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ABSTRACT 

ELECTRONIC PROPERTIES OF COMPLEX NANOSTRUCTURES 

By 

Zhen Zhu 

Nanostructured materials have brought an unprecedented opportunity for advancement in many 

fields of human endeavor and in applications. Nanostructures are a new research field which may 

revolutionize people's everyday life. In the Thesis, I have used theoretical methods including 

density functional theory (DFT), molecular dynamic simulations (MD) and tight-binding 

methods to explore the structural, mechanical and electronic properties of various nanomaterials. 

In all this, I also paid attention to potential applications of these findings. 

    First, I will briefly introduce the scientific background of this Thesis, including the motivation 

for the study of a boron enriched aluminum surface, novel carbon foam structures and my 

research interest in 2D electronics. Then I will review the computational techniques I used in the 

study, mostly DFT methods. 

    In Chapter 3, I introduce an effective way to enhance surface hardness of aluminum by boron 

nanoparticle implantation. Using boron dimers to represent the nanoparticles, the process of 

boron implantation is modeled in a molecular dynamics simulation of bombarding the aluminum 

surface by energetic B2 molecules. Possible metastable structures of boron-coated aluminum 

surface are identified. Within these structures, I find that boron atoms prefer to stay in the 

subsurface region of aluminum. By modeling the Rockwell indentation process, boron enriched 

aluminum surface is found to be harder than the pristine aluminum surface by at least 15%. 

    In Chapter 4, I discuss novel carbon structures, including 3D carbon foam and related 2D slab 

structures. Carbon foam contains both sp2 and sp3 hybridized carbon atoms. It forms a 3D 



honeycomb lattice with a comparable stability to fullerenes, suggesting possible existence of 

such carbon foam structures. Although the bulk 3D foam structure is semiconducting, an sp2 

terminated carbon surface could maintain a conducting channel even when passivated by 

hydrogen. To promote the experimental realization of this novel foam structure, I also propose a 

growth model. I postulate that preferred growth should occur near the grain boundary of a carbon 

saturated polycrystal of transition metal. These findings are supported by a calculation of carbon 

diffusion in the solid. 

    2D semiconductors of group V elements are discussed in Chapters 5, 6, 7, and 8, including 

different phosphorus and arsenic structural phases. Structural and electronic properties of bulk 

and few-layer black phosphorus, so-called phosphorene, are studied in Chapter 5. In Chapter 6, I 

propose a new 2D structural phase of phosphorus, with the name blue phosphorus related to its 

wide predicted fundamental band gap. Then I move down in the periodic table and investigate 

the properties of grey arsenic in Chapter 7. Finally, I propose a tiling model to identify and 

categorize these structural phases in Chapter 8. 
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to teach me in detail how to conduct a calculation and how to plot a scientific figure, which

really accelerated my growth in conducting scientific research. Prof. Tománek offers a really
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Chapter 1

Introduction

In this Thesis, I have studied three different topics related to nanomaterials and associated

with mechanical and electronic properties: enhancement of the metal surface hardness by

nano-boron clusters, novel carbon-based nanostructures with unusual electronic structure,

and two-dimensional (2D) materials related to graphene. These topics are studied to expand

our knowledge of nanostructures and discover common features that are fundamentally in-

teresting and could lead to nanotechnology applications in different fields.

1.1 Surface hardness enhancement of aluminum

Aluminum is widely used, especially in the aerospace industry, due to its low gravimetric

density, good machinability, and high strength-to-weight ratio [8, 9]. Since this metal is

rather soft, its low wear resistance poses a serious problem, especially in harsh environments.

The common way to enhance surface hardness of aluminum is by hard-coat anodizing, an

electrolytic passivation process, which forms a brittle surface oxide layer that may chip

off. Alternative ways to enhance hardness while maintaining ductility mostly involve bulk

modifications, such as changing from Al to the Al/TiB2 composite [10]. Other methods like

hard diamond-like carbon coatings do not adhere well to the soft Al surface without adhesion

promoters at the interface [11]. An intriguing alternative to harding by carbon involves

boron that is nearly as hard as diamond and may bond more strongly to aluminum, since Al
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belongs to the boron group in the periodic system. Boron is known for its large flexibility

in bonding, forming unusual structures in the bulk [12] and also in nanoparticles [13]. The

ability of boron to harden surfaces of metals including Al has been suggested by the observed

increase in their abrasion resistance following bombardment by boron nanoparticles [14].

I have studied the possibility of enhancing the surface hardness of Al by implantation of

boron nanoparticles. I have predicted equilibrium structures, their stability, elastic properties

and formation dynamics of boron-enriched Al surfaces after exposure to energetic boron

nanoparticles. Inspired by the common hardness test by indentation, I designed a nano-

indentation model to study the the mechanical hardness and wear-resistance of aluminum

surfaces with or without boron coatings.

1.2 Novel carbon based nanomaterials

Carbon-based materials are interesting and unique due to the large range of structural phases

and types of chemical bonding. Elemental carbon could form 0D fullerene [15], 1D carbon

chains [16]and nanotubes [17], 2D graphene [18, 19] and bulk graphite and diamond, depend-

ing on whether the interatomic bonds are sp, sp2, or sp3. These carbon-based materials also

show fundamentally interesting properties which lead to many applications. Especially, the

discovery of carbon nanostructures including fullerenes, carbon nanotubes and graphene has

established a broad research field in nanotechnology and nanomaterials. It has also led to

unprecedented technological advances and applications in the past three decades. Among

these nano-carbon materials, carbon nanotubes and 2D graphene have been widely stud-

ied as promising candidates for the next-generation electronic materials for their excellent

thermal and electrical properties.
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Although the family of carbon-based materials is already very large, the structural and

bonding variety of elemental carbon continues to surprise us as more structural allotropes

are predicted and discovered.

The study of carbon materials is usually focused on structures with a single type of

bonding, but little is known about structures with hybrid interatomic bonding, such as

structures with a mixture of sp1, sp2 and sp3 bonds. Hybrid interatomic bonding is intriguing

since it will not only result in novel structural allotropes of carbon, but also give rise to

interesting electronic properties due to the complex bonding characters. As discussed later

on in this Thesis, I have predicted a novel 3D carbon foam structure [3] with both sp2 and

sp3 bonds. Carbon foam structures have interesting surface states, which depend on whether

the terminating carbon atoms have sp2 or sp3 character, leading to alternatively metallic or

semiconducting behavior. To guide the synthesis of carbon foam structures, I also proposed

a growth mechanism from a defective, carbon saturated transition metal surface.

1.3 2D materials for electronic application

Ever since the successful exfoliation of single layer graphene [18] from bulk layered graphite,

graphene has attracted tremendous research interest focusing on its exceptional thermal,

mechanical, and electronic properties. The most intriguing aspect of graphene is its pos-

tulated application in 2D electronics to substitute silicon as the next-generation electronic

material [20]. However, even though graphene has an exceptionally high carrier mobility, its

semi-metallic character prevents its application in switchable electronic devices.

After the failure of creating a band gap in graphene while still maintaining a decent car-

rier mobility in the cases of graphane [21] and graphene nanoribbons [22], people expanded
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their horizon to other semiconducting layered materials, which could also be exfoliated me-

chanically to mono- or few-layer systems. Semiconducting transition metal dichalcogenides

(TMDs) are a group of layered materials, which have attracted much research attention in

the post-graphene era. Typical TMDs, like MoS2 [23], have a large band gap, but the mo-

bility is about one order lower than that of silicon. 2D materials with the advantage of high

carrier mobility and significant band gap are the holy grail of semiconductor electronics and

at the forefront of research.

Phosphorene [4], the 2D counterpart of layered black phosphorus, could be exfoliated

mechanically, similar to other layered materials like graphene and MoS2. Unlike metallic

graphite and graphene, bulk black phosphorus is a direct band gap semiconductor with a

band gap around 0.3 eV, and a similar semiconducting characteristic is also maintained

in thin slabs of phosphorene. Electronic devices of phosphorene show both a high on/off

ratio and a high carrier mobility [4]. These two advantages shed light on phosphorene as

a promising material for 2D electronics applications, surpassing well-established 2D mate-

rials like graphene and MoS2. The electronic properties of few-layer phosphorene are not

well understood and its suitability as a 2D electronic material remains an open question.

Moreover, other group V elements, such as arsenic, which share similar structural and elec-

tronic properties as phosphorus, will likely bring unprecedented richness to the field of 2D

electronics.

In this Thesis, I explore structural and electronic properties of 2D phosphorene. Also,

inspired by the structural variety of bulk phosphorus allotropes, I predict novel 2D multi-

phases of phosphorene [5] besides black phosphorene and propose a general model to design

and categorize multi-phase 2D phosphorene allotropes. I also consider 2D structures of

other group V elements, such as grey arsenic, and suggest their potential use in electronics
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applications.

1.4 Outline of the dissertation

This PhD Thesis contains 8 chapters, including Chapter 1 as an introductory chapter and

Chapter 2 to describe the computational methods used throughout this Thesis.

In Chapter 3, I introduce an effective way to enhance surface hardness of aluminum

by boron nanoparticle implantation. Using a boron dimer to represent the nanoparticle,

the process of boron implantation is modeled in a molecular dynamics (MD) simulation

of bombarding the aluminum surface by B2 molecules. Possible metastable structures are

identified and boron atoms prefer to remain in the subsurface of aluminum. By modeling

the Rockwell indentation process, a boron enriched aluminum surface is found to be harder

than pure aluminum surface by at least 15%.

In Chapter 4, I discuss a novel carbon foam structure which contains a mixture of sp2

and sp3 carbon atoms. It is a 3D honeycomb lattice of comparable stability to fullerenes,

indicating that such carbon foam structures may be formed realistically. Although the bulk

3D foam structure is semiconducting, an sp2-terminated surface could maintain conductance

even if saturated by hydrogen. To facilitate experimental realization of this novel foam struc-

ture, I also propose a growth model that indicates preferred growth near grain boundaries,

which is supported by carbon atom diffusion calculation.

2D semiconductors of group V elements are discussed in Chapters 5, 6, 7, and 8, including

different phosphorus and arsenic structural phases. Structural and electronic properties

of bulk and few-layer black phosphorus, so-called phosphorene, are studied in Chapter 5.

In Chapter 6, I propose a new 2D structural phase of phosphorus, with the name blue
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phosphorus, related to its wide predicted fundamental band gap. Blue phosphorus maintains

a hexagonal lattice with similar stability as black phosphorus, but the fundamental band gap

is much larger. Moving down in the periodic table, I investigate the properties of grey arsenic

in Chapter 7. All these structures show multiphase coexistence and different electronic

properties. In Chapter 8, I propose a tiling model to identify and categorize these structural

phases.
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Chapter 2

Density Functional Theory for ab

initio simulations

The standard and fundamental way to gain insight into the structural and electronic prop-

erties of complex nanostructures is to solve the Schrödinger equation of the system. In the

electronic ground state and in absence of external perturbations, it is sufficient to consider

the time-independent Schrödinger equation

HΨ = EΨ. (2.1)

H is the Hamiltonian operator of the system and Ψ is the antisymmetric many-body wave-

function, which depends on both electronic and ionic coordinates. The Hamiltonian H could

be written as

H =
∑
i

pi
2

2m
+

∑
I

pI
2

2M
+

∑
i,I

ZIe
2

|ri −RI|
+

1

2

∑
i �=j

e2

|ri − rj|
+

1

2

∑
I �=J

ZIZJe
2

|RI −RJ|
. (2.2)

Here, the lowercase indices describe electrons and the uppercase indices describe the ions.

The first two terms represent the kinetic energy of the electrons and nuclei; the last three

terms are, respectively, the electron-ion, electron-electron and ion-ion interactions. RI and

RJ denote the nuclear positions and ri and rj denote the electron positions in the system.
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As the nucleus is thousands of times heavier than the electron, using the adiabatic (or Born-

Oppenheimer) approximation [24], the nuclear and the electron motion can be separated.

Based on this approximation, the Hamiltonian of the system can be decomposed to

H = T + Vext + Vint. (2.3)

Here, T is the kinetic energy of the electrons, Vext is the potential energy on the electrons

in the field of the nuclei, and Vint is the complex many-body electron-electron interaction.

The total energy E of the ground state could be evaluated through the variational principle

by

E0 = min E[Ψ] =
< Ψ|H|Ψ >

< Ψ|Ψ > .
(2.4)

In systems with many electrons, especially in solids with the number of electrons of

the order of 1023, it is impossible to solve the many-body electronic Schrödinger equation

exactly in nowadays computers. Many applicable approaches with different approximations

have been proposed to simplify the complex many-body problem, including the Hartree and

Hartree-Fock (HF) self-consistent methods. The Hartree method describes the motion of an

electron in the mean field of all the other electrons. While useful to get basic insights into

the system, it is not precise enough. Its lack of taking into account the antisymmetric form

of the all-electron wave function, a necessary prerequisite to describe the quantum nature of

the electrons as Fermi particles, the electronic wave function |Ψ > is represented by a large

Slater determinant in the Hartree-Fock method. The shortcoming of this approach is its

failure to adequately describe electron correlation. In Quantum Chemistry, this is achieved

by considering a set of Slater determinants in the Configuration Interaction (CI) scheme.

This approach has been limited to systems of very few atoms and is not useful for infinite
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solids.

A very different approach that does not make use of the all-electron wave function is used

in this Thesis. This approach, which considers only the total charge density, is called the

Density Functional Theory (DFT) [25]. As I show in the following, DFT is superior to HF

by taking into account not only exchange, but also correlation of electrons and their effect

on the total energy. This is achieved exactly in model systems and approximately in solids

of interest in this Thesis. DFT is suitable to describe solids with translation symmetry and

has become the technique of choice to study the fundamental properties of regular solids and

nanostructures.

Electron density ρ(r), rather than the electronic wave function Ψ, has been introduced as

a fundamental quantity in the Hohenberg-Kohn theorems [25], which were first introduced

by Hohenberg and Kohn in 1964. After these conceptional foundations have been provided,

DFT has been made applicable to solids of interest through the Kohn-Sham approach [26],

which maps a many-body problem onto an independent quasi-electron problem by expressing

the complex many-body interaction in terms of an exchange-correlation functional of the

electron density. Since then, DFT has been very successful to study electronic and structural

properties of atoms, molecules, and solids. I will start with briefly reviewing the Hohenberg-

Kohn theorems and then introduce the Kohn-Sham approach by deriving the Kohn-Sham

equation. Finally, I will briefly introduce the computer codes including SIESTA [27] and

VASP [28, 29, 30, 31] that I used in this Thesis to study the structural, mechanical and

electronic properties of selected complex nanostructures.
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2.1 Hohenberg-Kohn theorem

DFT is a remarkable theory that, in the electronic ground state, replaces the complicated

formalism using a many-body wave function and the related Schrödinger equation by a much

simpler approach based on the electron density ρ(r). The associated total energy functional

then depends only on ρ(r). The idea to use the electron density ρ(r) as the basic variable

originates from the Thomas-Fermi model and has been legitimized by Hohenberg and Kohn

in the Hohenberg-Kohn theorem. The Hohenberg-Kohn theorem, the heart of DFT, states

that in ground state, the external potential v(r), which affects the motion of all electrons,

could be determined by the electron density ρ(r), up to a trivial additive constant. The

ground-state electron density ρ(r) is sufficient to determine the total energy of the system

in the ground state.

Thus, in the ground state, it turns out that the total electronic energy in the system can

be subdivided into the kinetic energy of electrons T [ρ], the interaction between electrons

Vint[ρ], and the interaction with the external potential v(r) as

E[ρ] = T [ρ] + Vint[ρ] +
∫

v(r)ρ(r)dr. (2.5)

Once the expression for the kinetic energy T [ρ] and interaction energy Vint are known,

the ground state electron density ρ and total energy E[ρ] could be calculated based on

variational principle that minimizes the total energy while keeping the total number of

electrons N constant. Vint contains the repulsive Hartree energy and the remaining energy

terms related to exchange and correlation interactions, which are the most challenging to

determine. A viable method to approximate Vint will be provided in the following Section.
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2.2 Kohn-Sham equations

The Hohenberg-Kohn theorem justifies using the ground state electron density ρ(r) as the

variable to determine the ground state properties of the system. However, as exact ex-

pressions for the kinetic energy T [ρ] and Vint[ρ] are unknown, it is unclear how to obtain

E[ρ].

In the Thomas-Fermi model, a direct approach has been developed to construct ap-

proximate forms for T [ρ] and Vint[ρ] as explicit functions of the electron density ρ. These

approximations greatly simplify the expressions to evaluate the total energy E[ρ], but are

too crude to provide reliable results. In particular, molecules would not bind if described by

the Thomas-Fermi model.

Instead of using a many-body wave function or considering an over-simplified non-interacting

system, Kohn and Sham introduced an ingenious method to project the real Physics of a

many-body interacting system onto an independent quasi-electrons system, with the two

systems maintaining the same electron density ρ in the ground state. This is the basis of the

so-called Kohn-Sham (KS) approach. In this approach, the real many-body wave functions

are represented in terms of ρ(r) by the wave functions of non-interacting quasi-electrons.

The major part of the kinetic energy could be estimated using the quasi-electrons wave

functions |Ψi >,

Ts[ρ] =
N∑
i

< ψi| −
1

2
∇2|ψi > . (2.6)

Also the electron density is related to the quasi-electrons wave functions,

ρ(r) =
N∑
i

∑
s
|ψi(r, s)|2, (2.7)
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where r refers to the spatial and s to the spin coordinates. The Coulomb energy of the

quasi-electrons, the Hartree energy, is determined as

VHartree =
1

2

∫
drdr′ρ(r)ρ(r

′)
|r− r′| . (2.8)

Then, ignoring the trivial nucleus-nucleus interaction, the ground state energy functional

of the system could be rewritten as

EKS [ρ] = Ts[ρ] + VHartree[ρ] + Exc[ρ] +
∫
drvextρ(r). (2.9)

In the above equation, the non-trivial many-body interaction is put into the Exc term. Exc[ρ]

describes the energy caused by the exchange interaction and by electron correlation in the

electron-electron interaction energy Vint[ρ] besides the Hartree energy, and also the difference

in the kinetic energy between the interacting electrons and non-interacting quasi-electrons.

