin® @ sin? 0d0

/4 .. 2 1/2
= ¢ / _sin8 g
-x/41+sin® @

C,

with fem,(0) =

X{e<|6]<n/4}- By Corollary 2.12,

IN

with C independent of m, ¢, and 7. Furthermore, /11 can be reduced to I (but with
1 —isin 6 in place of 1+ isin® @ which can be handled similarly to I). The first sum
in (2.26) can be bounded by C independently of €, m, and <y using similar arguments

as above.

/17
Claim 2.23

lim K, ,(m, ) = K, (m, )

in L?[—n, ), uniformly in m.

Remark 2.24 Assume Claim 2.23 for the moment. If w € [LI2,, then

lim
€—0

/_ " mime Z;[Km(n — ) = Ky(n = 5,9)]0@(, so)) dip
7l’ e

=0

< lim / S | Ken(n = 4,9) — Ky(n = 5,0) |0, ) lde
7 jez

e—)Ojez

< Wm Y || Ken(n = 5,) = Ky(n = 3,7) liionm) - 1 6PG0) lirporen
j€z

= 0.

= Im Y [ Key(n - 5.0) = Kyln = 5, 91070, ) ldp
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Therefore,

; 1 ™ _im (D) -
D™ Aw(n,m) = —— / e 3" K, (n— 5,0)d®(j, p)de. (2:27)
- Jj€Z

Proof:(of Claim 2.23) Let €3 > €; > 0 with €, < 7/4 and assume [ > 0. Then

(Keyy(m,+) — K¢y 5(m,+)) (1)

1 _imp | sin @2
= — wm dé. 2.28
2 (</e.1<|9|<£2 + [r—€2<|9|<"-€1) ¢ 1+ isin’ 0)l+l ( )

By Corollary 2.12,

2\ /2 sin? 0 1/2
dé < ———db
(1220 ) =¢ (£1<|0|<ez 1+sin®6 )

which goes to 0 as €;, e — 0. Again, a change of variables gives us the same result for

/ e—imal sin 0|2+i7 1
a<lfl<e, 1+1isin3@ (1 +isin@)!

the second integral of (2.28). It follows that {K,,(m,-)"(I) };>0 is uniformly Cauchy
in 1(Z*) as € — 0 independent of m € Z. A similar argument would give us the same
result for [ < 0. Therefore, { K. (m,-)"(j)};ez is uniformly Cauchy in [2(Z) indepen-
dent of m € Z. Hence, by Plancherel’s Theorem, K, ., (m,-) converges in L%[—, 7] as
e — 0, uniformly in m. Since K, ,(m,-) = K,(m, ) pointwise, K, ,(m,-) = K,(m,")

in L%[—n, 7] uniformly in m. Furthermore, it follows that

T . 3 241y
( 1/ g-imo__|sin 6| o ifl1>0

o (1 + isin? §)+1
Ky(m,- ) ()=q9 0 ifl =—1 (2:29)
1 ™ _.o |sin@?+ )
— im dg ifl< —2.
2 /;r © —-smigu1® ! =

/1]
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Claim 2.25 The Fourier coefficients of Ko(0,-) are absolutely summable, i.e.,

> 1Ko(0,-) (1) < C.
ez

Proof: Suppose y = 0 and |l > 0. Let ¢, € Cg° with ¢ = 1 on (—n/8,7/8) and
suppyy C (—7/4,m/4). Let ¢¥,(0) = (6 — 7) and 3 = 1 — ¢; — 1. From (2.29) it
follows that

R /4 sin? 0
Ko(0,-)()) = ¢ [—11'/4 ) (1 + isin3 9)i+! do

sin? @
e /1r/s<|o|<77r/s ¥s (1 + isin3 9)i+1
5m/4 sin? @
e /3«/4 Y2(6) (1 + isin®§)!+1 d
= I() + II() + ITI(Y).

do

First,

e o]

glll(l)l -y

=

. 2
() — g

(1 + isin® §)!+!

-/1r/8<|0|<77r/8

IN

0
1
Y ———df
c[r/8<|0|<7ﬂ/8‘ = ( (1 + sin® §)!/2
C. (2.30)

INA

By the same change of variables as before, namely

0 = arcsin(tan'/® 7) = h(r),

it follows that

/w/4 ¥( )sin 9 1
x/a 1 +isin®@ (1 + isin® @)}

Q) = i
=0 =0
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n/4 o—il arctan(sin3 ) " (0) sinZ 0
/_,/4 (1+sin®6)¥/2 1+ isin®@

I
M8

-~
Il
o

b ) 2
1/ e~ cos! T 1//’1(@(7)) S T _dr
3/ l1+itanT \/l—tan2/3'r

3/ 7 cos' T g(7)dt

Il
2 10 I

1 .
= " e cost 7 Y are™*7dr|, (2.31)
=0 3 - keZ
with
b = arctan(sin®(7 /4)),
i (h(T sec’r
o) A
+itanT \/1 — tan2/3 7
and
1 g .
a =5 [ grjedr.

