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ABSTRACT

ON RECOGNIZING AND TRACKING 3D CURVED

OBJECTS FROM 2D IMAGES

By

Jin-Long J. Chen

This thesis addresses the problem of recognizing arbitrary curved 3D objects from

single 2D intensity images. We propose a model-based solution within the alignment

paradigm involving three major schemes — modeling, matching, and indexing.

The modeling scheme consists of constructing model aspects for predicting the

object contour seen from any viewpoint. The indexing scheme generates from image

features hypotheses giving candidate model aspects and poses. A hypothesis group-

ing and ordering method is used to order model hypotheses based on prior knowledge

of pre—stored models and the visual evidence of the observed objects such that the

most likely model hypotheses are tested first. The matching scheme aligns candidate

model edgemaps to the observed object edgemap and the results of alignment are

used to support/refute model hypotheses. Due to the unavailability of salient fea-

tures in objects with sculptured surfaces, matching is carried out by the Newton’s

method with Levenberg—Marquardt minimization. A hierarchical verification strategy



is incorporated in the matching scheme to quickly eliminate false model hypotheses

from further consideration. Once a correct model is localized, a recognition success

is declared and the whole verification procedure is terminated. If all candidate model

hypotheses are refuted, a recognition failure is reported. When combined into an in-

tegrated system, these three schemes make progress toward improving accuracy and

efficiency by pruning false model hypotheses and minimizing unnecessary verification

tests.

A prototype implementation has been tested in experiments conducted on a

database containing 658 model aspects to evaluate the performance of recognition

on 20 arbitrary curved objects, either non-occluded or partially occluded, seen from

several viewpoints. Bench tests and simulations show that a large database of many

kinds of objects including polyhedra and sculptured objects can be handled accu-

rately and efficiently. We have also applied this model-based alignment paradigm to

tracking a single moving object in a scene from an image sequence. Experimental

results indicate the viability of this tracking method. From these results, we conclude

that the proposed recognition—by-alignment paradigm is a viable approach to object

recognition and tracking.
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Chapter 1

Introduction

One of the central problems of computer vision is the automatic recovery of the

structure and properties of three-dimensional (3D) objects in a scene from a single or

multiple two-dimensional (2D) images. The structure and properties sought include

the identities, positions, and orientations of objects. The model-based recognition

paradigm has emerged as a promising approach to this problem in that stored models

can be used to match against objects in the scene. This model-based recognition

paradigm is supported by human eye-brain biological processes where the image of a

scene is perceived by the eyes and the retinotopic patterns of objects in the scene are

recalled from memory [118]. This object recognition paradigm used to model human

biological processes [98, 118] or computer vision processes (8.9., [28, 42, 92]) assumes

some internal representation of visual input and some “computational” capacity to

match it against representations of models known to the viewer. Consequently, model-

based object recognition systems can be distinguished or classified according to their

model representation schemes and their object matching techniques [12, 31].

1
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This chapter is organized with the next section introducing the problem of recog-

nizing 3D objects from 2D images. A few areas where opportunities of improvement

over current recognition systems exist are also outlined. Section 1.2 describes the

approach proposed in this thesis toward the object recognition problem. Since this

thesis is about model-based object recognition by alignment, Section 1.3 surveys some

of the most popular matching techniques related to alignment in use by the computer

vision community. Section 1.4 outlines the major contributions of this thesis. The

last section explains the organization and approach of this thesis.

1.1 Object Recognition by Alignment

Recognizing 3D objects from single 2D images has been an active research topic in

computer vision since its inception. A practical solution to this problem has many

applications such as inspection, automation, manipulation, navigation, security, etc.,

and will greatly impact the field of intelligent robotics. Over the past twenty years,

many researchers have studied the object recognition problem and have made progress

in building experimental recognition systems. Most successful recognition systems use

polyhedra as object models and rely on matching special object features to features

extracted from the image. The most common strategy adopted in the computer

vision community is known as alignment [60] or hypothesize-and-verify [4, 35, 42,

55, 76, 117]. This strategy divides the problem into two parts: first hypothesizing

correspondences of features extracted from both the object model and the image,

and then verifying the hypotheses. The verification process requires the position and
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orientation (i.e., pose) of the hypothesized object be computed. Many researchers

have developed techniques to make the search for correspondences more efficient by

applying photometric and geometric constraint and have also studied the problem of

pose estimation from feature correspondences. Despite these efforts, lack of efficiency

and accuracy in alignment and the capacity of handling objects with arbitrary curved

surfaces has caused current recognition systems to be less widely accepted in practice.

We briefly discuss a few areas where new research is needed.

Simple Object Model: The most dominant reason for the popularity of polyhedra

[40, 48, 60, 76] is that edge contours are relatively stable over small changes in view-

point such that reliable geometric invariants/features can be extracted for hypothesis

generation and verification purposes. Unfortunately, the world is not simple and poly-

hedral; it is complex and full of arbitrary curved objects whose image features are

much more difficult to interpret. To be widely used in practice, recognition systems

must accommodate sculptured surfaces and large model databases. Most researchers

in computer vision have focused on object models with simple surfaces, namely poly-

hedra [40], quadric surfaces [108], superquadrics [5, 89], or super-ellipsoids [50, 88],

or with slightly more complex ones such as algebraic surfaces [69, 64]. These surfaces

are not expressive enough to represent sculptured objects. Even when sculptured

objects are modeled by Boolean combinations of these primitives, they might not be

smoothly sewn together.

Inefficient Verification Order: Hypothesis-generation procedures must compen-

sate for inaccurate features extracted from the image (6.9., due to noise or view
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variation) by loosening constraints, thus increasing the number of incorrect hypothe-

ses that are generated. Accordingly, optimizing the order in which the hypotheses

are verified has become extremely important for the efficiency of recognition systems.

Systems that do not optimize the ordering of hypotheses tend to verify more hypothe-

ses than they should. Few systems make proper use of prior knowledge to guide the

order of the verification so that the most likely hypotheses are verified first.

Inaccurate Pose Estimation: Correct verification of a hypothesis depends on ac-

curate localization of the hypothesized object. Recognition systems that use corre-

spondences of minimal sets of features to locate a hypothesized object often suffer

from an inaccurate pose estimate. One remedy is to increase the tolerances for the

verification decision; however, this often leads to more recognition errors. The other

option is to refine the pose estimate using more available image features: unfortu-

nately, approaches to such a pose refinement are often sensitive to missing features

in the image (e.g., due to partial occlusion), indicating that the refined pose estimate

may not be an improvement unless the number of missing features is insignificant.

1.2 Problem Definition

In this thesis, we propose a model-based recognition system capable of handling a

large database of 3D objects with sculptured (“free-form”) surfaces. The proposed

recognition system intends to solve the following problem:

Given a set of object models and an intensity image of a scene containing

a jumble, specific objects in the scene are to be recognized based on the



given single image.

This is the problem of recognizing objects with unknown 3D pose from a single 2D

image. The object of interest may be partially occluded by other scene objects and

the object models include both polyhedra and arbitrary curved objects. Examples

of scenes are shown in Figure 1.1. The proposed recognition system fits within the

theoretical framework for the recognition-by-alignment paradigm espoused by Ull—

man [111] and Lowe [75]. Alignment is a two—stage process. Given a model object

and an image, the first stage is to hypothesize an aligning transformation that would

bring the model object to a position and orientation in space that corresponds to

the projected image. The second stage is to verify the hypothesis by applying the

aligning transformation to the object model and then comparing the predicted ap—

pearance with the actual image. The degree of the match is used to refute/support

the hypothesis, i.e., determine whether the image is in fact an instance of the model.

 

Figure 1.1: Examples of scenes containing jumbles of objects.

The proposed approach toward object recognition strives to exploit prior knowl-

edge to improve recognition performance and accuracy. Improvements are necessary
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for object recognition systems to be practical for real applications. The proposed

approach toward improving efficiency and accuracy of the recognition is based on (1)

maximizing the use of prior knowledge to reduce unnecessary hypothesis verifications

and (2) refining the pose estimate in a hill-climbing fashion to constrain the search.

We represent prior knowledge using feature saliency in pre—stored models and the

feature visual evidence in the images. For efficient recognition, likelihood measures

based on prior knowledge are applied to select and order hypotheses for verifica-

tion; they help remove relatively unlikely hypotheses from consideration and enable

the proposed recognition system to verify the most likely hypotheses first. Robust

pose refinement increases the accuracy of the pose estimate, and thus enhances the

accuracy of the verification test as well.

The proposed object recognition system comprises three primary techniques: com-

plex object modeling, probabilistic indexing, and robust matching.

Complex Object Modeling: The proposed modeling scheme builds/learns 3D

models from sets of 2D images taken at controlled viewpoints. Our approach accounts

for the changes of contour features over smooth object surfaces due to small changes in

viewpoint. Curvature information about object surfaces is learnt from a set of images

arising from the object, enabling the modeling scheme to generate the object’s edge

appearance seen from any viewpoint. Consequently, the proposed modeling scheme

can handle both polyhedra and sculptured objects.

Probabilistic Indexing: The purpose of an indexing scheme is to use some im-

age features to hypothesize candidate models and candidate poses. The proposed
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indexing scheme generates hypotheses based on local geometric features because they

are insensitive to partial occlusion. The proposed indexing scheme also increases the

tolerances of indexing features to accommodate noise and View variation. The prior

knowledge about the structure of pre—stored models and the visual evidence of image

features is used to compute the relative likelihoods of the hypotheses. The likeli-

hoods of these hypotheses are used to select hypotheses for verification by removing

hypotheses with little supporting evidence while retaining those with strong support-

ing evidence. This means that incorrect hypotheses may be pruned because of their

small likelihoods. The resulting hypotheses are ordered by their likelihoods so that

the most likely hypotheses are tested first.

Robust Matching: The proposed matching technique refines the pose estimate in

a hill-climbing fashion to constrain the search for correspondences between model

and image features. We adopt a least—squares minimization approach—similar to the

approach in [77]—to reliably estimate the object pose. This minimization technique

uses heuristics to robustly estimate pose: it is shown to be relatively insensitive to

outliers occurring due to partial occlusion.

The Recognition Task

The recognition problem addressed in this thesis is to identify and localize an arbitrary

curved 3D object from a single 2D view of a 3D scene (i.e., 3D-to-2D recognition).

Thus, an object has three translational and three rotational degrees of freedom that

must be recovered from 2D sensory data. The input to the recognition system is an
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intensity image and a set of aspect models. The output from the recognition system is

an identity of the observed object and a transformation that best aligns the selected

model with the observed image features.

The imaging process is assumed to be approximated by weak perspective projec-

tion, i.e., orthographic projection plus a scale factor. It is also assumed that objects

are rigid. Under these assumptions, there are six unknown parameters for the image

of an object under a rigid-body transformation: three for rotation, two for translation,

and one for scaling [60].

Edge contour features are used for generating and verifying hypotheses. To allow

occlusion, only portions of edge contours are used for generating and verifying hy-

potheses of candidate models and their pose in an image. Thus, it is assumed that

objects are identifiable based on the shape of their edge contours. Since the proposed

recognition system can handle objects that have smoothly changing surfaces, the edge

contours are allowed to be slightly different over small changes in vieWpoint.

A block diagram in Figure 1.2 depicts the proposed recognition paradigm and some

major tasks addressed by this research. The modeling scheme consists of constructing

model aspects. The indexing scheme generates from image features hypotheses giving

candidate model aspects and poses which are then verified in the matching scheme

to refute/support the hypotheses and also to estimate/refine the object pose of the

correct model. The localization of a correct model implicitly indicates the recognition

of the model. Once a correct model is localized, the whole verification procedure is

terminated. If all candidate model hypotheses are refuted, a recognition failure is

reported.
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An example of the recognition of a partially occluded polyhedral object is given in

Figure 1.3. Figure 1.3(a) shows a typical scene containing two objects: a polyhedra

and a Y pipe. Figure 1.3(b) shows the edgemap of the image obtained from the feature

extraction. Figure 1.3(e) shows the model (which is a 2%D edgemap where the 3D

information is embedded in each edge element) obtained from the object modeling

scheme. Figure 1.3(d) depicts the evolution of convergence during the matching.

Figure 1.3(e) shows the fit edgemap superimposed on the scene image, indicating

that the polyhedron is recognized and located. Figure 1.3 does not show the indexing

task, which is difficult to demonstrate by pictures.

  (d)

Figure 1.3: The major tasks of the proposed recognition paradigm. (a) A scene

image containing an occluded polyhedra and a Y pipe. (b) The edge map of the

scene obtained the feature extraction. (c) The polyhedra model obtained from object

modeling is used for matching (note that the 3D information is embedded in each

edge element). ((1) The evolution of convergence during the matching. (e) The fitted

edgemap shown superimposed on the scene image. (Note that the indexing task is

not shown here.)
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1.3 Matching Techniques Related to Alignment

All model-based recognition systems organize the recognition problem as a search for

a match: specifically, how to associate features extracted from the sensory data with

corresponding features extracted from the model [47]. Models can be constructed us-

ing salient geometric features such as arcs, lines, and corners. These features are local

in nature and provide locational and rotational information to be used for comput-

ing the object pose and some contextual information for constraining the matching

possibilities [104]. Thus, one way to structure the search problem is to consider the

space of all possible matches of sensory features and model features. This space is

defined as correspondence space [47]. An alternative is to directly search for a trans-

formation in parameter space which causes each model feature to take on a position

in the transformation coordinate system that coincides with the position of the cor-

responding sensory feature. Below, we briefly survey some of the existing matching

techniques in the literature related to alignment for the purpose of object recognition.

More reviews of related work can be found from surveys by Besl and Jain [12], Chin

and Dyer [31], and Suetens et al. [106].

Interpretation Tree

The interpretation tree (IT) search is probably the most prominent recognition

paradigm; see Grimson and Lozano—Perez [48]. The idea of interpretation tree search

is to explore all possible correspondences of features between the sensory data and

the model. A separate search is involved for each model, thus the search technique
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itself does not involve indexing. Each node in the tree defines a matching pair of

model feature and sensory data feature, and each path (from root to leaf node) of

the tree defines an interpretation of the sensed features. An interpretation is consid-

ered to be consistent if there exists a rigid transformation which brings each model

feature to coincide with the corresponding sensory feature. One very straightforward

way of finding consistent interpretations is to simply do a systematic tree search of

all branches (e.g., backtracking or depth-first search). This brute-force tree search is

exponential in the number of sensory features.

Several researchers have incorporated IT algorithms in alignment [17, 24, 40, 43,

49, 75]. The basic goal of these algorithms is to minimize the search by exploiting

some prior knowledge to efficiently prune and order the search. If the first few chosen

matches are accurate, the IT/Alignment algorithm can be very efficient. Grimson

and Lozano—Perez [49] applied geometric (unary and binary) constraints to prune

the search. Bolles and his collaborators [16, 17] developed the Local Feature Focus

(LFF) method to avoid an exhaustive search. In this method, the most obvious fea-

ture matches (i.e., focus features) are used to guide the search for additional feature

matches that will add the most information to the current interpretation, thus re-

ducing the degrees of freedoms in the interpretation. Similar to the LFF method,

Faugeras and Hebert [40] used the rigidity constraint to select subsequent matches in

the interpretation tree. Flynn and Jain [43] used heuristic knowledge of the model

database to prune and order the interpretation tree for efficient search. Lowe [75]

introduced the use of perceptual grouping of features to order the search. Camps [24]

took the approach of using probabilistic evidence to cut down the interpretation tree.
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Interpretation tree search is a conservative approach since it considers all possibili-

ties in the correspondence space; however, this method is robust at the expense of

efficiency.

Geometric Hashing

While constrained search of the interpretation tree provides one method to reduce

the search time, an alternative would be to use invariant features (defined on groups

of features of the sensory data and the model) as indices for the construction and

examination of tables containing the information needed to map the sensory fea-

ture to the model feature. This concept was introduced as “geometric hashing” by

Lamdan and Wolfson [71, 72]. The method contains aspects of both indexing and

matching and is based on the idea of representing an object by storing the object’s

transformation-invariant information in a hash table. At recognition time, similar in-

variants are derived from the sensory data, and are used to index into the hash table to

retrieve candidate correspondences with the model. Each candidate correspondence

constitutes a hypothesis whose validity is verified through pose information.

Pose Clustering

The pose clustering method [105, 103] uses aspects of both the correspondence space

and the parameter space. The basic idea behind this method is to consider all possible

pairs of corresponding sensed and model feature structures and then cluster on the

parameter space of the pose transformation derived from each sensed-model structure



14

pair. The feature structure may be composed of (a) 3 surface normals, (b) 2 edges,

or (c) 2 surface normals and 1 edge [104]. The task of matching is to put features in

each sensory-model structure pair into correspondence based on local evidence and

then derive the pose transformation in the process. Each pose transformation derived

defines a point in pose space where a vote is cast on behalf of this sensory-model struc—

ture pairing. A cluster of matching pairs in this space is a good indication that many

sensory data features are matched to corresponding model features. This method is

fast but can miss good solutions due to the rough approximation of geometric con-

straints. It also wastes significant resources on regions of parameter space that could

be easily determined not to contain a solution. Breuel [20] used adaptive subdivisions

of parameter space to avoid such problems. He combined the idea of multiresolution

matching, Hough transform, search-based recognition, and bounded error recognition

into a simple, efficient algorithm, whose performance is better than that of alignment

and pose clustering methods.

Alignment

Similar to the pose clustering method, the alignment method [60], or the hypothesize-

and-verify method [4, 35, 55, 76], also uses aspects of both the correspondence space

and the pose space. The basic idea is to find a minimal set of correspondences of sen-

sory and model features sufficient to determine the pose and then to use the rigidity

constraint to efficiently determine the other correspondences. For example, for 3D

object localization, Huttenlocher and Ullman [60] use three pairs of data and model
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points to deduce the six parameters of the transformation. Each such transforma-

tion constitutes a hypothesis about the pose of the object. The verification is done

by aligning the model with the sensory features, that is, applying the hypothesized

transformation to the model and using the transformed model to predict additional

features that might be evident in the sensory data. This guides the search for addi-

tional supporting matches for pose refinement.

Pose Estimation via Model Fitting

A frequently required capability of an object recognition system is the localization

of identified objects in the image. Several researchers have developed techniques to

compute the object pose given the correspondences between model and image features

(pose estimation). Pose estimation techniques can be used by the alignment search

to generate an initial pose estimate. Typically, a few correspondences are used to

hypothesize the initial pose estimate; other correspondences are then found by local

search in the image, and the additional correspondences are used to refine the pose

estimate. Pose estimation/refinement techniques normally involve minimization of

some error function over the free model parameters. Lowe’s [77] method minimizes

the least-squared error using a technique based on Newton’s method and Levenberg—

Marquardt minimization to iteratively compute projection and model parameters

that best fit a 3D model to 2D image contours. Kriegman and Ponce [69] used an

elimination method to construct an implicit equation for image contours and then

determined the model parameters by fitting the theoretical contour to the sensory
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data. Ponce et al. [91] presented a global method for pose estimation by fitting an

implicit algebraic surface to data points and a local method for pose refinement us-

ing the entire image contour. Haralick et al. [51] explored the use of robust weight

functions in an iterative least—squared minimization for point-based pose estimation.

Kass et al. [63] defined active contours, called snakes, that deform under “physical”

constraints in an energy minimization procedure in which the equilibrium state de-

termines the model parameters that yield the best match between the image and the

model.

1.4 Contributions of the Thesis

This thesis proposes a complete model-based object recognition paradigm that can

handle a large database of sculptured objects. A prototype implementation has been

developed which is complete in the sense that given an input image, it is capable

of detecting the identity and pose of an observed object. The system was designed

to study the feasibility of an alignment approach to recognize 3D sculptured objects

from 2D intensity images in a scene where the object of interest may be partially oc-

cluded. The system was also used to study applicability of the paradigm for tracking

a single moving object in a scene from an image sequence. The system was tested on

a database containing twenty 3D objects and eighty 2D objects with a total number

of 658 model aspects. Since most object recognition systems reported in the litera-

ture can recognize only a small number of either unoccluded polyhedral objects from

intensity images or curved objects from range images, the capacity of the new recog-
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nition system to handle both polyhedra and sculptured objects in a more difficult

scene is an important (overall) contribution of this thesis.

The first contribution of this thesis lies in the implementation of the curvature

method proposed by Basri and Ullman [9] for object modeling. Our work both vali—

dates and extends the work of Basri and Ullman. We have explicitly included object

internal edges in addition to object silhouette for object modeling. A 3D object is

represented by a set of 2D images taken at controlled viewpoints. This model repre-

sentation is descriptive in the sense that the edge contour of an object viewed from

any given vieWpoint can be predicted by using only a small number of viewer—center

model aspects. Experimental results show the method is viable for modeling many

kinds of objects including polyhedra and arbitrary curved objects.

The second contribution of this thesis lies in the design of an iterative matching

technique and the use of two heuristics for matching. The pose estimation/refinement

algorithm, which can handle objects with partial occlusion, does not assume the exis-

tence of salient features in the image, and thus, is directly applicable to smooth objects

with sculptured surfaces. Due to the unavailability of salient features for correspon-

dences, we develop an iterative matching technique for pose estimation/refinement.

As with many other minimization techniques, this iterative matching technique re-

quires good initial parameter estimates to avoid converging to a local minimum. From

the experimental results, we demonstrate a high rate of convergence for a broad set of

initial parameter estimates. The two heuristics are used to improve the pose accuracy

and handle occlusion. The first heuristic is adopted to synthesize correspondences in

order to refine the pose parameters in the hill-climbing procedure and to discard
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certain edge segments in order to allow for some occlusion. Since the silhouettes of

smooth objects have limited information, including internal edges in the fitting can

help achieve more accurate pose. Thus, the second heuristic is used to maintain a

balance in the importance of alignment of silhouette and internal edges such that the

parameter fitting is not overly biased to one type of edge contour.

The third contribution of this thesis lies in the use of part invariant features for in-

dexing and the use of hypothesis grouping and ordering for pruning false hypotheses.

We show that the proposed part representation is robust under global transformation

and in the presence of occlusion and spurious noise (i.e., local deformation). We have

incorporated the pose consistency constraint to group into clusters the (parts) hy-

potheses within the same model. We have also investigated various hypothesis voting

schemes which exploit prior knowledge of pre-stored models and the visual evidence

of the observed objects to determine the order of hypotheses for verification. When

combined into a complete system, these techniques make progress toward improv-

ing accuracy and efficiency by pruning false hypotheses and minimizing unnecessary

verification tests.

The fourth contribution of this thesis lies in the use of a hierarchical verification

strategy. Although the indexing scheme has effectively pruned false model hypotheses,

the recognition system may still need to verify a few model hypotheses because the

system loosens the indexing attribute tolerance to allow noise and view variation in

the object silhouettes. This hierarchical verification strategy uses the fitting error as

an indicator to reject false model hypotheses in the very early stage of the iterative

matching, resulting in a significant reduction of the recognition time.
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Another contribution of this thesis lies in the use of the recognition system for

object tracking. We have applied the recognition system for tracking a single moving

object in a scene from an image sequence. We have also studied how to track the

moving object across aspects, and demonstrated its applicability by tracking a real

moving car in an image sequence.

In Summary, the main contributions of this thesis are:

0 A complete object recognition paradigm that can handle partially occluded

objects with free-form surfaces in a database of 100 objects.

0 A model representation that is compact and can handle both polyhedra and

arbitrary curved objects.

0 A robust iterative matching technique that does not require feature correspon-

dences.

0 An indexing scheme that can prune false model hypotheses effectively.

0 A hierarchical verification strategy that speeds the recognition.

0 The use of the recognition system for object tracking.

1.5 Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 presents our approach

toward object modeling. It sets forth a very compact multi-view representation of 3D

objects, and explains how this can be used to generate the object’s edge appearance



20

from any vieWpoint. The formal definition of model aspects is given. An example

of a model aspect is given in Figure 1.4. We also describe the setup of our imaging

configuration for the acquisition of aspect models. Experimental results show that

the proposed modeling scheme can handle sculptured objects as well as polyhedra.

 

Figure 1.4: Prototype edgemaps for construction of a model aspect.

Matching 3D sculptured objects from a single 2D intensity image is treated in

Chapter 3. It is well-known that inferring 3D object shapes from projected 2D sil-

houettes may not yield a unique solution. Symmetric objects may generate the same

silhouette projections at various viewpoints. We propose an iterative matching tech-

nique which simultaneously fits object internal edges and object silhouette to the
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edge contours of an image. Two heuristics are adopted in this iterative matching

technique. One heuristic is used to synthesize correspondences in order to refine the

pose in a hill—climbing fashion; the other heuristic is used to maintain a balance in the

importance of silhouette and internal edges during the fitting. Results of fitting on a

large set of real images are analyzed. We observe that fitting simultaneously internal

edges and silhouette produces more accurate object pose than fitting silhouette alone.

We conclude that our matching technique, although not perfect (mostly due to the

lack of a perfect segmentation algorithm), can reliably localize a partially occluded

3D object from an image. An example of matching is depicted in Figure 1.5.

In Chapter 4, we present an indexing scheme that operates on object silhouettes.

A robust part segmentation is introduced to decompose silhouettes into parts. The

mathematical formulas for part invariant features are specified. We explain how the

indexing scheme selects hypotheses using part invariant features. We present a hy-

pothesis grouping scheme which clusters consistent part hypotheses that stem from

the same model. We also present four different hypothesis voting schemes that order

model hypotheses based on the pre—compiled part saliency and the visual evidence

in the image. Experimental results indicate that the proposed indexing scheme gen-

erates a large number of model hypotheses, however, through hypothesis grouping

and ordering, a significant number of verification tests for false model hypotheses can

be avoided. An example is illustrated in Figure 1.6, where in our database of 658

model aspects, the scene of overlapped elephant and bear generates 5 model-aspect

hypotheses where elephant is ranked [11 and bear [[2 while the scene of occluded deer

and moose produces 98 hypotheses with moose ranking [[1 and deer ranking [12.
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Figure 1.5: Steps in the matching algorithm. (a) Intensity image synthesized from a

superquadric model. (b) Edgemap extracted from the image of (a). (c) The evolution

of convergence in the matching method. (d) The fitted edgemap shown superimposed

on the original image.
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Figure 1.6: Hypothesis generation and pruning using part evidence. (a)—(d) Parts

extracted from silhouette images of single bear, elephant, deer, and moose, respec-

tively. (e)—(h) Thicker lines indicate parts used for generating hypotheses for bear,

elephant, deer, and moose, respectively. (The images were obtained via anonymous

FTP from the Institute for Robotics and Intelligent Systems, Department of Electrical

Engineering, University of Southern California.)

In Chapter 5, we combine the modeling, matching, and indexing modules into a

recognition system. We propose a hierarchical verification strategy to expedite the

recognition. Experimental results show that false model hypotheses can be rejected

at an early stage of verification and that the recognition system can efficiently recog-

nize various kinds of objects. We also demonstrate the applicability of the complete

recognition system for tracking a single moving object in an image sequence. An

example of object tracking is illustrated in Figure 1.7.

Finally, Chapter 6 concludes the dissertation by evaluating the strengths and

limitations of the proposed system, identifying some unresolved issues, and giving

suggestions for future research.
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(c)Frame t1 (d)Frame t2 (c)Frame t3 (f)Frame t4

    
(g)Frame t5 (h)Frame t3 (i)Frame t7 (j)Frame t8

Figure 1.7: Object tracking of image sequences of a moving squirrel. (a) Image of

frame to added with thresholded images of frame t1 - t3. (b)—(j) are the results of

model fitting with the white contours indicating the fitted edgemaps.



Chapter 2

Modeling 3D Objects from

Multiple 2D Images

2.1 Introduction

This thesis is concerned with the recognition of rigid free-form 3D objects from a single

intensity image. A model-based recognition system requires a representation that can

model arbitrary solid objects to an appropriate level of detail and can provide abstract

shape properties for matching purposes. A 3D object can be implicitly represented by

a set of 2D projections taken from all possible vieWpoints [47, 76, 93, 116], or explicitly

represented by an object-centered geometric model [28, 29, 52, 121], or surface sweep

and volume descriptions [13, 21, 79, 89]. Good descriptions of object representation

may be found in the survey literature [12, 31].

