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ABSTRACT

ESSAYS ON TIME SERIES ECONOMETRICS

By

Cheol-Keun Cho

Chapter 1 develops an asymptotic theory for testing the presence of structural change
in a weakly dependent time series regression model. The cases of full structural change
and partial structural change are considered. A HAC estimator is involved in the con-
struction of the test statistics. Depending on how the long run variance for pre- and post-
break regimes is estimated, two types of heteroskedasticity and autocorrelation (HAC)
robust Wald statistics, denoted by WaldF) and Wald'S) are analyzed. The fixed-b asymp-
totics established by Kiefer and Vogelsang (2005) is applied to derive the limits of the
statistics with the break date being treated as a priori. The fixed-b limits turn out to de-
pend on the location of break fraction and the bandwidth ratio as well as on the kernel
being used. For both Wald statistics the limits capture the finite-sample randomness ex-
isting in the HAC estimators for the pre- and post-break regimes. The limit of Wald(F)
turther captures the finite-sample covariance between the pre-break estimators of regres-
sion parameters and the post-break estimators of the regression parameters. The fixed-b
limit stays the same and is pivotal for Wald(F) irregardless of whether some of the re-
gressors are not subject to structural change. Critical values for the tests are obtained by
simulation methods. Monte Carlo simulations compare the finite sample size properties
of the two Wald statistics and a local power analysis is conducted to provide guidance
on the power properties of the tests. This Chapter extends its analysis to cover the case
of the break date being unknown. Supremum, mean and exponential Wald statistics are
considered and finite sample size distortions are examined via simulations with newly
tabulated fixed-b critical values for these statistics.

Chapter 2 generalizes the structural change test developed in Chapter 1 while allowing



for a shift in the mean and(or) variance of the explanatory variable. Chapter 2 assumes
the break date for the mean/variance is different from the possible break date for the re-
gression parameters. The test is robust to serial correlation and heteroskedasticity of the
error term and the explanatory variables. The fixed-b theory is applied to derive the limits
of the statistics. The asymptotic theory in this paper is based on a new set of high level
conditions which incorporates the possibility of the moments shift and serves to provide
pivotal limits of the test statistics.

Chapter 3 proposes a test of the null hypothesis of integer integration against the alter-
native of fractional integration. The null of integer integration is satisfied if the series is
either I(0) or I(1), while the alternative is that it is I(d) with 0 < d < 1. The test is based
on two statistics, the KPSS statistic and a new unit root test statistic . The null is rejected if
the KPSS test rejects I(0) and the unit root test rejects I(1). The newly proposed unit root
test is a lower-tailed KPSS test based on the first differences of the original data, so the
test of the null of integer integration is called the "Double KPSS" test. Chapter 3 shows
that the test has asymptotically correct size under the null that the series is either I(0)
or I(1) and the test is consistent against I(d) alternatives for all d between zero and one.
These statements are true under the assumption that the number of lags used in long-run
variance estimation goes to infinity with sample size, but more slowly than sample size.
Chapter 3 refers to this as "standard asymptotics." This requires some original asymptotic
theory for the new unit root test, and also for the KPSS short memory test for the case
that d = 1/2. Chapter 3 also considers "fixed-b asymptotics" as in Kiefer and Vogelsang
(2005). Finite-sample size and power of the Double KPSS test is investigated using both
the critical values based on standard asymptotics and the critical values based on fixed-b
asymptotics. The new test is more accurate when it uses the fixed-b critical values. The
conclusion is that one can distinguish integer integration from fractional integration using

the Double KPSS test, but it takes a rather large sample size to do so reliably.
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CHAPTER 1

Fixed-b Inference for Testing Structural
Break in a Time Series Regresison

1.1 Introduction

Chapter 1 focuses on fixed-b inference of heteroskedasticity and autocorrelation (HAC)
robust Wald statistics for testing for a structural break in a time series regression. Com-
monly used kernel-based nonparametric HAC estimators are considered to estimate the
asymptotic variance. HAC estimators allow for arbitrary structure of the serial correla-
tion and heteroskedasticity of weakly dependent time series and are consistent estimators
of the long run variance under the assumption that the bandwidth (M) is growing at a
certain rate slower than the sample size (T). Under this assumption, the Wald statistics
converge to the usual chi-square distributions. However, because the critical values from
the chi-square distribution are based on a consistency approximation for the HAC esti-
mator, the chi-square limit does not reflect the often substantial finite sample randomness
of the HAC estimator. Furthermore, the chi-square approximation does not capture the
impact of the choice of the kernel or the bandwidth on the Wald statistics. The sensi-
tivity of the statistics to the finite sample bias and variability of the HAC estimator is
well known in the literature; Kiefer and Vogelsang (2005) among others have illustrated
by simulation that the traditional inference with a HAC estimator can have poor finite
sample properties.

Departing from the traditional approach, Kiefer and Vogelsang (2002a), Kiefer and
Vogelsang (2002b) , and Kiefer and Vogelsang (2005) obtain an alternative asymptotic ap-



proximation by assuming that the ratio of the bandwidth to the sample size, b = M/T,
is held constant as the sample size increases. Under this alternative nesting of the band-
width, they obtain pivotal asymptotic distributions for the test statistics which depend
on the choice of kernel and bandwidth tuning parameter. Simulation results indicate that
the resulting fixed-b approximation has less size distortions in finite samples than the
traditional approach especially when the bandwidth is not small.

Theoretical explanations for the finite sample properties of the fixed-b approach in-
clude the studies by Hashimzade and Vogelsang (2008), Jansson (2004), Sun, Phillips, and
Jin (2008, hereafter SP]), Gongalves and Vogelsang (2011) and Sun (2013). Hashimzade
and Vogelsang (2008) provide an explanation for the better performance of the fixed-b
asymptotics by analyzing the bias and variance of the HAC estimator. Gongalves and Vo-
gelsang (2011) provide a theoretical treatment of the asymptotic equivalence between the
naive bootstrap distribution and the fixed-b limit. Higher order theory is used by Jansson
(2004), SPJ (2008) and Sun (2013) to show that the error in rejection probability using the
tixed-b approximation is more accurate than the traditional approximation. In a Gaus-
sian location model Jansson (2004) proves that for the Bartlett kernel with bandwidth
equal to sample size (i.e. b = 1), the error in rejection probability of fixed-b inference is
O(T~'1og T) which is smaller than the usual rate of O(T~1/2). The results in SPJ (2008)
complement Jansson’s result by extending the analysis for a larger class of kernels and
focusing on smaller values of bandwidth ratio b. In particular they find that the error
in rejection probability of the fixed-b approximation is O(T~!) around b = 0. They also
show that for positively autocorrelated series, which is typical for economic time series,
the fixed-b approximation has smaller error than the chi-square or standard normal ap-
proximation even when b is assumed to decrease to zero although the stochastic orders
are same.

In this chapter fixed-b asymptotics is applied to testing for structural change in a

weakly dependent time series regression. The structural change literature is now enor-



mous and no attempt will be made here to summarize the relevant literature. Some key
references include Andrews (1993) and Andrews and Ploberger (1994). Andrews (1993)
treats the issue of testing for a structural break in the GMM framework when the one-time
break date is unknown and Andrews and Ploberger (1994) derive asymptotically optimal
tests. Bai and Perron (1998) consider multiple structural change occurring at unknown
dates and cover the issues of estimation of break dates, testing for the presence of struc-
tural change and for the number of breaks. For a comprehensive survey of the recent
structural break literature see Perron (2006).

Because a structural change in a regression relationship effectively divides the sample
into two regimes, two different HAC estimators are considered when constructing Wald
statistics. Asymptotically, estimators of the regression parameters are uncorrelated across
the two regimes. One HAC estimator imposes this zero covariance restriction while the
other estimator does not and this leads to two possible Wald statistics that can be used in
practice denoted by Wald(®) and WaldF). When the break date is known and coefficients
of all regressors are subject to structural change (i.e. full structural change), both Wald
statistics have pivotal fixed-b limits but these limits are different. For the two Wald statis-
tics the fixed-b critical values increase as the bandwidth gets bigger and as the hypothe-
sized break date is closer to the boundary of the sample. When some of the regressors are
not subject to structural change (i.e. partial structural change), the Wald statistic based on
the unrestricted HAC estimator (WaldF)) still has the same pivotal fixed-b limit as in the
case of full structural change.

A local power analysis is carried out under the fixed-b approach and several patterns
are reported. The local power of both Wald statistics is lower with bigger b especially
for the QS kernel. Power also improves as the break date gets closer to the middle of the
sample regardless of bandwidth or kernel. With the within-regime effective bandwidths
matched across the two statistics, the power difference is more evident when a big value

of b is used with the QS kernel.



A simulation study on the finite sample performance of fixed-b inference reveals that
the Wald statistic based on the unrestricted HAC estimator has better overall size per-
formance especially when the quadratic spectral (QS) kernel and large bandwidths are
used in the case of persistent data. In the comparison of the performance of fixed-b infer-
ence with traditional inference, it is found that the latter is subject to substantially more
size distortions. Similar to the known patterns in models without structural change, size
distortions decrease as one uses bigger bandwidth or as the hypothesized break date is
closer to the middle of the sample. When there is strong persistence in the data, rejections
using fixed-b critical values can be above nominal levels although these distortions are
much smaller compared to traditional inference.

The remainder of this chapter is organized as follows. Section 1.2 reviews fixed-b
asymptotic theory in a regression with no structural change. In Section 1.3 the basic set
up of the full structural-change model. Some preliminary results are laid out and the two
HAC estimators are introduced. Section 1.4 derives the fixed-b limits of the two Wald
statistics. Section 1.5 explores patterns in the fixed-b critical values when the break date
is treated as a priori. Section 1.6 compares finite sample size across different approach of
inferences, different choices of kernel and HAC estimators under various DGP specifica-
tions. Section 1.7 examines local power. Section 1.8 generalizes the results in Section 1.4
to a model with partial structural change. It is shown that the fixed-b limit of WaldF) in
the partial structural change model is same as in the full structural change model. Section
1.9 covers the case where the break date is unknown providing the fixed-b critical values.
Section 1.10 summarizes and concludes. Proofs and supplemental results are collected in

the Appendix.



1.2 Review of the Fixed-b Asymptotics

Consider a weakly dependent time series regression with p regressors given by
yr = xif + uy. (1.1)

Model (1.1) is estimated by ordinary least squares (OLS) giving

R T L/
5 = (Z chf) (Z xtyt) ’
t=1 t=1

and iy = y; — x} B are the OLS residuals. The centered OLS estimator is given by

R T Ly
B—p= (Z,xtx;) (th) ,
=1 =1

where v; = x;u;. The asymptotic theory is based on the following two assumptions.

Assumption 1. T~! Zlfl] X¢X} L rQ, uniformly in 7 € [0,1], and Q! exists.

Assumption 2. T~1/2 Zyj xpup = T-1/2 ngl] vr = AW,(r), r € [0,1], where AN = %,

and Wp(r) is a p x 1 standard Wiener process.

For a more detailed discussion about the regularity conditions under which Assumptions
1 and 2 hold, refer to Kiefer and Vogelsang (2002b). See Davidson (1994), Phillips and
Durlauf (1986), Phillips and Solo (1992), and Wooldridge and White (1988) for more de-
tails. The matrix Q is the non-centered variance-covariance matrix of x; and is typically
estimated using the sample variance Q = 1 YL, x:x}. The matrix ¥ = AA’ is the asymp-

totic variance of T~/2 YL | v;, which is, for a stationary series, given by

L =To+ ) (I +T}) with T; = E(v1v]_)).
j=1



Being a long run variance, X is commonly estimated by the kernel-based nonparametric

HAC estimator

2o R () o Tos B () (707,

where f]- =T ZtT:]'H z?t?};_]-, Uy = x¢ily, M is a bandwidth, and K(-) is a kernel ighting
function.

Under some regularity conditions (see Andrews (1991), De Jong and Davidson (2000),
Hansen (1992), Jansson (2002) or Newey and West (1987)), ¥ is a consistent estimator of
5, ie. & 5 5. These regularity conditions include the assumption that M/T — 0 as
M, T — oo. This asymptotics is called ‘traditional asymptotics” throughout this chapter.

In contrast to the traditional approach, fixed-b asymptotics assumes b = M /T is held
constant as T increases. Assumptions 1 and 2 are the only regularity conditions required
to obtain a fixed-b limit for &. Under the fixed-b approach, for b € (0,1], Kiefer and
Vogelsang (2005) show that

S = AP(b,W,)A/, (1.2)

where VN\/p(r) = W,(r) —rW,(1) is a p-vector of standard Brownian bridges and the form
of the random matrix P(b, Wp) depends on the kernel. Following Kiefer and Vogelsang
(2005) three classes of kernels are considered. Let Hy () denote a generic vector of stochas-

tic processes. H(r)" denotes its transpose. Then P(b, H,) is defined as follows:

case 1 If K(x) is twice continuously differentiable everywhere (Class 1) such as the

Quadratic Spectral kernel (QS), then

P(bHy) = - //obz (

where K" (-) is the second derivative of the kernel K(-).

) Hy(r)Hp(s) drds, (1.3)



case 2 If K(x) is the Bartlett kernel (Class 2), then

P(bH,) = %/01 H,(r)Hp(r)' dr — % /1b (Hy(r)Hp(r +b)" + Hy(r + b)Hy(r)") dr.

0
(1.4)

case 3 If K(x) is continuous, K(x) = 0 for |x| > 1, and K(x) is twice continuously

differentiable everywhere except for |x| = 1 (Class 3) like Parzen kernel, then

P(bH,) =~ [ /|r_s|<b %K” (|r;s\) H,(r)H, (s)'drds (15)
K'_(1) 1=

S [ (4 ) H0) + Hy (1) Hy (b)) d,

where K'_(1) = limy, o [(K(1) — K(1 —h)) /h], i.e., K'_(1) is the derivative of K(x) from
the left at x = 1.
Inference regarding 3 is based on the asymptotic normality of the OLS estimator given

by the result

t=1

-1
VT(B—B) = (T—l i xtx;> <T—1/2 i xtut> 4, Q 'AW,(1) ~N(0,Q '=Q ™),
t=1

which follows directly from Assumptions 1 and 2. Suppose the null hypothesis of interest

is, Hy : Rjxpp = r, where [ is the number of the restrictions. Define the Wald statistic as

Under traditional asymptotics the well known result is obtained:

Wald % X7,



whereas under fixed-b asymptotics,

Wald = Wy(1)' (P(b, Vvl)) YW (1), (1.6)

The limit of the Wald statistic depends on the sequence of bandwidths by which £ is
indexed. It is important to note that we are not viewing the choice of sequence as a band-
width rule for the choice of M in practice. Rather, the point is that different asymptotic
approximations are obtained for the two assumptions regarding M. Under the fixed-b
approach the random matrix P(b, W) approximates the randomness in % and its depen-
dence on M (through b) and the kernel K(-). In contrast the traditional approach approx-
imates % by a constant that does not depend on M or the kernel.

Once structural change is allowed in the model, existing results in the fixed-b literature

no longer apply and new results are required.

1.3 Model of Structural Change and Preliminary Results

Consider a weakly dependent time series regression model with a structural break given

by
yr = wip + u, (1.7)

!/ /
we = (X1, %) , B= (B1,B2)
x1p = xp - 1(t < AT), xp = x4 - 1(+ > AT),

where x; is p x 1 regressor vector, A € (0,1) is a break point, and 1( - ) is the indicator
function. Let [AT] denote the integer part of AT. Note that xp; = 0fort =1,2,..., [AT] and
x1; = 0 for t = [AT] + 1, ..., T. For the time being the potential break point AT is assumed
to be known. The case of A being unknown is discussed in Section 1.9. The regression
model (1.7) implies that coefficients of all explanatory variables are subject to potential

structural change and this model is labeled the “full” structural change model.



Of interest it is that the presence of a structural change in the regression parameters.

Consider null hypothesis of the form
Hyo:RB =0, (1.8)

where

R = (R{, —Ry),
(Ix2p) (1 1)

and Ry is an ! X p matrix with [ < p. Under the null hypothesis, it is being tested that one
or more linear relationships on the regression parameter(s) do not experience structural
change before and after the break point. Tests of the null hypothesis of no structural
change about a subset of the slope parameters are special cases. For example one can
test the null hypothesis that the slope parameter on the first regressor did not change by
setting Ry = (1,0,...,0). One can test the null hypothesis that none of the regression
parameters have structural change by setting Ry = I.

In order to establish the asymptotic limits of the HAC estimators and the Wald statis-
tics, Assumptions 1 and 2 given in previous Section are sufficient. Those Assumptions
imply that there is no heterogeneity in the regressors across the segments and the covari-

ance structure of the errors are assumed to be same across segments as well.

notation For later use, define a I X I nonsingular matrix A such that
RiQIAA'Q7IR] = AA/, (1.9)

and

RiQ AW, (r) £ AW, (r), (1.10)

where W(r) is | x 1 standard Wiener process.



Focus on the OLS estimator of B given by

R T /T
B= (Z wﬂ%) (Z wtyt> ’
t=1 t=1

which can be written for each segment as

R T -1/7 [AT] [AT]
p1 = (Z xlﬂﬂ) (2 xltyt) = (Z xﬁd&) (Z xtyt) , (1.11)
t=1 t=1 t=1 t=1

N T L/ T - T
132 = <Z x2txét> (Z thyt) — Z xtx;} Z x| (112)
=1 =1 F=[AT]+1 F=[AT]+1

Fixed-b results depend on the limiting behavior of the following partial sum process

-1

t t
Si= Y wiit; = Y w; (v — i;B1 — xB2)
i i

= }L_;wj (=5 (Br— 1) = xt; (B2 = B2) ) - (1.13)
=

Under Assumptions 1 and 2 the limiting behavior of E and the partial sum process Sy are

easily obtained.

Proposition 1. Let A € (0,1) be given. Suppose the data generation process is given by (1.7)

and let [rT| denote the integer part of rT where v € [0,1]. Then under Assumptions 1 and 2 as

T — oo,
B — 1
V(B ) = ﬁ([i1 ,31> 4 (AQl) AW, (A) ,
ﬁ(ﬁz-ﬁz) (1-1)Q) A (W,y(1) — W,(A))
and
(1)
T28)7 = AOY R _ (A0 Fy (r,7),
o A \FY(rA 0 A



where

and

2 (r,2) = (W) = W) = =53 (W, (1) = (1) ) 107 > ),

Proof: See the Appendix.
It is easily seen that the asymptotic distributions of Bl and 32 are Gaussian and are
independent of each other. Hence the asymptotic covariance of Bl and 32 is zero. The

asymptotic variance of v/T(B — B) is given by Q;'00Q; !, where

A 0 AY 0
Q and () =

0 (1-A)Q 0 (1-A)T

(0J)

In order to test the null hypothesis (1.8) HAC robust Wald statistisc are considered. These
statistics are robust to heteroskedasticity and autocorrelation in the vector process, v; =

x:us. The generic form of the robust Wald statistic is given by
N [ A -1/
Wald = T (RB) (RQ;'0Q;'R') ~ (RB),

where

. 71y M ) 0

Q\ = - ,
0 T L far)1 XeXs

and Q) is an HAC robust estimator of ).
Two estimators for Q) are analyzed. The first one, denoted by Q(F ), is newly intro-
duced in this chapter and it is constructed using the residuals directly from the dummy

regression (1.7):

A(F s |t — 5|
aF — - ZZK( - >w§, (114)
t=1s=1

11



/

1 _ o~

where U; = w;il; = (xitflt, X, 1l . Denote the components of v; as v, ' = x4y =
2px1

xii1(t < AT) and 82 = xpufly = @l 1(t > AT).
The other estimator is the HAC estimator appearing in existing literature (e.g. Bai and

Perron (2006)) which is given by

Q) = , (1.15)

where
s L T [Zﬂ K ('t — S‘) a5 (1.16)
AT = S M, o
o 1 L L |t —s] 2) ~(2)1
s———— Y Y K (—) o251, (1.17)
- [AMT], =[AT|+1s=[AT]+1 M P

Note that £(1) is constructed using vt (data from the pre-break regime) and uses the
bandwidth M; and pre-break sample size [AT]. Likewise £(?) is constructed using 7752)
(data from the post-break regime) and uses the bandwidth M, and post-break sample
size T — [AT].

In Andrews (1993) and Bai and Perron (2006), the estimator (1.15) is used to allow
for a potential structural change in the long run variance X itself. In this chapter the
assumption is maintained that > does not have structural change because allowing for
heterogeneity in X results in a non-pivotal fixed-b limit of the Wald statistic. Finding an
estimator of () that has a pivotal fixed-b limit when X has structural change is a topic of

ongoing research.

At a superficial level, the estimators Q(F) and Q(5) look different but they are directly

12



related. Using 0y = (’(/}\El)/, 7, /)' one can write Q(F) as

~(F) A(F
alF ay ay
~(F) A(F
()gl) ()gz)
(el k () e T o v K (M) e
1 Et—l ZE_ <| MS|> @\52)@\51)/ 7-1 Ethl ZST:1 K <|t;/15‘> z?fz)z?g)/
AT] AT 1) A1) _ A2
_ T [ ] [ ]K >Z/)\£ Ds 121& ET AT]+1K<|tMS|>5£)Z/)\£ )
2) (1) e _ 2) (2
Ty AT] +1Z VK |tMS|> 578" T Zt:[AT]H ZsT:[AT]HK |tMS|> o5
(1.18)
S —s]\ ~(1)~(2
= Az ™ Zt 1 Zs [/\T]—HK (“_A/I‘) UE )Ug )
T ZtT:[AT}H 2551} K (%) oo, (1-1)Z®

It is seen that the diagonal blocks of QF) are the same HAC estimators used by Q)
except that the same bandwidth, M, is used for each diagonal block of Q) whereas the
diagonal blocks of Q) can have different bandwidths. Q) is a restricted version of
QF) with the off-diagonal blocks set to 0, i.e. Q) imposes a zero covariance between
Bl and BZ matching the zero asymptotic covariance between 31 and 32. In contrast O(F)
does not impose this zero covariance which is consistent with the possibility that the
finite sample covariance between B1 and B, is not equal to zero (which is true in general).
Note however that Q(F) uses the same bandwidth for both regimes whereas Q(5) allows
different bandwidths in the two regimes. Thus, from the bandwidth perspective, QF) is
restrictive relative to Q)(%),

The next Section provides asymptotic results for the two HAC robust Wald statistics

under the traditional asymptotics and under the fixed-b asymptotics.

13



1.4 Asymptotic Results

1.4.1 Asymptotic Limits under Traditional Approach

The goal of the traditional approach is to find conditions under which the HAC estimator
is consistent. One requirement for consistency is that M grows with the sample but at
a slower rate. Then under additional regularity conditions, £(!) and £ are consistent

estimators of ¥ and the limit of Q%) is straightforwardly given by

0 (1-A)Z@ 0 (1-A)X
(2px2p)

However establishing consistency of QF) requires some additional calculation beyond

existing results in the literature.

Proposition 2. Under reqularity conditions for the consistency of the HAC estimators £(1) and

i(z), asT — oo,

Proof: See the Appendix.

Let Wald'S) denote the Wald statistic based on (%) and let WaldF) denote the Wald
statistic based on Q(F), Then the results given in this subsection, combined with Proposi-
tion 1, give us the limits of the test statistics under the traditional approach:

Wald®), WaldF) =

A=) (W00 = 125 () = W) ) x (T - 125 () = w)),

where W) is a | x 1 standard Wiener process. Note that for any given value of A the limit

14



follows a chi-square distribution with degrees of freedom /. While convenient, the chi-
square limit does not capture the impact of the randomness of (%) and QF) on the Wald

statistics in finite samples.

1.4.2 Asymptotic Limits under Fixed-b Approach

Now fixed-b limits for the HAC estimators and the test statistics are provided. The fixed-b
limits presented in next Lemma and Corollary approximate the diagonal blocks of Q(F)
by random matrices. Also, it is shown that fixed-b approach gives nonzero limit for the
off-diagonal block, which further distinguishes fixed-b asymptotics from the traditional

asymptotics.

Lemma 1. Let A € (0,1) and b € (0,1] be given. Suppose M = bT. Then under Assumptions 1

and 2,as T — oo,

~ A0 A0
Q) = x P (b,Fy (r,A)) x , (1.19)

0 A 0 A

where
(1)
Fy(r,A) = F‘ZZ) A (1.20)
E~ (r, M)

EY (r,7) = (wp(r) - %w,,m) 1(0<r<A), (1.21)
H (r0) = (W) = W) = 25 W) = Wya) )10 <r<1), (12)

and P, (b, E, (r,A)) is defined by (1.3), (1.4), and (1.5) with Hy(r) = E, (r,A).

Proof: See the Appendix.
Extra algebra leads to an alternative representation for P (b, F, (r,A)). The proof for

this Corollary is omitted.
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Corollary 1.

P (b, FY (r,/\)) C (b, EY (r,A), EY (r,A))

P (b F,(r,A)) = '
(555 (7)) ¢ (b, (), B2 (1, 0) P (bE (1))

., (1.23)

where

c(b.F" (1), F (1,1))
— Jo Sy K () B (1 A) EP (5,0 s,
= L ED (n, A) ES (r 4 1,0) dr,

I S K (55 D M) FP (5,0) drds LK I E N ED b ar
N h L ,

for Class 1,2 and 3 kernels respectively.

The expression for P (b, F, (r, A)) in this Corollary makes it easier to compare the fixed-
b limit of OF) with the standrad fixed-b limit (see (1.2)) appearing in a non-structural
change settings. Since each diagonal block of Q(F) is basically a HAC estimator (up to a
scale factor; see (1.18)) based on one of the pre- or post- break data, its limit should take
the same form as (1.2), which is verified in this Corollary. So each diagonal component
of P (b, F, (r,A)) serves to reflect the randomness and bandwidth/kernel-dependence of
the associated HAC estimator. Second, unlike the traditional approach, the fixed-b limit
of the off-diagonal component is nonzero. This implies the fixed-b inference is able to take
account of the covariance between B; and B, which is generally nonzero in finite samples.

Next Lemma contains the parallel result for Q).

Lemma 2. Let A € (0,1) and by, by € (0,1] be given. Suppose My = by (AT) and M, =

ba(1 — A)T. Then under Assumptions 1and 2, as T — oo,

$(1) 1 (1) ) 1 0 @ :
5 :A(AP(blA,Fp (r,A)>)A,2 :>A(1_/\P<b2(1 A),ES (r,A)))A,
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and

Proof: See the Appendix.
The limits of the Wald statistics can be derived by using Lemmas 1 and 2 respectively,

Theorem 1 delivers the result for Wald(F).

Theorem 1. Let A € (0,1) and b € (0, 1] be given. Suppose M = bT. Then under Assumptions

land2,as T — oo,

WaldF) = (%Wl(/\) — % (W (1) — Wz(/\)))

x (P (b, %F}” (r,A) — %P}” (r,/\)))_l x (%WZ(A) — ﬁ (Wi(1) - Wz(?t))>
(1.24)

Proof: See the Appendix.

The next Corollary provides an alternative representation for the limit given in (1.24).

Corollary 2. For a given value of A € (0,1), the fixed-b limit of Wald'F) has the same distribution

as

mwl(1)' (%P (%,Vvl(r)> + CP (A, b) (1.25)

17



where

(VAVIZAfy Jo K (B W Wy (o)t

~ for Class-1 kernels,
0 W)W} () 10 b<r<har for Class-2 kernels
CP(A,b) = R '
VAVI=A [} 4 K”<M>W,(t)Wl*(s)’l(\At—(l—A)s—M<b)dtds
2
Jo PR W () Wy (52 ) 1(A—b<r<a
\ bVAVI=-A

Jdr for Class-3 kernels,

and Wy(r) and Wl*(r) are | x 1 Brownian Bridge processes which are independent of each other

and of W(1).

Proof: See the Appendix.

The limit in (1.25) shows how the components of QF) affect the distribution of Wald(F).
As mentioned earlier the random matrix P (%, W (r)) reflects the random nature of (A)g)
which is a part of asymptotic variance estimator of El- But as the first argument of
P (%, W, (r)) manifests, this Corollary additionally reveals that the (effective) bandwidth
for ﬁg) turns out to be % not b. This picks up the fact that one implicitly uses the band-
width ratio % for ﬁg) when the researcher applies a bandwidth ratio b for constructing
OF). The second component P <%, W (1’)) is related with ﬁg) (and B,) in the exactly
same fashion. Finally, having the third component CP (A, b) as a part of the limit indi-
cates that the fixed-b inference captures the impact of finite-samples covariance on the

variance of B; — B, and on the inference for a structural change. The results for Wald(®)

are available in the following Theorem and Corollary.

Theorem 2. Let A € (0,1) and by, by € (0,1] be given. Suppose My = by (AT) and M, =
ba(1 — A)T. Then under Assumptions 1and 2, as T — oo,

WaldS) = (%Wl(/\) — % (W (1) — Wl()\)))
L (br EV (12 L b (b(1-1),FE? (A o 1.26
X(X(lfz(rr)>+m (2(—),1(7,)>) (1.26)
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< (G0 = 25 D) = W) )

Proof: See the Appendix.

Corollary 3. For a given value of A € (0,1), the fixed-b limit of Wald(S) has the same distribution

as

ﬁwlu)' GP (b1, W1(1)) + 7252 (b2, W;m)) W) a2

Proof: See the Appendix.

The major difference between (1.27) and (1.25) lies in the term CP (A,b) which is
the limit associated with the cross product term of Q). The second difference is the
bandwidth ratios applied to the HAC estimator. In constructing the HAC estimator

QF), one can only choose a single value of bandwidth M and accordingly a single value

of bandwidth ratio b = % But this bandwidth M implicitly determines the effective

bandwidth ratios within each regimes: A—A’% = % = % for the pre-break regime and
a iV){)T = fi)T = b ) for the post-break regime. On the other hand, when one uses

QS), the researcher chooses two bandwidths M; and M, for each regime respectively
and accordingly the two bandwidth ratios are set as b; = % and b, = (1ﬁ4—)%)T In order
to accurately compare the test perfomance of Wald¥) and Wald(5), it should be ensured
that the effective within-regime bandwidth ratios are the same across the two statistics.
Specifically, if the bandwidth ratio used for Wald(F) is b, then one should pick bandwidth
ratios as by = % and by = % for Wald(®). By doing this one can isolate the impact of the

presence of CP (A, b) on the inference.

1.5 Critical Values

The fixed-b limiting distributions are nonstandard. Asymptotic critical values are easily
obtained via simulations. The Wiener processes in the limiting distributions are approx-

imated using scaled partial sums of 1,000 i.i.d. N(0,1) random variables. Critical values
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are tabulated based on 50,000 replications. The 95% critical values for /=1 and 2 are pro-
vided for selected values of b and A in Tables 1.1 through Table 1.13. The break fraction,
A, runs from 0.1 to 0.9 with 0.1 increments. The bandwidths considered are 0.02, 0.04,
0.06,0.08,0.1,0.2, ..., 1. Tables 1.1 through 1.6 contain the critical values for WaldF) and
Table 1.7 through 1.13 provide the critical values for Wald(S). The critical value tables for
Wald(S) only cover the case where b; = b, although Table 1.13 provides some critical
values with by # b,.

Tables 1.1 through 1.6 display two main patterns of the critical values. First, for each
given A the critical values increase as the bandwidth gets bigger. This is expected given
the well known downward bias induced into HAC estimators from estimation error. The
tixed-b approximation captures this downward bias and reflects it through larger critical
values. Second, for a given value of the bandwidth the critical values display a V-shaped
pattern as a function of A. As the break point moves closer to zero or one, the critical
values increase and the minimum critical values occur at A = 0.5. This V-shaped pattern

is present but is less pronounced in the critical values for Wald().

1.6 Finite Sample Size

This Section reports the results of a finite sample simulation study that illustrates the
performance of the fixed-b critical values relative to the traditional critical values under
the null hypothesis of no structural change. The data generating process (DGP) used in

this simulation study is given by

yr = B1+ Poxt + uy,
Xt = 0xt_1 + €4,

U = pus—1 + 1t + en-1,
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where ¢; and 7; are independent of each other with €, 7; ~ i.i.d. N(0,1). The following

parameter values are used:

(B1,B2) = (0, 0),
A e {02, 04, 05},
6 € {05, 0.8, 0.9},

(p, ) € {(0,0), (0.5,0), (0.5,0.5), (0.9, 0.5), (0.9, 0.9)},

The DGP specifications for (0, p, ¢) include:

A: 0=05p=0,¢=0

B: =05 p=05 ¢=0
C:0=05 p=05 ¢=05
D: 0=08, p=05 ¢ =05
E: 6=08 p=09, ¢=05

F: =09, p=09, ¢ =09

The value of § measures the persistence of the time varying regressor x;. The parameters p
and ¢ jointly determine the serial correlation structure of the error term u;. Bigger values
of these three parameters leads to higher persistence of the time series vy = x;u; except
for specification A. Results for sample sizes T = 50,100, 500 are reported and the number
of replications is 2,500. The nominal level of all tests is 5%. Wald (5) and WaldF) statistics
are computed for testing the joint null hypothesis of no structural change in both the 8,

and B, parameters.
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1.6.1 WaldS) and WaldE): Traditional Inference vs. Fixed-b Inference

First the empirical null rejection probabilities of the two statistics are examined. The per-
formance of the traditional chi-square critical values are compared with that of fixed-b
critical values. Tables 1.14 through 1.19 report empirical null rejection probabilities for
Wald'S) test using the two critical values. In practice one can construct Q(5) using dif-
ferent bandwidths ratios b; and b in the two regimes. To conserve space, only results
for homogeneous bandwidths choices (i.e. by = by) are provided. Tables 1.14 and 1.15
give results for DGP A for A = 0.2,0.4, Tables 1.16 and 1.17 give results for DGP D for
A = 0.2,0.4, and Tables 1.18 and 1.19 give results for DGP E for A = 0.2,0.4. Each table
reports results using the Bartlett and QS kernels for a range of values of b.

Consider the results for DGP A (no serial correlation in v;) given in Tables 1.14 and
1.15. When T = 50, it is seen that both the Bartlett and QS kernel deliver tests that
over-reject when the chi-square critical value is used. As the bandwidth gets bigger, this
tendency to over-reject becomes more and more pronounced. Rejections using fixed-b
critical values are similar when small bandwidths are used. As the bandwidth increases,
rejections using fixed-b critical values systematically decrease towards the nominal level
of 0.05. Increasing T reduces over-rejections for both critical values when b is small. In
contrast, when b is large, rejections using the chi-square critical value tend to persist as
T increases but rejections tends towards 0.05 when fixed-b critical values are used. With
T = 500, the QS kernel has empirical rejection probabilities close to 0.06 for all values
of b when fixed-b critical values are used. It is clear that the fixed-b approximation is of-
ten a substantial improvement over the traditional approximation. This is not surprising
given that the fixed-b approximation captures much of the randomness in the HAC esti-
mator whereas the traditional approach treats the HAC estimator as a constant equal to
its population value.

Tables 1.16-1.19 show the results for the data with stronger dependence. Patterns are
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similar to Tables 1.14-1.15 except that over-rejection problems tend to be higher in all
cases. Using chi-square critical values leads to severe over-rejection problems regard-
less of bandwidth or kernel. Using fixed-b critical values tends to reduce over-rejection
problems especially when larger values of b are used. The QS kernel tends to be much
less over-sized than the Bartlett kernel. These finite sample patterns are very similar to
patterns found by Kiefer and Vogelsang (2005) in non-structural change settings.

Comparing Tables 1.14, 1.16, 1.18 (A = 0.2) with Tables 1.15, 1.17, 1.19 (A = 0.4) it
is seen that over-rejection problems tend to be greater with A = 0.2 than with A = 0.4.
This makes sense because the A = 0.2 case has a relatively small sample size for regime 1
compared to regime 2 whereas for A = 0.4 the regime sample sizes are similar.

Next null rejection probabilities of the Wald(F) statistic are examined. In Figure 1.1
rejection probabilities for Wald(F) is plotted for the DGP given by (81, 82,6,0,¢) = (0,
0,0.1, 0.5, 0.5) for the case of T = 50. Results are given for two kernels: Bartlett and QS
and bandwidth ratio b = 0.2. For each kernel, rejections are computed using the chi-
square critical value and the fixed-b critical value. Rejections are plotted across a grid
of break points given by A € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}. Figure 1.1 shows the
large size distortions associated with traditional inference. Over-rejections are substantial
especially when A is close to the endpoints of the sample. In general a V-shaped pattern
appears in over-rejections as a function of A with the least over-rejections occurring at the
middle of the sample (A = 0.5). Rejections using fixed-b critical values are much closer
to 0.05 and rejections are less sensitive to the location of the break point. Figure 1.1 also
shows that the kernel matters. Rejections using the QS kernel when fixed-b critical values
are used are closer to 0.05.

Tables 1.20 through 1.25 provide additional results for WaldF) for most of the DGPs
givenin Tables 1.14-1.19. Again rejections are reported using traditional chi-square critical
values and fixed-b critical values. The table also reports some rejections for Wald(®) which

are discussed in the next subsection. The patterns in Tables 1.20-1.25 are generally very
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Figure 1.1: Empirical Null Rejection Probability of Structural Break Test using Wald(F)
B1=pP2=0,0=01p0=05¢=050b=0.2 T = 50, Replications=2, 500
similar to the patterns seen in Tables 1.14-1.19. It is clear that the fixed-b approximation is

a substantial improvement over the traditional approximation.

1.6.2 Fixed-b Inference: Wald(®) vs. WaldF)

In this subsection the finite sample rejections of the two Wald statistics are compared
under the fixed-b framework. As equation (1.25) and (1.27) manifest, the fixed-b limits
of the two statistics are different in two ways. First, the limit of Wald(F) has the extra
component CP (A, b). Second, the limit of Wald(S) depends on b; and b, which are the
bandwidths for the two regimes respectively while the limit of Wald(¥) depends on a
single bandwidth b implying effective bandwidths % and % in each regime. It is well
known in the fixed-b literature that larger bandwidths lead to less over-rejection problems
when fixed-b critical values are used. This serves to hedge against differences in effective
bandwidths resulting in differences in over-rejections between Wald(S) and WaldF) so

that the impact of inclusion of the off-diagonal blocks used by Wald(F) can be isolated.
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To keep bandwidth effects constant between Wald(®) and Wald'F), the bandwidths for
Wald(S) are set as
b

b

where b is the bandwidth for Wald(F). By using (1.28) it is ensured that the within regime
bandwidth to (regime) sample size ratios for Wald(S) are the same as the bandwidth to
(full) sample size ratio used by Wald (F),

The following eight bandwidths specifications satisfying (1.28) are used:

A A=0.2,b=0.04,b =0.2,b, =0.05,
B:A=0.2,b=0.1,b =0.5,b, =0.125,
C:A=020b=020b =1.0,b =0.25
D:A=05b=05,b =1.0,b, =1.0,
E:A=05b=1.0,b =20,bp =20,
F:A=04,b=0.5,b =1.25,b, =0.83,
G:A=02b=05,b; =2.5,b =0.625,

H:A=02b=10,b; =50,b, = 1.25.

