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ABSTRACT

A COMPUTATIONAL MODEL FOR

DETERMINING THE EFFECTIVE

THERMAL CONDUCTIVITY OF

POROUS MEDIUM

By

Daniel K. Lucas

There are many systems of interest in engineering that involve heat

transfer through a medium consisting of two or more'distinct materials. Such a

medium is often considered to be a porous medium when one of the materials is

in solid phase and another material is in fluid phase. Some examples of a

porous medium are the packed bed of a cooling tower, building insulation, and

the core of a catalytic converter. In evaluating these systems and others of

interest in engineering thermodynamics, heat transfer, or fluid mechanics, the

effective thermal conductivity of a porous medium must first be evaluated. It is

difficult to predict the thermal conductivity of a medium consisting of two or more

separate materials.

There is no general model to predict the effective thermal conductivity of a

porous medium. This paper proposes such a model starting with the two

dimensional heat conduction equation. Finite differencing is employed to

develop the numerical model. From this numerical model, a computer code is

developed that predicts the effective thermal conductivity of a porous medium.
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CHAPTER I

INTRODUCTION

1.1 Problem Statement

There are many systems of interest in engineering that involve heat

transfer through a medium consisting of two or more distinct materials. Such a

medium is often considered to be a porous medium when one of the materials is

in solid phase and the other material is in fluid phase. Some examples of a

porous medium are the packed bed of a cooling tower, building insulation, and

the core of a catalytic converter. In evaluating these systems and others of

interest in engineering thermodynamics, heat transfer, or fluid mechanics, the

effective thermal conductivity of a porous medium must first be evaluated. The

thermal conductivity of a single material is defined as the amount of heat flowing

by conduction through a unit area per unit time per unit temperature gradient.

The evaluation of thermal conductivity for a single material is very straight

forward. However, it is more difficult to predict the thermal conductivity of a

medium consisting of two or more separate materials.

There has been previous work to determine the thermal conductivity of a

porous medium. However, this work has dealt with either specific systems or

specific geometries, and there is no general model for evaluating the effective

thermal conductivity of a two component system.
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There are three modes of heat transfer in a porous medium: conduction,

convection, and radiation. Conduction is heat transfer by molecular, atomic, and

electronic motion, and is often the prominent mode of heat transfer. Convection

is heat transfer by fluid motion and can be important as porosity increases.

Finally, radiation is heat transfer by electromagnetic wave motion and becomes

increasingly important as the temperature increases.

The problem will be studied as a two-dimensional system similar to the

system shown in Figure 1. This system consists of two or more anisotropic

materials having different thermal characteristics and has fixed temperatures

applied to the top and bottom surfaces and adiabatic sidewalls. The effective

thermal conductivity is defined as km such that the heat transfer may modeled

using the equation

_ kmAT
q: L. (1)
 

Using the above equation, a control volume may be defined, that is small enough

to have local thermal equilibrium yet large enough to retain the properties of the

porous medium, over which Fourier’s law of heat conduction is valid, i.e.,

9 = kaT. (2)

1.2 Literature Review

Previous work by Baradat and Combarnous [1] has shown that the two

simplest models for determining effective thermal conductivity also describe the
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Figure 1. Conductive Heat Transfer in Porous Medium
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upper and lower boundaries for the actual thermal conductivity of a porous

medium. These are the parallel resistance model and the series model. In the

parallel resistance model, the voids and solids hypothetically move in opposite

directions transverse to the heat flow as shown in Figure 2. Working with the

parallel thermal circuit shown in Figure 3, the thermal conductivity can be shown

to be

51:841-.» (3)

where e is the porosity and y is the ratio of solid thermal conductivity to the fluid

thermal conductivity. In the series resistance, the voids and solids hypothetically

move in opposite directions in the direction of the heat flow as in Figure 4. Now,

working with the series thermal circuit shown in Figure 5, the thermal conductivity

can be shown to be

km (1 — s) 4

T(,— = [a + T] . (4)

The current models are bounded by the series and parallel models as shown in

the graph in Figure 6 as km/kf versus porosity with the solid to fluid thermal

conductivity ratio, 7, set equal to 0.1.

