i. (fl: 5...: X. 1.3.7.... . ‘3. . ., .315!) . n< 4| vb «1 v) 1‘ . I! s 4 1:06.: :1 a i. 3...; 1 it. v.1. 1...... ‘?~ts..§.l 3.0): man J: ‘\Jd ( K —.0 K a ,l- ‘ llllllllllllllllllllIllllllllllllllllllllllllllll 3 1293 01400900 This is to certify that the thesis entitled MECHANISTIC EVALUATION OF A SECTION OF THE NATIONAL HIGHWAY (N5), BETWEEN KARACHI AND HYDERABAD IN PAKISTAN presented by ANWAR—UL-HAQ CHAUDHRY has been accepted towards fulfillment of the requirements for Master of Science degree in Civil Engineering Major professor Date 12/21/95 07639 MS U i: an Affirmative Action/Equal Opportunity Institution LIBRARY Mlchigan State Unlverslty PLACE Ill RETURN BOX to monthl- dnckwutom your record. TO AVOID FINES return on or baton duo duo. DATE DUE DATE DUE DATE DUE MSU Is An mum Action/Equal Opponunuy IMRWOI'I Wanna-9.! ABSTRACT MECHANISTIC EVALUATION OF A SECTION OF THE NATIONAL HIGHWAY (N 5), BETWEEN KARACHI AND HYDERABAD IN PAKISTAN BY ANWAR UL HAQ CHAUDHRY A newly constructed portion of the National Highway (N 5) between Hyderabad and Karachi, Pakistan, showed signs of pavement distress and failure as a result of heavy rainfall and hail storm soon afier it was opened to traffic in April 1994. The National Highway Authority (NHA), decided to perform a pavement investigation which included nondestructive falling weight deflectometer (FWD) tests and test pits for material characteristics and quality control. The data from FWD tests was used for mechanistic evaluation of pavement layers using the MICHBACK and MICHPAVE computer programs. The statistical analysis of the NDT data and the backcalculated layer moduli using the MICHBACK computer program showed considerable variations along the length of the road. These variations in the deflection data and the layer moduli can be attributed to construction practices and, perhaps, to poor quality control. These layer moduli and the pavement layer thicknesses were then used to determine the remaining service life of various pavement sections and required overlay thicknesses to improve the structural capacity of the pavement using the MICHPAVE computer program and the Asphalt Institute method. It can be concluded from this study that parts of the National Highway N5 were severely underdesigned. I dedicate this work tomy biggest supporters in this world; my family; my parents, brothers, sisters, and wife. ACKNOWLEDGMENTS I am thankful to the Pakistan Army and the National University of Science and Technology (NU ST), Pakistan, for sponsoring this study at Michigan State University. I would like to express my deep thanks and sincere appreciation to all persons who have contributed by inspiration, counseling, and assistance in the completion of this study. The advice, professional guidance, and supervision of Dr. Gilbert Y. Baladi have been invaluable in the completion of this study. Also, I would like to extend my deepest thanks to my Graduate Committee; Dr. William C. Taylor and Dr. Thomas Wolff for their comments and interest. I wish to sincerely appreciate the cooperation extended to me by Dr. Zafar Iqbal Raja, Director Design National Highway Authority, Pakistan, in provision of deflection data and other information required for this study. I also want to convey my special thanks to Muhammad Jamal Khattak, graduate student at MSU, for helping me in the data preparation and his sincere advice during the course of this study. My deepest love and thanks to my parents, who brought me up in a best manner, for their unconditional support from the day I was born, and for their prayers that do not stop. My wife deserves special thanks for her continuous moral support and prayers. Above all, I deeply believe that my accomplishment and success are bestowed upon me by the Almighty to whom I am very thankful. Anwar ul Haq Chaudhry LIST OF TABLES LIST OF FIGURES CHAPTER 1 INIRQDJLCIIQN 1.1 General 1.2 Problem Statement 1.3 Research Objectives CHAPTER 2 W 2.1 General 2.2 Nondestructive Deflection Testing 2.3 Nondestructive Deflection Testing Devices 2.4 Impulse Deflection Equipment 2.5 KUAB Falling Weight Deflectometer 2.6 Backcalculation Methods 2.6.1 Iterative Methods 2.6.2 Deflection Database Methods 2.6.3 Statistical Regression Equation Method 2.7 MICHBACK Modified Newton Algorithm 2.7.1 Backcalculation and Convergence Control viii 8-22 11 11 12 15 15 16 l6 16 17 2.7.2 System Requirements 2.7.3 Required Amount of Free Memory 2.8 Overlay Design Procedures 2.8.1 Component-Analysis Procedures 2.8.2 Deflection Based Procedures 2.8.3 Analytically Based Procedures CHAPTER 3 W 3.1 General 3.2 Failure of NS 3.3 Site Investigation 3.3.1 Deflection Data 3.3.2 Layer Thicknesses 3.3.3 Traffic Volume 3.3.4 Pavement Conditions CHAPTER 4 ANALYSISANDJIISCUSSIQN 4.1 General 4.2 Analysis Plan 4.3 Format of the NDT Data 4.4 Statistical Analysis of the NDT Data 4.5 Backcalculation of Layer Properties 4.5.1 Data Analysis Options 4.5.2 Layer Moduli vi 17 18 18 18 18 20 23-29 23 24 25 25 26 27 28 30-122 30 32 32 35 60 61 66 4.5.3 Adjustment of Layer Moduli due to Seasonal Variations 91 4.6 Mechanistic Analysis 92 4.7 Remaining Service Life of N5 94 4.7.1 Asphalt Institute method 95 4.7.2 MICHPAVE 101 4.8 Calculation of Overlay Thicknesses 110 CHAPTER 5 WW 123-126 5.1 Summary 123 5.2 Conclusions 124 5.3 Recommendations 125 APPENDIX-A 127 APPENDIX-B 169 APPENDIX-C 173 LIST OF REFERENCES 185 vii Table 2.1 Table 4.1 Table 4.2 Table 4.3 Table 4.4 Table 4.5 Table 4.6 Table 4.7 Table 4.8 Table 4.9 Table 4.10 Nondestructive Testing Device Characteristics A summary of Statistics of the Measured Deflection along the N5 highway A Summary of the Results of Three Backcalculation Options A Summary of Statistics of Backcalculated Layer Moduli Temperature Range During each of the four Days of NDT data Collection A Summary of the RRD and the Backcalculated Layer Moduli A Summary of Remaining Service Life (RSL) both in Load Repetitions and Years Number of Pavement Sections that are Expected to Fail Prior to 6 and 8 year Performance Periods A Summary of the Overlay Thicknesses Required for the Six Year Performance Period (18-kip ESAL) A Summary of Overlay Thicknesses Required for the Eight Year Performance Period (IS-kip ESAL) A Summary of the Overlay Thicknesses Required for the Six Year Performance Period (33-kip SAL) viii 13 47 64 69 73 99 102 109 114 117 119 Table 4.11 A Summary of the Overlay Thicknesses Required for the Eight Year Performance Period (33-kip SAL) 121 Table A-1 Measured FWD Deflection Data for stations 100-1101 127 Table A-2 Measured FWD Deflection Data for stations 1101-27000 129 Table A-3 Measured FWD Deflection Data for stations 27000-42800 149 Table A-4 Measured FWD Deflection Data for stations 42900-52400 161 Table B-1 Formatted Data File for MICHBACK for Stations 100-1101 169 Table B-2 Formatted Data File for MICHBACK for Stations 1101-52400 171 Table C-l Backcalculated Layer Moduli using the MICHBACK Computer Program 173 Figure 1.1 Figure 1.2 Figure 2.1 Figure 2.2 Figure 2.3 Figure 2.4 Figure 4.1 Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5 Figure 4.6 W The General layout of Road Network of Pakistan 4 The Location of National Highway N5 in Southern part of Pakistan 5 The Geophone Configuration and Deflection Basin for a Typical FWD Equipment 14 Overlay Design by Component Analysis 19 Overlay Design using Deflection Measurements 21 Overlay Design Based on Analytical Analysis 22 Schematic of the Stress Zone within a Pavement structure under a FWD Load 37 Variation of the Peak Pavement Deflection along the tested Section of the National Highway, N5 39 Variation of the Pavement Deflection at Sensor 2 along the tested Section of the National Highway, N5 40 Variation of the Pavement Deflection at Sensor 3 along the tested Section of the National Highway, N5 41 Variation of the Pavement Deflection at Sensor 4 along the tested Section of the National Highway, N5 42 Variation of the Pavement Deflection at Sensor 5 along the Figure 4.7 Figure 4.8 Figure 4.9 Figure 4.10 Figure 4.11 Figure 4.12 Figure 4.13 Figure 4.14 Figure 4.15 Figure 4.16 Figure 4.17 tested Section of the National Highway, N5 Variation of the Pavement Deflection at Sensor 6 along the tested Section of the National Highway, N5 Variation of the Pavement Deflection at Sensor 7 along the tested Section of National Highway, N5 Coefficient of Variation of Deflection for Different Sensor Locations Variation of the Peak Pavement Deflection (Normalized relative to its Mean) along the Length of N5 Variation of the Pavement Deflection at Sensor 2, (Normalized relative to its Mean) along the Length of N5 Variation of the Pavement Deflection at Sensor 3, (Normalized relative to its Mean) along the Length of N5 Variation of the Pavement Deflection at Sensor 4, (Normalized relative to its Mean) along the Length of N5 Variation of the Pavement Deflection at Sensor 5, (Normalized relative to its Mean) along the Length of N5 Variation of the Pavement Deflection at Sensor 6, (Normalized relative to its Mean) along the Length of N5 Variation of the Pavement Deflection at Sensor 7, (Normalized relative to its Mean) along the Length of N5 Frequency Distribution of Pavement Peak Deflection xi 43 44 45 49 51 52 53 54 55 56 57 59 Figure 4.18 Figure 4.19 Figure 4.20 Figure 4.21 Figure 4.22 Figure 4.23 Figure 4.24 Figure 4.25 Figure 4.26 Figure 4.27 Figure 4.28 Variation of the AC Modulus along the tested Section of the National Highway, N5 68 Variation of the Normalized AC Modulus along the tested Section of the National Highway, N5 71 Variation of the Pavement Temperature, Deflection, and the AC Layer Modulus along the Length of N5 (Test Stations 100-12300) 75 Variation of the Pavement Temperature, Deflection, and the AC Layer Modulus along the Length of N5 (Test Stations 12400-27000) 77 Variation of the Pavement Temperature, Deflection, and the AC Layer Modulus along the Length of N5 (Test Stations 27100-42800) 79 Variation of the Pavement Temperature, Deflection, and the AC Layer Modulus along the Length of N5 (Test Stations 42800-52400) 80 Variation of the Base Modulus along the tested Section of the National Highway, N5 83 Variation of the Normalized Base Modulus along the tested Section of the National Highway, N5 85 Variation of the Roadbed Modulus along the tested Section of the National Highway, N5 87 Variation of the Normalized Roadbed Modulus along the tested Section of the National Highway, N5 88 Frequency Distribution of Backcalculated Layer Moduli 89 xii Figure 4.29 Figure 4.30 Figure 4.31 Figure 4.32 Figure 4.33 Figure 4.34 Figure 4.35 Figure 4.36 Figure 4.37 Figure 4.38 Figure 4.39 Figure 4.40 Temperature Correction Factor for Asphalt Pavement with Granular or Asphalt Treated Base 97 Design Rebound Deflection Chart 100 The Remaining Service Life of the Pavement Sections in Number of l8-kip Load Repetitions 103 The Remaining Service Life of the Pavement Sections in Number of 33-kip Load Repetitions 104 The Remaining Service Life of 528 Pavement Sections for 18-kip ESAL 106 The Remaining Service Life of 528 Pavement Sections for 33-kip SAL 107 Asphalt Concrete Overlay Thickness Required to Reduce Pavement Deflection from a Measured to a Design Deflection Value 112 Asphalt Overlay Thickness Design Chart 113 Distribution of Pavement Sections that will fail prior to 55 millions of l8-kip ESAL 115 The Distribution of Pavement Sections and their Overlay Thicknesses that are Required to Sustain 55 millions l8-kip ESAL 115 Distribution of Pavement Sections that will fail prior to 80 millions of 18-kip ESAL 118 The Distribution of Pavement Sections and their Overlay Thicknesses that are Required to Sustain 55 millions 18-kip ESAL 118 xiii Figure 4.41 Figure 4.42 Figure 4.43 Figure 4.44 Distribution of Pavement Sections that will fail prior to 55 millions of 33-kip SAL 120 The Distribution of Pavement Sections and their Overlay Thicknesses that are Required to Sustain 55 millions 33-kip SAL 120 Distribution of Pavement Sections that will fail prior to 80 millions of 33-kip SAL 122 The Distribution of Pavement Sections and their Overlay Thicknesses that are Required to Sustain 80 millions 33-kip SAL 122 xiv CHAPTER 1 INTRODUCTION 1.1 GENERAL. Historically, the economy of Pakistan has relied heavily upon an extensive railway network for the movement of people and freight. Because of this extensive network, the highway system in Pakistan was neglected. Since the mid 1980's, the country has witnessed enormous economic growth (7 to 8 percent per year). This economic growth and the strategic geographical location of Pakistan (it provides a link between the warm water of the Indian Ocean and the land locked Asian Republics) have precipitated a tremendous growth in the number of trucks and buses operating on an inferior highway network. In response to such a demand, the National Highway Board (the agency responsible for the design, maintenance, and construction of highways) was elevated to the rank of an authority in 1986 and hence, the National Highway Authority (NHA) was born [1]. Since the day of its creation, the new NHA, with a very limited staff and experience, faced a disproportionate problem to upgrade and expand the existing highway network. The problem was compounded due to the lack of pavement performance data, tmck loading data, material property data, and even environmental data. As with any other new agency faced with a tremendous problem, the NHA staff undertook a crash course to review the experience of highway agencies of other countries such as Britain, and the USA. Based on that review, new standard specifications were issued for the construction of roads and bridges. However, the continuous high growth in traflic volume and load neutralized the effectiveness of such 2 specifications in a short time period. In 1991, the NHA published general specifications which enhanced the earlier specifications based on experience and pavement performance. Unfortunately, because of the continued growth in traflic volume and load, the new specifications have not prevented premature failure of many roads [1]. The life and performance of flexible pavement structures in Pakistan are afl‘ected by many factors including: 1. IO Axle load. The average truck axle load in Pakistan is about 7 times higher than that in Great Britain or in the USA. Hence, road design and construction practices in Pakistan must be based on observations made on Pakistani highways not on those made in USA or other countries[2]. Materials. The highway material in Pakistan are unique to Pakistan and they change from one location to another. For example, in some areas the roadbed soil consists ofa deep deposit of clay material while in other areas it consists of sand and large boulders. Hence, the properties of the material to be used in highway construction must be characterized and their impacts on the life and performance of pavements must be assessed prior to their use. Therefore, the properties of the materials used in USA or Britain should not be used to represent the properties of the materials in Pakistan. Construction practices. The poor performance of flexible pavements in Pakistan is also a result of poor construction practices and quality control. The areas which require special attention include production of aggregates, production of asphalt, 3 storage of the bitumen mix, excessive heating of asphalt mixes, and the placement and compaction techniques. [ l ] 4. Environment. The environment of Pakistan is very peculiar and diverse. It ranges from snow covered mountains in the North to the very high temperature deserts in the South-East, from nigged and dry mountains of Baluchistan in the South-West to the agriculture plains of Punjab in the East. This diversity of environment and terrain should be considered while designing the roads in Pakistan rather than borrowing and implementing standard design procedures from other countries. 1.2 PROBLEM STATEMENT The eflicient and safe transportation system is very important for the progress and prosperity of any country. The system consists of roads, rail, and air. In Pakistan, presently over 88% of passengers and about 80% of goods are transported by roads[3]. The only major road. National Highway N-S (the location of this highway is shown in Figure ll), which connects Karachi Port in the South to Lahore and Islamabad in the North, carries about 56% of all road traffic. Since this road passes through the most densely populated agricultural and industrial areas of Pakistan, it was felt necessary to upgrade and maintain this road so that it can fiilfill the transportation requirements of the country. This task was undertaken with the assistance of the World Bank under various Highway Projects. Under the Fourth Highway Project, the World Bank agreed to finance more than 50 percent of the cost of a phased upgradation of N-S to a dual carriageway. AFGHANISTAN ARABIAN SEA Figure 1.1 : The general layout of road network of Pakistan [After National Highway Authority]. 55:52.3 =o_§oo_ of. u N; char— TE '1“F TO T [W ;NO OVERLAY SELECT OVERLAY THICKNESS g REQUIRED TO MEET, T..- REQUIREMENTS MATERIAL ......... SELECTION Figure 2.2 : Overlay design by component analysis[4]. 2.8.3 20 the pavement. Figure 2.3 outlines the general approach used in most nondestructive overlay design procedures based on deflection measurements. The three basic elements of such design procedure are deflection measurements, pavement condition, and traffic. The Deflection based procedures include, The Asphalt Institute Method, California Department of Transportation procedure, Roads and Transportation Association of Canada (RTAC) procedure, Transport and Road Research Laboratory (TRRL) of Great Britain Method, US Army Engineer Waterways Experiment Station (WES) procedure, and Verginia Highway and Transportation Research Council [5]. Analytically Based Procedures. As in the deflection—based procedures, nondestructive evaluation, condition surveys, and traffic are required as input to this type of design methodology. In addition, some measure of the stiffness properties and distress characteristics of various materials comprising the specific pavement structure are required. A general mechanistic procedure is explained in figure 2.4. The methods included in this procedure are, The Shell Research Procedure, Federal Highway Administration Austin Research Engineers (ARE) Procedure, Federal Highway Administration Resource International Incorporated (R11) Procedure, and Kentucky Department of Highway Procedure [5]. 21 DEFLECTION PAVEMENT CONDITION TRAFFIC l ANALYSIS SECTIONS l gCRITtCAL ESEASON ' ................. DESIGN DEFLECTION (OLD PAVEMENT) l l REMAINING LIFE -_._ -————r—-—~ I l MATERIAL , SELECTION ------ .- OVERLAY THICKNESS < i REDUCED DEFLECTION i LIFE CYCLE ¢ 1 RELIABILITY 1 DESIGN MAINTENANCE HISTORY SELECTION Figure 2.3 : Overlay design using deflection measurements[4]. 22 CONDITION SURVEYS l DIU ST MATERIAL PROPERTIES l f N ()'I' ACCEPTABLE if I FATIGUE (UNIT DAMAGE) l l K———— COMPARE 1 ANALYSIS SECTIONS 1 NON-DESTRUCTIVE TESTING eg., DEFLECTION, CURVATURE l T SAMPLING TESTING J MATERIALS CHARACTERIZATION 1 COMPUTE: ‘ DEFLECTIONS ‘ CURVATURE etc. V ACCEPT I ADJUST MATERIAL PROPERTIES ’ SEASONAL EFFECTS ’ LOAD 1 COIVH’U'IE DISTRESS PARAMETERS TRAFFIC 1 NO OVERLAY l REMAINING LIFE V RUTI'ING(UNIT DEF ORMATION) TRAFFIC i H ; '— . 1 l,\ll(:U1:(UNlI DAMAGEJ 5% REMAINING LIFE OVERLAY TRIAL SECTIONS L—u-a— COMPUTE: DISTRESS DETERMINANTS i :1_. 1 TRAFFIC km RUTI'ING(UNIT DEFORMATION) T’é ____> NI FINAL DESIGN I - TRAFFIC Figure 2.4 : Overlay design based on analytical (mechanistic) analysis [4]. MIL; FIELD INVESTIGATION AND METHODOLOGY 3.1 GENERAL Nondestructive deflection test (NDT) data and its engineering interpretation are universally recognized tools for the structural evaluation of road and airfield pavements. In the early development of pavement evaluation, the interpretation of NDT data was based on a single center-deflection measurement and on imperical correlations between the allowable deflection and pavement performance. At present, NDT data consists of a series Of deflection measurements defining a deflection basin, and they are interpreted in terms of the material moduli of the different layers Of the pavement structure and the roadbed soil. The moduli are then used in a mechanistic-based structural evaluation of the pavement and the design of an overlay. In general, the NDT based overlay design process includes the following steps: 1. Conduct NDT’S at various locations along the candidate project. 2. Determine the existing layer thicknesses, traffic volume and distribution, and types of existing materials. 3. Analyze the variation of the deflection data along the project (unit delineation) to determine whether or not the data indicates possible division of the project into several subprojects. 4. Backcalculate the elastic properties of the. pavement layers using the NDT data and adjust the properties to standard temperature and moisture conditions. 23 24 5. Use the adjusted values of elastic properties and layer thicknesses to asses the structural capacity of the pavement and its remaining service life. 6. For a given axle load, determine the required overlay thickness so that the levels of induced stresses, strains, and deflections are within tolerable limits. NDT tests were conducted along the National Highway N5 in Pakistan to investigate the causes of premature failure of the road. A historical background leading to the failure of N5 is presented in the next section. 3 .2 FAILURE OF N5 On June 18, 1989, the National Highway Authority (NHA), authorized the construction of a 66.6 Km stretch of the National Highway N5 between kilometer post 81 near Dadabhoy Cement Factory and kilometer post 148 near Hyderabad. The work started on October 28,1989 and the road was opened to traffic on Febmary 24,1994 before completing the drainage system. As stated in chapter 1, on April 5, 1994 that area of N5 received a very heavy rainfall. N5 was covered with runoff water, water pools and ponds were Observed on the road sides and median. On April 7, 1994, distress in the forms of cracks were noticed along certain stretches Of N5. On April 17, the road was closed to traffic due to severe distress and failure. Several teams were formed to investigate the causes Of failure. Results of the investigation showed that the premature pavement distress and failure may be attributed to several factors including [4]: l. Saturation ofthe aggregate base course. Rain water had entered the base course from the still under construction drainage ditches. 25 2. Traffic induced pumping, which caused corrosion in the base and subbase layers. 3.3 SITE INVESTIGATION During the investigation of the causes of the premature failure Of N5, several types of data were collected. In the following subsections, those types of data that are relevant to the analysis of the NDT data and to the mechanistic determination of the required overlay thickness are presented. 3.3.1 Deflection Data. As a part of the investigative efforts of the premature pavement failure of N5, nondestructive tests (NDT) were conducted along several sections of this highway as shown in Figure 1.1, and 1.2. The KUAB falling weight deflectometer (FWD), model 150 was used for carrying out the deflection measurements. Each NDT consisted of four drops in which the first drop was not recorded (a seating drop). The deflection data was recorded for the last three drops for target loads of 5500, 9000, and 16500 pounds, respectively. The tests were conducted at about 100 meter intervals. The NDT data was compiled in four files created on February 26, 27, and 28, and March 8, 1995. The data are listed in Tables A-l through A-4 of Appendix A. For a proper NDT data analysis, the asphalt temperature during the test must be known. The most direct way to detennine the temperature of the asphalt layer during a deflection test is to physically measure its temperature. This can be accomplished by using either a temperature sensor placed at the pavement surface or by drilling a 1.25 cm diameter by 5 cm deep hole and filling it with a suitable 3.3.2 26 fluid such as Oil and to determine the oil temperature to the nearest degree after it has been stabilized [16]. The time interval between temperature measurements can vary considerably, depending upon weather conditions, time of day, and the length of testing time. At the very minimum, the temperature should be measured at the start and at the end of each test section, if testing exceeds one hour. For overcast conditions with relatively constant air temperature, this interval may be extended to 2 hours [17]. In this study both the air and pavement temperatures were measured at each test location using temperature sensors and are reported in the data files in Table A-1 through A-4. Layer Thicknesses. The analysis of NDT data requires an accurate knowledge of the pavement layer thicknesses. Typically, layer thicknesses are determined from pavement cores. Unfortunately, such data was not available to this study. Consequently, the layer thicknesses were obtained from the as-built road cross- section contained in the pavement failure report [4]. The report states that the asphalt concrete (AC) thickness is 12 cm (4.8 inches), consisting of 5 cm asphalt concrete wearing course and 7 cm asphalt concrete base course; the crushed aggregate base layer thickness is 20 cm (7.9 inches); and the granular subbase layer thickness is 15 cm (5.9 inches). In the NDT data analysis, however, the base and subbase layers were treated as one granular layer, the thickness of which was taken as 35 cm (13.8 inches). The reasons for this include: 3) Both, the base and the subbase layers are granular material and hence the boundary between the two layers is very hard to define even during 27 construction. Therefore, the base and subbase thicknesses cannot be verified in the field. b) In a typical backcalculation program, the accuracy Of the backcalculated layer moduli decreases as the number of layers increases. Since the objective of the analysis is to examine the differences between the values of each layer moduli along the project, accuracy of the results becomes more important than artificially fixing the boundary between the base and subbase layers. 3 .3.3 Traffic Volume. Traffic volume is one of the inputs required for the design of a new pavement structure or the required overlay thickness. Since the traffic consists of a variety of vehicles, it is required tO convert all traffic to 80 KN (18 kip) equivalent single axle loads (ESAL). In this study, the number of ESAL used in the design of overlay thickness were obtained from the NHA traffic study. The Study provided the number of ESAL for two time periods as follows: a) Six years performance period (1996-2002) = 55 million ESAL b) Eight years performance period (1996-2004) = 80 million ESAL Both ESAL predictions were used in this study. Given the ESAL predictions and the two performance periods of 6 and 8 years, the initial ESAL and the growth rate were calculated using the following formula[l8]: ESALn {ESAL.(1 +1)“- 1}/1 (3.1) Where: ESAL, Number of ESAL afier “n” number of years; 3.3.4 28 ESAL; = Number ofESAL at the end of the first year ; I = Growth Rate; and and n = Number of years. Substituting the predicted number of ESAL for 6-year and 8-year performance periods yield: 80,000,000 = {ESAL,(1 +1)“- 1}/1 (3.2) 55,000,000 = {ESAL. (1 +1)6 - 1} /I (3.3) Solving the two simultaneous equations yielded a growth rate of 8.29 percent and an initial ESAL of 7,442,595. These results were then used for the calculation of ESAL for other time periods that correspond to the remaining service lives of the pavement in terms of years. Pavement Conditions. As a part of the pavement evaluation process, the conditions of the existing pavement are typically documented. The data is then used in the interpretation of the NDT data and in the design of the overlay. Unfortunately, such condition data was not collected and hence, it is not available to this study. Further, when deflection data is collected along a project, the general practice is not to collect data over bridges, culverts, and other infrastructure elements. If data at such locations is collected, then a proper reference in the data files should be recorded. In the NDT survey of N5, some of the deflection data was collected over culverts and bridges and was recorded in the data files without giving a proper location reference point. 29 The presence of concrete bridges and culverts at shallow depth affects the magnitude of the deflection data in a similar way as the presence of a shallow bedrock or stiff layer. Consequently, in this study, the NDT data analysis was conducted by allowing the presence of a shallow stiff layer and by using the option in MICHBACK to mechanistically calculate the stiff layer depth. This and other issues related to the data analysis are presented in the next chapter. 4.1 CHAPTER 4 ANALYSIS AND DISCUSSION ENERAL As stated in Chapter 1, about 66 km section of the National Highway (N 5) in Pakistan was designed and constructed for a ten-year performance period. Less than two months after opening the pavement to traffic, premature failure was observed in several locations and the highway was closed to traffic. Several investigative teams were formed to study the causes of the premature failure. This study was undertaken to investigate the possible causes of failure using nondestructive deflection test (NDT) data. Hence the objectives of the study are: l . bJ Conduct nondestructive deflection tests (NDT) using a falling weight deflectometer (FWD) along parts of the N5 highway between Karachi and Hyderabad. Use the NDT data and the pavement layer thicknesses to backcalculate the insitu material properties of the various pavement layers. Use mechanistic analysis to determine the magnitudes of the deflection, strains, and stresses delivered to the pavement by 18-kip and 33-kip axle loads. Based on the mechanistic outputs (stresses, strains, and deflections) verify whether or not the thickness of the pavement on N5 was adequate to cany the expected traffic volume and load during its design life. Based on the results of item 4, determine the expected service life of the pavement and the deficiency in the overlay thickness. Verify the design inputs (material properties) used in Pakistan. 30 7. 31 Address the variability of the deflection data along the test sections on N5 highway. To accomplish the above stated objectives, a research plan was drawn. The plan consists of two parts; field investigation and analysis schemes. As stated in Chapter 3, the field investigation consisted of three parts as follows: 1. to Nondestructive deflection tests (NDT) data which were collected by a private contractor along a 52.3 km section of the National Highway N5 in Pakistan using the KUAB (model 150) falling weight deflectometer (FWD). The NDT tests were conducted at 100 meter intervals. Each test consisted of four drops as follows: a) Seating drop for a target load of 5500 pounds which was not recorded, b) Second drop for a target load of 5500 pounds, c) Third drop for a target load of 9000 pounds, and d) The fourth drop for a target load of 16500 pounds. The NDT data recorded for the last three drops is presented in Appendix A Traffic data collection which was based on a recent study conducted by the National Highway Authority (NHA) in Pakistan and is presented in Chapter 3. Pavement layer thicknesses which were obtained from the as-built road cross section contained in the NHA’S pavement failure report [4]. The layer thicknesses used in the analysis are presented in Chapter 3. To accomplish the rest of the objectives of this study, a multi step analysis plan was drawn and is presented in the next section. 32 4.2 ANALYSIS PLAN To accomplish the objectives of this study, the analysis of the NDT data was canied out in several steps as follows: 1. Format of the NDT data. 2. Statistical analysis of the NDT data along the 52.3 km section ofNS highway. 3. Backcalculation of layer properties using the NDT data, layer thicknesses and the MICHBACK computer program. 4. Forward mechanistic analysis of the pavement sections along the 52.3 km length of N5 using the MICHPAVE computer program, the layer properties from the previous step and the layer thicknesses. 5. Prediction of the pavement performance in terms of the remaining service life (RSL) of the pavement using the results of the NDT data analysis. 6. Comparison of the design life of highway N5 with the predicted RSL values. The data analysis was accomplished by following the above steps. Results of the analysis and discussion of the results obtained from each step are presented in detail in the remaining sections of this chapter. 4.3 FORMAT OF THE NDT DATA Unfortunately, the NDT data received from Pakistan was not compatible with the data format of MICHBACK (a F ORTRAN-based computer program for the backcalculation of layer moduli). MICHBACK can accept three data formats: the old KUAB FWD data format, the new KUAB FWD data format, and a prespecified and preformatted ASCII file. Although 33 the KUAB FWD was used in this study, the on-board computer had a data format that is different than both the old and the new KUAB formats. Consequently, the NDT data was reformatted to the MICHBACK specified ASCII file. This ASCII deflection data file has two parts: the first part contains comments and the second part contains the required data. The two parts are separated by a line consisting of at least 20 equal “=“ signs. The data before the line is optional and is not required for analysis. The data after the line is used by MICHBACK for analysis and it must be formatted as follows:[15] I. An E for English or S for SI units must be typed as the first non-blank character of the first line. The data in the file may be in either system of units and if this is different from the system of units being used in MICHBACK, then the data is converted appropriately. Any comments entered after the first character are ignored. The number of FWD drops per test must be typed at the beginning of the second line. Any comments entered after this number are ignored. Up to 5 FWD drops may be recorded at each test location, but the number of drops must be the same for all test locations and all the drops must be for the same target load. The target load must be typed at the beginning of the third line. Any comments entered after the load are ignored. It should be noted that for each drop, the actual load delivered to the pavement may differ slightly from the target load. Hence, each measured deflection data was adjusted by multiplying it by the ratio of the target load to the actual one. This linear scaling of the deflection data allows the user to study the variation of the deflection data along the project. 