THE  EQUINE  PULMONARY  MICROVASCULATURE  AND  ITS  POTENTIAL    ROLE  IN  EXERCISE-­‐INDUCED  PULMONARY  HEMORRHAGE     By     Alice  Stack                           A  DISSERTATION     Submitted  to     Michigan  State  University   in  partial  fulfillment  of  the  requirements   for  the  degree  of       Comparative  Medicine  and  Integrative  Biology  –  Doctor  of  Philosophy     2014     ABSTRACT     STUDY  OF  THE  EQUINE  PULMONARY  MICROVASCULATURE  AND  ITS     ROLE  IN  EXERCISE-­‐INDUCED  PULMONARY  HEMORRHAGE     By     Alice  Stack     Exercise-­‐induced  pulmonary  hemorrhage  (EIPH)  is  diagnosed  by  the  presence  of  frank   blood  in  the  airways  following  a  bout  of  intense  exercise.  EIPH  affects  all  racehorses,  and   has  been  diagnosed  in  other  athletic  species,  including  humans.  EIPH  is  associated  with   impaired  racing  performance  and  significant  pulmonary  pathology  in  the  caudodorsal  lung,   while  the  cranioventral  lung  is  spared.  Lesions  include  hemosiderin  accumulation,   interstitial  and  septal  fibrosis,  angiogenesis,  capillary  wall  disruption  and  remodeling  of   small-­‐caliber  (100  –  200  μm  diameter)  intralobular  pulmonary  veins.  High  pressures  in  the   pulmonary  circulation  of  the  exercising  horse  cause  capillary  stress  failure,  resulting  in  the   main  symptom:  hemorrhage.  Stress  failure  alone  does  not  account  for  all  EIPH  lesions,  and   in  particular,  venous  remodeling.  Nor  does  it  explain  regional  predilection  of  EIPH   pathology.  EIPH  pathogenesis  awaits  complete  explanation  at  this  time.  Capillary  pressure   is  determined  in  part  by  resistance  to  flow  in  the  arteries  and  veins  that  supply  and  drain  a   capillary  bed.  Decreased  arterial,  and  increased  venous  resistance  are  conditions  under   which  capillary  pressures  will  increase,  and  may  approach  arterial  pressure  values.     I  hypothesize  that  a  combination  of  increased  blood  flow  during  exercise  to   caudodorsal  lung,  coupled  with  exercise-­‐associated  alterations  in  vessel  tone  provides   transient  but  sufficient  hemodynamic  stimuli  to  initiate  venous  remodeling  in  this  region   only.  Therefore  the  impact  of  ongoing  venous  remodeling  would  be  to  reduce  venous  wall   compliance,  thereby  increasing  venous  resistance  to  flow  and  increasing  capillary     pressures  in  the  caudodorsal  lung.  Capillary  wall  stress  failure,  hemorrhage,  and  EIPH   result.     The  characteristics  of  small  vessels  that  determine  capillary  pressure  include   mechanical  and  reactivity  profiles  of  small  arteries  and  veins  that  work  to  effect  passive   and  active  changes  in  vessel  diameter,  along  with  any  impact  of  remodeling  on  venous  wall   compliance.  These  were  evaluated  in  three  studies.  The  important  findings  are  as  follows:   First,  regional  differences  in  mechanical  properties  of  arteries  and  veins  exist  in   control,  unraced  horses,  which  may  reflect  inhomogeneous  blood  flow  distribution  in  the   equine  lung.  Racing  is  associated  with  increased  stiffness  of  caudodorsal  pulmonary  veins   only,  despite  the  absence  of  severe  EIPH  pathology.     Second,  autonomic  control  of  small,  equine  pulmonary  arteries  and  veins  is  not   consistent  across  lung  regions,  and  the  reported  differences,  when  extrapolated  to  in  vivo   exercising  conditions  of  increased  sympathetic  input,  can  account  for  increased  capillary   pressure  in  caudodorsal  lung.     Finally,  although  exercise  causes  significant  alterations  in  mRNA  expression  in  vein   walls,  the  changes  do  not  support  initiation  of  a  remodeling  response  after  only  2  weeks  of   intense  exercise.     These  data  contribute  to  the  understanding  of  EIPH  pathogenesis,  and  highlight  the   pivotal  role  of  the  pulmonary  microvasculature,  in  particular  the  pulmonary  veins,  in  this   significant,  ubiquitous  disease.  Furthermore,  regional  differences  in  mechanical  properties   and  reactivity  profiles  of  pulmonary  vessels  of  this  caliber  are  not  reported  in  any  other   species,  and  as  such,  these  findings  may  have  farther-­‐reaching  applications  in  the  field  of   pulmonary  vascular  biology.           Copyright  by   ALICE  STACK   2014                                       This  dissertation  is  dedicated  to  Geoff,   in  recognition  of  the  many  thousands  of  miles  he  traveled.                                                       v     ACKNKOWLEDGEMENTS         I  would  like  to  express  my  sincere  gratitude  to  my  advisor  Dr.  Frederik  J.  Derksen  for  his   unfaltering  enthusiasm,  mentorship  and  support.   I  also  wish  to  acknowledge  and  thank  the  following  members  of  my  doctoral  committee  –   Dr.  William  F.  Jackson,  Dr.  Kurt  J.  Williams  and  Dr.  N.  Edward  Robinson  for  their  guidance   and  valuable  advice.                                                                       vi   TABLE  OF  CONTENTS           LIST  OF  TABLES    .........................................................................................................................................  x     LIST  OF  FIGURES    .....................................................................................................................................  xi     KEY  TO  ABBREVIATIONS    ...................................................................................................................  xiv       CHAPTER  1  ...................................................................................................................................................  1   Literature  Review    .....................................................................................................................................  1     Section  1:  Exercise-­‐induced  pulmonary  hemorrhage  .................................................  1     History    ..............................................................................................................................  1     Epidemiology  ..................................................................................................................  2     Risk  factors  for  EIPH    ..................................................................................................  3     Clinical  features    ............................................................................................................  4     Pathology    ........................................................................................................................  4     Pathogenesis  ...................................................................................................................  6     Treatment    .....................................................................................................................  10     Summary    ......................................................................................................................    12     Section  2:  The  pulmonary  microvasculature    ...............................................................  13     Vessel  anatomy  ............................................................................................................  15   Vessel  wall  mechanical  properties  ......................................................................  17     Regulation  of  pulmonary  vascular  tone  ............................................................  22                                 Autonomic  control  of  pulmonary  vascular  tone  ...........................................  23     Regional  control  of  pulmonary  vascular  tone  ................................................  25     U  46619  ...........................................................................................................................  26     Phenylephrine  ..............................................................................................................  27     Isoproterenol  ................................................................................................................  28     Methacholine  ................................................................................................................  28     Furosemide  ...................................................................................................................  29     Summary  ........................................................................................................................  31     Section  3:  Pulmonary  venous  remodeling  ......................................................................  32     Venous  remodeling  in  EIPH  ...................................................................................  32     Vascular  remodeling  .................................................................................................  33                                 Pulmonary  venous  remodeling  –  etiopathogenesis  ....................................  34                                 Role  of  venous  remodeling  in  EIPH  ....................................................................  36                                 Mechanisms  of  remodeling  ....................................................................................  38     Section  4:  Experimental  technique  development  .......................................................  44     Wire  myography  .........................................................................................................  44     APPENDIX  .....................................................................................................................................  47           vii   CHAPTER  2  .................................................................................................................................................  51   Lung  region  and  racing  affect  mechanical  properties  of  equine  pulmonary     microvasculature  ....................................................................................................................................    51     Abstract    ........................................................................................................................................  51     Introduction    ...............................................................................................................................  52     Materials  and  methods  ...........................................................................................................  54     Animals  ...........................................................................................................................  54     Tissue  acquisition  .......................................................................................................  55     Vessel  dissection  .........................................................................................................  55     Wire  myography  .........................................................................................................  56     Vessel  histology  ...........................................................................................................  57     Lung  histopathology  ..................................................................................................  58     Data  analysis  .................................................................................................................  58     Results  ............................................................................................................................................  59       Vessel  diameters  .........................................................................................................  60       Vessel  identification  ..................................................................................................  60       Length-­‐tension  data  ...................................................................................................  60       Length-­‐pressure  data  ................................................................................................  61       Lung  histopathology  ..................................................................................................  61     Discussion  .....................................................................................................................................  62                              APPENDIX  ....................................................................................................................................  68     CHAPTER  3  .................................................................................................................................................  75   Regional  heterogeneity  in  reactivity  of  small  pulmonary  blood  vessels  in  the  horse     may  predict  exercise-­‐induced  pulmonary  hemorrhage  lesion  distribution  ..................  75     Introduction  .................................................................................................................................  76     Materials  and  methods  ...........................................................................................................  78       Animals  ...........................................................................................................................  78     Tissue  acquisition  .......................................................................................................  79     Vessel  dissection  .........................................................................................................  79     Wire  myography  .........................................................................................................  80     Vessel  normalization  .................................................................................................  80     Vessel  wake-­‐up  ............................................................................................................  81     Agonist  concentration-­‐response  curves  ...........................................................  81     Vessel  fixation  ..............................................................................................................  82     Immunohistochemistry  ...........................................................................................  85     Endothelial  imaging  ...................................................................................................  83     Vessel  histology  ...........................................................................................................  83     Materials  .........................................................................................................................  84     Statistical  analyses  .....................................................................................................  84     Results  ............................................................................................................................................  85     Vessels  .............................................................................................................................  85     Vessel  dimensions  ......................................................................................................  86     U  46619  ...........................................................................................................................  86     Phenylephrine  ..............................................................................................................  86     Isoproterenol  ................................................................................................................  87     viii       Furosemide  ...................................................................................................................  87     Methacholine  ................................................................................................................  87     Mechanisms  of  methacholine  reactivity  ...........................................................  88     Endothelial  imaging  ...................................................................................................  89     Histology  ........................................................................................................................  89     Discussion  .....................................................................................................................................  89     APPENDIX  .....................................................................................................................................  98     CHAPTER  4  ..............................................................................................................................................  108   Effects  of  exercise  on  markers  of  venous  remodeling  in  lungs  of  horses  .....................  108     Abstract  ......................................................................................................................................  108     Introduction  ..............................................................................................................................  109     Materials  and  methods  ........................................................................................................  111   Animals  ........................................................................................................................  111   Experimental  protocol  ..........................................................................................  111   Exercise  protocol  .....................................................................................................  112   Pulmonary  wedge  resection  ...............................................................................  113   Harvesting  of  pulmonary  veins  .........................................................................  115   mRNA  extraction  ......................................................................................................  115   Quantitative  real-­‐time  PCR  assays  ...................................................................  116   Immunohistochemistry  ........................................................................................  118   Collagen  content  analysis  .....................................................................................  119     Statistical  analyses  ..................................................................................................  119     Results  .........................................................................................................................................  120   Discussion  ..................................................................................................................................  122     APPENDIX  ..................................................................................................................................  128     CHAPTER  5  ..............................................................................................................................................  132   Conclusions  and  future  directions  .................................................................................................  132     BIBLIOGRAPHY  ......................................................................................................................................  138                                   ix       LIST  OF  TABLES         Table  1:  Mean  vessel  diameters  at  start  point.    Values  are  means  ±  SE,  n  =  number  of   vessels.  Start  point  is  defined  as  the  smallest  diameter  at  which  a  vessel   maintains  a  small  (<0.05  mN)  but  sustained  wall  tension.  CD,  caudodorsal;   CV  cranioventral  ....................................................................................................................  74     Table  2:  Primers  and  probes  used  for  detection  of  various  genes  in  pulmonary  vein   samples  of  horses  via  qRT-­‐PCR  assay.  B2M  =  Beta-­‐2-­‐microglobulin.  EF-­‐1  =   Elongation  factor-­‐1  alpha  ................................................................................................  131                                                                 x     LIST  OF  FIGURES         Figure  1:  Equine  pulmonary  artery  on  a  pressure  myograph.  The  artery  is  secured  to   2  glass  canulae  by  suture  material  .............................................................................  48     Figure  2:  Schematic  of  a  vessel  mounted  on  wire  myograph.  Vessel  is  mounted  as  a   cylinder  on  two  stainless  steel  wires.  Each  wire  is  attached  to  a  metal  jaw,   one  of  which  can  be  moved  by  a  micrometer  screw  (right  of  image)  and   the  other  is  connected  to  a  sensitive  force  transducer  ......................................    49     Figure  3:  Schematic  diagram  of  a  vessel  in  cross  section  mounted  on  two  myograph   wires.  d  is  wire  diameter,  and  f  is  the  distance  between  the  wires.  These   measurements  are  used  to  calculate  vessel  internal  circumference  (L)   from  the  formula  L  =  (π  +  2)d  +  2f  ...............................................................................  50     Figure  4:  Verhoeff-­‐Van  Geison  stained  pulmonary  artery  and  vein  for  histologic   confirmation  of  identity  post-­‐myography.  Pulmonary  arteries  (A)  are   thicker  walled  than  veins  (B)  and  possess  both  an  internal  (arrowhead)   and  external  (arrow)  elastic  lamina  compared  to  veins  which  are  thin-­‐ walled  and  only  have  an  external  elastic  lamina  (arrow).  Bar  =  100µm  .....  69     Figure  5:  Length-­‐tension  plots  for  arteries  and  veins  from  control,  unraced  (A)  and   raced  (B)  horses.  Values  are  mean  ±  SE.  In  both  control  and  raced  horses,   veins  are  stiffer  than  arteries.  P  <  0.05  is  considered  significant  ...................  70     Figure  6:  Length-­‐tension  plots  for  caudodorsal  (CD)  and  cranioventral  (CV)  veins,   and  for  CD  and  CV  arteries  from  unraced  horses  (A  and  B  respectively)  and   from  raced  horses    (C  and  D  respectively).  Values  are  mean  ±  SE.  In  both   control  and  raced  horses,  veins  from  cranioventral  lung  are  stiffer  than   veins  from  caudodorsal  lung,  and  arteries  from  caudodorsal  lung  are   stiffer  than  arteries  from  cranioventral  lung.  P  <  0.05  is  considered   significant  ................................................................................................................................  71     Figure  7:  Length-­‐tension  plots  of  vessels  from  control  and  raced  horses.  Data  are   from  caudodorsal  (CD)  and  cranioventral  (CV)  veins  (A  and  B   respectively)  and  arteries  (C  and  D  respectively).  Values  are  means  ±  SE   Veins  from  the  caudodorsal  region  of  lungs  of  raced  horses  are  stiffer  than   those  from  unraced,  control  horses.  Arteries  from  the  cranioventral  region   of  lungs  of  raced  horses  are  stiffer  than  those  from  unraced,  control   horses.  p  <  0.05  is  considered  significant  .................................................................  72     Figure  8:  Length-­‐pressure  plots  for  vessels  from  control  and  raced  horses.  Data  are   from  caudodorsal  (CD)  and  cranioventral  (CV)  veins  (A  and  B   respectively)  and  arteries(C  and  D  respectively).  Data  are  expressed  as     xi   mean  values.  Veins  from  the  caudodorsal  region  of  lungs  of  raced  horses   are  stiffer  than  those  from  unraced,  control  horses.  Arteries  from  the   cranioventral  region  of  lungs  of  raced  horses  are  stiffer  than  those  from   unraced,  control  horses.  Hatched  regions  demarcate  the  range  of  in  vivo   intravascular  pressures  from  rest  to  intense  exercise  (10  –  70  mmHg  and   30  –  110  mmHg  for  veins  and  arteries  respectively).  P  <  0.05  is  considered   significant  ................................................................................................................................  73   Figure  9:  Cumulative  concentration  response  curves  for  U46619  for  all  arteries  and   veins  (A),  caudodorsal  (CD)  and  cranioventral  (CV)  arteries  (B),  and  CD   and  CV  veins  (C).  Values  are  means  ±  SE.  Veins  are  more  sensitive  to  U   46619  than  arteries  (A);  regional  differences  in  responses  of  CD  and  CV   arteries  do  not  exist  (p  =  0.25)(B)  whereas  CV  veins  are  more  sensitive  to   U  46619  than  CD  veins    (p  <0.0001)(C)  ....................................................................    99     Figure  10:  Cumulative  concentration  response  curves  for  isoproterenol  for   caudodorsal  (CD)  and  cranioventral  (CV)  arteries  (A),  and  CD  and  CV  veins   (B).  Values  are  means  ±  SE.  Concentration-­‐dependent  relaxation  is  greater   in  CD  compared  to  CV  arteries  (p  <  0.0001)(A),  whereas  pre-­‐contracted   veins  do  not  relax  in  response  to  isoproterenol,  in  both  CD  and  CV  regions   (B)  ..........................................................................................................................................  101       Figure  11:  Cumulative  concentration  response  curves  for  furosemide  for  all  arteries   and  veins  (A),  caudodorsal  (CD)  and  cranioventral  (CV)  arteries  (B),  and   CD  and  CV  veins  (C).  Values  are  means  ±  SE.  Mild  concentration-­‐dependent   relaxation  to  furosemide  occurs  in  arteries,  and  to  a  lesser  degree  in  veins   (A);  regional  differences  in  the  response  of  arteries  and  veins  to   furosemide  do  not  exist  (p  =  0.07  and  p  =  0.19  for  arteries  and  veins   respectively)(B  and  C  respectively).  DMSO  vehicle  (dark  triangle)  does  not   affect  arteries  and  veins  (B  and  C  respectively)  ..................................................  102     Figure  12:  Cumulative  concentration  response  curves  for  methacholine  for   caudodorsal  (CD)  and  cranioventral  (CV)  arteries  (A),  and  CD  and  CV   veins  (B).  Values  are  means  ±  SE.  Concentration-­‐dependent  relaxation   occurs  in  CV  arteries,  and  concentration-­‐dependent  constriction  occurred   in  CD  arteries  (A);  pre-­‐contracted  pulmonary  veins  relax  in  a   concentration-­‐dependent  manner,  regardless  of  region  .............................  104     Figure  13:  Cumulative  concentration  response  curves  for  CD  (A,  B,  C)  and  CV  (D,  E,  F)   arteries  comparing  responses  to  methacholine  (MCh)  only,  with  responses   to  MCh  applied  after  pre-­‐incubation  with  L-­‐NAME  (A  and  D),  indomethacin   (B  and  E),  and  L-­‐NAME  and  indomethacin  (C  and  F).  Values  are  means  ±   SE.  Pre-­‐incubation  with  L-­‐NAME  does  not  affect  CD  artery  constriction  in   response  to  MCh  (A)  whereas  CV  artery  relaxation  is  partially  inhibited  by   L-­‐NAME  (D).  Indomethacin  pre-­‐incubation  augments  CD  artery     xii   constriction,  and  partially  inhibits  CV  artery  relaxation  (B  and  E   respectively).  Pre-­‐incubation  with  both  L-­‐NAME  and  indomethacin  caused   enhanced  MCh-­‐induced  constriction  in  CD  arteries  (C)  and  a  mild   contraction  followed  by  mild  relaxation  in  CV  arteries  (D)  .........................  105     Figure  14:  Fluorescent  staining  of  CD-­‐31  on  endothelial  surface  of  equine  pulmonary   artery.    Regions  of  intact  endothelium  can  be  discerned  from   endothelium-­‐denuded,  non-­‐stained  regions  (indicated  by  arrow-­‐heads).   Scale  bar  =  100  μm  .........................................................................................................  107     Figure  15:  Mean  ±  SEM  fold  changes  in  mRNA  expression  of  10  genes  in  pulmonary   vein  samples  of  4  horses  after  a  2-­‐week  period  of  intense  exercise  versus   expression  before  exercise.  *Expression  is  significantly  (P  <  0.05)   different  between  pulmonary  vein  samples  collected  before  and  after   exercise  ..............................................................................................................................  129     Figure  16:  Least  square  mean  ±  SEM  percentage  of  collagen  in  samples  of   cranioventral  (CV)  and  caudodorsal  (CD)  regions  of  lung  of  6  horses   before  (black  bars)  and  after  (grey  bars)  a  2-­‐week  period  of  intense   exercise.  Bars  indicate  no  significant  (P  <  0.05)  differences  between  lung   samples  obtained  before  and  after  exercise  within  a  region.  *Mean  value   for  pre-­‐  and  postexercise  tissue  samples  obtained  from  caudodorsal   regions  of  lungs  are  significantly  (P  <  0.05)  higher  than  those  obtained   from  cranioventral  regions  of  lungs  .......................................................................  130                                                 xiii   BAL     KEY  TO  ABBREVIATIONS         Broncho-­‐alveolar  lavage   CD     Caudodorsal   CV       Cranioventral   EIPH     Exercise-­‐induced  pulmonary  hemorrhage   ET   Endothelin       HRmax       Maximum  heart  rate     MMP       Matrix  metalloproteinase     O.D.     Outer  diameter   Pcap     Pulmonary  capillary  pressure   Pla     Left  atrial  pressure   Ppa     Pulmonary  arterial  pressure   Ptm     Pulmonary  transmural  pressure   Pwp     Pulmonary  wedge  pressure   PDGF       Platelet-­‐derived  growth  factor   PVR     Pulmonary  vascular  resistance   qRT-­‐PCR       Quantitative  real-­‐time  PCR   TGF-­‐β     Transforming  growth  factor-­‐beta     TIMP     Tissue  inhibitor  of  metalloproteinase   VEGF     Vascular  endothelial  growth  factor         xiv   CHAPTER  1    Literature  Review     Section  1:  Exercise-­‐induced  pulmonary  hemorrhage   This  section  is  designed  to  provide  comprehensive  background  information  on  exercise-­‐ induced  pulmonary  hemorrhage  (EIPH).  Specifically,  deficits  in  our  understanding  of   pathogenic  mechanisms  will  be  addressed,  thereby  providing  justification  for  further  study  of   EIPH  pathogenesis.     History   Exercise-­‐induced  pulmonary  hemorrhage  (EIPH)  is  defined  as  the  presence  of  blood  in  the   airways  after  an  intense  bout  of  exercise,  and  is  a  ubiquitous,  performance-­‐limiting   condition  of  modern-­‐day  racehorses.  Post-­‐exercise  epistaxis  has  been  recognized  for   hundreds  of  years  however.   Markham’s  Masterpiece  containing  “all  knowledge  touching  the  curing  of  all   diseases  of  horses”  that  was  first  published  in  1610,  has  a  chapter  dedicated  to  the  topic.     “Many  horses  (especially  young  horses)  are  often  subject  to  this  bleeding  at  the  nose,  which  I   imagine  proceedeth  either  from  the  abundance  of  Blood,  or  that  the  Vein  which  endeth  in  that   Place  is  either  broken,  fretted,  or  opened...   ...it  (the  Vein)  may  be  broken  by  some  violent  strain”  (130)   The  Thoroughbred  stallion  Bartlet’s  Childers  was  born  in  1716  and  was  also  known  as   “Bleeding  Childers”  in  his  younger  years.  The  horse  was  never  raced,  which  according  to   racing  lore,  was  due  to  severe  EIPH.    He  was  full  brother  to  Flying  Childers,  who  is   1     described  in  the  General  Stud  Book  as  “the  fleetest  horse  that  was  ever  trained”(1).  Despite   being  unraced,  Bartlet’s  Childers  was  bred  extensively,  and  “got  so  many  good  horses,  that   he  is  ranked  with  the  first-­‐rate  stallions”  (1).  Indeed,  he  is  the  great-­‐grandsire  of  Eclipse  –  a   hugely  influential  stallion  to  whom  more  than  95%  of  English  Thoroughbreds  are   genetically  linked  (221).   In  his  publication  “Epistaxis  in  the  Racehorse”  published  in  1974,  Cook  suspects  that   the  epistaxis  observed  after  exercise  is  from  a  pulmonary  source,  as  he  used  a  rigid   endoscope  to  rule  out  upper  airway  (rostral  to  the  larynx)  sources  of  hemorrhage(32).  The   term  “exercise-­‐induced  pulmonary  hemorrhage”  was  first  used  in  1981  when,  through  use   of  a  flexible  endoscope,  Pascoe  et  al  confirmed  that  post-­‐exercise  epistaxis  in  horses  was  in   fact  of  pulmonary  origin  (162).       Epidemiology   It  is  worth  noting  that  EIPH  is  not  limited  to  racehorses.  EIPH  has  been  described  in  horses   that  participate  in  disciplines  other  than  racing,  such  as  polo  (220),  rodeo  (8),  and  also  in   racing  greyhounds  (42),  and  camels  (4).  There  are  also  reports  of  EIPH  in  small  numbers  of   (mostly  elite)  human  athletes,  specifically  after  running  (52),  cycling  (79)  and  swimming   (227).  Due  to  an  absence  of  routine  post-­‐exertion  diagnostics,  the  true  prevalence  of  EIPH   in  non-­‐racing  horses,  and  in  other  species  is  not  known.  However  in  all  reports,  the  level  of   exercise  resulting  in  EIPH  can  be  considered  “intense.”     If  epistaxis  is  used  as  the  diagnostic  criterion,  reported  prevalence  of  EIPH  in   Thoroughbreds  is  actually  low.  For  example,  in  Thoroughbreds  racing  in  South  Africa,  and   Japan,  the  epistaxis  rate  is  less  than  0.2  %  (205,  226).  When  endoscopy  of  the  upper   2     airways  including  the  trachea,  is  performed  within  2  hours  of  racing,  reported  EIPH   prevalence  is  much  higher.  Based  on  a  single  post  race  endoscopic  examination,  between   62  and  75  %  of  racing  Thoroughbreds,  Standardbreds  and  Quarterhorses  experience  EIPH   (18,  68,  107,  172).  When  horses  are  evaluated  after  multiple  races,  it  is  reported  that  87%   to  100%  of  Thoroughbreds  and  Standardbreds  have  evidence  of  EIPH  after  one  of  three   races  (18,  107).     Post-­‐exercise  broncho-­‐alveolar  lavage  (BAL),  which  can  be  performed  up  to  a   number  of  weeks  after  an  exercise  bout,  is  also  used  to  diagnose  EIPH  based  on  the   presence  of  free  red  blood  cells  and  hemosiderin-­‐laden  macrophages  in  lavage  fluid.    Using   BAL  as  the  diagnostic  technique,  EIPH  prevalence  in  Thoroughbreds  approaches  100%   (131).     Risk  factors  for  EIPH   Regardless  of  species,  or  the  type  of  racing,  EIPH  is  typically  associated  with  intense   exercise.  Although  underlying  pathology,  for  example  atrial  fibrillation,  may  increase  an   individual  animal’s  risk  of  experiencing  EIPH  (36),  this  is  not  a  common,  concurrent  clinical   finding  in  horses  with  EIPH.     Under  normal  circumstances,  numerous  risk  factors  have  been  purported  to   contribute  to  EIPH  risk.  Horses  are  at  increased  risk  of  EIPH  that  manifests  as  epistaxis   when  they  race  over  fences  (versus  flat  racing),  and  when  they  are  older  (145,  205).  When   risk  factors  associated  with  endoscopically-­‐diagnosed  EIPH  are  evaluated,  it  transpires  that   increased  EIPH  risk  associated  with  increasing  age  is  probably  due  to  a  higher  number  of   3     race-­‐starts  (and  presumably  days  in  training)  in  older  animals  compared  to  younger  ones   (75).     Clinical  features   Other  than  epistaxis  (a  relatively  rare  occurrence),  and  anecdotal  reports  of  increased   swallowing  post-­‐exercise,  EIPH  is  not  associated  with  clinically  detectable  symptoms.     However  it  has  long  been  believed  that  EIPH  is  associated  with  compromised  racing   performance,  and  this  was  demonstrated  conclusively  in  2005  based  on  evaluation  of  a   population  of  racehorses  in  Australia.    This  report  employs  an  endoscopic  scoring  system   which  has  been  widely  adopted  as  standard,  and  demonstrated  to  have  excellent  inter-­‐ observer  reliability  (69).  Using  this  system,  horses  with  no  blood  in  the  trachea  are   assigned  grade  0,  and  horses  with  blood  covering  >90%  of  the  tracheal  surface  are  assigned   grade  4.  Horses  with  mild  (grade  1)  or  no  EIPH  are  4  times  as  likely  to  win  and  almost   twice  as  likely  to  place  in  a  race  compared  to  horses  with  EIPH  grade  2,  3,  or  4  (70).       Pathology   A  series  of  publications  by  O’Callaghan  et  al,  contain  some  of  the  first  descriptions  of  EIPH-­‐ associated  gross  and  microscopic  pathology.  26  horses  that  were  retired  from  racing  due  to   severe  EIPH  were  studied.  Gross  pathologic  changes  included  dark  blue-­‐black  discoloration   of  caudodorsal  lung,  with  up  to  45%  of  lung  affected,  and  these  areas  were  firmer  than   normal  lung  tissue  (150,  151).  Hemosiderin  accumulation,  angiogenesis  (due  to  bronchial   circulation  proliferation),  bronchiolitis  and  extensive  fibrosis  are  also  described  (151,  152).   These  findings  are  consistent  with  a  subsequent  publication  on  the  topic  (157).  However,   4     in  two  publications  from  investigators  at  Michigan  State  University  that  evaluate   pulmonary  pathology  of  racehorses  from  both  Singapore  and  North  America,  bronchiolitis   is  not  reported  to  be  a  consistently  occurring  lesion  (231,  233).  A  likely  reason  for  this   discrepancy  is  due  to  the  fact  that  inflammatory  airway  disease  is  common  in  young  horses   in  training  (237),  and  reports  of  small  airway  pathology  in  EIPH-­‐affected  lung  actually   reflect  coincident  disease  processes  whose  pathogeneses  are  unrelated.     A  novel  lesion  -­‐  that  of  remodeling  of  small  intra-­‐lobular  pulmonary  veins  is   described  in  the  caudodorsal  lung  tissue  of  both  the  Singapore  and  North  American  cohorts   however  (231,  233).  Remodeling  affects  pulmonary  veins  up  to  approximately  200  μm   outer  diameter  (O.D.)  and  is  characterized  by  expansion  of  the  adventitia  by  mature   collagen  in  affected  vessel  walls.  Collagen  is  also  found  between  the  external  elastic  lamina   and  the  vein  lumen.  In  some  veins,  tunica  media  and  tunica  intima  hypertrophy  is  also   observed,  and  in  severely-­‐affected  vessels,  luminal  area  appears  markedly  reduced  (231).   Morphometric  analyses  support  these  observations.  In  lung  tissue  from  EIPH-­‐affected   horses,  veins  are  significantly  thicker-­‐walled  in  dorsal  lung  and  walls  are  thickest  in  the   most  caudodorsal  region  (38).  Veins  also  have  reduced  luminal  area  in  the  most  severely   affected  lung  regions,  compared  to  vessels  from  less  affected,  or  normal  lung  tissue  (38).     A  recent  detailed,  systematic  evaluation  of  EIPH-­‐affected  lungs  supplies  more   information  about  venous  remodeling  in  the  context  of  other  EIPH  pathologic  features.   Venous  remodeling,  hemosiderin  accumulation  and  fibrosis  are  more  common,  and  most   severe  in  caudodorsal  lung,  compared  to  cranial  and  ventral  lung  (233).      