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ABSTRACT

SCALABLE DATA REDISTRIBUTION SERVICES FOR

DISTRIBUTED-MEMORY MACHINES

By

Edgar T. Kalns

Run-time data redistribution can effect higher algorithm performance in

distributed-memory machines. Redistribution of data can be performed between al-

gorithm phases when a different data decomposition is expected to deliver increased

performance for a subsequent phase of computation. Data-parallel Fortran languages,

e.g., HPF (High Performance Fortran), support run-time data redistribution. Data

redistribution can be invoked explicitly with primitives or may occur implicitly. One

type of implicit data redistribution occurs when the distribution of actual parame-

ters to a subprogram do not match the distribution of the dummy arguments in the

subprogram interface. Typically, with distributed-memory machines, redistribution

causes data exchange among processor memories resulting in interprocessor commu-

nication overhead. Consequently, there is a performance tradeofl between the higher

efficiency of a new data distribution for subsequent computation and the time required

to establish it.



This dissertation investigates the pertinent issues that affect the performance of

data redistribution on distributed—memory machines, focusing on four primary areas.

First, we address the partitioning (or mapping) of data onto processor memories.

A technique that facilitates the minimal amount of data exchange among processor

memories during redistribution between HPF’s regular patterns is proposed. Second,

we present the design of a portable and communication—efficient data redistribution

library whose implementation is portable among a large class of distributed-memory

machines. Portability is enhanced through MPI (Message Passing Interface) commu-

nication primitives. Third, we develop a framework for quantifying the scalability of

parallel algorithms together with the machines upon which they execute. Fourth, we

apply the framework to quantify the scalability of the data redistribution library for

a large range of processor configurations and data set sizes on selected distributed-

memory machines.
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Chapter 1

Introduction

Only in the past several years, Scalable Parallel Computers (SPCs) have come to

be viewed not only as indispensable for large—scale engineering and scientific applica-

tions, but also as viable platforms for commercial and financial applications. Many

SPCS, such as the IBM Scalable POWERparallel (SP-1 and SP-2), Intel Paragon,

Cray T3D, nCUBE-2/3, and Networks of Workstations (NOW), have demonstrated

scalable performance in these domains. Distributed-memory machines comprise an

ensemble of nodes where each node consists of a processor, local memory, and other

supporting devices. The nodes of the machine are interconnected by a point—to—point

(direct) or switch-based (indirect) network. These distributed-memory systems offer

proportional performance increases as the processor configuration size, network and

I/O bandwidth, and memory capacity and bandwidth are increased without changing

the basic machine architecture.

In order to fully utilize SPCS, the application software must also be scalable to

exploit increased computing capacity as it becomes available with larger machine

1



2

configurations. Programming SPCS has been a major challenge impeding the greater

success of such systems. Unfortunately, the traditional message-passing programming

paradigm for these machines based on separate name spaces is tedious, time consum-

ing, and error-prone for programmers. In contrast, the data-parallel or SPMD pro-

gramming model provides an easier and more familiar programming style for users.

The SPMD model is based on a single name space and loosely synchronous parallel

computation with a distinct data set for each processor. In order to provide high-

level language support for data-parallel programming, several data-parallel Fortran

languages have been proposed, such as Fortran D [1] and Vienna Fortran [2]. The

High Performance Fortran Forum, composed of over forty academic, industrial, and

governmental agencies, has developed HPF (High Performance Fortran) [3] in an effort

to standardize data-parallel Fortran programming for distributed-memory machines.

Many of the concepts originally proposed in Fortran D, Vienna Fortran, and other

data-parallel Fortran languages have been incorporated in HPF.l Dataparallel C [4],

and pC++ [5] represent language design efforts focusing on C-based data-parallel

extensions.

An essential part of HPF is the specification of the decomposition of data arrays

through compiler directives. Due to the non-uniform memory access times character-

istic of distributed—memory machines, determining an appropriate data decomposition

is critical to the performance of data—parallel programs on these machines. The data

decomposition problem involves data distribution, which deals with how data arrays

 

1The research contained in this dissertation is presented in the context of HPF due to its emerging

acceptance as a standard. With minor syntactic changes, the concepts proposed herein could be

applied to other data-parallel Fortran languages as well.
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should be distributed among processor memories, and data alignment, which speci-

fies the collocation of data arrays. The goal of data decomposition is to maximize

system performance by balancing the computational load among the processors and

by minimizing remote memory accesses (or communication messages). To facilitate

data distribution onto an application-dependent, rather than a machine-dependent,

topology, an HPF programmer declares a multi—dimensional mesh of logical (or vir-

tual) processors. The mapping of the logical processors to the physical machine is

determined by the compiler or run-time system.

HPF provides flexible primitives for specifying data decompositions; however, it

does not provide the programmer any guidance in selecting a suitable data decom-

position. Given the large number of distribution and alignment possibilities, it is

inherently difficult for programmers to select an appropriate decomposition which

maximizes program performance. Mace [6] proved that determining an optimal data

distribution, even for one- and two-dimensional arrays is NP-complete. Li and Chen

[7] proved that finding a set of alignments for the indices of multiple program ar-

rays that minimizes data movement among the processors is also NP-complete. A

number of heuristics for determining suitable distributions and alignments have been

proposed in the literature.

Assuming a viable technique for selecting an appropriate data decomposition, the

best possible performance may not be achieved with only a single data distribution

or alignment for the entire program. Depending upon the algorithm and its data-

parallel implementation, a particular data decomposition that is well-suited for one

phase of an algorithm may not be good, in terms of performance, for a subsequent



4

phase. Therefore, many data-parallel languages define mechanisms for explicit run-

time data redistribution and realignment.

1 .1 HPF Example

We illustrate the above data decomposition constructs in a small HPF code example

for solving a linear system of equations. Figure 1.1 illustrates an HPF program for

solving the system An: = b using Gaussian elimination and subsequent backward

substitution [8]. The basic idea of the algorithm is to reduce the matrix A to upper

triangular form in the first phase and then to use backward substitution to diagonalize

the matrix. In the program, A is declared as an n x (n + 1) array, where the (n +1)st

column of A stores the constant vector b. Following the array declarations are a set of

compiler directives, including alignment and distribution primitives described earlier.

Statements s7—s8 demonstrate the alignment of two different data vectors to the rows

of A, while statement 39 shows the alignment of another array to the (n +1)st column

of A. Statement s10 declares a vector of n logical processors. The matrix, along with

its aligned data, is distributed by contiguous rows in statement 31] onto the logical

processor array. Statement s27 specifies a run—time redistribution of data between the

Gaussian elimination phase (313-326) and the backward substitution phase ($28-$33).

Note that this code segment merely illustrates HPF constructs and is by no means

the most efficient algorithm.



 

 

31:

32:

33:

34:

35:

36:

37:

38:

39'

310:

311:

312:

313:

314:

315:

316:

317:

318:

319:

320:

321:

322:

323:

324:

325:

326:

327:

328:

329:

330:

331:

332:

333:

PROGRAM LINSYS(A,x,n)

REAL INTENT (IN) :: A(:,:)

REAL INTENT (OUT) :: x(:)

INTEGER INTENT (IN) :: n

INTEGER xindx(n)

REAL intrm(n), temp(n)

lHPF$ ALIGN x(:) WITH A(*,:)

lHPF$ ALIGN xindx(z) WITH A(*,:)

lHPF$ ALIGN intrm(z) WITH A(:,n+1)

lHPF$ PROCESSORS P(n)

lHPF$ DYNAMIC, DISTRIBUTE A(BLOCK,*) ONTO P

FORALL (i = 1m) xindx(i) = i

DO i = 1, n

maxloc = MAXLOC(A(i,i:n))

maxval = A(i,maxloc)

temp = A(:,maxloc)

A(:,maxloc) = A(:,i)

A(:,i) = temp

tempx = xindx(maxloc)

xindx(maxloc) = xindx(i)

xindx(i) = tempx

A(i,i:n+1) = A(i,i:n+1) / maxval

iHPF$ INDEPENDENT (j,k)

FORALL (j = i+1:n, k = i+1:n+1)

A(j’k) = A(jak) ' A(jai) * A(iik)

END DO

lHPF$ REDISTRIBUTE A(CYCLIC, *)

intrm(n) = 0

DO i=n, 1, -1

x(xindx(i)) = (A(i,n+1) - intrm(i)) / A(i,i)

FORALL (j = i-1:1:-1)

intrm(j) = intrm(j) + (A(j,i) * x(xindx(i)))

END DO

Figure 1.1: HPF Linear System Solver
 

 



1.2 Motivation

Two-dimensional and three-dimensional FFT (Fast Fourier Transform) [9] and ADI

(Alternating Direction Implicit method) [10] are frequently cited examples for which

efficient data redistribution between algorithm phases results in increased perfor-

mance. Use of redistribution mechanisms, however, involves communicating pro—

gram data arrays among the nodes of the machine resulting in interprocessor com-

munication overhead. Data redistribution may require a temporary interruption of

application-useful computation while processors await their new data. Consequently,

there is a performance tradeoff between the higher efficiency of a new data decompo-

sition for a subsequent algorithm phase and the time required to establish it.

Many researchers have espoused the necessity of incorporating a redistribution

capability into Fortran- and C-based data-parallel languages. The Kali language

[11] was one of the first to incorporate run-time data redistribution mechanisms.

DINO [12] addresses the implicit redistribution of data at procedure boundaries.

The Hypertasking compiler [13] for data-parallel C programs incorporated a run-time

redistribution facility. Both Vienna Fortran [14] and Fortran D [15] specify data

redistribution primitives as well.

While data-parallel languages provide run-time primitives that facilitate an ea:-

plicit change in data decomposition, implicit data redistribution is possible as well.

Array assignment statements, subprogram boundaries, and array realignment are im-

plicit sources of redistribution in data-parallel programs. For instance, consider two

arrays: A and B whose distributions are different. The assignment statement A=B
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causes an implicit redistribution of array B to match the distribution of array A. At

subprogram boundaries, data redistribution occurs when the distribution of actual pa-

rameters to a subprogram do not match the distribution of the dummy arguments in

the subprogram interface. Finally, realignment of data can require the redistribution

of data to satisfy the chosen new alignment.

Many data-parallel languages define dozens of language intrinsics that could be

implemented as software libraries, significantly simplifying the role of the language

compiler. Data redistribution is one type of operation whose implementation can

be provided as a software library. Providing a rich set of libraries to data—parallel

programmers is becoming increasingly popular because libraries offer some unique

advantages [8]. For instance,

0 A uniform interface provided by the library enhances the portability of programs

among various distributed-memory architectures.

0 Although a library provides a uniform interface to programs, the design and

implementation of the library can explicitly exploit machine specific features to

provide better performance.

0 The program development cycle for the consumer of the library can be shortened

as the correctness of libraries can be independently verified.

o The existence of libraries can simplify the tasks that the data-parallel compilers

would otherwise have to perform.

As there are multiple sources of redistribution in a data-parallel program, even

when it is not explicitly invoked by the programmer, we contend that research in

the area of data redistribution in distributed-memory machines has particular merit.

Changing array data decompositions within a program may yield substantial perfor-

mance gains, but only if the overhead of such operations is mitigated. Therefore, the
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efficient and scalable implementation of data redistribution mechanisms is important

to the overall performance of data-parallel programs on SPC architectures.

The term scalability has been used extensively in the parallel processing com-

munity to characterize the ability of parallel architectures and algorithms to exhibit

greater performance as more processors are employed to solve a problem. However,

the term “performance” is equivocal as it may be used to identify widely varying

algorithmic or architectural properties: speedup, execution time, processor speed or

efficiency, or the quality (accuracy) of a solution. Many of these properties have been

used either separately or in conjunction to describe the scalability of parallel algo-

rithms and architectures. The ambiguity regarding scalability leads us to ask several

questions: How are the relative scalabilities of parallel algorithms and machines re-

lated? Can a universal definition of scalability be applicable to all scenarios? How

can scalability be quantified? If scalability can be quantified, which property best

describes it, or is scalability a combination of factors? Answers to these questions are

relevant to providing scalable redistribution methods.

Efficient and scalable data redistribution necessitates consideration of many is-

sues. First, redistribution is a communication-dominant task, thus, the efficiency of

the communication mechanisms used is of great importance. For instance, the relative

merits of point-to—point or collective communication for redistribution must be con-

sidered along with the tradeoffs of using blocking or non—blocking message-passing.

Second, the amount of data communicated between processors during redistribu-

tion is a significant factor in the total execution time of the operation. Consequently,

methods for reducing the amount of data that must be exchanged via message-passing
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may benefit redistribution performance. Third, to be viable to potential data-parallel

programmers and compilers alike, efficient redistribution must consider the obtained

performance as data and processor configuration sizes as scaled. Quantification of

redistribution scalability using relevant performance metrics facilitates comparison

of different techniques. Fourth, to the extent possible, efficient redistribution mecha-

nisms should be portable among distributed-memory machines to enhance their utility

in today’s heterogeneous high-performance computing environments.

Problem Statement

The efiicient operation of implicit and explicit data redistribution on distributed-

memory architectures can greatly impact the overall performance of data-parallel pro-

grams. This dissertation investigates language, data mapping, message-passing, and

scalability issues, all of which affect the performance of data redistribution. This dis-

sertation is distinguished as the earliest known research to propose a portable and

scalable redistribution library, processor-data mapping techniques for optimizing data

exchange, and a framework for quantifying the scalability of data redistribution on

SPC platforms.

1.3 Organization of Dissertation

Chapter 2 discusses static (distribute and align) and dynamic (redistribute and re-

align) data decomposition. Salient data redistribution issues are discussed and related

work is summarized. Chapter 3 presents a technique for partitioning (or mapping)
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data onto processor memories that facilitates the minimal amount of data exchange

among processor memories during redistribution between a large class of regular HPF

distribution patterns. The technique is independent of the underlying machine archi-

tecture, and thus it is portable among distributed-memory platforms. We prove the

optimality of the technique with respect to minimizing the amount of data exchanged.

Chapter 4 proposes a data redistribution library, DaReL, for distributed-memory ma-

chines that utilizes the emerging message-passing standard, MP1 [16]. The library

supports multi-dimensional data redistribution among arbitrary regular HPF distri-

bution patterns. A uniform interface to DaReL is defined, facilitating its potential

incorporation into a data-parallel compiler. Chapter 5 proposes a framework for quan-

tifying scalability that incorporates end-user requirements to enable quantification of

the scalability of parallel algorithm-machine combinations, or pairs. We illustrate

the framework with a matrix multiplication case study to assess the relative perfor-

mance of several different algorithm-machine pairs. Chapter 6 presents performance

and scalability results. We demonstrate redistribution performance improvements

of up to 40% using the processor mapping technique (Chapter 3) on a distributed-

memory machine, an IBM SP-rc.2 We address the impacts of the mapping technique

on the data-parallel programmer and compiler, respectively. We extend the scalabil-

ity framework (Chapter 5) to quantify DaReL’s performance as data and processor

configuration sizes are scaled. Chapter 7 concludes the dissertation with a summary

of the major contributions and suggests potential future research directions.

 

2SP-a: denotas an IBM SP multicomputer consisting of SP-l processors and an SP-2 network

switch.



Chapter 2

Data Decomposition

Due to their non-uniform memory access times, determining an appropriate data de-

composition among different memories is critical to the performance of data-parallel

programs on distributed-memory machines. The goal of data decomposition is to

maximize system performance by balancing the computational load among the pro—

cessors and by minimizing remote memory accesses. Data-parallel languages, e.g.,

HPF, support compiler directives that statically specify the decomposition of data

to processor memories prior to program execution. Additionally, these languages

support modification of data decompositions during run-time in favor of a different

one that, presumably, is better suited to the ensuing computation. Existing data-

parallel Fortran languages, however, provide no inherent capability for determining

static data placement nor run-time modification of data decomposition. This chapter

surveys research in the area of data decomposition with particular emphasis on data

redistribution issues.

11
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2.1 Static: Align and Distribute

In HPF, data arrays are aligned relative to one another and then, as a group, they are

distributed onto an abstract, or logical, processor configurationl. This process of static

data decomposition is accomplished with the iHPF$ ALIGN, !HPF$ DISTRIBUTE, and

!HPF$ PROCESSORS compiler directives. These directives do not affect the result of the

program, rather they suggest an implementation strategy to the compiler. Therefore,

these directives may only appear in the declaration part of an HPF program.

The !HPF$ ALIGN directive specifies the collocation of data array elements from

distinct arrays. Figure 2.1 illustrates a possible alignment of an array, It to the m-th

column of an n X m matrix A. For aligning multiple arrays to one another, it is some—

times convenient to define an HPF template. The !HPF$ PROCESSORS directive defines

a processor configuration as a multi-dimensional mesh of processors. Data arrays, or

templates, are mapped onto a processor configuration with the !HPF$ DISTRIBUTE

directive. The programmer applies an HPF distribution pattern to each dimension of

a data array specifying the mapping of the data dimension onto a dimension of the

processor configuration. The number of data dimensions must equal the number of

processor dimensions. BLOCK, CYCLIC, BLOCK(b) , and CYCLIC(C) comprise the set of

regular data distribution patterns in HPF; * denotes the absence of a distribution

pattern for a dimension, i.e., the entire dimension is allocated to the processor. [17]

discusses possible HPF language extensions to permit user-defined array distribu-

 

1The mapping of logical processors onto the physical nodes of the machine is not within the scope

of HPF. Henceforth, we assume logical processor when we write processor, unless otherwise stated.
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tion patterns.2 With these mechanisms, the program data is aligned and distributed

among the processors. By HPF’s owner-computes rule, the processor that stores the

data element on the left-hand side of a program statement is responsible for computing

its update. Thus, the distribution of computation is determined by the decomposition
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Figure 2.1: Example of HPF alignment

With the BLOCK specification, contiguous blocks of an array are distributed to

each processor. If n is the data size along a given dimension and p denotes the

number of processors, the block size is [g] for the first p — 1 processors, the last

processor receiving the residual if it does not receive a full block. With the CYCLIC

distribution, elements of a dimension of an array are assigned to each processor in

a round-robin fashion. An extension of BLOCK and CYCLIC are the BLOCK(b) and

CYCLIC(c) distribution patterns. With BLOCK(b), each processor is assigned a data

segment of size b, with the restriction that n S p x b, while CYCLIC(c) distributes

round-robin contiguous blocks of size c to each processor. By definition, CYCLIC is

equivalent to CYCLIC(1). BLOCK(b) and CYCLIC(c) imply the same distribution when

 

2This dissertation focuses on regular distribution patterns as defined in the original language

specification.
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b = c and n S p x b; however, BLOCK(b) additionally asserts that there is no wrap-

around. The potential round-robin effect, when n > p x c, of CYCLIC(c) may be

difficult to discern at compile-time if c is an expression.

Figure 2.2 illustrates various data distribution examples: (a) and (b) Show an

eight-element vector distributed BLOCK and CYCLIC, respectively, on four processors;

(c) illustrates CYCLIC(c) where c = 2 on two processors; ((1), (e), and (f) show

various possible distributions for an 8 x 8 data matrix. The distributions for (d)—(f)

are shown as an ordered pair: the first pattern applies to the row dimension while

the second pattern applies to the column dimension. The processor IDs, indicating

data ownership, are shown in italics: in (a)-(c) they are superimposed over the data,

while in (d)-(f) they are shown as Cartesian coordinates. Processor IDs are numbered

beginning with 0. Recall that, the * denotes the absence of a distribution pattern for

a dimension. The row dimension is not distributed in (f).
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(d) (CYCLICBLOCK) (e) (BLOCKCYCLIC(2)) (f) (*,CYCLIC)

p=4x2 p=2x2 p=1x4

Figure 2.2: One- and two-dimensional HPF data distributions.



15

Figure 2.2 shows only a few of the many possible distributions for the one- and

two-dimensional data. Recall that depending upon the application algorithm, the

choice of data distribution will affect the computational load balance and the size

and number of remote memory accesses when implemented on a distributed-memory

machine. Selecting the optimal distribution is NP-complete as stated in Chapter 1.

The situation is further complicated when one considers the possible data array align-

ments. Automatically determining array alignments is an active area of research [18].

Several heuristics have been proposed to automatically determine an appropriate data

decomposition based on the application code. A survey of some of these heuristics and

their limitations and drawbacks can be found in [19]. Anderson and Lam [20] present

a mathematical framework for systematically determining data decompositions. A

first-order model for reducing the search space of possible distributions to a select

few based on architecture-specific communication and computation parameters can

be found in [21]. Xu and Ni [22] propose low-complexity algorithms for determining

array alignments in an effort to maximize processor load balance while minimizing

interprocessor communication. Ponnusamy, et al. [23] focus on automatic selection

of data distributions for irregular problems, i.e., programs for which the data access

patterns are input-dependent. Lee and Tsai [24] propose a dynamic programming

technique for determining data distributions.

The HPF programmer specifies an initial distribution of data onto a set of logical

processors as discussed previously. The data mapping, from the programmer’s per-

spective, is independent of the underlying machine topology and physical processor

IDs. The mapping of the logical processor IDs to the physical nodes of the machine
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is relegated to the compiler. To facilitate efficient program execution, the logical

to physical processor mapping must consider the machine topology, communication

subsystem, memory capacity, and number of nodes [25]. Chittor and Enbody [26, 27]

investigate logical to physical processor mapping for wormhole-routed architectures.

2.2 Dynamic: Realign and Redistribute

Run-time data redistribution has been shown to improve the performance of FFT and

ADI. HPF defines run—time primitivas for changing data alignment (iHPF$ REALIGN)

and distribution ( !HPF$ REDISTRIBUTE). These constructs may be inserted anywhere

in the executable portion of a program to change the alignment or distribution of the

global data arrays or templates. Henceforth, we shall refer to the aggregate program

data as the global data and the data owned by each processor, from the perspective

of the processor, as its local data.