Before proceeding with the proof of Claim 2.25, we need the following definition,

proposition, corollary, and a theorem of Bernstein.

Definition 2.26 A function f defined on Il is in Lip*(II) for 0 < a < 1 if there

ezists C > 0 such that for z,y € I,

|f(z) - f(¥)| < Clz —yl%,

with distance measured on the unit circle.

Proposition 2.27 Let 0 < a < 1 and suppose f is a continuous function defined on

IT which is differentiable for x € II\{0}. If there exists C such that

If ) < clo1,

then f € Lip®(II).
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Proof: We need only concern ourselves with £ and y near the origin, say, z,y €
[-7/4,7/4). Suppose |z| < |y|. If neither z nor y equal 0 and they are on the same
v
side of the origin, then f(y) — f(z) =+ / f (t)dt, which implies
T

|f(y) = £ ()]

IN

£ 17 ®)lat
+C /y |t|>~'dt
Callyl® - I21°)

Caly — z|*.

IN

IN

The last inequality follows from the fact that the function k4(z) = |z|* € Lip®(II).
Now, if z = 0, then

) - 1O =+ [ 1 (t)at

since f has an integrable singularity at the origin and f is continuous there as well.
Hence, the argument above works when either z or y are zero. Finally, suppose z and

y are on opposite sides of the origin with z negative. Then

1f(y) = f(@)] < [|f(y) = FO)| + |£(0) — f(z)]
< C/O" |t|°’“dt+C/xo |t]*~dt
< Callyl® +12]%)
< Coly+zll®
= Caly— 2%

where the last inequality comes from the equivalence of the /! and I/ norms on R2.

This concludes the proof of Proposition 2.27.
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Recall,
h(t)) sec® r 1
itanTt \/1 — tan2/3

= g1(7) - g2(7),

with

h(r) = arcsin(tan'/3 7).

Since 9, is smooth, compactly supported, and 1; = 1 in neighborhood of the origin,

it follows that g, € C§°(IT). Next,

1
g,(1) = —5(1 —tan?37)32 tan"3 1 sec? 7,

which implies

l92(7)| < Clr|*73

on supp¥; (h(7)).
Corollary 2.28
g € Lip?/3(10).
Proof: Since g; is smooth and |g,(7)| < C|7|~'/3, we have
lg'(1)| < Clr|7'3.

Since g is continuous, Proposition 2.27 implies that g € Lip?3(IT).

/1]

The following is a theorem of Bernstein (4, pg. 32].
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Theorem 2.29 If
f € Lip*(I)

for some a € (1/2,1], then the Fourier coefficients of f are absolutely summable, i.e.,

>lfm)l<cC.

nez

Corollary 2.28 implies that

> lak| < o0

keZ

where a; is the kt* Fourier coefficient of

_ Pi(h(7)) sec? T 1
~ l4atant  f] o2

9(7)

= g1(7) - g2(7)-

By the proof of Proposition 2.9, (2.31) becomes

oo | I
3 IS Bugoa| (2.32)
1=0 |7=0
. 1/l . . . . .
with B ; = —| .]. After interchanging the order of summation and applying Claim
v 2[ j

2.11(ii), (2.32) becomes

[o o) [0 o]
E [I(1)| < Z |laz;] Z B ;
=0 1=j
2 |ay|
=0
¢y lajl

JEZ
C. (2.33)

IA

IN
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[o o}
Again, by a change of variables, Y |ITI(l)| < C. With (2.30) and (2.33), this implies
=0

3 [Ko(0, )" (1)] < oo.

>0

The proof showing Y _ |(K(0,))"(!)| < oo is nearly identical. Therefore,
1<0

[2; | Ko(0,)"()] < oo, (2.34)

which concludes the proof of Claim 2.25.

/1]

Finally, to finish the proof of Proposition 2.19, observe that (2.34) implies Ky (0, ¢)

is a continuous function of ¢, which implies that there exists C such that

|Ko(0, )| < C. (2.35)
Claim 2.30 There exists C such that

|Ky(m, 9)| < C,

with C independent of m, p, and ~.