Tables 1.20 through 1.22 give results for relatively small bandwidths (A’, B’, and C’).
With small bandwidths Wald(®) and WaldF) have very similar size distortions. Tables
1.23 through 1.25 report results for the relatively large bandwidths (D', E’, F', G, and H’).
Note that compared to the small bandwidths case, there is noticeable difference in the
performance of the two statistics specially when the QS kernel is used. As the DGP be-
comes more persistent (such as DGP F or G) the differences between Wald (5) and Wald(®)
become more clear. Table 1.23 shows that under DGP G and bandwidth E” the empirical
null rejection probability is 19.08% for Wald(®) and 13.6% for WaldF) when T=50 whereas

in the Bartlett kernel case rejections are similar. The differences when T=100 are smaller
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(15.96% vs. 11.92%); see Table 1.24. Once T reaches 500 (Table 1.25), the differences be-
tween Wald(®) and Wald(F) are very small for either kernel. In general Wald(F) is less size
distorted than Wald(%) when T is relatively small and persistence in the data is not weak.
For larger sample sizes the two tests have similar null rejection probabilities. From a size
perspective, Wald(F) is preferred over Wald(®).

The better size performance of WaldF) can be explained by examining CP (A,b) in
)

(1.25) and the corresponding finite sample counterparts ﬁg) (or ﬁg)) in (1.18). ﬁg is

estimating the sample covariance between El and 32 which is driven by finite sample
covariance between 551) and 1752) across the two regimes. Larger bandwidths lead to ﬁg)
and f\)g) estimators that better reflect the finite sample covariance between El and BZ and
CP (A, b) captures the impact of ﬁg) and (A)g) on the sampling distribution of Wald(F).
As the data becomes more persistent, the covariance between Bl and 32 becomes more
pronounced in small samples so there is benefit to including (A)g) and f\)g) in Q. As T

increases, the covariance between B; and 8, and it becomes more reasonable to impose

the restriction that the off-diagonal blocks of () are zero as done by Wald(5).

1.7 Local Power Analysis of Fixed-b Inference

This Section investigates the local power of Wald(®) and Wald¥) under the fixed-b ap-

proach. The local alternative is given by

Hy:RB=T 2 5 (1.29)
(Ix1)
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with R = (R, — Rjy). Under the local alternative (1.29), the fixed-b limits of the Wald

statistics are easily obtained as

WaldF) = (%Wz()t) - ﬁ (Wi (1) — Wi(A)) — A‘15*>/

—1
x <P (b, %F}” (r,A) — %PI(Z) (r,/\)))

(W) = 25 () — W) ~ A7)

Wald'®) = GWI(A) - % (W (1) — Wi(A)) — Alé*)/
. GP (2 EV (r,0) + %P (b2(1-2), 2 (r,/\))> B
< (FW0) = 15 ()~ W) - 4716,

where the nonsingular matrix A is defined in equation (1.10).

1.7.1 Comparison of the Local Asymptotic Power of Wald(®) and Wald ")

In this subsection the local asymptotic power of Wald(%) and Wald(F) are compared for the
case R = (I, — I). The bandwidth specifications are the same as those used in Section
1.6.2. Local asymptotic power was computed using the same simulation methods used
to compute asymptotic fixed-b critical values with A~16* = (§,5)’, where ¢ is a scalar
parameter. Figures 1.2-1.5 plot local asymptotic power for the Bartlett and QS kernels for
a selection breakpoint and bandwidth specifications. As the figures illustrate, there is no
substantial difference in the local asymptotic power between Wald(S) and Wald'F) for the
case of the Bartlett kernel. However, when QS kernel is used, differences in power emerge
with large bandwidths as depicted by Figures 1.3-1.5. For example, using b = 1 as shown
in Figures 1.4 and 1.5, one can see substantial power loss associated with WaldF) with

the QS kernel. Comparing the Bartlett and QS kernels, the Bartlett kernel delivers higher

27



0.9F

0.8

0.5

0.4

0.3

0.2

0.1

—6— wald®, Qs

e \Wald ), Bartlett |
= » =wald®, Qs

Wald(s>, Bartlett

15

20

Figure 1.2: Local Power, Bartlett and QS,
A=02,b=02,b1=1,b, =0.25

091

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

-

e \Wald ), Bartlett | ]

=wald®, gs
" wald®, Bartlett

—6— wald®, Qs

15

20

Figure 1.3: Local Power, Bartlett and QS,
A=02,b=05,b; =25,b, =0.625

28



09r

0.8

0.7

0.6

0.5

0.4r

0.3F

— Wald(F), Bartlett

- » -wad® qgs ||

"""" Wald(s), Bartlett | ]

—e— wald®, Qs
;

021

0.1

I
0 5 10 15 20

Figure 1.4: Local Power, Bartlett and QS,
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power than the QS kernel for both Wald statistics. The loss of power associated with
Wald(F) relative to Wald'S) occurs exactly for the kernel and bandwidth specifications that
resulted in WaldF) having less size distortions than Wald(®). Similarly, the higher power
of the Bartlett kernel relative to the QS kernel comes at the cost of greater size distortions.
As has been documented repeatedly in the fixed-b literature, there is an inherent trade-
off between reduction of over-rejection problems and loss of power. Bandwidth/kernel

combinations that reduce over-rejection problems also reduce power.

1.7.2 Impact of Breakpoint Location and Bandwidth on Power

The next focus is on the impact of the breakpoint location, A, and bandwidths on local
asymptotic power. Figures 1.6-1.9 display local asymptotic power for a range of A. Each
tigure depicts power curves for the range of A = 0.1,0.2,0.3,0.4,0.5 for the bandwidth
ratio b = 0.1. Figures 1.6 and 1.7 depict power for the Wald(F) statistic for the Bartlett
and QS kernels respectively. Figures 1.8 and 1.9 depict power for Wald(®) for the Bartlett
and QS kernels respectively. For a given A, the bandwidths b; and b, for Wald(®) are
chosen so that they match the within-regime effective bandwidths of Wald(F), % and %

For a given b, smaller values of A implies larger values of max (%, %) and the local
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Figure 1.5: Local Power, Bartlett and QS,
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power for WaldF) decreases as max (%, %) increases. First notice that regardless of

bandwidth or kernel, power is lowest for A = 0.1 and steadily rises as A increases to
0.5. It should be noted that power is symmetric in A and power for values of A larger
than 0.5 can be inferred from the figures. Second, comparing Figures 1.6 and 1.8 (Bartlett)
with Figures 1.7 and 1.9 (QS) the Bartlett kernel gives higher local power than the QS
kernel especially for large within-regime effective bandwidths. A similar finding was
documented by Kiefer and Vogelsang (2005) in models without structural change.

To isolate the impact of bandwidths on power, Figures 1.10 through 1.13 depict power
for a range of b values for a given kernel and A = 0.5. These figures illustrate that increas-
ing the bandwidth generally reduces power and this is especially true for the QS kernel.
For the Bartlett kernel, once b = 0.5, further increases in b have little effect on power.
In contrast, increasing b from 0.5 to 1.0 significantly reduces power when using the QS
kernel although the drop in power is even more dramatic when b increases from 0.1 to
0.5. That power of Wald¥) and Wald(®) is decreasing in the bandwidth is not surprising

given that this pattern holds in models without structural change.
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Figure 1.6: Local Power, WaldF), Bartlett, b = 0.1
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Figure 1.10: Local Power, Wald (F) Bartlett, A = 0.5

Figure 1.11: Local Power, Wald(®), QS, A =05
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Figure 1.12: Local Power, Wald(S), Bartlett, A = 0.5

Figure 1.13: Local Power, Wald(s), QS, A =05
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1.8 Partial Structural Change Model

This Section derives the fixed-b limit of Wald(") in the partial structural change model.
The main result of this Section is that the limit is the same as the limit for the full structural
change model. In contrast, the Wald(®) statistic in the partial structural change case has a
non-pivotal fixed-b limit. A modificaiton of the Wald(%) statistic that has a pivotal fixed-b

limit is briefly discussed.

1.8.1 Setup and Assumptions

The regression model with partial structural change is given by

yr = zya + x4, B1 + X5 Ba + uy (1.30)

= zia + X; B + uy,
where x; is p X 1 and z; is g X 1 vector and

x1p = xe1(t < AT), xpr = x/1(¢ > AT),

Xi = (x1; x)', and B = (B1 B2)"

The coefficients on the x; regressors are unrestricted in terms of a structural change whereas

the coefficients on the z; regressors are assumed to not have structural change. Denote

y=(y2....yr), X= (X1, Xo,...X7),

Z = (z1,22,...,2z7), u= (ug,uy,...,ur).
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The parameters («, B) are estimated by OLS and the OLS residual vector can be written

as
ﬁzfj—)?ﬁzbt—ff(ﬁ—ﬁ)—qu,

where

J=(I-P;)y, X=(1—-Py)X, and P, = Z(Z2'2)"'Z'.

The residual for a individual observation is given by

= u — X, (fs - ﬁ) —2(22) " Z'u. (1.31)
Also, note that
(1
~ i
Xo =X —X'2(ZZ) 'z = | P!
x@)
t
px1

The following assumptions replace Assumptions 1 and 2 in Section 1.2:

o 1/l [ X M -
Assumption 1’. T Y1 = AW, (1) = Wpy14(r), where A; is a

Zply Ay
p x (p + q) matrix, A is a g X (p + q) matrix, and Wy, ,4(r) is a (p +¢q) x 1 vector of
independent Wiener process.
Assumption 2’. plim % Zlfl] 21z} = rQzz, plim % Zyj x¢X; = rQyy, and p lim % Zyj X1zp =

rQyz uniformly in r € [0,1], and there exist Q,, and Qx;.

1.8.2 Asymptotic Limits

Continue to focus on tests of the null hypothesis of no structural change in the x; slope
parameters of the form

Ho:R,B:I'
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with
R = (Rl, —R1> and r = 0. (1.32)

Ix2p Ixp  Ixp

~ o~ o~ /
Recall that the OLS estimator, B = (,6’1, ,B’2> can be rewritten as

-1
T T
B= (Z thg> (Z thyt) : (1.33)
t=1 t=1
Proposition 3. Under Assumptions 1"and 2',as T — oo

T1/2 (B _ ,B) 4, Qg? AWpig(A) — )‘QxZQZ%AZWpM(l) ’
A1 (Wpg(1) = Wpiq(A)) = (1 = 1) QuzQ77 A2 Wp-4(1)

and

1 1

VT (RB - r> L oIV <pr+q(A) — 1= (Wpg1) - wp+q(A))) . (134)

where Qg = plim <T*1 Y, )N(t)N(Q .

Proof: See the Appendix.

As seen from the above proposition, 1 and B, are not asymptotically independent in
the partial structural change regression model. This is true because we are projecting out
the variation of explanatory variables z; so that El and BZ depend on the entire series of
x; and z;. The dichotomy that By is dependent only on the pre-break data and 32 depends
only on the post-break data no longer holds in the partial structural change model. The
dependence manifests in the common term, Q,7zQ,, > A2Wp4(1) in the above Proposition.
However, this term cancels out in (1.34) when the restriction matrix takes the form of
(1.32). As a result, and also as suggested by equation (1.34), one only needs to estimate
AqA] for the inference on structural change. But, AjA] can be easily estimated using

X144l or xl; and the corresponding version of Wald(®) can be defined by constructing
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$(1) with x1,7; and constructing £(2) with xyi;. By doing this, we are ignoring the need
to project z; out of the x; variables but this ignorance does not make the inference invalid.
The next question is whether in conducting inference one can still take into account the
dependence between Bl and BZ which is not due to the presence of z;. This can be verified
by finding a version of Wald(F) which has a pivotal limit in the partial structural change
model. The answer is positive as below.

The Wald statistic is given by

~ A -1,
_ —1 !
Wald = T (R/;) ( Q;LOQ LR ) (R/;) , (1.35)
where Q~~ = 771yl | X;X]. For constructing WaldF), consider a HAC estimator Q)
~ T
which is computed using {Xtﬁt}t—l:

=71 Z Z K ( > &, (1.36)

t=1s=

where Et = Xtﬁt. This is a straightforward extension of WaldF) to the case of partial
structural change.
Next Lemma provides the limit of the the scaled partial sum process of & premulti-

plied by an appropriate term.

Lemma 3. Let SAf = ;-:1 (;?] Under Assumptions 1" and 2°, as T — oo,

S (1 1
ROLT S = RiQAY (X}ﬁq (r,A)—mF;qu( A)),

where

EY (r,4) = (ww(r) - XI/VW(A)) 10<r<A),

F20 1) = (W) = W) = T25F (Wysg(D) = Wysgl2)) ) 101 < <1).

Proof: See the Appendix.
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As Lemma 3 shows, the partial sums of the inputs to QF) are asymptotically propor-
tional to the same nuisance parameters as /T (RB — r). This is the key condition for an

asymptotic pivotal fixed-b limit. The next Theorem provides the fixed-b limit of Wald(F).

Theorem 3. Let A € (0,1) and b € (0, 1] be given. Suppose M = bT. Then under Assumptions

1" and 2’, Wald(F) weakly converges to the same limit in (1.24), i.e. as T — oo,

WaldF) = (%Wl(/\) — % (W;(1) — Wl(/\)))

< (2 (0,38 00 - 2582 00)) T (7100 = 115 (W) = W) ).

Proof: See the Appendix.

According to Theorem 3, the limit of Wald(F) in the partial structural change model is
the same as in the full structural change model.

Getting back to Wald(®), as mentioned earlier, B1 and By are no longer asymptotically
uncorrelated in the partial structural change model. Therefore, forcing the covariance
between B1 and B to be zero cannot be justified any longer. Even though forcing the

covariance to be zero is not theoretically justified, even asymptotically, Wald(®) can be

modified so that it has a pivotal fixed-b limit. This is obtained by using 1751) = Xyl =
x¢141(t < AT) for constructing £ and 552) = xoily = x4l 1(t > AT) for $(2) with 7

being defined in (1.31). One can easily show that the limit of this Wald(%) is the same
as in (1.26). It is tempted to use )?tﬁtl(t < AT) for constructing s(1) (and similarly for
52 using X;ii;1(t > AT)). But this version of Wald(S) turns out to have a non-pivotal
tixed-b limit. This can be easily verified by deriving the limits of the associated partial

sum processes.
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1.9 When the Break Date is Unknown

Tests for a potential structural break with a unknown break date are well studied in An-
drews (1993) and Andrews and Ploberger (1994). Andrews (1993) considers several tests
based on the supremums across break points of Wald and LM statistics and shows they
are asymptotically equivalent. Andrews and Ploberger (1994) derive tests that maximize
average power across potential breakpoints. Wald(F) statistic is the only focus of this Sec-
tion. Given a value of b, the test statistic is computed for a range of A. This implicitly
changes the effective bandwidths (%, %) as A varies. This results in a built-in mecha-
nism where bigger bandwidth ratio is used as the sample size of a regime shrinks. One
might want to make a comparison with the test based on Wald($). But note that one needs
to adjust the bandwidth ratios (b1, by) every time A changes so that (b1, b,) stay equal to
(%, %). The implementation of tests with Wald(®) is omitted in this chapter. Denote
the Wald(F) statistic computed using break date T, = [AT] by WaldF)(T,). Also de-
note the limit of WaldF)(T}) as Waldg)()\) where the form of Waldg)()\) depends on
whether traditional or fixed-b asymptotic theory is being used. In the case of fixed-b the-
ory, Waldd) (A) depends on P (b, F, (r,A)). As argued by Andrews (1993) and Andrews
and Ploberger (1994), break dates close to the end points of the sample cannot be used
and so some trimming is needed. To that end define 2" = [eT, T —eT] with0 < e < 1
to be the set of admissible break dates. The tuning parameter € denotes the amount of
trimming of potential break dates. Consider the three statistics following Andrews (1993)

and Andrews and Ploberger (1994) defined as

SupW(F) = sup Wald(F)(Tb), (1.37)
TbEE*
MeanW'F) E% 2 Wald(F)(Tb), (1.38)
TbGE*
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ExpWF) = log (% Y exp BWald(F)(Tb)}) . (1.39)

T,eE*
The asymptotic limits of these statistics follow from the continuous mapping theorem and

are given by

SupWF) = sup Waldg)()x),
A€(e1—e€)
1-€

MeanW) = Wald) (A)dA,

€

1-e
ExpWF) = log (/ exp [%Waldg)()\)] d)L) .
€

In Tables 1.26 and 1.27 fixed-b critical values for SupWF), MeanWF), and ExpW(F)
are provided for I = 2, ¢ = 0.05, 0.1, 0.2 and for b € {0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3,
..,0.9,1}.

Tables 1.28 through 1.36 presents the simulation result for some of the DGP speci-
fications introduced in Section 1.6 and for T=100, 500 and 1000. Fixed-b critical values
are used for the Bartlett and QS kernels. For the Bartlett kernel, results are also re-
ported using the traditional critical values obtained by Andrews (1993) and Andrews
and Ploberger (1994). Several patterns stand out for the null rejection probabilities asso-
ciated with SupW(F) in Table 1.28 to 1.30. First, rejections using the traditional critical
values are often substantially above the 5% nominal level unless persistence is very weak
and a small bandwidth is used. Rejections can be close to 100%. The situation is much
improved by the use of fixed-b critical values but severe over-rejections are still possi-
ble. Size distortions are higher with more persistence in the data, with a smaller value
of €, and a smaller value of b. As was true in the case of a known break date, the QS
kernel gives less size distortion than the Bartlett kernel although the use of large band-
widths causes under-rejections. But over-rejections and under-rejections dissipate as T
grows. The Bartlett kernel can suffer from over-rejections that are not easily removed just

by using a big bandwidth. A larger value of T helps along with more trimming. Similar
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patterns hold for the MeanWF) and ExpW(F) statistics; see Tables 1.31-1.33 and 1.34-1.36

respectively.

1.10 Summary and Conclusions

In this chapter fixed-b asymptotics was applied to the problem of testing for the presence
of a structural break in a weakly dependent time series regression. Two different HAC
estimators and accordingly two different Wald statistics were investigated. The Wald(F)
statistic is the Wald statistic that one obtains when structural change is expressed in terms
of dummy variables interacted with regressors. The Wald(5) statistic is a restricted version
of Wald'F) where the off-diagonal blocks of the HAC estimator are set to zero mimicking
the asymptotic zero covariance between OLS estimators in the two regimes. The fixed-b
limits of the two statistics were derived, and the fixed-b inference was compared with the
traditional inference. In a model with full structural change, both Wald statistics have
pivotal fixed-b limits. However, in models with partial structural change, the straight-
forwardly adapted version of WaldF) has the same pivotal fixed-b limit as in the full
structural change case whereas the straightforwardly adapted version of Wald(®) does
not have pivotal fixed-b limit.

In simulation study the finite sample size distortions associated with the fixed-b ap-
proach and the traditional approach were examined. The simulation results indicate that
the traditional inference is more subject to severe size distortions. When small band-
widths are used, the gap is not huge but as b gets bigger, the difference becomes sub-
stantial. Overall, rejections obtained when using fixed-b critical values are closer to the
nominal level compared to using the traditional chi-square critical values. When fixed-b
critical values are used, finite sample size distortions becomes more pronounce as b gets
smaller or as A gets closer to 0 or 1. Local asymptotic power is decreasing in b and power

is highest for structural change located near the center of the sample.
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In a comparison of the Wald'F) and Wald(S) statistics for full structural change models
it was found that Wald(F) tends to be less size distorted than Wald(®) when using fixed-b
critical values especially when serial correlation is strong and a large bandwidth is used.
The better size performance of WaldF) comes at the cost of lower power reflecting the
usual trade-off between size robustness and power typically found in fixed-b analyses.
The choice between WaldF) and Wald(®) becomes a choice between tolerance for over-
rejections relative to desire for high power. At a practical level, Wald(F) is appealing be-
cause it retains the same asymptotic pivotal fixed-b limit in models with partial structural
change whereas Wald(%) becomes nonpivotal.

Finally, some fixed-b critical values tabulated for SupW, MeanW, and ExpW statistics
which are commonly used for testing the presence of a structural break when the break
date is not known a priori. A simulation study revealed that over-rejections are a bigger
concern when the break date is treated as unknown. Critical values based on traditional
asymptotics can lead to very severe over-rejection problems. Rejections using fixed-b
critical values are less distorted especially when the QS kernel is used with a bandwidth
that is not too small. When the Bartlett kernel is used, fixed-b rejections show substantial

over-rejections.
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Table 1.1: 95% Fixed-b critical values of Wald(F) with Bartlett kernel, I = 1

A=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
b=0.02 594 468 434 422 42 421 431 459 592
004 836 559 485 458 452 456 478 544 8.28
0.06 1069 645 533 497 489 495 532 6.26 10.55
008 1268 737 594 539 521 533 596 721 12.67
01 1477 826 655 586 561 578 652 821 1481
0.2 23.82 13 975 849 806 837 974 1289 24.15
03 3248 1766 13.6 11.79 11.19 11.78 13.64 17.73 32.85
04 4116 2274 175 1522 1459 15.18 17.62 2272 41.63
0.5 5017 2759 21.61 1881 18.85 1875 21.77 2798 50.61
0.6 5898 32.89 2587 2228 21.89 2239 2586 329 59.99
0.7 6893 37.77 29.8 2579 253 2597 2998 38.06 69.38
08 779 4282 3354 29.52 2836 2937 34.03 4343 78.76
09 8748 477 3735 32.84 31.88 3259 37.78 48.04 88.14
1 9725 5315 4177 363 3558 363 41.77 53.15 97.25

Table 1.2: 95% Fixed-b critical values of WaldE) with Bartlett kernel, | = 2

A=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
b=0.02  10.45 749 674 649 6.53 6.6 7.04 778 10.73
0.04 1543 936 7.74 72 718 7.34 8.1 9.74 15.9
0.06  20.01 113 886 798 793 814 921 11.64 2046
0.08 23.63 1323 10.08 892 8.76 9 1041 13.68 2446
0.1 2745 1517 1116 977 9.62 997 11.86 15.61 2841
02 45.04 245 1828 155 1522 158 1877 2529 4598
03 6232 3433 2571 2244 2198 22.62 2646 3539 63.27
04 7915 4431 34.01 29.69 2871 2956 3446 46.08 81.68
0.5 975 5475 419 37.15 36 36.28 4298 56.62 100.45
0.6 11581 6444 503 4432 4262 4431 51.09 67.64 119.13
0.7 13473 7573 58.44 5096 49.05 51.09 59.28 78.46 137.84
0.8 1532 8547 652 56.85 5535 56.79 6647 88.5 155.94
09 17139 94.64 7196 6323 61.05 63.14 7397 98.19 174.38
1 19792 11133 84.82 7422 7125 7422 8482 111.33 197.92
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Table 1.3: 95% Fixed-b critical values of Wald(F) with Parzen kernel, | = 1

A=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
b=0.02 5.53 448 422 412 413 414 4.2 4.42 5.45
0.04 7.74 521 4.63 443 436 441 4.6l 511 7.62
0.06  10.05 599 5.08 471 4.66 4.7 5 583 10.05
0.08 12.8 6.78 548 504 493 501 546 6.59 12.6
0.1 15.39 761 593 539 519 534 597 744 1531
02 2872 1288 89 753 713 747 882 1253 29.14
03 4341 1892 1278 1038 981 10.52 1278 18.77 44.02
04 5919 2632 1763 144 13.6 1479 1771 2638 60.09
0.5 7793 3519 2452 1948 1873 19.75 2437 35.61 78.96
0.6 101.1 4541 3272 2583 2514 2631 3214 46.83 101.31
0.7 12646 58.14 41.87 33.32 32.72 3424 4136 58.84 126.34
0.8 156.18 72.5 53.07 4213 4221 4355 52.62 7423 154.86
09 1935 8833 6516 5259 5245 5396 6497 9191 189.83
1 236.76 10698 78.8 64.15 65.05 6594 79.76 11221 2293

Table 1.4: 95% Fixed-b critical values of WaldE) with Parzen kernel, [ = 2

A=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
b=0.02 9.68 7.16 6.54 6.32 6.43 6.44 6.81 7.48 9.87
0.04 14.7 8.68 7.33 6.9 6.92 7.01 7.68 9.04 1526
0.06 20.78 10.44 8.22 7.5 7.46 7.62 86 10.85 21.32
0.08 269 12.28 9.19 8.17 8.13 8.37 959 1271 27.69
0.1 3286 14.32 10.3 8.96 8.73 913 10.68 14.79 33.72
02 6188 2688 1711 13.96 136 1416 1792 2725 6255
03 9545 4282 2794 2248 2123 2238 2887 44.02 97.73
04 139.66 6529 4275 352 32.89 348 43.65 6636 1443
0.5 196.8 95.6 6374 5321 4954 5162 6456 9741 201.36
0.6 27836 134.62 9264 7772 7215 75.69 9271 137.41 28296
0.7 382.08 186.56 131.83 110.23 101.57 10594 12855 190.44 385.63
0.8 514.04 24831 179.83 150.7 139.6 145.76 173.65 259.83 520.59
09 680.53 32698 234.32 200.3 184.72 19426 230.37 341.18 702.39
1 89226 42395 303.13 260.04 240.38 25193 303.92 435.32 914.14
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Table 1.5: 95% Fixed-b critical values of WaldF) with QS kernel, | = 1

A=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

b=0.02 7.43 5.07 4.52 4.36 4.29 4.34 4.53 4.98 7.31
0.04 12.21 6.48 5.28 491 4.79 4.86 5.27 6.34 12.04
0.06 17.56 8.08 6.17 5.54 53 5.46 6.22 7.97 17.35
0.08 22.64 9.95 7.23 6.23 5.99 6.23 7.24 9.82 22.78

0.1 27.85 12.16 8.43 7.08 6.76 6.99 843 1195 28.47
0.2 5772 25,61 1686 1344 1275 13.88 16.89 2534 59.62
0.3 99.95 45.22 322 2509 2418 2558 31.73 4697 101.36
04 15839 74.89 54.62 43.04 4329 4415 53.58 76.5 158.68
0.5 24948 114.08 8355 6885 7081 7042 8595 118.39 239.27
0.6 36772 16898 12286 103.11 103.31 103.7 128.44 175.59 353.19
0.7 532.6 2412 176.66 143.09 146.09 148.06 182.71 247.64 501.66
0.8 72647 32656 24578 197.2 199.56 201.11 247.71 343.69 697.25
09 97042 43192 32343 26252 26271 262.84 325.08 452.05 926.69

1 1261.34 559.48 416.24 339.54 340.36 334.59 42393 585.82 1216.77

Table 1.6: 95% Fixed-b critical values of WaldF) with QS kernel, [ = 2

A=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

b=0.02 14.06 8.45 7.16 6.81 6.82 6.89 7.56 8.73 14.73
0.04 26.97 11.83 8.83 7.95 7.88 8.08 9.28 12.26 27.58
0.06 38.59 15.95 11.06 9.39 9.18 9.58 11.44 16.41 39.04
0.08 50.18 20.7 13.43 11.1 10.88 11.25 14.14 21.28 50.94

0.1 62.26 25.97 16.55 13.27 12.82 13.42 17.24 26.42 62.99
0.2 146.13 67.5 43.02 35.24 33.63 35.2 44.36 69.12 149.5
0.3 312.09 15842 108.51 87.98 80.79 87.85 106.46 16347 314.22
0.4 658.6 331.17 24154 196.85 184.84 19545 233.84 339.63 665.6
0.5 1286.25 655.18 499.07 420.69 378.64 404.62 47849 685.69 1357.87
0.6 244894 123759 916.23 79885 72279 77338 897.04 1264.11 2526.8
0.7 4375.15 2209.76 162299 1431.74 1296.51 1368.93 1595.1 2240.27 4503.02
0.8 728827 376093 2728.88 2359.81 2208.22 2208.18 2662.06 3808.74 7606.67
09 1161196 5871.16 4433.2 3809.97 3646.67 349578 4198.07 6017.23 12269.85

1 1782391 8876.78 6763.38 5763.21 5547.04 5223.44 6474.23 9157.09 18845.07
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Table 1.7: 95% Fixed-b critical values of Wald(S) with Bartlett kernel, [ = 1, by=by=0

A=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

b=0.02 4101 4.025 4.027 4.022 4.033 4.046 3991 4.019 4115
004 4313 4207 4174 4183 4202 4195 4147 4189 4.267
0.06  4.544 438 4365 4323 4334 4363 4327 4326 4.46
0.08 471 4569 4543 4503 4517 4513 4507 4519 4.621

0.1 4933 4773 4757 4.668 4.691 4702 4714 4.697 4.862
0.2 6.14 5925 5723 5.682 5.571 5.6 567 5768 6.107
0.3 765 7112 6991 6.727 6728 6.566 6.93  6.965 7.51
0.4 9.16 8422 8281 808 7931 7.835 8198 8339 9.141
0.5 1088 9928 9.666 9453 9387 9317 9.697 9.823 10.774
0.6 1262 11477 11.063 1091 10.886 10.879 11.258 11.472 12.538
0.7 1439 13215 12.677 12493 12541 12409 12916 13.08 14.292
08 1623 14.886 14.418 1416 14231 14.103 14.562 14.771 16.041
09 1828 16.586 16.083 15.794 16.021 15.764 16.414 16.613 17.992

1 2031 18425 17.886 17.582 17.792 17.521 18.177 18.41 20.008

Table 1.8: 95% Fixed-b critical values of Wald(5) with Bartlett kernel, | =2,b; = b, = b

A=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
b=0.02 6416 6.199 6196 6.122 6246 6197 6428 6481 6.557
0.04 6.788 6.557 6459 6404 6527 6553 6.702 6.835 6.987
006 7241 6916 6.786 6.739 6.851 6.867 7.06 722 7.422
0.08 7.695 734 7114 7061 7183 7.184 7471 7.588  7.865
01 8224 7774 7461 7395 7518 7561 7.845 8.024 8.388
0.2 10957 10.138 9.728 9.466 9.526 9.587 10.041 10.526 11.256
0.3 14.159 12953 12297 11.799 11982 12.059 12.699 13.346 14.675
04 17909 16.119 15.067 14.606 14.84 14.835 15.726 16.787 18.563
0.5 21.74 19.6 18.337 177 17746 17997 18904 20.126 22.678
0.6 25701 22974 21.6 20.891 20.907 20952 22.073 23.75 26415
0.7 29.558 26374 24714 23974 24.045 23.829 25325 27.618 30.453
0.8 33.527 29.887 28.008 27.221 27.304 26.967 28.709 30.806 34.488
09 37.692 33.535 31.375 30.147 30.581 30.212 32.187 34.566 38.466
1 41.749 37.265 34985 33.507 33.784 33.558 35.802 38.393 42.774
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Table 1.9: 95% Fixed-b critical values of Wald(5) with Parzen kernel, I = 1, by=by=0

A=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
b=0.02 4.049 3982 3999 398 4.002 4.003 3963 3978 4.047
0.04 4218 4121 4124 4106 4136 4.111 4.096 41 4.185
0.06 4378 4258 4258 4236 4251 4245 4194 4245 4347
0.08 4549 4.407 438 4356 4353 4371 4349 4346 4.484
0.1 4709 4559 4.532 446 4509 4492 4496 4503 4.646
02 5673 5439 5326 5242 5188 5.187 527 5307 5.582
0.3 6.89 6457 6.209 6.132 6.057 6.013 6.2 6282 6.811
04 8337 7569 7332 7127 7.094 699 7323 7478 8.278
0.5 9952 8899 8.604 8.408 821 8.098 8571 8742 9.905
0.6 11.766 10.479 10.063 9.749 9.586 9.516 10.086 10.371 11.863
0.7 14238 12371 11.714 11.269 11.267 11.291 11.839 12.212 14.041
0.8 16.803 14.548 13.621 13.113 13.106 13.188 13911 14.335 16.533
09 19.604 17.11 15.697 15.141 15.394 15483 16.075 16.557 19.562
1 22963 19.776 18.188 17.469 17.794 17.65 18511 19.084 22.964

Table 1.10: 95% Fixed-b critical values of Wald(S) with Parzen kernel, | =2,b; = b, = b

A=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
b=0.02 6.318 6.118 6.118 6.064 6.157 6.145 6.333 6423 6.435
0.04 6593 6427 6,368 6266 6425 6377 6587 6.688 6.782
006 6926 6723 6558 6519 6.658 6.658 6.841 6.992 7.14
0.08 7314 7.027 6.83 6.796 6918 6911 714 7.269 7.52
01 7734 7344 7.109 708 7194 7169 7438 7.597 7.923
02 9978 9293 8823 8.604 8775 8794 9.174 9.51 10.252
0.3 13.036 11.711 11.071 10.663 10.725 10.809 11.466 12.068 13.438
04 16.699 14.885 13.781 13.07 13.217 13.365 14.299 15.271 17.304
0.5 21.601 18733 17.057 16.273 16.441 16.498 17.645 19.301 22.368
0.6 27984 23528 21.279 20.453 20.275 20.393 22.011 24.447 28.489
0.7 35.876 29.316 26.426 25412 25186 25.205 27.459 30.67 36.487
0.8 45.449 36.522 32.699 31.458 30.822 30.985 34.199 38.416 45.707
09 56.114 44.869 40.393 38.288 37.563 37.654 41.742 47.109 57.801
1 68506 54.481 48.77 45915 45317 45.607 49919 57.401 70.667

48



Table 1.11: 95% Fixed-b critical values of Wald(S) with QS kernel, [ = 1, by=by=0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

b=0.02 4.176 4.097 4.082 4.082 4.098 4.078 4.065 4.073 4.162
0.04 4466 4.324 433 4303 4299 4298 4281 4301 4418
0.06 4789 4.629 4572 4515 4542 4534 4537 4551 4.709
0.08 5.109 491 4858 4756 4.792 4776 4.816 4.817 5.027
0.1 5461 5.239 515 5.065 5.045 5.031 5.095 5.121 5.376
0.2 7908 7.158 691 6746 6.723 6.603 6924 7.033 7.796
03 11.14 9864 9397 9.007 8873 8798 9357 9.723 11.1
04 15772 13486 12522 1213 12.109 1224 12.867 13.339 15.716
0.5 21.421 18,5 16.806 16.16 16.533 16.272 17.009 17.961 21.766
0.6 28285 24521 22728 21.041 21.838 21.285 22432 24.054 29.2
0.7 37.351 32408 29.597 27.6 28351 27.798 29.577 32.03 38.786
0.8 48.093 41.538 38.324 35.403 36.689 35926 38.133 41.491 49.723
09 60429 52591 48937 44.754 46413 46.106 48.34 52.617 62.802

1 75711 64.723 60.735 55.78 57.464 56974 60.451 66.712 78.41
Table 1.12: 95% Fixed-b critical values of Wald(S) with QS kernel, ] =2, b; = by = b
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

b=0.02 6.545 6.371 6.319 6.233 6.359 6.326 6.53 6.635 6.69
0.04 7.194 6.916 6.741 6.662 6.792 6.83 7.014 7.19 7.38
0.06 7.939 7.533 7.247 7.182 7.315 7.316 7.55 7.747 8.162
0.08 8.715 8.208 7.811 7.69 7.836 7.875 8.242 8.427 8.986
0.1 9.665 8.968 8.486 8.306 8.462 8.466 8.922 9.2 9.933
0.2 16.041 13.952 13.07 12468 12481 12526 13.544 14544 16.558
03 27467 22471 20.156 1941 19.266 19.249 21.214 23.57 27.843
0.4 4553 35924 31.708 30.315 29.839 30.121 33.261 37.764 46.608
0.5 72151 54.831 49.151 45982 45.157 45.123 50.044 57.892 74435
0.6 108.625 82.168 72.852 66.928 66.757 66.24 72.815 86.59 112.953
0.7 158.481 117.545 103562 96.266 94.481 93.173 104.123 125598 162.34
0.8 221964 163.498 143.644 133.73 129.628 129.225 144.891 175.599 227.359
0.9 304.042 220.842 193.648 182573 174.469 174.765 193.792 242.272 308.793
1 404.653 296.357 256.175 243.928 231.015 229.871 256.899 316.291 412.891

Table 1.13: 95% Fixed-b critical values of Wald(S), 1 = 2, b1 # by

A by b, Bartlett kernel QS kernel
02 02 0.05 9.2936 11.8473
02 05 0.125 14.9354 24.8345
0.2 1 025 23.8607 59.9221
04 125 0.83 34.864 256.3
0.5 1 1 33.7844  231.0145
0.5 2 2 67.5688 1677.88
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DGP A: (0,p,9) = (0.5,0,0).
Hy : No Structural Change in both 1 and By att = AT, A =0.2

Table 1.14: The Finite Sample Size associated with WaldS), 1 =2, by =by, =D.

b
T kernel Inference 0.020 0.040 0.060 0.080 0.100 0.200  0.300
50 Bartlett Fixed-b 0.1784 0.1636 0.1544 0.1444 0.1348 0.1256  0.122
Bartlett chisquare 0.1892 0.1916 0.1948 0.1984 0.2008 0.2544 0.3088
Qs Fixed-b 0.1704 0.1548 0.1372 0.1236 0.1124 0.1064 0.0964
QS chisquare 0.1888 0.194 0.1936 0.2012 0.2132 0.2988 0.3936
100 Bartlett Fixed-b 0.1096 0.1024 0.098 0.1 0.098 0.0928 0.0888
Bartlett chisquare 0.1176 0.1216 0.1296 0.1428 0.1544 0.2096 0.2692
Qs Fixed-b  0.106 0.0936 0.0916 0.0884 0.0896 0.0892 0.0804
QS chisquare 0.1216 0.1204 0.1356 0.1596 0.1764 0.274 0.3688
500 Bartlett Fixed-b  0.066 0.064 0.0636 0.0632 0.064 0.0632 0.0696
Bartlett chisquare 0.0724 0.0832 0.0924 0.1036 0.1104 0.1664 0.23
Qs Fixed-b 0.0628 0.064 0.0628 0.062 0.062 0.0668 0.062
QS chisquare 0.0756 0.0916 0.1052 0.1224 0.142 0.2284 0.3304

b
T kernel Inference 0.400 0.500 0.600 0.700 0.800 0.900 1.000
50 Bartlett Fixed-b 0.1212 0.114 0.1144 0.1176 0.1168 0.116  0.116
Bartlett chisquare 0.364 0.4152 0464 0.5052 0.5416 0.5724 0.5932
Qs Fixed-b 0.0916 0.0892 0.0856 0.0868 0.0864 0.0856 0.0848
QS chisquare 04932 05764 0.6404 0.7016 0.742 0.7776 0.8084
100 Bartlett Fixed-b 0.0876 0.0836 0.0832 0.0876 0.0864 0.0868 0.086
Bartlett chisquare 0322 0.3644 0.4116 0.4508 0.4964 0.5296 0.5596
Qs Fixed-b  0.072  0.072 0.0636 0.0644 0.0672 0.0672 0.0656
QS chisquare 0.4636 0.5408 0.6176 0.6808 0.726 0.7676 0.7984
500 Bartlett Fixed-b 0.0696 0.0668 0.0704 0.0672 0.0652 0.0652 0.0652
Bartlett chisquare 0.2824 0.3316 0.3816 0.4232 0.4664 0.5068 0.5396
Qs Fixed-b 0.0608 0.0616 0.062 0.0628 0.062 0.0628 0.0604
QS chisquare 0.4216 0.5144 0.5964 0.6564 0.7204 0.7692 0.8024
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DGP A: (0,p,9) = (0.5,0,0).
Hy : No Structural Change in both 1 and By att = AT, A = 0.4

