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ABSTRACT

CORRELATION BETWEEN SPONTANEOUS RAMAN INTENSITY AND
SECOND-ORDER NONLINEAR RESPONSE

By

Sandjaja Tjahajadiputra

A theory that relates the density B(r,r',r";-m,m,o) of a second-order
nonlinear response to the derivatives of the molecular polarizability with respect
to normal mode coordinates has been established by Hunt et al. This suggests a

. possible correlation between vibrational Raman intensities and the nonlinear
susceptibility B(—Zm;m,m)responsible for frequency doubling. In this work, Raman
scattering experiments have beén used to test for a correlation between the
spontaneous Raman scattering intensity and the second-order nonlinear
§usceptibility B(-200.0).

The values of the derivatives of the isotropically averaged
polarizability, (&), and the polarizability anisotropy, (7*), taken with respect to
normal coordinates for mono-substituted benzene molecules (chlorobenzene,
bromobenzene, iodobenzene, aniline, toluene, and N-N-dimethylaniline) have
been evaluated in this work and plotted veréus the molecular hyperpolarizability,
B. Correlations are found between (a’) and (') and the B values from the
literature sources. The extend of the correlation depends on the vibrational

mode involved.
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Chapter 1

Spontaneous Vibrational Raman Scattering Theory
1.1. Introduction to Classical Raman Scattering Theory

Vibrational Raman scattering is essentially a vibronic process which
involves the initial, intermediate, and final vibronic states. Under special
circumstances, however, it can be viewed as a purely vibrational process similar
to infrared absorption. This possibility was first exploited by Pllaczek'.

Placzek proved that if the initial electronic state is nondegenerate}and the
excitation is off-resonant, the vibrational Raman intensities are given
approximately by the vibrational matrix elements of the electronic polarizability.
Both of these conditions are satisfied fbr off-resonant vibrational Raman
scattering from molecules in their nondegenerate ground electronic states. The
Placzek polarizability also complements the existing classical theory of
vibrational Raman scattering, in which the oscillating dipole moment induced by
the incident electric field iight is affected by the vibrational motions, resulting in

scattering with shifted frequencies.



1.2. Raman Scattering Tensor

The differential Raman cross-section a, ,,, is defined by? the ratio of the
number of scattered photons N, , (per unit solid angle around the direction of

observation k,) linearly polarized in the I, direction, to the number of incident

photons F,, (per unit area perpendicular to the direction of the incident light

beam k;) polarized in the |; direction. The unit vectors k; and |; are perpendicular
to each other and so are k, and |,

N, , = O,k Fk,l, (1.1)

'8

The cross-section for any combination of kil; and k,l; can be expressed in
terms of the nine components of a Cartesian tensor of the second rank?. This is

the ‘Raman scattering tensor’,

2

1674 3
Cx 1,k,1, = X Vo( Vot Vm — Vn)

Z(p-l' )(G-l,) a,,

po

(mR. e )(elR,|n) (mR.)(elR,jn)]

8,0 ("*—m)=2‘ h(

v,

° —V,,,—vo)—ir', h(v.-v,,+v°)-il",

where a _, (n(—m) is the po component of the Raman tensor for the transition
involving the initial (m|, intermediate (e|, and final (n| vibronic states; p and o
are unit vectors parallel to the p and ¢ axes; hv,,, hv, and hv, represent the
energies of |m), |e) and |n) and hv, is that of the exciting radiation; iT, is the

damping term introduced to avoid the divergence of Eq. (1.2) under resonant
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condition. The notation =’ means that (m| and (n| are excluded from the
summation. The first classical derivation of ap,(m—m) was done by Kramers

and Heisenberg® and later, quantum mechanically, by Dirac*. [ Note that is the

Raman scattering tensor component, whereas a_, is a polarizability tensor

component].
1.3. The Placzek Polarizability Theory

The mean square of the Raman tensor components are correlated to the
Raman intensities for a randomly oriented molecular system. To perform an

averaging over all orientations, it is necessary to resolve the Raman tensor {a_, }
into three parts?,
{ap,}= {a:,}+{a;,}+{a;,} (1.3)

where {af,,}, {a;,}, and {a:,} are the trace, symmetric and antisymmetric

parts of the Raman tensor the components of which are defined by?

L a,, +a,p)—(a2,) (1.4)
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The three Placzek constants G°, G* and G*° are the square moduli of

{a° } {a;,}, and {a;,,}, and are given by’

po

G°=)|a°

po

G*=Y|a: (15)

PO

G*=2 |2,

po

which do not change in their values under rotation of the coordinates. The three
Placzek invariants determine the Raman intensities from randomly oriented
systems. |

By use of adiabatic approximations? to the initial, intermediate, and final
states, Eq. (1.2) can be expressed in a more tractable form related to molecular

energy levels,

|m)=|g)[i)
|n) =|g)[J) (1.6)
le) =|e)[v)

assuming only transitions between the vibrational substates [1) and [ Jj) of the
ground electronic state |g). [v) indicates the vibrational substate of the excited
electronic state |e) acting as the intermediate state. The | ) and ( ] denote ket

vectors in the electronic and vibrational spaces, respectively.
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By combining Egs. (1.2) and (1.6), an adiabatic expression for the

dispersion can be obtained?,

((g[R. e v)(vKe[R,|9)()

ap,(j<—i)=.§g§{ h(v _Vo)—il‘..,

ev,gl

L (lgIR lefv)(v)e IRalg)[f)}

h( Vevgs + vo)—il",v

(1.7)

where hv,,, and hv,, are the transition energies for |e)[v)«|g)[i) and

ov.g

) [v)«|&)])-

The Placzek polarizability theory assumes the following two conditions':

ev.g

First, the ground electronic state is non-degenerate and second, the energy of

the exciting radiation hv, is so far from the resonance energy hv, ., that the
energy difference h( Vevgi = vo) is much larger than the vibrational energies.
The second condition leads to the following approximate relations': -
h(v"_g, +vo)—il',, zh(v,o_go+vo) (1.8)
and

h( Vevgr ~ VO)—irov zh(V;o.go - Vo) (1.9)

where hv,,, is the pure electronic transition energy for (e|«(g|, and the

damping constant I, is usually of the order of the vibrational energies and
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hence is negligible compared with h(v,o_80 - vo). Using the completeness
theorem of [v) in the vibrational space®, |
2[v)(v]=l | (1.10)
the sum over [v) in Eq. (1.7) can be left out. The new equation is given by?
8, (i«i)=(ila,.|i)

- (glR. 'e)<e|Rp|g>+<9'Rp|e><e|R,|9) (1.11)

iy h(v,ogo—vo) h(v,o_g°+vo)

where o, is the pc component of the electronic polarizability tensor®. In Eq.