Thus, we get

Exc[ρ] = T [ρ] + Vint[ρ]− Ts[ρ]− VHartree[ρ]. (2.10)

The Kohn-Sham independent quasi-particle problem in the ground state could be solved

using the variational principle that minimizes the energy functional EKS [ρ] with respect to

the electron density ρ(r) while keeping the total charge constant. The quasi-electron wave

functions < ψi|ψj > are orthonormal. Then, variational minimization could be performed

using Lagrange multipliers, giving

δ[EKS [ρ]− εi(< ψi|ψi > −1)] = 0. (2.11)
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This leads to the set of equations

[−1

2
∇2 + veff (r)]ψi(r) = εiψi(r). (2.12)

Here, veff is effective potential depending on ρ and has the form

veff (r) = vext(r) +
δVHartree

δρ
+

δExc

δρ
= vext(r) + vHartree(r) + vxc(r). (2.13)

Equations (2.7) and (2.12) are called Kohn-Sham equations. The eigenvalues of the Kohn-

Sham equations are just Lagrange multipliers related to the quasi-electrons, rather than the

true eigenvalues of the interacting electrons in the system [26].

The merits of the Kohn-Sham equations are that they separate the complex many-body

interaction energy into the independent quasi-particle kinetic energy Ts, the Hartree energy

VHartree, the interaction with an external potential Vext, and exchange-correlation energy

Exc. The first three terms contribute a large portion to the total energy and could be deter-

mined directly from the quasi-electrons wave functions. The exchange-correlation functional

Exc[ρ] contains many-body interactions, including the electron exchange energy and the elec-

tron electron correlation energy. In most implementation, Exc[ρ] could be approximated by a

function of ρ(r) and its gradients. Once the formula of Exc[ρ] is determined, the Kohn-Sham

equations could be solved in a self-consistent way.

2.3 Exchange-correlation functionals

The Kohn-Sham equations are solvable when suitable forms of exchange-correlation func-

tional Exc[ρ] and the corresponding exchange-correlation potential vxc[ρ] are determined.
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Approximations at different levels have been made to construct suitable forms of exchange-

correlation functionals, including the Local Density Approximation (LDA) [26, 32] and the

Generalized Gradient Approximation (GGA) [33].

In LDA, the exchange-correlation energy is a local function of the local electron density

ρ. Then, the exchange-correlation energy could be estimated using

ELDA
xc [ρ] =

∫
drρ(r)εxc(ρ). (2.14)

Here, εxc(ρ) is the exchange and correlation energy density of a homogenous electron gas

with the density ρ. Consequently, LDA is exact −by construction− for the uniform electron

gas. It is approximately correct when the charge density does not change much. Within the

LDA, it is further possible to separate the contributions from exchange and correlation as

εxc(ρ) = εx(ρ) + εc(ρ). (2.15)

In a uniform electron gas, the exchange part obeys the expression

εxc(ρ) = −3

4
(
3

π
)
1
3ρ(r)

1
3 . (2.16)

The remaining part of εxc is the correlation energy εc, which has been determined accurately

using quantum Monte Carlo calculations of a uniform electron gas with different density by

Ceperley and Alder [32]. Application of LDA to solids and nanostructures is based on the

assumption that the exchange-correlation energy of the nonuniform system could be obtained

by separating the system into infinitely many small portions with constant electron density

ρ, and by treating these as a uniform electron gas of the same density. In this Thesis, most
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of the studies related to boron and carbon nanostructures are conducted based on LDA.

Although LDA provides a good approximation to the exchange-correlation energy, ig-

noring the variation of the electron density will lead to errors especially to systems with

significant variations in the electron density. To bridge the gap between the uniform electron

gas and real systems with varying charge density, it is quite natural to consider Exc also as a

functional of the electron density gradient. This is the essential idea of so-called generalized

gradient approximation (GGA). Under the approximation of GGA, the exchange-correlation

energy has the form

EGGA
xc [ρ] =

∫
drf(ρ(r),∇ρ(r)). (2.17)

It is useful to mention that the exchange-correlation energy is not just a conventional gradient

expansion in a power-series, but rather a general function of the electron density and its

gradient. There are many different GGAs depending on the choice of the function f(ρ,∇ρ).

Among these, the currently most popular is the PBE [33] functional, proposed by Perdew,

Burke and Ernzerhof in 1996. In this Thesis, GGA-PBE is used in studies of 2D phosphorene

and related systems. When compared to LDA, GGA-PBE predicts structural and electronic

properties that agree well with experimental data.

LDA and GGA could give satisfactory results for structural and energetic properties of

solids and nanostructures. However, none of them could describe adequately the long-range

dispersion (or van der Waals (vdW)) interaction in a general system very well. In layered

systems, such as graphite and layered phosphorus, which are studied in this Thesis, there is

a significant contribution of vdW interactions to the inter-layer bonding. In these systems,

the inter-layer bonding is typically overestimated in LDA and underestimated in GGA-PBE.

Various corrections and methods to introduce vdW interaction in DFT have been developed
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recently, such as the DFT-D2 [34] and optB86b-vdW [35, 36] functionals. To represent the

correct Physics of the inter-layer interactions in such so-called vdW-materials, I have also

made use of such functionals.

In the Kohn-Sham equations (2.12), εi has been introduced as a Lagrange multiplier

with no particular significance. εi with the dimension of energy is often confused with the

energy eigenvalue in a one-electron Schrödinger equation. It turns out that while this is

strictly approximate, the energy spectrum of εi often resembles the electronic density of

states. When this is done, both LDA and GGA underestimate the fundamental electronic

band gap of semiconductors. Methods like GW and hybrid functionals have been developed

to better reproduce the band gap in the solids. The GW method determines the eigenvalues

of the self-energy operator, which is expanded as the product of the single particle Green’s

function G and the dynamically screened Coulomb interaction W . While predicting the

electronic band gap value in good agreement with experiments, the calculation is rather time

consuming. Hybrid functionals methods are an alternative, that combines partial Hartree-

Fock exact exchange with partial exchange-correlation energy of DFT. The mixture of HF,

which typically overestimates the band gap, with DFT, which typically underestimates the

band gap, usually predicts a reasonable electronic band gap value for the system. In this

Thesis, to predict the electronic band gap value of certain nanostructures, I have made use

of hybrid functional methods, in particular the HSE06 approximation introduced by Heyd,

Scuseria, and Ernzerhof [37]. This approach uses a Coulomb potential screened by an error

function in the short range. It then expresses the exchange correlation energy as

Exc = aEHF,SR
x (w) + (1− a)EPBE,SR

x (w) + EPBE,LR
x (w) + EPBE

c . (2.18)
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The exchange energy of PBE is separated into a short-range term E
PBE,SR
x and a long-

range term, E
PBE,LR
x . The short-range term of PBE is mixed with HF exact exchange

energy. a is the mixing parameter between PBE and HF and w controls the short range of

the interaction. In HSE06, a = 0.25 and w = 0.2, but these quantities are often treated as

variable parameters.

2.4 Implementation of the DFT method

As long as the expression of Exc is selected, the Kohn-Sham equations can be solved in a

self-consistent manner. The initial electron density ρ0(r) is guessed as an input, typically

obtained from a superposition of atomic charge densities. A given density ρ(r) is used to

determine the effective potential veff . Then the Kohn-Sham equations are solved to get

a set of eigenstates, which will generate a new electron density ρ(r). This new electron

density is used to generate a new potential veff . Then, the Kohn-Sham equations are solved

iteratively until the self-consistency is reached.

The computational procedure described above is the general concept to solve the Kohn-

Sham equations. To deal with real systems, including periodic solids, further approximations

and technical treatments are needed. In a periodic solid or a nanostructure, a set of basis

functions is selected to expand the eigenfunctions of the system and construct the Kohn-Sham

matrix. Then the process of solving the Kohn-Sham equations is to diagonalize the Kohn-

Sham matrix. The orbital basis could be plane wave functions or localized atomic orbitals.

Moreover, as the core electrons does not affect the properties of solid much, their effects on

the valence electrons could be represented by a pseudopotential, which reduces the calcula-

tion efforts substantially. There are many different formulas to construct pseudopotentials,
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including ultrasoft pseudopotential [38] and norm-conserving pseudopotential [39, 40].

In this Thesis, the theoretical calculations are conducted using the SIESTA [27] and

VASP [28, 29, 30, 31] codes. SIESTA uses a localized numerical basis and norm-conserving

pseudopotential, so it is relatively fast and capable of producing pretty precise results for

the targeted systems. Most of the calculations in this Thesis, which address the structural

and electronic properties of nanostructures using LDA or PBE, are conducted by SIESTA.

VASP uses a projector augmented wave method (PAW) with an PAW basis and pseudopo-

tentials [31, 41]. Besides providing LDA and PBE functionals like SIESTA, VASP provides

advanced implementations of hybrid functionals (HSE06) and van der Waals corrections.

Calculations in this Thesis related to the latter issues are mainly done by VASP.
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Chapter 3

Enhancing mechanical hardness of

aluminum surfaces by nanoboron

implantation

The following discussion is closely related to a publication by Zhen Zhu, Dae-Gyeon Kwon,

Young-Kyun Kwon and David Tománek, Enhancing mechanical toughness of aluminum

surfaces by nanoboron implantation: An ab initio study, Chem. Phys. Lett. 620, 25-28

(2015) [1]. This study is a collaboration with Prof. Young-Kyun Kwon’s group at Kyung

Hee University.

3.1 Introduction

Aluminum owes its widespread use especially in the aerospace industry to its low gravimetric

density, good machinability, and high strength-to-weight ratio[8, 9]. Since this metal is

rather soft, its low wear resistance poses a serious problem especially in harsh environments.

The common way to enhance surface hardness of aluminum is by hard-coat anodizing, an

electrolytic passivation process, which forms a brittle surface oxide layer that may chip

off. Alternative ways to enhance hardness while maintaining ductility mostly involve bulk

modifications, such as changing from Al to the Al/TiB2 composite [10]. Hard diamond-like
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carbon coatings do not adhere well to the soft Al surface without adhesion promoters at

the interface [11]. An intriguing alternative to carbon involves boron that is nearly as hard

as diamond and that may bond more strongly to aluminum, since Al belongs to the boron

group in the periodic system. Boron is known for its large flexibility in bonding, forming

unusual structures in the bulk [12] and in nanoparticles [13]. The ability of boron to harden

surfaces of metals including Al has been suggested by the observed increase in their abrasion

resistance following bombardment by boron nanoparticles [14].

Here I study the possibility of enhancing the surface hardness of Al by implantation

of boron nanoparticles using ab initio density functional calculations. My results include

the equilibrium structure, stability, elastic properties and formation dynamics of a boron-

enriched Al surface after exposure to energetic boron nanoparticles. Combining molecular

dynamics simulations with structure optimization studies, I identify structural arrangements

that optimize the formation of strong covalent B-Al bonds. Nano-indentation simulations

based on constrained optimization suggest that presence of boron aggregates enhances sig-

nificantly the mechanical hardness and wear-resistance of aluminum surfaces.

3.2 Computational methods

My calculations are based on the ab initio density functional theory (DFT) as implemented

in the SIESTA code [27]. I used the Ceperley-Alder [32] exchange-correlation functional

as parameterized by Perdew and Zunger [42] and norm-conserving Troullier-Martins pseu-

dopotentials [39]. My basis consisted of pseudo-atomic orbitals (PAOs) generated by the

split-valence scheme for a double-ζ polarized basis set. All calculations were performed us-

ing periodic boundary conditions. The (111) surface of aluminum was represented by a
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five-layer slab, shown in Fig. 3.1(a), with each layer containing four Al atoms per unit cell

and the slabs separated by a vacuum region of 10 Å. I sampled the small quasi-2D Brillouin

zone associated with the large supercells by a dense 8×8×1 k-point mesh [43]. The energy

shift due to the spatial confinement of the PAO basis functions [44, 45] was limited to less

than 10 meV. The charge density has been determined self-consistently on a real space mesh

with a very high cutoff energy of 180 Ry, sufficient for total energy convergence to within

1 meV/atom. I studied bombardment of Al(111) by boron nanoparticles using microcanon-

ical molecular dynamics (MD) calculations. I integrated the equations of motion with the

Verlet algorithm, using Δt = 0.5 fs as time step to cover very long simulation periods of

up to 2 ps. The geometry of selected structures was optimized using the conjugate gradient

method. A structure was considered optimized when none of the residual forces exceeded

0.01 eV/Å.

3.3 Results and discussion

The key objective of my study is to identify unusually stable, covalently bonded B-Al nanos-

tructures in the surface region of Al following implantation of boron nanoparticles, which

would improve wear resistance of Al. Correct description of bonding changes requires treat-

ment by a self-consistent electronic structure calculation. This approach is computationally

very demanding and, when combined with molecular dynamics simulations, poses a serious

limit on the number of atoms per unit cell. Also, I will represent boron nanoparticles by B2

molecules when addressing implantation. My focus will be to investigate favorable bonding

changes in specific structural arrangements, which has been neglected in previous studies.

While obtaining this microscopic information, I will not be able to provide an adequate de-
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scription of compressive strain changes at the surface, the classic mechanism for improving

hardness, toughness, and wear at a metal surface.

Before studying implantation of boron nanoparticles, I optimized the structure of the

Al(111) surface. I found that slabs with at least five Al layers are required to reproducibly

represent the surface relaxation of the topmost layers. To adjust the interface to the optimum

bulk structure, the bottom two layers have been constrained in the bulk geometry. In the

optimum geometry, shown in Fig. 3.1(a), the largest change in the inter-layer separation

di,i+1 occurs for the topmost layer i = 1 and decreases with increasing depth below the

surface as Δd12/d12 = +2.1%, Δd23/d23 = +1.2%, and Δd34/d34 = +1.2%. Whereas the

topmost layer contracts at most metal surfaces [46], I find a surface expansion in slabs with

more than 3 layers in agreement with experimental observation [47], indicating that the

close-packed Al(111) surface does not benefit from Smoluchowski smoothing [48].

Next, I need to locate stable atomic arrangements in a boron enriched Al(111) surface that

would locally enhance surface hardness. This task is very hard, since there is no empirical

guidance for lack of a well-behaved potential energy surface representing boron interacting

with aluminum. Global optimization of the positions of 20 Al and additional B atoms in each

unit cell, when viewed as a search in configurational space of 60 or more dimensions, appears

nearly impossible using DFT due to the high computational requirements. To represent the

experimental conditions, which partly mimic simulated annealing, I performed molecular

dynamics simulations of energetic boron nanoparticles bombarding the Al(111) surface at

initially T = 0 K.

For the sake of simplicity, I limited my MD study to a boron dimer with kinetic energy

0.5 eV/atom that impacted on the surface vertically. The results indicate that the B2

molecule transfers its excess kinetic energy to locally melt the aluminum surface. Even
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Figure 3.1 For interpretation of the references to color in this and all other figures, the
reader is referred to the electronic version of this Thesis. Optimized structure of pristine
and B enriched Al(111) surfaces in side view (top panels) and top view (bottom panels). (a)
Pristine Al(111) surface prior to bombardment by boron dimers, shown above the surface.
The most stable structure of the Al surface enriched with (b) 2 B atoms and (c) 8 B atoms
per unit cell containing 20 Al atoms. The unit cells used in the study are highlighted by
color and shading. Reproduced from [1], c©2015 Elsevier.

though the B2 atoms may separate in the hot surrounding Al metal, they eventually remain

connected to each other in subsurface sites, as seen in Fig. 3.1(b).

Whereas the total energy is conserved during the molecular dynamics simulation, the

continuous transformation between more stable and less stable structures is reflected well in

the time-dependence of the potential energy V , which is presented in Fig. 3.2(a). The time

evolution of the system may be viewed as a trajectory in configurational space, and may

be compared to the trajectory during a simulated annealing optimization, with potential

energy minima representing particularly stable geometries. Since potential energy minima

correspond to kinetic energy maxima, high velocity may prevent atoms from probing closely

the most stable arrangements. Assuming that minima in the potential energy during my MD

simulation are close to optimum atomic arrangements, I froze the corresponding structures

23



0

-2

-4

-6

-8

-10

�
V

 (e
V

)

0 0.5 1.0 1.5
A B C

D E F G
H

I

Time (ps)
2.0

0.0
-0.2
-0.4
-0.6
-0.8
-1.0
-1.2
-1.4
-1.6

�
E

to
t
(e

V
)

B exposure �
0    0.5   1.0   1.5   2.0   2.5   3.0   3.5 

(a)                                               (b)
�=0.5

Figure 3.2 Stability of boron enriched Al(111) surfaces. (a) Potential energy evolution during
the microcanonical MD simulation of boron dimers impacting on the Al(111) surface. Solid
circles below selected potential minima represent optimized structures at T = 0 K. (b)
Diagram depicting the relative stability change ΔEtot of the B enriched Al(111) surface as
a function of the B exposure Θ. The green dashed line is a guide to the eye. Changes in
the potential energy ΔV and stability are given per unit cell. Reproduced from [1], c©2015
Elsevier.

and optimized them using the conjugate gradient technique. I believe that these structures,

labeled A − I and shown by the solid circles in Fig. 3.2(a), represent some of the most

stable geometries of B enriched Al(111). I found that for the the most stable among these

optimized structures, boron atoms generally occupy interstitial sites below the topmost layer

and are connected to each other. This optimum bonding geometry reflects the bond strength

hierarchy, with the B-B bonds being the strongest and the B-Al bonds being in-between the

B-B and the weakest Al-Al bonds. Thus, the structural priority is to maintain a contiguous

optimum B structure that also maximizes bonding to Al, possibly at the expense of disrupting

Al-Al bonds. I expect that this can be achieved best by placing boron aggregates below the

topmost Al layer. Indeed, I find that structure C in Fig. 3.2(a), which represents the most

stable atomic arrangement in the B2Al20 unit cell and is shown in Fig. 3.1(b), agrees with

this stability criterion.
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With the above working hypothesis for optimum atomic arrangements at hand, I next

discuss ways to enhance the stability of the Al(111) surface by changing the concentration of

boron in the surface region. The corresponding results are presented in Fig. 3.2(b), where I

define the boron exposure Θ by the ratio of the total number of B atoms N and the number

of surface Al atoms Ns(Al)=4 in the unit cell of the slab. I next define the stability change

associated with the presence of B atoms by the total energy difference per unit cell ΔEtot =

[Etot(BNAl20)−Etot(Al20)−NEtot(Bref )]/N . I chose to use Etot(Bref ) = Etot(B12)/12 as

the boron reference energy, since B12 icosahedra are not only very stable as nanoparticles,

but also occur as building blocks of the bulk structure of elemental boron [12], α−B and

β−B. Then, the sign of ΔEtot should reflect the energetic preference of boron atoms to

either form stable isolated nanoparticles or rather to form nanostructures embedded in the

metal matrix. My results indicate that structures with Θ = 0.5 are generally less stable

than systems with a higher B concentration. Among the systems investigated in my study,

I found the Θ = 2.0 structure depicted in Fig. 3.1(c) to be the most stable. The B8Al20

surface compound benefits from the stability of the contiguous planar boron honeycomb

lattice sandwiched between the topmost and the second Al layer, which locally resembles

the structure of the stable AlB2 compound. As seen in Fig. 3.1(c), my calculations indicate

a stability optimum at Θ≈2.0, corresponding to B8Al20. Considering stability changes per

boron atom, as reflected in the definition of ΔEtot above, the B8Al20 structure is more

stable by 0.6 eV/B atom than the boron poorer B2Al20 and by 0.3 eV/B atom than the

boron richer B12Al20 system.

