

This is to certify that the

dissertation entitled Identification of Components Involved in Plant Vacuolar Protein Targeting

presented by

James Edward Dombrowski

has been accepted towards fulfillment of the requirements for

PhD. degree in Genetics

Major professor In Natasha V Raikhel

Date July 31, 1995

MSU is an Affirmative Action/Equal Opportunity Institution

0-12771

LIBRARY Michigan State University

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due.

DATE DUE	DATE DUE	DATE DUE

MSU is An Affirmative Action/Equal Opportunity Institution

IDENTIFICATION OF COMPONENTS INVOLVED IN PLANT VACUOLAR PROTEIN TARGETING

By

James Edward Dombrowski

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Genetics Program

1995

ABSTRACT

IDENTIFICATION OF COMPONENTS INVOLVED IN PLANT VACUOLAR PROTEIN TARGETING

By

James Edward Dombrowski

The main focus of current research is the investigation of the molecular mechanisms of protein transport to the plant cell vacuole. We have previously demonstrated that the carboxyl-terminal propeptide of barley lectin is both necessary and sufficient for protein sorting to the plant vacuole. Specific mutations were constructed to determine which amino acid residues or secondary structural determinants of the carboxyl-terminal propeptide affect proper protein sorting. The experimental results obtained from the detailed mutational analysis of barley lectin's carboxyl-terminal propeptide, revealed that no consensus sequence or common structural determinants are required for proper sorting of barley lectin to the vacuole. However, the analysis did show the importance of hydrophobic residues in vacuolar targeting. In addition, a minimal length of three exposed amino acid residues are necessary for efficient sorting. Sorting was disrupted by the addition of two glycine residues at the carboxyl-terminal end of the targeting signal or by the translocation of the

glycan to the carboxy terminus of the propeptide. These results suggest that some components of the sorting apparatus interact with the carboxy terminus of the propeptide.

One approach to identify components of the sorting apparatus in plants is to look for homologous proteins involved in protein vacuolar transport which have been isolated from yeast. A cDNA encoding for a 68 kDa GTP binding protein was isolated from *Arabidopsis thaliana* (aG68) and characterized. This clone is a member of a larger gene family that codes for a class of several GTP binding proteins this includes the mammalian dynamin, yeast Vps1p and the vertebrate Mx proteins. In yeast the *VPS1* gene has been shown to be involved in retention of proteins in the Golgi and protein transport to the yeast vacuole. The investigation of *aG68*'s function in *Arabidopsis* is currently in progress.

The development of a preliminary genetic screen for the identification of vacuolar protein sorting mutants in *Arabidopsis*, has identified three putative mutants. This initial mutant screen demonstrated the feasibility of using *Arabidopsis* as a model system. The information gathered from this study has led to the development of a second generation mutant screen utilizing a double transgene approach.

DEDICATION

To my parents
Irene and Edward Dombrowski

ha

ACKNOWLEDGEMENTS

I would like to thank my grade school teacher, Ms. Gilbert, for believing in me. Natasha Raikhel for her friendship, and for helping me discover what it means to be a research scientist. I would also like to thank the following: my committee members, Dr. Ken Keegstra, Dr. Michael Thomashow and Dr. William Smith for their many helpful suggestions over the years. The office staff, Karen Bird, Jan Johnson, Jackie Malkin, Karen Cline and Alice Albin for their warmth and professionalism. My good friends Mark Shieh, Susan Fujimoto and Elizabeth Rosen. Marlene Cameron, Kurt Stepnitz, Glenn Hicks, Karen Bird, Diane Bassham, Silvia Rossbach, Sridhar Venkataraman and Olga Borkhsenious for their valuable assistance in the preparation of this thesis. All my Lab comrades of the ZONE, past and present. All graduate students everywhere, who live by the creed; "Life without liberty, in the pursuit of your professor's happiness." The LORD up above, who helped me make it through each day. My parents for instilling in me their values, and for their sacrifices that gave me a chance in life. My cats, Bunky, MooMoo, and Wompee, who were always there to comfort me. And finally to my wife, Maria, whose patience and love has made each day worth living.

TABLE OF CONTENTS

LIST OF TABLES
LIST OF FIGURES
CHAPTER 1 PROTEIN TARGETING TO THE PLANT VACUOLE A HISTORICAL PERSPECTIVE: YESTERDAY AND TODAY
INTRODUCTION
VACUOLAR PROTEINS ARE SORTED AT THE TRANS-GOLGI NETWORK AND TRANSPORTED BY CLATHRIN COATED VESICLES
SORTING SIGNALS OF VACUOLAR PROTEINS
GLYCANS (MAMMALIAN)
SIGNALS IN YEAST
NTPP SIGNALS IN PLANTS
CTPP SIGNALS IN PLANTS
TARGETING INFORMATION IN MATURE PORTIONS OF PLANT PROTEINS
PLANT VACUOLAR PROTEINS IN YEAST
TARGETING OF MEMBRANE PROTEINS
SOLUBLE PLANT VACUOLAR PROTEINS UTILIZE MULTIPLE MECHANISMS AND RECEPTORS
COMPONENTS OF PLANT VACUOLAR SORTING MACHINERY 28
THE FUTURE
REFERENCES

СНАР	VACUOLAR TARGETING SIGNAL OF BARLEY LECTIN	
	ABSTRACT	54
	INTRODUCTION	55
	RESULTS	60
	DISCUSSION	31
	MATERIALS AND METHODS	39
	ACKNOWLEDGMENTS 9	97
	REFERENCES	98
CHAP	TER 3 ISOLATION OF A cDNA ENCODING A NOVEL GTP BINDIN PROTEIN OF ARABIDOPSIS THALIANA	
	ABSTRACT)2
	DISCUSSION AND RESULTS 10	Э3
	ACKNOWLEDGEMENTS	20
	REFERENCES	21
СНАР	TER 4 THE DEVELOPMENT OF A GENETIC SCREEN FOR PLAN VACUOLAR PROTEIN SORTING MUTANTS	
	INTRODUCTION	25
	RESULTS	31
	DISCUSSION	48
	MATERIALS AND METHODS	60
	ACKNOWLEDGMENTS	72
	REFERENCES	73

CHAPTER 5 FUTURE RESEARCH	 	 	180
REFERENCES	 	 	186

LIST OF TABLES

Table 4.1	Summary of the	putative mutants analyses			• •				142
-----------	----------------	---------------------------	--	--	-----	--	--	--	-----

Fi Fig Figu Figur

LIST OF FIGURES

FIGURE 1.1. Common Motif in Representative N-terminal Propeptides 11
FIGURE 1.2. Representative Sequences of Carboxy-terminal Propeptides and Extensions of Vacuolar and Putative Vacuolar Proteins
Figure 2.1. Schematic Representation of proBL, its Maturation in the Secretory Pathway and the Carboxyl-Terminal Propeptide Amino Acid Sequence
Figure 2.2. Description and Summary of the Intracellular and Extracellular Distribution of BL-CTPP Mutants 61
Figure 2.3. Immunocytochemical Localization of BL-mutant CTPP constructs 3 and 10
Figure 2.4. Subcellular Localization and Pulse-Chase Labeling Experiments of Transgenic and Transient Protoplasts Expressing BL-Mutant CTPF Construct 3
Figure 2.5. Deletion and Glycine Replacement Analysis 71
Figure 2.6. Disruption of Proper Sorting of BL by Carboxyl-Terminal Tandem Glycine Residues, Glycosylation Site Shift, and Artificial Propeptides
Figure 3.1. Sequences of the nucleotides and deduced amino acid residues of the cDNA clone aG68
Figure 3.2. Alignment of the predicted amino acid sequences of aG68, rated dynamin (rDynm), yeast Vps1p, and murine Mx1 proteins 107
Figure 3.3. Northern blot analysis for aG68 expression in plant tissues
Figure 3.4. In situ localization of aG68 transcript in wild type Arabidopsis leaves

Figure 3.5. Southern blot analysis of the aG68 gene 115
Figure 3.6. Schematic Representation of the Double Transgene Expression Cassettes of aG68 and wild type Barley Lectin in the Binary Vector pMOG800
Figure 4.1. Pulse-Chase Labeling Experiments of Transgenic Protoplasts Expressing BL-Barley Lectin Constructs
Figure 4.2. Immunocytochemical Localization of BL+CTPP construct
Figure 4.3. Immunocytochemical Localization of BLΔCTPP construct 139
Figure 4.4. Secretion of BL in Mutant avs5
Figure 4.5. Schematic Representation of the Double Transgene Expression Cassettes in the Binary Vector pMOG800
Figure 4.6. General Scheme for the Creation and Isolation of Vacuolar Sorting Mutants in <i>Arabidopsis</i>

CHAPTER 1

PROTEIN TARGETING TO THE PLANT VACUOLE A HISTORICAL PERSPECTIVE: YESTERDAY AND TODAY.

INTRODUCTION

The plant vacuole is a dynamic multifunctional organelle that is essential for the regulation and maintenance of plant cell growth and development. The vacuolar composition and morphology, and the number of vacuoles per cell varies among plant tissues and developmental stages. Vacuoles in many cells act as intermediate storage compartments for ions, sugars, amino acids, secondary metabolites and proteins (Marty et al., 1980; Boller and Wiemkem, 1986; Wink 1993). Defining the content of vacuoles gave early clues to their functions (Boller and Kende, 1979). These early studies of vacuoles led to the hypothesis that they were ultimately derived from the endoplasmic reticulum (ER); however, more recent work indicates that vacuoles originate from various parts of the endomembrane system, such as the ER and Golgi complex (Hubbard and Ivatt, 1981; Chrispeels, 1983; for reviews Marty et al., 1980; Boller and Wiemkem, 1986; Harris, 1986). In addition, protein and oil bodies derive from components of the secretory pathway (discussed in Bednarek and Raikhel, 1992).

A wide array of functions associated with the vacuole are performed by proteins. Some vacuolar proteins arrive at the tonoplast or enter the vacuole via novel routes (Dice, 1990; Tranbarger et al., 1991; Yoshihisa and Anraku, 1990; Monroe et al., 1991), while other proteins enter the vacuole by internalization of ER-derived protein bodies by a process analogous to autophagy (Leavanony et al., 1992; Galili et al., 1993; Galili et al., 1995; Robinson et al., 1995).

However, the majority of proteins are delivered to the vacuole by way of the secretory pathway. (reviews: Pfeffer and Rothman, 1987; Chrispeels, 1991; Bednarek and Raikhel, 1992; Vitale and Chrispeels, 1992; Nakamura and Matsuoka, 1993; Satiat-Jeunemaitre and Hawes, 1993; Rothman and Orci, 1992; Rothman, 1994).

Proteins are targeted to the secretory pathway by amino-terminal (N-terminal) hydrophobic signal peptides which mediate transmembrane translocation from the cytosol to the lumen of the ER (for reviews see Rapoport, 1992; Gilmore, 1993; Walter and Johnson, 1994). These signal peptides are usually 18-30 amino acids long, have no consensus sequence and can function interchangeably between animal, yeast, and plant systems (von Heijne, 1988, 1990; Jones and Robinson 1989). However, these sequences do possess common secondary structural features, a basic N-terminal region followed a hydrophobic region of amino acids (von Heijne, 1990). In general, signal peptides are cotranslationally removed, and the resulting polypeptide is processed in the ER and Golgi network (Blobel and Dobberstein 1975; Morrè, 1987; Vitale et al., 1993).

It was initially believed that after entering the lumen of the ER, proteins traveled to the Golgi apparatus by bulk flow (Wieland et al., 1987; Rothman, 1987; Pelham, 1989; Griffiths et al., 1995) which is mediated by vesicle budding and fusion events (Pryer et al., 1992; Rothman and Orci, 1992; Ferro-Novick and Jahn, 1994; Rothman, 1994). However, more recent findings suggest that protein exit from the ER is a regulated process. Before leaving the

Be

ER proteins must first pass stringent quality-control mechanisms (Hurtley, 1989; Vitale et al., 1993; Li et al., 1993), then they are concentrated in the ER (Mizuno and Singer, 1993; Balch et al., 1994; Balch and Farquhar, 1995; Singer, 1995) before transport to the Golgi. In addition, there is evidence in yeast which suggests that proteins are packaged into transport vesicles differentially (Barlowe et al., 1994; Schimmöller et al, 1995). Proteins traversing the secretory pathway are believed to be sorted by selective retention or targeting information contained in their molecular structures (Blobel, 1980; Rothman, 1987; Pelham, 1989). Proteins lacking specific sorting determinants follow a default pathway and are secreted at the cell surface (Rothman, 1987; Wieland et al., 1987; Dorel et al., 1989; Denecke et al., 1990). After traversing the Golgi apparatus (Rambough and Clermont, 1990) vacuolar proteins are sorted at the *trans*-Golgi Network (TGN) and targeted to the vacuole (Griffiths and Simons, 1986; Morrè, 1987).

Vacuolar proteins are sorted at the trans-Golgi Network and transported by clathrin coated vesicles

Two lines of evidence suggest that many plant vacuolar proteins which traverse the secretory pathway are sorted at the *trans*-Golgi Network (TGN). First, precursors of vacuolar seed storage proteins were found in clathrin coated vesicles (CCVs) isolated from developing legume cotyledons (Harley and Beevers, 1989; Robinson et al., 1989; Hon et al., 1991). Electron microscopic

examination had shown that CCVs are associated with the TGN (Staehelin, 1990; Driouch et al., 1993a).

Secondly, relevant information was obtained by the use of inhibitors which affect golgi structure. Ultrastructural observations showed that when plant and animal cells were treated with the fungal toxin monensin, a monovalent cation ionophore, the formation of secretory vesicles at the TGN was inhibited, causing the cisternae to swell (Grimes et al., 1982; Tartakoff, 1983; Stinissen et al., 1985; Zhang et al., 1993; for a review see Mollenhauer et al., 1990). This effect may be due to disruption of the correct balance of cations within the affected cisternae and the proton gradient across the membrane. Monensin was found to inhibit transport of pea vicilin (Craig and Goodchild, 1984), concanavalin A (con A) (Bowles et al., 1986), phytohemagglutinin (PHA) (Chrispeels, 1983), probarley lectin (Wilkins et al., 1990) and prosporamin (Nakamura et al., 1993) to the vacuole. However the effect of monensin on these missorted proteins differed. Con A, pea vicilin and prosporamin were secreted from cells treated with monensin, whereas PHA and probarley lectin were retained intracellularly. Monensin also displays differential effects on the secretion of complex polysaccharides (discussed in Bednarek and Raikhel, 1992).

Another fungal toxin, brefeldin A (BFA), was shown to severely disrupt the organization of the mammalian Golgi stack (for a review see Klausner et al., 1992). Recently, Satiat-Jeunemaitre and Hawes summarized the effects of BFA in plants (Satiat-Jeunemaitre and Hawes, 1994). The current data indicates that

BFA will inhibit transport of vacuolar proteins and disrupt the architecture of the Golgi. However, it should be noted that the effects of BFA varied among plant species and cell types. One possible explanation for this variation may be to differential regulation of the activity of the Golgi complex within the different tissues and cell types. Recent ultrastructural analyses of plant Golgi indicate that there are differences in the morphology and the number of cisternal stacks within individual cells (Staehelin et al., 1988; Staehelin et al., 1990; Zhang and Staehelin, 1992; Driouch et al., 1993 a,b).

Sorting signals of vacuolar proteins.

Glycans (mammalian)

Extensive research has been performed over the last 10 years to define the sorting determinants of lysosomal and vacuolar proteins. The best-characterized targeting signal is the mannose-6-phosphate residue that specifies transport of hydrolytic enzymes to the mammalian lysosome. The targeting of these enzymes to the lysosome is mediated by the phosphorylated mannose residue of an N-linked glycan, which interacts with receptors in the TGN (reviews: Hasilik and Neufeld, 1980: von Figura and Hasilik, 1986; Kornfeld and Mellman, 1989; Dahms et al., 1989; Kornfeld, 1992; Fiedler and Simons, 1995). However, there also appears to be a mannose-6-phosphate-independent pathway for the delivery of proteins to the lysosome (Kornfeld and Mellman, 1989; Rijnbout et al., 1991; Glickman and Kornfeld, 1993; Garcia-del Portillo

c.

sti (Fa

We

intra

spec

auq f

and Finlay, 1995).

It was observed that the carbohydrate chains of the yeast vacuolar hydrolase carboxypeptidase Y (CPY) are phosphorylated (Hashimoto et al., 1981). CPY is a glycoprotein that is synthesized as an inactive preproenzyme (Hasilik and Tanner, 1978; Stevens et al., 1982), whose signal sequence is subsequently removed in the ER (Johnson et al., 1987). During its transport through the Golgi its core oligosaccharides are modified, and the mature protein is formed by a postsorting proteolytic activation via the vacuolar enzyme proteinase A (Hemmings et al., 1981; Ammerer et al., 1986; Woolford et al., 1986). Studies in which the attachment of glycans to CPY was blocked with the inhibitor tunicamycin (for a review see Elbein, 1987), showed that neither the phosphorylated sugar residues nor the presence of the glycans were required for proper delivery of the hydrolase to the yeast vacuole (Schwaiger et al., 1982; Stevens et al., 1982; Klionsky et al., 1988).

In contrast to mammalian and yeast systems, the phosphorylation of carbohydrate sidechains of plant glycoproteins has not been detected (Gaudreault and Beevers, 1984; Vitale and Chrispeels, 1984). However, it was still unknown if glycans had a role in the targeting of plant vacuolar proteins (Faye et al., 1989). Four vacuolar proteins with different glycan configurations were studied to investigate the functional role of the glycan in processing and intracellular transport. Barley lectin (BL) is a homodimeric vacuolar protein that specifically binds to the sugar *N*-acetylglucosamine (for a review see Raikhel and Lerner, 1991). BL is synthesized as a preproprotein with a high-mannose

tra Эþ P05 con to th glycosylated 15 amino acid carboxy-terminal propeptide (CTPP) that is removed before or concomitant with deposition of the mature protein into the vacuole. Phytohemagglutinin (PHA) is a tetrameric glycoprotein, with each subunit containing one high-mannose and one complex glycan. PHA accumulates in the protein storage vacuole of developing bean embryos (Bollini and Chrispeels, 1978; Chrispeels, 1983; Strum et al., 1988). Another vacuolar protein, patatin from potato tubers, contains two N-linked complex glycans in the mature protein (Sonnewald et al., 1989). Each of these proteins were transformed into tobacco and found to be correctly processed and targeted to the vacuole. One other protein studied was concanavalin A (Con A), a tetrameric lectin that is synthesized as a glycosylated precursor and undergoes a proteolytic circular permutation and loss of a small glycopeptide upon maturation in the vacuole (Bowles et al., 1986; Herman et al., 1985; Faye and Chrispeels, 1987). The inhibition of glycosylation by the use of the inhibitor tunicamycin or by the elimination of the glycosylation site by site-directed mutagenesis did not interfere with the proper targeting of BL (Wilkins et al., 1990), PHA (Bollini et al., 1985; Voelker et al., 1989) or patatin (Sonnewald et al., 1990) to the vacuole. However, the inhibition of glycosylation of Con A prevents its transport from the lumen of the ER (Faye and Chrispeels, 1987). In addition, it appears that the glycan of the CTPP of BL influences the rate of posttranslational processing of the propeptide (Wilkins et al., 1990). In conclusion, unlike mammalian systems, it appears that the targeting of proteins to the vacuoles of yeast and plants is independent of glycosylation.

In yeast, a number of soluble vacuolar proteins are synthesized as glycosylated higher molecular weight precursors (for review see Klionsky et al., 1990). The best characterized example is the protease carboxypeptidase Y (CPY), discussed above, which is synthesized with a 91 amino acid aminoterminal propeptide (NTPP) that is removed in a post-sorting event. Since the glycan was found not to be involved in sorting to the vacuole, research was directed towards determining if the NTPP of CPY contained sorting information. A deletional analysis of the NTPP showed that it was necessary for the correct sorting of CPY (Valls et al., 1987) and was sufficient to redirect the secreted protein, invertase, to the yeast vacuole (Johnson et al., 1987). The region of the CPY propeptide responsible for vacuolar targeting was determined by deletion analysis to reside in a 16 amino acid region. Further analysis of this region of the propeptide identified a tetrapeptide, QRPL, located near the aminoterminus of the propeptide, which functions as the vacuolar targeting signal. It was also found that the context in which the QRPL sequence is presented can affect the efficiency of targeting, implying that secondary structural determinants are also involved (Valls et al., 1987, 1990). Another yeast vacuolar targeting domain for the hydrolase proteinase A has been identified based on its ability to redirect invertase to the vacuole (Klionsky et al., 1988). This targeting determinant is also located in the propeptide; however, it contains no significant sequence similarity to the CPY sorting domain. It is

interesting to note that even when the entire propeptide was deleted, a small amount of proteinase A was correctly targeted to the vacuole, indicating that a secondary targeting signal may also be present in the mature portion of the protein. A third soluble yeast vacuolar protein, proteinase B, contains the sequence QNPL in its propeptide, however the propeptide is cleaved in the ER and has not been shown to act as a targeting signal (Moehle et al., 1989).

Recently the yeast CPY-specific sorting receptor was identified. This receptor is encoded by the *VPS10* gene (Marcusson et al., 1994). The *vps10* mutant selectively missorts and secretes CPY, whereas all other vacuolar proteins tested are correctly delivered to the vacuole. The *VPS10* gene encodes a type I transmembrane protein of 1577 amino acids. Chemical cross-linking studies have indicated that the Golgi-modified form of CPY interacts with VPS10p. The identification of this receptor combined with the fact that no consensus sequence or structural determinant has been demonstrated for vacuolar targeting in yeast, suggests that there are multiple receptors involved in the sorting process.

NTPP signals in plants

A number of vacuolar proteins have been identified which have NTPPs (Figure 1.1). A comparison of these sequences show that they all share a common motif, NPIRP\L. The presence of a conserved amino acid sequence suggests that this motif is a vacuolar sorting determinant (for reviews, see

FIGURE 1.1 Common Motif in Representative N-terminal Propeptides.

et al., 1985; 5) Holwerda et al., 1992; 6) Yamagishi et al., 1991; 7) Strukeij et al., 1990; 8) Watanabe References: 1) Hattori et al., 1985; 2) Matsuoka and Nakamura, 1991; 3) Matsuoka et al., 1995; 4) Roger sorting to vacuole; S, sequence sufficient to redirect a reporter protein to vacuole Codes: V, protein is vacuolar localized; pV, putative vacuolar protein; N, sequence necessary for proper

et al., 1991.

Common Motif in Representative N-terminal Propeptides

Rice oryzains	Potato cathepsin D inhibitor	Potato 22 kDa protein	Barley aleurain	Sweet potato sporamin A	PROTEIN
ASSGFDDS <u>NPIRS</u> VTDHAASA	FTSO <u>NLIDL</u> PS	FTSE <u>NPIVL</u> PTTCHDDN	SSSSFADSV <u>NPIRP</u> TDRAASTLE	HSRF <u>NPIRL</u> PTTHEPA	SEQUENCE
PΥ	PΥ	pV	V,N,S	S,N,S	CODES
œ	7	ത	4,5	1,2,3	REFERENCES

0 re ٧a hίς ψS in 1 ۸9۵

is

Bednarek and Raikhel, 1992; Chrispeels and Raikhel, 1992).

Sporamin is a vacuolar storage protein of the tuberous roots of sweet potato and is synthesized as a preproprotein, which contains a 16 amino acid propertide that follows the N-terminal signal sequence (Hattori et al., 1985, 1987; Maeshima et al., 1985). Sporamin has been shown to be correctly processed and targeted to the vacuoles of transgenic tobacco and BY-2 suspension cell cultures (Matsuoka et al., 1990). Deletion of the NTPP results in the secretion of sporamin in transgenic tobacco cells (Matsuoka and Nakamura, 1991). In order to determine the region or specific amino acids in the NTPP that are responsible for proper targeting, glycine substitution and deletional analyses were performed (Nakamura et al., 1993). As a result of the site-directed mutagenesis, it was found that 2 residues, asparagine²⁶ and isoleucine²⁸ play an important role in the transport of sporamin to the vacuole. The substitution of glycine for asparagine and isoleucine caused the secretion of 40% and 90% of prosporamin, respectively. The asparagine and isoleucine residues appear to be conserved among all the currently identified NTPPs of vacuolar proteins (Figure 1.1).

The vacuolar thiol protease aleurain from barley is also synthesized as a higher molecular weight precursor that undergoes proteolytic processing to the mature form after a post-sorting event (Rogers et al., 1985). When expressed in tobacco, aleurain was shown to be correctly processed and targeted to the vacuole (Holwerda et al., 1990). Deletion and redirection analyses demonstrated

that the targeting information in aleurain resides in the NTPP (Figure 1.1) (Holwerda et al., 1992; Holwerda and Rogers, 1993). These studies identified two adjacent sequences, SSSSFADS and SNPIR, within the NTPP that were able to redirect the normally secreted endoprotease B (Koehler and Ho, 1990) to the vacuole. It was also shown that the presence of additional sequences contained in the propeptide had a strong effect on targeting efficiency. The combined sequences targeted more efficiently than the sum of the separate determinants. These results indicate that not only is the presence of the sorting determinant required for proper targeting, but also the context in which it is presented to the sorting machinery. This is similar to yeast CPY described above, where it was shown that the sequence surrounding the sorting determinant affected the efficiency of sorting.

CTPP signals in plants

Many vacuolar proteins have carboxyl-terminal propeptides (CTPPs) that share no common sequence identity, but contain short stretches of hydrophobic amino acids (Figure 1.2) (for reviews see Bednarek and Raikhel, 1992; Chrispeels and Raikhel, 1992).

Barley lectin is synthesized as a preproprotein with a high-mannose glycosylated 15 amino acid carboxy-terminal propeptide (CTPP) that is removed before or concomitant with deposition of the mature protein into the vacuole.

FIGURE 1.2 Representative Sequences of Carboxy-terminal Propeptides and Extensions of Vacuolar and Putative Vacuolar Proteins.

Codes: V, protein is vacuolar localized; pV, putative vacuolar protein; N, sequence necessary for proper sorting to vacuole; S, sequence sufficient to redirect a reporter protein to vacuole.

Propeptide: a region of amino acids that is proteolytically removed to form the mature protein.

Extension: a region of amino acids which has been identified by sequence comparison of cDNAs of intracellular and extracellular isoforms of a protein.

References: 1) Lerner and Raikhel, 1989; 2) Bednarek et al., 1990; 3) Bednarek and Raikhel, 1991; 4) Shinshi et al., 1990; 5) Neuhaus et al., 1991; 6) Shinshi et al., 1988; 7) Linthorst et al., 1990; 8) Melchers et al., 1993; 9) Melchers et al., 1993; 10) Wilkins and Raikhel, 1989; 11) Benatti et al., 1991; 12) Podivinsky et al., 1989; 13) Paul et al., 1995; 14) Legname et al., 1991; 15) Unger et al., 1994; 16) Johansson et al., 1992; 17) Payne et al., 1989; 19) Dixon et al., 1991.

Representative Sequences of Carboxy-terminal Propeptides and Extensions of Vacuolar and Putative Vacuolar Proteins

Arabidopsis RNS2LDGEAMVL	Tobacco PRB1bGDLEEQHP	Barley peroxidase BP1LLHDMVEVVDFVSSM	Carrot \$-fructofuranosidase IIHFADLVI	Carnation dianthin 30PKSSSIEAN	Extensions	Kiwifruit actinidinQNHPKPYS	Soapwort saporin 6SSNEANST	Rice lectinDGMAAILA	Tobacco AP24QAHPNFPL	Tobacco β-1,3-glucanaseVSGGVWD	Tobacco chitinaseGLLVDTM	Barley lectinVFAEAIAANSTLVAE	Propeptides	PROTEIN
LDGEAMVLKMPTEREAL	GDLEEQHPFDSKLELPTDV	VDFVSSM		.PKSSSIEANSTDDTADVL		QNHPKPYSSLINPPAFSMSKDGPVGVDDGQRYSA	.SSNEANSTVRHYGPLKPTLLIT	.DGMAAILANNOSVSFEGIIESVAELV	QAHPNFPLEMPGSDEVAK	.VSGGVWDSSVETNATASLVSEM		NSTLVAE		ENCE
₹	<	P۷	P <	PV		<	P۷	<	Z ,	S ,	S'N'A	S'N'A		CODES
19	17,18	16	15	14		12,13	11	10	9	6,7,8	4,5	1,2,3		REFERENCES

The removal of the CTPP from BL is proposed to be carried out by an aspartic proteinase (Runeberg-Roos et al., 1994). The CTPP of BL is rich in hydrophobic residues, has 2 glutamic acid residues, and has the potential to form an amphipathic ∝-helix. The expression of a cDNA clone encoding this monocot protein in transgenic tobacco, a dicot plant, resulted in correct processing, maturation and accumulation of active BL in vacuoles (Wilkins et al., 1990). This correct sorting of BL suggests that similar mechanisms for vacuolar protein transport exist in both monocot and dicot plants. Pulse-chase analysis, electron microscopy (EM) immunolocalization and cell fractionation studies were used to determine if the CTPP contained the sorting determinant. These studies demonstrated that the CTPP is necessary for proper sorting of BL (Bednarek et al., 1990) and is sufficient to redirect a secreted protein, cucumber chitinase (Boller and Métraux, 1988) to the vacuole of transgenic tobacco plants (Bednarek and Raikhel, 1991). Therefore, the CTPP of BL contains vacuolar targeting information within its sequence or structure.

The experimental results obtained from a detailed mutational analysis of barley lectin's CTPP, revealed that no consensus sequence or common structural determinants are required for proper sorting of BL to the vacuole (Dombrowski et al., 1993). However, the analysis did show the importance of hydrophobic residues in vacuolar targeting. In addition, a minimal length of 3 exposed amino acid residues are necessary for efficient sorting. Sorting was disrupted by the addition of two glycine residues to the carboxyl-terminal end of the targeting signal or by translocation of the glycan to the carboxy-terminus

of the propeptide. These results suggest that the component of the sorting machinery which recognizes the CTPP interacts with the carboxy-terminal end of the propeptide.

Similar results were obtained from the analysis of the seven amino acid CTPP of *Nicotiana tabacum* chitinase A. This CTPP was also shown to be necessary for the transport of chitinase A to the vacuoles of *Nicotiana silvestris* and sufficient for to redirect the normally secreted cucumber chitinase to the plant vacuole (Neuhaus et al., 1991). A mutational analysis of the chitinase A CTPP, combined with its substitution by random sequences, illustrated that sequence changes in the CTPP allowed for a gradual transition from vacuolar retention of chitinase A to its secretion from the cell (Neuhaus et al., 1994). The most dramatic effect in the secretion of chitinase A by a single amino acid exchange was observed when the methionine of the CTPP (Figure 1.2) was replaced by a glycine. In addition, when extremely high levels of chitinase A were transiently produced in *Nicotiana plumbaginifolia* protoplasts, secretion of chitinase A was observed, suggesting saturation of the sorting system and the receptor.

Thus, the extensive mutational analysis of the fifteen amino acid CTPP of BL and the seven amino acid CTPP of chitinase A yielded comparable results. These two analyses confirmed that the recognition of highly variable sequences by the sorting apparatus was not a phenomena specific to BL, but a general characteristic. The highly polymorphic nature of CTPP targeting signals can also be seen by comparing the sequences of CTPPs of various vacuolar proteins and

C-terminal extensions of putative vacuolar proteins displayed in Figure 1.2. In conclusion, the component of the sorting apparatus that interacts with the CTPP binds to short sequences of amino acids, has low sequence specificity and interacts with the C-terminus of the propertide.

Targeting information in mature portions of plant proteins

Some soluble plant vacuolar proteins are synthesized without cleavable propeptides, indicating that the sorting information is contained in a portion of the mature protein. The lectin PHA of common bean accumulates in protein storage vacuoles. Except for the removal of the signal sequence it does not undergo any additional proteolytic steps (Bollini et al., 1985). Initial studies to define a vacuolar targeting signal for PHA used yeast as a model system. When expressed in yeast, full length PHA was correctly sorted to the vacuole (Tague and Chrispeels, 1987). In order to identify the vacuolar sorting information contained in PHA, a series of gene fusions were constructed containing portions of the mature PHA protein fused to the secreted yeast protein invertase. This analysis identified a short region of amino acid residues (14-23) that contained the sorting information (Tague et al., 1990). Sequence analysis indicates that this domain contains the yeast-like targeting sequence LQRD. Mutations in the LQRD sequence caused increased levels of secretion in certain PHA-invertase hybrid proteins. However, similar alterations in the longer PHA-invertase fusions or the full length PHA did not yield dramatic effects on the level of secretion of PHA in yeast (Tague et al., 1990). Thus, although this sequence is sufficient for targeting to the yeast vacuole, it is not necessary. However, when some of these same PHA-invertase constructs were expressed in *Arabidopsis thaliana* protoplasts, they failed to yield significant vacuolar localization (Chrispeels, 1991). Therefore, the sorting determinant contains enough information for proper sorting in yeast but appears to lack the necessary information for efficient targeting in plants. Further analysis of PHA in plants revealed an additional protein segment between amino acids 84-113 which acts as the targeting determinant in plants (von Schaewen and Chrispeels, 1993).

The vacuolar glycoprotein patatin, from potato tubers, is correctly targeted to the vacuole of transgenic tobacco (Sonnewald et al., 1990). Other than the removal of the signal sequence, patatin undergoes no additional proteolytic processing. When the N-terminal 146 amino acids of the protein, including the 23 amino acid signal sequence and 123 amino acids of the mature protein, were fused to the yeast invertase (von Schaewen et al., 1990), the chimeric protein was redirected to the vacuoles of transgenic tobacco (Sonnewald et al., 1991). This demonstrated that a portion of the mature protein is sufficient to redirect a secreted protein to the plant vacuole.