To determine the appropriateness of utilizing these run-time primitives, an HPF

programmer must consider the tradeoff between the anticipated increased perfor-

mance of a new distribution or alignment and the cost of changing the data decom—

position which typically involves interprocessor communication. Given the difficulty

of estimating the execution time of a phase of an algorithm with a particular decom—

position, the effective use of realignment and redistribution is an important research

issue. Chatterjee, et al. [28] propose a model for assessing realignment cost, and they

formulate the alignment problem as an optimization of realignment cost. Algorithms

for automatically determining good mobile alignments, i.e., alignments which are a
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function of the loop induction variable, are presented. Kunchithapadam and Miller

[29] present a graph-coloring technique for recording data movement among nodes

during program execution. They propose a simple algorithm to optimize the graph

coloring to describe new distributions which would result in reduced communication.

Thus, the technique identifies places within a program’s execution where redistribu-

tion can effect greater program performance.

In contrast to HPF’s approach to user-specified static and dynamic data decom-

positions, techniques for automatic data decomposition are proposed in [20]. The

compiler, rather than the programmer, determines the decomposition of data for each

program loop. Redistribution is viewed as an implicit activity to be undertaken when

the decomposition of an array in a loop differs from the decomposition of the same

array in another (subsequent) loop. They propose a graph model, where nodes repre-

sent 100ps and edges represent redistribution communication costs between loops. A

greedy algorithm for eliminating edges with large weights, thereby eliminating costly

redistributions, is presented. The elimination of the redistributions deemed to be too

costly, however, is achieved at the cost of reduced parallelism in the resulting code.

Chase and Reeves [30] propose a similar approach for automatically performing array

redistribution. Arrays are grouped into compatibility classes, i.e., aligned together

and distributed. The compiler inserts assertions about the classes into the code, and

these assertions are checked during run-time to discern whether a redistribution is

necessary. Should a compatibility relationship change, redistribution is performed.

Unfortunately, the cost/benefit tradeoff of redistribution is not addressed.

Many researchers have espoused the necessity of incorporating a redistribution
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capability into data-parallel languages. The Kali language [11] was one of the first

to incorporate run-time data redistribution mechanisms. DINO [12] addresses the

implicit redistribution of data at procedure boundaries. Hall et al. [15] discuss global

optimizations that can be employed to a set of redistribution calls in a Fortran D

program. The Hypertasking compiler [13] for data-parallel C programs incorporated

a run-time redistribution facility. To avoid packing and unpacking of data and own-

ership calculation in some instances, the Hypertasking compiler performs data re-

distribution by moving an entire data set around to all processors, each processor

removing its portion. Chapman et al. [14] introduce Vienna Fortran’s dynamic data

distribution capability and discuss the high-level implementation of it in the Vienna

Fortran Engine (VFE).

2.3 Example of Redistribution in HPF

Figure 2.3 presents a segment of HPF code illustrating the use of data redistribution

in HPF. A 20 x 12 x 10 array of real numbers, A, is initially distributed onto a

three-dimensional processor configuration, P, with distribution patterns *, BLOCK,

and CYCLIC applied to the three dimensions, respectively. P contains forty processors

and each processor owns = 60 data elements. Following some amount of
20x12x10

4o

computation, A is redistributed with a new set of patterns, CYCLIC, CYCLIC, BLOCK,

onto a different shape logical processor configuration, Q. Figure 2.4 illustrates the

initial distribution of A (left) and its subsequent redistribution (right). The shaded

portions of the figure depict the data elements of A owned by processor (0,0,0).
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Whereas (0,0,0) owns data in globally contiguous locations initially, it owns data

in globally non—contiguous locations following redistribution. Note that processor

configuration 0 also consists of forty processors; however, P and Q vary in shape.

 

REAL, DIHENSION<20,12,10) :: A

lHPFS PROCESSORS P(4,1,10)

!HPF$ PROCESSORS Q(5,4,2)

!HPF$ DISTRIBUTE A (BLOCK,¥,CYCLIC) ONTO P

(computation)

EHPFS REDISTRIBUTE A (CYCLIC,CYCLIC,BLOCK) ONTO Q

(computation)

Figure 2.3: Example of !HPF$ REDISTRIBUTE.
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  Figure 2.4: Redistribution from (*,BLOCK,CYCLIC) to (CYCLIC,CYCLIC,BLOCK)

 

The example illustrates one redistribution possibility; many more distinct com-

binations of source and destination distribution patterns are possible. The HPF

programmer has great flexibility in declaring data and processor configurations of

arbitrary dimension. Recall, however, that HPF restricts the programmer to have

the same dimensionality for the data, processor, and distribution pattern declara-
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tions, e.g., in Fig. 2.3, the data, processor, and pattern declarations are all three-

dimensional. HPF does not require that the source and target processor configura-

tions have equal size.

2.4 Rudimentary Operation of Data Redistribu-

tion

Henceforth, we denote the initial (source) distribution pattern(s) of a program as D,

and the destination (target ) distribution pattern(3) as D,. Similarly, we shall refer to

the source and target processor configurations as P, and Pt, respectively. Note that

D; and P, are embedded in the !HPF$ REDISTRIBUTE primitive in Fig. 2.3.

The previous example illustrates that data redistribution results in changing the

mapping of data to processors, thus necessitating data exchange among the proces-

sors. From the perspective of a sending processor, the data exchange is viewed as a

scattering of data elements to the processors in Pt, i.e., the sending of distinct data

elements to each processor in the target processor configuration. This paradigm is

illustrated in the top portion of Fig. 2.5. From the perspective of a receiving proces-

sor, the data exchange is viewed as a gathering of data elements from the processors

in P,, i.e., the receiving of distinct data elements from each processor in the source

processor configuration. This paradigm is illustrated in the middle portion of Fig. 2.5.

When P, = Pt, data exchange is viewed as an all-to-all personalized communication

as illustrated in the bottom portion of Fig. 2.5.
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In order to perform data redistribution between D, and D,, a processor must

determine the identity of the processors from which it is to receive data as well as

the identity of processors to which it must send data. Once these sets are computed,

processors exchange their data. Recall that we have defined redistribution between

logical processors; therefore, the logical to physical processor mapping determines

the actual data movement among the memories of the machine. For example, logical

processors mapped to the same physical node would obviously not require message-

passing to exchange data.

2.4.1 Determination of Processor Send and Receive Sets

Several research efforts have focused on efficient methods for determining the send and

receive processor sets for redistribution. Gupta et al. [31] derive closed form expres-

sions for these communication sets based on Fortran D’s (BLOCK) , (CYCLIC) , and

(BLOCK-CYCLIC) distribution patterns. In this approach, global array (or template)

indices combined with knowledge of D, and D, are used to compute the send and

receive sets. An alternative approach [32] is for each node to scan its local data array

once, determine the destination processor for each element and place the element in a

message packet bound for that processor. In [32], one-dimensional data redistribution

is performed by distinct algorithms for different combinations of distribution patterns

for D, and D,. Distinct algorithms are proposed in order to introduce optimizations

that apply only to the given case. Multi-dimensional redistributions are implemented

as a series of (sequential) one-dimensional redistributions. This approach to multidi-
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Figure 2.5: Collective communication patterns
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mensional redistributions is unnecessarily costly and does not scale well. Stichnoth

et al. [33] prepose methods for computing ownership sets for array assignment state-

ments. Due to the similarity of determining send and receive sets, they advocate

computing these together on the sending processor and communicating the informa-

tion together with the data to a receiver. While this approach is chiefly intended for

communicating right-hand side operands, it can be incorporated into data redistri-

bution. Ramaswamy and Banerjee [34] propose a mathematical representation for

regular distributions called PITFALLS, which facilitates determining the processor

sets for data redistribution. [PITFALLS robustly handles arbitrary source and target

processor configurations and arbitrary number of data array dimensions in a scalable

manner. PITFALLS is being developed for inclusion in the PARADIGM [35] com-

piler project at the University of Illinois. The research presented in [31, 32, 33, 34]

focus on the efficiency of computing send/receive processor sets, excluding the actual

data exchange portion of redistribution which can be several orders of magnitude

more costly, in terms of execution time, than send and receive set determination; see

Chapter 6.

2.4.2 Data Exchange with Message-Passing

Data exchange on a distributed-memory machine is performed with either point-

to—point or collective communication message-passing primitives. In an effort to

standardize message-passing primitives on distributed-memory platforms, the MPIF

(Message Passing Interface Forum) [16] was founded. MPI defines a host of point-
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to-point and collective primitives. Collective communication primitives such as

MPLScatter, MPI.Gather, or MPLAlltoall may achieve lower communication laten-

cies and less network contention than straightforward point-to-point routines if imple-

mented to effect parallelization in communication. Techniques for efficient multiple

scatter and gather operations are presented in [36]. To achieve a higher performance,

the scatter and gather operations may be optimized for the specific architecture.

Portability of a redistribution implementation that utilizes MPI primitives would be

ensured among platforms which conform to the MPI standard. A data redistribution

library utilizing MPI is described in Chapter 4. McKinley et al. [37] survey issues

related to efficient collective communication in Wormhole-routed machines. Of partic-

ular relevance to data redistribution, they review techniques for all—to—all personalized

communication.

The efficiency of the simultaneous redistribution of data among physical proces-

sors is affected by the topology, routing, and switching mechanisms of the underlying

machine. The routing mechanism, such as dimension-order routing [38, 39] for hy-

percube and mesh-connected machines, affects communication latency. A technique

for communication-efficient data redistribution which addresses message contention

for certain topologies is presented in [40]. The authors propose a data redistribution

communication cost model which parameterizes the number of messages and their

sizes. Network contention is modeled by expressing the communication as a sequence

of permutations which may be executed in a fixed number of (contention-free) steps.

Multi-phase redistribution is defined as redistributing data to intermediate distri-

bution patterns, eventually arriving at the destination distribution. The model is
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used in conjunction with multi-phase redistribution to show that lower overall cost

can be achieved as compared to single-phase redistribution. Redistributing perfect

power-of-two sized arrays on hypercubes is discussed in [41].

As static distribution of a data array or template causes the distribution of all

aligned data; redistribution of those arrays or templates causes the redistribution of

aligned data as well. Depending upon the data alignment(s), there may be more data

distributed to some processors than others. Thus, during redistribution, the amount

of data to be exchanged among processor memories could vary significantly, resulting

in an unbalanced communication load. This situation could increase the time of the

redistribution operation for some physical nodes.

2.5 Implicit Redistribution

While the example in Figs. 2.3 and 2.4 illustrates explicit run-time redistribution

of data arrays, other program statements or HPF constructs can cause the implicit

redistribution of data. For instance, array assignment statements, !HPF$ REALIGN,

and subprogram interfaces may cause implicit data redistribution in data-parallel

programs.

Consider two arrays A and B that are distributed BLOCK and CYCLIC, respectively.

The assignment statement A=B causes an implicit redistribution of array B to the

distribution of array A. While such an assignment is not the same as a redistribution of

B, the former operation must perform the same functions as the latter, e. g., computing

processor sets and exchange of data. This type of redistribution may occur frequently



26

in data—parallel programs with many arrays that have dissimilar distributions.

Figure 2.6 illustrates how realignment can cause implicit data redistribution. Ini-

tially, a: is aligned to the last column of A; then it is shown realigned to the first row

of A. With the (BLOCK,*) distribution, this would cause the implicit redistribution

of a portion of a: from processors 1, 2, and 3 to processor 0. Processor 0 must remap

its own local data set to conform to the new alignment. Realignment, like static

alignment, may cause an unbalanced communication load since processors may not

own equal amounts of data.

 

 
 

 
 

  

   
  

Matrix A Matrix A

0 x’ 0
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3 3

lI-IPFS ALIGN x(:) WITH A(:,n) lHPFS REALIGN x(:) WITH A(l,:)

Figure 2.6: Realignment of 3: causes redistribution.

Implicit redistribution can occur at subprogram (subroutine) boundaries. If a

distribute or align directive is applied to a dummy argument specified in a subpro—

gram interface, then HPF requires that the corresponding actual parameter to the

subprogram conform with the dummy argument’s decomposition. If the dummy ar-

gument specifies a decomposition that differs from the actual parameter, implicit

data redistribution and/or realignment is necessary. Additionally, upon return to

the main program, the original decomposition of the parameter data arrays must

be re—established. Thus, there are two redistributions and/or realignments necessary
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REAL A(20,20)

!HPF$ DISTRIBUTE A(*,BLOCK)

CALL SUB (A)

SUBROUTINE 303(2)

REAL 2(2o,2o)

anprs TEMPLATE'T(20,20)

!HPF$ DISTRIBUTE T(BLOCK, BLOCK)

EHPF$ ALIGN WITH T::Z

Figure 2.7: Redistribution at subprogram interface    
for each parameter. Figure 2.7 demonstrates this type of implicit redistribution. In

this case, the actual parameter, A, originally distributed (*,BLOCK) is redistributed

(BLOCK,BLOCK) to conform with the distribution of the dummy parameter, 2.

Programmers will attempt to optimize the subprogram with a particular data de-

composition [20], so long as the change in decomposition does not result in higher

overhead than the performance benefit of a new decomposition. Remapping of the

actual parameter to the dummy argument can be overridden with HPF’s INHERIT

attribute. This attribute specifies that the dummy argument takes on the data de-

composition of the actual parameter, whatever it may be. Providing for any legal

distribution in a library, however, may be complicated and may notbe cost effective

[8]-

Johnsson discusses redistribution at subroutine calls in the context of designing

subroutine libraries [42]. He cites the ability to communicate data decomposition

information to the subroutine, and subsequent determination of whether to use redis-

tribution or realignment, as salient issues. These issues are explored in the design of
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FFT and matrix-vector multiplication subroutines. Hall et al. [15] propose insertion

of redistribution primitives in the caller, rather than the callee. This approach is

shown to lead to compiler optimizations, for instance, the elimination of unnecessary

redistributions.

2.6 Redistribution Optimizations

Due to the overhead cost that data redistribution represents, it can be beneficial to

explore optimizations that can reduce the execution time of data redistribution. For

instance, data that is to be redistributed at a certain point in program execution may

not be referenced in subsequent computation. Certainly, for correct program execu-

tion, such data need not be redistributed. For example, suppose the redistribution

of a template T with aligned arrays A and B is called for, but only B is used in

subsequent computation; redistribution of A would be unnecessary for correct pro-

gram semantics. If the compiler is able to recognize such a situation, then the data

could be left in place, reducing the redistribution cost. If such data represented a

significant portion of the whole and could be recognized by the compiler as unused

in later computation, then this optimization may prove useful. Less straightforward

situations, however, may prove more difficult to optimize. For instance, say that A is

a large matrix which is to be redistributed, but only a fraction of its elements will be

accessed subsequently. A desirable optimization would be to only redistribute data

elements which will be referenced later.

Pipelined redistribution of data is another possible optimization considered by
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several researchers. Strip Mining Redistribution [43] is a technique whereby the data

to be communicated in a redistribution is temporally overlapped with the subsequent

computation phase. Rather than redistribute all the data prior to resuming algorith-

mic computation, data is redistributed in a pipelined manner. A key issue in this

technique is the ability to identify the computation pattern under the destination

distribution pattern and to arrange the communication schedule to enable significant

overlapping with computation. The technique is shown to have speedups of up to 1.7

over “massive redistribution”, i.e., non-pipelined, when the data sizes are relatively

large compared to message start-up latencies. Strip Mining Redistribution is limited

to two-to-one and one-to—two dimension redistributions so that the size of the indi-

vidual messages fed into the pipe are large enough to amortize message startup cost.

Explicit Data Placement (XDP) [44, 45] is similar to Strip Mining Redistribution in

that it facilitates pipelined data redistribution. A novel feature of this approach is the

unified treatment of data and ownership transfer3 to allow for compiler-recognizable

optimizations. Using a 3D FFT application as an example, XDP is shown to facili-

tate overlapped data redistribution with algorithm computation. Unfortunately, no

performance data illustrating the performance of the proposed method are given.

Various message-level optimization techniques, such as message coalescing, mes-

sage aggregation, and message pipelining [25] may prove useful in data redistribution.

Message coalescing involves the combining of separate references to the same array.

Message aggregation combines messages from distinct arrays to the same processor.

Message pipelining attempts to hide communication latency through the separation

 

3In contrast to HPF’s owner-computes rule.
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of send and receive primitives. Message aggregation, for example, could be utilized to

combine aligned data in a common message buffer for redistribution to another pro-

cessor. Techniques for applying these optimizations to the data movement problem,

when the owner—computes rule is relaxed, are presented in [46].

Prior to data redistribution, whether using iHPF$ REDISTRIBUTE or at a subpro-

gram interface, the logical to physical processor mapping is already determined for

the initial data distribution, i.e., D,; however, it is possible to manipulate the data

element/logical processor mapping in the target, i.e., the mapping of P, onto 0,, so

long as the semantics of the target distribution pattern are not violated. For instance,

in Fig. 2.2 (b), the mapping of processors to data elements is in increasing processor

number order, i.e., 0, 1,2, 3. This mapping, however, need not be in increasing order.

For instance, the mapping order could be permuted to be 0,2,1,3. The alternative

mapping does not violate HPF semantics and can lead to possible run-time optimiza-

tions. In Chapter 3, we present a theory for permuting the processor-to—data mapping

for HPF patterns.

Wakatani and Wolfe [47] propose a technique for mapping logical to physical

processors in a data redistribution library that can reduce communication overhead.

This technique assumes an underlying torus topology and maps the data in such a

way that communicating processors are partitioned into non—overlapping sets, i.e.,

there is no channel contention between sets. Thus, by keeping communication local

to a group, message contention on the physical network, presumably, is reduced. The

drawback of this approach is that the logical to physical data mapping is based on

“local” information. In other words, the technique imparts a mapping based solely
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on what is best to optimize redistribution. However, since the logical to physical data

mapping must remain consistent throughout the execution of a data—parallel program,

the chosen mapping may increase communication cost elsewhere. We assert that the

compiler, privy to global information, i.e., the entire data-parallel program, ought to

determine the logical to physical processor mapping.



Chapter 3

Data Mapping Optimization

Since interprocessor communication is the predominant source of redistribution execu-

tion time, minimizing the total amount of data movement among processor memories

may increase redistribution performance. This chapter presents a technique, based on

logical processor to data element mapping, that minimizes the total amount of data

movement among processor memories for BLOCK to CYCLIC(c) , and vice-versa, redis-

tributions. We present mapping functions for one-to—one, m-to—m, one-to—two, and

two-to-one dimension data redistributions, and we prove their optimality. The pro-

posed methodology is architecture-independent facilitating its potential integration

into distinct redistribution implementations for different distributed-memory archi-

tectures.

In Chapter 6, we discuss the possible impacts on the programmer and compiler of

using the optimal mapping technique. We show that the technique offers the program-

mer extra flexibility in determining data placement in some instances. Additionally,

the technique could be used in a straightforward manner by a compiler. We demon-

32
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strate redistribution performance improvements over the traditional data-processor

mapping of up to 40% using the optimal technique on an IBM SP-x.

3.1 One-dimensional Logical Processor Mapping

We begin by illustrating the utility of the mapping technique for one-dimensional data.

Figure 3.1 illustrates an initial BLOCK distribution of a sixteen element data array, A,

onto eight processors and a subsequent redistribution of the array using the CYCLIC

pattern. The mapping of the initial distribution of data onto the physical nodes of the

machine is established at program initialization; see arrow labeled (1). Subsequent

redistribution among processors must retain a consistent logical to physical processor

mapping; see arrow labeled (2). Logical processor IDs (lpids) are in bold italics and

are superimposed over the data. Each processor owns two contiguous elements under

BLOCK, but two non—contiguous elements, with a stride of p, the number of processors,

under CYCLIC. The lpids are mapped in increasing numerical order as specified in [3].

We claim that this is an unnecessary restriction as any permutation of the lpids, 0.. 7,

can conform to the semantics of the CYCLIC pattern since data distribution to logical

processors in HPF has no concept of the “ordering” of processors. CYCLIC requires

only that the global data elements owned by a processor have global indices that are

separated by a stride of p. For clearer presentation, we View the data as being static,

and we manipulate the processor mapping to the data.

Figure 3.2 illustrates the benefit of permuting the lpids when mapping them to

data elements. Using the same sixteen element array of Fig. 3.1, we show two alter-
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Figure 3.1: Data Distribution and Redistribution onto physical nodes.

natives for redistributing the array cyclically. Choice 1 shows the conventional cyclic

mapping of lpids to data. This results in only two of sixteen data elements (marked

with filled rectangles) remaining on the same processor following redistribution. We

call this the number of data hits among all processors. Choice 2 shows an alternative

cyclic mapping with the lpids permuted, 0,4,1,5,2, 6,3, 7, which results in a total of

eight data elements, one per processor, remaining on their original memories. This

eliminates the exchange of six data elements among processors. Another advantage is

that processors 1,...,6' must send data to two processors when using Choice 1, but only

one processor each when using Choice 2, thus reducing the number of destinations.

Each of these factors reduces interprocessor communication overhead. The reduction
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in redistribution cost for the example in Fig. 3.2 is small given the size of the example.

If we extend A to be sixteen million data elements with the same permutation of lpids,

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

   

  

   

  

   

           

we eliminate the exchange of six million data elements across processors.l
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n 9
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Figure 3.2: Logical processor to data mapping alternatives.

3.1.1 Processor Mapping Technique

To consistently minimize the size of data transfer for arbitrary data block and proces-

sor set sizes, we develop a systematic method for determining a permutation of lpids

to map to the data. The technique ensures that each processor retains the maximum

amount of data possible while conforming to the semantics of the source and target

distribution patterns, D, and D,.

We establish the upper bound on the ratio of the amount of data that can be

 

1Assuming the number of processors is kept the same, the block size in BLOCK is two million, and

the block size in CYCLIC(c) is one million.
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retained on p processors to the total number of data elements, n. We present a

function for determining an lpid to data mapping for redistribution from BLOCK to

CYCLIC(c)2 that achieves the upper bound. We make the following assumptions:

1. Let p be the number of processors numbered 0..p — 1, and n be the total num-

ber of data elements, numbered 0..n — 1, distributed over p. We assume each

processor owns b elements, thus b = n/p.

2. We consider redistribution between BLOCK and CYCLIC(c) patterns; the

BLOCK(b) pattern, where b is a variable, is not considered; b = n/p by as-

sumption 1. For CYCLIC(c), we assume that c divides b, i.e., b = cz for an

integer z.