As suggested in the beginning, the reason for very strong bonding between B and Al is

that both elements are in the same group of the periodic system. In this case, I expect only a

moderate charge transfer and covalent bonds between neighboring B and Al atoms. Results
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Figure 3.3 Effect of B-Al bonding on the electronic structure. The electronic density of states
(DOS) of (a) a pristine Al(111) slab and (b) the slab structure of Fig. 3.1(b) with Θ = 0.5.
The partial DOS of Al is shown by the dashed and that of B is shown by the dotted line in
(b). (c) Charge density difference in the system of (b), presented as a contour plot in a plane
normal to the surface, indicated by the dashed line in Fig. 3.1(b). Reproduced from [1],
c©2015 Elsevier.

related to the electronic structure of B enriched Al are presented in Fig. 3.3. The electronic

density of states (DOS) of the topmost 2 layers of the Al(111) surface, shown in Fig. 3.3(a),

is close to that of a free-electron metal. The corresponding DOS of the topmost 2 layers

of the B-enriched Al(111) surface, with the structure depicted in Fig. 3.1(b), is presented

in Fig. 3.3(b). Comparing these two densities of states, including the projection onto Al

and B sites in Fig. 3.3(b), indicates only a moderate perturbation of the Al subsystem by

bonding to boron. Mulliken population results with a single-ζ basis indicate net transfer of

≈0.7 electrons from Al to B in the structure of Fig. 3.1(b). To get a more accurate idea

about the charge redistribution in the system caused by the presence of B in Al(111), I
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plotted in Fig. 3.3(c) the electron density difference Δn(r) = nBxAl1−x
(r)−nAl(r)−nB(r).

Taking nAl(r) and nB(r) as the electron densities of the isolated, frozen subsystems, Δn(r) is

nonzero only in regions, where the total electron density deviates from a mere superposition

of the subsystem charge densities. My calculated Δn(r) in Fig. 3.3(c) indicates a moderate

electron transfer from Al to B, in agreement with the Mulliken analysis, with many Al

neighbors of B contributing as electron donors. Close inspection of Fig. 3.3(c) reveals that

presence of Al does not change the B-B bond and vice versa. A large electron accumulation

in the region of Al-B bonds suggests that Al-B bonds are covalent and should be strong as

anticipated.
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Figure 3.4 Effect of nano-boron on the surface hardness of Al. Schematic model of a Rockwell
nano-indenter in (a) is compared to its atomic-scale counterpart in (b). (c) Displacement
d as a function of the force F pressing vertically on a surface atom in BxAl(111). Results
are presented for structures with Θ = 0, Θ = 0.5 and Θ = 2.0, depicted in Fig. 3.1(a-c).
Reproduced from [1], c©2015 Elsevier.

There is no easy way to provide a realistic description of surface hardness, as probed

by nano-indentation, in atomistic calculations, due to the complexity of processes including

plastic flow associated with dislocation motion along slip planes in the sample. Instead of

explicitly considering large-scale displacement of atoms during indentation, I note that plastic
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flow is initiated at defects that require particularly low activation barriers for nucleation. It

has been shown that such low nucleation barriers are commonly found at defects that form

within the anharmonic regime of soft harmonic modes [49]. This correlation provides a direct

link between softness in the elastic response and plastic activity. In this case, I should be

able to get valuable insight into surface hardness by probing the elastic response only.

In the following, I study this important quantity by replicating the way hardness is

probed experimentally using nano-indentation and focussing on the initial elastic response.

The schematic setup of the commonly used Rockwell nano-indentation test is shown in

Fig. 3.4(a). Rockwell hardness is determined by the indentation depth d of a hard, conical

nano-indenter that is pressed by force F towards the surface. The deeper the indentation

at a given load, the softer the material. As an atomic-scale analogy, I studied structural

rearrangements introduced by a vertical displacement of a surface atom by d with respect to

the bottom of the slab, as illustrated schematically in Fig. 3.4(b). For different values of d, I

optimized the position of all atoms in the unit cell except the constrained atom, considered

a ‘nano-indenter’, and the bottom of the slab. I then interpreted the vertical component of

the Hellmann-Feynman force acting on the nano-indenter as the load F associated with the

indentation d.

My results for the atomic nano-indentation process are presented in Fig. 3.4(c) for the

three structures shown in Fig. 3.1, representing different degrees of boron enrichment. These

results indicate a linear relationship between the load and the indentation depth for d be-

low 0.5 Å. Defining local surface hardness by the F/d ratio, I find the values 1.6 eV/Å2 or

25.6 J/m2 for pure Al(111) (Θ = 0), 1.8 eV/Å2 or 28.8 J/m2 for a low nano-boron exposure

Θ = 0.5 and 2.4 eV/Å2 or 38.4 J/m2 for the higher nano-boron exposure Θ = 2.0. Consid-

ering the fact that the net amount of nano-boron is rather small, the increase of the surface
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hardness by 13% for Θ = 0.5 and by 50% for Θ = 2.0 is formidable. I must note that my

five-layer slab is a very limited representation of a realistic polycrystalline surface, where

energetic boron nanoparticles may penetrate deeper, modifying the grain structure and rein-

forcing intergranular interfaces by covalent bonds. I wish my study to inspire corresponding

experiments.

3.4 Summary and Conclusions

In conclusion, I used ab initio density functional calculations to study the equilibrium struc-

ture, stability, elastic properties and formation dynamics of a boron-enriched Al(111) sur-

face. I used molecular dynamics simulations to model the implantation of energetic boron

nanoparticles in Al and identified structural arrangements that optimize the formation of

strong covalent B-Al bonds for different concentrations of boron in the surface region. Nano-

indentation simulations based on constrained optimization suggest that presence of contigu-

ous boron nanostructures in the subsurface region may increase the mechanical hardness of

aluminum surfaces by up to 50% at relatively low boron exposures.
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Chapter 4

Carbon foam: structure, growth and

electronic properties

The following discussion is closely related to publications by Zhen Zhu, and David Tománek,

Formation and stability of cellular carbon foam structures: An Ab initio study, Phys. Rev.

Lett. 109, 135501 (2012) [3] and also Zhen Zhu, Zacharias Fthenakis, Jie Guan, and David

Tománek, Topologically protected conduction state at carbon foam surfaces: An em Ab initio

study, Phys. Rev. Lett. 112, 026803 (2014) [2].

4.1 Introduction

The last few decades have witnessed an unprecedented interest in carbon nanostructures,

the most prominent of them being fullerenes [15], nanotubes [17] and graphene [18]. Previ-

ously postulated hybrid carbon nanofoam structures [50, 51, 52, 53] with a mixed sp2/sp3

bonding character have received much less attention for lack of direct experimental obser-

vation. The growing body of information about the formation of carbon nanostructures

including graphene [54], nanotubes [55, 56] and fibers [57] on transition metal surfaces with

a particular morphology suggests ways that should favor the formation of particular carbon

allotropes. I propose that previously unseen nanostructures including carbon foam may form

under specific conditions on a metal substrate.
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Inspired by previously postulated carbon foams [51, 50, 52, 53], I explore ways to grow

such structures on a carbon saturated metal substrate. I use ab initio density functional

calculations to investigate the equilibrium structure, structural and thermal stability and

elastic properties of the growing system. The foam structures I study, which have a mixed

sp2/sp3 bonding character and resemble a bundle of carbon nanotubes fused to a contiguous

3D honeycomb structure, are rather stable even as slabs of finite thickness. The foam

structure may be compressed more easily by reducing the symmetry of the honeycombs. It

may accommodate the same type of defects as graphene at little energy cost, and its surface

may be stabilized by terminating caps. I postulate that the foam could form under non-

equilibrium conditions near grain boundaries of a carbon-saturated metal surface and should

remain stable until T > 3, 500 K.

Moreover, as electronic properties of foams [58, 51, 50, 59] have received much less at-

tention than their structural stability in spite of the obvious possibility to fine-tune the

fundamental band gap value in-between zero in sp2-bonded graphene and 5.5 eV in sp3-

bonded diamond by modifying the foam morphology. Here I also show my results of ab

initio electronic structure and quantum conductance calculations indicating the emergence

of conduction at the surface of semiconducting carbon foams. Occurrence of new conduction

states in these systems is intimately linked to the topology of the surface and not limited

to foams of elemental carbon. My interpretation based on rehybridization theory indicates

that conduction in the foam derives from first- and second-neighbor interactions between

p‖ orbitals lying in the surface plane, which are related to p⊥ orbitals of graphene. The

topologically protected conducting state occurs on bare and hydrogen-terminated foam sur-

faces and is thus unrelated to dangling bonds. My results for carbon foam indicate that the

conductance behavior may be further significantly modified by surface patterning.
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Figure 4.1 Geometry of carbon foam and thin foam slabs. (a) Structure of bulk foam and
that of an individual foam cell in side and top view, allowing to distinguish sp2 and sp3

sites. The dashed line shows the long cell axis. The perspective view in the right panel
depicts a larger bulk segment. Structure of (b) an sp3-terminated and (c) an sp2-terminated
thin foam slab. The tilted view used in left panels depicts the structure and primitive unit
cells. The right panels in (b) and (c) are side views of the structure that better illustrate the
type of termination and illustrate partial hydrogen coverage. Reproduced from [2], c©2014
American Physical Society.

4.2 Computational Methods

My numerical results for the equilibrium structure, stability and electronic properties of

carbon foam slabs are based on density functional theory (DFT) as implemented in the

SIESTA code [27] and VASP [28, 29, 30]. The different foam surfaces are represented by

a periodic array of slabs, separated by a 15 Å thick vacuum region. I used the Ceperley-

Alder [32] exchange-correlation functional as parameterized by Perdew and Zunger [42],
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norm-conserving Troullier-Martins pseudopotentials [39], and a double-ζ basis including po-

larization orbitals. The reciprocal space was sampled by a fine grid [43] of 16×16×1 k-points

in the Brillouin zone of the primitive surface unit cell. I used a mesh cutoff energy of 180 Ry

to determine the self-consistent charge density, which provided us with a precision in total

energy of ≤2 meV/atom. Equilibrium structures and energies based on SIESTA have been

checked against values based on VASP code and the hybrid functional calculations [37] are

done in VASP.

Transport properties of the slabs were investigated using the nonequilibrium Green’s

function (NEGF) approach as implemented in theTRAN-SIESTA code [60]. For structures

optimized by DFT, I used a single-ζ basis with polarization orbitals, the same 180 Ry mesh

cutoff energy, and a 8×8×1 k-point grid [43].

4.3 Structure and stability

The bulk carbon foam, depicted in Fig. 4.1(a), is a cellular structure resembling vaguely a

fused triangular array of (6,0) zigzag nanotubes. In contrast to a nanotube array, the walls

of the foam cells consist of 60% sp2 bonded atoms shared by two neighboring cells and 40%

sp3 bonded atoms shared by three adjacent cells. Density-functional based tight-binding

(DFTB) results indicate that the bulk structure is a semiconductor [50] with a band gap of

2.55 eV.

Cleavage normal to the long cell axis may generate two different surfaces. I distinguish

the sp3 surface terminated by C atoms, which were fourfold coordinated in the bulk, from

the sp2 surface terminated by atoms that were threefold coordinated. For computational

reasons, I will represent the surface by slabs of finite thickness with two identical surfaces
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Figure 4.2 Structure and electronic properties of cellular carbon nanofoam. (a) Left panels
depict individual cells of the foam in top and side view. Right panel shows the contiguous
foam in top view, with individual cells terminated by different types of caps. (b) Electron
density difference Δn(r) in a plane normal to the surface, indicated by the dotted line in (a).
(c) Side view of the structure of a stable minimum-thickness foam slab. (d) Spin density
distribution ρ↑ − ρ↓ in the structure shown in (c), represented in the same plane as in (b).

The isosurfaces are shown for ρ↑−ρ↓ = ±0.05 el./Å3. Reproduced from [3], c©2012 American
Physical Society.

that are either bare or terminated by hydrogen. The optimum structure of the thinnest foam

slab with sp3 termination is shown in Fig. 4.1(b) and that of the thinnest sp2-terminated

slab in Fig. 4.1(c).

Fig. 4.2(a) shows a carbon foam structure with possible capping and its building block.

In top view, it closely resembles the graphene honeycomb lattice with two important dis-

tinctions. I find the optimum lattice constant in the honeycomb plane of the foam to be

a = 4.81 Å, which is about twice the graphene value a = 2.46 Å. More important, 1D

carbon-carbon bonds in the 2D graphene structure correspond to 2D walls in the infinite 3D

foam structure. The foam cells, shown in the left panels of Fig. 4.2(a), closely resemble (6,0)
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carbon nanotubes The gravimetric density of the optimized foam structure, ρ = 2.4 g/cm3,

lies in-between the experimental values [61] for graphite, ρ = 2.27 g/cm3, and diamond,

ρ = 3.54 g/cm3. I find the 3D carbon foam structure to be less stable than graphene by

ΔEcoh≈0.42 eV/atom, which is comparable to the C60 fullerene.

In Fig. 4.2(b) I display the electron density difference, defined by Δn(r) = ntot(r) −
∑
natom(r) as the difference between the total electron density ntot(r) and the superposition

of atomic charge densities natom(r). Charge accumulation in the bond region indicates

strong covalent bonding especially between neighboring sp2 atoms. My DFT results for the

electronic structure indicate that the bottom of the conduction band lies below the top of the

valence band, suggesting that the infinite foam should be metallic. In reality, this finding is a

well-known artifact of DFT that I correct using the hybrid functional method (HSE06) [37],

which indicates semiconducting behavior of the bulk structure. The details about electronic

structure will be discussed in the following sections.

Besides the bulk structure, I also considered and optimized foam slabs of different thick-

ness. I must take into account the fact that the surface terminated with sp2-type atoms,

which are shared by two honeycombs, is inequivalent to a surface with sp3-type atoms,

which are shared by three honeycombs. The thinnest stable free-standing slab, dubbed the

‘single-decker’ structure and shown in Fig. 4.2(c), has both surfaces of the sp3-type. It has

some commonalities with graphitic nanostructures that show magnetic ordering at zigzag

edges [62, 63, 64, 65, 66]. Similar to the narrowest zigzag graphene nanoribbon, my system

displays a flat band near EF that gives rise to spin polarization with antiferromagnetic cou-

pling across the slab, as seen in Fig. 4.2(d). The dominating role of the surface reduces the

stability of the ‘single decker structure’ by ΔEcoh = 0.95 eV/atom with respect to the bulk

carbon foam. I note an even-odd alternation in the energy as a function of slab thickness in
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terms of the number of hexagon rows, since the slab surfaces may be either identical or differ-

ent. In any case, the role of the surface decreases with increasing slab thickness, and reaches

a much smaller value ΔEcoh≈0.46 eV/atom in the ‘triple-decker’, shown in Fig. 4.2(b), than

in the ‘single-decker’ structure.

The energy penalty due to unsaturated surfaces may be significantly reduced if the slab is

attached to a substrate, or if the cells are covalently terminated by caps, similar to the dome

termination of carbon nanotubes. I considered either a hexagon or two adjacent pentagons as

candidate caps to terminate the honeycombs, as seen in the right panel of Fig. 4.2(a). Both

caps have 6 twofold coordinated C atoms at the edge that may form covalent bonds with the

surface atoms. Assuming that all honeycombs on one side are capped and using A = 20.04 Å2

for the area of each honeycomb, I estimated the surface energy reduction associated with

cap termination to be ΔEs = −1.03 eV/Å2 for hexagonal caps and ΔEs = −0.25 eV/Å2 for

the less-stable two-pentagon caps. I need to note that this stabilization energy contains the

termination energy of both the surface and the individual unsaturated caps, and that these

energy terms can not easily be separated.

