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ABSTRACT

STUDIES OF QUENCHED DIFFUSION FLAMES

NEAR COLD, INERT SURFACES

By

Nanda Kishore Lakkaraju

This project deals with the study of quenched diffusion flames near cold,

inert surfaces. It examines the structure of the flame-tip region of a triple or a tribrachial

flame. A transformation of coordinates is employed that enables the energy equation to be

integrated across the pre-mixed flame are, subject to an upstream matching condition. An

approximate matching condition is derived that enables an equation for the PF arc shape.

The solution of this equation produces flame shape contours X(Z) which may then be

grafted onto an orthogonal grid employing flame coordinates, x-Z; that is, the flame shape

is described by an equation of the type x = X(Z). A comparison is made between the

,shapes calculated using this simplified theory and numerically computed flame shapes; it

was found to be favorable. Weaknesses of this analysis are discussed, and possibilities for

future work are examined.
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PREAMBLE

The triple-flame structure is important for flame attachment in combus-

tors with fuel injectors. Without a certain degree of premixing these flames would either

quench or blow off. The same is true to a less dramatic extent for flame attachment involv-

ing flame spread over liquid or solid fuels. Here the flow comes from the condensed

medium, which is gasifying, whereas the oxidizer flow originates upstream and is parallel

to the pyrolyzing surface. Once again, a mixing region is formed that largely controls the

flame spread dynamics. This mixing region has been noted by even the earliest investiga-

tors, both experimental and numerical (and, in principle, the theoretical investigators, too)

but fundamental examinations of the nature and detailed structure of this zone were not

conducted. Part of the reason is the smallness of the region, it being convenient to “assume

it away” by a boundary layer approximation, for example. Another difficulty is the com-

plicated nature of the interacting processes, most of which are not “visible” under ordinary

circumstances but require extreme limits in order to bring them into bold relief. What is

needed, therefore, is a detailed examination of a model problem concerned directly not

with flame spread or flame attachment or any other practical feature but with the flame

structure itself.
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The model problem examined here describes qualitatively either a fuel

injector-type problem or a flame spread problem. The fuel flows past one side of an imper-

meable divider and mixes with an oxidant that flows past its other side. Depending on the

overall stoichiometry, as measured through the overall stoichiometric index, the resulting

diffusion flame(DF) inclines either to the left or to the right of the divider. On either side

of the DF and originating at its furthest upstream point (the triple point, TP) are two pre-

mixed flames (PFs), one projecting toward the oxidizer side (lean PF) and the other

toward the fuel side (rich PF). The resultant structure, the triple (or tribrachial) flame, has

the seemingly curious ability to propagate faster than the completely premixed flarne. Sev-

eral idealizations are made in this study.

The first idealization is that the flow field is inviscid and has constant den-

sity. This effectively eliminates the flame acceleration effect which is primarily a variable-

density phenomenon coupled with the occurrence of extremely high rates of reaction (heat

release) near the TP. Prior to entering into detailed discussions of coupled physical pro-

cesses, we examine why the reaction rate near TP becomes as large as it does by calculat-

ing oxidizer, fuel and temperature profiles there. Qualitatively, the oxidizer and fuel

fractions are both non-negligible but the temperature is quite close to its maximum value.

The second idealization is for the chemical reaction which is assumed to

occur through a single irreversible step F + DC -—> (1+u) P. This, we know, highlights or

exaggerates the triple flame structure, but for a modeling study it is exactly what we need.
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3

Reasonably useful one-step schemes for CH4-02 exist which may be used to assess the

likely regions of parameter space occupied by actual HC reaction schemes. More realistic

reaction schemes (e.g., Hz-OZ) may be examined later.

The third idealization is unity Lewis numbers for both fuel and oxidizer. In

some cases the Lewis number may become small enough to promote extreme forms of

instability, but this complication is best left for future work once preliminary details have

been sorted.

The objective of this work is to develop a means for combining numerics

and asymptotics so that a detailed diagnosis of the flame structure can be made. A recent

example of such a method is given in the article of Wichman and Bruneaux [1996], on the

quenching of a premixed flame by a clod wall. Inflection points, local maxima and local

minima were all interpreted physically, resulting in a clearer understanding of this compli-

cated process. We believe that the examination of the excess enthalpy function H, and the

species y0,yf, and temperatures, profiles and their various derivatives and gradients will

shed much light on the triple flame structure. The numerical/asymptotic solution method

is currently being developed and implemented for zero-convection flames.

A practical objective of future research is the examination of flame heat

flux signatures. These heat flux signatures play a major role in flame spread over solid and

liquid fuels. We expect that significant variations of the heat fluxes are produced by

changes in chemical parameters like the Damkohler number, D, the activation energy, B,
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4

the flow rate, 8, and the overall stoichiometry (o). The challenge here will be to quantify

these influences and to devise correlations for engineering use, if possible.