Table 1.15: The Finite Sample Size associated with WaldS), 1 =2, by =by, =D.

b
T kernel Inference 0.020 0.040 0.060 0.080 0.100 0.200 0.300
50 Bartlett Fixed-b 0.1036 0.0976 0.088 0.092  0.09 0.0852 0.0844
Bartlett chisquare 0.1088 0.1096 0.116 0.1288 0.136 0.194 0.2492
QS Fixed-b 0.0988 0.0852 0.0848 0.0864 0.088 0.084 0.0792
QS chisquare 0.1088 0.1108 0.1252 0.1376 0.1588 0.2504 0.3452
100 Bartlett Fixed-b 0.0796  0.08 0.078 0.0772 0.0748 0.076 0.0716
Bartlett chisquare 0.0816 0.092 0.0996 0.1068  0.12 0.1688 0.2268
Qs Fixed-b 0.0776  0.078 0.0772 0.0776 0.0772 0.074 0.0696
QS chisquare 0.0812 0.0972 0.1084 0.1244 0.1432 0.2268 0.3124
500 Bartlett Fixed-b 0.0672 0.0684 0.066 0.0668 0.068 0.0644 0.0676
Bartlett chisquare 0.0692 0.0764 0.088 0.0968 0.1044 0.1508 0.2052
QS Fixed-b 0.0656 0.0676 0.0656 0.0644 0.0668 0.0628 0.0572
QS chisquare 0.0712 0.0868 01 0.1124 0.126 021 0.3032

b
T kernel Inference 0.400 0500 0.600 0.700 0.800 0.900 1.000
50 Bartlett Fixed-b 0.0832 0.0844 0.0852 0.0828 0.0848 0.0848 0.0852
Bartlett chisquare 0.306 0348  0.39 0.4348 0.4708 0.506 0.5372
QS Fixed-b 0.0824 0.0808 0.0832 0.0804 0.0764 0.076 0.0728
QS chisquare 042 0.5048 0.5756 0.6368 0.6884 0.7368 0.776
100 Bartlett Fixed-b 0.0716 0.066 0.064 0.0656 0.066 0.0664 0.066
Bartlett chisquare 0.272 0.3268 0.374 0.4156 0.4468 0.4764 0.5028
Qs Fixed-b 0.0624 0.0604 0.0604 0.0608 0.0616 0.0596 0.0556
QS chisquare 0.3948 0.4736 0.5372 0.598 0.656 0.7004 0.7464
500 Bartlett Fixed-b 0.0588 0.062 0.0636 0.0656 0.0664 0.0656 0.0648
Bartlett chisquare 0.2628 0.3084 0.3512 039 0432 0.4648 0.4976
QS Fixed-b  0.056 0.0644 0.064 0.0612 0.0596 0.0588 0.0576
QS chisquare 0.3828 0.4608 0.5348 0.6028 0.658 0.7072 0.7476
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Hy : No Structural Change in both 1 and By att = AT, A =0.2

Table 1.16: The Finite Sample Size associated with WaldS), 1 =2, by =by, =D.
DGP C: (0,p, ¢) = (0.5,0.5,0.5).

b
T kernel Inference 0.020 0.040 0.060 0.080 0.100 0.200 0.300
50 Bartlett Fixed-b 0.4812 0424 03864 0.3548 0.336 0.2444 0.2168
Bartlett chisquare 0.4908 0.4528 0.4348 0.4224 0.4172 0.4068 0.4428
QS Fixed-b 0.4712 0.3904 0.346 0.3108 0.2756 0.178 0.1408
QS chisquare 0.4928 0.4388 0.4184 0.4092 0.3972 0.4156 0.4812
100 Bartlett Fixed-b 0.3904 0.334 0.286 0.2468 0.2136 0.1704 0.1504
Bartlett chisquare 0.4032 0.3648 0.334 0.3144 0.302 0.3148 0.368
Qs Fixed-b 0.3596 0.3028 0.2332 0.192 0.1756 0.1172 0.1044
QS chisquare 0.3832 0.3516 0.3088 0.2872 0.2808 0.3348 0.422
500 Bartlett Fixed-b 0.1892 0.124 0.106 0.0948 0.092  0.08 0.0804
Bartlett chisquare 0.1976 0.1476  0.14 0.1428 0.1488 0.194 0.2472
QS Fixed-b 0.1492 0.0956 0.082 0.076 0.0716 0.0708 0.0672
QS chisquare 0.164 0.1244 0.126 0.1408 0.1544 0.2328 0.3396

b
T kernel Inference 0.400 0500 0.600 0.700 0.800 0.900 1.000
50 Bartlett Fixed-b 0.2084 0.206 0.2036 0.2048 0.2008 0.2008 0.2024
Bartlett chisquare 0.4832 0.5308 0.5668 0.6088 0.6372 0.664 0.6888
QS Fixed-b 0.1236 0.1136 0.1056 0.1064 0.1024 0.0996 0.096
QS chisquare 0.562 0.6236 0.6888 0.7476 0.7904 0.8248 0.8524
100 Bartlett Fixed-b 0.1464 0.1452 0.1476 0.1464 0.144 0.1456 0.148
Bartlett chisquare 04184  0.47 0.5176 0.5576 0.5944 0.6232 0.6508
QS Fixed-b 0.0944 0.0868 0.0844 0.084 0.082 0.082 0.0804
QS chisquare 0.5104 0.5856 0.6468  0.71 0.764 0.8048 0.8332
500 Bartlett Fixed-b 0.0832  0.08 0.0804 0.0824 0.078 0.0804 0.0796
Bartlett chisquare 0.3048 036 0.4036 0.4532 0.4956 0.5268 0.5588
QS Fixed-b 0.0696 0.0676 0.0668 0.0664 0.0644 0.0636 0.0608
QS chisquare 04332 05192 0.594 0.6664 0.7236 0.7648 0.7908
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Hy : No Structural Change in both 1 and By att = AT, A = 0.4

Table 1.17: The Finite Sample Size associated with WaldS), 1 =2, by =by, =D.
DGP C: (0,p, ¢) = (0.5,0.5,0.5).

b
T kernel Inference 0.020 0.040 0.060 0.080 0.100 0.200  0.300
50 Bartlett Fixed-b 0.4076 0372 0.3132 0.2564 0.2368 0.1776  0.158
Bartlett chisquare 0.416 0.3968 0.3532 0.328 0.3092 0.3096 0.3584
Qs Fixed-b 04076 035 0.2572 0.2184 0.1896 0.1264 0.108
QS chisquare 0422 0.3836 0.3284 0.2956 0.284 0.3272 0.4092
100 Bartlett Fixed-b 0.3544 0.2464 02036 0.1712 0.1528 0.122 0.1164
Bartlett chisquare 0.362 0.2692 0.2328 0.2192 0.2168 0.2364 0.2884
Qs Fixed-b 0336  0.208 0.1528 0.1296 0.1184 0.0904 0.0836
QS chisquare 03492 024 02076 0.1992 0.2012 0.2596  0.342
500 Bartlett Fixed-b 0.1116 0.0856 0.0776 0.0764 0.0772 0.0736  0.07
Bartlett chisquare 0.1168 0.0968 0.0956 0.1016 0.1072 0.162 0.2124
Qs Fixed-b 0.0856 0.0688 0.068 0.0688 0.0688 0.0636 0.0576
QS chisquare 0.094 0.0888 0.0936 0.1044 0.1204 0.202 0.2896

b
T kernel Inference 0.400 0.500 0.600 0.700 0.800 0.900 1.000
50 Bartlett Fixed-b 0.1536 0.1512 0.1476 0.1492 0.1512 0.1556 0.1548
Bartlett chisquare 0.4104 0.4628 0.5112 0.5428 0.5744 0.6032 0.6356
QS Fixed-b 0.1004 0.1012 0.0996 0.0992 0.0992 0.0952 0.096
QS chisquare 0.4924 05732 0.6324 0.6976 0.7484 0.788 0.8152
100 Bartlett Fixed-b 0.1156 0.1072 0.1056 0.1108 0.1124 0.112 0.1116
Bartlett chisquare 0.3372 0.3864 0428 0472 0.506 0.5388 0.5744
Qs Fixed-b 0.0792 0.0784 0.0748 0.0748 0.0728 0.0736 0.0728
QS chisquare 0.422 05052 05776 0.6392 0.6884 0.7252 0.7696
500 Bartlett Fixed-b 0.0664 0.066 0.068 0.0668 0.0656 0.0692  0.07
Bartlett chisquare 0.2548 0.2988 0.348 0.388 0.4308 0.4676 0.5052
QS Fixed-b 0.0564 0.0572 0.0576 0.0588 0.0608 0.0592 0.0588
QS chisquare 0.374 0.4588 0.5344 0.602 0.6616 0.7016 0.7372
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Hy : No Structural Change in both 1 and By att = AT, A =0.2

Table 1.18: The Finite Sample Size associated with WaldS), 1 =2, by =by, =D.
DGPD: (6,p,¢) = (0.8,0.5,0.5).

b
T kernel Inference 0.020 0.040 0.060 0.080 0.100 0.200  0.300
50 Bartlett Fixed-b 0.5204 0.462 04212 03956 0.3728 0.2832 0.2532
Bartlett chisquare 0.5296 0.4936 0.4712  0.46 0.4524 0.4472 0.4836
Qs Fixed-b 05164 0426 03788 0.3428 0.3052 0.204 0.1676
QS chisquare 0.5312 0.4756 0.4548 0.4436 0.4356 0.4608 0.5188
100 Bartlett Fixed-b 0.4504 0.3984 0.3492 0.3044 0.2728 0.2152 0.1944
Bartlett chisquare 0.4624 0.4256 0.3948 0.3728 0.3608  0.38 0.4168
Qs Fixed-b 0.4264 0.3676 0292 0.2464 0.2184 0.1528 0.1292
QS chisquare 0.444 04124 03688 0.3464 03404  0.39 0.4588
500 Bartlett Fixed-b 02132 0.144 0.1212 0.1084 0.1028 0.0948 0.0916
Bartlett chisquare 0.2248 0.1676 0.1576 0.1632 0.1692  0.218 0.28
Qs Fixed-b 0.1668 0.108 0.0948 0.0872 0.0808 0.0804 0.0804
QS chisquare 0.1828 0.1428 0.1444 0.1604 0.1772 0.2624 0.3588

b
T kernel Inference 0.400 0.500 0.600 0.700 0.800 0.900 1.000
50 Bartlett Fixed-b 0.2392 0.2328 0.2336 0.2292 0.2284 0.2308 0.2308
Bartlett chisquare 0.5252 0.5744 0.6128 0.6436 0.6768 0.7028  0.726
Qs Fixed-b 0.1436 0.1332 0.1268 0.1244  0.12 0.1188 0.118
QS chisquare 0.5948 0.656 0.716 0.7652 0.8076 0.8356 0.8644
100 Bartlett Fixed-b 0.1884 0.1844 0.1844 0.182 0.1828 0.1828 0.1836
Bartlett chisquare 0.4624 0.5084 0.5572 0.596 0.6328 0.6616 0.6908
Qs Fixed-b 0.1184  0.11 0.1064 0.1016 0.102 0.1008 0.0964
QS chisquare 0.5432 0.6216 0.6868 0.744 0.7836 0.8232 (.8488
500 Bartlett Fixed-b 0.0936 0.0912 0.0916 0.0904 0.0908 0.092 0.0928
Bartlett chisquare 0.3304 0.3836 0.4296 0.474 0.5124 0.5476 0.5816
QS Fixed-b 0.0772 0.0768 0.0752 0.0712 0.0692 0.0692 0.0676
QS chisquare 0.4512 0.5352 0.6156 0.6836 0.7344 0.7744 0.8136
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Hy : No Structural Change in both 1 and By att = AT, A = 0.4

Table 1.19: The Finite Sample Size associated with WaldS), 1 =2, by =by, =D.
DGPD: (6,p,¢) = (0.8,0.5,0.5).

b
T kernel Inference 0.020 0.040 0.060 0.080 0.100 0.200  0.300
50 Bartlett Fixed-b 0.4664 0.4304 0.3632 0.3124 0.2828 0.2144 0.2064
Bartlett chisquare 0.4768 0.4528 0.406 0.3692 0.3512 0.3652 0.4104
Qs Fixed-b 0.4668 0.406 0.3092 0.2536 0.2188 0.1576  0.142
QS chisquare 0.4856 0.4396 0.3708 0.3392 0.326 0.3696 0.4496
100 Bartlett Fixed-b 0.4148 0.292 0.2368 0.2008 0.1868 0.1528 0.1452
Bartlett chisquare 0.422 0.3128 0.2732 0.2552 0.2492 0.2784  0.328
Qs Fixed-b 0.3964 0.2464 0.1772 0.1532 0.1408 0.1168 0.104
QS chisquare 0.4084 0.2796 0.2416 0.2256 0.2288 0.296 0.3792
500 Bartlett Fixed-b 0.1368 0.1 0.09 0.0896 0.0848 0.0744 0.074
Bartlett chisquare 0.142 0.1144 0.1152 0.1228 0.1292 0.1764 0.2296
Qs Fixed-b 0.0992 0.0812 0.0768 0.0748 0.0736 0.0648 0.0608
QS chisquare 0.1092 0.0992 0.1088 0.1236 0.1396 0.218 0.3068

b
T kernel Inference 0.400 0.500 0.600 0.700 0.800 0.900 1.000
50 Bartlett Fixed-b 0.1956 0.1916 0.1872 0.1888 0.1908 0.1916 0.1904
Bartlett chisquare 0.4584 0.5012 0.5492 0.59 0.6244 0.6524 0.6808
QS Fixed-b  0.132 0.1236 0.1184 0.1112 0.1088  0.106 0.1052
QS chisquare 0.5276 0.6188 0.674 0.7256 0.7688 0.8028 0.8328
100 Bartlett Fixed-b 0.1404 0.1336 0.1336 0.1344 0.1344 0.1364 0.1372
Bartlett chisquare 0376 0.4192 04732 05148 0.5528  0.58 0.608
Qs Fixed-b 0.0968 0.0924 0.0924 0.0912 0.0876 0.0868 0.0864
QS chisquare 0.4664 0.5576 0.624 0.6752 0.7196 0.7588 0.7928
500 Bartlett Fixed-b 0.0708 0.0724 0.0736 0.0744 0.074 0.0756 0.0756
Bartlett chisquare 0.2796 0.3228 0.3732 0.4096 045 0482 0.5128
QS Fixed-b 0.0612 0.0572  0.058 0.0604 0.0648 0.0656 0.0648
QS chisquare 0.4004 0.4768 0.5536 0.6176 0.6716 0.7188 0.7568
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Table 1.20: The Finite Sample Size of the Tests Based on Wald'5) and Wald(F),

[=2,b = %, b, = %, T = 50, Hp : No Structural Change in both 1 and By att = AT
Bartlett kernel QS kernel
Wald®) Wald®)  Wald®)  waldS Wald®)  WaldF)
DGP A b by by Fixed-b Fixed-b chisquare Fixed-b Fixed-b chisquare
A 2 .04 2 .05 0.1184 0.1168 0.2284 0.0968 0.098 0.2664
1 5 125 0.11 0.112 0.346 0.0992 0.0928 0.464
2 10 25 0.1132 0.1116 0.4924 0.0952 0.0932 0.6596

B 2 04 2 .05 0.2444 0.244 0.3804 0.1868  0.1884 0.3904
d 5 125  0.1704 0.17 0.436 0.1168  0.1108 0.4936
2 1.0 .25 0.1548  0.1544 0.558 0.096  0.0932 0.6704

c 2 04 2 05 0.2948  0.2928 0.4244 0.2092  0.2116 0.4152
g .5 125 01932 0.1952 0.4592 0.1216  0.1184 0.506
2 1.0 .25 0.1668  0.1676 0.5728 0.0924  0.0928 0.6668

D 2 04 2 .05 0.3296  0.3292 0.47 0.2428  0.2444 0.4596
d 5 125 02312 0.2304 0.514 0.1464  0.1416 0.5552
2 1.0 .25 0.2024  0.2036 0.6164 0.1156  0.1168 0.6984

E 2 04 2 .05 0.5672  0.5664 0.6812 0.4576 0.46 0.6612
1 5 125 0369  0.3688 0.6444 0.2148  0.2128 0.6412
2 1.0 .25 0.2768 0.284 0.682 0.1428  0.1384 0.712

F 2 04 2 .05 0.582 0.5804 0.6948 0.4816 0.4872 0.6732
1 b5 125 0.3924 0.3928 0.6728 0.2492 0.2452 0.6684
2 10 .25 0.3064 0.3136 0.7064 0.1696 0.1632 0.7364
Note: The DGP labels are given by A: (6, p, ¢) = (0.5,0.0,0.0), B: (6, p, ¢) = (0.5,0.5,0.0),
C:(6,p,¢) = (05,0.5,0.5), D: (0,p,9) = (0.8,0.5,0.5), E: (6, p, ¢) = (0.8,0.9,0.5), and
F: (6,0, ) = (0.9,0.9,0.9).
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Table 1.21: The Finite Sample Size of the Tests Based on Wald'5) and Wald(F),

=2, =3%,b= %, T =100, Hp : No Structural Change in both 81 and By att = AT

Bartlett kernel QS kernel
Wald®) Wald®)  Wald®)  waldS Wald®)  WaldF)
DGP A b by by Fixed-b Fixed-b chisquare Fixed-b Fixed-b chisquare
. .05 0.0928 0.092 0.1924 0.0872  0.0892 0.2408
1 5 125 0.0876  0.0884 0.3044 0.08 0.0796 0.43
2 10 .25 0.0868 0.086 0.4472 0.082  0.0784 0.6308

NUISS

>
N
o
=
N

B 2 04 2 .05 0.1672  0.1668 0.2916 0.1204 0.122 0.3004
d 5 125 01264 0.1312 0.3872 0.088 0.086 0.4556
2 1.0 .25 0.1168  0.1152 0.5144 0.0768  0.0716 0.6344

c 2 04 2 05 0.1816  0.1828 0.3132 0.1316  0.1344 0.3124
g 5 125 0139  0.1376 0.4028 0.0904 0.092 0.4624
2 1.0 .25 0.1244  0.1264 0.5288 0.0792  0.0812 0.6424

D 2 04 2 .05 0.2312  0.2296 0.3792 0.1636 0.168 0.3696
d 5 125 01772 0.1784 0.4528 0.114 0.1108 0.5044
2 1.0 .25 0.1624  0.1636 0.58 0.1116 0.106 0.6892

E 2 04 2 .05 04656  0.4672 0.6104 0.3404  0.3428 0.5716
d 5 125 0.276 0.28 0.5848 0.1476  0.1448 0.586
2 1.0 .25 0.2192 0.23 0.6472 0.1048  0.1032 0.6908

F 2 04 2 .05 0.4864 0.4872 0.6308 0.3588 0.364 0.5996
1 b5 125 0.3008 0.3036 0.618 0.1764 0.1748 0.6156
2 1.0 .25 0.25 0.2524 0.6784 0.1292 0.1232 0.7152
Note: The DGP labels are given by A: (6, p, ¢) = (0.5,0.0,0.0), B: (6, p, ¢) = (0.5,0.5,0.0),
C:(6,p,¢) = (05,0.5,0.5), D: (0,p,9) = (0.8,0.5,0.5), E: (6, p, ¢) = (0.8,0.9,0.5), and
F: (6,0, ) = (0.9,0.9,0.9).
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Table 1.22: The Finite Sample Size of the Tests Based on Wald'5) and Wald(F),

=2, =3%,b= %, T = 500, Hp : No Structural Change in both 81 and By att = AT

Bartlett kernel QS kernel
Wald®) Wald®)  Wald®)  waldS Wald®)  WaldF)
DGP A b by by Fixed-b Fixed-b chisquare Fixed-b Fixed-b chisquare
. .05 0.0676  0.0672 0.1468 0.0628  0.0636 0.1948
1 5 125 0.066  0.0628 0.274 0.0592  0.0616 0.3872
2 10 .25 0.0632 0.06 0.4128 0.0588  0.0604 0.6104

>

>
N
o
=
N

B 2 04 2 .05 0.0788 0.078 0.174 0.0676  0.0688 0.1996
1 .5 125  0.0768 0.076 0.2932 0.0664  0.0616 0.3904
2 1.0 .25 0.078 0.076 0.432 0.0668  0.0624 0.6008
c 2 04 2 05 0.0816  0.0816 0.1804 0.0724  0.0732 0.202

g 5 125 0.0724  0.0732 0.2928 0.0648  0.0632 0.3908
2 1.0 .25 0.0748  0.0756 0.4324 0.0604  0.0644 0.6028

D 2 04 2 .05 0.0976 0.096 0.2032 0.0788  0.0796 0.228
1 .5 125 0.0888  0.0864 0.3212 0.08 0.078 0.4216
2 10 25 0.0892  0.0884 0.4556 0.0732  0.0732 0.62

E 2 04 2 .05 0.1964 0.1972 0.3256 0.1236  0.1276 0.3092
1 5 125 01316  0.1308 0.3876 0.0804  0.0772 0.436
2 1.0 .25 0.122  0.1208 0.5104 0.0788  0.0768 0.6228

F 2 04 2 05 0.2196  0.2204 0.3652 0.142  0.1448 0.3468
Q1 5 125 01568 < 0.1564 0.4344 0.098  0.0944 0.4756
2 1.0 .25 0.1432  0.1436 0.548 0.0884  0.0836 0.6524

Note: The DGP labels are given by A: (6, p, ¢) = (0.5,0.0,0.0), B: (6, p, ¢) = (0.5,0.5,0.0),
C:(6,p,¢) = (05,0.5,0.5), D: (0,p,9) = (0.8,0.5,0.5), E: (6, p, ¢) = (0.8,0.9,0.5), and
F: (6,0, ) = (0.9,0.9,0.9).
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Table 1.23: The Finite Sample Size of the Tests Based on Wald'5) and Wald(F),

=2, =3%,b= %, T = 50, Hp : No Structural Change in both 1 and By att = AT

SIS

Bartlett kernel QS kernel
Wald®) Wald®)  wald®)  Wald®® wald®)  WaldP)
DGP A b by by Fixed-b Fixed-b chisquare Fixed-b Fixed-b chisquare

A 5 5 10 10 0.0888  0.0856 0.552 0.0672 0.068 0.808
1.0 20 20 0.0888  0.0804 0.7256 0.0644  0.0636 0.9396

S5 125 .83 0.0828  0.0824 0.5572 0.0724  0.0716 0.8072
2 5 25 625 0.11  0.1116 0.6936 0.0828 0.08 0.8828
1.0 50 125 01116 0.1032 0.8172 0.0744  0.0628 0.9652

o~
a1

B 5 5 10 10 0.144 0.1476 0.6348 0.0964  0.0844 0.824
1.0 20 20 0.144 0.1328 0.7748 0.0832 0.062 0.9464

4 5 125 .83 0.1384  0.1316 0.636 0.0876  0.0784 0.8236

2 5 25 625 0.15  0.1456 0.736 0.0816 0.076 0.882

1.0 5.0 125 01492 0.1376 0.8504 0.0832  0.0744 0.9648

c 5 5 10 10 0.1516  0.1548 0.6508 0.09 0.0864 0.8332
1.0 20 20 0.1516  0.1412 0.7912 0.0848  0.0712 0.9528

4 5 125 83 0.1492 0.148 0.6516 0.092  0.0844 0.8368

2 5 25 625 01564 @ 0.1596 0.7412 0.0892 0.08 0.8752

1.0 5.0 125 0.1624 0.146 0.8592 0.086 0.082 0.9692

D 5 5 10 10 0.192  0.1944 0.6788 0.1124  0.1032 0.8592
1.0 20 20 0.192 0.182 0.8192 0.1012  0.0816 0.9588

4 5 125 83 0.19  0.1852 0.694 0.1056  0.0976 0.8504

2 5 25 625 01908 @ 0.1928 0.7792 0.102  0.0912 0.9008

1.0 50 125 01908 0.1756 0.8756 0.0976  0.0824 0.9788

E 5 5 10 1.0 0.3756  0.3856 0.7872 0.2044 0.174 0.8788
1.0 20 20 0.3756  0.3608 0.872 0.1724 0.132 0.964

4 5 125 .83 0.354 0.354 0.7876 0.1728 0.156 0.8896

2 5 25 625 025 0.2512 0.7972 0.1108  0.0964 0.8852

1.0 5.0 125 02564  0.2412 0.8752 0.1148  0.0892 0.9692

F 5 5 10 1.0 0.4008  0.4044 0.7988 02216  0.1904 0.8956
1.0 20 20 0.4008 0.388 0.8816 0.1908 0.136 0.97

4 5 125 .83 0.3832  0.3796 0.8168 0.186  0.1608 0.9032
2 5 25 625 02876  0.2836 0.8148 0.1284  0.1144 0.8984
1.0 50 125 02892 0.2756 0.8948 0.1272  0.0972 0.974

Note: The DGP labels are given by A: (6, p, ¢) = (0.5,0.0,0.0), B: (6, p, ¢) = (0.5,0.5,0.0),
C: (6,p,¢) = (05,0.5,0.5),D: (6,p,9) = (0.8,0.5,0.5), E: (6,p, ¢) = (0.8,0.9,0.5), and
F: (6,0, ¢) = (0.9,0.9,0.9).
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Table 1.24: The Finite Sample Size of the Tests Based on Wald'5) and Wald(F),

=2, =3%,b= %, T =100, Hp : No Structural Change in both 81 and By att = AT
Bartlett kernel QS kernel
Wald®)  Wald®)  Wald®)  waldS Wald®)  WaldF)
DGP A b by by Fixed-b Fixed-b chisquare Fixed-b Fixed-b chisquare
A 5 5 10 1.0 0.0668 0.058 0.5344 0.0544 0.056 0.7856

NS

1.0 20 20 0.0668 0.0568 0.7052 0.052 0.054 0.9316
4 5 125 .83 0.0664 0.0664 0.5272 0.0556 0.052 0.7896
2 5 25 625 0.0832 0.0832 0.666 0.0688  0.0684 0.8724

1.0 5.0 125 0.0872 0.076 0.7996 0.0676  0.0628 0.9668

B 5 5 10 10 0.0856 0.088 0.5776 0.0604  0.0636 0.804

1.0 20 20 0.0856 0.0784 0.7428 0.0576  0.0508 0.9412
125 .83 0.1004 0.1008 0.5844 0.0692  0.0668 0.8012
. 25 625 0.1108 0.1092 0.6988 0.0712  0.0716 0.8716
1.0 50 125 0.1144 0.1048 0.8288 0.0724  0.0656 0.9672

N
o1 n

cC 5 5 10 10 0.0988 0.0956 0.5816 0.0648  0.0588 0.8076
1.0 20 20 0.0988 0.0852 0.7492 0.0616  0.0552 0.9428

4 5 125 83 0.1112 0.108 0.5892 0.07  0.0696 0.8028

2 5 25 625 0.1228 0.1228 0.7184 0.0816  0.0772 0.872

1.0 5.0 125 0.1216 0.1076 0.8356 0.0764  0.0664 0.97

D 5 5 10 10 0.1168 0.1228 0.61 0.082 0.074 0.8096
1.0 20 20 0.1168 0.1104 0.7588 0.078 0.064 0.9384

4 5 125 83 0.134 0.1312 0.6272 0.0804  0.0804 0.8204
2 5 25 625 0.1644 0.162 0.7584 0.0872 0.084 0.8912

1.0 50 125 0.166 0.152 0.856 0.0832  0.0696 0.9696
E 5 5 10 10 02756 0.2852 0.742 0.1412  0.1304 0.87
1.0 20 20 02756 0.2596 0.8532 0.126  0.0932 0.9584

4 5 125 .83 0.2852 0.2792 0.7604 0.1364  0.1276 0.8852
2 5 25 625 0.2128 0.2112 0.7768 0.0948 0.088 0.8852
1.0 50 125 0216 0.2 0.8808 0.0992  0.0812 0.974

F S5 5 10 1.0 0.3044 0.3028 0.7664 0.1708 0.154 0.8764
1.0 20 20 0.3044 0.2872 0.8612 0.1596 0.1192 0.96
4 5 125 .83 0.2936 0.2948 0.776 0.1528 0.136 0.884
2 5 25 .625 0.2384 0.2408 0.7892 0.1152 0.0976 0.8864
1.0 5.0 1.25 0.2408 0.2252 0.8804 0.1168 0.0872 0.9728
Note: The DGP labels are given by A: (6, p, ¢) = (0.5,0.0,0.0), B: (6, p, ¢) = (0.5,0.5,0.0),
C: (6,p,¢) = (05,0.5,0.5),D: (6,p,9) = (0.8,0.5,0.5), E: (6,p, ¢) = (0.8,0.9,0.5), and
F: (6,0, ¢) = (0.9,0.9,0.9).
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Table 1.25: The Finite Sample Size of the Tests Based on Wald'5) and Wald(F),

=2, =3%,b= %, T = 500, Hp : No Structural Change in both 81 and By att = AT

Bartlett kernel QS kernel
Wald®) Wald®)  wald®)  Wald®® wald®)  WaldP)
DGP A b by by Fixed-b Fixed-b chisquare Fixed-b Fixed-b chisquare
A 5 5 10 1.0 0.0488 0.0532 0.4988 0.0532  0.0496 0.7708
1.0 2.0 2.0 0.0488 0.0428 0.6856 0.0528  0.0492 0.9264
S5 125 83  0.064 0.0612 0.5144 0.0568 0.058 0.7848
2 5 25 .625 0.0664 0.0676 0.6488 0.056 0.058 0.8664
1.0 50 125 0.0636 0.056 0.7952 0.0556 0.0568 0.958

NS

o~
a1

B 5 5 10 1.0 0.06 0.0652 0.5024 0.0548  0.0472 0.776
1.0 20 20 0.06 0.0524 0.6948 0.05 0.0496 0.9312

4 5 125 .83 0.0692 0.0688 0.5148 0.0576  0.0564 0.784

2 5 25 625 0.0752 0.0764 0.6552 0.054 0.0592 0.8624

1.0 50 125 0.0724 0.0652 0.7932 0.0564  0.0576 0.9612

c 5 5 10 10 0.059 0.0632 0.514 0.0552  0.0488 0.7744
1.0 20 20 0.0596 0.0556 0.6884 0.0492  0.0428 0.9308

4 5 125 .83 0.0668 0.0688 0.528 0.0572 0.06 0.7868

2 5 25 625 0076 0.076 0.656 0.0556  0.0584 0.858

1.0 50 125 0.0736 0.066 0.798 0.0584  0.0516 0.9572

D 5 5 10 1.0 0.0652 0.0644 0.5264 0.0528  0.0528 0.7824
1.0 20 20 0.0652 0.0568 0.7 0.0504  0.0464 0.9364

4 5 125 .83 0.0744 0.07 0.534 0.0604  0.0548 0.792

2 5 25 625 0.0868 0.086 0.6704 0.066 0.0696 0.8728

1.0 50 125 0.0884 0.0804 0.8148 0.0612 0.058 0.9596

E 5 5 10 10 0.1032 0.1024 0.5728 0.0724  0.0676 0.7968
1.0 20 20 0.1032 0.0964 0.7288 0.0692  0.0648 0.9304

4 5 125 .83 0.11 0.1076 0.582 0.0728  0.0652 0.794

2 5 25 625 0.1188 0.1188 0.7032 0.0796  0.0652 0.8704

1.0 50 125 0.1196 0.1056 0.8352 0.0708  0.0624 0.9624

F S5 5 10 1.0 0.12 0.1216 0.5904 0.0784 0.07 0.8052
1.0 20 20 0.12 0.1116 0.7452 0.0688 0.06 0.932
4 5 125 .83 0.1224 0.1212 0.6112 0.0712 0.0692 0.812
2 5 25 .625 0.1416 0.1424 0.7324 0.0868 0.0796 0.872
1.0 5.0 125 0.138 0.1288 0.8432 0.0804 0.0732 0.9692
Note: The DGP labels are given by A: (6, p, ¢) = (0.5,0.0,0.0), B: (6, p, ¢) = (0.5,0.5,0.0),
C: (6,p,¢) = (05,0.5,0.5),D: (6,p,9) = (0.8,0.5,0.5), E: (6,p, ¢) = (0.8,0.9,0.5), and
F: (6,0, ¢) = (0.9,0.9,0.9).
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Table 1.26: Fixed-b 95% Critical Values of WaldF) Unknown Break Date, Bartlett kernel,

[ =2
€ =0.05 e =01 € =02
b SupW MeanW ExpW SupW MeanW ExpW SupW MeanW ExpW
0.02 30.293 4.861 9.588 18230 4235 5.051 13.542 3.263  3.539
0.04 48.447 59489 18.1938 26.034 4974 8173 16313 3.688 4.654
0.06 61976 7.0183 24.816 33.172 5729 11483 19.496 4.162 5967
0.08 73.862 8.001 30.656 39.957 6.496 14.695 22812 4.617 7.364
0.1 84.848 8973 36.109 46263 7278 17.653 26323 5146  8.998
0.2 13892 14.018 63.068 76971 11.323 32.706 46.122 8.052 18.156
03 19394 19.113 90.408 109.11 15.596 48.657 67262 11.216 28.446
0.4 25414 24443 12071 14231 20.009 65120 89.241 14464 39.161
0.5 313.06 29999 149.85 176.51 24565 82.037 111.18 17.912 49.818
0.6 37436 35304 180.46 212.05 29.202 99.596 134.00 21.386 61.205
0.7 43371 40902 21022 24566 33.625 11632 15393 24.666 70.991
0.8 491.83 46.205 239.08 279.65 38.016 133.32 17396 27.702 81.134
09 549.63 51450 268.05 311.37 42.238 149.22 19252 30.670 90.145
1 60899 57.142 297.78 34426 46.623 165.51 212.76 33.936 100.36

Table 1.27: Fixed-b 95% Critical Values of Wald(F) Unknown Break Date, QS kernel, [ =2

€ =0.05 €=0.1 €=02
b SupW  MeanW ExpW  SupW  MeanW ExpW  SupW  MeanW ExpW
0.02 64848 5678  26.200 24831 4.641 7.548 15.061 3458 4.111
0.04 12200 8.102 54.483 46.350 6.059  17.433 20.670  4.205  6.401
0.06 161.74 10.617 74.329 68.158  7.630  28.148 28.305 5.060 9.666
0.08 207.65 13.202 97.163 91.258 9.461  39.595 38905 6.143  14.409
01 25731 16.139 122.02 118.67 11.671  53.066 52759  7.491  20.987
0.2 83293 40.501 409.56 452.33 30.155 219.29 240.65 19.924 113.55
03 33398 99975 1663.0 2055.3 77.012 1020.8 1144.7 51.677 565.45
0.4 13932 239.82 69594 89759 185.18 4481.1 47714 12422  2378.8
0.5 47253  537.89 23620 31752  411.53 15869 16684 27698 8334.9
0.6 136211 11154 68099 91828 850.69 45907 49492 580.43 24740
0.7 328737 2170.5 164361 224463 1674.7 112225 128234 1140.0 64110
0.8 719812 39824 359899 488008 3100.4 243997 283267 2099.3 141627
0.9 1444833 7015.5 722409 970172 5395.5 485079 565285 3626.6 282635
1 2647520 11566 1323754 1829406 90723 914696 1062685 5951.4 531336
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Table 1.28: The Finite Sample Size of the SupW(F) Test with 5% Nominal Size

Hy : No Structural Change in both 1 and B,, DGP A: (6, p, ¢) = (0.5,0.0,0.0)