(1.11), the Raman tensor component a, is given approximately by the ij
vibrational matrix element of o ,, which is expressed by the adiabatic kets with

the vibrational coordinates as parameters. Therefore, the Raman process
involving the vibronic transitions | g)[j)«|e)[v)«|g)[i) can be viewed as a
purely vibrational transition [ j)«[/).

For a free molecule with no external fields, there are two typical kinds of
electronic degeneracy: first, the degeneracy due to the spatial symmetry of the
electronic Hamiltonian, and second, the degeneracy due to time reversal
symmetry’. However, degenerate states are excluded by the first assumption in

Placzek theory. According to Kramers' theorem®, all electronic states of a system

having an odd number of electrons must be at least be doubly degenerate
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because of time reversal symmetry. Therefore, the ground electronic state |g) in

Eq. (1.11) must be an orbitally non-degenerate singlet state or a non-degenerate

spin-orbit state of an even electron system. Time reversal symmetry implies that

(1) if |e) is non-degenerate, (g|R,|e) must be real, and (2) if | e) is degenerate,
( g|R°|e) can be made real by taking the appropriate linear combinations of the

components of |e). From Eq. (1.11), the sum is taken over all degenerate

components of |e), which have exactly the same energy denominators, from the

earlier discussion, by taking proper linear combinations of (g|R0|e> and
(e|R,|g) that are real, (g|R.le)(e|R,|g) can be made real. Thus, the
polarizability tensor {a p,} is real and symmetric if the first assumption in

Placzek theory is implied.
1.4. Conclusion

Eq. (1.11) gives the formal expression in the Placzek polarizability theory.
Under off-resonant conditions, the Raman tensor {ap, (jei )} is approximated
by the vibrational matrix element of the electronic polarizability tensor {ap, }

which is real and symmetric given that | g ) is non-degenerate. Consequently, the

Raman tensor itself is real and symmetric within the framework of the
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polarizability theory. This leads to the conventional polarization rule of
vibrational Raman scattering, in which the values of the depolarization ratio p
are limited to 0<p<0.75.
The extension of the polarizability theory to degenerate ground electronic

states has been discussed by various authors®*'? and is not treated here.
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Chapter 2

Relationship Between the Spontaneous Raman Intensity and the
Second-order Nonlinear Response

2.1. Introduction to Nonlinear Optical Susceptibility Theory

Nonlinear optics covers a wide range of applications - this field deals
with the nonlinear interaction of light with matter. All nonlinear optical processes
involve light-induced changes of the complex dielectric response' of a medium. In
each nonlinear optical process, an intense electric field induces a nonli.near
response in a medium, which reacts modifying the optical fields nonlinearly.

Electromagnetic phenomena are governed at the electronic level by the
Maxwell's equations for the electric and magnetic fields E(r, f) and B(r, 1),

10B
VxE=———
B=-
10E 4n
VxB= EE‘-#- c J (2.1)
V.-E=4np

v.B=0 ,
where J(r, t) and p(r, t) are the current and charge densities, respectively.

charge conservation implies the equation of continuity’,

op
V-J+ Py =0. (2.2)

10
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One can expand J and p into series of multipoles?,

IP Y
J—J°+a—t+chM+E(V-Q)+...

P=Po -V-P—V(V-Q)+...

(2.3)

Here P, M, and Q, are the electric polarization, the magnetization, and the
electric quadrupole polarization, respectively. In many cases, it is more useful to
use J and p directly as the source terms in the Maxwell's equations, or to use a

generalized electric polarization, P, defined by’,

oP
J=J,+— 24

where J, is the dc current density. “The generalized P reduces to the electric-
dipole polarization P, when the magnetic dipole and higher order multipoles are
neglected. The difference between P and P is that P is a nonlocal function of the
field and P is local?,

With Egs. (2.2) and (2.4), Maxwell's equations appear in the form?,

VxB= ——(E+47zP)+ﬁJ
. (2.5)

“where P is now the time-varying source term. In general, P is a function of E that
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describes fully the response of the medium to the field™>.
“The polarization P is usually a complicated nonlinear function of E. In the

linear case P takes a simple linearized form given by,
P(r.t)=]" 1O (r-rit-t') - E(r,t")drat’ (2.6)
where %" is the linear susceptibility. The medium is assumed to be invariant, in

obtaining Eq. (26), and if E is a monochromatic plane wave with

E(rt)=E(ko)=9(ko)exp(ik-r-iot), the Fourier transformation of (2.6)

yields?,
Plr,7)oP{ ko
( )=x“(’(k,a)))-E(k,w) 2.7)
with?,
x“’(k,gg):ﬁ;(‘"(r,t)exp(-lk-r+imt)drdt (2.8)
The linear dielectric constant ¢( k,w) is related to " ( k, ) by?,
e(ko)=1+4m" (ko). (2.9)

In the linear dipole approximation, z“’( k,w) is independent of r, and hence

both z“’(k,m) and ¢(k.w) are independent of k. This applies for

homogeneous medium, treated at the macroscopic level, but not on the

microscopic level.
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In the nonlinear case, when E is sufficiently weak, the polarization P as a

function of E can be expanded as power series in E given by?,

P( r,t)=_tx“’ (r-rt-t)-E(r.t)drdt
+I_:x‘2’ (r-r,t—t,; r—r,t—t,):E(r,t,)
xE(r,.t,)dr, dtdr, ot

o XV (r-r t—t; r—r,t—t,;
+
- r—ra,t—ts)EE(r,,t,)

<E(r,.t,)E(r,.t, )dr, dtdr, ot o, dt
+...