The hexameric 11S globulin legumin is a bean storage protein that accumulates in the cotyledon cell storage vacuole. This protein is also correctly delivered to the vacuoles in tobacco. After entering the ER, the 11S polypeptides form trimers that are transported by way of the Golgi apparatus to the vacuole (for review see Akazawa and Hara-Nishimura, 1985). In order to

study its targeting, chimeric fusion proteins consisting of the reporter protein chloramphenical acetyl transferase (CAT) and portions of the 11S α -subunit were transformed into tobacco (Saalbach et al., 1991). Efficient vacualar targeting was observed only when the entire α -chain was fused to CAT, suggesting that the targeting information was structural in nature.

Overall, the studies of vacuolar targeting of PHA, patatin and 11S globulin legumin have indicated that sorting information can reside in a region of amino acids on the surface of a protein or in some secondary or tertiary structural determinant.

Plant vacuolar proteins in yeast

The sorting of proteins to the plant cell vacuole has been shown to be mediated by a diverse collection of targeting signals contained in an aminoterminal propeptide, a carboxyl-terminal propeptide, or a portion of the mature protein. However, it was previously unclear if plant vacuolar targeting sequences could be recognized in yeast. As mentioned in the previous section, the analysis of PHA targeting has shown that it contains two distinct vacuolar targeting signals, one specific for yeast and another which is utilized in plants. Many other vacuolar proteins from plants and their sorting determinants have been studied in yeast.

The 11S legumin subunit is transported to the yeast vacuole (Saalbach et al., 1991). Gene fusions of yeast invertase with different legumin

propolypeptide segments were constructed and expressed in yeast. Various segments of the 11S subunit were able to deliver a portion of these fusion proteins to the yeast vacuole. However, the sorting efficiency was correlated with the increasing length, and only the complete legumin α -chain was able to redirect >90% of the chimera to the vacuole. In addition, it was shown that short C-terminal segments of the α -chain when fused to the C-terminus of invertase could redirected this fusion protein to the vacuole.

The transport of sporamin was also tested in yeast. When sporamin constructs containing the wild type NTPP and a mutant propeptide which causes secretion in plants, were expressed in yeast, both were delivered to the vacuole. The vacuolar targeting of the mutant NTPP sporamin suggests that a cryptic yeast targeting signal is contained within its sequence or structure (Matsuoka and Nakamura, 1992).

A more definitive study of a plant vacuolar targeting signal in yeast was conducted using the CTPP of BL. When this plant vacuolar signal was fused to the C-terminus of the yeast invertase and expressed in yeast, it was secreted from the cell (Gal and Raikhel, 1994), demonstrating that the CTPP of BL is not recognized in yeast. In addition, invertase-BL fusion proteins with or without the CTPP of BL were retained intracellularly in yeast. Interestingly, when wheat germ agglutinin isoform 2 (WGA2), a homologue to BL sharing 94% amino acid identity (Wright, 1987; Wright et al., 1993; Lerner and Raikhel, 1989), was introduced into yeast with or without its CTPP, both proteins were secreted from the cell (Nagahora et al. 1992). The difference in sorting of BL and WGA2

may be due to the misfolding of the invertase-BL fusions, which were unable to bind to an *N*-acetyl glucosamine affinity column (Wilkins et al., 1990). In contrast, WGA2 displayed sugar binding activity. It should be noted that the ability of BL and WGA2 to bind *N*-acetyl glucosamine is used to determine if the proteins have folded and dimerized correctly (Wright, 1987; Wilkins et al., 1992; Wright et al., 1993). Therefore, the misfolding of the BL portion of the invertase-BL fusion protein may have exposed a cryptic yeast targeting signal, which mediated its intracellular retention. In addition, when two soluble plant vacuolar lectins from the legume *Dolichos biflorus*, seed lectin and DB58, were expressed in yeast, both were secreted from the cell (Chao and Etzler, 1994).

All these studies indicate that plants and yeast utilize different signals and/or mechanisms for protein transport to the vacuole. Thus, it appears that yeast is not an appropriate heterologous system in which to study the targeting of plant vacuolar proteins.

Targeting of membrane proteins

The majority of mammalian lysosomal membrane and soluble proteins are delivered to the lysosome via vesicular transport through an extensive endosomal system which includes the plasma membrane (PM). Membrane proteins are targeted to the lysosome by positive sorting information contained in their cytoplasmic tail (Peters et al., 1990; for review see Sandoval and Bakke, 1994). Mutations that alter the sorting determinant of lysosomal

membrane proteins, or disrupt the retention of ER and Golgi resident membrane proteins cause them to be localized to the PM (Jackson et al., 1990; Machamer and Rose, 1987; Williams and Fukuda, 1990; for reviews see Machamer, 1991; Pelham and Munro, 1993; Sandoval and Bakke, 1994), indicating that the default pathway for mammalian membrane proteins which enter the secretory pathway is the PM.

Yeast vacuolar proteins are sorted at the TGN and are transported by vesicles via a prevacuolar endosomal-like compartment (Vida et al., 1993). The resident vacuolar proteins dipeptidyl aminopeptidase (DPAP) B and alkaline phosphatase (ALP) were used to study yeast vacuolar membrane targeting. Both ALP (Klionsky and Emr, 1989) and DPAP B (Roberts et al., 1989) are type Il membrane glycoproteins with a short N-terminal cytoplasmic domain, a single transmembrane domain, and a C-terminal catalytic lumenal domain. Extensive deletion and domain exchange studies were performed. As a result of these analyses, it was concluded that apart from being attached to the membrane, no structural or sequential information was necessary for these membrane proteins to reach the vacuole (Klionsky and Emr, 1990; Roberts et al., 1992). In addition, when the cytoplasmic domains of the Golgi resident proteins DPAP Ap, Kex1p, and Kex2p were deleted, they were no longer retained in the Golgi, but were delivered to the vacuolar membrane (Cooper and Bussey, 1992; Roberts et al., 1992; Wilcox et al., 1992; for review, see Wilsbach and Payne, 1993a). These findings indicate that in yeast the default destination for secretory pathway membrane proteins is the vacuolar membrane (for reviews see Stack and Emr, 1993; Nothwehr and Stevens, 1994). This is in direct contrast to the active sorting process for soluble vacuolar proteins, which require recognition of a targeting signal for delivery to the vacuole. This information, coupled with the fact that *vps* mutants do not cause vacuolar membrane proteins to be secreted to the cell surface (for review see Raymond et al., 1992b), indicates that there are several different mechanisms for yeast vacuolar protein sorting. However, more recent findings showed that in *vps1* mutant cells vacuolar membrane proteins are delivered to the vacuole by way of the PM (Nothwehr et al., 1995). The *VPS1* gene encodes a GTPase associated with the TGN which is necessary for proper sorting of soluble vacuolar proteins (Vater et al., 1992) and for the retention of Golgi membrane proteins (Wilsbach and Payne, 1993b).

In plants, the transport of membrane proteins is one of the least characterized aspects of vacuolar sorting. Progress in this area has been hampered in part by the lack of reporter proteins. The tonoplast intrinsic protein (TIP), a membrane protein of the aquaporin family (Chrispeels and Maurel, 1994), is synthezied on the rough ER before transport to the vacuolar membrane (Mäder and Chrispeels, 1984; Johnson et al., 1990; Höfte et al., 1991). The protein has six membrane spanning domains with cytoplasmically oriented N-terminal and C-terminal domains, and is present in different isoforms (Johnson et al., 1990; Höfte et al., 1992). The approach chosen to study vacuolar membrane protein targeting was to follow the fate of fusion proteins consisting of the chimeric secreted protein ssPAT (signal sequence -

phosphinotricine acetyltransferase) (Deneke et al., 1990) and the sixth transmembrane domain of ∝-TIP with or without its cytoplasmic domain (Höfte 1992). This analysis demonstrated that the sixth and Chrispeels. transmembrane domain alone was sufficient to transport the reporter protein to the vacuolar membrane. The delivery of this chimeric fusion protein to the tonoplast resembles the findings in yeast. Does this indicate that the default destination for secretory membrane proteins is to the vacuole? This question still needs to be clarified. If the default destination for vacuolar membrane proteins is found to be the vauole, then a more intriguing question arises; what is the necessary sorting information contained in secreted membrane proteins for transport to and retention at the PM? Interestingly, the G-protein from vesicular stomatitis virus (VSVG), which has a transmembrane domain, was transformed into tobacco and was delivered to the PM via the Golgi (Galbraith et al., 1992). Further study of the transport of this heterologous marker protein as compared with endogenous resident PM proteins is necessary to determine requirements for protein sorting to the PM.

Additional experiments were conducted, which compared the delivery of soluble PHA and vacuolar membrane ∞ -TIP in the presence of the inhibitors monensin and BFA in tobacco (Gomez and Chrispeels, 1993). The analysis showed that PHA transport was inhibited, while the delivery of ∞ -TIP to the tonoplast was not. This suggests that in plants, as in yeast, soluble and membrane proteins utilize different mechanisms for delivery to the vacuole.

Soluble plant vacuolar proteins utilize multiple mechanisms and receptors

Some plant cells contain more than one vacuole, which may perform different cellular functions. Since plant vacuolar proteins utilize more than one type of targeting determinant, would proteins utilizing different signals colocalize to the same vacuole? When sporamin (NTPP) and BL (CTPP) were expressed in the same tobacco plant, both were shown to be delivered to the same vacuoles in the cell (Schroeder et al., 1993). Recently, it was also shown that the CTPP of BL and the NTPP of sporamin are functionally interchangeable by the ability of either signal to target both BL and sporamin to the vacuole of tobacco BY-2 cells (Matsuoka et al., 1995).

Although proteins utilizing either NTPP and CTPP targeting signals are delivered to the same vacuoles, and the targeting signals are functionally interchangeable, there is now strong evidence of multiple receptors and mechanisms for the targeting of soluble proteins to the vacuole. While CTPPs have no consensus sequence, NTPPs display a common motif (see Figure 1.1), a specific substitution of the isoleucine with glycine inactivates the targeting signal and causes secretion. This specificity allowed for the identification of a putative vacuolar receptor for NTPP (Kirsh et al, 1994). This NTPP binding protein was isolated from extracts of developing pea cotyledons CCVs, based on its ability to bind to an affinity column containing the NTPP of proaleurain. This receptor protein is reported to be a integral membrane glycoprotein of 80 kDa with an N-terminal lumenal domain with a binding constant of 37 nM.

Binding assays demonstrated that NTPP peptides were able to compete for binding, whereas the mutant NTPP (glycine substituted for isoleucine) peptide and CTPP of BL could not. The inability of CTPP targeting signals to compete for binding indicates that there are multiple receptors involved in the targeting process.

In yeast, the *VPS34* gene encodes a phosphotidylinositol 3-kinase (PI 3-kinase), which has been shown to be necessary for the correct sorting of soluble vacuolar proteins (Herman and Emr, 1990; Shu et al., 1993; Stack et al., 1993). Recently, a specific inhibitor of mammalian PI 3-kinase, wortmannin (Nakanishi et al., 1992; Arcaro and Wymann, 1993; Yano et al., 1993; Thelen et al., 1994; Woscholski et al., 1994), was used in plants to investigate its effects on the delivery of NTPP and CTPP containing proteins to the vacuole (Matsuoka et al., 1995). Pulse chase analyses in tobacco BY-2 cells indicated that wortmannin at a concentration of 33 μ M caused secretion of proteins utilizing CTPP targeting signals, whereas NTPP mediated transport of proteins to the vacuole displayed almost no sensitivity at this concentration of inhibitor. This differential sensitivity to wortmannin suggests two different mechanisms for sorting of soluble vacuolar proteins.

Components of plant vacuolar sorting machinery

In addition to the isolation of the putative NTPP receptor described earlier in this review, additional potential components of the plant vacuolar sorting

machinery have been identified. Recently, two small GTP binding proteins of 25 kDa and 27 kDa were isolated by biochemical means from vesicles targeted to the vacuoles in developing pumpkin cotyledons (Shimada et al., 1994). Small GTPases are believed to facilitate targeting of vesicles to their appropriate membranes (for reviews see Balch, 1990; Pryer et al., 1992; Novick and Brennwald, 1993; Ferro-Novick and Novek, 1994; Verma et al., 1994). The identification of two different small GTPases suggest that there may be mixed populations of vesicles destined for the vacuole. So far, only one GTPase in yeast has been identified that is involved in vacuolar targeting, the rab 5-like GTP-binding protein VPS21p (Horazdovsky et al., 1994). It will be interesting to determine if either of these GTPases will be able to complement the yeast *vps21* mutant.

A cDNA, AtVPS34, encoding for a PI 3-kinase was cloned by PCR from Arabidopsis thaliana (Welters et al., 1994). The protein sequence of AtVPS34 shows homology to the yeast VPS34p, which has been shown to be necessary for the correct sorting of soluble vacuolar proteins (Herman and Emr, 1990). Despite the homology, the AtVPS34 gene was unable to rescue the vps34 deletion mutant. However, a chimeric gene in which the coding sequence for the C-terminal third of yeast VPS34 (Catalytic domain) was replaced with the corresponding sequence from the plant gene was able to complement the mutation. The N-terminal domain of VPS34p is believed to mediate its interaction with the TGN and another protein kinase, VPS15p, in yeast (Stack et al., 1993). Therefore, some homologous plant proteins may be unable to

function in the yeast sorting apparatus because their sequences are divergent enough to disrupt the specificity of protein-protein interactions. Futhermore, the expression of *AtVPS34* antisense constructs resulted in plants that were severely inhibited in their growth and development.

Recently, the plant cDNA aG68, which encodes a large GTP-binding protein, was isolated from Arabidopsis. A sequence comparison shows it to have 53% sequence similarity at the amino acid level to the yeast VPS1 gene (Dombrowski and Raikhel, 1995). In yeast, vps1 mutants exhibit severe defects in soluble vacuolar protein sorting causing their mislocaliztion and secretion from the cell (Vater et al., 1992). The VPS1 gene codes for a GTP-binding protein (Rothman et al., 1990) that is associated with the TGN, and is involved in retention of proteins in the Golgi (Wilsbach and Payne, 1993) as well as protein transport to the yeast vacuole (Vater et al., 1992; Nothwehr et al., 1995). However as with the AtVPS34, aG68 was also unable to complement the yeast mutant. The greatest region of divergence between the plant and yeast proteins is also in a domain believed to be involved in protein interactions. The creation of a mutant phenotype by suppressing the expression of the aG68 gene by antisense in plants or by a construct of a dominant mutation (Vater et al., 1992) are currently in progress in an attempt to identify its function.

A third plant cDNA homologue of yeast *vps* mutants has been isolated by functional complementation of the yeast *pep12* mutant (Jones, 1977). The yeast *PEP12* gene is necessary for the delivery of soluble proteins to the vacuole. Yeast PEP12p is a member of the syntaxin family of intergal membrane

proteins which are believed to function as receptors for transport vesicles (Bennett et al., 1993; Calakos et al., 1994; for reviews, see Ferro-Novick and Jahn, 1994; Rothman, 1994). The *Arabidopsis* cDNA (*aPEP12*) potentially encodes for a 31 kDa protein which has homology to other members of the syntaxin family, in addition to yeast PEP12 (Bassham et al., 1995).

The future

The main focus of current research is to identify and isolate components of the vacuolar sorting machinery and to elucidate their role in transport to the vacuole. The isolation of a receptor to the CTPP by biochemical methods has been unsuccessful. In contrast to the specific motif present in the NTPP of yeast CPY and barley aleurain, research has shown that the CTPP has no consensus sequence. In addition, the component of the sorting machinery that interacts with the CTPP binds to very short stretches of amino acids. The putative receptor may also have a low binding affinity for the CTPP, thereby making it extremely difficult to isolate by biochemical means.

In yeast, the creation of the vacuolar protein sorting (*vps*) mutants (for reviews, see Klionsky et al., 1990; Raymond et al., 1992b) have played an essential role in the isolation and identification of components as well as the elucidation of mechanisms involved in the vacuolar sorting process. The plant *Arabidopsis thaliana* has many characteristics which make it a very good model system for the generation of mutants (Estelle and Somerville, 1986; Somerville,

1989; Koncz and Rèdei, 1994). We have recently shown that when BL is transformed into Arabidopsis it is correctly processed and targeted to the vacuoles in roots and leaves (J.E. Dombrowski, O. Borkhsenious, A. Sandul, and N.V. Raikhel unpublished results). Therefore, the creation of vacuolar protein sorting mutants in Arabidopsis (avps) will provide an excellent chance to isolate the CTPP receptor and other components of the sorting apparatus. One of the drawbacks of creating avps mutants is that mutations in vacuolar protein sorting may severely disrupt the structure or inhibit the formation of the vacuole, the presence of which is believed to be essential for plant cell growth. However, most of the yeast vps mutants are not lethal. In addition, the yeast vps mutants display a variety of vacuolar morphologies (Klionsky et al., 1990; Raymond et al., 1992 a,b). Furthermore, by using ethylmethane sulfonate mutagenesis, one can potentially create conditional (temperature sensitive) or leaky mutants which will allow for the isolation of essential genes (Feldmann et al., 1994). One of the requirements for the development of a good genetic screen is a genetic marker or reporter protein, which yields a phenotype that is quick and easy to score. At the 1995 Keystone meeting on Plant Cell Biology, Dr. Jean-Marc Neuhaus reported that when the seven amino acid CTPP of tobacco chitinase was fused to the C-terminus of rat beta-glucuronidase (RGUS + T), it was efficiently targeted to the vacuole in tobacco (Chrispeels et al., 1995). Therefore, one can envision a screen for avps mutants, whereby a colorimetric assay will be used to select for seedlings whose roots are missorting and secreting the vacuolar localized RGUS+T.

Mutants and cell-free assay/transport systems coupled with biochemical approaches have allowed for the identification of components involved in the secretory pathway (ER-Golgi-Lysosome/Vacuole) in mammalian and yeast systems (for reviews, see Klionsky et al., 1990; Rothman and Orci, 1992; Pryer et al., 1992; Raymond et al., 1992b; Rothman, 1994) and have led to the elucidation of the mechanisms involved in protein transport through the endomembrane system.

In this review I have indicated that plants are fundamentally different compared to mammalian and yeast systems in the way soluble vacuolar proteins are targeted to the vacuole. Currently, little is known about the mechanisms or machinery involved in targeting proteins to the plant cell vacuole. Some of the components and clues to mechanisms involved in vacuolar transport have been discussed in this review. The future for vacuolar targeting in plants will be led by the development of an in vitro transport system, combined with the generation of vacuolar sorting mutants in *Arabidopsis*. This more than anything else will finally answer the question: "How are proteins targeted to the plant vacuole?".

REFERENCES

- Akazawa T, Hara-Nishimura I (1985). Topographic aspects of biosynthesis, extracellular, and intracellular storage of proteins in plant cells. Ann Rev Plant Physiol 36, 441-472.
- Ammerer G, Hunter CP, Rothman JH, Saari GC, Valls LA, Stevens TH (1986). PEP4 gene of Saccharomyces cerevisiae encodes proteinase A, a vacuolar enzyme required for processing of vacuolar precursors. Mol Cell Biol 6, 2490-2499.
- Arcaro A, Wymann MP (1993). Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-triphosphate in neutrophil responses. Biochem J 296, 297-301.
- Balch WE, Farquhar MG (1995). Beyond bulk flow. Trends Cell Biol 5, 16-19.
- Balch WE (1990). Small GTP-binding proteins in vesicular transport. Trends Biochem Sci 15, 473-477.
- Balch WE, McCaffery JM, Plutner H, Farquhar MG (1994). Vesicular stomatitis virus glycoprotein is sorted and concentrated during export from the endoplasmic reticulum. Cell 76, 841-852.
- Barlowe C, Orci L, Yeung T, Hosobuchi M, Hamamoto S, Salama N, Rexach MF, Ravazzola M, Amherdt M, Schekman R (1994). COPII: A membrane coat formed by SEC proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895-907.
- Bassham DC, Gal S, Conceicao AS, Raikhel NV (1995). An *Arabidopsis* syntaxin homologue isolated by functional complementation of a yeast *pep12* mutant. Proc Natl Acad Sci USA in press.
- Bednarek SY, Raikhel NV (1991). The barley lectin carboxyl-terminal propeptide is a vacuolar protein sorting determinant in plants. Plant Cell 3, 1195-1206.
- Bednarek SY, Wilkins TA, Dombrowski JE, Raikhel NV (1990). A carboxylterminal propertide is necessary for proper sorting of barley lectin to vacuoles of tobacco. Plant Cell 2, 1145-1155.
- Bednarek SY, Raikhel NV (1992). Intracellular trafficking of secretory proteins. Plant Mol Biol 20, 133-150.

- Benatti L, Nitti G, Solinas M, Valsasina B, Vitale A, Ceriotti A, Soria MR (1991).

 A saporin-6 cDNA containing a precursor sequence coding for a carboxyl-terminal extension. FEBS Lett 291, 285-288.
- Bennett MK, Garcia-Arrarás JE, Elferink LA, Peterson K, Fleming AM, Hazuka CD, Scheller RH (1993). The syntaxin family of vesicular transport receptors. Cell 74, 863-873.
- Blobel G (1980). Intracellular protein topogenesis. Proc Natl Acad Sci USA 77, 1496-1500.
- Blobel G, Dobberstein B (1975). Transfer of proteins across the membrane. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol 67, 835-851.
- Boller T, Kende H (1979) Hydrolytic enzymes in the central vacuole of plant cells. Plant Physiol 63, 1123-1132.
- Boller T, Wiemken A (1986). Dynamics of vacuolar compartmentation. Ann Rev Plant Physiol 37, 137-164.
- Boller T, Métraux JP (1988). Extracellular localization of chitinase in cucumber. Physiol Mol Plant Pathol 33, 11-16.
- Bollini R, Chrispeels MJ (1978). Characterization and subcellular localization of vicilin and phytohemagglutinin, the two major reserve proteins of *Phaseolus vulgaris* L. Planta 142, 291-298.
- Bollini R, Ceriotti A, Daminati MG, Vitale A (1985). Glycosylation is not needed for the intracellular transport of phytohemagglutinin in developing *Phaseolus vulgaris* cotyledons and for the maintenance of its biological activities. Physiol Plant **65**, 15-22.
- Bowles DJ, Marcus SE, Pappin DJC, Findlay JBC, Eliopoulos E, Maycox PR, Burgess J (1986). Posttranslational processing of Concanavalin A precursors in jackbean cotyledons. J Cell Biol 102, 1284-1297.
- Calakos N, Bennett MK, Peterson KE, Scheller RH (1994). Protein-protein interactions contributing to the specificity of intracellular vesicular trafficking. Nature 263, 1146-1149.
- Chao Q, Etzler M (1994). Incorrect targeting of plant vacuolar lectins in yeast. J Biol Chem 269, 20866-20871.

- Chrispeels MJ, Maurel C (1994). Aquaporins: the molecular basis of facilitated water movement through living plant cell? Plant Physiol 105, 9-13.
- Chrispeels MJ, Green PJ, Nasrallah JB (1995). Meeting Report: Plant cell biology come of age. Plant Cell 7, 237-248.
- Chrispeels MJ (1991). Sorting of proteins in the secretory system. Annu Rev Plant Physiol Plant Mol Biol 42, 21-53.
- Chrispeels MJ, Raikhel NV (1992). Short peptide domains target proteins to plant vacuoles. Cell 68, 613-616.
- Chrispeels MJ (1983) The Golgi apparatus mediates the transport of phytohemagglutinin to the protein bodies in bean cotyledons. Planta 158, 140-151.
- Cooper A, Bussey H (1992). Yeast Kex1p is a Golgi-associated membrane protein: Deletions in a cytoplasmic targeting domain results in mislocalization to the vacuolar membrane. J Cell Biol 119, 1459-1468.
- Craig S, Goodchild DJ (1984). Golgi-mediated vicilin accumulation in pea cotyledon cells is re-directed by monensin and nigericin. Protoplasma 122, 91-97.
- Dahms NM, Lobel P, Kornfeld S (1989). Mannose 6-phosphate receptors and lysosomal enzyme targeting. J Biol Chem 264, 12115-12118.
- Denecke J, Botterman J, Deblaere R (1990). Protein secretion in plant cells can occur via a default pathway. Plant Cell 2, 51-59.
- Dice JF (1990). Peptide sequences that target cytosolic proteins for lysosomal proteolysis. TIBS 15, 305-309.
- Dixon DC, Cutt JR, Klessig DF (1991). Differential targeting of the tobacco PR-1 pathogenesis related proteins to the extracellular space and vacuoles of crystal idioblasts. EMBO J 10, 1317-1324.
- Dombrowski and Raikhel (1995). Isolation of a cDNA encoding a novel GTP-binding protein of *Arabidopsis thaliana*. Plant Mol Biol in press.
- Dombrowski JE, Schroeder MR, Bednarek SY, Raikhel NV (1993).

 Determination of the functional elements within the vacuolar targeting signal of barley lectin. Plant Cell 5, 587-596.

- Dorel C, Voelker TA, Herman EM, Chrispeels MJ (1989). Transport of proteins to the plant vacuole is not by bulk flow through the secretory system, and requires positive sorting information. J Cell Biol 108, 327-337.
- Driouich A, Faye L, Staehelin LA (1993a). The plant Golgi apparatus: a factory for complex polysaccharides and glycoproteins. Trends Biochem 18, 210-214.
- Driouich A, Zhang GF, Staehelin LA (1993b). Effect of brefeldin A on the structure of the Golgi apparatus and on the synthesis and secretion of proteins and polysaccharides in sycamore maple (*Acer pseudoplatanus*) suspension-cultured cells. Plant Physiol 101, 1363-1373.
- Elbein AD (1987) Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains. Annu Rev Biochem 56, 497-534.
- Estelle MA, Somerville CR (1986). The mutants of Arabidopsis. Trends Genetics 2, 89-93.
- Farquhar MG (1985) Progress in unraveling pathways of golgi traffic. Ann Rev Cell Biol 1, 447-488.
- Faye L, Johnson KD, Strum A, Chrispeels MJ (1989). Structure, biosynthesis and function of asparagine-linked glycans on plant glycoproteins. Physiol Plant 75, 309-314.
- Faye L, Chrispeels MJ (1987). Transport and processing of the glycosylated precursor of Concanavalin A in jack-bean. Planta 170, 217-224.
- Feldmann KA, Malmberg RL, Dean C (1994). Mutagenesis of *Arabidopsis*. In *Arabidopsis* (ed. EM Meyerowitz and CR Sommerville) ch. 7, pp. 137-172 Cold Spring Harbor Laboratory Press, Plainview, New York.
- Ferro-Novick S, Jahn R (1994). Vesicle fusion from yeast to man. Nature 370, 191-193.
- Fiedler K, Simons K (1995). The role of N-glycans in the secretory pathway. Cell 81, 309-312.
- Fukuda Y, Ohme M, Shinshi H (1991). Gene structure and expression of a tobacco endochitinase gene in suspension-cultured tobacco cells. Plant Mol Biol 16, 1-10.
- Gal S, Raikhel NV (1994). A carboxy-terminal plant vacuolar targeting signal is not recognized by yeast. Plant J 6, 235-240.

- Galbraith DW, Zeiher CA, Harkins KR, Afonso CL (1992). Biosynthesis, processing and targeting of the G-protein of vesicular stomatitis virus in tobacco protoplasts. Planta 186, 324-336.
- Galili G, Altschuler Y, Levanony H, Giorini-Silfen S, Shimoni Y, Shani N, Karchi H (1995). Assembly and transport of wheat storage proteins. J Plant Physiol 145, 626-631.
- Galili G, Altschuler Y, Levanony H (1993). Assembly and transport of seed storage proteins. Trends Cell Biol 3, 437-443.
- Garcia-del Portillo F, Finlay BB (1995). Targeting of *Salmonella typhimurium* to vesicles containing lysosomal membrane glycoproteins bypasses compartments with mannose 6-phosphate receptors. J Cell Biol **129**, 81-97.
- Gaudreault PR, Beevers L (1984). Protein bodies and vacuoles as lysosomes. Investigations into the role of mannose 6-phosphate in intracellular transport of glycosidases in pea cotyledons. Plant Physiol **76**, 228-232.
- Gilmore R (1993). Protein translocation across the endoplasmic reticulum: A tunnel with toll booths at entry and exit. Cell **75**, 589-592.
- Glickman JN, Kornfeld S (1993). Mannose 6-phosphate-independent targeting of lysosomal enzymes in I-cell disease B lymphoblasts. J Cell Biol 123, 99-108.
- Gomez L, Chrispeels MJ (1993). Tonoplast and soluble vacuolar proteins are targeted by different mechanisms. Plant Cell 5, 1113-1124.
- Griffiths G, Doms RW, Mayhew T, Lucocq J (1995). The bulk-flow hypothesis: not quite the end. Trends Cell Biol 5, 9-13.
- Griffiths G, Simons K (1986). The *trans* golgi network: sorting at the exit site of the golgi complex. Science **234**, 438-443.
- Grimes H, Boss WF, Morrè DJ, Mollenhauer HM (1982). Ultrastructural observations of embryogenic suspension culture cells of carrot following exposure to monensin. Plant Physiol (Suppl.) 69, 48.
- Harley S, Beevers L (1989). Coated vesicles are involved in the transport of storage proteins during seed development in *Pisum sativum* L. Plant Physiol **91**, 674-678.
- Harris N (1986). Organization of the endomembrane system. Annu Rev Plant Physiol Plant Mol Biol 37, 73-92.

- Hashimoto C, Cohen RE, Zhang WJ, Ballou CE (1981). Carbohydrate chains on yeast carboxypeptidase Y are phosphorylated. Proc Natl Acad Sci USA 78, 2244-2248.
- Hasilik A, Neufeld EF (1980). Biosynthesis of lysosomal enzymes in fibroblasts. Phosphorylation of mannose residues. J Biol Chem 255, 4946-4950.
- Hasilik A, Tanner W (1978). Biosynthesis of the vacuolar yeast glycoprotein carboxypeptidase Y. Conversion of precursor into the enzyme. Eur J Biochem 85, 599-608.
- Hattori T, Ichihara S, Nakamura K (1987). Processing of a plant vacuolar protein precursor *in vitro*. Eur J Biochem 166, 533-538.
- Hattori T, Nakagawa T, Maeshima M, Nakamura K, Asahi T (1985). Molecular cloning and nucleotide sequence of a cDNA for sporamin, the major soluble protein of sweet potato tuberous roots. Plant Mol Biol 5, 313-320.
- Hemmings BA, Zubenko GS, Hasilik A, Jones EW (1981). Mutant defective in processing of an enzyme located in the lysosome-like vacuole Saccharomyces cerevisiae. Proc Natl Acad Sci USA 78, 435-439.
- Herman EM, Shannon LM, Chrispeels MJ (1985). Concanavalin A is synthesized as a glycosylated precursor. Planta 165, 23-29.
- Herman PK, Emr SD (1990) Characterization of *VPS34*, a gene required for vacuolar protein sorting and vacuole segregation in *Saccharomyces cerevisiae*. Mol Cell Biol 64, 6742-6754.
- Höfte H, Chrispeels MJ (1992). Protein sorting to the vacuolar membrane. The Plant Cell 4, 995-1004.
- Höfte H, Hubbard L, Reizer J, Ludevid D, Herman EM, Chrispeels MJ (1992). Vegetative and seed-specific isoforms of a putative solute transporter in the tonoplast of *Arabidopsis thaliana*. Plant Physiol **99**, 561-570.
- Höfte H, Faye L, Dickinson C, Herman EM, Chrispeels MJ (1991). The protein-body proteins phytohemagglutinin and tonoplast intrinsic protein are targeted to vacuoles in leaves of transgenic tobacco. Planta 184, 431-437.
- Hoh B, Schauermann G, Robinson DG (1991). Storage protein polypeptides in clathrin coated vesicle fractions from developing pea cotyledons are not due to endomembrane contamination. J Plant Physiol 138, 309-316.

		;	

- Holwerda BC, Rogers JC (1993). Structure, functional properties and vacuolar targeting of the barley thiol protease, aleurain. J Exp Bot (suppl.) 44, 321-329.
- Holwerda BC, Galvin NJ, Baranski TJ, Rogers JC (1990). *In Vitro* processing of aleurain, a barley vacuolar thiol protease. Plant Cell 2, 1091-1106.
- Holwerda BC, Padgett HS, Rogers JC (1992). Proaleurain vacuolar targeting is mediated by short contiguous peptide interactions. Plant Cell 4, 307-318.
- Horazdovsky BF, Busch GR, Emr SD (1994). *VPS21* encodes a rab5-like GTP binding protein that is required for the sorting of yeast vacuolar proteins. EMBO J 13, 1297-1309.
- Hubbard SC, Ivatt RJ (1981). Synthesis and processing of asparagine-linked oligosaccharides. Annu Rev Biochem 50, 555-583.
- Hurtley SM, Helenius A (1989). Protein oligomerization in the endoplasmic reticulum. Ann Rev Cell Biol 5, 277-307.
- Jackson MRT, Nilsson T, Peterson P (1990). Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J 9, 3153-3162.
- Johansson A, Rasmussen SK, Harthill JE, Welinder KG (1992). cDNA, amino acid and carbohydrate sequence of barley seed specific peroxidase BP1. Plant Mol Biol 18, 1151-1161.
- Johnson KD, Höfte H, Chrispeels MJ (1990). An intrinsic tonoplast protein of protein storage vacuoles in seeds is structurally related to a bacterial solute transporter (GlpF). Plant Cell 2, 525-532.
- Johnson LM, Bankaitis VA, Emr SD (1987). Distinct sequence determinants direct intracellular sorting and modification of a yeast vacuolar protease. Cell 48, 875-885.
- Johnson KD, Herman EM, Chrispeels MJ (1989). An abundant, highly conserved tonoplast protein in seeds. Plant Physiol 91, 1006-1013.
- Jones EW (1977). Proteinase Mutants of *Saccharomyces cerevisiae*. Genetics **85**, 23-33.
- Jones RL, Robinson DG (1989). Protein secretion in plants. New Phytol 111, 567-597.

