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ABSTRACT

TOWARD A MULTILEVEL GENERALIZED LINEAR MODEL:

THE CASE FOR POISSON DISTRIBUTED DATA

by

Wing Shing Chan

This study presents a maximum likelihood approach for

estimating a random coefficient generalized linear model via

the Monte Carlo EM algorithm. Monte Carlo integration

through simulating multivariate normal variates is used to

integrate out the random effects in the E-step. The M-step

is equivalent to maximizing a weighted sum of log likelihood

for an exponential family and a multivariate normal

distribution. The former weighted likelihood is maximized

by one step of the Iteratively Reweighted Least Square

algorithm while the latter is maximized in closed form by

choosing appropriate weights. Standard errors for the fixed

effect parameters and variance components are obtained

through the tractable observed complete data information

matrix. The Poisson distribution is used for illustration. A

simulation study with a non-diagonal variance-covariance

matrix shows better accuracy than an earlier comparable

Gibbs sampling approach. Computing efficiency is

demonstrated as the FORTRAN program converges in about

ii



40 iterations within 30 minutes for a two-variance

component model with 700 Poisson observations (100 groups

each with 7 within-group units) on an IBM compatible 486

DX/33MHz personal computer.
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CHAPTER I

INTRODUCTION

Educational data concerning students often arise within

classrooms or schools. Since different classrooms have teachers

of various experiences and qualifications, and different schools

have various school climates, policies and facilities, educational

results vary according to the quality of the educational context.

One of the most important questions in educational research is

what kind of teachers or schools will enhance learning most. To

answer this question empirically, we must collect data about

students' academic performance and characteristics of the

teachers, classrooms and schools. For research results to be

readily used for academic theory construction or public policy

making, large samples of classrooms or schools must be studied

to make broad generalizations.

However, traditional statistical research tools such as

linear regression analysis fail to account for the variability due

to the varying effects of each classroom or school. Ordinary

random effects analysis of variance models also fail to allow for

unbalanced data and flexible covariate adjustments. Because the

scores of students within the same classroom or school are



correlated, the standard statistical independence assumption is

violated when data from large numbers of classrooms or schools

are analyzed. As a remedy to these deficiencies in traditional

statistical tools, multilevel or hierarchical linear statistical

models have been developed for educational and social research

applications (Aitkin, Anderson, and Hinde, 1981, Goldstein,

1986, Longford, 1987 and Raudenbush and Bryk, 1986).

Multilevel linear models have two or more levels of

regression equations. For example, in two-level models, a level-

one equation relates students' outcomes (e.g., math achievement

or verbal ability) to a set of independent variables (e.g.,

previous GPA, IQ, sex or socioeconomic status). However, each

school is allowed to have its own regression equation. The

slopes or coefficients of the level-one regression equation for

each school are considered randomly distributed. The level-one

coefficients are predicted by another set of independent

variables related to the level-two units, that is, the school

variables (e.g., private or public school, rural or urban school

and racial composition of the school). The explicit modeling of

level-one coefficients by level-two variables helps educational

researchers study the intriguing relationships among schools,

teachers and students. For example, Raudenbush and Bryk



(1986) were able to demonstrate through a multilevel model that

the type of school (Catholic or public) has a differentiating

effect on the influence of students' socioeconomic status (SES)

on Math achievement. Specifically, they found that Catholic

schools have a flatter slope in a regression of Math achievement

on SES, which supports the contention that Catholic schools are

more egalitarian than public schools.

Moreover, educational researchers making use of multilevel

models need not be restricted by either choosing the student

level or the aggregated school level for regression analysis. The

estimated residual variances of the regression equations from

both levels not only account for the components of variances at

the student and school levels, they also give information about

the relative amount of unexplained variation for the two levels.

When repeated measurements on students over time are

taken as the level-one units and the students are correspondingly

taken as level-two units, the multilevel model can be used as an

appropriate model to study academic growth over time. Student

variables such as sex, race or income can be used to predict the

effect of time on academic achievement (i.e., the rate of growth

or change). Therefore multilevel models are a means to solving

two of the most persistent methodological problems in



educational research, namely the assessment of multilevel effects

and the measurement of change or growth (Bryk and

Raudenbush, 1992). Growing numbers of educational studies, for

example, about vocabulary growth, school effectiveness and

teaching styles have been conducted in a multilevel perspective

(e.g., Aitkin, Anderson, and Hinde, 1981, Raudenbush and Bryk,

1986 and Huttenlocher et al., 1991). A review of educational

applications of multilevel models is included in Raudenbush

(1988)

Notwithstanding the growing popularity of multilevel

models, most of the research applications are confined to

continuous outcome variables with normal error distributions.

Details about the methodology and applications of normal

multilevel models in social and educational research can be

found in the books written by Goldstein (1987), Bryk and

Raudenbush (1992) and Longford (1993). However, a wide range

of educational outcomes are not normally distributed, for

example, pass or failure (dichotomous variable), absence from

school (discrete counts) and time before graduation or dropout

of school (censored survival time data). These non-normal

outcomes can be dealt with, respectively, by statistical models

based on the binomial, Poisson and exponential distributions.



These common distributions are subsets of the exponential

family of distributions. A unified approach for maximum

likelihood estimation of single-level regression models based on

the exponential family of distributions is the generalized linear

model ( Nelder and Wedderburn, 1972). Computer software for

such statistical models is now also available (Aitkin et al.,

1989). Many attempts have been made to develop multilevel non-

normal models and they are described in the next chapter.

However, a unified approach for a multilevel generalized linear

model with full maximum likelihood estimation has not been

developed.

This dissertation is an attempt to extend the multilevel

normal models to include other non-normal outcome variables so

that a wider range of educational dependent variables can be

investigated within the multilevel framework. In other words,

the goal of the dissertation is to develop a unified maximum

likelihood estimation approach for the multilevel generalized

linear model. Since the generalized linear model covers a wide

range of distributions, the dissertation will demonstrate

statistical estimation of one member of the exponential family:

the Poisson distribution. The same approach can be followed for

the other distributions of the exponential family.



Though the Poisson distribution is not commonly used in

educational research, its potential for application should not be

underestimated. The Poisson distribution is a standard model for

independent count data. Much educational data exists in terms

of counts, for example, school absence (Aitkin et al., 1989,

p.223), classroom behaviors such as speaking in class, altruistic

behaviors, antisocial behaviors, vocabularies of children’s

utterances, number of peer-reviewed publications, teenage

pregnancies, frequencies of using school facilities such as the

library, gymnasium and counseling service, and numbers of times

repeating a difficult required course or a certifying exam of a

professional institution. The Poisson model is especially useful

if the mean occurrence of counts per unit time is low. In these

instances many people will have zero observed counts.

Approximation of the empirical data by the normal distribution

often fails to account for the positive skewness of the data.

Since the educational outcome variables in the above

paragraph also arise within educational settings, for example,

classrooms, high schools and tutorial schools, the multilevel

approach will often need to be applied. The multilevel Poisson

model has an additional advantage of being able to help resolve

the over-dispersion problem (Cox, 1983) due to more than



expected variance. In theory, data of the Poisson distribution

should have its mean approximately equal to its variance.

However data arising from groups (e.g., educational

institutions) are statistically dependent within a group, so the

observed variance of the whole set of data can be much larger

than the corresponding mean. A multilevel Poisson model

accounts for the variation due to grouping by including a second

or third level of variation. Thus it helps remove the over-

dispersion due to the natural grouping of the data. Similar

problems also exist for the binomial distribution and the

multilevel approach can offer the same benefit.

In essence, this dissertation will undertake research that

fulfills the objectives below:

1) To develop a multilevel statistical model for the

exponential family of distributions.

2) To provide maximum likelihood estimation of the

parameters and standard errors for the parameters of the

model.

3) To use the Poisson distribution to demonstrate the

details ofthe estimation method.



4) To write an iterative computer program to obtain

statistical estimation for the multilevel Poisson model by

iteration.

5) To use a small simulation study to demonstrate the

validity of the computer program.

Before describing the state of previous research or the

technical details for the formulation and estimation of the

multilevel generalized linear model, an example on how the

model can be applied could be illuminating.

An illustration for the application of multileveQneraleed

linear model to educaLional research

To understand the formulation of the multilevel generalized

linear model, it might be best to study a simple hypothetical

example. A similar data analytic scenario from a real national

school survey, with a normal outcome variable analyzed through

the Hierarchical Linear Model, can be found in Raudenbush and

Bryk (1986).

Suppose a survey on the number of altruistic behaviors of

the recent month is made on students from a large number of

schools. Some of the schools have an ethics education program.

The socioeconomic status (SES) of each student was also



recorded. The research question is to study whether schools

with ethics education programs affect the differentiation effect

of SES on the exhibition of altruistic behavior in school. The

analysis requires that we model the random effects due to each

individual school, thus a multilevel model is formulated. Since

the dependent variable takes on a random natural number greater

or equal to zero, a Poisson model can be used to fit the data. As

the Poisson model is a member of the exponential family, this is

an example of the multilevel generalized linear model.

In level 1, the 1"" student's altruistic behavior ya. in school

j is modeled by his/her SES level:

1

log/1,). =60]. +,BUSES,.J..

