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ABSTRACT

l/F NOISE AND QUANTUM TRANSPORT IN THE

LOW SPIN-ORBIT SCATTERING LIMIT

By

Jeong-Sun Moon

Recent advances in microfabrication technology have enabled the

experimental investigation of quantum interference effects on electron transport in

disordered systems. At low temperature, the electrons diffuse coherently for a

distance which can become much longer than the elastic mean free path. The

resulting quantmn interference among diffusive paths gives rise to universal

conductance fluctuations(UCF), in which the conductance fluctuates chaotically as a

function of a control parameter by a universal amplitude SG~e2/h at zero temperature,

independent of the magnitude of the conductance itself. Recent theoretical

developments provide a connection between UCF and random matrix theory(RMT),

pioneered by Wigner and Dyson. It is shown that the conductance is related to the

eigenvalues of the transmission matrix and the relative amplitude of the conductance

fluctuations is governed by the symmetry ofthe transfer matrix.

This thesis describes low temperature measurements of l/f noise on a quench-

condensed quasi-1D Li wire, to study UCF in a low spin-orbit and spin-flip scattering

system, which has the feature of maximum symmetry in the absence of a magnetic

field. We observed two distinct reductions by factors of 2 in the noise versus

magnetic field: the first from breaking time-reversal symmetry and the second due to

lifting the Zeeman degeneracy. We measure and calculate the complete crossover

function for both reductions, and find good agreement over the range 0 to 9 T. Our



results show that the magnetic field scale for the Zeeman crossover is determined by

the sample temperature, rather than by the Thouless energy.

We also studied the effect of the spin-flip scattering on conductance

fluctuations in the regime where the magnetic spin-flip scattering rate is comparable

to the electron phase breaking rate. We found that the magnitude of conductance

fluctuations is affected in a dramatic way: l/f noise is reduced by factor of 2 at low

magnetic field and increases dramatically at high field. The results are interpreted

that the magnetic field induces a transition from a low-field state where the impurity

spins are free to flip and destroy the phase coherence to a high-field state where spin-

flip scattering is frozen and recover the universal conductance fluctuations.
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Chapter 1

INTRODUCTION

A. Classical Drude conductivity and Quantum correction.

How can we understand the low-temperature electronic conduction in a metal such

as gold? Until recently it was generally accepted that at sufficiently low temperature,

the conductivity of a metal is dominated by the residual scattering by impurities and

is given by the classical Drude formula,

 

(H)

where 1: is the elastic scattering time, related to the elastic mean free path [e = war.

This model predicts that at low temperature, the resistance of a metal will reach a

constant value determined by the concentration of static impurities.

Extensive theoretical and experimental studies showed that the effect of disorder

on the electron transport is more dramatic than the classical transport estimated.[1] If

the disorder is strong then electron wavefunctions can become localized, leading to a

metal-insulator transition. Even in the weak disorder limit -- i.e. the good metallic

regime, the deviation from Eq. (1-1) is significant. The resistance of thin films and

wires increases above the residual value and continues to increase as the temperature

is decreased.

These deviations in disordered metals can be understood in a new view of low-

temperature electron transport. Electrons are quantum mechanical waves and the

conductance is given by the quantum mechanical transmission through scattering
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centers.[2] This remarkable idea led a number of groups to fabricate small wires and

films and study their conductivity at low temperature. These efforts resulted in the

discovery of novel phenomena -- weak localization and universal conductance

fluctuations. Nowadays the quantum corrections to the classical Drude conductivity

are well established in the low-temperature electron transport of disordered systems.

B. conductance as quantum transmission

The most intuitive explanation of quantum transport is based on Feynman's

formulation of quantum mechanics; a particle propagates between two points via all

possible paths. The picture below shows two typical paths between points A and B.

Each step along the path is determined by randomly located elastic scatterers due to

the disorder and these elastic scatterers determine the electron mean free path, Ie. In

disordered metals, at sufficiently low temperature, the electron transport is in the

diffusive regime. The electrons diffuse coherently over a distance called the phase

breaking length, L¢, which can be much longer than the elastic mean free path.

/
\

\
/

L4

The elastic collisions with impurities do not destroy the phase information but shifi

the phase by some fixed amount. The different paths arrive at point B with different

phases. The probability amplitude that an electron is transmitted from one side of the
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sample to the other is proportional to the sum of the amplitudes of Feynman paths

that walk randomly across the sample. The transmission coefficient T is

2

Toc few“

(1

(1-2)

  

where or represents spatial path.[3] The cross terms in Eq. (1-2) correspond to the

interference between paths, and lead to significant deviations from the classical

Boltzman diffusion.

C. Weak-localization[4]

Consider the special paths that return to the origin as shown below.

 

There is always a time reversed path (dotted line) corresponding to a closed loop

(solid line). These two paths will be in phase when they arrive at A because they are

scattered by exactly the same elastic scattering centers. The interference between

these two loops is always constructive and will enhance the probability of returning to

the starting point A. The enhanced back-scattering decreases the diffusion constant

and diminishes the conduction. This correction to the classical Drude conductivity is

called “weak localization”, and it depends on the amount of disorder but not on the

details of the impurity configuration.
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A dramatic effect of weak-localization occurs when a weak magnetic field is

applied, in which case the theory predicts a negative magnetoresistance. This is a

striking prediction because, in classical transport, a magnetic field pushes electrons

transverse to the current direction and increases the resistance, resulting in a positive

magnetoresistance. The classical magnetoresistance can be observed in relatively

high fields. In weak-localization, the presence of a magnetic field perpendicular to a

metallic film gives each Feynman path an additional phase factor %I A ~dl , where the

line integral is along the trajectory. Since the path and its conjugate will pick up

opposite phases in a magnetic field, the applied magnetic field destroys the coherent

backseattering. Therefore, the resistivity will decrease as the magnetic field

increases, leading to a negative magnetoresistance.