In  93%  of  1,400   randomly  selected  samples,  venous  remodeling  was  present  with  hemosiderin,  and  in  the   remaining  samples,  venous  remodeling  was  mild.  Also,  interstitial  fibrosis  was  rarely   5     present  (0.3%  of  samples  only)  without  venous  remodeling.  These  data  strongly  implicate   venous  remodeling  as  a  lesion  of  interest  in  EIPH,  and  likely  one  that  occurs  early  in  the   disease  process,  and  is  central  to  EIPH  pathogenesis.       Pathogenesis   A  number  of  theories  of  EIPH  pathogenesis  have  been  proposed  and  include  some  that   implicate  airway  inflammation  as  a  cause  (153,  178),  and  another  that  attributes   hemorrhage  to  lung  trauma  resulting  from  transmission  of  a  shock  wave  from  the  ground   to  the  lung  during  galloping  (184).  However  neither  of  these  theories  can  adequately   explain  the  constellation  of  lesions  that  are  associated  with  EIPH,  nor  the  distinct   caudodorsal  distribution  of  EIPH  pathology.     In  the  early  1990s  it  was  reported  that  mean  pulmonary  artery  pressure  in  the   galloping  horse  was  in  the  order  of  90  –  110  mmHg,  and  that  pulmonary  wedge  pressures   and  left  atrial  pressures  were  56  and  70  mmHg  respectively  (88,  124).  These  values  deliver   estimated  intravascular  capillary  pressures  of  72  –  83  mmHg  (124,  127).  At  the  same  time,   a  breakthrough  publication  by  West  et  al  described  pulmonary  capillary  wall  disruption  in   lung  tissue  from  horses  that  had  recently  exercised  on  a  treadmill.  Extravascular  red  cells   were  found  both  in  the  pulmonary  interstitium  and  in  surrounding  alveolar  airspaces   (230).  These  data  suggest  that  the  pulmonary  circulation  is  the  source  of  airway   hemorrhage,  and  the  authors  went  on  to  propose  that  capillary  rupture  was  secondary  to   the  high  pulmonary  capillary  pressures  during  exercise  (229).  Further  support  for  the   capillary  stress-­‐failure  theory  was  provided  by  Birks  et  al  who  demonstrated  that  the   estimated  threshold  for  breaking  strength  of  equine  pulmonary  capillaries  was  exceeded  at   6     a  value  of  75  mmHg  transmural  pressure  (Ptm)  (17).  This  value  in  the  horse  is  higher  than   that  of  rabbit  or  dog  pulmonary  capillaries  (16),  and  based  on  multiple  studies,  falls  within   the  range  of  estimated  pulmonary  capillary  pressures  during  exercise  (124,  127)   particularly  when  negative  alveolar  pressure  (a  component  of  Ptm)  is  taken  into  account   (106).     As  a  point  of  interest,  the  reason  that  the  extremely  thin-­‐walled,  and  apparently   fragile  capillary  can  withstand  very  high  intravascular  pressures  (up  to  a  certain  point)  is   not  due  to  the  inherent  strength  of  its  wall,  but  rather  its  very  small  diameter  (5  –  8  μm)   (210),  as  predicted  by  the  Laplace  relationship  between  wall  tension  (T),  intraluminal   pressure  (P)  and  vessel  radius  (r)   T  =  P  x  r     At  normal,  resting,  pulmonary  capillary  pressures,  the  tension  that  must  be  maintained  by   the  capillary  wall  to  resist  distension  and  rupture  is  only  16  dynes/cm.  This  is   approximately  3000  times  less  than  the  breaking  strength  of  a  piece  of  wet  tissue  paper   (whose  breaking  strength  is  50,000  dynes/cm)  (20)!     Pulmonary  capillary  pressure  is  determined  in  part  by  the  resistance  to  flow  in  the   arteries  and  veins  that  supply  and  drain  the  capillaries.  In  turn,  resistance  to  flow  is   strongly  influenced  by  vessel  diameter.  Vessel  diameter  is  determined  by  the  vessel  wall   structure  (a  so-­‐called  passive  factor)  that  acts  to  resist  distension,  and  vascular  reactivity   (an  active  factor),  which  is  controlled  by  smooth  muscle  contraction/relaxation  (11).   Increased  resistance  in  the  venous  compartment,  and/or  decreased  resistance  in  the   arterial  compartment  are  both  conditions  under  which  pulmonary  capillary  pressure  will   increase,  and  potentially  approach  arterial  values.  Regional  differences  in  pulmonary  vessel   7     reactivity  are  reported  in  large-­‐caliber  pulmonary  arteries  in  the  pig,  and  the  horse  (164,   176).  Should  regional  differences  in  the  determinants  of  small  arterial  and  venous  diameter   exist  in  a  pattern  that  causes  highest  pulmonary  capillary  pressures  in  caudodorsal  lung,   this  could  provide  a  reason  for  the  predilection  of  pathology  for  this  lung  region.     A  study  using  microspheres  demonstrated  that  pulmonary  blood  flow  distribution   in  the  horse  is  not  gravitationally  dependent.  Blood  flow  is  highest  in  dorsal  regions,   compared  to  ventral  ones,  and  in  caudal  lung  compared  to  cranial  (76).  Furthermore,  blood   flow  within  isogravitational  planes  displays  significant  heterogeneity  (average  coefficient   of  variation  30.7%).  A  recent  publication  from  our  laboratory  demonstrated  that  EIPH   pathology  (venous  remodeling,  hemosiderin  and  interstitial  fibrosis)  distribution  matches   that  of  pulmonary  blood  flow  (233).  It  is  also  worth  noting  that  exercise  does  not  change   the  overall  pattern  of  blood  flow,  but  does  result  in  yet  further  increased  flow  to  dorsal   lung  (15),  while  sparing  ventral  lung.    A  possible  reason  for  redistribution  of  blood  to  this   region  during  exercise  include  regional  differences  in  vascular  reactivity,  which  has  been   demonstrated  in  large  (6  mm  O.D.)  equine  pulmonary  arteries  (164).       That  EIPH  lesion  distribution  matches  blood  flow  distribution  (233)  is  particularly   interesting  when  venous  remodeling  pathogenesis  is  considered.  Vascular  remodeling,  and   specifically  pulmonary  venous  remodeling  is  a  classic  adaptive  response  to  increased   intravascular  flow  and/or  pressure  (64,  86).  The  region  of  lungs  in  which  veins  remodel  in   EPIH  is  the  region  that  also  receives  the  highest  flow  during  exercise  (15).  Remodeled  veins   have  increased  wall  collagen  content  and  reduced  lumen  diameter  (38).  It  is  likely  that   these  changes  decrease  venous  wall  compliance,  and  may  effectively  impede  capillary   drainage  and  increase  pulmonary  capillary  pressure  as  a  result.     8     Whether  EIPH  pathology  can  be  reproduced  by  the  presence  of  blood  in  the  airway   (i.e.  without  exercise)  has  been  investigated.  Neither  a  single  nor  repeated  instillations  of   autologous  blood  into  the  small  airways  resulted  in  reproduction  of  EIPH-­‐associated   interstitial  fibrosis  (39,  232).  A  reasonable  interpretation  of  these  data  is  that  capillary   stress  failure  and  presumably,  interstitial  hemorrhage  are  required  for  development  of  the   fibrotic  component  of  EIPH  pathology.  Simple  capillary  stress  failure  alone  does  not  take   into  account  the  distinctive  regional  pattern  of  the  EIPH  lesion  however.     Taking  all  of  this  information  into  account  led  to  the  development  of  a  more  detailed   theory  of  pathogenesis,  which  follows:   During  intense  exercise  horses  experience  elevated  pulmonary  artery,  left  atrial  and   pulmonary  capillary  pressures.  In  caudodorsal  regions  of  lung  that  already  experience   highest  flow,  regional  differences  in  determinants  of  arterial  and  venous  vessel  diameter   promote  even  higher  pulmonary  capillary  pressures.  Pulmonary  capillary  breaking   strength  is  exceeded  resulting  in  stress  failure  of  some  capillaries,  and  extravasation  of  red   cells  and  airway  hemorrhage.  During  both  training  and  racing,  repeated  episodes  of  high   pulmonary  blood  flow  and  pressures,  particularly  in  the  highest  flow  regions  within   caudodorsal  lung,  result  in  pulmonary  venous  remodeling.  Remodeled  pulmonary  veins  are   less  compliant  than  normal  veins  and  failure  of  these  vessels  to  distend  normally  further   increases  pulmonary  capillary  pressures,  which  in  turn  augments  stress-­‐failure  and   hemorrhage.  The  increased  risk  of  EIPH  for  horses  with  more  race  starts  is  a  reflection  of   ongoing  venous  pathology  that  results  from  transient  but  recurrent  exercise-­‐associated   pulmonary  hypertension.     9     It’s  clear  that  there  remain  gaps  in  our  understanding  of  EIPH  pathogenesis   however,  and  my  outlined  theory  of  pathogenesis  requires  more  detailed  investigations  to   provide  corroboration  for  all  of  its  components,  in  particular  regional  control  of  pulmonary   capillary  pressure,  and  the  mechanisms  and  physiologic  ramifications  of  venous   remodeling.  The  overarching  aim  of  this  dissertation  therefore  is  to  further  investigate  the   equine  pulmonary  microvasculature  in  order  to  better  elucidate  EIPH  pathogenic   mechanisms.     To  reach  this  goal  I  investigated  the  effect  of  exercise  on  pulmonary  veins   specifically,  as  these  vessels  are  remodeled  in  EIPH-­‐affected  lung  and  I  hypothesize  that   this  remodeling  affects  venous  compliance.  Vein  wall  gene  and  protein  expression,  and   pulmonary  venous  mechanical  characteristics  after  exercise  are  evaluated  in  studies  1  and   3.     I  also  evaluated  the  mechanisms  that  control  small  pulmonary  artery  and  vein  tone   in  the  horse  lung,  and  specifically  whether  or  not  these  mechanisms  exhibit  a  regionally   heterogeneous  pattern.  The  rationale  for  this  component  is  that  these  vessels  directly   impact  pulmonary  capillary  pressure.  Furthermore,  EIPH  pathology  has  a  distinct  regional   distribution.    In  order  to  understand  EIPH  pathogenesis,  our  understanding  of  how  the  tone   of  these  vessels  is  regulated  during  exercise,  and  whether  regional  differences  in  these   control  mechanisms  needs  to  be  investigated.     Treatment     10   Many  pharmacologic  agents  have  been  used  to  treat  EIPH,  for  the  most  part  in  the  absence   of  proof  of  efficacy.  For  the  purposes  of  this  summary,  discussion  will  be  limited  to  the   most  widely  used  therapy,  and  the  only  one  with  evidence  to  support  its  use,  furosemide.     Furosemide  (4-­‐chloro-­‐N-­‐2[(furylmethyl)amino]-­‐5-­‐sulfamoylbenzoic  acid)  is  a  high-­‐ ceiling  or  loop  diuretic  that  is  licensed  in  the  United  States  for  use  in  horses  for  the   treatment  of  edema  (e.g.  pulmonary  congestion,  ascites)  associated  with  cardiac   insufficiency,  and  acute  non-­‐inflammatory  tissue  edema   (http://www.accessdata.fda.gov/scripts/animaldrugsatfda/details.cfm?dn=034-­‐478).     Furosemide’s  use  as  a  pre-­‐race  treatment  in  horses  became  commonplace  in  the  1970s,  and   the  drug  is  currently  used  in  excess  of  90%  of  race  starts  in  North  America  (74).  High   quality  evidence  of  its  efficacy  in  EIPH  treatment  was  finally  provided  in  2009  when  results   of  a  blinded,  placebo-­‐controlled,  crossover  study  of  167  racehorses  were  published.  Horses   that  were  treated  with  a  saline  placebo  before  racing  were  approximately  4  times  as  likely   to  develop  EIPH  than  those  horses  that  received  furosemide  (74).  Furosemide  did  not   prevent  EIPH  in  this  population,  but  almost  70%  of  horses  that  received  furosemide  and   experienced  EIPH  had  a  reduced  severity  score  of  one  or  more  grades  (69)  compared  to  the   placebo  treatment  arm  (74).     Furosemide  is  associated  with  enhanced  racing  performance  in  both  Thoroughbred  and   Standardbred  horses  (60,  192),  and  while  it  is  proposed  by  many  that  this  is  due  to  its   amelioration  of  performance-­‐limiting  EIPH,  data  that  can  prove  this  association  have  not   been  published  to  date.     The  mechanism  of  action  of  furosemide  in  EIPH  is  attributed  to  its  diuretic  effect,  and  the   resulting  8%  reduction  in  plasma  volume  (72).  This  is  turn  is  associated  with  a  rapid  and     11   sustained  decrease  in  right  atrial  pulmonary  artery  pressure  (71,  158).  Pulmonary  wedge   and  capillary  pressures  are  also  reduced  by  approximately  20  %  during  exercise  after   treatment  with  furosemide  (54,  123).  As  these  effects  are  abolished  when  post-­‐furosemide   fluid  losses  are  replaced  with  intravenous  fluids  before  exercise  (71),  the  effect  of   furosemide  on  EIPH  is  probably  due  in  large  part  to  attenuation  of  intravascular  pulmonary   pressures  during  exercise.  However,  it  is  reported  by  some  that  cardiac  output  during   exercise  is  unaffected  by  furosemide  administration,  and  furthermore,  that  pulmonary   blood  flow  distribution  is  altered  in  a  manner  that  spares  caudodorsal  lung  (43).  In  the  face   of  similar  cardiac  output,  altered  blood  flow  distribution  has  to  be  attributed  to  changes  in   vascular  reactivity.  Furosemide  is  reported  to  be  a  systemic  and  pulmonary  venodilator  in   humans  and  dogs  respectively  (59,  170).  I  propose  therefore  the  effect  of  furosemide  on   EIPH  is  attributable  at  least  in  part  to  its  action  on  pulmonary  veins,  and  not  solely  to   plasma  volume  reduction.  This  is  investigated  in  the  second  study  described  in  this   dissertation.         Summary   EIPH  is  a  highly  prevalent  condition  of  a  large  population  of  athletic  horses,  which  limits   their  performance,  and  results  in  significant  pulmonary  pathology.  In  the  absence  of   thorough  understanding  of  underlying  disease  mechanisms,  effective  therapies  and   management  strategies  for  EIPH  will  remain  elusive.           12   Section  2:  The  pulmonary  microvasculature     This  section  is  designed  to  highlight  why  detailed  study  of  the  pulmonary  microvasculature  is   warranted  in  the  investigation  of  EIPH  pathogenic  mechanisms.  To  achieve  this,  vascular  wall   mechanical  properties,  and  small  vessel  reactivity  will  be  discussed.  This  will  provide  context   and  rationale  for  the  following  studies:  “Lung  region  and  racing  affect  mechanical  properties   of  equine  pulmonary  microvasculature”  and  “Regional  differences  exist  in  autonomic  control   of  equine  pulmonary  vascular  reactivity.”     The  pulmonary  circulation   The  earliest  descriptions  of  the  pulmonary  circulation  are  attributed  to  Michael  Servetus   (b.  1511),  a  French  physician  and  theologian  who  was  burned  at  the  stake  for  heresy  in   1553  (197).  He  referred  to  the  pulmonary  circulation  as  the  “vital  spirit...a  mixture  of   inhaled  air  and  subtle  blood,”  and  refuted  the  commonly  held  belief  at  the  time  that  blood   moved  across  the  septum  of  the  heart,  instead  proposing  its  actual  route  through  the  lungs.     Servetus’  reasoning  is  flawless,  but  proved  very  unpopular  at  the  time.   “Many  facts  prove  the  reality  of  this  communication  of  the  blood  through  the  lungs...a   confirmation  is  provided  by  the  huge  width  of  the  arterial  vein  [the  pulmonary  artery].  The   arterial  vein  itself  would  never  have  been  constructed  this  way,  nor  would  it  be  so  wide,  and  it   would  not  be  forwarding  such  a  powerful  jet  of  the  purest  of  blood  from  the  heart  to  the  lungs   simply  in  order  to  provide  nourishment  for  the  lungs;  the  heart  would  never  have  placed  itself   in  the  service  of  the  lungs  in  this  manner.”       13   Needless  to  say,  since  Servetus’  time,  our  understanding  of  the  pulmonary   circulation  anatomy  and  function  has  advanced  considerably.  Evidence  that  the  pulmonary   circulation  is  the  source  of  hemorrhage  in  EIPH  was  published  in  1993  by  John  West  and   colleagues  (230),  and  this  group  of  investigators  was  the  first  to  propose  that  stress-­‐failure   of  pulmonary  capillaries  occurs  secondary  to  the  high  intravascular,  and  specifically  high   capillary  pressures  that  normally  occur  in  the  horse  during  exercise  (229).     Elucidation  of  the  factors  that  determine  this  capillary  pressure  therefore,  should  be   considered  crucial  for  complete  understanding  of  EIPH  pathogenesis.     Both  pulmonary  arterial  and  left  atrial  pressures  determine  pulmonary  capillary   pressure.  Pappenheimer  and  Soto-­‐Riviera  determined  capillary  pressure  in  an  isolated   dog/cat  limb  by  use  of  the  isogravimetric  technique,  and  demonstrated  that  it  required  a   significantly  smaller  increase  in  venous  pressure,  compared  with  arterial  pressure,  to  cause   a  given  increase  in  filtration  (i.e.  pressure)  across  the  capillary  bed  (160).  Gaar  and   colleagues  employed  the  same  technique  to  estimate  pulmonary  capillary  pressure,  and   arterial  and  venous  resistance  to  flow  in  the  isolated  dog  lung  in  1967  (49).  They   determined  that  under  normal  conditions  of  flow  (that  do  not  cause  capillary  filtration),   pulmonary  arteries  and  veins  contribute  56  and  44%  respectively  to  pulmonary  vascular   resistance,  and  that  capillary  pressure  Pcap  can  be  calculated  as  follows:   Pcap  =  Pla  +  0.4  x  (Ppa  –  Pla)   where  Pla  and  Ppa  are  left  atrial  and  pulmonary  artery  pressures  respectively  (141).     This  equation  does  not  hold  true  in  conditions  of  high  flow  rates  however,  such  as  are   experienced  by  the  horse  whose  cardiac  output  increases  at  least  6  fold  during  exercise   (44).  As  flow  is  increased,  resistance  in  the  arterial  compartment  decreases,  whereas  that     14   of  the  venous  compartment  increases.  At  10  times  normal  flow  in  an  isolated  dog  lung  lobe,   the  (venous)  compartment  downstream  of  the  capillary  bed  contributes  86%  of  pulmonary   resistance  to  flow  (238).           More  recent  descriptions  of  EIPH  pathology  clearly  indicate  that  pathogenic   mechanisms  are  more  complex  than  simple  stress-­‐failure  (231),  and  that  pulmonary   venous  remodeling,  whose  distribution  can  be  predicted  by  that  of  pulmonary  blood  flow,   is  also  a  fundamental  process  underpinning  EIPH  pathogenesis  (233).  As  it  is  highly  likely   that  venous  wall  remodeling  increases  resistance  to  flow  above  normal  in  a  vascular   compartment  that  already  contributes  the  majority  of  pulmonary  vascular  resistance  in   high  flow  states,  pulmonary  veins  in  particular  are  considered  worthy  of  further   investigation  and  scrutiny  in  the  context  of  EIPH.     The  pulmonary  circulation,  and  specifically  the  arteries  and  veins  that  supply  and   drain  the  pulmonary  capillaries,  therefore  form  the  central  focus  of  all  experiments   described  in  this  dissertation.     Vessel  anatomy   EIPH-­‐associated  venous  remodeling  is  reported  in  equine  pulmonary  vessels  that  are   between  100  and  200  μm  in  outer  diameter  (O.D.)  (231).  In  humans,  pulmonary  arteries   measuring  less  than  100  μm  O.D.  are  (arbitrarily)  classified  as  arterioles  by  some  authors   (the  term  is  avoided  by  others  (34)),  and  have  varying  amounts  of  smooth  muscle  (95).  In   my  studies  on  equine  pulmonary  vasculature  I  selected  muscular  pulmonary  arteries  and   veins  that  range  between  100  and  400  μm  O.D.  in  order  to  encompasses  vessels  within  the     15   diameter  range  that  are  immediately  upstream  from  pulmonary  arterioles,  and  veins  from   within  the  diameter  range  that  is  reported  to  remodel.   Based  on  the  Strahler  ordering  system,  wherein  order  1  is  the  smallest,  noncapillary   branch  of  the  pulmonary  arterial  (or  venous)  network,  the  average  diameter  ratio  across   multiple  species  for  increasing  order  is  1.65  ±  0.11  (210).  This  system  is  suitable  for   application  to  the  pulmonary  circulation  due  to  the  irregular  branching  pattern,  and  many   “generations”  of  vessels  can  be  attributed  to  the  same  order  if  their  diameters  are  similar.   Human  lungs  have  17  orders  of  pulmonary  artery  branches  (80).  Based  on  a  starting   diameter  of  approximately  15  μm  in  first  order  arterioles,  with  an  increase  in  diameter  of   65  %  with  each  new  branch  order,  the  equine  pulmonary  vessels  (both  arteries  and  veins)   used  in  these  studies  range  between  orders  5  and  7.     In  order  to  perform  experiments  on  small  caliber  pulmonary  arteries  and  veins,   accurate  and  reliable  identification  of  these  vessels  in  the  pulmonary  parenchyma  during   vessel  dissection  is  a  key  technique.  McLaughlin  and  colleagues  classified  the  equine  lung   as  a  type  III  lung,  based  in  part  on  their  observation  that  the  pulmonary  veins  did  not   always  travel  with  bronchi  and  pulmonary  arteries,  tending  instead  to  take  a  “more  direct,   independent  course  to  the  hilum”  (132).  Pulmonary  arteries  on  the  other  hand,  are   generally  accompanied  by  a  paired  airway,  and  share  a  common  connective  tissue  sheath   (210).  These  spatial  descriptors  provide  the  basic  criteria  for  discerning  small  pulmonary   arteries  from  intralobular  pulmonary  veins  in  equine  lung  tissue  during  dissection.     Histological  confirmation  of  vessel  identity  was  also  used  as  a  secondary   identification  technique  in  these  experiments,  as  relying  exclusively  on  the  anatomic   distribution  described  above  may  be  prone  to  error  for  the  following  reasons.  In  peripheral     16   equine  pulmonary  vessels  there  is  a  tendency  for  pulmonary  veins  to  be  more  closely   associated  with  the  bronchovascular  bundle  in  Type  III  lungs  (132),  although  in  this   author’s  experience,  veins  are  generally  discernable  from  arteries  in  such  a  triad,  in  that   they  are  thinner-­‐walled,  and  not  as  adherent  to  the  airway  as  pulmonary  arteries  typically   are.  Also,  supernumerary  arteries  have  been  described  in  the  lungs  of  humans,  sheep,  pigs,   cows  and  rats  (41,  185).  These  are  arteries  that  branch  from  the  parent  pulmonary  artery   at  90  degrees  and  travel  unaccompanied  by  an  airway  through  pulmonary  parenchyma   (210).  Should  these  arteries  exist  in  horses,  they  could  be  mistaken  as  intraparenchymal   pulmonary  veins  based  on  the  absence  of  an  adjacent  airway.     The  relatively  thick  tunica  media  of  muscular  pulmonary  arteries  such  as  those   studied  is  contained  by  both  an  internal  and  an  external  elastic  lamina,  whereas  pulmonary   veins  possess  only  an  external  elastic  lamina  that  separates  the  tunica  adventitia  from  a   thin  tunica  media  (which  contributes  between  33  and  60%  less  to  wall  thickness  in  veins   than  it  does  in  pulmonary  arteries)  (134,  175,  210).  Staining  of  vessels  segments  in  cross   section  with  hematoxylin  and  eosin,  and  Verhoef-­‐Van  Gieson  (to  stain  elastin  specifically)   was  utilized  to  discern  between  arteries  and  veins,  and  confirm  or  refute  their  dissection   identity  based  on  tunica  media  thickness  and  number  of  laminae.       Vessel  wall  mechanical  properties   As  early  as  1880,  Charles  Roy  published  results  of  experiments  demonstrating  that  arterial   walls,  amongst  other  tissues,  did  not  conform  to  Hooke’s  Law  for  elastic  materials  (179).  In   general  terms,  Hooke’s  law  states  that  strain  (deformation)  of  an  elastic  material  is   proportional  to  the  stress  (force)  applied  to  it.  In  other  words,  with  the  application  of     17   increasing  loads,  true  elastic  materials  become  more  extensible.  In  contrast,  Roy  observed   that  arteries  demonstrate  increasing  resistance  to  stretch  as  applied  stress  is  increased   (179).     The  ability  of  a  vessel  to  resist  stretch  is  an  important  quality,  as  it  is  this  passive   tension  (which  can  be  calculated  using  the  Laplace  relationship)  that  counteracts  the   tendency  of  the  blood  pressure  to  distend  a  vessel  indefinitely  (or  to  rupture),  and  this   maintenance  passive  tension  can  be  achieved  without  expenditure  of  energy  (20).  The   main  structural  components  of  vessel  (other  than  capillary)  walls  are  endothelial  cells,   vascular  smooth  muscle,  elastin  and  collagen.  The  contributions  of  endothelial  cells  and   vascular  smooth  muscle  to  the  ability  of  a  vessel  to  passively  resist  stretch  are  considered   minimal  (20),  however  the  role  of  elastin  and  collagen  in  conferring  this  property  on  a   vessel  wall  have  been  investigated  in  some  detail.  In  1957  a  key  manuscript  published  by   Roach  and  Burton  entitled  “the  reason  for  the  shape  of  the  distensibility  curves  of  arteries”   explained  Roy’s  observations  using  an  eloquently-­‐designed  study  (177).  Using  human  iliac   arteries,  these  investigators  generated  pressure-­‐volume  curves,  which  were  subsequently   converted  into  tension-­‐length  curves  using  the  Laplace  relationship,  from  3  sets  of  vessels:   these  comprised  of  control  vessels,  arteries  that  had  undergone  formic  acid  digestion  to   selectively  remove  collagen,  and  arteries  that  undergone  a  trypsin  digestion  to  remove  all   elastin  fibers.  By  subtraction,  and  comparison  with  control  vessels,  the  individual   contributions  of  elastin  and  collagen  to  the  mechanical  behavior  of  an  arterial  wall  under   stress  were  elucidated.  In  summary,  it  can  be  deduced  from  their  data  that  elastin  is   responsible  for  wall  tension  at  low  pressures  (i.e.  the  lower,  flatter  portion  of  a  typical   arterial  length-­‐tension  curve)  whereas  collagen  is  responsible  at  higher  pressures  (i.e.  in     18   the  steeper  portion  of  the  curve)  (177).  At  low  pressures,  collagen  remains  unstretched  and   effectively  coiled,  however  with  increasing  pressures  collagen  is  stretched  and  contributes   more  to  vessel  wall  tension.  Roach  and  Burton’s  data  speak  to  the  fact  that  the  Young’s   (elastic)  modulus  of  collagen  is  many  100-­‐fold  higher  than  that  of  elastin,  indicating  that   the  former  can  withstand  much  more  stress  without  significant  deformation  than  elastin   can  (20).   That  pulmonary  arteries  are  more  distensible  that  pulmonary  veins  has  been   described  in  the  rabbit  (22),  the  dog  (121)  and  in  large  pulmonary  arteries  and  veins  in   people  (9,  119).  This  difference  is  attributed  to  the  greater  proportion  of  collagen  in  venous   compared  to  arterial  walls  (121).   Distensibility  of  the  pulmonary  circulation  is  a  mechanical  property  that  reflects  the   %  change  in  diameter  of  a  vessel  /  mmHg  pressure,  and  is  determined  in  large  part  by   vessel  wall  structure.  Distensibility  is  denoted  by  the  distensibility  coefficient  α.  Overall   distensibility  of  the  human  pulmonary  circulation  (arteries  and  veins)  is  estimated  at  0.02   (i.e.  a  2%  change  in  vessel  diameter  for  each  mmHg  increase  in  pressure),  whereas  that  of   the  horse  is  lower,  and  calculated  at  0.01  (174),  although  these  particular  figures  are   calculated  from  in  vivo  pulmonary  arterial  and  pulmonary  wedge  pressures,  therefore  the   impact  of  changes  in  vessel  diameter  resulting  from  active  (smooth  muscle-­‐mediated)   alterations  in  vessel  tone  must  be  considered  superimposed  on  distensibility  determined   by  mechanical  properties  of  the  vessel  walls.  That  being  said,  distensibility  of  isolated   pulmonary  vessels  of  varying  size,  in  multiple  species  is  also  approximately  2%  (102),  and   for  the  most  part,  this  figure  is  a  reflection  of  these  isolated  vessels’  mechanical  properties   only.  This  is  an  interesting  observation  that  suggests  that  active  changes  in  vessel  tone  have     19   a  relatively  small  impact  on  overall  distensibility  of  the  pulmonary  circulation,  and  that   mechanical  properties  of  vessels  are  worthy  of  consideration  in  studies  of  pulmonary   circulation  hemodynamics.   It  seems  paradoxical  that  the  distensibility  of  arteries  and  veins  of  the  pulmonary   circulation  has  been  demonstrated  to  be  relatively  independent  of  vessel  diameter  in   multiple  species  (5,  33,  94),  although  distensibility  between  vessels  in  same  size  range  does   differ.  It  is  proposed  by  some  authors  that  the  constant  nature  of  this  parameter  effectively   preserves  the  overall  distribution  pattern  of  cardiac  output  to  the  lungs  when  flow  is   increased  (102).  The  reason  suggested  for  why  this  is  a  desirable  characteristic  is  that  if   distensibility  of  an  individual  vessel  was  diameter  dependent,  for  example  higher   distensibility  seen  only  in  larger  vessels,  when  cardiac  output  increased,  flow  would   preferentially  be  directed  to  larger  vessels  over  smaller  ones  at  a  bifurcation  of  two  vessels   of  different  diameters,  and  flow  (mal)redistribution  would  result  (94).  If  this  diameter-­‐ independent  characteristic  of  vascular  distensibility  is  also  true  of  the  pulmonary  arteries   and  veins  of  the  horse,  it  could  explain  why  the  distribution  of  pulmonary  blood  flow  does   not  change  a  great  deal  from  rest  to  exercise  in  horses  (15).     To  the  best  of  my  knowledge,  regional  differences  in  pulmonary  vessel  mechanical   properties  have  not  been  reported  in  any  species  to  date,  and  without  such  a  precedent,  it   is  difficult  to  predict  that  they  occur  in  the  horse.  However,  should  regional  heterogeneity   in  equine  small  pulmonary  vessel  distensibility  exist,  resulting  differences  in  resistances  to   flow  in  vessels  supplying  and/or  draining  pulmonary  capillaries  would  impact  regional   pulmonary  capillary  pressures,  and  as  a  result,  perhaps  predict  regional  propensity  for   EIPH  and  associated  pathology.       20   Increases  in  collagen  content  of  a  vessel  are  associated  with  altered  mechanical   properties  –  specifically  increased  stiffness  (12,  30).    Increased  collagen  content  of   remodeled  equine  pulmonary  veins  has  already  been  reported  (38),  and  this  change  occurs   in  caudodorsal  but  not  in  cranioventral  lung  regions  (231,  233).  These  reports  describe   remodeling  changes  in  horses  with  advanced/severe  EIPH,  and  reports  of  EIPH-­‐associated   pathology  in  racehorses  that  lack  a  clinical  history  of  severe  EIPH  do  not  exist  at  this  time.   Based  on  the  observations  in  the  2013  pathology  mapping  paper  that  demonstrate   that  the  full  constellation  of  EIPH  lesions  (hemosiderin  and  fibrosis)  cannot  occur  without   colocalized  venous  remodeling,  but  that  remodeling  can  occur  on  its  own  (233),  it  is   proposed  that  remodeling  is  an  early  change  in  EIPH  pathogenesis.  It  is  reasonable  to   suggest  therefore  that  alterations  in  venous  wall  stiffness  due  to  remodeling  processes  will   be  detectable  in  horses  that  are  training  and  racing,  but  do  not  necessarily  have  severe   EIPH  pathology.  In  the  event  that  vein  walls  in  caudodorsal  lung  are  stiffer  in  horses  that   train  and  race  compared  to  cranioventral  veins,  and  compared  to  veins  from  horses  that  do   not  race,  this  information  will  help  further  corroborate  the  pulmonary  vein  as  a  key   component  of  early  EIPH  pathogenesis.    Increased  stiffness  resulting  in  diminished  venous   compliance  in  caudodorsal  lung  only  will  inhibit  pressure-­‐mediated  venous  dilation,  and   cause  increased  resistance  to  blood  flow  in  those  veins.  This  in  turn  will  increase   pulmonary  capillary  pressure  in  caudodorsal  lung,  and  increase  the  propensity  for  capillary   rupture  and  EIPH  in  this  lung  region.     In  summary,  investigation  of  the  mechanical  properties  of  small  pulmonary  vessels   of  the  horse  have  not  heretofore  been  reported,  and,  based  on  the  outlined  rationale  –     21   alterations  in  these  properties  of  pulmonary  veins  could  be  implicated  in  both   development  and  progression  of  EIPH.   The  study  outlined  in  Chapter  3  of  this  dissertation,  was  designed  to  test  the   following  hypotheses:     Mechanical  properties  of  small  pulmonary  arteries  and  veins  do  not  differ  by  region  in   control,  unraced  horses.  Also,  pulmonary  veins,  but  not  pulmonary  arteries  from  horses  with  a   recent  racing  history,  have  increased  wall  stiffness  compared  with  veins  from  horses  that  have   never  raced,  and  this  change  is  limited  to  veins  from  caudodorsal  lung  only.       Regulation  of  pulmonary  vascular  tone   In  general,  the  pulmonary  circulation  can  be  described  as  a  high-­‐flow,  low  pressure  system,   that  functions  to  match  perfusion  to  ventilation.  This  is  achieved  by  both  passive  and  active   factors  that  affect  pulmonary  vasculature.  Vascular  wall  mechanical  characteristics  that  are   investigated  in  the  first  study  of  this  dissertation  are  among  the  passive  factors  that  exert   control  over  pulmonary  vascular  resistance  (11).  However,  active  control  of  vascular  tone   must  also  be  considered  an  important  variable  in  determining  pulmonary  vascular   resistance  (PVR).  Tone  is  determined  by  the  state  of  contraction  of  vascular  smooth  muscle,   which  affects  vessel  diameter,  and  resistance  to  flow  in  that  vessel  segment  as  a  result.   Small  changes  in  vessel  diameter  exert  a  large  effect  on  resistance,  as  defined  by  the  Hagen-­‐ Poiseuille  relationship.  Of  particular  significance  to  EIPH  pathogenesis,  regulation  of   resistance  to  flow  in  small  pulmonary  arteries  and  veins  directly  impacts  pulmonary   capillary  pressure.  Active  regulation  of  the  pulmonary  circulation  is  achieved  by  means  of  a   complex  combination  of  neural  and  humoral  influences  (11).     22     Autonomic  control  of  pulmonary  vascular  tone   Neural  control  of  the  pulmonary  circulation  is  provided  by  the  autonomic  nervous  system   which  directly  innervates  the  pulmonary  circulation,  and  also  exerts  its  effects  through   release  of  circulating  (humoral)  vasoactive  factors  (34).     Sympathetic  nervous  system  activity  is  mediated  by  α  and  β-­‐adrenergic  receptors   (11).  In  general,  activation  of  α-­‐adrenoreceptors  causes  vasoconstriction  of  pulmonary   arteries  (83),  although  activation  of  α  2  receptors  on  pulmonary  artery  endothelium  cause   relaxation  of  porcine  pulmonary  arteries  (165).  Both  β1  and  β2  receptors  have  been   identified  on  pulmonary  vessels  (154),  although  β2  receptors  likely  predominate  (83),  and   their  activation  results  in  vasodilation  (133).     The  extent  of  sympathetic  innervation  of  the  pulmonary  vasculature  varies   significantly  between  species,  and  this  was  reviewed  in  detail  by  Barnes  and  Liu  in  1995   (11),  however  to  the  best  of  my  knowledge,  whether  equine  pulmonary  vessels  (arteries   and  veins)  of  the  caliber  evaluated  in  these  studies  are  innervated  with  postganglionic   sympathetic  fibers  has  not  been  reported.    Muscarinic  receptors,  when  bound  by  acetylcholine,  mediate  parasympathetic   control  of  vascular  tone,  and  4  of  the  5  subtypes  (M1  –  M4)  have  been  identified  in   pulmonary  vessels  (11).  Acetylcholine  (Ach)  is  reported  to  cause  both  vasoconstriction  and   vasodilation  of  pulmonary  arteries  (133).  Norel  et  al  reported  that  both  the  subtype  of   muscarinic  receptor,  and  whether  the  receptor  was  located  on  the  vascular  smooth  muscle   (for  contraction)  or  on  the  endothelium  (for  dilation)  were  factors  in  determining  a  vessel’s   response  to  Ach  (148).       23   As  is  the  case  with  sympathetic  innervation,  there  are  significant  differences   between  species  in  the  extent  of  parasympathetic  innervation  of  the  pulmonary   vasculature  (11),  and  whether  small  caliber  equine  pulmonary  arteries  and  veins  possess   parasympathetic  nerves  is  not  reported  to  date.     Numerous  investigators  have  evaluated  the  effect  of  the  sympathetic  and  the   parasympathetic  branches  of  the  autonomic  nervous  system  on  the  pulmonary  vasculature   as  a  whole  circuit  (rather  than  individual  vessels),  and  in  essence,  unopposed  sympathetic   stimulation  is  reported  to  increase  pulmonary  vascular  resistance  (91),  whereas  vagal   stimulation  (in  the  face  of  adrenoreceptor  blockade)  results  in  dilation  of  the  pulmonary   vascular  bed  (143).  However,  both  branches  of  the  autonomic  nervous  system  work  in   concert  in  vivo.  Based  on  experiments  performed  in  conscious  dogs  in  which  complete   autonomic  ganglion  blockade,  and  specific  cholinergic  and  adrenergic  receptor  blockers   were  used,  the  net  effect  of  autonomic  nervous  system  activity  on  the  pulmonary   circulation  at  rest  is  mild  vasodilation,  which  is  predominantly  mediated  by  sympathetic  β-­‐ adrenergic  activity  (140).     In  the  exercising  horse,  as  is  the  case  in  other  mammals,  sympathetic  activity  is  increased,   while  parasympathetic  outflow  correspondingly  decreases  (133).  During  exercise  the   horse’s  cardiac  output  increases  (44),  circulating  catecholamine  levels  increase   approximately  10-­‐fold  (191)  and  pulmonary  vascular  resistance  (PVR)  decreases  (128).   Although  recruitment  and  passive  distension  of  vessels  certainly  contributes  to   reduced  PVR,  whether  the  sympathetic  nervous  system  could  play  a  role  in  the  PVR   decrease  has  been  investigated.  In  sheep,  during  exercise,  both  α-­‐  and  β-­‐receptor  activation   occurs,  however  the  net  effect  on  pulmonary  vascular  resistance  is  neutral  i.e.  PVR  during     24   exercise  in  the  face  of  α-­‐  and  β-­‐receptor  blockade  was  not  different  to  PVR  during  control   runs  (93).    