The ultimate goal of vision is to recognize objects by seeing [78]. Many researchers

in the computer vision community believe that a complete, object-centered, 3D model

25
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must be built in order to do the recognition, because the model can be used to match

against an instance of the model whenever it is viewed in a scene [48, 60, 75, 79].

Thus, most model-based vision systems for 3D object recognition require an object

modeling module to provide appearances of an object observed from viewpoints such

that the notable features and structural relations extracted from the sensed image

and from the appearance of the model can be matched to determine the object’s

identity and pose.

An alternative for 3D object representation is a set of retinotopic 2D patterns.

If all the possible 2D appearances of a 3D object are known, then recognition can

be done by simply matching the image against all the 20 appearances stored in

memory. However, this approach may give rise to the problem of requiring a very

large number of views of each object, potentially every possible view of each object.

As a consequence, this approach requires a large amount of memory, and different

views of the same object are treated as distinct objects. One way to alleviate this

memory burden is to describe objects by only representative views (i.e., aspects) in

which features extracted from the images remain unchanged within the range covered

by the view [39, 66]. For sculptured objects, the number of possible aspects may

still be very large. The advantages of using retinotopic models are that the modeling

scheme does not have to compute the vantage point and that the effect of perspective

projection from a 3D model is compensated [92]. The disadvantages are that the

representation is verbose and full of seams and that the indexing scheme must not

only produce candidate objects but also particular views of that object. The success of

this kind of modeling scheme for object recognition relies heavily on the completeness
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of a full 3D representation of an object and the ability to index into a large set of

model views. This completeness depends on the complexity of the object and the

number of vieWpoints used [31].

The approach adopted in this thesis is a hybrid of the aforementioned two ap-

proaches. We construct a 3D object model from a set of 2D intensity images taken

from representative vieWpoints tessellating the viewsphere. These viewpoints are de-

fined as aspects. Each aspect defines a local coordinate system and is associated

with five local images defined relative to this local coordinate system. The curva-

ture method, devised by Basri and Ullman [9] for the construction of rigid objects

bounded by smooth surfaces, uses these five local images to generate a 2%D edgemap

which can be used to produce the appearance of the observed object seen from any

viewpoint within the aspect. The relative transformation between any two aspects is

known and the 3D information of each aspect obtained from the curvature method is

also available. This information can be fused together in order to build a complete

3D model in which the surface information is embedded in each aspect. However,

building a complete model is not necessary for many problems; one exception is when

used to track an object moving across aspects. Thus, in our approach, for recognition

purposes, we neither have to store every possible view of an object, nor do we have

to construct a complete geometric model.

This chapter is organized with the next section reviewing some existing techniques

for modeling arbitrary curved objects. Section 2.3 presents the proposed object mod-

eling scheme. Section 2.4 gives the implementation details. Section 2.5 shows results

from the error analysis of the curvature method and from the alignment of models
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with observed objects. The last section summarizes the proposed approach.

2.2 Related Background

We are interested in recognizing 3D sculptured objects from single 2D intensity im-

ages. Much past work on this problem has dealt with the easier model domains of

polyhedra (e.g., [75, 85]) and flat 3D objects (e.g., [60, 71]), or has used other sensory

information such as 3D range data (e.g., [43, 52]) or multiple images (e.g., [112]). In

the following, we would like to review some of the existing techniques for modeling

3D sculptured objects with the capacity of generating 2D views for recognition.

The most straightforward approach is to model a 3D object by a set of 2D images

taken from representative viewpoints. An object may be represented ( 1) by a set of

2D global feature vectors describing each possible stable view (e.g., [93, 114, 116]), or

(2) by a set of abstracted and precise geometric features (e.g., [47, 76, 60, 103]). The

advantages of the first method are that the representation is extremely compact as

compared to other representations and that no correspondence between the sensory

data and the model needs to be established for matching. The limitations are (1)

that the representation is susceptible to occlusion and clutter because most features

can only be extracted from isolated objects, and (2) that the object can not be

accurately recreated or modeled from the features, nor can its pose be determined.

The major problem of the representation in the second method lies in matching

abstracted features. Features are local in nature, and each describes a portion of

the object. Each feature also contains locational and rotational information to be
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used to recover the object pose and some contextual information to constrain the

matching possibilities. Localization can be used implicitly to solve the recognition

problem. Since many local features are used to model an object, the search space for

correspondences between image features and model features is exponential if some

constraints are not enforced. Moreover, salient features, such as arcs, lines, and

corners, may not be available for objects with sculptured surfaces to establish such

correspondence. However, unlike the global feature vector representation, partial

occlusion of objects can be handled.

Another promising approach is through building accurate geometric models of

objects and then generating views by projecting the geometric model along the di-

rection from the center of the viewsphere to a viewpoint. Some conventional CAD

systems can represent man-made geometric models efficiently, but may not easily rep-

resent natural objects consisting Of free-form surfaces. Several attempts have been

made to develop methods for building geometric models from multi-view range im-

ages [30, 52, 67, 100] or a sequence of intensity images [70, 97, 113, 121]. For example,

Higuchi et al. [52] presented a technique which uses a spherical representation, ob-

tained by deforming a discrete mesh to fit the object surface, to merge multiple views

into a complete object model. Scales and Faugeras [97] recovered a complete ob-

ject surface from a sequence of images by fusing many views of the object extremal

boundaries together using known object motion and object internal edges to place

these views into a common coordinate frame.

Building geometric models from multi—view range images requires 3D data acqui-

sition and view registration [15, 100] to form a consistent connected model. Some
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optical range imaging sensors, such as a laser range finder, are ready to provide

such range data from viewpoints. The relative positions of the sensor and the ob-

ject can either be chosen adaptively based on the object geometry or the positions

can be fixed. The approximate transformations between viewpoints provide useful

information for merging data into a complete 3D data set. Range data obtained

from passive range finders are normally contaminated with noises and holes (i.e., im-

age locations with no depth values). Thus, constructing reliable free-form surfaces

from range data is important. One popular approach, adopted by several researchers

[30, 34, 52, 73, 80, 86], is to use deformable models to approximate a 3D surface by a

mesh represented by some kind of tessellation of the viewsphere or by a B-spline type

of mesh before deformation. During deformation, several force constraints, such as

internal forces for maintaining the regularity and smoothness of the mesh and exter-

nal forces for bringing the mesh to reach the object surface, are introduced to move

the mesh toward the object surface until all the elements of the mesh ”land” on the

object surface. The registration estimates the relative transformation between view-

points. Typically, the transformation is either assumed to be known, or it is solved

by extracting features from each view and then establishing correspondences between

them. Due to the unavailability of salient features from sculptured free-form surfaces,

it is difficult to establish correspondences. This often results in iterative matching

techniques [11, 29, 37] for bringing a set of 3D points from range data as close as

possible to a set of primitives from a model. As is the case with any minimization

technique, this type of technique requires a good initial estimate of parameters that

is relatively close to the true transformation in order to avoid converging to a local
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minimum.

Building geometric models from a sequence of intensity images requires that the

observer’s vieWpoints be controlled in order to generate a dense sequence of images

that allows incremental reconstruction of an unknown surface using the occluding

contour [32, 46, 70, 97, 113]. Under continuous observer motion, the visible rim gen-

erated by the object’s surface changes with the viewpoint, which affects the geometry

of the occluding contour and also reveals the shape information for the parts of the

surface over which the visible rim slides. A complete geometric model is then built by

reconstructing many views of an object obtained from known motion and integrating

local surface information over these views into a common coordinate system. The 3D

model of the object is represented as an object-centered mesh that can be rotated

and viewed from any direction.

2.3 Constructing Object Models

Object modeling is done for different purposes; models intended to support graphics

or manufacturing might not support recognition without significant transformation of

data. For recognition with pose detection, the object modeling module must efficiently

provide as a function of VEWpoint (pose parameters) the silhouette of the object and

the internal edges created by surface marks, creases, or jumps. Edges caused by

self-occluding limbs of the object have been ignored thus far in our implementation.

Conceptually, they can be treated in the same manner as for limbs which create the

silhouette; in practice, the current algorithm will consider them to be internal edges
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Figure 2.1: The viewing sphere can be tessellated into a regular polyhedra, each face

defining an aspect.

and will ultimately discard them because of inconsistency in the stereo model. Some

conventional CAD systems can readily provide such edgemaps, and, as is seen below,

edgemaps can be extracted from superquadric models. In the rest of this section,

we address the process of creating models from multiple intensity images of complex

objects where use of a CAD system may be very difficult.

Our modeling of a 3D object using a set of 2D images proceeds as follows. Consider

an object is placed at the center of a tessellated view sphere (see [56] for all the possible

tessellations). Each face of the resulting polyhedron defines an aspect (see Figure 2.1).

These aspects do not necessarily correspond to a topological similarity class, as has

been common in the literature [39, 66]. Refinement of the tessellation could be used

to increase homogeneity, but, since our matching is based on geometric criteria, we

have not planned such refinements. For each model aspect, five images are used to

create an edge-oriented 2%D representation of the object. Each aspect or view defines
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a local coordinate system with the Z—axis defined as the vector from the center of

the sphere through the center of that polygon face, and the directions of the X—axis

and Y—axis defined by the horizontal and vertical lines of the image, respectively.

Of the five images, three are taken at the viewpoints on the sphere rotating around

the X-axis, and three are taken at the viewpoints on the sphere rotating around the

Y-axis (see Figure 2.2), with the central image common to both sets and taken along

the Z—axis. An example of a model aspect is given in Figure 2.3. The model silhouette

construction from these five images is specified in [9].

  
 

   

 
Figure 2.2: Model aspect made from 5 overlapping images.

It is important to emphasize that the object is modeled within an aspect in a

standard rotation (roll angle) about the Z—axis which is normal to the optical axis

of the central image used to create the aspect. Pan (rotation around the Y—axis

in Figure 2.2) and tilt (rotation around the X-axis) can be quantized into intervals
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to organize the model aspects around an entire viewsphere. Roll angle is uncon-

strained and thus must be approximately computed from image features to initialize

the alignment optimization. Here, we assume a normalized zero-roll angle for the

object. Determination of roll angle during recognition will be discussed in Chapter 4.

/A\/’~/

 

Figure 2.3: Example input for construction of a model aspect.

Model aspects do not need to cover the entire viewsphere in cases where certain

views of the object are impossible, for example, from beneath a car. The infor-

mal requirement is that they cover the interesting views of an object and that they

provide adequate approximation. Also, for some purpose, e.g., recognition only or

pose computation within a constrained environment, it is not necessary to register
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the coordinate frame of each model aspect to a global coordinate frame. However,

to continuously track an object with unconstrained pose, registration of each aspect

frame to a global frame is needed. To be used for recognition, all vieWpoints within

an aspect should produce more or less the same features which will be used to index

to that aspect. This means that tessellation of the viewsphere may be non-uniform

in practice, due to variation in views. Most of our experiments have been done with

a range of 20 degrees of rotation for one aspect. The appearance of an object at any

given viewpoint can be generated by first indexing to the aspect of that viewpoint and

then using that model aspect to predict the object appearance. Indexing to a model

aspect will be treated in Chapter 4. We now turn to the mathematical formulas for

constructing a model aspect from five neighboring training images.

2.3.1 Modeling the Object Silhouette

The curvature method of Basri and Ullman [9] is a technique for modeling and re-

covering an object’s approximate edge appearance given a number of view-centered

2D projections. This modeling method is based on representing surface curvature of

points along the silhouette of an image central to the aspect being modeled. This

enables prediction of object silhouettes for viewpoints within that model aspect. The

basic idea is depicted in Figure 2.4. For convenience, we sketch the curvature method

adopted in this thesis.

Let X and Y be the main axes of the image plane, and let Z be the visual axis.

Consider a smooth object rotating by a rotation R around the vertical axis Y. Let
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Figure 2.4: The curvature method. (a) A horizontal section of a smooth object. p

is a point on the rim, p; is an internal edge point, r is the curvature vector at p, o

is the center of the curvature circle, and c is the rotation center. The Z—axis is the

visual axis, and the Y-axis points out of the paper. (b) The object is rotated about

the Y-axis. p is the new rim point approximated by Eq. (2.1) (based on [9]). fig is

the corresponding point of p; after rotation.

p = (2:, y,z) be a rim point on the object. Let r be the curvature radius parallel to

the X-axis. When the object is rotated by R, point p may cease to be a rim point,

and is replaced by a new rim point p = (5:, g, 2)‘ approximated by

p=R(p—c—r)+c+r (2.1)

where c = (:cc, ye, zc)t is the rotation center, and r = (r,, 1'”, 0)t is the curvature vector

at p. The meaning of Eq. (2.1) is as follows. The point 0 = p — r is the center of the

curvature circle. To predict the new rim point, we must first move 0 to the rotation

center by 0 — c and then apply R to o — e. Let 6 = R(p — r — c). The new rim point

p is obtained by translating 6 with c and then r displacement. This method works

well as long as the circle of curvature provides a good approximation to the section

at p. Under weak perspective projection, the 2 component of p does not need to be
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derived, thus, by modifying r to be (7'; + wary + 316,0)t and p to be (x,y,z — zc)‘,

Eq. (2.1) can be changed into a simpler equation:

p = R(p -— r) + r. (2.2)

From Eq. (2.2), we can predict the position of f) for a rotation around an arbitrary

axis in 3D space, provided that the radii of curvature r: and ry, and the relative depth

2 — zc at p are given. These parameters can be acquired from model construction [9]

and are stored as parts of the object model.

2.3.2 Representing Internal Edges

Internal edges of an aspect are those visible at any viewpoint within the aspect and

are caused by known discontinuities in albedo or surface normal or by artifacts such as

unpredictable illumination or shadows. Unlike silhouette edges, internal edges are not

usually occluded by the object surface due to a small rotation. Thus, corresponding

points on internal edges before and after rotation exist in two images, and stereo

matching can locate them in 3D. When an object is rotated by a 3 x 3 rotation

matrix R, an internal edge point p = (:L',y,z)t is transformed to a new position

.-

p = (i, :7, 2')‘ by

p = R(p — c) + c. (2.3)

Note that Eq. (2.3) is a special case of Eq. (2.1) with the curvature vector r = 0. Thus,

Eq. (2.3) can also be modified to get the form of Eq. (2.2) by letting r 2 (me, yc,0)t
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t

and p= (:c,y,z—zc) .

2.3.3 Model Construction

We now show how to compute 1' using a 3-image stereo computation. Let A, B, and

C denote three images taken from three different vieWpoints in the aspect along a

circle of the viewing sphere perpendicular to the Y-axis (see Figure 2.5). Let ( be

the rotation angle rotating a camera from viewpoint A to viewpoint B, and V the

rotation angle rotating a camera from viewpoint A to viewpoint C. Equivalently, the

object may be rotated instead of the camera, which we often do. Let p1 = (2:1, y, zl)‘,

p3 = (2:2,y, 22)‘ and p3 = (3:3, y, :53)t be three corresponding points in images A, B,

and C, respectively. From Eq. (2.3), we have

:52 = (x1 — :50) cos( + (21 — zc) sinC + are, (2.4)

$3 = (x1 — :cc) cos V + (21 - zc) sin V + $6. (2.5)

Solving these two equations for the two unknown parameters so and 21 — 26 yields

_ $1(cos( — cosu) — x2(1-— C08V)+$3(1— cosC)

zl—zc— (l—cosC)sinV—sin((l —cosu) ’ (2'6)

 

and

_ :cl sin(( - V) + 1728an — casinC
 

c _ (1—cos()sinV—sinC(l —cosu)°

With —-12'- < C, V < % and C at V, the denominator does not vanish.

Unlike matching the silhouettes, which are well-separated, matching internal edge
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A

Figure 2.5: Building a model using three images. Points A, B, and C are the three

camera locations along a circle in space perpendicular to the Y axis (based on [9]).

points in the images gives rise to the correspondence problem, which is usually te

dious and error-prone. However, in our object modeling, the object is either rotated

around the X—axis or the Y-axis; thus, the stereo epipolar constraint will force the

corresponding points to be on either the same horizontal line or the same vertical line.

The rotation center in the X-axis, 1:6, can be obtained by clustering on all possible

triples of edge points (31,22,113) from the same horizontal line with the constraint

2:; S .731 S x3 (because 1:2, 2:1, and 3:3 are in the right, central, and left images, re-

spectively). Eq. (2.7) can be introduced as a strong constraint to remove inconsistent

(zl,x2,x3) triples where the computed :rc, obtained by substituting 3:1, 3:2, and 233

into Eq. (2.7), deviates from the clustered :cc. Using a similar technique, we can also

resolve the ambiguity of point correspondence in the Y-axis and compute yc. Ex-

panding Eq. (2.3), one can notice that the rotation center so need not be computed

explicitly since the weak perspective projection model is used. Thus, similar to the

representation of boundary edges in the model, each internal edge point is associated

with the relative depth 2 — 2c and the rotation center (we, yc, 0).
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For each model aspect, the following data is stored. If available, we store the

three rotational parameters that relate the local coordinate frame of the aspect to a

global coordinate frame for the entire model. The 4 rotation angles, VI, (3,113,, and

(y (as in Figure 2.5, where the subscripts denote the rotation axis), used to create

the 4 viewpoints are stored in order to define the limits of the aspect. Notice that

(re and yC are global to the aspect (and perhaps for the entire model), and thus are

stored only once; however, these two parameters are used to generate the predicted

image for each internal edge point using Eq. (2.3). For each silhouette point i, we

store (phri) where pi and n are as in Eq. (2.2). Recall that a:c and y6 are already

combined in n for each silhouette point i. Note that we have 3D information for each

internal edge point and approximate 3D information for a small neighborhood of each

silhouette point. Moreover, because of the construction process, we do not have to

do any hidden surface or line removal when using this model aspect to generate an

image edgemap.

2.4 Implementation Details

This section presents the implementation details regarding the acquisition of aspect

models from 2D images. We describe (1) how the viewsphere is tessellated into

aspects, (2) how the tripod is used to simulate the local coordinate system of an

aspect, and (3) how the five local images of an aspect are matched to derive the 2%D

edgemap of the aspect.
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2.4.1 Aspect Model Acquisition

There are a variety of approaches for tessellating the viewsphere, depending on

whether they are object-independent or object-dependent. For object-dependent ap-

proaches [68], each object is processed separately, and the tessellation of the view-

sphere depends on the complexity of the object. The determination of optimal views

for an object is a difficult task. Normally, it is carried out by first tessellating the

viewsphere into a fixed number of viewpoints, then integrating views, which share

the same object properties, into aspects [28, 36]. For object-independent approaches

like ours [27] and many others (e.g., [9]), the viewsphere is tessellated into a fixed

number of viewpoints. As a consequence, objects are represented by a fixed number

of views. Although this method is straightforward, it suffers from representing simple

objects with redundant views. In our approach, the viewsphere is tessellated into

latitude bands, each of which is then further divided along longitudinal strips (see

Figure 2.6(a)). Each viewpoint defines an aspect. The orientation of a vieWpoint is

then determined by two angles (¢,7) as shown in Figure 2.6(b). Recall that each

aspect defines a local coordinate system and is associated with five local training

images. This kind of tessellation would allow some training images to be shared by

neighboring aspects, reducing the number of images required to model an object.

Another advantage is that it is easy to compute the orientation of a viewpoint and

consequently the relative orientation between any two viewpoints.

The setup for the acquisition of a model at a viewpoint is given as follows. A tripod

as shown in Figure 2.7 is used to obtain the orientation of each viewpoint (aspect) and
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  (b)

Figure 2.6: The tessellation of the viewing sphere. (a) The sphere is divided into cells

by meridians and parallels. (b) Points on the sphere are identified by their longitude

ib and latitude 7.

the five images associated with that aspect. The camera is fixed along the Z—axis with

the image plane coinciding with the X-Y plane. The object of interest is mounted on

the tripod. The tripod allows two rotations. One is around the X-axis with rotation

angle 1,1). The other is around the Y-axis with rotation angle 7. The tripod is also

mounted on a rotating base which allows one rotation around the Y-axis with rotation

angle B. The orientation of a viewpoint is given by the two rotation angles (t/J,7).

After the orientation of a viewpoint is determined, the Cartesian coordinate system,

as shown in Figure 2.7, yields the local coordinate system of the viewpoint with 11)

and 3 as the rotation angles around the local X-axis and Y-axis, respectively. These

two angles are used to allow the camera to grab the five local images of an aspect.

In our implementation, the following vieWpoints specified by (r/J, 7) are selected:

it = 40°,60°,80°, and 7 = (2n +1)-10°,for n = 0, - - - , 17. For each aspect, both the
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Figure 2.7: The tripod for model construction.

Table 2.1: The number of model aspects of 3D objects.

ject N Aspects ject N

54 18

54 18

54 18

54 6

54

54

sprayer 54

' 54

taurus 54

54 
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rotation angles around the local X-axis and Y-axis specified by 1,!) and fl, respectively,

are :l:10°, giving an aspect breadth of 20°. This yields 54 aspects which cover a

band of the northern hemisphere with latitude from 30° to 90°. Table 2.1 lists a set

of acquired 3D models (see Figure 2.8) and the number of aspects for each model.

Figure 2.9 displays the 54 views of a plastic sprayer. The 54 views in Figure 2.10 are

of a plastic lion toy. For each such view, the procedures of the edge detection and the

curvature method are applied to derive the 2%D edgemap which is used to predict the

edge appearance of an object viewed within the aspect defined by that view. These

two procedures are described in the next two sub-sections.

2.4.2 Edgemap Extraction

Extracting the silhouette of an object in an edgemap may be difficult. An object

edgemap generated by the Canny edge detector [25] is normally contaminated with

noisy edges and background edges. It is rather difficult to extract object edges unless

the background is carefully set up when images are taken. The figure—ground sepa-

ration is a difficult problem. However, in the modeling phase, manual editing of an

edgemap is permissible. We use a software program called “CorelPaint” to remove

background edges from an edgemap and close the silhouette contour if necessary.

After the background edges are removed, the edgemap contains only object edges in—

cluding silhouette and internal edges. Some of the internal edges touch the silhouette

contour, making the automatic separation of these two types of edges difficult. We

apply the algorithm described in Figure 2.11 to extract these two types of edges.
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(a) camaro (b) elephant (c) gorilla (d) lion

 

(g) sprayer)pig

)taurus

)mug

     

(o) blockB

   
(r) cup (3) face (t) soap

Figure 2.8: Examples of model aspects of 3D objects.
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Figure 2.9: 54 aspects of a plastic sprayer.
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Figure 2.10: 54 aspects of a plastic lion toy.
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Input: an edgemap Ea” containing the silhouette and internal edges of an object.

Output: the silhouette E, and the internal edges E,.

Processing:

(1) Find the two extreme edge locations in Eau at each horizontal scan line

if applicable, and fill in edge points between these two extremes;

(2) Find the two extreme edge locations in Eau at each vertical scan line

if applicable, and fill in edge points between these two extremes;

(3) “And” the edgemaps generated from (1) and (2);

(4) Locate the boundary of the binary image generated in (3), yielding

the object silhouette E,;

(5) Subtracting E, from Ea“ gives the internal edges Eg.   
Figure 2.11: The edgemap extraction algorithm.

   

 

         

 

(b) (C)

Figure 2.12: The extracted edgemap of a pencil sharpener. (a) An edgemap containing

the internal edges and the silhouette. (b) A binary image resulting from filling edges

between boundary pixels. (c) The extracted silhouette from (b). The internal edges

can be obtained by subtracting silhouette from the edgemap in (a).
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It should be noted that the algorithm specified in Figure 2.11 may not yield

the exact silhouette of an object if the object has a non-extreme concave contour

segment along the silhouette. In some cases, manual editing of the edgemap has to

be performed to ensure that accurate edgemaps are generated. An example of the

evolution of an edgemap generated in this manner is illustrated in Figure 2.12.

2.4.3 Matching Model Edge Elements

Once the silhouette and the internal edges of an object are separated, identifying

the corresponding points for the silhouette in the pictures is straightforward in the

procedure. When the rotation is about the Y-axis, the corresponding points must

lie on the epipolar line parallel to the X-axis. Similarly, when the rotation is about

the X-axis, the corresponding points must lie on the epipolar line parallel to the Y

axis. For each silhouette point, we only need to search in a small range for its cor-

responding point. Since the silhouette points are well separated, generally there is,

in most cases, only one matching candidate to be considered. In the case that there

are several candidates, the one with the shortest Euclidean distance is considered as

the true match. If the algorithm selects the wrong corresponding point, the outliers

will be removed by depth smoothness constraints enforced on the silhouette. Unlike

matching the silhouettes, matching internal edge points suffers from the correspon-

dence problem. We apply the heuristic algorithm described in Figure 2.13 to match

internal edges.

Four constraints are used to remove the inconsistent corresponding triples of inter-
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Input: Five local edgemaps, E0, E1, Er, Eu, and E4, of an aspect where

E, is the central image;

E1 and E, are the left and right images rotated around the X-axis;

E, and E, are the up and down images rotated around the Y—axis.

Output: The 2%D edgemap for the aspect.

Processing:

(1) Extract the silhouettes and the internal edges from these five edgemaps

(as in Figure 2.11);

(2) For each 2:0 coordinate of internal edge point in E0, find all possible pairs

of ($513.) from E; and E, which satisfy :5, < mo < 23;;

(3) Derive the me coordinate of the rotation center and the relative depth 2

using Eqs. (2.6) and (2.7);

(4) Histogram on all xc’s and locate the peak 55,;

(5) Remove all triples (2:1, 230, 5B,.) in which the derived 3:, deviates from :Ec;

(6) Use all 2’s from the consistent triples (2:1, 3:0, :rr) which survive from step

(5) to compute the mean 2,, and the standard deviation 2,;

(7) Remove all triples (2:1, 1:0, 2,) in which the derived 2 is not in the range of

[2,, — 22,, 2,, + 220];

(8) Repeat steps (1) to (7) for each yo coordinate of an internal edge point in

E0 to derive yc and 2;

(9) Remove the outliers from each internal edge contour in E0 using depth

smoothness constraint.

 

Figure 2.13: The stereo matching algorithm for modeling internal edges.
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nal edges as depicted in steps (2), (5), (7), and (9) of the stereo matching algorithm

in Figure 2.13. The first one is the stereo constraint as previously described. The

second one is the consistency constraint on the rotation center. Both constraints are

very effective in removing inconsistent triples from further consideration. Note that

internal edges are located on visible surfaces, the relative depth 2 of each internal edge

point should not differ much from neighbors. The third constraint uses the statistics

of the relative depth to remove inconsistent triples. Finally, the depth smoothness

constraint, which stipulates that the depth values along the same edge contour should

vary smoothly, is used to remove the outliers along each edge contour.

After the spatial coordinate of 2, the rotation center (stage), and the curvature

vector [rm ry, 0] of a model aspect are derived, it is straightforward to apply Eqs. (2.2)

and (2.3) to predict the appearance of the model rotated around an arbitrary axis

within the aspect. An example is illustrated in Figure 2.14. Figure 2.14(a)-(e) give five

local edgemaps of an aspect representing the central, left, right, up, and down views

of a car (Ford Taurus), respectively. Figure 2.14(f) is the matched edgemap from

these five local edgemaps. Note that some of edge points in this matched edgemap

are removed due to inconsistency in the curvature or depth along the contour, or

due to the self-occlusion which causes some contours to appear in one edgemap but

not in the other. Figure 2.14(g)-(j) are the predicted edgemaps superimposed on

the original edgemaps given in Figure 2.14(b)-(e). Since these four edgemaps, as in

Figure 2.14(b)-(e), represent the extreme views of the aspect, the results as shown in

Figure 2.14(g)-(j) indicate the viability of the modeling scheme.

Table 2.2 lists the maximum (MAX) error and the root mean square (RMS) error
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(s)

. ”DD

(C) (h)

(d) (1)

  

(e) (i)

Figure 2.14: The results from the stereo matching algorithm. (a)—(e) The five local

edgemaps for the curvature method. (f) The derived 2%D edgemap after the matching.

(g)-(j) The predicted edgemaps superimposed on the original edgemaps.
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of the alignment of the four views in Figure 2.14. Large MAX and RMS errors in

left and right views indicate that there are several outliers in the alignment; the most

obvious one is the vertical edge segment near the rear window (see Figure 2.14(g));

since the edge segment is vertical, it has no effect on the up and down views. In

general, the prediction of the object’s edge appearance is good when the RMS error

is small. The outliers will be discarded as occluded edges in the matching process,

treated in Chapter 3, and thus they will have little effect on matching. The error

analysis of the modeling scheme and more examples of model alignment are given in

the next section.

