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ABSTRACT

A Very Long Instruction Word Architecture

Implemented on the Splash 2

FPGA Array

By

Ray C Wang

The need for faster computing systems constantly pushes the limits of technology.

While special purpose and custom computing systems can provide very high levels of

performance, the cost associated with these systems limits their application. Recently,

there has been significant improvements in the performance of general purpose

processors which can be used in a wide variety of applications. The speed of these

general purpose processors is limited by how many instructions they can perform per

clock cycle. To increase that number, machines need to be able to execute instructions in

parallel. Machines capable of such parallel execution are known as superscalar

processors. Unlike other proposed superscalar models, the VLIW (Very Long Instruction

Word) model extends the RISC paradigm of simplified hardware.

This thesis examines the feasibility of using Splash 2, an FPGA-based processing

array, configured as a VLIW processor. The VLIW architecture implemented in this

study is capable of performing two operations concurrently. This study demonstrates the

use of a new platform to prototype and test architectural and compilation theories and

highlights its capabilities and limitations.
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CHAPTER 1

Introduction

New technology invariably alters the landscape of design and implementation of

computer systems. Current trends of processor design have moved towards a RISC

(Reduced Instruction Set Computer) architecture. Lower cost memory, automated

design, and the need for a modular approach due to VLSI (Very Large Scale Integration)

and WSI (Wafer Scale Integration) have all played a significant role in this shift of

ideology. As we push the upper limits of performance with pipelining, it becomes

inevitable to exploit the fine grained parallelism of programs. This is known as

instruction level parallelism (ILP). Superscalar processors, which can execute multiple

instructions concurrently, have already been designed and implemented to take advantage

of existing software. They promise even more speed-up in the future as compiler

technologies and operating systems are written to take advantage of their added

capabilities.

Processor design is not only changing, but changing rapidly. The development of

computer technology is one of the fastest moving industries in the world. Introducing a

new product a month or two before competitors can capture a majority of the market

share. With this motivation, it is not difficult to see why shrinking the design cycle is

imperative. FPGA (Field Programmable Gate Array) technology is increasing in both

array size and speed. These chips offer a short development cycle by implementing and

testing designs without the need for expensive wafer fabrication. Individually, they are

1
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used today for ASIC (Application Specific Integrated Circuit) and small prototyping

applications, however, larger ensembles offer new capabilities in rapid prototyping and

custom computing. Splash 2 is one of the first computing systems to explore these

possibilities. Its design allows for SIMD (Single Instruction stream, Multiple Data

stream) type architectures as well as highly pipelined and systolic applications.

This thesis explores the issues associated with implementing an instruction set

processor with the FPGA-based system, Splash 2. The Spyder architecture [17] has

shown that it is possible to utilize FPGAs in a general purpose processor. The Spyder,

however, dedicates the FPGAs as reprogrammable execution units to provide some

flexibility in its functionality. Splash 2 and other FPGA arrays represent a totally new

class of machines. The size and resources of the Splash 2 allows an entire architecture to

be prototyped and implemented with FPGAs. This would allow the computer designer to

test new features of an ISP (Instruction Set Processor) by reconfiguiing the Splash 2. For

example, programs that may benefit from very specific hardware routines can reprogram

the data path for better performance, and still retain the functionality of the remaining

system.

FPGA technology, however, is still in a relatively young stage. The limitations

imposed by the Splash 2 constrain designs. The limited logic on a single FPGA forces us

to partition our design across several FPGAs. The architecture of the Splash 2 also limits

the off chip resources available to each FPGA, such as memory and busses. These

restrictions present a significant obstacle to implementing a general purpose instruction

set processor.

Our approach to studying ILP and superscalar processors is to prototype a VLIW

(Very Long Instruction Word) processor on the Splash 2. The simple hardware needed to

implement a VLIW architecture is well suited for the Splash 2. A VLIW architecture will

also exploit the fine grained parallelism of programs that conventional processors have

not. The problems associated with parallel processing motivate the need for a platform
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that can rapidly prototype and test new architectural and compilation theories. While

conventional computing machines are built to process either general purpose code or

highly customized instructions, FPGA-based arrays offer the true general purpose

machine that can be configured as both.

New architectures are developed from studies of past processors and applications.

In chapter 2, we will discuss some of the issues and approaches of implementing

instruction set processors. These issues lay the foundation to our new architecture, the

Dex-II. Chapter 3 provides a detailed description of our design methodology and

implementation strategies. It also provides an architectural specification for Dex-II, the

VLIW architecture implemented on the Splash 2 array. Chapter 4 presents the design

environment and provides the simulation results and synthesis statistics of our

implementation. In chapter 5, an analysis of two test programs will help us evaluate how

successful the VLIW architecture extracts ILP. Chapter 6 will summarize the findings

and discuss how future implementation of FPGA arrays may be improved.



CHAPTER 2

Background Information

This chapter provides the background information and motivation for this thesis.

It presents a brief history of architectures and the concepts applied to improve their

performance. We discuss the challenges of parallel computing as well as introduce the

concept of instruction level parallelism. Finally, we consider reconfigurable systems and

how they can contribute to innovations in computer architectures.

2.1 Scalar Processors

First generation computers were typically load/store machines. They were

basically single accumulator processors not unlike todays programmable calculators. If

multiple variables were needed in the computation, they had to be stored into memory

and loaded at a later time. Memory address calculations and access were time

consuming. Therefore, more complex methods of manipulating data gave birth to the

first CISC (Complex Instruction Set Computer) machines. These machines are

characterized by a larger set of registers and complex memory addressing modes [15].

For example, the Motorola 68040 microprocessor implements 113 instructions with 16

general purpose registers and supports 18 different addressing modes. The popular Intel

80486 microprocessor implements 157 instructions with 12 addressing modes. The

concept of the CISC is to put commonly executed sequences of code into one single

instruction and add special hardware to execute it as quickly as possible. Each instruction

4
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is performed by executing subprograms written in microcode. Microcode represents the

physical bits of signals that control the data path. The advantage to this design is the

compatibility of code between machines and the reduced cost for program memory. If

the hardware is changed, all that was needed to compensate is a rewrite of the microcode

to support the same instructions. Applications are able to run without the need to

recompile. These processors, however, have become very elaborate and complex to

design. Transistor counts have rocketed into the millions, and the speed-up of each

successive generation has dwindled.

The search for more speed led to techniques used in mainframes and

supercomputers. Pipelining [12] was introduced to exploit temporal parallelism.

Pipelining allows instructions to be overlapped in stages. Each stage completes part of

the instruction so several instructions can be executing at the same time. To make

pipelining efficient, each stage should take about the same time to complete its tasks.

CISC techniques are not very well adapted to handle pipelining. Each individual

instruction has its own time frame and data paths are littered with special hardware to

implement those special instructions. RISC processors, however, are designed to balance

these stages. RISC instructions use very basic functions to simplify the hardware as

much as possible. The functionality of the processor is preserved, but the number of

instructions needed to complete the same task was increased. The increase in memory

size required to run programs have become less of an issue as memory sizes were

quadrupling about every three years [12].

The RISC machine is characterized by a smaller set of instructions and a larger

supply of registers. Addressing is kept as simple as possible and memory operations are

usually limited to simple load/store commands. A typical RISC machine is the Sun

SPARC CY7C601 with 69 instructions. There are 136 registers divided with a technique

called register windowing. This is basically a paged register file to supply clean registers

for subroutines. The RISC model tries to partition instructions into well-defined stages to
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make pipelining as efficient as possible. The results are higher clock rates and faster

design times. Chips such as the DEC Alpha and the PowerPC have already broken the

100MHz mark. Now the search for even more speed has begun to focus on spatial

parallelism. Increasing the number of instructions that can execute at the same time

brings us into the realm of parallel and superscalar computing.

2.2 Parallel vs. Superscalar Processors

The idea of parallel and superscalar processors is to allow instructions to be

executed concurrently [18]. This is not a new idea, and there have been many successful

approaches to parallel computing. Parallel processors can execute several instruction

streams, while a superscalar processor can execute several instructions of a single

instruction stream. Parallel execution of instructions increases the throughput of the

‘

‘7
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Figure 2.1. Instruction execution models
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processor and decreases the time needed to finish a task as can be seen in Figure 2.1.

This figure depicts the relative time needed to finish four tasks (ll-I4) and shows how

pipelined and superscalar execution times compare to serial execution. Many of the

traditional parallel processors need highly specialized hardware and special algorithms to

achieve their goals. The Flynn classification [12] proposes four different models of

computers. The SISD (Single Instruction stream, Single Data stream) architecture is the

standard general purpose scalar computer. The SIMD architecture is represented by

machines such as the MasPar MP—l and Thinking Machines CM-2. This type of

architecture has many identical functional units and a single instruction unit. The

instruction unit broadcasts a command, and all the functional units perform the same

function. This is extremely efficient for many different matrix operations where the same

task is performed on large amounts of data. Unfortunately, only very specific

applications can take full advantage of this setup. The MISD (Multiple Instruction

stream, Single Data stream) computers are a bit more difficult to classify. Certain

systolic arrays may be considered as MISD computers. The data flows through stages of

the array and is operated on by whatever instruction executes at each stage of the array

[7]. The Multiple Instruction, Multiple Data stream MIMD processors are the most

common parallel computers. Mainframes, supercomputers, and high-end workstations all

employ some form of multiprocessing capability. Employing the MIMD model, they can

exploit data parallelism and specialized parallel code to expedite the completion of a

single program. However, these computers are primarily used to serve many users and

programs simultaneously. While they can complete a multitude of tasks, each individual

program or task itself is not being executed any faster [12]. To complete a single task

using multiple processors requires either a regular data structure, such as matrix

calculations, or complex synchronization and message passing mechanisms.

Several issues have been studied to overcome the barriers of parallel processing.

Parallel programming requires a good understanding of how the hardware is organized in
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order to take full advantage of the scalable hardware. Variations of high level

programming languages have been used to overcome some of these issues. A language

called dbC (Data-parallel Bit C) was developed with parallel data structures for SIMD

type execution. By using the new constructs supplied by the language, the compiler can

effectively distribute the computation among the available processing elements. dbC has

been used for parallel machines such as the Cray and Terasys. Even more interesting is

the possibility of using a dbC compiler to generate hardware on an FPGA-based array to

implement each program with its own hardware [8][9].

Parallel machines also suffer from synchronization problems. There are basically

two methods of sharing data and keeping data coherent. The message passing model uses

a distributed memory system. Each processor keeps its own data and sends data via

messages when needed. The MasPar MP—l and Ncube2 are two examples of a message

passing computer. The other method is a shared memory model where each processor

communicates through a common memory space. The shared memory space makes

programming much easier since the programmer does not need to worry about the

location of data. Although the shared memory model is theoretically sound, the

scalability of such a system is limited by the bandwidth of the memory and the

complexity of the caching scheme [30] used in the system. The DASH multiprocessor

[19] developed at Stanford uses a distributed directory based cache coherence scheme

[19][l3] to scale the single memory space. However, these schemes need both software

and hardware support in order to be utilized. Still, others argue that a highly scalable

memory system is not necessary due to the inherently low level of parallelism that can be

extracted from programs [12].

2.3 Instruction Level Parallelism

It becomes quite obvious from Figure 2.1 that the number of instructions that can

be executed concurrently will greatly affect the performance of superscalar architectures.
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This number is limited by the ILP of the program. ILP is the amount of parallelism that

can be extracted from a program written for a sequential processor [5]. This is limited by

true data dependencies, procedural dependencies, and resource conflicts [18]. Data

dependencies are instructions whose operands depend on the results of previous

instructions. Instructions in general cannot execute until their operands are available.

Several methods to resolve data dependencies have been used. The Intel i960CA, HP

PA-RISC7100, HyperSPARC, and IBM's RSGOOO all use a runtime technique known as

scoreboarding to resolve data dependency [15][12][28][33]. This technique requires

keeping a table or ”scoreboard” of what stage of execution each register is in. Other

dynamic techniques use reservation stations and a version of the Tomasulo algorithm [28]

implemented on the IBM 360 floating point unit. The major disadvantages of these

implementations is the hardware cost and the complexity associated with them.

Dependencies can also be eliminated during compile time [5]. VLIW processors depend

on the compiler to generate compact code in order to exploit ILP. The biggest

disadvantage to this approach is the lack of good compilers and the incompatibility of

code from machine to machine.

Procedural dependencies are instructions that are affected by branching. At

conditional branches, there are two sets of instructions that can be executed. The

processor often has to await resolution of the branch to continue execution. Several

different approaches have been used to decrease the impact of branching. Speculative

execution [20][12] can be used to eliminate some of these branch latencies. Compiler

techniques utilizing trace scheduling methods [4] can also move instructions across

blocks of code to fill up unused cycles.

Resource dependency involves the available number of functional units to execute

instructions on. The decision of how many functional units to implement depends

heavily on the type of programs being run and the level of parallelism that can be
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extracted. Too many units would leave costly hardware idle, while too few would create

a bottleneck for the performance of the processor.

2.4 Design Issues of Superscalar Processors

The physical hardware where operations are performed are called functional units.

In a scalar architecture, only one function can be executed at any given time. In a

superscalar architecture, functions are differentiated in hardware to allow multiple

instruction execution among all of them. The most common functional units are integer

units, floating point units, memory units, and control units. The number and types of

units vary from architecture to architecture. The Motorola 88110, for example, has ten

functional units while the DEC Alpha has only four [33]. More units, however, do not

necessarily indicate better performance.

There are typically four stages in executing an instruction as shown in Figure 2.2:

Fetch, Decode, Execute, and Writeback [12]. The Execution stage can be easily sealed

with the addition of hardware. The Fetch, Decode and Writeback stages are the critical

points where bottlenecks can impede performance gains. The Fetch stage is responsible

for getting instructions out of the instruction cache. In a superscalar processor where

more than one instruction can be issued, this becomes a challenging task. Different

architectures adopt many different approaches to this problem. The number of functional

 

Il
  
 

 

Fetch Decode Execute Writeback
     
 

Figure 2.2. Instruction stages

units and the dependencies on the instruction dictate how many and which instructions

can begin to execute. For instance, the DEC Alpha can issue up to two instructions per
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clock cycle as long as they are operating on different functional units [33]. The Intel

i960CA can fetch four instructions and issue up to three of them if they are on separate

functional units [33]. The sophistication of issuing instructions greatly affects the ability

of keeping the hardware busy. Therefore, having a multitude of functional units does not

automatically make a better system. It becomes apparent that the order of instructions

plays a critical role in exploiting the maximum level of parallelism.

Instructions can be issued in-order or out-of-order [18]. All of the architectures

discussed issue instructions in-order of the program. Since there are a limited number of

functional units, certain combinations of operations cannot be issued together. Two

integer operations, for example, cannot be issued on the same clock cycle if there is only

one integer unit. In order to execute comedy, a stall or NOP (No Operation) must be

injected into the code. Out-of-order issues can eliminate this and use up the wasted stall

time. This is achieved by using an instruction window to look ahead at several

instructions to determine if there are any data dependencies. Unfortunately, the

complexity involved in the hardware has deterred an implementation of this scheme.

Instructions can also be completed in-order or out-of-order [18]. The latencies of floating

point units tend to be much longer than those of integer units. With in-order completion,

instructions may be needlessly stalled while one very long instruction is executing. With

out-of-order completion, this can be avoided as long as data dependencies are observed.

Some of the problems with out-of-order completion are the added hardware for

dependency checks and the difficulties dealing with precise interrupts and exceptions.

Since instructions may be completed out of order, the restart point may cause the

instruction to be incorrectly executed twice. Again, extra hardware is required to support

precise interrupts.

The dynamic techniques of achieving parallel instruction execution all require

extra hardware. A VLIW processor tries to adhere to the RISC philosophy. Instead of

adding complex hardware schemes to resolve the problems of multiple instruction issues
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during runtime, VLIW processors resolve dependencies during compile time. The

instruction word contains all the information for each functional unit. This makes for

very long instructions as more and more functional units are added. By scheduling and

analyzing programs off-line, we can get rid of the hardware overhead and ultimately

achieve better performance than a dynamic solution. This approach also allows for very

simple instruction issuing and decoding. The Multiflow TRACE series were the first

commercially available processors implementing the VLIW architecture [29].

Unfortunately, the performance that was achieved was severely limited by the compiler

technology. It was unable to extract enough ILP at the time [29]. There are basically two

methods to extract ILP for a VLIW architecture: code movement and guarded execution.

Code movement is much easier and cheaper to implement than guarded execution.

Guarded execution requires the addition of hardware registers and additional logic along

with semaphore semantics in software. The basic idea is to be able to execute

speculatively along both branches when a conditional branch is encountered and to

invalidate the path not taken. This method usually requires many shadow registers and

memories to be effectively implemented.

2.5 Code Motion

Code motion, otherwise known as list scheduling, is an effective method to

expose ILP. A human compiler can write very efficient assembly level code, but today's

compilers are still not as smart as we would like them to be. The two most popular forms

of list scheduling are known as percolation scheduling [22], and trace scheduling [4].