Since epitaxy is an issue when considering the possibility of foam growth on a metal

substrate, I investigated the lateral compressibility of the foam structure. My definition

is analogous to the elastic response of a uniform isotropic 3D structure with volume V to

hydrostatic pressure P = F/A, given by the force F per area A, which is represented by the

bulk modulus B = −V (∂P/∂V )T . The elastic deformation of the area A within a 2D slab

structure subject to in-plane hydrostatic pressure P2D = F/l, given by the force per length

l, can be represented by an analogous 2D bulk modulus, defined by B2D = −A(∂P2D/∂A)T .

Of course, I expect B2D to be nearly proportional to the slab thickness. I find this value to

be quite useful, since it allows to determine the critical slab thickness for epitaxial growth
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Figure 4.3 Defects in the foam. (a) Folding of the perfect foam, induced by applying hy-
drostatic pressure or by electron doping. Foam structures containing (b) 5775 and (c) 558
defects, familiar from defective graphene. Reproduced from [3], c©2012 American Physical
Society.

on a particular incommensurate substrate.

Applying hydrostatic pressure in the plane of the layer, I find that the honeycomb

structure may be compressed more easily by breaking the honeycomb symmetry than by

uniformly compressing the honeycombs. The structure of the deformed foam, depicted in

Fig. 4.3(a), indicates the preferential way the foam may fold. For this elastic response, I

find B2D = 112.9 N/m in the ‘single-decker’ and B2D = 163.9 N/m in the ‘triple-decker’

structure. For the sake of comparison, when considering a very thick slab of thickness h, I

used the bulk calculation to obtain B3D≈B2D/h = 178 GPa. I find this value to be much

smaller than that of the ideal structure with suppressed folding, which had been studied

previously [50] with results similar to my value B2D/h = 299.4 GPa. Even though the possi-

bility of folding reduces the bulk modulus, finite compressibility should still play a significant

role during foam growth on lattice-mismatched or defective substrates.

Interestingly, I find that foam folding occurs spontaneously when the system is doped by

electrons. The structure presented in Fig. 4.3(a) can be obtained by either applying isotropic

pressure in 2D or, at zero pressure, by doping with 0.2 electrons per C atom. In the latter
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case, I find that folding induced by doping reduced the foam energy by 0.19 eV/atom for

the bulk structure.

I also find that the proposed foam structure may accommodate a similar type of defects

as graphene with the main difference that bond rotations in graphene correspond to wall

rotations in the foam. In graphene monolayers, lines of 5775 or Stone-Thrower-Wales [67, 68]

and of 558 defects have been observed to accumulate near grain boundaries [69, 70, 71] and

step edges [72]. Their presence reduced stress in strained free-standing layers and the lattice

mismatch energy in adsorbed layers, which in this way maintained their epitaxy over large

areas. The analogous 5775 or 558 defect structures in the foam are depicted in Fig. 4.3(b) and

4.3(c). Since the foam structure is rather flexible, the energy penalty associated with these

types of defects is relatively small, amounting to ΔE = 0.19 eV/atom for the 5775 structure

of Fig. 4.3(b) and ΔE = 0.20 eV/atom for the 558 structure of Fig. 4.3(c) with respect

to the perfect infinite honeycomb lattice. With a bulk modulus B≈250 GPa, the defective

5775 and 558 foam structures are slightly more compressible than the perfect foam with

suppressed cell folding. Similar to supported graphene, these types of defects should reduce

the lattice mismatch energy on a particular substrate caused by different lattice constants

or, on a polycrystal, across grains with different orientation.

To find out whether the carbon foam may or may not decompose to a more stable

allotrope under growth conditions, I studied its thermal stability by performing molecular

dynamics (MD) simulations in the temperature range 500 K< T <5, 000 K. To avoid artifacts

caused by small unit cells, I used supercells containing 160 carbon atoms. For these large

unit cells, I used the Tersoff bond-order potential [73] in molecular dynamics simulations

covering time periods of 10 ps using 0.5 fs time steps. My results indicate that the infinite

foam should be stable up to a high melting temperature near 3, 700 K. Even though free-
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standing slabs with finite thickness may be thermally less stable, termination by caps or

attachment to a substrate should increase their thermal stability.

4.4 Growth mechanism

Inspired by the observed growth of graphene [54] and carbon nanotubes [55] on cobalt satu-

rated with carbon, I studied possible growth pathways of the foam on this substrate. To get

insight into the foam-substrate interaction including optimum lattice registry, I represented

the Co(0001) surface by a four-layer slab with the two bottom layers constrained in the bulk

geometry. Besides the perfect Co(hcp) lattice, I also considered fcc layer stacking when dis-

cussing grain boundaries. I considered different foam terminations at the interface in order

to find the optimum interface geometry. I found that the sp2-type terminated foam surface

attaches more strongly to Co(0001) than the sp3-type terminated surface. The largest re-

duction of the foam surface energy by ΔEs = −0.75 eV/Å2 occurs, when surface C atoms

occupy the hollow sites. I should note that this stabilization energy reflects the reduction of

both the metal and the foam surface energy.

Since a realistic representation of the growth mechanism by molecular dynamics (MD)

simulations is currently not possible due to time limitations, I discuss in the following likely

processes that should contribute to foam growth and judge their importance according to

potential energy surfaces. To favor foam growth, I need to find a suitable substrate geom-

etry and identify growth conditions that promote the formation of foam rather than other

competing nanostructures [54, 55, 74]. Assuming that the feedstock are carbon atoms dis-

solved in the substrate, I consider grain boundaries and steps as preferential nucleation sites

of the foam. Three competing processes contribute to the nucleation and growth of carbon

39



(b)(a)

A
B
A
B

E
ne

rg
y 

(e
V

) (c)

[0001]

[1120]
_

[1120]
_

[1100]
_

Top
view

Side
view

hcp hcpbb fcc o o ofcfc bc fc bc bcfc

Figure 4.4 Surface and bulk diffusion of C atoms on a carbon saturated Co(0001) surface.
Surface diffusion in (a) is compared to bulk diffusion in (b) and diffusion along a grain
boundary in (c). The top panels represent energy changes per atom along the optimum
diffusion path, which is indicated by the dashed line in top and side views, presented in the
bottom two panels. Reproduced from [3], c©2012 American Physical Society.

nanostructures on the surface: surface diffusion of carbon, bulk diffusion of carbon inside

individual grains, and bulk diffusion along grain boundaries that had not been considered

previously.

My results for these three processes are presented in Fig. 4.4. Since surface diffusion of

C atoms, depicted in Fig. 4.4(a), does not require displacement of substrate metal atoms,

it occurs with a low activation barrier of only 0.41 eV and should be the fastest process of

all. The optimum path involves diffusion between the more stable hollow sites, with the hcp
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sites being energetically favored by 0.28 eV over the fcc sites, across less stable bridge sites

labeled b.

In bulk cobalt, carbon atoms prefer energetically the octahedral interstitial sites over the

tetrahedral sites. The optimum bulk path, presented in Fig. 4.4(b), involves diffusion normal

to the surface between octahedral (o) sites across barriers at the triangular face centers (fc)

of the octahedra. I emphasized one triangular face of an octahedron by the white dotted line

in the middle panel of Fig. 4.4(b). In this view, the barrier fc site in the center of the triangle

separates the favored o sites directly below and above. Since the Co atoms are closely packed

in the hcp structure, passing through the center of the triangular face requires displacing

atoms, which requires a high activation energy of 3.19 eV. This value is to be considered

an upper limit, since presence of defects including vacancies should reduce the activation

barrier for bulk diffusion significantly [75].

In contrast to a single crystal, the atomic packing at grain boundaries is less compact.

Consequently, interstitial carbon atoms may find an energetically less costly diffusion path

along the grain boundary than in the perfect lattice. A possible grain boundary structure

that ends in a step edge is shown in the middle and bottom panel of Fig. 4.4(c). The atomic

packing in this grain boundary resembles that of a simple cubic lattice, with interstitial

carbon favoring energetically the body center bc sites in the cube center. The optimum

diffusion path requires passing through a square face center fc at the interface of neighboring

cubes. As seen in the top panel of Fig. 4.4(c), the activation barrier for the diffusion along

this grain boundary is ≈1.3 eV, less than half the single crystal value. Considering growth

conditions similar to those in Ref. [54], diffusion to the surface along this grain boundary

should be ≈4×1010 times faster than in the perfect crystal at T = 900 K according to

Arrhenius law.
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Figure 4.5 Possible formation mechanism of the cellular carbon nanofoam, represented by
structural snap shots in top and side view. Different grains are distinguished by color and
shading. Initial formation of a graphene nanoribbon along a step edge in (a) is followed by
lateral growth of honeycomb cells in (b). Reproduced from [3], c©2012 American Physical
Society.

With the information at hand about the diffusion rates of the carbon feedstock, I proceed

to discuss a possible growth scenario. The Co structure in Fig. 4.5 schematically depicts three

grains, distinguished by color and shading. It is plausible to assume that the terrace height

at both sides of the grain boundary may not be the same, yielding a step structure, which is

best visible in side view. Under growth conditions [54] near 600◦C, the fastest rate of carbon

diffusion to the surface is along the grain boundary towards the step edge, where carbon may

aggregate to a narrow graphene nanoribbon. Since according to my studies a zigzag edge

binds more strongly to Co than an armchair edge, I consider a zigzag graphene nanoribbon

attached to the step edge, as seen in Fig. 4.5(a). To best conform to the substrate, the

nanoribbon acquires a washboard structure, depicted in the top panel in Fig. 4.5(a). The

more reactive nanoribbon atoms, which protrude towards the terrace, are more likely to

form bonds with carbon atoms diffusing along the terrace, thus initiating the formation of

foam cells. In the meantime, atoms or flakes diffusing along the upper terrace become the

feedstock for the termination of the foam layer by caps, as seen in Fig. 4.5(b). I hope that
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this information may encourage follow-up experimental studies aiming at synthesizing the

carbon foam and related carbon allotropes.

4.5 Electronic Structure

After identifying the interesting structural properties of carbon foam, I continue to investi-

gate its electronic and transport properties. As DFT usually underestimate the fundamental

band gap, electronic band structure results obtained by DFT must be interpreted very care-

fully. Also in carbon foam, the DFT band gaps become too small and even turn negative

in the bulk system, placing the bottom of the conduction band below the top of the valence

band. While this is not a point of central interest in my study, I should at least note that

a better description of the band gaps may be obtained at substantial computational cost by

performing calculations using the HSE06 hybrid functional [76, 37] or self-energy calculations

using the GW approach. My HSE band structure results, presented in Fig. 4.6(f), show a

fundamental A–H band gap of 0.5 eV. The size of the band gap is consistent with results

of my GW calculations using the Vienna Ab initio Simulation Package (VASP) [28, 29, 30].

Comparison of my DFT and HSE results in Figs. 4.6(e) and 4.6(f) shows that the bulk car-

bon foam, according to HSE, is a semiconductor, and that the band gap reduction in DFT

is an artifact of that approach. Even considering such artifact, electronic structure of the

valence and the conduction band region is believed to closely represent experimental results.

My DFT calculations of the band structure of the hydrogen-covered thin carbon slab with

two sp3 surfaces, shown in Fig. 4.1(b), are presented in Fig. 4.7(a). These results suggest this

system to be semiconducting, same as its bulk counterpart [50]. On the other hand, the H-

covered, sp2-terminated slab, depicted in Fig. 4.1(c), is clearly metallic according to the band
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Figure 4.6 Electronic band structure of sp3-terminated foam slabs and of bulk carbon foam.
DFT-based band structure is presented for (a) a 1-honeycomb thick, (b) a 3-honeycomb
thick, (c) a 5-honeycomb thick, (d) a 7-honeycomb thick slab, and (e) for the bulk structure.
(f) Band structure of bulk carbon foam based on the HSE hybrid functional. Reproduced
from [2], c©2014 American Physical Society.

structure results in Fig. 4.7(b). This result is surprising, since conduction in semiconducting

carbon structures including diamond has so far only been observed in presence of unsaturated

dangling bonds [77]. My band structure results in Fig. 4.7(b) also show a Dirac-like cone

similar to graphene at the K-point in the Brillouin zone. Moderate n-doping should be able

to align it with the Fermi level, providing carriers with the same desirable properties as

graphene.

To learn more about the character of the new conduction states, I display in Fig. 4.7(c) the

charge density associated with states close to EF , shown by the shaded region in Fig. 4.7(b).

These states with p‖ character, which are oriented within the surface plane of the foam, are

located only on the sp2 sublattice. This is very different from graphene, where conduction

is caused by nearest-neighbor hopping between p⊥ orbitals oriented normal to the surface,

which are equally occupied at all lattice sites.

To judge the suitability of carbon foam for electronic applications, I calculated quantum

conductance of hydrogen-covered thin sp2- and sp3-terminated carbon foam slabs, shown in
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Figure 4.7 Electronic structure of thin foam slabs. DFT-based band structure of a thin,
hydrogen-covered foam slab with (a) sp3 and (b) sp2 termination on both sides. (c) Charge
distribution in the sp2-terminated slab corresponding to states in the energy range EF −
2 eV≤E≤EF + 2 eV, indicated by shading in (b). (d) Conductance G of sp3- and sp2-
terminated slabs along the armchair direction, in units of the conduction quantum G0.
Reproduced from [2], c©2014 American Physical Society.

Fig. 4.1(b-c), and present the results in Fig. 4.7(d). These results reflect my band structure

results, namely a large conductance at small bias values in the sp2-terminated carbon foam

slab and a conduction gap of 0.6 eV in the sp3-terminated slab. Additional results, also for

thicker slabs, suggest that conduction is linked to the sp2-termination of the carbon foam

surface and nearly isotropic.

To confirm the generality of this finding and obtain insight into its origin, I used the

linear combination of atomic orbitals (LCAO) technique [78, 79, 80] to study the electronic
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Figure 4.8 Interpretation of electronic structure results for the sp2-terminated slab (a-c)
and bulk foam (d-f) using the LCAO technique. Band structure results considering only
nearest-neighbor interaction (a,d), results of calculations that also include second-neighbor
interaction between p‖ states (b,e), and the corresponding densities of states (c,f). (g) High-

symmetry points in the slab and bulk Brillouin zones. (h) Rehybridized orbitals used in the
calculation. p‖ orbitals, shown in darker (green) shade, are responsible for conduction. (i)
Tilted top view of the second neighbor-interaction between p‖ states that dominate band

dispersion near EF . Connectivity diagram for the bulk (j) and thin foam slabs (k) that helps
explain the semiconducting behavior of bulk and sp3-terminated foam, and the origin of the
conducting state at the sp2-terminated surface. Reproduced from [2], c©2014 American
Physical Society.

structure of carbon foam slabs. My results for the sp2 terminated slab of interest are pre-

sented in Figs. 4.8(a-c). The band associated with conduction, obtained by considering only

nearest-neighbor interactions and presented in Fig. 4.8(a), was found to be quite different

from its DFT-based counterpart in Fig. 4.7(b). To find out if this difference is caused by

omitting second and third neighbor interactions, I introduced these interactions in my initial

Hamiltonian. By selectively modifying individual hopping parameters, I have found that (i)

the most significant changes in the electronic structure, including band broadening near EF ,
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are caused by second-neighbor Vppσ(2) and Vppπ(2) interactions; (ii) Vssσ(2) and Vspσ(2) in-

teractions between second neighbors do not affect the electronic structure near EF and can

be neglected; (iii) third-neighbor interactions contribute very little to the electronic struc-

ture and can also be safely neglected. Results obtained using the Hamiltonian augmented by

second-neighbor interactions between p‖ states, presented in Fig. 4.8(b), agree much better

with the DFT results of Fig. 4.7(b), in particular regarding the width of the occupied part

of the conduction band.

The effect of the second-neighbor interaction is even more pronounced in the electronic

structure of the bulk foam, shown in Figs. 4.8(d-f). As seen from the comparison between

Figs. 4.8(d) and 4.8(e), neglecting the second-neighbor interaction in Fig. 4.8(d) caused a

drastic narrowing of the bulk valence band and a significant increase in the fundamental

band gap. LCAO calculations for the bulk with both first and second neighbor interactions,

presented in Fig. 4.8(e), indicate an indirect A−H fundamental band gap of Eg = 1.12 eV,

in qualitative agreement with non-self-consistent DFTB results.

Having shown that the electronic structure near the Fermi level is well reproduced by

the LCAO Hamiltonian, which also considers second-neighbor interactions between p states,

I proceed to identify the reason for the fundamental difference between the sp2- terminated

metallic and sp3- terminated semiconducting slab. I use the rehybridization theory [81, 82]

to identify proper hybrid orbitals, since the atomic arrangements in the foam are generally

not purely linear, hexagonal or tetrahedral. Hybrid orbitals |hi〉 with i = 1, 2, 3, 4, which are

associated with an atom, are linear combinations of the |s〉 and a |p〉 atomic orbital at this

site. The direction of the |p〉 orbital is not that of the Cartesian axes, but rather taken as

that of nearest-neighbor bonds to up to three neighbors. The relative weights of the atomic

orbitals are constructed [83] by enforcing the orthogonality condition 〈hi|hj〉 = δij . This
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orthogonality condition is also used to construct any remaining hybrid orbitals. Selected

hybrids at fourfold coordinated sp3 sites and at threefold coordinated sp2 sites are shown in

Fig. 4.8(h).

Analysis of the foam eigenstates at EF indicates dominance of p‖ hybrids, highlighted

by the darker color Fig. 4.8(h), at sp2 sites only. While parallel to the slab surface, these

p‖ orbitals are not aligned along a spatially fixed direction, but rather are locally normal to

the graphitic strips lining the foam cells. These p‖ hybrids on the sp2 sublattice play the

role of π orbitals in the Hückel Hamiltonian that describes most of the interesting physics in

this system. I will show below that considering only first- and second-neighbor interaction

in the Hückel Hamiltonian is sufficient to explain, why bulk foam and sp3-terminated slabs

are semiconducting, whereas sp2-terminated slabs become metallic.

