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ABSTRACT

RADAR TARGET DISCRIMINATION USING NEURAL

NETWORKS

By

Tsai, Chang-Ying

This study uses several different memory-based neural networks to discriminate radar

targets based on their early-time, aspect-dependent response, and demonstrates that target

discrimination can be accomplished in a high-noise environment with great reliability. The

difficulty of locating the beginning response point in practice prompts the use of PET

frequency spectrum magnitudes as aspect process patterns since a time shifi is implicated in

the phase of the spectrum. The efi‘ects of analog data and bipolar data with different

quantization levels on network performances are investigated. Especially promising is the

Recurrent Correlation Accumulation Adaptive Memory-Generalized Inverse (RCAAM-GI)

cascade neural network. This network uses a dynamic memory structure to accumulate the

converging information and has a stability criterion to allow us to define the final stable state.

It can be considered as a real-time adaptive learning network with contamination observability

and flexible decision strategy. From the simulation results, the network demonstrates

computation space efficiency, and high noise tolerance.
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CHAPTER 1

Introduction

Many interesting schemes have been proposed for radar target discrimination [1-16],

Particularly fascinating are those which use the transient response of the target. These include

methods based on the aspect-independent late—time response [1-9], time domain imaging

techniques [10-12], correlation [13-15] and wavelet transforms [16]. Many of these schemes

use only the early-time specular target response, or the late-time resonant portion. Of those

techniques that use the entire waveform, problems arise in the amount of computer storage

required and the time needed to process the measured response of an unknown target. Most

estimation procedures, from mean-squared linear estimation to nonlinear regression, require

a rough mathematical model expressing the relationship between input and output, therefore

they are model-based estimations. The radar target discrimination based on the early-time

transient scattered field response can't be reached from a model-based method since an

accurate mathematical aspect-dependent scattering transform formula is unavailable in the

practical situation. Then the task may be devoted to the model estimation by using adaptive

estimation procedures. However, an adaptive estimation requires prior information about the

model order, number ofestimated parameters, and the rough firnction type, and becomes very

difficult for high orders under noisy situations. Hence this kind of model estimation is almost

impossible.

Speaking of the pattern classification, the stochastic pattern recognition algorithms

[17]-[20] can be divided into two categories : density/distribution estimation and pattern





2

clustering. The parameter estimations (discriminant function, Maximum Likelihood and

Bayesian estimations) require the desity model for each scattered response, while the

clustering algorithms (supervised/unsupervised/differential competitive-learning or c-means

algorithm) require consistent and clear pattern grouping. Unfortunately, the early-time radar

target scattered responses usually show that the dependence on aspect is higher than the

dependence on target in some aspect ranges, thus the target clustering among aspect

responses is ambiguous and inconsistent.

A neural network’s structure learns the given (or experienced) input-output

associations through a synapse-interconnected black box, thus the neural learning is from

experience and is model-free. A model-free estimation doesn't require to estimate the

mathematical shape of the presented task, and, in contrast, the neural learning occurring in

the black-box will implicitly represent the experienced input-output associations in its own

way. Although mathematical models can analyze a task in detail, human takes actions

typically by instinct (or neural learning) instead of sequential mathematical calculations. For

example, nobody picks up a cup on a desk by using the complicated mathematical algorithm

that a robot manipulator [21] undertakes. A child can finish the task without difficulty, while

an adult may proceed in a more efficient and gracefirl way or in motion.

Compared to convential methods, the artificial neural networks are quite suitable to

solve the complicated systems for which deterministic methods are incapable or inefficient.

Consider a practical problem : Can an unprofessional driver or deterministic mathematical

control system continuously and smoothly back up, from an arbitriry initial position, a long

trailer (cap+trail) along a given line in real-time ? In this problem, a deterministic model can't
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consistently and effectively proceed with task since each action will accumulatively affect the

future actions and errors, and then the trailer will become out of control if some jacknife

angles occur. The neural networks can be applied to those fields within which stochastic and

deterministic methods may suffer difficulties. Recently, neural networks have been used to

perform target discrimination with reasonable storage requirements and rapid processing

times [22, 23]. Much of this effort was based on simple back-propagation networks. This

thesis will examine more sophisticated networks and demonstrate that target discrimination

can be accomplished in a high-noise environment with great reliability. We will concentrate

our research on the noise tolerance of various neural networks and the processing efficiency.

The transient scattered field response of a radar target is aspect sensitive, but for an

interrogating pulse of a given bandwidth, a discretization of aspect angle can be found for

which changes are gradual from angle to angle. Therefore, we can store some specified aspect

responses as the reference patterns for each target, design a neural network to memorize the

association among reference patterns and expect the network will correctly converge to some

reference pattern when it is triggered at the input by a pattern that is sufficiently close to one

of the reference patterns.

Using the Michigan State University anechoic chamber, an PIP-87208 network

analyzer is used to perform stepped frequency measurements of four scale-aircraft models,

B52(1 :72), BS8(1:48), F14(1 :48) and TR1(1:48). The targets are measured from 0° to 288°

with an azimuthal aspect increment of 09°, resulting in 33 aspect measurements for each

target. The frequency response spectra are calibrated using a 14" sphere as in [24] and taken

into the time domain using the inverse fast Fourier Transform (IFFT). We then select 17 time-
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domain responses from 0° to 288° with aspect increment 18° for each target as

training/stored patterns, and 16 responses as untrained/unstored network generality test

patterns from 09° to 279° with the same increment. Therefore, every untrained/unstored test

pattern resides at the middle of two training/stored patterns.

We have used both time-response patterns and FFT spectrum-magnitude patterns to

simulate target discrimination for each neural network. In time-response processing, the

beginning response time has been assumed known, and we extract the next 100 response

points as the aspect prototype from the assumed beginning point. Based on this assumed

segment, noise is later added to test network noise tolerances. The difficulty of locating the

beginning response point in practice prompts the use of FFT frequency spectrum magnitudes

as aspect process patterns since a time shift is implicated in the phase of the spectrum.

In binomial input simulations, we quantize each time response using 7 numerical levels

and encode these 7 levels using 3 bits. For spectrum magnitude processes, we simulate bipolar

data formats with two quantization levels, 5 quantization levels and 7 quantization levels

encoded by 3 bits. More levels are used for the time responses, since they exhibit a much

wider oscillation range than the spectral magnitudes. 5 levels can be used to express response

variations for the spectral magnitudes, since they have a small dynamic oscillation range.

In chapter 2, the target-aspect scattering measurement procedure is given and the data

preprocessing described. We then present the theory for several different neural networks for

target discrimination. In chapter 3, the Multi-Layer Feedforward and Error-BackPropagation

(ML/BF) network and its backpropagation learning algorithm are presented. The Generalized

Inverse (GI) algorithm and its iterative network learning procedure are also given in chapter
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3. In chapter 4, we discuss Recurrent Correlation Associative Memories (RCAM), and

analyze the High Order Recurrent Correlation Associative Memory (HCAM) and Exponential

Correlation Associative Memory (ECAM). The advantage ofthe RCAM-GI cascade network

is investigated.

In chapter 5, we propose a new network structure, the Recurrent Correlation

Accumulation Adaptive Memory (RCAAM), which uses a dynamic memory structure to

accumulate the converging information and has a stable criterion to allow spurious states to

either stay as unknowns or converge to one of the stored patterns. We describe it as a real-

time adaptive learning network with contamination observability and flexible decision

strategy. The RCAAM performs discrimination equally well as the ECAM, always

outperforms the HCAM with low orders, and requires much less processing space than the

ECAM. An estimate formula for target crosscorrelation gain as deve10ped, and a correlation-

based discrimination resolution comparison between bipolar data and analog data is

undertaken. In chapter 6, we introduce the FFT spectrum magnitude process to relieve the

time-shift inconsistency occurring in the time responses. A modified process is constructed

for analog spectrum process networks. We summarize and compare neural networks used in

this paper to some popular ones, and also compare the estimated target discrimination

resolutions among all data formats used in the time domain and spectrum magnitude

processes. We briefly discuss implementation complexities and conclude the thesis in

chapter 7.



CHAPTER 2

Measurements and Data Preprocessing

2.1 Introduction

To determine the transient backscattered field response of a practical radar target the

Michigan State University anechoic chamber and a PIP-87208 vector network analyzer are

used. Four scale aircrafi models, BS2(1272), BS8(1:48), F14(1:48) and TR1(1:48), are used

to perform stepped frequency measurements. The measurement and calibration processes will

be given in the next section. Then the backscattered time responses obtained via the inverse

Fourier transform from the measured spectra] responses and the data preprocess for time

domain networks are conducted in section 2.3.

2.2 Measurements [24]

Since an impulse response can help us to understand the target's structure, a

synthesized short duration pulse, an approximation to an impulse, is used in the anechoic

chamber measurements. A desired temporal impulse is difficult to consistently generate in the

time domain, thus we measure spectral responses and then synthesize temporal responses.

From Fourier frequency spectrum analysis and synthesis, we know an impulse in the time

domain has an uniform frequency spectrum covering the whole frequency band. Therefore,

a vector network analyzer capable of measuring both spectral magnitude and phase can allow

us to synthesize a short duration pulse through wide frequency sweeping. The frequency

domain measurement system we use is shown in Figure 2.1 . The HP-87208 network

analyzer is programmed to generate sweeping frequency waves to emulate a temporal
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impulse.

Since the measurement is conducted in an anechoic chamber, a system calibration is

required for accurate results. First the block diagram for the measurement system is presented

in Figure 2.2 . Ha(f) denotes the transfer function of the direct coupling from the transmit

antenna to the receive antenna, while Hc(f) represents the transfer firnction of the coupling

from the transmit antenna to the receive antenna via the anechoic chamber, antenna supports,

and target mount. Hr(f) and Ht(f) are the transfer functions of the receive and transmit

antennas from the transmission line into the free-field environment, while E(f) represents the

spectral content of the pulse or CW source.

The background environment includes the path Ha(f) and Hc(f). Thus we can model

the background measurement by

R (If) = Effl'H,(/)'[H,(I)rHC(/)]'H,U)+Nb(/)
1

. sm-[Hamwcmjwbm ( )

where S(f) is the system transfer function S(f)=Hr(f) - Ht(f) - E(f) and N°(f) is background

random noise. If we measure some target, t, then we have

R "”U) = $0) - mm 41.0) +H.‘</) '11.:(01 +N ”m (2)

where H‘(f) is the transfer firnction of the target, Hsc‘(f) is the transfer function of the multi-

interaction ofthe target with the anechoic chamber and N"°(f) is the random noise spectrum.

Since Hsc‘(f) doesn't exist until the target is placed, Hsc‘(f) is a causal term. Therefore, we

have

R ‘0) = R"”(/>-R ”(n = sm-rH.‘m+H.:mr+N'(/) (3)
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where N‘(f)= N"”°(f) - N°(f).

From the above equations, we can't solve the desired target scattering response,

Hs‘(f), even ignoring the multi-interaction term Hsc'(f), because the system transfer firnction

is still not available. Thus a calibration measurement is required to find the system transfer

function S(f). In the calibration procedure, we need to use an object which has a known

transfer function, Hs°(f). Then the calibration measurement gives

RC”’(/) = SO)'[Ham+Hc(/)+H,C(/)+H.:(/)l+N°b(/) (4)

where Hs°(f) is the transfer function of the calibration object with known transfer firnction,

Hsc°(f) is the transfer firnction of the multi-interaction between the calibration and the

anechoic chamber, and N°“°(f) is the random noise spectrum. Again, the multi-interaction term

Hsc°(f) is causal. We have used a 14" sphere for calibration, since sphere scattering has the

well known solution given by the Mie theory. The frequency response of a sphere can be

attained in both magnitude and phase over a wide frequency band. And the sphere response

is aspect-independent and thus we can avoid another calibration on aspect angle. Then we

have

R ‘m = Rotor-R to“) = Sm-[H.c(/)+H,Z(f)1+N‘(/) (5)

where N°(f)= N°"°(f) - N°(f).

Since Hsc°(f) represents the multi-path interaction between the calibration object and

the chamber, the first temporal response resulting from Hsc°(f) will apparently lag behind the

ending temporal response ofHs°(f). Therefore, a time gating window can be used to eliminate

the multi-path interaction portion oftemporal response of R°(f). First the time response of the
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calibration measurement can be calculated by

r“(t) = 5’“{R “(m (6)

Since the temporal responses resulting from multi-path interaction between the calibration

object and the chamber are sufficiently delayed beyond the end of the calibration object

response, a time gate window function, w(t), can be used to exclude the multi-path interaction

portion as follows :

rcw = rc(t)-w(t) (7)

If 9"{S(f) Hs°(f)} is time limited and w(t) is well designed, then the r°"(t) will be the time

response corresponding to spectral response, S(f) Hs°(f), that is

RWU) = ,9'{r““(z)} = S(/)'H:U)

Since Hs°(f) is known and

R"(/) = 90°70} = Y{W(t)'9"1{R‘(/)}}

can be calculated, S(f) can be represented as follows :

RWU)

rrfgn

sq):

Afier the system transfer fimction is found from the calibration procedure, then

R'(f)= S(f) - [Hs‘(f) + Hsc'(f)] + N‘(f) will give

H.‘</>+H.:m =
 
R ‘0)

S(/)

if noise is ignored. Therefore,

(3)

(9)

(10)

(11)
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h.'(t)+h.2(r) : f“{H.'(f)*H.Z(/)} = 9’"{5§Z0(Q} (12)

If the target impulse response is approximately time limited, and the multi-path interaction is

delayed beyond the end of the target impulse response, then a time gate window, w'(t), can

be used to isolate the target impulse response as follows :

h.‘(t) = rh.‘(t)+h.:(r>1-w rt) (13)

In our measurements, the effective operating band of the antennas is 1-7 GHz, and the

sweep frequenc step size is set to 0.01 GHz. Therefore, we attain 601 measured spectral

responses, including magnitude and phase, from 1 to 7 GHz. Since the antenna operating

frequency band is restricted to 1-7 GHz in our measurement, we use a weighting function, the

Gausian Modulated Cosine, to window the effective measurement band and eliminate band

edge discontinuities.

2.3 Data Preprocessing

To have a small time increment in the temporal responses after the inverse Fourier

Transform, the spectral responses are expanded to 4096 samples by attaching (4096-601)

zeros to the measured and weighted spectral responses. Therefore, there are 99 zeros

artificially assigned to the band 0.01 GHz to 0.99 GHz and 3396 zeros are artificially assigned

to the band 7.01 GHz to 40.96 GHz. Since a real time waveform has a complex conjugate

Fourier spectrum, the 4096 spectral response points are expanded to 8192 samples by using

their conjugate partners. Then we use a 8192-point Inverse Fast Fourier Transform (IFFT)

to transfer the 8192 spectral response points to 8192 temporal response points for each aspect
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measurement. After the IFFT, the temporal responses have a duration of 100 ns and a

sampling spacing of 0.01221 ns. As analyzed above, the responses from multi-path interaction

between target and chamber are apparently delayed beyond the direct backscattered responses

from target, so we use a time gate window to extract the effective 820 temporal response

points. Figure 2.3 shows the 820 backscattered response points after the IFFT for the 852

target at an aspect angle of 0°.

The scale aircraft models are around 40 cm long, and thus the early-time

backscattered response duration is the wave propagation time traveling twice aircraft length

in the wave propagation direction, 40x2/30 ns = 2.67 ns if the aspect angle is 0°. This

estimated early-time backscattered response duration for a 40 cm scale aircraft model will

cover about 219 temporal response points. Since we like to use 100 time samples as the

network analog pattern, we double the time sample spacing so that the new time sample

spacing is 0.02442 ns and the response duration time of the 100 new time samples is 2.442

ns. With 0° aspect angle the 100 new temporal responses cover about 3/4 of the 852's early-

time responses, while they can cover the whole TRl response.

Since the beginning time of a target response is difficult to locate in practice, we

design a simple detection algorithm to find the beginning of a response. When the beginning

response time is decided, we pick 100 time response points, starting from the detected

beginning ofthe response, as the network aspect prototype. With aspect angle changing and

noise contamination, our simple detection isn’t consistent among aspect angles. However, we

still use these truncated patterns, with inconsistency for some aspect ranges, as stored aspect

response prototypes to emulate the practical situation. An example of the inconsistencies in
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our time domain stored aspect patterns will be given in chapter 6, Target Discrimination using

Neural Network with Spectrum Magnitude Response. To systematically process target

discrimination the 100 time response points are normalized to an energy of 1. Figure 2.4

shows the 100 normalized time response points acting as a network analog pattern for the

852 target at an aspect angle of 0°.

In this thesis, each target is measured at aspect angles from 0° to 288° with an

azimuthal increment of 09°. Therefore each target has 33 aspect measurements. We then

select 17 aspect responses from 0° to 288° with aspect increment 18° for each target as

network training/stored aspect patterns, and 16 aspect responses as untrained/unstored

network generalization test patterns from 09° to 279° with the same increment. Therefore,

every untrained/unstored test pattern resides at the middle of two training/stored aspect

patterns. Figure 2.5 shows the 68 100-sample aspect time responses, truncated from 68 820-

sample time-gated IFFT responses, for 4 scale aircraft models. Figure 2.6 presents the 68

normalized aspect time responses serving as the 68 aspect stored patterns for time domain

networks. The details for bipolar coding schemes and data processing of spectrum magnitude

network will be discussed in later chapters.
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CHAPTER 3

Multi-Layer Feedforward with Error Backpropagation and

Generalized Inverse Networks

3.1 Introduction

In this chapter, we will discuss two training based artificial neural networks, Multi-

layer Feedforward with Error Backpropagation (ML/BF) networks and Generalized Inverse

(GI) network. The limitations ofthe Perceptron were pointed out by Minskey and Papert [25]

in 1969. The perceptron learning can poorly behave with nonseparable data and it will stop

learning upon the point where a critical solution is reached. Therefore, the perceptron learning

will only barely work. Widrow and Hoff [26] developed a model for ADALINE (ADAptive

LINear Elements), an important variation of perceptron learning. This model uses Widrow-

Hoff rule or LMS (least mean square) algorithm to eliminate the oscillation caused by

nonseparable learning examples and approximate to the solution with least mean square.

However, it is not necessary the optimal one.

3.2 Multi-layer Feedforward with Error Backpropagation Networks

The Multi-layer feedforward with Error-Backpropagation (ML/BP) networks are

most well known, widely applied, effective and flexible artificial neural networks. The

backpropagation learning ideas were rediscoved independently by different workers (Werbos

[27]; Parker [28]; Rumelhart, Hinton, and Williams [29]). Strictly speaking the

backpropagation is a learning algorithm, not a type of network. Currently the

backpropagation is the most important and most widely used algorithm for doing hard

19
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connectionist learning.

Essentially the ML/BP network involves two phases. The first phase, the forward

phase, occurs when the input is presented and propagated forward through the network to

attain an value for each processing element. Then all current outputs are compared with the

desired outputs, and the differences, or errors, are computed. In the second phase, the

backward phase, the recurring difference computation from the first phase is now performed

in a backward direction.

Generally the ML/BP net is composed of a hierarchy of processing units, organized

in a series of two or more mutually exclusive sets of artificial neuron layers. Essentially this

feedforward network uses a refinement of the Widrow—Hofftechnique, which calculates the

difference between real outputs and the desired outputs. The weights are changed in

proportion to the error times the input. Therefore, we require inputs, outputs and the desired

outputs all at any learning neuron. However, this is hard to do with hidden units, since you

don't know how much responsibility a particular hidden unit should take.

To solve this problem, the neuron learnings are run backward, so you can tell how

strongly a particular neuron is connected. Each hidden learning neuron's error is a weighted

sum ofthe errors in the successive layer. Therefore, the forward phase is used to estimate the

error, then the backward phase is introduced to modify weights based on backpropagation

algorithm so that the error is decreased.

Figure 3.1 illustrates a typical ML/BP network structure. The U represents input

layer with n inputs, while H1, H1 and HJ represent hidden layers with I neuron units in HI

and J neuron units in HJ respectively. And the OK denotes the output layer with K outputs.
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Input Layer  

Hidden Layers

Figure 3.1 Structure of a multi-layer feedforward with error backpropagation network

11g(x}

 

  
(a) (b)

Figure 3.2 (a) An artificial neuron unit model. The Om's are outputs from previous layer

HI, Bj is the bias for neuron j and Wij's are interconnecting weights between layer HI and

the neuron j of layer H]. (b) Activation fiinction , g(x), used for bipolar process.
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Wi j represents interconnecting weights between the hidden layers H1 and HJ, while WJ-k

denotes interconnecting weights between the hidden layer HJ and output layer OK. In Figure

3.2, (a) shows an artificial neuron unit model used in Figure 3.1 , and a nonlinear activation

function used in an artificial neuron for bipolar process is illustrated in (b).

3.2.1 Gradient Descent Rule

Gradient descent rule is an important part in most connectionist learning algorithms,

especially mean squared error and backpropagation. It is a mathematical approach to

minimizing the error between actual and desired outputs. The weights are modified by an

amount proportional to the first derivative of the error function with respect to the weight.

The Widrow-Hoff (or Delta) Rule is one example of a gradient descent rule.

Suppose we have a network weight W:(w,, w") for a single cell problem, and it

produces a differentiable measure oferror E(W). Since the error function is differentiable, we

can compute its derivative (or gradient) vector

8E 8E
v5: __...._

aw, aw,
(1)

at any point ofweight space. This gradient vector gives the direction in the weight space that

has the maximum increase of the error when an infinitesimally small weight change is made

in that direction. Therefore the vector -VE(W) will minimize error for a sufficiently small step.

This introduces a learning algorithm with which weights, W, will continue error convergence

by evaluating -VE(W) and taking small steps in that direction until some convergent criterion

is reached. So the gradient descent learning rule can be formulated as follows with a small

positive learning rate 11 :
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WUpdaled = W_ “VEW (2)

3.2.2 ML/BP Learning Mechanism

The ML/BP network is a supervised net, so it needs a training (or example) set

including input pattern set and the corresponding desired output set to begin learnings. The

network architecture learns to adapt to the training set by using the errors backpropagated

layer by layer to adjust its interconnection weights. As we can observe from Figure 3.1 that

the network interconnects any two adjacent layers by synapses and each layer has its artificial

neurons, but there are no interconnection synapses between any two neurons in the same

layer. The learnings adjust synapse weightings connecting any two neurons of any two

adjacent layers in backward direction. The network iteratively continues its learnings pattern

by pattern until the error criterion is reached, thus a well trained network will satisfy the given

training pattern set with error less than the required criterion.

Suppose a ML/BP network has output layer OK with K neurons, the first backward

hidden layer HJ with J neurons and the second backward hidden layer Hl with I neurons. Let

Tkr denotes the kth target (or desired) output bit for the training pattern r, ij denotes the

synapse weighting connecting the ju‘ neuron of hidden layer HJ to the k"‘ neuron of the output

layer OK, and Wi j denotes the synapse weighting connecting the i"‘ neuron of hidden layer

Hl to the j"' neuron of hidden layer HJ. Then the network has

.1

0;: 0,4le WIkHD

J

'1 (3)

H}. = GBQ; WUH, )



M-

s.

‘ ha

‘4 1‘ "--\
I ‘H.‘4. ‘ 7

.

\‘y,

1 /P1

4", // I l
.1.‘



24

An activation shown in Figure 3.2 is used here for bipolar [-1 1] process,

2
G : _____ -

”(VI erXM—BV)
(4)

and this kind of nonlinear sigmoid fiJnction is frequently used to emulate the bi—state for a

biological neuron, activated or inactive.

Then we define an error function for training pattern r as follow,

K 1 K 2

E'=ZEk=—Z (Tit-0k) (5)

11.1 2 1.1

Now, we have calculated the error between real network output, 0', and target output, T',for

the training pattern r. Afler the error is available, the gradient descent rule [20][29][30] for

the output unit k with respect to weight W”. is given by

r

k

r

  
r r 6

BW = ‘flka'0k)["a
I

‘1:
I:J J 1

(6)

=71”; [03(21‘ WJkHJ‘)(Tk -011”:an 5"
J.

W11: —r]

where

J

a; = 0,;(2 ijyj'xrg—ok') (7)

1.1

Compared to the Widrow-Hoff rule, delta,5[’, can be regarded as the error backpropagated

through the nonlinear activation from output unit k.

Since all neuron j's, j=l J, in hidden layer HJ are connected to the output neuron k

in our model, all the hidden neurons in layer HJ should be responsible for error occurred at



25

the output unit k. The backpropagation algorithm proposes that the error occurred on any

output unit k will be broadcasted to neurons of previous layer which are connected to the unit

k. Therefore the gradient descent update rule for the interconnecting weight W1; between

hidden layers HI and HJ is given by

 

 

 

 

6E ' 5er aE '
41W”. : —'r] 6W = 4] air—f

(8)

1} 1} 6H]

where

aer Gv(21:WHr)Hr
9

6W”. _ [3 1.] t} t t ( )

aE ' K «'90; K J K
= 2 (T1: ‘01:) : 2 (T1: ’Ok)G.B(Z ijHJ)WJk = (E Wflcb") (10)

GH .r 1"] 6H} I“ PI 15.11

Therefore we have

1 K

AW.) : "Hz-r0136: WUHX)(X ij6;)
r-l ["1

(11)

= nHrrGIBIer)Ejranirbi

where

H}. =GB(HJ.)

~ r K r
(12)

E}. : § ijas,

~ K

5120301]. )(2;l Wfibk) (13)

In equation (11), E; denotes the errors backpropagated to neuron j of hidden layer HJ
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through interconnecting synapse weights from all output neurons. Since there are no apparent

desired outputs to calculate error for hidden layer, this backpropagated error from all neurons

of previous layer can be treated as a measure of current error for this hidden layer. Again 5;

represents the error backpropagated through the nonlinear activation fiinction.

3.3 Gaussian Noise Generation

In previous chapter we have 33 normalized azimuthal aspect responses of 100 analog

sample points from 00 to 28.80 with aspect increment 0.90 for each target. The 17 of them

from 0° to 288° with aspect increment 1.80 are selected as training pattern set, while the rest

16 ofthem are kept untrained from 0.90 to 27.90 with the same increment. In this thesis, we

simulate all neural networks by using sofiware package, the Matlab 4.0. To test network

performances, we add noises to test inputs before putting them to network. In order to have

a basis for comparing network performances, we define a Signal-To-Noise (SNR) in dB.

Suppose we have a continuous input pattern s={ s1 s2 5,00}, then we calculate its average

signal power by

l 100 2

s72 = —— s 15100 2,“ m ( )

If the 100 added noises, N=(N, N2 NW), have average noise power

1 100 2

62: — EN) 161002,11 (... ( )

, then we define the SNR and SNR in dB as follows
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”
3

I
N

SNR =

0
' N

E, (17)

SNR (dB) = 10101;10 :

0

And we simulate a noise set with SNR=snr by using Matlab’s random noise generator to

generate a Gaussian noise set, N(O, CG), with 0 mean and CG variance given by

‘
4

|

o . __ (18)
snr

Ten noisy circumstances with SN’R’s of [40, 30, 20, 14, 10, 6, 3, O, -3, -6] dB have been

simulated for each network to test network noise tolerances. The solid line of Figure 3.3

shows the 100 time responses ofB52 used for network process at azimuthal aspect 0°, while

dash-dot line denotes the one with added noises of 10 dB. A noisy response with 0 dB is

shown in Figure 3.4 , while one with -3 dB is shown in Figure 3.5 .After noises are added

to the test signal, the noisy signal is normalized again before proceeding it. Network

performance under each case is simulated 10 times and then average is calculated and used

as resultant performances.

3.4 ML/BP Network Trainings and Performances for Radar Target

Discrimination

In this section, we implement two ML/BP nets, one without hidden layer and the other

with one hidden layer, and train the two networks by using 17 time-domain azimuthal aspect

responses for each target. There are four targets used for network trainings, so total 68 time

domain azimuthal aspect responses are used for network training. Here we use continuous
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Figure 3.3 100 time responses ofB52 used for network process at azimuthal aspect 0°.

Solid line denotes responses without noise, while the dash-dot denotes the one with added

noises of SNR= 10 dB.
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Figure 3.4 100 time responses ofB52 used for network process at azimuthal aspect 0°.
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inputs but bipolar outputs for network process. Four output patterns are used to serve as

desired target codes. They are : [1 -l -l -l] for 852, [-1 l -l -l] for 858, [-l -1 1-1] for F14

and [-1 -l -1 l] for TRl. Then we test the networks’ performances by adding Gaussian noises

of 10 different SNR's to the training patterns, and test networks' generalization capability by

adding noises to 16 untrained azimuthal aspect responses for each target.

3.4.1 ML/BP Without Hidden Layer

There is no hidden layer for this network. Since we use continuous input values and

bipolar output form, the network has 100 inputs in its input layer and four units at the output

layer. The network is trained by using the 68 training pattern set for four targets to learn the

artificial synaptical interconnections between input and output layers. It is equivalent to say

a 100 x 4 matrix is designed to learn network synaptic weights. We randomly initialize

network weights by Gaussian function with norm 1, and then times initial weights by 0.2,

since the activation fiinction will saturate if the input value to the function is large. Figure 3.6

shows two activation fimctions, G1,(x), with different activation parameters, while their first

derivatives (or slopes), dG,,'(x)/dx, are shown in Figure 3.7 , solid line for [i=1 and dash one

for (3:3. For example, if the nonlinear sigmoid fimction has activation parameter [i=2 and

an input value 2, then the activation fiinction will have output GZ(Z)=0.964 and slope

GzI(x)|,,.,.2 = 0.0707. The gradient descent learning rule working on backpropagated error will

become idle with a derivative near 0 even though the error is as large as -2 or 2. Therefore,

the initial weights are required to be small enough to have weighted sums unsaturated to

neurons of the next layer if the learning in this layer is expected in the beginning. We train

training pattems in random order to avoid being trapped in local minima. The momentum has
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Figure 3.7 The first derivatives, d[G,,(x)]/dx, of activation function with different

activation parameters. Solid line denotes the one with activation parameter [3:], while the

dash line denotes the one with parameter 13:3.
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also been used to increase learning efficiency and reduce the chance of being trapped in local

minima.

