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ABSTRACT

STAGE OF SEPSIS DETERMINES THE MECHANISM
OF VASCULAR SMOOTH MUSCLE CONTRACTILE DYSFUNCTION

By

Samuel Howard Wurster

Although vascular smooth muscle (VSM) contractile
function is impaired during late stages of sepsis, it is not
known whether this impairment also occurs in the early
stages of sepsis and, if so, whether different mechanisms
are responsible for this dysfunction. To determine this,
rats were subjected to sepsis by cecal ligation and puncture
(CLP). Septic and sham rats were then sacrificed at 5, 10,
20, or 35 hours post-CLP and aortic rings were prepared for
contraction studies using organ chamber technique. Dose-
response contractions to norepinephrine (NE) and KCl were
determined in rings with or without intact endothelium.
Additionally, following peak contraction to NE,  N°S-
monomethyl-L-arginine (L-NMMA, an inhibitor of NO synthase)
was added to the organ chambers of endothelium denuded
aortic rings harvested at 10, 20 and 35 hours post-CLP.
Endothelium removal at 10 and 20 hrs after CLP restored the
contraction induced by NE and KCl toward sham levels. 1In
contrast, the smooth muscle contractility at 35 hrs post-CLP

remained impaired despite removal of septic endothelium.
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INTRODUCTION

CLINICAL SIGNIFICANCE

Over the last decade laboratory investigations have
greatly improved our understanding of the complex pathologic
processes referred to as sepsis. Initially, the
manifestations of sepsis were presumed to be mediated solely
by infecting microbes. Presently, it 1is <clear that
microbial pathogens are simply the initiators of a complex
cascade of endogenous mediators which comprise the final
common pathway of sepsis or systemic inflammatory response
syndrome. Despite this delineation of the mechanisms of
sepsis, the efficacy of therapies to combat sepsis has not
improved greatly since the plateau reached following the
advent of antibiotics over fifty years ago.!? Despite
limited application of experimental treatments, such as
endotoxin filtration and immune stimulation,® as well as,
monoclonal antibodies directed against endotoxin® or
inflammatory cytokines;® sepsis continues to be the most
common cause of death in U.S. intensive care units. Current

estimates of mortality from septic shock range as high as
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100,000 deaths annually.®’ Sepsis which progresses to the
point of multiple organ dysfunction remains almost

universally fatal®.

VASCULAR PATHOPHYSIOLOGY DURING SEPSIS

In addition to increased morbidity and mortality
associated with septic complications, various investigators
have postulated that increased susceptibility to sepsis may
explain the occurrence of irreversible hemorrhagic shock, as
well 9-10.12 It has been well documented that the early
response to sepsis 1is characterized by hyperdynamic
circulation and hypermetabolism.?!?:*? Both cardiac
output?¥1%:* and microvascular perfusion in the 1liver,
kidney, spleen and intestine are increased during the early
stages of experimentally induced sepsis in rats (5-10 hrs
post-CLP) .**'*®* 1In contrast, tissue microvascular perfusion
was found to be decreased during late stages of sepsis (520

hrs post-CLP) .*:1®

The Role of Endothelium

Not long ago, the sole function ascribed to endothelial
cells was as a protective and antithrombotic "cellophane"
lining of the vascular tree.!’'!® In fact, it was only
discovered as 1late as 1980 that acetylcholine induced

vascular smooth muscle relaxation requires the presence of
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intact endothelial cells.!” Endothelial cells are situated
at the vital interface between the blood and tissues where
they can sense both mechanical and chemical changes in the
environment. The endothelium can then process these signals
and respond via the synthesis and release of a myriad of
factors which have profound local and systemic effects.

It is known that patients in the end stages of sepsis
often manifest a profound hypotension that is refractory to
exogenous catecholamine administration.?°?*:22 1In fact, human
mortality from septic shock is correlated with decreased
systemic vascular resistance.? Similarly, rats with
experimentally induced endotoxemia exhibit diminished
pressor responses in vivo.??® portic vessel rings harvested
from septic or endotoxemic rats demonstrate a marked
diminution of norepinephrine (NE) -induced maximal
contraction.?®3° Partial or complete restoration of
contractility following removal of endothelium from septic
vascular tissue indicates that endothelium-derived factors
play a major role in producing contractile depression of

VSM. ?°

The Role of Nitric Oxide

In 1980, Furchgott and Zawadzki demonstrated that
acetylcholine-induced relaxation of vascular smooth muscle
is mediated by an "endothelium-derived relaxation factor"

(EDRF) . The discovery that EDRF is nitric oxide (NO)
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precipitated an explosion of research into its bioregulatory
and cytotoxic properties.?°?* EDRF/NO has a biological half-
life of less than 30 seconds and resembles nitrovasodilators
in that it activates VSM soluble guanylate cyclase,
producing a rise in muscle cell cyclic guanosine
monophosphate (cGMP) .?*®* Many studies have confirmed that NO
is synthesized from the conversion of L-arginine to
citrulline by at least two different isoforms of or nitric
oxide synthases (NOS) .3¢%°

One synthase isoform 1is constitutive, membrane
associated, calcium/calmodulin dependent®'"**, and produces
small quantities (picomoles)*” of NO in response to
stimulation/activation. This enzyme (cNOS) is an important
transduction mechanism in the regulation of multiple
physiologic processes such as the maintenance of normal
vascular tone*® and neurotransmission®®®°. The other NO
synthase is cytosolic, and calcium/calmodulin independent.
This enzyme is induced in various cell types including
endothelial cell®® and vascular smooth muscle following
activation by endotoxin, as well as, various cytokines®? and
is therefore referred to as inducible NO synthase (iNOS).
Once activated the iNOS isoform produces larger quantities
(nanomoles) of NO for prolonged periods, when compared to
cNOS.%® Both NOS isoforms require tetrahydrobiopterin, among
other cofactors, in order to synthesize nitric oxide.?3¢*°

Thus far, the only confirmed role of NO produced following
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iNOS activation is as a cytotoxic molecule®*® for invading
microorganisms®® and tumor cells.>®
It has been postulated that activation of iNOS may
result in host tissue damage via pathological vasodilation
and/or direct cytotoxic effects.?” Cytotoxicity of NO is due
in large part to its reaction with superoxide anion to

produce peroxynitrite®®:5°

and subsequent hydroxyl radical
formation.®® Nitric oxide mediated increases in target cell
cGMP results in protein phosphorylation by cGMP dependent
kinases, which is the first step in many of the physiologic
effects mediated by NO.

