LIBRARY Michigan State University

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due.

DATE DUE	DATE DUE	DATE DUE
AT 0 6 1640		
J UN 1 C 100 0		
JUN 3, 0 2000		
		nortunity institution

MSU is An Affirmative Action/Equal Opportunity Institution characteristics

WHITE-TAILED DEER MOVEMENTS, HABITAT USE, AND BROWSING EFFECTS ON VEGETATION IN THE UPPER PENINSULA OF MICHIGAN

By

Teresa Mackey

A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Fisheries and Wildlife

ABSTRACT

WHITE-TAILED DEER MOVEMENTS, HABITAT USE, AND BROWSING EFFECTS ON VEGETATION IN THE UPPER PENINSULA OF MICHIGAN

By

Teresa Mackey

Habitat use and movement patterns of 61 white-tailed deer (Odocoileus virginianus) were monitored in the Whitefish River Basin (WRB) and Stonington Peninsula (SP) in the Hiawatha National Forest (HNF) during 1993 and 1994. Home ranges were calculated. Vegetation types used by deer were compared to availability determined with Landsat thematic mapper data and ARC/INFO. Relative productivity of deer in the 2 study areas was compared. A long-term exclosure study was initiated to quantify the effects of deer on the northern white-cedar (Thuia occidentalis) forest type; baseline vegetation characteristics of the cedar stands were measured. Spring/summer mean home range size for WRB and SP deer was 640.9 ha and 89.8 ha, respectively. Vegetation types were not used in proportion to availability; selected types were aspen/birch, mixed pine, and whitecedar (Thuia occidentalis). Types with high percentages (>15%) of use included northern hardwoods, wet hardwood/conifer mix, and lowland conifers. Productivity estimates were not different (P>0.10) between the 2 study areas. Vegetation types selected by deer should be maintained throughout the landscape to help reduce the possibility of high concentrations of deer and possible impacts on plant communities.

ACKNOWLEDGMENTS

Thanks to......McIntire-Stennis Cooperative Forestry Research Program, U.S. Forest Service, U.P. Whitetails Association, and the Michigan Agricultural Experiment Station for funding this project. The idea, without the money, would not have gone anywhere.

Thanks to.....my major professor, Dr. Henry Campa III, for his advice and guidance throughout the study. I would also like to recognize my committee members for their help during the project: Dr. Jonathan Haufler, Dr. Scott Winterstein, Dr. Kurt Pregitzer during the initial part of the project, and Dr. Doug Lantagne in the concluding portions of the study.

Thanks to.....U.S. Forest Service personnel on the Rapid River Ranger District of the Hiawatha National Forest.

Thanks to.....Michigan Department of Natural Resources, Wildlife Division, for providing Landsat thematic mapper satellite vegetation data files.

Thanks to......Timothy Van Deelen and U.P. Whitetails Association volunteers for trapping and radio-collaring the deer; Jason Halifax, Sharie DeLong, and Paul Thompson for assistance in data collection; Bryan Smith for help with ARC/INFO analysis.

Thanks to.....Dr. Scott Winterstein for help in statistical analyses.

Thanks to.....my fellow grad students for their help, input, advice, humor, and friendship, especially my office mates: Tim Van Deelen, Meg Clark, John Stribley, and Allison Gormley.

Thanks to.....my parents for all their support over the years; words do not seem to be enough to show my appreciation.

Thanks to.....my husband for all his support, patience, encouragement, and love (and for catching those U.P. trout for dinner when he would visit during my field seasons).

Thanks to.....God for allowing it all to happen.

TABLE OF CONTENTS

LIST OF TABLES	vii
LIST OF FIGURES	xii
INTRODUCTION	1
OBJECTIVES	5
STUDY AREA	6
METHODOLOGY	12
Capturing and Radio-Collaring	12
General Location Technique	12
Movements and Home Ranges	14
Habitat Use	15
Productivity	18
Vegetation Sampling	19
Composition and Structure of Northern White-Cedar Stands	19
Browse Sampling	22
RESULTS	23
Capturing and Radio-Collaring	
Movements and Home Ranges	
Adaptive Kernel Home Range Results	
Minimum Convex Polygon and Harmonic Mean	
Home Range Results	25
Habitat Use	
Productivity	
Vegetation Sampling	
Composition and Structure of Northern White-Cedar Stands	
Exclosure and Open Area Site Data Combined	
Exclosure and Open Area Site Data Separated	
Browse Sampling	

DISCUSSION	
Movements and Home Ranges	
Home Range Estimator Comparison	
Habitat Use	61
Productivity	64
Vegetation Sampling	65
Composition and Structure of Northern White-Cedar Stands	65
Exclosure and Open Area Site Data Combined	66
Exclosure and Open Area Site Data Separated	67
Browse Sampling	67
CONCLUSIONS	69
MANAGEMENT RECOMMENDATIONS	71
APPENDIX	73
LITERATURE CITED	125

LIST OF TABLES

Table 1	Vegetation type classifications for Michigan's central Upper Peninsula, 1993-1994	17
Table 2	Locations of exclosure and areas open to browsing sites in the Whitefish River Basin-North and -South (WRB-North and -South) and Stonington Peninsula-North and -South (SP-North and -South) study areas in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994	20
Table 3	Number of white-tailed deer radio-collared in the Whitefish River Basin (WRB) and the Stonington Peninsula (SP) in the Hiawatha National Forest in Michigan's Upper Peninsula, 1992-1994	24
Table 4	Mean spring/summer home ranges (ha) (and standard errors) of white-tailed deer in the Whitefish River Basin (WRB) and Stonington Peninsula (SP) using adaptive kernel with 95% contours in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994	26
Table 5	Mean fall home ranges for white-tailed deer in the Whitefish River Basin (WRB) and Stonington Peninsula (SP) using adaptive kernel with 95% contours in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994	27
Table 6	Mean spring/summer home ranges (ha) (and standard errors) of white-tailed deer in the Whitefish River Basin (WRB) and Stonington Peninsula (SP) using minimum convex polygon (MCP) and harmonic mean (HM) with 95% contours in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994	29
Table 7	Mean fall home ranges (ha) (and standard errors) of white-tailed deer in the Whitefish River Basin (WRB) and Stonington Peninsula (SP using minimum convex polygon (MCP) and harmonic mean with 95% contours in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994	30

Table 8	White-tailed deer spring/summer habitat use and availability in the Whitefish River Basin (WRB) and Stonington Peninsula (SP) study areas in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994	32
Table 9	White-tailed deer fall habitat use in the Whitefish River Basin (WRB) and Stonington Peninsula (SP) study areas in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994	33
Table 10	Vegetation types with highest percentage of use by white-tailed deer by time period in the Whitefish River Basin and Stonington Peninsula study areas in Michigan's Upper Peninsula, 1993-1994	34
Table 11	Mean productivity and standard error (S.E.) of white-tailed deer in the Whitefish River Basin (WRB) and Stonington Peninsula (SP) study areas in the Hiawatha National Forest in Michigan's Upper Peninsula, 1994	36
Table 12	Mean percent vertical cover (and standard error) for height strata in the 4 study areas (Whitefish River Basin-North and -South [WRB-North and -South] and Stonington Peninsula-North and -South [SP-North and -South]) in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994	38
Table 13	Mean percent vegetation horizontal cover (and standard error) for height strata in the 4 study areas (Whitefish River Basin-North and -South [WRB-North and -South] and Stonington Peninsula-North and -South [SP-North and -South]) in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994	39
Table 14	Mean stem densities per hectare (and standard error) of dominant tree species in the 4 study areas (Whitefish River Basin-North and -South [WRB-North and -South] and Stonington Peninsula-North and -South [SP-North and -South]) in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994	40
Table 15	Mean stem densities per hectare (and standard error) of non- dominant woody species in the 4 study areas (Whitefish River Basin-North and -South [WRB-North and -South] and the Stonington Peninsula-North and -South [SP-North and -South]) in the Hiawatha National Forest in Michigan's Upper Peninsula,	
	1993- 1994	41

Table 16	Herbaceous species summary for the 4 study areas (Whitefish River Basin-North and -South [WRB-North and -South] and Stonington Peninsula-North and -South [SP-North and -South]) in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994	49
Table 17	Mean relative frequencies (and standard errors) of herbaceous species in the 4 study areas (Whitefish River Basin-North and -South [WRB-North and -South] and the Stonington Peninsula- North and -South [SP-North and -South]) in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994	50
Table A1	Seasonal home ranges (ha) of white-tailed deer in the Whitefish River Basin (WRB) and Stonington Peninsula (SP) using minimum convex polygon (MCP), harmonic mean (HM) with 95% contours, and adaptive kernel (AK) with 95% contours in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993	73
Table A2	Seasonal home ranges (ha) for white-tailed deer in the Whitefish River Basin (WRB) and Stonington Peninsula (SP) using minimum convex polygon (MCP), harmonic mean (HM) with 95% contours, and adaptive kernel (AK) with 95% contours in the Hiawatha National Forest in Michigan's Upper Peninsula, 1994	77
Table A3	Mean percent vertical cover (and standard error) for height strata in exclosure and areas open to browsing sites in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994	81
Table A4	Mean percent horizontal cover (and standard error) for height strata in exclosure and areas open to browsing sites in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993- 1994	82
Table A5	Mean stem densities per hectare (and standard error) of dominant tree species in exclosure and areas open to browsing sites in the 4 study areas (Whitefish River Basin-North and -South [WRB-North and -South] and the Stonington Peninsula-North and -South [SP-North and -South]) in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994	83
Table A6	Mean stem densities per hectare (and standard error) of non- dominant woody species in exclosure and areas open to browsing sites in the Whitefish River Basin-North study area in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993- 1994	85

Table A7	Mean stem densities per hectare (and standard error) of non- dominant woody species in exclosure and areas open to browsing sites in the Whitefish River Basin-South study area in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993- 1994	89
Table A8	Mean stem densities per hectare (and standard error) of non- dominant woody species in exclosure and areas open to browsing sites in the Stonington Peninsula-North study area in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994	93
Table A9	Mean stem densities per hectare (and standard error) of non- dominant woody species in exclosure and areas open to browsing sites in the Stonington Peninsula-South study area in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994	96
Table A10	Mean stem densities per hectare (and standard error) of non- dominant woody species that were significantly different (P<0.10) among study areas (Whitefish River Basin-North and -South [WRB-North and -South] and Stonington Peninsula-North and -South [SP-North and -South]) in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994	99
Table A11	Mean absolute (AF) and relative frequencies (RF) (and standard errors [SE]) of herbaceous species in exclosure and areas open to browsing sites in the Whitefish River Basin-North study area in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994	102
Table A12	Mean absolute (AF) and relative frequencies (RF) (and standard errors [SE]) of herbaceous species in exclosure and areas open to browsing sites in the Whitefish River Basin-South study area in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994	106
Table A13	Mean absolute (AF) and relative frequencies (RF) (and standard errors [SE]) of herbaceous species in exclosure and areas open to browsing sites in the Stonington Peninsula-North study area in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993- 1994	111
Table A14	Mean absolute (AF) and relative frequencies (RF) (and standard errors [SE]) of herbaceous species in exclosure and areas open to browsing sites in the Stonington Peninsula-South study area in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993- 1994	115
	•	

Table A15	Relative frequency (and standard error) of herbaceous species that	
	were significantly different (P<0.10) among study areas (Whitefish	
	River Basin-North and -South [WRB-North and -South] and	
	Stonington Peninsula-North and -South [SP-North and -South]) in	
	the Hiawatha National Forest in Michigan's Upper Peninsula,	
	1993-1994	119

LIST OF FIGURES

Figure 1	Location of the western zone of the Hiawatha National Forest in Michigan's Upper Peninsula	7
Figure 2	Mean monthly temperature at Manistique, Michigan, during the study (1993-94) and the 30-year average (1951-80)	9
Figure 3	Total monthly precipitation at Manistique, Michigan, during the study (1993-94) and the 30-year average (1951-80)	10
Figure 4	Location of the Whitefish River Basin (WRB) and Stonington Peninsula (SP) deeryards in Michigan's Upper Peninsula	13

INTRODUCTION

Forests and white-tailed deer (<u>Odocoileus virginianus</u>) are valuable natural resources in Michigan. Forests cover approximately 7.5 million ha in Michigan and provide recreation, timber products, and habitat for wildlife. Of the 7.5 million ha of forest land, 7.1 million ha has been classified as commercial forest land and is available for the above uses depending on the owner's objectives (Michigan Department of Natural Resources 1983).

Forest lands in Michigan are important economically because of their recreation and timber value. Approximately 8.1 million people used state forests in 1976 (Michigan Department of Natural Resources 1977) and Michigan's national forests had 4,916,400 visitor-days in 1990 (U.S.D.A. Forest Service 1990). Michigan's raw timber products were valued at \$310.6 million in 1992 (Potter-Witter 1995). Michigan's Forest Resources Plan (Michigan Department of Natural Resources 1983) set targets for forest outputs by 2000 at 138 million user-activity days for wildlife, fish, and other recreational activities and approximately 14 million cubic meters for timber harvests.

Forest wildlife, the most well-known probably being the white-tailed deer, has both consumptive and nonconsumptive users throughout the United States. Williamson and Doster (1981) estimated the capitalized value of white-tailed deer in the United States to be approximately \$27.3 billion or approximately \$1,657 per animal.

In Michigan, there were an estimated 1.6 to 1.8 million deer in October, 1992 (Michigan Department of Natural Resources 1992). Approximately 1,250,000 deer hunters spent over \$400 million during all 3 deer hunting seasons in 1992 (Michigan Department of Natural Resources 1992). Nationally, the values received by hunters is estimated at \$1.8 billion (Williamson and Doster 1981). Langenau (1979) found 3 times more people in Michigan participated in nonhunting activities than the number who hunted deer. The estimated value of benefits received by nonhunters from the national deer herd is substantial—approximately \$5.4 billion annually (Williamson and Doster 1981).

Forest lands and white-tailed deer numbers have undergone dramatic changes during the past 150 years (Blouch 1984). Mature forests covered the state until the mid-19th century; correspondingly, white-tailed deer numbers were very low. Extensive logging in the Great Lakes states in the last half of the 19th century created more favorable habitat for deer and their numbers increased. Excessive hunting and repeated wildfires resulted in low deer numbers by the early 1900s. Regeneration of large cutover and burned areas began by the 1930s and 1940s and deer numbers once again increased. This cycle of forest-white-tailed deer interaction has provided biologists with valuable information for the management of forest ecosystems. As forests mature, setting back succession is required to maintain optimal habitat conditions for white-tailed deer throughout its range.

With the passage of the Multiple Use-Sustained Yield Act of 1960, national forest managers are required to manage for multiple uses of "recreation, range, timber,

watershed, and wildlife and fish purposes" (Hunter 1990). With these policy requirements, land management decisions on national forest lands must be oriented toward maintaining wildlife and timber resources to meet multiple-use demands without detrimental effects to either resource.

Local concentrations of deer in forested areas may impact forest vegetation by affecting tree regeneration (Dahlberg and Guettinger 1956, Case and McCullough 1987), growth and development (Tilghman 1989), and reduced stocking (Marquis 1974). Providing high quality summer range is important to the over-winter survival of deer because of the role of summer forages in fat accumulation (Mautz 1978). Reducing locally abundant deer numbers may help maintain the general welfare of the deer herd, habitat quality, and the forest ecosystem composition and structure.

The recent goal for deer herd size in Michigan is 1.3 million animals (Michigan Department of Natural Resources 1992). Once the goal is reached, management must include accurate harvest quotas to maintain herd size in all areas that will not detrimentally impact forest vegetation and agricultural lands. Currently, deer population numbers and distribution are estimated from deer check station data, highway counts, and field reports (Michigan Department of Natural Resources 1991). However, because of seasonal habitat use and movement patterns, harvest quotas set for regions of Michigan may not reflect the number of deer which should be harvested.

Quantification of white-tailed deer spring, summer, and early fall habitat use and movement patterns will provide information to help attain more accurate estimates of herd demographic and habitat requirements in various regions of Michigan's Upper

Peninsula. Management across the landscape for vegetation types used by deer can reduce concentrations of deer but still provide a population to meet recreational demands.

Managing Michigan's forest lands to meet the demand for timber and wildlife is a complex problem. A study to investigate the deer-forest land relationship in Michigan's Upper Peninsula was initiated in 1992. A concurrent project with this study quantified deer population dynamics and winter habitat use (Van Deelen 1995). The focus of this project was to quantify forest vegetation types used by white-tailed deer during spring, summer, and fall; determine deer seasonal movement patterns and home ranges; assess the impacts of white-tailed deer on forest vegetation, specifically northern white-cedar (Thuja occidentalis); and provide management recommendations for optimal use of the deer herd and timber resources.

OBJECTIVES

Specific objectives for this project were to:

- Determine quantitative estimates of white-tailed deer spring, summer, and early fall habitat use patterns in the central portion of Michigan's Upper Peninsula.
- 2. Determine deer seasonal movement patterns and home ranges.
- 4. Evaluate effects of deer browsing on the composition and structure of northern white-cedar stands.
- 5. Quantify deer browse use of selected tree species.
- 6. Attain productivity estimates of deer.
- Provide management recommendations to enhance the ability to manage forest-deer relationships to achieve multiple-use objectives for forest ecosystems.

STUDY AREA

The study area was centered in the Whitefish River Basin (WRB) and Stonington Peninsula (SP) in the Hiawatha National Forest (HNF) in the central portion of the Upper Peninsula of Michigan (Fig. 1). The HNF lies within Delta, Alger, and Schoolcraft Counties and encompasses approximately 4050 km². Lake Michigan and Lake Superior border the area to the south and north, respectively.

Approximately 90% of the study area is wooded, primarily owned by federal and state governments and several large corporations (Berndt 1977). Recent (1991) Landsat thematic mapper data (MacLean Consultants Ltd.) estimates that approximately 14% of the land in the SP is comprised of agricultural and herbaceous openland vegetation types compared to approximately 3.5% of the WRB. Major industries in the area are timber, especially pulp production, and recreation.

Modern physiography and soils are a result of post-glacial erosion and soil formation processes acting on the glacial deposits (Albert et al. 1986). Low elevations (207 to 235 m) dominate the flat, glacial lake plains and consist of poorly drained sand and clay soils, exposed limestone and dolomite bedrock, or thin soils over bedrock (Albert et al. 1986). Soils on the SP are primarily the Nahma-Ensley-Cathro and the Rubicon associations. The majority of the WRB consists of the Tawas-Carbondale-Roscommon, Kiva-Chippeny-Summerville, Rubicon, and Kalkaska associations. The

Figure 1. Location of the western zone of the Hiawatha National Forest in Michigan's Upper Peninsula.

remaining portion of the study area in the HNF is primarily Dawson-Tawas-Rousseau and the Kalkaska-Tawas-Carbondale soil associations (Berndt 1977).

The climate is dominated by lacustrine influences (Albert et al. 1986). Prevailing westerly winds result in a quasi-marine climate near the Great Lakes changing to a semicontinental climate over the inland areas. Spring is delayed because of the cooling of warm southerly air by Lake Michigan. Summers are cool because of lake breezes (Fig. 2) (National Oceanic and Atmospheric Administration 1993-1994). The growing season averages 120 days (Berndt 1977). Winter (November to March) averages 19 days of -17.8 C or below and summer temperatures are rarely (once every 2 years) higher than 32.2 C (Berndt 1977).

Precipitation (Fig. 3) (National Oceanic and Atmospheric Administration 1993-1994) is greatest during the growing season; 60% of annual totals fall from April to September (Berndt 1977). Snow flurries are frequent with snowfall averaging <152.4 cm annually in the southern region to 355.6 cm annually near Lake Superior (Eichenlaub et al. 1990).

Vegetation on the SP is both deciduous and evergreen, such as balsam fir (Abies balsamea), sugar maple (Acer saccharum), paper birch (Betula papyrifera), and hemlock (Tsuga canadensis). In the WRB, vegetation consists of evergreen stands dominated by tamarack (Larix laricina), black spruce (Picea mariana), and white-cedar; broadleaf deciduous forests composed of sugar maple, yellow birch (Betula lutea), beech (Fagus grandifolia); along with hardwood-conifer mixes (Kuchler 1964). Vegetation on the well-drained end moraine and ground moraine ridges is dominated by northern



Figure 2. Mean monthly temperature at Manistique, Michigan, during the study (1993-94) and the 30-year average (1951-80) (National Oceanic and Atmospheric Administration 1993, 1994).

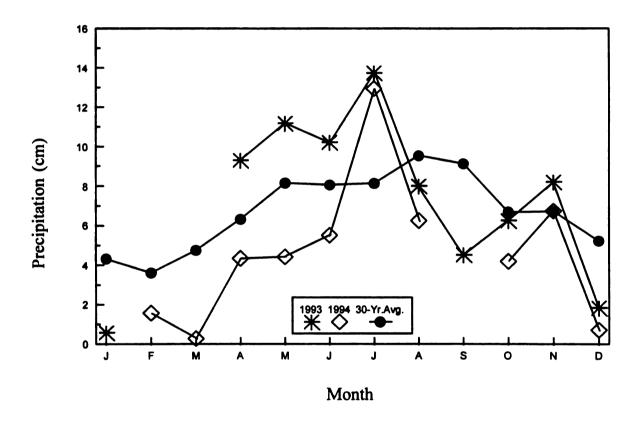


Figure 3. Total monthly precipitation at Manistique, Michigan, during the study (1993-94) and the 30-year average (1951-80) (National Oceanic and Atmospheric Administration 1993, 1994).

hardwoods. Eastern hemlock, red pine (<u>Pinus resinosa</u>), and white pine (<u>Pinus strobus</u>) are species whose abundance has been altered from cutting and fire (Albert et al. 1986). Conifer swamps are primarily white-cedar, balsam fir, and white spruce (<u>Picea glauca</u>) (Albert et al. 1986); red pine and jack pine (<u>Pinus banksiana</u>) grow on dry sands (Berndt 1977).

METHODOLOGY

CAPTURING AND RADIO-COLLARING

White-tailed deer were live-trapped using Stephenson (McBeath 1941) and Clover (Clover 1954) traps from January through mid-April in 1992, 1993, and 1994 in the WRB and SP deeryards (Fig. 4). Trapping was conducted in cooperation with U.P. Whitetails Association's program and field assistants. Traps were baited with shelled corn. Deer were manually restrained, ear-tagged, and radio-collared (Telonics Inc., Mesa, Ariz. and Lotek Engineering Inc., Ontario, Canada). Radio-collars were equipped with mortality switches that doubled the pulse rate if collars remained still for 12 hours. Collars were distributed to each sex in 3 age classes (adults, yearlings, and fawns) in each deeryard.

Age of fawns and yearlings was determined through tooth development and wear criteria developed by Severinghaus (1949); age of adult deer was determined by canine tooth extraction and analysis of the cementum annuli (Gilbert 1966, Van Deelen 1995). GENERAL LOCATION TECHNIQUE

Seasonal movement patterns and habitat use of deer were determined using a portable TR-2 receiver (Telonics Inc., Mesa, Ariz.) with a hand-held 2-element yagi antenna. Deer were located throughout the winter for another component of the study investigating winter habitat use and population dynamics (Van Deelen 1995).

METHODOLOGY

CAPTURING AND RADIO-COLLARING

White-tailed deer were live-trapped using Stephenson (McBeath 1941) and Clover (Clover 1954) traps from January through mid-April in 1992, 1993, and 1994 in the WRB and SP deeryards (Fig. 4). Trapping was conducted in cooperation with U.P. Whitetails Association's program and field assistants. Traps were baited with shelled corn. Deer were manually restrained, ear-tagged, and radio-collared (Telonics Inc., Mesa, Ariz. and Lotek Engineering Inc., Ontario, Canada). Radio-collars were equipped with mortality switches that doubled the pulse rate if collars remained still for 12 hours. Collars were distributed to each sex in 3 age classes (adults, yearlings, and fawns) in each deeryard.

Age of fawns and yearlings was determined through tooth development and wear criteria developed by Severinghaus (1949); age of adult deer was determined by canine tooth extraction and analysis of the cementum annuli (Gilbert 1966, Van Deelen 1995). GENERAL LOCATION TECHNIQUE

Seasonal movement patterns and habitat use of deer were determined using a portable TR-2 receiver (Telonics Inc., Mesa, Ariz.) with a hand-held 2-element yagi antenna. Deer were located throughout the winter for another component of the study investigating winter habitat use and population dynamics (Van Deelen 1995).

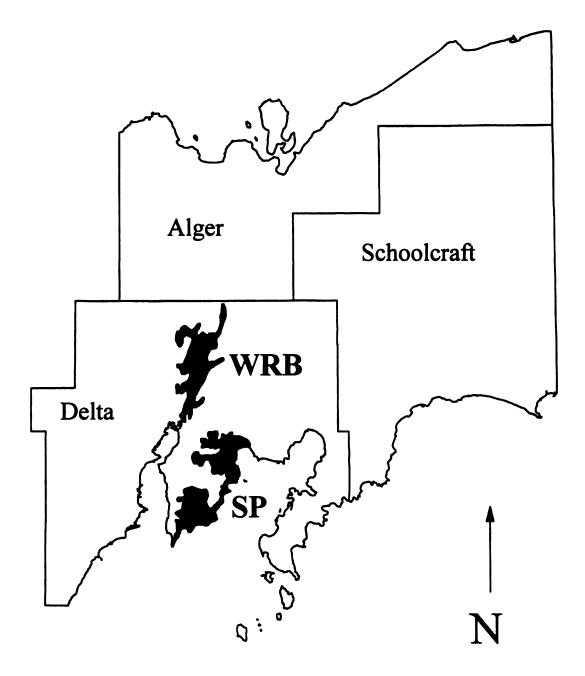


Figure 4. Location of Whitefish River Basin (WRB) and Stonington Peninsula (SP) deeryards in Michigan's Upper Peninsula.