These two simple models represent a whole group of models that have

simple solutions. In these simple models, either heat flow lines run parallel to

the direction of the heat flux or the isotherms are perpendicular to the heat flow.

The group of models based on these simple models have one common

approach for solution. They use a thermal circuit network and allow the
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problems to be solved by means of reducing them to algebra and geometry.

Numerous models have been proposed to make use of the simple

solutions. Russell [2] proposes that porous media be modeled as cubical pores

in a cubic lattice arrangement and developed

k y s -1

—m = 1 - 3 + . 5

kr ( 8) ‘Y [8% + (1 - 8)%y] ( )

Another model proposed by Loeb [3] views the porous medium as a

 

square matrix with a lattice of pores situated inside the matrix. The effective

thermal conductivity as determined by Loeb is

k
 

 

8

_m = 1 - + 1 6kf ( 81) 82ks + 1
( )

k ( - 82)

p

where 31: perpendicular void fraction

22: parallel void fraction

kp: 4ydeoT3

and y: geometrical factor

d: largest dimension of pore in direction of heat flow.

Figure 7 shows Loeb’s model and the corresponding thermal circuit is shown in

Figure 8. Note that the effective thermal conductivity, kp, of a pore is a function

of radiative heat transfer. This is a disadvantage when the fluid is a liquid rather

than a gas due to the opaque nature of most liquids. Woodside [4] modeled a

porous medium putting a matrix of spheres in a continuum. Using this model, he
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determined the equation for the effective thermal conductivity of a porous

medium to be

'.:—:={FRVIFi-Inlz—fllll"

where

 

a: 1+ 4
(8)

“(k—“AIMkc Tl:
I. _I

 

  

and c and d denote the continuous and discontinuous phase respectively. This

relation is valid only where

o s e, 5 0.5236.

There are many geometries that can be used to develop expressions for

the effective thermal conductivity of a porous medium. Specifying a geometry

and developing the corresponding thermal circuit can, in principle, be reasonably

straight forward. However, the geometry and algebra may make obtaining an

expression for the effective thermal conductivity very difficult. Other geometries

have been investigated by Godbee and Ziegler [5], Luikov, et. al. [6] and

Krupicka [7] and corresponding expressions for effective thermal conductivity of

these porous media have been developed.

The exact solution of Laplace’s equation forms the basis for another

group of models. Many of these are heat transfer applications that have been

developed from electromagnetic applications. Using a heterogeneous body
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composed of an element with one them'Ial conductivity value inserted into

another larger element having another thermal conductivity, Maxwell [8]

developed an expression for the effective thermal conductivity

k = k [awn-22.8.40] .

k, +2k, +e,(k, _k,) (9)

This solution is based on an explicit assumption that the spheres have no

influence on one another due to the distance between. Therefore, it is implicit

that the expression above is good only as the porosity, ed gets small. To account

for influence between spheres, Rayleigh [9] developed models for spheres in a

cubic array and cylinders in a square array. He obtained the equation

 

 

( ~28d

1.4)
k

51: ° (10)

f 2 _d

+kc

kd +8d

—k—

for the cylindrical model.

More general solutions were developed by assuming the particles to be

ellipsoids. Fricke [10] developed the expression

1 + ed(F-k—d — 1]

kc

° 1+ 8,,(F -1) (11)
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1 3 k, "
5 J1 + IE - 1H (12)

where

F =

and

:1: = 1. (13)

The ratio of the overall average temperature gradients in the solid and the fluid

phases is represented F and the semi-principle axes of the ellipsoid are

represented by f1. As with Maxwell, Fricke also assumed no particle to particle

interactions in his model.

Laplace’s equation is solved over one fourth of a cell for spheres in a

cubic array and cylinders in a square array by Krupiczka [7]. A nearly unusable

and very complex mathematical expression is obtained for the effective thermal

conductivity by applying artificial boundary conditions.

The solution for a matrix of particles that are in or are nearly in contact

with one another is obtained by Batchelor and O’Brien [11]. They developed this

solution for systems where y is large. They developed the expression

X

A = 4.01 lny (14)
kt

for the special case where a random array of uniform spherical particles are in

contact with one another.