Here 1,] refers to the mean of a student's counts of altruistic

behavior. The response variable yijllij is assumed to be Poisson

distributed with parameter iv. The logarithmic function is the

'link' function (Aitkin, Anderson, Francis and Hinde, 1989, p.76)

that maps the natural numeric count onto the set of real numbers

being predicted linearly by the student's SES variable. ,6,” is the

random intercept for schoolj. ,6”. is the random slope for the

effect of SES on the logarithm of the mean altruistic behavior

for students in schoolj. A positive ,3”. will mean that the higher



10

the SES of a student is, the more altruistic behavior the student

will elicit. For illustrations, we now assume that empirically ,6”.

is positive. However, the implementation of an ethics education

program can either suppress or elevate the influence of SES on

altruistic behavior. To study the effect of higher level variables

on the relationships between the outcome and the lower level

variables, we need the level-2 equations:

floj = 700 +701(ETHICS PRGM)j +uoj,

:61} = y“, +yn(ETHICS PRGM)J. +ulj.

The random intercepts and slopes of the schools are being

predicted by the dummy variable for the ethics education

program which is zero for absence and one for presence. The

residual errors or random effects uj's at the school level are

assumed to form a multivariate normal distribution with zero

expectations.

As an example, if schools with ethics education are found

to have higher ,Boj's on average (i.e., yo] >0), it means that

ethics education can help students behave more altruistically. If

schools with an ethics education program have smaller fllj's on

average (i.e., 7/“ <0), then we might infer that ethics education

can suppress the influence of one's social class background on



ll

one's exhibition of altruistic behaviors in schools. In other

words, ethics education enhances the egalitarian tendency of

students toward acting altruistically.

This example has demonstrated the potential of applying

multilevel generalized linear models for real world educational

research involving student-school interaction effects with a

discrete count outcome variable.

 

1To facilitate understanding for readers who are previously acquainted

with the Hierarchical Linear Model (Raudenbush and Bryk, 1986), the

mathematical symbols are chosen to be similar to those of HLM.



CHAPTER II

BACKGROUND

Much work has already been done on the multilevel normal

models. A review of the methodology and applications of such

models in educational research is given by Raudenbush (1988).

Representative approaches that have been widely applied in

educational research include the models and computer programs

formulated by Goldstein (1986, 1987), Longford (1987), and

Raudenbush and Bryk (1986). Since the present dissertation

focuses on the multilevel extension for non-normal models, the

review on multilevel normal models will not be repeated here.

Multilevel extensions of various particular non-normal

models have also been published. For example, Anderson and

Aitkin (1985), Conaway (1990), Stiratelli, Laird and Ware

(1984) and Wong and Mason (1985) have published papers on

the binomial models; Goldstein (1991) on the log-linear model;

and Albert (1985, 1988, 1992), Morton (1987), Tsutakawa

(1985, 1988) on the Poisson models. Albert's (1985, 1988, 1992)

models are Bayesian models with a gamma prior distribution.

Morton (1987) uses the quasi-likelihood approach in an analysis

of variance framework. Tsutakawa (1985, 1988) employs

12
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approximating techniques for both Bayesian and empirical Bayes

estimation. All of these past Poisson models do not have the

flexibility to allow for a full scale two-level model with multiple

explanatory variables and variance-covariance components.

In terms of the whole exponential family of distributions,

sometimes labeled as the generalized linear model with random

effects, there are models developed by Anderson and Hinde

(1988), Longford (1988), Zeger, Liang and Albert (1988), Schall

(1991), Zeger and Karim (1991) and Breslow & Clayton (1993).

Various estimation approaches and algorithms have been

adopted in the above past research. Statistical estimation

approaches include the Bayesian (e.g., Zeger and Karim, 1991),

maximum likelihood (e.g., Anderson and Hinde, 1988) and the

maximum quasi-likelihood method (e.g., Longford, 1988). The

Bayesian approach is especially relevant when the level-2l

sample size is small and the asymptotic normal approximation of

the posterior distribution using the maximum likelihood

approach becomes inadequate. Contrarily, the maximum

likelihood approach generally involves less computation and

simpler analytic methods. It also gives results similar to those

of the Bayesian approach when the sample size is large. The

maximum quasi-likelihood approach is similar to the maximum



14

likelihood approach except that the quasi-likelihood function

only specifies the relationship between the mean and the

variance and does not contain the full parametric likelihood (For

details, see Wedderburn, 1974 and McCullagh and Nelder, 1989,

p.325). Although the quasi-likelihood approach requires fewer

assumptions than the ordinary likelihood approach, it can fail to

give reasonable results in some cases (Crowder, 1987). There is

also some loss of efficiency when the data depart from a natural

exponential family (Firth, 1987).

The algorithms relevant for the present research are: the

EM algorithm (Dempster, Laird and Rubin, 1977), Fisher-scoring

(Longford, 1987), iterative generalized least squares (Goldstein,

1986, 1989), data augmentation (Tanner and Wong, 1987) and

Gibbs sampling (Gelfand, Hills, Racine-Poon and Smith, 1990).

Tanner (1991) provides an excellent introduction to many data

augmentation methods, broadly defined. It should be noted that

a given algorithm might not be restricted to be used only for a

particular estimation approach. For example, the EM algorithm

can be used for maximizing a general likelihood (Dempster et

al., 1977), for empirical Bayes estimation (Dempster, Rubin and

Tsutakawa, 1981) or for Bayesian estimation (Racine-Poon,

1985)
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Although several models already exist for formulating a

multilevel generalized linear model, there has not been a full

maximum likelihood (ML) model available for applications in

educational and social studies. For example, although Anderson

and Hinde (1988) formulate a maximum likelihood approach via

the EM algorithm, their estimation method can only allow for a

single random intercept model. The potential extension to high

dimensions of random coefficients is also hindered by their use

of Gaussian quadrature integration technique that works only for

small dimensions (Rubinstein, 1981). Longford's (1988) non-

normal extension to the multilevel normal model uses an

approximation of the quasi-likelihood for estimation.

A recent simulation study by Rodriguez and Goldman

(1993) concludes that the approximate quasi-likelihood method

of Longford (1988) is equivalent to Goldstein’s (1991)

approximate generalized least square approach with regard to

the multilevel logit model. The simulation results reveal

substantial biases in the estimates of the fixed effects and/or the

variance components whenever the random effects are large

enough to be interesting. Moreover, the multilevel estimates of

the fixed effects from the approximate quasi-likelihood method

are virtually the same as those obtained using standard logit
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models that ignore the hierarchical structure of the data

(Rodriguez and Goldman, 1993, p.15).

Zeger, Liang and Albert (1988) use a generalized

estimating equation approach (Liang and Zeger, 1986) which

combines quasi-likelihood and robust variance estimation for the

marginal or so called ‘population average’ model. The

estimating equation (Zeger et al., 1988, p.1053) is essentially a

variant of the quasi-likelihood estimation (c.f. McCullagh and

Nelder, 1989, p.327). Schall’s (1991) approach is an

approximate maximum likelihood and quasi-likelihood estimation

by means of a first order Taylor's expansion of the linked data.

Zeger and Karim (1991) adopt the Bayesian approach via the

Gibbs sampling method which is heavily computing intensive.

Karim and Zeger (1992) have reported that a disadvantage of the

Gibbs sampler is the computational burden. In their analysis of

an ecological data set on Salamander mating with 360 binary

responses, it takes about 5 hours of computer time on a 14 MIP

DEC station 3100 microcomputer to generate 2000 simulated

values from the posterior distribution, each obtained after 80

iterations of the Gibbs algorithm. They consider that the time

required is sufficiently long as to possibly discourage the fitting

of several different models (Karim et al., 1992, p.643). This
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would not be feasible for educational applications with large

data sets. In their paper on approximate inference for

generalized linear mixed models, Breslow and Clayton (1993)

use Laplace’s method for integral approximation in conjunction

with a quasi-likelihood approach.

Even for a particular distribution of the generalized linear

model, there has not been a true maximum likelihood model. For

example, Stiratelli, Laird and Ware (1984) estimate a multilevel

binomial model via the EM algorithm. Because the joint

posterior distribution of the fixed effect parameters and

variance components is intractable, it is approximated by a

multivariate normal approximation. The properties of their

estimates will depart from those of ML estimates. Goldstein

(1991) uses a first order Taylor's expansion for the nonlinear

part of the likelihood and the resultant Iterative Reweighted

Least Square estimates do not remain maximum likelihood

estimates (See Rodriguez and Goldman, 1993).

Overall, Zeger and Karim (1991) have provided the most

promising simulation results so far for a multilevel Bayesian

logit model with two variance components. They have

demonstrated a simulation study using a diagonal variance-

covariance matirx. A random intercept model is used to analyze
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a clinical data set for illustration. Breslow and Clayton (1993)

present a comparative simulation study against Zeger and Karim

(1991). Their results approach that of Zeger and Karim (1991)

when the sample size is increased.

Impligtions for the present research

Vis-a-vis the present status of research in the field of

multilevel generalized linear models, this dissertation will

attempt to provide an alternative of a full maximum likelihood

estimation approach with multiple random regression

coefficients.

In order to reduce the expected intensive computation, I

choose to adopt the maximum likelihood approach instead of the

Bayesian approach because the latter generally requires solving

high dimensional multiple integrals (Smith et al., 1985) or many

repeated rounds of simulations (e.g., Zeger and Karim, 1991).

The maximum likelihood approach is used in preference to the

quasi-likelihood approach because of the former's well-behaved

asymptotic properties of consistency, unbiasedness and

efficiency (Rice, 1987, p.234-254).

As for the algorithm that maximizes the likelihood

function, the EM algorithm (Dempster et al., 1977) is used for
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the following reasons. Since much educational data involves

national surveys with huge numbers of schools, the number of

unobserved random effects due to schools could be large (e.g.,

in the thousands). A naive and direct maximization of the

likelihood involves simultaneously estimating the fixed effects

and all the random effects. These huge number of parameters are

unstable to estimate for most common maximization routine.