Radio-telemetry data for spring/summer and fall were collected from mid-May through September 22 for spring/summer and September 23 through December 20 for fall. Mid-May was the approximate time when all radio-collared deer appeared to be on their spring/summer home ranges as determined by having 2 or more consecutive weekly location points in the same vicinity. For home range analysis, deer were grouped by the area where they established their spring/summer home range; for habitat use analysis, deer were grouped by where they were trapped because their availability area was based on trap location (e.g., a deer trapped on the SP but moved to the WRB for its spring/summer home range was grouped with the WRB deer for home range analysis and with SP deer for habitat use analysis).

MOVEMENTS AND HOME RANGES

Seasonal movement locations were obtained weekly for all deer using triangulation techniques. If a weekly location point was located in a vegetation type adjacent to the road according to Forest Service compartment maps, the data was recorded for habitat analysis. The order in which deer were located was alternated each week to obtain varied times for individual deer. Triangulation bearing error angle was estimated with 50 sets of 3 bearings obtaining an overall standard deviation using LOCATE II (Pacer 1993).

Seasonal home ranges were calculated using the adaptive kernel with 95% contours (Worton 1989) with CALHOME (Kie et al. 1994) and the minimum convex polygon (Mohr 1947) and the harmonic mean with 95% contours (Dixon and Chapman

1980) with TELEM88 (Coleman and Jones 1988). Home ranges were separated by year and season (spring/summer and fall) for analysis.

Prior to home range comparisons between study areas, a parametric analysis of variance was performed on the ranked data (Conover and Iman 1981) using SAS (SAS Inst., Inc. 1993) to detect possible interactions between and among the 3 factors: sex, age, and area. When interactions between main effects exist, significant differences detected between the main effects would not be meaningful (Sokal and Rohlf 1981); in this project, a comparison of study areas was of primary interest. If interactions were not significant (P>0.10) and if sample size allowed ($n \ge 10$), the Mann-Whitney U test was used to test for significant differences between the study areas.

Spearman rank correlation coefficients were calculated using SYSTAT (1992) to compare home range sizes estimated by the adaptive kernel, minimum convex polygon, and harmonic mean methods.

HABITAT USE

Habitat use data were collected during 3 time periods: 0800 to 1559, 1600 to 2359, and 0000 to 0759. The 24-hour sampling technique was used to avoid potential bias involved in sampling just during daylight hours (Beyer and Haufler 1994). Sampling deer was alternated within and among time periods to obtain unbiased data and equal sampling intensities. Vegetation types used by deer were determined by triangulating along edges of vegetation types or walking around deer along the perimeter of stands a minimum of 3 sides to pinpoint locations. Habitat use data points were included with weekly location data for movement analysis.

Percent availability of each vegetation type was determined with a circle centered at a central trap site coordinate for the 2 trapping areas (WRB and SP). The circle, with a radius equal to the 85th percentile of the maximum distance moved by a single deer from that trapping area, was overlayed on Landsat thematic mapper vegetation data (Michigan Department of Natural Resources, Wildlife Division, Lansing, Mich.) using the geographic information system ARC/INFO (Environmental Systems Research Institute, Redlands, Calif.); the 85th percentile included 95% of the deer from each trapping area.

Satellite vegetation classifications (Maclean Consultants Ltd. 1991) were combined into 12 categories for project purposes (Table 1). Satellite areas designated as water were not included in the total land area available; areas designated urban and nonvegetative were grouped into the "other" category. Agricultural-cropland is comprised of row crops only; hay-related crop fields would fall into the herbaceous openland designation. The red, jack, and other (mixed) pine satellite vegetation categories were grouped into the mixed pine category. Tamarack, black spruce, white spruce, balsam fir, and mixed conifer vegetation types were combined into the lowland conifer category. White-cedar was kept as a separate category because the focus of part of this project quantified possible impacts deer have on the composition and structure of cedar stands. Five satellite vegetation types did not have any land area in the 2 study areas and were not included in the project list (Table 1).

	Deer Habitat Project	Deer Habitat Use Thesis	
Classifications ^a		Project Classifications	
Non-Coniferous		Non-Coniferous	
Urban		Agricultural-Openland	
Non-Vegetativ	e	Herbaceous Openland	
Agricultural-C	ropland	Shrubland	
Herbaceous Or	enland	Northern Hardwood	
Shrubland		Aspen/Birch	
Northern Hard	wood	Dry Hardwood/Conifer Mix	
Oak ^b		Wet Hardwood/Conifer Mix	
Aspen/Birch		Wetlands	
Lowland Hard	woods ^b	Other	
Dry Hardwood	/Conifer Mix		
Wet Hardwood	l/Conifer Mix	Coniferous	
Wetlands		Mixed Pine	
Water		Lowland Conifers	
		White Cedar	
Coniferous			
Pines	Red Pine		
	Jack Pine		
	White Pine ^b		
	Other (Mixed) Pine		
Tamarack			
Hemlock ^b	<70% Crown Closure		
	>70% Crown Closure		
Black Spruce	<70% Crown Closure		
-	>70% Crown Closure		
White Spruce	<70% Crown Closure		
>70% Crown Closure			
Balsam Fir ^b <70% Crown Closur			
	>70% Crown Closure		
White Cedar	<70% Crown Closure		
	>70% Crown Closure		
Mixed Conifer	<70% Crown Closure		
	>70% Crown Closure		

Table 1. Vegetation type classifications for Michigan's central Upper Peninsula, 1993-1994.

^aData obtained from 1991 Landsat thematic mapper (Maclean Consultants Ltd.).

^bVegetation type with no land area in the 2 study areas (Whitefish River Basin and Stonington Peninsula).

Habitat use analysis combined data from all animals for both years. A chi-square goodness-of-fit test was used to determine if deer used vegetation types in proportion to their availability as described by Neu et al. (1974). In this analysis, the observed value is the number of data points in a vegetation type; the expected value is the proportion of total acreage of that vegetation type times the total number of deer observations. These partial chi-square values for each vegetation type are summed for a total chi-square to be compared to the table value. A confidence interval is then constructed around the proportion observed in each vegetation type to determine which types are being used more than, less than, or as expected. Use is considered to be more than, less than, or as expected if the proportion of the vegetation type available to the deer is lower than, higher than, or within the confidence interval, respectively, built around the proportion of use of that vegetation type.

PRODUCTIVITY

Productivity estimates were initially determined through direct observation of radio-collared females in 1993. After locating individual deer in specific vegetation types, animals were observed closely to determine if they had fawns. Due to the difficulty in directly observing individual radio-collared deer, 3 standardized driving surveys were conducted at dusk in both study areas during mid-summer in 1994. The number of deer observed in each area was recorded by sex and age. A Mann-Whitney U test was used to compare the fawn:doe ratio in the SP and WRB using SYSTAT (1992).

VEGETATION SAMPLING

Composition and Structure of Northern White-Cedar Stands

To assess the impacts of deer browsing on the composition and structure of mature cedar stands, 2 paired areas within selected stands were delineated and 1 was randomly chosen for exclosure construction and the other to be left open to browsing. Twelve mature, well-stocked (70%) stands were selected in sets of 3 on a north-south snow depth gradient (Eichenlaub et al. 1990) resulting in 4 study area gradients in the WRB and SP (WRB-North and -South and SP-North and -South). Snow depth has been shown to be related to deer use of tamarack swamps (Beier and McCullough 1990), with lowest deer densities believed to be in the WRB-North area and highest numbers in the SP-South area. One stand selected in the SP-South area was not used due to inaccessibility; no replacement stand could be located that met established criteria.

Exclosures are 30 m x 30 m x 2.4 m. Three exclosures were built in the WRB-North study area in 1993; 1 exclosure was constructed in each of the 3 remaining study areas in 1994. Remaining exclosures will be constructed by the U.S. Forest Service and Michigan State University personnel potentially by 1996. All site locations are listed in Table 2. For the remainder of this document, the sites chosen for exclosure construction will be referred to as exclosure sites even if construction has not been completed.

Vegetative sampling for baseline structural and compositional components was conducted on exclosure sites and their respective paired areas open to browsing. A 2-m

Study Area	Site	Legal Description	Compt.	Stand	Exclosure Site Location (UTMs) ^a	Open Area ^b
WRB- North	1	T43N,R20W Sec. 19	143	27	511025- 5106651	South
	2	T43N,R20W Sec. 30	143	36,37	511109- 5104876	North
	3	T43n,R21W Sec. 24	143	20,21	510068- 5105394	Southeast
WRB- South	1	T41N,R19W Sec. 19	64	69	520494- 5085756	Northeast
	2	T41N,R21W Sec. 3	94	3	505685- 5091006	East
	3	T42N,R20W Sec. 20	103	25	512165- 5095398	South
SP- North	1	T40N,R20W Sec. 33	28	27	517259- 5072983	West
	2	T40N,R20W Sec. 20	39	31,32	515563- 5076573	East
	3	T40N,R20W Sec. 20	39	33,34	515864- 5076637	Southeast
SP- South ^c	1	T39N,R21W Sec. 27	9	2	509216- 5065470	Northwest
	2	T39N,R21W Sec. 33	10	22	507210- 5064156	Northwest

Table 2. Locations of exclosure and areas open to browsing sites in the Whitefish River Basin-North and -South (WRB-North and -South) and Stonington Peninsula-North and -South (SP-North and -South) study areas in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994.

^aUniversal Transverse Mercator.

^bOpen area direction is in relation to the exclosure site and distances are 25-30 m.

^cThird site in SP-South was not used due to inaccessibility; no replacement site could be located.

buffer was established along the inside perimeter of all sites, so the area disturbed by exclosure construction would not be included in data collection.

Vertical cover of vegetation was quantified using the line intercept method (Canfield 1941) and was recorded in 3 height strata: <0.5 m, 0.5 to 2.0 m, and >2.0 m. Line intercepts were systematically located within exclosure and areas open to browsing sites. Downed woody material cover was also recorded for descriptive purposes.

Horizontal cover was determined using a profile board described by Nudds (1977) at randomly selected points in each sample area. The standard observing distance was 4 m determined by recording cover at different distances (3, 4, and 5 m) and choosing the one with the greatest variation (Gysel and Lyon 1980). The height strata for the board were <0.5 m, 0.5 to 1.0 m, 1.0 to 1.5 m, 1.5 to 2.0 m, and 2.0 to 2.5 m.

The stem densities of dominant tree species (northern white-cedar, balsam fir, and sugar maple) were determined by conducting complete counts at each site of each species. Other woody stem densities and frequency of herbaceous species were determined using randomly located nested quadrats 1 x 8 m and 1 x 4 m, respectively. Densities of woody species were determined using the same 3 height strata used for vertical cover. The height strata used for the above measurements is based on the growth forms of vegetation and structural requirements of deer (Alverson et al. 1988).

Due to exclosure construction only being partially complete, analysis was conducted 2 ways:

- combining exclosure site and open area data within study area gradients for comparisons among gradients.
- 2. keeping the exclosure site and open area data separate for comparisons within and among study area gradients.

Kruskal-Wallis one-way analysis of variance (Siegel and Castellan 1988) was used to compare study area gradients with both combined and separated data using SYSTAT (1992). A Kruskal-Wallis multiple comparison test (Siegel and Castellan 1988) was used to detect where the differences occurred among the study areas. The paired t-test (Steel and Torrie 1980) was used to determine significant differences (P<0.10) for all vegetation characteristics between exclosure and open area sites within a study area. Quality control of all vegetative sampling was assured by determining statistically adequate sample sizes (Freese 1978). An 80% confidence level was used to determine sample sizes. Allowable error was set at 20% of the mean.

Browsing Sampling

Browsing estimates were conducted in the 2 study areas in spring 1994 using 12 randomly established 25-m belt transects in vegetation types adjacent to mature cedar stands used as wintering areas. To allow for sufficient sampling area, stands were selected based on the length of the perimeter of the stand adjacent to the cedar stand. The number of current annual growth stems available of the dominant tree species and the number browsed of the dominant tree species only < 2 m in height were recorded.

RESULTS

CAPTURING AND RADIO-COLLARING

One hundred one white-tailed deer were radio-collared in the WRB and SP during the 3 years of trapping (Table 3). Due to mortality occurring prior to spring/summer, location data for this portion of the study were gathered on only 61 of these deer, 22 (36%) males and 39 (64%) females. Of the 61 deer, 17 (28%) were radio-tracked during both seasons and years of the study.

MOVEMENTS AND HOME RANGES

The median date for movement of wintering deer from the 2 deeryards was March 29 in 1993 and April 4 in 1994 (Van Deelen 1995). Two-thousand four-hundred sixty-five locations were obtained during the 2 years, including 790 (39%) habitat use data points.

Maximum migration distances during the 2 years by a single deer from the 2 trapping areas were 54.4 and 52.9 km from the WRB and SP, respectively. In 1993, 9 (28%) of 32 deer with summer ranges in the WRB had been trapped in the SP; in spring/summer 1994, 6 (26%) of 23 WRB deer were SP-trapped deer. Mean telemetry triangulation bearing error angle standard deviation for observers was 8 degrees.

			Study	Area	
Year	Sex	Age	WRB	SP	- Total
1992	Male	Adult	2	0	2
		Yearling	2	1	3
		Fawns	5	5	10
	Female	Adult	7	10	17
		Yearling	1	0	1
		Fawn	5	5	10
1993	Male	Adult	0	0	0
		Yearling	4	0	4
		Fawn	5	5	10
	Female	Adult	8	5	13
		Yearling	1	0	1
		Fawn	6	5	11
1994	Male	Adult	0	0	0
		Yearling	0	0	0
		Fawn	5	5	10
	Female	Adult	0	0	0
		Yearling	0	0	0
		Fawn	4	5	9
Total			55	46	101

Table 3. Number of white-tailed deer radio-collared in the Whitefish River Basin (WRB) and the Stonington Peninsula (SP) in the Hiawatha National Forest in Michigan's Upper Peninsula, 1992-1994.

Adaptive Kernel Home Range Results

Analysis of variance of home range data showed an interaction between area and sex for spring/summer 1993 (P<0.10) for the adaptive kernel (AK) method. Due to the interaction of these 2 factors, the test to determine a significant difference between the 2 study areas for spring/summer 1993 had to be separated by sex first. No interactions were evident for either season in 1994. CALHOME (Kie et al. 1994) was not able to produce an AK home range with 95% contours for 4 deer; 80% contours worked for 3 of these deer and 50% contours worked for the other deer (Tables A1 and A2, Appendix).

In 1994, mean spring/summer and fall home ranges of deer in the WRB were significantly larger (P<0.01) than home ranges of deer in the SP (Tables 4 and 5). WRB female home ranges were significantly larger than SP female home ranges in spring/summer 1993 and 1994 (Table 4). Low sample size did not allow testing of females in fall 1994 or males for all seasons. Male mean spring/summer home ranges ranged from 76.0 ha to 1354.7 ha in the SP and WRB, respectively (Tables A1 and A2, Appendix). Male mean home ranges for SP deer were smaller than WRB deer home ranges during the study, except fall 1993 when a mean for SP male deer could not be determined with only 1 male deer being monitored (Tables 4 and 5).

Minimum Convex Polygon and Harmonic Mean Home Range Results

Analysis of variance of home range data showed an interaction between area and sex for spring/summer 1993 (P<0.10) for the harmonic mean (HM); in fall 1993, an interaction between age and area for the minimum convex polygon (MCP) and HM

	19	93	19	994
	WRB	SP	WRB	SP
Females	219.6ª	90.9	817.1 ^ª	78.7
	(49.4)	(22.6)	(655.5)	(7.8)
Males	1354.7	283.3	223.6	76.0
	(1147.4)	(94.0)	(80.7)	(17.7)
Study Area	645.3	96.7	636.5 ^b	82.8
•	(431.1)	(31.6)	(455.7)	(8.2)

Table 4. Mean spring/summer home ranges (ha) (and standard errors) of white-tailed deer in the Whitefish River Basin (WRB) and Stonington Peninsula (SP) using adaptive kernel with 95% contours in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994.

^aSignificantly different from SP (P<0.05) with Mann-Whitney U test using SYSTAT (1992).

^bSignificantly different from SP (P<0.01) with Mann-Whitney U test using SYSTAT (1992).

•

	19	93	19	94
	WRB	SP	WRB	SP
Female	1252.2	109.2	2147.7 ^a	39.2
	(657.4)	(24.0)	(1746.0)	(12.2)
Male	238.4	b	297.6	31.5
	(99.2)		(216.8)	(8.8)
Study Area	914.3	107.7	1563.4 ^c	37.8
	(445.9)	(21.9)	(1198.3)	(10.0)

Table 5. Mean fall home ranges for white-tailed deer in the Whitefish River Basin (WRB) and Stonington Peninsula (SP) using adaptive kernel with 95% contours in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994.

^aN too small (<10) to conduct test.

^bOnly one animal in this category; no mean available.

^cSignificantly different (P<0.01) from SP with Mann Whitney U test using SYSTAT (1992).

methods was detected. Due to the interactions of these factors, tests to determine a significant difference between the 2 main effects of interest (study areas) were not conducted for these seasons and methods. No interactions were evident for either season in 1994.

TELEM88 (Coleman and Jones 1988) was not able to produce an HM home range with 95% contours result for 3 deer; 80% contours were used for these deer (Tables A1 and A2, Appendix). Results for the MCP and HM methods were similar to the AK results. Mean spring/summer home ranges for deer in the WRB were significantly larger than for deer on the SP using MCP for 1993 and 1994 and HM in 1994 (Table 6). Mean fall home ranges for deer in the WRB were significantly larger than deer in the SP in 1994 (Table 7) with both methods. In spring/summer 1993 and 1994, WRB female home ranges were significantly larger than SP female home ranges (Table 6) for the MCP and HM home range methods. Low sample size did not allow testing of females in fall 1994 or males for all seasons.

Spearman rank correlation coefficients comparing the 3 home range methods ranged from 0.546 to 0.979 for the SP and from 0.852 to 0.989 for the WRB. The low coefficient for the SP was spring/summer 1994, HM versus AK method. Disregarding study area, the coefficient ranged from 0.817 to 0.979 for the 3 sets of correlations (MCP vs. HM, MCP vs. AK, and HM vs. AK).

		19	993			1	994	
	M	СР	Н	IM	M	СР	н	М
	WRB	SP	WRB	SP	WRB	SP	WRB	SP
Females	136.7ª	48.9	343.3ª	65.7	185.8ª	52.6	490.4 ^b	71.5
	(32.0)	(10.1)	(171.6)	(14.5)	(76.0)	(6.3)	(318.3)	(10.6)
Males	159.2	124.8	693.5	294.0	150.0	56.8	204.9	98.5
	(43.5)	(42.2)	(511.7)	(115.7)	(37.6)	(14.9)	(49.8)	(35.2)
Study	145.1ª	64.1	474.6	111.3	174.9 ^c	53.4	366.7°	76.9
Area	(25.4)	(13.4)	(216.9)	(33.3)	(53.6)	(5.6)	(194.4)	(10.7)

Table 6. Mean spring/summer home ranges (ha) (and standard errors) of white-tailed deer in the Whitefish River Basin (WRB) and Stonington Peninsula (SP) using minimum convex polygon (MCP) and harmonic mean (HM) with 95% contours in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994.

*Significantly different (P<0.05) from SP with Mann Whitney U test using SYSTAT (1992).

^bSignificantly different (P<0.10) from SP with Mann Whitney U test using SYSTAT (1992).

^cSignificantly different (P<0.01) from SP with Mann Whitney U test using SYSTAT (1992).

		19	93				1994	
	M	СР	H	M	M	СР	HN	1
Group	WRB	SP	WRB	SP	WRB	SP	WRB	SP
Females	354.7	62.3	613.4	87.3	371.6	21.7	1727.9	27.9
	(230.6)	(11.4)	(314.6)	(19.0)	(162.7)	(7.5)	(1140.3)	(9.8)
Males	98.8	122. 8			137.1	22.8	207.5	34.2
	(38.0)	(54.3)	()	()	(96.5)	(6.8)	(133.8)	(10.3)
Study	269.4	60.3	449.9	89 .1	297.6 ^a	21.9	1247.7 ^b	29.1
Area	(154.6)	(10.6)	(213.7)	(17.5)	(116.4)	(6.2)	(789.0)	(8.0)

Table 7. Mean fall home ranges (ha) (and standard errors) of white-tailed deer in the Whitefish River Basin (WRB) and Stonington Peninsula (SP) using minimum convex polygon (MCP) and harmonic mean with 95% contours (HM) in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994.

*Significantly different (P<0.05) from SP with Mann Whitney U test using SYSTAT (1992).

^bSignificantly different (P<0.01) from SP with Mann Whitney U test using SYSTAT (1992).

HABITAT USE

Habitat availability was based on the maximum migration distance by a single deer from the 2 trapping areas. The circle radii, centered at a central trap site coordinate, for the WRB and SP were 46.2 and 45.0 km, respectively. The dominant vegetation types for the 2 areas were northern hardwoods for the WRB and wet hardwood/conifer mix for the SP area, respectively, averaging 24.7% of the land. Northern white-cedar was the least available (<1%) in both study areas.

Habitat use in the 2 areas was not in proportion to availability for spring/summer (Table 8). Aspen/birch and mixed pine were used significantly more than expected in the WRB; aspen/birch, mixed pine, and northern white-cedar were used significantly more than expected by SP deer (Table 8). Vegetation types used less than expected were agricultural-croplands and other by both WRB and SP deer and northern hardwoods and wetlands by WRB and SP deer, respectively. All other vegetation types were used as expected in the 2 study areas (Table 8). Agricultural-croplands and "other" were not used by deer in either area, but an observed value of 0.0001 was used in the analysis so a result of being used less, more, or as expected could be determined.

Fall habitat use for the 2 areas was similar to spring/summer use. Approximately 87% of the habitat use data points occurred in the same 5 vegetation types in the WRB and SP (northern hardwoods, aspen/birch, wet hardwood/conifer, mixed pine, and lowland conifer) (Table 9). The highest use was lowland conifers--21.77% and 26.85%

	n ^a =	RB =27 :246	n=	SP =33 =277
Vegetation Type	%Avail	%Use	%Avail	%Use
Agricultural-Cropland	9.29	0.00004 ^c	12.86	0.00004 ^c
Herbaceous Openland	4.74	4.88	5.95	10.47
Shrubland	1.90	4.47	2.04	5.05
Northern Hardwoods	27.31	20.33 ^d	17.75	18.41
Aspen/Birch	4.57	11.79 ^e	2.92	13.36 ^e
Dry Hardwood/ Conifer Mix	5.11	9.35	5.98	3.61
Wet Hardwood/ Conifer Mix	21.46	15.85	23.38	19.49
Wetlands	2.13	0.81	2.25	0.00004 ^c
Mixed Pine	5.96	14.23 ^e	5.55	11.19 ^e
White Cedar (Thuja occidentalis)	0.20	1.63	0.25	3.25 ^e
Lowland Conifers	15.96	16.67	19.30	15.16
Other	1.38	0.00004 ^c	2.10	0.00004 ^c
Chi-square value	134.	83**	295	.32**

Table 8. White-tailed deer spring/summer habitat use and availability in the Whitefish River Basin (WRB) and Stonington Peninsula (SP) study areas in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994.

^aTotal number deer monitored.

^bTotal number of locations.

^cUsed significantly less than (P<0.01) percent available with Bonferroni normal statistic (Neu et al. 1974).

^dUsed significantly less than (P<0.10) percent available with Bonferroni normal statistic (Neu et al. 1974).

^eUsed significantly more than (P<0.10) percent available with Bonferroni normal statistic (Neu et al. 1974).

******Significantly different (P<0.0001) from availability by chi-square analysis (Neu et al. 1974).

	% l	Jse
Vegetation Type	WRB n ^a =27 m ^b =124	SP n=23 m=149
Agricultural-Cropland	0.00	0.00
Herbaceous Openland	6.50	2.68
Shrubland	0.81	1.34
Northern Hardwoods	14.50	15.44
Aspen/Birch	16.94	10.74
Dry Hardwood/Conifer Mix	6.45	2.01
Wet Hardwood/Conifer Mix	12.90	19.46
Wetland	0.00	0.00
Mixed Pine	18.55	16.10
White Cedar (<u>Thuja occidentalis</u>)	1.61	5.37
Lowland Conifers	21.77	26.85
Other	0.00	0.00

Table 9. White-tailed deer fall habitat use in the Whitefish River Basin (WRB) and Stonington Peninsula (SP) study areas in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994.

^aTotal number of deer monitored.

^bTotal number of locations.

for the WRB and SP, respectively. Agricultural-croplands, "other," and wetlands were not used in either study area. Because of the low sample size for fall, no analyses were conducted.

A breakdown of the habitat use data points by the 3 time periods used to record data had similar results as the total percentages. The 2 vegetation types with the highest percentage of use during the spring/summer (disregarding time periods) were northern hardwoods (20.33%) and lowland conifers (16.67%) by WRB deer and wet hardwood conifer mix (19.49%) and northern hardwoods (18.41%) by SP deer. Northern hardwoods, lowland conifers, and wet hardwood/conifer mix had the highest percentage of use by time period (Table 10).

Table 10. Vegetation types with highest percentage of use by white-tailed deer by time period in the Whitefish River Basin and Stonington Peninsula study areas in Michigan's Upper Peninsula, 1993-94.

<u>.</u>	S	Study Area
Time Period	Whitefish River Basin	Stonington Peninsula
0800-1559	Northern Hardwoods	Wet Hardwood/Conifer Mix
1600-2359	Lowland Conifers	Wet Hardwood/Conifer Mix
0000-0759	Lowland Conifers	Wet Hardwood/Conifer Mix, Northern Hardwoods, and Lowland Conifers ^a

^aAll 3 vegetation types with same level of use.

PRODUCTIVITY

During the first year of the project, the attempts to estimate productivity through direct observation of radio-collared females resulted in only 8 of 19 deer being observed. The difficulty in observing radio-collared females at close range led to the use of road driving surveys in the 2 study areas to estimate productivity. The highest fawn:doe ratio for the WRB and SP was 0.44 and 0.42, respectively; the lowest fawn:doe ratio for the WRB and SP was 0.0 and 0.07, respectively (Table 11). The mean fawn:doe ratio was not significantly different (P>0.10) between the WRB and SP in mid-summer 1994 (Table 11).