Remark 2.31 Claim 2.30 will finish the proof of Proposition 2.19. To see why this

is the case, assume there exists a C such that |K,(m, ¢)| < C independently of m, ¢,

2) 1/2

and 7. Hence, by (2.27),

[ e Kyln = 5,000, ¢)dy

n€Z \ mez j€Z

|| D** Aw||;012. = csup (E
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s

9 1/2
dcp)

= csup Y Ky (n— 4, 0)0@(j, ¢)
nez j€Z
1/2
< csup (/ K, (n ~ 3, 0)0® (G, 0)|| dcp)
nGZ Jez
1/2
< CcY (/ 63, <.0)I2d<p)
JEZ
= CY (X w5, k)| 2)1/2
€T kez
= Cllwllua,
Proof:(of Claim 2.30) Recall,
1 = sin? @ sin? fe %
Ko(09) = o [ > ‘ = .
o(0,) 21 J-x (1+zsm30—e‘¢+1—zsm30—e'"f’) d6

sin“ 0

sin? 6

1 g/~ in?
__./. .3 . +‘
2w J-x \ 1 +isin° @ — e¥

1 /’f sin® f(e~*% — 1)

+— — -
-x1—1isin30 — et

2w
(1 — cos ) sin? 8

I+11I.

1 r~
s /—1r (1 — cos )2 + (sin® @ — sin )2

do

1—isin’f — e“‘P) a6

do

o

First, for 7/4 < || < m, II is trivially bounded. If |¢| < 7/4,

~i20 _ 1| cin2
11| e 1|sin* @

1 L3
2m ./-n |1 — cos ¢ + i(sin® § — sin )|
C/ || sin® 6
{6:] sin® 8| <2|sin |} |1 — cOs |
02
C/ df +
i61<clol/2} ||

IA

IN

2.2
/ || sin 0 10
{6:|8in® 8] >2| sin |} l sin (pl
92
c/ do+C
{@101<cloli2) o]
C.

IN

<

)

/{9=I0-WISCI¢I”3}

|| sin? @
0:|sin® 6>2|sin ]} | sin3 4|
2
0—m) &0
ol

1 /" sin?f(e~"2 — 1)

—x1—isin®0 — et

(2.36)
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Notice
(1 — cos ) sin? 4
(1 — cos )2 + (sin® § — sin )2

(2.37)

for all 8, € [—m,7]. Combining (2.35) and (2.36), it follows I = |I| < C. Hence,
(2.37) implies

i (1 — cosp)sin? @
< .
/—x (1 — cos )2 + (sin® 0 — sin Qo)de <C (2.38)

Finally, (2.36) and (2.38) imply

i/" e—imo( | sin @2+ - |sin0[2+"7e"’2“" )dai
s

K =
I 7(m,§0)| o J_ 1+ isin30 — ei¥ 1—isin30 — et

L - ; sin? 0 sin? @
< |5z ~™| sin @[ : — | df
= 27!'-/—#6 |sin | (1+z‘sin30-ew+1—z'sin30—e—w)dl
1 [~ _. o|sinf]***7(e=*% —1)
—_— m . de
* 271'/; ¢ 1—isin34 —e-iv
1 = (1 — cosyp)sin?@
Py dd+C
2mJ-x(1 — cos )2 + (sin® § — sin )2 +
< C

with C independent of m, ¢, and . This concludes the proof of Claim 2.30 which

concludes the proof of Proposition 2.19.
Proposition 2.32
||szz+hBhw||lg°z,2m < Cyllwllie,,

with C, = ¢(1 + |v|) and c independent of h > 0.

Proof: By a similar homogeneity argument as in Remark 2.18, we can assume h = 1.

Suppose m > 0. Then

— NoW(g. 4
D2+z7Bw n m Z / —mal sm0|2+"7 sgn(m +1 ])w . gg,]) 40
gma 2T = (14 sgn(m + 1 — j)isin® g)Im+1-Jl
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1 ] in @[2+% m 51 (9. 4
gk [ w0 (8 o0 ),
=0 27 Je<|0|<m—e 1+sin0 \ ;i (1 + isin®@)™—J
_lim— / e sin 6|2**7(1 — i sin® 0) f (1 —isin®9)™ 351 (0, 5) | db
e—0 27r (<19|<1I'—€ J=m+2
| P | sin 0)2+%7 | sin 9|2+7e~12¢
= lim —/ e—'"o/ —imy — — — — — w(0, p)dpdl
€0 472 Je<|f<m—e At 1+isin®0 —e¥ 1—isin®0— et (0, p)dy
1 o ; | sin 92+ | sin |>**7e~2¢
= lim— [ e / ~inf __ _)&(8, v)dbd
50 4m2 J_. ¢ e<|0|<7r—ee (1 +isin®0 — e 1 —isin®0 —e-i¥ w(9, p)dbdy
= timo= [ ™ (5 Rao(n - 5,0)0@0,0) | do
€0 21( o = €,Y ) ) )
with
- 1 ; | sin |27 | sin §|2+*7e~2¢
Key(m, @) = — / -im8 __ ) de.
(M, 0) 27 Je<|bl<m—e ¢ (1 +isin30 —eiv 1 —isin®0 —ei¥