The learnings between patterns are competitive. For example, if there is a training

pattern, p, has 1 as the k‘I‘ desired output bit, then the learning for this specific training pattern

is expected to have

100

6,,(2 ”ank)_’1 (19)

71-]

At the same time the weights, Wn k, are adjusted by another 67 training patterns to satisfy their

respective desired output. Therefore, if learnings of most training patterns adjust the weights

in the opposite direction to the training pattern p, then the iterative learning epochs may bring

the k‘“ output of training pattern p far away from its desired one, say —l, before those

dominant learning patterns converge to their respective desired outputs within correct

saturation regions (or convergent criterions). To avoid this phenomenon to occurre, we train

network by initially using a larger activation parameter, then using a smaller one after most

training patterns converge.

For example, if the k[11 output neuron initially use an activation parameter 1 and have

input value -2 for the training pattern p, i.e.

Z uannk = -2 (20)

then the network currently has G,(-2)=-0.7616 instead of the desired one, 1, at the kIh output

corresponding to the training pattern p. According to gradient descent rule, the network
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learning would have reduced the error l-(-0.76l6) to a smaller value. But the dominant

learnings coming from the other 67 training patterns may adjust the learning weights for

output unit k, Wn 11» in a direction opposite to the pattern p, and then force the input to output

neuron k for pattern p to deeply enter wrong area, more negative than -2, instead of

approaching toward the positive side. From equation(4) or Figure 3.7 , we can find the first

derivative of activation function with parameter (i=1, G,,'(x), larger than 0.051 for inputs

within interval {-3.6 3.6]. It means dominant learnings won't converge until their respective

inputs to output neurons have a distance larger than 3.6 from origin. The adjusted weights

might have pushed the input of output neuron k for the training pattern p deeply into a more

negative area, less than -4, afier dominant learnings converge. Therefore the successive

learnings for the training pattern p have no chance to pull its wrong output back to the correct

side. Since, according to the gradient descent learning rule, a learning on the weights

connected to output neuron k for the training pattern p has AWn k=un Gp'(x) (TS-0,1") with

G2‘(x)1x.‘1=0.0013<<l , the learning is idle even though its error, (Tkp-Okp)=l-GZ(-4)=l .9993,

is much larger than those convergent ones. Therefore we initially use a parameter 0 around

2 or 3 to start trainings, and then use a smaller one to ensure continuous learnings for those

few nonconvergent training patterns after most training patterns converge.

The trainings consist of two sections. The first training part uses hard limiter to

determine if all training patterns converge to their respective desired outputs. The hard limiter

function is a simple Signum (Sign) function, and it has

1, v>0

Sign (V)={ (21)
-l v<0

9



36

for bipolar process. When this convergent criterion is reached, all training patterns under no

contaminations can be correctly discriminated by the network with a Sign threshold function.

However, it doesn't indicate tolerance to contaminations. For example, it may occur that the

last convergent training pattern, which has a desired value 1 for output neuron k, converges

its input value to 0.001 and stop. This critical convergent weight won't correctly serve for the

pattern with little distortion resulting in weighted sum (or input) to neuron k shifting toward

negative side with an amount larger than 0001. Therefore, the extra training is required to

converge all training patterns far away from the origin and then increase network tolerances.

However, it may only affect the last few convergent training patterns. The first training

section takes 164 epochs to converge, and then another 1012 extra training epochs are

followed.

Figure 3.8 (a) shows the performance of the ML/BP network without hidden layer

and without extra trainings for the 17 training patterns of target B58, while Figure 3.8 (b)

shows the overall network performance for all 68 training patterns. Figure 3.9 (a) presents

the network performance with extra trainings for the 17 training patterns of target B58, while

Figure 3.9 (b) shows the overall network performance for all 68 training patterns. It is

apparent the extra training makes the network have better tolerance for the 17 training

patterns oftarget BS8 Another interesting phenomenon is that the network prefer unknown

to wrong discrimination. The network generalization capability is tested by using the other

64 untrained patterns for four targets. Figure 3.10 (a) shows the network generalization

performance without extra trainings for the 16 untrained patterns of target B58, while Figure

3.10 (b) shows the overall network generalization performance for the 64 trained patterns.
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(a). Network performance for the 17 training patterns of target BS8

(b). Overall performance for all 68 training patterns.
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(a). Network generalization performance for the 16 untrained patterns of target 858.

(b). Overall generalization performance for the 64 untrained patterns.
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(a). Network generalization performance for the 16 untrained patterns of target 858.
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Figure 3.11 (a) presents the network generalization performance with extra trainings for the

16 untrained patterns of target B58, while Figure 3.11 (b) shows the overall network

generalization performance for the 64 trained patterns. Again the network with extra training

has larger generalization tolerance for the 16 untrained patterns of target B58.

3.4.2 ML/BP With One Hidden Layer

We add a hidden layer with 25 neurons to the previous ML/BP net to see if the

network noise tolerance and generalization ability will increase. This network trainings take

much more time and manipulation to learn all the training patterns without error, since the

hidden layer has ambiguous desired outputs. The competitive learnings usually occur between

interconnection weights an's with activation parameters [5] on the hidden layer BJ and ij's

with BK on the output layer OK. Ifthe activation parameter [3J for neurons in the hidden layer

is larger than the one for the output layer, then the learnings for an are greatly reduced and

the WJ- R will dominate the network learning. Referring to Figure 3.6 and Figure 3.7 , the

larger activation parameter will make the hidden layer learning region ( transition region of

activation fimction) narrower and then most inputs to hidden neurons will enter the saturation

area. Therefore the backpropagation learning will be inhibited by a derivative about 0. It

means the outputs at hidden layer have mostly been either 1 or -l when the learning on

weights between the output layer and the adjacent hidden layer only proceeds for few

iterations. The network thus degenerate to one without a hidden layer, and the an works as

a transform function only transferring inputs to the dimension of the hidden layer.

To make hidden layers useful, the activation parameter for hidden neurons should not

be too large with respect to the neuron input scale. The hidden layer play an important role
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which acts as a new representation of inputs. This new representation of inputs will help to

solve linearly nonseparable problems of which the perceptrons, ADALINE and network

without hidden layers can't asymptotically converge to a solution. So the learnings occurred

on an between the input and hidden layers tend to find new representations for all the

training patterns which can make network outputs converge to their respective desired

outputs.

In the previous section, we found that if an input of neuron is beyond the transition

region of the neuron activation function, then the learning for this input is nearly idle even

though the network output has a large error. This phenomenon is not expected, since it

prohibits those training patterns resident in wrong saturation region from learning. Although

gradually releasing the activation fimction’s slope may help to pull back those nonconvergent

ones, it is only effective for the inputs not too far away from the transition area. One may

need to reinitiate network weights and retrain the network, if the nonconvergent training

patterns have been pushed deeply into saturation area of the wrong side after those dominant

training patterns converge.

So we design a new error function with reenforced order of error to overcome the idle

learning caused by a derivative near 0. The ML/BP net defines an error function as the sum

of squared errors shown in equation(S). From the gradient descent rule, equation (6), the

weight learning is proportional to the derivatives of error function and activation function

respectively. Therefore, we can define an error function with high order, say 4, then its first

derivative still has an order of 3 and will overcome the derivative of activation fiJnction in its

saturation area. It means that a reenforced order of error fiinction will increase the width of
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learning region, and then make the idle ones with derivative order of one possible to be pulled

back from saturation area of the wrong side.

Suppose the desired output corresponding to the training pattern p is 1 without losing

generalization, then Figure 3.12 shows normalized derivatives of error functions of three

different reenforced orders with respect to the learning weight ij, -dE(W)/dWJ-k. The neuron

activation parameter is assumed 2 for those three cases. The dash-dot line denotes the one

with a reenforcement order of 6, the solid line denotes the one with order of 4, and the dash

line shows the one with order of 2. Figure 3.13 presents normalized derivatives of error

functions with respect to learning weight WJ-k, -dE(W)/dWJ-k, with three different activation

parameters. The reenforcement order of error function is assumed 4 for those three cases. The

dash-dot line denotes the one with activation parameter [5:3, the solid line denotes the one

with (i=2, and the dash line shows the one with (i=1. Both figures are normalized by the

respective reenforcement orders of error fimctions and network input un.

Two interesting characteristics observed by comparing Figure 3.12 and Figure 3.13

are the order reenforcement of error function increases the width of learning area and shifis

it toward deeper saturation area, while the enlargement of activation parameter shrinks the

learning area and shifts it toward the transition region.

The network trainings take 624 epochs to converge with a hard limiter, and then

another 414 extra training epochs are followed. Without the order reenforcement of error

fiinction, the training can't escape from deep saturation area and is reinitiated a couple of

times. By monitoring network trainings, being trapped or idle phenomena usually occurs with

inputs to neuron much far away from the transition region. For a training pattern with desired
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Figure 3.14 Performance ofML/BP network with one hidden layer vs. SNR(dB).

(a). Network performance for the 17 training patterns of target B58.

(b). Overall performance for all 68 training patterns.
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Figure 3.15 The generalization performance of ML/BP network with one hidden layer vs.

SNR(dB).

(a). Network generalization performance for the 16 untrained patterns of target B58.

(b). Overall generalization performance for the 64 untrained patterns.
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output value of 1, an finally nonconvergent input value of -S to an output neuron with

activation parameter (i=2, i.e. Gz(-5)=-0.9999 and GZ’(x)|x._5= 182*10“, is a common idle

case. In our simulations, the reenforced order of error function did help pulling those severely

wrong ones back.

Figure 3.14 (a) shows the performance of the ML/BP network with one hidden layer

for the 17 training patterns of target BS8, while Figure 3.14 (b) presents the overall

performance for all 68 training patterns. Figure 3.15 (a) shows the generalization

performance ofML/BP network with one hidden layer for the 16 untrained patterns of target

B58, while Figure 3.15 (b) presents the overall generalization performance for the 64

untrained patterns of four targets. From simulation results, the ML/BP with one hidden layer

doesn't perform better than the one without hidden layer. The ambiguous desired outputs of

the hidden layer degrade the capability of hidden layers, while being linearly separable makes

the ML/BP with hidden layers have no apparent advantage over the one without hidden

layers.

3.5 Generalized Inverse Network

The radar target discrimination may be represented as a set of associative equations,

and then a matrix equation. The number of response samples for each aspect pattern is the

variable number for the associative equation set and the total available aspect patterns is the

number of associative equations. However, there are two characteristics which may hinder

the conventional matrix operation. One is that the aspect response doesn't apparently change

along aspect increment in some specific aspect range. The other is that the responses of the

same aspect belonging to different targets may be quite close. This will make direct matrix
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approach difficult to deal with singularity, especially for quantization data. An exact numerical

solution, which has no generalization capability, is not what we expect, since it won't work

under contamination. Neural network learning is good in releasing the singularity stress, and

offers tolerance or/and generalization. Then it suggests us to build a hybrid network which

is initially constructed by the associative equation set and then learns to converge to a

solution.

Assume we have p aspect patterns to be stored in memory, X = [X1 X2 X"] where

Xi is an m-dimension column vector, i.e. Xi = [X1i X2i Xm']T. Suppose Y = [Y1 Y2 YP]

are the associative code patterns corresponding to X where Yi is an n-dimension column

vector, i.e. Yi = [Y1i Y2i Yn‘]T. Then we can write an equation representing the above

association as

WX = Y (22)

where W is an n by m matrix. For our application, Yi is the target associated to the stored

aspect pattern Xi . Typically, X is not a square matrix and m > P is assumed. Thus a direct

Generalized Inverse matrix computation can be used to solve the interconnection weight

matrix W [20][3l][32] as

W = Y(XTX)“XT = YX‘ (23)

where X” is the generalized (or pseudo) inverse of X . The generalized inverse X+ exists only

if m>P, but the direct computation ofthe generalized inverse becomes difficult or impractical

if the dimension ofm or P is too large. In addition, problems may occur when two adjacent

aspect angle target responses are very close. This is not unusual for target aspect responses.
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After we quantize them into binomial code form used in our network process, they may have

same quantization sequence codes causing the generalized inverse computation to become

instable or singular. Therefore, instead of direct computation of the generalized inverse, we

can use iterative trainings based on the gradient descent algorithm to gradually approach and

then approximate a solution of the interconnection matrix W. We iteratively train the network

weight W and expect the network output to each trained pattern Xi, WX‘, will retrieve its

associative pattern Y‘.

First, we can construct an error (or cost) function J(W) for the network training as

nP

J(W) . illY - WXllz = Z 2 1Y,’ — (WX'),12 (24)
1-1 j-lN

]
!
—

where I] ll denotes the Euclidian L2 norm. To minimize the error function J(W), the gradient

descent learning rule [l8][3 l ][32] can be used

0J(W[kl)
W[k+1] . W[k] _ n

Wlk]

. Wlkl + ntY—Wikmx’ (25)

where Wlk] is network weight matrix at learning epoch k, and n is the "learning rate" with

0<n< 1. Since

P

ntY~W1k1X>XT= 2: ntY'-W1k1X'>X"' (26)
i-l

, above training algorithm is a batch mode learning by which each learning pattern adjusts the

interconnection weights W without considering the adjustments done by the other learning

patterns at the same learning epoch. This batch mode learning may cause over adjustments
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(or learnings) problems, since the gradient descent algorithm uses the same network weight

to calculate respective errors for all training patterns and then adjust the network weight at

the same time. But the basis ofgradient descent rule can effectively reduce the error only for

the present training pattern with current weight and doesn't promise that the current weight

adjustment will also benefit the other training patterns.

The learning algorithm can be modified to asynchronously update for each training

pattern, Xi , and its associative pattern components, Yj‘. Therefore, the current training

pattern adjusts the weight W updated by the previous learning pattern. The asynchronous

update rule gives

W}.[k+l] = Wj.[k] + n(YJ.®-Wj.[k]X(’))X(°T (27)

where lek] denotes the ju‘ row of weight matrix W at update iteration k and Yf" is the j"‘

component ofthe desired pattern Yi associated with X‘. To train each pattern and component

fairly, and avoid being trapped in a local minimum, the training pattern i is randomly selected.

In our application to radar target discrimination, the output is expected to clearly

present the discriminated target type. Therefore, continuous value form is not appropriate for

output representation. The binomial output form also increase the noise tolerance, therefore

a nonlinear threshold (activation) fiinction is introduced to the network output stage. Then

we have

GB( W) = Y (28)

and

06)}, = g(hcpouu-Gm) (29)
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from equation (4). The asynchronous update rule for pattern Xi and its associative pattern

component Yji is then given by

Wj.[k+1] . Wj[k] . nG(v)’B] Y1‘(i>_Wj[k] X (0)X017 (30)mlklx(1)(

where Wj[k]X“’ is the input to the output neuron j and (Yj‘l’ - Wj[k]X“’ ) is the error occurred

on the output of neuron j for the current training pattern X“).

The equation (28) has P associative equations and each has m variables. The weight

matrix W maps P m-dimension vectors to P n-dimension vectors. Therefore, for m > P, there

are multiple exact solutions. If weight matrix W is randomly initialized, then the W may

converge to some specific solution that has high noise tolerance for some trained patterns, but

low noise tolerance for others. To avoid the solutions being biased by some learning patterns

and also to speed up trainings, we may initiate the weight matrix by W = YXT. That is, we

use the correlation recording matrix or Hopfield memory with nonzero diagonals. And this

initial way has great possibility to approximate to the generalized inverse solution YX+ if X+

exists. Therefore, the GI network will become a multi-layer feedforward with error

backpropagation network without a hidden layer, if the network weight W is not initialized

by the correlation recording matrix YXT . So the GI network can be referred as a hybrid

network composed of correlation associative memory and learning based backpropagation

network. And then we may also say the GI network is a single layer net with initial weight

matrix W = YXT.

3.5.1 Generalized Inverse Network Performance Using Bipolar Data

Since the GI network will be cascaded to a Recurrent Correlation Associative



53

Memory(RCAM) to serve as a target code decoder and a refiner of spurious stable states,

bipolar data are adopted for this network in both input and output. The advantages from using

binomial form will be discussed in the next chapter.

Similar to ML/BP nets, the GI network has 17 training azimuthal aspect patterns for

each target, while the other 16 aspect patterns of every target are left untrained to test

network generalization after training. Thus, we have total of 68 training aspect patterns and

64 untrained patterns for four targets. From the previous chapter, we know that each time

domain aspect pattern contains 100 analog samples. First, we quantize each analog sample

by 7 quantization levels for all patterns, then use 3 bits to encode the 7 quantization levels.

The 3-bit code assignment for 7 quantization levels is shown below in Table 3.1.

 

BitlBit2 -l -l -l l l l 1 —l

Bit3

'1 1 6 5 4

 

 

      
 

Table 3.1 Code assignment for 7 quantization levels coded by three bipolar bits.

The code resulted from 7 levels coded by 3 bits is not exactly a linear code, with

which two nearer levels have two similar codes. But if we properly assign the code-to-level
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mapping as shown in Table 3.1, the codes have its linear characteristic for the adjacent levels.

It means that if the noise contamination range is smaller than 11.5 level intervals, then the

code linearity will still statistically functions. Therefore the network discrimination won’t be

affected by the coding scheme. If the noise contamination is severe, then the linearity may not

work for every response level. Under the severe noise condition, some wrong or

unrecognized discriminations probably result from this nonlinear coding scheme.

For example, if the true response is in level 3 (represented by 1 -1 l), and the

contaminated range is in i1.5 level intervals, then the contaminated signal will be in either

level 2 (represented by -l -l l) or level 4 (represented by l -l -l), and these two codes (-1

-1 1 and l -l -1) are still the most similar codes to the true one (1 -1 1) than the others. If the

number ofquantization levels is fixed, then the input resolution will be the same for different

coding schemes. The more digits we use, the more linearity the code mapping has, but more

process space is required. Therefore it becomes a trade-off problem, either save process space

with less code bits, then process quickly but poorly under severe noises; or expend more

memory with more code bits, then process slowly but satisfactorily under severe

contamination. This problem can be solved by processing the analog (numerical) valued

responses instead ofbinomial codes for digital computer simulation. But the problem will still

remains the same for hardware realization.

The training for GI network only takes several epochs to converge to desired target

codes with hard limiter and then 120 extra training epochs are followed. Figure 3.16 (a)

shows the GI network performance for the 17 training patterns of target B58, while Figure

3.16 (b) presents the network overall performance for all 68 training patterns. Figure 3.17
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(a) shows the G1 network generalization performance for the 16 untrained patterns of target

B58, while Figure 3.17 (b) presents the network overall generalization performance for the

64 untrained patterns.

As expected, the GI network shares an interesting phenomenon with the analog

process ML/BP networks. That is the GI network also prefers unknown to wrong

discriminations. This interesting characteristic allows us to put more confidence in the target

type discriminated by GI network. Since the wrong discrimination percentage is quite low,

it is reasonable to think that the GI network cascading to an Recurrent Correlation

Associative Memory (RCAM) will only increase the correct discrimination rate and do no

harm to those correctly associated outputs presented by the RCAM. Therefore the GI

network can serve as a refiner of spurious stable states resulted from the cascaded RCAM.

This issue will be appreciated in the following chapters. The GI has better performances than

the analog ML/BP nets under fair noise conditions, but performs worse under severe

contamination. The nonlinear interruptions described earlier may be used to explain that

deficiency. Since the ML/BP nets use continuous values for network inputs, the linearity is

always kept even under serious contamination.
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Figure 3.16 Generalized Inverse (GI) network performance vs. SNR(dB).

(a). Network performance for the 17 training patterns of target B58.

(b). Overall performance for all 68 training patterns.
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CHAPTER 4

Recurrent Correlation Associative Memories

4.1 Introduction

In this chapter we will investigate some Recurrent Correlation Associative Memories

(RCAM) [18][3l]~[33][38]~[4l]. These networks are designed to retrieve the stored

information from incomplete or degraded data, and they are "recursive" systems because the

output units are fed back to the inputs at each update. The recurrent correlation associative

memory is a correlation-based stored data reconstruction memory. The RCAM retrieves

stored data from data themselves unlike the traditional address-based memories which access

stored data by their corresponding addresses. Therefore, the RCAM not only saves the

resources used to calculate the stored data address by address-based memories, but also

directly process data in parallel. They can be used as the efficient content-addressable

memories [18] and then pattern discriminator. In this application, all stored patterns are

explored in parallel because the data storage and retrieval are based on the pattern itself and

not on its address.

The associative memories [3 l ]~[33] can be classified in various ways depending on

their nature ofthe stored associations (autoassociative vs. heteroassociative) and the update

mode (synchronous vs. asynchronous). The autoassociative memory is a discrete memory in

which the associative pattern ofeach stored pattern is the pattern itself. Therefore, the output

has the same dimension as the input. It employs a single layer of perceptrons and has hard-

limiter activations at the output stage. The perceptrons are fiilly interconnected and the

58
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outputs are directly fed back to the inputs with one iteration delay. And the update can

operate in a synchronous (parallel) or asynchronous (random) mode. A heteroassociative

memory can be regarded as an extension of the autoassociative memory. There are two

pattern sets stored in a heteroassociative memory and each pattern in one set has its

associative partner, no more itself, in the other set. Therefore, the heteroassociative memory

may have its output dimension different than that of its input. They also can be thought of two

separate single-layer feedforward networks with each one's output connected to the other

onesinput

4.2 Hopfield Network and Bidirectional Associative Memory (BAM)

The learning mechanisms occurred in correlation-based associative memories can be

widely explained by the Hebb's rule [34]. The Hebb's rule suggests when a neuron i repeatedly

participates in activating another neuron j, then the efficiency of neuron i in activating neuron

j is increased and the efficiency should be decreased in the opposite case. Or, in the view of

synaptic connection weight, it can be quantitatively expressed by that the synaptic weight w”.

should be enhanced if neurons i and j much ofien have the same activity state, and should be

inhibited if neurons i and j much often have the opposite activity state. Therefore, the Hebb's

rule proposed the meaning of correlationship and synaptic strength between two connected

neurons.

Suppose neurons have binomial states, 0 or I for binary form and -l or I for bipolar

form. For a given input, if the neuron i has state Si and the neuron j has state 5,, then the

Hebb's rule indicates that the synaptic weight should be adjusted to respond to the training

input by AWij = Awji = r Si SJ. where r is a positive learning rate. Assuming that we want p
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associative pattern pairs {(x“,y")| q=l, 2, P} stored in memory, where xq is an m-

dimension column vector, and yq is an n-dimension column vector associated to Xq , so that

X=[x‘ x2 xp] and Y=[yl y2 y"]. The associative memory is an autoassociative memory if

xq—j/q for all P patterns, otherwise it is a heteroassociative memory.

The Hopfield [35][36] network is an autoassociative memory, so the recorded

associative patterns have x“=yq for all P patterns. Suppose the network has binary data form

and wij denotes the interconnection weight between input neuron i and output neuron j, then

a Hopfield memory can be constructed by

P

<2f—1)(2 4-1)g x x) I] (1)

W. =

U

0 ,i :1

Except w, the synaptic weight between neurons i and j is increased if neurons i and j have the

same binary state, and is decreased if two neurons have opposite active state. Therefore, the

Hopfield memory recording algorithm is in accordance with the Hebbian rule. Since it is

autoassociative, the interconnection weight has wij=wfi. In binary form, the relationship

between one state, b, and its complementary state, b', can be written by b'=( l -b) or b=(l-b').

Then we have [2(l-x,)-l][2(l-xj)-l]=(2x,--l )(2xj-1), so the above Hopfield recording scheme

also stores the complementary partners of the desired stored patterns. For binary form, given

an input state s[k], the Hopfield network will have the next state s[k+l], by

f

I ,2”: Wu st[k]>0

s}.[k+l] = i M (2)

0 ,2 Wu. s'.[k] g 0

1-1 k
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In equation (1), the auto-feedback synaptic weight for each neuron is set to O and then

the weight matrix will have 0 diagonals. This setting will prevent the network from blindly

amplifying the j state ofan arbitrary input by the number of stored patterns, when the network

intends to determine output activity for neuron j. Without the diagonal annulling, a Hopfield

network with a large number of stored patterns will become insensitive to variable inputs and

is inclined to leave an arbitrary input unchanged. Setting the diagonals to O can be physically

expressed as that the neuron itself is not permitted to get involved in determining its next

activity state. The storage capacity of the Hopfield memory has been empirically found to

scale about 0.15n [35] and theiretically to scale less than n/(ZIogn) [30][37]. The latter

suggests that for large n, the ratio of stored patterns to pattern dimension P/n required for

correct recall appoaches zero, thus it reflects the poor capacity for the Hopfield memory.

Since the activation threshold is nonlinear, the Hopfield net is a nonlinear dynamic network.

A nonlinear system is generally difficult to analyze its characteristics. The Russian

mathematician Liapunov devised a stability test based on energylike functions. For a network

W and a state s, the energy function is defined as

E(s) = -%STWS (3)

or rewritten as

(4)
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Now we would like to know how the energy change from state to state by synchronous

update, that is [20]

 

6E(S)

—— = - Ws
as (5)

or by asynchronous update

AE(s) "‘
2 - W ..S .

as}. T; U ' (6)

From equation (6), the network has 2 was, >0 and AS=I>O if si changes from O to

1-1

1 , and it has 2 was, 50 and AS:- 1 <0 if si changes from 1 to 0. Therefore, the energy change

i-l

aE(s) can't be positive whenever a neuron changes its state. Since the weight matrix W is

deterministic for a finite number of stored patterns and stored patterns X is bounded in

dimension of m and binary state [0,1], the energy E is bounded. Therefore, the network W

should converge a given state to a local minimum of E. But there may be more than one local

minimum or stable state with the same amount in energy, i.e. energy may be kept the same

when a state changes. Then the network may have oscillation cycle among the same energy

states. Let’s consider a simple example here. Suppose we need the network to store a binary

pattern x=(x1 x2 x3 x4)T=(l O l O)T, then, according the equation (1), the network weight

matrix has wij=(2x,-l)(2xj-l) for irej and wif—‘O for i=j. And we know the network

interconnection weights are symmetrical, so only 6 weights are required to be calculated.
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They are w13=(2x1-l)(2x2-l)=(2-l)(O-l)=-l=w21, w13=l=w31, wH=-l=w41, w23=-1=w32,

w24=l=w42 and W34=-I=W43.

Now the Hopfield network has

’0-11—1‘

W —10—1 1 7

”— 1—10—1 U

_—1 1-1 0‘  

Let's see if the stored state is stable. Assume the next state is s, then we have s=g(Wx) where

g() is the binary activation fimction and the Wx is given by

      

P0-11-11'1“ ’1‘

1041 o —2

Wx= = (8)

1—1o-1 1 1

31140.13. 52‘

Then the network has next state s=g[(1 -2 l -2)T]=(l O 1 O)T=x, thus the stored state x is a

stable state. Let's examine the state changing trace and its corresponding energy change by

considering two initial states s'=(l O O 1)T and 322(0 0 O 1)T. For the initial state 5‘, the

network has the next state s'(l)=g(Ws')=g[(-l O O -l )T]=(O O O O)T, and then the next state

s'(2)=g[Wsl(l)]=g[(O O O O)T]=(O O O O)T=s‘(l). The final stable state is (O O O O)T which is

not a desired stored state. From equation (3), the energy for the only stored state x=(l O l

O) is E(x)=-O.5xTWx=-1. The initial state S1 has energy E(s‘)=-O.5(s‘)TWs‘=l, and then the

stable state s‘(1)=s‘(2) has energy E[s'(1)]=0. In this example the initial state truely converges

to a lower energy stable state. Now for the initial state 52, the network has the next state
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53(l)=g(Wsz)=g[(-l 1 -l O)T]=(O l O 0)], and then the next state 52(2)=g[Wsz(1)]=g[(-l O -1

l)T]=(O O O 1)T=sz. Therefore, an oscillation cycle, 52 ~ 32(1) ~ 32 ~ 52(1) occurs. The state

s2 has energy E(sz)=0 and the state 52(1) also has the same energy E[sz(1)]=0, therefore the

states oscillate between these two local minima, which share the same energy.

Another typical associative network we use to compare with Recurrent Correlation

Accumulation Adaptive Memories (RCAAM), discussed in next chapter, is Bidirectional

Associative Memory (BAM) [3 8][39]. BAM is a heteroassociative memory, i.e. xqaeyq, and

the retrieval operations are sequentially proceeded in alternative directions until two

associative stable states are reached at two sides of the network. Suppose the bipolar data

form is used, then , with the above assumed associative stored pattern pairs {(x“,yq)| q=l , 2,

P} and dimensions (m for column vector xq and n for column vector y“), a BAM can be

constructed as follows :

w. = Z xiqyjq ,i=l,...,m and j=l,...,n (9)

OT

W:quy9T=XYT (10)

where (yq)T is the transpose of y“, X=[xl x2 xp] and Y=[yl y2 yp]. Therefore, the BAM

has a m by n weight matrix W and then it can have either an m-dimension input or an n-

dimension input. Again the BAM weight implementation algorithm is a Hebbian learning rule

based correlation matrix. Given an input state u(0) with dimension of m, the network has an
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n-dimension next state v(l)=g[WTu(O)], then an m-dimension next state u(2)=g[Wv(1)], then

an n-dimension state v(3)=g[WTu(2)], then v(3)=u(4)=v(5) until

u(k)=v(k+l)=>u(k+2)=u(k). Then the u(k) and v(k+l) are the retrieved associative patterns

by the BAM corresponding to the given input u(0). Similarly, the input of the BAM can be

an n-dimension vector v(0) and the successive updates are the same as above.