The spatial distribution of the p‖-dominated states at EF at one of the slab surfaces,

shown in Fig. 4.8(i), agrees well with the DFT results presented in Fig. 4.7(c). In a Hückel

Hamiltonian with up to second-neighbor interactions, the p‖ hybrids may interact in two ways

only. The first type of interaction is normal to the surface and involves pairs of adjacent sp2

sites, which interact by the first-neighbor Vppπ(1) interaction. This is shown schematically

by the red solid lines in the right panel of Fig. 4.8(h) and in Figs. 4.8(j-k), which represent

the connectivity diagram of the foam. The second type of interaction is in-plane and much

weaker, involving only the second-neighbor Vppπ(2) and Vppσ(2) interactions between p‖

states. This is shown schematically by the green dashed lines in the right panel of Fig. 4.8(i)

and in Figs. 4.8(j-k). In contrast to graphene, where the relatively strong Vppπ(1) interaction

forms a network that connects all atoms in the layer, this interaction connects only pairs of

adjacent sp2 sites in the carbon foam, as illustrated in Figs. 4.8(j-k).

I conclude that bulk foam states near EF resemble those of a set of carbon dimers,
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where the Vppπ(1) interaction splits the Ep energy eigenvalue into Ep±Vppπ(1), indicated

by the blue dash-dotted lines in Figs. 4.8(d-f). This corresponds to opening up a large

fundamental band gap with Eg = 2|Vppπ(1)|, which turns carbon foam to a semiconductor.

The δ-function-like localized states at Ep±Vppπ(1), originating from decoupled dimers, are

clearly visible in the density of states of the system with nearest-neighbor interactions only,

shown by the red dashed line in Fig. 4.8(f). Much weaker second-neighbor Vppπ(2) and

Vppσ(2) interactions couple these dimers and broaden the localized states into wide valence

and conduction bands, shown by the solid black lines in the density of states in Fig. 4.8(f).

Now it is rather straight-forward to explain the fundamental difference between the bulk,

sp3- and sp2-terminated surfaces in terms of conductivity. Deciding whether a structure is

metallic or semiconducting boils down to the simple question, whether all of the sp2 sites

are connected as first-neighbors to another sp2 site. If so, then all energy eigenvalues Ep

of the p‖ states will split by Vppπ(1) into the eigenvalue pair Ep±Vppπ(1), which opens up

a gap. This is the case for the bulk and an sp3-terminated surface of the foam. If, on

the other hand, there are at least some sp2 sites present with no first-neighbor bonds to

other sp2 sites, then the energy eigenvalue Ep of these p‖ states will not split. Presence

of partly filled p‖ states at Ep = EF indicates that such a system should be conducting.

The second-neighbor interaction between p‖ states provides a weak coupling between sp2

site pairs or lone sp2 sites at the surface, as shown schematically in Figs. 4.8(j) and 4.8(k).

In the bulk or in the sp3-terminated foam, this second-neighbor interaction broadens the

pair of sharp eigenvalues into a valence and conduction band that are still separated by a

band gap, keeping their semiconducting character. At the sp2-terminated surface, the weak

second-neighbor interaction between p‖ states at sp2 sites with no sp2 nearest neighbors will

broaden the state at Ep to a metallic band, as seen also in the density of states presented in
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Fig. 4.8(c). This behavior is not restricted to carbon foam, but should also occur at surfaces

of isomorphic foams of Si, Si-carbides or BN systems.

This reasoning also explains, why conductance depends only on the presence of sp2 sites

with a particular topological arrangement. I may thus conclude that the conducting state

at sp2-terminated surfaces is topologically protected and is independent of the fact that the

surface has been represented by a finite-thickness slab. This finding is furthermore confirmed

by my electronic structure and conductance results for a thicker slab. With increasing

thickness, the electronic structure of finite slabs approaches that of the bulk material.

My conclusions regarding occurrence of states at EF are valid not only for perfect sp2-

terminated surfaces, but also for all defective structures that contain sp2 sites with no sp2

nearest neighbors. Isolated monatomic vacancies in the bulk will produce corresponding mid-

gap defect states. Lithographic patterning of the sp3-terminated semiconducting surface by

selective removal of lines of surface atoms will yield lines with sp2-termination that will

behave as conductive nanowires.

4.6 In-plane conduction anisotropy at hydrogen-covered

foam surfaces

Results of my quantum transport calculations along different directions on hydrogen-covered

sp3- and sp2-terminated 1-honeycomb thick foam slabs are shown in Fig. 4.9. To judge the

level of anisotropy, the infinite slab can be thought to be subdivided into strips of constant

width, aligned with the transport direction. The fact that conductance results along the

armchair and the zigzag direction are nearly the same strongly suggests that the conductance

along the foam surface is nearly isotropic.
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Figure 4.9 Tilted view of (a) an sp2- and (c) an sp3-terminated foam slab, indicating the
armchair and the zigzag direction along the surface. Conduction along the armchair and
the zigzag direction in (b) an sp2- and (d) an sp3-terminated 1-honeycomb thick foam slab.
Reproduced from [2], c©2014 American Physical Society.

4.7 Conclusions

In conclusion, I studied the formation and structural as well as thermal stability of cellular

foam-like carbon nanostructures by performing ab initio density functional calculations. I

found that these systems with a mixed sp2/sp3 bonding character may be compressed by

reducing the symmetry of the honeycomb cells. The foam may accommodate the same

type of defects as graphene, and its surface may be be stabilized by terminating caps. I

postulate that the foam may form under non-equilibrium conditions near grain boundaries
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on a carbon-saturated Co surface and should be thermally stable up to ≈3, 700 K.

Regarding to electronic properties of this novel carbon foam structure, I have identified

theoretically an unusual conduction mechanism occurring at the sp2-terminated surface of

a semiconducting carbon foam. To obtain microscopic insight into the origin of this mecha-

nism, I augmented ab initio electronic structure and quantum conductance calculations by

rehybridization theory calculations. I found that the occurrence of new conduction states in

this system is intimately linked to the topology of the surface and not limited to foams of ele-

mental carbon. My interpretation based on rehybridization theory indicates that conduction

in the foam derives from first- and second-neighbor interactions between p‖ orbitals lying in

the surface plane, which are related to p⊥ orbitals of graphene. The topologically protected

conducting state occurs on bare and hydrogen-terminated foam surfaces and is thus unre-

lated to dangling bonds. My results for carbon foam indicate that the conductance behavior

may be further significantly modified by surface patterning, allowing to create conductive

paths at the surface of the semiconducting foam matrix.
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Chapter 5

Semiconducting bulk black

phosphorus and 2D phosphorene

The following discussion represents the theoretical part of the publication by Han Liu, Adam

T. Neal, Zhen Zhu, Zhe Luo, Xianfan Xu, David Tománek and Peide Ye, Phosphorene: an

unexplored 2D semiconductor with a high hole mobility, ACS Nano 8, 4033-41 (2014) [4]. This

study is a collaborative project between our Theory group and Prof. Peide Ye’s Experimental

group at Purdue University that synthesized and characterized the system.

5.1 Introduction

Phosphorene, 2D counterpart of layered black phosphorus, which could be exfoliated mechan-

ically, similar to other layered materials like graphene [18] and MoS2 [23]. Unlike metallic

graphite and graphene, bulk black phosphorus is a direct band gap semiconductor with a

band gap around 0.3 eV [84, 85], and similar semiconducting character is also maintained

in thin slabs of phosphorene. Electronic devices of phosphorene shows both high on/off

ratio and a high carrier mobility. These two advantages shed light on phosphorene as an

emerging material for 2D electronics application, surpassing well established 2D materials

like graphene and MoS2.
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Figure 5.1 Structural and electronic properties of layered black phosphorus. (a) Calculated
band structure of bulk black phosphorus. (b) Atomic arrangement in one monolayer and the
Brillouin zone of the bulk system. Reproduced from [4], c©2014 American Chemical Society.

5.2 Computational methods

I determined the equilibrium structure, stability and electronic properties of bulk and mul-

tilayer structures of black phosphorus using ab initio density functional theory (DFT) calcu-

lations as implemented in the SIESTA code [27]. Multilayer structures are represented by a

periodic array of slabs, separated by a 15 Å thick vacuum region. I used the Perdew-Burke-

Ernzerhof [33] exchange-correlation functional, norm-conserving Troullier-Martins pseudopo-

tentials [39], and a double−ζ basis including polarization orbitals. The reciprocal space was

sampled by a fine grid [43] of 8×8×1 k-points in the Brillouin zone of the primitive unit cell.

I used a mesh cutoff energy of 180 Ry to determine the self-consistent charge density, which

provided us with a precision in total energy of ≤2 meV/atom.

5.3 Results and discussion

My theoretical results of bulk black phosphorus are presented in Fig. 5.1. The calculated

band structure in Figs. 5.1(a) indicates that bulk is a semiconductor. The monolayer dis-
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Figure 5.2 (a) Electronic structure of monolayer phosphorene. (b) Density of electrons ρvb
near the top of the valence band of a P monolayer. States in the energy range EF − 1 eV <
E < EF , indicated by shading in (a), are shown at the isosurface value ρ = 3×10−3 e/Å3.
Reproduced from [4], c©2014 American Chemical Society.

playing a significantly larger fundamental band gap, shown in Fig. 5.2, about 0.9 eV and I

expect the experimental value of the band gap is even larger. The bulk unit cell contains

two AB stacked layers and the structure of one layer is shown in Fig. 5.1(b). The calculated

bulk lattice parameters a1 = 3.36 Å, a2 = 4.53 Å, and a3 = 11.17 Å suggest that the in-layer

structure is very close to that of the monolayer, which is characterized by orthogonal lattice

parameters a1 = 3.35 Å and a2 = 4.62 Å. The optimized geometry agrees well with the ob-

served layered structure. Even though the in-layer morphology is close to that of graphene,

the layers are puckered. The relatively large value of a3 is caused by layer puckering and a

relatively large inter-layer separation, close to the graphite value.

Electronic band structure results obtained by DFT must be interpreted very carefully.

Even though DFT generally underestimates the fundamental band gap, the electronic struc-

ture of the valence and the conduction band region is believed to closely represent experi-

mental results. Therefore, I expect the charge density associated with states near the top of

the valence band, shown in Fig. 5.2(b), to be represented accurately. These states and their
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Figure 5.3 Band gap engineering of few-layer phosphorene through (a) the number of layers
and (b) applied strain along the x- and y-direction of a monolayer. Change from a direct
to an indirect band gap is indicated by the dashed line in (b). Reproduced from [4], c©2014
American Chemical Society.

hybrids with electronic states of the contact electrodes will play a crucial role in the carrier

injection and quantum transport.

My calculated bulk band gap value Eg = 0.04 eV agrees with published results [86, 87],

but is significantly smaller than the experimental value [84] of 0.31 eV. More interesting than

its precise value is its dependence on the number of layers Nl in a multi-layer slab, shown

in Fig. 5.3(a). My finding that Eg may vary between 0.9 eV in a monolayer and 0.04 eV in

the bulk promises the possibility of tuning the electronic properties of this system. Equally

interesting is the sensitive dependence of the gap on in-layer stress along different directions,

shown in Fig. 5.3(b). Of particular importance is my finding that even a moderate ≈3%

in-plane compression, possibly caused by epitaxy on a substrate, turns a direct-gap to an

indirect-gap semiconductor with a significantly smaller gap.
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5.4 Conclusions

To conclude, I have revealed the puckered structure of black phosphorus and its 2D counter-

part phosphorene. I also found that few-layer phosphorene is a direct band gap semiconduc-

tor with a much larger band gap than bulk black phosphorus. The band gap value depends

sensitively on the number of layers, which turn the number of layers into an effective method

to engineer the electronic properties of few-layer phosphorene. Moreover, appling moderate

in-layer tensile strain could modify the band gap value and induce a direct-to-indirect band

gap transition.
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Chapter 6

Semiconducting layered blue

phosphorus

The following discussion is closely related to a publication by Zhen Zhu, and David Tománek,

Semiconducting layered blue phosphorus: A computational study, Phys. Rev. Lett. 112,

176802 (2014) [5].

6.1 Introduction

Elemental phosphorus is stable in a large number of structures, including the common white,

red, violet and black allotropes [88, 89], with the color defined by the fundamental band

gap. Most stable among them is black phosphorus, which – besides graphitic carbon –

is the only layered structure of an elemental solid I know of. Individual layers of black

phosphorus, shown in Fig. 6.1(a), resemble the honeycomb structure of graphene in terms

of connectivity, but are non-planar. I noted that specific dislocations may convert black

phosphorus, characterized by armchair ridges in the side view of the layers, to a well-defined

structure with zigzag puckering, shown in Fig. 6.1(b). Assuming that the modified structure

is stable, it appears worthwhile to study the equilibrium atomic arrangement in the bulk

and the possibility of exfoliating individual layers. Whereas the observed fundamental band

gap of 0.3-0.4 eV in black phosphorus [84, 85] is rather narrow, it is intriguing to see if
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Figure 6.1 The layered structure of (a) black and (b) blue phosphorus in top and side view.
Atoms at the top and bottom of the non-planar layers are distinguished by color and shading
and the Wigner-Seitz cells are shown by the shaded region. (c) Schematic of the conversion
of black to blue phosphorus by dislocations, highlighted by the shaded regions and arrows.
(d) Equilibrium structure of AB stacked blue phosphorus in side view. Reproduced from [5],
c©2014 American Physical Society.

the modified phosphorus structure is a semiconductor with a wider gap. If also the carrier

mobility were high, few-layer phosphorus in the new phase would become a worthy contender

in the emerging field of post-graphene 2D electronics.

Here I use ab initio calculations to investigate this previously unknown phase of phospho-

rus that shares its layered structure with the most stable black phosphorus allotrope. I find

this structural phase, which I call ‘blue phosphorus’, to be nearly as stable as black phospho-

rus. Whereas the in-plane hexagonal structure and bulk layer stacking of blue phosphorus
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are closely related to graphite, the main advantage of blue phosphorus is its wide funda-

mental band gap in excess of 2 eV. Due to the weak inter-layer interaction, blue phosphorus

should exfoliate easily to form quasi-2D structures for potential electronic applications. I

study a likely transformation pathway from black to blue phosphorus and discuss possible

ways to synthesize the postulated structure.

6.2 Computational techniques

My computational approach to gain insight into the equilibrium structure, stability and elec-

tronic properties of blue phosphorus is based on ab initio density functional theory (DFT)

as implemented in the SIESTA [27] and VASP [28] codes. I used periodic boundary con-

ditions throughout the study, with multilayer structures represented by a periodic array of

slabs separated by a 15 Å thick vacuum region. I used the Perdew-Burke-Ernzerhof [33]

exchange-correlation functional, norm-conserving Troullier-Martins pseudopotentials [39],

and a double-ζ basis including polarization orbitals. The reciprocal space was sampled

by a fine grid [43] of 8×8×1 k-points in the Brillouin zone of the primitive unit cell. I

used a mesh cutoff energy of 180 Ry to determine the self-consistent charge density, which

provided us with a precision in total energy of < 2 meV/atom. All geometries have been

optimized by SIESTA using the conjugate gradient method [90], until none of the residual

Hellmann-Feynman forces exceeded 10−2 eV/Å. My SIESTA results for the optimized ge-

ometry, interlayer interactions and electronic structure were found to be in general agreement

with VASP calculations. To verify the stability of the system at elevated temperatures, I

performed a canonical molecular dynamics calculation of the monolayer and free-standing

flakes using the SIESTA code. I used the Verlet integration algorithm to cover time periods
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up to 1 ps with the time step of 1 fs.

6.3 Structural results

The optimized reference structure of black phosphorus, shown in Fig. 6.1(a), is presented next

to the proposed blue phosphorus structure in Fig. 6.1(b). The top view of both structures

illustrates their similarity with the honeycomb lattice of graphite, which contains two atoms

per layer per unit cell. Both phosphorus allotropes differ from graphite in the non-planar

structure of their layers. In top view, the isotropic structure of blue phosphorus in Fig. 6.1(b)

differs significantly from the anisotropic structure of black phosphorus in Fig. 6.1(a). As seen

in side view in Figs. 6.1(a) and 6.1(b), the puckered zigzag structure in the cross-section of

blue phosphorus differs from the distinct armchair ridges that cause the anisotropy of black

phosphorus. The puckering in the blue phosphorus monolayer is similar to the postulated

structure of single-wall phosphorus nanotubes [91].

The structural relationship between blue and black phosphorus is illustrated schemat-

ically in Fig. 6.1(c). A dislocation is introduced in a monolayer of black phosphorus by

flipping specific P atoms from a ‘down’ to an ‘up’ position without changing the local bond

angles, as described below and indicated by the arrows in Fig. 6.1(c). Subjecting every fourth

row of P atoms to this transformation converts a monolayer of black to blue phosphorus.

The location of dislocation lines in the monolayer structures is emphasized by the shaded

regions in Fig. 6.1(c).

Atoms in the layers of blue phosphorus are covalently bonded at the equilibrium distance

of 2.27 Å, resulting in a large binding energy of 3.28 eV/atom for the monolayer, comparable

with experimental value [61] for bulk red phosphorus. This value differs from that of black
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phosphorus by less than 2 meV/atom, suggesting that blue and black phosphorus are equally

stable A weak inter-layer interaction of 6 meV/atom holds the layered structure together at

the inter-layer distance d = 5.63 Å, as seen in Fig. 6.1(d), which indicates the possibility of

easy exfoliation. The AB hexagonal stacking and the ABC rhombohedral stacking of layers

differ energetically by less than 1 meV/atom.

The optimized hexagonal unit cell of an isolated blue phosphorus monolayer, shown in

Fig. 6.1(c), is spanned by lattice vectors �a1 and �a2, with a = |�a1| = |�a2| = 3.33 Å. The

influence of the inter-layer interaction on the in-layer structure is small, causing only a

negligible change from a = 3.324 Å in the bulk to a = 3.326 Å in the isolated monolayer.