Table 2.2: The prediction error of the vehicle in Figure 2.14.

 

 

 

 

 

Model View MAX Error (pixels) RMS Error (pixels)

left 7.0 1.78

right 5.0 1.46

up 5.0 0.83

down 4.1 0.68     
 

2.5 Experimental Results

In this section, we are interested in investigating (1) what attributes to the modeling

error, and (2) how wide an aspect can be such that the modeling scheme can produce a

good approximation of the predicted appearance. We also intend to demonstrate the

vitality of the modeling scheme on modeling both polyhedra and sculptured objects.

Note that the model alignment in this section involves no projection, scaling, and

translation, but only rotation, and the prediction error means the error of alignment
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in which only rotation is involved.

Four experiments are reported. The first experiment was conducted with an el-

lipsoid to validate the theoretical error analysis of the curvature method in [8] using

our empirical results. The second and third experiments were conducted with syn-

thetic data generated from a superquadric model to answer the two questions listed

above. The fourth experiment with polyhedra and sculptured objects was conducted

to analyze the modeling error by aligning models with views from the same aspect.

2.5.1 Error Analysis from an Ellipsoid

The curvature method can predict exactly the appearance of objects with sharp

boundaries (for which the radius of curvature is zero) and the appearance of spherical

and cylindrical objects (for which the center of the curvature circle coincides with

the rotation axis). However, for smooth objects with arbitrary structures, the cur—

vature method only gives an approximation of their predicted appearance. In order

to demonstrate the properties of the curvature method, we applied the method to an

ellipsoid and analyzed the errors obtained.

To simplify the analysis, consider a canonical ellipsoid f; + g + i;— = 1 rotating

around the vertical (Y) axis. The error depends on the shape of the ellipsoid, that

is, the relative length of its axes, and it increases as the ellipsoid becomes elongated

in the Z-direction. Let p = (x, y) be a point on the silhouette of the ellipsoid (refer

to Figure 2.4), f) = (i, g) the new rim point replacing p when the ellipsoid is rotated

around the Y axis by an angle a, and p = (5:, “) the approximated position of p
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according to the curvature method. Let Ap = (Ax, Ay) denote p—p. The horizontal

section of the ellipsoid through p is an ellipse centered around p0 = (0, yo). Note that

y = g = g 2 yo because points p, f), p, and p0 all lie on the same horizontal section.

The relative error is defined as

  

  

 

A . _ _

: ll #13” = a: x (2.8)

”Pop” :6

This error, as derived in [8], is given by

c2 c2 c2
E(;5,a) = cosa + 35(1— cos‘a) — cos2 a + -a—2 sin2 a. (2.9)

In the error analysis of alignment, we are interested in the absolute error defined as

E' = IIAPII = IIPSPII ° E (2-10)

The error in Eq.(2.10) depends only on three parameters, the length of the vector

pgp, i.e., Ilpgpll, the rotation angle a, and the aspect ratio of the ellipsoid 022,-.

To analyze the error of the predicted appearance, we used a superquadric model

to generate eight ellipsoids with aspect ratio (32,-) of 1‘3, 5, i, %, 2, 4, 9, and 16,

respectively. The aspect breadth was set to 90°. For each aspect ratio, fifteen test

data were generated, each varied by rotating 2 degrees about the Y axis. For each

ellipsoid, we compute the alignment error, i.e., the absolute error E’ in Eq. (2.10).

Note that for the simplicity of the analysis, the value of a was fixed and only the

value of c was varied when each ellipsoid was generated. Thus, “pr” = a because p
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Figure 2.15: The error of the curvature method as a function of the aspect ratio 7

and the rotation angle a. (a) f:- = fi, %, i, and %. (b) if; = 2, 4, 9, and 16.

9

is a point on the silhouette of the ellipsoid before any rotation, implying E’ oc E. As

shown in Figure 2.15, the error behaves differently in each of the two ranges: (1) when

c g a, and (2) when c > a. In the first case, the ellipsoid’s width is larger than its

depth, the error assumes small values even for fairly large values of a. In the second

case, the ellipsoid’s depth is larger than its width, the error assumes larger values even

for fairly small values of a. As a function of a, the error function is symmetric and

the absolute value of the error increases monotonically with the absolute value of a.

Figure 2.15 also depicts this phenomenon. All these empirical results are consistent

with the theoretical results given in [8].

2.5.2 Rotation Axis Effect

The curvature method uses five local images of an object rotated around the X axis

and the Y axis within an aspect to predict the appearance of the object after a

rotation. Rotating an object about an arbitrary axis (not coincident with the X axis
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or the Y axis) creates larger error than rotating the object about either the X axis

or the Y axis. This is because the former involves both the curvature radii r, and

r1, while the latter only involves either 7', or r,. Note that the rotation axis N is

parameterized by (cosOsin 45, sinfisin q), cos (,6). Let Nk,k = 0,- - - ,9 denote the 10

rotation axes with 45 = 90° and 0 = k - 10°. Then N0 and N9 correspond to the

X axis and the Y axis, respectively. Figure 2.16(a)-(e) show the five local images of

a model aspect with an aspect breadth of 40°. In this experiment, we generated 70

test data by rotating the aspect model (see Figure 2.16(a)) around these 10 rotation

axes with rotation angles, varied from 2° to 14°, each differing by 2° and denoted

as rot2, rot4 rot6, rot8, rot10, rot12, and rotll, respectively, in Figure 2.17. Each

predicted appearance of the model was aligned with the actual appearance of the

model to compute the prediction error of the curvature method. As the results show

in Figure 2.17, the prediction error tends to be larger with larger deviation of the

rotation axis from the two main axes, and also the prediction error becomes larger

as the rotation angle increases. Thus, we have to tolerate a few pixels of deviation

when model rotation angles are extreme.

2.5.3 Aspect Breadth Effect

As mentioned in the previous section, the viewsphere may be tessellated into a fixed

number of viewpoints. This immediately leads to a question of how wide of an aspect

is appropriate. For objects with sculptured surfaces, the tessellation has to be as local

as possible to have better approximation of the predicted appearance. Wide aspects
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Figure 2.16: An aspect of a superquadric model and its four test data. (a)-(e) The

five images of a model aspect with aspect breadth of 40°. (f)-(i) The test data in the

model aspect.
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Figure 2.17: The error of the curvature method as a function of the rotation axis and

the rotation angle for the object in Figure 2.16(a).
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increase the chance of self-occlusion, and consequently degrade the approximation of

the predicted appearance. On the other hand, narrow aspects may represent some

simple objects with redundant views, and thus, require a large amount of storage,

but the accuracy of the predicted appearance is increased accordingly.
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Figure 2.18: The error of the curvature method as a function of aspect breadth for

the object in Figure 2.16(a).

In order to investigate the effect of aspect breadth, seven aspects of a superquadric

model were constructed with aspect breadth varied from 20° to 80°. Figure 2.16 (a)-

(e) show one of the model aspects with aspect breadth of 40°. Figure 2.16(f)-(i) show

four sets of generated test data, N4 — 2, N5 — 6, N6 — 10, and N9 — 2, representing

the object being rotated around the rotation axes N4, N5, N6, and N9 with rotation

angles of 2°, 6° 10°, and 2°, respectively. Then, for each aspect, the curvature method

was applied to the 4 test data. The prediction error is shown in Figure 2.18; the

modeling error increases monotonically as the aspect breadth becomes larger. These
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empirical results suggest that a smaller aspect breadth be adopted for tessellating the

viewsphere if a large rotation is required to predict the appearance of an object. Also,

a smaller aspect breadth makes the prediction more accurate, and consequently, makes

the matching (model fitting), treated in Chapter 3, more efficient in the sense that

the fitting would not wander around in parameter space due to ambiguous matches.

2.5.4 Model Alignment

To demonstrate the vitality of the curvature method, we chose twenty models for

alignment in which only rotation was involved. All objects were observed under

the weak perspective viewing model. Figure 2.19 shows the results of aligning the

predicted object model with the images. It can be seen in Figure 2.19(a) and (b)

that rotations create large deformations of the silhouettes. Figure 2.19(c) gives an

accurate alignment of the predicted object model with its corresponding sensed image.

A simple distance metric between the image edgemap and the aligned model appears

to be sufficient to select the correct model.

Figures 2.20 and 2.21 illustrate the alignments of twenty predicted models with

their corresponding sensed images. Note that a model is specified by the model name

followed by an aspect number. For example, block/11 represents aspect I of the blockA

model. For models with only one aspect, the aspect number is not specified. The

white contours represent the predicted models. Those isolated white edge points (see

Figure 2.20(a) and (b) for larger pictures) indicate the outliers caused by the following

two effects: (1) the five training images were not well cleaned; and (2) the matching
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(a) (b) (C)

Figure 2.19: Deformation of the images with respect to the predicted model. (a)

A deformation of the pencil sharpener after a rotation of —10° around the vertical

axis. (b) A deformation of the pencil sharpener after a rotation of +20° around the

vertical axis. (c) Alignment of the pencil sharpener model with its corresponding

sensed image.

algorithm selected the wrong corresponding points. These two problems can be solved

by spending more time in editing and analyzing the five training images or the 2%D

edgemap derived from the five training images. Table 2.3 lists results of aligning these

twenty models with their corresponding sensed images. The average alignment errors

for all objects are within 1.0 pixel. It should be noted that accurate predictions were

achieved despite the fact that (1) the object had complex 3D shape; (2) the light

reflectance distorted some of the internal edges; and (3) only five images were used

to create a crude approximation of the radii of curvature.

2.6 Summary

In this chapter, we have presented a method to construct an aspect model for a com-

plex rigid object. We have studied and implemented the curvature method proposed

by Basri and Ullman to predict the new appearance of an object with smooth surface
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Table 2.3: Experimental Results of Model Alignment.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Model Rotation Axis [12,, nwnz] Rotation angle Avg. Error (pixels)

blockAl :1,0,0: +10° 0.90

blockBl :0,1,0j +10° 0.77

camaro8 :1,0,0: -10° 0.62

can 0,1,0] +10° 0.56

cup :0,1,0: +10° 0.29

elephantl :0,1,0: +10° 0.29

face :1,0,0: -10° 0.77

gorillal 0,1,0: +10° 0.51

lion10 :1,0,0: +10° 0.79

mug? :0,1,0: -10° 0.60

phonel :1,0,0: -10° 0.43

pigl :0,1,0j +10° 0.81

sharpener10 :0,1,0: + 10° 0.83

soap :1,0,0: -10° 0.26

sprayerl :0,1,0: +10° 0.46

squirre119 :1,0,0: +10° 0.95

swan2 :1,0,0: -10° 0.69

taurus20 [0,1,0] +10° 0.43

truckl :1,0,0j +10° 0.60

zebral :0,1,0: +10° 0.50       
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  (a) phonel

   

  

(c) camar08d)elephant1 (e) gorillal

(f) lion10g)pig1 (h) sharpener10

Figure 2.20: Examples of model alignment. The white contour is the predicted model

superimposed on the corresponding sensed image.



 

(a) sprayerl (b) squirre119 (c) taurus20

  

(d) zebral (e) mug7 (f) blockAl

  

(g) blockBl (h) truckl (i) can

  
(j) cup (k) face (1) soap

Figure 2.21: More examples of model alignment. The white contour is the predicted

model superimposed on the corresponding sensed image.
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following a 3D rotation. A model aspect is constructed from 5 intensity images and

alignment is done with a single intensity image. We have shown that three pictures

are in principle sufficient for approximating the radius of a curvature 1',c or ry, and

five pictures can be used to estimate the components 1', and 7'” independently. If

both components 7‘, and ry are present, the new appearance of an object following a

rotation about an arbitrary axis can be predicted.

The experimental results are supportive of our design. The proposed modeling

scheme was shown vital in modeling both polyhedra and sculptured objects. It was

also found to give accurate results for large transformations. In this scheme, an Object

is represented using a number of viewer—centered model aspects, rather than a single

object-centered geometric model. Each model aspect covers a range of many possible

neighboring viewing angles. To represent the edge appearance of an object from any

viewpoint, a number of model aspects are required. The computations required in this

scheme during the prediction stage are simple; for example, no hidden line removal is

necessary. Our model construction is almost automatic when object prototypes are

available. Our work both validates and extends the work of Basri and Ullman [9].



Chapter 3

Matching 3D Object Models to 2D

Images

3.1 Introduction

In this chapter, we address the problem of matching 3D objects with arbitrary curved

surfaces to a single 2D intensity image, i.e., the object localization problem. We take

a general viewpoint, but we are interested in specific applications as well, such as de-

tecting the pose of industrial objects or bones in X-ray images. The work fits within _

the theoretical framework for object recognition via alignment espoused by Ullman

[111] and Lowe [76]. Four stages are involved in this framework: (1) Model building,

as discussed in Chapter 2, for representing 3D objects; (2) image processing, including

segmentation, extracts object features (typically edge points); (3) configurations of

features are used to index to candidate models and candidate poses; and (4) determi-

nation of pose parameters that best align the projected 3D models and the observed

66
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image features in order to verify object presence. Stages 1 and 2 were presented in

Chapter 2, and stage 3 will be treated in Chapter 4: in this chapter, we present con-

tributions to stage 4, that is, object localization via alignment. A matching method

is developed which can handle objects with partial occlusion and which also includes

internal object edges, in addition to object silhouette, in the matching process for a

more accurate pose estimation. Matching does not assume the existence of salient

local features in the image and hence is directly applicable to smooth objects. During

matching, a heuristic is adopted to synthesize correspondences in order to refine the

pose parameters for diminishing the matching error between the model and observed

edgemaps.

We assume that (1) objects are rigid; (2) the object model used for pose esti-

mation is known; and (3) an approximate orientation of the object in the image is

also given. Assumptions 2 and 3 can be satisfied by the indexing scheme presented in

Chapter 4 because the indexing scheme will provide candidate object models and also

approximate particular views of the object models. The object may be partially oc-

cluded. Our program takes as input an object view roughly 20 degrees in breadth, an

object image, and a match tolerance. It outputs a refined object pose when matching

converges and otherwise reports failure. In our experiments and core implementation,

we have implicitly assumed that the object is not rotated around the visual axis, i.e.,

a normalized zeroroll angle for the object as discussed in Chapter 2. A rough align-

ment of the image plane based on object features and image features will be discussed

in Chapter 4. This assumption fixes one degree of freedom of the rotation and has,

no doubt, contributed to the performance reported. However, the method presented
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applies to the general weak perspective case with six free parameters: one for scaling,

two for translation, and three for rotation.

Based on the assumptions, we define the problem more formally as follows.

Problem Statement: Let T be a set of transformations, including rotations in 3—

space, translations and scale changes, followed by an orthographic projection. Let

5M = {E1, E2, - - - En} be a set of view-centered 2%D edgemaps representing a 3D

aspect model M. Given an edgemap E0 of an observed object in a scene, an aligning

transformation T E T is sought such that the predicted edgemap of M, denoted as

Em, generated by the application of T matches E0.

This chapter is organized with the next section reviewing some existing techniques

for matching objects with sculptured surfaces. Section 3.3 presents the proposed

method for computing pose via matching a model to an observed image. An analysis

of the sensitivity of pose parameters to object shape and a study of the basin of

convergence are also presented in this section. Section 3.4 shows experimental results.

The last section summarizes the proposed approach.

3.2 Related Background

We are interested in locating 3D objects with sculptured surfaces from single 2D in-

tensity images. Several previous approaches to recovery of object pose from a single

image under perspective or weak perspective projection require that three or more

corresponding feature points be identified in both the object model and the sensed

image [41, 60, 76]. Such points are identified by salient features which are usually de-



69

pendent on the type of object and hence both the model and feature extraction need

to be specialized. The silhouette of a 3D object has also been used in object modeling

[9, 113, 121] and pose estimation [69, 107]. However, for a smooth object, the rim,

which we perceive as a silhouette, projected into an image moves and deforms over

the 3D surface according to the viewpoint position; thus, identification of point cor-

respondences is frustrated by lack of salient and precise local features. Furthermore,

the silhouette alone does not provide for accurate location of smooth and somewhat

symmetric objects because the object silhouettes from different vieWpoints often ap-

pear similar. The lack of sensitivity of the silhouette to the pose parameters not only

precludes accurate pose estimation, but also causes wandering and slow convergence

in hill-climbing techniques. For this reason, we are forced to introduce the use of any

available internal object edges resulting from surface marks or creases to help refine

object pose.

There have been efforts that have succeeded in locating smooth 3D objects from

their 2D image contours. Lowe [77] devised an iterative approach based on Newton’s

method for solving for projection and model parameters that best fit a smooth 3D ob-

ject to matching 2D image contours. In his approach, the object is approximated by

piecewise polygonal surface patches which may be derived from a CAD model. Krieg-

man and Ponce [69] used an elimination method to construct an implicit equation

for the object image contours, and then determined the parameters of the implicit

equation by reducing it to a fitting problem between the theoretical contour and the

observed data. This approach requires a precise geometric model of the object but is

very general regarding the type of features which may be used. Sullivan et al. [107]
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approached the problem of pose estimation from image contours by using a combi-

nation of constrained optimization and nonlinear least—squares estimation techniques

to minimize the mean-squared geometric distance between the viewing cone and a

parameterized surface. Huttenlocher et al. [59] used the Hausdorff metric to corre-

late contour points of a model to those of an observed object. This method does not

require point correspondences and can handle partially occluded or distorted objects.

While this method is attractive for handling 2D translation, like many other methods

(e.g., [49, 55, 60, 76, 85]), including ours, its applicability to 2D rotations and 3D

transformations suffers from the need to search over many possibilities.

The proposed matching scheme has been used in our previous work [27] to locate

smooth objects based on the silhouettes. We were able to locate partially occluded

objects in a scene and efficiently track a moving object from a sequence of images.

While translation and scaling parameters were accurately recovered, rotation param-

eters could not be precisely obtained. In this chapter, we extend the previous method

to include the use of internal object edges to increase recognition accuracy and to

permit more accurate computation of pose. Significant updating of both the mod-

eling and matching schemes was required. In the modeling scheme, as presented in

Chapter 2, the curvature method is augmented with the internal edges. In the match-

ing scheme, internal edges, in addition to silhouette, are used in the fitting process

where a heuristic is adopted to ensure that the parameter fitting is not overly biased

to either internal or boundary edges. In addition, we show results of a study of the

convergence of the matching method over the many viewpoints of an aspect. Our

convergence results are general and lend support to other techniques based on fitting

_
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[69, 77, 89, 107]. Our approach differs from the aforementioned approaches in several

aspects. First, objects are with sculptured smooth surfaces in which no piecewise

approximation or parametric model is used to describe object surfaces. Second, no

salient local features are used as matching primitives. Third, an efficient 2D repre-

sentation of a 3D object is used.

3.3 Matching Model Edgemaps to Observed

Edgemaps

In Chapter 2, we have presented the curvature method for recovering an object’s

approximate appearance given a number of view-centered 2D projections. In this

section, we intend to show how to align model data to image data for computing

object pose and confirming object presence. We want our method to be able to

tolerate image processing errors, image artifacts, and the presence of other objects

which may partially occlude the object of interest. Recall that from Chapter 2, an

aspect model is constructed as f) = R(p — r) + r where r = (r,., ry, 0)t is the radius

of curvature for rim points and r = (so, y,,,0)t for internal edge points, and f) is the

new predicted point for p. Once an aspect model is constructed as above, it is simply

a matter of transforming and projecting new rim points and internal edge points 15 to

generate a predicted 2D edgemap. Under weak perspective projection, the rim point

or internal edge point 15 on the model object edgemap is given in the observed object
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camera coordinate system by:

fi=p+t (am

where t is a translation between origins of model and image coordinate systems. The

image coordinates (u, v) of an edge point p = (if), g, 2)1 on the edgemap of the model

object are given by

(u,v) = (32,332) (3.2)

where s is a scale factor. Note that the Z coordinate of t has no effect on the resulting

image coordinates and can be set to 0 or ignored.

Combining Eqs. (3.1) and (3.2) with the curvature method, we obtain a transfor-

mation as follows:

q = S[R(p -— r) + r + t] (3.3)

where q = (u,v,0)‘, t = (t,,t,,,0)‘, S is the weak perspective projection matrix

with a scale factor 5, and R is the rotation matrix with rotation angle a, and ro-

tation axis Fl = (n1,n2,n3). We re—parameterize the rotation axis using the lon-

gitude 0 and the latitude d) of the unit sphere: Fl = (121(0, ¢),n2(0, ¢),n3(0, 05)) =

(cos 0 sin d), sin 0 sin 43, cos ()5). The specific components of these two matrices are given

by:

300

5= 030;

  000]
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Object pose is thus modeled by 5 parameters; two for translation and 3 for orientation;

the 6th parameter, the scale factor 3, is associated with both the projection and object

size; we combine it with the pose parameters in our discussion below.

3.3.1 Newton’s Method and Least-Squares Minimization

The transformation in our 3D-to—2D alignment is a nonlinear operation: the best-fit

parameters of the transformation can be obtained through a minimization technique

which uses a merit function to measure the goodness-of-fit. Newton’s method is a

promising candidate for searching for the best-fit parameters. As is the case with

any minimization technique, this method requires an appropriate initial guess of the

parameters to prevent from getting stuck in the basin of a local minimum. If the

aspect model is viable, we should be able to use any viewpoint of the aspect as an

initial guess, and thus initialization will come from indexing. We use the Levenberg—

Marquardt method, together with random walks to escape local minima [5, 50].

Although we do not assume any special feature points along the object boundary

or the internal edges, our method does extract a number of points where the matching
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between object and model edgemaps is the worst. Newton’s method will diminish the

error between such point pairs if the correct aspect model is used. Our pose estimation

task is: given a number of corresponding silhouette points and internal edge points

identified in both the model object and the observed object, solve for t, s, and R (6

unknowns) to drive down the sizes of the worst gaps between the matching edgemaps.

Let D(Eo, Em(u'5)) be the mean—squared distance between certain points of the

observed edgemap E0 and the model edgemap Em, where 63 = (t,, t,,, s, a, 0, 45) is the

vector of pose parameters. In the minimization scheme, D(Eo, Em(d3)) serves as the

merit function for searching for the best-fit pose parameters (3. Let pi = (2,, y,, 2,), i =

1,2, . - . , N, be a set of 3D points of the model m, and let (u,, v.) be a set of 2D image

points of the observed edgemap E0. Recall that the 2,- is the one modified by 26 as

discussed in Section 2.3. Let (Fu(pi;d3), Fv(p;;63)) be the aligning transformation as

defined in Eq. (3.3), i.e.

Fu(Pi;¢3) = S[R11($.' - 7‘s) + R12(yi - Ty) + 313% + 1‘; + ix],

Fu(Pi;U7) = S[Rzr($i — Tr) + R22(y.' - Ty) + 3232; + Ty + ty]

where jo’s are the components of the rotation matrix R.

Our goal is to minimize the mean-squared distance

N

D(E., 52.03)) = %Z{(Fu(m;c3) — u.)2 + (was) — m. (3.4)
i=1
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The solution to Eq. (3.4) can be obtained iteratively by using Newton’s method:

W“) = a“) — H-l . [wow (3.5)

where :3”) is the parameter estimate at iteration k, H is the second derivative matrix

(Hessian matrix) of D with respect to the parameters (.3 given by

  

 

321? N u(Pi;w__w_)( . 0F..(pa;d3) 3Fu(pi;c3)

Balkan): —N ;{82air—W,(Fu(Pi, w) — ‘11,) + 602;, . 602,

OFF(p.; d3) , - _ 6Fv(p:;d3) 8F..(pi;d3) _

+ BLJkaLUI (Fv(p|’w) 1),) + 8L0]: aw, }9 kal — 19 36

and [V(<.Ii)] is the gradient of D with respect to the parameter (3 given by

N

22=3§{-°————F“a(W"‘73) m.(pa;a)—u.~)+
6w),

8F0(Pi;‘53)
0w), (Fv(pi;w) — v,)}, k = 1, - - - ,6.

One of the most expensive aspects of implementing Newton’s method is often

the computation of the elements of the Hessian matrix. However, the calculation of

partial derivatives in closed form is straightforward given the aligning transformation:

Fu(pi;&3) and Fv(pi;u'3). The partial derivatives of F“ and F, with respect to t,, t,,

and s are trivial. However, it is difficult to calculate the partial derivatives of FL,

and F, with respect to R since there is no standard formulation of R in terms of

its three parameters. Most researchers represent R in terms of three Euler angles:

yaw, pitch, and roll. The partial derivatives of Cartesian coordinates with respect

to these parameters are strikingly simple as mentioned in [76]. However, we are
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Table 3.1: The partial derivatives of N with respect to 0, and (p.
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more interested in finding the rotation angle a and the direction of the rotation axis

N because N gives the normal of the ground plane and a may be used later to

derive the motion (trajectory) of the object. Given the parameterization of NI as

previously described, it is straightforward to derive the partial derivatives of 111,712

and 123 with respect to their two parameters: 0 and 45. Table 3.1 gives these partial

derivatives for all combinations of n1,n2,n3,0 and gt where (2’) ¢ krr, Vk = 0,1,- --

When 45 = k7r, W: = 0,1, - - -, 8N/045 = (cosdcos qb,sin0cos q§,0).

Now we can build up the partial derivatives of R with respect to 0, 05 and 0 based

on the partial derivatives on Table 3.1. For example,

 

  

2

6:6“ = (1— cos a) 90102—0 — cos a)2n1%—nol= —2n1n2(1 — cos a)

and

61211 On? 6n1_2n1n3(1 - cos a).

1—cosa 1—cosaZn ‘-
a¢ =( )—a¢ :( ) l—a¢— ¢n‘ + n2

The partial derivatives for all combinations of 0, 96, 0, R11, R12, R13, R2,, R22 and R23

are listed in Table 3.2.

Given the parameterization F“ and F, and all partial derivatives of R with re-

spect to 0, 43 and a, we can accomplish our goal of computing the Hessian matrix
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Table 3.2: The partial derivatives of R with respect to a, 6 and (b.
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H and the gradient V(&3). We use the Levenberg-Marquardt algorithm to solve the

overall least-squares minimization problem. In the rest of this chapter, we will re-

fer to the matching technique as the Newton’s method with Levenberg—Marquardt

minimization, denoted as the N-L-M method.

3.3.2 Heuristics used in Alignment

We use heuristics to address three specific problems. First, because the silhouette of

smooth objects has limited information, in order to achieve more accurate pose, we

maintain a balance in the importance of silhouette and internal edge alignment as

fitting progresses. Second, in order to allow for some occlusion, we provide a scheme

for discarding certain edge segments during matching. Third, because our object class

does not provide us with salient point features, we use a heuristic that synthesizes

“matching points of greatest distance” which are most useful in driving the match

error down.
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Balancing the Fitting between Internal and Boundary Edges

The Newton’s method described above will usually converge as long as the match—

ing contours are the actual corresponding contours. Matching silhouettes is reliable

because the boundary edges are well separated [27]. However, for smooth objects,

small changes in any rotation parameter may have little effect on the silhouette. Not

only are internal edges represented exactly in the model aspect, but they are usually

closer to the viewing axis making their images more sensitive to rotation. Including

internal edges, when available, in the parameter-fitting process is often necessary for

deriving accurate object pose. In doing so, we also need to consider relatively different

numbers of internal versus boundary edge segments.

Let Em and I", be the boundary and internal edges of the model edgemap, and

Bo and I, the boundary and internal edges of the observed edgemap respectively.

Define the mean-squared distances of certain boundary edges and internal edges as

D(Bo, Bm(&3)) and D(Io, Im(&3)) respectively. Then the merit function in Eq. (3.4) is

modified to '

D(Eo, Em(d3)) = 30w... Ems?» + W - 00., Imam (3.6)

where W is the weight controlling the trade-off between minimizing D(Bo, Bm(a'3))

and minimizing D(Io, 1m ((5)). For large W, the parameter corrections, H'1 - [V(CJ)],

as in Eq. (3.5), will tend to favor fitting the internal edges; for small W, the parameter

corrections will favor minimizing the fitting error in boundary edges. To implement

ll
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a balance, we adjust W at each iteration based on the ratio:

w<k+1> : 0(10, Imp-5(a))

0(30, Bm(d3(‘=)))'
 (3.7)

This heuristic does not guarantee convergence. However, it ensures that the parameter

fitting will not be overly biased to one type of edge contour.