(2.10)

where %™ is the n"-order nonlinear susceptibility. If E can be expressed as group

of monochromatic plane waves E(r,1) =2 E(k,,®, ), then Fourier transformation

of (2.10) yields?,
P(k.o)=P"(ka)+P?(kao)}+P?(kwo)+.. (2.11)
with

PY(k,w)= 2" (ko) E(ko)

Pm(k,a))=xm( k=k, +k,, 0=, t o, )E( k,,o, )E( k, o, )
(2.12)
PO ( k,w);z‘”( k=k, +k +k, 0=0t0 to, )

:E( k.o, )E( k, o )E(k,,w,)
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and
2 (k=k, +ky +...+K,,0=0,+0, +...+0, )
=7 (r-rpt -ty r-r,t-t,) (2.13)
xe lhlr-n)-o(t-t)esbalr-t)-onlt-t)] g gt ofr gif,

Similarly, in the electric dipole approximation, % (r.t) is independent of r,
or x"™(k,w) is independent of k. The linear and nonlinear susceptibilities
characterize the optical properties of a medium. Physically, x is related to the

microscopic structure of the medium via the nonlocal polarizability density.
2.2. Static Nonlocal Polarizability Density Theory

Nonlocal polarizability density theory characterizes the molecular

response to a local field, on a microscopic level. The nonlocal polarizability
density a(r,r’) is a linear-response tensor that determines the electronic
polarization induced at point r in a molecule, by an external field F°, acting at
point r’. The electronic polarization satisfies*

Ar)=-v-p(r) (2.14)
exactly; within a molecule, there is no ‘free’ charge, and P accounts for the

higher multipole charge densities, as well as the dipole density. Then P
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corresponds (on the microscopic level) to the generalized polariiatién of the
previous section. This relation also holds for the polarization and charge density
operators, P(r) and 5(r).
Hunt® has shown that, for a molecule perturbed by a static external field

F°(r) the total polarization of the electronic charge distribution is related to the

nonlocal polarizability density a(r,r’) and the hyperpolarizability density
B(rrr) by

P(r)=pP" (r)+Idr'a(r,r')- FP(r)
+ g J oo (rre YFe (r)F(r )+ (2.15)
=P (r)+P"(r)

where P“”( r) is the static polarization at r with no external perturbation.
As shown by Hunt®®, Hunt et al, Maaskant et al.”, Hafkensheid et a/.’,
and Keyes et al®, the nonlocal polarizability density a(r,r’) determines the

linear response to the field E, and the expression for the ground-state
polarizability density in terms of the sum-over-states formulation is®

(o|B,(r)] % ){k|B,(r)|0)

(Ek'Eo)

a,,(rr)=¢, 2, (2.16)

where (,, symmetrizes the expression with respect to the indices of the
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operators B, (r) and P,(r’). The prime on the summation indicates that, in

summing over the states k, the ground state is omitted.

Similarly, the expression for the nonlocal hyperpolarizability density
ﬂ(r,r’,r') is®

ﬂaﬂr(r’r"r.)
[ <0

“tn| ()| 1)( |8 () ) (kB ()

(E,-E)(E,-E,)

f’a(r)|0><0If’ﬂ(r’) k><k|f’,(r")

(Ek_EO )2

0> (2.17)

oﬂ

—Z',,<0

Hunt has shown that the derivatives of molecular properties with reépect
to the nuclear coordinates depends on nonlocal polarizability densities. When a
nucleus changes its coordinate via an infinitesimal vector SR, there are two
contributions to the change in molecular dipole moment; the first is due to the
nuclear displacement and the other is due to the electronic response. This

change in the nuclear coordinates also changes the electric field f at the point r

_l
due to the nucleus I from Z' |(r—:l|—), to"
r—
(r-R') |
fl=72'—2,7'T -R')6R! +...
2 7 TR R 2.18)

=f1 4+ 5 +...
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where £ is the field due to nucleus 7 in its original coordinate. The electronic
charge distribution responds to the change &f; via the nonlocal polarizability
density a( r,r'). At lowest order, the change in the electronic polarization 5P(r)
due to the shift SR’ is"’

8P, (r)=[dr'a,,(rr)sfs(r") (2.19)
Using Eq. (2.19), one can find an expression for the change in electronic charge
densitydp( r ) induced by the shift SR’ ; with Egs. (2.15), (2.16) and (2.18):"

&o(r)=[ ar'z' v, v, |r'-R!|" 6R!

- [(o| A(r) |k ){(K| B,(r)[0)+(0| (")

* ' (Ek‘EO)

k)| p(r)l0)] (220

where V. denotes the derivative with respect to r;.
Equations (2.18) and (2.19) imply"’
op(r)=[dr a(rr)-z' 7(r"R')-6R (2.21)
to the lowest order in SR'. |

The electronic contribution to the dipole moment is the integral of P(r)

over all space. Using equation (2.21) and adding the nuclear contribution gives'’
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Opy Ouyp N ou
AR~ SR. "GR! (2.22)

=2'6,+2' Idrdr'aq, (r,r) T, (r,R')

It also should be noted that the nonlocal polarizability density has the
Born symmetry'® "'

Oog (1) =0, (r7). ~ (2.23)

. » o
It is also possible to establish a relationship between ;;;:—, and &f'.

Suppose that a perturbing field F*(r) is applied to a molecule; then the effective

nonlocal polarizability density changes from the unperturbed value a( r,r') to'!

Qg ( r,r')=aaﬂ ( r,r')+Idr'ﬂap,(r,r',r')F;(r')
+%Idr'dr"qu(r,r',r",r")F,‘(r") F;( r") (2.24)
+...

where 7, ,(r,r’,r",r") is the second hyperpolarizability density. An infinitesimal
shift of nucleus 7 induces a response of the electrons to the change in the field
5f' via the nonlocal hyperpolarizability densities'' - that is, the effect due to the
internal perturbation 5f' cannot be distinguished from the effect of an external

perturbation F* of the same spatial variation. Therefore,

a, ( r,r')=a¢( r,r')+Idr'ﬂapr(r,r',r')Z’ T,‘,(r",Rl )b'R'a
+...

(2.25)
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The effective electronic polarizability is the integral of a;p(r,r') with
respect to r and r’ over all space. As a result, when a nuclear position in a
molecule shifts infinitesimally, the change in a(r,r’) is connected to the same
hyperpolarizability ﬂap,(r,r',r') that describes the electronic charge

distribution’s response to external fields by’

Ja By
R}

=Jardr e g, (r,0 ") 2 T (¢, RY) (2.26)

These results show that, when the nonlocal polarizability densities are
known, one can determine the dipole moment and polarizability derivatives with
respect to the nuclear coordinates. A change in position, however small, of the

nucleus will cause a change in the field on the electrons due to that nucleus.

oa
Using Eq. (2.26), one can perform a direct electrostatic calculation of _aRﬂ‘r ,

a

where all of the quantum mechanical effects are embodied in the functional
forms of the polarizabilities densities.
23. Frequency Depehdent Nonlocal Polarizability Density Theory

Hunt et al.'* were able generalize on the static nonlocal polarizability

density theory to the frequency-dependent case.
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The induced electronic polarization P™(r,0), caused by a frequency-
dependent external field F(r,0) depends on the polarizability density a(r; r, a)),

the hyperpolarizability density B(r;r’,«’,r*,@"), and the other higher-order
nonlinear response tensors'?
P""’(r,m)zjdr'a(r;r',m) F(r'o)

+-;—I:dm'jdr’dr'ﬁ(nr',co—m',r',co'):F(r;r',m—co')F(r',co') (2.27)