Experiments  performed  in  exercising  swine  indicated  that  β-­‐adrenoreceptor-­‐ mediated  vasodilation  was  appreciable,  that  there  was  minimal  impact  of  α-­‐receptor   activation,  and  some  vasodilation  occurred  secondary  to  muscarinic  receptor  activation   (203).     Regional  control  of  pulmonary  vascular  tone   That  the  autonomic  nervous  system  plays  a  role  in  exerting  changes  in  pulmonary   circulation  resistance  during  exercise  is  clear,  however  my  interest  in  the  autonomic   control  of  vessel  tone  is  less  focused  on  overall  PVR  in  the  pulmonary  circulation,  but   rather  on  regional  control  of  pulmonary  capillary  pressure.  As  already  discussed,   resistance  to  flow  in  the  pulmonary  arteries  and  veins  supplying  and  draining  the   pulmonary  capillaries  determine  capillary  pressures,  and  regional  differences  in  the  active   control  of  small  pulmonary  vessel  tone  could  explain  why  EIPH  lesions  have  a  distinct   predilection  for  caudodorsal  lung  (233).   An  existing  precedent  for  regional  heterogeneity  of  small  pulmonary  vessel   reactivity  in  any  species  does  not  exist  in  the  literature  at  present,  however  regional   differences  in  reactivity  of  large  pulmonary  arteries  have  already  been  reported  in  both  the   pig  (176),  and  in  the  horse  (164).  In  the  pig,  greater  relaxation  to  acetylcholine-­‐induced   nitric  oxide  release  was  observed  in  large  (3.6  mm  O.D.)  dorsal  arteries,  compared  to   ventral  (176).  Interestingly,  and  also  in  pigs  –  experimental  endotoxemia  is  reported  to   increase  perfusion  to  dorsal  lung,  and  reduce  that  of  ventral  lung,  which  is  also  suggestive   of  regional  differences  in  vascular  responses  of  large  pulmonary  vessels  to  a  vasoactive     25   stimulus  (51).  In  the  case  of  large  (6  mm  O.D.)  equine  pulmonary  arteries,  vessels  from   caudodorsal  lung  relaxed  in  response  to  methacholine  (a  muscarinic  receptor  agonist)  in   an  endothelium-­‐dependent  manner,  whereas  those  vessels  in  cranioventral  lung   contracted  after  a  transient  relaxation,  again,  in  an  endothelium  dependent  manner  (164).   When  applied  to  the  whole  lung,  these  data  provide  a  possible  explanation  (secondary  to   anatomy)  for  the  heterogeneous  distribution  (caudodorsal  predilection)  of  pulmonary   blood  flow  in  the  horse  lung  (15,  76).       The  second  study  of  this  dissertation  was  designed  to  test  the  following  hypothesis:     Regional  differences  in  patterns  of  vascular  reactivity  to  adrenergic  and  cholinergic   agonists  in  small  pulmonary  arteries  and  veins  exist,  and  do  so  in  a  manner  that  will  predict   the  predilection  of  EIPH  pathology  for  the  caudodorsal  lung  region.   Phenylephrine  and  isoproterenol  were  selected  as  the  alpha-­‐  and  beta-­‐adrenergic   agonists  respectively,  and  the  muscarinic  agonist  methacholine  was  chosen  to  evaluate   muscarinic  responses.     As  discussed  above,  whether  the  vessels  that  are  studied  possess  sympathetic  and   parasympathetic  nerve  fibers  remains  ambiguous  at  this  time.  In  general  terms  however,   any  response  to  an  agonist  will  be  interpreted  as  indication  that  the  receptor  in  question  is   present  in  the  vessel  wall,  and  therefore  susceptible  to  binding  by  agonists  in  vivo,  whether   the  source  of  that  agonist  is  from  an  adjacent  nerve  terminal,  or  the  circulating  blood.       U  46619   In  order  to  evaluate  isoproterenol  and  methacholine,  both  of  which  are  expected  to  relax   pulmonary  vessels,  pre-­‐contraction  of  vessels  to  provide  tone  is  necessary  to  evaluate     26   drug-­‐induced  relaxation.  The  thromboxane  A2  analog  U  46619  is  a  reliable  vasoconstrictor   in  many  vessel  types,  and  was  selected  for  this  purpose.    Thromboxane  A2,  an  arachidonic   acid  metabolite  derived  from  endothelial  cells  and  platelets  (147,  168)  is  a  pulmonary   vasoconstrictor  that  is  implicated  in  endotoxemia-­‐associated  pulmonary  hypertension   (103)  and  other  pulmonary  diseases.  U  46619  mediates  its  effects  by  binding  to  G  12,13   coupled  TP  (thromboxane)  receptors  on  vascular  smooth  muscle  cells,  which  results  in   enhanced  calcium  sensitivity  of  myofilaments,  and  some  increases  in  intracellular  calcium   concentration  and  (40,  194).  Enhanced  sensitivity  to  U  46619  in  pulmonary  veins   compared  to  pulmonary  arteries  has  been  reported  in  multiple  species,  including  sheep,   dogs  and  guinea  pigs  (10,  99,  187).  Ovine  pulmonary  veins  that  are  less  than  1  mm  in   diameter  produce  significantly  more  thromboxane  A2  than  both  larger  veins,  and   pulmonary  arteries  (84).  A  stable  analogue  of  thromboxane  A2  has  been  demonstrated  to   increase  pulmonary  capillary  pressure  by  selective  venoconstriction  (189).  Based  on   information  from  other  species,  any  significant  in  vivo  activity  of  thromboxane  A2  in  the   horse  most  likely  involves  pulmonary  veins.  The  role  of  thromboxane  in  regulation  of   vascular  tone  during  exercise  however,  is  thought  to  be  minimal  (144),  and  therefore   thromboxane  A2  is  not  likely  to  be  a  contributing  factor  to  the  propensity  of  caudodorsal   lung  to  develop  EIPH  lesions.        Phenylephrine   Binding  of  phenylephrine  to  the  Gq  protein  coupled  α1  adrenoreceptor  on  vascular  smooth   muscle  cells  activates  phospholipase  C,  which  in  turn  mediates  a  signaling  cascade  that     27   both  causes  release  of  calcium  from  sarcoplasmic  reticulum  and  inhibition  of  myosin  light   chain  phosphatase,  and  ultimately  –  smooth  muscle  contraction  (194).     Phenylephrine  is  a  reliable  pulmonary  arterial  constricting  agent  (83,  165),  and  has  already   been  demonstrated  to  exert  vasoconstrictor  effects  on  large  (1.5  –  4  mm  in  diameter)   equine  pulmonary  arteries  (117),  and  veins  (63).     Isoproterenol   When  bound  to  either  β  1  or  β  2  adrenoreceptors  on  vascular  smooth  muscle  cells,   isoproterenol,  by  means  of  Gs  protein  coupling  increases  adenylate  cyclase  activity  and   production  of  the  second  messenger  cAMP.  cAMP  in  turn  decreases  myosin  light  chain   kinase  activity  (via  protein  kinase  A)  and  smooth  muscle  relaxation  results  (182).  More   recently,  the  role  of  endothelial  β  adrenoreceptors  in  vasodilation  is  being  investigated,  and   increased  nitric  oxide  synthesis/release  as  the  proposed  mechanism  (216,  228).     Isoproterenol  is  reported  to  cause  relaxation  in  both  pulmonary  arteries  (154)  and   in  pulmonary  veins,  although,  the  response  of  rat  pulmonary  veins  to  isoproterenol  was   affected  both  by  the  caliber  of  vessel  and  the  tension  (corresponding  to  pressure)  at  which   vessels  were  normalized  before  the  experiment  (19).       Methacholine   Methacholine  is  a  non-­‐selective  muscarinic  receptor  agonist  that  is  commonly  used  to   mimic  acetylcholine  in  an  experimental  setting.  Muscarinic-­‐receptor  mediated  vasodilation   is  typically  mediated  by  release  of  endothelium-­‐derived  relaxing  factors  (EDRFs)  such  as   the  prototypical  relaxant  nitric  oxide  (NO)  and/or  prostanoids,  commonly  prostacyclin     28   (PGI2);  on  the  other  hand,  vasoconstriction  can  result  from  production  of  vasoconstrictor   prostanoids  also  known  as  endothelial  derived  constricting  factors  (EDCFs)(236),  and/or   direct  binding  of  vascular  smooth  muscle  muscarinic  receptors  (133).  Inhibition  of  nitric   oxide  synthase  and/or  cyclooxygenase  are  commonly  used  techniques  employed  to   investigate  the  relative  roles  of  nitric  oxide  and  arachidonic  acid  metabolites  respectively   in  muscarinic-­‐receptor  mediated  vasomotion  (40,  164).     Muscarinic-­‐receptor  binding  can  cause  vasodilation  in  precontracted  pulmonary   arteries  and  veins  (149),  and  again  –  heterogeneity  of  the  magnitude  of  responses  in   vessels  of  different  diameters  is  reported  in  rats,  pigs  and  sheep  (99,  108,  239).  On  the   other  hand,  acetylcholine  is  also  reported  to  cause  contraction  in  both  pulmonary  arteries   (horse)  (164)  and  veins  (208).  As  already  mentioned,  experiments  by  Norel  et  al  support   the  concept  that  whether  muscarinic  activation  results  in  constriction  or  relaxation  of  a   blood  vessel  is  determined  by  the  relative  distribution  of  muscarinic  receptors  (or  various   subtypes)  on  vascular  smooth  muscle  and  endothelium  (148).       Furosemide   Furosemide  is  the  only  pharmacotherapeutic  used  in  the  treatment  of  EIPH  that  has   demonstrable  (albeit  partial)  efficacy  (74).  Although  its  effects  are  most  often  attributed  to   sustained  attenuation  of  pulmonary  capillary  pressures  (54,  123)  associated  with   decreased  plasma  volume  (72),  the  drug’s  pulmonary  venodilator  properties  (59)  are  also   of  interest  but  as  of  yet,  unstudied  in  the  horse.   That  the  distribution  of  pulmonary  blood  flow  in  the  horse  both  at  rest  and  at   exercise  is  altered  by  furosemide,  while  cardiac  output  is  not,  strongly  suggests  that     29   furosemide  has  a  direct  vasoactive  effect  on  the  equine  pulmonary  vasculature  (43).   Indeed,  besides  pulmonary  vasoactive  properties  of  the  drug,  few  other,  plausible   explanations  for  the  observation  that  furosemide  can  alter  pulmonary  blood  flow   distribution  exist.   If  vasoactivity  contributes  to  the  efficacy  of  the  drug  in  EIPH,  then  to  have  a   protective  effect  on  pulmonary  capillary  pressures,  furosemide  should  dilate  pulmonary   veins,  and  not  arteries.  This  selectivity  for  pulmonary  veins  and  not  arteries  has  been   demonstrated  in  the  dog  (59).     For  these  reasons  the  following  hypothesis  was  also  investigated  in  the  second   study  of  this  dissertation:  In  the  small  pulmonary  veins  of  the  horse,  furosemide  dilates   pulmonary  veins  but  not  pulmonary  arteries  independent  of  lung  region.     There  does  not  appear  to  be  consensus  in  the  literature  regarding  the  mechanism  of   action  of  furosemide  as  a  venodilator.  Pickkers  et  al  report  that  furosemide  effectively   relaxed  pre-­‐contracted  dorsal  hand  veins,  but  that  the  effect  was  completely  abolished  by   pretreatment  with  indomethacin,  which  implicates  local  prostanoid  synthesis  as  a  key   mechanism  (170).  Prostanoid  involvement  of  furosemide’s  activity  as  a  vasodilator  is  also   supported  by  data  from  isolated  dog  lung  lobe  preparations  (116).  Others  propose,  and   have  data  to  support  a  direct  effect  of  furosemide  on  vascular  smooth  muscle,  by  inhibition   of  chloride-­‐dependent  Na+/K+  co-­‐transport  resulting  in  reduced  intracellular  Na+,  the   replacement  of  which  drives  Ca2+  out  of  the  cell  (59).     It  is  worth  noting  however  that  the  study  of  furosemide  activity  on  canine   pulmonary  veins  encompassed  drug  concentrations  between  33  and  1000  times  as  high  as   the  plasma  level  of  furosemide  in  horses  1  hour  after  administration  of  1  mg  /  kg,  which  is     30   an  effective  dose  in  EIPH  treatment  (24,  59).  Therefore  vasoactivity  would  probably  only   occur  in  the  event  of  accumulation  of  active  drug  in  lung  tissue.  Significant  accumulation  of   furosemide  in  lung  tissue  is  not  considered  likely,  as  furosemide  is  highly  protein  bound  in   plasma,  and  excreted  before  significant  metabolism.  Indeed,  in  dogs,  at  1  minute  after   maximal  diuresis  post-­‐furosemide  administration,  the  ratio  of  unaltered  furosemide  in  lung   tissue  to  that  in  plasma  is  0.26,  indicating  that  little  to  no  accumulation  of  drug  occurs  in   the  dog  lung  (31).  While  the  pharmacokinetics  of  furosemide  in  the  horse  are  documented   (24),  to  the  best  of  my  knowledge,  equine  tissue  accumulation  studies  have  not  been   reported.         Summary   Little  is  known  about  the  mechanisms  of  control  of  vascular  tone  in  the  small  pulmonary   arteries  and  veins  of  the  horse.  As  these  vessels  affect  pulmonary  capillary  pressures,   knowledge  of  regional  differences  in  vessel  reactivity,  in  particular  under  the  high   sympathetic/low  parasympathetic  outflow  conditions  of  exercise  could  contribute  further   understanding  to  the  pathogenesis  of  EIPH.     31   Section  3:  Pulmonary  Venous  Remodeling   This  section  is  designed  to  provide  further  information  on  vascular  remodeling,  focusing   specifically  on  the  role  of  venous  remodeling  in  EIPH.  This  will  provide  both  context  and  a   rationale  for  the  study  entitled  “Effects  of  exercise  on  markers  of  venous  remodeling  in  lungs   of  horses.”     Venous  remodeling  in  EIPH   Remodeling  of  small  pulmonary  veins  as  a  component  of  EIPH  pathology  was  first  reported   in  2008  (231).  Horses  that  were  retired  from  racing  due  to  severe  EIPH  were  studied,  and   in  caudodorsal  lung,  remodeling  of  intralobular,  septal  and  sub-­‐pleural  veins  is  detailed   along  with  other  classic  features  of  EIPH  pathology  such  as  hemosiderin  accumulation,   angiogenesis  and  interstitial  fibrosis  (152,  157).  The  predominant  feature  of  remodeled   vessels  is  expansion  of  the  adventitial  compartment  with  what  is  described  as  a  “prominent   collar  of  mature  collagen”  (231).  Collagen  deposition  extends  to  the  media/intima  (i.e.   between  the  external  elastic  lamina  and  vessel  lumen)  in  some  vessels,  causing  luminal   obstruction.  This  reduction  in  lumen  area  was  further  defined  in  a  subsequent  study  that   used  morphometric  techniques  to  confirm  that  the  luminal  perimeter  of  veins  in   caudodorsal  lung  regions  with  the  most  severe  histopathology  was  significantly  less  than  in   other,  less  severely  affected  regions  (38).     The  results  of  an  extensive  study  of  the  pathology  of  horses  that  raced  in  the  US  and  were   retired  due  to  severe  EIPH  demonstrated  conclusively  that  EIPH  pathology,  including   venous  remodeling,  was  most  common  and  most  severe  in  caudodorsal  lung  (233).   Hemosiderin  and  remodeling  were  either  found  together,  or  mild  remodeling  was  found  on     32   its  own  without  hemosiderin.  Furthermore,  interstitial  fibrosis  almost  always  (in  99.7  %  of   samples)  occurred  with  colocalized  venous  remodeling.  These  data  strongly  suggest  that   remodeling  is  both  pivotal  in  the  disease  process,  and  is  an  earlier  pathologic  event  than   fibrosis.       Vascular  remodeling     In  contrast  to  acute  changes  in  vessel  tone  such  as  those  induced  by  autonomic  agonists,   vascular  remodeling  instead  describes  enduring  changes  in  vessel  wall  structure  that   generally  occur  in  response  to  hemodynamic  stimuli  (67).   Remodeling  responses  in  veins  from  the  systemic  circulation  have  been  studied   extensively  as  a  result  of  the  common  practice  of  vein  grafting  in  coronary  artery  bypass   procedures,  and  subsequent  issues  with  maintenance  of  long-­‐term  vein  graft  patency  due   to  remodeling  (240)  .  When  systemic  veins  are  exposed  to  arterial  conditions  of  flow   (resulting  in  shear  stress)  and  increased  transmural  pressure  (resulting  in  circumferential   stress)  in  an  experimental  setting,  increased  wall  thickness  is  observed  as  early  as  one  to   two  weeks  (28,  64).    Venous  remodeling  and  resultant  stenosis  in  the  context  of  grafting  is   generally  characterized  by  significant  neointima  formation,  a  process  that  is  modulated  by   both  shear  stress  and  pressure  (14,  61).     In  contrast  to  systemic  veins,  remodeling  in  pulmonary  veins  is  dramatically   understudied.  Extensive  investigations  into  remodeling  of  pulmonary  arteries  exist   however,  and  are  performed  mainly  in  the  context  of  pulmonary  hypertension  in  humans.   While  there  must  be  some  common  ground  between  pulmonary  arterial  and  venous   remodeling  in  terms  of  surrounding  environment  and  remodeling  stimuli,  I  propose  that     33   pulmonary  artery  remodeling  is  not  necessarily  an  ideal  template  for  the  same  process  in   pulmonary  veins  for  the  following  reasons.  Temporally,  embryonic  pulmonary  vein   development  long  precedes  that  of  pulmonary  arteries  (37)  and  recent  molecular   investigations  have  further  defined  arterial-­‐venous  heterogeneity  (3).  Data  from  Chapters  2   and  3  of  this  dissertation  further  support  the  contention  that  pulmonary  veins  and  arteries   are  clearly  distinct  from  one  another  in  both  their  anatomy  and  physiology  (196).     Pulmonary  venous  remodeling  -­‐  etiopathogenesis   To  the  best  of  my  knowledge,  and  with  the  exception  Chapter  1  of  this  dissertation,  there   are  no  reports  of  pulmonary  venous  remodeling  that  is  associated  with  exercise  in  any   other  species  (196).  There  are  however  accounts  of  such  remodeling  responses  to   hemodynamic  stimuli  similar  to  those  experienced  by  the  exercising  horse  –  namely   increased  pulmonary  blood  flow  (43)  and  intravascular  pulmonary  venous  pressures  (88,   124).   In  general,  two  types  of  hemodynamic  stresses  are  applied  to  vessel  walls  by  the   blood  within  the  lumen;  namely  shear  stress  caused  by  blood  flow  and  circumferential  or   hoop  stress  caused  by  pulse  pressure  (159).  Circumferential  stress  is  applied  to  all   components  of  the  vessel  wall,  whereas  shear  stresses  mostly  affect  the  endothelium.  While   alterations  in  shear  stress  are  widely  recognized  as  a  cause  of  vascular  remodeling  (217)  it   is  difficult  to  estimate  whether  this  is  a  significant  stimulus  in  EIPH-­‐associated  venous   remodeling,  in  large  part  because  very  little  is  known  about  in  vivo  flow  patterns  (and   resulting  shear  stresses)  in  the  small  pulmonary  veins  of  any  species.  Remodeling   associated  with  increased  shear  stress  typically  results  in  “outward  remodeling”  which     34   thickens  vessel  walls,  specifically  the  smooth  muscle  of  the  tunica  media  (21,  215),  but   ultimately  results  in  vessel  diameter  expansion  to  promote  return  of  shear  stress  to  normal   levels  (159).  In  contrast,  a  reduction  in  venous  diameter  reduction  is  reported  in  EIPH-­‐ associated  venous  remodeling  (38).  Additionally,  all  EIPH-­‐remodeled  vessels,  even  those   that  are  mildly  affected,  demonstrate  adventitial  compartment  expansion  by  collagen,  in   most  cases  without  expansion  of  the  smooth  muscle  of  the  tunica  media  (231,  233).  I   propose  therefore  that  increased  shear  stress  in  response  to  increased  pulmonary  blood   flow  during  exercise  is  not  the  predominant  stimulus  driving  development  of  pulmonary   venous  remodeling.  The  rest  of  this  discussion  will  be  focus  mainly  on  increased   intravascular  pressure  (and  resulting  circumferential  wall  stress)  as  a  stimulus  for   remodeling.       Experimental  data  exist  that  demonstrate  a  remodeling  response  of  pulmonary   veins  to  increased  venous  pressure.  When  sheep  were  exposed  to  a  continuous  pulmonary   arterial  air  embolus,  a  technique  that  increased  total  pulmonary  resistance  and  pulmonary   vascular  pressures,  venous  wall  thickening  was  observed  within  4  days  of  exposure  (86).     Thickening  of  the  adventitia  was  noted  in  some  vessels  by  day  12.     In  left  heart  failure  pathologic  vascular  remodeling  is  usually  seen  in  the  pulmonary   veins  before  arterial  changes  occur,  due  to  increased  “retrograde”  pressure  in  the   pulmonary  circulation  (82,  213).  Mitral  stenosis  for  example,  results  in  significant   thickening  of  small  pulmonary  vein  walls  due  to  fibrosis  of  the  intima  and  adventitia  (25)  in   response  to  persistent  venous    hypertension.     Pulmonary  venous  occlusive  disease  (PVOD)  is  a  rare  form  of  pulmonary   hypertension  that  is  associated  with  high  mortality  (81).  PVOD  is  characterized  by  fibrotic     35   intimal  expansion  of  small  pulmonary  veins  and  venules,  and  in  some  patients  alveolar   hemorrhage  and  hemosiderosis  (78).  PVOD  is  frequently  idiopathic,  and  the  initiating   trigger  for  disease  development  remains  undetermined  for  many  patients  (81).  However,   sustained  venous  hypertension  is  thought  to  be  a  significant  stimulus  for  ongoing  venous   remodeling  in  PVOD,  as  the  vascular  changes  observed  resemble  those  described  in  mitral   stenosis  and  other  causes  of  pulmonary  venous  hypertension.       Role  of  venous  remodeling  in  EIPH   It  is  particularly  interesting  that  pulmonary  arteries  in  EIPH-­‐affected  lungs  are  not   routinely  remodeled,  while  the  small  veins  are  significantly  affected  (231).  Cardiac  output   and  pulmonary  artery  pressures  are  dramatically  increased  in  the  exercising  horse  (44,   124),  yet  only  venous  pathology  is  observed.  Conditions  in  humans  in  which  venous   pathology  either  occurs  exclusively,  or  to  a  greater  degree  than  arterial  remodeling  include   left  heart  failure,  and  PVOD,  and  remodeling  in  both  is  attributed  in  some  degree  to  venous   hypertension  specifically  (25).     A  galloping  horse  has  a  maximum  heart  rate  of  approximately  220  b.p.m.  and  a   stroke  volume  of  approximately  1.5  L  (44).    Left  heart  diastole  is  estimated  therefore  at   0.14  seconds,  and  minute  volume  is  330  L/minute.  In  the  Operation  Everest  II  studies   performed  on  elite  human  athletes  in  the  early  1990s,  investigators  report  a  “remarkably”   close  relationship  of  right  atrial  and  pulmonary  artery  wedge  pressures  (Pwp)  during   exercise,  although  it  is  noted  that  a  1  mmHg  rise  in  right  atrial  pressure  resulted  in  a  higher   (1.4  mmHg)  rise  in  Pwp  (173)  which  further  loads  the  venous  compartment.  Supplying  the   left  ventricle  with  1.5L  of  blood  within  0.14  s  requires  extremely  high  filling  pressures,     36   which  is  provided  by  the  right  heart  and  pulmonary  arterial  driving  pressure,  however   maintenance  of  this  filling  pressure  during  exercise  also  results  in  necessary,  but  sustained   “retrograde”  pressure  increases  in  the  pulmonary  venous  system  specifically.  I  also   consider  it  plausible,  that  the  equine  pulmonary  arterial  system  positioned  as  it  is,   immediately  downstream  from  the  right  ventricle,  is  inherently  better  adapted  to  manage  a   hypertensive  stimulus  without  pathologic  consequences  than  the  venous  circulation,  and  if   this  were  the  case,  it  could  go  someway  toward  explaining  the  “selective”  remodeling   observed  in  pulmonary  veins  in  EIPH.     Whether  arteriovenous  shunting  occurs  during  exercise  such  as  is  reported  in  other   species,  including  dogs  (202)  has  been  preliminarily  investigated  in  the  horse,  and  was  not   demonstrable  through  the  use  of  microsphere  injection  (125).  Use  of  another  sensitive   technique,  contrast  echocardiography  has  demonstrated  shunting  during  exercise  in   human  subjects  (114),  and  if  this  phenomenon  occurs  in  exercising  horses,  it  may  result  in   further  volume  loading  of  the  pulmonary  venous  circulation,  and  further  compound   pulmonary  venous  hypertension.     Although  it  is  possible  that  venous  remodeling  is  a  result  of  EIPH,  to  the  best  of  my   knowledge  no  other  such  conditions  (i.e.  venous  remodeling  in  response  to  local   hemorrhage)  are  reported  in  the  literature.  Therefore  I  propose  that  venous  remodeling   assumes  a  key  role  early  in  EIPH  pathogenesis,  as  follows:     Exercise-­‐associated  elevations  in  cardiac  output  result  in  dramatically  elevated   pulmonary  artery  pressures  in  the  galloping  horse.  These  high  pressures  are  transmitted  to   the  venous  circulation  in  order  to  provide  elevated  left  atrial  filling  pressures.   Furthermore,  maintenance  of  high  cardiac  output  from  the  left  ventricle  during  exercise     37   contributes  to  sustained  retrograde  elevations  in  left  atrial,  and  therefore  pulmonary   venous  pressure  during  exercise.  It  is  widely  accepted  that  left  atrial  pressures  are   transmitted  upstream  without  dampening,  in  a  fully-­‐recruited  pulmonary  circulation  (141)   With  repeated  training,  these  periods  of  venous  hypertension  result  in  venous  wall   remodeling,  specifically  in  the  caudodorsal  lung,  which  is  the  region  in  which  blood  flow   and  presumably,  therefore  intravascular  pressures  are  highest  (15).  Pulmonary  capillary   breaking  strength  is  exceeded  in  some  capillaries  during  exercise,  and  hemorrhage  results.   Those  capillaries  that  are  drained  by  remodeled  veins  are  even  more  susceptible  to  rupture   during  exercise  as  venous  wall  compliance  is  reduced  and  in  some  cases,  venous  luminal   area  is  diminished.  Those  capillaries  are  exposed  to  pressures  approaching  arterial  values   and  rupture.  With  each  exercise  bout  the  injurious  cycle  is  repeated  and  compounded,   ultimately  resulting  in  clinically  detectable  hemorrhage,  significant  pulmonary  pathology,   and  potentially  impaired  performance.     To  validate  this  pathogenesis  hypothesis,  it  is  necessary  to  implicate  venous   remodeling  as  an  early,  pivotal  event  in  EIPH  (rather  than  merely  a  result  of  local   hemorrhage).  Therefore  I  designed  a  study  investigate  whether  intense  exercise  could  be   associated  with  venous  remodeling  before  the  development  of  severe  EIPH  pathology.     The  following  hypothesis  was  investigated  in  Chapter  4  of  this  dissertation:     Two  weeks  of  intense  exercise  will  alter  mRNA  and  protein  expression  of  those  factors  known   to  mediate  vascular  remodeling  in  the  pulmonary  veins  from  caudodorsal  but  not   cranioventral  regions  of  lungs  of  horses  in  a  manner  that  favors  venous  remodeling.       Mechanisms  of  venous  remodeling     38   mRNA  and  protein  production  precede  histopathologic  change.  Therefore,  in  order  to   evaluate  remodeling  as  early  in  its  development  as  possible,  mRNA  and  protein  levels  of   factors  known  to  mediate  vascular  remodeling  were  studied  after  just  two  weeks  of   intermittent  intense  exercise.   Achieving  a  balance  between  detecting  the  earliest  effects  of  exercise  in  pulmonary   vein  walls,  while  providing  a  stimulus  that  was  adequate  to  invoke  such  change  was  to   prove  challenging.  Reports  from  other  species  (sheep  and  rabbits)  describe  structural   alterations  in  remodeling  veins  as  early  as  4  (86)  to  7  (64)  days  after  initiation  of  a   continuous  hypertensive  stimulus.  With  a  goal  of  detecting  pre-­‐structural  changes,  six   episodes  of  an  intermittent  hypertensive  stimulus  over  a  14-­‐day  period  were  deemed   sufficient.     As  venous  remodeling  in  EIPH  follows  a  distinctive  regional  pattern,  and  veins  from   cranioventral  lung  are  unaffected  (233),  expression  of  mRNA  and  protein  of  the  following   list  of  factors  were  studied  in  veins  from  2  distinct  regions  of  lung  –  caudodorsal,  and   cranioventral:  Collagen  type  I,  tenascin-­‐C,  matrix  metalloproteinases  (MMP)  MMP-­‐1  and   MMP-­‐9,  tissue  inhibitors  of  metalloproteinases  (TIMP)  TIMP-­‐1  and  TIMP-­‐2,  endothelin-­‐1   (ET-­‐1),  platelet-­‐derived  growth  factor  (PDGF),  transforming  growth  factor  beta  (TGF-­‐  β)   and  vascular  endothelial  growth  factor  (VEGF).     Until  recently  the  role  of  tunica  adventitia  in  vascular  remodeling  has  been   somewhat  overlooked  in  favor  of  the  tunica  intima  and  tunica  media  and  their  predominant   cell  types,  the  endothelial  and  smooth  muscle  cell  respectively.  In  the  field  of  pulmonary   hypertension  research  there  is  mounting  evidence  that  the  adventitia  and  the  cells   contained  therein  act  as  a  key  injury-­‐sensing  and  regulatory  center  for  pulmonary  arteries     39   (199,  200).  In  remodeled  veins  in  EIPH-­‐affected  lung,  the  tunica  adventitia  of  these  vessels   is  the  most  commonly,  and  most  severely  affected  compartment  (231,  233).  For  this   reason,  I  consider  it  likely  that  the  adventitia  of  pulmonary  veins  also  plays  a  significant   role  in  mediating  the  remodeling  response  in  EIPH.     The  most  common  cell  type  in  the  tunica  adventitia  is  the  adventitial  fibroblast.   When  activated,  the  adventitial  fibroblast  rapidly  differentiates  into  a  myofibroblast,  and   fulfills  multiple  functions,  some  of  which  include  production  of  extracellular  matrix   proteins  including  collagen  and  tenascin-­‐C,  and  a  variety  of  growth  factors  (201).     The  first  description  of  remodeled  veins  in  EIPH  details  marked  collagen  deposition   in  the  adventitia  of  remodeled  vessels  (231).  This  observation  was  supported  statistically   when  morphometric  analysis  demonstrated  increased  collagen  content  in  vessels  from   affected  lung  regions  (38).  Collagen  is  commonly  increased  in  the  extracellular  matrix  of   remodeled  veins  from  other  species  (humans  and  rabbits)  (25,  235).  For  these  reasons   collagen  mRNA  and  protein  expression  were  evaluated  in  this  study.     Tenascin-­‐C  is  another  important  extracellular  matrix  protein  that  is  expressed  by   remodeling  tissues  during  fetal  development  and  in  disease  states.  For  example,  tenascin-­‐C   expression  is  upregulated  in  remodeling  veins  in  both  humans  (222)  and  rodents  (2).  The   adventitial  fibroblast  is  a  major  source  of  tenascin-­‐C  in  injured  vessels  (223),  therefore  the   expression  of  tenascin-­‐C  mRNA  and  protein  were  selected  for  evaluation  in  this  study.     The  proteolytic  matrix  metalloproteinases  MMP-­‐2  and  MMP-­‐9  are  sub-­‐classified  as   gelatinases,  and  their  substrates  include  extracellular  matrix  (ECM)  components  such  as   collagen  and  elastin  (218).  TIMPS  are  endogenous  inhibitors  of  MMP  activity,  and  bind   MMPs  in  a  1:1  stoichiometry  (171).  Although  4  TIMPS  have  been  characterized  in     40   vertebrates,  TIMP-­‐1  binds  preferentially  with  MMP-­‐9,  and  TIMP-­‐2  with  MMP-­‐2  (26),   therefore  TIMP-­‐1  and  TIMP-­‐2  were  chosen  as  candidates  for  study.  MMPs  and  TIMPs  act  in   concert  to  modulate  the  turnover  of  extracellular  matrix  of  vessel  walls  in  both  health  and   disease.  For  example,  pressure-­‐associated  vascular  remodeling  is  generally  associated  with   increases  in  MMP-­‐2  and  MMP-­‐9  expression  (27,  29)  and  while  TIMP  expression  can  be   either  unaltered  or  decreased  (235)  in  remodeled  vessels,  the  overall  MMP:TIMP  ratio  is   frequently  increased  (23,  90).  Most  vascular  wall  cell  types,  including  adventitial   fibroblasts,  produce  MMPs  (26).  It  has  been  demonstrated  that  increased  MMP  and/or   decreased  TIMP  expression  is  necessary  for  the  migration  of  activated  fibroblasts  from  the   adventitia  to  the  media  and  intima  (188)  thereby  allowing  extension  of  the  remodeling   process  to  the  rest  of  vessel  wall.  Inward  remodeling  such  as  this  is  observed  in  the  more   severely  remodeled  veins  of  EIPH-­‐affected  equine  lung  (233).   Endothelin-­‐1  (ET-­‐1)  is  reported  to  be  a  potent  vasoconstrictor  of  both  pulmonary   and  systemic  vessels  in  the  horse,  and  this  effect  is  predominantly  mediated  through  the   ETA  receptor  (13).  In  other  species  however,  endothelin  has  been  implicated  in  vascular   remodeling  processes  as  a  mitogenic  factor  for  smooth  muscle  (35)  and  as  a  comitogen  that   augments  TGF-­‐β-­‐induced  collagen  I  production  (105).  Increased  ET-­‐1  expression  is   reported  in  a  hypoxic  model  of  pulmonary  venous  remodeling  (204),  and  administration  of   an  ETA  receptor  antagonist  is  reported  to  inhibit  pressure-­‐mediated  remodeling  in  porcine   veins  (224).  Although  vascular  smooth  muscle  is  an  important  target  tissue  in  both  acute   and  chronic  responses  to  endothelin,  endothelial  cells  are  the  predominant  source  of  ET-­‐1,   the  majority  of  which  is  secreted  at  the  basolateral  cell  surface  (96).       41   Platelet-­‐derived  growth  factor  (PDGF)  is  a  mitogenic  factor  that  is  produced  by  and   acts  upon  many  cell  types,  including  vascular  smooth  muscle  cells,  and  fibroblasts  (65).   PDGF  is  over-­‐expressed  in  small  remodeled  pulmonary  arteries  in  patients  with  idiopathic   pulmonary  arterial  hypertension  compared  to  arteries  from  normal  subjects  (166).   Upregulation  of  PDGF  mRNA  in  porcine  veins  that  are  exposed  to  arterial  conditions  of   pressure  and  flow  is  also  reported  (48).  The  role  of  PDGF  in  vascular  remodeling  processes   is  further  substantiated  by  experimental  and  clinical  reports  of  effective  reversal  of   pulmonary  arterial  remodeling  by  treatment  with  the  tyrosine  kinase  inhibitor  imatinib,  a   PDGF  receptor  antagonist  (53,  181).   Transforming  growth  factor  beta  (TGF-­‐β)  is  a  pleiotropic  cytokine,  and  the   prototypical  member  of  a  large  group  of  cytokines  whose  functions  span  development,   health  and  disease  in  many  tissues  (58).  The  role  of  TGF-­‐β  in  pulmonary  artery  remodeling   has  been  studied  extensively,  as  mutations  of  the  TGF-­‐β  receptor  BMPR2  are  strongly   associated  with  familial  pulmonary  arterial  hypertension  (118).  The  role  of  TGF-­‐β  in   pulmonary  venous  remodeling  remains  undefined,  however  it  is  implicated  in  remodeling   of  systemic  veins.  Vein  grafts  that  have  undergone  multiple  stenoses  express  more  TGF-­‐β   than  veins  that  have  never  remodeled  or  have  only  stenosed  once  (146),  and  treatment   with  TGF-­‐β  antisense  mRNA  prevents  collagen  deposition  in  femoral  vein  grafts  in  rats   (234).  Furthermore,  TGF-­‐β  is  recognized  to  play  a  key  role  in  the  differentiation  of   fibroblasts  to  activated  myofibroblasts  (120).   The  final  growth  factor  that  was  selected  for  evaluation  in  this  study  is  vascular   endothelial  growth  factor  (VEGF).  VEGF  is  highly  expressed  in  the  lung  (219),  and  its   production  by  endothelial  cells  can  be  induced  by  many  growth  factors  including  TGF-­‐β     42   (167).    In  pulmonary  arterial  hypertension  VEGF  protein  has  been  demonstrated  in   plexiform,  lumen-­‐obliterating  endothelial  lesions  (214).  Its  role  in  vascular  remodeling  is   supported  by  the  observation  that  VEGF  blockade  prevents  neointima  formation  in  arteries   (241).     Summary     In  summary,  to  implicate  pulmonary  venous  remodeling  as  a  pivotal  and  early  change  in   EIPH  pathogenesis,  a  study  was  designed  to  evaluate  the  early  expression  patterns  of   extracellular  matrix  proteins,  their  modulating  enzymes,  and  various  growth  factors  in   pulmonary  veins  from  2  lung  regions  of  horses  after  two  weeks  of  a  transient  hypertensive   stimulus  (exercise).                         43   Section  4:  Experimental  technique  development   This  section  provides  supplemental  information  on  why  wire  myography  was  chosen  as  a  key   experimental  technique,  and  the  rationale  and  theory  behind  vessel  normalization  strategy.         Wire  myography   Before  wire  myography  was  determined  to  be  the  most  suitable  technique  to  evaluate  both   the  mechanical  and  pharmacological  properties  of  small  caliber  equine  pulmonary  vessels,   attempts  were  made  to  utilize  pressure  myography.  In  brief,  pressure  myography  involves   mounting  each  end  of  and  securing  the  vessel  of  interest  on  two  patent  glass  canulae  that   are  themselves  attached  to  a  sealed,  and  pressurized  system.    The  vessel  walls  and  lumen   can  be  monitored  continually,  and  responses  of  vascular  smooth  muscle,  and  the  resulting   alterations  in  vessel  diameter  recorded  in  real  time.  Some  advantages  of  pressure   myography  over  wire  myography  include  equal  and  constant  distribution  of  intraluminal   pressure  conditions  to  the  vascular  wall,  which  better-­‐emulates  in  vivo  conditions,  and  also,   intravascular  pressure  can  be  easily  and  rapidly  adjusted  by  means  of  a  fluid  column  that   communicates  with  the  canulae-­‐vessel  system.     When  equine  pulmonary  arteries  between  100  and  400  μm  O.D.  were  mounted  on   the  pressure  myograph  however  (Figure  1),  it  was  difficult  to  maintain  pressure  in  any   vessel  segment  despite  careful  dissection  technique.  The  reason  for  this  is  attributed  to  the   frequent,  and  asymmetrical  branching  pattern  of  the  pulmonary  vasculature.  For  example,   supernumerary  arteries  branching  from  a  parent  artery,  usually  at  90  degrees,  can  be   significantly  smaller  in  diameter  that  the  vessel  from  which  they  originate  (210).  Due  to  an     44   unacceptable  failure  rate  using  this  technique,  the  decision  was  made  to  switch  to   conventional  wire  myography.     Mulvaney  and  Halpern  developed  wire  myography  in  the  1970s,  and  they  first   reported  its  use  as  a  tool  to  investigate  lengths  of  small  arterial  resistance  vessels  obtained   from  rat  mesentery  (138,  139).  Wire  myography  is  now  a  commonly  used  technique  for  the   study  of  small  blood  vessel  characteristics.     The  wire  myograph  chamber  is  filled  with  physiologic  buffer  solution,  which  can  be   warmed,  and  perfused  with  gas(es),  and  to  which  pharmacologic  agents  may  be  added.   Small  vessels  (<  400  μm  O.D.)  are  mounted  as  a  cylinder  on  two  parallel  40  μm  O.D.   stainless  steel  wires  in  the  chamber.  