Measuring Errors and Identifying Correspondence

Newton’s method would behave well if we had at least three correct point correspon-

dences between E, and Em from which to compute the error in image matching. Point

correspondences are either ill-defined or difficult to find because salient viewpoint-

independent features such as line segments and corners may not be available from the

edgemaps of a smooth object. Finding point correspondences can be further compli-

cated if there is partial occlusion of the object. This situation suggests that a global

correspondence be established rather than local correspondences between features.

We first establish global correspondence based on 2D template matching of internal

edges under the assumption that the matched object and model should have similar

contours and the overall distance between the corresponding contours is the smallest

of all possible correspondences. This assumption is justified for smooth objects un-

der a vieWpoint close to the correct viewpoint. Below, we describe a heuristic that

assigns local point correspondences based on the prior establishment of a good global

correspondence between the predicted edgemap Em and the observed edgemaps E0.

These synthesized local correspondences are then used to iteratively drive down the
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fit error.

Let 1,, and Im be the internal edges of the observed edgemap and the model

edgemap respectively (see Figure 3.1(a) and (b)). Matching starts by sliding 1m

over [0 in 2-space searching for a position where the total squared error distance

of the corresponding contours reaches its minimum. The error distance of the edge

point in [m to the nearest point in Io can be computed in constant time by using

a chamfering technique (this technique is also used by Huttenlocher et al. [59] in

the computation of Hausdorff distance). The chamfering technique [7] expands each

object contour point in all directions with an increasing value of gray level which

represents the distance from the observed object contours. The distance function

yields the distance, measured in pixels, from any image pixel to the nearest contour

point. After chamfering the observed contours once, the match error for N model

points can be computed in 0(N) time.

Once the global correspondence is established as above, we divide the bounding

box of the model edgemap into 36 regions (could be I: by k for another 1:) and locate

contour segments in each region if they exist (Figure 3.1(c)). On each model segment,

we designate the point that has the largest error distance as the search point, and

then use this point and the obtained error distance to search for a corresponding point

on the observed edgemap (Figure 3.1(d)). In a situation when the observed object

is partially occluded, the edgemap of the occluded portion does not have matches in

the model edgemap and tends to have large error distances in template matching.

To avoid including these incorrect point correspondences in Newton’s method, we

select as matches the best 50% of the point correspondences on the silhouettes and
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The Observed Edgemap The Model Edgemap

(a) (b)

 

 

 

   
 

 
Figure 3.1: Synthesizing local point correspondences. (a) The observed edgemap

13,. (b) The model edgemap Em. (c) The bounding box of Em is divided into 36 '

regions; the region is labeled if it contains a contour segment. ((1) The selected point

correspondence in each region if applicable (only silhouette point correspondences are

labeled).
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the internal edges respectively. The error distance on each selected contour segment

will force the pose parameters in Newton’s method to be adjusted in such a way that

at each iteration the model contour segments will get closer to the observed contour

segments. The matching algorithm is sketched in Figure 3.2.

Note that the template matching would fail to synthesize local point correspon-

dences if the observed edgemap and the model edgemap were not in an approximate

scale. Here, we assume that the initial scale of the observed object is given. Deter-

mination of the initial scale value for matching will be discussed in Chapter 4. As

an example of showing that the scale is not fixed, consider the car (Ford Taurus) in

Figure 3.3(a). Figure 3.3(b) shows the model edgemap of the car which is 2 times

larger than the observed edgemap. The initial parameter value for scale was set to

0.5. Figure 3.3(c) shows the evolution of the model edgemaps generated during the

iterations of matching. The white contour indicates the final edgemap generated and

is shown superimposed on the original intensity image of the car as in Figure 3.3(d).

3.3.3 The Sensitivity of Pose Parameters to Object Shape

We show that the sensitivity of the rotation parameters is closely related to the

object shape. As mentioned earlier, silhouettes do not provide enough information

for accurate pose estimation, and including internal edges in the matching process is

often a necessity. Directly below we provide a theoretical characterization and later

on we show experimental evidence for this.

The basic idea of the sensitivity analysis for smooth objects is shown in Figure 3.4.
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Input: an observed edgemap E0, a model edgemap Em,

an initial estimate of pose parameters L3 = (t,, t,,, s, 9, <15, a),

an image matching error threshold E, in pixel units, and

a limit on the number of iterations [max for failure.

Output: either failure or the best—fit pose parameters (.3.

Processing: this algorithm computes (:3 iteratively using Newton’s method

until the mean-squared distance D(Eo, Em(u'5)) is below E, or until

the maximum number of iterations [max have been tried.

In the first case, we have alignment, and in the second case failure.

The iterations repeat the following steps:

(1) Establish global correspondence based on the template matching of

internal edges (or boundary edges in the case when only silhouettes

are used in alignment);

(2) Divide the bounding box of Em into 36 regions;

(3) In each region applicable, locate the point correspondence that has

the largest error distance (point correspondences are assigned

separately for internal edges and silhouettes);

(4) Select the best 50% of the point correspondences on the silhouettes

and the internal edges respectively;

(5) Use the point correspondences found in steps 3 and 4 to compute the

weight W in Eq. (3.7) and also to derive the Hessian matrix H and

the gradient V013), and then recompute 63 using Eq. (3.5);

6) Use 073 to predict the new Em and compute the modified D(Eo, Em(d3))

as in Eq. (3.6) on those contour segments in selected regions.

 

Figure 3.2: The edgemap alignment algorithm.
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(C) (d)

Figure 3.3: Matching edgemaps in an 1:2 scale. (a) The observed edgemap. (b) The

model edgemap. (c) The evolution of convergence in the matching algorithm. ((1)

The fitted edgemap shown superimposed on the original image.
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Figure 3.4: The rotation of a smooth object.

Let X and Y be the main axes of the image plane, and let the Z axis be the visual

axis. Consider an object rotated through some 0 angle about a rotation axis NI with

direction (n1,n2,n3)‘. Let p,- be a rim point and p,- be the corresponding rim point

after rotation. Let pi be an internal edge point and p, be the corresponding point after

rotation. Let r be the curvature radius at p}. Note that r is a vector perpendicular

to both N and Z. The point 0 is the center of the circle of curvature of pi. Let

Apj = (A.1r.'.,-,ij,A2.,~)t denote p,- — pi and Ap, = (A:r:,-,Ay,-,A2,-)t denote 15,— pi.

Without loss of generality, let us assume that the rotation axis passes through the

origin 0 and points pg, 15‘, p,-, and p} are on the same cross section. Let po be the

rotation center of the cross section through points pi, p}, pi, and p}. The following

statements hold for rotation R.

(l) Apj lies in a plane perpendicular to the rotation axis. That is, Apj . N = 0.

-o

(2) Points lying on the rotation axis N are invariant to rotation R. That is,

R(AN) = AN or (R— DON) = 0 where A is any real number, and I is the
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3 x 3 identity matrix.

Note that points pj, p5, and 0 form a plane that is perpendicular to both N1 and

the Z axis, and a cross section is defined as the intersection of the plane with the

object.

Proposition 3.1 If point 0 lies on the rotation axis NI, then p; is invariant to the

pose parameter a.

Proof: From the curvature method in Eq.(2.2), we have

155 = R(Pj - 1.) +1?-

Rewriting the above equation, we obtain

1'5: - Pi = (R- I)(Pj--1‘)

Since 0 lies on the rotation axis NI, we have pj — r = AN for some real number A.

From Fact (2), we obtain (R — I)(pj — r) = 0, i.e., Apj = 0. Thus, p; is invariant to

the pose parameter a. C]

From Proposition 3.1, we can see that the image of point p3 will be of no help

in refining a in the optimization because it does not change with a when rotated.

Equivalently, 9A1? is unaffected by the rotation. Thus, for a symmetric object such as

a circular cone, it is obvious that rotating the cone around its principle axis results in

no rotation angle information. Proposition 3.1 is clearly true for a totally symmetric
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(a) (b)

Figure 3.5: A scene where the matching algorithm fails to recover the pose parameter

a. (a) The object is composed of three subparts. (b) The extracted silhouette of the

object.

object, such as a sphere, rotating about any axis: there is no change of silhouette

shape with respect to any rotation angle a. In fact, this proposition is consistent with

the prediction error of the curvature method in Eq. (2.9), where E(%,a) = 0 when

a = c, i.e., the cross section is a circle, which makes a irrelevant (and thus insensitive)

to the predicted appearance.

Definition 3.1 The local curve, from pj to 15,-, is said to be invariant to rotation R

up to a rotation angle ofa if the center of the circle of curvature 0 lies on the rotation

axis.

If many local curves of an observed object are invariant to rotation R up to some

rotation angle, then the pose parameter a can not be recovered accurately in the

parameter fitting process. As an example, consider the object in Figure 3.5. Subparts

A and C are circular cylinders with their principle axes coincident with the rotation
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axis. Subpart B is a cylinder with octagonal cross section. It is obvious that the

silhouettes of subparts A and C are invariant to rotation angle a, while the silhouette

of subpart B varies only within a rotation angle of 45 degrees. For designating point

correspondences on silhouettes, the contour segmentation scheme, as described in the

matching algorithm in Figure 3.2, will choose the best 50% contour segments, in which

the error measurements are among the smallest. In this case, contour segments D and

E, as in Figure 3.5(b), will not be selected (they will be treated as occluded portions

of the object because of their large error measurements). Then the silhouettes selected

for matching will remain unchanged regardless of the rotation angle a, resulting in a

loss of rotation angle information. Thus, our matching heuristics for the silhouette

behave badly in this case. However, a is sensitive to the internal edges within the

45° ambiguity intervals.

Proposition 3.2 Let pi be the internal edge points such that pi # AN for some

A 75 0. Then the pose parameter a is sensitive to p;.

Proof: Since p, is an internal edge point, the radius of curvature r = 0. Then the

curvature method becomes

fi=Rm

for internal edge point pi. Rewriting the above equation, we obtain

AP: = 5a - Pi = (R - 1);».

Since pi # AN for some A 76 0, thus ”Pi -O|| > 0 (i.e., pi 3é 0). It follows
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immediately that Api 7t 0. Thus, the pose parameter a is sensitive to pi. D

Proposition 3.2 also suggests that the pose parameter a is insensitive to any

internal edge point lying on the rotation axis. But they occur only at the intersections

of the rotation axis and the object surfaces because internal edge points are surface

points. For smooth objects, there are usually at most two such points existing (there

would be many for a polyhedron rotating about an edge). Moreover, our heuristics

in designating point correspondence on internal edge points will exclude these points

for alignment. Thus, the pose parameter a can be recovered for somewhat symmetric

and smooth objects if internal edges are used in the matching process. Accuracy

depends on the number of such points pi selected and the size of Api relative to the

pixel size.

Proposition 3.3 Let p = (:l:,y,2)t and p = (a?:,37,2)t be the corresponding points

before and after the rotation. Let the rotation axis be the Y axis, and the rotation

angle be a. Let po = (0,y,,,0)t be the rotation center of the horizontal cross section

through p. Let Ap = (Ax,Ay,A2) denote p — p. Let I be the length of the vector

pgp and ,6 be the angle between the X axis and the vector pgp. Then

Ax = —2l sin(; + B) sin ;.

Proof: Note that the points p, p, and po all lie on the same horizontal section

implying that y = g = yo. Since the object is rotated through angle a about the
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Y axis, we only need to consider the relationship between the coordinates (23,2)

of the original point and (2,2) of the rotated point. Using polar coordinates in

the cross section, a point with polar coordinates (LB) rotates to (1,5 + a) where

l=Wand B = tan‘1(2/x). Now x :1 cos B, so that :i: =1 cos(fl+a). Hence

Ax :E—x= —2lsin(%+fl)sin%. D

It can be inferred from Proposition 3.3 that for a fixed I and a small non-zero a,

|Ax| is close to its maximum when E is close to g or 37", and |Ax| is close to 0 when

,8 is close to 0 or 7r. By the definition of the rim (i.e., the set of all points on the

visual surface, whose normal is perpendicular to the visual axis), fl is either 0 or 7r

for boundary points. Thus, the rotation is less sensitive to points on the boundary

than to any other points lying on the same cross section. In fact, for a symmetric

object, we learn from Propositions 3.1 and 3.2 that when the object is rotated, the

boundary points remain unchanged, but not the internal surface points.

For simplicity of the analysis, let us assume that the object is rotated through

a about the Y axis. All the notations used here are consistent with the ones in

Figure 3.4. Let 1,- and 1,- denote the length from po to p, and 0 respectively, i.e.,

l,- = “pop,“ and l,- = ||p;o||. Let B,- be the angle between the X axis and the vector

p30, and ,6,- the angle between the X axis and the vector pin. From Proposition 3.3,

we have Ax, = —2l,~ sin(% +,B,) sin % and Ax,- = —2l,- sin(-‘;- +flj) sin %. Then, IAxJ-I S

|Ax,-| if ll,- sin(% + flj)| S |l,-sin(% + fill]. Note that for rim point pj, the center of

the circle of curvature o is used to compute ij because r remains unchanged after

rotation. For a very smooth object, if the object’s center of gravity is assumed to

be the rotation center, then both I,- and fl,- tend to be small but r tends to be large,
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causing |Ax,-], the projection of the changes in the image, to be small. On the other

hand, l,- does not depend on the local curvature at pi, thus Ax,- depends on the values

of B,- and 1;. In most cases, for this kind of object, 1,- > 1,- and [3,] > LBJ-I, and

consequently, [Ax,-| 2 [AxJ-l. Thus, the pose parameter a is more sensitive to the

internal edge points than to the silhouette points. An interesting case to consider is

a cube rotating about an axis through the center of two opposite faces. All silhouette

points have r = 0. For some aspects, 0 is more sensitive to silhouette points, and for

other aspects, 0 is more sensitive to internal edge points.

3.3.4 The Basin of Convergence

In this section, we assume that the ground truth of pose parameter estimates is known,

and we investigate the basin of convergence. In our implementation of nonlinear

least squares minimization, we use the Levenberg-Marquardt method to search for a

minimum. The Levenberg-Marquardt method is one of the most widely used methods

for nonlinear least squares minimization. This method uses a scalar parameter A to

force iterative convergence. The new form of the Hessian matrix H in Eq. (3.5) is

given by

I (l+/\)HH whenk=l

Hm = (3-8)

Hg) when k 9‘5 l

where H“, 16,1 2 l, - - - , 6, are the array elements of H. As A is increased, the solution

increasingly corresponds to pure gradient descent. For decreasing A, the problem

would gradually move back to the original Newton’s method. This phenomenon can



92

  

Enemy (MSE)

ll

‘ Starting Position

------------------------------------------ B

= Parameters

-> A Increasing ((hndient Descent) :t A. Decreasing

0 Local Minimum 0WW

Figure 3.6: The basin of convergence.

be described as in Figure 3.6. A ball is moving downward on a bill by increasing A

until it reaches the valley, and then starts moving upward on a hill by decreasing A.

If the force of moving upward is not sufficient to allow the ball to reach the top of the

hill, the ball will get stuck in the bottom of the valley. If the force is powerful enough,

the solution is searched for in the next valley. This will continue as long as the uphill

force is large enough. If the uphill of a global minimum is shallow, the search may

not stop at the global minimum. Thus, the iterations should be terminated when the

mean-squared distance error (MSE) is smaller than some error threshold Et.

Those valleys where the parameter estimates satisfy some error criteria in param-

eter space are defined as global minima, otherwise, they are defined as local minima.

For example, suppose that (I: and (I: are the pose parameter estimates and the ground

truth of pose parameters, respectively; let Eb be the error bounding box in parameter

space; then global minima are defined as those pose parameter estimates (2: satisfying
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Figure 3.7: The effect of Et on the basin of convergence. (a) The number of trials

converging to global minima. (b) The average MSE error of fitting. (c) The average

converging time of fitting.

|dJ — ID] 6 Eb. We implicitly assume that the fitting errors (MSE) of global minima

are smaller than those of local minima; this assumption is justified for pose parameter

estimates close to the ground truth which make the fitting error small.

A valley with MSE below Et becomes an attractor, absorbing any ball in the

valley. Consider the number of searches which would terminate in global minima

if started at random in some region of parameter space (or equivalently, consider

the probability of searches reaching global minima). When Et is below the MSE of

the actual global minimum (i.e., the ground truth of pose parameters), denoted as

Etl (see Figure 3.7(a)), the number of global minima achieved remains fixed because

there exist no attractors and converging to global minima depends solely on the

topology of the basin and the initial starting positions. When Et is increased, so is

the number of attractors which may include some valleys of local minima, and thus,

the number of searches converging to global minima is decreased. This phenomenon

also explains why the average MSE of convergence is increased as Et is increased (see
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Figure 3.7(b)). The phenomenon depicted in Figure 3.7(c) is obvious because more

and more attractors exist as Et is increased further, and consequently, the average

number of iterations to convergence is decreased. Our results below illustrate these

concepts and also show how Et might be chosen in practice.

3.4 Experimental Results

The alignment algorithm presented in this chapter has been tested for both real

sculptured objects and synthetic objects made from a superquadric model [5]. The

algorithm has succeeded in deriving the object pose by aligning only the silhouettes

[27]. In this section, we intend to demonstrate: (1) the algorithm can handle partially

occluded objects and objects with internal edges; (2) the basin of the convergence

is broad; (3) the accuracy of the derived object pose can be further improved by

introducing object internal edges in the alignment process.

As an example of showing the intermediate stages of the alignment process, con-

sider the superquadric model, an ellipsoid, in Figure 3.8(a). Figure 3.8(b) shows the

extracted edgemap of the ellipsoid. Figure 3.8(c) shows the evolution of the model

edgemaps generated during the iterations of N-L-M method. The white contour in-

dicates the final edgemap generated from N-L—M method. Figure 3.8(d) shows this

edgemap superimposed on the observed object. Figure 3.9 gives another example of

this alignment process. As can be seen in Figure 3.9(b), the observed object, a par-

tially occluded block, is fitted by the model within only a few iterations as indicated

by the evolution of model edgemaps in Figure 3.9(a).
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Figure 3.8: Steps in the model fitting algorithm. (a) Intensity image synthesized

from a superquadric model. (b) Edgemap extracted from the image of (a). (c)

The evolution of convergence in the N-L—M method. ((1) The fitted edgemap shown

superimposed on the original image.
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  (a)

Figure 3.9: Fitting a polyhedral model to a partially occluded object. (a) The evolu—

tion of convergence in the N-L—M method. (b) The fitted edgemap shown superim-

posed on the original image. (Note the occlusion by the Y pipe.)

3.4.1 Results from Model Fitting Experiments

The alignment algorithm for locating objects in the scene was tested on a total of

sixty aspect models. Half of them are partially occluded objects. Figures 3.10 and

3.11 show a few of alignment examples. Note that in several of these images, the test

objects are partially occluded. As can be seen from the white contours in Figures 3.10

and 3.11, most of the observed objects are well fitted. Table 3.3 shows the goodness of

the fit. Note that EN is defined the angle between N and N, i.e., cos’l IlNlll [IVNII’ where 

N as the ground truth for N. The translational parameters, (t,,ty), are recovered

within 3 pixels, the rotation angle, or, within 3 degrees, the rotation axis, N, within

0.2 radians and the scaling factor within 0.01. The final 2 columns of Table 3.3 show

that alignment is achieved within 1.6 pixels MSE on the edgemaps within 10 iterations

of the hill-climbing procedure.
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(a) can (b) camar08

 
(e) phone6 (f) swanll

Figure 3.10: Model fitting examples of sculptured objects.
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(c) mug26 (d) pigl

 

(e) trucklO (f) zebral

Figure 3.11: Model fitting examples of occluded objects.



Table 3.3: Results from Model Fitting.
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Input parameters: Et = 1.6 pixels; Imax = 30 iterations

Object Pose Estimation Error Number of MSE

E“ E,” E, E0, EN Iterations

(pixel) (pixel) (degree) (radian)

can 0 0 0.003 0.82 0.05 4 0.94

camar08 3 2 0.009 0.37 0.06 9 1.16

face* 0 0 0.002 2.20 0.20 7 1.39

phone6 1 0 0.001 0.40 0.06 6 1.08

sharpenerlO 3 0 0.001 2.39 0.13 8 1.36

swanll 0 0 0.001 1.05 0.15 4 0.99

blockAl 0 2 0.007 0.38 0.16 5 1.02

lion29 1 0 0.001 0.49 0.06 5 1.56

mug26 2 0 0.010 0.18 0.10 7 0.98

pigl 0 0 0.001 0.07 0.03 5 1.22

trucklO 2 2 0.009 0.74 0.07 10 0.95

zebral 3 3 0.010 0.31 0.05 8 0.76

E, = Hp - p,,,,,,|| where p is the estimated parameter value of pm,e

*ground truth not actually known (only approximation).
 

3.4.2 Results from Monte Carlo Experiments

To investigate the convergence characteristics within a viewing aspect, the parame-

ters of rotation, a, 0, and 9b, in the aspect were sampled at equal intervals covering

the whole viewing aspect. Each sample of these three parameters, together with the

translation parameters (t,, t”) and the scaling parameter 3, forms the initial param-

eter estimates for the fitting. The translational parameters (t,,t,,) were randomly

selected within {-20, 20] pixels and 3 within [0.9,1.1]. Note that the indexing scheme

described in the next Chapter will justify using such initial estimates. 240 samples

were generated for each viewing aspect. Six test objects, as shown fitted by their

corresponding models in Figure 3.12, were used to conduct the experiments. Three of

them are symmetric along some rotation directions. The purpose for selecting such
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Table 3.4: Convergence and Error Analysis: Edgemap vs. Silhouette.

 

 

 

 

 

 

 

 

 

   
 

 

 

 

 

 

 

Number of trials: 240

Et = 1.0 pixels; Imax = 30 iterations; Eb is as defined in Eq. (3.9)

Silhouette and Internal Edges

Object Avg Iteration [1 (Error < Et) filw — LB] G Eb

ellipsoid 9 240 240

cup 12 240 210

taurusl 10 240 182

phonel3 (occluded) 12 240 195

squash (occluded) 9 240 232

squirrel (occluded) 11 240 173

Silhouette Only

Object Avg Iteration [1 (Error < Et) [[Iw — 0| 6 Eb

ellipsoid 9 240 17

cup 6 240 44

taurusl 9 240 134

phone13 (occluded) 11 240 145

squash (occluded) 10 240 220

squirrel (occluded) 16 240 143      
 

objects is to study the effect of object shape on the accuracy of the estimated object

pose.

Table 3.4 lists the number of trials converging: [[( Error < Et), and the number of

the trials converging to global minima: Mai—0‘2] E Eb where w and (I) are the estimated

pose parameters and the ground truth parameters, respectively, and Eb is the error

bounding box in parameter space centered around the ground truth parameters C).

The criteria for global minima are, i.e., the range of Eb:

ItJr — t1] S 3 (pixels), |ty — t] S 3 (pixels), ls - §| S 0.01, ( )

3.9

la - d] S 3 (degrees), ||N - N” S 0.2 (radians),

where N(0, d2) = (cos 0 sin ()5, sin 0 sin ()5, cos qb) is the direction of the rotation axis, and
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(a) ellipsoid (b) squash

 

(c) cup (d) squirrel

  
(e) taurusl (f) phone13

Figure 3.12: Test objects used for studying the basin of convergence.
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61, N, s, t}, and t], the ground truth parameters. [IN — NI] denotes the angle be-

tween N and N, i.e., cos"1 ll—erflffifi' As can be seen in the column [1(Error < Et)

of Table 3.4, all 240 trials in each object experiment converged to (either global or

local) minima within an error threshold of 1.0 pixels, suggesting a broad basin of

convergence for the listed 6 object aspects. The quantity, [llw — (22] E Eb, indicates

the number of converged trials that actually converge to global minima. This quan-

tity also indicates the sensitivity of pose parameters to object shape. Consider the

ellipsoid in Figure 3.12(a) for an example. As shown in Table 3.4, all trials in the

ellipsoid experiment converged to global minima when internal edges together with

silhouette were used in the fitting process. This is because the ellipsoid is made from

a superquadric model and the object can be precisely modeled. However, when the

silhouette alone was used in the fitting process, only 17 (out of 240) trials converge

to global minima. The deterioration of converging to global minima is attributed

to the symmetry of the ellipsoid and the insensitivity of rotation parameters to the

object silhouette. This phenomenon is also depicted in Figure 3.8(c) where the model

silhouette converges to the object silhouette after 3 iterations but the pose is still far

from the ground truth as indicated by the cross mark. Another experiment showing

this phenomenon is conducted via the cup in Figure 3.12(c). The object is almost

symmetric around the rotation axis, and as a consequence, only 44 (out of 240) trials

converged to global minima when only the silhouette was used in the fitting process.

But the situation is much improved when internal edges were incorporated into the

fitting process as shown in Table 3.4. 210 (out of 240) trials were able to converge to

global minima. The squash in Figure 3.12(b) is a very smooth and symmetric object
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made from a superquadric model. Although occluded, 232 (out of 240) trials are able

to converge to global minima when both silhouette and internal edges were used in

the fitting process. The lack of internal edges in the fitting process does not decrease

the number of convergence to global minima significantly. This is because that, unlike

the ellipsoid and the cup, the squash is not symmetric about the rotation axis and

also the occlusion helps to break the symmetry of the shape.

It is observed in Section 3.3.3 that when objects are rotated, their silhouettes

may vary little while their internal edges may move significantly in the image. Thus,

including the internal edges in the fitting process should be helpful in determining

the object orientation. We have demonstrated in the above three experiments that

the pose parameters obtained by fitting internal and boundary edges simultaneously

are much more accurate than by fitting the boundary edges alone. Experiments con-

ducted on the other three objects, squirrel, taurusl and phone13 as in Figures 3.12(d),

(e) and (f), respectively, also reflect this property that incorporating internal edges in

the fitting process can help improve the accuracy of pose parameters (see Table 3.4).

Since these three objects are not symmetric about the rotation axis, the convergence

rate to global minima does not deteriorate as much as that for the symmetric objects.

Table 3.5 lists the number of trials converging (anv), the average iteration (Iavg),

the average MSE (EM), and the number of trials converging to global minima (filw —

£2] E Eb). We can make the following observation from Table 3.5: (i) all trials

converge regardless of the value of Et, indicating the basin of convergence is broad.

(ii) The number of average iterations decreases as Et becomes more tolerant. This

attributes to the fact that when the MSE error threshold Et becomes more tolerant,
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Table 3.5: Convergence and Pose Accuracy vs. Et.

 

 

 

 

 

 

 

 

          

Test object: taurusl (in Figure 3.12(e)).

Number of trials: 240

Imax: 30 iterations; Eb is as defined in Eq. (3.9)

Et Silhouette and Internal Edges Silhouette Only

Neonv [avg Eavg lllw '- (III E Eb Neonv [avg Eavg lllw "' a] E Eb

1.5 240 5.5 1.3 33 240 4.4 1.3 29

1.4 240 6.4 1.2 52 240 5.2 1.2 33

1.3 240 7.4 1.2 86 240 6.2 1.2 44

1.2 240 8.3 1.1 113 240 7.3 1.1 60

1.1 240 9.6 1.0 145 240 8.7 1.0 92

1.0 240 10.8 0.9 182 240 9.3 0.9 134
 

 

more and more local minima attractors become effective, and the fitting process is

terminated once it gets stuck in these local minima. This fact also contributes to the

following two observations: (iii) the average MSE increases as Et increases; and (iv)

the number of trials converging to global minima declines as Et is more tolerant. All

these results are consistent with the theoretical discussion given in Section 3.3.4.

As an example to see the effect of occlusion on convergence, we manually occluded

a squirrel by 0%, 15%, 35%, and 50% respectively as seen in Figure 3.13. Table 3.6

shows that for these cases all 240 trials converged, indicating the basin of convergence

is still broad even under severe object occlusion. Table 3.6 also shows that for these

cases the number of trials converging to global minima decreases as the percentage

of the occlusion increases. This is due to the limited information provided by the

unoccluded portion of the object; less constraints enforced on the fitting lead to more

local minima attractors which cause fast convergence but deteriorate the performance

on the number of trials converging to global minima.
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(c) occluded 35% (d) occluded 50%

Figure 3.13: Objects for studying the effect of occlusion.
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Table 3.6: Convergence and Error Analysis: Occlusion Effect.