3. If the data is initially distributed among p processors, then we assume that the

data is redistributed among p processors.

Extensions of the above assumptions to the general case will be discussed in Chapter 7.

Definition 1 Define r as the number of data elements of the global array that re-

main (data hits) on their original processors following redistribution between BLOCK

and CYCLIC(c). Define HitRatio as r : n and MaxHitRatio as the upper bound on

HitRatio.

 

2Redistribution is symmetric in terms the amount of data movement among processors, i.e.,

redistribution from BLOCK to CYCLIC(c) or redistribution from CYCLIC(c) to BLOCK results in an

equal amount of data movement.
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Lemma 1 Let b and c be the block sizes in the BLOCK and CYCLIC (c) patterns, respec-

tively. Ifn = bp and z = b/c, where z is an integer, then MaxHitRatio = [ékp : n

and HitRatio S MaxHitRatio.

Proof: Case 1: z = ip, for all i Z 0,i is an integer. For every cycle of cp

data elements, each lpidj, 0 5 j g p — 1, maps to c contiguous data elements with

CYCLIC(c). Since b = icp, there are i complete cycles of lpids that map to one

complete data block owned by lpid,- under the BLOCK pattern. Processor lpid,- will

map to exactly ic of the elements, i.e., there are ic data hits. For p processors, the

number of data hits is icp = [%]cp = [%]cp. HitRatio is [$[cp : 12.

Case 2: (i — 1)p < z < ip, for all i > 0,i is an integer. Since b < icp, there cannot

be i complete cycles of lpids mapped to lpids-s original block of data under BLOCK.

Thus, the number of hits can be no greater than i for each lpid; consequently, the

number of hits across all processors can be no greater than icp. The remainder of

the proof follows as in Case 1. D

MaxHitRatio is achieved with any permutation of lpids when 2 is an integer mul-

tiple of the number of processors, i.e., when 2 = ip. However, our goal is to achieve

the upper bound for all values 2 where (i — 1)p < z < ip. In order to satisfy this aim,

we must consider different permutations of the lpids to maximize the number of data

hits. Figure 3.2 demonstrates that not all permutations of lpids yield MaxHitRatio.

Next, using the semantics of D,, we define a function for determining a permutation

of lpids to map to the data array.
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3.1.2 Mapping Function

Define a p—tuple, (qo,q1,q2, ...,qp_1), as p place holders. Let f : i —t j be a function

that maps lpid,- to place holder q, for 0 S i, j S p — 1. An assignment of each lpid

to a place holder specifies a permutation of the lpids and represents a mapping of

lpids to data elements for the CYCLIC(c) distribution pattern. There are p! possible

permutations for p processors and it may be the case that many of the permutations

yield a ratio of MaxHitRatio. However, exhaustively testing each permutation to de-

termine whether it produces the ratio would be impractical since this would require

an exponential amount of computation for general p. Therefore, we present a func—

tion for determining a permutation that achieves MaxHitRatio for b, p and c. Each

lpidg, 0 S i S p— 1, maps to a unique gm). Equation (3.1) specifies the function that

maps lpid,- to qf(,-).

f(i) = (iz) mod p, 0 S i S p— 1, z = b/c. (3.1)

The intuition behind the mapping function is to first view the place holders, qj, as

a circular list. The function maps lpido to place holder qo, maps lpidl 2 places from

lpido, maps lpidg 2 places from lpidl, and so on. In general, we map lpid-+1, (2 mod p)

places from lpidg. Figure 3.3 illustrates the behavior of f applied to different values

of z and p. For simplicity, we choose c = 1 which reduces D, to CYCLIC. Part (a)

shows an example for p = 7 and z = 4, while part (b) illustrates the case for p = 6

and z = 4. The mapping is broken into rows to better illustrate the distance 2 = b/ 1

between consecutive lpids. The distinction between the two examples is that f : i —) j
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is one-to—one in part (a), but f is not one—to—one in part (b); that is, in part (b), more

than one lpid maps to some locations, while no lpids map to other place holders. More

formally, depending on the values of z and p, it is possible that f(i) = f(j), i at j.

While f yields one permutation for part (a), it produces six possible permutations3

for part (b): since lpido and lpid3 map to qo, it turns out that we can arbitrarily map

the two lpids to place holders go and q;. The same holds true for lpid; and lpids to

place holders q2 and q;, and for lpidl and lpid4 to place holders q, and q5. We shall

prove this result in a later lemma.
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Figure 3.3: Mapping lpids to place holders.

3.1.3 Optimality of Mapping Function

Given arbitrary z and p, the gcd(z, p) determines whether f is one-to—one or not. Lem-

mata 2 and 3 establish this. Lemmata 4 and 5 establish that f achieves MaxHitRatio

whether or not it is one-to—one.

Lemma 2 Let p and 2 be natural numbers and z = b/c. Let gcd(z,p) be the greatest

common divisor ofz and p. Ifgcd(z,p) = 1, then f : i —>j establishes a one-to-one

 

3all optimal in terms of MaxHitRatio
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mapping between lpidg, 0 S i S p — 1, and place holder qj, 0 S j S p — 1. In other

words, ifgcd(z,p) = 1, then f(j) 7b f(k) for all j,k and 0 S j,k S p — 1, j 7b 13.

Proof: Proof by contradiction. Assume gcd(z, p) = 1, f(j) = f(k) = n for

arbitrary j,lc and choose ls: > j. Recall that the mapping function, f, maps each

lpid-+1, (2 mod p) places from lpid,. Let r = k — j, then lpid;c is mapped a distance

of r(z mod p) place holders from lpidj. Since f(j) = f(k) = n, then lpid,- and lpid;t

map to the same place holder, so their distance, modp, is zero, i.e., r(z mod p) = 0.

Since r > 0, it must be that 2 mod p = 0. This implies that the gcd(z,p) > 1, a

contradiction. Thus, our assumption that f(j) = f(k) = 13 when gcd(z,p) = 1 is

false. Cl

Lemma 3 Let p and 2 be natural numbers and z = b/c. If gcd(z,p) = k, then f

maps lpid,+J-(,,/k) to qu for 0 S i S p/k — 1 and 0 S j S k — 1.

Proof: Show that f(i) = f(i +j(p/k)) for 0 S i S P/k — 1, 0 Sj S k — 1.

f(i) = f(i +155)

3
k)z modp(iz) mod p = (i +j

(iz) mod p = (iz + jz-E) mod p

(iz) mod p = (iz) mod p + (jzg) mod p
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Since I: divides z, jzfi = mp for some integer m. mp mod p = 0 for arbitrary m.

Thus, the second term of the sum, (jzf) mod p = 0, so we are left with

(iz) mod p = (iz) mod p

We have established two lemmas that capture the behavior of f in Equation (3.1)

for natural numbers 2 = b/c and p and shown the relationship of gcd(z,p) to the

function f. In Fig. 3.3 (a), gcd(z, p) = 1 and thus f is one-to—one, while in part (b),

gcd(z, p) = 2 and thus f maps two lpids to place holders qo, q2, q4. Next we establish

two lemmas that show f will produce permutations that always yield MaxHitRatio.

Lemma 4 Let p and 2 be natural numbers and z = b/c. If gcd(z,p) = 1, then f

determines a single permutation of lpids that achieves MaxHitRatio.

Proof: Since f maps lpid,“ z places from lpidg, each lpid will map, under

CYCLIC, to the first data element of its data block under BLOCK. Figure 3.4 illustrates

the situation for arbitrary lpid,. Thus, there is always at least one data hit per lpid.

Case I: If 2 S p, then there are exactly 0 data hits per lpid. The mapping cycle

begins with lpid,- ensuring c data hits. Since 2 S p, which is equivalent to b S cp,

lpid, cannot map to another 0 data elements of the b-sized data block. If it did, this

would violate the semantics of a cyclic mapping. Thus, there are exactly c hits per

processor, cp hits over all processors. It follows that cp : n = [ékp : it since b S cp.
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Case 2: If 2 > p, then there are at least c data hits per lpid as established

above. Since lpid,- maps to the first element of the data block, it will also map to

the (cp + 1)th element as well since 2 > p, see Fig. 3.4. Let j = z/p = b/cp (integer

division), then lpid,- will map to elements numbered kcp, kcp + 1, ..., kcp + c — 1 for

0 S k S j - l; a total of cj elements“. Thus, there are jc = [file data hits per lpid

  

 

 

 

 

 

  

and [ékpdata hits over all lpids. Again, [$[cp : n is achieved. D
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Figure 3.4: lpid,- is mapped to first element of its data block.

Lemma 5 Let p and 2 be natural numbers and z = b/c. Ifk = gcd(z,p) > 1, then

the k lpids that map to €111; under f can be remapped, in any of k! ways, to the place

holders QikaQik+laQik+2a"-aQ(i+l)k-11 f0? 0 S i S P/k — 1- A” (P/klk! permutations

yield MaxHitRatio.

 

4Data elements are numbered 0..b — 1 for the data block owned by lpidg.
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Proof: In Lemma 3, we established that if k > 1, then It lpids, namely

lpid,-+,-(p/k) for 0 S j S k — 1 map to the same place holder, qu. Consequently,

k lpids map to the first data element of lpidi-s data block under BLOCK.

Case I: If 2 S p, then b S cp, and there are exactly c data hits per lpid. Fig-

ure 3.5 illustrates the situation. If 2 S p, then k S 2. Thus, ck S cz and cz = b.

Furthermore, the k lpids with c data elements each can “fit” into lpide b—sized data

block. Each lpid that mapped to place holder qf(i) can be remapped to one of the first

ck data elements regardless of the permutation of the k lpids. Since lpid; is in this

group, there are c data hits for it. lpid,- cannot appear again within the data block

since b S cp. Therefore, there are exactly c data hits for lpidg, cp =[%]cp data hits

total among all p processors.

l
b

data _

elements [PM i
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T C(gcd(2.12))
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Figure 3.5: 2 S p.

Case 2: If 2 > p, then b > cp and there are at least c data hits per lpid as

established above. For some integer m, if mcp < b < (m + 1)cp, then there are me
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data hits for lpidg; since all p lpids map at least m cycles to a b—sized data block.

We claim that there are (m + 1)c data hits, even when b < (m + 1)cp. Figure 3.6

illustrates the situation. There are m groups of p processors mapping c-sized blocks

to lpidfis data block under BLOCK. We must show that lpid,- maps to one of the last

b — mcp elements of the data block. In other words, show ck S b — mcp. Proof by

contradiction. Assume ck > b — mcp. There exist two integers, r, s, such that z = rk

andpzsk. Ifz>p,thenkSp.

ck>b—mcp

k>§—mp

c

k>z—mp2rk—mk

k>rk—mk

k>k(r—m)

m>r

mp>rp

z

z>mp>—

Z>—Z
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Since 19/1: 2 1, we have a contradiction. Thus, c(gcd(z,p)) S b — mcp. Given this

result, lpidfi-s c—sized block must appear within the last b — mcp elements of the data

block regardless of permutation order. Therefore we have (m + 1)c data hits per lpid;

(m + 1)cp for p processors. Cl
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b : ' m groups

elements lpid; . .T
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(b - mcp) < Cp
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o

o
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(BLOCK) (CYCLIC(c))

Figure 3.6: z > p.

Lemmata 1 through 5 prove the following result.

Theorem 1 For redistribution from BLOCK to CYCLIC(c), where b and c are the

respective block sizes, 2 = b/c for an integer z, p is the number of processors, and

n = bp is the number of global data array elements, the logical processor mapping

function in Equation (3.1) achieves MaxHitRatio = [élcp : n.
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3.2 Multidimensional Logical Processor Mapping

This section extends the logical processor mapping technique presented in Sec-

tion 3.1 to m-dimensional data arrays. Specifically, we extend the technique

to optimizing the logical processor mapping when redistributing from (BLOCK,

BLOCK, . . . , BLOCK) to (CYCLIC(CO) . CYCLIC(CI) , . . . , CYCLIC(6m_1)). Addition-

ally, we demonstrate the approach for redistribution of two-dimensional data that is

(1) initially distributed in both dimensions and subsequently redistributed in only

one dimension, e.g., (BLOCK,BLOCK) to (CYCLIC, *), and (2) initially distributed

in one dimension and then redistributed in both dimensions, e.g., (BLOCK, *) to

(CYCLIC(cl) ,CYCLIC(62) ).

3.2.1 m-dimensional Redistribution

We extend the technique by applying the one-dimensional lpid mapping to each

dimension of the global data array. Let A be a m-dimensional data array with

no x n1 x n; x x nm_1 data elements. The PROCESSORS directive in HPF declares

a processor arrangement specifying the name, rank, and extent in each dimension.

Let P = (p0, p1, ..., pm_1) be the processor arrangement over which A is distributed.

Let B = (bo,b1, ...,bm_1) and C = (co,c1, ...,cm_1) be the set of block sizes and cyclic

block sizes respectively for each dimension of A. We extend Equation (3.1) to Equa-

tion (3.2) to map the rectilinear set of lpids p, to the n,- data elements in the j-th

dimension for O S j S m — 1.
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9(1) 2 (le) mod 19,-, 23' = j/CJ', 0 S 2 S R, - 1,0 Sj S m — 1. (3.2)

For m-dimensional data redistribution, MaxHitRatio is very similar to the ratio

presented in Section 3.1; it is the product of the MaxHitRatios for each of the m

dimensions. We present a lemma to substantiate this result.

Lemma6 MaxHitRatio for a m-dimensional global array A as defined above is

”gigglcopo X X l—bmlCm—IPm—l) : (no x x nm_1) and the mapping func-
Cm—le—l

tion in Equation {3.2) achieves the upper bound.

Proof: Lemmata 1 through 5 established that [élcp : n is the MaxHitRatio

for one—dimensional data and that the mapping function, f, achieved the upper

bound. For m—dimensional data, the product of the upper bounds in each dimension

yields the maximum data hit ratio for the m-dimensional array. The function g is a

generalization of f. By applying g respectively to each dimension, the upper bounds

are achieved. [:1

Figure 3.7 illustrates 9 applied to an 18 x 16 data matrix distributed across a

3 x 4 processor grid; lpids are in bold italicss. We redistribute the data matrix from

(BLOCK,BLOCK)to (CYCLIC(B) ,CYCLIC(2)). The lpid to data mappings for D, in

both dimensions is marked Block. The traditional cyclic mapping of lpids to data

is indicated with Trad, while the optimized technique using g is shown with Opt.

The key to the right of the figure indicates data hits following redistribution for the

 

5Subscripts in the figure label denote the number of processors in the given dimension.
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traditional and optimized mappings. The traditional mapping yields HitRatio = 1 z

12. The mapping using g results in HitRatio [($75)](3X3) x [(7:77)](2X4) : (18)(16)

which reduces to 1 : 4, a three-fold increase in the number of data hits over the

traditional mapping. Theorem 1 and Lemma 6 prove the following result.

Theorem 2 For redistribution from (BLOCK, BLOCK,..., BLOCK) to (CYCLIC(co),

CYCLIC(c1),..., CYCLIC(cm—1)), where b,- and c,- are the respective block sizes, 2,- =

bg/C,‘ for an integer 2,, p,- is the number of processors, and n,- = bip, is the number of

data elements in dimension i, 0 S i S m —— 1, the logical processor mapping function

in Equation (3.2) achieves MaxHitRatio = (ligglcopo x x [filcm_lpm_l) :

(710 X X nm_.1).

3.2.2 Two-dimensional to One-dimensional Redistribution

Redistribution of an m-dimensional array need not necessarily involve redistribu-

tion in all m dimensions. For instance, a data matrix may initially be distributed

(BLOCK,BLOCK) and redistributed to (CYCLIC,*) in which only the row dimension is

distributed. We extend the mapping technique to these cases. We define a vector of

p = popl place holders, qo, ql, ...qp_1. Equation (3.3) defines a new function that maps

a Cartesian lpid to a placeholder.

h(r,s) = (rz) mod (p0 x pl), 2 = bo/co. (3.3)
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Figure 3.7: (BLOCK3,BLOCK4) to (CYCLIC3(3) ,CYCLIC4(2)) redistribution.

Lemma 7 establishes MaxHitRatio for two-dimensional to one-dimensional redistribu-

tion. Based on the value of gcd(z, p0), Lemmata 8 and 9 establish that the mapping

function h achieves MaxHitRatio.

Lemma 7 For redistribution between (BLOCK,#)6 and (CYCLIC(co) ,*), let b0 be the

block size in the row dimension of D, and co be the cyclic block size in 0,. Max—

HitRatio = ([fi—p—l-lcopoplbl) : (no x m) for an no >< n1 data matrix.

Proof: The proof is quite similar to the proof of Lemma 1. Here, the

two—dimensional grid of processors is remapped into a vector of place holders since

 

6# denotes any HPF distribution pattern
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D, is distributed in only one dimension. We substitute popl for p in Lemma 1 and

the remainder of the proof follows from that point. Thus [filmpopl counts the

number of hits in the row dimension. This number is then multiplied by the block

size in the column dimension, b1, to obtain the total number of data hits. D

We prove that the mapping function, h, yields MaxHitRatio by first establishing

the correspondence between lpids and place holders and then showing the mapping

yields the given ratio. Since the column coordinate, s, of an lpid is not relevant

to the value computed by h, all lpids with the same row coordinate, r, map to the

same place holder, qhm. Since 0 S s S p1 — 1, there are exactly p1 lpids for each

r, 0 S r S p0 — 1 that map to the same place holder. Thus, no greater than p0 place

holders are mapped to under h. Lemma 8 establishes that h achieves MaxHitRatio

when only lpids with the same row coordinate r map to the same place holder while

Lemma 9 establishes the result when kpl lpids map to the same place holder.

LemmaS Let 2 be a natural number such that z = bo/co. If gcd(z,po)

1, then exactly p0 place holders are mapped by h(r,s). The p1 lpids that map

to place holder qh(,.,,) can be remapped in any of p1! ways to place holders

gm”),qh(,,,)+1,qh(,.,,)+2,...,qh(,,,)+p,_1. All (po)p1! permutations yield MaxHitRatio

:lcopomlCoPoPI b1

Proof: The first conjecture of the lemma follows directly from Lemma 2. The

proof of the second part of the lemma is similar to the proof of Lemma 5. Instead

of k = gcd(z, p) lpids mapping to the same place holder as in Lemma 5, we have p1
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lpids mapping to the same place holder as established previously. The remainder of

the proof follows after making this substitution. MaxHitRatio is the same result as

in Lemma 5 except that b1 must be a factor since the number of data elements in a

row contribute to the number of data hits. [:1

Lemma9 Let 2 be a natural number such that z = bo/co. If gcd(z,po) = k,

then po/k place holders are mapped by h(r,s). h(r,s) maps lpidr+j(po/k),, to place

holder qu) for 0 S r S (pg/k) —1 and 0 S j S l: — 1. The plk lpids that

map to place holder qu) can be remapped in any of (p119)! ways to place holders

qh(r,a)a‘1h(r,s)+1aqh(r,s)+2a--°aqh(r,s)+p1k-l- A” (P0)(P1k)! Permumtions yield MaxHitRa-

tio =([af:g;'|copoplbl) : (no x 121).

Proof: The first portion of the lemma follows directly from Lemma 3. The

proof of the second part of the lemma is similar to the proofs of Lemmata 5 and 8.

In the current situation, we have plk lpids that map to the same place holder. The

remainder of the proof follows after making this substitution. MaxHitRatio is the

same as in Lemma 8. D

Figure 3.8 demonstrates the mapping function, h, applied to a 24 x 16 matrix.

The matrix is originally distributed (BLOCK,BLOCK) on a 3 x 2 processor grid and is

redistributed (CYCLIC(Z) ,*) on a six processor vector. lpids are in bold italics as

before. lpidm identifies a processor in the Cartesian system; 0 S r S p0 — 1 and

0 S s S p1 — 1. The block size in the row dimension of (BLOCK,BLOCK) is eight
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(b0 = 8); the cyclic block size in (CYCLIC(2) ,*) is two.

In Fig. 3.8, we do not show a “traditional” mapping since mapping from a set

of Cartesian lpids to a vector of lpids is undefined in HPF. Using h to map the

lpids produces a HitRatio of 96 : 384 = 1 : 4. The distribution for columns of D,

is inconsequential to the number of data hits that can be achieved since only rows

are distributed in D:. In other words, redistribution from (BLOCK, CYCLIC(c)) to

(CYCLIC,*) would result in the same number of data hits as the redistribution of

(BLOCK,BLOCK) to (CYCLIC,*). Additionally, any of the lpids with the same row

index, r, could be permuted and the same data hit ratio is achieved; e.g. , lpidop and

lpidOJ. Figure 3.9 shows an example of when gcd(z, p0) > 1. Processors lpido", and

lpid“ for 0 S s S 2 could be permuted in any of the 6! possible ways and the optimal

data hit ratio would be obtained.

Lemmata 7 through 9 prove the following result.

Theorem 3 For redistribution from (BLOCKJ) to (CYCLIC(co) ,*), where b0 and co

are the respective block sizes in the row dimension, 2 = bo/co for an integer 2, b1

is the block size in the column dimension, p0 x 101 defines the grid of processors for

0,, no >< n1 is the number of global data array elements where n.- = bip; 0 S i S 1,

the logical processor mapping function in Equation (3.3) achieves MaxHitRatio =

l—bn—lcopoplbl-
COPOPI



53

Block ——>f a 1

 

  

   

  

 

   

 
       

   

 

  

      
 

  
   

 

Its“

------------------io" ' . | I.”

(0’1)'1 3 lL-Jl 25:3:

0 .................... :__ 4 :-.‘-:I. :-r‘...--:~;- x.- 2.7.1.3.:

4 I I I I I I I I I I I I I I I

(2,0):2 --I--.~--:--r--:--r-1--r-1--r-1--r-1--r--:--
5 I I I I I I I I I I I I I I I

""""""""""" ’1"r‘1"r“1"r'1"r'1"r'1"r-1"r'1"

6w I I I I I I I I I I I I I I I

(2.0-3 --I.--.I~I.--.~-I.-+4.--r--:--r-1--r-1--r-1--
.......................7. _I I, 1. ;.-,I

; I I

(1)0)“ lL--I

9 I I

10 "

11 I5

(’) II . _, _,

I """"""""""1'5”“."f".".'"."."‘.". . . . . . . .