One  wire  is  attached  at  two  points  to  a  metal  jaw  that   is  controlled  by  a  micrometer  screw,  and  the  second  wire  attached  to  an  identical  jaw  that   is  attached  in  turn  to  a  sensitive  force  transducer.  (Figure  2).  In  this  arrangement,  the   parallel  wires  can  be  distracted  from  one  another  by  use  of  the  micrometer,  thus   controlling  vessel  internal  circumference  (L)  and  enabling  evaluation  of  the  tension  in  the   vessel  wall  (T)  evaluated  as  various  stimuli  are  applied.     The  formula  used  to  calculate  internal  circumference  (L)  is       L  =  (π  +  2)d  +  2f   where  d  is  wire  diameter,  and  f  is  the  distance  between  the  wires.  The  wire  circumference   (π  d)  accounts  for  the  2  outer  halves  of  the  wire  that  are  in  contact  with  the  vessel,  but  it   does  not  account  for  half  of  wire  diameter  (d/2)  that  is  closest  to  the  center  of  the  vessel,   and  that  contributes  to  the  total  diameter,  even  when  the  wires  are  touching  (or  f  =  0).  For   one  “side”  side  of  the  vessel,  2  x  d/2  =  d.  For  both  “sides”  of  the  vessel  d  is  doubled.  (Figure   3).       45       Assuming  a  thin-­‐walled  tube  condition  (which  is  the  case  in  small  caliber  vessels   such  as  those  studied)  the  Laplace  relationship  can  be  applied,  and  the  equivalent   transmural  pressure  (P)  calculated  from  wall  tension  (T)(which  is  read  by  the  pressure   transducer)  and  vessel  circumference  (L)(as  determined  by  the  micrometer  screw).   P  =    T/(L/2π)   A  degree  of  preexisting  tension  is  necessary  in  order  to  align  smooth  muscle  fibers   for  optimal  development  of  force  when  stimulated  (7).  Before  experiments,  vessels  are   normalized  to  similar  conditions  of  wall  tension  that  permit  comparisons  to  be  made   between  vessels  of  different  diameter.     Many  investigators  elect  to  set  a  value  for  L  such  that  the  passive  resting  tension  on   vessel  walls  is  equivalent  to  a  physiologically  relevant  transmural  pressure,  for  example   100  mmHg  in  systemic  arteries.     In  the  pharmacology  experiments  outlined  in  Chapter  3  of  this  dissertation,  a   different  approach  was  taken  for  the  following  reason  -­‐  maintenance  of  the  very  minimal   tension  required  to  emulate  physiologic  pulmonary  venous  transmural  pressure   (approximately  10  –  15  mmHg)  throughout  an  entire  experiment  proved  challenging,   which  led  me  to  become  concerned  that  not  all  vessels  were  being  exposed  to  similar   conditions  at  all  times.    Normalization  was  therefore  performed  with  the  goal  of   determining  each  vessel’s  optimal  T  for  subsequent  force  generation.    Vessels  were  tested   with  60  mM  K+  solution  over  a  range  of  passive  wall  tensions.  The  tension  at  which  the   maximal  response  to  KCl  was  generated  was  determined  to  be  that  vessel’s  optimal  passive   tension,  and  the  tension  at  which  all  subsequent  experiments  were  performed.             46                                                   APPENDIX     47                 Figure  1  Equine  pulmonary  artery  on  a  pressure  myograph.  The  artery  is  secured  to  2   glass  canulae  by  suture  material.                           48     Figure  2  Schematic  of  a  vessel  mounted  on  wire  myograph.  Vessel  is  mounted  as  a  cylinder   on   two   stainless   steel   wires.   Each   wire   is   attached   to   a   metal   jaw,   one   of   which   can   be   moved   by   a   micrometer   screw   (right   of   image)   and   the   other   is   connected   to   a   sensitive   force  transducer.                       49     Figure  3  Schematic  diagram  of  a  vessel  in  cross  section  mounted  on  two  myograph  wires.  d   is  wire  diameter,  and  f  is  the  distance  between  the  wires.  These  measurements  are  used  to   calculate  vessel  internal  circumference  (L)  from  the  formula  L  =  (π  +  2)d  +  2f             50     CHPATER  2   Lung  region  and  racing  affect  mechanical  properties  of  equine  pulmonary   microvasculature       Alice  Stack,  Frederik  J.  Derksen,  Kurt  J.  Williams,  N.  Edward  Robinson,  William  F.  Jackson     J  Appl  Physiol  (1985).  2014  Jun  12.  doi:  jap.00314.2014.  [Epub  ahead  of  print]     Abstract     Exercise-­‐induced  pulmonary  hemorrhage  (EIPH)  is  a  performance-­‐limiting  condition  of   racehorses  associated  with  severe  pathology,  including  small  pulmonary  vein  remodeling.   Pathology  is  limited  to  caudodorsal  (CD)  lung.  Mechanical  properties  of  equine  pulmonary   microvasculature  have  not  been  studied.  We  hypothesized  that  regional  differences  in   pulmonary  artery  and  vein  mechanical  characteristics  do  not  exist  in  control  animals;  and   that  racing  and  venous  remodeling  impact  pulmonary  vein  mechanical  properties  in  CD   lung.  Pulmonary  arteries  and  veins  (range  of  internal  diameters  207  –  386  ±  67  (mean  ±   s.d.)  µm)  were  harvested  from  8  control  and  7  raced  horses.  Using  a  wire  myograph  CD  and   cranioventral  (CV)  vessels  were  stretched  in  10  µm  increments.  Peak  wall  tension  was   plotted  against  changes  in  diameter  (length).  Length-­‐tension  data  were  compared  between   vessel  type,  lung  region,  and  horse  status  (control  and  raced).  Pulmonary  veins  are  stiffer-­‐ walled  than  arteries.  CD  pulmonary  arteries  are  stiffer  than  CV  arteries,  while  CV  veins  are   stiffer  than  CD  veins.  Racing  is  associated  with  increased  stiffness  of  CD  pulmonary  veins,   and,  to  a  lesser  extent,  CV  arteries.  For  example,  at  305  µm,  tension  in  raced  and  control  CD     51   veins  is  27.74  ±2.91  and  19.67  ±  2.63  mN/mm  respectively  (mean  ±  s.e.m;  p  <  0.05,   Bonferroni’s  multiple  comparisons  test  after  2-­‐way  ANOVA);  and  16.12  ±  2.04  and  15.07  ±   2.47  mN/mm  in  raced  and  control  CV  arteries.  This  is  the  first  report  of  an  effect  of  region   and/or  exercise  on  mechanical  characteristics  of  small  pulmonary  vessels.  These  findings   may  implicate  pulmonary  vein  remodeling  in  EIPH  pathogenesis.       Introduction   Exercise-­‐induced  pulmonary  hemorrhage  (EIPH)  is  defined  as  the  presence  of  frank  blood   (of  pulmonary  origin)  in  the  airways  after  a  bout  of  intense  exercise  (150,  152,  162).    The   condition  has  been  reported  in  several  athletic  species,  including  humans  (52),  racing  dogs   (42)  and  camels  (4),  however  it  is  most  commonly  described  in  horses  (18,  162).  The   incidence  rate  of  EIPH  in  racehorses  exceeds  75%  (18,  172)  when  diagnosed  by  tracheo-­‐ bronchoendoscopic  examination  within  30  –  90  minutes  of  exercise  (69).  This  highly   prevalent  condition  is  associated  with  impaired  racing  performance  in  Thoroughbred   horses  (70).     EIPH  pathology  is  most  severe  and  most  common  in  caudodorsal  lung  regions,  while   the  cranioventral  lung  is  spared  (150-­‐152,  157,  231,  233).  The  caudodorsal  lung  is  also  the   region  to  which  blood  flow  is  preferentially  distributed  in  the  horse,  both  at  rest  (76),  and   to  an  even  greater  degree,  during  exercise  (15).  The  distribution  and  severity  of  the  EIPH   lesion  matches  the  distribution  of  pulmonary  blood  flow  (233)  .     Remodeling  of  small  (100  –  200  µm  O.D.)  intralobular  pulmonary  veins  is  a   consistent  histologic  feature  of  the  EIPH  lesion  (231,  233)  and  is  characterized  by   accumulation  of  adventitial  collagen,  and  in  more  severely  affected  veins,  hypertrophy  of     52   the  tunica  media  (231).  Pulmonary  arteries,  and  larger  pulmonary  veins  are  not  affected  in   a  similar  manner.  Venous  remodeling,  along  with  other  EIPH-­‐associated  histopathologic   changes  such  as  interstitial  fibrosis  and  hemosiderin  formation,  is  limited  to  the   caudodorsal  lung  (231,  233).  In  randomly  sampled  sections  of  EIPH-­‐affected  lung,  the   entire  spectrum  of  lesions  never  occurs  without  co-­‐localized  venous  remodeling,  although   venous  remodeling  occurs  on  its  own  (233).  This  suggests  that  venous  remodeling  is  an   early  and  key  feature  of  the  EIPH  lesion,  and  may  be  central  to  the  pathogenesis  of  the   disease.     Little  is  known  about  regional  differences  in  mechanical  characteristics  of   pulmonary  microvasculature  in  horses,  or  indeed  in  any  other  species.  To  further   understand  the  pathogenesis  of  EIPH,  a  region-­‐specific  condition,  investigations  into   regional  differences  in  vascular  biology  are  warranted.     It  has  been  reported  that  pulmonary  vascular  remodeling,  including  collagen   deposition,  alters  the  mechanical  properties  of  vessels  (101,  207,  212).  If  pulmonary  vein   remodeling,  such  as  that  observed  in  EIPH-­‐affected  lungs  (231,  233)  affects  wall  mechanics,   this  will  have  functional  ramifications  on  upstream  capillaries.  Pulmonary  capillary  stress   failure  has  been  described  in  the  lungs  of  horses  with  EIPH  (230)  and  is  widely  considered   to  be  the  source  of  airway  hemorrhage,  occurring  secondary  to  dramatic  increases  in   pulmonary  vascular  pressures  in  the  exercising  horse.  Pulmonary  capillary  pressures   (which  are  determined  by  arterial  and  venous  pressures)  are  estimated  to  range  between   72  (106)  and  83  (127)  mmHg  during  galloping,  and  transmural  pressures  in  excess  of  75   mmHg  exceed  the  breaking  strength  of  equine  pulmonary  capillaries  (17).  Remodeled   veins  are  thick-­‐walled  compared  to  normal,  unaffected  veins,  and  in  some  cases  have     53   reduced  luminal  area  (38).  Should  these  changes  reduce  venous  compliance  (i.e.  increase   venous  wall  stiffness)  it  follows  that,  during  strenuous  exercise,  pulmonary  capillary   pressure  will  increase  yet  further  and  potentially  augment  EIPH.   The  purpose  of  the  study  reported  here  was  to  test  two  hypotheses.  First,   mechanical  properties  of  small  pulmonary  arteries  and  veins  do  not  differ  by  region   (cranioventral  compared  to  caudodorsal)  in  control,  unraced  horses.      Second,  pulmonary   veins,  but  not  arteries  from  horses  that  have  a  recent  racing  history  have  increased  wall   stiffness  compared  to  veins  from  horses  that  have  never  raced,  and  this  change  is  limited  to   veins  in  the  caudodorsal  lung,  the  site  of  venous  remodeling.  Wire  myography  (62)  was   utilized  to  evaluate  vessel  mechanics  in  these  experiments  as  the  equipment  is  custom-­‐ designed  for  small  diameter  vessels  such  as  those  of  interest  in  this  study.     Our  data  demonstrate  regional  differences  in  vessel  wall  stiffness  in  both  pulmonary   arteries  and  veins  from  control,  unraced  horses.  Furthermore,  caudodorsal  veins  from   raced  horses  are  stiffer  than  those  from  control,  unraced  horses.  This  finding  establishes   the  first  link  between  descriptions  of  pulmonary  vein  remodeling  (231,  233)  in  the  horse   lung,  and  the  physiologic  effects  this  change  is  proposed  to  exert  on  the  pulmonary   vasculature  during  exercise.       Materials  and  Methods   Animals   For  this  study,  8  control  horses,  and  7  raced  horses  were  acquired  by  donation.  Control   horses  (3  geldings,  5  sexually  intact  females,  6.6  ±  0.6  (age  ±  s.e.m.)  years)  were  of  various   breeds  (2  Arabians,  and  1  each  of  Thoroughbred,  Standardbred,  paint,  Quarterhorse,     54   Hafflinger  and  crossbred)  and  did  not  have  a  race  history.  Race-­‐trained  horses  (3  geldings,   1  sexually-­‐intact  male  and  3  sexually  intact  females,  6.3  ±  0.6  (age  ±  s.e.m.)  years)  were  all   Thoroughbreds  with  a  race  record.  The  time  period  between  the  last  race  and  euthanasia   was  305  ±  77  (mean  ±  s.d.)  days.  Raced  horses  had  on  average,  22  ±  18  race  starts  (mean  ±   s.d.,  range:  1  –  54  race  starts)  and  were  donated  for  reasons  other  than  severe  EIPH   (predominantly  career-­‐limiting  lameness).  The  Michigan  State  University  Institutional   Animal  Care  and  Use  Committee  approved  all  experimental  procedures.     Tissue  acquisition   Horses  were  administered  intravenous  heparin  sodium  (50,000  IU/horse)  approximately   15  minutes  prior  to  euthanasia,  which  was  carried  out  with  pentobarbital  sodium  (90   mg/kg  IV).  Lung  tissue  sections  (approximately  4  cm3)  were  immediately  harvested  from   both  the  caudodorsal  (CD)  and  cranioventral  (CV)  regions  of  the  caudal  (diaphragmatic)   lobe  of  both  left  and  right  lungs.  Lung  tissue  was  placed  in  chilled  normal  saline  (0.9%   sodium  chloride)  solution  for  transportation  to  the  laboratory.  Additional  tissue  from  CD   regions  of  lungs  of  raced  horses  was  placed  in  10%  neutral  buffered  formalin  for  fixation   and  histologic  assessment.       Vessel  dissection   Fresh,  chilled  lung  tissue  was  sectioned  (approximately  0.5  cm  thick  slices)  and  pinned  to  a   Sylgard  (Dow  Corning,  Midland,  MI)  pad  in  the  bottom  of  a  water-­‐jacketed  dissection   chamber  (Radnoti,  Monrovia,  CA)  and  fully  immersed  in  chilled  Ca2+  -­‐free  physiologic  saline   solution  (PSS)  containing  (in  mM)  140  NaCl,  5  KCl,  1  MgCl2,  10  HEPES,  10  glucose  (pH  7.4,     55   295  mOsm).  A  low  calcium  environment  was  chosen  to  minimize  vasospasm  that  can  occur   during  vessel  manipulation.   Sections  of  pulmonary  veins  and  arteries  ranging  in  length  from  0.34  to  1.39  mm   and  between  100  and  400-­‐μm  diameter  were  carefully  dissected  from  tissue  based  on  the   following  anatomic  criteria:  intralobular  pulmonary  veins  that  course  completely  alone  in   the  parenchyma(231);    pulmonary  arteries  were  collected  from  broncho-­‐vascular  triads.   Within  a  triad  of  pulmonary  artery,  vein  and  conducting  airway,  pulmonary  arteries  were   easily  distinguishable  from  the  vein  in  the  same  bundle.  They  were  stiff-­‐walled  (compared   to  veins),  and  always  immediately  adjacent  to  a  conducting  airway,  while  veins  in  the   bundle  were  more  distant  from  the  airway  (175).  Individual  vessels  were  kept  in  Ca2+-­‐free   PSS  at  4°C  for  up  to  24  hours  until  mounted  on  the  myograph.     Wire  myography   Vessels  were  mounted  as  a  cylinder  on  2  stainless  steel  40-­‐μm  diameter  wires  and  the   wires  secured  (one  to  a  micrometer  screw  and  the  other  to  a  force  transducer)  in  a  4-­‐ chamber  myograph  (DMT,  Aarhus,  Denmark).  Each  chamber  contained  5  ml  of  Ca2+-­‐free   PSS,  and  all  vessels  were  submerged  throughout  the  experiment.  The  bath  fluid  was  heated   slowly  to  37°C,  and  air  was  bubbled  gently  through  the  fluid  continuously.    Vessel  length   was  recorded  using  a  previously  calibrated  stereomicroscope,  and  the  micrometer  reading   at  which  the  wires  were  barely  touching  and  parallel  to  one  another  was  recorded.  The   myograph  force  transducer  was  used  in  conjunction  with  a  PowerLab  (ADInstruments,   Colorado  Springs,  CO)  data  acquisition  unit  and  LabChart  (ADInstruments,  Colorado   Springs,  CO)  software  platform.     56       Wires  were  then  separated  by  use  of  the  micrometer  until  the  transducer  registered   a  small  (<0.05  mN)  but  sustained  force.  The  micrometer  reading  was  again  recorded,  and   this  was  designated  an  individual  vessel’s  start  point.  Vessel  diameter  was  calculated  and   recorded  at  this  point.  From  that  point,  wires  were  separated  from  one  another  in  10-­‐μm   increments.  The  peak  force  achieved  at  each  micrometer  adjustment  was  recorded,  and   once  a  plateau  in  force  was  attained  the  wires  were  separated  again  for  the  next  force   measurement.  Vessels  were  stretched  in  this  stepwise  manner  until  stretching  resulted  in   no  further  increase,  or  a  decrease  in  force  was  recorded,  which  was  interpreted  as  vessel   failure.       Vessel  histology   Once  length-­‐tension  data  acquisition  was  complete,  a  subset  of  vessels  was  fixed  in  situ  on   the  myograph  wires  in  10%  neutral  buffered  formalin.      Following  fixation,  the  vessels  were   removed  from  the  wires  and  mounted  orthogonal  to  the  long  axis  in  Histogel  (American   MasterTech,  Lodi,  CA)  specimen  processing  gel.  The  gel-­‐embedded  vessel  was  then   embedded  in  paraffin  for  sectioning.    6-­‐μm  sections  were  placed  on  glass  slides  and  stained   with  hematoxylin  and  eosin  (H  and  E)  and  Verhoeff-­‐Van  Gieson  (VVG).  These  stained   sections  were  used  to  confirm  vessel  identity  as  a  pulmonary  artery,  or  a  pulmonary  vein.     Slides  were  reviewed  by  a  board-­‐certified  veterinary  pathologist  (KJW)  who  was  blinded  to   the  identity  of  the  vessel  based  on  anatomic/dissection  criteria.  Pulmonary  arteries  were   identified  based  on  a  relatively  substantial  tunica  media  that  was  bounded  by  both  an   internal  and  external  elastic  lamina  (134).  In  contrast,  pulmonary  veins  had  less  smooth   muscle  in  the  tunica  media,  a  single  distinct  external  elastic  lamina  between  the  tunica     57   media,  and  tunica  adventitia  (134)    and  an  absent  internal  elastic  lamina  between  the   tunica  intima    and  tunica  media  (175,  210)(Figure  4).         Lung  histopathology   Fixed  lung  tissue  samples  from  the  CD  regions  of  6  of  the  7  raced  horses  underwent  routine   processing  and  embedding  in  paraffin  for  histological  examination.    Following  sectioning,   tissues  were  stained  with  H  and  E  and  VVG,  and  evaluated  by  KJW  for  the  presence  and   severity  of  EIPH  vascular  pathology  using  previously  described  criteria  (231).       Data  Analysis   Variability  between  vessels  was  similar  to  variability  between  animals,  therefore,  in  this   study,  the  sampling  units  are  individual  vessels,  and  not  horses.     Vessel  internal  diameters  at  the  start  point  were  calculated  as  follows:  vessel   internal  circumference  at  that  point  (C)  divided  by  π.  Vessel  internal  circumference  (C)  was   calculated  as  twice  the  distance  between  the  wires,  plus  the  wire  circumference  plus  twice   the  wire  diameter  (242).  The  effect  of  vessel  type  (artery  or  vein)  and  region  (caudodorsal   or  cranioventral)  on  diameter  at  the  start  point  was  analyzed  within  racing  status  (control   or  raced)  using  a  two-­‐way  ANOVA  with  Bonferroni’s  multiple  comparisons  test  (GraphPad   Prism  6,  GraphPad  Software  Inc.,  La  Jolla,  CA).     Change  in  vessel  internal  diameter  from  that  vessel’s  diameter  at  start  point  (as   previously  defined)  was  referred  to  as  length  (L)  and  expressed  in  μm.  L  for  each  vessel   was  plotted  against  recorded  tension  (T).  T  was  defined  as  the  peak  force  registered  per   unit  of  vessel  segment  length,  and  expressed  in  mN/mm.    Vessels  were  analyzed  over  a     58   range  of  L  that  did  not  cause  failure  in  any  vessel  (0  -­‐  337.41  μm).    Length-­‐tension  data   were  compared  (a)  between  regions  (caudodorsal  and  cranioventral),  (b)  between  vessel   type  (artery  and  vein),  and  (c)  between  racing  status  (control  and  raced)  within  region  and   vessel  type  using  a  2-­‐way  ANOVA  with  Bonferroni’s  multiple  comparisons  test  (GraphPad   Prism  6,  GraphPad  Software  Inc.,  La  Jolla,  CA).         In  order  to  evaluate  changes  in  mechanical  properties  within  a  physiologically   relevant  range,  tension  (T)  values  were  converted  to  equivalent  transmural  pressure   values  (P)  by  application  of  the  Laplace  relationship  as  follows:     Pi  =  Ti  /  (Ci/2  *  π)   where  Pi,  Ti  and  Ci  are  pressure,  tension  and  internal  circumference  respectively  at  a  given   length  value,  i.  Over  the  physiologic  range  of  pressures  encountered  in  arteries  and  veins,   pressure  (P)  values  in  mN/mm2  were  converted  to  mmHg,  and  plotted  against  the  change   in  vessel  diameter  from  start  point,  or  length  (L).  Length-­‐pressure  data  from  arteries  and   veins  were  compared  between  racing  status  (control  and  raced)  within  each  region  (CD   and  DV)  using  a  2-­‐way  ANOVA  with  Bonferroni’s  multiple  comparisons  test  (GraphPad   Prism  6,  GraphPad  Software  Inc.,  La  Jolla,  CA).       Results   From  control  horses,  9  veins  and  10  arteries  were  harvested  from  caudodorsal  lung   regions,  and  7  veins  and  9  arteries  from  cranioventral  lung.  From  raced  horses,  it  was  15   veins  and  10  arteries  from  caudodorsal  lung  regions,  and  8  veins  and  10  arteries  from   cranioventral  lung.  Seventy-­‐eight  vessels  were  included  in  all  subsequent  statistical   analyses.     59     Vessel  diameters   Vessel  diameters  are  shown  in  Table  1.  Diameters  did  not  differ  between  arteries  and   veins  from  caudodorsal  and  cranioventral  lung  in  both  control  and  raced  horses  with  the   following  exception:  arteries  from  the  caudodorsal  lung  region  were  larger  in  diameter   than  veins  from  both  caudodorsal  and  cranioventral  lung  region  of  raced  horses.         Vessel  identification   Histology  was  performed  on  29  of  the  78  vessels  that  were  studied.  All  vessels  that  were   identified  during  dissection  as  either  an  artery  or  a  vein  had  that  identity  confirmed  by  use   of  histology  (Figure  4).     Length-­‐tension  data   When  data  from  the  CD  and  CV  vessels  were  combined,  pulmonary  veins  (n  =  16  and  n  =  23   for  control  and  raced  respectively)  were  stiffer  (as  demonstrated  by  a  steeper  length-­‐ tension  curve)  than  pulmonary  arteries  (n  =  19  and  n  =  20  for  control  and  raced   respectively).  This  observation  was  consistent  in  both  control  and  raced  horses  (Figure  5,   A  and  B  respectively)  (p  <  0.0001).   In  control  horses,  pulmonary  veins  from  the  cranioventral  lung  were  stiffer  than   those  from  the  caudodorsal  lung  (p  <  0.0001),  whereas  pulmonary  arteries  from   caudodorsal  lung  were  stiffer  than  arteries  from  cranioventral  lung  (p  <  0.0001)  (Figure  6,   A  and  B  respectively).  This  regional  pattern  of  differences  in  vessel  stiffness  was   maintained  in  vessels  from  raced  horses  (Figure  6,  C  and  D).     60   Vessels  from  raced  horses  were  compared  to  vessels  from  control  horses  within   lung  region.  Cranioventral  veins  and  caudodorsal  arteries  were  not  affected  by  race   training  (p  =  0.8078  and  p  =  0.4317  respectively)  (Figure  7,  B  and  C  respectively).   However  caudodorsal  veins  from  raced  animals  were  significantly  stiffer  than  those  from   control  animals  (p  <  0.0001)  (Figure  7,  A).  Cranioventral  arteries  from  raced  horses  were   also  significantly  stiffer  than  those  from  control  horses  (p  =  0.0014)  (Figure  7,  D).       Length-­‐pressure  data   Tension  values  were  converted  to  equivalent  transmural  pressure  values  encompassing  in   vivo  physiologic  pressure  ranges  experienced  by  horses  at  rest  and  during  exercise:  0-­‐120   mmHg  for  arteries,  and  0  –  80  mmHg  for  veins.  Length-­‐pressure  data  in  these  ranges  were   compared  between  control  and  raced  horses  within  lung  region.  Cranioventral  veins  and   caudodorsal  arteries  were  not  affected  by  race  training  (p  =  0.9416  and  p  =  0.0552   respectively)  (Figure  8,  B  and  C  respectively).  However  caudodorsal  veins  and   cranioventral  arteries  from  raced  animals  underwent  a  significantly  smaller  change  in   internal  diameter  over  a  physiologic  pressure  range  than  vessels  from  control  animals  (p  <   0.0001)  (Figure  8,  A  and  D  respectively).       Lung  histopathology   Venous  remodeling  and  lung  pathology  consistent  with  exercise-­‐induced  pulmonary   hemorrhage  changes  were  detected  in  all  caudodorsal  lung  sections  examined  from  raced   horses.  The  venous  remodeling  was  consistent  with  that  previously  described  in   association  with  EIPH  (231,  233).    Briefly,  these  changes  consisted  of  mild  to  moderate     61   increases  in  adventitial  collagen  surrounding  small  veins  along  with  small  numbers  of   hemosiderophages,  indicating  prior  hemorrhage  and  erythrophagocytosis  by  the  alveolar   macrophages.       Discussion   To  the  authors’  knowledge,  this  is  the  first  published  account  of  the  effect  of  lung  region,   and/or  exercise  on  pulmonary  microvascular  mechanical  properties  in  any  species  to  date.   Study  of  these  factors  in  equids  is  particularly  important  in  order  to  better  understand   exercise-­‐induced  pulmonary  hemorrhage  (EIPH)  pathogenesis.       The  predominant  tissue  types  that  determine  a  vessel’s  mechanical  characteristics   are  collagen  and  elastin  (20,  177).  Elastin  contributes  most  resistance  to  stretching  at   lower  tension  values,  whereas  collagen  provides  most  resistance  at  higher  tension  values   (20,  177).  Collagen  is  minimally  distensible,  and  has  an  elastic  modulus  that  is   approximately  400  times  that  of  elastin  (20).   In  both  control  and  raced  horses,  pulmonary  veins  are  stiffer-­‐walled  than   pulmonary  arteries,  and  we  propose  that  this  difference  is  due  to  the  greater  proportion  of   collagen  in  vein  walls,  compared  to  arteries.  This  particular  finding  has  been  documented   in  other  species.  In  the  dog,  intraparenchymal  pulmonary  veins  are  less  distensible  in   response  to  increases  in  intravascular  pressure  than  equivalently-­‐sized  pulmonary  arteries   (121).  Larger  pulmonary  veins  are  also  less  distensible  than  pulmonary  arteries  in  both   rabbits  (22),  and  in  humans  (9,  119).     Mechanical  properties  of  small-­‐caliber  pulmonary  vessels  such  as  those  evaluated  in   this  study  are  not  well  described  in  the  literature  to  date,  and  to  the  best  of  the  authors’     62   knowledge,  published  data  regarding  regional  differences  in  mechanical  properties  of   pulmonary  arteries  and  veins  of  this  size  range  in  any  species  do  not  exist.  In  both  control   and  raced  horses,  caudodorsal  arteries  are  stiffer-­‐walled  than  cranioventral  arteries.  Due  to   the  absence  of  similar  observations  in  other  species,  this  finding  is  unexpected,  and  any   proposed  rationale  for  this  observation  at  this  time  remains  speculative.  However,  in  light   of  what  is  known  about  pulmonary  blood  flow  distribution  in  quadruped  species,  it  is   considered  likely  that  these  differences  are  related  to  the  inhomogeneous  blood  flow   distribution  patterns  that  are  observed  in  the  horse  (76)  and  in  other  mammals  (56,  57).   Stiffer-­‐walled  pulmonary  arteries  in  caudodorsal  lung  may  represent  an  adaptive  response   to  normal  preferential  distribution  patterns  of  blood  flow  to  this  region,  which  in  turn  is   largely  due  to  the  anatomy  of  the  pulmonary  vascular  system  (77).  This  change  may  also   serve  to  protect  pulmonary  capillaries  in  this  region  from  a  higher-­‐flow  state  during   intense  exercise.     In  both  control  and  raced  horses,  cranioventral  veins  are  stiffer-­‐walled  than   caudodorsal  veins.  Considering  an  example  from  the  equine  systemic  circulation,  veins   within  the  foot  (i.e.  laminar  veins)  are  exposed  to  the  highest  intravascular  pressures  in  the   limb  due  to  gravitational  forces,  and  are  thick-­‐walled  (6)  structures  that  are  difficult  to   discern  from  laminar  arteries  (97).  It  is  possible  that  pulmonary  veins  from  the   cranioventral  lung  are  stiffer-­‐walled  than  their  caudodorsal  counterparts  due  to  a  similar   adaptive  response  to  the  hydrostatic  pressure  difference  between  the  dorsal  and  ventral   lung.       Although  vessel  mechanics  play  a  role  in  influencing  blood  flow  distribution,  vessel   reactivity  must  also  be  considered  a  key  determinant  of  pulmonary  blood  flow.     63   Interestingly,  a  small  number  of  studies  report  regional  differences  in  pulmonary  vessel   reactivity,  both  in  the  horse  (164)  and  in  the  pig  (51,  176).  Larger  dorsal  arteries  in  both   pigs  (176),  and  horses  (164)  demonstrate  enhanced  endothelial-­‐mediated  vasorelaxation   compared  to  vessels  from  ventral  regions.  Regional  patterns  of  vessel  mechanical   properties,  along  with  vascular  reactivity  merit  further  and  more  detailed  investigation.     An  important  finding  of  this  study  was  that  caudodorsal  veins  from  raced  animals   were  significantly  stiffer  than  those  from  control  animals.  This  increase  in  stiffness  is  most   likely  a  consequence  of  venous  remodeling  in  raced  horses.  We  previously  reported  that   small  pulmonary  veins  in  caudodorsal,  but  not  in  cranioventral  lung  remodel  in  EIPH-­‐ affected  horses,  while  equivalently-­‐sized  pulmonary  arteries  are  largely  unaffected  in  both   regions  (231).    EIPH-­‐associated  venous  remodeling  is  typified  by  extensive  adventitial   collagen  expansion  (231)  resulting  in  reduced  lumen  area  (38).      In  studies  performed  on   the  pulmonary  vasculature  of  other  species,  remodeling  is  also  associated  with  altered   mechanical  properties  (101,  207,  212).     An  increase  in  stiffness  of  pulmonary  veins  has  important  physiologic  consequences.   Increased  vein  stiffness  will  decrease  pressure-­‐induced  distension  of  the  veins  and   increase  resistance  to  blood  flow,  particularly  during  exercise.  This,  in  turn,  should  increase   pressure  in  upstream  pulmonary  capillaries.  If  pressure  increases  exceed  the  reported   breaking  strength  of  these  vessels  (Ptm  75  mmHg  (17)),  stress-­‐failure  (230)  of  capillary   walls  can  occur,  resulting  in  EIPH.       Despite  the  difference  between  length-­‐tension  curves  of  pulmonary  arteries   harvested  from  cranioventral  lung  in  raced  and  unraced  horses  being  small,  this  difference   was  statistically  significant.  The  observation  that  cranioventral  pulmonary  arteries  were     64   stiffer  in  raced  horses  was  unexpected,  as  vascular  pathology  in  cranioventral  lung  is  not   reported  in  existing  literature  on  the  topic  (152,  157,  231).  As  extensive  EIPH  pathology  in   this  region  is  not  observed,  it  is  possible  that  mild  arterial  remodeling  changes  have  been   overlooked  in  past  studies  and  further  more  detailed  studies  of  the  vasculature  of  this   region  are  warranted  based  on  this  observation.  It  is  plausible  that  stiffening  of   cranioventral  pulmonary  arteries  in  response  to  race  training  is  somewhat  protective  of   capillaries  in  that  region,  and  that  through  this  mechanism,  this  observation  may  also   explain  (at  least  in  part)  the  regional  nature  of  the  EIPH  lesion.   Alterations  in  vessel  stiffness,  as  determined  by  analysis  of  length-­‐tension  curves,   are  a  direct  result  of  changes  in  vessel  wall  structural  components  (119).  In  this  study,  we   evaluated  tension  over  a  wide  range,  from  zero-­‐stress  to  tension  values  approaching  vessel   breaking  point.  In  light  of  previous  studies  in  EIPH-­‐affected  horses  that  report  collagen   deposition  in  remodeled  vein  walls  (38,  231,  233)  it  is  most  likely  that  the  observed   increase  in  vessel  stiffness  is  due  to  an  increase  in  wall  collagen  content.  In  this  study  all   vessels  were  stretched  to  near-­‐breaking  point,  which  distorted  vessel  wall  anatomy  greatly.   For  this  reason,  morphometric  analyses  of  the  vessels  were  not  performed,  and  therefore   we  do  not  provide  data  quantifying  collagen  deposition  in  affected  vessels.  Studies  using  a   reduced  range  of  tension  application  to  correlate  collagen  content  and  mechanical   properties  are  warranted.     Vessel  mechanics  were  analyzed  over  a  large  range  of  wall  tensions,  which   undoubtedly  exceeds  any  wall  tension  changes  experienced  during  exercise  in  vivo.   Extrapolation  of  the  effect  of  mechanical  changes  over  such  a  large  wall  tension  range  on   vessels  in  the  living  horse  at  rest  or  during  exercise  is  difficult,  and  predicted  effects,  if  any,     65   should  not  be  overstated.    In  an  effort  to  address  this,  we  converted  tension  values  to   equivalent  transmural  pressure  values  using  the  Law  of  Laplace,  and  evaluated  length-­‐ pressure  relationships  over  a  range  encompassing  in  vivo  physiologic  pressure  ranges   experienced  by  horses  at  rest  and  during  exercise:  0-­‐120  mmHg  for  arteries,  and  0  –  80   mmHg  for  veins  (127).  This  analysis  demonstrated  an  identical  pattern  of  significant  effects   of  racing  (stiffening  of  caudodorsal  veins  and  cranioventral  arteries)  to  that  found  in  the   larger  (supra-­‐physiologic)  range  of  vessel  wall  tensions.  It  is  reasonable  to  extrapolate  the   effect  of  these  data  to  vessels  in  vivo,  and  these  findings  lend  further  support  to  the   hypothesis  that  pulmonary  venous  remodeling  in  the  caudodorsal  lung,  which  in  this  study   manifests  as  an  increase  in  vessel  wall  stiffness,  may  be  a  component  of  EIPH  pathogenesis.     Previous  reports  of  EIPH  pathology  have  utilized  horses  with  career-­‐limiting  EIPH   (157,  231,  233)  and  correspondingly  severe  pulmonary  pathologic  changes.  In  contrast,   raced  horses  used  in  this  study  were  retired  from  racing  for  reasons  other  than  EIPH.   Interestingly,  and  despite  an  absence  of  severe  EIPH  clinical  history,  these  horses  had  mild   to  moderate  EIPH  pathology,  suggestive  of  underlying  prior  pulmonary  hemorrhage.   Consistent  with  previous  reports  (231,  233),  caudodorsal  veins  of  raced  horses  in  this   study  were  remodeled.  The  data  presented  in  this  paper  expand  this  observation  by   demonstrating  that  this  remodeling  is  associated  with  increased  vein  wall  stiffness.  These   alterations  in  vessel  mechanics  further  substantiate  the  contention  that  remodeling  of  the   pulmonary  venous  system  of  the  equine  lung  is  an  early  response  to  strenuous  exercise,   The  authors  propose  that  this  remodeling  may  have  a  role  in  the  pathogenesis  of  EIPH   (233)  although  it  is  acknowledged  that  the  experiments  described  in  this  study  were  not   designed  to  ascertain  whether  alterations  in  pulmonary  vein  stiffness  contribute  to  EIPH,       66   or,  whether  the  changes  come  about  because  of  EIPH  earlier  in  these  horses’  racing  careers.   Further  support  for  a  relationship  between  histologic  remodeling  changes  and  increased   vein  stiffness  is  provided  by  the  observation  that  the  mechanical  properties  of   cranioventral  veins  and  caudodorsal  arteries,  vessels  that  are  not  reported  to  remodel  in   EIPH-­‐affected  horses  (231,  233),  were  unaffected  by  racing.   In  conclusion,  the  findings  of  this  study  indicate  for  the  first  time,  that  regional   differences  in  vessel  mechanics  exist  in  the  unraced  horse,  and  that  changes  in  pulmonary   vein  wall  structure  occur  in  horses  that  have  undergone  race  training.  Furthermore,  these   changes  occur  before  the  development  of  severe,  career-­‐limiting  EIPH.    Altered  vessel   mechanics  are  detectable  within  a  physiologically  applicable  range  of  vessel  wall  tensions.   Therefore  this  finding  may  have  important  consequences  in  the  exercising  horse.  Increased   vein  wall  stiffness  increases  pulmonary  capillary  pressures,  particularly  during  exercise,   thereby  augmenting  EIPH.  These  data  highlight  pulmonary  vein  remodeling  as  a  lesion  of   interest  in  EIPH  pathogenesis,  and  suggest  that  pulmonary  veins  could  be  an  interesting   therapeutic  target  in  future  approaches  to  EIPH  management.           67                                                   APPENDIX       68         Figure  4  Verhoeff-­‐Van  Geison  stained  pulmonary  artery  and  vein  for  histologic   confirmation  of  identity  post-­‐myography.    Pulmonary  arteries  (A)  are  thicker  walled  than   veins  (B)  and  possess  both  an  internal  (arrowhead)  and  external  (arrow)  elastic  lamina   compared  to  veins  which  are  thin-­‐walled  and  only  have  an  external  elastic  lamina  (arrow).   Bar  =  100  µm.               69               Figure  5  Length-­‐tension  plots  for  arteries  and  veins  from  control,  unraced  (A)  and  raced   (B)  horses.  Values  are  mean  ±  SE.  In  both  control  and  raced  horses,  veins  are  stiffer  than   arteries.  P  <  0.05  is  considered  significant.                     70     Figure  6  Length-­‐tension  plots  for  caudodorsal  (CD)  and  cranioventral  (CV)  veins,  and  for   CD  and  CV  arteries  from  unraced  horses  (A  and  B  respectively)  and  from  raced  horses    (C   and  D  respectively).  Values  are  mean  ±  SE.  In  both  control  and  raced  horses,  veins  from   cranioventral  lung  are  stiffer  than  veins  from  caudodorsal  lung,  and  arteries  from   caudodorsal  lung  are  stiffer  than  arteries  from  cranioventral  lung.  P  <  0.05  is  considered   significant.           71       Figure  7  Length-­‐tension  plots  of  vessels  from  control  and  raced  horses.  Data  are  from   caudodorsal  (CD)  and  cranioventral  (CV)  veins  (A  and  B  respectively)  and  arteries  (C  and  D   respectively).  Values  are  means  ±  SE  Veins  from  the  caudodorsal  region  of  lungs  of  raced   horses  are  stiffer  than  those  from  unraced,  control  horses.  Arteries  from  the  cranioventral   region  of  lungs  of  raced  horses  are  stiffer  than  those  from  unraced,  control  horses.  p  <  0.05   is  considered  significant.           72     Figure  8  Length-­‐pressure  plots  for  vessels  from  control  and  raced  horses.  Data  are  from   caudodorsal  (CD)  and  cranioventral  (CV)  veins  (A  and  B  respectively)  and  arteries(C  and  D   respectively).  Data  are  expressed  as  mean  values.  