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ABSTRACT

A CONTINUOUS MONTE CARLO METHOD FOR SIMULTANIOUS

GROWTH AND EQUILIBRATION IN GELATION

By

Rajasinghe Nimalakirthi

We have proposed a new realistic model for kinetic gelation studies, and its

‘ computational feasibility was successfully studied by constant NVT-ensemble Monte

Carlo simulation. A continuous simulation method for polymer network formation in the

presence of cross—linking agents was developed with simultaneous equilibration.

Important and ignored aspeCts of earlier models, such as molecular mobility and

realistic potentials were incorporated into our proposed model. Monomer and polymer

mobility were allowed and the effect of polymer mobility on simultaneous equilibration

and growth process was carefully studied. It was important to avoid large density

changess during the growth. Such density changes can occur due to reduced mobility of

polymer units and the shift of intramolecular potential coordinate away from that of

intermolecular potential. Growth and equilibration did not compete in our model.

Chain cyclizations were allowed, and it was shown that the cage trapping was rare duting

the early part of the growth. During this early growth the percentage of trapped centers

was very much smaller than that predicted by previous gelation simulations. Our model

gave a better insight of an internal structure as this was determined by the simultaneous

equilibration process, and was governed by the employed potentials.
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1. INTRODUCTION

It is well known and praCtically important that, when sufficiently frequent

branching or cross linking of chains occurs during the course of a polymerization the

enhanced capacity for further growth of the larger molecules (due to their larger number of

unreacted end groups) may lead ultimately to the formation of a spanning network

structures so huge that the material changes rather abruptly from a fluid to a gel. The

statistical theory of such reactions, developed by Flory [1,3] has had conspicuous success

in predicting the gel point for the several polycondensation to which it has been applied

14].

At the gel point, a three dimensional network appears and the average cluster size

is divergent. This is a very peculiar state of matter that is neither liquid nor solid but exists

at the boundary between these states. For example, the viscosity is infinite. This

incipient gel consists of a distribution of self-similar clusters Of all sizes, and includes an

infinitely massive cluster that is fractal on all length scales. If one were to pick a

monomer at random, there would be zero probability that it belonged to the infinite cluster.

One might now ask what happens to this perfectly self-similar arrangement as the system

moves beyond the gel point [5].

Just beyond the gel point the very largest cluster combines with the infinite cluster

to form a three-dimensional net work that is no longer a mass fractal on all length scales.

Embedded in this network is a sol of fractal clusters whose average size continues to



decrease as the reaction proceeds and the largest remaining cluster accrete on to the

network. The probability of a monomer belonging to this cluster (called the gel fraction)

thus grows beyond the gel point until all monomers haVe reacted. It seems remarkable

that if we are able to stop the reaction and extract the sol from the gel, the sol would have

the same fractal dimension and self-similar size distribution as beneath the gel point.

Many authors have generalized an early statistical description of Flory and

Stockmayer by relaxing some of the assumptions of ideal random branching. These

models consider tree-like polymer structure built from monomer units according to

probabilistic rules for bond formation. The recursive nature of the polymer structure is

exploited to Obtain equations for statistical averages. Some of the statistical

computational schemes reported in the literature include the recursive method [6,7 ], the

fragment method [8,9] and the probability generating function method [10]. Many of the

computational schemes are based on the same underlying model which incorporates the

assumptions of ideal random cross-linking, including conversion independent kinetics,

termination by chain transfer or disproportionation, equal reactivity and no cyclization.

The statistical method using probability generating functions allows expressions

for structural averages to be obtained most efficiently and systematically. Although

statistical methods provide an efficient way to Obtain structural averages, application of

this method depends on the assumption of relatively small concentrations of the

multifunctional cross-linking agent.

Kinetic descriptions of free radical cross-linking polymerizations have been

reported by Mikos and collaborators [11,12], where reaction kinetics is described in terms

of the concentrations of the mono, di and pendent vinyl species, and moment method is



used to calculate averages for the linear primary chains. Tobita and Hamielec [13]

used a pseudo kinetic rate constant method to simplify the kinetic equations. These

authors illustrated that many reaction nonidealities could be included in their analysis,

including unequal reactivity, conversion dependent kinetics, and cyclization in an

approximate manner. Because free radical polymerizations are kinetically controlled,

the structure of the polymer chains depends upon the conversion at which they were

formed. Additionally, the history of the process is important. These features are more

readily incorporated into the kinetic descriptions. However, the biggest disadvantage

of kinetic descriptions relative to statistical description is the inability of Obtaining

structural information about the gel. Both methods are based upon the mean field

approach, and therefore cannot accurately account for heterogeneity or topological

constraints [14].



2. PERCOLATION AND KINETIC GELATION MODELS

2.1. Percolation Models

The review article by Stauffer and collaborators [15] compares classical approach

(Flory-Stockmayer type theory) with the percolation theories. They discussed a

solution of monomers with functionality f>3; from each monomer may emanate zero to

f bonds to neighboring molecules and thus this monomer may participate in the formation

of a large cluster which is called a macromolecule. Two monomers in the same cluster or

macromolecule are thus connected directly or indirectly (through other monomers in the

same cluster) by such bonds where as two monomers in two different macromolecules are

not connected by such bonds. They denoted the number of monomers in one

macromolecule by s and then called this macromolecule also an 5 cluster; an isolated

monomer without bonds to its neighbors is thus designated as an l-cluster with 8:1.

Under certain conditions, an “infinite” cluster can be formed, a network which extends

from one end of the sample to the other. This infinitely large macromolecule is called a

gel; a collection of finite cluster is called a sol. A gel usually coexist with a sol; the finite

clusters are then trapped in the interior of the gel.

Gelation is the phase transition from a state without a gel to a state with a gel.

The conversion factor p is the fraction of bonds which have been formed between the

monomers of the system, i.e. the ratio of the actual number of bonds at the given moment

to the maximally possible number of such bonds. Thus, for p=0, no bonds have been

formed and all monomers remain isolated l-clusters. In the Other extreme p=l, all

possible bonds between monomers have ben formed and thus all monomers in the

system have clustered into one infinite network, with no sol phase left. Thus for small



p no gel is present whereas for p close to unity one such network exists. There is in

general a sharp phase transition at some intermediate critical point p=pc, where an infinite

cluster starts to appear; a gel for p above pc, a sol for p below pc. This point p=pC is the gel

point and may be the analog of a liquid-gas critical point: For p below pc only a sol is

present. But for p above pc, so] and gel coexist with each other.

In percolation model, monomers are thought to occupy the sites of a periodic

lattice, and between two nearest neighbors of lattice sites a bond is formed randomly

with probability p.

2.2. Kinetic Gelation Models

In one of the earlier model, by Manneville and Sezc [16] gelation process Of

bi-functional (2fu) and tetra-functional (4fu) units were studied in the absences of any

solvent. In this model monomers are placed at the nodes of a simple cubic lattice.
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Different states of 2fu and 4fu.

- dotted lines indicate functions available for linking

- heavy lines indicate functions used for linking with a neighboring unit

- dots indicate that the unit is an “aCtive center” i.e. has a free radical able to Open a

double bond of a neighboring unit and to link with it (active centers were formed by

introduction of free radicals in the system).



Before starting the simulation, the 4fu are distributed randomly in the sample

with a concentration c4fu, the other nodes being occupied by 2fu. The process is

initiated by activation of a given concentration C, of randomly chosen units._

At each step:

1) One of the active centers is selected at random

2) One of its eighteen first or second neighbors having available functions is selected

at random

3) The two units are linked;

4) The active center is transferred to the neighbor or annihilated with the active center of

the neighbor.

In this model existence of a “infinite” cluster is characterized by the formation of a

gel phase.

An important drawback of many theories, in particular of both random percolation

theory on a three-dimensional lattice and of the original Flory-Stockmayer theory, is their

assumption that chemical bonds are formed randomly. In reality, for irreversible gelation

the bonds are formed as a result of a kinetic process which contains both deterministic

and random elements. The history of the process is important since the structure of the

chains depends on the conversion at which they were formed.

A model for irreversible gelation was suggested by Herrmann, Stauffer and

Landau [17]. In this model bifunctional units and tetra-functional units are put into an

inert solvent. Bi-functional unit has one and tetra-functional has two outer carbon double

bonds which can be opened. An initiator is included in the sol which dissociates into

two radicals. Each radical can saturate by breaking up a carbon double bond but leaving



the other bond unsaturate. This free bondacts as new radical opening up another double

bond, and thus in a series of reactions a chain is created. Chains can cross-link at the

tetra-functional molecules, thus forming branched macromolecules. The gel point is

reached when for the first time an infinite macromolecule appears forming the gel which

has a finite shear modulus. If two unsaturated carbon atoms encounter each other they can

form a bond, thus annihilating their radical character.

Each site of the simple cubic lattice is initially occupied randomly by one of

three types of molecules: tetra-functiOnal units with probability ct, bifunctional units with

probability Cb and zero-functional solvent molecules with probability cs.

cl+cb+cs=1

Chemical bonds can only be made between nearest neighbors on lattice. The

functionality of each molecule or unit gives the maximum number of chemical bonds

which it can form with its neighbors; thus the zero-functional solvent is chemically

inert and the bifunctional units alone would only form chains without cross-links and

without a transition to a gel. Gelation is made possible by the presence of tetra-functional

units which allows. for chain intersections and for the formation of larger networks of

chemically bonded molecules.

The growth process is governed by the active center. Active centers are

produced by the dissociation of more complex molecules. If this dissociation is

relatively slow then new active centers may be formed during the gelation process; if

it is relatively fast, all active centers are produced at the beginning of the reaction.

In the special case of no solvent and no mobility of condensable units, all active centers in

the beginning of the simulation are assumed to occur in pairs since they did not have



enough time to physically separate after their chemical dissociation. Thus initially a

fraction ci of the links connecting nearest neighbors in the lattice is assumed to be

occupied randomly; and an occupied bond means that the two units connected by that

link each carry an active center and are permanently bond together. Since the number of

bonds is three times the number of sites in a simple cubic lattice, and since each initiator

contributes two active centers, the total number of active centers is 6ciL3 in a lattice with

L3 sites at an initiator concentration ci. When the polymerizable units are mobile in a

solution, active centers are highly mobile and distribution is random at the beginning,

no longer pair wise, with the only resreiction that no unit carries more than one radical.

Gelation process is defined by the motion of active centers: each active center can

move from its present site to a nearest neighbor site, and then the bond between its old

site and the new site is called occupied. Groups of polymerizable units connected by

occupied bonds are called clusters and correspond to macromolecules.

The motion of an active center to its nearest-neighbor site is random except that

the new site must have at least one free functionality. That means at most three (one) of

the four (two) possible bonds emanating from the tetra-functional neighbor are allowed to

be occupied before the active center jumps to that neighbor. Solvent molecules never

carry an active center and are never connected by occupied bonds. Should the active

center jump to a site carrying anOIher active center, the two radicals annihilate each other

and the bond between the two sites become occupied. Thus the number of occupied bonds

increases with time, and these bonds trace the motion of active centers, the number of

which decreases in time due to annihilation. Active centers can also become trapped even

if they are not annihilated, if all their neighbors are chemically saturated, that is, have



all their possible two or four bonds occupied;

Since the occupied bonds describe the path of motion of an active center they are

spatially correlated, in contrast to random percolation.

Any finite mobility is allowed in the model with help of the solvent molecules.

Each solvent site may exchange place with a neighbor, be it another solvent molecule

or a polymerizable monomer. A movement of a polymerisable unit is allowed only if it is

connected by at most one occupied bond to another unit.

In contrast to earlier studies of Manneville and de Seze, this model allows for

bonds between nearest neighbors only, and the initial distribution of initiators has a

constraint.

The method is similar to Monte Carlo studies of random percolation. At the

beginning of each simulation they randomly distributed tetra-functional units with

probability cl on a simple cubic lattice of Lx LxL sites, with L up to 60. All Other sites

are occupied by bifunctiOnal units with a concentration cb or by solvent molecules with a

concentration cs. The positions of bi- and tetra-functional units are fixed throughout the

simulation, with the exception of some runs. In the case of ct=l all sites are occupied by

tetra-functional units but even then the system does not corresponds to random

percolation. One reason is that in random percolation on this simple cubic lattice each site

has functionality six, whereas these sites are only tetra-functional. In this model bonds

are formed by a process of gradual initiation of neighboring bonds in contrast to random

percolation, where bonds are formed randomly.

Initially no unit can have more than one occupied bond, in other words, the

initiators are not allowed to be nearesr neighbors; apart from that restriction, the spatial
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distribution of initiators is taken as random. The kinetic process following the initial

distribution of radicals is defined as follows: each initially occupied bond is regarded to

connect a pair of free radicals. At each time unit (monte carlo, step per radical), a radical

randomly selects one of the six bonds emanating from this radical lattice site. This newly

selected bond leads to another neighboring lattice site. Now one of two possibilities

occurs. In the first case this neighboring lattice site has all its two or four bonds occupied,

for bi- and tetra-functional lattice sites, respectively. In this case no additional bond can

be occupied for this neighbor, and the original radical stays at its old place without

creating any new occupied bond. In the other case, the number of occupied bonds

emanating from this neighbor is smaller than the functionality of their neighbor. Then the

bond connecting theoriginal radical and its selected neighbor is regarded as occupied. If

in this case of a successful attempt to create a new bond the neighbor happened to be

another radical, the two radicals are regarded as annihilating each other.

In one Monte Carlo attempt, a radical site was selected randomly. If all its six

neighbors are already saturated, then the radical is called trapped. If all radicals in the

system are trapped, then no change will occur even if we make an infinite number of

attempts. Initially, beside isolated monomers we have only clusters of size two, that is

macromolecules containing two lattice sites connected by the initially occupied bonds.

During the growth process described above the clusters can grow by the addition of one

previously isolated site, or by coalescence of two clusters. Thus during the simulation

it is rather easy to keep track of the number ns of clusters containing 8 monomers each.

s is proportional to the molecular weight if the bifunctional and tetra-functional units

have the same weight; otherwise 5 should be called the degree of polymerization for
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that particular macromolecule.

An improved model was suggested by Bansil, Herrmann and Stauffer [18] which

doesn’t assume that the bond formation is completely random, and it does incorporate

the kinetic aspect of irreversible gelation. They considered the effects of incorporating

solvent and mobility of monomers on the kinetics of free radical initiated

copolymerization of a schematic vinyl and divinyl monomer.

The steps of their simulation was as follows.

1) Distribution of vinyl (or bifuncrional) monomers, (b), divinyl (or tetra-functional)

monomers (t), and solvent molecules (s), with concentration Cb, Ct and Cs

respectively, on a simple cubic lattice with L3 sites with the conservation condition

Cb+Ct+Cs=l

2) Growth process was initiated by randomly placing a free radical on a fraction Ci of

of the bi- and tetra-functional monomers and drawing a bond along the lattice between

the monomer and the radical to represent one Of the reacted functionalities of the bi or

tetra-functional monomer.

H

HC==CH2 + R- —- R—C—

I
x H x

—
n
—
I

X denOIes the side chain of the vinyl monomer and R' the free radical obtained by

the dissociation of the initiator.

3) The polymer growth process, the reaction is simulated by transferring a randomly

Chosen radical from its present position to a nearest~neighbor site along one of the six
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bondsemanating from each lattice site and occupying this bond, provided the

neighbor chosen is not occupied by solvent molecule and has at least one free

functionality left. If these conditions are n0t met, the radical stays, for the present

time, on the initial site.

4) If the nearest neighbor site also has a radical on it, then the two radicals combine,

thereby simulating the reaction of chain termination by combination.

H H H H H H H H

I I I I I I I I
MCI—cl. + .fi-CIM —- mC—C- C—CMV

H x x H I I I. I

Molecular mobility was taken into account by allowing diffusion of monomers.

They allowed each solvent molecule to exchange position with a nearest-neighbor

molecule, provided the nearest-neighbor site is occupied by an unreacted bi- or

tetra-functional monomer or by. anOther solvent molecule. The growth process is

continued until a specified number of bonds has been produced. Growth process

terminates due to the trapping of radicals. This trapping process occurs since a radical

attempting to transfer may find all its neighbor sites occupied either by solvent molecules

or by fully reacted monomers. If all radicals in the sysrem are trapped, then no further

growth is possible, and the reaction is terminated. The entire process can be simulated
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many times by starting with a new initial distribution of monomers on the lattice.

During free-radical cross-linking polymerization microgel particles are formed.

One reason for this is the inherent inhomogeneity of the growth process. In kinetic

gelation model, conformational rearrangements are not taken into account, so that the

approach to a quasi-equilibrium state by diffusion of polymer segments is not described.

Diffusion control of termination at low conversion in solvents has been demonstrated

experimentally by the dependence of the termination constant on the solvent viscosity.

In general, we may expect that the absence of conformational rearrangements by

diffusion is an important drawback of the kinetic gelation model. In particular, diffusion

could lead to a stronger compaction of microgel particles. Growth model without

diffusion may be applicable as a model for the cyclization of a single chain. In the

kinetic gelation model free-radical cross-linking polymerization of many chains is studied.

Diffusion will increase the termination rate and decrease the kinetic chain length. Thus

a model without diffusion is expected to overestimate the inhomogeneity. In fact it is

well-known experimentally that the kinetic chain length increases when diffusion of

radical units is slowed down at increasing conversion; at high conversion the kinetic

chain length decreases due to the enhanced trapping probability and the restricted

diffusion of the monomer. In the kinetic gelation model, which does not contain

diffusion, only the latter effect is present [19].

In one of the recent models by Bowman and Peppas [20] a face-centered cubic

lattice was chosen instead of the simple-cubic lattice used by past kinetic gelation

simulations. This change allows for a site to have twelve nearest neighbors instead of

only six. A second basic change is the incorporation of void sites in the simulation in
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order to represent free volume. Both of these changes allow for more facile mobility of

the different species.