With its higher symmetry, the smaller hexagonal Wigner-Seitz cell of blue phosphorus, which

contains two atoms and is shown in Fig. 6.1(b), differs from the rectangular Wigner-Seitz cell

of the anisotropic black phosphorus monolayer with 4 atoms/unit cell, as shown in Fig. 6.1(a).

Still, monolayers of blue and black phosphorus may form an ‘ideal’ in-layer connection by

the dislocation illustrated in Fig. 6.1(c).

6.4 Vibrational structure results

One way to compare the stability and structural rigidity of the different phosphorus allotropes

is by studying the vibration spectrum. My results for the vibration spectra of blue and

black phosphorus monolayers are presented in Fig. 6.2. I find the vibration spectra to be

rather similar, reflecting a very similar bonding character. Acoustic and optical modes

are well separated in both black and blue phosphorus. The harder longitudinal optical

modes reflect a higher in-plane rigidity of the blue phosphorus allotrope in comparison to

the accordion-like black phosphorus structure. The calculated flexural rigidity value D =
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Figure 6.2 Vibrational band structure ω(�k) of a monolayer of (a) black and (b) blue phos-
phorus. The slope of the dashed lines along the longitudinal acoustic branches near Γ
corresponds to the speed of sound and the in-plane stiffness. Reproduced from [5], c©2014
American Physical Society.

0.84 eV in blue phosphorus is lower than the D = 1.51 eV value in black phosphorus.

These values provide a quantitative explanation for the dispersion of the flexural acoustic

modes ZA near the Γ point [92] in the two allotropes. The high rigidity of a free-standing

blue phosphorus monolayer was also confirmed by my molecular dynamics calculations at

nonzero temperatures.

I next compare the slopes of the longitudinal acoustic branches near Γ, which correspond

to the speed of sound and reveal the in-plane stiffness. As seen in Fig. 6.2(a), the speed

of sound along the Γ − Y direction in black phosphorus, vΓ−Y
s = 7.8 km/s, is significantly

higher than the vΓ−X
s = 3.8 km/s value along the Γ−X direction, reflecting an anisotropy

in the elastic constants. The lower rigidity along the Γ−X direction, corresponding to the

�a1 direction in Fig. 6.1(a), reflects the fact that compression along �a1 requires primarily

bond bending, which comes at a lower energy cost than bond stretching. In strong contrast

to those findings, my results in Fig. 6.2(b) indicate that the in-plane elastic response of blue
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Figure 6.3 (a) Electronic band structure and (b) density of states of a blue phosphorus
monolayer. (c) Electron density ρvb in the 0.1 eV wide energy range near the top top of the
valence band in blue phosphorus, indicated by the green shaded region in (a) and (b). ρvb is
represented at the isosurface value ρ = 7×10−3 e/Å3 and superposed with a ball-and-stick
model of the structure. Dependence of the fundamental band gap Eg on (d) the number
of layers and (e) the in-plane uniform stretching. Reproduced from [5], c©2014 American
Physical Society.

phosphorus is nearly isotropic, with nearly the same value vs = 7.7 km/s for the speed of

sound along the Γ−M and the Γ−K direction. The predicted finite in-layer compressibility

of these non-planar structures is advantageous when accommodating lattice mismatch during

Chemical Vapor Deposition (CVD) growth on a substrate.
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6.5 Electronic structure results

My DFT results for the electronic structure of blue phosphorus are presented in Fig. 6.3. The

calculated band structure and density of states, presented in Figs. 6.3(a) and 6.3(b), indicate

that a blue phosphorus monolayer is a semiconductor with an indirect band gap Egap≈2 eV.

Comparison with more proper self-energy calculations based on the GW approach, performed

by VASP, indicate that the DFT band gap is underestimated by ≈1.0±0.2 eV in mono- and

multi-layers of blue P as a common shortcoming of DFT. Still, the electronic structure of the

valence and the conduction band region in DFT is believed to closely represent experimental

results. Therefore, I expect the charge density associated with states near the top of the

valence band, shown in Fig. 6.3(c), to be represented accurately. These states correspond to

the energy range highlighted by the green shading in Figs. 6.3(a) and 6.3(b), which extends

from mid-gap to 0.1 eV below the top of the valence band. These states cause the inter-layer

band dispersion in few-layer systems, and their hybrids with electronic states of the contact

electrodes will play a crucial role in the carrier injection and quantum transport.

More interesting than the precise value of the fundamental band gap is its dependence on

the number of layers N in a multi-layer slab, shown in Fig. 6.3(d). This is a consequence of

the inter-layer dispersion near the Fermi level in the bulk material. Independent of the type

of stacking, I find Egap to be inversely proportional to N between one monolayer and the

bulk structure. I conclude that modifying the slab thickness may change the value of Egap

by up to a factor of 2, which is very important for electronic applications. The N -dependent

band gap value of ≤3 eV lies just above the photon energy of visible blue light. I derive

the name ‘blue phosphorus’ from this absorption edge, which plays a key role in the optical

appearance.
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As seen in Fig. 6.3(e), the band gap Egap depends also sensitively on the applied in-layer

strain σ. In view of the non-planarity of the structure, the discussed strain range −10% <

σ < +10% can be achieved without a large energy penalty, as discussed in connection with

the vibration spectra. The possibility to change the band gap value by < 50% in strained

epitaxial geometries on different substrates is one more indication that blue phosphorus may

find intriguing applications in nanoelectronics.

6.6 Conversion from black to blue phosphorus

I next studied the possibility of converting a monolayer of black to blue phosphorus by

introducing an array of dislocations, depicted schematically in Fig. 6.1(c). My discussion of

the conversion process including energy estimates is presented in Fig. 6.4. The starting black

phosphorus, the final blue phosphorus, and an intermediate structure are depicted in side

view in Fig. 6.4(a). To estimate changes in the atomic arrangement during the conversion

process, I changed and constrained the out-of-plane displacement of specific atoms in the

unit cell to follow the ‘black-to-blue’ trajectory and relaxed all other degrees of freedom. This

provided us with a sequence of structures ‘1-8’ in-between black and blue phosphorus, which

loosely define the reaction coordinate in Fig. 6.4(b). The change in the unit cell from black to

blue phosphorus has been imposed between steps ‘1’ and ‘2’ by deforming it from the initial

size and shape in black phosphorus to the final rectangular supercell in blue phosphorus,

followed by atomic relaxation. My results for the relative energy with respect to the black

phosphorus structure ‘1’ again illustrate my finding that the blue phosphorus structure ‘8’ is

equally stable as ‘1’. The activation barrier for the conversion process is likely overestimated

due to the constraints imposed on the intermediate structures and may further be lowered
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Figure 6.4 (a) Series of structural snapshots depicting the transition from black to blue phos-
phorus. (b) Total energy change during the transformation from black to blue phosphorus.
The reaction coordinate range ‘1-2’ describes initial in-layer stretching along the horizontal
direction, identified as �a1 in Fig. 6.1(a), followed by out-of-plane displacement of atoms at a
fixed value of �a1 in the range ‘2-8’. Reproduced from [5], c©2014 American Physical Society.

by stretching black phosphorus layers. Thus the true value should be below the already low

value of 0.47 eV/atom, indicating the relative ease of mechanical conversion from black to

blue phosphorus.

As suggested earlier, the weak inter-layer interaction should allow mechanical exfoliation

of blue phosphorus in analogy to the black allotrope [4]. As a matter of fact, depositing

mechanically a monolayer of black phosphorus onto a stepped substrate may cause forma-

tion of dislocation lines and thus formation of narrow domains of blue phosphorus in the

monolayer structure along the step edges of the substrate. In analogy to graphene [93, 94]

and silicene [95], also layered phosphorus structures may be grown by CVD on specific sub-

strates. As suggested in this study, blue and black phosphorus should be equally stable.

The preferential phase should thus be determined by the lattice constant and the symmetry

of the substrate in order to maximize the adsorption energy. Consequently, I expect blue

phosphorus to form preferentially on substrates with hexagonal symmetry and a matching
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lattice constant, such as MoS2, or the (0001) surfaces of Zr and Sc, whereas black phospho-

rus should start growing on substrates with a rectangular lattice. Due to the low energy of

forming a dislocation that connects blue and black phosphorus, both allotropes could co-

exist on particular substrates, including stepped surfaces, to optimize the adlayer-substrate

interaction.

One of the main reasons for the interest in 2D semiconductors including graphene for

electronic applications is the observed high mobility of carriers. Related quasi-2D systems,

including MoS2, bring the benefit of a nonzero band gap, but display lower intrinsic carrier

mobility due to enhanced electron-phonon coupling, primarily caused by the presence of

heavy elements such as Mo [96]. It appears likely that the blue phosphorus structure, similar

to black phosphorus [4], may exhibit a higher carrier mobility than MoS2. The combination

of a significant band gap and high carrier mobility would turn blue phosphorus into an

excellent contender for a new generation of nano-electronic devices.
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Figure 6.5 Snap shots of canonical molecular dynamics simulations depicting structural
changes in (a-e) a contiguous monolayer and (f-j) a free-standing, finite flake of blue phospho-
rus at different temperatures. The unit cell of the lattice and the flake contain 64 P atoms.
The initial geometries are shown in (a) and (f). Reproduced from [5], c©2014 American
Physical Society.
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6.7 Stability at elevated temperatures

To study the structural stability of a blue phosphorus monolayer, I also performed canonical

molecular dynamics simulations of a periodic layer structure and a free-standing finite flake

and present my results in Fig. 6.5. At room temperature, the infinite layer undergoes only

minimal changes. The flake exhibits reconstruction at the edge, but otherwise keeps the

structure in the middle of the layer intact. The higher temperature of 1500 K is well above

the melting point of phosphorus (TM = 863 K for red phosphorus) [61]. My results indicate

significant structural changes, which are somewhat suppressed in the infinite lattice structure.

There is no indication of a preferential structural change to the atomic arrangement found

in black phosphorus.

6.8 Conclusions

In conclusion, I have conducted ab initio calculations to investigate a previously unknown

layered phase of phosphorus, which I call ‘blue phosphorus’. I find blue phosphorus to be

nearly as stable as black phosphorus, the most stable phosphorus allotrope. While sharing

the atomic connectivity with the honeycomb lattice of graphene, layers of blue phosphorus are

non-planar. Whereas the bulk layer stacking of blue phosphorus is closely related to graphite,

the main advantage of this allotrope is its wide fundamental band gap in excess of 2 eV. Due

to the weak inter-layer interaction, blue phosphorus should exfoliate easily to form quasi-2D

structures for potential electronic applications. I have investigated a likely transformation

pathway from black to blue phosphorus and show that the postulated structure may form

spontaneously by CVD on a lattice-matched substrate or may be result by stretching black

phosphorus. Monolayers of blue phosphorus may form a structurally ideal connection to
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monolayers of black phosphorus with a different electronic structure.
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Chapter 7

Metal-semiconductor transition in 2D

few-layer grey arsenic

The following discussion is closely related to a publication by Zhen Zhu, Jie Guan and

David Tománek, Unusual electronic structure of few-layer grey arsenic: A computational

study, Phys. Rev. B 91, 161404(R) (2015) [6].

7.1 Introduction

There is growing interest in two-dimensional semiconductors with a significant fundamental

band gap and a high carrier mobility. Whereas obtaining a reproducible and robust band

gap has turned into an unsurmountable obstacle for graphene [22, 21], the presence of heavy

transition metal atoms in layered dichalcogenide compounds limits their carrier mobility [97].

Few-layer structures of layered phosphorus allotropes, such as black phosphorus, are rapidly

attracting attention due to their combination of high mobility and significant band gaps [4,

5, 98, 99]. I find it conceivable that other isoelectronic systems, such as arsenic, may display

similar structural and electronic properties as few-layer phosphorene while being chemically

much less reactive [100]. In this respect, the most abundant grey arsenic allotrope is the

structural counterpart of the layered A7 or blue phosphorus [5]. Arsenic is commonly known

for its toxicity, which is highest for the yellow As allotrope and should not be of concern for
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few-layer nanostructures. Whereas crystalline grey arsenic displays rhombohedral stacking

of layers and is semimetallic [101, 102, 103, 104, 105, 106, 107], loss of crystallinity opens a

fundamental band gap in the amorphous structure [108, 102]. Even though few-layer grey

arsenic has not been studied yet, analogies with blue phosphorene make arsenic monolayers

and bilayers plausible candidates for 2D semiconductors.

Here I study the equilibrium geometry and electronic structure of thin films of layered

grey arsenic using ab initio density functional theory. In contrast to bulk grey As that

is semimetallic, thin films display a significant band gap that depends sensitively on the

number of layers, in-layer strain, layer stacking and inter-layer spacing. I find that metallic

character can be introduced by increasing the number of layers beyond two or by subject-

ing semiconducting monolayers and bilayers to moderate tensile strain. The strain-induced

semiconductor-metal transition is triggered by changes in the band ordering near the top of

the valence band that causes an abrupt change from σ to π character of the frontier states.

7.2 Computational techniques

My computational approach to gain insight into the equilibrium structure, stability and

electronic properties of arsenic structures is based on ab initio density functional theory as

implemented in the SIESTA [27] and VASP [28, 29, 30, 31] codes. I use periodic boundary

conditions throughout the study, with multilayer structures represented by a periodic array

of slabs separated by a vacuum region > 15 Å. Unless specified otherwise, I use the Perdew-

Burke-Ernzerhof (PBE) [33] exchange-correlation functional for most calculations. Selected

results are compared to the Local Density Approximation (LDA) [32, 42] and other function-

als including the optB86b-vdW functional [35, 36] that provide a better description of van der
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Figure 7.1 (a) Side view of the rhombohedrally (ABC) stacked layered structure of bulk grey
arsenic. (b) Top view of the buckled honeycomb structure of a grey arsenic monolayer. Atoms
at the top and bottom of the non-planar layers are distinguished by color and shading and
the Wigner-Seitz cell is shown by the shaded region. Reproduced from [6], c©2015 American
Physical Society.

Waals interactions and the HSE06 [76, 37] hybrid functional. In my SIESTA calculations I

use norm-conserving Troullier-Martins pseudopotentials [39], and a double-ζ basis including

polarization orbitals. The reciprocal space is sampled by a fine grid [43] of 16×16×1 k-points

in the Brillouin zone of the primitive unit cell for 2D structures and 16×16×3 k-points for

the bulk. I use a mesh cutoff energy of 180 Ry to determine the self-consistent charge den-

sity, which provides us with a precision in total energy of ≤2 meV/atom. All geometries

have been optimized using the conjugate gradient method [90], until none of the residual

Hellmann-Feynman forces exceeded 10−2 eV/Å. Equilibrium structures and energies based

on SIESTA have been checked against values based on the VASP code.

7.3 Structural results

In contrast to the AB-stacked isoelectronic black phosphorus, bulk grey arsenic prefers the

rhombohedral (or ABC) layer stacking, with the optimized structure shown in Fig. 7.1. The

monolayer of grey As, depicted in top view in Fig. 7.1(b), resembles the honeycomb lattice
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of graphene with two atoms per unit cell. Unlike planar graphene, however, the unit cell

is buckled, similar to blue (or A7) phosphorus [5], and very different from layered black

phosphorus [4]. Interatomic interactions within a monolayer are covalent, resulting in a

nearest-neighbor distance of 2.53 Å.

Observed and calculated structural and cohesive properties in grey arsenic are summa-

rized in Table 7.1. The calculated inter-layer separation in the ABC-stacked bulk system

is d = 3.58 Å, similar to the observed value [109]. The interlayer interaction energy of

≈0.02 eV/atom, based on PBE, is slightly higher than in blue phosphorus [5]. While this

value is likely underestimated, the optB86b value of 0.17 eV/atom and the LDA value of

0.16 eV/atom likely overestimate the interlayer interaction. The low interlayer interaction

energy, similar to graphite and black phosphorus, suggests that few-layer As may be obtained

by mechanical exfoliation from the bulk structure. The small difference in the length of the

in-plane lattice vectors a = |�a1| = |�a2| = 3.64 Å in the isolated monolayer and a = 3.85 Å in

the bulk structure can be traced back to a small difference in buckling of the layers that is

introduced by the weak interlayer interaction. Changes in buckling are characterized by the

pyramidalization angle [81]. In agreement with the experiment, I find AA-stacked grey ar-

senic to be less stable than the ABC-stacked structure, even though the energy difference lies

within 10 meV/atom. The optimum inter-layer separation in the less favorable AA stacking

increases to d = 5.15 Å.

The optimum geometry is usually rather independent of the DFT functional in most

covalent solids, but this is often not the case in layered materials with a significant van

der Waals interlayer interaction. In Figs. 7.2(a) and 7.2(b) I show the dependence of the

inter-layer spacing d and the in-layer lattice constants a = a1 = a2 on the number of layers

N for different types of stacking and different DFT functionals. With the bilayer being an
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exception, the trends in d(N) and a(N) are independent of the DFT functional.
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Figure 7.2 (a) The inter-layer spacing d and (b) the in-layer lattice constant a1 = a2 of
grey arsenic slabs as a function of the number of layers N . Presented results, obtained
using different DFT functionals, consider both the energetically favorable ABC and the less
stable AA stacking. (c) Energy dependence of an AB stacked As bilayer on the interlayer
spacing d as determined by PBE and LDA. Equilibrium geometries are indicated by arrows
and ΔE = 0 refers to two isolated grey arsenic monolayers. (d) Energy dependence of a
monolayer on in-layer strain, based on PBE. The dashed line represents harmonic behavior.
Reproduced from [6], c©2015 American Physical Society.