Early efforts such as the Bulldog [3] compiler and the Multiflow TRACE [28] implement

these techniques with varying degrees of success.

Percolation gets its name from trying to "percolate" instructions up as far as

possible to fill in wasted NOP space. There are several key points that must be observed

when moving code around. The primary challenge is keeping the semantics the same.
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Examples of code will be in the format as follows

11: 0P1 * Comments and explanations

0P2

12: 0P1

where II is a single instruction consisting of two concurrent operations, and 12 is a single

instruction with only one operation.

   

 

 

Before After

1 1

A = B+C A = B+C

H = F+H

D = A+3 D = A+3

F = G+B

E = D+1 E = D+1

1= (D)     
 

(G)= A

   

   

Figure 2.3. Percolation scheduling

From the example in Figure 2.3, we assume that there are only three basic blocks of code

(1-3). If there were successors following blocks 2 and 3, we would also have to take

those into account. The key to preserving the semantic meaning is to avoid overwriting

registers that are "live" and memory locations. This restriction on memory basically

dictates that store instructions cannot be moved. Ensuring that executing instructions do

not affect live registers can be achieved in several ways. We can use register renaming to

replace variables or to compute speculated variables. In Figure 2.4, we could not move
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the instructions in block 3 without affecting the code in block 2. This is due to the two

variables, I and F, in block 3 that are also used in block 2. If we rename the I and F

variables in block 3 to H and J, we see that it is still possible to move the code from block

3 into block 1. This is an inexpensive and powerful performance booster.

 
 

   

   
  

 

   

Before After

1 1

A = B+C A = B+C

H = (D)

D = A+3

D = A+3

E = D+l J = G+B

E = D+1

F = I+D

2 F = I+D 3 I = (D)

F=G+B 2

(G) = F+E (G) = F+E
Rename I to H    

  

Rename F to J

Figure 2.4. Register renaming

Another semantic preserving method is adding compensation code. If we restrict

our movements to instructions that can be undone, we can shorten one path possibly at

the expense of another. This is the idea behind trace scheduling [4]. If we have a good

profile of how programs normally operate, then by reducing the path taken most often,

the added cost of compensation code is negligible. In Figure 2.5, we reduced the left path

from four to three instructions at the expense of the right path which went from four to

five instructions. If we assume this is a loop with 100 iterations, then the total number of

cycles needed to execute this program would be 90*3 + 10*5 = 320 cycles. The original

code would have taken 90*4 + 10*4 = 400 cycles. This is a substantial improvement for
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our very small example. The difficulty in such a scheme, however, is to have an accurate

runtime profile of programs. If for some reason, the program switched over to executing

the right path ninety percent of the time, we would experience a penalty rather than the

 

 
 

   

   
 

  
 

   

   
      

intended performance boost.

Before After

1 l

A = B+C A = B+C

I = (D)

D = A+3

D = A+3

E = D+1 G = G+1

E = D+l

90% F = F+D

yx
2 F = F+D 3 I = (D) 3

G=G+l H=G+F G=G-1
F = F-D

H = G+F

I____   
 

Figure 2.5. Compensation code

The other major drawback of rescheduling is exception handling. Note that in

block 3 of Figure 2.5, there is a memory read into variable I. On a real system, this may

cause a page fault and require the system to stop and load up a new page of memory. The

increased memory reference can cause the system to start thrashing if it is scheduled up to

block 1. This further limits our ability to move code around. A technique called sentinel

scheduling [20] combines the ideas of guarded execution with list scheduling to avoid

these problems.
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2.6 Reconfigurable Systems

The parameters and problems associated with parallel and superscalar computing

present many possible solutions. Reconfigurable systems allow the designer to

implement and test various designs quickly and efficiently.

A VLIW architecture called the VIPER [10] claims a 100 MIPS peak throughput.

At 25 MHz, it is capable of performing a branch, two load/store operations, and up to

four ALU operations per clock cycle. A study done with the VIPER on pipelining and

bypassing [1] also showed that the added cost of a fully interconnected network for

operand forwarding is significant. The additional bus lines increased cycle time and

silicon area. This analysis shows that the dynamics of large systems can vary widely

with different implementations and applications.

By using a reconfigurable system, we can study a greater number of applications

to find the best solution. A reconfigurable system gives us the ability to tailor an

architecture through software. This allows the designer to optimize the amount of

hardware for each application. Architectures that would benefit from additional

forwarding paths, for example, could be implemented on the same system as an

architecture whose main purpose is to get the fastest cycle time. Reconfigurable systems

can provide computer designers with important data on the impact of architectural

changes and features.

The Splash 2 is a reconfigurable system composed of 17 FPGAs. The Field

Programmable Gate Array is a matrix of programmable cells called CLBs (Configurable

Logic Blocks) [34]. The Xilinx 4000 series uses two function generators per CLB that

can accept up to four inputs and perform any Boolean function on them. The functions

are implemented with look-up tables, so the delay associated with each generator is
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independent of the function being implemented. A simplified block diagram [34] of the

CLB is shown in Figure 2.6. The multiplexer controls and logic functions are determined

by the configuration.

2
3
3
2

 
Figure 2.6. Simplified block diagram of the XC4000-Family CLB

The design can be synchronous by using the two flip-flops to latch values, or

combinational using the unlatched outputs. Each CLB is surrounded by an

interconnection network that allows the CLBs to communicate with each other. Delay

times governed by routing are a key issue in developing fast designs with FPGAs.

Signals are brought off chip through IOBs (Input Output Blocks). These pins can be

configured as latched, tristated, or combinatorial signals. The third generation Xilinx

4025 has 1024 CLBs in a 32x32 array with 256 IOBs. This is large enough to implement

simple algorithms and state machines. We will examine a few of these efforts, each with

a unique strategy on how to utilize the FPGA for custom computing.
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FPGAs have the ability to be reprogrammed an unlimited number of times. This

allows for fast design and development of ASICs and prototypes at relatively low cost.

Applications such as image processing benefit from the reconfigurable hardware as well.

In general, these applications have parameters that may change from execution to

execution, but possess potential for improved speed from hardware implemented

algorithms. Image classification [25] and convolution [24] are just a few examples of the

successful applications of this technology. Other applications utilize the FPGAs as a

reprogrammable co-processor or as execution units [16]. A self—timed floating point co-

processor [23] can be added without affecting the system clock of an existing system.

Several reconfigurable processors have also begun to appear [17][6][32][14][2].

The ability to generate hardware specifically for the instructions to be executed is an

exciting prospect. Self-reconfiguring processors [6][32] utilize the feature of some

FPGAs to be partially reconfigured. This allows for a "virtual hardware" setup where a

processor may support several operations, but only have room for one or two actual

configurations to be waning on the FPGA. This also provides the ability to create as

many functional units as necessary to extract the maximum level of parallelism.

However, work done with the RRANN2 [l 1] shows that the overhead for reconfiguring

systems is quite high. In a neural net application, 80% of the total time was spent in

reconfiguration. This overhead still limits these systems to highly parallel applications.

Systems such as the SPYDER [17] and the DISC architecture [32] were built with

the idea of executing instruction level programs. They have hardwired data paths and a

small array of FPGAs for reconfigurable execution units. The larger more general

purpose boards such as the Teramac [2], the Enable++ [14] and the Splash 2 [7] all have

more FPGA chips and programmable crossbars to implement different communication

topologies. These boards have been shown to perform well for programs with large

amounts of data parallelism, however, they need to be programmed specifically to take

advantage of their hardware.
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With the advent of good hardware descriptor compilers and tools, the concept of

using an implementation independent model [27] to explore new instruction set

architectures was proposed. With these large arrays and VHDL as a tool, it becomes

possible to create an instruction set architecture on top of these general purpose custom

computing arrays. This gives us the ability to create a custom computing system flexible

enough to implement the four models of computers that Flynn proposed.

2.7 Summary

Exploring the different ways we can enhance single processor performance, we

note that there are basically two methods of increasing throughput: (l)decreasing cycle

time, and (2)executing multiple instructions. Cycle time ultimately depends on the

technology available. Multiple instruction execution however deals with the organization

of the architecture and the programs executing on the processor.

The key for successfully executing multiple instructions lies in the ability to

schedule them to avoid hazards. Instruction scheduling techniques can be static or

dynamic. Although initially more attractive, dynamic scheduling techniques cost more in

hardware and add complexity to the machine. This will set an upper limit of performance

when compared to a statically scheduled machine. Statically scheduled machines do not

need to examine instructions on the fly before execution. While it is too early to say

which approach will ultimately perform best, both approaches need to be implemented

and studied. Splash 2 offers a cost-effective environment to realize and test these

architectures quickly.



CHAPTER 3

Design Methodology & Architecture

Specification

With an understanding of some of the problems and issues of superscalar

processors, we now consider implementing a superscalar processor on an FPGA-based

array. The design of our superscalar processor is driven by a set of architectural

specifications. This chapter first introduces the RISC architecture as the foundation of

our new VLIW machine. The details and limitations imposed by the Splash 2 are

discussed followed by the final architectural specification of the Dex-II that was

implemented. Finally, we examine the various hazards that exist and how they are

resolved.

3.1 Architecture Driven Design Methodology

Two distinct architectures form the new VLIW architecture, Dex-II. The Dex JR.

provided the framework for the RISC instruction set, and the Splash 2 architecture drove

the implementation strategies. This architectural driven approach is distinct from

application driven designs.

Application driven architectures are targeted towards very specific tasks. The

Splash 2 was developed as a method to implement application driven architectures.

Application driven architectures become obsolete when the application is no longer

needed or outdated. Using the Splash 2 allows the user to replace the architecture when

20



21

Inputs Inputs

 

 

 

 

 

  
 

  
   
 

 
 

   
 

  
 

  

Application

Specific Program

Architecture

VLIW Architecture

Splash 2 Architecture Splash 2 Architecture

All Architectures

Outputs Outputs

Figure 3.1. Architecture hierarchy

this occurs. Although less costly than building a new system each time a new task arises,

using the Splash 2 does incur some overhead. Architectures are now limited by the

resources and capabilities of the Splash 2 system. Figure 3.1 shows how an application

specific architecture is constrained by the Splash 2 architecture. Application driven

architectures are determined by the specific task and the resources of the Splash 2

architecture.

Figure 3.1 also shows how the VLIW architecture is implemented within the

constraints of the Splash 2 architecture. It is similar to an application specific

architecture, however the purpose of the VLIW is not to perform a specific task. The

VLIW architecture can be programmed to solve several different tasks by replacing the

program block in Figure 3.1. Instruction set architectures change over time as new

hardware is developed and new instructions are added. Splash 2 offers the ability to
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prototype and alter the architecture as needed. The architecture of the VLIW machine is

driven by the RISC instruction set, the issues of pipelining, and the resources of the

Splash 2 architecture.

3.1.1 Evaluation Criteria

The architecture of the Dex-II is based upon the RISC instruction set. This

instruction set provides all the primitives necessary to perform more complex

instructions. The Dex-II, therefore, must successfully implement these instructions. In

doing so, we can compare the performance of our implementation to the base RISC

architecture.

We will also evaluate how the VLIW instruction set affects the extraction of ILP.

A comparison of the VLIW and RISC code in Chapter 5 will establish a quantitative

measure of the performance of the new architecture. This measure of performance allows

computer designers to better understand and improve architectures.

A successful implementation of the Dex-II will also allow us to measure the

utilization of the FPGAs. This allows us to evaluate the use of the Splash 2 resources in

prototyping instruction set architectures. This data, presented in Chapter 4, is important

to improving future generations of FPGA-based arrays.

3.2 Architectural Specifications

The architectural specifications set forth by the Splash 2 and Dex JR. sets the

expectations and implementation of the Dex-II. Our goal is to implement a processor that

has the same functionality of the Dex JR. on a platform as flexible as the Splash 2. We

will then extend the original RISC architecture to a VLIW implementation called the

Dex-II. The architectural specifications provide the level of detail necessary to achieve

that goal .
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3.2.1 Splash 2

Implementing any design on the Splash 2 requires a good understanding of[the

underlying hardware. The Splash 2 system is based on the Xilinx 4010 FPGA. Each

chip represents a processing element that consists of 400 CLBs. Each CLB can perform

two independent Boolean functions of up to four variables, a function with five variables

and a four variable function in certain instances, or a single function up to nine variables.

The resulting signal can be combinatorial or registered by the two flip-flops. A careful

study of the simplified block diagram in Figure 2.6 should clarify the functionality of the

CLBs. The resources of the CLBs will determine the final size needed to implement a

design.

The XC4010 also has 160 1088 to control and condition signals entering and

leaving each chip. These [083 are used by arranging the chips in a linear array using two

edges of the chip to communicate with each other and a third edge to a central crossbar as

can be seen in Figure 3.2. The left and right edges can talk only to the adjacent chips

through a 36-bit data path while the third edge can communicate with up to five different
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Figure 3.2. Splash board
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The crossbar is a 36-bit data path arranged in 8-bit segments for a total of four 8-

bit slices and one 4-bit slice. Each slice can be configured to transmit data in one

direction. It can store and switch among eight different configurations connecting any of

the bit slices from one chip to another. Control of the crossbar is handled by the

seventeenth FPGA, X0.

Each PE (Processing Element) also has

a 256K by 16-bit memory associated with it.

This is accessed through the fourth edge of the

chip with 18 address lines and 16 data lines.

Timing of the memory is handled separately by

the Splash 2 system. A read operation requires

two global clock cycles, one to latch the

address and the following cycle to read the

data. Although it is possible to pipeline back to

back reads, a read followed by a write must be

separated by at least one clock cycle. Since a

write is initiated by placing an address and the

data to be written, a read followed by a write

would require the used data lines.

Control of the Splash 2 system is

handled by a SPARC host attached to the board

through a VME backplane. The Splash 2 is

scalable by adding up to 255 more Splash
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Figure 3.3. Design flow

boards to this backplane. Each board will have its X1 chip attached to the previous

boards X16 chip and so forth. The host can be interfaced with C libraries or a symbolic

debugger known as T2. These software interfaces allows the user to map bitstreams to

specific FPGAs, control the clock, and provides many other debugging and I/O functions.
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The design flow for programming the Splash 2 system is depicted in Figure 3.3.

Programming of each PE is done with a hardware description language, VHDL. Physical

pins of each PE are mapped into logical signals using a combination of Splash 2 and

vendor libraries. Simulation can be done to ensure that the algorithm is correct using

Synopsys design tools. After simulation, the user synthesizes the VHDL code into a gate

level description using Synopsys compilers. At this point, the Xilinx software is invoked

to automatically place and route the desired hardware. The final result is a timing

analysis of the design and a bitstream that can be downloaded to the Splash 2 system.

3.2.2 Dex JR.

The framework of our new processor, the Dex-II, comes from a simple, clean

RISC architecture called the Dex JR [31]. The instruction set consists of load/store

instructions, three mathematical operations, and conditional branching. The design of the

Dex JR. called for a four stage pipeline: Fetch, Decode, Execute, and Writeback. This

balanced our pipeline to provide the best possible cycle time with the components that

were available.

A four port, 32x32-bit register file provides operands for mathematical operations

as well as absolute addressing for memory. Four ports were necessary in order to write a

single result and supply two operands per cycle. The fourth port was exploited by

implementing a double load from memory. This special instruction proved to be a

significant factor in performance by increasing the bandwidth to memory. Since all the

mathematical operations take two operands, this reduced the time to load the operands

from two cycles to one. Programs which require intensive memory cycles such as array

and matrix operations also benefited from the ability to load multiple values.

Data dependencies of consecutive instructions were eliminated by forwarding

paths. Scheduling of the correct forwarding path for execution is done statically during

compile time. Only one delay slot is necessary for the branch commands as the execution
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of the branch was done in the Fetch stage. The delay slot comes from waiting for

condition codes to be resolved in the Execute stage.

The global clock is broken down into a four phase clock to perform memory

operations. This ensures that the setup and hold time requirements are met. The

instruction length is 32-bits non-encoded and the data and instruction caches are

independent of each other. The data path, designed as a 32-bit architecture, is shown in

Figure 3.4.

3.2.3 Dex-II

Since FPGA technology is more complex than dedicated chips, the top speed and

performance will always lag the most current ASIC technologies. In order for an FPGA-

based architecture to compete, it must be able to prOVide unique features through its

programmability. This feature allows Splash 2 to prototype an ISP with the added

performance of the latest architectural advances. The goal, therefore, was to increase

processor throughput with a redesign of the Dex JR. by doubling the processor power.

This is accomplished by designing the architecture to execute two instructions per clock

cycle instead of one.

The Dex-II is a VLIW version of the Dex JR. A VLIW architecture was chosen

for its relative simplicity of hardware. This was a major concern as the size of designs for

each PE was limited by the physical FPGA itself. The architecture implemented on the

Splash 2 is also sealed from the original 32—bit architecture down to a 16-bit data path due

to the limited communication resources between PBS. The functionality of the instruction

set was retained.
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Figure 3.4. The Dex JR.