 

 

 

 

 

 

 

Test object: squirrel (in Figure 3.13)

Number of trials: 240

Et = 1.0 pixels; Imax = 30 iterations; Eb is as defined in Eq. (3.9)

Occlusion Silhouette and Internal Edges

Percentage(%) Avg Iteration [1 (Error < Et) [llw — (12] 6 Eb

0 14 240 234

15 12 240 228

35 11 240 173

50 9 240 108      

3.5 Summary

In this chapter, a method for locating 3D objects with arbitrary curved surfaces from

a single 2D intensity image is outlined. Given an input image and a candidate object

model and aspect, the method will verify whether or not the object is present and

if so, report pose parameters. The modeling technique of Basri and Ullman [9], as

described in Chapter 2 and the alignment method of Lowe [77] are combined together

to produce a new technique for handling curved 3D objects. The model allows an

object edgemap to be predicted from pose parameters. Pose is computed via an

iterative search for the best pose parameters. Heuristics are used so that alignment

can succeed in the presence of occlusion and artifact and without resorting to use of

corresponding salient feature points.

Alignment experiments with both real and synthetic objects demonstrate a high

rate of convergence for a broad set of starting orientations in the same aspect. These

results are in agreement with those reported by Lowe [76]. We conclude that large

numbers of fine aspects are not needed for modeling. The experimental results also
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demonstrate that smooth objects can be handled and some occlusion can be tolerated.

Our experiments with superquadrics indicate that the alignment method can be used

with most conventional CAD systems.

Since the Newton’s method with Levenberg-Marquardt minimization is used to

iteratively diminish the error between the observed edgemap and the fitted edgemap,

sensitivity of a parameter to the error influences the goodness of the fit of the param-

eter. Normally, the more sensitive the parameter is, the more accurate the param-

eter fit would be. It is obvious that the scaling factor 3 and the translation vector

(tx, t,) are very sensitive because a small perturbation in any of these three param-

eters would create a significant error between the fitted edgemap and the observed

edgemap. Thus, as shown in our experimental results, the estimates of these three

parameters tend to be more accurate than any others.

Finally, we have shown mathematically that aligning silhouettes alone provides

inaccurate pose parameters for rotation for objects which are somewhat symmetric

about the rotation axis. The same analysis shows that the rotation parameters are

much more sensitive to location of internal edges in the images. This principle is

supported by our experimental results. Thus, we conclude that including internal

edges in alignment is essential for an accurate pose estimation of many curved objects.

This result is general in the sense that it can be used by other published iterative

methods to reduce inefficient wandering in the parameter space as well as inaccurate

orientation in convergence results.



Chapter 4

Indexing to Model Aspects

4.1 Introduction

Model-based object recognition requires that sensed data from an object be matched

to pre—stored model data. In the alignment paradigm, minimal sets of features are

used to form correspondence hypotheses between an image and a pre—stored object

model. For each such correspondence, a transformation is computed which brings

the model features into alignment with the image features, and model presence is

verified by back-projecting other model features into the image and searching for

image features at those locations. The entire process can be very expensive due to

the possible combinatoric correspondence of feature sets for generating hypotheses

and the exhaustive search at each verification.

The most straightforward way for object recognition from a model database is by

linear search. That is, one can apply the alignment paradigm to each object in the

database in a sequential fashion, and the object model that best aligns the observed

108
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image features is recognized. With this search strategy, the recognition time increases

linearly with the number of possible object models in the database. As the model

database size grows, the linear search strategy decreases in viability, some better

means of selecting object models are needed.

Indexing is one way to alleviate the computational burden. It is a two—stage

process. At compile time, feature sets derived from object models are encoded as

indexing vectors corresponding to entries in some appropriate data structure, such as

a hash table or tree, with pointers back to the corresponding models. This provides

the essential mechanism for indexing and fast retrieval. At run-time, feature sets

derived from the image form index vectors for fast access of pre—stored models. Thus,

correspondence hypotheses are recovered without resorting to comparison of all pairs

of model/image feature sets.

Although correspondence hypotheses can be quickly recovered through indexing,

there may still exist some ambiguity among the indexed hypotheses. This situation

arises when a single index vector derived from the sensed image retrieves many com—

peting match hypotheses. This problem can be overcome by providing the indexing

scheme with some additional information, such as the probabilistic peaking effect

used in [87] or the indexing function used in [10], to determine which hypothesis is

more likely to give a correct interpretation for the data. This additional informa-

tion not only helps in grouping hypotheses into consistent clusters, but also provides

a mechanism to rank the match hypotheses before sending them to the verification

stage. These rankings will in general mean that correct interpretations are likely to

be verified first, resulting in an improved over-all efficiency in the recognition process.



110

Our approach toward the indexing task within the alignment paradigm is as fol-

lows. As described in Chapter 2, we model a 3D object by a collection of 2%D views

(called model aspects) made from 5 local images taken by rotating the viewpoint up,

down, left and right of a central vieWpoint (see Figure 2.2). The 3D information is

made from the central edgemap of each model aspect and is used for pose estima-

tion. The silhouette of the central image is extracted and segmented into parts whose

invariant features are derived for indexing. Thus, each model aspect consists of a

2%D edgemap for pose estimation (i.e., verification) and part invariant features for

indexing. Both model building and index building phases can be processed off-line.

During the recognition phase, we first extract the part invariant features from the

sensed image to index into the model database for candidate models and poses. We

then apply some heuristics to determine the order of the hypotheses for verification.

Finally, verification is carried out by fitting the 2%D edgemap of each candidate model

to the observed edgemap (i.e., pose estimation), as done in Chapter 3. The result

of the fitting is then used to refute or accept the model hypothesis. Once a correct

model is found, the verification procedure is terminated. A diagram of the proposed

indexing scheme is given in Figure 4.1.

This chapter is organized with the next section reviewing some existing techniques

for indexing 3D models from 2D images. Section 4.3 presents the general framework

for the proposed indexing scheme. Section 4.4 shows experimental results. The last

section summarizes the proposed approach.
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Figure 4.1: The computational paradigm of the proposed indexing scheme.
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4.2 Related Background

We are interested in indexing to 3D models from single 2D intensity images. Index-

ing techniques are becoming widespread in the field of computer vision for solving

the recognition problem and the model/sensory feature correspondence problem. In-

dexing involves extracting an over-constraining indexing coordinates from a group of

image features and then interpreting these features through a pre-compiled lookup

table [115]. Much work in the past on indexing has dealt with the easier problems

of 2D models (e.g., [101, 65]), flat 3D models (e.g., [72, 96]), or 3D models in which

more information is available, such as with range data (e.g., [43, 102]), or multiple

images [81].

When compiling an index, the most efficient storage possible can be achieved by

using view-invariant shape descriptors that are unaffected by object pose, perspective

projection, and the intrinsic parameters of the camera [44]. For each underlying

model feature set, only a single index vector is sufficient to identify the object. Thus,

view—invariant descriptors are ideal candidates to be used to directly index into the

model database for fast object identification. However, it has been shown [22, 33]

that there are no general-case view-invariant features for any number of 3D points

under common of projection model (perspective, weak perspective, or parallel). As

a result, most work in indexing using invariant descriptors has been restricted to 2D

objects [23, 101] or 3D planar objects [72, 85, 96], or to some special-case invariants,

which are only view invariant under special configurations of 3D points or set of

views [22, 44, 110]. For example, assuming that the object points are planar and
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the projection is approximated by the weak perspective projection model, Lamdan

[72] was able to extract affine coordinates which are invariant to view. Burns et al.

[22] have defined and discussed affine coordinates and other special-case invariants

under weak perspective projection model. Forsyth et al. [44] have also assumed

a planar surface and have shown that an invariant, depending on the coefficients

of the conics, can be obtained by fitting two comics to two image curves projected

from this surface. Thus, as pointed out in [22], “invariants that do not require any

restrictions are impossible, and recognition systems using unrestricted invariants can

not be expected to be as effective as those using special-case schemes”.

One way to circumvent the above problem is to represent a 3D object by multiple

2D views. Each view is treated as a model, then the indexing problem is reduced to

the problem of indexing a 2D object using 2D invariants, which have been successfully

used by many researchers [19, 33, 61, 109]. For example, Clemens and Jacobs [33]

grouped four point features as a structure for indexing, three of which were used to

generate the object pose and one of which was used to check if the pose consistency

is preserved. Groups that violate the pose constraint were discarded, resulting in a

considerable amount of reduction in time and space in indexing. Jacobs [61] provided

a more space-efficient construction reducing 2D sheets to two 1D lines, each embedded

in a 2D space. Thompson and Mundy [109] grouped pairs of vertices to retrieve

hypothetical viewing transformations for their models. Due to the lack of specificity

in the indices, a voting scheme was used to integrate the noisy pieces of information

into meaningful hypotheses.

Breuel [19] argues that to effectively support indexing, one needs a representation
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of features that is invariant under 2D affine transformation (translation, rotation

and scaling), under occlusion of features, and under the addition of spurious features.

However, using this kind of indexing scheme for 3D object exacerbates the recognition

time by vastly expanding the model database. This raises the issue of determining

how many distinctive views of an object model should be stored in the database.

The aforementioned methods discretize the indices and fill the hash table with

the quantized values. Attempting to cover all possible views of a feature set by

filling in a discrete look-up table is a formidable task, especially in high-dimensional

indexing spaces. One approach to this problem is by tessellating the viewsphere into

a large fixed number of views and then integrating neighboring views which share

same feature sets into aspects [36]. Another promising approach is by using some

linterpolating functions, such as Radial Basis Functions (RBF) proposed by Poggio

and Edelman [90], to approximate the regions between sample views. Each distinct

interpolated feature set, covering a small region of views, is filled into the discrete

look-up table. In this way, a full range views of an object can be modeled from

a relatively small number of views. Beis and Lowe [10] used a learning method to

generate indexing functions which interpolate between the index vectors sampled at

various views about the stored models. The indexing functions provide probability

distributions describing the possible interpretations of each index value. The resulting

probabilities are used to rank the match hypotheses for verification.
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4.3 General Framework for Indexing

In this section, we develop the framework for the proposed indexing scheme (see Fig-

ure 4.1). From the original problem assumptions, the following limits apply. First,

the partitioning rule, proposed by Hoffman and Richards [54], is used to segment

2D shape into parts. Second, part invariant features are derived for indexing; the

indexing is carried out via hashing. Third, parts stemming from the same model

are integrated together to form groups of consistent hypotheses. Finally, four vot-

ing schemes are proposed to rank the hypotheses in order to reduce the number of

verifications required during the recognition.

4.3.1 Part Segmentation

The notion of recognition based on “parts” has become increasingly popular. Perhaps

the most compelling support for this idea is based on recognition in the presence of

occlusion. Partial occlusion of the object renders global shape descriptors ineffective

for indexing or recognition. In the alignment paradigm, verification or refutation of

a candidate model (i.e., pose estimation) is done in a global manner which considers

portions of model features and portions of sensed features. Occluding objects and

artifacts in feature extraction may degrade the match value, but the alignment method

is still effective because fragments of matching data can be integrated into a single

global model-pose hypothesis. The indexing phase, however, must operate without

a hypothesis. Partitioning a sensed shape into parts seems inevitable for this phase

of object recognition. We use the central silhouette of an aspect model to index
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the aspect, thus, views within the aspect should have more or less same indexing

features. The success of the indexing phase counts on a reliable partitioning scheme

that should be invariant to similarity transformation, robust to local deformation,

and stable with global transformation. A significant aspect of a partitioning scheme

is the way decomposed parts behave under various changes that may arise in the

visual projection. First, changes in shape due to translation, rotation, and scaling of

the 2D shape must not effect the part structure within the shape. Second, changes

are localized to certain portions of the shape. It is natural to demand that local

deformations of the shape should not effect those parts remote to the change. Third,

changes arising from global deformations, such as changes in viewing direction or

viewpoint within a model aspect, or deformation of the boundary due to noise and

spurious data, should only have a small effect on the 2D shape and its part structure.

How should parts of a shape be computed? Several approaches in the past suggest

either the decomposition of its interior region or the segmentation of its boundary.

Region-based parts include a description based on the combination of primitives such

as generalized cylinders [14, 79], and superquadrics [5, 89], or the neck—based and

limb-based description proposed in [99]. In contrast, contour-based segmentations

partition the boundary at zero-crossings of curvature [83] or at high-curvature points

[45]. Primitive-based boundary partitioning schemes approximate the boundary as

a combination of primitives such as constant curvature segments [119] or using a

curvature primal sketch (e.g., cranks, bends, bumps, and ends) [3]. A significant

departure from the traditional boundary-based techniques is the method proposed

by Hoffman and Richards [53] who advocate that part decomposition should precede



 

 

Figure 4.2: Hoffman and Richard’s theory of curve partitioning: joining parts gener—

ally provides concavities in the resulting silhouette.

part description. In contrast to primitive—based approaches, they propose a theory of

parts which depends not on the shape of parts, as described by primitives, but rather

on general principles underlying their formations or “regularities of nature”. The

transversality principle is an example of such a regularity, asserting that “when two

3D entities are combined together to form a composite object, concavities are created

at the join”. This principle provides very general rules for segmenting either 2D or 3D

objects into parts [54]. Part boundaries are naturally delimited by the concavities. In

the case of 2D plane curves or silhouettes, these concavities, as indicated by the small

arrows in Figure 4.2, appear as cusps and occur at minima of negative curvature.

Thus, our rule for partitioning 2D shapes is as follows:

 

Partitioning Rule: segment a curve at concave cusps (or minima of

 
negative curvature) to break the shape into its parts.

  

This partitioning rule leads to a representation of the shape boundary based on

codons [53]. Codons are formed by partitioning curves at minima of curvature; the

maxima and zeros of curvature are used to describe the shape of each segment, result-



 

Max+ Max+ Max+

Min- Min+ Min+ Min- Min- Min-

0+ 0' 1“ 1' 2

Figure 4.3: The primitive codon types proposed by Hoffman and Richard.

ing in five types of codon: 0+, 0', 1+, 1‘, and 2, shown in Figure 4.3, where maxima

of curvature are shown as C] and labeled Max+ if positive or Max- if negative, minima

of curvatures as e and labeled as Min+ if positive or Min- if negative, and zero of

curvatures as O; the arrow shows the traversal of the direction; if the direction of

rotation is counterclockwise, the curvature is positive; otherwise, it is negative; the

figure is placed to the left of the direction of traversal, and the background is to

the right. There is one more codon that describes the degenerate case of a straight

line, i.e., segment with an infinite number of points of zero curvature. Rosin [94] has

extended the five standard codon descriptors to include all cases where a codon is

neighbored by a straight segment or the case where the curve is not necessarily closed.

The codon representation is very sensitive to noise due to the computation of cur-

vature, which can cause many spurious curvature extrema. To suppress noise and keep

gross shape, the curves should be smoothed when computing curvature. Mokhtarian

and Mackworth have shown that cusps are formed when there is a self-intersecting

loop on the contour, and the curve is smoothed with a large-scale Gaussian filter

[82]. Fortunately, a self-intersecting loop cannot occur on the object silhouette, and

thus, no phantom part boundary would be created by curve smoothing. However,
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the codon representation is still unstable, preventing it from being a reliable part

descriptor by itself.

PT p5

Pl

(a) (b)

Figure 4.4: Segmentation of object silhouette into parts. (a) Boundary of squirrel

carving segmented into 7 parts. (b) Boundary of an automobile (Taurus) segmented

into 4 parts.

Examples

We illustrate our part segmentation scheme on several examples of man—made and

sculptured objects. We use a Gaussian filter with a kernel width of 55 pixels to smooth

a curve before the part segmentation scheme is applied to the curve. The results of

the segmentation scheme applied to the silhouettes of a 3D wood carving of a squirrel

and a model car are shown in Figure 4.4. The segmentation of the car in Figure 4.4(b)

might be considered by some to be unnatural. Were the wheels extracted along with

the body, the situation would change; however, we have had difficulty in reliably

extracting the wheels. In theory, the part representation is immune to rotation,

translation, and scaling. Although occasionally the representation may be affected by
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noise and quantization (i.e., some parts may be slightly distorted), the segmentation

technique provides appropriate representations in practice. Moreover, because the

computation of curvature is local, occlusion of some parts of the object does not affect

other parts that are within a small distance from the occlusion. More examples are

given in Figure 4.5 to demonstrate the generality of our part segmentation algorithm;

the decompositions are natural for a variety of objects.

Figure 4.5: Examples of part segmentation on a variety of shapes.

Figure 4.6 demonstrates the robustness of the part segmentation scheme in the

presence of occlusion. Portions of occluded and unoccluded versions of the objects

with identical shapes have identical parts, as required by the robustness criterion.

Figure 4.7 illustrates the robustness of the process under noise and scaling. The top

row of Figure 4.7 shows the contours scaled 100%,75%,50%, and 25% from left to
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Qfififitr
(C) (s) (11)

Figure 4.6: Part evidence survives occlusion. (a)—(d) Parts extracted from silhouette

images of single bear, elephant, deer, and moose, respectively. (e)—(h) Thicker lines

indicate parts used for generating hypotheses for bear, elephant, deer, and moose,

respectively.

 

M

M

Figure 4.7: Part segmentation survives noise and scaling. The black dots indicate the

boundaries of segmented parts.
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right, respectively. Gaussian noise with 0 mean and 2 pixels standard deviation was

added to the contours. The segmentation remains stable as shown in the bottom row

of Figure 4.7.

Figure 4.8 illustrates the robustness of the part segmentation scheme under global

transformation due to view variations. The segmented parts of two sculptured objects,

pencil sharpener and phone, are shown in Figure 4.8 (a) and (b) respectively. The

extreme views of these two model aspects (i.e., the object is rotated 10° around the

vertical axis to the left) were used for part segmentation to generate parts as shown

in Figure 4.8 (c) and (d). This is the worst case within a model aspect. The parts

near the pencil sharpener handle are distorted due to self—occlusion while the rest of

parts remain intact. Although the part segmentation scheme produces exact parts for

the phone, their shapes seem to vary a little. This means that the indexing scheme

must compensate for the part variation by loosing the tolerances of indexing features

extracted from parts. In Figure 4.8(e) and (f), we show the segmented contours of

(c) and ((1) under 2D transformation (rotation and translation). Figure 4.8 indicates

that our part representation is invariant under 2D transformation but slightly variant

under 3D transformation due to self-occlusion and the change of views (however, some

of the parts retain similar structure).

4.3.2 Part Indexing

Some important design criteria for an indexing scheme are: (1) the indexing prim-

itives should be invariant under translation, rotation and uniform scaling; (2) the
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Figure 4.8: Part segmentation survives 2D transformation and 3D view distortion.



124

indexing scheme should be robust under partial occlusion of the object; (3) the in-

dexing scheme should be able to handle spurious and noisy data. All these three

criteria are met by our part segmentation scheme. Under this segmentation scheme,

object boundaries can be reliably segmented into parts that are generally invariant

to rotation, translation, and scaling. In addition, the degradation of the represen-

tation due to occlusion is roughly proportional to the amount of occlusion. In this

section, we derive invariant quantitative attributes from the parts and show how these

attributes can be used for indexing.

Indexing Attributes and Invariants

Given a part (curve) C, let p; = (x,,y,),i = 0, l, - - - , N — I be the points of C. If C

is not closed, then it can be closed by appending the first point (pN 2 p0) so that

C encloses a 2D region. This allows us to compute region attributes from C. We

define the following attributes to encode the part: assuming that no portion of C is

occluded, these attributes satisfy the criteria for indexing.

Compactness: Let A and P be the enclosed area and perimeter of C respectively.

The compactness of the part, <(C), is defined as P2/A where

N—l

P = 2 \/(:C.' - £15.41)2 + (M — 11:41)2

i=0

 

”-1 171' yi1

74:5:

$i+1 yi+1
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where ] - | denotes the determinant. The quantity c has been shown to be invariant

to translation, rotation, and scaling [6, 74].

Roundness: the roundness of C, T(C), is the sum of the absolute curvatures

along C, i.e., 25:31 [m] where It,- is the curvature at point p;. The quantity 7' can be

shown to be invariant to scaling, and the curvature is is also known to be invariant

to rotation and translation.

Skewness: Let pN/g be the midpoint of the part and pm the midpoint of the line

connecting p0 and pN_1. The skewness, of the part, p(C) is defined as

p(C) : CO —1 POP-N—l ' PmfiN/z

llPoP'iv—xllllpmfiN/zll

 

Moment invariants: modified moments using only the curve boundary were

defined in [26] as follows

mpq=L$quds, for p,q:0,l,2,...

 

where f0 is a line integral along the curve C and ds = \/(dx)2 + (dy)2. The modified

central moments are thus similarly defined as

#1»: = [C(x—asm—grds. (4.1)
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where 5: = mlO/mOO and g = mor/moo- For a digital curve C, Eq. (4.1) becomes

lips = Z (x — 573)“?! _ glq- (42)

(C1060

Normalizing the central moments, we obtain

77 _ ”W

W _ p+q+1

#00

 forp+q=2,3,---

These normalized central moments are used to derive the following:

(151 = 7720 + 7702

9252 = (7120 “ 7702)? + 477i1

453 = (7730 — 3771202 + (7703 — 37721)2

(254 = (7730 + 7712)) + (7703 + 7721)2

<l>5 = (7230 — 37712)('730 + 1712)l(7730 + 7712)2 — 3(7721 + 770:3)21 + (31721 — 1703)

X0721 + 7703)l3('730 + '712)2 - (7721 + floslzl

056 = (7720 — 7702)[(7730 + 1712)” - (1721 + 00:02] + 471110730 + 7712)('721 + 1703)

¢7 = (37721 — 1703)(7730 + 7712)l(7730 + 7712)2 " 3(7721 + floslzl + (37712 — 7730)

X(7721 + 7103)[3(7730 + "12)2 — (7721 + 7703f]-

Hu [58] showed that the quantities, 45,,1 S i S 7, are invariant to translation, rota-

tion, and scaling. Since the quantities 45,-,2 S i S 7 are very small and have little

discriminating power, we only use 051 for indexing.
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Convexity: The codon representation is susceptible to spurious extrema resulting

from noise, preventing it from being a reliable part descriptor by itself. However, it

still can be used to determine whether a part is concave or convex: let 0(C) denote

this shape property of a part C. Obviously, a can provide some discriminating power

for part recognition.

We encode each part C using the above attributes quantized in some appropriate

manner. All encoded parts serve as indexing primitives to search a hash table for

model hypotheses. The endpoints of each part, p0 and pN_1, encode the pose of the

part. A third point, such as the point of maximum absolute curvature encodes how

the contour lies relative to the endpoints. Note that for each pair of the corresponding

scene part and model part, these three point correspondences is sufficient to determine

the scale factor of the object size and the roll angle of the image plane as mentioned

in Chapters 2 and 3. If more than one pair exists, the roll angle can be derived in a

least—square error minimization fashion. The aforementioned (variant) attributes can

be used in grouping consistent hypotheses (indexed from parts) into clusters and also

provide an approximate alignment between a sensed part and a model part similar

to it, and thus provide an initial pose hypothesis for the pose estimation algorithm

(i.e., the Newton’s method with Levenberg-Marquardt minimization) which searches

for a global alignment using all parts.

Sketch of Indexing Scheme

Our indexing scheme discretizes the indices and fills the hash table with quantized

values. The advantage is that the run-time indexing step can be done in constant
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time. The disadvantage is that the performance of indexing may be degraded when

many part hypotheses collide in one hash bin. This arises due to the standard way

these methods have dealt with noisy images. During table construction, an entry is

made in each hash bin within an error radius 6 of the actual stored model index value.

Then all relevant hypotheses can still be accessed by looking in just one bin. The

number of collisions in a bin depends on the degree of specificity of the bin. More

specificity means finer bin divisions, but the probability of false dismissal increases

accordingly. On the other hand, less specificity means coarse bin divisions, and the

probability of false alarm increases. The only way to deal with this noise issue is,

for each part indexing attribute, to search the c-volume of index space around the

index (i.e., range search) at run-time, and then to form the union of the retrieved

hypotheses. This certainly reduces the original advantage of the approach. The sketch

of our indexing scheme using range search is given next (see Figure 4.1 for clarity).

Each 2%D edgemap of a model aspect requires a few kilobytes of storage while

the attributes of each part indexing to the model aspect requires a few dozen bytes.

Each model part results in one record being inserted into the hash table. Using the

parts from the sensed image, the index step produces a set of hypotheses for those

models needing to be verified. The hypotheses are then grouped together based on

their model candidates. A good indexing scheme should index into a set of N models

in 0(logN) time or better, provided that there are no more than logN relevant

hypotheses because the system cannot afford to refute too many hypotheses. Given

part representation (a, c, 7', p, (111), the indexing scheme performs a range search using

(a, c :1: cc, 7' :1: 6,, p :1: 6,, (b1 i 5,, ), where e, is the error tolerance of attribute x, for
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the parts having attributes within this range in a database. The tolerance allows for

errors due to quantization, noise, and view variations of shape within a model aspect

(recall each model aspect is represented by the attributes extracted from the central

viewpoint of that aspect). The range search can be implemented using a k — d tree

structure with a worst-case running time of 0(k . Nl‘l/k) [95]. We implement the

range search using a hashing scheme. For each part attribute, we encode its range and

then use each encoded index within this range to hash into an open hash table with

b buckets. The average-case search time would be 0(N/b) for each part. Making b a

significant fraction of N brings the search time down to a constant for most searches.

4.3.3 Hypothesis Grouping

For indexing to be effective, it is important that some data-driven grouping mecha-

nism produce sets of parts likely to come from a single object [75]. Multiple scene

parts drawn from the same observed object should yield similar relative orientation

with parts bound to the same model candidate (e.g. poses should cluster). Scene

parts, drawn from different objects but indexed to the same model candidate or

drawn from the same object but indexed to the same wrong model candidate, are not

likely to have consistent orientations relative to their corresponding parts in the model

candidate. Thus, the correct model candidate will tend to have one large group of

hypotheses while the wrong model candidates will tend to have several small groups

of hypotheses. Consequently, when hypotheses ordering is enforced on the groups of

consistent hypotheses, the correct model candidate will tend to have a better rank
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(rank is defined as the order of the model candidates in the verification phase).

Let {H : p,- —+ (p[,Mm)} be the hypothesis that the scene part p,- corresponds

to a part p:- in the model candidate Mm. Let ’H = {H1,H2,---,H,,} be the n

hypotheses generated from the indexing of all the scene parts. We divide these n

hypotheses according to the models to which the scene parts index and store them

into a correspondence table where the model Mm serves as a key and the hypotheses

Hm = {Hm,,-~,Hmn} (with H", E ’H) as entries. For each model candidate Mm

with a hypothesis list ’Hm, we group the consistent hypotheses based on the relative

orientation between the two corresponding parts within a hypothesis as follows. Let

(x1, y,) and (xn, yn) be the two end points of a part p. The orientation of p is defined

by the angle 9 = tan-1%. Let (H,- : (p,- -—> (p[,Mm)} and {H, : (p, —+ (pg, Mm)}

be two hypotheses from the hypothesis list of the same model candidate with the

orientations, 0,, 0], 0,, and 0;- for parts p,‘, p], p,, and p;- respectively. Then two

hypotheses H,- and H,- are said to be consistent if

K9; - 97) - (92 - 93-)l S Co, (43)

where so denotes some bounds on the tolerance of orientation difference. This con-

sistency grouping of hypotheses may seem to be quite complex because we need to

check every hypothesis against all others, but in fact, we do not need to do so. We

can rearrange Eq.(4.3) as [(9,- - 0:) — (0, — 0;)] S 69 and quantize the difference of

orientation using 269 as a unit into cells in the range of [—277,27r], then, H,- and Hj

are said to be consistent if 0,- — 0: and 0,- — 0;- fall into the same cell. In this way,
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hypotheses in the same cells are grouped together. Thus, hypotheses in 'Hm for model

Mm are divided into some disjoint groups Hm, - - - ,Hm, with Hm, O 71",, = 0,Vi 74 j.