D. Universal Conductance Fluctuations[5]

An interesting question is what happens when we consider interference between all

the paths. In small structures, mesoscopic systems, with dimensions on the order of

the phase coherence length, the transmission coefficient has a sample-specific value

that depends on the detailed location of the scattering centers. The transmission

depends sensitively on perturbations such as rearrangement of scatterers, magnetic

field and chemical potential, leading to chaotic fluctuations of conductance. This is

the phenomenum called universal conductance fluctuations. In contrast to weak

localization, turiversal conductance fluctuations (UCF) average to zero in large

samples (the ensemble average).

D1. Universality of fluctuation amplitude.

The amplitude ofUCF has a remarkable universality: the conductance of a metallic

sample fluctuates by order eZ/h (z 4E-5 mho), independent of degree of disorder and
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sample size (L) as long as L < L¢.[6] This universality is a key result in mesoscopic

physics.

The universality of conductance fluctuations can be understood following several

approaches. One approach is based on the microscopic theory using the impurity-

averaged Green’s function technique.[7,13,14] An alternative approach is built on the

basis of Landauer’s definition of conductance -- the conductance is related to the

eigenvalues of the transmission matrix.[8] The eigenvalues obey the level repulsion

property of the appropriate random matrix ensemble introduced by Wigner and

Dyson: Gaussian orthogonal ensemble (GOE) for a system with time-reversal and

spin symmetry, Gaussian unitary ensemble (GUE) when time-reversal symmetry is

broken, and Gaussian sympletic ensemble (GSE) in the limit of strong spin-orbit

scattering.[9] This random matrix approach provides the more fundamental

understanding of the universal conductance fluctuations and gives a simple way to

predict the relative amplitude of the UCF. The theoretical result is :

2

2.1 i ’“_2 -
(5G) 4(h] B (13)

where k is the number of independent eigenvalue sequences, 8 is the eigenvalue

degeneracy, and B =1,2, or 4 for the GOE, GUE or GSE, respectively.

Experimental establishment of the different ensembles can be shown with

application of magnetic field and spin-orbit scattering. Application of a weak

magnetic field breaks the time-reversal symmetry of the electron orbital motion and a

strong magnetic field lifts the electron spin symmetry due to Zeeman splitting.

Strong spin-orbit scattering breaks the spin-rotation symmetry. The relative

amplitude of fluctuations in various regimes determined by an applied magnetic field

and spin-orbit scattering are summarized in Table 1-1. The characteristic field scales
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involved in these symmetry breakings are denoted as BC] and Bcz- (The field strength

for Beland B02 will be discussed later)

D2. UCF noise reduction induced by magnetic field.

Experimental verification of the UCF amplitude given by Eq. (1-3) can be

achieved by measuring and comparing (60)2 in the different random matrix

ensembles determined by the magnetic field. Measurement of (6G)2 in a single

sample requires that we vary some parameter to obtain different values of G in the

ensemble. The usual method of measuring the static variation of G versus magnetic

field (the “magnetofingerprint”) is inadequate because we like to obtain (86)2 at fixed

values of magnetic field. Fortunately, in disordered metals, impurities and scattering

centers rearrange themselves spontaneously even at low temperature due to tunneling.

The rearrangement of impurities gives rise to 1/f noise in the electrical resistance.[10]

The noise measurement provides a tool to study (8C7)2 with excellent statistics at fixed

magnetic field; the accuracy of the measurement increases with the measurement

time. A further discussion of l/f noise is given in the appendix.

Experiments pursuing the ratio of the UCF amplitude between the random matrix

ensembles have been reported for several special cases. For the strong spin-orbit

scattering case, Birge et al. studied the l/f noise as a firnction of magnetic field in 2D

films of Bi and clearly observed that UCF noise is reduced to half of the zero field

value with a characteristic field scale determined by one-flux quantum(h/e) through a

phase coherent area.[1 1] This reduction corresponds to the crossover from symplectic

to unitary ensemble in the quantum transport with simultaneously breaking of the

Kramers degeneracy. Measurements in the weak spin-orbit scattering limit, however,

have been less clear. Debray etal measured time-independent conductance

fluctuations in a MOSFET as a function of gate voltage at several values of magnetic

field at 1.3 K.[12] A reduction of the variance, (SOP, by a factor of 4 was observed
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at ~0.7 kG. The authors attributed this reduction to the Zeeman effect with the

characteristic field scale determined by the Thouless energy, EC = hD/ L¢2. It was

not clear, however, whether Bcz is really determined by the Thouless energy because

the value of the g-factor was not known in their MOSFET. In addition, theoretical

arguments about the energy scale for the Zeeman crossover on UCF have been

contradictory.[l 3,14] A second limitation of the MOSFET experiment is that the low

field data were in the limit of either GOE or GUE «only one data point near the first

reduction is shown and there were no data showing the crossover between those

ensembles.

We studied universal conductance fluctuations in the low spin-orbit limit by

measuring the l/f resistance noise in a quasi-1D lithium wire fabricated by quench-

condensation at 4.2 K. From the magnetoresistance, we confirm the low spin-

dependent (spin-orbit or spin-flip) scattering in out Li wire; the upper bound of spin-

orbit scattering rate is estimated to be 5~10 times smaller than the phase breaking

rate. At temperatures of 1.6 and 4.2 K, we observe that the noise is reduced twice as a

function of magnetic field. The first drop occurs below 0.01 T and the second

reduction occurs above 1 T. We calculate the theoretical crossover function for both

drops and compare with the experimental data. The experimental data are fully

consistent with the theory for the complete crossover function both for the GOE to

GUE transition[15] and for the splitting of the Zeeman degeneracy[l4]. Our results

show that the characteristic field scale for the Zeeman crossover is determined by the

sample temperature rather than the pre-assumed Thouless energy for the case kBT >>

EC.
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Table 1.1: g is defined as G/(eZ/h).