The pipeline depth was also altered to three stages due to the increase from a four

phase clock to a six phase clock. This was to accommodate the need for more

communication between stages and implementation across multiple PEs of the Splash 2

board. This reduction in pipeline stages also eliminates several forwarding paths. With

communication resources so highly limited, this tradcoff was necessary to retain data

coherency.
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The instruction length is doubled to 64 bits to execute two instructions. Extra bits

are used to pass register destinations of both processors determined at compile time to

retain data coherency. The redesigned data path is shown in Figure 3.5. The box

enclosing the functional units allow any combination of two instructions to be executed

with its own operands. Both memory and registers are kept coherent with a combination

of hardware and compile time methods.
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Figure 3.5. The Dex-II
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3.2.4 The Instruction Set

The instruction set consists of 14 different operations, as listed in Table 1. This

reduced instruction set allows more complex functions and memory addressing by the

combination of these simpler instructions. The Dex-II allows any two of these operations

to be executed at the same time except for branching.

Table 1. Instruction set

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Instruction Description Register Transfer Level

Rx, Ry, Rz

LD Load from memory Rx <- (Ry)

LDI Load immediate Rx <- immediate

ST Store to memory (Rx) <- Ry

ST Copy Rggister Rx <- Ry

BRA Branch PC <- Address

BZ Branch if Zero PC <- Address if Z

BN Branch if Neg. or Zero PC <- Address if N

BNZ Branch ifijg. or Zero PC <- Address if NZ

BNV Branch if Neg. or oVfl. PC <- Address if NV

ADD Add Rx <- Ry + Rz

SUB Subtract Rx <- Ry - Rz

SFTL Shift Left. Rx <- Ry shifted left 1

SFI‘R Shift Right Rx <- Ry shifted right 1 ‘

MULT 8-bit Multiply Rx <- Ry * Rz

NOP No Operation
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ALU Operations, Load, Store

31 27 19 15 14 10 9 S 4 O

lOpcodel I OpA l 0138 lDestToplDestBotl

Load Immediate

[31 27 25 10,9 5 4 o

[ OpcodeJ J Immediate Value lDest Top I Dest Bot I

Branch

[31 27 26 10,

l Opcode I I Destination Address I I

Operation Opcode

LD 00100

LDI 00101 Registers are addressed from

ST 00110 R1-R31. R0 will always return a

ST 00111 zero and writing to it will not

ADD 10000 affect it.

SUB 10001

SFTL 10010

SFI‘R 1001 l

BRA 01000

32 01001

BN 01010

BNZ 01011

BNV 01 100

NOP 00000   
 

Figure 3.6. Instruction format
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Figure 3.6 depicts the three different instruction formats. The OpA and OpB

fields identify the source registers for the execution units. The Dest Top and Dest Bot

fields identify the destination register for the top half of the processor and the bottom half

of the processor. Both halves will have identical destination registers, however, their

Opcode and source registers will differ. Registers are addressed from 0 through 31

represented in standard binary form. By making the destination registers the same on the

top half and bottom half of the processor, we encode information in the instruction rather

than passing that information during runtime. This ensures that all instructions affecting

registers will update all four PBS in the decode stages concurrently with a minimal

exchange of information. There are also extra bits and room left in the opcode for future

expansion and addition of instructions. Two possible additions are register windowing

instructions and paged memory to exploit unused memory.

3.3 Design Constraints

The Dex-II was designed to keep wasted NOPs at a minimum. However, spatial

and temporal parallelism introduces certain restrictions that must be observed. These

constraints are classified as data, memory, and control hazards.

3.3.1 Data Hazards

Data hazards are constraints caused by the data path. Two operands that have

data dependency between them cannot be issued on the same clock cycle. Figure 3.7

shows an example of data dependent instructions. The first example shows two

instructions that cannot be executed together since the second instruction is dependent

upon the first instruction. This is executed correctly by the insertion of NOPs in the

second instruction slot to delay execution until the result has been computed and saved to

register 3. True data dependencies can not be avoided, however, certain architectures

implement special hardware to reduce their impact.



 

32

 

Example.

The following instructions will produce erroneous results

ADD R3,R1,R2 l"R3<-R2-i-R2

. ADD R5,R3,R4 ‘R5<-R3+R4

This is due to the fact that R3 will not be computed in time for the second instruction. In order to

execute correctly, either another instruction needs to be scheduled in its place, or a NOP must be

injected

ADD R3.RI.R2

NOP

ADD R5. R3. R4

NOP

 

Figure 3.7. Data dependency

 

The ALU of the Dex-II, unlike the SuperSPARC, are completely separate from

one another. The cascaded ALU scheme shown in Figure 3.8 is used in the SuperSPARC

to eliminate this restriction. If the second instruction depends on the first, than they are

executed sequentially with ALUC, otherwise they are executed independently on ALU2

and ALUO. This scheme was implemented at the expense of another pipeline stage. For

the highly piped design, this solution is feasible, however, for the Dex-II this would

effectively give the same performance as the example with two instructions. Even worse,

the addition of another pipeline stage would affect the performance of other instructions.

v I

ALU2 ALUO

  

   

ALUC
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Figure 3.8. Cascaded ALU

Read after Write (RAW) and Write after Read (WAR) data dependencies are

eliminated by the decode/writeback scheme employed. This scheme ensures that

registers are updated prior to broadcasting the operands for the next instruction. Details

of the implementation can be found in the Synthesis chapter.

3.3.2 Memory Hazards

Care must be taken to avoid assigning the same register or memory location with

different values on the same cycle. Figure 3.9 shows code which tries to write two

different results into the same register location.

 

Example.

ADD R3,R1,R2 *R3<-R1+R2

ADD R3,R4, R4 * R3 <- R4+R4

This will corrupt the register file.

ADD R3, R1, R2

NOP *Or reschedule another instruction

ADD R3, R4, R4

NOP  
 

Figure 3.9. Memory hazard

Writing different values to the same memory address or register in the Dex-II will cause

the top and bottom processor to have conflicting memory and registers. This may force

programs that dynamically address memory to insert NOPs to ensure data coherency.

3.3.3 Control Hazards

Keeping both processors synchronized is a challenging task. Since the top and

bottom processors have independent program counters, they need the same information in
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order to branch correctly. Since most conditional branching occurs on comparisons,

condition codes are only generated by the Add/Sub unit. This means that both

instructions setting the condition codes must be the same and that the conditional branch

must follow with a one instruction delay. Figure 3.10 illustrates how control hazards are

resolved in the Dex-II by this strategy.

 

  

Example.

SUB R3,RI,R2 *Sets uptopCC

SUB R3,RI,R2 l"SetsupbottomCC

NOP " Or filled with some useful instruction

NOP * Or filled with some useful instruction

BBQ 1000 *Branch to $1000 if zero flag set

BEQ 1000 *Branch to $1000 if zero flag set

 

Figure 3.10. Control hazard

3.4 RTL Specifications of Dex-H

To implement the Dex-II on Splash 2, we begin by developing a simple RTL

(Register Transfer Level) description of the Dex-II. This allows us to partition our design

according to resources and communication paths available on the Splash 2. It became

very apparent that the communication paths offered by the crossbar and linear array

would be the determining factor of how our design would be implemented. The number

of clock cycles needed to implement an instruction cycle was determined by the data

paths between PBS. After this was established, a detailed RTL that is easily translated

into VHDL code was simulated and synthesized.

3.4.1 PE Partitions

Mapping a design over to the Splash system is a challenging task. Each

processing element is limited by the number of CLBs, number of I/O pins, and the

amount of memory available per PE. Even with larger FPGA chips, the amount of



-—. . ,l'
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hardware that can be assembled onto them is still somewhat limited. With this in mind,

we begin by splitting the resources stage by stage.

The partitioning of functions is shown in Figure 3.11. Processing elements PEI -

PE8 represent half of the complete VLIW processor and can stand alone to execute scalar

RISC code. This half of the processor will be referred to as the top processor hereafter.

Elements PE9 - PE16 are the mirror hardware to implement the second processor. This

half will be referred to as the bottom processor.

The control path is implemented across the first two His and supplies a 32-bit

instruction word to its half of the processor. Since the memory is only l6-bits wide, two

elements are needed to generate the 32-bit word. Elements PE] and PE2 also house the

program counter, the instruction memory, and the conditional branching logic. The

decode stage contains the register file and circuitry to forward data. We chose to use two

elements in this case to provide extra bandwidth to allow dual reads from memory. This

allows us to shorten the number of clock cycles needed to complete a single instruction

cycle. The execute stage consists of four functional units: Two adder/subtraetor units, a

multiplier, and the memory manager. This setup is cloned on the bottom to provide equal

 
 

                
 

 

                
 

I I

I I

P51 PE2 l 1253 P54 l P55 P56 P57 PE8

I I

| I

I |

| I

Fetch I Decode I

& I & l Execute

Branch I Writeback I

l |

l I

l |

| |

PE16 P515 : PE14 P513 : P512 P511 P510 P59

I I

Figure 3.11. PE partitioning
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functionality on both the top and bottom halves of the processor. The memory units of

PE8 and PE9 utilize the extra left-right communication lines between them to keep the

memory coherent.

3.4.2 Communication Paths

The amount of communication between PBS was critical in this partitioning

scheme. As noted before, the major problem encountered here is the limited number of

communication paths to implement bus structures. While the crossbar is capable of

handling multiple connections, we cannot, for example, selectively broadcast a 16-bit

operand from the decode stage to each of the four execute stages.

The left/right communications of each chip are dedicated to the control path.

Instructions issued from PEI and PE2 flow to the right and supply each pipeline stage

with the next instruction. The data path, therefore, is limited to using the crossbar for

passing operands and results around. Using the programmable crossbar, each cycle could

send and receive data from different PEs.

  
 

             

 

                
 

 

i l l I

PEI PE2 PE3 PE4 PES P56 PE7 PE8

l l I I

Figure 3.12. Cycle 1

Figure 3.12 shows the first of six cycles. PEI and PE2 fetch the next instruction

from their respective memories while PE3 and PE4, the Decode stage, fetch the operands

from their register file memory. The 16-bit results from the Execute stage from PBS and

PE6 are sent back to the Decode PEs through the crossbar. If the instruction in the

Execute stage is a memory store, then PE8 performs the store operation.
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PE++PE2 PE3 PE4>PE5 P56 PE7 PBS

4___4.____5r__L__l I l

        
 

 

Figure 3.13. Cycle 2

Figure 3.13 depicts the communication paths for the second cycle. The Fetch

stage swaps information about the new instruction and forms the full 32-bit instruction

word. The Decode stage begins to pass the next instruction along to the Execute PBS and

receives the final two results from PE7 and PE8. PBS and PE6 now send the results of

the condition codes to the Fetch stage while PE7 and PE8 complete their memory reads.

 

PEI Pm

               
 

PE3 PE4

Figure 3.14. Cycle 3

The third cycle is where synchronization with the second processor occurs.

Information about the destination register of the second RISC processor is encoded in the

instruction word, therefore, only the data needs to be communicated. Figure 3.14 shows

the Decode stage sending and receiving the 16—bit results from the second processor.

Meanwhile, the execute stage continues to pass along the next instruction and PE8, the

memory manager, exchanges information on what kind of memory Operation is

performed. The Fetch stage at this point also updates its PC (program counter). If a

branch is indicated, the PC loads the absolute address from the instruction word,

otherwise, the PC is incremented by one.



38

   

         

 

      

PE] PE2 PE3 PE4 PES PBGHPPN PE8

         

Figure 3.15. Cycle 4

Cycle four shown in Figure 3.15 begins the writeback sequence. PE3 and PE4

writes the result from the Execute stage into the register file. Since only one operand can

be written at a time, the result from the second processor must wait. The memory

manager swaps address and operand information. If the second processor performed a

store operation, then we must also perform the same store operation to keep the two

memories coherent.
 

     

i l

PEI PE2 +> PE3 PE4 PBS PEG PE7}> FEB

I 1

 

              
 

 

   

Figure 3.16. Cycle 5

Figure 3.16 shows the two decode stage PEs writing the results from the second

processor and sending the operands for the next instruction to PBS and P136. The next

instruction for the Decode stage is passed from the Fetch stage and the final execution PE

gets the next instruction as well.

 

               
 

 

Figure 3.17. Cycle 6
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The final cycle shown in Figure 3.17 illustrates the Decode stage passing

operands to the last two PBS. The second Decode PE receives the next instruction. Each

PE updates its respective instruction buffer to begin the next instruction.

3.4.3 Fetch Stage

The Fetch stage, whose operations are described with RTL statements in Figure

3.18 keeps track of the current program counter (PC). Using the PC as an address, it

reads instructions from PE] and PE2 in phases 1 and 2 to form a complete 32-bit

instruction. Since each PE only has a 16-bit memory chip, to form the complete

instruction, PEI must send the most significant word to the right and PE2 concatenates

the two to send to the Decode stage. Notice that the branch instructions are also executed

in this stage. In order to get the correct branch address, PEl must have portions of the

lowest significant word. Therefore, PE2 must also send its values to the left. This occurs

from phase 2 to phase 3 through the XP_I..eft and XP_Right data path. Cycle 4 is where

the actual branch takes place, otherwise PC merely increments by one.

3.4.4 Decode Stage

The Decode stage is the most complex of all the stages. It needs to supply all four

execution units with two operands each and receive the results from all four execution

units. A multiplexer selects the correct result and the information is swapped between the

top and bottom processor to ensure the register files are identical. This is the stage that

dictated the six-phase clocking scheme.
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The Decode stage begins by assuming that the operands are in memory and starts

the read process. The S-bit address is taken directly from the instruction word Id. The

only difference between the PB3 and P54 is which operand they read. In the second

phase, the value of the register is read from memory. The results from the first execution

unit (PBS) is also read into both decode stages. Since the Xbar can be configured in four

8-bit segments, each decode stage can accept up to two 16-bit results each phase. The

third phase latches the results from execution units 3 and 4 (PE7 and PB8).

The results from each execution unit are funneled into a 4—1 mux and selected by

the opcode of the executing instruction, Ix. The output of the mux will contain the

correct result from the instruction in the execute stage of the pipeline. Note that the mux

is not latched and thus provides the correct value by the end of the third phase, even

though the inputs were latched at the beginning. The execution result is latched from the

output of the mux at the beginning of phase 4 on the top and bottom halves of the

processor. Likewise, the top latches the bottom result in phase 4. With both results

available, the decision to forward operands can be made.

If the source registers in the decode stage match the destination register in the

execute stage, than the operand is replaced with the new result. The correct operand

begins to broadcast its values to execution units 1 and 2 (PBS and PE6). Cycle 4 also

physically writes the results back into the register file if the destination is not R0. Cycle

5 writes the bottom half of the processor result if the destination is not R0. Both

operands are sent to execution units 3 and 4 (PB7 and PBS). The last phase latches the

next instruction and moves the current Id to Ix.



_
2
_
_
_
_
_
_
_
_
M
_
“
X
£
$
§
B
_
3
1
3
1
_
'
_
1
6
_
1
_
_
_
_
_
_
_
_
_
_
_
_
_
M

“
£
2
5
;
X
§
a
_
£
[
1
_
5
;
0
_
1
1
_
_
_
_
_
_
_
_
_
_

_
4
L
_
_
_
_
_
_
_
X
B
a
r
l
l
l
;
l
e
:
Q
p
A
_
_
_
_
_
_
_
_
_
_
_
_
_
_

x
1
3a
r
fl
L
—
fl
l
s
—
fi
p
l
i
_
_
_
_
_
_
_
_
_
_

5 6

R
e
g
i
s
t
e
r
T
r
a
n
s
f
e
r
L
e
v
e
l

D
e
c
o
d
e
a
n
d
W
r
i
t
e
b
a
c
k

O
p
A
<
-
M
D
R

M
u
x
3
<
-
X
B
a
r
[
3
l

-
l
6
]

M
u
x
4
<
-
X
B
a
r
[
l
S

-
O
]

O
p
A
<
-
M
u
x
R
e
s
u
l
t

i
f
D
e
s
t
T
o
p
=
R
e
g
A

O
p
A
<
-
X
B
a
r

[
1
5

-
0
]

i
f
D
e
s
t
B
o
t
=
R
e
g
A

T
e
m
p
<
-
X
B
a
r

[
1
5

-
0
]

M
A
R

<
—
D
e
s
t
.
T
o
p

M
D
R

<
-
M
u
x
R
e
s
u
l
t

M
A
R

<
-
D
e
s
t
.
B
o
t

N
fl
D
R
<
-
T
e
m
p

B
i
d
}
;

:
_
O
L
<
:
_
Q
P
A
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
K
B
9
1
[
E
L
-
9
1
5
.
2
9
2
3
_
_
_
_
_
_
_
_
_
_
_

I
x
<
-
I
d

I
d
<
-
X
P
_
L
e
f
t

X
P
_
R
i
g
h
t
=

I
d
*

O
p
B
<
-
M
D
R

M
u
x
3
<
-
X
B
a
r
[
1
5

-
0
]

M
u
x
4
<
-
X
B
a
r
[
3
1

-
1
6
]

X
fl
a
fl
l
l
;
1
§
L
=
M
£
X
E
E
§
U
L
i
.
_
_
_
_
_
_
_
_
_
_
3
3
1
3
1
-
4
6
1
E
M
U
L
I
L
C
S
E
C
_
_
_
_
_
_
_

O
p
B
<
-
M
u
x
R
e
s
u
l
t

i
f
D
e
s
t
T
o
p
=
R
e
g
B

O
p
B

<
-
X
B
a
r

[
1
5

-
0
]

i
f
D
e
s
t
B
o
t
=
R
e
g
B

T
e
m
p
<
-
X
B
a
r
[
1
5

-
0
]

M
A
R

<
-
D
e
s
t
.
T
o
p

M
D
R

<
-
M
u
x
R
e
s
u
l
t

M
A
R

<
-
D
e
s
t
.
B
o
t

M
D
R

<
-
T
e
m
p

I
x
<
-
I
d

I
d
=
X
P
_
L
e
f
t

*

*
T
h
e
s
e
v
a
l
u
e
s
a
r
e
a
c
t
u
a
l
l
y
n
o
n
-
l
a
t
c
h
e
d
.
T
h
e
y
a
r
e
s
h
o
w
n
f
o
r
e
a
s
e
o
f
u
n
d
e
r
s
t
a
n
d
i
n
g
.