The recent discovery of a shear stress regulatory
element®%? which regulates NOS activity in response to
alterations in endothelial shear forces may explain the
phenomenon of flow dependent vasodilation®®® at both the
macro and microcirculatory levels. In addition to its short
half-life, NO is rapidly inactivated by superoxide anions
and hemoglobin®” and is protected by superoxide dismutase.
There is additional evidence that NO production exerts a
feedback inhibition upon NOS.®:% Like prostacyclin, NO can
relax smooth muscle as well as inhibit platelet
aggregation.”®

Exposure of vascular tissue to septic mediators such as
endotoxin™ and tumor necrosis factor (TNF)’? has yielded
important information as to their individual effects upon

the contractile function of vascular smooth muscle.
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However, true reproduction of clinically relevant sepsis
seems to require the presence of all septic mediators, which
are present only in vivo. This presumption is supported by
findings of a greater suppression of agonist induced
contractility in vascular tissue removed from rats
previously injected with endotoxin, as compared to vascular
tissue incubated with endotoxin in a serum free
environment?.

Several studies have indicated that the regulation of in
vivo vascular tone is influenced by multiple factors
including endothelin-1,7*'" cytokine release,’ and blood flow

velocity.’®"’

Furthermore, other investigators have
suggested that an alteration in alpha adrenoreceptor-coupled
signal transduction is a primary mechanism of sepsis induced
VSM contractile depression.?7®

Although it is known that VSM contractile function is
depressed in the late stages of sepsis, it remains unclear
whether vascular contractility is altered in the early
stages of sepsis and, if so, whether different mechanisms
are responsible for this dysfunction. Since it is difficult
to accurately assess alterations in vascular reactivity in
vivo, it was postulated that ex vivo testing of vascular
responsiveness to both alpha-adrenoreceptor and non-

receptor-dependent contractile agonists, in the presence and

absence of intact endothelium, at selected timepoints during
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experimentally induced sepsis, should provide insight into

the dominant mechanisms involved.

Purpose

This study attempts to define more precisely the roles
which septic endothelium and receptor-mediated phenomena
play in producing VSM contractile dysfunction from early to
late stages of sepsis. The contribution of vessel wall
iNOS activation to VSM contractile derangement was
investigated by blockade of NO production at precise
intervals following CLP-induced sepsis. It was hypothesized
that structural damage to the vascular smooth muscle itself
would be evidenced by a diminished contractile response
which is independent of contractile agonist, the presence

of endothelium, or inhibition of nitric oxide synthesis.



MATERIALS AND METHODS

ANTMAT, MODEL

The adult male Sprague-Dawley rat was chosen as the
animal model for studying the effects of sepsis upon
vascular smooth muscle contractility. Rats subjected to
cecal ligation and puncture (CLP) progress through the early
and late stages of sepsis in a predictable fashion similar
to that observed in humans. Additionally, the methodology
for determination of vascular smooth muscle contractility is
standardized and highly reproducible. Rats are also small,

easy to house, and relatively inexpensive.

GENERAL

Disease free male Sprague-Dawley rats (from Charles
River Laboratory, Portage, MI) weighing 250-300 g were used
throughout the studies. The animals were housed and
acclimatized for at 1least 72 hours at the University
Laboratory Animal Research (ULAR) building prior to
experimentation. The rats were maintained on a consistent

12 hour light/dark cycle. Prior to experimentation, they

8
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were fasted overnight (approximately 16 hours) but allowed
water ad 1libitum. All protocols were carried out 1in
accordance with the guidelines set forth in the Animal
Welfare Act and as outlined in the Guide for Care and Use of
Laboratory Animals by the National Institutes of Health

Publications.

Sepsis Model

Intra-abdominal sepsis was produced in male Sprague-
Dawley rats (250-300 g) by cecal 1ligation and puncture
(CLP), according to the method of Wichterman et al.®
The rats were lightly anesthetized with ether, and a 2-cm
ventral midline incision was performed. The cecum was then
exposed, ligated just distal to the ileocecal valve with 3-0
silk suture to avoid intestinal obstruction, punctured twice
along the antimesenteric border with an 18 gauge needle, and
returned to the abdomen. The incision was closed in two
layers with 3-0 nylon continuous suture. The animals then
received 3 ml/100 g body wt normal saline injected
subcutaneously immediately following abdominal closure.

Sham-operated rats underwent the same surgical procedure
with the exception that the cecum was neither ligated or
punctured. Sham-operated animals also received 3 ml/100 g
body wt normal saline by subcutaneous injection following
abdominal closure. Both CLP and sham-operated animals were

then returned to their cages for observation.
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CLP and sham-operated animals were randomly divided into
four groups which were sacrificed at 5, 10, 20 or 35 hours
after CLP or sham operation. There were no deaths prior to
sacrifice in rats observed from 5 to 20 hours following CLP.
However, 2 out of 13 rats expired prior to the 35 hour time

point following CLP induced sepsis.