 

 
 

 

    

13<<13cl 13c1<<13<<13c_2 13>>13c_2

weak spin-orbit (8g)2 5 1 (6g)2 5 1/2 (6g)2 2 1/4

limit 3:1, k=1, s=2 13:2, k=1, s=2 [3:2, k=2,s=1

strong spin—orbit (25g)2 5 1/4 (fig)2 5 1/8 (fig)2 5 1/8

limit [3:4, k=1, s=2 (i=2, k=1, s=l 13:2, k=1, s=l
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Chapter 2

THEORY OF QUANTUM TRANSPORT

This chapter describes the theoretical background necessary to understand our

experiments. In the first half, we explain the important concept of diffusive quantum

transport in disordered metals, and its connection to random matrix theory. In the

second half, we summarize the previous quantitative calculations of the amplitude of

UCF and the UCF crossover functions between random matrix ensembles. In

addition, we present our quantitative formulation of the UCF crossover and its

evaluation, which is used in the data analysis.

2A. Diffusive quantum transport in metals

In disordered metals, at sufficiently low temperature, the electrons diffuse

coherently through the disordered medium over a distance called the phase breaking

length, L4,. One can think of the electron motion as a random walk where the step

distance is the elastic mean free path. When the sample size L is much longer than

elastic mean free path, we call the transport "diffirsive".

2B. Landauer's conductancefl]

Landauer considered the electrical conduction of a sample connected to two ideal

probes, and showed that the conductance G is related to the transmission probability

of electrons through the sample. Consider a coherent box of length less than L4, and

of transverse dimensions W. The number of quantized transverse momentum states

within the probes is NC as (Wk,.~)d'l in dimension d.
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__A

ar

 

The a. is the incident flux from the left and the a, is the transmitted flux through the

scattering medium. The transmission matrix t of the scattering medium can be

defined as a, = tal where t is a N0 x Nc matrix. Denoting the transmission amplitude

between the channels i and j by tij in a transmission matrix t, the conductance G is

given by

2

Ne

G = 2(e2/h)Tr (tt*) = 2(e2/h) 2|“, (2-1)

131'

where the factor of 2 is due to electron spin degeneracy.

2C. Universal Conductance Fluctuations

The quantum interference among diffusive paths gives rise to extreme sensitivity

of the transmission probability to the detailed configuration of the microscopic

scattering centers, leading to sample-specific transmission values. The resulting

fluctuations of the conductance is a phenomenon called "universal conductance

fluctuations" (UCF), where the conductance fluctuates as a function of a control

parameter by a universal amplitude of order e2/h (z 4E-5 mho), independent of

disorder and sample size (L) as long as L < L¢

50 z eZ/h (22)

So, UCF is most evident in a small sample or mesoscopic system with size

comparable to the phase breaking length and this remarkable universality stands out

as the key result in the mesoscopic physics.
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The universality of conductance fluctuations can be understood following several

approaches. The original approach[2], by Al’tshuler and by Lee and Stone, is based

on the microscopic theory using impurity-averaged Green’s function technique.

Alternative approaches are built on the statistical properties of the eigenvalues of

either the random Hamiltonian[3] or random scattering matrix[4]. The second

approaches provide the more intuitive understanding of the universal conductance

fluctuations.

2C.l Random matrix approach

. Random matrix theory by Wigner and Dyson[5,6]

Wigner and Dyson introduced the universal random matrix ensembles to describe

the statistics of nuclear energy levels. The Gaussian orthogonal ensemble describes

systems with time-reversal symmetry and spin symmetry, the Gaussian unitary

ensemble is appropriate when time-reversal symmetry is broken, while the Gaussian

sympletic ensemble describes the case of broken spin-symmetry. Wigner and Dyson

found that the level statistics depend on the symmetries of the ensemble, independent

of the microscopic details ofthe system.

0 Random matrix theory in UCF

Consider the conductance of a metal which is connected to two ideal leads of size

W in dimension d. The sample length is L. The dimensionless conductance per spin

channel, g=G/(e2/h), is given by the transmission matrix of the conductor as

mentioned before, Eq. (2-1),

2
”C

G = (eZ/h)Tr (w) = (eZ/h) thij

i,j
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where, i andj are channel indices.

It is interesting to see how Landauer’s approach can be connected to random

matrix theory[4]. Consider a scattering medium with incident flux {1], 1,} and

corresponding transmitted flux {0], Or}.

 

The reflection and transmission matrices r and t are NO x NC matrices, where NC is the

number of propagation channels at the Fermi energy. The scattering property of a

sample or scattering medium is described by either the scattering matrix S or the

transfer matrix T as following

2:212] , 12.2121

Following simple algebra with r and t, the conductance is given by

2

g=Tr(tt*)=Tr( . . _1 )

TT +(T'I‘) +21

 

(2-4)

This trace of the transfer matrix can be rewritten in terms of the eigenvalues of a

random matrix in the following way:

N l

g=i
i 1+)»;

 

(2-5)
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where M are the eigenvalues ofthe matrix, X = [(TT. + (TT' )"'I — 21] / 4.

Eq. (2-5) implies that the conductance is a "linear statistic" of eigenvalues M (The

word “linear statistic” means that the conductance does not contain products of the

eigenvalues, but the fimctional dependence can be non-linear). The distribution of the

eigenvalues is given by[9],

Pm.» zexpi-BHtimn,

Hm.» = — 2 1:42. -kj|+ZV(ki) <2-6)

i<j

where, the number [3 is different for each of the three ensembles of random matrix ; [3

is equal to 1,2 and 4 for the Gaussian orthogonal, Gaussian unitary and Gaussian

sympletic ensembles respectively. The probability distribution has the form of a

Gibbs distribution, with the symmetry parameter B playing the role of the

temperature, and the H containing the logarithmic repulsive interaction between

eigenvalues in addition to a “potential” V. Since the conductance is a linear statistic

of the eigenvalues, its variance is given by[lO]

C!) co

. 1 1 .