There are some empirical and numerical models being used to determine

the effective thermal conductivity of a porous medium. Numerical models may
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also be used to obtain simplified solutions to the series resistance and the

parallel resistance models. Woodside and Messmer [12] noted that the

distribution for the parallel model corresponds to a weighted arithmetic mean and

the distribution for the series model corresponds to a weighted harmonic mean.

An intermediate model has been proposed by developing the weighted

geometric mean which is expressed by

x
.

k
A: __.o 15
k, 8k, ( )

This expression is the foundation for the most widely used empirical relationship,

x k
__m = C _3__ 16k, 2k ( )

This expression was first proposed and obtained empirically by Lichtender [13].

C is an empirical constant that is adjusted to fit the experimental data. Yet

another proposed relationship is

km = k,(1 - a). (17)

This expression was proposed by Francl and Kingery [14] who conducted

experiments on a test section with a fabricated porosity of isometric spherical

pores and anisometric cylindrical pores using air as the fluid. They were able to

correlate their data for temperatures below 500°C. There have been other

empirical expressions developed, however, they are of limited in usefulness.

Another numerical model is developed by Jaguaribe and Beasley [15]. In

this model, they consider radial flow in a porous medium as an array of solid
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cylinders in a stagnant fluid. They use a thermal circuit with complicated algebra

that is solved numerically by determining the resistance to the flow of energy.

Many of the thermal conductivities that have been obtained experimentally

are currently available. Some of the better compilations are Cheng and Vachon

[16], Luikov, et al. [6], Ofuchi and Kunii [17], and Krupiczka [7]. However, the

experimental data appear to have deficiencies in that there is no data for

systems with y < 1 and only a limited amount of date for y = 0(1) systems. Most

of the data available are for systems where y is large. For systems where y is

small or of order one, it is recommended that experiments be run to determine

the thermal conductivity.

After completing this review of models developed for predicting thermal

conductivity in a porous medium, it is apparent that there is no acceptable

general model. Some models have been shown to be acceptable in some

special cases. Cheng and Vachon [16] have shown that most all of the

commonly models used give results that differ by more than ten percent with

experimentally determined thermal conductivities. This points toward the need to

develop an acceptable general model for determining the effective thermal

conductivity of porous media.

1.3 Proposal Statement

The objective of this study is to implement a general numerical model that

can be used to determine the effective thermal conductivity of many different

porous media geometries.
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1.4 Summag

In this thesis, a numerical model based on the heat conduction model in

Figure 9 will be developed by the superpositioning of a finite difference grid on a

simulated porous medium. This porous medium is generated using a random

number generator and will be composed of either solid or fluid elements. The

ensuing difference equations will be solved utilizing the Alternating Direction

Implicit (ADI) method. Employment of the ADI method begins by introducing a

quasi-time derivative represented by stepping first in the x-direction (k+‘/2

iteration) and then in the y-direction (k or k+1 iteration). Further manipulation will

yield a series of N equations with N unknowns that can be solved using a

Gaussian elimination method. The heat flux is then averaged in the x-direction,

thus leading to determining the effective thermal conductivity.

This thesis continues next with the presentation of the method of solution

followed by the results and discussion, and finishes with recommendations and

conclusions.
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Figure 9. Heat Conduction Model



CHAPTER II

METHOD OF SOLUTION

2.1 Governing Eguations

A porous medium can be arranged from a series of cylinders as shown in

Figure 10. If a square grid is imposed over the porous media, then a grid that is

fine enough to have single elements that are either a solid or a fluid can be

visualized as in Figure 11. From this, a simulated porous medium can be

generated. By placing a finite difference grid over this porous medium grid, a

finite difference algorithm can be employed to solve the ensuing heat conduction

problem. From this, the effective thermal conductivity can be determined for the

entire porous medium.

The porous medium is generated by first determining a porosity to be

used for the porous medium. Once a porosity value is decided upon, a random

number between zero and one is generated and assigned to each element in the

grid. Those elements assigned a random number less than the porosity value

are fluid elements and those elements with a random number greater than the

porosity value are solid elements.