VEGETATION SAMPLING

Composition and Structure of Northern White-Cedar Stands

The mature cedar stands selected for the exclosure study differed among study area gradients in ways that were evident by direct observation. The 3 paired sites in the WRB-North were wetter (i.e., more standing water) than the sites in the other 3 study areas; the understory was also much more dense in the WRB-North sites. The majority of the surrounding vegetation in the WRB-North was northern hardwoods, primarily maple. These factors may contribute to some of the differences found in the vegetation data among the study areas. The 2 sets of analyses (exclosure and open area site data combined and exclosure and open area site data separated) are reported; all tables for the exclosure and open area data separated are contained in the Appendix.

		Number (Observed	
Study Area	Survey Replicate	Does	Fawns	Fawns:Doe
SP	1	12	5	0.42
	2	8	2	0.25
	3	14	1	0.07
	Mean	11.3	2.7	0.25 ^a
	(S.E.)	(1.8)	(1.2)	(0.10)
WRB	1	15	0	0.00
	2	9	4	0.44
	3	13	2	0.15
	Mean	12.3	2.0	0.20
	(S.E.)	(1.8)	(1.2)	(0.13)

Table 11. Mean productivity and standard error (S.E.) of white-tailed deer in the Whitefish River Basin (WRB) and Stonington Peninsula (SP) study areas in the Hiawatha National Forest in Michigan's Upper Peninsula, 1994.

^aNo significant difference (P>0.10) between study areas with Mann Whitney U test using SYSTAT (1992).

Exclosure and Open Area Site Data Combined

Vertical cover was significantly different (P<0.10) among the study areas in all 3 strata (Table 12). The largest difference was seen in the 0.5-2.0 m stratum where the mean percent vertical cover in the WRB-North was substantially higher than found in the other 3 study areas (Table 12). Downed woody material cover ranged from 2.1% to 5.5%.

Mean percent horizontal cover was significantly greater (P<0.10) in the WRB-North than the other 3 study area gradients for the upper 3 strata (1-1.5 m, 1.5-2.0 m, and 2.0-2.5 m) (Table 13). For the <0.5 and 0.5-1.0 m strata, mean percent horizontal cover in the WRB-North was significantly greater (P<0.10) than cover in the SP-North and SP-South, respectively (Table 13).

Stem densities of 3 dominant tree species (northern white-cedar, balsam fir, and sugar maple) were significantly different (P<0.10) among the study areas in the 4 strata except for balsam fir and sugar maple in the >2.0 m, >12.67 cm dbh stratum (Table 14). Northern white-cedar stem densities in the <0.5 m stratum ranged from 987 to 12,475 stems/ha but from 0 to 202 stems/ha in the 0.5-2.0 m stratum.

Forty-four non-dominant woody species were identified in the 4 study area gradients (Table 15). Densities were substantially different depending on the study area gradient and stratum for a few of the species. For instance, black ash (Fraxinus nigra) had 29,069 stems/ha in SP-North in the <0.5 m stratum compared to 0 stems/ha in this stratum in the WRB-North. Stem densities were significantly different (P<0.10) among

		Study	Area	
Stratum (m)	WRB- North	WRB- South	SP- North	SP- South
<0.5	89.5A ^a	78.9AB	73.5B	72.4B
	(1.8)	(4.2)	(2.2)	(5.3)
0.5-2.0	69.1A	5.2B	7.3B	1.5B
	(6.1)	(1.1)	(3.8)	(0.5)
>2.0	82.4A	92.8B	88.3AB	92.8B
	(1.8)	(1.5)	(2.4)	(1.1)
DWM ^b	5.5	2.1	4.3	3.4
	(1.1)	(0.4)	(1.2)	(0.4)

Table 12. Mean percent vertical cover (and standard error) for height strata in the 4 study areas (Whitefish River Basin-North and -South [WRB-North and -South] and Stonington Peninsula-North and -South [SP-North and -South]) in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994.

^aMeans with different letters within a stratum were significantly different (P<0.10) among study areas with the Kruskal-Wallis one-way analysis of variance (Siegel and Castellan 1988) using SYSTAT (1992) and the Kruskal-Wallis multiple comparison test (Siegel and Castellan 1988).

^bDowned woody material; descriptive only, no tests conducted.

		Study A	reas	
Stratum	WRB-	WRB-	SP-	SP-
(m)	North	South	North	South
<0.5	68.0A ^a	29.2AB	21.0B	18.4B
	(6.7)	(3.0)	(2.7)	(2.7)
0.5-1.0	48.6A	17.4AB	17.9AB	9.9B
	(6.7)	(4.4)	(4.4)	(1.3)
1.0-1.5	50.4A	15.0B	12.5B	9.4B
	(4.5)	(3.2)	(2.7)	(2.6)
1.5-2.0	37.6A	14.7B	13.0B	8.5B
	(9.7)	(3.2)	(3.1)	(2.6)
2.0-2.5	44.0A	14.8B	17.7B	6.0B
	(4.1)	(3.7)	(4.6)	(3.0)

Table 13. Mean percent horizontal cover (and standard error) for height strata in the 4 study areas (Whitefish River Basin-North and -South [WRB-North and -South] and Stonington Peninsula-North and -South [SP-North and -South]) in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994.

^aMeans with different letters within a stratum were significantly different (P<0.10) among study areas by the Kruskal-Wallis one-way analysis of variance (Siegel and Castellan 1988) using SYSTAT (1992) and the Kruskal-Wallis multiple comparison test (Siegel and Castellan 1988).

			Study Area	Area		
Species	Stratum (m)	WRB-North	WRB-South	SP-North	SP-South	outh
Northern white cedar	<0.5	11484A ^a (909)	12475AB(4373)	1620B (684)	987AB (209)	(209)
Thuia occidentalis	0.5-2.0	202A (108)	0B (0)	39AB(39)	OB	(0)
•	>2.0, <12.67 cm dbh	15A (5)	1857B (601)	515B (296)	207AB	(43)
	>2.0, >12.67 cm dbh	500A (61)	1109B (183)	708AB(39)	843B	(09)
Balsam fir	<0.5	8664A (1326)	17697AB(7275)	2515AB(931)	1158B	(912)
Abies balsamea	0.5-2.0	9228A (1502)	195B (114)	94B (82)	11B	6
	>2.0, <12.67 cm dbh	1839A (208)	192B (66)	217B (125)	115B	(69)
	>2.0, >12.67 cm dbh	71A (44)	37A (20)	59A (22)	48A	(22)
Sugar maple	<0.5	740A (347)	187AB(118)	37AB(20)	0B	0
Acer saccharum	0.5-2.0	126A (71)	0B (0)	0B (0)	0B))
	>2.0, <12.67 cm dbh	10 ^b (3)	(0) 0	(0) 0	0) (e)
	>2.0, >12.67 cm dbh	5A (5)	0V (0)	0V (0)	OA	0

Table 14. Mean stem densities per hectare (and standard error) of dominant tree species in the 4 study areas (Whitefish River Basin-4 11. d Court IWDB North and Country and Stonington Denineula-North and Courth ICD-North and Country in the 4

Wallis one-way analysis of variance (Siegel and Castellan 1988) using SYSTAT (1992) and the Kruskal-Wallis multiple comparison ^aMeans with different letters within a species and stratum were significantly different (P<0.10) among study areas with the Kruskaltest (Siegel and Castellan 1988).

^bKruskal-Wallis multiple comparison test (Siegel and Castellan 1988) was unable to detect where the significant difference occurred within a species and stratum among the study areas as detected by the Kruskal-Wallis one-way analysis of variance (Siegel and Castellan 1988) using SYSTAT (1992).

			Study	Study Area	
Species	Stratum (m)	WRB-North	WRB-South	SP-North	SP-South
Alder-leaved buckthom Rhamnus alnifolia	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	2361A ⁴ (1060) 1556A (929) 0A (0) 0A (0)	208AB (98) 0AB (0) 0A (0) 0A (0)	56B (28) 0B (0) 0A (0) 0A (0)	21B (21) 0B (0) 0A (0) 0A (0)
Alternate-leaved dogwood Cornus alternifolia	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	625 ^b (432) 0A (0) 0A (0) 0A (0)	14 (14) 0A (0) 0A (0) 0A (0)	28 (28) 0A (0) 0A (0) 0A (0)	104 (40) 0A (0) 0A (0) 0A (0)
American black currant Ribes americanum	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh		(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	14A (14) 0A (0) 0A (0) 0A (0)	
American elm Ulmus americana	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh				(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)
American mountain ash Sorbus americana	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	69A (26) 0A (0) 0A (0) 0A (0)	153A (92) 0A (0) 0A (0) 0A (0)	15A (15) 0A (0) 0A (0) 0A (0)	63A (21) 0A (0) 0A (0) 0A (0)
American red raspberry Rubus idaeus	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh		(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	(0) V (0) V	(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)
Balsam poplar Populus balsamifera	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh		556A (401) 111A (82) 0A (0) 0A (0)	3597B (1050) 417B (136) 14A (14) 125B (42)	104AB (79) 42AB (42) 21A (21) 0AB (0)

Table 15. Mean stem densities per hectare (and standard error) of non-dominant woody species in the 4 study areas (Whitefish River Basin-North and -South [WRB-North and -South]) in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994.

			Study Area	Arca		
Species	Stratum (m)	WRB-North	WRB-South	SP-North	SP-	SP-South
Beaked hazelnut Corylus cornuta	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	1111A (70) 0 ⁵ (0) 0 A (0) 0 A (0)		(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	V0 V0	666
Beech Eagus grandifolia	 <0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh 			(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	6666	୧୧୧୧
Black ash Eraxinus nigra	 <0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh 			29069B (1821 14A (14) 14A (14) 14A (14) 0A (0)	26042F 0/ 42/ 21/	(18112) (0) (24) (21)
Black currant Ribes lacustre	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	1431 ^b (551) 139 ^b (63) 0A (0) 0A (0)		1791A (1242 0A (0) 0 (0) 0A (0) 0A (0)	979/ 42/ 0/	(313) (6) (0)
Black spruce Picca mariana	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	1861A (545) 1375A (690) 778A (577) 0A (0)	347AB (219) 0B (0) 14A (14) 42A (28)	28B (18) 14B (14) 14A (14) 28A (28)	42 0 0 02 0 0 02	() () () () () () () () () () () () () (
Choke cherry Prunus virginiana	 <0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			2929	୧୧୧୧
Eastern hemlock Tsuga canadensis	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	0) V 0) V 0) V 0) V 0) V 0) V 0) V 0) V	14A (14) 0A (0) 0A (0) 0A (0)	8999	୧୧୧୧

42

ont'd).	
15 (c	
Table	

					Study Area	8			
Species	Stratum (m)	WRB	WRB-North	WRB-South	South	SP-North	orth	SP-South	uth
Flowering dogwood Comus florida	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	542 ^b 42A 0A 0A		4 0 0 0 0	0000		ତ୍ତ୍ତ୍ତ୍		0000
Honeysuckle Lonicera spp.	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	1167A 361 ^b 0A 0A		1500A 42A 0A 0A	(270) (28) (0)		(570) (69) (0)	1354A 21A 0A 0A	(950) (21) (0) (0)
Hop hornbeam Ostrya virginiana	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	28A 0A 14A 0A		278A 0A 0A 0A	(136) (0) (0)		ê003		600
Ironwood Carpinus caroliniana	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	236A 111A 0A 0A		139A 0A 0A	() () () () () () () () () () () () () ((2 (2 (2 (2 (2)) (2)) (2)) (2)) (2)) (2		(5) (0) (0)
Labrador tea Ledum groenlandicum	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	19389 ^b 1944 ^b 0A 0A		4472A 0A 0A 0A	(2982) (0) (0)	V 0 V0 V0 V0	୧୧୧୧	V V V 0 0 0 0	0000
Low sweet blueberry Vaccinium angustifolium	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	_0 0 0 0	<u> </u>	1236A 0A 0A 0A	(968) (0) (0)		<u>0000</u>		୧୧୧୧
Mountain maple Acer spicatum	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	28 ^b 0A 0A	(0) (0) (0) (0)	472A 0A 0A 0A	(205) (0) (0)	4458A 0A 0A 0A	(3097) (0) (0)	5563A 0A 0A 0A	(4676) (0) (0) (0)

					Study Area	rea			
Species	Stratum (m)	WRB	WRB-North	WRB-South	South	SP-North	orth	SP-South	outh
Flowering dogwood Comus florida	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	542 ^b 42A 0A 0A		4 0 4 0 1 0		V 0 V 0 V 0	<u> </u>	60 04 04	<u> </u>
Honeysuckle Lonicera spp.	 <0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh 	1167A 361 ^b 0A 0A		1500A 42A 0A 0A		944A 69A 0A 0A	(570) (69) (0)	1354A 21A 0A 0A	(950) (0) (0)
Hop hornbeam Ostrya virginiana	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	28A 0A 14A 0A		278A 0A 0A 0A		A 0 A 0 A 0 A 0	@@@@	125A 0A 0A 0A	600
Ironwood Carpinus caroliniana	 <0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh 	236A 111A 0A 0A		139A 0A 0A 0A		153A 0A 28A 0A	(0) (3) (3) (3)	83A 0A 0A	©©©
Labrador tea Ledum groenlandicum	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	19389 ^b 1944 ^b 0A 0A	(10893) (990) (0) (0)	4472A 0A 0A 0A	(2982) (0) (0) (0)	V V V V V V V V V V	ତ୍ତ୍ତ୍ତ୍	4 4 4 0 0 0 0	ତ୍ତ୍ତ୍ତ୍
Low sweet blueberry Vaccinium angustifolium	 <0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh 	₹ ₹ ₹		1236A 0A 0A 0A		V V V 0 0 0	ତିତିତିତି	4 4 4 0 0 0 0	ତିତିତିତି
Mountain maple Acer spicatum	 <0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh 	28 ⁶ 0A 0A		472A 0A 0A 0A		4458A 0A 0A 0A	(3097) (0) (0)	5563A 0A 0A 0A	(4676) (0) (0)

				Study Area	rca			
Species	Stratum (m)	WRB-North		WRB-South	SP-North	orth	SP-South	uth
Paper birch Betula papyrifera	<0.5 0.5-2.0 >2 0 <12 67 cm dhh	139B (98) 42A (42) 167A (114)	0 0 0 0 0	000	375B 0A 28A	(243) (0) (18)	167AB 0A 21A	(8) (0) (12)
	>2.0, >12.67 cm dbh			0	V0	(0)	21A	(21)
Populus spp.	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0	8 8 8 8 8 8 8	<u> </u>	194A 0A 0A 56A	(130) (0) (41)	V 0 0 0 0 0 0 0 0 0 0 0	0000
Prickly gooseberry Ribes cynobasti	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ð ð ð ð	୧୧୧୧	42A 0A 0A	(45) (0) (0) (42) (42)	21A 0A 0A 0A	() () () () () () () () () () () () () (
Red maple Acer rubrum	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh		21319/ 28/ 0/	A (11001) AB (18) A (0) A (14)	4306A 0B ((0A ((0A (((1317) (0) (0) (0)	16854A 0AB 0A 0A	(9243) (0) (0) (0)
Red-osier dogwood Cornus stolonifera	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	625A (432 69A (55) 0A (0) 0A (0)		(<u>3</u>)	153A 0A 0A 0A	6000	208A 0A 0A 0A	(158) (0) (0)
Red oak Quercus rubra	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	14 04 04	000 ⁴	V V V V V V V V V V	<u> </u>	V 0 V0 V0	0000
Ribes spp.	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	0 (0) 0 (0) 0 (0) 0 (0) 0 (0)	8 8 8 8 8 8 8 8 8	ତ୍ତ୍ତ୍ତ୍	V 0 0 0 0 0 0	ତିତିତିତି	63A 0A 0A	(63) (0) (0)

			Study Area	Area	
Species	Stratum (m)	WRB-North	WRB-South	SP-North	SP-South
Rosa spp.	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh		(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)		
Rubus spp.	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh		14A (14) 0A (0) 0A (0) 0A (0)		
Smooth gooseberry Ribes hirtella	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh		0000 800 800 800 800 800 800 800 800 80		
Speckled alder Alnus rugosa	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh		542A (336) 56AB (28) 56A (41) 0A (0)		
Swamp red currant Ribes triste	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	361A (159) 28A (28) 0A (0) 0A (0)	56A (18) 0A (0) 0A (0) 0A (0)	652A (603) 0A (0) 0A (0) 0A (0)	104A (79) 0A (0) 0A (0) 0A (0) 0A (0)
Tamarack Larix laricina	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh		0A (0) 0A (0) 28A (28) 14A (14)		
Trembling aspen Populus tremuloides	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh		0000 4 4 4 4 4 4 4 6 4 8 4 8 4 8 4 8 8 8 8 8		

Species Vaccinium spp.									
	Stratum (m)	WRB-North	North	WRB-South	South	SP-North	th	SP-South	outh
	<0.5	28A	(28)	V 69	(69)	V0	(0)	V 0	0
>2(0.5-2.0	14A	(14)	V 0	(0)	V 0	0)	V	0
i	0, <12.67 cm dbh	V O	(0)	V 0	(0)	V0	0	V	0
>2.(>2.0, >12.67 cm dbh	V0	(0)	V0	(0)	V 0	(0)	V0	0
Velvet-leaved blueberry	<0.5	V0	(0)	861A	(196)	OA 0	(0)	V0	0
Vaccinium myrtilloides	0.5-2.0	V 0	(0)	0	(0)	V 0	(0)	0	0
	0, <12.67 cm dbh	V 0	(0)	0A	(0)	V 0	(0)	0	0
>2.(>2.0, >12.67 cm dbh	V0	(0)	V 0	(0)	V 0	(0)	V 0	0
Virgin's bower	<0.5	14A	(14)	V0	(0)	VO	(0)	A0	(0)
Clematis virginiana	0.5-2.0	V 0	(0)	V 0	(0)	V 0	(0)	V 0	0
	0, <12.67 cm dbh	OA 0	(0)	V 0	(0)	OA 0	(0)	V 0	0
>2.1	>2.0, >12.67 cm dbh	V 0	(0)	V 0	(0)	V0	(0)	V0	0
Virginia creeper	<0.5	V0	(0)	P 69	(45)	0A	(0)	V 0	0
Parthenocissus auinquefolia	0.5-2.0	V 0	(0)	V 0	(0)	V O	(0)	0	0
	0, <12.67 cm dbh	V 0	(0)	V 0	(0)	V 0	(0)	0	0
>2.(>2.0, >12.67 cm dbh	V0	(0)	V 0	(0)	OA	(0)	V 0	0
White pine	<0.5	V0	(0)	V0	(0)	V 0	(0)	V 0	0
SU	0.5-2.0	V 0	(0)	OA 0	(0)	V 0	(0)	V 0	0
	0, <12.67 cm dbh	V 0	(0)	V 0	(0)	0	(0)	V 0	0
>2.1	>2.0, >12.67 cm dbh	V0	(0)	28A	(0)	V 0	(0)	V 0	0
White spruce	<0.5	V0	(0)	28A	(28)	14 A	(14)	42A	(42)
Picea glauca	0.5-2.0	56A	(41)	V 0	(0)	V 0	(0)	V 0	0
	0, <12.67 cm dbh	56A	(41)	O	(0)	V 0	(0)	V 0	0
>2.1	>2.0, >12.67 cm dbh	OA	(0)	V 0	(0)	V 0	(0)	V 0	<u></u>
Willow	<0.5	42A	(28)	28A	(28)	0A	(0)	V 0	0
Salix spp.	0.5-2.0	69	(69)	14A	(14)	V0	(0)	V0	<u></u>
	>2.0, <12.67 cm dbh	83A	(68)	OA 0	(0)	V 0	(0)	V 0	0
>2.(0, >12.67 cm dbh	V 0	(0)	V0	(0)	V 0	(0)	V 0	0

	SP-South	146AB (98) 0A (0) 0A (0) 0A (0) 7438B (2441) 0A (0) 21A (21) 0A (0)
	SP-9	146A 0A 0A 0A 0A 1438B 21A 21A 0A 0A
	SP-North	56AB (28) 0A (0) 0A (0) 0A (0) 69A (26) 0A (0) 14A (14)
Study Area	SP-	56AB 0.4 0.4 0.4 0.4 0.4 0.4 1.4 4
Stud	WRB-South	(1222B (458) 139A (82) 42A (82) 0A (0) 1528AB (900) 0A (0) 14A (14) 0A (0) 0A (0)
	WRB	1222B 139A 139A 139A 0 1328 1528 1328 14A 14A 14A 0 0
	WRB-North	(14) (0) (28) (38) (38) (38) (38) (38) (38) (38) (3
	WRE	144 0 111 111 0 111 0 0 0 0 0 0 0 0 0 0
	Stratum (m)	<0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh <0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh
	Species	Winterberry holly Liex verticallata Yellow birch Betula lutea

Means with different letters within a species and stratum were significantly different (P<0.10) among study areas with the Kruskal-Wallis one-way analysis of variance (Siegel and Castellan 1988) using SYSTAT (1992) and the Kruskal-Wallis multiple comparison test (Siegel and Castellan 1988). ^bKruskal-Wallis multiple comparison test (Siegel and Castellan 1988) was unable to detect where the significant difference occurred among study areas as detected by the Kruskal-Wallis one-way analysis of variance (Siegel and Castellan 1988) using SYSTAT (1992).

<u>ଞି</u>ତ୍ତ୍ତ୍

63A 0A 0A 0A 0A

2000

8 8 8 8 8 8 8 8

£000

63A 0A 0A 0A 0A

2000

28A 0A 0A 0A

<0.5
 0.5-2.0
 >2.0, <12.67 cm dbh
 >2.0, >12.67 cm dbh

Other

study area gradients for 26 species (Table 15). The Kruskal-Wallis multiple comparison test was only able to detect where these differences occurred for 13 of the species.

Ninety-five herbaceous species were identified in the 4 study areas; 20 (21%) were common to all 4 areas. Species richness ranged from 49 to 59 among the 4 study areas; Canada mayflower (Maianthemum canadense), naked miterwort (Mitella nuda), goldthread (Coptis groenlandica), and/or starflower (Trientalis borealis) were the most common species among the study area gradients (Table 16). Thirty-three species occurred once in the 4 study areas. Mean relative frequency for 38 of the 95 herbaceous species was significantly different (P<0.10) among the 4 study area gradients (Table 17). A Kruskal-Wallis multiple comparison was able to detect where the difference occurred for 20 of these 38 species.

Exclosure and Open Area Site Data Separated

Differences in vertical cover between exclosure and areas open to browsing sites were detected in the SP-South study area for <0.5 and 0.5-2.0 m strata (Table A3, Appendix). Vertical cover comparisons were significantly different (P<0.10) among the study area gradients for exclosure sites (0.5-2.0 and >2.0 m strata) and open area sites (0.5-2.0 m stratum) (Table A3, Appendix). Downed woody material cover at the sites ranged from 2.0 to 6.3%.

No significant differences in horizontal cover were detected between exclosures and open areas for all 4 study areas (Table A4, Appendix). Significant differences (P<0.10) in horizontal cover comparisons were detected among the study area gradients

Table 16. Herbaceous species summary for the 4 study areas (Whitefish River Basin-North and -South [WRB-North and -South] and Stonington Peninsula-North and -South [SP-North and -South]) in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994.

Study Area	Species Richness	3 Most Common Species	No. Species With Single Occurrence in Study Area
WRB-North	49	Bunchberry <u>Cornus canadense</u> Canada mayflower <u>Maianthemum canadense</u> Goldthread <u>Coptis groenlandica</u>	7
WRB-South	59	Goldthread Naked miterwort <u>Mitella nuda</u> Starflower <u>Trientalis borealis</u>	14
SP-North	56	Canada mayflower Violet <u>Viola</u> spp. Starflower	3
SP-South	52	Canada mayflower Naked miterwort Starflower	13

		Study A	reas	
Species	WRB-North	WRB-South	SP-North	SP-South
Anemone spp.	0AB ^a	0AB	0.3A	0B
	(0)	(0)	(0.2)	(0)
Arrow arum	0A	0A	0.2A	0A
<u>Peltranda virginica</u>	(0)	(0)	(0.2)	(0)
Aster spp.	1.8A	1.3A	2.1A	0A
	(0.6)	(0.5)	(0.6)	(0)
Bedstraw	0A	0.5A	0.2A	0.2A
Galium spp.	(0)	(0.5)	(0.2)	(0.2)
Blunt-lobed woodsia	0A	0A	0.1A	0A
Woodsia obtusa	(0)	(0)	(0.1)	(0)
Boot's wood fern	0A	0A	2.4B	0.8AB
Dryopteris boottii	(0)	(0)	(0.7)	(0.6)
Bracken fern	0A	0.3A	0.3A	0A
Pteridium aquilinum	(0)	(0.2)	(0.3)	(0)
Bugleweed	0A	0.5AB	0.8AB	2.7B
Lycopus spp.	(0)	(0.2)	(0.4)	(1.0)
Bulbet fern	0A	0A	0.1A	0A
<u>Cystopteris bulbifera</u>	(0)	(0)	(0.1)	(0)
Bunchberry	5.6A	3.6AB	1.6B	3.1AB
Cornus canadensis	(0.5)	(1.3)	(0.8)	(1.0)
Buttercup	0A	0A	2.4A	0A
<u>Ranunculus</u> spp.	(0)	(0)	(1.7)	(0)
Canada mayflower	4.6A	5.7AB	7.0B	5.8AB
Maianthemum <u>canadense</u>	(0.3)	(0.4)	(0.9)	(0.6)
Cinnamon fern	0.1A	0.4A	0A	0A
<u>Osmunda cinnamomea</u>	(0.1)	(0.3)	(0)	(0)
Cinquefoil	0A	0A	0.1A	0A
Potentilla spp.	(0)	(0)	(0.1)	(0)
Clover	0 ⁶	0	0.7	0
<u>Frifolium</u> spp.		(0)	(0.3)	(0)
Club moss	0A	0.6A	0.2A	0A
L <u>ycopodium</u> spp.	(0)	(0.4)	(0.2)	(0)
Club-spur orchid	0A	0.1A	0A	0A
Habenaria clavellata	(0)	(0.1)	(0)	(0)

Table 17. Mean relative frequencies (and standard errors) of herbaceous species in the 4 study areas (Whitefish River Basin-North and -South [WRB-North and -South] and the Stonington Peninsula-North and -South [SP-North and -South]) in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994.

