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ABSTRACT

HARMONIC RESPONSE AND PASSIVE VIBRATION ISOLATION OF RIGID BODIES

By

R. Matthew Brach

Passive vibration isolation is important in the automotive industry

where the undesirable effects of powerplant vibrational excitation need to

be isolated from the occupants and the automobile interior. Recently,

hydraulic engine mounts have proven to be effective in this capacity and

have replaced traditional elastomeric mounts in many automobiles. While

the characteristics of the mount itself are well-established, no

systematic investigations have been conducted that consider the nonlinear

response of the total system consisting of an engine on mounts.

Therefore, to better understand this type of vibration system, the

harmonic response and vibration isolation performance of a planar, three

degree of freedom rigid body on resilient linear supports is investigated.

The nonlinear differential equations of motion for the system are derived

using Lagrange's equations. Approximate solutions of these equations for

four different forcing cases are formulated using the method of multiple

scales. The frequency response of each degree of freedom for these four

cases is obtained from these approximate solutions. Specifically, the

response for this system where 1:1 and 2:1 internal resonances exist

between the system linear natural frequencies is found. The analysis

identifies regions where multiple steady-state solutions exist, and other

regions where no constant amplitude steady-state solutions exist. The



efficient transfer of energy from one mode to another is also investigated

and related to a novel type of vibration isolator.

This thesis also includes a review of the four common metrics used

to assess the performance of isolation. systems. These metrics are:

transmissibility, effectiveness, transmitted power, and the forces

transmitted to the support structure. The assumptions made in the

formulation of these metrics are presented, and the measure of the

transmitted forces is modified and applied to the planar problem presented

in the thesis.
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INTRODUCTION

This thesis documents an analytical investigation into the harmonic

response and vibration isolation of a rigid body mounted on resilient

supports. The rigid body system, with two translational and one rotational

degrees of freedom, is a planar analog of an automotive engine on mounts.

In the automotive industry, emphasis is being placed on producing

automobiles with a ride that is smooth and quiet. This has increased the

importance of the isolation iof engine vibrations from the rest of the

automobile. The analytical methods currently used in the automotive

industry to determine the position and orientation of engine mounts, i.e.

elastic axes theory, torque axis theory, and natural frequency placement,

have shortcomings which prevent them from establishing an accurate

prediction of the harmonic response of the system. Consequently, the

placement and orientation of the engine mounts predicted by these methods

will be less than optimum, and experimental tuning of the system will be

required prior to production. The most salient of these shortcomings is

the fact that linear system theory is used in the formulation of these

methods. The work in this thesis demonstrates that the response of this

system will often be nonlinear.

The equations of motion for this system are derived using Lagrange's

equations. It is desirable that these equations contain no simplifications





such that the general nonlinear response of the system can be

investigated. However, due to the complexity of the resulting equations,

the potential energy of the system is written using a Taylor series. This

simplifies the nonlinear terms in the equations of motion to polynomial

form enhancing the application of a perturbation solution.

The method of multiple scales is used to effect a solution of these

equations of motion. This technique ultimately leads to six nonlinear

algebraic equations, the solutions of which are the steady state response

amplitudes of the system. The response from these equations is pursued for

parameter values appropriate for an in-line four cylinder engine. The

response of this system is found for four different forcing conditions.

The stability of the solutions is established through examination of the

of the eigenvalues of the Jacobian matrix of these algebraic equations.

This system response is then used to analyze the isolation performance of

the system.

The contents of this thesis are divided into six chapters. The first

chapter presents a review of the literature pertinent to the major topics

addressed in the thesis: vibration isolation and harmonic response of

rigid bodies.

Since this investigation was motivated partially from interest in

the vibrational response of an automotive engine on mounts, the second

chapter begins with a review of existing automotive engine mounting

strategies. After this review, the problem geometry and system parameters

for a three degree of freedom rigid body on resilient supports are

presented. This system represents the planar equivalent of an engine

supported on mounts. The equations of motion of the system are derived

using the Lagrange formulation. Details of the assumptions and
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approximations made in arriving at the governing equations of motion are

given. The resulting equations of motion for this system are nonlinear,

second order, ordinary differential equations. The approximate solution to

these equations is pursued using a perturbation technique. The chapter

ends with a presentation of the general scope of the analysis and details

the three cases to be investigated.

The third chapter presents the perturbation analysis of the

equations of motion using the method of multiple scales. This method is

applied to each of the three cases resulting in six nonlinear ordinary

differential equations for each case. These equations describe the slowly

varying amplitudes and phases of the system.

The fourth chapter presents the numerical values of the system

parameters used in the balance of the thesis to obtain the system

response. The second part of the chapter utilizes these parameter values

to demonstrate verification of the use of a Taylor series approximation of

the potential energy used in the derivation of the equations of motion.

The fifth chapter presents the system response plots for each of the

three cases. These response plots are obtained by repeatedly solving

nonlinear algebraic equations for the steady-state amplitudes as a

function of the forcing frequency. The final section of the chapter

considers the vibration isolation aspect of the system. It begins with the

study of the various approaches for the quantification of vibration

isolation of rigid bodies presented in the literature. A modified version

of one of the measures is used to assess the isolation performance of the

planar rigid body problem considered herein.

The sixth chapter presents a summary of this thesis, the conclusions

of the investigation and recommendations for future work.





CHAPTER 1 LITERATURE REVIEW

The majority of the information. about the topics of ‘harmonic

response and passive vibration isolation of rigid ‘bodies has been

generated by the automotive industry. Therefore, the majority of the

papers reviewed deal with the simulation, harmonic response and vibration

isolation of multi-cylinder engines.

One of the earliest detailed.works addressing vibration.isolation of

rigid bodies is Vibration and Shock Isolation, (Crede, 1951). In this

book, vibration isolation is viewed from two perspectives. The first is

that of reducing the forces transmitted to the supporting structure and,

the second is the isolation of rigid body displacements. Crede (1951)

addresses these two problems utilizing the same approach, that of tuning

the system natural frequencies to be substantially lower than the forcing

frequency of the input. Crede (1951) considers one, two and three degree

of freedom linear, planar rigid body systems with various degrees of

symmetry. Since his approach is to place the natural frequencies of the

system far from the exciting frequency, much attention is placed on

obtaining expressions for the natural frequencies of the systems

considered.

Another book that addresses the topic of vibration isolation of

rigid bodies is Vibration Engineering (Wilson, 1959). This book examines

primarily the vibrational response of reciprocating engines and rotating

machinery. This work considers the vibrational characteristics of multi-

cylinder engines in detail. The equations of motion for a six degree of

freedom rigid body system are derived using the Newtonian formulation. The

l;
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assumption is made that a displacement along any one of the three

coordinate axes produces no force in the springs along the other two

coordinate axes. This assumption reduces the number of terms that appear

in the equations of motion. The displacements of the systems are assumed

to be small. Therefore, the restoring forces and couples are written as

linear expressions of the displacement variables. This results in

equations of motion with only linear coupling terms.

As with the book by Crede (1951) , considerable attention is paid to

obtaining expressions for the natural frequencies of the various systems

considered. The vibration isolation aspect of the text focuses on the

prediction and management of the forces transmitted to the support

structure (which throughout the majority of the text is considered rigid).

Various other topics are also considered such as vibration of multi-

cylinder engines, elastic characteristics of the foundation, systems with

various degrees of symmetry, and information about rubber isolation

mounts.

An extensive review article about vibration isolation (Snowdon,

1979), looks at simple mounting systems, primarily single degree of

freedom systems. This article presents information and theory which

address vibration isolation systems for which a single degree of freedom

system is too simple to adequately describe system response. In addition,

the article presents information regarding the static and dynamic

properties of rubber and rubber-like materials, and some experimental

aspects of isolation measurement. The article contains a lengthy

bibliography of vibration isolation materials.

Since the time these three references were written, numerous papers

have been written that specifically address the harmonic response of
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multi-cylinder engines. Various approaches have been taken to simulate

this rigid body'system. These include Radcliffe, et. al., (1983); Butsuen,

et. al., (1986); Matsuda, (1987); Furubayashi, (1991); Shiomi and

Mizuguchi, (1991); Xuefeng, (1991); and Hata, (1992). These papers focus

primarily on the modeling and simulation of the engine as a rigid body

system. In these papers, linear system theory is used to investigate the

response of an engine on a mount system.

Correspondinglyy a number of articles have investigated the harmonic

response of the engine mount. These include John and Straneva, (1966);

Schmitt and leingang, (1976); Sakamoto, et. al., (1981); Gennesseoux,

(1993). These articles look.specifically’at the function, characteristics,

and performance of the engine mount itself.

Of particular relevance to the topic of this thesis are those papers

which deal with the performance of vibration isolation systems utilizing

nonlinear characteristics in the suspension system. Eight papers were

found which explore this particular topic (Tobias, 1959; Henry and.Tobias,

1959; Grootenhuis and.Ewins, 1965; Efstathiades and Williams, 1967; Shoup,

1971 and 1972; Shoup and Simmonds, 1977; Metwalli, 1986). The papers by

Shoup (1971 and 1972) and Shoup and Simmonds (1977) investigate single

degree of freedom systems possessing nonlinear force-displacement

characteristics. Metwalli (1986) considers a two degree of freedom system

representing a vehicle suspension model. In addition to nonlinear

stiffness in the springs, nonlinear damping is also included in the system

model.

The article by' Grootenhuis and. Ewins (1965) investigates the

unforced response of a rigid body on resilient supports. The Lagrange's

equations are used to obtain the equations of motion for the six degree of
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freedom rigid body system. The equations of motion are computed with the

assumption that the rigid. body displacements are small. Hence the

expression for the potential energy is simplified and only linear terms

appear in the equations of motion. These equations are then used to find

the natural frequencies of the system. Specifically, the change in these

natural frequencies as a function of the location of the center of gravity

is demonstrated.

In the paper by Efstathiades and Williams (1967), the coupled

response of two of the six degrees of freedom of a rigid body system with

supports at four corners is investigated. The corner supports possess

symmetric cubic force-displacement:characteristics. Internal.resonances of

the system are investigated using the method of harmonic balance. In

contrast, the resiliently supported rigid body system investigated in this

thesis demonstrates that supports with nonlinear force-displacement

characteristics are not required for a rigid body system to produce

nonlinear response. Nonlinear response is demonstrated analytically with

supports having linear symmetric force-displacement characteristics.

Two articles were found which looked at the effects of nonlinear

damping on the performance of isolation systems (Ruzika and Derby, 1971;

ElMadany and ElTamini, 1990). Nonlinear damping is not considered in this

thesis.

The response of a three dimensional rigid body system requires that

the equations of motion of the rigid body on resilient supports be written

considering six degrees of freedom. The two approaches to this problem are

the Newtonian formulation and Lagrange formulation. The former is

considered by Himelblau and Rubin (1961). In this paper, it is assumed

that the supports have independent linear force-displacement
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characteristics along each of the three mutually perpendicular coordinate

axes. Only small translations and rotations are considered, which reduces

the complexity of the derivation by neglecting certain components of the

restoring force. The six resulting idifferential equations of" motion

contain only linear terms.

The Lagrange approach to the derivation of the equations of motion

is presented by Andrews (1960). No assumptions are made in this paper

regarding symmetry of the body or the location or orientation of the

resilient supports. The supports are assumed to have independent linear

force-displacement and linear viscous damping characteristics along each

of the three mutually perpendicular coordinate axes. The assumption of

small rotations of the rigid body is made, eliminating the need for Euler

angles to represent the rotational motion of the rigid body. Therefore,

the three angular velocities can then be‘written.as the time derivative of

its corresponding angular displacement. This enables the equations to be

written in a simpler form. The resulting differential equations of motion

are nonlinear.

The use of Lagrange's equations for the derivation of the equations

of motion is the method used later in this thesis to obtain the general

equations of motion for the resiliently supported rigid body system

considered herein. This system is a planar three degree of freedom

equivalent of the system considered in the above derivations by Andrews

(1960) and.Himelblau and.Rubin (1961). For this particular case, the small

angular displacement assumption. is :not needed. to ‘write the angular

velocity as a time derivative of an angular displacement. Hence, the

resulting equations of motion for this planar system are completely

general.
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With the pertinent literature related to the topics of this thesis

identified, the analysis of the harmonic response of a rigid body on

resilient supports can be pursued. The following chapter initiates this

process by looking first at the methods used in the automotive industry to

isolate engines. The geometry of the system to be investigated in this

thesis is then.presented, and the derivation of the equations of motion of

the system is presented.



CHAPTER 2 SYSTEM BACKGROUND AND DEFINITION

Since the inception of the automotive industry, vibration of the

engine has been an identified problem. Various isolation schemes have been

devised to deal with this problem. Four methods have been identified in

the literature that are used in the automotive industry to address this

problem. They are: center of percussion mounting, natural frequency

placement, torque axis mounting, and elastic axes mounting. A review of

the literature indicates that the latter three techniques are more widely

used and investigated” All four techniques are described.here to establish

a comprehensive background about engine mounting strategies that consider

the motion of the engine as a rigid body only. The short review of each

method contains the pertinent references that present the development and

theory 'behind each. method. In. each case, discussion regarding the

assumptions made in the development of the method is presented and the

limitations of each method are also discussed. Vibration isolation methods

which consider the flexural motion of the automotive engine and drivetrain

are outside the scope of this thesis (Bolton-Knight, 1971).

Subsequent to this review, a simple problem of a planar rigid body

on resilient supports is introduced. This problem is the planar equivalent

to the grounded engine on mounts problem (the support structure is

considered rigid) restricted to three degrees of freedom. The general

equations of motion are derived in this chapter, with the perturbation

analysis and the system response following in later chapters. The bearing

of the results of the investigation of the response of this planar system

10
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on the four existing engine isolation schemes is delineated in the sixth

chapter.

2.1 REVIEW OF AUTOMOTIVE ENGINE ISOLATION STRATEGIES

2.1.1 Center of Percussion Mounting

This technique utilizes the fundamental mechanical phenomenon known

as the center of percussion. One property of the center of percussion is

that for a compound pendulum acted on by an impulse applied through the

center of percussion and perpendicular to the line defined by the center

of mass and the fixed point, no reactive impulse results at the fixed

point. (A detailed presentation of the definition of the center of

percussion and the properties associated with this point is given in

Appendix A.) The application to engine mounting is direct. If the front

and. rear engine mounts are arranged such that their locations are

reciprocal centers of percussion (see Appendix A), then an impulse to one

mount from a road disturbance results in little or no reaction at the

other mount (Wilson, 1959; Timpner, 1965; Bolton-Knight, 1971). This

improves the overall isolation performance of the mounting system with

respect to impulsive inputs. Although the application of this isolation

scheme to actual mounting problems is typically not as simple as this

example would indicate, placement of the engine mounts consistent with

this theory will enhance their overall isolation effectiveness.

2.1.2 Natural Frequency Placement

Algorithms based on optimization routines have been developed which

aim to move the rigid body linear natural frequencies of the engine away
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from the frequencies of the input sources, thereby changing the mode

shapes and reducing the transmitted forces. Numerous papers have been

written about this topic, including Johnson and Subhedar, (1979); Bernard

and Starkey, (1983); Geck and Patton, (1984); Spiekerman, Radcliffe, and

Goodman, (1985); Staat, (1986); and Saitoh and Igarashi, (1989).

In these studies the engine is modelled as a rigid body with six

degrees of freedom mounted on resilient supports attached to ground. The

design parameters include the mount stiffnesses, mount locations and

orientations. These methods depend largely on the ability to predict or

determine the natural frequencies of’ the engine. This task. can ‘be

difficult, and the results of this isolation method are only effective

near the identified frequency. As such, this technique is used primarily

to address vibrational problems which are due to the engine idle frequency

or one of its associated orders being close to a natural frequency. Of

course the trivial solution.of the optimization process, that of a natural

frequency being equal to zero, must be avoided. This is accomplished by

incorporating a function which penalizes large parameter changes. A

modification of this approach has been implemented which determines the

mount stiffnesses by directly minimizing the forces transmitted through

the mounts to the vehicle structure at idle (Oh, Lim and Lee, 1991;

Swanson, Wu, and Ashrafiuon, 1993).