However, in maximizing the marginal likelihood, the EM

algorithm treats the random effects as missing data and

essentially estimates just the fixed effect and variance

component parameters. The EM algorithm is preferable to the

other Newton-type algorithms because it does not require

computing the inverse of the information matrix. Generally,

simple closed form solutions are attainable for the iterating

steps of the EM algorithm. Iterates are also confined within the

parameter space during the execution of the EM algorithm. It is

also proved that the EM algorithm increases the marginal

likelihood of the observations for every iteration (Dempster et

al., 1977). A disadvantage of the EM algorithm is its relatively

slow linear convergent rate. Because I have adopted Monte

Carlo integration to use with the EM algorithm, a slower

convergent rate could prove to be an advantage because the
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iterates will not so easily jump out of the parameter space due

to the randomness of the Monte Carlo simulations. More details

about the EM algorithm will be provided in the next chapter.

Before giving the mathematical details in formulating and

estimating the multilevel generalized linear model, the

definitions and properties of the exponential family of

distributions and the generalized linear model are described as

follows.

Exponential family of distributions

The distribution of a random variable Y belongs to the

exponential family if it can be expressed in the form

(McCullagh and Nelder, 1989, p.28-29.):

f(yl 49. ¢) = exvflyé' - 11(6)) / a(¢) + c(y. ¢)] (2. 1)

where a(.),b(.)and c(.) are some known functions. The parameter

6 is called the canonical parameter and ¢ is the dispersion

parameter. The function a(¢)=¢/m, where m is the prior weight

for the data. This function reduces to ¢ if the data is

unweighted. It can be easily shown that the first two moments

are (McCullagh and Nelder, 1989, p.29):

E(Y) = 5(9), Var(Y) = b"(6)a(¢). (2. 2)
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Therefore, the mean of the observations is related to the

canonical parameter 0. The variance depends on the canonical

parameter (and hence on the mean) as well as on the dispersion

parameter ¢. Other representations of the exponential family of

distributions can be found in Dempster, Laird and Rubin (1977)

and Zeger and Karim (1991). For example, the Poisson,

binomial, and normal distributions can be expressed in the form

of the exponential family of distributions as shown below

(McCullagh and Nelder, 1989, p.30):

Table l. Poisson, binomial and normal distributions as members

of the exponential family

 

Distribution Notation ¢ 19 b(0) C(y,¢)

 

Poisson [9(1) 1 log}. exp(6l) —logy!

Binomial B(n,7I)/n l/n log(——”—) log(l+e9) log(n]

l-rr ny

2

Normal N(,u,02) 02 ,u 92/2 -%[y?+108(27r¢)]
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Generalized linw models

The linear model based on the exponential family of

distributions is introduced by Nelder and Wedderburn (1972) as

the generalized linear model. The model is defined by N

independent random variables Y1,Y2,...,YN sampled from the

exponential family of distribution with corresponding canonical

parameters 61,62,...,6N and a common dispersion parameter ¢. The

joint probability density function of the Y's (unweighted) is

therefore

f(yny2,-~,y~|91,92,~-,9~,¢)= 6XP{_Z[y.-9.- - b(49,-)1/ ¢+ZC(y.-,¢)l}- (2 . 3)

In actual modeling, the expected value ,u, of Y, is predicted by a

linear combination of explanatory variables xl,x2,...,xN as follows:

g(#.-)=X.'fl, (2-4)

where g(.) is a monotone link function (Aitkin et al., 1989,

p.76), ,6 is the p x 1 vector of parameters and X1 is the vector

of explanatory variables. The link function relates the expected

values of Y to its linear predictors through a transformation

function. The principal usage of the link function is to map the

limited domain of the mean of the observations onto the real

line. For example, the domain of the mean number of counts

from a Poisson distribution is never negative, the logarithmic
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function puts the mean onto the real number domain. The

commonly used link functions for the Poisson, binomial and

normal distributions are the logarithm, logit and identity

functions respectively. These link functions have the property of

6,=g(,u,.)=x,',6 and are named as the canonical links.

 

' Personal communication suggested by Dr. Stephen W. Raudenbush.



CHAPTER III

STATISTICAL MODEL AND ESTIMATION STRATEGY

A multilevel generalized linear model

In the multilevel framework, an observation is represented

by yij, i=1,2,...nj; j=1,2,...,J. The subscript i refers to the units

in level-one, e.g., pupils, andj refers to the units in level-two,

e.g., schools. P is the number of level-one predictors and Q, is

the number of level-two predictors for the pth random

coefficient in level-one. Conditional on a P+1 x 1 random effect

vector u), the observations are random samples from the

exponential family of distributions with density (McCullagh and

Nelder, 1989):

f(y.,-| “1:6y9¢) = eXPKyy-Q-j - b(011W ¢ +C(yy-,¢)l- (3- 1)

The conditional moments are

1,, s E(y.-,-|u,) = my), Var(y.-,-lu,) = we...» ’ (3.2)

Let the level-l equation be:

g(#ij)Enjj =fl0j+flljxlij+'“+flR/’xl’gj (3-3)

24
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The level-2 equations are

25

.30)

flu

I31),-

flOj = 700 +701w01j +"°+7OQOWOQ0j +u0j.

:81} = 710 +71lwllj+'”+71QleQ,j +ulj.

161’} = 7P0 +ylePlj +---+7 PQPWPQPJ +tu‘

The above can be expressed as

180) 1,wmj,...,w0Qaj

4,. _ 0

fl.) 0

(700‘

701

7 OQO

710

711

719,

7P0

7P1

  
K7 P9,)

(3.4)

0J'

“u

1'

In matrix notation, the level-1 (3.3) and level-2 (3.4) equations

can be rewritten compactly as

filly); 771} = xijflp (3.5)
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flj=w17+ur (3.6)

P

The matrix wJ has dimension equal to (P+1) x Z(Qp+l) and the

p=0

P

vector 7's dimension is equal to 2(Qp+l) x 1. If Qp=Q for all p,

p=0

then ZPXQP +1)=(P+l)(Q+ l ).

Combining the equations (3.5) and (3.6), we have

g(,u,.j)=17,.j =1r'“wj}’+x'uuJ (3.7)

=Auy+Bou (say). (3.8)

The random effect vector 111 is assumed to vary with a

multivariate normal distribution with zero expectations and

variance-covariance matrix T with dimension P+l x P+l.

The principal objective of the statistical estimation for this

model is to estimate the P+l fixed effects 7 and the symmetric

matrix T with (P+1)(P+2)/2 unique variance-covariance

components.

As noted earlier, direct maximization of the marginal

likelihood function log f(Y|}/,T,u) is not feasible because the

number of unknown vectors 11], which depends on the number of

schools, can be very large. Alternatively, one can integrate out
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the random effects u and maximize the log likelihood by partial

differentiation. Let (p=(}/,T), we have

a—i—logflWhgloglflmuvmmdu.1 (3.9)

However, except for normal distributions, the above

integral cannot be solved analytically. High dimensional

numerical integration of the above requires the knowledge of (o

the unknown parameter. Thus we need some kind of iterative

procedure to maximize the log likelihood.

MXimum likelihood estimation via the Monte Carlo

EM flgorithm

Treating the random effects 11 as missing data, the EM

algorithm (Dempster, Laird and Rubin, 1977) can be used to

maximize the analytically intractable marginal log likelihood

function f(Y|y,T) indirectly through iterations derived from a

combination of the E (expectation) step and the M

(maximization) step.

The E step computes a Q function which is the conditional

expectation of logf(Y,u|7,T), the 'complete data' log likelihood,

with respect to the distribution of the 'missing data' 11
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conditioned on the observed data Y and the parameter values

(0") at the 1th iteration.

Q(<0;<0"’)= j108f(Y,u|¢)f(UI<0"’,Y)du (3. 10)

The Q function is a function of (a and is maximized to

obtain the parameter values gym” for the 1+1”I E step. That is,

the M step solves the following equation:

a . (I) _
, Q((0,(0 )—0. (3.11)

“P

Iteration between the E and M steps continues until the

parameter values converge. Dempster, Laird and Rubin (1977)

have shown that the EM algorithm increases the marginal

likelihood f(Y|7,T) for every iteration and the algorithm

converges to at least a local maxima. Wu (1983) discovered an

error in the proof for the convergence of the EM algorithm in

Dempster et al. (1977). However, Wu (1983) shows that under

mild regularity conditions the EM sequence converges to the

maximum likelihood estimate. Wu (1983, p.95) contends that

Dempster et al.'s (1977) results on the monotonicity of

likelihood sequence and the convergence rate of the EM

sequence remain valid. In other words, employment of the EM

algorithm by itself guarantees maximum likelihood estimation if
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the starting values are close to the maxima and convergence is

achieved.

In practice, the integral for the expectation step may be

hard to obtain. One can use the so called Monte Carlo EM

algorithm (Wei and Tanner, 1990) to bypass the high

dimensional multiple integral. The Monte Carlo EM algorithm is

an EM algorithm with the expectation in the E-step

approximated by a Monte Carlo integration.

The conditional expectation of the complete data log

likelihood is now estimated by the arithmetic mean of M

realizations of the complete data log likelihood. with the

unobserved random effects substituted by their simulated values:

Q(¢;¢“’)-=- fizlogflvmnw), (3.12)
m=l

where um is generated from the distribution f(u|(o‘”,Y). It should

be noted that the accuracy of the above approximation can be

improved to any degree by increasing the number of random

samples in the calculation.

 

1For simplicity of notation, the domain of the multiple integral in this

dissertation is not printed. Interested readers can refer to the notation

used in Appendix A1 for a more rigorous presentation.