The similar energy function for the BAM system of associative state (x,y) is defined

E(x,y) = -xTWy (11)

Then, we have the energy change with respect to state change in asynchronous update,

ax, } 1

m
(12)

AE 7'

—— -Z: x Wj

ij x-l

or in synchronous update,

AE(Ax,y) = ..ny : -2 Axiwi y

"‘ (13)

AE(x,Ay) : —x TWay : Z x TW}. 5y}.

j-l

where Wi is the i th row ofW and Wj is the j th column of W. Thus, the energy decreases

whenever a state changes either in asynchronous or synchronous update mode. Since, for a

finite number of stored states, the BAM weight matrix W and bipolar state {-1 l} are

bounded, the energy is bounded. From equations (12) and (13), for an arbitrary given initial

state (x,y), the BAM will converge the initial state to a stable state (x,~,y,~) and thus the BAM
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has no oscillation phenomenon, which occurred in Hopfield net.

Let's roughly estimate the BAM's storage capacity. Suppose the input is one of stored

patterns with m-dimension x’, then the next n-dimension output before bipolar activation

threshold is

T

P

er=(erxr)yr+Z:
(xfo9)yq

,. (14)

: my'+ Z (x' x")yq
4.1.1)»

Since the y’ is the n-dimension stored pattern associated to the stored pattern x', the BAM is

expected to retrieve pattern y’ if presented the pattern x’. From the above equation, the

associative pattern y’ is amplified by the dimension of stored pattern set X and the

crosscorrelation gains between xr and xq with rtq can be regarded as the noise amplification

gains. If the numbers of stored patterns, P, is greater than the dimension of X, m, then the

noise terms may possibly prevail over the expected associative pattern. Similarly, the

unreliable retrieval may possibly occur if the presented input is yr with n-dimension and P is

greater than n. Thus the BAM storage capacity should be limited by P< min(m, n).

4.2.] Simulations and Results

In Hopfield network and BAM simulations, we use the same four targets as used in

the previous chapter, and each target has 17 aspect patterns stored in network and another

16 aspect patterns unstored to test network generalization. The scheme of 3-bit encoding 7

quantization levels is again used here, therefore, each stored pattern in Hopfield net and one

stored pattern set ofBAM has 300 bits. Here the network presents two performances, pattern
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recognition and target discrimination, for stored pattern tests, and only target discrimination

for unstored pattern test, i.e. generalization performance. The pattern recognition

performance shows how well the network can recognize the contaminated stored patterns,

while the target discrimination performance presents how well the network can classify a

contaminated pattern into its own target. All networks are simulated 10 times and each

stored/unstored pattern is tested under 10 different SNR's, [40, 30, 20, 14, 10, 6, 3, 0, -3, -6]

dB, in each simulation, and then the average is used to present the network performance.

The autoassociative Hopfield net always brings inputs to some undefined states and

leaves nothing discriminated. This network couldn't do anything for our radar target

discrimination application. From the previous storage capacity formula for the Hopfield net

n/(ZIogn), the Hopfield net can store less than 26 300-bit patterns due to 300/(210g300)=26.3.

Compared to the simulation results, we can realize that the radar target scattered responses

are far away from random signals, therefore the storage capacity derived from random signals

is almost useless for our application. Since the BAM is a heteroassociative memory, the

network should have another pattern set, which will act as network output codes, stored to

associate with the lab-measured aspect response set. Therefore, we needs to design another

pattern code set to associate with the one we used. The BAM also has poor performances

when another stored pattern set uses the orthogonal codes, i.e. the bit i of pattern i is set to

l and the other bits are set to -l's. Since the BAM requires bidirectional retrieval, another

code set should have distinct codes, i.e. any two codes can not be identical. It means two

associative stored pattern sets should have one-to-one mapping and won't allow multiple-to-

one mapping. This is a disadvantage, since the one-to-one mapping prohibits the BAM from
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clustering or target grouping application. However, our purpose is at least that the network

can recognize its own target if given an aspect pattern. With above disadvantage constraint,

we intend to partition an output code into two sections, one for target identification purpose

and the other for BAM bidirectional operation. We design a set of 7-bit heteroassociative

codes corresponding to the 68 300-bit aspect pattern codes. The first two bits of the 7-bit

codes are designed as a target group code for four different targets, i.e. [-l -l] for B52, [-1

l] for B58, [1 -l] for F14 and [l l] for TRl, and then the next five bits are encoded to

represent 17 azimuthal responses of each target.

Then we alter the BAM process strategy by using target group code in its

heteroassociative partners, and we only discriminate the target group code portion of the final

stable state and ignore the rest of output code. This effort has greatly improved its correct

recognition rate and also reduced the wrong rates in simulations. Figure 4.1 (a) shows the

BAM pattern recognition performance for 68 contaminated stored patterns, while Figure 4.1

(b) presents the BAM target discrimination performance. The pattern recognition uses all 7

bits to discriminate stored patterns, and it has worse performance. The target discrimination

only uses the target group codes, first two bits, to discriminate a given pattern, so the BAM

will correctly discriminate an input pattern or wrongly discriminate and leaves none unknown.

Compared to correct pattern recognition rate, the correct rate of target discrimination raises

about 60% at 40 dB SNR and 55% at 0 dB SNR. Figure 4.2 shows the BAM generalization

performance by testing 64 contaminated unstored patterns. The correct target discrimination

rate ofBAM generalization performance is 83% at 40 dB.
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Figure 4.1 BAM network performances vs. SNR(dB) for the 68 stored patterns.

(a). Pattern recognition performance.

(b). Target discrimination performance by using target group code.
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4.3 High order Correlation Associative Memory (HCAM) and Exponential

Correlation Associative Memory (ECAM)

In the last section, we showed that the Hopfield net couldn't do anything for our

application, while the BAM needed a well redesigned heteroassociative code set.

Furthermore, the one-to-one mapping makes the coding assignment less flexible and also

interferes the bidirectional retrieval consistence, especially for two distinct stored patterns

with two close associative codes. Thus it will degrade the network performance and makes

the BAM highly sensitive to coding. Both Hopfield net and BAM mechanisms give low

discrimination resolution, therefore the stored states usually confuse together at each updated

state.

The Recurrent Correlation Associative Memories (RCAM) are designed to recall the

associative pattern yj by using recurrent correlation operations, if given an input u which is

sufficiently close to x‘. This type of neural network has application in our radar target

discrimination. In this section, we will discuss High order Correlation Associative Memory

(HCAM) and Exponential Correlation Associative Memory (ECAM) with autoassociative

stored patterns, i.e. x‘=yi for all P stored patterns. Since the correlation oftwo normalized or

bipolar signals is a measure of how close two signals are, the RCAM can be applied to

discriminate patterns based on this property.

If xj has binomial (binary or bipolar) components and s is an input or the current state

with dimension m, then we can write the evolutionary behavior [40][4l] for an RCAM by

P

s'=G{(2 f,(s 5cm) x06} (15)
i-I
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where s' is the next network state, f'i is a weighting fiinction and G is a threshold (or

activation) function. In bipolar processing, the Signum (Sign) firnction,

1, v>0

Sign (V) ={ (16)
-l, v<0

is used for the threshold function G. We can see that the Hopfield network is a special case

of the RCAM with weighting function f(c)=c and degenerated diagonals. An RCAM with the

above evolution equation is asymptotically stable [9] in both synchronous and asynchronous

update modes if its weighting function is continous and monotone nondecreasing. The

network first computes the correlations between the given state s and each stored pattern,

then processes each correlation by weighting function fi to obtain the weighted correlation

gain, and then multiplies each stored pattern by its weighted correlation gain. Finally, the

network adds every amplified pattern together, and then manipulates the sum by the Sign

threshold function to have the network output (next state). Since the correlation between two

binomial vectors can be regarded as one similarity measurement, we can classify a given input

into its stored prototype by appropriately using correlation gains. Generally, the larger a

correlation value two vectors have, the closer they are. So the weighting function should be

strictly increasing to assure the viability of the correlation-based retrieval algorithm.

For a Hopfield net with nonzero diagonals, the network has next state 5'

s’=Sign {2}): (5 Tx (1)) arm} (17)

M

The network only considers a l-dimension correlationship between the given state and the
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stored vector x'. Since the next state is generated by the sum of each amplified pattern, similar

to the above BAM analysis, the weighted sum can be separated into two terms, one is the

associative pattern amplified by the its correlation gain with the input 3 and the sum of the

others weighted patterns is a noisy term. Only the weighted associative pattern prevail over

the noisy term during recurrent nonlinear updates, then the correct recall can be attained.

Therefore, with a fair number of stored patterns, a pattern with a slightly larger correlation

gain may be distorted by the sum ofthe others, and then it won't dominate the next state after

the addition of all amplified patterns. One important reason is that the discrimination

resolution for one order correlation is not sufficiently high enough to survive a stored pattern

input through the sum ofweighted patterns . If we compare the relationship between xj'xki and

sjsk, where j=l,...,m and k=1,...,m, then we can use more information to emphasize the

correlation between these two vectors x' and s before adding them to provide the next state.

The one-dimension model (Hopfield net) compares two vector strings bit by bit to compute

the number of identical bits, while the two-dimensional model constructs the individual

autocorrelation plane for each stored pattern and the given input, i.e. x'(x')T and s(s)T, and

then compares the input autocorrelation 2-d plane to each individual stored pattern 2-d plane

to find the closest autocorrelation plane structure among all stored patterns. The

autocorrelation plane not only offers the similarity information about linear position but also

investigates the similarity of crosscorrelationships among bit positions between the given state

and all stored states. So it's clear that the 2-d model uses m times the information of the l-d

model to discriminate patterns.

The network by taking advantage of high dimensional autocorrelation hyperplane is
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called the High Order Correlation Associative Memory (HCAM). A HCAM [40][41] has the

weighting function

flc) = (c + T,,)' (18)

where r >1. T08 is some offset value designed to avoid amplifying negative correlation gains

for even r. If (c+T0S) is positive or r is a positive odd integer, the weighting function f is

strictly increasing, as required for correct retrieves.

Another RCAM used for our target discrimination simulations is the Exponential

Correlation Associative Memory (ECAM) which has the weighting function

flC)=b ‘ (19)

where b > 1. Again, this weighting fiinction f is strictly increasing. RCAM's with a continuous

and strictly increasing weighting function f are asymptotically stable in both synchronous and

asynchronous update. This means that network recurrent operations will drive a given input

state to some stable state, therefore ensuring no oscillation cycle during the recurrent

convergent iterations. Thus the RCAM will converge to either one of the stored patterns or

some spurious (unknown) state when triggered at the input by a given pattern.

A HCAM needs a predetermined fixed order r to proceed, since the sequential

convergence will continue until the stable state is reached as soon as an input is presented to

the network. A network with low order r can't retrieve correct associative patterns, while a

high order r wastes computation space. When the ECAM exponentially amplifies the

correlation gains, producing excellent discrimination resolution, it also exponentially expands

the network computation space. It is not possible to physically realize an ECAM for
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processing patterns with large dimension. For example, in our simulations each bipolar stored

pattern has 300 bits, so the maximum weighted correlation gain is 2300 for the ECAM with the

weighting firnction f(c)=2c, i.e. b=2. Therefore, a huge processing space is required to fulfill

the hardware realization in chip design scale. When a given input is closer to one of the stored

patterns, the ECAM requires a much larger scale space for processing, and the larger scale

computation needs a longer time for processing. This phenomenon somehow seems to be

illogical and unreasonable.

The storage capacity ofECAM is not a deterministic scale or a definite meaning for

our application. Since radar target response signals are far away from random signals, the

estimated storage capacity based on random data and a lot of impractical probability

assumptions couldn't be a valuable operation guide to us. But for reference purpose we still

give it here. Consider an N-bit input pattern with r (rs pN and 0 s p < 1/2) bits away from

the nearest stored pattern. Then the definition of storage capacity is, as the pattern's

dimension (or number ofbits) N == 00, defined as what is the greatest rate of growth ofM(N)

so that after one iteration the bit-error probability (the probability that a bit in the next state

is different from the corresponding bit in the nearest stored pattern) is less than (4rr:T)'l 2e'T,

where T is a fixed and large number.

Suppose an ECAM is loaded with [41]

4 4 N(I-M(p’)) + . I + 2 -1

M(N) : [0/(7312 1 If P 2 (1 a) (20)

1a‘/(4n]2”1(1+a-2)a2"’r” +1 if p'< (1+a2)‘

N-bit memory patterns, where p' = p + (UN), 0 s p < 1/2, and M(p') = -x logzx - (1401082
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(l-x) is the binary information entropy of p'. If the current state pattern x is pN bits away

from the nearest memory pattern, then as N = co, the bit-error probability (P9) is less than

(4rtT)""P3e‘T where T is a fixed and large number. The proofof the above capacity is trivial and

is omitted here. According to the above formula, the ECAM has a storage capacity that scales

exponentially with the number of bits, N, in memory patterns, however the dynamic range

required of exponentiation hardware implementation also grows exponentially with N.

Therefore, it is almost impossible to realize in hardware for processing patterns with large

dimensions.

4.3.1 Simulations and Results

First of all, we simulate the HCAM with an order of 3 and find that quite a few stored

patterns can not be discriminated. Then the HCAM with an order to 5 is simulated and the

performance is greatly improved. Figure 4.3 (a) shows the HCAM (order 3) pattern

recognition performance for 68 contaminated stored patterns, while Figure 4.3 (b) presents

the HCAM (order 3) target discrimination performance. The target discrimination rate is the

same as the pattern recognition rate under low contaminations, while the target discrimination

is 9.1% greater than the pattern recognition rate at 0 dB SNR. Compared to Hopfield net, the

HCAM's performances definitely prevail although both networks are recurrent autoassociative

nets. Compared to the BAM's pattern recognition performance, the HCAM of order 3 is

much better than the BAM.

Since the HCAM is an autoassociative net and the stored aspect pattern codes are

encoded from the real lab-measured responses, the stored aspect patterns did not have a

designed distinct target code for every 17 aspect patterns of each target. On the other hand,
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(a). Pattern recognition performance.

(b). Target discrimination performance.
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we gave the BAM a postdesigned code set, target code + dummy code, with prior known

information about the aspect-target relationship to associate with the real world measured

aspect patterns. Therefore, comparison between the BAM's target discrimination performance

and the HCAM's is not appropriate. The target discrimination comparison between the BAM

with target group code and the HCAM-GI cascade network, discussed later, will be

meaningfiJl. Figure 4.4 presents the HCAM (order 3) generalization performance for 64

contaminated unstored patterns and the result shows that the unknowns increase. The HCAM

performances for both stored and unstored patterns show that the HCAM prefer to leave an

contaminated pattern unrecognized rather than to classify it into a wrong pattern or target.

Figure 4.5 (a) shows the pattern recognition performance of the HCAM with an order of 5

for 68 contaminated stored patterns, while Figure 4.5 (b) presents the target discrimination

performance. Compared to the one with an order of 3, HCAM with an order of 5 has greatly

reduced its unrecognized rates and then increases the correct discrimination rates. Under

serious contaminations, some distorted aspect patterns converge to a wrong aspect pattern

of its own target, and then this only decreases the correct pattern recognition performance

but won't degrade the target discrimination. Figure 4.6 shows the generalization performance

ofthe HCAM with an order of 5 for 64 contaminated unstored patterns. Compared to the one

of order 3, the HCAM of order 5 has also greatly increased the generalization performance.

Figure 4.7 (a) shows the ECAM pattern recognition performance for 68 contaminated

stored patterns, while Figure 4.7 (b) presents the ECAM target discrimination performance.

The ECAM performances for both pattern and target discriminations are better than the ones

of the HCAM with an order of 5. It is apparent that the ECAM almost leaves no unknown
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behind even under severe distortions. Since the ECAM exponentially amplifies correlation

gains and then multiplies each stored patterns by its individual gain, the resolution space is

extremely huge . Thus the ECAM will still blindly classify a nonsensically ambiguous input

or even an arbitrary noise into one of the stored patterns by calculating the exponentially

exaggerated correlations between input and each individual stored pattern. This characteristic

is good for light or fair contaminations but not reliable for severe distortions. Compared to

the HCAM, the ECAM converges all unknowns to correct patterns or targets for

contamination less than 3 dB SNR, and divides unknowns into correct and wrong

discrimination for distortion greater than 3 dB SNR. At -6 dB SNR, the risk becomes higher

than one half. The wrong discrimination rates dramatically increase for severe distortions,

since the coding scheme is not linear when the contamination range is statistically greater than

1.5 quantization levels, analyzed in the previous chapter. But the ECAM's converging

everything is the network's own characteristic and is not subjected to the coding scheme.

Figure 4.8 shows the ECAM generalization performance for 64 contaminated unstored

patterns. Compared to HCAM, it also has excellent performance for fairly contaminated

unstored patterns. As predicted, the ECAM converges everything and leaves no unknown for

contaminated unstored patterns.

4.4 RCAM-GI Cascade Networks

From the previous section, the HCAM of order 5 still left quite a few unknowns

behind even for light contaminations. The computation space will be increased, although the

network performance will be improved, if the HCAM uses a larger order. The larger order

HCAM will waste resource under light contaminations. From the last chapter, we know that
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the Generalized Inverse (GI) network can converge most unknowns to correct target under

fair contaminations, and prefers to leave an ambiguous state unrecognized rather than to

wrongly discriminate it. Another advantage of GI network is that the GI network requires a

small implementation memory. And our purpose is to discriminate target by using variable

aspect inputs. Therefore, it is reasonable to expect that an RCAM-GI cascade network will

save much memory and converge more unknowns.

We have constructed the GI network by initializing a correlation memory and then

learning to converge all desired associative pattern pairs. In our GI net, the desired associative

patterns have multiple-to-one mapping, thus multiple aspect responses map to a same target.

The GI net initially has correlation—based record memory and then learn to enlarge the

attractive basin realms of each stored pattern. Then it will converge to the target with which

the basin is associated, if a given input falls into one of those attractive basins. By using this

learned attractive potential, we can use a fair order HCAM to save space and leave unknowns

behind. Then the cascading GI net will converge those attracted by its basins and still leave

ambiguous ones unrecognized.

4.4.1 Simulations and Results

Figure 4.9 (a) shows the HCAM (order 3)-GI cascade network performance for 68

contaminated stored patterns, while Figure 4.9 (b) presents the HCAM (order 3)-GI cascade

network generalization performance for 64 contaminated unstored patterns. As expected,

compared to Figure 4.3 (b), the HCAM (order 3)-GI cascade network correctly converges

all unknowns left by the HCAM (order 3) for the SNR's greater than 6 dB SNR. For serious

distortions, the cascade network converges most unknowns and leaves some of them
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unrecognized, and the ratio of correct convergence to wrong convergence is greater than 1.

Even compared to the HCAM (order 5), the HCAM (order 3)-GI cascade network still has

better performances for the SNR greater than 0 dB. This better performance has rewarded

us the desired fulfillment that the HCAM-GI cascade net not only save processing memory

but also increases discrimination performances. The cascade network has better generalization

performances than the HCAM with order of 3 or 5, except it wrongly discriminates one

slightly contaminated unstored pattern.

Figure 4.10 (a) shows the HCAM (order 5)-GI cascade network performance for 68

contaminated stored patterns, while Figure 4.10 (b) presents the HCAM (order 5)-GI

cascade network generalization performance for 64 contaminated unstored patterns. Again,

the HCAM (order 5)-GI cascade network has a better performance than the HCAM of order

5. Compared to the HCAM (order 3)—GI cascade net, the HCAM (order 5)-GI cascade

network also demonstrates fithher improved performances, due to the fact that the HCAM

of order 5 has better performances than the HCAM of order 3. The HCAM (order 5)-GI

cascade network this time doesn't wrongly discriminate any slightly contaminated unstored

pattern, and shows a better generalization performance than the HCAM of order 5.

Figure 4.11 (a) shows the ECAM-GI cascade network performance for 68

contaminated stored patterns, while Figure 4.11 (b) presents the ECAM-GI cascade network

generalization performance for 64 contaminated unstored patterns. Except the unknown of

ECAM at -3 dB SNR is converged, the ECAM-GI cascade network performance is the same

as the one ofthe ECAM. Since the extremely huge discrimination space of the ECAM leaves

no unrecognized states for the cascading GI network to fiirther converge, the ECAM-GI



87

cascade net goes nowhere to improve performance. Similarly, the ECAM-Gl cascade network

has the same generalization performance as the ECAM does.
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Figure 4.9 HCAM (order 3)-GI cascade network performances vs. SNR(dB).

(a). Target discrimination performance for the 68 stored patterns.

(b). Generalization performance for the 64 unstored patterns.



89

 3 : i ;

 

O
)

O

t 1

0
1

O
r 1

h 0
i

Solid:Correctly Discriminated

Dashed:Unrecognized

N
e
t
w
o
r
k
T
a
r
g
e
t
D
i
s
c
r
i
m
i
n
a
t
i
o
n
P
e
r
f
o
r
m
a
n
c
e

  
 

 

 
  

  
 

30 _ Dashdot:Wrongly Discriminated-

20 - \
_

V\

i\

10 - \ \_ 4
\ \ \'

0 4 \ W ~\.~ ~1 _ 1 1 1 1 1 1

-1O -5 O 5 10 15 20 25 30 35 4O

SNR (dB)

(6!)

I l fi [ I I r 1 I

60 —
a

(D

0

5
g 50 —

d

O

t
on

“c- 40 r ~

g Solid2Correctly Discriminated

E Dashed:Unrecognized

S 30 h Dashdot:Wrongly Discriminated‘

(9 20 _ \. _

i‘ \
o

E X

2 10 T \ \ T

\ \ \-

0 1 \T‘\“,:i___1_ 1 1 1 1 1

-10 -5 0 5 10 15 20 25 30 35 4O

SNR (dB)

Figure 4.10 HCAM (order 5)-GI cascade network performances vs. SNR(dB).

(a). Target discrimination performance for the 68 stored patterns.

(b). Generalization performance for the 64 unstored patterns.
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Figure 4.11 ECAM-GI cascade network performances vs. SNR(dB).

(a). Target discrimination performance for the 68 stored patterns.

(b). Generalization performance for the 64 unstored patterns.



CHAPTER 5

Recurrent Correlation Accumulation Adaptive Memories

5.1 Introduction

From the previous Chapter, for a HCAM, we need to guess for what order the

network can discriminate well among all possible inputs before processing the input. Some

inputs may be easily discriminated, while some may be more difficult. We also know it is

nearly impossible to physically realize an ECAM for large dimension patterns, since it

exponentially expands network computation space. It is also unreasonable and wasteful that

the ECAM blindly reserves a huge memory without considering the necessity of variable

inputs. This abuse will give no information about the input contamination when the output

appears. If a network can use flexible and suflicient orders of correlation to reach similar

performance, then it will be a better choice. Thus we wish to use a dynamic order, dependent

on the input, to discriminate among the stored patterns.

5.2 Recurrent Correlation Accumulation Adaptive Memories (RCAAM)

When the recurrent update of RCAM amplifies individual correlations between the

initial given input and stored patterns, it also introduces noisy crosscorrelation terms between

any two stored patterns i and j with i¢j. Assume we have P patterns {x‘l i=1, 2, P} stored

in memory, where iti is an m-dimension column vector, so that X={x‘,x2,...,x"}. If xi has

binomial (binary or bipolar) components and s is an initial input, then the HCAM of order r

will have output state s" after two synchronous updates

9]
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P

s am {2 1x°>TSign (f (x<°"s>'x<°>rx°>} (1)
1.1 1.1

Therefore it did not purely amplify the correlations between the initial given input and stored

patterns, and the nonlinear threshold function Sign prohibits the recurrent iterations from

linearly accumulating the respective pattern correlation gains, [(x“’)Ts]', produced by the last

iteration. The recurrent feedbacks introduce noisy crosscorrelation terms. If the network can

release the nonlinear interferences caused by the threshold fiinction Sign and accumulate the

previous respective correlation gains for each stored pattern, then the network will function

efficiently and stably. No nonlinear interference means there will be linear amplifications on

respective (cross) correlation terms generated during the last iteration, and the accumulations

of previous recurrent iterations will speed up the order of correlations.

We propose a Recurrent Correlation Accumulation Adaptive Memory (RCAAM)

which uses dynamic memory structure to accumulate the correlation information between the

input(s) and all stored patterns. Then the network discrimination resolution ( ability ) to an

input will increase as the recurrent iterations increase. Compared to the ECAM and HCAM,

the RCAAM uses recurrent accumulative and dynamic structure to gradually converge a

given input to some (semi-)stable state(s). We may regard this network as a real time learning

network. The network adjusts its real-time learning structure to converge the given input to

the nearest stable state associated to the stored patterns as long as the recurrent operations

continue. And, unlike Multi-layer Feedforward Error-Backpropagation learning it can avoid

being trapped in local minimum states.

Suppose the stored associative pattern pairs are {( E’,C’)| i: l,...,P} ,where E‘ is a
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column vector with length m and C' is a column vector with length n. We intend to

implement a neural network that can recall 5‘ if given an input sufficiently close to C’ . If

U is an n-dimension column vector input and init is a positive initial order, then we can

construct the initial RCAAM, MD, as follows :

P P

M0 = 2 5(1) [(C(1)TU)init ((1)]T: 2 E0) (WE) ((0)7. (2)

1.1 i-1

where Wow is the dynamic weighting for the i'11 stored pattern at time 0. If init=0, then M0 will

degrade to the Hopfield memory with nonzero diagonal. Suppose the stored

patterns 5' have bipolar form, then, with this initial memory matrix, the network output is

given by

P

V, = Sign {M,U} = Sign {23 ttwj°c<°VU1 50’} (3)
M

We have developed three versions of the RCAAM based on the recurrent updatings.

The first version is RCAAM with fixed input (RCAAM/f1). Version 2 is RCAAM with

dynamic input connected to output (RCAAM/di). Version 3 is RCAAM with analog

input/digital output (RCAAM/ad). Therefore, RCAAM/f1 and RCAAM/di have

binomial C‘ and E' , while RCAAM/ad has analog 6’ but binomial E' . Suppose Uk

denotes the network input at time k, and VR denotes the network output at time k

corresponding to the input Uk. Then, the dynamic memory has Uk=U for both RCAAM/fi and

RCAAM/ad, and has Uk=Vk_l for RCAAM/di. The dynamic memory and the network output

at iteration 1 are given by
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I)

f’

M = )3 5Wl(w.f"c(°>TU1c<°T} = Z amtwf'km)’

H
M

P
(4)

V1 2 Sign {M1 U1} = Sign {22 [(W1(OC(0)TU1
] 5(1)}

i-l

where the dynamic weighting for the stored pattern C‘ at iteration 1 has W1“) = (W00) C' )TU.

Then the adaptive memory and network output at time k are given by

I’I)

M}: = Z E(I){[(wli'kmfu’z—JUOT} : Z E(i)(wk(’)c(r))r

i-l i-l

p (5)

V, = Sign {MkUk} = Sign {2 [(wf)c"))TU,,]E‘°}

i-l

where Uk = U for both RCAAM/f1 and RCAAM/ad, Uk = Vm for RCAAM/di, and

wk“) = (WHO) (if Uk,l is the weighting matrix for the stored pattern C‘ at time k. The

algorithm shows the RCAAM has dynamic stored patterns weighted by wk“) at time k, and

each pattern weighting indicates the correlation accumulation through iterations between the

network recurrent input states and the stored pattern itself. Therefore, the weightings of those

stored patterns that are closer to the given input will become larger than the others, as long

as the recurrent iterations increase. It is equivalent to say that by real-time adjustment of the

individual pattern weightings of the dynamic memory, the recurrent outputs will gradually

adapt to the closest stored pattern. Since the pattern weighting adjustments are parallel in

each stored pattern vector direction at each iteration, there is no local minimum trap

phenomenon in RCAAM. With its dynamical memory structure, the dynamic accumulation

will eliminate the oscillation phenomenon which occurs in recurrent Hopfield nets. Although
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it may have semi-stable states at which the network stays for a finite number of iterations its

adaptive accumulation memory will function to leave those states, if the coding scheme used

by the network allows it. Therefore, the network updatings won't be trapped in an oscillation

cycle.

For RCAAM/fl and RCAAM/ad, the pattern weighting iteration, wk“) = (wk_,‘”C)TU,

doesn't introduce the nonlinear threshold fimction Sign , and thus crosscorrelation

interference terms among stored patterns won't become a problem. Therefore, the correlation

accumulation becomes linear. This useful processing structure is possible for RCAAM/fi and

RCAAM/ad, but not for the RCAM's. And this advantage still benefits from the dynamically

accumulative memory structure. Compared to [39] which trains the associative memory off-

line by Linear Programming or Sequential Multiple Training to guarantee the recall of stored

patterns, the RCAAM learns on-line and adjusts the stored pattern weightings to converge

the given input to the closest stored pattern. The RCAAM doesn't have predetermined order

or a fixed memory matrix, so the network is quite flexible and applicable to any kind of

distorted inputs. The network only takes a few recurrent iterations to recognize a slightly

distorted stored pattern, and requires more recurrent iterations to discriminate a more

ambiguous input.

Although the RCAAM/di has its output feedback to input, the previous correlations

between recurrent input states and each stored pattern have been sequentially accumulated

in memory. Then the accumulative correlation gains will acts as a reinforcement term to keep

the next output associated with the last state and then the original input. It reminds the

network of the passed converging trace. It is equivalent to saying that the accumulative



96

correlation gains in RCAAM/di plays the part of adaptive momentum which directs the

network toward the converging trace with less confusion and keeps the converging accesses

consistent. The momentum will be enhanced, if the stored patterns are close to it. The

momentum will be adjusted and then the current one will gradually decay, if the stored

patterns are not in accordance with it. The recurrent feedback gives the RCAAM/di great

adaptive elasticity and enhances the target group idea. If patterns in a group are consistent

and close to the input, then the recurrent output states will be apparently subjected to the

group attraction. Therefore, the recurrent feedback makes the RCAAM/di still have a great

adaptive elasticity, especially for ones with small initial orders, even under momentum

guidance. Then, compared to the RCAAM/fl and the RCAAM/ad, the cooperation of

adaptive elasticity and momentum in RCAAM/di will speed up its convergence for fairly or

severely contaminated inputs.