Now, as with K, ,(m, ¢) in Claim 2.22, it follows that

Key(m,-)(1)
1 ei(k—l)qa e—i(k+2+l)qp

_ b —im) o pztiy [T G _
o= /€<|0,<,,_ee |sinf)] / Z((1+isin30)"+1 (1—z'sin3o)k+1)d‘pd0

T k=0
= sgn(l + 1)K, ,(m,-)"(1).

It follows, as in Claim 2.23, that {K.,(m,-)"(j)};ez is uniformly bounded and uni-
formly Cauchy in [2(Z) as ¢ — 0 independent of m € Z. Again, by Plancherel’s

Theorem, K, ,(m,-) converges in L2[—, 7] uniformly in m.

Definition 2.33 Let

f{.,(m, )= ll_r)% i{en(m’ )

in L?[—m, 7).
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It follows, as in Remark 2.24, that

i 1 T _im 7 - - -
D**Buw(n,m) = oy /_ﬂ e™™ Y K, (n — j,0)a® (4, p)de

™ jez

where, for ¢ # 0,

. 1 [ | sin |2+ | sin |2+*7e~12¢
Ky (mp) = — / ~im8 __ ) dg
A(me) = or )¢ (1+z‘sin30—ew 1—isin’ 0 — e

1 /‘ g-im8 | sin |27 | sin 8|2+ ”
DY o - 1+isin®@—ev 1—isin0—eiv
1 /’f e_im0|sin0|2+‘7(1 - e“"2"’)d0

+

27 J_a 1—isin®f — e
o imp | sin 8|2+ (sin® @ — sin )
I - 2 — 2cos ¢ — sin? ¢ + (sin® @ — sin )2
e I e-imo SO (1 = ) 4
2m J-n 1—1sin°0 — et

= W,(m,¢) + Vy(m, ).

To finish the proof of the proposition, we need to show that there exists C such
that

|Ky(m, o)| < C(l7v] +1)

independently of m € Z, for almost every ¢ € [—m, 7] and 7 (see Remark 2.31). Note
that

Vy(m, ¢)| < C,
by absolute value estimates and (2.36). Thus, we need to show

[W,(m, 0)| < C(|y] +1), (2.39)

with C independent of 7, m,and for almost every ¢. Note, the integrand of WO(O, )

is not of constant sign. Hence, we can not use the same methods used in the proof of
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Proposition 2.19.

Definition 2.34 Let

do.

—1 / —imf | sin 8|2+ (sin® @ — sin )

We.(m,p) = — - - :
6’7( QO) T J{0:e<|sin 6—sin!/3 vl} 2 —2cos " SlIl2 14 + (Sln3 6 — sin S0)2

Obviously, lgré We . (m, ) = W, (m, ) for ¢ #0.

Claim 2.35 There ezists C,, such that
[Wea(m, 9)| < C,

for allm € Z and ¢ # 0, where C, = C(|y| + 1) with C independent of €,m,y, and
¢ #0.

Claim 2.35 implies (2.39).

Proof:(of Claim 2.35) We can assume both ¢ and |p| are small. Fix ¢ # 0.
Set 7 = sinp and 1 = 2 — 2cosp — sin®p. It follows that || ~ [p| and

r = (1—cosp)? ~ cp*. Thus,

_imp | 5IN B3 (sin3 9 — 7)
/|o|<1r/4,e<|sin 6—71/3| T+ (sin3 @ — 7)2
/ im0 | sin 02+ (sin® 8 — 7)
7/4<|0]<37/4,e<|sin f—71/3] T+ (sin® 9 — 7)2
_ime | 5ID 82T (sin 8 — 7)
-/37r/4<0<51r/4,e<|sin 0—71/3| T+ (sin®*6 — 7)2
= I (m,p) + I (m, o) + III . (m,p).

do

T[Wenr(m, )| <

dO\

dO‘
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For small ¢ (recall 7 is small), clearly
I, 4(m,¢) < C, (2.40)

with C independent of ¢, p, m, and . Next, consider I, ,(m, ¢). By setting £ = sin#,

we have

g—imarcsin§ §2I€'i7(€3 — T

</|arcsinE|<7r/4,e<l£—T1/3| T+ (53 - T)2 \% 1 - ’

If)”(m7 (p) =

By a second change of variable, namely ¢ = 71/3z,

1135y 22|27 (2% — 1) dz

7+ (@@ - 12 Vi- bz’

—im arcsin(7

Ie,'y(ma ¢) = €

-/|.z|<-‘£—§'r-1/3,c'<|x-—l|

with € = 77'3¢ and 7' = 77%r ~ cp?. Note that ' > 0. Let {; € C°(R) be an even

function so that {, = 1 for |z| < 2 and supp(p C {|z| < 3}. Also, let {; =1 — (.