T=100 € =0.05 e=0.1 €e=02
Fixed-b Andrews Fixed-b Andrews Fixed-b Andrews
kernel Bartlett QS Bartlett Bartlett QS Bartlett Bartlett QS Bartlett
b=0.02 0.331 0.184 0.721 0.160 0.111 0.347 0.104  0.099 0.163
0.04 0290 0.191 0.847 0.136  0.096 0.494 0.108  0.098 0.241
0.06 0284 0212 0.898 0.131 0.104 0.601 0.103  0.082 0.308
0.08 0284 0.211 0.936 0.127 0.108 0.696 0.098 0.078 0.384
0.1 0277 0212 0.954 0.124 0.106 0.756 0.094 0.071 0.447
0.2 0.262 0.153 0.992 0.125 0.081 0.908 0.084 0.056 0.678
0.3 0.264 0.084 0.998 0.124  0.050 0.962 0.081 0.043 0.812
0.4 0.259 0.048 1.000 0.123  0.031 0.983 0.081 0.028 0.885
0.5 0.250 0.036 1.000 0.120  0.023 0.994 0.081 0.019 0.923
0.6 0.250 0.026 1.000 0.118 0.017 0.997 0.080 0.017 0.950
0.7 0.250 0.024 1.000 0.120 0.016 0.999 0.080 0.015 0.968
0.8 0.243  0.020 1.000 0.119 0.014 1.000 0.079 0.012 0.984
0.9 0.248 0.015 1.000 0.123  0.010 1.000 0.079  0.010 0.989
1 0.253 0.012 1.000 0.121  0.007 1.000 0.080  0.009 0.994
T=500 € =0.05 e=0.1 e=02
Fixed-b Andrews Fixed-b Andrews Fixed-b Andrews
kernel Bartlett QS Bartlett Bartlett QS Bartlett Bartlett QS Bartlett
b=0.02 0.093 0.084 0.472 0.069 0.070 0.217 0.062  0.062 0.111
0.04 0.086  0.080 0.704 0.069 0.063 0.376 0.060  0.060 0.179
0.06 0.086  0.082 0.810 0.069 0.063 0.507 0.057  0.058 0.247
0.08 0.087  0.079 0.865 0.065 0.058 0.607 0.060 0.056 0.315
0.1 0.084 0.077 0.904 0.064 0.057 0.679 0.062  0.056 0.381
0.2 0.078  0.063 0.983 0.058 0.052 0.878 0.054 0.044 0.641
0.3 0.081 0.055 0.995 0.057 0.052 0.946 0.061 0.052 0.786
0.4 0.078 0.047 0.999 0.056 0.041 0.974 0.054 0.050 0.865
0.5 0.083  0.046 1.000 0.057  0.038 0.986 0.052  0.042 0.908
0.6 0.081 0.034 1.000 0.059 0.034 0.994 0.050 0.041 0.935
0.7 0.080 0.026 1.000 0.062  0.028 0.998 0.055 0.035 0.959
0.8 0.078  0.025 1.000 0.058 0.027 1.000 0.054 0.031 0.977
0.9 0.079  0.026 1.000 0.058 0.025 1.000 0.050 0.030 0.987
1 0.081 0.026 1.000 0.061 0.024 1.000 0.055 0.028 0.992
T=1000 € =0.05 e=0.1 €e=02
Fixed-b Andrews Fixed-b Andrews Fixed-b Andrews
kernel Bartlett QS Bartlett Bartlett QS Bartlett Bartlett QS Bartlett
b=0.02 0.0772 0.0784 0.4132 0.056 0.0512 0.1932  0.0592 0.0572 0.116
0.04 0.078 0.072 0.6584 0.0544 0.0536 0.3664  0.0592 0.0592 0.1808
0.06 0.0784 0.0712 0.7832 0.05 0.052 0.4984 0.0572 0.0584 0.2452
0.08 0.0756 0.0592 0.8528 0.0464 0.0484 0.5956 0.056  0.054 0.3048
0.1 0.0696 0.0664 0.8956  0.0496 0.0532 0.6788 0.0564 0.0516 0.3712
0.2 0.0704 0.0584 0.9804 0.05 0.0556 0.866  0.0492 0.0472 0.6172
0.3 0.07 0.0472 0.994 0.0488 0.0476 0934 0.0488 0.0436 0.7744
04 0.0696 0.0448 0.9984 0.0432 0.0464 0.9688 0.05 0.05 0.8536
0.5 0.0716 0.0468 1 0.052 0.0452 0.9852 0.054 0.0548 0.8964
0.6 0.072 0.0456 1 0.0472 0.0484 0.9912 0.0464 0.05 0.928
0.7 0.0724 0.0472 1 0.046 0.0492 0.996 0.0496 0.0468 0.956
0.8 0.0664 0.0436 1 0.054 0.0484 0.9992  0.0472 0.0468 0.974
09 0.0696 0.04 1 0.0508 0.0456 0.9996 0.0484 0.0456 0.9852
1 0.0708 0.04 1 0.0524 0.044 1 0.0484 0.0424 0.9928
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Table 1.29: The Finite Sample Size of the SupW(F) Test with 5% Nominal Size

Hy : No Structural Change in both 1 and B, DGP D: (6, p, ¢) = (0.8,0.5,0.5)

T=100 € =0.05 e=0.1 €e=02
Fixed-b Andrews Fixed-b Andrews Fixed-b Andrews
kernel Bartlett QS Bartlett Bartlett QS Bartlett Bartlett QS Bartlett
b =0.02 0.665 0.308 0.947 0.598 0.395 0.801 0.493 0.376 0.604
0.04 0.466 0.173 0.955 0.417 0.200 0.800 0.341 0.227 0.542
0.06 0.398 0.166 0.966 0.355 0.166 0.842 0292 0.172 0.587
0.08 0.365 0.159 0.978 0.319 0.156 0.881 0.268 0.145 0.638
0.1 0.351 0.161 0.985 0.308 0.153 0.906 0.255 0.128 0.674
0.2 0316 0.114 0.996 0.283 0.101 0.968 0224 0.077 0.832
0.3 0.308 0.071 1.000 0.271  0.061 0.990 0.216  0.054 0.907
0.4 0.304 0.044 1.000 0.266  0.036 0.997 0.213  0.037 0.948
0.5 0.302 0.034 1.000 0272  0.026 0.999 0.213  0.034 0.966
0.6 0.310 0.024 1.000 0276  0.023 1.000 0.208 0.028 0.980
0.7 0.310 0.020 1.000 0266  0.020 1.000 0210 0.024 0.989
0.8 0.307  0.021 1.000 0265 0.021 1.000 0.211  0.020 0.993
0.9 0.304 0.021 1.000 0.265 0.020 1.000 0.209 0.020 0.995
1 0.309  0.020 1.000 0.273  0.021 1.000 0.209 0.018 0.999
T=500 € =0.05 e=0.1 e=02
Fixed-b Andrews Fixed-b Andrews Fixed-b Andrews
kernel Bartlett QS Bartlett Bartlett QS Bartlett Bartlett QS Bartlett
b =0.02 0.247  0.109 0.697 0.193 0.112 0.391 0.131  0.090 0.216
0.04 0.207  0.097 0.832 0.149  0.085 0.514 0.108 0.084 0.251
0.06 0.186  0.096 0.888 0.139  0.083 0.616 0.102 0.077 0.318
0.08 0.181  0.086 0.930 0.126  0.078 0.685 0.098 0.070 0.382
0.1 0.170  0.089 0.956 0.129 0.077 0.756 0.096 0.070 0.447
0.2 0.144 0.074 0.991 0.114 0.058 0.908 0.088  0.051 0.684
0.3 0.146  0.054 0.998 0.110  0.050 0.964 0.089 0.044 0.824
0.4 0.140 0.036 0.999 0.106  0.036 0.985 0.088 0.041 0.888
0.5 0.144 0.037 1.000 0.107  0.034 0.993 0.083  0.041 0.926
0.6 0.145 0.032 1.000 0.105 0.038 0.998 0.083  0.038 0.949
0.7 0.146  0.031 1.000 0.103  0.033 0.999 0.087 0.036 0.970
0.8 0.144 0.032 1.000 0.106  0.034 1.000 0.090 0.033 0.984
0.9 0.146  0.031 1.000 0.106  0.030 1.000 0.087  0.030 0.990
1 0.149 0.032 1.000 0.108 0.031 1.000 0.087 0.030 0.994
T=1000 € =0.05 e=0.1 e=02
Fixed-b Andrews Fixed-b Andrews Fixed-b Andrews
kernel Bartlett QS Bartlett Bartlett QS Bartlett Bartlett QS Bartlett
b=0.02 0.1628 0.0928 0.5716 0.1176 0.0836 0.2892  0.0952 0.0744 0.1596
0.04 0.144 0.0888 0.7504  0.0996 0.0636 0.4304 0.0884 0.0732 0.2132
0.06 0.1344 0.0844 0.844 0.0924 0.0576 0.5604 0.0836 0.0732 0.2776
0.08 0.1308 0.0796 0.8956 0.0856  0.058 0.654 0.0828 0.066 0.3492
0.1 0.122 0.0672 0.9248 0.0864 0.056 0.724 0.0816 0.0592 0.4104
0.2 0.1196 0.0648 0.9828 0.0828 0.052 0.8888  0.0624 0.0504 0.6548
0.3 0.1044 0.0512 0.9964 0.0752  0.058 09516  0.0648 0.0544 0.7856
04 0.1072 0.0436 0.9996 0.0768 0.046 0.9748 0.0664 0.0516 0.862
0.5 0.1056 0.0424 0.9996 0.076 0.04 0.9884  0.0648 0.0512 0.9076
0.6 0.1056 0.042 1 0.0772 0.0392 0.9952  0.0692 0.0436 0.936
0.7 0.1084 0.0412 1 0.0804 0.0392 0.9992  0.0688 0.0412 0.9568
0.8 0.1048 0.0416 1 0.0804 0.0404 0.9992 0.066 0.0408 0.9788
09 0.1068 0.0404 1 0.082 0.0404 1 0.0672 0.0364 0.9884
1 0.1088 0.0404 1 0.0788 0.0404 1 0.0668 0.0396 0.9912
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Table 1.30: The Finite Sample Size of the SupW(F) Test with 5% Nominal Size

Hj : No Structural Change in both 81 and B, DGP F: (6, p, ¢) = (0.9,0.9,0.9)

T=100 € =0.05 e=0.1 €e=02
Fixed-b Andrews Fixed-b Andrews Fixed-b Andrews
kernel Bartlett QS Bartlett Bartlett QS Bartlett Bartlett QS Bartlett
b =0.02 0934 0.586 0.998 0963 0.879 0.992 0942 0.886 0.967
0.04 0.672 0.198 0.994 0.806 0472 0.976 0.810  0.652 0.914
0.06 0.508 0.136 0.991 0.680 0.293 0.971 0.700  0.487 0.895
0.08 0.405 0.100 0.991 0578 0.227 0.973 0.632 0.369 0.895
0.1 0.346  0.092 0.990 0.528 0.184 0.974 0596 0.304 0.900
0.2 0272 0.073 0.994 0445 0.122 0.986 0.507 0.160 0.948
0.3 0.286  0.060 0.998 0.440 0.081 0.995 0.503 0.104 0.972
0.4 0.299  0.045 0.999 0.444 0.057 0.998 0.492 0.082 0.986
0.5 0.307  0.036 1.000 0.447 0.046 1.000 0.488 0.064 0.994
0.6 0.300 0.034 1.000 0.448 0.038 1.000 0.498 0.052 0.997
0.7 0296 0.033 1.000 0442 0.036 1.000 0.499 0.042 0.999
0.8 0.291 0.030 1.000 0442 0.034 1.000 0.492 0.038 0.999
0.9 0.290 0.026 1.000 0.443 0.033 1.000 0.492 0.035 1.000
1 0.296  0.026 1.000 0.446  0.030 1.000 0.494 0.032 1.000
T=500 € =0.05 e=0.1 e=02
Fixed-b Andrews Fixed-b Andrews Fixed-b Andrews
kernel Bartlett QS Bartlett Bartlett QS Bartlett Bartlett QS Bartlett
b =0.02 0591 0.195 0.945 0.608 0.351 0.812 0512 0.354 0.632
0.04 0.347  0.093 0.941 0.385 0.142 0.779 0.313  0.190 0.527
0.06 0.276  0.075 0.950 0.306  0.107 0.812 0.252  0.139 0.545
0.08 0.239  0.070 0.962 0.260  0.090 0.846 0227 0.114 0.587
0.1 0.212  0.059 0.971 0.239  0.083 0.874 0.204 0.098 0.630
0.2 0.184 0.054 0.990 0.208 0.062 0.952 0.177  0.066 0.802
0.3 0.178  0.050 0.998 0.202 0.056 0.983 0.183 0.062 0.878
0.4 0.180 0.040 1.000 0.200 0.050 0.994 0.184 0.059 0.930
0.5 0.176  0.041 1.000 0.201  0.043 0.998 0.180  0.050 0.956
0.6 0.180  0.039 1.000 0.192  0.042 1.000 0.178  0.048 0.973
0.7 0.176  0.042 1.000 0.198 0.044 1.000 0.176  0.044 0.987
0.8 0.170  0.038 1.000 0.197 0.042 1.000 0.179  0.043 0.993
0.9 0.173  0.038 1.000 0.198  0.040 1.000 0.174 0.043 0.995
1 0.174 0.038 1.000 0.200 0.039 1.000 0.174 0.044 0.997
T=1000 € =0.05 e=0.1 e=02
Fixed-b Andrews Fixed-b Andrews Fixed-b Andrews
kernel Bartlett QS Bartlett Bartlett QS Bartlett Bartlett QS Bartlett
b=0.02 0.4004 0.1216 0.8364 0.3504 0.1736 0.5964 0.2788 0.1832 0.3852
0.04 0.2688 0.0724 0.888  0.2204 0.0892 0.6408 0.192 0.1188 0.3712
0.06 0.2176 0.0688 09216 0.1764 0.068 0.7052 0.156 0.0928 0.4092
0.08 0.1956 0.0564 0.9436 0.1628 0.0576 0.772 0.1492 0.0812 0.478
0.1 0.1728 0.0516 0.9568 0.1504 0.054 0.8152  0.1392 0.0696 0.5344
0.2 0.1504 0.046 0.9908 0.132 0.0528 0.9236 0.1232 0.0476 0.7312
0.3 0.1464 0.0444 0.9964 0.1332 0.0448 0.9712 0.118 0.0452 0.8332
04 0.1464 0.0424 0.9996 0.132 0.0352 0.9864 0.122  0.036 0.8908
05 0.1532 0.04 0.9996 0.1288 0.0352 0.9924 0.1232 0.036 0.924
0.6 0.1556 0.0396 0.9996 0.1364 0.0388 0.9968 0.126  0.038 0.9536
0.7 0.1532 0.0408 1 0.1332 0.0392 0.9992 0.1164 0.0376 0.9736
0.8 0.1416 0.042 1 0.1372 0.0412 0.9996 0.1192 0.0388 0.9856
09 0.1452 0.042 1 01292 0.0424 0.9996 0.1204 0.0388 0.9936
1 0.1448 0.0444 1 0.1296 0.0408 1 0.1244 0.04 0.9968
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Table 1.31: The Finite Sample Size of the MeanWF) Test with 5% Nominal Size

Hy : No Structural Change in both 1 and B,, DGP A: (6, p, ¢) = (0.5,0.0,0.0)
T=100 € =0.05 e=01 €=0.2
Fixed-b AP Fixed-b AP Fixed-b AP

kernel Bartlett QS Bartlett Bartlett QS  Bartlett Bartlett QS Bartlett

b =0.02 0.162 0.148 0.290 0.101  0.094 0.157 0.084 0.082 0.120

0.04 0.175 0.190 0.446 0.105 0.105 0.243 0.089  0.090 0.156

0.06 0.182 0.202 0.586 0.108 0.114 0.328 0.090 0.087 0.201

0.08 0.192 0.215 0.686 0.107 0.114 0.406 0.090 0.088 0.243

0.1 0.190 0.226 0.759 0.103 0.116 0.482 0.086 0.081 0.291

0.2 0204 0.194 0.941 0.109 0.109 0.750 0.086 0.079 0.518

0.3 0.209 0.165 0.984 0.114  0.096 0.895 0.081 0.068 0.674

04 0.208 0.132 0.996 0.117  0.087 0.950 0.086  0.069 0.771

0.5 0.216 0.120 0.999 0.119  0.080 0.977 0.089  0.065 0.850

0.6 0212 0.112 1.000 0.121  0.080 0.991 0.087 0.058 0.902

0.7 0216 0.110 1.000 0.120 0.075 0.996 0.084 0.059 0.931

0.8 0216  0.102 1.000 0.123  0.071 1.000 0.086 0.058 0.955

0.9 0.218 0.097 1.000 0.121  0.068 1.000 0.088 0.056 0.971

1 0.217 0.097 1.000 0.122  0.066 1.000 0.087 0.055 0.982

T=500 € =0.05 e=0.1 e=02
Fixed-b AP Fixed-b AP Fixed-b AP

kernel Bartlett QS  Bartlett Bartlett QS  Bartlett Bartlett QS  Bartlett
b =0.02 0.064 0.066 0.134 0.063  0.060 0.103 0.056  0.060 0.084
0.04 0.063 0.066 0.248 0.058  0.060 0.163 0.054 0.056 0.113
0.06 0.060 0.069 0.363 0.058 0.064 0.235 0.056 0.058 0.151
0.08 0.063 0.068 0.471 0.059 0.061 0.302 0.059 0.056 0.189
0.1 0.064 0.070 0.570 0.059 0.054 0.372 0.061 0.055 0.231
0.2 0.069  0.066 0.853 0.056  0.054 0.666 0.056  0.056 0.465
0.3 0.071  0.065 0.956 0.056  0.057 0.827 0.055 0.060 0.628
04 0.068 0.057 0.986 0.055 0.053 0.911 0.062  0.055 0.741
0.5 0.065 0.057 0.995 0.054 0.052 0.954 0.060 0.051 0.818
0.6 0.065 0.056 1.000 0.059  0.055 0.975 0.054 0.052 0.869
0.7 0.068 0.058 1.000 0.057 0.052 0.990 0.057 0.051 0.912
0.8 0.069 0.058 1.000 0.058 0.048 0.996 0.056  0.050 0.940
0.9 0.068 0.055 1.000 0.058 0.047 0.998 0.056  0.049 0.961
1 0.067  0.055 1.000 0.054 0.050 1.000 0.060  0.050 0.971

T=1000 € =0.05 e=0.1 €=02
Fixed-b AP Fixed-b AP Fixed-b AP

kernel Bartlett QS  Bartlett Bartlett QS  Bartlett Bartlett QS  Bartlett
b=0.02 0.0576 0.0576 0.1296 0.0508 0.0524 0.0988 0.0468 0.0476  0.0812
0.04 0.0604 0.0616 0.224 0.0524 0.0532 0.1516 0.0476 0.05 0.112
0.06 0.0596 0.058 0.3244 0.0516 0.0484 0.2188 0.0496 0.0484 0.1508
0.08 0.0588 0.0584 0.4352  0.0504 0.05 0.2896 0.0504 0.05 0.1904
0.1 0.0576 0.06 05264 0.0504 0.0484 0.352  0.0512 0.0464 0.2332
0.2 0.0556 0.0588 0.8344 0.052 0.0488 0.6536 0.048 0.0428 0.4424
0.3 0.0556 0.0512 0942 0.0492 0.046 0.8236 0.0508 0.0492 0.6132
04 0.0532 0.0536 0974 0.0472 0.0472 0.9012 0.048 0.0496 0.736
05 0.0592 0.056 09912 0.0544 0.0508 0.9424 0.0504 0.052 0.8072
0.6 0.0584 0.0516 0.9976 0.052 0.0508 0.9696 0.0476 0.0452 0.8616
0.7 0.056 0.0492 09988 0.0512 0.0504 0.9868 0.0488 0.0432 0.9028

0.8 0.058 0.0516 1 0.049% 0.048 0.9956 0.0472 0.0476  0.9328
09 0.0556 0.0516 1 0.0516 0.05 09984 0.0492 0.0472 0.958
1 0.056 0.0528 1 0.0512 0.0468 1 0.0504 0.0476 0.9712
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Table 1.32: The Finite Sample Size of the MeanWF) Test with 5% Nominal Size

Hy : No Structural Change in both 1 and B, DGP D: (6, p, ¢) = (0.8,0.5,0.5)
T=100 € =0.05 e=01 €=0.2
Fixed-b AP Fixed-b AP Fixed-b AP

kernel Bartlett QS Bartlett Bartlett QS  Bartlett Bartlett QS Bartlett

b =0.02 0.664 0.530 0.806 0.527 0.420 0.632 0420 0.324 0.488

0.04 0.523  0.365 0.806 0.386 0.273 0.593 0.283 0.198 0.414

0.06 0476 0312 0.852 0.343 0.245 0.646 0235 0.167 0.431

0.08 0.456  0.301 0.893 0.328 0.231 0.700 0.229 0.158 0.475

0.1 0445 0.291 0.926 0.317 0219 0.752 0216 0.154 0.521

0.2 0432 0234 0.985 0.310 0.176 0.914 0.208 0.136 0.712

0.3 0.440 0.201 0.996 0.325 0.156 0.973 0214 0.121 0.822

04 0.448 0.178 1.000 0.333 0.138 0.990 0.223 0.118 0.897

0.5 0.462 0.155 1.000 0.347 0.127 0.997 0224 0.114 0.938

0.6 0.457 0.146 1.000 0.342 0.130 0.998 0224 0.106 0.958

0.7 0460 0.143 1.000 0.339 0.122 1.000 0.222  0.099 0.977

0.8 0460 0.134 1.000 0.342 0.115 1.000 0226 0.094 0.984

0.9 0456 0.129 1.000 0.339 0.111 1.000 0.226  0.090 0.992

1 0.455 0.121 1.000 0.341 0.105 1.000 0.229  0.089 0.996

T=500 € =0.05 e=0.1 e=02
Fixed-b AP Fixed-b AP Fixed-b AP

kernel Bartlett QS  Bartlett Bartlett QS  Bartlett Bartlett QS  Bartlett
b =0.02 0.160 0.110 0.291 0.127  0.091 0.201 0.109  0.085 0.152
0.04 0.142 0.103 0.412 0.110 0.084 0.255 0.089 0.070 0.172
0.06 0.133  0.106 0.519 0.103  0.087 0.330 0.086 0.070 0.214
0.08 0.134 0.102 0.614 0.101  0.088 0.396 0.083 0.068 0.254
0.1 0.128 0.103 0.694 0.099 0.084 0.468 0.081 0.070 0.295
0.2 0.136  0.086 0.915 0.103 0.074 0.737 0.080 0.061 0.502
0.3 0.136  0.088 0.976 0.105 0.077 0.879 0.082 0.063 0.675
04 0.139  0.075 0.994 0.101  0.071 0.941 0.084 0.061 0.776
0.5 0.148 0.078 0.999 0.104 0.072 0.974 0.082  0.065 0.848
0.6 0.147 0.078 1.000 0.106  0.072 0.989 0.083 0.062 0.900
0.7 0.144 0.077 1.000 0.105  0.070 0.996 0.085 0.062 0.929
0.8 0.144 0.075 1.000 0.108  0.068 0.999 0.084 0.061 0.955
0.9 0.144 0.074 1.000 0.104  0.070 1.000 0.084 0.062 0.970
1 0.141 0.073 1.000 0.105 0.067 1.000 0.086  0.065 0.982

T=1000 € =0.05 e=0.1 €=02
Fixed-b AP Fixed-b AP Fixed-b AP

kernel Bartlett QS  Bartlett Bartlett QS  Bartlett Bartlett QS  Bartlett
b=0.02 0.1044 0.082 0.202 0.086 0.0672 0.1416 0.0732 0.0612 0.1096
0.04 0.0932 0.0784 0.3076 0.0768 0.0632 0.1972 0.0696 0.0628 0.1332
0.06 0.0952 0.0732 0.434 0.0768 0.0624 0.2692 0.066 0.0552 0.1768
0.08 0.0928 0.0732 0.5352 0.0716 0.0588 0.3376 0.0628 0.0544 0.2144
0.1 0.0912 0.0696 0.6228 0.0676 0.0624 0.4068 0.0608 0.0528 0.2552
0.2 0.094 0.068 0.8792 0.0716 0.0636 0.6992 0.0588 0.0536 0.464
0.3 0.0952 0.0688 0.9568 0.072 0.0624 0.8524 0.0608 0.062 0.6356
04 0.0956 0.0648 09844 0.0744 0.0624 0.9208 0.0664 0.0596 0.7512
0.5 0.0948 0.0616 0996 0.0736 0.054 0.9552 0.0612 0.0616 0.822
0.6 0.0984 0.0568 0.9984 0.0736 0.0532 09772 0.0624 0.056 0.8664

0.7 0.0968 0.0608 1 0.072 0.0536 0.9912 0.0604 0.0552  0.9092
0.8 0.0984 0.0604 1 0.0728 0.0532 0.9972 0.0592 0.054 0.938
09 0.0952 0.0616 1 0.072  0.054 0.9992 0.0616 0.0548 0.9604

1 0.096 0.062 1 0.0716 0.0512 1 0.0628 0.0568 0.974
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Table 1.33: The Finite Sample Size of the MeanWF) Test with 5% Nominal Size

Hj : No Structural Change in both 81 and B, DGP F: (6, p, ¢) = (0.9,0.9,0.9)
T=100 € =0.05 e=01 €=0.2
Fixed-b AP Fixed-b AP Fixed-b AP

kernel Bartlett QS Bartlett Bartlett QS  Bartlett Bartlett QS Bartlett

b =0.02 0985 0.948 0.996 0964 0.924 0.982 0916 0.854 0.943

0.04 0910 0.758 0.985 0.859 0.735 0.945 0.772  0.658 0.858

0.06 0.825 0.591 0.979 0.783  0.610 0.932 0.680 0.538 0.824

0.08 0.771 0.478 0.978 0.724 0.513 0.937 0.627 0.462 0.822

0.1 0.723  0.407 0.979 0.687 0.448 0.942 0.586  0.409 0.838

0.2 0.650 0.269 0.992 0.628 0.302 0.976 0.533  0.302 0.912

0.3 0.646 0.243 0.997 0.619 0.260 0.991 0543 0.252 0.955

04 0.655 0.218 0.999 0.634 0.233 0.997 0545 0.235 0.975

0.5 0.668 0.207 1.000 0.641 0.228 0.998 0.552 0.223 0.988

0.6 0.670 0.201 1.000 0.642 0215 1.000 0546  0.207 0.996

0.7 0.659 0.194 1.000 0.638 0.204 1.000 0.537 0.194 0.998

0.8 0.659 0.184 1.000 0.631 0.195 1.000 0.546  0.180 0.998

0.9 0.662 0.182 1.000 0.640 0.189 1.000 0546 0.175 0.998

1 0.664 0.174 1.000 0.641 0.181 1.000 0547 0.171 0.999

T=500 € =0.05 e=0.1 e=02
Fixed-b AP Fixed-b AP Fixed-b AP

kernel Bartlett QS  Bartlett Bartlett QS  Bartlett Bartlett QS  Bartlett
b =0.02 0.653 0.451 0.788 0.532  0.390 0.645 0429 0.318 0.502
0.04 0458 0.241 0.761 0.360 0.225 0.568 0.284 0.193 0.404
0.06 0.382 0.181 0.794 0.302 0.179 0.595 0.235 0.157 0.408
0.08 0.342 0.160 0.833 0.275 0.156 0.642 0217 0.137 0.432
0.1 0.324 0.145 0.868 0.261 0.140 0.691 0.206 0.124 0.469
0.2 0296 0.118 0.963 0.248 0.118 0.872 0.188 0.104 0.656
0.3 0.312 0.108 0.992 0.257 0.112 0.952 0.198 0.110 0.792
04 0.306  0.107 0.998 0.263 0.111 0.980 0.204 0.108 0.867
0.5 0316  0.099 1.000 0.268 0.102 0.992 0.204 0.105 0.918
0.6 0.320 0.097 1.000 0.265  0.099 0.995 0.203  0.094 0.947
0.7 0.310 0.095 1.000 0261  0.094 0.998 0.204 0.089 0.968
0.8 0.310 0.094 1.000 0.267  0.093 1.000 0.200 0.088 0.983
0.9 0.306  0.093 1.000 0.271  0.092 1.000 0.204 0.089 0.989
1 0.304 0.091 1.000 0.270  0.091 1.000 0.204 0.084 0.992

T=1000 € =0.05 e=0.1 €=02
Fixed-b AP Fixed-b AP Fixed-b AP

kernel Bartlett QS  Bartlett Bartlett QS  Bartlett Bartlett QS  Bartlett
b=0.02 0.358 022 0.5164 0.282 0.1912 03736 0.2272 0.154 0.2804
0.04 02628 0.1344 0.5592 0.202 0.1224 0.3712 0.1576 0.1032 0.2536
0.06 02288 0.1116 0.6384 0.1768 0.1068 0.4324 0.1328 0.0912 0.2776
0.08 0.2136 0.1004 0.7148 0.1612 0.092 0.4948 0.1228 0.0852 0.312
0.1 0.2052 0.0948 0.7752 0.1544 0.0892 0.5624 0.1208 0.074 0.362
0.2 01968 0.0804 0.9344 0.1508 0.0828 0.7948 0.1104 0.0672 0.5728
0.3 0.2072 0.0792 0.9848 0.1584 0.0772 0.906 0.1204 0.0724 0.7132
04 0.2072 0.0716 0996 0.1576 0.0664 0.9564 0.1232 0.0676 0.8116
05 0.2116 0.068 0998 0.1604 0.0632 0.9788 0.1264 0.0652 0.8716

06 02176 0.068 1 01632 0.0664 09908 0.1228 0.06 0.914
0.7 0.2136 0.07 1 0.15% 0.068 0.998 0.118 0.06  0.9404
0.8 02108 0.072 1 01632 0.0664 0.9996 0.1224 0.0584 0.9596
09 0.2116 0.0684 1 0.1608 0.0688 0.9996 0.1248 0.0564 0.9724

1 0.2064 0.0728 1 0.162 0.0672 1 01212 0.0588 0.9856
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Table 1.34: The Finite Sample Size of the ExpW () Test with 5% Nominal Size

Hy : No Structural Change in both 1 and B,, DGP A: (6, p, ¢) = (0.5,0.0,0.0)
T=100 € =0.05 e=01 €=0.2
Fixed-b AP Fixed-b AP Fixed-b AP

kernel Bartlett QS Bartlett Bartlett QS  Bartlett Bartlett QS Bartlett

b =0.02 0.368 0.198 0.712 0.178  0.135 0.348 0.108 0.104 0.179

0.04 0316 0.201 0.839 0.160 0.113 0.494 0.114 0.108 0.248

0.06 0.301 0.218 0.900 0.150 0.113 0.600 0.111  0.094 0.314

0.08 0.303 0.221 0.938 0.144 0.114 0.694 0.111  0.090 0.386

0.1 0291 0217 0.956 0.136  0.113 0.760 0.104 0.080 0.454

0.2 0271 0.154 0.994 0.137  0.083 0.915 0.090 0.058 0.690

0.3 0271 0.084 0.999 0.134  0.051 0.967 0.089 0.043 0.817

04 0.266  0.048 1.000 0.129 0.031 0.986 0.086  0.028 0.889

0.5 0.256  0.036 1.000 0.126  0.023 0.994 0.086 0.019 0.929

0.6 0.253  0.026 1.000 0.124 0.017 0.998 0.084 0.017 0.954

0.7 0254 0.024 1.000 0.124 0.016 1.000 0.082 0.015 0.976

0.8 0.246  0.020 1.000 0.125 0.014 1.000 0.082 0.012 0.987

0.9 0.250 0.015 1.000 0.126  0.010 1.000 0.084 0.010 0.993

1 0254 0.012 1.000 0.124  0.007 1.000 0.082  0.009 0.996

T=500 € =0.05 e=0.1 e=02
Fixed-b AP Fixed-b AP Fixed-b AP

kernel Bartlett QS  Bartlett Bartlett QS  Bartlett Bartlett QS  Bartlett
b =0.02 0.094 0.086 0.404 0.070 0.072 0.196 0.062 0.064 0.115
0.04 0.092 0.082 0.657 0.070  0.064 0.345 0.060 0.058 0.177
0.06 0.090 0.083 0.774 0.072  0.064 0.470 0.058 0.057 0.247
0.08 0.090 0.079 0.843 0.068  0.060 0.572 0.061 0.058 0.308
0.1 0.086 0.078 0.888 0.064 0.058 0.655 0.060 0.055 0.367
0.2 0.082  0.063 0.978 0.060 0.053 0.866 0.055 0.044 0.632
0.3 0.082 0.056 0.994 0.060 0.052 0.946 0.062 0.052 0.779
04 0.081 0.047 0.999 0.058 0.041 0.974 0.057 0.050 0.860
0.5 0.083 0.046 1.000 0.058 0.038 0.987 0.055 0.042 0.906
0.6 0.081 0.034 1.000 0.059 0.034 0.995 0.050 0.041 0.941
0.7 0.081 0.026 1.000 0.062 0.028 1.000 0.056 0.035 0.960
0.8 0.079  0.025 1.000 0.059 0.027 1.000 0.055 0.031 0.975
0.9 0.080 0.026 1.000 0.059  0.025 1.000 0.051  0.030 0.987
1 0.082 0.026 1.000 0.062 0.024 1.000 0.055 0.028 0.992

T=1000 € =0.05 e=0.1 €=02
Fixed-b AP Fixed-b AP Fixed-b AP

kernel Bartlett QS  Bartlett Bartlett QS  Bartlett Bartlett QS  Bartlett
b=0.02 0.0776 0.0776 0.3416 0.0536 0.0488 0.1668 0.0592 0.0572 0.1128
0.04 0.076 0.072 0.5936 0.0544 0.0552 0.308 0.06 0.0604 0.174
0.06 0.0784 0.0716 0.736 0.0528 0.0508 0.4544 0.0592 0.056 0.2368
0.08 0.076 0.0592 0.8136 0.0464 0.0484 0.5532 0.0592 0.0564 0.298
0.1 0.0692 0.0664 0.8692 0.0472 0.0536 0.6348 0.056 0.052 0.3624
0.2 0.0696 0.0584 0.9728 0.0496 0.0556 0.8584 0.0488 0.0472 0.62
0.3 0.0692 0.0472 0.9928 0.0492 0.0476 093 0.0488 0.0436 0.7656
04 0.07 0.0448 09984 0.0448 0.0464 0.9684 0.0504 0.05 0.8516
0.5 0.0712 0.0468 0.9996 0.0512 0.0452 0.9832 0.0544 0.0548 0.8992

0.6 0.072 0.0456 1 0.0468 0.0484 0.992  0.0464 0.05 0.9288
0.7 0.0724 0.0472 1 0.0464 0.0492 0.9964 0.0504 0.0468 0.956
0.8 0.0668 0.0436 1 0.0544 0.0484 0.9996 0.0476 0.0468 0.9768
0.9 0.07 0.04 1 0.0508 0.0456 0.9996 0.0484 0.0456 0.9872

1 0.0708 0.04 1 0.052  0.044 1 0.048 0.0424 0.9928
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Table 1.35: The Finite Sample Size of the ExpW () Test with 5% Nominal Size

Hy : No Structural Change in both 1 and B, DGP D: (6, p, ¢) = (0.8,0.5,0.5)
T=100 € =0.05 e=01 €=0.2
Fixed-b AP Fixed-b AP Fixed-b AP

kernel Bartlett QS Bartlett Bartlett QS  Bartlett Bartlett QS Bartlett

b =0.02 0.708 0.333 0.954 0.646  0.452 0.818 0.518 0.398 0.627

0.04 0517 0.183 0.960 0467 0.226 0.817 0.360 0.243 0.568

0.06 0435 0.172 0.975 0.398 0.182 0.861 0.310 0.195 0.600

0.08 0.396 0.164 0.982 0.353 0.164 0.896 0292 0.163 0.651

0.1 0.372 0.165 0.986 0.332  0.159 0.917 0275 0.139 0.689

0.2 0324 0.116 0.997 0.300 0.102 0.973 0.235 0.079 0.844

0.3 0315 0.072 1.000 0.283  0.062 0.994 0.225 0.054 0.916

04 0.307 0.044 1.000 0.280 0.036 0.998 0226  0.037 0.954

0.5 0.309 0.034 1.000 0.281 0.026 1.000 0219 0.034 0.970

0.6 0312 0.024 1.000 0.281 0.023 1.000 0.216 0.028 0.982

0.7 0.315 0.020 1.000 0.273  0.020 1.000 0220 0.024 0.990

0.8 0.310 0.021 1.000 0.272  0.021 1.000 0215 0.020 0.996

0.9 0.308 0.021 1.000 0.270  0.020 1.000 0.218 0.020 0.999

1 0.313  0.020 1.000 0278 0.021 1.000 0.214 0.018 1.000

T=500 € =0.05 e=0.1 e=02
Fixed-b AP Fixed-b AP Fixed-b AP

kernel Bartlett QS  Bartlett Bartlett QS  Bartlett Bartlett QS  Bartlett
b =0.02 0260 0.113 0.647 0.188  0.122 0.368 0.132  0.094 0.211
0.04 0.213  0.100 0.794 0.158  0.087 0.485 0.110 0.084 0.253
0.06 0.193  0.097 0.868 0.143  0.085 0.590 0.104 0.080 0.318
0.08 0.185 0.088 0.912 0.135 0.081 0.668 0.102 0.076 0.382
0.1 0.172  0.090 0.946 0.133  0.078 0.737 0.096 0.072 0.446
0.2 0.148 0.074 0.990 0.115 0.058 0.911 0.092 0.051 0.683
0.3 0.149 0.054 0.999 0.113  0.050 0.973 0.088 0.044 0.822
04 0.141 0.036 1.000 0.107  0.036 0.988 0.089 0.041 0.893
0.5 0.144 0.037 1.000 0.109 0.034 0.995 0.085 0.041 0.925
0.6 0.146  0.032 1.000 0.107 0.038 0.999 0.084 0.038 0.954
0.7 0.147 0.031 1.000 0.104 0.033 1.000 0.088 0.036 0.972
0.8 0.144 0.032 1.000 0.106  0.034 1.000 0.091 0.033 0.985
0.9 0.148 0.031 1.000 0.106  0.030 1.000 0.089  0.030 0.991
1 0.150 0.032 1.000 0.108  0.031 1.000 0.087  0.030 0.997

T=1000 € =0.05 e=0.1 €=02
Fixed-b AP Fixed-b AP Fixed-b AP

kernel Bartlett QS  Bartlett Bartlett QS  Bartlett Bartlett QS  Bartlett
b=0.02 0.1652 0.0948 0.5116 0.1212 0.0824 0.2648 0.0924 0.0708 0.1576
0.04 0.1444 0.0892 0.7064 0.108 0.0648 0.3912 0.0848 0.0712 0.2124
0.06 0.1344 0.084 0.8044 0.0948 0.0564 052 0.0792 0.0712 0.278
0.08 0.1312 0.0796 0.8684 0.0912 0.0572 0.6192 0.0824 0.0688 0.3432
0.1 01224 0.0676 0.9048 0.0868 0.0568 0.6972 0.0784 0.06 0.3988
0.2 01184 0.0648 0.9792 0.0844 0.052 0.8804 0.064 0.0504 0.64
0.3 0.1048 0.0512 0996 0.0744 0.058 09476 0.0656 0.0544 0.78
04 01072 0.0436 09988 0.0764 0.046 0.9788 0.0656 0.0516 0.8604
0.5 0.106 0.0424 0.9996 0.0768 0.04 0989 0.0656 0.0512 0.902
0.6 0.1056 0.042 1 0.0776 0.0392 0.9952 0.0692 0.0436 0.9336
0.7 0.1088 0.0412 0.0808 0.0392 0.9988 0.0692 0.0412 0.9636
0.8 0.1048 0.0416 0.0808 0.0404 0.9996 0.0664 0.0408 0.9808
0.9 0.1072 0.0404 0.082 0.0404 1 0.0672 0.0364 0.9888
1 0.1088 0.0404 0.0788 0.0404 1 0.0668 0.0396 0.9932

i
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Table 1.36: The Finite Sample Size of the ExpW () Test with 5% Nominal Size

Hj : No Structural Change in both 81 and B, DGP F: (6, p, ¢) = (0.9,0.9,0.9)
T=100 € =0.05 e=01 €=0.2
Fixed-b AP Fixed-b AP Fixed-b AP

kernel Bartlett QS Bartlett Bartlett QS  Bartlett Bartlett QS Bartlett

b =0.02 0958 0.624 0.999 0975 0.909 0.994 0951 0.902 0.971

0.04 0719 0.212 0.995 0.850 0.514 0.981 0.826  0.689 0.925

0.06 0.544 0.143 0.993 0.721 0.323 0.977 0.729  0.522 0.910

0.08 0.445 0.106 0.992 0.624 0.238 0.977 0.665 0.402 0.908

0.1 0.370  0.095 0.993 0.558 0.191 0.981 0.617 0.327 0.918

0.2 0.282 0.074 0.996 0465 0.123 0.992 0529 0.164 0.956

0.3 0.296  0.060 0.998 0.458 0.081 0.997 0.519 0.105 0.980

04 0.307 0.045 1.000 0.456  0.057 0.998 0.505 0.082 0.991

0.5 0.313 0.036 1.000 0.456  0.046 1.000 0.502 0.064 0.996

0.6 0.304 0.034 1.000 0.456  0.038 1.000 0.507 0.052 0.998

0.7 0.300 0.033 1.000 0.451 0.036 1.000 0.507 0.042 0.999

0.8 0.297 0.030 1.000 0449 0.034 1.000 0.500 0.038 0.999

0.9 0296 0.026 1.000 0451 0.033 1.000 0.502 0.035 1.000

1 0.301 0.026 1.000 0.452  0.030 1.000 0.498 0.032 1.000

T=500 € =0.05 e=0.1 e=02
Fixed-b AP Fixed-b AP Fixed-b AP

kernel Bartlett QS  Bartlett Bartlett QS  Bartlett Bartlett QS  Bartlett
b =0.02 0.634 0.204 0.942 0.635 0.392 0.823 0517 0.372 0.641
0.04 0375 0.096 0.938 0411 0.154 0.785 0.328 0.206 0.542
0.06 0.292 0.076 0.952 0.330 0.112 0.817 0.269 0.150 0.554
0.08 0.251  0.070 0.965 0.280  0.093 0.850 0242 0.121 0.596
0.1 0.220  0.060 0.970 0.252  0.085 0.878 0.218 0.102 0.637
0.2 0.188  0.054 0.992 0.218  0.062 0.956 0.188  0.068 0.807
0.3 0.181  0.050 0.999 0.206  0.056 0.986 0.190 0.062 0.885
04 0.181 0.040 1.000 0.202  0.050 0.995 0.188  0.059 0.933
0.5 0.177  0.041 1.000 0.205 0.043 0.999 0.183  0.050 0.961
0.6 0.182  0.039 1.000 0.196  0.042 1.000 0.182 0.048 0.976
0.7 0.178  0.042 1.000 0.200 0.044 1.000 0.179 0.044 0.988
0.8 0.172 0.038 1.000 0.199 0.042 1.000 0.180 0.043 0.993
0.9 0.174 0.038 1.000 0.201  0.040 1.000 0.175 0.043 0.996
1 0.174 0.038 1.000 0.202  0.039 1.000 0.177 0.044 0.998

T=1000 € =0.05 e=0.1 €=02
Fixed-b AP Fixed-b AP Fixed-b AP

kernel Bartlett QS  Bartlett Bartlett QS  Bartlett Bartlett QS  Bartlett
b=0.02 0426 0.1272 0.8092 0.3728 0.1908 0.5816 0.2912 0.1968 0.3884
0.04 02788 0.0728 0.8676 0.236 0.0948 0.626  0.1944 0.1196 0.3728
0.06 02228 0.0684 0.9092 0.1928 0.0704 0.6932 0.1612 0.0968 0.4176
0.08 0.198 0.0568 0.9348 0.1712 0.0588 0.7588 0.1512  0.088 0.486
0.1 01764 0.052 09592 0.1572 0.0544 0.8084 0.1436 0.074 0.536
0.2 01528 0.046 0.9916 0.1364 0.0528 0.9288 0.1248 0.0476 0.7312
0.3 0.1488 0.0444 0.9972 0.1368 0.0448 09696 0.1212 0.0452 0.8356
04 01472 0.0424 09996 0.1312 0.0352 0.9884 0.1236 0.036 0.8956
0.5 0.1532 0.04 1 01292 0.0352 09956 0.1248 0.036 0.9328
0.6 0.1564 0.0396 0.1356 0.0388 0998 0.1264 0.038 0.9576
0.7 0.1536 0.0408 0.134 0.0392 0.9996 0.1196 0.0376 0.9768
0.8 0.1416 0.042 0.1384 0.0412 09996 0.1184 0.0388 0.99
09 0.1456 0.042 0.1308 0.0424 1 0.1208 0.0388 0.9944
1 0.1448 0.0444 0.1292 0.0408 1 01248 0.04 09972

il e
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Appendix for Chapter 1

The following expression is a general representation of the HAC estimators:

A/
) t *

This representation can be rewritten in terms of the partial sum processes S = 2;:1 0

Q=T" 1ZZK<

following Kiefer and Vogelsang (2005) and Hashimzade and Vogelsang (2008) as follows.
Let M = bT. Then for the kernels in Class 1,

A 2 N N 128 (242 1/28
O=T" t—21 5_21 T-1/25, (T Atls> T-1/23, (1.40)

where

Ats = (Kts — Kisy1) — (Kir1s — Kig16+1)

B |t —s|
Kt,s—K< bT .