34 4. The fourth, fifth, and sixth lines are ignored and may contain optional headers identifying the columns of data. 5. The deflection data is entered in colurrms separated by spaces and/or tabs. Up to 10 deflection sensors may be used, and in addition to the sensor readings, the station location, pavement temperature, and the magnitude of the measured actual load per drop must be entered. Deflections for each test location are grouped together. The station location and pavement temperature must be entered on the first line of the group along with the deflections measured for the first drOp. Deflections for the subsequent drops must be entered on consecutive lines. Deflections for difl‘erent test locations must be separated by one blank line. The deflection data formatted using these steps is presented in Table B-1 and B-2 of Appendix B. Table B-1 provides a list of the formatted data files of the first 11 stations in which the sensor locations are different than the sensor locations of Table B-2. The reason for this difference in sensor locations is explained in the next paragraph. The deflection data collected using the KUAB FWD, Model 150 for the load ranges of 5500, 9000, and 16500 pounds is presented in Table A-1 through A—4 of Appendix A. The sensor locations for the first eleven stations (Table A-1) are different than the rest of the stations. The difference is only in the location of sensors 5 and 7. Initially the sensors were set at 0 cm, 20 cm (7.87 inches), 30 cm (11.81 inches), 45 cm (17.72 inches), 60 cm (23.62 inches), 120 cm (47.24 inches), and 180 cm (70.87 inches) from the center of the load plate. For this setting, the magnitudes of the deflection measured by the outer sensors are very low for the target loads of 5500, and 9000 pounds. 35 For some tests, the low deflection values were within the accuracy of the deflection sensors. To obtain a more accurate data, the locations of sensors 5 & 7 were changed to 90 cm (35.43 inches) instead of 60 cm, and to 150 cm (59.06 inches) instead of 180 cm from the center of the load. The new sensor locations produced better results from the outer sensors. Therefore, the new setting was used for the subsequent deflection measurements. While plotting the deflections at various sensor locations vs. the test locations, the deflection data for sensors 5 and 7 of the first eleven test stations were not plotted separately because of the different sensor locations. This did not have a significant impact on the deflection profile. Further, in the backcalculation, only the deflection data due to a target load of 9000 pounds was used. Finally the data which was collected in International Units was converted into English Units. The cross-section data, number of sensors, and other pertinent information are entered directly into MICHBACK. Only then the MICHBACK can read the ASCII deflection files, plot deflection profiles, enable segments to be selected for backcalculation, and allow data manipulations. 4.4 STATISTICAL ANALYSIS OF THE NDT DATA Any pavement system subjected to vehicular or other load inputs produces an output response in the form of deflection. Hence, pavement deflections represent an overall “system response” of the paving layers and the roadbed soil to an applied load. A load applied at a point or an area on the pavement surface will attenuate with depth and radial distance thereby, causing all pavement layers to deflect and creating strains and 36 stresses in all supporting layers. Stronger pavements (good quality materials and thick layers) deflect less under a given load than do weaker pavements. For the same stress value applied to an equal surface area, weaker pavements develop higher stresses & strains in all pavement layers and roadbed soil[20]. It means that the pavement deflection is directly related to the thicknesses and stifl‘nesses of the pavement layers. Further, deflection measured directly under the load is proportional to the compressive strains induced in all pavement layers including the roadbed soil. Deflections measured at increasing lateral distance from the center of the load are due to compressive strains induced in lower layers only. Hence, at a certain lateral distance (depending upon the layer thicknesses and stiffnesses), the deflection is contributed by the roadbed soil only as shown in Figure 4.1. The NDT deflection data is collected at various sensor locations, so that the deflection contributed by various layers can be studied. By plotting this data along the length of the road, the variability in the as-constructed pavement layer quality can be assessed. The variation in deflection profiles of various sensors along the length of the road can be attributed to various reasons such as; a) variation in layer thicknesses; b) variation in material quality; and c) the construction quality. To study this variability in the construction of the National Highway, N5, the NDT data collected using the KUAB FWD was plotted along the road and is discussed below. 37 32 gm a been 8385 80838 a £65, 0:8 305 05 mo oumaonom ”3. «Sufi ‘ . £5 05305 /’ . 895m .3 SEN :9. Beam oafiamaam bee :8 @338 3 26 mm . on: «EC Egon coupe—«on /’ T5 88250 253?. 80:82 E32503 0:23 . .. :53 :35 .— E 38 As discussed earlier, the NDT data was collected for the target loads of 5500, 9000, and 16500 pounds. Since the target load of 9000 pounds represents half of the 18-kip standard axle load, the deflection data for this target load was normalized to the target load of 9000 pounds by multiplying the deflection measured at each sensor location by the ratio of the target load to the measured load. This normalization was done to ensure that the variation in the deflection is only due to pavement layer components and not due to load variation. For each sensor location, these normalized deflection was plotted along the length of the road and are shown in Figures 4.2 through 4.8. Figure 4.2 shows the variation in the peak pavement deflection (deflection measured at the center of the load) along the road. Recall that the peak pavement deflection is proportional to the compressive strains induced in all pavement layers. It can be seen from this figure that the peak pavement deflection varies from 3.32 mils to 28.67 mils (a factor of about 8). Although the average peak deflection is 12.02 mils which is quite normal, the variation in the deflection is too high. The total variation in peak surface deflection is more than 200 % from the mean. This variation may be due to various reasons such as; variations in the thicknesses of the AC, base, and/or subbase layers, variations in the materials used in each layer, non uniform compaction of these layers, and/or the roadbed soil was not prepared properly before placing the subbase layer. Either of these variables can result into variation in deflection profile of the sensor directly under the load. Since about 85-90 % of the pavement peak surface deflection is contributed by the roadbed soil[21], the variation in deflection due to the AC, base, and subbase layers can be within few mils. But the deflection in the present case varies from 3.32 mils to 28.67 mils. Therefore, it can be said that this variation in 39 OOL‘ l S OOV‘OS‘ 001'6' 1081? 00"” 002‘“ 006131’ ZOS‘ZP OOZ' 1 t- 00666 009'8€ OOC‘LC 000913 109'”: 008‘“ 106‘“: 00905 00C'6Z 000°SZ 00L°9Z DOVE! 001 “it 00872 005 '1 Z OOC'OZ 001'61 0008 I 10691 008'5 I OOL'H OOS'CI 103'“ 10901 102'6 006‘L 009'9 ooc‘s 000'? I DU! 009? 001 - One Std Dev '3 m 8 O i E O n c on a u .— '- (sum) uotmuaq momenta need 30 25 Stations Figure 4.2 : Variation of the peak pavement deflection along the tested section of the National Highway, N5. Mean + One Std Dev 25 40 0 — (sum) 2 .rosnes ta uomeuaa tuauraAuJ OOL‘I S 00V0$ 001 '69 1087.? 0099? 0035? 006‘“ 7.057.? 002‘ 1 1' 006‘ 6C 009'“: 0057.6 000'91: l 09‘” 0017‘“ 1061 E 009'0C 001761 00082 001.39! 009" Z 001 ‘9! OOO'ZZ 005‘1 Z 0012‘ OZ 001'61 0008 I 10691 008'9 1 OOL'N OOC'E 1 103'! 1 105'01 102'6 006'L 009'9 00175 000‘? 1 OL‘Z 00W 001 Sections Figure 4.3 : Variation of the pavement deflection at sensor 2 along the tested section of the National Highway, N5. 41 00!..‘1 S 00V0$ 001'6t 1087.9 00"97 001‘” 006'” ZOS'ZP 003'" 006‘“: 009'82 OOE‘LE 000'9C 109'1'S 001721: 1061 C 009'0C 00C'6Z 000‘81 00L‘9Z 007‘“ 001'”. 008'ZZ 009'1 Z OOC'OZ 001'61 00081 10691 008“; 1 OOL'N 009°C! 101‘! 1 IOC‘OI 1036 006‘L 009'9 00£‘$ 000‘? IOL'Z 00V1 001 '9. U) 8 O + 5 2 Mean ] N O Q ‘0 V N 0 an on! 16 14 (spur) g rosues )8 nottacuaq mourned Stations Figure 4.4 : Variation of the pavement deflection at sensor 3 along the tested section of the National Highway, N5. 10 42 E m 8 O + E E l~ ‘0 V5 V’ ('5 (sum) 7 .Iosuas ta uomaueq lllOIIIOAIJ N OOL‘I S 00"“ 001‘6? 1081? 005‘” 002‘” 006‘“ 205‘” 002‘ 1 9 006‘ 6C 009‘“: 00122.2 000‘92 109‘” 002‘“ 1 06‘ 1 C 009‘OC 00662 000‘82 00L‘92 0011‘s 2 001 ‘92 008‘22 009‘! 2 002‘ 02 001 ‘61 000‘8 1 106‘9 1 008‘9 1 OOL‘V I 009‘2 1 1 02‘21 1 09‘01 102‘6 006‘1. 009‘9 0012‘ S 000‘? 1 0L‘2 OOV‘I 001 Stations Figure 4.5 : Variation of the pavement deflection at sensor 4 along the tested section of the National Highway, N5. 43 00!..‘1 S OOV‘OS 001'6? 10819 005‘” 002“? 006‘ Ct 205‘217 002‘" 006‘6E 009‘82 00€‘L€ 000‘91: 109‘”? 0012‘“ 106‘ 1 C 009‘013 001762 000‘82 00L‘92 001’? 2 001‘V2 008‘22 005‘ 1 2 001702 001‘61 000‘81 106‘91 008“; 1 OOL‘N 005‘21 102‘21 109‘01 102‘6 0061. 0099 002“ 000‘? 10L‘2 OOV‘I 001 M N N F! c— O (slim) g .Iosues ta uottoeueq mourned Stations Figure 4.6 : Variation of the pavement deflection at sensor 5 along the tested section of the National Highway, N5. 44 1"" Mean - One Stirkv / Mean + Orje 5 Dev I Mean d,- -——= 2.5 c. N °. — 1.5 0 (sum) 9 JOSIIOS 111 uoyoeuaq mourned '3 o 0.0 Stations Figure 4.7 : Variation of the pavement deflection at sensor 6 along the tested section of the National Highway, N5. 45 002‘1 S OOP‘OC 001‘6? 1087.7 005‘” 002‘“ 006‘“ 205‘29 002‘ 1 1' 006‘“ 009‘82 OOC‘LS 000‘92 109‘1'2 OOC‘CS 106‘1 C 009‘OC 002‘ 62 000‘82 00L‘92 009‘5 2 001‘V2 008‘22 00$ ‘1 2 OOC‘OZ 001 ‘61 000‘81 106‘91 008‘9 1 002‘” OOC‘C 1 102‘21 1 05' ‘01 102‘6 006‘L 009‘9 0013‘; 000‘? 10L‘2 00V! 001 5 Q '2 U) o t: O 2 Mean + One Std 18 1.6 V. N. °. °°. ‘0. V. -- ~ c o o 0.2 0.0 n (sum) L Josues In uomeuap tucuraaeJ Stations Figure 4.8 : Variation of the pavement deflection at sensor 7 along the tested section of the National Highway, N5. 46 deflection is mainly due to roadbed soil. And the variation in deflection of roadbed soil can be due to either poor compaction practice during its preparation or due to variation in moisture content. Because of the pressure distribution with depth (see figure 4.1), the deflection measured at sensor location number 7 is due, for most flexible pavements, to the compressive strains induced in the roadbed soil. The AC, base, and subbase layers along a vertical line under sensor 7 are not subjected to any externally induced stresses or strains. Figure 4.8 shows the variation in the deflection of sensor 7 along the project. As it can be seen from the figure, the deflection varies from 0.0397 mils to 1.6157 mils ( a factor of about 40). Given that at this lateral distance from the center of the load, the roadbed soil is being subjected to about one tenth of the stress delivered to the roadbed soil located under the center of the load, one can conclude that the variation in the deflection of the roadbed under the load is similar to that under sensor 7. Such a variation supports the argument stated above that the roadbed soil is contributing the majority of the variation in the deflection of the other sensors. Once again, this variation is due mainly to variation in roadbed compaction or moisture content. A summary of the results of the statistical analysis of the normalized deflection for the target load of 9000 pounds for all the seven sensors is listed in Table 4.1. For each sensor, the data includes the maximum and minimum deflections, the average, standard deviation, and the coefficient of variation (the ratio between the standard deviation and the average or mean presented in percentage). The value of the coefficient of variation indicates the percent of the deflection data that vary from the mean within one standard 47 .l a... a.” «a: 5.2 3.: N3: mom a: a: :2 82 2A 3.: 3.: 3a was 8.... .3 28m 2m 3.3 1433: 33.5915 a: a. wwwfléw a! i l-. -i-.- - -l "1111111111 ”E 8% S“ 4.3 SN 3m 95 3e omega. \ E: 5.2 A 2.: m 38 38 4mm 2.: 38 £9 amass... \ a: 69. $3 8.9 5: we: 2: 8.» caveman E: \ a: 3.4m 0.2. 2.2. as: ”.2 as 3.7.. Age SEE; .6 256880 85¢ 24? Soho 052 8 8a 342 $2.... 2:5 season $2.3m 83¢ :86 «$3 an? 88.0 083 2.8.2 was 833.com SEE 53 N53 «.23 :2 83.2 ”2 mom $8.3 ELEV 880:8 5:532 88.0 88.0 835 88¢ 3.32 3...? EN? 25 880ch 525:3 Goes on 3.3 0.2 5..an 8 3:: $1 3: s cm 55 om 118V o Sauce .5 E 8:83 580m I A o m 4 m N _ 25:2 cacom 5223: ml 95 9.2a :ezcccou 3.523.: 2: Ce 833.3 he Pap—:55 < 2... «3:. 48 deviation. The higher the standard deviation and the coefficient of variation, the greater is the variation in the data. As a rule of thumb, a coeflicient of variation below 10 % is thought to be low, between 15 and 30 % is moderate, and greater than 30 %, is high[22]. Since the coefiicient of variation of all the seven sensors is more than 30 %, the variation in the deflection data can be considered high to very high. For comparison, typical values of the coefficient of variation of deflection data collected on three roads; a thin (less than 4 inches AC layer), a medium thick (4 to 8 inches AC layer), and a thick (more than 8 inches AC layer) are also listed in Table 4.1. These roads, which are located in the State of Michigan, are, M 44 east bound (a thin road), US 27 north bound (a medium thick), and M 99 north bound (a thick road). It can be seen from this table that the coeflicient of variation for all three roads varies from 1.09 to 15.20 percent [7]. These values of the coefficient of variation are less than half of those of the NDT data of the N5 highway. Examination of the values of the coefficient of variation listed in Table 4.1 and shown in Figure 4.9 indicates that the values for the first four sensors are significantly different than the last three sensors. The coefficient of variation of the first four sensors varies from about 32 to 35 percent, whereas the coefficient of variation for the last three sensors is from about 46 to 54 percent. This observation implies that there is more variation in the deflection of the outer sensors (which normally show the deflection contributed by the roadbed soil only). Once again, for most flexible pavements, the deflection of sensor 7 is due to the deflection of the roadbed soil only and the deflection of sensor 1 is due to the compressive strains induced in all layers. This implies that the coefficient of variation of sensor 1 should be higher than that of sensor 7 due to the 49 on~ cm— .mcosflvo— 525m Eocene—V .8 cognac—u mo swam—g mo E20580 "a... 0.5%,..— AEuv 23. 2: .3 58:8 E9... 53:3. be 3:55. .333 ca me an om em mm O V? '3 (%) “09va :0 momma cm mm 50 cumulative effects of variations in all layers. The data however shows sensor 7 with the highest variation. This difference may be due to the compensating effect of the AC, base, and the subbase layers. The locations of high and low deflection in the roadbed soil may not correspond to the high and the low deflection locations of the upper lying layers, therefore the low deflection (strong pavement) of the upper layers may reduce the effect of high deflection (weak roadbed soil) of roadbed, and vice versa. The deflection at each sensor .location was normalized to its mean and plotted against the test stations as shown in Figure 4.10 through 4.16. Figure 4.16 shows the normalized deflection of the roadbed soil. It can be seen that there are stations with as high deflection as 3 times that of the mean, and stations with as low deflection as about 1 times fi'om the mean. But the same stations in Figure 4.10 have variation within about 50 % of the mean. From this it can be concluded that the decrease in the variation of deflection, as one move closer to the center of the load, may be related to the compensating effect of the upper layers. Further, the variation of the deflection of sensors 1 through 4 along the road (see Figures 4.10 through 4.13) is much different than that of the outer three sensors (see Figures 4.14 through 4.17). For each sensor location, these differences are also listed in Table 4.1 as the ratio of maximum to minimum deflections, maximum to average deflections, and minimum to average deflections. Once again, it can be seen that significant differences exist between the variations of sensors 1,2,3,4 (the inner sensors) and those of the outer three sensors. These differences can be attributed to the 5| 00L“! 5 000.05 001'6' 1081' 009‘” 00?” 006'“ 105“" 003‘ It 006‘“ 009'“: 005?“: 000% 109'tE 00?“ 106'! E 009013 00£‘6: ooo‘sz 00L'9Z 00"“ 00131 008‘“ 00“! I 00970! 00 I '6! 000‘“ 1069! 008'9 I OOL‘N 00$? l 102? 1 [0‘01 1 01'6 006°L 009'9 00£'$ 000" 101}! 00"! 001 N V! c-o uogncucq woman; and pazglnuuon V! c 2.5 Stations Figure 4.10: Variation of the peak pavement deflection (normalized relative to its mean) along the length of N5. 52 OOL'I S 00"09 001'6' 108‘!) 0059' 0039? 006'“ L091? 003" 00666 009‘“: 006‘“ 00091? [095$ 002““ l06‘l C 009'05 0066! 000?! 001.92 00"“ 001 '92 008'ZZ 009W Z 00C‘0Z 001‘61 000'8! 106‘9l 008'9 I OOL‘N OOC'CI IOZ‘ZI IOC'OI 102‘ 6 006‘ L 0099 ooc‘s 000'? [M7 009'! 00! 25 2 on :— .—i 0.5 z James in 110933qu pozuuuuou Stations Figure 4.11: Variation of pavement deflection at sensor 2, (normalized relative to its mean) along the length of N5. 53 00L'l S OOV‘OC 001‘6' 1081? 009'” 001‘ Ct 006‘“ £067? 00t‘lv 006'“? 009‘“ 00£‘L€ 000‘9C 109‘VC 006‘“ 106‘ l C 009‘0C 0066! OOO‘BZ 00139! 00"“ 001 Wt 008?! 009'! Z 0060! 001 '61 000'81 106'9l 008" l OOL‘VI OOC'EI IOZ‘ZI 109‘01 10t‘6 0061. 0099 00C‘S 000'? l OL'Z 00"! 001 N '5 u— c Josuos ll uopoauoq pozunuuoN Stations Figure 4.12: Variation of pavement deflection at sensor 3,(normalized relative to its mean) along the length of NS. 2.5 54 N on u-o y Josuos is uognauoq pazmruuou 0.5 Variation of pavement deflection at sensor 4,(nonnalized relative to its mean) along the length of N5. Figure 4.13 55 OOL‘I S 00005 001'69 1087.9 00“” 003‘” 006‘ it 209‘” OOZ‘I' 006‘6£ 009'8C OOC‘LS 000'95 109‘fE 00C“ 106‘ l C 0090‘: 00£'6t 000‘81 00L'9Z 007‘“ 001 'VZ 008'“ 00$' 1 Z 00? OZ 001 ‘61 00081 106‘ 91 008“ I 00L‘H OOS'CI 102‘“ I 0‘ '01 I OZ'6 006'L 009‘9 00¢? 000‘? IOL‘Z 00V! 001 M ‘N - 0.5 g .Iosuos is uoyoouoq pozuuuuon Stations Variation of pavement deflection at sensor 5,(normalized relative to its mean) along the length of N5. Figure 4.14 56 OOL‘I S OOt‘OC 001 ‘6' [081' 005'” 002'" 006‘ Ct Z051? 00Z‘ It 0066?: 009'85 00C‘LC 000‘9C 109‘92 00€‘££ [06‘ I C 00905 ooc‘sz OOO'BZ 00L'9Z 00V“ 001'“ OOS‘ZZ 005‘! Z 00€‘0Z 001'6! 000‘81 [06‘ 91 008“ 1 00C” 00““ IOZ‘ZI IOS‘OI IOZ'6 006‘1. 009'9 002" 000‘? IOL‘Z 00Vl 001 '3 M n N V'! I- F' — 9 .Iosuas w uoyoauaq pazglauuoN 0.5 Stations Variation of pavement deflection at sensor 6,(normalized relative to its mean) along the length of N5. Figure 4.15 57 OOL'I $ 00009 001'67 [087.9 003“” 00Z‘SV 006‘ ED ZOS‘Z? 00617 00665 009‘8E 00€‘L€ 000‘92 I09‘VC 00?“: I 06‘I C 0090*: 00€‘6Z 0008 Z 00L'9Z OOV'S Z 00I ‘tZ 008'ZZ OOC'I Z OOE‘OZ OOI '6I 0008 I I 06' 9 I 008'5 I 0013' I 009‘9 I I OZ‘ZI I OS‘OI I 0Z'6 006'L 009‘9 OOC‘S 000'? l 0L‘Z 009‘ I OOI 15 3 5 . N n. -- N u— L .rosuas in uoyoauaq pozuouuoN 0.5 Stations Variation of pavement deflection at sensor 7,(normalized relative to its mean) along the length of N5. Figure 4.16 58 compensating effect of the outer layers and they show that the roadbed soil is contributing a significant portion of these variations. The pavement peak surface deflection (deflection under the center of the load) data was divided into groups. Each deflection group ranges by 1.0 mil. Based on this division, the frequency distribution of the peak surface deflection was obtained and it is shown in Figure 4.17. It can be seen that the majority of the pavement sections have deflection between 8 and 14 mils. Only two pavement sections have lower deflection than 4.5 mils, and only four pavement sections have deflection higher than 22.49 mils. Several observations can be made from Figure 4.17 including; 1. The distribution is almost normal, which means that there is no systematic error in the data collection. Since there is no indication of error in data collection, the variability in the deflection can be attributed to variations in construction. 2. The lower side of the deflection distribution indicates that the deflection may have been taken on bridges and/or over culverts. Indeed, such observations were later verified through a telephone conversation with NHA personnel in Pakistan. 3. The higher side of the deflection distribution may be due to the fact that these deflection were taken near cracks (recall that the deflection data was collected afier the failure of N5). Since the collected data lacks the required details in the form of proper location reference points at which these measurements were taken, it is difficult to comment, with certainty, on the condition of the pavement looking at deflection alone. In order to further 59 -- sr'sz-S‘sz - Eii: era-9'9: -- 5:35 6v'vz-s'cz -' ééfi 6V'EZ‘C'ZZ 67'ZZ'S' I Z 49" ‘ 6’1 Z'$ '0Z o 5:65 69'0Z'C'61 ~o arm. swat-9'81 6V8 I'S'LI 69'LI'S'9I 6091'?“ 69" P?“ GV'VI'C 'S I 6VEI‘S'ZI fixqfixfmixewvw ................. : :-:~:--.~c‘:-.: .: -:i: =:-: '4' :,.-:;: 6V ZI’C II Pavement Peak deflection (Mils) 6VII'9'0I 67'01'9'6 69'6‘5'8 67'8'9'1. Figure 4.17 : Frequency di tribution of pavement peak deflection. aafififiefi» 6VL'9'9 ............ 25 69'9’9'9 6V??? i "' 535$ 69'9'5 'E l - 2;; arc-9': l l 60 v l 1 3 8 2 50 IO 0 suognas 1831, Jo Joqtun N 6O investigate the causes of this variation, mechanistic analysis of this data was carried out which is presented in the next sections. 4.5 BACKCALCULATION OF LAYER PROPERTIES There are two basic approaches to estimate the elastic moduli of each of the pavement layers. One is laboratory testing and the other is through backcalculation of layer moduli using NDT data. For existing pavements, laboratory testing is generally considered expensive and destructive in nature because the pavement structure must be disturbed in order to obtain test samples. A laboratory test method for the determination of the resilient modulus (defined as the ratio of the deviator stress to the recoverable axial strain) of paving materials is described in AASHTO T274-82 [23]. The laboratory tests are typically performed under simulated stress conditions expected in the pavement due to repeated vehicular loading. Since the field coring process causes disturbance in the AC layer and remolding of the granular base materials, the test results (resilient moduli) may not represent the true field values. The backcalculation of material properties of an existing pavement structure using NDT data is a very practical and efficient method. The moduli values obtained from the backcalculation, on the other hand, are more representative because the deflection data is collected under field conditions (the boundary Values are not affected by sampling and/or remolding). Therefore, when comparing the laboratory and backcalculated moduli, perfect agreement between the two should not be eXpected. 61 To determine the pavement layer moduli in the field, various computer programs have been developed. MICHBACK is one of the computer programs which can be used for backcalculating the pavement layer moduli from the FWD deflection data. In this study, the backcalculation of layer moduli was accomplished by using the MICHBACK Computer program and the deflection data and the actual load delivered to the pavement section during the NDT tests. In the subsequent subsections, details of the backcalculation of the layer moduli are presented. 4.5.1 Data Analysis Options. The MICHBACK computer program uses a modified Newton algorithm to backcalculate pavement layer moduli from the measured surface deflections and to mechanistically correct the thickness of one of the pavement layers or the depth to the stiff layer. Several parameters control the backcalculation procedure and the convergence checks. In the modified Newton method, a gradient matrix is used to determine how to change the current estimates of the layer moduli. The gradient matrix is constructed based on three consecutive estimates of the layer moduli. The three consecutive estimates that are required to calculate all the elements of the gradient matrix are labeled as one program iteration. The maximum number of iterations specified in this study were ten. The two criteria used to check the convergence are: a) The root-mean-square (RMS) - The RMS is the cumulative percent error between the measured and the calculated surface deflection. The RMS can be expressed in the following equation: RMS (%) = 1/n [éudd - c1....)/d..,,}2]"2 4.1 b) 62 where: n = number of measured deflections; dc; = calculated surface deflection at sensor i; and dug = measured surface deflection at sensor i. In this study, the RMS convergence criteria was set at 1 %. That is when ‘1 the RMS value between the measured and calculated deflection is equal to or less than one percent, then the solution is considered to converge on the true values of the layer moduli. Based on the gradient matrix, the percent change in the moduli in each successive iteration is less than 1.0 %. This criterion is expressed as: i+l i i A Moduli (%) = 100 x (Ek - Ek)/ E. 4.2 where: E‘k . = Estimated modulus of layer k at iteration i. This criterion indicates that the iterative scheme has stabilized and that the moduli are not changing significantly from one iteration to another. When one of these two criteria is fulfilled, the MICHBACK program uses the final set of the modulus values in two ways; a) b) The final modulus values are assigned to the various layers at the test location in question. The final modulus values are assigned as seed moduli for the next test location. 63 If neither of these two criteria is met, the program will automatically terminate after 10 iterations and the layer moduli corresponding to the minimum of the two criteria will be stored as the layer moduli at that test station with a no convergence message. Using the above criteria, various options available in the MICHBACK program were tried. These include; a) b) C) backcalculation of layer moduli without correcting the thickness of any layer, and without including a stiff layer. correction of the AC layer thickness; and the inclusion of a stiff layer and the correction of the depth to stiff layer The three options are detailed below. a) b) Option 1. In this option, the layer moduli were backcalculated without modifying the thickness of any layer, and keeping the depth to stiff layer constant. Based on a statistical equation, MICHBACK predicted the stiff layer depth at the first test station at 123.1 inches. This depth was kept constant for all the test stations. For the first eleven test locations, the program converged for only three stations. The average moduli of the AC, base, and roadbed soil were 2308098, 15053, and 89480 psi respectively. The results are listed in Table 4.2. Option 2. Recall that the layer thicknesses were obtained from the as- built design record and they were not confirmed by pavement coring. This option was used to mechanistically correct the AC layer thickness along is. €82 :28: :38: :38: =35: 5.82 .9»... =38: €83. €82 55 83.3. 8.5 o< 3. v8.33. 3:. 3. 55 uses: yam o< .2523 5:23.353 3...: .8 8.3.0.. 2: .8 ESE-=3 < H n... 03:. 65 with the layer moduli. In this case, for the first eleven test stations, the convergence occurred at one test location only. The results of this option are also shown in Table 4.2. c) Option 3. Since the depth to stiff layer was not known, this option was tried by keeping the layer thicknesses constant and the depth to stiff layer was adjusted based on mechanistic analysis. In this case, convergence occurred on all eleven test stations and the layer moduli were within acceptable limits as shown in Table 4.2. Recall that “no convergence” implies that neither the RMS criterion of 1% nor the percent change in layer moduli of 1% is satisfied. By comparing the results obtained from the three options which are listed in Table 4.2, it was decided to use option 3 (Backcalculating the layer moduli and the depth to stiff layer). Therefore, for the rest of the test stations, the option to calculate the stiff layer depth was used. MICHBACK is capable of backcalculating the moduli of 5 pavement layers. However, the accuracy of the results decreases as the number of layers increases especially when the option to calculate the thickness of one of the layers is used. Since, in this study, the option to calculate the depth to stiff layer was used, different layers of similar materials were combined together to form one layer. For example, all asphalt courses (AC wearing course, and AC base course) were combined into one asphalt layer. All unbound granular base and subbase layers were also combined into one layer. The subgrade (roadbed) soil was considered to 4.5.2 66 be one layer and its depth was calculated using the MICHBACK option of determining the stiff layer depth. Hence, only 3 layers (asphalt concrete, base, and roadbed soil) were used in the analysis. Laygr Moduli. The formatted deflection data was used to backcalculate the layer moduli using the MICHBACK computer program. In addition to the deflection data, other input variables used in MICHBACK are listed below. Number of Layers 3 Load plate radius 5.91 inches Number of sensors 7 Material Properties: Layer Thickness Poisson’s Ratio (u) a) Asphalt Concrete 4.8 inches 0.35 b) Granular Base 13.8 inches 0.40 c) Roadbed Soil - 0.45 Deflection data for up to 400 test locations may be read from a deflection file by MICHBACK. For convenience, in this study, the data was analyzed for 50 stations at a time. The results were combined into one file for the entire length of the project. The backcalculated layer moduli at each test station are listed in Table C-l (attached as Appendix C). It should be noted that for about ten percent of the test locations (56 test stations), the program did not converge for the selected convergence control criteria. For those stations, the moduli values were taken as the average of the two adjacent stations. To study the variation of layer moduli 67 along the length of the road, the moduli of each layer was plotted against the test stations. Figures 4.18, 4.24, and 4.26 show the variations in the AC, base, and roadbed moduli along the N5 highway. Figure 4.19, 4.25, and 4.27 show the variation in the AC, base, and roadbed moduli normalized relative to the average modulus value of each layer. The frequency distribution of the backcalculated layer moduli is shown in figure 4.28. Finally, a summary of the statistics of the AC, base, and roadbed soil moduli is listed in Table 4.3. For each pavement layer, the data in the table includes the minimum and the maximum moduli, the average modulus, the standard deviation, and the coefficient of variation. The results are discussed below. AC Modulus. The variation in the AC modulus along the length of the road is shown in Figure 4.18. The AC modulus varies from 55,114 psi to 1,614,521 psi with a mean value of 498,745 psi (Table 4.3). Although the average moduli is within standard values, the range of the data is too high, which may be due to variation in the layer thickness, materials, pavement temperature, and/or variations in the construction. There is only one station at which the modulus value is 55,114 psi , on all other test stations the AC modulus is more than 123,234 psi. Since the test location is not referenced relative to cracks, bridges, or culvert locations, one can speculate that; a) The extremely low value of 55,114 psi may be due to the deflection that was taken near a crack. 