Other changes which have been made are the inclusion of monomer and initiator

molecules which occupy multiple sites. By having monomers occupy multiple sites, the

multiple functional groups of the monomer molecule are separated by a finite amount as

opposed to being represented at the same site. The model utilizes an initiator molecule

which decays into two radicals instead of generating a single radical upon decay. Finally,

the simulation includes mobility of all species including the reacted polymer.

Within the simulation a single time step is the period of time required to examine

each active radical and one nearest-neighbor site to determine if reaction and propagation

will occur. One of the key developments of Bowman and Peppas [20] model is the ability

of all species in the reaction to move.

Monomer, initiator and polymer may move and diffuse with the only constraints

being that all bonds must be preserved and movement must occur from an occupied site

to an unoccupied site. Mobility increases as void sites increase and as the bonding

between sites decreases.

The specific mechanism of mobility is as follows. First, two nearest-neighbor

sites, site no. 1 and site no.2, are selected random. Site no. 1 is designated as the site

from which movement will occur while site no. 2 is designated as the site which

movement will occur. Movement will occur if all the necessary conditions are met.

1 ) Site no. 1 is occupied.

2) Site no. 2 is a void space.

3) all sites to which site no. 1 is bonded are nearest neighbors of site no. 2.
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During each time step a fraction of sites will be selected to be site no. 1 and a

nearest-neighbor site is selected as site no. 2. If movement is possible as described

by the above conditions, then it will occur. As a part of movement, bonds are also

changed to ensure that bonds are between sites. As mobility increases, the heterogeneity

will decrease while the tendency to trap radicals will also decrease. This will lead to a

higher maximum conversion being reached as the polymer becomes more mobile.

Mobility can be increased either by increasing the fraction of sites examined for mobility

checks during each time step.

After the radicals have been generated from initiator decay, they are able to

propagate via reaction with any nearest-neighbor functional group. In turn, if a second

radical is on a nearest-neighbor site the radicals may react with each other and

terminate. During each time step every radical that remains active may propagate or

terminate. If the adjacent site is a void, an unreactive monomer link, or a portion of

the polymer, that radical will remain inactive until at least the next time step. If,

however, the adjacent site is an unreacted functional group, propagation of the radical

will occur from its present site to the adjacent site. The parameter that must be set

for each simulation are the initiator mole fraction, the fraction of sites which are void,

the lattice size, and the fraction of sites which are inspected during each time Step for

mobility.

Despite the improvements in monomer size, initiation mechanism, and species

mObility it is necessary to underStand that this simulation still contains some very

unrealistic elements. The first and the most obvious short coming of this model is

that it is performed on a lattice. Polymerization do not occur on a lattice but rather the
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molecules involved take on a continuous distribution of orientations. Also, the model

does not account for forces and potentials at the molecular level, and the size of the

monomer is still not accurately represented. The addition of a molecular size into the

model by incorporating a monomer that occupies a number of sites is a great advance,

but it will only approach the behavior of the actual monomer molecules.

2.3. Monte Carlo Simulations

The goal of our simulation effort describe in following chapters is to account for

molecular mobility in a realistic manner. Rather than fixing reactive monomer sites in

space as in most kinetic gelation simulations reported in literature, in our simulations

the monomer units will be allowed to move freely in three-dimensional space as they

interact according to defined intermolecular potentials. A typical simulation will include

several hundred monomer units interacting in a cell with periodic boundary conditions.

Spherical as well as dumbbell shaped molecules will be allowed to interact according to

Lennard-Jones potentials.

Our first attempt is to calculate the potential energy in a system of Lennard-

Jones atoms. The Lennard-Jones potential is given by the formula.

V”(r)=48((0/r)12-(0/r)6) (1)

e = Well depth

0 = Radius at which potential equal to zero

(The well depth is often quoted in units of temperature as 8 /kB, where k8 is Boltzmann’s

constant)

We stOre the coordinate vectors of our atoms in three FORTRAN arrays RX(I),

RY(I) and RZ(I), with the particle index I varying from 1 to N. For the Lennard-Jones
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potential it is useful to have precomputed the value of 02, which is stored in the variable

SIGSQ. The potential energy will be stored in a variable V, which is zeroed initially,

and is then accumulated in a double loop over all distinct pairs of atoms, taking care to

count each pair only once. Information about code development is given in reference 21

and here we highlight some of the important steps given there.

Periodic Boundary Conditions:

A cubic box is replicated throughout space to form an infinite lattice. In the course

of the simulation, as a molecule moves in the original box, its periodic image in each of

the neighboring boxes moves in exactly the same way. Thus, as a molecule leaves the

central box, one of its images will enter through the opposite face. There are no walls

at the boundary of the central box, and no surface molecules. This box simply forms a

convenient axis system for measuring the coordinates of the N molecules. The Figure 1

(Figure 1.9 in reference 21) illustrates this in two dimension. It is not necessary to store

the coordinates of all the images in a simulation, just the molecules in the central box.

When a molecule leaves the box by crossing a boundary, attention may be switched to the

image just entering. FOr a fluid of Lennard-Jones atoms, it should be possible to perform a

simulation in a cubic box of side L=60, without a particle being able to ‘sense’ the

symmetry of the periodic lattice. We use a cubic box in our simulation because of its

geometrical simplicity.

Potential Truncation:

The heart of the Monte Carlo program involves the calculation of the potential

energy of a particular configuration. We must include interactions between molecule 1
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and every other molecule i in the simulation box. In principle this is an (N-l) number of

terms. For a short-range potential energy function, we restrict this summation by

making an approximation. Consider molecule 1 in Figure 2 (Figure 1.12 in reference 21)

to rest at center of a region which has the same size and shape as the basic simulation box.

Molecule 1 interacts with all the molecules whose centers lie within this region, that is

with the closest periodic images of the other N-l molecules. This is called the ‘minimum

image convention’. In the minimum image convention, then the calculation of the

potential energy due to pairwise-additive interactions involves N(N-1)/2 terms. A further

approximation significantly improves this situation. The largest contribution to the

potential comes frOm neighbors close to the molecule of interest, and for short range

potential we apply a spherical cutoff. This means setting the pair potential to zero for r>rc,

where rc is the cutoff distance. In a cubic simulation box of side L, the number of

neighbors explicitly considered is reduced by a factor of approximately 41:13c /3L3 , and

this may be a substantial saving. The cutoff distance must be no greater than L/2 for

consistency with the minimum image convention.

Initially, the N molecules in the simulation lie within a cubic box of side L, with

the origin at its center, all coordinates lie in the range (—L/2,L/2). As the simulation

proceeds, these molecules move about the infinite periodic system. When a molecule

leaves the box by crossing one of the boundaries, it is usual to switch attention to the

image molecule entering the box, by simply adding L to, or subtracting L from, the

approximate coordinate. For the coding information of this and the minimum image

convention we refer the reader to reference 21.

We set the pair potential to zero if the pair separation lies outside some diStance re.
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It is easy to compare the square of the particle separation rij and, compare this with the

square of re.

MetrOpolis Monte Carlo Method:

Classical statistics is assumed, only two-body forces are considered, and the

potential field of a molecule is assumed spherically symmetric. System consists of a

cube containing N particles. If we know the positions of the N particles in the cube, we

can easily calculate, for example, the potential energy of the system (22)

v = (1/2) X”... £“,~=1 thij) (2)

- i¢j

(Here V is the potential between molecules, and dij is the minimum distance between

particles i and j)

In order to calculate the properties of our system we use the canonical ensemble.

SO, to calculate the equilibrium value of any quantity of interest F,

[7: IFexp(—%)d3~pd3Nq/Iexp(-I%) di3qu (3)

Where (1 3di3Nq is a volume element in the 6N-dimensional phase space.

Moreover, since forces between particles are velocity-independent, the momentum

integrals may be separated off, and we need perform only the integration over the 3N-

dimensional configuration space. The Monte Carlo method for many—dimensional

integrals consists simply of integrating over a random sampling of points instead of over a

regular array of points.

Thus the most naive method of carrying out the integration would be to put each

of the N particles at a random position in the cube, then calculate the energy of the system,
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and give this configuration a weight exp(-E/kT). This method, however is not practical

for close-packed configuration, since with high probability we choose a configuration

where exp(-E/kT) is very small; hence a configuration of very low weight. So the method

we employ is actually a modified Monte Carlo scheme, where instead of choosing

configurations randomly, then weighting them with exp(-E/kT), we choose configurations

with a probability exp(-E/kT) and weight them evenly.

We place the N particles in any configuration, for example, in a regular lattice.

Then we move each of the particles in succession according to the following prescription:

X -)X +a§1

Y —) Y-l' (1:2

Z--) Z+a§3 (4)

where Otis the maximum allowed displacement, which for the sake of this argument is

arbitrary, and £1, £2 and §3are random numbers between (-1) and 1. Then, after we move

a particle, it is equally likely to be any where within a cube of side 20 centered about its

original position. .

We then calculate the change in energy of the system B, which is caused by the

move. If E < 0, if the move would bring the system to a state of lower energy, we allow

the move and put the particle in its new position. If E > 0, we allow the move with

probability exp(- E/kT); we take a random number é between 0 and 1, and if i <

exp(- E/kT), we move the particle to its new position. If g > exp(- E/kT), we return it to

its old position. Then, whether the move has been allowed or not, whether we are in a

different configuration or in the original configuration, we consider that we are in a new

configuration for the purpose of taking our averages. So

P: (IN) ZM-=1 Fj (5)
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where Fj is the value of the property F of the system after the jth move is carried out

according to the complete prescription above. Having attempted to move a particle we

proceed similarly with the next one.

A common practice in MC simulation is to select the atoms to move sequentially

rather than randomly. This cuts down on the amount of random number generation and

is an equally valid method of generating the correctly weighted states. The simulation

of hard Spheres is particularly easy using the MC method. The same Metropolis

procedure is used, except that, in this case, the overlap of two spheres results in an

infinite positive energy change and exp(- E/kT)=0. All trial moves involving an overlap

are immediately rejected since exp(- E/kT) would be smaller than any random number

generated on (0,1). Equally all moves that do not involve overlap are immediately

accepted. As before in the case of a rejection the old configuration is recounted in the

average (21).

Hard molecule fluids have played an important role in the development of our

understanding of the liquid state. They have served as a useful check of statistical

theories and have often provided the underlying fluid structure in perturbation theories

for realistic molecular systems. The results of those theories have been successfully

applied to many problems of simple liquids, to mixtures, and to diatomic liquids.

In the MC simulation of a molecular liquid the underlying matrix of the Markov

chain is altered to allow moves which usually consists of a combined translation and

rOtation of one molecule. Chains involving a number of purely translational and purely

rotational steps are perfectly proper but are nOt usually exploited in the simulation of

molecular liquids. The translational part of the move is carried out by randomly
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displacing the center of mass of a molecule along each of the space-fixed axes. As

before the maximum displacement is governed by the adjustable parameter Ormax.

A method for changing the orientation of a molecule has been suggested by Jansoone

[23]. It is more convenient to represent the molecular orientation by a unit vector e

fixed in the molecule. The new trial orientation, e , is chosen randomly and uniformly on

a region of the surface of a sphere with the constraint that,

l-eni.emi<d <<1. (6)

(1 controls the size of the maximum displacement, and a sensible first guess for this

parameter is 0.2 [21]. There are a number of methods for generating a random vector on

the surface of a sphere. The simplest of these uses the acceptance-rejection technique

of Von-Newmann [24]. The procedure is iterative.

a) Generate three uniform random variates, C1, C2, and C3, on (0,1);

b) Calculate C, = l-2§t for i=l,3 so that the vector C=(I;1, C2 , C3 ) is distributed unifomrly

in a cube of side 2, centered at the origin;

c) Form the sum C2 = C21 + C22 + C23

(1) For I;2 < 1 (inside the inscribed sphere) take 2: =(C1 /C, C2 /C, C3 /C ) as the vector;

e) For C2 > 1 reject the vector and return to step (a).

Marsagilia [21] has suggested an interesting improvement;

a) Generate two uniform random variates 5,1, £1 on (0,1);

b) Calculate Ci =1-2i1 for i=l,2

c) For C2 < 1 take the vector, €=[2§1(l-§2)1/2,C2(1-CZWZ, 12?];

d) For C2 > 1, reject and return to step (a).



24

A computer program developed to calculate Lennard-Jones potential of hard

dumbbell system, by following Marsagilia’s mathematical method is included in the

appendix D.

(Note: This is a modification of the original program in reference 21)

One difficulty with MC methods for molecular fluids is that there are usually a

number of parameters governing the maximum translational and orientational

displacement of a molecule during a move. As usual these parameters can be adjusted

automatically to give an acceptance rate of 0.5, but there is not a unique set of maximum

displacement parameters which will achieve this. A sensible set of values is best obtained

by trial and error for the particular simulation in hand. In our simulations maximum

displacement was allowed to adjusted automatically to obtain 50% acceptance.



3. RECENT ADVANCES IN POLYMERIC GLASS STRUCTURES

Molecular dynamics simulation of bulk liquid and glass of long-chain molecules

has been performed by Rigby and Roe [25] using a fairly realistic offelattice chain model.

Initial configurations of highly interwined chains were constructed by first generating a

random distribution of points representing the centers of CH2 groups (in the manner

usually employed for mono-atomic systems). GrOups in close proximity were joined to

form several polymer chains. Individual chains are modeled as sequences of spherical

segments connected by spring like valence bonds subject to the potential energy,

vb] =(1/2)Kb(1,--10)2. (7)

where lo is the equilibrium bond length. The valence angle between successive pairs of

bonds is maintained close to the tetrahedral value 0 by a potential quadratic in Cos0:

V9J=(1/2)k (Cos ej -Cos 90)? (8)

Finally, nonbonded interactions, between segments in different chains and between

segments separated by more than three bonds along the chain backbone, are given

according to a truncated Lennard—Jones potential. Simulation program was run with

weakened force constants for all potentials (except for the LJ potential which was

maintained “full strength” at all stages). Force constants were then gradually increased

to their final values as the C-C bond lengths and the C-C-C valence angles decreased

towards their equilibrium values.

An extension of Rigby and Roe method was recently carried out by Khare,

Paulaitis and Lustig [26]. Their approach for generating glass structures was carried

out in three stages. In the first stage, the monomers are initially placed in the

Simulation box in an order array. The system is then heated and relaxed by molecular

25
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dynamics at an elevated temperature. The purpose at this stage of the procedure is to

achieve a uniform Spatial distribution and a random orientational distribution of

monomers in the simulation box, and not an equilibrium liquid.

A polymerization of this configuration is then carried out in the second stage by

connecting spatially adjacent monomers. Periodic boundary conditions are employed to

eliminate surface effects, and the minimum image convention is used. The problem of

connecting a given number of monomers to form the shortest polymer chain is similar to

the classical “Traveling Salesman” problem. Traveling Salesman problem has been

solved previously by simulated annealing, a multivariable Optimization technique based

on the Monte Carlo method. After connecting monomers in an initial polymerization

sequence, simulated annealing is carried out by randomly altering this sequence and

evaluating the cost of each move in terms of its effect on the total chain length of the

polymer. Moves are accepted or rejected on the basis of standard Metropolis probabilities.

Many of the bond lengths and bond angles in the polymer chain backbone at the

end of this stage will have values far from their equilibrium values, and hence the

potential energy of this structure must be minimized primarily with respect to these

degrees of freedom. Structures are relaxed using a combination of energy minimization

and molecular dynamics at elevated temperature.

An non-lattice Monte Carlo method for growth and equilibration of dense liquids

consisting of polymer chains with realistic intramolecular architecture was studied by

Gupta, Westerrnann and Bitsanis [27]. The method succeeded in growing alkane

chain length up to 25. They ignored the torsional potential until all the chains have

grown to their full length. After selecting a chain randomly, a decision is made on
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whether to further grow the chin or to attempt an equilibration move. At this stage growth

and equilibration compete. Growth and equilibration moves are accepted and rejected

unless they results in physical overlap between segments. Attempts to grow all the

chains without simultaneous equilibration are bound to fail.



4. A NEW MODEL FOR GELATION

4.1. Description of the Model

We have developed a new model for free radical cross-linking polymerizations

based upon Monte Carlo simulations. Bi-functional and tetra-functional units were

considered as spheres. Monomers were initially placed in a simulation box in a cubic

lattice. A random disuibution and orientations were achieved by Monte Carlo simulation.

Before the initiation, monomers interacted via Lennard-Jones potential. Predeterrnined

number of monomers was randomly initiated to create active centers. The growth of

linear polymer chains were achieved by bonding physically closest monomers to the

active centers. These centers became active centers, and propagation occurred. The

nearest neighbor status was examined before bond formation, so that the same monomer

could not be bonded to more than one active center at a given instant of time (within a

given Monte Carlo cycle). If at any given instant of time the same monomer was closest

to more than one active center, the closest active center was bonded to that monomer and

the next nearest neighbor(s) was (were) bonded to other(s). Cross-linking was made

possible whenever an already bonded tetra-funCtional unit in one chain became the closest

unit to the active center of anOther chain. The possibility for a given tetra-functional unit

to form two consecutive bonds with the same monomer was avoided.

Mthin each Monte Carlo cycle all particle displacements were accepted or

rejected according to their energies, and all active centers were allowed to form one bond

each (provided bond length is less than reaction distance). Covalent bonds within

individual chains were modeled by the harmonic oscillator potential with

predetermined force constants. Along the chain backbone for non-neighboring units the

28
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Lennard-Jones potential was not evaluated in our model because it usually falls beyond

the cutoff region (rc=2.20, and our monomer units consist of at least 2 c-c double bonds).

For all other units, LJ potential was maintained.

In our model, mobility of both monomer and polymer were allowed in a realistic

manner throughout the polymer growth. The maximum displacement allowed within the

Monte Carlo simulation was reduced by a predetermined factor for all bonded units.