More recently, optimization methods have been used.tx) analyze a

rigid body mounted on resilient mounts attached to a flexible support

(Ashrafiuon, 1993; Lee, Yim, and Kim, 1995).
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2.1.3 Torque Axis Mounting

The torque axis, also referred to as the torque roll axis, is

defined as the resulting fixed axis of rotation of an unconstrained three

dimensional rigid body (i.e. either free or elastically supported on very

soft springs) when a torque is applied along an axis not coincident with

any of the principal axes (Timpner, 1965; Fullerton, 1984). For the case

of an automotive engine, the axis about which torque is applied is the

crankshaft axis. This axis is rarely coincident with a principal axis of

the engine. It is hypothesized (Timpner, 1966) that the disturbances

transferred to the vehicle can be reduced by positioning the engine mounts

such that the engine oscillates predominantly about this torque axis. The

two references above each give a method for determining the location of

the torque axis of an engine.

In order to better understand the concept of torque axis and

appreciate some of the shortcomings of this approach as used in the

automotive industry, consider the equations of motion governing the

rotational behavior of a rigid body in three dimensions acted on by the

moment vector H. These equations are given by (Greenwood, 1988):

”x = Inuit + Ixymy Wm) + lam. +40»)

* (In 'Iw)“*/"’z * In (“’3 “’33)

My =Ixy(“'5i”‘9“‘z) *Iyyd’y *Ivg("3‘zz*‘k“’v) (2.1)

4' (Ixx "122) “it": I Ixz (“’2 Tax)

”2 = Ixz (“ii ”99%) T 1,205» +q‘mz) "' 12202

+ (Ivy-Imago» + 1"“): -wi)

For the case of an automotive engine, it is common to assume the

engine can be assumed to be a rigid body on resilient supports which are

attached to ground. It can be further assumed that the values of the

moments, both the applied moments and the moments generated by the
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reaction forces at the mounts, and inertia products are known or can be

calculated. Then, for a given set of initial conditions, a can

theoretically be solved for as a function of time. In general, the

magnitude and direction of the axis of rotation of the rigid body will

also be a function of time. Thus, the torque axis as defined previously,

does not exist.

It is further noted that equations (2.1) are derived under the

assumption that the inertia properties of the engine are independent of

time. This is not the case for an engine, because the motion of the

pistons, cranks, connecting rods, and the crankshaft make the inertia

properties periodic functions of time, independent of the coordinate

system. This further influences the time dependent nature of a in an

actual engine. However, the time dependence of the inertia properties is

typically neglected in practice (Bachrach, 1995).

2.1.4 Elastic Axes

Elastic axes for an elastically supported rigid body system are

those axes for which application of a force or torque, along or about the

axis produces only a corresponding translation or rotation, respectively.

In the coordinate system defined by the elastic axes, the system response

consists of decoupled translational and rotational modes.

The elastic axes of a rigid body on flexible supports are determined

using the flexibility matrix A. Analytical modal decoupling of the

flexibility matrix does not yield the elastic axes system because the

eigenvectors do not typically span a physical space. Hence, the

transformation to the elastic axes must be a physical coordinate

transformation.
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Since a physical coordinate transformation is required, a 2-

dimensional system with three degrees of freedom can be decoupled since

the six off-diagonal terms of the symmetric 3X3 flexibility matrix can be

eliminated by two independent translations and one rotation. Full

decoupling of the symmetric 6X6 flexibility matrix for a 3-dimensional

rigid body system with six degrees of freedom cannot be accomplished since

30‘ off-diagonal terms exist and only three independent coordinate

translations and three independent coordinate rotations can be defined

(Kim, 1991). Due to this limitation, effort has been spent in the area of

"partial" decoupling of the modes of vibration (Derby, 1973; Ford, 1985).

These four methods of automotive engine vibration isolation

represent those documented in the literature. A common assumption in the

implementation of these mounting strategies is that the response of the

system is linear. This assumption is made to simplify the analysis of the

system.

Recently, hydraulic engine mounts have proven to be effective

vibration isolators and have replaced traditional elastomeric mounts in

many automobiles. The experimental and analytical response Characteristics

of this class of engine mounts have been investigated and are inherently

nonlinear (Kim, Singh, and Ravindra, 1992; Brach and.Haddow, 1993; Kim and

Singh, 1993). These nonlinear characteristics have been introduced

intentionally to improve the isolation performance of the engine on mounts

system. However, despite the apparent effectiveness of these mounts, no

investigations have been found which establish the response of the

complete system of an engine supported by such mounts. A clear

understanding,of the system response will improve the consideration.of the

isolation aspects of the system. Therefore, to better comprehend this
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class of vibration system, the problem of determining the response and

isolation performance of a rigid body on resilient supports is considered.

The most general approach to this problem is that of a three

dimensional rigid body supported by arbitrarily located resilient

supports. This problem has six degrees of freedom: three translational and

three rotational. The problem considered presently is a two dimensional

rigid body on resilient linear supports. Linear supports are used since it

will be shown through this analysis that the geometry of the problem

introduces nonlinear response. The same procedure used in the solution of

this problem can be followed for supports with nonlinear characteristics.

This planar problem has three degrees of freedom: two translational and

one rotational. The problem was made planar to increase the tractability.

The following section introduces the specific geometry of the problem

investigated.

2.2 SYSTEM DEFINITION: PLANAR RIGID BODY ON RESILIENT SUPPORTS

2.2.1 Problem Geometry

The ensuing analysis is based on the geometry of a planar rigid body

mounted on resilient linear supports as shown in Figure 2.1. Each of the

mounts is characterized by two orthogonal stiffness values, one for the

axial stiffness in the x-direction and one for the lateral stiffness in

the y-direction. The dimensions shown in the drawing for the supports are

exaggerated to emphasize the geometry used in the analysis. The dimensions

utilized for the rigid body in the numerical analysis which follows were

chosen to closely approximate an actual 4-cylinder automotive engine. The

free lengths of the springs and the spring rates were chosen to be
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representative of production elastomeric mounts. For this problem, the

stiffness values were chosen such that k1 - k4 and k2 = [(3 and the mounting

geometry is symmetric. The numerical parameter values chosen for all

problems will be given prior to the presentation of the response of the

system. It should be noted that the procedure used to analyze this system

with linear spring characteristics can also be used to analyze rigid body

systems with nonlinear spring characteristics.

 

   

 

Figure 2.1 - Geometry of the rigid body system

Figure 2.1 depicts the rigid ‘body in the static equilibrium

position. The static equilibrium position is used in this instance as a

more convenient point about which to write the equations of motion.

2.2.2 Equations of Motion

The equations of motion for this problem are derived using

Lagrange’s equations:

d 3L _aL=. 2.2

Rim; 7?. Q! ‘ ’

where L - T - V, T is the kinetic energy, V is the potential energy, qj.are

the generalized coordinates, and jSare the generalized forces applied to

the system.
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Using the notation given in Figure 2.1, the kinetic energy for the

rigid body, T, can be written directly:

T = :1..me + gmyz + gIGa’?‘ (2-3)

The potential energy for the problem, V, is complicated. For this

problem, the general equations of motion are desired, and therefore no

simplifications of the potential energy are made. The potential energy of

this system is the sum of the potential energies of the four springs. The

potential energy of a given spring, gkéz, where 6 is the deflection in the

spring and k is the linear spring constant, requires for this problem that

the deflection 6 be written in terms of the rigid body displacements x, y,

and a. For this problem, 5 for each spring is determined by writing the

expression for the length of the spring in the deflected state and

subtracting from this quantity the undeflected length of the spring,

(i.e. , the free length). The complexity of the expression for the

potential energy for this geometry is simpler than for the general case of

arbitrarily located springs. This is due to the fact that the attachment

points of the springs are collinear with the center of mass of the rigid

body and with each other. Appendix B presents more detail of the

derivation of the potential energy for this system.

The next step is to take the partial derivatives of this expression

with respect to x, y, and a. However,the resulting form of the equations

of motion will be complicated, and not conducive to the solution technique

of the method of multiple scales used later. It is more convenient to have

the equations appear in polynomial form. Therefore a Taylor series

expansion of the potential energy is performed prior to the implementation
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of the partial derivatives required by the Lagrange formulation of the

1

equations of motion . The multi-variable version of the Taylor series is:

f(x,y,a) = f(Xo,Yo,ao)

“*[[(11f‘xo)-::.;—ir * (TWO) 3; * (“110) 3;] f(x'7'“)]l<xo.yo.¢o)

+ E1?[[(x-x0) '33" 4' (Y'Yo) a * (0'90) 33] 2f(x:Y:a)]l(xo.Yo.¢o>

+ 31T[[(x-xo) .3; + (y-yc) 3; + (a-ao) gal3f(X.y,a)]l(xo,yo,ao) (21‘)

—1

+ 2%I[(X’Xo)g§ * (Y‘Yo) g; * (a‘ao) 5;]nf(x'y'a)]l<xo.Yo-ao>
n .

J

+RN(X.y.a)

where

RN(x,y,a) =%[(x-xo)§i +(y-y0)% +(a-ao) ga]"f(x,y,a) “5.11.0 (2.5)

and (E,n,C) is a point somewhere on the straight line segment between

(x0,yo,a0) and (x,y,a).

The derivation of the Taylor series expansion in two variables

(Hildebrand, 1976) was expanded to three variables to give the equations

above. This treatment can be further generalized for expansions of

variables of four or more variables. The Taylor series for the potential

energy for this problem is taken about the static equilibrium position,

(xo,yo,ao) = (0,0,0). Hence, this is the point where the series is

evaluated to establish the series coefficients. This position is chosen

since the reference coordinate system is fixed in space at the location of

the static equilibrium position as shown in Figure 2.1. Once the Taylor

series expansion of the potential energy is determined, Lagrange's

equations can be used to determine the equations of motion for the system.

 

1The order of the operation of the Taylor series and the partial

differentiation is not important, i.e. , these operations are commutative.

Hence, the application of the Taylor series approximation could be

performed on the appropriate terms after Lagrange's equations are obtained

and the same equations of motion would result.
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With the application of the Taylor series, questions of the

convergence and accuracy of the series arise. The ratio test can be used

to Show that the Taylor series of a function f(x,y,a) about (xb,yb,ao), is

absolutely convergent for all real numbers if the function has derivatives

of all orders on some interval containing the point (x0,y0,a0). However,

for application of the Taylor series to this problem, the series must be

truncated to be useful, and the accuracy of this truncated series comes

into question. The remainder of the series Ru shown above, gives an

indication.of the order of magnitude of the error of the truncated series.

The question of what constitutes an acceptable error then arises.

Additionally, the exact.means of computation.also must be established. For

the remainder R", the choice of (6,0,0 needs to be made, and only then can

the numerical calculation of R% be performed. Using any method, a norm

could be established and the magnitude evaluated numerically, but the

interpretation of the magnitude of the norm still presents difficulty. One

alternative to this approach is to graphically compare the approximate

potential energy to the actual potential energy to ascertain the accuracy

of the truncated series over some appropriate range of system.coordinates.

Ultimately, it is only the applicability of the truncated series of the

potential energy to represent the actual potential energy which is

established.

The validity of the equations of motion derived using a Taylor

series approximation of the potential energy was established through a

comparison of the system response obtained by direct numerical integration

of the equations of motion using,a particular set of parameter values. The

system response obtained from the equations of motion derived using the

Taylor series approximation of the potential energy was compared to the
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response given by the equations of motion derived with no approximation

for the potential energy. This process is depicted in the flow chart shown

in Figure 2.2.

Regardless of how closely the truncated series for the potential

energy might approximate the actual potential energy, the response of the

system using the equations obtained using the truncated series must

closely match the response of the system using the equations obtained

using the actual potential energy. If the response of the approximated

system does not match the response of the actual system satisfactorily,

terms must be added to the truncated series until the system responses

match. If the comparison shows that similar steady state responses are

obtained under identical forcing conditions, the truncated series was

considered acceptable.

The equations which are given by the above analysis do not include

damping. For this formulation, damping coefficients are introduced after

the application of the Lagrange equations. Damping is required in this

problem to bound the system response at resonance. Viscous damping

included in the Lagrange formulation through the use of Rayleigh's

dissipation function (Meirovitch, 1975) would introduce off-diagonal terms

in the system damping matrix. To avoid these coupling terms, a single

viscous damping term was added to each of the three equations. This

approach reduces the algebraic complexity of the analysis of the equations

of motion. Neglecting coupling damping terms in this analysis is

reasonable as only light damping is considered and prior experience has

shown that damping in these types of problems typically influences the

amplitude of response, not the type of response and only then, close to

resonant frequencies.
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Lagrange Function, L = T - V
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Figure 2.2 - Flow chart of the Taylor series evaluation process

The generalized forces, Qj, associated with each of the system

coordinates remain to be found. These forces are found using the principle

of virtual work (Meirovitch, 1975) . For this system, the generalized force

associated with each coordinate is the force acting in that direction.

The equations of motion for the system can now be assembled. The

equations can be put into a simpler format using the following coordinate

reassignment: x 4 X1, :1 -’ X2, and y -’ X3. The equations for the system are:
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W21 * C1X1 * (k2 *k3)X1 * 51X2X3 * 52X1X3 * 53X: * 54X1X223 2 (2.6a)

+ 55X1 + 56X1X3 =F1cosa1t

IGiZ * C2X2 +A2(k1+k4)X2 + #7X1X3 + 58X:
(2 6b)

+ #9X1X22 + p1ox12x2 + 511X2X§ =F2cosS22t

..
2

mX3 + c3X3 + (k1+k4)X3 1* I312X1 * .313X1X2 * B14X§X3 (2.60)

where

IG=.;.m(A2+BZ)
(2.7)

The system parameters A and B are shown in Figure 2.3.

+— zit—4
 

  
  

 

Figure 2.3 - Physical dimensions of the rigid body

The terms c1, oz, and c3 in equations (2.6) represent the viscous

damping associated with each of the degrees of freedom. The coefficients

for the linear terms are given here in terms of system parameters. The

coefficients for the nonlinear terms, represented in equations (2.6) by

fij's, are not given in terms of system parameters because this

representation of these values is exceedingly lengthy. However, specific

numerical values are assigned to the parameters of the problem in Chapter

4. In addition, Appendix G contains the Mathematica code used to derive
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these equations of motion. It is noted that due to the symmetry of the

problem, no linear coupling terms appear in the equations.

The equations of motion for the system can also be stated in a

nondimensional form, given by equations (2.8). A detailed presentation of

the procedure used to arrive at these equations is given in Appendix D.

2'2, + 2,31x1 + «ix, + é1x2x3 + ézx1x3 + 613x: + &4x1xzz
. (2.8a)

+515x? +¢3z6x1x§ =f1cosn1t

1(1 ”2);:2 +2fi2x2 + k’xz +&7x1x3 *9‘81‘3 +&9x1x2

3 2 2 (2.8b)

4’ &10X12X2 4' &11X2X32 = f2COSta

x+2‘X+2x+‘x2+‘x +‘x2
3 #3 3 “3 3 0‘12 1 “13 1X2 “1!. 2X3 (2.36)

+ &15x12x3 + 51161:; = f3cosn3t

The parameter v is the ratio % where the dimensions A and B are shown in

Figure 2.3.

For the purposes of this investigation, the nondimensionalized form

of the equations are not used. No parameter studies are performed whereby

use of the nondimensionalized equations would.be advantageous. Hence, the

physical parameters of the system are utilized throughout the analysis.

This also makes direct comparison to the physical system simpler.

2.2.3 Scope of Analysis

The equations of motion for this system, given by equations (2.6),

fall into the category of weakly nonlinear systems. A system is weakly

nonlinear if, to the lowest order approximation, the system is always

viewed as a simple harmonic oscillator; the nonlinearity enters as a
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correction term (Kahn, 1990). For this system, this point can be seen by

letting the fl} = 0 in equations (2.6). The resulting system is a set of

three uncoupled, simple harmonic oscillators. However, as will be shown

later, even if the amplitudes of the response are small, nonlinear

response can still be realized through appropriate tuning of the natural

frequencies.