1 ,800,000 1 ,600,000 Dev Mean - One 5 G 33 m o e O + r: 3 E 1 ,400,000 1,200,000 68 §, § §. § (Isa) minnow 3v 200,000 IOS‘I S OOI‘OS OOL'SD OOCL' 006‘” 005‘” 00I‘C' I09‘IV OOZ‘OIv 008‘“: IOV‘LS 000‘9C 009'” 101 ‘EC I09'I C lOZ‘Oi 008'8Z IOVLZ 000'9Z 009‘VZ 00Z‘CZ 008'I Z OOC‘OZ 00Z‘6I 000‘81 008'9I 009‘SI [09 'N OOI‘EI 005' I I 009'8 IOI'L IOL'S IOC'V 006'Z IOC‘I OOI Stations Variation of the AC modulus along the tested section of the National Highway, N5. Figure 4.18 69 Table 4.3: A summary of the statistics of the backcalculated layer moduli. Layer AC(psi) Base(psi) Roadbed(psi) Minimum Moduli 55114 10185 16601 Maximum Moduli 1614521 157102 100000 Average Moduli 498754 30471 54561 Standard Deviation 214666 20377 16742 Coefficient of Variation(%) 43.04 66.87 30.68 70 b) The higher modulus values may be due to the deflection tests at those locations were conducted over bridges and culverts. A cross-examination of Figures 4.2 and 4.18 indicates that the variation in the AC modulus along the road corresponds to the variation in the peak pavement deflection. This implies that the MICHBACK program produced relatively accurate modulus values relative to the measured deflection data. By normalizing the AC moduli with respect to the mean it was found that the total variation in the AC modulus is more than 300 % fi'om the mean (Figure 4.19). The coefficient of variation is about 43 % which is also an indication of a very high variation (Table 4.3). It should be noted that, in this analysis, neither the deflection data nor the AC modulus are corrected relative to the test temperature. This issue of the analysis is discussed below. As discussed earlier, the majority of the pavement deflection is contributed by the roadbed soil. Therefore, the variation in deflection due to the AC layer alone cannot be more than a few mils. This variation in deflection of the AC layer may be due to pavement temperature, variation in the AC layer thickness, and/or material properties. The pavement layer moduli, which are the function of the measured pavement deflections, are influenced by seasonal variations in moisture and temperature. The moisture variation influences the stiffness of the base and subbase layers and the roadbed soil. The temperature variation, on the other hand, affects the stiffness of the AC layer. Thus the effect of temperature on the AC modulus must be carefirlly studied for better interpretation of the backcalculated results. The temperature of the pavement varies during the day and with depth. 71 00L'I S 007‘05 00I'6f I081? 009‘” 00Z‘SV 006‘?» ZOS‘ZIV 00Z'It 006‘ 68 009‘82 OOCLE 000‘95 I09‘VC 002‘“ IO6‘I C 00902 00C‘6Z 000‘8Z 00L'9Z 009? Z OOI‘FZ 008'ZZ OOS'I Z 005‘ OZ 00I'6I 0008 I I06‘9I 008'91 OOL‘H OOS‘C I I OZ‘Z I IOC‘OI IOZ‘6 0061 0099 OOC‘S 000'? IOL‘Z OOP‘I 00I N V! "‘ u-n !l“P°W 3V Minn-WM 3.5 3 2.5 0.5 Stations Figure 4.19: Variation of the normalized AC modulus along the tested section of the National Highway, N5. 72 During the morning hours, when the pavement is warming up (warming cycle), the temperature at the top of the AC layer is more than that at the bottom of the layer (positive temperature gradient). This implies that the stiffness of the AC layer increases with depth and that the temperature effect is minimum. Around noon time when the air temperature is maximum, the temperature gradient is still positive, although, the temperature at the bottom of the AC layer is high. At this time, the effect of temperature on the stiffness of the AC layer is much higher than that during the morning hours. After reaching a maximum value, the air temperature starts to decrease and the top of the AC layer becomes cooler than the bottom (the cooling cycle). This temperature difference in the AC layer is known as negative temperature gradient. At this time, the pavement acts as if a stiff top layer is lying over a relatively soft bottom layer. Thus, for the same pavement average temperature, the behavior of the AC layer during the warming cycle (stiffness increases with depth) is much different than that during the cooling cycle (stiffness decreases with depth). Moreover, regardless of the type of temperature cycle (warming or cooling), higher pavement temperatures cause lower stiffness. For this study, the deflection data was collected on four different days. For each day, the measured temperature of the pavement varied from one test station to another as shown in Tables A-l through A-4 (Appendix A). A summary of the temperature range, during which the NDT data was collected is shown in Table 4.4. It can be seen that, during each testing day, the pavement was subjected to both warming and cooling cycles and that the temperature range for each day is jlwwenmm 8”: 5:9. 3.2 623:: 84% 8an 33m 32 3.23: t“: 322:6. NZ: 3.53m 83. 85 38a 52 $.32me 8H: :88:va 4:: 363:8 802 02.2 33% 82 9.83.: on: 3.2:»? :§ A233.“ 82. 2: 52352.5. Eon—58H Assufixefi 502:5. Assasrsfi 50.55:. a. EB... 8.5 .353 55.552 tfim 5.53m «non. 56:90:69 35 HQZ .5 99:. .58 2: be :23 wet-5 owes. 0.55.8..th 3a. «Zak. 74 difi‘erent. For this reason, the AC modulus data was divided into four groups. Each group represents those adjacent test stations where the deflection data was collected during one day. The four modulus groups are discussed below. Group 1 - Test §tations 100 to 12300 - The NDT data for test stations 100 to 12300 was collected on February 26, 1995 as shown in table 4.4. At the start of the tests (around 12:00 noon), the pavement temperature was about 98 °F. During the tests, the pavement temperature increased from about 98 °F to over 110 °F and then it decreased to around 100 °F. Hence, the tests were conducted during the warming (positive temperature gradient) and cooling (negative temperature gradient) cycles. As it can be seen from figure 4.20, the value of the backcalculated AC modulus is high at the beginning of the tests and it decreased as the pavement temperature increased. This observation was expected and it agrees with the results reported in the literature (higher pavement temperature causes lower AC modulus). Further examination of part (a) of figure 4.20 indicates that at test stations 2100 and 9000, the pavement temperature dropped to 95 and 98 0F, respectively. Unfortunately, the NDT data file does not provide any explanation as to the causes of this sudden decrease in the pavement temperature. One can speculate however that the decrease in the pavement temperature may be due to a shaded area (cloud or parked vehicle) or to an error in the temperature measurement. Thus, the warming and cooling cycles at test stations 2100 and 9000 may have been temporarily interrupted or reversed. Nevertheless, for test stations 100 to 12300, the average backcalculated AC modulus is 547,311 psi, the standard deviation is 258,446 psi, and the coefiicient of variation is 47 percent. At this point, no conclusion can be made regarding the statistical data of the measured 75 115 110 105 100 95 Pavement Temperature 'F 85 100 601 1101 1600 2100 2600 3100 3600 4101 7101 7600 8100 8600 9100 9600 10099 10600 11100 12034 §§§§§ Stations a) Variation of the pavement temperature. 2 g 30 ' 25 ~~~ I E l A g 20 L. _ I 1 g 15 1 1 n 1 I A " MM M /l I\H \I\ g '0 A A A A A A 0 WV] V 'V 1" V V 3 5 a. g 0 31345:???123‘331333223Hififififiiliiiiiiiii???1:33;???Hiifiiiiiiw‘w‘fiii3:33???$113133”;:CiiiHiiiifii .‘-8§§§8§8§s§8§8§s§8§8§§§§§ ; " -- -- 33 a :1 3 n n G i: r~ 3'5 8 ._ ... : S: I Stations b) Variation of the peak pavement deflection. I60 .'§|4o a: Ego 1-360 '3 240 I220 o I §§§§§§§§§§§§§§§§§§§§§§§§ Stations c) Variation of the AC layer modulus. Figure 4.20: Variation of the pavement temperature, deflection, and the AC layer modulus along the length of N5 (test stations loo-12300). 76 pavement deflection and the backcalculated AC layer modulus. The reason is that the measured deflection data or the backcalculated AC layer modulus must be corrected to a common standard temperature before the variation of the AC modulus along the test section can be assessed. More on this topic is presented after the four deflection data groups are discussed. Group 2 - Test Stations 12400 to 27000 - The NDT data for test stations 12400 to 27000 was collected on February 27, 1995 as shown in table 4.4. At the start of the tests (around 10:00 am), the pavement temperature was about 90 °F. During the tests, the pavement temperature increased fi'om about 90 0F to over 110 °F and then it decreased to around 100 °F. Once again, the tests were conducted during the warming (positive temperature gradient) and cooling (negative temperature gradient) cycles. As it can be seen from figure 4.21, the value of the backcalculated AC modulus is high at the beginning of the tests and it decreased as the pavement temperature increased. In this group of NDT data (see part (a) of figure 4.21), the measured pavement temperature at three test stations was much lower than the adjacent test stations. Once again, the NDT data file does not provide any explanation as to the causes of this sudden decrease in the pavement temperature. If one assumes that the measured pavement temperature is correct then it implies that the warming and cooling cycles at the three test stations may have been temporarily interrupted or reversed. Nevertheless, for test stations 12400 to 27000, the average backcalculated AC modulus is 452,309 psi, the standard deviation is 183,693 psi, and the coefficient of variation is 40.6 percent. 77 gn 115 £110 3105 $100 [- 95 E90 85 5 so ‘ 8888 "‘ "'°' "' ! 3?33355§§§§§§§§N§§§§§§§§§§§ 1 Stations I ariation of the pavement temperature. 2!) p. N M N O —- u 1 Peak Pavement Deflection in mils i < 8 G > 5L. I Stations 1)) Variation of the peak pavement deflection. l l M3 ii X :3 r: ’8 I: I0 i< ! §§§§§§§§§§§§§§§§§§§§§§§ ~———————~———NNNNNNNNNN Stations lc) Variation of the AC layer modulus. Figure 4.21: Variation of the pavement temperature, deflection, and the AC layer modulus along the length of N5 (test stations 12400-27000). 78 Group 3 - Test Stations 27100 to 42800 - The NDT data for test stations 27100 to 42800 was collected on February 28, 1995 as shown in table 4.4. At the start of the tests (around 10:00 am), the pavement temperature was about 87 °F. During the tests, the pavement temperature increased from about 87 °F to about 108 °F and then it decreased to around 90 °F. Once again, the tests were conducted during the warming (positive temperature gradient) and cooling (negative temperature gradient) cycles. Examination of figure 4.22 indicates that, for this group of NDT data, the pavement temperature has no significant effect on the values of the backcalculated AC modulus. One of the possible explanation for this departure is that, after reaching its peak value of about 108 °F, the pavement temperature started to decrease immediately. That is, because the warming cycle was followed immediately by the cooling one, not enough time was available for the pavement temperature to rise. Nevertheless, for these test stations, the average backcalculated AC modulus is 529,775, the standard deviation is 222,707 psi, and the coefficient of variation is 42 percent. Group 4 - Test Stations 42900 to 52400 - The NDT data for test stations 42900 to 52400 was collected on March 8, 1995 as shown in table 4.4. At the start of the tests (around 1:37 pm), the pavement temperature was about 110 °F. During the tests, the pavement temperature decreased to around 95 °F. Hence, most tests were conducted during the cooling (negative temperature gradient) cycle. Examination of figure 4.23 indicates that, for this group of NDT data, the value of the backcalculated AC modulus increases as the pavement temperature decreases. Once again, this was expected and it agrees with the observations reported in the literature. For these test stations, the 79 comuv cab—v _o__v cencv ocean ccnan ocean oc_wm canbn .ooon canon cornn Ocean _0an comma connn _cnnn .oo_m con—n canon oo_cm canes .cmwn comma acth _ mwmumumsa h. 83...»..th 2.0.5:.— Stations 5 2 ...-u» a) Variation of the pavement temperature. V U: A o 2 ' . I T V ache” 0 l ... 8.8.3.. .532... as... l' m 8:." Stations 1)) Variation of the peak pavement deflection. conuv cor—v ~c—_v canoe ocean canon cchwn co—un oonhn ~omwn canon ocean ocean ~°QVM comma oann ~onun .co_n con—n ocean oo—om ochN ~oo- comma ooenn oo_h~ Stations modulus along the length of N5 (test stations 27100-42800). Figure 4.22: Variation of the pavement temperature, deflection, and the AC layer c) Variation of the AC layer modulus. 80 8:... 85: an. n 82% 82% 85m 859. coma. 83v 83? 8:3 Ev gas 83v 856 Snnv 8a: 8...: 3:3 86? 8mg mmmumumsa. 5 l 1111 he 28835.. .539»...— fl ill... l Stations a) Variation of the pavement temperature. V 8... 8.... . ...... n 88. n 8.... m 8.... 88' .n 8...... n 88.. H 8.3 n 8:... ” 8.2 m 8.5. 8.8 L —— AAAJ—LALJLJAAJALJA [A II II 11 I Vll' ' VVl/ V .M ALAALLA LJ_L LLA aflum A_LA AA II 1' VI '1 II I “l g“ 3 8.8 8.... 8.... m ...... 8.3. 8.3. 8...... 8.... [LIL/UL ..AA lUlrle' V” \I\N"WV \I\. AMA/1m W A A iv v _AAAI\ .W 8... 8.... ...... 8.... 88. 88.. 8.3 8...... m 8.8 85. 5 0 .5an 0 2 15 10 (J 2 140 .z... . ... 338:0.— .5...»>a.— 13.. b) Variation of the peak pavement deflection. 11111 [I lull :1 I . II 1 . m m m m m m .... 88... ......82 9.. Stations E) Variation of the AC layer modulus. Figure 4.23: Variation of the pavement temperature, deflection, and the AC layer modulus along the length of N5 (test stations 42900-52400). 81 average backcalculated AC modulus is 464,920, the standard deviation is 165,016 psi, and the coeficient of variation is 35.5 percent. To this point, it is clear that the values of the backcalculated AC layer modulus must be corrected to a standard temperature before the data can be properly discussed. Two methods of temperature correction can be found. The Asphalt Institute (AI) and the AASHTO method. The AASHTO method calls for the correction of the measured pavement peak deflection, whereas the AI method corrects the backcalculated AC modulus to a standard temperature of 77 °F. A study carried out at Michigan State University on three pavement sections showed [7]: a) The pavement behavior during the warming cycle (positive temperature gradient) is different than that during the cooling cycle (negative temperature gradient). Hence, the proper temperature correction method must include the effect of the temperature gradient. b) The pavement sections considered, showed less sensitivity to temperature than that predicted by the AI and the AASHTO methods. c) Pavement characteristics such as AC thickness and stiffness, and the asphalt grade affect the AC response to temperature change. These characteristics are not considered in the Al or the AASHTO methods. Since the temperature gradient in the pavement was not measured during the NDT tests and since the characteristics of the pavement along the N5 highway are not known, it was decided not to include temperature correction in this study. 82 However, it is strongly recommended that a study be conducted to develop temperature correction models for pavements in Pakistan according to its own environment. Base Mpduli. The variation in the base modulus along the N5 highway is depicted in Figure 4.24. It can be seen that most of the test sections have modulus values between 10,000 and 40,000 psi. Few test stations have a modulus value over 100,000 psi. The distribution of the values of the base modulus is not normal as shown in Figure 4.28. The higher modulus values suggest that the deflection data may have been collected over bridges and culverts. Nevertheless, more than 66 % of the test stations have base modulus values between 30,000 and 10,000 psi. This more or less represents a typical range of modulus of base materials. For a high class road (such as the N5 highway), the base materials should have been chosen and prepared or compacted to possess a modulus value of 25,000 psi or better. Unfortunately, a significant number of test locations showed a base modulus value of less than 20,000 psi. Given that the base material consisted of 100 percent crushed lime stone, the modulus value of a properly compacted crushed hard lime stone is about 40,000 psi, and given the significant variation in the values of the base modulus along the road, one can conclude that, during construction, the base material was not properly compacted. Table 4.3 provides a summary of the statistic of the base modulus of the National Highway N5. It can be seen that the coefficient of variation in the values of the base modulus is 66 %. The high value 83 Mean - One Std Dev Mean One Std Dev 1 60,000 140,000 .. 120,000 4» ééé § 8 e‘ (ISJ) minnow ma 0°C! S 0090‘ 001'69 10819 009'99 008‘” 006‘ it 506?? OOZ'IV 00668 00988 OOC‘LE 000'98 10998 008‘“ 106' l C 00905 OOC‘6Z 00081 001.9! 009'“ 001'?! 008'ZZ OOS'lZ 0013' OZ 001'61 0008 1 10691 0083 I OOL'VI 009'81 10271 10501 10Z'6 006‘L 0099 009.9 000'? 101.? 009'! -om Stations Variation of the base modulus along the tested section of the National Highway, N5. Figure 4.24 84 of the coefficient of variation is due to the fact that few of the test locations have very high modulus values relative to other locations. By normalizing the base modulus with respect to its mean, it was found that on the high side, the base modulus is more than 400 percent from the mean, whereas on the low side it is about 50 percent from the mean as shown in Figure 4.25. As discusses earlier, the stiffness of the base layer is affected by moisture variations in the base. Moisture can enter the pavement layers either by infiltration through pavement cracks, it can seep from a higher ground or from water standing in the drainage ditches, or it may rise to the base layer from the roadbed soil by capillary action. The stiffness of a granular base material decreases significantly as the moisture content in the base approaches the saturation point (typically 85 percent moisture content is considered an acceptable level). The summary of the statistical data presented in the Table 4.3 suggests that the high variation in the granular base modulus along the N5 highway can be related to: a) Compaction practices during construction (e.g., low number of passes, the vibrator was not on for a sufficient time etc.). b) During the NDT, the base material was exposed to a various moisture levels. A cross—examination of the variation of the base modulus with that of the roadbed soil (presented in the next section) indicates that moisture contents is not the main cause of the low values of the base modulus. The reason for this is that if the base material is exposed to moisture then the roadbed soil is also exposed to an equal or 85 v M N unpow ma mrvuuon 00E“ 00"05 001'69 1087.? 009'” 002‘” 006‘ it 509?? 00pr 00665 009‘“: 0061.6 00098 109'“: 0012‘“ 10618 009'0E 0013‘ 62 000'8Z 00L'9Z 0017'“ 001'” 008'ZZ 00$‘1Z OOC'OZ 001'61 00081 10691 008? 1 OOL'fl OOC'CI IOZ'ZI 109'01 101'6 006‘. 0099 00?: 000'? NE! ”'1 001 Stations Figure 4.25: Variation of the normalized base modulus along the tested section of the National Highway, N5. 86 more severe moisture problem. Given the range and the variation in the roadbed modulus (see Figure 4.26) along the 52.4 km stretch of N5, one can rule out the moisture as the cause. Hence compaction of the base material during the construction is, perhaps, the main cause of the high variation in the base modulus. Roadbed Moduli. The roadbed modulus is also variable along the length of the road as shown in Figure 4.26 having values from 16,601 psi to 100,000 psi with a mean value of 54,561 psi (Table 4.3). The variation in the roadbed soil modulus (normalized relative to its average) is about 180 % from the mean value (shown as 1.0 in the figure) as shown in Figure 4.27, and the coefficient of variation is about 30 %. The modulus values of the roadbed soil are mostly greater than the base modulus. The variation in the roadbed modulus, which corresponds to the variation in deflection profile at sensor 7, may be due to the variations in moisture contents or poor construction practices . The roadbed soil modulus is very sensitive to moisture contents. A slight variation in the moisture content can result in a high variation in stiffness. As it can be seen from Figure 4.26, there is no special trend in the roadbed modulus, rather it varies from station to station all along the length of the road. That is, the local (station to station) variation in the roadbed modulus is similar to the global (along the entire road) variation. This shows that either the roadbed soil was not prepared properly at the time of its construction or the variation in its moisture content during the NDT survey has affected its modulus. Such a variation in moisture content could be attributed to a poor drainage. However, since the NDT 1 00.000 Mean - One Std B G 'U H (I) o = O + r: a: o 2 90,000 80,000 70,000 87 a e (Isa) snlnpow Mpvou §_§§ 8 § 8 20,000 10.000 00L‘1 S 009'“ 001'6? 10819 005917 002‘“ 006‘“ ZOS‘ZV 002‘ It 00662 009'8£ OOC‘LC 000'9C 109'“: 001788 1061 C 009'OC 001762 00081 00L'9Z 00VC Z 001 WI 00872 009 '1 Z 00£‘OZ 001'61 0008 1 106‘ 91 0089 1 OOL'H 00$? 1 1 OZ‘ZI 10"01 102'6 0061. 0099 0013' S 000'? 10L'Z W'l 001 Stations Variation of the roadbed modulus along the tested section of the National Highway, N5. Figure 4.26 88 mm; oov‘os oor‘sv tos‘Lv oos‘9t ooz‘sv oos‘cr zos‘zv ooz‘rv 006‘66 009‘s: ooc‘u: ooo‘9c 109‘“: 0092‘s: 106'“: 009‘0£ ooc‘sz ooo‘az 00L'9z oov‘sz oor‘vz oos‘zz oos‘tz ooc‘oz oor‘sr ooo‘sr 106'91 ooa‘sr 001m oos‘ct roz‘zt ros‘or roz‘s 006‘1. 009'9 ooc‘s ooo‘v lOL‘Z oov‘r oor v N ~ «2 w. .: .—’ o c 0.4 1 8 1.6 0.2 rrnpow P3003011 11311131111051 Stations Figure 4.27: Variation of the normalized roadbed modulus along the tested section of the National Highway, N5. 89 Roadbed 63 70 Base 59 51 43 37 29 26 In IUl7 13 10 10 10 11 11 001'56 06"; 8 08'SL ' 0L‘S9 09'“ or-cv W‘s ' oc-sz ' OZ'C 1 89’99 95'“ 0989 zrov 899$ 98'“ 0981 Modulus (ksi) 91'?! ZZ’OZ 81'91 H'Zl 0001‘096 006‘0$ 8 008'09 L OOL'OS 9 009'0“ OOS‘OSV OOVOSE OOC'OCZ 003) Figure 4.28: Frequency distribution of the backcalculated layer moduli. 70 60 50 - 40 M N (snoring JO aoqmnmbuanbu 90 survey was conducted during the dry season, variations in the moisture content are minimized. Therefore, the most likely scenario for this variation is poor construction practices (e. g., uneven compaction). Effect of Layer Moduli on Pavement Performance. The moduli of the pavement layers affect the various pavement responses to load including; a) b) c) d) The horizontal tensile strain at the bottom of the asphalt concrete layer. The vertical compressive strain at the top of the AC layer. The vertical compressive strain at the top of the granular base and subbase layer. The vertical compressive strain at the top of the roadbed soil. The pavement surface deflection. Lower moduli values cause higher deflection in the pavement layers, and higher stresses and the strains (load being distributed over a smaller area). In a pavement system, the upper stronger layers are typically provided to protect the lower weaker layers, so that the load is distributed over a larger area in the weaker layers. In order to distribute the load to the roadbed soil, the modulus of the base layer must be higher than the roadbed’s. Otherwise, there is no need of the base layer. As it can be seen from the layer moduli data, the moduli of the base layer are lower than the roadbed soil. This indicates that there is a relatively softer layer between the AC and the roadbed soil. Due to this 3011 base layer under the AC layer, the AC will deflect more under the load, and hence, the slope of the deflection basin will be high which means that more energy is transferred to the 4.5.3 91 pavement structure in the vicinity of the load. On the other hand, if the base is stiff, the shape of the deflection basin will be rather flat, and the load will be distributed over a larger area, thus reducing the concentration of load over a small area. This deflection of the AC results in excessive horizontal tensile strain at the bottom of the AC layer. When the amount of this tensile strain exceeds the allowable limit, fatigue cracks will be initiated at the bottom of the AC layer. With increasing traflic volume, these cracks will propagate to the top surface resulting in an ultimate fatigue failure of the pavement structure. Also, a relatively soft base layer can result in shear failure of the base. This type of failure causes shear cracks in the AC layer which can be seen on the surface of the pavement. Thus the presence of fatigue and shear cracks on N5 can be due the soft base layer over a relatively hard roadbed soil. Adjustment of Layer Moduli due to Seasonal Variations. The deflection data correspond to the pavement and climatic conditions (moisture and temperature) existed during the time of testing, and must, therefore, be adjusted to the average/standard climatic conditions used in the design procedure. As discussed before, such corrections were not carried out in this study. However, for calculating the remaining service life and overlay thickness using the AI method, temperature and seasonal corrections were applied to the pavement peak surface deflection as described in the subsequent sections. 92 4.6 MECHANISTIC ANALYSIS After determining the pavement layer properties (layer moduli) using the MICHBACK computer program, the next objective of this study was to carry out the forward mechanistic analysis of the pavement structure. Forward mechanistic analysis of the pavement was carried out to determine the magnitude of deflections, strains, and stresses delivered to the pavement by 18-kip, and 33- kip single axle loads. These deflections, strains, and stresses are considered as the major pavement responses to the applied load. Each material used in the pavement system has a specific tensile, compressive, and shear strength. When a load is applied to the pavement, vertical stresses are induced in the structure. The compressive stresses cause compression which in turn causes rutting in the pavement. Similarly, the loading of the pavement structure causes deformation in the pavement materials producing a radial tensile strain at the bottom of the asphalt layer. This tensile strain causes fatigue cracking in the pavement. MICHPAVE is a finite element program used to calculate the mechanistic outputs (stresses, strains, and deflections). These mechanistic outputs can be used for evaluation of the adequacy of the pavement structures. MICHPAVE uses the predicted vertical strains throughout the pavement structure to predict the rut depth in various layers. It considers the asphalt mix properties such as percent air voids and the kinematic viscosity, and the environmental temperature for predicting the rut depth and the fatigue life of the pavement. Thus, based on the material inputs, the MICHPAVE determines the number of ESAL that the pavement will be able to endure before the development of fatigue cracking or exceeding the allowable rut depth. However, in this study, the number of ESAL were 93 determined for fatigue only because they were to be compared with the results from the Asphalt Institute (AI) method. It should be noted here that the MICHPAVE gives the remaining service life of a pavement structure at the initiation of fatigue cracks, whereas the AI method determines the remaining service life of the pavement when 20 % of the area has developed fatigue cracks. Therefore, the remaining service life calculated by both methods may not be the same rather MICHPAVE should give a shorter remaining service life than the AI method. In this study, to draw the comparison with the Asphalt Institute method, the input parameters for the MICHPAVE were kept the same as those for the Asphalt Institute Method. The road under study was divided into a number of sub-sections depending upon the magnitude of deflection (the detail of these sub-sections in given is the next section). Each sub-section was analyzed for fatigue cracking using the layer moduli calculated by MICHBACK. The thicknesses of the layers were the same as those taken for MICHBACK with the only difference that the base layer was split into two layers (6- inches base and 7.8-inches subbase) of the same modulus. To ensure that the peak pavement deflection calculated by the MICHPAVE becomes equal to the deflection used in the Asphalt Institute method for calculation of the number of ESAL, the AC, base, subbase, and the roadbed moduli were adjusted in an equal proportion. This was done to ensure that the remaining service life calculated by both methods is for the same amount of deflection. Other input parameters used in the MICHPAVE are: (a) Average air temperature 70 °F (b) Air voids 5 % de 47 sen that sen- Para evalr Was I lemai 94 (c) Kinematic Viscosity 212 centistoke ((1) Tire Pressure 1) 9000 lb. load 90 psi 2) 16500 lb. load 130 psi A9 £33.82 was»; W (e) Ko 2.0 1.5 1.0 0.5 (t) Density(lb./ft3) 150 120 120 110 (g) Poisson Ratio 0.30 0.35 0.35 0.45 Using these input parameters, the MICHPAVE was run for each sub-section to determine the remaining fatigue life of the NS. The results of this analysis are presented in Table 4.6. 4.7 REMAINING SERVICE LIFE OF N5 In order to determine the required overlay thickness for a pavement structure to serve the predicted future traffic, it is necessary to know the number of load repetitions that a pavement can take before it is below the acceptable standard. The remaining service life of the existing pavement in terms of ESAL prior to overlay is a diflicult parameter to accurately determine. There are various methods that can be used to evaluate the remaining service life of the existing pavement. The Asphalt Institute method was used to determine the remaining service life and the results were compared with the remaining life calculated using the WCHPAVE computer program. 4.7.1 95 The Asphalt Institute Method. The Asphalt Institute (AI) Method [19] uses the pavement rebound deflection measured using the Benkleman beam. The rebound deflection used in the AI method is the mean rebound deflection plus two standard deviation of the deflections measured at different locations. If the deflection data is collected using a device other than Benkleman beam, then a device correction factor must also be applied to this deflection. The deflection data corresponds to the pavement and climatic conditions (moisture and temperature) existed during the time of testing, and must therefore be adjusted to the average/standard climatic conditions appropriate for each season in the design procedure. To use the AI method, the deflection data must be corrected to the standard temperature of 68 °F and to standard moisture conditions for which the AI charts are made. This corrected rebound deflection is known as representative rebound deflection (RRD). Only then this RRD may be used to determine the remaining service life of the pavement using the AI method. For converting the FWD data into RRD, the road section under consideration was divided into number of sub-sections having a peak deflection within a range of one mil. That is, pavement sections with a peak deflection of 2.5 to 3.49 mils were grouped into one sub-section. The other sub-sections were made with a subsequent increment of one mil deflection. The average peak deflection of each sub-section was then used to determine the RRD as follows: RRD=(3(+ZS)>< c.2236 :3.— oua.o>< .3592 533:3 £35.: .92.... 38.3.3223 2: 2:. gm 2: .8 Cap—=58 < "m... 93.5. 100 NW ‘NOLLOS'HEO ONDOSBH NOISSO .3: :86 22.8%.. 250...... .8809 "an... Esz 2m ....o...........= ...............= ....o......... 25...... 2......— 8.... 1_._-- —-q-- u - — __-qu_ - - —u~qud q - q —--1-. q PGOAU 2.... - - 2...... ...... - - 2...... 8... - - 2...... 8.... - H 2...... 2.... I ! ...... l 8... - I I I - 2.... ...... - - ...... - - ...... ...... - .- H 2.... .....u - H 2.... ...-.4. l I I I .... ...... - g a... ...3 i - e... ...... -. n a... ......“ - H .... ppbbib - —-p_~_. _ _ _b..__ p h . ~p.~~-. _ p . _pb»b- _ _ O-P 9mm SSHONI NULL-331230 ONOOESH NSISSO 4.7.2 101 pavement can support. For this purpose, the formula derived from Figure 4.30 is as follows: Loglo (EAL) = -O.38662 - (4.38662) * Loglo (RRD) (4.5) Using this formula, and the calculated RRD, the remaining service life of each pavement sub-sections in terms of EAL was calculated and are listed in Table 4.6. MICHPAVE. It is a good engineering practice, that an alternative method may be used to check and ensure the accuracy of a particular method. For this purpose, the computer program MICHPAVE was used to estimate the remaining service life of the pavement sections relative to fatigue as discussed above under mechanistic analysis. The resulting remaining service lives (fatigue life) calculated by MICHPAVE for each pavement sub-section are listed in Table 4.6. To draw a comparison between the remaining service lives calculated by using the Asphalt Institute method and the MICHPAVE, the results for 18- and 33-kip loads for the various pavement subsections are shown in Figures 4.31 and 4.32. For both the 18- and 33-kip loads and for low deflection values, the remaining service lives given by the MICHPAVE program are lower than those obtained fi'om the AI method. Whereas for most moderate to high deflection values the MICHPAVE produced shorter remaining service lives than the AI method. This is due to the fact that the MICHPAVE program calculates the remaining service life based on the time of fatigue crack initiation whereas the AI method estimates the remaining service life of the pavement when 20 % of the area 102 I! .. .. .. .. ......3 8.3 ......NN 338 3.8.3 . 3.3.23 .. .. .. .. 83.3 8....MN 83.. 38.3.. N382 . 3.3.9: .. .. .. .. 8.... 83.. an... 8N.N8 .323 . 3.33.3 .. .. .. .. 83N 8...... 23.8 33... 35.3 . 3.3.3.3 .. .. o .. 8.3 8.... .m 28.3 .33.. .38. .N m 33...: .. .. o .. 98.3 833 .33 ......8... 32.....N n 3..N.n...N .. .. .. .. 8...... 8.3. 2...”... 833.. .32 ...N 3 3.8.2.. .. .. .. .. 2.3.. 83.3 53.3. 8...N.m.. ... .8... 3 3.2.3.. .. .. .. .. 83...... 838 33... 3.3... .38.... ... 3.....3. .. .. .. .. 832 8...“... 338 «3.33 333. ..N 3.2.3. .. .. .. .. 8N3. 83.... 338 N33... 8.8.3. ..N 3.2.“... .. .. .. . 8...... 838 3N3. 35.3.... 3.3.... 3 3.2.3. .. .. .. . 8......N 8...N3.. 333 «.3333 32...... 3 3.3.6.... .. .. .. . 833 8.3.3 .33.. 8.....3... 3.8.: 3 3.2.3. .. .. .. . 8.....3 8.33... .338 N.o.3...... 3.8.2 on 3N3... .. . .. N 8...3.... 88.23 «8.8... ......3... 3.8.. . 3 3.. ...... .. . .. m .85.... 88.33 83.8.... 333.3 33...... 3 3.2.2.. .. N .. 3 .83.... .833. 33.3....N 3.38.2 .388 3 3.3... . m . 3 88.23... ..8.8N.MN 33:... 2.83. 33.... 3 3......N N o . .. .88.... ..8.8..8 338... 3.33... 8.8... «N 35.3 3 N. N 2 88.3.3 8...8...Nm. ..3. ...3. ”3.5.8. 333 ... 33.3 o N. v ..N .883... .8838 3.3.3 E333. 3N... z 3.3... N. x o NN 88.8...8N 8...8.......N.. .33.... .3333 88m... . 3.1... 3 3 n. 3 8.....8........N ..8...8...8.2 332.3. 338.8... 382 . 33.3 _ 2.9. 5.-.: 5...... 5.-.: .573 .2... 5.