Then
o x| (2 — 1) (o(z —1)
I m, < / e—tma.rcsm(‘rl/az:) _ T
en(m, @) < lal< 7173, ¢ <la—1] r + (23 - 1)2 /1 — 72372

—im arcsin(71/3z) z2|$|i7($3 — 1) Cl(x — 1)

d
¥+ (@ 1) VI- 1Bzt

e

+|l
]z|<%§‘r—‘/3,e'<|z—1|
= Ay (m,7)+ By, (m,T).

First, consider Ay, (m,7). It follows that

/ e—imarcsin(rl/"z) x2lx|i7($3 —1)
|x|§4,e'<|x—1| rl + ($3 - 1)2

_ 3lz(z — 1)) Gz-1) ..

Ae' ,7(m7 T) <

T +9(z - 1)2) /1 — 72/312
+ / g-imarcsin(r0z) 32M(@ —1) Gz 1)
|z|<4,¢’ <|z~1]| " +9(z — 1)2 /1 = 127352

1 2
= AE, ')7(m, T) + AE, ’)7(m, ),



74

with
AE,I),Y(m, T)
< C/ r'(z — 1)%(z% + 222 + 3z + 3) + 3(z — 1)*(22® + 32% + 3z + 1)
- lzi<a [(M")?2 4+ 7' (2 - 1)2(22+ 2+ 1)2+ 9" (z - 1)2+ 9(z — 1)¥ (22 + = + 1)
|23 + 222 + 3z + 3|  |22% + 322 + 3z + 1|
< C d
|z|<4 (z2+z+1)2 3(z2+z + 1)2
< C. (2.41)
Next, let a € R such that a = — arcsin(7'/%), which implies |a| ~ |7|'/3. Then
im arcsi amay 3127z — 1) Go(z —1)
A(,?) < / imarcsin(7!/3z) _ _izma) :
€ nr(m’ < |z|§4,e‘<]z—1|£?;n‘—ﬂ ¢ r + 9(z — 1) /1 — 12322 ’

+ / ei:tma 3'1-'1‘7(2; - 1) Co(x - 1) dr
|x|§4,e'<|z—1|<]7nl—ar r + 9(1‘ - 1)2 Vv1-— T72/3 2
+ / e—imarcsin('r‘/:’:c) 3lx|i7(1" - 1) CO(x - 1) -
|zl <4,max( i € ) <|z—1] v +9(z —1)2/1 — 727352
3 4 5
= Ai,’),y(m, T) + Ai,’)7(m, T) + Ag, ,)T(m, T).

After applying the Mean Value Theorem to the real and imaginary parts of s(z) =

. . 1/3 N .
g imarcsin(ri/%z) _ gizma it follows that

1/3

/ -
' 1 /
|z|<4,€ <|I—1|<m 1- T2/323

) —
AC, Y (m, T) -

sin(im arcsin(7'/3z;)) — ma sin(z,ma))

(l‘ _ 1) 3|$li7($ — 1) CO(x - 1) dz
' +9(z — 1)2 /1 — 727332
1/3

+ / L — cos(im arcsin(7'/3y,)) + ma cos(y,ma)
|z|<4.¢ <|e=1|< [z \ /1 — 72/3y§

3lz7(z —1) G(z—1)
(= - )r' +9(z-1)2/1- 7'2/31:2dz

IA

c|mal| / dx

]x—l[<m
< C, (2.42)
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where z; and y, are between 1 and z. Let ¢ € C§° with ¢ = 1 for |z| < 1/4 and

suppy C {|z| < 1/2}. By changing variables,

A(‘,") (m 7.) — / eizma3|x + 1'”1‘ CO(x)
et |=|<3.¢' <[zl < [key r' + 9z2 \/1 — 723(z + 1)?
< / eizma 31"23 + 1IW¢($ + 1) Co(x)
T Vsl <lzl< iy v’ + 9x2 \/1 — 723(z + 1)2
/ eizma 31"7: + 1|$’7[1 - 1,[)(17 + 1)] Co(l')
|z <3,€' <|z|< e r’ + 9zx2 \/1 — 12/3(z + 1)2
; T
< C+C /Re wma (_r’ n gz2X{e’<|z|<m}(x))
2170 — gz + Di6(2) )
V1= 123(z +1)2
- C+ c‘ /R e f, (@) (z)da
= C + Cl(fe',m,a,r' * g‘Y,T)(ma)l’ (243)
with
5 T
fc',m,a,r' (IE) = mx{e'dzkﬁa—[}(l‘)
and

" V1 - 723z +1)2

Claim 2.36 There ezists C such that

”fe',m,a,r'”Lm < Ci

with C independent of € ,m,a, and 7 .