I find that the Local Density Approximation (LDA) [32] as well as the van der Waals-

corrected optB86b-vdW DFT functional [35, 36] underestimate the interlayer spacing with

respect to the observed bulk value, whereas the Perdew-Burke-Ernzerhof (PBE) [33] func-

tional overestimates this value. Deviations of LDA and PBE results from the observed

inter-layer distance are expected, since none of these functionals is designed to take into ac-

count van der Waals interactions. Much less expected is the error in the inter-layer spacing

value predicted by the optB86b-vdW functional, which is supposed to treat van der Waals

interactions more accurately. In my study of the isoelectronic black phosphorus [98], I also

found that optB86b-vdW overestimates the inter-layer interaction energy when compared

to more precise Quantum Monte Carlo (QMC) calculations. In view of this uncertainty, I

present results based on PBE as the default functional in this Chapter.

My results in Fig. 7.2(a) indicate a very weak dependence of d on the number of layers.

The inter-layer separations are rather uniform within a given slab, but somewhat larger

near the surface, especially in ABC stacked slabs. As expected intuitively, the inter-layer
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spacing in the energetically less favorable AA stacking is generally larger than in the observed

rhombohedral or ABC stacking.

While the inter-layer interaction may be small, I find that it still changes the in-layer

structure, primarily by changing the buckling of the layers. I characterized the degree of

non-planarity or buckling by the pyramidalization angle θP , defined in Fig. 7.3(a). As seen

in Fig. 7.3(b), increasing the number of layers from a monolayer to the bulk system decreases

the pyramidalization angle, but does not change the interatomic bond length noticeably. It

is this change of the pyramidalization angle that is chiefly responsible for the dependence of

the lattice constants a1 = a2 on the number of layers N , shown in Fig. 7.2(b). The observed

decrease of the pyramidalization angle with increasing N explains the decrease in the inter-

layer distance d with increasing N , seen in Fig. 7.2(a), and a corresponding increase of the

inter-layer interaction.
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Figure 7.3 (a) Definition of the pyramidalization angle θp in a buckled monolayer of arsenic

with sp3 hybridization. The σ orbitals extend along the interatomic bonds, and the direction
of the π orbital is indicated by the dashed line. Dependence of the pyramidalization angle
on (b) the number of layers in a thin film and (c) in-layer tensile strain in a monolayer, as
obtained using the PBE, LDA and optB86b-vdW functionals. The dashed lines in (c) serve
as guides to the eye. Reproduced from [6], c©2015 American Physical Society.
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As seen in Fig. 7.2(b), the in-layer lattice constant shows a much stronger dependence on

the number of layers in the favorable ABC stacking than in the less favorable AA stacking.

The changes are significant, amounting to a 5% reduction in the in-layer lattice constant in

the monolayer with respect to the bulk structure.

As common in DFT calculations using nonlocal exchange-correlation functionals includ-

ing PBE, the interlayer interaction is underestimated and the interlayer distance larger than

in LDA. This contrast is particularly large in layered grey arsenic structures, as evidenced

in the bilayer results in Figs. 7.2(a) and 7.2(c).

As mentioned above, the PBE value (in contrast to the LDA value) of the interlayer

distance in the AB stacked bilayer does not follow the trend of d(N) for N > 2. To make

sure that this is not an artifact of the optimization, I present in Fig. 7.2(c) the energy

of the bilayer as a function of the interlayer separation d. Both LDA and PBE indicate

the presence of a well-defined single optimum structure. In as similar way, I find that the

deformation energy ΔE of a grey arsenic monolayer subject to in-layer strain, presented in

Fig. 7.2(d), shows no deviation from the expected near-parabolic behavior, suggesting that

the buckled structure represents a single optimum geometry. As seen in Fig. 7.3(c), also

the pyramidalization angle in a stretched monolayer decreases uniformly with tensile strain,

with no indications of a structural bistability.

7.4 Electronic structure results

In agreement with observations [102], my DFT results indicate that bulk grey arsenic is

semimetallic. My corresponding DFT results for the electronic structure of a monolayer of

grey arsenic are presented in Fig. 7.4. In stark contrast to the bulk, the monolayer structure
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Figure 7.4 Electronic structure of (a) a relaxed monolayer of grey As, and the same monolayer
subject to a uniform in-layer strain of (b) -5% and (c) +5%. The energy range between the
Fermi level EF and 0.2 eV below the top of the valence band is green shaded in the band
structure in the left panels. Electron density ρvb associated with these states, superposed
with a ball-and-stick model of the structure, is shown in the right panels. (d) Dependence
of the fundamental band gap Eg on the in-layer strain in a monolayer and an AB-stacked
bilayer of grey As. Reproduced from [6], c©2015 American Physical Society.

is semiconducting with an indirect fundamental band gap Eg≈1.71 eV. Comparison with

more precise HSE06 [76, 37] hybrid functional calculations, indicates that the PBE value of

the band gap is likely underestimated by > 0.4 eV in few-layer grey arsenic as a common

shortcoming of DFT. Still, the electronic structure of the valence and the conduction band

region in DFT is believed to closely represent experimental results. Therefore, I expect

the charge density associated with frontier states near the top of the valence band, shown

in Fig. 7.4(a), to be represented accurately. These states correspond to the energy range

highlighted by the green shading in the band structure plots, which extends from mid-gap

to 0.2 eV below the top of the valence band.

The E(�k) plot in Fig. 7.4(a) shows that states near the top of the valence band at Γ display

a strong dispersion. This is a signature of a very low hole mass, caused by frontier states

forming a network of σ-orbitals connecting neighboring atoms, as seen in the right panel of

Fig. 7.4(a). This is quite different from black phosphorene, where the frontier valence band

states are dominated by atomic out-of-plane p-orbitals with little overlap, which reduces the

band dispersion and thus increases the hole mass. I find that the effective mass near Γ in
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Figure 7.5 Electronic structure of (a) a relaxed AB-stacked bilayer of grey As, and the same
bilayer subject to a uniform in-layer strain of (b) -5% and (c) +5%. The energy range between
the Fermi level EF and 0.2 eV below the top of the valence band is green shaded in the band
structure in the left panels. Electron density ρvb associated with these states, superposed
with a ball-and-stick model of the structure, is shown in the right panels. The inter-layer
spacing d in the side views is reduced for clarity. (d) Dependence of the fundamental band
gap Eg on the number of layers N and the DFT functional in few-layer As with ABC and
AA stacking. The lines in (d) are guides to the eye. Reproduced from [6], c©2015 American
Physical Society.

few-layer arsenic is not only lower, but – in contrast to black phosphorene [110, 4] – also

isotropic. Since higher hole mobility values have been reported in bulk grey arsenic than bulk

black phosphorus [102], I believe that also arsenic monolayers and bilayers should display a

higher hole mobility than monolayers and bilayers of black phosphorus.

As seen in Fig. 7.4(b), a uniform 5% in-layer compression reduces the band gap, but keeps

it indirect and does not change drastically the character of the frontier states. According to

Fig. 7.4(d), compression in excess of 10% would close the band gap, turning the monolayer

metallic. Interestingly, also a uniform in-layer stretch reduces the band gap in the monolayer

significantly. As seen in Fig. 7.4(c), stretching the monolayer by 5% moves the bottom of

the conduction band near Γ. The less dispersive valence band with an energy eigenvalue

−1.3 eV at Γ in the relaxed monolayer, shown in Fig. 7.4(a), moves up and becomes the

top valence band in the stretched layer in Fig. 7.4(c). This band gradually flattens near

Γ upon stretching the monolayer, and the system becomes a direct-gap semiconductor at

tensile strain values ≥+6%.
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More important is the change in the character of the frontier states caused by the motion

of this band relative to the other valence bands near Γ. In contrast to the relaxed and

compressed layer depicted in Figs. 7.4(a) and 7.4(b), the frontier states in the stretched layer

are lone-pair p-orbitals of tetrahedral As that are normal to the layer. The lower overlap

between these atomic p-orbitals is also the cause of the low dispersion of the corresponding

π-like band near Γ. As I will see later, the change in character of the frontier states from σ-

to π-like has a profound effect on the electronic structure near EF in multi-layer systems.

The profound effect of the change in character of the frontier states can be seen most easily

when comparing the fundamental band gap Eg in a monolayer and a bilayer in Fig. 7.4(d).

Eg is essentially the same in both systems during compression, since the frontier states have

σ-character and show little overlap between layers. The character change of the frontier

states to π-like upon stretching increases significantly the inter-layer overlap between these

states, causing a drastic reduction in Eg of the bilayer as compared to the monolayer. Quite

significant in this respect is my finding that a bilayer should turn metallic for tensile strains

5%. This critical tensile strain value is likely underestimated in my PBE study and is

projected to increase to < 7% according to my HSE06 calculations. I note that similar

tensile strain values have been achieved experimentally on suspended graphene membranes

that are more resilient to stretching due to their planar geometry [111, 112, 113].

A closer look at the behavior of frontier states in a bilayer subject to different levels of

strain is offered in Fig. 7.5. As seen in Fig. 7.5(a), the top valence band in the relaxed bilayer

has a similar low dispersion in the electronic structure near Γ as a stretched monolayer in

Fig. 7.4(c). Also the right panels of the two sub-figures confirm the similar π character of

the frontier states in a stretched monolayer and a relaxed bilayer. Since the bottom of the

conduction band in the relaxed bilayer is not at Γ, the relaxed As bilayer is an indirect-gap
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semiconductor with a narrower gap than the relaxed monolayer.

Upon compression, the band ordering near the top of the valence band changes in the

bilayer. As seen in Fig. 7.5(b), the frontier states in a system subject to a 5% uniform

compression change their character to σ-like, similar to a compressed monolayer. The reduced

overlap between frontier states on neighboring layers increases the inter-layer separation d.

A compressed arsenic bilayer remains an indirect-gap semiconductor.

As seen in the right panel of Fig. 7.5(c), a uniform +5% tensile strain in the bilayer

changes the character of the frontier states to π-like, similar to my findings for the stretched

monolayer reported in Fig. 7.4(c). The frontier states, which are primarily distributed in

the inter-layer region, bring the two layers closer together. The increased hybridization

of inter-layer frontier states at a decreased interlayer distance causes a significant band gap

reduction over the monolayer subject to the same level of tensile strain. As mentioned above,

the bilayer should turn semi-metallic at moderate tensile strain values.

The overall dependence of the fundamental band gap on the number of layers N and

the stacking sequence, depicted in Fig. 7.5(d), shows a uniform trend of band gap reduction

with increasing value of N , which has been noted also for the different layered allotropes

of phosphorus [4, 5]. In particular, I find ABC-stacked arsenic slabs with N > 2 to be

metallic. I also observe notable changes in the optimum inter-layer distance d with changing

number of layers and stacking sequence, which strongly affect the electronic structure. I find

the optimum inter-layer distance in AA-stacked structures to be much larger than in ABC-

stacked structures, which slows down the reduction of the band gap with growing N . To

check the validity of this trend, I reproduced the band gap values obtained using both PBE

and LDA exchange-correlation functionals for structures optimized by PBE in Fig. 7.5(d).

It is well known that the fundamental band gap is usually underestimated in DFT cal-
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Figure 7.6 Electronic band structure of (a) a grey arsenic monolayer and (b) bilayer under
7% strain, obtained by DFT calculations using the LDA, PBE and HSE06 functionals.
Reproduced from [6], c©2015 American Physical Society.

culations. Even though the proper way to determine the electronic band structure involves

advanced methods such as GW or QMC, I have not used these approaches, as they are com-

putationally very demanding. I rather made use of the HSE06 hybrid functional [76, 37],

which is believed to reproduce the fundamental band gap correctly.

I compare the electronic band structure of a relaxed grey As monolayer, obtained using

LDA, PBE and HSE06, in Fig. 7.6. For the sake of fair comparison, I use the identical

geometry, namely that of a PBE-optimized monolayer, in the three sets of results obtained

using the VASP code [28, 29, 30, 31]. My results indicate that both LDA and PBE give a

nearly identical band structure with a fundamental band gap near 1.6 eV, in close agreement

with SIESTA results [27]. HSE06 opens up the band gap to about 2.0 eV by essentially rigidly

shifting the conduction band up with respect to the valence band. Results based on HSE06

suggest that also a relaxed bilayer is a semiconductor. According to HSE06, relaxed grey

arsenic structures with more than two layers are either semimetallic or metallic.

To better estimate the strain required to induce a semiconductor-metal transition in a
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bilayer of grey arsenic, I performed HSE06 hybrid functional calculations and compared

them to PBE results. Both PBE and HSE06 results indicate that the fundamental band gap

decreases upon stretching the monolayer and bilayer. Similar to the monolayer, I find the

HSE06 functional to increase the band gap value by essentially rigidly shifting the conduction

states up, thus delaying the closure of the fundamental gap in the strained system. As

seen in Fig. 7.6(b), the fundamental band gap closes as the arsenic bilayer is stretched by

7% according to HSE06, very close to the 5% value based on PBE. This small numerical

difference between vastly different functionals indicates that a metal-insulator transition in

a stretched bilayer should be observable at moderate strain values.

The weak inter-layer interaction in layered grey arsenic should allow for a mechanical

exfoliation of monolayers and bilayers in analogy to graphene and phosphorene. More ap-

pealing for large-scale production is the reported synthesis of thin films of grey arsenic by

Molecular Beam Epitaxy (MBE) two decades ago [114], which should be also capable of pro-

ducing monolayers and bilayers. Chemical Vapor Deposition (CVD), which had been used

successfully in the past to grow graphene [93, 94] and silicene [95], may become ultimately

the most common approach to grow few-layer grey arsenic on specific substrates. Substrates

such as Ag(111), or even Zr(0001) and Hf(0001) should be advantageous to minimize the

lattice mismatch during MBE or CVD growth.

From the viewpoint of electronic applications, an ideal 2D semiconductor should combine

a sizeable fundamental band gap with a high carrier mobility and chemical stability. Equally

important is identifying a suitable way to make electrically transparent contacts. Graphene,

with the exception of its vanishing band gap, satisfies the latter three criteria ideally. Tran-

sition metal dichalcogenides, including MoS2, bring the benefit of a nonzero band gap, but

display lower intrinsic carrier mobility due to enhanced electron-phonon coupling, primarily
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caused by the presence of heavy elements such as Mo, and suffer from high tunneling barriers

at contacts to the chalcogen atoms. Few-layer systems of black phosphorus and arsenic do

show a sizeable band gap and the ability to form transparent contacts to metal leads. The

higher carrier mobility in bulk grey As and black P over bulk MoS2 [102] has also been

observed in ultrathin black phosphorus films [4], and the same is expected for monolayers

and bilayers of arsenic as well. Of the two group V elements, the heavier arsenic appears

more resilient to oxidation [100]. If indeed grey arsenic monolayers and bilayers turn out to

be chemically stable, arsenic may become an excellent contender for a new generation of 2D

nano-electronic devices.

7.5 Conclusions

In conclusion, I have used ab initio density functional theory to study the equilibrium geom-

etry and electronic structure of thin films of layered grey arsenic. I found the PBE, LDA and

optB86b-vdW DFT functionals as well as the hybrid HSE06 functional to predict consistent

trends for the interlayer distance and interaction as well as the fundamental band gap and

character of the frontier states in monolayers, bilayers and few-layer systems of grey arsenic.

In contrast to bulk grey As that is semimetallic, thin films display a significant band gap that

depends sensitively on the number of layers, in-layer strain, layer stacking and inter-layer

spacing. I find that metallic character can be introduced by increasing the number of layers

beyond two or by subjecting semiconducting monolayers and bilayers to moderate tensile

strain. The strain-induced semiconductor-metal transition is triggered by changes in the

band ordering near the top of the valence band that causes an abrupt change from σ to π

character of the frontier states. Due to the weak inter-layer interaction, grey arsenic should
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exfoliate easily to form few-layer structures. Alternative ways to synthesize few-layer arsenic

include MBE and CVD.
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Table 7.1 Observed and calculated properties of layered grey arsenic. a = | �a1| = | �a2| is the
in-plane lattice constant and d is the interlayer separation, as defined in Fig. 7.1. Ecoh is
the cohesive energy and Eil is the interlayer interaction energy per atom.

Structure Bulk(ABC) Bulk(ABC) Bulk(AA) Monolayer
(expt.) (theory) (theory) (theory)

a (Å) 3.76a 3.85b 3.65b 3.64b

– 3.85c 3.64c 3.61c

– 3.82d 3.62d 3.58d

d (Å) 3.52a 3.58b 5.15b –
– 3.46c 4.20c –

– 3.47d 4.31d –

Ecoh 2.96e 2.86b 2.85b 2.84b

(eV/atom) – 3.60c 3.53c 3.45c

Eil – 0.02b 0.01b –
(eV/atom) – 0.16c 0.10c –

– 0.17d 0.13d –
a Experimental data of Ref. [109].
b Results based on the DFT-PBE functional [33].
c Results based on the LDA [32].
d Results based on the optB86b van der Waals functional [35, 36].
e Experimental data of Ref. [61].
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Chapter 8

Insight into structural phase

coexistence of group V elements by a

tiling model

The following discussion is closely related to a publication by Jie Guan, Zhen Zhu, and David

Tománek, Tiling phosphorene, ACS Nano 12, 12763-12768 (2014) [7].

8.1 Introduction

Phosphorene, a monolayer of black phosphorus, is emerging as a viable contender in the

field of two-dimensional (2D) electronic materials [85, 84, 4]. In comparison to the widely

discussed semi-metallic graphene, phosphorene displays a significant band gap while still

maintaining a high carrier mobility [99, 4, 115, 116]. The flexible structure of semiconduct-

ing phosphorene [110, 117] is advantageous in applications including gas sensing [118], ther-

moelectrics [119], and Li-ion batteries [119]. Unlike flat sp2-bonded graphene monolayers,

the structure of sp3-bonded phosphorene is buckled. There is a large number of sp3-bonded

layered phosphorene structures, including blue-P, γ-P, and δ-P [5, 98], which are nearly as

stable as the related black phosphorene structure but exhibit very different electronic prop-

erties. I believe that the above list of stable phosphorene structures is still incomplete, giving
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Figure 8.1 Atomic structure of different phosphorene allotropes in (a-c) side view, (d-f) top
view, and (g-i) in a tiling model representation. Blue-P (a,d,g), γ-P (b,e,h), and black-P
(c,f,i) can be distinguished by the structural index N . Primitive unit cells are emphasized
by shading and delimited by black dashed lines in (d-i). Atoms at the top and bottom of
the layer, as well as the corresponding tiles, are distinguished by color. Reproduced from [7],
c©2014 American Chemical Society.

rise to an unprecedented richness in terms of polymorphs and their electronic structure.