(0.0M .-.,-Hu,_.,--I.-.,-_,-,_-,_.'--,-,_-,-,-- DataHits
13 I I I I I I I I I I I I I I I

""""""""""4"1"r'1"r'1"r'1"r‘1"r'1“r'1"r‘1"

14 I I I I I I I I I I I I I I I

(0.0:! --I--.I-J.--.L-J.~.L-J.--r-1--r-1--r-1--r-1--
......................1?. I I I

1631‘?

(2,0):2 .

17s
18 4293;.1111

21):?

( ’ 19 ' ' ' ' | I l :E I J£I> I I

2 -----------------2-6T--:--r--:--:---:--:--~:--. I I i I I I I

(1,0)..4 I-1--r--:--:---:--:---:--r-1--r-1--r-1--r--:--
21 I I I I I I I I I I I I I I I

""""""""""" |"1"r‘“I""I"'I"r""l''I""I"I"''I"I""'I"'I""I"

22 I I I I I I I I I I I I I I I

(LIN “1"."1"?"i".“1"."1"."1"?”Ft":-
.......................g; I I I I I I I I I I I I I I I  

Figure 3.8: (BLOCK3,BL0CK2) to (CYCLIC6(2) ,* ) redistribution.

3.2.3 One-dimensional to Two-dimensional Redistribution

Another possibility is to have a data matrix initially distributed in one dimension

and then redistributed in two dimensions. We derive a new mapping function, Equa-

tion (3.4), for redistribution from (BLOCK,*) to (CYCLIC(co) ,t). Since D, specifies

a two-dimensional data distribution, we declare a two-dimensional grid of place hold-

ers, q[,.,,], 0 S r S p0 — 1, O S s S p1 — l. The function, 1?, maps a processor

lpidg, 0 S i S p — 1, to a place holder qlm]; thus, f(i) computes an ordered pair.

Lemma 10 establishes MaxHitRatio for one-dimensional to two-dimensional redistri-
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(BLOCK4,BLOCK3) to (CYCLIC12(1) ,*) redistribution.Figure 3.9

bution. Based on the value of gcd(z, p0), Lemmata 11 and 12 prove that Z achieves

MaxHitRatio.

(3.4)bo/Co.Z :2

SID—17
OSi

II7100]mod p0,)f(i) = [(iz

and (CYCLIC(co),#), let b0 be*)9
Lemma 10 For redistribution between (BLOCK

the block size in the row dimension of D, and co be the cyclic block size in Dt. Max-

(no x m) for an no x 121 data matrix.(1332;160:2012leHitRatio
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Proof: The proof is quite similar to the proofs of Lemmata 1 and 7. In the

single dimension case of Lemma 1, the redistribution between BLOCK and CYCLIC(c)

is considered. In the current situation, the first dimension of both D, and D1 is

BLOCK and CYCLIC(c); thus, the proof of Lemma 1 can be applied. As with Lemma 7,

we must include the factor b1 for the second dimension. Cl

Lemma 11 Let 2 be a natural number such that z = bo/co. If gcd(z,po) = 1,

then all p place holders are mapped by [(i) and the mapping yields MaxHitRatio

=(l‘—b°—IC0P0P151)3(T‘0 X n1).CoPoPI

Proof: The proof is similar to the proof of Lemma 4 since f(i) maps lpid,“

2 places from lpidg, thus each lpid will be mapped to the first row of its data block

under the (BLOCK,*) pattern. Since lpid,- owns b1 elements in the second dimension,

this factor contributes to MaxHitRatio. C]

Lemma 12 Let 2 be a natural number such that z = bo/co and p = popl. If

gcd(z,po) = k, then (pg/Mp1 place holders are mapped by f(i). All place holders

in the p; dimension are mapped, while only po/k place holders in the po dimension

are mapped. Exactly k lpids map to each place holder. The I: lpids that map to place

holder (final can be remapped to place holders qlm]: q[,.+1,,], ..., q[,.+k_1,,] in any of k! ways

and achieve MaxHitRatio =(lgggfilcopoplbll : (no X m).

Proof: The proof is similar to the proof of Lemma 5 and Lemma 9. In the

current situation, there is a second, p1, processor dimension and all place holders
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in this dimension are mapped. The po dimension in this case is the same as the

one-dimensional mapping in Lemma 5. Since lpid,- owns b1 elements in the second

dimension, this factor contributes to MaxHitRatio. C]

Figure 3.10 illustrates the lpid mapping function, I, applied to a 24 X 24 ma-

trix. The matrix is initially distributed (BLOCK,*) across six processors, and redis-

tributed (CYCLIC(2) , BLOCK) across a 3 x 2 processor grid. lpids (in bold italics)

are superimposed on the matrix. The data hit ratio, using the mapping function is

[W](2)(3)(2)(12) : 24 x 24 = 144 : 576 = 1 : 4. Figure 3.10 is an example of

when gcd(z, po) = 1 while Fig. 3.11 illustrates a situation where gcd(z, po) = 2. The

latter figure demonstrates the flexibility of permuting lpids. For instance, processors

lpido and lpidg could be permuted and the same data hit ratio would be achieved.

Lemmata 10 through 12 prove the following result.

Theorem 4 For redistribution from (BLOCK,*) to (CYCLIC(co) ,II), where bo and co

are the respective block sizes in the row dimension, 2 = bo/co for an integer 2, b1

is the block size in the column dimension, po X p1 defines the grid of processors for

D,, no x n1 is the number of global data array elements where n.- = hp; 0 S i S 1,

the logical processor mapping function in Equation (3.4) achieves MaxHitRatio =

l—QLICOPOPIblo
COPOPI
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Figure 3.10: (BLOCKofiI) to (CYCLIC3(2) ,BLOCKo) redistribution.



Figure 3.11 (BLOCK12,*) to (CYCLIC4,BLUCK3) redistribution.
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Chapter 4

Data Redistribution Library

HPF defines dozens of language intrinsics that could be implemented as libraries, sig—

nificantly simplifying the role of HPF compilers. In this chapter, we propose a library,

DaReL, for HPF-style redistribution. Specifically, DaReL supports multi-dimensional

data redistribution for HPF’s regular distribution patterns, BLOCK, CYCLIC, and *.

The library is designed for !HPF$ REDISTRIBUTE; however, we envision its applicabil-

ity to implicit redistributions that can occur within HPF programs; see Section 2.5.

We discuss a number of salient issues affecting the design of a redistribution library

for HPF including scalability and the respective roles of the compiler and the library.

We present a detailed overview of DaReL’s design and motivate the critical de-

sign choices. In contrast to other approaches, e.g., [32], DaReL decouples processor

send/receive set calculation from data exchange. We assert that this decoupling sim-

plifies library design and facilitates multiple data exchange algorithm options. Data

exchange is performed with MPI primitives, enhancing DaReL’s portability among

distributed-memory platforms that utilize the emerging message-passing standard.

59
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We discuss the advantages of using MP1 for data redistribution, and we give a de-

tailed description of DaReL’s use of MPI point-to—point and collective communica-

tion, process topology, and derived datatype constructs. Performance and scalability

analysis of DaReL is presented in Chapter 6.

4.1 Library Design Issues

There are a number of issues to consider in the design of a redistribution library for

distributed-memory machines. For example, what are the advantages of implement-

ing data redistribution as a library? What is the role of the HPF compiler vis-a-vis

DaReL? How do we provide a flexible yet concise interface between the compiler and

DaReL? What is the appropriate choice of message-passing mechanisms for imple-

menting data movement among processors? What are the advantages of using MPI?

How can we ensure DaReL’s scalability? These issues are examined next.

4.1.1 Advantages of Software Libraries

The functionality of !HPF$ REDISTRIBUTE may be provided as a library that could be

utilized by an eventual HPF compiler or programmer. Providing a rich set of libraries

to data-parallel programmers is becoming increasingly popular because libraries offer

some unique advantages [8]. For instance,

0 A uniform interface provided by the library enhances the portability of programs

among various distributed-memory architectures.
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0 Although a library provides a uniform interface to programs, the design and

implementation of the library can explicitly exploit machine specific features to

provide better performance.

0 The program development cycle for the consumer of the library can be shortened

as the correctness of libraries can be independently verified.

e The existence of libraries can simplify the tasks that the data-parallel compilers

would otherwise have to perform.

4.1.2 Role of HPF Compiler

The compiler usually translates data-parallel Fortran code into a set of message-

passing SPMD node programs [25]. Correspondingly, the implementation of a re—

distribution library is message—passing code to be linked with the node programs

generated by the compiler. The message-passing programs are in turn compiled by

the native machine compiler.l Given the number of possible data distributions, it

would be impractical to provide different redistribution code for every possible HPF

source/destination distribution scenario. A redistribution library ought to provide a

generic redistribution capability for an arbitrary number of data and processor con-

figurations and HPF distribution pattern possibilities. This is the approach taken in

the design of DaReL.

Since redistribution does not contribute to the result of the computation being

performed by the HPF program, its execution time must be minimized. If some of

the functionality of IHPF$ REDISTRIBUTE can be performed at compile- rather than

run-time, then the execution time of !HPF$ REDISTRIBUTE can be reduced, albeit at a

cost of increased compile—time. This, however, is typically preferable for data-parallel

 

1It is possible that HPF compilers may generate object code directly from HPF source code.
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applications.

In order to redistribute data as called for by a specific invocation of

IHPF$ REDISTRIBUTE, a node program must know the identity of the processors from

which it is to receive data (gather set) as well as the identity of processors to which it

must send data (scatter set) as explained in Section 2.4. It is possible for these sets to

be distinct. Figure 4.1 shows 15 data elements distributed across 5 processors under

the BLOCK and CYCLIC patterns, respectively. Processor 0 owns data elements 0,1,2

under BLOCK, but it owns elements 0,5,10 under CYCLIC. Redistribution from BLOCK

to CYCLIC causes processor 0 to scatter to processors 0,1,2 while it gathers from 0,1,3;

the scatter and gather sets are distinct. In addition to calculating the scatter/gather

sets, the data elements which are to be sent, kept, and replaced must be identified.

% scatter set for 0

CYCLIC“)

—~ gather from 0 —* 0 ,
2 -: l

—* gather from 1 —>
 

°
@
Q
O
M
&
U
N

 

 -- gather from 3 -* 10 .

— — _ —

 

~
—

U
N

§ _
—

U
N

   — b _
n

b

 

Figure 4.1: Distinct scatter-gather sets.

Following processor and data set identification, the data must be exchanged among

processors utilizing message-passing primitives. The node programs use the commu-

nication services provided by the target machine to perform the data transfer. One

could use unicast (point—to—point) or collective communication primitives depending
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upon the services offered. The relative performance and scalability of the routines

will be critical factors in deciding which set of primitives is most appropriate. We

discuss communication primitive selection in greater detail in Section 4.2.

4.1.3 Use of MP1 for Libraries

Data redistribution may utilize MP1 to perform the necessary data exchanges. The

primary advantages to using MPI are its portability, ease—of-use, and in particular, its

support for parallel library development [48]. MPI uses communication contexts, first

proposed in Zipcode [49], to provide safe communication spaces for processes. Com-

munication contexts shield processes from unrelated, ongoing communication which

otherwise may be interpreted, erroneously, as related to the current communication

due to the asynchronous behavior of SPMD programs. This is particularly important

in the context of libraries as different processes may enter a library asynchronously

[50].

MPI also facilitates the specification of arbitrary logical process topologies with

automatic support for Cartesian topologies. This mechanism frees the MPI program-

mer from defining communication in terms of hardware-dependent processor IDs.

Process topologies are particularly important in the context of IHPF$ ’ REDISTRIBUTE

as the programmer has similar flexibility in specifying logical Cartesian processor

configurationsz in HPF with the !HPF$ PROCESSORS directive.

MPI specifies a number of point-to—point and collective communication primitives

 

2We use HPF’s “processor” and MP1 “process” interchangeably since they are functionally

equivalent.
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that can operate in conjunction with communication contexts and process topologies.

The collective communication primitives that are of particular relevance to DaReL

are the MPLScatter, MPLGather, and the MPIJtlltoall primitives.

4.1 .4 Scalability

To be viable for SPC architectures, scalability is an important design criterion for par—

allel software libraries. A redistribution library ought to achieve good performance

within a reasonably large range of physical processor configuration sizes and for var-

ious sizes of data that are to be redistributed. The scalability of data redistribution

will in large part be dictated by the scalability of the MPI communication primitives

used; see Section 6.2.3. The scalability of MP1 communication routines may vary

across different distributed-memory platforms as vendors are free to implement MPI

routines in the most efficient manner possible and thus will attempt to optimize the

primitives for their system. One can track the most efficient MPI routines as they

are developed and incorporate them in the library. Additionally, factors such as the

distribution patterns, size of data, and number of processors used are the primary

factors affecting redistribution performance.

Another factor which may influence the scalability of a redistribution library is

the size of data to be redistributed. Since the library must determine and store

data ownership, the size of data can become an important issue if the overhead for

performing this function grows as a multiple of data size.



65

4.2 DaReL Design Overview

DaReL is proposed as a scalable and portable MPI-based library to perform data

redistribution. DaReL comprises two major modules: Compute Data Exchange Sets

(CDES) and Exchange Data (ED). CDES determines the identity of the processes to

(from) which a process sends (receives) data and which data elements are involved

in the exchange. Using the ownership information computed by CDES, ED performs

the actual data exchange. This section presents the design of these modules and

DaReL’s interface. We present a detailed explanation of DaReL’s use of MPI pro-

cess topologies, derived datatypes, and point-to—point and collective communication

primitives.

4.2.1 DaReL Interface

Figure 4.2 presents the C-based interface between DaReL’s calling environment, (i.e.,

the SPMD application message-passing program created from HPF source by the

compiler), and the library. All parameters, except the data to be redistributed, are

unchanged by the library. dim_size is the number of data and process dimensions.

src_pconf and dest_pconf are the source and destination MPI process configurations

(P, and Pt), respectively. src_ptrns and dest.ptrns describe the source and desti-

nation patterns (D, and Di) chosen from: BLOCK(b), CYCLIC(c), or *. src.globa1

and destglobal specify the global indices owned by a process under D, and 0,.

loca1.data is the process’ application data which is to be redistributed. This pa-

rameter is modified by the library and returned to the calling environment.
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redistribute (

short din_size, {IN}

NPI_Conn src_pconf, {IN}

NPI_Conn dest_pconf, {IN}

struct distribution erc_ptrns, {IN}

struct distribution dest,ptrne, {IN}

struct globa1_indicee sre_globa1, {IN}

struct globa1_indices deet_globa1, {IN}

datatype 10ca1_data {IN-OUT}

Figure 4.2: C-based interface for DaReL   
Figure 4.3 gives an explanation of each parameter in the interface. Each param-

eter is marked either IN or IN-OUT, the former indicates a value that the calling

environment provides to the library, the latter represents a value that is provided

by the calling environment and is modified by the library upon return to the calling

program. Though many of the parameters are passed as pointers, we use the IN,

OUT, IN-OUT formalism of Fortran 90 [51] to indicate which variables are changed

by DaReL’s operation and which are not.

Figure 4.4 illustrates a Cartesian to process rank mapping. The source topology,

P,, is a (3 x 2) grid and P, is a (2 x 3) grid. The figure demonstrates the association

of a process in the source, s(2,1), and destination, d{1,2), grids and its rank within

the process group to which it is mapped. The process’ rank is then mapped to a

physical processor ID of the machine. Since MPI message-passing routines use rank

to identify the processes, the association of process rank to physical processor ID is

not relevant to DaReL, i.e., DaReL performs its function in MPI process topology

space. The two Cartesian topologies in Fig. 4.4 have different shapes but the same
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dim_siz

src_pconf

dest_pconf

src_ptrns

dest_ptrns

src_global

dest_globa1

localfiata

The number of data and process dimensions; these must be the

same to avoid ambiguity. Although, it is legal to have data di-

mensions which remain undistributed; these dimensions must be

denoted by the special symbol * in the corresponding placeholder.

an MP1 communicator which contains information regarding the

source distribution process configuration. It stores the number of

process dimensions, the number of processes in each dimension,

i.e., P in the HPF example in Fig. 2.3, and the identity of the

local process.

an MPI communicator which contains information regarding the

destination distribution process configuration. It stores the num-

ber of process dimensions, the number of processes in each di-

mension, i.e., Q in the HPF example in Fig. 2.3, and the identity

of the local process.

array[0..dim_siz—l] of distribution structures; stores the pat-

tern and block size information for the source distribution; each

array element corresponds to the distribution for that dimension.

array[0..dim_siz—1] of distribution structures; stores the pat-

tern and block size information for the destination distribu-

tion; each array element corresponds to the distribution for that

dimension.

array[0..dim_siz-1] of globaLindices structures; stores the

global indices corresponding to the local process’ data under the

source pattern.

array[0..dim.siz-1] of globaLindices structures; stores the

global indices corresponding to the local process’ data under the

destination pattern.

array[0..dim_siz-1] of type datatype. the actual data to be redis-

tributed. The type of data, 6.g. , integer or real, can is interpreted

as a byte stream. Note: the data prior to redistribution could be

passed as an IN and the redistributed data returned by another

parameter as an OUT. We choose to provide one parameter and

make it IN-OUT.

Figure 4.3: Parameters for the invocation of DaReL
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size. It is possible in HPF to have different sized configurations for the source and

destination. With different sized configurations, a process may be a member of only

one of the two configurations. The association between Cartesian coordinates and

process rank must be known within DaReL for both configurations. For instance, if a

process has a rank defined in the source topology, but not in the destination topology,

then it will scatter data, but not gather data.

 
 

 

  
  

    

Source Destination

0 I 0 I 2

0 0

I

‘\ t”,

- Rank in group [0..5]

I

. Physical processor ID

Figure 4.4: Different shaped process configurations.

To create a Cartesian topology, MPI provides MPI_Mak9_cart. In functionality,

it is very similar to HPF’s PROCESSORS construct since it defines a logical topology

in terms of the number of dimensions and the extent in each dimension. Since the

compiler has a “global view” of the entire application and DaReL does not, it is rea-

sonable for the compiler to determine global performance optimizations such as the

logical to physical processor mapping as discussed in Section 2.6.3 DaReL inherits the

processor mapping as determined by the calling environment. Thus, it follows that

the creation of the Cartesian topologies, to be used within DaReL, occur within the

 

3Alternatively, command-line arguments or the run-time system may determine the best mapping

[3].
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calling environment as well. There are two reasons for this. First, MPIJiakeLart fa-

cilitates choosing a specific logical to physical mapping with the reorder parameter;

and second, the Cartesian topologies are most likely used in the calling environ-

ment already for message-passing that occurs prior to, and after, the invocation of

!HPF$ REDISTRIBUTE DaReL assumes that src.pconf and dest_pconf have been

created with MPIJIakesart in the calling environment.

4.2.2 Compute Data Exchange Sets (CDES)

CDES utilizes the MPI Cartesian topology routines to manipulate the process sets

since these routines naturally correspond to logical processor topologies as defined in

HPF. Similar to [31], each process computes the process sets for data exchange based

on the global data elements it “owns”4 under each of D, and D,, respectively. DaReL

relies on the calling environment to furnish global index information which could be

provided either by the compiler or the run-time system.

To determine the scatter set, a process must identify the ownership of its “current”

data under the destination distribution. In other words, by mapping D, over the initial

global indices, src.globa1, the scatter set is computed. To determinethe gather set,

the process identifies the ownership of its “future” data under the source distribution.

In other words, by mapping D, over the destination global indices, dest_globa1, the

gather set is computed. Given the global indices owned by a process under each of

D, and D,, CDES performs these computations for each data dimension as follows.

 

“HPF’s owner computes rule.
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Consider one dimension of data. Given n data elements distributed across p

processes, Equations 4.1 and 4.2 compute the process ID, pg, that owns data element

with global index j for BLOCK(b) and CYCLIC(c) respectively, where 0 S i S p -— 1,

and 0 S j S n — 1. For *, a process owns all data in the corresponding dimension.

Pi =j/b (4-1)

Pi = (i/C) mOd P (4-2)

Since each dimension of data must have a corresponding distribution pattern and

number of processes onto which the data is mapped, Equations 4.1 and 4.2 are applied

to each dimension independently.

Note that a process need not compute ownership for each data element it owns,

rather process ownership along each dimension suffices. Thus, for multidimensional

data, a Cartesian process ID is obtained. The Cartesian process ID is subsequently

used in an MP1 message-passing primitive in ED. The identity of source and desti-

nation distribution patterns is inconsequential to the operation of ED. Our approach

alleviates the need for numerous closed form expressions and algorithms [31, 32] for

different source/destination pattern combinations. The computational complexity of

CDES is 0(no + m + + nm_1) when no,n1, ...,nm_1 are the data extents in each

dimension of an m-dimensional redistribution. If CDES were to compute data own-

ership for each data element, rather than by dimension, the complexity would be

0("0 X n1 X X nm_1).
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Figure 4.5 illustrates the use of CDES by process (1,1) in a (BLOCK,BLOCK) to

(CYCLIC,CYCLIC) redistribution to determine the set of processes to which it must

scatter data. The source and destination process configurations are the same, 4 X 2.

Under D, = (BLOCK,BLOCK), process {1,1) owns global indices j,., where 4 S j, S 7 in

the row dimension, and global indices j,, where 0 S j, S 1 in the column dimension.

Since D, is CYCLIC in each dimension, Equation (4.2) is applied to the row dimension,

i.e., pi, = (jr/l) mod 4 where 4 S j, S 7 and in the column dimension, i.e., Pi, =

(j,/ 1) mod 2 where 0 S j, S 1, respectively. The ownership for scattering data in

each dimension is shown in the right portion of the figure in bold-italic.

.....................................................................