Var(g)= [JAM—fleas) (2-7)
0 0 1+7¥1+7t

Here, the two-point correlation function K2().,}.') is defined by

K2 (2.2) = <p<x>p(>»')>- <p<>~>><p<x )> <2-8)

where p(}.)=28(}. —}.,,) is the eigenvalue density. As long as the correlation

n

function K20, N) is known , the variance of the linear statistic can be calculated in a
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straightforward manner. For the distribution of the eigenvalues in Eq. (2-6), the mean

density oftransmission eigenvalues <p().)> is

[(9% ”liar/90:11"°7~N)CXP(-BH)
 

 

(9(1)) = (2-9)

[6141"]de eXIX-13H)

Differentiation of Eq. (2-9) with respect to V0.) yields

502(k)) _ _ . . _
8V(2.') - 13030090» ))+B(P(7»)><p(7L )) (2 10)

Eq. (2-8) and (2-10) give K20., N) = Eli-w. Then, Eq. (2-7) yields Var(g)

oc 1/B, if there is a linear relationship between p0.) and the "potential" V. This

relation has been addressed by Dyson[l 1] and found to be linear as a consequence of

the distribution function Eq. (2-6). Therefore, the variance is independent of the

microscopic details of system and has a universal dependence on the symmetry

constraint [3. The full expression, i.e. Eq. (1-3), of conductance fluctuations probably

can be derived by taking the degeneracy of eigenvalue into account, although no

calculations with the degeneracy have been reported following the random scattering

matrix approach.

2C.2 Random Hamiltonian approach.

Even though the conductance should be viewed in terms of quantum diffusion, it

is heuristically interesting to consider the approach following the Thouless

argument[12]. In a hypercube of size L, the electronic eigenstates are determined by

the microscopic Hamiltonian. From the uncertainty principle, such eigenstates are

associated with a width, E0 = n / t = hD/ L2 where ‘t is the time to diffuse through
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the sample. Assuming there is an average energy level spacing AE, the conductance

G is given by

G=—-—=—h—-N(EC) (2-11)

N(Ec) is the number of energy levels within an energy range EC. If the energy levels

are randomly distributed (Poisson distribution), one would expect fluctuations 8N z

2

s/N which results in 8G z%~,/N(Ec) , which is the wrong answer. The

amplitude of conductance fluctuations from this point of view are much stronger than

the real fluctuations in Eq. (2-2). The fact that the level number fluctuations for a

given energy hand must be small compared to J7),— indicates a repulsion between the

energy levels. Dyson[6] showed that in a closed system the level repulsion gives

k-s2
 <[5N(E)]2>~i- 1n<N<E>> (242)

where, B is equal to 1,2 and 4 for the Gaussian orthogonal, Gaussian unitary and

Gaussian sympletic ensembles respectively. The quantity k is equal to the number of

the non-interacting series of levels; indeed, levels with different precisely defined

quantum numbers do not interact with one-another. The quantity s is the degeneracy

factor. Thus, the amplitude of fluctuations depends on BS, and k. Later, Al’tshuler

and Shklovskii[3] showed that in a system connected to the outside with ideal probes,

k-s2

B

 

<16N<E>12>~ (2-13)

fi
l
v
-
i

which is consistent with Bq. (2-2) and directly gives Eq. (1-3).
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2.C.3 Diagrammatic approach

The microscopic theory of UCF has been formulated on the basis of impurity-

averaged Green function techniques with kple as a perturbation parameter. This

complicated calculation provides a quantitative description of UCF including the

UCF crossover fimctions between the different random matrix ensembles. Also, the

effect of finite temperature can be handled quantitatively.

Within the diagrammatic calculation, the amplitude of UCF stems fiom two

channels which contribute equally at zero magnetic field: the cooper (particle-

particle) and diffuson (particle-hole) channel. Quantitative understanding of the UCF

crossover function requires the proper handling of such channels with respect to

magnetic field and spin-orbit scattering. There are several calculations reported. Lee,

Stone and Fukuyama[8] first pointed out some of the UCF reduction factors, and

Feng[l3] calculated the UCF reductions in the presence of spin-orbit scattering and

the Zeeman effect. Stone[l4] presented the calculation on the UCF noise crossover.

Chandrasekhar et.al.[15] discussed the effect of spin-dependent scattering on UCF.

A simple way to look at various UCF reduction factors is to describe the

amplitude of UCF in terms of the spin variables of the channels. The spin variables

are total spin J and its projection M2, of electron and hole for the diffuson channel,

and of electron and electron for the cooper channel. We can re-write each channel in

terms of spin-singlet (J=O, M=O) and spin-triplet (J=l, M=il,0) terms. The

conductance variance is given by:

(66)2 = gemswf +§(SG.(B.L..))2],.,. fleece? +%<66.(guBB.L..»21ph

(2-14)
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where G, and G, stand for the conductance of singlet and triplet part respectively.

Also, the pp and ph mean the particle-particle and the particle-hole channel,

respectively. Strong spin-orbit scattering (LSD—)0) suppresses the triplet contribution

in both channels, leading to a factor of 4 reduction in UCF. The effect of magnetic

field comes from an orbital effect in the cooperon channel and spin effect in the

diffuson channel. An application of weak magnetic field suppresses the B-dependent

cooper channel (both singlet and triplet), and reduces UCF by factor of 2, whether the

spin-orbit scattering is strong or not. The effect of Zeeman splitting can be observed

due to the suppression of the Mz=ztl triplet parts in the diffuson channel only if the

spin-orbit scattering is weak.

2.C.4 The Amplitude of UCF.

The theoretical approaches have shown that the amplitude of UCF depends on the

statistical properties of the random matrix ensembles which can be varied

experimentally by application of magnetic field and spin-orbit scattering. The

predicted reduction factors are summarized in Eq. (1-3) as:

lit-32

4 [3

 

(22>2 e

and are summarized in Table 1-1. The B represents the random matrix ensemble

characterized by time-reversal and spin symmetry. The degeneracy s stems from the

electron spin symmetry in the weak spin-orbit scattering regime, and from the

Kramers degeneracy in the strong spin-orbit scattering regime. The k is the number

of statistically independent channels. The characteristic field scales involved in the

crossover between different regimes are denoted as BC] and Bez-
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Here we repeat the Table 1-1 for convenience.