PART I
Study of VSM Contractility
Utilizing Receptor and Non-receptor Mediated Agonists

From Early to Late Stages of Sepsis

The experimental animals were killed by cervical
dislocation prior to immediate thoracotomy. The heart,
lungs and thoracic aorta were then removed quickly and
placed into ice-cold Krebs-Ringer HCO, solution (composition
in mM: Nacl, 118.3; KCl, 4.7; CaCL,, 2.5; Mgso,, 1.2; KH,PO,,
1.2; NaHCO,, 25.0; Ca-EDTA, 0.026; glucose, 11.1), which was
aerated with 95% O, : 5% CO, (pH=7.4; pO,=580 mmHg). The
thoracic aorta was sharply dissected from adjacent tissue
with microinstruments to prevent damage to the vessel wall
or endothelium. The isolated descending thoracic aorta was
then sliced with a razor blade into two rings, each
approximately 2.5 mm in length. The endothelium was then
removed from one of the two aortic rings by inserting the

shank of a small forceps into the lumen of the vessel ring,
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and then gently rolling the vessel ring along the operators
finger for four complete revolutions.’?:8°

The aortic rings were then suspended between two
specimen holders and placed in jacketed glass organ chambers
containing 20 ml of Krebs-Ringer HCO, solution aerated
continuously with a 95% 02 and 5% CO, gas mixture maintained
at a constant temperature of 37°C. The lower specimen
holder was stationary and the upper specimen holder was
connected to an isometric force-displacement transducer
(Model FTO3, Grass Instruments) coupled to a polygraph
(Model 7D, Grass Instruments). The vessels were then
allowed to equilibrate for 60 minutes at a resting tension
of 2000 mg, during which the organ chamber was rinsed at 15
minute intervals with fresh aerated Krebs-Ringer HCO,
solution. When the basal tension was stable, the presence
or absence of intact endothelium was determined by the
response of the vessel ring to an endothelium-dependent
vasodilator, acetylcholine (ACh).!* From baseline, ~75% of
maximal contraction of the vessel rings was achieved by
adding 2 X 107 M norepinephrine (NE, Sigma, St. Louis, MO).
Immediately following submaximal contraction, 1 X 10°° M ACh
(Sigma, St. Louis, MO.) was added to the organ chamber to
test the functional integrity of the endothelium. Aortic
rings demonstrating greater than 50% relaxation upon
addition of ACh were considered to have intact endothelium.®
In this experiment, the endothelium-denuded rings did not

demonstrate any significant vascular relaxation following
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addition of ACh. The vessels were then allowed to
equilibrate for 3 rinse cycles (45 minutes). When a stable
baseline tension was again established, cumulative dose-
response curves for NE (concentration ranges from 10° to 10°°
M) were carried out in all aortic rings.

Following three washes with Krebs-Ringer HCO, solution,
a second agonist, KC1l (concentration range from 7.5 to 90
mM) was added to each organ chamber in cumulative fashion,
and the change in vascular tension was recorded.
Immediately following the final contraction curve, the
aortic rings were removed from the organ chambers, blotted

on tissue paper, and weighed.

PART II
Study of the Effects of Nitric Oxide Synthase Blockade
Upon Peak VSM Contractility

From Early to Late Stages of Sepsis

Following CLP-induced sepsis male rats (250-300 g) were
sacrificed at 10, 20 and 35 hours, both the septic and sham
aortic rings were then prepared for contractile studies in
the previously described fashion with the exception that the
endothelium was removed from all septic and sham aortic
rings. Following attainment of stable baseline at a resting
tension of 2000 mg, submaximal contraction of aortic ring
VSM was achieved by addition of 2 x 107 M NE to the organ

chambers. Immediately following submaximal contraction, 1
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X 10°°* M ACh was added to the organ chambers to test for the
presence of intact (functional) endothelium. Again, none of
the endothelium denuded vessel rings exhibited any
significant ACh-induced relaxation.

The aortic rings were then allowed to equilibrate for 45
minutes, during which time the organ chamber was rinsed at
15 minute intervals with Krebs-Ringer HCO, solution. When
basal tension was stable, cumulative dose-response curves
for NE (concentration ranges from 10° to 10° M) were carried
out in all aortic rings.

At peak NE-induced contraction, 300uM of N°-monomethyl-L-
arginine (L-NMMA) (Calbiochem, La Jolla, CA) a competitive
inhibitor of nitric oxide (NO) synthesis was added to each
organ chamber and the NE-induced peak contraction was
recorded both before and after addition of L-NMMA.

Following maximal response to L-NMMA administration, a
total of 3mM of L-arginine hydrochloride (Sigma, St. Louis,
MO) was added to the organ chambers (3 aliquots of 1mM L-
arginine, 5 minutes apart) and the change in peak vascular
contractile response was recorded. Immediately following
the final contraction curve, the aortic rings were removed
from the organ chambers, blotted on tissue paper, and

weighed.
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Electron Micrographic Study
of Aortic Ring Ultrastructure

at Different Stages of Sepsis

Two representative vessel rings were obtained from a rat
at 35 hours after sham operation. The two vessel rings were
then immediately immersed into capped test tubes containing
4% Dbuffered gluteraldehyde solution prior to electron
microscopic (EM) inspection. Two vessel rings were then
harvested from rats at 10, 20 and 35 hours following CLP-
induced sepsis and each were prepared for EM analysis in the
said fashion. In total, (including sham vessel rings)

aortic rings from four different rats were inspected.

STATISTICAL ANALYSIS

All vascular contraction values were determined as peak
changes from control 1levels at each concentration of
contractile agonist. The contraction induced by the agonist
was expressed as mg tension per mg of tissue weight. Since
NE-induced peak vascular contraction occurred at 1 X 10°¢ M
concentration, these values were used to represent NE-
induced peak vascular contraction. The peak contraction
induced by KCl occurred at a concentration of 90 mM. The

statistical tests utilized were as follows:
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Comparison of vascular contractile function between
receptor (NE) and non-receptor mediated contractile
agonists at 5 to 35 hours of sepsis was accomplished
with a one-way analysis of variance (ANOVA) followed
by Tukey’s test. The differences were considered
significant at P<0.05. Results are presented as
mean + standard error of the mean (SEM).