Proof: By Fourier inversion,

femar @ = ¢|[ €¥ft o (@da
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/ iTy T
C U
€ <|z|<[may T + 912

T
c sin(zy) ———dz
~/e'<lz]<ﬁ ( y)r + 9z2 '
2
T
c ——dzx
/| |y|r + 9z2

x|<ﬁ[
d z
—(cos(z - dx
'/|z|>]%r,e'<|zl<m da:( ( y))r + 9z2 l

dz

IN

LL
|y|
1

C+—
|yl
C

— —dr
Y| Jiz|> ¢ z2

' Q2
cos(zy)-idz

(r" +9z2)2 te

IA

[
21> 1€ <l2| <y

IN

IN

C,

where C and c are independent of € ,m,a, and r (c is the boundary term).

Claim 2.37 There ezists C such that

”gv,THL‘ < C(|7| +1),

with C independent of vy and 7 (small).

Remark 2.38 Since

”fe'm,a,r' * g‘Y,T”L“’ < ”fe'm,a,r'“lz"" : Hg%T“Ll’
Claims 2.36 and 2.37 imply that
Ife'm,a,r' * g%"’(ma)l S C(hl + 1)'

With (2.43) this implies

AP (m,7) < C(ly] +1).

/17

(2.44)



77

Proof:(of Claim 2.37) Assume 7 is small. Recall,

oo (2) = [EFUTIL = vl + DIGo(a)
" V1= 723z +1)2

which is smooth and compactly supported for all v. By Fourier inversion,

g’y,r(y) = /l;eizyg'y,r(x)dx’

which implies there exists C' which is independent of 7y and small 7 such that

|gy.r(y)| < C for all y € R. Also, one can check that there exists C such that

.

g2t (@) <C
for small |y| (]7] < 1) and that

d .

e @] < O
for large || (]| > 1). Thus,
T d = / T d
/ngw, (v)ldy icmax(iyy 977 W)Y

1 _d?

- lxy— ~

y2 /Re dr2 (g’Y,T)(x)dx
C max(|y],1) + C max(|y|?, 1) I 1 d

y|>max(|v],1) Y2

dy

v,
|ly|>max(|~],1)

IA

< Cmax(|v],1)

INA

C(lv + 1),

and this concludes the claim.

/11
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Finally, assuming m # 0 and by change of variables, AS’),7 (m, ) becomes

/ e—imarcsin(fl/3[x+l])3|z + lli’yz Co(z) dr
max(e, L) <z|<3 T + 922 \/1 — 123(z + 1)2
— / e—ima.rcsin(-rl/a[:r+1]) 32:|:B + llw’l[)(.’l: + 1) CO(‘T) dz
max(e’, o) <zl <3 T + 922 \/1 — 123(z + 1)2
+ / e—imarcsin(rl/3[:c+l]) 3‘T|‘T + lln[l — ’l/J(.’E + 1)] Co(.’L')
max(e,i7) <zl <3 r' + 912 \/1 — 723(3 + 1)2
1—723(z+1)2

< C+ec / \/ 1(3 )

max(e’, 2lr)<|z|<3 mrl/

i (e—imarcsin(rl/3[x+l])) z |.’L‘ + lln[l — 1/)(27 + 1)](0(.’1,‘) dz
dz T+ 9z2 \/1 — 123(z + 1)2
< C+ _C_ / e—imarcsin(rl/a[:c+1])
= |mT1/3| max(e’, i) <l <3
d z : c|mal
— 1"7[1 - 1 ) d _
dz (r' + 9x2|$ +17L - 9z + 1)lGo(z) ) dz) + |m7r1/3|

c d T
< _°¢ _ il d
s O+ |mT1/3| /T#[<|z| dz (r' + 9:v2) *

c T d .
_— — || 1171 - 1 d

+ |mT1/3| /mla‘r<|“|<3 ' + 9zx2 d:z:(lgr + 171 = bl + D]6o) () dz +

< et [ Ly ot Dima
Im71/3] J i <l 22 |mr1/3|

< C(vl+1). (2.45)

Therefore, combining (2.42), (2.44), and (2.45), it follows that
AP (m,7) < C(lyl +1).