This adaptive elasticity is helpful especially for partially inconsistent pattern groups

which may have patterns closer to the other groups' than its own group's. For partially

inconsistent pattern groups, an input may be a little closer to some special pattern belonging

to other groups than its own group patterns. Under this circumstance, the adaptive elasticity

will favor the group attraction, since multiple consistent attractions, under low correlation

order, will prevail and then iteratively adapt the input to its own group before possible high

order correlation manipulation. Typically, the RCAAM/di requires less space than the

RCAAM/fl and the RCAAM/ad. Aspect sensitive radar target scattering usually has this

partial inconsistence phenomena.

5.2.1 Implementations of the RCAAM
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For easy implementation, the RCAAM can be further realized, then the initial memory

M0 is

P

M0 = X 50') [(C(1)TU)im't ((DJT

P M 0
_ (1') 1 (I) T
a: 5 (W C ) (6)

=E-{Diag [(CT-U).A(mit)]°c’}

= E'lDiag(W0)]‘CT

where C = [CW ((2) CM], 5 = [5“) 5(2) 61”], W0 E [wo1 wo2 Wop],

A -Aqs [,ii,",4,q...,4,."]T and

"A, 0 ol

0 A, o...

Diag (A);

O...0A  Pl

, if A = [A1 A2 AP]. Then the network output is

P

V0 = Sign {MOU} = Sign {23 [(wf'YWU 150)}
1-1 (7)

= E'flDiag (W91 '(CTU)}

Thus the dynamic memory at recurrent iteration time k is

P

A4,: 2: W1(w,f_'?C")>TU,_,1<"”}
M

= E'lDiag (Wk_1)'Diag(CTUk_,)]‘CT (8)

= if 5%wa
i-l

= E'lDiag (Wk)]°CT
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where Wk 5 I Wkl sz wk? 1 and wk“) = wk.|(i)(c(i)ir Um)»

and the output is

P

Vk , Sign {MkUk} = Sign {E [(w:1)C(i))TUk] gm}

i-l

= E'{[Diag(W,,)CT]-U,,} (9)

= e-{wz‘agthi-(cTUgi

Again, RCAAM/f1 and RCAAM/ad have Uk=U, while RCAAM/di has Uk=VH

Therefore, the dynamic memories Mk and the evolution outputs Vk for RCAAM/fi and

RCAAM/ad can be fiirther simplified as

P

M, = z a“){itwficmeicW}
i-l

: Ev[Diag (Wk_])-Diag (CTUH 'CT

. g-{Diag [(CTU)."(init+k)]}'CT

(10)
P

VI: : Sign {MkU} : Sign {Z [(W:I)C(O)TU] 5(1)}

i-l

= E-[Diag (Wk)'(CT°U)]

, g.[(§TU)/‘(init +k+1 )]

For heteroassociative memory (C' is not equal to 5‘), we have 68 stored aspect

response patterns belonging to four different targets, so (I has 68 columns. Suppose the BSZ

is encoded by [1 -l -1 -1], the B58 by [-1 1-1 -1], the F14 by [-l -l l -1] and the TR] by [-1

-1-1 1], then g‘~g”=[1 -1 -1 -1]T. 518~534=[-1 1-1 —1]T, g35~55'=[—1 -1 1 .1]T and 55%-56H-

l -l -1 1]T. From the above realization algorithms, the network only requires storing

memories for P=68 dynamically weighted stored patterns, 4 target group codes, one current

input pattern and one output. Since RCAAM has a dynamic memory structure, there may be
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semi-stable states at which the network stays until the correlation accumulation is high

enough to escape the temporary spurious state and move toward other states. We define the

stability criterion sc by Vk = Vk_l = = VW. Therefore, we regard the state Vk, which

satisfies Vk= V.,_l = = VIN, as the network discrimination pattern, if the stability criterion

sc is adopted. This indicates that the RCAAM has a flexible decision strategy for an

ambiguous input, allowing us to either leave it unknown or force it to one of the stored

patterns. To leave those spurious states as unknown, the stability criterion can be set to a low

value (eg, I or 2). The stability criterion can be set to a high value (eg, larger than 2), if a

definite discrimination is required. This allows convergence to one of the stored patterns. The

RCAAM requires only the minimum computation scale space which the RCAM can possibly

offer to discriminate an arbitrarily given input. Thus the RCAAM not only needs less

processing space than RCAM, but will perform the same or better.

5.3 Performance of the Recurrent Correlation Accumulation Adaptive

Memory with dynamic input (RCAAM/di)

In this section, we simulate RCAAM/di with several different initial orders and

stability criterions. First we simulate the RCAAM/di performances with respect to stability

criterion for three different initial orders, 2 , 3 and 6. Then the performances of RCAAM/di

with respect to initial order are simulated for three different stability criterions, 2 , 5 and 10.

Finally, RCAAM/di performances for groups with different average orders are compared. If

a RCAAM/di has an initial order p and a stability criterion q, then we abbreviate this

RCAAM/di by dipq. The order required for network stability criterion (or discrimination) is

p+k, if the network takes k recurrent iterations to satisfy its stability criterion. Thus the
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average order is calculated by summing the orders required for 10 SNR's and 4 targets, and

then taking the average value. There are four average order groups simulated, the first group

has an average order between 9 and 10, i.e. 9<p+k<10, the second has 10<p+k<l 1, the third

has ll<p+k<12, and the fourth group has 13<p+k<14. These average order groups are

presented here to help us design and implement an RCAAM/di under a limited computation

space and specified discrimination capability.

5.3.1 RCAAM/di performances with respect to stability criterion effect

Figure 5.1 shows unrecognized discrimination in percent of RCAAM/di with an

initial order of 2 (i.e. di2) under 40, I4 and 0 dB SNR vs. stability criterion for 68 stored

patterns, while Figure 5.2 presents its correct pattern discrimination in (a) and wrong pattern

discrimination in (b). The definition ofpattern discrimination is same as Chapter 4. Figure 5.3

presents correct target discrimination in (a) and wrong target discrimination in (b). We can

see the unrecognized discrimination is decreasing when the stability criterion is increasing.

This proves the stability criterion is really effective for RCAAM/di to further converge the

unknowns to stored patterns. This is an important advantage over the RCAM networks, such

as HCAM and ECAM, which reach their final output state when the same output occurs

twice. By using this characteristic, we can observe the contamination of an input signal and

then decide whether to accept the network output or disregard it. The higher the stability

criterion the network takes, the harder it is to discriminate an input signal. The simulation

results show the network requires more iterations to converge unknowns to final stable states

under 40 dB than 14 or 0 dB. The network has about 7% patterns unrecognized when a

stability criterion of2 is adopted, and the unknown reduces to 0.5% when a stability criterion
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of 10 is used. This means that there are at least (7-O.S)% of contaminated stored patterns

staying at semi-stable states when a stability criterion of 2 is used to judge the final state. And

these semi-stable states will converge to stored patterns when a stability criterion of 10 is

adopted. The simulation results are consistent with the noise contaminations. For example,

the noisy stored patterns with a SNR of 0 dB require a stability criterion of 9 to converge

unknowns to 0.5%, while the ones with 14 dB need a stability criterion of 4 , and the ones

with 40 dB only need a stability criterion of 2 to converge all unknowns to stored patterns.

From the correct and wrong discrimination performances, both discrimination rates increase

when the stability criterion increases. It is expected that the unknowns converged will

contribute either to correct or wrong stored patterns. Their relative increasing rates can help

us to evaluate how well the RCAAM/di2 (i.e. with an initial order of 2) can benefit from

setting a higher stability criterion. Suppose a RCAAM/di2 increases its stability criterion from

2 to 10 under an SNR of0 dB. Then, from Figure 5.3 , the correct target discrimination rate

increases about 5%, while the wrong one only increases about 1%. This means that the

network RCAAM/di2 will gain a correct to wrong target discrimination increase of 5:1 when

6% of unknowns is converged by increasing its stability criterion. This is a good trade.

Therefore, setting a higher stability criterion for RCAAM/di2 has a positive and effective

improvement on target discrimination rates, especially for higher noise contamination.

Comparing Figure 5.2 to Figure 5.3 , we see that the correct pattern discrimination

is about 21% less than the correct target discrimination for RCAAM/diZ with an sc (stability

criterion) of 2 under 0 dB, while the correct pattern discrimination is 24% less than the

correct target discrimination for an sc of 10. This indicates that about 21% of the
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contaminated stored patterns with a SNR of 0 dB will be converged and then recognized as

another stored pattern which belongs to the same target as the input one, but resides at a

different aspect angle. The stored patterns from the same target thus have different attractions

to their own noisy patterns. Some aspect patterns are more attractive while others are less so.

The attractive patterns have a larger convergent or attractive basin, within which any state

will be converged to the stored pattern, than the less attractive ones. This phenomenon may

be caused by the nature of radar target scattering (associated with target geometrical shape)

and the coding scheme. This is an applicable characteristic, since our purpose is to

discriminate one target from another instead of one aspect angle from another. By using this

target group idea, the cascade networks are proposed and are more efficient as expected. In

Figure 5.3 , the correct discrimination increases about 6% under 0 dB by increasing sc from

2 to 10. Since the correct pattern discrimination in Figure 5.2 only increase 3% from

increasing sc, another 3% increasing in correct target discrimination are contributed from the

wrong pattern discrimination. Therefore, this 3% noisy stored patterns with a SNR of 0 dB

are wrongly recognized in their aspect angles but correctly discriminated on targets.

Figure 5.4 shows the unrecognized discrimination of RCAAM/di2 vs. stability

criterion for unstored pattern inputs, while Figure 5.5 presents the correct target

discrimination in (a) and wrong target discrimination in (b). The unrecognized discrimination

rates decreases like the stored pattern inputs case when the stability criterion increases. Both

the correct and wrong target discrimination rates rise when the sc goes high. A correct to

wrong target discrimination increasing ratio of 7:1 can be found for 0 dB from Figure 5.5 ,

when the sc changes from 2 to 10. Only one eight of unknowns, which can be further
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converged from increasing sc, will go to wrong targets. Therefore, the existence of stable

criteria also improves the target discrimination performances of RCAAM/diz for unstored

pattem inputs. By comparing Figure 5.3 to Figure 5.5 , the correct target discrimination for

contaminated stored pattern inputs under 0 dB SNR is less than the correct target

discrimination for contaminated unstored pattern inputs, but it doesn't occur for light

contamination cases. It should be remembered from previous chapters every unstored test

pattem is resident at the middle oftwo adjacent stored patterns in our simulations. A severely

contaminated stored pattern may shift far away from the true stored pattern, while a severely

contaminated unstored pattern might have a chance to shift toward either adjacent stored

pattern. Therefore, a heavily distorted unstored pattern may get closer to a true stored pattern

than a heavily distorted stored pattern. This seemingly unreasonable phenomenon results from

the deterministic allocation arrangements around stored and unstored test patterns. It is not

expected in practical situation. By definition, a light distorted pattern should be closer to its

own clean pattern than the others. Therefore the strange results described above will not

happen to light distortion cases.

Figure 5.6 to Figure 5.10 present another performance set of the RCAAM/di with

an initial order of 3 (RCAAM/dB) vs. stability criterion. By comparing the RCAAM/di3 with

RCAAM/diZ, the unrecognized discriminations ofRCAAM/di3 for small criterion are smaller

than the ones of RCAAM/di2. The pattern and target discrimination performances of

RCAAM/di3 along with stability criterion are flatter than the RCAAM/di2's. For example,

under 0 dB SNR, the RCAAM/di3 has an increase of 4.5% in correct target discrimination

corresponding to the change of sc from 2 to 10, while the RCAAM/diZ has an increase of
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Figure 5.1 Unrecognized discrimination of the RCAAM/di with an initial order of 2 under

40 dB, 14 dB and 0 dB SNR vs. stability criterion for 68 stored patterns.
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Figure 5.2 Correct and wrong pattern discrimination performances of the RCAAM/di

with an initial order of 2 under 40, 14 and 0 dB SNR vs. stability criterion for 68 stored

patterns.

(a) Correct pattern discrimination performances vs. stability criterion.

(b) Wrong pattern discrimination performances vs. stability criterion.
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Figure 5.3 Correct and wrong target discrimination performances of the RCAAM/di with

an initial order of 2 under 40, 14 and 0 dB SNR vs. stability criterion for the 68 stored

patterns belonging to 4 targets.

(a) Correct target discrimination performances vs stability criterion.

(b) Wrong target discrimination performances vs. stability criterion.
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Figure 5.4 Unrecognized discrimination of the RCAAM/di with an initial order of 2 under

40 dB, 14 dB and 0 dB SNR vs. stability criterion for 64 unstored patterns.
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Figure 5.5 Correct and wrong target discrimination performances of the RCAAM/di with

an initial order of 2 under 40, 14 and 0 dB SNR vs. stability criterion for the 64 unstored

patterns belonging to 4 targets.

(a) Correct target discrimination performances vs stability criterion.

(b) Wrong target discrimination performances vs. stability criterion.
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6.5%. The wrong discriminations of RCAAM/di3 nearly haven't changed while its correct

target discriminations increase along with sc. To fiirther analyze and derive a generalized rule

by which the RCAAM/d1 with different initial orders will be affected with sc, a RCAAM/di

with an initial order of 6 (di6) is also simulated. Figure 5.11 to Figure 5.15 shows the

simulation performances of the RCAAM/di with an initial order of 6 vs. sc.

Comparing these three RCAAM/di's (di2, di3 and di6) performances, two interesting

characteristics can be found.

(1). The higher the initial order, the flatter the performance curve.

(2). The flatter the performance curve is, the higher the sc needed for converging unstored

pattern inputs.

Rule 1 can be interpreted that higher initial order RCAAM/di has less affect with sc than the

lower initial order one. And rule 2 can be described as the RCAAM/di with an higher initial

order needs larger sc to converge all unstored pattern inputs. From comparing the

unrecognized performances ofthree RCAAM/di's for both stored and unstored pattern inputs,

the di2 has the deepest slopes , the di3 has fair ones, and the di6 has the smoothest ones.

Characteristic 2 can be considered as an interpretation of network adaptive elasticity.

For a RCAAM/di with a large initial order, the successive iterations after the first output will

have less convergent ability since the high order correlation spanned a large space and then

separated a state from each other with a larger distance. This means the first iteration output

ofthe network will be at some state which is far away from any other state. If the first output

is at some ambiguous state, then it is hard to turn this deeply trapped state back to some

stored state. Therefore, we can say the deeply trapped state has dramatically lost its
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convergent elasticity and has a great chance to stick around those ambiguous states for many

iterations. Consider the case that a RCAAM/di has stored pattern inputs with a SNR of 14

dB, i.e. the star mark '+'. Then the d12 needs an sc of 8 to converge unknowns in Figure 5.4

, the di3 needs a sc of 7 in Figure 5.9 , and the di6 only requires a sc of 3 in Figure 5.14 .

The reverse property will occur by considering the performances with unstored pattern inputs.

With an SNR of40 dB, the di2 requires only an sc of 4 to converge unknowns, the di3 needs

an sc of 6, and the di6 needs an sc of 8 to complete the task. Under 14 dB, the di2 requires

an sc of 8 to converge unknowns, the di3 needs an sc of 10, and the di6 needs an sc at least

as large as 10. There are two observations here. For light contamination stored inputs, the

RCAAM/d1 with a high initial order requires a smaller sc to converge unknowns, while a low

initial order RCAAM/di needs a larger sc to complete the task. For unstored pattern inputs,

the RCAAM/di with a high initial order then needs a larger sc to converge unknowns if

possible, while a low initial order RCAAM/di requires a smaller sc to finish the job.

To explain the above seemingly inconsistent simulation performances, let's consider

two different factors that affect the convergent speed along with sc. First consider an input

close to one ofthe stored patterns. The high order correlation will bring the input much closer

to its true stored pattern. Here the high initial order thus speeds up the convergence. This

factor explains why the di6 converges light contaminated stored inputs by using a small sc,

although it has the flattest performance curve. Next consider an input that is not apparently

close to one of the stored patterns or ambiguous to stored patterns. This may be caused by

a linear combination ofa couple of stored patterns or a pattern which is close to one specific

stored pattern but a little less close to several stored patterns belonging to a same target.
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Figure 5.6 Unrecognized discrimination of the RCAAM/di with an initial order of 3 under

40 dB, 14 dB and 0 dB SNR vs. stability criterion for 68 stored patterns.
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Figure 5.7 Correct and wrong pattern discrimination performances of the RCAAM/di

with an initial order of 3 under 40, 14 and 0 dB SNR vs. stability criterion for 68 stored

patterns.

(a) Correct pattern discrimination performances vs. stability criterion.

(b) Wrong pattern discrimination performances vs. stability criterion.
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Figure 5.8 Correct and wrong target discrimination performances of the RCAAM/di with

an initial order of 3 under 40, 14 and 0 dB SNR vs. stability criterion for the 68 stored

patterns belonging to 4 targets.

(a) Correct target discrimination performances vs stability criterion.

(b) Wrong target discrimination performances vs. stability criterion.
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Figure 5.9 Unrecognized discrimination of the RCAAM/d1 with an initial order of 3 under

40 dB, 14 dB and 0 dB SNR vs. stability criterion for 64 unstored patterns.
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Figure 5.10 Correct and wrong target discrimination performances of the RCAAM/d1

with an initial order of 3 under 40, 14 and 0 dB SNR vs. stability criterion for the 64

unstored patterns belonging to 4 targets.

(a) Correct target discrimination performances vs stability criterion.

(b) Wrong target discrimination performances vs. stability criterion.
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Then the high order correlation may deeply force the input into a spurious state and trap it

there for many iterations. The network will thus need several iterations to compensate the

initial overemphasis and then gradually turn it toward a stable state if possible. Here the high

initial order thus slows down the convergence, if possible. This factor can explain why the di6

needs a higher sc to converge the unstored pattern inputs, if possible, than the di3 and di2.

Since the RCAAM/di has its output feedback to network input, the current output state

depends on the previous output state. Thus RCAAM/di is a causal system and its convergence

is successively improved iteration by iteration. RCAAM/di also accumulates previous

correlation gains in its memory. As the recurrent operation goes on, the converging continues

but the adaptive elasticity is gradually declining. Since a high initial order acts similarly but

not exactly as a long term iteration accumulation, a high initial order RCAAM/di will have

low adaptive elasticity. Therefore, a RCAAM/di with a small initial order has high adaptive

elasticity to converge unstored pattern inputs to stable states.

We know the radar target responses become less consistent within some aspect

ranges. Therefore, if an input is a little closer to one specific stored pattern than its own target

patterns, then a high initial order will force the input to initially approach the wrong pattern.

The strong momentum introduced by high initial order is then hardly released by future

recurrent feedbacks, since the updated input state might have become much closer to the

inconsistent pattern. We mentioned that the recurrent feedback of the RCAAM/di will

enhance the target group idea. For inconsistent aspect patterns, networks with small initial

orders may have better discriminations than ones with high initial orders, since multiple

consistent attractions from group patterns, under low correlation order, will prevail and then
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Figure 5.11 Unrecognized discrimination of the RCAAM/di with an initial order of 6

under 40 dB, 14 dB and 0 dB SNR vs. stability criterion for 68 stored patterns.
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Figure 5.12 Correct and wrong pattern discrimination performances of the RCAAM/di

with an initial order of 6 under 40, 14 and 0 dB SNR vs. stability criterion for 68 stored

patterns.

(a) Correct pattern discrimination performances vs. stability criterion.

(b) Wrong pattern discrimination performances vs. stability criterion.
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Figure 5.13 Correct and wrong target discrimination performances of the RCAAM/di

with an initial order of 6 under 40, 14 and 0 dB SNR vs. stability criterion for the 68

stored patterns belonging to 4 targets.

(a) Correct target discrimination performances vs stability criterion.

(b) Wrong target discrimination performances vs. stability criterion.
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Figure 5.14 Unrecognized discrimination of the RCAAM/di with an initial order of 6

under 40 dB, 14 dB and 0 dB SNR vs. stability criterion for 64 unstored patterns.
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Figure 5.15 Correct and wrong target discrimination performances of the RCAAM/di

with an initial order of 6 under 40, 14 and 0 dB SNR vs. stability criterion for the 64

unstored patterns belonging to 4 targets.

(a) Correct target discrimination performances vs stability criterion.

(b) Wrong target discrimination performances vs. stability criterion.
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iteratively adapt the input to its own group before possible high order correlation

manipulation.

5.3.2 RCAAM/di performances with respect to initial order effect

In this subsection, we will analyze the performances of RCAAM/di with fixed stability

criterions vs. initial order. First let’s abbreviate the RCAAM/di with a stability criterion of q

by using 'RCAAM/di_q' or 'di_q'. Figure 5.16 shows unrecognized discrimination of

RCAAM/di with a stability criterion of 2 (i.e. RCAAM/di_Z or di_2) vs. initial order for

contaminated stored pattern inputs, while Figure 5.17 presents the correct pattern

discrimination in (a) and wrong pattern discrimination in (b). Figure 5.18 presents the

correct target discrimination of di_2 vs. initial order in (a) and wrong target discrimination

in (b). The correct pattern and target discriminations rise along with initial order increasing

for light contaminations, while they look like downward curves for the heavy noise case (0

dB). And the wrong pattern and target discriminations fall along with initial order increasing

for light contaminations, while they look like upward curves for the heavy noise case.

For light contamination, the increasing curves can be explained by factor 1 in the

above subsection. Under heavy noise, increasing initial order will greatly converge spurious

states for RCAAM/di with small initial orders, and appropriately enhance the seriously soft

elasticity to attract the distorted pattern by target group correlation gains. Too sofi an

elasticity may not only have low efficiency but also induce a coding scheme problem. For

small initial order, an increment in the initial order will help to overcome the coding scheme

problem described later. But the adaptive elasticity will become too small to turn some

spurious states back as described by factor 2 in the above subsection, if the initial order is too
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large. This explains why the downward curve has a maximum occurring between the smallest

and the largest initial order, and the upward curve has a minimum occurring between the

smallest and the largest initial order.

Figure 5.19 shows the unrecognized discrimination of RCAAM/di_z for unstored

pattern inputs, while Figure 5.20 presents the correct target discrimination in (a) and wrong

target discrimination in (b). In the previous subsection, we know the high initial order

RCAAM/di has higher correct performances at a low sc and flatter performance curves than

the low initial order one. Since the sc is only set to 2, we only see the increasing portion. To

generalize a rule to regulate the sc effect on the performances of RCAAM/di along with

initial order, we simulate another two sets with stability criterions of 5 and 10, RCAAM/di_S

and RCAAM/di_lO. Figure 5.21 to Figure 5.25 show the simulation results of

RCAAM/di_S, while Figure 5.26 to Figure 5.30 present the performances of

RCAAM/di_1 0. Let’s analyze the unrecognized discriminations for three stability criterions

of 2, 5 and 10 with contaminated stored pattern inputs, i.e. Figure 5.16 , Figure 5.21 and

Figure 5.26 . All three unrecognized discriminations decrease as expected when the initial

order changes from 1 to 6.

Figure 5.21 shows that the unrec0gnized discrimination of RCAAM/dil 5 is larger

than the one of RCAAM/diOS under light contamination (40dB and 14 dB). It may be

explained as a coding scheme effect. By definition, a lightly contaminated stored pattern

should still be close to its true pattern. Consider three close patterns belonging to the same

target. Suppose one of these three stored patterns is lightly contaminated, then the sum of

weighted stored patterns is a vector most near the linear combination of those three patterns
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Figure 5.16 Unrecognized discrimination of the RCAAM/di with a stability criterion of 2

under 40 dB, 14 dB and 0 dB SNR vs. initial order for 68 stored patterns.
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with a stability criterion of 2 under 40, 14 and 0 dB SNR vs. initial order for 68 stored

patterns.

(a) Correct pattern discrimination performances vs. initial order.

(b) Wrong pattern discrimination performances vs. initial order.
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Figure 5.18 Correct and wrong target discrimination performances of the RCAAM/di

with a stability criterion of 2 under 40, 14 and 0 dB SNR vs. initial order for the 68 stored

patterns belonging to 4 targets.

(a) Correct target discrimination performances vs initial order.

(b) Wrong target discrimination performances vs. initial order.
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Figure 5.20 Correct and wrong target discrimination performances of the RCAAM/di

with a stability criterion of 2 under 40, 14 and 0 dB SNR vs. initial order for the 64

unstored patterns belonging to 4 targets.

(a) Correct target discrimination performances vs initial order.

(b) Wrong target discrimination performances vs. initial order.
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weighted. Then the coding scheme, 3-bit coding 7 levels, and the nonlinear threshold function

( Sign fimction) may result in a state code which is not particularly close to one ofthose three

stored patterns but close to another stored pattern. Therefore, with a stability criterion of 5,

an initial order of 0 might leave the lightly distorted pattern in a wrong stored pattern. And

an initial correlation with one order higher may pull it to an intermediate state, nor correct

neither wrong state, then this intermediate state will contribute to the unrecognized

discrimination while a wrong pattern, possible correct target, discrimination is eliminated.

Therefore, the curves rise for 40 and 14 dB SNR's.

Furthermore another time increase on the initial order may converge the intermediate

state to the correct stored state. This time the correct discrimination will be credited while the

intermediate state is eliminated. The curves thus fall. This hypothesis can be verified by

investigating Figure 5.22 and Figure 5.23 . In Figure 5.22 , the correct pattern

discrimination doesn't increase the same amount, while the wrong pattern discrimination

decreases when the initial order changes from O to 1. This indicates that some portion of

eliminated wrong discriminations goes to intermediate states instead of correct stored states.

From Figure 5.23 (a), you can see the correct target discrimination decreases when the initial

order increases from 0 to l for the light contamination case (40 dB). This indicates a wrong

pattern discrimination can be a correct target discrimination, and the wrong pattern

discrimination can be converged to an intermediate state instead of a correct target when the

initial order only increases by one. From the above subsection, we know a higher sc

converges more states or has higher capability to turn a spurious state into a stable state. The

coding scheme effect won't bother the RCAAM/di with a sc of 10, while it interferes with the
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RCAAM/di with a sc of 5. Compared to the RCAAM/di_lO, the RCAAM/di_S still leaves

some states convergeable. From the correct and wrong discrimination performances for three

cases, all the correct and wrong discriminations are pulled up when the stability criterion is

increased. These are consistent with the previous performances and discussions.

Let's investigate the unrecognized discriminations for unstored pattern inputs, i.e.

Figure 5.19 , Figure 5.24 and Figure 5.29 . From the previous subsection discussion, we

have two rules describing the initial order effect on the performance curve shapes and

converging speeds along with sc. The higher initial order RCAAM/di has flatter performance

curves but slow converging vs. sc. And factor 2 told us a high initial order RCAAM/di won't

converge unknowns for unstored pattern inputs until a high sc is given, since it has lost a lot

of adaptive elasticity . Under contaminations of 40 dB and 14 dB SNR, consider the initial

order ranges from I to 6 with unstored pattern inputs. In Figure 5.19 , the RCAAM/di with

an initial order of 6 has the minimum unknowns and the RCAAM/di with an initial order of

1 has maximum unknowns. When the sc is increased to 5, the above rules are invoked. In

Figure 5.24 , the RCAAM/di6's lose their places, while the RCAAM/di 1 's and RCAAM/di2's

become new minima. When the sc continues increasing to 10, then factor 2 shows up. In

Figure 5.29 , the RCAAM/di6's not only lose their minima but also become the maxima,

while the RCAAM/di3's and RCAAM/di4 continue converging their unknowns. The

downward curves ofcorrect target discriminations for stability criterions of 5 and 10, Figure

5.25 and Figure 5.30 , again show the consistency.
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Figure 5.21 Unrecognized discrimination of the RCAAM/di with a stability criterion of 5

under 40 dB, 14 dB and 0 dB SNR vs. initial order for 68 stored patterns.
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Figure 5.22 Correct and wrong pattern discrimination performances of the RCAAM/di

with a stability criterion of 5 under 40, 14 and 0 dB SNR vs. initial order for 68 stored

patterns.

(a) Correct pattern discrimination performances vs. initial order.

(b) Wrong pattern discrimination performances vs. initial order.
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Figure 5.23 Correct and wrong target discrimination performances of the RCAAM/di

with a stability criterion of 5 under 40, 14 and 0 dB SNR vs. initial order for the 68 stored

patterns belonging to 4 targets.

(a) Correct target discrimination performances vs initial order.

(b) Wrong target discrimination performances vs. initial order.
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Figure 5.24 Unrecognized discrimination of the RCAAM/di with a stability criterion of 5

under 40 dB, 14 dB and 0 dB SNR vs. initial order for 64 unstored patterns.
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Figure 5.25 Correct and wrong target discrimination performances of the RCAAM/di

with a stability criterion of 5 under 40, 14 and 0 dB SNR vs. initial order for the 64

unstored patterns belonging to 4 targets.

(a) Correct target discrimination performances vs initial order.

(b) Wrong target discrimination performances vs. initial order.
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Figure 5.26 Unrecognized discrimination of the RCAAM/di with a stability criterion of 10

under 40 dB, 14 dB and 0 dB SNR vs. initial order for 68 stored patterns.
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Figure 5.27 Correct and wrong pattern discrimination performances ofthe RCAAM/di

with a stability criterion of 10 under 40, 14 and 0 dB SNR vs. initial order for 68 stored

patterns.

(a) Correct pattern discrimination performances vs. initial order.

(b) Wrong pattern discrimination performances vs. initial order.
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Figure 5.30 Correct and wrong target discrimination performances of the RCAAM/di

vith a stability criterion of 10 under 40, 14 and 0 dB SNR vs. initial order for the 64

.nstored patterns belonging to 4 targets.

a) Correct target discrimination performances vs initial order.

b) Wrong target discrimination performances vs. initial order.



141

5.3.3 RCAAM/di performances for the same averaged order group

In this subsection we evaluate the performances of RCAAM/di's with similar

discrimination orders. The comparisons of RCAAM/di's belonging to a same discrimination

order group can help us select and design an RCAAM/di which will satisfy our specifications

under constrained available memory. Suppose a RCAAM/di with an initial order of p and a

stability criterion of q (i.e. dipq) requires k iterations to satisfy its stability criterion for an

input, then we say the order required by RCAAM/dipq for this input discrimination is p+k.