This was done by multiplication of maximum displacement of bonded units by a factor of

0-8. In addition, bonded unit displacement was further reduced by a very small factor

between each Monte Carlo cycle. This was done by multiplying the current factor by

0-995 within each MC cycle. This will account for the bulkiness of the polymer as it

grows. Any displacement which moved monomers within the overlapping distance was

immediately rejected. Bond formation was always carried out with the closest neighbor,

provided it fell within a predetermined maximum bond length (reaction distance). As a

I‘tsult, the length of the growing linear chains could differ at any given instant of time, as

Well as at the end of the simulation. The maximum bond length was selected to be within

the attractive region of the U potential. Bonded units were treated as harmonic oscillators

with the minimum close to the LJ potential minimum. The oscillator overlapping

distance was shifted to the left of the overlapping distance of LJ potential. A rough

Sketch of placements of potentials are shown in the Figure 3.

To facilitate homogeneous growth process, oscillator potential minima was

8elected to be same as LJ potential minima, for most of our simulations. Any given

C1iSplacement for bonded units was accepted if the move is towards the oscillator

minimum. Otherwise it was rejected. Any given displacement of a bonded unit was



Figure 3.
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Rough Sketch of Oscillator and LJ Potential Placements.

LJ potential minimum = Oscillator potential minimum = 1.120

LJ potential overlap distance = 0.90

Oscillator pOtential overlap distance = 0.80

Reaction distance = Maximum bond length = 1.750

U long-range cutoff = 2.20

Reduced density = density *(03) = 0.64

Reduced temperature = kBT/e = 1.06
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immediately rejected if it results in an overlap with its bonded neighbor or the resulting

bond length exceeds the reaction distance. A large reducrion of bonded unit displacement

will delay the move towards the oscillator minimum. This was concluded by calculating

the fraction of bonds reached to their equilibrium distance at different stages of the given

simulation. At different stages of the simulation the configuration was analyzed to

calculate bond lengths. Necessary computer programs for this process is included in the

appendix C.

As described in earlier paragraphs, to account for the reduced mobility of the

polymer as compared to unreacted monomer, bonded units were given a reduced

displacement in the Simulations. This feature as well as the choice of the cutoff of

maximum allowed bond length (a technical choice) took steric hindrance into account and

led to trapped active centers, but, in comparison to most earlier models, our trappings

were not permanent, since the radical center could escape or a monomer could move

within the vicinity of attractive potential after some time. Such trappings could have

affected the gel point, if they occurred before the gel point was reached. At the gel point,

enough chains were linked together to form a large macromolecular network that spanned

the entire reaction system. With higher multiple center concentration, the cross-linking

'was complete, and an infinite network formed, before any trapping occurred. Our results

showed that chain cross-linking was complete, before any trappings of the radicals, with

reasonable concentration of multiple centers.

By having multiple centers which could enter into the same linear chain at a later

stage of the growth, chain cyclization was allowed in our model. Some of the earlier

models did not take this into consideration. Destruction of active centers by annihilation
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was not allowed in our model, since we kept the concentration of active centers at a very

low percentage. The probability of such an annihilation was considered to be negligible.

The major advantage of our technique over previously published work is that the

molecular mobility of non-bonded, as well as bonded units, are allowed in a realistic

manner during the polymer growth. Incorporation of realistic potentials during the growth

is another advantage over earlier work by many authors. At the end of our simulation the

bond lengths of the cross-linked polymer backbone are closer to their equilibrium

values.

It is possible to turn on a torsional potential after this stage, and the system can be

left to reach to conformational equilibrium. Alternatively, one can incorporate the

torsional potential along with the oscillator potential and use energy minimization.

4.2. Simulation Results and Discussion

Nine hundred and thirty four monomer units within a simulation box with periodic

boundary conditions were allowed to polymerize, according to above algorithm. Four

initiators and required number of multiple centers were labeled randomly at the beginning.

All our simulations were canied out at reduced LJ temperature of 1.06 and an initial

reduced LJ density of 0.64. All parameters in our simulations used LJ diameter (0) as the

unit of length. Our monomers were assumed to be at least two c—c bond length long. The

simulation box was of length 2 holding approximately 1000 monomer units evenly spaced

in a cubic lattice at the beginning. The correspondence with the physical values can be

related through these. LJ reduced temperature and initial reduced density was selected to

assure the literature LJ potential values at the beginning.
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One of the most significant contributions of our simulation results is an enhanced

understanding of radical trapping. In earlier work by many authors, the simulation was

based on a random walk on a cubic lattice and an active center was considered as trapped

when all its nearest neighbors (on the lattice) were occupied [17]. As a result, these

authors Observe early trapping at a very low conversion, a very high fraction of trapped

active centers and a relatively low limiting conversion at which all active centers are

trapped. For example, simulations by Herrmann, Stauffer and Landau [17] have

predicted a limiting conversion of 55% for a system in which experimental observations

indicates conversion over 80% are readily achieved. Their predictions are shown in the
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point is marked by pc (From Herrmann, Stauffer and Landau [17]).
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In addition, the simple kinetic gelation simulations predict that trapping increases

as the fraction of tetra—functional monomer is decreased. These limitations ultimately

arises from the fact that the Simulations neglect molecular mobility altogether, and

therefore active centers become trapped after propagating with their nearest neighbors.

In our work, we distinguished between two types of trapping mechanisms. The

first kind was a temporary trapping due to the possibility that the closest neighbor to the

active center was beyond the attractive region of the potential well. However, the

situation might soon change due to the mobility of units. We observed that this type of

early trapping did not usually occur with a reasonable choice of the reaction distance for

bonding. Even if they occurred at early stage of the growth, they were only temporary and

did not fall in the category of a permanent trapping. The second kind results from an

active center being trapped inside a cage of bonded units. This trapped center usually did

not get reactivated again due to steric hindrance. This was more permanent in nature and

usually occurred at a latter part of the growth process.

Typical results from our Monte Carlo simulations are shown in Figure 5. As in

all the simulations in this thesis 934 monomer units were contained in a simulation box

with four propagating active centers. The specific conditions for each simulation are

listed at the top of each Figure. Examination of Figure 5 reveals that the initial portion

of the conversion against Monte Carlo time (cycles) profile is linear. This arises from the

fact that all four aetive centers propagate each Monte Carlo cycle since there is no

trapping. After 155 MC cycles the first active center became permanently trapped and the

slopeof the profile exhibits a discontinuous change from 0.428% / MC cycle to 0.3219% /

MC cycle. Similarly, the second and third active centers became trapped after 174
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and 200 MC cycles, respectively, with corresponding shifts in the slope of the conversion

against time profile. Our simulation ended when the final active center was trapped.

In contrast to previous simulations (i.e. Figure 4), the results shown in Figure 2

correspond to a relatively high limiting conversion approaching 80%. At the limiting

conversion, all active centers become trapped and no further reaction is possible.

PreviOus simulations overestimate trapping since molecular mobility is neglected. In

our simulations, the value of the limiting conversion is sensitive to the reaction distance

parameter, as illustrated in Figures 5-7. These Figures illustrate that as the reaction

distance is decreased, trapping occurs at a lower conversion, and the limiting conversion is

decreased. As shown in Figure 7 in our work a limiting conversion about 60% can be

achieved with a reaction distance of 1.60. Mth a reaction distance of 1.70, it was shown

in our work that all active centers did not get trapped until 72% conversion. One thing to

notice is that even the distance 1.750 is well within the attractive region of the LJ potential

well. With 1.750 as the reaction distance, it was possible to reach up to 80% limiting

conversion, consistent with experimental observations.

Figure 8 illustrates the effect of tetra—functional groups on cross-linking.

Higher percentage of tetra-functional groups in general will lead to more cross-linking

within the same number of MC cycles. After 140 MC cycles sample with 30% tetra-

functional groups has formed 52 cross-links whereas sample with 20% tetra-functional

groups has formed 38 cross-links. Figure 9 (30% tetra-functional groups) illustrates a

typical relationship between the total number of cross-links and chain cyclizations.

Mthin first 140 MC cycles there were 52 total cross-links with 20 cyclizations.

Probabilities of cross-linking and chain cyclizations can be obtained by this technique.
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Run number 1:

Parameters for potentials

LJ overlapping distance = 0.90

Oscillator overlapping diStance = 0.60

Oscillator maximum distance = 1.750

Oscillator equilibrium distance = 1.120

Conversion against MC Time
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Figure 5. Conversion against MC time for a reaction distance of 1.750. Ci = 0.004,

CI = 0.2, 80% reduction of polymer displacement (with further reduction

by a factor of 0.995 between each MC cycle).

[Ci = initiator concentration, C,= tetra—functional unit concentration]
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Run number 2:

Parameters for potentials

Ll overlapping diStance = 0.90

Oscillator overlapping distance = 0.60

Oscillator maximum distance = 1.70

Oscillator equilibrium distance = 1.120
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Figure 6. Conversion against MC time for a reaction diSIance of 1.70. C, = 0.004,

CI = 0.2. 80% reduction of polymer displacement (with further reduction

by a factor of 0.995 between each MC cycle).

[C5 = initiator concentration, Cl: tetra-functional unit concentration]
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Run number 3:

 

  
 

Parameters for potentials

LJ overlapping distance = 0.90

Oscillator overlapping distance = 0.60 '

Oscillator maximum distance = 1.60

Oscillator equilibrium distance = 1.120

Conversion against MC Time
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Figure 7. Conversion against MC time for a reaction distance of 1.60. Ci = 0.004,

CI = 0.2, 80% reduction of polymer displacement (with further reduction

by a factor of 0.995 between each MC cycle).

[Ci = initiator concentration, Ct= tetra-functional unit concentration]
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Analysis of cross-linking and cyclizations:

Parameters for potentials

LJ overlapping distance = 0.90

Oscillator overlapping distance = 0.60

Oscillator maximum distance = 1.750

Oscillator equilibrium distance = 1.120
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Figure 8. Total number of cross-links against MC time for C, = 0.004,

CI = 0.2 (lower curve). C; = 0.004, CI = 0.3 (upper curve).

80% reduction of polymer displacement (with further reduction

by a factor of 0.995 between each MC cycle).

[Ci = initiator concentration, C,= tetra-functional unit concentration]
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Parameters for potentials

LJ overlapping distance = 0.90

Oscillator overlapping diStance = 0.60

Oscillator maximum distance = 1.750

Oscillator equilibrium distance = 1.120

O
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Number of Cross-links agains MC Time
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Figure 9. TOtal number of cross—links against MC time for C, = 0.004, CI = 0.3

(- curve). Number of chain cyclizations against MC time (- — curve).

80% reduction of polymer displacement (with further reduction by a

factor of 0.995 between each MC cycle).

[Ci = initiator concentration, Cl= tetra-functional unit concentration]
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Conversion against MC time plots obtained at the end of the simulation

for different variable parameters, such as maximum bond length and different degrees of

polymer mobilities are included in previous pages. An illustration of a variation of cross-

linking density with the concentration variation of tetra-functional units is also included.

The complete computer program for this process is included in appendix B and

corresponding flowcharts are included in appendix A.

If desired, one can shift the oscillator potential away from the LJ potential, but

such an act could lead to density inhomogeneties within the system. We believe the above

difficulty could be avoided by using a scheme which employs a reduced hard-sphere

diameter at high density. or using a soft (inverse ninth through inverse fourth power)

repulsion [28]. In reference 28, a perturbation method was reported which divides the pair

potential into a reference potential and a perturbation potential at a break point which may

depend on density. A better method to avoid this problem is to work in a constant NPT-I

ensemble.



5. A NEW MODEL FOR POLYMERIC GLASS STRUCTURES

With some modification, the same computer code that we developed to study

gelation can be used to generate long chain alkanes. In this work monomer units were

considered as -CH2 groups. The oscillator equilibrium length was brought towards the

CC bond length. The shift of oscillator potential minimum will change the density of

the system during the growth. The corresponding change in volume can be handled in '

NPT-ensemble. In NVT-ensemble, replacement of stiff inverse twelfth power potential

with a soft inverse ninth power repulsion [28] might be more useful here. In contrast to

Gupta, Weistermann, and Bitsanis [27] model, growth and equilibrium did not compete

with each other in our model, rather it was Simultaneous throughout the growth (In

reference 27 a decision was made on wether to further grow the chain or to attempt an

equilibration move). As in their model lack of internal rotations was a disadvantage in

ours too. Mth some modifications in our computer program, number of chains growing

within the system can be increased.

There were two major advantages in our method over that of Khare, Paulaitis and

Lustig [26] method. In addition to realistic mobility of particles, bond lengths reached

to their equilibrium values Simultaneously with the growth. A complete relaxation can be

achieved by an incorporation of a torsional potential along with the harmonic oscillator

potential. With some modifications, our model will provide a simplified, realistic and

computationally fast way to study polymeric glass structures and long chain alkane

growth.
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6. SUMMARY AND CONCLUSIONS

We have proposed a new realistic model for kinetic gelation studies, and its

computational feasibility was Studied. The importance of incorporating molecular

mobility and realistic potentials in the Study of cross-linking polymerization process was

shown, using Monte Carlo simulations.

In contrast to most earlier simulation methods for gelation, we did not fix the

monomer units on a lattice but allowed the monomer and polymer units to move in a

physically realistic manner. Another important modification was to take into account,

both intra- and intermolecular potentials during the growth and the simultaneous

equilibration process. Polymer mobility and the potential coordinates were carefully

chosen, in order to avoid-possible density inhomogenities that could build up within the

growth and equilibration. The importance of this factor in gelation compared to that of

long chain alkane growth was realized. An added advantage of the employment of

realistic potentials during the process was to give some insight into internal architecture of

the polymer backbone. Growth and the equilibration were simultaneous and did not

compete with each other in our model. Chain cyclization was incorporated, and it was

shown that the possibility of an early trapping was considerably reduced by taking

molecular mobility in to account. Chain cyclization was an another ignored aspect of

earlier gelation models. Cage trapping occurred at the latter part of the growth, and the

ratio of percentage of trapped centers to that of active centers remained low until the

system reaches a very high conversion. Though reactivation of trapped active centers was

possible within our model, in most cases trapping occurred after the formation of gel

phase in the presence of reasonable concentration of cross-linking agents.
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APPENDIX A

 

Read Input Data

Read Initial Configuration

CALL READCN

 

 

 

Random Generation of

lnitiators and Multiple

Centers.

CALL RNSET(ISEED)

CALL RNUNFO

FLOW CHART FOR THE MAIN PROGRAM

  
  

For each MC cycle

 

 

 

  

  

   

 

  
STOP

End of all

cycles

 

 

Calculates Initial Energy

and Checks for Overlaps..

CALL SUMUP

  

 

  
STOP

If overlap in

configuration

   

  

  

For each particle '

 

 

 

 

 

Calculates nergg of

particle in t

configuration

CALL ENERGY
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Q)
Move particle and pick

up central image.

 

   

  

Calculates energy of

particle in the new

configuration.

CALL ENERGY   
  

Check for acceptance:

Energy Minimization

and Metropolis method.

< > Write new configuration

CALL WRITCN

Read new configuration

CALL READCN

   

 

   

  

   

  

Propagation of active

centers to form cross—

linked polymer.

CALL POLY   
  

Check if all neighbors Print and

are beyound the reaction

distance ? STOP

 

NO

Calculates and print the

F final energy of the system.

CALL SUMUP
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FLOW CHART FOR THE POLYMER SUBROUTINE

 

 

 

For all active centers

  
 

  

For all particles

—————> (different from active

centers)

  
 

  

 Store pair separation

with the active center

(with minimum image

convenfion)

 

 

  
 

  

For all active centers

  
 

  

(different from active

centers)

< > For all particles

   

 

  

Check cross-linker

is bonded to the same

active center before ?

Check particle is a\ was

cross-linker ?

 

CALL READPOL

 

NO

NO YES

‘Qeck particle is bondeb‘

Exclude

”00)
XES
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®+ Pick 3 nearest neighbors

: to each active center.

  
 

   

 

 

 

  
 

 
 

 

  
 

 

 
 

 

  
 

 

  
 
 

 

Check pair

ChCCk all ISI neaICSt YES 7 separations are

neighbors are distinct ? < reaction

distance 7

YES

Bond them

CALL WRITPOL

Compare pair separations and

ChCCIS 0111)’ 2 0f YES replace the one with larger value

1st neighbors are with the corresponding 2nd

the same 7 nearest neighbor.

NO

Compare pair separations and find ones Check pair

with 2 larger values. separattions are

Check for those 2 if their corresponding < “33° 10"

2nd neighbors are the same ? distance ?

NO YES

YES

Replace those From those 2 replace

2, lst neighbors one With small Bond them

by corresponding separation With the

2nd neighbors. 2nd neighbor and, the CALL WRITPOL
other wrth 3rd neighbor.

     
  

 
 

  
 

w
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Check pair

separations are

< reaction

distance ?

 

YES

 

 

Bond them

CALL WRITPOL
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FLOW CHART FOR OVERLAP CHECK SUBROUTINE

 

G)" For all pairs

   

 

 
 

 

 

   

 

 

  

 

 

  
 

 
 

   
 

Check if pair consists Cheek If pair

of 2 bonded particles NO separation < YES

and pair separation < U cutoff?

reaction distance ? distance .

YES

- Cheek Pa.“ is, No Check if pair
neighboring . separation < L]

CA! .I. READPOL overlap distance ?

YES

YES

Check pair

separation < oscillator Return to

overlapping distance main

YES NO

Return to Calculate
ChCCk if pa'

main oscillator
ijfigloag <

energy
distance ?