For the Class 2 kernel (Bartlett),

0= Y (T—1§f;> - ﬁ (T SiprS 4+ T718 SHbT) (1.41)

=12y Y 775 (2% S (1.42)
[t—s|<bT
1T ) 1/2 K(l)_K(l_bLT)
bTZT/ST/SS—H?T 1
bT
1T o s K(—1+ &) —K(-1)
bT Z T 55T / Ss+bT biT
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Proof of Proposition 1: From equation (1.11) and (1.12) the limit of the fi follows imme-
diately by Assumption 1 and 2. Plugging the limits of f; and 8 in equation (1.13) yields,

forr <A,

T8, 1 = A0 ) [ (Wy(r) — TWp(A)) /

and forr > A,

A0 0

T_l/zg[ﬂ-] =
0 A (WP(T)_WP(/\)_H (Wp(l)—wp(/\))>

Thus one can rewrite this result by using indicator functions as

(1)
s A o) [EY @A) A
T2, = ’22) = F,(r,7),
o A \EX @) 0 A
where
.
BV (r,0) = (Wy(r) = TWp(1)) - 1(r < ),

and

F? (r,1) = (wp(r) — W, (A) — ;:?\ (W,(1) — wp(A))) 1(r > A).

Proof of Proposition 2: From (1.18),

S - t— 1) ~(2)7
aF — AW Ty Yl ara K <| MS|> oo
_ —sI\ (2) (1 ~
T ara XL K (‘tMSO Ug 5" (1-A)Z@
_ Az Ty Y ara K ('tgx_/f') R AT
A WISVIRD s 3 € BT (1-2)5@

The diagonal blocks converge respectively to AX and (1 — A)X in probability under tra-

ditional asymptotics. One needs to show that the off-diagonal blocks converge to zero.
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First, for the Bartlett K <‘t S') = 0 for |t —s| > M. Therefore, the upper right off-diagonal

block can be rewritten as

AT T T T

~(F 1 1 2

o =71 L kad¥ = pya! 3 Kl
t=1s=AT+1 t=1 s=AT+1

where K;s = K (‘t S') Set a; = 77§1) and b; = ZZ:ATH Kt,sﬁgz)/ and apply the partial

summation formula

AT AT—1 t
;atbt = Z [(Z as) (by — byy1)

t=1 s=1
to get
1 AT T 1 A1 T T
T 26{1) Z Ktsa(s ) = T §§1) Z Ktsag ) - Z Kt+l 5052/ (1 43)
t=1 s=AT+1 t=1 s=AT+1 s=AT+1
T
1 2
+ SAE\T) Y. Kr sZ7£ )
=AT+1
1 A1 1 T 9 T 0
T )3 s )3 K; 00 - ). K02 ),
t=1 s=AT+1 s=AT+1

where S{tl) = Z] 1 z’)( )fort < ATand S A(Z) Z]t AT41 64 )for t > AT + 1. The above lines
used §f\lT) =0and S A(Tz) = 0.

One can rewrite each component of the summands of this equation:

T T—1
2 2 2 2
Y. Kt,sf7§ = Y (Kis — Kisi1) 5 4 Kt,Tg(T)I — Kt,ATJrlgngl
s=AT+1 s=AT+1
T—1
2
= Z (Kt,s - Kf,s+1) §§, )//
s=AT+1
g ~(2)1 =l a2) a(2)r a(2)r
and Z Kt+1,svs - Z (Kt+1,s - Kt—i—l,s—i—l) Ss + Kt+1,TST - Kt+1,/\T+1S,\T
s=AT+1 s=AT+1
T—1

2
= Z (Kt+1,s - Kt+1,s+1) §§ )
s=AT+1
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Plugging these representations into (1.43) gives

/\(F 1 AT—1 - /\(2)/
O, == Z Z 5 Kt,s — Kis+1 — Kig1,s + Kep1,541) Ss
=1 s=AT+1

From Hashimzade and Vogelsang (2008) for the Bartlett kernel, K5 — Ky 511 — Kiy16 +

Kii1s511 = —g for {(t,5) : M+t = s} and zero otherwise. This yields

AF)
0,

s —1> (1) a2y
_ —)smg@r

S| -

Taking the matrix-maximum norm yields

/\T 1
168 < 7 TSt flresi]
’ TMt AT M+1
< M-1 HT 1/2A§ )H max HT—1/2§§2)/
TM AT- M+1<t</\T 1 ATH1<s<AT—1+M
1

= ?Op(l) =0p(1).

Here we used

AT M1 St<AT 1 H T-1/25}Y H = Op(1),

and

max

s
ATH1<s<AT-14+M

- Op(l)r

which is true given the result in Proposition 1 and the traditional assumption that M/T —
0. The same argument applies to the left lower off-diagonal block of Q(F) yielding the
desired result.

Proof of Lemma 1: Plugging the limit of the partial sum process in Proposition 1 into the
HAC estimators in (1.40), (1.41), or (1.42) the desired result follows from direct application

of the continuous mapping theorem to obtain the desired result in (1.19).
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Proof of Lemma 2: The proof is for the Bartlett kernel. Recall from (1.16) that

With the Bartlett kernel, one can rewrite this as:

sy _ 21 Wi ~1/2 (1) —1/2 a(1)r
5 =T L ()28 (AT) 251
t=1

1
i { <(/\T)—1/2 §(1) (AT)—l/Z §§1)/> i <(/\T)—1/2 §£1) (/\T)_1/2 é\i—ll—)lgl/\T

by AT = t+b1AT
with by = M1 and 5V = vt %Y. Apply the conti ing th ing th
1= 37 i = Lj=19; - Apply the continuous mapping theorem using the

result on the limit of the partial sum process in Proposition 1 to obtain
-~ 2 1
1 ~1/2 A p(1) (1) ry—1/2
s b /O AY2AED (1, A) ESY (r, 1) AV d

(1-by)A
LT A2A D (14 b0, A EY (7, AY A2 A

(1=b1)A
! IATV2AED (1, AV EY (4 biA, A ATV N

A (P (B (r,M)) A

A

by recalling (1.4). One can easily get the limit of £(?) in the same way and this completes
the proof.

Proof of Theorem 1: Recall that

WaldF) = T (RB)l (RQ;lﬁ“@;lR’) ! (RB) .
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Using R = (R1, — Ry) it follows that
RT'/? (3 - .3> LR, (Tl/z <31 - /31> ~T? (Bz - 52)) 4

_ 1 1
RiQ7IA [ =Wp (A) = == (W, (1) =W, (1)) | -
A 1-A
Using Assumption 1 and Lemma 1,

1-A

RQ;'QOFQ 'R = (%ng—lA, R1Q—1A) x P (b,F, (r,1))

-1
1-A

!/
X GR@*A, R1Q—1A> .

/
By writing out P (b, F, (r,A)) using F, (r,A) = (Pr(,l) (r,A), P,S” (r,)\)') , one can obtain

the following expression for above limit after some algebra:

b AF,SZ) (r,A)) A'QIR].

1
-1 L (1) _
RiQ AP (b,APp (rA) = 1=

Now apply the transformation
RIQ AW, (r) £ AW,(r),

with

RiQIAA'Q7IR] = AA/,

and conclude

RQ;'OFIQ IR = AP (b, %Pf” (r,A) — ——F? (r,A)> A,
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giving the needed result:

Watd® = (T3) ~ 1 () - wa)

< (2 (0 3E Y 00 - (2E m)))_l < (30 - 15 ) - )

Proof of Corollary 2: Consider the Bartlerr kernel case. Other cases can be proved in
the same way. Look at P (b, %Fl(l) (r,A) — ﬁFl(z) (r,)t)) in (1.24). Rewrite it using the
definitions of Pl(l) (r,A) and Fl(z) (r,A) in Lemma 1.

P (b, %Pf” (r,A) - %F}Z) (r,)\))

1 1 1 '
b / ( mFl(z) (7’,)\)) (XFl(l) (7’, /\) — mFZ(Z) (T, A)) d]"

1 1 1 E® 1) 1 @ !
_bo (A () =13k (M))(A (r+bA) =13k (”b')‘))d’

1-b !
2 / ( (rbA)— %p}” (r+b,/\)> (%Pf” (r,/\)—%FZ(Z) (r,)\)) dr.

Rewrite the above expression by noting that Fl(l) (r,A) x Fl(z) (r,A) =0as

1
% i %F}” (r, A)EY (r,A) dr

AZ

1=t 1 (1)
—-/O ( FV ) EY (r+5,0) + 5

12P<1> (r+b,A)EY (r,A)’) dr
2 1 1 (2) (2) / 1 -t 1 (2) (2) /
— ——F ,A)F LA) dr — = ——F ,A)F +b,A
T /0 ( 57 (R A) BT (r,A) dr A 117 (A B (r )

1
A(1—A)

1-b
E? (r+b,A) F? (r,1)' dr) ot % / (K'Y ) F? (r+b,2)
0

(1-A)°

+EP M ED (40,0 + BV (e 00, ) B (1,2) + B (r 0,0 B (r,0)') dr.
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By reminding that A is given fixed and noticing {Fl(l) (r,A) } and {Fl(z) (r,A) }

0<r<A A<r<1
are independent, one can still preserve the distribution of the above expression under the

following transformations

VAW (%) L W (r) for W (-) in EV(r, ),

V1= AW (; :?\) L Wi(r) — Wi(A) for W (-) in ) (r, A).

Then apply change of variables: ; = u for the first two integrals and H = v for the next
two integrals. Finally, notice the term outside the inverse in equation (1.24) is independent
of the term inside the inverse. So one can apply the following separate transformation to

the outside term:

1 1 L
A = =5 (W) = W) =~

which yields the desired result.

Proof of Theorem 2: Using Lemma 2 and the transformation shown in the proof of The-
orem 1, the result in Theorem 2 immediately follows.

Proof of Corollary 3: Proof is similar to the proof of Corollary 2.

Proof of Proposition 3: Frisch-Waugh Theorem gives

-1

T T
B= () XiX; Y. Xt?t> (1.44)

=1 =1
T -1 /7 T T

= Y XX] Y X XiB+ Y X — ) }?tz;(z’Z)lz’u)
t=1 =1 =1 =1
T \N‘'/1T T

= | ) XX YoXeXiB+ ) Xy |,
=1 =1 t=1

80



and it immediately follows that

-1
T2 (fs — /3) — (T—l if{iﬁ) (T‘l/z i fctut) . (1.45)
t:

t=1

_ (T—l i (Xt - X’Z(Z’Z)_lzt> (X; - z;(z’z)—lz’x>> R (1.46)

t=1

x (T—W i (Xt - X’Z(Z’Z)_lzt) ut) . (1.47)

t=1

Under Assumption 1" and 2’ it follows in a straightforward manner that

V(B - ) = Q=L AMWyig(A) = AQxzQ57 A Wpiq(1) (1.48)

A1 (Wpg(1) = Wpiq(A)) = (1 = A)QuzQ77 A2Wp-4(1)

In order to derive the limit of /T (RB — r) following immediate results are useful:

T A
Qxz = plim <T_1 Z th£> — Quz ,
t=1 (1 - A)QxZ
2pxq
T A 0
QXX = phm (T_l Z XtX;) = Qxx ,

2px2p
v v
Qzg =plm | T Y X,X{ | = Qxx — QxzQ77Q%z-
=1

Also by recalling from matrix algebra (see e.g. Schott (1997)) that

Qzl = Qxk + QxkQuz (Q2z — Qi QxkQxz) Qs (149
X XX xxRXZ \ K7z XZRxxKXZ x7Qxx 49)
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and using (1.49) one can further show that

1 -1
1o-14p P
= | AT o ) (1.50)
P 17/\Q;X+p

O
<
=

where
—1
P= 010w (Qz2 — Qz Qi Q) Qz Qi
Now plug (1.50) in (1.48) and conclude

VT(RB—1) = VTR (B~ B) (1.51)

1

= RIQe A (T Wora(N) + 125 Woig() = Wisg(D) )

The following lemma is used in the proof of Lemma 3.
Lemma 4. Let K = Q,zQ, Q.. Then it holds that Q5 KP = P — Q7! KQz!.

Proof of Lemma 4: From equation (1.46),

AQ.r 0 A20:7Q77Q%,  A1—1)QxzQ53Q.,
0 (1—A)Qu AM1-21)QxzQ77Q%, (1—21)2Q:2Q52Q%,

The desired result comes from the identity Q)?)?ng = I by substituting equation (1.50)
-1

for Q)~Q~(.

Proof of Lemma 3: First note that implicit in the proof of Proposition 3 is the result that

plim Q)i(% = Q}i& For R = (R;, — R;) it follows that

: N 1 _ T
plimRQy5 = Ry (XQXQ, - QO}) (152)
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using (1.50). The scaled partial sum process is given b
& p p & y

ngE 12y
-1/2 -1/2
T/2S = Y Xl
t=1
[rT] _ [rT] o 77
— T2V X — T Y. X XVT(B - -1 Z Xz ( ) <T_1/2Z’u> .
t=1 t=1
(1.53)
For 0 < r < A, the first term in (1.53) satisfies
I AWpig(r) = AQxzQ5 L Aa Wiy (r
Tfl/ZZXtut N 1 p+q( ) QxZQZZ 2 p-H]( ) . (1.54)
t=1 _(1 - )‘)QxZQE%AZWp—H](r)

Hence with R = (R, — Ry), from (1.52) and (1.54) it follows that

Q—l) AWy q(r) = AQxzQ7 5 AWy g(r)

7]
RQ§§T—”2§anu=>R1(%Q;& —545X
t=1 —(1=2)QxzQ7 7 AaWp14(r)

1

= —R1Qxx AWy (7).

For the first part of the second term in (1.53) it follows that

T [YZT% )N(t)?/ = Qxx 0pxp B r)\QxZszQxZ 1’( )QxZQZZQ
t
t=1 OPXP Opxp Opo OPXP

r/\QxZQE%Q;Z Opxp Py AzszQE%QQZ A(l - /\)QxZQE%Q;Z
r(1—A)QxzQ7hQL, 04, AM1=2)QuzQ73Qk; (1-1)*QxzQ72Q%,

rQux + (rA? —2rA)K  —r(1 - A)2%K

—r(1—A)%K r(1—A)%K
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where K = QxZQE%Q;Z- Hence with R = (Ry, — Ry),

~ T rQux + (A2 =2rA)K —r(1—A)%K
RQilTil § ,thg = Rl <1 Q;xll 1_ Qxxl) X " ( ) ( )
XX 2 2
t=1 —r(1—=A)°K r(1—A)*K

=iy (51~ QK A QK

which combined with (1.48) and Lemma 4 immediately yields
RQZL ( 2 tht> T(p-B) =

1Qn +P P

P Qe + P

1 1, A1
Ry (XI— QK, TQx,}K) X
AWyt g(A) = AQxzQ55 AWy (1)

A1 (Wpq(1) = Wpig(A)) = (1= 1) Quz Q7 AaWpg(1)

X

A1Wp+q(/\) - AQxZQZ%AZWerq(l)
A1 (Wpig(1) = Wpig(A)) = (1= A)QxzQz7 AWy i4(1)

R1 Qs AMWpig(A) — R1 Qrx Quz Q77 A Wpig(1).

1 -

)LZ

Finally, premultiplying the third term in (1.53) by RQ;{% gives

RQ LT Ztht (Z Z) (122"
— RO i( - X'2(Z'2) 7'z 7 (Z,}Z)_l (T722'u)
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1—-—A)Qy
=Ry (3 - —%Q;Q) TN o w )
—1’(1 - )‘)QxZ

r — _
= T R1Q Qxz Q770 Wp1g(1).

Combining the results for the three terms gives

_ 1 _ r
= R1Qt A1~ Wpiq(r) — R1Qi A1 —5 Wy (A)

A—17-1/28¢
RQe TS 1 2

[rT]

r
A

r

Wpiq(1) — R1Q5) QxZQZ%AzA

+R1Qer Qxz Q52 Ao Wpiq(1)

-~ 1 r
= R1Qei A1 (—Wp+q(7) ~ 3z

A Wp+q()\)> - RlQLclAllF(l) (r,A). (1.55)

A Pt

Now consider A < r < 1, for the first term in 1.53) it follows that

7] AW, a(A) — A LAW, . (r
,1_,71/ZZ:}<1’Mt:> 1 P+Q( ) QXZQZZ 2 P+‘7()

t=1 A1 (Wpig(r) = Wpag(A)) = (1= 1) QuzQ77 M0 Wp4(r)

Hence with R = (R, — Rq),

[rT]
P 1
RQLT ;—1: Xy =

Ry (1 -1 1 —1> % MWpiq(A) = )‘QxZQZ%MWPH(Y)
xx s _ xx o
A A A1 (Wpig(r) = Wyg(A)) = (1= N)Quz Q7L A2Wpg(r)

= R A (FWpg(N) = 1 W) = Wysg(1) ).

For the first part of the second term in (1.53) it follows that

AQu  Opup

Tl
T'Y XiX| =
t=1 0pxp (r—A)Quxx
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22Q.2Q,1Q., A1 —M)QxzQ51Q.,
)\(7’ - )‘)QxZQZ%Q;Z (1’ - /\)(1 - /\)QxZQZ%Q;Z

[ 2020750 Ar = 1)QuzQ73Q
A(l - /\)QXZQE%Q;Z (1’ - A)(l - A)QxZQZ%Q;Z

. MQuzQ77Q,  M1—=A)QuzQ73Q,
)‘(1 - )‘)QxZQZ%Q;Z (1 - )‘)ZQXZQZ%Q;Z

[AQu + (r 222K [(2-1)A2—A] K
(2=NA2=A]K  (r=A)Que+((r=2)A+7) (A-1)K

Hence with R = (Ry, —Ry),

7]
A—1 -1 v !
RQLLT ;_1: X X) =

ol - o)« OO el
[(Z_r)/\z_/\}K (r—=A)Qux+ ((r—2)A+r)(A—-1)K

Alr—1)
1-A

r—A
1—A

= R <1+ QK — I+ (r— 1)Q;x11<> .

It directly follows that
rT]

RQL (T—l Y. Xt>~<£> VT(B-B)=

t=1
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1Q +P P

Alr—1) r—A _
Ry <1+ g_A)Qxle, —mIJr(r—l)Qxle) X

AWpig(A) = AQxzQ5 7 Ao Wpiq(1)
A1 (Wpq(1) = Wpg(A) = (1= 1) Quz Q7 AaWprg(1)

X

_R (1o, - A o
=R (XQxxr (1 — )L)Z Qxx)

AWy 1q(A) = AQxzQy5y AaWp14(1)
A1 (Wpiq(1) = Wpig(A)) = (1= A)QxzQz 7 AaWp.i4(1)

X
1 _A A
= R1Q M\ (XWrH—q(A) + ur_—A)sz+q(A) - (1r_—/\)zwﬁ+q(1))

1—7r

—R1Q:7 Qxz QE%Aszerq (1).

Finally, premultiplying the third term in (1.53) by RQE{% gives

[rT] Z/Z -1
A—1 -1 v ! —1/271
RQZLT t;xtzt< T ) (T Zu)

— britomn N o (ZZN T (g2
= RQ;LT ;(xt—XZ(ZZ) zt>zt( T ) (T Zu>

1 1 A1 —71)Qxz _
= Ry <XQxx1/ - QO}) X Q77 M Wpq(1)
—)\(1 — T’)sz
1—r _ _
= 1= ARleleszz%Aszw(l)-

Combining the results for the three terms gives

RQ LT /25

[rT] = Ry Q;xlAl
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« (_% (W(r) — W(A)) — ({:—AA)ZW(/\) + ﬁwm)

1 —r _ _ 1—r
+R1Qx QxZQZ — /\W(l) - Rlea}QxZQZ%AZ

= RQ A (g (W) = W)~ =W + =) )

1-A
I L@

= —RiQu A1 T Fpig(rA). (1.56)

By combining (1.55) and (1.56), for r € [0.1],
A—1 - 1 _a 1
RO;LTV28,, = RiIQuIAs ( SE () = = F7, (r,/\)> .

Proof of Theorem 3: To conserve on space the proof for this Theorem is provided only
for the case of the Bartlett kernel with M = T (i.e. b = 1). However, the proof given here
goes through for other kernels and different values of b. Note that with b = 1 the HAC

estimator in equation (1.41) can be rewritten as

71288 7-1/28%,

With this HAC estimator the term within the inverse in (1.35) is given by

-1 -1
T-1 T
Y {R (T—l ZXSX;> T-1/28¢7-1/28¢ ( ZX X’) R’}
t=1 s=1

1 1
= P (1 R1Q:1 A </\Fr§2q (r,A) — maﬁjq( A)))

=i~

where the limit is obtained directly from Lemma 3 and the continuous mapping theorem.
The result for (1.35) can be obtained by using similar arguments as those used in Theorem
1 where the transformation is used: RqQxy A1 Wp4(r) iz, Wi(r),0 <r <1forap.d.

matrix lEl satisfying EE' = Ry Qi A1A] Qi R}
X
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CHAPTER 2

A Test of Parameter Instability Allowing
for Change in the Moments of Explanatory
Variables

2.1 Introduction

Most of the structural change literature addresses the instability of the parameters in the
conditional model. The goal of this chapter is to develop a valid HAC-robust test when
there is a shift in the mean and second moment of the explanatory variables. The break
date, A, T, for the mean and second moment is assumed to be different from the break
date AT for the regression parameters. The bootstrap approach in Hansen (2000) consid-
ers a setup where general form of the structural change in the marginal distribution of
the explanatory variables are allowed. But Hansen (2000) assumes that the error term
is a martingale difference sequence with respect to a certain information set. Thus serial
correlation of the product of x variables and the error, u;, is not allowed. This can be a lim-
itation particularly in the static time series regression model where the series {xut};_; 1
often displays serial correlation. In this Chapter a valid HAC-robust approach for test-
ing structural change in the regression slope/intercept parameters is developed. To ease
the distribution theory a modified version of the standard set of high level conditions is
introduced. To make the test robust to serial correlation and heteroskedasticity, a HAC
estimator is used for constructing the test statistic and the fixed-b theory developed in
Kiefer and Vogelsang (2005) is applied to derive the asymptotic distribution. The limiting

distributions of the statistics are pivotal. The rest of the chapter is organized as follows.
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Section 2.2 lays out the basic set up of the problem. Section 2.3 derives the limiting distri-
butions of the appropriate test statistics under the fixed-b approach. Section 2.4 presents
tixed-b critical values for certain break point value and bandwidths. The finite sample
properties of the test is examined in Monte Carlo simulation experiments. Section 2.5

summarizes and concludes. Proofs are collected in the Appendix.

2.2 Model of Structural Change and Preliminary Results

Suppose the univariate series {x; } has a mean shift at t = A, T. Denote

E (xt) = pigr),

with

pp fort < AT
Hi(r) = : (2.1)
pp fort > A T+1

The subscript i(t) indicates a regime for time ¢ and 4 is the mean in the first regime and
}2 is the mean in the second regime. Suppose Ay, ji1, and p are known.

Now consider a simple time series regression model with a structural break given by

vt = «1Dy + a2 (1 — Dy) + B1x:Dy + Boxi(1 — Dy) + 1y, (2.2)

Dy =1(t < AT),

where x; is a regressor, A € (0,1) is a hypothetical break point for the regression parame-
ters, and 1( - ) is the indicator function. For expositional simplicity let us suppose AT and
AxT are integer-valued. The regression model (2.2) implies that both regression parame-

ters are subject to potential structural change (full structural change model). Consider the
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null hypothesis of no structural change in the slope parameter:

HO . ‘31 = ﬁz (23)

The OLS estimators of a1, ap, B1, and B; are given by

A 1/
(Z Xt —X1) ) (Z(Xt—ﬂ)yt), (2.4)

t=1

T , -1 T
2=< Y. (xt—72)> ( Y. (Xt—fz)yt>,

t=AT+1 t=AT+1

=)
|

)

-~

1 =Y, — P1xy,

A =T, — B2,

where

1 "ZT: 1 i
Y, Yo = yt, and
_)‘)Tt AT+1
1 AT 1 T
th, Xy = Y xe
1 o )‘)Tt AT+1

Consider the case where A > A,. The asymptotic distribution of the slope estimator can

be obtained under a certain set of high level conditions. A typical set of conditions is:

Assumption 1. T! Z[FT] x? LA rq2, uniformly in r € [0,1], and g2 is strictly positive.

Ut

Assumption 2. T~1/2 ngl] = AW(r), r € [0,1], where AA’ = £, and W(r) is a

XtUt

2 x 1 standard Wiener process.

Assumptions 1 and 2 are the standard high level conditions used widely in the econo-
metrics literature. Under these assumptions an immediate result is presented in the next

Proposition without proof.

Proposition 4. Suppose A is known and A > A. Under Assumptions 1 and 2 the OLS estimators
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in (2.4) have the following asymptotic distributions:
. A )17} A -
T/ (51 - ﬁl) = [Mi + Ay (1 - f) (1 = p2) } X (-Vz — 5 (=), 1) AW (A),

12 (B~ pa) = [1- @] x (cpe 1AW Q) W (A).

For simplicity assume g2 is known. To test the null hypothesis (2.3), one can consider

using a robust Wald statistic
AN PO -1,

Wald (T,) =T (,31 - ﬁ2> (avar (Tl/z (,31 - ,32>>> ([31 - ﬁ2> ,

where T, = AT denotes a hypothetical break date and
avar (Tl/z (31 — ,8\2)) =
2 Ax 2 2 /\x
MM+ A (1= 2 ) (=)™ X —p2— 5 (1 —p2), 1
- A '
X% X (—Vz — Tx (M1 —p2), 1)
2] 72 5 !

(=) [ =N Tx (=2 ) xEx (=, 1),

where £ is a nonparametric kernel estimator of ¥ = AA’ using a kernel K (-) and the

bandwidth M:
S -1 L J ’t _ S’ PN
Z = T Z Z K I Utvsl
t=1s=1 M
i,
with 7y = au Unfortunately, Wald (T,) does not have a pivotal asymptotic null
Xﬂ//l\t

distribution under fixed-b asymptotics as long as p; is not equal to y, and neither is
-1
the supremum statistic. The reason is the vector, A [/\qi + Ay (1 — %) (11— ],12)2} X

<_V2 — &5 (1 —wa), 1), is generally different from (1 —A) [(1—A) ¢2] X (—p, 1)
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unless 1 is equal to py.
In order to obtain a test statistic which has a pivotal fixed-b limiting distribution, a
modified regression equation and more general version of the high level conditions are

introduced. The following two high-level conditions replace Assumptions 1 and 2.

2 rs? uniformly inr € [0, A
Assumption 1’. T~! Zgrj (xt — Vi(t)) LA ! Y 0,2+]
Axs? + (r — Ay) s3 uniformly in r € [Ay, 1]

withs? > 0 fori =1,2.

Obviously under Assumption 1’

[rT] Xt — i) 2 p
Ty — ]~ uniformly in 7 € [0, 1].
t=1 (1)

1

1
5 Ut
Assumption 2", T-1/2y"7] si(t) = AW(r), r € [0,1], where AA’ = Q, W(r)

xt*ﬂi(t))
( Si(t) "

is a2 x 1 standard Wiener process and s;;y = s11(t < AxT) + 521(t > AT + 1).

When p; = pp = pand s7 = s3 = s?, Assumption 1’ is equivalent to Assumption 1

and Assumption 2’ is equivalent to Assumption 2. Under y; = pp = p and s7 = s3 = 52,

Assumption 1’ implies T~! Eszl] (xp—pu)> = T Zyﬂ (x¢ — y)z P rs2 and it is easy to
show this is equivalent to Assumption 1 by defining g2 = s + u2. Also, one can show the

equivalence of Assumption 2’ and 2 through the relationship

Note however that Assumption 1’ is more general than Assumption 1 since it allows the
mean or probability limit of (centered and noncentered) sample second moment of x;
to have a break. As a special case, if x; is a stationary process within each regime, then

s? is the variance of x; process and Assumption 1’ is a robust version of Assumption 1
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allowing for a shift of the variance. Assumption 2’ is also a more general version than
Assumption 2. To see this why, suppose one has evidence of shift in 42 (or s?( t)). Then it
would be hard to justify Assumption 2 as being still valid. For example, take the case
where x; is stationary and conditional homoskedasticity holds, E (u?|x;) = o2. For a
stationary variable, E (x7) = g2. Then the variance of x;u;, denoted by Iy, is E (x?u?) =
E [E (x}u?|x;)] = 02E (x?) = 02g3. Hence I'y should have a structural break in general as
long as there is a shift in 42. This in turn implies that the long-run variance matrix Q) =
AN’ also has structural break because Iy is a component of the long run variance matrix.
Therefore, it would not be appropriate to maintain Assumption 2 while allowing a shift
in g2 or slg( p s in Assumption 1’. One needs to match Assumption 1" with Assumption
2’ due to this reason. However, note that Assumption 2" does not allow the long run
variance to change in an arbitrary fashion. Assumption 2’ can only reflect the impact of
change in g2 or sf( ;) on () in a particular way.

In next Section tests of parameter instability of a or(and) S will be presented under a

particular specification of breaks in (yi(t), si(t)> and breaks in (&, B), which is as follows:

(,ui(t), si(t)) has a structural break at A, T and (&, B) is allowed to have a break at AT.

There may be an empirical application where a different specification is more relevant.
For example, only ;) has structural break at A, T and (&, B) are allowed to have break at

AT. But analysis for these other cases is not pursued in this chapter.

2.3 Asymptotic Results

Suppose (yi(t), si(t)> has a break at A,T and («, ) is allowed to change at an unknown
break date, t = AT. Assume A, and <l/‘i(t)/5i(t)> are given (known). Also, assume A €
e, (Ax —€)] U [(Ax +€),1 — €] following Andrews (1993). The admissible values for A
is obtained by trimming the values at both ends of the sample period and the values in

the neighborhood of A, T. It is necessarily implied that the break date for the regression

97



parameters («, ) should not be same as the break date for the moments. Recall the re-
gression equation (2.2). Define w; = S% Without parameter instability, the equation can

be written as

Xt

Si(t)

Y = a+Bxr+up = a+ Psip ( >—|—ut =a+B(511(t < AT) + 521 (t > A T)) wy +uy

= o+ Bs11(t < AxT)wi + Bspl (t > AxT) wy + uy.

Once we allow (&, B) to have a break at AT, the above regression equation can be rewritten

as
Y =01 (t <AT) 4+ a1 (t > AT) + (B11(t < AT) + Bol (t > AT)) 511 (8 < A T) wy

+ (B11(t < AT)+ Bl (t > AT)) sp1 (£ > A T) wy + uy.

Note that there are four interaction terms made by the two time indicator functions and
one of these four interactions is identical to zero. For example, if A < Ay, then1 (t < AT) x
1(t > A,T) = 0. Depending on the relative magnitude of A and Ay, one can rewrite the

regression equation by reparametrization. For A < A,

yr=m1 (t < AT) + arl ()\T <t< /\xT) + a3l (t > /\xT) (2.5)

+ r1wel (t < )\T) + Yowl (/\T <t< )LxT) + ya3wl (i’ > )LxT) + &,
where Y1 = ﬁlsl, Y2 = ‘3251, Y3 = ‘3252, and Ky = QA3. For A > /\x

v = a1 (t < ALT) + apl (AT < t < AT) +agl (£ > AT) (2.6)

+ 71wl (F < A T) 4+ Yowil (AT <t < AT) 4+ y3wel (8 > AT) + ¢4,

where 1 = B151, 72 = B152, 73 = B252, and a1 = .
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Denote as W the T x 6 matrix which collects the six explanatory variables: for (2.5),
1(t<AT),wd (t <AT), 1 (AT <t < AT),wil (AT <t < AT),1(t > A T), wil (t > A, T)
in this order and for (2.6), 1 (t < AxT), wel (t < AxT), 1 (AT <t < AT), w1l (AT <t < AT),
1(t > AT),and w1 (t > AT) in this order.

Notice that the extra parameter for a is introduced for each equation so that the re-
gression model takes the form of full structural change model with three regimes.

The stability of & can be rewritten as a; = a3 in (2.5) and ay = a3 in (2.6). Likewise the
stability of slope parameter B can be rewritten as f; = B, in (2.5) and B, = B3 in (2.6).
The parameters in (2.5) and (2.6) are estimated by OLS and robust Wald statistics will be

constructed based on these estimators. The OLS estimators in (2.5) are given by

AT ) -1/t
Y11= ) (w —w) Y (we—w1) s |,
=1 =1
AT ) -1/
Y= Y. (w—7) Y. (wi—w)y: |,
F=AT+1 F=AT+1
T , -1 T
Y3 = Y. (w—ws) Y, (wi—w3)y: |,
F=ALT+1 F=AyT+1
and
al - yl 71w1/
Xy =Y, — 722,
063 - ]/3 ')’3@03,
where
— __ 1 AT x
W1 = 37 Li= 1slt yl_ATEt 1yt
Xt -
W2 = yT=AT e I /\T+1 5 and y, = /\xT o /\T+1 Ye -
w3 = —Tf/\xT Zt:/\xTJrl 5 Yz = —Tf/\xT_ Zt:/\xTJrl Yi

Defining X1, x,, and X3 similarly as above immediately gives w; = ’;—11, Wy = ’Sc—f, and w3 =
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and all the other quantities when A € [(1+€) Ay, 1 — €] . The next Proposition presents

the asymptotic limits of the OLS estimators.