Another practical objective is the examination of the flame quenching dis-

tance as a function of D, [3, e, d). A useful correlation formula exists for the zero convec-

tion case, 8:0. An interesting goal here is to produce a “map of parameter space”

indicating what sorts of triple flames exist in each region. For instance, for flame spread

over solid fuels we find that the PF are closest to the fuel surface (the rich PF) does not

really exist, so the triple flame reduces to a double flame composed of only the lean PF

and the DF are. For flame spread over liquids, however, the flame structure is lifted further

from the surface because the pre-existing liquid vapor enable burning further from the fuel

supply. Hence the classical three-branch triple flame is observed.

The goals of this study, however, are to explore the limits of simplified

modeling in the description of a complex problem. If the asymptotic approach and the

' numerics are in reasonable agreement, we shall be more confident in our goal of extending

these asymptotic and other analytically-based ideas to the more general problem.
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INTRODUCTION

The triple flame (or tribrachial flame) is usually found near the tip of a dif-

fusion flame (DF). On one side, the unburned fuel mixes with the oxidizer to form a lean

premixed flame (PF). On the other side, the unburned oxidizer mixes with the fuel to form

a rich PF. The resultant structure, DF with the attached PFs, is called a triple or tribrachial

flame.

Triple flames are generally found in regions where there is a transition

between low Damkohler number mixing and high Damkohler number diffusional burning.

In the regions where the Damkohler number is small, the chemical reaction is “frozen”,

enabling unrestricted mixing to occur between the fuel and the oxidant. In a general flow

field, these regions will be separated from zones of large Damkohler number, called

“equilibrium ” regions, where it is impossible for the fuel and the oxidizer to coexist.

There is one dominant feature of the triple flame that makes it

indispensable in practical combustion systems. It enables the DF - guided by two PFs - to

propagate into, or against, an opposing flow. This explains how DFs, which have no

inherent propagation velocity, can survive in regions of relatively high flow velocities. A



its rtpr

opposed

.‘ombust

Kiple fin

LE retr-
b y

me zom-

beginnir

can des

PF‘TOlyzz

the fiam

be Wit

hiked

mm-

45"},

Iul‘li‘lx



6

few representative triple flame problems (see Fig. l) are (a) “bunsen flame” attachment, (b)

opposed-flow flame spread, (c) wind-aided flame spread, (d) jet diffusion flames, (e)

combustors, (fl flame propagation in stratified mixtures etc. In each of these problems, the

triple flame problem arises as an important sub-problem.

In opposed-flow flame spread, for example, there must be a flame anchor-

ing region that allows the DF to survive the opposing flow of the oxidizer. Thus, a premix-

ing zone of low Damkohler number must exist near the flame tip. An approximate, or

beginning understanding of the nature of this flame spread problem can be gained by

ignoring the triple flame region entirely, leading to the standard heat transfer models of

deRis, and Wichman and Williams. However, if sophisticated models are sought which

can describe the influences of finite-rate reaction, detailed heat flux signatures* to the

pyrolyzing fuel, and detailed solid-phase decomposition, then, the triple flame structure in

the flame tip region must be examined

Since the full problem is difficult to solve, the triple flame calculation must

be performed separately as a subproblem. It is a part of the whole that must later be syn-

thesized into the complete solution.

This project attempts to examine the fundamental nature of the triple flame

structure. A “two stream” problem is considered, where the fuel and oxidizer streams are

initially separated by an inert divider. This problem is then divided into two subproblems:
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8

an inner problem and an outer problem. The physical domain for the outer problem is

near the quenching zone between the inert divider and the point at which extinction

occurs. The inner problem is solved relatively close to the point of attachment of the two

PFs and the trailing DF.

The solution to this problem is achieved in three stages. In the first stage,

the inner problem is solved in order to obtain a relation between the mixture fraction coor-

dinate, Z, and the flame coordinate, X. Generally, the inner problem in combustion theory

is rather straight-forward once the scalings are determined and the relevant inner coordi-

nates are known. The dominant variation occurs across the flame width, not along it. This

makes the mathematical problem one-dimensional, though generally nonlinear. Neverthe-

less, the inner problem is usually well posed and rather easily solved.

In the second stage, the outer problem is tackled. The outer problem, how-

ever can be much more difficult, especially in multi-dimensional geometries like those

examined here. The principal difficulty involves the precise location of the matching

boundary. This unknown quantity must derive from the solution; it is generally not known

beforehand. Hence, the outer problem is solved subject to unknown boundary conditions

at unknown segments of the boundary making it an ill—defined Cauchy problem. Clearly,

numerical methods of solution will be necessary, the general procedure being iterative. In

this report, we examine an exact representation of the out solution. A logically reasonable

limiting case of this general expression produces a simplified outer temperature-gradient

distribution that can be comfortably matched to the inner solution. Although, thorough
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9

mathematical rigor is absent, a satisfactory self-consistency is nevertheless obtained.