Figure 5.31 shows the averaged orders required for the discriminations (aord) of

RCAAM/dis with the initial order change from O to 6 vs. stability criterion for stored pattern

inputs, while Figure 5.32 presents the averaged order required for the discriminations of

unstored pattern inputs. For a fixed initial order, the aord Changes linearly along with sc. The

slope is larger for small sc, and is approaching 1 when sc become large. This is especially

apparent for the RCAAM/di with small initial order, such as diO and dil. With so fixed to 5,

the diO has its aord larger than the dil's, di2’s, di3's and di4’s, while the dil has its aord still

larger than the di2's. The phenomena indicate the soft elasticity associated with low initial

orders will struggle longer to adapt to stored patterns under heavy contaminations. Since a

low initial order, 0 or 1, is unable to explicitly instruct the possibly efficient routes to

converge in the beginning, a slightly advantaged pattern after the feedback mechanism of

RCAAM/di might become more ambiguous due to the linear combination of weighted

patterns and the coding scheme problem. From Figure 5.31 and Figure 5.32 , we can see

that an initial order larger than 1 will greatly reduce (or eliminate) the inefficiency in aord

resulting from the too soft elasticity problem.
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Figure 5.31 Averaged orders required for target discrimination of the RCAAM/di with

contaminated stored pattern inputs vs. stability criterion.
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Figure 5.32 Averaged orders required for target discrimination of the RCAAM/di with

contaminated unstored pattern inputs vs. stability criterion.
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We categorize four RCAAM/di groups by using their aord of stored pattern inputs,

group aord9, group aorle, group aordll and group aord13. Group aord9 defines the

RCAAM/di's with 9<aord<10, group aorle defines the RCAAM/di's with 10<aord<l 1,

group aordll defines the RCAAM/di’s with ll<aord<12, and group aord13 defines the

RCAAM/di's with l3<aord<l4.

Figure 5.33 to Figure 5.36 show the performance comparisons of 4 RCAAM/di's

ofgroup aord9, di25 with aord=9.4696, di35 with aord=9.9516, di44 with aord=9.63 72 and

di62 with aord=9.3125. In Figure 5.33 , The di25 covers the largest order range from 8.2

to 11.2, while the di62 has the flattest curve ranging from 8.8 to 10.1. The di25 has the

highest contamination observability, since we can easily judge the contamination degree from

its converging iterations. Thus, with low contamination, the di25 only requires averaged

iterations of (8.2-2)=6.2 to satisfy its sc of 5, while it needs averaged iterations of (11.2-

2)=9.2 to discriminate a stored pattern input with a contamination of -6 dB. Compared to a

3 iteration range of di25, di62 only has a (10. - 8.8) =1.3 iteration range to judge the

contamination degree. We may say that the di25 is more economic than the others under light

contaminations, and then works harder than the di44 and di62 under heavy noise. From

Figure 5.34 , the di44 has the best performances. The di25 works better in heavy noise, while

the di62 leaves more unknowns than the others. The wrong discrimination performances are

almost the same for all 4 RCAAM/di's. Figure 5.35 shows the aord of unstored pattern

inputs for group aord9. Compared to Figure 5.33 , the aord of 40 dB in Figure 5.35 is

similar to the aord of 3 dB in Figure 5.33 . Therefore, to a RCAAM/di an unstored pattern

is analogous to a stored pattern contaminated with an SNR of about 4 dB. This observation
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is also consistent with the hypothesis of factor 2. Figure 5.36 presents the performance

comparisons of group aord9 with noisy unstored pattern inputs. Again, the wrong

discrimination performances are about the same. The di62 has the worst performances, while

the di25 (and di35) has the best performances. Again, the deficient performances of di62 for

noisy unstored pattern inputs can be explained by factor 2 described in the first subsection of

the current section.

Figure 5.37 to Figure 5.40 show the performance comparisons of 3 RCAAM/di's

of group aorle, di26 with aord=10.4828, di45 with aord=10.6562 and di63 with

aord=10.3365. The di45 and di63 have similar aord for lightly contaminated stored pattern

inputs in Figure 5.37 , and their performances are also close to each other in Figure 5.38 .

Again the di63's performances become worse than the di26's when the contaminations of

stored patterns are getting severe. For unstored pattern inputs, the di26 has the best

performances, the di45 has fair performances, and the di63 has the worst performances in

Figure 5.40 . Figure 5.41 to Figure 5.44 show the performance comparisons of 3

RCAAM/dis ofgroup aord] l, di27 with aord=1 1.4979, di46 with aord=11.6647 and di64

with aord=11.3581. Compared to group aorle, the aord's of di45 and di63 are almost

equal to the aord's of di46 and di64 plus 1 for distorted stored pattern inputs. It means an

increment of 1 in stability criterions of di45 and di63 didn't apparently improve their

performances much for fairly contaminated stored pattern inputs. Or, equivalently, the di45

and di63, compared to the di46 and di64, already have the ability to correctly discriminate

lightly contaminated stored patterns.
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Figure 5.45 to Figure 5.48 show the performance comparisons of 3 RCAAM/di's

of group aordl3, di29 with aord=13.5368, di48 with aord=l3.6843 and di66 with

aord=13.3875. Comparing Figure 5.45 with Figure 5.41 , again the aord's of di46 and di64

are almost equal to the aord's of di48 and di66 plus 2 for distorted stored pattern inputs, but

the aord of di29 has increments larger than 2 for 10 dB and 20 dB. Therefore, by comparing

Figure 5.46 with Figure 5.42 , the di29 has great improvements for 20dB and 10 dB where

the di27 still left few unknowns behind. This indicates that some contaminated stored patterns

for 20 dB or 10 dB reside on spurious states which are stable for at least 7 recurrent iterations

but become unstable on the 8th or 9th iteration. The spurious states would be considered as

stable outputs when an sc of 7 is used by a RCAAM/di2. If the spurious states become

unstable on the 8th iteration afier the previous 7 stable iterations, then the di29 should at least

take another 9 iterations to satisfy its sc of 9. Since the aord is calculated from the

discrimination order divided (or averaged) by 68 stored patterns and 10 time simulations, the

increments ofaord for 20 dB and 10 dB for the di29 are small. This time the di29 has the best

performances for both contaminated stored and unstored pattern inputs, while the di66 still

has trouble to converge unknowns for unstored pattern inputs because of low elasticity

(factor 2).

5.4 Performance of the Recurrent Correlation Accumulation Adaptive

Memory with fixed input (RCAAM/fi)

In this section we simulate the RCAAM/fi's with fixed initial order but variable

stability criterions, and the RCAAM/fi’s with fixed sc but variable initial orders. Since the

RCAAM/f1 always has the original input as the network recurrent operation input and no
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feedback to the network input from output, its performances are supposed to be independent

of initial orders. But an inappropriate selection of maximum convergent criterion and initial

order may result in divergence, if the correlation with the largest scale among all stored

patterns is negative. The aord ofRCAAM/fi is also shown here.

Figure 5.49 shows the unrecognized discriminations of RCAAM/fl with an initial

order of 1 (RCAAM/fl] or fil) vs. sc for stored patterns under 40, 14 and 0 dB SNR. With

40 dB an sc as small as 2 can converge all unknowns, with 14 dB an sc of 10 then converges

all unknowns, but an so as large as 40 will still leave 8.4% unknown for 0 dB. This indicates

that the RCAAM/fl can converge unknowns for lightly contaminated stored patterns, but can't

converge them under severe noise even when a high so is adopted. The bidirectional

amplifications ofbipolar form and the recurrent mechanism ofRCAAM/fl should account for

this phenomenon. For example, the bipolar correlation between [-1 1] and [-1 1] will have a

positive amplification of 2, while the correlation between [-1 1] and [1 -1] gives a negative

amplification of -2. Under severe distortion and with inconsistent responses resulting from

uncertain beginning point allocation, the encoded input bipolar code may have negative

correlation gain with some stored patterns. Suppose the correlation between the input and the

stored pattern x has a negative gain, -Gx, which has the largest scale among all correlation

gains. Then the RCAAM/fl] will have a positive amplification of (-Gt\.)‘i21H on stored pattern

x at an odd iteration, 2k+1, while it has a negative amplification of 0G,)"2k on stored pattern

x at an even iteration, 2k. Since a correlation gain with the largest scale will dominate the

convergence, especially at a large iteration or with a high sc, the RCAAM/fl will finally

oscillate between the negatively amplified pattern x and the positively amplified pattern x.
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Therefore, it can't converge if there is no maximum convergent cycle set.

Figure 5.50 shows the correct pattern discrimination ofRCAAM/fil in (a) and wrong

pattern discrimination in (b) vs. sc for stored patterns, while Figure 5.51 presents the correct

target discrimination in (a) and wrong target discrimination in (b). Under light contaminations,

there are no wrong discriminations from RCAAM/dil, but the correct discriminations increase

along with sc. Under 0 dB SNR, the correct target discrimination increases by (83.5-

77.3)=6.2% when the sc changes from 2 to 10, but the wrong discrimination only increases

by 1%. Therefore, the existence of sc effectively improves the performances ofRCAAM/fl.

Figure 5.52 shows the unrecognized discrimination of RCAAM/fl] vs. sc for unstored

pattern inputs under 40, 14 and 0 dB SNR, while Figure 5.53 presents the correct target

discrimination in (a) and wrong target discrimination in (b). Under light contaminations, there

are no wrong discriminations from RCAAM/di 1, but the correct discriminations increase by

11.3% for 40 dB and 9.8% for 14 dB when the sc changes from 2 to 10. For 0 dB, the correct

target discrimination increases by 4.4% when the sc changes from 2 to 10, but the wrong

discrimination only increases by 2%. Similarly as described in RCAAM/di case, the

RCAAM/fil's performances for unstored pattern inputs under severe distortion haven't

behaved worse than its performances for stored pattern inputs.

Figure 5.54 shows the unrecognized discriminations ofRCAAM/fl with an sc of 2

(RCAAM/fi_2 or fi_2) vs. initial order for stored patterns under 40, 14 and 0 dB SNR. With

an SNR of 40 dB, there is no unknown left. With 0 dB, there is a strange oscillation along

with initial order. Let's discuss this phenomenon after checking pattern and target

discrimination performances. Figure 5.55 shows the correct pattern discrimination of
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Figure 5.49 Unrecognized discrimination of the RCAAM/fl with an initial order of 1

under 40 dB, 14 dB and 0 dB SNR vs. stability criterion for 68 stored patterns.
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Figure 5.50 Correct and wrong pattern discrimination performances of the RCAAM/fi

with an initial order of 1 under 40, 14 and 0 dB SNR vs. stability criterion for 68 stored

patterns.

(a) Correct pattern discrimination performances vs. stability criterion.

(b) Wrong pattern discrimination performances vs. stability criterion.
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Figure 5.51 Correct and wrong target discrimination performances ofthe RCAAM/fi with

an initial order of 1 under 40, 14 and 0 dB SNR vs. stability criterion for the 68 stored

patterns belonging to 4 targets.

(a) Correct target discrimination performances vs stability criterion.

(b) Wrong target discrimination performances vs. stability criterion.
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Figure 5.52 Unrecognized discrimination ofthe RCAAM/f1 with an initial order of 1

under 40 dB, 14 dB and 0 dB SNR vs. stability criterion for 64 unstored patterns.
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Figure 5.53 Correct and wrong target discrimination performances of the RCAAM/fl with

an initial order of 1 under 40, 14 and 0 dB SNR vs. stability criterion for the 64 unstored

patterns belonging to 4 targets.

(a) Correct target discrimination performances vs stability criterion.

(b) Wrong target discrimination performances vs. stability criterion.
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RCAAM/fi_2 vs. initial order for stored pattern inputs in (a) and the wrong pattern

discrimination in (b), while Figure 5.56 presents the correct target discrimination in (a) and

wrong target discrimination in (b). From the latter two figures, you can find out that the

oscillation occurring in Figure 5.54 results from the oscillating wrong pattern or target

discrimination. In our simulations, we have set a maximum convergent cycle within which the

recurrent updating procedure continues until either the so is satisfied or the recurrent iteration

reaches the maximum convergent cycle. If an iteration reaches the maximum convergent

cycle, the recurrent updating procedure stops and the final state is given as the network

output. We have set the maximum convergent cycle to 40, 60 or 120 iterations. Therefore,

with an even initial order p, the final accumulation gain of a negative correlation will give a

positive amplification, since an even p plus a even maximum convergent cycle gives an even

integer. This final state will contribute to wrong target discrimination, if a pattern has a

negative correlation gain, whose scale is largest among all correlation gains, and it belongs

to a target difierent to the input's. This explains why the fi22, fi42 and fi62 have the peaks in

wrong discriminations. By definition, stored patterns are slightly distorted by light

contaminations. A large negative correlation gain rarely exists between a slightly

contaminated stored pattern and any stored pattern. For an odd initial order p, the final

accumulation gain of a negative correlation will give a negative amplification, since an odd

p plus a even maximum convergent cycle gives an odd integer. Then RCAAM/fl can't

recognize a negative stored pattern as one of the stored patterns since it only memorizes and

recognizes the stored patterns. Therefore, the fi12, fi13 and fi15 leave those negatively

amplified patterns unrecognized when the iteration reaches the maximum convergent cycle.
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Figure 5.57 shows the unrecognized discrimination of RCAAM/fi_2 vs. initial order

for distorted unstored pattern inputs. Again the unrecognized performance oscillates along

with the initial order for 0 dB. Figure 5.58 shows the correct target discriminations of

RCAAM/fi_2 vs. initial order for distorted unstored pattern inputs in (a), and the wrong

target discriminations in (b). In (b), the oscillation of wrong discrimination becomes larger.

The wrong discriminations for odd initial orders have the same performances and those for

even initial orders also have the same performances. The correct target discriminations for

lightly contaminated unstored patterns are worse than those in Figure 5.53 since the

RCAAM/fi_2’s shown in Figure 5.58 only use an sc of 2.

Figure 5.59 shows that the aord's of RCAAM/fl] change along with sc for

contaminated stored and unstored pattern inputs. Under the same sc, the aord ofunstored

patterns is larger than the aord of stored patterns. We should notice that the RCAAM/fi's

aord is variable with respect to a maximum convergent cycle, since the discrimination order

will be equal to initial order plus the maximum convergent cycle if an oscillation occurs.

Compared to Figure 5.31 and Figure 5.32 , the RCAAM/fl has a higher aord than the

RCAAM/di. Since the feedback mechanism allows RCAAM/di to sufficiently employ the

adaptive elasticity in accordance with an appropriate sc to speed up convergence, the

RCAAM/di will converge sooner than the RCAAM/fi under heavy contaminations. And the

RCAAM/di doesn't suffer the oscillation problem which occurs in RCAAM/fl, so its aord is

always smaller than a fair maximum convergent cycle. In other words, the RCAAM/fl keeps

the original input intact at the expense of slowing down its converging when the recurrent

accumulative adaptations continue.
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Figure 5.54 Unrecognized discrimination of the RCAAM/fl with a stability criterion of 2

under 40 dB, 14 dB and 0 dB SNR vs. initial order for 68 stored patterns.



173

 

 

   
 

100G 1 €13 1 Q 1 Q T _Q I

E 95 — —

(I)

C

.9. 90 2 2

E C I dB-- _ irc e o : 4O -

g 85 Plus + : 14 dB

(c3 x—Mark x : 0 dB

5 80 2 2

E

g 75 2 2

(U

a

‘6 7O — a

93

8 65 2 2

60 I X l )1“ 1 T 1 ’1‘ 1

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Initial Order

(a)

 (
A
)

O .
1 1 —
J

-
1

‘
1

N U
!

\
l

  
 

:5

(I)

C

.9

E 20 2 2

.E

5 Circle 0 : 40 dB

815— Plus+ :14dB 2

C x—Mark x : 0 dB

2
m 10 ’—

—i

o.

C)

C

9 5 2 2

E

(E 1 {It} 1 $ I $ 1 $ I $

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Initial Order

(b)

Figure 5.55 Correct and wrong pattern discrimination performances of the RCAAM/fl

with a stability criterion of 2 under 40, 14 and 0 dB SNR vs. initial order for 68 stored

patterns.

(a) Correct pattern discrimination performances vs. initial order.

(b) Wrong pattern discrimination performances vs. initial order.



174

 

 

 

 

  
 

 

  
 

1000 1 {1} 1 § 1 1‘? 1 fl L

E 95 2
-

2

.9 90 2
a

E

E

g 85 2 2

2

5 80 h 12 V x %——2"/':k
‘6 " 7T

9 752 2

8 Circle 0 : 40 dB

‘6 702
Plus+ :14dB _

93 x—Mark x : 0 dB

8 65L —

60 1 1 1 1 l 1 1 L 1

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Initial Order

(a)

30 1 1 T 1 1 1 1 1 1

:2
st ._ _

U)

C

.9

220— —
.E

'5 Circle 0 : 40 dB

.915L Plus+ :14dB 2

e x-Mark x : 0 dB

8

a 10 2

2 i
o,WW(

2 5’

3

w 1 (I!) l a} I G) 1 $ 1 $

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Initial Order

(b)

Figure 5.56 Correct and wrong target discrimination performances of the RCAAM/fi with

a stability criterion of 2 under 40, 14 and 0 dB SNR vs. initial order for the 68 stored

patterns belonging to 4 targets.

(a) Correct target discrimination performances vs initial order.

(b) Wrong target discrimination performances vs. initial order.
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Figure 5.57 Unrecognized discrimination of the RCAAM/fl with a stability criterion of 2

under 40 dB, 14 dB and 0 dB SNR vs. initial order for 64 unstored patterns.
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Figure 5.58 Correct and wrong target discrimination performances of the RCAAM/fl with

a stability criterion of 2 under 40, 14 and 0 dB SNR vs. initial order for the 64 unstored

patterns belonging to 4 targets.

(a) Correct target discrimination performances vs initial order.

(b) Wrong target discrimination performances vs. initial order.
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5.5 Performance of the Recurrent Correlation Accumulation Adaptive

Memory with analog input and digital output (RCAAM/ad)

Since 3-bit coding with 7 quantization levels will have nonlinearity interference when

contamination becomes serious in this section, we use analog inputs to eliminate the

nonlinearity problem. We simulate the performances of RCAAM/ad with different initial

orders and stability criterions. From section 5.2 we know the only difference between

RCAAM/fl and RCAAM/ad is the network input form. RCAAM/ad is used with analog input

form instead of digital (bipolar) form used by RCAAM/fi, with an initial order of 1

(RCAAM/ad] or adl) under different stability criterion circumstances and RCAAM/ad with

its sc fixed to 2 (RCAAM/ad_2 or ad_2) under different initial order cases.

For four targets using RCAAM/ad, we have 68 IOO-point aspect responses to store.

First of all, we calculate each energy of the 68 lOO-point responses then normalize them to

l by their respective energy. These 68 normalized patterns are then stored in RCAAM/ad.

When an input (of 100 responses) is input to the network, we calculate its energy and then

add the corresponding noise with the desired simulation SNR. Then we calculate the energy

of the noisy input, and finally normalize the noisy input to 1. The normalized input is then

presented at the network input as the network process input pattern.

Figure 5.60 shows the unrecognized discrimination of RCAAM/ad with an initial

order of 1 (RCAAM/adl) vs. sc for contaminated stored pattern inputs for 40 dB, 14 dB and

0 dB SNR. Figure 5.61 shows the correct pattern discrimination of RCAAM/ad] vs. sc in

(a) and wrong pattern discrimination in (b), while Figure 5.62 presents the correct target

discrimination in (a) and wrong target discrimination in (b). We can find RCAAM/ad] has
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excellent no error target discrimination even under severe distortion (0 dB SNR). Therefore,

for distorted stored pattern inputs, RCAAM/ad has the best converged discrimination

performances among three versions of\RCAAM. Comparing (b) of Figure 5.61 with (b) of

Figure 5.62 , we realize that all wrong pattern discriminations result from the recognition of

different aspect angles of a target, and thus will contribute to the correct target

discriminations.

There is a strange phenomenon observed in that the correct discrimination of

RCAAM/ad12 (i.e. sc=2) with an SNR of 0 dB is larger than the one with 40 dB. This

phenomenon didn't occur in the RCAAM/fl. When the analog signal form is adopted, the

pattern linearity isn't distorted at all. Most aspect responses are consistent within a fair angle

range, and then there may be some adjacent analog aspect patterns that are very close to each

other. Ifthis happens, we may call these patterns with very close neighbors uneasy patterns.

Then the correlation gains for its neighbors will be also large and close, if the input is an

uneasy pattern. Therefore, the output may be a linear combination of the uneasy pattern and

its adjacent stored patterns, since each analog stored patterns in RCAAM/ad has its own

associated bipolar stored patterns. If the neighbor patterns are very close, then their linear

combination state may become a spurious stable state which is stable only for few iterations.

Therefore, an sc of 2 might still leave it in a spurious state, while a higher so can force it to

leave the spurious state. A large distortion may shifi an uneasy pattern in a way to bias favor

itself or one of its neighbors. Therefore, with a low sc of 2, the unrecognized discrimination

ofRCAAM/adl with 0 dB SNR is less than the one for 40 dB. And a higher sc will eliminate

this strange phenomenon. Why wouldn't the same phenomenon have happened to the
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RCAAM/fi with a sc of 2 ? The 3-bit coding with 7 quantization levels is a nonlinear

procedure and the coding mapping from analog signal to digital form increases the correlation

discrimination resolution. This means that the coding scheme will interpret uneasy patterns

with higher discrimination resolutions of correlations, and thus the RCAAM/fl with a sc of

2 can discriminate easier based on correlation gains than the RCAAM/ad_2 under light

contamination. The resolutions of correlation discrimination for analog and bipolar signals will

be formally analyzed in the next section.

Figure 5.63 shows the unrecognized discrimination of RCAAM/adl vs. sc for

contaminated unstored pattern inputs under 40 dB, 14 dB and 0 dB SNR. Figure 5.64

presents the correct pattern discrimination of RCAAM/ad] vs. sc for contaminated unstored

patterns in (a) and wrong pattern discrimination in (b). Again the RCAAM/ad] has excellent

no error target discrimination for seriously distorted unstored patterns. And the unrecognized

discrimination for 0 dB SNR is again less than the one for 40 dB SNR. But this time the cause

is different for the previous case. Since each unstored test pattern is resident at the middle of

two adjacent stored patterns in our simulations, a severely contaminated unstored pattern

might have a better chance to shifi toward either adjacent stored pattern than an

uncontaminated unstored pattern. Therefore, a heavily distorted unstored pattern may be

closer to a true stored pattern than a slightly distorted unstored pattern. This seemingly

unreasonable phenomenon results from the deterministic allocation arrangements around

stored and unstored test patterns. It is not expected in practical situation.

Figure 5.65 shows the correct target discrimination of RCAAM/ad with a sc of 2

(RCAAM/ad_2) vs. initial order for contaminated stored patterns in (a) and wrong target
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discrimination in (b). Figure 5.66 presents the correct target discrimination ofRCAAM/ad_2

vs. initial order for contaminated unstored patterns in (a) and wrong target discrimination in

(b). As explained in the previous section on RCAAM/fl, the performances ofRCAAM/ad are

independent of their initial orders. The phenomena occurred in the RCAAM/adlz with

contaminated stored patterns and the RCAAM/adl with distorted unstored patterns and also

exists in RCAAM/ad_2 with initial orders around 1. We should notice that the phenomenon

for stored patterns will be eliminated by larger initial orders, since a sufficiently larger initial

order is capable of discriminating the uneasy stored patterns. Figure 5.67 shows the aord

of RCAAM/ad vs. so for contaminated stored patterns and unstored patterns. From this

figure, there are approximately linear relationships between aord and sc for both cases.

5.6 Comparisons of Correlation-based Discrimination Resolutions Between

Analog and Bipolar Patterns

In the previous section, we found the RCAAM/ad with a fair sc has higher

unrecognized discriminations for lightly contaminated stored patterns than the RCAAM/fi,

though it has excellent correct and no error target discrimination performances for seriously

distorted patterns. This indicates that the analog data used by RCAAM/ad may have lower

correlation-based discrimination resolution than the digital data used by RCAAM/fl.

Figure 5.68 shows the orders required for the discriminations of RCAAM/fil vs.

SNR for contaminated stored patterns, while Figure 5.69 presents the orders required for

the discriminations of RCAAM/ad]. With contamination equal to or larger than 6 dB, the

RCAAM/fi12 and RCAAM/fil 5 always have smaller discrimination orders than the

RCAAM/ad12 and RCAAM/ad] 5, respectively. When the contaminations are less than 6 dB,
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Figure 5.60 Unrecognized discrimination of the RCAAM/ad with an initial order of 1

under 40 dB, 14 dB and 0 dB SNR vs. stability criterion for 68 stored patterns.
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Figure 5.61 Correct and wrong pattern discrimination performances of the RCAAM/ad

with an initial order of I under 40, 14 and 0 dB SNR vs. stability criterion for 68 stored

patterns.

(a) Correct pattern discrimination performances vs. stability criterion.

(b) Wrong pattern discrimination performances vs. stability criterion.
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Figure 5.62 Correct and wrong target discrimination performances of the RCAAM/ad

with an initial order of 1 under 40, I4 and 0 dB SNR vs. stability criterion for the 68

stored patterns belonging to 4 targets.

(a) Correct target discrimination performances vs stability criterion.

(b) Wrong target discrimination performances vs. stability criterion.
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Figure 5.63 Unrecognized discrimination of the RCAAM/ad with an initial order of 1

under 40 dB, 14 dB and 0 dB SNR vs. stability criterion for 64 unstored patterns.
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Figure 5.64 Correct and wrong target discrimination performances ofthe RCAAM/ad

with an initial order of 1 under 40, 14 and 0 dB SNR vs. stability criterion for the 64

unstored patterns belonging to 4 targets.

(a) Correct target discrimination performances vs stability criterion.

(b) Wrong target discrimination performances vs. stability criterion.
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Figure 5.65 Correct and wrong target discrimination performances of the RCAAM/ad

with a stability criterion of 2 under 40, 14 and 0 dB SNR vs. initial order for the 68 stored

patterns belonging to 4 targets.

(a) Correct target discrimination performances vs initial order.

(b) Wrong target discrimination performances vs. initial order.
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Figure 5.66 Correct and wrong target discrimination performances of the RCAAM/ad

with a stability criterion of 2 under 40, 14 and 0 dB SNR vs. initial order for the 64

unstored patterns belonging to 4 targets.

(a) Correct target discrimination performances vs initial order.

(b) Wrong target discrimination performances vs. initial order.
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the RCAAM/f1] has much larger discrimination orders than the RCAAM/ad. The latter

phenomenon results from the code linearity breakdown corresponding to severe

contaminations. As described in Chapter 3, the coding scheme we use will still have linearity

if the contamination amplitude is statistically less than 1.5 quantization levels. When the

contamination level breaks through the linearity range, the nonlinearity will result in many

ambiguous states which are not apparently close to any stored pattern. Therefore, the

discrimination order abruptly increases with a dramatic rate. And the former indicates the

analog data carries lower discrimination resolution than the encoded bipolar data. Let's

roughly prove this issue as follows.

In our simulation, there are 4 targets and each target has 17 aspect response patterns

stored in the network. Suppose the i‘h stored pattern, p,, is a row vector and g is its

autocorrelation, then g,= p,"‘(p,)T where * denotes matrix multiplication and (pi)T stands for

the transpose of the row vector p,. Consider a RCAAM/f1 or RCAAM/ad with initial order

of O and the recurrent iteration k. Then, from section 2, the stored patten pi has

autocorrelation gain or weight, gi at iteration l, and has autocorrelation gain or weight, g,“

at iteration k, if the input is pattern pi.

Assumption 1 : The output bipolar codes, associated to analog stored patterns in RCAAM/ad

and associated to themselves in RCAAM/f1, are consistent within each target. Therefore, the

output bipolar codes vary smoothly along with aspect angles for each target.

Assumption 2 : Only active patterns, whose correlation gains are greater than a threshold

value, can participate in generating the next state in the output stage. This assumption is

practical, since a small correlation gain will become annulled compared to a large one after
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a few iterations.

Assume the target t has n active stored aspect patterns w.r.t. an input. Usually we set

an active threshold by some percent, such as 30% or 20%, of the maximum correlation gain

of the data form. Then define a normalized correlation gain for this target t w.r.t. the input

by Gt where

G(:2: g, for iteration 1

n
(11)

(#22 glk for iteration k

From the assumption 2, only active patterns can contribute to the normalized target

correlation gain. Since assumption 1 has assumed the output codes are consistent within each

target, summation can be used to enhance the same target code. For finite positive real values,

we know the mean of sum is equal to or greater than the root of the product. Therefore,

1 k

)3 g." 2 MI 1.7."); = n(II g»; (12)
r-l i-l 1-1

and then

1 l
n _ n l

G.= (Ea-"1" 2 n"( _ 3.)" (13)
i-l 1-1

The equality appears only when all the correlation gains (gi's) have the same value. From the

right most term, the normalized correlation gain Gt will decrease by n” when the recurrent
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iterations continue. Finally this gives us a simplified way to evaluate and then compare the

normalized target correlation gains between the analog data and bipolar data.

In the following simulations, we assume the active patterns in the output stage should

have their correlation gains greater than a threshold value. Thus, under this assumption, only

active patterns can contribute to the normalized target correlation gain. To evaluate the

correlation-based discrimination resolution, we calculate the normalized target

crosscorrelation gain between different targets. Then, for each target, we compare its

normalized target autocorrelation gain to the other three normalized target crosscorrelation

gains. If the ratios of target autocorrelation gain, 1 after normalization, to target

crosscorrelation gains for a target are high then that target has high correlation-based

recognition resolution. If the ratio of target autocorrelation gain to target crosscorrelation

gains is around 1, the target has low correlation-based recognition resolution and then will

not be easily recognized. Since each target has 17 aspect patterns stored, the appearance

probability for each aspect is 1/17 for a given target. In our simulations, the bipolar pattern

has 300 bits and a maximum correlation gain of 300, while the normalized analog data has

100 values and a maximum correlation gain of 1. For example, if we set an active threshold

by 30% of the maximum correlation gain, then, to a given input, a stored pattern in

RCAAM/f1 will be referred as active only if its correlation gain is greater than 90 (300x30%)

with the input, and a stored pattern in RCAAM/ad will be considered as active only if its

correlation gain is greater than 0.3 (1x30%) with the input. For each stored pattern, we

calculate the correlations between itself and all 68 stored patterns and then evaluate the

normalized target correlation gains for all 4 targets by only using those active correlations.
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For example, a stored aspect pattern of target BSZ should result in more active patterns for

the B52 and less active patterns for the other three targets. After all 68 stored aspect patterns

are calculated, the final normalized target correlation (autocorrelation and crosscorrelation)

gains are given by the averaged value among 17 aspect patterns for each target. The

following tables show the simulation results for iteration k=1; and the results for the other k‘s

are similar to k=l.