With (2.41), this implies
Ay, (m,7) < (7] +1). (2.46)
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Next, we need to show

By, (m,7) < C(lv|+1), (2.47)

with C independent of € ,~,m, and 7. Using similar methods as above,

B

’
€Y

(m,7) <

/|z|gs§r—1/a,e'<|x—11 '+ (23 - 1)2

k-1 GE@-)
P @—12) Vi—ha
—im arcsin(t!/3z) |x|i7(x - 1) (l(x - 1) ‘

P4 (z—1)2vVI-r2Bg

e—imarcsin(-r‘/:’z) ($2|$|i7(1‘3 - 1)

(&

I
|z|§3?r‘1/3,e'<|z—l|
1 2
= BY (m,7) + B (m,7).

Since r' ~ cy? is small, V1 — 72322 > ¢ for |z| < 27713, and supp(i(z — 1) C
2

{lz] > 2}, it follows that

'.2(,.3 !
) < |rz?(z® = 1) —r (z — 1)|
Be,ﬁ(m, 1) < c/lzl22 (z — 1)2(z3 — 1)2 dz

|z%(z = 1)*(z® - 1) - (z = 1)(z* - 1)?|
+"'/|z.22 (@ - 12(z° - 1)° dz

5 6
< c/ lz—'-dm + c/ T iz
jel>2 2 lel>2 z°
< c (2.48)
Next,
—i i i z[7(z=1) Gz -1)
B(/2) m,7) < / e imarcsin(71/3z) _ £iTMa) |' d
€ ,7( ) < |I|532Q,-1/3,('<|1_1|(<r':_a[ r 4 (z — 1)2\/1T/3$2
+ / eirma |$Ii7(x — 1) Cl(x — 1) x
|z|5-\@‘r-‘/3,c'<|z-1|< L r + (13 - 1)2 Vv1- T72/312
2 [mal
+ / e—imarcsin(-rl/%) |$|W(x — 1) Cl(x - 1) d
|2 < Y2 7=1/3 max(e , ;Ap)<le-1] '+ (x—-1)2/1 - 12352

3 4 5
= BY) (m,7) + B (m,7) + BY (m, 7).
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It can be shown

BY) (m,r) < C (2.49)

using similar techniques as those used in (2.42). By changing variables,

B(:4) (TTL 7.) — / izma I‘T — 1|i7$ Cl(m) dz
ey lo+1|<Er1/3¢ <[zl <k T+ z? \/1 — 123(g — 1)?
< / irma |27 — lli’ym Cl (.’E) dzl + C
T el <<y r+a? (112 - 1) ’

with C arising as a result of the change in region of integration (recall 7 is small).

Hence,

— 1]
B® (m,7) < / cos(zma) lz, 7z G(=) dx
€ |z < 7113, <o)< g r+z? 1 - 1283z —1)2
— 1]
+ / sin(zma) lx, | 22 Glz) dz|+C
|~"|5’§"'1/3,€'<|I|<]ﬁ[ r+zx \/1 — 7-2/3(3; - 1)2
= I+I1I1+C.
First, assuming 7 is small,
2
IT < ¢|ma] ,I—zdx <C. (2.50)
|:c|<1#r T+
Next, using the fact that (; is even,
— 1|
I = / cos(zma) lm, | 21: G(z)
¢<z<min(YZ7-1/3, L) T+ \/1 — 123(z — 1)2

|z — 1"z Gi(=z)

+ [ ; dz
max(=2 |r=1/3),~ L) <<~ r+a? 11— 123z - 1)
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cos(zma) ——
/e'<z5min(>§r-l/3,rﬁr) r + x2

|z — 1] |z + 1"

' (\/1 — (g —1)2  \[1-712(z +1)2

cos(zma) ——— (fy(z + 1) = fo(z — 1))Gu(z)dz

) Gi(z)dz

-

-/e"<z§min(3§‘r‘l/3,—‘—)