N=6-7 per group.

The effect of L-NMMA upon NE-induced peak vascular
contractile function in endothelium denuded vessel
rings at 10 to 35 hours of sepsis was analyzed with
a one-way analysis of variance (ANOVA followed by
Tukey’s test. The results are presented as
mean + SEM and differences were considered

significant at P<0.05. N=4-5 per group.



RESULTS

PART T
CONTRACTILE RESPONSE TO RECEPTOR AND
NON-RECEPTOR MEDIATED AGONISTS

FROM EARLY TO LATE STAGES OF SEPSIS

Norepinephrine-induced vascular contraction:

Aortic rings harvested from both septic and sham rats 5
hours after CLP demonstrated no significant differences in
either cumulative dose response (Figure 1) or peak NE-
induced vascular smooth muscle contractility (Figure 2).
This finding was not altered by the presence or absence of
intact endothelium in either sham or septic aortic rings.

At 10 hours following CLP-induced sepsis, there is a
significant decrease in NE-induced peak vascular contraction
in septic aortic rings with intact endothelium. Endothelium
removal, however, completely restored NE-induced peak
vascular contractility of septic aortic rings to sham levels
(Figures 3 & 4).

At 20 hours following CLP, there is a marked decrease in
NE-induced vascular contractility in septic aortic rings
with intact endothelium. Removal of septic endothelium 20

hours post-CLP significantly improves peak vascular

16
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Figure 1. Cumulative dose-response curve to various
concentrations of norepinephrine (NE) in aortic rings at 5
hours after sham operation (Sham) or cecal ligation and
puncture (CLP). There were six or seven animals in each
group with two aortic rings per rat. Values are presented
as mean + SE and compared by one-way ANOVA and Tukey’s test.
+Endo, endothelium intact rings; -Endo, endothelium-denuded

rings.
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Figure 2. The peak vascular contraction induced by 1 X 10-6
M NE at 5 hours after sham operation (Sham) or cecal
ligation and puncture (CLP). There were six or seven
animals in each group with two aortic rings per rat.
Values are presented as mean + SE and compared by one-way
ANOVA and Tukey’s test. +Endo, endothelium-intact rings;

-Endo, endothelium-denuded rings.
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Figure 3. Cumulative dose-response curve to various
concentrations of norepinephrine (NE) in aortic rings at 10
hours after sham operation (Sham) or cecal 1ligation and
puncture (CLP). There were six or seven animals in each
group with two aortic rings per rat. Values are presented
as mean + SE and compared by one-way ANOVA and Tukey'’s test.
*P < 0.05 versus corresponding sham-operated animals; #P <
0.05 versus corresponding endothelium-intact septic rings.
+Endo, endothelium intact rings; -Endo, endothelium-denuded

rings.
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Figure 4. The peak vascular contraction induced by 1 X 10-
6M NE at 10 hours after sham operation (Sham) or cecal
ligation and puncture (CLP). There were six or seven
animals in each group with two aortic rings per rat. Values
are presented as mean + SE and compared by one-way ANOVA and
Tukey’s test. *P < 0.05 versus corresponding sham-operated
animals; #P < 0.05 versus corresponding endothelium-intact
rings. +Endo, endothelium-intact rings; -Endo,

endothelium-denuded rings.
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contractility, but does not completely restore maximal
contractile function to sham levels (Figures 5 & 6).

At 35 hours following CLP, there is a severe depression
of NE-induced contractility in septic vessels with intact
endothelium. Contractile function remains markedly
depressed despite removal of septic endothelium (Figures 7

& 8).

Potassium Chloride-induced vascular contraction:
Aortic rings harvested at 5 hours post-CLP from both septic
and sham rats demonstrated no significant alteration in
either cumulative dose-response (Figure 9) or peak KCl-
induced vascular smooth muscle contractility (Figure 10).
This finding was not altered by the presence or absence of
intact endothelium in either septic or sham aortic rings.

At 10 hours following CLP-induced sepsis, there is a
significant decrease in KCl-induced peak vascular
contraction in septic aortic rings with intact endothelium.
Endothelium removal, however, completely restored KCl-
induced peak contractility of septic aortic rings to sham
levels (Figures 11 & 12).

Again at 20 hours following CLP, there is a marked
decrease in KCl-induced peak contraction in septic aortic
rings with intact endothelium, which is completely restored
to sham levels following removal of septic endothelium

(Figures 13 & 14).

|
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Figure 5. Cumulative dose-response curve to various
concentrations of norepinephrine (NE) in aortic rings at 20
hours after sham operation (Sham) or cecal ligation and
puncture (CLP). There were six or seven animals in each
group with two aortic rings per rat. Values are presented
as mean + SE and compared by one-way ANOVA and Tukey’s test.
*P < 0.05 versus corresponding sham-operated animals; #P <
0.05 versus corresponding endothelium-intact septic rings.
+Endo, endothelium intact rings; -Endo, endothelium-denuded

rings.
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Figure 6. The peak vascular contraction induced by 1 X 10-
6M NE at 20 hours after sham operation (Sham) or cecal
ligation and puncture (CLP). There were six or seven
animals in each group with two aortic rings per rat. Values
are presented as mean + SE and compared by one-way ANOVA and
Tukey’s test. *P < 0.05 versus corresponding sham-operated
animals; #P < 0.05 versus corresponding endothelium-intact
rings. +Endo, endothelium-intact rings; -Endo,