In the third stage, the solution for the inner problem, obtained in stage one,

has to be grafted onto the solution obtained in stage two. In order to achieve this, first an

orthogonal coordinate system must be developed, one of the coordinates of which are the

mixture fraction coordinate contours. An orthogonal set of contours x -Z, is obtained by

solving the appropriate differential equation governing the field. Once this is obtained, the

solutions for the PF arcs, x = X(Z), can be grafted onto this coordinate system which gives

a realistic picture of the triple flame arcs as oriented in space.

In this report, the reactivity contours computed from a numerical solution

of the full equations are superposed on our solution for the PF arcs. This can be a useful

comparison in validating the results obtained from this simplified theory and those

obtained from exact numerical calculations. The numerical solutions are generated for the

boundary-value problem illustrated in Fig. 2.a, where the equations, boundary conditions,

etc., are shown. The reactivity contours, which are lines of constant a), are plotted in Fig

2.b. Under many flow conditions (8), with a fairly wide range of chemical parameters

(B,D), the characteristic triple flame shape is obtained. Our goal in this report is to repro-

duce as closely as possible the skeletal features of these numerically-calculated results

with an asymptotic flame theory. If a reasonable level of agreement is obtained, we shall

be encouraged to move to the next level of sophistication in our calculations.
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CHAPTER 1

THE INNER PROBLEM

In our simplified model, the inner zone that we shall examine is the PF arc.

The fundamental boundary value problem is illustrated in Fig. 2.a; these are the basic

equations and boundary conditions that we shall study. The flow past the vertical divider

in the negative-x half-plane is inviscid and incompressible (i.e., constant density). ,The gas

phase properties are assumed constant and a one step irreversible reaction describes the

flame chemistry. The diffusion coefficients of fuel and oxidizer are assumed identical, the

mass fractions are yF = YF/YFF and y0 = YO/YOO, which vary between zero and unity.

The fuel and oxidizer equations can be combined to produce a homogeneous constant-

- coefficient Helmholtz equation for the mixture fraction Z = (oyp +1-y0)/(l+¢). where

¢=VYFFIY00 is the overall or global stoichiometric coefficient. In the case of zero convec-

tive flow 8:0, it is easy to solve for Z and to obtain:

2

1 ta“("2)
Z = — - atan . (1)

tank 11%)

For the triple flame problem shown in Figs. 2 and 3, we write the constant

property energy equation here as
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l3

err = tm+ryy+ (l +¢)Dw , (2)

which we transform into the fi-n plane near the PF (see Fig. 3). The coordinates (x,y) span

the complex z-plane, z = x +iy, and the coordinates (in) span the complex w-plane, w=§

+ it]. Coordinate é follows the PF sheet, which we have defined as the locus of points 11 =

0. Also, n=§=0 at the triple point, TP. Note that the coordinate 1] increases in the down-

stream direction.

Mathematically, we write

2 = x+iy = f(§+in) = f(w),

w = §+in = g<X+iy) = g(z).

Note that the PF arc should be piecewise continuous. This means slope discontinuities are

permitted, so that PF arc shapes of the kind discussed previously are allowed.

An improved understanding of the relationship between the flame structure and

the cartesian system (x,y) is obtained when we press the analysis further. First, we define

the flame locus as x=X(y). The local flame slope is s=dX(y)/dy=s(y). We wish to develop

the function f(w) such that along the flame locus, there is a one-to-one correspondence

between E and y. That is, along the flame locus we require

Z = X00 + i)’ = f(5) = X(i) + i§~

Hence, along the flame are, where y = E, we have s(y) = f’(fi). Consequently,

f’(§)=8(§)+i, f”(§)=8’(§), f”’(§)=S”(§). etc.
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For small 11, we can write the Taylor expansion for f’(§+in) as

f’(§+in) = f'<§>+(in>f"(o-(nz/znfme)..-

= (s-(n2/2!)s” +...) + i(1+ns’+...) = n+0».

Now we shall examine the function f(w) in order to obtain expressions for x(§,n) and

Him).

x + iy = f(§ + in) = f(é) + inf’(§) + in2/2! f”(§) +...

= f(g) + i[ns -n3s"/3! +...] - [n + nzs’/2!...]

= mg) - (n + nzs’l2l...)} + i[§ + ns - n3s”/2!].