Kirs

Klau

Klion

Klions

Klions

Klionsk

Koehler

Koncz (Ir 2

Kornfeld lik

Kornfeld 5,

Legname (19 ina Ac

Lerner DR barl

Levanony I of W

- Kirsch T, Paris N, Butler JM, Beevers L, Rogers JC (1994). Purification and initial characterization of a potential plant vacuolar targeting receptor. Proc Natl Acad Sci USA 91, 3403-3407.
- Klausner KD, Donaldson JG, Lippincott-Schwarz J (1992). Brefeldin A: Insights into the control of membrane traffc and organelle structure. J Cell Biol 116, 1071-1080.
- Klionsky DJ, Herman PK, Emr SD (1990). The fungal vacuole: composition, function, and biogenesis. Microbiological Reviews 54, 266-292.
- Klionsky DJ, Banta LM, Emr SD (1988). Intracellular sorting and processing of a yeast vacuolar hydrolase: Proteinase A propeptide contains vacuolar targeting information. Mol Cell Biol 8, 2105-2116.
- Klionsky DJ, Emr SD (1989) Membrane protein sorting: biosynthesis, transport and processing of yeast vacuolar alkaline phosphatase. EMBO J 8, 2241-2250.
- Klionsky DJ, Emr SD (1990). A new class of lysosomal/vacuolar protein sorting signals. J Biol Chem **265**, 5349-5352.
- Koehler SM, Ho T-HD (1990). Hormonal regulation, processing, and secretion of cysteine proteinases in barley aleurone layers. Plant Cell 2, 769-783.
- Koncz C, Rédei GP (1994). Genetic studies with *Arabidopsis*: a historical view. In *Arabidopsis* (ed. EM Meyerowitz and CR Sommerville) ch. 9, pp. 223-252. Cold Spring Harbor Laboratory Press, Plainview, New York.
- Kornfeld S (1992). Structure and function of the mannose 6-phosphate/insulinlike growth factorII receptors. Annu Rev Biochem 5, 483-525.
- Kornfeld S, Mellman I (1989). The biogenesis of lysosomes. Annu Rev Cell Biol 5, 483-525.
- Legname G, Bellosta P, Gromo G, Modena D, Keen JN, Roberts LM, Lord JM (1991). Nucleotide sequence of cDNA coding for dianthin 30, a ribosome inactivating protein from *Dianthus caryophyllus*. Biochimica Biophysica Acta 1090, 119-122.
- Lerner DR, Raikhel NV (1989). Cloning and characterization of root-specific barley lectin. Plant Physiol **91**, 124-129.
- Levanony H, Rubin R, Altschuler Y, Galili G (1992). Evidence for a novel route of wheat storage proteins to vacuoles. J Cell Biol 119, 1117-1128.

Li X

Lint

Mac

Mach

Mäde

Maesi

Marcu

Marty

Matsu

Matsur

Matsuc

Matsuo t p

- Li X, Franceschi VR, Okita TW (1993). Segregation of storage protein mRNAs on the rough endoplasmic reticulum membranes of rice endosperm cells. Cell 72, 1-20.
- Linthorst JHM, Melchers LS, Mayer A, van Roekel JSC, Cornelissen BJC (1990). Analysis of gene families encoding acidic and basic β -1,3-glucanases of tobacco. Proc Natl Acad Sci USA 87, 8756-8760.
- Machamer CE (1991) Golgi retention signals: do membranes hold the key? Trends Cell Biol 1, 141-144.
- Machamer CE, Rose JK (1987) A specific transmembrane domain of coronavirus E1 glycoprotein is required for its retention in the Golgi region. J Cell Biol 105, 1205-1214.
- Mäder M, Chrispeels MJ (1984). Synthesis of an integral protein of the protein-body membrane in *Phaseolus vulgaris* cotyledons. Planta **160**, 330-340.
- Maeshima M, Sasaki T, Asahi T (1985). Characterization of major proteins in sweet potato tuberous roots. Phytochemistry 24, 1899-1902.
- Marcusson EG, Horazdovsky BF, Cereghino JL, Gharakhanian E, Emr SC (1994). The sorting receptor for yeast vacuolar carboxypeptidase Y is encoded by the *VPS10* gene. Cell 77, 579-586.
- Marty F, Branton D, Leigh RA (1980) Plant vacuoles. In: Tolbert NE, ed. *The biochemistry of plants: A comprehensive treatise.* (New York, Macmillan Press) vol 1, 625-658.
- Matsuoka K, Bassham DC, Nakamura K, Raikhel NV (1995). Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells. J Cell Biol in press.
- Matsuoka K, Nakamura K (1991). Propeptide of a precursor to a plant vacuolar protein required for vacuolar targeting. Proc Natl Acad Sci USA 88, 834-838.
- Matsuoka K, Nakamura K (1992). Transport of a sweet potato storage protein, sporamin, to the vacuole in yeast cells. Plant Cell Physiol 33, 453-462.
- Matsuoka K, Matsumoto S, Hattori T, Machida S, Nakamura K (1990). Vacuolar targeting and posttranslational processing of the precursor to the sweet potato tuberous root storage protein in heterologous plant cells. J Biol Chem 265, 19750-19757.

- Melchers LS, Sela-Buurlage MB, Vloemans SA, Woloshuk CP, Van Roekel JSC, Pen J, van den Elzen PJM, Cornelissen BJC (1993). Extracellular targeting of the vacuolar tobacco proteins AP24, chitinase and β -1,3-glucanase in transgenic plants. Plant Mol Biol 21, 583-594.
- Melroy D, Jones RL (1986). The effect of monensin on intracellular transport and secretion of α -amylase isoenzymes in barley aleurone. Planta 167, 252-259.
- Mizuno M, Singer SJ (1993). A soluble secretory protein is first concentrated in the endoplasmic reticulum before transfer to the golgi apparatus. Proc Natl Acad Sci USA **90**, 5732-5736.
- Moehle CM, Dixon CK, Jones RB (1989). Processing pathway for protease B of Saccharomyces cerevisiae. J Cell Biol 108, 309-324.
- Mollenhauer HH, Morre DJ, Rowe LD (1990). Alteration of intracellular traffic by monensin: mechanism, specificity and relationship to toxicity. Biochim Biophys Acta 1031, 225-246.
- Monroe JD, Salminen MD, Preiss J (1991). Nucleotide sequence of a cDNA clone encoding a 6-amylase from *Arabidopsis thaliana*. Plant Physiol **97**, 1599-1601.
- Morré DJ (1987). The Golgi apparatus. Int Rev Cyt 17, 211-253.
- Nagahora H, Ishikawa K, Niwa Y, Muraki M, Jigami Y (1992). Expression and secretion of wheat germ agglutinin by *Saccharomyces cerevisiae*. Eur J Biochem 210, 989-997.
- Nakamura K, Matsuoka K (1993). Protein targeting to the vacuole in plant cells. Plant Physiol 101, 1-5.
- Nakamura K, Matsuoka K, Mukumoto F, Watanabe N (1993). Processing and transport to the vacuole of a precursor to sweet potato sporamin in transformed tobacco cell line BY-2. J Exp Bot 44 (suppl), 331-338.
- Nakanishi S, Kakita S, Takahashi I, Kawahara K, Tsukuda E, Sano T, Yamada K, Yoshida M, Kase H, Matsuda Y, Hashimoto Y, Nomura Y (1992). Wortmannin, a microbial product inhibitor of myosin light chain kinase. J Biol Chem **267**, 2157-2163.
- Neuhaus JM, Sticher L, Meins Jr F, Boller T (1991). A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proc Natl Acad Sci USA 88, 10362-10366.

- Neuhaus JM, Pietrzak M, Boller T (1994). Mutational analysis of the C-terminal vacuolar targeting peptide of tobacco chitinase: low specificity of the sorting system and gradual transition between intracellular retention and secretion into the extracellular space. Plant J 5, 45-54.
- Newman T, de Bruijn FJ, Green P, Keegstra K, Kende H, McIntosh L, Ohlrogge J, Raikhel N, Somerville S, Thomashow M, Retzel E, Somerville C (1994). Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous *Arabidopsis* cDNA clones. Plant Physiol 106, 1241-1255.
- Nilsson T, Lucocq JM, Mackay D, Warren G (1991). The membrane spanning domain of β -1,4-galactosyltransferase specifies *trans* Golgi localization. EMBO J. 10, 3567-3575.
- Nothwehr SF, Conibear E, Stevens TH (1995). Golgi and vacuolar membrane proteins reach the vacuole in *vps1* mutant yeast cells via the plasma membrane. J Cell Biol **129**, 35-46.
- Nothwehr SF, Stevens TH (1994). Sorting of membrane proteins in the yeast secretory pathway. J Biol Chem 269, 10185-10188.
- Novick P, Brennwald P (1993). Friends and family: the role of the Rab GTPases in vesicular traffic. Cell **75**, 597-601.
- Paul W, Amiss J, Try R, Praekelt U, Scott R, Smith H (1995). Correct processing of the kiwifruit protease actinidin in transgenic tobacco requires the presence of the C-terminal propeptide. Plant Physiol 108, 261-268.
- Payne G, Middlesteadt W, Desai N, Williams S, Dincher S, Carnes M, Ryals J (1989). Isolation and sequence of a genomic clone encoding the basic form of pathogenesis-related protein 1 from *Nicotiana tabacum*. Plant Mol Biol 12, 595-596.
- Pelham HRB, Munro S (1993). Sorting of membrane proteins in the secretory pathway. Cell **75**, 603-605.
- Pelham HRB (1989). Control of protein exit from the endoplasmic reticulum. Annu Rev Cell Biol 5, 1-23.
- Peters C, Braun M, Weber B, Wendland M, Schmidt B, Pohlmann R, Waheed A, von Figura K (1990). Targeting of a lysosomal membrane protein: a tyrosine-containing endocytosis signal in the cytoplasmic tail of lysosomal acid phosphatase is necessary and sufficient for targeting to lysosomes. EMBO J 9, 3497-3506.

Pfe

Pod

Prye

Raik

Rami

Rapo

Rayn

Rayn

Rijnb

Robe

Robin

Robin

Roge

- Pfeffer S, Rothman JE (1987). Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Ann Rev Biochem **56**, 829-852.
- Podivinsky E, Forster RLS, Gardner RC (1989). Nucleotide sequence of actinidin, a kiwifruit protease. Nucleic Acids Res 17, 8363.
- Pryer NK, Wuestehube LJ, Schekman R (1992). Vesicle-mediated protein sorting. Annu Rev Biochem 61, 471-516.
- Raikhel NV, Lerner DR (1991). Expression and regulation of lectin genes in cereals and rice. Dev Genet 12, 255-260.
- Rambourg A, Clermont Y (1990). Three-dimensional electron microscopy: structure of the Golgi apparatus. Eur J Cell Biol 51, 189-200.
- Rapoport TA (1992). Transport of proteins across the endoplasmic reticulum membrane. Science 258, 931-936.
- Raymond CK, Howald-Stevenson I, Vater CA, Stevens TH (1992a). Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E *vps* mutants. Mol Biol Cell 3, 1389-1402.
- Raymond CK, Roberts CJ, Moore KE, Howald I, Stevens TH (1992b). Biogenesis of the vacuole in *Saccharomyces ceverisiae*. Intl Rev Cyto 139, 59-120.
- Rijnbout TS, Kal AJ, Geuze HJ, Aerts H, Strous GJ (1991). Mannose 6-phosphate-independent targeting of cathepsin D to lysosomes in HepG2 cells. J Biol Chem 266, 23586-23592.
- Roberts CJ, Nothwehr SF, Stevens TH (1992). Membrane protein sorting in the yeast secretory pathway: evidence that the vacuole may be the default compartment. J Cell Biol 119, 69-83.
- Robinson DG, Balusek K, Freundt H (1989). Legumin antibodies recognize polypeptides in coated vesicles from developing pea cotyledons. Protoplasma 150, 79-82.
- Robinson DG, Hoh B, Hinz G, Jeong BK (1995). One vacuole or two vacuoles: Do protein storage vacuoles arise *de novo* during pea cotyledon development? J Plant Physiol 145, 654-664.
- Rogers JC, Dean D, Heck GR (1985). Aleurain: A barley thiol protease closely related to mammalian cathepsin H. Proc Natl Acad Sci USA 82, 6512-6516.

Rö Rot Roth Roth Rothr Rothr Runet Saalb Sand Satia Satia Schin

- Römisch K, Schekman R (1992). Distinct processes mediate glycoprotein and glycopeptide export from the endoplasmic reticulum in *Saccharomyces cerevisiae*. Proc Natl Acad Sci USA **89**, 7227-7231.
- Rothman JE, Orci L (1992). Molecular dissection of the secretory pathway. Nature **355**, 409-415.
- Rothman JE (1994). Mechanisms of intracellular protein transport. Nature 372, 55-63.
- Rothman JH, Raymond CK, Gilbert T, O'Hara PJ, Stevens TH (1990). A putative GTP binding protein homologous to interferon-inducible Mx proteins performs an essential function in yeast protein sorting. Cell 61, 1063-1074.
- Rothman JE (1987). Protein sorting by selective retention in the endoplasmic reticulum and Golgi stack. Cell **50**, 521-522.
- Rothman JH, Yamashiro CT, Kane PM, Stevens TH (1989). Protein targeting to the yeast vacuole. Trends Biochem 14, 347-350.
- Runeberg-Roos P, Kervinen J, Kovaleva V, Raikhel NV, Gal S (1994). The aspartic proteinase of barley is a vacuolar enzyme that processes probarley lectin *in vitro*. Plant Physiol **105**, 321-329.
- Saalbach G, Jung R, Kunze G, Saalbach I, Adler K, Müntz K (1991). Different legumin protein domains act as vacuolar targeting signals. Plant Cell 3, 695-708.
- Sandoval IV, Bakke O (1994). Targeting of membrane proteins to endosomes and lysosomes. Trends Cell Biol 4, 292-297.
- Satiat-Jeunemaitre B, Hawes C (1994). G.A.T.T. (A general agreement on traffic and transport) and brefeldin A in Plant Cells. Plant Cell 6, 463-467.
- Satiat-Jeunemaitre B, Hawes C (1993). Insights into the secretory pathway and vesicular transport in plant cells. Biol Cell **79**, 7-15.
- Schimmöller F, Singer-Krüger B, Schröder S, Krüger U, Barlowe C, Riezman H (1995). The absence of Emp24p, a component of ER-derived COPII-coated vesicles, causes a defect in transport of selected proteins to the Golgi. EMBO J 14, 1329-1339.

Sc Sc Sc Shi Shi Shir Sing Son Son Son

Soni

- Schroeder MR, Borkhsenious ON, Matsuoka K, Nakamura K, Raikhel NV (1993). Colocalization of barley lectin and sporamin in vacuoles of transgenic tobacco plants. Plant Phys 101, 451-458.
- Schu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD, Emr SD (1993). Phosphatidylinositol 3-kinase encoded by yeast *VPS34* gene essential for protein sorting. Science **260**, 88-91.
- Schwaiger H, Hasilik A, von Figura K, Wiemken A, Tanner W (1982). Carbohydrate-free carboxypeptidase Y is transferred into the lysosome-like yeast vacuole. Bioch Biophys Res Commun 104, 950-956.
- Shimada T, Nishimura M, Hara-Nishimura I (1994). Small GTP-binding proteins are associated with the vesicles that are targeted to vacuoles in developing pumpkin cotyledons. Plant Cell Physiol 35, 995-1001.
- Shinshi H, Wenzler H, Neuhaus JM, Felix G, Hofsteenge J, Meins Jr F (1988). Evidence for N- and C-terminal processing of a plant defense-related enzyme: Primary structure of tobacco prepro-β-1, 3-glucanase. Proc Natl Acad Sci USA 85, 5541-5545.
- Shinshi H, Neuhaus JM, Ryals J, Meins Jr F (1990). Structure of a tobacco endochitinase gene: evidence that different chitinase genes can arise by transposition of sequences encoding a cysteine-rich domain. Plant Mol Biol 14, 357-368.
- Singer SJ (1995). It's important to concentrate. Trends Cell Biol 5, 14-15.
- Somerville CR (1989). Arabidopsis blooms. Plant Cell 1, 1131-1135
- Sonnewald U, Brauer M, von Schaewen A, Stiff M, Willmitzer L (1991). Transgenic tobacco plants expressing yeast-derived invertase in either the cytosol, vacuole or apoplast: a powerful tool for studying sucrose metabolism and sink/source interactions. Plant J 1, 95-106.
- Sonnewald U, Sturm A, Chrispeels MJ, Willmitzer L (1989). Targeting and glycosylation of patatin the major potato tuber protein in leaves of transgenic tobacco. Planta 179, 171-180.
- Sonnewald U, von Schaewen A, Willmitzer L (1990). Expression of mutant patatin protein in transgenic tobacco plants: role of glycans and intracellular location. Plant Cell 2, 345-355.

Stac Stack Stack

Stever

Stiniss

Struke

Sturm

Tague I

- Stack JH, Herman PK, Schu PV, Emr SD (1993). A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. EMBO J 12, 2195-2204.
- Stack JH, Emr SD (1993). Genetic and biochemical studies of protein sorting to the yeast vacuole. Curr Opin Cell Biol 5, 641-646.
- Stack JH, Emr SD (1994). Vps34p required for yeast vacuolar protein sorting is a multiple specificity kinase that exhibits both protein kinase and phosphatidylinositol-specific PI 3-kinase activities. J Biol Chem 269, 31552-31562.
- Staehelin LA, Giddings TH, Kiss JZ, Sack FD (1990). Macromolecular differentiation of Golgi stacks in root tips of *Arabidopsis* and *Nicotiana* seedlings as visualized in high pressure frozen and freeze-substituted samples. Protoplasma 157, 75-91.
- Staehelin LA, Giddings TH, Moore PJ (1988). Structural organization and dynamics of the secretory pathway of plant cells. Curr Top Plant Biochem Physiol 7, 45-61.
- Stevens TH, Esmon B, Schekman R (1982). Early stages in the yeast secretory pathway are required for transport of carboxypeptidase Y to the vacuole. Cell 30, 439-448.
- Stevens TH, Rothman JH, Payne GS, Schekman R (1986). Gene dosagedependent secretion of yeast vacuolar carboxypeptidase Y. J Cell Biol 102, 1551-1557
- Stinissen H, Peumans WJ, Chrispeels MJ (1985). Posttranslational processing of proteins in vacuoles and protein bodies is inhibited by monensin. Plant Physiol 77, 495-498.
- Strukeij B, Pungercar J, Ritonja A, Krizaj I, Gubensek F, Kregar I, Turk V (1990). Nucleotide and deduced amino acid sequence of an aspartic proteinase inhibitor homologue from potato tubers (*Solanum tuderosum* L.). Nuc Acid Res 18, 4605.
- Sturm A, Voelker TA, Herman EM, Chrispeels MJ (1988). Correct glycosylation, Golgi-processing, and targeting to protein bodies of the vacuolar protein phytohemagglutinin. Planta 175, 170-183.
- Tague BW, Dickinson CD, Chrispeels MJ (1990). A short domain of the plant vacuolar protein phytohemagglutinin targets invertase to the yeast vacuole. Plant Cell 2, 533-546.

۷a ۷a

۷a۰

Ver

Veri

Vida

- Tague BW, Chrispeels MJ (1987). The plant vacuolar protein, phytohemagglutinin, is transported to the vacuole of transgenic yeast. J Cell Biol 105, 1971-1979.
- Tartakoff AM (1983). Perturbation of vesicular traffic with the carboxylic ionophore monensin. Cell 32, 1026-1028.
- Taylor CB, Bariola PA, delCardayré SB, Raines RT, Green PJ (1993). RNS2: A senescence-associated RNase of *Arabidopsis* that diverged from the S-RNases before speciation. Proc Natl Acad Sci USA **90**, 5118-5122.
- Thelen M, Wymann MP, Langen H (1994). Wortmannin binds specifically to 1-phosphatidylinositol 3-kinase while inhibiting guanine nucleotide-binding protein-coupled receptor signaling in neutrophil leukocytes. Proc Natl Acad Sci USA 91, 4960-4964.
- Tranbarger TJ, Franceschi VR, Hildebrand DF, Grimes HD (1991). The soybean 94-kilodalton vegatative storage protein is a lipoxygenase that is localized in paraveinal mesophyll cell vacuoles. Plant Cell 3, 973-987.
- Unger C, Hardegger M, Lienhard S, Strum A (1994). cDNA cloning of carrot (*Daucus carota*) soluble acid β -fructofuranosidases and comparison with the cell wall isoenzyme. Plant Physiol 104, 1351-1357.
- Valls LA, Hunter CP, Rothman JH, Stevens TH (1987). Protein sorting in yeast: the localization determinant of yeast vacuolar carboxypeptidase Y resides in the propeptide. Cell 48, 887-897.
- Valls LA, Winther JR, Stevens TH (1990). Yeast carboxypeptidase Y vacuolar targeting signal is defined by four propeptide amino acids. J Cell Biol 111, 361-368.
- Vater CA, Raymond CK, Ekena K, Howald-Stevenson I, Stevens TH (1992). The VPS1 protein, a homolog of dynamin required for vacuolar protein sorting in *Saccharomyces cerevisiae*, is a GTPase with two functionally separable domains. J Cell Biol 119, 773-786.
- Verma DPS, Cheon CI, Hong Z (1994). Small GTP-binding proteins and membrane biogenesis in plants. Plant Physiol 106, 1-6.
- Verner K, Schatz G (1988). Protein translocation across membranes. Science 241, 1307-1313.
- Vida TA, Huyer G, Emr SD (1993). Yeast vacuolar proenzymes are sorted in the late golgi complex and transported to the vacoule via a prevacuolar endosome-like compartment. J Cell Biol 121, 1245-1256.

- Vitale A, Chrispeels MJ (1992). Sorting of proteins to the vacuoles of plant cells. BioEssays 14, 151-160.
- Vitale A, Ceriotti A, Denecke J (1993). The role of the endoplasmic reticulum in protein synthesis, modification and intracellular transport. J Exp Bot 44 (suppl), 1417-1444.
- Vitale A, Chrispeels MJ (1984). Trainsient *N*-acetylglucosamine in the biosynthesis of phytohemagglutinin: attachment in the Golgi apparatus and removal in protein bodies. J Cell Biol **99**, 133-140.
- Voelker TA, Herman EM, Chrispeels MJ (1989). *In vitro* mutated phytohemagglutinin genes expressed in tobacco seeds: Role of glycans in protein targeting and stability. Plant Cell 1, 95-104.
- von Figura K, Hasilik A (1986). Lysosomal enzymes and their receptors. Annu Rev Biochem 55, 167-193.
- von Heijne G (1988). Transcending the impenetrable: how proteins come to terms with membranes. Biochim Biophys Acta **947**, 307-333.
- von Heijne G (1990). The signal peptide. J Membrane Biol 115, 195-201.
- von Schaewen, A. and Chrispeels, M.J. 1993. Identification of vacuolar sorting information in phytohemagglutinin, an unprocessed vacuolar protein. J Exp Bot 44 (suppl), 339-342.
- von Schaewen A, Stitt M, Schmidt R, Sonnewald U, Willmitzer L (1990). Expression of a yeast-derived invertase in the cell wall of tobacco and *Arabidopsis* plants leads to accumulation of carbohydrate and inhibition of photosynthesis and strongly influences growth and phenotype of transgenic tobacco. EMBO J 9, 3033-3044.
- Walter P, Johnson AE (1994). Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu Rev Cell Biol 10, 87-119.
- Watanabe H, Abe K, Emori Y, Hosoyama H, Arai S (1991). Molecular cloning and gibberellin-induced expression of multiple cysteine proteinases of rice seeds (oryzains). J Biol Chem 266, 16897-16902 (1991).
- Welters P, Takegawa K, Emr SD, Chrispeels MJ (1994). *AtVPS34*, a phosphatidylinositol 3-kinase of *Arabidopsis thaliana*, is an essential protein with homology to a calcium-dependent lipid binding domain. Proc Natl Acad Sci USA 91, 11398-11402.

Wi

Wi

W

W

V

- Wieland FT, Gleason ML, Serafini TA, Rothman JE (1987). The rate of bulk flow from the endoplasmic reticulum to the cell surface. Cell **50**, 289-300.
- Wilcox CA, Redding K, Wright R, Fuller RS (1992). Mutation of a tyrosine localization signal in the cytosolic tail of yeast Kex2 protease disrupts golgi retention and results in default transport to the vacuole. Mol Biol Cell 3, 1353-1371.
- Wilkins TA, Bednarek SY, Raikhel NV (1990). Role of propeptide glycan in post-translational processing and transport of barley lectin to vacuoles in transgenic tobacco. Plant Cell 2, 301-313.
- Wilkins TA, Raikhel NV (1989). Expression of rice lectin is governed by two temporally and spatially regulated mRNAs in developing embryos. Plant Cell 1, 541-549.
- Williams MA, Fukuda M (1990). Accumulation of membrane glycoproteins in lysosomes requires a tyrosine residue at a particular position in the cytoplasmic tail. J Cell Biol 111, 955-966.
- Wilsbach K, Payne GS (1993a). Dynamic retention of TGN membrane proteins in *Saccharomyces cerevisiae*. Trend Cell Biol 3, 426-432.
- Wilsbach K, Payne GS (1993b). Vps1p, a member of the dynamin GTPase family, is necessary for Golgi membrane protein retention in *Saccharomyces cerevisiae*. EMBO J 12, 3049-3059.
- Wink M (1993) The plant vacuole: A multifunctional compartment. J Exp Bot 44 (suppl), 231-246.
- Woolford CA, Daniels LB, Park FJ, Jones EW, van Arsdell JN, Innis MA (1986). The *PEP4* gene encodes an aspartyl protease implicated in the posttranslational regulation of *Saccharomyces cerevisiae* vacuolar hydrolases. Mol Cell Biol 6, 2500-2510.
- Woscholski R, Kodaki T, McKinnon M, Waterfield MD, Parker PJ (1994). A comparison of demethoxyviridin and wortmannin as inhibitors of phosphatidylinositol 3-kinase. FEBS lett 342, 109-114.
- Wright CS (1987). Refinement of the crystal structure of wheat germ agglutinin isolectin 2 at 1-8 Å resolution. J Mol Biol 194, 501-529.
- Wright CS, Schroeder MR, Raikhel NV (1993). Crystallization and preliminary X-ray diffraction studies of recombinant barley lectin and pro-barley lectin. J Mol Biol 233, 322-324.

- Yamagishi K, Mitsumori C, Kikuta Y (1991). Nucleotide sequence of a cDNA encoding the putative trypsin inhibitor in potato tuber. Plant Mol Biol 17, 287-288.
- Yano H, Nakanishi S, Kimura K, Hanai N, Saitoh Y, Fukui Y, Nomura Y, Matsuda Y (1993). Inhibition of histamine secretion by wortmannin through the blockade of phosphatidylinositol 3-kinase in RBL-2H3 cells. J Biol Chem 268, 25846-25856.
- Yoshihisa T, Anraku Y (1990). a novel pathway of import of ∝-mannosidase, a marker enzyme of vacuolar membrane, in *Saccharomyces cerevisiae*. J Biol Chem **265**, 22318-22425.
- Zhang GF, Staehelin LA (1992). Functional compartmentation of the golgi apparatus of plant cells. Plant Physiol 99, 1070-1083.
- Zhang GF, Driouich A, Staehelin LA (1993). Effect of monensin on plant Golgi: reexamination of the monensin-induced changes in cisternal architecture and functional activities of the Golgi apparatus of sycamore suspension-cultured cells. J Cell Sci 104, 819-831.

CHAPTER 2

DETERMINATION OF THE FUNCTIONAL ELEMENTS WITHIN THE VACUOLAR TARGETING SIGNAL OF BARLEY LECTIN

Reference: Dombrowski JE, Schroeder MR, Bednarek SY, Raikhel NV (1993).

Plant Cell 5, 587-596.

ABSTRACT

We have previously demonstrated that the carboxyl-terminal propeptide of barley lectin is both necessary and sufficient for protein sorting to the plant vacuole. Specific mutations were constructed to determine which amino acid residues or secondary structural determinants of the carboxyl-terminal propeptide affect proper protein sorting. We have found that no consensus sequence or common structural determinants are required for proper sorting of barley lectin to the vacuole. However, our analysis demonstrated the importance of hydrophobic residues in vacuolar targeting. In addition, at least three exposed amino acid residues are necessary for efficient sorting. Sorting was disrupted by the addition of two glycine residues at the carboxyl-terminal end of the targeting signal or by the translocation of the glycan to the carboxy terminus of the propeptide. These results suggest that some components of the sorting apparatus interact with the carboxy terminus of the propeptide.

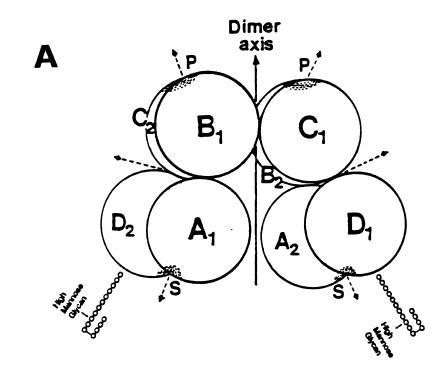
INTRODUCTION

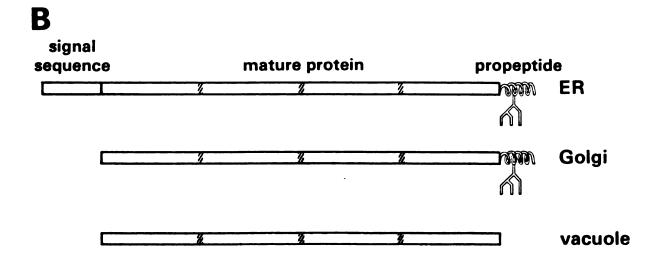
The eukaryotic cell is organized into distinct, specialized membrane-bound subcellular compartments, each characterized by its own defined subset of proteins. Delivery to and retention of these proteins within their specialized compartments is dependent upon specific targeting information present in the sequence, structure, and/or post-translational modifications of the protein.

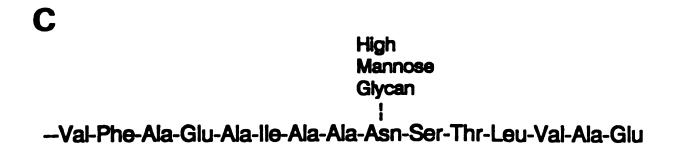
Proteins found in the endoplasmic reticulum (ER), Golgi apparatus, lysosomes, vacuoles/protein bodies, plasma membrane, and cell wall are derived from a subset of proteins that enter the secretory pathway. The vast majority of these proteins have an amino-terminal hydrophobic signal sequence that mediates membrane translocation from the cytosol to the lumen of the ER (von Heijne, 1988). Secretory proteins may undergo further processing in the ER and Golgi network (for review, see Chrispeels, 1991). Retention and sorting within the secretory pathway, however, requires additional targeting information. Proteins lacking this information follow a default pathway and are secreted to the cell surface (for review, see Bednarek and Raikhel, 1992).

The best characterized targeting signal is the mannose-6-phosphate residue that specifies transport of hydrolytic enzymes to the mammalian lysosome (Kornfeld and Mellman, 1989). In yeast, two vacuolar proteins, carboxypeptidase Y and proteinase A, contain sorting information within an amino-terminal propeptide (Johnson et al., 1987; Valls et al., 1987; Klionsky et al., 1988). A detailed mutational analysis of the carboxypeptidase Y

propeptide determined that the tetrapeptide QRPL is critical for sorting of the protein to the vacuole (Valls et al., 1990); however, the amino-terminal propeptide of the hydrolase proteinase A shares no significant similarity with the CPY sorting domain (Klionsky et al., 1988). Currently, no consensus sequence or structural determinant has been identified for vacuolar targeting in yeast, which indicates that a diverse array of factors are involved in the sorting process.


Vacuolar targeting in plants can be mediated by targeting signals contained in an amino-terminal propeptide, a carboxyl-terminal propeptide, or a mature portion of the protein (for reviews, see Bednarek and Raikhel, 1992, Chrispeels and Raikhel, 1992). The vacuolar storage protein sporamin from sweet potato (Matsuoka and Nakamura, 1991) and the vacuolar thiol protease aleurain from barley (Holwerda et al., 1992) contain their targeting information within an amino-terminal propeptide. A comparison of the deduced amino acid sequences of these amino-terminal propeptides and other known vacuolar proteins with amino-terminal extensions shows that they do share a common motif (NPIRL\P) within their sequences (for reviews, see Chrispeels and Raikhel, 1992; Bednarek and Raikhel, 1992). This motif is critical for proper sorting (Nakamura and Matsuoka, 1993), since a glycine substitution for the conserved isoleucine or asparagine residues in the targeting sequence of sporamin results in the secretion of prosporamin from the cell. In contrast, the of sorting information for the vacuolar proteins, phytohemagglutinin, 11S legumin, and patatin have been shown to be contained within portions of the mature protein


(for a review, see Bednarek and Raikhel, 1992). However, these protein regions share no sequence identity. Many vacuolar proteins also have carboxylterminal propeptides (CTPPs) that share no common sequence identity but have short stretches of hydrophobic amino acids (Bednarek and Raikhel, 1992).


Our investigation has focused upon the Gramineae barley lectin (BL), a homodimeric vacuolar protein that specifically binds the sugar *N*-acetylglucosamine (Figure 2.1A) (for review, see Raikhel and Lerner, 1991). BL is initially synthesized as a preproprotein with a high-mannose glycosylated CTPP that is removed before or concomitant with deposition of the mature protein into the vacuole, as shown in Figure 2.1B. The CTPP is a hydrophobic 15-amino acid peptide that contains 2 acidic residues (Figure 2.1C) and has the potential to form an amphipathic *a*-helix. It has been demonstrated that this sequence is necessary for proper sorting of BL to the plant vacuole (Bednarek et al., 1990) and is sufficient to redirect a normally secreted protein, cucumber chitinase, to the vacuole of transgenic tobacco plants (Bednarek and Raikhel, 1991). Therefore, the BL CTPP contains vacuolar targeting information within its sequence.

In this study, we extended the analysis of the CTPP to identify and define the essential features for vacuolar protein targeting. We have used both transgenic and transient expression systems to define the minimum requirements for proper sorting of BL to the plant vacuole.