-.: as... ......3 in ...... ....mm ...: 2.2.8... ...: .5552: 33...... ......5. .5552: 33...... ......E. 828...... .o .85 Esta... 8.26 3.52.5. .22....83. .33.»... 8E»... 3.5.2.... 38.. a... .352 8.839.. i=8» ...... 82:39.. 2.2 E 5.... 3mm. 9.:— ootflom 3.5qu. a... .... 5.5.5:... < n e... czah 103 8080...: 8.... .53. .... .38.... 8 888...... 8083.... o... ..o ......— ooEom m8888 on... an... 9:8... 8%.. ...... ... .35.... 8.8.8.8. 8.8.8.... 8.8.8.. 8.8.8. 8.8.... 8.8.. 8.8. 8...... suomas 139110 .IaqumN aAyulnmmng 104 0868686— .mcoccoae vac. QEAM mo 538:: E 2268 EoEona 05.3 8: 83.5w wEEaEm: 2E. nnmé 23w?— A285 222.8 .3593 "mm... 02%:— oQ—d :26 9:6 curd 2:6 cmcd 609.6 956 owed 256 256 25.2. ocodm ocodm cocdc— cocdcw cocdom cocdco; coodcofi coodccd coodocd— ._356 o: + A8855 “3:93. ~33 Ego 36% $05.25 >263 “Ragga " end 95w:— 9568.8— 8o686 ~ a—4xm— 2558.. 80.8— c86— o— 8— coo— - - 88. (81!!!!) mm 114 0» 80803 808 0» 838.: 8088 88.8 88.: 888.8 _ 8.8-08 0:- 80:88 838 0:- 30:08 8.8.. 88.8 88.8 «88.8 _ 8.8.08 0» 88.208 808 08 88.808 808: 88.8 88.: 88.8 _ 8.8.08 0:. 88.88.: 83: 3 “8.808 80°: 88.8 88.: 888.8 _ 8.8-08 :8 80808 85: 3- 8088.: :02... 88.8 3.2.: 88.: n 8.8-0: 0c 8088.: 80:: 0e 838.8 832.: 88.8 88.: 828.8 m 8.8.08 0: 8088.8 808: 0e 8888.8 88.88.: 88.8 88.: 88:8 8 8.8-02 :8 80:03. 808.. :8 8888.8 8020: :80: 88.: 3:82 8 8.2-02 0n 838.8 838 0n 8888.8 808...; 88.8 88.: 888.2 2 8.2.02 0n 80808 88.8 0.. 80808 8088.” 88.8 88.: 888.: ..N 8.2-02 :8 8080...: 8088 0:. 2:88.: 8083 88.8 :20: 88.2 8 88.2.02 :8 808.3 8088 0.. 82.3.8 888... 88.8 88.: «88.: 8 8.2.03 0.. 88.808 88.85 3 28.308 8020“ 83.8 :88 828.: 8 8.2-02 3. 838.8 88.20” 0m 8080:. 88.208 88.8 88.: 8.8.2 8 8.2-02 0m 88.88.: 88.83 0m 88.8.3. “8.88.2 88.8 88.: 88.2 8 88.2.0: :8 838.8 8.20: 0N 83:08 28.88.: 2.8.2 88.: 38.: 8 8.2-02 0" 8.28.8 8.88.» o.“ «8.808 808.8 28.: 88.8 888.2 8 8.2-08 a.” 88.818 88.88.: - 8.8.2 8.8.8 8802 88.: .88.: 8 8.8.0» 3 83.8.: 88.808 - - 838.8 88.2 88.: «88.» 8 8.8.0:. - - 88.818 - - 8088.8 88.2 88.8 883 8 88-0... - - 88.808: - - 88.808: 8802 88.: 88% 2 8.90m . . 88.858 - - 88.8088 82.: 88.: 83.2.“ 2 8.90.. - - 88.8.83 - - 80808 888 88.: 880.. : 8.8.0:” 8080892 - - 8.88.80: 83 88.: 882 : 88-2 .20.: 22.2 :5 3.35 .22: 22.2 a: 8E8 35.93:. .e a: 3:23 8:5 3:5 2:): 2.288 3:5 :83 535 :8: 8.5.5: 3..-2 8:88: 3 9.2: 8,552: 3385 22:2 :5. .6: am :8: .88. .332 8:88: fl .3< 55:2 828:2. .32. .8 3.... .8... .2852 8.80:2. .3.....n ......mmv not“... 3:05.822. ......» Em... a... ...... 8:33.. 8895.95. 8.2.25 9... .... 8:25:5- < .. .... 03.».- 122 Asphalt Institute MI AVE 60 0 w 0 0 0 ..S....a. 2.2.3.3. .33 ......8 Ions Number of Sect f33-kip SAL. 101150 80 mill nor to thatwillfailp f pavement sections ion 0 Distribut Figure 4.43 MICHPAVE fi\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ._.___—__._._____._ .\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ .—______.____.__..___..____—_..._...—__-__._._._._._._..___.___-__._____.___..___.___._.____.___..___.__ v“onoa“anounno“aa«“u“ovaaaonogvona“u“anaaav“ao“umaa“868880088“a0numamnuaanuu“o“000.0008“““ooomonaunmovuv .—....—__—___—__—.._.._______._—_.____.._—__._..._...—......—...—...._..__._...______.______—____._____. .\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ fl =.... ......==.=====. ::_= ...:= _ V\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ n ........::= ......E. .... _ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\« o \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\N\\\\\\\\\\\\\\\\\\\\- V" ... =::. ........:= _ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\N ”N ...........=.:.==.:=== = 5.. =5: _ \\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ... ._=.....==..........=======._====._=.=..===.._ nv ‘ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ .....:._=.== .. :55: «V m V\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\\\\\\\\\ a n m .5... :5... w .\\\\\\\\\\\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\~ 8 n _...===....==............=5:===_==::== I n V\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\. h? a :55... .....:....=.....: w V\\\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\§ A ...: ....E: :5... «V .......:..=.. . NV -\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\5 nu ..._=_=..__._=.=.==:=.= A , _ . ... 2 0 8 6 4 2 0 l I Number of Sections bution of the pavement sections and their Overlay thicknesses that The Figure 4.44 are required to sustain 80 millions of 33-kip SAL. CHAPTER 5 SUMMARY CONCLUSIONS AND RECOMMENDATIONS 5.1 SUMMARY After the premature failure of the National Highway (N 5) between Karachi and Hyderabad in Pakistan in April 1994, various teams were formed to investigate the causes of failure. As a part of these investigative efforts, the nondestructive deflection test (NDT) data was collected along 52.4 km section of this highway using the KUAB falling weight deflectometer (FWD) during February and March 1995. This study deals with the analysis and discussion of the NDT data. The statistical analysis of the NDT data indicates that although the average peak surface deflection along the length of the road is quite normal, the variation in deflection at various sensor locations along the length of the road is very high. The coefficient of variation of deflection at various sensor locations varies from about 32 to about 54 percent. The outer most sensor (located at 70 inches from the center of the load), which measures the deflection contributed by the roadbed soil only, has the maximum coefficient of variation. This variation in deflection at the various sensor locations along the length of the road is due partly to poor construction practices during the preparation (compaction) of the roadbed soil. To fithher investigate the causes of this variation in deflection, the MICHBACK computer program was used to backcalculate the moduli of the various pavement layers. The backcalculated layer moduli also showed considerable variations along the length of the road. This variation in the layer moduli can also be attributed to construction practices and, perhaps, to a poor 123 124 quality control. For each deflection group, the backcalculated layer moduli and the layer thicknessess were used in the MICHPAVE computer program to analyze the pavement structure and to calculate its remaining service life for that deflection group. The Asphalt Institute method was also used to determine the remaining service life of the pavement and to calculate the required overlay thickness for performance periods of six and eight years. Based upon the NDT data and the results of the mechanistic analysis using the MICHBACK and the MICHPAVE computer programs, and the Asphalt Institute method, several conclusions were drawn and are presented in the next section. 5.2 CONCLUSIONS As stated above, based on the NDT data, statistical analysis of the data, backcalculation of pavement layer properties using the MICHBACK computer program, mechanistic analysis using the MICHPAVE computer program, and the Asphalt Institute method to determine the remaining service life and the required overlay thickness, the following conclusions are drawn: 1. The quality and structural capacity of the pavement of the National Highway N5 vary considerably from one test location to another. 2. The variation in the deflection at various sensor locations along the length of the road is due partly to poor construction practices. 3. The MICHBACK results (layer moduli) are accurate relative to the measured deflection data. 5.3 125 The temperature correction of the AC modulus is a function of the temperature gradient in the AC layer, and not the temperature at the top of the AC layer only. The remaining service life calculated by both MICHPAVE and the Asphalt Institute method shows that parts of the National Highway N5 are severely under- designed. The assumption of the AC layer coefficient (a) of 0.42, causes the pavement design engineers in Pakistan to underestimate the required AC thickness. A 0.42 layer coefficient corresponds to an AC modulus value of about 450 ksi. At various locations along the N5 highway, the AC modulus was considerably less than 450 ksi. For the design performance periods of six and eight years, the National Highway N5 is considerably under-designed. A structural improvement by means of an AC overlay is required. RECOMMENDATIONS The following recommendations are appropriate for improving the quality of the pavement structures in Pakistan: 1 . The accuracy and the authenticity of the mechanistic analysis depends upon the accuracy and the comprehenssiveness of the deflection data. The NDT data that was collected as a part of this study is not comprehensive neither is complete. It is strongly recommended that the NDT data includes location reference points and pavement surface distress data. 126 To reduce the time involved in data reduction and conversion, a more automated software package could be utilized. Although the KUAB FWD was used for data collection, the format of the NDT data written by the on board computer software was not compatible with the MICHBACK computer program. To ensure and improve the quality control measures, NDT’s could be conducted afler construction to assess the pavement variability along the project. It is strongly recommended that the highway authority in Pakistan establishes, for each class of road, a maximum acceptable value of the pavement peak surface deflection. This value can be used as a part of the quality control measures and for acceptance/rejection of the pavement in question. The correction of the AC modulus for temperature requires data regarding the temperature gradient in the AC layer. A study should be conducted to develop temperature correction methods based on the effect of temperature on the AC modulus during the warming and cooling cycles. Similar studies should be conducted on other roads in Pakistan to check and improve the structural adequacy of the pavements. APPENDIX A Appendix A Table A-1 : Measured FWD deflection data for stations 100-1 101. IFW D DATA FILE : A:\N582D1.FWD HProject : N5 HSection : 2 HLocation : start from hyd tol plaza HRoad clas. : Flex HNo of lanes : 2 HMeasured lane : outer H . HSurface type : asphalt HI.ane width : 12 HDirection(NSWE) : s HShoulder type : ST HOffset side dist: 3 fl HWeather : Sunny H 2 HOperator : almani IDate Created : 02-26-1995 HMachine Type : KUAB FWD Model 150 HSoflware Version : 4.23 ILoad Mode : 1 (6+6 large buffers, 3 stack weights) IPlate Radius : 15.0 (cm) HPlate Cal Factor : 11050.00 HPlate Cal Add : 150 HPlate Gain Factor: 1.00000 HPlate Cal Date : ll-27-l994 HPlate Cal Time : 12:23:02 IlAir Cal Factor : 0.073666 HAir Cal Add : ~273 HAir Cal Date : 11-26-1994 HAir Cal Time : 15:03:]0 IIDMI Cal Factor : 0.696384 HDMI Last Cal Date: 02-26-1995 HDMI Last Cal Time: 09:57:59 IDrop Sequence : 2123 IRecord Drop? : NYYY [Channel : 0 1 2 3 4 5 6 ISensor ID : 0- l- 2- 3- 4- 5- 6- IDistance : 0.0 20.0 30.0 45.0 60.0 120.0 180.0 (cm) lPosition : CENTER BEHIND BEHIND BEHIND BEHIND BEHIND BEHIND HStatic Cal Factor: 0.5642 0.2884 0.2816 0.2865 0.1399 0.1376 0.1396 HDynCal Factor : 1.050 1.050 1.050 1.050 1.050 1.050 1.050 HGainFactor : 1.000 1.000 1.000 1.000 1.000 1.000 1.000 HChannel Cal Date : 02-24-95 02-24-95 02-24-95 02-24—95 02-24—95 02-24-95 02-24-95 HChannel Cal Time: 14:22:24 14:22:24 14:22:24 14:22:24 14:22:24 14:22:24 14:22:24 H 127 128 Table A-1 (cont'd). Sta Imp Load D0 D20 D30 D45 D60 D120 D180 Air Pave Time J m Num kg! mm mm arm mm am am cm 9C aC hh:mm:u D 100 2 2592 79 56 43 29 21 9 5 32.5 36.5 12:11:31 D 100 3 4052 133 94 75 50 36 14 8 32.5 36.5 12:11:39 D 100 4 7436 254 190 150 103 75 29 15 32.5 36.5 12:11:50 D 201 2 2598 105 73 57 37 24 7 3 32.7 36.8 12:14:10 1) 201 3 4061 175 127 100 64 42 ll 4 32.7 36.8 12:14:19 D 201 4 7447 339 256 204 137 91 22 8 32.7 36.8 12:14:30 D 301 2 2589 85 61 45 29 18 4 3 35.1 36.4 12:16:43 D 301 3 4070 137 101 76 49 31 7 3 35.1 36.4 12:16:51 D 301 4 7505 249 185 144 96 63 12 5 35.1 36.4 12:17:02 D 400 2 2589 149 109 85 56 35 8 4 32 37.4 12:18:46 D 400 3 4053 246 186 146 97 64 15 7 32 37.4 12:18:55 D 400 4 7475 464 361 289 200 136 33 13 32 37.4 12:19:06 D 501 2 2585 132 97 74 45 27 4 2 32.3 38.1 12:20:42 D 501 3 4034 219 165 126 79 50 32.3 38.1 12:20:51 D 501 4 7459 411 319 247 159 102 16 32.3 38.1 12:21:01 D 601 2 2577 161 114 90 58 39 13 6 31.5 38.8 12:22:28 D 601 3 4039 266 197 153 103 70 23 10 31.5 38.8 12:22:37 D 601 4 7436 508 386 306 211 148 48 21 31.5 38.8 12:22:48 D 701 2 2596 127 92 72 47 32 9 4 31.2 38.3 12:24:39 D 701 3 4041 214 159 124 84 56 16 31.2 38.3 12:24:47 D 701 4 7514 412 315 249 172 120 32 14 31.2 38.3 12:24:58 D 800 2 2572 127 91 72 49 35 10 4 34.1 39.1 12:26:24 D 800 3 4056 214 158 129 91 64 20 7 34.1 39.1 12:26:32 1) 800 4 7461 419 325 264 194 139 41 16 34.1 39.1 12:26:42 D 901 2 2562 134 91 7O 42 27 7 4 33.2 39.1 12:28:10 D 901 3 4032 227 160 123 77 51 12 5 33.2 39.1 12:28:18 D 901 4 7456 437 325 253 166 109 28 10 33.2 39.1 12:28:29 D 1001 2 2595 127 92 72 45 30 6 3 33.1 38.9 12:30:00 D 1001 3 4039 210 158 122 82 54 12 4 33.1 38.9 12:30:08 D 1001 4 7483 406 312 248 172 117 27 9 33.1 38.9 12:30:18 D 1101 2 2572 156 117 93 63 41 10 6 35.7 39.7 12:31:47 D 1101 3 4039 249 192 155 106 71 19 8 35.7 39.7 12:31:55 D 1101 4 7483 456 357 289 203 141 38 18 35.7 39.7 12:32:06 129 Table A-2 : Measured FWD deflection data for stations 1101-27000. IFWD DATA FILE : C:\SFWD\DATA\NSSZD1A.FWD ject : N5 tion : 2 tion : start from hyd tol plaza oad clas. : Flex 0 of lanes : 2 easured lane 7 outer Surface type ' asphalt HLane width : 12 11th : almani [Date Created : 02-26-1995 HMachine Type : KUAB FWD Model 150 HSoftware Version : 4.23 ILoad Mode : 1 (6+6 large buffers, 3 stack weights) IPlate Radius : 15.0 (cm) HPlate Cal Factor : 11050.00 HPlate Cal Add : 150 I-lPlate Gain Factor: 1.00000 HPlate Cal Date : 1 1-27-1994 1 [Plate Cal Time 12:23:02 HArr Cal Factor 0.073666 HArr Cal Add -273 HAir Cal Date : 11-26-1994 HArr Cal Time : 15:03:10 HDMI Cal Factor : 0.696384 MI Last Cal Date: 02-26-1995 MI Last Cal Time: 09:57:59 IDropSequence :2123 IRecord Drop? :NYYY IChannel : 0 1 2 3 4 5 6 ISensorID : 0- 1- 2- 3- 4- 5- 6- IDistanee : 0.0 20.0 30.0 45.0 90.0 120.0 150.0 (cm) IPosition : CENTER BEHIND BEHIND BEHIND BEHIND BEHIND BEHIND StaticCal Factor: 0.5642 0.2884 0.2816 0.2865 0.1399 0.1376 0.1396 Cal Factor : 1.050 1.050 1.050 1.050 1.050 1.050 1.050 HGain Factor ' 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Channel Cal Date : 02-24-95 02-24-95 02-24-95 02-24-95 02-24-95 02-24-95 02-24-95 Channel Cal Time : 14:22:24 14:22:24 14:22:24 14:22:24 14:22:24 14:22:24 14:22:24 130 Table A-2 (cont'd). J Station Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave Time I J m Nam kg! cm on em am am am am IC 0C hhzmmzu .——. — —. .— —. 1.— D 1101 2 2607 148 110 88 60 18 11 6 32.3 33.8 12:46:06 D 1101 3 4064 235 180 146 100 32 17 10 32.3 33.8 12:46:14 D 1101 4 7470 437 341 278 196 65 34 22 32.3 33.8 12:46:25 D 1201 2 2558 153 104 77 48 11 6 3 35.2 40.1 12:48:20 D 1201 3 4023 256 179 134 84 21 10 5 35.2 40.1 12:48:28 D 1201 4 7483 498 358 272 177 46 20 10 35.2 40.1 12:48:39 D 1300 2 2582 165 118 89 54 11 3 3 35.1 40.5 12:50:18 D 1300 3 4037 278 205 155 94 21 8 4 35.1 40.5 12:50:27 D 1300 4 7483 541 409 313 195 43 17 7 35.1 40.5 12:50:37 D 1400 2 2576 258 179 131 76 21 13 8 32.9 41.2 12:52:12 D 1400 3 3998 438 315 235 141 41 24 15 32.9 41.2 12:52:21 D 1400 4 7382 844 635 487 308 91 49 30 32.9 41.2 12:52:32 D 1501 2 2549 217 140 97 56 20 12 9 32 41.1 12:53:58 D 1501 3 3996 359 244 173 101 36 23 14 32 41.1 12:54:06 D 1501 4 7413 683 488 361 222 80 49 32 32 41.1 12:54:16 D 1600 2 2572 127 89 69 46 14 8 5 32.9 41.1 12:55:51 D 1600 3 4041 213 155 120 82 25 14 8 32.9 41.1 12:55:58 D 1600 4 7503 405 309 242 168 56 29 17 32.9 41.1 12:56:09 D 1701 2 2577 216 138 92 43 8 5 4 33.4 40.7 12:57:33 D 1701 3 4028 340 227 152 73 14 9 6 33.4 40.7 12:57:41 D 1701 4 7451 585 403 280 142 28 17 12 33.4 40.7 12:57:52 D 1800 2 2578 123 69 42 20 6 4 4 33.6 40.5 12:59:57 D 1800 3 4042 195 l 12 70 34 9 6 5 33.6 40.5 13:00:07 D 1800 4 7516 344 207 134 65 17 11 8 33.6 40.5 13:00: 17 D 1900 2 2581 158 115 88 63 30 24 19 34 41.4 13:01:41 D 1900 3 4022 262 193 150 106 52 38 29 34 41.4 13:01:50 D 1900 4 7478 495 377 298 216 105 75 59 34 41.4 13:02:00 D 2001 2 2577 130 89 68 45 16 9 6 34 40.9 13:03:26 D 2001 3 4036 220 157 121 80 28 18 9 34 40.9 13:03:34 D 2001 4 7473 431 323 253 173 64 36 21 34 40.9 13:03:45 D 2100 2 2566 117 77 58 38 16 13 9 34 35.1 13:17:08 D 2100 3 4042 194 136 103 70 30 19 15 34 35.1 13:17:18 D 2100 4 7461 380 276 214 149 63 42 31 34 35.1 13:17:29 D 2201 2 2582 133 89 72 47 16 10 7 33.4 40.8 13:19:16 D 2201 3 4031 225 158 124 83 30 17 12 33.4 40.8 13:19:24 D 2201 4 7469 444 323 256 176 62 36 24 33.4 40.8 13: 19:39 D 2301 2 2545 324 220 160 94 25 15 10 33.8 42.9 13:21:06 D 2301 3 3993 540 383 283 171 44 25 17 33.8 42.9 13:21:14 D 2301 4 7303 1043 768 584 371 97 55 37 33.8 42.9 13:21:25 D 2400 2 2551 246 182 141 90 27 18 10 34.3 42.1 13:22:50 D 2400 3 3992 421 324 253 165 49 26 17 34.3 42.1 13:22:58 D 2400 4 7358 838 664 532 364 115 62 38 34.3 42.1 13:23:10 D 2500 2 2584 111 92 85 73 38 23 14 36.8 42.3 13:24:30 D 2500 3 4033 188 160 148 127 67 41 24 36.8 42.3 13:24:39 D 2500 4 7472 386 338 310 269 148 92 53 36.8 42.3 13:24:50 D 2600 2 2551 311 208 149 84 26 17 13 34.8 42.2 13:26:08 131 Table A-2 (cont'd). .1 Station] Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave Time I J m Nam kg! cm cm cm am am am am eC eC hhzmmas D 2600 3 3999 514 359 264 153 46 29 21 34.8 42.2 13:26:16 D 2600 4 7328 969 707 535 329 97 57 40 34.8 42.2 13:26:28 D 2701 2 2566 136 96 76 49 19 15 12 36.7 41.8 13:27:50 D 2701 3 4032 225 166 130 86 36 25 19 36.7 41.8 13:27:59 D 2701 4 7521 445 336 264 177 72 48 38 36.7 41.8 13:28:10 D 2800 2 2599 82 55 46 32 17 14 10 36.5 41.4 13:29:39 D 2800 3 4056 129 91 75 57 29 22 17 36.5 41.4 13:29:46 D 2800 4 7622 244 174 143 111 61 44 35 36.5 41.4 13:29:57 D 2900 2 2573 118 88 72 50 18 12 9 32.3 41.6 13:31:12 D 2900 3 4039 201 153 126 88 33 21 16 32.3 41.6 13:31:21 D 2900 4 7542 395 302 251 181 69 42 29 32.3 41.6 13:31:31 D 3000 2 2557 179 128 96 56 14 8 7 36 41.6 13:33:28 D 3000 3 4017 281 204 157 95 24 14 12 36 41.6 13:33:36 D 3000 4 7495 495 374 293 188 51 30 23 36 41.6 13:33:47 D 3100 2 2561 204 129 92 50 15 9 7 35.1 41.7 13:35:09 D 3100 3 3999 340 225 160 89 27 16 13 35.1 41.7 13:35: 18 D 3100 4 7426 643 441 326 190 55 32 23 35.1 41.7 13:35:29 D 3200 2 2563 123 83 62 40 14 9 6 34.3 42.1 13:36:48 D 3200 3 4008 200 140 108 72 24 14 10 34.3 42.1 13:36:55 D 3200 4 7539 375 275 216 148 52 30 22 34.3 42.1 13:37:06 D 3300 2 2574 155 95 67 40 14 10 8 35.6 40.5 13:38:34 D 3300 3 4022 255 166 119 74 24 17 12 35.6 40.5 13:38:42 D 3300 4 7521 499 338 249 157 54 35 25 35.6 40.5 13:38:53 1) 3400 2 2552 171 120 91 56 14 8 4 37.2 41.3 13:40:15 1) 3400 3 4003 286 210 159 100 25 13 7 37.2 41.3 13:40:23 1) 3400 4 7487 562 426 329 215 58 28 15 37.2 41.3 13:40:34 D 3500 2 2538 262 168 113 62 11 5 2 35.3 42.1 13:42:16 D 3500 3 3972 432 287 202 111 21 8 3 35.3 42.1 13:42:25 D 3500 4 7436 807 556 404 234 44 17 7 35.3 42.1 13:42:35 D 3600 2 2538 178 127 93 53 13 7 5 32.9 41.9 13:43:57 D 3600 3 4008 301 222 167 98 24 13 8 32.9 41.9 13:44:05 D 3600 4 7504 581 449 347 212 52 27 17 32.9 41.9 13:44:16 D 3701 2 2548 184 122 84 46 10 5 3 33.3 42.1 13:46:25 D 3701 3 4017 306 214 149 82 17 11 5 33.3 42.1 13:46:34 D 3701 4 7497 581 421 302 177 37 18 11 33.3 42.1 13:46:44 D 3801 2 2540 191 129 97 58 16 9 7 34.2 42.9 13:48:05 D 3801 3 4013 321 230 173 106 28 16 11 34.2 42.9 13:48: 12 D 3801 4 7462 630 465 360 228 63 34 22 34.2 42.9 13:48:24 D 3900 2 2543 259 177 129 71 12 5 2 34 41.9 13:50:09 D 3900 3 3973 429 307 228 131 24 8 3 34 41.9 13:50:17 D 3900 4 7425 830 613 468 285 52 17 6 34 41.9 13:50:28 D 4000 2 2573 148 101 74 46 13 7 4 35.6 42.6 13:51:58 D 4000 3 4030 237 169 127 81 22 13 7 35.6 42.6 13:52:06 D 4000 4 7558 448 330 254 168 50 25 16 35.6 42.6 13:52:17 D 4101 2 2580 150 96 70 40 11 6 4 35.7 43.1 13:53:46 D 4101 3 4033 255 166 121 72 20 10 6 35.7 43.1 13:53:55 132 Table A-2 (cont’d). J Station Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave Time J m Num kg! am am am cm am am cm IC eC hhrmmus ..___... —— — ——- --- h— D 4101 4 7544 501 342 255 158 42 21 11 35.7 43.1 13:54:06 D 4200 2 2572 124 71 48 28 9 6 3 33.2 42.9 13:55:26 D 4200 3 4042 204 122 85 49 14 8 5 33.2 42.9 13:55:34 D 4200 4 7585 396 246 175 105 30 16 9 33.2 42.9 13:55:45 D 4301 2 2572 309 209 147 79 14 7 4 32.2 42.1 13:57:05 D 4301 3 3996 508 358 258 144 25 10 5 32.2 42.1 13:57:13 D 4301 4 7420 969 709 524 308 54 23 12 32.2 42.1 13:57:24 D 4400 2 2539 301 203 146 87 19 9 4 31.8 41.7 13:59:18 D 4400 3 3988 496 348 256 158 36 16 8 31.8 41.7 13:59:26 D 4400 4 7418 964 703 530 343 80 35 16 31.8 41.7 13:59:37 D 4501 2 2544 217 134 93 49 14 8 6 31.6 40.9 14:01 :49 D 4501 3 3985 349 228 160 89 24 14 9 31.6 40.9 14:01:58 D 4501 4 7506 653 444 326 189 51 28 19 31.6 40.9 14:02:09 D 4600 2 2566 168 95 61 34 12 10 9 35.8 42.1 14:03:47 D 4600 3 4026 268 162 106 61 23 16 13 35.8 42.1 14:03:55 D 4600 4 7574 509 325 221 133 46 31 25 35.8 42.1 14:04:07 D 4700 2 2567 124 87 68 45 13 8 5 35.4 41.8 14:05:25 D 4700 3 4044 213 154 122 82 25 13 7 35.4 41.8 14:05:37 D 4700 4 7580 425 321 254 174 54 26 15 35.4 41.8 14:05:48 D 4800 2 2566 94 52 33 14 3 2 2 34.3 42.2 14:07:09 D 4800 3 4042 152 89 55 26 4 3 2 34.3 42.2 14:07:17 D 4800 4 7640 272 163 105 51 9 6 5 34.3 42.2 14:07:27 D 4901 2 2565 134 90 65 37 6 1 2 36.5 43.2 14:08:50 D 4901 3 4022 227 157 115 66 11 4 1 36.5 43.2 14:08:58 D 4901 4 7571 443 317 232 136 24 6 2 36.5 43.2 14:09:09 D 5000 2 2547 179 110 75 37 8 5 2 34.5 43.2 14: 10:33 D 5000 3 4011 301 195 135 70 15 6 3 34.5 43.2 14:10:41 D 5000 4 7519 583 399 287 159 30 13 7 34.5 43.2 14:10:51 D 5100 2 2552 114 72 52 30 8 3 3 37.6 42.5 14:12: 13 D 5100 3 4017 187 122 88 53 15 8 4 37.6 42.5 14:12:22 D 5100 4 7588 347 238 175 109 29 14 9 37.6 42.5 14:12:33 D 5200 2 2566 152 92 62 32 8 5 2 34.7 42.6 14:13:52 D 5200 3 4019 252 158 108 57 12 6 3 34.7 42.6 14:14:00 D 5200 4 7585 474 312 217 120 25 12 7 34.7 42.6 14:14:11 D 5300 2 2580 92 60 44 26 5 2 2 34.3 43 14:15:41 D 5300 3 4063 145 96 72 44 9 5 4 34.3 43 14:15:50 D 5300 4 7671 260 180 136 87 21 10 7 34.3 43 14:16:02 D 5400 2 2558 162 103 69 37 10 6 4 36.3 42.8 14:17:18 D 5400 3 4006 266 177 120 67 17 9 5 36.3 42.8 14:17:26 D 5400 4 7564 511 353 250 148 39 19 11 36.3 42.8 14:17:36 D 5500 2 2561 124 77 56 31 10 7 5 36.7 42.9 14:18:53 D 5500 3 4019 200 132 95 57 19 11 8 36.7 42.9 14:19:02 D 5500 4 7570 379 260 193 122 40 24 17 36.7 42.9 14:19: 13 D 5600 2 2567 185 124 91 47 11 5 4 34 43.3 14:20:30 D 5600 3 4004 299 209 154 87 18 10 4 34 43.3 14:20:38 D 5600 4 7540 558 404 307 181 41 19 12 34 43.3 14:20:49 133 Table A-2 (cont'd). huh UUUUUCCUUUUUUUUUDUUUUUUUDUUCUUUDUUUUUUUUUUUUUU Station Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave Time I m Num kg! am am am am am cm cm eC eC Hummus .. .... .... ...... _.._. 5701 2 2566 143 95 69 39 11 7 5 35.3 43.1 14:22:05 5701 3 4011 233 164 120 72 19 11 7 35.3 43.1 14:22:15 5701 4 7566 456 332 247 153 41 24 15 35.3 43.1 14:22:25 5800 2 2570 94 61 46 29 9 5 4 34.7 42.1 14:23:51 5800 3 4020 155 105 80 50 15 9 6 34.7 42.1 14:23:59 5800 4 7590 296 208 159 101 30 17 12 34.7 42.1 14:24:10 5901 2 2559 168 111 79 42 10 6 4 34.8 42.6 14:25:30 5901 3 4001 272 188 135 74 17 11 8 34.8 42.6 14:25:39 5901 4 7571 508 362 266 153 37 21 15 34.8 42.6 14:25:54 6000 2 2567 117 78 55 32 10 6 4 36.5 42.1 14:27:24 6000 3 4028 194 134 97 58 16 11 6 36.5 42.1 14:27:33 6000 4 7584 377 268 199 123 34 19 13 36.5 42.1 14:27:43 6100 2 2548 101 66 48 29 7 5 4 38.2 42.9 14:29:01 6100 3 4036 161 109 82 48 15 10 7 38.2 42.9 14:29:10 6100 4 7628 297 201 151 94 27 17 12 38.2 42.9 14:29:21 6201 2 2585 153 115 92 62 20 13 9 36.3 43.3 14:30:41 6201 3 4025 261 200 159 109 37 21 14 36.3 43.3 14:30:49 6201 4 7564 519 410 332 234 80 46 31 36.3 43.3 14:30:59 6300 2 2558 236 144 92 44 9 5 4 34.6 42.6 14:32:19 6300 3 4009 373 235 155 77 15 7 4 34.6 42.6 14:32:28 6300 4 7518 665 439 301 160 31 14 9 34.6 42.6 14:32:39 6401 2 2566 143 97 72 41 7 3 2 34.7 42.1 14:33:59 6401 3 4001 234 164 122 69 13 5 3 34.7 42.1 14:34:07 6401 4 7532 438 313 236 141 25 11 7 34.7 42.1 14:34:17 6501 2 2552 114 72 52 30 7 3 2 34.7 42.9 14:35:29 6501 3 4011 184 122 89 53 12 6 3 34.7 42.9 14:35:38 6501 4 7602 347 236 176 106 25 10 5 34.7 42.9 14:35:49 6600 2 2558 169 110 75 37 6 2 2 36.5 42.1 14:37:01 6600 3 4009 269 182 125 63 11 5 2 36.5 42.1 14:37:09 6600 4 7551 489 335 232 123 20 9 5 36.5 42.1 14:37:20 6701 2 2559 256 169 109 51 6 2 2 35.7 42.9 14:38:34 6701 3 4003 389 264 176 85 9 3 2 35.7 42.9 14:38:43 6701 4 7495 662 459 310 155 15 6 3 35.7 42.9 14:38:54 6800 2 2549 298 186 114 45 4 2 1 33.4 42.4 14:40: 12 6800 3 3976 444 282 177 73 6 3 3 33.4 42.4 14:40:20 6800 4 7538 752 482 306 133 11 8 5 33.4 42.4 14:40:31 6900 2 2566 188 115 78 40 10 7 5 37.9 42.9 14:41 :50 6900 3 4014 303 189 130 71 19 11 7 37.9 42.9 14:41:59 6900 4 7588 541 351 248 141 37 22 15 37.9 42.9 14:42:09 7001 2 2561 321 203 126 56 7 3 2 35.7 43.6 14:43:28 7001 3 3984 505 333 216 97 11 S 4 35.7 43.6 14:43:36 7001 4 7531 888 609 411 198 22 9 6 35.7 43.6 14:43:47 7101 2 2572 108 61 42 25 10 7 5 35.1 43.1 14:45:16 7101 3 4033 177 105 73 44 17 11 7 35.1 43.1 14:45:26 7101 4 7626 340 209 147 90 35 23 15 35.1 43.1 14:45:36 7200 2 2566 130 84 59 35 9 5 4 35.8 42.9 14:47:01 134 Table A-2 (cont’d). J Station Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave Time I J m Nam kg! am am am am am am am eC eC Hummus D 7200 3 4023 207 140 100 58 15 9 6 35.8 42.9 14:47:09 D 7200 4 7612 389 271 197 120 32 17 11 35.8 42.9 14:47:20 D 7300 2 2561 129 79 54 34 12 8 5 36 43.8 14:48:43 D 7300 3 3992 213 137 95 59 22 12 9 36 43.8 14:48:52 D 7300 4 7584 413 281 203 128 43 26 17 36 43.8 14:49:03 D 7400 2 2570 132 72 50 28 10 7 5 36.9 43.8 14:50:22 D 7400 3 4036 211 124 87 51 18 11 7 36.9 43.8 14:50:30 D 7400 4 7609 406 248 177 108 38 23 15 36.9 43.8 14:50:41 D 7500 2 2572 88 57 42 29 13 10 8 36.2 43.6 14:52:10 D 7500 3 4015 146 97 73 49 23 15 12 36.2 43.6 14:52:19 D 7500 4 7633 286 197 149 104 46 32 24 36.2 43.6 14:52:29 D 7600 2 2551 136 76 47 28 9 6 4 36.1 44.2 14:53:50 D 7600 3 4011 217 130 84 49 16 10 7 36.1 44.2 14:53:58 D 7600 4 7625 416 264 177 106 35 22 15 36.1 44.2 14:54:09 1) 7702 2 2557 116 63 40 25 9 7 5 38.1 43.8 14:55:33 D 7702 3 4015 185 109 71 42 16 10 7 38.1 43.8 14:55:42 D 7702 4 7598 355 225 149 93 34 21 14 38.1 43.8 14:55:53 D 7800 2 2561 129 81 59 38 15 11 8 36.7 44.3 14:57:20 D 7800 3 4006 213 142 103 67 25 17 12 36.7 44.3 14:57:28 D 7800 4 7585 418 290 217 143 54 36 26 36.7 44.3 14:57:39 D 7900 2 2566 130 80 54 30 11 9 5 35.7 43.4 14:58:59 D 7900 3 4042 210 134 93 55 20 14 9 35.7 43.4 14:59:08 D 7900 4 7629 396 262 186 112 42 27 19 35.7 43.4 14:59:20 D 8000 2 2552 124 75 52 30 12 9 6 36.3 43 15:01:18 D 8000 3 4006 197 126 88 50 19 14 11 36.3 43 15:01 :26 D 8000 4 7612 367 243 175 103 41 29 24 36.3 43 15:01:37 D 8100 2 2552 111 68 48 29 12 8 5 36 43 15:02:58 D 8100 3 4006 178 117 81 50 20 13 10 36 43 15:03:08 D 8100 4 7615 344 233 169 106 43 29 21 36 43 15:03:19 D 8200 2 2538 139 85 55 29 8 6 5 37.6 42.1 15:04:42 D 8200 3 4001 229 144 93 51 15 10 9 37.6 42.1 15:04:50 D 8200 4 7603 421 276 185 103 29 20 17 37.6 42.1 15:05:01 D 8300 2 2551 198 129 92 51 17 11 7 38.2 42.3 15:06:25 D 8300 3 3992 315 216 155 91 29 18 14 38.2 42.3 15:06:34 D 8300 4 7570 584 410 306 187 59 37 26 38.2 42.3 15:06:45 1C Testing Comment: patching D 8402 2 2527 229 149 105 57 14 8 9 37.6 41.6 15:08:22 D 8402 3 3984 365 248 177 99 24 15 10 37.6 41.6 15:08:31 D 8402 4 7520 674 471 349 205 50 29 21 37.6 41.6 15:08:42 D 8500 2 2530 221 154 110 62 15 10 7 34.9 40.4 15: 10:02 D 8500 3 3988 360 260 190 109 26 16 11 34.9 40.4 15:10:10 D 8500 4 7521 691 511 386 232 55 33 22 34.9 40.4 15:10:21 D 8600 2 2556 85 54 41 26 10 7 5 37.4 41.7 15:11:40 D 8600 3 4023 132 87 66 44 17 12 8 37.4 41.7 15:11:48 D 8600 4 7669 245 165 127 88 34 23 18 37.4 41.7 15:11:58 HC Tesggg' Comment: bridge starterd| 135 Table A-2 (cont'd). J Station Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave Time I J m Nam kg! am am rem am am am aC eC hhzmmua D 8700 2 2538 88 48 35 25 11 9 8 37.4 43.3 15:13:30 D 8700 3 4032 145 83 61 42 22 17 13 37.4 43.3 15:13:39 D 8700 4 7655 280 168 123 88 43 34 26 37.4 43.3 15:13:50 Testing Comment: bride centre D 8800 2 2533 230 157 112 71 28 20 16 36.3 42.3 15:15:09 D 8800 3 3995 385 269 196 122 46 33 24 36.3 42.3 15:15:19 D 8800 4 7533 739 539 403 261 94 63 49 36.3 42.3 15:15:30 C Testing Cormnent: patc ' D 8900 2 2549 179 117 85 57 29 23 20 37.1 42.9 15:16:47 D 8900 3 3998 282 192 140 96 50 38 30 37.1 42.9 15:16:56 D 8900 4 7570 526 373 283 197 100 75 61 37.1 42.9 15:17:07 C Testing Comment: patching D 9000 2 2570 130 89 70 49 25 21 17 35.3 36.8 15:36:38 D 9000 3 4014 208 146 118 85 41 32 27 35.3 36.8 15:36:49 D 9000 4 7546 393 284 229 170 84 64 52 35.3 36.8 15:37:03 D 9100 2 2551 267 184 128 72 29 24 20 36.5 41.7 15:39:03 D 9100 3 3979 447 319 226 126 50 38 31 36.5 41.7 15:39:12 D 9100 4 7454 857 629 458 264 98 77 63 36.5 41.7 15:39:22 D 9201 2 2543 191 130 95 58 22 18 15 36.5 40.5 15:40:44 D 9201 3 3987 320 222 167 102 ' 36 25 22 36.5 40.5 15:40:54 D 9201 4 7502 604 434 332 21 1 73 50 42 36.5 40.5 15:41 :05 D 9301 2 2564 137 87 59 35 15 12 11 36 40.2 15:42:25 D 9301 3 4001 220 145 100 59 27 19 16 36 40.2 15:42:32 D 9301 4 7593 403 278 198 123 51 36 31 36 40.2 15:42:43 D 9400 2 2552 149 93 65 42 20 16 13 36 41.3 15:44:03 D 9400 3 3989 238 154 107 68 34 25 20 36 41.3 15:44: 13 D 9400 4 7543 435 297 214 141 72 51 39 36 41.3 15:44:24 D 9501 2 2492 432 299 221 130 45 32 22 36.5 39.6 15:46:] 1 D 9501 3 3908 697 494 372 228 81 52 38 36.5 39.6 15:46:20 D 9501 4 7289 1304 960 741 480 167 107 74 36.5 39.6 15:46:31 D 9600 2 2524 269 168 107 55 19 15 14 36.3 40.1 15:47:54 D 9600 3 3978 418 273 181 96 33 24 20 36.3 40.1 15:48:05 D 9600 4 7517 739 500 346 194 66 47 39 36.3 40.1 15:48: 16 1C Testing Comment: patching D 9701 2 2536 340 236 162 91 32 22 16 36.9 39.6 15:49:37 D 9701 3 3965 538 388 278 165 56 38 29 36.9 39.6 15:49:45 D 9701 4 7462 980 734 546 342 1 16 75 53 36.9 39.6 15:49:57 D 9800 2 2545 200 138 102 61 24 18 14 36 40.5 15:51:25 D 9800 3 4003 318 231 170 106 41 29 23 36 40.5 15:51:33 D 9800 4 7547 595 443 338 221 85 59 46 36 40.5 15:51 :44 D 9901 2 2559 130 87 67 45 19 13 1 1 36.2 40.4 15:53:05 D 9901 3 4013 214 150 115 77 33 23 18 36.2 40.4 15:53:13 D 9901 4 7601 409 296 232 159 68 46 35 36.2 40.4 15:53:24 D 9999 2 2563 165 111 83 48 15 10 8 35.2 39.6 15:54:50 D 9999 3 4005 267 190 139 86 26 17 12 35.2 39.6 15:54:59 D 9999 4 7595 506 371 279 178 54 34 25 35.2 39.6 15:55:09 136 Table A-2 (cont’d). J Station Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave Time I J m Nam kg! cm cm am am am am am 0C eC bh:mm:u D 10099 2 2539 161 104 75 46 18 14 9 36.3 39.9 15:56:28 D 10099 3 3982 259 177 129 80 33 22 16 36.3 39.9 15:56:40 D 10099 4 7538 499 350 263 169 67 46 34 36.3 39.9 15:56:51 D 10201 2 2539 337 227 157 87 29 20 15 36 40.2 15:58:13 D 10201 3 3955 539 378 273 157 51 33 25 36 40.2 15:58:21 D 10201 4 7412 992 720 538 330 109 71 50 36 40.2 15:58:32 D 10301 2 2525 256 183 138 88 29 20 13 35.3 40 16:00:01 D 10301 3 3974 429 317 241 154 52 32 23 35.3 40 16:00:10 D 10301 4 7483 825 624 489 328 109 67 46 35.3 40 16:00:22 D 10400 2 2533 111 73 58 43 25 22 18 35.3 39.6 16:01 :53 D 10400 3 4002 185 127 101 72 41 34 28 35.3 39.6 16:02:01 D 10400 4 7603 366 260 205 150 83 65 53 35.3 39.6 16:02: 12 D 10501 2 2563 148 94 72 49 29 24 20 35.7 39.8 16:03:31 D 10501 3 4006 233 159 120 85 48 37 30 35.7 39.8 16:03:40 D 10501 4 7606 443 313 244 175 100 77 60 35.7 39.8 16:03:51 D 10600 2 2529 267 180 128 77 30 27 22 35.7 39.4 16:05: 15 D 10600 3 3958 425 295 216 131 50 40 35 35.7 39.4 16:05:22 D 10600 4 7496 771 552 412 261 100 78 66 35.7 39.4 16:05:33 D 10700 2 2543 258 177 126 74 23 14 10 35.8 40.2 16:06:53 D 10700 3 4004 427 305 222 137 40 23 16 35.8 40.2 16:07:02 D 10700 4 7516 801 599 450 287 87 49 33 35.8 40.2 16:07:12 D 10800 2 2549 285 186 128 73 23 17 13 36 39 16:08:30 D 10800 3 3984 453 304 221 127 41 28 20 36 39 16:08:38 D 10800 4 7505 813 574 431 266 91 59 42 36 39 16:08:49 D 10900 2 2561 239 149 99 54 15 11 7 36 39.3 16:10:21 D 10900 3 3998 372 244 169 93 27 16 11 36 39.3 16:10:30 D 10900 4 7569 653 449 323 192 57 33 22 36 39.3 16:10:41 D 11000 2 2547 137 86 62 39 16 12 8 35.1 39.2 16:12:11 D 11000 3 3998 223 144 107 69 28 20 15 35.1 39.2 16:12:18 D 1 1000 4 7640 427 285 215 142 58 40 29 35.1 39.2 16:12:29 D 1 1100 2 2558 98 59 42 26 10 6 4 36.7 39 16:15:26 D 11100 3 4015 159 101 72 44 17 12 7 36.7 39 16:15:34 D 11100 4 7644 297 197 144 93 35 23 16 36.7 39 16:15:45 D l 1210 2 2552 97 64 48 34 14 11 8 35.3 38.6 16:19:52 D 11210 3 4015 158 107 82 57 25 17 12 35.3 38.6 16:20:00 D 11210 4 7599 305 213 167 120 52 33 24 35.3 38.6 16:20: 10 D 1 1300 2 2565 140 81 54 30 12 10 7 36.9 39.4 16:22:00 D 1 1300 3 4018 223 134 92 53 22 17 12 36.9 39.4 16:22:08 D 11300 4 7611 408 258 181 111 46 32 24 36.9 39.4 16:22:23 IC Testing Comment: centre D 11401 2 2577 116 83 64 40 14 10 7 35.7 38.9 16:24:03 D 11401 3 4032 190 140 109 68 23 15 11 35.7 38.9 16:24:11 D 1 1401 4 7662 367 281 219 142 49 29 22 35.7 38.9 16:24:22 D 11500 2 2562 118 74 55 35 14 11 9 36 39.4 16:25:46 D 11500 3 4018 194 129 95 61 24 16 12 36 39.4 16:25:54 D 1 1500 4 7626 368 261 197 128 51 34 25 36 39.4 16:26:07 137 Table A-2 (cont'd). J Station Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave Time I J m Nam kg! on em cm mm mm cm rem eC aC hll:mm:u D 12034 2 2539 153 101 72 43 17 13 9 34.6 36.6 16:29:12 D 12034 3 3995 257 180 129 79 31 23 17 34.6 36.6 16:29:20 D 12034 7574 500 362 266 171 68 46 32 34.6 36.6 16:29:31 IC Testing Comment: bulhari river abut.A end sidel D 12100 2 2539 298 194 131 67 13 8 5 34.3 36.9 16:31:28 D 12100 3 3982 490 330 227 125 24 14 10 34.3 36.9 16:31:38 D 12100 4 7475 901 627 446 256 49 29 20 34.3 36.9 16:31:48 D 12201 2 2558 156 94 63 34 12 9 6 36.3 37.1 16:33:47 D 12201 3 3993 257 163 110 61 23 15 11 36.3 37.1 16:33:55 D 12201 4 7588 