		Study A	reas	
Species	WRB-North	WRB-South	SP-North	SP-South
Columbine	0A	0.1A	0A	0A
Aquilegia spp.	(0)	(0.1)	(0)	(0)
Common wood sorrel	0.1A	0A	0A	0A
Oxalis montana	(0.1)	(0)	(0)	(0)
Coralroot	0 ^ь	0	0	0.5
<u>Corallorhiza</u> spp.	(0)	(0)	(0)	(0.3)
Crested wood fern	0.4A	0.6A	0.1A	1.1A
Dryopteris cristata	(0.3)	(0.4)	(0.1)	(0.6)
Dandelion	О ^ь	0	0.7	0
Taraxacum spp.	(0)	(0)	(0.3)	(0)
Dewberry	0A	4.2A	2.2A	5.3A
Rubus hispidus	(0)	(0.6)	(1.1)	(0.9)
Drvopteris spp.	4.4 ^b	0.1	1.2	0.5
	(1.3)	(0.1)	(0.6)	(0.5)
Dwarf enchanter's nightshade	0.1AB	0A	1.6AB	3.8B
Circaea alpina	(0.1)	(0)	(1.0)	(0.7)
Equisetum spp.	0.3A	0.1A	3.1A	0.6A
	(0.2)	(0.1)	(1.1)	(0.6)
False Solomon's seal	0A	0A	0.1A	0A
Smilacina racemosa	(0)	(0)	(0.1)	(0)
Fragile fern	1.7A	0.1AB	0B	0.9AE
Cystopteris fragilis	(0.5)	(0.1)	(0)	(0.6)
Fringed brome	0.1A	0A	0A	0A
Bromus <u>ciliatus</u>	(0.1)	(0)	(0)	(0)
Fringed polygala	0B	5.5A	0B	0.2AE
Polygala paucifolia	(0)	(0.6)	(0)	(0.2)
Golden ragwort	0A	0.5A	0.1A	0.2A
Senecio aureus	(0)	(0.4)	(0.1)	(0.2)
Goldenrod	3.1A	2.2A	3.2A	0.7A
<u>Solidago</u> spp.	(1.0)	(0.7)	(0.7)	(0.4)
Goldthread	5.4A	6.7A	0B	4.0AE
Coptis groenlandica	(0.8)	(0.5)	(0)	(0.6)
Grass spp.	2.4A	4.0A	4.1A	4.3A
	(1.1)	(1.2)	(1.0)	(1.8)
Grass/sedge spp.	0A	0A	4.9B	1.4AE
	(0)	(0)	(1.2)	(0.9)

Table 17 (cont'd).

Species	Study Areas			
	WRB-North	WRB-South	SP-North	SP-South
Hawkweed	0.6AB	0B	4.0A	0B
Hieracium spp.	(0.3)	(0)	(1.9)	(0)
Hooked crowfoot	0A	0A	0.2A	0A
Ranunculus recurvatus	(0)	(0)	(0.2)	(0)
Intermediate wood fern	0.2 ^b	0	0.7	2.9
Dryopteris intermedia	(0.2)	(0)	(0.2)	(1.7)
interrupted fern	0A	0.1 A	0A	0.3A
Osmunda claytoniana	(0)	(0.1)	(0)	(0.3)
ack-in-the-pulpit	0 ⁶	0.5	0	2.5
Arisaema spp.	(0)	(0.5)	(0)	(1.3)
lewelweed	0.3 ^b	0.7	0	0.9
Impatiens spp.	(0.3)	(0.7)	(0)	(0.4)
loe-pye weed	1.3 ^b	0.7	0	0.2
Eupatorium spp.	(0.5)	(0.3)	(0)	(0.2)
Large-leaved aster	0.6A	0.4A	0A	0A
Aster macrophyllus	(0.3)	(0.4)	(0)	(0)
Lesser pyrola	0A	0.5A	0A	0A
Pyrola minor	(0)	(0.5)	(0)	(0)
Long beech fern	0 ⁶	0.1	0	2.0
Thelypteris phegopteris	(0)	(0.1)	(0)	(0.8)
Manna grass	0.6A	0A	0A	0A
Glyceria spp.	(0.6)	(0)	(0)	(0)
Marsh bedstraw	1.8 ^b	0.1	0.3	0
Galium palustre	(0.6)	(0.1)	(0.2)	(0)
Marsh fern	0 A	0.3 A	0A	0.9A
Thelypteris phegopteris	(0)	(0.3)	(0)	(0.5)
Marsh marigold	0.5A	0.2A	0A	0A
Caltha palustris	(0.5)	(0.2)	(0)	(0)
Marsh skullcap	0A	0A	0A	0.2A
Scutellaria epilobifolia	(0)	(0)	(0)	(0.2)
Milkweed	0A	0 A	0 .1 A	0A
Asclepias spp.	(0)	(0)	(0.1)	(0)
Mint	0 ^ь	0	0.2	0.4
<u>Mentha</u> spp.	(0)	(0)	(0.1)	(0.3)
Moss spp.	6.7A	7.1A	8 .1 A	7.3A
	(0.3)	(0.2)	(1.0)	(0.4)

Table 17 (cont'd).

Species	Study Areas			
	WRB-North	WRB-South	SP-North	SP-South
Naked miterwort	5.4AB	6.2AB	3.3A	7.5B
Mitella nuda	(1.0)	(0.5)	(1.0)	(0.3)
Oak fern	1.2A	0.3A	2.4A	2.4A
<u>Gymnocarpium</u> spp.	(0.5)	(0.3)	(1.0)	(1.2)
One-flowered pyrola	0A	0.1A	0A	0A
Moneses uniflora	(0)	(0.1)	(0)	(0)
Orchidaceae spp.	0.4A	0.1A	0A	0A
	(0.2)	(0.1)	(0)	(0)
Ostrich fern	0A	0A	0.1A	0A
Matteucia struthiopteris	(0)	(0)	(0.1)	(0)
<u>Pyrola</u> spp.	0.7A	1.5A	1.1A	0.2A
	(0.3)	(0.5)	(0.6)	(0.2)
Rattlesnake fern	1.3A	1.8A	3.3A	2.6A (1.0)
Botrychium virginianum	(0.4)	(0.8)	(0.6)	
Rattlesnake plantain	0.1 ^b	0	0	0.7
Goodyera spp.	(0.1)	(0)	(0)	(0.4)
Rough bedstraw	0A	3.2B	2.8AB	5.3B
Galium asprellum	(0)	(0.5)	(0.8)	(0.5)
Royal fern	0.1A	1.1A	0A	1.1A
Osmunda regalis	(0.1)	(0.5)	(0)	(1.1)
Sedge	5.9AB	5.8A	3.8AB	1.6B
<u>Carex</u> spp.	(0.1)	(0.9)	(1.2)	(0.7)
Self-heal	0.5 ^b	0.4	1.6	0.6
Prunella <u>vulgaris</u>	(0.3)	(0.3)	(0.2)	(0.6)
Sensitive fern	0A	0.4A	0.1A	0.9A
Dnoclea <u>sensibilis</u>	(0)	(0.2)	(0.1)	(0.9)
Showy lady's slipper	0.3A	0A	0A	0A
Cypripedium reginae	(0.2)	(0)	(0)	(0)
Silvery glade fern	0 ^ь	0	1.0	0.7A
Athyrium thelypterioides	(0)	(0)	(0.6)	(0.7)
Skullcap	0A	0A	0.2A	0A
Scutellaria spp.	(0)	(0)	(0.2)	(0)
Small-flowered cranberry	0.4A	0.6A	0A	0A
Vaccinium <u>oxycoccos</u>	(0.2)	(0.6)	(0)	(0)

Table 17 (cont'd).

Species	Study Areas			
	WRB-North	WRB-South	SP-North	SP-South
Snowberry	3.3AB	5.0A	0B	0B
Gaultheria hispidula	(0.9)	(0.9)	(0)	(0)
Spinulose wood fern	0A	0A	0.5A	0A
Dryopteris spinulosa	(0)	(0)	(0.4)	(0)
Spurred gentian	0A	0A	1.3A	0A
Halenia deflexa	(0)	(0)	(1.0)	(0)
Starflower	3.1A	6.2A	4.5A	6.0A
<u>Frientalis borealis</u>	(1.0)	(0.5)	(1.1)	(1.3)
Strawberry	4.9A	1.8AB	1.2B	0.8AB
Fragaria spp.	(0.5)	(1.1)	(0.5)	(0.3)
Sundew	0.1A	0A	0A	0A
Drosera spp.	(0.1)	(0)	(0)	(0)
Sweet coltsfoot	0.9 ^b	0.1	3.2	0
Petasites palmatus	(0.6)	(0.1)	(1.5)	(0)
Sweet-scented bedstraw	2.4 ^b	0.1	0	0
Galium triflorum	(0.9)	(0.1)	(0)	(0)
Fall buttercup	0A	0A	0.5A	0A
Ranunculus acris	(0)	(0)	(0.5)	(0)
Fall meadow rue	0A	0.1A	0A	0A
Thalictrum polygamum	(0)	(0.1)	(0)	(0)
Thistle	3.4A	1.9AB	2.8A	0.2B
<u>Cirsium</u> spp.	(0.7)	(0.5)	(0.7)	(0.2)
Three-leaved Solomon's seal	4.6A	2.1AB	0B	0B
Smilacina trifolia	(0.8)	(0.6)	(0)	(0)
Trailing arbutus	0.1A	0.5A	0A	0A
Epigaea repens	(0.1)	(0.3)	(0)	(0)
<u> Trillium</u> spp.	0 ⁶	0	0	0.2A
	(0)	(0)	(0)	(0.2)
Furtlehead	0A	0A	0A	0.2A
<u>Chelone</u> spp.	(0)	(0)	(0)	(0.2)
Twinflower	5.5A	3.5AB	0.4B	0.2B
<u>Linnaea borealis</u>	(0.4)	(1.3)	(0.2)	(0.2)
Twisted stalk	0A	0.4A	0.2A	0.3A
Streptopus amplexifolius	(0)	(0.4)	(0.2)	(0.3)

Species	Study Areas			
	WRB-North	WRB-South	SP-North	SP-South
Viol e t	5.2A	3.4A	6.2A	5.7A
<u>Viola</u> spp.	(0.3)	(0.8)	(0.5)	(0.7)
White add e rs mouth	0A	0A	0A	0.2A
<u>Malaxis brachypoda</u>	(0)	(0)	(0)	(0.2)
Wild ginger	0A	0.1A	0A	0A
Asarum canadense	(0)	(0.1)	(0)	(0)
Wild sarsaparillo Aralia nudicaulis	3.3A (0.6)	2.1A (1.1)	3.8A (1.0)	3.5A (0.9)
Wintergreen	0.9 ^b	1.1	0	0
Gaultheria procumbens	(0.3)	(0.5)	(0)	(0)
Wood anemone	0.5AB	0A	2.2B	0.6AB
Anemone guinquefolia	(0.4)	(0)	(0.7)	(0.6)
Wood sorrel	0.6A	0.9A	0A	3.9A
<u>Oxalis</u> spp.	(0.6)	(0.7)	(0)	(2.3)
Yellow lady's slipper	0A	0.3A	0A	0.7A
Cypripedium calceolus	(0)	(0.2)	(0)	(0.4)

^aRelative frequencies with different letters within a species were significantly different (P<0.10) among study areas with the Kruskal-Wallis one-way analysis of variance (Siegel and Castellan 1988) using SYSTAT (1992) and the Kruskal-Wallis multiple comparison test (Siegel and Castellan 1988).

^bKruskal-Wallis multiple comparison test (Siegel and Castellan 1988) was unable to detect where the significant difference occurred within a species among the study areas as detected by the Kruskal-Wallis one-way analysis of variance (Siegel and Castellan 1988) using SYSTAT (1992).

for exclosure sites (0.5-1.0 and 2.0-2.5 m strata) and open area sites (1.5-2.0 and 2.0-2.5 m strata) (Table A4, Appendix); however, 4 of the 8 multiple comparisons were not able to detect where the difference occurred using the Kruskal-Wallis multiple comparison test.

Stem densities of balsam fir in WRB-North was the only dominant species that showed a significant difference between exclosures and paired open areas in the 0-0.5 m stratum (Table A5, Appendix). Northern white-cedar in the WRB-North study area had significantly more stems in both >2.0 m in height strata than the WRB-South study area (Table A5, Appendix). Eight other Kruskal-Wallis multiple comparisons were not able to detect where the significant difference occurred as indicated by the Kruskal-Wallis oneway analysis of variance.

Densities of other woody species showed no significant differences between exclosure and open area sites for the WRB-North and SP-South study area (Tables A6 and A9, Appendix). Densities of ironwood (<u>Carpinus caroliniana</u>) and balsam poplar in exclosure sites (0-0.5 m stratum) were significantly greater (P<0.10) than open area sites for WRB-South and SP-North, respectively; density of alder-leaved buckthorn (<u>Rhamnus</u> <u>alnifolia</u>) in the open area was significantly greater than in the exclosure for SP-North (Tables A7 and A8, Appendix). Densities of 8 woody species in exclosures and 5 species in open areas were significantly different from other study areas (Table A10, Appendix). However, the Kruskal-Wallis multiple comparison test was only able to detect where the difference occurred in 7 of 13 of these cases (Table A10, Appendix). Only a few herbaceous species were significantly more frequent in exclosure or open area sites (Tables A11-A14, Appendix). Thirteen species in exclosures and 11 species in open areas showed significantly different relative frequencies (Table A15, Appendix) among the study area gradients with the Kruskal-Wallis one-way analysis of variance. The Kruskal-Wallis multiple comparison test was only able to detect where the difference occurred for 4 species in exclosures and 3 species in open areas (Table 15, Appendix).

Browse Sampling

The 3 tree species sampled for browse use were black ash (Fraxinus nigra), balsam poplar (Populus balsamifera), and maple (Acer sp.); the 3 species were the dominant species in stands adjacent to the cedar stands and were common to both study areas (WRB and SP). The mean percent browse use of sugar maple was substantially less than black ash and balsam poplar in both the WRB and SP: 8.7 and 1.2% for sugar maple, 42.3 and 42.5% for black ash, and 45.3 and 31.3% for balsam poplar, respectively.

DISCUSSION

MOVEMENTS AND HOME RANGES

The maximum distance moved from wintering areas to summer range by a single deer was 54.4 and 52.9 km from the WRB and SP, respectively. These results are comparable to 51.5 km found by Verme (1973) in Michigan's Upper Peninsula, but were greater than maximum distances traveled by deer in Wisconsin (Dahlberg and Guettinger 1956, Larson et al. 1978). Although several deer moved north-northeast off the SP for their summer range both years of the study, the majority (70%) of SP-trapped deer remained on the SP for their summer range and are considered a resident population.

Interactions were detected for all home range methods in 1993 in either spring/summer or fall. The interactions involved area and sex (HM and AK in spring/summer) or age (MCP and HM for fall). The main objective was to compare home ranges between the 2 study areas, but with sex or age interacting with area, a comparison of the main effects was not conducted for the above cases.

The smallest adaptive kernel (AK) home range during the study was 6.3 ha in fall 1993 (Tables A1 and A2, Appendix) and may be attributed to having few weekly locations (4-5) recorded during the season due to not being able to locate the individual deer because of its movement away from what appeared to be its home range. AK home ranges for 4 WRB deer (2 adult females, 1 yearling female, and 1 yearling male) were 5,000+ ha (5,274.0 to 22,830.0 ha), which was 5 to 21 times higher than the study area mean for that particular season and year (Tables A1 and A2, Appendix). These large home ranges were due to mid-season travel by the deer, sometimes returning to their original summer or fall ranges, others remaining at their new location. Reasons for the travel may have been attributed to dispersal or some type of disturbance. In South Dakota, Sparrowe and Springer (1970) had an adult doe move 12.8 km from her summer range in September and returned in October. This type of behavior is either uncommon or is not reported in the literature.

In addition to the AK home range method, the MCP was used for comparisons to previous deer studies. The mean spring/summer home range (MCP estimator) for WRB deer (160 ha) for the 2 years was comparable to deer home ranges documented in Minnesota (162 ha) (Nelson and Mech 1984) and Wisconsin (178 ha) (Larson et al. 1978) in contrast to the much smaller mean spring/summer ranges of SP deer (58.8 ha). Larger home range sizes for WRB deer than SP deer may be attributed to the smaller percentage of land in herbaceous openings in the WRB (3.5%) compared to the SP (14%), which provides forage for deer during the spring/summer period. Use of this vegetation type was 10.47% in the SP compared to only 4.88% in the WRB. With a higher percentage of land in herbaceous openings and potentially other early successional stages, deer may not have needed to travel as far to meet their nutritional requirements.

Female summer home range size was similar to the home range size of the entire sample. This is probably a result of the high percentage of females in the radio-collared sample and averaged 161.3 ha and 50.8 ha for the WRB and SP, respectively. These data

compare to Minnesota studies that found female deer summer home ranges of 282.7 ha (Kohn and Mooty 1971) and 120 ha (Nelson and Mech 1984).

In the WRB, mean fall home ranges for deer were larger than spring/summer home ranges for both years. These results are in contrast to data reported by Mooty et al. (1987) in Minnesota where the trend was for ranges during summer intervals to be larger than ranges during November-December and other winter intervals.

Supplemental feeding may also affect home range size. Although this topic was not addressed in this project, personal communication with residents on the SP indicates supplemental feeding may be an extensive practice. The degree of feeding during each season is unknown. This practice may impact home range size and habitat use more in the SP than the WRB, because the SP appears to have a higher density of permanent human residents than the WRB. The effects of supplemental feeding and the higher percentage of herbaceous openland in the SP versus the WRB would need to be separated to determine their respective impacts on home range sizes and habitat use.

Home Range Estimator Comparison

In seven of the 8 time periods for the 2 study areas (spring/summer-WRB and SP for 2 years; fall-WRB and SP for 2 years), AK mean home ranges were the largest followed by HM and MCP. Analyzing deer individually, though, only 63% followed this pattern; 27% resulted with HM>AK>MCP. For comparisons to previous studies, MCP was one of the home range methods used. A major disadvantage to this method, though, is that the size of the home range increases as the number of location points increases

(Jennrich and Turner 1969); the number of location points per deer in this study ranged from 4 to 30.

The HM and AK methods describe the intensity of use at a specific point. Additionally, the AK method provides a probability density function and a means of smoothing data to make more efficient use of the data (Worton 1989). No assumption is made about the form of the utilization distribution, and therefore, 30 to 100 observations per animal should be collected to obtain an accurate estimate (Worton 1987). Being able to detect use intensity provides more detailed information about habitat requirements of the animal being observed. For example, Naef-Daenzer (1993) showed density estimates from a modified kernel estimation for a male blue tit were highly correlated with caterpillar density on individual trees and the distance of the trees from the nest.

HABITAT USE

Habitat availability was based on a circle centered around a central trap location in the 2 trapping areas. Most deer movements from wintering areas to summer range appeared to be in a north-northeast direction during this study. Although this pattern existed, a circle instead of a wedge was used to estimate habitat availability because deer movement patterns may change (e.g., northwest-southwest) direction if habitat quality would change.

The 2 vegetation types with the highest percentages of use for the 2 study areas were northern hardwoods (20.33%) and lowland conifers (16.67%) in the WRB and wet hardwood/conifer mix (19.49%) and northern hardwoods (18.41%) in the SP. Although

these types had high use, they also cover a large amount of land area and, except for northern hardwoods in the WRB, had use approximately equal to availability.

The overall chi-square goodness-of-fit tests were significantly different (P<0.0001) for each study area for both years showing that deer were not using vegetation types in proportion to availability (Table 8). Vegetation types used more than expected during spring/summer were aspen/birch and mixed pine in the WRB and aspen/birch, mixed pine, and white-cedar in the SP. In Wisconsin, McCaffery and Creed (1969) found significantly more deer track crossing in aspen than in northern hardwood types. Kohn and Mooty (1971) also found deer preferred birch and aspen-birch-conifer cover types in Minnesota.

The aspen/birch vegetation type provides forage during the summer period and has been shown to dominate the deer diet through early and late summer (McCaffery et al. 1974). Forbs have also been found to be an important part of deer summer diet (McCullough 1985) and may be provided in the northern hardwood vegetation type. Mixed pine types being used more than expected may be due to an understory and herbaceous component encroaching from adjacent hardwood stands.

Vegetation types used less than expected included northern hardwoods, agricultural-croplands, and the other category in the WRB and wetlands, agriculturalcroplands, and the other category in the SP. In a study in Minnesota, deer were found to avoid red pine, aspen-conifer, and birch-conifer (Kohn and Mooty 1971); trees in the red pine stands were usually 3 to 6 m apart, approximately 15 m tall and 35 to 45-years-old.

The authors did find distance between trees and height influenced their use by deer, so avoidance or selection differences between studies may be due to stand characteristics.

The agricultural-cropland vegetation type was not used in the WRB or SP in either year of the study, although availability ranged from 9.3 to 14.6% for the 2 study areas. Although the study area was not designated as one of the problem deer damage areas of the state, many farmers report deer damage in neighboring Menominee County and other regions of Michigan (Michigan State University 1989). No use by deer of the agricultural-cropland vegetation type during this study may appear unusual but could be due to a couple of factors.

The designation of agricultural-cropland in the vegetation database used for this study is specifically for row crops and does not include open, grassy areas such as hayfields; these areas would be classified as herbaceous openland. Alfalfa and mixed hay fields occupied approximately 1.5% and 0.8% of the land in Delta and Alger Counties, respectively (Farm Service Agency pers. comm.). Approximately 3,109 ha of corn, dry beans, and potatoes are grown in Delta County; none of these row crops are grown in Alger County (Michigan Dept. of Agriculture 1993). Secondly, a higher percentage of areas classified as agricultural-cropland occur in areas of the availability circles radio-collared deer did not use, e.g., the west side of Little Bay de Noc where approximately 20.2% of the land is agricultural-cropland compared to approximately 9.5% in the SP.

Cedar vegetation type availability was low for both study areas (<1%). Spring/summer use of this vegetation type was 1.63% and 3.25% for the WRB and SP, respectively, which was as expected for the WRB and more than expected for the SP.

The low use may be due to other foods being available in other vegetation types (e.g., northern hardwoods, herbaceous openland) during the spring/summer.

PRODUCTIVITY

There was not a significant difference in the fawn:doe ratio between the WRB and SP. The total number of does and fawns observed during the 3 driving surveys was 34 and 8, respectively, for the SP and 37 and 6, respectively, for the WRB (Table 11). Initially, 3 driving surveys were conducted June 15th to 20th with only 5 fawns being observed between both areas. Although experienced does give birth in late May or early June (Ozoga et al. 1994), the majority of fawns were probably still spending a high percentage of their time bedding during this first set of surveys.

Testing the fawn:doe ratio did not show a significant difference between the WRB and SP. Although there is more open area on the SP and an expected greater opportunity to see deer, does are secretive for the first 4 to 6 weeks after giving birth (Ozoga et al. 1994), possibly equating the observation level for both study areas and resulting in a nonsignificant difference. Dense understories also reduces opportunity for viewing deer; this has also been shown to be a problem of night spotlighting (McCullough 1982).

A low sample size may also have contributed to the non-significant difference. According to sample size requirement calculations (Freese 1978), 409 and 1066 surveys would be required in the SP and WRB, respectively, to obtain an accurate estimate of the fawn:doe ratio.

Composition and Structure of Northern White-Cedar Stands

Long-term studies of deer browsing on various forest types and on timber products has not been well documented. A 20-year study (1942 to 1962) on the Allegheny National Forest in Pennsylvania reported declines in the understory of a virgin hemlock-hardwood forest (Hough 1965). A more recent study in Pennsylvania reported changes in species composition, growth impacts, and dramatic stocking differences between fenced and unfenced areas 9 to 22 years after clearcutting (Marquis 1981). The exclosure study initiated in this project will provide the opportunity to document longterm impacts of deer on the structure and composition of the cedar type. Although data recorded for baseline purposes were extensive, monitoring may focus on specific aspects of the community, e.g., cedar and rare herbaceous plant species.

The herbaceous component of forest communities is an important part of a deer's diet, but few studies have investigated the impacts of deer foraging on herbaceous species (Miller et al. 1992). Herbaceous plants comprised 87% of the summer diet of white-tailed deer in Wisconsin (McCaffery et al. 1974). This grazing impact is especially important regarding rare plants. Of the 95 species identified in the 4 study areas, several species of the <u>Orchidaceae</u> family were observed including showy and yellow lady's slipper which are favored by deer (Alverson et al. 1988). The intensity of herbaceous plant use in the cedar stands was not documented during this project but could be incorporated into the long-term monitoring to be conducted at these sites.

Exclosure and Open Area Site Data Combined

Significance tests among the study area gradients in which the exclosure and open area site data were combined revealed significant differences for all the vegetation components measured. Some of the differences were much more evident even ocularly (e.g., WRB-North vertical cover 0.5-2.0 m stratum compared to the other 3 study areas). With the densities of non-dominant woody species and the frequency of herbaceous species, many multiple comparison tests detected a difference among study areas, but the multiple comparison could not detect where the difference occurred. This may be due to the small sample sizes involved.

Trends were evident when comparing the study area gradients. Mean percent vertical cover dropped dramatically in the 0.5-2.0 m stratum from WRB-North to other study areas; this may be due to the higher amount of water found in the WRB-North sites. Stem densities of northern white-cedar in the 0-0.5 m stratum were much higher in the WRB than the SP. This may be due to site variation among the study areas or lower deer densities. The greater stem densities in the 0-0.5 m stratum compared to the 0.5-2.0 m stratum in the WRB may indicate the problem with cedar is being recruited into higher height classes and not regeneration. Once cedar grows above snow levels, browsing pressure may impact growth. Stem densities of other woody species often appeared to be related to the vegetation types surrounding the cedar stands, e.g., black ash had 14,444 stems/ha in SP-North (where a black ash stand was adjacent to the cedar stand) versus no stems in WRB-North where the cedar stands were surrounded primarily by northern hardwoods.