Once the generated porous media grid is in place, the solution for the two

dimensional heat conduction equation for the grid may be considered. The

following equation may be written for each element as shown in Figure 12:

azT

V

Ek3” + kg) W, = o. (18)

20
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Figure 10. Array of Cylinders with Imposed Finite Element Grid
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Figure 11. Simulated Porous Media Where

Shaded Area Represents Solid
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Figure 12. Finite Difference Element
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Figure 12. Finite Difference Element
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The superscript i on the thermal conductivity indicates whether an element is to

be either a solid (5) or a fluid (f) and the subscript indicates thermal conductivity

as directionally dependent. The upper boundary is set at some temperature, Tu,

and the lower boundary at some temperature, TL, where Tu > TL. Further, the

sidewalls in the porous system will be considered to be adiabatic (Q = 0).

Applying finite difference to Equation (18), the terms in Equation 18 become

@21- (Tu; " 2Tij '1' TR,ij)
 

 

ax2 = (sz) (19)

and

62T (TB.ij — 2Tij + Tm.)
_ = , 2o

63/2 (Ayz) ( )

Substituting Equations (19) and (20) into Equation (18), we can write Equation

(18) in the finite difference form

[TU] _ :Ti; + T”) + R91x .
k (i)

x,ij

  

Now, the Alternating Direction Implicit (ADI) method will be utilized to

solve the set of equations represented in Equation (21). To employ the ADI

method, we must first set a quasi-time derivative that corresponds to first

stepping in the y-direction (k + 1I2 iterate) and then in the x-direction (k + 1 or k

iterate).
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The following equation is thus obtained:

k
(“)9 (k) _ X-l' (k) (k) (kl

T, — Tij _ :(TL,j — 2Tij + TM)

k ” + + +

+ AWE?“ V2) — 2T)" ’2’ + TI}, V9) (22)

GT

where

2 2 2

5T = __(Ax) = __(Ay) = i . (23)

AtT AtT AtT

Before the set of equations represented by Equation (22) can be solved,

adjacent finite difference elements must be coupled. This is done by observing

that

TTJI' = Tam.) (24)

T3."- = TU.” (25)

TU]. = 1',"qu (26)

TR."- = TLJJH (27)

which represents the temperature continuity at the boundaries between adjacent

elements. There is also a continuity of the heat flux at the boundaries between

adjacent elements. Therefore, we can also write the following equation:

 

 

T .. - T.. T. . - T . _
ky‘ij 1ij I] = ky'H M 1+ 1,) 9/ B,I+1,) . (28)

2 2

Substituting Equation (24) into Equation (28) yields the equation

T .. - T. T. . - T ..
ky,ij TJl ll = ky,i+1,j 1+1.J T,IJ ’ (29)

96 96
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and solving for T1),- gives

T - ky,i+1,j 12%;?) + ky"iTIK+}§I 30

_ . ( )
k' ‘+ k:.:1YJ " 1-l

Similarly, the terms T3,“, TL], and TR), can all be expressed in terms ofTi-1_,-, Ti,- -

1, and T1,). 1 such that

11M“ + ky""TiIKTyI

 

 

 

k .
T8, = y,I-1j I-1.j

(31)

J ky,i-1,j + kyiiu

k .. TI“) + kMT”)

TLi. = XM" H 1
(32)

J kx,i,j-1 T kxjju

k .. TIKI+ k .. TI")TR, = X,l,j*1 i.j+1 XJI 'I

(33)

J kxjj + 1 + k X,lj

respectively. Substituting Equations (30), (31), (32), and (33) into Equation (22)

yields the equation

TIIMM) _ TiIk I

  

 
 

k k k

= kx,iI kx,i-1.ITift.)I+ kx.iITiI ) _2T(k) + kx.i+1.j TigIIT- kX'lT'I )

5 T kx,i-1.j + kxII 1) kx.i+1.1 + kxii

(“)6 k+)6) (“)6 (“)9
+kyii [km-1_T,,_1 I +k,,,,T,,( _2Tu(k+ )4) + ky.ij+1Ti.j+1 ) +kinTii ] . (34)

GT ky,,,,-_, + kal J ky,i,j+1 T ky.ij

By rewriting Equation (34) and collecting the coefficients on each element

temperature, T, the coefficients can be written for

TIE-W: B =- Mk” ‘ (35)
ij cT(kY'I+kYJI 1)
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k2.. k2 k
 