+...
Just as in the static case, the induced polarization, P™(r,0), is related to p™(r,0)
by12
VP (r0)=- p™(r.0) (2.28)
The frequency-dependent polarizability density for a molecule in the
ground state is given by'?

a,,(r;r',a))

=[1+C(w—-)—a))]<0 (229)

?,(r)G(@)B,(r")|0)
The equation is valid when the frequency o is off-resonance with
molecular transition frequencies, C((o—)-a)) is the operator for complex

conjugation and replacement of w by - 0. G(®) is given by™

Glo)=(1- @ )(H-Eg-h0) " (1- @), (2.30)
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where g, is the ground-state projection operator |0)(0|. The nonlocal
polarizability density fully determines the electronic charge redistribution linear

in the perturbing field F(r,»). Integrating a(r;r’, w) over all space with respect to

r and r’ gives the dipole polarizability a (), but moments of a(r;r’,») also
yields all of the higher multipole, linear response tensors®.

Similarly, the hyperpolarizability density ﬂ(r;r',w',r',w') gives the
polarization induced at r by the lowest-order nonlinear response to a field of
frequency o’ acting at point r’ and a field of frequency o” acting at r

Integrating S, (r;r', w',r',a)') with respect to r, r’ and r” over all space yields

B., (@,0"), while moment integrals of S, (r;r’,0’,r",»") yield all of the third-
order higher multipole susceptibilities. When o"” is zero, the expression for the
hyperpolarizability density is given by,
By (rr 00" 0) =
[1+C(o—-o)]i(0[B,(r)G(<)[B,(r")- (r")]§( )B,(r')0)
+(0[f.(r)&(e)[B,(r)- ()]G ()8, (r")0)
+(0|,(r")G (@) [P, (r)-P2(r)]C (e ) o(r) o))

This equation is derived by analogy with Eq. (43.b) in Ref. 13. Also,

(2.31)

P(r <0| P, )IO) , and similarly for P®(r’) and P*(r").
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Hunt et al® prdved that the change in polarizability density due to a
change &f in the internal field from nucleus I is determined by the same
hyperpolarizability density 8, (r;r',a,r*,") that fixes the response to external
fields.

When Eq. (2.29) is differentiated with respect to R} , the result is’

a\rr,.o [ - — "
%:[HC(&)—»-(:})]K:—IS: P,(r)G(w)Pp(r')|0>
(o)

+<o P,(r)—5B,(r) o>+ <o

a aR’l
The derivative of the ground state with respect to any arbitrary parameter

(2.32)

1
£ (15(0)8, (]2 )

n in the Hamiltonian is*
ﬂ>=-c‘;(o)”ﬂ—]"|o) (2.33)

and the derivative of the operator G(w) is given by"

G(o) --G(o) dH'Eo) G(o)
on on
+ 3 25(0)5(0)+8()5(0) 2 . e
on on

To obtain the derivatives needed in Eq. (2.32), one uses Egs. (2.33) and

(2.34) with n=R,. The change in the Hamiltonian due to the shift SR} is given

by
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oH

srr=la 2 v IR o) (2.35)

where V: represents a—j:: As in the static case, %— can be written in terms of

the polarization operator P(r). Using Eq. (2.15), integrating by parts with respect

tor, and recalling that V_|r-R'|" =V |r—R[", Eq. (2.35) bemhes"
%z- [dr 2! B,(r) Ty(r", RY) (2.36)
Combining Egs. (2.31), (2.32) - (2.34), and (2.36) the resultant equation'
-@ﬂ%‘%ﬁ)):“‘dr" ,Bm(r;r', a),r",O)Z' T&,(r",R‘) (2.37)

where Z' is the charge on nucleus I and T&( r',R‘) is the dipole propagator.
When there is a shift SR' in the position of nucleus I there is also a change in

the nuclear Coulomb field acting on the electrons; this equation proves that the
resulting change in polarizability density is determined by the same

hyperpolarizability density that fixes the response to external fields.
The derivative of the polarizability aaﬂ(cu).with respect to the normal-
mode coordinate q, is given by a linear combination of the derivatives in Eq.

(2.37)"%
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a“aaﬂ(w)_ da,(@) OR!
%, —g dR, I,

(2.38)

The Raman intensities are dependent to the matrix element (i]e,,[J).
Expanding a,, as a function of the normal mode coordinates, about the

equilibrium position (denoted by the superscript °),

a,,=a,,({a.})+Z=21c (3.-3:)
1 da,, , :
+32 % mlo(q,-q,)(qw—q,.) (2.39)

Then the matrix element becomes

(i]apa[i)=apa({ ) ( ][1)+Z “lo (i)(9.-93)[/)

(i)(a.-a )(cn -¢%)J) (2.40)

0“!750

+...
The vibrational states are orthonormal, so for i#j, the first term on the right

hand side vanishes. The third and higher terms correspond to vibrational

overtones, which are neglected here. Then,

Zi:ff lo (1)(g.-4:)[4). (2.41)

v

(ia,.[i) =

So the electronic property that determines the intensity of vibrational Raman
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scattering is the derivative of the polarizability with respect to the normal mode

coordinate, within the approximation made here.

2.4 Relationship Between Raman Intensity and the Hyperpolarizability

Density
. 5aﬁ,(r;r',a>) )
Equation 2.37 relates B to ﬂ(r,r',a;,r",o). Integrating over all
. . . oa,,
space with respect to r and r’ yields an equation that relates to

I
a

ﬂ(r,r',co,r",o). It requires comparatively few assumptions; the chief requirement

oa
is that the Born-Oppenheimer approximation be valid. Connecting ?‘Z’ to the

Raman intensity requires assumptions of Placzeks's Theory. Subject to these

conditions, the connection between Raman intensities and ﬂ(r,r',a),r",o)is

quantum mechanically rigorous.
This suggests the possibility of a correlation between Raman intensities

and the B hyperpolarizability tensor that gives rise to frequency doubling (as a
nonlinear phenomenon). The frequency-doubling intensity depends on ,B(w,w),

which can be obtained by integrating the hyperpolarizability density
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Blrr.o'ro):
Howo)=[ Arr.or,o)drdrdr". (2.42)
There are two differences between the integral expressions for ﬂ(w,w)

da,,
R

I
(]

and for

1. The frequency dependence of the hyperpolarizability density

aaﬂr

differs; for f(w,®) both frequencies are optical, but for =

one frequency in the hyperpolarizability density is optical while
the other is zero.