NO

YES
 

  
Calculate LJ

energy

 

 

 
Retum to

marn
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FLOW CHART FOR SUBROUTINE TO CALCULATE ENERGY

 

For all pairs formed from

given particle and others

  
 

   

 

  

  
 

 

 

   

 

 

    

 

 
 
 

   

 

  
 

  

  

. , , Check if pair

Check if pairs consrst separation < YES

of 2 bonded particles Lj cutoff

and pair separation < distance 7

eaction distance ?

YES

Check pair is NO Check if pair

neighboring ? separation < LI

overlap distance ?

CALL READPOL

YES

YES

Check ‘

Oscrllator overlap Return to

distance > pair main

separation >

reaction distance ?

YES NO

Return to Calculate Check if pair

main oscillator separation <

energy LJ overlap

distance ?

NO YES

Return to

Calculate U I main I

®< energy

   



APPENDIX B

c***************************************************************

**

**

**

**

*t

**

**

**

**

**

*t

**

**

**

**

**

o
O

0
o

0
0

o
0

0
0

o
o

O
0

0
0

0
O

n
0 Constant-nvt monte carlo program for hard sphers

with a routine to form a crosslinked polymer.

Program can be use for gel point calculations and

molecular weight distribution evaluations.

Molecular mobility is allowed towards the energy

minimum throughout the polymerization. Mobility Of

bonded units were reduced with the growth; This

is limited by the approach to oscillator equilibrium.

Program can be used for any given number Of monomers

with an appropiate coordinate file and minor changes.

Number Of initiaters are resticted to four in polymer

routine, but can be change to any number with an

appropiate modifications.

***********************************************************tt

program ljgel

common lblockl/ rx,ry,rz

**

**

it

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

*t

**

**

**

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

**

The box is Of unit length,

Box length can be changed with an appropiate change in

periodic boundary conditions.

Principal variables:

integer

integer

integer

integer

integer

real

real

real

real

real

real

real

real

real

real

real

n

nstep

iprint

isave

iratio

rx(n),ry(n),r2(n)

dens

sigma

drmax

temp

rmin

rcut

nbond

bonle

eql

foc

number Of monomers

maximum number of cycles

print interval

save interval

max displacement update

interval

positions

reduced density

hard sphere (LJ) diameter

reduced

reduced

minimum

reduced

maximum

maximum

maximum displacement

temperature

reduced pair

separation

cutoff distance

number Of bonds in a

given linear chain

bondlength

equlibrium bondlength

force constant
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**

**

*‘k

**

**

**

**

**

*‘k

**

*************************************************************

********************tittt************************************

**

**

**

**

**

**

***********************************************************k*

-0.5 to +0.5
**

*k

*‘k

kt

**

**

**

**

*‘k

**

*‘k

**

**

**

**

**

**

*k

**

**

**

it

**

**

ti’



0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

**

*‘k

*t‘

**

*‘k

**

*‘k

**

*‘k

**

*‘k

**

*t

**

*t

*‘k

*‘k

**

**

**

**

**

**

**

**

**

*‘k

**

**

ti

**

**

**

**

**

*‘k

**

*‘k

*‘k

**

**

it

**

**

**

**

**

**

*‘k

**

it
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real tvbmax maximum Bolzman factor

real control energy diffrence control

real factr max displacement reduction

real v the potential energy

real voscil . the oscilator energy

real red multiplicative factor to

adjust rmin for the oscilator

logical ovrlap true if 2 units overlap

logical ovrpol true if 2 bonded units overlap

after the displacement

logical touch true if others overlap

logical neig true if 2 bonded units are

' neighbors

logical flip true if all possible bonds

were formed before the end of

all cycles

Units:

The program uses Lennardeones units for user input

and ouput but conducts the simulation in a box of

unit length.

For example, for a boxlength L, and Lennard-Jones

parameters epsilon and sigma, the units are:

Property LJ Units Program Units

temp epsilon/K epsilon/K

pres epsilon/sigma**3 epsilon/L**3

v epsilon epsilon

dens l/sigma**3 l/L**3

Routines referenced:

Subroutine sumup

Calculates the potential energy for a configuration

Subroutine energy

Calculates the potential energy of atom i with all

the other atoms in the liquid. For bonded neighbors

the oscillator energy is evaluated

Subroutine poly

Forms the crossliked polymer as the simulation

proceeds

Subroutine readcn

Reads in a configuration

Subroutine writcn

Write out a configuration

Subroutine readpol

Read the polymer file

Subroutine writpol

Write out polymer file

*‘A'

**

fit

**

**

*‘k

**

*‘k

**

*‘k

**

**

**

*‘k

**

it

*‘A’

**

**

*‘k

**

*‘k

*‘k

*‘k

*k

*i’

**

*‘k

**

**

**

*‘k

*‘k

**

*‘k

**

**

*‘k

**

*‘k

*‘k

**

**

**

**

**

**

**

****************************************************t*t*t*‘ktt
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integer n,i2(1,4),jcoun,ij(10)

parameter (n=100)

real rx (n) ,ry (n) , rz (n)

real drmax,dens,temp,sigma,rcut,beta,eql,foc

real acm,accept,pi,ratio,rmin,tvbmax,vos,red

real v,vnew,vold,vlast,vn,deltv,deltvb,vs,voscil

real vlrc,vlrc6,vlrc12,control,factr,bonle

real rxiold,ryiold,rziold,rxinew,ryinew,rzinew

real voso,vosn,delvos

real vosi,vosf

integer step,i,nstep,iprint,isave,iratio

integer iflag(100),nbond

integer iseed

external rnset,rnunf

logical ovrlap,flip,ovrpol,neig

character cnfile*10,polymer*10

parameter (pi=3.1415927)

C *****read input data****************************************

open (11,file='inputdata',status='old',form='formatted')

C *****write input data***************************************

read(ll,'(i10 )')nstep

read(ll,'(i10 )')nbond

read(ll,'(f10.4)')red

read(ll,'(f10.4)')bonle

read(ll,'(f10.4)')eql

read(ll,'(f10.4)')foc

read(ll,'(i10 )')iprint

read(ll,'(i10 )')isave

read(ll,'(i10 )')iratio

read(ll,'(f10.4 )')temp

read(ll,'(f10.4 )')dens

read(ll,'(f10.4 )')rmin

read(ll,'(f10.4 )')drmax

read(ll,'(f10.4 )')tvbmax

read(ll,'(f10.4 )')rcut

read(ll,'(e12.4 )')control

read(ll,'(a )')cnfile

read(ll,'(a )')polymer

write(*,'(" end of inputdata ")')

C *****read initial configuration*****************************

call readcn (cnfile)

c *****convert input data to program units********************

beta =l.0/temp

sigma =(dens/real(n))**(1.0/3.0)

rmin =rmin*sigma

rcut=rcut*sigma

bonle=bonle*sigma

eql=eql*sigma

drmax =drmax*sigma

denslj=dens

dens=dens/(sigma**3)

if(rcut.gt.0.5)stop' cutoff too largr '

acv=0.0

acvsq=0.0



C

C

C

C

C

C
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flv=0.0

acm=0.0

accept=0.0

factr=0.35

do 1 jcoun=l,100

iflag(jcoun)=1

1 continue

*****Calculate long range Correction8***********************

sr3 = (sigma/rcut)**3

sr9 = sr3**3

vlrc12 - 8.0*pi*denslj*real(n)*sr9/9.0

v1rc6 = 8.0*pi*denslj*real(n)*sr3/3.0

vlrc = vlrch-vlrc6

****write out information***********************************

write(*,'("sigma/box = ",f10.4)')sigma

write(*,'("rmin/box ",f10.4)')rmin

write(*,'("rcut/box ",f10.4)')rcut

write(*,'("bonle/box ",f10.4)')bonle

write(*,'("eql/box ",f10.4)')eql

write(*,'("drmax/box ",f10.4)')drmax

write(*,'("tvbmax/box ",f10.4)')tvbmax

write(*,'("control ",e12.4)')control

write(*,'("lrc for V = ",f10.4)')vlrc

****se1ect initioators and multiple centers*****************

iseed=123457

call rnset(iseed)

12(1,1)=1+int(n*rnunf())

i2(1,2)=1+int(n*rnunf())

i2(1,3)=1+int(n*rnunf())

iZ(1,4)=1+int(n*rnunf())

do 2 l=1,4

iflag(i2(1,l))=0

continue

do 3 l=1,10

ij(l)=1+int(n*rnunf())

iflag(ij(l))=3

continue

vos=0.0

****loops over requied bond formation per linear chain*******

do 102 k=l,25

****calculates initial energy and checks for overlap*********

call sumup(rcut,rmin,sigma,ovrlap,v,iflag,eql,foc,vosi,

polymer,neig,bonle,red)

if(ovrlap)stop 'ovrlap in initial con '

vs=(v+vlrc)/real(n)

write(*,'("initial v = ",e20.6 )') vs

write(*,'(/" start of markov chain "/)')

write(*,'(" nmove ratio v/n "/)')

*****loops over all cycles and all molecules*****************

do 100 step=1,nstep

do 99 i=l,n

rxiold=rx(i)

ryiold=ry(i)

rziold=rz(i)
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c **** calculates the energy of i in the old configuration****

call energy(rxiold,ryiold,rziold,i,rcut,sigma,vold,

+ iflag,eql,foc,voso,ovrpol,rmin,polymer,neig,bonle,red)

c *****move i and pickup the central image*********************

if (iflag(i).eq.0.or.iflag(i).eq.2) then

drmax1=drmax*factr

rxinew=rxiold+(2.0*rnunf()—1.0)*drmaxl

ryinew=ryiold+(2.0*rnunf()-1.0)*drmax1

rzinew=rziold+(2.0*rnunf()-l.0)*drmaxl

else

rxinew=rxiold+(2.0*rnunf()-1.0)*drmax

ryinew=ryiold+(2.0*rnunf()-1.0)*drmax

rzinew=rziold+(2.0*rnunf()—l.0)*drmax

end if

if (rxinew.gt.0.5) then

rxinew=rxinew-l.0

else if (rxinew.lt.-0.5) then

rxinew=rxinew+l.0

end if

if (ryinew.gt.0.5) then

ryinew=ryinew-1.0

else if (ryinew.lt.-0.5) then

ryinew=ryinew+1.0

end if

if (rzinew.gt.0.5) then

rzinew=rzinew-1.0

else if (rzinew.lt.-0.5) then

rzinewarzinew+1.0

end if

c *****calculate the energy of i in the new config************

call energy(rxinew,ryinew,rzinew,i,rcut,sigma,vnew,

+ iflag,eql,foc,vosn,ovrpol,rmin,polymer,neig,bonle,red)

C *ttttcheck for acceptence********t*************************t

deltv=vnew-vold

deltvb=beta*deltv

delvos=vosn—voso

if(.not.ovrpol.and.delvos.le.0.0)then

if(.not.touch) then

if(deltv.le.0.0) then

v=v+deltv

rx(i)=rxinew

ry(i)=ryinew

rz(i)-rzinew

accept=accept+1.0

else if (exp(-deltvb).gt.rnunf()) then

v=v+deltv

rx(i)=rxinew

ry(i)=ryinew

rz(i)=rzinew

accept=accept+1.0

end if

end if

end if

99 continue
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acm=acm+1.0

vn=(v+vlrc)/real(n)

acv=acv+vn

acvsq=acvsq+vn*vn

c ********perform periodic operations*****************************

if (mod(step,iratio).eq.0) then

ratio=accept/real(n*iratio)

if (ratio.gt.0.5) then

drmax=drmax*1.05

else

drmax=drmax*0.95

end if

accept=0.0

end if

if (mod(step,iprint).eq.0) then

write (*,'(i8,el4.4,e20.6)') int(acm),ratio,vn

end if

if (mod(step,isave).eq.0) then

call writcn (cnfile)

end if

call readcn (cnfile)

100 continue

write(*,'(//" end of markov chain "//)')

call readcn (cnfile)

c **calculates energy of the configuration and check for overlaps**

call sumup (rcut,rmin,sigma,ovrlap,vlast,iflag,eql,

foc,vosi,polymer,neig,bonle,red)

if (abs(vlast-v).gt.control) then

write(*,'(" problem with energy ,")')

write(*,'("vlast = ",e20.6)') vlast

write(*,'(" v = ",e20.6)') v

end if

call writcn (cnfile)

avv=acv/acm

write(*,'(/" average "/)')

write(*,'("<v/n> = ",e20.6)') avv

write(*,'("polymer oscil potential= ",e20.6)')vosi

call readcn (cnfile)

print *,'i2= k= ',i2,k

call poly(iflag,i2,k,bonle,flip,factr,polymer,neig)

if(flip)go to 16

c **calculates final energy and check for overlaps***************

102

500

call sumup(rcut,rmin,sigma,ovrlap,vlast,iflag,eql,

foc,vosf,polymer,neig)

write(*,'("polymer oscil potentia= ",e20.6)')vosf

continue

16 voscil=4*vosf/k

write(*,'("total oscilat potential= ",e20.6)')vosf

write(*,'("average oscil potential= ",e20.6)')voscil

format (t5,e12.4,t19,e12.4,t48,e12.4)

stop

end
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subroutine poly(iflag,i2,k,bonle,flip,factr,polymer,neig)

*************************************************************

**

*‘k

**

*‘k

**

**

**

*‘k

*‘k

**

**

**

*‘k

*t

*‘k

**

*‘k

**

Forms the cross-linked polymer, and write out polymer

file.

Principa

integer

integer

integer

integer

integer

integer

integer

real

real

charact

1 variables:

jj(3.4)

ipoly(n,4)

iflag(n)

i2(1,4)

near(n-1)

m1(1,3),etc

m10,m11,etc

path(99,4)

pathl(3,40)

polymer

up to 3 nearest neighbors for a

given active center

linear polymer chains

bonded or nonbonded status

propagating active centers

neighboring status

conters for various combinations

of neghboring status

distance from active centers to

all other points

distance from active centers to

up to 3 nearest neighbors

name of polymer file

**

**

*‘k

**

**

**

*‘k

**

*‘k

**

*‘k

**

**

*‘k

*‘k

*‘k

*‘k

**

ittittiitkttttittttttittitt'k*‘k**********************t**t*****

common /block1/rx,ry,rz

common /block2/ipoly

integer n,jj(3,4),l,m1(1,3),m2(l,2),m3

integer m10,m11,m12,m13,m14,m20,m21,m22,m23

parameter (n=100)

real rx(n),ry(n),rz(n)

integer ipoly(100,4),iflag(100),i2(1,4),near(99)

real path(99,4),bonle,rxij,ryij,rzij,pathl(3,4)

logical flip,neig

character polymer*(*)

flip=.fal

do 1 j=1,

ml (1. j)=0

continue

m2(l,l)=0

m2(1,2)=0

m10=0

mll=0

m12=0

m13=0

ml4=0

m20=0

m21=0

m22=0

m23=0

m31=0

m32=0

m33=0

m34=0

do 2 j=1,

near(j)=0

se.

3

99
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2 continue

do 3 l=1,4

path1(l,l)=l.2

3 continue

if(k.eq.1)then

do 4 l=l,4

ipoly(k,1)=iz<1,1)

4 continue

call writpol(polymer)

return

else

do 6 l=1,4

do 5 i=l,n

if(i.ne.i2(1,l))then

rxij=rx(i)-rx(i2(1,l))

ryij=ry(i)-ry(i2(l,l))

rzij=rz(i)-rz(i2(l,l))

if( rxij.gt.0.5) then

rxij=rxij-1.0

else if(rxij.lt.-0.5) then

rxij=rxij+l.0

end if

if( ryij.gt.0.5) then

ryij=ryij-1.0

else if(ryij.lt.-0.5) then

ryij=ryij+l.0

end if i

if( rzij.gt.0.5) then

rzij=rzij-1.0

else if(rzij.lt.-O.5) then

rzij=rzij+1.0

end if ’

path(i,l)=sqrt((rxij)**2+(ryij)**2+(rzij)**2)

end if

5 continue

6 continue

do 8 l=1,4

do 7 i=l,99

if(iflag(i).eq.2) then

j=i2(l,l)

call readpol(polymer,i,j,neig)

if(neig)then

near(i)=l

end if

end if

if(i.ne.i2(1,l)) then

if((iflag(i).ne.0).and.(near(i).eq.0).and.

+ (path(i,l).lt.path1(1,l)))then

pathl(1,l)=path(i,l)

jj (1.1)=i

end if

end if

7 continue

8 continue
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11

12

13

14

18

19

+

+

+

+

+

+

do 9 l=l ,4

near(jj(1,l))=1

pathl(2,l)=l.2

continue

do 11 l=1,4

do 10 i=1,99

if((iflag(i).ne.0).and.(near(i).eq.0).and.

(path(i,l).lt.pathl(2,l)))then

pathl(2,l)=path(i,l)

jj(211)=i

end if

continue

continue

do 12 l=1,4

near(jj(2,l))=l

path1(3,1)=1.2

continue

do 14 l=1,4

do 13 i=l,99

if((iflag(i).ne.0).and.(near(i).eq.0).and.

(path(i,l).lt.path1(3.l)))then

pathl(3,l)=path(i,l)

jj (3.l)=i

end if

continue

continue

end if

do 18 j=1,3

if(jj(1,j).eq.jj(l,j+1)) then

m1(1,j)=j

end if

continue

do 19 j=1,2

if (jju

m2(lrj)=

end if

continue

if (jj(1

m3=1

end if

if((m1(1

(m1(1

m10=1

end if

if((m1(1

(m1(1

mll=l

Ij) .eq.

3'

,1).eq.

,1).eq.

,3).eq.

,1).ne.

(3) .eq.
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jj(1,j+2)) then

jj(1,4)) then

O).and.(m1(1,2).eq.0).and.

0))then

0).and.(ml(1,2).eq.0).and.

0))then

else if((ml(1,1).eq.0).and.(m1(l,2).ne.0).and.

(m1(1,3).eq.0))then

m12=1

else if((ml(1,l).eq.0).and.(ml(1,2).eq.0).and.