Prior to presenting the perturbation analysis of the equations, it

is useful to establish the scope of the investigation within the context

of the perturbation analysis. For analysis of a nonlinear system, the

relationships between the linear natural frequencies, referred ix) as

internal resonance conditions, and the forcing frequencies are typically

the defining attributes between problems. For this geometry, the possible

relationships between the three linear natural frequencies (01, oz, and

03), the forcing frequencies (91, 92, and S23), and the presence or absence

of forcing (F3, F}, and F3) is considered. Table 2.1 presents a subset of

the many combinations. The number of possible entries in this table would

increase significantly if the forcing (F1,I3, and.F3) were also included

in generating the cases.

All of the cases listed. in.‘Table 2.1 lead to resonance-like

conditions in which all modes are excited. There are many more possible

combinations. Several different combinations, based on a physical system,

are investigated.



 

 

 

 

 

 

 

 

  

fl Internal Resonance RelationShips External Resonance Relationships

ll o1=02, @1203 91:01, 91:"2’ Q3=o3

01=02,01=03 91*“1'923‘5’933‘3

o1=oz, u1~o3 S21~o1, 92*”2’ £23=o3

o1=oz,o1~03 n1~o1,92~02,n3+o3

o1zoz,o1zo3 91*”1’924'02’ 93-103

o1zoz,o1=o3 91+01,92z02,93+o3

01:02, 01:03 .91zo1, {224-02, “3‘2; 

 

 

Table 2.1 - A subset of possible natural frequency/forcing

frequency combinations

In this physical system, the characteristics and parameters for the

rigid body were chosen to represent an in-line four cylinder automotive

(four-cycle) engine at hot idle. For this engine, all the first order

forces2 and moments are theoretically balanced while certain second order

forces and moments are unbalanced (Den Hartog, 1984). Therefore, in the X1

direction (horizontal) for first order,.F1-=0. However, in actual engines,

it has been found that the first order moments in the X2 direction

(torsional), actually do not completely balance (Whitekus, 1994) and so

there is a component FZ oscillating at the idle speed :22. For the X3

direction (vertical), unbalance appears at the second order, 93 = 292 =

twice idle frequency. Table 2.2 depicts these results.

 

2First order refers to phenomena occurring at engine rotational speed

and is also referred to as primary. Second order refers to phenomena

occurring at twice the engine rotational speed and is also referred to as

secondary.
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lst Order 2nd Order

 

Magnitude of this

force at this order

is equal to zero.

Unbalanced Horizontal

Force

Magnitude of this

force at this order

is equal to zero.

 

Magnitude of this

force at this order

is equal to zero.

Unbalanced Vertical

Force

Magnitude of this

force at this order

is not equal to zero.

 

Magnitude of this

Unbalanced Moment force at this order  is not equal to zero.  
Magnitude of this

force at this order

is not equal to zero.

 
 

Table 2.2 - Summary of forcing conditions

Typically, the six rigid body linear natural frequencies of an

engine are between 5 Hz and 25 Hz. It is not unreasonable to expect that

there could be nearly simple integer relationships between the system

linear natural frequencies. Several papers that list the six linear

natural frequencies for actual engines (Johnson and Subhedar, 1979; Geck

indicate that such1984; 1985)and Patton, Spiekerman, et. a1.

relationships do occur in actual systems. Guided by these works and the

information in Table 2.2, the relationships between the linear natural

frequencies chosen for this study are the following:

01 z oz, 201 = 03 and (22 z oz, :23 z 03

with

F1 =ef1 =0, F2 =ef2 #0, and F3 =ef3 =0 (first order) (15)

and

F1=5f1=0: F2 =6 2 =0, and F3 =ef3 #0 (second order) (16)
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The second order component of F2 is neglected. This reduces the

number of forcing terms, whiCh correspondingly simplifies the multiple

scales analysis. Inclusion of this forcing terms would create multiple-

term, multiple-frequency excitation. Hence, excluding this term improves

the understanding of the system response.

Therefore, the response of the system is analyzed in three cases of

increasing complexity. This process of investigating the simpler of the

three cases, cases 1 and 2, validates the methods required to analyze the

problem and creates confidence in the results generated in the more

complex case 3.

The first case, case 1, investigates the rigid body system with

forcing in only the X3-direction.(Fé = 0, 53 ¢ 0). The second case, case

2, investigates the system with forcing in only the XZ-direction.(P} a 0,

F3 - 0). The third case, case 3, investigates combined vertical and

torsional forcing (FE ¢ 0, F3 ¢ 0). Table 2.3 gives a summary of these

three cases.

 

 

 

 

    

= J

Natural Forcing

Frequencies Frequencies Force Magnitudes

Casel 01=02, 201=o3 Q3=o3 F1-O,F2-0,Fl¢0

Case2 01:02, 201:03 92:02 F1-O, [72:30, F3-0

Case3 o1=2,201=L92=0,93=o FL-O,F2¢O,Fg¢0‘   

Table 2.3 - Summary of the cases investigated

Having derived the nonlinear differential equations of motion for

the system, the solution for the three cases designated can be sought. A

perturbation technique is used to find an approximate solution. Chapter 3

presents the perturbation analysis for each of the three cases. Chapters
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4 and 5 present time and frequency response plots resulting from the

approximate solution for each of the three cases.



CHAPTER 3 SOLUTION OF THE EQUATIONS OF MOTION

This chapter presents the perturbation analysis of the equations of

motion presented in Chapter 2. The first part of the chapter presents the

analysis germane to all three cases. The analysis is then completed

through investigation of each individual case. For each case, a set of six

nonlinear differential equations is obtained through which the frequency

response of the system can be investigated. This aspect of the

investigation is presented in Chapter 5. Prior to this, Chapter 4 presents

verification of the approximation used for the potential energy of the

system. Chapter 4 also presents the system parameter values used in the

balance of the analysis.

3.1 PERTURBATION ANALYSIS

The modal interactions in this three degree of freedom planar rigid

body system are examined through perturbation analysis. The method of

multiple scales is used to effect a solution (Nayfeh and Mook, 1979). The

nondimensionalized equations, as presented in equations (2.8), are not

analyzed directly. The approach used is to perform the multiple scales

analysis on equations (2.6) and (2.7) and then to assign numerical values

to the constants such as the fli's, A, and B, etc. The frequency response

of the system can then be obtained. Two reasons motivated this approach.

The first reason is that as presented previously, a Taylor series

expansion is used to simplify the expression for the potential energy. A

general evaluation of the series approximation (treating all system

constants as parameters) would yield unwieldy equations of uwmion and

30
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reduce the effectiveness of the series to simplify the equations of motion

and facilitate multiple scales analysis.

The second reason is that due to the complexity of the equations of

motion, aui analytical solution, although desirable, is precluded even

though multiple scales analysis is used to simplify the equations

describing the response of the system. Hence the solutions for all three

cases are generated numerically using the results from the multiple scales

analysis. Numerical values for the parameters are therefore required.

Accordingly, the system 'parameters in equations (2.6) are assigned

numerical values prior to the analysis. However, each equation is

simplified by dividing through by the coefficient of its respective

acceleration term. The equations then take a form similar to that of

equations (2.8).

The method of multiple scales is used to obtain an approximation for

X1,.X2, and X3. The basic assumption in this method is that the time t is

viewed as being constructed from a succession of independent time scales.

This is shown by the equation:

Tn=ent ~for 0<e<1 and n=0,1,2,,,, (3.1)

The small parameter s is introduced to distinguish responses with

frequencies of close to 01, oz, and 03 occurring at the fast time scale

Tb:=t, and response that occurs at the slower time scale T1 = at. The

response at the slower time scale represents the modulations in the

response at the faster time scale produced by the nonlinearities, the

damping, and the excitation. Hence, these three terms must appear at the

same order of s. This is accomplished.by ordering terms in equations (2.6)

and (2.7) and letting:
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Ci—z -f '-13 a “15 '-2.E - ep, or i- , an .fG or 1-

131 . 5; .
”Hz-=60” for J=1,..,6,12,..,16 and TE=€aj for J=7,..,11(3.2)

Fl: ‘ Fk ‘
_ =€fk for k=2 and _ =osf|< for k=3

16 111

Thus, equations (2.6) then take the form:

X1 + 26H1X1 + 4X1 '* 5‘11X2X3 "' ea2X1X3 I €a3x§ (3.3a)

+ EG4X1X22 * €a5X13 4' €a6X1X32 = 0

22 4' 2€M2X2 'f' (AgXZ 4’ EQ7X1X3 + €08X23 4‘ £G9X1X§ (3.31))

4' 6&10X12X2 4' 6&11X2X32 = Efzcosgzt

" 2 2 2
X3 4' 2€p3X3 4' (13X3 4’ €012X1 4' 6&13X1X2 4‘ €Cf14X2X3 (3.3C)

+ ea15X12X3 + ea16X: = ef3cosn3t

Following the practice of the method of multiple scales and neglecting

terms of 0(52) , the solutions to equations (3.3) are expressed in the form:

Xj(t,'€) =on(T0,T1) 1‘ EXj1(T0,T1) where To = t and T1: EC (3-4)

The derivatives with respect to time must also account for the different

time scales. Accordingly, they become:

 

 

dam dam) 2
7%— =(Do'f'ED1) (Xi), dc; = (DO +ZeDoD1) (Xi) (3.5)

where

a x- a? X-
Dk(Xj) = 7:73?) and D:(Xj) = (2") (3.6)

k

Substituting equations (3.4)-(3.6) into equation (3.3) and equating

coefficients of like orders of 5 gives:
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Z 2

BOX") +m‘x1o = 0

2 2
D0X20+6§X20 =0 (37)

2 2
Do x3o * “5X30 = 0

05x11 +m§X11 = -ZDoD1X1o ’2I11Dox1o “a1xzoxso ‘azxwxso -asx§’o

-.,x,,x§, -asxfo -.,x,,x;o

05x21 +m§xz1 = -200D1X20 '2i12DoX20 -a7x1ox3o 'aaxgo —a9x10x220 (3 , 8)

-a1ox120x20 -a11x20x§0 +f2cosnzTo

D§X31 * 0§X31 = '2DoD1X3o '2H300X3o '0‘121‘120 ‘a1sx1oxzo 'a14X220X30

2 3 ‘

" a15X1oX3o '016X30 4‘ f3COSQ3T0

The solution to equations (3.7) can be written in the form:

xio =A;(T1)e““’i‘°’ we “-9)

for j = 1,2 and 3 and co denotes the complex conjugate of the preceding

term or terms. The Aj are complex functions of T1 and are determined later

in the analysis.

substituting equations (3.9) into equations (3.8) leads to:

Dozx“ +w§x11 = -2A1/iqei°'1° ~2p1A1iqeiqT°

-a1(A2A3e(Q+“5)T° +AZA3eu5-Qno)

-a2(A1A3ei(q "5’10 +A1A3ei“5-qn°)

-a3(A§e3i“P'0 ,3Agzzei0270) (3.10)

"at. (A1Azzei(q+2¢.p)To +2A1A21—128iqT0 +Z1Azzei(-q+2¢.2)10)

-a5 (afe3i“‘° +3Af21ei“"‘°)

' T — ' T - ' +2 T

‘G6(A1A3281(q +205) 0 +2A1A3A3e‘0' 0 +A1A3261(-0| Q5) 0) +CC
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Dgxz1+a§xz1 = -2A2’1aéei“2'° 41121121993370

_a7(A1A3ei(q+n5)To +Z1Aseiu5—qno)

-a8(A23e3iQT° +3A§ZzeiQTo)

-a9(A1A22ei(q+2fieno +2A1A222e‘m0 +21A§ei"‘“*2“9’T°) (3.11)

-a10 (A1‘12A‘13ei‘2m‘"‘2’To +2A1A1A2eiqto +A1ZAZei (20' Weno)

_a‘11(AZAszei(aB+Z¢-5)To +2A2A3Z3eiqto +ZZA328R-a24r205n0)

f2 NT
20

+78 +CC

2 z /, i T , i T 2 2i T -

DOX31+Q3X31 = “2143.16.36 “5 O’ZM3A31658 as 0-a12(A1e ”I 0+A1A1)

. T - ° - T

-a13 (A1A2e‘w' +02) 0 +A1A2€u0l 02) 0)

' 2 T - ' T - ' - T
«11,, (Ag/1319" “2‘“5’ °+2A2A2A3e”‘5 0 111122113er “5’ 0) (3.12)

° 2 + T - ' T - 2 - T

3‘ T - ' T f ' T

-a16(A;e ”‘5 0+3A32A3em!’ 0) +7§em3 0«icc

where the Aj denote the complex conjugate of the Aj. Since the expansions

3, secular producing terms arewhich are sought are uniformly valid in time

identified and eliminated from the right hand side of equations (3.10),

(3.11), and (3.12). In this way the expressions for the AJ- are determined.

The balance of the perturbation analysis addresses each of the three

cases separately since the secular terms for each case are distinct as

they depend on the relationships between the linear natural frequencies

and the forcing frequencies. The reduced equations for each of the three

cases will be derived prior to presenting the numerical results.

 

3For the notation used here, the approximation for Xi(t;e) of equation

3.4 should be such that small terms remain small for all time. That is, if

xio is the principal term in the approximation and Kit is the correction to

it, we want |exi1|<|xi0| for all time. When this is accomplished, the

resulting approximation is said to be uniformly valid in time (Kahn,

1990) .
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3.2 CASE 1 - (Vertical Forcing)

Consistent with the method of multiple scales, it is appropriate to

introduce three detuning equations:

where 01 is an external detuning parameter and a2 and 03 are internal

detuning parameters. Using these relationships in equations (3.10)-

(3.12), the secular terms are eliminated by letting:

{-2.41’10. 4111.411...”qu -a1(AZA3ei“5-Q)T°)

-a2(Z1A3e”“‘-""'"”°) —a3(3A§ZZei“‘T°) (3.14)

-a4(2A1A2A-zeiqT° +A1A22eHZQ-qno)

-a5(3AfZ1e““T°) -a6(2A,A3Z3e““T°) =0

l. . i T — i‘ " )T

{-2A2142-2u2A21a2N "2 ° '07(A1A39 “5 q 0)
— i T - i 1 - 2 NZ - )1

-a8(3A22Aze (.2 0) -a9(2A1A2A28 0| 0 +A1Aze “B (I! 0) (3.15)

_ - - ' - 1

- 010(2A1A1A281QT0 4’ A12A28‘I (2“ 02) 0)

" (111(2A2A3Z38H‘210) = 0

' ' T

(-2A3lia3 -2p3A3iag)e1gT° -a12A12e2‘q 0

i( + )T - i T

’d13(A1A28 0‘ “2 0) -014 (2A2A2A3e as 0) (3-16)

_ - _ . f .