We require one more piece of information before we transform our equations

from the x-y coordinate system to the fi-n coordinate system. Given w = § + in, we calcu-

late

diz-Igun = [g(20+Az)-g(zo)l/(Az)-

. = {§(x0 + Ax,y0 + Ay) -§(xo,yo) + i[(Xo+Ax,Yo+AY) ' “(XO’YOH l/(AX+iA)’)-

When A2 = Ax, we obtain

g’(Zo) = §x(x0’)'0) + inx(x09YO)

and for A2 = iAy, we obtain

{(20) =ny(x0’YO) ’ i§y(x0’y0)-
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This leads directly to the Cauchy-Riemann conditions,

F... = W.

n. = -§y.

Hence,

a

3; = éxaé + nxan = gxaé - gran’

a

37 = gyaé +£25.91?

so that the Laplacian operator transforms as

2 2

axx+ayy = (§x+§)')(a§§+ann) ‘

Substitution into the energy equation (2) gives

2§x 2 ”It: 2gy 2 Tn+Tnn+T§§+ 12+”? ' (3)

§x+§y §x+§y §x+§y

We observe that fix = Re(g’), fiy = -Im(g’), and that

-l

2% = $3 = p. + ih .

Hence,

t. = 11/012 + 12>. a, = M112 + x2). :3 + :3 = m2 + )3)",

giving, from (3)

eutx = EMnI'TnnI'Iéé‘LLUZ'IAZJU +¢)Do). (4)
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This equation can be analyzed across the PF arc (across which only 1] varies).

Across the DF, we see that only § varies once the arc é has specified. Consequently, equa-

tion (2) may be analyzed along the PF are by stretching eta, along the DF by stretching é.

Near the TP, both § and I] must generally be stretched so that equation (4) remains elliptic

there1 .

At the PF, we define N = bBt as the stretched coordinate normal to the PF arc.

Hence, (4) becomes,

  

[—1112 + 73)) (1 + a) De) [suta-ebBMN—‘rggl
INN = 2 2 + 2 2 . (5)

b B b B

As 13—60:», the second term on the RHS vanishes by comparison with the first.

As B—roo, the factor ”2 + 1.2 is evaluated along the PF. We recall that

x + iy = f(§ + in)and that

f’(§) = ll+i7v=8(§)+ i,

where sis the local flame slope. Hence, “2 + 12 = abs(f’(l‘,))2 = l + 52, giving

 

1. Presently, we must note the usefulness ofa transformation to a system ofcoordinates employing

Z as the coordinate perpendicular to the DF locus. The work ofPeters and Bilger and others is

predicated upon the usefulness ofthis transformation. However, it is quite obvious thatfor more

complicatedflame structures like tripleflames, the “natural ” fi-t] coordinate system isfar more

appropriate



2
- 1 1 D

INN = t +5 )2( 2+ (b) w’ (6)

“3

 

where the reaction rate function is given by

w=yoyt6Xp[-B(l-t)/[1-a(1-t)]].

with

yo = l-Z-(l-Zf)t,

Yr=Z'Zr’t-

We now perform a standard high Activation Energy Asymptotic (AEA) analy-

sis, (Linan (1974)) letting

1: = 10(2) -0/[3b

with

0 = 00 + 01/3 +...

and

7': 2

b = [1 -a(1-to(z))] = [—f] .

To

After a little algebra (recall thath = 1/1+¢) we find that for the fuel side (Z>Zf)

"(..(1+s2))(1-Zf)°xp[%(i'i‘1(a)]-
INN - 1,434 f a We”) ”p (-90)

 

 

  

(7)

and for the oxidizer side (Z<Zf)
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_(1+32). (l—Zf)CXp[%.(%_T 1(a)]

TNN = 4 4 f 0 6(9+Yo) exp (-90) 9

1913

 

 

  

(8)

where 7f: Bb(Z—Zf) / Zf[(1'Zf)] and yo: Bb(Zt—Z) / Zf[(l'Zf)]. We now note that

32 1 E92)2 6NN_ eNN

9”” ‘ WITO‘Z’ m1 = “rabies "133 ' "is? ‘9)

because 10(2) is a linear function of Z and its second derivative always vanishes (except at

Z = Zf). Hence, we can write the previous two equations under a single notation:

ONN = A(Z) -e(e+v(z)) expt-e). (10)

with boundary conditions 6N—>O,6—)O as N—>oo (burnt side) and ON—affi-wo as N—>—oo

(unburned side). Integration of these equation provides the following eigen-relationship.

A(Z) =--—f-2-—-. (11)

where

 

L—(1+s2))(1—zf)o(2),

3 3

b 43

Yr: Bb(Z-Zf)/Zrl(l-Zf) . (12)

A(z) =

7’: 2

b = [1-a(1—r,(2))1=[-T-’] .