(ml(1,3).ne.0))then

m13=1

else if((m1(1,1).ne.0).and.(m1(1,2).eq.0).and.
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21

6O

(m1(1,3).ne.0))then

ml4=1

end if

if((m2(l,1).eq.0).and.(m2(1,2).eq.0))then

m20=1

end if

if((m2(l,1).ne.0).and.(m2(1,2).eq{0))then

m21=1

else if((m2(1,1).eq.0).and.(m2(1,2).ne.0))then

m22=1

else if((m2(1,l).ne.0).and.(m2(1,2).ne.0))then

m23=1

end if .

if((ml(1,l).ne.0).and.(ml(l,2).ne.0).and.(m21.ne.0))then

m31=1

else if((ml(l,3).ne.0).and.(m21.ne.0).and.(m3.ne.0))then

m32=l

else if((ml(1,l).ne.0).and.(m22.ne.0).and.(m3.ne.0))then

m33=1

else if((ml(1,2).ne.0).and.(m22.ne.0).and.(m3.eq.0))then

m34=1

end if

if ((m10.eq.l).and.(m20.eq.1).and.(m3.eq.0)) then

do 20 l=1,4

if (path1(1,l).lt.bonle)then

ipoly(k.l)=jj(1.l)

i2(1,l)=jj(1,1)

if(iflag(jj(1,l)).eq.3) then

iflag(jj(1,l))=2

else if(iflag(jj(l,l)).eq.1) then

iflag(jj(1,l))=0

else if(iflag(jj(1,l)).eq.2) then

iflag(jj(1,l))=0

end if

end if

continue

factr=factr*.95

call writpol(polymer)

short=aminl(pathl(l,1),path1(1,2),pathl(l,3),path1(l,4))

if (short.gt.bonle)then

flip=.true.

end if

return

else

do 21 l=1,4

if(iflag(jj(1,l)).eq.3)then

iflag(jj(1,l))=2

else if(iflag(jj(l,l)).eq.l)then

iflag(jj(1,l))=0

else if(iflag(jj(1,l)).eq.2)then

iflag(jj(1,l))=0

end if

continue

end if



22

if

61

((m3.eq.0).and.(m20.eq.1).and.(m11.eq.1))then

if (path1(1,1).le.path1(l,2))

jj(1,2)=jj(2,2)

pathl(l,2)=pathl(2,2)

then

if (iflag(jj(1,2)).eq.3)then

iflag(jj(1,2))=2

else if(iflag(jj(l,2)).eq.1)then

iflag(jj(1,2))=0

else if(iflag(jj(l,2)).eq.2)then

iflag(jj(1,2))=0

end if

else

jj(1,l)=jj(2,l)

path1(1,1)=pathl(2,l)

if(iflag(jj(1,1)).eq.3)then

iflag(jj(1,l))=2

else if(iflag(jj(l,l)).eq.1)then

iflag(jj(l,1))=0

else if(iflag(jj(1,1)).eq.2)then

iflag(jj(l,1))=0

end if

end if

do 22 l=1,4

if(pathl(1,l).lt.bonle) then

iP01Y(k.l)=jj(1.l)

i2(1.l)=jj(l,l)

end if

continue

factr=factr*.95

call writpol(polymer)

short=aminl(pathl(1,1),path1(1,2),path1(1,3),path1(1,4))

if(short.gt.bonle) then

flip=.true.

end if

return

else if((m3.eq.0).and.(m21.eq.l).and.(m10.eq.l))

if(pathl(1,l).le.path1(1,3)) then

jj(lr3)=jj(2:3)

path1(1,3)=pathl(2,3)

if(iflag(jj(1,3)).eq.3)then

iflag(jj(l,3))=2

else if(iflag(jj(1,3)).eq.1)then

iflag(jj(1,3))=0

else if(iflag(jj(1,3)).eq.2)then

iflag(jj(1,3))=0

end if

else

jj<1.1>=jj<2.1)

pathl(1,l)=path1(2,1)

if(iflag(jj(l,1)).eq.3)then

iflag(jj(1,1))=2

else if(iflag(jj(l,1)).eq.l)then

iflag(jj(l,l))=0

else if(iflag(jj(1,1)).eq.2)then
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iflag(jj(l,l))=0

end if

end if

do 23 l=1,4

if(pathl(1,l).lt.bonle)then

ipoly(k,l)=jj(1,1)

i2(1,l)=jj(1,l)

end if

continue

factr=factr*.95

call writpol(polymer)

short=amin1(pathl(l,1),path1(l,2),path1(l,3),pathl(1,4))

if(short.gt.bonle) then

flip=.true.

end if

return

else if((m3.eq.1).and.(m20.eq.1).and.(m10.eq.l))then

if(pathl(1,1).le.pathl(l,4)) then

jj(1.4)=jj(2.4)

path1(1,4)=path1(2,4)

if(iflag(jj(1.4)).eq.3)then

iflag(jj(1,4))=2

else if(iflag(jj(1,4)).eq.1)then

iflag(jj(l,4))=0

else if(iflag(jj(1,4)).eq.2)then

iflag(jj(1,4))=0

end if

else.

jj(l.1)=jj(2.1)

pathl(l,1)=path1(2,1)

if(iflag(jj(1,1)).eq.3)then

iflag(jj(1,1))=2

else if(iflag(jj(1,1)).eq.1)then

iflag(jj(l,l))=0

else if(iflag(jj(1,1)).eq.2)then

iflag(jj(1,1))=0

end if

end if

do 24 l=1,4

if(pathl(1,l).lt.bonle)then

ipoly(k,l)=jj(l,l)

12(1,1)=jj<1,1)

end if

continue

factr=factr*.95

call writpol(polymer)

short=aminl(path1(1,1),path1(1,2),pathl(l,3),path1(l,4))

if (short.gt.bonle)then

flip=.true.

end if

return _

else if((m3.eq.0).and.(m20.eq.l).and.(m12.eq.1))then

if(pathl(1,2).le.pathl(1,3)) then

jj(1,3)=jj(2,3)
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pathl(l,3)=path1(2,3)

if(iflag(jj(l,3)).eq.3)then

iflag(jj(l,3))=2

else if(iflag(jj(1,3)).eq.l)then

iflag(jj(l,3))=0

else if(iflag(jj(1,3)).eq.2)then

iflag(jj(1,3))=0

end if

else

11(112)=jj(2:2)

pathl(1,2)=pathl(2,2)

if(iflag(jj(1,2)).eq.3)then

iflag(jj(1,2))=2

else if(iflag(jj(1,2)).eq.1)then

iflag(jj(l,2))=0

else if(iflag(jj(l,2)).eq.2)then

iflag(jj(l,2))=0

end if

end if

do 25 l=1,4

if(pathl(1,l).lt.bonle)then

ipoly(k,l)=jj(l,l)

i2(1.l)=jj(1.l)

end if '

continue

factr=factr*.95

call writpol(polymer)

short=aminl(pathl(1,l),pathl(1,2),path1(l,3),path1(l,4))

if(short.gt.bonle)then

flip=.true.

end if

return

else if((m3.eq.0).and.(m22.eq.1).and.(m10.eq.l))then

if(pathl(1,2).le.path1(1,4)) then

jj<1.4)=jj(2,4)

pathl(1,4)=pathl(2,4)

if(iflag(jj(l,4)).eq.3)then

iflag(jj(1,4))=2

else if(iflag(jj(1,4)).eq.l)then

iflag(jj(l,4))=0

'else if(iflag(jj(1,4)).eq.2)then

iflag(jj(1,4))=0

end if

else

jj(l,2)=jj(2,2)

pathl(1,2)=pathl(2,2)

if(iflag(jj(1,2)).eq.3)then

iflag(jj(l,2))=2

else if(iflag(jj(1,2)).eq.l)then

iflag(jj(l,2))=0

else if(iflag(jj(1,2)).eq.2)then

iflag(jj(1,2))=0

end if

end if



26

27

do 26 l=1,4

if(pathl(1,l).lt.bonle)then

ipoly(k,l)=jj(1,l)

12(1,1)=jj(1,1)

end if

continue

factr=factr*.95

call writpol(polymer)

short=aminl(pathl(l,l),path1(1,2),pathl(1,3),path1(1,4))

if(short.gt.bonle)then

flip=.true.

end if

return

else if((m3.eq.0).and.(m20.eq.1).and.(m13.eq.1))then

if(pathl(1,3).le.path1(1,4))then

jj(1,4)=jj(2.4)

pathl(1,4)=pathl(2,4)

if(iflag(jj(1,4)).eq.3)then

iflag(jj(1,4))=2

else if(iflag(jj(l,4)).eq.1)then

iflag(jj(1,4))=0

else if(iflag(jj(1,4)).eq.2)then

iflag(jj(1,4))=0

end if

else

jj(1,3)=jj(2,3)

pathl(l,3)=path1(2,3)

if(iflag(jj(l,3)).eq.3)then

iflag(jj(1,3))=2

else if(iflag(jj(l,3)).eq.1)then

iflag(jj(l,3))=0

else if(iflag(jj(l,3)).eq.2)then

iflag(jj(1,3))=0

end if

end if

do 27 l=1,4

if(pathl(1,l).lt.bonle)then

ipoly(k,l)=jj(l,l)

i2(1,l)=jj(l,l)

end if

continue

factr=factr*.95

call writpol(polymer)

short=amin1(pathl(l,1),pathl(1,2),pathl(l,3),pathl(l,4))

if(short.gt.bonle)then

flip=.true.

end if

return

else if((m3.eq.0).and.(m20.eq.l).and.(ml4.eq.l))then

if(pathl(1,l).le.pathl(1,2)) then

jj(1,2>=jj(2,2)

pathl(1,2)=path1(2,2)

if(iflag(jj(1,2)).eq.3)then

iflag(jj(l,2))=2



28

65

else if(iflag(jj(l,2)).eq.l)then

iflag(jj(1,2))=0

else if(iflag(jj(1,2)).eq.2)then

iflag(jj(1,2))=0

end if

else

jj(1.1)=jj(2.l)

pathl(1,1)=pathl(2,l)

if(iflag(jj(l,l)).eq.3)then

iflag(jj(l,l))=2

else if(iflag(jj(1,l)).eq.1)then

iflag(jj(l,1))=0

else if(iflag(jj(1,1)).eq.2)then

iflag(jj(1,1))=0

end if

end if

if(pathl(1,3).lt.path1(l,4)) then

jj(1.4)=jj(2.4)

pathl(1,4)=path1(2,4)

if(iflag(jj(1,4)).eq.3)then

iflag(jj(1,4))=2

else if(iflag(jj(1,4)).eq.l)then

iflag(jj(1,4))=0

else if(iflag(jj(1,4)).eq.2)then

iflag(jj(l,4))=0

end if

else

pathl(l,3)=path1(2,3)

if(iflag(jj(l,3)).eq.3)then

iflag(jj(1,3))=2 ‘

else if(iflag(jj(l,3)).eq.1)then

iflag(jj(1,3))=0

else if(iflag(jj(l,3)).eq.2)then

iflag(jj(1,3))=0

end if

end if

do 28 l=l,4

if(pathl(1,l).lt.bonle) then

ipoly(k,l)=jj(1.l)

12(1Il)=jj(1r 1)

end if

continue

factr=factr*.95

call writpol(polymer)

short=aminl(path1(l,1),pathl(1,2),pathl(1,3),path1(l,4))

if(short.gt.bonle) then

flip=.true.

end if

return

else if((m3.eq.0).and.(m23.eq.l).and.(m10.eq.l))then

if(pathl(1,l).le.path1(1,3)) then

jj(1.3)=jj(2.3)

pathl(l,3)=path1(2,3)
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if(iflag(jj(l,3)).eq.3)then

iflag(jj(l,3))=2

else if(iflag(jj(l,3)).eq.1)then

iflag(jj(1,3))=0

else if(iflag(jj(l,3)).eq.2)then

iflag(jj(l,3))=0

end if

else

jj(lal)=jj(2,l)

pathl(l,l)=path1(2,l)

if(iflag(jj(1,1)).eq.3)then

iflag(jj(1,1))=2

else if(iflag(jj(1,1)).eq.1)then

iflag(jj(1,1))=0

else if(iflag(jj(1,l)).eq.2)then

iflag(jj(1,1))=0

end if

end if

if(pathl(1,2).le.path1(l,4)) then

jj(114)=jj(214)

pathl(1,4)=path1(2,4)

if(iflag(jj(1,4)).eq.3)then

iflag(jj(l,4))=2

else if(iflag(jj(1,4)).eq.l)then

iflag(jj(l,4))=0

else if(iflag(jj(l,4)).eq.2)then

iflag(jj(1,4))=0

end if

else

jj(1.2)=jj(2.2)

pathl(1,2)=path1(2,2)

if(iflag(jj(1,2)).eq.3)then

iflag(jj(l,2))=2

else if(iflag(jj(1,2)).eq.1)then

iflag(jj(l,2))=0

else if(iflag(jj(l,2)).eq.2)then

iflag(jj(1,2))=0

end if

end if

do 29 l=1,4

if(pathl(1,l).lt.bonle) then

ipoly(k.l)=jj(1.l)

i2(1,l)=jj(1,l)

end if

continue

factr=factr*.95

call writpol(polymer)

short=amin1(path1(1,1),pathl(1,2),path1(1,3),pathl(1,4))

if(short.gt.bonle) then

flip=.true.

end if

return

else if((m3.eq.l).and.(m20.eq.1).and.(m12.eq.l))then

if(pathl(1,1).le.path1(1,4)) then
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jj(114)=jj(214)

pathl(1,4)=path1(2,4)

if(iflag(jj(1,4)).eq.3)then

iflag(jj(1,4))=2

else if(iflag(jj(1,4)).eq.1)then

iflag(jj(1,4))=0

else if(iflag(jj(1,4)).eq.2)then

iflag(jj(1,4))=0

end if

else

jj(1.1)=jj(2.1)

pathl(l,l)=pathl(2,1)

if(iflag(jj(1,1)).eq.3)then

iflag(jj(1,l))=2

else if(iflag(jj(1,1)).eq.1)then

iflag(jj(1,l))=0

else if(iflag(jj(1,1)).eq.2)then

iflag(jj(1,1))=0

end if

end if

if(pathl(1,2).le.path1(1,3))then

jj(1,3)=jj(2,3)

pathl(l,3)=path1(2,3)

if(iflag(jj(l,3)).eq.3)then

iflag(jj(l,3))=2

else if(iflag(jj(l,3)).eq.1)then

iflag(jj(1,3))=0

else if(iflag(jj(l,3)).eq.2)then

iflag(jj(1,3))=0

end if

else

jj(1,2)=jj(2,2)

pathl(1,2)=path1(2,2)

if(iflag(jj(l,2)).eq.3)then

iflag(jj(1,2))=2

else if(iflag(jj(l,2)).eq.1)then

iflag(jj(l,2))=0

else if(iflag(jj(l,2)).eq.2)then

iflag(jj(1,2))=0

end if

end if

do 30 l=1,4

if(pathl(1,l).lt.bonle) then

ipoly(k.l)=jj(1.l)

12(1,1)=jj(1,1)

end if

continue

factr=factr*.95

call writpol(polymer)

short=amin1(path1(1,1),path1(1,2),path1(1,3),path1(1,4))

if(short.gt.bonle) then

flip=.true.

end if

return
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else if(m3l.ne.0)then

if((Path1(1,1).le.pathl(1,2)).and.(pathl(1,1).

le.path1(1,3)).and.(jj(2,2).ne.jj(2,3)))then

jj(102)=jj (2'2)

pathl(1,2)=pathl(2,2)

jj(l,3)=jj(2,3)

pathl(l,3)=path1(2,3)

if(iflag(jj(l,2)).eq.3)then

iflag(jj(1,2))=2

else if(iflag(jj(l,2)).eq.l)then

iflag(jj(1,2))=0

else if(iflag(jj(l,2)).eq.2)then

iflag(jj(1,2))=0

end if

if(iflag(jj(l,3)).eq.3)then

iflag(jj(1,3))=2

else if(iflag(jj(l,3)).eq.1)then

iflag(jj(1,3))=0

else if(iflag(jj(l,3)).eq.2)then

iflag(jj(1,3))=0

end if

end if .

if((path1(l,l).le.pathl(1,3)).and.(pathl(1,l).le.

pathl(l,2)).and.(jj(2,2).eq.jj(2,3)))then

jj(1,3)-jj(2,3)

pathl(l,3)=path1(2,3)

jj(1.2)=jj(3.2)

pathl(1,2)=path1(3,2)

if(iflag(jj(l,2)).eq.3)then

iflag(jj(l,2))=2

else if(iflag(jj(l,2)).eq.1)then

iflag(jj(1,2))=0

else if(iflag(jj(l,2)).eq.2)then

iflag(jj(1,2))=0

end if

if(iflag(jj(l,3)).eq.3)then

iflag(jj(l,3))=2

else if(iflag(jj(l,3)).eq.l)then

iflag(jj(1,3))=0

else if(iflag(jj(l,3)).eq.2)then

iflag(jj(l,3))=0

end if

end if

if((pathl(1,2).le.path1(1,l)).and.(pathl(l,2).le.