‘ a15(2A1A1A3e‘gT°) -a16(3A32A3eNST°) + 73.810310 = 0

With further use of equations (3.13), equations (3.14)-(3.16) can be

simplified to:

/ , , -‘ i(02-a3)T1

-2A11w, '2fl1A1lq - a1A2A3e

"" -' T " -' T

-a2A1A3e 1031 ’3Q3A22Aze 1021 (317)

-a4(2A1A2A2 +Z1A226

"' 305141221 " 2G6A1A3Z3 3 0

-2i02T1)
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. , - ‘ .. 1' _

-2A2/1a2 -2p2A21a2 -c27A1A3e‘(a2 a3) 1 - 3a8A22A2

- a9 (2A1A222ew2'1 +A1A22e-WZT1) (3.18)

— — Z. t —

— am (2111.41.42 +A1ZA2e "’2 1) - 2a11A2A3A3 = 0

03T1 i(03-02)T1/. . 2 i
~2A3165“2#3A3l&3 -a1ZA1e ‘G13A1Aze ‘ (3 19)

_ _ _. f - '

" 2014A2A2A3 - 2a15A1A1A3 - 3016A32A3 + 73: 6'01T1 =’ 0

To facilitate the solution of equations (3.17)-(3.l9), it is

advantageous to put them into autonomous form. This can be done by

letting:

Bk i¢kT1
AI: = 79

and solving for the ¢k such that all of the exponential terms have the same

exponent. Utilizing the values of ¢k which result from this process, the

Ak can be rewritten as follows:

 

.01‘03

A1=_2.e

3 1:13:21, (3.20a.b.C)
A = 26 2

2 7

B3 1011"]

A3378

These relationships can be substituted into equations (3.17)-(3.l9)

with Bk - Bkr + inj for k -= l, 2, and 3. Here the subscript r designates

the real component of the term and the subscript j designates the

imaginary component of the term. Taking the resulting equations,

separating the real and imaginary terms gives the following six equations

governing the behavior of the uj's in time T1:
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U/ = U2 (01-03)-p1u1- a1 (U3U6‘U4U5)’ a2 (U1U6-U2U5)

‘ 7 Zr»: 36’:
3

-_8%’ (ugul. +u2) -.;:_’.'. (nan: +3u2u42 +2u1u3u4) (3- 213)

3&5

-.8_.(u12u2+u;)- za_(u2u52 +u2u62)

/ u a a

U2 = '71. (O1 ‘03) -[.l1l.12 +2—1- (1.13115 +U4U6) +2: (U1U5 +UZU6)

3a

+3.2(u3 +u3u2)+.8_ (3u1u32+u1uf +2u2u3u4) (3-21b)

3a

+-8_a_:'(u$ M111122)+Za.6_(u1u52 +u1ug)

03/= 7(o1+202-o3) ~pzu3- Z.Z.(u1ug-u2u5)-.:_:(uguuruz’)

a9
(uzug +3u2uf +2u1u3u4)

:75 (3.21c)

-317: (ufu‘+3u§u,,+2u1uzu3)

a‘11
-272 (U411: +u4uf)

/ U3 “7 3‘13 3 2

”I. = ’7- (01*202“°3) “#2111. *2; (“1‘15 “12%) *3; (”3 *usuz.)

9(3u1u2 +u1u‘2+2u2u3u4)

(3 . 21d)£
1
9

+ a1

‘8—

0‘11
-2_

O

(3 u1zu3 +u§:3 +2u1u2u4)

3

2

'
5

a

4 (11321.16 +UEU6)115/ = "601’113'45 _;_1_2_u1u2 ”:2 (“1’44 “12%) '
a5 (.5 (3.21e)

(1 3a

'2‘: 0112116 «ax-fun ‘T: (ufu, mg)
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/ “12 2 2 “13
u = ‘U5°1‘i‘3u6*2— (u -u )+_4.__ (u1u3—u2u4)

“11. 2 Z “15 2 2
+T§(u3u5+u4u5) +2? (u1u5+uzu5) (3.21f)

3016 3 2 f3
+1.; (m5 +u5u6) ~27;

where the following variable reassignments were used:

8.” -’ U1, 811.4 uz, 82'. 4 U3, B2]. 4 U4, 33'. -b us, B31.» L16 (3.22)

The relationship of the ori coordinates to the physical system can be

ascertained from equations (3.9), (3.20), and (3.22). Equation (3.9)

establishes that the A]. are the time varying amplitudes (with time T1) of

the variables Xj. The A]. are complex quantities, having real and imaginary

components, which account for the magnitude and the phase of the response

variables X1" Equations (3.20) give the relationships between the Aj and

the Bj such that the secular equations (3.17), (3.18), and (3.19) are

autonomous. The factor of 1‘: is introduced in the equations defining Aj in

terms of the Bj to account for the amplitude differences which result from

the use of complex notation. The Bj are complex quantities and have real

and imaginary components. These components are reassigned to the

variables uj according to equation (3.22) . The resultant magnitudes of the

u. are the envelopes of the response in time To. The relationship between
J

the u. and the Xj in equation form is:
J

.. - / 2 2 93 _ -1112 (3.23a)
X1 .. x10 - u1 +1.12 cos[7.t +y1] where y1 — tan [Tl—1]

/ 2 2 93
X2 z x20 = L13 +u‘ cos[7t +12] where yz

tan'1 ['11:] (3.23b)

U3
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u5

J
u

X3 = x30 = u52+u62cos[n3t «find where y3 _-. tan-1L1] (3.23c)

3.3 CASE 2 - (Torsional Forcing)

As in case 1, it is appropriate to introduce three detuning

equations:

92 -= "2 + 501, 02 = a1 - £02, «:3 =201 - 503 (3.23)

where 01 now quantifies the nearness of the forcing frequency 92 to 02.

Using these relationships in equations (3.10)-(3.12), the secular terms

are eliminated by letting:

/- - i 1 '- i< - )T

(‘2A11‘0I “AH/3116108 0‘ 0 -a1(A2A3e “5 “2 0)

- i( - )T — i 1'

-a2(A1A3e «5 0‘ 0) -a3 (314221426 (.2 0)

_ . T _ . 2 T (3.24)

—az,,(2A1A?_Aze'"’I ° +A1A22e” are!) 0)

-a5(3AfZ1e“'"T°) -a6(2A,A3Z3e“‘"'°) =0

/ . . iQTO "' i(‘n5‘¢-I|)To

(-2A21a2-2p2A21w
z)e -a7(A1A3e )

— i T " i T "’ i(2 - )T

“08(3A22A28 (.2 0) 'a9(2A1A2A28 0! 0 +A1A§e (.2 ”I 0) (3 25)

"' . - ' - T

' a10(2A1A1A281QT0 4' A12Aze‘(2q a!) 0)

f .
7gefllz'fo = 0- ' T

‘ G11 (21421431436102 0) 4'

(-2A3’ia5-2p3A3ia3)eiu5T° -a12A12e2'qT°

° + T -' ° T

’ (113(A1A281U‘n Q) 0) ' (114 (2A2A2A3e‘05 0) (3'26)

-a15(2A1Z1A3eN5T°) '016(3A32;38H510) =0

With further use of equations (3.23), equations (3.24)-(3.26) can be

simplified to:
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l. . — i(a - )T

'2A1101 '2111A1ll0' -a1A2A3e Z 03 1

'dzZ1A3e-‘O3T1 '3a3A22226-102T1 (3.27)

’at. (2A1A222 *Z1Azze-zwzn)

' 3615141221 -2a6A1A3Z3 9- 0

-2 ’1 —2 A ' - AA i‘°2‘°3”‘ -3 2.?
A202 #221“: “7139 aaAzz

’09(2A1A2228‘02T1 *Z1A228-102T1) (3-28)

_ — 2' T - f '

-a10(2A1A1AZ +A12A2e "’2 1)-2a11A2A3A3 + 7.2.ew1T1 = 0

-2 ’1 -2p A 1 -a Azem-3T1 -a AA e"°3"’2’T1
“5 3 3 (‘5 121 1312 (3.29)

" 2G14A222A3 "' 2a15A1Z1A3 ' 301613523 = 0

Equations (3.27)-(3.29) can be put into autonomous form by letting

Bk “01
AI: = file

and solving for the ¢k such that all of the exponential terms have the same

exponent. Utilizing the values of ok which result from this process, the

Ak can be rewritten as follows:

3 ia- I16(102M
A1 = 7.

82 ia1T1

A2 = Te (3.30a,b,c)

B ' - TA3 = 7.3-eICZU1 202+03) 1

These relationships can be substituted into equations (3.27)-(3.29)

with Bk -= Bkr + inj for k = 1, 2, and 3. Here the subscript r designates

the real component of the Bk term and the subscript j designates the

imaginary component of the same term. Taking the resulting equations,

separating the real and imaginary terms gives the following six equations

governing the amplitude modulations in time T1:
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C

I

“1 2 “2

1 ' u2(“1”“2) ’H1u1'm (”3‘16 ‘“4“5) ‘72; (“1‘16 ““2“5)

3

-3; (ugul, +uz) -332: (uzug +3u2uf +2u1u3u4) (3. 318)

3a a

-.8;I§(u12u2 +ug) 25% (uzu: +u2u:)

a1 :12

-"'U O‘O " U+ uu+uu 4' UU+UU
1(12)”12m(3546)m(1526)C

N
\

I

a

(u3 +u3uf) +3.2; (31.11 u: +u1uf +2u2u3u4) (3-31b).

$1
.2

2”
3

+ (u

Q
V
I

3

3 2 a6 2 2

1+u1u2) ~12a (u1u5 +u1u6)

El

/ “7 3“8 2 3
L13 = u4a1--;::3--z_(1.11116-uzu5)23..“—2 (u3 u‘ +114)

-_8_ (u2u32 +3u2uf +2u1u3u4) (3.310)

“10 2
-372 (u1 L14+3u2 uk+2u1u2u3)- $1.1. (u4u52 +u4u2)

/ “7 3“8 3 2

”z, = "“301 -p::4+Z—a§ (111115 “4206) 4'mfig 1”1311).)

(3 u1 1.132 +3 u1u42+2u2u3u4)

m (3.3ld)

+31% (3u12u3 +u22u3 +2u1 112a,.)

C‘11 Z 2 f2

762““ ”3"“ ' '27.;

a a

115/ = u6(201-202+a3) -p3u5 -71_a:u1u2 -2155 (U1 11,. +u2u3) 3 31 )

( . e

a a 3a

-217: (u3zu64-ufu6) 22:1; (u12u6 +u22u6) 2.8.5 (uszué 411:)

l
u = -u5 (201 -202 +03) -p3u6+ (L112-u§)+ Zl(u1u3 -u2u,.)

6 2‘— ‘5 (3.311?)
““15 3““16 3 2

+z1_a:(u§u5+u4u5) +2.“; (u12 u5+u22:15) +1: (u5 +u5u6)
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where the following variable reassignments were used:

B1r " ”1’ 31°
’4 uz, B2" 4 113, 82].» U4, 83'. -+ us, 831.4 U6 (3.32)

The relationship between these uj and the Xj for this case can be written

in equation form:

2 2 - u 3.
X1 z x10 =‘/u1 «r'u2 cos[92t +y1] where 71 = tan 17:] ( 338)

“3

X3 z x30 =1/u: +u§cos[292t +73] where y3 = tan“ [1:6] (3.33c)

uS

3.4 CASE 3 - (Torsional and Vertical Forcing)

In this case, forcing in both the X2 and X3 coordinate directions is

present. Hence, both of the forcing terms in equations (3.11) and (3.12)

are nonzero. Rather than introduce an additional detuning relationship,

the fact that $23 =- 292 is used to keep the number of detuning relationships

to three as in cases 1 and 2. Physically, this relationship represents

the fact that the forcing frequency associated with X3, 93, is of second

order and the forcing frequency associated with X2, 92, is of first order,

and hence these two frequencies are always in the ratio of 2:1. Therefore

the detuning equations for this case are:

92 = 02 + £01, 02 -= a1 - £02, 03 = 201 - 603, (3.31m)

with the additional dependent detuning relationship

93 - 202 + 2501. (3.34b)
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Using these relationships in equations (3.10)-(3.12), the secular terms

are eliminated by letting:

/. . i T - i( - )T
(-2A11w, -2p1A11w.)e 0' 0 -a1(A2A36 “5 Q 0)

_ .- Neg-0|)To _ 2- iapTo

a2<A1Ase_ . T )_“3(3.A§A2e T ) (3.35)

-a4(2A1A2A2eW' 0 +A1A2281( 02-0” 0)

-a5 (3A.?Z1eiqTo) -a6(2A1A3Z3e‘qT°) =0

l' ' i 1 - i‘ ‘ >7 2- i T

(’ZAle‘ZFZAzl‘QM “2 0 ‘“7(A1A3e “5 0' 0) -“3(3A2Aze «.2 o)

.— ' T _ . _ T

-a9(2A1A2A2e
'0‘ 0 +A1Azze'(2“2 1“) 0)

- ’ — ' _
(3.36)

- “10(2A1A1A261QT0
+A12Azel(2"’l 02)To)

_ - f .

" G11 (2A2A3A381QT0) + 7136102") .2 0

l. . 1 T 21 T i( + )T

{-214le 'ZM3A3165)3.“5 0 ‘012A126 0‘ 0.. Q13 (A1Aze 0‘ “2 O)

- i T - i T (3.37

-a1(, (21424422436 05 0) :a15(ZA1A1A3e “5 O) )

._ - f .

-a16(3A32A3e‘°’—"T°) + 73e‘°3T° =0

With further use of equations (3.34), equations (3.35)-(3.37) can be

simplified to:

/ . . - i(a «13111 - —ia3T1
’2A1101 ~2p1A11w. - “12422438 2 ' (121412438

‘ 3G3A2222€

- 3a5A1221 " 206A1A3Z3 = 0

40271 ““1. (214114222 +Z1Age-Zi02T1) (3.38)

‘ZAz/iQ ’szAziQ -a721A3e‘(02-a3"1 ’308A22X2

" ' T

‘09(2A1A2A2’e‘02 1

" G10 (2A1Z1A2 4' 4412228

_- _' T

1* A1Azze ‘02 1)

2102‘“) (3'39)

_ f - T

- 2011A2A3A3 4‘ 72.6101 1 = 0
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/ . . 2 i T i( ~a )T

“2143 J. (:5 '2H3A3lfs ‘ a12A1e 03-1 ' 0131412428 03 Z 1

‘ 2014242142233 ‘: 2015A1A1A3 (3 .40)

- f '2 - T-3a16A32A3 +73-en(a1202+03)1=0

Equations (3.38)-(3.40) can be put into autonomous form by letting

Bk W71
Ak=7e k

and solving for the ¢k such that all of the exponential terms have the same

exponent. Utilizing the values of ¢k which result from this process, the

Ak can be rewritten as follows:

B ' - 1
1e'(0102>1

141:7

_ 32 mm (3 40a b c)
A2 “'76

° 1 7

B '2 -2 + T
A3=—;e‘(a1 02 ”3’1

These relationships can be substituted into equations (3.38)-(3.40)

with Bk - Bkr + inj for k -= l, 2, and 3. Here the subscript r designates

the real component of the Bk term and the subscript j designates the

imaginary component of the same term. Taking the resulting equations and

separating the real and imaginary terms gives the following six equations

governing the amplitude modulations in time T1:

:1 a

u1/ = “2 (01 ’02) -p1u1 -2iw, (£131.16 -u4u5) -7112; (u1u6 -u2u5)

3

-32 (u3zu4 41143) ';% (1121.132 +3UZUZ +2111 1.13114) (3'423)

3a (1

-3350112112 +ug) -Z.% (112L152 +u2u5)
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/ a1 02

U = 'u1 (“1 '02) “#1U2 * (“3'45 “14%) * (“1‘15 “12%)
2 301%:

30:

+3? (U3 +u3ul.2)+.8_ (3u1u§ +u1u2+2u2u3u4)

3““s 2
+3.3 (11? +u1u§) +2_:.;'. (u1u5 +u1uz)

/ _ “7 3“8 2 3
U3 - 11401 112113-22E (u1u6-u2u5) -3172 (u3u4 +u4)

“9 2 3 2 2
-.872.(u2u3+ u2u4+ u1u3u4)

a

'3%(U12U4+3U22U4+2U1U2U3)

_ “11

To;

2 2
(u,.uS +u4u6)

/ _ “7 “8 3 2

“a ‘ -U3o1-y2uum(u1us H12%) *3; (“3 ”13%)

+ a9 (31.! u2+u u2+2u u u)
'8— 1 3 1 z. 2 3 lo

+.3._(3u2u3+u22u3+2u1u2u4)

“11 2 2 f2
-23 (m3uS +u3u6) - m

/ a

U5 = U6(201’202 +03) ”#3115 1'213111 U2

2

(uu+uu)-.Za_W(uu+uu)
T14 23 2'17 6 6

a 3a

'T-l: (”1 “6 fl122116) -—3—a;6 (1152 U6 +u2)

U6, -'-' “115(201-2024'03) -p3u6+ G12 (U1 ”1.12)

Zas

“13 / “11. 2 2
+ (u1u3-u2u4) + (u u5+u us)
2:5" Z (‘5 3 lo

“15 2 2 3“16 3 2
+2E (u1u5 +u2u5) +_8_“5 (us +u5u6) -7?

where the following variable reassignments were used:

311- " “1' B11 " ”2' Bar " “3' sz " "4' Bsr " “5v 33' ”6

(3.42b)

(3.42c)

(3.42d)

(3.42e)

(3.42f)

(3.43)

The relationship between these uj and the Xj for this case can be written

in equation form:
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/ 2 2 - U 3.44
X1: x10 = u1+u2cos[92t+y1] where 71 tan1 FE] ( a)

.3
“

1 ll

1
"
?