CHAPTER IV

PARAMETER ESTIMATION

Convergence to maximum likelihood estimates is achieved

by alternative implementations of the E-step and M-step of the

EM algorithm. The E-step consists of computing the conditional

expectation of the 'complete data' log likelihood function below:

The expeat_ation step of the EM algorithm

Q(¢;¢"’) = I logf(Y,ul¢)f(ulr/)"’.Y)du <4. 1)

= i[Zlogf(Y,,u,l¢)1f
(u|go“’,Y)du

j=l

= zjlogm.u,1¢>/(m¢“>.v>du. (4.2)
1:1

By applying the results from Appendix A1, Corollary 1,

expression (4.2) becomes

2j108f(Y,,u,l¢)f(u,l¢"’,Y)du,
pi

= ZjlogflYpu,l¢)f(u,|¢"’,Y,)du,, (4 . 3)

1:1

due to the independence between level-2 units.

Applying Bayes' theorem,

30
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f(Y,|u,,¢"’)f(u,lco‘”)

f(Y1l (PM) i ’

 

Q(<0;¢‘”)= Zjlogmpum
1:1

= Zzlrlk’gf(Yp“1|¢)f(Y1l “1,¢"’)f(u,|¢“’)du,. (4. 4)

Fl 1

The constant C,:f(Y,|(p“>)=jf(Y,|u,,¢“>)f(u,|¢<”)du, is

computed by the Monte Carlo integration method (Rubinstein,

1981).

l M

C1zfi2f(leunp¢m)a (4-5)

-=l

where “11a“21w-sum ~f(uj|(0“’), which are M samples of simulations

from the multivariate normal distribution.

Applying the Monte Carlo integration technique again to

(4.4):

Wm

Q(<0;co"’)~ Z—h:?zlogf(v,,u..l¢)f(v,law“) (4.6)
1:1 1 111:1

 

logf(Y,,u...l¢)f(Y,lawe”)

°<= Z icing/(Y1 “w(0)+logf(u_u|¢)]f(yll W11.)

111:1 1:1 1

M .1

ocZZUogf(Y,Iu.,,7)+logf(u...lT)]w...., where

-:1 1:1

(4.7)
  

f(Y,|u...,,¢"’) "‘ ’ f(Y,lu.,,¢“’)

C 22 C .
1 n=11=1 1
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The M-step maximizes Q(.) to give the new parameter

(1+1) (1+1)

values (p . Parameters y are obtained by solving the

equations

M J 1 Y ,

2.11213 Dwain" ”We”
(4.8)

 

and T“”’ by solving

M ’ logf(u...,|T) _
2:3 Wee” y/mj—O. (4.9) 

The maximization step of the EM algorithm

The solution for maximizing an unweighted single level

analogue of the likelihood function in equation (4.8) can be

found in Aitkin et a1. (1989, p.322-325) for the generalized

linear models. Anderson and Hinde (1988, p.3851-3852) have

also derived the solution to a random intercept multilevel model

with weighted likelihood using the numerical Gaussian

quadrature method. In this dissertation, the solution to a random

coefficient multilevel model with weighted likelihood function

involving Monte Carlo integrations is derived below.

Estimation for the fixed-effect parameters
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The maximization of Q(.) with respect to y is equivalent

to maximizing a weighted sum of log likelihoods of the

conditional distribution of the outcome variable given the

random effect variables “-41- The inclusion of the outer

summation sign in subscript m is equivalent to expanding the

original data set by M times with the simulated random effects

um, appropriately substituted (c.f. Anderson and Hinde, 1988).

We have to maximize the following weighted log likelihood

function of the exponential family with respect to y:

L<7>=222{u.6.. —b<9..)1/¢+c(y..¢)w.j. (4.10)
m=lj=l i=1

with g(,um,.j)=9m,.j =77my =x11w17+xi1un1§Au7+Buunu using the canonical

link function. The derivative of (4.10) w.r.t. 7 is

M J "j 56 ..

fl=ZZZIy.-b'wm.>1jlwmj/¢. <4“)
697 nr=l j=l 1:1

For exponential families, p=E(y)=b'(t9) and Var(y)=¢b"(6), thus

 

59mg? _ 86mg alum!) . film”

 

 

ay "44.1%.... 0’7

= ”1 . 1 .Au. (4.12)

b (any) g'(/ijj)

M J "r - A .
Therefore 1:2220” pm”) "W”. (4.13)

5’7 m=l 1:1 1:1 meg'UImy)
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To form a Fisher's scoring algorithm (c.f. Seber, 1989, p.685) as

in the GLIM program (Aitkin et al., 1989), we need the expected

value of the second derivative of the weighted log likelihood:

By results proved in Appendix A2,

52L) M J "I 1 [01,“, 01mg.)
E——— :— —E—— 4.14

t... 2.2,: .. .. < >

 

z 9142': 1 EU. w... 121114.113..-

"1:1 1:1 1:1 Wm} mez [g'U‘my )]2

111:1 1:1 1:1 mgig'(#m1j )]2

 

MJ";

=‘ZZwajAuA1 (4'15)
"1:1 1:1 1:1

: —A'QA (4.16)

where A={[A,,...,AJ]m=l,...,[A1,...,AJ]m=M}' with A11={A11a---,A..,1}' and!) is

. = WM]

'1 Vmglg’ (11....) )]2

 

a diagonal weight matrix with elements (am (4.17).

For the 1th iteration of the Fisher's scoring algorithm, the

(1+1)

new estimate 7 is given by

d“)

y"+”:y‘”+(A'Q‘”A)"— . (4.18)

37

3L M J "1

NOW 5=ZZZ(yy—#mfi)g(flmy)Aflwmij (4-19)

m=l j=l 1:1

=A'Q"’6 (4.20)
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where 5:[(51,]...6'1,“)...(6'“J...6'1,,JJ)],...,[(§',m...6'M,,ll)...(5:,m...6'mlj)]}' with

6..=<y.—1z,..)g'(p,..,) (4.21).

Thus y“) : y”) +(A'Q"’A)"A'Q‘”§‘”

: (A'Q‘”A)"(A'Q'”Ay"’ + A'Q"’§“’)

=(A'Q‘”A)“A'Q"’Z"’ (4.22)

where Z'”=Ay‘”+5"’ (4.23).

The scoring algorithm can now be viewed as an iterative

reweighted least square algorithm (IRLS). The 'adjusted

dependent variable' Z is regressed on explanatory variables A

with diagonal weight matrix Q. The new estimate of 7“") can be

found by solving the following system of equations using

ordinary Gaussian elimination (Johnson and Riess, 1988):

(A'Q<”A)y<’+” : A'Q“’Z"’. (4.2 4)

Estimation for the variance component parameters

The new variance component parameters Tm” belong to the

multivariate normal distribution and are estimated by the sum of

the weighted squares and cross-products of the simulated

random effects. This is based on an extension of the standard

maximum likelihood estimate (Seber, 1984) for the dispersion
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matrix of the multivariate normal distribution. The solution to

equation (4.9) becomes

M J

T““’=ZZt//mjuwu'w. (4.25)

m=l j=l

The validity of the above equation is supported by the

following theorem:

Theorem 1. Let u1,u,,...,uJ be J independent p-dimensional

vectors of random variables and each u] have a non-singular

MVN distribution with zero expectation and a positive definite

variance-covariance matrix T. Let 11120 V j and r be the count

J

of wj>0. For er and subject to 211/}:1, the weighted log

1:1

J J

likelihood Zy/jlogflule) is maximized uniquely at T = Zy/jujuj'.

1:1 j=1

Proof: The following two lemmas are required for the proof of

this theorem.

Lemma 1: Consider the matrix function f, where

f(T)=log|T| + trfl‘"<l>]. If (I) is positive definite, subject to T

being positive definite, f(T) is minimized uniquely at T=<I>

(Watson, 1964).
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Lemma 2: Let U'=(u1,u2,...,uJ), where the u are J
1

independent p-dimensional vectors of random variables, and let

‘I’ be a positive semidefinite JxJ matrix of rank r (rzp). Suppose

that for eachj and all h (b¢0) and c, pr(b'u,-=c)=0. Then U"I’U

is positive definite with probability 1 (Das Gupta, 1971).

Let c: ”€ij log271, then

I

1 1 , _

2V1 logf(ule)=c-:2—Zt//j longl—EZV’J‘U T 1“}

j J J

1 1 , _
=c——log|T|Zr//j——Zy/jtr[ujT'uj]

2 j 2 1

l l -l 1

=c-—log|T|-—trT ijujuj

2 2 ,

=c—%{log|T|+tr[T"Zwjujuj'D. (4.26)

J

J

Let U'=(u,,u2,...,uJ) and ‘I’=diag(1//l,y/2,...,1//J), then ijujuj'

1:1

= U"I’U. ‘1’ is positive semidefinite of rank r because r is the

count of V11>0- Since 11,- ~ Np(0,T) and T is positive definite,

then for all h (b¢0) and c, b'uj ~ Np(0, b'Tb). This distribution
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is nondegenerate as b'Tb>0. Hence pr(b'u,-=c)=0. Therefore for

J

er, ijujuj' is positive definite with probability 1 by lemma 2.

1:1

J

Directly applying lemma 1 to (4.26), Zyleogflule) is

1=1

J

maximized uniquely at T =Zy/jujuj'. D

1:1

Applying the above theorem, the weighted likelihood of the

multivariate normal distribution ZZlogflumleyymj in equation

1» 1

m} "'1'
(4.9) is maximized by T"“’=ZZz//mju u ' because it could be

m J

easily verified that 232me =1.

m 1

In practice, because the M-step needs only one iteration of

an IRLS, this EM algorithm becomes a generalized EM (GEM)

algorithm (Dempster et al., 1977). The fixed parameters are thus

expressed as a weighted least squares expression (4.22).