A wide variety of herbaceous species (95) were identified in the 4 study areas, but species richness was similar for the areas ranging from 49 to 59. Twenty species were common to the 4 areas with several of these species also being the most common within the study area gradients, e.g., bunchberry (<u>Cornus canadensis</u>), Canada mayflower, naked miterwort, and starflower, indicating their ability to exist in variable habitats. Thirtythree species, though, were identified in only 1 study area gradient indicating more specific habitat requirements.

Exclosure and Open Area Site Data Separated

Paired t-tests comparing composition and structure data of exclosure to open area sites showed minimal significant differences (Tables A3-A14, Appendix), due to the fact that, even on sites where exclosures have been constructed, enough time has not elapsed for vegetation differences to be detected. Differences that were detected were probably due to natural variation and microhabitat differences between exclosure and open area sites.

The comparisons among study areas resulted in 47 occurrences of significant differences primarily in the density of other woody species and frequency of herbaceous species. Multiple comparison tests for each of the species showing a significant difference were not always able to detect where the difference occurred probably due to the small sample size from each study area.

Browse Sampling

Deer browsing affects forest vegetation in different ways. Regeneration may decrease as reported in several studies (Dahlberg and Guettinger 1956, Beals et al. 1960,

Behrend et al. 1970, Anderson and Loucks 1979, Frelich and Lorimer 1985, Case and McCullough 1987). Vegetation may be able to regenerate and be recruited, but their growth may be detrimentally impacted by deer browsing (Tilghman 1989). Some species, though, are able to repair injuries received from deer browsing and recover to grow beyond the reach of ungulates (Graham 1958). In contrast, mountain maple (<u>Acer</u> <u>spicatum</u>) has been found to slightly increase as browse pressure increases (Beals et al. 1960).

To compare the relative difference in browsing of selected tree species in the WRB and SP, browsing estimates of 3 tree species in stands adjacent to cedar stands were obtained in the 2 study areas. Sugar maple browsing (<10%) appeared to be much lower than that for balsam poplar and black ash (ranging from 31.3% to 45.3%) in each study area. The lower browsing levels for sugar maple may be due to a couple of reasons. First, the lower average height of sugar maple stems at the SP sampling site making the stems unavailable due to snow pack. Secondly, the extensive land area of northern hardwoods available where the sugar maple was sampled at the WRB sampling site (and in the WRB in general [27.31%]), which may spread the browsing intensity over a larger area reducing the percent browsed in the sampling area.

CONCLUSIONS

- 1. Overall use of vegetation types in the 2 areas (WRB and SP) was not in proportion to availability in either year. During spring/summer, vegetation types used more than expected were aspen/birch and mixed pine in the WRB and aspen/birch, mixed pine, and white-cedar in the SP. Deer use of the agriculturalcropland and "other" vegetation type categories was not observed in either study areas. Fall habitat use was similar to spring/summer use. Deer primarily used 5 vegetation types during the fall: northern hardwoods, aspen/birch, wet hardwood/conifer mix, mixed pine, and lowland conifers.
- 2. Deer movement from wintering areas to spring/summer home ranges reached maximum distances of 54.4 and 52.9 km from the WRB and SP trapping areas, respectively. During the 2 years of the study, 27% of WRB summer range deer were SP-trapped deer. Spring/summer home ranges were significantly larger in the WRB than the SP for both years. Fall home ranges were significantly larger in the WRB than the SP in 1994. Female spring/summer home ranges were significantly larger in the WRB than the SP in 1993 and both seasons in 1994.
- 3. Few significant differences were detected in vegetation characteristics between exclosure sites and open areas in all 4 study area gradients. Quantifying the vegetation characteristics over time, however, may provide natural resource

- 5. Sugar maple had a lower browsing intensity than black ash and balsam poplar in the WRB and SP.
- Productivity (fawns:doe) was not significantly different between the WRB and the SP.

sho
tim
рор
of t
\$0 S
abur
ţype
loca
Conc
gram
Winte
reduc
supp]
Octob
^{conce} ;

MANAGEMENT RECOMMENDATIONS

Long-term forest management practices in the Hiawatha National Forest (HNF) should focus on maintaining vegetation types throughout the landscape that meet wildlife, timber, and other multiple use objectives. Maintaining vegetation types for deer populations can provide habitat for other species, both game and non-game, and be a part of the overall management scheme for the HNF.

Deer movements can be extensive from wintering areas to spring/summer ranges, so selected vegetation types should be provided to minimize the effects of locally abundant numbers on vegetation communities. A review of the distribution of vegetation types across the landscape may indicate the possibility of high concentrations of deer in local areas. Locations of future timber harvests should be planned to help reduce deer concentrations and alleviate browsing pressure on some forest species.

Spring supply of vegetation types that provide foods used by deer, such as graminids and evergreen ground plants (McCaffery et al. 1974) in close proximity to wintering areas will provide deer with the necessary food component to recover from reduced food intake during the winter months (Ozoga and Verme 1970). Spring food supply is also important for pregnant does that are nearing the fawning period.

Deer population goals for the state are set at 1.3 million; population size as of October 1994 was approximately 1.6 million (Ozoga et al. 1994). Seasonally high concentrations of deer may impact the forest community through changes in species

composition (Marquis 1981) and impaired regeneration (Behrend et al. 1970, Anderson and Loucks 1979, Case and McCullough 1987). In areas where plant community composition and structure is a concern and deer are locally abundant, further herd reduction by removing more antlerless deer should be considered.

The spatial relationships of seasonal habitat use patterns and movements of deer need to be considered when setting harvest regulations and delineating Deer Management Unit boundaries. A challenge in setting harvest regulations is determining where wintering deer that are impacting vegetation are located during hunting season (e.g., what Deer Management Unit). Education of the hunting public needs to be conducted about management objectives and how antlerless deer hunting helps maintain forest ecosystem composition and structure and why deer seasonal demographics need to be considered when setting harvest quotas. APPENDIX

.

	Sex			Spring/Summer Home Ranges (ha)		
Study Area		Age	Deer #	МСР	НМ	AK
WRB	Female	Adult	1091	4.5	61.9	78.1
			750	9.5	90.6	145.1
			691	4.5	98.8	128.4
			1340	30.0	393.7	415.1
			591	16.0	326.5	273.6
			1011	20.0	160.5	174.4
			99 0	9.5	39.6	74.5
			1290	48.5	771.4	624.2
			1320	3.5	63.5	87.0
			411	3.0	66.7	77.7
			850	40.5	146.2	118.4 ^a
			480	06.0	236.9	186.9
		Female Adult		00.0	200.9	100.7
		Mean		24.6	204.7	198.6
		(S.E.)		33.5)	(60.9)	
					(00.9)	(48.1)
		Yearling	540	217.0	319.7	362.1
			390	151.0	209.4	249.3
			550	77.5	78.7	129.9
			499	127.5	175.9	166.1
			420	8.0	6.7	34.9
			400	54.0	70.8	99.0
			370	576 .0	3517.0	928.4
			1300	27.0	31.3	38.7
		Female Yearling				
		Mean		154.8	551.2	251.1
		(S.E.)		(64.9)	(425.3)	(104.2)
	Female Mean	********************		126 7	242.2	210 (
				136.7	343.3	219.6
	(S.E.)			(32.0)	(171.6)	(49.4)
	Male	Adult	791	193.5	266.8	234.2
			710	247.5	287.3	382.8
			1230	99 .0	257.1	172.8
			060	133.5	163.4	242.4
			079	11.0	39.1	50.3
		Male Adult	0.17		57.1	50.5
		Mean		136.9	202.7	216.5
		(S.E.)		(40.5)	(46.1)	(53.9)
				(10.5)	(+0.1)	(33.9)
		Yearling	490	85.5	136.4	145.6
			270	559.0	6313.7	13970.0
•			360	37.5	63.3	77.3
			520	90.5	175.3	197.7
			439	265.5	354.4	466.2
			460	22.0	51.5	60.4
			1370	165.5	222.5	257.0
		Male Yearling				
		Mean		175.1	1044.0	2167.7
		(S.E.)		(71.2)	(879.1)	(1967.7)
	Male Mean			159.2	693.5	1354.7
	(S.E.)			(43.5)	(511.7)	(1147.4)
WRB Study						
				145.1	474.6	645.3
Area Mean (S.E.)					• • • • •	0.0.0

Table A1. Seasonal home ranges (ha) of white-tailed deer in the Whitefish River Basin (WRB) and Stonington Peninsula (SP) using minimum convex polygon (MCP), harmonic mean (HM) with 95% contours, and adaptive kernel (AK) with 95% contours in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993.

Table A1 (cont'd).

				Spring/S	g/Summer Home Ranges (ha)		
Study Area	Sex	Age	Deer #	МСР	HM	AK	
SP	Female	Adult	731	19.5	28.6	39.4	
			811	55.0	78.3	97.5	
			1270	44.5	76.2	94.9	
			771	104.5	106.8	178.4	
			1221	45.0	59.6	73.1	
			601	37.5	49.6	74.0	
			831	37.5	31.6	43.9	
			1110	133.5	205.7	305.3	
		Female Adult					
		Mean		59.6	79.6	113.3	
		(S.E.)		(13.7)	(20.2)	(31.4)	
		Yearling	510	32.5	48.8	51.7	
		U	570	28.0	37.3	46.3	
			350	23.0	31.4	48.7	
			1280	26.0	34.4	38.0	
		Female Yearling		2010	•	20.0	
		Mean		27.4	38.0	46.2	
		(S.E.)		(2.0)	(3.8)	(2.9)	
				(2:0)	(5.0)	(2.7)	
	Female Mean			48.9	65.7	90.9	
	(S.E.)			(10.1)	(14.5)	(22.6)	
	Male	Adult	1310	138.0	337.7	354.4	
		Male Adult					
		Mean					
		(S.E.)					
		Yearling	530	46.0	75.3	97.1	
		•	1330	190.5	468.9	398.5	
		Male Yearling					
		Mean		118.3	272.1	247.8	
		(S.E.)		(72.3)	(196.8)	(150.7)	
				(-==;	()	()	
	Male Mean			124.8	294 .0	283.3	
	(S.E.)			(42.2)	(115.7)	(94 .0)	
SP Study							
Area Mean				64.1	111.3	96.7	
(S.E.)				(13.4)	(33.3)	(31.6)	
(0.2.)				(13.7)	(33.3)	(51.0)	

Table A1 (cont'd).

	Sex			Fa	Fall Home Ranges (ha)		
Study Area		Age	Deer #	МСР	HM	AK	
WRB	Female	Adult	1091	308.0	559.3	816.7	
			750	36.5	51.8	60.5	
			691	50.0	54.0	56.4	
			591	3742.0	1971.3	9411.0	
			1011	27.5	43.6	54.4	
			9 90	735.5	1842.5	3404.0	
			1290	19.5	25.2	59.1	
			1320	24.5	32.9	58.4	
			411	44.0	48.9	82.6	
			850	290.0	4702.0	5274.0	
			480	166.0	196.6	313.6	
		Female Adult					
		Mean		494.9	866.2	1781.0	
		(S.E.)		(331.2)	(442.1)	(923.8)	
		Yearling	390	92.0	104.0	157.3	
		-	550	46.0	61.0	100.0	
			499	2.5	7.2	6.3	
			400	66.5	81.6	119.4	
			370	25.0	32.0	61.4	
		Female Yearling					
		Mean		46.4	57.2	88.9	
		(S.E.)		(15.6)	(17.2)	(25.8)	
	Female Mean			354.7	613.4	1252.2	
	(S.E.)		_	(230.6)	(314.6)	(657.4)	
	Malc	Adult	791	343.5	472.3	909.2	
			710	34.0	56.3	163.9	
			1230	121.0	179.0	230.2	
		Male Adult	060	48.0	31.5	141.7	
		Mean		136.6	184.8	361.3	
		(S.E.)					
		(S.E.)		(71.5)	(101.1)	(183.6)	
		Yearling	270	99.5	148.6	139.8	
			360	31.0	25.5	84.7	
			520	4.0	8.8	8.5ª	
			460	109.0	60.7	228.9	
		Male Yearling		<i></i>			
		Mean		60.9	60.9	115.5	
		(S.E.)		(25.7)	(31.2)	(46.4)	
	Male Mean			98.8	122.8	238.4	
	(S.E.)			(38.0)	(54.3)	(99.2)	
WRB Study							
Area Mean				269.4	449.9	914.3	
(S.E.)				(154.6)	(213.7)	(445.9)	

4

L

Table A1 (cont'd).

				Fa	ll Home Ranges (ha)
Study Area	Sex	Age	Deer #	МСР	НМ	AK
SP	Female	Adult	811	70.0	70.9	98.2
			1270	46.0	9 0. 7	81.6
			771	34.0	54.0	59.2
			1221	39.5	50.8	8 6.6
			601	35.5	36.8	67.3
			831	24.5	29.9	28.3
			1110	60.5	72.8	103.3
		Female Adult				
		Mcan		44.3	58.0	74.9
		(S.E.)		(6.0)	(8.1)	(9.8)
		Yearling	510	150.0	257.1	322.8
			570	72.5	131.5	98.1
			350	111.0	74.0 ⁶	175.8
			1280	42.0	91.8	79.5
		Female Yearling				
		Mean		93.9	138.6	169.1
		(S.E.)		(23.4)	(41.3)	(55.3)
	Female Mean			62.3	87.3	109.2
	(S.E.)			(11.4)	(19.0)	(24.0)
	Male	Adult	1310	38.5	109.1	91.6
		Male Adult				
		Mean				
		(S.E.)				
	Male Mean (S.E.)					
SP Study	<u> </u>					
Area Mean				60.3	89.1	107.7
(S.E.)				(10.6)	(17.5)	(21.9)

, 4

,

^a80% contour; CALHOME program (Kie et al. 1994) was not able to calculate 95% contour. ^b80% contour; TELEM88 program (Coleman and Jones 1988) was not able to calculate 95% contour.

				Spring/	Summer Home R	anges (ha)
Study Area	Sex	Age	Deer #	МСР	HM	AK
WRB	Female	Adult	1091	187.0	300.3	309.4
			691	168.0	207.1	232.3
			591	239.0	797.5	480.1
			1011	161.0	195.6	191. 9
			390	51.0	94.4	77.8
			99 0	161.5	177.9	181.1
			499	152.5	110.0 ^a	208.1
			550	74.5	85.1	103.3
			1320	56.5	51.5	69.8
			400	38.5	61.0	57.9
			411	110.0	24.7ª	155.5
			370	45.5	63.4	61.8
			48 0	58.0	79.3	83.6
		Female Adult				
		Mean		115.6	192.1	170.2
		(S.E.)		(18.3)	(65.1)	(33.6)
		Yearling	530	1302.0	4573.0	10640.0
			1310	40.5	53.3	61.0
			360	126.5	126.7	159.9
		Female Yearling				
		Mean		489.7	1584.3	3620.3
		(S.E.)		(406.9)	(1494.5)	(3510.0)
	Female Mean			185.8	490.4	817.1
	(S.E.)			(76.0)	(318.3)	(655.5)
	Malc	Adult	270	90.0	137.9	104.5
			1230	150.5	185.5	169.9
			460	328.5	483.4	693.0
		Male Adult		189.7	268.9	222.6
		Male Adult Mean				322.5
		(S.E.)		(71.6)	(108.1)	(186.2)
		Veeling	640	40.5		(2.8
		Yearling	520	235 .0	60.6 179.3	62.8 226.0
			079	115.5	179.3	226.0 169.0
			710	9 0.0	201.8	169.0
		Male Yearling	/10	30.0	201.0	140.0
		Mean		120.3	156.8	149.5
		(S.E.)		(41.3)		
		(3.E.)		(41.3)	(32.4)	(34.0)
	Male Mean			150.0	204.9	223.6
	(S .E.)			(37.6)	(49.8)	(80.7)
WRB Study						
Area Mean				174.9	366.7	636.5
(S.E.)				(53.6)	(194.4)	(455.7)

Table A2 (cont'd).

				Spring/S	ummer Home Rai	nges (ha)
Study Area	Sex	Age	Deer #	мср	HM	AK
SP	Female	Adult	1221	53.5	84.2	81.0
			771	58 .0	73.2	98.6
			6 01	61.0	76.4	68.9
			831	96.5	105.0	116.4
			1110	27.0	10.4	87.2
			570	28.5	45.1	49.0
			350	65.5	111.8	94.7
			1280	31.0	17.9	44.1 ^b
		Female Adult				
		Mean		52.6	65.5	80.0
		(S.E.)		(8.3)	(13.3)	(8.8)
		Yearling	1330	75.0	129.3	111.0
			49 0	59.0	73.1	98.4
			730	51.0	91.5	61.2
			79 0	25.0	40.4	33.4
		Female Yearling				
		Mean		52.5	83.6	76.0
		(S.E.)		(10.4)	(18.5)	(17.7)
	Female Mean			52.6	71.5	78.7
	(S.E.)			(6.3)	(10.6)	(7.8)
	Male	Yearling	620	27.5	51.8	51.3
			1170	67.0	76.1	150.6
			1370	76.0	167.5	96.1
		Male Yearling				
		Mean		56. 8	98.5	76.0
		(S.E.)		(14.9)	(35.2)	(17.7)
_	Male Mean			56.8	98.5	76.0
	(S.E.)			(14.9)	(35.2)	(17.7)
SP Study						
Area Mean				53.4	76.9	82.8
(S.E.)				(5.6)	(10.7)	(8.2)

Table A2 (cont'd).

				F	all Home Ranges	(ha)
Study Area	Sex	Age	Deer #	МСР	HM	AK
WRB	Female	Adult	691	474.0	1527.1	517.0
			591	1595.0	14952.0	22830.0
			1011	28.5	64.5	32.9
			99 0	917.0	1772.9	3736.0
			499	38.0	204.2	50.2
			550	22.5	32.9	52.7
			1320	40.0	55.6	89.4
			400	79.0	82.6	95.5
			411	27.5	46.8	48.8
			480	36.0	45.4	61.0
		Female Adult	400	50.0	43.4	01.0
		Mean		325.8	1878.4	2751.4
		(S.E.)		(168.7)	(1467.5)	(2260.2)
		(J.L.)		(108.7)	(1407.3)	(2200.2)
		Yearling	530	50.0	120.1	126.7
		•	1310	1516.0	3544.0	259.7°
			360	7.5	14.0	19.8
		Female Yearling				
		Mean		524.5	1226.0	135.4
		(S.E.)		(495.9)	(1159.4)	(69.4)
	Female Mean			371.6	1727.9	2147.7
	(S.E.)			(162.7)	(1140.3)	(1746.0)
	Male	Adult	270	20.5	13.8	42.3
			1230	69.0	149.0	164.8
		Male Adult				
		Mean		44.8	81.4	103.6
		(S.E.)		(24.3)	(67.6)	(61.3)
		Yearling	640	105.5	197.3	162.7
		-	520	7.5	12.5	23.4
			079	7.0	15.9	19.2
			710	613.0	856.4	1373.0
		Male Yearling				
		Mean		183.3	270.5	394.6
		(S.E.)		(145.1)	(200.0)	(327.8)
N						
	Male Mean			137.1	207.5	297.6
	(S.E.)			(96.5)	(133.8)	(216.8)
WRB Study						
Area Mean				297.6	1247.7	1563.4
(S.E.)				(116.4)	(789.0)	

Table A2 (cont'd).

				Fa	ll Home Ranges (ha)
Study Area	Sex	Age	Deer #	МСР	НМ	AK
SP	Female	Adult	1221	42.5	55.8	77.0
			771	6.0	9.2	11.1
			601	10.5	10.2	21.9
			831	45.6	46.5	82.1
			350	64.0	89.0	100.5
		Female Adult				
		Mean		33.7	42.1	58.5
		(S.E.)		(11.0)	(15.0)	(17.7)
		Yearling	1330	9.0	17.3	27.0
			490	5.5	8.1	8.7
			730	4.5	6.7	11.9
			790	7.5	8.6	12.6
		Female Yearling				
		Mean		6.6	10.2	15.1
		(S.E.)		(1.0)	(2.4)	(4.1)
	Female Mean			21.7	27.9	39.2
	(S.E.)			(7.5)	(9.8)	(12.2)
	Male	Yearling	620	16.0	23.9	22.7
			1370	29.5	44.5	40.3
		Male Yearling				
		Mean		22.8	34.2	31.5
		(S.E.)		(6.8)	(10.3)	(8.8)
	Male Mean			22.8	34.2	31.5
	(S.E.)			(6.8)	(10.3)	(8.8)
SP Study	<u> </u>					
Area Mean				21.9	29.1	37.8
(S.E.)				(6.2)	(8.0)	(10.0)

^a80% contour; TELEM88 program (Coleman and Jones 1988) would not calculate 95% contour.
 ^b80% contour; CALHOME program (Kie et al. 1994) would not calculate 95% contour.
 ^c50% contour; CALHOME program (Kie et al. 1994) would not calculate 95% contour.

		S	Site
Study Area		Exclosure	Open Area
Vhitefish River	<0.5	90.7A ^a (1.2)	8.4A (3.6)
Basin-North	0.5-2.0	60.3A (5.6)	77.9A (8.7)
	>2.0	80.7A (2.9)	84.2A (2.1)
	DWM ^b	5.3 (1.4)	5.8 (1.9)
Whitefish River	<0.5	74.4A (8.0)	83.3A (1.8)
Basin-South	0.5-2.0	5.2AB(2.1)	5.1AB(1.3)
	>2.0	94.0B (0.3)	91.6A (3.2)
	DWM	2.2 (0.7)	2.0 (0.3)
Stonington	<0.5	73.2A (4.4)	73.7A (2.3)
Peninsula-North	0.5-2.0	4.3AB(1.8)	10.2AB(7.7)
	>2.0	90.5AB(1.7)	86.0A (4.5)
	DWM	2.3 (0.7)	6.3 (1.7)
Stonington	<0.5	66.6A* (7.2)	78.2A (6.9)
Peninsula-South	0.5-2.0	0.7B* (0.1)	2.4B (0.4)
	>2.0	91.7AB(2.2)	93.8A (0.6)
	DWM	4.0 (0.3)	2.8 (0.5)

Table A3. Mean percent vertical cover (and standard error) for height strata in exclosure and areas open to browsing sites in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994.

^aMeans with different letters within a site and stratum were significantly different (P<0.10) among study areas with the Kruskal-Wallis one-way analysis of variance (Siegel and Castellan 1988) using SYSTAT (1992) and Kruskal-Wallis multiple comparison test (Siegel and Castellan 1988).

^bDowned woody material; descriptive only, no tests conducted.

*Significantly different (P<0.10) from open area with paired t-test (Steel and Torrie 1980).

		Site			
Study Area	Stratum (m)	Exclosure*	Open Area		
Whitefish River Basin-	<0.5	75.3 ^a (5.2)	60.6A (12.0)		
North	0.5-1.0	58.3A ^b (7.1)	38.9A (8.9)		
	1.0-1.5	54.9 ^a (5.5)	46.0 ^a (7.1)		
	1.5-2.0	39.5 ^a (6.1)	35.7A (6.1)		
	2.0-2.5	44.2A (6.3)	43.8A (6.7)		
Whitefish River Basin-	<0.5	29.2 (3.4)	29.2A (5.8)		
South	0.5-1.0	13.8AB(5.9)	21.0A (6.9)		
	1.0-1.5	11.5 (4.2)	18.6 (4.7)		
	1.5-2.0	8.8 (2.2)	20.6AB(3.4)		
	2.0-2.5	7.9B (1.3)	21.6AB(4.3)		
Stonington Peninsula-	<0.5	24.0 (4.2)	18.1A (3.2)		
North	0.5-1.0	14.0AB(2.7)	21.8A (8.6)		
	1.0-1.5	14.5 (3.9)	10.4 (4.1)		
	1.5-2.0	16.7 (4.6)	9.3B (3.8)		
	2.0-2.5	22.4AB(7.5)	13.0AB(5.2)		
Stonington Peninsula-	<0.5	21.6 (4.0)	15.2A (3.0)		
South	0.5-1.0	8.1B (0.0)	11.8A (2.0)		
	1.0-1.5	7.8 (4.1)	11.0 (4.1)		
	1.5-2.0	7.9 (6.1)	9.1AB(1.3)		
	2.0-2.5	9.5AB(7.1)	11.7B (0.4)		

Table A4. Mean percent horizontal cover (and standard error) for height strata in exclosure and areas open to browsing sites in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994.

*No significant differences (P>0.10) between exclosure and open area sites for all study areas and strata with paired t-test (Steel and Torrie 1980).

^aKruskal-Wallis multiple comparison test (Siegel and Castellan 1988) was unable to detect where the significant difference occurred within a site and stratum among the study areas as detected by the Kruskal-Wallis one-way analysis of variance (Siegel and Castellan 1988) using SYSTAT (1992).

^bMeans with different letters within a site and stratum were significantly different (P<0.10) among study areas by the Kruskal-Wallis one-way analysis of variance (Siegel and Castellan 1988) using SYSTAT (1992) and Kruskal-Wallis multiple comparison test (Siegel and Castellan 1988).