Table 1-1: g is defined as G/(e2/h).

 

 

 

 

B<<Bc1 Bcl<<B<<ng B>>B22

weak spin-orbit (6g)2 5 1 (6g)2 2 1/2 (5g)2 5 1/4

limit B=1, k=1, s=2 [3=2, k=l, s=2 [3:2, k=2, s=1

strong spin-orbit (6g)2 5 1/4 (8g)2 5 1/8 (6g)2 5 1/8

limit B=4, k=l, s=2 13:2, k=1, s=1 [3:2, k--1, s=l   
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2D. Quantitative Analysis ofUCF

First, the mathematical definition of important quantities related to UCF (for

example, field correlation, variance, and noise) are introduced. Since our

experiment focused on the relative amplitude ofUCF as a function of the external

magnetic field, the theoretical derivation and evaluation of the UCF crossover

functions is presented.

2D.] Field correlation, Variance and UCF noise

0 Field correlation and Variance[8]

UCF theory is based on the ergodic hypothesis -- ensemble averaging of the

conductance is equivalent to averaging the conductance of a single sample over

magnetic field, or over the Fermi energy in a semiconductor. Changing the Fermi

energy or magnetic field randomizes the phases of electrons, leading to chaotic

variation of the conductance. If one changes the field or Fermi energy enough so that

the phases of electrons are totally uncorrelated with those at the original value of the

field or energy, then the sample acts as a new sample in the measurement of

conductance. The correlation function of conductance with respect to the variation of

the field or the energy, F(AE,AB), can be defined by,

F(AE.AB.B)=<5g(EFiB)5g(EF +AE.B+AB)> (2-15)

where 6g: g(Ep,B)-(g(E,.-,B)). The angular bracket () means an ensemble

average. The variance of conductance is given by,

Var<g> = «62)2 > = «g—(M) (2-16)
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The correlation function with AB = AB = 0 gives the variance.

At finite temperature, conductance fluctuations are reduced by "classical

averaging" once the temperature is high enough that the phase breaking length is

shorter than the sample length. Also, thermal smearing of the Fermi surface reduces

the amplitude of conductance fluctuations due to "thermal averaging" in which the

length scale is the thermal diffusion length LT = {2%. The formula for the field

B

correlation FTat finite T is given by

Fr(Au.AB,T) = 161151 ldEzf'(Et .u)f'(E2 .11 + Art)
(2-17)

x (58(ElaB)58(EZaB+AB))

= [dAE K(AE,Au)Fo(|AE
 
’AB),

df
where f'= 31::- , f is the Fermi distribution function, F0 is the T=0 correlation

function defined by Eq. (2-15) and K(AE,Au) is the convolution integral

KMEtAH):idErf'(Eritl)f'(E1- AEttl + All)

The variance of g is

Var[g(B.7)] = —K(——)F0(AE.B) (2-18)

£1 dAE AE

“2 21:37 ZkBT

where K(x) = (x cothx — l) / sinh2 (x) and s is the spin degeneracy.

o UCF Noise
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Since UCF arises from the interference of the electron waves scattered from

the defects or impurities, a change of the random scattering potential yields

fluctuations in conductance (8g')2 or noise. (A brief discussion of the noise spectrum

is given in the appendix.) Denoting the random impurity potentials of many

impurities by V(r)and V(r'), the noise at magnetic field B and temperature T is given

by:

(sew. 7312 = <1g(B.T.V) - g(B. T.V')12>

= 2{Var[g(B. 7)] - (58(3. T.V)58(B. TiV' )>} (2-19)

The sensitivity of UCF to a change of the random scattering potentials was

calculated by Feng, Lee, and Stone[16] and by Al'tshuler and Spivak[17]. The

conductance change, 5g], of a coherent volume due to a single impurity movement by

a distance Sr is:

1

(581 )2 ~ w(%)d'2a(krfir) (2-20)

F e

where a(k,:6r) is the phase shift that the electron experiences due to a single impurity

motion, and a(kF6r) approaches unity for 8r >> kp". Surprisingly, a single impurity

can cause saturation of the conductance fluctuations in the case of kp'e =1, so the

UCF noise shows extreme sensitivity to the motion of defects.

2D.2 Crossover function in particle-particle channel.

In this part, the derivation and evaluation of the UCF noise crossover

functions in a quasi-1D sample will be discussed since we measured the l/f noise in
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quasi-1D samples. (See Chapter 4 & 5.) Stone[l4] calculated the l/f noise crossover

function in 2D. To get the 1D crossover function, one approach is to modify Stone’s

2D calculation. Instead, we used an alternative route in which the 1/f noise crossover

function can be obtained starting with an analytical expression for the field

autocorrelation of conductance, F(AB) = (g(B)g(B + AB)) , given by Beenackker

and von Houton[18].

2D.2.1 Method with field correlation function

0 overview

The amplitude of UCF stems from two channels which contribute equally:

particle-particle and particle-hole channel. Lee etal [8] showed that the magnetic

field enters the UCF calculation by means of the semi-classical approximation for the

Green function, G(r,r'):

. r

G(r,r', B) = exp[31‘ijA-d1]a(r,r')
h/er

Since the product of G(r,r')G(r',r) enters in the particle-hole channel, only AA appears

in the diffusion equation and the correlation function F’" (AB) is determined by the

eigenvalues and eigenvectors ofthe diffusion equation[8]:

‘t (-iAE + D(—iV — eAA)’ +t ," )Q," (r) = Ma, (r) (221)

Whereas for the particle-particle channel, (AA+2A) appears in the diffusion equation

which determines FP” (B, AB). The diffusion equation for the particle-particle

channel is:
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1:(-iAE + D(-iV — e(2A + AA»2 +1: ,4 )Q, (r) = Mpg, (r) (222)

The magnetic field correlation firnction is given by the sum of the two contributions,

which are equal at B=O:

F(B, AB) = FP”(AB) + F””(B, AB) (2-23)

The B-dependence of F comes from the particle-particle channel. (Here, we don't

consider the Zeeman effect.) When there is magnetic flux larger than h/e (one flux

quantum) in a coherent area of the sample, then EDP —-) O and F(B,AB) z FP”(AB), i.e.

the variance drops by exactly a factor of two, i.e. F(B >> Bel, O) z E’h(0) = 1/2

F(0,0).