Applying the theorem above, a simple closed form solution

exists for the variance component parameters. Hence, the

advantage of using the EM algorithm, which often involves

closed form solutions in the M-step, is maintained.
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The convergence to the maximum likelihood estimate can

be monitored by tracing through the expected complete data log

likelihood function, Q(.). The reason is that every step of the

EM algorithm will increase the log likelihood function through

the increase of Q(.) (Dempster, Laird and Rubin, 1977). With

Monte Carlo EM algorithm, the complete data likelihood or any

other estimated iterates converge in a stochastic fluctuating

manner. By plotting the iterative values of Q(.), the algorithm is

stopped after the Q(.) function has risen to a maximum plateau.

In an alternative parallel way, one can also monitor convergence

by noting the increment of the model parameters by plotting

parameter values against the number of iteration. After

convergence, the algorithm can be allowed to run for more steps

with an increased number of Monte Carlo samples so as to

decrease the stochastic variation of the estimated parameters.



CHAPTER V

VARIANCE OF PARAMETER ESTIMATES

The variance for the estimates of the fixed parameters and

variance components can be estimated using the inverse of the

information matrix (see Aitkin et al., 1989, p.81):

 flogfmwj“ . (51)
3‘02

 

W14
6’

The diagonal elements of V correspond to the large sample

variances of the maximum likelihood estimator for the

parameters (p. Louis (1982) shows that the Fisher information

matrix of the incomplete data likelihood can be expressed as a

function of the conditional expectations of the complete data

information matrix and the cross-products of the complete data

score function. In the terminology of this study, Louis’s (1982)

result can be re-expressed as:

   
_ 0"210gf(Y|(0) = _E[62 logf(Y9ul¢)]_E[31°gf(Ya“|(P) 510gf(Y, Ill¢)]

 

flgoé'go' 560590. &(p flw'

+§logf(Yl¢)§108f(Yl¢),
(5 .2)

410 310'

with the expectation taken with respect to f(ulY,go). The

observed information matrix is thus

40
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_ 4: log/”(11141 : -111

4041' I, 4144'

  

mag/”(um E151011101111,) 5”gm“"o’i (5 3)
6’

W
W

for the last term in equation (5.2) above vanishes at the

maximum likelihood estimator (,7).

This method makes use of the complete data distribution

f(Y,u|(o) rather than the marginal distribution f(Ylgo) which does

not have an analytic derivation. Similar to its application in the

EM algorithm, the method of Monte Carlo can be applied to

(5.3) to ease the integration problem (Tanner, 1991, p.39).

Since maximum likelihood estimators are asymptotically

normally distributed, the estimated standard errors can be easily

used to create confidence intervals and hypothesis tests.

Estimation for the variance of the fixed effect estimates

The components of equation (5.3) required for the

evaluation the variance of the fixed effect estimates are derived

as follows:

  

éalogf(Y,u|¢) 6%ng,u,I¢) Y d“

E1 (W 1=1§§W f(ul .10)

g M J 1 flzlogflYuwlco)

EEMC. 44
 

f(Yjl unpg’b)a

(see Appendix A3)
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___M , 1 3210.5“wa(0)421816.114] -

§§Mqi 414' 5757 “Y'““”"0’

M , 1 a’lgfl | ) .

zgqui o Ergu'fljflYlu..,,¢) (5.4)

0"210gf(Y’|uw,¢) ‘1 59,819,,” "J AEAE'

h = -b"6’ = . 5.5

6W Z ( a) 31' ¢ Emmet”)? ( )

Moreover,

 

[610g f(Y, ul (0) 418161.411

4) (91'

 

_E[(4Iogf(vlu4) ++4logf<ul4))(41011161111,11) 410111111145]

4) 41' 41'

 

_E meg/”(nu 11) flog/(an12)]
a”

  

1‘
11_[2”:3108f“laymié’lognguPW]

1:1 1:1

 

_E[Z':5108f(YIu,.¢)0"logf(Y',lu,,(/1)]

1=1
37

+E[ 2": 3108f(Ylluj,(p) filogf(Yj.|uE,(p):l

2. 87 a)”

 

51 , 31 Y ,
=J‘Z 0gf(Y1|u1¢) ogféyjiuj ¢)f(ulle,¢)duj
 

 

“Li 2": 3108f“MumwlogflYlu,e)

JJ'=1;1:1' 57 5)’ f(u“Y'l’¢)f(u1'lYJ"
¢)du1dur

with the latter term equal to (c.f. Appendix Al)
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31 Y10%“ 1|“:’u'p)f(YJ1|}!.,go)du,. (5-6)
  

J 31 Y ,Z J. 08“ ,luJ ¢)f(“1|Yp¢)d“1j

 

   

  

 

 

 

lJ'=l;J*J' fly
fly.

1 flgflmmflwflwm .
= . , (T , 1991) (5.7”EH 0) 0.7 anner )

= , 610g 101,111) J 510gf(Y,|¢)_ ’ é’logflY|¢)0”logf(YI¢)2 5. 8

Z3 4 2.} 4' .243 a) 01 ( )

with ié'logf(YE|(o)| ié’logf(YE|(p)| =0-0=0 at MLE of go. Hence

1 07 |¢=gb 3 a}, ¢=é1

at MLE of (p,

E[41ogf(v, ul (0) flog/(Y, 11111)]

a) 41' .

J M 1 3108f(Y|u ,(owlogflYlu ,(0) -
NEEMC 0,; "" a); l“ f(leuNJP)

 

j=l In=1

M 1 alogflvIn... 11) .
[.EMC) 07' f(Yl 11.19)} (5.9)

J M 61 Y , ..{“2 MIC, og/(EEIu.l ¢)f(Y1|“-11"/’)]'

 

(using Appendix A3 and footnote 2)

  

M "1 1_m1'jA "1 i—miiA. A

=ZZ‘E%C‘[ZWJ 11 ”’sz 1a ))"]f(Y,lu..,,(o)

1 1:1 meg.(#m11) 1:1 Vmijg'(pm.j

  

.1 M 1 "1(yVE—me)Au] Y A .

HiiglMCj [21 14.1161...) fl ’lu"’¢)]
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M "I 11'— MA

[ZML‘iZO1/.;(p).)u]fly
Yiluwmfl (5-10)

Estimation for the var_i_ance of the va_r_i_ance component estimates

The variances of the covariance estimates are estimated in

an analogous way as that for the fixed effects estimates in the

preceeding section. Results follow by replacing the partial

deferential of y by that of t which stands for any arbitrary

element of the covariance matrix T.

From Longford (1987), we have the following two useful

derivative formulas:

 

3 3T

—1 T=tr(T"—) 5.11

31 ogI I 31 ( )

-1

and 5T :—T"§r—T“. (5.12)

31 31'

Let r' be any arbitrary element of the covariance matrix T other

than 7. Thus,

 
 

-l

2,log|T|=tr[éT fl): tr(-T’l3TT_, 31")

 

313731 3T 3t 3t

-1

(5.13) and 321‘ . = — T‘lfl(—T"lfl.T") +(-T'lfl.T'1)ir—T"l

3131 31 3t 3t 3t

=T‘lér—T‘1ZFTT'1 +T‘1flT"lflT". (5.14)

32' 3t 3t 3t
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Since log f(umjlgo)oc—%log|T|—%umj'T"umj, therefore,

310 u ,

gf( mj|¢)=-l ”(T—lflj-umj (T-lflT-ljumj 9 (5.15)

31 2 32’ 3T

 
and

32108f(1{...|(p) = __;_[E(_T-. 31‘ 31‘)
———T"_

3131 31' 3t

+u,,,'(T“ gr" 3151“ +1“ gT—lgrljumji (5.16)

As in the variance estimation of the fixed effects, we need

  
,0 031011111.» E[3’logf(Y,uI¢)] and E[é‘logf(Y,ul(p)3108f(Y.ul(o)].

 

 

 

3751'
3!

52.1

Now,

E flogfllee)

3131'

~” ' 1 52108f(Y1|u..1,¢) é’zlogflumle) .

~§§MC,[ 3r3r' + 5131' f(Y1'“"1’¢)

"' ’ 1 flogflleuwe) .

=ZZMC 3131' f(leumm). (5.17)

n=lj=l j

And,

 
E[3108f(Y, ulw) 3108f“, 11W]

at 3'

 
= E[(3logf§(tY| 11,10) +3logafjulw)xfllogf;tYl 1w) + 3108511195]

 
=E[3logf(UI(0) 5108f(fl|¢)]

3t 31'
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I

J=1 i=1 (9r

  

Z
5’7 11:11:11 57 31'—

_%imeflwwimeflwm]

_Eifilogfwjlmé’logfwjlm] E[ -' mug/(uImalogfwj-Ie)

j:

 

J alogfl |¢)3108f( le)
=I§ 3qu ET‘” f(uI Y,.¢)du,

, alogf(u,1¢)3logf(u9|)
+IZ

1.1'=1;1==1' 5" 3r

 /(uY,I,¢)f(u,.IY..,¢)du,du

with the latter term equal to (c.f. Appendix A1)

108f(u,le)" 31Z J- 0gf(uji¢)f(ujle,¢fluan
f(uuJIYj,¢)duj' (518)

1.1'=1-.1:1' 3’

  

= J 3logf(Yj|(p) 3logf(Yj.|(p)’ (see Appendix A4) (5.19)
I

JJ'=1 'Jfl' 52' at

 

z ’ 5108f(le 9): 3108f(YjIe) _ 2’: 3108f(lee) 3108/(le (o)

1: a: 1-, 51' =1 31 31'
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with ialog/(le ialogflYfimI
=0-0=0 at MLE of (0. Hence
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|¢=é |¢=¢

at MLE of (p,

410g f(Y, um) 610g f(Y, 11112)
E1 ET 3.1

 

... " M 1 3108f(ujlco)é'logf(u,lco) .