4.3.4 Hypothesis Ordering

There are a few problems associated with our indexing scheme described above, espe-

cially when a large database is considered. The model hypotheses are non-uniformly

distributed in the hash table, resulting in some entries with a large number of model

hypotheses. This situation occurs frequently when the database contains many ob-

jects with similar parts. To minimize the recognition time, our indexing scheme should

exploit prior knowledge to reduce the number of verifications during the recognition

because the verification procedure is computationally expensive. This is accomplished

by verifying the most likely model hypothesis first and then terminating the verifica-

tion procedure once a correct model is identified. Thus, our indexing scheme relies

heavily on the voting scheme for hypothesis ordering to reduce the recognition time.

Four voting schemes are studied below to make efficient use of prior knowledge for

hypothesis ordering.

Majority Voting

Majority voting is the most common voting scheme: the votes are accumulated for

model hypotheses on the basis of the presence of their parts in the scene. The basic

idea behind this voting scheme is based on the fact that multiple parts from the

same scene object should support the same model candidate. Thus, if we accumulate

votes from all scene parts and rank the model hypotheses according to the total
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votes received, then the model hypotheses with the largest number of votes are good

starting points for the verification process.

Let M = {M1,M2,---,MN} be a set of all models in the database, and ’P =

{p1,p2, - . - ,pm} a collection of scene parts. Let M’H = {(p,, Mk),i = 1,- - - ,m,k =

i1, - - - , in} represent the model-hypothesis list retrieved from the hash table by every

scene part p,- E 'P where Mk, I: = i1, - - ~ , in are model candidates. Define a character-

istic function 6(p, M) as

lifpisapartofM

5(p,M)=

0 otherwise

where p is the part identifier and M the model identifier. Then the number of votes

that model M receives is

BMW) = $3602.. M).

where RMV(M) denotes the score of the model hypothesis M obtained via the ma-

jority voting scheme. The most likely candidate models M"' have the largest number

of votes M" = arg maxM RMV(M).

Bayesian Voting Using Part Occurrence

The prior knowledge incorporated in the majority voting scheme described above

assumes that each model candidate, in the model-hypothesis list indexed by a scene

part, has the same likelihood of being identified by that scene part. This assumption

may not reflect the real situation where some model candidates are more likely to
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appear in the scene than others. Thus, given a scene part, the goal is to identify the

model candidate which most likely accounts for the presence of this scene part. To

achieve this goal, we adopt a decision-theoretic approach using a Bayesian framework

where the measure of the discriminatory power of a part for a model is defined in

terms of posterior probability (similar to the Bayesian framework in [120]).

Let P(Mk) be the prior probability that model M), is observed, and P(p,-|Mk) be

the likelihood function where P(p,-]M,-) > P(p,-]M,~) means that part p,- is more likely

to be observed when model M,- is seen than when model M,- is seen. Let P(Mk]p,)

be the posterior probability that reflects the updated belief that model M), appears

in the scene after the part p,- is observed.

In order to derive the posterior probability P(Mk]p,-), we need to estimate prob-

abilities P(p,~]M;,) and P(M;,). If we have no other information, we assume R(Mk)

is the same for every model in M. Once a certain part, pg, is decided to be used

for indexing for model candidates, we compute the likelihood function R(pgle) by

counting the number of occurrences of part p,- in the model Mk:

0(1)“ Mk)

P ,M 2

(pl 1‘) vaEM), 0(Pi,Mk)

 (4.4)

where 0(p,-, Mk) denotes the number of occurrence for a particular part p,- in model

Mk. Note that P(p,-]Mk) = 0 if p,- does not exist in the model Mk. Let M; E M be

the set of model candidates retrieved from the hash table by using p,- as the index.
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The posterior probability P(Mk]pg) is then computed as

P<M0P(p.IMk)
R(Mklp.) = ~ ~ -

ZVMkEMl P(Mk)P(Pile)

 (4.5)

This formula is used to determine the distribution of the posterior probabilities among

the models in Mf indexed by pg. That is

M; P(Mk]p,')—I.0

MEM

Define R(Mklpg) as the indexing power ofpg for the model M1,. If B(Mk|pg) = 1.0, this

means that pg is unique to the model M1,. In other words, if a part detected in the

scene corresponds to pg, it is certain that the model M), is in the scene. On the other

hand, if the indexing power of a part is not 1.0, several models containing the part

may be in the scene. Suppose Mg and M,- are two of the model candidates indexed

by pg, then [P(Mg]pg) > P(M,|pg)] indicates the belief that model object Mg is more

likely to appear in the scene. This indexing power is a decision-theoretic measure of

saliency of a part for identifying a model under the Bayesian framework whereas a

saliency measure based on population [43] is somewhat ad hoc. Once the posterior

probability R(Mklpg) is computed for every model candidate M), E Mf and every

scene part pg 6 P, we can rank the model hypotheses M 6 MH by

BEAM) = i P<Mlp.-)6(p.-. M) (4.6)
i=i

where RBVO(M) denotes the score of the model hypothesis M obtained via the
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Bayesian voting scheme using part occurrence.

Bayesian Voting Using Visual Relevance

The estimated prior probability 13(pgle) in Eq.(4.4) assumes that parts belonging to

the same model have equal probability (i.e., Vpg E Mk,i = 1, - - - ,n, p(pg|Mk) = fi).

This estimation overlooks the fact that some parts may be more likely to identify the

object than other parts belonging to the same model. For example, a model M is

composed of two parts p1 and p2 with p1 occupying 10% of the contour and pg 90%.

Identifying p1 in the scene does not give strong belief that model M is present in the

scene; however, if p2 is observed in the scene, then we have much higher confidence

that model M is present in the scene. Thus, we assign the prior probability to

parts of the same model based on their relative visual relevance. This measure uses

the length of the part normalized with respect to the size of the model. Then the

likelihood function in Eq.(4.4) is changed to

L(P£, Mk)

EVngMg. L(piv Mk)

 1309,1114.) = (4.7)

where L(p.', Mk) denotes the length of part pg occurring in model M1,. The posterior

probability 13(Mlpg) is given by the same formula as in Eq.(4.5).

Note that the weights W(pg) of scene parts pg,i = 1, . - - ,m were assigned equally

in BVO, i.e., W(pg) = 1 /m, because parts were equally likely to occur in the scene,

and thus, were not considered in Eq.(4.6). Here we assign the weights of scene parts

based on their relative length, i.e., W(pg) = Q(pg)/Z:;1 Q(pg) where Q(pg) denotes
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the length of pg. Then the ordering of model hypotheses is based on

Ram/R(Ml = Z P(M|Pi)W(P£)5(Pi, M) (4-8)
i=1

where Raw/R(M) denotes the score of the model hypothesis M obtained via the

Bayesian voting scheme using visual relevance. The justification for incorporating

the weight of scene parts into the hypothesis ordering process is the same as the

explanation in the example given above.

The Hybrid Voting Scheme

The three aforementioned voting schemes are biased in ranking the model hypotheses.

The majority voting (MV) scheme tends to favor model candidates with many parts

because model candidates with fewer parts are less likely to accumulate the same

number of votes as model candidates with many parts. On the other hand, both

Bayesian voting schemes (BVO and BVVR) tend to favor model candidates with

fewer parts because the Bayesian approach will give higher posterior probabilities to

model candidates with fewer parts than model candidates with many parts. BVVR

is less biased than BVO, but a part with larger visual relevance has higher chance of

being distorted when the object is slightly transformed, resulting in a lower rank in

the correct model hypothesis. Thus, we need to design an unbiased voting scheme

for ordering the model hypotheses regardless of the number of parts in the model

candidates.

Let S(M, pg) represent the score for model M when pg is observed in the scene
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and N(pg) the total number of model hypotheses indexed by pg. Let P(M|pg) be the

indexing power of pg as defined in BVVR. Then S(M, pg) is computed as

ll-O + p(M|Pi)N(Pi)l5(Pb M) if 13(MIPi) < 1-0

5(M1pi)= (49)

20.0 if P(M|pg) = 1.0

Note that P(M|pg) is the indexing power of pg for model M and when it is 1.0, it

indicates that model M is present in the scene, thus a very large score is given reflect-

ing this fact. Those model hypotheses with the indexing power P(M|pg) less than

the average m will have P(M|pg)N(pg) less than 1.0; in this case, MV outweighs

BVVR. On the other hand, those model hypotheses with the indexing power greater

than the average will have score higher than 1.0; then, BVVR outweighs MV. Thus,

models with more parts will have less indexing power on their parts and 5'(M, pg) is

scored mainly from MV, while models with less parts will have more indexing power

on their parts and S(M, pg) is scored mainly from BVVR. In this way, the voting

scheme balances the score between the models with various numbers of parts. Then

the ranking of the model candidates is assigned by

RHYBRID(M) = f: 5(M,P.‘)

where RHYBRID(M) denotes the score of the model hypothesis M obtained via this

hybrid voting scheme.
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4.4 Experimental Results

To demonstrate the viability of the proposed indexing scheme for 3D object recog-

nition, we intend to show the following: (1) the indexing scheme can provide a rea—

sonable set of model hypotheses for verification/refutation; (2) model hypotheses

are pruned significantly by the proposed voting schemes which are based on image

evidence and prior model constraints; and (3) the system can recognize partially—

occluded objects.

Experiments were conducted using a database of twenty 3D objects and eighty

2D objects with a total of 658 aspect models. Four sets of test data were used in

simulations:

0 Data Set :11: a copy of all model contour parts from the database (perfect data);

0 Data Set fi2: 2D distortion on Data Set :11 (2D distortion includes 2D transfor-

mation and Gaussian noise added to the contour);

0 Data Set 133: 3D distortion on Data Set 111 (an extreme view of each model

aspect was used) plus Gaussian noise 0 mean and 2 pixels standard deviation

added to the contour;

0 Data Set till: 2D distortion on test data set :13 (i.e., 2D plus 3D distortion on

perfect data which is similar to real data).
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4.4.1 The Indexing Result

To evaluate the performance of our indexing scheme, we are interested in (1) how well

the indexing scheme prunes model-aspect hypotheses and (2) how well the ordering of

hypotheses limits the number of the verifications required. Four voting schemes, MV,

BVO, BVVR, and HYBRID as described in Section 4.3.4, were used to study how they

order the hypotheses. Table 4.1 shows some statistics obtained from these four voting

schemes where the attribute tolerance criteria:(eg, eg, ep, em) = (10,0.1,10,0.01) was

 

 

 

 

 

 

 

 

 

 

 

        
  

used.

Table 4.1: Some statistics for Data Set {14 with 578 test objects.

Number Frequency Total Number of Voting Scheme’s Total Rank

of Parts Hypotheses Generated RMV RBVO RBVVR RHYBRID

1 15 167 89 89 89 89

2 35 12154 1243 294 834 714

3 64 21568 3057 744 1171 1533

4 103 37099 4199 2419 1977 1975

5 121 45741 3528 2342 2272 2150

6 107 47473 1271 2855 1841 877

7 72 34398 1314 2815 1636 964

8 38 18234 727 2020 1803 826

9 21 10643 293 1104 741 491

11 2 947 2 98 27 2

I Expected Value 395 (228424/578) T 27 I 25J 21 L 16  
We can make the following observations from Table 4.1: (i) The number of ex-

pected aspect-model hypotheses indexed (395) is relatively large compared to the

total number of aspect models (658) in the database; however, the expected rank, for

example, 16 for RHYBRID, is relatively small. This means than most of the aspect-

model hypotheses can be ruled out by ordering the retrieved hypotheses. (ii) For
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objects with more than five parts, MV outperforms (i.e., has lowest total rank) the

Bayesian voting schemes, BVO and BVVR; for objects with less than five parts,

BVVR and BVO outperform MV. This result verifies our hypothesis stated in the

Section 4.3.4 that MV tends to favor models with more parts, while BVO and BVVR

favors models with fewer parts. This phenomenon is also depicted in Figure 4.9. (iii)

HYBRID outperforms the other three voting schemes.

THE EFFECT OF PARTS ON VOTING SCHEME

45m I j I 1 I T f fl
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Figure 4.9: The effect of the number of object parts on voting schemes. Data Set 114

and the attribute tolerance criteria (eg, eg, ep, 5451) = (10, 1,10, 0.01) were used.

Table 4.2 lists the number of average hypotheses generated (Nh), number of model

aspects in the database (Now), the reduction rate (R), defined as (Nag, — Nh)/ng,),

and the indexing percentile, defined as (ng, — RHmeD)/(Ndb — 1). As indicated in

Table 4.1, the indexing attributes do not provide a good discriminating mechanism

(395 out 658 hypotheses were generated). This is because they are scale invariant.
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If scale variant attributes, such as the area and perimeter of a part, in addition to

scale invariant attributes, were used in indexing, the aspect-model hypotheses could

be pruned significantly as shown in Table 4.2 where the reduction rate increases

from 40% to 87.1% and the indexing percentile increases from 0.977 to 0.992. The

significant reduction in the number of hypotheses passed to the verification procedure

makes that indexing scheme more practical.

Table 4.2: The effect of using additional variant attributes in indexing.

 

Data Set 114 with 578 test objects was used

Attribute tolerance criteria (e.g., 6,, ep, ed”) = (10,1,10, 0.01)
 

 

 

Indexing Scheme Ndb I M, R (%) Rug/BR”) Indexing Percentile

Scale Invariant 658 395 40.0 16 0.977

Scale Variant & Invariant 658 85 87.1 6 0.992         

To avoid those indexed hypotheses randomly clustered on aspect-models, we adopt

the pose consistency grouping on the retrieved hypotheses. Table 4.3 shows the total

ranking before and after the hypothesis grouping. For the HYBRID voting scheme,

the total ranking drops from 13579 to 9621 with a pruning rate of 29.1%. This

result indicates that the retrieved hypotheses should be grouped based on their pose

consistency before the hypothesis ordering to improve the recognition performance.

A thorough study of the performance of the voting schemes on four sets of test data

is given in Table 4.4. It can be seen from Table 4.4 that the tolerance on attributes

plays an important role in indexing: when the tolerance is loose, the number of

indexing failures decreases while the number of verification required, as indicated

by the average rank, increases; and when the tolerance is tightened, the number of
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Table 4.3: Hypothesis pruning via pose consistency grouping.

 

Data Set fi4 with 578 test objects was used

Attribute tolerance criteria (eg, 6,, ep, em) = (10,1,10, 0.01)

Hypothesis Voting Scheme MV BVO BVVR HYBRID

Total Ranking Before Pose Consistency 18112 15939 14294 13579

Total Ranking after Pose Consistency 15723 14780 12391 9621

Hypothesis Pruning Rate (%) 13.2 7.3 13.3 29.1

 

 

 

 

        

verifications required decreases but the number of indexing failures increases. The

choice of the attribute tolerance depends on the percentage of indexing failures (false

dismissal) a system allows. Table 4.4 also shows that HYBRID outperforms the

other three voting schemes in all four test data sets. A more detailed comparison is

depicted in Figure 4.10. These results suggest that the HYBRID voting scheme should

be used in ordering hypotheses to reduce the number of verifications required during

the recognition. The execution time for the indexing scheme to generate hypotheses

at run-time takes about 0.1 seconds on a SUN Sparc 20.

4.4.2 Recognition Results

We have shown the viability of the proposed indexing scheme for 3D object recogni-

tion through hypotheses grouping and ordering. The efficiency of the indexing scheme

can also be achieved if tighter tolerances of indexing attributes are used but at the

risk of more indexing failures, a situation which most recognition systems attempt

to avoid. Sixty test images containing objects with sculptured surfaces (half of them

containing partially occluded objects), were used to evaluate the performance of the



Table 4.4: Performance of hypothesis voting schemes.

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

    
 

 

 

 

ATCII Data Average Ranking Indexing

SCt ll RMV Reva I RBVVR I RHYBRID Failures

1 1.00 1.00 1.00 1.00 0

1 2 1.06 1.05 1.04 1.06 31

3 1.33 1.26 1.41 1.41 446

4 1.41 1.32 1.45 1.44 458

1 1.12 1.13 1.14 1.12 0

5 2 1.67 2.52 2.11 1.46 1

3 17.61 14.47 11.93 10.56 25

4 19.00 15.44 12.85 11.81 28

1 1.55 1.59 1.76 1.29 0

10 2 3.46 4.80 5.43 2.89 0

3 26.39 24.69 20.96 15.69 2

4 27.20 25.57 21.44 16.65 2

1 2.29 2.33 2.74 1.50 0

15 2 5.55 6.73 7.43 3.40 0

3 32.11 30.75 25.66 19.99 0

4 34.37 31.92 26.36 20.77 0

1 3.27 3.19 3.87 1.75 0

20 2 6.87 7.91 8.86 3.48 0

3 36.95 38.09 30.11 24.05 0

4 37.94 40.42 31.12 24.16 0        
  ATC denotes attribute tolerance criteria (eg, e,, e,,, egg“)

ATCfin is defined as (n, 0.1n, n, 0.001n)
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Figure 4.10: Comparison of the performance of hypothesis voting schemes. (a) Data

Set Ill with 658 objects. (b) Data Set 112 with 658 objects. (c) Data Set 113 with 578

objects. ((1) Data Set 134 with 578 objects.
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recognition system. Figures 4.11 and 4.12 show a few of recognition results. The rest

of the results will be presented in the next chapter. Table 4.5 illustrates the perfor-

mance of the recognition system. Figures 4.11 and 4.12 show the test images after

indexing and recognition via alignment: the aligned model edgemaps are overlaid on

the input images. Table 4.5 gives details on the indexing and alignment steps. It can

be seen from Table 4.5 that the indexing step generates too many hypotheses (column

1) from most of the test images, but through hypotheses grouping and ordering, only

a few hypotheses (column 2) need to be checked in the verification phase. For the test

images cup and soap, they both are convex objects, as can be seen in Figure 4.11(c)

and (d), and contain only one part. As a result, only one hypothesis was generated.

However, the indexing would fail if they are partially occluded. The indexing failure

issue will be addressed in Chapter 5. The reason for the low number of required veri-

fications was that a tight attribute tolerance criteria was used to prune the incorrect

hypotheses and that only a small portion of the parts corresponding to the correct

model was occluded (see Figure 4.12). The final 2 columns of Table 4.5 illustrate

that alignment was achieved within 1.4 pixels MSE on the edgemaps within 18 iter—

ations of the hill-climbing procedure. Note that only the non-occluded contours of

the test object were used to compute the MSE. The goodness of the fit is also shown

in Table 4.5. In most cases, the pose parameters were achieved within reasonable

ranges.
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Table 4.5: Results of model indexing and hypothesis verification.

 

Number of models in the database: 658.

Attribute tolerance criteria (eg, eg, ep, em) = (50,10, 5.0, 0.005)

Input parameters for alignment: E, = 1.6 pixels and [max = 30 iterations.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Object Model Indexing Hypotheses Verification (Pose Estimation)

NHG Rank Eg, Egg E, E0, EN MSE filter

blockBl 102 1 1 0 0.001 0.7 0.03 0.83 4

camarol8 26 1 l 1 0.000 1.7 0.09 1.06 18

cup 1 l l 1 0.006 0.2 0.20 1.05 12

soap 1 1 2 0 0.002 0.4 0.05 1.02 3

taurusl 113 1 0 2 0.005 0.3 0.28 1.31 5

truck4 217 1 3 2 0.012 0.5 0.04 0.95 8

elephantlI 160 l 2 0 0.010 1.0 0.06 0.97 10

gorillalt 167 2 3 3 0.005 0.8 0.46 1.26 4

lionlOI 141 2 2 1 0.005 0.5 0.24 1.37 6

phone13I 60 l 0 2 0.007 0.7 0.03 0.86 5

sprayer7I 35 l 1 0 0.010 1.7 0.33 0.98 3

swan2j‘ 131 1 2 1 0.007 0.4 0.13 0.75 3            
 
NHG represents the number of hypotheses generated.

E? = II 13 —- pggggell where 13 is estimated parameter value of pm”.

The measure unit for Egg & Egg, is pixels, for E0, is degrees, for EN is radians.

I indicates that the test object is partially occluded.
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(b) camarol8

  
(d) soap

 

(e) taurusl (f) truck4

Figure 4.11: Examples of hypothesis verification via model fitting.
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a elephantl b orillalg

 

    
(e) swan2 (f) sprayer7

Figure 4.12: More examples of hypothesis verification via model fitting.
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4.5 Summary

We have proposed a new shape—based indexing scheme applicable to a large class of

rigid curved objects. Indexing is based on invariant attributes extracted from parts

on the object silhouette. We have presented a part representation that is invariant

under 2D affine transformation (rotation, translation and scaling), and that provides

robustness for effectively supporting indexing in the presence of occlusion and spurious

noise. We have incorporated the pose consistency constraint to increase the accuracy

of selecting model—aspect hypotheses. We have also investigated various hypothesis

voting schemes that exploit prior knowledge to order model-aspect hypotheses for

efficient search for candidate models. When combined into a complete system, these

techniques make progress toward improving accuracy and efficiency by pruning false

hypotheses and minimizing unnecessary verifications.

The work on indexing was framed within the general alignment paradigm pro-

posed by David Lowe [76]. Our recognition experimental results have shown that we

have made good progress toward a general alignment system where models can be

taught via input imagery. This system should work well on some existing recognition

problems. Although we have only used shape features, the paradigm can easily ac-

commodate other types, such as color or texture features. Moreover, we could also

include shape features derived from the internal object edges. In our experiments,

we have made stronger assumptions on the quality of object contours available from

the input image than were made by Lowe. The part theory applies, however, to open

contours so it is not required that an entire object is segmented from the background.
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Surely, degraded input implies increased ambiguity and computational load. We will

study recognition in more difficult imagery in future work.



Chapter 5

Object Recognition and Tracking

This chapter is concerned with the integrated recognition system as well as the appli-

cability of this system for object tracking. We have described the object representa-

tion in Chapter 2, the matching algorithm in Chapter 3, and the indexing techniques

in Chapter 4, In this chapter, we propose a hierarchical verification strategy to cut

down the recognition time and explain how we can track a moving object in an image

sequence.

The important feature of the integrated recognition system is that it does not

need to verify all the false model hypotheses at a full length. False model hypotheses

can be repudiated at an early stage of the verification process. Only hypotheses of

correct models need to be verified at a full length. Thus, we propose conservative

threshold values to determine when a false model hypothesis should be rejected during

the verification process.

This chapter is divided into 3 sections. Section 5.1 proposes a verification strat-

egy to expedite the recognition. Section 5.2 demonstrates the applicability of the
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recognition system for tracking moving objects in image sequences. A summary of

the experiments is given in Section 5.3.

5.1 Object Recognition

The object recognition system operates within the alignment paradigm. Four stages

are involved in this framework: (1) model building, (2) feature extraction, (3) model-

aspect hypothesis generation via indexing, and (4) model—pose hypothesis verification

through aligning the 3D projected model with the object image features. Both model

building and index construction are processed off-line. The computation time for

feature extraction is fixed. Thus, the recognition time is primarily determined by the

efficiency of hypothesis generation and verification. The indexing scheme must com-

pensate for noise and view variation by increasing the indexing attribute tolerance,

thus, increasing the number of incorrect model-aspect hypotheses that are generated.

To minimize the recognition time, the indexing scheme exploits some prior knowl-

edge to reduce the number of verifications required during recognition. However, the

recognition system may still need to repudiate a few false model-pose hypotheses be-

fore the correct one is verified. For example, the experimental results in Section 4.4

indicate that a significant percentage of model-aspect hypotheses can be removed

from consideration via hypothesis ordering, but for a loose indexing attribute toler-

ance, such as ATCII5 in Table 4.4, on the average, about 10 model-pose hypotheses

still need to be tried before the correct one is verified. This slows down the recogni-

tion significantly. Consequently, shortening the verification time for false model-pose
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hypotheses becomes a necessity for the recognition system to be more efficient. As

described next, we incorporate a hierarchical verification strategy into the recognition

system to expedite the recognition.

5.1.1 Hierarchical Verification

The model-pose hypothesis verification is carried out through robust pose estimation,

as described in Chapter 3, which uses Newton’s method with Levenberg-Marquardt

minimization (N—L—M). The experimental results in Chapter 3 show that for correct

model aspects with good initial parameter estimates relatively close to true parameter

estimates, the N-L—M method converges within a few iterations. But for wrong model

aspects, the N-L—M method tends to wander around the parameter space, resulting

in a slow convergence to a local minimum or no convergence at all. Accordingly, a

tremendous amount of computation time is wasted on verifying incorrect model-pose

hypotheses. Thus, it is essential to reduce the number of iterations in the N-L-M

method when incorrect model-pose hypotheses are verified.

The edgemap matching algorithm (i.e., the N-L—M method), presented in Fig-

ure 3.2 of Chapter 3, uses two parameters: the maximum number of iterations al-

lowed, Imax, and the matching error threshold, E, to determine when the algorithm

should terminate. For a correct model aspect, a large value of Imax and a small value

of Eg tend to lead the algorithm to either converge with a mean-squared distance

error (MSE) less than E or to select the best match after Imax iterations are tried.

In either case, the verification is thoroughly carried out, and the result can be used
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to determine whether to accept or refute a model-pose hypothesis. However, such an

exhaustive verification for an incorrect model-pose hypothesis is neither necessary nor

possible—the incorrect model-pose hypothesis can be detected after a few iterations

of the N-L—M method.

To expedite the recognition, we propose a hierarchical verification strategy as

follows. Three situations may occur during the verification process:

(1) fitting the correct model aspect to the object image features;

(2) fitting the wrong model to the object image features;

(3) fitting the correct model but with wrong aspect to the object image features.

Normally, for those model-pose hypotheses where the model aspect and the observed

object stem from the same object model but different aspects, the fitting error in—

dicated by the MSE is in between that from situation (1) and that from situation

(2). We can vary the matching error threshold, E, and the maximum number of

iterations allowed, Imax, to control the thoroughness of a verification. Three levels

of verification, coarse, middle, and fine, are defined based on the various values of

[max and E. During the recognition, model-pose hypotheses are verified in the order

of their rank obtained from indexing. Each ranked model-pose hypothesis is first

verified at the coarse level; if it does not survive at the coarse level, it is removed

from further verification; if it survives, then it is verified at the middle level; if it sur-

vives again at this level, then it continues to be verified at the fine level; otherwise,

it is rejected. The specified error threshold of the fine level will be used to accept a

model-pose hypothesis whenever the fitting error is below this error threshold during
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Input: a set of ranked model-pose hypotheses generated via indexing;

three sets of threshold values, (Limp, Ef), (1m EI"), and (liar, E!)

for coarse, middle, and fine level of verification, respectively.

Outputs: either failure or the model identity and pose parameters 65.

Processing: this verification strategy uses the N-L—M method to compute the

pose parameters <3 and the fitting error MSE iteratively for each

hypothesis until the correct one is found; otherwise report failure.

The iterations repeat the following steps:

(1) Get the next lower ranked model-pose hypothesis;

(2) Initialize the iteration counter: Iter = 1;

(3) If MSE _<_ E{, then accept the current hypothesis

(i.e., report the pose parameter (3 and the model identity)

and terminate the whole verification process;

(4) If MS'E > E: and Iter > 15,”, then reject the current hypotheses and

go to step (1); otherwise go to the next step;

(5) If MSE > E,“ and Iter > 1:3“, then reject the current hypotheses and

go to step (1); otherwise go to the next step;

(6) If MS'E > ng and Iter > 15,“, then reject the current hypotheses and

go to step (1); otherwise go to the next step;

(7) Increase Iter by 1 and go to step (3).

 

Figure 5.1: The hierarchical verification strategy.
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verification. Once a ranked model-pose hypothesis is accepted, the whole verification

process terminates; otherwise this hierarchical verification process continues with the

next lower ranked model—pose hypothesis. The hierarchical verification strategy is

sketched in Figure 5.1.

5.1.2 Monte Carlo Experiments

In this section, we describe several Monte Carlo experiments on a large number of

test images conducted to study what empirical values for E} and Imax should be used

for verifications at the coarse, middle, and fine level, respectively.

Fitting Correct Model Aspects to Images

In this experiment, six randomly chosen views for each of 16 models and one view

for each of 4 single model aspects in our database were generated as the test images.

Thus, we had 100 randomly selected test images for 100 (out of 576) model aspects.

These 100 model-pose hypotheses were tested via the N-L—M method.