 

 

  

 

M: c, :1. - +24% (36’‘ ‘ O’T(kY.iI +ky.i.I-1) °T(ky.ii +kaI+ 1) OT

+ k i' R 1'1'

T515216): 00:" y" H 1 I
(37)

o-T(ky,ij+ky.i-I*1)

k k1,0,)” E,,-= x,ij X.i-1.I

(38)

' O’T(kxij+kx,I- 1j)

Ti(jk)2 Fij =1+ kiij + kid _zffl’ (39)
OT(kx.ij+kx,i-1.I) OT(kx.iI+kx.i+1J) OT

k k .

11(911' Gil: x“ H U
(40)61(kxij+kx,i+1,j)

and the following equation can be written

B, TOW) + c, T,"”Y2’ + D, To”)
'1 1 i,j+1

= 5,119,, + F, T,"" + G,,T,‘f,, (41)

Further, Equation (41) can be written as a set of equations

=0" )6) —(k+ )3) -(k)

M) T) = S (42)

=k+
2)

where M,- is represented by a tridiagonal matrix. By employing a Gaussian

elimination routine called the Thomas algorithm , Equation (42) can be solved

for TE“ ” . This routine has the advantage of being able to store the required

coefficients in a compact 3 x N2 matrix. This is done as j is stepped form 1 to N.

Similarly, an equation can be developed for the k + 1 iteration and solving for
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k+1)

T: as i is stepped from 1 to N. The solutions are obtained alternately in

each direction iteratively until the solutions converge.

2.2 Boundam Conditions

It is observed that at the left boundary, where the adiabatic walls exist, the

heat flux equation becomes

fl8x ”0 = 0 (43)

which becomes

L—T— = o.
Ax (44)

Therefore,

TL = TR. (45)

Equation (45) is then substituted into Equation (22) to obtain

Til-(Mg) _ Tillk) = &(2Téz) _ 213(k))

oT '

k i' + + +

+ Gil—(T3; 72) — 2T;k V2) + T3; 72)) (46)

Similarly, the boundary condition at the right wall is

E

ax
=0

x=N

 

and the finite difference equation becomes
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k ..

(kW?) ('0 _ X-' (k) (k)

T

k .. + + +

+ firs: V2) - 2T9 y» + Tl}, Y»). (47)
T

The B,C,D,E,F, and G coefficients are then obtained as before. In addition, the

initial condition at the bottom of the porous medium is

T3,, = TL (48)

and at the top, the initial condition is

Tm = TU. (49)

The B, C, D, E, F, and G coefficients are then again obtained as before.

The effective thermal conductivity can be obtained by determining the

average heat flux in the y-direction while x = O

_ 1 " 6T

and then applying the definition from Equation (1) and assuming L = 1,

k =
q , 48



CHAPTER III

RESULTS AND DISCUSSION

3.1 PorousM Generation

The porous media generation is accomplished by the use of the pseudo-random

number generator function call available in Microsoft FORTRAN. Figure 13

shows the results of running the random number generator one hundred times

for each porosity from 0.1 to 0.9. The values are then normalized by dividing the

generated porosity by the target porosity. For example, with a target porosity of

0.1, the calculated porosities range from 0.04 to 0.18 with a population standard

deviation of 0.027. This distribution is shown in Figure 14. This results in a

normalized porosity of 0.4 to 1.8. Further, running the random number generator

for a target porosity of 0.9 results in a range from 0.83 to 0.96 with a population

standard deviation of 0.026 giving a normalized porosity of 0.92 to 1.07. This

distribution is shown in Figure 15. As will be seen in the discussion on numerical

testing, the randomness of the generated porous media will result in slight

deviations as the different data are put into graphical form.

Figure 16 shows calculated porosity as a function of grid size. A thermal

conductivity of 0.3 was used. As before, the actual porosities tend toward the

target porosities of 0.3, 0.5, and 0.8 as the grid size is increased.