+ pathl(l,3)).and.(jj(2,1).ne.jj(2,3)))then

jj(1,1)=jj(2,l)

pathl(1,l)=pathl(2,l)

jj(1,3)=jj(2,3)

pathl(l,3)=path1(2,3)

if(iflag(jj(1,1)).eq.3)then

iflag(jj(1,1))=2

else if(iflag(jj(1,1)).eq.1)then

iflag(jj(l,1))=0

else if(iflag(jj(l,1)).eq.2)then
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iflag(jj(1,l))=0

end if

if(iflag(jj(l,3)).eq.3)then

iflag(jj(1,3))=2

else if(iflag(jj(l,3)).eq.l)then

iflag(jj(1,3))=0

else if(iflag(jj(l,3)).eq.2)then

iflag(jj(1,3))=0

end if

end if '

if((path1(1,2).le.path1(1,1)).and.(pathl(1,2).le.

pathl(l,3)).and.(jj(2,1).eq.jj(2,3)))then

jj(1r3)=jj(213)

pathl(l,3)=path1(2,3)

jj(lll)=jj(3:1)

pathl(l,1)=pathl(3,l)

if(iflag(jj(l,1)).eq.3)then

iflag(jj(1,1))=2

else if(iflag(jj(1,1)).eq.1)then

iflag(jj(1,1))=0

else if(iflag(jj(1,1)).eq.2)then

iflag(jj(1,l))=0

end if

if(iflag(jj(l,3)).eq.3)then

iflag(jj(l,3))=2

else if(iflag(jj(l,3)).eq.1)then

iflag(jj(1,3))=0

else if(iflag(jj(l,3)).eq.2)then

iflag(jj(l,3))=0

end if

end if -

if((path1(1,3).le.path1(1,1)).and.(path1(l,3).le.

pathl(l,2)).and.(jj(2,l).ne.jj(2,2)))then

jj(l.1)=jj(2.1)

pathl(l,1)=pathl(2,1)

jj(1,2)=jj(2.2)

pathl(1,2)=path1(2,2)

if(iflag(jj(1,1)).eq.3)then

iflag(jj(l,1))=2

else if(iflag(jj(l,1)).eq.1)then

iflag(jj(1,l))=0

else if(iflag(jj(1,1)).eq.2)then

iflag(jj(1,l))=0

end if

if(iflag(jj(l,2)).eq.3)then

iflag(jj(l,2))=2

else if(iflag(jj(l,2)).eq.1)then

iflag(jj(1,2))=0

else if(iflag(jj(l,2)).eq.2)then

iflag(jj(1,2))=0

end if

end if

if((pathl(l,3).le.path1(1,2)).and.(pathl(l,3).le.

pathl(1,2)).and.(jj(2,1).eq.jj(2,2)))then



31

70

pathl(1,2)=pathl(2,2)

jj(lll)=jj(3.1)

pathl(1,1)=path1(3,l)

if(iflag(jj(11,l)).eq.3)then

iflag(jj(1,1))=2

else if(iflag(jj(1,1)).eq.1)then

iflag(jj(1,1))=0

else if(iflag(jj(1,1)).eq.2)then

iflag(jj(l,1))=0

end if

if(iflag(jj(l,2)).eq.3)then

iflag(jj(1,2))=2

else if(iflag(jj(l,2)).eq.l)then

iflag(jj(1,2))=0

else if(iflag(jj(l,2)).eq.2)then

iflag(jj(1,2))=0

end if

end if

do 31 l=1,4

if(pathl(1,l).lt.bonle)then

ipOlY(k,l)=jj(1.l)

i2(1,l)=jj(1,l)

end if

continue

factr=factr*.95

call writpol(polymer)

short=aminl(pathl(1,1),path1(1,2),pathl(1,3),path1(1,4))

if(short.gt.bonle) then

flip=.true.

end if

return

else if(m32.ne.0) then

if((path1(1,1).le.path1(1,3)).and.(pathl(1,1).

le.path1(1,4)).and.(jj(2,3).ne.path1(2,4)))then

jj(l,3)=jj(2,3)

pathl(l,3)=path1(2,3)

jj(1.4)=jj(2.4)

pathl(l,4)=path1(2,4)

if(iflag(jj(l,3)).eq.3)then

iflag(jj(1,3))=2

else if(iflag(jj(l,3)).eq.1)then

iflag(jj(1,3))=0

else if(iflag(jj(l,3)).eq.2)then

iflag(jj(1,3))=0

end if

if(iflag(jj(l,4)).eq.3)then

iflag(jj(1,4))=2

else if(iflag(jj(1,4)).eq.1)then

iflag(jj(1,4))=0

else if(iflag(jj(1,4)).eq.2)then

iflag(jj(1,4))=0

end if

end if
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if((path1(1,1).le.path1(1,4)).and.(pathl(1,1).le.

pathl(l,3)).and.(jj(2,3).eq.jj(2,4)))then

jj(1r4)=jj(214)

pathl(1,4)=path1(2,4)

jj(1,3)=jj(3.3)

pathl(l,3)=path1(3,3)

if(iflag(jj(1,4)).eq.3)then

iflag(jj(1,4))=2

else if(iflag(jj(l,4)).eq.l)then

iflag(jj(1,4))=0

else if(iflag(jj(l,4)).eq.2)then

iflag(jj(1,4))=0

end if

if(iflag(jj(l,3)).eq.3)then

iflag(jj(1,3))=2

else if(iflag(jj(l,3)).eq.1)then

iflag(jj(1,3))=0

else if(iflag(jj(l,3)).eq.2)then

iflag(jj(1,3))=0

end if

end if

if((path1(1,3).le.path1(1,1)).and.(pathl(l,3).le.

pathl(1,4)).and.(jj(2,l).ne.jj(2,4)))then

jj(1,1)=jj(2,1)

pathl(1,l)=path1(2,1)

jj(1.4)=jj(2.4)

pathl(1,4)=path1(2,4)

if(iflag(jj(1,l)).eq.3)then

iflag(jj(1,1))=2

else if(iflag(jj(1,1)).eq.l)then

iflag(jj(l,1))=0

else if(iflag(jj(l,1)).eq.2)then

iflag(jj(1,1))=0

end if

if(iflag(jj(1,4)).eq.3)then

iflag(jj(1,4))=2

else if(iflag(jj(1,4)).eq.1)then

iflag(jj(l,4))=0

else if(iflag(jj(1,4)).eq.2)then

iflag(jj(1,4))=0

end if

end if

if((Path1(1,3).le.path1(1,4)).and.(pathl(l,3).le.

pathl(1,1)).and.(jj(2,l).eq.jj(2,4)))then

jj(l,4)=jj(2.4)

pathl(1,4)=pathl(2,4)

jj(1,1)=jj(3,1)

pathl(1,1)=pathl(3,1)

if(iflag(jj(1,1)).eq.3)then

iflag(jj(1,1))=2

else if(iflag(jj(1,1)).eq.1)then

iflag(jj(1,1))=0

else if(iflag(jj(1,1)).eq.2)then

iflag(jj(1,l))=0
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end if

if(iflag(jj(l,4)).eq.3)then

iflag(jj(l,4))=2

else if(iflag(jj(1,4)).eq.1)then

iflag(jj(1,4))=0

else if(iflag(jj(1,4)).eq.2)then

iflag(jj(1,4))=0

end if

end if

if((Path1(1,4).le.path1(1,1)).and.(pathl(1,4).le.

pathl(l,3)).and.(jj(2,1).ne.jj(2,3)))then

jj(1,1)=jj(2:1)

pathl(1,1)=path1(2,1)

jj(1,3)=jj(2.3)

pathl(l,3)=path1(2,3)

if(iflag(jj(1,1)).eq.3)then

iflag(jj(1,1))=2

else if(iflag(jj(1,1)).eq.l)then

iflag(jj(1,1))=0

else if(iflag(jj(l,1)).eq.2)then

iflag(jj(1,1))=0

end if ,

if(iflag(jj(l,3)).eq.3)then

iflag(jj(1,3))=2

else if(iflag(jj(l,3)).eq.1)then

iflag(jj(1,3))=0

else if(iflag(jj(l,3)).eq.2)then

iflag(jj(1,3))=0

end if

end if

if((path1(1,4).le.path1(1,3)).and.(pathl(1,4).le.

pathl(l,1)).and.(jj(2,1).eq.jj(2,3)))then

jj(1,3)=jj(2,3)

pathl(l,3)=path1(2,3)

jj(l,1)=jj(3,1)

pathl(1,1)=path1(3,1)

if(iflag(jj(1,1)).eq.3)then

iflag(jj(l,1))=2

else if(iflag(jj(1,1)).eq.1)then

iflag(jj(1,1))=0

else if(iflag(jj(1,1)).eq.2)then

iflag(jj(1,l))=0

end if

if(iflag(jj(l,3)).eq.3)then

iflag(jj(1,3))=2

else if(iflag(jj(l,3)).eq.1)then

iflag(jj(1,3))=0

else if(iflag(jj(l,3)).eq.2)then

iflag(jj(1,3))=0

end if

end if

do 32 l=1,4

if(pathl(1,l).lt.bonle)then

ipoly(k,l)=jj<1,l>



32

73

12(1,1)=jj(1,1)

end if

continue

factr=factr*.95

call writpol(polymer)

short=amin1(pathl(1,1),path1(1,2),path1(1,3),path1(1,4))

if(short.gt.bonle) then

flip=.true.

end if

return

else if(m33.ne.0) then

if((pathl(l,1).le.path1(l,2)).and.(path1(1,1).

le.path1(1,4)).and.(jj(2,2).ne.jj(2,4)))then

jj(1,2)=jj(2.2)

pathl(1,2)=pathl(2,2)

jj(1,4)=jj(2,4)

pathl(l,4)=path1(2,4)

if(iflag(jj(l,2)).eq.3)then

iflag(jj(1,2))=2

else if(iflag(jj(l,2)).eq.1)then

iflag(jj(l,2))=0

else if(iflag(jj(l,2)).eq.2)then

iflag(jj(1,2))=0

end if

if(iflag(jj(1,4)).eq.3)then

iflag(jj(1,4))=2

else if(iflag(jj(1,4)).eq.1)then

iflag(jj(1,4))=o

else if(iflag(jj(1,4)).eq.2)then

iflag(jj(1,4))=0

end if

end if

if((path1(1,1).le.path1(1,4)).and.(pathl(1,1).le.

+ pathl(1,2)).and.(jj(2,4).eq.jj(2,2)))then

jj(1,4)=jj(2,4)

pathl(1,4)=path1(2,4)

jj(1,2)=jj(3,2)

pathl(1,2)=path1(3,2)

if(iflag(jj(l,2)).eq.3)then

iflag(jj(1,2))=2

else if(iflag(jj(l,2)).eq.1)then

iflag(jj(l,2))=0

else if(iflag(jj(l,2)).eq.2)then

iflag(jj(1,2))=0

end if

if(iflag(jj(1,4)).eq.3)then

iflag(jj(l,4))=2

else if(iflag(jj(1,4)).eq.1)then

iflag(jj(1,4))=0

else if(iflag(jj(1,4)).eq.2)then

iflag(jj(1,4))=0

end if

end if

if((pathl(1,2).le.pathl(1,1)).and.(pathl(l,2).le.



74

pathl(1,4)).and.(jj(2,l).ne.jj(2,4)))then

jj(111)'jj(211)

pathl(1,1)=pathl(2,1)

jj(1,4)=jj(2,4)

pathl(1,4)-path1(2,4)

if(iflag(jj(1,1)).eq.3)then

'iflag(jj(1,1))=2

else if(iflag(jj(1,1)).eq.1)then

iflag(jj(1,1))=0

else if(iflag(jj(1,1)).eq.2)then

iflag(jj(1,1))=0

end if

if(iflag(jj(l,4)).eq.3)then

iflag(jj(l,4))=2

else if(iflag(jj(1,4)).eq.l)then

iflag(jj(1,4))=0

else if(iflag(jj(1,4)).eq.2)then

iflag(jj(1,4))=0

end if

end if

if((Path1(1,2).le.path1(l,4)).and.(pathl(1,2).le.

pathl(1,1)).and.(jj(2,l).eq.jj(2,4)))then

71(174)=jj(2.4)

pathl(1,4)=path1(2,4)

jj(1,1)=jj(3.1)

pathl(l,1)=path1(3,1)

if(iflag(jj(l,l)).eq.3)then

iflag(jj(1,1))=2

else if(iflag(jj(1,1)).eq.1)then

iflag(jj(1,l))=0

else if(iflag(jj(1,1)).eq.2)then

iflag(jj(1,1))=0

end if

if(iflag(jj(1,4)).eq.3)then

iflag(jj(1,4))=2

else if(iflag(jj(1,4)).eq.l)then

iflag(jj(l,4))=0

else if(iflag(jj(1,4)).eq.2)then

iflag(jj(1,4))=0

end if

end if

if((Pathl(1,4).le.path1(1,1)).and.(pathl(1,4).le.

pathl(1,2)).and.(jj(2,1).ne.jj(2,2)))then

jj(lrl)=jj(211)

pathl(l,1)=pathl(2,1)

jj(112)=jj(212)

pathl(1,2)=path1(2,2)

if(iflag(jj(1,1)).eq.3)then

iflag(jj(1,1))=2

else if(iflag(jj(1,l)).eq.l)then

iflag(jj(l,1))=0

else if(iflag(jj(1,1)).eq.2)then

iflag(jj(1,l))=0

end if
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if(iflag(jj(l,2)).eq.3)then

iflag(jj(l,2))=2

else if(iflag(jj(l,2)).eq.1)then

iflag(jj(1,2))=0

else if(iflag(jj(l,2)).eq.2)then

iflag(jj(1,2))=0

end if

end if

if((path1(1,4).le.path1(1,2)).and.(pathl(1,4).le.

pathl(1,1)).and.(jj(2,1).eq.jj(2,2)))then

jj(1,2)=jj(2.2)

pathl(1,2)=path1(2,2)

jj(l,l)=jj(3.l)

pathl(1,1)=path1(3,1)

if(iflag(jj(l,l)).eq.3)then

iflag(jj(1,1))=2

else if(iflag(jj(1,1)).eq.1)then

iflag(jj(1,1))=0

else if(iflag(jj(1,1)).eq.2)then

iflag(jj(1,1))=0

end if

if(iflag(jj(l,2)).eq.3)then

iflag(jj(1,2))=2

else if(iflag(jj(l,2)).eq.1)then

iflag(jj(1,2))=0

else if(iflag(jj(l,2)).eq.2)then

.iflag(jj(1,2))=0

end if

end if

do 33 l=1,4

if(pathl(1,l).lt.bonle)then

ipoly(k.l)=jj(1.l)

12(1,1)=jj(1,1)

end if

continue

factr=factr*.95

call writpol(polymer)

short=aminl(pathl(1,1),path1(1,2),pathl(1,3),path1(1,4))

if(short.gt.bonle) then

flip=.true.

end if

return

else if(m34.ne.0) then

if((path1(1,2).le.path1(1,3)).and.(pathl(1,2).

le.path1(1,4)).and.(jj(2,3).eq.jj(2,4)))then

jj(l,3)=jj(2.3)

pathl(l,3)=path1(2,3)

jj(1,4)=jj(2,4)

pathl(1,4)=pathl(2,4)

if(iflag(jj(l,3)).eq.3)then

iflag(jj(1,3))=2

else if(iflag(jj(l,3)).eq.1)then

iflag(jj(1,3))=0

else if(iflag(jj(l,3)).eq.2)then
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iflag(jj(1,3))=0

end if

if(iflag(jj(1,4)).eq.3)then

iflag(jj(l,4))=2

else if(iflag(jj(1,4)).eq.1)then

iflag(jj(1,4))=0

else if(iflag(jj(1,4)).eq.2)then

iflag(jj(1,4))=0

end if

end if

if((Path1(1,2).le.path1(1,4)).and.(pathl(1,2).le.

pathl(l,3)).and.(jj(2,4).eq.jj(2,3)))then

jj<1.4)=jj<2.4)

pathl(1,4)=pathl(2,4)

jj(ll3)=jj(3l3)

pathl(l,3)=path1(3,3)

if(iflag(jj(l,3)).eq.3)then

iflag(jj(1,3))=2

else if(iflag(jj(l,3)).eq.1)then

iflag(jj(1,3))=0

else if(iflag(jj(l,3)).eq.2)then

iflag(jj(1,3))=0

end if

if(iflag(jj(1,4)).eq.3)then

iflag(jj(1,4))=2

else if(iflag(jj(1,4)).eq.1)then

iflag(jj(1,4))=0

else if(iflag(jj(1,4)).eq.2)then

iflag(jj(1,4))=0

end if

end if

if((path1(1,3).1e.path1(1,2)).and.(pathl(l,3).le.

pathl(1,4)).and.(jj(Z,Z).ne.jj(2,4)))then

jj(1.2)=jj(2.2>

pathl(1,2)=path1(2,2)

jj<l,4)=jj(2.4)

pathl(1,4)=path1(2,4)

if(iflag(jj(l,2)).eq.3)then

iflag(jj(1,2))=2

else if(iflag(jj(l,2)).eq.1)then

iflag(jj(l,2))=0

else if(iflag(jj(l,2)).eq.2)then

iflag(jj(1,2))=0

end if

if(iflag(jj(1,4)).eq.3)then

iflag(jj(l,4))=2

else if(iflag(jj(1,4)).eq.l)then

iflag(jj(1,4))=0

else if(iflag(jj(1,4)).eq.2)then

iflag(jj(1,4))=0

end if

end if

if((path1(1,3).le.path1(1,4)).and.(pathl(l,3).le.

pathl(1,2)).and.(jj(2,4).eq.jj(2,2)))then



77

jj(1,4)=jj(2,4)

pathl(1,4)=path1(2,4)

jj(1,2)=jj(3.2)

pathl(l,2)=path1(3,2)

if(iflag(jj(l,2)).eq.3)then

iflag(jj(l,2))=2

else if(iflag(jj(l,2)).eq.1)then

iflag(jj(1,2))=0

else if(iflag(jj(l,2)).eq.2)then

iflag(jj(1,2))=0

end if

if(iflag(jj(1,4)).eq.3)then

iflag(jj(1,4))=2

else if(iflag(jj(l,4)).eq.1)then

iflag(jj(1,4))=0

else if(iflag(jj(1,4)).eq.2)then

iflag(jj(1,4))=0

end if

end if

if((Pathl(1,4).le.path1(1,2)).and.(pathl(1,4).le.