3

u
~ x20 = «a; +uf cos[ta +12] where 72 '1 3%] (3.44b)

~ _ 2 2 _ -1 u6 (3.44c
X3 ~ x30 - u5 +1.16 cos[2£22t+y3] where 73 - tan is. )

3.5 REMARKS

The equations governing the response of the system in the slow time

scale, T1, for each of the three cases have been derived. These equations

can now be used to investigate the system response for each of the three

cases. This is done in Chapter 5. Prior to presenting this information,

Chapter 4 presents the parameter values for the physical system to be

investigated and gives information that validates the use of the Taylor

series in the derivation of the equations of motion of the system.



CHAPTER 4 SYSTEM PARAMETERS AND TAYLOR SERIES VERIFICATION

4.1 SYSTEM PARAMETER VALUES

Prior to presenting the numerical results for each of the three

cases, discussion of the parameter values to be used in the numerical

analysis is needed. It is desirable that the parameter values for the

numerical analysis be realistic. As such, the physical problem

investigated here is an in-line four cylinder automotive engine. Certain

aspects of the geometry were set to facilitate the tractability of the

problem. The location of the center of mass at the geometric center of

the rigid body and the symmetry of the support locations were set in this

fashion. The physical dimensions of the rigid body are representative of

the dimensions of an engine looking along the crankshaft axis. The

geometry depicting these parameters are Figures 2.1 and 2.2. The values

chosen for the physical problem are:

Mass m: 219.400 kg

Inertia 16: 14.155 kg-m2

Height 28: 0.842 m

Width 2A: 0.254 m

k1: 1,732,312.8 N/m

k2: 433,078.2 N/m

k3: 433,078.2 N/m

k‘: l,732,312.8 N/m

Spring free length: 0.102 m

The values for IG, [(1, [(2, k3, and k4 were chosen such that the tuning

between the rigid body linear natural frequencies is: 201 - 202 - 03.

These relationships between the linear natural frequencies need not be

strict equalities. Indeed, the preceding analysis of Chapter 2 allows for
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such inexact tuning through the parameters 02 and 03. However, we chose

to set 02‘=‘§ - 0, realizing that only small changes in the main features

of the response plots would occur for small changes in these

relationships.

These parameter values are also used to obtain numerical

coefficients of the terms of the Taylor series approximation of the

potential energy about the static equilibrium point. These coefficients

are then divided appropriately by either m or IG producing the «1's in

equations (3.3). The resulting numerical values are:

a1 = 41915.45 (19 = -58,055.75

:12 - 154,817.68 am - -474,311.20

(:3 = -1248.52 (111 - 180,387.67

“4 ' £33353? ' "2.333%?a51= , . ‘H3 - - .

66 = -1,897,270.97 (11,. - 11,638.05

(17 - -76,188.63 6,5 - -l,897,270.97

68 .. 444.52 616 .. 189,727.10

The values of the viscous damping coefficients c1, c2, and c3 were

chosen such that the dimensionless viscous damping factors of the

linearized system equal 0.01. This leads to the following dimensionless

modal damping coefficients specified as pi in equations (3.2):

(H a 0.63

pa - 0.63

”3 - 1.26

The magnitude of the forcing, F} and F“, were chosen to be of the

same order of magnitude of force found in production engines. Limited

information was found regarding these values and the following values

reflect the information available (Fullerton, 1984):

F} - 150.0 N-m

P3 - 1000.0 N
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The frequencies associated with the forcing terms F} and.F3, 92 and

93 respectively, were chosen to correspond to the first order and second

order associated with a hot idle condition of an in-line four cylinder

engine which is approximately 600 rpm. Thus the values of 92 and 93 are:

92 a 20"

The parameter 6 introduced in equations (3.3) must be specified to

enable the numerical evaluation of the results of the multiple scales

analysis of the rigid body system. For this problem, 5 is not a naturally

occurring parameter of the system. It was introduced as part of the

multiple scales analysis as a means to distinguish between motions at the

different time scales. The method of multiple scales as used here

1
introduces corrections that are of 0(a) for the time interval _.>t3>0

E

(Kahn, 1990). Hence for the value of e chosen here, 6 = 0.01, this time

interval is 1005. The time intervals associated with the transient

response for the three cases investigated here are on the order of 103 and

are well within this interval.

4.2 TAYLOR SERIES VERIFICATION

Prior to presenting the response curves of the three cases,

verification is presented for the use of the Taylor series approximation

of the potential energy used in the Lagrange formulation of the equations

of motion for this system. Time response plots, obtained from numerical

integration (4th-order Runge-Kutta) for a given set of parameter values,

are shown for each of the three cases. The comparisons demonstrate good

agreement between the response predicted by the numerical integration of
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the reduced equations obtained from multiple scales analysis (hereafter

referred to as "reduced equations") and the envelopes obtained from the

numerical integration of the equations of motion obtained from the

approximation of the potential energy using a Taylor series retaining up

to quartic terms. These equations are hereafter referred.tx> as "cubic

equations" as it is cubic terms that appear in the equations of motion

after the required partial derivatives of the quartic terms of the

potential energy approximation are performed.

In addition, for case 2, further comparison is made with the

envelopes obtained from the numerical integration of the equations of

motion obtained from the approximation of the potential energy using a

Taylor series retaining up to only cubic terms. These equations are

hereafter referred to as "quadratic equations" as it is the quadratic

terms that appear in the equations of motion after the required partial

derivatives of the cubic terms of the potential energy approximation are

performed. Comparison is also made with the envelopes obtained from the

actual equations of motion with no approximation in for the potential

energy, hereafter referred to as "actual equations".

It is shown clearly in this case that the time response obtained

from the quadratic equations is different than the time response obtained

from the actual equations. Hence, although not an exhaustive test, it is

reasonable to assume that it is valid to neglect terms in the Taylor

series higher than quartic. Hence all of the reduced equations are derived

from multiple scales analysis of the cubic equations of motion.
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4.2.1 Case 1 (Vertical Forcing)

Figure 4.1 shows the time response plots of the numerical

integration of the cubic equations. This figure depicts the upper and

lower envelopes of the time response for each of the three system

coordinates. Figure 4.2 shows the time response of the numerical

integration of the reduced equations, equations (2.28). Very close

agreement is seen between these two response plots, particularly in the

steady state amplitudes. However, small differences are seen between the

transient aspects of the responses. These differences are due to the

different initial conditions used to generate these two sets of responses.

The initial conditions used to generate the responses in Figure 4.1 are

specified in terms of the initial displacement and velocity of the system

coordinates. The initial conditions used to generate Figure 4.2 are

specified in terms of the real and imaginary parts of the complex response

defining each of the system coordinates. Since the multiple scales

analysis will be used to predict the steady state amplitudes of the

systems, no effort was taken to show full agreement of the transient

aspects of the time response.

Comparison of Figures 1 and 2 also show that the reduced equations

fail to predict the bias in the steady-state response predicted in the

cubic equations as shown in Figure 4.1. This is expected due to the

approximation of the multiple scales analysis. The terms that govern this

behavior are 0(52), and are not accounted for in the analysis performed

here.
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Case 1 (Vertical forcing)

4.2.2 Case 2 (Torsional Forcing)

This case is used to present the correlation of the response

predicted by the reduced equations and the actual equations. Figure 4.3

shows the envelope of the time response obtained from the actual equations
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of motion. This response is contrasted with the time responses shown in

Figures 4.4, 4.5 and 4.6.

Figure 4.4 is the time response for the system obtained from the

quadratic equations. Comparison of this response with the response from

the actual equations given in Figure 4.3 shows that retention of the cubic

terms in the potential energy is not sufficient to predict the correct

transient or steady state response of the system. However, the time

response shown in Figure 4.5, obtained from the cubic equations, shows

good agreement with the time response from the actual equations of motion

shown in Figure 4.3. Here the comparison of the transient and the steady

state aspects of the time response is valid as the initial conditions are

identical between the two simulations. Good agreement is seen between

these two simulations.

Figure 4.6 gives the time response of the reduced equations. This

time response shows good agreement with the response of the actual

equations of motion given in Figure 4.1 and with the time response of the

cubic equations of motion shown in Figure 4.5.

The response for this particular set of parameter values clearly

shows the importance of retaining the quartic terms in the Taylor series

approximation of the system potential energy. This particular comparison

illustrates the fact that it is not only differences in the transient or

steady-state responses of the system which can be realized, but the

qualitative nature of the response can be different. The time response

obtained from the actual equations of motion, shown in Figure 4.3, shows

that the steady state response of the system is time varying for this set

of conditions. In contrast, the time response obtained from the quadratic

equations, shown in Figure 4.4, incorrectly predicts that the system has
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a fixed value steady state. The cubic equations do qualitatively and

quantitatively predict the correct time response as shown in Figure 4.5.
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4.2.3 Case 3 (Torsional and Vertical Forcing)

The results of the comparison of the time response of the cubic

equations to the time response of the reduced equations are identical to

the comparison performed in case 1. Figure 4.7 shows the envelopes of the

time response obtained from the numerical integration of the cubic

equations. Comparison of these with the time response obtained from the

reduced equations, shown in Figure 4.8, shows good agreement for the

steady-state response. Some differences are seen in the transient

responses of the two sets of equations. This is again due to the different

n tial conditions used to generate the two response plots as explained

above in case 1.
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4.3 REMARKS

The results of this chapter are important in that they establish

that use of the Taylor series for the potential energy expression in the

derivation of the equations of motion leads to system response consistent

with the actual equations of motion. Further, the reduced equations

obtained from multiple scales yields system response consistent with both

the actual equations of motion and the Taylor series equations retaining

cubic terms. The reduced equations can.now be used further to investigate

the frequency response of the rigid body system for each of the three

cases. This will be done by utilizing the reduced equations derived for

each of the three cases and looking for the steady-state response of the

system. This information is presented in the following chapter.



CHAPTER 5 SYSTEM FREQUENCY RESPONSE

Having completed the verification of the reduced equations, the next

step in the investigation into the harmonic response of the rigid body

system is to obtain the frequency response of the system. The frequency

response can be obtained from the reduced equations produced by the

multiple scales analysis. Steady state motions of the system are obtained

by solving the reduced equations when the time derivatives of the system

are set equal to zero. This can be done for each of the three cases and

the frequency response plots obtained by plotting these solutions, and the

associated stability information, for an appropriate range of the detuning

the parameter, o1, i.e., the nearness of the forcing frequency to the

associated natural frequencies. The stability of the solution is

determined through examination of the eigenvalues of the Jacobian matrix

for the system of reduced equations.

The detuning relationships for each case are given in Chapter 3.

However, for all cases analyzed herein, c:1 is the only detuning parameter

varied in producing the response plots. In each case, this parameter

represents the tuning of the forcing frequency relative to the natural

frequency'aq for j - 2,3 corresponding to the coordinate being forced. The

detuning parameters 02 and 03 are both set to zero for all cases yielding

perfect tuning of the internal resonances, a1 - 02, 201 - 03..A fourth

case, which is a variation of case 3 having reduced values for the

magnitude of the forcing, will also be investigated.

Prior to proceeding‘with the response plots, the process and.methods

used in solving the algebraic equations for the steady state amplitudes
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and obtaining the frequency response are discussed. The response plots for

each of the four cases follows.

5.1 ANALYSIS METHODS

As stated, the frequency response of the system for each of the four

cases is found by solving the reduced equations with the derivatives set

to zero for an appropriate range of 01. Thus the problem of establishing

the frequency response is reduced to that of repeatedly solving six

nonlinear algebraic equations. For example, the algebraic equations

governing the steady state amplitudes for case 1 are given by equations

(5.1a)-(5.lf), i.e., equations (3.21) with the time derivatives set to

zero .

u2 “1 “2

7— (01'03)'“1u1'm(u3u6 ”“4“5) '75 (“1'46 'Uzus)

3a a

-37.; (U§UA*UZ) -_8.% (u2u32 +3u2uf+2u1u3u4) (5-13)

3“5 2 3 “6 2 2

"83 (”1”2*u2) ‘27:. (“ans “12%) = 0

U1 (:1 dz

‘7(°1"“3) ’F1U2 *2; (“3‘15 “14%) ‘27; (“1‘15 “12%)

3a 0!

+333 (u§+u3uf) +79% (3u1u§+u1uf+2u2u3u4) (5-1b)

3&5 3

4.

a

‘83 (“1 “-11"? ’72: ("“152 “11513) = 0

u 0: 3a

711(01-6202 -o3) -p2u3 -z% (1.11116 -u2u5) -338 (113211,. +11?)

2 2 “10 2 2 1

(u u +3u 11 +211 11 u,,)- (u u4+3u u4+2u1u2u3) (5- C)
2 3 2 7. 1 3 '37? 1 2

$
1
.
1
3
8

2 2
(uku5 +u4u6) = 0
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u 01 3a

'73: (O1 *202 '03) “#zuzfizzg- ("1'15 “12%) +33:- (“33 *usuf)

+.;.§2. (3 u1u32+u1uf +2u2u3u4) «931—0 (3u12 u3 +u2u3 +2u1u2u4) (5.1-d)

“11 Z

-2? (1.13115 +u3ug) = 0

uo- u-a12uu-a13(uu+uu)a (uu26+u2u)
61’135775-12m1623zzg-W3 (.6

3 (5.1e)

015 2 2 G16 2 3 _
25E (u1u6+u2u6) ~17; (u5u6+u6) - 0

a a a

““501 '“3u6+z1_a: (”12 ”17?) ’23 (U1U3 ’Uzul.) ”’21,:- (“zfus *ufus)

(5.1f)
I

“15 2 2 3016 3 2 f3
4.2—“S (u1u5 +u2u5) +173 (us +u5u6)-.2_a; :=0

Obtaining a response plot from the six algebraic equations consists

of two phases. In the first phase, solutions to the equations are found

for several values of 01. Typical values of a, are: o1== O (i.e., Q3 - 03)

and 01 = i300 (i.e., 93 = 40" i 3 rad/s). These solutions are found using

a FORTRAN program based on the IMSL routine DNEQNJ (IMSL, 1980). This

routine produces the solution of a set of nonlinear algebraic equations

using the Levenberg-Marquardt optimization algorithm.

After the various solutions are found at the selected values of 01,

they are used as seeds in a program.which traces the solution paths, i.e.

the frequency response, by iterating on.the values of'01. The solution for

the previous value of a1 is used as the seed in the solution.algorithm for

the next step. This program is also based on the IMSL routine DNEQNJ, but

has the added feature that it loops on a parameter. In all cases examined

herein this parameter is 01. The stability of each of the solutions is

established by evaluating the eigenvalues of the Jacobian matrix of the
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nonlinear algebraic equations. This procedure was found to be an efficient

and convenient method for finding the solutions to these algebraic

equations, establishing the associated stability, and thereby determining

the system response.

The six solution components found for a given value of 01 form the

three pairs of the real and imaginary components of the three coordinate

variables X3, X2, and X3, i.e., corresponding to the coordinates x, a, and

y, which are the horizontal, angular and vertical displacements,

respectively. The collective magnitudes and the corresponding stability

information for an appropriate range of Oj‘values form the response plots

for the system. It .is these response plots for each of the four cases

which are presented next.