Stone[l4] pointed out that the crossover function for the variance of g is

identical to the large field conductance correlation function F”" (AB) if one makes

the substitution eAB —) 2eB. This can be checked from the diffusion equations Eq.

(2-21) and (2-22). The cooperon contribution to the UCF variance at fixed field can

be obtained from the diffusion Eq. (2-22) with AA = 0. Compared to Eq.(2-21), the

only difference in the diffusion equation is the substitution of AA into 2A. Then

Var” (g: B) = F”"(AB —) 2B) (2-24)

Al'tshuler and Spivak[l6] showed that for small variations in the impurity potential V,

and V', we get the noise fimction in the following way:

. 2 ~_ . d -[5g (B,T)] ~ 2y d(l/r¢)Var[g(B,T)] (2 25)
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where, 1': [1—((VV')/(V)2)]/te,. This is the case ofunsaturated noise, i.e. 8g' <<

1. The noise crossover function in the cooper channel is simply,

vPPtB,T)=15g'(B.T)12 /16g'<B=o.T)12. <2-26)

0 ID field correlation function

An analytical formula for the field correlation function for conductance in the

diffusive regime was calculated by Beenakkar and von Houten[17], in the case of a

quasi-1D geometry (W << L¢ << L) where L and W are the length and width. The

field correlation function is given by

e2

_ 2i
h

—1
2-272“ L12) ( )

L 3

F(AB) e 6( )2 33—0 +

L

Here, the effect of magnetic field is corporated into L,» = JD”, with D = vfle / 3

in the following way:

1/1¢(AB) = l/T¢(O)+l/TAB

1 nWAB

1/ =—D
TAB 3 x( h/e

 

)2 (2-28)

L;- is the thermal length defined as LT = HAD? . From Eq. (2-24),

B
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VarPP(g:B) = FP"(AB —+ 23)

  

2 L 3(8) 9 L 2(2) (2-29)
z 6637? —¢——3——(1 + —Ji——2—)‘l

L 2n LT

where

L¢‘2(B)= 1 l "W3 2 (2-30)2 +

L,» (o) 3 h/2e

(Note the factor of 2 compared to Eq. (2-28).)

0 1D llf noise crossover function

The l/f noise crossover function, V” (B), in the cooper channel is calculated

from Eq. (2-25) and (2-29):

sg'zwT)~ L. (B) (19 L"—(—,))'
2n 1.

2 T 2 (2-31)

11-3“ (B>(1+_9_L. (B)

n L72 2n LT2

 

)“1

where the effect of magnetic field is incorporated into L¢(B) using Eq. (2-30). The

total noise is given by Cooperon and diffuson contributions that are equal at zero

field, so the crossover fimction for the relative noise power at low magnetic field is:

6g'2 (B)
v(B)=-—(1+2

58' (0)

—) (2-32)

Figure 2.1 shows the evaluation ofthe ID field correlation, variance and l/f noise

crossover function. Here, we use 1 pm for L4,, 0.17pm for L7- and 0.45um for the
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sample width W. (These values are appropriate for the sample in Chapter 4 at T = 1.6

K.)

2D.2.2 Method by Stone[l4]

Stone showed that the T=0 energy correlation function F0(AE,B) is given by

1 2 +1Re(-i2-) (2-33)Fo(AE.B) = Z 2 pp

la‘1 Iii”!

 

where, xppa are the eigenvalues ofthe differential equation,

(—iAE / 21+ D(—iV —2eA)2 ”(1)9, (r) = 21:59, (r) (234)

The variance of conductance is given by Eq. (2-18) and the 1/f noise can be obtained

from Eq. (2-25). The noise (8g')2 of the cooper channel can be written as following,

4:2 dAE AE d
5 '2 B, =—— —K F AE,B 2-35 

Substitution ofF0 yields numerical formula for the noise crossover. The difference

between the analytical and numerical expressions for the field correlation is less than

10% [18]. We expect that the difference in the noise crossover function is similarly

insignificant.

2.D.2.3 Characteristic field scale

From a measurement of the static variation of G versus magnetic field (the

"magnetofingerprint"), we get the magnetic field correlation range Bc where F(AB)

drops to half of its fully correlated value(i.e. F(AB=O)). Bc represents the typical
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spacing of the peaks and valleys in 80(3) of the magnetofingerprint and it is

shown[8,l8] that the field correlation range of 80(3) is determined by the phase

breaking length L4, in a quasi 1D sample (thickness t, width W << L¢). The value of

Bc is given by

 Bc = const x

Beenakker et. a1 [18] calculated the numerical constant and showed that is equal to

0.95 for L¢>>LT and 0.42 for L¢<<LT.

In the 1/f noise measurement the field scale Ed is defined as the magnetic

field where the 1/f noise power drops to 3/4 of that of zero field. BC] is the field scale

required to suppress the particle-particle channel contribution to the 1/f noise, and is

also determined by the phase breaking length L4,. In quasi-1D system[8,l3,14] Bel is

given by

BC] = const fle—

W

where the numerical constant is evaluated as 0.21 for L¢>>LT and 0.16 for L¢<<LT

from Eq. (2-31) and (2—32).