  

  

  

  

      
  

...........9.........1. ........................................... global ind

1 0 1 process ind

4; 1 0

5 1 1

6 1 2

7 1 3

source destination

Figure 4.5: CDES example for process (1,1)

Storing ownership information for each local data item is unnecessarily expensive

in terms of memory cost. Thus, CDES builds an ownership record for each recipient

of local data, and it builds a record for each sender of data for which the local process

is a receiver. The description of ownership is done with displacement, block size and

stride arguments. The displacement specifies the location of the first element, the

block size indicates the number of contiguous elements, and the stride specifies the

stride between blocks. This ownership information is stored on a per-dimension basis,
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e. g. , for a two-dimensional array, there are ownership records for the row and column

dimensions, respectively. This method of storing ownership information is minimal in

terms of storage cost and maps well to MP1 derived datatypes which will be explained

in detail in Section 4.2.5.

4.2.3 Partitioning CDES Functionality

Figure 4.6 illustrates two high-level approaches to implementing CDES that differ,

not in their functionality, but in their partitioning of tasks between compile- and run-

time. In Fig. 4.6(a) all of CDES is performed at run-time while in Fig. 4.6(b), CDES

is partitioned between compile- and run-time. The motivation for “elevating” part of

CDES to compile-time is to reduce program execution time at the expense of increased

compile-time. The compile—time portion of CDES involves partially computing the

data exchange sets. Equations 4.1 and 4.2 could be performed at compile time if all

pertinent values are known at compile-time. The run-time portion of CDES completes

the computation, using a process’ own ID. The CDES compile—time service would be

provided as a library to the HPF compiler, thus designated hpf.a. All run-time

library services are found in node. a, so designated since they are linked by the node

programs. One would expect the option in Fig. 4.6(b) to be preferable in all situations,

since it decreases program execution time. Unfortunately, the CDES compile-time

module can only be performed if all relevant arguments, e.g., data size and number

of processes, are known at compile—time as they are in the example code segment

in Fig. 2.3. Since HPF allows these arguments to be variables whose values remain
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Compute Data

Exchange Set (CDES)

(process-Independent)

compile

time W3)

  time

Compute Data Compute Data

Exchange Set Exchange Set (CDES)

(CDES) (pmess-depcuaIu)

      

a i:

(a) Run-time only . (b) Compile- and run-time

Figure 4.6: Partitioning CDES

unknown until run-time, the CDES variant in Fig. 4.6(a) is necessary. The extra run—

time computation needed is of little consequence as CDES execution time is small

relative to ED execution time, see Chapter 6. DaReL is currently implemented with

the CDES version of Fig. 4.6(a).

4.2.4 Exchange Data (ED)

ED performs the data exchange among the set of processes computed in CDES. ED

utilizes MPI point-to—point or collective communication primitives depending upon

the services offered on a particular system and their relative scalabilities. Additionally,

ED uses MPI derived datatype facilities to avoid the overhead of packing data into a

message buffer at the sender and unpacking data at the receiver.

This section presents a more detailed explanation of the use of MPI in the ED mod-

ule. Given the communication pattern required by data redistribution, it is natural to

consider the MPI collective communication services: MPLScatter, MPLGather and

MPIJIlltoall in ED. Additionally, MPI point-to—point routines are viable choices as
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well. Broadcast, i.e., MPI.Bcast, is not a valid choice for redistribution since it sends

the same data to each process. In some cases, redistribution performance using point-

to—point message-passing may be better than that of redistribution using collective

routines if the latter are not optimized for the target architecture. See Chapter 6 for

more detail regarding performance.

Figure 4.7 illustrates the algorithm used by ED to perform data exchange using

MPI point-to—point message-passing. In the point-to—point algorithm, each process

sends Scount data elements of type Stype from an offset of Sdispls in .S'buf to all other

processes. Stype is a derived datatype; see Section 4.2.5 for a discussion of DaReL’s

use of MPI derived datatypes. Each process receives data from all other processes

where the placement of the data in Rbuf is described by Rcount, Rtype, and Rdispls.

The boolean arrays send and recv indicate whether the indicated process is a recipient

or a sender of data, respectively.5 Recall in Fig. 4.1 that the scatter and gather sets

may be distinct.

Figure 4.8 illustrates the algorithm when one of the collective communication

paradigms is used to exchange data. If MPIScatter or MPLGather are used, then a

loop over all group members where each group member is the root of one operation

is needed. For MPIJIlltoall, a single invocation is needed.

Note that each of the collective communication routines in Fig. 4.8 uses variants of

the base operation with “v” appended, e.g., MPLGatherv. The “v” extends the prim-

itive to allow for specification of displacements from the starting address of a buffer,

and it facilitates different sized data buffers to be specified for the distinct processes

 

5From the local process’ perspective depending upon the data computed by CDES.
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Input: Sbuf

Output: Rbuf

For root = 0 To group.aize-l

If (root == myJank)

For rank = 0 To grouinze-l

If ((rank ! = myJank) AND (send[rank] == TRUE))

MPI.Send( Sbuf, Sdispls[rank], Scount[rank], Stype[rank] )

End If

End For

If (send[root] == TRUE)

Copy relevant portion of Sbuf to Rbuf

End If

Else If (recv[root] :2 TRUE)

MPI.Recv( Rbuf, Rdispls[root], Rcount[root], Rtype[root] )

End If

End For

  Figure 4.7: ED using MPI point-to—point communication
 

in the collective group. This flexibility is necessary for generic data redistribution as

provided by DaReL.

Each of the MPI point-to—point and collective routines takes a single communicator

as an argument (not shown) and all participants in the collective operation must

specify consistent arguments, e.g., all members must specify the same value for root.

When the communicators (process topologies) corresponding to P, and P, in a data

redistribution are equivalent, then any of the MPI routines discussed above may be

used. If P, and P, are the same size, but have different shapes, one communicator

suffices so long as an association between each process in the source and each process

in the destination communicators can be made when the topologies are created. When

the source and destination topologies have different sizes, however, there is a problem
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Input: Sbuf

Output: Rbuf

Switch (collective-type)

Case Scatter:

For root = 0 To groupsizel

MPI_Scatterv( Sbuf, Sdispls, Scount, Stype, Rbuf, Rdispls, Rcount, Rtype, root )

End For

Case Gather:

For root = 0 To groupsize-l

MPI-Gatherv( Sbuf, Sdispls, Scount, Stype, Rbuf, Rdispls, Rcount, Rtype, root )

End For

Case All2all:

MPI.Alltoallv( Sbuf, Sdispls, Scount, Stype, Rbuf, Rdispls, Rcount, Rtype, root )

End Switch

  Figure 4.8: ED using MPI collective communication
 

using MPIJIlltoall, since at least one process is in either the source or destination,

but not in both. NFLScatter or MPLGather may be used, but only if a new group

communicator is created for each scatter or gather. Creating groups would contribute

to the overhead of the entire operation and does not scale well as the group size

increases. MPIX [52] proposes extensions to MP1 which would overcome the above

limitation of collective communication. Table 4.1 summarizes whether or not an MPI

routine can be used, based on the relationship between source and destination process

topologies.

4.2.5 Standard and Derived Datatypes

To avoid costly packing of data at the sender and unpacking of data at the receiver,

DaReL utilizes MPI’s derived datatype facility. MPI has great flexibility in specify
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Table 4.1: MP1 Communication Primitive Choices

 

 

 

 

  

 

 

Primitive |P,| 2 IR] |P,| = [Pt] P, 56 Pt

Shape same distinct distinct

Pt-to—pt Yes Yes Yes

Scatter Yes Yes Yes

Gather Yes Yes Yes

All—to—all Yes Yes No

Broadcast No No No       

datatypes for message passing. MPI manages the system resources for buffering

messages and storing their internal representations. The buffers are not directly

user—accessible, thus, MPI provides “handles” in user space to access system objects.

This design hides the internal representations of MPI data structures allowing for

similar calls between dissimilar languages (C and Fortran) and also avoids typing

rule conflicts between these languages. MPI defines a number of standard datatypes,

e.g., MPLINT, MPLFLOAT, MPLCHAR, MPLBYTE.

To specify the complex data mappings necessary for efficient redistribution, DaReL

utilizes MPI’S facility for derived datatypes. MPI standard datatypes facilitate spec-

ifying the data content of a message when the data is contiguous and of the same

datatype. Derived types extend MPI datatype specification by allowing for non-

contiguous and mixed-type data in a message buffer. DaReL makes use of the former

feature of derived types.

In the redistribution example of Fig. 2.3, redistribution requires processes to send

multiple data items to a particular destination from locally non-contiguous locations.

For large data sizes, it is impractical to send data items individually due to sending
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latency overhead costs, thus DaReL’s approach is to aggregate data destined for

a specific process. Data can be aggregated into the sending buffer, and retrieved

into non-contiguous data locations at the receiver, by means of the MPIJ’ack and

MPLUnpack facility, respectively. This approach, however, introduces extra overhead

at both the sender and receiver. At the sender, data is copied from the original non-

contiguous locations in user-space to the buffer for sending, also in user-space; the

inverse copying is performed at the receiver. The flexibility of MPI derived datatypes

alleviates this costly packing/unpacking overhead.

DaReL uses the MPI_Type_vector and MPI_Type_struct primitives to specify the

message buffers for the exchange of data. The former primitive facilitates replication

of a datatype mapping onto non-contiguous memory locations. The ownership data

computed by CDES is used to form the MPI.Type_vector argument for each dimension

of data. There is a limitation of MPI_Type.vector, however, when used in conjunction

with collective communication primitives, necessitating the use of MPI’S most general

derived type constructor, MPI_Type_struct. We illustrate’this limitation with an

example involving the scatter primitive.

Figure 4.9 shows a BLOCK to CYCLIC redistribution in one dimension among three

processes. We focus on the operation to be performed by process 1 which scatters

its local data set to the other two processes (shaded) and retains one element of

data itself. Using MPI.Type_vector, process 1 would create datatypes for each of

processes 2 and 0 specifying a block size of 1, a stride of 3, and a total count of

2. The displacement from the beginning of the local data is not an argument to

MPI_Type.vector, but it is an argument to MPLScatterv. Thus, process 1 would
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specify displacements of 0 and 1 for processes 2 and 0, respectively. The difficulty

arises in that MPI.Scatterv interprets the displacement as follows,

send_buf + displs[i] x extent(sendtype[i])

where send_buf is the sending buffer, displs[i] is the displacement for process i, and

extent(sendtype[i]) represents the size of the datatype, sendtype[i]. The extent of

a datatype generated by MPI_Type.vector is calculated to be count x block size x

stride. In the current example, the extent would be 6. Thus, the actual displacements

as used by MPLScatterv would be 0 for process 2 and 6 for process 0. This, of

course, is erroneous since process 0 ought to start receiving data from displacement

1 as explained earlier. This problem occurs regardless of the choice of collective

communication primitive. One alternative is to use the pack/unpack facilities as

described earlier. Of course, we wish to avoid the overhead that this alternative

implies.

 

Block Owners 0 ii] 2

    
 

Local Indices

  

Cyclic Owners 0 1 2 0

            

 

  

Figure 4.9: Limitation of derived types and collective communication

MPI provides a facility that allows the programmer to override the default

datatype extent calculation. MPI.Type_struct together with MPI.UB provide the nec-
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essary functionality. MPI.UB is a “pseudo-datatype” used to mark the upper bound

of a datatype. We use this facility to specify the extent of a datatype to be correct

for use in a collective communication operation. IIPI.Type_struct allows the most

general datatype construction for this purpose. For the above example, we would de-

fine the upper bound of the datatype, send-type to be 1. Thus, the displacements for

processes 2 and 0 would be 0 and 1, respectively, as is needed for correct operation.

4.2.6 Scalability

Beyond the basic redistribution operation described in this chapter, DaReL ought

to provide scalable performance over large range of data and process configuration

sizes. AS alluded to earlier in this chapter, the performance of the MPI point-to—

point and collective message-passing primitives may vary for different sizes of data

and numbers of processes. Additionally, the choice of distribution patterns for D,

and D; may affect redistribution performance. We assert that DaReL must provide

the best performance possible for any given Situation.

Therefore, DaReL shall provide the ability of selecting, at run-time, which of the

primitives from Table 4.1 is best suited to the given situation. While DaReL may

not be privy to the mapping of the process topologies onto the physical processors,6

it can determine the number of physical processors and the shape of the configu-

ration onto which the logical topology is mapped. HPF supports two intrinsics

NUMBERDFJROCESSORS and PROCESSORSHAPE [3], for inquiring about the physical

 

6The calling environment may provide this information.
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nodes. If the logical topology is larger than the number of physical processors in

the underlying hardware, then more than one logical processors will be mapped to

some or all of the physical nodes. If the aforementioned HPF intrinsics are supported

in the environment that DaReL is operating within, then they may provide useful

performance information for selecting the appropriate primitive.



Chapter 5

Quantifying Scalability

The term scalability has been used extensively in the parallel processing community

to characterize the ability of parallel architectures and algorithms to exhibit greater

performance as more processors are employed to solve a problem. However, the term

“performance” is equivocal as it may be used to identify widely varying algorithmic

or architectural properties: speedup, execution time, processor speed or efficiency, or

the quality (accuracy) of a solution. Many of these properties have been used either

separately or in conjunction to describe the scalability of parallel algorithms and

architectures. The ambiguity regarding scalability leads us to ask several questions:

What is a scalable algorithm and a scalable architecture, and how are their relative

scalabilities related? Can a universal definition of scalability be applicable to all

scenarios? How can scalability be quantified? If scalability can be quantified, which

property best describes it, or is scalability a combination of factors? This chapter

shall attempt to address these questions.

A scalable architecture is one which is designed to offer a pr0portional performance

82
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increase with a balanced increase in the number of processors, memory capacity and

bandwidth, and network and I/O bandwidth of the machine without changing the ba-

sic underlying design. Typically, architectures based on a distributed-memory model

have been characterized as scalable due to their ability to provide such balanced in-

creases. While the above definition captures the essence of scalability as it relates

to parallel architectures, it does not provide guidance for assessing relative machine

scalabilities. It does not suffice to simply compare the peak performance of machines

since sustained performance typically provides a more accurate measure of the per—

formance seen by the end-user. Sustained performance, however, is a function of the

parallel algorithm used. In fact, not only the algorithm, but its implementation af-

fects sustained performance. The implementation of an algorithm includes its data

decomposition, message-passing paradigm, degree of parallelism, and processor syn-

chronization, all of which affect performance [8]. Henceforth, when we use the term

algorithm, we mean parallel algorithm and its implementation detail.

A scalable algorithm can utilize additional machine resources, e. 9., additional num-

ber of processors, to increase algorithm performance. Increased algorithm perfor-

mance may be measured as producing a more accurate result or producing an equiva-

lent result in less time. As with the definition for scalable architecture, this definition

describes the property of scalable algorithms but does not assist us in comparing

relative scalabilities of parallel algorithms. The performance of an algorithm will be

greatly influenced by the underlying machine. For instance, if an algorithm frequently

performs barrier synchronization, the efficiency of the barrier implementation on the

underlying machine will greatly affect the execution time of the algorithm. Similarly,
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the memory capacity of the machine will influence the size of problem, or accuracy,

that can be solved with an algorithm.

We conclude that scalability quantification necessarily involves both the parallel

algorithm and the parallel target machine. Thus, we shall examine the scalability

of algorithm-machine (AM) pairs. A number of researchers have formulated scala-

bility models based on algorithm—machine pairings, some of which we shall survey in

Section 5.3.

5.1 Examples of Ambiguity in Scalability

We demonstrate the equivocal nature of the term scalability and demonstrate the

difficulty in quantifying the scalability of AM pairs with two examples. Our goal

in the following examples is to assess which among several AM pairs is “the most

scalable” for the application.

In the first example, suppose we have two algorithms A and B and two machines

m1 and um from which to choose to solve a hypothetical problem. We define an

end-user to be a consumer of the result(s) generated by an algorithm on a particular

machine. We compare the performance of algorithms A and B executing a constant

amount of work on m1 and the relative performance of machines m1 and mg with

the same algorithm, A. Figure 5.1 shows the execution times of pairs Aml, Bml, and

Amg as a function of different sized processor configurations. On m1, B is superior to

A up to approximately 35 processors, while A achieves lower execution times between
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35 and 70 processors.1 The execution times of Bml begin to increase after only 60

processors. Executing algorithm A, m2 is superior to m1 up to about 55 processors;

m1 is preferable between 55 and 70 processors. The best execution time is achieved

on 70 processors with Aml.
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Figure 5.1: Comparison of three AM pairs

The example clearly demonstrates the importance of considering the performance

of an algorithm together with the parallel machine upon which it is executed. Even

in the simple example, however, it is unclear which AM pair is the most scalable; to a

large extent it depends upon the goals and constraints of the end-user. To determine

which AM pair is the “most scalable,” we need to answer the following questions.

Does the end-user have access to as many processors of ml or m; as desired? Is

the end-user’s goal to achieve minimum execution time for constant work as depicted

in Fig. 5.1? Or, is the user concerned with scaling work to achieve better solution

 

1We are not interested in execution times for beyond 70 processors since they begin to increase.

We shall elaborate on this phenomenon in Section 5.5.
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accuracy? The answers to these questions will affect the relative “scalabilities” of the

AM pairs.

In the second example, we compare two real matrix multiplication algorithms, a1

and a2, executing on the same machine M, an SP-x. Let the base amount of work

be to compute the product of two 100 x 100 matrices of single-precision (4—byte) real

numbers. We assume two hypothetical end-users, Userl and Userg, each of whom

wants to choose “the most scalable” matrix multiplication algorithm among a1 and

a; for his/her application. The difficulty in choosing “the most scalable” AM pair

arises when the goals of each end-user differ. Userl’s application requires comput-

ing the product of a set of 100 x 100 matrices and thus wants to choose the fastest

AM pair to perform these multiplications. User; wants to increase (scale) the base

work performed to achieve a more accurate result for his/her application and thus

requires matrix multiplications up to a maximum size of 800 x 800. Thus, Userg is less

concerned with execution time and more concerned with the quality of the solution.

Figure 5.2 plots the execution time (vertical axis) as the matrix size is increased (hor-

izontal axis) for the two algorithms a1 and a2 using 16—processor configurations. a1 is

faster than a; on a 100 x 100 matrix (dashed line). Even as matrix size is increased,

a1 has consistently lower execution times than a2. This is due to the implementation

detail of a1: one of the two matrix operands is replicated among all processors thus

avoiding interprocessor communication. Such replication, however, limits the size of

the matrix that can be computed as the aggregate memory requirements grow quickly

with increasing matrix size. Algorithm al’s large memory requirements limit its abil-

ity to scale the problem size beyond a 540 x 540 matrix computation. Algorithm a2,
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while slower, can scale up to an 800 x 800 matrix product. In a2, the matrix operands

are distributed, thus reducing the per-node memory requirement but incurring inter-

processor communication. Clearly, a1 is unable to satisfy the needs of USCI‘z; thus,

a2 would be the most scalable choice. Algorithm a1, however, best suits the needs of

User; since it can execute sets of 100 x 100 products in less time.
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Figure 5.2: Scaled work vs. execution time of two AM pairs

5.2 Goal-directed Scalability Metrics

The above example illustrates the difficulty in quantifying scalability due primarily

to the inability of a single metric to adequately capture variations in end-user re-

quirements. We assert that a framework for quantifying scalability must account for

end—user constraints and requirements. Rather than achieving higher speedups or pro-

cessor efficiencies, our thesis is that the end-user is chiefly concerned with achieving

the following criteria with an AM pair:
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a By scaling the amount of work, increase the quality (accuracy) of the generated

solution given more time and/or machine resources. The amount of acceptable

execution time may be constrained by the end-user. The extent to which quality

can be increased is a measure of the scalability of the AM pair.

0 For a fixed solution quality, provide a large range of execution times and pro-

cessor configuration sizes (number of processors) that can achieve the indicated

solution quality. Large ranges will facilitate greater choices for the end-user.

The size of these ranges is a measure of the AM pair’s scalability.

This chapter presents a simple end—user—oriented framework for quantifying the

scalability of AM pairs together with a facility to aid in visualizing AM pair behav-

ior. Specifically, we propose several metrics for quantifying the scalability of AM

pairs based on the needs of the end-user as captured by the above criteria. We de-

velop a mathematical framework to characterize the properties of AM pairs, e.g.,

communication overhead, and we propose a framework for visually illustrating an

AM pair’s performance over ranges of number of processors and scaled work. The

benefit of a three-dimensional illustration is that a number of critical parameters, e. 9.,

memory capacity and communication overhead, can be viewed together in a unified

manner. Additionally, the end-user’s chosen scalability metric(s) can be visualized as

distinct points or lines along the generated surface. We present a detailed case study

that illustrates the utility of our framework in comparing the relative scalabilities of

distinct AM pairs for performing matrix multiplication. In Chapter 6, we examine

extensions to this framework geared specifically to quantifying the scalability of data
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redistribution.

5.3 Metrics for Quantifying Scalability

Perhaps the most widely accepted metric for measuring the performance increase

gained by parallel systems is speedup. Speedup is usually computed as the ratio

of execution time on a single processor to execution time on a parallel machine.

There are different categories of speedup: fixed—size, fixed—time, and memory-bounded

speedup. Using fired-size speedup, where the amount of work remains constant, Ware

[53] defined Amdahl’s Law based on Amdahl’s earlier research [54]. Gustafson et al.

[55] introduce the concept of scaled speedup [55] where the amount of work is increased,

as the number of processors increases, to achieve a more accurate result. In this

context, Gustafson defined fixed-time speedup [56] where execution time is fixed and

the ability to scale work is measured. While Gustafson’s scalability metric constrains

execution time, the amount of aggregate memory may also impose a limitation on the

ability of scaling work. Memory-bounded speedup [57] measures the ability to scale

work as the memory capacity increases with the number of processors.

A number of models for quantifying the scalability of algorithm-machine pairs

have been proposed. Isoefl‘iciency [58] measures scalability by assessing an AM pair’s

ability to maintain a constant processor efficiency as the problem size and number

of processors are increased. In this framework, efficiency is defined to be the ratio of

Speedup to the number of processors. Extensions to isoefficiency to account for the

relation between the amount of memory used by the algorithm and size of available
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machine memory is proposed in [59]. As a problem is scaled, however, it can be

problematic to obtain execution time on a single processor due to lack of memory

capacity. Obtaining single processor execution time is a necessary component for

measuring speedup.2 The isospeed metric [57] removes the dependence on speedup

by measuring an AM pair’s ability to maintain average speed as the problem size and

number of processors are increased. In this context, speed is defined to be the ratio

of work to execution time. A comprehensive study of various scalability measures is

presented in [60].