- Figure 2.1. Schematic Representation of proBL, its Maturation in the Secretory Pathway and the Carboxyl-Terminal Propeptide Amino Acid Sequence.
- (A) Probarley lectin is a homodimeric protein, each subunit consisting of four homologous domains of 43 amino acids each, which come together in a reversed orientation to form primary (P) and secondary (S) sugar binding sites and a 15-amino acid carboxyl-terminal propeptide containing an N-linked highmannose glycan. (Wright, 1987: Wright et al., 1993).
- (B) The preproprotein of barley lectin gains access to the secretory pathway by a 26-amino acid signal sequence which is cotranslationally removed. In the lumen of the ER, the 23-kD subunits of the proprotein dimerize to form an active sugar-binding lectin. The dimerized proprotein moves through the Golgi apparatus and is transported to the vacuole. Prior to or concomitant with deposition into the vacuole, the glycosylated CTPPs are cleaved off to yield the mature lectin consisting of two identical 18-kD subunits.
- (C) The 15-amino acid CTPP of BL (amino acids at positions 172 to 186). Also depicted is the N-linked high-mannose glycosylation attachment site at amino acid position 180.

RESULTS

Construction of the Mutant CTPPs of Barley Lectin

Several BL cDNA clones containing mutant CTPPs were prepared using site-specific mutagenesis of the CTPP coding region, to identify and define the essential features in the CTPP that are necessary for vacuolar protein targeting. Figure 2.2 describes and summarizes the intracellular and extracellular distribution of the BL-mutant CTPP proteins expressed in stably and transiently transformed tobacco leaf cells.

Localization of BL-mutant CTPP Constructs 1 (VNSTLVAE), 2 (VFAEAIAA), and 3 (VFAEAI) in Transgenic Plants

To determine the specific regions of the CTPP necessary to target BL+CTPP (wild type) to the vacuole, we designed deletion mutants 1 (VNSTLVAE), 2 (VFAEAIAA) and 3 (VFAEAI) (Figure 2.2). Transgenic tobacco plants expressing the BL-mutant CTPP constructs (1, 2 and 3) were obtained via *Agrobacterium*-mediated transformation of tobacco. Subcellular localization of BL in transgenic tobacco plants, by electron microscopic (EM) immunocytochemistry localized BL deletion mutant 3 (VFAEAI) to the vacuole, as shown in Figure 2.3A. EM immunocytochemical analysis of transgenic plants expressing mutants 1 (VNSTLVAE) and 2 (VFAEAIAA) also showed specific localization to the

Figure 2.2. Description and Summary of the Intracellular and Extracellular Distribution of BL-CTPP Mutants.

Each BL-mutant CTPP construct is represented by their sequence, using the single letter amino acid codes and divided according to its intracellular or extracellular distribution. The code CDG- refers to the last three amino acids in the mature protein, of which the C residue is involved in the formation of intramolecular disulfide bond (Wright, 1987). Dots represent the deletion of amino acids from the wild-type (WT) construct. Outlined letters represent amino acid substitutions, insertions, or glycine replacements of existing CTPPs. Constructs designated by asterisks represent those mutants analyzed in transgenic plants. Based on scanning densitometry, BL-mutant CTPP constructs designated as intracellular are retained ≥ 95%, except construct 27 which is ≥ 90%. BL-mutant CTPP constructs designated as extracellular are those constructs that show the same pattern of secretion as control construct 10 (total deletion of CTPP), that is, 95% secreted.

INTRACELLULAR

EXTRACELLULAR

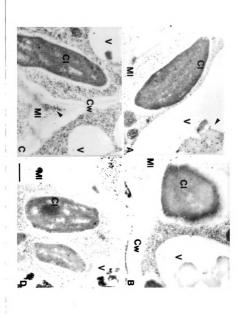
WT* CDG - VFAEAIAANSTLVAE

DELETION ANALYSIS

01.*	CDG - VNSTLVAE	09. CDG - VF
02.*	CDG - VFAEAIAA	10.* CDG
03.*	CDG - VFAEAI	İ
04.	CDG - VFANST	
05.	CDG - VFA@ST	
06.	CDG - VFAEA	
07.	CDG - VFAE	1
08.	CDG - VFA	1
11.	CDG - VSTLVAE	1
12.	CDGLVAE	I

GLYCINE SUBSTITUTION AND GLYCOSYLATION SITE SHIFT ANALYSIS

13.	CDG - VFAEA©			CDG - VFAE@@
14.	CDG - V@AEA@		16.	CDG - VFAGGG
19.	CDG - VFAG	ļ	17.	CDG - VF@@@@
20.	CDG - VF®	ļ	18.	CDG - VGGGGG
		- 1	21.	CDG - VFAEAIAANSTLVAE@@
			22.	CDG - VFAGGG CDG - VFGGGG CDG - VGGGGG CDG - VFAEAIAANSTLVAEGG CDG - VFAEAIAAGSTLVNATE


ARTIFICIAL CTPPs

23 .	CDG - AVIDVA	1	28.	CDG - EEEE	
24.	CDG - AVIAVA		29 .	CDG - KKKK	
25 .	CDG - AAAA				
26 .	CDG - VFAEAD	ļ			
27 .	CDG - KDAEAD	ļ			
30 .	CDG - LLVD	ļ			
31.	CDG - PIRP	ı			
32.	CDG - KMQRQTDDLANGSIIA	TT	NNPW	OFCCHVRSPFTYF	

ADDITIONAL MUTATIONAL STUDIES

33.*	CDG - VFAEPIPANSTLVAE	1
34.*	CDY - VFAEAIAANSTLVAE	1
35.*	CDY - W FAEAIAANSTLVAE	
36.*	CDG - VFA@AIAANSTLVA@	1
37 .	CDG - VFAKAIAANSTLVAK	İ

- Figure 2.3. Immunocytochemical Localization of BL-mutant CTPP constructs 3 and 10.
- (A) and (C) Thin sections of transgenic tobacco leaves expressing BL-mutant CTPP constructs 3 (VFAEAI) (A) and 10 (total deletion of CTPP) (C) treated with rabbit polyclonal anti-WGA antisera.
- (B) and (D) Thin sections of transgenic tobacco leaves expressing BL-mutant CTPP constructs 3 (VFAEAI) (B) and 10 (total deletion of CTPP) (D) treated with nonimmune sera. Gold labeling (arrow) is found exclusively in the vacuole of tobacco plants transformed with BL-mutant CTPP construct 3 (VFAEAI) (A) and within the middle lamella of transgenic BL-mutant CTPP construct 10 (total deletion of CTPP) (C). Bar = 0.5 μ m. Cw, cell wall; V, vacuole; MI, middle lamella; CI, chloroplast.

th th wi

2.3 del

loc. det

2.3

of t

con

wa:

spe

As

sim

sin

pro

vacuole (data not shown). We have previously shown by pulse-chase analysis that tobacco plants expressing BL-mutant CTPP construct 10 (total deletion of the CTPP) secreted BL, yet a small amount of the protein remained associated with the protoplasts (Bednarek et al., 1990). However, as shown in Figure 2.3C, the EM immunocytochemical analysis of tobacco plants expressing BL deletion mutant 10 showed no detectable labeling in the vacuoles but was localized to the middle lamella of tobacco leaf cells. No specific labeling was detected in parallel experiments using nonimmmune serum (Figures 2.3B and 2.3D).

The subcellular distribution of BL-mutant CTPP constructs was also confirmed by organelle fractionation. Vacuoles were isolated from protoplasts of transgenic plants that expressed BL-mutant CTPP construct 3 (VFAEAI). BL was affinity purified from protein extracts isolated from protoplast and vacuolar fractions containing equal amounts of α-mannosidase activity (a vacuolar-specific marker enzyme) and examined by SDS-PAGE and immunoblot analysis.

As shown in Figure 2.4A, the 18-kD subunit for mature BL was present at similar levels in the protoplast and vacuolar fractions of plants expressing CTPP mutant construct 3. ER contamination of the vacuolar fractions was minimal, since they contained ≤10% NADH-cytochrome c reductase relative to total Protoplast-associated activity.

- Figure 2.4. Subcellular Localization and Pulse-Chase Labeling Experiments of
- Transgenic and Transient Protoplasts Expressing BL-Mutant CTPP Construct 3.
- (A) Immunoblot analysis of affinity-purified BL from protoplasts and vacuoles
- isolated from transgenic tobacco plants expressing BL-mutant CTPP construct
- 3 (VFAEAI). Protoplast and vacuole fractions containing equal amounts of a-
- mannosidase activity were loaded per lane.
- (B) Pulse-chase labeling of protoplasts isolated from transgenic tobacco plants
- expressing BL-mutant CTPP construct 3 (VFAEAI) and corresponding incubation
- medium. Protoplasts were pulse labeled for 4 hr and chased for 18 hr.
- (C) Pulse-chase labeling of protoplasts transiently expressing the BL-mutant
- CTPP construct 3 (VFAEAI) and corresponding incubation medium. Protoplasts
- were pulsed for 8 hr and chased for 12 hr.
- Protein extracts were prepared from the protoplasts and incubation media at
- specified time intervals (hr) as indicated during the chase. Radiolabeled BL was
- affinity purified and analyzed by SDS-PAGE and fluorography. The molecular
- mass of the mature 18-kD subunit of BL is shown to the left of the gels.

18kD -		>		
	vacuole			
i	protoplast			
Incubation media 18kD-	Protoplasts	B Chasetime (hr) 0 3 6 9 12 15 18		
	•	0		
	t	ω		
	•	0		
	•	Φ.		
	1	72		
	•	5		
	ţ	ಹ		
18kD -	18KD - •	O 12		
	•			

Comp

transie
of tran
initial s
transg
mutan
CTPP

with t

analys

the pre

vacuo

an ad cystei

hr cha

incuba labeled

∧9C⊓O

labelin

Comparison of Transient and Transgenic Expression Systems

Although we have previously demonstrated the reproducibility of transient assay data as it compared with the findings obtained from the analysis of transgenic plants (Bednarek et al., 1990; Bednarek and Raikhel, 1991), the initial set of BL-mutant CTPP constructs were analyzed using both transient and transgenic systems, to insure that no variability existed in short deletion mutants. Processing and targeting of BL+CTPP (wild type) and BL-mutant CTPP construct 10 (total deletion of CTPP), were previously characterized and described in Bednarek et al. (1990), and were used as positive (targeting to the vacuole) and negative (secretion of BL) controls in every analysis performed with the BL-mutant CTPP constructs.

The BL-mutant CTPP constructs were examined by pulse and pulse-chase analyses. Protoplasts from transgenic plants were pulse-labeled for 2-4 hr in the presence of a mixture of ³⁵S-labeled methionine and cysteine and chased for an additional 18 hr in the presence of excess unlabeled methionine and cysteine. In Figure 2.4B, the deletion mutant 3 (VFAEAI) showed that radiolabeled BL was readily discernible with 4 hr of pulse-labeling. After an 18-hr chase period, no detectable secretion of the BL-mutant CTPP to the incubation medium was observed. During the course of the chase, the level of labeled BL protein remained constant, demonstrating the stability of BL in the vacuole over the time interval. This result was confirmed by continuous labeling of protoplasts from mutant 3 (VFAEAI) for 18 hr, and no detectable

radio

of B

shov

trans

corre

radio

was

(VNS

detec

repro

comp

transi

CTPP

Deleti

region

BL to t

1 (VN

seque

radiolabeled BL was observed in the incubation medium, while the accumulation of BL intracellularly increased steadily over the same time period (data not shown).

Rapid analysis of the BL-mutant CTPP constructs was performed by transient expression in tobacco leaf protoplasts. The data from transient expression presented in Figure 2.4C for BL deletion mutant 3 (VFAEAI) correlated directly with the findings obtained in transgenic plants, whereas no radiolabeled BL was detected in the incubation medium, and an 18-kD band was retained intracellularly. The same results were obtained for mutant 1 (VNSTLVAE) and 2 (VFAEAIAA); both were retained intracellularly with no detectable secretion to the incubation media (data not shown). Therefore, the reproducibility of the results obtained from the analysis of transgenic plants compared with that from transient expression was demonstrated, and the transient system was utilized for further analysis of the remaining BL-mutant CTPP constructs.

Deletion Analysis of BL-mutant CTPP Constructs

Deletion analysis of the CTPP described above identified two independent regions of the 15-amino acid propeptide, each necessary for proper sorting of BL to the vacuole in transgenic tobacco. Comparison of CTPP deletion mutants 1 (VNSTLVAE) and 3 (VFAEAI) revealed no readily apparent consensus sequence. However, the sequence of each CTPP deletion mutant contained

sir

ta:

(V

of

wi

of

sh

De

de

V8 (\

2.

cl

q

С

q

Ì

4

similar 4-amino acid stretches, AEAI and LVAE, that may function as vacuolar targeting determinants. To address whether or not these regions were necessary for proper sorting, we designed deletion mutants 4 (VFANST) and 5 (VFAGST), in which these regions had been eliminated. The transient analysis of mutants 4 and 5 showed that radiolabeled BL was retained intracellularly, with no detectable accumulation of BL in the incubation media (data not shown). These results indicated that a more comprehensive mutational analysis of CTPP would be necessary to determine the nature of the sorting signal.

Determination of Minimum Length Required for Efficient Sorting of BL

Mutant 3 (VFAEAI) was chosen for a detailed deletional analysis, to determine the minimum length necessary for proper sorting of BL to the vacuole. Results of the transient analyses for the deletion series BL mutants 7 (VFAE), 8 (VFA), 9 (VF) and 10 (total deletion of CTPP) are shown in Figure 2.5A. Constructs 7 and 8 were retained intracellularly over the course of the chase, with no significant accumulation of BL in the media. A very faint 18-kD polypeptide was observed in the incubation medium from protoplasts expressing construct 8 after 12 hr of chase. The low-level missorting of mutant 8 may be due to high expression levels or to a small amount of cell lysis as compared with the positive control. Similarly, deletion mutant 6 (VFAEA) was retained intracellularly, with no detectable secretion into the medium (data not shown). As shown in Figure 2.5A, however, BL was secreted into the incubation media

		` `
))
)
)
)
)
)
)
)
)

Figure 2.5. Deletion and Glycine Replacement Analysis.

- (A) Pulse-chase labeling of protoplasts transiently expressing the deletion BL-mutant CTPP constructs 7 (VFAE), 8 (VFA), 9 (VF), and 10 (total deletion of CTPP) and corresponding incubation media.
- (B) Pulse-chase labeling of protoplasts transiently expressing the glycine replacement BL-mutant CTPP constructs 14 (VGAEAG), 13 (VFAEAG), 15 (VFAEGG), and 16 (VFAGGG) and corresponding incubation media.

Protoplasts were pulsed for 8 hr, chased for 12 hr, and analyzed as previously described. The molecular mass of the mature 18-kD subunit of BL is shown to the left of the gels.

Incubation medium 18kD-Protoplasts construct #7 #8 #9 #10 chase time (hr) 0 12 0 12 0 12 0 12 18KP W #14 #13 #15 #16 0 12 0 12 0 12 0 12 !

of po

chas

asso 18-k

label

pres

asso

sorti

immı

cons

lame

fract

used

ldata

cou

prop

cont

⁰0 r

boly

of protoplasts expressing construct 9 and control (secretion) construct 10 and displayed increased accumulation of the 18-kD subunit over the course of the chase. Yet, after 12 hr of chase a small amount of 18-kD polypeptide remained associated with the protoplast fraction for both constructs. Retention of the 18-kD polypeptide may result from a continued low-level incorporation of labeled amino acids into a newly synthesized polypeptide as indicated by the presence of the 23-kD proprotein of BL-CTPP (wild-type, control), an association of BL with plasma membrane/cell wall remnants, or a low level of sorting to the vacuole. However, as shown in Figure 2.3C, the EM immunocytochemical analysis of transgenic plants expressing CTPP deletion construct 10 did not detect BL in the vacuole, but localized it to the middle. lamella. We have also noted a decrease in signal intensity over time for media fractions, but not for those constructs retained intracellularly. This loss of signal is most likely due to protein absorption by the polystyrene tissue culture plates used to incubate the protoplasts during labeling and not due to degradation (data not shown).

Additional deletion mutants of 11 (VSTLVAE) and 12 (LVAE) were constructed to analyze whether or not the carboxyl-terminal region of the propertide had the capacity to properly sort BL to the vacuole. After 20 hr of continuous pulse-labeling of protoplasts expressing deletion mutants 11 and 12, no radiolabeled BL was found in the incubation media, whereas an 18-kD polypeptide was retained intracellularly (data not shown).

Glyci

the va amino

3 (VF

labeling

carbox

vacuole

(VFAGG

incubation protein

displayed

Construc

similar to

shown),

[VFAEAG]

remained

glycine rep

^{investi}gate

and 8 (VFA

remained in

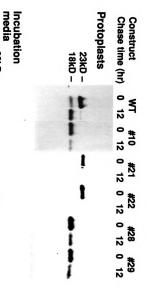
the incubation

Glycine Replacement Analysis of Deletion Mutants Retained Intracellularly

A glycine replacement analysis of the vacuolar localized deletion mutant 3 (VFAEAI) was conducted to define specific residues involved in sorting BL to the vacuole. These constructs maintained the same length of the CTPP (six amino acids), while eliminating possible side-chain interactions. Pulse-chase labeling revealed that a minimum of two tandem glycine residues at the carboxyl-terminal end of the propeptide could disrupt proper sorting of BL to the vacuole. As shown in Figure 2.5B, constructs 15 (VFAEGG) and 16 (VFAGGG) resulted in significant accumulation of an 18-kD polypeptide in the incubation media after a 12-hr chase. After 12 hr, a portion of the radiolabeled protein remained associated with the protoplast at a level similar to that displayed by control construct 10 (total deletion of CTPP) (Figure 2.5A). Constructs 17 (VFGGGG) and 18 (VGGGGG) displayed patterns of secretion similar to those of constructs 15 (VFAEGG) and 16 (VFAGGG) (data not shown), while mutant CTPPs with a single glycine residue (construct 13, [VFAEAG]) or two glycine residues not in tandem (mutant 14, [VGAEAG]) remained intracellular for the same time interval (Figure 2.5B). Additional glycine replacement constructs (19, [VFAG], and 20, [VFG]) were designed to investigate whether the carboxyl-terminal residues of deletion mutants 7 (VFAE) and 8 (VFA) were necessary for proper sorting of BL. Constructs 19 and 20 remained intracellular and showed no accumulation of an 18-kD polypeptide in the incubation media (data not shown).

Tandem Glycine Residues or Glycan Shift to the Carboxy terminus of the CTPP

Disrupts Sorting of BL


Comparison of the results obtained from the deletion and glycine replacement analyses revealed that although deletion mutant 7 (VFAE) was retained intracellularly, the addition of two glycine residues at the carboxy terminus (mutant 15, VFAEGG) caused it to be secreted (Figure 2.5B). Therefore, mutant 21 (VFAEAIAANSTLVAEGG) was constructed to analyze whether or not the addition of two glycine residues at the carboxyl-terminal end of the 15-amino acid wild-type propeptide could similarly disrupt proper sorting of BL to the vacuole. As shown in Figure 2.6, this resulted in the appearance and accumulation of a 23-kD proprotein in the incubation medium of protoplasts transiently expressing construct 21. After 12 hr of chase, no detectable 18-kD polypeptide (mature BL) was observed in the protoplast fraction. However, a very low level of the 23-kD proprotein still remained associated with the protoplast fraction.

These results suggested that the protein sorting information contained within the CTPP is blocked or inaccessable in mutants 15 to 17 and 21 to the sorting apparatus. To confirm this hypothesis, we designed mutant 22 (VFAEAIAAGSTLVNATE) in which the site of glycan addition was shifted close to the carboxy terminus of the propeptide. As shown in Figure 2.6, radiolabeled 23-kD proprotein was present in both the protoplasts and medium at the 0 hr chase time point, but there was an increased level of accumulation

Figure 2.6. Disruption of Proper Sorting of BL by Carboxyl-Terminal Tandem Glycine Residues, Glycosylation Site Shift, and Artificial Propeptides.

Pulse-chase labeling of protoplasts transiently expressing the *WT* (wild type) BL, BL-mutant CTPP constructs 10 (total deletion of CTPP), 21 (VFAEAIAANSTLVAEGG), 22 (VFAEAIAAGSTLVNATE), 28 (EEEE), and 29 (KKKK), and corresponding incubation media. Protoplasts were pulsed for 8 hr, chased for 12 hr and analyzed as previously described. The molecular masses of the mature 18-kD subunit and the wild-type 23-kD proprotein of BL are shown to the left of the gels.

23kD -18kD -

of proprotein in the medium, with a concurrent decrease in the level of proprotein associated with the protoplasts after 12 hr of chase. The inhibition of glycosylation by tunicamycin, however, showed that the unglycosylated mutant was properly processed and sorted (data not shown). Thus, the presence of the glycan was responsible for secretion of proBL, and not the altered sequence at the carboxy terminus of mutant 22.

Analysis of Artificial CTPPs

Although no obvious consensus sequence exists among plant vacuolar targeting signals, a common feature among them is that they are rich in hydrophobic residues (for reviews, see Bednarek and Raikhel, 1992; Chrispeels and Raikhel, 1992). Artificial CTPPs, such as mutants 23 (AVIDVA), 24 (AVIAVA), and 25 (AAAA), were designed to analyze whether or not other short hydrophobic peptides could redirect BL to the vacuole, whereas mutants 26 (VFAEAD), 27 (KDAEAD), 28 (EEEE), and 29 (KKKK) were made to investigate the effect of nested charged residues upon sorting. Mutant 30 (LLVD) is homologous to a hydrophobic stretch from the vacuolar targeting CTPP of tobacco chitinase (Neuhaus et al., 1991), and mutant 31 (PIRP) represents a common motif present in amino-terminal propeptides of some vacuolar proteins (Chrispeels and Raikhel. 1992). Mutant (KMQRQTDDLANGSIIATTNNPWQFCCHVRSPFTYF) is a random sequence of 35 amino acids which was generated as an artifact during the mutagenesis process. BL-mutant CTPP constructs 23 to 27 and 30-32 were retained intracellularly after pulse-chase labeling (data summarized in Figure 2). In addition, BL-mutant construct 32 was not only retained intracellularly, but was processed down to roughly 18-kD (mature BL) from a 22.5-kD proprotein as measured by band mobility shift on SDS-PAGE (data not shown). However, construct 27 (KDAEAD) did show a very low level of secretion (5-10%) as compared to the controls (data not shown). Constructs 28 (EEEE) and 29 (KKKK) exhibited the same pattern of secretion into the incubation medium as control CTPP deletion mutant 10 (Figure 2.6).

Additional BL CTPP Mutants Addressing Structure and Processing.

Mutant 33 (VFAE<u>PIP</u>ANSTLVAE) was designed to disrupt the predicted amphipathic α-helix by the exchange of proline residues for alanine residues within the CTPP, without changing its length. The analysis of mutant 33 in transgenic plants indicated that the predicted amphipathic α-helix did not appear to have any significant affect on the CTPP processing or on the proper sorting of BL to the vacuole. BL-mutant CTPP construct 36 (VFAQAIAANSTLVAQ) reduced the acidic character of the propeptide by conservative replacement of the glutamic acid residues with glutamine residues, while maintaining the secondary structure of the propeptide. BL-mutant CTPP construct 37 (VFAKAIAANSTLVAK) exchanged basic lysine residues for the glutamic acid residues. Neither construct affected the proper processing or sorting of BL to

ti

(C

Sic

ар

so ex

SO

hou

Cor

the vacuole, however, construct 37 was not glycosylated (data not shown).

BL-mutant CTPP constructs 34 (CDY-VFAEAIAANSTLVAE) and 35 (CDY-WFAEAIAANSTLVAE) were designed to disrupt CTPP processing by increasing steric hindrance through modification of amino acid residues on both sides of the putative cleavage site (Wright, 1987). Neither of these constructs appeared to have any significant effect on CTPP processing or on the proper sorting of BL to the vacuole. However, BL deletion mutant 1 (VNSTLVAE) exhibited significant reduction of CTPP processing without disrupting the proper sorting of BL to the vacuole. Processing of the CTPP was first observed 20 hours after the addition of label as compared to 2-3 hours for the wild type BL control (data not shown).

DISCUSSION

Post-translational Processing of the Carboxyl-terminal Propeptide and its Effect on Vacuolar Targeting

Little is known about the mechanisms involved in the post-translational processing of propeptides of plant vacuolar proteins (Chrispeels, 1991). The processing of eukaryotic signal sequences as well as secretory signal sequences in prokaryotes is dependent on sequence-specific endopeptidases (von Heijne, 1988). In Escherichia coli, proper cleavage of the secretory sequence can be disrupted by increasing the size of the amino acid side chains at the cleavage site (Pollitt et al., 1986). The carboxyl-terminal glycine residue is conserved in all mature cereal lectins (for review, see Raikhel and Lerner, 1991). Although the actual cleavage site for all these proteins is not known, X-ray crystallographic analysis and carboxyl-terminal sequencing has shown that mature wheat germ agglutinin (WGA), a homolog of BL, ends with a glycine residue (Wright, 1987). In our study, the addition of large side chains at the junction of the mature protein and the CTPP (mutant constructs 34 and 35), did not block processing or sorting. The result may simply mean that the increase in size of the side chains from glycine and valine to tyrosine and tryptophan residues is not sufficient to block processing, or an alternative cleavage site is utilized. However, pulse-chase labeling of protoplasts expressing BL deletion mutant #1 (-VNSTLVAE), in which the glycosylation site and putative cleavage site were maintained, showed a significant decrease in conversion of the proprotein into the mature form as compared to the BL+CTPP (wild type) construct (data not shown). The decrease in processing, however, did not disrupt proper sorting of BL to the vacuole. The mutant proprotein migrated as a 21.8-kD protein by SDS-PAGE, indicating that the mutant CTPP peptide was glycosylated properly. The proximity of the bulky high mannose residue may cause a drastic conformational change at the cleavage site or may present steric hindrance to an endopeptidase, thereby disrupting processing. In addition, deletion mutant 1 (VNSTLVAE) may have eliminated the portion of the propeptide which may contain the cleavage site.

Further analysis of the deleted sequence of mutant 1 revealed that it contained an *E. coli* cleavage site motif Ala-X-Ala (Perlman and Halverson, 1983). However, mutant construct 33, originally designed to disrupt the secondary structure by substituting proline residues for alanine residues (VFAEPIPANSTLVAE), eliminated this motif from the sequence at the amino acid level and did not inhibit processing of the propeptide or targeting of BL to the vacuole. Therefore, the *E. coli* endopeptidase recognition site is not utilized in processing of BL's CTPP in plants. In addition, the processing of the 35 amino acid random sequence of the BL-mutant CTPP construct 32, suggests that the propeptide may be processed in a non specific manner.

Substitution of the glutamic acid residues of CTPP with glutamine residues (mutant 36) and the basic residue lysine (mutant 37) did not disrupt CTPP processing or proper sorting of BL to the vacuole. Interestingly,

substit glycos N-linke

A Muta

pathwa

(WGA),

The prin

the pote Amphipa

mitochor

(Verner a

however,

secondar

Mutant 3

helix by s

processed

(VFA), in

secondary

A re consensus

of CTPP ne

substitution of the lysine for the acidic residues (mutant 37) did interfere with glycosylation of the CTPP suggesting that the amino acid residues flanking the N-linked glycosylation site influence its utilization in the plant secretory pathway.

A Mutational Analysis of the CTPP

The primary amino acid sequences of the CTPPs of wheat-germ agglutinin (WGA), rice lectin, and BL are not conserved; however, these CTPPs do share the potential to form amphipathic a-helices (Bednarek et al., 1990). Amphipathic a-helices are believed to function as targeting signals in mitochondrial protein import and to mediate other protein-protein interactions (Verner and Schatz, 1988). Several lines of evidence presented in this paper, however, do not support a role for the predicted amphipathic a-helical secondary structure of the CTPP in the mediation of vacuolar targeting. Mutant 33 (VFAEPIPANSTLVAE), which disrupted the predicted amphipathic a-helix by substitution of proline residues for alanine residues, was correctly processed and targeted to the vacuole. Furthermore, mutants 7 (VFAE) and 8 (VFA), in which we deleted significant portions of the propeptide needed for secondary structure, were properly sorted.

A review of the sorting data summarized in Figure 2.2 indicated that no consensus sequence for targeting was observed and that the minimum length of CTPP necessary for efficient sorting of BL to the vacuole was three amino

acids (mutant 8, VFA). These results were surprising due to the great variability tolerated in sequence length and amino acid content. Despite the lack of any apparent amino acid consensus sequence, some sequence specificity was implied by the secretion of BL mutant CTPP constructs (summarized in Figure 2.2). All of the secreted mutants demonstrated a similar pattern of secretion as the control construct 10 (total deletion of CTPP). Clearly these secreted mutants disrupted proper targeting of BL to the vacuole. However, due to the limitations in the transient expression system it is difficult to assess vacuolar content. Therefore we can not rule out the partial sorting of BL to the vacuole by some of these mutants.

A common feature associated with vacuolar proteins that have carboxylterminal propeptides was the presence of short stretches of hydrophobic amino acids within their sequences (Bednarek and Raikhel, 1992), which may indicate a conserved recognition mechanism. The importance of hydrophobic amino acids in the sorting signal was shown using short artificial CTPPs. These CTPPs -AAAA, AVIADA, AVIAVA, and LLVD- resulted in the retention of BL intracellularly; however, short stretches of charged amino acids lacking any hydrophobic residues (EEEE or KKKK) would lead to secretion of BL into the media. Furthermore mutants 26 (VFAEAD) and 27 (KDAEAD) demonstrated that the presence of small hydrophobic residues (alanine) within a stretch of charged amino acids resulted in the retention of BL. Overall, these results strongly suggest that hydrophobic amino acids are involved in recognition of the sorting determinant.

Comparison of the results of the deletion and glycine replacement analyses of BL-mutant CTPP construct 3 (VFAEAI), showed that the length and hydrophobicity of the CTPP were not the only characteristics to be involved in sorting. The presence of a tandem glycine positioned at the carboxy terminus propeptide 15 (VFAEGG) 21 of the mutant and mutant (VFAEAIAANSTLVAEGG) disrupted the sorting of BL and lead to secretion. In addition, the shift of the glycan close to the carboxy terminus of the CTPP disrupted the proper sorting of BL to the vacuole. Base on these results, we speculate that some component of the sorting apparatus interacts with the carboxy terminus of the propeptide.

The deletional analysis of the CTPP demonstrated that a minimum of 3 amino acids are required for proper sorting to the vacuole. A comparison of the last 3 amino acids of the extracellular BL-mutant CTPP constructs in Figure 2.2 indicated that CTPPs which have three charged amino acids (mutants 28 and 29), three glycine residues (mutants 16 to 18), or a combination of both (mutants 15 and 21) will cause secretion of BL into the media, even though there are hydrophobic amino acids present elsewhere in CTPP. Therefore, the overall amino acid content of the CTPP is not as important as the arrangement of the amino acid residues. This is similar to the requirements of the signal sequence that mediates protein translocation into the lumen of the ER (Verner and Schatz, 1988). Also, targeting to the peroxisome in plants, yeast, and mammals involves a 3-amino acid recognition sequence that is located at the carboxy terminus of the signal (Subramani, 1992). In addition, targeting to the

peroxisome can be disrupted by the addition of amino acid residues to its carboxy terminus (Gould et al., 1989; Miura et al., 1992).

Mechanisms of Sorting to the Vacuole

Although amino-terminal propeptides share a common motif within their sequences, carboxyl-terminal propeptides share no common sequence identity (for reviews, see Chrispeels and Raikhel, 1992; Bednarek and Raikhel, 1992). However, both sporamin with an amino-terminal propeptide and BL with a carboxyl-terminal propeptide are targeted to the same vacuoles in leaves and roots of transgenic tobacco plants (Schroeder et al., 1993). This information in conjunction with data on vacuolar proteins that contain their sorting determinant within portions of the mature protein, such as phytohemagglutinin (Chrispeels and Raikhel, 1992) and 11S legumin (Saalbach et al., 1991), suggest that there may be multiple mechanisms or receptors for vacuolar targeting in plants.

The concept of multiple receptors or mechanisms is not unique to plants. There is evidence for a mannose-6-phosphate independent sorting of some mammalian lysosomal enzymes from the secretory pathway (Kornfeld and Mellman, 1989). Protein sorting to the yeast vacuole is mediated by multiple signals (Pryer et al., 1992). Peroxisomal targeting was also mediated by different signals located at the carboxy and amino termini (van den Bosch et al 1992; Subramani, 1992). In a deletional analysis of the propeptide that

contains a yeast vacuolar targeting signal, QRPL, Johnson et al. (1987) found that the context in which the QRPL is presented will affect the efficiency of targeting. The location of any specific determinant will be dictated by the secondary and tertiary structural requirements for any particular protein. Therefore, a critical element in the sorting process will be how the redirected protein's overall secondary structure will affect the accessibility or exposure of their targeting motif to the sorting machinery, and the possibility of multiple mechanisms or receptors would give needed flexibility to the sorting apparatus to accommodate this wide range of protein structure.

BL and WGA share 95% sequence identity at the amino acid level and therefore are presumed to share a conserved molecular structure (for review, see Raikhel and Lerner, 1991). Extensive x-ray crystallographic and sequence analyses have revealed that mature WGA is a homodimeric protein composed of 18-kD subunits. Each subunit is composed of four homologous domains, each of which consists of a tightly folded core stabilized by four disulfide bonds (Wright, 1987). Examination of the WGA crystal structure does not reveal any regions that extend from the surface. Therefore based on the crystallographic data, we predicted that the CTPP is more exposed on the surface of the lectin or may extend out from it, allowing it to interact with components of the sorting machinery.