"Eémc, E, E f(YInwe)
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12:? 2.1M1C oggujlmf(y1|“w¢)][§Mbj
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(using Appendex A3 and A4)

 

lTanner (1991, p.37) shows an equivalent of

alogflYlu ,(P) alogflYlgo)

I a; ’ f(uIYpmahnl = fly I .

2 Result follows from a simple identity:

  

J J J J

2012b]. =Zajbj + Z ajbj.

J=l j=1 j=1 J.j'=lJ*J'

for any real number aj,bj. with j,j E{l,2,...,J}.



CHAPTER VI

EMPIRICAL PROPERTIES OF THE STATISTICAL MODEL

The formulas for the estimates of the parameters and the

associated standard errors of the Multilevel Generalized Linear

Model (MGLM) in the preceeding chapters were used in building

up a computer program. Microsoft FORTRAN Version 5.1 was

the software used in writing the program in FORTRAN. Sample

FORTRAN subroutines for mathematical and matrix operations

and random Poisson variate generations were obtained from

Press (1989). The program was built, tested and implemented on

a GatewayZOOO IBM compatible personal computer at clock

speed 33 MHz with an Intel 486 DX microprocessor. Random

numbers are generated by the default random function from the

above FORTRAN software. Multivariate normal variates are

generated by the LU decomposition method given by Rubinstein

(1981)

In the following sections, we take a closer look at the

performance of the estimators as programmed. The purpose is

not so much to prove absolute validity of the program as to

draw insight from several program runs. Simulation tests for

validity are left for the next chapter.
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To facilitate the analysis, I limit the model to the One-Way

Poisson model with a single random component, also known as

the random intercept model. In other words, the parameter set

will contain just a fixed effect 7 (Gamma) and a univariate

variance-covariance matrix T (Tau). Because Monte Carlo

integration is used in the algorithms, the stochastic nature of

the random variate generations will be revealed in the

subsequent figures as minor oscillations along the path to

convergence. The parameter values for 7 and T are respectively

-0.7 and 0.16. The data set generated from these parameters has

level-2 units J=50 and level-l units nj =20 for all j. The number

of samples used in the Monte Carlo integrations is 200. Two

starting positions are attempted. One set of initial 7 and T pair

is (-1.5, 0.3) and the other set is (-O.l, 0.05).

mximization of the likelihood function

Under normal conditions, the EM algorithm will increase

the likelihood function to at least a local maximum through the

iterations. It is instructive though to watch how the likelihood

function approaches the maximum for some sample runs. As

shown in Figure l, the log likelihood functions from two

different sets of starting values increase and merge to a plateau
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in around 15 iterations. After 15 iterations, the log likelihood

function rises from -1015.6 to -970.6 when the starting values

for y and T are respectively -1.5 and 0.3. For the other set of

starting values for y and T, being -0.1 and 0.05, the rise is from

-1031.9 to

-970.8. The results in Figure 1 give evidence supporting the

achievement of maximum likelihood. The shape of the two rising

likelihoods also gives support that the likelihood function is

increased with the number of EM iterations. The strict

monotonic increase of the likelihood function is masked by the

random fluctuations due to the Monte Carlo samples.

The log likelihood is calculated as follows:

10g f(YI 90‘”) = Zlogf(Y,Ico"’)

j=l

J

= 2log CJ

j=l

z Zlog£fi2f(leumj,g/)m)) (6.1)

j=l m=l
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Figure 1. Log likelihood function as a function of the number of

iterations for two sets of starting values
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Convergence of estimafid pa_r_a:meters

As shown from Figure 2, the estimates of y and T both

converge rather smoothly to stable values after some 15

iterations. The slight discontinuity for the converging T

sequence with starting value 0.3 is caused by my fixing the value

of T for the first three iterations in order to improve stability.

Compared to the parameter value of 7: -0.7, the iterations

from two different initial positions obtain the values of -0.700

and -0.690 at the 15th iteration. Similarly, estimations of the

variance component T obtain the values of 0.205 and 0.199,

which are not far from the theoretical parameter value of 0.16.

These specific deviations are due to the random sampling errors

in creating the data sets.
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Figure 2. Convergent paths of model parameters from two initial

positions
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Convergence from different starting values

Given the parameter values of y and T as respectively -0.7

and 0.16, the program was tested for two sets of starting values.

The actual iterating paths are shown in the previous three

figures. It is evident that the convergent parameter values

estimated by the two iterating sequences from different starting

positions are identical. The difference in precision obtained can

be accounted by the Monte Carlo nature of the iterations.

Results are summarized in the following table:

Table 2. Comparing parameter and likelihood values obtained by

two starting values (Parameter values for y and T are

respectively -0.7 and 0.16)

 

 

 

Starting values Estimated values at 15”I iterations

7 T 7 T Log Likelihood

-l.2 0.3 -O.7OO 0.205 ~970.62

-0.1 0.05 -O.69O 0.199 -970.77

 
 

Influence of the size of Monte Carlo samples

This program employs Monte Carlo EM algorithm and

computes Monte Carlo integration through the generation of

multivariate normal variates. The higher the number of Monte
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Carlo samples, the better the approximation to the theoretical

integral by the Monte Carlo integral. Figure 3 depicts the

influence of the number of Monte Carlo samples on the

estimated log likelihood for a random intercept Poisson model.

The same data set generated from the parameter set (7,T) =

(-0.1, 0.05) is being modeled on three different occasions with

the size of Monte Carlo samples vary over 50, 200 and 800 per

each integral. As expected, the run with the least Monte Carlo

samples (M=50) produces the largest fluctuations on the

estimated log likelihood values and vice versa. It should also be

noted that the run with 800 samples seem to achieve the largest

log likelihood on average than the other runs with fewer

samples. It is because parameter estimates are more precise and

get closer to their ML values as the Monte Carlo integration

becomes more accurate with larger generated samples. The

likelihood value computed from these parameter values which

are closer to the ML values will approach nearer to the

maximum likelihood value.

The effect of the size of Monte Carlo samples on parameter

estimation is similar. The convergent paths of the estimated

parameters fluctuate less when the number of Monte Carlo

samples increases.
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Figure 3. Influence of the size of Monte Carlo samples on the

estimated log likelihood
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In this chapter, illustrative program runs provide some

confirmations on the validity of the estimation procedure and

the computer program. The program does appear to be working

reliably to produce maximum likelihood estimation for at least a

random intercept Poisson model. Different starting values lead

to the same results at convergence. The size of Monte Carlo

samples is found to affect the smoothness of the convergent path

and the proximity of the statistical estimation to the true ML
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estimate. More formal simulation tests will be presented in the

next chapter.



CHAPTER VII

SIMULATION STUDY

Simulation test for a random iaterceat model

 

Despite its costliness, the simulation study is one of the

best strategies to access the quality of one’s statistical

estimation. Using selected parameter values, random variates

can be generated from their respective density functions to form

a large number of independently simulated data sets. Parameter

values are then estimated from each of these data sets. The

means of the estimated parameters averaged over all the data

sets are compared with the respective chosen parameter values

to determine the bias, if any, of the estimators. The empirical

variance of the estimators might also be used to compare with

the variance of the other estimators to determine their relative

efficiency. The following paragraphs describe a simulation test

for the simplest multilevel generalized linear model: a random

intercept model with no predictor variables. This model is

analogous to the one-way random effect ANOVA model.

The observation yij has a Poisson distribution with mean

parameter pg. Using a logarithmic link function, the model is

58



59

logy,y =y+uj,

where 7 is the fixed effect and u] is the random effect for school

j. The random effect u} is modeled by a normal distribution:

uj ~N(0,r)

For the simulation test, the parameters y and r are set to

be -0.7 and 0.16. Thus the school mean is expected to be

e417 =0.497z0.5. The mean 0.5 is chosen to simulate the

problematic scenario in data analysis where many zero

occurrences are expected from a Poisson distribution and the

distribution will not look normal and symmetrical. Parameters

for the standard error of )7 and f are set by the empirical

standard deviation of )7 and f (For more detail, see Press

(1986), p.529-532). Each simulated data set contains 50 schools

each with 20 students. One hundred independent data sets are

created. They are fitted by the random intercept Poisson model

and the estimated parameters are recorded. To be economical in

time, the beginning iterations of the program employ fewer

Monte Carlo (MC) samples. The later iterations use larger

samples as results approach convergence so as to reduce

stochastic variation in the final estimates. Thus, 50 MC samples

are used in the first 15 iterations, followed by 200 MC samples

for the next 10 iterations and followed by 800 MC samples for
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the last 7 iterations. Experience shows that convergence to

about two significant figures of accuracy is achieved with this

scheme. To reduce randomness, parameter estimates from the

last 4 iterations are averaged to produce the final estimate.

However, standard errors of the parameter estimates are only

calculated at the last iteration. They are not being averaged

because they usually fluctuate less and require a large additional

computation resource per iteration. Results of the simulation

test is tabulated as the case 1 study in Table 3.