While measuring scalability in terms of efficiency or speed may be a viable ap-

proach, we believe that the primary focus ought to be the quality of the computed

solution. Other researchers have developed benchmarks which measure a system’s

ability to generate quality solutions for a given fixed time (SLALOM [61]) or as a

function of increasing time (HINT [62]). We strive to apply this concept of solution

quality to measuring the scalability of an AM pair.

Definition 2 The Quality of Solution (C203) is a measure of the accuracy or precision

of a computed result. It is a function of the amount of work performed by an algorithm-

machine pair.

We illustrate QoS with a simple example. Let the objective be to compute sin(a:)

to a specified accuracy. Let the range of needed accuracies be [5,35] significant

digits. The higher the accuracy, the larger the discretization of the sin(:r) curve.

Thus, obtaining a higher accuracy may require more computation time and memory

 

2Systems that support virtual memory may obtain superlinear speedups.
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resources. For sin(:r), we measure QoS by the number of digits of accuracy that

are computable by an AM pair. Thus, QOSmgn = 5 and C203,“, = 35. For four

hypothetical AM pairs, Fig. 5.3 illustrates the maximum achievable QoS of each pair:

7.5, 20, 40, and 47.5, respectively. The dashed lines denote QoSm,n and QoSmu,

respectively. All AM pairs achieve QOSmgn while only pairs 3 and 4 achieve the

maximum desired accuracy. If the end-user is concerned primarily with the solution
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Figure 5.3: Quality of Solution for Sin(a:).

accuracy, then processor speedup or efficiency may be of little use since there is no

guarantee of a correlation between those metrics and solution quality. However, these

metrics may provide a secondary measure for assessing which of pairs 3 or 4 ought to

be chosen given their ability to provide the highest accuracies desired. Later in this

section, we propose a metric to aid an end-user in choosing between these pairs.

We contend that end-users of scalable systems are primarily concerned with so-
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lution quality. How QoS is measured is application—dependent; however, as (208 is a

function of work, we can use the amount of scaled work to determine an AM pair’s

scalability. Additionally, we can rank different AM pairs based on the magnitude of

the achievable scaling.

5.3.1 Taxonomy of Scalability Measures

To quantify the absolute scalability of an AM pair, or compare the relative scalabilities

of several AM pairs, we derive three scalability metrics. One or more metrics may

apply to an end-user’s situation, and the relative importance among diflerent metrics

are problem dependent. The first two scalability metrics quantify, respectively, the

maximum work computable and the maximum work achievable with time constraints.

The third metric is for work fixed at a level desired by the end-user. We observe the

range of number of processors and execution times that can compute the fixed level

of work. Let W represent the base amount of work.

A00 is the largest factor by which W can be scaled, i.e., AOOW represents the max—

imum amount of scaled-up work achievable on the AM pair. This value is

bounded by either the aggregate memory capacity of the machine or QoSmax,

whichever is smaller.

AT is the largest factor by which W can be scaled on the AM pair when the exe—

cution time, T, is fixed by the end—user. Implicitly, AT S A00.

S(/\D) is the set of ordered pairs (Nj,Tj) that can compute ADW, where the scale

factor, AD, is set by the end-user. Each pair (Nj, Tj) is the number of processors
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and the corresponding amount of execution time needed to compute ADW on

the AM pair. Figure 5.4 is a generic illustration of the quantifier for an arbitrary

amount of fixed work. Typically, as the processor configuration size increases,

execution time decreases. However, the cost of additional communication may

outweigh the benefit of splitting the work among more processors resulting in

increasing execution time. Thus, in Fig. 5.4, each point on the curve to the left

of the dashed line represents one (Nj,Tj) pair in the set 500). The number

of pairs in the set is determined, in part, by the granularity by which processor

configuration size can be increased, e.g., for hypercubes the increment is a

power-of—2. Implicitly, AD S A00.
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Figure 5.4: Execution time vs. number of processors tradeoff

For the first two metrics, the larger the value of the metric, the more scalable the AM

pair. Determining the maximum work for a fixed time (AT) is similar to the SLALOM

[61] benchmark which fixes computation time at one minute and determines how
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accurately an answer could be generated in that time. For the third metric, S(/\D),

scalability is measured by the number of (NJ-,Tj) pairs and the magnitude of the

respective N,- and T,- ranges. One could use SOD) to determine the most scalable

AM pair in the sin(:I:) example given earlier where QoSma, is a function of AD. In

contrast to the sin(:2:) example, many applications particularly in image and signal

processing have physical limitations on data set sizes and, therefore, the work does

not scale [63]. The S(/\D) metric could be utilized by end-users of such applications

where AD = 1.

5.4 Mathematical Framework

To quantify AM pair scalability with the metrics introduced in Section 5.3, the various

properties that characterize algorithms and machines must be parameterized. We

introduce a simple mathematical framework, similar to the model used in Amdahl’s

Law [54, 53], for this purpose. This model is intended to facilitate AM pair scalability

quantification and not as an absolute predictor of performance. A number of factors

inhibit a precise prediction of algorithm performance on a parallel machine, e.g.,

overlap of computation and communication, cache effects, network contentions, etc.

5.4.1 Algorithm and Machine Parameterization

Let W = W1 + Woo represent the amount of work to be performed for an implemen-

tation of an algorithm, where W1 is the amount of work that can only be performed

sequentially and Woo is the amount of work that can be fully parallelized, i.e., W00 can
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take advantage of whatever number of processors are available. This model obviously

provides the most optimistic case of an algorithm in terms of the degree of parallelism.

For many applications, the amount of work can be characterized in terms of the data

size of an application. For example, the amount of work for solving a system of n

2 3
,gn.equations with n unknowns using Gaussian elimination is a function of n, i.e.

To characterize the machine upon which an algorithm executes, we assume a

distributed-memory architecture composed of N homogeneous nodes. Each node

consists minimally of a processor with computation capacity A, local memory of size

m, and a communication router. The aggregate computation capacity and memory

of the machine are AN and mN, respectively. Henceforth, we shall use the terms

node and processor interchangeably.

We define M(W, N) as the amount of memory capacity required to execute W

work on N processors. Depending upon the algorithm, M(W, N) is a function of W

or N or both. For instance, if the data size requirements of an algorithm increase with

added computation, then the memory capacity requirement is a function of W. An

algorithm where data is replicated among processors would have a memory capacity

that is a function of N.

5.4.2 Fixed-work Problems

With the above parameters, we can formulate execution time in terms of computed

work. Let t1 = g; and too = EA” be the respective execution times of W1 and Woo on

one processor. Equation (5.1) defines the execution time of W work on N processors;
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it is the theoretical lower bound on execution time since it ignores the communication

overhead and does not account for the memory constraints of the machine.

(5.1)

When a parallel algorithm is executed on a distributed-memory machine and the

number of nodes is greater than one, then typically there is communication among the

nodes of the machine for non-local memory accesses. We define the communication

overhead in terms of execution time as a function of work and number of processors,

h(W, N). Note that presently W is fixed, but N is variable as we may change the

number of processors involved to compute the given work. Equation (5.2) expresses

execution time that incorporates the amount of time attributable to interprocessor

communication.

TN(W) =t1+ ’fi + h(W, N) (5.2)

Similar to the discussion on memory capacity in Section 5.4.1, communication

overhead h(W, N), may be a function of either the amount of work or the number of

processors or both. In a five-point stencil application [64], nodes communicate with a

fixed number of other nodes; thus, total communication overhead is not a function of

N, but may be a function of W, e.g., it may depend on the number of loop iterations.

In contrast, assume a particular matrix multiplication algorithm where the columns

of one of the matrix operands are distributed evenly to the nodes of the machine. In

the process of computing the matrix product, columns are shifted around the nodes
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of the machine until each column has been to each node. Such a communication

paradigm is dependent on W (or matrix size in this case) and on N. Furthermore,

the implementation of communication primitives used in an algorithm may also affect

communication overhead. For example, a naive implementation of broadcast, where

the source node uses separate messages sent sequentially to inform all destinations,

i.e., separate addressing, is an example of communication cost that is a linear function

of N. In contrast, a tree-based implementation of broadcast would have logarithmic

complexity, i.e., log2(N) [39].

In general, modeling communication overhead can be complicated since there are

a number of issues to consider. Sending, receiving, and network latencies impact mes-

sage transmission time. Second, different messages can contend for the same physical

channels in a network causing increased network latency as message sizes increase [39].

Third, communication may overlap with algorithm computation. Message contention

and communication/computation overlap can be very difficult to model precisely.

We assert that modeling communication—overhead requires thorough analysis of the

algorithm and the implementation of its message-passing primitives on the chosen

machine. We elaborate on this process in Section 5.4.4.

In the computation of TN(W), there is an implicit assumption that M(W, N) is

not greater than the aggregate memory of the machine. If the memory requirement

were greater than the aggregate memory capacity of the machine, then TN(W) would

increase substantially due to the overhead of paging, if it is supported. Equation (5.3),

therefore, defines the memory bound of an AM pair. Therefore, TN(W) is defined for
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an AM pair if and only if Equation (5.3) holds.

M(W, N) g mN (5-3)

5.4.3 Scaled-work Problems

Scaling up the initial work can contribute to a higher QoS as discussed in Section 5.3.

A higher QoS may include an increase in computation, e.g., increased number of

iterations, and/or an increase in memory requirements. We define scaled work as

WU“) 2 W1 + kW00 if the fully parallelizable portion of the algorithm, Woo, can

be scaled up by a factor of k and the sequential portion of the algorithm remains

constantf’. Obviously, expecting the sequential portion of work to remain constant

as work is scaled up is an optimistic assumption. The model could be extended to

account for a corresponding increase in the sequential portion of the algorithm. We

omit such an extension at this time. The execution time of scaled work is given in

Equation (5.4).

TN(W(")) = t1 + “T” + h(W‘k), N) (5.4)

Consistent with the formula for scaled work, Equation (5.4) multiplies the scaling

factor, k, by the parallel portion of the algorithm. Communication overhead is ex-

tended similarly to account for scaled work. As discussed previously, the derivation

of communication overhead, h(Wf"), N) when k > 1, is necessarily algorithm-specific.

Scaling the work may also increase the amount of memory required. Equation (5.5)

 

3We place I: in parenthesis to clarify that we are not raising W to the power of k.
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specifies the increased memory as a function of k and the original work where a is a

real number.

M(W‘k), N) = k“[M(W, N)] (5.5)

When a = 0, scaling the work does not increase the memory required to perform

the work. For instance, in a particular molecular dynamics application [65], force

calculations are performed for a fixed amount of time. Increasing the number of

iterations requires additional work (computation) but not additional memory. In

general, if a = 1, the memory increase is linear, if a = 2, the increase is quadratic,

etc. In Section 5.6, we Show an example where a = g. Equation (5.6) specifies the

scaled work memory bound; it is a generalization of the inequality in Equation (5.3),

i.e., in that case k =1.

M(WW, N) g mN (5.6)

AM pair a2M in Fig.5.2 illustrates the potentially significant impact of the scaled work

memory bound. We shall explore more examples in greater detail in Section 5.6.

5.4.4 Deriving AM Pair Parameters

As our goal is to quantify scalability of an AM pair, we must not only determine the

appropriate formulas that characterize the AM pair but also determine the appropri-

ate values for the chosen parameters. We assert that the determination of these values

can be largely performed by algorithm analysis and empirical testing. We illustrate

the determination of these parameters for several AM pairs in Section 5.6.

The work parameters, W1 and Woo, can typically be determined by evaluating the
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major loop bounds of an algorithm together with its data decomposition among the

nodes of the machine. The sizes of these bounds may vary with program data size.

Modeling communication can be difficult as discussed earlier. However, it is typically

straightforward to determine the number of communication invocations, the size(s)

of messages, and the number of processors involved. Parameterizing the complexity

of the implementation of a communication primitive, i.e., a linear or logarithmic

function of N, may be obtained given access to vendor source code or by performing

measurements.

5.5 A Three-dimensional Illustration of AM Pair

Scalability

Typically, the work of a parallel application cannot be scaled without bound. As work

is scaled, the memory size requirements of the algorithm may exceed the aggregate

capacity of the machine as expressed in Equation (5.6). Additionally, communication

overhead may grow with an increase in the number of processors as shown in Fig. 5.4.

Given that we can characterize an AM pair with the mathematical framework of Sec-

tion 5.4, we assert that it may be difficult to fully visualize the scalability of an AM

pair or the relative scalabilities of a number of AM pairs. AM pairs may be charac-

terized by a number of independent and complex formulas. A three—dimensional view

of an AM pair, based on its mathematical characterization, may facilitate scalability

analysis.
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To illustrate our AM visualization, let us suppose a hypothetical AM pair whose

scaled work execution time and memory capacity requirements are given with Equa-

tions (5.7) and (5.8), respectively. These formulas were arbitrarily chosen for the

purpose of illustration. Let n = 10 represent the data size of the problem to be

solved by the AM pair. Furthermore, let the parallelizable work be a function of the

data size and let the sequential component be constant, i.e., W = W1 + W0o = co+n2.

Scaled work is expressed as WU‘): co + knz. Communication overhead, which is a

function of k and n, is given by the last operand of Equation (5.7). co, c1 and c2 are

small constants.

T~(W“°’) = co + k (An—N) + (We: + emu?» (5.7)

MW“, N) = WWW) (58)

Equations (5.7) and (5.8) are fairly simple, yet it is not straightforward to visualize

their behavior or interrelationship as the number of processors or work are scaled.

Additionally, suppose A were doubled by virtue of new processor hardware: how

could this change affect scalability and how can it be visualized?

Figure 5.5 depicts the above hypothetical AM pair’s scalability as a three-

dimensional surface.“ The vertical axis plots execution time, TN(W(")), as a function

of the base axes: processor configuration size, N, and scaled work, WU‘). Recall

from Section 5.4 that TN(W(’°)), is defined only when the memory requirement is

 

4Figure 5.5 and all subsequent color figures are found at the end of this chapter.
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within the aggregate memory capacity of the machine configuration, i.e., the rela-

tion in Equation 5.6 must hold. For the present example, TN(W(")) is defined when

k(n2)(\/N) S mN. The BLUE and WHITE regions in Fig. 5.5 denote, respectively,

points which satisfy the relation and the points which do not. The bounds for an AM

pair base axes are described next; in {}, we give these values for the current example.

a W - Base work, i.e., WU‘), where k =1; {1}.

e ACOW - Upper bound on scaled work, i.e., the maximum WU“), for which Equa-

tion 5.6 holds. If there is no sequential component, W1, then the maximum k

is equal to A0,; {10}.

o N", - Lower bound on the number of processors on which W can be performed;

{4}-

. Nu), - Total number of processors on the machine; {128}.

Due to the scaled work memory bound, only the blue region of Fig. 5.13 is of

further interest. Figure 5.14 shows the same AM pair with the white region occluded

and the vertical axis reduced in scale to “zoom-in” on the blue region. Figure 5.14 is

partitioned by color with the following meanings.

e GREEN The execution time of the base work, W, over [N15,Nub] is denoted

with this line. As the size of the processor configuration grows, execution time

initially decreases, but may eventually increase, if the cost of greater commu-

nication outweighs the benefit of splitting the work among more processors.
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Fixed-work problems (Section 5.4.2) can be modeled using this line exclusively.

Thus, they represent a subset of our framework.

a BLUE The values in this region denote execution times for scaled work, i.e.,

k > 1. Lightest to darkest Shadings represent execution time intervals: (0,2],

(2,3], (3,4], (4,6). The shadings facilitate mapping the maximum work that can

be accomplished in time T, i.e., the AT measure. For example, suppose we want

to find AT when T = 3. The border between the (2,3] and (3,4] Shadings depicts

this fixed time value for the entire range of processors. The YELLOW point

at the “top” of the (2,3] shading depicts the point at which maximum work is

achieved when T = 3, occuring on 64 processors. Here, AT = 4.8.

e MAGENTA The upper bound on scaled work occurs with Nu), processors. The

maximum work is ACOW. This point is labeled “Inf.”

0 _Eg This line plots execution time over a range of processors for fixed work,

“D”, and thus illustrates the S(/\D) measure. In Fig. 5.14, the amount of work

performed is ADW where AD = 3. Points along the solid portion show the range

of decreasing execution times on increasingly larger processor configurations,

i.e., the set (NJ-,Tj) that achieve the desired level of work. The dashed seg-

ment illustrates increasing execution time due to the communication overhead

of additional processors. The end-user would not be interested in the dashed

segment since equivalent execution times are obtainable on smaller processor

configurations. Alternatively, the entire red line segment may denote QoSmaz,

the upper bound on the end-user’s range of desired solution quality. Under this
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end-user constraint, the upper bound on the scaled work axis would be replaced

by 3.

Figures 5.13 and 5.14 are generic illustrations of an AM pair’s performance.

Different AM pair surfaces may vary greatly depending upon their TN(W(")) and

M(WU‘), N) functions and the range of available processors. It is precisely for this

reason that we assert that presenting an AM pair in this manner is of particular

importance. In the next section, we demonstrate the utility of our approach in com-

paring the relative scalabilities of three different AM pairs for performing matrix

multiplication.

5.6 Case Study: Matrix Multiplication

We compare the relative scalabilities of three AM pairs for performing matrix multi-

plication. We choose this application for simplicity of illustration, i.e., the straight-

forward algorithms allow us to focus our attention on presenting the utility of our

scalability quantification framework. We plot the three-dimensional surfaces of the

AM pairs and compare their respective S(AD) metrics for fixed values of AD.

We select three parallel algorithms a1, a2, and a3, executing on the same machine,

M, an IBM SP-a: at Argonne National Laboratory [66]. The allowable processor

configuration sizes are [N)b,Nub]=[1,128]. Each AM pair computes C, the product of

two n x n matrices A and B. The algorithms differ in basic operation and distribution

of matrices across the nodes of the machine. The major distinctions of a1, a2, and a3

are summarized next.
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Matrices A and C are distributed by rows among nodes, and B is replicated

on all nodes. The replication of B allows each processor to compute its portion

of C without accessing off-processor data items. Thus, there is no interproces-

sor communication needed. The memory cost, however, grows with increasing

processor configuration size due to the replication of B.

Matrices A and C are distributed by rows among nodes, and B is distributed

by columns. The total memory capacity requirement is reduced in comparison

to al as it is not a function of the number of processors; however, point-to—point

communication is used to shift columns of B among the processors. The total

number of messages exchanged is a function of N, and the message size is based

on the ratio of n to N.

Matrices B and C are distributed by rows among nodes, and A is distributed by

columns. Total memory cost is the same as for a2. Data exchange is performed

with a collective sum reduction operation for every data element of C.

Next, we present the pseudo-code of each algorithm and describe their operation in

more detail.

5.6.1 Algorithm-Machine Pair alM

Figure 5.5 depicts the distribution of the three matrices in CI, for four processors

numbered 0,1,2,5’. Subscripts denote the processor number to which the data is

mapped.5 Figure 5.6 shows the operation of al from the perspective of each processor.

 

5The distributions of A and C follow the (BLOCK,*) pattern of HPF [3].
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Figure 5.5: Data distribution of a1

Note that the bounds on the indices in statements 51-83 are relative to the node’s

local data set. a1 adheres to the owner-computes rule [3] that stipulates that the

processor that stores the data element on the left—hand side of a program statement

is responsible for computing its update. Thus, each node is responsible for computing

its respective portion of C, an 1% X 12 data block. The outermost loop, SI, iterates

over the node’s local block C owned by the node. The degree of parallelism of a1 is

N S Nab.

 

Sl: For rows = 0T0 %—1

S2: For cols = 0 To n — 1

S3: Forj=0Ton—l

S4: C[rows,cols] = C[rows,cols] + A[rows,j] x B[i,cols]

S5: End For

S6: End For

S7: End For

  Figure 5.6: Algorithm a1
 

5.6.2 Algorithm-Machine Pair 0.2M

In algorithm a2, contiguous rows of A and C are partitioned among processors, just

as in al, but a; partitions contiguous columns of B among nodes. The operation of

a2 is described for four processors as follows. Computation begins with the diagonal
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data blocks of C as depicted by the darkest shaded boxes of Fig. 5.7. The diagonal

f,- x fly-sized blocks of C are owned by different processors and thus can be computed

in parallel. Next, each node proceeds with an off-diagonal block as illustrated with

progressively lighter shading in Fig. 5.7. Each shading shows the block set that can

be computed in parallel. Computing off-diagonal blocks, however, requires access

to off—processor data. For example, to compute block Cm, processor 0 requires row

A0 (which is local) and column B1 which is owned by processor 1. In general, to

perform the latter steps, the columns of B are circulated one step to the left around

the processors arranged in a ring as shown in Fig. 5.8 using the MPI [67] send-and-

receive primitive which combines the two message—passing operations in one call.

  

 

A1

A2

 

 

         

 

execution order —’

Figure 5.7: Data distribution and operation of a;

Figure 5.9 presents the a; algorithm. The number of steps in the outermost loop (SI)

is determined by the number of processors since each processor shifts its locally-owned

column to all other processors. All processors perform a barrier synchronization at

statement S4.



   

 
   

  
  

    

  
  

         
       

Processor [ [ I [_7

0 Bo BI 32 B3

1 31 32 B3 B0

2 32 B3 B0 31

3 B3 Bo 3] 132

i__ i— L_

Step 1 Step 2 Step 3 Step 4

Figure 5.8: Communication pattern of a2

5.6.3 Algorithm-Machine Pair a3M

In algorithm a3, A is distributed by contiguous columns, and B and C are distributed

by contiguous rows as Shown in Fig. 5.10 for four processors. In contrast to the pre—

vious two algorithms, a3 uses all processors in the computation of each data element

of C. Figure 5.10 illustrates the computation of element C43 where each processor

computes a partial sum of products of row 4 of A and column 3 of B. Processor 2, to

which C43 is distributed, performs a sum reduction operation to obtain the final re-

sult. Figure 5.11 illustrates the general operation of a3. Statements SI and S2 iterate

over all row and column indices bounded by n. In statement S3, processors compute

their respective partial sums. The operation of S6 is implemented as a tree-based

reduction in MPICH [68].