endothelium-denuded rings.
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Figure 7. Cumulative dose-response curve to various
concentrations of norepinephrine (NE) in aortic rings at 35
hours after sham operation (Sham) or cecal ligation and
puncture (CLP). There were six or seven animals in each
group with two aortic rings per rat. Values are presented
as mean + SE and compared by one-way ANOVA and Tukey’s test.
*P < 0.05 versus corresponding sham-operated animals;
#P < 0.05 versus corresponding endothelium-intact septic
rings. +Endo, endothelium intact rings; -Endo,

endothelium-denuded rings.
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Figure 8. The peak vascular contraction induced by 1 X 10-
6M NE at 35 hours after sham operation (Sham) or cecal
ligation and puncture (CLP). There were six animals in each
group with two aortic rings per rat. Values are presented
as mean + SE and compared by one-way ANOVA and Tukey’s test.
*P < 0.05 versus corresponding sham-operated animals;
#P < 0.05 versus corresponding endothelium-intact rings.
+Endo, endothelium-intact rings; -Endo, endothelium-

denuded rings.
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Figure 9. Cumulative dose-response curve to various
concentrations of potassium chloride (KCl) in aortic rings
at 5 hours after sham operation (Sham) or cecal ligation and
puncture (CLP). There were six or seven animals in each
group with two aortic rings per rat. Values are presented
as mean + SE and compared by one-way ANOVA and Tukey'’s test.
*P < 0.05 versus corresponding sham-operated animals; #P <
0.05 versus corresponding endothelium-intact septic rings.
+Endo, endothelium intact rings; -Endo, endothelium-denuded

rings.
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Figure 10. The peak vascular contraction induced by 90mM
KCl at 5 hours after sham operation (Sham) or cecal ligation
and puncture (CLP). There were six or seven animals in each
group with two aortic rings per rat. Values are presented
as mean + SE and compared by one-way ANOVA and Tukey’s test.
+Endo, endothelium-intact rings; -Endo, endothelium-

denuded rings.
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Figure 11. Cumulative dose-response curve to various
concentrations of potassium chloride (KCl) in aortic rings
at 10 hours after sham operation (Sham) or cecal ligation
and puncture (CLP). There were six or seven animals in each
group with two aortic rings per rat. Values are presented
as mean + SE and compared by one-way ANOVA and Tukey’s test.
*P < 0.05 versus corresponding sham-operated animals;
#P < 0.05 versus corresponding endothelium-intact septic
rings. +Endo, endothelium intact rings; -Endo,

endothelium-denuded rings.
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Figure 12. The peak vascular contraction induced by 90mM
KCl at 10 hours after sham operation (Sham) or cecal
ligation and puncture (CLP). There were six or seven
animals in each group with two aortic rings per rat. Values
are presented as mean + SE and compared by one-way ANOVA and
Tukey’s test. *P < 0.05 versus corresponding sham-operated
animals; #P < 0.05 versus corresponding endothelium-intact
rings. +Endo, endothelium-intact rings; -Endo,

endothelium-denuded rings.
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Figure 13. Cumulative dose-response curve to various
concentrations of potassium chloride (KCl) in aortic rings
at 20 hours after sham operation (Sham) or cecal ligation
and puncture (CLP). There were six or seven animals in each
group with two aortic rings per rat. Values are presented
as mean + SE and compared by one-way ANOVA and Tukey'’s test.
*P < 0.05 versus corresponding sham-operated animals;
#P < 0.05 versus corresponding endothelium-intact septic
rings. +Endo, endothelium intact rings; -Endo,

endothelium-denuded rings.
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Figure 14. The peak vascular contraction induced by 90mM
KCl at 20 hours after sham operation (Sham) or cecal
ligation and puncture (CLP). There were six or seven
animals in each group with two aortic rings per rat. Values
are presented as mean + SE and compared by one-way ANOVA and
Tukey’s test. *P < 0.05 versus corresponding sham-operated
animals; #P < 0.05 versus corresponding endothelium-intact
rings. +Endo, endothelium-intact rings; -Endo,

endothelium-denuded rings.
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At 35 hours following CLP, KCl-induced vascular
contractility is severely impaired in aortic rings with
intact endothelium. In contrast to the restoration of
contractility observed at 10 and 20 hours post-CLP, removal
of septic endothelium at 35 hours following CLP was
significantly improved but not restored to sham levels

(Figures 15 & 16).

PART II
ALTERATION OF PEAK VSM
CONTRACTILITY TO NOREPINEPHRINE

FOLLOWING BLOCKADE OF NITRIC OXIDE SYNTHESIS

At 10 and 20 hours following CLP-induced sepsis,
addition of L-NMMA to the organ baths did not significantly
alter NE-induced peak contractility in endothelium-denuded
aortic rings (Figures 17).

Endothelium denuded vessel rings harvested 35 hours
following CLP demonstrated a significant (18%) improvement
in peak smooth muscle contractile function following
addition of L-NMMA (Figure 17). This augmentation of peak
contractile function in these septic vessel rings was fully
reversed following addition of excess L-arginine (3mM) to

the organ chambers.
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Figure 15. Cumulative dose-response curve to various
concentrations of potassium chloride (KC1l) in aortic rings
at 35 hours after sham operation (Sham) or cecal ligation
and puncture (CLP). There were six animals in each group
with two aortic rings per rat. Values are presented as mean
+ SE and compared by one-way ANOVA and Tukey’'s test.
*P < 0.05 versus corresponding sham-operated animals;
#P < 0.05 versus corresponding endothelium-intact septic
rings. +Endo, endothelium intact rings; -Endo,

endothelium-denuded rings.
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Figure 16. The peak vascular contraction induced by 90mM
KCl at 35 hours after sham operation (Sham) or cecal
ligation and puncture (CLP). There were six animals in each
group with two aortic rings per rat. Values are presented
as mean + SE and compared by one-way ANOVA and Tukey’s test.
*P < 0.05 versus corresponding sham-operated animals;
#P < 0.05 versus corresponding endothelium-intact rings.
+Endo, endothelium-intact rings; -Endo, endothelium-

denuded rings.
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Figure 17. The peak vascular contraction induced by 1 X 10-
6M NE at 10, 20 and 35 hours after sham operation (Sham) or
cecal ligation and puncture (CLP). There were four to five
animals in each group with two aortic rings per rat. Values
are presented as mean + SE and compared by one-way ANOVA.
#P < 0.05 versus corresponding sham-operated animals;