			Site				
Study Area	Species	Stratum (m)	Exclosure		Open	Area	
WRB- North	Northern white cedar <u>Thuja occidentalis</u>	0-0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	12179A ^a 148 ^b 20A 523A	(360) (64) (10) (120)	10789A 256 ^b 10 ^b 478A	(227) (5)	
	Balsam fir <u>Abies balsamea</u>	0-0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	9472A* 10695 ^b 1622A 104A	(2112) (1319) (240) (89)	7761 [⊾] 2056 [⊾]	(1918) (2718) (334) (26)	
	Sugar maple Acer saccharum	0-0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	296A 168 ^b 10A 10A	(281) (153) (5) (10)	1183A 84 ^b 10A 0A	(13)	
WRB- South	Northern white cedar <u>Thuja occidentalis</u>	0-0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	12288A 0 1736B 1203B	(6783) (0) (1098) (242)	12663A 0 1977 1016A	(0) (765)	
	Balsam fir <u>Abies balsamea</u>	0-0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	19305A (13632) 251 148A 20A	(223) (97) (10)	16090A 138 237 54A	(8730) (110) (101) (39)	
	Sugar maple Acer saccharum	0-0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	212A 0 0A 0A	(212) (0) (0) (0)	0 0A	(155) (0) (0) (0)	
SP-North	Northern white cedar <u>Thuja occidentalis</u>	0-0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	878A 0 325AB 720AB	• •	2362A 79 705 695A	(1265) (79) (580) (78)	
	Balsam fir <u>Abies balsamea</u>	0-0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	1893A 20 207A 84A	(1154) (13) (171) (36)	16 8 227	(1616) (168) (219) (21)	
	Sugar maple <u>Acer saccharum</u>	0-0.5 0.5-2.0 >2.0, <12.67 cm dbh >2.0, >12.67 cm dbh	25A 0 0A 0A	(13) (0) (0) (0)	0 0A	(42) (0) (0) (0)	

				Sit	e	
Study Area	Species	Stratum (m)	Exclos	sure	Open	Area
SP-South	Northern white cedar	0-0.5	1065A	(459)	910A	(200)
	Thuia occidentalis	0.5-2.0	0	(0)	0	(0)
	•	>2.0, <12.67 cm dbh	207AB	(74)	207	(74)
		>2.0, >12.67 cm dbh	888AB	(133)	799A	(0)
	Balsam fir	0-0.5	1938A	(1938)	377A	(126)
	Abies balsamea	0.5-2.0	7	(7)	15	(15)
		>2.0, <12.67 cm dbh	74A	(74)	155	(141)
		>2.0, >12.67 cm dbh	52A	(52)	44A	(15)
	Sugar maple	0-0.5	0A	(0)	0A	(0)
	Acer saccharum	0.5-2.0	0	(0)	0	(0)
		>2.0, <12.67 cm dbh	0A	(0)	0A	(0)
		>2.0, >12.67 cm dbh	0A	(0)		(0)

*Means with different letters within a site, species, and stratum were significantly different (P<0.10) among study areas with the Kruskal-Wallis one-way analysis of variance (Siegel and Castellan 1988) using SYSTAT (1992) and Kruskal-Wallis multiple comparison test (Siegel and Castellan 1988).

^bKruskal-Wallis multiple comparison test (Siegel and Castellan 1988) was unable to detect where the significant difference occurred within a site, species, and stratum among study areas as detected by the Kruskal-Wallis one-way analysis of variance (Siegel and Castellan 1988) using SYSTAT (1992). *Significantly different (P<0.10) from open area with paired t-test (Steel and Torrie 1980). Table A6. Mean stem densities per hectare (and standard error) of non-dominant woody species in exclosure and areas open to browsing sites in the Whitefish River Basin-North study area in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994.

		Site		
Species	es Stratum (m)	Exclosure*	Open Area	
Alder-leaved buckthorn	0-0.5	1972 (1188)	2750 (2014)	
Rhamnus alnifolia	0.5-2.0	1194 (989)	1917 (1792)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Alternate-leaved	0-0.5	417 (417)	611 (611)	
dogwood	0.5-2.0	0 (0)	0 (0)	
Cornus alternifolia	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
American elm	0-0.5	83 (48)	28 (28)	
<u>Ulmus americana</u>	0.5-2.0	28 (28)	28 (28)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
American mountain ash	0-0.5	56 (28)	83 (48)	
Sorbus americana	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
American red raspberry	0-0.5	0 (0)	28 (28)	
Rubus idaeus	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Balsam poplar	0-0.5	0 (0)	0 (0)	
<u>Populus balsamifera</u>	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	28 (28)	111 (111)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Beaked hazelnut	0-0.5	111 (111)	111 (111)	
<u>Corvlus cornuta</u>	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Black ash	0-0.5	0 (0)	0 (0)	
Fraxinus nigra	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	28 (28)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Black currant	0-0.5	833 (567)	2028 (916)	
Ribes lacustre	0.5-2.0	83 (83)	194 (100)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	

Table A6 (cont'd).

		Site	
Species	Stratum (m)	Exclosure	Open Area
Black spruce	0-0.5	2639 (709)	1083 (614)
<u>Picea mariana</u>	0.5-2.0	2000 (1380)	750 (289)
	>2.0, <12.67 cm dbh	1167 (1167)	389 (389)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Flowering dogwood	0-0.5	1028 (628)	56 (56)
Cornus florida	0.5-2.0	83 (48)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Honeysuckle	0-0.5	1361 (320)	972 (724)
Lonicera spp.	0.5-2.0	417 (293)	306 (227)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Hop hornbeam	0-0.5	0 (0)	56 (56)
Ostrva virginiana	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	28 (28)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Ironwood	0-0.5	194 (100)	278 (278)
Carpinus caroliniana	0.5-2.0	139 (139)	83 (83)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0(0)	0 (0)
Labrador tea	0-0.5	20139 (18740)	18639 (15541)
Ledum groenlandicum	0.5-2.0	889 (889)	3000 (1732)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Mountain maple	0-0.5	56 (56)	0 (0)
Acer spicatum	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Paper birch	0-0.5	83 (83)	194 (194)
Betula papyrifera	0.5-2.0	0 (0)	83 (83)
	>2.0, <12.67 cm dbh	222 (222)	111 (111)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Red maple	0-0.5	1583 (756)	3833 (2821)
Acer rubrum	0.5-2.0	139 (56)	472 (431)
	>2.0, <12.67 cm dbh	0 (0)	28 (28)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Red-osier dogwood	0-0.5	278 (139)	972 (890)
Cornus stolonifera	0.5-2.0	139 (100)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)

Table A6 (cont'd).

		S	Site
Species	Stratum (m)	Exclosure	Open Area
Rosa spp.	0-0.5	28 (28)	222 (222)
	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Smooth gooseberry	0-0.5	0 (0)	28 (28)
<u>Ribes hirtella</u>	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Speckled alder	0-0.5	1139 (901)	2667 (747)
<u>Alnus rugosa</u>	0.5-2.0	1389 (57 8)	2222 (320)
	>2.0, <12.67 cm dbh	56 (56)	361 (147)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Swamp red currant	0-0.5	389 (309)	333 (173)
Ribes triste	0.5-2.0	56 (56)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Tamarack	0-0.5	0 (0)	56 (56)
Larix laricina	0.5-2.0	56 (56)	28 (28)
	>2.0, <12.67 cm dbh	83 (83)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
<u>Vaccinium</u> spp.	0-0.5	83 (48)	0 (0)
	0.5-2.0	28 (28)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Virgin's bower	0-0.5	28 (28)	0 (0)
Clematis virginiana	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
White spruce	0-0.5	0 (0)	0 (0)
Picea glauca	0.5-2.0	111 (73)	0 (0)
	>2.0, <12.67 cm dbh	111 (73)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Willow	0-0.5	28 (28)	56 (56)
<u>Salix</u> spp.	0.5-2.0	0 (0)	139 (139)
	>2.0, <12.67 cm dbh	28 (28)	139 (139)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Winterberry holly	0-0.5	0 (0)	28 (28)
llex verticallata	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)

Table A6 (cont'd).

		Site	
Species	Stratum (m)	Exclosure	Open Area
Yellow birch	0-0.5	56 (56)	167 (96)
Betula lutea	0.5-2.0	56 (56)	28 (28)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Other	0-0.5	28 (28)	28 (28)
	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)

*No significant differences (P>0.10) between exclosure and open area sites for any species and strata with paired t-test (Steel and Torrie 1980).

Table A7. Mean stem densities per hectare (and standard error) of non-dominant woody species in exclosure and areas open to browsing sites in the Whitefish River Basin-South study area in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994.

		S	Site	
Species	Stratum (m)	Exclosure	Open Area	
Alder-leaved buckthorn	0-0.5	56 (56)	361 (147)	
Rhamnus alnifolia	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Alternate-leaved	0-0.5	28 (28)	0 (0)	
logwood	0.5-2.0	0 (0)	0 (0)	
Cornus alternifolia	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
American elm	0-0.5	83 (83)	111 (111)	
<u> Ulmus americana</u>	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
American mountain ash	0-0.5	250 (173)	56 (56)	
Sorbus americana	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Balsam poplar	0-0.5	306 (306)	806 (806)	
Populus balsamifera	0.5-2.0	56 (56)	167 (167)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Beaked hazelnut	0-0.5	417 (376)	28 (28)	
<u>Corylus cornuta</u>	0.5-2.0	56 (56)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Beech	0-0.5	56 (28)	0 (0)	
Fagus grandifolia	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Black ash	0-0.5	5889 (5847)	8889 (8 639)	
<u>Fraxinus nigra</u>	0.5-2.0	333 (333)	444 (403)	
	>2.0, <12.67 cm dbh	333 (333)	56 (56)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Black currant	0-0.5	28 (28)	28 (28)	
Ribes lacustre	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	

Table A7 (cont'd).

		Site	
Species	Stratum (m)	Exclosure	Open Area
Black spruce	0-0.5	194 (73)	500 (459)
<u>Picea mariana</u>	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	28 (28)
	>2.0, >12.67 cm dbh	28 (28)	56 (56)
Choke cherry	0-0.5	111 (111)	139 (139)
Prunus virginiana	0.5-2.0	28 (28)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Honeysuckle	0-0.5	1528 (434)	1472 (420)
Lonicera spp.	0.5-2.0	83 (48)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Hop hornbeam	0-0.5	167 (167)	389 (227)
<u>Ostrya virginiana</u>	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Ironwood	0-0.5	250*(48)	28 (28)
<u>Carpinus caroliniana</u>	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Labrador tea	0-0.5	1361 (1361)	1472 (420)
Ledum groenlandicum	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Low sweet	0-0.5	361 (217)	2111 (1788)
blueberry	0.5-2.0	0 (0)	0 (0)
Vaccinium angustifolium	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Mountain maple	0-0.5	694 (313)	250 (250)
Acer spicatum	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Paper birch	0-0.5	3000 (928)	3778 (2749)
Betula papyrifera	0.5-2.0	56 (28)	83 (83)
	>2.0, <12.67 cm dbh	28 (28)	111 (111)
	>2.0, >12.67 cm dbh	28 (28)	0 (0)
Red maple	0-0.5	30611 (21759)	12028 (6731)
Acer rubrum	0.5-2.0	28 (28)	28 (28)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	28 (28)	0 (0)

_

Table A7 (cont'd).

	- Stratum (m)	Site	
Species		Exclosure	Open Area
Red-osier dogwood	0-0.5	139 (28)	389 (100)
Cornus stolonifera	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Red oak	0-0.5	0 (0)	28 (28)
<u>Quercus rubra</u>	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Rubus spp.	0-0.5	28 (28)	0 (0)
	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Speckled alder	0-0.5	444 (444)	639 (598)
Alnus rugosa	0.5-2.0	28 (28)	83 (48)
	>2.0, <12.67 cm dbh	0 (0)	111 (73)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Swamp red currant	0-0.5	56 (28)	56 (28)
Ribes triste	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Tamarack	0-0.5	0 (0)	0 (0)
<u>Larix laricina</u>	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	56 (56)
	>2.0, >12.67 cm dbh	0 (0)	28 (28)
Vaccinium spp.	0-0.5	139 (139)	0 (0)
	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Velvet-leaved	0-0.5	111 (111)	1611 (1611)
blueberry	0.5-2.0	0 (0)	0 (0)
Vaccinium myrtilloides	>2.0, <12.67 cm dbh	111 (111)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Virginia creeper	0-0.5	56 (56)	500 (459)
Parthenocissus	0.5-2.0	0 (0)	0 (0)
quinquefolia	>2.0, <12.67 cm dbh	0 (0)	28 (28)
	>2.0, >12.67 cm dbh	0 (0)	56 (56)
White pine	0-0.5	0 (0)	0 (0)
<u>Pinus strobus</u>	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	56 (56)

Table A7 (cont'd).

		Si	te	
Species	Stratum (m)	Exclosure	Open Area	
White spruce	0-0.5	56 (56)	0 (0)	
Picea glauca	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Willow	0-0.5	56 (56)	0 (0)	
<u>Salix</u> spp.	0.5-2.0	28 (28)	0 (0)	
••	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Winterberry holly	0-0.5	1500 (542)	944 (823)	
Ilex verticallata	0.5-2.0	111 (73)	167 (167)	
	>2.0, <12.67 cm dbh	28 (28)	56 (56)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Yellow birch	0-0.5	1833 (1792)	1222 (864)	
Betula lutea	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	28 (28)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Other	0-0.5	0 (0)	139 (73)	
	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	

*Significantly different (P<0.10) than open area using paired t-test (Steel and Torrie 1980).

Table A8. Mean stem densities per hectare (and standard error) of non-dominant woody species in exclosure and areas open to browsing sites in the Stonington Peninsula-North study area in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994.

		Sites		
Species	Stratum (m)	Exclosure	Open Area	
Alder-leaved	0-0.5	0*(0)	111 (28)	
buckthorn	0.5-2.0	0 (0)	0 (0)	
Rhamnus alnifolia	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Alternate-leaved	0-0.5	0 (0)	56 (56)	
dogwood	0.5-2.0	0 (0)	0 (0)	
Cornus	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
alternifolia	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
American black	0-0.5	28 (28)	0 (0)	
currant	0.5-2.0	0 (0)	0 (0)	
Ribes americanum	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
American mountain ash	0-0.5	0 (0)	28 (28)	
Sorbus americana	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
American red	0-0.5	0 (0)	0 (0)	
raspberry	0.5-2.0	0 (0)	139 (139)	
<u>Rubus idaeus</u>	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Balsam poplar	0-0.5	5778*(609)	1417 (625)	
Populus balsamifera	0.5-2.0	472 (100)	361 (282)	
	>2.0, <12.67 cm dbh	28 (28)	0 (0)	
	>2.0, >12.67 cm dbh	139 (56)	111 (73)	
Black ash	0-0.5	14444 (10729)	43694 (36469)	
Fraxinus nigra	0.5-2.0	0 (0)	28 (28)	
	>2.0, <12.67 cm dbh	0 (0)	28 (28)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Black currant	0-0.5	1111 (1070)	2472 (2472)	
Ribes lacustre	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Black spruce	0-0.5	28 (28)	28 (28)	
<u>Picea mariana</u>	0.5-2.0	28 (28)	0 (0)	
	>2.0, <12.67 cm dbh	28 (28)	0 (0)	
	>2.0, >12.67 cm dbh	56 (56)	0 (0)	

Table A8 (cont'd).

		S	ite	
Species	Stratum (m)	Exclosure	Open Area	
Eastern hemlock	0-0.5	28 (28)	0 (0)	
<u>Tsuga canadensis</u>	0.5-2.0	0 (0)	0 (0)	
-	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
loneysuckle	0-0.5	1167 (1125)	722 (556)	
Lonicera spp.	0.5-2.0	0 (0)	139 (139)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
lop hornbeam	0-0.5	83 (83)	139 (139)	
<u>Ostrva virginiana</u>	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
ronwood	0-0.5	139 (73)	167 (83)	
Carpinus caroliniana	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	56 (56)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Mountain maple	0-0.5	2806 (2806)	6111 (6111)	
Acer spicatum	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Paper birch	0-0.5	694 (437)	56 (56)	
<u>Betula papyrifera</u>	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	28 (28)	28 (28)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Populus spp.	0-0.5	250 (250)	139 (139)	
	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	28 (0)	83 (83)	
rickly gooseberry	0-0.5	0 (0)	83 (83)	
<u>Ribes cynobasti</u>	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Red maple	0-0.5	5000 (1849)	3611 (2183)	
Acer rubrum	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Red-osier dogwood	0-0.5	222 (111)	83 (83)	
Cornus stolonifera	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	

Table A8 (cont'd).

		S	site
Species	Stratum (m)	Exclosure	Open Area
Rosa spp.	0-0.5	28 (28)	0 (0)
	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Speckled alder	0-0.5	28 (28)	28 (28)
Alnus rugosa	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	28 (28)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Swamp red currant	0-0.5	83 (83)	1222 (1222)
Ribes triste	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Trembling aspen	0-0.5	28 (28)	28 (28)
Populus tremuloides	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
White spruce	0-0.5	28 (28)	0 (0)
<u>Picea glauca</u>	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Winterberry holly	0-0.5	56 (28)	56 (56)
Ilex verticallata	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Yellow birch	0-0.5	56 (28)	83 (48)
Betula lutea	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	28 (28)
Other	0-0.5	56 (28)	0 (0)
	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)

*Significantly different (P<0.10) from open area using paired t-test (Steel and Torrie 1980).

Table A9. Mean stem densities per hectare (and standard error) of non-dominant woody species in
exclosure and areas open to browsing sites in the Stonington Peninsula-South study area in the Hiawatha
National Forest in Michigan's Upper Peninsula, 1993-1994.

		Site		
Species	Stratum (m)	Exclosure*	Open Area	
Alder-leaved	0-0.5	42 (42)	0 (0)	
buckthorn	0.5-2.0	0 (0)	0 (0)	
Rhamnus alnifolia	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Alternate-leaved	0-0.5	42 (42)	167 (0)	
dogwood	0.5-2.0	0 (0)	0 (0)	
Cornus	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
alternifolia	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
American mountain ash	0-0.5	42 (42)	83 (0)	
Sorbus americana	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Balsam poplar	0-0.5	42 (42)	167 (167)	
Populus balsamifera	0.5-2.0	0 (0)	83 (83)	
	>2.0, <12.67 cm dbh	0 (0)	42 (42)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Black ash	0-0.5	12167 (10667)	39917 (38333)	
Fraxinus nigra	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	42 (42)	42 (42)	
	>2.0, >12.67 cm dbh	42 (42)	0 (0)	
Black currant	0-0.5	750 (583)	1208 (375)	
Ribes lacustre	0.5-2.0	0 (0)	83 (83)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Black spruce	0-0.5	83 (83)	0 (0)	
<u>Picea mariana</u>	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Honeysuckle	0-0.5	583 (250)	2125 (2042)	
Lonicera spp.	0.5-2.0	42 (42)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Hop hombeam	0-0.5	42 (42)	208 (208)	
Ostrya virginiana	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	

		Site		
Species	Stratum (m)	Exclosure	Open Area	
Ironwood	0-0.5	42 (42)	125 (125)	
Carpinus caroliniana	0.5-2.0	0 (0)	0 (0)	
-	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Mountain maple	0-0.5	1292 (1125)	9833 (9667)	
Acer spicatum	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Paper birch	0-0.5	125 (125)	208 (42)	
Betula papyrifera	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	42 (42)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	42 (42)	
Prickly gooseberry	0-0.5	0 (0)	42 (42)	
Ribes cynobasti	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Red maple	0-0.5	15125 (13625)	18583 (17917)	
Acer rubrum	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Red-osier dogwood	0-0.5	83 (83)	333 (333)	
<u>Cornus stolonifera</u>	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
<u>Ribes</u> spp.	0-0.5	0 (0)	125 (125)	
	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
<u>Rubus</u> spp.	0-0.5	42 (42)	0 (0)	
	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Smooth gooseberry	0-0.5	0 (0)	83 (83)	
Ribes hirtella	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	
Speckled alder	0-0.5	0 (0)	42 (42)	
Alnus rugosa	0.5-2.0	0 (0)	0 (0)	
	>2.0, <12.67 cm dbh	0 (0)	0 (0)	
	>2.0, >12.67 cm dbh	0 (0)	0 (0)	

Table A9 (cont'd).

		Site	
Species	Stratum (m)	Exclosure	Open Area
Swamp red currant	0-0.5	0 (0)	208 (125)
Ribes triste	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
White spruce	0-0.5	0 (0)	83 (83)
<u>Picea glauca</u>	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Winterberry holly	0-0.5	83 (83)	208 (208)
Ilex verticallata	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Yellow birch	0-0.5	9208 (375)	5667 (5417)
Betula lutea	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	42 (42)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)
Other	0-0.5	0 (0)	125 (125)
	0.5-2.0	0 (0)	0 (0)
	>2.0, <12.67 cm dbh	0 (0)	0 (0)
	>2.0, >12.67 cm dbh	0 (0)	0 (0)

*No significant differences (P>0.10) between exclosure and open area sites for any species and strata with paired t-test (Steel and Torrie 1980).

Site Study Area Species Stratum (m) Exclosure Open Area 1972A^{*} Alder-leaved buckthorn 0-0.5 (1188) WRB-North 2750A (2014) Rhamnus alnifolia 0.5-2.0 1194^b (989) 1917^b (1792) Balsam poplar 0-0.5 **0A** (0) 0, Populus balsamifera 0.5-2.0 (0) 28^b >2.0, >12.67 cm dbh (28) 0^b Up. Black ash 0-0.5 (0) (0) Fraxinus nigra 0-0.5 2639A (709) Black spruce 2000^b 0.5-2.0 (289) Picea mariana (1380) 750° (194) 0-0.5 83A 194[°] Paper birch (83) Betula papyrifera 139^b 0.5-2.0 Red maple (56) Acer saccharum 1389^b 0.5-2.0 (578) 2222A (320) Speckled alder Alnus rugosa Winterberry holly 0-0.5 **0**A (0) Ilex verticallata 0-0.5 WRB-South Alder-leaved buckthorn 56AB (56) 361AB (147) Rhamnus alnifolia 0.5-2.0 0 (0) (0) 0 0-0.5 Balsam poplar 306AB (306) Populus balsamifera 0.5-2.0 56 (56) >2.0, >12.67 cm dbh 0 (0) 0-0.5 5889 (5847) 8889 (8639) Black ash Fraxinus nigra 0-0.5 194AB (73) Black spruce 0.5-2.0 0 (0) Picea mariana (0) 0-0.5 3000B 3778 (2749)Paper birch (928) Betula papyrifera 0.5-2.0 28 (28)

Red maple Acer rubrum

Table A10. Mean stem densities per hectare (and standard error) of non-dominant woody species that were significantly different (P<0.10) within site and stratum among study areas (Whitefish River Basin-North and -South [WRB-North and -South] and Stonington Peninsula-North and -South [SP-North and -South]) in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994.

Table A10 (cont'd).

				Site		
Study Area	Species	Stratum (m)	Excl	osure	Open Area	
WRB-South (cont'd.)	Speckled alder Alnus rugosa	0.5-2.0	28	(28)	83AB(48)	
	Winterberry holly Ilex verticallata	0-0.5	1500B	(542)		
SP-North	Alder-leaved buckthorn Rhamnus alnifolia	0-0.5 0.5-2.0	0B 0	(0) (0)	111AB(28) 0 (0)	
	Balsam poplar <u>Populus balsamifera</u>	0-0.5 0.5-2.0 >2.0, >12.67 cm dbh	5778B 472 28	(609) (100) (2 8)		
	Black ash <u>Fraxinus nigra</u>	0-0.5	14444	(10729)	43694 (36469)	
	Black spruce	0-0.5	28B	(28)		
	Picea mariana	0.5-2.0	28	(28)	0 (0)	
	Paper birch Betula papyrifera	0-0.5	694AB	(437)	56 (56)	
	Speckled alder Alnus rugosa	0.5-2.0	0	(0)	0A (0)	
	Red maple Acer rubrum	0.5-2.0	0	(0)		
	Winterberry holly Ilex verticallata	0-0.5	56AB	(28)		
SP-South	Alder-leaved buckthorn	0-0.5	42AB	(34)	0B (0)	
	Rhamnus alnifolia	0.5-2.0	0	(0)	0 (0)	
	Balsam poplar	0-0.5	42AB	(34)		
	Populus balsamifera	0.5-2.0	0	(0)		
		>2.0, >12.67 cm dbh	0	(0)	******	
	Black ash <u>Fraxinus nigra</u>	0-0.5	12167	(8709)	39917 (31299)	
	Black spruce	0-0.5	83AB	(68)		
	Picea mariana	0.5-2.0	0	(0)	0 (0)	
	Paper birch Betula papyrifera	0-0.5	125A	(102)	208 (34)	

ı

.

Table A10 (cont'd).

	Species		Site		
Study Area		Stratum (m)	Exclosure	Open Area	
SP-South (cont'd.)	Red maple Acer rubrum	0.5-2.0	0 (0)		
	Speckled alder Alnus rugosa	0.5-2.0	0 (0)	0AB (0)	
	Winterberry holly Ilex verticallata	0-0.5	83AB (68)		

^aMeans with different letters within a site, species, and stratum were significantly different (P<0.10) among study areas with the Kruskal-Wallis one-way analysis of variance (Siegel and Castellan 1988) using SYSTAT (1992) and the Kruskal-Wallis multiple comparison test (Siegel and Castellan 1988).</p>
^bKruskal-Wallis multiple comparison test (Siegel and Castellan 1988) was unable to detect where the significant difference occurred within a site, species, and stratum among the study areas as detected by the Kruskal-Wallis one-way analysis of variance (Siegel and Castellan 1988) using SYSTAT (1992).
^cSpecies not identified in any study area for this site type.