488 322 225 134 48 32 24 36.3 37.1 16:34:06 D 12300 2 2583 107 64 43 26 9 5 6 36.7 37.5 16:36:07 D 12300 3 4016 172 107 73 45 18 12 9 36.7 37.5 16:36:17 D 12300 4 7642 318 206 146 95 37 25 19 36.7 37.5 16:36:28 iC Testing Comment: end of day one D 12300 2 2610 75 51 39 26 10 7 6 30.3 30.1 10:10:24 D 12300 3 2623 76 52 40 28 10 8 6 30.3 30.1 10:10:31 D 12300 4 2625 78 52 41 29 11 8 6 30.3 30.1 10: 10:38 D 12300 5 4097 127 90 68 46 19 13 9 30.3 30.1 10: 10:46 D 12300 6 4088 129 89 68 45 18 12 9 30.3 30.1 10: 10:54 D 12300 7 4097 126 89 69 45 19 13 9 30.3 30.1 10:11:02 D 12300 8 7477 238 174 134 92 37 24 18 30.3 30.1 10:11:15 D 12300 9 7465 238 173 134 91 37 24 19 30.3 30.1 10:11:28 C Testing Comment: selected mode was pre teat. discard above results C Testing Comment: for station 12300 D 12300 2 2623 73 50 38 26 10 7 5 29.8 28.4 10: 14:36 D 12300 3 4092 123 89 67 45 18 12 8 29.8 28.4 10: 14:46 D 12300 4 7481 238 173 135 92 37 25 18 29.8 28.4 10: 14:57 C Testing Comment: above was the reading at last point of day-1 D 12400 2 2596 117 87 70 49 18 11 7 29.2 32.1 10: 17: 10 D 12400 3 4080 201 156 125 89 31 18 11 29.2 32.1 10:17:18 D 12400 4 7447 408 322 261 186 67 37 24 29.2 32.1 10: 17:28 C Testing Comment: above reading taken at firsdt point D 12501 2 2623 91 64 48 30 9 7 6 29.8 32.5 10: 19:00 D 12501 3 4084 148 107 82 50 17 11 9 29.8 32.5 10: 19:09 D 12501 4 7525 283 211 162 103 33 23 19 29.8 32.5 10: 19:20 D 12601 2 2613 152 105 78 45 10 7 5 30 32.9 10:20:49 D 12601 3 4071 247 177 132 79 18 10 7 30 32.9 10:20:57 D 12601 4 7475 456 332 251 153 36 21 14 30 32.9 10:21:11 IC Testing Comment: pipe culvert D 12700 2 2600 153 97 71 39 10 7 4 30.2 33 10:23:28 D 12700 3 4056 250 168 121 69 17 11 7 30.2 33 10:23:36 D 12700 4 7467 450 314 230 138 35 20 14 30.2 33 10:23:47 D 12800 2 2600 75 50 40 27 12 9 7 29.7 32.1 10:27:28 D 12800 3 4083 127 91 71 48 21 14 10 29.7 32.1 10:27:39 D 12800 4 7526 251 186 147 101 45 29 20 29.7 32.1 10:27:50 IC Testing Comment: patching 138 Table A-2 (cont'd). .1 Station Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave Time I J m Nam kg! am am am am rem am am eC aC Illummm D 12900 2 2576 161 116 88 54 13 8 5 30 32.5 10:30:02 D 12900 3 4065 257 193 147 92 23 11 9 30 32.5 10:30:10 D 12900 4 7440 463 352 271 175 47 25 17 30 32.5 10:30:20 D 13000 2 2569 174 117 86 49 16 13 9 28.7 31 10:31:56 D 13000 3 4051 282 198 147 87 26 18 14 28.7 31 10:32:04 D 13000 4 7434 505 366 277 171 53 34 26 28.7 31 10:32:15 D 13100 2 2617 156 107 79 48 15 11 9 29.5 29.3 10:37:02 D 13100 2 2589 159 108 78 47 15 12 8 30.5 30.3 10:44:44 D 13100 2 2613 152 105 77 46 16 11 9 31.2 29 10:47:59 D 13100 3 4049 255 180 134 81 26 17 13 31.2 29 10:48:07 D 13100 4 7483 466 341 256 161 51 34 26 31.2 29 10:48:18 D 13200 2 2591 124 87 65 37 12 9 8 30.3 34.3 10:50:40 D 13200 3 4065 200 146 109 66 21 14 11 30.3 34.3 10:50:49 D 13200 4 7519 359 270 205 128 44 30 22 30.3 34.3 10:51:00 D 13300 2 2597 88 58 40 26 12 11 8 30.3 35 10:52:44 D 13300 3 4072 139 93 69 45 21 14 13 30.3 35 10:52:52 D 13300 4 7527 246 175 134 91 43 32 25 30.3 35 10:53:03 D 13400 2 2562 158 104 73 43 16 12 9 30.3 34.8 10:54:55 D 13400 3 4030 250 174 126 74 27 19 14 30.3 34.8 10:55:03 D 13400 4 7447 447 327 243 153 56 38 28 30.3 34.8 10:55:14 D 13500 2 2585 171 114 82 47 12 8 6 30.5 35.4 10:56:54 D 13500 3 4037 279 192 139 80 21 12 8 30.5 35.4 10:57:02 D 13500 4 7442 493 354 261 159 42 24 18 30.5 35.4 10:57:13 D 13600 2 2584 169 120 92 58 18 13 9 30.5 35.6 10:58:48 D 13600 3 4058 277 200 155 100 32 18 13 30.5 35.6 10:58:56 D 13600 4 7494 499 374 293 197 66 38 26 30.5 35.6 10:59:07 D 13700 2 2572 175 137 111 75 29 22 18 31.2 37.1 11:00:51 1) 13700 3 4034 289 230 188 130 54 36 28 31.2 37.1 11:01 :00 D 13700 4 7409 522 426 352 252 104 73 58 31.2 37.1 11:01:11 D 13800 2 2570 279 172 108 54 19 14 10 30.5 37.5 11:02:41 D 13800 3 4015 427 277 181 95 32 23 17 30.5 37.5 11:02:49 D 13800 4 7418 711 485 328 181 64 44 33 30.5 37.5 11:02:59 D 13900 2 2580 174 126 95 57 17 13 10 30.9 36.8 11:04:40 D 13900 3 4042 277 206 155 95 30 20 16 30.9 36.8 11:04:48 D 13900 4 7447 488 367 281 177 61 41 33 30.9 36.8 11:04:58 D 14000 2 2576 134 74 51 32 13 9 7 30.8 37.2 11:06:30 D 14000 3 4058 217 129 92 56 22 14 12 30.8 37.2 11:06:39 D 14000 4 7467 390 245 178 112 46 31 23 30.8 37.2 11:06:49 D 14100 2 2564 233 151 105 54 15 13 15 31.7 37.9 11:08:44 D 14100 3 4037 362 240 169 90 28 20 16 31.7 37.9 11:08:52 D 14100 4 7425 627 429 308 175 56 38 30 31.7 37.9 11:09:03 D 14200 2 2596 84 56 43 27 11 8 7 30.5 36.5 11:10:36 D 14200 3 4067 136 96 72 47 20 14 11 30.5 36.5 11:10:44 D 14200 4 7511 242 176 135 90 39 28 23 30.5 36.5 11:11:00 D 14300 2 2584 117 79 61 41 17 13 10 30.8 37.8 11:12:32 D 14300 3 4047 191 137 108 71 30 22 16 30.8 37.8 11:12:41 139 Table A-2 (cont'd). J Station Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave Time I J m Nam kg! am am am am am mm mm aC aC hh:mm:u h_D 14300 4 7512 357 266 213 146 62 43 32 30.8 37.8 11:12:52 D 14400 2 2580 195 137 99 55 14 12 10 30.5 37.2 11:14:27 D 14400 3 4053 306 222 165 98 25 19 16 30.5 37.2 11:14:35 D 14400 4 7487 533 394 298 183 52 40 33 30.5 37.2 11:14:46 D 14501 2 2561 185 113 76 48 24 17 14 31.6 37.8 11:16:37 D 14501 3 4028 297 192 134 87 44 31 23 31.6 37.8 11:16:45 D 14501 4 7456 534 373 269 183 92 66 48 31.6 37.8 11:16:56 D 14550 2 2580 127 85 66 44 18 14 12 31.4 37.7 11:21 :21 D 14550 3 4047 207 145 111 75 34 23 19 31.4 37.7 11:21:29 D 14550 4 7483 393 283 221 153 67 48 37 31.4 37.7 11:21:40 IC Testing Comment: Inner Lane and Patch Work D 14600 2 2552 261 174 131 84 32 24 18 31.3 37.5 11:24:16 D 14600 3 4008 418 296 227 149 59 39 28 31.3 37.5 1 1:24:24 D 14600 4 7404 762 563 445 307 125 82 58 31.3 37.5 1 1:24:35 D 14700 2 2561 213 159 128 86 29 20 15 31.6 37.3 11:26:08 D 14700 3 4026 349 270 218 150 54 33 23 31.6 37.3 11:26: 16 D 14700 4 7421 622 494 406 288 108 67 46 31.6 37.3 1 1:26:31 D 14800 2 2551 234 157 115 68 19 12 9 31.6 37.2 11:28:11 D 14800 3 4008 368 259 193 116 33 20 14 31.6 37.2 11:28: 19 D 14800 4 7450 626 456 344 216 64 39 28 31.6 37.2 11:28:29 D 14900 2 2577 156 104 77 45 13 9 7 31.7 37.9 11:30:44 D 14900 3 4043 251 177 132 78 25 16 11 31.7 37.9 11:30:52 D 14900 4 7525 445 326 249 156 52 33 24 31.7 37.9 11:31:06 D 15000 2 2572 139 87 65 43 18 13 11 30.8 39.5 11:32:52 D 15000 3 4036 226 153 112 75 32 21 15 30.8 39.5 11:33:00 D 15000 4 7506 413 291 220 151 63 42 32 30.8 39.5 11:33:11 D 15051 2 2590 126 86 66 43 19 15 12 31.1 39.8 11:34:49 D 15051 3 4034 194 138 108 70 31 25 20 31.1 39.8 11:34:58 D 15051 4 7535 343 253 199 134 60 47 39 31.1 39.8 11:35: 12 IC Testing Comment: INNER LANE D 15100 2 2563 134 102 81 51 13 8 6 31.7 39.5 11:36:36 D 15100 3 4030 222 169 133 86 24 14 9 31.7 39.5 11:36:44 D 15100 4 7533 398 308 245 161 46 27 20 31.7 39.5 11:36:55 D 15200 2 2565 172 113 78 42 10 8 6 31.2 39.5 11:38:40 D 15200 3 4044 270 187 128 70 18 12 10 31.2 39.5 11:38:56 D 15200 4 7516 470 331 233 134 34 23 19 31.2 39.5 11:39:08 D 15300 2 2573 230 146 99 48 12 7 7 31.2 39.5 11:41 :25 D 15300 3 4021 343 228 158 82 20 13 9 31.2 39.5 11:41:33 D 15300 4 7434 558 388 276 156 40 25 17 31.2 39.5 11:41:44 D 15400 2 2570 178 120 86 49 13 9 7 31.9 39.2 1 1:43:42 D 15400 3 4015 277 192 136 82 21 13 9 31.9 39.2 11:43:55 D 15400 4 7502 480 346 255 159 48 29 21 31.9 39.2 11:44:08 D 15501 2 2560 172 103 62 32 10 6 5 30.7 38.6 11:45:42 D 15501 3 4015 266 168 105 54 17 12 9 30.7 38.6 11:45:50 D 15501 4 7504 460 298 195 106 34 23 18 30.7 38.6 11:46:01 1) 15550 2 2555 108 77 61 43 18 11 7 31.1 39.1 11:47:38 140 Table A-2 (cont'd). J Station Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave Time J m Nam kg! cm am am am am cm 2m aC aC Hummus ...... ... .. .... ._ __ D 15550 3 4040 174 128 102 73 32 19 11 31.1 39.1 11:47:50 D 15550 4 7552 320 245 198 147 67 4O 22 31.1 39.1 11:48:00 1C Testing Comment: INNER LANE D 15600 2 2573 95 57 40 24 12 10 7 30.8 38.6 11:49:56 D 15600 3 4057 152 96 68 41 21 15 12 30.8 38.6 11:50:04 D 15600 4 7558 275 182 130 82 40 31 24 30.8 38.6 11:50: 15 D 15700 2 2562 140 91 59 33 11 9 6 31.7 39.1 11:52:03 D 15700 3 4025 225 152 102 56 19 12 10 31.7 39.1 11:52:11 D 15700 4 7544 399 276 190 110 38 25 19 31.7 39.1 11:52:22 D 15800 2 2542 260 171 118 62 15 10 7 30.3 39.6 11:53:52 D 15800 3 4008 41 1 281 197 107 25 16 11 30.3 39.6 11:54:00 D 15800 4 7447 700 496 358 206 50 31 22 30.3 39.6 11:54:11 D 15900 2 2562 184 121 87 47 12 9 6 30.5 38.9 11:56:29 D 15900 3 4036 288 199 144 82 22 13 9 30.5 38.9 11:56:37 D 15900 4 7502 492 352 263 156 46 27 19 30.5 38.9 11:56:48 D 16000 2 2563 174 112 74 37 11 9 7 32.8 40.1 11:58:23 D 16000 3 4028 264 176 121 65 19 13 10 32.8 40.1 11:58:31 D 16000 4 7519 447 309 219 126 39 27 21 32.8 40.1 11:58:42 D 16050 2 2552 149 101 72 40 15 13 10 33 39.5 12:00:35 D 16050 3 4028 229 157 114 67 24 19 15 33 39.5 12:00:43 D 16050 4 7540 402 285 209 128 52 38 32 33 39.5 12:00:53 IC Testing Comment: INNER LANE D 16100 2 2563 230 136 87 43 14 10 8 32.1 39.8 12:02:24 D 16100 3 4015 351 216 142 71 23 16 13 32.1 39.8 12:02:32 D 16100 4 7533 590 376 254 135 46 32 25 32.1 39.8 12:02:46 D 16200 2 2585 187 114 79 44 16 13 9 32.5 39.4 12:04:33 D 16200 3 4011 291 186 131 74 27 18 13 32.5 39.4 12:04:41 D 16200 4 7484 505 337 245 147 53 36 28 32.5 39.4 12:04:51 D 16300 2 2565 187 118 79 45 15 13 10 32.1 40.6 12:06:27 D 16300 3 4019 287 188 132 74 27 19 16 32.1 40.6 12:06:35 D 16300 4 7529 495 335 237 145 53 38 30 32.1 40.6 12:06:49 16401 2 2555 217 140 96 50 10 6 4 31.7 41.1 12:08:25 D 16401 3 3996 323 220 153 82 16 9 7 31.7 41.1 12:08:33 D 16401 4 7519 543 381 274 153 34 19 14 31.7 41.1 12:08:44 D 16500 2 2576 91 54 38 23 10 6 6 32.7 41.5 12:10:20 D 16500 3 4053 145 92 68 42 18 11 7 32.7 41.5 12:10:28 D 16500 4 7568 269 179 135 88 37 24 16 32.7 41.5 12:10:42 D 16550 2 2558 85 49 33 19 8 6 4 32.9 40.8 12:12:25 D 16550 3 4010 133 81 56 34 14 9 6 32.9 40.8 12:12:33 D 16550 4 7604 245 157 110 68 29 19 13 32.9 40.8 12:12:43 C Testing Comment: INNER LANE D 16600 2 2563 130 83 57 31 9 5 4 31.9 41.1 12:14:26 1) 16600 3 4037 207 138 97 55 14 9 5 31.9 41.1 12:14:37 D 16600 4 7557 372 262 189 114 32 17 9 31.9 41.1 12:14:48 D 16700 2 2558 134 77 48 25 9 6 5 32.3 40.8 12:16:24 D 16700 3 4044 207 128 84 46 16 11 6 32.3 40.8 12:16:32 141 Table A-2 (cont'd). J Station Imp Load D0 D20 D30 D45 D90 D120 0150 Air Pave Time J m Nam kg! cm cm m am am am am aC eC Hummus D 16700 4 7568 363 239 165 99 34 21 13 32.3 40.8 12:16:43 D 16800 2 2573 163 101 66 32 10 7 6 32.1 40.6 12:19:18 D 16800 3 4052 251 163 111 57 18 12 9 32.1 40.6 12:19:29 D 16800 4 7560 435 296 207 114 37 24 17 32.1 40.6 12:19:40 D 16901 2 2565 136 88 61 35 11 9 7 31.7 41.4 12:21:38 D 16901 3 4054 211 145 103 59 19 14 10 31.7 41.4 12:21:46 D 16901 4 7539 373 266 195 117 40 27 19 31.7 41.4 12:21:57 D 17000 2 2561 98 63 46 29 10 7 6 33 42.2 12:23:42 D 17000 3 4039 158 106 79 50 18 12 9 33 42.2 12:23:53 D 17000 4 7587 291 202 151 98 37 24 17 33 42.2 12:24:04 D 17050 2 2578 111 74 56 35 11 9 6 33.3 42 12:25:47 D 17050 3 4024 179 125 94 59 22 15 10 33.3 42 12:25:54 D 17050 4 7568 333 239 181 120 45 29 21 33.3 42 12:26:05 IC Testing Comment: INNER LANE D 17100 2 2565 175 114 78 43 12 8 6 33.3 41.8 12:27:39 D 17100 3 4011 275 188 131 75 22 14 10 33.3 41.8 12:27:47 D 17100 4 7500 486 341 246 146 45 26 17 33.3 41.8 12:28:03 D 17201 2 2569 132 78 52 29 10 7 6 32.8 41.6 12:29:50 D 17201 3 4046 204 128 87 49 19 12 9 32.8 41.6 12:29:58 D 17201 4 7540 366 237 167 101 37 24 18 32.8 41.6 12:30:09 IC Testing Comment: NEAR KM 129 D 17300 2 2559 210 111 67 31 11 10 7 32.8 41.9 12:31:51 D 17300 3 4034 328 183 113 53 19 14 11 32.8 41.9 12:31:59 D 17300 4 7506 573 335 213 106 41 29 22 32.8 41.9 12:32:10 D 17400 2 2559 127 81 60 38 14 11 7 32.7 41.8 12:33:43 D 17400 3 4055 207 138 103 64 25 17 12 32.7 41.8 12:33:51 D 17400 4 7570 377 259 197 128 52 35 26 32.7 41.8 12:34:05 D 17500 2 2554 194 122 85 48 15 10 9 32.7 42.4 12:35:56 D 17500 3 4013 298 197 142 85 26 18 14 32.7 42.4 12:36:04 D 17500 4 7494 518 354 261 164 57 38 29 32.7 42.4 12:36:14 D 17550 2 2569 95 60 42 26 10 7 5 33 41.8 12:37:47 D 17550 3 4039 150 97 70 43 17 12 9 33 41.8 12:37:55 D 17550 4 7609 281 186 134 88 35 23 17 33 41.8 12:38:09 IL‘ Testing Comment: INNER LANE D 17600 2 2563 134 88 64 38 14 10 8 32.8 42.5 12:39:47 D 17600 3 4017 214 145 107 66 25 17 13 32.8 42.5 12:39:55 D 17600 4 7554 390 272 203 131 53 36 27 32.8 42.5 12:40:05 D 17700 2 2562 190 115 77 40 12 9 7 32.3 42.9 12:41:53 D 17700 3 4033 286 186 126 70 23 14 11 32.3 42.9 12:42:04 D 17700 4 7570 498 334 237 143 49 32 23 32.3 42.9 12:42: 15 D 17800 2 2544 200 134 89 49 17 12 9 32.1 42.1 12:44:16 D 17800 3 4003 314 220 152 88 31 22 16 32.1 42.1 12:44:24 D 17800 4 7482 559 401 289 177 63 42 31 32.1 42.1 12:44:35 D 17900 2 2552 256 161 109 61 21 14 11 33.7 43.9 12:46:18 D 17900 3 4000 392 261 182 105 38 25 18 33.7 43.9 12:46:29 D 17900 4 7493 706 490 354 215 81 54 39 33.7 43.9 12:46:40 142 Table A-2 (cont'd). J StationI Imp Load no mo use is mo D120 D150 Air Pave Time J m Nam kg! eat am am am am am rem aC eC Hummus D 18000 2 2552 162 112 80 47 17 11 9 32.8 42.9 12:48:26 D 18000 3 4012 260 185 136 82 30 20 14 32.8 42.9 12:48:34 D 18000 4 7508 480 351 261 167 63 42 31 32.8 42.9 12:48:45 D 18051 2 2544 198 132 90 47 16 12 9 32.7 42.4 12:50:14 D 18051 3 3984 300 207 144 79 26 19 15 32.7 42.4 12:50:26 D 18051 4 7502 537 378 268 157 55 40 30 32.7 42.4 12:50:36 IC Testing Comment: INNER LANE D 18100 2 2576 133 84 59 32 ll 7 6 32.5 42.3 12:52:41 D 18100 3 4025 210 142 99 57 19 12 10 32.5 42.3 12:52:49 D 18100 4 7593 380 263 187 112 39 25 19 32.5 42.3 12:53:00 D 18200 2 2557 216 147 104 63 20 13 10 32.3 41.2 12:55:14 D 18200 3 4023 333 238 176 109 37 24 15 32.3 41.2 12:55:22 D 18200 4 7492 580 437 336 225 83 51 35 32.3 41.2 12:55:33 D 18300 2 2563 175 l 13 75 43 18 13 9 32.5 42 12:57:02 D 18300 3 4012 268 182 128 75 31 21 16 32.5 42 12:57:10 D 18300 4 7592 459 327 240 153 64 44 33 32.5 42 12:57:21 I(‘ Testing Comment: NEAR KM 12 D 18400 2 2558 174 112 77 42 12 8 6 32.5 42.3 12:59:05 D 18400 3 4003 264 176 125 71 21 13 10 32.5 42.3 12:59:13 D 18400 4 7521 461 321 233 140 45 28 20 32.5 42.3 12:59:24 D 18500 2 2566 184 120 85 48 15 12 8 31.9 42.1 13:02:10 D 18500 3 4017 281 193 138 82 27 18 11 31.9 42.1 13:02:18 D 18500 4 7546 490 348 257 159 54 35 25 31.9 42.1 13:02:29 D 18600 2 2561 156 103 69 38 11 10 7 31.7 43.4 13:04:31 D 18600 3 4022 237 160 114 62 19 14 10 31.7 43.4 13:04:39 D 18600 4 7580 412 285 204 120 40 29 23 31.7 43.4 13:04:50 D 18701 2 2561 185 126 88 46 9 8 5 32.5 43.8 13:06:27 D 18701 3 3998 279 194 140 76 15 10 7 32.5 43.8 13:06:35 D 18701 4 7527 470 331 244 139 30 18 14 32.5 43.8 13:06:46 D 18800 2 2570 155 106 80 51 16 11 6 33 44 13:08:13 D 18800 3 4015 249 180 136 90 31 19 11 33 44 13:08:21 D 18800 4 7523 464 344 268 184 66 40 25 33 44 13:08:32 D 18900 2 2545 222 141 93 49 12 9 5 33.7 43.9 13:10:07 D 18900 3 3996 334 225 154 86 23 13 8 33.7 43.9 13:10:15 D 18900 4 7494 566 401 284 172 49 28 18 33.7 43.9 13:10:26 D 19000 2 2559 178 118 87 51 15 11 7 33.7 42.7 13:12:14 D 19000 3 4012 273 193 144 88 29 17 12 33.7 42.7 13:12:22 D 19000 4 7527 479 354 272 178 64 39 26 33.7 42.7 13:12:33 D 19050 2 2572 146 101 73 43 13 10 6 32.5 43.4 13:14:15 D 19050 3 4017 223 158 118 72 21 14 10 32.5 43.4 13:14:23 D 19050 4 7543 398 291 219 139 45 28 20 32.5 43.4 13:14:33 Testing Comment: INNER LANE D I 9100 2 2545 229 155 109 58 14 9 8 33.6 43.5 13:16:01 D 19100 3 4020 341 242 176 98 26 16 12 33.6 43.5 13:16:09 D 19100 4 7510 571 418 312 188 55 34 24 33.6 43.5 13:16:30 D i 9200 2 2543 188 134 96 55 15 10 6 32.3 43.8 13:18:23 143 Table A-2 (cont'd). J Station] Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave Time J m Nam kg! mm m am am am rem cm aC aC Hummus ...... _. ...... _ .... ,__._ D 19200 3 4006 292 211 157 95 25 14 11 32.3 43.8 13:18:31 D 19200 4 7533 500 377 286 183 54 32 21 32.3 43.8 13:18:42 D 19300 2 2552 181 123 86 53 16 11 7 33.3 44.3 13:20:13 D 19300 3 4011 280 199 145 90 28 16 11 33.3 44.3 13:20:22 D 19300 4 7549 499 362 271 177 59 35 23 33.3 44.3 13:20:36 IC Testing Comment: NEAR KM 127 D 19400 2 2565 137 85 55 30 11 7 6 33 44.3 13:22:22 D 19400 3 4030 217 138 93 53 19 13 11 33 44.3 13:22:30 D 19400 4 7566 383 253 177 105 42 29 22 33 44.3 13:22:41 D 19501 2 2547 166 104 69 38 11 9 6 32.1 42.7 13:24:36 D 19501 3 3993 258 169 118 68 21 12 10 32.1 42.7 13:24:48 D 19501 4 7570 451 309 223 137 44 29 19 32.1 42.7 13:24:58 D 19600 2 2559 124 83 54 30 11 9 7 33.3 44.1 13:26:33 D 19600 3 4008 188 130 89 51 19 12 10 33.3 44.1 13:26:41 D 19600 4 7581 328 232 167 103 39 27 21 33.3 44.1 13:26:52 D 19700 2 2544 142 89 59 31 9 7 5 33.7 44 13:28:25 D 19700 3 4008 217 140 98 54 16 13 9 33.7 44 13:28:37 D 19700 4 7587 370 251 177 104 32 21 15 33.7 44 13:28:48 D 19801 2 2558 132 75 49 26 7 6 4 33.9 43.9 13:30:20 D 19801 3 4030 201 121 82 44 13 10 7 33.9 43.9 13:30:28 D 19801 4 7609 347 219 152 85 26 17 12 33.9 43.9 13:30:39 D 19901 2 2561 123 78 54 30 8 7 5 33.3 45.1 13:32:10 D 19901 3 4019 198 132 92 53 15 9 7 33.3 45.1 13:32:22 D 19901 4 7566 363 245 173 101 30 18 14 33.3 45.1 13:32:32 D 20000 2 2548 63 39 30 23 11 7 5 33.7 44.6 13:34:07 D 20000 3 4036 110 70 54 39 18 12 9 33.7 44.6 13:34: 15 D 20000 4 7645 213 140 110 79 37 25 18 33.7 44.6 13:34:26 D 20050 2 2562 72 41 31 21 10 9 6 33.6 45.1 13:36:14 D 20050 3 4033 114 70 51 35 17 13 10 33.6 45.1 13:36:26 D 20050 4 7632 213 135 102 70 34 26 20 33.6 45.1 13:36:36 IC Testing Comment: INNER LANE D 20100 2 2558 152 104 75 45 12 9 7 33.2 44 13:38:05 D 20100 3 4003 233 168 123 75 23 15 10 33.2 44 13:38:13 D 20100 4 7607 416 308 231 146 46 31 22 33.2 44 13:38:24 D 20200 2 2538 218 149 108 61 13 9 7 33.9 43.7 13:40:07 D 20200 3 3993 324 229 168 100 21 12 8 33.9 43.7 13:40:21 D 20200 4 7502 541 390 292 178 42 24 17 33.9 43.7 13:40:32 D 20300 2 2540 252 165 116 64 15 11 9 32.7 44.2 13:42:02 D 20300 3 4006 381 262 187 106 25 16 13 32.7 44.2 13:42:10 D 20300 4 7508 645 449 329 195 50 32 25 32.7 44.2 13:42:21 IC Testing Comment. NEAR KM 126 D 20402 2 2544 226 154 106 54 15 9 8 33.2 43.3 13:44:05 D 20402 3 3992 337 237 169 92 25 16 12 33.2 43.3 13:44: 13 D 20402 4 7529 555 405 295 170 48 31 23 33.2 43.3 13:44:24 D 20500 2 2539 194 126 86 45 12 8 6 33.3 43.3 13:46:04 D 20500 3 4022 299 203 141 76 21 13 9 33.3 43.3 13:46:12 144 Table A-2 (cont'd). J Station] Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave The J m Nam kg! am am cm can rem am am aC eC Hummus ...... ._ _ ...... ...... ...... ...... ...... .... L...— D 20500 4 7593 513 357 258 148 42 26 19 33.3 43.3 13:46:22 D 20600 2 2545 209 130 86 44 1 1 8 6 33.7 44 13:48:24 D 20600 3 3986 308 202 138 76 20 14 11 33.7 44 13:48:32 D 20600 4 7581 506 347 245 143 43 29 22 33.7 44 13:48:43 D 20701 2 2546 188 128 91 52 15 11 8 33.9 43.7 13:50:39 D 20701 3 3978 291 206 151 90 26 17 13 33.9 43.7 13:50:47 D 20701 4 7527 505 367 276 176 57 37 27 33.9 43.7 13:50:58 D 20800 2 2544 163 103 69 36 11 11 7 33.9 43.7 13:52:40 D 20800 3 4004 240 160 112 62 19 14 11 33.9 43.7 13:52:47 D 20800 4 7599 408 282 206 122 42 29 22 33.9 43.7 13:52:58 D 20900 2 2546 175 121 82 43 10 8 7 34.1 43.4 13:54:35 D 20900 3 4001 267 186 130 72 19 1 1 9 34.1 43.4 13:54:43 1) 20900 4 7580 447 322 234 138 40 25 18 34.1 43.4 13:54:53 D 21000 2 2546 149 93 62 34 14 12 9 33.3 43.6 13:56:48 D 21000 3 4015 236 154 107 62 24 17 12 33.3 43.6 13:56:55 D 21000 4 7585 418 288 208 130 51 36 28 33.3 43.6 13:57:06 D 21050 2 2551 204 142 102 58 14 10 7 33.3 43.6 13:58:54 D 21050 3 3987 316 224 164 97 25 16 12 33.3 43.6 13:59:02 D 21050 4 7508 564 405 303 185 52 32 23 33.3 43.6 13:59:13 TC Testing Comment: INNER LANE D 21100 2 2552 194 122 82 47 16 13 10 34.4 44.4 14:00:49 D 21100 3 4026 298 196 138 80 28 21 17 34.4 44.4 14:00:58 D 21100 4 7568 509 348 250 152 57 41 33 34.4 44.4 14:01:09 D 21201 2 2538 265 177 123 66 18 12 10 33.2 44.8 14:02:39 D 21201 3 3992 400 279 200 112 29 19 15 33.2 44.8 14:02:47 D 21201 4 7525 664 474 352 208 59 39 30 33.2 44.8 14:03:03 D 21300 2 2557 243 164 116 67 22 17 15 33.7 42.9 14:04:55 D 21300 3 4023 367 259 188 115 39 27 23 33.7 42.9 14:05:03 D 21300 4 7521 629 464 347 224 81 54 44 33.7 42.9 14:05: 14 Testing Comment: NEAR KM 125 C Testing Comment: AT KM 125 D 21400 2 2552 223 154 108 62 20 17 14 34.1 42.1 14:08:05 D 21400 3 3998 334 240 175 105 36 27 22 34.1 42.1 14:08: 13 D 21400 4 7549 570 424 316 201 73 54 43 34.1 42.1 14:08:24 1) 21500 2 2559 227 143 92 42 11 10 7 33.7 43.6 14:10:05 D 21500 3 4006 329 215 143 72 19 14 12 33.7 43.6 14:10:13 D 21500 4 7585 543 367 252 138 39 27 23 33.7 43.6 14:10:24 D 21601 2 2560 204 136 96 55 17 16 13 34.1 44.2 14:12:07 D 21601 3 4014 301 216 157 95 31 22 19 34.1 44.2 14:12:15 D 21601 4 7585 505 371 277 178 62 44 35 34.1 44.2 14:12:26 D 2 1 700 2 2570 288 187 126 64 16 14 11 34.3 43.2 14:14:03 D 21700 3 3979 418 285 197 106 28 19 15 34.3 43.2 14:14:11 D 2 1 700 4 7527 706 491 349 198 55 37 31 34.3 43.2 14:14:22 D 2 l 800 2 2550 252 168 115 62 19 13 11 34.3 41.2 14:17:23 D 2 l 800 3 3955 382 266 187 105 31 21 18 34.3 41.2 14:17:32 _D 2 l 800 4 7533 659 467 337 201 60 41 33 34.3 41.2 14:17:43 145 Table A-2 (cont'd). J Stationl Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave Time J m Nam kg! am am am rem cm aC aC [Hummus — e—uu— —— —— —— — —— ...—- -— _- -— h—u- D 21900 2 2539 229 158 118 68 17 12 10 34.3 43.9 14:19:38 D 21900 3 4008 351 253 192 115 31 21 15 34.3 43.9 14:19:46 D 21900 4 7562 587 430 335 210 60 39 30 34.3 43.9 14:19:58 D 21999 2 2552 267 178 122 70 18 13 11 33.9 43.3 14:21:34 D 21999 3 4009 409 284 199 118 30 21 17 33.9 43.3 14:21:41 D 21999 4 7524 681 492 357 221 62 41 33 33.9 43.3 14:21:52 D 22100 2 2579 104 64 46 31 15 13 11 34.1 43.8 14:23:49 D 22100 3 4028 171 111 79 53 25 20 16 34.1 43.8 14:23:57 D 22100 4 7646 321 215 157 105 50 38 31 34.1 43.8 14:24:08 D 22201 2 2542 252 160 109 58 18 13 11 33.7 43.6 14:25:58 D 22201 3 3987 384 257 177 99 31 21 17 33.7 43.6 14:26:06 D 22201 4 7491 652 451 321 189 61 42 33 33.7 43.6 14:26: 19 D 22301 2 2544 216 130 86 45 14 11 10 33.3 42.3 14:28:08 D 22301 3 3989 335 211 144 78 25 18 15 33.3 42.3 14:28: 16 D 22301 4 7564 570 373 263 151 50 36 29 33.3 42.3 14:28:27 IC Testing Comment: AT KM 124 D 22400 2 2532 223 157 111 63 17 11 9 33.9 41.7 14:32:12 D 22400 3 4000 353 256 187 110 29 18 13 33.9 41.7 14:32:25 D 22400 4 7521 635 469 352 215 58 34 25 33.9 41.7 14:32:36 D 22500 2 2541 242 163 114 67 22 16 13 34.6 41.1 14:35:58 D 22500 3 4010 376 262 191 117 40 26 20 34.6 41.1 14:36:06 D 22500 4 7525 652 469 351 226 80 52 40 34.6 41.1 14:36:21 D 22600 2 2532 283 191 128 70 19 14 10 33.3 41.7 14:38:12 D 22600 3 3977 454 317 223 126 34 21 16 33.3 41.7 14:38:20 D 22600 4 7446 801 586 427 256 71 42 31 33.3 41.7 14:38:30 D 22701 2 2536 246 166 115 61 14 9 6 33.9 41.6 14:41:07 D 22701 3 4006 370 262 187 105 24 12 10 33.9 41.6 14:41:15 D 22701 4 7569 622 455 333 198 48 27 19 33.9 41.6 14:41:30 iC Testing Comment: NEAR PIPE CULVERT D 22800 2 2528 233 150 102 55 15 11 9 32.7 42.9 14:43:32 D 22800 3 3976 351 238 167 93 25 18 14 32.7 42.9 14:43:40 D 22800 4 7574 596 412 300 179 52 36 29 32.7 42.9 14:43:51 D 22900 2 2552 205 140 101 59 19 13 10 32.7 43.4 14:45:48 D 22900 3 4008 313 226 167 100 32 21 17 32.7 43.4 14:46:01 D 22900 4 7556 543 400 308 192 62 42 33 32.7 43.4 14:46:12 D 23000 2 2558 210 144 99 58 17 12 12 34.3 44 14:47:59 D 23000 3 3993 316 227 161 96 31 21 16 34.3 44 14:48:07 J D 23000 4 7577 533 395 290 184 60 40 33 34.3 44 14:48:17 C Testing Comment: NEAR PIPE CULVERT D 23100 2 2543 223 144 100 54 20 15 12 33.3 43.4 14:50:05 D 23100 3 4002 331 228 162 93 33 25 20 33.3 43.4 14:50: 14 D 23100 4 7519 560 395 290 180 68 49 40 33.3 43.4 14:50:25 D 23200 2 2546 213 138 93 46 14 11 9 33.9 43.5 14:52:16 D 23200 3 4001 316 216 149 78 25 19 15 33.9 43.5 14:52:24 D 23200 4 7540 528 373 267 149 52 38 31 33.9 43.5 14:52:35 D 23300 2 2551 261 165 106 57 21 16 13 34.1 43.5 14:54:17 146 Table A-2 (cont'd). J Station Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave Time I J m Nam kg! cm mm am am am am cm aC aC Hummus D 23300 3 4006 412 278 185 101 36 25 19 34.1 43.5 14:54:25 D 23300 4 7492 736 517 365 215 72 49 39 34.1 43.5 14:54:36 Testing Comment: ON PATCHING D 23400 2 2558 269 175 120 73 30 22 18 33.3 43.4 14:56:30 D 23400 3 4018 416 281 201 127 52 38 28 33.3 43.4 14:56:38 D 23400 4 7549 701 500 371 248 104 72 55 33.3 43.4 14:56:53 C Testing Comment: ON PATCHING D 23501 2 2542 237 168 117 66 19 15 12 33.9 42.3 14:58:36 D 23501 3 4017 364 266 192 114 35 25 20 33.9 42.3 14:58:50 D 23501 4 7591 630 466 347 216 69 49 39 33.9 42.3 14:59:00 C Testing Comment: 40M AWAY FROM KM 123 D 23600 2 2569 262 176 121 69 30 23 21 33.7 43.3 15:00:50 D 23600 3 3970 402 280 201 120 52 38 33 33.7 43.3 15:00:58 D 23600 4 7524 697 503 372 238 103 78 62 33.7 43 .3 15:01:09 D 23700 2 2565 165 112 81 54 33 28 24 34.1 41.8 15:02:48 D 23700 3 4034 255 181 134 91 54 46 39 34.1 41.8 15:02:57 D 23700 4 7609 460 335 256 181 108 89 75 34.1 41.8 15:03 :08 D 23800 2 2548 165 102 72 45 22 17 15 33.7 41.3 15:04:49 D 23800 3 4011 262 170 123 80 38 29 24 33.7 41.3 15:04:57 D 23800 4 7587 460 317 239 162 77 59 46 33.7 41.3 15:05:08 D 23900 2 2549 142 92 66 45 22 17 13 33.3 41.5 15:06:47 D 23900 3 4025 227 157 115 75 38 28 21 33.3 41.5 15:06:54 D 23900 4 7626 412 299 227 155 77 55 43 33.3 41.5 15:07:09 D 24000 2 2561 110 67 48 34 19 15 12 33.2 40.5 15:08:54 D 24000 3 4026 175 114 82 59 31 24 21 33.2 40.5 15:09:03 D 24000 4 7636 326 220 165 121 64 47 38 33.2 40.5 15:09:13 D 24100 2 2548 179 124 91 55 19 13 11 33.9 39.9 15:11:47 D 24100 3 4024 289 209 156 96 33 22 17 33.9 39.9 15:11:55 D 24100 4 7641 528 391 301 196 68 43 32 33.9 39.9 15:12:05 D 24201 2 2535 308 218 159 99 36 26 22 33.3 39.9 15:14:09 D 24201 3 3974 482 354 267 171 64 45 35 33.3 39.9 15:14: 17 D 24201 4 7433 859 654 508 345 135 93 69 33.3 39.9 15:14:28 lc Testing Comment: ON PATCHING D 24300 2 2548 297 183 113 61 20 14 12 33.6 39.5 15:16:03 D 24300 3 3983 454 302 196 103 33 23 17 33.6 39.5 15:16:11 D 24300 4 7540 790 548 373 215 68 46 34 33.6 39.5 15:16:26 D 24401 2 2558 277 174 113 60 20 14 13 32.3 39.1 15:18:54 D 24401 3 4012 435 289 198 109 34 24 19 32.3 39.1 15:19:02 D 24401 4 7562 765 537 382 226 72 48 37 32.3 39.1 15:19:13 D 24500 2 2563 210 149 113 71 25 18 15 32.3 32 15:21 :52 D 24500 3 4034 339 251 193 124 43 30 23 32.3 32 15:22:00 D 24500 4 7580 619 466 366 245 89 59 44 32.3 32 15:22: 15 D 24600 2 2546 226 154 110 63 19 13 10 33.2 38.3 15:23:59 D 24600 3 4015 351 250 182 109 31 20 16 33.2 38.3 15:24:07 D 24600 4 7581 619 456 345 217 68 44 34 33.2 38.3 15:24:17 IC Tesu_nlg' Comment: AT KM 122 147 Table A-2 (cont'd). J Station] Imp Load D01 D20 D30 D45 D90 D120 D150 Air Pave Time J m Nam kg! am am am am um um rem aC aC Hummus D 24700 2 2538 295 208 154 99 44 33 25 33.6 39.6 15:26:54 D 24700 3 3983 466 346 264 174 77 54 39 33.6 39.6 15:27:08 D 24700 4 7488 875 671 528 365 162 1 10 80 33.6 39.6 15:27: 19 Testing Comment: ON PATCHING D 24800 2 2538 275 168 110 57 20 14 12 34.1 39.1 15:28:59 D 24800 3 3981 422 272 183 102 36 24 19 34. 1 39.1 15:29:07 D 24800 4 7557 740 506 356 210 75 51 37 34.1 39.1 15:29:18 Testing Comment: TILJE 3 30 D 24900 2 2539 243 160 106 55 19 13 11 34.3 34.9 15:31 :59 D 24900 3 4009 376 256 178 98 32 23 17 34.3 34.9 15:32:08 D 24900 4 7549 665 469 339 202 67 44 33 34.3 34.9 15:32: 19 D 25000 2 2525 233 146 100 56 21 14 11 33.9 40.2 15:34:04 D 25000 3 3980 366 244 172 101 36 26 19 33.9 40.2 15:34:12 D 25000 4 7551 655 461 338 210 76 51 38 33.9 40.2 15:34:28 D 25100 2 2558 219 151 110 67 22 16 13 34.4 39.4 15:36:08 D 25100 3 3998 347 251 188 118 42 27 20 34.4 39.4 15:36: 16 D 25100 4 7566 644 477 370 240 86 56 40 34.4 39.4 15:36:27 iC Testing Comment: ON PATCHING D 25200 2 2554 207 143 100 57 19 16 12 33.9 38.9 15:38: 16 D 25200 3 4034 327 235 172 102 33 22 17 33.9 38.9 15:38:29 D 25200 4 7581 602 448 340 214 72 49 36 33.9 38.9 15:38:40 D 25300 2 2550 288 185 129 73 26 19 14 33.3 39.3 15:40:13 D 25300 3 4006 457 308 221 130 45 31 24 33.3 39.3 15:40:21 D 25300 4 7549 817 577 431 267 96 64 47 33.3 39.3 15:40:32 D 25400 2 2538 248 177 129 75 25 17 13 33.6 38.9 15:42:20 D 25400 3 4013 382 286 214 131 43 27 21 33.6 38.9 15:42:33 D 25400 4 7580 671 521 402 262 90 58 42 33.6 38.9 15:42:44 D 25500 2 2524 346 231 165 102 42 32 24 33 39.5 15:44:33 1) 25500 3 3979 544 385 284 183 76 54 40 33 39.5 15:44:42 D 25500 4 7425 996 738 567 387 165 113 80 33 39.5 15:44:53 C Testing Comment: ON PATCHING D 25600 2 2558 190 136 103 66 24 17 13 33 40 15:46:41 D 25600 3 4021 308 227 176 1 18 42 29 20 33 40 15:46:49 D 25600 4 7564 574 441 353 245 90 58 43 33 40 15:47:00 C Testing Comment: NEAR KM 121 D 25700 2 2551 174 115 82 48 19 14 13 34.1 39.7 15:48:43 D 25700 3 3993 278 193 140 85 31 24 19 34.1 39.7 15:48:56 D 25700 4 7557 499 364 274 176 67 48 39 34.1 39.7 15:49: 12 D 25800 2 2562 100 63 46 30 13 11 8 32.1 37.9 15:51:25 D 25800 3 4027 163 108 80 52 24 17 13 32.1 37.9 15:51:33 D 25800 4 7638 313 216 163 110 51 36 28 32.1 37.9 15:51:44 D 25901 2 2557 194 126 85 47 17 13 11 33.9 38.8 15:53:42 D 25901 3 4019 313 211 149 85 32 23 17 33.9 38.8 15:53:50 D 25901 4 7564 564 399 290 176 64 46 37 33.9 38.8 15:54:06 D 26000 2 2538 174 110 74 40 16 13 11 33.7 37.9 15:56:06 D 26000 3 4030 274 184 125 70 28 21 17 33.7 37.9 15:56:14 148 Table A-2 (cont'd). J StationI Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave Time I J m Nam kg! cm um am am am cm cm aC eC Hummus D 26000 4 7580 482 338 239 142 57 43 35 33.7 37.9 15:56:25 D 26100 2 2562 143 92 68 43 22 19 15 33.6 39.4 15:58:05 D 26100 3 4020 230 157 118 74 39 30 23 33.6 39.4 15:58: 14 D 26100 4 7600 434 304 233 155 77 58 44 33.6 39.4 15:58:30 D 26200 2 2540 220 140 96 57 22 18 13 33.6 37.4 16:00: 15 D 26200 3 3981 345 231 164 99 39 28 19 33.6 37.4 16:00:23 D 26200 4 7543 616 435 321 207 83 58 44 33.6 37.4 16:00:33 D 26300 2 2546 187 127 96 61 27 22 18 33.2 37.5 16:02:15 D 26300 3 3994 302 214 164 108 49 35 28 33.2 37.5 16:02:24 D 26300 4 7580 567 421 331 226 102 73 57 33.2 37.5 16:02:40 D 26401 2 2550 217 143 103 59 18 13 9 33.3 37.4 16:04:24 D 26401 3 4001 349 240 175 104 31 21 16 33.3 37.4 16:04:32 D 26401 4 7590 645 464 349 223 70 46 33 33.3 37.4 16:04:43 D 26500 2 2548 129 77 51 29 13 10 8 33.7 38.9 16:06:24 D 26500 3 4025 210 130 88 52 21 17 13 33.7 38.9 16:06:32 D 26500 4 7632 393 253 178 109 46 35 27 33.7 38.9 16:06:48 IC Testing Comment: KM 120 NEARBY D 26600 2 2546 184 110 70 35 13 9 7 33.6 37.4 16:08:31 D 26600 3 4030 301 189 124 64 22 15 11 33.6 37.4 16:08:39 D 26600 4 7603 539 359 247 138 46 30 23 33.6 37.4 16:08:50 D 26700 i 2 2566 185 127 90 52 15 10 7 34.4 37.4 16:11:29 D 26700 3 4009 310 218 159 94 29 17 12 34.4 37.4 16:11:43 D 26700 4 7591 590 438 333 209 66 37 23 34.4 37.4 16:11:54 D 26800 2 2561 146 93 67 41 14 11 8 34.3 37.8 16:13:28 D 26800 3 4042 244 163 116 71 24 17 11 34.3 37.8 16:13:36 D 26800 4 7626 467 326 241 154 54 35 25 34.3 37.8 16:13:47 D 26900 2 2533 239 160 111 60 18 10 7 33.3 37.2 16:15:26 D 26900 3 4015 395 279 200 116 33 21 14 33.3 37.2 16:15:46 D 26900 4 7530 755 556 415 255 74 42 27 33.3 37.2 16:15:58 D 27000 2 2552 178 114 78 43 14 10 7 33.7 38.2 16:17:41 D 27000 3 4013 292 197 139 79 25 15 11 33.7 38.2 16:17:49 D 27000 4 7591 540 383 279 169 54 34 24 33.7 38.2 16:17:59 IC Testl_ng' Comment: END OF DAY 2 149 Table A-3 : Measured FWD deflection data for stations 27000-42800. IFWD DATA FILE :A:\N5S2D1A.FWD ject :N5 oad clas. : Flex Weather : Sunny Operator : almani IDate Created : 02-28-1995 IIMacbine Type : KUAB FWD Model 150 T—lSoftware Version : 4.23 ILoad Mode : 1 (6+6 large buffers, 3 stack weights) IPlate Radius : 15.0 (cm) HPlate Cal Factor : 11050.00 late Cal Add : 150 late Gain Factor: 1.00000 late Cal Date : 11-27-1994 late Cal Time : 12:23:02 ' Cal Factor :0.073093 ' Cal Add :-273 “Air Cal Date ' 02-27-1995 HAir Cal Time : 10:07:27 HDMI Cal Factor : 0.696384 MI Last Cal Date: 02-26-1995 11DM1 Last Cal Time: 09:57:59 IDrop Sequence :2123 IRecord DrOp? : NYYY IChannel : 0 1 2 3 4 5 6 ISensor ID : 0- 1- 2- 3- 4- 5- 6- Distance : 0.0 20.0 30.0 45.0 90.0 120.0 150.0 (cm) IPosition : CENTER BEHIND BEHIND BEHIND BEHIND BEHIND BEHIND Static Cal Factor: 0.5642 0.2884 0.2816 0.2865 0.1399 0.1376 0.1396 Cal Factor : 1.050 1.050 1.050 1.050 1.050 1.050 1.050 GainFactor : 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Channel Cal Date : 02-24-95 02-24-95 02-24-95 02-24-95 02-24-95 02-24-95 02-24-95 Channel Cal Time : 14:22:24 14:22:24 14:22:24 14:22:24 14:22:24 14:22:24 14:22:24 150 Table A-3 (cont'd). J Station Imp Load D'o— D20 To D45 D90 D120 9150 Air Pave Time J m Nam kg! rem cm rem am am am am aC aC Hummus D 27000 2 2625 120 85 64 43 15 10 7 27.3 31.1 10:10:02- D 27000 3 4116 202 152 116 74 24 15 12 27.3 31.1 10:10:11 D 27000 4 7353 393 304 236 158 53 32 22 27.3 31.1 10:10:24 C Testing Comment: start of work on day 3 at same location 27000 D 27100 2 2613 111 73 53 32 13 10 7 27.1 30.8 10:12:46 D 27100 3 4115 187 129 93 58 23 16 12 27.1 30.8 10:12:55 D 27100 4 7383 351 257 190 123 47 33 23 27.1 30.8 10:13:13 C 'l‘estlng Comment on patch work D 27200 2 2604 191 127 96 58 19 12 10 27 30.6 10: 14:50 D 27200 3 4090 308 220 167 102 31 21 15 27 30.6 10:14:59 D 27200 4 7357 557 415 321 208 67 42 30 27 30.6 10:15:11 D 27300 2 2622 110 81 64 44 19 15 11 27.6 31.2 10: 16:46 D 27300 3 4099 184 140 111 78 34 23 17 27.6 31.2 10: 17:01 D 27300 4 7388 368 293 235 164 71 46 33 27.6 31.2 10:17:13 D 27401 2 2603 179 126 96 60 25 17 12 27.5 30.9 10:18:44 D 27401 3 4080 299 225 171 111 43 28 19 27.5 30.9 10:18:53 D 27401 4 7333 571 452 355 242 93 58 40 27.5 30.9 10:19:06 D 27500 2 2606 139 94 74 45 17 12 9 28.2 31.5 10:20:42 D 27500 3 4080 232 165 128 80 26 19 14 28.2 31.5 10:20:57 D 27500 4 7361 428 322 253 165 56 37 28 28.2 31.5 10:21:09 D 27600 2 2600 137 94 73 45 16 12 9 29.2 31.7 10:22:45 D 27600 3 4102 229 164 124 80 29 19 15 29.2 31.7 10:22:54 D 27600 4 7402 418 311 240 162 58 39 28 29.2 31.7 10:23:06 C Testing Comment: near km post 119 D 27700 2 2613 184 134 100 60 20 13 9 28.6 31.3 10:24:48 D 27700 3 4087 302 229 176 111 34 21 15 28.6 31.3 10:24:57 D 27700 4 7355 562 441 347 228 73 43 30 28.6 31.3 10:25:09 D 27800 2 2599 189 127 95 57 19 13 10 29.3 31.9 10:26:43 D 27800 3 4074 312 225 167 103 32 21 16 29.3 31.9 10:26:52 D 27800 4 7371 584 436 335 218 70 43 31 29.3 31.9 10:27:05 D 27901 2 2599 221 152 111 65 20 14 9 28.9 32 10:28:53 I) 27901 3 4080 359 257 191 118 37 22 16 28.9 32 10:29:02 D 27901 4 7394 655 491 381 248 81 48 32 28.9 32 10:29:15 D 28000 2 2599 202 140 104 64 24 15 12 28.7 32.3 10:31:02 D 28000 3 4077 333 240 183 114 39 25 19 28.7 32.3 10:31:11 D 28000 4 7387 601 452 354 235 83 54 40 28.7 32.3 10:31:31 D 28100 2 2599 213 143 106 62 22 16 12 28.9 32.9 10:33:09 D 28100 3 4073 349 247 185 113 39 27 20 28.9 32.9 10:33:19 D 28100 4 7424 633 471 364 238 84 56 41 28.9 32.9 10:33:31 D 28200 2 2585 205 144 106 67 24 17 14 30.1 33.5 10:35:15 D 28200 3 4061 336 247 185 117 41 28 21 30.1 33.5 10:35:24 D 28200 4 7426 614 470 362 243 87 58 44 30.1 33.5 10:35:36 D 28300 2 2590 136 97 76 49 19 13 10 27.9 33.5 10:37:24 D 28300 3 4082 233 171 134 89 33 22 18 27.9 33.5 10:37:33 D 28300 4 7456 448 347 276 191 71 46 34 27.9 33.5 10:37:45 D 28400 2 2552 379 239 163 82 34 24 17 28.9 33.6 10:39:20 151 Table A-3 (cont'd). J Station Imp Load no D20 D30 D45 D90 D120 D150 Air Pave Time J m Nam kg! am am am cm rem cm cm aC aC I Hummus D 28400 3 4017 626 423 295 156 62 41 29 28.9 33.6 10:39:29 D 28400 4 7251 1 108 796 590 343 135 89 62 28.9 33.6 10:39:41 D 28500 2 2599 116 81 64 45 21 18 14 28.4 33 10:41:24 D 28500 3 4082 192 142 1 1 1 79 38 29 23 28.4 33 10:41:33 D 28500 4 7506 373 282 223 163 79 58 46 28.4 33 10:41:45 D 28600 2 2575 226 137 92 48 14 10 9 28.9 33.9 10:43:12 D 28600 3 4037 362 232 158 84 24 16 12 28.9 33.9 10:43:24 D 28600 4 7437 642 431 302 170 47 32 25 28.9 33.9 10:43:35 Testing Comment: nearkmpost 118 D 28700 2 2584 178 116 84 51 19 13 10 28.9 33.7 10:45:22 D 28700 3 4077 298 205 151 92 33 22 16 28.9 33.7 10:45:31 D 28700 4 7415 562 405 306 199 71 47 32 28.9 33.7 10:45:43 Testing Comment: near culvert D 28800 2 2613 110 71 51 32 10 9 8 29.5 34.1 10:47:26 D 28800 3 4099 172 118 87 54 19 13 11 29.5 34.1 10:47:41 D 28800 4 7518 312 220 167 106 37 25 21 29.5 34.1 10:47:52 D 28901 2 2570 219 134 87 42 11 8 7 29.5 34 10:49:25 D 28901 3 4071 349 228 153 77 19 13 12 29.5 34 10:49:34 D 28901 4 7394 624 427 297 159 39 26 21 29.5 34 10:49:46 D 29000 2 2581 226 150 106 62 20 16 12 29.1 34.1 10:51:22 D 29000 3 4050 356 249 183 109 36 25 20 29.1 34.1 10:51:37 D 29000 4 7409 636 466 352 222 73 50 39 29. 