5.6.4 Computing AM Pair Parameters

Scalability quantification begins with the determination of the values of the param-

eters that characterize AM pair behavior, e.g., Woo and A. The derivation of the

parameters is based on the matrix sizes and distributions, and measured execution
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81: For step = 0 To N — 1

S2: ofst = [(myJank + step) mod N] x £7

S3: If (step > 0)

S4: MPI_Sendrecv(B-col)

S5: End If

86: For rows = 0 To 7?,- — 1

S7: For cols = 0 To 7% — 1

S8: Forj=0Ton—l

39: C[rows,cols+ofst] : C[rows,cols+ofst] + A[rows,j] x B_col[j,cols]

510: End For

811: End For

312: End For

813: End For

Figure 5.9: Algorithm a2
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Figure 5.10: Data distribution and operation of a3

times on machine M.

Clearly, the amount of work in matrix multiplication is a function of data size, or n.

We fix the base size to be n = 1000. To determine the amount of work (computation),

we examine the number of floating-point operations (FLOPS) in the three algorithms.

As presented, the algorithms perform n multiplications and n additions to obtain each

element of C. Since there are n2 elements of C, a rough estimate of the base work

is W = 2n3 = 2 GFLOPS, for n = 1000. As W can be fully parallelized (limited by
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Sl: For rows = 0 To n—l

S2: For cols = 0 To n — 1

S3: Forj=0To-I'(’-,-l

S4: partial = partial + A[rows,j] x Bfi,cols]

S5: End For

S6: MPI_Reduce(partial,sum,root)

S7: If (root)

58: C[(rows mod 7%),cols] = sum

89: End If

810: End For

S11: End For

Figure 5.11: Algorithm a3
   
Nab), W = Woo. The sequential component W1 is never exactly zero for any algorithm

due to such factors as process initialization. However, in a1 and a2, the sequential

component is of minimal consequence and can be omitted in the present analysis.

The computation is scaled by increasing the matrix size by a real factor i, i.e., we

solve (in) x (in) matrices, where i 2 1. The amount of increased work required to

solve a factor i larger problem is given by k = 22". Henceforth, we use i rather than

k as the former is more intuitive.

Memory capacity requirements for each AM pair is based on the sizes and dis-

tributions of the matrices. For a1, each node stores (in) x (31%) blocks of elements

of A and C and all of B. Thus, the memory requirement per node is (in)2(1 + fi).

The aggregate memory requirement, M(Wm, N), is (in)2(N +2). Due to the replica-

tion of B, each additional processor added to the computation causes the aggregate

memory requirement to grow by n2. For a; and a3, M(W(‘),N) = 3(in)2. Each
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single-precision real data element displaces four bytes on machine M.

The derivation of several AM pair parameters is gathered by empirical testing.

We execute alM, 02M, and a3M to obtain values of TN(W(’)) for various i and

N. Using Equation (5.9) and execution times achieved with a; M, we solve for A.

Equation (5.9) has no h component since there is no communication in algorithm a1.

To obtain a stable value for A, we perform a number of tests with varying i and N

and then take the mean.

2(in)3
 (5.9)

Using this approach, we obtain a per-node sustained computing capacity estimation

on the SP-a: of A = 56 MFLOPS. Algorithm a2 contains a communication component

which comprises a sending and receiving latency, co, and network latency as a function

of the message size, cfifl). The number of communication steps in a2 is N — 1.
N

The total execution time of a2 is given in Equation (5.10).

 TN(W(I')) = Egg; [co+el ((i”)2)] (N— 1) (5.10)

Using a system of equations based on measured execution time of a2, we determine the

values of co = 0.075 and cl = 7.94‘5. In a3, the communication component is based

on its use of the MPLReduce operation implemented with a tree-based paradigm [69].

Figure 5.12 illustrates the message-passing sequence for eight nodes. Based on the

(binary) rank of the node, starting from the right least significant bit, if the bit is

1, send to the node with that bit 0 and exit; if the bit is 0, receive from the node
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with that bit set and combine with the addition operator. MPLReduce combines

summation and communication, however, we Shall not separate this primitive into

distinct work and communication components. We model the execution time of the

operation with c2 [log(N)], where C; is some constant. The message size of each

constituent message sent in the collective reduction is one data element, regardless of

matrix size. Reduction is invoked for each data element in C; thus, the total cost of

reduction is (in)2(c2 [log(N)]). Equation (5.11) captures the total execution time for

Step

3 4//—\

1 A A A A

  
 

[000] [001] [010] [011] [100] [101] UMJ [111]
  
 
 

Figure 5.12: Tree—based MPI Reduction used in a3M

a3M. We determine the value of c2 to be 1.33-5.

now”) = 2%?— + (in)’(62f10g(N)l) (5.11)

Table 5.1 summarizes the parameter values for the three AM pairs. Next, we quantify

the relative scalabilities of alM, (12M, and a3M based on these parameter values.

 

AM pair W“) M(W“), N) A h

alM 2(in)3 (in)2(N + 2) 56MFLOPS n/a

azM 2(in)3 3(in)2 56MFLOPS [cO + e,(£‘7’31)](N — 1)

a3M 2(in)3 3(in)2 56MFLOPS (in)2(c2 [log(N)])

 

 

 

        
 

Table 5.1: AM parameters for alM, 02M, and a3M
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5.6.5 Scalability Quantification of alM, 02M, and a3M

Let us assume two end-users for matrix multiplication, User) and USCI‘z, who are

interested in determining the most scalable AM pair based on the S(AD) measure for

AD = 5 and AD = 20, respectively. Due to its memory constraint (see Table 5.1),

alM can only scale i from 1 to 5.6. In contrast, (12M and a3M can obtain matrix

scaling on the range, 1 S i S 36.6. The measure AD represents a fixed value of i.

Thus, for AD 2 20, we can only compare the latter two AM pairs.

Figure 5.15 illustrates the respective behaviors of 0.2M (left) and a3M (right)

for 1 S i S 36.6 and 1 S N S 128. Base work is shown in green as explained

in Section 5.5. The red lines in Fig. 5.15 illustrate AD = 20 for 02M and a3M,

respectively. The sets (NJ-,Tj) for a2M and a3M are given in Table 5.2. Note that

the processor ranges, N], are given from smallest to largest and the corresponding

execution times range from largest to smallest. As explained in Section 5.5, execution

time values which do not satisfy Equation (5.6) are obscured.

 

 

 

 

          

AD a1M a2M a3M

N,- T,- N,- T,- N,- T,-

5 [9,128] [464,32] [5,128] [2363,1935] n/a n/a

20 n/a n/a [45,128] [41576,37329] [45,128] [189094,184334]
 

Table 5.2: SOD) measure for alM, (12M, and a3M

When AD = 20, (12M and a3M have equivalent processor ranges, but 02M achieves

much faster execution times. The larger execution times for a3M are due to the

number of communication reduction operations required. Each reduction has a small

message size as only one data element is contributed by each node. Each participant,
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however, must incur a costly sending latency for each invocation. Due to the large

number of reductions, sending latencies result in a large aggregate overhead as data

sizes grow. The “flatness” of the surfaces with respect to increasing N in Fig. 5.15,

pictorially illustrates that increasing the number of processors has a minimal impact

on execution time. This phenomenon is explained by the communication overhead

components of Equations (5.10) and (5.11). In each equation, (in)2 contributes far

more to the overall cost than the respective N and log(N) factors.

The surfaces in Fig. 5.16 illustrate the respective behaviors of a1M (left) and

a2M (right) over 1 S i S 5.6 and l S N S 128. Again, base work is shown in

green.6 Figure 5.16 (left) illustrates the full range of matrix size scale-up for a1M .

Figure 5.16 (right) illustrates agM’s matrix scale range up to only 5.6 to facilitate

comparison with al M. We omit a3M from the AD = 5 comparison since Fig. 5.15

clearly establishes that (12M achieves better relative performance over the entire range

of i from 1 to 36.6. The red lines in Fig. 5.16 illustrate performance for the fixed level

of work corresponding to AD = 5 for alM and (12M, respectively. Again, the precise

values for (Nj, Tj) are summarized in Table 5.2.

We conclude that alM is the most scalable AM pair for User; who restricts AD

to 5. This conclusion is based on alM’s relatively lower execution times; however,

it can only perform the required work on no fewer than 9 processors, compared to 5

processors for a2 M. Presumably, this limitation would be of minimal importance to

User). For AD = 20, both (12M and a3M require the same number of (NJ-,Tj) pairs,

 

6Note that the higher resolution for (12M reveals that base work execution time increases as the

processor configuration size grows.
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but 02M achieves significantly better execution times over the entire range. Thus,

a2M is the most scalable AM pair for USCI‘z.

5.7 Inclusion of Other Scalability Models

We favor a scalability framework that is primarily concerned with an AM pair’s ability

to increase solution quality through increased work over the approach taken by other

models which measure scalability mainly in terms of processor speedup, efficiency, or

speed. However, our model does not preclude using these latter metrics as additional

parameters. For instance in Fig. 5.17, the shading within the blue region is based on

the ability to maintain average speed, the quotient of work over the product of number

of processors and execution time [57]. Speed values are normalized, i.e., the base work

on a single processor has average speed equal to 1.0. The borders between Shadings

from darkest to lightest are given by average speed values of [1.0,0.9,0.8,0.7,0.6,0.2).

Similarly, efficiency [58], measured as the quotient of speedup over number of proces-

sors, may be incorporated in an AM surface. Since speedup is required to measure

efficiency, we are limited to scaling the work up to the memory bound for a single

processor. Figure 5.18 illustrates efficiencies using the same hypothetical AM pair

and the same values for Shadings as given above for average speed. Note that the up-

per bound on the axis for scaled work on the efficiency plot is 10. Thus, the efficiency

surface represents a subset of the average speed surface (Fig. 5.17).
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Chapter 6

Performance and Scalability

The goal of data redistribution is to enhance data-parallel program performance by

providing a capability to rearrange data among the processor memories of a machine

that better suits subsequent computation. Data redistribution does not contribute to

the data—parallel program’s computed result; thus, the ability to scale work or scale

the quality of the solution are not relevant factors for analyzing redistribution. We

assert that the viability of the optimal processor mapping technique (Chapter 3) and

redistribution library, DaReL, (Chapter 4) ought to be measured in terms of execution

time performance as that is the most relevant criterion for measuring redistribution

performance. For any particular program data size, selected distribution patterns,

and processor configuration, the time required to perform data redistribution Should

be minimized.

Beyond providing adequate performance for a particular redistribution scenario,

we emphasize the importance of providing long—term, i.e., scalable, redistribution

performance as data and processor configuration sizes increase. Chapter 5 presents a

120
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model for quantifying algorithm-machine (AM) pair scalability using end-user-defined

criteria. Central to the quantification framework is measuring an AM pair’s ability to

scale the amount of work performed. Since data redistribution scalability assessment

focuses on the efficiency of data exchange, and not computation, we shall address

the question: by what criteria is data redistribution scalability to be quantified? We

assert that the trend in the slope of the redistribution execution time curve over a

range of processors is a viable means for quantifying redistribution scalability. The

concept of Slope over a range of processors is similar to our earlier work where we

coined range of scalability [8] as a means for assessing scalable library design.

In this chapter, we present data redistribution performance using DaReL on an

IBM SP-zr: at Argonne National Laboratory [66] and demonstrate that DaReL is

highly communication—dominant. The performance of redistribution using the opti-

mal processor mapping technique is compared with redistribution performance using

the traditional mapping technique. We review a number of MP1 point-to—point and

collective communication algorithm options to perform data exchange, and we deter-

mine the best, in terms of performance, implementations as a function of data size

and number of processors. Lastly, using the scalability quantification framework as a

basis, we propose extensions for quantifying the scalability of DaReL, and we present

results based on these extensions.
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6.1 Processor Mapping Technique Analysis

In this section, we discuss the possible impacts on the data-parallel programmer

and the compiler, respectively, when using the optimal processor mapping technique.

We present the execution time benefit of the technique compared to the traditional

mapping technique for a number of data redistribution cases when performed on an

IBM SP-x.

6.1.1 Effect of Optimal Mapping on the Programmer

Permuting lpids with the optimal mapping functions in Sections 3.1 and 3.2 may incur

undesired side effects and thus may not be suitable in all redistribution instances.

For instance, the programmer may lose “neighboring data” relationships. In Fig. 3.2,

under the traditional cyclic mapping, lpids 0 and 1 are neighbors1 while under the

optimized mapping, lpids 0 and 4 are neighbors. Suppose a programmer imparts a

particular logical to physical processor mapping for a given program and utilizes this

information for maintaining neighboring data relationships for physical processors.

In order to preserve these relationships, a programmer may favor the traditional

processor-data mappings over the optimal mapping in a call to data redistribution.

Figure 6.1 illustrates static, i.e., not varying from one program execution to another,

logical to physical processor mappings: logical processor i always maps to physical

node pi. In (a), the traditional mapping, i.e., 0,1,2,3, preserves the neighboring

processor relationships while in (b) neighboring data relationships on the physical

 

1A processor is a neighbor if it owns data elements that are adjacent from the perspective of the

global data.
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nodes is corrupted when using the optimal mapping, i.e., 0,2,1,3 makes p0 and p2

become neighbors where previously p0 and p1 were neighbors.

_lflgical Physical Egical Physical
  

0 ----- a- pO 0 ----- «b 130

1 ----- # pl 2 ----- * p2

2 ----- ’ p2 I ----- ’ pl

3 ----- e p3 3 ----- 4’ p3

(a) Traditional (b) Optimal

Figure 6.1: Mappings when physical node mapping is static

When a compiler or run-time system uniquely determines the logical to physi-

cal processor mappings, however, the programmer is unable to maintain neighboring

data relationships on the physical nodes. Indeed, indirect-network multicomputers,

e.g. , IBM SP-x, or most workstation clusters have no concept of “neighboring nodes.”

Furthermore, the allocation of parallel jobs, and thus data, may vary for distinct ex-

ecutions of the program Since different physical processors may be allocated to each

job. Figure 6.2 illustrates a number of program executions where the allocation of

logical processors to physical nodes is different for each invocation. The top part

of Fig. 6.2 illustrates the traditional processor-data mapping for three distinct pro-

gram executions; the bottom portion of Fig. 6.2 illustrates the optimal processor-data

mapping for three distinct program executions. From the perspective of the physical

nodes of the machine, the permutation of the lpids, whether traditional or optimal, is

transparent to the programmer. We argue that in these situations, the use of the op—

timal mapping is always justified since neighboring data relationships on the physical

nodes cannot be maintained, or exploited, by the programmer.

Permuting lpids can also facilitate greater flexibility: the programmer may want to
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Traditional

Egical Physical Logi al Physical Logi a] Physical

0 ----- * p0 0 ----- - p2 0 ----- * pl

1 ----- * pl 1 ----- * p0 1 ----- * p2

2 ----- > p2 2 ----- ’ pl 2 ----- . p3

3 ----- e p3 3 ----- ’ p3 3 ----- * p0

(a) First execution (b) Second execution (c) Third execution

Optimal

ggical Physical Logical Physical Logical Physical

0 ----- * p0 0 ----- . p2 0 ----- * pl

2 ----- ’ pl 2 ----- * p0 2 ----- ’ p2

I ----- . p2 I ----- e p] I ----- e p3

3 ----- ’ p3 3 ----- * p3 3 ----- ’ p0

(a) First execution (b) Second execution (c) Third execution

Figure 6.2: Mappings when physical node mapping is dynamic

influence which data elements are redistributed to other processors and which remain

on-processor. Under the traditional mapping technique, the programmer has but

one choice, i.e., lpids are mapped in increasing numerical order. With the optimized

mapping technique, there are often several options since a number of lpids may map

to the same place holder; see Fig. 3.3(b). If the compiler supports programmer-

specification of lpid permutations, then the user has inherently greater control over the

data to processor mapping. Such flexibility may become even more significant when

data alignments are introduced. In such a situation, a number of data elements may

map to some local indices while fewer data elements map to other indices. Therefore,

being able to influence which indices are redistributed and which indices remain on-

processor could enhance overall performance.
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6.1.2 Effect of Optimal Mapping on the Compiler

The loss of neighboring data relationships may complicate the role of the compiler in

generating SPMD node programs from the HPF source code. Let us examine a simple

example. Let A be a 16—element array that is initially distributed with BLOCK, and

then redistributed CYCLIC; see Fig. 3.2. Assume that the following reference pattern

appears in the compiler-generated SPMD code following the call redistributing A to

CYCLIC.

Nn=aa—n+Aa+n

Using the traditional mapping technique, the compiler generates the following commu-

nication paradigm to obtain off-processor elements: Excluding the boundary proces-

sors, each lpid,- communicates with lpid,-_1 and lpid-+1. Under the optimal mapping

technique, neighboring processor relationships are not maintained, thus the above

communication paradigm cannot be used. For example, lpid3 communicates with

lpids and lpid-I, while lpid, communicates with lpido and lpidl. This problem can be

easily overcome, however, if the compiler utilizes the place holder mapping informa-

tion determined by the optimal mapping function. Let q = 0,4, 1, 5,2,6, 3, 7 be the

array of place holders of the lpids as generated by Equation (3.1). Under the optimal

mapping, the compiler would specify neighboring communication for non-boundary

processors as follows: for lpid,- in place holder qj, communicate with lpids in qJ-_1

and qj+1. Essentially, the compiler performs a table lookup to determine neighboring

lpid relationships. The extension to boundary processors is straightforward and is

excluded from the present discussion.
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6.1.3 Performance Comparison with Traditional Technique

The optimal mapping technique has been integrated into DaReL. Either the tradi-

tional or optimal mapping technique can be selected as a run-time option without need

for recompilation. To assess the run-time performance of the optimal mapping tech-

nique, we compare data redistribution execution times using the optimal technique

with redistribution execution times using the traditional mapping. An experimental

research version of MPI, MPI—F [70, 71], was used to obtain the performance results

on the Argonne IBM SP-x.

Figures 6.3 through 6.5 illustrate various performance comparisons of the two

mapping techniques. Figure 6.3 shows (BLOCK,*) to (CYCLIC(c) ,*) redistributions on

8 nodes over a range of matrix sizes: 32-thousand to 34-million 4—byte floating point

elements. The block size of the CYCLIC(c) pattern (row dimension) was maintained at

one-half the block size, b, of the BLOCK distribution. The optimal mapping technique,

applied to only the row dimension of the matrix, demonstrates significantly lower ex-

ecution times over the traditional mapping. The optimal technique achieves the same

redistribution result in roughly 60% of the time needed for redistribution using the

traditional technique. The larger the value of c with respect to b the greater the effect

of the optimized mapping technique on overall execution time because significantly

more data bits occur relative to the traditional mapping. With smaller values of c

relative to b, the benefit of the optimal technique is lessened since the relative differ-

ence in the number of data hits is reduced. For all redistribution instances, regardless

of block sizes (b and c) or global data size, we find the optimal technique outperforms
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or equals the traditional mapping.

Figures 6.4 and 6.5 demonstrate (BLOCK,BLOCK) to (CYCLIC(c),CYCLIC(c)) redis-

tributions on 12 (logically 4 x 3) and 24 (logically 6 x 4) processor configurations,

respectively. Matrix sizes ranged up to 91-million floating point numbers. In these

performance plots, the mapping technique is applied to both dimensions of the ma-

trices. As before, the optimal mapping redistributions outperform the traditional

mapping in all cases. The block size c was maintained at one-sixth and one—eighth

of the respective block sizes in the row and column dimensions of the matrices. The

execution time advantage of the optimal mapping technique remains consistent for

larger (> 24) processor configurations as well.

The computation of the send and receive processor sets, CDES, is included in all

of the execution time plots shown. Execution time attributable to these calculations

represented a small fraction of the overall total, i.e., on the order of hundreds of

micro-seconds for small data sizes and on the order of tens of milliseconds for the

largest data sizes plotted. See Section 6.2.1 for more details.

6.2 DaReL Performance and Scalability

In this section, we examine in detail DaReL’s performance for several types of data

redistribution scenarios covering a large range of data shapes and sizes and processor

configurations. We assert that scalability in the case of DaReL ought to be defined by

its ability, for a fixed data size, to improve performance with additional processors.

To this end, we propose a simple metric for quantifying DaReL scalability. The
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metric is based on the slope of the execution time curve with respect to the number

of processors used.

6.2.1 CDES and ED Execution-time Performance

The performance of DaReL’s main components, CDES and ED, for a number of dis-

tinct redistribution cases are presented. The results were obtained using the public

domain MPI, MPICH [68], on the Argonne IBM SP-x. Eight different redistribu-

tion cases were performed, see Table 6.1. CASES 1-4 represent different kinds of

redistributions in terms of data shape and selected patterns executed on 20-processor

configurations of the SP-x; CASES 5-8 are the same as CASES 1-4 except that they

performed on 100—processor configurations. The individual cases within the groups

1-4 and 5-8 are dissimilar to demonstrate DaReL’s flexibility in dealing with arbi-

trary patterns and data shapes and sizes. We explore the execution time effects of

these factors. All data points were obtained using the traditional processor mapping

technique.