*P < 0.05 versus corresponding -L-NMMA. +L-NMMA: following
addition of N°-monomethyl-L-arginine. -L-NMMA: without

addition of N°-monomethyl-L-arginine.
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DISCUSSION

Rationale for Sepsis Model

The goal of this study was to elucidate the mechanisms
of vascular smooth muscle contractile dysfunction from early
to late stages of sepsis. Cecal ligation and puncture (CLP)
was chosen as the septic model for this study due to its
simplicity, and the generation of the ‘milieu’ of
polymicrobial peritonitis.?!® The presence of feculent
contamination and necrotic tissue mimics commonly
encountered diagnoses such as perforated appendicitis and

82 Rats subjected to CLP progress through the

diverticulitis.
early and late stages of septic shock in a predictable
fashion that is temporally similar to that observed in
humans.!®®2 Although in vitro incubation with endotoxin has
been shown to depress VSM contractility, in this
investigation, in situ vascular tissue was exposed to the
entire gamut of septic mediators present following CLP, for
up to 35 hours. The subsequent functional testing of septic
vascular tissue, extracted at widely spaced timepoints

provides a series of ‘snapshots’ revealing the state of

vascular contractility from early to late stages of sepsis.
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Rationale for VSM Contractile Agonists

Norepinephrine was selected as an experimental agonist
due to 1its natural occurrence as a primary alpha-
adrenoreceptor-mediated stimulant of VSM contraction.
Norepinephrine produces smooth muscle contraction via the
hydrolysis of phosphatidylinositol 4,5-biphosphate to
produce the second messengers inositol triphosphate and
diacylglycerol. Inositol triphosphate mobilizes
intracellular calcium stores, while diacylglycerol activates
protein kinase C, resulting in myosin 1light chain
phosphorylation and smooth muscle contraction.?

To aid in the differentiation between receptor and non-
receptor mediated contractile dysfunction, potassium
chloride (KCl) was chosen as the second experimental
agonist. KCl depolarizes the smooth muscle cell membrane,
thus activating voltage-gated L-type channels, which then
allow influx of extracellular calcium and subsequent smooth
muscle contraction.® The wuse of standardized, vyet
nonphysiologic concentrations of both NE and KCl was
required to elicit maximal (peak) contraction in ex wvivo

vascular tissue.

Discugssion of Part I Results

In part one of this study, NE-induced peak vascular
contractility decreased significantly at 10 hours after CLP
(early sepsis). This depression of NE-induced vascular

contraction was completely restored by endothelium removal.
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Similarly, KCl-induced peak vascular contraction was
depressed significantly at 10 hours post-CLP and was also
restored by removal of septic endothelium. However, removal
of septic endothelium at 20 hours post-CLP resulted in
incomplete restoration of a-adrenoreceptor (NE)-induced peak
vascular contraction. Complete restoration of contractility
to sham levels in septic endothelium denuded vessel rings
utilizing a non-receptor dependent agonist (KCl) implies
that some alteration in the alpha-adrenoreceptor-signal
transduction chain is at play in the later stages of sepsis
(>20 hours post-CLP). Both NE- and KCl-induced peak
vascular contractility remained significantly depressed at
35 hours following CLP, despite removal of septic

endothelium.

Discussion of Electron Microscopic Studies

This finding of persistent contractile dysfunction, in
the absence of septic endothelial mediators, suggested the
possibility that some type of physical damage had been
inflicted upon the contractile apparatus of aortic smooth
muscle cells exposed to such a prolonged septic insult.
This theory, however, was not supported by electron
micrographic (EM) analysis of harvested vessel rings.

As depicted in Figures 18 & 19, EM ultrastructural
studies of aortic vessel wall cross-sections reveals septic
intimal changes such as vacuolization of the endothelial

cytoplasm, breakdown of inter-endothelial junctions, and



56

Figure 18. Electron Micrograph of an aortic ring, presented
here in cross section, was obtained from a sham-operated
rat. It is representative of normal appearing arterial
microanatomy. Note the anatomic relationships between the
endothelium (E), basal 1lamina (B), and wvascular smooth
muscle (VSM). Also notice the normal appearing junction

between adjacent endothelial cells (arrow).
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Figure 19. Electron Micrograph of an aortic ring, presented
here in cross section, was obtained from a septic rat 20
hours post-CLP. There 1is obvious distortion of normal
arterial microanatomy. Note the separation of the
endothelium (E), from the basal lamina (B), and
vacuolization of endothelial cytoplasm. There 1is no
apparent damage to vascular smooth muscle (VSM), despite
exposure to a prolonged septic insult. Notice the breakdown
of inter-endothelial junctions (arrows). Also note the

presence of leukocyte attachment to the septic endothelium.
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separation of the endothelium from internal elastic lamina.
However, microscopic inspection of vessel wall smooth muscle
revealed no obvious loss of structural integrity even at the
terminal stages of CLP-induced septic shock. These
histological findings are supported by previous
microanatomical studies of vessels subjected to both in

vivo®® and in vitro®®?’

septic challenges.