In a broader context, we can speculate on the type of properties that a factor or protein would possess to interact with the sorting determinant. From our results, one could envision a protein or factor which possesses binding

properties similar to some chaperones or heat shock proteins that bind to a wide range of diverse sequences and show a higher affinity for binding to hydrophobic residues (Flynn et al., 1991). As to date, no sorting receptor has been isolated from yeast or plants for targeting to the vacuole. We hope that the information gained from our analysis of the CTPP will facilitate the identification of a receptor or binding factor involved in the sorting of secretory proteins to the plant cell vacuole.

Since the publication of this paper, receptors for yeast carboxypeptidase Y and plant amino-terminal propeptides have been identified. This research is discussed in detail in Chapter 1. In addition, a number of the short CTPPs (constructs 2, 3, 11 and 12) as described in Figure 2.2 were fused to the C-terminus of the secreted protein, cucumber chitinase, and were shown to direct only a portion of the chimeric proteins to the vacuole (data not shown). The inefficient sorting of these constructs is most likely due to the limited accessibility of the short CTPPs to the sorting apparatus (Bednarek and Raikhel, 1991).

MATERIALS AND METHODS

All standard recombinant DNA procedures used in this study were carried out as described in Sambrook et al. (1989), unless otherwise noted. DNA restriction and modifying enzymes were obtained from New England BioLabs (Beverly, MA). All other reagents, unless specified, were purchased from Sigma.

Preparation of BL-mutant CTPP Constructs

All barley lectin (BL) mutant carboxyl-terminal propeptide (CTPP) constructs were prepared by site-specific mutagenesis as described in Bednarek et al. (1990) with the following exceptions. BL-mutant CTPP clones were constructed either by modification of the CTPP coding region of the wild-type clone described in Wilkins et al. (1990), or by the addition of specific nucleotide sequences between the final codon for the mature protein and the stop translation codons for the *ctpp*⁻ clone described in Bednarek et al. (1990). The region encoding the CTPP (nucleotides 607-651) of the barley lectin *wt*

cDNA clone (Wilkins et al., 1990) was modified to code for the amino acids

describe in Figure 2.2 using the synthetic mutagenic oligonucleotides below.

Mutant #01 5'-GCTGCGACGGTGTCAACTCCACTCTTGTCG-3'

Mutant #02 5'-GAGGCCATTGCCGCCTGATGATCTTGCTAATGGC-3'

Mutant #03 5'-CGCCGAGGCCATCTGATGATCTTGCTAATG-3'

Mutant #11 5'-GCTGCGACGGTGTCTCCACTCTTGTCGCA-3'

Mutant #12 5'-CGGCTGCGACGGTCTTGTCGCAGAATGATGA-3'

- Mutant #21 5'-CACTCTTGTCGCAGAAGGAGGTTGATGATCTTGCTAATGG-3'
- Mutant #33 5'-GTCTTCGCCGAGCCGATCCCGGCCAACTCCACTC-3'
- Mutant #34 5'-GGCTGCGACTATGTCTTCG-3'
- Mutant #35 5'-GGCGGCTGCGACTATTGGTTCGCCGAGGCCATCGCC-3'
- Mutant #36 5'-GTCTTCGCCCAGGCCATC-3'& 5'-CTTGTCGCACAATGATGATC-3'
- Mutant #37 5'-GTCTTCGCCAAGGCCATC-3'& 5'-CTTGTCGCAAAATGATGATC-3'

The synthetic mutagenic oligonucleotides listed below were used to insert a nucleotide sequence coding for a specific amino acid sequence (described in Figure 2.2) between the final codon of the mature protein and the stop translation codons in the *ctpp*- clone (designated Mutant #10) described in Bednarek et al., (1990).

- Mutant #04 5'-CGGCTGCGACGGTGTCTTCGCAAACTCCACTTGATGATCTTGCTAATG-3'
- Mutant #05 5'-CGGCTGCGACGTGTCTTCGCAGGTTCCACTTGATGATCTTGCTAATG-3'
- Mutant #06 5'-CGGCTGCGACGGTGTTTTTGCTGAAGCATGATGATCTTGCTAATG-3'
- Mutant #07 5'-CGGCTGCGACGGTGTTTTTGCAGAATGATGATCTTGCTAATG-3'
- Mutant #13 5'-CGGCTGCGACGGTGTTTTTGCAGAAGCTGGATGATCTTGCTAATG-3'
- Mutant #14 5'-CGGCTGCGACGGTGTTGGTGCTGAAGCAGGATGATGATCTTGCTAATG-3'
- Mutant #15 5'-CGGCTGCGACGGTGTTTTTGCAGAAGGTGGATGATCTTGCTAATG-3'
- Mutant #16 5'-CGGCTGCGACGGTGTTTTGCAGGAGGTGGATGATCTTGCTAATG-3'
- Mutant #17 5'-CGGCTGCGACGGTGTTTTTGGAGGAGGAGGATGATGATCTTGCTAATG-3'
- Mutant #18 5'-CGGCTGCGACGGTGTTGGAGGAGGTGGAGGATGATCTTGCTAATG-3'
- Mutant #19 5'-CGGCTGCGACGGTGTTTTGCGGGATGATGATCTTGCTAATG-3'
- Mutant #20 5'-CGGCTGCGACGGTGTTTTTGGGTGATGATCTTGCTAATG-3'
- Mutant #23 5'-CGGCTGCGACGGTGCGGTTATTGACGTCGCATGATGATCTTGCTAATG-3'
- Mutant #24 5'-CGGCTGCGACGGTGCAGTTATTGCTGTCGCATGATGATCTTGCTAATG-3'

- Mutant #25 5'-CGGCTGCGACGGTGCTGCAGCATGATGATCTTGCTAATG-3'
- Mutant #26 5'-CGGCTGCGACGGTGTTTTTGCAGAAGCAGACTGATGATCTTGCTAATG-3'
- Mutant #27 5'-CGGCTGCGACGGTAAAGATGCAGAGGCAGACTGATGATCTTGCTAATG-3'
- Mutant #28 5'-CGGCTGCGACGGTGAGGAGGAGGAATGATGTTGCTAATG-3'
- Mutant #29 5'-CGGCTGCGACGGTAAGAAGAAGAATGATGATCTTGCTAATG-3'
- Mutant #30 5'-CGGCTGCGACGGTCTCCTTGTTGACTGATGATCTTGCTAATG-3'
- Mutant #31 5'-CGGCTGCGACGGTCCAATTAGACCATGATGATCTTGCTAATG-3'

Uracil-containing single stranded of BL-mutant CTPP construct #3 was prepared from bacteriophage M13KO7 grown on the host *duf ung F⁺ Escherichia coli* strain CJ236 harboring the BL-mutant CTPP construct 3 cDNA in pUC118 (Vieira and Messing, 1987). The synthetic mutagenic oligonucleotides listed below were used to delete the nucleotide sequences encoding the amino acid sequences as desribed in Figure 2.2.

Mutant #08 5'-ACGGTGTCTTCGCCTGATGATCTTGCTAATG-3'

Mutant #09 5'-GCGACGGTGTCTTCTGATGATCTTGCTAAT-3'

The region encoding the CTPP (nucleotides 607-651) of the barley lectin *wt* cDNA clone (Wilkins et al., 1990) was modified to code for the amino acids describe in Figure 2.2 using the synthetic mutagenic oligonucleotides below. The barley lectin *wt* cDNA clone was first mutagenized using oligo A was isolated and verified by ³⁵S-dideoxy sequencing (Sanger et al., 1977). Uracilcontaining single stranded of this cDNA clone was prepared as previously described. A second round of mutagenesis was performed using oligo B to

obtain a cDNA clone encoding the BL-mutant CTPP construct 22.

Mutant #22 oligo A 5'-GCCAACTCCACTCTTGTCAACGCAACTGAATGATCTTGCTAATG-3'
& oligo B 5'-GCCGCCGGCTCCACTC-3'

All carboxyl-terminal propeptide mutants of barley lectin were identified and selected by ³⁵S-dideoxy sequencing of single-stranded DNA. The BL-mutant CTPP cDNAs were excised from pUC118 with Xbal (New England BioLabs). BL-mutant CTPP constructs (Figure 2.2) were subcloned (Struhl, 1985) into the binary plant expression vector pGA643 (An et al., 1988) and mobilized into *Escherichia coli* DH5a. All BL-mutant CTPP cDNA as well as cDNA encoding the wild-type (Wilkins et al., 1990) and *ctpp*⁻ (Bednarek et al., 1990) clones were subcloned into the transient expression vector pA35 (Höfte and Chrispeels, 1992) and transformed into the *E. coli* MV1193. Large-scale BL-mutant CTPP pA35 plasmid preparations were performed using the Maxi-Prep Kit as described by the manufacturer (Qiagen Inc., Chatsworth, CA.).

Plant Transformation and Shoot Tissue Culture

Tobacco plants (*Nicotiana tabacum* cv Wisconsin 38) were transformed with the binary vector pGA643 containing BL-mutant CTPP constructs 1 to 3, 10, and 33-36, as shown in Figure 2.2, and analyzed as described in Wilkins et al. (1990). Axenic shoot cultures of transformed tobacco were maintained and propagated by node cuttings on solid Murrashige and Skoog (MS) medium (Murashige and Skoog, 1962) without exogenous hormones.

Immunocytochemistry

Immunocytochemistry was performed on transgenic tobacco plants individually expressing BL mutants 1 to 3 essentially as described in Bednarek and Raikhel (1991). The primary antibody was rabbit anti-WGA antiserum (Raikhel et al., 1984) diluted 1 to 50, and control sections were incubated with nonimmune serum diluted similarly. Protein A-colloidal gold (EY Laboratories Inc., San Mateo, CA) was diluted 1 to 50.

Vacuole Isolation and Marker Enzyme Assays

Vacuole isolation and marker enzyme assays (Bednarek and Raikhel, 1991) were performed on transgenic plants expressing BL-mutant CTPP constructs. Affinity-purified BL from vacuole extracts and crude soluble protein extracts from protoplasts were examined by protein gel blot analysis as described in Wilkins et al. (1990).

Radiolabeling of Transformed Tobacco Leaf Protoplasts

Protoplasts were prepared and isolated as described previously (Bednarek and Raikhel, 1991), with the exception that the isolated protoplasts were diluted to a final concentration of 500,000 protoplasts per mL. Viable protoplasts were quantified, and pulse-labeling experiments of leaf protoplasts were performed (Bednarek et al., 1990).

Transient Gene Expression in Tobacco Leaf Protoplasts

The transient expression of BL-mutant CTPP constructs in tobacco leaf protoplasts via the PEG-mediated DNA uptake method (Bednarek et al., 1990) was performed for tobacco suspension cell culture protoplasts with some alterations. Protoplasts from tobacco plants (cv Wisconsin 38) were prepared and isolated as described previously (Bednarek and Raikhel, 1991), with the exception that after the wash the isolated protoplasts were resuspended in 30 mL of W5 solution (188 mM NaCl, 153 mM CaCl₂·2H₂O, 5mM KCl, 5mM glucose, pH 5.7). Viable protoplasts were visualized by fluorescein diacetate staining (Widholm, 1972) and the yields quantitated using a hemocytometer counting chamber. Protoplasts were collected by centrifugation at (50g) for 10 min, washed with 30 mL of BaMg solution (0.6 M betaine, 15 mM MgCl₂, 3 2-[N-morpholino]ethanesulpfonic acid [Mes]-KOH, pH 5.7), and mM resuspended to a final concentration of 1.7 X 10⁶ viable protoplasts per mL with the BaMg solution. Prior to adding plasmid DNA, 5 X 10⁵ protoplasts were aliquoted to 15-mL polypropylene tubes (300 µl 1.7 X 10⁶ protoplast suspension per tube) and were subjected to a 45°C heat shock for 5 min.

After cooling to room temperature, a 30- μ L mixture of 20 μ g of a pA35 BL-mutant CTPP construct and 50 μ g of sheared salmon sperm DNA was added to the protoplast suspension. The protoplast/plasmid DNA mixture was brought to a final concentration of 28% PEG-4000 with a solution containing 40% PEG-4000, 0.6 M betaine, 100 mM Ca(NO₃)₂·4H₂O, 0.1 % Mes, pH 7.0. After

incubating at room temperature for 30 min, the protoplast/DNA/PEG mixture was slowly diluted with 12 volumes of W5 solution over a period of 15 min. The protoplasts were collected by centrifugation at 50g for 10 min at room temperature, and the protoplast pellet was washed with 5 mL of MS medium supplemented with 0.1 mg/L naphthaleneacetic acid, 1.0 mg/L benzyladenine, and 0.6 M betaine monohydrate (MS 0.1/1.0, 0.6 M betaine), recentrifuged, and resuspended in 1 mL of MS 0.1/1.0, 0.6 M betaine, to a final density of 5.0 X 10⁵ protoplasts per mL and transferred to 12 well tissue culture plates (Costar, Cambridge, MA.).

To examine expression of the barley lectin constructs, the transiently transformed leaf protoplasts were incubated for 8 hr (pulse-chase analysis) or 20 hr (pulse-labeling) in the presence of 100 μ Ci Expre³⁵S³⁶S sulfur-35 protein labeling mixture (New England Nuclear Research Products), *E. coli* hydrolysate containing a mixture of 77% L-³⁶S-methionine and 18% L-³⁶S-cysteine in 50 mM tricine, 10 mM β ME buffer (specific activity 1000-1100 Ci/mmol; ³⁵S-Met/Cys). If a pulse-chase analysis was performed after 8 hr of labeling, 100 μ L of chase mix (100mM methionine and 50 mM cysteine [free base] in MS 0.1/1.0, 0.6 M betaine) was added and incubated for an additional 12 hr. After labeling, the protoplasts were separated from the culture medium by centrifugation at 50g for 10 min at room temperature. The protoplast pellet was resuspended in 400 μ L of extraction buffer, 50 mM Tris-acetate, pH 5.0, 100 mM NaCl, and 0.6% Triton X-100. The lysate was cleared of insoluble debris by centrifugation at 16,000g for 5 min at 4°C, frozen in liquid N₂, and

stored at -70°C. The culture medium (1 mL) was filtered to remove any remaining protoplasts (Wilkins et al., 1990), and 25 μ L of a 50 mg/mL BSA solution was added as a carrier protein.

Proteins in the culture media were precipitated with ammonium sulfate at 70% saturation at 4°C for 2 hr then collected by centrifugation at 10,000 rpm for 10 min at 4°C. The culture medium protein pellet was resuspended in $400 \,\mu\text{L}$ extraction buffer and stored at -70°C. All protein samples were thawed at room temperature and passed four times over immobilized *N*-acetylglucosamine (Pierce Chemical Co.) micro affinity columns (Mansfield et al., 1988). After extensive washing of the column with TA buffer (50 mM Trisacetate, pH 5.0, and 100mM NaCl), BL was eluted with 150 μ L of 200 mM Nacetylglucosamine and lyophilized. The inhibition of glycoslyation by tunicamycin was performed as described in Bednarek and Raikhel, (1991). The radiolabeled barley lectin was analyzed by SDS-PAGE through 12.5% or 15% polyacrylamide gels and visualized by fluorography as detailed in Mansfield et al. (1988).

Acknowledgments

We would like to thank Olga Borkhsenious for helping with electron microscopy immunocytochemistry, Drs. Herman Höfte and Maarten Chrispeels for generously providing us with the plasmid for the transient expression vector pA35. We would also like to thank all members of our laboratory for many helpful discussions and for critical reading of this manuscript. This research was supported by grants from the National Science Foundation, Washington, DC (Grant No. DCB-9002652) and the United States Department of Energy, Washington, DC (Grant No.DE-AC02-76ERO-1338) to N.V.R.

REFERENCES

- An G, Ebert PR, Mitra A, Ha SB (1988). Binary vectors. Plant Mol Biol Manual A3, 1-19.
- Bednarek SY, Raikhel NV (1991). The barley lectin carboxyl-terminal propeptide is a vacuolar protein sorting determinant in plants. Plant Cell 3, 1195-1206.
- Bednarek SY, Raikhel NV (1992). Intracellular trafficking of secretory proteins. Plant Mol Biol 20, 133-150.
- Bednarek SY, Wilkins TA, Dombrowski JE, Raikhel NV (1990). A carboxylterminal propertide is necessary for proper sorting of barley lectin to vacuoles of tobacco. Plant Cell 2, 1145-1155.
- Chrispeels MJ (1991). Sorting of proteins in the secretory system. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 42, 21-53.
- Chrispeels MJ, Raikhel NV (1992). Short peptide domains target proteins to plant vacuoles. Cell 68, 613-616.
- Flynn GC, Pohl J, Flocco MT, Rothman, JE (1991). Peptide-binding specificity of the molecular chaperone BiP. Nature 353, 727-730.
- Gould SJ, Keller G, Hosken N, Wilkinson J, Subramani S (1989). A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol 108, 1657-1664.
- Höfte H, Chrispeels MJ (1992). Protein sorting to the vacuolar membrane. Plant Cell 4, 995-1004.
- Holwerda BC, Padgett HS, Rogers JC (1992). Proaleurain vacuolar targeting is mediated by short contiguous peptide interactions. Plant Cell 4, 307-318.
- Johnson LM, Bankaitis VA, Emr SD (1987). Distinct sequence determinants direct intracellular sorting and modification of yeast vacuolar protease. Cell 48, 875-885.
- Klionsky DJ, Banta LM, Emr SD (1988). Intracellular sorting and processing of a yeast vacuolar hydrolase: Proteinase A propeptide contains vacuolar targeting information. Mol Cell Biol 8, 2105-2116.
- Kornfeld S, Mellman I (1989). The biogenesis of lysosomes. Annu Rev Cell Biol 5, 483-525.

- Mansfield MA, Peumans WJ, Raikhel NV (1988). Wheat-germ agglutinin is synthesized as a glycosylated precursor. Planta 173, 482-489.
- Matsuoka K, Nakamura K (1991). Propeptide of a precursor to a plant vacuolar protein required for vacuolar targeting. Proc Natl Acad Sci USA 88, 834-838.
- Miura S, Kasuya-Arai I, Mori H, Miyazawa S, Osumi T, Hashimoto T, Fujiki Y (1992). Carboxyl-terminal consensus Ser-Lys-Leu-related tripeptide of peroxisomal proteins functions *in vitro* as a minimal peroxisome-targeting signal. J Bio Chem **267**, 14405-14411.
- Murashige T, Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15, 473-497.
- Nakamura K, Matsuoka K (1993). Protein targeting to the vacuole in plant cells. Plant Physiol 101, 1-5.
- Neuhaus J-M, Sticher L, Meins Jr F, Boller T (1991). A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proc Natl Acad Sci USA 88, 10362-10366.
- Perlman D, Halvorson HO (1983). A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J Mol Biol 167, 391-409.
- Pollit S, Inouye S, Inouye M (1986). Effect of amino acid substitutions at the signal peptide cleavage site of the *Escherichia coli* major outer membrane lipoprotein. J Biol Chem **261**, 1835-1837.
- Pryer NK, Wuestehube LJ, Schekman R (1992). Vesicle-mediated protein sorting. Annu Rev Biochem 61, 471-516.
- Raikhel NV, Lerner DR (1991). Expression and regulation of lectin genes in cereals and rice. Dev Genet 12, 255-260.
- Raikhel NV, Mishkind ML, Palevitz BA (1984). Characterization of a wheat germ agglutinin-like lectin from adult wheat plants. Planta 162, 55-61.
- Saalbach G, Jung R, Kunze G, Saalbach I, Adler K, Muntz K (1991). Different legumin protein domains act as vacuolar targeting signals. Plant Cell 3, 695-708.
- Sambrook J, Fritsch EF, Maniatis T (1989). Molecular Cloning: A Laboratory Manual, 2nd ed. (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory).

- Schroeder RM, Borkhsenious ON, Matsuoka K, Nakamura K, Raikhel NV (1993). Colocalization of barley lectin and sporamin in vacuoles of transgenic tobacco plants. Plant Physiol 101, 451-458.
- Struhl K (1985). A rapid method for creating recombinant DNA molecules. Biotechniques 3, 452-453.
- Subramani S (1992). Targeting of proteins into the peroxisomal matrix. J Membrane Biol 125, 99-106.
- Valls LA, Hunter CP, Rothman JH, Stevens TH (1987). Protein sorting in yeast: the localization determinant of yeast vacuolar carboxypeptidase Y resides in the propeptide. Cell 48, 887-897.
- Valls LA, Winther JR, Stevens TH (1990). Yeast carboxypeptidase Y vacuolar targeting signal is defined by four propeptide amino acids. J Cell Biol 111, 361-368.
- van den Bosch H, Schutgens RBH, Wanders RJA, Tager JM (1992). Biochemistry of peroxisomes. Annu Rev Biochem 61, 157-197.
- Verner K, Schatz G (1988). Protein translocation across membranes. Science **241**, 1307-1313.
- Vieira J, Messing J (1987). Production of single-stranded plasmid DNA. Methods Enzymol 153, 3-11.
- von Heijne G (1988). Transcending the impenetrable: how proteins come to terms with membranes. Biochim Biophys Acta 947, 307-333.
- Widholm JM (1972). The use of fluorescein diacetate and phenosafranin for determining viability of cultured plant cells. Stain Technol 47, 189-194.
- Wilkins TA, Bednarek SY, Raikhel NV (1990). Role of propeptide glycan in post-translational processing and transport of barley lectin to vacuoles in transgenic tobacco. Plant Cell 2, 301-313.
- Wright CS (1987). Refinement of the crystal structure of wheat germ agglutinin isolectin 2 at 1-8 Å resolution. J Mol Biol 194, 501-529.
- Wright CS, Schroeder MR, Raikhel NV (1993). Crystallization and preliminary x-ray diffraction studies of recombinant barley lectin and pro-barley lectin. J Mol Bio 233, 322-324.

CHAPTER 3

ISOLATION OF A cDNA ENCODING A NOVEL GTP BINDING PROTEIN OF ARABIDOPSIS THALIANA

Reference: Dombrowski JE, Raikhel NV (1995). Plant Mol Biol in press.

ABSTRACT

A cDNA encoding for a 68 kDa GTP binding protein was isolated from *Arabidopsis thaliana* (*aG68*). This clone is a member of a gene family that codes for a class of large GTP binding proteins. This includes the mammalian dynamin, yeast Vps1p and the vertebrate Mx proteins. The predicted amino acid sequence was found to have high sequence conservation in the N-terminal GTP-binding domain sharing 54% identity to yeast Vps1p, 56% amino acid identity to rat dynamin and 38% identity to the murine Mx1 protein. The Northern analysis shows expression in root, leaf, stem and flower tissues, but in mature leaves at lower levels. Southern analysis indicates that it may be a member of a small gene family or the gene may contain an intron.

DISCUSSION AND RESULTS

In eukaryotic cells, GTP-binding proteins function in a wide variety of cellular processes, including signal transduction, intracellular transport of proteins, cytoskeletal organization and protein synthesis. During the last few years a unique class of high molecular weight GTPases have been identified. which have a conserved N-terminal tripartite GTP-binding domain. The members of this gene family have been shown to be involved in important cellular functions. The mammalian protein dynamin and its Drosophila homologue, the product of the shibire gene has been demonstrated to be involved in endocytosis, synaptic transmission, and neurogenisis (Obar et al., 1990; Chen et al., 1991; van der Bliek and Meyerowitz, 1991; Gout et al., 1993; Herskovits et al., 1993a,b; Robinson et al., 1993; van der Bliek et al., 1993; Damke et al., 1994; Scaife et al., 1994). In yeast two homologues have been isolated, the MGM1 protein which plays a role in mitochondrial DNA maintenance (Jones et al., 1992), and the Vps1p protein which is necessary for the proper sorting of soluble vacuolar proteins (Rothman et al., 1990; Vater et al., 1992) and for membrane protein retention in the late Golgi compartment (Wilsbach and Payne, 1993). In addition, it was recently shown that in vps1 mutant cells Golgi as well as vacuolar membrane proteins reach the vacuole via the plasma membrane (Nothwehr et al., 1995). Another member of this family is the vertebrate Mx proteins that confers viral resistance (Staeheli et al., 1986; Horisberger et al., 1990, 1991; Pavlovic et al., 1993). We report here the first

member of this GTPase gene family to be identified in plants.

The research focus of our laboratory is to study the mechanisms of vacuolar protein sorting in plants. The MSU-DOE Plant Research Laboratories Arabidopsis Genome Sequencing Project (Newman et al., 1994) identified a partial clone whose sequence had homology to the yeast Vps1p. Due to our ongoing interest in proteins involved in the sorting of vacuolar proteins we have characterized this clone further. Using this partial clone as a probe the full length cDNA clone was isolated by plaque hybridization from an *Arabadopsis* cDNA lambda-ZAP II library made from leaf tissue ecotype *Columbia*. The lambda-ZAP II clone was converted to a pBluescript phagemid (Stratagene). The nucleotide sequence of both strands of the cDNA clone designated *Arabidopsis* thaliana aG68, was determined using the dideoxy chain termination method (Sanger et al., 1977).

The predicted amino acid sequence of the *aG68* cDNA clone (Figure 3.1) shows no significant hydrophobic stretches, and does not appear to have a signal sequence nor a membrane spanning domain. In addition the sequence does not contain a myristylation motif at the N-terminus or a cysteine motif for prenylation at its C-terminus.

The predicted amino acid sequence of the aG68 protein was aligned (Figure 3.2) with the amino acid sequences of selected representatives of this GTPase family, yeast Vps1p (Rothman et al., 1990), rat dynamin (Obar et al., 1990), and murine Mx1 (Staeheli et al., 1986) proteins. The deduced amino acid sequence of the protein encoded by aG68 shows a very high sequence

Figure 3.1 Sequences of the nucleotides and deduced amino acid residues of the cDNA clone *aG68*. EMBL, Genbank and DDBJ nucleotide sequence databases: accession number L38614.

1 COGCACGAGCTTCATCGACTCAAAATTCAAAAACTCATCTTCTTATTCTCTTGGTTCCATAGCTCACCGTCGC 81 ATCGCAGATCTACTCCTTCCGCAATAAATTTTACCGGCGGAGGTATCAGATCTCGCCGATCTGTTGTAGCAGCTACTGTA MENLISLVNKI 161 TTTTGGGCTTCTCATTTGATATTGGGGAAACGAGGAGTAGAGGACGATGGAAAATCTGATCTCTCTGGTTAACAAGATAC Q R A C T A L G D H G D S S A L P T L W D S L P A I 241 AGAGAGCTTGCACGCCTTTAGGAGACCATGGAGACTCCAGCGCTTTACCTACTCTTTTGGGATTCCTTGCCTGCGATCGCC V V G G Q S S G K S S V L E S I V G K D F L P R G S G 39 **OTCOTTGGTGGTCAGAGCTCAGGGAAGTCTTCAGTCCTGGAGAGCCATCGTGGGAAAGGACTTTTTACCCCGTGGATCTGG** 321 I V T R R P L V L Q L Q K I D D G T R E Y A E F L H 401 CATTOTTACTCGAAGGCCCCTTGTCTTACAGTTGCAAAAGATCGATGATGGAAACCCGGGAGTATGCAGAGTFTCTTCACC 92 L P R K K F T D F A A V R K E I O D E T D R E T G R S 481 K A I S S V P I H L S I Y S P N V V N L T L I D L P G 119 AAGGCTATTTCTAGTGTTCCCATTCACCTTAGCATATACTCTCCCAATGTTGTCAACTTGACACTGATAGATCTTCCAGG 561 T K V A V D G Q S D S I V K D I E N M V R S Y I E 146 641 GCTTACAAAAGTTGCTGTTGATGGACAATCTGATAGTATAGTGAAGGACATTGAAAACATGGTTCGGTCCTACATTGAAA 172 K P M C I I L A I S P A M Q D L A T S D A I K I S R E 721 AGCCCAACTGCATCATTTTGGCAATCTCACCTGCAAACCAAGATCTTGCTACCTCAGATGCAATTAAAATTTCCCGTGAG V D P S G D R T F G V L T K I D L M D K G T D A V E I 801 OTTGATCCATCGGGGGACAGAACATTTGGTGTCTTTGACAAAGATTGATCTTATGGACAAGGGGACGGATGCAGTGGAAAAT LEGRSFKLKYPWVGVVNRSOADINKM 226 881 TCTGGAAGGGAGATCTTTTAAACTTAAATATCCGTGGGTTGGTGTCGTCAACCGTTCCCAAGCAGATATTAACAAGAATG 252 V D M I A A R K R E R E Y F S N T T E Y R H L A N K M TCGACATGATTGCGGCTCGGAAAAGAGAGGGGAGTACTTTTCCAATACTACTGAGTATAGGCACCTTGCTAATAAAATG KMLSKHLERVIKSR 1041 GGTTCCGAGCATTTGGCAAAGATGCTCTCCAAGCATCTAGAACGTGTGATCAAGTCGAGAATTCCTGGCATTCAGTCACT I M K T V L E L E T E L S R L G K P I A A D A G G K 306 1121 TATTAACAAAACAGTATTAGAGCTGGAAACTGAACTAAGTCGCCTTGGAAAGCCTATTGCAGCTGATGCAGGGGGGGAAGT L Y S I M E I C R L F D Q I F K E H L D G V R A G G E 1201 K V Y M V F D M Q L P A A L K R L Q F D K Q L A M D M 359 1281 ARAGTOTACARCOTOTTTGATARCCAGCTTCCTGCGGCTCTGARGAGACTCCARTTTGACARGCAGCTAGCGATGGACAA 386 IRKLVTEADGYQPHLIAPEQGYRRLI 1361 CATCCGGAAGCTGGTCACTGAGGCTGATGGTTACCAGCCTCACTTGATTGCTCCTGAGCAAGGTTACCGTCGTCTCATTG 412 E S S I V S I R G P A E A S V D T V H A I L K D L V H 1441 AGTCTTCTATTGTCTCCATCAGAGGCCCTGCTGAAGCATCTGTTGACACCGTTCATGCTATCTTAAAGGATCTGGTTCAC K S V N E T V E L K O Y P A L R V E V T N A A 439 1521 AAGTCTGTGAATGAAACTGTGGAACTAAAACAATACCCAGCTCTGAGAGTGGAGGTGACAAATGCGGCGATAGAGTCGCT D K M R E G S K K A T L Q L V D M E C S Y L T V D F OGATAAAATGCGGGAAGGAAGTAAGAAAGCAACACTGCAGCTGGTTGACATGGAGTGCAGTTACCTCACTGTTGATTTCT 1601 FRKLPODVEKGGNPTHSIFDRYNDSYL TCAGGAAACTTCCCCAGGATGTTGAGAAGGGTGGTAACCCCACACACTCCATTTTCGACCGCTACAACGATTCCTATCTC 1681 RRIGSMVLSYVNMVCAGLRNSIPKSIV 1761 AGACGAATCGGATCCAATGTTTTGTCTTACGTGAACATGGTCTGTGCTGGGCCTGCGGAATTCAATCCCCAAGTCCATCGT Y C Q V R E A K R S L L D H F F A E L G T M D M K R 546 1841 ATACTGCCAAGTCCGAGAAGCGAAGCGCAGTCTCCTCGACCATTTCTTTGCGGAGCTCGGTACCATGGATATGAAGAGGC LSSLLNEDPAIMERRSAISKRLELYR 572 TCTCGTCGCTATTGAACGAAGATCCAGCAATCATGGAGAGACGCAGTGCCATCTCAAAGCGGCTAGAATTGTATCGAGCA 1921 AQSEIDAVAWSK * 599 2001 GCCCAATCCGAGATCGATGCTGTTGCTTGGTCCAAGTGATACCGGCATGTCATGTCCACTGTTTTTGCTCGGTTCTGGTCG 2081 OTOTOGCTCAGACTCGGAGCAGAGATTTAGGGTCTGTAATTTGTATAAGATGATCTTCCCGATACCATGCAGTATCGTTT 2161 TATATAACATCCACATTOTTTOTCCTACCTCTATGTTTTTTOTCCATCACCCGATATGTTACGTATCGTTTTATAAAAA

Figure 3.2 Alignment of the predicted amino acid sequences of *aG68*, rat dynamin (rDynm), yeast Vps1p, and murine Mx1 proteins. The sequences were aligned using the University of Wisconsin (Madison), Genetics Computer Group Sequence Analysis Software Package (version 7.0) were carried out on a version 7.3 UNIX computer. The selected sequences were obtained from published sequences (Obar et al., 1990; Rothman et al., 1990; Staeheli et al., 1986). Arrows mark the boundaries containing the region of greatest similarity. This region was selected visually. Vertical dashes, identity and colons conservative substitutions. The guanine-nucleotide consensus elements are overlined (Obar et al., 1990; Rothman et al., 1990).