Here I introduce a scheme to categorize the structure of different layered phosphorene

allotropes by mapping the non-planar 3D structure of three-fold coordinated P atoms onto a

two-color 2D triangular tiling pattern. In the buckled structure of a phosphorene monolayer,

I assign atoms in “top” positions to dark tiles and atoms in “bottom” positions to light

tiles. Optimum sp3 bonding is maintained throughout the structure when each triangular

tile is surrounded by the same number N of like-colored tiles, with 0≤N≤2. My ab initio

density functional calculations indicate that both the relative stability and electronic prop-

erties depend primarily on the structural index N . Common characteristics of allotropes
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with identical N suggest the usefulness of the structural index for categorization. The pro-

posed mapping approach may also be applied to phosphorene structures with non-hexagonal

rings, counterparts of planar haeckelite [120, 121], to point and line defects [122], and to 2D

quasicrystals with no translational symmetry, which I predict to be nearly as stable as the

hexagonal network.

8.2 Computational methods

My computational approach to gain insight into the equilibrium structure, stability and

electronic properties of various phosphorene structures is based on ab initio density functional

theory (DFT) as implemented in the SIESTA [27]. I used periodic boundary conditions

throughout the study. I used the Perdew-Burke-Ernzerhof (PBE) [33] exchange-correlation

functional, norm-conserving Troullier-Martins pseudopotentials [39], and a double-ζ basis

including polarization orbitals. Selected PBE results were compared to results based on the

Local Density Approximation (LDA) [32, 42]. The reciprocal space was sampled by a fine

grid [43] of 8×8×1 k-points in the Brillouin zone of the primitive unit cell. I used a mesh

cutoff energy of 180 Ry to determine the self-consistent charge density, which provided us

with a precision in total energy of ≤ 2 meV/atom. All geometries have been optimized by

SIESTA using the conjugate gradient method [90], until none of the residual Hellmann-

Feynman forces exceeded 10−2 eV/Å.

8.3 Tiling pattern of phosphorene

The non-planar atomic structure of selected sp3-bonded phosphorene allotropes is depicted

in side and top view in Fig. 8.1(a-f). I find it convenient to map the 3D structure of
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a phosphorene monolayer with threefold coordinated atoms onto a 2D tiling pattern by

assigning a triangular tile to each atom, as shown in Fig. 8.1(g-i). There is a one-to-one

correspondence between structures and tiling patterns, so that different structures can be

distinguished by different tiling patterns. Dark-colored tiles are associated with atoms at

the top and light-colored tiles with atoms at the bottom of the layer. Since each atom has

3 neighbors, each triangular tile is surrounded by 3 neighboring tiles, N of which have the

same color. It is obvious that 0≤N≤2 provides the atom associated with the central tile

with a tetrahedral neighbor coordination associated with the favorable sp3 bonding. In my

tiling model, N = 3 would represent the planar structure of an energetically unfavorable sp2-

bonded lattice that, according to my findings, would spontaneously convert to a non-planar

sp3-bonded allotrope.

As I will show in the following, different allotropes with N = 0, N = 1 and N = 2 share

similar characteristics. Therefore, the structural index N is useful for primary categorization

of the allotropes. In each structure depicted in Fig. 8.1, N maintains an identical value

throughout the lattice, keeping the favorable sp3 bonding at all sites. I believe that this is

the underlying reason for my finding that these structures are nearly equally stable [5, 98].

In the first category characterized by N = 0, all neighbors of a given atom have the same,

but different height within the layer, as seen in Figs. 8.1(a) and 8.1(d). This translates into

a tiling pattern, where all adjacent tiles have a different color, as seen in Fig. 8.1(g). There

is only one structural realization within the N = 0 category, namely the blue-P allotrope.

In the second category characterized by N = 1, each atom has one like neighbor at

the same height and two unlike neighbors at a different height within the layer, as seen in

Figs. 8.1(b) and 8.1(e). Besides the γ-P structure in Figs. 8.1(b) and 8.1(e), there is a θ-P

allotrope, depicted Fig. 8.2(a), with the same structural index N = 1. The tiling patterns
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Figure 8.2 Atomic structure of N = 1 and N = 2 phosphorene allotropes in top view (a-b)
and the corresponding tiling model representation (c-d). The N = 1 θ-P allotrope in (a,c)
and the N = 2 allotrope in (b,d) are structurally different from the allotropes with the
same N in Fig. 8.1. Primitive unit cells are emphasized by shading and delimited by black
dashed lines. Atoms at the top and bottom of the layer, as well as the corresponding tiles, are
distinguished by color. The two different orientations of bonds between like atoms, indicated
by the double arrows as guides to the eye, are denoted by “a” and “b”. Reproduced from [7],
c©2014 American Chemical Society.

of γ-P and θ-P, shown in Figs. 8.1(h) and 8.2(c), are characterized by a diamond harlequin

pattern. Each diamond, formed of two adjacent like-colored triangles, is surrounded by

unlike-colored diamonds. As a guide to the eye, I indicate the orientation of the diamonds,

same as the direction of the atomic bonds, by the double arrows in Fig. 8.2(c). The shape

of the primitive unit cells shown in Figs. 8.1 and 8.2 is chosen to see more easily the cor-

respondence between the atomic structure and the tiling pattern. The primitive unit cell

of γ-P contains 4 atoms according to Fig. 8.1(h) and that of θ-P contains 8 atoms, as seen
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in Fig. 8.2(c). As indicated in Fig. 8.2(c), the orientation of diamonds in a row may be

distinguished by the letters “a” or “b”. Whereas the perfect γ-P structure in Fig. 8.1(h)

could be characterized by the sequence “aaaa . . .” and the structure of θ-P by the sequence

“abab . . .”, an infinite number of different sequences including “abaa . . .” would result in an

infinite number of N = 1 phosphorene structures.

The most stable and best-known phosphorene allotrope is black-P, depicted in Fig. 8.1(c)

and 8.1(f). Each atom in this structure has two like neighbors at the same height and one

unlike neighbor at a different height, yielding a structural index N = 2. The tiling model of

this structure type, shown in Fig. 8.1(i), contains contiguous arrays of like-colored diamonds.

These arrays may be either straight, as in Fig. 8.1(i) for black-P, or not straight, as in

Fig. 8.2(d) for the structurally different δ-P allotrope with the atomic structure shown in

Fig. 8.2(b). Describing diamond orientation by letters “a” and “b” as in the case of N = 1, I

may characterize black-P in Fig. 8.1(i) by the sequence “aaaa . . .” and δ-P in Fig. 8.2(d) by

the sequence “abab . . .”. As in the case of N = 1, an infinite number of different sequences

including “abaa . . .” would result in an infinite number of N = 2 phosphorene structures.

The structural similarity and energetic near-degeneracy of N = 2 and N = 1 structures

stems from the fact that a structural change from N = 2 to N = 1 involves only a horizontal

shift of every other row, indicated by the horizontal lines in Figs. 8.2(c) and 8.2(d), by one

tile. It is even possible to generate structural domains with different values of N . The

energy cost of domain wall boundaries may be extremely low [98] if optimum sp3 bonding

is maintained at the boundaries.

As mentioned above, there is only one allotrope with N = 0, but infinitely many struc-

tures with N = 1 and N = 2. Of these, I identified and optimized all lattices with up to

28 atoms per primitive unit cell and selected other structures with up to 32 atoms per unit
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Figure 8.3 (a) Relative stability ΔE of different phosphorene allotropes with respect to
black phosphorus and (b) their fundamental band gap Eg. The distribution of the ΔE
and Eg values, provided in the right panels of the subfigures, indicates presence of three
distinguishable groups that may be linked to the different values of the structural index N .
The dashed and dotted lines are guides to the eye. Reproduced from [7], c©2014 American
Chemical Society.

cell. For each lattice, I identified the relative stability ΔE with respect to the most stable

black phosphorene allotrope on a per-atom basis and plotted the values in Fig. 8.3(a).

The electronic band structure of systems with large unit cells is very dense and hard to

interpret in comparison to that of the allotropes discussed in Figs. 8.1 and 8.2. For each of

these structures, though, I identified the value Eg of the fundamental band gap and provide

the results in Fig. 8.3(b).

I find that neither ΔE nor Eg display a general dependence on the size of the unit cell.

I found all structures to be relatively stable. The small values ΔE < 0.15 eV/atom indicate

a likely coexistence of different allotropes that would form under nonequilibrium conditions.

All band gap values, which are typically underestimated in DFT-PBE calculations [27, 33],

occur in the range between 0.3 eV and 2.0 eV, similar to the allotropes discussed in Figs. 8.1

and 8.2. Rather surprisingly, the distribution of ΔE and Eg values, shown in the right panels

of the sub-figures Figs. 8.3(a) and 8.3(b), exhibits three peaks that can be associated with

the structural index N , with a rather narrow variance caused by the differences between the
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allotrope structures. I find the energetically near-degenerate blue phosphorene (N = 0 with

2 atoms per unit cell) and black phosphorene (N = 2 with 4 atoms per unit cell) structures

to be the most stable, followed by other N = 2 structures with more than 4 atoms per

unit cell. I found N = 1 structures to be the least stable of all. Similarly, the N = 0 blue

phosphorene allotrope has the largest band gap, N = 2 allotropes have the smallest band

gap, and N = 1 allotropes lie in between.

The higher stability of N = 2 phosphorene structures in comparison to N = 1 allotropes

indicates an energetic preference for phosphorus atoms forming zigzag chains at the same

height rather than forming isolated dimers. Among the N = 2 structures, δ-P is the least

stable, with ΔE≈0.07 eV/atom. All the other N = 2 structures fall in-between δ-P and

black phosphorus in terms of stability. This finding is easy to understand, since all these

structures are combination of black phosphorus and δ-P.

For both N = 2 and N = 1 allotropes, I find structures with the same orientation of

diamonds in the tiling pattern to be more stable. The γ-P structure, with all diamonds

aligned in the same direction in the tiling pattern, is the most stable N = 1 phosphorene

allotrope, but still less stable by 0.09 eV/atom than the N = 2 black phosphorene. At the

other extreme of the relative stability range, θ-P with disordered diamond orientations in the

tiling pattern is the least stable N = 1 allotrope, being 0.14 eV/atom less stable than black

phosphorene. In analogy to what I concluded for N = 2 structures, all N = 1 phosphorene

allotropes can be viewed as a combination of γ-P and θ-P, with their stability in-between

the above limiting values.

As mentioned above, also the distribution of Eg values, shown in the right panel of

Fig. 8.3(b), indicates three distinct groups that can be associated with the structural index

N . The largest band gap value of 2.0 eV in the only N = 0 structure, blue phosphorene, is

94



well separated from the band gap distribution of N = 1 and N = 2 structures that form a

double-hump shape. I note that the two peaks in the band gap distribution of N = 1 and

N = 2 allotropes are not as well separated as the two peaks in the stability distribution in

Fig. 8.3(a), so the trends in the band gap value are not as clear as trends in the relative

stability. In systems with large unit cells, band gaps of N = 1 structures are grouped around

0.8 eV, whereas band gaps of N = 2 structures are grouped around 0.5 eV. The largest spread

in Eg values is in systems with very small unit cells. Among N = 1 allotropes, I find the

smallest value Eg≈0.5 eV in the structure with 4 atoms/unit cell (γ-P) and the largest value

Eg≈1.2 eV in the structure with 8 atoms/unit cell (θ-P). Band gap values of other N = 1

structures range between these two values. N = 2 structures have generally the lowest band

gap values of the three groups. Among N = 2 systems, I find the largest value Eg≈0.9 eV

in the structure with 4 atoms/unit cell (black phosphorene) and Eg≈0.3 eV in a system

with 8 atoms/unit cell, the smallest gap value among several metastable structures of δ-P.

Band gap values of other N = 2 structures range between these two values. As discussed

earlier [5, 98], my PBE-based band gap values are generally underestimated. More precise

quasiparticle calculations beyond DFT, including the GW formalism, indicate that the band

gap values should be about 1 eV larger than the PBE values presented here [5, 123].

As the unit cell size of N = 1 and N = 2 structures grows infinitely large, I gradually

approach amorphous phosphorene. Assuming that my findings in Fig. 8.3 are universal

and not limited to the finite sizes addressed by my study, I conclude that the stability and

the fundamental band gap of such amorphous structures should also be found in the range

suggested by their structural index N .
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Figure 8.4 Equilibrium structures (top) and corresponding tiling patterns (bottom) of 2D
phosphorene with (a) 4-8, (b) 3-12, (c) 5-7, and (d) 5-8 membered rings. The color of the
atoms and corresponding tiles distinguishes positions at the top and the bottom of the layer.
Reproduced from [7], c©2014 American Chemical Society.

8.4 Defective structures

The one-to-one mapping between 3D structures of periodic systems and 2D tiling patterns is

not limited to a honeycomb lattice with 6-membered rings, but can equally well be applied

to lattices with 3-, 4-, 5-, 7-, 8- and 12-membered rings found in planar haeckelites [120,

121]. The corresponding geometries and tiling patterns are shown in Fig. 8.4. Among these

structures, 4-8 phosphorene has the highest symmetry, a relatively small unit cell with the

shape of a square and a tiling pattern composed of right triangles. Besides the N = 0

structure depicted in Fig. 8.4(a), I can identify allotropes with 4-8 rings with structural

indices N = 1 and N = 2. Other allotropes with 3-12, 5-7 and 5-8 rings, shown in Figs. 8.4(b-

d), may not exist in all the variants of the structural index N due to their lower symmetry.

For example, the allotrope with 5-7 rings does not have a structure with N = 0.

I find structures with non-hexagonal rings to be generally less stable than the most
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stable black phosphorene, but the energy differences ΔE < 0.2 eV/atom are very small.

Consequently, I expect that such structures should coexist with black phosphorene as either

pure phases, or as local defects at domain wall boundaries, or as finite-size domains in the

host layer. I find all phosphorene allotropes with non-hexagonal rings to be semiconducting,

with the band gap determined primarily by the structural index N .

8.5 Quantum dot

Phosphorene may also form aperiodic structures with no translational symmetry. Examples

of such systems with only rotational symmetry are shown in Fig. 8.5. Fig. 8.5(a) depicts

a phosphorene structure of type N = 2 with a C6v point group symmetry and the corre-

sponding tiling pattern. In this structure, arrays of neighboring atoms form an alternating

circular pattern about the center that can cover an infinite plane. The analogous N = 2

structure with C5v symmetry is depicted in Fig. 8.5(b), and analogous structures with Cnv

symmetry could be imagined as well. To judge the stability of these aperiodic structures,

I optimized finite-size flakes that were terminated by hydrogen atoms at the exposed edge.

I found these structures to be semiconducting and as stable as the periodic structures dis-

cussed in Fig. 8.3(a), with ΔE = 0.07 eV/atom for the C6v and ΔE = 0.04 eV/atom for the

C5v structure falling into range expected for N = 2.

These findings indicate that my classification scheme and tiling model is useful to char-

acterize monolayers of three-fold coordinated, sp3-hybridized phosphorus atoms arranged in

periodic or aperiodic patterns. Due to structural similarities between layered structures of

group-V elements, I believe that my findings regarding relative stability, electronic structure

and fundamental band gap will likely also apply to other systems including monolayers of
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Figure 8.5 Equilibrium structures (top panels) and corresponding tiling patterns (bottom
panels) of phosphorene structures with (a) a C6v and (b) a C5v symmetry. Edges of the finite-
size flakes are terminated by hydrogen atoms, colored in white. The color of the phosphorus
atoms and the corresponding tiles distinguishes positions at the top or the bottom of the
layer. Reproduced from [7], c©2014 American Chemical Society.

arsenic, antimony and bismuth.

Since the cohesive energy differences are rather small, I must consider the possibility that

the stability ranking of the different allotropes at T = 0 and related properties [124] may

depend on the DFT functional. I have compared PBE results for the relative stability of

the different allotropes with LDA results and found the maximum difference in the relative

stabilities of the different allotropes to be 0.02 eV/atom, which does not change the energy

ranking of the allotropes.

Since phosphorene structures will likely be synthesized at nonzero temperatures, the rel-
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ative abundance of different allotropes will depend on their free energy at that temperature.

Consequently, my total energy results for stability differences at T = 0 need to be corrected

by also addressing differences in entropy at T > 0. Even though the decrease in free energy

with increasing temperature should be similar in the different allotropes due to their similar

vibration spectra [5, 98], minute differences in vibrational entropy may become important

in view of the small differences between stabilities of the allotropes at T = 0, and could

eventually change tfhe free energy ranking at high temperatures.

8.6 Conclusions

In conclusion, I have introduced a scheme to categorize the structure of different layered

phosphorene allotropes by mapping the non-planar 3D structure of three-fold coordinated P

atoms onto a two-color 2D triangular tiling pattern, which could essentially be generalized

to other group V elements which would share similar structural and bonding characters. In

the buckled structure of a phosphorene monolayer, I assign atoms in “top” positions to dark

tiles and atoms in “bottom” positions to light tiles. I found that optimum sp3 bonding is

maintained throughout the structure when each triangular tile is surrounded by the same

number N of like-colored tiles, with 0≤N≤2. My ab initio density functional calculations

indicate that both the relative stability and electronic properties depend primarily on the

structural index N . Common characteristics of allotropes with identical N suggest the

usefulness of the structural index for categorization. The proposed mapping approach may

also be applied to phosphorene structures with non-hexagonal rings and to 2D quasicrystals

with no translational symmetry, which I predict to be nearly as stable as the hexagonal

network.
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