A

Proposition 5. Suppose A € [€,(1 —€) Ay]. Denote A = " under Assumptions 1’
Ny

and 2’, as T — oo the OLS estimators in (2.5) have the following limits:

~ W (A
TV2 (31 —11) = A2 )(\ ),
- A
T1/2 (0(1 — le) = (Sll\l — Z—;Az) #’
172 (~ W (Ay) —W ()
TV (2 —72) = A2 | and
AX_A
T1/2 (@ — ) = (5141 — mAz W (Ay) — W(/\)_
Sl A«X_A«

Suppose A € [(1+€) Ax, 1 — €|. Then the OLS estimators in (2.6) have following limits:

TV2 (3 = 32) = e (W(A) = W (1),
TV (@ — ) = (52A1 - %Az) W (Ai — KZ(A"),
TV (§5 —5) = 72 (W (1) = W (1)) , and
12 ) = (s = B2 W0

Proof: See the Appendix.

2.3.1 Stability of 3

Consider the null hypothesis
Hy : B is stable. (2.7)
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This null hypothesis implies 1 = 77 in (2.5) and 2 = 73 in (2.6). From Proposition 10,

for A € [e, Ay — €],

1) o g (MW WD)

and for A € [Ay+€,1—¢€],

12 3y ) o (LWL WO) =W
1— Ay

N (O )

Test Statistic T;
Denote T, = AT and define robust Wald statistics:

Waldﬁ( Ty) = % for T, € [eT,(Ax —€) T] = &1 and
2

T -~ _ -~ 2
Waldf (T,) = % for Ty € [(Ax +€) T, (1—€) T] = &,
2432

—_—

where Ay A/, is a nonparametric kernel HAC estimator given by

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

The HAC estimator A/ZA\’2 in Waldlﬁ (Tp) is computed using the residuals #i; from the re-

gression of equation (2.5) and A/ZA\’2 in Wal dg (Tp) is computed with the residuals #; from

the regression of equation (2.6). Under the assumption of a fixed bandwidth ratio this
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HAC estimator can be rewritten as a function of partial sum processes (see Kiefer and

. [rT] [rT] —
Shay = Z@ = Z <xt —yl(t)> .

IrT] t=1 t=1 Si(t)

Vogelsang (2005)),

The next Proposition presents the limit of this (scaled) partial sum process.

Proposition 6. Under Assumptions 1" and 2, as T — oo, the limit of the partial sum process is
given by
When 0 < A < Ay,

Ay (W(r) —5W(A)) for0<r <A,
TS0 =1 Aa (W) = W) — 25 (W(A) = W(A))) for A <7 < Ay,

Ay (W(r) — W(AL) — = (W(1) - W()Lx))) fordy <r <1,
and

When Ay < A < 1,

As <W(r) - ALXW(A,C)> for0<r <Ay,

T80 = A (W) = W(A) — 524 (W(A) = W(A)) for A <7< A,
As (W(r) —W(A) — =2 (W(1) — W(A))) forA<r<1.

Proof: See the Appendix.

Define

+ (W) = W) = T2 (W) = Wa(4) ) 1A < 7 < A
r— Ay

and

Hy = Hp (1, A, Ay)
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T_Ax
A_Ax

n <w1<r> Swi ) - T —wlmx))) Ay <7< A)

r—A
1—A

+ (Wl(r) —Wi(A) — (W1(1) — Wl(/\))> 1A <r<1),
where Wi (+) is a 1-dimensional Wiener process.

Theorem 4. Let A € (0,1) and b € (0, 1] be given. Suppose M = bT. Then under Assumptions

1"and 2, as T — oo, the limits under the null hypothesis in (2.7) is given by

Wi(Ax)=Wi(A) — Wi(A) 2
Wald® (1,) B LN
1

= Wald® (A, Ax),

P (b, Hy)
and,
(Wl(li_Kvlw B wmA)—Kvl(Ax))z
B Hy - —Ax _ 00
Waldb (T,) = AOEA, = Wald$ (A, Ay),

The definition of P (b, Hy) and P (b, Hy) can be found in Cho and Vogelsang (2014).

Proof: See the Appendix.

Finally, define a test statistic T7:

T} = max (max Waldé3 (Tp) , max Walalé3 (Tb)) . (2.13)

T,eEq T,elby

This statistic can be used when the break date is unknown. Its limit is given by

max ( sup  Wald{ (A, Ay), sup Waldy (A, /\x)> .
A€[e,(1—€)Ay] A€[(1+€)Ay,1—€]
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Test Statistic Tl(F)

Alternatively, the inference in this setup can be based on different HAC estimators de-

tined in Cho and Vogelsang (2014). These alternative HAC estimators are given by

Y, =T 1ZZK( )41*{5), (2.14)

t=1s
(xfs;l’“) 1(t < AT)
7 = (*51)1AT <t < AT) |

S
(ﬁ)w\ﬂgtgﬂ

52

where A < Ay, and

Y, =T 1ZZK( )“42”5), (2.15)

t=1s
(ths;lm) 1(t < A.T)
#= | ()ror<esn o

(M)uwgtgn

52

where A > A,. Define robust Wald statistics based on the above HAC estimators:

T (2 — 71)* _
Wald PP (1) = for Ty, € [eT, (A, — €) T] = B4, 2.16
1 ( b) DlelYlelDi b [ ( x ) ] 1 ( )

T (75 — 72)° _
Wald\FP (1,) = for Ty € [(Ay+€)T,(1—¢)T] = 5y, 217
2 ( b) DngleleDé b [( x ) ( ) ] 2 ( )
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where

1 00
Dl = (1, — 1) X ,
010
2 (we —@1)? 0 0
Ql = 0 % Z;ZKTJA (wt — wZ)Z 0 ’
—\2
0 0 %ZtT:/\xT—i-l (w; —w3)
010
D,=(1, —1) x , and
0 01
T L0 (wr —m)° 0 0
Q2 = 0 T T (W — @) 0
0 0 + XA (we —3)°

Theorem 5. Let A € (0,1) and b € (0, 1] be given. Suppose M = bT. Then under Assumptions

1"and 2’, as T — oo, the limits under the null hypothesis in (2.7) is given by

; (Wl(AX)_K“W B wlAw)z
(F).p 0 X~ — (F),e0
Waldy """ (Ty) = P (b, 15) = Waldy " (A, Ay),
and,
(mu;—Kvlm B wlmA)Kvl(Ax))z
(F).p Ho —Ax _ (F),00

where the processes H3 and Hy are defined as
Hz = H3(r, A, Ayx)

== (W) - Twi ) 10 < )

)\xl_ 1 (Wl(r) —Wi(A) - ):C_—AA (Wi (Ax) — Wl()t))> AN <r < Ay),
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and

Hy = Hy(r,A, Ay)

- A—le (Wl(r) — Wi1(Ay) — j’\:/)\\z (Wi(A) — Wl()\x))) A(Ay <7 <A)
1 —1)\x (Wl(r) - Wi(A) - 11’:?\ (W1(1) —Wl(/\))> 1A <r<1).

The test statistic for testing the null hypothesis in (2.7) is simply given by

Tl(F) = max (max Waldglc)’[3 (Tp) , max WﬂldéF)’ﬁ (Tb)>

T,eE, T,eEy

= max ( sup WaldgF)’Oo (A, Ax), sup Waldgr)’oo (A, Ax)>
A€le,(1—€)Ay] A€[(1+€)Ay,1—€]

=T (g,Ay).

2.3.2 Stability of «

Consider the null hypothesis
Hj : « is stable. (2.18)

With a hypothetical break point AT, the break in « may occur at AT. This implies a1 = ay
in (2.5) and ap = a3 in (2.6) under the null hypothesis (2.18). From Proposition 10, for
A€ e Ay —€],

L WA —W(A) WA
TV (@ — @) = <S1A1—’:—11A2) < (sz_A W )E )) (2.19)
Ax ]/ll> / Sl
~Nlo,—2 (s, —HFL)An )
A(Ax — A) (51 51 ﬂ
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and for A € [Ay+¢€,1—€],

TV? (a3 — @) = <szA1 - Z—ZZAz) <W ui — Kv ) W)= K\i( )) (2.20)

A=
~N|o 1- A (sz, —”2 AA’(

(1—=A) (A= Ay)

Test Statistic T,

Denote T, = AT and define robust Wald statistics:

T (R — @)

(51/ —’::—;) X AN x <81, — Z—ll)

Waldf§ (Ty) = s for Ty, € [eT, (Ax —€) T] = E1 and

(2.21)
T (G — 3)2
Walds (T,) = (83 — %) for Ty € [(Ae+ )T, (1—€) T] = Z,
(Sz, — %2) X AN x <Sz, — Z—;)
(2.22)
where AN’ is a nonparametric kernel HAC estimator given by
. T T
AN =T7! 2 Z K ( ) &, (2.23)
t=1s=1
1
ith& = | "0 |
with ¢; S iy

As before, the HAC estimator AA/ in Wald{ (Ty,) is computed using the residuals if; from
the regression of equation (2.5) and AN in Wald§ (Tp) is computed with the residuals
il; from the regression of equation (2.6). Under the assumption of fixed bandwidth ratio,

this HAC estimator can be rewritten as a function of partial sum processes (see Kiefer and

Vogelsang (2005)),
. (T [T SL
S‘[’;T] = th = Z xf_’(;)i(t) il
t=1 =1\ —

Si(t)
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The next Proposition presents the limit of the (scaled) partial sum processes.

Proposition 7. Under Assumptions 1" and 2°, as T — oo, the limit of the partial sum process is
given by
When 0 < A < Ay,

A(W(r)—fW(A)) for0<r <A,

T80 = {0 A (W(r) = W(A) — =2 (W(Ay) — W(A))) for A<r < Ay,

(
A (W(r) ~ W(As) — =2 (W(1) — W(Ax))) for Ay <r <1,
and

When Ay < A < 1,

A (W(r) - ix (/\x)> for0 <r < Ay,

<

A

TV28E 0 = {0 A (W(r) = W(Ay) — =2 (W(A) — W(A A <r<A
[rT] (r) (Ax) A—Ax< (A) x))) for Ay <r <A,

~—~

A (W(r) —W(A) - I=2

>|>
—~
=
—~~
—_
~—
|
=

/\))) for A <r<1.

Proof: See the Appendix.
The next Theorem presents the limit of the statistics. The limit is the same as in Theo-

rem 8.

Theorem 6. Let A € (0,1) and b € (0, 1] be given. Suppose M = bT. Then under Assumptions

1"and 2, as T — oo, the limits under the null hypothesis in (2.7) is given by
Wald® (T,) 22 Wald® (A, Ay),

and,

Walds (T,) 22 Wald® (A, Ax).
The definition of P (b, Hy) and P (b, Hy) can be found in Cho and Vogelsang (2014).

Proof: See the Appendix.
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Using Theorem 9, the test statistic T, defined below has the following limit:

T, = max (maﬁx Wald{ (Ty), max Wald; (Tb))
pEED

T,eEq

= max ( sup
A€(e,(1—€)Ay]

Test Statistic TZ(F)

Wald® (A, Ay), sup

AE[(14€)Ar1—¢]

Waldg® (A, Ax)> .

Alternative statistic can be derived by a similar way as before. Construct HAC estimators

Y3, Y4 using é’}l)

and

Define Wald statistics

(F)a

Waldl (Tb) =

and E}Z) respectively where

S1(E<AT)
(;fl) 1(t < AT)
S1(AT <t < AT)

("fs;l’“) 1(AT < t < A, T)
S1(MT <t<T)

(*2) 1T <t<T)

52

S1(E< AT
(31) 1(t < AT
=1 (AT <t <AT)

(%) 1(AT < t < AT)

1
liar<t<T)

(M)l(ATgth)

52

T (@ — @)

(Sl,

, -1 , -1 /
~8)xDa (M) s (M%) Dhx (s - )
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for Ty, € [eT, (Ax —€) T] = &4, and

Wald{F* (T,) =

(o)) () o o)
for T, € [(Ax+€) T, (1 —¢€)T] = &y, where

D3 = (12/ - IZ) X (I4/ 04><1)/

Dy = (I, — D) x (04x1, Ls).
Finally,

TZ(F) = max (max Waldgp)’“ (Ty) , max WaldéF)’“ (Tb))

Ty,eEq T,edy

= max ( sup WaldgF)’oo (A, Ay), sup Walclg)’Oo (A, Ax)> .
A€le,(1—€)Ay] A€[(14€)Ay,1—€]

The asymptotic limits of Wald%F)"x (Ty), WaldéF)"x (Tp) and TZ(F) are the same as

Waldglj)’oo (A, Ax), WaldgF)’oo (A, Ay) and TF)= (¢, A) respectively in previous Theorem.

2.4 Simulations

In this Section the finite sample properties of the test are examined via Monte Carlo sim-

ulation. The data generating process (DGP) is given by

Ve=a1(t <AT) 4 a1 (t > AT) + P11 (t < AT) xp+ Bl (t > AT) xp + ¢4,
Xt = Sj(pyUt + Mi(r), Ut = PU-1 + 11,

& = 0-581‘71 =+ 14,
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where 77; ~ N(0, (7,?) and v; ~ N(0,1) are independent. The values of a1 and a5 are set to
zero. The mean and variance of x; are allowed to have a single break at A, = 0.4. Three

specifications on the mean and variance of x; are considered.

specification 0: <y1, 1o, 53, 5 ) (0,0,1,1)
specification 1: <y 1y, 53, 5 ) (0, 0.5, 1, 1.5)
specification 2: <y 1y, 53, 5 %) 0,1, 1, 2)
specification 3: <pt1, 1, 53, 5 %) 0,2, 1, 4)

Specification 0 implies there is no break in the mean and variance. When the true values of
(Ax, U1, U2, s%, s%) are known, one can recover u; from x; and use u; to construct a HAC
estimator. So the break in mean and variance has no effect on inference and the empirical
rejection probabilities should be same across the specifications. The values of (p, (7%) are
chosen so that the variance of x; becomes 1 for the first regime (before A, T). The selected
sets of those values are (0.5, 0.75) and (0.8, 0.36). The DGP with <p, 0'%) = (0.8, 0.36)
has more persistent autocovariance function than the other and has the larger long run
variance of u;.

To examine the size property, the case where 1 = B, = 1is considered. To learn about
power, the following values for (A%, B, B;) are considered: (0.2, 1, 1.5), (0.25, 1, 1.5),
where A? denotes the true break point for the regression parameters. The value of the
trimming parameter to be used in this experiment is 0.1. Based on this particular value
of trimming parameter and the value of A, the admissible set of A is [0.1, 0.4 — 0.1} LI
[0.440.1, 1 —0.1]. To check against the case where the true value does not belong to this
admissible set, extra values of A is considered: A = 0.4. Withe = 0.1 and A, = 0.4 and the
Bartlett kernel being used, the 95% fixed-b critical values for the statistic T; are 188.64 for
b= 0.1and 717.15 for b = 0.5. For T\") with ¢ = 0.1 and A, = 0.4 the 95% fixed-b critical
values are 35.11 for b = 0.1 and 162.07 for b = 0.5. Table 2.1 reports the results for the

111



simulation experiments for T = 100 and 300 and for three different tests: SupW(F) test in
Cho and Vogelsang (2014), and T and Tl(F) tests proposed in this chapter.

Table 2.1 shows that the test results for T; and TI(F) are invariant to the break in the
moments of the explanatory variable. This is, as mentined earlier, because the true value
of (Ax, U1, M2, s%, s%) is assumed to be observable and these two statistics are numerically
the same across different values of (Ax, Ui, M2, s%, s%) . There are several points conveyed
by this table. First, in the absence of break in the moments, SupW¥) test displays better
power property and comparable size property over the other two tests. But when there
exists a break in the moments, the size and power of SupW(F) test would be sensitive to
the magnitude of the change in the moments and the size property does not get better as T
increases. When there is change in the moments and Tl(F) test is used for the inference, the
size distortion is relatively small and the rejection frequency is not so much sensitive to
the persistence of the underlying process. However, this test has poor power compared to
SupW(F) test. This is because for given a value of b, Tl(F) uses bigger effective bandwidth

for estimating the variance matrix in each regime. The test based on T; is seen to be

dominated by TI(F) test in terms of the size and power when T is 300.

2.5 Summary and Conclusions

This chapter proposes an inference procedure for testing stability of regression parame-
ters allowing for a single break in the mean and second moments of the x variable. The
mean and second moments are assumed to have a break at A,T. The break point for the
regression parameter (AT) should be different from A, T. The analysis focuses on a simple
linear regression model but the proposed test can be generalized to a multiple linear re-
gression model. A new set of high level conditions are introduced which incorporates the
possibility of change in the mean and second moments of the x variable. Under fixed-b

asymptotics, the limiting distribution of the robust Wald statistic is pivotal so the criti-
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cal values can be simulated and used for conducting inference. The simulation results in
this chapter show there is substantial size distortion in finite samples. This is not surpris-
ing because the three regimes induced by two different types of break points make even
smaller sample size for each regime. Also, whether the main results will be still valid
when A, and the moments are unknown and need to be estimated should be a straight-

forward direction of future research.
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Table 2.1: Size and Power in Finite Samples, T=100, 300, A, = 0.4, € = .1, Bartlett kernel

}11:0,]/12:0.5 111:(),]42:1 ylio,yziz
No break in (1, 5%) 2=1s3=15 $2=1s3=2 s2=13=4
(p, ag) (5,75  (8,.36) (5,.75)  (8,.36) (5,75  (8,.36) (5,.75)  (8,.36)
b 01 05 01 05 01 05 01 05 01 05 01 05 01 05 01 05
SupWF) Test
T=100
Size 133 119 230 207 165 141 253 211 246 194 308 267 638 50.8 588 49.6
Power
A=2 279 221 331 282 468 367 453 372 675 528 60.5 507 981 867 93.6 83.6
25 281 22.6 334 287 486 380 465 385 69.0 550 61.8 514 983 88.6 941 845
4 263 205 320 267 472 369 462 382 704 565 624 528 984 932 943 8638
T=300
Size 84 79 144 119 148 133 186 160 299 251 309 256 930 83.6 848 750
Power
A=2 415 348 388 329 760 598 676 555 934 751 868 719 100 960 999 956
25 418 341 387 325 783 63.6 694 574 952 81.0 886 747 100 97.3 99.8 96.6
4 37.8 30.6 363 293 800 680 70.6 583 971 888 90.6 79.8 100 99.8 999 99
Ty Test T Test

(p, ag) (5,.75) (8, 36) (5,.75) (.8, 36)

b 01 05 01 05 01 05 01 05
T=100

Size 201 187 457 412 120 107 137 123
Power
A0 =2 256 216  49.6 432 203 189 173 158

25 252 219 493 436 195 190 172 164

4 201 187 457 412 120 107 137 123
T=300

Size 95 94 209 189 86 78 118 111
Power
A0 =2 251 205 319 258 250 253 222 221

25 253 198 314 250 246 249 220 216

4 95 94 209 189 86 78 118 111
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Appendix for Chapter 2

Proof of Proposition 10: The proof is only provided for 5. One can easily prove the rest

of the results.

AT 1 /AT
Y2 = ( Y. (wy —@2)2) ( Yo (w —wz)yt>
t 1 t

AT+ —AT+1
-1
AT — %\ 2 M — %
—mr( ¥ L(M2)u).
F=AT+1 51 F=AT+1 1

Since plimX; = plim m Z?;KT 1 X = p, it follows under Assumptions 1’ and 2’,

2 g (MO WO0)

A«x_A«

Proof of Proposition 11: Proof is only provided for r € [A, Ay] when 0 < A < A,.

[rT] [rT]
B Xt —H1\ ~ Xt — M1 o~ X
N G LR N e | ()

t=AT+1

S S A YR NP R L B gy
=(a—®) Y, (m—=)+rn-7) ). (—= )=+ Y ([——)u.

F=AT+1 51 F=AT+1 51 51 4=AT+1 51

So,

T8 = (W (Aj) = KV(A)) X (= A) + Ag (W (r) = W (1))

= ha (W) = W) = =75 (W) — W) ).

Proof of Theorem 8: The results immediately follows from equation (2.8), (2.9), Proposi-
tion 3 and the transformation

AW(-) L AW, (),
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where A is the positive constant satisfying Ay Ay = A2

Proof of Proposition 12: Proof is only provided for r € [A, Ay] when 0 < A < A,.

- [rT] [rT] ll
St = = ° i,
[rT] t; Gt t; o Ut

[rT] 1 [rT] 1
51 ~ $1 ~ ~ xt
= Z ur = Z Ye — a2 — 72—
_ Xt—H1 _ Xt—H1 51
t=AT+1 - t=AT+1 T
[rT] 1 [rT] 1 [rT] 1
~ S1 -~ S1 xt 51
=(m—d) ), | * +tr-7) Y | .7 st A 2
p=AT+1 | XM p=AT+1 | XM T pmpTr | A
51 51 51
Hence

0
fia} _
- p () A - W)

Proof of Theorem 9: The results immediately follows from equation (2.19), (2.20), Propo-

sition 4 and the transformations
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where the constants By and B, satisfies
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CHAPTER 3
A Test of the Null of Integer Integration
against
the Alternative of Fractional Integration

3.1 Introduction

Chapter 2 proposes a test of the null hypothesis of “integer integration” against the alter-
native of fractional integration. More precisely, the null is that the series is either I(0) or
I(1), while the alternative is that it is I(d) with 0 < d < 1. The null of integer integration
is rejected in favor of the alternative of fractional integration if the KPSS test rejects the
null of I(0) and a unit root test rejects the null of I(1). A new unit root test is used as
the second part of the testing procedure, which is a lower-tailed KPSS test based on first
differences of the data, but other unit root tests like the ADF test could also have been
used. This two-part testing procedure will be called the “Double-KPSS” test because it
consists of two steps, but it should be pointed out that the test is treated as one test and is
evaluated for its properties (consistency and finite sample size and power) as such.

The KPSS test of Kwiatkowski et al. (1992) was originally suggested as a test of the null
of (short memory) stationarity against the alternative of a unit root. Conversely, standard
unit root tests like the Dickey-Fuller tests, the augmented Dickey-Fuller (ADF) test of Said
and Dickey (1984) or the Phillips-Perron test of Phillips and Perron (1988) were viewed
as tests of the null of a unit root against the alternative of short-memory stationarity. So
if the KPSS test rejected but the unit root test did not, the conclusion was that the series

had a unit root. If the unit root test rejected but the KPSS test did not, the conclusion was
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that the series was short-memory stationary. If neither test rejected, the conclusion was
that the data were not informative enough to decide whether the series was I(0) or I(1).
However, if both tests rejected, there was in some sense a contradiction.

This apparent contradiction can be resolved by considering a wider class of processes,
specifically long-memory processes. The leading example considered in this chapter, is
the I(d) process (with 0 < d < 1) of Adenstedt (1974), Granger and Joyeux (1980), and
Hosking (1981). Since both the KPSS test and unit root tests have power against long-
memory alternatives, the “double rejection” outcome can be taken as evidence that the
series has long memory, as opposed to being either I(0) or I(1). This is not a novel obser-
vation. However, the approach in this chapter is novel in its consideration of the double-
testing procedure as a single test, and its investigation of the size and power properties of
this test. In this regard, the basic observation is that if the nominal size of each of the two
tests is set to 5%, the double test also has size of 5% asymptotically. For example, if the
DGP is I(0), then asymptotically the KPSS test will reject with probability 5% while the
unit root test will reject with probability one, while if the DGP is I(1) the converse will
occur. So whether the data are I(0) or I(1), the probability of rejection of the double test
is asymptotically 5%.

The practical issue to be faced is to what extent one can be reasonably sure that the
double rejection outcome is due to fractional integration, as opposed to size distortions of
the test under the I(0) or I(1) null. For example, Caner and Kilian (2001) and Miiller
(2005) have shown that the KPSS test has large size distortions if the DGP is AR(1)
with autoregressive coefficient near unity. Conversely, Dejong et al. (1992), Phillips and
Perron (1988) and Vogelsang and Wagner (2013), among others, have found that the
Dickey-Fuller test and its variants can have large size distortions, especially if the DGP
is ARIMA(0,1,1) with moving average root near (negative) unity. This does not imply
that the Double KPSS test will suffer from large size distortions in either of these cases,

since the cases for which the KPSS test has large size distortions correspond to cases in
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which the unit root test may have low power, and conversely. However, it does argue for
a careful investigation of the size and power properties of the new test in finite samples.

As noted above, the specific unit root test used in this chapter is a lower-tail KPSS test
based on the data in differences. The KPSS unit root test suggested by Shin and Schmidt
(1992) and Breitung (2002) was considered. However, as shown by Lee and Amsler (1997),
the KPSS unit root test is not consistent against I(d) alternatives with 1/2 < d < 1. One
might also consider using the ADF test, but this test is known to have low power against
I(d) alternatives (e.g. Diebold and Rudebusch (1991), Hassler and Wolters (1994)), and
there is also the practical consideration that it is easier to prove the consistency of our
test against I(d) alternatives for all d between zero and one than it is for the ADF test. In
simulation, it makes little difference whether the new test or the ADF test is used.

The consistency of the Double KPSS test depends on the consistency of the KPSS test
and of the unit root test proposed in this chapter, and these in turn depend on the number
of lags used in the estimation of the long-run variance going to infinity, but more slowly
than sample size. Under this assumption a single critical value for each test (for each
significance level) obtains, and these will be referred to as the “standard asymptotics”
critical values. They do not depend on the kernel used to estimate the long-run variance
or on the bandwidth (so long as the number of lags behaves as assumed above). However,
following Kiefer and Vogelsang (2002a, 2002b, 2005), this chapter also considers “fixed-b
asymptotics,” where b, defined as the ratio of the number of lags to the sample size, is
constant as the sample size grows. The fixed-b critical values depend on the kernel and
on the value of b, and there is evidence in many settings that they yield tests with smaller
size distortions than the critical values based on the standard asymptotics.

The main theoretical contribution is that the consistency of the Double-KPSS test is
proved against I (d) for all d between zero and one. For the KPSS test, this can be shown
using existing results except for the case of d = 1/2, so the divergence of the statistic for

d = 1/2 is proven in this chapter. For the new unit root test, its asymptotic distribution
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is established ford = 0,0 < d <1/2and 1/2 < d < 1, and it is proven that the statistic
converges to zero in probability when d = 1/2. Besides these theoretical results, this
chapter contains substantial simulation results to show the extent to which this testing
procedure is likely to be useful in finite samples.

The plan of the chapter is as follows. Section 3.2 gives the definitions and basic prop-
erties of stationary short memory, long memory and unit root processes, and explicitly
states the testing procedure. Section 3.3 gives the asymptotic results, using the standard
asymptotics. The asymptotic limits of the two component tests are derived and consis-
tency of the two-part test is proved. Section 3.4 presents the fixed-b asymptotics. Section
3.5 presents the results of simulations which explore the finite sample properties of the
new test. Section 3.6 summarizes and concludes. Finally, an Appendix gives some proofs

and technical details.

3.2 Setup and Assumptions

The data is assumed to be generated by the DGP:
yr=u+e, t=12,.,T. (2.1)

That is, non-zero level of the y; series is allowed, but not trend. Allowing for trend would
not change the basic principles of the research in this chapter, but it would change the

asymptotics.

3.2.1 Null Hypothesis

Under the null hypothesis {€;};-, is either a stationary short memory process or a unit
root process. That is, either {e;}- itself is a stationary short memory process or it is a
cumulation of a short memory process.

Let {z¢};-, be a time series with zero mean, and let Z; = Y

j—12j be its partial sum.
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{z:};2 is said to be a short-memory process if it satisfies the following two conditions.

Assumption N1
0? = lim T"'E (Z%) exists and is nonzero. (2.2)
T—o00
Assumption N2
vre[0,1], T"V2Z,p = oW(r), (2.3)

where [rT] denotes the integer part of T, = means weak convergence, and W(r) is the
standard Wiener process.

In addition to Assumptions N1 and N2, further regularity conditions are necessary
for the consistency of HAC (heteroskedasticity and autocorrelation consistent) estimators.
Examples of such conditions can be found in Andrews (1991), Newey and West (1987),
De Jong and Davidson (2000), Jansson (2002), and Hansen (1992). It is implicitly assumed
that one or more of these sets of conditions hold, so that the HAC estimators that appear
in our test statistics are consistent.

Unit root processes are the other class of DGP which belongs to the null hypothesis. A
time series is said to be a unit root process if its first difference is a short memory process.
Equivalently, a cumulation of a short memory process is a unit root process. That is, Z; is

a unit root process if

(1 - L) Z; = z; ~ short memory process. (2.4)
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3.2.2 Alternative Hypothesis

Under the alternative hypothesis, {€;};- , is a fractionally integrated process. Specifically,

consider the alternative that €; follows an I(d) process with0 < d < 1:
(1—L)%e; = uy, uy ~ iid Normal(0,02), (2.5)

The class of I(d) processes with 0 < d <  has been widely used in econometrics to
represent long memory processes!. More generally, a stationary process is said to have
long memory if

n
lim ) ;= oo, (2.6)

j=—n
where 7y; is the autocovariance at lag j. Lo (1991) uses the following form of autocovari-

ance function as a definition of a long-range dependent (long memory) process.

. 77LL(j) ford € (0,3) or as oo 27)
] ’ :
—71L(j) ford € (—3,0)

where L(j) is a slowly varying function? at infinity. This form of autocovariance function
includes the autocovariance function of the I(d) process with 0 < d < %, and is more
general in the sense that it would accommodate the case that u; in (2.5) is a short memory
but not necessarily an i.i.d. process. However, it does not accommodate the case of § <
d<1l

This chapter considers the I(d) process with i.i.d. innovations as in equation (2.5),
which was analyzed by Granger and Joyeux (1980) and Hosking (1981). When <—% <) d<
%, d # 0, the process is a stationary long memory process, while it is a nonstationry long

memory process for % < d < 1.Ford > —1, the process is invertible and has infinite

For more comprehensive treatment of this topic, see Giraitis et al. (2012).
Lo (1991, page 1286): A function L(x) is said to be slowly varying at infinity if lim;_,co L(tx)/L(t) = 1.
An example is log x.
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order moving average representation:

_ > I'(j+d)
er=1—-L) =Y buy_;, bj=——2 (2.8)
! ) E)]t, T T@T(j+1)
and when d < J it has infinite order AR representation:
[(—d)

[o0]
(1-— L)det =) aje_j=u,a=1,a;=
j=0

> 1. .
F(l—d)l"(j+1)f0r]_1 29)
Also, for —3 < d < %,d # 0 the process has a slowly decaying autocovariance function
given by

o2l (1—-2d)T (k+d)

Vi = T DTk 1) ~ ck?2=1 a5 k — oo for some constant c, (2.10)

and this autocovariance function satisfies (2.6) and (2.7). Hosking (1981) provided further
results with ARMA(p, q) innovations.

To establish the asymptotic results in this chapter, an invariance principle under the
alternative hypothesis is needed. Davydov (1970) and Sowell (1990) provide an invari-
ance principle for the fractionally integrated processes with i.i.d. innovations. Lee and
Schmidt (1996) use the result in Sowell (1990), replacing his rth moment-condition by a
normality assumption. Lo (1991) bases his asymptotic analysis upon the result of Taqqu
(1975), assuming stationarity and Gaussianity of the long-memory process. More recently,
Qiu and Lin (2011) proved an invariance principle for the fractionally integrated process
with strong near-epoch dependent innovations, which is the most general functional cen-
tral limit theorem for fractionally integrated processes currently available. The analysis
in this chapter will focus on the I(d) process with normal i.i.d. innovations, following Lee

and Schmidt (1996). Specifically, this chapter will use the functional central limit theorem
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appearing in Sowell (1990) which is restated in Lee and Schmidt (1996), as follows.’

Suppose {z:};-, is generated by (2.5) with —1 < d < } and let 02 = var (Zr). From

Sowell (1990),
I'(1-—2d) rA+d+T) T(1+44d)
2 2 -
and as T — oo,
2 JR—
9T 2. ['(1-—2d) — o)

T1+2d " (1424)T(1+d)T(1—-d)
Also, Sowell (1990) gives the following invariance principle for the fractionally inte-

grated processes with —% <d< % :
o7 Zyry = Walr), (2.13)

or equivalently

Ti(dJrl/Z)Z[rT] = a)de(T’), (214)

where W;(r) is the fractional Brownian motion of Mandelbrot and Van Ness (1968), which
is defined as

Walr) = £ ! -/01 (r— ) dW(s) (2.15)

1+d)

3.2.3 Test Statistics and the Rejection Rule

As above, the model is:

yr=u+e, t=12,.,T. (2.16)

The null hypothesis is: Hy : €; is a stationary short-memory process or a unit root
process with short-memory innovations, and the alternative hypothesis is: Hj : €; is an

I(d) process with 0 < d < 1 and with normal i.i.d. innovations.

3This result could presumably be generalized under the more general conditions in Qiu and Lin (2011).
The technical details involved would be orthogonal to the main points of this paper.
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New rejection rule will be based on two statistics. The first statistic, denoted by Kj,
should have a non-degenerate limit only when the innovation €; is stationary short-
memory, and should diverge when the innovation has a unit root or is a long memory
process. Conversely, the second statistic, denoted by Kj, should have a non-degenerate
asymptotic distribution only when the innovation has a unit root, and should converge
to zero when the ¢; is a stationary short memory or when it is a long memory (0 < d < 1)
process. If one can find two such statistics, K; and K3, the following rejection rule will

asymptotically have size of 5% :
Reject Hy if Ky > cv g5 and Ko < ¢t g5,

where cv} s is the upper 5% critical value from the asymptotic distribution of K; when
the error term is a short memory process, and cv3 s is the lower 5% critical value from
the asymptotic distribution of K; when the error term is a unit root process. Now two
specific statistics (K; and Kj3) are proposed to make this procedure operational.

The first statistic (K7) is the KPSS statistic (KPSS, 1992) which is defined as

S TN S

where s2(I) is a HAC estimator. This statistic is constructed using the OLS residuals

{ej}].Tzl from equation (2.16). More specifically,

_ 1 T t
e = Yi—Y=yi—=) Yy Si=) ¢ (2.18)
=1 =1
l

(1) = Fo+2Y w(s)Fs,
s=1

where w(s,I) = 1 — 7y (Bartlett kernel) , 75 = % Z]T:S L 1¢j¢j—s- Note that with the Bartlett

kernel the number of lags, I/, determines the maximum lag of the sample autocovariances

129



considered for estimating the long run variance of the error term. It is assumed that [ — oo
but /T — 0as T — oo. This assumption characterizes the "traditional asymptotics" and
is made to ensure the consistency of the test. Later Section will make some comparisions
to the "fixed-b" asymptotics that arise when b = ZJFTl has a fixed non-zero limit.

Section 3.3 collects existing asymptotic results for 7. The only case in which 7, has a
non-degenerate limiting distribution occurs when the innovation follows a short-memory
process. Under all the other cases, i.e. a unit root process and the processes described by
our alternative hypothesis, 77, diverges to infinity.

Also, a statistic K is needed that has a non-degenerate limit only under the unit root
innovation processes. Shin and Schmidt (1992) and Breitung (2002) considered a slightly
modified KPSS statistic, %ﬁy, which converges to a non-degenerate limiting distribution
under the unit root innovation process and goes to zero under short-memory error pro-
cesses. But as shown by Lee and Amsler (1997), this statistic cannot distinguish I(1)
processes from I(d) processes with % < d < 1. This chapter therefore suggest an alter-
native statistic which can distinguish I(1) processes from I(d) processes with 3 < d < 1
(nonstationary long-memory processes) as well as from I(d) with 0 < d < } (stationary
long-memory processes) and stationary short-memory processes.

Consider the differenced model,
Ayt = Aet = Aet. (219)

The second statistic K, will be the KPSS statistic based on the differenced data {Ayt}tTZZ .
The statistic is given by
4 T2y ,5

My = 20) , (2.20)
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where

t t
St = ) Ayj=) ANej=¢€—ey, (2.21)
j=2 j=2

I
() = yo+2) w(s s,
s=1
with %5 = 717 Lg o Ay = 79 Ll p Aethes .

It will be shown that this statistic has a non-degenerate distribution in the case of a unit
root, while it converges to zero under stationary short memory or under I(d) with 0 <
d < 1. Note that this will be a lower-tail test. Other unit root test could have considered,
notably variants of the Dickey-Fuller test. The simulations will also compare the results
with different unit root tests. From a technical point of view, 1’7\'1;; is attractive because the

proof of the consistency of the test is relatively straightforward.

3.3 Asymptotic Results

This Section discusses the asymptotic distributions of the 77, and ﬁfl statistics when €;
is 1(0), I(d) with 0 < d < 1, and I(1). The asymptotic theory is established under the
assumption that,as T — oo, — cobut[/T — 0, where [ is the number of lags used in the
Bartlett kernel for estimation of the relevant long-run variance. These are the "traditional
asymptotics," as opposed to the "fixed-b asymptotics" which will be discussed in a later

Section of this chapter.

3.3.1 Asymptotic Results for 77,

The existing results on the limit of 77, are collected from Kwiatkowski et al. (1992), Shin
and Schmidt (1992), Lee and Schmidt (1996), and Lee and Amsler (1997). Table 3.1 shows
those results. Note that the case of d =  is missing in Table 3.1. Results for d = } similar

to those in Table 3.1 are not currently available, so this case will be treated separately in
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this Section. The implications of these results for the asymptotic distribution of 7, are

summarized in Theorem 7.

Theorem 7. Given the data generation process in (2.16), the KPSS statistic, 1], defined in (2.17)
has following asymptotic limits.

A. When €, is a short-memory process (Kwiatkowski et al. (1992)),
1
iy = / B(r)2dr. (2.22)
0

B. When €; is a unit root process (Shin and Schmidt (1992)),

Lo (o W(s)ds)”dr
fol W(s)?ds

(2.23)
implying 1, — oo in probability.
C. When €, is a fractionally integrated process with 0 < d < 1/2 (Lee and Schmidt (1996)),

I 2d 1
(T) iy = /0 B, (r)2dr (2.24)

implying 1, — oo in probability.
D. When € is a fractionally integrated process with 1/2 < d < 1 (Lee and Amsler (1997)),

LW, (s)ds)*d
(%) = b (ffqz*@) o) dr (2.25)

implying 1, — oo in probability.

The above results cover all of the cases except d = 1/2. This case is covered by the

following Theorem.

Theorem 8. Given the data generation process in (2.16), the KPSS statistic, 1], defined in (2.17)

diverges to infinity when the error term is an 1(%) process.
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Proof: See the Appendix.
Theorems 7 and 8 imply that the KPSS 7j,, test is consistent against a unit root and also

against I(d) alternatives forall 0 < d < 1.

3.3.2 Asymptotic Results for 7,

This Section considers the asymptotic behavior of ﬁl‘i under stationary short- or long-
memory errors, under unit root errors, under nonstationary long-memory errors with
% < d < 1, and under nonstationary long-memory errors with d = % Recall

I o 1 SR

M = AQ—_t, with §; = Zij = ZA(—:]- =€ — €1,

s2(1) - =
j=2 =2
l

i _ _ N 1 &
(1) = Fo+2) w(s,1)¥s, and 75 = o Y AyiAyis,
s=1 t=s+2

where Ay; =yt — y;—1, and Ae; = € — €.
Since 175 is a unit root test statistic, its asymptotic distribution is established under
first, the unit root null. Then it will be shown that the limit of the statistic is zero for the

case of stationary short memory and for I(d) processes with 0 < d < 1.