5.2 CASE 1 (VERTICAL FORCING)

The algebraic equations to be solved.for the steady state amplitudes

for case 1 are given by equations (5.1a)-(5.lf). Following the procedure

outlined in the previous section, frequency response plots for the

magnitudes of the coordinates X3, X2, and.X3 are given. For this case, two

response plots for each of X}, Xé, and X3 are presented. The first set of

response plots, Figures 5.1, 5.2, and 5.3, include several of the unstable

solutions with comparatively large magnitudes. These large values of

response represent solutions which are not physically realizable and are

only a mathematical curiosity. (The dimensions associated with X1 and X3

are given in meters in the response plots and in radians for X2.) Response

plots with a larger ordinate range are not shown for any of the subsequent

cases and are shown here for completeness.
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Before discussing some of the important features of these figures,

the actual interpretation of the response curves is addressed. Recall

equations (3.23):
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stable solution,

X z x = ‘/u2 +u2cos[ 93 t +y] where
1 10 1 2 '1? 1

X = X = u2 +uzcos[ 93 t + ] where
2 20 3 I, 7- 72

X3 ~ x30 - 11115 +u6 cos[fl3t +73] where

and equation (3.13a):

Q3:= 03-+ 601

From equations (5.2) and (5.3),

oscillating at the forcing frequency {23, X1

---- unstable solution

. ”-1... :2. (22>
1 ‘11

y - tan"1 3: (5'3)
2 113

y = tan'1 :9. (5'4)
3 ”5

it can be seen that instead of

and X2, which are the

magnitudes of the response in the horizontal and rotational directions,

respectively oscillate at one half this value. Figures 5.4 and 5.5, depict
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the response curves for X1 and X2, respectively. Therefore, these plots are

unlike the usual "linear" response curves where the frequency of the

response is always the same as the forcing frequency. Finally, it is noted

that for all cases investigated, a 1 Hz change in the forcing frequency

corresponds to a o1'va1ue of 628.32. We are now in a position to discuss

the features of the response curves shown in Figures 5.4-5.15.

The second set of response plots, shown in Figures 5.4, 5.5, and

5.6, have a reduced range of response amplitude to show more explicitly

the transitions between the linear and nonlinear solutions. It is seen

that away from the external resonance, i.e. a1 + 0, the motion of the

system follows that of the linear system. For this case, the linearized

system is a set of three uncoupled linear oscillators. Therefore, as the

forcing acts only on coordinate X3, the linear solution for the X1 and X2

coordinates is, to this level of approximation, the trivial solution for

all 01. Slowly increasing the frequency of the forcing starting from far

below this resonance leads to unstable linear response for the X, and X2

coordinates which occurs at o1==-470. At this value of the detuning, the

X1 and X2 coordinates abruptly shift from the trivial solution up to a

nonzero steady state response. The linear solution for the X3 coordinate

also becomes unstable at this value of a1 and the steady state response

jumps up to a different stable solution. These non-trivial steady state

solutions continue until a1:= 971 where all of the coordinates experience

downward jumps back to their respective linear solutions.

When starting far above the resonances and decreasing the frequency

of the forcing, transition from the linear solutions to the nonlinear

solutions occurs at a, = 450. These solutions continue until a large

downward jump back to the linear solutions is experienced at a, = -860.
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Figure 5.5 — Frequency response for X2, case 1, rotational response
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Response similar to the response described here has been

demonstrated analytically for two degree of freedom systems (Nayfeh and
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Figure 5.6 — Frequency response for X3, case 1, vertical response
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Mook, 1979; Haddow, et. al., 1984; and Perkins, 1992). Additionally, in

Haddow, et. al. (1984), this response was also verified experimentally.

The system investigated here exhibits some of the same features shown in

these references. In particular, these systems display the saturation

phenomenon. This is the situation whereby increased forcing magnitude is

not accompanied with an increase in the magnitude of the response variable

in the direction of the forcing. Thus the mode is "saturated". This

phenomena occurs over the region of nonlinear solutions and need not be

associated with large displacements. In contrast, the case where only an

external resonance is present (Nayfeh and Balachandran, 1989), the

additional parametric resonance (actually and autoparametric resonance,

see Nayfeh and Mook, (1979)) makes the response plot asymmetric about the

o1 - 0 axis. This agrees with the results shown in Perkins (1992) where

asymmetry is also shown.
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This system response shows some interesting implications from the

vibration isolation point of view. The response of'X3 (vertical), shown in

Figure 5.6, shows that over the range -400:s<fi s 550, the nonlinear system

shows drastically reduced response amplitudes than for the corresponding

linear case. This however comes with two trade-offs. The first is that the

response amplitudes for X} (horizontal) and X: (rotational), are nonzero.

This is in contrast with the linear solution where the response of both of

these would be zero for the entire range of 01. The second is that over the

ranges -860 5 a, s -400 and 550 5 a1 5 971 the nonlinear response is

greater than the linear response. However, the peak nonlinear response is

still much less than the peak linear response. In particular, where the

linear response reaches a maximum, the nonlinear response reaches a local

minimum which is approximately seven times less than the linear solution.

Hence, it is seen that the energy has been distributed among the

various coordinates rather than being concentrated in the coordinate

response associated with the direction of the forcing. This type of

response could be utilized effectively in circumstances where response of

a system near a particular frequency, and in a coordinate direction

different from the one being excited, is more tolerable than response in

the direction of the forcing. For example, this might occur if a

supporting structure for a system has different stiffness values in

different coordinate directions.

5.3 CASE 2 (TORSIONAL FORCING)

The six algebraic equations governing the steady state amplitudes

for case 2 are given by equations (3.31a)-(3.31f) with the terms

containing the time derivatives, i.e., the left hand side of these
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equations, set equal to zero. Following the analysis procedure outlined in

Section 5.1, the frequency response plots for the coordinates X1,.X2, and

X3 are generated.

For this case, the linearized system is again described by three

uncoupled linear oscillators. Since the forcing appears in the equation

for the X2 coordinate (see equations (3.3) with 1:3 =0), the linear

response for the XI and X3 coordinates is the trivial solution. Figures 5.7

and 5.9 show that the nonlinear response of these two coordinates does

occur. In Figure 5.8, the linear solution for the X2 coordinate is plotted

in addition to the nonlinear solution. As can be seen in this figure, the

amplitude of these two solutions match very closely except in the region

4005015 100.
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Figure 5.7 — Frequency response for X1, case 2, horizontal response

stable solution, ---- unstable solution 

In contrast to the response plots for case 1, the response for this

case does not contain any sudden jumps from the linear to the nonlinear
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Figure 5.9 - Frequency response for X3, case 2, vertical response

solutions. All three of the response plots have smooth transition for this

range of 01.
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As seen in Figures 5.7, 5.8, and 5.9, for -36 5 a1 5 31, no stable

steady state solutions exists. As such, the response is never expected to

reach a steady state (a condition where the modal amplitudes are

constant). Figure 4.6 shows the envelope of the time response for this

system obtained from numerical integration of the reduced equations for

o1=0 CH = 0. This time response illustrates the lack of a steady state

solution with constant modal amplitudes.

5.4 CASE 3 (TORSIONAL AND VERTICAL FORCING)

The six algebraic equations governing the steady state amplitudes

for case 3 are given by equations (3.41) with the terms containing the

time derivatives set equal to zero. Once again, we follow the procedure

outlined in Section 5.1 to obtain the frequency response plots.

In this case, forcing in the equations for the X2 and X3 coordinates

is present (see equations (3.3)). The forcing frequencies are such that

for the condition investigated, external resonances are present for both

of these coordinates. This is the case as the forcing frequency on the X3

coordinate, Q3, arises from a second order type of unbalance whereas the

forcing frequency on the X? coordinate is of first order, i.e., o3 - 292.

The internal resonances (01 - 02 and 201 - 03 are also assumed. The response

plots for this system are given in Figures 5.10, 5.11, and 5.12.

Figure 5.10 shows the frequency response of the X, coordinate. Here

it is seen that over the majority of the range -500 5 a1 5 500, the

response of this coordinate is multi-valued. In the range -110 5 01:5 50,

the response is single valued. In the regions -380 s a} s -250 and 220 s

cm s 450 the response is triple valued. For -450 s a, s -380 and 450 5 a1

5 510, the response is double valued. The responses of coordinates X} and
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Figure 5.11 — Frequency response for Xé, case 3, rotational response
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X3, shown in Figures 5.11 and 5.12 respectively, also exhibit these same

features.

For this case, verification of the response magnitudes for each of

the three system coordinates was made. The verification is made through
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Figure 5.12 — Frequency response for X3, case 3, vertical response

stable solution, ---- unstable solution
 

comparison with the response amplitudes predicted through numerical

integration of the cubic equations to those predicted by the steady state

‘values obtained from the reduced.equations. The comparisons were made only

for selected values of 01: a1 - i300 and a1 - 0. These amplitudes are

indicated in Figures 5.10, 5.11, and 5.12 by the o. This comparison shows

that for the response amplitudes predicted ath - 0, very good correlation

is shown. Correlation at a} - £300 is also quite good. Additionally, the

correlation. shows good. agreement 'between. qualitative nature of the

solutions.

For this case, again the linearized system for this system

configuration is three uncoupled linear oscillators. Since two of the

coordinates contain a forcing term, the resulting motion will contain the

response from only these coordinates, but for all values of the input

forcing frequencies the response would be single valued. Table 5.1 lists
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a comparison of the maximum amplitudes of the linear and nonlinear

responses of the system for this case.

 

 

 

 

Linear Response Nonlinear Response |

|X1LnEx 0.000 0.022 "

|X2|m 0.135 0.125 ll

nghgg 0.014 0.010    

Table 5.1 - Comparison of linear and nonlinear amplitudes for case 3

As in case 1, it is seen.here that a large reduction in amplitude is

realized in the X3 coordinate response for the range -200 s a, s 200. It

is in this range that the nonlinear system produces small response

compared to the linear response. This difference in amplitudes can be

utilized to enhance the isolation response of the system.

5.5 CASE 4 (REDUCED AMPLITUDE TORSIONAL AND VERTICAL FORCING)

Currently, limited information is available pertaining to the

magnitudes of the forcing present in an in-line four cylinder engine. The

available information (Fullerton, 1984; Geck and Patton, 1984) presents

data only for selected force components. In an effort to account for any

uncertainty in the amplitudes, an additional load condition with smaller

force magnitudes was selected and the response of the system obtained.

Information from the above references was used to determine the reduction

in force amplitude. The magnitudes of the forcing selected are:

P} = 30.000 N-m (previously 150.000 N-m)

F3 - 500.000 N (previously 1000.000 N)
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Figures 5.13, 5.14, and 5.15 show the frequency response plots for

the coordinates X1, X2, and X3. As shown in these response plots, the

solution is still nonlinear. The comparison in the response plots with

those of case 3 reveals that the onset of the nonlinear response in case

4 occurs at a smaller value of 01 than for case 3. This nonlinear response

is also sustained for a smaller range of o1.'This can be seen most clearly

by comparing the responses of the X3 coordinate for the two cases. In

considering a sweep of the frequency parameter 01 from negative to positive

(left to right in the figures), it can be seen that the onset of the

nonlinear solution.for case 3 occurs at o1==-250, whereas for case 4 this

value is o1== -160. For increasing values of 01, the nonlinear solution is

sustained in case 3 until 01 = 510, whereas for case 3 this value is

01.2230.
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Figure 5.13 - Frequency response for X3, case 4, horizontal response

stable solution, ---- unstable solution 
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Figure 5.14 - Frequency response for X2, case 4, rotational response
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Figure 5.15 — Frequency response for X3, case 4, vertical response

stable solution, ---- unstable solution
 

Finally, it can be seen that there is a qualitative change in the

response due to the reduction in forcing amplitude. Although the response

for case 3 is similar to that of case 4 in that there are corresponding

regions where the solutions for the coordinates are single valued, double
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valued, and triple valued, case 4 response does not exhibit the single

valued response in the region containing c:1 - 0. Close comparison shows

that some interesting changes in the solutions occur as the forcing

amplitudes are varied. One of the solutions which is continuous through

the region given approximately by -150 s <31 5 50 for case 4 as shown in

Figure 5.12, is discontinuous in case 3.

Aside from the differences in response due to the reduction in

forcing amplitude just listed, excitation of X1 again occurs. Therefore,

even at lower forcing amplitudes, the reduction in the resonance peak

associated with the X3 coordinate can be accomplished.

5.6 MEASURES OF ISOLATOR PERFORMANCE

Having presented a collection of response plots for the

displacements x, a, and y of the rigid body, it is interesting to

investigate the associated forces transmitted to the foundation. This

section opens with a brief discussion of isolation performance.

Various metrics have been applied to the evaluation of vibration

isolation systems. Three of the measures prevalent in the literature are

transmissibility, isolation effectiveness, and power transmission.

Additionally, in many of the citations mentioned in this thesis, the

actual force transmitted to the base (or foundation) is the measure of the

performance of an isolation system. It is the purpose here to consider

each of these measures and understand their use.
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5.6.1 Transmissibility

The concept of transmissibility for damped, linear single degree of

freedom systems is defined in many undergraduate vibrations textbooks. See

for example Rao, (1986) or Thomson, (1972). For a single degree of freedom

system under a harmonic force excitation applied to the mass,

F

transmissibility is defined as T}==._I (see Figure 5.16(a)). This quantity

  

is also referred to as force transmissibility (Sykes, 1956; Ungar and

Dietrich, 1966). Here F3 is the force applied to the mass and FT is the

force transmitted through the spring (and damper if needed) to the

foundation (see Figure 5.16(a)). It should be noted that this definition

of force transmissibility is made under the assumption that the structure

to which the spring and damper are attached is rigid. Transmissibility for

a single mass undergoing base excitation is defined as

 

.;| (see Figure

5.16(b)). Here Y is the amplitude of the input displacement and X is the

amplitude of the displacement of the system mass.

The concept of transmissibility is defined more explicitly by Sykes,

(1956) and Ungar and Dietrich, (1966) , utilizing methods from modal theory

(Ewins, 1986). They further qualify the concept of transmissibility with

velocity transmissibility; TV. The ‘velocity transmissibility’ for' an

VR
V6,

isolator positioned between a source and a receiver is defined as IV =

  

where V3 is the velocity amplitude at the receiver and V6 is the velocity

amplitude on the source side of the isolator (see Figure 5.16(b)). It can
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be Shown that 13 = I}, at any one frequency for I» and.13 as defined above

for the single degree of freedom systems shown in Figure 5.16.

If;

 

     

  

i 1.121;.
1 m m 7757

I

1

Fr TICK,

7VC//7i//: VJ’ 4/'iZ3<rhm 

(a) (b)

Figure 5.16 - Single degree of freedom isolation system

5.6.2 Effectiveness

These same authors also define another measure of isolator

performance called effectiveness (Sykes, 1956; Ungar and Dietrich, 1966).

This quantity is also referred to as isolator effectiveness, isolation

effectiveness, insertion ratio and insertion loss (Rubin and Biehl, 1967).

Effectiveness is the nondimensional measure of the reduction of the

vibration of a system. It is the ratio of the structural vibration of the

system with no isolator (the source and receiver are rigidly connected) to

the structural vibration of the isolated system. If this ratio is less

than unity, the isolator reduces the amplitude of the receiver velocity

(acceleration or displacement). If this ratio is greater than unity, the

isolator increases the amplitude of the receiver velocity (acceleration or

displacement).

Recently, the notion of effectiveness has been expanded to systems

that include multiple parallel isolators connecting one mass to a
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foundation (Swanson, et. al.; 1994). For this system, both.21 velocity

effectiveness and a force effectiveness are defined. For velocity

effectiveness, this is done by defining a matrix, Ev, that represents the

level of velocity effectiveness in the isolated mounting system:

v"=15vi
(5.2)

s V s

where the velocity effectiveness matrix, Ev, is given by:

Ev = [I+(ze +zs)"zezi“zs]
(5.3)

and where \i‘ is the vector of structure velocities for the unisolated

system at the mounting points to the structure, v; is the vector of the

structure velocities for the isolated system at the same mounting points,

and Ze, Z and Zi are the impedance matrices of the engine (rigid body),
8,

structure and isolators respectively. For the force effectiveness, this is

done by defining a matrix, Ef, given by:

fr. =EFfi (5.4)

where the force effectiveness matrix, Ef, is given by:

Ef = [I +2.12e *Zs)’1ZeZ{1]
(5.5)

where fh is the vector of the forces transmitted to the structure at the

attachment points, fri is the vector of the forces applied by the engine to

the isolators in the isolated system, and Ze, Z and Zi are as defined
8’

previousLy. The matrix equivalent of the scalar magnitude, the matrix

norm, is used to extend the scalar notion of effectiveness previously

developed to systems with multiple parallel isolators. Instead of
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maximizing a scalar quantity as is done for a single degree of freedom

system, the spectral norm of the velocity or force effectiveness matrix is

used. Here the maximum and minimum singular values of the velocity

effectiveness matrix or the force effectiveness matrix.provide a frequency

dependent measure of isolator performance.