F
i
g
u
r
e
3
.
1
9
.
D
e
c
o
d
e
R
T
L

D
e
s
c
r
i
p
t
i
o
n

{
3



43

3.4.5 Execution Stage

The Execution stage of the pipeline consists of four PBs. Two PEs are configured

to act as an integer Adder/Subtractor unit, one Multiplication unit, and the last PB as a

Memory Management unit. Each unit can be reconfigured with relative ease to add

special instructions. In addition, there is no need to keep the top half and the bottom half

symmetric either. Therefore, it is possible to have up to eight different functional units.

Instructions, however, would be limited to executing on the half which has the hardware

to support them.

The Adder/Subtractor unit is found on PBS and PB6. This configuration also has

the right and left shift functions programmed onto it. Operands for this unit are actually

latched at the end of the previous instruction. After the first phase is completed, the result

is broadcasted on the crossbar to the decode stage. Condition codes are calculated during

the second phase. Codes supported by the Dex-II are Negative, oVerflow, and Zero. The

negative flag is set if the most significant bit of the result is a 1. An overflow occurs if

the add/sub unit indicates a carry out condition, and the zero flag is set if the result is

zero. The second Adder/Subtractor unit function is merely to generate the condition

codes. 3

The Multiplication unit utilizes the PE memory as a look-up table to achieve its

purpose. The reason for an 8-bit multiply is straightforward. The 16-bit data path can _

only support answers from two 8-bit words. Rather than design an elaborate plan for

multiple register destinations, we restrict the operands to eight bits. Higher bits are

ignored. The memory table is generated externally and loaded into the PE memory prior

to execution of the program. By taking the two operands and using them as an address,

the Multiplication unit can generate its result by the second phase. This works out well as

we can only send two results back during each phase and phase 1 is being used by both

add/sub units. The last phase is used to latch operands for the next instruction.
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The Memory Management unit is located at the ends of the processor halves to

utilize the extra communication lines. The right side of PE8 is connected to the left side

of PB9 in the linear chain. This allows us to synchronize the efforts of PBS and PE9 to

keep a uniform main memory. The first phase latches the memory addresses and

performs a write if the instruction is a store command. Otherwise, it assumes a read from

the address. The second phase will return a result to the decode stage. This result is

either the value of another register, the value of a memory location, or the l6-bit

immediate value in the instruction word Ix. The third phase begins the synchronization

of the two memories by exchanging results and instruction words. If the bottom

instruction was a store, then the top writes the value into memory and vice versa. Since

only stores can affect memory, only stores need to be considered. As before, the last

phase is used to latch the new operands for the next instruction.



P
h
a
s
e

P
B
S
&
P
E
6

1

_
_
_
_
_

I
f
_
S
_
u
b
_
X
b
a
L
S
:
Q
p
A
;
Q
p
B
_

I
f
S
I
-
I
F
I
‘
L
X
b
a
r
<
-
O
p
A
<
<
1

I
f
S
H
F
I
‘
R
X
b
a
r
<
-
O
p
A
>
>

1

I
f
A
d
d
X
b
a
r
<
-
O
p
A
+
O
p
B

S
e
t
C
C

b
a
s
e
d
o
n

r
e
s
u
l
t

X
b
a
r
[
3
S

-
3
2
]
<
-
C
C

R
e
g
i
s
t
e
r
T
r
a
n
s
f
e
r
L
e
v
e
l

E
x
e
c
u
t
e

P
E
7

M
A
R
[
l
S
-
8
]
<
-
O
p
A

M
A
R
[
8
-
O
]
<
-
O
p
B

P
E
8

M
A
R

<
-
O
p
B

M
D
R

<
-
O
p
A

I
f
S
T
,
e
n
a
b
l
e
W
r
i
t
e
e
l
s
e
R
e
a
d

I
f
M
V

,
X
b
a
r
<
-
O
p
A

I
f
L
D
,
X
b
a
r
<
-
M
D
R

I
f
L
D
I
,
X
b
a
r
<
-
I
m
m
e
d
i
a
t
e
v
a
l
u
e
.

B
o
t
I
x
<
-
X
P
_
R
i
g
h
t
[
1
5

-
0
]

g

X
P
_
R
i
g
h
t

[
3
1
d
o
w
n
t
o

1
6
]
<
-
I
x
[
3
1

-
0
]

V
i

X
b
a
r
[
3
1

-
1
6
]
<
-
O
p
B

X
b
a
r
[
1
5

-
0
]
<
—
O
p
A

I
f
B
o
t
I
x
=
S
T
t
h
e
n

{
M
A
R

<
~
X
b
a
r

[
3
1

-
l
6
]

M
D
R

<
-
X
b
a
r
[
1
5

-
0
]
}

O
p
A

<
—
X
b
a
r

[
3
1

-
l
6
]

O
p
B
<
-
X
b
a
r
[
1
5

-
0
]

I
x
<
-
X
P
_
L
e
f
t

X
P
_
R
i
g
h
t
=

I
d
*

O
p
A
<
-
X
b
a
r

[
3
1

-
1
6
]

O
p
B

<
-
X
b
a
r
[
1
5

-
0
]

I
x
=
X
P
_
L
e
f
t
*

O
p
A

<
-
X
b
a
r
[
1
5

-
0
]

O
p
B

<
-
X
b
a
r

[
3
1

-
1
6
]

I
x
=
X
P
_
L
e
f
t

*

*
T
h
e
s
e
v
a
l
u
e
s
a
r
e
a
c
t
u
a
l
l
y
n
o
n
-
l
a
t
c
h
e
d
.
T
h
e
y
a
r
e
s
h
o
w
n
f
o
r
e
a
s
e
o
f
u
n
d
e
r
s
t
a
n
d
i
n
g
.

F
i
g
u
m
s
z
o
.

E
x
e
c
u
t
e
R
T
L

D
e
s
c
r
i
p
t
i
o
n



CHAPTER 4

Simulation and Synthesis Environment &

Results

With the RTL and architectural specifications completed, the design can be coded

with VHDL and functionally simulated using Synopsys tools. This chapter presents the

simulation tools used to implement the Dex-II. When the simulation correctly

implements the architectural specification, the VHDL code can be synthesized and tested

on the Splash 2. The results of the synthesis are also presented in this chapter.

4.1 Simulation & Synthesis Process

The register transfer level description was coded in VHDL for both simulation,

and synthesis. Figure 4.1 shows how the VHDL hierarchy is arranged. To program each

PE, we must write VHDL code for each XPARTS module. A sample description of the

VHDL code is shown in Figure 4.2. The VHDL code is very similar to other high level

languages. A header defines the name of the PE that is being programmed, followed by a

list of signal declarations. These are followed by constant declarations and logic

assignments. A process statement marks the start of the description of the architecture's

logic. The wait statement defines the signal sensitivity of the process. The process will

be evaluated only when a signal on the sensitivity list changes. In this case, all of the

logic is synchronous on the rising edge of the clock. The code following the wait

statement describes the functionality of our architecture taken from the RTL descriptions.
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architecture FetchJeft of Xilinx_Prooessing_Part is

signal PC: Bit_Vector (l7 downto 0);

signal Ioadaddress: BiLVector (15 downto 0);

signal Ix: Bit_Vector (31 downto 0);

Header

Architecture Name

 
 

Signal Declarations

begin g

RIGHTIN: for i in o to 15 GENERATE Special signal generation

ElPad_Input(XP_right(i), right(i));

END GENERATE RIGHTIN;

O

8

 

XP_Mem_RD_J£D<= '0';

increment_pcl.'.l<= '1'; I Constant Declarations I

one <= '000000000000000001';

process I Start of process I

begin

El

wait um“ XP_Clk'Event and XP_Clk = 1.; I All transitions take place on rising clock edge I

D loeaLclk <= local_clk + 1;

El if IocaLclk = S then

Elsdlofcalfik <= 0; I Six phase clock state machine I

e l ;

O

ElPadanut (XP_Mem_D, mdr);

UPaCLOutput (XP_Mem_A, pc); Memory Interface

Elif looal_clk = 1 then

ED Ifetch(3l downto 16) <= mdr; ' .

III right(31 downto 16) <= mar; I Logic for each phase taken from RTL I

III Xbarenable <= “01111”;

El end if;

0

8

end pm; I End of process I

XP_Mem_WR_LED¢ '1';

XP_HStlIk: 'Z‘; .

XP_GOR_ResultEl<-- '0'; I Assrgn unused Splash 2 control signals I

XP_GOR_ValicD<= '0';

XP_lntEl'J<= ‘0';

 

 

 

 

 

 

 

end FetchJeft;

Figure 4.2. Code description
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Lastly, the control signals for the unused resources of the Splash 2 must be defined to

avoid signal conflicts and illegal conditions of the Splash 2 system. A complete copy of

the implemented code can be found in Appendix A.

Simulating the design with Synopsys tools provided valuable insight into timing

problems. More importantly, the simulation allows us to simulate each PE separately.

This is an important factor in keeping the system design manageable. By using the

simulator, we can perform system test and integration by forcing inputs and observing

internal nodes and outputs of the PE. After verification of a PE design, it is integrated

with the Splash array code, and the whole system is simulated. Unimplemented PBS in

the system could be replaced with simulation vectors. This incremental, PE by PE build

was crucial in eliminating system bugs.

The first half of the Dex-II that was implemented was a modified version of the

Dex JR. This is a single instruction RISC version of the Dex-II that will be used to

evaluate the overall increase in performance of the VLIW architecture. Since the VLIW

architeeture is almost an exact mirror of the RISC architecture, the simulation and

verification of the Dex JR. RISC design made it much easier to implement the final

version of the Dex-II. This incremental architecture build also played a crucial role in the

final implementation of the Dex-II.

Simulation also allowed debugging of programs that were hand-compiled. Figure

4.3 shows the simulated architecture executing the Fibonacci program which can be

found in Figure 5.1. This waveform displays the global clock as well as the local clock

on the first two lines. The next three lines show the state of the instruction pipeline. We

can clearly see which instruction is in each pipeline stage. The program counter is

displayed on the next line followed by the condition codes and the branch bit. This

allows us to monitor the state of the control path. The next six lines display information

about the Decode stage. Note that when the first instruction is actually executed, we can

see the WriteEnable signal go high as the two immediate loads are executed. The next
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instruction is the addition function and the result of the Execute stage is shown on the last

line of the simulation output.

The objective of our simulation is to write VHDL code that will generate a correct

implementation of the Dex-II in hardware on the first pass. Unfortunately, the compilers,

synthesis tools, and debugger are still relatively young and full of idiosyncrasies. For

example, the interactive command tool, T2, interfaces the host to the Splash 2. T2 has

the ability to scan the flip-flop states of the 1083. While the design may utilize these pins

going off-chip, the compiler will use a flip-flop from an internal CLB and configure the

108 without a registered value. This gives misleading feedback to the user as the pin

appears to never change its value.

While simulation did provide information regarding timing, the actual

implementation of our design code did not simulate correctly. As a result, the time taken

to synthesize and debug our implementation was dominated by repeated compilation and

synthesis. Using VHDL as a synthesis tool requires the designer to follow a certain style

and rules of coding to achieve the desired implementation.

4.2 Synthesis Results

Upon verification of our design, the automated design tools were invoked to

produce a design specifically for the XC4010 FPGA. The UNIX script, VHDL2XNF,

invokes the Synopsys VHDL design compiler to generate an XNF (Xilinx Netlist Format)

wirelist. This XNF file is used by the XNF2BIT script which invokes the PPR (Partition,

Place and Route) software. These tools automatically place, partition, and route the XNF

description of each PE to the physical chip architecture. The placement and routing of

CLBs are iteratively improved upon automatically. The design flow is shown in Figure

4.4 along with the tools used in each step.
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At the highest degree of optimization, our design yielded the synthesis results

summarized in Table 2. This table shows us the percentage of total CLBs utilized in each

PE of our design and the timing associated with the synthesis results. The percentage of

CLBs utilized gives us a metric to estimate how much more logic can be implemented in

each PE. This is important for future design considerations.

As we can see from the table, our critical time is dictated by PBS. The 90.0 ns

result gives us an effective global clock speed of 11 MHz. With the division of the six-

phase clock, this would give us a peak 1.85 MIPS (Millions of Instructions per Second)

rating. Assurrriug that our VLIW machine can execute two independent instructions per

cycle, that would effectively double our peak to a 3.70 MIPS rating. Current

workstations have a typical peak MIPS rating in the hundreds. Thus, while slow
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Figure 4.4. Design flow and tools
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compared to workstations, this does represent a speed capable of running applications.

Another limitation of the Splash 2 involves incorporating memory subsystems and

additional peripherals, features found in any workstation. These functions must be

emulated on the Splash 2 using the Sun host. While slow, this would allow different

schemes of virtual memory and caching techniques to be explored with the prototyped

architecture. This is important as different architectures will utilize resources uniquely.

In order for the Dex—II to execute real applications, the instruction set would need

to be enhanced to support additional instructions. The indicator for expandability in our

synthesized design is the percentage of CLBs used. The percentages used in each PE are

all under 50%. Xilinx predicts that the usage of CLBs can approach 75% before routing

becomes impossible to achieve using automated design software. Thus, enhancements on

this initial design are possible.

VHDL offers a powerful tool to realize architectures. Its high level language

features allows designers to quickly design and integrate new systems. This high level

language also introduces certain ambiguities. Just as high level language compilers may

not generate efficient machine code, VHDL synthesizers have difficulties generating

efficient logic. VHDL favors certain coding styles for different synthesis targets. In

order to efficiently support systems that are dependent on synthesis results, such as

Splash 2, these tools will need to be improved considerably.

This chapter has presented the results of mapping and implementing the Dex-II

architectural specifications on the Splash 2 system using a series of simulation and

synthesis tools. We now have an operational version of a modified Dex JR. and Dex-II

on Splash 2. Various aspects of the process pose limitations, including support provided

by the tools. Beyond the process, the implementation has provided timing and utilization

results that help characterize this prototyping platform. Real applications are possible,

however limitation due to FPGA logic and Splash resources remain.
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Table 2. Summary ofsynthesis results

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

PE Function %CLB Critical

Used Time (ns)

0 Crossbar Control 1 14.9

1 Fetch 16 41.1

2 Fetch 19 44.4

3 Decode 42 54.8

4 Decode 46 55.7

5 Add/Sub Shifter 32 90.0

6 Add/Sub Shifter 31 80.8

7 Mulmrly 33 34.9

8 Memory 43 53.2

9 Memory 49 55.9

10 Multiply 33 33.9

11 Add/Sub Shifter 30 81.7

12 Add/Sub Shifter 31 84.8

13 Decode 45 44.9

1 4 Decode 43 53.8

15 Fetch 20 44

16 Fetch 16 41.3
 

 



CHAPTER 5

Test Programs

The ultimate goal of a processor is to execute programs. We can test different

processors by running programs and comparing their execution times. In this study, we

will compare the VLIW version, Dex-II, versus the original RISC design, Dex JR. A

Fibonacci test program was implemented to verify operation of the Dex-II on the Splash

2 system. This program is hand compiled and loaded into memory using T2. Using

memory dumps of the register file and memory, we can ensure that the processor and

programs are executing correctly. A bubble sort program is also analyzed to better

characterize the performance of our processor with a larger program. This program

provides a better basis to compare the Dex-II versus the Dex JR. than the simple

Fibonacci program.

5.1 The Runtime Environment

The runtime environment was controlled through the T2 debugger. T2 provides

the interface to control all of the Splash 2 hardware. The interface allows us to download

the bitstream pattern generated by the synthesis tools for the Dex-II design, program and

read the memory for each PE, and control the system clock. This control allows us to

step through the execution of a program clock by clock and examine the results.