30
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Distribution of Cells for Porosity of 0.1 to 0.9
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Figure 14. Frequency vs. 0.1 Normalized Porosity
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Further, it is expected that as the grid size increases, the calculated porosity will

converge around a single value as determined by the set target porosity. This is

confirmed by the graph in Figure 17 which represents the calculated porosity as

a function of grid size. Figure 18 shows that for a kl/ks = 0.5 (0.3/0.6) and 3 OT =

0.1, the effective thermal conductivity will approach a single value as the grid

size is increased.
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3.2 Results of Numerical Validation

For the following numerical testing, a target porosity of 0.3456 was used

unless specifically stated otherwise. Thermal conductivity values of either 0.3 or

0.03 were used for the fluid and solid materials in the following numerical tests.

Figure 19, showing effective thermal conductivity as a function of the grid size,

indicates the relative range of thermal conductivities for kf/ks of 0.1, 1.0, and

10.0. As expected, these curves trend closer to one value as the grid size is

increased.

In Figure 20, the effective thermal conductivity is plotted as a function of

the log1o of the time step. As before, thermal conductivities of either 0.3 and

0.03 were used for the fluid and solid materials. These graphs were expected to

converge around one value as the time step is increased. The fluctuation that is

seen is attributed to the randomness of the grid generation. However, these

curves do tend toward a central value. Figure 21 shows the effective thermal

conductivity as a function of the target porosity for thermal conductivity ratios of

0.5, 1.0, and 2.0 using thermal conductivities of 0.3 and 0.6. These curves also

behave as expected. When kf/k,3 = 2.0 at a target porosity of 0.0 to 1.0, the curve

is equal to 0.3 and 0.6 respectively, and when kf/ks = 0.5 with the target porosity

once again running from 0.0 to 1.0, the curve runs from 0.6 to 0.3 respectively.

This is also the expected result. Finally, with kf/ks =1.0 and the thermal

conductivities set equal to 0.3, the curve is equal to 0.3 from a target porosity of

0.0 to 1.0.
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The three curves in Figure 22 show the effective thermal conductivity for

kfx/ks" = 0.1, kfx/k.’ = 1.0, ks" = constant and ks’ being varied such that k,‘/ k..y =

0.5, 1.0, and 2.0.

Finally, Figure 23 is the same graph as Figure 6 with an additional curve.

The two curves in Figure 6 show the theoretical boundaries for porous media.

The one curve being the graphical representation of the parallel model and the

other curve being the graphical representation of the series model. The third

curve in Figure 22 represents the model as proposed in this paper. The shape

to the curve is due to the random generation of the fluid and solid cells in the

porous medium. As stated previously, all current models for determining the

effective thermal conductivity of a porous medium fall between the boundaries as

established by the parallel and series models. As expected, Figure 22 shows

that the curve for this model also lies between these two limits.
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CHAPTER IV

CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

1. As matrix size is increased the effective thermal conductivity will trend

toward a close set of values that are dependent upon the chosen target porosity.

2. The effective thermal conductivity is well behaved between the set

solid and fluid thermal conductivities for 0.0 target porosity to 1.0 target porosity.

3. The validity of this model is supported by the ratio of effective thermal

conductivity to fluid thermal conductivity curve falling between the two theoretical

boundaries of the series and the parallel model.

4. The calculated porosity does not necessarily match a specified target

porosity due to the random generation of the porous medium grid.

4.2 Recommend_ations

1. The current program requires more substantial testing using materials

with anisotropic properties.

2. The next extension of this numerical model would be to expand the

capability to model three, four, five, or more components. This would allow for

the determination of the effective thermal conductivity of systems consisting of

multi-component materials.

3. Another refinement would be to utilize the Monte Carlo method for

generating the material matrix. Each cell in the matrix would have an equal

45
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opportunity of being assigned a value from one to N that would be used in

determining whether that cell would be a fluid cell or a solid cell.
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Sample output for kf = 0.3 and ks = 0.3, DT = 10 seconds, and

convergence criteria set to 0.01 degrees.