2.D.3 UCF crossover function at strong magnetic field

0 Overview

At strong magnetic field where the cooper channel is completely suppressed,

the magnetic field couples to the diffuson channel due to the Zeeman splitting of the

electron spin state in the weak spin-orbit scattering limit. Because the Mz=i1 triplet
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states are sensitive to the Zeeman splitting, there will be a second reduction ofUCF

from suppression ofthe contribution of the diffusons with Mz=:t:1. The Zeeman

effect can be incorporated into UCF theory following the work of Stone[l4] or

Feng's[1 3] calculations. According to Stone, the Zeeman effect can be incorporated

by replacing AE by AE+guBB in Eq. (2-33). Stone claimed that for the 1/f noise in all

dimensions and for Var(g) in quasi-1D samples, the characteristic field scale(Bc2) is

determined by the energy correlation length ("Thouless energy") of a phase coherent

area, hD/ L2 , not by the temperature. For Var(g) in 2D- or 3D- samples, Bc2 given

by Bc2=Emax/gu3, where Emax is the larger of {kB[11}. Independently, Feng

calculated the Zeeman effect on UCF, and showed that the values of 3,2 are

determined by the temperature in all situations when LT < L4, < L. We have checked

that Feng's formula in 1D is the same as the 1D formula based on Stone's approach.

We also evaluated the noise crossover function in 2D, following Stone's calculation

(see figure 2.5). We found that Bcz is determined by the larger of {kBR;- } in all

sample dimensions, and our current understanding ofthe Bcz is consistent with Feng's

predictions. Thus Stone's statement about the Zeeman crossover ofthe noise is

incorrect, although his calculations are correct. Here, we describe the calculations on

the Zeeman effect on the UCF variance, and present our numerical evaluation of the

Zeeman effect on the 1/f noise.

a 1D variance calculation

Feng has treated the Zeeman effect on UCF diagrammatically by taking the

Zeeman energy into account in the spin-dependent electronic energy

Sky = fizk2 /2m +v§u3H— E].- where v = i1 is the spin index. The complex

calculation of the spin-dependent diffuson diagram in the particle-hole channel is

carried out using a Dyson equation. Here, we skip the details of the algebra but
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explain the outline to get the variance of conductance in the particle-hole channel.

From the algebraic manipulations, the particle-hole diffusion propagators Aapys are

obtained explicitly. The T=0 energy correlation function can be given, following Lee

et.al.[8] and Al'tshuler and Shklovskii[3], by

2

Mot/115,3). ):[2 2 lAemstqpi,1/rt.guhB)| + 2 Remaeysf] (2-35)
qph (11375 (113%

where, qph = (rtm/ L)2 , m = 1,2,- - -oo. By substituting the various expressions into

this equation, the T=0 energy correlation function is

 

 

2 4 2 2
FP"0(AE, B) = 2(1)2 L‘4 2{ + +

h .4 £122 .4 AErgflsBz .4 AE+8flsBz
qphq +(D) q +( D ) q +( D )

AB 32 AE B

2(q.4_(_A_E_)2) ta" -(———-—g"”)) (q'4 —(—————+g“”)2

+ 4 Al132 4 M811332 + 4 AE+2H332} (2-36)
q 42(3) q +(-—-l—)—) q +(———5——)

where q'2 = q:h + ‘12-- The conductance fluctuations at T=0 are given by

11>

Fpho (AE = O, B). One can recover the formula of the T=O conductance fluctuations

given by Feng's published result[13] and by the Lee and Stone result[2] for the case of

B=0. From Eq. (2-18), the conductance fluctuations at finite temperature are

Ph __ ph

Var 1g<B n1~ [ST—ABETquBTW(AB B)

A typical term contributing to the conductance fluctuations with the Zeeman effect is,
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w l

Var[g(B. 7)] cc 2 [mm ' <2-37)
.2. 0 11m2 +7)2 +(ni9)2]

2

wherev=<i)2. «FAB/2.. win-22, €=8HBB/(kBT), t="BT.
nL¢ L 8

C

 

Figure 2.3a shows the evaluation ofthe finite temperature variance in the particle-

hole channel.

0 1D l/f noise crossover function

From Eq. (2-25), the l/f noise amplitude in the particle-hole channel can be

calculated in a straightforward manner. A typical contribution is

 

”’ d 1

5ng (BJ) oc dn Km) {-— 1

.21 0111th +2)2 +(nis)2]

(2-3 8)

Figure 2.3b shows the evaluation ofthe noise crossover function in the particle-hole

channel.

0 Characteristic field scale

The field dependence of the conductance fluctuations due to the Zeeman effect

in the particle-hole channel can be characterized by the field scale Bc2 where the

variance or the l/f noise drops to the half of the value at zero field. From figure 2.33

for variance and 2.3b for the noise, we conclude that for the case k3T >> h_D2 in

quasi-1D at finite temperature, Bc2 is given by L6)

kaT

ng

aggzj
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in all dimensions. Bc2 is the same for measurement of the variance or the 1/f noise.

When kBT << Z—D , B62 is determined by the Thouless energy. Figure 2.4 shows the

4’

evaluation ofthe UCF noise at different temperatures with a fixed Thouless energy,

and implies that Bc2 is determined by the larger of {kB T, g}.
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0 Effect of spin-orbit scattering

The calculation ofthe Zeeman effect shown so far has been limited to the

weak spin-orbit scattering limit. Strong spin-orbit scattering breaks the spin-rotation

symmetry and the Zeeman effect can not be observed. This interplay between the

Zeeman effect and the spin-orbit scattering is demonstrated in figure 2.5. Figure 2.5

shows the relative amplitude ofthe variance ofthe particle-hole channel for several

values of the spin-orbit scattering rate. It is shown that for L4, z 3Lso, we are already

in the strong spin-orbit scattering limit.

2E. Weak localization and low field magnetoresistance

The usefulness ofweak localization(WL) is that it allows one to extract the

electron transport length scales from the low-field magnetoresistance. One can get

then information about the phase breaking mechanism from the temperature

dependence ofthe phase breaking rate. Here, we describe briefly the quasi-1D WL

application to the magnetoresistance. A comprehensive overview ofWL is given by

the review of Bergrnann (1984)[19].