The comparison of the Dex-II, our VLIW machine, to the original Dex JR., our

RISC machine, will show the merits and shortcomings of the VLIW architecture. This

55
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kind of comparison is necessary to evaluate the merits of architectural improvements. To

evaluate the performance the Dex-II, we count the number of useful instructions it can

execute per clock cycle. Useful instructions exclude NOPs. The repeated branch and

condition code generation instruction, typically a SUB instructiOn, is counted as a single

instruction. This metric is called IPC (Instructions Per Clock cycle). The inverse of the

IPC gives us CPI (Clock cycles Per Instruction). Using the IPC or CPI, we can calculate

how many MIPS (Millions of Instructions Per Second) the machine can execute if we

know what the clock cycle time is. Although the MIPS rating can misrepresent the

performance of the machine, it is still a useful tool in evaluating architectures with similar

instruction sets. In order to improve the performance of the architecture, it is essential to

increase the MIPS the machine can execute. This can be done by decreasing the cycle

time, or increasing the IPC.

5.2 Fibonacci Sequence

The Fibonacci sequence is computed by adding the two previous members in the

sequence to generate the current member of the sequence. The first two members of the

sequence start with twoones. The Fibonacci program, which computes the Fibonacci

sequence, is used to test the Dex-II. This program will initialize the register file by

loading initial values into R1 and R2. R3 is then computed by adding R1 and R2

together. The registers are then shifted by loading the value of R2 into R1 and R3 into

R2. The process is then repeated to compute the infinite series.

5.2.1 Dex-II Verification

The Fibonacci program exercises all of the hardware necessary for the Dex-II to

be implemented on Splash 2. It shows correct utilization of the PE memory, both read

and write, by successfully updating the register file and fetching of instructions.

Synchronization of the four separate register files is achieved through the crossbar, as is
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operand passing. The results of the Fibonacci calculation also verifies the correct

mathematical execution in the adder unit.

Figure 5.1 shows an instruction by instruction register dump of the Fibonacci

program used to test the Dex-II. After every six ticks of the global clock dumps the first

five memory locations of PE3 and PE13. This represents the register files from the two

processors. Note that we start examining the register file at clock tick 18, or the 3rd

instruction cycle. This is due to the first instruction filling the pipeline in the Fetch and

Decode stages. Figure 5.1 shows the results from the initial loading of the first two

registers, and through a single loop of the Fibonacci program. We can see how each

instruction affects the register file. This program execution clearly demonstrates the

functional correctness of the Dex-II.

5.2.2 Program Implementation and Performance

The Fibonacci sequence is a relatively easy algorithm to implement. The code for

the single RISC processor was used first to verify the synthesis steps. The VLIW version

was then execute to verify the additional features of the Dex-II. Both of these codes are

shown in Figure 5.2. The complete runtime results from both versions of the code are

located in Appendix B.

There are six useful instructions being performed in the RISC model in six clock

cycles giving us a IPC (Instructions Per Clock) of l. The VLIW, however, performs the

same six instructions in four clock cycles for an IPC rating of 1.5, or 2.775 MIPS. In the

VLIW case, if we could eliminate the need for either processor to perform the BRA

command, we could compact the code into three cycles for the theoretical IPC of 2. The

first two instructions, however, are only performed once each time the program is

executed. To get a better comparison, we must analyze the calculation loop.
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Results read back from Splash 2 Instruction being executed

72:4» IAdded RB 3 at tick 18

Board 0 PE 3 Offset o

0000002000000010001000A000A LDI 121,1 LDI 112.1

Board 0 PE 13 Offset 0 Words 32

000000: 0000 00010001000A000A

T2:5>l

AddedRB4attlck24

BoardOPE30flsetO

00000030000000100010002000A Loop ADD R3,RI,R2 NOP

BoardOPE 130118910Word832

00000020000000100010002000A

T2:6>i

AddedRBSaltickm

BoardOPanftsetO

00000010000000100020002000A ST R1,R2 ST R2,R3

BoardOPE 130118610Wor0832

000000:0000000100020002000A

T2:7>l

AddedRBBattlckas

BoardOPESOflsetO

000000: 0000 0001 0002 0002 000A BRA Loop BRA Loop

BoardOPE taoflsetOWords 32

000000:0000000100020002000A

T2£>I

AddedRB7attick42

BoardOPanflsetO

000000:0000000100020003000A Loop ADD R3,R1,R2 NOP

BoardOPE 13 OffsetOWords 32

000000:0000000100020003000A  
 

Figure 5.1. Fibonacci Execution Results

The VLIW still outperforms the RISC processor by reducing the number of cycles

needed in the calculation loop. Note in Figure 5.2 that while the RISC machine uses four

instructions, the VLIW is capable of producing the same results using only three. This

represents a 33% increase in the performance of our new machine compared to the RISC

by increasing the IPC to 1.3, or 2.47 MIPS. While lower then the overall comparison,

this represents a more realistic gain in performance.

To demonstrate the flexibility of the architecture, we also attempted to tailor the

architecture to our problem and get a faster design. Since the Fibonacci program only

required the add function to be implemented as an execution unit, we removed the excess
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RISC

LDI R1,l

LDI R2,1

Loop ADD 113,111,122

ST R1,R2

ST R2,R3

BRA Loop

ELEM

LDI Rl,1 LDI R2,]

Loop ADD R3,RI,R2 NOP

ST R1,R2 ST R2,R3

BRA Loop BRA Loop  
 

Figure 5.2. Two Fibonacci programs

functionality which improves the performance of the most critical PE. As a result, our

cycle time was reduced to let our system clock run at 12.7 MHz with a peak RISC MIPS

'of 2.11 and a peak VLIW MIPS of 4.23. This represents a 14% increase in performance

of both processors.

5.3 Bubble Sort

The bubble sort algorithm represents code that performs many comparisons,

memory accesses, and several conditional branches. This kind of code introduces many

NOP cycles that decrease the performance of the processor. The initial program is first

introduced followed by an optimized program utilizing some of the techniques introduced

previously. The results will give a better understanding of the necessity of compiler

optimizations.

Figure 5.3 shows a non-optimized version of the bubble sort program for our

RISC machine and Figure 5.4 is the same program on our VLIW version of the machine.

As we can see, we initially reduce the total number of instructions from 23 to 19. Out of
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1 LDI R1, 0

2 LDI R2, 0

3 LDI R3, Length

4 LDI R8, 1

5 Loopl SUB R4, R3, R1

6 NOP

7 82 End

8 LD R2, R1

9 LD R5, (R1)

10 Loop2 LD R6, R2

11 SUB R4, R5, R6

12 NOP -

13 BN Swap

14 Check ADD R2, R2, R8

15 SUB R4, R2, R3

16 NOP

17 BN Loop2

18 ADD R1, R1, R8

19 BRA Loopl

20 Swap ST (R1), R6

21 ST (R2), R5

22 LD R5, R6

23 BRA Check

24 End
 

Figure 5.3. RISC bubble sort program

these four, only two represent a significant gain in performance. The initialization

routine was shortened from 4 to 2 instructions. While this is significant, the program

spends a minimal amount of time in this routine. The loops, however, are where the bulk

of the program execution takes place. The results here were marginal. The only

improvements in performance is observed in Loopl and the Swap routine, both reducing

the number of instructions by one. This represents only an 11% increase in performance.

To optimize the VLIW machine, we begin by trying to move instructions into the

NOP cycles. Instruction #6 can be moved up to instruction #4 since we either perform

the instruction or end the program. Instruction #15 now can moved up to the NOP of

instruction #13, however, we must take into account what happens if the conditional

branch is true. In order to maintain the functionality, we must add compensation code at

instruction #9 to undo our speculative execution. We can also move instruction #11 up to

instruction #90, however, we would need to add two instructions to compensate in the
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l LDI R1, 0 LDI R2, 0

2 LDI R3, Length LDI R8, 1

3 Loopl SUB R4, R3, R1 SUB R4, R3, R1

4 NOP NOP

5 Bl End 32 End

6 LD R2, R1 LD R5, (R1)

7 Loop2 LD R6, R2 NOP

8 SUB R4, R5, R6 SUB R4, R5, R6

9 NOP NOP

10 BN Swap BN Swap

11 Check ADD R2, R2, R8 NOP

12 SUB R4, R2, R3 SUB R4, R2, R3

13 NOP NOP

14 BN Loop2 BN Loop2

15 ADD R1, R1, R8 NOP

16 BRA Loopl BRA Loopl

17 Swap ST (R1), R6 ST (R2), R5

18 ID R5, R6 NOP

l9 BRA Check BRA Check

20 End  
 

Figure 5.4. VLIW bubble sort program

Swap routine. This would shorten one path and lengthen another. Since the number of

times the Swap routine is called is dependent on the data set, making this substitution

would not be beneficial without prior knowledge of the data.

The optimized version of the VLIW code shown in Figure 5.6 manages to shorten

Loopl to 3 instructions and Loop2 from 10 to 9 instructions. To be fair, we perform the

same optimizations on our RISC processor. This time, we can only move instruction #8

to instruction #6. The RISC code is shown in Figure 5.5. The final comparison shows a

total of 22 instructions for the RISC and 17 for the VLIW. Code size of the VLIW was

reduced to 74% of the RISC code. If we consider the performance of the loops, we

managed to reduce the total number of instructions from 18 down to 15.

The optimized VLIW code executes 21 useful instructions in 17 clock cycles for a

IPC of 1.23. The RISC performs 20 useful instructions in 22 clock cycles for a IPC of

.90. In this case, the high number of conditional branches with the lack of computation

' between sections would not benefit from the ability to schedule operations into the

redundant control instructions. This penalty for conditional branches occurs whenever a
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program executes several branches in succession. The lack of useful instructions between

each section makes moving code across branches difficult to impossible.

It becomes evident that smart compilers are necessary if we want to see an

effective VLIW processor utilized in the future. While smart compilers are needed for

scheduling instructions in any superscalar processor, methods of scanning larger blocks

of instructions during run time can be used to reduce the impact of bad compilers.

However, run-time methods will require extra cycle time that may not be practical in a

super-pipelined, superscalar architecture. Static scheduling will still be faster ultimately.

The programs used to characterize our architecture are simple examples. These

programs allow us to visualize the effectiveness of our instruction set. They also allow us

to see the shortcomings in how we deal with the various hazards. The bubble sort

program, for instance, clearly shows that we need a better way to handle control

instructions. The Splash 2 also does not support functions such as floating point

arithmetic. To execute real applications and benchmarks, these functions would need to

be emulated on the Sun host, or additional hardware must be added to the Splash 2.
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1 LDI

2 LDI

3 LDI

4 LDI

S Loopl SUB

6 LD

7 El

8 LD

9 Loop2 LD

10 SUB

l l NOP

12 BN

13 Check ADD

14 SUB

15 NOP

16 EN

17 ADD

18 BRA

19 Swap ST

20 ST

21 LD

22 BRA

23 Fad
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Figure 5.5. Optimized RISC bubble sort program

 

 

1 LDI R1, 0 LDI R2, 0

2 LDI R3, Length LDI R8, 1

3 Loopl SUB R4, R3, R1 SUB R4, R3, R1

4 LD R2, R1 LD R5, (R )

5 B2 End BZ End

6 Loop2 LD R6, R2 NOP

7 SUB R4, R5, R6 SUB R4, R5, R6

8 SUB R1, R1, R8 NOP

9 BN Swap BN Swap

10 Check ADD R2, R2, R8 NOP

11 SUB R4, R2, R3 SUB R4, R2, R3

12 ADD R1, R1, R8 NOP

13 BN Loop2 BN Loop2

14 BRA Loopl BRA Loopl

15 Swap ST (R1), R6 ST (R2). R5

16 LD R5, R6 NOP

17 BRA Check BRA Check

End
 

Figure 5.6. Optimized VLIW bubble sort program

 

 



CHAPTER 6

Conclusions and Future Investigations

This chapter summarizes our findings and evaluates the success of our

implementation of an ISP on the Splash 2. The possibilities of using Splash 2 as a tool in

studying computer architectures and compilers is also presented. Lastly, proposals for

future investigations and projects are offered as possibilities to extend the study of

computer architectures on Splash 2.

6.1 The Dex-II Evaluation

The successful implementation of our design did achieve the goal of

implementing a RISC and a VLIW architecture. The clock speed of 1.85 MHz allows the

Dex-II to execute large programs in a reasonably short period of time. This allows for

characterizing architectures and architectural features of real applications which would

otherwise be prohibitive in simulation. Even so, the performance is too slow to be useful

in practical applications.

The primary factor for poor cycle time stems from the fact the architecture suffers

from an unbalanced pipeline. Empty slots evident in phases of each unit except the

Decode stage signify a poorly balanced pipeline. This was the result of waiting for

operands to be passed around on an inadequate interconnect array. The pipeline may be

better balanced by adding functionality in the Fetch and Execute stages decreasing the
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amount of instructions needed to complete tasks. Additional functionality, however,

starts to drift away from the RISC paradigm, and other problems may arise.

Since the design is based on VHDL and automated synthesis for FPGAs, changes

in the architecture can be quickly implemented as seen with the Fibonacci program.

Additional hardware features can be added with relative ease. Support for register

windowing can be added with the addition of some opcodes. Subroutines and jump

commands can also be implemented onto the Fetch stages with relative ease. Specialized

execution units can be programmed in an attempt to increase the performance of the

processor for specific applications. Additional hardware to measure performance could

also be added to monitor processor usage. This would provide invaluable data to support

trace scheduling techniques.

6.2 VLIW vs. RISC

The Dex-II implements two RISC processors side by side on the Splash 2. This

design permits two RISC instructions to execute in a single clock cycle. Although there

are some data and control hazards that must be avoided, the VLIW architecture is

successful in increasing the IPC. For the VLIW architecture, we achieve an IPC of 1.50

for the Fibonacci program and 123 for the Bubble Sort program. The RISC versions of

the same code achieved an IPC of 1.00 and .90, respectively.

The prototype processor indicated problems with our control scheme. The

results from our program analysis focuses attention at the double branch instruction

which was required to keep both processors in synchronization. This problem did not

exist for the single RISC processor model. Future designs with this architecture must

successfully implement a more unified control path to control the multiple data paths.



6.3 Splash 2 Evaluation

Computers were originally designed as machines that could solve many problems

by using different programs. With FPGAs, programmers and designers now have the

ability to alter the machine to fit the problem. The success of these arrays will be

dependent upon the resources available to each FPGA. While logic emulators built with

arrays of FPGAs can be used to prototype circuits, it will be the resources such as the

memory and the crossbar of the Splash 2 that will offer a new level of flexibility to

prototype more complex architectures.

The bottleneck for successful design on the Splash 2 was the lack of

communication between chips to implement bus structures. While we were able to

achieve a respectable clock rate of 11 MHz from the FPGA, the six-cycle division forced

by communication restrictions effectively reduced our cycle time to a little under 2 MHz.

In order for faster speeds to be obtained, the level of interconnects needs to be enhanced

through a crossbar with greater functionality as well as FPGAs with greater I/O

capabilities.

The lack of floating point processing is also a factor that will limit the usefulness

of FPGA-based arrays. Floating point processing is required in many applications in both

science and engineering. These types of computations are usually highly repetitive and

can be structured in such a way to take advantage of the reconfigurable architecture.

Although the use of synthesis tools considerably shortened the design cycle, these

tools were not perfect. As the efficiency of the synthesis tools and number of FPGA

libraries increase, these synthesis tools will improve the overall performance of

reconfigurable computing systems. The size of our design generated by the synthesis

tools utilized less than 50% of the CLB resources. This suggests that our design is close

to the optimal speed as the routing tools had plenty of space to route signals within the
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FPGA. By adding more functionality to our designs, these tools become even more

significant as they directly impact the speed of the design.

6.4 Future Investigations

Although the practical uses are limited at this time, the Dex-II does offer

substantial research opportunities. FPGA-based systems, for example, can provide an

invaluable tool for compiler testing. Different architectures can be simulated on the

Splash 2 to execute compiled codes for various scheduling techniques. As reconfigurable

processors become a reality, new compiler technology can be rapidly adapted. Synthesis

tools will also play a large role in the success of reconfigurable processors. Compilers no

longer need to be written and optimized for a machine, but the machine can now be

optimized to support the compiler.

Speculative execution is another method to decrease execution times. Guarded

execution and complicated shadow registers can be used to let speculative instructions

run their course. This method is not very feasible in our design due to the restrictions of

the board itself, however each board as a whole may be configured as a shadow system.

A system can be implemented where the host is used to synchronize several Splash

boards executing a program. When a program branch is encountered, both routes are sent

off to two boards configured as a processor. The host needs to maintain the actual state

of the machine but can orchestrate hundreds of these processors.

Threaded programming is also an emerging software methodology that would

support a co-processor approach. Separate threads can be run on independent boards

without the communication overhead to track the actions of other threads. Memory

would be managed by the host and treated as a cached memory system.