5.6.3 Transmitted Power

Another metric for vibration isolation systems is that of power

transmission, or power flow (Pinnington, 1987; Qu and.Qian, 1991). In the

article by Pinnington (1987), the expression for the time averaged power

transmission due to a harmonic input is written for multiple input,

multiple isolator system. This expression is given by:

w? = %1m([F’]T[A] [F]) (5.6)

where [F] is the vector of applied forces, [A] is the accelerance matrix,

and a is the frequency of the applied force. The superscript T denotes the

transpose and the superscript * denotes the complex conjugate. Further

qualification of this expression is presented for broad band application

where spectral densities are used. Correlation between the analytical

method and an experimental system is presented in the cited work.

All of the metrics presented up to this point make the assumption

that the system under investigation is linear. No provision is made in any

of the metrics for nonlinear system response.

Moreover, except for the expanded isolation effectiveness approach

utilized by Swanson, et. al. (1994), the effectiveness and

transmissibility metrics assume that the chosen system response variable

(force, velocity, displacement, etc.) is rectilinear in nature.
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Application of these metrics to general rigid body vibration isolation

problems would be inappropriate, because the system response is typically

not rectilinear.

Finally, it is important to note that for the transmissibility and

effectiveness metrics as applied, it is assumed that the disturbance and

the response are collinear. Thus, a single isolator does not isolate in

more than one direction. As such, with the use of these metrics, the

vectorial aspects of the response are neglected and the actual

effectiveness of the isolation system cannot be captured. Moreover, small

changes in the harmonic force acting on a rigideody on resilient supports

can lead to pronounced changes in the system response. This situation can

affect the direction of the reaction force at the point of connection

between the isolator and the foundation. Therefore, the general response

of the system must be investigated in order to completely capture the

system response and isolation performance.

The next section presents the results of an investigation of the

vibration isolation analysis of the planar three degree of freedom rigid

body. The failure of three of the metrics as applied previously and

described in this section to characterize the isolation performance of the

system is described. An alternative vibration isolation.metric applied to

the problem is established and the reasons are stated.

5.7 VIBRATION ISOLATION MEASURES FOR THE RIGID BODY SYSTEM

The application of the three metrics as presented in Section 5.6 do

not fully characterize the isolation performance of the planar three
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degree of freedom rigid body system. Each of these metrics will be

considered here relative to the planar three degree of freedom problem.

5.7.1 Transmissibility

The theory of transmissibility was derived with two assumptions. The

first is that the system response acts collinear with the forcing term and

the second is that the response of the system is linear. The second of

these assumptions implies that the system response consists of a single

frequency. For the three degree of freedom planar rigid body system

considered here, neither of these assumptions is valid. As shown in the

response plots earlier in this chapter, the response of the system can

occur in degrees of freedom which are not directly forced and which are

not collinear with the input forcing. The response of the system is also

comprised of components at more than one frequency.

One of the conveniences of' force transmissibility is that it

utilizes the magnitude of the applied force as a normalizing quantity in

establishing the metric. For the single degree of freedom case, this is

convenient as this ratio has a magnitude of unity for the static case.

This serves as a reference point against which the system performance can

be measured. In a like manner, independent force transmissibilities for

each of the degrees of freedom could be established for the case under

investigation. However, this ratio becomes meaningless for the degrees of

freedom which are not forced but have nonzero response, as a division by

zero will result. This is true regardless of the frequency or amplitude of

the forcing.

Velocity transmissibility is not applicable to this problem due to

the assumption that the system investigated here is grounded. Therefore,
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the velocity at the attachment of the spring to the support has zero

velocity. This results in a division by' zero, regardless of the forcing

frequency. Therefore, both force transmissibility and velocity

transmissibility fail to completely characterize the isolation performance

of this planar system.

5.7.2 Effectiveness

The notion of effectiveness is derived using the assumptions that

the system response is linear and collinear with the input forcing.

Therefore, response in unforced degrees of freedom not collinear with the

input and response at frequencies other than the forcing frequency will

not be included in the system evaluation. Additionally, the notion of

effectiveness as defined by Swanson, et. al., (1994) which expands the

notion of effectiveness to multi-degree of freedom systems, makes the two

assumptions that the isolators act in parallel and that the system

response is linear. Therefore, although this system does allow for

response in more than one degree of freedom, it is inadequate in

characterizing the performance of the isolation system for the planar

three degree of freedom system investigated in this thesis.

5 . 7 . 3 Power Transmission

The use of power transmission was developed under the assumption

that the system response is linear. In the article by Pinnington (1987),

the assumption is made that the frequency of the response and the input

forcing to the system are identical. Therefore, although this system does

account for response in more than one degree of freedom, it does not

account for system response at more than one frequency.
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5.7.4 Forces Transmitted to the Foundation

The use of forces transmitted to the foundation to characterize the

isolation performance of a rigid body system has been applied previously

(Spiekerman, et.al., 1985; Ashrafiuon, 1993; Swanson, et. al., 1993). In

each of these applications, the- assumption is made that the system

response is linear. Therefore, these models do not contain the complete

system response performance. The nonlinear phenomena of multi—frequency

response and response in unforced degrees of freedom will not be included

in the system response. Hence, the resulting forces are not accounted for

correctly.

5.8 ISOLATION PERFORMANCE OF THE PLANAR THREE DEGREE OF FREEDOM SYSTEM

Assessment of the isolation performance of the system in case 4 is

now developed. The metric chosen for application to this system is the

transmitted forces. Two modifications are required to adapt this metric to

account for the nonlinear response of the system. The first modification

is to develop the capability to account for the presence of more than one

frequency in the system response. In this case, the system response

contains two frequencies, but is periodic. Therefore, the root-mean-square

(rms) of the response is used to account for multiple frequencies.

The second modification to this metric is made to account for

response in all degrees of freedom. This is done by using the forces

developed in each of the springs in the system. These forces are due to

the response of each of the three degrees of freedom and therefore will

account for the total motion of the rigid body.
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Using these two modifications, the force used in the metric can be

computed. First, the x and y components of the forces for each of the

springs (F1), and F1), for [(1, Fax and FZy for k2, 1:3" and F3), for [(3, and F,“

and F6y for 1‘1.) are computed. The total force from each pair of springs on

the foundation is due to the deflection of the pairs of springs k1 and k2,

and [<3 and [(4, given by F12 and F34 respectively. The forces are given by:

 

F12(t) =J(F1x +F2x)2 1" (F1y +F2Y)2
(5'7)

 

Fun) = Jag, +p,,)2 + (F3, .pMZ (5.8)

These forces are a function of time. Therefore, the rms value of each of

these forces over one period is computed and then they are summed. This is

given by:

E = (F12)ms*(F34)rms (5'9)

It is this force F that is used to assess the isolation performance of the

rigid body system.

Figure 5.17 shows a plot of the magnitude of the force given in

equation (5.9) as a function of the detuning parameter 01 for case 4. This

figure also contains the frequency response of the linear system. Here,

the linear system response was computed using the same method after

setting the coefficients of the nonlinear terms to zero.

From Figure 5.17, it can be seen that in the region between

o1=i125, the force transmitted to the foundation for the nonlinear

system, which can be either of two stable solutions, is reduced in

comparison with the forces transmitted by the equivalent linear system. In

particular, the large peak in the response for the linear system is
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eliminated" This performance advantage is lost in the regions 228 > a, >

125 and -125 > 01 > -228, where the transmitted forces of the nonlinear

system are greater than the forces of the corresponding linear system. For

a, > 228 and o1‘< -228, the linear and nonlinear solutions are identical

and no advantage is realized from the nonlinear system. In these regions,

the transmitted forces are much lower than those associated with the

linear resonance condition and are typically of less concern.

This analysis illustrates the need for proper system modelling.

Modelling this system using linear theory leads to the incorrect system

response which predicts that a large peak in the transmitted forces will

result surrounding a} = 0.
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Figure 5.17 - Response plot of F, the force transmitted to the

foundation; stable solution, ---- linear solution 

5.9 REMARKS

This chapter brings together the two major aspects of this

investigation, that of the frequency response of a rigid body system and
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the isolation performance of the same system. This chapter shows that for

systems responding nonlinearly, caution must be used in assessing the

isolation performance of the system. In particular, the metrics commonly

used for this purpose do not adequately capture multiple frequency or

multiple direction response. A modified version of the metric which

monitors the forces transmitted to the base is proposed, and offers one

alternative with improved effectiveness over the more commonly used

measures. Using this metric, it is shown that the nonlinear response of

the system can be used to eliminate the peak associated with the

transmitted forces which occurs at resonance for linear systems.

The proposed metric will not likely satisfy the diverse requirements

of all rigid body isolation systems. Indeed, the performance of an

isolation system may require that system specific attributes be considered

in formulating the measure of performance, similar to the process used in

this investigation” This investigation delineates some of the difficulties

which can accompany an investigation into vibration isolation of rigid

bodies.



CHAPTER 6 SUMMARY AND CONCLUSIONS

This chapter first presents a summary of the major sections of this

thesis. The subsequent section presents the conclusions arrived.at in the

investigation. Finally, recommendations for future work are offered.

6.1 SUMMARY

The thesis begins with a literature search into the topics of the

harmonic response and vibration isolation of rigid bodies. This literature

search establishes a foundation on which to pursue the investigation. The

major topics included in the search are vibration isolation, harmonic

response of multi-cylinder engines, the harmonic response of engine

mounts, nonlinear vibration isolation systems, and the response of three

dimensional rigid body systems.

Prior to introducing the rigid body system which is the focus of

this thesis, a comprehensive review of the techniques used for isolation

of automotive engines is presented. The techniques included in the review

are center of percussion, natural frequency placement, torque axis, and

elastic axes. This review is included to encompass the complete scope of

the area of vibration isolation, particularly as it pertains to automotive

engines. The following observations are made about each of these

techniques.

The center of percussion technique is useful in the response of a

rigid body on resilient supports to an impulsive load. This method does

not address the harmonic response of the system.

88
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Natural frequency placement, associated chiefly with optimization

procedures, attempt to move the system natural frequencies away from

forcing frequencies. This method is based on system response formulated

from linear system theory. In light of the nonlinear response demonstrated

by the system in this investigation, judgment must be used to ensure that

the assumption of linear system response is valid prior to applying this

technique.

The torque axis technique contends that a three dimensional rigid

body under an applied torque not coincident with a principal axis will

tend to oscillate about a spatial axis. Assessment of this system using

the Euler equations of rigid body rotational motion as a guideline,

indicates that this axis as applied in this technique does not exist.

Elastic axes theory asserts that an elastically supported rigid body

responding to an applied force or torque along or about an elastic axis,

will produce only a corresponding translation or rotation. It has been

shown in previous work (Kim, 1991) that a physical set of axes which

result in decoupled motion in all six degrees of freedom of a three

dimensional rigid body does not exist. Furthermore, this notion is based

on linear system theory and the response of the system demonstrated in

this thesis indicates that the response a rigid body system on resilient

supports can be nonlinear.

With this foundation established, the specific system investigated

in this thesis is introduced. The system is planar, three degree of

freedom rigid body supported by resilient elements which are attached to

a rigid base. The system parameters of the rigid body used in the analysis

were chosen to model the planar equivalent of an in-line four cylinder

automotive engine. The equations of motion of the system are derived using
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Lagrange's equations. A Taylor series expansion of the potential energy is

used. The acceptance criteria which establishes the necessary number of

terms required in the series was found to be important. It was found that

acceptance of a Taylor series based only on a comparison between the

approximate potential energy and the actual potential energy could fail to

predict correct system dynamics. The acceptance criteria used in this

investigation is the correlation between the predicted system response of

the actual equations of motion and the equations of motion obtained using

the Taylor series approximation.

Three cases of increasing complexity are investigated using the

equations of motion previously derived for the rigid body system. These

cases are distinguished by the type of forcing present. The forcing

conditions utilized.are: vertical forcing, torsional forcing, and.combined

vertical and torsional forcing. The method of multiple scales is used to

produce the reduced equations which govern the envelopes of the response.

These equations are then used to establish the steady state frequency

response of the system. Repetitive solution of these equations for a

varying frequency parameter is then used to establish the frequency

response of the system for each of the three cases.

The frequency response of three cases investigated shows the

nonlinear behavior of the system. In particular, a region was found in

case 2 where a constant amplitude steady state does not exist. Cases 1 and

3 showed that a reduction in amplitude can be realized in the coordinate

being forced over the linear response of the system. This reduction in

amplitude is accomplished by excitation of the other modes.

Prior to the investigation of the isolation performance of the

system, an overview of established isolation metrics relative to the
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response characteristics of the three degree of freedom rigid body system

investigated in this thesis is presented. The metrics assessed are

transmissibility, isolation effectiveness, transmitted power, and forces

transmitted to the foundation of the system. The assumptions made in the

development of these metrics are discussed and the inability of these

metrics to characterize the isolation performance of the three degree of

freedom rigid body system investigated in this thesis is discussed. The

metric of monitoring the forces transmitted to the base is modified to

produce a measure of isolator performance which can account for nonlinear

system behavior. These modifications account for multi-frequency and

multi-directional system response. The application of this metric to the

rigid body system shows that the resonance peak of the transmitted forces

associated with the linear response of the system can be eliminated.

6 .2 CONCLUSIONS

There are three conclusions resulting from this investigation. The

first conclusion is the recognition that the response for a three degree

of freedom rigid body can be nonlinear even if the assumption is made that

the force-deflection characteristics of the supports are linear. Moreover,

this nonlinear behavior does not require large response amplitudes.

The second conclusion of this investigation is that the traditional

approaches to isolation performance using the measures of effectiveness,

transmissibility, transmitted forces, and transmitted power, have

shortcomings when applied to nonlinear systems. Specifically, these

metrics do not account for the multi-frequency response of nonlinear

systems. In addition, effectiveness and transmissibility, do not account

for system response in coordinate directions different from the direction
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of the input force. However, these two aspects of nonlinear system

response have been incorporated into the metric of assessing the forces

transmitted to the foundation. This alternative metric has been.applied to

the rigid body system.

The third conclusion is that the standard analytical methods used to

determine automotive engine mount placement and.orientation, i.e., natural

frequency placement, torque axis, and elastic axes, may be ineffective

when considering the general motion of the engine on it mounts. This

ineffectiveness is due to the fact that these methods do not account for

nonlinear system behavior.

6.3 RECOMMENDATIONS

Two groups of recommendations are proposed. The first two

recommendations expand the analysis contained herein without requiring

changes in the scope of the problem. Specifically:

i. The present analysis does not investigate the influence of the

mistuning of the natural frequencies of the system. An

analysis of this type will provide insight into the practical

application of this theory where exact tuning of the system

linear natural frequencies typically does not occur.

This analysis does not investigate the affect of the variation[
-
h

H
.

of the underlying geometry of the system. Studies of the

influence of the physical parameters on the response of the

system will lead to. broader understanding of the system

response. This in turn can lead to Optimization of the

isolation performance of the system.
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The second group of recommendations would result in an increase in

the scope and complexity of the investigation. Four recommendations are

made. They are:

1.

H
o

H
o

H
o

The analysis should be expanded to analyze a three dimensional

rigid body system. This system would have six degrees of

freedom instead of the three degrees of freedom investigated

in this thesis. This analysis should allow for arbitrary

number, location, and orientation of the resilient supports.

This would be a significant step toward the application of

this analysis to an automotive engine.