Imal|

with
=
fr(z) = l— 25352
and
N 1 —2|z|" 7?3

f'r(“’) TVl 2h2 + (1 — r2/3g2)3/2

Using the fact that for a complex-valued C? function f and z;,z, € R,

[f(z1) = fz2)| <2 sup |f (y)ller — 2al,

yG[:r:l,xg]
I is bounded by
1 ,
2 = p
2<|e|< L r-1/3 |z |xs-l:,|p51|f”(y)| T

since supp(; C {|z| > 2}. For2 < |z| < %T-l/a and y such that |z —y| < 1, we have

ly| ~ |z|.- Hence

' cly
sup 1) < DU 4 er2/3)a).
ly—z|<1 ||

Therefore

I <]yl l-dar: + cr?/3

dz < C 1 2.51
2<|z| T2 /053547—1/3 z < Ol +1), (2.51)

since 7 is small. It follows by (2.50) and (2.51) that

BY) (m,7) < C(l7] +1). (2.52)
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Finally, by changing variables once more, assuming m # 0, and integrating by parts

as in (2.45)), B (m, ) becomes
¢

1 d —imarcsin(7!/3[z+1]) T 1
—— (e — 1|" d
¢ /l‘:t+1|5);—if"‘/s,max(e',]'#{kltl mrl/3 dz (e ) v+ 12 e+ 1[7¢ (z)dz
_c 4 (__x_) dx
= mT3) S <le |dz \ 7' + 22
C T d i c,rl/s
+|m7-1/3| <lal 7" + 22 dz (|x+1| C1(27)) dz + Imal|
clvy| / z 1
C+ ——+ d
= O |mT/3| Jmax(2, )<zl |7 + 22 |a:+1|l<l(m)| *
C T ]
—_— —_— d
+|m’rl/3| /T”:T<|x| ' + 12 Gi(z)ldz
in(1/2
o Jhlmin(/2|ma) |
|mT1/3|
< C(vl+1). (2.53)

Together, (2.48), (2.49), (2.52), and (2.53) imply (2.47). Combining this with (2.46),
we conclude that

Iy (m, @) < C(lv| +1), (2.54)

with C independent of €,7,m, and ¢. Setting 0 = 6 + =, it follows
III . (m,—p) = I.,(m,p), which implies III ,(m,p) < C(|y| + 1) with C
independent of ¢,-y, m, and ¢. This, (2.40), and (2.54) conclude the proof of Claim

2.35 which concludes the proof of Proposition 2.32.

Recall,

D" Bpw = 2D Aww — D" Apw + 2D, Epw.
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Combining Propositions 2.17, 2.19, and 2.32 finishes the proof of Lemma 2.6(ii), and

hence completes the proof of Lemma 1.17(ii).

2.4 Discrete Complex Interpolation

We are now in a position to prove the final crucial estimate, namely Lemma 1.18.

Recall the statement of Lemma 1.18(i),

|| Hn(m)mollisiro, < cllmolliz, (2.55)

with ¢ independent of A > 0.

To prove (2.55), consider the analytic family of operators
T.mo(n) = D;*/* DY ™ Hy(m)no(n), 0 < Rez <1,
with ng € I2(Z). If z = 17, then
1 Temolligerz,, = ”Dl_is/hno||t;,-ozfn,h < Cllmollez, (2.56)
by Lemma 2.6(i). If z =1+ ¢+, then

I Teolligice, = 11D~/ Hy(m)poliguem, < ClImolliz, (2.57)

by Lemma 2.2(i). Combining (2.56) and (2.57) with Stein’s analytic interpolation
theorem [7] and letting x = 4/5 implies (2.55) which finishes the proof of Lemma
1.18(i).
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Next, recall the statement of Lemma 1.18(ii),
1Anellggo, < ellollgragor (2.58)

with ¢ independent of h > 0. Similar to the proof of (2.55), consider the analytic

family of operators
T,w = D,:z/zDﬁ(l—z)Ahw, 0<Rez<1,
with w defined on Z x Z and compactly supported. If z = ¢y, then
ITwlligz , = [ID* "2 Apwlligrz,, < Collwllysz (2.59)
by Lemma 2.6(ii). If 2 =1 + 7+, then

”Tszl;‘,I:h — ”D—l/2—i5‘7/2Athl4[oo < C7||w||l:/3l'lnh, (2.60)

n°m,h

by Lemma 2.2(ii). In both (2.59) and (2.60), C, = ¢(1 + ||) with c independent of -y
and h > 0. Again, applying Stein’s analytic interpolation theorem finishes the proof

of (2.58) which concludes the proof of Lemma 1.18(ii).



CHAPTER 3

Numerical Results

In this chapter, we discuss the numerical implementation of the fixed point iteration

with the operator ®,,.

3.1 The Cutoff Function v,(n, m)

The iterates of the contraction mapping ®,, are defined on the entire grid, Z x Z.
To go from one iteration to the next, the entire iteration is needed. This is obviously
not feasible numerically. Hence, we need to introduce a “smooth” cutoff function
which is zero for n or m large. One may think we can simply set the iterates equal
to zero for large n or m. However, this may adversely affect the norm estimates of

the contraction mapping. This is due to the fact that if w is defined on Z x Z and

1 if|n| < N,|m| <M
XN,M(n,m) =
0 else,

then it