0

In order to determine the flame shape from the solution for s, the function “f”
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must be known. Function “f” connects the inner PF-zone solution to the upstream quench

zone. From our inner/outer transformation, it is easily shown that f = 0N = 4". Since 1

increases with increase of n in front of the PF arc, (i.e., In > O) we expect f < 0 there. See

 

 

 

 

     

 

Fig 4 below:

’1:r along

z=zr (Stoichiomeric Contour) 9n<0

X

f=d9ldN<0

In >0 near

quench

location

(a) (b)

Fig 4.Diagram of the (a) actual temperature distribution (t) and

(b) stretched temperature (9==B(1-'t)) distribution across

a typical PF

The novel feature of our premixed flame analysis at this stage is the initial

transformation to the flame coordinate system. What remains of this transformation after

integrating and matching is the local flame slope, s, which is presently unknown. The sub-

sequent analysis of the following sections is constructed in such a manner that the func-

tion, 5 can be determined.
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CHAPTER 2

THE OUTER PROBLEM

We observe generally that the outer upstream solution has a rather strong bear-

ing on the calculated results. In Dold’s formulation (1989), the parameter 8 (containing the

flame speed) plays a prominent role. Nevertheless, the outer solution was little more than a

transversely slowly varying pre-mixed flame, in a semi-infinite medium. Hence, Dold’s

model (1989) was a minor perturbation from the standard free PF outer solution. Other

outer solutions are clearly possible under different conditions of flame attachment.

The solution that we shall develop is exact though fundamentally without use

until certain rational and self-consistent simplifications are made. We note that it is typi-

cally the outer problem that is the most difficult to solve, and that only in certain special

cases (e.g., the 1-D steady PF) is the outer solution easily found. The chief difficulty in

this triple-flame calculation resides precisely in the outer problem we now examine.

W

Let us consider a fairly general formulation shown in Fig. 5. Here ‘x’ is the streamwise

coordinate (in the direction of the prevailing flow) and ‘y’ is the transverse coordinate.



21

 

 

p
0

 
i
~
<
> S
H
)

  
 

Figure 5. A Hypothetical Triple Flame Structure

We write the general formula,

A

tn=YT-T|.
(1)

In polar coordinates this becomes,

Y1 = 21,+(6)19. (2)e

The PF arc is given by x = X(y) or F = x-X(y) = 0. Clearly F > 0 on the burnt side and F<0

on the unburned side. For this reason, we define the unit vector in the n-direction (positive

in the direction F >0) as
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» Yf

'3 lVfl

Hence

T11 = YT'U

becomes

Ia .

tr(sin0+scosfl) 7(0059‘351‘19)

1: = + ,

n 2 2

1+3 1+s

where we have usedf; = 25in9—ycosfl, Q = Scosfl+ysin9

and the functions, r, sin 0, cos 0 can be expressed in terms of yf and X(yf) as

 

2 2

r = J(X+X0) +yf ,

 

 

 

 

. X+X0

srn0= ,

2 2
J(X+X0) +yf

-)’
cosO = f ,

2 2
J(X+XO) +yf

where coordinate Yf tracks the PF as shown in the previous figure. Therefore

yf+ s (X+ X0) )}

,l(X+x0)2+yf2

 

  

1 1 {
t = , . Tr( (X+XO) —syf) —19[

n AI+SZJM+XO)2+yf2

(3)

We note that X0 is the furthest upstream point on the PF locus. When we consider the

small limit of X/Xo, y/X0,r/XO, then we obtain
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1: —s1:

nail-I ' a J. (4)

0 1+32

The substitution of eqn (4) into eqn (1.11) gives, for the flame slope,

s=i/ETIZ_)_1’ (5)

where

  

20—2,)0 y “Totzn 6 E 1 1
ch =———1 - - -— . 6

(Z) :2 Bi ”U Tf lexp[R(T<Z> 7)) Ur

This result for <1>(Z) is substituted into the preceding equation for s, enabling us

to solve for the flame slope. From the practical point of view the challenge is to determine

a suitable approximation for the as-yet-undetermined and unspecified factor I, in the

upstream vicinity of the PF are.

We realize from previous work and from examination of the two-dimensional

outer problem that there are no simple and readily available expressions for 1,. However,

from numerical solutions and purely mathematical considerations, we are relatively confi-

dent over the following statements. First, I, scales with l/rq, where rq is the quenching

radius. Hence, since the maximum value of T is unity, we may expect

t~1
r .

rq

Second, 1:r is concave upward toward along the extrapolated DF locus in front of the triple

point, so that 1, should actually be greater than l/rq upstream of the PF arc. Consequently,
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we can write

t~k

rr’

‘1

with k>1 near to and slightly preceding the PF arc, giving

1: = . (7)
 

This produces the following expression for <I>(Z),

2 A

2(1-2,)D-r Tom) 6 r 1 1
(I) = q] I _ __ ,

(Z) 12 33 ( +2)[ e, 1"”[er1z1 7)]
   

(8)

which may be substituted into equation (5) once an outer zone temperature distribution

To (Z) is specified.