Table 5.1 shows the results, which were collected after fitting 100 model aspects

to their corresponding test images. The cell (Imax, E) in Table 5.1 indicates the

number of model-pose hypotheses in which the N-L—M method converges within Imax

iterations and with an MSE less than E. For example, for [max = 5 iterations and Et

= 4.0 pixels, 98 (out of 100) model-pose hypotheses are accepted (i.e., survive); two

model-pose hypotheses did not survive because either bad initial parameter estimates

or small values of [max were used in the N-L—M method. We used another set of

initial parameter estimates for these two model-pose hypotheses, and in both cases,
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Table 5.1: Number of verifications in fitting correct model aspects to images as a

function of E, and Imax.

 

100 model-pose hypotheses were used.
 

 

 

 

 

 

 

 

 

 

 

   

Imax Error Threshold: Eg (pixels)

(iterations) 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0

3 26 46 63 80 89 96 97 99

4 39 60 72 87 95 97 99 99

5 45 63 81 91 95 98 99 99

6 47 66 85 93 96 98 99 100

7 48 68 88 93 97 99 99 100

8 51 70 89 95 97 99 99 100

9 51 74 91 96 97 99 99 100

10 52 75 92 97 98 99 100 100

11 52 75 93 97 99 100 100 100

12 53 76 94 98 100 100 100 100         
the N-L-M method converged within 5 iterations and with a fitting error less than

2.0 pixels MSE. The N-L-M method also converged within 15 iterations when the

original initial parameter estimates were used. This suggests that for verification at

the fine level, the N-L—M method should use a few sets of initial parameter estimates

and a large value for [max to ensure that correct model-pose hypotheses are always

accepted. It can be seen from Table 5.1 that with Imax = 6 iterations and Eg = 6.0

pixels, all 100 model-pose hypotheses survive. Thus, for this set of model aspects,

[max = 6 iterations and E = 6.0 pixels are good criteria for verification at the coarse

level to refute wrong model-pose hypotheses.

Fitting Incorrect Model Aspects to Images

In this experiment, we hoped to demonstrate that most wrong model-pose hypotheses

are refuted through verification at the coarse level. For each of the aforementioned
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Table 5.2: Number of verifications in fitting wrong models to images as a function of

E and Imax.

 

 

 

 

 

 

 

 

 

1000 model-pose hypotheses were used.

Imax Error Threshold: Eg (pixels)

(iterations) 1.0 2.0 2.5 3.0 4.0 5.0 6.0

1 0 0 0 0 0 1 3

2 0 0 0 l 1 3 4

3 0 0 l 1 2 3 7

4 0 0 1 l 3 3 7

5 0 0 1 l 3 3 9

6 0 0 1 l 3 4 11          
 

100 test images, 10 (excluding the correct one) randomly selected model aspects were

used to form 10 model—pose hypotheses. All 1000 model-pose hypotheses were tested

using the N-L-M method.

Table 5.2 shows some results from this experiment. As can be seen in Table 5.2,

with Eg = 6.0 pixels and Imax = 6 iterations (i.e., the criteria for verification at

the coarse level), only 11 out of 1000 model-pose hypotheses survived the coarse

level. Table 5.3 lists the fitting errors of these 11 model-pose hypotheses. It shows

in Table 5.3 that the best 3 model-pose hypotheses are either with the same object

model (sprayer7-sprayer10) or with neighboring aspects (zebral-zebr020 and phone 7-

phone6). This suggests that the goal for verification at the middle level is to refute

those model-pose hypotheses in which the model aspect and the observed object stem

from the same object model but different aspects, or from similar object models.
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Table 5.3: Incorrect model-pose hypotheses that survived at the coarse level.

 

 

 

 

 

 

 

 

 

 

 

 

Model Aspect Test Image MSE (pixels)

sprayer7 sprayer10 2.3

zebral zebra20 3.7

phone7 phone6 3.8

blockB7 soap 4.9

camaro20 taurus2 5.4

lion29 lion10 5.4

elephantl gorilla16 5.5

soap taurusl 5.8

gorillal gorilla16 5.8

soap taurus5 5.9

soap zebra20 5.9     
Fitting Models to Neighboring Aspects

To study the effect of neighboring aspects on the fitting error, 100 randomly selected

model-pose hypotheses were generated, in which model aspects and their correspond-

ing test images were from neighboring aspects. Table 5.4 lists the results of these

100 model-pose hypotheses. As shown in Table 5.4, only 5 out of 100 model—pose

hypotheses survived when Imax and E were 12 iterations and 3.0 pixels, respectively.

Note that with [max = 12 iteration and E = 3.0 pixels, all correct model-pose hy-

potheses survive as shown in Table 5.1. This suggests that for verification at the

middle level, Imax = 12 iterations and E; = 3.0 pixels are good criteria to remove

model—pose hypotheses in which model aspects and test images are from the same

object model but different aspects.

From the results of above three experiments, we are able to determine the empirical

values for Imax and E to be used in verifications at various levels. These values are

shown in Table 5.5. Note that two sets of initial parameter estimates are used for
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Table 5.4: Number of verifications in fitting models to their neighboring aspects as a

function of Eg and Imax.

 

 

 

 

 

 

 

 

 

 

 

 

 

100 model-pose hypotheses were used.

Imax Error Threshold: Eg (pixels)

(iterations) 1.0 2.0 2.5 3.0 4.0 5.0 6.0

3 0 0 0 3 13 23 40

4 0 0 0 3 17 27 45

5 0 0 2 4 20 28 50

6 0 0 2 4 20 32 51

7 0 0 2 4 20 36 52

8 0 0 3 4 20 39 56

9 0 0 3 4 21 43 57

10 0 0 3 5 24 44 59

11 0 0 3 5 25 45 61

12 0 0 3 5 26 47 63           

verification at the fine level to prevent the N-L—M method from getting stuck in local

minima. Normally, one set of initial parameter estimates is sufficient for the N-L-M

method to converge because the basin of convergence is broad as shown from the

experimental results in Chapter 3. The extra set of initial parameter estimate is used

to further guarantee the convergence of the N-L—M method. Thus, if a model-pose

hypothesis, using one set of initial parameter estimates in the N-L-M method, passes

the verification at the middle level, but fails at the fine level, then the other set of

initial parameter estimates is used for the N-L-M method to test this model-pose

hypothesis again. If one set of initial parameter estimates causes the N-L-M method

to converge, the other set will be ignored.
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Table 5.5: Parameters for verifications at various levels.

 

 
 

 

 

Level [gmat (iterations) Eg (pixels)

coarse 6 6.0

middle 12 3.0

fine 18 2.0      

An Example

We provide an example to demonstrate how this hierarchical verification strategy ex-

pedites the recognition. We use the test image for model aspect gorilla20 to index

into the database. 137 model-aspect hypotheses are retrieved. The correct model

aspect, gorilla20, is ranked as the 5th among these 137 model—aspect hypotheses. Ta-

ble 5.6 lists the number of iterations required for the first five model-pose hypotheses

using the hierarchical verification strategy. The input parameters for verifications at

various levels as shown in Table 5.5 were used. Since model aspect gorilla3 is neigh-

boring to model aspect gorilla20, the corresponding model-pose hypothesis passes

the verification at the coarse and middle levels, respectively; the rejection at the fine

level costs totally 18 iterations in the N-L—M method. Model aspect gorilla13 is from

the same object model with model aspect gorilla20; the corresponding model-pose

hypothesis only passes the verification at the coarse level; the rejection at the middle

level costs 12 iterations. Both model-pose hypotheses for lion31 and sharpenerb’ are

rejected at the coarse level, and each rejection costs 6 iterations. When the correct

model aspect gorilla20 was used in alignment, the N-L—M method converged with an

MSE less than the specified error threshold E of the fine level; the N—L—M method

accepted the hypothesized model aspect and pose, and any further testing was ter-
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minated. The total cost for the hierarchical verification was 47 iterations as shown

in Table 5.6. The total cost for the non—hierarchical verification would be 77 (i.e.,

18 x 4 + 5) iterations; each wrong model-pose hypothesis costs 18 iterations, and the

correct one costs only 5 iterations. Let IN and IH denote the number of iterations

required for the non—hierarchical and hierarchical verification, respectively. Define the

speedup of using the hierarchical verification over the non-hierarchical verification as

S = (IN — IH)/IH. Then the speedup in this example is 63.8%. It is straightfor-

ward to derive the upper and lower bounds of S. Suppose the rank for the correct

aspect-model hypothesis is N, and the corresponding model-pose hypothesis costs

m iterations for verification. The upper bound of 5' occurs when the N-1 incorrect

model-pose hypotheses, ranked from 1 to N—1, are tested and rejected at the coarse

 level. Then S = [18x(N-lg(+;l:)[::$~'l)+m]. Thus, when N is very large, the upper

bound of S is approximately 200%. The lower bound of S occurs when N = 1, i.e.,

there is no wrong model-pose hypothesis to reject; in this case S = 0. Note that the

hierarchical verification strategy would gain some speedup only if it can reject wrong

model-pose hypotheses at the early stage of the N-L—M method. More examples are

given in the next section.

5.1.3 Recognition Results

In this section, we intend to show the efficiency and viability of the proposed recogni-

tion system. The hierarchical verification strategy is incorporated in the recognition

system to improve the efficiency of the recognition. The viability of the recognition
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Table 5.6: Hierarchical verification for model aspect: gorilla20.

 

 

 

 

 

 

 

Model Indexing Hypothesis Verification

Rank Model Aspect Coarse Middle Fine Iterations

1 gorilla3 pass pass reject 18

2 gorilla13 pass reject 12

3 lion31 reject 6

4 sharpener5 reject 6

5 gorilla20 accept 5        
 

system is demonstrated through alignment results of sixty real sculptured objects; 28

of them are with non-occluded objects, and 32 of them are with partially occluded

objects. Tables 5.7 and 5.8 give details on the indexing and alignment steps. Fig-

ures 3.10, 3.11, 4.11, 4.12, 5.2, 5.3, and 5.4 show the test images after indexing and

recognition via alignment: the aligned model edgemaps are overlaid on the input

images.

Recognition of Non-occluded Objects

Table 5.7 lists the number of model-aspect hypotheses generated (NH) via in-

dexing, the rank of the correct model aspect (R1,), the goodness of the fit

(E13,Ety,E,,Ea,EN), the fitting error (MSE), the number of iterations required

for the hierarchical verification (In), the number of iterations required for the non-

hierarchical verification (IN), and the speedup of using the hierarchical verification

(3), defined as (IN — IH)/IH. 3 (out of 28) test images contain objects with only

one part in their silhouettes; these three objects are cup and soap in Figure 4.11(c)

and (d), respectively, and blockBIO in Figure 5.2(c). As shown in the column NH
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0) taurus3 (k) taurus4 (l) taurusS

Figure 5.2: Examples of recognition.
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(k) camaro27 (l) camaro36

Figure 5.3: Examples of recognition.



166

   (b) elephant20

 

     
(k) swan3 (l) zebralO

Figure 5.4: Examples of recognition.
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of Table 5.7, both soap and cup have only 1 model-aspect hypothesis generated via

indexing, but blockBIO has 10. Since bloc/c810 has only one part, all the 10 generated

model-aspect hypotheses for blockBIU will have the same scores weighted by any of

the hypothesis ordering schemes as presented in Chapter 4; thus, the correct one is

ranked as the 5th, i.e., the average rank. The rest of the test images contain objects

with several parts in their silhouettes, and consequently, the number of model-aspect

hypotheses generated from indexing increases. However, the HYBRID hypothesis

ordering scheme as presented in Chapter 4 has effectively ranked the correct model-

aspect hypothesis. As can be seen from the column Rk of Table 5.7, 27 (out of 28)

test objects are ranked as the first, which implies only one verification. This indicates

that the HYBRID hypothesis ordering scheme has effectively pruned the incorrect

model-aspect hypotheses using the prior knowledge about the pre—stored models and

the visual evidence of the observed objects. As indicated in the column S of Table 5.7,

the integrated recognition system does not gain any speedup by using the hierarchical

verification strategy because most of the correct model-aspect hypotheses require only

one verification; however, the overall recognition time for each of these 27 objects,

indicated by the column IH of Table 5.7, is smaller than the recognition time for the

test object, bloc/c810, which has gained some speedup (S = 128%). Thus, the overall

speed of the recognition system is not evaluated by the speedup S but by the total

iterations required for verification.

The columns MSE and IH of Table 5.7 illustrate that alignment was achieved

within 2.0 pixels MSE on the edgemaps and within 28 iterations of the N-L-M method.

The goodness of the fit is also shown in Table 5.7. In most cases, the pose parameters
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Table 5.7: Recognition results for 28 non—occluded objects.

 

Number of model aspects in the database: 658.

Indexing attribute tolerance criteria (eg, 6,, ep, em) = (5.0, 1.0, 5.0, 0.005)

Parameters for hierarchical verification are specified in Table 5.5.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Object Indexing Hypothesis Verification (Pose Estimation)

NH R]. E, E.” E, E0 EN MSE I” IN S(%)

blockBl 102 1 1 0 0.001 0.7 0.03 0.83 4 4 0

blockB4 114 1 2 0 0.006 0.1 0.33 0.77 5 5 0

blockB7 91 1 2 1 0.001 0.6 0.04 0.90 4 4 0

blockBlO 10 5 3 0 0.004 1.5 0.12 1.04 28 64 128

blockBl3 116 1 3 0 0.005 0.7 0.06 1.02 4 4 0

blockB16 111 1 1 0 0.005 0.5 0.21 0.96 4 4 0

camar08 223 1 3 2 0.009 0.4 0.06 1.16 9 9 0

camarol8 26 l 1 1 0.004 0.4 0.03 1.06 16 16 0

cup 1 1 1 1 0.006 0.2 0.20 1.05 l2 l2 0

face* 113 1 0 0 0.002 2.2 0.20 1.39 7 7 0

phonel 50 1 0 0 0.005 0.7 0.08 1.24 4 4 0

phone6 71 1 1 0 0.000 0.4 0.06 1.08 6 6 0

phone7 82 1 1 0 0.002 1.0 0.08 1.28 5 5 0

sharpenerlO 88 1 3 0 0.001 2.4 0.13 1.36 8 8 0

soap 1 1 2 0 0.002 0.4 0.05 1.02 3 3 0

swanll 64 1 0 0 0.001 1.0 0.15 0.99 4 4 0

swan13 42 1 2 0 0.002 1.7 0.08 0.97 6 6 0

taurusl 113 1 0 2 0.005 0.3 0.28 1.31 5 5 0

taurus2 173 1 3 0 0.002 2.0 0.06 1.47 3 3 0

taurus3 153 1 3 0 0.002 2.3 0.04 1.65 3 3 0

taurus4 47 1 4 0 0.008 1.2 0.25 1.20 5 5 0

taurus5 58 1 2 0 0.004 0.8 0.08 0.89 3 3 0

taurus8 61 1 2 0 0.002 2.1 0.04 1.22 6 6 0

taurusl3 30 l 3 1 0.000 1.1 0.21 1.38 6 6 0

taurusl4 69 1 3 0 0.007 0.9 0.11 1.16 5 5 0

taurule 147 1 8 1 0.018 4.9 0.39 1.58 18 18 0

taurus20 82 1 l 1 0.005 1.6 0.12 1.92 4 4 0

truck4 217 1 3 2 0.012 0.5 0.04 0.95 8 8 0               (tutu, s,a, N) represents the object pose where (it, ty) is 2D translation, .9 the

scale factor, and a and N the rotation angle and axis, respectively.

E, denotes Ilp — pgm,” where 13 is the estimated value of the ground truth pg”...

* ground truth not actually known (only approximation).
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were achieved within reasonable ranges. Note that for the test object taurusIQ, the

large error in t, (8 pixels off the ground truth) was due to the large error in s (1.8%

off the ground truth). The error in tr was compensated by the error in 3, resulting in

a reasonable fitting error (1.58 pixels MSE) on the edgemaps. Nevertheless, the con-

vergence of the fitting was very slow (18 iterations), and also the errors in rotational

parameters were quite large; 4.9 degrees off the ground truth for the rotation angle

a, and 0.39 radians off the ground truth for the rotation axis 17. This provides an

example in which an acceptable fitting error does not necessarily guarantee the accu-

racy of pose parameters. As discussed in Chapter 3, the accuracy of pose parameters

is affected by the shapes of the objects. The execution time for each iteration of the

N-L—M method, excluding I/O, is about 0.1 second on a Sparc 20, and the execu-

tion time for the indexing scheme to generate hypotheses for each test image, again

excluding the time on loading the database into memory, takes about 0.1 second.

Recognition of Occluded Objects

Results with occluded objects are given in Table 5.8: the notations are the same

as those in Table 5.7. Note that in the column R], of Table 5.8, five test objects,

blockAI, block/15, block/19, blockA 14, and blockA16, have the symbol —, which denotes

indexing failure. Because these five objects have only one part in their silhouettes and

they are partially occluded, indexing fails. This is one break point of the indexing

scheme. Without the help from indexing to prune the model-aspect hypotheses, a

lot of verifications need to be performed. For example, for the test object block/11,

34 model-pose hypotheses needed to be tried first because they were generated from



Table 5.8: Recognition results for 32 occluded objects.
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Indexing attribute tolerance criteria (eg, 6,, ep, egg”) = (50,10, 5.0,0.005)

Number of model aspects in the database: 658.

Parameters for hierarchical verification are specified in Table 5.5.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

 

 

 

 

 

Object Indexing Hypothesis Verification (Pose Estimation)

NH 12. EgnggI E, [Ea] EN MSE] 1,, I 1,V IS(%)

blockAl 34 - 0 2 0.007 0.4 0.16 1.02 2081 6233 199

blockA5 42 - 5 3 0.015 1.6 0.13 0.88 4200 6305 199

blockA9 44 - 1 2 0.010 1.2 0.43 1.09 4212 6321 200

blockA 14 8 - 4 1 0.001 2.2 0.60 1.03 2000 5996 200

blockA16 44 - 0 0 0.003 0.1 0.33 1.29 4210 6319 199

camaro20 126 1 1 0 0.001 0.7 0.03 0.83 4 4 0

camaro27 25 1 2 0 0.009 0.2 0.14 1.79 4 4 0

camaro36 189 1 5 1 0.017 1.8 0.61 1.62 3 3 0

camaro37 170 1 1 2 0.005 1.2 0.03 1.74 2 2 0

can 181 1 0 0 0.003 0.8 0.05 0.94 4 4 0

elephantl 160 1 2 0 0.010 1.0 0.06 0.97 10 10 0

elephant20 239 25 4 5 0.006 2.0 0.16 1.06 179 437 144

gorillal 167 2 3 3 0.005 0.8 0.46 1.26 10 22 120

gorilla20 137 5 3 0 0.009 0.5 0.01 0.85 47 77 64

lion10 141 2 2 1 0.005 0.5 0.24 1.37 12 24 100

lion29 240 12 1 0 0.000 0.5 0.06 1.56 77 203 164

mug7 194 59 1 1 0.008 3.9 0.80 1.02 388 1054 173

mug26 216 33 2 0 0.010 0.2 0.10 0.98 223 583 161

phone10 103 32 1 0 0.000 0.0 0.15 1.78 196 568 190

phonel3 60 1 0 2 0.007 0.7 0.03 0.86 5 5 0

pigl 204 1 0 0 0.000 0.1 0.03 1.22 5 5 0

sharpenerl 226 1 3 3 0.005 3.1 0.02 0.97 3 3 0

sprayerl 30 1 3 1 0.013 0.2 0.15 1.17 10 10 0

sprayer7 35 1 1 0 0.010 1.7 0.33 0.98 3 3 0

sprayer25 28 l 1 0 0.002 0.1 0.10 1.73 11 11 0

squirre119 218 1 2 2 0.010 0.3 0.12 1.61 5 5 0

squirrel25 181 107 1 1 0.020 2.9 0.14 1.75 701 1913 173

swan2 131 1 2 1 0.007 0.4 0.13 0.75 3 3 0

swan3 146 l 3 1 0.008 0.1 0.12 0.93 10 10 0

trucklO 78 1 2 2 0.009 0.7 0.07 0.95 10 10 0

zebral 222 9 3 3 0.010 0.3 0.05 0.76 68 152 124

zebra20 265 5 5 5 0.009 1.1 0.01 1.19 27 75 178               
(t3, ty,s,a, N) represents the object pose where (tmty) is 2D translation, 3 the

scale factor, and a and N the rotation angle and axis, respectively.

B? denotes || 15 - pggucll where 15 is the estimated value of the ground truth pgrgge.
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indexing, but none of them would be accepted; then the rest of the model aspects

are tested in some random order; on the average 317, i.e., (658-34) /2, model-pose

hypotheses are verified, resulting in a tremendous number of verification attempts.

The speedup gained by using the hierarchical verification strategy almost reaches

the upper bound, i.e., S = 200%. In this case, indexing does not help the system

to alleviate the burden of verification; on the contrary, it increases the recognition

time by requiring the system to perform an extra NH/2 tests (were the indexing

not provided, the system only needed to verify 329 model-pose hypotheses on the

average). As can be seen in the column S of Table 5.8, the recognition system always

gained some speedup whenever the correct model—aspect hypothesis is not ranked as

the first. The column MSE of Table 5.8 illustrates that alignment was achieved within

2.0 pixels MSE on the edgemaps. Due to the indexing failures, the recognition system

tested a lot of false model-pose hypotheses, resulting in a huge number of iterations

of the N-L-M method, as indicated by the column IH in Table 5.8. The goodness of

the fit is also shown in Table 5.8. In most cases, the pose parameters were achieved

within reasonable ranges, although in general not as good as the pose parameters for

non-occluded objects as shown in Table 5.7.

The column R]. in Table 5.8 shows that the performance of the hypothesis ordering

scheme deteriorated when the observed object was partially occluded. However, as

long as the percentage of visual contour of non-occluded object parts is significant,

the hypothesis ordering scheme still could effectively rank the correct model-aspect

hypothesis; for 14 (out of 32) test objects, the correct model aspect ranked first.

Table 5.9 lists the number of non-occluded object parts (NNp), the number of scene
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Table 5.9: The effect of visual contour on indexing.

 

 

 

 

 

 

 

 

 

 

 

 

Object NNp Nsp VC (%) N}; R];

elephant20 l 9 28.8 239 25

gorillal 2 11 25.7 167 2

gorilla20 l 7 19.7 137 5

lion10 3 8 24.1 141 2

lion29 2 9 15.3 240 12

mug7 1 9 13.3 194 59

mug26 1 10 13.6 216 33

phonelO 1 5 22.8 103 32

squirrel25 1 11 17.2 181 107

zebral 2 8 25.9 222 9

zebra20 3 10 23.2 265 5          
 

parts (Nsp), the percentage of the visual contour of non-occluded object parts in

the whole scene contour (VC), the number of model-aspect hypotheses generated via

indexing (NH), and the rank of the correct model-aspect hypothesis (Bk). As can

be seen in Table 5.9, the reason for the high number of required tests for the test

objects elephant20, mug7, mu926, phone10, and squirre125 is that these objects are

partially occluded and only a small portion of the parts corresponds to the correct

model aspect; for the test images mug7, only one part, i.e., the handle of the mug, (out

of 9 scene parts) is able to index to the correct model aspect and its visual contour

is relatively small (13.3%) as compared to the whole visual contour in the scene (see

Figure 5.4 (d)). The number of hypotheses generated depends on the number of scene

parts and the rarity of each scene part in the database. Normally, more scene parts

will generate more hypotheses. The rank of the correct model aspect depends on the

saliency of non-occluded parts in the object and the percentage of visual contour of
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these parts in the scene. Thus, there is no particular regularity in Table 5.9, but, in

general, a smaller percentage of visual contour of non-occluded object parts means a

lower rank of the correct model-aspect hypothesis.

Recognition Failure

Several examples are given here to demonstrate two types of recognition errors,

namely false alarm and false dismissal. Figure 5.5 shows the test images containing

objects not existing in the model database. Table 5.10 lists the number of hypothe-

ses generated via indexing, the number of hypotheses accepted, and the number of

hypotheses rejected. For vehicles shown in Figure 5.5(a)-(d), edge contours (shown as

Table 5.10: Recognition results of objects not in the database.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

 

 

 

 

Indexing attribute tolerance criteria (eg, e,, e,,, em) = (4.0, 0.4,4.0,0.005)

Parameters for hierarchical verification are specified in Table 5.5.

Test Object Indexing II Hypothesis Verification (Matching)

IIHypotheses II IiAccepted IIRejected

hatchback 69 0 69

sedan 71 0 71

wagon 60 0 60

sports-car 87 0 87

faceA 86 0 86

faceB 49 0 49

bcirc 4 0 4

jar 66 0 66

mushroom 8 0 8

pipe 40 0 40

pot 20 0 20

taco 11 0 11

top 29 0 29

vase 74 0 74

eg 0 - -

semi 0 - -        
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white contours superimposed on the intensity images) were manually edited to extract

a)hatchback b)sedan )wagon d)sports—car

  

(e) faceA n (f) faceB (g) bcirc

  
(i) mushroom (j) pipe (k) pot (l) taco

   
(m) top (0) egg (p) semi

Figure 5.5: Objects for recognition (not existing in the database).

vehicle silhouettes for indexing, but the entire edge contours were used for matching;

the indexing scheme produced several model hypotheses on taurus and camaro, but

the matching scheme refuted these hypotheses because of their large fitting errors.

For test objects (not having similar models in the database) in Figure 5.5(e)—(n), the

recognition system failed to recognize them as indicated in the third column of Ta-
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ble 5.10. Two face images were also manually edited to extract face silhouettes for

indexing. Note that in the last two rows of Table 5.10, the recognition system did not

generate any hypothesis for test objects egg and semi. Consequently, the recognition

system did not need to perform any verification test for these two objects as indicated

by the symbol —. These two objects are automatically rejected as new objects at the

indexing phase. The results in Table 5.10 indicate that the recognition system does

not produce any false alarm for these 16 test objects.

Results with occluded objects are given in Table 5.11: the notation is the same

as in Table 5.10. The first row of Figure 5.6 shows four test objects swan13, phonel,

Table 5.11: Recognition results for 4 occluded objects.

 

 

 

 

 

 

 

Indexing attribute tolerance criteria (eg, e,, e,,, 6,5,) = (4.0, 0.4, 4.0, 0.005)

Parameters for hierarchical verification are specified in Table 5.5.

Test Object Indexing Hypothesis Verification (Matching)

IIHypotheses IIAccepted IIRejected

swanl3 58 0 58

taurusl 62 0 62

phonel 86 0 86

cup 58 0 58        
 

taurus], and cap; the second row of Figure 5.6 gives the extracted parts of these four

objects; the third row of Figure 5.6 shows the extracted parts of the corresponding

models. As can be seen in the second and third rows of Figure 5.6, the occlusion

effect makes the extracted parts completely different, causing the indexing scheme to

fail to produce the corresponding hypotheses for verification test. Table 5.11 shows

that the recognition system fails to recognize these four objects. The last row of

Figure 5.6 depicts the results of model fitting, demonstrating that these four objects
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do have corresponding models in the database and that the matching stage can verify

this. The recognition system has false dismissal error for these four occluded objects.

Additional examples of false dismissal were also given in the first 5 rows of Table 5.8.

Thus, the recognition system breaks if the indexing scheme fails to generate correct

model hypotheses for verification; this only occurs when all the parts of an observed

object are occluded.

   
  

phonel taurusl Cllp

 

rib

 

 

         

Figure 5.6: Examples of false dismissal. Row 1 contains four test objects. Row 2

presents the parts extracted from the test objects. Row 3 gives the parts extracted

from the models. Row 4 shows the results from model fitting.
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5.2 Motion Tracking

Motion detection and tracking of moving objects from image sequences are important

capacities for any vision system designed to operate in an uncontrolled environment.

Tracking in computer vision, however, is still in the development stages and has had

few applications in industry. It is hoped that tracking combined with other technolo-

gies may produce effective vision systems. Important applications which would be

impacted by a successful tracking system include (1) military target acquisition, (2)

military and commercial surveillance, (3) traffic monitoring, and (4) robotics. For ex-

ample, recognizing and tracking parts on a moving conveyor belt would enable robots

to pick up the correct parts in an unconstrained environment.