Table 5.1 shows the comparisons of normalized target correlation gains subject to a

threshold of30% between analog data and the encoded bipolar data. For bipolar input form,

an active threshold of 30% means a stored pattern can be an active pattern only if it has a

correlation greater than 90 (300x30%) with the bipolar input. It is equivalent to say an active

stored pattern at least has 195 (150+90/2) bits out of 300 bits the same as the bipolar input.

If an active threshold of30% is assumed, the analog input form brings 21.76% stored patterns

into active operation, while the encoded bipolar input form only involves 8.69% stored

patterns. Since the target correlation gains are finally normalized with respect to the input

target, the normalized correlation gains in each row can be regarded as an estimate of the

input target recognition resolution in this 4 target memory. The input target can be easily

recognized within a few iterations, if the normalized crosscorrelation gains of the other three

targets w.r.t. the input target are much less than 1. For example, with a threshold of 30%, an

analog aspect pattern of target F14 has a normalized crosscorrelation gain of 0.0409 with

target 858 and a normalized crosscorrelation gain of 0.6048 with target TRl. Therefore, the

RCAAM/ad recurrent operations are almost expended in distinguishing the input target, F14,

from the target TR], while the target BS8 nearly doesn’t bother the input pattern at all.
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Comparing the analog portion with the bipolar portion in Table 5.1, we can find the analog

input data has lower correlation-based discrimination resolution than the encoded bipolar

data. This indicates that for the same input, the encoded bipolar form data is more easily

discriminated than the analog fonn, and the bipolar input form requires smaller discrimination

order from the RCAAM/f1 than the analog input form does from the RCAAM/ad. This

comparison of correlation-based discrimination resolutions is consistent with the results of

Figure 5.68 and Figure 5.69 . For bipolar input targets, the input target 852 has the most

0's in the normalized crosscorrelation gains w.r.t. the other targets. Thus the target 852 is the

most easily recognized target under the RCAAM/f1 network manipulation subject to an

assumed threshold of 30%.

Table 5.2 shows the comparisons of normalized target correlation gains subject to a

threshold of20% between analog data and the encoded bipolar data. For bipolar input form,

an active threshold of 20% means a stored pattern can be an active pattern only if it has a

correlation greater than 60 (300x20%) with the bipolar input. It is equivalent to say an active

stored pattern at least has 180 (150+60/2) bits out of 300 bits the same as the bipolar input.

Under this assumed active threshold, the analog input form brings 39.1% stored patterns into

active operation, while the encoded bipolar input form makes 20.02% stored patterns active.

In Table 5.2, in comparison to Table 5.1, there are two normalized target crosscorrelation

gains, the terms ofTR] w.r.t. input target B58 and the terms of858 w.r.t. input target TRI,

of bipolar form getting greater than those of analog form. Strictly speaking of those two

cross targets, the analog form has higher discrimination resolution than the bipolar form. But,

in general, the bipolar form still has a lot higher discrimination resolution than the analog
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form.

Table 5.3 presents the comparisons of normalized target correlation gains subject to

a threshold of 10% between analog data and the encoded bipolar data. This assumed active

threshold makes the analog input form induce 64.06% stored patterns active and the encoded

bipolar input form induce 55.97% stored patterns active. For bipolar input form, to be an

active pattern only requires a correlation greater than 30 (300x10%) with the bipolar input.

This means an active stored pattern may have 135 (150-30/2) bits out of 300 bits different

than the bipolar input. Besides the two cross terms appearing in Table 5.2, there are another

two normalized target crosscorrelation gains, the term of F14 w.r.t. input target B58 and the

term of858 w.r.t. input target F 14, ofbipolar form changing to greater than those of analog

form.

Summation is used in (l 1) to enhance the same target code, since assumption 1 has

assumed the output codes are consistent within each target. The assumption implicitly

indicates a larger active threshold can confine active patterns within a more consistent region.

Then the active correlation gains are closer, and the summation becomes more meaningful.

The equality in (12) is approached when the correlation gains become closer. Therefore, a

larger active threshold not only represents a better practical situation but also makes the

estimates of the normalized target correlation gain formula more consistent and acceptable.

Therefore, an active population of more than 50% not only becomes impractical, but also

violates the assumptions.
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Input No. (%) of Input Normalized Normalized Normalized Normalized

Data Active Target Correlation Correlation Correlation Correlation

Form Patterns Gain of 852 Gain of 858 Gain of F14 Gain of TR]

w.r.t. a w.r.t. Input w.r.t. Input w.r.t. Input w.r.t. Input

Threshold Target Target Target Target

of 30%

Target 1.0000 0.2777 0.3623 0.2801

852

Target 0.2176 1.0000 0.0507 0.1214

858

Analog 14.79

(21.76%) Target 0.2289 0.0409 1.0000 0.6048

F14

Target 0.1741 0.0964 0.5951 1.0000

TRI

Target 1.0000 0 0 0

852

Target 0 1.0000 0 0.0280

858

Bipolar 5.91

(869%) Target 0 0 1.0000 0.1402

F14

Target 0 0.0236 0.1518 1.0000

TR]

 

Table 5.1 Comparisons of normalized target correlation gains subject to an assumed active

threshold of 30% between analog data and encoded bipolar data.
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Input No. (%) of Input Normalized Normalized Normalized Normalized

Data Active Target Correlation Correlation Correlation Correlation

Form Patterns Gain of 852 Gain of858 Gain of F 14 Gain of TR]

w.r.t. a w.r.t. Input w.r.t. Input w.r.t. Input w.r.t. Input

Threshold Target Target Target Target

of 20%

Target 1.0000 0.4431 0.5247 0.3753

852

Target 0.3392 1.0000 0.1927 0.2505

858

Analog 26.59

(39.10%) Target 0.3609 0.1740 1.0000 0.7168

F14

Target 0.2524 0.2196 0.6999 1.0000

TRl

Target 1.0000 0.1020 0.0144 0.0909

852

Target 0.0608 1.0000 0.1115 0.2914

858

Bipolar 14.29

(21.02%) Target 0.0071 0.0917 1.0000 0.3398

F14

Target 0.0478 0.2567 0.3644 1.0000

TRI

 

Table 5.2 Comparisons of normalized target correlation gains subject to an assumed active

threshold of 20% between analog data and encoded bipolar data.
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Input No. (%) of Input Normalized Normalized Normalized Normalized

Data Active Target Correlation Correlation Correlation Correlation

Form Patterns Gain of 852 Gain of 858 Gain ofF 14 Gain of TR]

w.r.t. a w.r.t. Input w.r.t. Input w.r.t. Input w.r.t. Input

Threshold Target Target Target Target

OflOo/o

Target 1.0000 0.5759 0.6286 0.4719

852

Target 0.4585 1.0000 0.3614 0.3617

858

Analog 43.56

(64.06%) Target 0.4655 0.3390 1.0000 0.7909

F 14

Target 0.3360 0.3253 0.7720 1.0000

TRl

Target 1.0000 0.4132 0.1662 0.2858

852

Target 0.2666 1.0000 0.3867 0.5235

858

Bipolar 38.06

(55.97%) Target 0.1007 0.3658 1.0000 0.5391

F14

Target 0.1794 0.5209 0.5624 1.0000

TRl

 

Table 5.3 Comparisons of normalized target correlation gains subject to an assumed active

threshold of 10% between analog data and encoded bipolar data.
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5.7 Performances of RCAAM-GI Cascade Networks

From previous RCAAM/di, RCAAM/fl, and RCAAM/ad simulation performances,

we see that the unrecognized discriminations reduce when the stability criterion increases. At

the same time, the correct target discriminations of the RCAAM/di and RCAAM/fl are

apparently improved while the wrong target discriminations rise only slightly. For the

RCAAM/ad, the correct target discriminations increase without raising the wrong target

discriminations. Although a higher sc will improve discrimination performances, especially for

the networks with low initial orders, a higher sc will take more processing (calculation) time

as well as larger computing memory (i.e. larger aord) to satisfy the higher stability criterion.

And a high initial order not only has weakened adaptive elasticity and contamination

observability but also raises the aord, i.e. computing space. A low initial order gives a high

adaptive elasticity, and a low sc neither renders all convergeable correct target discriminations

nor converges all possible wrong discriminations . Therefore, a low initial order and sc will

quite often leave an ambiguous input in semi-stable states, which are stable only for a few

iterations. The Generalized Inverse (GI) network is firrther trained after an initial correlation-

based memory coding. It has the hybrid characteristic of being capable of converging the

spurious states within attractive basins to their associative target codes. We should remember

that the GI network has a noticeable advantage that it prefers to leave an ambiguous state

unrecognized rather than converge it to a wrong target. Thus a combination network leaving

the RCAAM with low initial orders and sc and cascaded with a GI network, will become

more efficient without sacrificing possible convergence. This thought seems unreasonable,

since taking advantage without losing profits anywhere is somehow contrary to nature.



202

5.7.1 Converging Efficiency Comparisons Between the RCAAM and the

RCAAM-GI Cascade Network

Figure 5.70 shows the unrecognized discrimination comparisons between the

RCAAM/di2 and the RCAAM/di22-GI cascade network along with stability criterion for both

contaminated stored and unstored patterns with 40 dB and 0 d8 SNR. The RCAAM/diZZ-GI

cascade network converges all unknowns for all cases, while the RCAAM/di2 with a high

sc of 10 still struggles for convergence for both contaminated stored and unstored patterns

for 0 d8 SNR. Therefore, a low sc of 2 in the RCAAM/diZZ-GI cascade network at least has

saved the discrimination orders integrated by an increment of 8 in sc used by RCAAM/diZX

where X denotes 10. Thus the RCAAM/di22-GI cascade network is much more efficient in

processing time and space than the RCAAM/di2.

Figure 5.71 presents the unrecognized discrimination comparisons between the

RCAAM/fil and the RCAAM/fil2-GI cascade network along with stability criterion for both

contaminated stored and unstored patterns for 40 dB and 0 d8 SNR. For the RCAAM/fi12-

GI cascade network, the unknowns are not completely converged only for the heavy

contamination case, i.e. 0 d8 SNR. As discussed before, serious contamination will result in

coding linearity failure and then the mechanism of RCAAM/fi will make the output state fall

into oscillation if the dominant correlation gain is negative. Therefore, the existence of

unknowns should be attributed to the nonlinear coding scheme and RCAAM/fl mechanism.

It is noticeable that the RCAAM/filZ-GI cascade network leaves no unknowns for

contaminated unstored patterns for 40 d8 SNR, while the RCAAM/til couldn't converge all

unknowns even when an sc as large as 40 is used. This time the efficiency benefit becomes
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huge when using an sc as small as 2 in RCAAM/filZ-GI instead of a sc as large as 40 in

RCAAM/filIVX where IVX stands for 40. Later we will show that the performances of

RCAAM/filZ-GI network for contaminated unstored patterns under the 40 d8 won't drop,

but get better than the RCAAM/filIVX.

Figure 5.72 shows the unrecognized discrimination comparisons between the

RCAAM/adl and the RCAAM/adlZ-GI cascade network along with stability criterion for

both contaminated stored and unstored patterns for 40 and 0 d8 SNR. For the

RCAAM/adlZ-GI cascade network , the unknowns are all converged for all cases, since the

analog data has no nonlinearity interference problem even under severe distortions. The

RCAAM/ad] still needs an sc of 15, larger than the sc of 2 used by RCAAM/fil, to converge

unknowns for slightly contaminated stored patterns. The reason for this, as given in the

previous section, is that the analog data has lower correlation-based discrimination resolution

than the encoded bipolar data form. The RCAAM/adl converges the slightly contaminated

unstored patterns only when a high sc of 30 is adopted. Compared to the RCAAM/di, the

analog data form is acting on a converging delay, so that the effect has firrther emphasized

the efficiency of the RCAAM/adlZ-GI cascade network.

5.7.2 Noise Tolerance Comparisons Between the RCAAM and RCAAM-GI

Cascade Network

From the last subsection, we know that the converging efficiency of the RCAAM-GI

cascade network is much better than the RCAAM. But we don't know if the RCAAM-GI

cascade network can still have good discrimination effect when its previous stage network,

the RCAAM, only sets a low stability criterion. Here we simulate the RCAAM with three sc's
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under different contamination levels, and then compare their discrimination performances with

those of the RCAAM-GI cascade network using the lowest sc.

Figure 5.73 shows the correct target discriminations ofthe RCAAM/di22-GI cascade

network and the RCAAM/di2 for contaminated stored patterns vs. SNR in (a), and the wrong

target discriminations in (b). Figure 5.74 presents the unrecognized discriminations of the

RCAAM/di22-GI cascade network and the RCAAM/di2 for contaminated stored patterns vs.

SNR in (a), and discrimination orders in (b). The correct target discriminations always

increase when the RCAAM/di2 changes its sc from 2 to 5 and then from 5 to 10.

Corresponding to the increment in sc, the wrong target discriminations show no change for

fair contaminations, and only rise slightly for serious noises. In both correct and wrong target

discrimination performances, the RCAAM/diZX‘s performances approximate the

RCAAM/di22-Gl's. It seems that the RCAAM/di2's performances will converge to the

RCAAM/di22's while the sc continues increasing. The unrecognized discrimination

performances for the RCAAM/di2 and RCAAM/di22-GI network also reveal this converging

characteristic. Although the RCAAM/di22-GI cascade network only sets an sc of 2, it leaves

the fewest unknowns behind for all contamination situations. The large differences between

the discrimination orders needed for the RCAAM/di2 and the ones for the RCAAM/di22-GI

network again demonstrates the RCAAM/di22-Gl's high efficiency. Although the

RCAAM/di2X expends a space about 8 orders higher than RCAAM/di22-GI network, it

doesn't give better discrimination performances.

Figure 5.75 shows the correct target discriminations ofthe RCAAM/di22-GI cascade

network and the RCAAM/di2 for contaminated unstored patterns vs. SNR in (a), and the
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(a) Correct target discrimination vs. SNR for the 68 stored patterns.

(b) Wrong target discrimination vs. SNR for the 68 stored patterns.
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Figure 5.75 Performance comparisons of the RCAAM/di's with an initial order of 2 and

RCAAM/di22-GI cascade network vs. SNR for the 64 unstored patterns belonging to 4

targets.

(a) Correct target discriminations vs. SNR for the 64 unstored patterns.

(b) Wrong target discriminations vs. SNR for the 64 unstored patterns.
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Figure 5.76 Unrecognized discriminations and discrimination orders of the RCAAM/di's

with an initial order of 2 and RCAAM/di22-GI cascade network vs. SNR for the 64

unstored patterns belonging to 4 targets.

(a) Unrecognized discriminations vs. SNR for the 64 unstored patterns.

(b) Orders required for discriminations vs. SNR for the 64 unstored patterns.
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wrong target discriminations in (b). Figure 5.76 presents the unrecognized discriminations

of the RCAAM/diZZ-GI cascade network and the RCAAM/di2 for contaminated unstored

patterns vs. SNR in (a), and discrimination orders in (b). For unstored patterns, the

RCAAM/diZZ-GI network's advantage ofthe RCAAM/di2 is again apparent. Specifically, the

RCAAM/diZS's correct target discrimination begins falling at 30 dB. The RCAAM/diZZ-GI

network has the fewest unknowns and lowest discrimination orders for all contamination

situations.

Figure 5.77 shows the correct target discriminations ofthe RCAAM/fl 12-GI cascade

network and the RCAAM/til for contaminated stored patterns vs. SNR in (a), and the wrong

target discriminations in (b). Figure 5.78 presents the unrecognized discriminations of

RCAAM/filZ-GI cascade network and the RCAAM/fil for contaminated stored patterns vs.

SNR in (a), and discrimination orders in (b). It can be observed that the RCAAM/fil's

discrimination performances are inclined to converge to the RCAAM/fiIZ's, while the sc

continues increasing. From the previous subsection, we have noticed that the RCAAM/fin-

GI cascade network is much more efficient in processing time and space than the

RCAAM/filIVX, which set an sc as large as 40. By checking the ratios of correct to wrong

target discrimination increments, especially for severe contaminations, we find that the

RCAAM/fiIZ-GI network also has better discrimination performances than the

RCAAM/filIVX. In Figure 5.78 , the unrecognized rate doesn't apparently lowered, while

the discrimination orders used by the RCAAM/filIVX get huge.

Figure 5.79 shows the correct target discriminations ofthe RCAAM/fi 1 2-GI cascade

network and the RCAAM/f1] for contaminated unstored patterns vs. SNR in (a), and the
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Figure 5.77 Performance comparisons of the RCAAM/fi's with an initial order of l and

RCAAM/filZ-GI cascade network vs. SNR for the 68 stored patterns belonging to 4

targets.

(a) Correct target discriminations vs. SNR for the 68 stored patterns.

(b) Wrong target discriminations vs. SNR for the 68 stored patterns.
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Figure 5.78 Unrecognized discriminations and discrimination orders of the RCAAM/fi's

with an initial order of 1 and RCAAM/dilZ-GI cascade network vs. SNR for the 68 stored

patterns belonging to 4 targets.

(a) Unrecognized discriminations vs. SNR for the 68 stored patterns.

(b) Orders required for discriminations vs. SNR for the 68 stored patterns.
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Figure 5.79 Performance comparisons of the RCAAM/fi’s with an initial order of l and

RCAAM/filZ-GI cascade network vs. SNR for the 64 unstored patterns belonging to 4

targets.

(a) Correct target discriminations vs. SNR for the 64 unstored patterns.

(b) Wrong target discriminations vs. SNR for the 64 unstored patterns.
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wrong target discriminations in (b). Figure 5.80 presents the unrecognized discriminations

of the RCAAM/filz-Gl cascade network and the RCAAM/til for contaminated unstored

patterns vs. SNR in (a), and discrimination orders in (b). For unstored patterns, the

RCAAM/filZ-GI cascade network's advantage of the RCAAM/f1] is evident. All the

RCAAM/f1], including the one with a sc of 40, couldn't reach 100% correct target

discrimination even for a slight contamination, while the cascade network with a low sc of 2

maintains the 100% correct target discrimination without difficulty until 3 dB. Although those

unstable states, to which the RCAAM/filIVX is unable to converge, are ambiguous and

oscillating, the RCAAM/filZ-GI cascade network still can converge them by their slightly

revealed inclinations to correct stored patterns. The RCAAM/filZ-GI cascade network's

excellent efficiency and great discrimination capability become much clearer in this case.

Figure 5.81 shows the correct target discriminations of the RCAAM/adIZ-GI

cascade network and the RCAAM/ad1 for contaminated stored patterns vs. SNR in (a), and

the wrong target discriminations in (b). Figure 5.82 presents the unrecognized

discriminations of the RCAAM/adlZ-GI cascade network and the RCAAM/ad1 for

contaminated stored patterns vs. SNR in (a), and discrimination orders in (b). From the

correct target discrimination performances, the analog data's deficiency, whose low

correlation-based discrimination resolution makes it need a high discrimination order to

converge, doesn't bother the RCAAM/adlZ-GI cascade network. The RCAAM/adIZ-GI

cascade network always has 100% correct target discrimination until -3 dB by only using a

low sc of 2, while the RCAAM/ad1 still struggles to converge a lot of unknowns until it sets

a high sc of 15. The cascade network still retains the RCAAM/ad's remarkable rare wrong
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target discrimination. Since the analog data has no nonlinearity inconsistency problem, the

converging failures should be attributed to the low correlation-based discrimination

resolution. The analog data form also brings us the low correlation-based discrimination

resolution, while it is introduced to eliminate the bipolar coding inconsistency occurring with

severe distortion. Then the low correlation-based discrimination resolution needs more orders

for discrimination, while the elimination of the inconsistent disorder with severe

contamination greatly reduces the discrimination order. Thus the analog data form raises the

discrimination orders required for light contamination, but at the same time reduces the

discrimination orders required for severe contamination. This is the reason why the

RCAAM/ad's discrimination order curves w.r.t. SNR are flatter than the RCAAM/fi's and

RCAAM/di's. This is a fair and balanced trade : getting advantage at one side and paying (or

losing) profit on the other side in return. As discussed before, a flat discrimination order curve

has low contamination observability.

Figure 5.83 shows the correct target discriminations of the RCAAM/adIZ-GI

cascade network and the RCAAM/ad1 for contaminated unstored patterns vs. SNR in (a),

and the wrong target discriminations in (b). Figure 5.84 presents the unrecognized

discriminations of the RCAAM/adlZ-Gl cascade network and the RCAAM/ad1 for

contaminated unstored patterns vs. SNR in (a), and discrimination orders in (b). Compared

to contaminated stored patterns, the RCAAM/adIZ-Gl's discrimination performances almost

haven't changed, while the RCAAM/adl's decay a lot. Again, the cascade network

discriminates without error until -6 dB. It's amazing that about 3% contaminated unstored

patterns still stay in confiised states for at least 15 iterations, when the GI network itself has
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correctly converged about 24% unrecognized states left by the RCAAM/ad12. For both

contaminated stored and unstored patterns, the RCAAM/adl's discrimination performances

again become converging to the RCAAM/adIZ-Gl's, while the stability criterion continues

increasing.

From the above simulation result comparisons, the excellent efficiency, high

converging capability and powerful discrimination ability of the RCAAM-GI cascade network

are very impressive. The performance comparisons between the RCAAM and RCAAM-GI

cascade network have offered an alternative way to appreciate what a great converging

capability the GI network has. As soon as an ambiguous state moves into attractive basins of

the stored patterns, the GI network will converge the state, even if still spurious, to one of

the stored patterns. With this issue in mind, a network doesn't need to converge a

contaminated input all the way to a real stable state. All it needs to do is to associate an input

with all stored patterns a few times. Then the input, if not severely distorted, will reveal its

inclination to some stored states, and thus move from an ambiguous state, if existing, into the

realms of attractive basins. Now the network can leave the task of converging the attracted

state to one of stored patterns to the GI network.
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Figure 5.81 Performance comparisons of the RCAAM/ad's with an initial order of 1 and

RCAAM/adlZ-GI cascade network vs. SNR for the 68 stored patterns belonging to 4

targets.

(a) Correct target discriminations vs. SNR for the 68 stored patterns.

(b) Wrong target discriminations vs. SNR for the 68 stored patterns.
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Figure 5.82 Unrecognized discriminations and discrimination orders of the RCAAM/ad's

with an initial order of 1 and RCAAM/dilZ-GI cascade network vs. SNR for the 68 stored

patterns belonging to 4 targets.

(a) Unrecognized discriminations vs. SNR for the 68 stored patterns.

(b) Orders required for discriminations vs. SNR for the 68 stored patterns.
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Figure 5.83 Performance comparisons of the RCAAM/ad's with an initial order of I and

RCAAM/adIZ-GI cascade network vs. SNR for the 64 unstored patterns belonging to 4

targets.

(a) Correct target discriminations vs. SNR for the 64 unstored patterns.

(b) Wrong target discriminations vs. SNR for the 64 unstored patterns.
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Figure 5.84 Unrecognized discriminations and discrimination orders of the RCAAM/ad's

with an initial order of 1 and RCAAM/adIZ-GI cascade network vs. SNR for the 64

unstored patterns belonging to 4 targets.

(a) Unrecognized discriminations vs. SNR for the 64 unstored patterns.

(b) Orders required for discriminations vs. SNR for the 64 unstored patterns.



CHAPTER 6

Target Discrimination using Neural Network with Spectrum

Magnitude Response

6.1 Introduction

In the previous three chapters, we used the sampled backscatter time response as the

network process information. We determined the beginning response time for each stored and

unstored aspect responses by a simple detection algorithm, and then picked the first 100 time

samples, starting from the detected beginning time, as time domain analog stored/unstored

patterns. Then noises were added to the deterministic analog stored/unstored patterns to

simulate the network tolerance performances. So we had assumed that the detection of the

beginning response for target aspect responses is available and consistent even under various

noises. In practical noise-limited situations, finding the same beginning response time used in

training is very difiicult. Therefore, the network must also store or train several time-shifted

neighborhoods of the time segment pattern for each aspect angle, to increase tolerance for

time-shifted patterns. This is impractical, since it dramatically reduces the network capacity.

Let's show a time-shifted case resulted from an inappropriate determination for the

beginning response occurred in our previous time domain simulations. In our simulations,

there are four targets and each target has 17 aspect patterns stored in networks. Figure 6.1

shows the time response stored segments of the fourth and sixth aspect stored patterns of

target F14. The aspect angle spacing between any two adjacent stored (or unstored) patterns

of a target is 1.8°, therefore the aspect angle spacing between the fourth and sixth aspect
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Figure 6.1 Two aspect (54° and 9°) stored patterns with an apparent time-shift resulted

from an inappropriate beginning response determination occurred in time domain

simulations.
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stored pattern oftarget F 14 is 36°. There is an apparent time-shifi between these two aspect

stored segments, since our detection to the beginning response failed. The analog correlation

gain between these two stored aspect patterns is -O.2914, and the bipolar correlation gain is

14 after encoded by 3 bits coding 7 levels. Since the stored aspect responses are normalized,

the analog autocorrelation gain for any stored pattern should be 1. The bipolar

autocorrelation gain should have the value of 300, thus the correlation gain of 14 indicates

the two stored patterns of target F 14 with aspect angles spacing with 36" have 143 bits

different among 300 bits. Therefore, no matter in analog or digital data form, the correlation-

based inconsistence resulted from the confined allocation of the beginning responses is worse

for these two aspect stored patterns. This correlation-based inconsistence will degrade the

target group idea and then make network’s discrimination only depend on individually distinct

aspect patterns but consistent target clustering in our simulations.

In this chapter, we use the spectral magnitude, which is time-shifi invariant, as the

network process information to overcome the difficulty of consistently allocating the

beginning time responses. Unfortunately, we use less information here than the time domain

process since the phase is ignored. Also, the sharp specular peaks characteristic of a typical

backscatter time response don't occur in the corresponding frequency spectrum.

6.2 Spectrum Magnitude Process and Normalization

To simulate target impulse response in the time domain, we measure the frequency

responses of 4 targets in the frequency band 1-7 GHz with a frequency increment of 0.01

GHz. Thus, we have 601 measured spectral responses including both magnitudes and phases.

Since an impulse in time domain has uniform spectral distribution in the frequency domain,
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the transmitted wave generated by a HP-87ZOB network analyzer sweeps from 1 GHz to 7

GHz to emulate the uniform spectral distribution. To have a narrow sampling time, (8192-

601) zeros are attached to the measured spectral responses to have 8192 total spectral

responses. Then a 8192-point inverse FFT is used to create the corresponding scattering time

responses. We then assume these time responses as measured by a time-domain radar system.

To eliminate any spurious reflections within the measurement chamber and save space, we

time-gate the responses and only adopt 820 responses for each aspect angle as measured

effective responses by a time-domain radar system.

In time domain simulations, we picked the first 100 samples from 820 points as the

aspect pattern, starting from the detected target beginning response time. But here we use the

820 time responses as time domain aspect pattern, and then use the FFT to transform the time

responses back into the frequency domain to have frequency domain aspect pattern.

Therefore, the simulation inputs are always 820 time responses in our spectral magnitude

simulations. Since we measured the spectral responses in the frequency band 1-7 GHz, the

FFT transform should have effective spectral responses in frequency band 1-7GHz. To be

consistent with the time domain simulations, we'd like to use 100 spectral samples as

frequency domain aspect pattern. We also want to fully utilize the spectral responses within

that bandwidth, so the transferred spectral responses should have 100 effective frequency

samples in frequency band 1-7GHz and zeros outside the band. Afier calculation, a 1358 point

FFT is used to have the band covered by 100 frequency samples, 18 to 117. Then we pick the

100 frequency samples residing from 18 to 117 and only use the spectral magnitude portion

as network processing patterns. To systematically process data, each aspect spectrum
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Figure 6.2 68 aspect FFT spectrum magnitude patterns, with normalized energy of 1,

used for spectrum process network trainings/storage. Spectrum process networks simulate

4 targets, each target has 17 trained/stored aspect spectral patterns. The effective

frequency band is 1-7 GI-Iz.
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magnitude pattern is normalized to energy 1. Figure 6.2 shows the 68 training/stored

spectral magnitude patterns obtained from the 68 aspect time responses where sample point

1 corresponds to 1 GHz and point 100 to 7 GHz. Since only one half of the signal information

is utilized, the spectrum magnitude patterns are not as distinct from each other as the time

domain patterns.

In digital data process simulations, not only 7 quantization levels are again used but

also 5 levels are tried. since the dynamic oscillation range for spectrum magnitude patterns

is much smaller than time responses, 5 quantization intervals may be enough to represent the

small dynamic oscillation range. Then we use 3 bits to binomially encode the 5 and 7

numerical intervals, so each binomial pattern will have 300 bits for both 5 and 7 quantization

levels. The code assignment for 7 quantization levels encoded by 3 bipolar bits is same as the

time domain one presented in chapter 3. The code assignment for 5 quantization levels

encoded by 3 bipolar bits is shown below :

 

BitlBit2 -l -l -l l l l l -l

Bit3

'1 2 3 4

 

 

      
 

Table 6.1 Code assignment of 5 quantization levels encoded by three bipolar bits.
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The above code assignment has a great linear range, and the statistical linear range is 3:35

levels. Therefore, the linear range almost covers all 5 levels. The linearity only fails on two

specific situations that the signal in level 1 will recognize itself closer to the level 5 than the

level 4, and the signal in level 5 will recognize itself closer to the level 1 than the level 2. Thus

the 5-level code has higher linearity than the 7-level code, and this is the major reason that we

also use the S-level code in spectrum magnitude simulations. The great linearity can prevent

correlation-based networks from wrong similarity recognition under contaminations. At the

same time the code with low quantization levels will result in low correlation-based

discrimination resolution, and it will be analyzed later.