There are many possible choices for To (Z) . The detailed nature of the various

possibilities will be the subject of a more thorough future mathematical study of eqn (8).

Suffice it to say here that there are two difficulties:

1) The maximum value of (I) may not occur at Z = Zf, the DF locus, and

2) There is generally a slope discontinuity near Z = Zf, produced by the factor 7.

We have determined that the simplest but perhaps the most unrealistic choice is to use for

the oxidizer side of the DF

To (Z) = To'i' (Tf— To); (9)

f
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and

A _ A A _ A (1-2)

T0(Z) —T0+(Tf To) (l—Zf) (10)

for the fuel side of the DF.

These formulae for To (Z) are simply the Burke-Schumann (B-S) temperature

profiles. The advantages of the 8-8 profile are that it produces a maximum for CD at Z = Zf

which coincides with a manageable slope discontinuity there. From a physical standpoint,

this temperature distribution is unrealistic even across the one dimensional downstream

DF and we hardly expect it to be realistic in the quenching zone preceding the PF arc.

However, for the ease of analysis, it is by far the simplest choice.

To recapitulate, the inner and outer-zone analyses produced the flame slope

formula, Eq. (1.11), with the function <1>(Z) given by Eq. (8), obtained by matching the

inner and outer solutions through the condition on In, given originally by Eq. (1.12) and

then truncated - for the sake of simplicity- as the Burke-Schumann profile. The 'PF arc

shape is obtained by solving Eq. (5) for the local flame slope, s.
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CHAPTER 3

Z-FIELD CALCULATION

In order for the preceding flame slope calculation to be meaningful, a way

must be found to relate the flame slope s to the physical coordinated describing the PF

locus. Through various transformations, we have produced an equation for s, the local

flame slope, in terms of the mass fraction coordinate, Z. The slope itself, however, must be

expressed in terms of a coordinate system, (see Fig. 3) that can readily be calculated. In

the original rectangular coordinate system, the problem looked as shown below. We have

essentially reoriented the coordinate system as shown below (Fig. 6.a), writing

x —) y, y —> -3'c. In the x-y system the transformation from (x,y) to the (u,v) plane shown

below (Fig 6.b) is

u = sinngcoshj-tg, v = cosrtgsinh?

which in the (x,y) plane becomes

u = -sintt%cosh1t;, v = costtgsinhttjir

When 8 = O (the zero-convection case), the Z equation becomes simply the Laplace equa-

tion V22 = O, which also transforms to V22 = O in the u-v plane. The solution in this
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Fig 6. Plots showing reorientation of the coordinate system.
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plane, subject to 2:0 along the positive u-axis and Z = 1 along the negative u-axis, is sim-

ply Z=9/1t, where

2)1311(1I2

tanhtt(g) . (I)

+ 312111

N
I
?
!

9 = atan(3) =-]-

u TI

The equation for Z is 82x = Zxx + 2),), subject to 2:0 on the oxidizer side and

2:1 on the fuel side. In the zero convection case, 8 =0, the solution for Z is simply

  

1 timbre; 1 l tanttg

Z=—atan =-+—atan EZO . (2)

tanttx 2 1t tanhttJ—r

2 2

When e<<O(l), the approximate solution near Z0 = g, is

Z = Z0 + 8(9 —1-25)M + C(82) , where 6:11:20, and M is an O(l) constant that is evaluated

numerically from a double integral.

We proceed to calculate dZ/dy for the general case and obtain an expression

for dX/dZ in terms of s and dZ/dy. We exploit the fact that Z=Z(y) along the PF are so that

the flame slope can be written as

s=—-—-—-—=-—--—-— (3)

Consequently, with dZ/dy given as
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dZ_ d ( _1_r) (2)
dy — dy[Z0+e 1:20 2 M+0 e :l

= (l+€M1t)dZO/dy,

we calculate dX/dZ=s/(dZ/dy) after passing to the zero flow limit e—>O:

(Zntanhng- (secmy) 2) - s

 

dX_

_ 2Z ’ 2

d 1+(tanh1t3) - (tannw)2-s( sechrtg nanny!)

(4)

where ‘1’ = Z-l/2. This equation can be solved to produce the local flame slope X(Z), once

we substitute for tits and we let x -—>X on the right hand side. The solution X(Z) is, in a

sense, generic (except for the specification of I, in <I>(Z)), because the function X(Z) is fit-

ted to an orthogonal coordinate system in which Z is one of the two coordinates. The coor-

dinate system is defined as the (x-Z) system, in which we write x=X(Z) to define the flame

shape. The furthest upstream point of the PF arc occurs at x=0, so that the distance

between the origin and the line 1:0 is given by X0. When lines of constant (x,Z) form an

orthogonal grid, lines of constant 1 can be deduced from lines of constant Z through the

equation:

Yx - Y2 = 0, (5)

which is written in a scalar notation as

xex + xyZy = O.