Veins  from  the  caudodorsal  region  of   lungs  of  raced  horses  are  stiffer  than  those  from  unraced,  control  horses.  Arteries  from  the   cranioventral  region  of  lungs  of  raced  horses  are  stiffer  than  those  from  unraced,  control   horses.  Hatched  regions  demarcate  the  range  of  in  vivo  intravascular  pressures  from  rest  to   intense  exercise  (10  –  70  mmHg  and  30  –  110  mmHg  for  veins  and  arteries  respectively).  P   <  0.05  is  considered  significant.       73   Vessel   Type   Region   Horse   Status   n   Vein   Artery   CD   CD   Control   Control   9   10   Vein   CV   Control   7   Artery   CV   Control   9   Vein   CD   Raced   15   Artery   CD   Raced   10   Vein   Artery   CV   CV   Raced   Raced   8   10   Diameter  at   start  (μm)   mean  ±   s.e.m   217.5  ±   25.21   280.0  ±38.81   207.3  ±   30.83   314.5  ±   37.42   223.8  ±   15.35   386.3  ±   29.28   211.9  ±   34.68   330.3  ±  27.2       Table  1  Mean  vessel  diameters  at  start  point.    Values  are  means  ±  SE,  n  =  number  of   vessels.  Start  point  is  defined  as  the  smallest  diameter  at  which  a  vessel  maintains  a  small   (<0.05  mN)  but  sustained  wall  tension.  CD,  caudodorsal;  CV  cranioventral         74   CHAPTER  3   Regional  heterogeneity  in  reactivity  of  small  pulmonary  blood  vessels  in  the  horse   may  predict  exercise-­‐induced  pulmonary  hemorrhage  lesion  distribution     Alice  Stack,  Frederik  J.  Derksen,  Kurt  J.  Williams,  N.  Edward  Robinson,  William  F.  Jackson     Abstract   Exercise-­‐induced  pulmonary  hemorrhage  in  horses  results  in  significant  caudodorsal  (CD)   lung  region  pathology.  Capillary  stress  failure  and  hemorrhage  occur  secondary  to  high   pulmonary  circulation  pressures  during  exercise,  but  reasons  for  CD  EIPH  lesion   distribution  have  not  been  established.  Alterations  in  vascular  tone  of  small  pulmonary   arteries  and  veins  impact  pulmonary  capillary  pressures.    We  investigated  the  hypothesis   that  regional  heterogeneity  in  active  control  mechanisms  of  small  pulmonary  vessels  exist,   and  do  so  in  a  manner  that  predicts  EIPH  lesion  distribution.  Autonomic  control  of  vascular   tone  changes  during  exercise,  therefore  the  vasoactive  autonomic  agonists  phenylephrine,   isoproterenol  and  methacholine  were  investigated  using  wire  myography  on  vessels   dissected  from  CD  and  cranioventral  (CV)  regions  of  12,  unraced  horses.  U  46619,   furosemide,  and  mechanisms  of  methacholine  activity  using  L-­‐NAME  and  indomethacin   pre-­‐incubation  steps,  were  also  investigated.    Phenylephrine  did  not  cause  contraction  in   any  vessels,  whereas  isoproterenol  relaxed  pre-­‐contracted  arteries  (CD  to  a  greater  degree   than  CV)  but  not  veins.  Methacholine  caused  contraction  of  CD  arteries,  and  relaxation  of   CV  arteries  and  all  veins  in  a  non-­‐region  dependent  manner.  L-­‐NAME  and  indomethacin   inhibited  methacholine-­‐induced  relaxation  of  CV  arteries,  whereas  indomethacin  only     75   augmented  CD  artery  contraction.  Furosemide  caused  mild  relaxation  of  pulmonary   arteries  and  veins  at  high  concentrations.  Extrapolation  of  these  data  to  the  in  vivo  effect  of   increased  sympathetic  and  decreased  parasympathetic  tone  during  exercise  predicts  that   highest  capillary  pressures  occur  in  CD  lung,  explaining  in  part  EIPH  lesion  distribution  and   disease  pathogenesis.    Regional  heterogeneity  in  small  pulmonary  vessel  reactivity  is   unreported  in  other  species.         Introduction   Exercise-­‐induced  pulmonary  hemorrhage  (EIPH),  which  is  diagnosed  when  blood  is   identified  in  the  airways  after  an  intense  bout  of  exercise(162),  has  been  reported  in   multiple  athletic  species  (1,  10),  including  humans(4,  42,  52),  but  it  is  most  prevalent  in   racehorses  (18)  where  it  is  associated  with  impaired  racing  performance(70).   An  early  theory  of  EIPH  pathogenesis  is  based  on  descriptions  of  capillary  wall   disruption  in  lung  tissue  from  exercised  horses(230),  that  is  likely  a  result  of  the  high   intravascular  pressures  that  occur  normally  in  the  pulmonary  vascular  system  of  the   exercising  horse  (i.e.  capillary  stress  failure).  High  pulmonary  artery  and  venous  pressures   result  in  capillary  pressures  in  the  order  of  80  mmHg  (106,  127),  exceeding  the  reported   threshold  for  breaking  strength  (75  mmHg)  of  equine  pulmonary  capillaries  (17).   Stress-­‐failure  alone  does  not  account  for  the  pathology  in  lungs  of  EIPH-­‐affected   horses  however  (150,  233).  EIPH  lesions  include  remodeling  of  small  (100  –  200  μm  O.D.)   pulmonary  veins  (231),  and  are  most  common  and  most  severe  in  the  caudodorsal  lung   region  while  cranioventral  lung  remains  normal(150,  157,  231,  233).  Pulmonary  venous     76   remodeling  is  reported  as  a  consequence  of  elevated  intravascular  pressures  in  other   species  (25,  86),  and  is  predicted  to  occur  in  response  to  elevated  venous  pressures  in  the   exercising  horse,  particularly  in  the  caudodorsal  lung.     Caudodorsal  lung  is  the  region  to  which  blood  is  preferentially  distributed  in  both   the  standing  (76),  and  galloping  horse  (15)  and  we  recently  confirmed  that  EIPH  pathology   has  a  similar  distribution  to  that  of  pulmonary  blood  flow  (233).  Blood  flow  distribution  in   the  lung  is  determined  by  vascular  anatomy,  which  is  fixed,  and  variable  factors  including   vascular  reactivity  (55).  Regional  differences  in  endothelial-­‐dependent  reactivity  of  large   pulmonary  arteries  of  the  horse  that  can  account  for  this  flow  distribution  pattern  have   already  been  reported  (164),  however  reactivity  patterns  of  small  pulmonary  vessels  have   not.  These  vessels  are  worthy  of  investigation  as  arterial  and  venous  resistances  in  the   small  vessels  supplying  and  draining  the  capillaries  directly  affect  pulmonary  capillary   pressure,  the  ultimate  cause  of  stress-­‐failure  and  hemorrhage.  For  example,  reduced   arterial  resistance  and/or  increased  venous  resistance  will  further  increase  pulmonary   capillary  pressure,  thereby  augmenting  the  risk  of  EIPH.     In  general,  sympathetic  nervous  system  activation  associated  with  exercise  results   in  both  α-­‐  and  β-­‐  adrenoreceptor  activation  in  the  pulmonary  circulation  (93,  203),  while   parasympathetic  activity  during  exercise  is  diminished  (133).  Accounts  of  regional   heterogeneity  in  reactivity  profiles  of  large  pulmonary  vessels,  and  mechanical  properties   of  small  pulmonary  vessels  in  the  horse  exist  (164,  196).  Regional  differences  in  vascular   responses  to  increases  and/or  decreases  in  vasoactive  autonomic  agonists  would  exert   varying  effects  on  pulmonary  capillary  pressures  in  the  lung.       77   For  these  reasons,  we  investigated  the  hypothesis  that  regional  differences  in   patterns  of  vascular  reactivity  to  adrenergic  and  cholinergic  agonists  in  small  pulmonary   arteries  and  veins  exist,  and  do  so  in  a  manner  that  will  predict  the  predilection  of  EIPH   pathology  for  the  caudodorsal  lung  region.   EIPH  severity  and  incidence  is  ameliorated  in  part  by  pre-­‐race  administration  of   furosemide  (73),  which  is  a  pulmonary  venodilator  in  dogs(59).  We  also  tested  the   hypothesis  that,  in  horses,  furosemide  dilates  pulmonary  veins  but  not  pulmonary  arteries   independent  of  lung  region.     To  test  these  hypotheses,  pharmacology  studies  using  wire  myography  were   performed  on  small  pulmonary  arteries  and  veins  from  unraced  horses.  Both  adrenergic   (phenylephrine  and  isoproterenol)  and  muscarinic  (methacholine)  agonists  were  tested,   along  with  the  thromboxane  analog  U  46619,  and  furosemide.  Regional  differences  in   responses  of  pulmonary  arteries  to  isoproterenol  and  methacholine,  and  responses  of  veins   to  U  46619  are  reported.  Further  investigations  into  mechanisms  of  methacholine  activity   in  pulmonary  arteries  were  performed  based  on  observed  differences.  Regional  differences   in  reactivity  profiles  of  small  pulmonary  vessels  such  as  those  described  in  these  studies   have  not  been  reported  in  any  species  to  date.       Materials  and  Methods   Animals   Nine  horses,  (7  geldings  and  2  mares),  8.33  ±  0.9  (average  age  ±  s.e.m.)  years,  were  used  to   determine  regional  patterns  of  reactivity  to  5  drugs.  These  horses  were  of  various  breeds   including  two  Quarterhorses,  two  Tennessee  Walkers,  three  Arabian-­‐crosses,  one     78   Thoroughbred  and  one  crossbred.  Three  additional  horses  (2  mares  and  one  gelding),  9.67   ±  2.03  (average  age  ±  s.e.m.)  years,  were  used  to  investigate  mechanisms  of  methacholine   activity.  These  horses  were  of  various  breeds  including  two  paint-­‐crosses  and  one   Thoroughbred.  Thoroughbred  horses  had  never  raced.  The  Michigan  State  University   Institutional  Animal  Care  and  Use  Committee  approved  all  experimental  procedures.     Tissue  acquisition   Approximately  15  minutes  before  euthanasia,  intravenous  heparin  sodium  (50,000   IU/horse)  was  administered  to  all  horses.  Euthanasia  was  performed  using  pentobarbital   sodium  (90  mg/kg  IV).  Lung  tissue  sections  (approximately  4  cm3)  were  acquired  from  the   caudodorsal  (CD)  and  cranioventral  (CV)  regions  of  the  caudal  (diaphragmatic)  lobe  of  both   left  and  right  lungs.  Lung  tissue  was  kept  in  chilled  normal  saline  (0.9%  sodium  chloride)   solution  until  vessel  dissection.       Vessel  dissection   Approximately  0.5  cm  thick  slices  of  lung  tissue  were  pinned  to  a  Sylgard  (Dow  Corning,   Midland,  MI)  pad  in  a  water-­‐jacketed  dissection  chamber  (Radnoti,  Monrovia,  CA)  and  fully   submerged  in  chilled  Ca2+  -­‐free  physiologic  saline  solution  (PSS)  containing  (in  mM)  140   NaCl,  5  KCl,  1  MgCl2,  10  HEPES,  10  glucose  (pH  7.4,  295  mOsm).  Ca2+  -­‐free  PSS  was  used  to   minimize  vasospasm  that  can  occur  during  vessel  manipulation.   Sections  of  pulmonary  veins  and  arteries  (identified  by  use  of  anatomic  criteria)  that   ranged  in  length  from  0.38  mm  to  1.46  mm  were  gently  dissected  from  pulmonary  tissue.   Pulmonary  arteries  were  harvested  from  broncho-­‐vascular  triads.  Pulmonary  arteries  were     79   identified  as  stiff-­‐walled  vessels  (compared  to  veins  in  the  same  triad)  that  were   immediately  adjacent/adherent  to  the  conducting  airway  (175).  For  this  experiment,  veins   were  not  harvested  from  the  bronchovascular  triad  and  intralobular  pulmonary  veins  only   were  harvested.  They  are  found  alone  in  parenchyma,  and  are  not  associated  with  airways   (231).  Once  dissected,  vessels  were  kept  in  Ca2+-­‐free  PSS  at  4°C  for  up  to  24  hours.     Wire  myography   Vessels  were  submerged  in  chilled  Ca2+-­‐free  PSS  and  mounted  as  a  cylinder  on  2  intra-­‐ luminal  stainless  steel  40-­‐μm  diameter  wires  in  a  4-­‐chamber  myograph  (DMT,  Aarhus,   Denmark)  as  previously  reported  (196).  Bath  fluid  was  then  exchanged  for  room   temperature  PSS  containing    (in  mM)  140  NaCl,  5  KCl,  1.8  CaCl2,  1  MgCl2,  10  HEPES,  10   glucose  (pH  7.4,  295  mOsm).  Vessel  length  was  recorded  using  a  previously  calibrated   stereomicroscope.  The  bath  fluid  was  then  heated  slowly  to  37°C,  and  air  was  bubbled   gently  through  the  fluid  continuously.    The  myograph  force  transducer  was  used  in   conjunction  with  a  PowerLab  (ADInstruments,  Colorado  Springs,  CO)  data  acquisition  unit   and  LabChart  (ADInstruments,  Colorado  Springs,  CO)  software  platform.     Vessel  normalization   Optimal  passive  tension  values  for  equine  pulmonary  arteries  and  veins  have  not  been   published.  Therefore  the  first  11  arteries  harvested  were  tested  in  order  to  determine  this   characteristic.  Briefly,  resting  wall  tension  (T)  was  set  at  0.1  mN/mm,  and  PSS  was   exchanged  for  60  mM  K+  PSS  (which  contained  (in  mM)  85  NaCl,  60  KCl,  1.8  CaCl2,  1  MgCl2,   10  HEPES,  10  glucose  (pH  7.4,  295  mOsm)).  Vessels  were  allowed  to  develop  a  contraction     80   for  2  minutes,  the  maximum  T  value  reached  was  recorded,  and  the  vessel  was  washed   with  PSS  until  T  returned  to  baseline.  After  5  minutes,  resting  wall  T  was  increased  by  0.2   mN/mm  (to  0.3  mN/mm)  and  PSS  was  exchanged  for  60  mM  K+  PSS  as  before.  This  process   was  repeated  until  an  increase  in  passive  wall  T  no  longer  resulted  in  an  increase  in  active   T  upon  the  addition  of  60  mM  K+  PSS.  Pulmonary  veins  underwent  a  similar  procedure   other  than  passive  wall  T  for  veins  was  increased  in  0.1  mN/mm  increments.   Once  it  became  apparent  that  pulmonary  arteries  had  similar,  repeatable  optimal  T   values  (determined  in  11  arteries  from  4  horses),  mean  optimal  T  was  calculated,  and  this   value,  1.1  mN/mm,  was  used  to  normalize  all  subsequent  arteries.  Veins  had  a  greater   range  of  optimal  T  values  (from  0.2  –  0.7  mN/mm),  and  therefore  this  value  was   determined  with  60  mM  K+  PSS  for  each  vein  studied  in  subsequent  experiments.  Vessel   diameter  was  measured  under  minimal  tension  (0.1  mN/mm  for  arteries  and  veins)  and  at   optimal  tension  (1.1  mN/mm  for  arteries,  individual  wall  tension  for  veins)  conditions.       Vessel  wake-­‐up   Once  normalized,  vessels  were  allowed  a  40-­‐minute  equilibration  period  at  their  optimal  T.   Then  vessels  underwent  a  wake-­‐up  procedure  consisting  of  2  challenges  with  60  mM  K+   PSS  with  a  5-­‐minute  interval.       Agonist  concentration-­‐response  curves   Cumulative  concentration-­‐response  curves  (CCRC)  were  generated  for  each  drug,  with  the   exception  of  phenylephrine  for  which  a  single  concentration  challenge  (10∧-­‐5  M)  was   performed.  Concentration  ranges  were  initially  established  based  on  literature  from  other     81   species,  and  then  confirmed  in  equine  vessels  during  preliminary  experiments.  U  46619,   methacholine  and  isoproterenol  concentrations  ranged  from  1  x  10∧-­‐9  to  3  x  10∧-­‐6  M.   Furosemide  was  tested  over  10∧-­‐5  to  3  x  10∧-­‐4  M.  DMSO  (without  furosemide)  was  tested   to  rule  out  vehicle  effects.   In  order  to  evaluate  responses  to  vasodilator  agents  (methacholine,  isoproterenol,   furosemide),  all  vessels  were  first  exposed  to  10∧-­‐6  M  U  46619,  a  concentration  that  was   confirmed  as  reliably  producing  maximal  vasoconstriction  in  both  arteries  and  veins  during   preliminary  experiments.     Multiple  drugs  (up  to  4)  were  tested  in  the  same  vessel  with  thorough  washes   between  each  challenge.  The  order  in  which  drugs  were  tested  on  a  set  of  4  vessels  was   randomized  using  a  random  list  generator.     For  the  second  component  of  this  study  in  which  mechanisms  of  methacholine-­‐ reactivity  were  investigated,  artery  wall  T  was  set  at  1.1  mN/mm.  30  minutes  after  vessel   wake-­‐up,  a  methacholine  CCRC  was  performed  on  all  vessels.  After  washing,  vessels  were   incubated  with  either  L-­‐NAME  (10∧-­‐4  M)  or  indomethacin  (10∧-­‐5  M)  for  30  minutes,  and   the  methacholine  CCRC  was  repeated.  After  washing,  all  vessels  were  incubated  with  L-­‐ NAME  and  indomethacin  for  30  minutes  and  a  third  methacholine  CCRC  was  performed  in   the  presence  of  both  inhibitors.       Vessel  fixation   After  pharmacology  experiments  were  concluded,  vessels  were  cut  along  their  long  axis   between  the  myograph  wires.  Vessels  were  then  pinned  out  with  the  endothelial  surface     82   exposed  onto  a  Sylgard  (Dow  Corning,  Midland,  MI)  pad  in  a  small  petri  dish  filled  with   PBS.  Vessels  were  fixed  in  situ  using  10%  methanol-­‐free  formaldehyde  for  20  minutes.     Immunohistochemistry   After  washing  with  PBS,  immunoflourescent  staining  for  endothelium  (CD-­‐31)  was  carried   out  on  the  wholemount  vessels  from  the  second  component  of  the  study.  Monoclonal   mouse  anti-­‐human  CD-­‐31  primary  antibody  (Dako,  Carpinteria,  CA)  (1:40)  was  applied  to   the  vessels  and  incubated  overnight  at  4°C.  After  blocking  (with  5%  normal  goat  serum  in  a   1%  saponin  in  PBS  solution)  for  1  hour,  Alexa  Fluor  488-­‐conjugated  AffiniPure  goat  anti-­‐ mouse  IgG  secondary  antibody  (Jackson  ImmunoResearch  Laboratories,  West  Grove,  PA)   (1:100)  was  applied  for  1  hour.  Vessels  were  then  mounted  on  slides  under  PBS.       Endothelial  Imaging   Endothelium  was  examined  using  epiflourescent  microscopy.  Each  vessel  was   photographed  at  20X  magnification,  and  depending  on  vessel  surface  area,  between  2  and  7   images  per  vessel  acquired  and  saved.    Endothelium-­‐covered  regions  were  outlined  using   imaging  software  (Image  J,  http://imagej.nih.gov/ij/)  and  total  endothelium-­‐covered  area   expressed  as  a  percentage  of  the  total  tissue  area  in  an  image.       Vessel  histology   Following  fixation  or  imaging,  vessels  were  removed  from  the  petri  dish  or  slide  and  placed   in  Histogel  (American  MasterTech,  Lodi,  CA)  specimen  processing  gel.  Gel-­‐embedded   vessels  were  embedded  in  paraffin  and  sectioned.  6-­‐μm  sections  were  stained  with     83   hematoxylin  and  eosin  (H  and  E)  and  Verhoeff-­‐Van  Gieson  (VVG),  and  stained  tissues  were   used  to  confirm  vessel  identity  as  either  a  pulmonary  artery  or  vein.  Characteristics  of   pulmonary  arteries  include  a  substantial  tunica  media  bounded  by  an  internal  and  external   elastic  lamina  (134).  In  contrast,  pulmonary  veins  have  less  smooth  muscle  and  only  an   external  elastic  lamina  between  the  tunica  media  and  tunica  adventitia  (134).  The  internal   elastic  lamina  between  the  tunica  intima  and  tunica  media  (175,  210)  is  absent.    Vessel   identification  was  carried  out  by  a  board-­‐certified  veterinary  pathologist  (KJW)  who  was   blinded  to  the  identity  of  the  vessel  based  on  anatomic/dissection  criteria.     Materials     U  46619  was  acquired  from  Tocris  Bioscience  (Minneapolis,  MN).  Acetyl-­‐β-­‐methylcholine   chloride,  phenylephrine  hydrochloride,  isoproterenol  hydrochloride,  furosemide,  Nω-­‐Nitro-­‐ L-­‐arginine  methyl  ester  hydrochloride  (L-­‐NAME)  and  indomethacin  were  acquired  from   Sigma-­‐Aldrich  (St.  Louis,  MO).  U  46619  and  furosemide  were  dissolved  in  DMSO,   indomethacin  was  dissolved  in  20X  bicarbonate  buffer,  and  all  other  drugs  were  dissolved   in  double-­‐distilled  water  to  make  stock  solutions.  Serial  dilutions  of  stock  solutions  were   made  in  PSS.       Statistical  analyses   Responses  of  a  vessel  to  vasoconstrictor  agents  (U  46619  and  phenylephrine)  were   expressed  as  a  percentage  of  the  mean  of  that  vessel’s  maximal  contractions  in  response  to   60  mM  K+  -­‐PSS  during  vessel  wake-­‐up.       84   Once  a  stable  contraction  to  10∧-­‐6  M  U  46619  was  established,  all  responses  to   vasodilator  agents  (methacholine,  isoproterenol  and  furosemide)  were  expressed  as  a   percentage  of  that  contraction.   Cumulative  concentration  response  curves  were  fit  (when  possible)  to  a   log(agonist)  vs.  response  sigmoidal  curve  (Y=Bottom  +  (Top-­‐Bottom)/(1+10^((LogEC50-­‐ X)*HillSlope)))  and  curve  fits  were  then  compared  between  arteries  and  veins,  and   between  lung  regions  (GraphPad  Prism  6,  GraphPad  Software  Inc.,  La  Jolla,  CA).  EC50  is   that  concentration  of  agonist  that  gives  a  response  halfway  between  the  bottom  and  the  top   (plateau  regions)  of  the  sigmoidal  curve.  All  data  are  expressed  as  mean  ±  s.e.m.  and  p  <   0.05  is  considered  significant.     For  image  analysis,  percent  endothelium-­‐cover  in  an  image  was  averaged  for  each   vessel.    Mean  percent  endothelium-­‐cover  for  CD  and  CV  vessels  was  compared  using  an   unpaired  t-­‐test  (GraphPad  Prism  6,  GraphPad  Software  Inc.,  La  Jolla,  CA)  and  statistical   significance  declared  at  p  <  0.05.         Results   Vessels   Twenty-­‐nine  pulmonary  arteries  (13  from  CD  and  16  from  CV  lung  regions)  and  23   pulmonary  veins  (11  from  CD  and  12  from  CV  lung  regions)  from  9  horses  were  used  to   study  regional  patterns  of  reactivity  to  drugs,  and  30  pulmonary  arteries  (15  from  CD  and   15  from  CV  lung  regions)  from  3  different  horses  were  used  to  investigate  mechanisms  of   methacholine  activity.       85     Vessel  dimensions   Diameter  of  arteries  and  veins  under  minimal  tension  of  0.1  mN/mm  was  169.9  ±  10.91   (mean  ±  s.e.m.)  and  128.3  ±  9.0  μm,  respectively.  Under  optimal  tension  arterial  diameter   was  367  ±  16.23  (mean  ±  s.e.m.)  μm,  while  venous  diameter  was  205.8  ±  20.86  (mean  ±   s.e.m.)  μm.  Using  the  Law  of  Laplace  to  convert  wall  tension  (in  mN/mm)  to  transmural   pressure  values  (in  mmHg),  optimal  wall  tension  values  (1.1  mN/mm  for  arteries,  and  0.32   mN/mm  for  veins)  were  equivalent  to  pressures  of  24.21  ±  1.1  and  14.05  ±  1.4  (mean  ±   s.e.m.)  mmHg  in  arteries  and  veins  respectively.       U  46619   U  46619  caused  concentration-­‐dependent  contraction  in  both  arteries  (n  =  16)  and  veins  (n   =  15)  (Figure  9,  A),  with  the  greatest  response  observed  in  veins.  The  maximum  response   of  veins  was  234.2  ±  15.06  %  of  maximum  response  to  KCl,  whereas  that  of  arteries  was   104.5  ±  4.89  %.  Pulmonary  veins  were  more  sensitive  to  U  46619  than  pulmonary  arteries   with  EC50  values  of  9.74  x  10∧-­‐8  M  and  2.73  x  10∧-­‐7  M  in  veins  and  arteries,  respectively.   When  evaluated  by  region,  caudodorsal  (n  =  7)  and  cranioventral  (n  =  9)  arteries  did  not   differ  in  their  responses  to  U  46619  (Figure  9,  B)(p  =  0.25),  while  a  regional  effect  was   observed  in  pulmonary  veins  with  cranioventral  (n  =  8)  veins  demonstrating  enhanced   sensitivity  compared  to  caudodorsal  veins  (n  =  7)(  Figure  9,  C)(p  <  0.0001).         Phenylephrine     86   Pulmonary  arteries  (n  =  10)  and  pulmonary  veins  (n  =  9)  did  not  constrict  in  response  to   10∧-­‐5  M  phenylephrine  (data  not  shown).       Isoproterenol   Isoproterenol  caused  a  concentration-­‐dependent  relaxation  in  pulmonary  arteries  (n  =  11),   while  pulmonary  veins  (n  =  14)  failed  to  respond.  A  significant  difference  between  the   responses  of  cranioventral  (n  =  5)  and  caudodorsal  (n  =  6)  arteries  to  isoproterenol  was   detected  (p  <  0.0001)(Figure  10,  A)  with  caudodorsal  arteries  demonstrating  enhanced   relaxation  (relaxation  28.18  ±  3.74  %  and  48.67  ±  3.09  %  of  maximum  in  CD  and  CV   arteries  respectively).  There  was  no  regional  difference  in  the  response  of  veins  to   isoproterenol  (Figure  10,  B).     Furosemide     Furosemide  caused  a  mild,  concentration-­‐dependent  relaxation  in  pulmonary  arteries  (n  =   12)(relaxation  51.91  ±  24.31  %  of  maximum),  and  to  a  lesser  degree,  in  pulmonary  veins  (n   =  12)(Figure  11,  A).  DMSO  vehicle  did  not  cause  relaxation  in  either  pulmonary  arteries  (n   =  5)  or  veins  (n  =  10)(Figure  11,  B  and  C).    Lung  region  did  not  affect  responses  of  arteries   or  veins  to  furosemide  (p  =  0.07  and  p  =  0.19  for  arteries  and  veins  respectively)(Figure   11,  B  and  C).       Methacholine   Methacholine  caused  a  concentration-­‐dependent  relaxation  in  pulmonary  veins  (n  =  13)   but  the  response  of  arteries  varied  by  region  (n  =  16).  When  arteries  were  evaluated  by     87   region,  all  cranioventral  arteries  (n  =  8)  demonstrated  a  concentration-­‐dependent   relaxation  in  response  to  methacholine,  while  all  caudodorsal  arteries  (n  =  8)  constricted,   also  in  a  concentration-­‐dependent  manner  (Figure12,  A).  The  response  of  pulmonary  veins   (n  =  6  and  n  =  7  for  CD  and  CV  veins  respectively)  to  methacholine  was  not  affected  by   region  (p  =  0.59)(Figure  12,  B).       Mechanisms  of  methacholine  reactivity   Pre-­‐incubation  of  caudodorsal  pulmonary  arteries  (n  =  7)  with  L-­‐NAME  did  not  affect  their   response  (contraction)  to  methacholine  (p  =  0.7)(Figure  13,  A).  Pre-­‐incubation  with   indomethacin  however,  augmented  the  contraction  of  CD  arteries  (n  =  8)  when  compared   to  methacholine  alone  (p  =<  0.0001)(Figure  5,  B).  Pre-­‐incubation  of  CD  arteries  (n  =  13)   with  both  L-­‐NAME  and  indomethacin  also  resulted  in  an  augmented  contraction  (Figure   13,  C)  but  the  CCRC  did  not  differ  from  vessels  incubated  with  indomethacin  alone    (p  =   0.79).   Pre-­‐incubation  of  cranioventral  pulmonary  arteries  (n  =  8)  with  L-­‐NAME  diminished  their   response  (relaxation)  to  methacholine  (p  <  0.0001)(Figure  13,  D).  Pre-­‐incubation  with   indomethacin  also  resulted  in  reduced  relaxation  of  CV  arteries  (n  =  7)(Figure  13,  E).    Pre-­‐ incubation  of  CV  arteries  (n  =  15)  with  both  L-­‐NAME  and  indomethacin  induced  a  mild   contraction  and  abolished  relaxation  until  the  highest  concentrations  of  methacholine  were   added  to  the  bath  (1  x  10-­‐6  and  3  x  10-­‐6  M)  (Figure  13,  F).  Bicarbonate  buffer  (used  to  make   indomethacin  stock  solution)  at  the  concentration  used  in  the  experiments  did  not  affect   PSS  pH,  making  a  vehicle  effect  improbable.         88   Endothelial  imaging   Endothelium-­‐covered  regions  were  clearly  distinguishable  from  denuded  areas  (Figure   14).  Data  from  8  CD  and  11  CV  vessels  from  the  component  of  the  study  that  investigated   methacholine  mechanisms  are  reported  (remaining  vessels  from  this  study  component   could  not  be  imaged).  Values  for  percent  endothelium-­‐cover  in  a  vessel  were  43.84  ±  4.418   and  41.4  ±  3.617  (mean  ±  s.e.m.)  for  CD  and  CV  vessels  respectively,  and  these  values  did   not  differ  between  regions  (p  =  0.8426).     Histology   51  arteries  (from  both  study  components)  and  21  veins  were  submitted  for  histologic   evaluation.    All  vessels  (with  3  exceptions)  had  their  identity  (as  determined  when  they   were  dissected)  confirmed  by  use  of  histology.  2  vessels  that  were  dissected  as  veins  were   identified  as  arteries  using  histology,  and  data  were  included  in  the  artery  dataset.  1  artery   could  not  be  confirmed  as  such  due  to  its  orientation  in  the  specimen  processing  gel,   however  based  on  a  typical  arterial  reactivity  profile,  data  from  this  vessel  were  also   included  in  the  study.           Discussion   The  present  study  was  designed  to  investigate  whether  regional  differences  in  small   pulmonary  vessel  reactivity  exist  in  the  horse,  and  whether  detected  differences  could   predict  the  distinct  predilection  of  exercise-­‐induced  pulmonary  hemorrhage  (EIPH)  lesions   for  caudodorsal  lung  (233).  To  the  best  of  the  authors’  knowledge,  this  study  reports  for     89   the  first  time  in  any  species,  that  regional  differences  in  reactivity  exist  in  small  caliber   pulmonary  arteries  and  veins.     The  vessels  of  interest  in  this  investigation  are  small  (100  –  400  μm  O.D.)  pulmonary   arteries  and  veins.  Evidence  of  regional  heterogeneity  in  mechanical  characteristics  of   equine  pulmonary  vessels  of  this  caliber  has  recently  been  reported,  and  it  is  suggested   that  these  differences  are  a  reflection  of  the  preferential  distribution  of  blood  flow  in  the   equine  lung  to  caudodorsal  regions  (196).    Pulmonary  veins  in  this  size  range  from   caudodorsal  lung  are  remodeled  in  lungs  of  EIPH-­‐affected  horses,  and  are  stiffer-­‐walled  in   horses  with  a  history  of  racing  (196,  231,  233).  Further  study  of  these  vessels  was   undertaken  based  on  the  following  reasoning.  The  source  of  hemorrhage  in  EIPH  is   pulmonary  capillary  stress  failure  (230),  resulting  from  elevated  pulmonary  circulation   intravascular  pressures  in  horses  during  exercise  (124).  Resistance  to  flow  in  the  arteries   and  veins  that  supply  and  drain  pulmonary  capillaries  determines  capillary  pressure.   Therefore,  regional  arterial  dilation  resulting  in  transmission  of  high  arterial  pressures  to   the  capillary  bed,  and/or  venous  constriction  during  exercise  would  increase  capillary   pressure  and  render  capillaries  in  that  region  more  susceptible  to  stress  failure,  and  EIPH.     Before  evaluation  of  vessel  reactivity,  a  normalization  procedure  was  performed  in   order  to  determine  the  degree  of  smooth  muscle  stretch  that  would  result  in  maximal  force   development  for  subsequent  experiments  (7).  Optimal  passive  wall  tension  of  arteries  was   significantly  larger  than  that  of  veins.  Mean  in  vivo  resting  pulmonary  arterial  pressures  are   approximately  30  mmHg  (106,  124,  190),  while  in  vivo  pulmonary  artery  wedge  pressures   (proxy  for  venous  pressures)  range  from  13.4  to  18  mmHg(124,  128,  190).  Conversion  of   optimal  wall  tension  to  equivalent  pressure  values  demonstrated  that  these  studies  were     90   conducted  at  physiologically  relevant  tensions  (24.2  and  14.1  mmHg  in  arteries  and  veins   respectively).     The  thromboxane  A2  analogue  U  46619  was  investigated  with  a  view  to  its  use  in   subsequent  experiments  in  which  pre-­‐existing  tone  was  necessary  to  study  another   vasoactive  agent  of  interest.  U  46619  caused  contractions  in  both  pulmonary  arteries  and   veins,  but  pulmonary  veins  were  more  sensitive  to  U  46619  than  arteries.  While  no   regional  differences  in  reactivity  were  observed  in  arteries,  cranioventral  veins  were  more   sensitive  than  their  caudodorsal  counterparts.  Thromboxane  A2  is  an  arachidonic  acid   metabolite  derived  from  endothelial  cells  and  platelets  (147,  168)  and  enhanced  sensitivity   to  U  46619  in  pulmonary  veins  compared  to  pulmonary  arteries  has  also  been  reported  in   other  species,  including  sheep,  dogs  and  guinea  pigs  (10,  99,  187).  The  role  of  thromboxane   in  regulation  of  vascular  tone  during  exercise  however,  is  thought  to  be  minimal  (144),  and   regional  patterns  of  equine  pulmonary  vein  sensitivity  to  this  agent  are  unlikely  to  be   significant  in  the  context  of  EIPH.     Pulmonary  arterial  and  venous  tone  is  mediated,  at  least  in  part,  by  the  autonomic   nervous  system,  and  during  exercise,  both  sympathetic  outflow  and  circulating   concentrations  of  vasoactive  catecholamines  increase,  while  parasympathetic  activity  is   diminished  (133,  203).  That  this  increase  in  sympathetic  activity  exerts  an  effect  on  the   pulmonary  circulation  specifically  during  exercise  is  supported  by  data  from  both  sheep   and  pigs  (93,  203).  For  these  reasons,  investigations  into  how  small  pulmonary  arteries  and   veins  of  the  horse  are  affected  by  the  autonomic  nervous  system  during  exercise,  and   whether  regional  heterogeneity  in  vessel  reactivity  exist  were  undertaken.  Specifically,  the   selective  α1-­‐  and  non-­‐selective  β-­‐  adrenergic  receptor  agonists  phenylephrine  and     91   isoproterenol  respectively,  and  the  muscarinic  agonist  methacholine  were  studied.  In  the   intensely  exercising  horse,  circulating  venous  concentrations  of  epinephrine  and   norepinephrine  increase  from  0.9  and  0.7  to  153  and  148  nmol/L,  respectively  (191).   These  concentrations  (approximately  1.5  x  10^-­‐7  M)  fall  within  the  concentration  range   over  which  isoproterenol,  an  adrenergic  agonist,  was  tested.     Even  though  large  equine  pulmonary  arteries  (1.5  –  4  mm  in  diameter)(117),  and   the  largest  pulmonary  veins  (63),  contract  in  response  to  phenylephrine,  indicating  the   presence  of  α1-­‐receptors  on  the  smooth  muscle  cells  of  these  vessels,  phenylephrine  did   not  cause  contraction  in  either  arteries  or  veins  in  the  present  study,  suggesting  an  absence   of  the  target  receptor  in  smaller  caliber  vessels.  This  observation  is  not  unique  to  the  horse.   For  example,  small  pulmonary  arteries  (100  –  300  μm  in  diameter)  of  the  rat  do  not   respond  reliably  to  norepinephrine  (108),  and  the  response  of  ovine  pulmonary  arteries  to   norepinephrine  is  attenuated  with  decreasing  vessel  diameter  (99).   With  regard  to  the  distribution  of  beta-­‐adrenergic  receptors,  we  found  that  pre-­‐ contracted  equine  pulmonary  arteries  relaxed  in  response  to  the  non-­‐specific  β-­‐adrenergic   receptor  agonist  isoproterenol,  while  pulmonary  veins  failed  to  respond.  Furthermore,   isoproterenol-­‐induced  relaxation  was  of  greater  magnitude  in  the  caudodorsal  than   cranioventral  arteries  (Figure  10).  This  is  noteworthy  because  at  this  time,  and  to  the  best   of  the  authors’  knowledge,  there  are  no  other  reports  of  regional  differences  in  distribution   of  beta-­‐adrenoreceptors  in  the  pulmonary  vasculature  of  any  species.     In  the  small  equine  pulmonary  vessels,  β-­‐adrenoreceptor-­‐mediated  vasodilation  of   small  arteries  will  predominate  during  exercise  (there  was  no  evidence  of  α1-­‐   adrenoreceptor-­‐mediated  constriction).  A  combination  of  a  generalized  failure  of  small     92   pulmonary  veins  to  dilate,  and  enhanced  dilation  of  caudodorsal  pulmonary  arteries  in   particular  would  expose  capillaries  in  the  caudodorsal  lung  to  the  greatest  intravascular   pressures  during  exercise,  perhaps  explaining,  at  least  in  part,  the  regional  distribution  of   EIPH  in  the  horse  lung.                                     In  this  study,  small,  pre-­‐contracted  pulmonary  veins  of  the  horse  relaxed  in   response  to  methacholine,  and  regional  differences  in  the  magnitude  of  this  response  were   not  detected.  Pulmonary  arteries  on  the  other  hand,  demonstrated  opposite  effects   depending  on  lung  region.  Arteries  from  caudodorsal  lung  contracted  while  those  from   cranioventral  lung  dilated  in  response  to  methacholine.     In  general,  binding  of  acetylcholine  to  muscarinic  receptors  on  the  endothelium,  or   on  the  smooth  muscle  of  blood  vessels,  affects  vessel  tone  by  causing  vasodilation  and   vasoconstriction  respectively  (133,  203).  Whether  equine  blood  vessels  of  this  caliber  are   directly  innervated  by  the  parasympathetic  nervous  system  has  not  been  reported  in  detail,   however,  based  on  their  responses  to  the  acetylcholine  analog  methacholine,  it  is   reasonable  to  infer  that  blood  vessels  studied  in  these  experiments  possess  muscarinic   receptors  on  the  endothelium  and/or  smooth  muscle.  It  is  also  considered  unlikely  that  the   regional  differences  in  responses  are  explained  by  regional  differences  in  endothelial   coverage  of  vessels  consequent  to  vessel  injury  during  experimental  manipulation.  Percent   endothelial  cover  in  a  subset  of  vessels  in  this  study  was  determined  based  on  the  presence   of  the  endothelial-­‐specific  CD31  antigen,  and  did  not  differ  significantly  between  arteries   from  either  lung  region.     Regional  differences  in  muscarinic-­‐receptor  mediated  vessel  reactivity  have  been   reported  before  in  the  horse  (164),  and  in  the  pig  (176).  However  both  studies  report  on     93   vessels  that  are  much  larger  (4  –  6  mm  O.D.)  than  those  evaluated  in  this  study.  In  porcine   pulmonary  arteries,  more  pronounced  relaxation  in  response  to  acetylcholine  was   observed  in  dorsal  vessels,  compared  to  those  from  ventral  lung  (176),  and  large  equine   pulmonary  arteries  from  caudodorsal  lung  also  relax,  while  those  from  cranioventral  lung   contract  in  response  to  methacholine  (164).  The  contrasting  pattern  observed  in  small   equine  pulmonary  arteries  is  of  particular  interest  when  considered  in  the  context  of  EIPH   lesion  distribution.  If  parasympathetic  outflow  is  responsible  for  basal  maintenance  of  tone   in  small  pulmonary  arteries  in  a  region-­‐dependent  manner,  perhaps  fulfilling  the  role  of   protecting  capillaries  from  high  flow  rates  in  this  region,  then  diminished  parasympathetic   activity  during  exercise  (133)  could  result  in  reduced  arterial  tone,  in  caudodorsal  lung   specifically.  This,  along  with  a  possible  attenuation  of  muscarinic-­‐receptor  mediated   pulmonary  venous  dilation  in  the  same  region  could  result  in  transmission  of  higher   pressures  to  caudodorsal  pulmonary  capillaries  compared  to  capillaries  in  other  lung   regions.  However,  when  extrapolating  these  data  to  in  vivo  conditions,  it  is  noted  that  all   vessels  in  these  studies  were  pre-­‐contracted  with  U  46619,  and  responses  of  pulmonary   vessels  to  acetylcholine  can  vary  depending  on  whether  vascular  tone  is  present  (10).         Vasodilation  associated  with  muscarinic-­‐receptor  activation  is  typically  mediated  by   endothelium-­‐derived  nitric  oxide  (NO)  and/or  prostanoids,  commonly  PGI2;  whereas   vasoconstriction  can  result  from  generation  of  vasoconstrictor  prostanoids  termed   endothelial  derived  constricting  factors  (EDCFs)  (236)  and/or  direct  binding  of  vascular   smooth  muscle  muscarinic  receptors  (133).  In  order  to  further  investigate  the  role  of  nitric   oxide  and  prostanoids  in  muscarinic-­‐receptor  mediated  equine  pulmonary  artery   vasomotion,  a  subset  of  small  arteries  were  incubated  with  L-­‐NAME,  a  nitric  oxide  synthase     94   inhibitor  and/or  indomethacin,  a  cyclooxygenase  inhibitor,  before  treatment  with   methacholine.     