Of further interest, Lee et al., have observed
endothelial damage as early as 15 minutes following
administration of intravenous endotoxin, as well as,
complete restoration of intimal integrity as early as one
hour following endotoxemia.® The absence of endothelial
injury following in vitro exposure to endotoxin alone
reinforces the concept that multiple blood borne elements
(i.e., LPS, inflammatory cells and cytokines) must interact
to fully duplicate the physiologic challenges that clinical
sepsis presents.®® The persistence of <contractile
dysfunction in endothelium-denuded vessel rings, in an ex
vivo system containing only a physiologic salt solution,

implicates the vessel wall, itself, as the source this

‘contractile inhibitory factor.’

Discussion of Part II Results

Part II of this study consisted of an investigation into
the supposition, that iNOS is the agent responsible for the
attenuated contractility of endothelium-denuded vascular

tissue observed in the latest stages of sepsis. If iNOS
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activation within the vessel wall, during the late stages of
sepsis, 1is responsible for the observed depression of
vascular contractility, then blockade of iNOS should result
in improvement in maximal (peak) contractile function. The
experimental hypothesis that late septic VSM contractile
depression is due, in part, to NO produced from iNOS within
the vessel wall is supported by the restoration of VSM peak
contractile performance following treatment of septic,
endothelium-denuded vessel rings with L-NMMA.

As illustrated in Figure 20, L-NMMA is an N®-substituted
L-arginine analogue which has demonstrated potency as a
competitive inhibitor of both constitutive and inducible
isoforms of NOS #-:%%°1 I1,-NMMA also inhibits NO release from
endothelium®® and vascular tissues”® . Evidence that a
dilatory vascular tone is maintained by a basal release of
NO from endothelium is demonstrated by contraction of ex

vivo®? and in vivo®-10?

vascular tissues by L-NMMA, as well
as, the reversibility of L-NMMA induced contraction by
addition of L-arginine®:. Inhibition of acetylcholine-
stimulated release of NO from the perfused rabbit aorta, is
an effect which 1is enantiomerically specific and is
therefore reversible following administration of L-arginine
and not D-arginine.!® The increase in blood pressure
following intravenous infusion of L-NMMA is accompanied by
decreased blood flow in the carotid, renal and mesenteric

arteries of conscious, chronically instrumented rats.!®

Direct infusion of L-NMMA constricts the brachial arteries!®
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of human volunteers but not the dorsal hand veins,?!°®
suggesting a greater dependency of human arterial tonicity
upon basal NO synthesis. Additionally, both in vitro!'® and

1% gtudies of human venous tissue, exhibit lesser

in vivo
basal NO release and a greater sensitivity to
nitrovasodilators when compared to arterial tissue. This
differential dependence of mammalian vascular tone upon
continuous NO synthesis is supported by the constriction of
rodent arterioles, but not venules, following intravenous L-

NMMA administration.?®®

Therapeutic Implications

Nitrovasodilators such as nitroglycerin have been
administered for the 1last century in the treatment of
various cardiovascular disorders (i.e., angina pectoris) .'?
Strong evidence now suggests that NO is the final common
effector molecule of all nitrovasodilators which activate

110.111 Oof note, inhibition of basal

soluble guanylate cyclase.
NO synthesis results in increased formation of cGMP and a
supersensitive vascular response to exogenously applied
nitrovasodilators.''?!*” The long recognized phenomenon of
tolerance which develops following chronic nitrovasodilator
administration''® is likely due to desensitization of soluble
guanylate cyclase to NO.19.120 Reduction of arterial
vasodilator response to Ach infusion in patients with

essential hypertension implies some derangement in NO-

mediated vasodilator tone as an etiologic factor in this
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Figure 20. Structural formulae of L-arginine and its

competitive analogue N°-monomethyl-L-arginine (L-NMMA).
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disease.!?’''?2 NO may also contribute to the development of
hypertension by inhibition of renin release.?
Additionally, attenuation of endothelium-dependent
relaxation has been demonstrated in both rabbit!?¢12® and

human??®

atherosclerotic arteries. Also, human
atherosclerotic coronary arteries are characterized by
reduced basal and stimulated NO release,!?® as well as, a
diminished response to Ach administration.?!3!

The discovery that glucocorticoids inhibit NOS induction
may explain many of the long-observed but poorly understood
therapeutic benefits and toxic effects of these compounds.
For instance, glucocorticoid administration is beneficial in
treatment of endotoxin shock,!3?'® asthma, rheumatoid
arthritis and transplant rejection.? Conversely, this
suppression of NO production may explain why glucocorticoids
facilitate the spread of clinical infections.!?’

The demonstration of NO synthesis within the vasculature
is equivalent to the discovery of a new and ubiquitous organ
which is intimately associated with the homeostasis of all
other organ systems. Collectively, the blood vessels and
their endothelium comprise the 1argést organ of the human
body with a demonstrated capacity for autocrine, paracrine
and possibly endocrine function.!®:13?

Inhibition of NOS has been shown to counteract the
profound hypotension associated septic shock in both

animals *° and humans.?® Alternatively, administration of NO

promotors/donors is being investigated as a treatment for
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hypertension and atherosclerosis. The vascular smooth
muscle relaxing properties of nitric oxide has been utilized
in the treatment of impotence,'*! as well as, splanchnic and

myocardial reperfusion injury.*-

Inhaled nitric oxide gas
also shows promise in the treatment of such dire clinical
entities as pulmonary hypertension!® and adult respiratory
distress syndrome . }4¢ Inhaled NO also exhibits
bronchodilator effects.*’

Although the wuse of NOS inhibitors has exhibited
protective and beneficial effects in terms of hemodynamic
parameters,?? reports of the effects on NOS inhibitors on
end organ function and survival, in various animal models,
have been contradictory. Indeed, there is ample evidence
that the use of nonselective inhibitors of NOS (i.e., L-
NMMA) may result in severe unopposed vasoconstriction with
resultant ischemic injury to vital organs.®!%! Obviously
many questions concerning the pharmacology and toxicity of
known NOS inhibitors, as well as, the number and properties
of yet wundiscovered NOS isoforms need to be carefully
elucidated in the laboratory setting prior to the conduction
of clinical trials.