RESULTS OF EFFECTIVE THERMAL CONDUCTIVITY CALCULATION

TARGET POROSITY: 0.346

GENERATED POROSITY: 0.361

GRID SIZE: 6

EFFECTIVE THERMAL CONDUCTIVITY: 2.999E-01

ITERATION COUNT: 2203

MATERIAL MATRIX:

_
b
N
—
l
—
t
—
L
N

A
N
A
-
K
N
N

A
—
b
N
-
L
—
L
—
t

A
N
A
—
t
—
t
—
t

A
-
A
N
N
N
-
A

A
N
N
-
8
4
M

TEMPERATURE FIELD:

345.8

337.5

329.2

320.8

312.5

304.2

345.8

337.5

329.2

320.8

312.5

304.2

345.8

337.5

329.2

320.8

312.5

304.2

345.8

337.5

329.2

320.8

312.5

304.2

345.8

337.5

329.2

320.8

312.5

304.2
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345.8

337.5

329.2

320.8

312.5

304.2
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Sample output for kf = 0.6 and ks = 0.3, DT = 10 seconds, and

convergence criteria set to 0.01 degrees.

RESULTS OF EFFECTIVE THERMAL CONDUCTIVITY CALCULATION

TARGET POROSITY: 0.346

GENERATED POROSITY: 0.333

GRID SIZE: 6

EFFECTIVE THERMAL CONDUCTIVITY: 3.819E-01

ITERATION COUNT: 741

MATERIAL MATRIX:

A
A
N
A
A
N

A
—
b
—
S
N
N
N

”
J
A
N
A
—
3

_
s
A
N
A
A
N

N
-
L
—
t
—
t
N
—
L

A
A
A
A
N
A

TEMPERATURE FIELD:

345.9

337.5

329.0

319.8

311.2

304.0

346.1

338.5

329.4

319.5

311.9

304.6

345.8

337.2

327.8

319.2

312.6

304.6

345.5

336.3

328.2

320.4

311.5

303.3

345.4

336.7

328.5

320.4

312.2

303.9

345.0

336.8

328.6

320.6

312.9

304.2
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Sample output for kf = 0.3 and ks = 0.6, DT = 10 seconds, and

convergence criteria set to 0.01 degrees.

RESULTS OF EFFECTIVE THERMAL CONDUCTIVITY CALCULATION

TARGET POROSITY: 0.346

GENERATED POROSITY: 0.333

GRID SIZE: 6

EFFECTIVE THERMAL CONDUCTIVITY: 4.678E-01

ITERATION COUNT: 1123

MATERIAL MATRIX:

_
L
N
A
N
A
N

J
N
—
L
-
A
—
t
—
L

.
A
N
—
t
N
-
L
—
t

A
N
N
-
I
N
A

A
N
N
-
3
A
A

N
—
F
—
h
—
fi
—
l
—
h

TEMPERATURE FIELD:

346.3

338.7

329.9

321.0

313.6

305.0

346.4

339.3

330.0

320.3

312.7

304.4

346.4

338.8

330.6

320.8

312.5

304.7

347.0

339.0

328.9

319.6

312.1

304.1

346.9

338.5

329.1

320.3

312.2

304.1

345.7

336.9

328.8

320.4

312.2

304.1
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Sample output for kx(f) = 0.6, ky(f) = 0.3 and kx(s) = 0.2,

ky(s) = 0.8, DT = 10 seconds, and convergence criteria set to

0.01 degrees.

RESULTS OF EFFECTIVE THERMAL CONDUCTIVITY CALCULATION

TARGET POROSITY: 0.346

GENERATED POROSITY: 0.278

GRID SIZE: 6

EFFECTIVE THERMAL CONDUCTIVITY: 5.991 E-01

ITERATION COUNT: 3152

MATERIAL MATRIX:

4
N
4
N
4
N

4
4
4
N
4
4

4
4
4
N
4
4

4
4
4
4
4
N

4
N
N
4
4
4

N
4
4
4
N
4

TEMPERATURE FIELD:

345.9

338.7

328.9

319.7

314.2

305.4

344.5

335.1

328.4

320.7

312.7

304.4

345.9

338.0

331.2

322.2

312.9

304.3

347.0

336.7

326.5

319.9

312.4

304.3

346.7

336.0

325.9

320.0

314.3

305.4

344.5

333.9

326.6

319.6

312.5

304.4
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