Table 6.1: Redistribution test cases for DaReL

 

CASE D, D, P, = P, Data configuration

1 (BLOCK,BLOCK) (CYCLIC,CYCLIC) 5 X 4 1000 X 1000 - 4000 X 4000

 

  

 

 

(BLOCK,CYCLIC) (CYCLIC,BLOCK) 5 x 4 1000 x 1000 - 4000 x 4000

(BLOCK,*) (CYCLIC,*) 20 x 1 400 x (2500 - 40000)

(*,cvc1.1c) (*,BLOCK) 1 x 20 (1250 — 20000) x 800
 

(BLOCK,BLOCK) (crcuc,crcuc) 10 x 10 1000 x 1000 - 4000 x 4000

(BLOCK,CYCLIC) (CYCLIC,BLOCK) 10 x 10 1000 x 1000 - 4000 x 4000

(BLOCK,*) (crcucs) 100 x 1 400 x (2500 — 40000)

(*,CYCLIC) (*,BLOCK) 1 x 100 (1250 — 20000) x 800
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Figures 6.6 and 6.7 show the execution time of the CDES and ED modules, respec—

tively, on 20—processor configurations, CASES 1-4. The range of data sizes is shown on

the horizontal axis corresponding to the last column of Table 6.1. The vertical axis

shows the execution time of the respective module. For all four cases, the execution

time of CDES is approximately two orders of magnitude smaller than the execution

time of ED. The execution time data is obtained with the point-to—point algorithm

shown in Fig. 4.7. Later in the chapter, we discuss the significance of the selected ED

algorithm on the overall performance of redistribution.
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Figure 6.6: CDES performance on 20 processor configurations

CDES execution time depends upon the size and the shape of the data to be

redistributed. Recall, from Chapter 4, that the complexity of CDES is 0(no + n1 +

+ nm_1) where m is the number of dimensions and n,- is the number of elements

in dimension i. For CASES 1-4, CDES complexity is 0(no + 721). Thus, CASES 3-4
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Figure 6.7: ED performance on 20 processor configurations

whose data matrices are not square in shape, exhibit higher complexities than CASES

1-2 whose shapes are perfect squares.2 The measured execution time of the four cases

is consistent with the CDES complexity estimations.

Since ED constitutes the majority of redistribution execution time, we concen—

trate on assessing its performance among CASES 1-4 in greater detail. Redistribution

CASES 1 and 4 exhibit much higher execution times, up to a factor of 5 on 20 proces-

sors, than the remaining two redistributions cases. CASES 1 and 4 do not distinguish

themselves by exchanging more data, indeed, the amount of data exchanged in all four

cases is exactly the same. The discrepancy in execution time is explained by whether

the data to be sent to other processors is taken from contiguous or non-contiguous

locations in the local processors’ memory.

 

28cc last column of Table 6.1.
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We compare CASES 1 and 2, which appear quite similar, but whose measured exe-

cution times on 20 (logically 5 x 4) processors vary significantly. We discuss their exe-

cution for the largest data size redistributions, i.e., sixteen million elements. In both

cases, each processor stores a 800 x 1000 block of 4—byte floating-point numbers stored

in row-major order. Figures 6.8 and 6.9 illustrate the local data sets for processor (0, 0)

for CASE 1 and CASE 2, respectively. The 0,1,2,3 numbering applied to the columns

and the 0,1,2,3,4 pattern applied to the rows of Fig. 6.8 illustrate the ownership of

(0,0)’s elements under the D, pattern, i.e., (CYCLIC,CYCLIC). The shaded blocks

indicate the local elements that are sent to processor (0,1); there are forty-thousand

such elements. Each of these elements must be obtained from non-contiguous mem-

ory locations. MPI’s derived datatype facility, discussed in Section 4.2.5, provides for

the collection of non-contiguous data to be done by the underlying MPI implemen-

tation rather than by the user. Collecting data from non-contiguous data locations,

however, impacts the overall execution time of a message—passing operation [72]. For

CASE 1, all processors send forty-thousand element messages to the nineteen remain-

ing processors where the elements are taken from non-contiguous locations.

Contrast the situation of CASE 1 to that of CASE 2 shown in Fig. 6.9. The same

0,1,2,3 and 0,1,2,3,4 patterns are applied to the columns and rows, respectively, as in

CASE 1. However, due to the semantics of D: in the column dimension, contiguous

data blocks for this dimension are destined for individual processors. The semantics

of D; in the row dimension precludes the entire data block (shown shaded) from being

obtained from fully contiguous locations. Nevertheless, the data destined to (0,1) is

obtained from 160 non-contiguous locations of 250-element blocks. We assert that the
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lower overhead of collecting data for CASE 2 accounts for its better execution time

relative to CASE 1. Similar distinctions can be shown when comparing redistribution

CASES 3 and 4. For CASE 3, processors send data from largely contiguous locations

while for CASE 4, all data elements are taken from non—contiguous locations.
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Figure 6.8: Local data set for (BLOCK,BLOCK) to (CYCLIC,CYCLIC)

We turn our attention to the 100—processor redistributions, CASES 5-8 in Ta-

ble 6.1. The performance of CDES, shown in Fig. 6.10 for each case corresponds

almost exactly to the performance exhibited by the equivalent type of redistribution

in the 20—processor case, e.g., CDES performance of CASES 4 and 8 are almost exactly

equal. Thus, we conclude that the number of processors is of minimal consequence

to CDES performance, and data size is the primary performance factor. This con-

clusion is consistent with our earlier CDES complexity analysis. ED performance for

CASES 7 and 8 are significantly lower relative to their counterparts, CASES 3 and 4,
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Figure 6.9: Local data set for (BLOCK,CYCLIC) to (CYCLIC,BLOCK)

respectively. This phenomenon is attributable to the small number of destinations

that a processor sends to in the former cases as compared to the latter cases. For

instance, each processor in CASE 7 sends to only three other destinations. In CASES

7 and 8, the data shapes are are highly non-square. If the data shapes were more

square in shape, each processor would need to send to a greater number of processors,

most likely resulting in increased execution time. CASES 5 and 6 are similar to the

execution times of CASES 1 and 2, respectively.

6.2.2 Algorithm Choices for ED

Due to the predominance of ED execution time, in this section, we examine the

different MPI-based implementations of the ED module discussed in Chapter 4; see

Figs. 4.7 and 4.8. We define four algorithm-machine (AM) pairs (see Chapter 5)
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for performing ED. The algorithms are distinguished by their use of MPI primitives.

Below, N represents the number of participating processors:

1. Point-to—point Uses N — 1 calls to MPLSend and N — 1 calls to MPLRecv.

2. Gather Uses N calls to MPLGather.

3. Scatter Uses N calls to MPI.Sca.tter.

4. All-to—all Uses one call to MPIJtlltoall.

Figure 6.12 shows the execution time performance of the four AM pairs over a range

of processor configuration sizes, [4, 100], for (BLOCK,BLOCK) to (CYCLIC,CYCLIC) redis-

tributions. This type of redistribution was selected since it exhibited the worst case

redistribution performance on the lOO—processor configuration and the second worst

performance on the 20—processor configuration. We assert that the scalability analysis

applied to this case can be extrapolated to the other redistribution cases as well. The

four plots in Fig. 6.12 range from a data size of 1000 x 1000 (4—byte) floating point

numbers (upper left) to 4000 x 4000 floating point numbers (lower right).

The four plots in Fig. 6.12 show that execution time increases with increasing

data size. Consistent throughout the four plots is the relative performance of the

four AM pairs. In all plots, the Scatter algorithm represents the worst performance

followed by the Point-to—point algorithm. Significantly better performance is seen

with the Gather and All-to—all algorithms. To analyze the performance data, we

examine the implementation details of the above collective communication primitives
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in MPICH.3 Each of the collective operations is implemented by MPI blocking and

non-blocking send and receive primitives. HPIJlltoall is implemented exclusively

with non-blocking sends and receives. This approach is particularly advantageous

when the number of processors is large as messages can be received from processors

in the order of arrival. Using blocking receives imparts a static order on the reception

of messages in user space from distinct senders. The imposed order may not mirror

the actual order of message arrival leading to inefficiencies.

Perhaps the most surprising performance result is the clear advantage of the

Gather over the Scatter algorithm. Intuitively, both ought to exhibit comparable

performance since the former is a sequence of N many-to—one operations while the

latter is a sequence of N one—to—many operations. An MPI_Gatherv is implemented

as a sequence of blocking MPLRecv calls for the root process and a single blocking

MPLSend call for all non-root processes. To gather data from its send buffer into its

receive buffer, the root process performs a non-blocking send to itself that is eventu-

ally received with a blocking receive. An MPLScatterv is implemented as a sequence

of blocking MPLSend calls at the root process and a single blocking MPLRecv call for

all non-root processes. The root process performs a blocking MPLSendrecv to scatter

data from its send buffer into its receive buffer.

In the context of MPI, a blocking send is defined as a process being blocked until

its communication buffer can be reused. Thus, returning from a call to MPLSend does

not imply that the intended recipient has received the message. On the other hand,

returning from a blocking MPLRecv means that the message has been successfully

 

3MPICH is public domain software, thus, we can analyze the source code.
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received into the user’s communication buffer. To explain the performance difference

of the Gather and Scatter algorithms, we examine the interaction of communicating

processes using the two algorithms combined with message-passing benchmark data

for the SP-m. The amount of time consumed by a point-to-point message is commonly

subdivided into sending, network, and receiving latencies. The sending latency, tund,

is the time required to inject a message into the network; the network latency, tact,

is the time consumed traversing the network, and the receiving latency, tree”, is the

time needed to retrieve the message at the recipient. Nupairoj and Ni [73] find the

following values for these parameters on the SP-a: where m represents the message

size in bytes:

tum; = 20+(0.02)m p-seconds

tnet = (0.03)m p-seconds

tree” = 35 + (0.02)m p—seconds

We examine a specific case when the redistribution data size is 1000 X 1000 on

four processors. For these data points, the relative proportions of tum; : tnet : tram, are

approximately 1.0 : 1.5 : 1.0. Using these relative proportions, Fig. 6.13 illustrates

the communication paradigm of the Scatter (top) and Gather (bottom) algorithms

for performing the ED function with the processors numbered 0,1,2, 3. For both algo-

rithms, processor 0 assumes the role of root for the first MPLScatter (MPLGather)

operation. Subsequently, the other processors in increasing numeric order become
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the roots of sequential scatters (gathers). Data is communicated using the blocking

MPI.Send and MFLRecv primitives. The line segments labelled S and R represent

sending and receiving latencies, respectively. Diagonal lines indicate network latency.

Note that in both portions of the figure the first MPLScatter and first MPI_Gather

complete in the same number of time steps, 5.5. The Gather algorithm, however,

has already initiated all four MPI_Gather operations and completes them in 16 time

steps.4 In contrast, Scatter completes the same number of MPIScatter operations

in 19 time steps. The Gather algorithm has the advantage that more sending, net-

work, and receive latencies are completely overlapped, i.e., they occur in parallel.

The current analysis does not entirely account for the difference between Gather and

Scatter execution times; for instance, such factors as message packetization and mes-

sage contention are not considered. The analysis, however, provides some insight into

the non-intuitive advantage of Gather over Scatter for performing ED.

The advantage of the Point-to—point algorithm over the Scatter algorithm is ex-

plained by the implementation of the Scatter algorithm. As described earlier, the

MPICH implementation of Scatter is a succession of calls to the blocking point-to—

point routines. In other words, the Scatter algorithm looks very much like the Point-

to—point algorithm in Fig. 4.7. The distinction is that Scatter uses a MPLSend-recv

operation to scatter data from its sending buffer to the receiving buffer. In the Point-

to-point algorithm used in ED, MPLPack and MPLUnpack are used for the reshuffling

of data that stays local to a process. This results in better execution time performance

 

4The diagram assumes that all four processes initiate the respective collective communication

calls simultaneously. In SPMD, this may not always be the case. We assume simultaneous behavior

for the purpose of this analysis.



 

 

 

 

 

  
Figure 6.13: Communication paradigm using Scatter (top) and Gather (bottom)

as shown in the four plots of Fig. 6.12.

6.2.3 Scalability

In Sections 6.2.1 and 6.2.2, we discussed DaReL’s performance for various redistribu-

tion cases using different algorithmic approaches to perform data exchange. In this

section, we address DaReL’s scalability. Specifically, we quantify DaReL’s scalability

as the number of processors participating in redistribution is increased. Scalability,

in the context of data redistribution, measures the long-term trend in execution time

as the number of processors used increases. To quantify scalability, we shall observe

the slope of the execution time over a range of processors (N, N’], where N’ > N.

In Chapter 5, we declared that an AM pair whose execution time increased with

additional processors performing the same amount of work, was inherently unscalable.

We use this idea to define scalability in terms of slope: as we increase from a pro-
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cessor configuration of size N to one of size N’, we expect increased performance.

In the context of redistribution, the increased performance is measured by reduced

execution time. To measure increased performance, it suffices to observe the slope

of the execution time curve over the range [N, N’]. We specify slope formally in

Equation (6.1).

TN: - TN

Slope(N, N’) = N’ _ N (6.1)

We define negative slope, NegSlope(N, N’) as the negation of Slope(N, N’) in Equa-

tion (6.2).

NegSlope(N, N’) = —Slope(N, N’) (6.2)

When NegSlope(N, N’) < 0, execution time is increasing with additional processors;

when NegSlope(N, N’) > 0, execution time is decreasing with additional processors.

We define the scalability/unscalability of a data redistribution AM pair based on

whether NegSlope(N, N’) is positive or negative. If NegS'lope(N, N’) is positive, its

magnitude is used to quantify scalability.

Definition 3 An AM pair is unscalable on [N, N’] when NegSlope(N, N’) < 0.

Definition 4 An AM pair is scalable on [N,N’] when NegSlope(N, N’) > 0. The

larger the magnitude of a negative slope, the more scalable the AM pair is.

We examine the use of the quantifier NegSlope(N, N’) by calculating the slopes of

the four AM pairs in the 1000 x 1000 plot of Fig. 6.12. Figure 6.14 repeats the plot

with the computed values for NegSlope(N, N’) shown directly below it. The line

segments illustrate NegS'lope(N, N’) values on a specific range of processors for a
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given AM pair. Note that the All—to—all AM pair consistently achieves the highest

NegSlope(N, N’) values. Certainly, the trend in slope can be seen in either the top or

bottom portion of Fig. 6.14. The additional information contributed by the bottom

plot is the relative magnitude of the scalability quantifier NegSlope(N, N’) for the

distinct AM pairs. For instance, Scatter’s NegSlope(4, 10) is less than All—to—all’s

NegSlope(10, 25) Additionally, one can clearly see for which processor ranges the

NegSlope(N, N’) values drop below zero and by what magnitude. Note that none

of the AM pairs succeeds in having a positive NegSlope(50,100). This result is

attributable to the ratio of data size to the number of processors participating in the

redistribution. The data set size is a constant 1000 x 1000 floating-point numbers.

Beyond 50 processors, the size of the local data set, and thus the message size, is too

small to amortize the cost of sending and receiving latencies.

As shown in Section 6.2.2, DaReL has a number of algorithms at its disposal for

performing the exchange of data. Given the gathered performance data of Fig. 6.12,

we are able to fine-tune ED to select the highest performer among the AM pairs for a

particular data size and processor configuration. The selection can be done in ED by

means of a switch/case-type statement based on run-time information provided to the

library; see Section 4.2.6. For example, in the case of the 1000 x 1000 redistribution

(Fig. 6.14) the Gather AM pair is used on the range [4,20] and the All-to—all AM

pair is used on the range [21,100]. The Point-to—point and Scatter AM pairs are not

considered since their execution times are not competitive with Gather and Alltoall.

Thus, DaReL’s performance for any given data point of number of processors and

data size, is determined by the best performing AM pair. The performance plots are
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coarse, providing information for only specific processor and data sizes. To perform

a fine-tuning of DaReL many more performance results for fine—grain size increments

would be needed. For the obtained data, we select the best-performing AM pair

and quantify DaReL’s scalability in terms of the NegSlope(N, N’) measure for the

selected AM pair. We examine the change in this measure as the number of processors

and data size increase.

We compute NegSlope(N, N’) for DaReL over the full range of processors under

consideration, [4, 100]. This is done for data sizes in the range 1000 x1000 up to 4000 x

4000. The result of this analysis is illustrated in Fig. 6.15. Each of the horizontal

line segments represents N895lope(N, N’) values for a specific redistribution data size

and range of processors. The vertical line segments attach the horizontal segments for

clearer presentation. As data size increases, the values for NegS'lope(N, N’) increase

as well. As processor configuration size increases, NegSlope(N, N’) decreases. This

result is acceptable, so long as NegSlope(N, N’) does not become negative. With the

exception of NegSlope(50, 100) for the 1000 X 1000 case (see dashed line segment in

Fig. 6.15), DaReL achieves NegS'lope(N, N’) for all other execution time data.

The plotted values of Fig. 6.15 are coarse since the processor increments are rel-

atively large: chosen to establish long-term trends. With smaller processor value

increments, the plotted lines would be smoother. The “bump” in each line is due to

the switch from the Gather AM pair to All-to—all AM pair that yields a higher slope

value.

In the computation of NegSlope(N, N’), the units for TN values are in seconds.

Note that this affects the magnitude of the slope computation. Thus, the relative
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values for NegSlope(N, N’) rather than absolute values are important for scalability

quantification. If time units were measured in nanoseconds, then the vertical axis in

Fig. 6.15 would change, but the relative distinctions between the plotted lines would

not.



Chapter 7

Conclusion and Future Work

Changing array distributions within a data-parallel program can substantially affect

overall program performance. Explicit redistribution is intended to optimize subse-

quent computation while implicit redistribution can be a common occurrence in a

program. Implicit redistribution can occur with array assignment statements where

the distribution of the operands are not equivalent, through the use of data realign-

ment, or through the use of subroutine libraries whose operands require specific dis-

tributions of data. This dissertation has examined the critical issues for performing

efficient and scalable data redistribution in distributed-memory machines, and it has

proposed methods to mitigate the cost of redistribution in terms of execution time.

7.1 Research Contribution

Since interprocessor communication is the predominant source of redistribution execu-

tion time, minimizing the total amount of data movement among processor memories

147
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may increase redistribution performance. This dissertation presented a technique,

based on logical processor to data element mapping, that minimizes the total amount

of data movement among processor memories for BLOCK to CYCLIC(c) , and vice-versa,

redistributions. Mapping functions for one-to—one, m-to—m, one-to—two, and two-to-

one dimension data redistributions were presented and their optimality was proven.

The proposed methodology is architecture-independent, facilitating its potential inte-

gration into distinct redistribution implementations for different distributed-memory

architectures. We discussed the possible impacts on the programmer and compiler of

using the mapping technique. We showed that the technique offers the programmer

extra flexibility in determining data placement in some instances. Additionally, the

use of the technique in a straightforward manner by the compiler is discussed. We

demonstrated redistribution execution time improvements over the traditional data-

processor mapping of up to 40% using the optimal mapping technique on an IBM

SP-sc. Portions of this work have appeared in [74] and shall appear in [75].

We presented a simple end-user-oriented framework for quantifying the scalability

of algorithm-machine (AM) combinations, or pairs, together with a facility to aid

in visualizing their scalability in three dimensions. We developed a mathematical

framework to characterize the properties of AM pairs, e.g., communication overhead,

and we proposed a model for visually illustrating an AM pair’s execution-time per-

formance over user-defined ranges of processor configurations and scaled work. The

benefit of a three-dimensional illustration is that a number of critical parameters, e. g.,

memory capacity and communication overhead, can be viewed together in a unified

manner, together with the end-user’s chosen scalability metric(s). We presented a de-



149

tailed case study that illustrates the utility of our framework in comparing the relative

scalabilities of distinct AM pairs for performing matrix multiplication. We demon-

strated the flexibility of the framework in its ability to incorporate other scalability

metrics, such as isospeed [57] and isoefficiency [58]. The scalability quantification

framework can be found in [76] which has been submitted for publication.

We proposed the design of a portable, MPI-based library, DaReL, for explicit

data redistributions, and we motivated the critical design choices. DaReL supports

multi-dimensional data redistribution for HPF’s regular distribution patterns, BLOCK,

CYCLIC, and *. It is designed for !HPF$ REDISTRIBUTE; however, we envision its

applicability to implicit redistributions that can occur within HPF programs. We

discuss a number of salient issues affecting the design of a redistribution library for

HPF including scalability and the respective roles of the compiler and the library. In

contrast to other approaches, e. g. , [32], DaReL decouples processor send/receive set

calculation from data exchange. This decoupling simplifies library design and facil-

itates multiple data exchange algorithm options. Data exchange is performed with

MP1 primitives, enhancing DaReL’s portability among distributed-memory platforms

that utilize the emerging message-passing standard. We discussed the advantages of

using MP1 for data redistribution, and we detailed DaReL’s use of MPI point-to—point,

collective communication, process topology, and derived datatype constructs.

We demonstrated the execution time performance of DaReL’s implementation on

an SP-a: and focused our attention on optimizing the data exchange portion of DaReL

due to its execution-time predominance. We examined a number of MP1 point-to—

point and collective (scatter, gather, and all-to—all) communication algorithms for



150

performing data exchange, selecting the best performer for a given data size and

number of processors. The clear advantages of using the collective gather and all-to-

all primitives for data redistribution were demonstrated. Portions of this work have

appeared in [77].

We extended the framework for quantifying scalability specifically for data redis-

tribution algorithm-machine pairs. We proposed a metric based on slope, which is

measured as the ratio of change in execution time to the change in the number of pro-

cessors. We quantified the scalability of DaReL using this metric and demonstrated

its scalability for a large range of data and processor configuration sizes.

7.2 Future Work

There are a number of areas pertaining to efficient data redistribution services that

could be pursued in the future. The impact of data alignment and realignment on

redistribution represents one such area. Data alignments may cause an unbalanced

amount of data exchange between processor memories during data redistribution.

Such imbalances may lead to increased redistribution execution time. Another area

of future investigation would be a general theory for minimizing data exchange among

processors using HPF regular distribution patterns. For instance, optimal processor-

data mappings for CYCLIC(c1) to CYCLICch) redistributions where c1 5£ e; have

not been addressed. Furthermore, the impact of data alignments may also influence a

general theory. Further investigation of DaReL’s scalability and performance on other

distributed—memory platforms supporting MPI would be desirable. First, it would
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validate the claim of portability; and second, it would be beneficial to investigate

whether the relative merits of the different message-passing algorithms are consistent

on other hardware platforms. Perhaps, other, more efficient, algorithms can be found.

Further study on different hardware platforms may suggest new scalability criteria

for data redistribution as well. Finally, we anticipate that DaReL can be used not

only for explicit redistribution, but also in instances of implicit redistribution. The

fundamental operation of DaReL would remain unchanged; however, the interface to

the compiler may change. Also, optimization of certain components of the library

unneeded for implicit redistribution may be found.
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