There are some problems with analog spectrum process networks, since the spectral

magnitude carries less information than the time response signal. In the time responses, the

location of specular peaks is a good measurement for discrimination. In contrast, the spectral

magnitude doesn't oscillate around its mean value nor have a lot of sharp peaks. Apparently,

the frequency magnitude changes much slower than the time domain signal, and its variance

is much less than its corresponding time response. Therefore, the spectral magnitude

distribution is more uniform and the discrimination among these spectrums becomes harder.

Since the spectrum magnitude is positive, the correlation between any two stored spectrum

patterns is always a positive value. Therefore, before processing analog spectrum magnitude,

we normalize spectrum magnitude patterns to satisfy the following two conditions :

(1). Every stored pattern must be normalized to 0 mean value.

(2). The energy of each pattern must be normalized to some uniform value.

The above condition (1) makes recurrent correlation process with a nonlinear threshold
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function more efficient, while condition (2) enhances the linearity of the correlation operation.

Suppose {A(i)| i=l,...,n} is a stored spectrum magnitude pattern with energy 1. Then

)3 A(i>2=1 (1)
i-l

Letting 3 denote the mean of A, i.e.,

a: 12 A(i) (2)
n H

and E{ A(i) - fl} = 0, then we have two processes by which to produce the normalized

pattern A

(1). Prior Process :

For condition (2), we have

2 [C'(A(i)-a)]2=1 (3)

i-l

so that

 

(4)

and A(i) = C-( A(i) - g).

If AM(i) = A(i) - a, has been calculated, then we use the following process.

(2). Posterior Process :

Condition (2) gives

A 1'

4(1) = —i)—— =1) -AM(i)

.. 2 (5)

2: AM“)
{-1

where



 

   i:W (6)

Due to

A .

E{——M(—I)——} = D-E{AM(1')} = o

I .. (7)

2 AMU)2

, the condition (2) is also satisfied.

Since we have assumed A has energy 1, then

2 A,,(,-)2.1-na_2 (s)
i-l

and thus C=D.

Thus, we now have the normalized spectrum magnitude pattern _A_ satisfying both conditions

(1) and (2) :

Em» =0 (9)

2 4mm (10)

i-l

Although we have normalized the spectral magnitude to overcome the deficiency

caused by disregarding phase, the analog correlation processing algorithm still requires fiirther

improvement. As analyzed previously, the frequency spectra are more similar to each other

than the time responses, and thus the crosscorrelations between any two stored spectral

patterns almost always have positive values, even after the above normalization. Therefore,
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we need an offset to further compensate this deficiency.

We statistically evaluate the crosscorrelations for all the stored spectral patterns to

find out the average and the minimum, and then design the offset. Since the spectral patterns

have been normalized, the maximum correlation gain, (i.e. autocorrelation,) among all stored

patterns is 1, provided the input is equal to some stored pattern. Let Cm," denote the

minimum of crosscorrelations among all stored patterns. If a recurrent correlation associative

network is to converge to the expected stored pattern, it needs to satisfy at least

 

1-01m: > -(Cmm—0fifset) (11)

and thus

1+Cmm

Offset < 2 (12)

Typically, Cmin has a negative value. If -(C,,,,,,-Offset) > l-Offset exists, there exists an input

and one stored pattern that have negative normalized correlation gain and the gain scale is

larger than the normalized input autocorrelation. Therefore, the stored pattern with minimum

correlation gain will overcome the others including the input's true stored pattern when the

recurrent iterations are even. Ifwe use the value of Offset just satisfying the above inequality

margin, then the negative gain dominator may still occur when inputs are contaminated. And

the critical satisfaction also may make the network not converge or converge very slowly. We

evaluate the mean of all crosscorrelations, then statistically and experimentally find that 2/3

ofthe mean is a good choice for the Offset. Therefore, the network processing algorithm for

RCAAM/ad requires some modification to process the analog frequency spectrum magnitude.

Suppose { ( E', C’)| i: 1,...,P} are the associative pattern pairs stored in RCAAM/ad,
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where E‘ is a bipolar column vector of length m and C‘ is a normalized analog spectral

magnitude vector oflength n, given by E = [£1 £2 tip] and C= [Cl C2 CP], and let the

offset vector Fm,“ be a column vector of length P with each component value equal to the

Offset. If U is an n-dimensional normalized analog spectral magnitude input, then we can

construct the initial Analog-Digital RCAAM as follows :

M; E-{ Diag [(CT-U - Fofi,,,).“(init)]-CT} (13)

050: g- { Diag [(CTU — Foflset)."(init)]-Foflm} (14)

where A."q2[A,"A2"...AP"]T and

"A 0...0'

0 A2 0...

Diag (A)E

  homo/1p

if A = [A1 A2 A1,]T, and OSO is an m by 1 column vector.

Then the current dynamic memory output is

V0 = Sign (Mo-U - 0S0) (15)

The initial order init is usually set to 0. Since the input has analog form (the same as C' ), and

the output has binomial form (the same as E‘ ), we have fixed input (Uk = U,) for this analog-

digital hybrid memory. Then the dynamic memories Mk, the dynamic Offset vector 08,, and

the evolution outputs Vk at the recurrent iteration time k have

Mk = g-{ Diag[(CTU-0flset )."(init+k)]°CT } (16)
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OS, = 5-{ Diag[(CTU-0fifs~et )."(init+k)]-Foflm } (17)

V, = Sign (Mk°U - 03,) (18)

We previously showed the inconsistent correlation gain resulted from inconsistent

beginning response detections. Now let's check if the spectrum magnitude process can

alleviate the problem. Figure 6.3 shows the FFT spectrum magnitude patterns corresponding

to the previous time-shifted responses, while Figure 6.4 presents their normalized spectrum

magnitude patterns. We can see that the whole waveform shifiing effect has been eliminated

for both types of spectrum magnitude patterns. The correlation gain for the two spectrum

magnitude patterns is 0.897 and is 0.639 for the two normalized spectrum magnitude patterns.

Compared to the negative correlation gain occurred in time domain, the spectrum magnitude

waveform for these two aspect patterns are more consistent. Afier offsetting, the spectrum

magnitude correlation gain is 0.349, and then still positive. In time domain, the 7-level bipolar

coding gave the two aspect patterns a correlation gain of 14, thus two bipolar patterns had

157 bits in common and 143 bits different. In spectrum magnitude process, the S-level coding

has a correlation gain of 132, therefore two bipolar patterns have 216 bits in common and 84

bits different. The 7-level coding has a correlation gain of 62, therefore two bipolar patterns

have 182 bits in common and 118 bits different. Therefore, the digitized data form still

demonstrates the property that the spectrum magnitude process has better correlation-based

consistence for the target responses with close aspect angles than time domain process.
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6.3 Manipulation of Spectrum Magnitude Data Before Network Process

In spectrum magnitude simulations, we use the same 4 targets, 68 stored/trained and

64 unstored/untrained aspect angles as we did in the time domain case. In time domain noise

tolerance simulations, the desired noise based on the energy of the simulated pattern is

directly added to the pattern, i.e. 100 samples or responses. Since we have assumed that the

time responses measured from a time domain radar is only available in practical situation, we

used IFFT to have time responses from lab-measured spectral responses and then used FFT

to obtain the spectral responses as the network process information. To be consistent with

this assumption, the noise in spectral simulations should be added to time domain signal and

then use FFT to obtain the contaminated spectral responses.

Remember that there are 8192 time responses after IFFT from the measured spectral

responses. Then we time-gated the 820 effective responses as time domain aspect responses

measured by a time domain radar. Also recall that the time domain network only pick the first

100 samples among 820 responses as network process pattern, starting from the detected

beginning response time. To emulate the practical situation, the simulated noise is added to

the 820 time responses in spectral simulations. Given a time domain input with 820 responses,

we calculate its energy, then add the desired simulated noise to the 820 responses. So, in our

simulations, we calculate the energy of 820 samples for each pattern, then generate the

corresponding noise with a SNR required for simulation. Afier noise is added to the 820

samples, extra 538 zeros from (1358-820) are attached to the 820 values to form a 1358-

element signal. Then a 1358-point Discrete Fourier Transform (DFT) is used to obtain 1358

spectrum magnitudes. As described previously, the 1358-sample is designed to have the
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available measurement band 1-7 GHz covered by 100 frequency samples, and no response

outside the band. Finally we pick the 100 spectrum magnitude samples, sample 18 to sample

1 17, as spectral network process pattern. Then the further normalization is computed based

on this spectral pattern before presenting the pattern to the network.

We have explained that the Signal To Noise (SNR) definitions for time domain and

spectrum domain processes are different. We now show the noise contamination effects in

time domain responses and then spectral responses after DFT. Figure 6.5 shows the 820 time

responses used as measured responses by a time domain radar. The solid line stands for the

true responses, while the dotted line denotes the contaminated signal with a SNR of 0 dB.

Then Figure 6.6 presents the 1358 spectrum magnitudes obtained from the above 820 time

responses plus 538 zeros by using 1358-point Fourier transform. It's clear to see that the true

spectrum magnitude, solid line, only has values in two sample intervals, samples 18 to 117

and samples 1242 tol34l, corresponding to the frequency band 1-7 GHz. After noise is added

to time responses, the transformed spectral responses have magnitudes spreading over the

whole band. Figure 6.7 shows the 100 time responses used as the time domain network

process aspect pattern and its contaminated signal, dash-dot line, with a SNR of 0 dB. In time

domain simulations, the desired noise calculation is based on the 100 responses, i.e. aspect

pattern itself. Finally, Figure 6.8 presents the 100 spectrum magnitudes used as spectrum

network process pattern. They are truncated from the previous 1358 spectrum magnitudes,

so only the noise spectrum occurred in the measure band, 1-7 GHz, will contaminate the true

spectral pattern. Again the calculation of 0 dB is based on the 820 time responses. It is noted

that the noise amplitudes become large, compared to the spectrum magnitude, if the spectrum
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Figure 6.5 820 time responses of target B52 at aspect angle 0° used as measured

responses by a time domain radar. The solid line shows the true responses, while the

dotted line denotes the contaminated signal with a SNR of 0 dB.
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Figure 6.6 1358 spectrum magnitudes transformed from the previous two time responses

by using a 1358-point DFT. The solid line shows the true responses, while the dotted line

denotes the contaminated signal with a SNR of 0 dB. The evaluation of 0 dB is based on

the 820 time responses.
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magnitude pattern is normalized, i.e. magnitudes will oscillate around the mean value.

6.4 Comparisons of Correlation-based Discrimination Resolutions for

Different Data Formats

We have used different information forms for network processes, 7 levels encoded by

3 bits in time domain bipolar networks, analog valued responses in time domain RCAAM/ad,

5 and 7 levels encoded by 3 bits in spectral process bipolar networks, and analog valued

spectrum magnitude in spectrum magnitude RCAAM/ad. Given different information forms,

a RCAAM network will have different convergent iterations and performances. With the same

network structure and stored aspect patterns, the convergent iterations indicate how easy a

given information can be discriminated, therefore, we realize that the information form can

affect the correlation-based discrimination resolution and then performances. Then we may

ask which information form has high correlation-based discrimination resolution ? This section

will answer ( or analyze) this question.

Since the discrimination medium for most networks used in this thesis are based on

correlation gains, we will focus on the relationship between the information form and its

correlation-based discrimination resolution. What kind of correlation distribution indicates

better discrimination resolution ? To systematically analyze both analog and digital data

forms, let's normalize the maximum correlation gain to 1, then the normalized correlation gain

of 1 will indicate a gain of 300 to our 300-bit bipolar patterns and l to the normalized analog

patterns. Since the network output prior threshold function is sum of the stored patterns

weighted by their individual correlation gains, the dominant patterns ought to have apparently

larger correlation gains than the others. Our output stages always use the bipolar form, i.e.
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a nonlinear threshold function. Then it will be difficult to find any dominant pattern after the

threshold function, if great populations have large correlation gains. Thus the better

correlation gain distribution, to a stored pattern input, should have few gains (or patterns)

in high values and most gains in small values, then the stored pattern, the input, won't be

interfered by those small gain patterns and can dominate the network convergence. What kind

of transition curve, expressing gain population change, is better ? If the population transition

from small gain to high gain is smooth, then it's unclear to have the dominant patterns.

Therefore, a better transition should be steep.

Another concern is that high consistencies among adjacent aspect patterns will help

to enhance the target group clustering, and then the group consistent dominant force will

become greater than a distinct pattern and easier to relieve the interferences from other

patterns or groups. Therefore, the high gain population transition boundary is better to have

small populations which are aspect consistent. Consistent patterns are 3 for one aspect

spacing consistencies, plus and minus aspect spacing, and they are 5 for two aspect spacing

consistencies, i.e. plus one, plus two, minus one and minus two aspect spacing. In this study,

the aspect spacing for stored aspect patterns is 18". Given a stored pattern, we may say the

adjacent aspect patterns are aspect consistent, if the smallest correlation gain between the

pattern and its adjacent aspect patterns is greater than an aspect consistency criterion.

Therefore, if an aspect consistency criterion is assumed to 40% of the maximum gain, then

the aspect consistent bipolar patterns should have at least (50+40/2)%=70% or

300*70%=210 bits in common, or at most 30% or 90 bits different. Thus if a bipolar gain

population curve has a steep transition and its high gain with distinctly small population starts
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around 0.4 and has patterns about 3 or 5, then we can expect this bipolar data form has high

correlation-based discrimination resolution. Although the number of the same response

samples between two aspect consistent patterns can not be given for analog patterns from an

assumed aspect consistency criterion, the same gain population will affect the discrimination

output in the same way.

Figure 6.9 shows the correlation gain population distribution for the 68 stored time

domain patterns with bipolar and analog forms, while Figure 6.10 presents the gain scale

population distribution, ignoring the signs of correlations. Again the maximum correlation

gains have been normalized to l for both analog and bipolar patterns. First we assume an

active threshold gain, then a stored pattern will be active if it has correlation gain with the

given stored pattern input greater than the active threshold. The 'active pattern' means the

pattern has the capability to affect the output. The correlation gain population is statistically

estimated for all stored patterns by calculating the number of stored patterns which have

correlation gains greater than the assumed active threshold. Comparison between two figures

shows that the analog patterns have a lot of negative correlation gains with scales less than

30% of the maximum gain. Therefore, high negative gain population below the gain scale of

0.3 indicates that these negative correlations won't bother dominant patterns for a high active

threshold but may become a problem if the active threshold falls below 30% of the maximum

gain like heavy contamination situations. According to the previous analysis, the time domain

bipolar patterns have a great gain population distribution, since it has steep transition curve

and small population, about 4, at the high gain transition comer with a gain of 0.4. From the

population distribution, presented a stored pattern as an input, the time domain bipolar data
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will only have 4 patterns with their correlation gains greater than 40% of the maximum gain,

300. Therefore, at most 4 stored patterns can dominate the network converging, if a dominant

pattern should have its correlation gain greater than 40% of the maximum gain. The small

population at the high gain side afier the transition region may be regarded as an estimate for

the number of aspect consistent patterns. Thus about 4 adjacent aspect patterns are in aspect

consistency with respect to time domain bipolar data, 'and then the consistent aspect spacing

is (4-1)* 1.80 = 5.4". It is apparent that in time domain the bipolar format has better

correlation-based discrimination resolution than analog data, and this is consistent with the

results of the previous chapter.

Figure 6.11 shows the correlation gain population distribution for 68 stored spectrum

magnitude patterns with different data forms, while Figure 6.12 presents the gain scale

population distribution, ignoring the signs of correlations. Before normalization, the gain

population distribution for analog spectral patterns is very poor, and there are 97% of the

stored patterns with their gains greater then 70% of the maximum gain. Therefore, with most

of the stored patterns at high gains all stored patterns will be confused together and bring no

dominant winner, and then networks has no discrimination ability at all to these analog

patterns. Now it is evident why we needs to normalize the analog spectrum magnitude data

before network processing. After the normalization, the analog correlation population

distribution has been greatly improved so that the population with gains greater than 70% of

the maximum gain has dropped to 7%, or about 5 patterns. Although the gain population

transition curve is smooth, the new distribution has appeared the dominant patterns at gains

greater than 0.7. The normalization greatly reduces the high gain population, then the aspect
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consistency population greatly decreases. Therefore, we may say that the normalization

nonlinearly increases the pattern space and the differences among adjacent aspect patterns,

thus the aspect consistent patterns under the same consistency criterion decrease.

The offsetting to the normalized analog data makes the gain population distribution

curve shift toward the left side, therefore the small population transition gain is shified to 0.4

from 0.7. There are two deficiencies from this offsetting, the first is that the gain scale

dynamic range is reduced from 1 to (l-foffset) and the second is that the shifting or

subtraction by the foffset reflects a lot of negative gain population at low gain area. The first

deficiency will reduce discrimination resolution, while the second one can cause negative gain

interfering problem if the active gain drops to a low value like heavy contamination situation.

Therefore, the correlation-based discrimination resolution for normalized and offset analog

data is worse than the 7-level bipolar data and even worse than the 5-level bipolar data

although the shified population distribution curve is close to the one for the 7-level bipolar

data.

To systematically compare with the other data forms, the normalized and offset

correlation gains are again normalized to its own maximum gain, (l-foffset). Then the

normalized and offset analog data format still has great improvement compared to the

normalized analog data, although the transition curve is still not as steep as the 5-level and

7-level bipolar data. The small population transition gain is shified to a lower value and the

negative gain population is again increased for correlation gain scale less than 0.4, compared

to the normalized analog data. The smooth transition curve is a characteristic for analog data,

since analog data format has full linearity and then the aspect consistency is high and smooth.
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Therefore, this high aspect consistency, with more population at high gain, will make analog

patterns struggle in self-competition at high gain area, and then delays converging but won't

bother the target discrimination correct rate, since those aspect consistent patterns belong to

the same target.

The 7-level bipolar spectral data format apparently has the best gain population

distribution and the negative gain population at low gains is few. The real small population

transition gain should occur at the gain of 0.4, the population with gains greater than 0.4 is

less than 1.5 patterns. The dominant pattern is almost unique when the considered active gain

is larger than 0.4. Therefore, the 7-level bipolar data format has a small number of aspect

consistent patterns, then the target group idea becomes faint. It is equivalent that the 7-level

bipolar patterns are distinct from each other, and then they have stronger distinct pattern idea

than target group idea. Thus the discrimination with 7-level bipolar patterns almost depends

on distinguishing distinct patterns and has few self-competition phenomena, and then saves

converging iterations.

The S-level bipolar spectral data format also has a good gain population distribution,

and few negative gain population at low gains. Its few population transition gain occurs at the

gain of 0.5, and its aspect consistency is higher than the 7-level bipolar data. Since the 5-level

bipolar coding has higher linearity than the 7-level bipolar coding, the 5-level bipolar data has

more patterns in aspect consistency than the 7-level bipolar data. It is an interesting

phenomenon that the 5-level bipolar gain distribution curve is crossed around the gain of 0.43

by the distribution curve of the normalized and offset analog data. The S-Ievel bipolar data

format has lower population than the normalized and offset data for the gains larger than
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0.043 and has higher population for the gains lower than 0.043. It indicates that the 5-level

bipolar form has better correlation-based discrimination resolution if dominant patterns needs

to have correlation gain larger than 0.5. Practically, it can be expected that the 5-level bipolar

data format has better correlation-based discrimination resolution and fewer converging

iterations than the analog data, since the few population transition for 5-level bipolar data

apparently occur at the gain of 0.5 while the analog data has a smooth population transition

curve.

Now let's use the normalized target (cross)correlation gain estimate formula,

developed in the previous chapter, to quantitatively estimate the correlation-based

discrimination resolutions for different data forms. In the previous chapter, the estimation

calculation was based on two assumptions as follows :

(I). Only active patterns, whose correlation gains greater than the assumed active threshold

gain, can participate in generating the next state in the output stage.

(2). For the active patterns, their associative output patterns are consistent.

From the previous correlation gain population distributions for different spectral data, the

analog data format has its small population transition at high gain, therefore we use higher

active threshold gains for the estimate formula to keep consistent with above two

assumptions. The following three tables show the estimated normalized target correlation

gains for different spectral data forms. The estimated normalized target correlation gains for

time domain data were presented in the previous chapter.

In Table 6.2, an active threshold gain of 0.4, 40% of the maximum gain, is assumed.

The normalized analog data have normalized target crosscorrelation gains comparable to 1,
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No. (%) Estimated Normalized Target Correlation

Spectral Process of Active Input Gain w.r.t. Input Target

Input Data Form Patterns Target

w.r.t. a

“”5110“ B52 BSS F14 TRl
of40%

B52 1.0000 1.0808 0.9665 1.1579

Normalized 36.44 B58 0.5369 1.0000 0.7341 0.7888

Analog Data (53.59%)

F14 0.5569 0.8495 1.0000 0.7881

TR] 0.5552 0.7580 0.6558 1.0000

B52 1.0000 0.5595 0.3881 0.4797

Normalized and 13.79 B58 0.2172 1.0000 0.3418 0.3815

Offset Analog (20.28%)

Data F14 0.1952 0.4433 1.0000 0.4513

TRl 0.2157 0.4422 0.4044 1.0000

B52 1.0000 0.6480 0.3326 0.5785

Bipolar Data with 15.24 B58 0.2446 1.0000 0.3748 0.4790

5 Qantization (22.41%)

Levels F14 0.1387 0.4142 1.0000 0.5901

TRl 0.1915 0.4192 0.4684 1.0000

B52 1.0000 0 0 0

Bipolar Data with 2.59 B58 0 1.0000 0.0412 0.1039

7 Qantization ( 3.81%)

Levels F14 0 0.0453 1.0000 0.0476

TR] 0 0.1107 0.0460 1.0000

 

Table 6.2 Estimated normalized target correlation gains subject to a active threshold of40%

for different spectral process data forms.
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therefore its correlation-based discrimination will be greatly interfered by these undesired

patterns and then has low correlation-based discrimination resolution. Afier offsetting the

normalized analog data, the normalized target crosscorrelation gains for the normalized and

offset data have been apparently decreased and the active pattern number also decreases.

Compared to the 5-level bipolar data, both normalized target crosscorrelation gains are very

close, and this quantitative similarity is consistent with the crossing gain around 0.4 for the

two gain population distribution curves in the previous figure. The 7-level bipolar data have

normalized target crosscorrelation gains near or equal to 0, thus at this fair active threshold

the 7-level bipolar data format has much greatly prevailed the others.

In Table 6.3 an active threshold gain of 50% is assumed. The normalized analog data

have slightly improved their normalized target crosscorrelation gains, while the normalized

and offset analog data apparently reduce their normalized target crosscorrelation gains.

Compared to the normalized and offset analog data, the 5-level bipolar data have firrther

noticeably improved their normalized target crosscorrelation gains, and again this quantitative

variation is consistent with the previous figure. The 7-level bipolar data have all normalized

target crosscorrelation gains 0 except two terms. Finally an active threshold 60% of the

maximum gain is assumed in Table 6.4. This time the normalized analog data have greatly

reduced its normalized target crosscorrelation gains. The 5-level has 0's in all its normalized

target crosscorrelation terms except four terms, while the normalized analog and offset analog

data continue improving their target crosscorrelation gains. The 7-level bipolar data finally

have 0's in all their normalized target crosscorrelation terms.
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Spectral Process

Input Data Form

No. (%)

of Active

Patterns

w.r.t. a

Threshold

of 50%

Input

Target

Estimated Normalized Target Correlation

Gain w.r.t. Input Target

 

352 358 F14 TR]

852 1.0000 0.7998 0.6356 0.9655

 

 

 

 

 

 

 

 

 

 

 

 

  
 

 

      

Normalized 22.53 B58 0.3372 1.0000 0.5211 0.6763

Analog Data (33.13%)

F14 0.3047 0.5923 1.0000 0.6368

TR] 0.3802 0.6310 0.5233 1.0000

BS2 1.0000 0.3229 0.2058 0.1930

Normalized and 7.41 858 0.1161 1.0000 0.1782 0.2693

Offset Analog (10.90%)

Data F14 0.0991 0.2386 1.0000 0.2371

TR] 0.0818 0.3177 0.2087 1.0000

B52 1.0000 0.1762 0.0239 0.0242

Bipolar Data with 4.91 858 0.0790 1.0000 0.0776 0.1954

5 Qantization ( 7.22%)

Levels F14 0.0125 0.0906 1.0000 0.2853

TR] 0.0095 0.1720 0.2153 1.0000

B52 1.0000 0 0 0

Bipolar Data with 1.44 858 0 1.0000 0 0.0229

7 Qantization ( 2.12%)

Levels F 14 0 0 1 .0000 0

TR] 0 0.0238 0 1.0000

 

Table 6.3 Estimated normalized target correlation gains subject to a active threshold of 50%

for different spectral process data forms.
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Spectral Process

Input Data Form

 

No. (%)

of Active

Patterns

w.r.t. a

Threshold

of 60%

Input

Target

Estimated Normalized Target Correlation

Gain w.r.t. Input Target

 

B52 BS8 F14 TR]

BSZ 1.0000 0.4897 0.2111 0.4572

 

 

 

 

 

 

 

 

 

 

 

 

  
 

 

      

Normalized 10.06 B58 0.1968 1.0000 0.2027 0.3782

Analog Data (14.79%)

F14 0.1048 0.2507 1.0000 0.4205

TR] 0.1993 0.4105 0.3689 1.0000

852 1.0000 0.1274 0.0988 0.0317

Normalized and 4.12 B58 0.0455 1.0000 0.0718 0.1512

Offset Analog ( 6.06%)

Data F14 0.0406 0.0822 1.0000 0.1060

TR] 0.0124 0.1649 0.1008 1.0000

B52 1.0000 0 0 0

Bipolar Data with 2.4] B58 0 1.0000 0 0.0900

5 Qantization ( 3.55%)

Levels F 14 0 0 1.0000 0.0408

TR] 0 0.0867 0.0343 1.0000

B52 1.0000 0 0 0

Bipolar Data with 1.03 B58 0 1.0000 0 0

7 Qantization ( 1.51%)

Levels F14 0 0 1 .0000 0

TR] 0 0 0 1.0000

 

Table 6.4 Estimated normalized target correlation gains subject to a active threshold of 60%

for different spectral process data forms.
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RCAAM Discrimination Iterations for Contaminated

Stored Patterns Under 40 dB / 0 dB ; Average.

Information Process Form
 

 

 

 

RCAAM/di22 RCAAM/fi12 RCAAM/ad12

Time Domain Process 3.17 / 5.33 ; 3.98 / 8.54 ; 5.54 / 6.04;

(Bipolar Data Coding 7 Levels) 4.35 6.76 6.09

Spectral Process 5.05 / 8.69 ; 5.49 / 7.94 ; 6.49 / 7.40 ;

(Bipolar Data Coding 5 Levels) 7.12 7.12 9.71

Spectral Process 2.61 /4.71 ; 3.95 / 6.15; 6.41 /7.51 ;

(Bipolar Data Coding 7 Levels) 4.06 5.61 9.70     
 

Table 6.5 Comparisons of network discrimination iterations among different data forms by

testing networks with contaminated stored patterns.

Let's check if the above gain population distributions and the estimated normalized

target correlation gains are consistent with network discrimination iterations for different data

forms. To compare between analog and bipolar data, the RCAAM/fi and RCAAM/ad should

be used, since they have the same discrimination algorithm but different input data forms. In

Table 6.5, the p denotes the initial order and the q represents the stability criterion in network

RCAAM/dipq, RCAAM/fipq and RCAAM/adpq. The comparisons of discrimination

iterations between the time domain networks and spectrum magnitude networks are

inappropriate, since the time domain responses have less consistencies resulted from the
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inconsistent detections ofthe start beginning responses. In Table 6.5, only the discrimination

iterations for 68 contaminated stored patterns under 40 db, 0 db and the average among 10

SNR's are listed here. The 0 db case may approximate the contaminated unstored pattern

case. From Table 6.5, Under 40 dB the order of discrimination iterations from small to high

are : the 7—level bipolar spectral data < the 7-1evel bipolar time data < the 5-level bipolar

spectral data ... the analog time data < the normalized and offset analog spectral data. This

order is consistent with the correlation gain population distributions in the previous four

figures and the quantitatively estimated normalized target correlation gains in the previous

three tables.

Under 0 dB the order of discrimination iterations from small to high are : the 7-1evel

bipolar spectral data < the analog time data < the S-level bipolar spectral data < the 7-level

bipolar time data < the normalized and offset analog spectral data. For spectral data forms,

the consistencies are still kept. The 7-level bipolar time data format becomes worse than the

analog time data, since the 7-level code will suffer severe nonlinear distortion but the analog

data still have the linearity when the contamination scale is statistically greater than 1.5 levels.

Under serious contamination, the correlation gain population distribution curve should be

shifted toward the left side, since the dominant patterns with high correlation gain will become

confused by serious distortion and have their high gains drop to low gains. The analog time

data format has smooth population distribution curve, while the 5-level bipolar spectral data

format has apparent population transition around the gain of 0.5. Therefore, under severe

contamination the 5-level bipolar time data may drop its high gains below the transition gain,

while the analog time data smoothly decrease their high gains. Then the analog time data will



261

have better correlation-based discrimination than the 5-level bipolar spectral data.

Since the normalized and offset analog spectral data have a lot of negative gain

population resulted from the offsetting around low gain scale, the heavy contamination can

make its high gain population move toward low gains and then struggle with the negative gain

population.