The boundary values of x are obtained from the requirement that they remain unchanged

regardless of the value of 8, so our solutions for the boundary values of x can be devel-

oped analytically from the 8:0 case for the convective flow cases. The x-equation is a two
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dimensional wave equation with variable coefficients. The only difficulty is that the “wave

speed”, c = Zx/Zy, shows a very strong variation near the singular point of Z(x,y) at the

origin (ranges from -oo to +00 across the origin in the y-direction). This difficulty is elimi-

nated by halving the domain and imposing symmetry requirements across the x-axis. The

solution is obtained using a finite differencing scheme incorporating an unsymmetric algo-

rithm, as suggested by Pearce and Mitchell [1962].

The substitution of Eq.(2.5) for s with Eq. (2.8) for <I>(Z) and Eq. for To (Z)

produces a nonlinear ODE for X(Z). Note that we must use x—>X0+X on the right hand

side of Eq. (5). The solution of this ODE produces two PF arcs, one for s>O, reaching

toward the fuel side, and one for s<O reaching toward the oxidizer side. These flame

shapes can be compared with the numerical solutions of the original equations.

There is an important obstacle to the completion of this task. This arises in

Eq.(2.8), through the value of <1) evaluated at Zf (the flame tip), where the DF and the two

 

. . . . (14,) Dr2
PFs meet. Here we obtain the followrng relationship, <1) (2] = 4 2 - —3‘1 .

K B

When this quantity is less than unity Eq.(2.5) produces two distinct and opposite PF

slopes leaving the triple point. When <1>(Zf)>1 , Eq.(2.5) gives imaginary slopes, so the PFs

do not emanate from the triple point. Both of these physically unrealistic choices can be

avoided by requiring through the choice of K as
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Dr2 ‘

K = [(l—Zf)[?‘1]:l , (6)

which has the added benefit of fixing the temperature gradient 1’, = r5 upstream of the PF

q

t
o
t
—
-

are. Our analysis, as already discussed, requires K>1. Eq.(2.8) reduces to

=t~a[T—°‘:7’1]%xp[e<,z, ~11)
Another obstacle in our quest for the solution for the flame shapes is the absence from our

 

theory of X0. As a consequence, we determine X0 from the numerical solution and employ

it as an empirical “input” parameter. This obstacle enables us to compute our solution for

dX/dZ from Eqs. (2.5), (4), (2.7), (2.9) and (2.10) with the result the PF arcs shapes

x=X(Z), are obtained that can be compared with numerical predictions.
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CHAPTER 4

RESULTS AND DISCUSSION

Shown in Fig. 7 is a sample test plot of the PF arcs superposed onto the physi-

cal coordinate system. The solution for the PF Arcs on the oxidizer side and the diffuser

side are obtained by solving the inner problem through a finite differencing scheme. The

problem has to be numerically integrated from the triple point towards both the oxidizer

side and the fuel side of the trailing diffusion flame.

Once this solution is obtained, the field equations for Z are solved through a

successive over relaxation (SOR) method. The solution at this stage is fairly straight for-

ward. Then in order to graft the solution onto the physical coordinate system, we have to

determine the solution for the set of contours which are orthogonal to the Z-field at every

point. This is achieved in two stages. First the case for no convection, 8:0, is solved ana-

lytically using conformal transformations. Then this solution is evaluated at the bound-

aries for use as an “initial” value for the corresponding non-zero convection field

equation; the resulting wave equation has to be solved in order to find the orthogonal x-Z
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coordinate grids for various convective inflows (see Fig. 12).

However, the solution to this problem is not trivial, since the “wave speed”

given by the ratio of dZ/dy and dde shows strange behavior at the singular origin in the

y-direction. This is because of the fact that although (1de shows no sign change across

the entire domain of interest, dZ/dy passes through a sign change at the triple point, TP.

As a result the entire term undergoes this sign change and the result is numerically devas-

tating (refer to Figs. 14 and 15). This problem can be circumvented by halving the domain

and imposing symmetry requirements across the x-axis. Once this is accomplished a com-

bination of unsymmetric algorithms as suggested by Pearce and Mitchell [1962], is used

to solve the problem.

Shown in Figs. 8 through 11 are comparisons of the asymptotically-calculated

flame shapes with the reactivity contours of the numerical model. The congruence of these

curves is quite good, given the many approximations suffered in the theoretical calcula-

tion. There are, nevertheless, a few subtle points worth mentioning.