2. The spatial integration has a dipole-propagator weighting factor

oa By

for while there is no weighting factor in the integral for

1
ﬂ(w,w). A molecule may have a large hyperpolarizability

Ja
density and hence a large values of a‘R? , but a vanishing

a

due to symmetry.

For these reasons, the theory does not yield a precise relation between

Raman intensities and ﬂ(w,a)); however, it does suggest that a correlation may
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exist. Experimental results and a literature survey to test for correlation are

discussed in Chapter 3.
2.5. Conclusion

Equation (2.37) gives a new physical interpretation for integrated
intensities of vibrational Raman bands, by showing that the band intensity
depends on the response of the molecule to the change in the Coulomb fields of

the nuclei via the B hyperpolarizability density. In Refs. 3 and 6, methods of

finding required components of a(r; r',o) are illustrated. With sufficient

information on B (r;r",@’,r",0), it should be possible to distinguish the regions of

the electronic charge distribution that contribute the most to the vibrational

Raman band intensities of isolated molecules. The dipole propagator tensors

5“@(‘")

3R weight the regions nearest to nucleus /'2. This behavior
14

appearing in

supports additive approximations if g (r; r,o, r',O) is largest for small |r—r’| and

[r-r~|.
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Chapter 3

Experimental Correlation Between Spontaneous Raman Scattering
and the Second-order Nonlinear Response '

3.1. Overview of the Theoretical Parameters Used

Theories of Raman scattering with changes in the molecular vibrational
state have been proposed by Behringer', Shorygin?, Van Vleck®, Placzek*, and
Albrecht®. However, the work of Peticolas et al.® will be used in our discussion. In
spontaneous Raman scattering, an incident photon of frequency «, is annihilated
and the photon of frequency o, and the phonon of frequency w, are created.

®,=0,-, (3.1)
where the transition probability of such a process can be found®’ by thirdr-brder
perturbation theory.

The interaction Hamiltonian between the molecular electrons and the

radiation field is given by®® —p.E, where p is the dipole moment operator and E

is the electric field strength operator. The interaction between the electrons and
o JH . I
a molecular vibration is represented by | — | O, where H is the Hamiltonian of

a0 ),

the electrons and Q is the normal coordinate of the molecular vibration. The

29
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subscript 0 means that the derivative with respect to Q is taken at the
equilibrium position of the nuclei.
The differential Raman scattering cross section per molecule per

steradian in a liquid is given by,

@

| x(W7+1)/20,)|R(-0,0,0,) L

where g(0;) and e(w;) are the dielectric constants of the liquid at w, and w,,
respectively, c is the velocity of light, f/:[exp(ha)/kT)—I]-l is the average
quantum number of the thermally excited vibrations of normal mode Q, L is the

local field correction factor, and R(-a,@,,®,) is a matrix element which is given

11

by,
R(— a),,wz,a),.)

(gle.-nl8 XB a' Yo' |e,nlg)

%
5Q),
(Ens® -10,) (.., - 10
%
5Q),
(E,go +hw,)(Eago +ha)2)

+ fourotherterms }

>
ap
(3.3)

(gle,n|s Np a')a'le;-nlg")

+

where e, and e, are the polarization vectors of the incident and the scattered
light, g, o, and B are the electronic wave functions of the ground and excited

electronic states, and EJ and Ep,° are the energy differences between the



31
excited and the ground electronic states without coupling to the molecular
vibration.

When Q is a totally symmetric vibration, Kato ef al.'' assumed that the

diagonal terms of (é—]{) should dominate over the off-diagonal terms. Since

Q 0
(__J
QO

the last four terms in (3.3) become zero.

(¢ g->=(—a %’Z‘g’J =0 ad

Thus, R(-@,,a,,0,) is given by

R-a.0,0,)
5. 2[(E”0)2+hw, w,]
3 [(E.,,O)z-(hw])z][(Ea,o)z-(ha)z)z]

52),

where the wavefunctions are assumed to be real.

(3.5)

«(glesula’ Na a'fa'le.ule)

The electrons localized on a molecule in a liquid interact with the local
field which differs from the macroscopic field due to the polarization of the other
molecules in the liquid. Using the results of Armstrong et al.'? and Eckhardt et
al.”® and treating the radiation field classically gives the local field correction

factor'!

L={[e(a)+2]/3) (e(a,) +2]/3)? (3.6)
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Furthermore, when the incident and scattered light have the same
polarization, R(-@,®,,@,) is equal to the squared polarizability derivative

3 ')2+(%)(y')2, where (@') and () are the average isotropy and the

anisotropy of the derived polarizability tensor with respect to the normal

coordinate at the equilibrium position.
3.2. Experimental Results

For our experimental study, we require a group of molecules that exhibit
good Raman scattering intensities. For our purposes, we chose to use a set of
mono-substituted benzenes. Besides being readily available, this particular
group is known to possess a strong Raman scattering character. All chemicals
were purchased from Malinkrodt Chemical Company.

For a Raman scattering phenomenon, we can express the depolarization
ratio in terms of the derivation of the polarizability tensor associated with the k™

normal mode (where k is arbitrary). The relation is",

6}"2
= , 37
p a5(a’)’ +7y"? G0
The matrix element? is
_ 4
R =(a’)’ +(£)(y ). (3.8)

Combining Egs. (3.7) and (3.8), we obtain
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IR =(6;3p"—)( a)’ (3.9)
(6-75,)

By use of Eq. (3.9), tedious mathematical expressions otherwise needed

to evaluate the matrix element can be avoided. Also, by combining equations
(3.2), (3.6), and (3.9), assuming that the dielectric constants are approximately

equal (g4 = ;) and also directly proportional to the square of the refractive index

of the molecule, we obtain

Py (3.10)

X [ h(2;);1)J( gg)'

Similarly,

() ()
" (h(zvc'oh)J( gg)'

To obtain the values of (a’)’ and (»’)’, we need to find the values of the

(3.11)

depolarization ratio and the scattering cross-section.

The values of the depolarization ratio can be obtained experimentally,

. 4
via'
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e
gEN e

where L is an abbreviation for perpendicular and I is an abbreviation for parallel.

(3.12)

'I,(%) denotes the radiant intensity of scattered radiation plane-polarized

parallel to the scattering plane and propagating along a direction in the
scattering plane making an angle (%) to the direction of the incident radiation

plane-polarized parallel to the scattering plane.

In our experimental study, we used a CW Argon ion laser, with a 488 nm
excitation wavelength and the schematic layout shown in Figure 1. A 1-cm
pathlength cuvette was used as the sample holder.

The first experiments that were carried out yielded the average cross-
sectional area for the mono-substituted benzene molecules (chlorobenzene,
bromobenzene, iodobenzene, toluene, aniline and N-N-dimethylaniline) using
benzene as the standard. Table 1 summarizes the values obtained and
calculated, for the respective normal mode, from these experiments.