The results show that the fixed effect parameter and the

variance component are both estimated without bias with error

less than 1.5%. The standard error of the fixed effect has a

slight negative bias below 3%. The standard error of the

variance component is negatively biased by about 18%. Coverage

by 95% confidence intervals range from 88% to 94%. Overall,

the simulation study shows that the statistical estimation of the

model is quite satisfactory.



Table 3. Results of 2 simulation studies. Case 1: Random

intercept model. Case 2: Random coefficient model.

 

 

  

(a: 700 7m 7m 79, 100 701 To

My;

(0 -0.7 —— —— — 0.16 -— ——

1?) -0.71 0.16

59 0.074 0.051

39; 0.072 0.042

Coverage 95 88

of95% CI

8&9;

(p -0.5 0.4 0.3 0.2 0.083 0.017 0.0092

50 -0.50 0.39 0.30 0.20 0.086 0.011 0.012

59 0.089 0.12 0.036 0.044 0.031 0.0068 0.0046

59; 0.084 0.11 0.037 0.050 0.015 0.0050 0.0024

Coverage 94 94 95 97 67 69 73

of 95% CI
 

Simulation test for a random coefficient model

A linear growth model predicted by the sex of students is

used in a simulation study for a random coefficient model. The

time data x, is coded as -3, -2, -l, 0, 1, 2, 3 and sex 0)}. is coded

as 0 (girls) and 1 (boys). There are 7 repeated time observations

nested within 100 students equally divided by the two sexes.
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The level-one model is

logy” =floj+fluxy.

The level-two model consists of

fie) = 700 +701w) +249),

,6” =710 +ynwj+ulj.

The fixed parameters 700,701,710 and y” are respectively set

to be: -0.5, 0.4, 0.3 and 0.2. The dispersion matrix is

0.0827 0.0165 , .

Thus the correlation between ac] and u“. 18 set

0.0165 0.00919 '

to be

rm = 0.0165 = 0 6

,Iemr“ J0.0827x0.00919

  

 

The log expected mean and expected mean (in parenthesis) of a

student are tabulated below by sex and by the beginning and

ending time points:

Table 4. Log expected mean and expected mean (in parenthesis)

by time and sex

 

Time xv.

 

Sex 60. -3.0 3.0
J

 

Girls 0 -1.40 (0.25) 0.40 (1.50)

Boys 1 -1.60 (0.20) 1.40 (4.10)
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The iteration scheme is as follows: Iteration begins with 50 MC

samples. At the 20th iteration, it increases to 200 MC samples

for 10 iterations. At the 30th iteration, 800 MC samples are used

for the last 8 iterations. Experience with some trial runs shows

that this iteration scheme is generally more than sufficient for

attaining the desired accuracy of the estimates. The final

estimates for the parameters and the parameter variances are

calculated by the same method as described in the previous

random intercept case. Again, 100 data sets are generated from

the known set of parameters.

Results of the simulation study are displayed in Table 3

along side with the results for the random intercept case.

Estimation for the fixed effects reach 2 significant figures of

accuracy in general except for ym, which has a slight negative

bias by about 3%. Coverage of the 95% confidence intervals are

very good with results ranging from 94% to 97%. Standard error

estimates for the fixed effects 700 and 701 come very close to

their 'true' estimate with only 6% and 8% negative bias. The

standard error estimates for 7,0 and 711 deviates positively from

their 'true' values by 3% and 14% respectively. The 'true' values

for the standard errors of the fixed effects and the variance

components are not pre-selected parameters. They are estimated
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by the empirical standard deviations of the fixed effects and the

variance components obtained from the simulation runs.

Estimations of the variance components tend to be less

accurate than those for the fixed effects. Nevertheless, 700 is

estimated accurately with only about 4% positive bias. Variance

component I“ is estimated with 30% positive bias, while

component rm is esimated with a 35% negative bias. Standard

errors of the variance components tend to be larger than their

conterparts for the fixed effects, with biases equal to +52%,

-26%, -48%. Coverage probabilities by the confidence intervals

of the variance components are 67%, 69% and 73%. These larger

errors of the variance components estimates may be due to

chance differences because the ML estimators are only

asymptotically unbiased. The large sample assumption for the

normality of the MLE of T may be violated due to the small

within-group sample size of 7.

The quality of my simulation results is comparable to those

of a random effect binomial model using a similar design by

Zeger and Karim (1991, p.83). Although they use the binomial

distribution instead of the Poisson distribution, it is still

interesting to compare the degree of accuracy of their results

against mine because both studies have identical structural
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models, variable values and number of cases. For easy

comparison, only absolute value of the biases are shown below.

In their simulation study with 2 variance components, fixed

effect estimates are biased by 10%, 14%, 10% and 14% (Mine:

0%, 3%, 0% and 0%) with their corresponding standard errors

biased by 3%, 6%, 12% and 10% (Mine: 6%, 8%, 3% and 14%).

The nominal 90% intervals by these 4 standard errors have

coverage probabilities of 80%, 89%, 87% and 87% (Mine: 94%,

94%, 95% and 97% for 95% confidence interval). Their variance

components are biased by 69% and 48% (Mine: 4%, 30%)

respectively. Their covariance component (parameter=0.0) is

only biased by 8% (Mine: 35% for a non-zero parameter=0.0165

with 0.6 correlation between the 2 random effects). Their

standard errors of the variance components are biased by 18%,

75% and 57% (Mine: 52%, 26% and 48%). However, the

coverage probabilities of their nominal 90% intervals for the

variance components provided by their standard errors achieve

high values of 88%, 95% and 100% (Mine: 67%, 69% and 72%

for 95% confidence interval). Apparently, the standard errors of

their variance components are quite over-estimated. Thus their

confidence intervals are longer and will often include the‘

parameter values for more than 90% of the samples. On the

contrary, the standard errors of the variance components of my
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estimation method tend to be under-estimated. Because of the

incorporation of vague prior distributions, Bayesian approaches

tend to produce larger standard errors than the non-Bayesian

approaches (c.f. Tsuatakawa, 1985)



CHAPTER VIII

CONCLUSIONS

This dissertation has demonstrated a maximum likelihood

(ML) estimation approach for multilevel generalized linear

model via the Monte Carlo EM algorithm. Although only the

Poisson distribution is used for illustration, the same approach.

can be used to cover other distributions in the exponential

family such as the binomial, exponential and normal

distributions. Anderson and Hinde (1988) have published the

first paper on the random effects generalized linear model using

a true ML approach also with EM algorithm. Unfortunately,

their model is limited to a single variance component and they

have not given any method to find out the standard errors for

the fixed effects and the variance component. Their adoption of

a numerical quadrature technique for solving multiple integrals

also limited their potentials for extension to multiple variance

component model because quadrature techniques are good for

low dimensions and their required computations accelerate with

increasing dimensions (Rubinstein, 1981).

Built on Anderson and Hinde's (1988) pioneering work, I

have been able to extend their random intercept model to a fully
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random coefficient model because of the successful

implementation of the Monte Carlo methods and the discovery

and derivation for the proof of Theorem 1. With this theorem,

we can easily estimate in closed form the variance components

of any dimensions by equation (4.25). Maximum likelihood

estimation is achieved because the EM algorithm is a smooth

likelihood maximizer through indirectly maximizing the

expectation of the 'complete data' likelihood. Using Monte Carlo

integrations by generating multivariate normal distribution, the

present approach is able to work at higher dimensions of

variance components. The growth rate of computer resources for

Monte Carlo integration is linear with the increase of integral

dimensions. Employing Louis's (1982) method, I derived the

formulas for computing the standard errors for the fixed effects

and the variance components using tractable complete data

information and avoided the intractable incomplete data

information matrix. Simulation studies on a random intercept

and a random coefficient model have shown promising results of

the accuracies of my program. It is in general superior to the

best existing approach (Zeger and Karim, 1991) with regard to

the degree of estimation accuracy. Besides, computation time of

my program is comparatively much shorter.
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Besides its statistical contribution, the present model can

help bring some of the challenging data analytic scenarios such

as multilevel models, longitudinal studies (e.g. Raudenbush and

Chan, 1992, 1993) and meta-analysis (e.g. Becker, 1988) into a

new realm involving non-normal random effects models.

Research which involves discrete count, dichotomous and

survival time data is often difficult for an applied researcher.

Coupled with a complicated multilevel, longitudinal or meta-

analytic scenario, suitable statistical models that solve these

analytic problems are in great need. This approach can provide

an additional option for doing research using random effects

models. Practical educational studies include a large number of

level-one variables and the demand for high dimension random

slopes can now be solved through the Monte Carlo approach.

The present approach will also serve as a standard to evaluate

the existing approximate maximum or quasilikelihood

approaches.

Further research

Notwithstanding the above mentioned success, a number of

works that remedy some existing shortcomings or advance the
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usefulness of the current model and program are awaiting. They

are listed as follows:

1) Application to real data analysis

Due to the problems in finding a suitable educational data

set to demonstrate the multilevel Poisson model, only simulation

studies are presented. Upon the access of suitable data sets,

applicational studies should be performed to demonstrate the

usefulness of my program to solve real data analytic challenges

in multilevel studies.

2) Extension to other members of the exponential family

Random effects binomial models may be more common in

applied educational and social research than the corresponding

Poisson models. Binomial distribution should be substituted for

Poisson distributions in this model for deriving a random effect

binomial model. Simulation studies should be performed to

access the accuracy of the resulting model. Extension to

exponential, normal or other member of the exponential family

should also be persued.