	Site			
	Excle	osure	Oper	Area
Species	AF ^a	RF	AF	RF
	(SE)	(SE)	(SE)	(SE)
Aster spp.	20. 8	1.4	37.5	2.3
	(11.0)	(0.8)	(19.1)	(1.1)
Bunchberry	79.2	5.4	87.5	5.8
Cornus canadensis	(4.2)	(0.4)	(12.5)	(1.1)
Canada mayflower	66.7	4.5	70.8	4.7
<u>Maianthemum canadense</u>	(4.2)	(0.4)	(8.3)	(0.6)
Cinnamon fern	0	0	4.2	0.3
<u>Osmunda cinnamomea</u>	(0)	(0)	(4.2)	(0.3)
Common wood sorrel	0	0	4.2	0.3
Oxalis montana	(0)	(0)	(4.2)	(0.3)
Crested wood fern	4.2	0.3	8.3	0.5
Dryopteris cristata	(4.2)	(0.3)	(8.3)	(0.5)
Dewberry	62.5	4.3	62.5	4.4
<u>Rubus hispidus</u>	(31.5)	(2.2)	(25.0)	(1.9)
Dwarf enchanter's nightshade	4.2	0.3	0	0
<u>Circaea alpina</u>	(4.2)	(0.3)	(0)	(0)
Equisetum spp.	4.2	0.3	4.2	0.2
	(4.2)	(0.3)	(4.2)	(0.2)
Fragile fern	29.2	2.0	25.0	1.5
Cystopteris fragilis	(8.3)	(0.6)	(14.4)	(0.8
Fringed brome	4.2	0.3	0	0
Bromus ciliatus	(4.2)	(0.3)	(0)	(0)
Goldenrod	41.7	2.7	50.0	3.5
Solidago spp.	(22.0)	(1.4)	(19.1)	(1.6
Goldthread	70. 8	4.7	91.7	6.1
Coptis groenlandica	(23.2)	(1.5)	(4.2)	(0.4
Grass spp.	8 .3	0.5	62.5	4.2
	(8.3)	(0.5)	(21.7)	(1.5

Table A11. Mean absolute (AF) and relative frequencies (RF) (and standard errors [SE]) of herbaceous species in exclosure and areas open to browsing sites in the Whitefish River Basin-North study area in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994.

.

			Site			
	Excl	osure	Oper	n Area		
Species	AF (SE)	RF (SE)	AF (SE)	RF (SE)		
Hawkweed	8.3	0.6	8.3	0.6		
<u>Hieracium</u> spp.	(8.3)	(0.6)	(4.2)	(0.3)		
Intermediate wood fern	0	0	4.2	0.3		
Dryopteris intermedia	(0)	(0)	(4.2)	(0.3)		
Jewelweed	8.3	0.6	0	0		
Impatiens spp.	(8.3)	(0.6)	(0)	(0)		
Joe-pye weed	20.8	1.4	16.7	1.2		
Eupatorium spp.	(11.0)	(0.8)	(11.0)	(0.9)		
Large-leaved aster	12.5	0.8	4.2	0.3		
Aster macrophyllus	(7.2)	(0.5)	(4.2)	(0.3)		
Manna grass	0	0	20.8	1.2		
<u>Glyceria</u> spp.	(0)	(0)	(20.8)	(1.2)		
Marsh bedstraw	25.0	1.7	25.0	1.8		
Galium palustre	(14.4)	(1.0)	(12.5)	(0.9)		
Marsh marigold	0	0	12.5	1.0		
Caltha palustris	(0)	(0)	(12.5)	(1.0)		
Moss spp.	100	6.8	100	6.6		
	(0)	(0.2)	(0)	(0.6)		
Naked miterwort	95.8	6.5	62.5	4.4		
Mitella nuda	(4.2)	(0.5)	(26.0)	(2.0)		
Dak fern	12.5	0.9	20.8	1.4		
<u>Gymnocarpium</u> spp.	(7.2)	(0.9)	(11.0)	(0.7)		
Orchidaceae spp.	4.2	0.3	8.3	0.5		
	(4.2)	(0.3)	(4.2)	(0.3)		
Pyrola spp.	12.5	0.9	8.3	0.5		
	(7.2)	(0.5)	(8.3)	(0.5)		
Rattlesnake fern	8.3	0.6*	33.3	2.1		
Botrychium virginianum	(4.2)	(0.3)	(11.0)	(0.6)		
Rattlesnake plantain	0	0	8.3	0.5		
Goodyera spp.	(0)	(0)	(4.2)	(0.3)		

P

		5	Site				
	Excl	osure	Oper	n Area			
Species	AF (SE)	RF (SE)	AF (SE)	RF (SE)			
Royal fern	4.2	0.3	0	0			
Dsmunda regalis	(4.2)	(0.3)	(0)	(0)			
Sedge	91.7	6.2*	87.5	5.7			
Carex spp.	(4.2)	(0.1)	(7.2)	(0.1)			
Self-heal	8.3	0.6	8.3	0.5			
Prunella vulgaris	(8.3)	(0.6)	(4.2)	(0.3)			
howy lady's slipper	0	0	8.3	0.6			
Vpripedium reginae	(0)	(0)	(4.2)	(0.3)			
Small-flowered cranberry	4.2	0.3	8.3	0.5			
Vaccinium oxycoccos	(4.2)	(0.3)	(8.3)	(0.5)			
Snowberry	75.0	5.0*	25.0	1.5			
Gaultheria hispidula	(12.5)	(0.7)	(14.4)	(0.9)			
Starflower	37.5	2.5	62.5	3.8			
<u>Frientalis borealis</u>	(12.5)	(0.7)	(31.5)	(1.9)			
trawberry	83.3	5.6	66.7	4.3			
ragaria spp.	(11.0)	(0.6)	(16.7)	(0.8)			
undew	4.2	0.3	0	0			
Drosera spp.	(4.2)	(0.3)	(0)	(0)			
Sweet coltsfoot	8.3	0.6	8.3	0.5			
Petasites palmatus	(4.2)	(0.3)	(8.3)	(0.5)			
Sweet-scented bedstraw	62.5	4.2	20.8	1.2			
Galium triflorum	(0)	(0.1)	(20.8)	(1.2)			
Thistle	45.8	3.1	54.2	3.6			
<u>Cirsium</u> spp.	(4.2)	(0.2)	(20.8)	(1.5)			
Three-leaved Solomon's seal	75.0	5.0	66.7	4.2			
Smilacina trifolia	(19.1)	(1.2)	(22.0)	(1.1)			
Frailing arbutus	0	0	4.2	0.2			
Epigaea repens	(0)	(0)	(4.2)	(0.2)			
Twinflower	91.7	6.2	75.0	4.9			
Linnaea borealis	(8.3)	(0.5)	(7.2)	(0.1)			

1

• .

		Site			
	Excle	Exclosure		Area	
Species	AF	RF	AF	RF	
	(SE)	(SE)	(SE)	(SE)	
Violet	75.0	5.0	83.3	5.5	
<u>Viola</u> spp.	(12.5)	(0.7)	(8.3)	(0.3)	
Wild sarsaparillo	37.5	2.6*	62.5	4.0	
Aralia nudicaulis	(12.5)	(0.9)	(14.4)	(0.8)	
Wintergreen	16.7	1.1	12.5	0.7	
<u>Gaultheria procumbens</u>	(8.3)	(0.6)	(7.2)	(0.4)	
Wood anemone	12.5	0.8	4.2	0.2	
Anemone quinquefolia	(12.5)	(0.8)	(4.2)	(0.2)	
Wood Sorrel	16.7	1.2	0	0	
<u>Oxalis</u> spp.	(16.7)	(1.2)	(0)	(0)	
Other	29.2	2.0	29.2	1.7	
	(4.2)	(0.2)	(23.2)	(1.3)	

^aSignificant differences between exclosure and open area sites were not determined for absolute frequencies, only relative frequencies.

*Significantly different (P<0.10) from open area with paired t-test (Steel and Torrie 1980).

		S	ite	
	Exclo	sure	Open	Area
Species	AF ⁴	RF	AF	RF
	(SE)	(SE)	(SE)	(SE)
Aster spp.	12.5	0.9	25.0	1. 8
	(0)	(0)	(14.4)	(1.1)
Bedstraw	0	0	16.7	1.1
<u>Galium</u> spp.	(0)	(0)	(16.7)	(1.1)
Bracken fern	4.2	0.3	4.2	0.3
<u>Pteridium aquilinum</u>	(4.2)	(0.3)	(4.2)	(0.3)
Bugleweed	4.2	0.3	8 .3	0.6
Lycopus spp.	(4.2)	(0.3)	(4.2)	(0.3)
Bunchberry	37.5	2.9	62.5	4.5
Cornus canadensis	(19.1)	(1.6)	(31.5)	(2.2)
Canada mayflower	70. 8	5.1 *	91.7	6.3
<u>Maianthemum canadense</u>	(11.0)	(0.6)	(4.2)	(0.2)
Cinnamon fern	8.3	0.6	4.2	0.3
<u>Osmunda cinnamomea</u>	(8.3)	(0.6)	(4.2)	(0.3)
Columbine	0	0	4.2	0.3
<u>Aquilegia</u> spp.	(0)	(0)	(4.2)	(0.3)
Club-spur orchid	4.2	0.3	0	0
Habenaria clavellata	(4.2)	(0.3)	(0)	(0)
Crested wood fern	16.7	1.2	0	0
Dryopteris cristata	(8.3)	(0.6)	(0)	(0)
Dewberry	54.2	4.0	66.7	4.5
<u>Rubus hispidus</u>	(11.0)	(0.8)	(16.7)	(0.9)
<u>Dryopteris</u> spp.	4.2	0.3	0	0
	(4.2)	(0.3)	(0)	(0)
<u>Equisetum</u> spp.	16.7	1.1	4.2	0.3
	(11.0)	(0.8)	(4.2)	(0.3)
Fragile fern	4.2	0.3	0	0
Cystopteris fragilis	(4.2)	(0.3)	(0)	(0)

- -

Table A12. Mean absolute (AF) and relative frequencies (RF) (and standard errors [SE]) of herbaceous species in exclosure and areas open to browsing sites in the Whitefish River Basin-South study area in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994.

		Site				
	Excl	osure	Oper	n Area		
Species	AF (SE)	RF (SE)	AF (SE)	RF (SE)		
Fringed polygala	75.0	5.6	79.2	5.5		
Polygala paucifolia	(12.5)	(1.2)	(4.2)	(0.5)		
Golden ragwort	4.2	0.3	12.5	0.8		
Senecio aureus	(4.2)	(0.3)	(12.5)	(0.8)		
Goldenrod	29.2	2.1	33.3	2.2		
Solidago spp.	(16.7)	(1.2)	(15.0)	(0.9)		
Goldthread	95.8	7.0	91.7	6.4		
Coptis groenlandica	(4.2)	(0.6)	(8.3)	(0.8)		
Grass spp.	62.5	4.4	54.2	3.6		
	(31.5)	(2.2)	(25.3)	(1.6)		
interrupted fern	4.2	0.3	0	0		
<u>Osmunda claytoniana</u>	(4.2)	(0.3)	(0)	(0)		
ack-in-the-pulpit	0	0	16.7	1.1		
Arisaema spp.	(0)	(0)	(16.7)	(1.1)		
ewelweed	0	0	20.8	1.3		
mpatiens spp.	(0)	(0)	(20.8)	(1.3)		
oe-pye weed	12.5	0.9	8.3	0.6		
Eupatorium spp.	(7.2)	(0.5)	(4.2)	(0.3)		
_arge-leaved aster	0	0	12.5	0.8		
Aster macrophyllus	(0)	(0)	(12.5)	(0.8)		
esser pyrola	0	0	12.5	0.9		
vrola minor	(0)	(0)	(12.5)	(0.9)		
ong beech fern	0	0	4.2	0.3		
Thelypteris phegopteris	(0)	(0)	(4.2)	(0.3)		
Marsh bedstraw	4.2	0.3	0	0		
Galium palustre	(4.2)	(0.3)	(0)	(0)		
Marsh fern	8.3	0.6	0	0		
Thelypteris palustris	(8.3)	(0.6)	(0)	(0)		
Marsh marigold	0	0	4.2	0.3		
Caltha palustris	(0)	(0)	(4.2)	(0.3)		

.

			Site	
	Excl	osure	Oper	n Area
Species	AF	RF	AF	RF
	(SE)	(SE)	(SE)	(SE)
Moss spp.	100	7.3	100	6.9
	(0)	(0.4)	(0)	(0.3)
Naked miterwort	8 3.3	6.2	91.7	6.3
Mitella nuda	(11.0)	(1.1)	(8.3)	(0.4)
Oak fern	8 .3	0.6	0	0
<u>Gymnocarpium</u> spp.	(8.3)	(0.6)	(0)	(0)
One-flowered pyrola	4.2	0.3	0	0
<u>Moneses uniflora</u>	(4.2)	(0.3)	(0)	(0)
<u>Orchidaceae</u> spp.	0	0	4.2	0.3
	(0)	(0)	(4.2)	(0.3)
<u>Pyrola</u> spp.	16.7	1.2	25.0	1.8
	(8.3)	(0.6)	(14.4)	(1.0)
Rattlesnake fern	16.7	1.2	37.5	2.5
Botrychium virginianum	(4.2)	(0.3)	(26.0)	(1.8)
Rough bedstraw	54.2	3.9	37.5	2.6
<u>Galium asprellum</u>	(15.0)	(0.9)	(0)	(0.1)
Royal fern	16.7	1.2	12.5	0.9
<u>Osmunda regalis</u>	(11.0)	(0.7)	(12.5)	(0.9)
Sedge	83 .3	6.2	79.2	5.6
<u>Carex</u> spp.	(11.0)	(1.1)	(20.8)	(1.6)
Self-heal	8.3	0.6	4.2	0.3
Prunella vulgaris	(8.3)	(0.6)	(4.2)	(0.3)
Sensitive fern	8.3	0.6	4.2	0.3
Onoclea sensibilis	(4.2)	(0.3)	(4.2)	(0.3)
Small-flowered cranberry	0	0	16.7	1.1
Vaccinium oxycoccos	(0)	(0)	(16.7)	(1.1)
Snowberry	75.0	5.6	62.5	4.4
Gaultheria hispidula	(14.4)	(1.3)	(19.1)	(1.4)
Starflower	91.7	6.7	83.3	5. 8
Trientalis borealis	(8.3)	(0.8)	(4.2)	(0.4)

		Site				
	Excl	osure	Open Area			
Species	AF (SE)	RF (SE)	AF (SE)	RF (SE)		
Strawberry	20.8	1.5	33.3	2.1		
Fragaria spp.	(15.0)	(1.1)	(33.3)	(2.1)		
Sweet coltsfoot	0	0	4.2	0.3		
Petasites palmatus	(0)	(0)	(4.2)	(0.3)		
Sweet-scented bedstraw	4.2	0.3	0	0		
ialium trifolum	(4.2)	(0.3)	(0)	(0)		
fall meadow rue	4.2	0.3	0	0		
Thalictrum polygamum	(4.2)	(0.3)	(0)	(0)		
Thistle	33.3	2.4	20.8	1.5		
<u> Cirsium</u> spp.	(11.0)	(0.7)	(11.0)	(0.8)		
Three-leaved Solomon's seal	37.5	2.8	20.8	1.4		
Smilacina trifolia	(7.2)	(0.5)	(15.0)	(1.0)		
railing arbutus	4.2	0.3	8.3	0.6		
pigaea repens	(4.2)	(0.3)	(8.3)	(0.6)		
winflower	50.0	3.8	45.8	3.3		
<u>innaea borealis</u>	(28.9)	(2.3)	(23.2)	(1.6)		
wisted stalk	0	0	12.5	0.8		
treptopus amplexifolius	(0)	(0)	(12.5)	(0.8)		
liolet	45.8	3.4	50.0	3.4		
<u>/iola</u> spp.	(8.3)	(0.8)	(25.0)	(1.7)		
Wild ginger	0	0	4.2	0.3		
sarum canadense	(0)	(0)	(4.2)	(0.3)		
Vild sarsaparillo	29.2	2.0	33.3	2.1		
ralia nudicaulis	(18.2)	(1.3)	(33.3)	(2.1)		
Vintergreen	8.3	0.7	20.8	1.5		
Gaultheria procumbens	(8.3)	(0.7)	(11.0)	(0.8)		
Vood Sorrel	25.0	1.7	0	0		
<u>Oxalis</u> spp.	(19.1)	(1.3)	(0)	(0)		

	Site			
	Exclosure		Open Area	
Species	AF	RF	AF	RF
	(SE)	(SE)	(SE)	(SE)
Yellow lady's slipper	4.2	0.3	0	0
Cypripedium calceolus	(4.2)	(0.3)	(0)	(0)
Other	4.2	0.3	4.2	0.3
	(4.2)	(0.3)	(4.2)	(0.3)

*Significant differences between exclosure and open area sites were not determined for absolute frequencies, only relative frequencies.
*Significantly different (P<0.10) from open area with paired t-test (Steel and Torrie 1980).

		S	Site	
	Exclo	osure	Open	Area
Species	AF ^a	RF	AF	RF
	(SE)	(SE)	(SE)	(SE)
Anemone spp.	0	0	6.1	0.5
	(0)	(0)	(3.0)	(0.3)
Arrow arum	0	0	3.0	0.4
Peltranda <u>virginica</u>	(0)	(0)	(3.0)	(0.4)
Aster spp.	37.5	2. 8	12.1	1.4
	(12.5)	(1.0)	(6.1)	(0.7)
Bedstraw	4.2	0.4	0	0
Galium spp.	(4.2)	(0.4)	(0)	(0)
Blunt-lobed woodsia	0	0	3.0	0.2
Woodsia obtusa	(0)	(0)	(3.0)	(0.2)
Boot's wood fern	41.7	3.1	21.2	1.7
Dryopteris boottii	(15.0)	(1.2)	(10.9)	(0.9)
Bracken fern	0	0	6.1	0.6
Pteridium aquilinum	(0)	(0)	(6.1)	(0.6)
Bugleweed	8.3	0.5	15.2	1.1
Lycopus spp.	(8.3)	(0.5)	(10.9)	(0.7)
Bulbet fern	4.2	0.3	0	0
Cystopteris bulbifera	(4.2)	(0.3)	(0)	(0)
Bunchberry	29.2	1.9	21.2	1.3
Cornus canadensis	(18.2)	(1.1)	(21.2)	(1.3)
Buttercup	0	0	42.4	4.9
<u>Ranunculus</u> spp.	(0)	(0)	(23.7)	(2.9)
Canada mayflower	91.7	7.1	72.7	6.9
<u>Maianthemum canadense</u>	(4.2)	(1.0)	(15.7)	(1.9)
Cinquefoil	4.2	0.3	0	0
<u>Potentilla</u> spp.	(4.2)	(0.3)	(0)	(0)
Clover	4.2	0.3	9.1	1.0
Trifolium spp.	(4.2)	(0.3)	(5.2)	(0.6)

Table A13. Mean absolute (AF) and relative frequencies (RF) (and standard errors [SE]) of herbaceous species in exclosure and areas open to browsing sites in the Stonington Peninsula-North study area in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994.

			Site	
	Excl	osure	Oper	Area
Species	AF (SE)	RF (SE)	AF (SE)	RF (SE)
Club moss	4.2	0.4	0	0
Lycopodium spp.	(4.2)	(0.4)	(0)	(0)
Crested wood fern	4.2	0.3	0	0
Dryopteris cristata	(4.2)	(0.3)	(0)	(0)
Dandelion	4.2	0.3	9.1	1.0
<u>Taraxacum</u> spp.	(4.2)	(0.3)	(5.2)	(0.6)
Dewberry	33.3	2.2	33.3	2.1
Rubus hispidus	(22.0)	(1.3)	(33.3)	(2.1)
Dryopteris spp.	25.0	2.0	6.1	0.4
	(12.5)	(1.1)	(6.1)	(0.4)
Dwarf enchanter's nightshade	29.2	1.8	21.2	1.3
Circaea alpina	(29.2)	(1.8)	(21.2)	(1.3)
Equisetum spp.	50.0	3.6	36.4	2.7
	(26.0)	(1.8)	(27.8)	(1.7)
False Solomon's seal	4.2	0.3	0	0
Smilacina racemosa	(4.2)	(0.3)	(0)	(0)
Golden ragwort	4.2	0.3	0	0
Senecio aureus	(4.2)	(0.3)	(0)	(0)
Goldenrod	41.7	3.3	33.3	3.1
Solidago spp.	(8.3)	(0.9)	(12.1)	(1.3)
Grass spp.	37.5	2.9	60.6	5.4
	(0)	(0.3)	(21.2)	(1.9)
Grass/sedge spp.	75.0	5.6	42.4	4.1
	(7.2)	(0.4)	(21.9)	(2.6)
Hawkweed	16.7	1.4	60.6	6.7
Hieracium spp.	(11.0)	(1.0)	(23.7)	(3.2)
Hooked crowfoot	0	0	6.1	0.4
Ranunculus recurvatus	(0)	(0)	(6.1)	(0.4)
Intermediate wood fern	12.5	0.8	6.1	0.5
Dryopteris intermedia	(7.2)	(0.4)	(3.0)	(0.3)

			Site	
	Excl	osure	Oper	n Area
Species	AF (SE)	RF (SE)	AF (SE)	RF (SE)
Marsh bedstraw	8.3	0.5	3.0	0.2
Galium palustre	(8.3)	(0.5)	(3.0)	(0.2)
Milkweed	0	0	3.0	0.2
Asclepias spp.	(0)	(0)	(3.0)	(0.2)
Mint	4.2	0.3	3.0	0.2
<u>Mentha</u> spp.	(4.2)	(0.3)	(3.0)	(0.2)
Moss spp.	91.7	7.0	93.9	9.2
	(8.3)	(0.9)	(3.0)	(1.8)
Naked miterwort	54.2	3.8	39.4	2.8
Mitella nuda	(23.2)	(1.2)	(30.8)	(1.9)
Oak fern	54.2	4.0	12.1	0.8
Gymnocarpium spp.	(15.0)	(1.2)	(12.1)	(0.8)
Ostrich fern	4.2	0.3	0	0
Matteuccia struthiopteris	(4.2)	(0.3)	(0)	(0)
<u>Pyrola</u> spp.	29.2	2.1	3.0	0.2
	(15.0)	(1.0)	(3.0)	(0.2)
Rattlesnake fern	58.3	4.3*	24.2	2.2
Botrychium virginianum	(11.0)	(0.7)	(8.0)	(0.7)
Rough bedstraw	33.3	2.2*	42.4	3.4
Galium asprellum	(22.0)	(1.3)	(21.2)	(1.2)
Sedge	45.8	3.9	33.3	3.8
Carex spp.	(23.2)	(1.9)	(16.9)	(2.0)
Self-heal	25.0	1.8	15.2	1.4
Prunella vulgaris	(7.2)	(0.4)	(3.0)	(0.4)
Sensitive fern	4.2	0.3	0	0
Onoclea sensibilis	(4.2)	(0.3)	(0)	(0)
Silvery glade fern	25.0	1.8	3.0	0.2
Athyrium thelypterioides	(12.5)	(0.9)	(3.0)	(0.2)
Skullcap	0	0	6.1	0.4
<u>Scutellaria</u> spp.	(0)	(0)	(6.1)	(0.4)

	Site				
	Excl	osure	Oper	n Area	
Species	AF (SE)	RF (SE)	AF (SE)	RF (SE)	
Spinulose wood fern	8.3	0.7	3.0	0.3	
Dryopteris spinulosa	(8.3)	(0.7)	(3.0)	(0.3)	
Spurred gentian	8.3	0.7	18.2	1.9	
Halenia deflexa	(8.3	(0.7)	(18.2)	(1.9)	
Starflower	62.5	4.7	51.5	4.2	
Trientalis borealis	(14.4)	(1.2)	(26.9)	(2.1)	
Strawberry	20.8	1.4	15.2	1.0	
Fragaria spp.	(11.0)	(0.7)	(15.2)	(1.0)	
Sweet coltsfoot	45.8	3.8	21.2	2.6	
Petasites palmatus	(22.0)	(2.0)	(21.2)	(2.6)	
Tall buttercup	12.5	1.1	0	0	
Ranunculus acris	(12.5)	(1.1)	(0)	(0)	
Thistle	33.3	2.4	33.3	3.2	
<u>Cirsium</u> spp.	(11.0)	(0.7)	(10.9)	(1.3)	
Twinflower	4.2	0.3	6.1	0.4	
Linnaea borealis	(4.2)	(0.3)	(6.1)	(0.4)	
Twisted stalk	4.2	0.4	0	0	
Streptopus amplexifolius	(4.2)	(0.4)	(0)	(0)	
Violet	75.0	5.5	72.7	6.8	
<u>Viola</u> spp.	(12.5)	(0.3)	(10.5)	(1.0)	
Wild sarsaparillo	66.7	5.1	36.4	2.6	
Aralia nudicaulis	(4.2)	(0.7)	(27.8)	(1.7)	
Wood anemone	20.8	1.7	27.3	2.7	
Anemone quinquefolia	(15.0)	(1.2)	(5.2)	(0.9)	
Other	12.5	1.0	21.2	1.9	
	(7.2)	(0.6)	(10.9)	(1.1)	

*Significant differences between exclosure and open area sites were not determined for absolute frequencies, only relative frequencies.
*Significantly different (P<0.10) from open area with paired t-test (Steel and Torrie 1980).

		S	lite	
	Exclo	osure	Open	Area
Species	AF ^a (SE)	RF ^b (SE)	AF (SE)	RF (SE)
Bedstraw	0	0	6.3	0.4
<u>Galium</u> spp.	(0)	(0)	(6.3)	(0.4)
Boot's wood fern	12.5	1.2	6.3	0.5
Dryopteris boottii	(12.5)	(1.2)	(6.3)	(0.5)
Bugleweed	31.3	2.3	43.8	3.1
Lycopus spp.	(31.3)	(2.3)	(6.3)	(0.3)
Bunchberry	43.8	3.9	31.3	2.2
Cornus canadensis	(18.8)	(2.1)	(6.3)	(0.4)
Canada mayflower	81.3	6.8	68.8	4.9
Maianthemum canadense	(6.3)	(0.4)	(6.3)	(0.3)
Coralroot	6.3	0.6	6.3	0.4
<u>Corallorhiza</u> spp.	(6.3)	(0.6)	(6.3)	(0.4)
Crested wood fern	6.3	0.5	25.0	1.8
Dryopteris cristata	(6.3)	(0.5)	(12.5)	(1.0)
Dewberry	50.0	4.4	87.5	6.3
<u>Rubus hispidus</u>	(12.5)	(1.6)	(0)	(0.2)
Dryopteris spp.	0	0	12.5	0.9
	(0)	(0)	(12.5)	(0.9)
Dwarf enchanter's nightshade	37.5	3.0	62.5	4.5
<u>Circaea alpina</u>	(12.5)	(0.6)	(12.5)	(1.1)
Equisetum spp.	0	0	18.8	1.3
	(0)	(0)	(18.8)	(1.3)
Fragile fern	18.8	1.4	6.3	0.4
Cystopteris fragilis	(18.8)	(1.4)	(6.3)	(0.4)
Fringed polygala	0	0	6.3	0.4
Polygala paucifolia	(0)	(0)	(6.3)	(0.4)
Golden ragwort	6.3	0.5	0	0
Senecio aureus	(6.3)	(0.5)	(0)	(0)

Table A14. Mean absolute (AF) and relative frequencies (RF) (and standard errors [SE]) of herbaceous species in exclosure and areas open to browsing sites in the Stonington Peninsula-South study area in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994.