The Dex-II is an aggressive utilization of the resources available from the Splash

2. The architecture is far from perfect, however. The design is limited to a 16-bit

architecture until even larger chips make it possible to compact larger designs and
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provide more communications. However, the ability to change designs so quickly does

make the Splash 2 and general FPGA-based arrays very attractive. A key factor in RISC

development was the shortened turnaround time for each new architecture. FPGA-based

systems would allow new architectures to be prototyped quickly. This provides a

powerful tool for computer and compiler designers to test and implement new designs

and ideas.
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Appendix A

Synthesis Code

A1 Control1.vhd (PEI)

architecture FetchJeft of Xilinx_Processing_Part is

signal PC: Bit_Vector (17 downto 0);

signal loadaddress: Bit_Vector (15 downto 0);

signal Ix: Bit_Vector (31 downto 0);

signal ld: Bit_Vector (31 downto 0);

signal Ifetch: Bit_Vector (31 downto 0);

signal increment_pc: Bit;

signal branchbit: bit := '0';

signal reset:bit := '0';

signal local_clk: integer range 0 to 6;

signal one: Bit_Vector (17 downto 0);

signal CC: Bit_Vector (3 downto 0);

signal Right: Bit_Vector (31 downto 0);

signal mdr: Bit_Vector (IS downto 0);

signal Xbarin, Xbarout: Bit_Vector (3S downto 0);

signal Xbarenable: Bit_Vector (4 downto 0);

begin

RIGHTIN: for i in o to 15 GENERATE

Pad_lnput(XP_n'3111(1), right(i));

END GENERATE RIGI-ITIN;

RIGHTOUT: fori in 16 to 31 GENERATE

Pad_Output(XP_right(i), right(i));

END GENERATE RIGHTOUT;

XP_Mem_RD_L <= '0';

increment_pc <= '1';

one <= ”000000000000000001";

process

begin
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wait until XP_CIk'Event and XP_Clk = '1';

loeal_clk <= Iocal_clk + 1;

if Iocal_clk = S then

Iocal_clk <= 0;

end if;

Pad__lnput (XP_Mem_D, mdr);

Pad_Output (XP_Mem_A, PC);

if Iocal_clk = 1 then

Ifetch(31 downto 16) <= mdr;

right(31 downto 16) <= mdr,

Xbarenable <= '01 111";

end if;

if Iocal_clk = 2 then

[fetch (15 downto 0) <= right (15 downto 0);

end if;

if Iocal_clk = 3 then

PC <= PC + one;

if (Ifetch(31 downto 30) = 01) then

PC(lS downto 0) <= Ifetch (25 downto 10);

end if;

end if;

end process;

XP_Mem_WR__L <= '1';

XP_HSO <= '2';

XP_GOR_Reeult <= '0';

XP_GOR__VaIid <= '0';

XP_Int <= '0';

end Fetch_left;

A2 Contr012.vhd (PE2)

architecture Fetch_right of Xilinx_Pnocessing_Part is

signal PC: Bit_Vector (17 downto 0);

signal one: Bit_Vector (17 downto 0);

signal Ifetch: Bit_Vector (31 downto 0);

signal reset:bit := '0';

signal Iocal_clk: integer range 0 to 6;

signal CC: Bit_Vector (3 downto 0);

signal Left: Bit_Vector (31 downto 0);

signal mdr: Bit_Vector (15 downto 0);

signal Xbarout, Xbarin: Bit-Vector (35 downto 0);

signal Xbarenable: Bit_Vector (4 downto 0);
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begin

LEFTIN: fori in 16 to 31 GENERATE

Pad_Input(XP_left(i), I.eft(i));

END GENERATE LEFTIN;

marrow“: for i in o to 15 GENERATE

Pad_Output(XP_left(i), use»;

END GENERATE LEFl‘OUT;

XP_Mem_RD_L <= '0';

one <= "000000000000000001";

XP_Xbar_EN_L <= Xbarenable;

process

begin

wait until XP_CIk'Event and XP_Clk = 'l';

Pad_Output(XP_Right(31 downto 0), Ifetch);

Iocal_clk <= loeoLclk + 1;

if Iocal_clk = 5 then

Iocal_clk a 0;

end if;

Pad_Input (XP_Mem_D, mdr);

Pad_Output (XP_Mem_A, PC);

Xbarenable <== '11111";

if Iocal_clk = 0 then

XP_LEDc '1';

end if;

if Iocal_clk = I then

Ifetch(15 downto 0) <= mdr;

left( 15 downto 0) <= mdr;

Xbarenable <= "01111";

XP_LED <= '0';

end if;

if Iocal_clk = 2 then

[fetch (31 downto 16) c left (31 downto 16);

CC <= Xbarin (3S downto 32);

XP_LED <= '1';

end if;

if Iocal_clk = 3 then

PC G PC + one;

if [fetch(31 downto 30) = 01 then

if ((Ifetch(29 downto 27)=000) or (CC(3 downto 1)) = [fetch (29 downto 27))

then PC( 15 downto 0) <= [fetch (25 downto 10);

end if;

end if;

XP_LED <= '0';

end if;

end process;
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XP_Mem_WILL <= '1';

XP_HSO ¢ '2';

XP_GOILResult <= '0';

XP_GOR_Valid <= '0';

XP_[nt <= '0';

end Fetch_right;

A3 Decodel.vhd (PE3)

architecture Decode_left of Xilinx_Processing_Part is

signal ltemp: Bit_Vector (35 downto 0);

signal Ix: Bit_Vector (35 downto 0);

signal Id: Bit_Vector (3S downto 0);

signal Ifetch: Bit_Vector (35 downto 0);

signal reset:bit;

signal Iocal_clk: integer range 0 to 6;

signal Left: Bit_Vector (3S downto 0);

signal Right: Bit_Vector (3S downto 0);

signal Xbar_en: Bit_Vector (4 downto 0); -- enable bit for Xbar (low)

signal zero: Bit_Vector (4 downto 0);

signal Rer: Bit_Vector (15 downto 0);

signal Mdr: Bit_Vector (15 downto 0);

signal RarL: Bit_Vector (17 downto 0);

signal Xbarin, Xbarout: Bit_Vector (35 downto 0);

signal OpA: Bit_Vector (15 downto 0);

signal temp: Bit_Vector (15 downto 0);

signal result: Bit_Vector (15 downto 0);

signal MuxinO, Muxinl, Muxin2, Muxin3, Muxresult: Bit_Vector (15 downto 0);

begin

SelectO : mux4_lH port map (Muxin0(0), Muxinl(O), Muxin2(0), Muxin3(0),

[x(30), [x (31), Muxresult (0));

Selectl : mux4_lH port map (Muxin0(1), Muxinl(1), Muxin2(1), Muxin3(l),

[x(30), Ix (31), Muxresult (1));

Select2 : mux4_ll-I port map (Muxin0(2), Muxinl(2), Muxin2(2), Muxin3(2),

[x(30), [x (31), Muxresult (2));

Select3 : mux4_lH port map (Muxin0(3), Muxinl(3), Muxin2(3), Muxin3(3),

[x(30), [x (31), Muxresult (3));

Select4 : mux4_1H port map (Muxin0(4), Muxinl(4), Muxin2(4), Muxin3(4),

[x(30), Ix (31), Muxresult (4));

SelectS : mux4_1H port map (Muxin0(5), Muxinl(S), Muxin2(5), Muxin3(5),
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[x(30), Ix (31), Muxresult (5));

mux4_1H port map (Muxin0(6), Muxinl(6), Muxin2(6), Muxin3(6),

[x(30), Ix (31), Muxresult (6));

mux4_1H port map (Muxin0(7), Muxinl(7), Muxin2(7), Muxin3(7),

[x(30), Ix (31), Muxresult (7));

mux4_1H port map (Muxin0(8), Muxinl(8), Muxin2(8), Muxin3(8),

[x(30), Ix (31), Muxresult (8));

mux4_1H port map (Muxin0(9), Muxinl(9), Muxin2(9), Muxin3(9),

[x(30), Ix (31), Muxresult (9));

: mux4_1H port map (Muxin0(10), Muxinl(10), Muxin2(10), Muxin3(10),

[x(30), [x (31), Muxresult (10));

: mux4_1H port map (Muxin0(11), Muxinl(l 1), Muxin2(l l), Muxin3(1 l),

[x(30), Ix (31), Muxresult (11));

: mux4_1H port map (Muxin0(12), Muxinl(12), Muxin2(12), Muxin3(l2),

_ [x(30), [x (31), Muxresult (12));

mux4_1H port map (Muxin0(13), Muxin1(13), Muxin2(13), Muxin3(l3),

[x(30), Ix (31), Muxresult (13));

: mux4_1H port map (Muxin0(l4), Muxinl(14), Muxin2(14), Muxin3(l4),

[x(30), Ix (31), Muxresult (14));

: mux4_1H port map (Muxin0(15), Muxin1( 15), Muxin2( 15), Muxin3(15),

[x(30), [x (31), Muxresult (15));

«Xbarin is from the xbar where xbarout is the value being sent to the xbar...

Pad_Xbar (XP_Xbar, Xbarout,Xbarin, Xbar_en);

XP_Xbar_EN_L <= Xbar_en;

Xbarout (31 downto 16) <= Muxresult;

Xbarout (lS downto 0) <= Muxresult;

Muxinl <= OpA;

zero <= ”00000”;

Pad_Output (XP_right, IFetch);

process

begin

wait until XP_CIk'Event and XP_Clk = '1';

Pad_Input (XP_left, Ifetch);

Pad_Output (XP_Mem_A, RarL);

Pad_[nOut (XP_Mem_D, Rdrl, Mdr, '0');

XP_Mem_RD_L <= '1';

XP_Mem_WR_L <= '1';

temp <= Xbarin (15 downto 0); --Syncing bottom

local_clkG local_clk + 1;

if local_clk = 5 then

local_clkG 0;

end if;

if local_clk = 0 then

Pad_Output (XP_Mem_A (4 downto 0), Id ( l9 downto 15));

XP_Mem_RD_L <= '0';

Xbar_en <= ”10000“;

end if;
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if local_clk = 1 then

XP_Mem_RD_L <= '0';

Pad_InOut (XP_Mem_D, Rdrl, OpA, '0');

Muxin2 c: Xbarin(3l downto 16);

Xbar_en <= ”10000”;

end if;

if local_clk = 2 then

-- get data from Xbar, save the bottom half to write next cycle.

Muxin3 <=-—- Xbarin(3l downto 16);

MuxinO <= Xbarin(15 downto 0);

Xbar_en <= "11100";

end if;

if local_clk = 3 then

if [x(9 downto S) = Id(l9 downto 15) then OpA <= Muxresult;

end if;

if [x(4 downto 0) = Id(19 downto 15) then OpA <= Xbarin(15 downto 0);

end if;

[x (31 downto 30) <= ”01";

temp <= Xbarin (15 downto 0); «Syncing bottom

Pad_Output (XP_Mem_A (4 downto 0), [x(9 downto 5));

if (1x (9 downto S) /= zero) then

Pad_InOut (XP_Mem_D, Muxresult, Mdr, '1');

XP_Mem_WR_L <= '0';

end if;

Xbar_en <-—- "lllll';

end if;

if local_clk = 4 then

- need to write bottom Muxresult

Xbar_en <= "11111”;

Pad_Input (XP_left, Id);

Id G [fetch;

[temp <= Id;

if (Ix (4 downto 0) /= zero) then

Pad_Output (XP_Mem_A (4 downto 0), [x(4 downto 0));

Pad_InOut (XP_Mem_D, temp, Mdr, '1');

XP_Mem_WR_L <= '0';

end if;

end if;

if local_clk = S then

Ix <= ltemp;

end if;

end process;

XP_I-ISO <= '2';

XP_GOR_result <= '0';

XP_GOR_Valid <= '0';

XP_[nt <= '0';

XP_LED <= '1';

end Decode_left;
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A4 Decode2.vhd (PE4)

architecture Decode_right of Xilinx_Prooessing_Part is

signal Ix: Bit_Vector (35 downto 0);

signal Id: Bit_Vector (35 downto 0);

signal Ifetch: Bit_Vector (35 downto 0);

signal reset:bit;

signal local_clk: integer range 0 to 6;

sigml Left: Bit_Vector (35 downto 0);

signal Right: Bit_Vector (35 downto 0);

signal WriteEnable: Bit;

signal Xbar_en: Bit_Vector (4 downto 0) ; -- enable bit for Xbar (low)

signal zero : Bit_Vector (4 downto 0) ;

signal Mdr. Bit_Vector (15 downto 0);

signal Rer: Bit_Vector (15 downto 0);

signal RarL: Bit_Vector (17 downto 0);

signal Xbarin, Xbarout: Bit_Vector (35 downto 0);

signal OpB: Bit_Vector (15 downto 0);

signal temp: Bit_Vector (15 downto 0);

signal Muxin0, Muxinl, Muxin2, Muxin3, Muxresult: Bit_Vector (15 downto 0);

begin

Select0 : mux4_1H port map (Muxin0(0), Muxinl(O), Muxin2(0), Muxin3(0),

[x(30), [x (31), Muxresult (0));

Selectl : mux4_1H port map (Muxin0(1), Muxinl(1), Muxin2(1), Muxin3(l),

[x(30), Ix (31), Muxresult (1));

Select2 : mux4_1H port map (Muxin0(2), Muxinl(2), Muxin2(2), Muxin3(2),

[x(30), Ix (31), Muxresult (2));

Select3 : mux4_1H port map (Muxin0(3), Muxinl(3), Muxin2(3), Muxin3(3),

[x(30), Ix (31), Muxresult (3));

Select4 : mux4_1H port map (Muxin0(4), Muxinl(4), Muxin2(4), Muxin3(4),

[x(30), Ix (31), Muxresult (4));

Selects : mux4_1H port map (Muxin0(5), Muxinl(S), Muxin2(5), Muxin3(5),

[x(30), Ix (31), Muxresult (5));

Select6 : mux4_1H port map (Muxin0(6), Muxinl(6), Muxin2(6), Muxin3(6),

[x(30), Ix (31), Muxresult (6));

Select7 : mux4_1H port map (Muxin0(7), Muxinl(7), Muxin2(7), Muxin3(7),

[x(30), Ix (31), Muxresult (7));

Select8 : mux4_1H port map (Muxin0(8), Muxinl(8), Muxin2(8), Muxin3(8),

[x(30), Ix (31), Muxresult (8));

Select9 : mux4_1H port map (Muxin0(9), Muxinl(9), Muxin2(9), Muxin3(9),

[x(30), [x (31), Muxresult (9));

SelectIO : mux4_1H port map (Muxin0(10), Muxinl(10), Muxin2(10), Muxin3(10),
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[x(30), Ix (31), Muxresult (10));

Selectll : mux4_1H port map (Muxin0(11), Muxinl(l 1), Muxin2(l 1), Muxin3(11),

[x(30), Ix (31), Muxresult (11));

Select12 : mux4_1H port map (Muxin0(12), Muxin1( 12), Muxin2(12), Muxin3(12),

[x(30), Ix (31), Muxresult (12));

Selectl3 : mux4_1H port map (Muxin0(13), Muxinl(l3), Muxin2(13), Muxin3(l3),

[x(30), Ix (31), Muxresult (13));

Selectl4: mux4_1H port map (Muxin0(l4), Muxinl(14), Muxin2(l4), Muxin3(l4),

[x(30), Ix (31), Muxresult (14));

Select15 : mux4_1H port map (Muxin0(15), Muxinl(lS), Muxin2(15), Muxin3(15),

[x(30), Ix (31), Muxresult (15));

Pad_Xbar (XP_Xbar, Xbarout, Xbarin, Xbar_en);

XP_Xbar_EN_L <= Xbar_en;

Xbarout(3l downto [6) <= Muxresult;

Xbarout(15 downto 0) <= Muxresult;

Muxinl <= OpB;

zero<= "00000";

Rarl <= ”000000000000000000";

Rdrl <= ”0000000000000000";

Pad_Output (XP_right, Id);

process

begin

wait until XP_CIk'Event and XP_Clk = '1';

Pad_Input (XP_left, Ifetch);

Pad_Output (XP_Mem_A, RarL);

Pad_InOut (XP_Mem_D, Rdrl, Mdr, '0');

XP_Mem_RD_L <= '1';

XP_Mem_WR_L <= '1';

temp <= Xbarin (15 downto 0);

Ix <= lx;

local_clk <= local_clk + 1;

if local_clk = 5 then

local_clk <= 0;

end if;

if Iocal_clk = 0 then

Pad_Output (XP_Mem_A (4 downto 0), Id (14 downto 10));

XP_Mem_RD_L <= '0';

Xbar_en <= ”10000";

end if;

if local_clk = 1 then

XP_Mem_RD_L <= '0';

Pad_InOut (XP_Mem_D, Rdrl, OpB, '0');

Muxin2 <= Xbarin(31 downto 16);

Xbar_en <= "10000”;

end if;

if local_clk = 2 then
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-- get data from Xbar, save the bottom half to write next cycle.