pathl(l,3)).and.(jj(2,2).ne.jj(2,3)))then

jj(1,2)=jj(2:2)

pathl(l,2)=path1(2,2)

jj(1I4)=jj(213)

pathl(1,4)=path1(2,3)

if(iflag(jj(l,2)l.eq.3)then

iflag(jj(1,2))=2

else if(iflag(jj(l,2)).eq.1)then

iflag(jj(1,2))=0

else if(iflag(jj(l,2)).eq.2)then

iflag(jj(l,2))=0

end if

if(iflag(jj(l,3)).eq.3)then

iflag(jj(1,3))=2

else if(iflag(jj(l,3)).eq.1)then

iflag(jj(1,3))=0

else if(iflag(jj(l,3)).eq.2)then

iflag(jj(1,3))=0

end if

end if

if((path1(1,4).le.path1(1,3)).and.(pathl(l,4).le.

pathl(l,2)).and.(jj(2,2).eq.jj(2,3)))then

jj(1,3)=jj(2.3)

pathl(l,3)=path1(2,3)

jj(1.2)=jj(3.2)

pathl(l,2)=path1(3,2)

if(iflag(jj(l,2)).eq.3)then

iflag(jj(1,2))=2

else if(iflag(jj(l,2)).eq.1)then

iflag(jj(1,2))=0

else if(iflag(jj(l,2)).eq.2)then

iflag(jj(1,2))=0

end if

if(iflag(jj(l,3)).eq.3)then
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iflag(jj(1,3))=2

else if(iflag(jj(l,3)).eq.1)then

iflag(jj(1,3))=0

else if(iflag(jj(l,3)).eq.2)then

iflag(jj(1,3))=0

end if

end if

do 34 l=1,4

if(pathl(1,l).lt.bonle)then

ipoly(k,l)=jj<1.l)

12(l,l)=jj(1,l)

end if

34 continue

factr=factr*.95

call writpol(polymer)

short=aminl(path1(1,l),path1(l,2),path1(l,3),path1(1,4))

if(short.gt.bonle) then

flip=.true.

end if

return

end if

return

end

C******************~k*************~k******************************1:

subroutine sumup(rcut,rmin,sigma,ovrlap,v,iflag,eql,foc,

+ vos,polymer,neig,red)

common /block1/rx,ry,rz

common /block2/ipoly

C****************************************************************

C ** *‘k

c ** Calculates the total potential energy **

c ** For bonded neighbors calculates oscilator energy and for **

c ** others calculates LJ energy. **

C ** **

c ** Principal variables: **

C ** **

c ** integer n the number of atoms **

c ** integer iflag(n) bonded status **

c ** integer ipoly(n,4) linear polymer chains **

c ** real rx,ry,rz the positions of the atoms **

c ** real v the LJ potential energy **

c ** real vos the oscilator potential energy **

c ** real rmin LJ overlaping distance **

c ** real rminl oscilatoroverlaping distance **

c ** logical overlap true for substantial atom overlap**

c ** logical neig true if i and j are neighbors in **

c ** any linear chain **

C ** tat

c ** Returns the total potential energy at the begining and **

c ** at the end of the run.Check for the overlaps in oscilator**

c ** potential and the LJ potential separetely. **

C ************************************************************it
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integer n

parameter (n=100)

real rx(n),ry(n),rz(n)

real sigma,rmin,rcut,v,foc,vos,red,rmin1

logical ovrlap,neig

real rcutsq,rminsq,sigsq,rxij,ryij,rzij,bonle,bonll

real rxi,ryi,rzi,vij,sr2,sr6,rijsq,eql,rmisq1

integer i,j,iflag(100),ipoly(100,4)

C **************************************************************

character polymer*(*)

overlap=.false.

rcutsq=rcut*rcut

rminsq=rmin*rmin

rmin1=rmin*red

rmisq1=rmin1*rmin1

bonll=bonle*1.3

sigsq=sigma*sigma

v=0.0

vos=0.0

do 100 i=l,n-l

rxi-rx(i)

ryi=ry(i)

rzi=rz(i)

do 99 jsi+1,n

rxij=rxi-rx(j)

ryij=ryi-ry(j)

rzij=rzi-rz(j)

C ******* minimum image pair separations************************

if( rxij.gt.0.5) then

rxij=rxij-1.0

else if(rxij.lt.-0.5) then

rxij=rxij+1.0

end if

if( ryij.gt.0.5) then

ryij=ryij-l.0

else if(ryij.lt.-O.5) then

ryij=ryij+1.0

end if

if( rzij.gt.0.5) then

rzij=rzij-1.0

else if(rzij.lt.-O.5) then

rzij=rzij+l.0

end if

rijsq=rxij*rxij+ryij*ryij+r2ij*rzij

if (rijsq.lt.rminsq) then

ovrlap=.true.

return

if((iflag(i).eq.0.or.iflag(i).eq.2).and.

+ (iflag(j).eq.0.or.iflag(j).eq.2))then

if (rijsq.lt.bonll) then

call readpol(polymer,i,j,neig)

if(neig)then

if (rijsq.lt.rmisq1) then

ovrlap=.true.
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100

return

else
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rij=sqrt(rijsq)

vos=vos+0.5*foc*(rij-eql)**2

end if

else if((rijsq.lt.rminsq) then

ovrlap=.true.

return

end if

end if

else if (rijsq.1t.rcutsq) then

if((rijsq.lt.rminsq) then

ovrlap=.true.

return

else

sr2=sigsqlrijsq

sr6=sr2*sr2*sr2

vij=sr6*(sr6-1.0)

v=v+vij

end if

end if

continue

continue

v=4.0*v

return

end

C**************************************************************

+

subroutine energY(rxi,ryi,rzi,i,rcut,sigma,v,iflag,eql,

foc,vos,ovrpol,rmin,polymer,neig,red)

common /block1/rx,ry,rz

common /block2/ipoly

C***t********ittikit**tk‘kitt*********************************k

**

**

it

**

*t

**

**

**

**

**

**

ti

**

it

**

**

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

** This subroutine is used to calculate the change of *

energy during a trial move of atom i.it is caled before*

and after the random displacement of i. For bonded **

neighbors displacements are accected towrds the equli.**

Principal variables:

integer n

integer iflag(n)

integer ipoly(n,4)

logical ovrpol

logical touch

logical neig

character polymer

**

**

**

number of monomers **

bonded status **

linear polymer chains **

true if 2 neighbors in a linear **

chain overlaps or they exceed the**

maximum bond length **

true for all other overlaps **

true if i and j are neighbors in **

a linear chain **

name of polymer file **

***‘k***‘k********************************‘k‘k‘k‘k‘k‘k‘k‘k*************
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integer n,i

parameter (n=100)

real rx (n) , ry (n) , rz (n)

real rcut,sigma,rxi,ryi,rzi,v,rmin

real rcutsq,sigsq,sr2,sr6,eql

real rxij,ryij,rzij,rijsq,vij

integer j,iflag(100),ipoly(100,4)

character polymer*(*)

logical ovrpol,neig,touch

C i*********************************************************

ovrpol=.false.

touch =.false.

rcutsq=rcut*rcut

rminsq=rmin*rmin

sigsq =sigma*sigma

v=0.0

vos=0.0

C *****loop over all molecules except i*********************

do 100 j=1,n

if(i.ne.j)then

rxij-rxi-rx(j)

ryij=ryi-ry(j)

rzij=rzi-rz(j)

if (rxij.gt.0.5) then

rxij=rxij-l.0

else if (rxij.lt.-0.S) then

rxij=rxij+1.0

end if

if (ryij.gt.0.5) then

ryij=ryij-1.0

else if (ryij.lt.-0.5) then

ryij=ryij+1a0

end if

if (rzij.gt.0.5) then

rzij=rzij-l.0

else if (rzij.lt.-O.S) then

rzij=rzij+1.0

end if

rijsq=(rxij*rxij+ryij*ryij+rzij*rzij)

if((iflag(i).eq.0.or.if1ag(i).eq.2).and.

+ (iflag(j).eq.0. or.iflag(j).eq.2))then

if (rijsq.lt.bonll) then

call readpol(polymer,i,j,neig)

if(neig)then

if((rijsq.lt.rmisq1).or.rijsq.gt.bonle)) then

ovrpol=.true.

return

else

rij=sqrt(rijsq)

vos=vos+0.5*foc*(rij-eql)**2

end if

else if((rijsq.lt.rminsq) then
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ovrpol=.true.

return

end if

end if

else if (rijsq.1t.rcutsq) then

if(rijsq.lt.rminsq) then

touch-.true.

return

else

sr2=sigsqlrijsq

sr6=sr2*sr2*sr2

vij=sr6*(sr6-1.0)

v=v+vij

end if

end if

100 continue

v=4.0*v

return

end

C ************************************************************

0
0
0
0
0
0
0
0
0

subroutine readcn (cnfile )

common /block1/rx,ry,rz

*tt*********************************************************

** Subroutine to read cordintes from unit 10 **

** Reads cordinates for new MOnte Carlo cycle **

*‘k **

** Principal variables: **

*‘k **

** integer n 7 number of monomers **

** real rx(n),etc cordinates of mpnomer units **

************************************************************

integer n

parameter (n=100)

real rx(n),ry(n),rz(n)

character cnfile*(*)

integer cnunit

parameter (cnunit=10)

open(unit=cnunit,file='cnfile',status='old',

+ form='formatted')

rewind(unit=cnunit)

do 30 i=1,n

read (units cnunit,fmt=500,end=3l) rx(i), ry(i),rz(i)

30 continue

31 write(*,'("end of file read")')

close (unitscnunit)

500 format(t5,e12.4,t19,e12.4,t48,e12.4)

return

end
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C ******************‘ki‘kttfiit***********************************k

subroutine writcn (cnfile)

common /block1/rx,ry,rz

c***************************************************************

**

ti

**

**

*‘k

**

0
0
0
0
0
0
0

40

500

Subroutine to write cordinate file after each MC cycle

Principal variables:

integer n number of monomer units

real rx(n),etc cordinates if monomer units

integer n

parameter (n=100)

character cnfile*(*)

real rx (n) , ry (n) , r2 (n)

integer cnunit

parameter (cnunit=10)

open (unit=cnunit,file=‘cnfile',form='formatted')

do 40 i=1,n

write (cnunit,500) rx(i),ry(i),rz(i)

continue

endfile (unit=cnunit)

close (unit=cnunit)

format(t5,e12.4,t19,e12.4,t48,e12.4)

return

end

**

**

**

*‘k

**

**

********************t****************************************

C ***************************‘k*********************************

**

*‘k

C

C **

C **

C H:

C int

C it

C

C

C

subroutine readpol(polymer,i,j,neig)

common /block2/ipoly

Subruotine to read polymer file and identify neighbors

Principal variables:

integer ipoly(n,4) polymer chains

logical neig true if i and j are neighbors in

the same linear chain

character polymer*(*)

logical neig

integer i,j,ipoly(100,4),j3,j4,jcoun,j5,j6,j7,j8,j9,j10

neig=.false.

open(12,file='polymer',status='unknown',form='formatted')

rewind (unit=12)

read(12,fmt=502,end=25)((ipoly(jcoun,lco),lco=l,4),

jcoun=1,100)

*t'***********t**********************************************k

kt

**

**

*‘k

**

**

**

**‘k**‘k****‘k*t************t*‘k***t****************************‘k
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0
0

16

17

18

19

20

21
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do 17 jcoun=l,100

do 16 lco=l,4

if(ipoly(jcoun,lco).eq.i) go to 18

continue

continue

j3=<jcoun-1)

j4=lco

j7=(jcoun+1)

do 20 jcoun=l,100

do 19 loc=1,4

if(ipoly(jcoun,lco).eq.j) go to 21

continue

continue

j5=jcoun

j6=lco

if((j3.eq.j5.and.j4.eq.j6).or.(j7.eq.j5.and.j4.eq.j6)then

rneig=.true.

22

23

24

25

502

go to 25

end if

do 23 jcoun=lO0,0,-l

do 22 loc=1,4

if(ipoly(jcoun,lco).eq.j) go to 24

continue

continue

j8=jcoun-1

j9=lco

j10=jcoun+1

if((j8.eq.j5.and.j9.eq.j6).or.(j10.eq.j5.and.j9.eq.j6)then

neig=.true.

end if

close(unit=12)

format(100(4i10/))

return'

end

*************************************************************

subroutine writpol(polymer)

common /block2/ipoly

‘k**********************************************************‘kk

**

**

**

**

**

subroutine to write polymer file at end of each MC cycle

Principal variables:

integer ipoly(n,4) polymer chains

**

it

*‘k

*‘k

**

***k'k*******************t**************‘k‘k********************

integer ipoly(100,4),jcoun

character polymer*(*)

open(12,file='polymer',status='unknown',form='formatted')

write(12,fmt=501)((ipoly(jcoun,lco),lco=1,4),jcoun=1,100)

endfile(unit=12)
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close(unit=12)

501 format(100(4i10/))

return

end

t************************‘k*‘k*************************‘k********‘kt



APPENDIX C

This appendix contains some programs need to analyze the structure of the reaction

system at different stages of the growth.

1. Program ‘CONNECT’ will read ‘polymer’ file and write the status of all particles

(bonded or non-bonded and if bonded particle numbers) to the ‘link’ file.

2. Program ‘IMAGE’ will read ‘cnfile’ file and ‘polymer’ file and write the information

(to file ‘disc’) of which bonded pairs are image connection.

3. Program ‘CONNEC'I‘Z’ will read ‘link’ file and ‘disc’ file and write the

information of bonded neighbors which are not image connections to the ‘linkf’ file.

86
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program connect

common Iblock2/ipoly

common lblock3/jpoly

integer n,m

parameter (n=934)

parameter (m=200)

integer jcoun,1co,j3,j4,ipoly(m,4),j1,k1,jpoly(n,5)

integer iflag(n),j5,j6,j7,j8,j9,j10

character polymer*10,link*6

call readpol(polymer)

do 17 lco=l,4

do 16 jcoun=1,200

i=ipoly(jcoun,lco)

if(iflag(i).eq.0)then

j3=(jcoun+l)

j4=(jcoun-1)

j1=ipoly(j3,lco)

k1=ipoly(j4,lco)

if(j1.1t.kl) then

j=jl

k=k1

else

j=kl

k=j1

end if

ipoly(i.2)=j

jpoly(i,3)=k

call writlink(link)

iflag(i)=1

else

jS=(jcoun+1)

j6=(jcoun-l)

j1=ipoly(j5,1co)

k1=ipoly(j6,lco)

if(j1.lt.k1)then

j=jl

k=k1

else

j=k1

k=j1

end if

ipoly(i.4)=j

ipoly(i,5)=k

if(jpoly(i,3).gt.jpoly(i,4))then

j7=jpoly(i.3)

ipoly(i.3)=jpoly(i,4)

ipoly(i.4)=j7

end if

if(jpoly(i,2).gt.jpoly(i,3))then

j8=jpoly(i,2)

'jpoly(i.2)=jpoiy(i,3)

ipoly(i.3)=j8

end if
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if(jp01y(i,4).gt.jpoly(i,5))then

j9=jpoly(i.4)

ipoly(i.4)=jpoly(i.5)

end if

if(jpoly(i,3).gt.jpoly(i,4))then

310=jpoly(i.3)

ipoly(i.3)=jpoly(i.4)

jpoly(i,4)=j10

end if

call writlink(1ink)

end if

16 continue

17 continue

stop

501 format(934(5i6/))

502 format(200(4ilO/))

end

subroutine readpol(polymer)

common lblockZ/ipoly

integer m

parameter (m=200)

integer jcoun,1co,ipoly(200,4)

open(12,fi1e='polymer',status='unknown',form='formatted')

rewind(unit=12)

read(12,fmt=502,end=22)((ipoly(jcoun,lco),lco=1,4),

+ jcoun=1,200)

22 close(unit=12)

502 format(200(4i10/))

return

end

subroutine writlink(link)

common lblock3/jpoly

integer jpoly(934,S),jco,1co

open(l4,fi1e='link',status='unknown',form='formatted')

write(14,fmt=501)((jpoly(jco,lco),lco=1,5),jco=1,934)

endfile(unit=14)

close(unit=l4)

501 format(934(5i6/))

return

end
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program image

common /blockl/rx,ry,rz

common /block2/ipoly

common lblock3/dis

integer n,m

parameter (n=934)

parameter (m=200)

integer ipoly(m,4),dis(m,2)

real rx(n),ry(n),rz(n)

real path(1,4),rxij,ryij,rzij

character cnfile*10,polymer*10,disc*10

call readcn(cnfile)

call readpol(polymer)

j=0

do 2 i=1,m

do 1 1:1,4

if((ipoly(i,l).ne.0).and.(ipoly(i+1,l).ne.0)) then

rxij=rx(ipoly(i+l,l))-rx(ipoly(i,1))

ryij=ry(ipoly(i+l,l))-ry(ipoly(i,l))

rzij=rz(ipoly(i+l,l))-rz(ipoly(i,l))

path(l,l)=sqrt((rxij)**2+(ryij)**2+(rzij)**2)

end if

print*,'path(1,1)= ',path(1,l)

if (path(1,1).gt.1.0) then

j=j+l

dis(j,l)=ipoly(i,l)

dis(j,2)=ipoly(i+l,l)

print *,'i,j = ',ipoly(i,l),ipoly(i+l,1)

end if

continue

continue

call wridisc(disc)

stop

end

subroutine readpol(polymer)

common /block2/ipoly

integer n

parameter (n=934)

parameter (m=200)

character polymer*(*)

integer i,l,ipoly(m,4)

open(12,file='polymer‘,status:'unknown',form=‘formatted')

rewind (unit=12)

read(12,fmt=502,end=22)((ipoly(i,l),l=l,4),i=1,200)

close(unit=12)

format(200(4i10/))

return

end

subroutine readcn (cnfile )