L-­‐NAME  did  not  affect  the  response  of  caudodorsal  vessels  to  methacholine,  while   indomethacin  pre-­‐incubation  resulted  in  augmented  contraction.  These  data  indicate  that   some  prostanoid-­‐mediated  dilation  was  occurring  in  caudodorsal  arteries,  but  was  masked   by  the  magnitude  of  the  contraction.  L-­‐NAME  caused  attenuation  of  vasodilation  in   cranioventral  arteries,  as  did  indomethacin.  Co-­‐incubation  with  both  inhibitors  prevented   any  relaxation  of  cranioventral  vessels  until  the  highest  methacholine  concentrations  were   applied.  These  data  implicate  roles  for  both  nitric  oxide  and  prostanoids  in  cranioventral   artery  relaxation.     That  nitric  oxide  contributes  to  maintenance  of  basal  pulmonary  vasomotor  tone   has  been  demonstrated  in  the  horse.  Supplemental  nitric  oxide  administration  causes  a   significant  decrease  in  mean  peak  pulmonary  artery  pressure  in  exercising  horses,   suggesting  that  the  pulmonary  vasculature  is  not  fully  dilated  during  exercise  (100,  135).   Furthermore,  administration  of  L-­‐NAME  to  horses  at  rest  results  in  significant  increases  in   pulmonary  arterial,  capillary  and  venous  pressures  (126).  Our  data  demonstrate  that  nitric   oxide  could  play  a  role  in  small  pulmonary  artery  vasomotion  in  vivo,  at  least  in  the   cranioventral  lung,  but  the  effect  of  these  specific  arteries  on  whole  lung  vascular  pressure   data  is  not  known.     Cyclooxygenase  inhibitors  are  commonly  used  to  treat  musculoskeletal   abnormalities  in  performance  horses  (137).  The  effect  of  cyclooxygenase  inhibition  on   pulmonary  vasculature  as  an  off-­‐target  effect  of  non-­‐steroidal  anti-­‐inflammatory   medications  may  merit  future  consideration.       95   The  loop  diuretic  furosemide  is  commonly  administered  to  horses  before  racing  to   control  EIPH  (193),  and  has  been  demonstrated  to  reduce  both  the  severity  and  the   incidence  of  EIPH  in  Thoroughbreds  (74).  This  protective  effect  of  furosemide  is  commonly   attributed  to  a  decrease  in  mean  pulmonary  artery  pressure  during  strenuous  exercise  (71,   129)  as  a  result  of  a  diuresis-­‐associated  reduction  in  plasma  volume  (71).  However,   furosemide  administration  to  horses  results  in  redistribution  of  pulmonary  blood  flow   without  a  concomitant  drop  in  cardiac  output  (43).  This  information  suggests  that   furosemide  also  affects  equine  pulmonary  vascular  reactivity.         Furosemide  is  a  pulmonary  venodilator  in  the  dog,  but  does  not  dilate  pre-­‐ contracted  pulmonary  arteries  (59).  Therefore  we  investigated  the  hypothesis  that   furosemide  would  dilate  pulmonary  veins  but  not  pulmonary  arteries  independent  of  lung   region.  Contrary  to  our  hypothesis,  pre-­‐contracted  pulmonary  arteries  relaxed  in  response   to  high  concentrations  of  furosemide  in  a  non-­‐region  dependent  manner,  and  mild   relaxation  was  also  observed  in  veins  from  both  lung  regions.  The  clinical  relevance  of  this   finding  must  be  considered  negligible  as  the  concentration  at  which  maximal  effects  were   observed  in  the  present  study  is  1000  times  higher  than  plasma  levels  of  furosemide  in   horses  one  hour  after  intravenous  administration  of  1  mg/kg  (24).     It  is  worth  noting  however,  that  the  pulmonary  veins  from  dogs  in  which  a  dilator   effect  was  seen  were  larger  (1  –  1.2  mm  O.D.)  than  vessels  in  the  present  investigation(59).   Significant  differences  in  reactivity  to  various  pharmacologic  agents  between  vessels  of   different  size  have  been  reported  in  many  species  including  rats  (108),  pigs  (239)  and   sheep  (99).  For  this  reason,  the  effect  of  furosemide  on  equine  pulmonary  veins  of  a  larger   caliber  is  considered  worthy  of  future  investigation.       96   Data  in  this  study  were  acquired  from  horses  that  had  not  raced.  Horses  that  have   trained  and  raced  have  remodeled  pulmonary  veins  (233),  and  racing  is  associated  with   increased  wall  stiffness  of  caudodorsal  veins  (196).  It  is  reported  in  pigs  that  remodeling  of   pulmonary  vessels  and  associated  structural  changes  are  associated  with  alterations  in   vessel  reactivity  (98).  Therefore,  remodeled  pulmonary  veins  such  as  those  seen  in  EIPH-­‐ affected  lung  (231)  may  react  differently  than  vessels  used  in  this  study.  Furthermore,   exercise  training  has  been  demonstrated  to  improve  pulmonary  artery  dilation  in  response   to  acetylcholine  (87)  in  pigs.  Future  investigations  into  whether  there  is  an  effect  of   exercise  and  associated  remodeling  on  equine  pulmonary  vascular  reactivity  may  shed   further  light  on  progression  of  EIPH  over  the  course  of  a  horse’s  athletic  career.               97                                                     APPENDIX                                               98   Figure  9  Cumulative  concentration  response  curves  for  U46619  for  all  arteries  and  veins   (A),  caudodorsal  (CD)  and  cranioventral  (CV)  arteries  (B),  and  CD  and  CV  veins  (C).  Values     99   Figure  9  (cont’d)  are  means  ±  SE.  Veins  are  more  sensitive  to  U  46619  than  arteries  (A);   regional  differences  in  responses  of  CD  and  CV  arteries  do  not  exist  (p  =  0.25)(B)  whereas   CV  veins  are  more  sensitive  to  U  46619  than  CD  veins    (p  <  0.0001)(C).               100       Figure  10  Cumulative  concentration  response  curves  for  isoproterenol  for  caudodorsal   (CD)  and  cranioventral  (CV)  arteries  (A),  and  CD  and  CV  veins  (B).  Values  are  means  ±  SE.   Concentration-­‐dependent  relaxation  is  greater  in  CD  compared  to  CV  arteries  (p  <   0.0001)(A),  whereas  pre-­‐contracted  veins  do  not  relax  in  response  to  isoproterenol,  in  both   CD  and  CV  regions  (B).                     101     Figure  11  Cumulative  concentration  response  curves  for  furosemide  for  all  arteries  and   veins  (A),  caudodorsal  (CD)  and  cranioventral  (CV)  arteries  (B),  and  CD  and  CV  veins  (C).   Values  are  means  ±  SE.  Mild  concentration-­‐dependent  relaxation  to  furosemide  occurs  in     102   Figure  11  (cont’d)  arteries,  and  to  a  lesser  degree  in  veins  (A);  regional  differences  in  the   response  of  arteries  and  veins  to  furosemide  do  not  exist  (p  =  0.07  and  p  =  0.19  for  arteries   and  veins  respectively)(B  and  C  respectively).  DMSO  vehicle  (dark  triangle)  does  not  affect   arteries  and  veins  (B  and  C  respectively).         103         Figure  12:  Cumulative  concentration  response  curves  for  methacholine  for  caudodorsal   (CD)  and  cranioventral  (CV)  arteries  (A),  and  CD  and  CV  veins  (B).  Values  are  means  ±  SE.   Concentration-­‐dependent  relaxation  occurs  in  CV  arteries,  and  concentration-­‐dependent   constriction  occurred  in  CD  arteries  (A);  pre-­‐contracted  pulmonary  veins  relax  in  a   concentration-­‐dependent  manner,  regardless  of  region  (B).               104     Figure  13:  Cumulative  concentration  response  curves  for  CD  (A,  B,  C)  and  CV  (D,  E,  F)   arteries  comparing  responses  to  methacholine  (MCh)  only,  with  responses  to  MCh  applied     105   Figure  13  (cont’d)  after  pre-­‐incubation  with  L-­‐NAME  (A  and  D),  indomethacin  (B  and  E),   and  L-­‐NAME  and  indomethacin  (C  and  F).  Values  are  means  ±  SE.  Pre-­‐incubation  with  L-­‐ NAME  does  not  affect  CD  artery  constriction  in  response  to  MCh  (A)  whereas  CV  artery   relaxation  is  partially  inhibited  by  L-­‐NAME  (D).  Indomethacin  pre-­‐incubation  augments  CD   artery  constriction,  and  partially  inhibits  CV  artery  relaxation  (B  and  E  respectively).  Pre-­‐ incubation  with  both  L-­‐NAME  and  indomethacin  caused  enhanced  MCh-­‐induced   constriction  in  CD  arteries  (C)  and  a  mild  contraction  followed  by  mild  relaxation  in  CV   arteries  (D).           106       Figure  14  Fluorescent  staining  of  CD-­‐31  on  endothelial  surface  of  equine  pulmonary   artery.    Regions  of  intact  endothelium  can  be  discerned  from  endothelium-­‐denuded,  non-­‐ stained  regions  (indicated  by  arrow-­‐heads).  Scale  bar  =  100  μm.                           107   CHAPTER  4     Effects  of  exercise  on  markers  of  venous  remodeling  in  lungs  of  horses     Alice  Stack,  Frederik  J.  Derksen,  Lorraine  M.  Sordillo,  Kurt  J.  Williams,  John  A.  Stick,   Christina  Brandenberger,  Juan  P.  Steibel,  and  N.  Edward  Robinson.     Am  J  Vet  Res.  2013  Sep;74(9):1231-­‐8.  doi:  10.2460/ajvr.74.9.1231.     Abstract   Objective:  To  determine  the  effects  of  2  weeks  of  intense  exercise  on  expression  of  markers   of  pulmonary  venous  remodeling  in  caudodorsal  and  cranioventral  regions  of  lungs  of   horses.     Animals:  6  horses.   Procedures:  Tissue  samples  of  caudodorsal  and  cranioventral  regions  of  lungs  were   obtained  before  and  after  conditioning  and  2  weeks  of  intense  exercise.  Pulmonary  veins   were  isolated  and  assayed  via  quantitative  real-­‐time  PCR  to  determine  mRNA  expression  of   matrix  metalloproteinase-­‐2  and  -­‐9,  tissue  inhibitor  of  metalloproteinase-­‐1  and  -­‐2,  collagen   type  I,  tenascin-­‐C,  endothelin-­‐1,  platelet  derived  growth  factor,  transforming  growth  factor-­‐ β  (TGF-­‐β),  and  vascular  endothelial  growth  factor  (VEGF).  Protein  expression  of  collagen   (via  morphometric  analysis)  and  tenascin-­‐C,  TGF-­‐β,  and  VEGF  (via  immunohistochemistry)   was  determined.     Results:  Exercise-­‐induced  pulmonary  hemorrhage  was  detected  in  33.3%  of  horses  after   exercise.  The  mRNA  expression  of  matrix  metalloproteinase-­‐2  and  -­‐9,  tissue  inhibitor  of   metalloproteinase-­‐2,  TGF-­‐β,  and  VEGF  was  significantly  lower  in  pulmonary  veins  obtained     108   after  exercise  versus  those  obtained  before  exercise  for  both  caudodorsal  and   cranioventral  regions  of  lungs.  Collagen  content  was  significantly  higher  in  tissue  samples   obtained  from  caudodorsal  regions  of  lungs  versus  those  obtained  from  cranioventral   regions  of  lungs  both  before  and  after  exercise.  Exercise  did  not  alter  protein  expression  of   tenascin-­‐C,  TGF-­‐β,  or  VEGF.     Conclusions  and  Clinical  Relevance:  Results  of  this  study  indicated  2  weeks  of  intense   exercise  did  not  alter  expression  of  marker  genes  in  a  manner  expected  to  favor  venous   remodeling.  Pulmonary  venous  remodeling  is  complex  and  more  than  2  weeks  of  intense   exercise  may  be  required  to  induce  such  remodeling.           Introduction   Exercise-­‐induced  pulmonary  hemorrhage  is  common  in  racehorses  after  intense  exercise;   EIPH  is  detected  in  up  to  75%  of  such  horses  via  endoscopic  evaluation  of  respiratory   tracts  (162,  172).  Horses  with  no  or  very  mild  EIPH  are  four  times  as  likely  to  win  a  race  as   horses  with  moderate  or  severe  EIPH  (70),  suggesting  this  condition  has  negative  effects  on   racehorse  performance.   The  predominant  location  of  EIPH  lesions  in  horses  is  the  caudodorsal  regions  of   lungs  (150,  157,  231).  A  distinctive  histopathologic  lesion  of  EIPH  is  remodeling  of  small-­‐ diameter  pulmonary  veins  (venous  remodeling)  (231).  Venous  remodeling  is  characterized   by  collagen  deposition  in  walls  and  smooth  muscle  hypertrophy  of  veins  resulting  in   thickening  of  walls  and  narrowing  of  lumens  (38).  Other  lesions  of  EIPH  include  pulmonary     109   interstitial  and  septal  fibrosis,  hemosiderin  accumulation  in  lung  tissue,  and  bronchial   circulation  neovascularization(38,  152).   Pulmonary  venous  remodeling  has  potentially  important  physiologic  effects  on   vascular  pressures  in  lungs.  During  exercise,  horses  have  a  substantial  increase  in   pulmonary  intravascular  pressures  (106,  127).  Estimated  pulmonary  capillary  pressures  in   horses  are  between  17.8  mmHg  (190)  to  25  mmHg  (127)  at  rest  and  72.5  mmHg  (106)  to   83.3  mmHg  (127)  during  exercise.  Such  transmural  pulmonary  capillary  pressures  can   cause  blood  vessel  rupture  and  EIPH  (17).  A  decrease  in  the  lumen  size  of  pulmonary  veins   would  further  increase  pulmonary  capillary  pressures.  Complete  pulmonary  venous   occlusion  would  cause  capillary  pressures  equal  to  pulmonary  arterial  pressures,  which   can  be  ˃  96.5  mmHg  (106,  127).  Remodeling  of  systemic  (in  rabbits,  rodents,  and  pigs)(2,   28,  29,  64,  112,  235)  and  pulmonary  (in  humans  and  sheep)(25,  86)veins  can  develop   when  such  blood  vessels  are  exposed  to  high  intravascular  pressures.       Results  of  studies  of  vasculature  in  humans  (146,  163,  222),  pigs,(29,  224)  and   rodents(225,  234)  indicate  venous  remodeling  is  preceded  by  alterations  in  mRNA   expression  of  proteins  that  are  important  in  the  remodeling  process.  These  proteins   include  MMPs,  TIMPs  (29,  225),  collagen  (234),  tenascin-­‐C  (222),  and  various  growth   factors  that  are  produced  by  fibroblasts  in  vein  walls  and  monocytes  and  macrophages   (146,  163,  199,  224,  234).  The  objective  of  the  study  reported  here  was  to  determine  mRNA   expression  of  MMP-­‐2,  MMP-­‐9,  TIMP-­‐1,  TIMP-­‐2,  collagen  type  I,  tenascin-­‐C,  ET-­‐1,  PDGF,   TGF-­‐β,  and  VEGF  and  protein  expression  of  tenascin-­‐C,  TGF-­‐β,  and  VEGF  in  pulmonary   veins  obtained  from  caudodorsal  and  cranioventral  regions  of  lungs  of  horses  before  and   after  2  weeks  of  intense  exercise.  Because  the  amount  of  collagen  in  lung  parenchyma  of     110   horses  with  EIPH  is  greater  than  that  for  horses  without  EIPH  (primarily  in  the   caudodorsal  regions  of  lungs(38)),  we  also  compared  collagen  content  in  parenchyma  of   caudodorsal  and  cranioventral  regions  of  lungs  of  horses  before  and  after  2  weeks  of   intense  exercise.  The  hypothesis  was  that  2  weeks  of  intense  exercise  would  alter  mRNA   and  protein  expression  of  the  evaluated  factors  in  pulmonary  veins  of  caudodorsal  but  not   cranioventral  regions  of  lungs  of  horses  in  a  manner  expected  to  favor  vascular  remodeling.   In  addition,  we  hypothesized  that  exercise  of  horses  would  cause  an  increase  in  the   collagen  content  of  caudodorsal  but  not  cranioventral  regions  of  lungs.9     Materials  and  Methods       Animals   Seven  horses  (six  geldings  and  one  sexually  intact  female;  age  range,  2  to  4  years;  body   weight  range,  350  to  473  kg)  of  non-­‐racing  breeds  were  purchased  for  use  in  this  study.   These  horses  had  not  been  previously  trained  for  any  purpose  and  were  selected  for   inclusion  in  the  study  because  it  was  unlikely  that  they  had  prior  EIPH  episodes.  Horses   were  not  vigorously  exercised  for  at  least  two  months  before  the  study.  The  horses  were   determined  to  be  healthy  on  the  basis  of  results  of  physical  examinations  and   tracheobronchoendoscopy.  One  horse  was  excluded  from  the  study  because  of  lameness.   Therefore,  the  study  was  completed  and  data  were  analyzed  for  6  horses.  The  Michigan   State  University  Institutional  Animal  Care  and  Use  Committee  approved  this  study.     Experimental  protocol     111   Pulmonary  wedge  resections  were  performed  via  a  thoracoscopic  technique  for  standing   horses.  Before  undergoing  an  intense  exercise  protocol,  lung  samples  were  obtained  from   cranioventral  and  caudodorsal  regions  of  left  or  right  lungs  (determined  via  a   randomization  procedure)  of  each  horse.  Horses  were  then  returned  to  pasture  for  at  least   6  months.  Subsequently,  horses  underwent  conditioning  and  intense  exercise  during  a  4-­‐ week  period.  After  completion  of  the  intense  exercise  protocol  (first  exercise  period),   pulmonary  wedge  resections  were  performed  to  obtain  lung  samples  from  cranioventral   and  caudodorsal  regions  of  right  or  left  of  horses  (lung  contralateral  to  the  lung  from  which   samples  were  obtained  before  exercise);  the  mRNA  prepared  from  these  lung  samples  was   of  poor  quality  and  low  quantity.  Therefore,  horses  were  rested  for  a  further  6  months  and   the  exercise  protocol  was  repeated  (second  exercise  period).  Subsequently,  tissue  samples   from  the  cranioventral  and  caudodorsal  regions  of  the  same  lung  (contralateral  to  the  lung   from  which  samples  were  obtained  before  the  first  exercise  protocol)  were  collected   during  general  anesthesia  of  horses.  Lung  samples  were  obtained  from  sites  that  had  not   previously  undergone  surgery.  A  long  time  was  allowed  between  pulmonary  wedge   resection  procedures  to  minimize  the  effects  of  previous  surgeries  on  gene  expression.       Exercise  protocol   Horses  underwent  a  2-­‐week  period  of  conditioning  followed  by  a  2-­‐week  period  of  intense   exercise  intended  to  simulate  race  training.  Horses  were  conditioned  5  days/week  for  2   weeks  on  a  high-­‐speed  treadmill  with  a  0%  incline.  After  two  weeks  of  conditioning,  the   HRmax  of  each  horse  was  determined  via  a  rapid  incremental  exercise  test  (206).  Briefly,   heart  rates  were  determined  by  use  of  a  telemetric  system;  the  HRmax  was  determined  to  be     112   the  heart  rate  at  which  an  increase  in  treadmill  speed  did  not  result  in  an  increase  in  HR.   The  treadmill  speed  corresponding  to  120%  of  HRmax  was  determined  via  extrapolation.     After  the  2-­‐week  conditioning  period  horses  were  intensely  exercised  on  6  days  (intense   exercise  days  1,  3,  5,  8,  10  and  12).  Each  exercise  session  included  a  4-­‐minute  warm-­‐up   period  followed  by  exercise  at  a  treadmill  speed  corresponding  to  120%  of  HRmax  for  2   minutes  or  until  the  horse  could  no  longer  maintain  its  position  on  the  treadmill.  Within  45   to  90  minutes  after  the  end  of  the  final  exercise  session  of  the  first  exercise  period,  horses   underwent  endoscopic  examination  of  the  trachea.  Endoscopic  examination  of  horses  was   not  repeated  after  the  second  exercise  period  because  the  intensity  of  exercise  during  the   first  period  was  determined  to  have  been  adequate  to  induce  EIPH.  An  established  grading   system  (grade  0  =  no  blood  visible  in  trachea;  grade  4  =  >90%  of  tracheal  surface  covered   in  blood)(69)  was  used  to  determine  EIPH  severity  in  study  horses.     Pulmonary  wedge  resection   During  each  pulmonary  wedge  resection  procedure,  2  lung  samples  were  obtained  from   each  horse  (one  each  from  the  cranioventral  and  caudodorsal  regions  of  the  left  or  right   lung)  (115).  Briefly,  each  horse  was  restrained  in  stocks  and  sedated  with  a  continuous  IV   infusion  of  detomidine  hydrochloride  (initial  dose  of  6  µg/kg  followed  by  0.8  µg/kg/min).   Mepivacaine  (20  to  30  ml  of  a  2%  solution)  was  injected  SC  and  in  intercostal  muscles  at   each  surgery  site.  Intercostal  nerves  at  surgery  sites  were  blocked  at  the  level  of  vertebral   transverse  processes  with  0.75%  bupivacaine  (5  mL/site).  Antimicrobial  drugs  (penicillin   G  potassium  [22,000  IU/kg,  IV,  q  6  h]  and  gentamicin  sulfate  [6.6  mg/kg,  IV,  q  24h])  and  an     113   NSAID  (flunixin  meglumine  [1.1  mg/kg,  IV,  q  12  h])  were  administered  during  surgery  after   lung  samples  had  been  obtained  (to  avoid  potential  effects  of  drugs  on  gene  expression).       For  thoracoscopy,  a  30-­‐degree  rigid  endoscope  (10  mm  x  58  cm)(  Hopkins   telescope,  Karl  Storz  Veterinary  Endoscopy,  Goleta,  CA.),  video  camera  (Vetcam,  Karl  Storz   Veterinary  Endoscopy,  Goleta,  CA),  light  cable,  and  250-­‐watt  xenon  light  source  (Stryker   Quantum  3000,  Stryker  Endoscopy,  Kalamazoo,  MI)  were  used.  Pneumothorax  was  induced   and  lungs  were  deflated  via  insertion  of  a  teat  cannula  into  the  pleural  space.         Six  instrument  portals  were  made  in  the  thoracic  wall  (3  for  each  lung  sample   collection  site  [one  each  for  an  endoscope,  forceps,  and  stapler]).  The  caudodorsal  lung   sample  collection  site  was  accessed  via  intercostal  spaces  12,  13  and  15;  the  cranioventral   site  was  accessed  via  intercostal  spaces  7  and  8.  Endoscopic  atraumatic  forceps  (10  mm   atraumatic  Babcock  forceps,  Ethicon  Endo-­‐Surgery  Inc,  Cincinnati,  OH)  were  used  to   manipulate  lungs.     An  endoscopic  stapler  (ETS45  Endoscopic  linear  cutter,  Ethicon  Endo-­‐Surgery  Inc,   Cincinnati,  OH)  was  used  to  perform  pulmonary  wedge  resections.  Lung  samples  (approx  4   cm  long)  were  obtained  from  each  site.  Lungs  were  reinflated  by  withdrawing  air  from  the   thorax  and  skin  at  portal  sites  was  closed  with  sutures  in  a  simple  interrupted  pattern.   Antimicrobial  and  NSAID  administration  was  continued  for  7  days  after  surgery.         Pulmonary  wedge  resections  were  performed  within  24  hours  after  completion  of   the  first  exercise  period  to  collect  lung  samples  from  the  lung  contralateral  to  the  lung  from   which  tissue  samples  had  been  obtained  before  exercise.  Within  24  hours  after  completion   of  the  second  exercise  period,  each  horse  was  anesthetized  (xylazine  hydrochloride  [1.1   mg/kg,  IV]  followed  by  ketamine  hydrochloride  [2.2mg/kg,  IV])  and  placed  in  left  or  right     114   lateral  recumbency.  Lung  samples  were  obtained  via  thoracotomy  and  previous  surgery   sites  were  avoided.  Immediately  after  lung  samples  were  obtained,  anesthetized  horses   were  euthanized  with  pentobarbital  sodium  (90mg/kg,  IV).     Harvesting  of  pulmonary  veins   Immediately  after  collection,  lung  samples  were  divided  into  2  approximately  equal  pieces;   one  was  placed  in  a  storage  solution  (RNAlater,  Ambion,  Life  Technologies,  Carlsbad  CA)   and  kept  at  4°C  for  24  hours,  and  then  stored  until  use  at  -­‐  20°C.  The  other  piece  of  each   lung  sample  was  fixed  in  10%  neutral  buffered  formalin  and  embedded  in  paraffin  for   histologic  examination  and  morphometric  and  immunohistochemical  analyses;  6  µm-­‐thick   sections  of  lung  tissue  were  placed  on  glass  slides  and  stained  with  H&E,  picrosirius  red,   and  Verhoeff-­‐Van  Gieson  stains.   For  lung  samples  in  storage  solution  (RNAlater),  intralobular  pulmonary  veins   (length,  0.5  to  3  mm)  were  collected  by  use  of  a  dissecting  microscope  (Olympus  SZX16,   Olympus  America  Inc,  Center  Valley,  PA).  During  preliminary  studies,  accurate   identification  and  dissection  of  pulmonary  veins  from  peripheral  lung  tissue  had  been   validated  via  histologic  techniques.  For  each  horse,  all  veins  harvested  for  each  lung   collection  site  and  time  were  pooled  for  mRNA  extraction.         mRNA  extraction   Pulmonary  vein  samples  were  removed  from  storage  solutionf  and  placed  in  400  µL  of  lysis   buffer  (Buffer  RLT,  Qiagen  Inc,  Valencia,  CA)(containing  β-­‐mercaptoethanol).  Pulmonary   vein  samples  were  processed  with  a  tissue  grinder  (Kontes  Glass  Co  Duall  21,  Fischer     115   Scientific,  Pittsburgh,  PA).  Total  RNA  was  extracted  with  a  kit  (RNeasy  Micro  Kit,  Qiagen   Inc,  Valencia,  CA)  and  a  homogenizer  (QIAshredder,  Qiagen  Inc,  Valencia,  CA);  DNase   digestion  (RNase-­‐Free  DNase  Set,  Qiagen  Inc,  Valencia,  CA)  was  used  in  conjunction  with   RNA  extraction  in  an  attempt  to  remove  genomic  DNA.     The  purity  and  concentration  of  RNA  in  each  sample  were  determined  with  a   spectrophotometer  (NanoDrop  1000  Spectrophotometer,  NanoDrop  Products,   Wilimington,  DE).  In  addition,  RNA  integrity  number  (183)  was  determined  by  use  of  a   bioanalzyer  system  (2100  Bioanalyzer  with  RNA  Pico  6000  kit,  Aligent  Technologies,  Santa   Clara,  CA).  To  ensure  adequate  purity  and  concentration  of  mRNA,  only  samples  with  260   nm-­‐to-­‐280  nm  absorbance  ratios  between  1.9  and  2.2  were  used.  In  addition,  only  mRNA   samples  with  an  RNA  Integrity  Number  ˃  5  were  used  (47).     As  a  result  of  these  criteria,  all  samples  obtained  after  the  first  exercise  period  and   samples  obtained  from  2  horses  after  the  second  period  were  not  assayed.  Therefore,   mRNA  samples  for  4  horses  prepared  from  lung  samples  obtained  after  the  second  exercise   period  were  assayed.  Both  horses  with  EIPH  (endoscopic  diagnosis)  were  included  in  the   final  analysis.     Then,  cDNA  was  synthesized  (High  Capacity  cDNA  Reverse  Transcription  Kit  with   RANse  inhibitor,  Applied  Biosystems,  Life  Technologies,  Carlsbad,  CA)    and  amplified   (TaqMan  PreAmp  Master  Mix,  Applied  Biosystems,  Life  Technologies,  Carlsbad,  CA)   because  of  low  cDNA  concentrations.         Quantitative  real-­‐time  PCR  assays     116   The  qRT-­‐PCR  assays  were  performed  with  a  PCR  system  (7500  Fast  Real-­‐Time  PCR  system,   Biosystems,  Life  Technologies,  Carlsbad,  CA)  operating  in  standard  mode  with  custom-­‐ designed  probes  (Table  2)(Informatics  pipeline  software,  Applied  Biosystems,  Life   Technologies,  Carlsbad,  CA).     The  primer  design  variables  for  each  gene  were  tested  extensively,  resulting  in   100%  PCR  efficiency  of  a  6-­‐log  dilution  range  for  mRNA  samples  free  of  PCR  inhibitors.  The   qRT-­‐PCR  reactions  were  performed  in  triplicate  with  a  20  µL  reaction  mixture  for  each   reaction  well;  reaction  mixtures  contained  10  µL  of  a  DNA  polymerase  and  dNTP  mixture   (TaqMan  Gene  Expression  Master  Mix,  Applied  Biosystems,  Life  Technologies,  Carlsbad,   CA),  1  µL  of  a  mixture  of  forward  and  reverse  primers  and  custom-­‐designed  probes   (Custom  TaqMan  Gene  Expression  Assay  Mix,  Applied  Biosystems,  Life  Technologies,   Carlsbad,  CA),  5  µL  of  amplified  cDNA,  and  4  µL  of  nuclease-­‐free  water.    Expression  of   MMP-­‐2,  MMP-­‐9,  TIMP-­‐1,  TIMP-­‐2,  collagen  type  I,  tenascin-­‐C,  ET-­‐1,  PDGF,  TGF-­‐β  and  VEGF   were  determined  via  qRT-­‐PCR  assays.     The  qRT-­‐PCR  assays  were  performed  at  50o  C  for  2  minutes,  95o  C  for  10  minutes,   and  40  cycles  of  95o  C  for  15  seconds  and  60o  C  for  1  minute.    The  endogenous  control   values  for  the  RT-­‐PCR  assay  were  mean  values  of  beta-­‐actin,  beta-­‐2-­‐microglobulin,  and   elongation  factor-­‐1alpha  expression.     Fold  changes  in  gene  expression  were  calculated  via  the  2-­‐ΔΔCT  method  (113).   Statistical  analyses  were  performed  with  ΔCT  values;  for  each  mRNA  sample  and  gene  of   interest,  the  ΔCT  values  were  defined  as  the  mean  CT  (cycle  threshold)  value  of  the  gene  in   a  sample  minus  the  mean  CT  value  of  the  control  genes  in  that  same  sample.       117   Immunohistochemistry   The  6  µm-­‐thick  lung  tissue  sections  were  deparaffinized  in  xylene  and  rehydrated  in  a   graded  series  of  concentrations  of  ethanol.  Lung  sections  were  incubated  overnight  at  4°C   with  antibodies  against  tenascin-­‐C  (1:100)  (Tenascin-­‐C  (BC-­‐24):  sc-­‐59884,  SantaCruz   Biotechnology,  Santa  Cruz,  CA),  TGF-­‐β  (1:100)  (TGF-­‐β  (V):  sc-­‐146,  and  blocking  peptide,),   or  VEGF  (1:100)(VEGF  (147):  sc-­‐507,  SantaCruz  Biotechnology,  Santa  Cruz  CA).     To  ensure  antibody-­‐binding  specificity,  a  peptide  blocking  (sc-­‐146  and  sc-­‐507   blocking  peptides,  SantaCruz  Biotechnology,  Santa  Cruz,  CA)  step  was  used  for  antibodies   against  TGF-­‐β  and  VEGF,  and  nonspecific  rabbit  IgG  was  used  for  antibodies  against   tenascin-­‐C.  For  each  antibody,  an  appropriate  positive  control  tissue  was  analyzed.   Following  incubation  with  primary  antibodies,  lung  sections  were  incubated  with   rabbit  (TGF-­‐β  and  VEGF)  or  mouse  (tenascin-­‐C)  biotinylated  secondary  antibody.  Then,   slides  were  incubated  with  avidin-­‐biotin  conjugated  horseradish  peroxidase  (Vectastain   Elite  ABC  System,  Vector  Laboratories  Inc,  Burlingame,  CA)  and  antibodies  were  detected   with  a  peroxidase  substrate  (NovaRED  Peroxidase  Substrate  Kit,  Vector  Laboratories  Inc,   Burlingame,  CA).     A  board-­‐certified  veterinary  pathologist  (KJW)  who  was  unaware  of  the  exercise   status  of  horses  and  sample  locations  of  lung  tissue  sections  evaluated  all  slides  via  bright   field  microscopy.  Pulmonary  vein  protein  expression  was  scored  as  0  (no  evidence  of   protein  expression),  1  (mild  protein  expression  in  a  small  number  of  veins),  or  2  (strong   protein  expression  in  most  [˃  50%]  veins).             118   Collagen  content  analysis   Picrosirius  red  staining  and  polarized  microscopy  of  tissue  samples  is  commonly  used  for   detection  and  quantification  of  collagen  (38,  169).  For  the  quantification  of  collagen  in  lung   tissue  samples  in  the  present  study,  picrosirius  red–stained  slides  were  scanned  and   digitalized  at  a  magnification  of  20X  with  a  virtual  slide  system  (VS120-­‐SL,  Olympus   America  Inc,  Center  Valley,  PA).  Polarization  filters  were  used  to  enhance  the  appearance  of   the  picrosirius  red  stain  in  images  of  lung  tissue  samples.     Automated  random  subsampling  was  performed  on  each  of  the  digitalized  slides   with  stereology  software  (NewCAST  whole  slide  stereology  software,  Visiopharm,   Hoersholm,  Denmark)(magnification,  20X),  and  50  images  per  slide  were  analyzed.  Some   lung  sample  slides  had  pleural  tissue;  such  regions  were  excluded  from  analysis.     Morphological  determination  of  the  percentage  of  collagen  in  lung  tissue  samples   was  performed  with  software  (http://www.stepanizer.com)  (211).  Briefly,  a  point  grid   with  a  density  of  7  X  7  points/98,157  μm2  was  superimposed  over  images  and  all  points   that  contacted  noncollagenous  lung  tissue  and  those  that  contacted  collagenous  tissue  were   counted.  The  percentage  of  collagen  in  lung  tissue  samples  was  estimated  by  dividing  the   number  of  points  that  contacted  collagen  by  the  total  number  of  points  counted.     Statistical  analyses   The  ΔCT  values  were  evaluated  for  normality  and  transformed  as  needed  for  statistical   analysis.     The  resulting  data  were  analyzed  with  the  following  model  (PROC  MIXED,  SAS   Institute  Inc,  Cary,  NC)  to  determine  effect  of  exercise  on  the  expression  of  each  gene:       119   Yijkl    =  µ  +  Sitek  +  Statusl  +  Site×Status  +  Horsei  +  eijkl    where  Yijkl  is  the  normalized  gene  expression  of  a  gene  of  interest  for  horse  i  in  sample  j   that  corresponds  to  lung  site  k  (caudodorsal  or  cranioventral)  and  status  l  (before  or  after   exercise);  µ  is  the  mean  value  for  the  population;  and  eij  is  the  residual.  Horse  effects  were   assumed  to  be  random  to  account  for  within  horse  measurement  correlations;  residuals   within  each  horse  were  heteroskedastic  for  lung  samples  obtained  before  and  after   exercise,  indicating  there  were  different  variances  for  those  groups.  This  model  is   practically  equivalent  to  using  a  joint  mixed  model  analysis  of  test  and  control  genes  (198).   For  immunohistochemistry  data,  the  Wilcoxon  Signed-­‐Rank  Test  (NCSS  Statistical   Software,  Kaysvill,  UT)  for  nonparametric  data  was  used  for  analyses.  The  pre-­‐  and   postexercise  scores  were  compared  for  each  lung  sample  collection  site.     For  collagen  content  data,  a  3-­‐factor  (2-­‐factor  repeated  measures)  analysis  of   variance  (PROC  MIXED,  SAS  Institute  Inc,  Cary,  NC)  was  used  for  analyses  with  site   (caudodorsal  or  cranioventral)  and  time  (before  or  after  exercise)  as  fixed  factors  and   horse  as  the  random  factor.  Bonferroni’s  correction  for  multiple  comparisons  was  used.  A   normal  distribution  of  errors  was  determined  via  the  Shapiro-­‐Wilks’  test.  Collagen  content   data  were  reported  as  least  square  means  ±  SEM.     Values  of  P  <  0.05  were  considered  significant.       Results   Two  of  6  horses  that  finished  the  study  had  tracheobronchoscopic  evidence  of  pulmonary   hemorrhage  within  90  minutes  after  the  end  of  the  final  high-­‐intensity  exercise  session     120   during  the  first  exercise  period;  therefore,  33.3%  of  horses  had  EIPH  at  that  time.  The  EIPH   severity  grade  for  both  of  those  horses  was  1  of  4  (69).   The  mRNA  prepared  from  pulmonary  vein  samples  were  of  insufficient  quality  for  analysis   for  all  horses  after  the  first  exercise  period  and  for  2  horses  after  the  second  exercise   period;  therefore,  mRNA  samples  for  4  horses  obtained  after  the  second  exercise  period   were  analyzed  via  PCR  assay  for  determination  of  gene  expression.  Results  of  initial   analysis  indicated  exercise  of  horses  had  an  effect  on  gene  expression  in  pulmonary  vein   samples,  but  the  interaction  of  the  variables  pulmonary  wedge  resection  site  (caudodorsal   vs  cranioventral)  X  exercise  was  not  significant.  Therefore,  mean  values  for  gene   expression  in  pulmonary  vein  samples  obtained  from  the  caudodorsal  regions  of  lungs  and   for  those  obtained  from  the  cranioventral  regions  of  lungs  were  used  for  analysis.  Exercise   of  horses  significantly  decreased  expression  of  5  of  the  10  genes  evaluated  (MMP-­‐2  [P  =   0.017],  MMP-­‐9  [P  =  0.035],  TIMP-­‐2  [P  =  .039],  TGF-­‐β  [P  =  0.003],  and  VEGF  [P  =  0.007];   (Figure  15).  Gene  expression  did  not  significantly  change  after  exercise  for  TIMP-­‐1  (P  =   0.270),  collagen  type  I  (P  =  0.130),  tenascin-­‐C  (P  =  0.659),  ET-­‐1  (P  =  0.077),  and  PDGF  (P  =   0.119).       The  only  gene  with  differential  expression  between  pulmonary  vein  samples  obtained  from   caudodorsal  regions  of  lungs  and  those  obtained  from  cranioventral  regions  of  lungs  was   tenascin-­‐C.  The  mRNA  expression  of  tenascin-­‐C  was  approximately  four  times  as  greater  in   pulmonary  vein  samples  obtained  from  cranioventral  regions  of  lungs  as  it  was  in  samples   obtained  from  caudodorsal  regions  of  lungs;  these  gene  expression  values  were   significantly  (P  =  0.033)  different.  However,  tenascin-­‐C  expression  in  each  of  those  lung   regions  did  not  significantly  change  after  exercise.       121   Protein  expression  in  lung  samples  was  determined  via  immunohistochemical  methods  for   all  6  horses  that  completed  the  study;  results  indicated  exercise  had  no  effect  on  protein   expression  of  tenascin-­‐C,  TGF-­‐β,  or  VEGF  in  tissue  samples  obtained  from  caudodorsal  or   cranioventral  regions  of  lungs.  The  percentage  of  collagen  in  tissue  samples  obtained  from   caudodorsal  regions  of  lungs  was  significantly  (P  <0.05)  higher  than  that  in  tissue  samples   obtained  from  cranioventral  regions  of  lungs,  although  the  percentage  of  collagen  was  not   significantly  different  in  lung  samples  obtained  before  and  after  exercise  (Figure  16).       Discussion   Venous  remodeling  is  important  in  the  pathogenesis  of  EIPH.  Alterations  in  mRNA   expression  are  expected  to  precede  structural  changes  in  vasculature.  Therefore,  the   purpose  of  this  study  was  to  determine  whether  2  weeks  of  intense  exercise  would  affect   mRNA  and  protein  expression  of  mediators  of  pulmonary  intralobular  vein  remodeling  in  a   manner  expected  to  favor  vascular  remodeling  in  caudodorsal  but  not  cranioventral   regions  of  lungs  of  horses.       The  thoracoscopic  technique  used  to  obtain  lung  samples  from  standing  horses  in   this  study  was  previously  reported  (115)  and  validated  by  personnel  in  our  laboratory.  No   intraoperative  complications  were  detected,  and  horses  had  no  substantial  problems   attributable  to  the  surgery.  The  endoscopic  device  used  to  obtain  lung  samples  resulted  in   collection  of  an  adequate  amount  of  tissue  for  harvest  of  veins  and  preparation  of  mRNA.   To  reduce  the  effects  of  surrounding  tissues  on  results  for  pulmonary  veins,  a   microdissection  technique  was  used  to  ensure  that  only  the  cells  of  interest  (intralobular   venous  wall  cells)  were  isolated  and  assayed.     122   The  markers  of  venous  remodeling  evaluated  in  the  present  study  were  selected  on   the  basis  of  studies  conducted  with  animals  of  other  species,  because  such  information  was   not  available  for  horses,  to  the  authors’  knowledge.  The  activities  of  MMP-­‐2  and  MMP-­‐9,   which  have  predominantly  proteolytic  actions,  are  regulated  by  TIMP-­‐1  and  TIMP-­‐2  (142);   these  factors  regulate  the  protein  content  of  extracellular  matrix.  In  general,  hypertension   results  in  increased  expression  of  MMP-­‐2  and  MMP-­‐9  mRNA  or  protein  (109,  225)  and   decreased  (29,  235)  or  no  change  (23)  in  TIMP  expression.       Results  of  other  studies  indicate  collagen  content  is  increased  in  severely  affected   regions  of  lungs  of  horses  with  EIPH  (38)  and  in  walls  of  remodeled  veins  in  humans  (25)   and  rabbits  (235).  Tenascin-­‐C  (an  extracellular  matrix  protein)  expression  is  upregulated   by  MMPs  (89)  and  PDGF  (223)  and  is  expressed  during  venous  remodeling  (2,  222).   Endothelin-­‐1  causes  vasoconstriction  in  vivo  (136)  and    has  been  implicated  in  pulmonary   (204)    and  systemic  (224)  venous  remodeling.  Platelet-­‐derived  growth  factor  is  a  potent   mitogen  of  connective  tissue  cells  (65)  and  is  associated  with  venous  remodeling  in  pigs   (48).  The  cytokine  TGF-­‐β  is  important  in  various  developmental  and  pathological  processes   (161)  and  has  been  implicated  in  vein  graft  remodeling  (85).  