The three degree of freedom system should be investigated

experimentally and the results of the analysis presented in

this thesis should.be correlated to the experimental results.

Successful correlation would be the first step in establishing

this analysis as a useful tool for the study of rigid body

isolation systems.

This investigation looks only at forces acting on the rigid

body. Expansion of the analysis to include base excitation

would.have practical significance. The combination of forcing

applied to the rigid body and from the base would facilitate

the analysis of an engine on mounts where the engine is

subjected to both road forces and forces due to engine

unbalance.

It is assumed in this investigation that the base to which the

resilient supports are attached is rigid. This may be a

reasonable assumption for some rigid body systems. However,

for other systems, automotive engines in particular, this
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assumption is not valid. Therefore, this analysis should be

expanded to incorporate a non-rigid base.
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CENTER OF PERCUSSION“

Consider a rigid body in a horizontal plane, fixed at one point, and

moving under applied loads as shown in Figure A.1(a). This system is

referred to as a compound pendulum (Greenwood, 1988). The free body

diagram for this rigid body is shown in Figure A.1(b) which includes the

reaction force at O and applied loads. The external force system can be

replaced by the resultants ma and.Ia. The vector quantity ma can be broken

down into its components r02 and ra which act through the center of mass

in the normal and tangential directions, respectively, as shown in Figure

A.1(c). Another resultant force diagram can be obtained by moving the

force mra to point Q along the line 00 (actually beyond point C) such that

the resulting moment created about 0 equals 13a. 13a can then be removed

from the resultant force diagram as shown in Figure A.1(d).

This condition can be written as:

Isa + mrza - mrafl (A.1)

Replacing IG by kgm where kc is the radius of gyration of the rigid body

about G:

kfan:+-au2a a mraz (A.2)

which results in

 

1'The topic of the center of percussion is covered in various forms in

many books on dynamics and vibrations. The material presented here most

closely follows that presented in Meriam (1978) and Greenwood (1988).
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k: +r2=r£ (A.3)

Solving this for 2:

2 z 2

“kg” =ko (AA)

_r' 7

where kb is the radius of gyration of the rigid body about 0. The point Q

defined by this procedure is called the center of percussion of a body of

fixed point 0. Note that 2M0 0.

,4

 (b)

Figure A.1

The center of percussion has two interesting properties as shown by

the following analysis. The first property involves the response of the

rigid body to an impulsive load and the second shows a property about the

natural frequency of a compound pendulum.

Consider the same compound pendulum as shown in Figure A.1(a),

initially at rest, impacted by an impulse F 1 OG, as shown in Figure A.2.

Since by definition, the impulse is equal to the change in momentum:
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 Figure A. 2

(A.5)
F = P2 “P1 = 111(ch "’01)

= r6 where 9 is the angular velocity of the

s
l
w
.

Since vG1=0, let v52 =vG - .

line 06. By definition, the angular impulse of F about G, M, is

(A.6)

(A.7)

Also,

5: =11.2 -H1 =156

Using the two previous results along with the fact that H1 - 0 and

H2 =HG = 169, 6 can be solved for:

a = 131’ (A.8)

7?

5 =r6 it can be shown that __5 =k‘32 =rb.

m

Using this relationship and that

With b = 2 - r, the same relationship for the location of Q is obtained as

before:
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2

12% (A.9>

r

fl =
 

This demonstrates that no impulsive reaction occurs at the point 0 for the

applied impulse F. Note that an impulsive reaction at 0 will occur if F

is applied in any direction other than perpendicular to OC.

Now consider the natural frequency for small motion of the compound

pendulum:

mgr (A. 10)

Consider the natural frequencies of the compound pendulum for motion about

points 0 and 0. Using the previous result, the following relationships are

obtained:

 

 

(an) = mgr

° \ 70— (A.11)

_ m b

(WHO '4—150

 

Using the fact that Io =k: +r2, Io =k62 + b2, and that k: = rb, it can be

shown that ((4,)0 = («5)0. This relationship illustrates the second property

of the center of percussion which is that point 0 is the center of

percussion for the body when Q is the center of oscillation and vice

versa. Points 0 and Q are then referred to as reciprocal centers of

percussion.
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DERIVATION OF THE POTENTIAL ENERGY OF THE RIGID BODY SYSTEM

The general formulation of the equations of motion for this system,

shown in Figure B.1, requires that the potential energy for the system be

written in terms of the rigid body displacements (x,y,a). For this

formulation, no assumptions are made regarding small motions and the full,

general motion of the system is considered. To this end, each of the four

springs in the system is analyzed separately.

 

   

 

Figure B.1

Geometry of the rigid body system

To simplify the geometry of the analysis, Figures B.2 and B.3 do not

explicitly show the spring element. The lengths and displacements are

shown using only lines. It is the change in length of each of the springs

which is required. The center of mass of the rigid body, G, is shown, but

the outside dimensions of the rigid body are not shown. The distance

between the center of mass and the attachment point of the springs,

denoted A, is indicated in both figures as the radius of a circle.
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H- A(1-coso()

L‘— (a

 
   

////////7

Figure B.2

Geometry associated with springs k1 and k2

Consider the geometry associated with springs R1 and k2 with free

lengths £1 and 22 respectively, as shown in Figure B.2. Using the

dimensions indicated, the expressions for the new lengths of spring It, and

spring [(2, denoted L.l and L2, respectively, can be written:

 

L1 "[[21fl‘351'JR-7Hy]2 + [A (l ~cosa) -x]2 (3'1)

 

L2 =1/[22+A(1-Cosa)
-x]2 + [Asina 4.3,]2

(B.2)

Consider the geometry associated with springs [<3 and [(4 with free

lengths £3 and £4 respectively, as shown in Figure B.3. Using the

dimensions indicated, the expressions for the new lengths of spring [(3 and

spring k , denoted L3 and L , respectively, can be written:

 

L3 =J[23*A(1 -cosa) «+sz + [ASina-y]2
(B.3)

 

L4 = \/[24 ~Asina «I-y]2 + [A (1 'cosa) +x]2
(3.4)
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A(1-cosa) -~

  

 

 

 

Figure B.3

Geometry associated with springs k3 and kb

The expression for the potential energy of the system, V can now be

written:

v = %k1(L1-£1)2 + %k2 (La-122)2 + %k3(L3-£3)2 + gk, (L, -2,)3 (8.5)

where all of the parameters have been defined previously.
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MATHEMATICA PROGRAM USED FOR DERIVING THE EQUATIONS OF MOTION

The following is the source code used in the Mathematica (Wolfram,

S., 1991) program to derive the equations of motion for the systems

investigated in this thesis. The notation used below is consistent with

that shown in the figures of Chapter 2 and Appendix B.

Ig = 14.155;

m = 219.4;

kl a 1732312.8;

k2 - 433078.2;

k3 433078.2;

k4 1732312.8;

x0 - 0.0;

y0 - 0.0;

alphaO = 0.0;

11 - 0.102;

12 = 0.102;

13 = 0.102;

14 = 0.102;

A - 0.127;

T = (l/2)*m*xdot22 + (l/2)*m*ydot“2 + (l/2)*Ig*alphadot“2;

L1 = Sqrt[(ll + A*(Sin[alpha]) + y)“2 +

(x - A*(1 - Cos[a1pha]))A2];

L2 - Sqrt[(12 — (x - A*(1 - Cos[a1pha])))“2 +

(A*(Sin[alpha]) + Y)A2];

L3 - Sqrt[(l3 + A*(l - Cos[a1pha]) + x)“2 +

(Y ‘ A*(Sin[alpha]))“2];

L4 = Sqrt[(14 + y - A*(Sin[a1pha]))‘2 +

(x + A*(1 - Cos[a1pha]))‘2];

Val - (1/2)*k1*(L1-ll)“2;

Va2 - (1/2)*k2*(L2—12)‘2;

Vbl - (1/2)*k3*(L3-13)“2;

Vb2 - (1/2)*k4*(L4-14)‘2;

V1 - Val + Va2 + Vbl + Vb2;
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Expand the potential energy in a Taylor Series

about equilibrium point *)

D[Vl,{x,2}] /. {x->x0,y->y0,alpha->alpha0};

D[Vl,{y,2}] /. {x->x0,y->y0,alpha->alpha0};

D[Vl,{alpha,2}] /. {x->x0,y->y0,alpha->a1pha0};

D[Vl,x,y] /. {x->x0,y->y0,alpha->alpha0};

D[Vl,x,alpha] /. {x->x0,y->y0,alpha->a1pha0};

D[Vl,y,alpha] /. {x->x0,y->y0,alpha->alpha0};

D[Vl,{x,3}] /. {x—>x0,y->y0,alpha->alpha0};

D[Vl,{y,3}] /. {x->x0,y->y0,alpha->alpha0};

D[Vl,{alpha,3}] /. {x->x0,y->y0,alpha->alpha0};

D[Vl,x,x,y] /. {x->x0,y->y0,alpha->alpha0};

D[Vl,x,x,alpha] /. {x->x0,y->y0,alpha->alpha0};

D[Vl,x,y,y] /. {x->x0,y->y0,a1pha->alpha0};

D[Vl,alpha,y,y] /. {x->x0,y->y0,alpha->alpha0};

D[Vl,x,alpha,alpha] /. [x->x0,y->y0,alpha->alpha0};

D[Vl,y,alpha,alpha] /. {x->x0,y->y0,alpha->alpha0};

D[Vl,x,y,alpha] /. {x->x0,y->y0,alpha->a1pha0};

D[Vl,{x,4}] /. {x->x0,y->y0,a1pha->alpha0};

D[Vl,{y,4}] /. {x->x0,y->y0,alpha->alpha0};

D[Vl,{alpha,4}] /. {x->x0,y->y0,alpha->alpha0};

D[Vl,x,x,x,y] /. {x->x0,y->y0,alpha->a1pha0};

D[Vl,x,x,x,a1pha] /. {x->x0,y->y0,alpha->alpha0};

D[Vl,x,y,y,y] /. {x->x0,y->y0,alpha->alpha0};

D[Vl,y,y,y,alpha] /. {x->x0,y->y0,alpha->alpha0};

D[Vl,alpha,a1pha,alpha,x] /. {x->x0,y->y0,alpha->a1pha0};

D[Vl,alpha,alpha,a1pha,y] /. {x->x0,y->y0,alpha->alpha0};

D[Vl,x,x,y,y] /. {x—>x0,y->y0,alpha->alpha0};

D[Vl,x,x,alpha,alpha] /. {x->x0,y->y0,alpha->alpha0};

D[Vl,y,y,alpha,alpha] /. {x->x0,y->y0,alpha->alpha0};

D[Vl,x,x,y,alpha] /. {x->x0,y->y0,alpha->alpha0};

D[Vl,x,y,y,alpha] /. {x->x0,y->y0,alpha->alpha0};

D[Vl,x,y,alpha,alpha] /. {x->x0,y->y0,alpha->a1pha0};

V - ((1/2)*(El*x“2 + E2*y“2 + E3*alpha“2 + 2*E4*x*y + 2*E5*x*alpha +

2*E6*y*alpha) +

(1/6)*(E7*x“3 + E8*y‘3 + E9*alpha“3 + 3*E10*x‘2*y +

3*E11*x“2*alpha + 3*E12*x*y“2 + 3*E13*y“2*alpha +3*El4*x*alpha‘2 +

3*E15*y*alpha“2 + 6*E16*x*y*a1pha) +

(1/24)*(E17*XA4 + E18*yA4 + E19*alpha“4 + 4*E20*x“3*y +

4*E21*x“3*alpha + 4*E22*y“3*x + 4*E23*y“3*alpha + 4*E24*alpha“3*x +

4*E25*alpha“3*y + 6*E26*x‘2*y“2 + 6*E27*x“2*alpha“2 +

6*E28*y“2*alpha“2 + 12*E29*x“2*y*alpha +

12*E30*x*y22*alpha + 12*E31*x*y*a1pha“2));

PTx - D[D[T,xdot],t,NonConstants -> {xdot,ydot,alphadot,x,y,alpha}];

PTy - D[D[T,ydot],t,NonConstants -> {xdot,ydot,alphadot,x,y,alpha}];

PTalpha - D[D[T,alphadot],t,NonConstants ->

{xdot,ydot,alphadot,x,y,alpha}];
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PVx - D[V,x};

PVy = D[V,y];

PValpha - D[V,alpha];

EQl = PTx + PVx;

EQ2 = PTy + PVy;

EQ3 = PTalpha + PValpha;

Print ["EQl = ". EQll;

Print ["502 = ". EQ2];

Print ["EQ3 - ", EQ3];
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NONDIMENSIONALIZATION OF THE EQUATIONS OF MOTION5

The equations of motion of the system presented previously are the

starting point for the nondimensionalization. These equations are listed

again for convenience.

I11581 * C1X1 * (k2*k3)x1 * 51X2X3 * 52X1X3 * 53X:
(D.la)

4» max: + 552:? + 062(1):; =1:1 cosm:

1(A2+BZ)X + X +A2(k +k x + xx + X3+ XX23111 2622 11.)25713582 5912(D1b)

4‘ p10X1ZX2 + p11X2X32 =F2C0592t

u 2 2

1sz3 * C5X3 * (k1+k,,)X3 * I312X1 * p13X1X2 * BMXZX: (D.lc)

4‘ B15X12X3 4' I316X32 =’ F3COSQ3C

The first step in the nondimensionalization process is to designate

the characteristic length, mass, and time. The characteristic mass is the

mass of the rigid body m, and A is chosen as the characteristic length.

Both of these dimensions are sound choices since if either of these were

equal to zero, the problem would not make physical sense. The choice for

a characteristic time is not as obvious. Three possible candidates are:

m m m . O O O

, , or . (To find these, terms which include time,

E1 *El. 122 +753 BiA

 

5The method.used.here to nondimensionalize the equations of motion is

presented in Murdock (1991).
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such as [(1, k2, R3, [(4 and any of the fli's should be determined. Mass and

length can be eliminated from these by multiplying or dividing by the

already designated characteristic mass and length.) The third candidate

is not a naturally appearing expression in the problem as are the first

two expressions, therefore it can be eliminated. Either of the first two

expressions will be a suitable characteristic time, therefore the

characteristic time for this set of equations is chosen to be .

E2 *3

Having made these choices, the coordinates and parameters of the problem

can be nondimensionalized.by multiplying and dividing by these quantities

raised to appropriate powers. The following are obtained:

x2 := X3 has units of radians which are already dimensionless

2 m 1
r: k k - a. =

“’1 (“VIZ—Isa: 1

1 _ 1‘1”“/.= 2 . m .1.

2._ . m .1_k1+k4

“3"(1‘1’k4) 172; '5 ’51:;

(Mass does not appear explicitly in the nondimensionalized

equations.)
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.— O O 'I' -

IG '-III(A2+B) _ _ -—(l+-—) -—(1+V) (where V=_)

 

 

 

t:=T- [(21:18

2:1 =Fi._§1.%.1(z_n;_k_3

c1 91-2111 =c1-E- £2115

kgm? * l m 1

021 1’2” ”2'5 my:

 

kg -2 .= .1.

C3 :1 ”3' €350.72;
 

 

The nondimensionalization of the coefficients of the nonlinear

terms, the 55's, can be accomplished in a manner similar to that of the

ci '5 shown above. This can be accomplished by determining the units of each

individual term required to keep the units of the equations consistent.

The nondimensionalized version of these values are shown as 515’s in the

nondimensionalized form of the equations. The nondimensionalized form of

the equations is :

i1 4.23.11,“ + fig)“ +&1X2X3 *&2X1X3 +&3X23 +é6x1x22 (D 28)

+ ésx? + &6x1x§ . f1cosn1t

1 2" '- / - ~ 3 .. 2

_1+v x+2 X+kx+axx +ax +axx

* £110X12X2 + &11X2X32 3 fzcosnzt
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-- . 2 ~ 2 ~ ~ 2
x + 2 X + x + + +
3 #3 3 “3 3 “12"1 a13x1x2 cl11.X2X3 (D.2c)

+ é15xfx3 + 9163: = f3 c0393 t
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