Proposition 8. Under the data generation process in (2.16) with the error term €; being a unit
root process, and under the assumption that | — oo and % — 0as T — oo, the statistic, ﬁz

defined in (2.20) weakly converges:
1
= / W(r)%dr, (2.26)
0

where W (r) is the standard Wiener process.

Proof: See the Appendix.
This is a lower tail test. The 1%, 5% and 10% lower tail critical values are 0.034, 0.056,

and 0.076, respectively. These are different from the critical values of the KPSS unit root
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test in Shin and Schmidt (1992) and Breitung (2002) because the data is differenced instead
of demeaning the terms in Si. Asa consequence the result in (2.26) involves an ordinary
Wiener process as opposed to a demeaned Wiener process.

The next three results together prove that the limit of the statistic is zero for all cases

except the case of unit root errors.

Theorem 9. Under the data generation process in (2.16) with the error term €; being a stationary
short- or long-memory process and under the assumption that | — oo and % — 0as T — oo, the

statistic, ﬁz defined in (2.20) has the following limiting distribution:

1\ ! d ’)/o—i—e2
<T) T T()l (2.27)

where g = E (e7) . Therefore, 7} 5o

Proof: See the Appendix.
The next Proposition shows the statistic ﬁft can distinguish fractionally integrated pro-
cesses with 1 < d < 1 from unit root processes. Recall that this is not the case for the

KPSS unit root test (Lee and Amsler (1997)).

Proposition 9. Under the data generation process in (2.16) with the error term € being fraction-
ally integrated with i.i.d. normal innovations and with % < d < 1 (s0, a nonstationary long-
memory process), and under the assumption that [ — oo and % — 0as T — oo, the statistic, ﬁz

defined in (2.20) has the following limiting distribution:
AN ! 2
(T> 7l = /0 W, (r)2dr, (2.28)

where d,, = d — 1 and Wy_(r) is the fractional Brownian motion. Therefore, 1’7\5 0.

Proof: See the Appendix.

Lastly, consider the case of I (%) .
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Theorem 10. Under the data generation process in (2.16) with the error term €; being fractionally
integrated with i.i.d. normal innovations and with d = % (so, a nonstationary long-memory
process) and under the assumption that | — oo and % — 0as T — oo, the statistic, ﬁﬁ defined in

(2.20) converges to zero.

Proof: See the Appendix.

3.3.3 Correct Size and Consistency of the Double-KPSS Test

Now go back to the rejection rule in Section 3.2. The null of integer integration is re-
jected if the KPSS test rejects short memory and if the unit root test based on ﬁﬁ rejects
unit root. This two-part test has correct size asymptotically and is consistent against I(d)

alternatives with 0 < d < 1.

Proposition 10. Suppose the data generation process is given by (2.16). Under the null hypoth-
esis of integer integration and under the assumption that | — oo and % — 0as T — oo, the
rejection rule

Reject Hy if if,, > CU(1).95 and 77‘1;; < 006.051

gives a test with asymptotic size of 5%, where cv}, o5 is the upper 5% percentile of (2.22) and cv3 s
is the lower 5% percentile of (2.26). Also, the test is consistent againt the alternative hypothesis of
I(d) with0 < d < 1.

Proof: The Proposition follows immediately from the results of Sections 3.3.1 and 3.3.2.
(1) If the series is I(0), asymptotically the KPSS test will reject with probability 0.05 and
the ﬁft test will reject with probability one, so the Double-KPSS test will reject with proba-
bility 0.05. (2) If the series is I(1), the KPSS test will reject with probability one and the ﬁz
test will reject with probability 0.05, so the Double-KPSS test will reject with probability
0.05. (3) If the series is I(d) with 0 < d < 1, asymptotically both tests will reject with

probability one, and so the Double-KPSS test will reject with probability one.
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3.4 Fixed-b Asymptotic Results

Letb = ”Tl, the ratio of the number of lags (plus one) to the sample size. The asymptotic
results of the previous Section were obtained under the assumption thatb — 0as T — oc.
This Section discusses the asymptotic distribution of the 77, and 175 statistics under the
"fixed-b" assumption that b is held constant as T — oo. The idea of fixed-b asymptotics
was proposed by Kiefer and Vogelsang (2005) and Hashimzade and Vogelsang (2008).
The fixed-b approach gives a random limit of the HAC estimator which depends on the
choice of kernel and the bandwidth ratio b. The fixed-b approach is known to produce
a better finite sample approximation to the distribution of test statistics in a variety of
settings. Amsler et al. (2009) derived the fixed-b asymptotic distribution of the KPSS 77,
statistic under the I1(0) null and under the I(1) alternative. Proposition 11 present their

results.

Proposition 11. Given the data generation process in (2.16), under the assumption that b =
”Tl € [0,1] is held constant as T increases, the KPSS statistic, ﬁy defined in (2.17) has the
following fixed-b asymptotic limits.

When €, is a short-memory process,

fo r)2dr
i R &)

where Qo(b) = # [f B(r)%dr — 1 "B(r)B(r + b)dr] with B(r) = W(r) —rIW(1).

When €; is a unit root process,
1
R P(r)?%dr
My = fO b ’
Qi1(b)
where Q1 (b) = 2 Uo r)2dr — Olfb P(r)P(r + b)dr} with P(r) = [y W(s)ds with W(s) =
- fo W (u)du.

Proof: See Amsler et al. (2009).

(2.30)
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As Proposition 11 shows, the KPSS statistic 7, has a nondegenerate limit under both
I1(0) and I(1) data generation processes. So the KPSS 77, test does not give a consistent test
against the unit root under the fixed-b assumption. In the present context, the Double-
KPSS test would be conservative (undersized). If the DGP is I(1), the ﬁf, test would reject
with probability 0.05, but the KPSS 7, test would reject with probability less than one,
under fixed-b asymptotics. So the probability of both tests rejecting would be less than
0.05. However, these issues should not be regarded as consequential. The assumption of
tixed-bandwidth ratio does not recommend any rules for selecting the number of lags.
But, no matter how one chooses the number of lags, it will be positive, and the fixed-b
critical values will usually give a test of more accurate size than the traditional (b = 0)
critical values. That is, fixed-b asymptotics is simply viewed as a way of generating a
more accurate approximation to the finite sample distribution of the statistic.

The next Proposition provides the fixed-b limits of 1’7\’1;[ under I(0) and I(1) data genera-
tion processes. To avoid confusion with the previous definition of b and [, let the number
of lags and the ratio be denoted by I’ and b’ = % (We have T — 1 instead of T because

one observation is used up in differencing.)

Proposition 12. Given the data generation process in (2.16), under the assumption that b’ =
% € [0,1] is held constant as T increases, the KPSS statistic, 1751 has the following fixed-b
asymptotic limits:

When €; is a short-memory process,

2
ot+e
N 1

, (2.31)
& 20+ €3+ €2,
where g = E (€7) and e« denotes the weak limit of 7 as T — 0.
When €; is a unit root process,
1 2
W(r)=dr
e = Jo W(r) ) (2.32)



where W (r) is the standard Wiener process and

1-v 1

W)W (r + b')dr —/

- W(r)W(l)dr} + W (1)2.

olw) =& | [ worar- |
Proof: See the Appendix.

The fixed-b critical values for 77, and ﬁfl are simulated using i.i.d. N(0,1) pseudo ran-
dom numbers with T = 1,000 and 50,000 replications. Table 3.2 provides these fixed-b
critical values. The fixed-b critical values for 7j, are slightly different from those in Amsler
et al. (2009). This is partly due to randomness of the simulations, but it is also due to a
slight difference in the definitions of b. They had b = % whereas now we have b = HTl
Since the critical values were simulated using T = 1,000, b = 0.02 in Amsler et al. (2009)
would correspond to b = 0.021 in this chapter, for example. For bigger T (i.e. asymptoti-
cally) this difference obviously disappears.

The simulation results in Amsler et al. (2009) showed that the size distortion associ-
ated with strong short-run persistence of the I(0) DGP can be fixed by using a relatively
large number of lags and the corresponding fixed-b critical values. In their results, with
the original KPSS critical value being used, as the short run persistence gets higher, the
overrejection of the KPSS test gets worse. One can reduce the rejection frequency by using
a higher number of lags but now the test becomes subject to an underrejection problem
which is translated into low power. However, by taking a relatively large number of lags

and using the fixed-b critical values, this problem can be partially fixed. Exactly the same

considerations apply to the ﬁz test and the Double-KPSS test.

3.5 Monte Carlo Simulations

This Section reports the results of simulations designed to investigate the finite sample
size and power properties of the Double-KPSS test. Some comparisons of the ﬁﬁ test and

the ADF test will be made.
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3.5.1 Design of the Experiment

The data generating processes to be considered in the simulations are as follows.

1. 1(0) DGP:

Yi = Hte€ (2.33)

€t = pPE€t-1+ Uy,

with u =0,¢9 =0, p € {0,0.25,0.5,0.75, 0.95}, u; ~ ii.d. Normal(0,1).

2. I(1) DGP:
Yo = HtE€ (2.34)
€t = €111
Ny = ur— Qup_q,

with 1 =0, €0 = up = 0, ¢ € {0,0.25,0.5,0.75, 0.95}, u; ~iid. Normal(0,1).

3. I(d) DGP:

Vi = UtE (2.35)

(1-L)e = u ~iid. Normal(0,1),

with y = 0,and d € {0.1,0.2, 0.3, 0.4, 0.45, 0.499, 0.5, 0.6, 0.7, 0.75, 0.8, 0.9}

To generate I(d) processes with 0 < d < % Toeplitz matrix was used (formed from the
autocovariances, as in Diebold and Rudebusch (1991)). For the case of % <d < 1, first
generated I(d) processes with —3 < d < 0 (again using the Toeplitz matrix) and cumu-
lated them to obtain the I(d) processes with % < d < 1. This is the same procedure as

in Lee and Schmidt (1996). The experiments considered T = 50, 100,200, 500, 1,000, and
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2,000 and the number of replications was 5,000. The numbers of lags used for computing

the statistics were lo(= 0), l4, l12, I>5 and 5y, where

T 1/4

For the ADF test, with p lags, p4, p12, and pas lags were considered, where py is defined
in the same way as in equation (2.36).
As a matter of notation, 77, x 17‘;, will denote the Double-KPSS test based on 7, and 175

Similarly 77, x ADF will denote the double test but using the ADF test instead of 77\5

3.5.2 Results with Standard Critical Values

This Section discusses the results for the 77, 175 and 77, X ﬁﬁ tests, using the "standard"
critical values that are valid asymptotically when | — oo and % — 0as T — oo. These
results are given in Tables 3.3, 3.4 and 3.5. Each table contains the results for two sample
sizes (3.3: T = 50 and 100; 3.4: T = 200 and 500; 3.5: T = 1,000 and 2, 000). The formatting
for each sample size is the same.

The results for the KPSS 77, test are similar to those from previous simulations and
will be discussed only briefly. Size under the I(0) null with p = 0 is essentially correct
for Ip but the test is undersized with more lags. The test is oversized when p > 0 and
severely so for the largest values of p (like p = 0.95). Size improves very slowly as T
increases. Power against an I(1) alternative rises when T increases, falls as the number of
lags increases, and falls as ¢ increases (since the series approaches stationarity as ¢ — 1).
Power against I(d) alternatives grows with d, falls as the number of lags increases, and
grows (but slowly) as T increases.

The results for the ﬁz unit root test show a pattern that is similar to what was seen
for the KPSS 77, test, but reversed. Size under the I(1) null with ¢ = 0 is essentially

correct, but the test is undersized with more lags. The test is oversized when ¢ > 0
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and severely so for the largest values of ¢ (like ¢ = 0.95). Size generally improves as T
increases. Power against I(0) alternatives rises when T increases, falls as the number of
lags increases, and falls as p increases (since the series approaches I(1) as p — 1). Power
against I(d) alternatives grows as d decreases, falls as the number of lags increases, and
grows as T increases.

All of these statements would also be true for the ADF test. Some comparisons of the
performance of the ﬁﬁ test and the ADF test will be given in Section 3.5.4.

Now turn to the issue of main interest, the performance of the Double-KPSS (77, x ﬁﬁ)
test. This test rejects the null of integer integration if both the 7, short-memory test and
the 17’1;[ unit root test reject their respective null hypotheses. As a result, the upward size
distortions caused by short run dynamics must be smaller for the Double-KPSS test than
for either of the individual tests. In many cases the rejection probability for the Double-
KPSS test is at least approximately equal to the product of the rejection probabilities for
the two component tests, but this is not always the case (The two tests are not indepen-
dent).

Consider first the size of the Double-KPSS test under the I(0) null. In the most em-
pirically relevant cases, like I4 lags with T = 100, or I;, lags with T = 200 or 500, its size
is reasonably accurate, except perhaps for the biggest values of p. For the largest sample
sizes (T = 1,000 and 2, 000) the test has fairly accurate size, except for the case of p = 0.95,
if the test uses l1p X 1 or I5 x Ir5 lags. However, the size of the test does not improve
uniformly as T increases, because loosely speaking the power of the unit root test goes to
one faster than the size of the short-memory test goes to 0.05. But as a general statement
the size of the test is surprisingly good over a broad range of values of p.

Now consider the size of the test under the I(1) null. Once again the size is reasonably
accurate, except perhaps for the biggest values of ¢, if reasonable numbers of lags, like
Iy lags with T = 100, or /1; lags with T = 200 or 500 are used. The test is if anything

undersized (due to the use of the standard critical values despite the positive number of
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lags) for the smaller values of ¢. For the largest values of T (1,000 and 2, 000), size is quite
good with Iy X I15 or Ip5 X Ip5 lags, except when ¢ = 0.75 or 0.95.

Finally, consider the power of the test against I(d) alternatives. Now there is a po-
tential problem, because if one uses the numbers of lags mentioned above as sufficient
to control size, power is low. For example, if I; lags, with T = 200 is used, the highest
power is only 0.099 (against d = 0.4) and with T = 500 the highest power is 0.386 (against
d = 0.5). Of course, there is a trade-off between size and power. If one uses only /4 lags,
maximal power is 0.488 for T = 200 and 0.786 for T = 500. But with only /4 lags, there
are large size distortions under the null for the larger values of p (for the I(0) null) or
¢ (for the I(1) null). It takes a very large sample size (like T = 1,000 or 2,000) to have
reasonable power with [, lags.

So, what can one conclude from these simulations? In a view the main practical ques-
tion is how large the sample size needs to be so that one can reasonably conclude that a
rejection from the test is due to its power against a fractional alternative, as opposed to
size distortions of one or both of the two component tests. This obviously will depend on
the values of d against which we require power, as well as the values of the nuisance pa-
rameters that we want the null hypothesis to encompass. As an extreme example, there
is no hope of success if we want to include in the I(0) null AR processes with local to
unity roots, or if we want to include in the I(1) null ARIMA(0,1,1) processes with local
to unity M A roots.

The simulations results seem to indicate that the test can in fact reasonably distinguish
fractional integration from non-extreme I(0) or I(1) processes, but that it will take a large
sample size to do so. For example, for T = 500 and for the tests using /1, lags, power
for d in the range [0.3,0.7] is at least twice as large as the maximal size distortion for I(0)
processes with AR roots less than or equal to 0.75 or for I(1) processes with MA roots
less than or equal to 0.75. For smaller sample sizes, this statement would not be true, and

to make a similar statement that is true would require a smaller range of 4 and/or a more
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restrictive range of AR or M A roots. Conversely, to make a similar statement that is true
for a larger range of d or of AR and M A parameters will require a larger sample size. For
example, with T = 2000, power for d in the range [0.2,0.8] is at least twice as large as
the maximal size distortion for I(0) processes with p less than or equal to 0.75 or for I(1)
processes with ¢ less than or equal to 0.75. The obvious problem with these statements is
that, for economic time series data, T = 2000, or for that matter T = 500, is a very large

sample size.

3.5.3 Results with Fixed-b Critical Values

The fixed-b critical values, for the relevant values of b, are smaller than the traditional
critical values for the KPSS 77, test (an upper tail test) and larger for the 1’7\‘5 test (a lower tail
test). The fixed-b critical values will therefore lead to more rejections than the traditional
critical values, if the same number of lags is used in both cases. If the number of lags
increases with sample size but more slowly than sample size, the difference in the critical
values (and the rejection probabilities) will go to zero since b will go to zero.

The fixed-b critical values are very successful in removing the underrejection problem
that occurs for the KPSS 77, and ﬁﬁ tests when there are no short-run dynamics and the
sample size is not large. For example, for KPSS 7}, with T = 50 and I(0) data with p = 0,
and with /1, lags, compare size of 0.014 with traditional critical values to 0.053 with fixed-
b critical values. Or, for the 1’7\5 test with T = 50 and I(1) data with ¢ = 0, and with I,
lags, compare 0.000 with traditional critical values to 0.039 with fixed-b critical values.
For the Double-KPSS test there is also improvement in size in these cases from using the
fixed-b critical values, but the improvement is not so striking.

Upward size distortions in the presence of short run dynamics (I(0) data with large
positive p or I(1) data with large positive ¢) are worse when the fixed-b critical values are
used. Also power against I(d) alternatives is higher when the fixed-b critical values are

used. However, these differences are not large when the sample size is big enough for us
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to have reasonable power (e.g., T greater than or equal to 500). Of course, that is because
the rule for the choice of lags in the simulations implies that b goes to zero as T grows,
but that is a reasonable feature for such a rule to have. Using the fixed-b critical values is
recommended but recognize that if the number of lags is chosen reasonably this is likely

to not make much difference.

3.54 Comparison of the ﬁﬁ Test and the ADF Test

Although it is not the focus of this research, a new unit root test has been proposed in this
chapter and it is relevant to ask how it compares to other existing unit root tests. There
are of course a great many other existing unit root tests. The ADF 7, test will be taken
as a standard of comparison . The number of lagged differences included in the ADF
regression is denoted as p, and in making comparisons of size and power a value of p
will be matched to the same value of I, the number of lags used for long run variance
estimation in the ﬁz test.

Table 3.9 gives size and power for the ADF test for T = 50, 100, 200 and 500, and these
results can be compared to the results previously given in Table 3.3 and 3.4.

In terms of the size of the test, the results are mixed. However, for the larger sample
sizes, the ADF test with pj lags has smaller size distortions than the ﬁz test with I,
lags for the larger values of ¢. The ADF test generally has higher power against I(0)
alternatives, while the 1’7\‘5 test has higher power against I(d) alternatives except when d is
very small (e.g. 0.1).

If one compares the Double-KPSS (77, x 1/7\’11;) test to the 77, X ADF test, similar state-
ments apply, but the differences are much smaller. In fact, the similarities between these
two double tests far outweigh the differences. Unsurprisingly, perhaps, the precise choice

of unit root test to use is not the main issue here.
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3.6 Conclusions

This chapter proposed a Double KPSS test to test the null of integer integration (I(0) or
I(1)) against the alternative of fractional integration (I(d) with d between zero and one).
The null of integer integration is rejected if the KPSS test rejects the null of short memory
and a unit root test rejects the null of a unit root. A new unit root test was suggested
for use in this testing procedure, but any other unit root test like the ADF test is also
possible. This would be a good preliminary test to use before estimating a fractional
model. An alternative, of course, is to just estimate the fractional model and see whether
the estimated d is significantly different from zero and from one. However, there appears
to be no clear consensus in the existing literature on how to allow for short-run dynamics
in estimating d and conducting inference about it.

The consistency of the test were proved. The main practical question is how large the
sample size needs to be so that one can reasonably conclude that a rejection from the test
is due to its power against a fractional alternative, as opposed to size distortions of the
two component tests. The simulations results seem to indicate that the test can in fact
distinguish fractional integration from non-extreme I(0) or I(1) processes, but that it will
take a very large sample size to do reliably. This is not a surprising result. It takes a lot
of data to distinguish I(0) from I(1) processes, if the range of short-run dynamics is not
severely restricted. Now we are trying to do more, for example, to distinguish a unit root
process from an I(d) process with d = 0.8. An important contribution of this chapter is to
try to quantify how much data that takes. The required sample sizes would be very large

indeed for macroeconomic applications, but perhaps not for applications in finance.
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Table 3.1: Summary of the existing asymptotic results for 77,

Hp
€ ~ 1(0) (1)
St=Yj1¢: JzSyr = oB(r), 37281 = 0 o W(s)ds,
where B(r) = W(r) — rW(1) where W(s) = W(s) — [ W(u)du
2
Y52 L YL 8= o [ B(r)%dr L YT 8= 02 [ (Jy W(s)ds)" dr
s2(1) : $2(1) b o2 +s2(1) = o2 fol W(s)?ds
Hy
€ ~ I(d),0<d<1/2 I(d),1/2<d <1
St = Z;':l e . ﬁs[m = (ddBd(T), ms[m = Wy, for wd* (s)ds,
where B;(r) = Wy(r) —rWy(1) whered, =d — 1 and
Wy, (r) = W, (r) = fy Wa, (s)ds
1 1 2
Y57 % Zthl St = ‘Uﬁ fo By(r)?dr ﬁ Zthl St = “%zi* fo (for Wy, (S)ds) dr
_ P
(1) : 1-252(1) By 2 rs2 (1) = Wl [ Wy, (s)%ds
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Table 3.2: Fixed-b Critical Values for 7], and i/y\ﬁ, Bartlett kernel, ] = bT — 1,1’ =b'(T—1) — 1

M i A i
upper tail lower tail upper tail lower tail

b 5% 1% 1% 5% b 5% 1% 1% 5%

0 0463 0.739 0.034 0.056 |052 0405 0445 0.100 0.144
0.02 0453 0.705 0.038 0.060 |054 0410 0453  0.101 0.145
0.04 0446 0.673  0.042 0.063 |0.56 0414 0.461 0.101 0.147
0.06  0.439 0.639 0.045 0.067 |058 0419 0468  0.102 0.148
0.08  0.434 0.609 0.049 0.071 0.60 0424 0473  0.102 0.150
010 0428 0582  0.053 0075 |0.62 0429 0479 0.103 0.151
012 0421 0.561 0.057 0.078 |0.64 0432 0485  0.104 0.151
014 0416 0.541 0.062 0.082 | 066 0436 0490  0.104 0.152
016 0409 0522 0.066 008 |0.68 0439 0493  0.104 0.153
018 0403 0504  0.069 0.09 |0.70 0442 0496  0.105 0.154
020  0.398 0.489 0.073 0.095 |0.72 0445 0.499 0.106 0.155
022 0394 0476  0.077 0.099 |0.74 0448 0.499 0.106 0.156
024 0391 0464  0.080 0.103 |0.76  0.449 0.501 0.106 0.157
026 0388 0455 0.083 0.107 |0.78 0452 0500  0.107 0.158
028 0385 0447  0.086 0.111 080 0454 0498  0.107 0.159
030  0.383 0.441 0.088 0.115 |0.82 0456 0498  0.107 0.160
032 0381 0435 0.090 0119 |0.84 0458 049  0.108 0.160
034 0380 0430 0.092 0122 [0.86 0462 0494  0.108 0.161
036 0381 0426  0.093 0126 |0.88 0465 0490  0.108 0.162
038 0380 0424 0.095 0129 |090 0468 0488  0.109 0.163
040 0381 0422 0.095 0.132 [092 0473 0487  0.109 0.163
042 0383 0421 0.096 0.135 | 094 0478 0487  0.109 0.164
044 0386 0422  0.098 0137 |096 0484 0488  0.110 0.165
046 0390 0425 0.098 0139 |098 0491 0492  0.110 0.166
048 0394 0430  0.099 0.141 1 NA NA 0110 0.166
050 0400 0437 0100 0.142
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Table 3.3: Size and Power Using Standard 5% Critical Values with Traditional Lag Choices, T =

50 and 100
T=50 i I A X Ty
l(lg l(] l4 112 lo l4 112 l(] X lo l4 X l4 112 X 112
et ~ 1(0) (Size) (Power) (Size)
=0 0.053 0.045 0.014 0.959 0.478 0.001 0.050 0.015 0.000
0.25 0.149 0.062 0.016 0.923 0.484 0.001 0.134  0.021 0.000
0.50 0.336 0.102 0.021 0.867 0.478 0.001 0.280  0.031 0.000
0.75 0.653 0.214 0.035 0.641 0.324 0.001 0.379 0.030 0.000
0.95 0.924 0.530 0.118 0.108 0.048 0.001 0.082  0.003 0.000
e~ I(1) (Power) (Size) (Size)
¢=0 0961 0.711 0.353 0.042 0.021 0.000 0.030  0.002 0.000
0.25 0.944 0.703 0.348 0.141 0.028 0.000 0.112  0.003 0.000
0.50 0.895 0.679 0.331 0.400 0.064 0.000 0.321 0.011 0.000
0.75 0.709 0.571 0.262 0.786 0.208 0.000 0.518  0.062 0.000
0.95 0.126 0.100 0.035 0.955 0.466 0.001 0.117  0.036 0.000
€t ~ I(d) (Power) (Power) (Power)
d=0.1 0.133 0.082 0.021 0.946 0.464 0.001 0.124  0.029 0.000
0.2 0.252 0.138 0.036 0.925 0.430 0.001 0.227  0.043 0.000
0.3 0.399 0.198 0.053 0.890 0.379 0.001 0.340  0.045 0.000
0.4 0.546 0.276 0.076 0.820 0.322 0.000 0.427  0.050 0.000
0.45 0.616 0.322 0.084 0.774 0.282 0.000 0.450 0.047 0.000
0.499 0.674 0.372 0.100 0.723 0.251 0.001 0.458  0.042 0.000
0.5 0.679 0.369 0.100 0.720 0.239 0.000 0.457  0.043 0.000
0.6 0.775 0.456 0.131 0.572  0.167 0.000 0.402 0.027 0.000
0.7 0.851 0.533 0.174 0.389 0.110 0.000 0.290 0.017 0.000
0.75 0.879 0.571 0.200 0.294 0.085 0.000 0.222  0.012 0.000
0.8 0.907 0.603 0.229 0.215 0.066 0.000 0.164 0.009 0.000
0.9 0.939 0.662 0.283 0.102 0.034 0.000 0.077  0.003 0.000
T=100 T i e X 17
lﬂg lo l4 llz lo 14 l]2 l(] X lo l4 X 14 112 X 112
et ~ 1(0) (Size) (Power) (Size)
=0 0.043 0.040 0.027 0.999 0.751 0.040 0.043  0.027 0.001
0.25 0.143 0.052 0.033 0993 0.764 0.046 0.142 0.036 0.001
0.50 0.361 0.088 0.041 0.983 0.797 0.064 0.354  0.063 0.000
0.75 0.718 0.194 0.068 0.944 0.784 0.100 0.673  0.137 0.001
0.95 0978 0.591 0.250 0.262 0.172 0.029 0.247  0.055 0.000
e~ 1(1) (Power) (Size) (Size)
¢=0 0.993 0.821 0.578 0.046 0.029 0.006 0.044 0.009 0.000
0.25 0.989 0.818 0.577 0.157 0.041 0.006 0.149  0.015 0.000
0.50 0.978 0.809 0.571 0.451 0.091 0.006 0.431 0.040 0.000
0.75 0.905 0.747 0.541 0.863 0.332 0.008 0.769 0.188 0.001
0.95 0.300 0.265 0.186 0.998 0.718 0.032 0.299  0.178 0.002
€~ I(d) (Power) (Power) (Power)
d=0.1 0.156 0.091 0.052 0.997 0.738 0.041 0.155  0.061 0.001
0.2 0.346 0.173 0.086 0.992 0.713 0.037 0.343  0.113 0.001
0.3 0.539 0.272 0.131 0983 0.670 0.034 0.528 0.164 0.001
0.4 0.715 0.373 0.181 0.958 0.609 0.031 0.681 0.201 0.000
0.45 0.783 0.424 0.214 0.936 0.564 0.026 0.726  0.207 0.001
0.499 0.830 0.473 0.238 0.907 0.509 0.029 0.744 0.202 0.000
0.5 0.830 0.474 0.241 0.904 0.509 0.028 0.742  0.201 0.000
0.6 0.908 0.561 0.310 0.775 0.370 0.023 0.690  0.151 0.000
0.7 0.954 0.640 0.380 0.572 0.235 0.018 0.533 0.091 0.000
0.75 0.967 0.678 0.410 0454 0.175 0.015 0.427  0.069 0.000
0.8 0.975 0.710 0.440 0.330 0.128 0.013 0.311 0.047 0.000
0.9 0.985 0.774 0.513 0.139 0.062 0.010 0.130  0.022 0.000

148



Table 3.4: Size and Power Using Standard 5% Critical Values with Traditional Lag Choices, T =

200 and 500

T=200 u Ik M X 178

lag ly o bs Iy ho bs Iy x1ly hoxlyp bsxls
e ~ I(0) (Size) (Power) (Size)

=0 0.044 0.040 0.029 0.945 0.555 0.008 0.041 0.022 0.000
0.25 0.061 0.047 0.031 0.951 0.569 0.009 0.057  0.026 0.000
0.50 0.098 0.055 0.033 0.965 0.615 0.012 0.093 0.033 0.001
0.75 0.223 0.079 0.042 0.975 0.706 0.021 0.215 0.050 0.000
0.95 0.711 0.311 0.127 0.574 0.333 0.032 0.358 0.046 0.000

e~ I(1) (Power) (Size) (Size)

¢=0 0.948 0.720 0.524 0.037 0.022 0.004 0.026 0.004 0.000
0.25 0.948 0.721 0.525 0.058 0.023 0.003 0.041 0.004 0.000
0.50 0.945 0.720 0.523 0.127 0.031 0.004 0.100 0.006 0.000
0.75 0919 0.707 0.514 0.445 0.094 0.003 0.385 0.028 0.000
0.95 0.557 0.466 0.340 0.917 0.499 0.006 0.501 0.211 0.001

et~ I(d) (Power) (Power) (Power)

d=0.1 0.132 0.084 0.051 0.940 0.550 0.009 0.121 0.046 0.001
0.2 0.264 0.143 0.082 0.926 0.534 0.008 0.241 0.074 0.001
0.3 0.403 0.219 0.117 0.904 0.500 0.008 0.358 0.096 0.001
04 0.540 0.292 0.161 0.863 0.439 0.008 0.457  0.099 0.000
0.45 0.597 0.334 0.183 0.831 0.391 0.009 0.483 0.094 0.000
0.499 0.646 0.379 0.214 0.785 0.348 0.008 0.486 0.084 0.000
0.5 0.647 0.381 0.215 0.785 0.350 0.007 0.488 0.091 0.000
0.6 0.742 0457 0.271 0.646 0.237 0.007 0.447 0.057 0.000
0.7 0.819 0.526 0.333 0.442 0.145 0.006 0.321 0.029 0.000
0.75 0.852 0.558 0.364 0.341 0.111 0.006 0.253 0.022 0.000
0.8 0.879 0.594 0.391 0.246 0.079 0.006 0.184 0.016 0.000
0.9 0.923 0.658 0.457 0.105 0.042 0.005 0.074 0.006 0.000

T=500 M I My X 1y
lag Iy l» lrs Iy L b5 Iy x1ly hLpxlp bs Xl

e ~ I(0) (Size) (Power) (Size)

=0 0.054 0.049 0.043 0.997 0.873 0.556 0.053 0.042 0.023
0.25 0.067 0.054 0.044 0.997 0.883 0.570 0.067 0.046 0.025
0.50 0.094 0.060 0.047 0.999 0918 0.616 0.094 0.054 0.028
0.75 0.192 0.084 0.056 1.000 0.971 0.728 0.192 0.080 0.039
0.95 0.728 0.322 0.143 0.995 0.969 0.784 0.724 0.305 0.081

e~ 1(1) (Power) (Size) (Size)

¢=0 0.992 0901 0.730 0.045 0.038 0.023 0.041 0.020 0.003
0.25 0.992 0901 0.729 0.059 0.042 0.025 0.054 0.022 0.003
0.50 0.992 0901 0.728 0.123 0.054 0.027 0.117  0.030 0.004
0.75 0.990 0.897 0.728 0.440 0.160 0.046 0.431 0.114 0.012
0.95 0.888 0.791 0.661 0.981 0.778 0.400 0.870 0.601 0.231

e ~ I(d) (Power) (Power) (Power)

d =0.1 0.173 0.119 0.084 0.996 0.868 0.555 0.173 0.101 0.047
0.2 0.365 0.225 0.145 0.995 0.860 0.546 0.362 0.192 0.075
0.3 0.555 0.341 0.220 0.991 0.839 0.515 0.549 0.281 0.101
04 0.721 0.461 0.297 0.980 0.799 0.460 0.705 0.359 0.113
0.45 0.785 0.515 0.339 0.967 0.760 0.418 0.755 0.380 0.109

0.499 0.832 0.566 0.379 0.950 0.715 0.363 0.786 0.384 0.095
0.5 0.830 0.568 0.381 0.947 0.715 0.364 0.782 0.386 0.099
0.6 0.906 0.662 0.461 0.844 0.565 0.242 0.756 0.339 0.063
0.7 0.950 0.746 0.530 0.642 0.361 0.139 0.600 0.221 0.029
0.75 0964 0.778 0.571 0.507 0.272 0.102 0477 0.163 0.020
0.8 0.974 0.808 0.609 0.366 0.186 0.076 0.345 0.108 0.014
0.9 0.987 0.861 0.672 0.141 0.083 0.042 0.134 0.045 0.008
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Table 3.5: Size and Power Using Standard 5% Critical Values with Traditional Lag Choices, T =

1,000 and 2,000

T=1,000 T Ik M X 178

lag ly o bs Iy ho bs Iy x1ly hoxlyp bsxls
e ~ I(0) (Size) (Power) (Size)

=0 0.047 0.045 0.042 1.000 0.966 0.804 0.047 0.043 0.034
0.25 0.057 0.049 0.044 1.000 0.971 0.817 0.057 0.047 0.037
0.50 0.076 0.056 0.046 1.000 0.985 0.866 0.076 0.055 0.040
0.75 0.147 0.073 0.055 1.000 0.999 0.946 0.147 0.073 0.052
0.95 0.641 0.272 0.133 1.000 1.000 0.996 0.641 0.272 0.132

e~ I(1) (Power) (Size) (Size)

¢=0 0.998 0.959 0.849 0.049 0.042 0.034 0.048 0.030 0.013
0.25 0.998 0.959 0.848 0.061 0.046 0.037 0.060 0.034 0.014
0.50 0.998 0.959 0.848 0.117 0.064 0.042 0.116 0.050 0.016
0.75 0.997 0.958 0.848 0.390 0.174 0.085 0.387 0.148 0.041
0.95 0.975 0.931 0.819 0.988 0.851 0.599 0.963 0.786 0.467

et~ I(d) (Power) (Power) (Power)

d=0.1 0.197 0.139 0.106 1.000 0.964 0.802 0.197 0.133 0.085
0.2 0.414 0.273 0.192 1.000 0.962 0.795 0.414 0.262 0.150
0.3 0.630 0.422 0.299 0.999 0.950 0.780 0.630 0.398 0.227
04 0.799 0.576 0.406 0.997 0.923 0.748 0.797 0.524 0.293
0.45 0.860 0.637 0.459 0.994 0.903 0.706 0.853 0.567 0.311

0.499 0.899 0.695 0.507 0.986 0.866 0.652 0.886 0.591 0.305
0.5 0.899 0.696 0.509 0984 0.870 0.645 0.884 0.593 0.300
0.6 0.953 0.792 0.600 0.925 0.729 0.504 0.879 0.555 0.257
0.7 0.978 0.859 0.681 0.740 0.513 0.322 0.718 0.410 0.159
0.75 0.987 0.885 0.713 0.603 0.395 0.239 0.591 0.319 0.112
0.8 0.991 0906 0.747 0.446 0.291 0.170 0.438 0.234 0.076
0.9 0.995 0.939 0.800 0.186 0.126 0.081 0.182 0.099 0.032

T=2,000 T i e X 178
lag ly ho bs Iy ho bs ly x1Iy hipxhy Isxs

e ~ I(0) (Size) (Power) (Size)

=0 0.048 0.046 0.044 1.000 0.995 0.940 0.048 0.046 0.041
0.25 0.058 0.050 0.045 1.000 0.996 0.949 0.058 0.050 0.043
0.50 0.074 0.054 0.047 1.000 0.999 0.971 0.074 0.054 0.046
0.75 0.132 0.067 0.054 1.000 1.000 0.994 0.132 0.067 0.054
0.95 0.599 0.242 0.122 1.000 1.000 1.000 0.599 0.242 0.122

e~ 1(1) (Power) (Size) (Size)

¢=0 1.000 0.989 0.940 0.051 0.045 0.040 0.051 0.042 0.027
0.25 1.000 0.989 0.940 0.062 0.049 0.041 0.062 0.046 0.028
0.50 1.000 0.989 0.941 0.111 0.066 0.048 0.110 0.062 0.033
0.75 1.000 0.989 0.941 0.375 0.165 0.092 0.375 0.159 0.069
0.95 0.998 0.982 0.927 0.995 0.878 0.677 0.993 0.861 0.614

e ~ I(d) (Power) (Power) (Power)

d =0.1 0.223 0.163 0.125 1.000 0.995 0.938 0.223 0.163 0.117
0.2 0496 0.345 0.254 1.000 0.994 0.937 0.496 0.344 0.237
0.3 0.745 0.533 0.397 1.000 0.993 0.925 0.745 0.529 0.367
04 0.890 0.693 0.523 1.000 0.985 0.895 0.890 0.683 0.467
0.45 0.932 0.764 0.588 1.000 0.976 0.869 0.932 0.745 0.505