	•	
aG68		76
rDyna		75
yVps1	MDEHLISTINKLQDALAPLQQGSQSPIDLPQINVVGSQSSGKSSVLENIVGRDFLPRGTGIVTRPPLVLQLINRRPKKSEHA	82
Mx1	MDSVMMLCRHYEEKVRPCIDLIDTLRALGVEQDLALPAIAVIGDQ88GK88VLEAL8GV.ALPRG8GIVTRCPLVLKLRKLKEGEEW	86
aG68	QKIDDGTREYAEFLELPRKKFTDFAAVRKEIQDETDRETGRSKAISSVPIELSIYSPWVVMLTLIDLPGL	146
rDynm	STIBYABFLECKGKKFTDFESVRLBIBABTDRVTGTMKGISPVPIMLRVYSPRVIMLTLVDLPGM	140
yVps1	EVMOTAMELIDLMINDDDKKKDESGKEQMEGQSEDMKEEMGEFLELPGKKFYNFDEIRKEIVKETDKVTGAMSGISSVPIMLRIYSPEVLTLTLVDLPGL	182
Mx1	RGKVSYDDI.EVELSDPSEVERAIMKGOMFIAGVGLGISDKLISLDVSSPMVPDLTLIDLPGI	148
aG68	TKVAVDGQGDSIVKDIEMMVRSYIEKPMCIILAISPAMQDLATSDAIKISREVDPSGDRTFGVLTKIDLMDKGTDAVEILEGRSFKLKYPMVGVVMRS	244
rDyna	TKVPVGDQPPDIBFQIRDMIMGFVTKENCLILAVSPANSDLAMSDALKIAKEVDPQGQRTIGVITKLDIMDEGTDARDVLENKLLPLRRGYIGVVMRS	238
yVps1	TKVPVGDQPPDIERQIKDMLLKYISKPMAIILSVMAAMTDLAMSDGLKLAREVDPEGTRTIGVLTKVDLMDQGTDVIDILAGRVIPLRYGYIPVIMRG	280
Mx1	TRVAVQNQPADIGRQIKELIKTYIQKQBTIMLVVVPSNVDIATTEALSMAQBVDPBGDRTIGVLTKPDLVDRGABGKVLDVMRMLVYPLKKGYMIVKCBG	248
4668	QADINKNYDMIAARKRERSYFSWTTEYREL.AMMOSSELLAMLSKELERVIKSRIPGIQSLINKTVLELETELSRLGKPIAADAGGKLYSIMSICRLF	342
rDynm	QEDIOGENEDITAALAARKFPLSHPSYBHLADBMOTPYLQEVLMQQLTMHIRDTLPGLBMELQSQLLSIEKEVDEYMFRPDDPARKTKALLQMVQQF	336
yVps1	ONDIEHKKTIRRALEMERKFFEMEPSYSSKAEYCCTPYLAKKLMSILLHHIROTLPEIKAKIEATLKKYQMBLIHLGPETMDSASSVVLSMITDF	375
Mx1	QQDIQEQLSLTEAFQKEQVFFKDESYFSILLEDGKATVPCLAERLTEELTSHICKSLPLLEDQIMSSHQSASEBLQKYGADIPEDDRTRMSFLVMKISAF	348
aG68	${\tt DQIFKEELDGVR} \dots \dots {\tt AGGEKVYMVFDMQLPAALKRLQ} \dots {\tt FDKQLAMDMIRKLVTEADGYQPELIAPEQGYRLIESSIVSIRGPAEASVDTVE}$	430
rDyna	AVDFERRIEGSGDQIDTYELSGGARINRIFHERFPFELVENEFDEKELRREISYAIRHIEGIRTGLFTPDLAFEATVKKQVQKLKEPSIKCVDMVV	432
yVps1	Smetagildgeakelssgelsggaristvfhetfkngvdsldpfd.qikdsdirtimtnssgsapslfvgteafevlvkqqirrfeepslrlvtlvf	471
Mx1	MEMINOILIQAQ.ETVSEGDSRLFTKLBURFLAWDDHIEEYFKKDSPEVQSKMKEFENGYRGRELPGFVDYKAFESIIKKRVKALEESAVMMLRRVT	443
4G68	AILKOLVEKSVHETVELKQYPALRVEVTMAAIESLDKKREGSKK.ATLQLVDMECSYL	494
r Dyna	seltstirk.cseklqqyprlremerivtteire.regrtkeqvmllidislaynothhedfigfanaqqrsnqmhkktsgnqdbilvirkgmlti	528
yVps1	DELVEMILKQIISQP.KYSRYPALREAISMQFIQFLKDA.TIPTMEFVVDIIKAEQTYINTAEPDLL	544
Mx1	ENVOTAFVKILSMDFGDFLMLCCTAXSKIKEI.RLMGEKEA.ENLIRL.HFGMEQIVYCGDQVY	504
4G68	LPQDVEKGGMPTHSIFDRYM	514
rDynm	HHIGIMKOGSKEYWFYLTAEHLSWYKDDEEKEKKYMLSVDMLKLEDVEKGFMSSKHIFALFHTEQRHVYKDYRQLELACETQEEVDSWKASFLRAGVY	626
yVps1		582
Mx1	;; Ketlet	510
4068	DSYLRRIGSWVLSYVMMVCAGLEWSIPKSIVYCQVREAKRSLLDHFFAELGTWDMKRLSSLLWEDPAI	582
rDyna	PERVGDKEKASETEENGSDSPIKESKOPQLERQVETIKNLVDSYNAIVNKTVRDLMPKTINKLMINNTKEFIFSELLANLYSCGDQMTLMEESAEQ	721
yVps1	GOFFSTRUKKLAALESPPPVLKATGGHTERFINSTEVIKLLISSYFSIVKETIADIIPKALMLKLIVKSKTDIGKVLLEKLYGKGDIESLTKENDIT	680
Mx1	. IREKEAEKEKTKALI. MPATFOMMSOFPOKGLTTTEMTOMLKAYY. OBCREMIGROIPLIIQYFILKTFGEEIEMMLQLLQ DTSKCSWFLEEQSDT	605
aG68	MERRSAISERLELYRAAQSBIDAVANSE	610
rDynm	ACRRD MILEMATHALKEALS IIGDINTTTVSTPMPPPVDDSWLGVQSVPAGRESPTSSPTFQRRAPAVPPARPGSRGPAPGPPPPAGSALGGAPPVPSRPQA	821
yVps1	IORRIGECKINVEILIMASQIVSSV	704
Mx1	REKEKFLKERLLRLDBARGKLAKFSD.	631

rDynm SPDPFGPPPQVPSRPMRAPPGVPRITISDP 851

conservation in the N-terminal (~300 amino acids) GTP binding domain. The amino acid sequence of *aG68* shows 65% sequence similarity to yeast Vps1p (54% identity), 68% sequence similarity to rat dynamin (56% identity), and 57% sequence similarity to murine Mx1 (38% identity) within the GTP binding domain. It has been previously reported that within this N-terminal domain rat dynamin showed 66% sequence identity to yeast Vps1p and 43% identity with murine Mx1, and Mx1 shares 44% sequence identity the Vps1p from yeast (Obar et al., 1990). However all the sequences were found to diverge beyond the GTP binding domain suggesting that they may perform different cellular functions. It has been speculated that the C-terminal domains of these proteins may be involved in protein-protein interactions and thereby determining their mode of action.

The dynamin subfamily of homologous proteins all possess a basic, proline rich C-terminal region which contains binding sites for microtubules and SH3 domains (Obar et al., 1990; Chen et al., 1991; van der Bliek and Meyerowitz, 1991; Gout et al., 1993; Herskovits et al., 1993a,b; Robinson et al., 1993; van der Bliek et al., 1993; Damke et al., 1994; Scaife et al., 1994). A sequence comparison of rat dynamin and its human homologue shows that they share 99% amino acid identity (van der Bliek et al., 1993). However the *Drosophila* gene shibire is the dynamin homologue with 68% sequence identity (81% similarity- conserved amino acid substitutions) with rat dynamin, and also contains a C-terminal extension of comparable length and composition (Chen et al., 1991; van der Bliek and Meyerowitz, 1991). Unlike dynamin, the

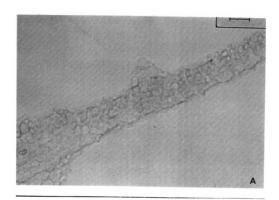
predicted sequence aG68p, the Vps1p, and Mx1 proteins lack the basic proline rich C-terminal region.

The results for Northern blot analysis were obtained using either total isolated RNA or poly(A⁺) mRNA from various tissues. We found that in *Arabidopsis* the *aG68* gene is expressed at different levels in root, leaf, stem and flower tissues (Figure 3.3). Surprising is the lower level of expression exhibited in mature leaf tissue. However, in situ hybridization using full length *aG68* antisense RNA probes, showed that *aG68* transcript levels to be distributed evenly throughout the leaf tissue (Figure 3.4). It should be noted that, this lower level of expression in mature leaf tissue has been shown for other genes whose products are associated with the secretory pathway (Bar-Peled et al., 1995).

To investigate the number of related genes in *Arabidopsis*, Southern blot analysis was performed (Figure 3.5). Total genomic DNA was isolated from *Arabidopsis thaliana* ecotypes Columbia and RLD, digested with restriction enzymes and hybridized under stringent conditions with a probe generated by random primer labeling of the full length clone minus the poly-A-tail. It should be noted that the banding patterns from both ecotypes used were identical. The presence of two bands in the Hind III digestion and the four bands in the Eco RI digestions suggest a small gene family or an intron in the genomic sequence. If *aG68* is a member of a small gene family in *Arabidopsis* then there may be different expression patterns of these genes in various tissues and in response to different environmental conditions. This can be addressed by probing

Figure 3.3 Northern blot analysis for aG68 expression in plant tissues.

Northern blot analysis for the expression of *aG68* of 30µg total RNA isolated from different plant tissues, root, leaf, stem and flower of *Arabidopsis thaliana*. Equal loading of RNA in each lane was verified by ethidium bromide staining of the agarose gel and by a control northern using *aARF* gene (data not shown) which is expressed at similar levels in all tissues tested (Bar-Peled et al., 1995). Hybridization with aG68 cDNA labelled by random priming with ³²P was performed for 18 h at 42°C in 5X SSC, 5X Denhardt's solution 50% formamide, 0.01% SDS, 100µg/ml salmon sperm DNA, 50mM sodium phosphate pH 6.5. Final washing was in 0.2X SSC, 0.01% SDS at 60 °C.


ROOT LEAF STEM FLOWER

2.37 kb -

Figure 3.4 In situ localization of aG68 transcript in wild type Arabidopsis leaves.

- (A). Control transverse section of *Arabidopsis* (ecotype RLD) leaf hybridized with dioxigenin-labeled sense RNA of *aG68*.
- (B). Transverse section of *Arabidopsis* (ecotype RLD) leaf hybridized with dioxigenin-labeled antisense RNA of *aG68*.

In situ hybridizations were done as described in Bar-Peled et al., (1995).

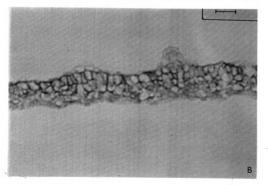
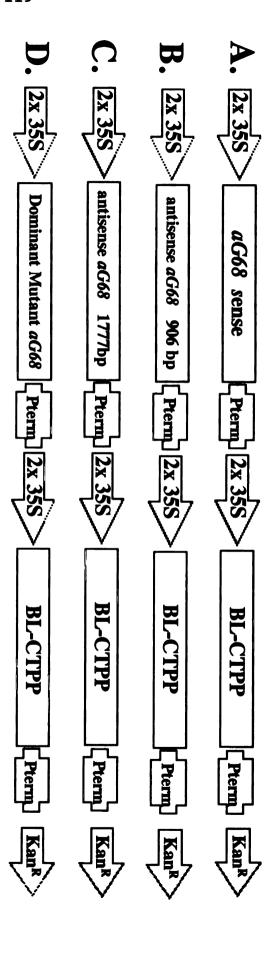


Figure 3.5 Southern blot analysis of the aG68 gene.

Each lane was loaded with $5\mu g$ of genomic DNA digested with the restriction enzyme as indicated. The DNA was separated on 0.75% agarose gel and transferred to Hybond-N nylon membrane. The blot was then probed with aG68 cDNA without its poly A tail, labelled by random priming with ^{32}P was performed for 18 h at 60°C in 6X SSC, 5X Denhardt's solution, 0.2% SDS, and $100\mu g/ml$ salmon sperm DNA. Final washing was in 0.2X SSC, 0.01% SDS at 60 °C.


Northern blots with a 3' non conserved region of the cDNA.

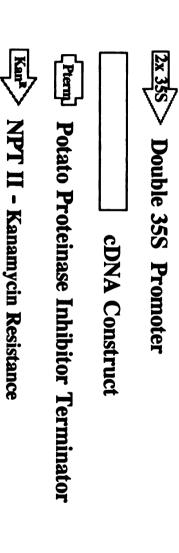

Although the predicted amino acid sequence of aG68 has 65% sequence similarity (54% identity) in its N-terminal domain and has 53% overall sequence similarity (36% identity) to the yeast Vps1p, we were unable to complement the vps1 yeast mutant (Vater et al., 1992). The reason may be that some plant proteins are unable to integrate into the yeast sorting apparatus, because their sequence diverges enough to disrupt the specificity of protein-protein interactions (Welters et al., 1994). However there are examples where plant genes can complement yeast secretory mutants for example, the aERD2 gene (Lee et al., 1993), the receptor involved in retention of soluble proteins in the endoplasmic reticulum and the aRAB6 gene (Bednarek et al., 1994), a small GTP binding protein. We will attempt to create a mutant phenotype in Arabidopsis by suppressing the expression of the aG68 gene by antisense and by expressing a construct of a dominant mutation (Vater et al., 1992) of this gene in order to ascertain its function (see Figure 3.6 for constructs to be used). In summary we have identified and cloned from Arabidopsis thaliana the first plant member of a unique class of GTPases.

Figure 3.6 Schematic Representation of the Double Transgene Expression Cassettes of *aG68* and wild type Barley Lectin in the Binary Vector pMOG800.

Description of the pBS843 XKEH expression cassette and the binary vector pMOG800 can be found in Chapter 4 in the material and methods section. Antibiotic resistance: nopaline synthase promoter (nos):: neomycin phosphotransferase II (NPTII):: nos terminator (Angenon et al., 1994).

- (A). Contains CDNA constructs; the full length *aG68* cDNA clone in a sense orientation and the wild type barley lectin clone containing its carboxy-terminal propertide (BL+CTPP) as the reporter protein for vacuolar sorting (for information concerning this protein see Chapter 2).
- (B). Contains CDNA constructs; a 906 bp Dral-Pstl fragment (nucleotides 1-906) of the aG68 cDNA clone in an antisense orientation and the wild type BL+CTPP clone.
- (C). Contains CDNA constructs; a 1777 bp BamHI fragment (nucleotides 1-1777) of the aG68 cDNA clone in an antisense orientation and the wild type BL+CTPP clone.
- (D). Contains CDNA constructs; a dominant mutation construct in which the coding region for the GTP-binding domain has been deleted (deleted nucleotides 238-906, using HincII and Dral restiction sites) from the *aG68* cDNA clone and the wild type BL+CTPP clone.

Acknowledgements

We would like to thank Dr. Scott Uknes and Dr. Eric R. Ward of CIBA-GEIGY for their generous gift of the *Arabidopsis thaliana* leaf lambda ZAPII cDNA library. Dr. Tom Stevens for providing us the yeast *vps1* mutant stain and control plasmid. I would also like to give special thanks to Amy Sandul for the isolation of the genomic DNA used in these analysis, and Dr. Alex S. Conceicao for performing the in situ hybridizations. This research was supported by grants from the National Science Foundation, Washington, DC (Grant # DCB-9002652) and the United States Department of Energy, Washington, DC (Grant # DE-F02-90ER-20021) to N.V.R.

REFERENCES

- Bar-Peled M, Conceicao AS, Frigerio L, Raikhel N (1995). Expression and regulation of *aERD2*, a gene encoding the KDEL-Receptor homolog in plants and other genes encoding proteins involved in ER-Golgi vesicular trafficking. Plant Cell 7, 667-676.
- Bednarek SY, Reynolds TL, Schroeder M, Grabowski R, Hengst L, Gallwitz D, Raikhel NV (1994). A small GTP-binding protein from *Arabidopsis thaliana* functionally complements the yeast *YPT6* null mutant. Plant Physiol 104, 591-596.
- Chen MS, Obar RA, Schroeder CC, Austin TW, Poodry CA, Wadsworth SC, Vallee RB (1991). Multiple forms of dynamin are encoded by *shibire*, a *Drosophila* gene involved in endocytosis. Nature 351, 583-586.
- Damke H, Baba T, Warnock DE, Schmid SL (1994) Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J Cell Biol 127, 915-934.
- Gout I, Dhand R, Hiles ID, Fry MJ, Panayotou G, Das P, Truong O, Totty NF, Hsuan J, Booker GW, Campbell ID, Waterfield MD (1993). The GTPase dynamin binds to and is activated by a subset of SH3 domains. Cell 75, 25-36.
- Herskovits JS, Burgess CC, Obar RA, Vallee RB (1993a). Effects of mutant rat dynamin on endocytosis. J Cell Biol 122, 565-578.
- Herskovits JS, Shpetner HS, Burgess CC, Vallee RB (1993b). Microtubules and Src homology 3 domains stimulate the dynamin GTPase via its C-terminal domain. Proc Natl Acad Sci USA 90, 11468-11472.
- Horisberger MA, McMaster GK, Zeller H, Wathelet MG, Dellis J, Content J (1990). Cloning and sequence analyses of cDNAs for interferon- and virus-induced human Mx proteins reveal that they contain putative guanine nucleotide-binding sites. J Virol 64, 1171-1181.
- Horisberger MA, Gunst MC (1991). Interferon-induced proteins: identification of Mx proteins in various mammalian species. Virology 180, 185-190.
- Jones BA, Fangman WL (1992). Mitochondrial DNA maintenance in yeast requires a protein containing a region related to the GTP-binding domain of dynamin. Genes and Development 6, 380-389.

- Lee H, Gal S, Newman TC, Raikhel NV (1993). The *Arabidopsis* endoplasmic reticulum retention receptor functions in yeast. Proc Natl Acad Sci SA 90, 11433-11437.
- Newman T, de Bruijn FJ, Green P, Keegstra K, Kende H, McIntosh L, Ohlrogge J, Raikhel N, Somerville S, Thomashow M, Retzel E, Somerville C (1994). Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous *Arabidopsis* cDNA clones. Plant Physiol 106, 1241-1255.
- Nothwehr SF, Conibear E, Stevens TH (1995). Golgi and vacuolar membrane proteins reach the vacuole in *vps1* mutant cells via the plasma membrane. J Cell Biol 129, 35-46.
- Obar RA, Collins CA, Hammerback JA, Shpetner HS, Vallee RB (1990). Molecular cloning of the microtubule-associated mechanochemical enzyme dynamin reveals homology with a new family of GTP-binding proteins. Nature 347, 256-261.
- Pavlovic J, Schroder A, Blank A, Pitossi F, Staeheli P (1993). Mx proteins: GTPases involved in the interferon-induced antiviral state. Ciba Found Symp 176: 233-243, discussion 243-247.
- Robinson PJ, Sontag J, Liu J, Fykse, Slaughter C, McMahon H, Sudhof TC (1993). Dynamin GTPase regulated by protein kinase C phosphorylation in nerve terminals. Nature 365, 163-166.
- Rothman JH, Raymond CK, Gilbert T, O'Hara PJ, Stevens TH (1990). A putative GTP binding protein homologous to interferon-inducible Mx proteins performs an essential function in yeast protein sorting. Cell 61, 1063-1074.
- Sanger F, Nicklen S, Coulson AR (1977). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 56, 5463-5467.
- Scaife R, Gout I, Waterfield MD, Margolis RL (1994). Growth factor-induced binding of dynamin to signal transduction proteins involves sorting to distinct and separate proline-rich dynamin sequences. EMBO J 13, 2574-2582.
- Staeheli P, Haller O, Boll W, Lindenmann H, Weissmann C (1986). Mx protein: constitutive expression in 3T3 cells transformed with cloned Mx cDNA confers selective resistance to influenza virus. Cell 44, 147-158.

- van der Bliek AM, Meyerowitz EM (1991). Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351, 411-414.
- van der Bliek AM, Redelmeier TE, Damke H, Tisdale EJ, Meyerowitz EM Schmid SL (1993). Mutations in human dynamin block an intermediate stage in coated vesicle formation. J Cell Biol 122, 553-563.
- Vater CA, Raymond CK, Ekena K, Howald-Stevenson I, Stevens TH (1992). The VPS1 protein, a homolog of dynamin required for vacuolar protein sorting in *Saccharomyces cerevisiae*, is a GTPase with two functionally separable domains. J Cell Biol 119, 773-786.
- Welters P, Takegawa K, Emr SD, Chrispeels MJ (1994). *At*VPS34, a phosphatidylinositol 3-kinase of *Arabidopsis thaliana*, is an essential protein with homology to a calcium-dependent lipid binding domain. Proc Natl Acad Sci USA **91**, 11398-11402.
- Wilsbach K, Payne GS (1993). Vps1p, a member of the dynamin GTPase family, is necessary for Golgi membrane protein retention in *Saccharomyces cerevisiae*. EMBO J 12, 3049-3059.

CHAPTER 4

THE DEVELOPMENT OF A GENETIC SCREEN FOR PLANT VACUOLAR PROTEIN SORTING MUTANTS.

INTRODUCTION

Currently, little is known about the mechanisms or the machinery involved in targeting proteins to the plant cell vacuole. Many proteins are delivered to the vacuole by way of the secretory pathway. The sorting of proteins to the vacuole is mediated by targeting signals contained in either an amino-terminal propeptide (NTPP), a carboxyl-terminal propeptide (CTPP), or a mature portion of the protein (for reviews see, Chrispeels and Raikhel, 1992; Bednarek and Raikhel, 1992; Vitale and Chrispeels, 1992; Nakamura and Matsuoka, 1993). Although proteins utilizing either NTPP or CTPP targeting signals are delivered to the same vacuoles (Schroeder et al., 1993) and the targeting signals of barley lectin (CTPP) and sporamin (NTPP) have been shown to be functionally interchangeable (Matsuoka et al., 1995), there is now strong evidence for multiple receptors as well as mechanisms for the targeting of soluble proteins to the vacuole.

While CTPPs have no consensus sequence (Dombrowski et al., 1993; Neuhaus et al., 1994), NTPPs display a common motif (for reviews see, Chrispeels and Raikhel, 1992; Nakamura and Matsuoka, 1993) which allowed for the isolation of a putative vacuolar NTPP receptor (Kirsh et al, 1994). Binding assays with the isolated receptor protein demonstrated that NTPP peptides were able to compete for binding, while a mutant NTPP peptide and the CTPP of barley lectin (BL) could not. The inability of CTPP targeting signals to compete for binding indicates that there are multiple receptors involved in the

targeting process. This fact, coupled with the observation that when very high levels of a vacuolar chitinase (CTPP mediated targeting) were produced transiently, secretion of chitinase was observed (Neuhaus et al., 1994), indicating saturation of the sorting apparatus, suggests the presence of a CTPP receptor. In addition, the existence of a CTPP receptor is supported by the fact that the CTPPs from both BL and tobacco chitinase were able to redirect a normally secreted protein to the vacuole (Bednarek and Raikhel, 1991; Neuhaus et al., 1991). Results obtained from a detailed mutational analysis of BL's CTPP demonstrated that a minimum of three exposed amino acids was sufficient to direct BL to the vacuole, and the interaction of the sorting apparatus with the CTPP occurs at the carboxy-terminus of the propeptide (Dombrowski et al., 1993). These observations suggest that the CTPP is most likely recognized by a low selectivity binding site(s), the saturation properties and specificity of which make it extremely difficult to isolate by biochemical means.

In yeast the gene *VPS34* codes for a phosphotidylinositol 3-kinase (PI 3-kinase) which has been shown to be involved in the targeting of proteins to the vacuole (Shu et al., 1993; Stack et al., 1993). Recently a specific inhibitor of mammalian PI 3-kinase wortmannin (Yano et al., 1993; Thelen et al., 1994; Woscholski et al., 1994) was used in plants to investigate its effects on the delivery of NTPP and CTPP containing proteins to the vacuole (Matsuoka et al., 1995). Pulse chase analyses in tobacco BY-2 cells indicate that wortmannin at lower concentrations caused secretion of proteins utilizing CTPP targeting signals, while NTPP mediated transport to the vacuole displayed almost no

sensitivity at this concentration of inhibitor. This differential sensitivity to wortmannin suggests two different mechanisms for sorting of plant soluble vacuolar proteins.

In yeast the identification and utilization of vps (vacuolar protein sorting) mutants as well as the sec mutants which affect protein movement along the secretory pathway have played a vital role in the investigation of the mechanisms of protein transport (reviews, Klionsky et al., 1990; Raymond et al., 1992 a,b; Pryer et al., 1992). A number of genetic selections have been used to isolate vacuolar protein sorting mutants in yeast. The first screen to identify yeast vacuolar protein sorting mutants was originally designed to isolate mutants in proteinase activity. In yeast, vacuolar proteinases need to be processed in order to be activated, and this activation is believed to occur in the vacuole. This screen identified 16 complementation groups, which were designated the pep mutants (Jones, 1977). A different approach was used by Stevens group; they screened for the mislocalization of CPY to the cell surface and isolated 19 complementation groups (Rothman and Stevens 1986; Rothman et al., 1989). A third screen utilized the fact that yeast require cell surface invertase (SUC2) activity to ferment sucrose. Using suc2 mutant yeast cells it was possible to isolate suc + isolates which mislocalize the normally vacuolar localized CPY-invertase fusion protein, to the cell surface (Banakaitis, et al., 1986; Robinson et al., 1988). This screen identified 33 complementation groups, which were classified according to vacuolar morphology. The two later screens had 12 complementation groups in common, they were combined and

designated as *vps* (vacuolar protein sorting) mutants (Rothman et al., 1989). Most mutants appear only to perturb sorting of soluble vacuolar proteins and not vacuolar membrane associated proteins. In addition, the isolation and propagation of *vps* null mutants have shown that many of these genes are not essential for cell viability. Furthermore, *vps* mutants display a variety of vacuolar morphologies (Raymond et al., 1992a). Currently there are 46 *vps* mutants which affect the delivery of proteins to the yeast vacuole (Klionsky et al., 1990; Raymond et al., 1992b). This genetic approach has played a major role in the identifying components and addressing the questions concerning the mechanisms of vacuolar protein sorting in yeast. Recently, the *VPS10* gene was identified as the specific receptor for carboxypeptidase Y (Marcusson et al., 1994).

In contrast to yeast, only a small number of potential components of the plant vacuolar sorting apparatus have been identified; the *Arabidopsis* syntaxin homologue *aPEP12* (Bassham et al., 1995), two small GTPases associated with transport vesicles in pumpkin (Shimada et al., 1994), a large GTP-binding protein from *Arabidopsis* (aG68) (Dombrowski and Raikhel, 1995), an *Arabidopsis* phosphotidylinositol 3-kinase (PI 3-kinase) homologue *AtVPS34* (Welters et al., 1994), and the putative receptor for NTPP mediated targeting from pea (Kirsh et al., 1994). The lack of plant protein sorting mutants or a cell free assay/transport system has hindered further progress in the identification of components of the sorting machinery.

A wide range of biochemical approaches have been used in an attempt

to characterize a CTPP receptor. Binding assays and cross-linking studies using radiolabeled synthetic CTPP or E. coli expressed proBL (BL + CTPP) and isolated Golgi membranes from tobacco or an E. coli expression library were not successful (M. Schroeder, T. Reynolds, J.E. Dombrowski, and N.V. Raikhel unpublished results). In addition, a similar approach as was used for the isolation of a putative NTPP-receptor (Kirsch et al., 1994) was tried using CTPP. However, specific binding of the CTPP to proteins obtained from clathrin-coated vesicles of developing pea cotyledons was not observed (T. Kirsh, J.E. Dombrowski, L. Beevers and N.V. Raikhel unpublished results). Therefore, to compliment molecular and biochemical approaches, genetic studies were initiated using Arabidopsis thaliana, an excellent model plant for molecular genetics (Estelle and Somerville, 1986; Somerville, 1989; Koncz and Rédei, 1994; Koornneef, 1994; Meyerowitz, 1994; Scholl et al., 1994). In this chapter it has been shown that when BL+CTPP is transformed into Arabidopsis, it is correctly processed and targeted to the vacuoles in roots and leaves. Therefore the creation of vacuolar protein sorting mutants in Arabidopsis will provide an excellent opportunity to isolate the CTPP receptor. To create plant vacuolar sorting mutants, Arabidopsis thaliana plants transformed with BL were treated with ethylmethane sulfonate (EMS) (Koornneef et al., 1982; Malmberg 1993; Feldmann et al., 1994). The intracellular wash fluids from M₂ plants were screened for secretion of BL. The preliminary screen identified three putative mutants. The information gathered from this study has led to the development of a second generation mutant screen utilizing a double transgene approach.

The analysis of plant mutants with altered vacuolar protein sorting will permit the identification as well as the characterization of both sorting signal receptors and components of the sorting apparatus that will be unique to plants or of broader significance.

RESULTS

Transformation and Analysis of wt and ctpp- Constructs in Arabidopsis thaliana.

The development of a genetic screen in *Arabidopsis* for vacuolar protein sorting mutants requires the presence of a vacuolar marker protein. However there are no known endogenous markers for the vacuole in Arabidopsis. The gramineae barley lectin (BL) is a homodimeric vacuolar protein that specifically binds the sugar N-acetylglucosamine (for review, see Raikhel and Lerner, 1991). BL is synthesized as a preproprotein with a high-mannose glycosylated CTPP that is removed before or concomitant with deposition of the mature protein into the vacuole. We have previously demonstrated that BL is correctly assembled, processed and targeted to the vacuole of transgenic tobacco (Wilkins et al., 1990). Deletion of the CTPP caused BL to be secreted from the cell (Bednarek et al., 1990). Other proteins containing CTPP vacuolar sorting signals, such as chitinases and glucanases have antigenically cross-reactive vacuolar and secreted isoforms that are present in many plants (Bednarek and Raikhel, 1992). Therefore, in order to use BL as the marker protein, it was necessary to determine if BL is correctly processed and targeted to the vacuole in *Arabidopsis*.

Arabidopsis thaliana (ecotype RLD) root explants were transformed with Agrobacterium tumefaciens containing pGA643 BL constructs wt (BL+CTPP) (Bednarek et al., 1990) and ctpp- (BL with CTPP deleted) (Wilkins et al., 1990)

as described in Valvekens et al., (1988). Kanamycin-resistant plants were isolated and screened for the production of BL by protein blot analysis as described in Wilkins et al., (1990) (data not shown).

Selected *wt* and *ctpp*- BL transformed plants were selfed 3 times. Southern blot analysis of T₃ generation plants, using a BL specific probe, indicated these plants contained one copy of the T-DNA insert at a single locus (Sebastian Bednarek, personal communication). The final selected transgenic lines *wt* 5 and *ctpp*- 3 expressing the BL constructs were then back-crossed to a wild type plant, to determine whether they were homozygous for the T-DNA insert. ALL F₁ progeny tested displayed kanamycin resistance as well as BL protein production, indicating the parental was homozygous for the BL locus.

Pulse-chase analysis and electron microscopy (EM) immunolocalization were used to determine if *wt* and *ctpp*- were correctly processed and targeted to the vacuole in *Arabidopsis*. Protoplasts prepared from the *wt 5* and *ctpp- 3* BL transformed *Arabidopsis*, were pulse labeled with a mixture of ³⁵S methionine and ³⁵S cysteine for 6 hours and chased for an additional 12 hours with unlabeled methionine and cysteine. Radiolabeled BL was affinity purified from crude protein extracts of protoplast and incubation medium at specified time points, and analyzed by SDS-PAGE and fluorography. The 23-kD polypeptide (proform) and mature 18-kD subunits of BL were readily discernable. During the 12 hour chase of *wt* (BL+CTPP) the disappearance of 23-kD proBL was accompanied by a corresponding increase in the level of the intracellular 18-kD mature subunit, while no appreciable accumulation of

radiolabeled BL in the corresponding media samples was observed (Figure 4.1). The faint bands observed in the BL + CTPP media are most likely due to cellular breakage during the course of the chase. However the 18-kD mature polypeptide of ctpp- (BL Δ CTPP) was detected in both the intracellular and incubation media fractions. During the 12 hour chase there was a decrease in the level of intracellular 18-kD polypeptide and a corresponding increase in the amount of the 18-kD BL subunit in the medium (Figure 4.1, BL Δ CTPP). We have also noted a slight decrease in the intensity of the 12 hour chase ctppmedia fraction when compared to the 0 hour intracellular time point. This loss of signal is most likely due to protein absorption by the polystyrene tissue culture plates used to incubate the protoplasts during labeling and not due to degradation. In addition, after the 12 hour chase a small amount of radiolabeled BL 23-kD (BL+CTPP) and 18-kD (BL Δ CTPP) remained associated with the protoplast fractions. These observations are discussed in Dombrowski et al., (1993). Furthermore, radiolabeled BL proteins were isolated using their ability to bind to an immobilized N-acetylglucosamine affinity column (Figure 4.1), indicating that the BL polypeptides were folding and dimerizing correctly (Wright, 1987; Mansfield et al., 1988; Schroeder and Raikhel, 1992; Wright et al., 1993).

Subcellular localization of the *wt* BL construct in transgenic *Arabidopsis* plants, by electron microscopic (EM) immunocytochemistry, localized BL to the vacuoles of roots and leaves, as shown in Figure 4.2A and 4.2C. The pulse-chase analysis (discussed above) of Arabidopsis plants expressing *ctpp*- BL

Figure 4.1. Pulse-Chase Labeling Experiments of Transgenic Protoplasts

Expressing BL-Barley Lectin Constructs.

Pulse-chase labeling of protoplasts isolated from transgenic *Arabidopsis* plants expressing the *wt 5* wild type BL+CTPP and *ctpp- 3* mutant BLΔCTPP (total deletion of CTPP) constructs and corresponding incubation medium. Protoplasts were pulse labeled for 6 hr and chased for 12 hr. Protein extracts were prepared from the protoplasts and incubation media at specified time intervals (hr) as indicated during the chase. Radiolabeled BL was affinity purified and analyzed by SDS-PAGE and fluorography. The molecular mass of the 23-kD proBL subunit and mature 18-kD subunit of BL is shown to the left of the gels.

Pulse-Chase Analysis of Arabidopsis Transformed with Barley Lectin Constructs

Protoplasts Media

Chase time (hr) 0 12

23 kD-

18 kD-

BL+CTPP

BL & CTPP 18 kD-

Ή ec

ac:

225 q

Figure 4.2 Immunocytochemical Localization of BL+CTPP construct.