** SUBROUTINE TO READ IN THE CONFIGURATION FROM UNIT 10 **

common /blockl/rx,ry,rz

integer n

parameter (n=934)

real rx(n),ry(n),rz(n)
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character cnfile*(*)

integer cnunit

parameter (cnunit=10)

open(unit=cnunit,file='cnfile',status='old',form='formatted')

rewind(unit=cnunit)

do 30 i=1,n

read (unit: cnunit,fmt=500,end=31) rx(i), ry(i),rz(i)

30 continue

31 write(*,'("end of file read")')

close (unit=cnunit) ‘

500 format(t5,e12.4,t19,e12.4,t48,e12.4)

return

end

subroutine wridisc(disc)

common /block3/dis

integer m

parameter (m=200)

integer dis(m,2)

character disc*(*)

open(16,fi1e='disc',status='unknown',formz'formatted')

write(16,fmt=503)((dis(i,l),1=1,2),i=l,200)

endfile(unit=l6)

close(unit=16)

503 format(200(2i10/))

return

end
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program connect2

common /block3/jpoly

common /block4/kpoly

common /block5/dis

integer i,jco,lco,jpoly(934,5),kpoly(934,5),dis(200,2)

character link*6,linkf*6,disc*6

call readlink(link)

call readisc(disc)

i=0

do 12 jco=l,934

if(jpoly(jco,1).ne.0) then

i=i+1

kpoly(i,1)=jpoly(jco,1)

do 13 j=1,200

if(jpoly(jco,1).eq.dis(j,1))then

if(dis(j,2).eq.jpoly(jco,2)) then

jpoly(jco,2)=0

else if(dis(j,2).eq.jpoly(jco,3)) then

ipoly(jc0.3)=0

else if(dis(j,2).eq.jpoly(jco,4)) then

jP°1Y(jC°:4)=0

else if(dis(j,2).eq.jpoly(jco,5)) then

jpoly(jco,S)=0

end if

else if(jpoly(jco,1).eq.dis(j,2))then

if(dis(j,1).eq.jpoly(jco,2)) then

ipoly(jc0.2)=0

else if(dis(j,1).eq.jpoly(jco,3)) then

ipoly(jc0.3)=0

else if(dis(j,1).eq.jpoly(jco,4)) then

jpoly(jco,4)=0

else if(dis(j,1).eq.jpoly(jco,5)) then

ipoly(jc0.5)=0

end if

end if

13 continue

kpoly(i,2)=jp01y(jco,2)

kp°1Y(j-I 3 ) =jPOIY(jCOI 3)

kpoly(i,4)=jpoly(jco,4)

kpoly(i.5)=jpoly(jco,5)

call writlink(linkf)

end if

12 continue

stop

501 format(934(5i6/))

502 format('CONECT',Si6)

end

subroutine readlink(link)

common /block3/jpoly

integer jpoly(934,5),jco,1co

character link*(*)

open(14,file='link',status='unknown‘,form='formatted')

rewind(unit=14)

read(14,fmt=501,end=22)((jPOly(jco,lco),lco=1,S),jco=1,934)



22

501

23

502

33

503

92

close(unit=14)

format(934(5i6/))

return

end

subroutine writlink(linkf)

common /block4/kpoly '

integer kpoly(934,5),jco,1co

open(15,fi1e='linkf',status='unknown',form='formatted')

do 23 jco=1,934

Write(15,fmt=502)kpoly(jco,1),kpoly(jco,2),kpoly(jco,3),

+ kpoly(jco,4),kpoly(jco,5)

continue

endfile(unit=15)

close(unit=15)

format('CONECT',Si6)

return

end

subroutine readisc(disc)

common lblockS/dis

integer m

parameter (m=200)

integer dis(m,2)

character disc*(*)

open(16,fi1e='disc',status='unknown',form='formatted')

rewind(unit=16)

read(16,fmt=503,end=33)((dis(i,l),l=1,2),i=1,200)

close(unit=16)

format(200(2i10/))

return

end



APPENDIX D

program dumbel

common /block1/ rx,ry,rz,ex,ey,ez

integer n,natom

parameter'(n=100,natom=2)

real rx(n),ry(n),rz(n),ex(n),ey(n),ez(n)

real drmax,dens,sigma,dab(natom),dotmin,d

real acm,accept,pi,ratio,rmin,rcut,deltv,deltvb

real rxiold,ryiold,rziold,rxinew,ryinew,rzinew

real exiold,eyiold,eziold,exinew,eyinew,ezinew

real v,vnew,vold,vlast,vn,vs,temp

real v1rc,v1rc6,v1rc12,control,beta

integer step,i,nstep,iprint,isave,iratio

logical ovrlap

character cnfile*10

parameter (pi=3.1415927)

read input data*******************

open (12,file='inputdata',status='old',form='formatted')

c*****write input data*****

read(12,'(i10 )')nstep

read(12,'(ilO )')iprint

read(12,'(i10 )')isave

read(12,'(i10 )')iratio

read(12,'(f10.4 )')temp

read(12,'(f10.4 )')dens

read(12,'(f10.4 )')rmin

read(12,'(f10.4 )')drmax

read(12,'(f10.4 )')tvbmax

read(12,'(f10.4 )')rcut

read(12,‘(f10.4 )')d

read(12,'(e12.4 )')control

read(12,'(a )')cnfile

write(*,'(" end of inputdata ")')

c*****convert input data to program units****

beta=1.0/temp

sigma =(dens/rea1(n))**(1.0/3.0)

dab(1)=d*sigma/2

dab(2)=-dab(1)

drmax =drmax*sigma

dotmin=0.2

rmin=rmin*sigma

rcut=rcut*sigma

denslj=dens

dens=dens/(sigma**3)

if(rcut.gt.0.5)stop' cutoff too large '

acm=0.0

accept=0.0

acv=0.0

c*****calculate long range correction

sr3=(sigma/rcut)**3

sr9=sr3**3

vlrc12=8.0*pi*denslj*real(n)*sr9/9.0
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v1rc6 =8.0*pi*denslj*rea1(n)*sr3/3.0

v1rc=v1rc12-v1rc6

c****write out information****

write(*,'("sigma/box = ",f12.6)')sigma

write(*,'("dab(1)/box = ",f12.8)')dab(1)

write(*,'("dab(2)/box = ",f12.8)')dab(2)

write(*,'("drmax/box = ",f12.6)')drmax

write(*,'("dotmin = ",f12.6)')dotmin

write(*,'("rmin/box = ",f12.6)')rmin

write(*,'("rcut/box = ",f12.6)')rcut

write(*,'("tvbmax/box = ",f12.6)')tvbmax

write(*,'("lrc for v = ",f12.6)‘)vlrc

write(*,'("control

call readcn(cnfile)

c*****ca1cu1ates initial energy and cheks for overlap**

call check(rcut,rmin,sigma,dab,ovrlap,v)

if(ovrlap)stop 'ovrlap in initial con '

vs=(v+vlrc)/real(n)

',e12.4)')control

write(*,'("initia1 v = ",e20.6 )')vs

write(*,'(/" start of markov chain "/)')

write(*,'(" acm ratio v/n "/)')

c*****loops over all cycles and all molecules ********

do 100 step=1,nstep

do 99 i=1,n

rxiold=rx(i)

ryiold=ry(i)

rziold=rz(i)

exiold=ex(i)

eyiold=ey(i)

eziold=ez(i)

c*****calcu1ates the energy of i in the old config

call test(rcut,rmin,rxiold,ryiold,rziold,i,exiold,

_ * eyiold,eziold,sigma,dab,vold)

c*****move i and pickup the central image*****

iseed=12349

rxinew=rxiold+(2.0*ran(iseed)-1.0)*drmax

ryinew=ryiold+(2.0*ran(iseed)-1.0)*drmax

rzinew=rziold+(2.0*ran(iseed)-1.0)*drmax

if (rxinew.gt.0.5) then

rxinew=rxinew-1.0

else if (rxinew.lt.-0.S) then

rxinew=rxinew+l.0

end if

if (ryinew.gt.O.S) then

ryinew=ryinew-1.0

else if (ryinew.1t.-O.S) then

ryinew=ryinew+1.0

end if

if (rzinew.gt.0.5) then

rzinew=rzinew-1.0

else if (rzinew.lt.-0.5) then

rzinew=rzinew+l.0

end if

c*****calculate the energy of i in the new config****
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call orien(exiold,eyiold,eziold,dotmin, exinew,

* eyinew,ezinew)

c*****check for acceptence***

99

call test(rcut,rmin,rxinew,ryinew,rzinew,i,exinew,

* eyinew,ezinew,sigma,dab,vnew)

deltv=vnew-vold

deltvb=beta*deltv

if(deltvb.lt.tvbmax) then

if(deltv.le.0.0) then

v=v+deltv

rx(i)=rxinew

ry(i)=ryinew

rz(i)=rzinew

ex(i)=exinew

ey(i)=eyinew

ez(i)=ezinew

accept=accept+1.0

else if (exp(-deltvb).gt.ran(iseed)) then

v=v+deltv

rx(i)=rxinew

ry(i)=ryinew

rz(i)=rzinew

ex(i)=exinew

ey(i)=eyinew

ez(i)=ezinew

accept=accept+1.0

endif

endif

continue

acm=acm+1.0

vn=(v+v1rc)/rea1(n)

acv=acv+vn

c*******perform periodic operations

100

if (mod(step,iratio).eq.0) then

print *,'accept=',accept

ratio=acceptlrea1(n*iratio)

if (ratio.gt.0.5) then

drmax=drmax*1.05

dotmin=dotmin*1.025

else

drmax=drmax*0.95

dotmin=dotmin*0.97S

end if

accept=0.0

end if

if (mod(step,iprint).eq.0) then

write (*,'(i8,e14.4,e20.6)') int(acm),ratio,vn

end if

if (mod(step,isave).eq.0) then

call writcn (cnfile)

end if

call readcn (cnfile)

continue

write(*,’(//" end of markov chain "//)')
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call check (rcut,rmin,sigma,dab,ovr1ap,v1ast)

if(ovrlap) stop 'overlap in final configuration'

if(abs(vlast—v).gt.control) then

write(*,'(" problem with energy ,")')

write(*,'("v1ast = ",e20.6)')vlast

write(*,'(" v = ",e20.6)')v

endif

call writcn (cnfile)

avv=acv/acm

write(*,'(/" average "/)')

write(*,'("<v/n> = ",e20.6)')avv

SOO format(e10.4,t12,e10.4,t24,e10.4,t36,e10.4,t48,e10.4,

* t60,e10.4)

stop

end

subroutine orien(exiold,eyiold,eziold,dotmin,

* exinew,eyinew,ezinew)

real exiold,eyiold,eziold,exinew,eyinew,ezinew,dotmin

real dot,xi1,xi2,xi,xisq

dot=0.0

100 if ((1.0-dot).ge.dotmin) then

xisq=1.0

200 if(xisq.ge.1.0)_then

xi1=ran(iseed)*2.0-1.0

xi2=ran(iseed)*2.0-1.0

xisq=xi1*xi1+xi2*xi2

goto 200

endif

xi=sqrt(1.0-xisq)

exinew=2.0*xil*xi

eyinew=2.0*xiZ*xi

ezinew=1.0—2.0*xisq

dot=exinew*exiold+eyinew*eyiold+ezinew*eziold

goto 100

endif

return

end

subroutine test(rcut,rmin,rxi,ryi,rzi,i,exi,eyi,ezi,sigma,

* dab,v)

common /block1/rx,ry,rz,ex,ey,ez

returns the total potential energy at the begining and

at the end of the run

**i’i‘hit***i'**i’********************iiiii‘i’i’ki‘i’i************

c calculates the total potential energy

c integer n the number of atoms

c real rx,ry,rz the positions of the atoms

c real v the potential energy

c real w the virial

c logical overlap true for substantial atom overlap

c

c

C

integer n,natom

parameter (n=100,natom=2)

real rx(n),ry(n),rz(n)

real ex(n),ey(n),ez(n)
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99

100
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real rxi,ryi,rzi,exi,eyi,ezi,sr2,sr6

real sigma,dab(natom),v,rcutsq,rminsq

logical overlap

real rxij,ryij,rzij,exj,eyj,ezj,vab

real rxab,ryab,rzab,dabi,sigsq,rabsq

integer i,j,ia,jb

******************************************************

overlap=.false.

rcutsq=rcut*rcut

rminsq=rmin*rmin

sigsq=sigma*sigma

V=0.0

** loop over all the pairs in the liquid**

do 100 j=1,n

if(j.ne.i) then

exj=ex(j)

eyj=ey(j)

ezj=ez(j)

rxij=rxi-rx(j)

ryij=ryi-ry(j)

rzij=rzi-rz(j)

** minimum image pair separations***

if( rxij.gt.0.5) then

rxij=rxij-1.0

else if(rxij.1t.-O.S) then

rxij=rxij+1.0

end if

if( ryij.gt.0.5) then

ryij=ryij-1.0

else if(ryij.1t.-0.S) then

ryij=ryij+1.0

end if

if( rzij.gt.0.5) then

rzij=rzij-1.0

else if(rzij.1t.-0.S) then

rzij=rzij+1.0

end if

do 99 ia=l,natom

dabi=dab(ia)

do 98 jb=1,natom

rxab=rxij+exi*dabi+exj*dab(jb)

ryab:ryij+eyi*dabi+eyj*dab(jb)

rzab=rzij+ezi*dabi+ezj*dab(jb)

rabsq=rxab*rxab+ryab*ryab+rzab*rzab

if (rabsq.lt.rcutsq) then

sr2=sigsqlrabsq

sr6=sr2*sr2*sr2

vab=sr6*(sr6-l.0)

v=v+vab

endif

continue

continue

endif

continue
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V=4.0*V

return

end

subroutine check(rcut,rmin,sigma,dab,ovrlap,v)

common /block1/rx,ry,rz,ex,ey,ez

calculates the total potential energy

integer n the number of molecules

real rx,ry,rz the positions of the atoms

real v the potential energy

real w the virial

logical overlap , true for substantial atom overlap

returns the total potential energy at the begining and

at the end of the run

*********************************************************

integer n,natom

parameter (n=100,natom=2)

real rx(n),ry(n),rz(n)

real ex(n),ey(n),ez(n)

real sigma,dab(natom),vab,sr2,sr6

logical ovrlap

real rxi,ryi,rzi,rxij,ryij,rzij,exi,eyi,ezi

real exj,eyj,ezj,rxab,ryab,rzab,dabi,sigsq,rabsq

integer i,j,ia,jb

******************************************************

overlap=.false.

rcutsq=rcut*rcut

rminsq=rmin*rmin

sigsq=sigma*sigma

V=0.0

do 100 i=1,n-1

rxi=rx(i)

ryi=ry(i)

rzi=rz(i)

exi=ex(i)

eyi=ey(i)

ezi=ez(i)

do 99 j=i+1,n

rxij=rxi-rx(j)

ryij=ryi-ry(j)

rzij=rzi-rz(j)

** minimum image pair separations***

if( rxij.gt.0.5) then

rxij=rxij-1.0

else if(rxij.lt.-0.S) then

rxij=rxij+1.0

end if

if( ryij.gt.0.5) then

IYij=ryij-1.0

else if(ryij.1t.-O.S) then

ryij=ryij+1.0

end if

if( rzij.gt.0.5) then

rzij=rzij-1.0
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else if(rzij.lt.-0.S) then

rzij=rzij+1.0

end if

exj=ex(j)

eyj=ey(j)

ezj=ez(j)

do 98 ia=l,natom

dabi=dab(ia)

do 97 jb=1,natom

rxab=rxij+exi*dabi+exj*dab(jb)

ryab=ryij+eyi*dabi+eyj*dab(jb)

rzab=rzij+ezi*dabi+ezj*dab(jb)

rxabsq=rxab*rxab

ryabsq=ryab*ryab

rzabsq=rzab*rzab

rabsq:(rxabsq+ryabsq+rzabsq)

if (rabsq.lt.rminsq) then

ovrlap=.true.

return

else if(rabsq.lt.rcutsq) then

sr2=sigsq/rabsq

sr6=sr2*sr2*sr2

vab=sr6*(sr6-1.0)

v=v+vab

end if

continue

continue

continue

continue

V=4.0*V

return

end

subroutine readcn (cnfile )

** SUBROUTINE TO READ IN THE CONFIGURATION FROM UNIT 10 **

common /block1/rx,ry,rz,ex,ey,ez

integer n

parameter (n=100)

real rx(n),ry(n),rz(n),ex(n),ey(n),ez(n)

character cnfi1e*(*)

integer cnunit

parameter (cnunit=11)

open(unit=cnunit,file=‘cnfile',status='old',formz'formatted')

rewind(unit=cnunit)

do 30 i=1,n

read (unit: cnunit,fmt=500,end=31) rx(i), ry(i),rz(i),

* ex(i),ey(i),ez(i)

write(*,fmt=500)rx(i),ry(i),rz(i),ex(i),ey(i),ez(i)

continue

write(*,'("end of file read")')

close (unit=cnunit)

format(e10.4,t12,e10.4,t24,e10.4,t36,e10.4,t48,e10.4,

t60,e10.4)

return

end
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subroutine writcn (cnfile)

common /block1/rx,ry,rz,ex,ey,ez

nteger n

parameter (n=100)

character cnfile*(*)

real rx(n),ry(n),rz(n),ex(n),ey(n),ez(n)

integer cnunit

parameter (cnunit=11)

open (unit=cnunit,file=‘cnfi1e',form='formatted‘)

do 40 i=1,n

write(cnunit,fmt=500)rx(i),ry(i),rz(i),ex(i),ey(i),ez(i)

continue

endfile (unit=cnunit)

close (unit=cnunit)

format(e10.4,t12,e10.4,t24,e10.4,t36,e10.4,t48,e10.4,

* t60,e10.4)

return

end
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