Ironically, this short-lived, and nonspecific effector
molecule has evolved to regulate such diverse functions as
control of vascular tone and neurotransmission. Properties
such as high reactivity and membrane permeability make NO an

ideal antimicrobial and tumoricidal agent. It has been

proposed that the capacity of most nucleated cells to induce
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NO production may represent a primitive,!** broad spectrum
defense mechanism. Therefore it is possible that activation
of iNOS within the vessel wall, in the terminal stages of
septic shock, may represent a type of "every cell for
itself" phenomenon in which the cell attempts to repel
microbial invaders via production of excess NO without
regard to physiological consequences such as pathological

vasodilation and tissue damage.



SUMMARY AND CONCLUSIONS

SUMMARY

The experimental findings of this investigation can be

outlined as follows:

Part I

1. Neither receptor (NE) or non-receptor (KCl) agonist
induced vascular contractility was significantly affected 5
hours following CLP; contractile function was not affected
by the presence or absence of intact endothelium.

2. At 10 hours post-CLP, there was a marked decrease in NE
and KCl-induced peak vascular contractility which was
completely restored to sham levels following removal of
septic endothelium.

3. At 20 hours post-CLP, depression of NE-induced
contractile function was only partially corrected by removal
of septic endothelium. Conversely, KCl-induced contraction
was completely restored to sham levels following endothelium

removal.

68
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4. At 35 hours post-CLP, Both NE and KCl-induced peak
contractile function was improved but remained significantly
depressed following removal of septic endothelium.
5. Electron microscopic comparison of septic and sham
vessel rings revealed no difference in the ultrastructural

integrity of vascular smooth muscle.

Part 11

6. Treatment with L-NMMA did not significantly affect NE-
induced peak contractile performance of endothelium-denuded
aortic rings at 10 or 20 hours post-CLP.

7. L-NMMA administration resulted in a significant
improvement (18%) in peak vascular contraction of
endothelium-denuded aortic rings following 35 hours of CLP-

induced sepsis.

Conclusions

Production of endothelium derived septic mediators with
resultant depression of ex vivo peak vascular contractility
occurred as early as 10 hours following CLP. At 20 hours
post-CLP, the incomplete restoration of receptor-induced
contractility after endothelium removal implies that some
alteration in «a-adrenoreceptor signal transduction is at

play in the later stages of sepsis.
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The discovery of continued depression of endothelium
denuded vascular tissue to both NE and KCl in the terminal
stages of septic shock (35 hours post-CLP) suggests the
induction of NOS activity within the vessel wall itself.

The presence of iNOS within the aortic wall was
confirmed, albeit indirectly, by a significant augmentation
in peak contractility following L-NMMA treatment of
endothelium- denuded aortic rings subjected to CLP-induced
sepsis for 35 hours. The complete reversal of this L-NMMA
contractile augmentation following addition of excess NOS
substrate (L-arginine) to the organ chamber provides further
evidence that iNOS activation occurs within the vessel wall
during the latest stages of sepsis. While complete blockade
of all nitric oxide production during sepsis may prove
deleterious, it remains to be determined whether the
development of agents which selectively inhibit wvascular

iNOS will be useful in the treatment of septic shock.



APPENDICES



APPENDIX A



71

APPENDIX A

This work has been presented in part at the following

scientific meetings:

Local Presentations

1. "Insights into the mechanism by which vascular smooth
muscle function is depressed during late sepsis." Presented
March 11, 1993 at the Ninth Annual Research Day Forum of the
Michigan State University Department of Surgery, East
Lansing, Michigan.

2. "Alterations in vascular smooth muscle function during
sepsis." Presented May 6, 1993 at the 42nd Annual
Competition for the Frederick A. Coller Traveling Fellowship
Awards, Michigan Chapter of the American College of
Surgeons, Grand Rapids, Michigan.

3. "Induction of smooth muscle derived nitric oxide
produces vascular contractile dysfunction during late stages
of sepsis." Presented May 5, 1994 at the 43rd Annual
Competition for the Frederick A. Coller Traveling Fellowship
Awards, Michigan Chapter of the American College of

Surgeons, Dearborn, Michigan.



National Presentations

1. "Insights into the mechanism by which vascular smooth
muscle function is depressed during late sepsis." Presented
June 16th, 1993 at The Sixteenth Annual Conference on Shock,
Santa Fe, New Mexico.

2. "Different mechanisms are responsible for vascular
smooth muscle dysfunction during early and late stages of
sepsis." Presented November 13, 1993 at The Twenty-Seventh
Annual Meeting of The Association For Academic Surgery,

Hershey, Pennsylvania.

International Presentation

"Inducible nitric oxide plays a role in producing
vascular smooth muscle dysfunction during late sepsis."
Presented March 4th, 1993 at The 3rd International Congress
on the Immune Consequences of Trauma, Shock and Sepsis

Mechanisms and Therapeutic Approaches, Munich, Germany.
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APPENDIX B

The data for this thesis has been published, in part,

within the following scientific journals:

1. Wurster, SH, Wang, P, Ba, ZF, Dean, RE, and Chaudry,
IH. Insights into the mechanism by which vascular smooth
muscle function is depressed during late sepsis.
Circulatory Shock Supplement 1993; 2:39.

2. Wurster, SH, Wang, P, Dean, RE, and Chaudry, IH.
Inducible nitric oxide plays a role in producing vascular
smooth muscle dysfunction during late sepsis. Intensive
Care Medicine (Supplement 1) 1994; 20:S5S49.

3. Wurster, SH, Wang, P, Dean, RE, and Chaudry, IH.
Vascular smooth muscle contractile function is impaired
during early and late stages of sepsis. Journal of Surgical

Research 1994; 56:556-561.
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