	Site			
	Excl	osure	Oper	n Area
pecies	AF (SE)	RF (SE)	AF (SE)	RF (SE)
ioldenrod	6.3	0.5	12.5	0.9
<u>olidago</u> spp.	(6.3)	(0.5)	(12.5)	(0.9)
oldthread	43.8	3.5	62.5	4.4
coptis groenlandica	(18.8)	(1.1)	(12.5)	(0.7)
irass spp.	50.0	3.7	68.8	4.8
	(50.0)	(3.7)	(31.3)	(2.1)
irass/sedge spp.	18.8	1.8	12.5	0.9
	(18.8)	(1.8)	(12.5)	(0.9)
ntermediate wood fern	31.3	3.0	37.5	2.8
rvopteris intermedia	(31.3)	(3.0)	(37.5)	(2.8)
nterrupted fern	6.3	0.6	0	0
smunda claytoniana	(6.3)	(0.6)	(0)	(0)
ack-in-the-pulpit	37.5	2.8	31.3	2.3
risaema spp.	(37.5)	(2.8)	(18.8)	(1.4)
welweed	12.5	0.9	12.5	0.9
npatiens spp.	(12.5)	(0.9)	(0)	(0)
e-pye weed	6.3	0.5	0	0
upatorium spp.	(6.3)	(0.5)	(0)	(0)
ong beech fern	18.8	1.4	37.5	2.7
helypteris phegopteris	(18.8)	(1.4)	(12.5)	(1.0)
1arsh fern	12.5	0.9	12.5	0.9
helypteris palustris	(12.5)	(0.9)	(12.5)	(0.9)
farsh skullcap	0	0	6.3	0.4
cutellaria epilobifolia	(0)	(0)	(6.3)	(0.4)
lint	6.3	0.5	6.3	0.4
lentha spp.	(6.3)	(0.5)	(6.3)	(0.4)
loss spp.	93.8	7.8	93.8	6.7
	(6.3)	(0.5)	(6.3)	(0.2)
aked miterwort	93.8	7.8	100	7.2
litella nuda	(6.3)	(0.5)	(0)	(0.3)

ø

	Site			
	Excl	osure	Oper	Area
Species	AF (SE)	RF (SE)	AF (SE)	RF (SE)
Oak fern	43.8	3.3	18.8	1.4
<u>Gymnocarpium</u> spp.	(31.3)	(2.2)	(18.8)	(1.4)
Pyrola spp.	0	0	6.3	0.4
	(0)	(0)	(6.3)	(0.4)
Rattlesnake fern	31.3	2.8	31.3	2.3
Botrychium virginianum	(18.8)	(1.9)	(18.8)	(1.4)
Rattlesnake plantain	0	0	18.8	1.3
Goodvera spp.	(0)	(0)	(6.3)	(0.4)
Rough bedstraw	68.8	5.7	68.8	4.9
Galium asprellum	(6.3)	(0.2)	(18.8)	(1.2)
Royal fern	0	0	31.3	2.2
Osmunda regalis	(0)	(0)	(31.3)	(2.2)
Sedge	12.5	0.9	31.3	2.2
Carex spp.	(12.5)	(0.9)	(18.8)	(1.3)
Self-heal	0	0	18.8	1.3
Prunella yulgaris	(0)	(0)	(18.8)	(1.3)
Sensitive fern	0	0	25.0	1.7
Onoclea sensibilis	(0)	(0)	(25.0)	(1.7)
Silvery glade fern	0	0	18.8	1.4
Athyrium thelypterioides	(0)	(0)	(18.8)	(1.4)
Starflower	81.3	7.1	68.8	5.0
Trientalis borealis	(18.8)	(2.5)	(18.8)	(1.5)
Strawberry	12.5	1.1	6.3	0.5
F <u>ragaria</u> spp.	(0)	(0.1)	(6.3)	(0.5)
Thistle	6.3	0.5	0	0
<u>Cirsium</u> spp.	(6.3)	(0.5)	(0)	(0)
<u>Trillium</u> spp.	6.3	0.5	0	0
	(6.3)	(0.5)	(0)	(0)
Turtlehead	6.3	0.5	0	0
Chelone spp	(6.3)	(0.5)	(0)	(0)

•

	Site			
	Excle	osure	Oper	Area
Species	AF	RF	AF	RF
	(SE)	(SE)	(SE)	(SE)
Twinflower	0	0	6.3	0.4
Linnaea borealis	(0)	(0)	(6.3)	(0.4)
Twisted stalk	6.3	0.6	0	0
<u>Streptopus</u> amplexifolius	(6.3)	(0.6)	(0)	(0)
Violet	75.0	6.2	75.0	5.3
<u>Viola</u> spp.	(12.5)	(0.2)	(25.0)	(1.6)
White adders mouth	0	0	6.3	0.4
<u>Malaxis brachypoda</u>	(0)	(0)	(6.3)	(0.4)
Wild sarsaparillo	56.3	4.7	31.3	2.3
Aralia nudicaulis	(6.3)	(0.1)	(18.8)	(1.4)
Wood anemone	12.5	1.2	0	0
Anemone guinguefolia	(12.5)	(1.2)	(0)	(0)
Wood sorrel	43.8	4.3	50.0	3.7
<u>Oxalis</u> spp.	(43.8)	(4.2)	(50.0)	(3.7)
Yellow lady's slipper	0	0	6.3	0.4
Cypripedium calceolus	(0)	(0)	(6.3)	(0.4)
Other	12.5	0.9	6.3	0.4
	(12.5)	(0.9)	(6.3)	(0.4)

^aSignificant differences between exclosure and open area sites were not determined for absolute

frequencies, only relative frequencies. ^bNo significant differences (P>0.10) of relative frequencies between exclosure and open area sites for any species with the paired t-test (Steel and Torrie 1980).

		Si	ite
Study Area	Species	Exclosure	Open Area
WRB-North	<u>Aster</u> spp.	1.4AB ^a (0.8)	b
	Boot's wood fern Dryopteris boottii	0° (0)	
	Canada mayflower <u>Maianthemum canadense</u>	4.5 ^c (0.4)	
	Crested wood fern Dryopteris cristata		0.5 ^c (0.5)
	<u>Dryopteris</u> spp.	0° (0)	
	Dwarf enchanter's nightshade <u>Circaea alpina</u>		0° (0)
	Fringed polygala <u>Polygala paucifolia</u>	0° (0)	0° (0)
	Goldthread Coptis groenlandica	2.7AB (1.4)	6.1AB (0.4)
	Grass-sedge	0° (0)	
	Hawkweed <u>Hieracium</u> spp.		0.6AB (0.3)
	Jack-in-the-pulpit <u>Arisaema</u> spp.		0° (0)
	Long beech fern Thelypteris palustris		0° (0)
	Rattlesnake fern Botrychium virginianum	0.6A (0.3)	
	Rough bedstraw <u>Galium asprellum</u>	0A (0)	0 ^c (0)

Table A15. Relative frequency (and standard error) of herbaceous species that were significantly different (P<0.10) among study areas (Whitefish River Basin-North and -South [WRB-North and -South] and Stonington Peninsula-North and -South [SP-North and -South]) in the Hiawatha National Forest in Michigan's Upper Peninsula, 1993-1994.

A

		Site	
Study Area	Species	Exclosure	Open Area
WRB-North	Snowberry	5.0 ^c	1.5 ^c
(cont'd.)	Gaultheria hispidula	(0.7)	(0.9)
	Sweet coltsfoot	0.6 ^c	
	Petasites palmatus	(0.3)	••••••
	Sweet-scented bedstraw	4.2 ^c	
	Galium triflorum	(0.1)	
	Three-leaved Solomon's seal	5.0 ^c	4.2 ^c
	Smilacina trifolia	(1.2)	(1.1)
	Wood anemone		0.2 ^c
	Anemone quinquefolia		(0.2)
WRB-South	Aster spp.	0.9AB	
		(0)	
	Boot's wood fem	0	
	Dryopteris boottii	(0)	
	Canada mayflower	5.1	******
	<u>Maianthemum canadense</u>	(0.6)	
	Crested wood fern		0
	Dryopteris cristata		(0)
	Dryopteris spp.	0.3	
		(0.3)	
	Dwarf enchanter's nightshade		0
	Circaea alpina		(0)
	Fringed polygala	5.6	5.5
	Polygala paucifolia	(1.2)	(0.5)
	Goldthread	7.0A	6.4A
	Coptis groenlandica	(0.6)	(0.8)
	Grass-sedge	0	
	-	(0)	
	Hawkweed		0A
	Hieracium spp.		(0)

		S	ite
Study Area	Species	Exclosure	Open Area
WRB-South	Jack-in-the-pulpit		1.1
(cont'd.)	Arisaema spp.		(1.1)
	Long beech fern		0.3
	Thelypteris palustris		(0.3)
	Rattlesnake fern	1.2AB	
	Botrychium virginianum	(0.3)	
	Rough bedstraw	3.9AB	2.6AB
	Galium asprellum	(0.9)	(0.1)
	Snowberry	5.6	4.4
	Gaultheria hispidula	(1.3)	(1.4)
	Sweet coltsfoot	0	
	Petasites palmatus	(0)	
	Sweet-scented bedstraw	0.3	
	Galium triflorum	(0.3)	
	Three-leaved Solomon's seal	2.8	1.4
	Smilacina trifolia	(0.5)	(1.0)
	Wood anemone		0
	Anemone guinguefolia		(0)
SP-North	Aster spp.	2.8A	
		(1.0)	
	Boot's wood fern	3.1	******
	Dryopteris boottii	(1.2)	
	Canada mayflower	7.1	
	Maianthemum canadense	(1.0)	
	Crested wood fern	*=====	0
	Dryopteris cristata		(0)
	Dryopteris spp.	2.0	
		(1.1)	

		Site	
Study Area	Species	Exclosure	Open Area
SP-North	Dwarf enchanter's nightshade		1.3
(cont'd.)	Circaea alpina		(1.3)
	Fringed polygala	0	0
	Polygala paucifolia	(0)	(0)
	Goldthread	0B	0B
	Coptis groenlandica	(0)	(0)
	Grass-sedge	5.6	
		(0.4)	
	Hawkweed		6.7B
	<u>Hieracium</u> spp.		(3.2)
	Jack-in-the-pulpit		0
	Arisaema spp.		(0)
	Long beech fern		0
	Thelypteris palustris		(0)
	Rattlesnake fern	4.3B	
	Botrychium virginianum	(0.7)	
	Rough bedstraw	2.2AB	3.4AB
	Galium asprellum	(1.3)	(1.2)
	Snowberry	0	0
	Gaultheria hispidula	(0)	(0)
	Sweet coltsfoot	3.8	
	Petasites palmatus	(2.0)	
	Sweet-scented bedstraw	0	
	Galium triflorum	(0)	
	Three-leaved Solomon's seal	0	0
	Smilacina trifolia	(0)	(0)
	Wood anemone		2.7
	Anemone quinquefolia		(0.9)

		S	ite
Study Area	Species	Exclosure	Open Area
SP-South	Aster spp.	0B	
		(0)	
	Boot's wood fern	1.2	
	Dryopteris boottii	(1.0)	
	Canada mayflower	6.8	
	Maianthemum canadense	(0.3)	
	Crested wood fern		1.8
	Dryopteris cristata		(0.8)
	Dryopteris spp.	0	
		(0)	
	Dwarf enchanter's nightshade	*****	4.5
	Circaea alpina		(0.9)
	Fringed polygala	0	0.4
	Polygala paucifolia	(0)	(0.4)
	Goldthread	3.5AB	4.4AB
	Coptis groenlandica	(0.9)	(0.6)
	Grass-sedge	1.8	
		(1.5)	
	Hawkweed		0AB
	<u>Hieracium</u> spp.		(0)
	Jack-in-the-pulpit		2.3
	<u>Arisaema</u> spp.		(1.2)
	Long beech fern		2.7
	Thelypteris palustris		(0.8)
	Rattlesnake fern	4.3B	
	Botrychium virginianum	(0.7)	
	Rough bedstraw	2.2AB	4.9AB
	Galium asprellum	(1.3)	(1.0)
	Snowberry	0	0
	Gaultheria hispidula	(0)	(0)

		Site		
Study Area	Species	Exclosure	Open Area	
SP-South	Sweet coltsfoot	3.8		
(cont'd.)	Petasites palmatus	(2.0)		
	Sweet-scented bedstraw	0		
	Galium triflorum	(0)		
	Three-leaved Solomon's seal	0	0	
	Smilacina trifolia	(0)	(0)	
	Wood anemone		0	
	Anemone guinquefolia		(0)	

^aMeans with different letters within species and site were significantly different (P<0.10) among study areas with the Kruskal-Wallis one-way analysis of variance (Siegel and Castellan 1988) using SYSTAT (1992) and the Kruskal-Wallis multiple comparison test (Siegel and Castellan 1988).

^bSpecies not identified in any of the study areas for this site type.

^cKruskal-Wallis multiple comparison test (Siegel and Castellan 1988) was unable to detect where the significant difference occurred within species and site among the study areas as detected by the Kruskal-Wallis one-way analysis of variance (Siegel and Castellan 1988) using SYSTAT (1992).

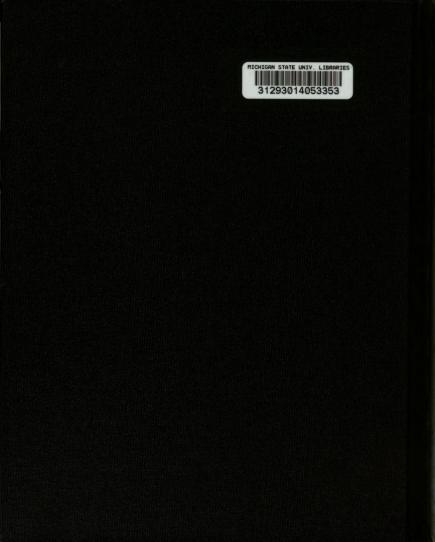
LITERATURE CITED

LITERATURE CITED

- Albert, D.A., S.R. Denton, and B.V. Barnes. 1986. Regional landscape ecosystems of Michigan. School of Natural Resources, University of Michigan. 32pp.
- Alverson, W.S., D.M. Waller, and S.L. Solheim. 1988. Forests too deer: edge effects in northern Wisconsin. Conserv. Biol. 2:348-358.
- Anderson, R.C., and O.L. Loucks. 1979. White-tailed deer (<u>Odocoileus virginianus</u>) influence on structure and composition of <u>Tsuga canadensis</u> forests. J. Applied Ecology 16:855-861.
- Beals, E.W., G. Cottam, and R.J. Vogl. 1960. Influence of deer on the vegetation of the Apostle Islands, Wisconsin. J. Wildl. Manage. 24:68-80.
- Behrend, D.F., G.F. Mattfeld, W.C. Tierson, and F.E. Wiley, III. 1970. Deer density control for comprehensive forest management. J. For. 68:695-700.
- Beier, P. and D.R. McCullough. 1990. Factors influencing white-tailed deer activity patterns and habitat use. Wildl. Monographs 109. 51pp.
- Berndt, L.W. 1977. Soil survey of Delta county and Hiawatha National Forest of Alger and Schoolcraft counties, Michigan. U.S. Dep. Agric. Soil Conser. Serv. 143pp.
- Beyer, D.E., and J.B. Haufler. 1994. Diurnal versus 24-hour habitat use sampling. J. Wildl. Manage. 58:178-180.
- Blouch, R.I. 1984. Northern Great Lakes and Ontario forests. Pages 391-410 in L.K.
 Halls, ed. White-tailed deer ecology and management. Wildl. Mgmt. Inst.
 Stackpole Books. Harrisburg, Pa.
- Canfield, R.H. 1941. Application of the line intercept method in sampling range vegetation. J. For. 39:388-394.
- Case, D.J., and D.R. McCullough. 1987. The white-tailed deer of North Manitou Island. Hilgardia 55:57.

Clover, M.R. 1954. A portable deer trap and catch-net. Calif. Fish Game 40:367-373.

- Coleman, J.S. and A.B. Jones III. 1988. User's guide to TELEM88: computer analysis system for radio-telemetry data. Dept. of Fisheries and Wildlife, Virginia Polytechnic Institute and State University, Blacksburg, Va. Research Series No. 1. 49pp.
- Conover, W.J. and R.L. Iman. 1981. Rank transformation as a bridge between parametric and nonparametric statistics. Amer. Statist. 35:124-129.
- Dahlberg, B.L., and R.C. Guettinger. 1956. The white-tailed deer in Wisconsin. Wis. Conserv. Dep. Tech. Wildl. Bull. 14. 282pp.
- Dixon, K.R., and J.A. Chapman. 1980. Harmonic mean measurement of animal activity. Ecology 61:1040-1044.
- Eichenlaub, V.L., J.R. Harman, F.V. Nurnberger, and H.J. Stolle. 1990. The climatic atlas of Michigan. The University of Notre Dame Press. Notre Dame, Ind. 165pp.
- Freese, F. 1978. Elementary forest sampling. U.S.D.A. Agric. Handbk. No. 232. 91pp.
- Frelich, L.E., and C.G. Lorimer. 1985. Current and predicted long-term effects of deer browsing in hemlock forests in Michigan, U.S.A. Biological Conserv. 34:99-120.
- Gilbert, F.F. 1966. Aging white-tailed deer by annuli in the cementum of the first incisor. J. Wildl. Manage. 30:200-202.
- Graham, S.A. 1958. Results of deer exclosure experiments in the Ottawa National Forest. Trans. North Am. Wildl. Conf. 23:478-490.
- Gysel, L.W., and L.J. Lyon. 1980. Habitat analysis and evaluation. Pages 128-147 in S.D. Schemnitz, ed. Wildlife management techniques manual. The Wildl. Soc., Washington, D.C. 686pp.
- Hough, A.F. 1965. A twenty-year record of understory vegetational change in a virgin Pennsylvania forest. Ecology 46:370-373.
- Hunter, Jr., M.L. 1990. Wildlife, forests, and forestry: principles of managing forests for biological diversity. Prentice-Hall, Inc. Englewood Cliffs, N.J. 370pp.
- Jennrich, R.I. and F.B. Turner. 1969. Measurement of non-circular home range. J. Theoret. Biol. 22:227-237.


- Kie J.G., J.A. Baldwin, and C.J. Evans. 1994. CALHOME home range analysis program Electronic User's manual. U.S. Forest Serv., Pacific Southwest Res. Sta., Fresno, Calif.
- Kohn, B.E., and J.J. Mooty. 1971. Summer habitat of white-tailed deer in north-central Minnesota. J. Wildl. Manage. 35:476-487.
- Kuchler, A.W. 1964. Potential natural vegetation of the conterminous United States. American Geographical Society. New York, N.Y. Special publication No. 36. 116pp.
- Langenau, E.E., Jr. 1979. Nonconsumptive uses of the Michigan deer herd. J. Wildl. Manage. 43:620-625.
- Larson, T.J., O.J. Rongstad, and F.W. Terbilcox. 1978. Movement and habitat use of white-tailed deer in south-central Wisconsin. J. Wildl. Manage. 42:113-117.
- Maclean Consultants Ltd. Inventory of deer habitat in Michigan's upper peninsula utilizing Landsat thematic mapper data. Final Project Report produced for Mich. Dept. Nat. Resources, Wildlife Division. 29pp.
- Marquis, D.A. 1974. The impact of deer browsing on Allegheny hardwood regeneration. U.S. Dep. Agric. For. Serv. Res. Pap. NE-308. 8pp.
- Marquis, D.A. 1981. The effect of deer browsing on timber production in Allegheny hardwood forests of northwestern Pennsylvania. USDA For. Serv. Res. Pap. NE-475. Northeast. For. Exp. Stn., Broomall, Pa. 10pp.
- Mautz, W.W. 1978. Sledding on a brushy hillside: the fat cycle in deer. Wildl. Soc. Bull. 6:88-90.
- McBeath, D.Y. 1941. Whitetail traps and tags. Mich. Conserv. 10:6-7.
- McCaffery, K.R., J. Tranetzki, and J. Piechura, Jr. 1974. Summer foods of deer in northern Wisconsin. J. Wildl. Manage. 38:215-219.
- McCaffery, K.R., and W.A. Creed. 1969. Significance of forest openings to deer in northern Wisconsin. Wis. Dept. Nat. Res. Tech. Bull. 44. 104pp.
- McCullough, D.R. 1982. Evaluation of night spotlighting as a deer study technique. J. Wildl. Manage. 46:963-973.
- McCullough, D.R. 1985. Variables influencing food habits of white-tailed deer on the George reserve. J. Mamm. 66:682-692.

Michigan Department of Agriculture. 1993. Michigan Agricultural Statistics. 87pp.

- Michigan Department of Natural Resources. 1977. Michigan 1976 recreation survey design and application. Lansing. 110pp.
- Michigan Department of Natural Resources. 1983. A statewide forest resources plan. Lansing. 40pp.
- Michigan Department of Natural Resources. 1991. 1991 deer season preliminary report. Wildlife and Law Enforcement Divisions. Lansing. 8pp.
- Michigan Department of Natural Resources. 1992. 1992 deer season preliminary report. Wildlife and Law Enforcement Divisions. Lansing. 8pp.
- Michigan State University. 1989. Michigan's deer damage problems: an analysis of the problems with recommendations for future research and communication. Dept. of Fisheries and Wildlife. 97pp.
- Miller, S.G., S.P. Bratton, and J. Hadidian. 1992. Impacts of white-tailed deer on endangered and threatened vascular plants. Nat. Areas J. 12:67-74.
- Mohr, C.O. 1947. Table of equivalent populations of North American small mammals. Am. Midl. Nat. 37:223-249.
- Mooty, J.J., P.D. Karns, and T.K. Fuller. 1987. Habitat use and seasonal range size of white-tailed deer in northcentral Minnesota. J. Wildl. Manage. 51:644-648.
- Naef-Daenzer, B. 1993. A new transmitter for small animals and enhanced methods of home-range analysis. J. Wildl. Manage. 57:680-689.
- National Oceanic and Atmospheric Administration. 1993. Climatological data: Michigan annual summary. Natl. Climatic Cent., Asheville, N.C.
- National Oceanic and Atmospheric Administration. 1994. Climatological data: Michigan annual summary. Natl. Climatic Cent., Asheville, N.C.
- Nelson, M.E. and L. David Mech. 1984. Home-range formation and dispersal of deer in northeastern Minnesota. J. Mammal. 65:567-575.
- Neu, C.W., C.R. Byers, and J.M. Peek. 1974. A technique for analysis of utilizationavailability data. J. Wildl. Manage. 38:541-545.

- Nudds, T.D. 1977. Quantifying the vegetative structure of wildlife cover. Wildl. Soc. Bull. 5:113-117.
- Ozoga, J.J., R.V. Doepker, and M.S. Sargent. 1994. Ecology and management of whitetailed deer in Michigan. Michigan Dep. Nat. Resources, Wildlife Division Report 3209. 73pp.
- Ozoga, J.J. and L. J. Verme. 1970. Winter feeding patterns of penned white-tailed deer. J. Wildl. Manage. 34:431-439.
- Pacer. 1990-1993. LOCATE II user's guide. Truro, Nova Scotia, Canada. 84pp.
- Potter-Witter, K. 1995. Timber and timberland resources. Michigan State University Agricultural Experiment Station. SR-71. 23pp.
- SAS Institute, Inc. 1993. Release 6.1, Windows Version 3.11. Cary, N.C.
- Severinghaus, C.W. 1949. Tooth development and wear criteria of age in white-tailed deer. J. Wildl. Manage. 13:195-216.
- Siegel, S. and N.J. Castellan, Jr. 1988. Nonparametric statistics for the behavioral sciences. 2nd ed. McGraw-Hill, Inc. 399pp.
- Sokal, R.R. and F.J. Rohlf. 1981. Biometry. 2nd ed. W.H. Freeman and Co. New York, N.Y. 859pp.
- Sparrowe, R.D., and P.F. Springer. 1970. Seasonal activity patterns of white-tailed deer in eastern South Dakota. J. Wildl. Manage. 34:420-431.
- Steel, R.G.D., and J.H. Torrie. 1980. Principles and procedures of statistics, a biometrical approach. 2nd ed. McGraw-Hill Book Co., New York, N.Y. 633pp.
- SYSTAT, Inc. 1992. SYSTAT for Windows: Statistics, Version 5 Edition, Evanston, Ill. 750pp.
- Tilghman, N.G. 1989. Impacts of white-tailed deer on forest regeneration in northwestern Pennsylvania. J. Wildl. Manage. 53(3):524-532.
- U.S.D.A. Forest Service. 1990. Recreation use report. 1p.
- Van Deelen, T.R. 1995. Seasonal migrations and mortality of white-tailed deer in Michigan's Upper Peninsula. Michigan State University, Ph.D. 158pp.

- Verme, L.J. 1973. Movements of white-tailed deer in upper Michigan. J. Wildl. Manage. 37:545-552.
- Williamson, L.L., and G.L. Doster. 1981. Socio-economic aspects of white-tailed disease. Pages 434-439 in W.R. Davidson, ed. Diseases and parasites of white-tailed deer. Tallahassee, Fla. Tall Timbers Research Station.
- Worton, B.J. 1987. A review of models of home range for animal movement. Ecological Modeling 38:277-298.
- Worton, B.J. 1989. Kernel methods for estimating the utilization distribution in homerange studies. Ecology 70:164-168.