Muxin3 <= Xbarin(15 downto 0);

MuxinO <= Xbarin(31 downto 16);

Xbar_en <= ”11100”;

end if;

if local_clk = 3 then

-- need to write secondary Muxresult

if Ix(9 downto S) = Id(14 downto 10) then OpB <= Muxresult;

end if;

if [x(4 downto 0) = ld(l4 downto 10) then OpB <= Xbarin(15 downto 0);

end if;

[x(3l downto 30) <= "01";

temp <= Xbarin (15 downto 0);

XP_Mem_WR_L <= '1';

if (Ix (9 downto 5) I: zero) then

Pad_Output (XP_Mem_A (4 downto 0), Ix(9 downto 5));

Pad_InOut (XP_Mem_D, Muxresult, Mdr, '1');

XP_Mem_WR_L <= '0';

end if;

Xbar_en <= "[1111”;

end if;

if Iocal_clk = 4 then

-- need to write secondary Muxresult

Xbar_en <= "11111";

XP_Mem_WR_L <= '1';

if (Ix (4 downto 0) /= zero) then

Pad_Output (XP_Mem_A (4 downto 0), [x(4 downto 0));

Pad_InOut (XP_Mem_D, temp, Mdr, '1'); 1

XP_Mem_WR_L <= '0';

end if;

end if;

if local_clk = S then

Pad_Input (XP_left, Id);

[x <= Id;

end if;

end process;

XP_HSO ¢= 'Z';

XP_GORJesult <= ‘0';

XP_GOR_Valid <= '0';

XP_[nt c '0';

XP_LED <= '1';

end Deeode_right;

A5 Executel.vhd (PES)
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architecture Executel of Xilinx_Processing_Part is

signal Id: Bit_Vector (35 downto 0);

signal Ix: Bit_Vector (35 downto 0);

signal reset:bit := '0';

signal local_clk: integer range 0 to 6;

signal Left: Bit_Vector (35 downto 0);

signal Right: Bit_Vector (31 downto 0);

signal OpA: Bit_Vector (15 downto 0);

signal OpB: Bit_Vector (15 downto 0);

signal Muxinl ,Muxin2Muxin3Muxin4: Bit_Vector (15 downto 0);

signal Xbarin, Xbarout: Bit_Vector(35 downto 0);

signal Xbar_en: Bit_Vector (4 downto 0);

-- Muxin2 is not used in this pe and should be removed later...

signal Result: Bit_Vector (15 downto 0);

signal zero: Bit_Vector (15 downto 0);

signal CondCode : Bit_Vector (3 downto 0);

begin

-- Adder unit

addsub : adsu16h port map (OpA, OpB, [x(27), Muxinl , CondCode(3));

-- Channel one of the results from the adder or shifter onto the xbar

-- depending on opcode selected and desired function.

Select0 : mux4_1H port map (Muxinl(O), Muxinl(O), Muxin3(0), Muxin4(0),

[x(27), Ix (28), Result (0));

Selectl : mux4_1H port map (Muxinl(1), Muxinl(1), Muxin3(l), Muxin4(1),

[x(27), Ix (28), Result (1));

Select2 : mux4_1H port map (Muxinl(2), Muxinl(2), Muxin3(2), Muxin4(2),

[x(27), [x (28), Result (2));

Select3 : mux4_1H port map (Muxinl(3), Muxinl(3), Muxin3(3), Muxin4(3),

[x(27), [x (28), Result (3));

Select4 : mux4_1H port map (Muxinl(4), Muxinl(4), Muxin3(4), Muxin4(4),

[x(27), Ix (28), Result (4));

SelectS : mux4_1H port map (Muxinl(S), Muxinl(S), Muxin3(5), Muxin4(5),

[x(27), Ix (28), Result (5));

Select6 : mux4_1H port map (Muxinl(6), Muxinl(6), Muxin3(6), Muxin4(6),

[x(27), Ix (28), Result (6));

Select7 : mux4_1H port map (Muxinl(7), Muxinl(7), Muxin3(7), Muxin4(7),

[x(27), Ix (28), Result (7));

Select8 : mux4_1H port map (Muxinl(8), Muxinl(8), Muxin3(8), Muxin4(8),

[x(27), [x (28), Result (8));

Select9 : mux4_1H port map (Muxinl(9), Muxinl(9), Muxin3(9), Muxin4(9),

[x(27), Ix (28), Result (9));

Select10 : mux4_1H port map (Muxinl(10), Muxinl(10), Muxin3(10), Muxin4(10),

[x(27), [x (28), Result (10));

Selectll :mux4_1H port map(Muxin1(11), Muxinl(l 1), Muxin3(11), Muxin4(l l),

[x(27), Ix (28), Result (11));

Select12 : mux4_1H port map (Muxinl(12), Muxinl(12), Muxin3(12), Muxin4(12),
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IX(27). 1x (28). Result (12));

Select13 : mux4_1H port map (Muxinl(13), Muxinl(13), Muxin3(l3), Muxin4(l3),

[x(27), Ix (28), Result (13));

Select14 : mux4_1H port map (Muxinl(14), Muxinl(14), Muxin3(l4), Muxin4(14),

[x(27), Ix (28), Result (14));

Select15 : mux4_1H port map (Muxinl(15), Muxinl(15), Muxin3(15), Muxin4(15),

[x(27), Ix (28), Result (15));

zero <= '0000000000000000";

Pad_Xbar (XP_Xbar, Xbarout, Xbarin, Xbar_en);

XP_Xbar_EN_L <= Xbar_en;

Xbarout (31 downto 16) <== result;

Xbarout (15 downto 0) <= result;

Xbarout (3S downto 32) <= CondCode;

Pad_Output (XP_right, Id);

process

begin

wait until XP_CIk'Event and XP_Clk = '1';

local_clk <1: Iocal_clk + 1;

if local_clk = S then

local_clk <= 0;

end if;

Pad_Input (XP_left, Left);

if local_clk = 0 then

-- Compute and broadcast results.

-- >>>>>>> Shift left <<<<<<<<

Muxin3 (15 downto 1) <= OpA (l4 downto 0);

Muxin3 (0) <= '0';

-- >>>>>>>> Shift right sign extension <<<<<<<<<<<

Muxin4 (14 downto 0) <= OpA (15 downto 1);

Muxin4 ([5) <= OpA(15);

end if;

if local_clk = 1 then

Pad_Input (XP_left, Id);

if Result = zero then CondCode(l) c '1';

end if;

if Result (15) = '1' then CondCode(2) <= '1';

end if;

end if;

if local_clk = 2 then

end if;

if local_clk = 3 then

Xbar_en <= "10000";

end if;

if local_clk = 4 then

-- Latch new ops from the decode stagell
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OpaG Xbarin (31 downto 16);

OpbG Xbarin (15 downto 0);

Xbar_en G "11111”;

end if;

if local_clk = 5 then

Ix G Id;

end if;

end process;

-- XP_Left G TriState (XP_Left);

- XP_Right G TriState (XP_Right);

XP_Mem_A G TriState (XP_Mem_A);

XP_Mem_D G TriState (XP_Mem_D);

XP_Mem_RD_L G '1';

XP_Mem_WILL G '1‘;

XP_HSO G '2';

XP_GOR_Result G ‘0';

XP_GOILValid G '0';

XP_[nt G ‘0';

- XP_Xbar_EN_L G'lllll”;

XP_LED G '1';

end Executel;

A6 Execute2.vhd (PE6)

architecture Execute2 of Xilinx_Processing_Part is

signal Id: Bit_Vector (35 downto 0);

signal Ix: Bit_Vector (35 downto 0);

signal reset:bit;

signal local_clk: integer range 0 to 6;

signal Left: Bit_Vector (3S downto 0);

signal Right: Bit_Vector (31 downto 0);

signal OpA: Bit_Vector (15 downto 0);

signal OpB: Bit_Vector (15 downto 0);

signal Muxinl Muxin2,Muxin3Muxin4: Bit_Vector (15 downto 0);

signal Xbarin, Xbarout: Bit_Vector(35 downto 0);

signal Xbar_en: Bit_Vector (4 downto 0);

-- Muxin2 is not used in this pe and should be removed later...

signal Result: Bit_Vector (15 downto 0);

signal CondCode : Bit_Vector (3 downto 0);

signal zero: Bit_Vector (15 downto 0);
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-- Adder unit

addsub : adsul6h port map (OpA, OpB, [x(27), Muxinl , CondCode(3));

-- Channel one of the results from the adder or shifter onto the xbar

-- depending on opcode selected and desired function.

Select0 : mux4_1H port map (Muxinl(O), Muxinl(O), Muxin3(0), Muxin4(0),

Selectl

Select2 :

Select3 :

Select4 :

SelectS :

Select6 :

Select7 :

Select8 :

Select9 :

Select10 :

Selectl 1

Select12 :

Select13 :

Selectl4 :

Select15 :

[x(27), [x (28), Result (0));

: mux4_1H port map (Muxinl(1), Muxinl(1), Muxin3(l), Muxin4(1),

[x(27), Ix (28), Result (1));

mux4_1H port map (Muxinl(2), Muxinl(2), Muxin3(2), Muxin4(2),

[x(27), Ix (28), Result (2));

mux4_1H port map (Muxinl(3), Muxinl(3), Muxin3(3), Muxin4(3),

N27). Ix (28). Result (3));

mux4_1H port map (Muxinl(4), Muxinl(4), Muxin3(4), Muxin4(4),

[x(27), Ix (28), Result (4));

mux4_1H port map (Muxinl(S), Muxinl(S), Muxin3(5), Muxin4(5),

[x(27), Ix (28), Result (5));

mux4_1H port map (Muxinl(6), Muxinl(6), Muxin3(6), Muxin4(6),

[x(27), Ix (28), Result (6));

mux4_1H port map (Muxinl(7), Muxinl(7), Muxin3(7), Muxin4(7),

[x(27), [x (28), Result (7));

mux4_1H port map (Muxinl(8), Muxinl(8), Muxin3(8), Muxin4(8),

[x(27), Ix (28), Result (8));

mux4_1H port map (Muxinl(9), Muxinl(9), Muxin3(9), Muxin4(9),

[x(27), [x (28), Result (9));

mux4_1H port map (Muxinl(10), Muxinl(10), Muxin3(10), Muxin4(10),

[x(27), [x (28), Result (10));

: mux4_1H port map (Muxinl(l l), Muxinl(l 1), Muxin3(11), Muxin4(11),

[x(27), Ix (28), Result (11));

mux4_1H port map (Muxinl(12), Muxinl(12), Muxin3(12), Muxin4(12),

[x(27), Ix (28), Result (12));

mux4_1H port map (Muxinl(l3), Muxinl(l3), Muxin3(13), Muxin4(l3)

[x(27), [x (28), Result (13));

mux4_1H port map (Muxinl(14), Muxinl(14), Muxin3( l4), Muxin4(14),

[x(27), Ix (28), Result (14));

mux4_1H port map (Muxinl(15), Muxinl(15), Muxin3(15), Muxin4(15),

[x(27), Ix (28), Result (15));

9

Pad_Output (XP_right, Id);

Pad_Xbar (XP_Xbar, Xbarout, Xbarin, Xbar_en);

XP_Xbar_EN_LG Xbar_en;

Xbarout (31 downto 16) G result;

Xbarout (15 downto 0) G result;

Xbarout (35 downto 32) G CondCode;

zeroG '0000000000000000”;

process

begin

wait until XP_CIk'Event and XP_Clk = '1';
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local_clkG Iocal_clk + 1;

if local_clk = 5 then

local_clkG 0;

end if;

Pad_Input (XP_left, Left);

if local_clk = 0 then

-- Compute results.

-- >>>>>>> Shift left <<<<<<<<

Muxin3 (15 downto 1) G OpA (l4 downto 0);

Muxin3 (0) G '0';

- >>>>>>>> Shift right sign extension <<<<<<<<<<<

Muxin4 (14 downto 0) G OpA (15 downto l);

Muxin4 (15) G OpA(15);

end if;

if local_clk = 1 then

if Result = zero then CondCode(1)G '1';

end if;

if Result (15) = '1' then CondCode(2) G '1';

end if;

end if;

if local_clk = 2 then

Pad_Input (XP_left, 1d);

end if;

if local_clk = 3 then

Xbar_en G ”10000";

end if;

if local_clk = 4 then

-- Latch new ops from the decode stageii

OpB G Xbarin (31 downto 16);

OpA G Xbarin (15 downto 0);

Xbar_en G "11111";

end if;

if Iocal_clk = 5 then

[x G Id;

end if;

end process;

XP_Left G TriState (XP_Left);

XP_Right G TriState (XP_Right);

XP_Mem_A G TriState (XP_Mem_A);

XP_Mem_D G TriState (XP_Mem_D);

XP_Mem_RD_L <= '1';

XP_Mem_WR_L G '1';

XP_HSO G '2';

XP_GOILResult G '0';
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XP_GOILValid G '0';

XP_[nt G '0';

-- XP_Xbar_EN_L G'lllll";

XP_LED G '1';

end Execute2;

A7 Execute3.vhd (PE7)

architecture Execute3 of Xilinx_Processing_Part is

signal Id: Bit_Vector (3S downto 0);

signal Ix: Bit_Vector (35 downto 0);

signal reset:bit;

signal Iocal_clk: integer range 0 to 6;

signal Left; Bit_Vector (35 downto 0);

signal OpA: Bit_Vector (15 downto 0);

signal OpB: Bit_Vector (15 downto 0);

signal Mar: Bit_Vector (17 downto 0);

signal Mdr: Bit_Vector (15 downto 0);

signal Xbarin, Xbarout: Bit_Vector(3S downto 0);

signal Xbar_en: Bit_Vector (4 downto 0);

signal Result: Bit_Vector (15 downto 0);

begin

Pad_Output (XP_right, Id);

Pad_Xbar (XP_Xbar, Xbarout, Xbarin, Xbar_en);

XP_Xbar_EN_LG Xbar_en;

Xbarout (31 downto 16) G Mdr;

Xbarout (15 downto 0) G Mdr;

--Mar(l7 downto 9) G OpA(8 downto 0);

--Mar(8 downto 0) G OpB(8 downto 0);

process

begin

wait until XP_CIk'Event and XP_Clk = '1';

Ioeol_clk G local_clk + 1;

if local_clk = S then

local_clkG 0;

end if;

Pad_Input (XP_Jeft, Left);
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if local_clk = 0 then

Pad_Output (XP_Mem_A, Mar);

XP_Mem_RD_L <= ‘0';

Xbar_en G "1 1111';

end if;

if local_clk = 1 then

Pad_Input (XP_Mem_D, Mdr);

XP_Mem_RD_LG '1';

end if;

if local_clk = 2 then

end if;

if local_clk = 3 then

Pad_Input (XP_left, Id);

end if;

if local_clk = 4 then

Xbar_enG "10000";

end if;

if local_clk = S then

-- Latch new ops from the decode stage.