3) Improving the speed of the program
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Due to the large computer resource requirement by

generating multivariate normal distributions for doing Monte

Carlo integrations, run time for the simulation models can reach

20-30 minutes for about 2 significant figures of accuracy. To be

applicable to larger real data sets, program speed has to be

increased. Possible choices are choosing a faster programming

language and computer system, employing more efficient random

variable generating methods, using suitable variance reduction

techniques (Rubinstein, 1981) or accelerators of the EM

algorithm (e.g. Louis, 1982, Jamshidian and Jennrich, 1993).

4) Semh for a_good criterion of convergence

Difficulties have been reported about judging when to stop

a stochastic convergent sequence (Gelfand and Smith, 1990).

Ploting the sequence of parameters against number of iterations

could tell us when the converging parameter path are stable

against the background of Monte Carlo fluctuations. Further

research should be done either to automate the ploting technique

or to compute a criterion of convergence based on some suitable

standard.

5) Improviag the estimates ofthe staadard errors
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In my simulation study with two variance components, the

biases of the standard errors of the variance components range

from 26% to 52%. The reason could be due to the low sample

size (n): 7) within each level-2 unit. Lack of information to

estimate the variance components could give rise to a larger

error in their standard error estimates. Rodriguez and Goldman

(1993) report in their simulation study of a multilevel logit

model that parameter estimates are more biased when the number

of observations within group is small. Moreover, variance

estimates tend to have a skewed asymmetric distributions when

sample sizes are not large enough. With appropriate choice of

prior distributions for the parameters, estimation by Bayesian

techniques could improve over ML approaches especially when

the available sample size is small. The use of the mean as a

point estimate to summarize the sampling distribution of the

variance components may not be the best choice. For example,

Zeger and Karim (1991) suggest that the use of mode or

geometric mean might alleviate some of the biases.

Data augmentation techniques (Tanner, 1987) could be

used to obtain the whole posterior distributions of the standard

error sampling distributions and the use of the posterior mode in
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place of the MLE might lead to improvement of the standard

error estimates.



APPENDIX A

athematical notes 

A1 ExpectaLtion of the function of a random variable bygaa’oint

distribution

Let ACR‘PHW, BCRP“, f:A—>R, and ngP”—-)R and let

f(u)=f(ul)f(u2),...,f(uJ) be a joint distribution function ofJ

multivariate random variables u1,...,uJ each with dimension P+1.

Then the expectation

E[g(u9)] = Lg(u))f(u)du = I,g(u,)f(u.>du, .

Proof:

Lg(u,-)f(u)du= Lg<u.)/(z4),...,f(u9 )du19...,du_,

Evaluating the integrand for.'some uj. axis withj' ¢j,

j' e{l,...,j—l,j+l,...,.l}, it becomes

L gluj)f(“1),...,f(uj._l),f(uj.+1),...,f(uJ)du
p...,duj._l'duj.+l,,,,,duJ,
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Performing the above partial integration for all uj. axis,

j' ¢j, the integrand becomes Lg(uj)f(uj)duj. D

 Corollary 1: ZLg(uj)f(u)du=ZIBg(uj)f(uj)duj .

Proof: It follows directly from summing both sides of the

results from Appendix Al. CI

Corollary 2: Additionally, let thP+‘—)R, then

I, g1u, )h(u,- )/(u)du = I,g(u, )f(u, )du, I,g(u,. mu) )du,
u

Proof: Following the proof in Appendix A1, it can be

readily shown that for CCRZU’“),

L. H. s. = [C g(uj )h(uj. )f(uj )f(uj. )dujduj.

= L g(uj )f(uj )duj Lh(uj. )f(uj. )duj. . D

Corollary 2a:

2; I, gut->110, )f(u)du = Z [38(14))f(u))du)jsg(uj- )f(u,- >424)

Menu-.9; J.J'=1:1==f

Proof: It follows directly from summing both sides of the

results from Appendix A1, Corollary 2. CI
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A2 Expected information mairix with weights

1

Let L((0)=Zl//,logf(y,|(p) be a weighted log likelihood

i=1

function with 1 independent random samples and

L,((p)=i;/,logf(y,lgo). f(y,|gp) is a probability density function with

parameter (a and w, is some weight of given value . Then

46%») ___ {I} _1_ 401.00) (1.02)) .

flaw. i=1 V11 flip 580'

 

Proof:

4521472))

5959'

Eb";.Zw.logf(y.-I¢))

 

=Zw,455;,.logf(y9|¢))

' 3108f(y9|¢)3108f(y9|¢))
— E

E“ l a» 49'

(Seber, 1989, p.685),

= {12:45114. 108f(y9| con—5:17!) 108mm)

H; w, 610 550'
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A3 Conditional expectation by the missing data distribution via

Monte Carlo method

Let E[g(u)] be the expectation of a function g(.) of u,

consisted of independent variates u,,u,,...,u,, conditioned on the

dataY with independent componentsYl,Y2,...,YJ and the current

parameter value (0“) at iteration I. Then

E[g(u)]= Ig<u>f<uIY,¢"’>du

M J

1 z

z —g(ll )f(Y|u 91p")
EEMC’ l1 .1 III

where

1 M (I)

CJ~fiZf(Y,Iu...,¢ )
Ina!

and

uu,uzj,...,uMl ~f(u1|(p‘”)

are M samples of simulations from the multivariate distribution

f(u,I<o"’).

Proof:

E[g(u)]= Iglu)f(uIY,co‘”)du

By Appendix Al, Corollary 1, the above is equal to
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Elana/(814998 )du,
j=1

 

, f(YI , Wm I “0

29:180.) ‘“"” “’1’f(Y)|(PU)) duj, by Bayes' law _

.9 z-Ciigwn/(YIu,,¢“’)f(u,1¢“>)du, (A3. 1)
IJ=l

where the constant Clsf(Yj|¢7“’)=[f(YJIul,¢(”)f(u’|(0(")a‘uJ is

computed by the Monte Carlo integration method (Rubinstein,

1981):

l M ,

C] z—M—Zf(leufla¢())a

111:]

where

uljauzp-Haum ~f(ujl¢(l) )3

are M samples of simulations from the multivariate distribution

f(u,I¢"’)-

Applying the Monte Carlo integration technique again,

equation (A3.1) is approximated by

E-filc—Jywovwiuww‘”)

=ZZ$3(“u)f(YlI“-m¢m)~ D (A3'2)

n=lj=l j
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A4: Conditional expectation of the score function

Lemma (c.f. a similar argument from Tanner, 1991, p.37):

3108 f(YJI w)
  

 

 

5108f(uI¢)

I &’ f(u,IY,¢)du,= at

Proof:

f(Y,,u,I¢)
Y =f( ,Ico) f(u,|Y,¢)

f(leup¢)f(ujl¢)
Y =

f( JI40) f(u,|Y,,¢)

5108f(Y,l¢) : 5108f(Y,|IIp(/J) + 3108f(u,|¢) _ 5108f(u,|Y,,(0)
  

 
 

fir at 31 at

_ 0+ 5108f(u,|¢) _ alogflHIIchD)

fir 37' '

Taking the expected value for both sides w.r.t. f(ujlYJ,(p):

é’logf(YJ|(o) = Ialogf(u,|(o) logf(u,IY .77)
 

a

f(u,IY .mdu, —I
 

f(ujlYpfldII,
 

  

0'11 0"! 52'

5’10 /( I71) 4101mm
= I gar“ f(u,IY,,¢)du,- I ’5, du.

 

=J‘alogf(uj1¢)

at f(u,IY .mdu, - gi— I f(u,IY,,¢)du,

 

= I mag/(um
3r f(uJIY,(o)du,. CI



APPENDIX B

Estimation of Starting Varlues

Starting values are vital to the efficient and successful

implementation of any iterative algorithm. In our case, if the

starting values are too distant from the final ML estimates, it

will take a long time for the program to converge. In the worse

case, the program will fail. It is because the starting values may

not be within a quadratic likelihood region of the maxima which

is a requirement for Newton-type maximization algorithm to

work (Seber and Wild, 1989). Precise estimation of starting

values may sometimes require iterations and becomes time

consuming. Hence a good choice of starting values are those

which are easy to compute and close to the final ML estimates.

Starting values for the fixed effects 7 are calculated by

regressing the logarithm of the dependent variable on the

independent variables related to the fixed part of the model. The

random part of the model is ignored for simplicity:

log(,u,.j)=A,j;/+B,ju szy. (B.l)

80
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By taking the datum Y,1. as an approximation for mean #0., we can

obtain starting values 7“” as the least square solutions of the

model:

log(Yy)=Au7(°’+eij, (B.2)

and

7(0) =(A'A)-1A'Z, (3.3)

where A=(A;,A;,...,A'J)' and Z:[(logYu,...,logYn‘1),...,(logYU,...,logYan )]'

are, respectively, the stacked matrix of the independent

variables for the fixed effects and the stacked vector of the

logarithm of the dependent variable across all the level-2 units.

An arbitrary small negative value in place of zero is used to

avoid undefined value for the logarithmic function: For example,

if Y.)- =0, Yijis set to be 10".

The above computed starting values for fixed effects are

used to calculate the starting values for the variance-covariance

matrix of the random effects:

Let

Z; =log(Yy.)—Au7‘°) zBou. (B.4)

Random effects of each level-2 units can be approximated by

regressing the difference between the logarithm of the dependent

variables and the predicted fixed part of the systematic
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component on the independent variables related to the random

effects:

uj" =(B'JBJ)"B'JZ;. (B.5)

Starting values for the variance-covariance matrix are

estimated by

J

T"’=%Zu§°’uj”', (Seber, 1984). (B6)

j=1

The above estimation has the advantage of being positive

definite with probability 1, which is a requirement for

generating the multivariate normal random variables in

perfoming Monte Carlo integrations.
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