6.5 Network Simulations with Spectrum Magnitude Response

Here we simulate the major networks used in this study, GI, HCAM, ECAM,

RCAAM and GI cascaded networks, with bipolar data coding 5 and 7 quantization levelsAs

described before, we use the bipolar data with 5 quantization levels due to their high linearity

and less oscillations in spectrum magnitude response. The 7-level data format has a high

correlation-based discrimination resolution and can better express the detailed response

variations, as shown in the previous section, although it has worse linearity. Figure 6.13

shows the GI network performances vs. SNR for the 68 contaminated stored patterns, while

Figure 6.14 presents the network generalization performances for the 64 contaminated

unstored patterns. The 5-level bipolar data format demonstrates its higher noise tolerance than

the 7-level data format for both stored and unstored patterns. If a G1 net, trained with patterns

of few quantization levels, can converge with zero error, then it means that the well trained

GI net can discriminate all training patterns under such a low resolution. Thus the GI net

trained with low resolution patterns can still work very well, while the GI net trained with

high resolution patterns suffers from noise sensitivity. The spectrum magnitude GI network

still prefers to leave ambiguous inputs unknown rather than discriminate wrongly.

Figure 6.15 shows the HCAM and HCAM-GI cascade network performances vs.
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SNR for the 68 contaminated stored patterns, while Figure 6.16 presents the network

generalization performances for the 64 contaminated unstored patterns. For 5-level bipolar

patterns, the HCAM of order 5 is used, since an order of 3 has very poor performances. For

the 7-level bipolar patterns, the HCAM of order 3 is used, since it already shows better

performances than the 5-level bipolar form. Again, this is another proof analyzed in the

previous section that the 7-level data format has better correlation-based discrimination

resolution. Both HCAM's, order of 5 for the 5-level code and order of 3 for the 7-level code,

have poor performances for contaminated unstored patterns. With SNR higher than 0 dB,

both HCAM-GI cascade networks have improved the noise tolerance performances for the

stored patterns. For the unstored patterns, it also raises the wrong discrimination rate with

almost the same amount as the correct one, while the HCAM-GI cascade networks improve

the correct discrimination rate.

Figure 6.17 shows the ECAM and ECAM-GI cascade network performances vs.

SNR for the 68 contaminated stored patterns, while Figure 6.18 presents the network

generalization performances for the 64 contaminated unstored patterns. Similar to the time

domain ECAM performances, spectrum magnitude ECAM has excellent performances for

both 5-level and 7-level bipolar data. Comparing the performances with SNR's less than 0 dB,

the 5-level bipolar patterns have a higher correct discrimination rate and a lower wrong

discrimination rate than the 7-level bipolar patterns. It again proves our analysis that the 5-

level data have better linearity than the 7-level data, and then the 5-level data can still have

their linearity under severe contamination where the linearity of the 7-level data has no longer

survived. The correlation-based discrimination resolution becomes trivial and plays an
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Figure 6.13 Spectrum magnitude GI network performances with bipolar data coding 5

and 7 levels vs. SNR for 68 contaminated stored patterns.
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data coding 5 and 7 levels vs. SNR for 64 contaminated unstored patterns.
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Figure 6.15 Spectrum magnitude HCAM and HCAM-GI cascade network performances

with bipolar data coding 5 and 7 levels vs. SNR for 68 contaminated stored patterns.
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Figure 6.16 Spectrum magnitude HCAM and HCAM-GI cascade network generalization

performances with bipolar data coding 5 and 7 levels vs. SNR for 64 contaminated

unstored patterns.
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Figure 6.17 Spectrum magnitude ECAM and ECAM—GI cascade network performances

with bipolar data coding 5 and 7 levels vs. SNR for 68 contaminated stored patterns.
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unimportant role to the ECAM, since the ECAM already exponentially expands the

discrimination space by using the exponentially weighted correlation gain. Therefore, only the

linearity part of bipolar codes will affect the ECAM performances. The ECAM still

aggressively converges all inputs into two categories, correct or wrong patterns, and leaves

no unknown behind for both stored and unstored patterns. Therefore, the cascaded GI

network nearly couldn’t improve nothing.

Figure 6.19 shows the RCAAM/d122 and RCAAM/di22-GI cascade network

performances vs. SNR for the 68 contaminated stored patterns, while Figure 6.20 presents

the network generalization performances for the 64 contaminated unstored patterns. The first

digit behind the 'di' stands for the initial order, and the second digit denotes the stability

criterion (sc) used by the network. The 7-level bipolar data format prevails the 5-level bipolar

data format for the RCAAM/d122 due to its high correlation-based discrimination resolution.

Here we only use the low initial order and sc to show its advantage over the HCAM with

higher orders, 5 for 5-level and 3 for 7-level. The low discriminations for contaminated

unstored patterns can be improved by using a higher initial order. The RCAAM/di-GI cascade

network has a chance to improve the performances for 5-level bipolar data, since the

RCAAM/di22 using 5-level bipolar data leaves several unknowns behind due to its low

discrimination resolution.

Figure 6.2] shows the RCAAM/fi12 and RCAAM/filZ-GI cascade network

performances vs. SNR for the 68 contaminated stored patterns, while Figure 6.22 presents

the network generalization performances for the 64 contaminated unstored patterns.

Comparing the RCAAM/fil2 performances between 5-level and 7-level bipolar data, the 7-
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level patterns prevail for fair and slight contamination situations, while the 5-level patterns

present better performances for serious distortion cases. It is a good example to express that

the discrimination resolution factor will lead network performances where the code linearity

still functions, and the linearity factor will dominate network performances where the code

linearity fails. For the RCAAM/fi12-GI cascade networks, the 5-level bipolar data format

always has better performances than the 7-level bipolar data format for both stored and

unstored patterns, since the 5-level GI net trained with lower resolution data has higher noise

tolerance. It is amazing that the RCAAM/filZ-GI cascade network, using such a small

discrimination space, has the same performances as the ECAM does for the contaminated

stored patterns.

From the above observations, we can expect that the high correlation-based

discrimination resolution advantage for the 7-level bipolar data will fade when the stability

criterion (sc) becomes higher, since a higher sc will delay to give the discrimination output

until an output can stay at the same state for sc times correlation accumulations. During the

sc correlation accumulations, the discriminatuion resolution is increased, but the code linearity

is kept the same. Thus a lower resolution data, 5-level, will improve its discrimination

resolution from a high sc, but a higher resolution data, 7-level, can not improve its linearity

from the sc. Hence, the linearity advantage will gradually appear when the sc goes high.

Figure 6.2] shows the RCAAM/ad12 and RCAAM/adIZ-GI cascade network

performances vs. SNR for the 68 contaminated stored patterns, while Figure 6.22 presents

the network generalization performances for the 64 contaminated unstored patterns.

Compared to the RCAAM/fi12, especially for unstored patterns, the analog spectrum
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magnitude has low correlation-based discrimination resolutions. Since a low sc, 2, is set, the

patterns with low correlation-based discrimination resolution will still remain confused

together after residing at the same state for 2 times and then a lot of inputs are left

unrecognized. From the RCAAM/ad12 performances for contaminated unstored patterns, we

can realize that the 7-level bipolar data format has better pattern distinction resolution than

the S-level data format, since the weighted gains, the correlation gains between an analog

input and the stored analog patterns, to both 5—level and 7-level bipolar data are the same.

A better pattern distinction resolution indicates that the patterns (or codes) are highly distinct

from each other, thus have high correlation-based discrimination resolution. The near zero

wrong discrimination from the RCAAM/ad12 indicates that the normalized and offset analog

spectrum magnitude patterns have very high linearity so that they only become ambiguous but

not close to any wrong pattern under noisy situations. The cascaded GI net has greatly

converged those ambiguous states to their true corresponding targets, thus the combination

of the RCAAM/ad and GI networks becomes a very good scheme. Compared to the time

domain RCAAM/ad12, the effect of correlation-based discrimination resolution of data forms

to network performances is clear.

6.6 Network Comparisons

Several bipolar/binary networks, the Hopfield recurrent net and BAM's, have been

simulated for the purpose of comparisons. To demonstrate the RCAAM's advantages over

other popular networks, the following neural networks have been simulated : Hopfield

recurrent network, Bidirectional Associative Memories (BAM) and Multi-Layer feedforward

and error-BackPropagation (ML/BP) networks.
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The autoassociative Hopfield net always leads to some undefined states and leaves

none discriminated. The BAM also has poor performances and always converges to wrong

heteroassociative partners. We have altered the BAM process strategy by using target group

code in its heteroassociative partners, and then we only discriminate the target group code

portion of the final stable state and ignore the rest of the code. This effort has greatly

improved the correct recognition rate and also reduced the wrong rate in simulations. In our

simulations, we design a set of 7-bit heteroassociative codes corresponding to the 68 300-bit

stored patterns. The first two bits are designed as a target group code for four different

targets, i.e. [-1 -l] for BSZ, [-l l] for B58, [1 -1] for F14 and [l 1] for TR], and then the

next five bits are coded to represent 17 azimuthal responses of each target. Therefore, this

altered BAM will discriminate an input as a correct target or wrong target, and leave none

unknown. For example, if the BAM using group code has 36.2% and 8.7% correct

discriminations respectively at 40 and 0 dB; then the remaining 63.8% and 91.3% all

contribute to wrong discriminations.

We also simulate two ML/BPs, one without a hidden layer and another with one

hidden layer containing 25 neurons, to compare their performances to the networks we used.

We use the uncoded 100 analog responses as training inputs for each training pattern, and use

the same output target set used by the GI net. Therefore, they have analog inputs and bipolar

outputs. The initial weights are randomly initiated, and a momentum has been used to reduce

the chance ofbeing trapped in local minima. Compared to the GI net, ML/BPs require more

training epochs and manipulations to converge all training patterns to their desired targets

with zero error. Although a momentum has been used, the trainings are still sometimes
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trapped in local minima a number of times. The ML/BP nets have a similar performance

phenomenon to the GI net. As expected, they prefer to leave ambiguous inputs unknown

rather than discriminate wrongly.

We have used two different discrete levels to quantize an analog spectrum magnitude,

5 levels and 7 levels. Less quantization levels give not only higher linearity but also lower

noise sensitivity, although they may lose resolution. In a severe noisy condition, the coding's

linearity and noise tolerance sometimes are more important. From figures 1 and 6, it is easy

to see that the time responses oscillate with a much larger range than the frequency spectral

magnitudes. Therefore 7 levels are used in the time responses for accurately representing its

large oscillation range. Different factors prevail in different networks. The noise tolerance and

linearity factor prevail in training-based convergent networks, i.e. the GI net, while the

resolution factor prevails in correlation-based recurrent memories for moderate noisy

conditions. For correlation-based recurrent memories, more quantization levels will enlarge

the correlation gain of two similar patterns and reduce the gain oftwo unlike patterns. This

two-side effect greatly increases the discrimination resolution, so the recurrent network

performance will improve.

To illustrate in detail 9 different network performances under 10 different SNR levels,

six figures are plotted. Figure 6.25 shows the performance comparisons of time domain

networks with 7-level bipolar data for 68 contaminated stored patterns, while Figure 6.26

presents the network generalization performance comparisons for 64 contaminated unstored

patterns. Figure 6.27 shows the performance comparisons of spectrum magnitude networks

with 5-level bipolar data for 68 contaminated stored patterns, while Figure 6.28 presents the
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Figure 6.27 Performance Comparisons of different spectrum magnitude process networks

(S-level bipolar data, if used) vs. SNR for 68 contaminated stored patterns.
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Figure 6.28 Generalization performance Comparisons of different spectrum magnitude
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Figure 6.29 Performance Comparisons of different spectrum magnitude process networks

(7-level bipolar data, if used) vs. SNR for 68 contaminated stored patterns.
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Figure 6.30 Generalization performance Comparisons of different spectrum magnitude

process networks (7-level bipolar data, if used) vs. SNR for 64 contaminated unstored

patterns.
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network generalization performance comparisons for 64 contaminated unstored patterns.

Figure 6.29 shows the performance comparisons of spectrum magnitude networks with 7-

level bipolar data for 68 contaminated stored patterns, while Figure 6.30 presents the

network generalization performance comparisons for 64 contaminated unstored patterns. For

correlation-based networks, we use their GI-cascaded networks for performance

comparisons. All HCAM's use an order of 5 in comparisons, since we want the best

performances of the HCAM to compare with the RCAAM. In time domain networks, it is

clear that the correlation-based networks, except the BAM, have better performances than

the training-based networks despite of the needed discrimination space. The RCAAM/ad12-

GI cascade network has the best performance, and the ECAM-GI and the RCAAM/diZZ-GI

have almost the same performances. The BAM has the worst results, since, to improve its

discrimination, its discrimination philosophy is altered to the bi-state, correct or wrong.

In the spectrum magnitude networks, the RCAAM/adIZ-GI cascade network no

longer has the best performances, since the normalized and offset analog spectrum magnitude

has the lower correlation-based discrimination resolution than the S-level and 7-level bipolar

data. The RCAAM/filZ-GI and ECAM-GI cascade networks using S-level bipolar data have

the best performances, since the linearity of 5-level bipolar code can survive through severe

noise. Again, the BAM has the worst performances. The HCAM-GI cascade network using

5-level bipolar data has poor performance for contaminated unstored patterns, but the

HCAM-GI cascade network has the performances similar to the RCAAM/diZZ-GI network's.

But a HCAM with an order of 5 means that each recurrent operation needs to manipulate 5

multiplications to have a correlation gain for one stored pattern. Therefore, compared to the
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RCAAM, the HCAM needs 5 times more hardware operations, or clocks in digital circuit, to

finish the correlation evaluation.

We summarize the architectures ofthe recurrent correlation associative networks used

in Table 6.6. The computation space for RCAAM's is iteratively adaptive. For lightly

contaminated patterns, the computation space required for discrimination is small due to few

iterations, while a larger space is required for highly distorted patterns. Row 5 presents the

available knowledge observed from the network operations about contamination or similarity

between input and the final stable output. The ECAM converges most distorted inputs to

some stable states within 3 iterations since it extremely expands the discrimination space.

Therefore, we are unable to determine contamination from the ECAM. The HCAM's with

small order are usually trapped in some spurious stable states, while the RCAAM typically

avoids that with its accumulatively dynamic memory and the adjustment of sc. The decisions

are deterministic for both HCAM and ECAM, when their outputs don't change for one

iteration, since their memories are fixed.

The architectures and numerical performances are summarized in Table 6.7 for time

domain process networks, in Table 6.8 for spectrum magnitude process networks with S

quantization levels coded by 3 bits and in Table 6.9 for spectrum magnitude process networks

with 7 quantization levels coded by 3 bits. Column 4 in each table presents the training epochs

and final errors for the ML/BPs and the GI networks. The first number in this column presents

the training epochs with which network trainings converge to 0 error, while the second

number denotes the extra training cycles made to ensure all training pattern outputs deeply

enter the saturation regions of the sigmoid function. Theoretically, this will increase noise
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Network HCAM ECAM RCAAM

Input form Binomial Binomial Binomial or Analog

Process structure/ Fixed memory/ Fixed memory/ Dynamic memory/

Recurrent operation Adaptive Adaptive Accumulatively

adaptive

Computation Space Small for small Extremely huge Fit for

orders discrimination

Observability about High for small orders Very little High

contamination or ; low for high orders

similarity between input

and the final output

 

 

 

 

Possibility trapped in Very high for small Very little Adjustable

unknown stable states orders

Decision strategy Deterministic Deterministic Flexible

Hardware Realization Capable for fair Nearly incapable Capable

orders

Multiplication operation times ofthe order (1 + correlation 1 time

(clock) times required to used; i.e. 5 times for gain) times;

calculate a gain the HCAM with times of

weighting for each order of 5 correlation gain

stored pattern at each are spent on

update in a digital circuit calculating the

power of

exponential base      
Table 6.6 Architecture summary of the recurrent correlation associative networks used.

tolerances and decrease the biased learnings. Column 5 presents the average iterations which

the recurrent networks require to reach the stable state adopted for target discrimination. The

upper number in every row corresponding to 'Trained' means the result obtained by testing

the contaminated trained/stored patterns, while the lower number corresponding to
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'Untrained' indicates the result obtained by testing the contaminated untrained/unstored

patterns. Column 6 presents the minimum SNR in dB at which the network still performs 95%

correct discrimination. Column 7 shows the correct and wrong discrimination rates in

percentage respectively at 40 and 0 dB. The number pairs left to the ',' shows the correct

discrimination for 40 and 0 dB, while the number pairs right to ',' presents the wrong

discrimination. Finally, column 8 presents the maximum integer computation scale required

for processing one stored pattern.

High resolution and linearity are the most important issues as long as the input data

format is concerned in evaluating the network performance. The high resolution will expand

the differences between any two trained/stored patterns and then make pattern discrimination

easier, while the linearitiy between an input and the stored patterns can greatly increase the

confidence in network performances. But analog data are hard to use in a recurrent

associative update, therefore the analog networks can't iteratively adapt to the final stable

state. Without using analog signal, we may not confidently determine the contamination or

the similarity between an input and the network output. Also an analog network can't be

cascaded to a high performance and high dimension recurrent autoassociative network as a

group decoder. Unless an analog network is capable of hardware realization, it can't take

advantage of today's digital computer technologies. A binomial data only has two states by

which an artificial neuron model emulates the bi-state, activated and inactive, of a biological

neuron. Therefore, the binomial data is well qualified for use in recurrent and cascade

operations, like complicated biological neural nets. Binomial data uses much less space than

continuous data in a digital computer process, and it can be fiirther compressed. Quantizing
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continuous data by finite discrete levels can also result in a tolerance of light contamination

in a way. And the binary data are easy and safe to store for long periods of time.

 

 



 

 

 

 

 

 

 

 

 

 

 

         

Input/ Memery Training Trained; Max.

Output Size Epoch Untrained Integer

Form /Error _ o Comput.

Network Averg. Min. dB Percent (/o) of Scale

Recog. w/ 95% Correct, Wrong

Iterat. Correct Recog. at

Recog. 40/0 dB

Hopfield net Bip/Bip 300x300 X 9.68; None; 0/0, 0/0; 3002

9.71 None 0/0, 0/0

BAM using Bip/Bip 300x7 X 4.28; 20 dB; 96.0/63.6, 4/36; 3002

group code 4.25 None 83/582, 17/42

ML/BP w/o Analog 100x4 164+ X 10 dB; 100/59.3, 0/ 4; Not

hidden layer /Bip 1012/0 14 dB 980/566, 0/5 Integer

ML/BP w/ 1 Analog 100x25 624+ X 14 dB; lOO/56.6, 0/ 3; Not

hidden layer /Bip +25x4 414/0 14 dB 995/542, 0/ 4 Integer

GI Net Bip/Bip 300x4 3+ X 10 dB; 100/42.4, 0/11; Not

120/0 14 dB 100/42.3, 0/12 Integer

HCAM 5.02; None; 806/ 52.5, 0/ 2; 3003

(order of3); 6.12 None 63/ 47.2, 0/ 3

Bip/Bip 68x300 X

HCAM 3.44; 20 dB; 975/84, 0/ 7; 3005

(order of 5) 3.76 None 920/852, 0/ 6

ECAM Bip/Bip 68x300 X 3.01; 3 dB; 100/90.7, O/ 9; 2300

3.03 3 dB 100/90.9, 0/ 9

RCAAAM Bip/Bip 68x300 X 4.35; 3 dB; 100/90.9, 0/ 9; Adaptive

/di22—GI 5.15 3 dB 100/91.7, 0/ 8

RCAAAM Bip/Bip 68x300 X 6.76; 3 dB; lOO/89.6, 0/ 8; Adaptive

/fi12—GI 7.88 3 dB 100/894, 0/ 7

RCAAAM Analog 68x100 X 6.09; -6 dB; 100/ 100, 0/ 0; Adaptive

/da12-GI /Bip +68x300 7.3 -6 dB 100/100, 0/ 0
 

Table 6.7 Network architectures and performances summary for time domain target

discrimination with 7 quantization levels encoded by 3 bits.
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Input/ Memery Training Trained; Max.

Output Size Epoch Untrained Integer

Form /Error _ o Comput.

Network Averg. Min. dB Percent (/o) of Scale

Recog. w/ 95% Correct, Wrong

Iterat. Correct Recog. at

Recog. 40/0 dB

Hopfield net Bip/Bip 300x300 X 5.40; None; 0/0, 0/0; 3002

5.29 None 0/0, 0/0

BAM using Bip/Bip 300x7 X 4.73; None; 55.9/48.1, 44/52; 3002

group code 4.7] None 44.4/40.6, 56/59

NHJBP w/o Analog 100x4 1981+ X 14 dB; 100/65.2, 0/ 10; Not

hidden layer /Bip 864/0 None 875/644, 2/11 Integer

ML/BP w/ 1 Analog 100x25 1337+ X 10 dB; 100/62.5, 0/10; Not

hidden layer /Bip +25x4 678/0 None 906/602, 2/ 12 Integer

GI Net Bip/Bip 300x4 10+ X 6 dB; 100/75.3, 0/ 5; Not

120/0 20 dB 953/734, 3/ 6 Integer

HCAM 6.56; None; 2.79/ O, 0/ 0; 3003

(order of 3); 6.22 None 0/ 0, 0/ 0

Bip/Bip 68x300 X

HCAM 4.51; None; 949/572, 0/ 0; 3005

(order of 5) 7.71 None 32.5/28, 0/ 0

ECAM Bip/Bip 68x300 X 2.95; -3 dB; 100/100, 0/ 0; 2300

3.05 -3 dB 100/98.3, 0/ 2

RCAAAM Bip/Bip 68x300 X 7.12; 3 dB; 100/87.5, 0/12.5; Adaptive

/di22-GI 9.42 None 87.5/794, 12/20

RCAAAM Bip/Bip 68x300 X 7.12; -3 dB; 100/100, 0/ 0; Adaptive

/fi12-Gl 10.06 -3 dB 989/972, 0/ 2

RCAAAM Analog 68x100 X 9.71; 0 dB; 100/99, 0/ 0; Adaptive

/da12-GI /Bip +68x300 12.85 3 dB 988/93,], 0/ 0   
Table 6.8 Network architectures and performances summary for spectrum magnitude target

discrimination with 5 quantization levels encoded by 3 bits.
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Input/ Memery Training Trained; Max.

Output Size Epoch Untrained Integer

Form /Error , Comput.

Network Averg. Mm. dB Percent (%) of Scale

Recog. w/ 95% Correct, Wrong

Iterat. Correct Recog. at

Recog. 40/0dB

Hopfield net Bip/Bip 300x300 X 6.37; None; 0/0,0/0; 3002

6.19 None 0/0, 0/0

BAM using Bip/Bip 300x7 X 4.17; None; 83.4/70, 17/30; 3002

group code 4.13 None 77.7/59.5, 22/40

ML/BP w/o Analog 100x4 1981+ X 14 dB; 100/65.2, 0/10; Not

hidden layer /Bip 864/0 None 875/644, 2/11 Integer

ML/BP w/l Analog 100x25 1337+ X 10 dB; 100/62.5, 0/10; Not

hidden layer /Bip +25x4 678/0 None 906/602, 2/12 Integer

GI Net Bip/Bip 300x4 10+ X 10 dB; 100/66.3, 0/10; Not

120/0 None 89.5/63.4, 3/9 Integer

HCAM 5.18; None; 96.5/ 59.9, 0/ 0; 3003

(order of3); 9.38 None 486/ 33.1, 0/0

Bip/Bip 68x300 X

HCAM 3.28; OdB; 100/99.1, 0/ 0; 3005

(order of 5) 3.4 3 dB 966/92, 3/ 8

ECAM Bip/Bip 68x300 X 2.96; OdB; 100/99.9, 0/ 0; 2300

3.05 0 dB 975/953, 3/ 5
 

RCAAAM Bip/Bip 68x300 X 4.06; OdB; 100/996, 0/ 0; Adaptive

/di22-GI 5.83 14 dB 956/903, 4/10
 

RCAAAM Bip/Bip osxsoo x 5.61; OdB; 100/99.7, 0/0; Adaptive

/fi12-GI 8.08 OdB 984/952, 2/4
 

RCAAAM Analog 68x100 X 9.7; OdB; 100/99, 0/ 0; Adaptive

/da12-Gl /Bip +68x300 13.37 3dB 100/93.3, 0/0          
Table 6.9 Network architectures and performances summary for spectrum magnitude target

discrimination with 7 quantization levels encoded by 3 bits.

 

 



CHAPTER 7

Conclusions

We have used several different neural network architectures to discriminate among

radar targets at a wide variety of aspect angles. From the simulations, it appears that

correlation-based neural networks have powerful and effective problem solving abilities.

Comparing the GI network to the recurrent correlation-based associative memories, we find

a well trained GI network has a quite good attraction basin within which the GI net can

correctly converge from a state to its associative stored pattern. But the GI network noise

tolerance is inferior to the correlation-based associative memories. Typical RCAM's have off-

line predetermined fixed memory, limiting the network flexibility and adaptability. Therefore,

some RCAM networks may blindly reserve a huge computation space to operate in regardless

of inputs, and some may not work well if used with insufficient predetermined order.

We have proposed a flexible and highly adaptive real-time learning network, the

RCAAM , which has dynamic memory to allow the given input to adapt in a parallel fashion

to all stored patterns, and an adjustable stable criterion to observe contamination and semi-

stable states. The adaptive mechanism can be expressed from two points of view. We may say

that the dynamic memory learns to adapt to the input; therefore the adaptive (or changing)

direction along which the dynamic memory changes is subject to the input presented. The

dynamic memory seemingly tries to find a way to compromise with the given input at a low

energy-like state. In contrast, we may also say, with the memory fixed, the input keeps

changing (or updating) in order to adapt to the memory contructed by stored patterns through
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recurrent learnings. Hence the resouces required for discrimination are dynamic and just fit

to discriminate the input presented, and is no longer detemlinistic.

A flexible decision strategy should be considered whenever noise contamination is

involved in network performance. The contamination observability of the RCAAM through

semi-stable states allows us to estimate the input contamination and the corresponding

network reliability (or confidence) so that we can decide to accept or discard the network

discrimination output based on that information. The network may have several semi-stable

states corresponding to the same input ifthe stability criterion is set to a low value, say 1. The

spurious (unknown) semi-stable states will fiirther converge to one of the stored patterns if

the stability criterion becomes high. Thus, the discrimination decision strategy is flexible : 3

phases, correct/wrong/unknom or 2 phases, correct/wrong. We have simplified the RCAAM

iteration to an easily realizable implementation form, which speeds up the dynamic memory

computations. The GI-cascaded network usually improves the performances for fair

contamination situations, and saves a great deal of discrimination space. A GI network

cascaded to an RCAAM with a low initial order and stable criterion is an effective and

economical combination.

We have also used spectrum magnitudes as the network processing patterns. The

spectrum magnitude network simulations produce excellent results for the ECAM-GI,

HCAM-GI with order higher than 5, and RCAAM-GI. We find that the linearity and

resolution are the most important factors when the data format is considered in network

performance. We have analyzed the correlation-based discrimination resolutions for different

data formats, and find that the bipolar data format usually has a better correlation-based
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discrimination resolution for both time and spectral domain data. The analog data format

always has better linearity than bipolar data. A nonlinear normalization with additional

offsetting can convert the useless analog spectrum magnitude into useful analog data with

correlation-based discrimination resolution and a correlation gain population similar to the

bipolar data expressing 5 quantization levels. We find that, with coding bits fixed, the code

with less quantization levels has better linearity. The RCAAM has the same or better

performances, but with great space savings compared to the ECAM or the same

implementation complexity as the HCAM. The bipolar process network performances show

the spectral processes producing results comparable to those using time responses, although

half the information has been ignored. Hence, the spectrum magnitude process is an

alternative, effective and realizable technique.

Speaking ofhardware implementation, the ECAM processing high dimension patterns

can't be realized since the known physical materials can't represent such a huge dynamic range

needed for ECAM‘s pattern discrimination. Altough the HCAM with order higher than 5 can

perform very well, the high order will reduce its updating speed. Consider an HCAM with

order of 7. Since the hardware multiplication in the HCAM will be repeated 7 times between

the current input and each stored pattern on each update, the time spent on correlation-gain

calculation for each stored pattern for the HCAM is 6 times more than the time for the

RCAAM if a control clock is used. Therefore, the HCAM with higher order is less efficient

and less flexible than the RCAAM. Typically, the RCAAM/fl requires one more pattem-

dimension register than the RCAAM/di in hardware realization if the input and output

registers can be trigged in different directions.
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Some improvements can be developed to relieve the interference resulting from the

negative correlation gains. This can be done simply by adding a positive-valued offset to the

correlation gain between the input and each stored pattern. However, this offset will raise the

correlation mean, so the correlation-based discrimination resolution will be decreased, and

then the discrimination processing time will be increased. A better improvement in evaluating

the correlation gain for the stored pattern i'with bipolar format is given below :

Gain I. = (Input 69 Weighted Pattern I. )x [Sum (Input 0 Pattern I. )] (1)

where the e denotes the inner product and the 0 represents the Exclusive-NOR (or

Equivalence) operation, which gives an active output only if two input bits are the same. In

this improvement, the negative gains will be inhibited by the bracketed term, since the

correlation gain with a large negative value indicates that the different bits between the input

and the evaluated pattern are more than the same bits, and then the sum between these two

bipolar vectors should be small. In contrast, the bracket term will benefit the positive gains,

since the positive gains indicate that more corresponding bits between the input and the

evaluated pattern have the same signs, and then the sum ofthe Exclusive-NOR outputs should

be large . The hardware implementation for an Exclusive-NOR is not difficult at all. To

improve the converging consistency, a weighted previous network sum can be added to the

current network sum before the nonlinear threshold fiinction. This weighted previous network

sum can be considered as a momentum to keep the converging trace consistent, and the older

momenta with weighting less than 1 will graduately decay when time goes on.

Some target discrimination methods combined with other techniques, the discrete
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wavelet transform and the late-time natural fi'equency integration filter scheme, have also been

used during this research period and demonstrated very pleasing results. A perspective study

will be devoted to a complicated neural network synthesis which is expected to be able to

predict sequential actions and estimate its own performance confidence (or error) to a causal

system. Since the updated desired outputs used for network training are temporarily

generated by the synthesis network itself, the network training can converge only if the self-

consistence criterion is satisfied.
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