1 34. 1 10:51:49 D 29100 2 2575 290 208 157 98 38 28 22 29.5 34.4 10:53:23 D 29100 3 4047 480 359 276 177 67 45 34 29.5 34.4 10:53:32 D 29100 4 7366 879 692 548 369 136 90 67 29.5 34.4 10:53:44 D 29200 2 2576 177 123 92 59 20 14 12 29.5 33.9 10:55:19 D 29200 3 4088 281 203 155 101 36 24 19 29.5 33.9 10:55:41 D 29200 4 7484 510 386 301 206 75 50 37 29.5 33.9 10:55:51 D 29300 2 2580 191 131 96 57 17 12 9 28.9 34.3 10:57:24 D 29300 3 4063 315 227 170 103 31 19 13 28.9 34.3 10:57:33 D 29300 4 7440 586 441 338 217 66 40 28 28.9 34.3 10:57:45 D 29400 2 2589 177 131 102 68 23 15 12 30 32.6 1 1:00: 17 D 29400 3 4063 291 226 178 121 43 27 19 30 32.6 11:00:31 D 29400 4 7461 557 447 359 253 93 58 40 30 32.6 1 1:00:43 D 29500 2 2570 250 172 129 79 22 12 9 29.7 34.4 1 1 :02: 10 D 29500 3 4022 403 290 223 145 42 21 14 29.7 34.4 1 1:02:19 D 29500 4 7410 732 549 435 294 90 47 30 29.7 34.4 1 1:02:31 D 29600 2 2572 190 130 97 60 18 1 1 7 28.9 35.3 11:04:02 D 29600 3 4061 308 228 172 108 32 18 11 28.9 35.3 11:04: 17 D 29600 4 7451 581 449 352 233 71 37 22 28.9 35.3 11:04:29 TC Testing Comment: near km post 117 D 29700 2 2572 319 214 152 88 25 15 11 27.3 34.8 11:06:11 D 29700 3 4017 524 369 271 163 46 26 18 27.3 34.8 1 1:06:20 D 29700 4 7310 962 712 541 342 97 54 37 27.3 34.8 11:06:32 D 29800 2 2585 211 145 107 64 21 15 11 28.4 33.2 11:08: 17 D 29800 3 4066 341 248 183 1 16 37 25 19 28.4 33.2 1 1:08:26 152 Table A-3 (cont’d). J Stationl Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave Time J m Nam kg! um um am am rem cm rem aC IC Hummus D 29800 4 7437 619 467 360 236 77 50 37 28.4 33.2 11:08:39 D 29901 2 2587 227 147 100 51 13 9 7 28.4 33.7 11:10:09 D 29901 3 4060 357 243 170 93 23 15 11 28.4 33.7 11:10: 18 D 29901 4 7451 623 441 318 186 45 28 21 28.4 33.7 11:10:30 D 30000 2 2599 245 171 124 74 15 8 4 28.9 34.4 11:12:07 D 30000 3 4054 386 285 209 130 28 13 8 28.9 34.4 11:12:16 D 30000 4 7451 688 527 399 260 61 27 15 28.9 34.4 11:12:28 D 30100 2 2615 242 159 112 61 16 10 5 28.2 34.8 11:14:01 D 30100 3 4044 373 259 187 108 26 14 9 28.2 34.8 11:14:10 D 30100 4 7447 663 485 360 222 57 30 19 28.2 34.8 1 1:14:43 D 30201 2 2592 195 134 100 57 12 6 6 28.9 34.9 11:16:35 D 30201 3 4020 293 215 158 96 22 12 9 28.9 34.9 11:16:44 D 30201 4 7434 521 387 297 187 47 24 17 28.9 34.9 11:16:56 D 30300 2 2592 271 173 106 55 14 11 7 28.5 35.2 11:18:34 D 30300 3 4061 411 279 180 97 27 16 11 28.5 35.2 11:18:43 D 30300 4 7465 704 508 349 202 56 34 24 28.5 35.2 11:18:55 D 30400 2 2572 240 161 117 67 20 13 8 27.5 36.1 11:20:34 D 30400 3 4048 379 270 202 121 37 22 15 27.5 36.1 11:20:51 D 30400 4 7429 680 508 393 253 80 48 33 27.5 36.1 11:21:02 D 30500 2 2621 149 103 74 38 10 6 5 29.8 36.2 11:22:55 D 30500 3 4089 222 156 111 63 15 9 7 29.8 36.2 11:23:04 D 30500 4 7560 357 261 190 111 26 16 12 29.8 36.2 11:23: 16 D 30600 2 2605 110 69 51 31 11 8 6 30 36.3 11:25:00 1) 30600 3 4089 171 1 17 87 54 20 14 11 30 36.3 11:25:09 D 30600 4 7519 313 222 165 109 41 28 20 30 36.3 11:25:21 IC Testing Comment: near km post 116 D 30700 2 2599 241 165 123 77 19 11 7 29.7 36.6 11:27:07 D 30700 3 4053 376 269 207 131 33 18 12 29.7 36.6 11:27: 16 D 30700 4 7437 662 488 384 252 70 37 24 29.7 36.6 11:27:35 D 30800 2 2597 153 99 71 40 13 8 6 29.6 36.1 11:29:14 D 30800 3 4056 239 163 119 71 23 15 10 29.6 36.1 11:29:24 D 30800 4 7544 427 304 228 144 49 30 21 29.6 36.1 1 1:29:35 D 30900 2 2579 116 84 66 45 17 12 8 30 35.1 11:31:10 D 30900 3 4071 197 147 116 81 30 20 14 30 35.1 11:31:19 D 30900 4 7546 373 288 230 166 66 42 30 30 35.1 11:31:37 D 31000 2 2600 116 86 70 48 16 11 7 30.1 35.4 11:33:16 D 31000 3 4080 191 148 121 84 29 18 12 30.1 35.4 11:33:25 D 31000 4 7518 360 287 236 171 63 37 25 30.1 35.4 11:33:37 D 31101 2 2573 205 143 101 57 14 9 7 30 36.2 11:35:11 D 31101 3 4058 323 227 165 97 22 14 11 30 36.2 11:35:20 D 31101 4 7503 544 400 301 189 52 31 23 30 36.2 11:35:38 D 31200 2 2551 249 160 113 62 18 12 9 29.2 35.6 11:37:16 D 31200 3 4056 377 261 186 110 35 20 15 29.2 35.6 11:37:25 D 31200 4 7443 643 471 350 222 73 46 31 29.2 35.6 11:37:37 D 31300 2 2584 241 171 129 77 22 13 8 29.1 35.5 11:39:15 D 31300 3 4045 380 280 217 134 40 23 15 29.1 35.5 11:39:25 153 Table A-3 (cont'd). J Station Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave Time J m Nam kg! cm cm am am cm cm cm aC eC Hummus D 31300 4 7443 667 507 406 264 87 50 31 29.1 35.5 11:39:43 D 31401 2 2586 124 84 62 40 14 11 8 29.8 35.2 11:41:17 D 31401 3 4060 204 144 108 70 25 16 12 29.8 35.2 11:41:26 D 31401 4 7544 382 280 216 145 54 35 25 29.8 35.2 11:41:38 D 31500 2 2586 188 121 86 50 13 9 7 29.2 35.4 11:43: 12 D 31500 3 4067 291 197 144 85 21 14 11 29.2 35.4 11:43:21 D 31500 4 7523 499 349 261 163 45 29 23 29.2 35.4 1 1:43:39 D 31601 2 2577 172 114 80 44 13 9 8 30.8 36.2 11:45:10 D 31601 3 4077 264 181 128 73 22 15 13 30.8 36.2 11:45:26 D 31601 4 7570 447 314 230 141 47 32 25 30.8 36.2 1 1:45:36 Testing Comment: km post 115 nearly D 31700 3 4068 195 136 97 57 14 9 7 30.6 36.8 11:47:33 D 31700 4 7566 339 245 178 109 28 18 13 30.6 36.8 11:47:52 D 31801 2 2559 210 136 94 54 11 7 5 30.7 36.4 11:49: 19 D 31801 3 4061 313 214 153 88 19 11 8 30.7 36.4 11:49:28 D 31801 4 7550 516 366 269 164 38 21 15 30.7 36.4 11:49:40 D 31901 2 2567 230 156 111 61 13 7 5 30.2 35.9 11:51:14 D 31901 3 4030 339 243 177 101 23 12 7 30.2 35.9 11:51 :24 D 31901 4 7487 561 411 309 187 45 22 14 30.2 35.9 11:51:42 D 32000 2 2578 139 90 63 36 7 5 4 29.8 36.2 11:53:25 D 32000 3 4061 219 148 105 59 14 8 4 29.8 36.2 11:53:34 D 32000 4 7558 373 261 187 112 26 16 11 29.8 36.2 11:53:46 D 32101 2 2563 237 143 89 39 5 2 2 29.2 35.4 11:55:37 D 32101 3 4042 370 231 147 66 9 4 2 29.2 35.4 11:55:46 D 32101 4 7459 626 404 265 123 15 7 5 29.2 35.4 11:56:04 D 32200 2 2591 149 97 70 40 9 4 4 28.2 35.6 1 1:57:42 D 32200 3 4061 243 168 122 72 15 8 5 28.2 35.6 11:57:51 D 32200 4 7488 437 314 232 142 31 16 9 28.2 35.6 11:58:03 D 32300 2 2594 150 109 82 50 11 5 3 30 35.5 11:59:47 D 32300 3 4041 238 180 135 84 17 7 4 30 35.5 11:59:56 D 32300 4 7524 421 322 245 159 35 13 7 30 35.5 12:00: 14 D 32400 2 2621 73 52 41 26 11 6 5 28.9 35.2 12:03:33 D 32400 3 4082 127 91 72 49 18 11 7 28.9 35.2 12:03:42 D 32400 4 7556 252 191 152 105 39 23 15 28.9 35.2 12:03:54 ‘ Testing Comment: on top of hill D 32501 2 2581 156 107 78 45 11 6 4 30.3 36.9 12:05:42 D 32501 3 4052 272 193 141 82 19 10 6 30.3 36.9 12:05:58 D 32501 4 7500 519 383 286 175 42 22 13 30.3 36.9 12:06:09 D 32600 2 2572 267 147 87 39 10 6 3 30.2 37.2 12:07:44 D 32600 3 4039 419 245 152 73 18 10 6 30.2 37.2 12:07:53 D 32600 4 7461 723 445 289 148 37 19 11 30.2 37.2 12:08:05 Testing Comment: near km post 1 14 D 32700 2 2579 118 73 48 25 7 4 2 30.3 37.2 12:10:08 1) 32700 3 4094 187 121 82 45 12 7 4 30.3 37.2 12:10:17 D 32700 4 7558 316 218 154 89 22 12 8 30.3 37.2 12:10:29 D 32801 2 2559 233 149 103 51 6 2 2 30.3 38.6 12:12:22 154 Table A-3 (cont'd). J Station] Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave Time J m Nam kg! aim cm am am cm cm eC aC Hummus IT) 32801 3 4033 341 229 162 86 10 3 2 30.3 38.6 12:12:32 D 32801 4 7487 559 389 281 155 21 7 4 30.3 38.6 12:12:43 D 32901 2 2551 198 117 77 37 5 3 2 29.2 37.7 12:14:27 D 32901 3 4056 294 186 127 62 10 5 3 29.2 37.7 12:14:36 D 32901 4 7514 476 318 219 116 20 10 6 29.2 37.7 12:14:47 D 33101 2 2566 178 122 88 49 7 2 2 30 38.1 12:17:23 D 33101 3 4042 272 194 141 83 12 5 2 30 38.1 12:17:32 D 33101 4 7515 457 335 248 151 25 8 4 30 38.1 12:17:44 D 33200 2 2589 105 65 45 21 5 3 2 30.1 38.3 12:19:38 D 33200 3 4054 168 109 75 36 6 4 3 30.1 38.3 12:19:47 D 33200 4 7533 285 196 138 72 14 7 5 30.1 38.3 12:19:59 D 33300 2 2577 163 114 82 44 5 2 1 29.8 38.1 12:21:40 D 33300 3 4039 243 180 129 70 9 4 2 29.8 38.1 12:21:49 D 33300 4 7516 406 301 217 124 16 6 5 29.8 38.1 12:22:01 D 33400 2 2572 161 95 64 31 5 4 2 27.9 38.2 12:23:47 D 33400 3 4050 264 168 111 57 8 4 1 3 27.9 38.2 12:23:56 D 33400 4 7502 488 321 222 116 18 8 5 27.9 38.2 12:24:08 D 33500 2 2583 153 94 61 26 4 1 5 28 37.2 12:26:00 D 33500 3 4048 252 160 105 47 6 2 1 28 37.2 12:26:10 D 33500 4 7496 451 298 199 94 9 3 3 28 37.2 12:26:21 D 33601 2 2591 216 104 58 27 7 5 4 26.4 37.8 12:28:04 D 33601 3 4035 334 174 100 49 12 7 6 26.4 37.8 12:28:13 D 33601 4 7477 572 314 192 98 23 13 10 26.4 37.8 12:28:25 IC Testing Comment: nearkmpost113 D 33700 2 2573 137 88 64 37 14 10 7 27.6 38 12:29:59 D 33700 3 4050 229 155 1 1 1 68 22 14 1 1 27.6 38 12:30:08 D 33700 4 7497 428 306 226 146 49 31 21 27.6 38 12:30:27 D 33800 2 2583 150 103 77 48 12 5 4 28.6 37.7 12:32:05 D 33800 3 4030 248 177 134 83 20 11 6 28.6 37.7 12:32: 14 D 33800 4 7511 482 352 274 173 43 20 11 28.6 37.7 12:32:26 D 33901 2 2549 366 196 96 32 12 12 13 30 38.3 12:34:19 D 33901 3 3987 536 296 152 51 19 20 18 30 38.3 12:34:33 D 33901 4 7437 869 494 258 94 38 38 35 30 38.3 12:34:52 D 34000 2 2572 113 79 61 39 15 10 8 28.4 38.6 12:36:41 D 34000 3 4058 184 134 104 68 24 17 12 28.4 38.6 12:36:51 D 34000 4 7547 339 256 202 137 52 33 23 28.4 38.6 12:37:03 D 34101 2 2561 270 189 142 85 27 17 13 28.9 38.8 12:38:44 D 34101 3 4020 411 299 230 143 46 29 21 28.9 38.8 12:38:53 D 34101 4 7454 697 532 422 276 96 59 42 28.9 38.8 12:39:11 D 34200 2 2572 251 181 139 93 27 18 15 30.1 39.3 12:40:53 1) 34200 3 4006 377 282 221 151 46 29 22 30.1 39.3 12:41:02 D 34200 4 7446 652 503 402 283 98 60 44 30.1 39.3 12:41:14 D 34300 2 2572 261 188 144 90 27 16 12 28.6 38.6 12:43:12 D 34300 3 4021 403 303 236 154 47 29 20 28.6 38.6 12:43:21 D 34300 4 7470 716 559 449 308 106 61 41 28.6 38.6 12:43:40 D 34401 2 2572 259 180 131 81 28 21 16 30 39.4 12:45:30 155 Table A-3 (cont'd). J Statiolfi Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave Time J m Nam kg! am am am am cm cm aC eC Hummus D 34401 3 4039 388 282 21 1 134 47 32 26 30 39.4 12:45:40 D 34401 4 7496 648 494 377 251 90 62 48 30 39.4 12:45:52 D 34500 2 2593 127 93 72 47 16 12 10 30.1 39.4 12:47:27 D 34500 3 4058 203 152 1 18 79 26 19 15 30.1 39.4 12:47:36 D 34500 4 7538 363 280 219 152 55 36 29 30.1 39.4 12:47:55 D 34601 2 2572 206 152 118 79 28 18 15 28.7 40 12:49:37 D 34601 3 4037 321 245 194 131 46 30 22 28.7 40 12:49:47 D 34601 4 7502 574 450 360 256 95 60 45 28.7 40 12:50:00 C Testing Comment: nearkm post 112 & police post no. 11 D 34700 2 2579 226 134 92 53 24 19 16 30 39.1 12:51:38 D 34700 3 4037 351 220 153 90 41 31 25 30 39.1 12:51:54 D 34700 4 7503 632 416 304 189 87 64 50 30 39.1 12:52:06 D 34800 2 2588 134 88 64 38 15 11 9 27.1 39.3 12:53:51 D 34800 3 4044 205 144 105 65 24 l7 13 27.1 39.3 12:54:01 D 34800 4 7571 362 261 199 128 50 34 25 27.1 39.3 12:54: 12 1) 34901 2 2580 155 102 74 48 19 14 15 28.7 39.9 12:56:04 D 34901 3 4048 249 169 124 77 32 26 23 28.7 39.9 12:56:21 D 34901 4 7542 457 321 239 152 61 47 41 28.7 39.9 12:56:33 D 35000 2 2581 137 90 63 35 13 11 9 30.3 41 12:58: 15 D 35000 3 4059 226 154 110 60 22 18 14 30.3 41 12:58:24 D 35000 4 7562 411 292 212 122 44 31 26 30.3 41 12:58:35 D 35101 2 2561 203 147 108 70 24 16 13 29.6 40.1 13:00:21 D 35101 3 4028 336 253 190 120 41 26 20 29.6 40.1 13:00:37 D 35101 4 7520 623 480 368 240 84 53 39 29.6 40.1 13:00:49 C Testing Comment: 60 metres before abutment IC Testing Comment: 35200 at bridge location D 35300 2 2560 252 175 127 74 24 21 17 30 40.5 13:04:06 D 35300 3 4028 392 282 209 123 39 32 26 30 40.5 13:04:21 D 35300 4 7475 683 507 382 236 81 62 50 30 40.5 13:04:40 D 35401 2 2551 240 140 87 40 14 11 10 30.8 41.6 13:06:26 D 35401 3 4008 380 231 150 72 24 18 14 30.8 41.6 13:06:36 D 35401 4 7444 675 424 289 148 47 35 28 30.8 41.6 13:06:47 D 35502 2 2573 163 108 75 43 12 10 9 29.8 40.7 13:08:55 D 35502 3 4030 261 178 126 73 21 15 13 29.8 40.7 13:09:04 D 35502 4 7544 448 319 232 141 41 29 24 29.8 40.7 13:09:23 D 35601 2 2562 243 166 114 61 16 11 10 30.8 41.2 13:11:02 D 35601 3 4008 360 259 179 101 26 19 16 30.8 41.2 13:11:12 U 1) 35601 4 7508 602 437 316 189 52 36 31 30.8 41.2 13:11:24 C Testing Comment: near km post 1 1 l D 35700 2 2567 149 101 67 38 15 13 11 31.2 41.3 13:13:03 D 35700 3 4049 239 166 116 64 24 21 18 31.2 41.3 13:13:19 D 35700 4 7566 427 309 221 131 47 38 33 31.2 41.3 13:13:32 D 35800 2 2566 209 143 105 62 16 12 10 31.9 41.7 13:15: 14 D 35800 3 4028 315 226 171 103 27 18 14 31.9 41.7 13:15:23 D 35800 4 7539 534 393 302 192 54 34 27 31.9 41.7 13:15:35 D 35900 2 2565 165 106 72 35 13 12 11 31.6 42.1 13:17: 14 156 O Table A-3 (cont'd). J Stationl Imp Load no mo 1330 54s mo D120 13150 Air Pave Time J m Nam kg! um mm am am mm mm aC aC Hummus -D 35900 3 4052 249 166 116 61 20 18 18 31.6 42.1 13:17:3—1“i D 35900 4 7520 415 286 204 114 40 35 32 31.6 42.1 13:17:43 D 36000 2 2528 264 177 127 72 21 13 l 1 29.6 40.8 13: 19:24 D 36000 3 4006 428 299 223 129 35 22 16 29.6 40.8 13:19:33 D 36000 4 7408 784 571 436 270 73 43 32 29.6 40.8 13:19:45 D 36101 2 2579 139 95 69 43 16 11 9 28.4 39.4 13:21:29 D 36101 3 4037 229 161 120 75 26 18 14 28.4 39.4 13:21:46 D 36101 4 7549 427 314 240 155 52 36 27 28.4 39.4 13:21:58 D 36200 2 2585 84 58 47 35 18 13 1 1 29.6 39.6 13:23:28 D 36200 3 4056 139 100 81 61 30 21 16 29.6 39.6 13:23:37 D 36200 4 7591 273 201 166 126 60 41 31 29.6 39.6 13:23:49 D 36300 2 2544 265 175 l 16 63 24 17 15 29.8 39.1 13:25:25 D 36300 3 4001 425 296 206 1 16 38 29 23 29.8 39.1 13:25:42 D 36300 4 7415 787 573 417 251 81 57 44 29.8 39.1 13:25:54 D 36400 2 2576 187 121 87 51 18 12 9 28.5 38.3 13:27:42 D 36400 3 4025 304 209 152 93 29 19 16 28.5 38.3 13:27:51 D 36400 4 7484 570 406 305 194 59 38 28 28.5 38.3 13:28:03 D 36500 2 2552 238 162 109 60 19 12 10 30.6 39.7 13:29:49 D 36500 3 4014 398 279 194 109 31 19 15 30.6 39.7 13:30: 12 D 36500 4 7430 742 543 396 235 64 39 29 30.6 39.7 13:30:23 Testing Comment: on patchwork D 36600 2 2566 214 146 104 59 19 16 13 30.5 39.3 13:32:03 D 36600 3 4039 318 230 164 97 30 24 20 30.5 39.3 13:32:12 D 36600 4 7544 538 401 296 186 65 48 40 30.5 39.3 13:32:24 Testing Comment: near km post 1 10 D 36700 2 2566 289 200 145 81 23 16 14 29.6 39.1 13:34:22 D 36700 3 401 1 451 326 241 143 39 27 23 29.6 39.1 13:34:32 D 36700 4 7470 810 606 460 289 83 55 45 29.6 39.1 13:34:43 D 36800 2 2581 159 107 75 43 16 13 1 1 29.6 38.6 13:36:29 D 36800 3 4028 239 168 123 72 27 21 18 29.6 38.6 13:36:39 D 36800 4 7566 41 1 301 225 142 56 43 35 29.6 38.6 13:36:59 D 36901 2 2542 220 149 110 68 21 15 13 29.6 38.6 13:38:40 D 36901 3 4030 338 239 181 1 14 36 25 20 29.6 38.6 13:38:48 D 36901 4 7508 581 427 335 220 74 50 39 29.6 38.6 13:39:00 D 37001 2 2554 279 195 146 88 27 20 17 28.5 38.1 13:40:44 D 37001 3 4015 422 307 234 146 43 32 26 28.5 38.1 13:40:54 D 37001 4 7475 709 533 417 275 91 63 50 28.5 38.1 13:41:13 D 37100 2 2560 245 177 130 79 24 15 13 30.5 38.8 13:42:54 D 37100 3 4033 373 279 21 1 132 40 26 20 30.5 38.8 13:43:03 D 37100 4 7496 644 496 384 255 83 54 40 30.5 38.8 13 :43: 15 D 37200 2 2552 230 162 1 15 70 24 17 13 28.9 37.6 13:44:55 D 37200 3 4027 354 258 190 120 40 28 21 28.9 37.6 13:45:05 D 37200 4 7497 621 472 358 240 88 58 42 28.9 37.6 13:45:24 D 37300 2 2560 162 108 79 49 20 17 12 29.1 37.7 13:47:05 D 37300 3 4047 252 177 131 84 37 26 19 29.1 37.7 13:47:14 D 37300 4 7537 448 323 246 163 73 53 37 29.1 37.7 13:47:26 157 Table A-3 (cont'd). J Station Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave Time J m Nam kg! am am am am cm um um aC sC Hummus D 37401 2 2559 217 158 115 68 19 15 14 30.7 37.6 13:49: 19 D 37401 3 4030 336 253 191 1 19 38 26 20 30.7 37.6 13:49:28 D 37401 4 7525 585 455 353 234 81 52 38 30.7 37.6 13:49:48 D 37500 2 2560 226 165 127 80 23 15 11 30.3 37 13:51:27 D 37500 3 4028 354 269 212 136 39 24 19 30.3 37 13:51:36 D 37500 4 7488 640 498 399 268 86 50 38 30.3 37 13:51:47 D 37600 2 2572 249 163 113 64 17 12 10 30.2 36.3 13:53:29 D 37600 3 4048 364 252 182 104 27 19 17 30.2 36.3 13:53:38 D 37600 4 7552 600 428 319 193 56 39 32 30.2 36.3 13:53:57 D 37700 2 2560 232 154 109 62 16 12 10 30.7 37.1 13:55:50 D 37700 3 4037 356 251 183 106 27 18 15 30.7 37.1 13:55:59 D 37700 4 7514 614 444 330 201 52 33 28 30.7 37.1 13:56:11 D 37800 2 2558 168 110 79 45 14 11 10 30.3 37.1 13:57:46 D 37800 3 4048 249 172 125 75 22 17 16 30.3 37.1 13:57:55 D 37800 4 7568 411 291 217 135 43 33 30 30.3 37.1 13:58: 15 IC Testing Comment: 65 metres before km post 109 D 37900 2 2566 214 141 103 57 16 13 11 30.5 36.4 13:59:57 D 37900 3 4044 313 219 160 92 25 17 14 30.5 36.4 14:00:06 D 37900 4 7570 521 375 282 171 50 32 24 30.5 36.4 14:00: 18 D 38000 2 2544 243 165 121 73 18 11 11 29.5 36.8 14:02:20 D 38000 3 4022 359 256 190 1 17 28 19 17 29.5 36.8 14:02:37 D 38000 4 7535 599 437 336 216 59 37 30 29.5 36.8 14:02:48 D 38100 2 2566 190 139 107 67 16 10 7 29.6 36.5 14:04:26 D 38100 3 4058 289 218 170 109 29 16 13 29.6 36.5 14:04:35 D 38100 4 7540 492 377 300 202 60 34 24 29.6 36.5 14:04:47 D 38200 2 2560 211 141 103 58 17 13 10 29.8 36.3 14:06:26 D 38200 3 4020 310 216 159 95 29 20 16 29.8 36.3 14:06:43 D 38200 4 7535 525 380 289 182 60 41 32 29.8 36.3 14:06:55 D 38300 2 2570 158 109 81 48 14 11 10 29.6 35.7 14:08:33 D 38300 3 4039 238 169 128 78 23 17 15 29.6 35.7 14:08:42 D 38300 4 7607 403 296 228 144 47 34 28 29.6 35.7 14:08:54 D 38400 2 2562 206 147 110 65 19 14 11 29.6 35.5 14: 10:41 D 38400 3 4038 307 225 172 108 32 23 18 29.6 35.5 14:10:57 D 38400 4 7523 524 396 309 200 66 45 36 29.6 35.5 14:1 1:09 D 38500 2 2570 159 112 82 48 14 11 10 27.3 35.3 14:12:49 D 38500 3 4044 242 173 130 77 23 19 16 27.3 35.3 14:12:59 D 38500 4 7568 412 304 230 145 45 37 31 27.3 35.3 14:13:11 D 38600 2 2546 294 211 160 93 16 10 9 28.5 34.8 14:14:48 D 38600 3 4003 441 326 253 151 29 15 15 28.5 34.8 14:15:05 D 38600 4 7509 730 553 435 269 57 31 27 28.5 34.8 14:15: 16 D 38700 2 2554 226 151 113 68 19 13 11 29.6 35.5 14:17:10 D 38700 3 4040 344 242 183 115 31 20 17 29.6 35.5 14:17:20 D 38700 4 7514 590 427 331 215 65 40 33 29.6 35.5 14: 17:32 C Testing Comment: near km post 108 D I 38800 2 I 2580 146 81 51 28 14 12 10 29.2 35.1 14:19:11 D 38800 3 4047 232 132 85 45 22 19 16 29.2 35.1 14:19:21 158 Table A-3 (cont'd). J Station! Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave Time J m Nam kg! am am cm am am am aC aC Hummus D 38800 4 7601 412 247 163 92 43 36 31 29.2 35.1 14:19:39 D 38901 2 2544 300 174 110 52 22 17 15 28.4 35.2 14:21:18 D 38901 3 3996 457 283 185 90 35 24 20 28.4 35.2 14:21:28 D 38901 4 7514 790 520 357 191 77 57 46 28.4 35.2 14:21:40 IC Testing Comment: on patch work D 39000 2 2549 370 272 207 128 38 24 16 27.9 35 14:23:34 D 39000 3 4009 592 452 352 231 72 41 28 27.9 35 14:23 :43 D 39000 4 7420 1050 826 661 457 153 89 59 27.9 35 14:23:56 D 39101 2 2565 251 191 157 112 43 28 20 30.1 34.9 14:30:27 D 39101 3 4030 409 321 268 194 77 48 35 30.1 34.9 14:30:36 D 39101 4 7482 752 605 510 389 165 102 72 30.1 34.9 14:30:56 D 39201 2 2558 320 234 183 115 36 23 17 29.2 34.9 14:32:43 D 39201 3 4017 498 378 298 197 65 39 29 29.2 34.9 14:32:53 D 39201 4 7471 873 686 556 386 138 83 62 29.2 34.9 14:33:06 D 39300 2 2565 152 106 84 54 22 15 12 29.6 34.7 14:34:41 D 39300 3 4058 240 177 141 95 35 25 21 29.6 34.7 14:34:51 D 39300 4 7603 431 330 268 189 77 53 41 29.6 34.7 14:35: 1 1 D 39401 2 2559 258 148 87 39 17 14 12 28.7 34.4 14:36:48 D 39401 3 4052 396 238 145 70 29 23 20 28.7 34.4 14:36:57 D 39401 4 7582 667 417 264 134 55 45 37 28.7 34.4 14:37:09 D 39501 2 2561 210 126 82 41 14 9 7 28.4 34.4 14:38:44 D 39501 3 4056 331 206 137 73 23 14 11 28.4 34.4 14:38:53 D 39501 4 7558 583 375 258 144 46 29 21 28.4 34.4 14:39:12 D 39601 2 2558 219 148 110 62 12 8 8 28.1 34.4 14:40:46 D 39601 3 4050 324 230 170 102 23 13 11 28.1 34.4 14:40:56 D 39601 4 7625 531 389 296 186 47 27 22 28.1 34.4 14:41:08 D 39700 2 2558 220 151 108 62 12 8 6 29.1 34.2 14:42:44 D 39700 3 4045 323 230 167 100 20 12 10 29.1 34.2 14:42:54 D 39700 4 7594 534 389 290 180 41 23 18 29.1 34.2 14:43: 13 D 39800 2 2552 274 196 143 82 19 9 8 29.2 33.8 14:44:52 D 39800 3 4028 424 315 239 146 32 16 12 29.2 33.8 14:45:03 D 39800 4 7575 732 562 435 279 66 32 20 29.2 33.8 14:45: 15 1C Testing Comment: at km 101 D 39900 2 2563 249 175 127 72 16 8 7 28.6 34 14:47:13 D 39900 3 4040 379 272 203 121 25 13 10 28.6 34 14:47:30 D 39900 4 7585 644 474 360 224 52 25 19 28.6 34 14:47:41 D 40001 2 2567 206 142 103 61 12 8 7 28.9 33.5 14:49:47 D 40001 3 4061 307 220 163 99 21 13 10 28.9 33.5 14:50:03 D 40001 4 7581 508 374 283 178 42 25 21 28.9 33.5 14:50:14 D 40101 2 2547 236 168 116 62 12 7 5 28.7 33.5 14:51:44 D 40101 3 4025 349 254 182 102 19 12 9 28.7 33.5 14:52:01 D 40101 4 7591 583 436 318 188 40 22 18 28.7 33.5 14:52:12 D 40200 2 2570 236 155 110 62 14 8 7 29.5 33.8 14:53:48 D 40200 3 4069 345 238 173 102 22 I4 11 29.5 33.8 14:53:58 D 40200 4 7585 569 404 301 187 47 29 23 29.5 33.8 14:54:09 D 40300 2 2570 258 179 136 82 21 14 13 30.1 34.7 14:55:44 159 Table A-3 (cont'd). J sum-.1 Imp Load 00 mo 030 D45 D90 W mso In: Pave Time J m Nam kg! am mm m am am am am eC aC Hummus D 40300 3 4044 385 279 215 136 38 24 19 30.1 34.7 14:56:01 D 40300 4 7571 657 489 385 255 80 50 38 30.1 34.7 14:56: 13 D 40401 2 2557 253 177 126 77 23 17 14 28.5 34.3 14:57:58 D 40401 3 4044 379 277 204 128 40 26 21 28.5 34.3 14:58:07 D 40401 4 7549 636 479 363 239 79 53 43 28.5 34.3 14:58:20 D 40500 2 2565 251 175 126 72 16 1 1 9 30.5 36 14:59:57 D 40500 3 4053 370 268 199 119 26 16 13 30.5 36 15:00: 15 D 40500 4 7585 614 460 347 219 53 32 26 30.5 36 15:00:27 D 40601 2 2559 243 163 120 65 12 7 7 30.8 35.2 15:02:25 D 40601 3 4048 359 251 185 109 20 13 12 30.8 35.2 15:02:34 D 40601 4 7581 590 425 320 193 40 24 22 30.8 35.2 15:02:46 D 40700 2 2565 255 165 1 12 57 11 7 6 30 34.8 15:04:32 D 40700 3 4058 373 255 176 98 19 11 8 30 34.8 15:04:50 D 40700 4 7587 615 431 308 180 36 21 18 30 34.8 15:05:01 iC Testing Comment: karachi 106 km D 40800 2 2567 213 143 105 59 12 8 8 30.6 34.8 15:07:06 D 40800 3 4057 313 219 164 96 19 14 12 30.6 34.8 15:07:15 D 40800 4 7649 514 366 279 169 39 25 24 30.6 34.8 15:07:27 D 40900 2 2572 255 172 123 70 17 11 10 28.7 34.8 15:09:12 D 40900 3 4046 382 272 198 117 26 18 16 28.7 34.8 15:09:22 D 40900 4 7552 632 463 345 214 53 34 28 28.7 34.8 15:09:34 D 41000 2 2572 232 154 110 59 13 9 9 28.5 34.5 15:11:25 D 41000 3 4058 347 241 176 101 24 17 15 28.5 34.5 15:11:34 D 41000 4 7581 580 418 314 189 51 34 29 28.5 34.5 15:11:47 D 41101 2 2558 222 152 111 62 13 8 6 29.1 33.8 15:15:13 D 41101 3 4032 340 244 180 106 22 12 10 29.1 33.8 15:15:24 D 41101 4 7580 576 428 323 197 43 23 19 29.1 33.8 15:15:36 D 41200 2 2577 247 168 121 72 17 11 10 28.9 33.6 15:17:09 D 41200 3 4041 372 260 190 117 31 20 15 28.9 33.6 15:17:24 D 41200 4 7571 622 451 341 222 63 39 29 28.9 33.6 15:17:35 D 41300 2 2558 287 194 146 82 16 10 8 29.2 32.9 15:19:27 D 41300 3 4017 448 315 241 139 29 16 13 29.2 32.9 15:19:36 D 41300 4 7523 775 564 436 266 60 33 24 29.2 32.9 15:19:48 D 41400 2 2566 226 154 112 66 14 9 9 29.5 33.2 15:21:35 D 41400 3 4048 339 243 180 109 25 15 13 29.5 33.2 15:21:44 D 41400 4 7580 564 413 314 197 50 29 23 29.5 33.2 15:21:56 D 41499 2 2551 208 142 104 60 13 8 6 28.7 33.3 15:24:01 D 41499 3 4030 313 223 165 100 22 12 10 28.7 33.3 15:24:10 D 41499 4 7585 531 389 296 190 47 26 19 28.7 33.3 15:24:22 D 41601 2 2572 198 133 97 54 6 5 2 28.9 33.1 15:25:58 D 41601 3 4044 303 211 156 89 12 5 6 28.9 33.1 15:26:16 D 41601 4 7614 499 358 268 163 26 12 7 28.9 33.1 15:26:29 D 41700 2 2592 174 120 90 55 19 14 11 28.9 32.7 15:28:19 D 41700 3 4073 262 192 146 93 31 23 18 28.9 32.7 15:28:28 D 41700 4 7632 445 343 268 181 66 45 35 28.9 32.7 15:28:40 ment: karachi 105 km 160 Table A-3 (cont'd). J Station Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave Time J m Nam kg! cm cm am am am am am IC aC hh:mm:ss D 41800 2 2558 253 180 136 83 20 12 8 29.1 32.7 15:30:20 D 41800 3 4012 400 297 226 144 37 20 13 29.1 32.7 15:30:29 D 41800 4 7521 719 554 432 288 78 4O 25 29.1 32.7 15:30:50 D 41900 2 2554 232 158 120 71 14 7 5 28.7 31.9 15:32:40 D 41900 3 4023 360 260 198 123 25 13 8 28.7 31.9 15:32:49 D 41900 4 7539 636 469 365 236 54 24 16 28.7 31.9 15:33 :01 D 42000 2 2561 240 166 125 75 22 14 11 28.4 32.1 15:34:44 D 42000 3 4023 364 265 203 129 38 23 18 28.4 32.1 15:34:53 D 42000 4 7535 629 482 379 254 82 49 35 28.4 32.1 15:35:13 D 42100 2 2569 265 189 141 91 26 18 11 28.4 32.1 15:36:53 D 42100 3 4018 419 309 239 154 47 25 17 28.4 32.1 15:37:03 D 42100 4 7494 746 570 448 306 99 54 36 28.4 32.1 15:37:15 D 42200 2 2572 254 160 113 60 16 9 7 28.7 31.7 15:38:45 D 42200 3 4037 405 268 193 108 27 15 11 28.7 31.7 15:38:54 D 42200 4 7525 717 494 366 214 53 30 21 28.7 31.7 15:39:15 D 42300 2 2585 133 89 65 41 13 9 9 29.1 32.1 15:40:55 D 42300 3 4071 219 151 111 69 22 15 14 29.1 32.1 15:41:04 D 42300 4 7593 395 281 208 135 44 29 25 29.1 32.1 15:41:16 D 42400 2 2587 219 147 103 53 15 12 9 29.2 32 15:43:03 D 42400 3 4044 332 233 168 91 23 18 14 29.2 32 15:43:19 D 42400 4 7566 563 410 304 174 48 35 29 29.2 32 15:43:39 D 42502 2 2579 l 16 76 56 34 13 10 10 28.2 32 15:45:40 D 42502 3 4074 179 127 95 57 21 17 15 28.2 32 15:45:49 D 42502 4 7622 318 234 180 113 42 33 28 28.2 32 15:46:01 D 42601 2 2569 295 185 123 66 18 13 10 29.6 32 15:47:36 D 42601 3 4048 476 31 1 216 118 28 18 13 29.6 32 15:47:45 D 42601 4 7542 848 580 416 242 59 35 27 29.6 32 15:48:05 C T sting Comment: karachi 104 (bridge found) D 42800 2 2585 87 64 51 38 15 10 8 28.9 32.5 15:50:11 D 42800 3 4075 146 109 89 66 27 18 13 28.9 32.5 15:50:20 D 42800 4 7642 294 227 189 142 59 36 26 28.9 32.5 15:50:32 D 42901 2 2587 174 126 96 63 17 11 8 28.2 32 15:52: 10 D 42800 2 2575 159 116 89 59 16 9 7 28.7 31 15:58:20 161 Table A-4 : Measured FWD deflection data for stations 42900-52400. [FWD DATA FILE :A:\N5S2D1A.FWD HProject : N5 HSection : 2 HLocation : start from hyd tol plaza HRoad clas. : Flex HNo of lanes : 2 HMeasured lane : outer H : HSurface type : asphalt Hlxme width : 12 HDirection(NSWE) : s HShoulder type : ST HOt‘fset side dist: 3 fl HWeather : Sunny H : HOperator : M.ALI IDate Created : 03-08-1995 HMaChine Type : KUAB FWD Model 150 118on Version : 4.23 ILoad Mode : 1 (6+6 large buffers, 3 stack weights) IPIate Radius : 15.0 (cm) HPlate Cal Factor : 11050.00 HPIate Cal Add : 150 HPlate Gain Factor: 1.00000 HPlate Cal Date : 11-27-1994 HPlate Cal Time : 12:23:02 HAir Cal Factor : 0.073093 HAir Cal Add : -273 “Air Cal Date : 02-27-1995 HAir Cal Time : 10:07:27 HDMI Cal Factor ' 0.696384 HDMI Last Cal Date: 02-26-1995 HDMI Last Cal Time: 09:57:59 lDrop Sequence : 2123 IRecord Drop? : NYYY IChannel : 0 1 2 3 4 5 6 ISensor ID : 0- 1- 2- 3- 4- 5- 6- IDistance : 0.0 20.0 30.0 45.0 90.0 120.0 150.0 (cm) IPosition : CENTER BEHIND BEHIND BEHIND BEHIND BEHIND BEHIND HStatic Cal Factor: 0.5642 0.2884 0.2816 0.2865 0.1399 0.1376 0.1396 HDynCal Factor : 1.050 1.050 1.050 1.050 1.050 1.050 1.050 HGainFactor : 1.000 1.000 1.000 1.000 1.000 1.000 1.000 HChannel Cal Date : 02-24-95 02-24-95 02-24-95 02-24-95 02-24-95 02-24-95 02-24-95 HChannel Cal Time: 14:22:24 14:22:24 14:22:24 14:22:24 14:22:24 14:22:24 14:22:24 H 162 Table A-4 (cont'd). J Station Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave The J m Nam kg! cm cm on am am am am aC IC Hummus I—D 42900 2 2648 136 116 98 76 24 1 1 6 36.6 30.2 10:56:43 D 42900 3 4097 211 183 155 120 40 17 9 36.6 30.2 10:56:53 D 42900 4 7492 392 341 289 223 79 36 15 36.6 30.2 10:57:05 Testing Comment: start work on 8.1.95 D 42900 2 2569 169 124 96 62 17 11 7 34.4 37.2 13:37:21 D 42900 3 4040 270 202 159 103 29 17 12 34.4 37.2 13:37:31 D 42900 4 7504 483 370 298 202 64 34 23 34.4 37.2 13:37:43 C Testing Comment: 1 st test of the day D 43000 2 2542 275 196 151 89 19 10 7 34.8 43.5 13:40:03 D 43000 3 3998 440 323 251 155 33 14 9 34.8 43.5 13:40: 12 D 43000 4 7418 756 579 459 296 70 30 18 34.8 43.5 13:40:33 D 43100 2 2594 182 114 76 38 7 5 4 35.2 44 13:42:34 D 43100 3 4068 273 180 125 63 11 7 5 35.2 44 13:42:43 D 43100 4 7577 463 315 224 123 23 14 11 35.2 44 13:42:55 D 43200 2 2561 177 112 78 40 7 5 4 35.7 44.6 13:44:37 D 43200 3 4058 271 177 128 69 14 8 6 35.7 44.6 13:44:46 D 43200 4 7582 467 317 232 131 27 16 12 35.7 44.6 13:45:07 D 43300 2 2577 188 126 85 47 12 9 7 34.9 44.1 13:47:10 D 43300 3 4044 284 199 139 79 21 13 11 34.9 44.1 13:47:19 D 43300 4 7529 483 349 254 155 43 28 22 34.9 44.1 13:47:31 D 43400 2 2557 250 180 136 82 17 9 7 34.9 43.4 13:49:21 D 43400 3 3989 393 291 224 141 31 14 10 34.9 43.4 13:49:30 D 43400 4 7481 690 524 410 269 63 29 19 34.9 43.4 13:49:51 D 43500 2 2567 103 64 44 24 8 5 5 35.3 43.8 13:51:40 D 43500 3 4039 155 101 72 42 11 8 6 35.3 43.8 13:51:49 D 43500 4 7655 266 180 131 80 24 16 13 35.3 43.8 13:52:01 D 43600 2 2572 200 132 93 51 9 8 6 34.8 43.6 13:53:53 D 43600 3 4027 300 208 149 84 16 10 8 34.8 43.6 13:54:02 D 43600 4 7570 51 1 359 266 160 34 20 16 34.8 43.6 13:54:23 D 43700 2 2602 1 1 l 71 48 28 9 7 6 34.9 43.6 13:56:05 D 43700 3 4039 175 117 79 45 15 11 9 34.9 43.6 13:56:14 D 43700 4 7621 304 205 146 90 30 21 17 34.9 43.6 13:56:26 iC Testing Comment: near 1cm post 103. D 43800 2 2573 226 151 105 56 12 8 7 35.7 44.1 13:58:26 D 43800 3 4035 334 230 166 93 22 14 11 35.7 44.1 13:58:44 D 43800 4 7589 557 395 . 289 173 46 31 24 35.7 44.1 13:58:56 D 43900 2 2569 200 126 84 45 10 8 6 35.2 43 .6 14:01:00 D 43900 3 4038 308 203 139 76 15 11 8 35.2 43.6 14:01:09 D 43900 4 7579 540 367 261 148 30 19 15 35.2 43 .6 14:01:21 D 44000 2 2559 171 111 80 43 10 7 6 35.3 44.7 14:03:17 D 44000 3 4028 265 180 131 75 15 11 9 35.3 44.7 14:03:35 D 44000 4 7523 474 334 247 146 32 20 17 35.3 44.7 14:03:47 D 44101 2 2555 217 138 94 45 7 6 5 35.5 43.8 14:05:39 D 44101 3 4021 320 214 148 74 14 8 7 35.5 43.8 14:05:48 D 44101 4 7586 527 363 259 141 27 17 15 35.5 43.8 14:06:00 D 44200 2 2558 208 137 94 49 1 1 7 6 35.7 45 14:07:45 163 Table A-4 (cont‘d). J Station Imp Load D0 D20 1330 D45 D90 D120 D150 Ali- Pave The J m Nam kg! am an em cm cm cm cm aC 0C Hummus ___________________.____.__.