0.499 0.958 0.815 0.651 0.999 0.957 0.834 0.957 0.777 0.528
0.5 0.959 0.817 0.651 0.998 0.955 0.829 0.958 0.779 0.525
0.6 0.987 0.892 0.753 0.977 0.858 0.692 0.965 0.755 0.493
0.7 0.995 0.938 0.820 0.849 0.651 0.489 0.844 0.596 0.361
0.75 0.996 0.952 0.848 0.707 0.527 0.369 0.704 0.487 0.271
0.8 0.998 0.966 0.873 0.552 0.385 0.258 0.550 0.359 0.185
0.9 1.000 0.981 0.910 0.217 0.157 0.115 0.216 0.146 0.080
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Table 3.6: Size and Power Using 5% Fixed-b Critical Values with Traditional Lag Choices, T = 50

and 100
T=50 T i Ty % ﬁg
lag Iy Iy ha Is Iy Iy o Is loxlp Iyxly hypxlyp bsxlp
e ~ 1(0) (Size) (Power) (Size)
=0 0.0563 0.052 0.053 0.057 0.959 0.597 0.085 0.031 0.050 0.025 0.005 0.003
0.25 0.149 0.073 0.061 0.061 0.923 0.608 0.096 0.034 0.134 0.035 0.005 0.002
0.5 0.336 0.114 0.071 0.065 0.867 0.613 0.121 0.042 0.280 0.056 0.007 0.002
0.75 0.653 0.236 0.102 0.066 0.641 0.487 0.168 0.058 0.379 0.073 0.010 0.002
0.95 0.924 0.551 0.247 0.079 0.108 0.103 0.083 0.057 0.082 0.016 0.006 0.000
e~ I(1) (Power) (Size) (Size)
¢=0 0.961 0.727 0.495 0.168 0.042 0.041 0.039 0.039 0.030 0.007 0.003 0.001
0.25 0.944 0.717 0.492 0.170 0.141 0.059 0.039 0.037 0.112 0.012 0.003 0.001
0.5 0.895 0.696 0.481 0.168 0.400 0.113 0.037 0.030 0.321 0.031 0.003 0.001
0.75 0.709 0.589 0414 0.154 0.786 0.321 0.044 0.026 0.518 0.129 0.003 0.005
0.95 0.126 0.114 0.097 0.079 0.955 0.586 0.077 0.033 0.117 0.058 0.005 0.004
et~ I(d) (Power) (Power) (Power)
d=0.1 0.133 0.095 0.072 0.065 0.946 0.578 0.085 0.034 0.124 0.047 0.005 0.003
0.2 0.252 0.156 0.097 0.073 0.925 0.556 0.082 0.035 0.227 0.075 0.005 0.003
0.3 0.399 0.222 0.128 0.083 0.890 0.508 0.081 0.037 0.340 0.089 0.005 0.002
0.4 0.546 0.301 0.162 0.089 0.820 0.443 0.083 0.033 0.427 0.093 0.005 0.002
0.45 0.616 0.348 0.185 0.094 0.774 0.409 0.081 0.031 0.450 0.093 0.005 0.002
0.499 0.674 0.397 0.208 0.101 0.723 0.373 0.078 0.032 0.458 0.092 0.006 0.002
0.5 0.679 0.396 0.210 0.101 0.720 0.359 0.075 0.030 0.457 0.091 0.006 0.002
0.6 0.775 0.484 0.257 0.113 0.572 0.265 0.072 0.034 0.402 0.069 0.005 0.002
0.7 0.851 0.556 0.316 0.126 0.389 0.181 0.064 0.036 0.290 0.044 0.005 0.002
0.75 0.879 0.593 0.343 0.132 0.294 0.145 0.061 0.036 0.222 0.033 0.005 0.002
0.8 0.907 0.623 0.374 0.137 0.215 0.119 0.056 0.036 0.164 0.027 0.004 0.001
0.9 0.939 0.681 0.436 0.155 0.102 0.073 0.045 0.039 0.077 0.014 0.003 0.001
T=100 ﬁy 1’1\}05 1/1\]4 X ;7\;3
lag Iy ho I>s Iso Iy o I»s Is Iy x1ly hpxTly bsxls IspXIps
e ~ 1(0) (Size) (Power) (Size)
o= 0.045 0.045 0.048 0.051 0.801 0.391 0.054 0.028 0.032 0.013 0.002 0.002
0.25 0.060 0.052 0.052 0.053 0.813 0.410 0.057 0.028 0.044 0.015 0.003 0.002
0.5 0.095 0.061 0.057 0.058 0.841 0.447 0.072 0.032 0.073 0.016 0.004 0.002
0.75 0.208 0.093 0.068 0.065 0.839 0.508 0.109 0.042 0.158 0.023 0.010 0.001
0.95 0.608 0.305 0.137 0.054 0.244 0.209 0.132 0.072 0.092 0.015 0.012 0.002
e~ I(1) (Power) (Size) (Size)
¢=0 0.832 0.621 0.445 0.086 0.042 0.043 0.044 0.044 0.017 0.004 0.005 0.002
0.25 0.830 0.617 0.444 0.085 0.059 0.046 0.042 0.040 0.026 0.005 0.005 0.002
0.5 0.820 0.615 0.442 0.084 0.123 0.063 0.040 0.038 0.060 0.008 0.004 0.002
0.75 0.758 0.588 0.422 0.081 0.389 0.123 0.038 0.036 0.238 0.027 0.003 0.004
0.95 0.277 0.236 0.182 0.079 0.777 0.372 0.051 0.030 0.203 0.072 0.003 0.007
€ ~ I(d) (Power) (Power) (Power)
d =0.1 0.100 0.077 0.065 0.057 0.788 0.393 0.054 0.028 0.073 0.023 0.020 0.003
0.2 0.186 0.121 0.085 0.062 0.767 0.379 0.055 0.029 0.134 0.030 0.025 0.003
0.3 0.288 0.171 0.110 0.062 0.726 0.362 0.059 0.030 0.197 0.035 0.026 0.003
0.4 0.390 0.231 0.146 0.074 0.667 0.314 0.060 0.032 0.235 0.032 0.023 0.001
0.45 0.439 0.259 0.163 0.077 0.623 0.285 0.060 0.033 0.243 0.035 0.023 0.002
0.499 0.489 0.292 0.182 0.078 0.576 0.246 0.062 0.036 0.249 0.030 0.017 0.002
0.5 0.489 0.292 0.184 0.076 0.577 0.254 0.057 0.034 0.246 0.034 0.018 0.002
0.6 0.575 0.360 0.220 0.080 0.434 0.193 0.060 0.038 0.196 0.022 0.014 0.002
0.7 0.655 0.428 0.266 0.078 0.294 0.143 0.060 0.038 0.131 0.015 0.010 0.003
0.75 0.691 0.459 0.290 0.080 0.230 0.120 0.057 0.039 0.102 0.010 0.008 0.002
0.8 0.728 0.494 0.316 0.081 0.172 0.098 0.057 0.039 0.076 0.008 0.006 0.002
0.9 0.786 0.562 0.383 0.083 0.091 0.065 0.050 0.041 0.037 0.006 0.004 0.002
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Table 3.7: Size and Power Using 5% Fixed-b Critical Values with Traditional Lag Choices, T =

200 and 500
T=200 T i Ty % ﬁg
lag Iy o Ios Is Iy i Is Iso Iy x1ly hoxlp bsxls IsopXxbys
e ~ 1(0) (Size) (Power) (Size)
=0 0.047 0.053 0.053 0.053 0956 0.663 0.346 0.046 0.045 0.034 0.017 0.017
0.25 0.066 0.057 0.055 0.056 0963 0.677 0.356 0.049 0.063 0.038 0.016 0.018
0.5 0.102 0.065 0.060 0.057 0.974 0.727 0.395 0.060 0.100 0.044 0.019 0.021
0.75 0.233 0.094 0.074 0.064 0.983 0.826 0.475 0.084 0.227 0.074 0.023 0.025
0.95 0.720 0.340 0.186 0.091 0.641 0.540 0.407 0.150 0.414 0.119 0.020 0.017
e~ I(1) (Power) (Size) (Size)
¢=0 0.951 0.741 0.587 0.377 0.048 0.047 0.048 0.046 0.034 0.011 0.002 0.002
0.25 0.950 0.739 0.587 0.378 0.073 0.051 0.051 0.046 0.054 0.013 0.003 0.002
0.50 0.948 0.738 0.583 0.378 0.150 0.069 0.053 0.046 0.122 0.022 0.004 0.003
0.75 0.923 0.725 0.576 0.376 0478 0.180 0.083 0.041 0.419 0.078 0.010 0.006
0.95 0.564 0.487 0414 0.283 0930 0.616 0.286 0.046 0.516 0.287 0.095 0.060
et~ I(d) (Power) (Power) (Power)
d=0.1 0.137 0.099 0.084 0.072 0.952 0.661 0.344 0.048 0.128 0.065 0.054 0.027
0.2 0.271 0.167 0.123 0.091 0.941 0.652 0.334 0.049 0.252 0.109 0.079 0.035
0.3 0.415 0.241 0.173 0.115 0.920 0.624 0.318 0.051 0.375 0.143 0.102 0.038
0.4 0.550 0.318 0.221 0.141 0.884 0.575 0.285 0.053 0.476 0.161 0.107 0.034
0.45 0.608 0.364 0.246 0.152 0.852 0.531 0.262 0.055 0.504 0.165 0.104 0.028
0.499 0.655 0.406 0.281 0.174 0.811 0.492 0.239 0.057 0.513 0.158 0.102 0.024
0.5 0.659 0.408 0.281 0.175 0.811 0.492 0.237 0.053 0.516 0.163 0.104 0.030
0.6 0.749 0481 0.343 0.204 0.677 0.375 0.188 0.058 0.478 0.126 0.078 0.018
0.7 0.826 0.550 0.398 0.238 0479 0.258 0.142 0.060 0.357 0.083 0.047 0.011
0.75 0.860 0.584 0.428 0.257 0.377 0.201 0.122 0.059 0.289 0.060 0.034 0.009
0.8 0.884 0.617 0.459 0.278 0.280 0.158 0.101 0.055 0.216 0.045 0.025 0.007
0.9 0.925 0.684 0.518 0.323 0.126 0.086 0.071 0.053 0.094 0.021 0.013 0.004
T=500 M i e
lag Iy ho bs Is Iy ho bs Iso Iy x1ly hoxhy bsxls IsopXbys
e ~ 1(0) (Size) (Power) (Size)
o= 0.054 0.055 0.054 0.052 0.998 0.901 0.672 0.365 0.054 0.049 0.035 0.033
0.25 0.070 0.058 0.056 0.054 0.998 0.908 0.687 0.377 0.069 0.052 0.037 0.035
0.5 0.097 0.064 0.060 0.056 1.000 0.941 0.738 0.415 0.097 0.059 0.042 0.039
0.75 0.197 0.090 0.068 0.063 1.000 0.983 0.848 0.507 0.197 0.088 0.055 0.049
0.95 0.733 0.335 0.166 0.099 0.997 0.984 0.927 0.639 0.730 0.325 0.139 0.084
e~ I(1) (Power) (Size) (Size)
¢=0 0.992 0908 0.749 0.593 0.048 0.051 0.047 0.049 0.044 0.028 0.013 0.007
0.25 0.992 0908 0.748 0.593 0.067 0.055 0.049 0.048 0.062 0.031 0.014 0.008
0.5 0.992 0907 0.748 0.592 0.131 0.070 0.057 0.050 0.126 0.043 0.017 0.009
0.75 0.990 0906 0.747 0.593 0.454 0.193 0.101 0.060 0.445 0.146 0.037 0.021
0.95 0.890 0.802 0.685 0.552 0.984 0.815 0.545 0.227 0.874 0.641 0.347 0.269
€ ~ I(d) (Power) (Power) (Power)
d =0.1 0.178 0.129 0.102 0.085 0.997 0.897 0.669 0.363 0.178 0.114 0.090 0.066
0.2 0.371 0.239 0.164 0.123 0.996 0.888 0.662 0.354 0.369 0.210 0.144 0.104
0.3 0.559 0.356 0.244 0.172 0.992 0.871 0.647 0.336 0.554 0.304 0.207 0.147
0.4 0.725 0478 0.324 0.220 0.983 0.835 0.598 0.290 0.712 0.389 0.264 0.178
0.45 0.790 0.530 0.365 0.244 0970 0.803 0.564 0.274 0.762 0.415 0.280 0.182
0.499 0.836 0.583 0.408 0.278 0.954 0.755 0.524 0.242 0.794 0.422 0.288 0.186
0.5 0.834 0.582 0.409 0.278 0.952 0.757 0.516 0.245 0.790 0.421 0.287 0.176
0.6 0.909 0.677 0.489 0.339 0.855 0.619 0.390 0.181 0.770 0.386 0.264 0.138
0.7 0.952 0.758 0.559 0.405 0.658 0.419 0.253 0.134 0.617 0.269 0.178 0.085
0.75 0.965 0.790 0.596 0.436 0.523 0.322 0.196 0.112 0.493 0.207 0.135 0.065
0.8 0.975 0.819 0.636 0.464 0.387 0.233 0.146 0.096 0.367 0.148 0.094 0.046
0.9 0.988 0.871 0.693 0.530 0.153 0.107 0.084 0.069 0.146 0.064 0.036 0.022
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Table 3.8: Size and Power Using 5% Fixed-b Critical Values with Traditional Lag Choices, T =
1,000 and 2,000

T=1,000 o i T X 173
lag Iy o Ios Is Iy i Is Iso Iy x1ly hoxlp bsxls IsopXxbys
e ~ 1(0) (Size) (Power) (Size)

=0 0.049 0.049 0.051 0.049 1.000 0.973 0.851 0.621 0.049 0.048 0.044 0.042
0.25 0.059 0.054 0.052 0.050 1.000 0.978 0.866 0.635 0.059 0.052 0.045 0.043
0.5 0.079 0.059 0.056 0.052 1.000 0.989 0.901 0.685 0.079 0.059 0.051 0.046
0.75 0.151 0.077 0.063 0.055 1.000 0.999 0.966 0.807 0.151 0.077 0.061 0.053
0.95 0.647 0.286 0.145 0.092 1.000 1.000 0.998 0.964 0.647 0.286 0.144 0.091

e~ I(1) (Power) (Size) (Size)
¢=0 0.998 0.963 0.861 0.707 0.052 0.053 0.052 0.054 0.051 0.040 0.023 0.012
0.25 0.998 0962 0.860 0.707 0.065 0.057 0.053 0.055 0.063 0.044 0.023 0.012
0.5 0.998 0.962 0.860 0.707 0.123 0.076 0.064 0.058 0.121 0.059 0.029 0.015
0.75 0.997 0961 0.860 0.707 0.396 0.195 0.117 0.079 0.393 0.170 0.066 0.036
0.95 0976 0.934 0.832 0.686 0.988 0.867 0.659 0.413 0.965 0.805 0.528 0.419

et~ I(d) (Power) (Power) (Power)
d=0.1 0.201 0.146 0.116 0.094 1.000 0.972 0.848 0.620 0.201 0.140 0.099 0.080
0.2 0.418 0.281 0.207 0.150 1.000 0.968 0.844 0.616 0.418 0.271 0.172 0.126
0.3 0.635 0.432 0.316 0.221 0.999 0.960 0.829 0.601 0.635 0.413 0.257 0.180
0.4 0.803 0.584 0.425 0.296 0.998 0.935 0.800 0.570 0.802 0.541 0.330 0.227
0.45 0.862 0.647 0.476 0.334 0994 0916 0.764 0.531 0.857 0.584 0.350 0.240
0.499 0901 0.703 0.527 0.378 0.987 0.886 0.716 0.486 0.889 0.613 0.357 0.253
0.5 0.902 0.707 0.528 0.378 0.986 0.885 0.711 0.485 0.888 0.614 0.351 0.246
0.6 0.955 0.799 0.619 0.456 0929 0.754 0.573 0.366 0.884 0.581 0.313 0.217
0.7 0978 0.862 0.693 0.529 0.749 0.547 0.392 0.248 0.728 0.443 0.213 0.146
0.75 0.987 0.890 0.728 0.563 0.615 0.431 0.307 0.200 0.603 0.356 0.163 0.108
0.8 0.991 0911 0.761 0.592 0.455 0.319 0.227 0.153 0.448 0.263 0.121 0.075
0.9 0.996 0943 0.815 0.647 0.194 0.143 0.115 0.093 0.190 0.115 0.055 0.030

T=2,000 i i Ty % 1
lag Iy ho bs Is Iy ho bs Iso Iy x1ly hoxhy bsxls IsopXbys
e ~ 1(0) (Size) (Power) (Size)

0=0 0.049 0.049 0.047 0.047 1.000 0.996 0.954 0.802 0.049 0.049 0.045 0.045
0.25 0.060 0.051 0.049 0.048 1.000 0.997 0.960 0.818 0.060 0.051 0.047 0.046
0.5 0.074 0.056 0.052 0.049 1.000 0.999 0.979 0.866 0.074 0.056 0.051 0.049
0.75 0.134 0.070 0.057 0.052 1.000 1.000 0.996 0.950 0.134 0.070 0.057 0.052
0.95 0.604 0.245 0.133 0.080 1.000 1.000 1.000 1.000 0.604 0.245 0.133 0.080

e~ I(1) (Power) (Size) (Size)
¢=0 1.000 0.990 0.944 0.815 0.052 0.051 0.052 0.053 0.051 0.048 0.037 0.019
0.25 1.000 0.990 0.944 0.815 0.065 0.058 0.054 0.054 0.064 0.054 0.038 0.020
0.5 1.000 0.990 0.943 0.815 0.114 0.073 0.061 0.058 0.114 0.069 0.044 0.024
0.75 1.000 0.989 0.943 0.815 0.380 0.176 0.108 0.078 0.380 0.171 0.084 0.051
0.95 0.998 0.983 0.932 0.810 0.995 0.886 0.708 0.482 0.993 0.870 0.648 0.546

€ ~ I(d) (Power) (Power) (Power)
d =0.1 0.226 0.167 0.131 0.107 1.000 0.996 0.953 0.800 0.226 0.166 0.124 0.103
0.2 0.499 0.350 0.267 0.191 1.000 0.995 0.950 0.799 0.499 0.349 0.254 0.182
0.3 0.749 0.538 0.407 0.287 1.000 0.993 0.940 0.786 0.749 0.534 0.382 0.271
0.4 0.892 0.700 0.535 0.393 1.000 0.988 0.912 0.755 0.892 0.691 0.484 0.354
0.45 0.935 0.770 0.599 0.434 1.000 0.979 0.892 0.723 0.934 0.754 0.529 0.381
0.499 0.959 0.819 0.662 0.487 0.999 0.961 0.856 0.677 0.958 0.785 0.554 0.405
0.5 0960 0.824 0.663 0.489 0.999 0.961 0.852 0.675 0.959 0.790 0.551 0.403
0.6 0.988 0.893 0.759 0.570 0978 0.869 0.723 0.538 0.966 0.767 0.523 0.380
0.7 0.995 0942 0.826 0.651 0.853 0.669 0.526 0.369 0.848 0.617 0.397 0.293
0.75 0.996 0954 0.855 0.688 0.712 0.543 0.408 0.279 0.709 0.504 0.308 0.224
0.8 0.998 0.966 0.878 0.718 0.557 0408 0.295 0.211 0.556 0.381 0.222 0.155
0.9 1.000 0.982 0916 0.769 0.222 0.167 0.136 0.110 0.221 0.158 0.099 0.061
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Table 3.9: Size and Power of ADF and 77, X ADF Tests Using Standard Critical Values with

Traditional Lag Choices, T = 50, 100, 200, and 500

T=50 T=100
ADF 7, x ADF ADF 7, x ADF
lag Po Ps P12 loxpo Lyxps hoxXpn Po Ps P12 loxpo lLyxps hoxXpn
e ~ I1(0) (Power) (Size) (Power) (Size)
p=0 1.000 0.789 0.072 0.053 0.000 0.000 1.000 0.994 0.346 0.043 0.002 0.007
0.25 1.000 0.683 0.069 0.149 0.000 0.000 1.000 0.983 0.315 0.143 0.001 0.008
0.50 0.978 0.495 0.061 0.320 0.001 0.000 1.000 0.932 0.270 0.361 0.003 0.010
0.75 0.474 0.220 0.047 0.238 0.002 0.000 0974 0.623 0.185 0.693 0.008 0.011
0.95 0.064 0.056 0.038 0.043 0.012 0.000 0.116 0.091 0.060 0.105 0.013 0.002
e~ I(1) (Size) (Size) (Size) (Size)
¢=0 0.041 0.044 0.038 0.032 0.020 0.000 0.054 0.051 0.043 0.051 0.023 0.004
0.25 0.157 0.041 0.034 0.119 0.018 0.000 0.190 0.050 0.044 0.179 0.024 0.011
0.50 0.515 0.052 0.031 0.413 0.014 0.000 0.585 0.058 0.041 0.563 0.022 0.056
0.75 0.956 0.182 0.030 0.665 0.010 0.000 0978 0.182 0.041 0.883 0.016 0.170
0.95 1.000 0.716 0.065 0.126 0.001 0.000 1.000 0.947 0.206 0.300 0.008 0.049
€~ I(d) (Power) (Power) (Power) (Power)
d=0.1 1.000 0.672 0.063 0.133 0.001 0.000 1.000 0.970 0.274 0.156 0.002 0.011
0.2 1.000 0.536 0.057 0.252 0.001 0.000 1.000 0.901 0.205 0.346 0.005 0.017
0.3 0.999 0.406 0.050 0.398 0.002 0.000 1.000 0.761 0.158 0.539 0.009 0.025
04 0.978 0.294 0.043 0.525 0.004 0.000 1.000 0.573 0.123 0.715 0.012 0.034
0.45 0.941 0.249 0.043 0.559 0.004 0.000 1.000 0479 0.111 0.782 0.013 0.040
0.499 0.882 0.209 0.042 0.561 0.007 0.000 0.998 0.401 0.101 0.828 0.017 0.048
0.5 0.880 0.207 0.042 0.564 0.007 0.000 0.998 0.397 0.100 0.828 0.017 0.048
0.6 0.686 0.143 0.040 0.476 0.010 0.000 0.930 0.255 0.082 0.838 0.019 0.053
0.7 0.422 0.102 0.037 0.298 0.013 0.000 0.692 0.155 0.067 0.645 0.019 0.038
0.75 0.307 0.084 0.039 0.217 0.015 0.000 0.516 0.128 0.059 0.484 0.020 0.028
0.8 0.219 0.070 0.038 0.159 0.017 0.000 0.362 0.102 0.055 0.338 0.021 0.019
0.9 0.094 0.053 0.037 0.068 0.017 0.000 0.145 0.068 0.048 0.133 0.024 0.006
T=200 T=500
ADF 7, X ADF ADF 7, x ADF
lag Pa P12 p2s Iy xpy haXp1a s Xpos Pa P12 p2s Iy xpy haXp1a s Xpos
er ~ 1(0) (Power) (Size) (Power) (Size)
p=0 1.000 1.000 0.875 0.054 0.043 0.028 1.000 1.000 0.875 0.054 0.043 0.028
0.25 1.000 1.000 0.867 0.067 0.044 0.028 1.000 1.000 0.867 0.067 0.044 0.028
0.50 1.000 1.000 0.846 0.094 0.047 0.030 1.000 1.000 0.846 0.094 0.047 0.030
0.75 1.000 0.999 0.778 0.192 0.056 0.033 1.000 0.999 0.778 0.192 0.056 0.033
0.95 0.899 0.661 0.359 0.422 0.135 0.030 0.899 0.661 0.359 0.422 0.135 0.030
e~ I(1) (Size) (Size) (Size) (Size)
¢ = 0.046 0.047 0.046 0.043 0.018 0.011 0.046 0.047 0.046 0.043 0.018 0.011
0.25 0.046 0.045 0.047 0.042 0.073 0.011 0.046 0.045 0.047 0.042 0.073 0.011
0.50 0.052 0.045 0.048 0.041 0.359 0.010 0.052 0.045 0.048 0.041 0.359 0.010
0.75 0.165 0.047 0.047 0.043 0.719 0.011 0.165 0.047 0.047 0.043 0.719 0.011
0.95 0.997 0.480 0.098 0.371 0.661 0.121 0.997 0.480 0.098 0.371 0.661 0.121
et~ I(d) (Power) (Power) (Power) (Power)
d=0.1 1.000 0.751 0.193 0.045 0.051 0.004 1.000 1.000 0.749 0.173 0.084 0.050
0.2 1.000 0.595 0.149 0.066 0.082 0.005 1.000 0.993 0.592 0.355 0.145 0.077
0.3 0.997 0.444 0.116 0.077 0.117 0.005 1.000 0.944 0432 0.484 0.220 0.094
0.4 0.956 0.313 0.089 0.064 0.161 0.004 0.999 0.798 0.300 0.498 0.297 0.091
0.45 0.892 0.265 0.081 0.064 0.183 0.003 0.999 0.695 0.252 0.459 0.339 0.083
0.499 0.791 0.225 0.077 0.063 0.214 0.003 0.991 0.575 0.206 0.384 0.379 0.072
0.5 0.788 0.224 0.076 0.062 0.215 0.003 0.990 0.572 0.205 0.378 0.381 0.069
0.6 0.543 0.153 0.060 0.051 0.267 0.002 0.870 0.356 0.139 0.253 0.461 0.040
0.7 0.317 0.110 0.052 0.044 0.249 0.002 0.552 0.203 0.094 0.154 0.516 0.022
0.75 0.231 0.094 0.049 0.043 0.184 0.002 0.398 0.152 0.083 0.115 0.492 0.018
0.8 0.169 0.079 0.046 0.040 0.110 0.001 0.262 0.115 0.068 0.094 0.367 0.013
0.9 0.096 0.060 0.044 0.039 0.034 0.002 0.106 0.071 0.055 0.062 0.095 0.010
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Appendix for Chapter 3

Proof of Theorem 8

Liu (1998), Theorem 3.4, shows that Y57 = O, (T®) when ¢ is [ (%) . It also shows
that s>(0) = O, (InT). However, he does not establish the order in probability of s*()
when [ — co as T — co. The proof here will establish the limiting behavior of s>(I) when
I — oo using results of Tanaka (1999). Tanaka provides the invariance principle for I <%>

processes having i.i.d. innovations. He defines the process

2 2 2 2
1 tST_S] 1 i1 5]
Xo() = —yi+ — T = (yi—yi ), | L2 <t< L], 2.37
r(t) STy]+S]2_S]glsT(y] yj-1) (S% st<gz (2.37)

where (1 — L)Y2y; = u; ~ 1ID(0,02) and st = Var (y;) . Lemma 2.1 of Liu (1998) shows

that .
402 J 1
2 u .
s;=—2) = K- L(j) (2.38)
] T = 2k —1
with K = 2%% and
lim ﬂ =1. (2.39)
T—oo log T

Theorem 2.1 in Tanaka (1999) states X7 = {Xr(t)} weakly converges to the standard
Wiener process defined on [0,1]. Note that in our terminology, €; replaces y; in Tanaka

(1999). Rewrite s2(I) as

2 1& 5 % s \1 ¢
s (l):TZet+22(1—l+—1)T Y erers.

t=s+1
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Multiplying s?(I) by a7 - 7 yields
1 1 L, 111 172, -1/2,,
—— . ——57(]) = T_T; (InT) t-(InT)” (2.40)

IInNT InT In
1y S 11 ¢ ~1/2 ~1/2
- 1-— — InT -(InT s
ZZ( l—l—l)lnTTt_SH(n ) e (InT) e

Consider the absolute value of the second sum.

(2.41)

Iy (1 5 ) L LS ()20, (nT) 2
I [+1)InTT ,~, * o

1 s 11
<[z _
= <ZZ<1 l+1)>1nTT 12e21 |,

T

T
(InT) " %e,- (InT) V2 ¢,

=s+1

———— - max

InT) Y2 - (InT) %e;
21nTT 1<s<] (n ) (n ) °

+1

11 g ‘ 172, /2,
———-max Y [(InT) p-(InT) " ep—g|.

=" t=s+1

It turns out that it is enough to show this last expression is 0,(1).

-1/2, ~1/2
1Ze21 (mTTtSZH‘l T) ¢+ (InT) et_s) (2.42)

11 -1/2 -1/2
r- ‘1 T (InT _
1242] (lnTT( S)s—|—1}1§at);T (InT) et (InT) €t—s

IN

IN

1 ~1/2 1/2
g max |(1 - max |0 et
max (o ma [(nT) 26| max ()"

1

_ ~1/2 -1/2 ’ _
T InTi%er ’(ln 7) et‘ 1242 ‘(ln ) el = InT
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The second to last equality in (2.42) comes from the following.

max (lnT)fl/zet‘ < max H(lnT)*l/zet‘+‘(lnT)71/2€H (2.43)
1<t<T 1<t<T
_ K1/2
< 2. max ’(lnT) V2e,l ~2. max |—— - €¢| with large T
1<t<T 1<t<T| ST
2K1/2. X 2K1/2. W(r)| = 0,(1).
max |Xr(r)] = Jmax [W(r)| = Op(1)

The weak convergence result in the last line follows from Tanaka (1999).

1 _ 1 —
Similarly, one can show llnTTEf 1 \/F v 0p(1). Hence Ty -s2(1) =

0p(1). Now rewrite 77, as -
LSt T

7714 - X 7
mrest()  1(nT)?

(2.44)

and recall that - Zt 1 52 O, (1) and its weak limit is not zero (Liu 1998). Also from the

above plim l (lan)Zsz(l ) = 0. Therefore, since ﬁ goes to infinity under the traditional
choice of the number of the lags, 77, diverges to infinity if I — co and % —0asT — oo.
Proof of Proposition 8

In this case, Ae; is a short memory process with zero mean. So the limiting behavior of
§2(1) and S; should be the same as that of s2() and S; from the model with short memory
error and no intercept. Hence the followings are immediate:

2 Lo = oW(r), (2.45)

1 ~
, TS[rT]
T 1

Z = (72/ W(r)?dr, and

ﬁgé/ Zdr

’ﬂ|>_\

Note that the weak limit of ﬁZ is a functional of a standard Wiener process instead of a
Brownian bridge process (for the KPSS test of short memory) or a demeaned Brownian

motion (for the KPSS unit root test). This is because we difference the data instead of
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demeaning the terms in S;.
Proof of Theorem 9
Rewrite the numerator as T-2YL ,5? = T 2Y T, (e — e1)? = T2y, €2 — 2¢; -
T2yl , e + T~'€3. Multiplying by T gives
T

T T
_ 1 1
! E §f:T E etz—ZelT 2 €+ € (2.46)

1 T
=T ) & +teitop(l),
t=2

since %ZLZ €t Fo. Therefore,

T
T1Y. 3% 9 +éb. (2.47)
t=2

Second, to figure out the limiting behavior of §2(), rewrite 7 as below.

1 &
Ys = T Z (et - €t—1) (et—s - Gt—sfl)
t=s+2

T T T
( 2 €t€t—s — Z €t€t—s—1 — Z €t—1€t—s T Z €t—1€t—s—1)-

t=s+2 t=s+2 t=s+2 t=s+2

Plugging this into s2(I) yields:

( Zet(—:t +2 Zw s,1)= Z €1€¢— s) (2.48)

t s+2

( Zetet 1—|—22wsl Z €1€)_g_ 1)

t s+2

( ZGt 1€t+22wsl Zet 166~ S>
ts+2
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( Zet 1€t1+22wsl ZGt 1€tsl>
ts+2

Then the equation (2.48) can be rewritten by collecting the terms according to the time

lags of cross products of €,,€,’s (i.e. the value of m — n).

Z 2 — 2w(1,1)] erer + w (2.49)

HIH

1 T-—1
_1_? Z 22w(1,1) —w(0,1) —w(2,1)] erer_1

+2 [w(l,l) — ZU(O,Z)] -€T€T_1+2 [w(l,l) — 1] €€
T

i 2w(2,1) — w(1,1) — w(3,1)] erera

+ )—w(l’l¥ lereratese] |

N
S
—
»

1 11
+= _2 22wl —1,1) —w(l —2,1) —w(l,1)] er€s_141
=141
2wl —1,1) —w(l=2,1)] - [erer_141 + €€1]
T

1 T-1
+z t£22 2w(l, 1) —w(l —1,1)] ere;_

+2 [w(l,1) —w(l—1,1)] - [erer_; +€l+1€1] Z 2w(l, )eres_j_q.
T t I+2

Now, fix | and let T increase to infinity. Because maxj<s:<t |€:€s] = Op(T) * one can

obtain the following as T increases:

() 52— 20w(1,D)]v0 42 2w(1,1) — w(0,1) — w(2,1)] 11 (2.50)

“Notice that max; < ;< |€t€s| = max;<;<1 €? and recall that for €; ~ I(1), max;<;<T (%) =0y (1),0r

equivalently max;<;<7 €7 = Op (T) . Hence we conclude that max; <;<1 €7 = O, (T) when ¢; is a stationary

short or long memory process.

160



+- 422wl —1,1) —w(l—2,1) —w(l, )] vi-1 +22w(l,]) —w(l —1,1)] v —2w(l, 1)y 41-

Note that with the Bartlett kernel w(j,1) =1 — #, (2.49) can be simplified because

20(j,1) —w(j—1,1) —w(j+1,1) =0

forj=1,2,...,1. Hence

2

F() 5 2= 2w(1,D)]v0 — 20, D11 = 7 (0~ 1) (2.51)

Therefore, I - $2(1) LA 27¢ as | increases since ;.1 — 0 under the assumption of either
stationary short- or stationary long-memory process.

Now it is straightforward to see that

Toa T T2Yi,S ) _ T 'L, ;5?, (2.52)
| s2(1) 1s2(1)
and therefore, using (2.47) and (2.51),
T 4 d Y0 —i—e%
T — 70 (2.53)

This implies that 1’7\’1;; Poasl — oo, T — oo, % — 0.
Proof of Proposition 9
In this case, Ae; ~ I(dy) where d, = d — 1 with —% < d* < 0. This means Ae; is an

anti-persistent process. From Table 3.1 in Section 3.3.1,

1 - 1
—— S = ——= ) A
T2(dx+1) °lrT] Td*+1/2t_22 €t

1 [rT]

Td.+1/2 t—21 Aér — migamhe

= Wy, Wd* (1’),
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SO

1 ¢ 1
T2 1) Z ? = wﬁ* Wy (r)2dr,
t=2
and
p
! 2d*S2(l) BEY wi.
Therefore,

A ! 2
= = [ W dr.
(1) 7= [ W

l

That is, ﬁz =0y ((%)Zd*> and 1’7\5 goes to zero as | — co, T — o0, + — 0.
Proof of Theorem 10

Since €; ~ I(1/2), it it true that Ay; = Ae; ~ I(—1/2). Fix I and increase T to get
2(1) — o*(l) = y§ +2Y._| W, vF, where 7¢ = E (AeiAet—s). As in Lee and Schmidt
(1996, p.291), one can show

1
I+ =1+ +2) (I+1—5)7: (2.54)
s=1

142
=var | Y Aej | =var (e;57 —€1)

j=2

= var(e;, o) + var(ey) — Zp\/var(€l+2) \/UW(Gl),

where p is the correlation between €;,, and €;. Recall from equation (2.38) that

202

- L(t),

var(e) =

where L(t) = 42}21 2]%1 and % — 1 as t increases. Divide equation (2.54) by In(/ + 1)

and let [ increase to yield

I+ 1)c%(l) 202
(ln(ll—l()) — 7_[” as [ grows.
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This is due to the facts that var(e;)/In(l +1) — 0as I — oo and |p| < 1. Hence

L) (D)) 202
plim = o= =plim gy = =K

which implies §%(I) = O, <¥> when T and I grow but [/ T goes to zero.
Next, consider the sum of 5% in the numerator of 1/7\5 Look at the absolute value of the

appropriately scaled sum and see

Lyal-ly L @—e) (e
TInT =2 ! T =2 InT : ! InT : !
1 2 1/2
< ~4. —_— ith 1 T
<4 1I;Ita§XT \/me 1rgtanT - €| with large

= 4K/2. X = 4K1/2. W(r)| = 0,(1).
fax | Xr(r)] pax [W(r)| = Op(1)

I InT 1 T
TN, miT (TlnT L2 5%)
A0 w0
I InT
— HT'OP(U —o0.(1
T 202 _OP( )
T+ op(1)

Proof of Proposition 12
Unlike the case for 7, the calculation of 17’/; does not involve demeaning so that the
full sum of the data St is not zero. So, the correct representation of the HAC estimator

with the Bartlett kernel is (see Hashimzade and Vogelsang (2008), page 161)

) ) T—1 - ) T-v(T-1)-1
(') = —— S5 —— StSiip(T— (2.55)
( ) b (T— 1)2 t_Zz t b (T B 1)2 g EOr4b(T—1)
2 =L 1
S Z StS1 + =57,
v (T — 1)2 t=T—b'(T—1) r-1
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: P 1+

Now suppose €; follows a short-memory process. Plugging S; = €; — €1 in (2.55) yields

o ) T—1 ) T-b'(T-1)-1
S (l ) = m <; (€t — 61) — t:Zz (é‘t — 61) (et—i—b’(T—l) — €1>) (256)

b (T—1)* \ o i)

T-1
_# ( Z (€t —el) (eT —61)) + Til (€T —61)2

2 T-1 ) T—1 ) 2
=-— €r —2€ e+ (T—-2)ej | ———— X
b (T —1)? t; t 1; tH(T-2)a b (T —1)?
T—b/(T—1)—1 T—b/(T—1)-1

( Y. ey —€ Y, <et + etﬂ,/g,l)) +(T—b(T—1)—1) - e%)

t=2 t=2

2 TZ:I €r€ Tzl e1(er+er)+0 (T—-1)el | + L (er —€1)?

Eyrm—— t€T — 1(er+er —1)e T — €1
v (T — 1)2 t=T—b'(T—1) t=T—b'(T—1) r-1
— H) + —— (e — 1)’

Combining this with % yI,S = % (Ethz e —2e1Y ] e+ (T—1) e%) gives

/\d f— p—
T =" T-H) + 1L (er —e1)?

1y7,5  +(Chae 20Xl e+ (T-1)€)

Denote the weak limit of eT as T grows as €, and apply the functional central limit theo-

rem and continuous mapping theorem to obtain

Y0 —i—e%
2 (70 + D'er1€so) + (€00 — €1)
2 2
2 D +z€1 S — Jrze1 ;<1
pYot+er+ek  2y+eltes

2

Secondly, suppose that €; follows a unit root process. Rearranging equation (2.56)
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_ ¥ (T-1)-1
(T-1)°,,, 2 X 12 \% 2 ! ~1/2 _1/2
() = = Y (T %) — o= ) T - T /€ p(T-1
T2 b'T = ( ) VT & (=1
2 = ~1/2 ~1/2 T—-1/__1, 2
~WT bz( )T e-T eT+T (T (eT—el)> +0p(1),
f=T—b (T—1

where the remaining terms are negligible since
-1/2

and
1 T-1 1 1 T-1 1/

Therefore by applying the functional CLT and continuous mapping theorem one can

show

1
o Ik W (r)?dr

Ty

where W(r) is the standard Wiener process and

1-v

W(W(r + b )dr — /1

- W(r)W(l)dr} + W (1),

Q1) = ; [/Olvv(r)zdr—/o

Note that this limit does not degenerate to 3 for b’ = 1. This is in contrast with the fixed-b

limit of 77, in Proposition 11, which is 3 under both I(0) and I(1) DGPs.
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