Vascular  endothelial  growth   factor  is  also  a  mitogen  that  is  produced  by  vascular  endothelial  cells(46);  that  cytokine  has   a  role  in  formation  of  neointima  in  remodeled  blood  vessels  (156,  241).     We  expected  that  expression  of  the  genes  evaluated  in  this  study  (except  TIMPs)   would  increase  in  pulmonary  veins  of  caudodorsal  regions  of  lungs  after  exercise  of  horses.   Results  of  this  study  indicated  that  mean  expression  values  of  all  genes  evaluated   decreased  in  pulmonary  veins  after  exercise;  these  findings  were  significant  for  MMP-­‐2,   MMP-­‐9,  TIMP-­‐2,  TGF-­‐β,  and  VEGF.  Because  the  collection  site  X  treatment  interaction  was     123   not  significant,  decreases  in  expression  were  attributed  to  causes  other  than  lung  region.   Although  expression  of  tenascin-­‐C  mRNA  was  not  increased  after  exercise,  tenascin-­‐C   mRNA  expression  was  higher  in  pulmonary  veins  in  cranioventral  regions  of  lungs  versus   those  in  caudodorsal  regions  of  lungs.       The  main  advantage  of  qRT-­‐PCR  assays  for  determination  of  gene  expression  in   pulmonary  veins  is  that  the  technique  has  high  sensitivity;  therefore,  mRNA  expression  can   be  determined  for  small  amounts  of  tissue.  Furthermore,  expression  of  multiple  genes  can   be  evaluated  for  a  tissue  sample  via  that  technique.  Data  regarding  expression  of  mRNA  are   commonly  used  to  infer  other  information  about  molecular  pathways  in  cells,  including   information  regarding  protein  expression.  However,  because  of  translational  and   posttranslational  control  mechanisms,  such  inferences  may  not  be  correct  (186).  For   example,  results  of  another  study  indicate  differential  mRNA  and  protein  expression  of   MMP-­‐2,  MMP-­‐9,  and  TIMP-­‐1  (111).  Because  of  this  possibility,  we  determined  vascular   expression  of  TGF-­‐β,  VEGF,  and  tenascin-­‐C  via  immunohistochemical  methods.  Unlike  the   results  for  gene  expression,  no  significant  decrease  in  protein  expression  was  detected  by   use  of  that  semiquantitative  method  in  the  present  study.  Immunohistochemistry  was  used   rather  than  quantitative  techniques  (such  as  Western  blot  analysis)  because  an  insufficient   amount  of  protein  would  have  been  obtained  from  the  microdissected  veins  for   performance  of  such  assays.       Analysis  was  performed  for  determination  of  the  effects  of  exercise  on  collagen   content  of  lung  samples  in  this  study  because  results  of  another  study  (38)  indicate  the   amount  of  collagen  in  EIPH-­‐affected  lung  tissue  is  higher  than  that  in  unaffected  lung  tissue.   Results  of  the  present  study  indicated  that  exercise  did  not  have  a  significant  effect  on     124   collagen  content  of  lung  samples.  However,  collagen  content  was  significantly  different  in   tissue  samples  obtained  from  caudodorsal  and  cranioventral  regions  of  lungs.  Although   areas  of  slides  with  pleural  tissue  were  excluded  from  analysis,  that  finding  was  likely   attributable  to  anatomic  differences  between  caudodorsal  and  cranioventral  regions  of   lungs.  Also,  expression  of  collagen  type  I  mRNA  was  not  affected  by  exercise  of  horses.   Similar  morphometric  analysis  for  the  proteins  evaluated  via  immunohistochemical   methods  (TGF-­‐β,  VEGF  and  tenascin-­‐C)  was  not  performed  because  differences  in   expression  of  those  proteins  were  not  detected  via  routine  microscopy.     Interactions  among  mediators  of  venous  remodeling  are  complex  and  affected  by   the  type  and  severity  of  a  stimulus  and  the  timing  of  tissue  sample  collection.  For  example,   during  development  of  TGF-­‐β–mediated  intimal  hyperplasia  in  vein  grafts  in  rabbits,   activities  of  MMP-­‐2  and  MMP-­‐9  concurrently  decrease  (85).  Results  of  another  study   indicate  there  is  a  temporal  pattern  of  MMP-­‐2  and  MMP-­‐9  expression  during  venous   remodeling,  with  an  initial  increase  in  expression  followed  by  a  decrease  in  expression  to   undetectable  levels  (195).  The  significant  decrease  in  expression  of  MMP-­‐2  and  MMP-­‐9   mRNA  detected  in  the  present  study  after  exercise  of  horses  may  have  been  attributable  to   a  period  of  blood  vessel  remodeling  during  which  those  substances  had  low  expression.       A  limitation  of  the  present  study  was  the  fact  that  lung  samples  were  evaluated  for   only  one  time  after  exercise  of  horses.  Results  of  another  study  in  which  gene  expression  in   autologous  vein  grafts  was  evaluated  via  high  throughput  microarray  analysis  (92)  indicate   expression  of  TIMP-­‐1  and  VEGF  mRNA  is  increased  only  on  day  1  after  graft  implantation,   and  not  on  days  7,  14,  or  30  after  graft  implantation;  results  of  that  study  also  indicate   collagen  expression  is  decreased  on  days  1  and  7,  and  increased  on  days  14  and  30  after     125   graft  implantation.  Because  data  have  not  been  published  regarding  gene  expression  in   equine  pulmonary  veins,  to  the  authors’  knowledge,  the  timing  of  lung  sample  collection   and  the  duration  of  exercise  of  horses  in  this  study  were  selected  on  the  basis  of  other   information.  Continuous  hypertension  causes  substantial  structural  alterations  in  the   tunica  media  and  adventitia  of  pulmonary  veins  in  sheep  after  only  4  days  (86);  therefore,   we  predicted  that  alterations  in  gene  expression  (which  should  precede  structural   alterations)  in  vein  walls  of  horses  in  the  present  study  would  be  detectable  2  weeks  after   the  end  of  a  6-­‐session  intense  exercise  period.  Because  results  of  this  study  indicated   mRNA  expression  of  various  MMPs  and  growth  factors  was  significantly  different  after   exercise  versus  gene  expression  before  exercise,  that  duration  and  intensity  of  exercise  for   horses  seemed  to  be  adequate  to  cause  changes  in  gene  expression.     The  high-­‐intensity  exercise  protocol  used  in  the  present  study  was  intended  to  simulate   race  training  (after  horses  underwent  2  weeks  of  low-­‐intensity  conditioning  exercise).  The   intensity  of  exercise  was  expected  to  be  an  adequate  stimulus  for  evaluation  of  changes  in   gene  expression  in  lungs  of  horses.  Each  horse  exercised  at  a  speed  corresponding  to  a   heart  rate  of  120%  of  the  HRmax  value.  The  variable  HRmax  is  a  reproducible  measurement   for  exercising  horses  (45),  and  horses  require  maximum  effort  to  maintain  a  position  on  a   treadmill  at  a  speed  corresponding  to  120%    of  HRmax.  Furthermore,  33.3%  of  horses  in  this   study  had  EIPH  (as  diagnosed  via  respiratory  tract  endoscopy);  this  finding  suggested  that   the  exercise  was  of  adequate  intensity.     There  was  a  12-­‐month  period  between  collection  of  pre-­‐  and  postexercise  lung   samples  in  this  study.  This  period  allowed  healing  of  surgical  sites  after  the  first  procedure.   Ageing  of  animals  is  associated  with  remodeling  of  blood  vessel  walls  (66)  (particularly     126   arterial  walls  (110));  however,  such  findings  have  only  been  detected  for  very  young  and   very  old  animals  (110)  and  humans  (104,  155).  Therefore,  it  was  unlikely  that  ageing   during  the  12-­‐month  period  affected  blood  vessel  wall  characteristics  in  horses  in  the   present  study.   The  role  of  venous  remodeling  in  the  pathogenesis  of  EIPH  is  not  known,  to  the   authors’  knowledge.  However,  the  distribution  of  venous  remodeling  in  lungs  of  horses   with  EIPH  (lesions  are  colocalized  with  hemosiderin  in  caudodorsal  regions  of  lungs  of   affected  horses  (38))  suggests  that  it  is  important  in  the  pathogenesis  of  EIPH.  Because   high  intravascular  pressures  induce  remodeling  in  systemic  (2,  28,  29,  64,  112,  180,  235)   and  pulmonary  (25,  86)  veins,  we  propose  that  intermittent  periods  of  high  pressures  in   the  pulmonary  circulation  during  exercise  cause  remodeling  of  pulmonary  veins  in   caudodorsal  regions  of  lungs  of  horses.  Such  venous  remodeling  may  result  in  high   pulmonary  capillary  pressures  in  affected  regions  of  lungs  and  an  increased  risk  of   capillary  rupture  and  hemorrhage  and  development  of  EIPH.       Results  of  the  present  study  did  not  support  the  hypothesis  that  2   weeks  of  intense  exercise  would  cause  alterations  in  gene  and  protein  expression  in   pulmonary  veins  in  a  manner  expected  to  favor  venous  remodeling.  However,  few  data   regarding  timing  of  expression  of  genes  during  vascular  remodeling  in  horses  have  been   published.  Further  studies  are  warranted  to  determine  the  mechanisms  and  timing  of   venous  remodeling  in  horses  with  EIPH.             127                                     APPENDIX     128         Figure  15:  Mean  ±  SEM  fold  changes  in  mRNA  expression  of  10  genes  in  pulmonary  vein   samples  of  4  horses  after  a  2-­‐week  period  of  intense  exercise  versus  expression  before   exercise.  *Expression  is  significantly  (P  <  0.05)  different  between  pulmonary  vein  samples   collected  before  and  after  exercise.                   129       Figure  16:  Least  square  mean  ±  SEM    percentage  of  collagen  in  samples  of  cranioventral     (CV)  and  caudodorsal  (CD)  regions  of  lung  of  6  horses  before  (black  bars)  and  after  (grey     bars)  a  2-­‐week  period  of  intense  exercise.  Bars  indicate  no  significant  (P  <  0.05)  differences   between  lung  samples  obtained  before  and  after  exercise  within  a  region.  *Mean  value  for   pre-­‐  and  postexercise  tissue  samples  obtained  from  caudodorsal  regions  of  lungs  are   significantly  (P  <  0.05)  higher  than  those  obtained  from  cranioventral  regions  of  lungs.             130           GenBank   accession   No.   Forward  primer   (5’–3’)   Reverse  primer  (5’– 3’)   TCCGAGTCTGGAGT GATGTGA   NM-­‐ GCAAGGAGTACTCT 001111302   GCCTGTA   NM_00108 GCCAGGGCTTCACC 2515   AAGA   CTGACAAGGACATC AJ010315   GAGTTCATCTA   XM001914 GAGCCCAGAGCAGA PDGF   920   TGCAA   NM-­‐ GGAATGGCTGTCCT TGF-­‐β   001081849   TTGATGTCA   CGACATCATCTGGG ET-­‐1   AY730629   TCAACACT   Collag CGGACAGCCTGGAC en   AF034691   TCC   type  I   NM_00108 GCAAATGTGAATGC VEGF   1821   AGACCAAAGAA   Tenas GTGGAGTATTTCAT AY246747   cin-­‐C   CCGTGTGTTTG   Beta-­‐ NM_00108 GGGACCTGACGGAC actin   1838   TACCT   NM_00108 CGCCTGAGATTGAA B2M   2502   ATTGATTTGCT   GATCATGATGTCAGC CTCTCCAT   CCAGAGGCGCCCATC A   CAGTGTCACTCTGCA GTTTGC   Gene   MMP-­‐ 2   MMP-­‐ 9   TIMP-­‐ 1   TIMP-­‐ 2   EF-­‐1   AJ010314   AY237113   Probe   CTTCTTGCTCTGACC CACGAT   CGAAGGCCCTCCATT GC   GGATCGCTTGGACCT GGAA   CCCACTACGGT TTTCT   CTGCGGCCCTC TCTG   ATGCTCAGTGT TTCCC   ACGGCTCCCTC CTCG   ACAGCAGCCCA CTTGC   CTGCCGCACGA CTCC   CCGAGCACATT GTTCC   CAGCAAATTTCTCAT CATAGCCATAAGAC   CCTCCTGGACC TCCCG   GCTTTCTCCGCTCTG AGCAA   GCCACCCTGGCACTG A   CCGTGGTGGTGAAGC TGTAG   GACCAGTCCTTGCTG AAAGACA   CCACAGGGATT TTC   CCATCCCGGAG AACAA   TCCGTGAGGAT CTTCA   ACCGGTCGACT TTCAT   CCACCAACTCGTCCA GACAGTACCGATACC ACTGATAAG   ACCAATTTTG   CCCTTGCGTCT GCCCC   GCGAGACCCCGCACA     Table  2  Primers  and  probes  used  for  detection  of  various  genes  in  pulmonary  vein  samples   of  horses  via  qRT-­‐PCR  assay.  B2M  =  Beta-­‐2-­‐microglobulin.  EF-­‐1  =  Elongation  factor-­‐1  alpha.     131   CHAPTER  5     Conclusions  and  directions  for  future  studies       Recent  descriptions  of  EIPH  pathology  have  highlighted  deficiencies  in  the  capillary-­‐stress   failure  theory  of  EIPH  pathogenesis,  which  until  recently  provided  the  most  plausible,   albeit  incomplete,  explanation  of  disease  mechanisms.       Pulmonary  capillary  stress  failure  secondary  to  exercise-­‐associated  pulmonary   circulation  pressure  elevations  explains  neither  the  predilection  for  caudodorsal  lung  of   EIPH  pathology,  the  distribution  of  which  matches  exactly  that  of  pulmonary  blood  flow   during  exercise,  nor  does  it  account  for  the  extensive  venous  remodeling  of  intralobular   pulmonary  veins  in  caudodorsal  lung.  Assuming  however  that  stress  failure  is  a  component   of  EIPH  pathogenesis,  and  evidence  exists  to  suggest  that  it  is,  the  factors  that  determine   capillary  pressure,  and  therefore  pulmonary  capillary  rupture,  merit  consideration.     Resistance  to  flow  in  a  vessel  is  strongly  influenced  by  vessel  diameter,  which  in   turn  is  a  function  of  a  combination  of  the  passive,  mechanical  characteristics  of  the  vessel   wall  (i.e.  its  ability  to  resist  stretch)  and  the  degree  of  contraction  of  circumferential   vascular  smooth  muscle  (i.e.  vessel  tone),  which  is  determined  by  neural,  humoral  and  local   factors.       Capillary  pressure  is  immediately  influenced  by  the  resistance  to  blood  flow  in  the   segments  supplying  and  draining  that  capillary.  Decreased  arterial  resistance  to  flow  and   increased  venous  resistance  to  flow  are  both  conditions  under  which  intervening   capillaries  will  be  exposed  to  higher  pressures.       While  there  is  evidence  that  regional  heterogeneity  in  the  reactivity  of  large   pulmonary  arteries  in  the  horse  lung  exists,  whether  a  similar  pattern  exists  in  the  small     132   arteries  and  veins,  that  are  almost  immediately  up-­‐  and  down-­‐stream  from  the  pulmonary   capillaries  had  not  been  investigated.  I  hypothesized  therefore  that  regional  differences  do   exist,  in  either  the  mechanical  characteristics,  and/or  in  the  reactivity  profile  of  these   vessels,  and  that  these  differences  would  provide  some  evidence  that  capillary  pressures  in   caudodorsal  lung  could  exceed  those  in  cranioventral  lung  during  exercise.  Furthermore,  if   those  regional  differences  predict  the  transmission  of  higher  pressures  to  pulmonary  veins   in  the  caudodorsal  lung,  then  hemodynamic  stimuli  in  that  region,  while  transient,  would   be  enough  to  initiate  pressure-­‐mediated  venous  remodeling.  Remodeling  would  reduce   venous  compliance,  and  further  exacerbate  pulmonary  capillary  failure.     Accordingly,  my  overarching  hypothesis  for  EIPH  pathogenesis  was  as  follows:       During  intense  exercise  horses  experience  elevations  in  cardiac  output  that  result  in   elevated  pulmonary  artery,  left  atrial  and  pulmonary  capillary  pressures.  In  caudodorsal   regions  of  lung  that  already  experience  highest  flow,  regional  differences  in  determinants   of  arterial  and  venous  vessel  diameter  promote  even  higher  pulmonary  capillary  pressures.   Pulmonary  capillary  breaking  strength  is  exceeded  resulting  in  stress  failure  of  some   capillaries,  and  extravasation  of  red  cells  and  airway  hemorrhage.  During  both  training  and   racing,  repeated  episodes  of  high  pulmonary  blood  flow  and  pressures,  particularly  in  the   highest  flow  regions  within  caudodorsal  lung,  provide  adequate  hemodynamic  stimuli  to   result  in  pulmonary  venous  remodeling.  Remodeled  pulmonary  veins  are  less  compliant   than  normal  veins  and  failure  of  these  vessels  to  distend  normally  further  increases   pulmonary  capillary  pressures.  Those  capillaries  that  are  drained  by  remodeled  veins  are   even  more  susceptible  to  rupture  during  exercise  as  venous  wall  compliance  is  reduced  and   in  some  cases,  venous  luminal  area  is  diminished.  With  each  exercise  bout  the  injurious     133   cycle  is  repeated  and  compounded,  ultimately  resulting  in  clinically  detectable  hemorrhage,   significant  pulmonary  pathology,  and  potentially  impaired  performance.     In  the  studies  outlined  in  this  dissertation  I  determined  that  regional  differences  in   the  mechanical  characteristics  of  both  arteries  and  veins  in  control,  unraced  horses  exist.   Specifically,  caudodorsal  arteries  are  stiffer  than  arteries  from  cranioventral  lung,  and  the   converse  is  true  of  veins.    These  differences  do  not  necessarily  predict  that  during  exercise,   caudodorsal  pulmonary  capillaries  and  as  a  result,  veins  will  be  exposed  to  higher   pressures  than  those  in  cranioventral  regions.  In  fact,  less  distensible  caudodorsal  arteries   may  even  protect  caudodorsal  capillaries  somewhat  from  transmission  of  the  highest   arterial  pressures  during  exercise,  and  more  compliant  veins  in  this  region  also  provide  a   degree  of  capillary  protection.    Of  particular  interest  in  this  study  however  was  the   observation  that  pulmonary  veins  from  caudodorsal  lung  of  horses  that  had  raced,  but  had   neither  a  clinical  history,  nor  pathologic  evidence  of  severe  EIPH,  became  significantly   stiffer  than  those  veins  from  control,  unraced  horses.  Although  structural  components  of   the  study  vessels  were  not  evaluated  specifically,  it  is  most  likely  that  collagen  deposition   in  vein  walls  such  as  has  been  reported  in  other  studies  contributed  to  the  increase  in   elastic  modulus  of  these  vessels.  These  are  the  first  data  to  demonstrate  possible   physiologic  ramifications  of  venous  remodeling  in  EIPH,  namely  reduced  venous   compliance.       While  these  data  support  the  contention  that  venous  remodeling  is  an  early  event  in   EIPH  development,  a  two-­‐week  intermittent  exercise  stimuls  was  insufficient  to  induce   changes  in  vein  wall  mRNA  that  would  support  initiation  of  remodeling  at  that  stage.       134     The  autonomic  control  of  small  pulmonary  arteries  and  veins  also  demonstrates  a   regionally  heterogeneous  pattern.  In  the  absence  of  any  α-­‐adrenoreceptor  mediated   vasoconstriction,  β-­‐adrenergic  activity  is  expected  to  predominate  in  the  high  sympathetic   outflow  conditions  experienced  during  exercise.  A  β-­‐adrenergic  agonist  failed  to  cause   relaxation  of  precontracted  pulmonary  veins,  and  relaxed  pulmonary  arteries  from   caudodorsal  lung  to  a  greater  degree  than  those  in  cranioventral  lung,  a  combination  that   in  an  in  vivo  setting  could  act  to  cause  greater  capillary  pressures  in  caudodorsal  lung.  A   muscarinic  agonist  caused  pulmonary  veins  and  caudodorsal  arteries  (mediated  by  both   nitric  oxide  and  prostanoid  release)  to  relax,  whereas  caudodorsal  arteries  contracted.  In   the  exercising  horse  and  in  the  absence  of  parasympathetic  input,  the  inverse  of  this   pattern  could  serve  to  deliver  the  highest  pulmonary  capillary  and  venous  pressures  to   caudodorsal  regions.       In  summary,  regional  difference  in  autonomic  control  of  small  pulmonary  arteries   and  veins  support  the  theory  that  the  highest  pulmonary  capillary  and  venous  pressures   occur  in  the  caudodorsal  lung  during  exercise.  Mechanical  characteristics  of  the  same   vessels  appear  to  reflect  this  regional  pattern  and  in  fact,  vessel  wall  structure  may  “offset”   these  projected  pressure  differences  somewhat.  Probably  as  a  result  of  vessel   heterogeneity,  venous  remodeling  in  caudodorsal  regions  in  response  to  hemodynamic   stimuli  associated  with  racing  reduces  venous  compliance  in  a  region-­‐dependent  manner,   even  before  the  development  of  severe  pathology.     With  regard  to  future  directions  for  study,  at  this  time  I  consider  a  more  detailed   characterization  of  the  reactivity  profiles  of  small  pulmonary  arteries  and  veins  of  the   horse,  in  particular  responses  to  naturally  occurring  agonists  such  as  endothelin,  and     135   serotonin  a  priority.  This  approach  will  add  depth  to  current  understanding  of  in  vivo   control  of  vessel  tone,  and  provide  direction  for  future  investigations  into   pharmacotherapeutic  interventions  in  EIPH.  Although  furosemide  did  not  have  a  clinically   relevant  effect  on  pulmonary  venous  tone,  testing  this  drug  on  larger  pulmonary  vessels,   and  preliminary  investigations  into  other  venous  specific  vasoactive  agents,  for  example,  C-­‐ type  natriuretic  peptide  (209)  is  also  warranted.  Also,  detailed,  morphometric   characterization  of  the  changes  in  vessel  wall  structure  that  result  in  altered  wall   mechanical  properties  will  provide  another  layer  of  understanding  of  the  venous   remodeling  process.  If  this  information  were  coupled  with  a  detailed  training/racing   history  it  would  permit  elucidation  of  the  exact  nature  of  the  stimulus  required  for   mild/moderate/severe  remodeling,  and  enable  exploration  of  non-­‐pharmacologic   approaches  to  EIPH  management  along  the  lines  of  training  modifications  etc.       It  is  noteworthy  that  regional  differences  such  as  are  described  in  these  studies  have   not  been  reported  in  the  pulmonary  microvasculature  of  other  species.  Whether  these   differences  occur  in  other  species  certainly  merits  further  investigation  at  this  time.  I   consider  it  unlikely  that  these  observations  are  unique  to  the  horse,  and  should  they  occur   across  other  mammalian  species,  they  have  potential  for  application  in  a  wide  range  of   contexts,  in  particular  in  the  study  of  pulmonary  vascular  pathology  including  pulmonary   hypertension,  pulmonary  veno-­‐occlusive  disease  and  left  heart  failure,  all  of  which  are   conditions  associated  with  high  morbidity  rates  (25,  122).  Indeed,  until  recently,   pulmonary  veins  were  viewed  by  most  as  mere  “conduit  vessels”  and  as  a  result,  are   relatively  understudied  (50).       136   In  conclusion,  these  data  further  cement  the  role  of  the  pulmonary  vein  as  a  pivotal   component  of  EIPH  pathology  and  shed  new  light  on  features  of  the  equine  pulmonary   circulation  that  place  the  exercising  horse  at  risk  of  caudodorsal  capillary  rupture,  and   EIPH.  Thus,  these  investigations  provide  evidence  that  support  a  new,  comprehensive   theory  of  EIPH  pathogenesis,  a  framework  for  future  study  of  EIPH,  and  novel  contributions   to  pulmonary  vascular  biology  literature.                                                                           137                                             BIBLIOGRAPHY     138     BIBLIOGRAPHY       1.   General  stud  book,  containing  pedigrees  of  race  horses,  &c.,  from  the  earliest  accounts.   Lond:  C.  &  J.  Weatherby,  1858,  p.  18v.   2.   Abeles  D,  Kwei  S,  Stavrakis  G,  Zhang  Y,  Wang  ET,  and  Garcia-­‐Cardena  G.  Gene   expression  changes  evoked  in  a  venous  segment  exposed  to  arterial  flow.  J  Vasc  Surg  44:   863-­‐870,  2006.   3.   Aitsebaomo  J,  Portbury  AL,  Schisler  JC,  and  Patterson  C.  Brothers  and  sisters:   molecular  insights  into  arterial-­‐venous  heterogeneity.  Circ  Res  103:  929-­‐939,  2008.   4.   Akbar  SJ,  Derksen  FJ,  Billah  AM,  and  Werney  U.  Exercise  induced  pulmonary   haemorrhage  in  racing  camels.  Vet  Rec  135:  624-­‐625,  1994.   5.   al-­‐Tinawi  A,  Clough  AV,  Harder  DR,  Linehan  JH,  Rickaby  DA,  and  Dawson  CA.   Distensibility  of  small  veins  of  the  dog  lung.  Journal  of  applied  physiology  73:  2158-­‐2165,   1992.   6.   Allen  D,  Jr.,  Clark  ES,  Moore  JN,  and  Prasse  KW.  Evaluation  of  equine  digital   Starling  forces  and  hemodynamics  during  early  laminitis.  Am  J  Vet  Res  51:  1930-­‐1934,   1990.   7.   Angus  JA,  and  Wright  CE.  Techniques  to  study  the  pharmacodynamics  of  isolated   large  and  small  blood  vessels.  Journal  of  pharmacological  and  toxicological  methods  44:   395-­‐407,  2000.   8.   Araya  O,  Palma  P,  Salvi  M,  Bustamante  H,  and  Vits  L.  Endoscopic  determination   of  exercise-­‐induced  pulmonary  haemorrhage  in  Chilean  Criollo  horses.  Vet  J  169:  311-­‐313,   2005.   9.   Banks  J,  Booth  FV,  MacKay  EH,  Rajagopalan  B,  and  Lee  GD.  The  physcial   properties  of  human  pulmonary  arteries  and  veins.  Clinical  science  and  molecular  medicine   55:  477-­‐484,  1978.   10.   Barman  SA,  Senteno  E,  Smith  S,  and  Taylor  AE.  Acetylcholine's  effect  on  vascular   resistance  and  compliance  in  the  pulmonary  circulation.  Journal  of  applied  physiology  67:   1495-­‐1503,  1989.   11.   Barnes  PJ,  and  Liu  SF.  Regulation  of  pulmonary  vascular  tone.  Pharmacological   reviews  47:  87-­‐131,  1995.   12.   Bashey  RI,  Cox  R,  McCann  J,  and  Jimenez  SA.  Changes  in  collagen  biosynthesis,   types,  and  mechanics  of  aorta  in  hypertensive  rats.  J  Lab  Clin  Med  113:  604-­‐611,  1989.     139   13.   Benamou  AE,  Marlin  DJ,  and  Lekeux  P.  Equine  pulmonary  and  systemic   haemodynamic  responses  to  endothelin-­‐1  and  a  selective  ET(A)  receptor  antagonist.   Equine  veterinary  journal  33:  337-­‐344,  2001.   14.   Berceli  SA,  Jiang  Z,  Klingman  NV,  Pfahnl  CL,  Abouhamze  ZS,  Frase  CD,  Schultz   GS,  and  Ozaki  CK.  Differential  expression  and  activity  of  matrix  metalloproteinases  during   flow-­‐modulated  vein  graft  remodeling.  J  Vasc  Surg  39:  1084-­‐1090,  2004.   15.   Bernard  SL,  Glenny  RW,  Erickson  HH,  Fedde  MR,  Polissar  N,  Basaraba  RJ,  and   Hlastala  MP.  Minimal  redistribution  of  pulmonary  blood  flow  with  exercise  in  racehorses.  J   Appl  Physiol  81:  1062-­‐1070,  1996.   16.   Birks  EK,  Mathieu-­‐Costello  O,  Fu  Z,  Tyler  WS,  and  West  JB.  Comparative  aspects   of  the  strength  of  pulmonary  capillaries  in  rabbit,  dog,  and  horse.  Respir  Physiol  97:  235-­‐ 246,  1994.   17.   Birks  EK,  Mathieu-­‐Costello  O,  Fu  Z,  Tyler  WS,  and  West  JB.  Very  high  pressures   are  required  to  cause  stress  failure  of  pulmonary  capillaries  in  thoroughbred  racehorses.  J   Appl  Physiol  82:  1584-­‐1592,  1997.   18.   Birks  EK,  Shuler  KM,  Soma  LR,  Martin  BB,  Marconato  L,  Del  Piero  F,  Teleis  DC,   Schar  D,  Hessinger  AE,  and  Uboh  CE.  EIPH:  postrace  endoscopic  evaluation  of   Standardbreds  and  Thoroughbreds.  Equine  Vet  J  Suppl  375-­‐378,  2002.   19.   Bronquard  C,  Maupoil  V,  Arbeille  B,  Fetissof  F,  Findlay  I,  Cosnay  P,  and  Freslon   JL.  Contractile  and  relaxant  properties  of  rat-­‐isolated  pulmonary  veins  related  to   localization  and  histology.  Fundamental  &  clinical  pharmacology  21:  55-­‐65,  2007.   20.   Burton  AC.  Relation  of  structure  to  function  of  the  tissues  of  the  wall  of  blood   vessels.  Physiol  Rev  34:  619-­‐642,  1954.   21.   Buus  CL,  Pourageaud  F,  Fazzi  GE,  Janssen  G,  Mulvany  MJ,  and  De  Mey  JG.   Smooth  muscle  cell  changes  during  flow-­‐related  remodeling  of  rat  mesenteric  resistance   arteries.  Circ  Res  89:  180-­‐186,  2001.   22.   Caro  CG,  and  Saffman  PG.  Extensibility  of  Blood  Vessels  in  Isolated  Rabbit  Lungs.  J   Physiol  178:  193-­‐210,  1965.   23.   Castro  MM,  Rizzi  E,  Prado  CM,  Rossi  MA,  Tanus-­‐Santos  JE,  and  Gerlach  RF.   Imbalance  between  matrix  metalloproteinases  and  tissue  inhibitor  of  metalloproteinases  in   hypertensive  vascular  remodeling.  Matrix  Biol  29:  194-­‐201,  2010.   24.   Chay  S,  Woods  WE,  Rowse  K,  Nugent  TE,  Blake  JW,  and  Tobin  T.  The   pharmacology  of  furosemide  in  the  horse.  V.  Pharmacokinetics  and  blood  levels  of   furosemide  after  intravenous  administration.  Drug  Metab  Dispos  11:  226-­‐231,  1983.     140   25.   Chazova  I,  Robbins  I,  Loyd  J,  Newman  J,  Tapson  V,  Zhdaov  V,  and  Meyrick  B.   Venous  and  arterial  changes  in  pulmonary  veno-­‐occlusive  disease,  mitral  stenosis  and   fibrosing  mediastinitis.  Eur  Respir  J  15:  116-­‐122,  2000.   26.   Chelladurai  P,  Seeger  W,  and  Pullamsetti  SS.  Matrix  metalloproteinases  and  their   inhibitors  in  pulmonary  hypertension.  Eur  Respir  J  40:  766-­‐782,  2012.   27.   Chesler  NC,  Ku  DN,  and  Galis  ZS.  Transmural  pressure  induces  matrix-­‐degrading   activity  in  porcine  arteries  ex  vivo.  Am  J  Physiol  277:  H2002-­‐2009,  1999.   28.   Choy  JS,  Dang  Q,  Molloi  S,  and  Kassab  GS.  Nonuniformity  of  axial  and   circumferential  remodeling  of  large  coronary  veins  in  response  to  ligation.  Am  J  Physiol   Heart  Circ  Physiol  290:  H1558-­‐1565,  2006.   29.   Chung  AW,  Rauniyar  P,  Luo  H,  Hsiang  YN,  van  Breemen  C,  and  Okon  EB.   Pressure  distention  compared  with  pharmacologic  relaxation  in  vein  grafting  upregulates   matrix  metalloproteinase-­‐2  and  -­‐9.  J  Vasc  Surg  42:  747-­‐756,  2005.   30.   Coflesky  JT,  Jones  RC,  Reid  LM,  and  Evans  JN.  Mechanical  properties  and  structure   of  isolated  pulmonary  arteries  remodeled  by  chronic  hyperoxia.  Am  Rev  Respir  Dis  136:   388-­‐394,  1987.   31.   Cohen  MR,  Hinsch  E,  Vergona  R,  Ryan  J,  Kolis  SJ,  and  Schwartz  MA.  A   comparative  diuretic  and  tissue  distribution  study  of  bumetanide  and  furosemide  in  the   dog.  J  Pharmacol  Exp  Ther  197:  697-­‐702,  1976.   32.   Cook  WR.  Epistaxis  in  the  racehorse.  Equine  veterinary  journal  6:  45-­‐58,  1974.   33.   Cox  RH.  Comparison  of  mechanical  and  chemical  properties  of  extra-­‐  and  intralobar   canine  pulmonary  arteries.  Am  J  Physiol  242:  H245-­‐253,  1982.   34.   Dawson  CA.  Role  of  pulmonary  vasomotion  in  physiology  of  the  lung.  Physiol  Rev   64:  544-­‐616,  1984.   35.   Deacon  K,  and  Knox  AJ.  Endothelin-­‐1  (ET-­‐1)  increases  the  expression  of   remodeling  genes  in  vascular  smooth  muscle  through  linked  calcium  and  cAMP  pathways:   role  of  a  phospholipase  A(2)(cPLA(2))/cyclooxygenase-­‐2  (COX-­‐2)/prostacyclin  receptor-­‐ dependent  autocrine  loop.  J  Biol  Chem  285:  25913-­‐25927,  2010.   36.   Deem  DA,  and  Fregin  GF.  Atrial  fibrillation  in  horses:  a  review  of  106  clinical  cases,   with  consideration  of  prevalence,  clinical  signs,  and  prognosis.  J  Am  Vet  Med  Assoc  180:   261-­‐265,  1982.   37.   deMello  DE,  and  Reid  LM.  Embryonic  and  early  fetal  development  of  human  lung   vasculature  and  its  functional  implications.  Pediatric  and  developmental  pathology  :  the   official  journal  of  the  Society  for  Pediatric  Pathology  and  the  Paediatric  Pathology  Society  3:   439-­‐449,  2000.     141   38.   Derksen  FJ,  Williams  KJ,  Pannirselvam  RR,  de  Feijter-­‐Rupp  H,  Steel  CM,  and   Robinson  NE.  Regional  distribution  of  collagen  and  haemosiderin  in  the  lungs  of  horses   with  exercise-­‐induced  pulmonary  haemorrhage.  Equine  veterinary  journal  41:  586-­‐591,   2009.   39.   Derksen  FJ,  Williams  KJ,  Uhal  BD,  Slocombe  RF,  de  Feijter-­‐Rupp  H,  Eberhart  S,   Berney  C,  and  Robinson  NE.  Pulmonary  response  to  airway  instillation  of  autologous   blood  in  horses.  Equine  veterinary  journal  39:  334-­‐339,  2007.   40.   Ding  X,  and  Murray  PA.  Cellular  mechanisms  of  thromboxane  A2-­‐mediated   contraction  in  pulmonary  veins.  Am  J  Physiol  Lung  Cell  Mol  Physiol  289:  L825-­‐833,  2005.   41.   Elliott  FM,  and  Reid  L.  Some  New  Facts  About  the  Pulmonary  Artery  and  Its   Branching  Pattern.  Clinical  radiology  16:  193-­‐198,  1965.   42.   Epp  TS,  Szladovits  B,  Buchannan  A,  Gates  L,  McDonough  P,  Padilla  DJ,  Smart  J,   Erickson  HH,  and  Poole  DC.  Evidence  supporting  exercise-­‐induced  pulmonary   haemorrhage  in  racing  greyhounds.  Comparative  Exercise  Physiology  5:  21-­‐32,  2008.   43.   Erickson  HH,  Bernard  SL,  Glenny  RW,  Fedde  MR,  Polissar  NL,  Basaraba  RJ,   Walther  SM,  Gaughan  EM,  McMurphy  R,  and  Hlastala  MP.  Effect  of  furosemide  on   pulmonary  blood  flow  distribution  in  resting  and  exercising  horses.  Journal  of  applied   physiology  86:  2034-­‐2043,  1999.   44.   Evans  DL,  and  Rose  RJ.  Cardiovascular  and  respiratory  responses  in  Thoroughbred   horses  during  treadmill  exercise.  J  Exp  Biol  134:  397-­‐408,  1988.   45.   Evans  DL,  and  Rose  RJ.  Determination  and  repeatability  of  maximum  oxygen   uptake  and  other  cardiorespiratory  measurements  in  the  exercising  horse.  Equine   veterinary  journal  20:  94-­‐98,  1988.   46.   Ferrara  N.  Vascular  endothelial  growth  factor:  basic  science  and  clinical  progress.   Endocr  Rev  25:  581-­‐611,  2004.   47.   Fleige  S,  and  Pfaffl  MW.  RNA  integrity  and  the  effect  on  the  real-­‐time  qRT-­‐PCR   performance.  Mol  Aspects  Med  27:  126-­‐139,  2006.   48.   Francis  SE,  Hunter  S,  Holt  CM,  Gadsdon  PA,  Rogers  S,  Duff  GW,  Newby  AC,  and   Angelini  GD.  Release  of  platelet-­‐derived  growth  factor  activity  from  pig  venous  arterial   grafts.  J  Thorac  Cardiovasc  Surg  108:  540-­‐548,  1994.   49.   Gaar  KA,  Jr.,  Taylor  AE,  Owens  LJ,  and  Guyton  AC.  Pulmonary  capillary  pressure   and  filtration  coefficient  in  the  isolated  perfused  lung.  Am  J  Physiol  213:  910-­‐914,  1967.   50.   Gao  Y,  and  Raj  JU.  Role  of  veins  in  regulation  of  pulmonary  circulation.  Am  J  Physiol   Lung  Cell  Mol  Physiol  288:  L213-­‐226,  2005.     142   51.   Gerbino  AJ,  Altemeier  WA,  Schimmel  C,  and  Glenny  RW.  Endotoxemia  increases   relative  perfusion  to  dorsal-­‐caudal  lung  regions.  Journal  of  applied  physiology  90:  1508-­‐ 1515,  2001.   52.   Ghio  AJ,  Ghio  C,  and  Bassett  M.  Exercise-­‐induced  pulmonary  hemorrhage  after   running  a  marathon.  Lung  184:  331-­‐333,  2006.   53.   Ghofrani  HA,  Seeger  W,  and  Grimminger  F.  Imatinib  for  the  treatment  of   pulmonary  arterial  hypertension.  N  Engl  J  Med  353:  1412-­‐1413,  2005.   54.   Gleed  FD,  Ducharme  NG,  Hackett  RP,  Hakim  TS,  Erb  HN,  Mitchell  LM,  and   Soderholm  LV.  Effects  of  frusemide  on  pulmonary  capillary  pressure  in  horses  exercising   on  a  treadmill.  Equine  Vet  J  Suppl  102-­‐106,  1999.   55.   Glenny  RW.  Blood  flow  distribution  in  the  lung.  Chest  114:  8S-­‐16S,  1998.   56.   Glenny  RW,  Bernard  S,  Robertson  HT,  and  Hlastala  MP.  Gravity  is  an  important   but  secondary  determinant  of  regional  pulmonary  blood  flow  in  upright  primates.  Journal   of  applied  physiology  86:  623-­‐632,  1999.   57.   Glenny  RW,  Lamm  WJ,  Albert  RK,  and  Robertson  HT.  Gravity  is  a  minor   determinant  of  pulmonary  blood  flow  distribution.  Journal  of  applied  physiology  71:  620-­‐ 629,  1991.   58.   Goumans  MJ,  Liu  Z,  and  ten  Dijke  P.  TGF-­‐beta  signaling  in  vascular  biology  and   dysfunction.  Cell  research  19:  116-­‐127,  2009.   59.   Greenberg  S,  McGowan  C,  Xie  J,  and  Summer  WR.  Selective  pulmonary  and   venous  smooth  muscle  relaxation  by  furosemide:  a  comparison  with  morphine.  J  Pharmacol   Exp  Ther  270:  1077-­‐1085,  1994.   60.   Gross  DK,  Morley  PS,  Hinchcliff  KW,  and  Wittum  TE.  Effect  of  furosemide  on   performance  of  Thoroughbreds  racing  in  the  United  States  and  Canada.  J  Am  Vet  Med  Assoc   215:  670-­‐675,  1999.   61.   Gusic  RJ,  Myung  R,  Petko  M,  Gaynor  JW,  and  Gooch  KJ.  Shear  stress  and  pressure   modulate  saphenous  vein  remodeling  ex  vivo.  Journal  of  biomechanics  38:  1760-­‐1769,   2005.   62.   Halpern  W,  Mulvany  MJ,  and  Warshaw  DM.  Mechanical  properties  of  smooth   muscle  cells  in  the  walls  of  arterial  resistance  vessels.  J  Physiol  275:  85-­‐101,  1978.   63.   Hanna  CJ,  and  Eyre  P.  Pharmacological  studies  on  the  pulmonary  vein  of  the  horse.   I.  Effects  of  selected  spasmogens.  Canadian  journal  of  physiology  and  pharmacology  56:   812-­‐817,  1978.     143   64.   Hayashi  K,  Mori  K,  and  Miyazaki  H.  Biomechanical  response  of  femoral  vein  to   chronic  elevation  of  blood  pressure  in  rabbits.  Am  J  Physiol  Heart  Circ  Physiol  284:  H511-­‐ 518,  2003.   65.   Heldin  CH,  and  Westermark  B.  Mechanism  of  action  and  in  vivo  role  of  platelet-­‐ derived  growth  factor.  Physiol  Rev  79:  1283-­‐1316,  1999.   66.   Hemmeryckx  B,  Emmerechts  J,  Bovill  EG,  Hoylaerts  MF,  and  Lijnen  HR.  Effect  of   ageing  on  the  murine  venous  circulation.  Histochem  Cell  Biol  137:  537-­‐546,  2012.   67.   Herity  NA,  Ward  MR,  Lo  S,  and  Yeung  AC.  Review:  Clinical  aspects  of  vascular   remodeling.  J  Cardiovasc  Electrophysiol  10:  1016-­‐1024,  1999.   68.   Hillidge  CJ,  and  Whitlock  TW.  Sex  variation  in  the  prevalence  of  exercise-­‐induced   pulmonary  haemorrhage  in  racing  quarter  horses.  Research  in  veterinary  science  40:  406-­‐ 407,  1986.   69.   Hinchcliff  KW,  Jackson  MA,  Brown  JA,  Dredge  AF,  O'Callaghan  PA,  McCaffrey  JP,   Morley  PS,  Slocombe  RE,  and  Clarke  AF.  Tracheobronchoscopic  assessment  of  exercise-­‐ induced  pulmonary  hemorrhage  in  horses.  Am  J  Vet  Res  66:  596-­‐598,  2005.   70.   Hinchcliff  KW,  Jackson  MA,  Morley  PS,  Brown  JA,  Dredge  AE,  O'Callaghan  PA,   McCaffrey  JP,  Slocombe  RE,  and  Clarke  AE.  Association  between  exercise-­‐induced   pulmonary  hemorrhage  and  performance  in  Thoroughbred  racehorses.  J  Am  Vet  Med  Assoc   227:  768-­‐774,  2005.   71.   Hinchcliff  KW,  and  McKeever  KH.  Fluid  administration  attenuates  the   haemodynamic  effect  of  frusemide  in  running  horses.  Equine  veterinary  journal  30:  246-­‐ 250,  1998.   72.   Hinchcliff  KW,  McKeever  KH,  and  Muir  WW,  3rd.  Furosemide-­‐induced  changes  in   plasma  and  blood  volume  of  horses.  J  Vet  Pharmacol  Ther  14:  411-­‐417,  1991.   73.   Hinchcliff  KW,  Morley  PS,  and  Guthrie  A.  Use  of  furosemide  for  exercise-­‐induced   pulmonary  hemorrhage  in  racehorses.  J  Am  Vet  Med  Assoc  239:  1407,  2011.   74.   Hinchcliff  KW,  Morley  PS,  and  Guthrie  AJ.  Efficacy  of  furosemide  for  prevention  of   exercise-­‐induced  pulmonary  hemorrhage  in  Thoroughbred  racehorses.  J  Am  Vet  Med  Assoc   235:  76-­‐82,  2009.   75.   Hinchcliff  KW,  Morley  PS,  Jackson  MA,  Brown  JA,  Dredge  AF,  O'Callaghan  PA,   McCaffrey  JP,  Slocombe  RF,  and  Clarke  AF.  Risk  factors  for  exercise-­‐induced  pulmonary   haemorrhage  in  Thoroughbred  racehorses.  Equine  Vet  J  Suppl  228-­‐234,  2010.   76.   Hlastala  MP,  Bernard  SL,  Erickson  HH,  Fedde  MR,  Gaughan  EM,  McMurphy  R,   Emery  MJ,  Polissar  N,  and  Glenny  RW.  Pulmonary  blood  flow  distribution  in  standing   horses  is  not  dominated  by  gravity.  J  Appl  Physiol  81:  1051-­‐1061,  1996.     144   77.   Hlastala  MP,  and  Glenny  RW.  