__i D 44200 3 4035 313 216 150 82 17 12 10 35.7 45 14:08:02 D 44200 4 7595 538 375 266 153 33 24 20 35.7 45 14:08:14 D 44300 2 2554 214 135 94 48 13 8 9 35.3 44.9 14:09:58 D 44300 3 4040 322 216 153 81 19 16 13 35.3 44.9 14:10:07 D 44300 4 7594 554 383 276 154 39 28 24 35.3 44.9 14:10: 19 D 44400 2 2565 242 157 108 56 16 11 9 35.4 44.7 14:11:58 D 44400 3 4016 369 248 176 97 27 18 14 35.4 44.7 14:12:16 D 44400 4 7558 655 461 338 199 58 38 28 35.4 44.7 14:12:28 D 44500 2 2505 362 238 167 95 29 18 11 35.7 45.2 14:14: 17 D 44500 3 3978 564 392 283 167 48 28 20 35.7 45.2 14:14:26 D 44500 4 7443 1006 727 546 341 103 58 39 35.7 45.2 14:14:39 D 44600 2 2550 241 163 116 64 14 11 8 36.2 44.8 14:16:20 D 44600 3 3992 357 251 183 106 25 15 12 36.2 44.8 14:16:38 D 44600 4 7548 602 435 323 198 50 31 23 36.2 44.8 14:16:49 iC Testing Comment:near1cmpost103,andpolice checkpost. D 44700 2 2525 262 154 97 42 9 6 4 35.5 44 14:19:02 D 44700 3 3978 406 248 158 71 15 9 8 35.5 44 14:19:11 D 44700 4 7556 696 441 291 140 30 19 15 35.5 44 14:19:22 D 44800 2 2528 240 154 103 56 17 9 7 35.3 44.3 14:21:13 D 44800 3 4016 395 267 185 102 28 16 10 35.3 44.3 14:21:21 D 44800 4 7537 716 511 366 220 58 31 20 35.3 44.3 14:21:32 D 44900 2 2519 295 183 116 52 10 4 4 36.2 44.5 14:23:27 D 44900 3 3975 450 292 192 90 15 8 6 36.2 44.5 14:23:36 D 44900 4 7470 758 510 348 172 28 15 1 1 36.2 44.5 14:23:47 D 45000 2 2533 223 144 102 56 10 5 4 34.9 44.8 14:26:20 D 45000 3 4015 335 227 165 95 18 8 6 34.9 44.8 14:26:29 D 45000 4 7632 564 398 296 181 37 18 12 34.9 44.8 14:26:40 D 45101 2 2547 177 129 97 57 10 5 2 35.5 44.1 14:28:33 D 45101 3 3992 278 209 159 98 18 6 4 35.5 44.1 14:28:42 D 45101 4 7575 495 377 297 192 38 14 9 35.5 44.1 14:28:53 D 45200 2 2543 258 176 124 70 17 10 7 35.9 43.1 14:30:54 D 45200 3 3978 386 274 200 118 28 17 13 35.9 43.1 14:31:02 D 45200 4 7553 658 483 363 228 61 35 26 35.9 43.1 14:31: 13 D 45300 2 2529 230 149 103 54 11 8 5 35.5 43.3 14:32:57 D 45300 3 4001 353 244 170 93 19 11 7 35.5 43.3 14:33:06 D 45300 4 7580 625 449 326 191 41 23 16 35.5 43.3 14:33:17 D 45400 2 2523 223 152 113 64 13 7 4 34.9 44.3 14:35:08 D 45400 3 3978 353 251 190 112 24 12 7 34.9 44.3 14:35:16 D 45400 4 7623 644 474 370 230 54 25 15 34.9 44.3 14:35:27 D 45500 2 2533 256 170 121 68 11 5 2 35.2 43.8 14:37:02 D 45500 3 4002 386 272 198 115 20 10 6 35.2 43.8 14:37:11 D 45500 4 7523 668 485 364 223 43 18 1 1 35.2 43.8 14:37:22 D 45600 2 2510 251 169 119 63 12 8 4 35.9 44.3 14:39: 15 D 45600 3 3978 400 282 204 116 25 11 7 35.9 44.3 14:39:24 D 45600 4 7514 720 524 389 237 51 24 14 35.9 44.3 14:39:35 1C Tesfl' Commentnearkmpost 101 164 Table A-4 (cont'd). J Station Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave Time J m Nam kg! am am am cm cm cm rem aC aC Hummus 45700 2546 284 167 106 46 6 35.3 44 14:41:21 35.3 44 14:41:30 35.3 44 14:41:50 35.5 44.7 14:43:42 35.5 44.7 14:43:50 35.5 44.7 14:44:02 35.3 45.1 14:45:41 35.3 45.1 14:45:49 35.3 45.1 14:46:10 35.5 44.5 14:48:15 35.5 44.5 14:48:28 35.5 44.5 14:48:43 35.5 43.5 14:50:42 35.5 43.5 14:50:50 35.5 43.5 14:51:11 35.2 40.8 14:56:48 35.2 40.8 14:56:58 35.2 40.8 14:57:09 35.5 43.8 14:58:51 35.5 43.8 14:58:59 35.5 43.8 14:59:11 36.2 42.3 15:01:28 36.2 42.3 15:01:37 36.2 42.3 15:01:49 45700 45700 45800 45800 45800 45900 45900 45900 3953 429 264 170 79 9 7470 717 451 300 145 17 2564 148 78 48 24 7 4033 231 132 79 39 13 7690 408 241 151 80 25 2542 103 57 37 20 8 4040 171 99 64 38 14 7635 31 1 192 131 80 28 2527 353 170 79 21 2 3984 509 265 135 38 1 838 458 243 75 2 2532 171 94 60 28 7 4013 267 158 100 48 11 7651 463 289 192 98 24 2565 87 51 35 19 6 4032 132 84 59 32 9 7670 238 155 111 65 18 2527 238 160 114 62 10 3980 373 260 190 108 18 7558 671 487 365 220 40 2550 239 157 106 54 9 4026 357 249 172 93 16 7597 606 439 314 181 37 esting Comment: near km post 100 46500 2 2531 204 129 87 44 7 mAwNNSawaquaw—l buxom»): g bWN&WN&WN&WN&NN&UN&WN#UNI N § MN fl — IC 34.6 42.9 15:03:35 m33~o2§m3~oo~o¢uwzqa :mMSwunggouw—NawmgoamouI _ o CUUUUUUUUUDUUUUUUUUUUHUUUUDUUUUUUUUUUUUDUUUUUU 8 3 46500 3 4020 305 203 141 74 12 5 34.6 42.9 15:03:43 46500 4 7652 505 347 248 141 25 10 34.6 42.9 15:04:04 46600 2 2545 223 140 92 43 6 3 35.5 42.4 15:06:04 46600 3 4018 328 215 147 75 9 3 35.5 42.4 15:06:13 46600 4 7662 547 366 259 142 18 6 35.5 42.4 15:06:24 46700 2 2543 214 140 98 50 10 3 34.9 42.3 15:08:09 46700 3 4010 324 222 159 87 15 6 34.9 42.3 15:08: 18 46700 4 7609 534 381 284 167 32 10 34.9 42.3 15:08:39 46800 2 2557 259 176 123 68 16 4 34.6 42.1 15:10:32 46800 3 4017 405 293 212 123 29 9 34.6 42.1 15:10:40 46800 4 7566 735 556 420 260 66 17 34.6 42.1 15:10:52 46900 2 2523 236 158 114 65 17 6 34.9 42.3 15:13:13 46900 3 4033 367 259 193 115 27 11 34.9 42.3 15:13:22 46900 4 7645 651 477 362 228 59 22 34.9 42.3 15:13:43 47000 2 2530 265 180 131 76 15 4 34.8 42.6 15:15:35 47000 3 3999 429 304 226 136 26 12 8 34.8 42.6 15:15:44 47000 4 7487 801 588 450 283 56 24 15 34.8 42.6 15:15:55 47000 2 2528 256 174 128 74 14 8 5 37.5 40.9 15:17:22 47000 3 3981 421 296 221 133 26 13 7 37.5 40.9 15:17:30 47000 4 7522 771 570 438 277 57 25 15 37.5 40.9 15:17:51 165 Table A4 (cont'd). J Station Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave Time [ J m Nam kg! I mm m cm am cm I am am aC aC bbzmmaa E Testing Coniment: test repeated on instructions of Dir.highways. D 47100 2 2533 232 152 107 57 11 7 4 34.1 42.5 15:21:15 D 47100 3 3998 364 251 180 100 19 10 6 34.1 42.5 15:21:24 D 47100 4 7552 654 468 347 203 39 20 13 34.1 42.5 15:21:35 D 47201 2 2514 233 154 110 57 11 5 5 35.3 42.5 15:23:35 D 47201 3 4016 371 254 184 99 18 10 7 35.3 42.5 15:23:53 D 47201 4 7589 666 476 357 208 39 21 15 35.3 42.5 15:24:04 D 47300 2 2534 285 186 128 63 11 6 5 35.5 42.3 15:25:46 D 47300 3 4006 463 316 225 115 19 11 8 35.5 42.3 15:25:55 D 47300 4 7539 861 615 456 247 40 22 17 35.5 42.3 15:26:06 lC Testing Comment: near km post 99 D 47400 2 2525 203 133 90 48 9 6 4 35 42.6 15:28:38 D 47400 3 4014 305 211 146 82 15 9 7 35 42.6 15:28:47 D 47400 4 7591 525 373 268 157 33 19 13 35 42.6 15:28:58 D 47500 2 2544 238 154 109 57 11 7 5 35.5 42 15:31:06 D 47500 3 3997 364 247 178 100 20 ll 7 35.5 42 15:31:15 D 47500 4 7618 634 450 332 194 42 23 16 35.5 42 15:31:27 D 47601 2 2551 242 161 112 63 16 9 7 34.8 42.1 15:33:09 D 47601 3 4029 369 254 184 106 27 16 11 34.8 42.1 15:33:19 D 47601 4 7635 645 460 342 211 56 33 22 34.8 42.1 15:33:30 D 47700 2 2532 235 155 113 69 25 18 17 34.6 41.6 15:35:06 D 47700 3 3998 363 253 185 116 44 31 26 34.6 41.6 15:35:15 D 47700 4 7517 652 475 362 236 89 63 48 34.6 41.6 15:35:27 D 47801 2 2539 162 106 76 46 22 17 13 34.3 39.9 15:38:40 D 47801 3 4004 253 173 128 79 33 24 22 34.3 39.9 15:38:50 D 47801 4 7630 485 348 262 169 65 49 41 34.3 39.9 15:39:02 D 47901 2 2520 197 132 96 55 19 13 13 34.8 41.7 15:40:51 D 47901 3 4006 304 216 158 98 32 23 19 34.8 41.7 15:41:00 D 47901 4 7568 541 398 302 192 63 44 38 34.8 41.7 15:41:13 D 48000 2 2535 237 156 110 60 15 10 9 34.9 41.4 15:43:03 D 48000 3 4038 364 251 180 103 24 17 14 34.9 41.4 15:43: 12 D 48000 4 7580 632 454 333 202 50 32 27 34.9 41.4 15:43:24 D 48100 2 2539 265 186 137 86 32 26 22 34.4 41.9 15:44:58 D 48100 3 4001 408 301 227 148 56 41 32 34.4 41.9 15:45:08 D 48100 4 7637 749 573 446 304 119 83 63 34.4 41.9 15:45:20 D 48200 2 2528 230 151 105 56 14 8 5 34.3 41.3 15:47:08 D 48200 3 3986 349 240 172 94 22 14 10 34.3 41.3 15:47:17 D 48200 4 7624 609 435 323 188 47 27 19 34.3 41.3 15:47:28 D 48300 2 2531 153 105 77 47 14 10 7 34.1 41.6 15:49:06 D 48300 3 4027 240 172 130 82 23 15 11 34.1 41.6 15:49:15 D 48300 4 7643 428 319 248 166 49 30 22 34.1 41.6 15:49:27 IC Testing Comment: near km post 98 D 48400 2 2530 207 140 101 60 15 10 7 34.8 41.3 15:51:29 D 48400 3 4019 327 232 171 105 26 14 10 34.8 41.3 15:51:37 D 48400 4 7614 603 445 336 217 57 31 22 34.8 41.3 15:51:49 D 48500 2 2533 287 194 135 73 18 10 7 34.3 40.4 15:53:25 166 Table A-4 (cont'd). J Station Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave Time J m Nam kg! am am am am am am am aC eC llhzmmzu D 48500 3 4006 453 322 230 131 31 17 11 34.3 40.4 15:53:34 D 48500 4 7560 833 619 461 280 66 33 22 34.3 40.4 15:53:55 D 48601 2 2503 307 189 118 63 19 12 9 34.3 41 15:55:36 D 48601 3 3966 476 309 200 113 32 20 14 34.3 41 15:55:44 D 48601 4 7473 836 577 393 236 68 40 28 34.3 41 15:55:56 D 48700 2 2526 274 171 109 56 10 5 4 34.4 41.6 15:57:29 D 48700 3 4003 413 271 180 97 18 9 5 34.4 41.6 15:57:38 D 48700 4 7550 691 469 323 185 36 16 9 34.4 41.6 15:57:59 D 48800 2 2509 324 209 142 81 20 11 7 34.6 41.4 15:59:34 D 48800 3 3978 501 343 240 140 34 17 11 34.6 41.4 15:59:43 D 48800 4 7519 859 618 446 275 71 36 22 34.6 41.4 15:59:55 D 48900 2 2544 275 174 121 62 15 10 7 34.3 40.3 16:01:32 D 48900 3 3994 431 290 206 112 26 15 10 34.3 40.3 16:01:41 D 48900 4 7589 772 551 407 236 57 32 22 34.3 40.3 16:02:02 D 49000 2 2525 227 140 92 43 10 7 7 34.4 39.4 16:03:46 D 49000 3 3982 349 227 153 75 17 12 11 34.4 39.4 16:03:55 D 49000 4 7649 596 404 279 146 34 24 20 34.4 39.4 16:04:06 D 49100 2 2526 181 114 78 43 10 8 6 34.9 40 16:06:38 D 49100 3 4011 284 187 133 75 19 11 8 34.9 40 16:06:47 D 49100 4 7633 498 343 253 152 39 25 19 34.9 40 16:07:09 D 49200 2 2533 214 137 94 48 12 7 5 32.7 39.4 16:08:59 D 49200 3 3989 327 218 156 85 20 1 1 7 32.7 39.4 16:09:08 D 49200 4 7637 572 404 299 176 43 24 16 32.7 39.4 16:09:20 D 49300 2 2527 105 69 49 29 10 6 5 34.8 39.9 16:11:18 D 49300 3 4044 174 116 85 51 16 14 8 34.8 39.9 16:11:26 D 49300 4 7678 314 222 167 106 36 24 17 34.8 39.9 16:11:48 IC Testing Comment: near km post 97 D 49401 2 2535 129 77 54 30 8 5 4 34.4 39.9 16:13:31 D 49401 3 4055 200 131 92 54 13 9 6 34.4 39.9 16:13:41 D 49401 4 7671 351 242 176 108 28 17 12 34.4 39.9 16:13:52 D 49500 2 2548 195 123 81 43 9 5 5 34.6 40.1 16:15:45 D 49500 3 4011 294 194 134 73 14 9 7 34.6 40.1 16:16:04 D 49500 4 7637 51 1 348 247 140 29 19 14 34.6 40.1 16:16:23 D 49601 2 2546 184 118 84 49 11 7 5 34.6 39.6 16:18:07 D 49601 3 4014 285 194 140 82 19 12 9 34.6 39.6 16:18:16 D 49601 4 7637 511 358 268 168 45 26 18 34.6 39.6 16:18:28 D 49700 2 2551 81 51 35 21 6 5 4 34.6 39.5 16:20:08 D 49700 3 4042 124 81 57 34 1 1 8 5 34.6 39.5 16:20:27 D 49700 4 7719 227 153 113 70 24 16 11 34.6 39.5 16:20:38 D 49800 2 2527 81 57 43 29 10 7 4 34.8 39.7 16:22: 13 D 49800 3 4014 127 90 71 50 17 11 6 34.8 39.7 16:22:22 D 49800 4 7698 236 173 140 103 39 22 14 34.8 39.7 16:22:34 D 49900 2 2538 171 112 76 39 8 5 3 34.9 39.4 16:24: 10 D 49900 3 4015 258 175 123 67 13 7 4 34.9 39.4 16:24:29 D 49900 4 7663 445 314 225 131 27 15 10 34.9 39.4 16:24:40 D 50000 2 2531 197 117 76 35 3 1 2 32.3 39.1 16:26:35 167 Table A-4 (cont'd). J Station Imp Load D0 D20 1330 D45 D90 D120 D150 Air Pave Time J m Nam kg! am am am rem cm am am aC aC blummua I-T) 50000 3 4030 298 188 125 62 4 1 2 32.3 39.1 16:26:48 D 50000 4 7653 512 333 229 117 10 3 3 32.3 39.1 16:27:00 D 50100 2 2539 163 100 65 29 2 1 2 33.9 39.3 16:28:42 D 50100 3 4015 245 157 106 48 2 1 1 33.9 39.3 16:29:03 D 50100 4 7673 429 282 195 98 6 1 2 33.9 39.3 16:29:20 D 50200 2 2473 185 122 85 45 8 4 3 33.6 38.6 16:30:56 D 50200 3 3950 287 196 139 78 13 8 5 33.6 38.6 16:31:05 D 50200 4 7594 499 353 259 153 30 14 7 33.6 38.6 16:31: 16 D 50300 2 2531 211 144 105 62 16 12 9 32.5 38.4 16:32:51 D 50300 3 4030 321 226 168 104 28 17 15 32.5 38.4 16:33: 10 D 50300 4 7645 560 406 308 198 56 35 29 32.5 38.4 16:33:22 C TestingComment: nearkmpost96 D 50400 2 2529 207 140 103 63 16 10 10 33.7 37.9 16:35:04 D 50400 3 4006 328 230 172 108 28 19 16 33.7 37.9 16:35: 12 D 50400 4 7610 569 418 318 209 56 34 26 33.7 37.9 16:35:24 D 50500 2 2557 181 127 92 54 12 7 7 33.6 37.9 16:37:11 D 50500 3 4013 282 202 151 92 21 13 10 33.6 37.9 16:37:20 D 50500 4 7632 493 363 277 176 44 26 20 33.6 37.9 16:37:32 D 50601 2 2536 223 160 118 71 17 12 9 33.7 37.1 16:39:11 1) 50601 3 4015 347 260 196 122 32 18 14 33.7 37.1 16:39:20 D 50601 4 7578 612 470 360 236 67 38 27 33.7 37.1 16:39:32 D 50702 2 2542 134 90 67 43 13 9 9 33.7 38 16:41:15 D 50702 3 4040 213 148 113 73 23 15 13 33.7 38 16:41:24 D 50702 4 7663 375 271 21 1 145 48 32 25 33.7 38 16:41:43 D 50801 2 2528 211 140 101 57 9 5 3 33.6 37.4 16:43:27 D 50801 3 3994 327 228 167 97 17 9 6 33.6 37.4 16:43:36 D 50801 4 7616 572 413 312 192 39 19 13 33.6 37.4 16:43:48 D 50900 2 2527 163 1 11 77 43 7 3 2 33.7 37.2 16:45:40 D 50900 3 4028 253 179 128 73 14 7 4 33.7 37.2 16:45:49 D 50900 4 7665 444 323 242 150 31 14 8 33.7 37.2 16:46:01 D 51000 2 2543 269 184 132 75 11 5 4 33.6 37.2 16:47:48 D 51000 3 4004 402 283 208 126 22 10 6 33.6 37.2 16:47:57 D 51000 4 7574 678 492 372 232 47 20 12 33.6 37.2 16:48:08 D 51100 2 2501 242 169 131 79 20 11 6 33.6 37.1 16:49:53 D 51100 3 3971 383 285 220 144 40 21 12 33.6 37.1 16:50:02 D 51100 4 7564 706 545 435 303 95 48 28 33.6 37.1 16:50: 14 D 51200 2 2514 236 161 116 62 9 4 3 33.6 36.8 16:52:09 D 51200 3 4040 370 262 194 112 17 7 4 33.6 36.8 16:52: 17 D 51200 4 7622 636 466 352 211 39 15 10 33.6 36.8 16:52:29 D 51301 2 2558 94 57 39 20 4 3 1 32.5 36.3 16:54: 15 D 51301 3 4049 146 91 63 34 7 5 4 32.5 36.3 16:54:24 D 51301 4 7711 253 163 117 65 15 10 6 32.5 36.3 16:54:36 C Testing Comment: near km 95 D 51400 2 2548 182 117 84 46 9 5 4 33 36.4 16:56:33 D 51400 3 4039 279 189 138 78 17 8 6 33 36.4 16:56:42 D 51400 4 7684 485 340 255 155 35 18 12 33 36.4 16:57:05 168 Table A-4 (cont'd). J Station Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave Time J m Nam kg! am am am am mm mm cm aC aC bbzmmus D 51501 2 2521 197 126 89 49 10 7 6 33 35.7 16:59:06 D 51501 3 4026 300 202 145 84 18 11 9 33 35.7 16:59:15 D 51501 4 7667 515 358 266 162 38 22 18 33 35.7 16:59:26 D 51601 2 2519 194 127 87 44 6 4 3 33.3 35.7 17:01:01 D 51601 3 4020 295 202 142 77 11 6 4 33.3 35.7 17:01:10 D 51601 4 7649 509 357 261 151 25 11 7 33.3 35.7 17:01:32 D 51700 2 2558 88 55 38 22 7 6 3 33 35.3 17:03:06 D 51700 3 4077 142 91 64 39 13 9 6 33 35.3 17:03:14 D 51700 4 7752 256 171 123 79 27 17 12 33 35.3 17:03:26 D 51801 2 2524 188 119 82 45 9 4 3 33.2 35 17:05:04 D 51801 3 4030 308 203 141 78 16 9 5 33.2 35 17:05:13 D 51801 4 7643 592 392 277 156 33 16 10 33.2 35 17:05:35 D 51901 2 2548 54 29 20 12 5 3 2 33.3 35.2 17:07:29 D 51901 3 4066 84 49 34 23 10 6 4 33.3 35.2 17:07:38 D 51901 4 7779 163 94 68 44 18 11 9 33.3 35.2 17:07:56 I) 52000 2 2555 74 41 30 20 8 6 4 32.8 35.2 17:09:32 1) 52000 3 4071 118 69 51 35 15 10 6 32.8 35.2 17:09:41 D 52000 4 7734 227 144 106 73 31 19 12 32.8 35.2 17:10:03 D 52100 2 2540 92 53 38 24 10 7 5 33.2 34.2 17:11:42 D 52100 3 4040 158 94 66 42 18 11 8 33.2 34.2 17:11:51 D 52100 4 7659 317 200 141 92 39 24 16 33.2 34.2 17:12:02 D 52200 2 2548 155 106 79 49 13 7 4 33.2 35.6 17:13:32 D 52200 3 4023 259 186 138 86 25 13 7 33.2 35.6 17:13:41 D 52200 4 7630 504 373 284 187 56 29 17 33.2 35.6 17:14:03 D 52301 2 2541 195 129 90 49 6 2 2 33.2 35.1 17:15:38 D 52301 3 4025 317 220 157 87 11 3 1 33.2 35.1 17:15:46 D 52301 4 7621 567 402 293 174 23 6 2 33.2 35.1 17:15:58 D 52400 2 2559 126 72 45 24 4 2 1 33 35.5 17:17:31 D 52400 3 4033 214 127 84 43 7 3 2 33 35.5 17:17:40 D 52400 4 7635 398 248 167 89 14 6 3 33 35.5 17:18:02 APPENDIX B 169 Table B-1 :Formatted data file for MICHBACK for stations 100-1101. IFWD DATA FILE : A:\N5S2D1.FWD I-iProject : N5 HSection : 2 HLocation : start fi'om hyd tol plaza HRoad clas. : Flex HNo of lanes : 2 HMeasured lane : outer H : HSurface type : asphalt HLane width : 12 HDirectionCNSWE) : s HShoulder type : ST “Offset side dist: 3 11 ”Weather : Sunny 11 . HOperator : almani IDate Created : 02-26-1995 HMachine Type : KUAB FWD Model 150 HSofiware Version : 4.23 "ILoad Mode : 1 (6+6 large buffers, 3 stack weights)" IPlate Radius : 15.0 (cm) HPlate Cal Factor : 11050.00 HPlate Cal Add : 150 HPlate Gain Factor: 1.00000 HPlate Cal Date : 11-27-1994 HPlate Cal Time : 12:23:02 HAir Cal Factor : 0.073666 HAir Cal Add : -273 HAir Cal Date : 1 1-26-1994 HAir Cal Time : 15:03:10 HDMI Cal Factor : 0.696384 HDMI Last Cal Date: 02-26-1995 HDMI Last Cal Time: 09:57:59 IDrop Sequence : 2123 IRecord Drop? : NYYY IChannel : 0 1 2 3 4 5 6 ISensorlD : 0- 1- 2- 3- 4- 5- 6- IDistance : 0.0 20.0 30.0 45.0 60.0 120.0 180.0 (cm) IPosition : CENTER BEHIND BEHIND BEHIND BEHIND BEHIND BEHIND HStatic Cal Factor: 0.5642 0.2884 0.2816 0.2865 0.1399 0.1376 0.1396 HDynCal Factor : 1.050 1.050 1.050 1.050 1.050 1.050 1.050 HGain Factor : 1.000 1.000 1.000 1.000 1.000 1.000 1.000 170 Table B-1 (cont'd). HChannel Cal Date : 02-24-95 02-24-95 02-24-95 02-24-95 02-24-95 02-24-95 02-24-95 HChannelCalTime: 14:22:24 14:22:24 14:22:24 14:22:24 14:22:24 14:22:24 14:22:24 H JStationImpLoad D0 D20 D30 D45 D60 D120 D180 AirPave Time JmNamkgfemsmaamemcmemcmoCoChhnnmzss InseflatTeas-i20equa1'='signsinthisrow. “mm 11: 1 9000 SL Tempm Loadabo D0 1320 1330 D45 D60 11120 D180 100 97.7 8933 5.23622 3.70079 2.95276 1.9685 1.41732 0.55118 0.31496 201 98.24 8953 6.88976 5 3.93701 2.51969 1.65354 0.43307 0.15748 301 97.52 8973 5.3937 3.97638 2.99213 1.92913 1.22047 0.27559 0.11811 400 99.32 8935 9.68504 7.32283 5.74803 3.8189 2.51969 0.59055 0.27559 501 100.58 8893 8.62205 6.49606 4.96063 3.11024 1.9685 0.27559 0.11811 601 101.84 8904 10.4724 7.75591 6.02362 4.05512 2.75591 0.90551 0.3937 701 100.94 8909 8.4252 6.25984 4.88189 3.30709 2.20472 0.62992 0.27559 800 102.38 8942 8.4252 6.22047 5.07874 3.58268 2.51969 0.7874 0.27559 901 102.38 8889 8.93701 6.29921 4.84252 3.0315 2.00787 0.47244 0.19685 1001 102.02 8904 8.26772 6.22047 4.80315 3.22835 2.12598 0.47244 0.15748 1101 103.46 8904 9.80315 7.55906 6.10236 4.17323 2.79528 0.74803 0.31496 171 Table B-2 :Formatted data file for MICHBACK for stations 1101-2900. IFWD DATA FILE : A:\N5S2D1A.FWD HProject : N5 HSection : 2 HLocation : start from hyd tol plaza HRoad clas. : Flex HNo of lanes : 2 HMeasured lane : outer H : HSurface type : asphalt HLane width : 12 HDirection(NSWE) : s HShoulder type : ST HOffset side dist: 3 fl HWeather : Sunny 11 : HOperator : almani IDate Created : 02-26-1995 HMachine Type : KUAB FWD Model 150 HSofiware Version : 4.23 "ILoad Mode : 1 (6+6 large buffers, 3 stack weights)" IPlate Radius : 15.0 (cm) HPlate Cal Factor : 1 1050.00 HPlate Cal Add : 150 HPlate Gain Factor: 1.00000 HPlate Cal Date : 11-27-1994 HPlate Cal Time : 12:23:02 HAlr Cal Factor : 0.073666 11A1r Cal Add : -273 HAir Cal Date : 1 1-26-1994 HAirCal Time : 15:03:10 HDMI Cal Factor : 0.696384 HDMI Last Cal Date: 02-26-1995 HDMI Last Cal Time: 09:57:59 [Drop Sequence :2123 IRecord Drop? :NYYY lChannel : O 1 2 3 4 5 6 ISensor ID : 0- 1- 2- 3- 4- 5- 6- IDistance : 0.0 20.0 30.0 45.0 90.0 120.0 150.0 (cm) IPosition : CENTER BEHIND BEHIND BEHIND BEHIND BEHIND BEHIND HStatic Cal Factor: 0.5642 0.2884 0.2816 0.2865 0.1399 0.1376 0.1396 HDyn Cal Factor : 1.050 1.050 1.050 1.050 1.050 1.050 1.050 HGain Factor : 1.000 1.000 1.000 1.000 1.000 1.000 1.000 172 Table B-2 (cont'd). HChannel Cal Date : 02-24-95 02-24-95 02-24-95 02-24-95 02-24-95 02-24-95 02-24-95 HChannel Cal Time: 14:22:24 14:22:24 14:22:24 14:22:24 14:22:24 14:22:24 14:22:24 H J Station Imp Load D0 D20 D30 D45 D90 D120 D150 Air Pave Time J mNumkgfamemememememcmoCaChhzmmzss J- Insert at least 20 equal " = " signs in this row. E 1 9000 SL 1201 1300 1400 1501 1600 1701 l 800 1900 200 1 2100 2201 2301 2400 2500 2600 2701 2800 2900 Temp('F) 104.18 104.9 106.16 105.98 105.98 105.26 104.9 106.52 105.62 95.18 105.44 109.22 107.78 108.14 107.96 107.24 106.52 106.88 Load(lbi) 8869 8900 8814 8810 8909 8880 8911 8867 8898 8911 8887 8803 8801 8891 8816 8889 8942 8904 D0 10.0787 10.9449 17.2441 14.1339 8.38583 13.3858 7.67717 10.315 8.66142 7.6378 8.85827 21.2598 16.5748 7.40157 20.2362 8.85827 5.07874 7.91339 D20 7.04724 8.07087 12.4016 9.6063 6.10236 8.93701 4.40945 7.59843 6.1811 5.35433 6.22047 15.0787 12.7559 6.29921 14.1339 6.53543 3.58268 6.02362 D30 5.27559 6.10236 9.25197 6.81102 4.72441 5.98425 2.75591 5.90551 4.76378 4.05512 4.88189 11.1417 9.96063 5.82677 10.3937 5.11811 2.95276 4.96063 D45 3.30709 3.70079 5.55118 3.97638 3.22835 2.87402 1.33858 4.17323 3.14961 2.75591 3.26772 6.73228 6.49606 5 6.02362 3.38583 2.24409 3.46457 D90 0.82677 0.82677 1.61417 1.41732 0.98425 0.55118 0.35433 2.04724 1.10236 1.1811 1.1811 1.73228 1.92913 2.6378 1.81102 1.41732 1.14173 1.29921 D120 0.3937 0.31496 0.94488 0.90551 0.55118 0.35433 0.23622 1.49606 0.70866 0.74803 0.66929 0.98425 1.02362 1.61417 1.14173 0.98425 0.86614 0.82677 D150 0.19685 0.15748 0.59055 0.55118 0.31496 0.23622 0.19685 1.14173 0.35433 0.59055 0.47244 0.66929 0.66929 0.94488 0.82677 0.74803 0.66929 0.62992 APPENDIX C APPENDIX C Table C-l :Backcalculated layer moduli using the MICHBACK computer program. TEMP LOAD DEFLECTION m MILs LAYER MODULI IN PSI son 81. ('1?) (Lb!) no 1320 1330 D45 1190' 11120 0150' AC Base Roadbed Layer 100 97.70 8933 5.236 3.701 2953 1.969 1.417 0.551 0.315 1194759 70662 72152 278 201 98.24 8953 6.890 5.000 3.937 2520 1.654 0.433 0.157 1025400 42832 53712 113 301 97.52 8973 5.394 3.976 2992 1.929 1.220 0.276 0.118 1467244 43315 88053 125 400 99.32 8935 9.685 7.323 5.748 3.819 2520 0.591 0.276 998901 20841 47828 162 501 100.58 8893 8.622 6.496 4.961 3.110 1.969 0.276 0.118 1118665 18893 73504 124 601 101.84 8904 10.472 7.756 6.024 4.055 2756 0.906 0.394 639288 32434 32239 148 701 100.94 8909 8.425 6.260 4.882 3.307 2205 0.630 0.276 958638 32421 44446 144 800 10238 8942 8.425 6.220 5.079 3.583 2520 0.787 0.276 929517 44582 31013 113 901 102.38 8889 8.937 6.299 4.843 3.031 2008 0.472 0.197 814471 29041 51012 129 1001 10202 8904 8.268 6.220 4.803 3.228 2126 0.472 0.157 1065047 29045 45019 109 1101 103.46 8904 9.803 7.559 6.102 4.173 2795 0.748 0.315 1010517 23180 37054 143 1201 104.18 8869 10.079 7.047 5.276 3.307 0.827 0.394 0.197 623436 28235 40415 89 1300 104.90 8900 10.945 8.071 6.102 3.701 0.827 0.315 0.157 751723 18730 44903 91 1400 106.16 8814 17.244 12.402 9.252 5.551 1.614 0.945 0.591 334660 16519 26525 119 1501 105.98 8810 14.134 9.606 6.811 3.976 1.417 0.906 0.551 258561 28434 30759 118 1600 105.98 8909 8.386 6.102 4.724 3.228 0.984 0.551 0.315 832532 39376 37086 113 1701 105.26 8880 13.386 8.937 5.984 2.874 0.551 0.354 0.236 385730 16269 83659 179 1800 104.90 8911 7.677 4.409 2756 1.339 0.354 0.236 0.197 363095 51877 100000 199 1900 106.52 8867 10.315 7.598 5.906 4.173 2047 1.496 1.142 516386 45445 31732 341 2001 105.62 8898 8.661 6.181 4.764 3.150 1.102 0.709 0.354 572416 52405 30884 180 2100 95.18 8911 7.638 5.354 4.055 2756 1.181 0.748 0.591 698821 52300 50947 304 2201 105.44 8887 8.858 6.220 4.882 3.268 1.181 0.669 0.472 779130 36427 42643 162 2301 109.22 8803 21.260 15.079 11.142 6.732 1.732 0.984 0.669 298353 11522 26320 154 2400 107.78 8801 16.575 12.756 9.961 6.496 1.929 1.024 0.669 552621 12403 26500 158 2500 108.14 8891 7.402 6.299 5.827 5.000 2.638 1.614 0.945 3000000 37230 14396 91 2600 107.96 8816 20.236 14.134 10.394 6.024 1.811 1.142 0.827 262322 13968 27617 185 2701 107.24 8889 8.858 6.535 5.118 3.386 1.417 0.984 0.748 734892 38313 44526 463 2800 106.52 8942 5.079 3.583 2.953 2.244 1.142 0.866 0.669 986804 119236 56151 720 2900 106.88 8904 7.913 6.024 4.961 3.465 1.299 0.827 0.630 1347674 28080 52464 505 3000 106.88 8856 11.063 8.031 6.181 3.740 0.945 0.551 0.472 721298 16918 69231 720 3100 107.06 8816 13.386 8.858 6.299 3.504 1.063 0.630 0.512 346111 22111 49742 239 3200 107.78 8836 7.874 5.512 4.252 2.835 0.945 0.551 0.394 892039 36745 54436 176 3300 104.90 8867 10.039 6.535 4.685 2913 0.945 0.669 0.472 439645 34452 55630 250 3400 106.34 8825 11.260 8.268 6.260 3.937 0.984 0.512 0.276 616068 22195 37797 103 3500 107.78 8757 17.008 11.299 7.953 4.370 0.827 0.315 0.118 273251 16766 28148 87 3600 107.42 8836 11.850 8.740 6.575 3.858 0.945 0.512 0.315 552471 19799 43816 124 3701 107.78 8856 12047 8.425 5.866 3.228 0.669 0.433 0.197 340448 25059 44237 92 3801 109.22 8847 12.638 9.055 6.811 4.173 1.102 0.630 0.433 541216 18795 43418 164 3900 107.42 8759 16.890 12087 8.976 5.157 0.945 0.315 0.118 424439 11511 37581 93 4000 108.68 8884 9.331 6.654 5.000 3.189 0.866 0.512 0.276 649299 31053 41598 195 4101 109.58 8891 10.039 6.535 4.764 2.835 0.787 0.394 0.236 478455 33215 47523 103 4200 109.22 8911 8.031 4.803 3.346 1.929 0.551 0.315 0.197 372889 54076 62006 97 4301 107.78 8810 20.000 14.094 10.157 5.669 0.984 0.394 0.197 295711 10556 33634 95 173 174 Table 01 (cont'd). ram mm DEFLECTION IN MILS 1.4m MODUIJ IN PSI [84m 8L (lacunae momomsm'nmmse AC “NHL-3" 4400 107.06 8792 19.528 13.701 10.079 6.220 1.417 0.630 0.315 327708 13” 23248 92 4501 105.62 8785 13.740 8.976 6.299 3.504 0.945 0.551 0.354 300185 23261 42640 13 4600 107.78 8876 10.551 6.378 4.173 2.402 0.906 0.630 0.512 268496 38535 68214 553 4700 107.24 8915 8.386 6.063 4.803 3.228 0.984 0.512 0.276 925687 35266 38953 4800 107.96 8911 5.984 3.504 2.165 1.024 0.157 0.118 0.079 519493 51781 100000 4901 109.76 8867 8.937 6.181 4.528 2.598 0.433 0.157 0.039 700224 26370 58348 5000 109.76 8843 1 1.850 7.677 5.315 2.756 0.591 0.236 0.1 18 353085 26189 47634 5100 108.50 8856 7.362 4.803 3.465 2.087 0.591 0.315 0.157 548805 52580 54779 5200 108.68 8860 9.921 6.220 4.252 2.244 0.472 0.36 0.1 18 406257 30754 68942 5300 109.40 8957 5.709 3.780 2.835 1.732 0.354 0.197 0.157 1220778 38403 100000 110 5400 109.04 8832 10.472 6.969 4.724 2.638 0.669 0.354 0.197 373728 31899 50734 97 5500 109.22 8860 7.874 5.197 3.740 2.244 0.748 0.433 0.315 565812 44224 64829 164 5600 109.94 8827 11.772 8.228 6.063 3.425 0.709 0.394 0.157 409605 25017 37519 95 5701 109.58 8843 9.173 6.457 4.724 2.835 0.748 0.433 0.276 623797 29725 56546 129 5800 107.78 8862 6.102 4.134 3.150 1.969 0.591 0.354 0.236 959442 49315 77857 145 5901 108.68 8821 10.709 7.402 5.315 2.913 0.669 0.433 0.315 483956 23011 69809 189 6000 107.78 8880 7.638 5.276 3.819 2.283 0.630 0.433 0.236 591323 43745 61040 107 6100 109.22 8898 6.339 4.291 3.228 1.890 0.591 0.394 0.276 803896 48552 86161 201 6201 109.94 8873 10.276 7.874 6.260 4.291 1.457 0.827 0.551 936753 22971 36243 166 6300 108.68 8838 14.685 9.252 6.102 3.031 0.591 0.276 0.157 247132 21079 49481 6401 107.78 8821 9.213 6.457 4.803 2.717 0.512 0.197 0.118 735975 22199 74940 6501 109.22 8843 7.244 4.803 3.504 2.087 0.472 0.236 0.1 18 699405 41885 65195 6600 107.78 8838 10.591 7.165 4.921 2.480 0.433 0.197 0.079 618191 13768 100000 35 6701 109.22 8825 15.315 10.394 6.929 3.346 0.354 0.118 0.079 618191 13768 100000 150 6800 108.32 8765 17.480 11.102 6.969 2.874 0.236 0.118 0.118 262211 13346 94856 107 6900 109.22 8849 11.929 7.441 5.118 2.795 0.748 0.433 0.276 306262 28936 52236 120 7001 110.48 8783 19.882 13.110 8.504 3.819 0.433 0.197 0.157 356861 10000 73248 148 7101 109.58 8891 6.969 4.134 2.874 1.732 0.669 0.433 0.276 348954 74356 69343 144 7200 109.22 8869 8.150 5.512 3.937 2.283 0.591 0.354 0.236 614462 35192 72959 132 7300 110.84 8801 8.386 5.394 3.740 2.323 0.866 0.472 0.354 421330 49488 56147 151 7400 1 10.84 8898 8.307 4.882 3.425 2.008 0.709 0.433 0.276 323143 57026 61650 130 7500 110.48 8851 5.748 3.819 2.874 1.929 0.906 0.591 0.472 656054 85505 68485 348 7600 1 11.56 8843 8.543 5.118 3.307 1.929 0.630 0.394 0.276 324281 48774 7391 1 158 7702 1 10.84 8851 7.283 4.291 2.795 1.654 0.630 0.394 0.276 315973 66783 78358 165 7800 1 11.74 8832 8.386 5.591 4.055 2.638 0.984 0.669 0.472 508088 47273 53604 222 7900 110.12 8911 8.268 5.276 3.661 2.165 0.787 0.551 0.354 381116 52075 62022 177 8000 109.40 8832 7.756 4.961 3.465 1.969 0.748 0.551 0.433 448378 47520 84889 581 8100 109.40 8832 7.008 4.606 3.189 1.969 0.787 0.512 0.394 499124 58813 72553 270 8200 107.78 8821 9.016 5.669 3.661 2.008 0.591 0.394 0.354 412436 34440 100000 628 8300 108.14 8801 12.402 8.504 6.102 3.583 1.142 0.709 0.551 403833 23844 47252 249 8402 106.88 8783 14.370 9.764 6.969 3.898 0.945 0.591 0.394 337354 18919 44994 152 8500 104.72 8792 14.173 10.236 7.480 4.291 1.024 0.630 0.433 412611 16597 44671 169 8600 1 07 .06 8869 5.197 3.425 2.598 1.732 0.669 0.472 0.315 820808 84626 76023 189 8700 109.94 8889 5.709 3.268 2.402 1.654 0.866 0.669 0.512 313865 126834 81259 720 8800 108.14 8807 15.157 10.591 7.717 4.803 1.811 1.299 0.945 308213 7.3123 31888 371 8900 109.22 8814 11.102 7.559 5.512 3.780 1.969 1.496 1.181 252899 56836 31976 720 338388 838 175 Table C-l (cont'd). ram 1307113 nmmron IN MILS um MODULI IN PSI Isalr 8L (‘1?) (Lb!) no 1320 1330 1146 1190' one 0150' AC 11... 11.111.“ layer 9000 98.24 8849 8.189 5.748 4.646 3.346 1.614 1.260 1.063 531405 71311 37288 720 9100 107.06 8772 17.598 12559 8.898 4.961 1.969 1.496 1.220 239284 17954 35874 720 9201 104.90 8790 12.598 8.740 6.575 4.016 1.417 0.984 0.866 476371 21141 50832 720 9301 104.36 8821 8.661 5.709 3.937 2323 1.063 0.748 0.630 332429 53024 59479 720 9400 106.34 8794 9.370 6.063 4.213 2677 1.339 0.984 0.787 260140 60461 47354 720 9501 103.28 8616 27.441 19.449 14.646 8.976 3.189 2047 1.496 196705 11188 16601 241 9600 104.18 8770 16.457 10.748 7.126 3.780 1.299 0.945 0.787 195522 20815 45271 720 9701 103.28 8741 21.181 15.276 10.945 6.496 2205 1.496 1.142 241345 13716 26037 356 9800 104.90 8825 12520 9.094 6.693 4.173 1.614 1.142 0.906 437991 24799 40636 720 9901 104.72 8847 8.425 5.906 4.528 3.031 1.299 0.906 0.709 635031 45483 49137 604 9999 103.28 8829 10.512 7.480 5.472 3.386 1.024 0.669 0.472 549773 26547 50123 214 10099 103.82 8779 10.197 6.969 5.079 3.150 1.299 0.866 0.630 390635 40068 42658 249 10201 104.36 8719 21.220 14.882 10.748 6.181 2008 1.299 0.984 231062 13741 26814 271 10301 104.00 8761 16.890 12.480 9.488 6.063 2047 1.260 0.906 405519 16030 26081 203 10400 103.28 8823 7.283 5.000 3.976 2.835 1.614 1.339 1.102 363750 122521 37204 720 10501 103.64 8832 9.173 6.260 4.724 3.346 1.890 1.457 1.181 278817 85548 33336 720 10600 102.92 8726 16.732 11.614 8.504 5.157 1.969 1.575 1.378 305538 17091 40342 717 10700 104.36 8827 16.811 12.008 8.740 5.394 1.575 0.906 0.630 361603 16107 30234 161 10800 102.20 8783 17.835 11.969 8.701 5.000 1.614 1.102 0.787 248922 17932 32106 241 10900 102.74 8814 14.646 9.606 6.654 3.661 1.063 0.630 0.433 269490 22374 41348 147 11000 102.56 8814 8.780 5.669 4.213 2.717 1.102 0.787 0.591 446894 47931 53798 369 11100 102.20 8851 6.260 3.976 2835 1.732 0.669 0.472 0.276 455514 79860 66983 142 11210 101.48 8851 6.220 4.213 3.228 2244 0.984 0.669 0.472 672226 80472 54631 206 11300 102.92 8858 8.780 5.276 3.622 2.087 0.866 0.669 0.472 290039 52703 69654 359 11401 102.02 8889 7.480 5.512 4.291 2677 0.906 0.591 0.433 935859 35405 63516 254 11500 102.92 8858 7.638 5.079 3.740 2.402 0.945 0.630 0.472 563321 52168 59921 226 12034 97.88 8807 10.118 7.087 5.079 3.110 1.220 0.906 0.669 428930 35460 49936 353 12100 98.42 8779 19.291 12.992 8.937 4.921 0.945 0.551 0.394 260735 12627 42254 145 12201 98.78 8803 10.118 6.417 4.331 2.402 0.906 0.591 0.433 370869 32357 77828 720 12300 99.50 8854 6.772 4.213 2874 1.772 0.709 0.472 0.354 430807 66777 79223 241 12400 89.78 8995 7.913 6.142 4.921 3.504 1.220 0.709 0.433 1264312 33672 39364 131 12501 90.50 9004 5.827 4.213 3.228 1.969 0.669 0.433 0.354 1183708 44054 98298 461 12601 91.22 8975 9.724 6.969 5.197 3.110 0.709 0.394 0.276 757633 20987 74877 154 12700 91.40 8942 9.843 6.614 4.764 2717 0.669 0.433 0.276 548140 26840 70704 203 12800 89.78 9001 5.000 3.583 2795 1.890 0.827 0.551 0.394 1088380 87189 67780 209 12900 90.50 8962 10.118 7.598 5.787 3.622 0.906 0.433 0.354 891862 16964 72520 195 13000 87.80 8931 11.102 7.795 5.787 3.425 1.024 0.709 0.551 577072 21213 67506 720 13100 84.20 8926 10.039 7.087 5.276 3.189 1.024 0.669 0.512 631765 25418 62581 541 13200 93.74 8962 7.874 5.748 4.291 2.598 0.827 0.551 0.433 822410 32291 74821 373 13300 95.00 8977 5.472 3.661 2.717 1.772 0.827 0.551 0.512 826411 73317 94189 572 13400 94.64 8884 9.843 6.850 4.961 2.913 1.063 0.748 0.551 458801 34261 54357 319 13500 95.72 8900 10.984 7.559 5.472 3.150 0.827 0.472 0.315 483185 25469 52192 134 13600 96.08 8946 10.906 7.874 6.102 3.937 1.260 0.709 0.512 714132 23302 42615 168 13700 98.78 8893 11.378 9.055 7.402 5.118 2.126 1.417 1.102 944945 21049 32379 720 13800 99.50 8851 16.811 10.906 7.126 3.740 1.260 0.906 0.669 237249 17825 51735 686 13900 98.24 8911 10.906 8.110 6.102 3.740 1.181 0.787 0.630 644161 21501 54835 491 176 Table 01 (cont'd). TEMP wan DEFLECTION IN MILS LAYER monuu IN rs: lean 8L (‘1?) (Lb!) no 020 03o n45 nso' am 0158‘ AC aaae Roadbed Layer 14000 98.96 8946 8.543 5.079 3.622 2.205 0.866 0.551 0.472 320922 57055 61813 232 14100 100.22 8900 14.252 9.449 6.654 3.543 1.102 0.787 0.630 292307 21132 53885 393 14200 97.70 8966 5.354 3.780 2835 1.850 0.787 0.551 0.433 957632 71052 82651 313 14300 100.04 8922 7.520 5.394 4.252 2795 1.181 0.866 0.630 765783 50322 51998 365 14400 98.96 8935 12047 8.740 6.496 3.858 0.984 0.748 0.630 552217 17186 72478 686 14501 100.04 8880 11.693 7.559 5.276 3.425 1.732 m0 0.906 261693 43140 39773 720 14550 99.86 8922 8.150 5.709 4.370 2953 1339 0.906 0.748 646517 49405 50606 375 14600 99.50 8836 16.457 11.654 8.937 5.866 2323 1.535 1.102 335038 22426 23576 215 14700 99.14 8876 13.740 10.630 8.583 5.906 2126 1.299 0.906 715550 17381 27031 211 14800 98.96 8836 14.488 10.197 7.598 4.567 1.39 0.787 0.551 457821 15385 50000 686 14900 100.22 8913 9.882 6.969 5.197 3.071 0.984 0.630 0.433 632118 25596 43342 160 15000 103.10 8898 8.898 6.024 4.409 2.953 1.260 0.827 0.591 462033 50631 44783 240 15051 103.64 8893 7.638 5.433 4.252 2.756 1.220 0.984 0.787 588646 6035 48787 720 15100 103.10 8884 8.740 6.654 5.236 3.386 0.945 0.551 0.354 974424 24492 52838 160 15200 103.10 8915 10.630 7.362 5.039 2.756 0.709 0.472 0.394 543225 19489 100000 706 15300 103.10 8865 13.504 8.976 6.220 3.228 0.787 0.512 0.354 378137 17419 79878 630 15400 102.56 8851 10.906 7.559 5.354 3.228 0.827 0.512 0.354 540679 22280 100000 683 15501 101.48 8851 10.472 6.614 4.134 2.126 0.669 0.472 0.354 427770 49335 63785 168 15550 102.38 8907 6.850 5.039 4.016 2.874 1.260 0.748 0.433 786467 81632 30574 100 15600 101.48 8944 5.984 3.780 2.677 1.614 0.827 0.591 0.472 436752 86380 87757 720 15700 102.38 8873 8.858 5.984 4.016 2.205 0.748 0.472 0.394 439109 36564 77617 337 15800 103.28 8836 16.181 11.063 7.756 4.213 0.984 0.630 0.433 290187 16505 44115 161 15900 102.02 8898 11.339 7.835 5.669 3.228 0.866 0.512 0.354 518852 20697 48330 138 16000 104.18 8880 10.394 6.929 4.764 2.559 0.748 0.512 0.394 532551 17163 100000 91 16050 103.10 8880 9.016 6.181 4.488 2.638 0.945 0.748 0.591 2132111 10000 100000 26 16100 103.64 8851 13.819 8.504 5.591 2795 0.906 0.630 0.512 257412 22611 70680 720 16200 102.92 8843 11.457 7.323 5.157 2.913 1.063 0.709 0.512 296139 33821 49837 229 16300 105.08 8860 11.299 7.402 5.197 2.913 1.063 0.748 0.630 348633 3465 61950 720 16401 105.98 8810 12.717 8.661 6.024 3.228 0.630 0.354 0.276 419792 18267 68313 167 16500 106.70 8935 5.709 3.622 2677 1.654 0.709 0.433 0.276 580484 85155 73262 160 16550 105.44 8840 5.236 3.189 2.205 1.339 0.551 0.354 0.236 468267 99207 89363 150 16600 105.98 8900 8.150 5.433 3.819 2165 0.551 0.354 0.197 507025 40218 67061 112 16700 105.44 8915 8.150 5.039 3.307 1.811 0.630 0.433 0.236 34330 57454 65520 123 16800 105.08 8933 9.882 6.417 4.370 2.244 0.709 0.472 0.354 352718 34050 73941 230 16901 106.52 8937 8.307 5.709 4.055 2.323 0.748 0.551 0.394 536514 38003 74361 321 17000 107.96 8904 6.220 4.173 3.110 1.969 0.709 0.472 0.354 803693 55992 79452 263 17050 107.60 8871 7.047 4.921 3.701 2.323 0.866 0.591 0.394 686601 53197 58579 189 17100 107.24 8843 10.827 7.402 5.157 2.953 0.866 0.551 0.394 418541 28030 55993 185 17201 106.88 8920 8.031 5.039 3.425 1.929 0.748 0.472 0.354 366215 52661 72792 204 17300 107.42 8893 12.913 7.205 4.449 2.087 0.748 0.551 0.433 162241 31774 80986 487 17400 107.24 8940 8.150 5.433 4.055 2.520 0.984 0.669 0.472 516936 49959 55182 228 17500 108.32 8847 11.732 7.756 5.591 3.346 1.024 0.709 0.551 421778 25233 55846 401 17550 107.24 8904 5.906 3.819 2.756 1.693 0.669 0.472 0.354 630667 69033 88513 305 17600 108.50 8856 8.425 5.709 4.213 2.598 0.984 0.669 0.512 551506 42069 59758 348 17700 109.22 8891 11.260 7.323 4.961 2.756 0.906 0.551 0.433 330259 30590 58048 215 17800 107.78 8825 12362 8.661 5.984 3.465 1.220 0.866 0.630 333456 27030 45883 290 177 Table C-l (cont'd). TEMP LOAD DEFLECTION IN MILS LAYER MonULl IN PSI 84m 8L (’1') (Lb!) no mo D30 D45 n90° D128 nlso' AC 11.. Roadbed Layer 17900 111.02 8818 15.433 10.276 7.165 4.134 1.496 0.984 0.709 237532 24146 34822 163 18000 109.22 8845 10.236 7.283 5.354 3.228 1.181 0.787 0.551 470298 33622 44391 162 18051 108.32 8783 11.811 8.150 5.669 3.110 1.024 0.748 0.591 358717 25147 59705 712 18100 108.14 8873 8.268 5.591 3.898 2244 0.748 0.472 0.394 549324 37385 78628 314 18200 106.16 8869 13.110 9.370 6.929 4.291 1.457 0.945 0.591 387477 26442 31343 151 18300 107.60 8845 10.551 7.165 5.039 2953 1.220 0.827 0.630 343674 37317 48946 311 18400 108.14 8825 10.394 6.929 4.921 2795 0.827 0.512 0.394 450949 28500 62074 214 18500 107.78 8856 11.063 7.598 5.433 3.228 1.063 0.709 0.433 375549 33032 41650 146 18600 110.12 8867 9.331 6.299 4.488 2441 0.748 0.551 0.394 451025 32903 71878 271 18701 110.84 8814 10.984 7.638 5.512 2.992 0.591 0.394 0.276 471876 21137 73377 168 18800 111.20 8851 9.803 7.087 5.354 3.543 1.220 0.748 0.433 637738 33790 37198 142 18900 111.02 8810 13.150 8.858 6.063 3.386 0.906 0.512 0.315 311630 24382 42480 117 19000 108.86 8845 10.748 7.598 5.669 3.465 1.142 0.669 0.472 532237 28183 43181 167 19050 110.12 8856 8.780 6.220 4.646 2.835 0.827 0.551 0.394 688385 30082 63796 222 19100 110.30 8862 13.425 9.528 6.929 3.858 1.024 0.630 0.472 414645 18646 49367 206 19200 110.84 8832 11.496 8.307 6.181 3.740 0.984 0.551 0.433 636492 17057 36942 134 19300 111.74 8843 11.024 7.835 5.709 3.543 1.102 0.630 0.433 550346 24854 46777 191 19400 111.74 8884 8.543 5.433 3.661 2.087 0.748 0.512 0.433 415894 41409 84781 574 19501 108.86 8803 10.157 6.654 4.646 2.677 0.827 0.472 0.394 453642 29953 64247 231 19600 111.38 8836 7.402 5.118 3.504 2.008 0.748 0.472 0.394 552630 45163 80922 337 19700 111.20 8836 8.543 5.512 3.858 2.126 0.630 0.512 0.354 452218 37174 86564 401 19801 111.02 8884 7.913 4.764 3.228 1.732 0.512 0.394 0.276 408896 44564 100000 253 19901 113.18 8860 7.795 5.197 3.622 2.087 0.591 0.354 0.276 616648 37303 85388 200 20000 112.28 8898 4.331 2.756 2.126 1.535 0.709 0.472 0.354 744022 139353 79230 207 20050 113.18 8891 4.488 2756 2008 1.378 0.669 0.512 0.394 518408 141881 94920 720 20100 111.20 8825 9.173 6.614 4.843 2953 0.906 0.591 0.394 604068 31739 53199 175 20200 110.66 8803 12756 9.016 6.614 3.937 0.827 0.472 0.315 492985 17469 51555 143 20300 111.56 8832 15.000 10.315 7.362 4.173 0.984 0.630 0.512 395225 14681 61518 720 20402 109.94 8801 13.268 9.331 6.654 3.622 0.984 0.630 0.472 522441 10000 100000 98 20500 109.94 8867 11.772 7.992 5.551 2992 0.827 0.512 0.354 359964 25702 54431 150 20600 111.20 8787 12126 7.953 5.433 2.992 0.787 0.551 0.433 356658 23199 67363 267 20701 110.66 8770 11.457 8.110 5.945 3.543 1.024 0.669 0.512 512354 22075 53857 252 20800 110.66 8827 9.449 6.299 4.409 2.441 0.748 0.551 0.433 454176 31310 79166 375 20900 110.12 8821 10.512 7.323 5.118 2.835 0.748 0.433 0.354 507181 24025 69168 215 21000 110.48 8851 9.291 6.063 4.213 2.441 0.945 0.669 0.472 353299 43788 58377 210 21050 110.48 8790 12.441 8.819 6.457 3.819 0.984 0.630 0.472 489220 18960 53304 270 21100 111.92 8876 11.732 7.717 5.433 3.150 1.102 0.827 0.669 356160 27676 59732 720 21201 112.64 8801 15.748 10.984 7.874 4.409 1.142 0.748 0.591 342930 15606 47193 268 21300 109.22 8869 14.449 10.197 7.402 4.528 1.535 1.063 0.906 399790 18731 44609 720 21400 107.78 8814 13.150 9.449 6.890 4.134 1.417 1.063 0.866 419452 20585 48517 720 21500 110.48 8832 12.953 8.465 5.630 2.835 0.748 0.551 0.472 299370 21567 78756 455 21601 111.56 8849 11.850 8.504 6.181 3.740 1.220 0.866 0.748 511187 21030 58434 720 21700 109.76 8772 16.457 11.220 7.756 4.173 1.102 0.748 0.591 275872 16254 47838 249 21800 106.16 8719 15.039 10.472 7.362 4.134 1.220 0.827 0.709 337714 17023 50360 358 21900 111.02 8836 13.819 9.961 7.559 4.528 1.220 0.827 0.591 460819 17198 43538 233 21999 109.94 8838 16.102 11.181 7.835 4.646 1.181 0.827 0.669 347568 15040 49250 303 178 Table C-l (cont'd). 