Thin sections of transgenic line wt 5, Arabidopsis roots (A) and (B) and leaves (C) and (D) expressing BL Δ CTPP constructs. (A) and (C) are treated with rabbit polyclonal anti-WGA antisera; (B) and (D) are treated with nonimmune sera. Gold labeling (arrow) in (A) and (C) is found exclusively in the vacuole of tobacco plants transformed with BL+CTPP. Bound antibodies were visualized with protein A coupled to 15 nm colloidal gold. Bar = 0.5 μ m. CW, cell wall; V, vacuole.

ruct.

and (B) at

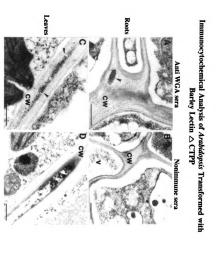
eated #

ively in th

5 µm. Ol

construct (total deletion of the CTPP) showed BL is secreted from the cell, yet after a 12 hour chase a small amount of the protein remained associated with the protoplasts (Figure 4.1, BL Δ CTPP). However, as shown in Figure 4.3A and 4.3C, the EM immunocytochemical analysis of *ctpp*- transformed *Arabidopsis* plants showed no detectable labeling in the vacuoles. In *ctpp*-transformed plants BL was localized to the middle lamella of root and leaf cells. No specific labeling was detected in parallel experiments using nonimmune serum for *wt* and *ctpp*- transformed plants (Figures 4.2 B&D, 4.3 B&D).

Therefore, the analysis of the BL constructs in *Arabidopsis* demonstrated that BL+CTPP is correctly processed and targeted to the vacuole (Wilkins et al., 1990; Bednarek et al., 1990; Dombrowski et al., 1993).


Mutant Screen and Analysis

The main objective of this research was to establish a reliable screen and to identify mutant plants that show altered sorting of BL+CTPP. Homozygous seeds from a transgenic line $wt\ 5$ expressing BL+CTPP were ethylmethane sulfonate (EMS) mutagenized by Lehle seeds (Tucson, AZ). After mutagenesis the seeds were germinated and the population size was estimated to be 31,902 M_1 parents divided into 26 parental groups (designated A-Z). The mutation frequency of albino embryo mutations in a random sample of M_1 siliques was calculated to be Mednik's P-value = 0.5 (Mednik, 1988). This would indicate a high mutation rate.

The initial screen analyzed the intercellular (apoplastic) wash fluid (ICWF)

Figure 4.3 Immunocytochemical Localization of BLΔCTPP construct.

Thin sections of transgenic line *ctpp- 3, Arabidopsis* roots (A) and (B) and leaves (C) and (D) expressing BL Δ CTPP constructs. (A) and (C) are treated with rabbit polyclonal anti-WGA antisera; (B) and (D) are treated with nonimmune sera. Gold labeling (arrow) in (A) and (C) is found exclusively in the cell wall of *Arabidopsis* plants transformed with BL Δ CTPP construct. Bound antibodies were visualized with protein A coupled to 15 nm colloidal gold. Bar = 0.5 μ m. CW, cell wall; V, vacuole.

from the leaves of 6,100 mutagenized plants (M2 generation) for the presence of secreted BL. Leaves were incubated in MES/NaCl buffer under vacuum, and the pressure then rapidly released and reapplied again for a short period of time. The leaves were removed, blotted dry, and gently centrifuged to extract apoplastic fluid. The resulting apoplastic fluid was dotted onto nitrocellulose membrane and probed using antibodies against wheat germ agglutinin (WGA), which is antigenically indistinguishable from BL (Lerner and Raikhel, 1989). ICWF from parent plants expressing wild-type BL (BL+CTPP) and from nontransformed plants were used as negative controls. ICWF from plants expressing BL construct ctpp- (total deletion of CTPP) was used as a positive control, because in these plants BL is secreted from the cell. The sensitivity of the screen was established by determining the maximum number of wt leaves that could be combined with one leaf from a ctpp- plant. A signal on the blot could be detected when the leaf of positive control plants was combined at a ratio of 1:30 with the leaves of negative control plants (data not shown). Therefore a single leaf from 20 individual mutagenized plants were combined for the initial screening. When a positive signal was obtained from the pool of 20, the plants were divided into groups of 10 and screened. If a positive signal occurred from one of the smaller groups, the remaining plants were screened individually. Eight putative mutants secreting BL were identified by protein dot blot analysis of ICWF (Table 4.1).

In order to determine if the mutations were homozygous, five of the putative mutants (avs1 thru avs5) were selfed, and M_3 progeny were checked

Table 4.1 Summary of the putative mutants analyses.

PM: Putative Mutant

Plants are designated by their parental group (A-Z), set number (the group of 20 plants initially screened), and the individual plant number isolated from the set.

Dot Blot analysis: (+) indicates a positive signal for BL in ICWF.

P\C - Pulse-chase analysis: (-) indicates BL was not found in the incubation medium.

EM - Electron Microscopy Immunolocalization of BL. (-) indicates that BL was exclusively localized to the vacuole; (+) indicates labeling was found equally distributed between cell wall and vacuole; (\pm) indicates strong labeling in vacuole and weak labeling in cell wall.

M3 - Dot blot analyses of ICWF from M3 generation plants:

of plants testing positive / total # of plants tested.

T,	sh	le	Λ	1
		ю		

PM	Group	Set	Plant	Dot Blot	P\C	EM	МЗ
avs 1	A	119	1	+	-	-	6/11
avs2	A	159	1	+	-	±	2/12
avs3	A	159	4	+	-	-	12/12
avs4	A	120	3	+	-	±	10/10
avs5	С	37	6	+	-	+	12/12
avs6	С	39	7	+	-	ND	ND
avs7	D	33	5	+	ND	ND	ND
avs8	F	10	3	+	ND	ND	ND

for the presence of BL in the ICWF by dot blot analysis. All M_3 progeny from mutants avs3, avs4 and avs5 tested positive for the presence of BL, indicating that they were homozygous for the mutation, see table 4.1.

The putative mutants (avs1 thru avs6) were selected for analysis by pulsechase labeling, to verify if BL is missorted and secreted from the cell. Protoplasts were prepared from the M₃ progeny of the mutants, pulse labeled with a mixture of ³⁵S methionine and ³⁵S cysteine for 6 hours and chased for an additional 12 hours with unlabeled methionine and cysteine. In addition, another set of these isolated protoplasts were labeled continuously for 20 hours. Radiolabeled BL was affinity purified from crude protein extracts of protoplast and incubation medium at specified time points, and analyzed by SDS-PAGE and fluorography. The BL (affinity purified) distribution for all of the mutants tested was found to be identical to the wt control (negative) plant cells (data summarized in Table 4.1); each mutant displayed a similar pattern on SDS-PAGE gels as the wt control plant (see Figure 4.1, BL + CTPP), with only faint amounts of radiolabeled BL detected in the media fractions. This small amount of BL in the medium was most likely due to cellular breakage during the isolation step. When the mutants were compared to the ctpp- positive control (Figure 4.1, BLΔCTPP) no appreciable accumulation of BL was observed in the medium fractions from the mutant cells (data not shown). In addition, immunoprecipitation of these fractions also displayed similar bands as the controls. The isolated radiolabeled bands from mutant plant cells were identical to the control plant wt (BL + CTPP, negative control, intracellular) and the ctpp(BLΔCTPP, positive control, BL secreted) with the exception of the 23 kD proBL band which was absent (data not shown). A possible explanation for these results could be that the mutants mislocalize very small amounts of BL. Therefore, over the time period used for the pulse chase analysis, this small amount of mislocalized BL would not be detectable above the background. However in a whole plant, BL would be able to accumulate in the extracellular space over time, and therefore, be detected at steady state levels by dot blot of ICWF and by EM.

EM immunolocalization was performed on M₃ progeny from five putative mutant plants (avs1 thru avs5), in order to verify the presence of BL in the cell wall or intercellular spaces (results summarized in table 4.1). EM analysis confirmed that in three of the mutants (avs2, avs4 and avs5), BL is localized to the vacuoles and cell wall. Mutant avs5 displayed the strongest labeling in the cell wall (see Figure 4.4). As a result of the EM findings, the mutant avs5 has been selected for further genetic analysis. Mutant avs5 is currently being backcrossed to the wt parental to determine a pattern of inheritance as well as dominance.

Figure 4.4 Secretion of BL in Mutant avs5.

- (A) Transgenic Arabidopsis expressing BL + CTPP, treated with preimmune sera.
- (B) Transgenic Arabidopsis expressing BL + CTPP, treated with rabbit polyclonal


anti-WGA sera. BL is localized to the vacuole with no labeling in the cell wall.

(C) EM immunolocalization of BL in the cell wall (arrows) and vacuole in mutant

avs5 from Parental Group C, Set #37, plant #6 [C37(6)].

Bound antibodies were visualized with protein A coupled to 10 nm colloidal gold.

Arrows denote location of cell wall. Bar = 5 nm. cw, cell wall; v, vacuole.

DISCUSSION

The main focus of current research is to investigate the molecular mechanisms of protein sorting to the plant vacuole. Most soluble proteins are transported through the secretory system via a series of transport vesicles that bud from one compartment and fuse specifically with the next (for reviews see, Rothman and Orci, 1992; Pryer et al., 1992; Rothman, 1994). independent signals that direct proteins to plant vacuoles have been identified, NTPPs, CTPPs, and regions within mature proteins. There is no homology between these sorting signals, and all three signals appear to be unique to plants. In addition, recent experimental findings indicate that multiple receptors are involved in the targeting of soluble proteins to the vacuole (Kirsch et al., 1994), as well as different mechanisms for the transport of NTPP and CTPP containing proteins (Matsuoka et al., 1995). We have shown that when BL + CTPP is transformed into Arabidopsis, it is correctly processed and targeted to the vacuoles in roots and leaves. The creation of vacuolar protein sorting mutants in Arabidopsis should provide an excellent chance to isolate the CTPP receptor and other components of the sorting apparatus.

To create plant vacuolar sorting mutants, transgenic *Arabidopsis thaliana* plants expressing BL + CTPP were treated with EMS (Malmberg 1993; Feldmann et al., 1994). EMS was chosen because of the wide range of mutants found with this type of mutagenesis (Feldmann et al., 1994; Pepper et al., 1994).

Thus, we would expect to isolate null, conditional (temperature sensitive) and leaky mutations in the plant vacuolar sorting pathway. After successful EMS mutagenesis, the per-locus mutant frequency in the M₂ population is estimated in the range of 1 in 1000 to 1 in 5000, with the potential range of 2 to 75 additional mutations present elsewhere in the genome (Feldmann et al., 1994). The frequency of null mutations in a given gene under these conditions has been estimated at about 1 in 2,000 M₂ plants (Estelle and Somerville, 1986). The presence of the vacuole is believed to be essential for plant cell growth, and mutations in vacuolar protein sorting may severely disrupt the structure or inhibit the formation of the vacuoles. However, most yeast *vps* mutants are not lethal and display a wide range of vacuolar morphologies (Klionsky et al., 1990; Raymond et al., 1992 a,b). In addition, by using EMS mutagenesis, one can potentially create conditional (temperature sensitive) or leaky mutants which will allow for the isolation of essential genes (Feldmann et al., 1994).

Mutant Screen

After screening 6,100 M₂ plants, three putative mutants that secrete BL have been identified by dot blot analysis of ICWF and verified by EM immunolocalization. To verify that the positive signal is actually due to the presence of BL in the ICWF, the ICWFs of putative mutants should be passed over an affinity column of immobilized *N*-acetylglucosamine and analyzed by western protein blot analysis. If the mutants are secreting BL to the extracellular spaces, then the analysis of the eluted fractions from the affinity columns

should show enhanced levels of BL when compared to *wt* plants. However, if this analysis fails to show the presence of enhanced levels of BL, then the antigenic determinant recognized by the antibody could be a *cis*-mutation in BL. This mutation in BL could result in either its misfolding or a truncated version of the protein, both of which would be unable to bind to the *N*-acetylglucosamine affinity column. Furthermore, the mutation could have caused the production of a unrelated protein that contains a cross-reactive epitope.

One approach to determine whether the putative mutants are *cis* or *trans* in nature, is to cross the mutants with *Arabidopsis* plants expressing the vacuolar localized sporamin+CTPP construct (sporamin lacking a functional NTPP but containing BL's CTPP; Matsuoka et al., 1995). A *cis*-acting mutation would not affect the vacuolar localization of the sporamin+CTPP, whereas a *trans*-acting mutation would result in its secretion.

During the screening process many sickly plants were observed. With these plants it was extremely difficult, if not impossible, to obtain useable quantities of ICWF to analyze. Although many of the yeast *vps* null mutants are not lethal, they do affect growth. Furthermore, yeast is a unicellular organism and may tolerate mutations in vacuolar protein sorting. However, these same mutations in a multicellular plant may be more deleterious, disrupting growth and the development of tissues and higher order cellular structures. Therefore, mutations which affect plant vacuolar protein sorting may produce a sickly phenotype.

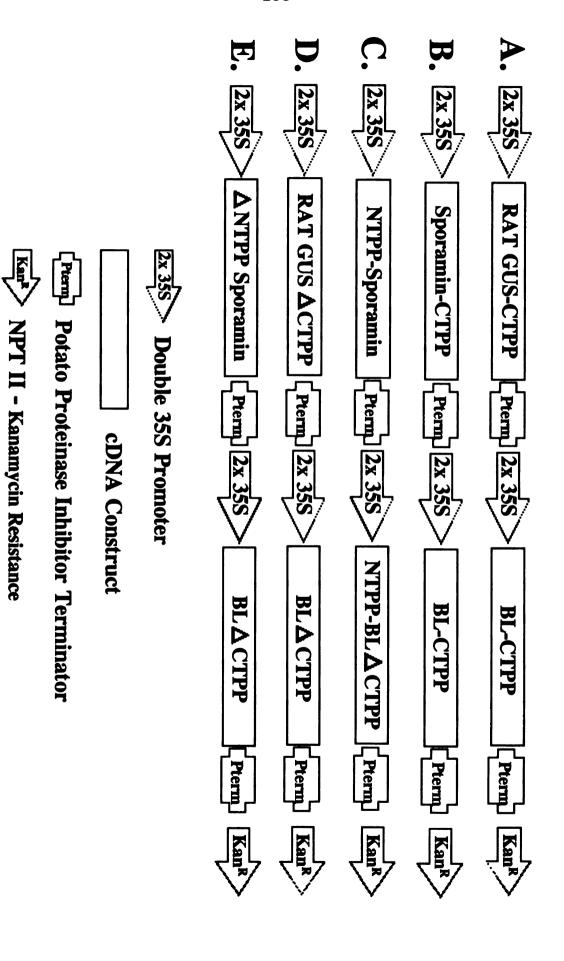
An evaluation of the initial genetic screen revealed a number of short comings, such as an inability to quickly distinguish between *cis* and *trans* mutations and not being able to analyze sickly plants. In addition, the screen was labor intensive. Therefore, a second generation screen is currently being developed to address these concerns.

Second Generation Screen

During the development of the preliminary genetic screen the only available soluble vacuolar reporter protein utilizing a CTPP which could be easily assayed for was BL + CTPP. Other proteins containing CTPP vacuolar sorting signals, such as chitinases and glucanases have antigenically cross-reactive and enzymatically indistinguishable vacuolar and secreted isoforms that are present in many plants (Bednarek and Raikhel, 1992; Raikhel et al., 1993; Collinge et al., 1993; Melchers et al., 1993). However, having only one reporter makes the screening for mutants considerably more difficult, not only in distinguishing cis from trans mutations, but also differentiating between legitimate vacuolar sorting mutants and potential false positives. Recently a number of potential vacuolar reporter proteins have been made available to us. In collaboration with Dr. Ken Matsuoka, it has been shown that sporamin (with a non-functional mutated NTPP) was correctly targeted to the vacuole of tobacco cells using the CTPP of BL (Matsuoka et al., 1995). In addition, at the 1995 Keystone meeting on Plant Cell Biology, Dr. Jean-Marc Neuhaus presented data showing that when the 7 amino acid CTPP of tobacco chitinase is fused to the C-terminus of

rat beta-glucuronidase (RGUS) (Nishimura et al., 1986; Powell et al., 1988), this chimeric protein was efficiently targeted to the vacuoles in tobacco (Chrispeels et al., 1995). In addition, RGUS has a 15 amino acid C-terminal extension that will partially direct RGUS to the plant vacuole. The deletion of this extension from the protein causes its total secretion from the cell (personal communication, Dr. Jean-Marc Neuhaus). Therefore, the ability of RGUS to be directed to the vacuole will allow for the development of a colorimetric assay to screen for vacuolar sorting mutants. The development of this screen in Arabidopsis is currently underway. The screen will select for mutants whose roots are missorting and secreting the normally vacuolar localized RGUS + CTPP. A small number of seeds of transgenic plants expressing the secreted RGUS $\Delta 15$ (deletion of C-terminal extension) will be mixed with a large number of seeds from plants expressing the vacuolar RGUS+T (RGUS with CTPP of tobacco chitinase). After the mixed seeds have germinated on agar plates, their roots will be overlaid with a substrate that will allow for color development if RGUS activity is present. Assay conditions will be altered until the small number of RGUSA15 seedlings can be distinguished from the RGUS+T seedlings. The development of this assay would dramatically decrease the time and labor involve in screening for mutants by eliminating the necessity for the isolation of ICWF. Furthermore, this method will allow for the screening of sickly plants.

The availability of these second CTPP-containing reporter proteins permits the design of a double-transgene approach (see Figure 4.5), that will avoid the necessity of genetic crosses in the initial screen to differentiate between *cis* and


trans mutations. In addition, the presence of two reporter proteins will provide a means by which mutants can be discriminated from false positives by two different determinants. Specifically, the binary vector pMOG800 containing BL + CTPP and RGUS + T (Figure 4.5A) or sporamin + CTPP (Figure 4.5B) genes, each driven by a double 35S promoter and terminated with the potato proteinase inhibitor terminator (pMOG843 cassette), will be introduced into Arabidopsis. The complementary constructs with CTPP's deleted will also be made for positive controls (Figures 4.5D & 4.5E). There are multiple examples of using more than one reporter gene in the same vector. For example, a very similar test/reference gene system was used in analysis of RNA degradation in plants (Newman et al., 1993; Ohme-Takagi et al., 1993). In addition, the expression of multiple genes in plants utilizing the expression cassette of pMOG843 and delivered by the binary vector pMOG800 has been successfully accomplished by scientists at MOGEN International (Dr. Stephan Ohl, personal communication).

Since NTPP and CTPP containing proteins appear to use different receptors (Kirsch et al., 1994) as well as different mechanisms (Matsuoka et al., 1995) for their delivery to the vacuoles, the prediction would be that some mutants will specifically missort NTPP-containing proteins. Recently obtained data showed that the NTPP of sporamin can function as a vacuolar sorting signal for BL (BL without the CTPP but fused at the amino-terminus to sporamin's NTPP, Matsuoka et al., 1995). Therefore, an additional mutant screen will be performed on *Arabidopsis* plants transformed with a double transgene (Figure

Figure 4.5 Schematic Representation of the Double Transgene Expression Cassettes in the Binary Vector pMOG800.

Kanamycin resistance: nopaline synthase promoter (nos):: neomycin phosphotransferase II (NPTII):: nos terminator (Angenon et al., 1994).

- (A). Contains CDNA constructs; the chimeric Rat GUS with the 7 amino acid (-GLLVDTM) CTPP of tobacco chitinase (Neuhaus et al., 1994) fused to its 15 amino acid C-terminal extension (RGUS-SVPRTQCMGSRPFTF+GLLVDTM) and the wild type BL+CTPP clone.
- (B). Contains CDNA constructs; the chimeric I28G-NTPP-sporamin + CTPP of BL (Sporamin-VFAEAIAANSTLVAE) (I28G: Isoleucine²⁸ is substituted with Glycine, inactivating the targeting signal Nakamura et al., 1993) and the wild type BL + CTPP clone.
- (C). Contains CDNA constructs; the wild type NTPP+sporamin and the NTPP of Sporamin fused to BLΔCTPP (deletion of its 15 amino acid CTPP).
- (D). Contains CDNA constructs; the Rat GUSΔ15 (deletion of its 15 amino acid C-terminal extension) and BLΔCTPP (deletion of its 15 amino acid CTPP).
- (E). Contains CDNA constructs; ΔNTPP-sporamin (deletion of its NTPP) and BLΔCTPP (deletion of its 15 amino acid CTPP).

4.5C) expressing NTPP-containing proteins which have been mutagenized with EMS (Figure 4.5C).

Therefore, homozygous plants containing both genes at a single locus will be isolated and their seed subjected to EMS mutagenesis. M₂ plants will be screened using the dot blot method for secretion of both BL and sporamin, or in combination with the RGUS colorimetric assay described above. This screen will be done under conditions which will allow for the identification of those mutants which are temperature sensitive. By selecting for conditional mutants it may be possible to isolate mutants which might otherwise be lethal to the plant. Additionally, mutants will be analyzed morphologically by EM to determine whether any structural alterations in the vacuole have occurred. Mutants which have altered vacuolar morphologies may also provide valuable information on the process of vacuole biogenesis. The remainder of the genetic approach used to analyze the mutants, as well as the overall general scheme for the entire screening process for both CTPP and NTPP containing proteins is shown in Figure 4.6.

The long-term goal of this project is to identify and isolate components of the vacuolar sorting machinery, and to elucidate their role in transport to the vacuole. The development of the second generation screen for the isolation of vacuolar sorting mutants discussed above will provide the means by which this goal can be achieved. The isolation of mutants which specifically affect the sorting of either CTPP or NTPP-containing proteins will have the highest potential to identify components that are unique to plants, such as receptors,

and will provide important insights into the fundamental processes of plant vacuolar sorting.

Figure 4.6 General Scheme for the Creation and Isolation of Vacuolar Sorting Mutants in *Arabidopsis*.

Double transgene approach see Figure 4.5.

RGUS-CTPP- > BL-CTPP- > Figure 4.5A; <-BL-NTPP- <-SPO-NTPP Figure 4.5C.

NT-Nicotiana tabacum or At-Arabidopsis thaliana

Codominant cleaved amplified polymorphic sequences (CAPS) markers (Konieczny and Ausubel, 1993).

Random amplification of polymorphic DNA (RAPD) and restriction fragment length polymorphisms (RFLP) markers (Michelmore et al., 1991; Reiter et al., 1992; Rafalski et al., 1994; for a review on *Arabidopsis* genetics see, Koornneef, 1994).

Yeast artificial chromosome (YAC) and cosmid libraries (Ward and Jen, 1990; Grill and Somerville, 1991; Meyerowitz, 1994; Scholl et al., 1994).

Vacuolar Protein Sorting Mutant Screen & Analysis

CTPP			NT	NTPP	
-<-CTPP-BL<-C	TPP-RGUS-	-<-B	L-NTPP<-S	PO-NTPP	
'	'	·		· · · · · · · · · · · · · · · · · · ·	
	Transient Pul	olar targeting lase Chase Analys at Protoplasts		 	
 	Transform A. Infiltration; s	t. by Vacuum select on kanamy	 ycin	¦	
Stable Transforma	nts		Stable '	Transformants	
	Develop Homo	zygous lines			
 Parental				¦ Parental	
	E.M.S. mutagene	esis (Lehle Seed	ds)		
MI !				Mİ !	
 M2 	Estimate effici Albino Embryo a			M2	
	Screen for muta ICWF by dot blo OR GUS plate as Verify by EM i	ot or colorimet	ric assays ing roots		
Mutant:secreting BL and Rat GUS	Screen for Tr	cans-acting mut		 nt:secreting nd Sporamin 	
		ics of the muta nheritance etc, with parentals		' 	
		ecific for NTPP, both : Analyze l cossing with rec	, CTPP by ciprocal		
		tests and back allelic / non-aleritances.			
	Gene Mapping: Bulk segregation RFLP markers. Coloning from YA	on analysis with	h RAPD, ing and		

MATERIALS AND METHODS

All standard recombinant DNA procedures used in this study were carried out as described in Sambrook et al. (1989), unless otherwise noted. DNA restriction and modifying enzymes were obtained from Beohringer Mannheim (Indianapolis, IN), Gibco-BRL (Gaithersburg, MD), or New England BioLabs (Beverly, MA). All other reagents, unless specified, were purchased from Sigma. The *E. coli* strain DH5 α was used for all DNA manipulations unless otherwise noted.

Preparation of Constructs

The barley lectin (BL) constructs used for *Arabidopsis* transformation in the preliminary genetic screen were the wild type BL (*wt*) (Wilkins et al., 1990), and BL with the 15 amino acid CTPP deleted (*ctpp*-)(Bednarek et al., 1990). These barley lectin cDNA constructs are in the binary plant expression vector pGA643 (An et al., 1988) and contained in *Agrobacterium tumefaciens* LBA4404.

The cloning strategies used for the construction of the double transgene cassettes for the second generation screen were as followed. The cloning vector pBS SK- (Stratagene, Lajolla Calif.) was cut with EcoRV and HincII and then religated, in order to eliminate the HindIII restriction site. This plasmid was designated pBS SK E/H. The plant expression vector pMOG 843 (MOGEN International, Netherlands), is an ampicillin resistant plasmid, which contains the cassette of a double 35S promoter: HindIII and KpnI restriction sites: potato

proteinase inhibitor terminator, flanked by Xbal restriction sites. The pMOG843 was cut with Kpnl, blunt ended with T4 DNA polymerase (Boehringer Mannheim), and religated; in order to eliminate the Kpnl restriction site, designated pMOG843 XK. The plasmid pMOG843 XK was then cut with Xbal to drop out the modified cassette, and was cloned into the Xbal site in pBS SK E/H. Plasmids were isolated for both orientations of the cassette insertion. They were designated pBS843 XKEH #10 (with the orientation in the polylinker, SacII:2x35S:HindIII:Pot Term:Xhol,Kpnl) and pBS843 XKEH #14 (SacII:Pot Term:HindIII:2x35S:Xhol,Kpnl). Both plasmids were cut with HindIII, blunt ended with T4 DNA polymerase, and treated with calf intestine alkaline phosphatase.

The pUC118 plasmids containing the barley lectin (BL) cDNA constructs wild type BL (*wt*) (Wilkins et al.,1990), and BL with the 15 amino acid CTPP deleted (*ctpp*-)(Bednarek et al., 1990) were excised with EcoRI, blunt ended with T4 DNA polymerase, and ligated into pBS843 XKEH #10; designated pBS843 BL, and pBS843 CTPP-.

The plasmids pMAT 110 (NTPP-Sporamin, Matsuoka and Nakamura, 1991), pMAT108 (deletion of NTPP from Sporamin, Matsuoka and Nakamura, 1991), and pMAT264 (mutated NTPP of sporamin+CTPP of BL, Matsuoka et al.,1995) were cut with Pstl and HindIII to release the cDNA fragment, the fragment blunt ended with T4 DNA polymerase, and ligated into pBS843 XKEH #14; designated pBS843 110, pBS843 108 and pBS843 264 respectively.

The plasmid pMAT 196 (NTPP-BL with CTPP deleted, Matsuoka et al.,

1995), was cut with KpnI and SalI, the resulting cDNA fragment blunt ended with T4 DNA polymerase, and ligated into pBS843 XKEH #10; designated pBS843 196.

The plasmids pRGUS+T (coding for Rat β-glucuronidase cDNA+CTPP of tobacco chitinase, Jean-Marc Neuhaus personal communication) and pRGUSΔ15 (coding for Rat β-glucuronidase cDNA with the carboxy-terminal 15 amino acids deleted, Jean-Marc Neuhaus personal communication), the cDNAs are in the vector pGY1 (Neuhaus et al.,1994), were cut with Pstl and BamHl to release the cDNAs, the resulting cDNA fragments blunt ended with T4 DNA polymerase, and ligated into pBS843 XKEH #10 vector; designated pBS843 RGT and pBS843 RGΔ15. All pBS843 constructs will be checked for expression by transient assays in tobacco or *Arabidopsis* protoplasts.

The binary vector pMOG800 (MOGEN International), utilizing kanamycin resistance (nos promoter:NPTII:nos terminator), was cut with the restriction enzymes XhoI and KpnI. Subcloning of the expression cassettes described above to generate the double transgene constructs were as followed.

The plasmid pBS843 BL was cut with Kpnl and Sacll, the plasmid pBS843 RGT was cut with Xhol and Sacll, and the two isolated fragments ligated into the precut binary vector pMOG800, see Figure 4.5A.

The plasmid pBS843 BL was cut with KpnI and SacII, the plasmid pBS843 264 was cut with XhoI and SacII, and the two isolated fragments ligated into the precut binary vector pMOG800, see Figure 4.5B.

The plasmid pBS843 196 was cut with Kpnl and SacII, the plasmid pBS843

110 was cut with Xhol and Sacll, and the two isolated fragments ligated into the precut binary vector pMOG800, see Figure 4.5C.

The plasmid pBS843 CTPP- was cut with KpnI and SacII, the plasmid pBS843 RGΔ15 was cut with XhoI and SacII, and the two isolated fragments ligated into the precut binary vector pMOG800, see Figure 4.5D.

The plasmid pBS843 CTPP- was cut with KpnI and SacII, the plasmid pBS843 108 was cut with XhoI and SacII, and the two isolated fragments ligated into the precut binary vector pMOG800, see Figure 4.5E.

These second generation constructs (Figure 4.5) in the binary vector pMOG 800 will be introduced into *Agrobacterium* GV3101 by electroporation (Walkerpeach and Velten, 1994).

Plant Growth and Maintenance

Seeds of *Arabidopsis thaliana* (ecotypes RLD and Col-0) were sterilized using 1.75% sodium hypochlorite, 0.1% triton X-100 with continual mixing for 20 mins, the seeds are washed 6 times in sterile water for 10 mins per wash, and are plated on Germination Medium (GM) 0.8% phytoagar plates (4.3 g/L MS salts (Murashige and Skoog (1962) (Gibco-BRL), 0.5 g/L MES, 10 g sucrose, 0.1 g/L myo-inositol, 1 mg/L thiamine-HCl, 0.5 mg/L pyridoxine and 0.5 mg/L nicotinic acid, adjusted to pH 5.7 with KOH), if using transformed seed then GM is supplemented with the appropriate antibiotic (generally kanamycin $50 \,\mu \text{g/mL}$). The plates are then cold treated for 24 hours, 4°C, and the seeds germinated under constant light approx. 150 micro einsteins/m²,

24°C. After germination the seedlings are placed under 16 hr light, 8 hr dark cycle. Seedlings can then be used or transferred to soil.

Soil used to grow plants will have the following composition, 1:1:1 Bacto potting soil (Michigan Peat Company): 3# vermiculite: coarse perlite, presoaked with either a nutrient solution as described by Somerville and Orgen, (1982), or with Peter's professional plant food all purpose 20:20:20 mix (Grace Sierra Horticultural Products, Millpitas Calif.). In the mutant screen the plants were grown at 5 plants per pot.

Plant Transformation

Arabidopsis thaliana root explants (ecotype RLD) were transformed essentially as described by Valvekens et al., (1988) using the binary vector pGA643 (An et al., 1988) containing the *wt* (Wilkins et al., 1990), and *BL ctpp*-(Bednarek et al., 1990) barley lectin cDNA constructs in *Agrobacterium tumefaciens* LBA4404. The plants were screen for expression of BL constructs and analyzed as the tobacco plants described in Wilkins et al. (1990) and Bednarek et al., (1990).

Constructs for the second generation genetic screen will be transformed into *Arabidopsis thaliana* (ecotype Col-O) by vacuum infiltration (Bechtold et al., 1993). Seeds are planted in 3.5"pots (9-12 plants/pot) which have been presaturated with nutrient solution and cover with a nylon mesh. Cold treated at 4°C for 24-28 hrs. Grow plants to a stage where bolts are just emerging, clip off bolts to encourage growth of multiple secondary bolts. Infiltration will be

done 4-8 days after clipping. There should be a large number of little inflorescences that are just emerging from the rosette, as well as young unopened floral buds, with a few bolts that are 10 cm tall but the majority in the 1-5 cm range. Use three pots per construct for each transformation.

Grow 1 liter overnight Luria Broth culture of Agrobacterium GV3101 harboring the binary vector pMOG 800 containing the construct of interest with antibiotic selection gentimycin 25ug/mL, kanamycin 25ug/mL. Harvest cells by centrifugation 4100xgs, 10 min, at RT (OD₆₀₀ approx 0.8) and resuspend in 600 mLs of infiltration medium (2.15 g/L MS salts (Gibco-BRL), 3.19 g/L Gamborg's B5 basal medium with minimal organics (Sigma), 50 g/L sucrose, and 0.044 μ M benzylamino purine). The resuspended Agrobacterium is transferred to a 12" vacuum desiccation jar. Note pots should be fairly dry, turn pots on their side and water the very top soil of the pots. Invert plants into the suspension, give a small twist to submerge flower parts completely. The level of the Agrobacterium suspension should be right up to the mesh and leaves but should not enter the pot or soil. Place the contents under a strong vacuum with pump until rapid bubbling about 1-2 minutes, then release vacuum very rapidly, leave plants in suspension for 3-4 minutes. Remove plants from chamber and lay them on their side in a plastic flat to drain, keep separate the various construct with wax paper, cover with plastic wrap or preferably a dome to maintain humidity. Next day, uncover plants and set upright in growth chamber. Note do not water plants until pots are almost dry (4-7 days). Grow approximately 4 weeks, collect seed, sterilize and germinate on selection 0.8% agar plates (2.15

g/L MS salts [Gibco-BRL], 3.19 g/L Gamborg's B5 basal medium with minimal organics [Sigma], supplemented with 50 ug/ml kanamycin), select transformats and analyze for expression of the gene(s) of interest.

Mutagenesis by LEHLE SEEDS.

1.625 grams of BL transgenic seeds were surfaced sterilized by soaking in water for 30 min, then 95% EtOH for 5 mins, followed by 10% Chlorox bleach for 5 mins. The seeds were washed 5 times with water, then treated with 0.2% (v/v) ethylmethane sulfonate for 12 hours. The seeds were then rinsed 15 times with water over a 4 hour period. The seeds mutation batch 93B, were then germinated in 26 different flats containing 1:1:1:1 ratio of vermiculite: perlite: peat moss: Fisons Sunshine All purpose mix. M1 population size was estimated by taking a stand count of the emerged M1 seedlings. The stand count estimation is performed by randomly placing a 4.2 x4.8 cm metal wire frame on each flat of plants and counting the number of plants that fell within the frame boundary. This measurement was repeated 3 times per flat, and then the an average number of plants per square centimeter was calculated, and multiplied by the total number of square centimeters used for their growth. Estimated M1 population size was 31,902 M1 parents divided into 26 parental groups.