Vascular  structure  determines  pulmonary  blood  flow   distribution.  News  in  physiological  sciences  :  an  international  journal  of  physiology  produced   jointly  by  the  International  Union  of  Physiological  Sciences  and  the  American  Physiological   Society  14:  182-­‐186,  1999.   78.   Holcomb  BW,  Jr.,  Loyd  JE,  Ely  EW,  Johnson  J,  and  Robbins  IM.  Pulmonary  veno-­‐ occlusive  disease:  a  case  series  and  new  observations.  Chest  118:  1671-­‐1679,  2000.   79.   Hopkins  SR,  Schoene  RB,  Henderson  WR,  Spragg  RG,  Martin  TR,  and  West  JB.   Intense  exercise  impairs  the  integrity  of  the  pulmonary  blood-­‐gas  barrier  in  elite  athletes.   Am  J  Respir  Crit  Care  Med  155:  1090-­‐1094,  1997.   80.   Huang  W,  Yen  RT,  McLaurine  M,  and  Bledsoe  G.  Morphometry  of  the  human   pulmonary  vasculature.  Journal  of  applied  physiology  81:  2123-­‐2133,  1996.   81.   Huertas  A,  Girerd  B,  Dorfmuller  P,  O'Callaghan  D,  Humbert  M,  and  Montani  D.   Pulmonary  veno-­‐occlusive  disease:  advances  in  clinical  management  and  treatments.   Expert  review  of  respiratory  medicine  5:  217-­‐229;  quiz  230-­‐211,  2011.   82.   Hunt  JM,  Bethea  B,  Liu  X,  Gandjeva  A,  Mammen  PP,  Stacher  E,  Gandjeva  MR,   Parish  E,  Perez  M,  Smith  L,  Graham  BB,  Kuebler  WM,  and  Tuder  RM.  Pulmonary  veins   in  the  normal  lung  and  pulmonary  hypertension  due  to  left  heart  disease.  Am  J  Physiol  Lung   Cell  Mol  Physiol  305:  L725-­‐736,  2013.   83.   Hyman  AL,  Lippton  HL,  and  Kadowitz  PJ.  Autonomic  regulation  of  the  pulmonary   circulation.  J  Cardiovasc  Pharmacol  7  Suppl  3:  S80-­‐95,  1985.   84.   Ibe  BO,  Hillyard  RM,  and  Raj  JU.  Heterogeneity  in  prostacyclin  and  thromboxane   synthesis  in  ovine  pulmonary  vascular  tree:  effect  of  age  and  oxygen  tension.  Exp  Lung  Res   22:  351-­‐374,  1996.   85.   Jiang  Z,  Tao  M,  Omalley  KA,  Wang  D,  Ozaki  CK,  and  Berceli  SA.  Established   neointimal  hyperplasia  in  vein  grafts  expands  via  TGF-­‐beta-­‐mediated  progressive  fibrosis.   Am  J  Physiol  Heart  Circ  Physiol  297:  H1200-­‐1207,  2009.   86.   Johnson  JE,  Perkett  EA,  and  Meyrick  B.  Pulmonary  veins  and  bronchial  vessels   undergo  remodeling  in  sustained  pulmonary  hypertension  induced  by  continuous  air   embolization  into  sheep.  Exp  Lung  Res  23:  459-­‐473,  1997.   87.   Johnson  LR,  Parker  JL,  and  Laughlin  MH.  Chronic  exercise  training  improves  ACh-­‐ induced  vasorelaxation  in  pulmonary  arteries  of  pigs.  Journal  of  applied  physiology  88:  443-­‐ 451,  2000.   88.   Jones  JH,  Smith  BL,  Birks  EK,  Pascoe  JR,  and  Hughes  TR.  LEFT  ATRIAL  AND   PULMONARY  ARTERIAL  PRESSURES  IN  EXERCISING  HORSES.  Faseb  Journal  6:  A2020-­‐ A2020,  1992.     145   89.   Jones  PL,  Crack  J,  and  Rabinovitch  M.  Regulation  of  tenascin-­‐C,  a  vascular  smooth   muscle  cell  survival  factor  that  interacts  with  the  alpha  v  beta  3  integrin  to  promote   epidermal  growth  factor  receptor  phosphorylation  and  growth.  J  Cell  Biol  139:  279-­‐293,   1997.   90.   Junbao  D,  Hui  Y,  Bing  W,  Jian  L,  Jianguang  Q,  and  Chaoshu  T.  Effect  of  L-­‐arginine   on  collagen  of  high  flow-­‐induced  pulmonary  arterial  remodeling.  Circulation  journal  :   official  journal  of  the  Japanese  Circulation  Society  69:  603-­‐608,  2005.   91.   Kadowitz  PJ,  and  Hyman  AL.  Effect  of  sympathetic  nerve  stimulation  on   pulmonary  vascular  resistance  in  the  dog.  Circ  Res  32:  221-­‐227,  1973.   92.   Kalish  JA,  Willis  DJ,  Li  C,  Link  JJ,  Deutsch  ER,  Contreras  MA,  Quist  WC,  and   Logerfo  FW.  Temporal  genomics  of  vein  bypass  grafting  through  oligonucleotide   microarray  analysis.  J  Vasc  Surg  39:  645-­‐654,  2004.   93.   Kane  DW,  Tesauro  T,  and  Newman  JH.  Adrenergic  modulation  of  the  pulmonary   circulation  during  strenuous  exercise  in  sheep.  Am  Rev  Respir  Dis  147:  1233-­‐1238,  1993.   94.   Karau  KL,  Johnson  RH,  Molthen  RC,  Dhyani  AH,  Haworth  ST,  Hanger  CC,  Roerig   DL,  and  Dawson  CA.  Microfocal  X-­‐ray  CT  imaging  and  pulmonary  arterial  distensibility  in   excised  rat  lungs.  Am  J  Physiol  Heart  Circ  Physiol  281:  H1447-­‐1457,  2001.   95.   Kay  JM.  Comparative  morphologic  features  of  the  pulmonary  vasculature  in   mammals.  Am  Rev  Respir  Dis  128:  S53-­‐57,  1983.   96.   Kedzierski  RM,  and  Yanagisawa  M.  Endothelin  system:  the  double-­‐edged  sword  in   health  and  disease.  Annual  review  of  pharmacology  and  toxicology  41:  851-­‐876,  2001.   97.   Keen  JA,  Hillier  C,  McGorum  BC,  Bunton  D,  and  Nally  JE.  Evaluation  of  equine   laminar  vein  function:  harvesting,  dissection  and  the  use  of  functional  methods  to   distinguish  between  veins  and  arteries.  Journal  of  pharmacological  and  toxicological   methods  57:  92-­‐99,  2008.   98.   Kelly  DA,  Hislop  AA,  Hall  SM,  and  Haworth  SG.  Relationship  between  structural   remodeling  and  reactivity  in  pulmonary  resistance  arteries  from  hypertensive  piglets.   Pediatric  research  58:  525-­‐530,  2005.   99.   Kemp  BK,  Smolich  JJ,  and  Cocks  TM.  Evidence  for  specific  regional  patterns  of   responses  to  different  vasoconstrictors  and  vasodilators  in  sheep  isolated  pulmonary   arteries  and  veins.  Br  J  Pharmacol  121:  441-­‐450,  1997.   100.   Kindig  CA,  McDonough  P,  Finley  MR,  Behnke  BJ,  Richardson  TE,  Marlin  DJ,   Erickson  HH,  and  Poole  DC.  NO  inhalation  reduces  pulmonary  arterial  pressure  but  not   hemorrhage  in  maximally  exercising  horses.  Journal  of  applied  physiology  91:  2674-­‐2678,   2001.     146   101.   Kobs  RW,  Muvarak  NE,  Eickhoff  JC,  and  Chesler  NC.  Linked  mechanical  and   biological  aspects  of  remodeling  in  mouse  pulmonary  arteries  with  hypoxia-­‐induced   hypertension.  Am  J  Physiol  Heart  Circ  Physiol  288:  H1209-­‐1217,  2005.   102.   Krenz  GS,  and  Dawson  CA.  Flow  and  pressure  distributions  in  vascular  networks   consisting  of  distensible  vessels.  Am  J  Physiol  Heart  Circ  Physiol  284:  H2192-­‐2203,  2003.   103.   Kuhl  PG,  Bolds  JM,  Loyd  JE,  Snapper  JR,  and  FitzGerald  GA.  Thromboxane   receptor-­‐mediated  bronchial  and  hemodynamic  responses  in  ovine  endotoxemia.  Am  J   Physiol  254:  R310-­‐319,  1988.   104.   Lakatta  EG.  Age-­‐associated  cardiovascular  changes  in  health:  impact  on   cardiovascular  disease  in  older  persons.  Heart  failure  reviews  7:  29-­‐49,  2002.   105.   Lambers  C,  Roth  M,  Zhong  J,  Campregher  C,  Binder  P,  Burian  B,  Petkov  V,  and   Block  LH.  The  interaction  of  endothelin-­‐1  and  TGF-­‐beta1  mediates  vascular  cell   remodeling.  PLoS  One  8:  e73399,  2013.   106.   Langsetmo  I,  Meyer  MR,  and  Erickson  HH.  Relationship  of  pulmonary  arterial   pressure  to  pulmonary  haemorrhage  in  exercising  horses.  Equine  veterinary  journal  32:   379-­‐384,  2000.   107.   Lapointe  JM,  Vrins  A,  and  McCarvill  E.  A  survey  of  exercise-­‐induced  pulmonary   haemorrhage  in  Quebec  standardbred  racehorses.  Equine  veterinary  journal  26:  482-­‐485,   1994.   108.   Leach  RM,  Twort  CH,  Cameron  IR,  and  Ward  JP.  A  comparison  of  the   pharmacological  and  mechanical  properties  in  vitro  of  large  and  small  pulmonary  arteries   of  the  rat.  Clin  Sci  (Lond)  82:  55-­‐62,  1992.   109.   Lehoux  S,  Lemarie  CA,  Esposito  B,  Lijnen  HR,  and  Tedgui  A.  Pressure-­‐induced   matrix  metalloproteinase-­‐9  contributes  to  early  hypertensive  remodeling.  Circulation  109:   1041-­‐1047,  2004.   110.   Li  Z,  Froehlich  J,  Galis  ZS,  and  Lakatta  EG.  Increased  expression  of  matrix   metalloproteinase-­‐2  in  the  thickened  intima  of  aged  rats.  Hypertension  33:  116-­‐123,  1999.   111.   Lichtinghagen  R,  Musholt  PB,  Lein  M,  Romer  A,  Rudolph  B,  Kristiansen  G,   Hauptmann  S,  Schnorr  D,  Loening  SA,  and  Jung  K.  Different  mRNA  and  protein   expression  of  matrix  metalloproteinases  2  and  9  and  tissue  inhibitor  of  metalloproteinases   1  in  benign  and  malignant  prostate  tissue.  Eur  Urol  42:  398-­‐406,  2002.   112.   Liu  SQ,  and  Fung  YC.  Changes  in  the  organization  of  the  smooth  muscle  cells  in  rat   vein  grafts.  Ann  Biomed  Eng  26:  86-­‐95,  1998.   113.   Livak  KJ,  and  Schmittgen  TD.  Analysis  of  relative  gene  expression  data  using  real-­‐ time  quantitative  PCR  and  the  2(-­‐Delta  Delta  C(T))  Method.  Methods  25:  402-­‐408,  2001.     147   114.   Lovering  AT,  Romer  LM,  Haverkamp  HC,  Pegelow  DF,  Hokanson  JS,  and   Eldridge  MW.  Intrapulmonary  shunting  and  pulmonary  gas  exchange  during  normoxic  and   hypoxic  exercise  in  healthy  humans.  Journal  of  applied  physiology  104:  1418-­‐1425,  2008.   115.   Lugo  J,  Stick  JA,  Peroni  J,  Harkema  JR,  Derksen  FJ,  and  Robinson  NE.  Safety  and   efficacy  of  a  technique  for  thoracoscopically  guided  pulmonary  wedge  resection  in  horses.   Am  J  Vet  Res  63:  1232-­‐1240,  2002.   116.   Lundergan  CF,  Fitzpatrick  TM,  Rose  JC,  Ramwell  PW,  and  Kot  PA.  Effect  of   cyclooxygenase  inhibition  on  the  pulmonary  vasodilator  response  to  furosemide.  J   Pharmacol  Exp  Ther  246:  102-­‐106,  1988.   117.   MacEachern  KE,  Smith  GL,  and  Nolan  AM.  Characteristics  of  the  in  vitro  hypoxic   pulmonary  vasoconstrictor  response  in  isolated  equine  and  bovine  pulmonary  arterial   rings.  Veterinary  anaesthesia  and  analgesia  31:  239-­‐249,  2004.   118.   Machado  RD,  Aldred  MA,  James  V,  Harrison  RE,  Patel  B,  Schwalbe  EC,  Gruenig   E,  Janssen  B,  Koehler  R,  Seeger  W,  Eickelberg  O,  Olschewski  H,  Elliott  CG,  Glissmeyer   E,  Carlquist  J,  Kim  M,  Torbicki  A,  Fijalkowska  A,  Szewczyk  G,  Parma  J,  Abramowicz  MJ,   Galie  N,  Morisaki  H,  Kyotani  S,  Nakanishi  N,  Morisaki  T,  Humbert  M,  Simonneau  G,   Sitbon  O,  Soubrier  F,  Coulet  F,  Morrell  NW,  and  Trembath  RC.  Mutations  of  the  TGF-­‐ beta  type  II  receptor  BMPR2  in  pulmonary  arterial  hypertension.  Human  mutation  27:  121-­‐ 132,  2006.   119.   Mackay  EH,  Banks  J,  Sykes  B,  and  Lee  G.  Structural  basis  for  the  changing  physical   properties  of  human  pulmonary  vessels  with  age.  Thorax  33:  335-­‐344,  1978.   120.   Malmstrom  J,  Lindberg  H,  Lindberg  C,  Bratt  C,  Wieslander  E,  Delander  EL,   Sarnstrand  B,  Burns  JS,  Mose-­‐Larsen  P,  Fey  S,  and  Marko-­‐Varga  G.  Transforming   growth  factor-­‐beta  1  specifically  induce  proteins  involved  in  the  myofibroblast  contractile   apparatus.  Molecular  &  cellular  proteomics  :  MCP  3:  466-­‐477,  2004.   121.   Maloney  JE,  Rooholamini  SA,  and  Wexler  L.  Pressure-­‐diameter  relations  of  small   blood  vessels  in  isolated  dog  lung.  Microvascular  research  2:  1-­‐12,  1970.   122.   Mandel  J,  Mark  EJ,  and  Hales  CA.  Pulmonary  veno-­‐occlusive  disease.  Am  J  Respir   Crit  Care  Med  162:  1964-­‐1973,  2000.   123.   Manohar  M.  Furosemide  attenuates  the  exercise-­‐induced  increase  in  pulmonary   artery  wedge  pressure  in  horses.  Am  J  Vet  Res  54:  952-­‐958,  1993.   124.   Manohar  M.  Pulmonary  artery  wedge  pressure  increases  with  high-­‐intensity   exercise  in  horses.  Am  J  Vet  Res  54:  142-­‐146,  1993.   125.   Manohar  M,  and  Goetz  TE.  Intrapulmonary  arteriovenous  shunts  of  >15  microm  in   diameter  probably  do  not  contribute  to  arterial  hypoxemia  in  maximally  exercising   Thoroughbred  horses.  Journal  of  applied  physiology  99:  224-­‐229,  2005.     148   126.   Manohar  M,  and  Goetz  TE.  L-­‐NAME  does  not  affect  exercise-­‐induced  pulmonary   hypertension  in  thoroughbred  horses.  Journal  of  applied  physiology  84:  1902-­‐1908,  1998.   127.   Manohar  M,  and  Goetz  TE.  Pulmonary  vascular  pressures  of  exercising   thoroughbred  horses  with  and  without  endoscopic  evidence  of  EIPH.  J  Appl  Physiol  81:   1589-­‐1593,  1996.   128.   Manohar  M,  and  Goetz  TE.  Pulmonary  vascular  resistance  of  horses  decreases  with   moderate  exercise  and  remains  unchanged  as  workload  is  increased  to  maximal  exercise.   Equine  Vet  J  Suppl  117-­‐121,  1999.   129.   Manohar  M,  Goetz  TE,  Sullivan  E,  and  Griffin  R.  Pulmonary  vascular  pressures  of   strenuously  exercising  Thoroughbreds  after  administration  of  varying  doses  of  frusemide.   Equine  veterinary  journal  29:  298-­‐304,  1997.   130.   Markham  G.  Markham's  masterpiece  containing  all  knowledge  belonging  to  the   smith,  farrier,  or  horse-­‐leech,  touching  the  curing  of  all  diseases  in  horses  ...  being  divided  into   two  books,  the  first  containing  all  cures  physical,  the  second  all  belonging  to  chirurgery.   London:  Printed  at  London  by  Edward  Okes,  and  are  to  be  sold  by  Thomas  Passenger  ...   1668,  p.  13  ,  591,  523  p.   131.   McKane  SA,  Canfield  PJ,  and  Rose  RJ.  Equine  bronchoalveolar  lavage  cytology:   survey  of  thoroughbred  racehorses  in  training.  Australian  veterinary  journal  70:  401-­‐404,   1993.   132.   McLaughlin  RF,  Tyler  WS,  and  Canada  RO.  A  study  of  the  subgross  pulmonary   anatomy  in  various  mammals.  American  Journal  of  Anatomy  108:  149-­‐165,  1961.   133.   Merkus  D,  de  Beer  VJ,  Houweling  B,  and  Duncker  DJ.  Control  of  pulmonary   vascular  tone  during  exercise  in  health  and  pulmonary  hypertension.  Pharmacology  &   therapeutics  119:  242-­‐263,  2008.   134.   Michel  RP.  Arteries  and  veins  of  the  normal  dog  lung:  qualitative  and  quantitative   structural  differences.  The  American  journal  of  anatomy  164:  227-­‐241,  1982.   135.   Mills  PC,  Marlin  DJ,  Demoncheaux  E,  Scott  C,  Casas  I,  Smith  NC,  and   Higenbottam  T.  Nitric  oxide  and  exercise  in  the  horse.  J  Physiol  495  (  Pt  3):  863-­‐874,  1996.   136.   Miyauchi  T,  and  Masaki  T.  Pathophysiology  of  endothelin  in  the  cardiovascular   system.  Annu  Rev  Physiol  61:  391-­‐415,  1999.   137.   Moses  VS,  and  Bertone  AL.  Nonsteroidal  anti-­‐inflammatory  drugs.  The  Veterinary   clinics  of  North  America  Equine  practice  18:  21-­‐37,  v,  2002.   138.   Mulvany  MJ,  and  Halpern  W.  Contractile  properties  of  small  arterial  resistance   vessels  in  spontaneously  hypertensive  and  normotensive  rats.  Circ  Res  41:  19-­‐26,  1977.     149   139.   Mulvany  MJ,  and  Halpern  W.  Mechanical  properties  of  vascular  smooth  muscle   cells  in  situ.  Nature  260:  617-­‐619,  1976.   140.   Murray  PA,  Lodato  RF,  and  Michael  JR.  Neural  antagonists  modulate  pulmonary   vascular  pressure-­‐flow  plots  in  conscious  dogs.  Journal  of  applied  physiology  60:  1900-­‐ 1907,  1986.   141.   Naeije  R,  and  Chesler  N.  Pulmonary  circulation  at  exercise.  Comprehensive   Physiology  2:  711-­‐741,  2012.   142.   Nagase  H,  Visse  R,  and  Murphy  G.  Structure  and  function  of  matrix   metalloproteinases  and  TIMPs.  Cardiovasc  Res  69:  562-­‐573,  2006.   143.   Nandiwada  PA,  Hyman  AL,  and  Kadowitz  PJ.  Pulmonary  vasodilator  responses  to   vagal  stimulation  and  acetylcholine  in  the  cat.  Circ  Res  53:  86-­‐95,  1983.   144.   Newman  JH,  Butka  BJ,  and  Brigham  KL.  Thromboxane  A2  and  prostacyclin  do  not   modulate  pulmonary  hemodynamics  during  exercise  in  sheep.  Journal  of  applied  physiology   61:  1706-­‐1711,  1986.   145.   Newton  JR,  Rogers  K,  Marlin  DJ,  Wood  JL,  and  Williams  RB.  Risk  factors  for   epistaxis  on  British  racecourses:  evidence  for  locomotory  impact-­‐induced  trauma   contributing  to  the  aetiology  of  exercise-­‐induced  pulmonary  haemorrhage.  Equine   veterinary  journal  37:  402-­‐411,  2005.   146.   Nikol  S,  Huehns  TY,  Weir  L,  Wight  TN,  and  Hofling  B.  Restenosis  in  human  vein   bypass  grafts.  Atherosclerosis  139:  31-­‐39,  1998.   147.   Norel  X.  Prostanoid  receptors  in  the  human  vascular  wall.  TheScientificWorldJournal   7:  1359-­‐1374,  2007.   148.   Norel  X,  Walch  L,  Costantino  M,  Labat  C,  Gorenne  I,  Dulmet  E,  Rossi  F,  and   Brink  C.  M1  and  M3  muscarinic  receptors  in  human  pulmonary  arteries.  Br  J  Pharmacol   119:  149-­‐157,  1996.   149.   Norel  X,  Walch  L,  Gascard  JP,  deMontpreville  V,  and  Brink  C.  Prostacyclin   release  and  receptor  activation:  differential  control  of  human  pulmonary  venous  and   arterial  tone.  Br  J  Pharmacol  142:  788-­‐796,  2004.   150.   O'Callaghan  MW,  Pascoe  JR,  Tyler  WS,  and  Mason  DK.  Exercise-­‐induced   pulmonary  haemorrhage  in  the  horse:  results  of  a  detailed  clinical,  post  mortem  and   imaging  study.  II.  Gross  lung  pathology.  Equine  veterinary  journal  19:  389-­‐393,  1987.   151.   O'Callaghan  MW,  Pascoe  JR,  Tyler  WS,  and  Mason  DK.  Exercise-­‐induced   pulmonary  haemorrhage  in  the  horse:  results  of  a  detailed  clinical,  post  mortem  and   imaging  study.  III.  Subgross  findings  in  lungs  subjected  to  latex  perfusions  of  the  bronchial   and  pulmonary  arteries.  Equine  veterinary  journal  19:  394-­‐404,  1987.     150   152.   O'Callaghan  MW,  Pascoe  JR,  Tyler  WS,  and  Mason  DK.  Exercise-­‐induced   pulmonary  haemorrhage  in  the  horse:  results  of  a  detailed  clinical,  post  mortem  and   imaging  study.  V.  Microscopic  observations.  Equine  veterinary  journal  19:  411-­‐418,  1987.   153.   O'Callaghan  MW,  Pascoe  JR,  Tyler  WS,  and  Mason  DK.  Exercise-­‐induced   pulmonary  haemorrhage  in  the  horse:  results  of  a  detailed  clinical,  post  mortem  and   imaging  study.  VIII.  Conclusions  and  implications.  Equine  veterinary  journal  19:  428-­‐434,   1987.   154.   O'Donnell  SR,  and  Wanstall  JC.  Demonstration  of  both  beta  1-­‐  and  beta  2-­‐ adrenoceptors  mediating  relaxation  of  isolated  ring  preparations  of  rat  pulmonary  artery.   Br  J  Pharmacol  74:  547-­‐552,  1981.   155.   O'Leary  DH,  Polak  JF,  Kronmal  RA,  Manolio  TA,  Burke  GL,  and  Wolfson  SK,  Jr.   Carotid-­‐artery  intima  and  media  thickness  as  a  risk  factor  for  myocardial  infarction  and   stroke  in  older  adults.  Cardiovascular  Health  Study  Collaborative  Research  Group.  N  Engl  J   Med  340:  14-­‐22,  1999.   156.   Ohtani  K,  Egashira  K,  Hiasa  K,  Zhao  Q,  Kitamoto  S,  Ishibashi  M,  Usui  M,  Inoue  S,   Yonemitsu  Y,  Sueishi  K,  Sata  M,  Shibuya  M,  and  Sunagawa  K.  Blockade  of  vascular   endothelial  growth  factor  suppresses  experimental  restenosis  after  intraluminal  injury  by   inhibiting  recruitment  of  monocyte  lineage  cells.  Circulation  110:  2444-­‐2452,  2004.   157.   Oikawa  M.  Exercise-­‐induced  haemorrhagic  lesions  in  the  dorsocaudal  extremities  of   the  caudal  lobes  of  the  lungs  of  young  thoroughbred  horses.  J  Comp  Pathol  121:  339-­‐347,   1999.   158.   Olsen  SC,  Coyne  CP,  Lowe  BS,  Pelletier  N,  Raub  EM,  and  Erickson  HH.  Influence   of  furosemide  on  hemodynamic  responses  during  exercise  in  horses.  Am  J  Vet  Res  53:  742-­‐ 747,  1992.   159.   Papaioannou  TG,  and  Stefanadis  C.  Vascular  wall  shear  stress:  basic  principles   and  methods.  Hellenic  journal  of  cardiology  :  HJC  =  Hellenike  kardiologike  epitheorese  46:  9-­‐ 15,  2005.   160.   Pappenheimer  JR,  and  Soto-­‐Rivera  A.  Effective  osmotic  pressure  of  the  plasma   proteins  and  other  quantities  associated  with  the  capillary  circulation  in  the  hindlimbs  of   cats  and  dogs.  Am  J  Physiol  152:  471-­‐491,  1948.   161.   Pardali  E,  Goumans  MJ,  and  ten  Dijke  P.  Signaling  by  members  of  the  TGF-­‐beta   family  in  vascular  morphogenesis  and  disease.  Trends  Cell  Biol  20:  556-­‐567,  2010.   162.   Pascoe  JR,  Ferraro  GL,  Cannon  JH,  Arthur  RM,  and  Wheat  JD.  Exercise-­‐induced   pulmonary  hemorrhage  in  racing  thoroughbreds:  a  preliminary  study.  Am  J  Vet  Res  42:  703-­‐ 707,  1981.     151   163.   Passerini  AG,  Milsted  A,  and  Rittgers  SE.  Shear  stress  magnitude  and   directionality  modulate  growth  factor  gene  expression  in  preconditioned  vascular   endothelial  cells.  J  Vasc  Surg  37:  182-­‐190,  2003.   164.   Pelletier  N,  Robinson  NE,  Kaiser  L,  and  Derksen  FJ.  Regional  differences  in   endothelial  function  in  horse  lungs:  possible  role  in  blood  flow  distribution?  J  Appl  Physiol   85:  537-­‐542,  1998.   165.   Pepke-­‐Zaba  J,  Higenbottam  TW,  Dinh-­‐Xuan  AT,  Ridden  C,  and  Kealey  T.  Alpha-­‐ adrenoceptor  stimulation  of  porcine  pulmonary  arteries.  Eur  J  Pharmacol  235:  169-­‐175,   1993.   166.   Perros  F,  Montani  D,  Dorfmuller  P,  Durand-­‐Gasselin  I,  Tcherakian  C,  Le  Pavec  J,   Mazmanian  M,  Fadel  E,  Mussot  S,  Mercier  O,  Herve  P,  Emilie  D,  Eddahibi  S,  Simonneau   G,  Souza  R,  and  Humbert  M.  Platelet-­‐derived  growth  factor  expression  and  function  in   idiopathic  pulmonary  arterial  hypertension.  Am  J  Respir  Crit  Care  Med  178:  81-­‐88,  2008.   167.   Pertovaara  L,  Kaipainen  A,  Mustonen  T,  Orpana  A,  Ferrara  N,  Saksela  O,  and   Alitalo  K.  Vascular  endothelial  growth  factor  is  induced  in  response  to  transforming   growth  factor-­‐beta  in  fibroblastic  and  epithelial  cells.  J  Biol  Chem  269:  6271-­‐6274,  1994.   168.   Pfister  SL,  Deinhart  DD,  and  Campbell  WB.  Methacholine-­‐induced  contraction  of   rabbit  pulmonary  artery:  role  of  platelet-­‐endothelial  transcellular  thromboxane  synthesis.   Hypertension  31:  206-­‐212,  1998.   169.   Pick  R,  Jalil  JE,  Janicki  JS,  and  Weber  KT.  The  fibrillar  nature  and  structure  of   isoproterenol-­‐induced  myocardial  fibrosis  in  the  rat.  Am  J  Pathol  134:  365-­‐371,  1989.   170.   Pickkers  P,  Dormans  TP,  Russel  FG,  Hughes  AD,  Thien  T,  Schaper  N,  and  Smits   P.  Direct  vascular  effects  of  furosemide  in  humans.  Circulation  96:  1847-­‐1852,  1997.   171.   Raffetto  JD,  and  Khalil  RA.  Matrix  metalloproteinases  and  their  inhibitors  in   vascular  remodeling  and  vascular  disease.  Biochem  Pharmacol  75:  346-­‐359,  2008.   172.   Raphel  CF,  and  Soma  LR.  Exercise-­‐induced  pulmonary  hemorrhage  in   Thoroughbreds  after  racing  and  breezing.  Am  J  Vet  Res  43:  1123-­‐1127,  1982.   173.   Reeves  JT,  Groves  BM,  Cymerman  A,  Sutton  JR,  Wagner  PD,  Turkevich  D,  and   Houston  CS.  Operation  Everest  II:  cardiac  filling  pressures  during  cycle  exercise  at  sea   level.  Respir  Physiol  80:  147-­‐154,  1990.   174.   Reeves  JT,  Linehan  JH,  and  Stenmark  KR.  Distensibility  of  the  normal  human  lung   circulation  during  exercise.  Am  J  Physiol  Lung  Cell  Mol  Physiol  288:  L419-­‐425,  2005.   175.   Rhodin  JA.  Microscopic  anatomy  of  the  pulmonary  vascular  bed  in  the  cat  lung.   Microvascular  research  15:  169-­‐193,  1978.     152   176.   Rimeika  D,  Wiklund  NP,  Lindahl  SG,  and  Wiklund  CU.  Regional  differences  in   nitric  oxide-­‐mediated  vasorelaxation  in  porcine  pulmonary  arteries.  Acta  Anaesthesiol   Scand  50:  947-­‐953,  2006.   177.   Roach  MR,  and  Burton  AC.  The  reason  for  the  shape  of  the  distensibility  curves  of   arteries.  Canadian  journal  of  biochemistry  and  physiology  35:  681-­‐690,  1957.   178.   Robinson  NE,  and  Sorenson  PR.  Pathophysiology  of  airway  obstruction  in  horses:   a  review.  J  Am  Vet  Med  Assoc  172:  299-­‐303,  1978.   179.   Roy  CS.  The  Elastic  Properties  of  the  Arterial  Wall.  J  Physiol  3:  125-­‐159,  1881.   180.   Saucy  F,  Probst  H,  Alonso  F,  Berard  X,  Deglise  S,  Dunoyer-­‐Geindre  S,  Mazzolai   L,  Kruithof  E,  Haefliger  JA,  and  Corpataux  JM.  Ex  vivo  pulsatile  perfusion  of  human   saphenous  veins  induces  intimal  hyperplasia  and  increased  levels  of  the  plasminogen   activator  inhibitor  1.  Eur  Surg  Res  45:  50-­‐59,  2010.   181.   Schermuly  RT,  Dony  E,  Ghofrani  HA,  Pullamsetti  S,  Savai  R,  Roth  M,  Sydykov  A,   Lai  YJ,  Weissmann  N,  Seeger  W,  and  Grimminger  F.  Reversal  of  experimental  pulmonary   hypertension  by  PDGF  inhibition.  J  Clin  Invest  115:  2811-­‐2821,  2005.   182.   Schindler  C,  Dobrev  D,  Grossmann  M,  Francke  K,  Pittrow  D,  and  Kirch  W.   Mechanisms  of  beta-­‐adrenergic  receptor-­‐mediated  venodilation  in  humans.  Clinical   pharmacology  and  therapeutics  75:  49-­‐59,  2004.   183.   Schroeder  A,  Mueller  O,  Stocker  S,  Salowsky  R,  Leiber  M,  Gassmann  M,   Lightfoot  S,  Menzel  W,  Granzow  M,  and  Ragg  T.  The  RIN:  an  RNA  integrity  number  for   assigning  integrity  values  to  RNA  measurements.  Bmc  Mol  Biol  7:  3,  2006.   184.   Schroter  RC,  Marlin  DJ,  and  Denny  E.  Exercise-­‐induced  pulmonary  haemorrhage   (EIPH)  in  horses  results  from  locomotory  impact  induced  trauma-­‐-­‐a  novel,  unifying   concept.  Equine  veterinary  journal  30:  186-­‐192,  1998.   185.   Shaw  AM,  Bunton  DC,  Fisher  A,  McGrath  JC,  Montgomery  I,  Daly  C,  and   MacDonald  A.  V-­‐shaped  cushion  at  the  origin  of  bovine  pulmonary  supernumerary   arteries:  structure  and  putative  function.  Journal  of  applied  physiology  87:  2348-­‐2356,   1999.   186.   Shebl  FM,  Pinto  LA,  Garcia-­‐Pineres  A,  Lempicki  R,  Williams  M,  Harro  C,  and   Hildesheim  A.  Comparison  of  mRNA  and  protein  measures  of  cytokines  following   vaccination  with  human  papillomavirus-­‐16  L1  virus-­‐like  particles.  Cancer  Epidemiol   Biomarkers  Prev  19:  978-­‐981,  2010.   187.   Shi  W,  Eidelman  DH,  and  Michel  RP.  Differential  relaxant  responses  of  pulmonary   arteries  and  veins  in  lung  explants  of  guinea  pigs.  Journal  of  applied  physiology  83:  1476-­‐ 1481,  1997.     153   188.   Shi  Y,  Patel  S,  Niculescu  R,  Chung  W,  Desrochers  P,  and  Zalewski  A.  Role  of   matrix  metalloproteinases  and  their  tissue  inhibitors  in  the  regulation  of  coronary  cell   migration.  Arterioscler  Thromb  Vasc  Biol  19:  1150-­‐1155,  1999.   189.   Shibamoto  T,  Wang  HG,  Yamaguchi  Y,  Hayashi  T,  Saeki  Y,  Tanaka  S,  and   Koyama  S.  Effects  of  thromboxane  A2  analogue  on  vascular  resistance  distribution  and   permeability  in  isolated  blood-­‐perfused  dog  lungs.  Lung  173:  209-­‐221,  1995.   190.   Sinha  AK,  Gleed  RD,  Hakim  TS,  Dobson  A,  and  Shannon  KJ.  Pulmonary  capillary   pressure  during  exercise  in  horses.  Journal  of  applied  physiology  80:  1792-­‐1798,  1996.   191.   Snow  DH,  Harris  RC,  MacDonald  IA,  Forster  CD,  and  Marlin  DJ.  Effects  of  high-­‐ intensity  exercise  on  plasma  catecholamines  in  the  thoroughbred  horse.  Equine  veterinary   journal  24:  462-­‐467,  1992.   192.   Soma  LR,  Birks  EK,  Uboh  CE,  May  L,  Teleis  D,  and  Martini  J.  The  effects  of   frusemide  on  racing  times  of  Standardbred  pacers.  Equine  veterinary  journal  32:  334-­‐340,   2000.   193.   Soma  LR,  and  Uboh  CE.  Review  of  furosemide  in  horse  racing:  its  effects  and   regulation.  J  Vet  Pharmacol  Ther  21:  228-­‐240,  1998.   194.   Somlyo  AP,  and  Somlyo  AV.  Signal  transduction  by  G-­‐proteins,  rho-­‐kinase  and   protein  phosphatase  to  smooth  muscle  and  non-­‐muscle  myosin  II.  J  Physiol  522  Pt  2:  177-­‐ 185,  2000.   195.   Southgate  KM,  Mehta  D,  Izzat  MB,  Newby  AC,  and  Angelini  GD.  Increased   secretion  of  basement  membrane-­‐degrading  metalloproteinases  in  pig  saphenous  vein  into   carotid  artery  interposition  grafts.  Arterioscler  Thromb  Vasc  Biol  19:  1640-­‐1649,  1999.   196.   Stack  A,  Derksen  FJ,  Williams  KJ,  Robinson  NE,  and  Jackson  WF.  Lung  Region   and  Racing  Affect  Mechanical  Properties  of  Equine  Pulmonary  Microvasculature.  Journal  of   applied  physiology  2014.   197.   Stefanadis  C,  Karamanou  M,  and  Androutsos  G.  Michael  Servetus  (1511-­‐1553)   and  the  discovery  of  pulmonary  circulation.  Hellenic  journal  of  cardiology  :  HJC  =  Hellenike   kardiologike  epitheorese  50:  373-­‐378,  2009.   198.   Steibel  JP,  Poletto  R,  Coussens  PM,  and  Rosa  GJ.  A  powerful  and  flexible  linear   mixed  model  framework  for  the  analysis  of  relative  quantification  RT-­‐PCR  data.  Genomics   94:  146-­‐152,  2009.   199.   Stenmark  KR,  Davie  N,  Frid  M,  Gerasimovskaya  E,  and  Das  M.  Role  of  the   adventitia  in  pulmonary  vascular  remodeling.  Physiology  (Bethesda)  21:  134-­‐145,  2006.     154   200.   Stenmark  KR,  Frid  MG,  Yeager  M,  Li  M,  Riddle  S,  McKinsey  T,  and  El  Kasmi  KC.   Targeting  the  adventitial  microenvironment  in  pulmonary  hypertension:  A  potential   approach  to  therapy  that  considers  epigenetic  change.  Pulmonary  circulation  2:  3-­‐14,  2012.   201.   Stenmark  KR,  Yeager  ME,  El  Kasmi  KC,  Nozik-­‐Grayck  E,  Gerasimovskaya  EV,  Li   M,  Riddle  SR,  and  Frid  MG.  The  adventitia:  essential  regulator  of  vascular  wall  structure   and  function.  Annu  Rev  Physiol  75:  23-­‐47,  2013.   202.   Stickland  MK,  Lovering  AT,  and  Eldridge  MW.  Exercise-­‐induced  arteriovenous   intrapulmonary  shunting  in  dogs.  Am  J  Respir  Crit  Care  Med  176:  300-­‐305,  2007.   203.   Stubenitsky  R,  Verdouw  PD,  and  Duncker  DJ.  Autonomic  control  of   cardiovascular  performance  and  whole  body  O2  delivery  and  utilization  in  swine  during   treadmill  exercise.  Cardiovasc  Res  39:  459-­‐474,  1998.   204.   Takahashi  H,  Soma  S,  Muramatsu  M,  Oka  M,  and  Fukuchi  Y.  Upregulation  of  ET-­‐1   and  its  receptors  and  remodeling  in  small  pulmonary  veins  under  hypoxic  conditions.  Am  J   Physiol  Lung  Cell  Mol  Physiol  280:  L1104-­‐1114,  2001.   205.   Takahashi  T,  Hiraga  A,  Ohmura  H,  Kai  M,  and  Jones  JH.  Frequency  of  and  risk   factors  for  epistaxis  associated  with  exercise-­‐induced  pulmonary  hemorrhage  in  horses:   251,609  race  starts  (1992-­‐1997).  J  Am  Vet  Med  Assoc  218:  1462-­‐1464,  2001.   206.   Tetens  J,  Derksen  FJ,  Stick  JA,  Lloyd  JW,  and  Robinson  NE.  Efficacy  of  prosthetic   laryngoplasty  with  and  without  bilateral  ventriculocordectomy  as  treatments  for  laryngeal   hemiplegia  in  horses.  Am  J  Vet  Res  57:  1668-­‐1673,  1996.   207.   Tian  L,  Lammers  SR,  Kao  PH,  Reusser  M,  Stenmark  KR,  Hunter  KS,  Qi  HJ,  and   Shandas  R.  Linked  opening  angle  and  histological  and  mechanical  aspects  of  the  proximal   pulmonary  arteries  of  healthy  and  pulmonary  hypertensive  rats  and  calves.  Am  J  Physiol   Heart  Circ  Physiol  301:  H1810-­‐1818,  2011.   208.   Toga  H,  Bansal  V,  and  Raj  JU.  Differential  responses  of  ovine  intrapulmonary   arteries  and  veins  to  acetylcholine.  Respir  Physiol  104:  197-­‐204,  1996.   209.   Tolsa  JF,  Gao  Y,  Sander  FC,  Souici  AC,  Moessinger  A,  and  Raj  JU.  Differential   responses  of  newborn  pulmonary  arteries  and  veins  to  atrial  and  C-­‐type  natriuretic   peptides.  Am  J  Physiol  Heart  Circ  Physiol  282:  H273-­‐280,  2002.   210.   Townsley  MI.  Structure  and  composition  of  pulmonary  arteries,  capillaries,  and   veins.  Comprehensive  Physiology  2:  675-­‐709,  2012.   211.   Tschanz  SA,  Burri  PH,  and  Weibel  ER.  A  simple  tool  for  stereological  assessment   of  digital  images:  the  STEPanizer.  Journal  of  microscopy  243:  47-­‐59,  2011.     155   212.   Tuchscherer  HA,  Vanderpool  RR,  and  Chesler  NC.  Pulmonary  vascular   remodeling  in  isolated  mouse  lungs:  effects  on  pulsatile  pressure-­‐flow  relationships.   Journal  of  biomechanics  40:  993-­‐1001,  2007.   213.   Tuder  RM,  Archer  SL,  Dorfmuller  P,  Erzurum  SC,  Guignabert  C,  Michelakis  E,   Rabinovitch  M,  Schermuly  R,  Stenmark  KR,  and  Morrell  NW.  Relevant  issues  in  the   pathology  and  pathobiology  of  pulmonary  hypertension.  J  Am  Coll  Cardiol  62:  D4-­‐12,  2013.   214.   Tuder  RM,  Chacon  M,  Alger  L,  Wang  J,  Taraseviciene-­‐Stewart  L,  Kasahara  Y,   Cool  CD,  Bishop  AE,  Geraci  M,  Semenza  GL,  Yacoub  M,  Polak  JM,  and  Voelkel  NF.   Expression  of  angiogenesis-­‐related  molecules  in  plexiform  lesions  in  severe  pulmonary   hypertension:  evidence  for  a  process  of  disordered  angiogenesis.  The  Journal  of  pathology   195:  367-­‐374,  2001.   215.   Tulis  DA,  Unthank  JL,  and  Prewitt  RL.  Flow-­‐induced  arterial  remodeling  in  rat   mesenteric  vasculature.  Am  J  Physiol  274:  H874-­‐882,  1998.   216.   Vanhoutte  PM.  Endothelial  adrenoceptors.  J  Cardiovasc  Pharmacol  38:  796-­‐808,   2001.   217.   Vessieres  E,  Freidja  ML,  Loufrani  L,  Fassot  C,  and  Henrion  D.  Flow  (shear   stress)-­‐mediated  remodeling  of  resistance  arteries  in  diabetes.  Vascul  Pharmacol  57:  173-­‐ 178,  2012.   218.   Visse  R,  and  Nagase  H.  Matrix  metalloproteinases  and  tissue  inhibitors  of   metalloproteinases:  structure,  function,  and  biochemistry.  Circ  Res  92:  827-­‐839,  2003.   219.   Voelkel  NF,  Vandivier  RW,  and  Tuder  RM.  Vascular  endothelial  growth  factor  in   the  lung.  Am  J  Physiol  Lung  Cell  Mol  Physiol  290:  L209-­‐221,  2006.   220.   Voynick  BT,  and  Sweeney  CR.  Exercised-­‐induced  pulmonary  hemorrhage  in  polo   and  racing  horses.  J  Am  Vet  Med  Assoc  188:  301-­‐302,  1986.   221.   Wallner  B,  Vogl  C,  Shukla  P,  Burgstaller  JP,  Druml  T,  and  Brem  G.  Identification   of  genetic  variation  on  the  horse  y  chromosome  and  the  tracing  of  male  founder  lineages  in   modern  breeds.  PLoS  One  8:  e60015,  2013.   222.   Wallner  K,  Li  C,  Fishbein  MC,  Shah  PK,  and  Sharifi  BG.  Arterialization  of  human   vein  grafts  is  associated  with  tenascin-­‐C  expression.  J  Am  Coll  Cardiol  34:  871-­‐875,  1999.   223.   Wallner  K,  Sharifi  BG,  Shah  PK,  Noguchi  S,  DeLeon  H,  and  Wilcox  JN.  Adventitial   remodeling  after  angioplasty  is  associated  with  expression  of  tenascin  mRNA  by  adventitial   myofibroblasts.  J  Am  Coll  Cardiol  37:  655-­‐661,  2001.   224.   Wan  S,  Yim  AP,  Johnson  JL,  Shukla  N,  Angelini  GD,  Smith  FC,  Dashwood  MR,  and   Jeremy  JY.  The  endothelin  1A  receptor  antagonist  BSF  302146  is  a  potent  inhibitor  of     156   neointimal  and  medial  thickening  in  porcine  saphenous  vein-­‐carotid  artery  interposition   grafts.  J  Thorac  Cardiovasc  Surg  127:  1317-­‐1322,  2004.   225.   Watts  SW,  Rondelli  C,  Thakali  K,  Li  X,  Uhal  B,  Pervaiz  MH,  Watson  RE,  and  Fink   GD.  Morphological  and  biochemical  characterization  of  remodeling  in  aorta  and  vena  cava   of  DOCA-­‐salt  hypertensive  rats.  Am  J  Physiol  Heart  Circ  Physiol  292:  H2438-­‐2448,  2007.   226.   Weideman  H,  Schoeman  SJ,  Jordaan  GF,  and  Kidd  M.  Epistaxis  related  to   exercise-­‐induced  pulmonary  haemorrhage  in  south  African  Thoroughbreds.  Journal  of  the   South  African  Veterinary  Association  74:  127-­‐131,  2003.   227.   Weiler-­‐Ravell  D,  Shupak  A,  Goldenberg  I,  Halpern  P,  Shoshani  O,  Hirschhorn  G,   and  Margulis  A.  Pulmonary  oedema  and  haemoptysis  induced  by  strenuous  swimming.   Bmj  311:  361-­‐362,  1995.   228.   Wenzel  D,  Knies  R,  Matthey  M,  Klein  AM,  Welschoff  J,  Stolle  V,  Sasse  P,  Roll  W,   Breuer  J,  and  Fleischmann  BK.  beta(2)-­‐adrenoceptor  antagonist  ICI  118,551  decreases   pulmonary  vascular  tone  in  mice  via  a  G(i/o)  protein/nitric  oxide-­‐coupled  pathway.   Hypertension  54:  157-­‐163,  2009.   229.   West  JB,  and  Mathieu-­‐Costello  O.  Stress  failure  of  pulmonary  capillaries  as  a   mechanism  for  exercise  induced  pulmonary  haemorrhage  in  the  horse.  Equine  veterinary   journal  26:  441-­‐447,  1994.   230.   West  JB,  Mathieu-­‐Costello  O,  Jones  JH,  Birks  EK,  Logemann  RB,  Pascoe  JR,  and   Tyler  WS.  Stress  failure  of  pulmonary  capillaries  in  racehorses  with  exercise-­‐induced   pulmonary  hemorrhage.  J  Appl  Physiol  75:  1097-­‐1109,  1993.   231.   Williams  KJ,  Derksen  FJ,  de  Feijter-­‐Rupp  H,  Pannirselvam  RR,  Steel  CM,  and   Robinson  NE.  Regional  pulmonary  veno-­‐occlusion:  a  newly  identified  lesion  of  equine   exercise-­‐induced  pulmonary  hemorrhage.  Vet  Pathol  45:  316-­‐326,  2008.   232.   Williams  KJ,  Derksen  FJ,  Defeijter-­‐Rupp  HL,  and  Robinson  NE.  Repeated  blood   instillation  into  the  airway  of  the  horse  does  not  cause  pulmonary  fibrosis.  Equine   veterinary  journal  43:  354-­‐358,  2011.   233.   Williams  KJ,  Robinson  NE,  Defeijter-­‐Rupp  H,  Millerick-­‐May  M,  Stack  A,   Hauptman  J,  and  Derksen  FJ.  Distribution  of  venous  remodeling  in  exercise-­‐induced   pulmonary  hemorrhage  of  horses  follows  reported  blood  flow  distribution  in  the  equine   lung.  J  Appl  Physiol  114:  869-­‐878,  2013.   234.   Wolff  RA,  Malinowski  RL,  Heaton  NS,  Hullett  DA,  and  Hoch  JR.  Transforming   growth  factor-­‐beta1  antisense  treatment  of  rat  vein  grafts  reduces  the  accumulation  of   collagen  and  increases  the  accumulation  of  h-­‐caldesmon.  J  Vasc  Surg  43:  1028-­‐1036,  2006.     157   235.   Wong  AP,  Nili  N,  Jackson  ZS,  Qiang  B,  Leong-­‐Poi  H,  Jaffe  R,  Raanani  E,  Connelly   PW,  Sparkes  JD,  and  Strauss  BH.  Expansive  remodeling  in  venous  bypass  grafts:  novel   implications  for  vein  graft  disease.  Atherosclerosis  196:  580-­‐589,  2008.   236.   Wong  MS,  and  Vanhoutte  PM.  COX-­‐mediated  endothelium-­‐dependent   contractions:  from  the  past  to  recent  discoveries.  Acta  pharmacologica  Sinica  31:  1095-­‐ 1102,  2010.   237.   Wood  JL,  Newton  JR,  Chanter  N,  and  Mumford  JA.  Inflammatory  airway  disease,   nasal  discharge  and  respiratory  infections  in  young  British  racehorses.  Equine  veterinary   journal  37:  236-­‐242,  2005.   238.   Younes  M,  Bshouty  Z,  and  Ali  J.  Longitudinal  distribution  of  pulmonary  vascular   resistance  with  very  high  pulmonary  blood  flow.  Journal  of  applied  physiology  62:  344-­‐358,   1987.   239.   Zellers  TM,  and  Vanhoutte  PM.  Heterogeneity  of  endothelium-­‐dependent  and   independent  responses  among  large  and  small  porcine  pulmonary  arteries.  Pulmonary   pharmacology  2:  201-­‐208,  1989.   240.   Zhang  B,  Zhou  J,  Li  H,  Liu  Z,  Chen  A,  and  Zhao  Q.  Comparison  of  graft  patency   between  off-­‐pump  and  on-­‐pump  coronary  artery  bypass  grafting:  an  updated  meta-­‐ analysis.  Ann  Thorac  Surg  97:  1335-­‐1341,  2014.   241.   Zhang  J,  Silva  T,  Yarovinsky  T,  Manes  TD,  Tavakoli  S,  Nie  L,  Tellides  G,  Pober  JS,   Bender  JR,  and  Sadeghi  MM.  VEGF  blockade  inhibits  lymphocyte  recruitment  and   ameliorates  immune-­‐mediated  vascular  remodeling.  Circ  Res  107:  408-­‐417,  2010.   242.   Zhang  RZ,  Gashev  AA,  Zawieja  DC,  and  Davis  MJ.  Length-­‐tension  relationships  of   small  arteries,  veins,  and  lymphatics  from  the  rat  mesenteric  microcirculation.  Am  J  Physiol   Heart  Circ  Physiol  292:  H1943-­‐1952,  2007.         158