1m wAn DEFLECTIONINMILB LAYERMODULIINPSI sun SL (’1?) (Lb!) no mo D30 D46 noo' n12o n15o° AC Dale Roadbed Layer 22100 110.84 8880 6.732 4.370 3.110 2087 0.984 0.787 0.630 361882 89973 61616 720 22201 110.48 8790 15.118 10.118 6.969 3.898 1.220 0.827 0.669 281066 19908 47153 443 22301 108.14 8794 13.189 8.307 5.669 3.071 0.984 0.709 0.591 278978 24315 62440 589 22400 107.06 8818 13.898 10.079 7.362 4.331 1.142 0.709 0.512 437600 17279 43951 207 22500 105.98 8840 14.803 10.315 7.520 4.606 1.575 1.024 0.787 358034 20663 36030 237 22600 107.06 8768 17.874 12.480 8.780 4.961 1.339 0.827 0.630 287040 14659 37427 214 22701 106.88 8832 14.567 10.315 7.362 4.134 0.945 0.472 0.394 460699 14417 54501 198 22800 109.22 8765 13.819 9.370 6.575 3.661 0.984 0.709 0.551 340375 19333 55742 254 22900 110.12 8836 12323 8898 6.575 3.937 1.260 0.827 0.669 499976 20635 49148 491 23000 111.20 8803 12441 8.937 6.339 3.780 1.220 0.827 0.630 417653 22876 46420 249 23100 110.12 8823 13.031 8.976 6.378 3.661 1.299 0.984 0.787 341795 23542 51157 720 23200 110.30 8821 12.441 8.504 5.866 3.071 0.984 0.748 0.591 318759 23822 62657 460 23300 110.30 8832 16.220 10.945 7.283 3.976 1.417 0.984 0.748 211754 21531 40212 251 23400 110.12 8858 16.378 11.063 7.913 5.000 2.047 1.496 1.102 238181 24884 29510 419 23501 108.14 8856 14.331 10.472 7.559 4.488 1.378 0.984 0.787 408698 17455 46175 404 23600 109.94 8752 15.827 11.024 7.913 4.724 2.047 1.496 1.299 270897 21637 36780 720 23700 107.24 8893 10.039 7.126 5.276 3.583 2126 1.811 1.535 266808 87574 28024 720 23800 106.34 8843 10.315 6.693 4.843 3.150 1.496 1.142 0.945 324454 44560 49914 720 23900 106.70 8873 8.937 6.181 4.528 2.953 1.496 1.102 0.827 38412 57665 44663 529 24000 104.90 8876 6.890 4.488 3.228 2323 1.220 0.945 0.827 315706 113704 50335 720 24100 103.82 8871 11.378 8.228 6.142 3.780 1.299 0.866 0.669 530973 24660 46231 395 24201 103.82 8761 18.976 13.937 10.512 6.732 2520 1.772 1.378 328939 15238 25354 720 24300 103.10 8781 17.874 11.890 7.717 4.055 1.299 0.906 0.669 183044 18733 40565 257 24401 10238 8845 17.126 11.378 7.795 4.291 1.339 0.945 0.748 236876 17969 43220 429 24500 89.60 8893 13.346 9.882 7.598 4.882 1.693 1.181 0.906 535208 19452 37941 694 24600 100.94 8851 13.819 9.843 7.165 4.291 1.220 0.787 0.630 448651 17516 48040 388 24700 103.28 8781 18.346 13.622 10.394 6.850 3.031 2126 1.535 292112 21621 19304 335 24800 102.38 8776 16.614 10.709 7.205 4.016 1.417 0.945 0.748 203875 21440 40139 351 24900 94.82 8838 14.803 10.079 7.008 3.858 1.260 0.906 0.669 272398 21454 44253 337 25000 104.36 8774 14.409 9.606 6.772 3.976 1.417 1.024 0.748 272526 24368 39794 338 25100 102.92 8814 13.661 9.882 7.402 4.646 1.654 1.063 0.787 434449 22091 33647 228 25200 102.02 8893 12.874 9.252 6.772 4.016 1.299 0.866 0.669 440279 21378 45086 361 25300 102.74 8832 17.992 12.126 8.701 5.118 1.772 1.220 0.945 249517 18011 32975 379 25400 102.02 8847 15.039 11.260 8.425 5.157 1.693 1.063 0.827 453659 16461 35254 342 25500 103.10 8772 21.417 15.157 11.181 7.205 2.992 2.126 1.575 217204 17966 19808 244 25600 104.00 8865 12.126 8.937 6.929 4.646 1.654 1.142 0.787 571922 24938 33099 230 25700 103.46 8803 10.945 7.598 5.512 3.346 1.220 0.945 0.748 443987 28185 55519 720 25800 100.22 8878 6.417 4.252 3.150 2.047 0.945 0.669 0.512 556889 74670 67018 421 25901 101.84 8860 12.323 8.307 5.866 3.346 1.260 0.906 0.669 308442 29353 46520 309 26000 100.22 8884 10.787 7.244 4.921 2.756 1.102 0.827 0.669 324413 33235 62842 720 26100 102.92 8862 9.055 6.181 4.646 2.913 1.535 1.181 0.906 306389 65878 41249 720 26200 99.32 8776 13.583 9.094 6.457 3.898 1.535 1.102 0.748 258792 30457 34756 247 26300 99.50 8805 11.890 8.425 6.457 4.252 1.929 1.378 1.102 430199 32911 35063 483 26401 99.32 8821 13.740 9.449 6.890 4.094 1.220 0.827 0.630 392017 20030 45569 282 26500 10202 8873 8.268 5.118 3.465 2047 0.827 0.669 0.512 358814 49837 82551 720 26600 99.32 8884 11.850 7.441 4.882 2520 0.866 0.591 0.433 242169 31793 61420 228 179 Table C-l (cont'd). TEMP wAnI DEFLECTION 1N Mns LAYER Monuu IN P81 8677 8L (‘1?) (Lb!) no mo n3o n48 mo' n12o nlso' AC aaae Roadbed Layer 26700 99.32 8838 12205 8.583 6.260 3.701 1.142 0.669 0.472 440424 24050 42085 165 26800 100.04 8911 9.606 6.417 4.567 2795 0.945 0.669 0.433 425152 39093 51663 175 26900 98.96 8851 15.551 10.984 7.874 4.567 1.299 0.827 0.551 324029 18584 35423 172 27000 100.76 8847 11.496 7.756 5.472 3.110 0.984 0.591 0.433 381023 28002 49868 176 27100 87.44 9072 7.362 5.079 3.661 2.283 0.906 0.630 0.472 601763 52473 66765 249 27200 87.08 9017 12126 8.661 6.575 4.016 1.220 0.827 0.591 520353 22280 45197 257 27300 88.16 9037 7.244 5.512 4.370 3.071 1.339 0.906 0.669 1052989 50218 45459 229 27401 87.62 8995 11.772 8.858 6.732 4.370 1.693 1.102 0.748 527538 29618 31107 190 27500 88.70 8995 9.134 6.496 5.039 3.150 1.024 0.748 0.551 714653 29895 59656 318 27600 89.06 9043 9.016 6.457 4.882 3.150 1.142 0.748 0.591 728949 32908 55150 276 27700 88.34 9010 11.890 9.016 6.929 4.370 1339 0.827 0.591 658992 19680 42087 227 27800 89.42 8981 12.283 8.858 6.575 4.055 1.260 0.827 0.630 522602 21359 46353 248 27901 89.60 8995 14.134 10.118 7.520 4.646 1.457 0.866 0.630 450556 19661 36095 190 28000 90.14 8988 13.110 9.449 7.205 4.488 1.535 0.984 0.748 500941 21437 38294 245 28100 91.22 8979 13.740 9.724 7.283 4.449 1.535 1.063 0.787 408506 22279 37947 251 28200 92.30 8953 13.228 9.724 7.283 4.606 1.614 1.102 0.827 479099 21750 37148 268 28300 92.30 8999 9.173 6.732 5.276 3.504 1.299 0.866 0.709 883213 28080 54389 489 28400 9248 8856 24.646 16.654 11.614 6.142 2441 1.614 1.142 128039 15979 21996 254 28500 91.40 8999 7.559 5.591 4.370 3.110 1.496 1.142 0.906 659759 68024 42213 720 28600 93.02 8900 14.252 9.134 6.220 3.307 0.945 0.630 0.472 264008 22431 53258 219 28700 9266 8988 11.732 8.071 5.945 3.622 1.299 0.866 0.630 414620 29553 42474 216 28800 93.38 9037 6.772 4.646 3.425 2126 0.748 0.512 0.433 849965 43680 91460 503 28901 93.20 8975 13.740 8.976 6.024 3.031 0.748 0.512 0.472 315942 19463 79433 369 29000 93.38 8929 14.016 9.803 7.205 4.291 1.417 0.984 0.787 394516 20138 44317 499 29100 93.92 8922 18.898 14.134 10.866 6.969 2638 1.772 1.339 359814 15555 23174 265 29200 93.02 9012 11.063 7.992 6.102 3.976 1.417 0.945 0.748 634429 25252 45541 300 29300 93.74 8957 12.402 8.937 6.693 4.055 1.220 0.748 0.512 495526 22365 40241 152 29400 90.68 8957 11.457 8.898 7.008 4.764 1.693 1.063 0.748 788775 21825 34113 221 29500 93.92 8867 15.866 11.417 8.780 5.709 1.654 0.827 0.551 524586 14591 29285 140 29600 95.54 8953 12.126 8.976 6.772 4.252 1.260 0.709 0.433 559637 22747 34580 128 29700 94.64 8856 20.630 14.528 10.669 6.417 1.811 1.024 0.709 290179 13034 25741 157 29800 91.76 8964 13.425 9.764 7.205 4.567 1.457 0.984 0.748 484326 19780 40990 267 29901 92.66 8951 14.055 9.567 6.693 3.661 0.906 0.591 0.433 342121 19274 53215 200 30000 93.92 8937 15.197 11.220 8.228 5.118 1.102 0.512 0.315 509153 13404 38608 119 30100 94.64 8915 14.685 10.197 7.362 4.252 1.024 0.551 0.354 383204 17973 39673 127 30201 94.82 8862 11.535 8.465 6.220 3.780 0.866 0.472 0.354 647497 17128 60679 207 30300 95.36 8953 16.181 10.984 7.087 3.819 1.063 0.630 0.433 230601 20086 41074 166 30400 96.98 8924 14.921 10.630 7.953 4.764 1.457 0.866 0.591 394765 19201 32943 162 30500 97.16 9015 8.740 6.142 4.370 2.480 0.591 0.354 0.276 676436 27361 86738 201 30600 97.34 9015 6.732 4.606 3.425 2126 0.787 0.551 0.433 771664 49448 80680 445 30700 97.88 8935 14.803 10.591 8.150 5.157 1.299 0.709 0.472 526914 14901 37094 157 30800 96.98 8942 9.409 6.417 4.685 2795 0.906 0.591 0.394 501935 35908 53265 168 30900 95.18 8975 7.756 5.787 4.567 3.189 1.181 0.787 0.551 1038785 38802 47833 221 31000 95.72 8995 7.520 5.827 4.764 3.307 1.142 0.709 0.472 1370967 31059 49216 203 31101 97.16 8946 12717 8.937 6.496 3.819 0.866 0.551 0.433 501879 17320 62829 274 31200 96.08 8942 14.843 10.276 7.323 4.331 1.378 0.787 0.591 348921 20588 36833 181 180 TabieC-1(cont'd). TEMP wAn nEPucnou 1N MILE LAYER MonULl IN PSI Isarr 8L (‘1?) (Lb!) no mo n3o n45 noo' am out AC naae Roadbed Dyer 31300 95.90 8918 14.961 11.024 8.543 5.276 1.575 0.906 0.591 478824 17103 30136 152 31401 95.36 8951 8.031 5.669 4.252 2756 0.984 0.630 0.472 752392 39458 57695 220 31500 95.72 8966 11.457 7.756 5.669 3.346 0.827 0.551 0.433 520447 21278 67226 266 31601 97.16 8988 10.394 7.126 5.039 2874 0.866 0.591 0.512 506569 25826 75158 487 31700 98.24 8968 7.677 5.354 3.819 2244 0.551 0.354 0.276 771887 31429 97584 234 31801 97.52 8953 12323 8.425 6.024 3.465 0.748 0.433 0.315 474072 19473 60623 164 31901 96.62 8884 13.346 9.567 6.969 3.976 0.906 0.472 0.276 429716 19028 40788 108 32000 97.16 8953 8.622 5.827 4.134 2323 0.551 0.315 0.157 501452 37611 58374 90 32101 95.72 8911 14.567 9.094 5.787 2598 0.354 0.157 0.079 154299 26765 32584 19 32200 96.08 8953 9.567 6.614 4.803 2835 0.591 0.315 0.197 645795 25176 66089 113 32300 95.90 8909 9.370 7.087 5.315 3.307 0.669 0.276 0.157 913067 19136 63372 109 32400 95.36 8999 5.000 3.583 2.835 1.929 0.709 0.433 0.276 1339038 73090 65641 134 32501 98.42 8933 10.709 7.598 5.551 3.228 0.748 0.394 0.236 552424 23862 51289 111 32600 98.96 8904 16.496 9.646 5.984 2874 0.709 0.394 0.236 150774 23245 48605 118 32700 98.96 9026 7.362 4.764 3.228 1.772 0.472 0.276 0.157 487957 49080 77512 100 32801 101.48 8891 13.425 9.016 6.378 3.386 0.394 0.118 0.079 338900 17212 49912 70 32901 99.86 8942 11.575 7.323 5.000 2441 0.394 0.197 0.118 394896 21534 93757 119 33101 100.58 8911 10.709 7.638 5.551 3.268 0.472 0.197 0.079 522377 21934 51090 72 33200 100.94 8937 6.614 4.291 2953 1.417 0.236 0.157 0.118 600540 40356 100000 88 33300 100.58 8904 9.567 7.087 5.079 2756 0.354 0.157 0.079 539524 22731 70137 75 33400 100.76 8929 10.394 6.614 4.370 2244 0.315 0.157 0.118 459640 23976 99833 113 33500 98.96 8924 9.921 6.299 4.134 1.850 0.236 0.079 0.039 388815 28672 81220 68 33601 100.04 8896 13.150 6.850 3.937 1.929 0.472 0.276 0.236 171405 29875 93108 181 33700 100.40 8929 9.016 6.102 4.370 2.677 0.866 0.551 0.433 573089 34010 65168 281 33800 99.86 8884 9.764 6.969 5.276 3.268 0.787 0.433 0.236 656909 26724 46955 105 33901 100.94 8790 21.102 11.654 5.984 2.008 0.748 0.787 0.709 55114 22127 63336 720 34000 101.48 8946 7.244 5.276 4.094 2677 0.945 0.669 0.472 927331 41290 60888 306 34101 101.84 8862 16.181 11.772 9.055 5.630 1.811 1.142 0.827 420944 16223 30173 238 34200 102.74 8832 14.843 11.102 8.701 5.945 1.811 1.142 0.866 632511 13340 36162 469 34300 101.48 8865 15.866 11.929 9.291 6.063 1.850 1.142 0.787 512487 14601 29137 212 34401 102.92 8904 15.276 11.102 8.307 5.276 1.850 1.260 1.024 432462 17513 36052 685 34500 102.92 8946 7.992 5.984 4.646 3.110 1.024 0.748 0.591 1029387 28208 70368 720 34601 104.00 8900 12.638 9.646 7.638 5.157 1.811 1.181 0.866 698435 19108 33959 332 34700 10238 8900 13.819 8.661 6.024 3.543 1.614 1.220 0.984 182562 36589 38322 720 34800 102.74 8915 8.071 5.669 4.134 2.559 0.945 0.669 0.512 627299 40661 65082 458 34901 103.82 8924 9.803 6.654 4.882 3.031 1.260 1.024 0.906 493610 33120 67474 720 35000 105.80 8948 8.898 6.063 4.331 2.362 0.866 0.709 0.551 409794 40902 67120 720 35101 104.18 8880 13.228 9.961 7.480 4.724 1.614 1.024 0.787 535025 19332 37340 344 35300 104.90 8880 15.433 11.102 8.228 4.843 1.535 1.260 1.024 320125 19437 36339 720 35401 106.88 8836 14.961 9.094 5.906 2835 0.945 0.709 0.551 180953 23831 62427 482 35502 105.26 8884 10.276 7.008 4.961 2.874 0.827 0.591 0.512 522389 24851 80392 720 35601 106.16 8836 14.173 10.197 7.047 3.976 1.024 0.748 0.630 346364 17550 55329 720 35700 106.34 8926 9.409 6.535 4.567 2520 0.945 0.827 0.709 451242 31327 88623 720 35800 107.06 8880 12.402 8.898 6.732 4.055 1.063 0.709 0.551 550788 17684 55616 279 35900 107.78 8933 9.803 6.535 4.567 2.402 0.787 0.709 0.709 341799 38016 64004 691 36000 105.44 8832 16.850 11.772 8.780 5.079 1.378 0.866 0.630 344898 15088 36580 216 181 Table C-l (cont'd). TEMP LOAD DEFLECTION IN MILS LAYER MonULl IN Par salt SL (‘1?) (Lb!) no mo n30 n45 n90° n12o n15o' AC Baae Roadbed Layer 36101 10292 8900 9.016 6.339 4.724 2953 1.024 0.709 0.551 642209 32786 59875 274 36200 103.28 8942 5.472 3.937 3.189 2402 1.181 0.827 0.630 1056703 97151 51783 328 36300 102.38 8821 16.732 11.654 8.110 4.567 1.496 1.142 0.906 266637 17331 42944 720 36400 100.94 8873 11.969 8.228 5.984 3.661 1.142 0.748 0.630 495142 22085 55442 520 36500 103.46 8849 15.669 10.984 7.638 4.291 1.220 0.748 0.591 321217 17262 43137 224 36600 10274 8904 12520 9.055 6.457 3.819 1.181 0 0.787 439589 21758 48090 250 36700 102.38 8843 17.756 12835 9.488 5.630 1.535 1.063 0.906 373583 12080 44136 720 36800 101.48 8880 9.409 6.614 4.843 2835 1.063 0.827 0.709 447397 38323 54644 720 36901 101.48 8884 13.307 9.409 7.126 4.488 1.417 0.984 0.787 503695 18832 45803 615 37001 100.58 8851 16.614 12087 9.213 5.748 1.693 1.260 1.024 425034 13201 41628 720 37100 101.84 8891 14.685 10.984 8.307 5.197 1.575 1.024 0.787 503405 15458 38714 268 37200 99.68 8878 13.937 10.157 7.480 4.724 1.575 1.102 0.827 436824 20054 37639 254 37300 99.86 8922 9.921 6.969 5.157 3.307 1.457 1.024 0.748 431028 43679 40922 230 37401 99.68 8884 13.228 9.961 7.520 4.685 1.496 1.024 0.787 537818 17866 42362 414 37500 98.60 8880 13.937 10.591 8.346 5.354 1.535 0.945 0.748 665863 12860 45744 605 37600 97.34 8924 14.331 9.921 7.165 4.094 1.063 0.748 0.669 421252 15768 64485 720 37700 98.78 8900 14.016 9.882 7.205 4.173 1.063 0.709 0.591 444267 16047 57544 510 37800 98.78 8924 9.803 6.772 4.921 2953 0.866 0.669 0.630 506112 30047 63898 720 37900 97.52 8915 12.323 8.622 6.299 3.622 0.984 0.669 0.551 478469 19512 61951 336 38000 98.24 8867 14.134 10.079 7.480 4.606 1.102 0.748 0.669 533674 13249 67470 720 38100 97.70 8946 11.378 8.583 6.693 4.291 1.142 0.630 0.512 850853 14699 62479 720 38200 97.34 8862 12.205 8.504 6.260 3.740 1.142 0.787 0.630 473943 21469 53715 517 38300 96.26 8904 9.370 6.654 5.039 3.071 0.906 0.669 0.591 748404 23013 85724 709 38400 95.90 8902 12.087 8.858 6.772 4.252 1.260 0.906 0.709 598067 18581 52449 488 38500 95.54 8915 9.528 6.811 5.118 3.031 0.906 0.748 0.630 647438 24107 85204 712 38600 94.64 8825 17.362 12.835 9.961 5.945 1.142 0.591 0.591 424325 10000 55287 720 38700 95.90 8907 13.543 9.528 7.205 4.528 1.220 0.787 0.669 568894 15223 56330 558 38800 95.18 8922 9.134 5.197 3.346 1.772 0.866 0.748 0.630 172946 68216 66975 720 18901 95.36 8810 17.992 11.142 7.283 3.543 1.378 0.945 0.787 144265 20993 45818 339 39000 95.00 8838 23.307 17.795 13.858 9.094 2835 1.614 1.102 376387 10000 18773 188 39101 94.82 8884 16.102 12.638 10.551 7.638 3.031 1.890 1.378 763564 13668 21567 342 39201 94.82 8856 19.606 14.882 11.732 7.756 2559 1.535 1.142 464820 11039 23886 302 39300 94.46 8946 9.449 6.969 5.551 3.740 1.378 0.984 0.827 754541 31749 45163 720 39401 93.92 8933 15.591 9.370 5.709 2.756 1.142 0.906 0.787 123234 29621 50930 720 39501 93.92 8942 13.031 8.110 5.394 2.874 0.906 0.551 0.433 254199 27364 56488 201 39601 93.92 8929 12.756 9.055 6.693 4.016 0.906 0.512 0.433 600006 15016 67747 420 39700 93.56 8918 12.717 9.055 6.575 3.937 0.787 0.472 0.394 559752 15042 73495 386 39800 9284 8880 16.693 12402 9.409 5.748 1.260 0.630 0.472 513635 10288 45201 227 39900 93.20 8907 14.921 10.709 7.992 4.764 0.984 0.512 0.394 514322 12573 53748 213 40001 9230 8953 12.087 8.661 6.417 3.898 0.827 0.512 0.394 587012 16561 66377 276 40101 9230 8873 13.740 10.000 7.165 4.016 0.748 0.472 0.354 431815 14983 62858 201 40200 9284 8970 13.583 9.370 6.811 4.016 0.866 0.551 0.433 467624 16250 61635 285 40300 94.46 8915 15.157 10.984 8.465 5.354 1.496 0.945 0.748 527814 13701 42781 493 40401 93.74 8915 14.921 10.906 8.031 5.039 1.575 1.024 0.827 461602 16214 40366 607 40500 96.80 8935 14.567 10.551 7.835 4.685 1.024 0.630 0.512 500679 13193 58393 446 40601 95.36 8924 14.134 9.882 7.283 4.291 0.787 0.512 0.472 435384 14060 71506 720 182 Table 01 (cont'd). TEMP wAnI nEPiECTTON IN MILs LAYER Monuu IN Psr sun 8L (‘1?) (Lb!) no me me n45 n9o° nl2o n15o' AC Baoo Roadbed Layer 40700 94.64 8946 14.685 10.039 6.929 3.858 0.748 0.433 0.315 367559 16378 55951 153 40800 94.64 8944 12323 8.622 6.457 3.780 0.748 0.551 0.472 481699 17160 73142 720 40900 94.64 8920 15.039 10.709 7.795 4.606 1.024 0.709 0.630 399061 14464 55723 720 41000 94.10 8946 13.661 9.488 6.929 3.976 0.945 0.669 0.591 460698 15675 71240 720 41101 9284 8889 13.386 9.606 7.087 4.173 0.866 0.472 0.394 564423 13782 66976 343 41200 9248 8909 14.646 10.236 7.480 4.606 1.220 0.787 0.591 429478 16796 44229 256 41300 91.22 8856 17.638 12402 9.488 5.472 1.142 0.630 0.512 421510 10646 48958 298 41400 91.76 8924 13.346 9.567 7.087 4.291 0.984 0.591 0.512 579455 14002 67658 720 41499 91.94 8884 12323 8.780 6.496 3.937 0.866 0.472 0.394 638564 15043 69571 382 41601 91.58 8915 11.929 8.307 6.142 3.504 0.472 0.197 0.236 683046 12903 100000 179 41700 90.86 8979 10.315 7.559 5.748 3.661 1.220 0.906 0.709 612205 27219 50207 720 41800 90.86 8845 15.748 11.693 8.898 5.669 1.457 0.787 0.512 503339 13587 32520 150 41900 89.42 8869 14.173 10.236 7.795 4.843 0.984 0.512 0.315 522126 14343 42599 126 42000 89.78 8869 14.331 10.433 7.992 5.079 1.496 0.906 0.709 554479 15113 40980 357 42100 89.78 8858 16.496 12.165 9.409 6.063 1.850 0.984 0.669 499658 14206 2722.3 158 42200 89.06 8900 15.945 10.551 7.598 4.252 1.063 0.591 0.433 329020 17039 42446 157 42300 89.78 8975 8.622 5.945 4.370 2717 0.866 0.591 0.551 634016 33950 70159 720 42400 89.60 8915 13.071 9.173 6.614 3.583 0.906 0.709 0.551 390770 18593 66196 720 42502 89.60 8981 7.047 5.000 3.740 2.244 0.827 0.669 0.591 642118 52225 68908 720 42601 89.60 8924 18.740 12.244 8.504 4.646 1.102 0.709 0.512 241446 15049 41260 198 42800 90.50 8984 5.748 4.291 3.504 2598 1.063 0.709 0.512 1614521 56656 55732 271 42900 98.96 8907 10.630 7.953 6.260 4.055 1.142 0.669 0.472 829963 19079 49618 223 43000 110.30 8814 17.323 12717 9.882 6.102 1.299 0.551 0.354 526696 10000 38117 149 43100 111.20 8968 10.748 7.087 4.921 2.480 0.433 0.276 0.197 420209 23543 89038 137 43200 112.28 8946 10.669 6.969 5.039 2.717 0.551 0.315 0.236 503710 23190 78351 156 43300 111.38 8915 11.181 7.835 5.472 3.110 0.827 0.512 0.433 503011 22003 69414 373 43400 110.12 8794 15.472 11.457 8.819 5.551 1.220 0.551 0.394 613794 10185 47867 203 43500 110.84 8904 6.102 3.976 2.835 1.654 0.433 0.315 0.236 762096 45987 100000 142 43600 110.48 8878 11.811 8.189 5.866 3.307 0.630 0.394 0.315 507444 17945 78974 263 43700 110.48 8904 6.890 4.606 3.110 1.772 0.591 0.433 0.354 588135 46091 100000 351 43800 111.38 8896 13.150 9.055 6.535 3.661 0.866 0.551 0.433 430191 18137 60098 264 43900 110.48 8902 12126 7.992 5.472 2992 0.591 0.433 0.315 380729 21010 77676 218 44000 11246 8880 10.433 7.087 5.157 2953 0.591 0.433 0.354 563567 20511 97596 720 44101 110.84 8865 12598 8.425 5.827 2913 0.551 0.315 0.276 406090 18486 82765 226 44200 113.00 8896 12.323 8.504 5.906 3.228 0.669 0.472 0.394 431317 18436 81938 421 44300 112.82 8907 12.677 8.504 6.024 3.189 0.748 0.630 0.512 341067 20975 69997 720 44400 11246 8854 14.528 9.764 6.929 3.819 1.063 0.709 0.551 324991 19181 50237 288 44500 113.36 8770 22.205 15.433 11.142 6.575 1.890 1.102 0.787 242962 12531 25023 171 44600 11264 8801 14.055 9.882 7.205 4.173 0.984 0.591 0.472 453349 15509 54430 279 44700 111.20 8770 15.984 9.764 6.220 2.795 0.591 0.354 0.315 205387 18388 73196 210 44800 111.74 8854 15.551 10.512 7.283 4.016 1.102 0.630 0.394 266284 20655 36031 118 44900 112.10 8763 17.717 11.496 7.559 3.543 0.591 0.315 0.236 26505 14750 56247 125 45000 112.64 8851 13.189 8.937 6.496 3.740 0.709 0.315 0.236 540399 15404 62215 147 45101 111.38 8801 10.945 8.228 6.260 3.858 0.709 0.236: 0.157 918758 12390 86531 167 45200 109.58 8770 15.197 10.787 7.874 4.646 1.102 0.669 0.512 418498 14486 46827 243 45300 109.94 8821 13.898 9.606 6.693 3.661 0.748 0.433 0.276 351018 18406 49830 122 183 Table C-l (cont'd). DEFLECTION IN MILS LAYER MODULI IN PSI 1881!! 8L ('1') no mo n30 n45 noo n12o n15o AC naae Raaabeatayer 45500 110.84 15.197 10.709 7.795 4.528 0.787 0.394 0.36 399969 14359 44498 107 45600 1 1 1.74 15.748 1 1.102 8.031 4.567 0.984 0.433 0.276 409473 14315 38948 1 12 45700 111.20 8715 16.890 10.394 6.693 3.110 0.354 0.157 0.118 24703 15118 67521 104 45800 112.46 8891 9.094 5.197 3.110 1.535 0.512 0.354 0.276 238647 44765 100000 227 45900 113.18 8907 6.732 3.898 2.520 1.496 0.551 0.315 0.36 351216 70861 89131 153 46000 112.10 8783 20.039 10.433 5.315 1.496 0.039 0.039 0.079 351216 70861 89131 150 46100 1 10.30 8847 10.512 6.220 3.937 1.890 0.433 0.354 0.36 282845 3081 1 100000 262 46200 105.44 8889 5.197 3.307 2.323 1.260 0.354 0.276 0.197 750814 63674 100000 155 46300 1 10.84 8774 14.685 10.36 7.480 4.252 0.709 0.315 0.157 388700 15733 40916 87 46400 108.14 8876 14.055 9. 803 6.772 3.661 0.630 0.315 0.197 370707 16923 52870 105 46500 109.22 8862 12.008 7.992 5.551 2.913 0.472 0.276 0.197 408411 19793 77255 131 46600 108.32 8858 12.913 8.465 5.787 2.953 0.354 0.197 0.118 408411 19793 77255 150 46700 108.14 8840 12.756 8.740 6.260 3.425 0.591 0.354 0.36 409957 18085 63491 128 46800 107.78 8856 15.945 11.535 8.346 4.843 1.142 0.551 0.354 402675 14713 35748 120 46900 108. 14 8891 14.449 10.197 7.598 4.528 1.063 0.591 0.433 474348 15254 46326 183 47000 108.68 8816 16.890 11.969 8.898 5.354 1.024 0.472 0.315 439754 11483 41847 130 47100 108.50 8814 14.331 9.882 7.087 3.937 0.748 0.394 0.36 371493 17028 46108 108 47201 108.50 8854 14.606 10.000 7.244 3.898 0.709 0.394 0.276 377977 15565 55348 137 47300 108. 14 8832 18.228 12.441 8.858 4.528 0.748 0.433 0.315 277897 12437 50490 141 47400 108.68 8849 12.008 8.307 5.748 3.228 0.591 0.354 0.276 469704 18338 76056 184 47 500 107.60 8812 14.331 9.724 7.008 3.937 0.787 0.433 0.276 375440 17207 47370 120 47601 107.78 8882 14.528 10.000 7.244 4.173 1.063 0.630 0.433 37373 18387 42212 154 47700 106.88 8814 14.291 9.961 7.283 4.567 1.732 1.220 1.024 369947 21676 39602 720 47801 103.82 8827 9.961 6.811 5.039 3.110 1.299 0.945 0.866 506053 31973 61767 720 47901 107.06 8832 1 1.969 8.504 6.220 3.858 1.260 0.906 0.748 503786 21663 53809 720 48000 106.52 8902 14.331 9.882 7.087 4.055 0.945 0.669 0.551 402792 15927 62739 61 1 48100 107.42 8821 16.063 11.850 8.937 5.827 2.205 1.614 1.260 364965 19735 27931 720 48200 106.34 8787 13.740 9.449 6.772 3.701 0.866 0.551 0.394 366732 18406 5383 179 48300 106.88 8878 9.449 6.772 5.118 3.228 0.906 0.591 0.433 736223 25145 61381 272 48400 106.34 8860 12.874 9.134 6.732 4.134 1.024 0.551 0.394 546184 17510 47278 165 48500 104.72 8832 17.835 12.677 9.055 5.157 1.220 0.669 0.433 310742 14226 33263 129 48601 105.80 8743 18.740 12.165 7.874 4.449 1.260 0.787 0.551 188651 17830 35404 165 48700 106.88 8825 16.260 10.669 7.087 3.819 0.709 0.354 0.197 318437 11533 100000 322 48800 106.52 8770 19.724 13.504 9.449 5.512 1.339 0.669 0.433 372170 10000 44856 154 48900 104.54 8805 16.969 11.417 8.110 4.409 1.024 0.591 0.394 281579 16003 39258 135 49000 102.92 8779 13.740 8.937 6.024 2.953 0.669 0.472 0.433 296724 1893 80671 720 49100 104.00 8843 11.181 7.362 5.36 2.953 0.748 0.433 0.315 441909 25013 60114 158 49200 102.92 8794 12.874 8.583 6.142 3.346 0.787 0.433 0.276 366134 21841 48231 118 49300 103.82 8915 6.850 4.567 3.346 2.008 0.630 0.551 0.315 605936 52434 7673 221 49401 103.82 8940 7.874 5.157 3.622 2.126 0.512 0.354 0.236 602602 36662 88074 169 49500 104. 18 8843 11.575 7.638 5.276 2. 874 0.551 0.354 0.276 432980 20896 81536 200 49601 103.28 8849 11.220 7.638 5.512 3.228 0.748 0.472 0.354 515131 21451 66029 216 49700 103.10 8911 4.882 3.189 2.244 1.339 0.433 0.315 0.197 715834 83265 100000 150 49800 103.46 8849 5.000 3.543 2.795 1.969 0.669 0.433 0.36 1237740 78958 57710 107 49900 102.92 8851 10.157 6.890 4.843 2.638 0.512 0.276 0.157 467676 26284 63600 98 LOAD (Lb!) 45400 111.74 8770 13.898 9.882 7.480 4.409 0.945 0.472 0.276 47329 16270 3963 108 8823 8770 184 Table 01 (cont'd). TEMP mm ammo»: 1N mus LAYER monuu m rs; [sun s1. (‘1?) (Lu) no me 030 ms 090‘ 9120 ms.‘ AC 3... Roadbed hya- soooo 102.38 8884 11.732 7.402 4.921 2.441 0.157 0.039 0.079 239986 23873 50000 55 50100 102.74 8851 9.646 6.181 4.173 1.890 0.079 0.039 0.039 539512 18830 100000 68 50200 101.48 8708 11.299 7.717 5.472 3.071 0.512 0.315 0.197 442709 3604 67877 116 50300 101.12 8884 12.638 8.898 6.614 4.094 1.102 0.669 0.591 608007 16111 62610 720 50400 100.22 8832 12.913 9.055 6.772 4.252 1.102 0.748 0.630 558335 16117 60988 73 50500 100.22 8847 11.102 7.953 5.945 3.622 0.827 0.512 0.394 641913 18211 67201 291 50601 98.78 8851 13.661 10.236 7.717 4.803 1.260 0.709 0.551 608817 13843 48119 316 50702 100.40 8907 8.386 5.827 4.449 2.874 0.906 0.591 0.512 904712 27555 78854 73 50801 99.32 8805 12.874 8.976 6.575 3.819 0.669 0.354 0.36 710813 12310 9301 675 50900 98.96 8880 9.961 7.047 5.039 2.874 0.551 0.276 0.157 574744 24040 61422 108 51000 98.96 8827 15.827 11.142 8.189 4.961 0.866 0.394 0.36 434575 12949 42218 102 51100 98.78 8754 15.079 11.220 8.661 5.669 1.575 0.827 0.472 522939 15964 2613 119 51200 98.24 8907 14.567 10.315 7.638 4.409 0.669 0.276 0.157 587034 10000 58736 147 51301 97.34 8926 5.748 3.583 2.480 1.339 0.276 0.197 0.157 677507 52810 100000 85 51400 97.52 8904 10.984 7.441 5.433 3.071 0.669 0.315 0.36 597701 3592 66554 129 51501 96.26 8876 11.811 7.953 5.709 3.307 0.709 0.433 0.354 516826 19001 73863 243 51601 96.26 8862 11.614 7.953 5.591 3.031 0.433 0.36 0.157 447745 19183 75998 106 51700 95.54 8988 5.591 3.583 2.53 1.535 0.512 0.354 0.36 676427 69859 96115 159 51801 95.00 8884 12.126 7.992 5.551 3.071 0.630 0.354 0.197 362587 24042 5325 100 51901 95.36 8964 3.307 1.929 1.339 0.906 0.394 0.236 0.157 578163 207486 100000 88 52000 95.36 897 5 4.646 2.717 2.008 1.378 0.591 0.394 0.36 427937 157102 75500 125 52100 93. 56 8907 6.220 3.701 2.598 1.654 0.709 0.433 0.315 385164 89254 73845 177 52.200 96.08 8869 10.197 7.323 5.433 3.386 0.984 0.512 0.276 575752 30737 36947 97 52301 95.18 8873 12.480 8.661 6.181 3.425 0.433 0.118 0.039 47394 17733 50510 69 52400 95.90 8891 8.425 5.000 3.307 1.693 0.276 0.118 0.079 289492 59348 3000 19 * fireflrstclcvmuatiomhavcmuor5md7at60cmmd180mbutratofthcstatimhnvcmor5and7lt 900mmd1506mrupcclively. “ 'I‘hedepthtouifi‘layer calculated by MICHBACKis givenhcreinincha. [I] [2] [3] [4] [5] [6] [7] LIST OF REFERENCES “Technical Assistance for Implementation of Highway Maintenance Programme, Maintenance Backlog Reduction Programme, and Resurfacing and Strengthening Programme (MBRP/RSP)”, Report on Flexible Pavements in Pakistan, by Rampsax International A/s, January 1995. Faruqi, Z.I., “Axle Load Survey to Establish Latest Truck Factors for Pavement Design between Texila and Lahore on National Highway (N-S)”, A Thesis for M. Sc. (Civil Engineering), Military College of Engineering Risalpur, 1993. PC-l Proforma, Fourth IBRD Highway Project in Pakistan, National Highway Board, Islamabad, 1986. Harris, F .R., “Pavement Failure Report”, Fourth Highway Project, Contract No. 2, Karachi-Hyderabad, National Highway Authority, Ministry of Communication, Government of Pakistan, 1994. F .N. Finn, and CL. Monismith, “Asphalt Overlay Design Procedures”, transportation Research Board, National Research Council, Washington DC, 1984 National cooperative Highway research program Synthesis of highway practice 126, “Equipment for Obtaining Pavement Condition and Traflic Loading Data”, TRB Washington DC, September 1986. Mahmood, T., “Backcalculation of Pavement Layer Properties from Deflection Data”, Ph.D., Dissertation, Michigan State university, East Lansing, 1993. 185 [8] [9] [10] [ll] [12] [13] [14] 186 Bentsen, R.A., Nazarian, S., and Harrison, J.A., “Reliability Testing of Seven Nondestructive Pavement Testing Devices”, Nondestructive Testing of Pavements and Backcalculation of Moduli, ASTM STP 1026, AJ., Bush III, and G.Y., Baladi, Eds; Amercian Society for Testing and Materials, Philadelphia, 1989, pp. 41-58. G.T. Rohde and t. Scullion, MODULUS 4.0; “Expansion and validation of the MODULUS Backcalculation System”, Research Report 1123-3, Texas Transportation Institute, Texas A & M University System, College Station, 1990. A.S.M. Hossain and JP. Zaniewski, “Detection and Determination of Depth of Rigid Bottom in Backcalculation of Layer Moduli from Falling Weight Deflectometer Data”, In Transportation Research Record 1293 TRB, National Research Council, Washington, DC, 1991. A.J., Bush 111, Computer Program BISDEF, US. Army Corps of Engineers Waterways Experiments Station, 1985. N. Sivaneswaran, S.L. Kramer, and JP. Mahoney, Advanced Backcalculation Using a Nonlinear Least Squares Optimization Technique, Presented at the 70th Annual Meeting of Transportation Research Board, Washington DC, 1991. J. Uzan, R.L. Lytton, and ER Gerrnann, “General Procedure for Backcalculating Layer Moduli”, In Nondestructive Testing of Pavements and Backcalculation of Moduli”, ASTM, STP 1026 (AJ. Bush III and G.Y. Baladi, eds), Amercian Society for Testing and Materials, Philadelphia, 1989, pp. 217-228. KM. Chua and R.L. Lytton, “Load Rating of Light Pavement Structures”, In Transportation Research Record 1043, TRB, national Research Council, Washington DC, 1984. [15] [16] [17] ['3] ['9] [20] [21] [22] [23] 187 RS. Harichandran, C.M. Ramon, and G.Y. Baladi, “MICHBACK User’s Manual (DOS Version 1.0)”, Michigan State University, 1994. “Standard Recommended Practice for Pavement Deflection Measurement”, AASHTO Designation : T-256-77. Khosla, NP. and Ali, N.A., “A Mechanistic Method for Evaluation of Layer Moduli and Overlay Design”, Nondestructive Testing of Pavements and Backcalculation of Moduli, ASTM STP 1026, A.J., Bush III and G.Y. Baladi Eds; American Society for Testing and Materials, Philadelphia, 1989, PP. 355-367. Huang Y.H., “Pavement Analysis and Design”, University of Kentucky, Prentice Hall, New Jersey, 1993. “Asphalt Overlays for Highway and Street Rehabilitation”, Asphalt Institute, Manual Series No. 17 (MS-17), June 1983 Edition. Baladi, G.Y., and Snyder, M.B., “Highway Pavement Training Course”, Michigan State University, Department of Civil and Environmental Engineering, East Lansing. Yoder, E.J., and M.W., Witezak, “Principles of Pavement Design”, John Wiley and Sons Inc., New York, 1975. Harr, M.E., “Reliability-Based Design in Civil Engineering”, McGraw-Hill Book Company, New York, 1987. AASHTO, “Guide for the Design of Pavement Structures”, Washington DC, 1982. "‘illfilillllllllilllf