First, the theoretical solution was grafted onto the arc Z-=Zf. The reactivity

maximum from the numerical computations was therefore shifted, (in practice, only very

slightly) to the line Z = Zf, and this point (X0,Zf) was taken as the origin for the flame

shape calculations.
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Second, the x-Z grid is generally calculated for the case £>0, indicating a non-

zero convective flow. However in our derivation of dX/dZ we passed to the limit 8:0 for

simplicity and generality (because our analytical solution was valid only near Zf = 1/2).

How can an analytical solution obtained in the limit 8:0 be grafted onto a grid calculated

for £>0? The answer to this question in fact provides another check on the validity of our

solution. It is not difficult to demonstrate that when 8 increases, the PF arc should become

progressively more gently bowed. Physically, this indicates that the convective delivery of

reactants to the PF arcs strengthens them, enabling them to “face” the oncoming flow

more squarely. Consequently, for the limit 8—) 0, the sweepback of the PF arcs should be a

maximum. We see from the figures that our theoretically calculated PF arcs are always

swept back further than the numerically-calculated PF arcs. This, in our view, is a rather

strong endorsement of the validity of our approach. In other words, the relative degrees of

sweepback are qualitatively as they should be. We note, parenthetically, that the differ-

ences between the x and Z contours for 8:0 and e>0 are significant only in a region

between the walls and the far-downstream region. The differences, even in the intermedi-

ate region, are not large.



Test Plot of the Premixed Flame Arcs

 
Fig 7. Sample test plot of the PF arcs.
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Premixed Flame Arcs and Reactivity Contours
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coordinate system. The reactivity contours are also

plotted for the same case.
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Premixed Flame Arcs and Reactivity Contours
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Fig 9. Premixed flame arcs superposed onto the orthogonal

coordinate system. The reactivity contours are also

plotted for the same case.
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Fig 10. Premixed flame arcs superposed onto the orthogonal

coordinate system. The reactivity contours are also

plotted for the same case.
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Fig 11. Premixed flame arcs superposed onto the orthogonal

coordinate system. The reactivity contours are also

plotted for the same case.
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Fig 12. Premixed flame arcs superposed onto the orthogonal

coordinate system. The reactivity contours are also

plotted for the same case.
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Fig 14. Premixed flame arcs superposed onto the ortho

coordinate system. The reactivi

plotted for the same case.
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Fig l6. Premixed flame arcs superposed onto the orthogonal

coordinate system. The reactivity contours are also

plotted for the same case.
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Fig 18. Premixed flame arcs superposed onto the orthogonal

coordinate system. The reactivity contours are also

plotted for the same case.



47

Premixed Flame Arcs and Reactivity Contours

  

 
      

Fig 19. Premixed flame arcs superposed onto the orthogonal

coordinate system. The reactivity contours are also

plotted for the same case.
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Grid system for different Epsilon values

 
Fig 20. Grid system for different epsilon values.
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plot of dZ/dY

 
Fig 21. Plot of dZ/dY for the domain.
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plot of dZ/dX

 
   

 
Fig 22. Plot of deX for the domain.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

FOR FUTURE WORK

We have demonstrated that a fairly simple theoretical approach successfully

predicts the PF arc shape near the triple point (TP), where the flame attaches to the cold

surface. The flame are near the triple point is rounded, contrary to the discussion of Wich-

man [1995], where it was shown that non-isenthalpic PF arcs may demonstrate an arrow-

like or pointed flame structure. However, the derivations of Wichman [1995] considered

B—>oo, which eliminated the inner region, for which careful scrutiny will always generate

continuous solutions. In fact, our basic premise, d>(Zf) = 1, follows directly from the

philosophic requirement that discontinuities cannot be tolerated at the smallest scales.

This premise is of course interchangeable with the continuum hypothesis.

A challenge greater than the calculation of the flame shapes is the calculation

of quenching distances [Wichman (1989)]. Once this is achieved, it will no longer be nec-

essary to treat (X0,Zf) as “input parameters”. Rather, X0 shall be estimated from an

asymptotic analysis and used in a theory like the one described here.
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There are still numerous weak points in this work that future studies should

examine. The first is the use of the simplistic Burke-Schumann profile for the upstream

(quenching region) temperature field. In reality, no more than the downstream cross-DF

temperature field should be used. When this is attempted, we find that the location of max-

imum (I), defined as Z¢max, shifts (toward a larger Z when Zt<l/2) and that a slope discon-

tinuity develops at Zf, rendering the (ID-profile between Zf and qumx slightly unrealistic.

A smoothening or “renormalization” procedure has been developed to cope with this diffi-

culty, but further analysis has to be carried out before it can be incorporated into the final

solution. In the general case, the outer solution must of course be obtained numerically

through the solution of elliptic partial differential equations that are coupled through a

boundary condition to the inner (flame) zone. A general solution procedure utilizing

. numerical matching is now being developed.
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