In this work, we consider tracking with a stationary camera. Our assumption is

that only the object of interest is in motion and other objects are considered as still

background. Section 5.2.1 contains a brief review of some of the previous work related

to tracking. A description of the proposed tracking method in given in Section 5.2.2.

A motion segmentation scheme for extracting edges of the moving object is presented

in Section 5.2.3. In Section 5.2.4, we show the results of tracking objects in three

image sequences.

5.2.1 Previous Work

In general, there are two approaches toward the problem of tracking moving objects

from image sequences. One is recognition-based tracking and the other is motion-based

tracking. Recognition-based tracking (e.g., [1, 18, 77]) is actually a modification of



178

object recognition. This approach attempts to recover the pose of an object at each

frame. Once correspondences between image and model features are determined,

changes in positions of image features in successful frames are used to update the

pose of the object. To accurately recovered the object pose at each frame requires

an exact geometric model of the object. Moreover, the tracked object has to be

recognizable. Since object recognition is a high-level operation that can be costly to

perform, the performance of the tracking system is limited by the efficiency of the

recognition system as well as the types of objects that are recognizable.

Motion—based tracking systems differ significantly from recognition-based systems

in that they depend completely on motion detection to track the moving object. They

have the capability of tracking any moving object regardless of size or shape. Motion-

based techniques (e.g., [2, 84]) can be further subdivided into feature-based tracking

and optical flow tracking. Feature-based tracking requires stable feature extraction

prior to establishing correspondences between the model features and the sensed

features in consecutive frames. Correspondence establishment may become difficult

if the image includes many objects and feature extraction is ambiguous. On the

other hand, gradient-based tracking needs additional constraints (e.g., smoothness

[57]) to compute the optical flow. Although this technique produces good results

for smooth object surfaces, the constraints increase the estimation error around the

object boundary. Both techniques are sensitive to noise and do not yield satisfactory

results for the real images typically encountered in practical applications.
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5.2.2 Proposed Method

The proposed approach to the motion tracking problem is recognition-based. The

pose estimation is carried out by the Newton’s method with Levenberg-Marduardt

minimization (N-L-M) to force a convergence. The N—L-M method requires a good

initial estimate of parameters that is relatively close to object pose to avoid converging

to a local minimum. For tracking an object over a sequence of frames, an automated

guess of initial estimate of parameters can be acquired by (1) using the pose estimate

from the previous frame plus a velocity estimate for each parameter derived from the

previous two frames [77], or (2) by using the pose estimate from the previous frame

(if the motion of the object is small and smooth) and renewing the iterations of the

N-L-M method. We have selected the latter because the N-L—M method can recover

the translation parameters within a few iterations regardless of the initial estimate

of translation parameters, and a coarse object view (orientation) is sufficient to form

a good initial parameter estimate for the N-L-M method. However, the tracking

system needs to pay attention to the situation when the object being tracked moves

across aspects. In this case, the model aspect for the previous frame can no longer be

used to fit the current frame, but the pose estimate from the previous frame can still

be used as a good initial parameter estimate. The problem can be solved by using

the mean-squared distance error (MSE) of the fitting as an indicator to determine

if a new model aspect should be introduced. For example, suppose that the system

initially uses model aspect Mg to track a moving object. The system continues to

use Mg for tracking the object until the fitting error at a particular frame t,- is over
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the user’s specified error threshold Eg. This indicates that the system should change

model aspect. The system can use the silhouette of the tracked object at frame tj

to index into the database to generate model-aspect hypotheses, among which the

first neighboring model aspect of Mg is chosen to continue the tracking. The system

selects the next lower ranked neighboring model aspect if the previous one fails. This

procedure continues until all frames in the image sequence are tracked.

In fact, we can use the pose estimate of the previous frame plus a velocity estimate

obtained from previous two frames to predict the pose of the current frame; if the pose

estimate is out of the aspect boundary of the current model aspect, we can use the

motion information obtained to select the neighboring model aspect to continue the

tracking. This method definitely outperforms the aforementioned method because the

neighboring model aspect can be automatically selected without resorting to indexing.

This is future work to improve the tracking system.

5.2.3 Motion Segmentation

For the tracking system to be effective, we need to obtain edgemaps of the tracked ob-

ject from images. The use of motion information for object segmentation from image

sequences has been demonstrated as a successful technique when under the assump-

tion that the images contain only one single moving object. Thus, our implementation

is based primarily on this technique.

Edgemaps of the images are created using the Canny edge detector [25]. The

background noise edges are excluded by ANDing a mask on the edgemap. Such a
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mask is generated through motion segmentation. In practice, the simplest imple-

mentation of motion segmentation is image subtraction, in which the image from the

previous frame is subtracted, pixel by pixel, from the image of the current frame.

When images are subtracted from one another, the absolute intensity difference of

the background tends to be very small while the absolute intensity difference along

the object boundary is large as compared to that of the background. An apprOpriate

threshold to segment an intensity-subtracted image into a binary image can be ob-

tained by a simple Gaussian thresholding technique [62]. The resulting binary image

is dilated several pixels in all directions to ensure that the mask includes the object

boundary. The mask may cover small portions of background edges. As a conse-

quence, the obtained edgemap may contain some small background edge contours.

Since the N-L-M method can handle partially occluded objects, the generation of the

mask need not be perfect.

The motion segmentation technique proposed by Dubuisson and Jain [38] is

adopted to generate the mask. The basic idea is as follows. Let f1, f2, and f3 be three

image frames extracted from the image sequence at times t1, t2, and t3 respectively.

They are blurred by a 3 x 3 averaging mask to smooth out the background and to

preserve the ramp edges around the moving object. Let f1, f2, and f3 represent the

blurred images of f1, f2, and f3, respectively. The difference image between frames

1, 2, and 3 is then computed as follows:

00,1): lfl(iaj)-f2(iij)l*lf2(iaj)_f3(iij)l
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where ‘*’ denotes the bitwise multiplication operation and I - I denotes the absolute

value operator. This difference image D enhances the pixels around the boundary

of the moving objects. Let ti,” and ti“ be two thresholds specified by the user.

The difference image D is then thresholded at tIf‘” to keep only the pixels where a

significant intensity change occurs. This thresholding procedure produces an image

Dg defined by:

. . 1 if D(.‘, j)>tf,°w

D¢(27]):

0 otherwise

Connected components are then extracted from Dg using an 8-connected neighbor-

hood. A connected component is removed if none of its pixels has a value larger

then tgigh. This cleaning procedure generates an image C with “on” pixels around

the boundary of the moving object. The next step is to dilate the components in

C until all isolated components are connected into one single connected component

using a chamfering technique to record the distance of dilation. The internal holes

of this single connected component are then filled with “on” pixels. The final step

is to erode the connected component on the boundary back to its original size. The

information for erosion is embedded in the chamfered distance image. The resulting

image is a mask covering the moving object.

Figure 5.7 presents the results of the described motion segmentation algorithm

using three image frames from an image sequence containing a moving vehicle. Fig—

ure 5.7(d) shows the generated mask in which black pixels are the thresholded regions

from motion segmentation and gray pixels are the results from dilation and erosion of

the thresholded regions. Figure 5.7(e) shows the edgemap of the vehicle obtained by
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using the mask to filter out most of the background. Figure 5.7(f) shows the result of

alignment indicated by the white contours overlaid on the image. This demonstrates

that the extracted edgemap for alignment need not be perfect; however, for indexing,

the boundary of the edgemap should be as good as possible to avoid testing many

false hypotheses; nevertheless, indexing is not required if the object does not move

across aspects or if the motion information is incorporated in the tracking system to

select neighboring aspects.

  
(d) (6)

Figure 5.7: Results of the motion segmentation. (a) Frame 1. (b) Frame 2. (c)

Frame 3. (d) Mask for frame 2. (e) The edgemap of frame 2 obtained by using the

mask to exclude the background. (f) The fitted edgemap (from the N-L—M method)

superimposed on frame 2.
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5.2.4 Experimental Results

In this section, we intend to demonstrate the viability of the tracking system on both

indoor and outdoor moving objects and explain how the tracking system handles the

object moving across aspects. The motion tracking method was tested on three image

sequences. Two of them were simulated image sequences taken in the lab to study

the validity and accuracy of the method. One image sequence taken from a moving

vehicle at a parking lot was used to demonstrate the applicability of the method.

Tracking A Moving Squirrel Carving

The first experiment was conducted with an image sequence from a moving squirrel

carving as shown in Figure 5.8. The image sequence was generated using a cam-

era mounted on a translation stage and the object on a rotating base to simulate

the motion. On every image frame grabbed, the translation stage was moved 5mm

along the X axis and the rotating base was rotated 2 to 5 degrees counterclockwise.

Table 5.12 shows the results of the tracking. The model aspect and the initial param-

eter estimates for the first frame were provided by the indexing scheme. The initial

parameter estimates of the subsequent frames were obtained from the fit parameter

estimates of the previous frame. The final column of Table 5.12 illustrates that track-

ing was achieved with 1.3 pixels MSE on the edgemaps within 8 iterations of the

N-L—M method. From the results shown in Table 5.12, it is not difficult to see that a

smaller angle of rotation 01 results in a smaller MSE but not necessarily small errors

in 3D pose parameters, which is consistent with the error analysis presented in Sec-
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tion 2.5.1. The aligned model edgemaps are overlaid on the image sequence as shown

in Figure 5.8. Figure 5.9 depicts the evolution of the parameter estimates within and

across frames. It is obvious that the fit translation parameters are consistent with the

trajectory of the motion as indicated in Figure 5.8(a). The parameters of the direc-

tion of rotation axis, 0 and 45, are less sensitive, especially when the rotation angle, a,

is small (for example, see the E9 values at frames t4, t5, and t6 in Table 5.12). This is

because small or results in small error (see Section 2.5.1) and small error leads to the

insensitivity of the related rotational parameters (See Section 3.3.3). This explains

why the errors for the rotation axis, E9 and Egg, are large for these three frames.

For the same reason, these three frames tend to need more iterations for convergence

because the N-L-M method may have to wander in the parameter space (due to the

random walk) before convergence.

Table 5.12: Results of motion tracking for a squirrel carving.

 

 

 

 

 

 

 

 

 

           
 

 

FrameII 0 E, E.” E, E0, E9 Egg IIIteration MSE (pixel)

to —15° 1 0 0.0 1.1° 1.0° 00° 4 1.22

t1 —13° 1 0 0.0 16° 10° 00° 4 1.20

t2 —8° 1 0 0.0 2.5° 3.0° 04° 7 1.18

t3 -5° 1 0 0.0 3.5° 1.7° 0.1° 4 1.09

t, —2° 0 0 0.0 20° 68° 25° 8 0.98

t5 4° 1 0 0.0 03° 92° 1.7° 7 0.99

t6 7° 0 0 0.0 05° 94° 6.5° 7 1.19

t7 12° 1 1 0.0 02° 22° 49° 4 1.21

t3 15° 1 0 0.0 0.4° 1.5° 31° 6 1.27

(tz, ty, 3, a, 0, ¢) represents the pose parameters.

E1, = If) — pgmc| where 35 is the estimated value of the ground truth pgrggc.

The measurement unit for Eg, and E1” is pixels. 
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(g)Frame t5 (h)Frame t6 (i)Frame t7 (j)Frame t3

Figure 5.8: Motion tracking of image sequences of a moving squirrel. (a) Image of

frame to added with thresholded images of frame t1 - t8. (b)-(j) are the results of

model fitting with the white contours indicating the fitted edgemaps.

Tracking Across Aspects

The second experiment was conducted with an image sequence generated from a

moving Ford Taurus 1:20 scaled toy model as shown in Figure 5.10. The Taurus

model was mounted on the tripod (see Figure 2.7) to simulate the motion across two

neighboring aspects diagonally, i.e., from aspect taurus] to aspect taurus20. Ten test

images were generated by equally sampling the orientations between these two neigh-
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Evolution of Parameter Estimates during Motion Trac ' g
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Rotation Angle 0 L

a

Rotation Axis

Rotation Axis

4’

t7 t8t6t41]Initial Estimate t0

Figure 5.9: The evolution of parameter estimates during motion tracking of the squir-

rel. The black square boxes indicate the ground truth parameters. The vertical dotted

line denote the convergence of the N-L-M method at a particular frame.
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(f)Frame t6

   
(g)Frame t7 (h)Frame t3 (i)Frame t9 (j)Frame 110

Figure 5.10: Motion tracking on the Taurus image sequence. The white contours

indicate the fitted edgemaps overlaid on the image sequence.

boring aspects. In this image sequence, frames tl—t5 belong to aspect taurusl while

frames ts—tlo belong to aspect tauru320. The aligned model edgemaps are superim-

posed on the image sequence as shown in Figure 5.10. The goal of this experiment

is to study how the system handles the situation when object motion is across two

neighboring aspects of a model. Figure 5.11 shows the results of tracking without

changing model aspects. Both curves indicate that the fitting error degrades signifi-

cantly when the system uses the wrong model aspect for tracking. The intersection

of these two curves suggests the equilibrium point where the system should change

the model aspect to continue tracking the object. This raises questions about (1)
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when such a decision should be made, and (2) which neighboring aspect should be

used to continue the tracking. The answers lie in Table 5.13 which lists the first three

ranked model-aspect hypotheses and their fitting errors (MSE). The correct model-

aspect hypotheses for frames tl—tlo are either ranked as 1 or 2 from indexing. The

fitting error is getting larger as the vehicle approaches the aspect boundary which

is in between frames t5 and t6. Suppose that 2.2 pixels MSE is the user’s specified

error threshold for the tracking system to change from one model aspect to another.

Without any prior knowledge, the first frame (i.e., frame t1), has to resort to the

recognition system to find out the object model aspect and identity. For frame t1, the

indexing scheme generates 19 model-aspect hypotheses, and the verification stage ac-

cepts the first model-aspect hypothesis, taurusl, as the correct model aspect because

the MSE is below the user’s specified error threshold. The system uses taurusl to

continue tracking the vehicle without resorting to indexing until frame t6 where the

MSE is above the user’s specified error threshold (see Figure 5.11); then the system

uses the object silhouette at frame t6 for indexing; since model aspect tauru320 is

the first hypothesized model aspect neighboring to taurusl, the system selects it for

verification; the 1.8 pixels MSE of fitting tauru320 to frame t6 indicates that tauru320

is the right model aspect, so the system uses it to continue the tracking. The results

of this tracking is also depicted in Figure 5.12.

Tracking Using A Real Image Sequence

The image sequence in this experiment consists of an ordered list of frames:

f1, f2, - - - , fgg. For the purpose of the demonstration, a sequence containing n = 120
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Tracking Ford Taurus with Two Model Aspects
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Figure 5.11: Tracking Ford Taurus from two model aspects.

Tracking Ford Taurus By Changing Model Aspects
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Figure 5.12: Tracking Ford Taurus by changing model aspects.
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Table 5.13: Motion tracking across aspects.

 

NHG denotes the number of hypotheses generated via indexing.

Indexing attribute tolerance criteria: (6;, eg, ep, egg”) = (4.0, 0.4,4.0, 0.005)

MSE (unit = pixels) denotes the fitting error in the N-L—M method.
 

 

 

 

Frame NHG Rank 1 Rank 2 Rank 3 Correct

No. Model MSE Model MSE Model MSE Model

t1 19 taurusl 0.9 taurule 5.2 taurus9 5.5 taurusl

t2 21 taurusl 0.9 taurule 5.3 taurusl8 4.3 taurusl
 

t3 20 taurusl l. 1 taurusl 8 4.9 mug26 10.1 taurusl

t4 20 taurusl 1 .4 taurusl8 5.1 mug26 10.2 taurusl

t5 23 taurusl 2.1 taurusl8 6.1 mug26 10.6 taurusl

t6 28 phonel 14.1 taurus20 l .8 mug16 8.3 taurus20

t7 27 phonel 15.0 taurus20 1.6 mug16 8.6 taurus20

t3 27 taurus20 1.4 mug34 12.8 mug25 12.0 taurus20

t9 31 taurus20 1.2 mug5 11.3 mug15 9.0 tauru820

ha 24 taurus20 1.0 zebra23 13.5 camaroll 7.4 taurus20

 

 

 

 

 

 

            

frames was used as a test (see Figure 5.13). This image sequence was captured by

a cam-corder and stored on a video tape. The object is a Ford Taurus vehicle mov-

ing around a parking lot. One frame out of ten was used to perform the tracking

(ftlvftga - ° - ,fgm which is a total of 12 frames). Figure 5.13 shows these twelve se—

lected frames and the result of the tracking.

Note that although the motion segmentation provides satisfactory masks, it is

still difficult to automatically extract the exact boundary of the vehicle, especially

the boundary underneath the vehicle caused by the shadow, as can be seen in Fig-

ure 5.7(e). The imperfect boundary extraction may render the indexing scheme inef-

fective. We manually cleaned the top portion of the boundary and leave the bottom

portion untouched. The corresponding model aspects for these twelve frames via in-

dexing are given in Table 5.14. The fitting error (MSE) for each frame is also given



192

in Table 5.14. As mentioned in Chapter 3, in order to allow a full 3D rotation of

an object, we need to recover the roll angle of the image plane such that the model

can brought into alignment with the observed object. This roll angle as discussed in

Chapter 4 can be recovered from the corresponding part features of the model and

the sensory data, but we have not implemented this stage yet in the current system.

This will be left for the future work. As a result, the fitted edgemaps for these 12

frames are a little tilted as shown in Figure 5.13, and the MSE values as indicated in

Table 5.14 are a little large as compared to the MSE values for those simulated ones

in the previous two experiments.

Table 5.14: Results of tracking the Ford Taurus.

 

 

 

 

 

 

 

Frame Model Aspect MSE (pixels) Frame Model Aspect MSE (pixels)

t1 taurusl5 1.9 t7 tauru312 2.2

t2 taurusl5 2.2 t3 taurusl2 1.9

t3 taurusl4 2.1 t9 taurusll 1.7

t, taurusl4 1.7 t 10 taurusll 2.1

t5 taurusl3 1.8 t“ taurusll 2.4

t6 taurusl2 2.5 tn taurusll 2.3         
 

5.3 Summary

We have combined the modeling, matching, and indexing modules together with a

hierarchical verification strategy into an integrated recognition system. The hierar-

chical verification strategy uses three sets of threshold values in the matching module

to quickly remove from further verification the false model-pose hypotheses generated

from the indexing module. This hierarchical verification strategy has shown to be vi-
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tal and efficient in expediting the recognition, especially when the indexing module

fails to reduce the number of verifications required due to the partial occlusion of the

observed object. Our recognition experimental results have shown that we have made

good progress toward a general alignment system. This system should work well on

some existing recognition problems.

We have demonstrated the applicability of the recognition system for tracking sin-

gle moving objects in image sequences. We have also studied how the tracking system

handles the object moving across model aspects. Our experimental results from both

simulated and real image sequences have shown the viability of the tracking method.

However, for the tracking method to work really well on real image sequences, the

current system needs to recover the roll angle of the image plane to allow a full 3D

rotation of the moving object. This is left as the future work.
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(j) Frame tm ' (k) Frame tn (1) Frame tn

Figure 5.13: Tracking a moving vehicle in a parking lot.



Chapter 6

Summary, Conclusion, and Future

Research

6.1 Summary and Conclusions

The research addressed in this thesis dealt with recognizing arbitrary curved 3D

objects from single 2D intensity images. We have developed a complete object recog-

nition system within the alignment paradigm. This paradigm involves three major

schemes. The modeling scheme consists of constructing model aspects for predict-

ing the object appearance seen from any viewpoint. The indexing scheme generates

hypotheses about candidate model aspects and poses which are then verified in the

matching scheme to support/refute the hypotheses and also to estimate/refine the

object pose of the correct model.

In Chapter 2, we approached the problem of modeling 3D sculptured objects

using multi—view 2%D representations. The modeling scheme adopted the curvature

195
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method of Basri and Ullman [9] to generate the predicted appearance of a 3D object

with a smooth surface following a 3D rotation. In this modeling scheme, a 3D object

is represented by a number of view-centered model aspects, rather than by a single

object-centered geometric model. Each model aspect covers a range of many possible

neighboring viewing angles within the aspect. Using a number of model aspects, the

contour of an object seen from any vieWpoint can be predicted. The computations

required in this modeling scheme during the prediction stage is simple, and the model

construction is almost automatic when object prototypes are available. This modeling

scheme was applied to 20 arbitrary curved 3D objects with 578 model aspects, and the

experimental results are supportive of the design. We conclude that this modeling

scheme is viable in modeling many kinds of objects including both polyhedra and

sculptured objects.

In Chapter 3, we studied the problem of pose estimation from a known model

aspect and a 2D edgemap extracted from the scene. The proposed pose/refinement

algorithm, which can handle objects with partial occlusion, does not assume the ex-

istence of salient features in the image, and thus, is directly applicable to smooth

objects with sculptured surfaces. Due to the unavailability of salient features in ob-

jects with sculptured surfaces, we developed an iterative matching technique using

the Newton’s method with Levenberg—Marquardt minimization to estimate/refine the

object pose in a hill-climbing manner. As with any minimization technique, this itera-

tive matching technique requires good initial parameter estimates to avoid converging

to a local minimum. Two heuristics were adopted to improve the pose accuracy and

handle occlusion. The first heuristic was used to synthesize feature correspondences
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for pose estimation/refinement of objects with partial occlusion. The second heuris-

tic was adopted to to maintain a balance of alignment between object internal edges

and object silhouettes. Many conclusions were drawn from this study. The matching

algorithm was applied to 6 test objects, either partially occluded or non-occluded,

with 240 samples of initial parameter estimates in each object experiment. The re-

sults from these Monte Carlo experiments support the hypothesis that fitting internal

edges and silhouette simultaneously can produce more accurate estimation of pose pa-

rameters than fitting the silhouette alone. The results also demonstrate a high rate

of convergence for a broad set of starting orientations within a model aspect. The

matching algorithm was also applied to 60 test model aspects, and the results indi-

cated that alignment was achieved with 1.6 pixels mean—squared distance error on

the edgemap within 10 iterations of the hill-climbing procedure. These results are

consistent with those reported by Lowe [76]. We conclude that large number of fine

aspects are not needed for modeling. The experimental results also demonstrate that

arbitrary curved objects can be handled and some occlusion can be tolerated. These

results are not tied to the modeling scheme from Chapter 2. The matching algorithm

can work with a feature-based CAD model which can predict an object’s edgemap

when given a viewpoint.

In Chapter 4, we studied the problem of indexing candidate model aspect and pose

from a model-aspect database using 2D silhouettes. A part segmentation scheme was

proposed to decompose silhouettes into parts whose invariant attributes are used for

indexing. A hypothesis grouping scheme was also proposed to cluster hypotheses

stemming from the same model. We also studied four voting schemes for ordering
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hypotheses based on prior knowledge of pre—stored models and the visual evidence of

the observed objects such that the most likely hypotheses are verified first. When

combined into a complete system, these techniques make progress toward improving

accuracy and efficiency by pruning false model hypotheses and minimizing unneces-

sary verification tests. Several experiments were performed on a database containing

658 model aspects, and the results support the hypothesis that HYBRID is the most

efficient hypothesis ordering scheme in pruning false model hypotheses. Experimen—

tal results also indicate that the indexing scheme generates many hypotheses, but,

through hypothesis grouping and ordering, a significant number of verification tests

for false models can be avoided. The success of the indexing scheme also indicates

that the proposed part representation is robust under global transformation and local

deformation.

We have combined the modeling, matching, and indexing schemes into a

recognition-by-alignment paradigm together with a hierarchical verification strategy.

The hierarchical verification strategy uses three sets of threshold values in the match-

ing scheme to quickly eliminate from further consideration the false model hypotheses

generated from the indexing scheme. The matching algorithm was applied to 100

randomly selected model aspects with totally 1200 test cases to select appropriate

threshold values at various levels. These empirical threshold values were used to

perform the recognition experiments on 60 test model aspects. The results indicate

that the integrated recognition system is viable in handling a large database of many

kinds of objects and the hierarchical verification strategy is effective in expediting the

recognition, especially when the indexing scheme fails to reduce the number of false
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model hypotheses generated due to partial occlusion of the observed object.

We have applied the recognition system to tracking a single moving object in a

scene from an image sequence. We have also studied how to track the moving object

across aspects. The recognition system was applied to 3 either simulated or real image

sequences to perform object tracking. Experimental results indicated the viability of

the tracking method and also demonstrated the applicability of the tracking method

by tracking a real car in an image sequence.

In this thesis, we have proposed a model-based computational paradigm for recog-

nition of arbitrary curved 3D objects from single 2D intensity images. Experimental

results show that this computational paradigm is viable in handling a large database

of many kinds of objects including polyhedra and sculptured objects.

6.2 Future Research

We have presented a model-based object recognition paradigm which shows that

recognizing 3D objects with sculptured surfaces from 2D images is feasible. However,

there are still a number of research issues to be addressed in the future. The most

prominent one is the figure-ground separation. In this thesis, we have implicitly

assumed a reasonable extraction of the object from its background. Figure-ground

separation is a major obstacle to cognitive psychology and computer vision in general

and to the alignment in particular. Thus, future work should include an investigation

of a better figure-ground separation algorithm.

In Chapter 2, we have used a 3—image stereo matching algorithm to compute the
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curvature and 3D information from edgemaps for object modeling. This 3-image

stereo matching technique has applied several constraints/heuristics to eliminate am-

biguous matches of object internal edges. However, the predicted appearance of

objects shown in the experiment results indicates that there are still some out-

liers due to inaccurate matches in this stereo matching algorithm. Thus, the con-

straints/heuristics used in this stereo matching algorithm for object modeling should

be further studied.

In Chapter 3, we have proposed a matching algorithm for pose estima-

tion/refinement. We have defined a merit function based on the mean-square distance

error between the observed edgemap and the edgemap of a model aspect. We have

seen that this matching algorithm requires reasonable initial parameter estimates to

avoid converging to local minima. We have incorporated the random walk feature in

the matching algorithm to escape local minima. However, it is a stochastic process,

which may not always lead to a global minimum convergence. Moreover, this random

walk feature sometimes causes the matching algorithm to wander around in param-

eter space, resulting in a slow convergence. Thus, it might be better to remove this

random walk feature in the matching algorithm if a good initial parameter estimate

can be obtained for pose refinement or, perhaps to involve some other kind of search

through parameter space. A good initial parameter estimate may be obtained through

a coarse-to—fine subdivision of the parameter space; the mean—square distance error

may be used as a similarity measure to determine the best initial parameter estimate.

All these require further investigation.

In Chapter 4, we have proposed an indexing scheme for generating model hy-
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potheses from a database. This indexing scheme uses shape features obtained from

the object silhouette for indexing and is effective in pruning false model hypotheses;

however, the discriminating capacity of shape features is not very powerful. It is likely

to be useful to incorporate other types, such as color or texture features, or shape

features and relational features from internal edge contours. Also, it might be a good

idea to design a similarity measure between shape features for a better hypothesis

ordering scheme to avoid unnecessary verification tests.

The use of part invariant features derived from object silhouettes enables the

indexing scheme to effectively generate a small set of candidate model hypotheses;

but this indexing scheme fails when all parts of an observed object are partially

occluded. This suggests that the silhouette may need to be segmented using a small

scale for smoothing; however, this could also lead to more noisy and unnecessary

parts which may degrade the indexing. Toward this end, a scale-space approach to

part segmentation might be an important issue to be explored in the future.

The proposed object recognition paradigm in this thesis assumes that an object’s

orientation is fixed when the object is modeled on a viewsphere. Consequently, the

matching technique assumes a zero—roll angle of the image plane. This assumption

fixes one degree of freedom of the rotation and has no doubt and contributes to the

accuracy of the pose reported. The detection of this roll angle can be done by least-

square solution using part correspondences between the model and the image in the

indexing scheme. Thus, it is desirable to incorporate this roll angle detection in the

indexing scheme and then to use the detected roll angle for the matching algorithm

to allow a full 3D rotation of an object.
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Finally, we have applied the integrated recognition system to track a single mov-

ing object in an image sequence. The tracking method applies the indexing scheme

to select the model aspect for tracking when the observed object moves across as-

pects. Although the indexing scheme can effectively generate the candidate neigh-

boring model-aspect hypotheses, this approach is clumsy. Thus, future work should

incorporate the motion information detected during the tracking to determine the

neighboring aspect automatically without resorting to indexing.
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