Figures 2 to 7 show the various bands intensities as functions of the
polarization of the radiation field. In order to calculate the intensities, a peak
fitting module program, called Origin, was used. The Origin peak fitting module
is primarily designed to analyze data with many peaks. The kernel of the module

is the Levenberg-Marquardt non-linear least-squares curve fitter, the Lorentzian

fitting function had been used®,
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24 o
ar 4(x-xc)’ +o?

(3.13)

where xc is the center of the peak, A is the area and o is the full width at half

maximum.

After determining the values of the intensities, the rest of the calculations

were done'using the equations given above to obtain the values of (&)’ and
(7)’, and thus (@’) and (7’) . These values are tabulated in Tables 2 to 7.

There are differences in the values of the intensities with different polarizations
because laser power used is different from day to day.

In the case of N-N-dimethylaniline, there are only four possible modes
that can be observed because N-N-dimethylaniline fluoresces after sometime
during the experiment;, and hence, peaks that are located in the lower Raman

shift frequency (less than 400 cm™) are harder to determine due to the

fluorescence effects.
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Figure 2 Raman spectra taken for different polarizations of chlorobenzene.
(a) ‘1., (b) “Iu, (c) "1, (d) "L.
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Figure 3. Raman spectra taken for different polarizations of bromobenzene.
(a) ‘1., (b) *In, (c) "1, (d) "In.
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Figure 4. Raman spectra taken for different polarizations of iodobenzene.
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Figure 7. Raman spectra taken for different polarizations of N-N-
dimethylaniline. (a) ‘1., (b) ‘L, (c) "1, (d) “I.



98e8L | L18€ | 896 | se98L | 0525 | z88 | zeesh | Lizy | 885 | 1816 | LLZLZ | ZES (143
€509 | 6vLL | 69 | 018G | LO9L | 6€S | 0269 | Z9LL | 1ec | Le9i8 | epeLz | 0619 | 8€9
ISEVZ | 98Sk | 6.2V | Lz6GL | Wby | L8yl | vZi6L | 0/2€ | 168 |8vicle| 61618 | 6LESZ | 0004
028G | 2651 | Lze | v6s9 | 8.vL | 69 | 8.6y | soLL | 098 | Lse8. | 006/ | €866 | €20l
9o8ct | 6¥0€ | 6LLL | Zb2ZL | 29ZE | €61 | ZilEEL | 6¥9Z | 108 | 8L¥SZL | €0ZOE | 0.6 | €604
€ Z | € Z ! € Z ! € Z }
. ; (,.uo)
"1, 1, "I, I epon
"'SOpOW JusJayip 10} 8UBZUSQOIO|YD JO ! A A v
1
pue * A 10 v ‘oljes uoneziejodep pajejnd|ed ‘eale |BUOIO8S-SS010 ‘AJIsudjul paule}qo Ajjejuswiiadxe ey "z o|qel




45

91E0 €€€0 | 6920 | S¥CO 19°€ Sh'y ve'e I XA ove
ceLo GEL'O | ¢ZL'0 | 6ELO G6'€ €6 66'€ v6'€ 8€9
coLo 0S600 | 9010 | SOLO oSl A1 0sSl Lyl 0ool
9Llo 610 | ¥OL'0 | 9¥60°0 Ly a9v [A°h 4 €6 €201
020 I8L°0 | ¢6L0 | L¥CO vi's 62'S L6V 9l's €601
€ [4 | € [4 b

& Q (,48°,.8ind8jow wo  01X) | (,4S",.8INd8joW W . O1LX) | (| Wwo)

oney oljey uoneziejodaq uoljoas-sso0.o abelany UO1}08s-SS01) epon
uonezuejodeq ebeleay

(pauod) 'z aeiqey




46

26t 89l ove
viv'i £9€'|L 8€9
ICEE 29S't 0001}
0¢0¢ Gl0¢ €20l
€0C'S 0] 4R €601
(.87 ,wo L01X) '(,4) (08w 01X (,2) (,.wo) epoy

(pjuod) ‘'z eiqel




47

"S104J9 |ejusWIIadXxa 0} anp papiwo aJe juswisadxe pJiy} 8y} WoJj sanjeA ay] 810N,

LE6EC | 8129t | 00SOL | ¥99SE | LG2LZ | ¥¥6CL | GOEYZ | €ELIYL | €006 |80/8LL| 06.¢¥8 | SOb.E 8G¢
G9Gs o174 YA (0] Xer4 £.88 860t 800¢ 209ty Sivl 1091 e0Sy. | €e0Sy 12891 €09
ygove | v8Shi 1988 | 0998F | L9991 | L.bEL | GC0LC | LLOLL | GS28 | €SLLBE | ¥960CC | SEELD 866
6CLS 6G2CS G68C | 6¥80L | 20VS v.SYy 121914 6£8¢€ /88¢ | 04¢8. | 9669¢€ | €.2I\¢C 120}
96v6 (01019 4 €99¢ | 9G0€l LLLS 20.€ L8 LZsy G0EC | €6vlLL | CS6ES | CL.ISI 1.0l
£ Z ] G Z ! G z ) G z ]
. . (,.wo)
", I, "I, 1, apon
SOpOW JUBJBYIP JO} BUBZUSQOLIOI] JO A A V
pue *’ A ) v ‘onjes uoneziejodep peje|nNojed’eale |BUOIOBS-SSO ‘AjISUBjul paulelqo Ajjejuswiiadxe ay) ‘¢ 8|qeL




48

'$J0JJ8 [BjuswiIadxs 0} anp papiwo aJe jJuswiiadxa pJiy) 8y} Wouy senjeA ay] 810N,

(A4 A0 8€Y'0 | 6/€0 | GOS0 LL'S 80°2 vevy 8L'v 8G¢

€020 €8L°0 | ¥EL'O | CL20 GG'E 09'€ €G'E €G€ €09

Gico 6610 | SEL'O | G620 66l 14°1% 14°]12 691 866

1820 €610 | 1920 | LOEO 8v'S 8E'G JAN] 69°G (FA0)8

.SC0 €820 [ 0910 | ¥SEO €G'€ l19E Iv'e 9G'E L0l

£ [4 I £ [4 I
d

oney d (,48°,.8Indsjow ,wo _0o1X) | (,4S", 8|ndsjow  ,wo . OLX) | (,.wo)

uoliezuejodeq oljey uonezueljodeQ uoljoas-ssolo abelany UO1}0as-SS01) epon
ebeleAy
(pauoo) eaiqel