OpB G Xbarin (31 downto 16);

OpAG Xbarin (15 downto 0);

Mar(17 downto 9) G Xbarin (8 downto 0);

Mar(8 downto 0) G Xbarin (24 downto 16);

Xbar_enG "11111”;

Ix G Id;

end if;

end process;

XP_Mem_WR_L G '1';

XP_HSO G '2';

XP_GOR_Reeult G '0';

XP_GORNalid G '0';

XP_[nt G '0';

XP_LED G '1';

end Execute3;

A8 Execute4.vhd (PE 8)

architecture Execute4 of Xilinx_Prooessing_Part is

signal Id: Bit_Vector (35 downto 0);

signal Ix: Bit_Vector (35 downto 0);

signal reset:bit;
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signal local_clk: integer range 0 to 6;

signal Left: Bit_Vector (3S downto 0);

signal BotIx: Bit_Vector (15 downto 0);

signal OpA: Bit_Vector (15 downto 0);

signal OpB: Bit_Vector (15 downto 0);

signal Mar: Bit_Vector (17 downto 0);

signal Mdr: Bit_Vector (15 downto 0);

signal Rdr: Bit_Vector (15 downto 0);

signal WriteEnable: Bit;

signal Xbarin, Xbarout: Bit_Vector(35 downto 0);

signal Xbar_en: Bit_Vector (4 downto 0);

signal Result: Bit_Vector (35 downto 0);

signal Resultl: Bit_Vector (15 downto 0);

signal Result2: Bit_Vector (15 downto 0);

sigml OpcodeWrite, SrcRegister, SrcMemory, Srclmmediate: Bit_Vector (4 downto 0);

begin

RIGHTIN: for i in 0 to 15 GENERATE

Pad_Input(XP_right(i), Botlx(i));

END GENERATE RIGHTIN;

RIGHTOUT: fori in 16 to 31 GENERATE

Pad_OutpuKXPjshm). Ix(i));

END GENERATE RIGHTOUT;

-- Pad_Output (XP_right(31 downto 16), [x(31 downto 16));

-- pad_lnput (XP_right(15 downto 0), BotIx);

OpcodeWrite G ”00110”;

SrcRegisterG ”001 l 1";

SrcMemory G "00100";

Srclmmediate G ”00101”;

Pad_Xbar (XP_Xbar, Xbarout, Xbarin, Xbar_en);

XP_Xbar_EN_LG Xbar_en;

-- Xbarout (31 downto 16) G resultl;

-- Xbarout (15 downto 0) G resula;

process

begin

wait until XP_CIk'Event and XP_Clk = '1';

local_clkG local_clk + 1;

if local_clk = 5 then

local_clkG 0;

end if;
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Pad_Input (XP_left, Left);

Pad_InOut (XP_Mem_D, Rdr, Mdr, WriteEnable);

Pad_Output (XP_Mem_A, Mar);

XP_Mem_WR_LG ‘1';

XP_Mem_RD_LG '1';

Xbarout (31 downto 16) G OpA;

Xbarout (15 downto 0) G OpA;

if local_clk = 0 then

Pad_Output (XP_Mem_A (15 downto 0), OpB);

if (Ix (31 downto 27) = OpcodeWrite) then

Pad_InOut (XP_Mem_D, OpA, Mdr, '1');

XP_Mem_WR_LG ‘0';

else

XP_Mem_RD_LG '0';

end if;

Xbar_en G "[1111";

end if;

if local_clk = 1 then

if Ix (31 downto 27)= SrcMemory then

Pad_InOut (XP_Mem_D, Rdr,Xbarout (31 downto 16), '0');

Pad_InOut (XP_Mem_D, Rdr,Xbarout (15 downto 0), '0');

end if;

if Ix (31 downto 27)= Srclmmediate then

Xbarout (31 downto 16) G Ix(25 downto 10);

Xbarout (15 downto 0) G [x(25 downto 10);

end if;

end if;

if local_clk = 2 then

Xbar_enG ”10000";

end if;

if local_clk = 3 then

Pad_Output (XP_Mem_A (15 downto 0), Xbarin (31 downto 16));

RdrG Xbarin(15 downto 0);

if BotIx(15 downto 11) = OpcodeWrite then

Pad_InOut (XP_Mem_D, Xbarin (15 downto 0), Mdr, '1');

XP_Mem_WR_LG '0';

end if;

resultl G OpB;

result2 G OpA;

Xbar_en G "11111”;

end if;

if local_clk = 4 then

Pad_Input (XP_left, Id);

Xbar_en G "10000";

local_clk G 5;

end if;

if local_clk = 5 then

-- Latch new ops from the decode stage.
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OpaG Xbarin (31 downto l6);

OpbG Xbarin (15 downto 0);

Xbar_en G "11111”;

[x G Id;

end if;

end process;

XP_I-ISO G '2';

XP_GOILResult G '0';

XP_GOR_Valid G ‘0';

XP_[nt G '0';

XP_LED G '1';

end Execute4;
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A9 Xbarcontrol.vhd (PEG)

architecture Xbaroontrol of Xilinx_Control_Part is

signal count : integer range 0 to 6;

begin

process

begin

wait until X0_Clk'Event and X0_Clk = '1';

count G count + 1;

if (count = S) then count G 0;

end if;

X0_Xbar_set G itobv (count,3);

end process;

X0_SIMDG TriState(X0_SIMD);

X0_,XB_DataG TriState(X0_XB_Data);

X0_Mem_AG TriState(X0_Mem_A);

X0_Mem_DGTriState(X0_Mem_D);

X0_Mem_RD_LG ‘1‘;

X0_Mem_WR_LG '1".

X0_GOR_Result_InG"W";

X0_GOR_Valid_InG"W”;

X0_GOR_ResultG '0';

X0_GOR_ValidG '0';

- X0_XBar_SetG "000”;

X0_XBar_SendG '0';

X0_Xl6_DisableG '0';

X0_[ntG '0';

X0_Broadcast_0utG '0';

X0_HSOG '2';

X0_XBar_EN_LG '1';

end Xbarcontrol;
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Appendix B

Runtime Results

Bl Fibonacci Sequence Results

T2 Version 1.88 Created Wed Oct 5 09:31 :37 EDT 1994

NEW INTERFACE BOARD (rev2)

T2:1> source pe5.init

2 boards available on Splash 2 unit 0

T2:2> source fib.step

Added HB1 at tick 6

Board 0 PE 3 Offset 0 Words 32

000000: 0000 000A 000A 000A 000A 000A 000A 000A

Board 0 PE 4 Offset 0 Words 32

000000: 0000 000A 000A 000A 000A 000A 000A 000A

T2:3> source fib.step

Added BB 2 at tick 12

Board 0 PE 3 Offset 0 Words 32

000000: 0000 000A 000A 000A 000A 000A 000A 000A

Board 0 PE 4 Offset 0 Words 32

000000: 0000 000A 000A 000A 000A 000A 000A 000A

T2:4> source fib.step

Added R8 3 at tick 18

Board 0 PE 3 Offset 0 Words 32

000000: 0000 0002 000A 000A 000A 000A 000A 000A

Board 0 PE 4 Offset 0 Words 32

000000:00000002000A000A000A000A000A000A

T2:5> source fib.step

Added R8 4 at tick 24

Board 0 PE 3 Offset 0 Words 32

000000: 0000 0002 0003 000A 000A 000A 000A 000A

Board 0 PE 4 Offset 0 Words 32

000000:000000020003000A000A000A000A000A

T2:6> source fib.step

Added R8 5 at tick 30

Board 0 PE 3 Offset 0 Words 32

000000: 0000 0002 0003 0005 000A 000A 000A 000A

Board 0 PE 4 Offset 0 Words 32

000000:0000000200030005000A000A000A000A
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T2z7> source fib.step

Added BB 6 at tick 36

Board 0 PE 3 Offset 0 Words 32

000000:0000000300030005000A000A000A000A

Board 0 PE 4 Offset 0 Words 32

000000:0000000300030005000A000A000A000A

T2:8> source fib.step

Added R8 7 at tick 42

Board 0 PE 3 Offset 0 Words 32

000000: 0000 0003 0005 0005 000A 000A 000A 000A

Board 0 PE 4 Offset 0 Words 32

000000:0000000300050005000A000A000A000A

T2.9> source fib.step

Added BB 8 at tick 48

Board 0 PE 3 Offset 0 Words 32

00000020000000300050005000A000A000A000A

Board 0 PE 4 Offset 0 Words 32

00000020000000300050005000A000A000A000A

T2:10> source fib.step

Added R8 9 at tick 54

Board 0 PE 3 Offset 0 Words 32

000000: 0000 0003 0005 0008 000A 000A 000A 000A

Board 0 PE 4 Offset 0 Words 32

00000020000000300050008000A000A000A000A

T2:11> source fib.step

Added RB 10 at tick 60

Board 0 PE 3 Offset 0 Words 32

000000: 0000 0005 0005 0008 000A 000A 000A 000A

Board 0 PE 4 Offset 0 Words 32

000000:0000000500050008000A000A000A000A

T2:12> source fib.step

Added RB 11 at tick 66

Board 0 PE 3 Offset 0 Words 32

000000: 0000 0005 0008 0008 000A 000A 000A 000A

Board 0 PE 4 Offset 0 Words 32

00000020000000500080008000A000A000A000A

T2:13> source fib.step

Added RB 12 at tick 72

Board 0 PE 3 Offset 0 Words 32

000000: 0000 0005 0008 0008 000A 000A 000A 000A

Board 0 PE 4 Offset 0 Words 32

000000: 0000 0005 0008 0008 000A 000A 000A 000A

T2:14> source fib.step

Added RB 13 at tick 78

Board 0 PE 3 Offset 0 Words 32

000000: 0000 0005 0008 0000 000A 000A 000A 000A

Board 0 PE 4 Offset 0 Words 32

000000:0000000500080000000A000A000A000A



T2:15> source fib.step

Added RB 14 at tick 84

Board 0 PE 3 Offset 0 Words 32

000000: 0000 0008 0008 0000 000A 000A 000A 000A

Board 0 PE 4 Offset 0 Words 32

000000:0000000800080000000A000A000A000A

T2:16> source fib.step

Added RB 15 at tick 90

Board 0 PE 3 Offset 0 Words 32

000000: 0000 0008 0000 0000 000A 000A 000A 000A

Board 0 PE 4 Offset 0 Words 32

000000:0000000800000000000A000A000A000A

T2:17> source fib.step

Added RB 16 at tick 96

Board 0 PE 3 Offset 0 Words 32

000000: 0000 0008 0000 0000 000A 000A 000A 000A

Board 0 PE 4 Offset 0 Words 32

000000:0000000800000000000A000A000A000A

T2:18> source fib.step

Added RB 17 at tick 102

Board 0 PE 3 Offset 0 Words 32

000000: 0000 0008 0000 0015 000A 000A 000A 000A

Board 0 PE 4 Offset 0 Words 32

000000: 0000 00080000 0015 000A 000A 000A 000A
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B2 VLIW Fibonacci Sequence Results

T2 Version 1.88 Created Wed Oct 5 09:31 :37 EDT 1994

NEW INTERFACE BOARD (rev2)

T2:1> source all.init

2 boards available on Splash 2 unit 0

T2:2> source ai|1.step

Added RB 1 at tick 6

Board 0 PE 3 Offset 0 Words 32

000000: 0000 000A 000A 000A 000A 000A 000A 000A

Board 0 PE 4 Offset 0 Words 32

00000020000000A000A000A000A000A000A000A

Board 0 PE 14 Offset 0 Words 32

000000: 0000 000A 000A 000A 000A 000A 000A 000A

Board 0 PE 13 Offset 0 Words 32

000000: 0000 000A 000A 000A 000A 000A 000A 000A

T2:3> 1

Added R8 2 at tick 12

Board 0 PE 3 Offset 0 Words 32

000000: 0000 000A 000A 000A 000A 000A 000A 000A

Board 0 PE 4 Offset 0 Words 32

000000: 0000 000A 000A 000A 000A 000A 000A 000A

Board 0 PE 14 Offset 0 Words 32

000000: 0000 000A 000A 000A 000A 000A 000A 000A

Board 0 PE 13 Offset 0 Words 32

000000: 0000 000A 000A 000A 000A 000A 000A 000A

T2:4> l

Added R8 3 at tick 18

Board 0 PE 3 Offset 0 Words 32

000000: 0000 00010001000A 000A 000A 000A 000A

Board 0 PE 4 Offset 0 Words 32

000000: 0000 00010001000A 000A 000A 000A 000A

Board 0 PE 14 Offset 0 Words 32 .

000000: 0000 0001 0001 000A 000A 000A 000A 000A

Board 0 PE 13 Offset 0 Words 32

000000: 0000 00010001000A 000A 000A 000A 000A



T2:5> l

Added R8 4 at tick 24

Board 0 PE 3 Offset 0 Words 32

000000: 0000 000100010002 000A 000A 000A 000A

Board 0 PE 4 Offset 0 Words 32

000000:0000000100010002000A000A000A000A

Board 0 PE 14 Offset 0 Words 32

000000: 0000 000100010002 000A 000A 000A 000A

Board 0 PE 13 Offset 0 Words 32

000000: 0000 000100010002 000A 000A 000A 000A

T2:6> l

Added R8 5 at tick 30

Board 0 PE 3 Offset 0 Words 32

000000: 0000 00010002 0002 000A 000A 000A 000A

Board 0 PE 4 Offset 0 Words 32

000000: 0000 00010002 0002 000A 000A 000A 000A

Board 0 PE 14 Offset 0 Words 32

000000: 0000 0001 0002 0002 000A 000A 000A 000A

Board 0 PE 13 Offset 0 Words 32

000000:0000000100020002000A000A000A000A

T2:7> l

Added R8 6 at tick 36

Board 0 PE 3 Offset 0 Words 32

000000:0000000100020002000A000A000A000A

Board 0 PE 4 Offset 0 Words 32

000000: 0000 0001 0002 0002 000A 000A 000A 000A

Board 0 PE 14 Offset 0 Words 32

000000:0000000100020002000A000A000A000A

Board 0 PE 13 Offset 0 Words 32

000000:0000000100020002000A000A000A000A

T2:8> l

Added R8 7 at tick 42

Board 0 PE 3 Offset 0 Words 32

000000: 0000 00010002 0003 000A 000A 000A 000A

Board 0 PE 4 Offset 0 Words 32

000000: 0000 0001 0002 0003 000A 000A 000A 000A

Board 0 PE 14 Offset 0 Words 32

000000: 0000 0001 0002 0003 000A 000A 000A 000A

Board 0 PE 13 Offset 0 Words 32

000000: 0000 00010002 0003 000A 000A 000A 000A

T2z9> 1

Added R8 8 at tick 48

Board 0 PE 3 Offset 0 Words 32

000000:0000000200030003000A000A000A000A

Board 0 PE 4 Offset 0 Words 32

000000: 0000 0002 0003 0003 000A 000A 000A 000A

Board 0 PE 14 Offset 0 Words 32

000000: 0000 0002 0003 0003 000A 000A 000A 000A

Board 0 PE 13 Offset 0 Words 32

000000:0000000200030003000A000A000A000A



T2:10>l

AddedRBeattick54

Board 0 PE3 OffsetOWords 32

000000:0000000200030003000A000A000A000A

Board 0 PE40ffset0 Words 32

000000:0000000200030003000A000A000A000A

Board 0 PE 14 Offset 0 Words 32

000000:0000000200030003000A000A000A000A

Board 0 PE 13 OffsetOWordse2

000000:0000000200030003000A000A000A000A

T2:11>l

Added RB 10attlck60

Board 0 PE 3 Offseto Word332

000000:0000000200030005000A000A000A000A

Board 0 PE 4 Offseto Words 32

000000:0000000200030005000A000A000A000A

Board 0 PE 140ffset0 Words 32

000000:0000000200030005000A000A000A000A

Board 0 PE 13 OffsetOWords 32

000000:0000000200030005000A000A000A000A

T2:12> i

Added RB 11 attick 66

Board 0 PE 3 Offset 0 Words 32

000000: 0000 0003 0005 0005 000A 000A 000A 000A

Board 0 PE 4 Offset 0 Words 32

000000:0000000300050005000A000A000A000A

Board 0 PE 14 Offset 0 Words 32

000000: 0000 0003 0005 0005 000A 000A 000A 000A

Board 0 PE 13 Offset 0 Words 32

000000:0000000300050005000A000A000A000A

T2:13> l

Added RB 12 at tick 72

Board 0 PE 3 Offset 0 Words 32

000000: 0000 0003 0005 0005 000A 000A 000A 000A

Board 0 PE 4 Offset 0 Words 32

000000: 0000 0003 0005 0005 000A 000A 000A 000A

Board 0 PE 14 Offset 0 Words 32

000000:0000000300050005000A000A000A000A

Board 0 PE 13 Offset 0 Words 32

000000:0000000300050005000A000A000A000A

T2:14> i

Added RB 13 at tick 78

Board 0 PE 3 Offset 0 Words 32

000000: 0000 0003 0005 0008 000A 000A 000A 000A

Board 0 PE 4 Offset 0 Words 32

000000: 0000 0003 0005 0008 000A 000A 000A 000A

Board 0 PE 14 Offset 0 Words 32

000000: 0000 0003 0005 0008 000A 000A 000A 000A

Board 0 PE 13 Offset 0 Words 32

000000:0000000300050008000A000A000A000A
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T2:15> 1

Added RB 14 at tick 84

Board 0 PE 3 Offset 0 Words 32

000000:0000000500080008000A000A000A000A

Board 0 PE 4 Offset 0 Words 32

000000:0000000500060008000A000A000A000A

Board 0 PE 14 Offset 0 Words 32

000000:0000000500080008000A000A000A000A

Board 0 PE 13 Offset 0 Words 32

000000:0000000500080008000A000A000A000A

T2:16> I

Added RB 15 at tick 90

Board 0 PE 3 Offset 0 Words 32

00000020000000500080008000A000A000A000A

Board 0 PE 4 Offset 0 Words 32

000000: 0000000500080008000A000A000A000A

Board 0 PE 14 Offset 0 Words 32

00000020000000500080008000A000A000A000A

Board 0 PE 13 Offset 0 Words 32

000000:0000000500080006000A000A000A000A

T2:17> l

Added RB 16 at tick 96

Board 0 PE 3 Offset 0 Words 32

000000: 0000 0005 0008 0000 000A 000A 000A 000A

Board 0 PE 4 Offset 0 Words 32

000000: 0000 0005 0008 0000 000A 000A 000A 000A

Board 0 PE 14 Offset 0 Words 32

000000: 0000 0005 0008 0000 000A 000A 000A 000A

Board 0 PE 13 Offset 0 Words 32

000000:0000000500080000000A000A000A000A

T2:18> l

Added RB 17 at tick 102

Board 0 PE 3 Offset 0 Words 32

000000: 0000 0008 0000 0000 000A 000A 000A 000A

Board 0 PE 4 Offset 0 Words 32

000000: 0000 0008 0000 0000 000A 000A 000A 000A

Board 0 PE 14 Offset 0 Words 32

000000: 0000 0008 0000 0000 000A 000A 000A 000A

Board 0 PE 13 Offset 0 Words 32

000000: 0000 0008 0000 0000 000A 000A 000A 000A
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