Immunocytochemistry

Electron microscopy immunocytochemistry was performed on individually expressing BL constructs or selected mutagenized BL transformed *Arabidopsis* thaliana plants essentially as described in Bednarek and Raikhel (1991). The primary antibody was rabbit anti-WGA antiserum (Raikhel et al., 1984) diluted, 1 to 20 or 1 to 50, and control sections were incubated with nonimmune serum diluted similarly. Protein A-colloidal gold (EY Laboratories Inc., San Mateo, CA) was diluted 1 to 50.

Vacuum Infiltration of *Arabidopsis* Leaves

Plants were germinated on GM 0.8% agar plates supplemented with kanamycin 50 µg/mL, and seedlings transferred to soil after 2 weeks. One leaf is then cut from 20 individual M2 plants. The leaves placed together wrapped in cheesecloth, in a side-armed erlenmeyer flask containing enough Infiltration solution (50 mM 2-[*N*-morpholino]ethanesulpfonic acid [MES], 100 mM NaCl) to submerge the tissue (200 mLs). The tissue is subjected to 15 in Hg vacuum, for 10 mins, break vacuum quickly, reintroduce vacuum an additional 10 mins. Intercellular wash fluid (ICWF) is obtained by centrifugation 1800xgs, 10 min at 4°C.

Western Dot Blot Analysis of ICWF

For immunoblot analysis, 4μ I ICWF dotted on nitrocellulose membranes, air dried, and blocked for a minimum of 2 hrs with TBS (20 mM Tris-HCl, pH

7.4, 150 mM NaCl) containing 5% (w/v) non-fat dry milk. The membranes were incubated for 1.5 hr with WGA antiserum diluted 1:2000 in TBS containing 1% (w/v) BSA and 0.05% (v/v) Tween-20. After washing in TBS-0.1% (v/v) Tween-20, membranes were incubated for 1 hr with goat anti-rabbit antibody conjugated to alkaline phosphatase (Kirkegaard and Perry Lab Inc., Gaithersburg MA) diluted 1:7500 in TBS containing 1.0% (w/v) BSA and 0.05% (v/v) Tween-20. Secondary antibody binding was visualized as described by Blake et al. (1984).

Isolation and Radiolabeling of Transformed Arabidopsis Leaf Protoplasts

Protoplasts were prepared from 2-3 week old *Arabidopsis thaliana* seedlings (≈300 plantlets), which are germinated on GM Media 0.8% phytoagar plates (4.3 g/L MS salts (Gibco-BRL), 0.5 g/L MES, 10 g sucrose, 0.1 g/L myo-inositol, 1 mg/L thiamine-HCl, 0.5 mg/L pyridoxine and 0.5 mg/L nicotinic acid, adjusted to pH 5.7 with KOH) supplemented with 50 μg/ml kanamycin.

The leaves of whole seedlings are cut in 40 mls of 0.5 M betaine, 1.5 mM MES, adjusted pH to 5.7 with KOH, and incubated at room temperature (RT) for 45 minutes. The medium is then removed and the tissue is digested overnight in 50 mL enzyme mixture comprised of 1.5% cellulase (Onozuka R10), 0.5% macerozyme R10 (Yakult Honsha Co., Ltd Japan), and 0.08% BSA in 0.4 M betaine solution (0.4 M betaine, 10 mM CaCl₂·2H₂O, 3 mM MES, pH 5.7). After 12-14 hrs the protoplasts are isolated essentially as described for whole leaf

tobacco protoplasts in Dombrowski et al., (1994), with the following changes. Protoplasts are washed in 0.4 M betaine solution, purified by flotation in 0.4 M sucrose solution (0.4 M sucrose, 10 mM CaCl₂·2H₂O, 3 mM MES, pH 5.7), and washed twice in 0.4 M betaine solution. Viable protoplasts were visualized by fluorescein diacetate staining (Widholm, 1972) and the yields quantitated using a hemocytometer counting chamber. Protoplasts are washed again in 0.4 M betaine solution, and diluted to a final concentration of 500,000 or 1,000,000 protoplasts per milliliter in Incubation Medium (Gamborg's B5 basal medium with minimal organics (Sigma) supplemented with 0.3 M betaine, 0.1 M glucose, 0.15 mg/L benzyladenine, 1 mg/L 2,4-D, 0.08 g/L myo-inositol, 0.8 mg/L thiamine-HCl, 0.8 nM EDTA, adjusted to pH 5.7 with KOH). Then 1 ml of protoplasts are transferred to 12 well tissue culture plates (Costar, Cambridge, MA.) which have been precoated for 6 hrs with Incubation media supplemented with 1.5% BSA.

To examine expression of the barley lectin constructs, the transformed leaf protoplasts were incubated for 6 hr (pulse-chase analysis) or 20 hr (pulse-labeling) in the presence of 100 μ Ci Expre³⁵S³⁵S sulfur-35 protein labeling mixture (New England Nuclear Research Products), *E. coli* hydrolysate containing a mixture of 73% L-³⁵S-methionine and 22% L-³⁵S-cysteine in 50 mM tricine, 10 mM β ME buffer (specific activity 1000-1100 Ci/mmol; ³⁵S-Met/Cys). If a pulse-chase analysis was performed after 6 hr of labeling, 100 μ L of chase mix (165 mM methionine and 110 mM cysteine [free base] in Incubation Medium) was added and incubated for an additional 12 hr. After

labeling, the protoplasts were transferred to 1.5 ml microfuge tubes and separated from the culture medium by brief centrifugation (15-20 sec) at 800xg at room temperature.

If the samples are to be immunoprecipitated, the protoplast pellets were lysed in 500 μ l of TNET250 (25 mM Tris-HCl, pH 7.5, 250 mM NaCl, 5 mM EDTA, 1% Triton X-100 [v/v]) (Firestone and Winguth, 1990) and cleared of insoluble debris by centrifugation at 16,000g for 5 min at 4°C. The extracellular protein fractions were prepared from the filtered incubation media as described in Bednarek and Raikhel, (1991) with 50 mg BSA added as nonspecific "carrier" protein. The culture medium/BSA protein precipitates were resuspended in 500 μ l TNET250. For immunoprecipitation, 100 μ l of 50 mg/ml BSA was added to the protoplast and media extracts.

If the samples are to be purified by affinity chromatography. The protoplast pellet was resuspended in 400 μ L of extraction buffer, 50 mM Trisacetate, pH 5.0, 100 mM NaCl, and 0.6% Triton X-100. The lysate was cleared of insoluble debris by centrifugation at 16,000g for 5 min at 4°C, frozen in liquid N₂, and stored at -70°C. The culture medium (1 mL) was filtered to remove any remaining protoplasts (Wilkins et al., 1990), and 25 μ L of a 50 mg/mL BSA solution was added as a carrier protein. Proteins in the culture media were precipitated with ammonium sulfate at 70% saturation at 4°C for 2 hr then collected by centrifugation at 10,000 rpm for 10 min at 4°C. The culture medium protein pellet was resuspended in 400 μ L extraction buffer and stored at -70°C. All protein samples were thawed at room temperature and

passed four times over immobilized *N*-acetylglucosamine (Pierce Chemical Co.) micro affinity columns (Mansfield et al., 1988). After extensive washing of the column with TA buffer (50 mM Tris-acetate, 100mM NaCl, pH 5.0), BL was eluted with 150 μ L of 200 mM N-acetylglucosamine and lyophilized. The radiolabeled barley lectin was analyzed by SDS-PAGE through 12.5% polyacrylamide gels and visualized by fluorography as detailed in Mansfield et al. (1988).

Transient Gene Expression in Leaf Protoplasts

The transient expression of pBS843 constructs in tobacco leaf protoplasts via the PEG-mediated DNA uptake method was performed as described in (Dombrowski et al., 1993, 1994), and in *Arabidopsis* as described by Abel and Theologis (1994).

Immunoprecipitation and Analysis of Proteins

Sporamin and BL proteins were purified by immunoprecipitation as essentially as described by Schroeder et al., (1993) and Bednarek and Raikhel, (1991). To remove nonspecifically binding proteins, 35 S-labeled protoplast and media extracts were treated with 20 μ l of nonimmune rabbit sera for 30 min at room temperature. Nonspecific protein immunocomplexes were reacted with fixed *Staphylococcus aureus* for 30 min at room temperature and removed by centrifugation at 16,000g for 5 min. Two microliters of anti-sporamin or 2.5 μ L anti-WGA antiserum was added to the cleared extracts and incubated at

room temperature for 45 min. Immunocomplexes were collected on protein A-Sepharose CL-4B beads (Pharmacia, Piscataway NJ) for 30 min at room temperature and washed three times with TNET250 with continuous mixing for 5 min per wash. Bound proteins were released by heating at 95°C for 5 min in 30 μ l of SDS-PAGE sample buffer. Samples were analyzed by SDS-PAGE on 12.5% polyacrylamide gels and visualized by fluorography as described previously (Mansfield et al., 1988).

Acknowledgments

We would like to thank Olga Borkhsenious for performing most of the initial screening and electron microscopy immunocytochemistry. Amy Sandul for her work with the *Arabidopsis* tissue culture. Sridhar Venkataraman for his help on Figure 4.6. Drs Stephan Ohl and Theo C. Verwoerd from MOGEN International for generously providing us with the plasmid for the expression vector pMOG843 and binary vector pMOG800. Dr. Ken Matsuoka for the plasmids pMAT108, pMAT110, pMAT264 and pMAT196. Dr Jean-Marc Neuhaus for the plasmids pRGUS+T and pRGUSΔ15 We would also like to thank all members of our laboratory for many helpful discussions. This research was supported by grants from the National Science Foundation, Washington, DC (Grant No. DCB-9002652) and the United States Department of Energy, Washington, DC (Grant No.DE-AC02-76ER0-1338) to N.V.R.

REFERENCES

- Abel S, Theologis A (1994). Transient transformation of *Arabidopsis* leaf protoplasts: a versatile experimental system to study gene expression. Plant J 5, 421-427.
- Altmann T, Damm B, Halfter U, Willmitzer L, Morris P-C (1992). Protoplast transformation and methods to create specific mutants in *Arabidopsis thaliana*. In: Methods in *Arabidopsis* Research, C Koncz, N-H Chua, J Schell, eds. World Scientific, New Jersey, pp. 310-330.
- An G, Ebert PR, Mitra A, Ha SB (1988). Binary vectors. Plant Mol Biol Manual A3, 1-19.
- Angenon G, Dillen W, van Montagu M (1994). Antibiotic resistance markers for plant transformation. Plant Mol Bio Man C1, 1-13.
- Bankaitis VA, Johnson LM, Emr SD (1986). Isolation of yeast mutants defective in protein targeting to the vauole. Proc Natl Acad Sci USA 83, 9075-9079.
- Bassham DC, Gal S, Conceicao AS, Raikhel NV (1995). An *Arabidopsis* syntaxin homologue isolated by functional complementation of a yeast *pep12* mutant. Proc Natl Acad Sci USA in press .
- Bechtold N, Ellis J, Pelletier G (1993). *In planta Agrobacterium* mediated gene transfer by infiltration of adult *Arabidopsis thaliana* plants. C R Acad Sci 316, 1194-1199.
- Bednarek SY, Wilkins TA, Dombrowski JE, Raikhel NV (1990). A carboxylterminal propertide is necessary for proper sorting of barley lectin to vacuoles of tobacco. Plant Cell 2, 1145-1155.
- Bednarek SY, Raikhel NV (1991). The barley lectin carboxyl-terminal propeptide is a vacuolar protein sorting determinant in plants. Plant Cell 3, 1195-1206.
- Bednarek SY, Raikhel NV (1992). Intracellular trafficking of secretory proteins. Plant Mol Biol 20, 133-150.
- Blake MS, Johnston KH, Russell-Jones GJ, Gotschlich EC (1984). A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Anal Biochem 136, 175-179.
- Chrispeels MJ, Raikhel NV (1992). Short peptide domains target proteins to plant vacuoles. Cell **68**, 613-616.

- Chrispeels MJ, Green PJ, Nasrallah JB (1995). Meeting Report: Plant cell biology come of age. Plant Cell 7, 237-248.
- Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993). Plant chitinases. Plant J 3, 31-40.
- Dombrowski and Raikhel (1995). Isolation of a cDNA encoding a novel GTP-binding protein of *Arabidopsis thaliana*. Plant Mol Biol in press.
- Dombrowski JE, Schroeder MR, Bednarek SY, Raikhel NV (1993). Determination of the functional elements within the vacuolar targeting signal of barley lectin. Plant Cell 5, 587-596.
- Dombrowski JE, Gomez L, Chrispeels MJ, Raikhel NV (1994). Targeting of proteins to the vacuole In *Plant Molecular Biology Manual*, SB Gelvin, RA Schilperoort, eds, Kluwer Academic Publishers, Belgium **J3**, 1-29.
- Estelle MA, Somerville CR (1986). The mutants of *Arabidopsis*. Trends Genet 2, 89-93.
- Feldmann KA, Malmberg RL, Dean C (1994). Mutagenesis of *Arabidopsis*. In *Arabidopsis* (ed. EM Meyerowitz and CR Sommerville) ch. 7, pp. 137-172 Cold Spring Harbor Laboratory Press, Plainview, New York.
- Firestone GL, Winguth SD (1990). Immunoprecipitation of proteins. Methods Enzymol. 182, 688-700.
- Grill E, Somerville C (1991). Construction and characterization of a yeast artificial chromosome library of *Arabidopsis* which is suitable for chromosome walking. Mol Gen Genet **226**, 484-490.
- Jones EW (1977). Proteinase mutants of *Saccharomyces cerevisiae*. Genetics **85**, 23-33.
- Kirsch T, Paris N, Butler JM, Beevers L, Rogers JC (1994). Purification and initial characterization of a potential plant vacuolar targeting receptor. Proc Natl Acad Sci USA 91, 3403-3407.
- Klionsky DJ, Herman PK, Emr SD (1990). The fungal vacuole: Composition, function, and biogenesis. Microbiol Rev 54, 266-292.
- Koncz C, Rédei GP (1994). Genetic studies with *Arabidopsis*: a historical view.In *Arabidopsis* (ed. EM Meyerowitz and CR Sommerville) ch. 9, pp. 223-252. Cold Spring Harbor Laboratory Press, Plainview, New York.

- Konieczny A, Ausubel FM (1993). A procedure for mapping *Arabidopsis* mutations using co-dominant ecotype-specific PCR based markers. Plant J 4, 403-410.
- Koornneef M, Dellaert LWM, van der Veen JH (1982). EMS- and radiationinduced mutation frequencies at individual loci in *Arabidopsis thaliana* (L.) Heynh. Mutation Research **93**, 109-123.
- Koornneef M (1994). *Arabidopsis* genetics. In *Arabidopsis* (ed. EM Meyerowitz and CR Sommerville) ch. 5, pp. 89-120. Cold Spring Harbor Laboratory Press, Plainview, New York.
- Lerner DR, Raikhel NV (1989). Cloning and characterization of root-specific barley lectin. Plant Physiol 91, 124-129.
- Malmberg RL (1993). Production and analysis of plant mutants, emphasizing *Arabidopsis thaliana*. In *Methods in plant molecular biology and biotechnology* (ed. BR Glick and JE Thompson), ch.2, pp. 11-28. CRC Press, Boca Raton, Florida.
- Mansfield, M.A., Peumans, W.J., and Raikhel, N.V. (1988). Wheat-germ agglutinin is synthesized as a glycosylated precursor. Planta 173, 482-489.
- Marcusson EG, Horazdovsky BF, Cereghino JL, Gharakhanian E, Emr SD (1994). The sorting receptor for yeast vacuolar carboxypeptidase Y is encoded by the *VPS10* gene. Cell **77**, 579-586.
- Matsuoka K, Bassham DC, Nakamura K, Raikhel NV (1995). Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells. J Cell Biol in press.
- Matsuoka K, Nakamura K (1991). Propeptide of a precursor to a plant vacuolar protein required for vacuolar targeting. Proc Natl Acad Sci USA 88, 834-838.
- Mednik IG (1988). On methods evaluating the frequencies of induced mutations in *Arabidopsis* based on embryo-test data. *Arabidopsis* Information Service **26**, 67-72.
- Melchers LS, Sela-Buurlage MB, Vloemans SA, Woloshuk CP, Van Roekel JSC, Pen J, van den Elzen PJM, Cornelissen BJC (1993). Extracellular targeting of the vacuolar tobacco proteins AP24, chitinase and β -1,3-glucanase in transgenic plants. Plant Mol Biol 21, 583-593.

- Meyerowitz EM (1994). Structure and organization of the *Arabidopsis thaliana* nuclear genome. In *Arabidopsis* (ed. EM Meyerowitz and CR Sommerville) ch. 2, pp. 21-36. Cold Spring Harbor Laboratory Press, Plainview, New York.
- Michelmore RW, Paran I, Kesseli RV (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by segregating populations. Proc Natl Acad Sci USA 88, 9828-9832.
- Murashige T, Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15, 473-497.
- Nakamura K, Matsuoka K (1993). Protein targeting to the vacuole in plant cells. Plant Physiol 101, 1-5.
- Nakamura K, Matsuoka K, Mukumoto F, Watanabe N (1993). Processing and transport to the vacuole of a precursor to sweet potato sporamin in transformed tobacco cell line BY-2. J Exp Bot 44 (suppl), 331-338.
- Neuhaus J-M, Sticher L, Meins Jr F, Boller T (1991). A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proc Natl Acad Sci USA 88, 10362-10366.
- Neuhaus J-M, Pietrzak M, Boller T (1994). Mutation analysis of the C-terminal vacuolar targeting peptide of tobacco chitinase: Low specificity of the sorting system, and gradual transition between intracellular retention and secretion into the extracellular space. Plant J 5, 45-54.
- Newman TC, Ohme-Takagi M, Taylor CT, Green PJ (1993). DST sequences, highly conserved among plant *SAUR* genes, target reporter transcripts for rapid degradation in tobacco. Plant Cell 5, 701-714.
- Nishimura Y, Rosenfeld MG, Kreibich G, Gubler U, Sabatini DD, Adesnik M, Andy R (1986). Nuleotide sequence of rat preputial gland β -glucuronidase cDNA and *in vitro* insertion of its encoded polypeptide into microsomal membranes. Proc Natl Acad Sci 83, 7292-7296.
- Ohme-Takagi M, Taylor CB, Newman TC, Green PJ (1993). The effect of sequences with high AU content on mRNA stability in tobacco. Proc Natl Acad Sci USA 90, 11811-11815.
- Pepper A, Delaney T, Washburn T, Poole D, Chory J (1994). *DET1*, a negative regulator of light-mediated development and gene expression in *Arabidopsis*, encodes a novel nuclear-localized protein. Cell **78**, 109-116.

- Powell PP, Kyle JW, Miller RD, Pantano J, Grubb JH, Sly WS (1988). Rat liver beta-glucuronidase. cDNA cloning, sequence comparisons and expression of a chimeric protein in COS cells. Biochem J 250, 547-555.
- Pryer NK, Wuestehube LJ, Schekman R (1992). Vesicle-mediated protein sorting. Annu Rev Biochem 61, 471-516.
- Rafalski A, Tingey S, Williams JGK (1994). Random amplified polymorphic DNA (RAPD) markers. Plant Mol Bio Man H4, 1-8.
- Raikhel NV, Mishkind ML, Palevitz BA (1984). Characterization of a wheat germ agglutinin-like lectin from adult wheat plants. Planta 162, 55-61.
- Raikhel NV, DR Lerner (1991). Expression and regulation of lectin genes in cereals and rice. Dev Gen 12, 255-260.
- Raymond CK, Howald-Stevenson I, Vater CA, Stevens TH (1992a). Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E *vps* mutants. Mol Biol Cell 3, 1389-1402.
- Raymond CK, Roberts CJ, Moore KE, Howald I, Stevens TH (1992b). Biogenesis of the vacuole in *Saccharomyces ceverisiae*. Intl Rev Cyto 139, 59-120.
- Reiter RS, Young RM, Scolnick PA (1992). Genetic linkage of the *Arabidopsis* genome: Methods for mapping with recombinant inbreds and Random Amplified Polymorphic DNAs (RAPDs). In: Methods in *Arabidopsis* Research, C Koncz, N-H Chua, J Schell, eds. World Scientific, New Jersey, pp. 170-189.
- Robinson JS, Klionsky DJ, Banta LM, Emr SD (1988). Protein sorting in *Saccharomyces cerevisiae*: Isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol Cell Bio 8, 4936-4948.
- Rothman JE (1994). Mechanisms of intracellular protein transport. Nature 372, 55-63.
- Rothman JE, Orci L (1992). Molecular dissection of the secretory pathway. Nature 355, 409-415.
- Rothman JH, Howald I, Stevens TH (1989). Characterization of genes required for protein sorting and vacuolar function in the yeast *Saccharomyces cerevisiae*. EMBO J 8, 2057-2065.

- Rothman JH, Stevens TH (1986). Protein sorting in yeast: Mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway. Cell 47, 1041-1051.
- Sambrook J, Fritsch EF, Maniatis T (1989). Molecular Cloning: A Laboratory Manual, 2nd ed. (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory).
- Scholl R, Feldmann KA, Paterson AH (1994). Quantitative genetics. In *Arabidopsis* (ed. EM Meyerowitz and CR Sommerville) ch. 6, pp. 121-138. Cold Spring Harbor Laboratory Press, Plainview, New York.
- Schroeder MR, ON Borkhsenious, K Matsuoka, K Nakamura, NV Raikhel (1993). Colocalization of barley lectin and sporamin in vacuoles of transgenic tobacco plants. Plant Physiol 101, 451-458.
- Schroeder MR, Raikhel NV (1992). Isolation and characterization of pro-barley lectin expressed in *Escherichia coli*. Prot Expr Purif 3, 508-511.
- Shimada T, Nishimura M, Hara-Nishimura I (1994). Small GTP-binding proteins are associated with the vesicles that are targeted to vacuoles in developing pumpkin cotyledons. Plant Cell Physiol 35, 995-1001.
- Shu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD, Emr SD (1993). Phosphatidylinositol 3-kinase encoded by yeast *VPS34* gene essential for protein sorting. Science **260**, 88-91.
- Somerville CR (1989). Arabidopsis blooms. Plant Cell 1, 1131-1135.
- Somerville CR, Ogren WL (1982). Isolation of photorespiration mutants in *Arabidopsis thaliana*. In Methods in Chloroplast Biology (Edelman M, Hallick RB, Chua NH, eds) pp. 129-138. Elsevier Biochemical Press, Amsterdam.
- Stack JH, Emr SD (1993). Genetic and biochemical studies of protein sorting to the yeast vacuole. Curr Opin Cell Biol 5, 641-646.
- Stack JH, Herman PK, Schu PV, Emr SD (1993). A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. EMBO J 12, 2195-2204.
- Thelen M, Wymann MP, Langen H (1994). Wortmannin binds specifically to 1-phosphatidylinositol 3-kinase while inhibiting guanine nucleotide-binding protein-coupled receptor signaling in neutrophil leukocytes. Proc Natl Acad Sci USA 91, 4960-4964.

- Valvekens D, Van Montagu M, Van Lijsebettens M (1988). *Agrobacterium tumefaciens*-mediated transformation of *Arabidopsis* root explants by using kanamycin selection. Proc Natl Acad Sci USA 85, 5536-5540.
- Vitale A, Chrispeels MJ (1992). Sorting of proteins to the vacuoles of plant cells. BioEssays 14, 151-160.
- Walkerpeach CR, Velten J (1994). *Agrobacteium*-mediated gene transferto plant cells: cointegrate and binary vector systems. Plant Mol Biol Manual B1, 1-19.
- Ward ER, Jen GC (1990). Isolation of single-copy-sequence clones from a yeast artificial chromosome library of randomly-sheared *Arabidopsis thaliana* DNA. Plant Mol Biol 14, 561-568.
- Welters P, Takegawa K, Emr SD, Chrispeels MJ (1994). *AtVPS34*, a phosphatidylinositol 3-kinase of *Arabidopsis thaliana*, is an essential protein with homology to a calcium-dependent lipid binding domain. Proc Natl Acad Sci USA 91, 11398-11402.
- Wilkins TA, Bednarek SY, Raikhel NV (1990). Role of propertide glycan in posttranslational processing and transport of barley lectin to vacuoles in transgenic tobacco. Plant Cell 2, 301-313.
- Widholm JM (1972). The use of fluorescein diacetate and phenosafranin for determining viability of cultured plant cells. Stain Technol 47, 189-194.
- Woscholski R, Kodaki T, McKinnon M, Waterfield MD, Parker PJ (1994). A comparison of demethoxyviridin and wortmannin as inhibitors of phosphatidylinositol 3-kinase. FEBS Lett 342, 109-114.
- Wright CS (1987). Refinement of the crystal structure of wheat germ agglutinin isolectin 2 at 1-8 Å resolution. J Mol Biol 194, 501-529.
- Wright CS, Schroeder MR, Raikhel NV (1993). Crystallization and preliminary x-ray diffraction studies of recombinant barley lectin and pro-barley lectin. J Mol Biol 233, 322-324.
- Yano H, Nakanishi S, Kimura K, Hanai N, Saitoh Y, Fukui Y, Nomura Y, Matsuda Y (1993). Inhibition of histamine secretion by wortmannin through the blockade of phosphatidylinositol 3-kinase in RBL-2H3 cells. J Biol Chem 268, 25846-25856.

CHAPTER 5

FUTURE RESEARCH

Currently, little is known about the mechanisms or machinery involved in targeting proteins to the plant cell vacuole. Conventional biochemical and molecular approaches have yielded limited success, identifying five potential components of the plant vacuolar sorting machinery (For a discussion see Chapter 1). However, the functions of these proteins have yet to be demonstrated in plants. One can attempt to demonstrate the function of a protein in plants by creating mutants through the suppression of their gene using an antisense approach. Once these gene products have been shown to be involved in vacuolar targeting, the proteins can be used to isolate other interactive components of the sorting apparatus. The isolation of additional components and the study of their interactions will impart a better understanding of the fundamental processes of protein transport in the cell.

The use of inhibitors such as monensin, Brefeldin A, tunicamycin and, most recently, wortmannin have shed some light on the mechanisms involved in protein transport to the vacuole (for a discussion see, Chapter 1). Through the use of inhibitors it was determined that vacuolar proteins are sorted at the *trans*-Golgi network (TGN), and that soluble proteins which use either aminoterminal propeptide (NTPP) or carboxyl-terminal propeptide (CTPP) targeting signals are delivered to the vacuole by two different mechanisms.

The analysis of the different plant targeting determinants has led to some surprising findings. Various NTPPs share a common motif within their sequences (see Chapter 1, Figure 1.1), and it is this specificity that allowed for

the isolation of a putative NTPP-receptor (Kirsh et al., 1994). However, in contrast to the specific nature of NTPP, CTPPs showed no consensus sequence or common structural determinants (see Chapter 1, Figure 1.2). In addition, correct vacuolar targeting was be achieved by a CTPP sequence as short as 3 exposed amino acids, and the interaction with the sorting apparatus appears to be at the C-terminus of the propeptide (Dombrowski et al., 1993). question arises, why would a plant cell have a recognition system that displays such a broad binding specificity, as well as having two different sorting mechanisms for NTPP- and CTPP-containing proteins. One can speculate to the reason for the presence of such systems. The answer may be in response to events that occur earlier in the secretory pathway. Proteins upon entering the ER need to be folded properly to become competent for transport through the secretory pathway (Vitale et al., 1993). Properly folded soluble proteins lacking additional targeting information will be secreted from the cell by the default pathway (Dorel et al., 1989; Denecke et al., 1990). However, if a misfolded protein escapes the ER, instead of being secreted, the plant by developing a flexible recognition system can capture and deliver them to the vacuole for recycling. This type of salvage mechanism may be present in order to recycle and recover a loss of energy instead of secreting it to the extracellular space, thereby minimizing the loss. This is one explanation for the existence of a highly nonspecific CTPP recognition system. Interestingly, a poster presented by Loïc Fave (University of Rouen) at the 1995 Keystone meeting on Plant Cell Biology reported, that when the HDEL motif (ER retention signal) was added to the

C-terminus of a NTPP deletion mutant of sporamin (normally secreted), the protein escapes the ER and was found localized in the vacuole. However the plant needs a way to avoid this system and allow for specific proteins to be secreted. It has been shown that a glycan can mask vacuolar targeting determinants and highly charged C-terminal propeptides are not efficiently recognized by the sorting apparatus (Tague et al., 1990; Dombrowski et al., 1993). Therefore, additional research needs to be done to determine what properties a protein must possess to be competent for secretion from the cell or sorting to the vacuole.

Another area not well defined in plants is the transport and sorting of membrane proteins in the secretory pathway. It is still unclear if the default pathway for plant secretory membrane proteins is to the vacuole as in yeast, or to the plasma membrane as in mammalian system (See chapter 1). To date studies on plant vacuolar membrane transport has centered around the aquaporin homologue TIP, which has 6 membrane spanning domains (Gomez and Chrispeels, 1993). The presence of multiple transmembrane domains complicates the analysis of vacuolar membrane protein transport. Therefore, there is a need to identify a vacuolar membrane marker protein with a single transmembrane domain, in addition to resident Golgi membrane and plasma membrane localized proteins. The isolation and characterization of these proteins will provide a good model system for the study of membrane protein transport through the plant secretory pathway.

The study of yeast vacuolar protein sorting progressed at a slow pace until

the isolation of the vps mutants. As a result of their creation, there has been a rapid expansion in the knowledge of the field. The identification of genes and their products, combined with biochemical analyses have vielded valuable insights into the mechanisms involved in protein transport (for reviews see, Klionsky et al., 1990; Raymond et al., 1992). As a direct result of this genetic approach the identification of the carboxypeptidase Y receptor was achieved (Marcusson et al., 1994). Whereas, attempts to isolate the receptor by biochemical means had proved unsuccessful (Dr. Tom Stevens personal communication). In addition, the existence of an endosomal-like prevacuolar compartment in yeast was identified by the biochemical and immunocytochemical analyses of selected *vps* mutants (Vida et al., 1993). The question remains does such a compartment also exist in plants? If a similar compartment is present, then the delivery of proteins to the vacuole may require two vesicle budding and fusion events. This is a fundamental area of research which needs to be addressed for our basic understanding of the transport mechanism in plants.

Therefore, the creation of the vacuolar sorting mutants in *Arabidopsis* (described in Chapter 4), will provide the means to isolate relevant components of the sorting apparatus and provide a basic understanding of the mechanisms of protein transport. In addition, the study of these mutants may yield insights into other cellular processes, such as endocytosis, vacuolar biogenesis, cellular growth and protein turnover.

The isolation of conditional (temperature sensitive) mutants in vacuolar

sorting will greatly enhance the analysis of transport by biochemical means. One can envision that some mutants will block the transport of proteins at a particular point in the pathway. These mutants can then be utilized to isolate difficult to purify transport vesicles and endomembrane compartments, such as the TGN or prevacuolar compartment. Thus, by blocking a fusion step transport vesicles can be enriched. In addition, if the formation of vesicles at either the TGN or from a prevacuolar compartment is blocked, then there is a potential for the increased accumulation of transport intermediates causing the compartment to expand, which may simplify its isolation.

However, it will be the development of an *in vitro* vacuolar transport system that will provide the means by which the dissection of the transport process can be achieved. The *in vitro* system will allow for reconstitution experiments, providing a way for demonstrating the function of the protein, as well as means to study the requirements and cofactors necessary for transport.

Plants appear to have fundamental differences as compared to mammalian and yeast systems in the way soluble proteins are targeted to the vacuole. Therefore, the creation of vacuolar sorting mutants and the development of an *in vitro* vacuolar transport system assay will greatly enhance the feasibility to elucidate the mechanisms of the vacuolar protein sorting in plants.

REFERENCES

- Denecke J, Botterman J, Deblaere R (1990). Protein secretion in plant cells can occur via a default pathway. Plant Cell 2, 51-59.
- Dombrowski JE, Schroeder MR, Bednarek SY, Raikhel NV (1993). Determination of the functional elements within the vacuolar targeting signal of barley lectin. Plant Cell 5, 587-596.
- Dorel C, Voelker TA, Herman EM, Chrispeels MJ (1989). Transport of proteins to the plant vacuole is not by bulk flow through the secretory system, and requires positive sorting information. J Cell Biol 108, 327-337.
- Gomez L, Chrispeels MJ (1993). Tonoplast and soluble vacuolar proteins are targeted by different mechanisms. Plant Cell 5, 1113-1124.
- Kirsch T, Paris N, Butler JM, Beevers L, Rogers JC (1994). Purification and initial characterization of a potential plant vacuolar targeting receptor. Proc Natl Acad Sci USA 91, 3403-3407.
- Klionsky DJ, Herman PK, Emr SD (1990). The fungal vacuole: composition, function, and biogenesis. Microbiological Reviews 54, 266-292.
- Marcusson EG, Horazdovsky BF, Cereghino JL, Gharakhanian E, Emr SC (1994). The sorting receptor for yeast vacuolar carboxypeptidase Y is encoded by the *VPS10* gene. Cell 77, 579-586.
- Raymond CK, Roberts CJ, Moore KE, Howald I, Stevens TH (1992b). Biogenesis of the vacuole in *Saccharomyces ceverisiae*. Intl Rev Cyto 139, 59-120.
- Tague BW, Dickinson CD, Chrispeels MJ (1990). A short domain of the plant vacuolar protein phytohemagglutinin targets invertase to the yeast vacuole. Plant Cell 2, 533-546.
- Vida TA, Huyer G, Emr SD (1993). Yeast vacuolar proenzymes are sorted in the late golgi complex and transported to the vacoule via a prevacuolar endosome-like compartment. J Cell Biol 121, 1245-1256.
- Vitale A, Ceriotti A, Denecke J (1993). The role of the endoplasmic reticulum in protein synthesis, modification and intracellular transport. J Exp Bot 44 (suppl), 1417-1444.

MICHIGAN STATE UNIV. LIBRARIES