49

669’ 669 852
€29’} 6Vl €09
1.8 02€'€ 866
SIEE G061 1201
859°Z 209’ L0l
(0.8 w0 L01X) '(,4) (.67 wo .01¥) (. 2) (,wo) epoj

(pjuod) g elqel




50

Sov8iL

v.0.L¥

1G€9C

€888l | OCIGS | CL.8C | LESOL | OvEYY | 6¥6EC | 86S08 | 619.EC | ¥EIEOL 144
8GGC 919¢ 89.¢ ¥.9¢ 810G (3 4% €9Cl £€9¢ G20C | 8vcey | 62LL6 | vOCCY €89
6L | LYS6L | 989EL | L69LL | 2629C | ¥C.lEL | €8L9 | 99/l | 86001 | CLCSLL | 06€66C | GLS.EL G66
GE6C Sv.S v.SS 9916 €969 1N4514 [A%) 24 Zv6s 196C | ¥S619 | 61PGSL | 1L2S88 Siol
cell | XAXA S. *{0yA% 656¢C orel 9901 €£6¢¢ v€6 2ses S0G81 06S6 8901

€ 4 } € 4 b € A 4 € 4 3
" T " T (,.wo)
I Iy 1, 1, 8pon
1
‘SOpOW JUBJaYIP JOj BUBZUBQOPO! JO° A A v
1
pue*’(, D v ‘ojes uonezisejodep paje|nojes ‘eale |BUOIDBS-SSOID ‘AjIsusiul pauieiqo Ajjlejuswiiadxe eyl ‘v e|qel




51

€6€0 ¥8€0 | ¢9€0 | ¢ev 0 698 S0l yAWA €LL Ggece
€10 0Zl'0 | G9800 | ¥ELO 68'G L9 .09 144°] €85
¥oLo 2910 | o¥L0 | 98I0 96l 00 8’6l 681 G66
L0 921’0 | 8800 L¥LO 8’8 €98 8.8 oL'6 Glol
9€C 0 l0E0 | €4C0 | SELO GC'l AN 154 A & Gl 8901
€ [4 b € [4 |

nl\ d (,4S",.8indsjow ,wo . 0LX) | (,4S", 8Indsjow ,wo . 0Lx) | (. wo)

oney oney uonezuejodeq uo1}0as-ss010 abelany UOI}08s-SS049) 8pon
uoljezue|odeq ebeleAy
(puoo)  peiqel




52

£89°1

8L¢.0 o144
LLE°} Gge’|l €86
69CY 12)°] G66
XA A 66€°C G0l
08t} 02880 8901
(2.8 w0 L01X) '(.4) (0.6 wo L01x) (. 2) (,.wo) apoiy
(pjuoo) ‘peiqel




53

1
pue * A 0 v ‘ojes uoljezisejodep peje|nojed ‘eaJe |BUOII0aS-SS0I0 ‘AJisuajul pauieyqo Ajjlejuswisedxs eyl

9GIG) | G/G/L | /6G8L | 062/} | 8261 | 8658) | 6ELPL | 96591 | 80L6L | 8€6ZS | 10/89 | 12Z0OL9 A
€e6L1 | 62601 | SG8€EL | LOZOL | LPPOL | €022ZL | LPO6 | 1686 | 8€EE6 | L8/90C | 9ZvL.iZ | €L€6€C | 98L
0.6l | €9281 | €0861 | 9PP9Z | 08L2C | €250 | GZLEL | LS9GL | 8¥ivL | OYOLLE | ¥BO8BLS | €6L6VP | +00L
886G | 6/G9 | 2919 | 0cz8 | 688L | ¥l.S | 9LLS | 8919 | €6y | Lvese | vvOSEL | 65Z8LL | LEOL
€€8. | 06¥8 | 8258 | SL9OL | LevOL | Svi8 | 2v09 | Li2Z8 | Liv9 | vELELL | £98€9L | OLpEEL | LlCl
€ 4 | € Z b € 4 ! € Z [
T T A-.Eov
1, I, "I, I, apow
"'SOpOW Judiayip 10} ausn|o} v,o.N A A v
'G 8lqeL




0S¥ 0 ¥8Y'0 | CEVY0 | ¥OP 0 v6'L 144 181 08l (¥4°]
LLLO 0€l’'0 | €600 | L0L0 G0'8 Gg8'. €1'8 GL'8 98.
Zv600 0Zi'0 | 85.00 | 0800 Lyl LGl 6l 24} 1200017
€10 ¢ri’'0 | 0010 | 69600 ev'e GL'E ov'e vL'€ LE0L
82L0 GGL'0 | OLL'O | 8LLO 80V 9y 9.¢ | 08¢ (1%4*
€ [4 } € [4 b
Q Q (,48°,.8In08j0w wo 0o1x) | (,4S", 8INdsjow ,wo . 04x) | (, wo)
oney oney uonezuejodaq uono8s-ssoud abelany UoI}08s-sS01) apon

uonezuejode( abeleAy

(puoo)

‘G e|qel




55

L€6°| 960.°0 12S
98¢'¢ leee 98/
88C'€ 169°€ 001
8.1°1 008°L LEOL
182C 9G1L¢C (3%4°

(¢ 82w0 01X) ‘Ai«v (.67 L01X) ,Arm v (,.wo) apo

(pjuod) ‘ge|qel




56

26v8l | 092/ | ¢SClC | ¢/80C | I8EEC | /8VLC | GES.LY | €LIOL | 24802 | ¥90LS oLery 6/9¢€9 0€S
G268l | 09C¢L | C090L | v62kL | 90LLL | 18Y8 | 09/8E | Llvby ov9Z | ¢vio8l | 0SLIvC | 9LElle 1/4%°]
yEBEE | 68ECE | LL6CE | €9SLY | B6GOE | GL6CE | EVEDL | LLVOE | 6CL.C | O¥SOYS | €0L189 | LOESCYO 966
8C0LL | 20.6 | ¥9E0L | LZicvL | 6VLLL | 86/6 | ¢918E | €.¢C. p.28 | 9Eev0C | 1008.C | S9ELSC | L2Ol
29cvl | 82091 | 99LSt | 2G99l | LSY.LL | LESEL | LE9GC | OL8PL | 8Y6EL | 60€68L | ¥¥ESLZ | 0L06€C | 8.C
> 4 l > c b € A l € 4 8
; (,.wo)
"I 1, ", 1, epow
S8pOUW JUBJALIP JOj BUNIUE JO' A A v
‘98|qel

1
pue *’ A ' 0 v ‘ojeJ uolezisejodep paje|nNdjED ‘BAJE [BUOIO8S-SS0JD ‘Ajisusiul pauleiqo Ajjejuswisedxe eyl




57

6160 66€0 | €990 | SOSO 8.1 861 0E’l 14V X4 (0]

9010 lvL’0 | 2/80°0 | 0E80°0 ic’. GZ'L 60, 6C'L vi8

6010 8ZL'0 | 69600 | LOLO l'0C v'oc €61 v'oc 966

82800 ¥01L'0 [ 99900 | £2200 908 €6, 8L'8 908 L201
9C¢L0 prL’0 | LCLO | €ELLO 0.2 GE'L oL's 191 8.¢l

€ [4 l € [4 l
Q d (,48",.8indsjow ,wo . 01X) | (,4S", 8|ndsjow  wo . 01X) [ (, wo)
oney oljey uonezuejodeq uoIo8s-sso.0 abelany UO1}09s-SS01) epon
uoijezuejodeq ebeisAy
(pjuod) ‘gejqel




58

Ov6'E Al 0€S
691 ¥ 18EY pi8
S66'L €128 966
LV 00b'S 1201
9/2'9 956G 8.zl
(2.8 2w0 L04X) '(.4) (0.6 w0 L01X) (. 2) (,.wo) apowy

(pauod) ‘g ejqel




59

Zrisy 628Cl 81952 Z981S L0942 008L 1 €v2092 09186 Gel
8559¢ v.€91 ov80Y ,.00¢€ lZLiE 08lEL - | €.96¥S | 06SPPC | 886
26982 Z8s8 €LL1) 62SE} Zovsi 0199 6.v/9€ LPESSL | LEOL
8s8leZl 1S9/ 2916 042} . Z186 (AR gs1e8 Zvivs | 0611
Z ! 14 b 4 } Z !
. . (,.wo)
"I 1, "I, 1, apoW
"Sepow juaiaylp Joj suljiuelAyiawip-N-N BA A v
1
‘Le|qel

pue *’ A o) v ‘ojes uonezuejodep pseje|nojed ‘Bale |euONOas-ss0O ‘Ajisuajul pauleqo Ajjejuswiiadxs ey




60

6i¥0 1620 8850 (XA 4 9SY G8't 1574
S1°0 €EL0 08L0 196 Gl 199 886
"6CL0 AN LELO 9z'9 [A4°] oL9 LEOL
1620 RAXAY 6v€0 6.1 144" 14 06t}
[4 I [4 l
d d
oiey oijey (48", 8indejow - wo 01x) | (,4S", 8Indsjow  ,wo . 0LX) | (,.wo)
uonezuejodeQ uonezuejodag uoloas-ssoo abelany UO|}098s-SS0J) apow
ebeloay
(pauocd) 'z e|qel




61

S51'9 08v'Z SE.
IEE9 8.2 886
G/E'8 0582 LEOL
oV €6€C 0611
(0.6 w0 L01X) '(.4) (.8 w0 01X (. 2) (,.wo) apop

(pjuod) "L eiqel




62

Figures 8 to 27 show the graphs of (&’) and (y’) plotted with respect to

the hyperpolarizability, B. The values of the hyperpolarizability, B, in figures 8 to

17 are taken from ref. 16 whereas in figures 18 to 27 the values are taken from
ref. 17. The one main difference between these two references is that in ref. 16

the value of aniline is tabulated and in ref. 17 the value of N-N-dimethylaniline is

tabulated.

3.3. Conclusion

Data in their current form show a definite correlation between the Raman
intensities and the B hyperpolarizabilities of the species and vibrations studied.

There are strong correlations between B and the derivative of the
isotropically averaged polarizability with respect to vibrational mode #2 in this
work, based on either set of data for the B hyperpolarizabilities. R values for the

straight line fits are ~ 0.97 in one case and ~ 0.96 in the other. A relatively high
level of correlation between (& '), and B is observed for B values from the first
set of literature data, and vibrational modes i = 1 to 4 (R ranges from ~ 0.87 to ~
0.97), and moderate correlations are found for (7) , and B, i=1to5 (Rranges
from ~ 0.68 to ~ 0.88). Generally, correlations are weaker based on the second
set of B values from the literature, although even in this case, for particular

modes and particular choice of isotropic vs. depolarized Raman scattering, high

R values can be found (R ~ 0.96 and 0.92 in two cases).
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To determine the validity of the correlations and to determine whether
differences in R values between modes and between a and y derivatives are
chemically meaningful, it will be necessary to obtain highly reliable data on the

Raman intensities and to discriminate among literature values of 3.
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Figure 8. ~ Graph of (&’), vs. B.
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Figure 10. Graph of (o’z‘ ') , Vs. B.
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Figure 13.
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Graph of (@), vs. B.
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Figure 14.  Graph of ('), vs. p.
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Figure 16. Graph of ( »’), vs. B.
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Figure 18.  Graph of (&’), vs. p.
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Figure 19.  Graph of (&), vs. B.
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Figure 21.
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Graph of (E ')3 vs. B.
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Figure 23.
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Graph of (&) , Vs. B.
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Figure 24.  Graph of (y’), vs. B.
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Figure 25.  Graph of ('), vs. B.
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Figure 27.
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Graph of (y°), vs. B.
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Chapter 4

Future Work

4.1. Extension of These Experiments

In our earlier experiments, we have obtained (@) and (y’) for 5 modes

of six monosubstituted benzene molecules. However, to test more adequately for
a correlation between Raman intensities and hyperpolarizabilities, additional
data are required.

We have propose to continue this experiment using other species with
known B values that can also be easily handled in the lab.

Calculations on two particular molecules (bromobenzene and N-N-
dimethylaniline) from tﬁe earlier experiments need to be redone. The data from
bromobenzene did not give a satisfactory result; and N-N-dimethylaniline
fluoresced during the experiment making it difficult to obtain a ‘clean’ spectra.
What we have proposed is to use the Ti-Sapphire laser to obtain a better

spectra in the case of N-N-dimethylaniline.
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4.2. Computational Calculation on the Hyperpolarizability Density in a
Non-uniform Field Environment

A

In the 1960s, Lipscomb et a proposed a set of computational
calculation on molecular' properties based upon a perturbed Hartree-Fock
calculations. Lipscomb et al. solved the limited basis set Hartree-Fock problem
in the presence of a perturbation term in the Hamiltonian to obtain the first-order
perturbed wavefunction, in a uniform field. They then applied the formulation to
the calculation of electric polarizability, magnetic susceptibility, and magnetic
shielding all in an invariant and uniform electric field environment.

What we propose to do is to compute the exact kind of calculation but in a

non-uniform electric field environment.
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