The 1D WL correction to the resistance can be written in the terms of the spin-

triplet and spin-singlet[20],
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where the effect of a magnetic field is expressed in terms of a one-dimensional

f},
"magnetic length", L (---——————). L is the spin-orbit scattering length and L

3" 2e BW so sf

is the spin-flip scattering length assuming the spin is static. This formula is valid in

the region ofL¢(T) > Wand W< LB- In one-dimensional WL, the resistance

correction is sensitive to W, giving an estimation of W ofthe 1D wire. In the case of

L << L , the tri let term is su ressed, resultin in a sitive ma etoresistance.so '1 P PP g P0 gn

Strong spin-flip scattering suppresses the WL contribution completely.
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Figure 2.1 Evaluation of (a) ID field autocorrelation function F(B=0, AB)

calculated by Beenakker and von Houton and (b) variance 5g2(B)and 1/f noise

crossover vPP(B) in particle-particle channel. The parameter values are L4, = 1 pm, LT

=0.17um.
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Figure 2.4 Evaluation ofthe l/f noise crossover in the particle-hole channel for T

= 3.3 mK and 1.6 K. In both cases Ec (Thouless energy) = 59 mK. For the case kBT

> Ec, Bc2 4 T and is determined by the temperature. For the case kBT < Ec, Bc2
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Chapter 3

Experimental Techniques

In this chapter, I will discuss the experimental requirements and techniques to

carry out quantum transport in a low spin-orbit metal. Since the spin-orbit scattering

rate in metals depends on the atomic number(Z), we studied quantum wires and films

made of the lightest of metals, lithium. For this experiment, we utilize quench-

condensation of films, sub-micron electron beam lithography, optical lithography and

in-situ measurement of the l/f noise. To recover the small 1/f noise, we utilize a two-

phase digital lock-in amplifier which allows simultaneous measurement of total

noise(llf noise + background) and background. A magnetic field up to 9T is applied

with superconducting (SC) magnet outside the vacuum-can of a He-4 pumped

cryostat.

3A. Quench-Condensation

There are several ways to fabricate a film on a substrate; thermal evaporation,

electron-beam evaporation, sputtering, chemical vapor deposition and molecular

beam epitaxy. Different methods give different film quality from single crystal to

highly disordered films. The thermal evaporation used in this work produces

polycrystalline films and the grain size can be controlled by the substrate temperature

at the evaporation stage.

The metallic lithium is very reactive in air, so, it must be handled in an inert

gas (He, or Ar) atmosphere or in a high vacuum. Metallic lithium is thermally

evapbrated onto a cold substrate kept at liquid helium temperature and the deposited

metal atoms are "quench-condensed" due to low diffusion mobility. All the electrical
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measurements are performed in-situ, with electrical wires connected already on the

substrate before the Li evaporation. The important factors in the quench-

condensation are the following; fine alignment between the Li source and the

lithographed mask on the substrate, a scheme for holding the Li source inside the

filament, a pre-evaporation to remove the contaminated surface of Li source, and

minimization of thermal load on the substrate by providing a good heat-sinking

scheme and a fast shutter control during the evaporation.

Figure 3.1a shows a schematic set-up for the quench condensation with a

cryo-evaporator inside the vacuum-can. The diameter of the vacuum-can tail is set as

2.5 inch due to a geometrical restriction given by the 9T supercondcting NbTi

magnet. The substrate, shown in figure 3. lb, has a sub-micron mask fabricated with

electron-beam lithography and is heat-sunk to the 1K pot. The RF-filtered electrical

wires are for in-situ measurement.

Lithium has a high vapor pressure and is easy to evaporate. The melting point

is 180°C. Lithium reacts with some metals, (for instance, W or Au) and forms alloys,

so, materials such as Ta, Ni-Cr and Fe based alloys are used for the heating elements.

Be aware that Cr or Fe impurities are strongly magnetic in the Li matrix[l]. To

evaporate both directions, a filament geometry is used with a scheme to keep a Li

blob from falling out of the filament. A blob of lithium is inserted into the filament in

an Ar gas-filled glove bag. The Li blob is somewhat contaminated at its surface

during loading into the cryostat. Several stages of pre-evaporation of the Li blob are

carried out during the cooling of the cryostat. A spring-loaded shutter and radiation

baffles are located between the filament and the substrate. The fast shutter control

helps to minimize thermal shock to the mask on the substrate.

A film thickness monitor, located at the bottom of the vacuum can, is heat-

sunk at 4.2 K to minimize drifi of the temperature, and hence the resonance frequency

(~6 MHz) of the Quartz sensor crystal. A small area on the back of the sensor crystal
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is greased down to the housing without deteriorating the gold-plated electrical

contact. All the electrical connections are made with a solid Copper miniature coaxial

cable (capacitance z 30 pF/ft at 5 kHz) except the connection just below the vacuum

can lid where 304 stainless steel mini-coax (capacitance z 50 pF/fi) is used.

Hermetically sealed microdot miniature connectors are used. The noise level in the

film thickness and rate readings is not problematic in the case of evaporation of heavy

material, for example, Ag or Au. In the case of Li evaporation (lithium has a very

low mass density only about half that of water), the signal to noise ratio is worse and

sometime problematic in terms of reading the evaporation rate. Checking all the

electrical contacts including the spring contact at the back of the sensor crystal and

proper grounding of the electrical circuits are helpful.

3B. Electron-beam Lithography

The demand of large scale integrated circuit devices has driven the

development of nricrofabrication technique. Nowadays, state-of-art lithography

produces nano-meter scale structures which can be smaller than the electron phase

coherence length.

In low temperature l/f noise experiments, signal to noise ratio (SNR) is

somewhat problematic. According to UCF theory[2], the quasi one—dimensional (1D)

geometry (width < L¢) has better SNR than 2D film. A typical value of the phase

coherence length is of the order of one micron or less at low-temperature, so the

transverse dimension of the sample must be in the sub-micron or nano-meter scale.

Fabrication of sub-micron sized samples requires lithographic technique beyond

optical. Several methods are known to fabricate sub-micron structures; X-ray

lithography[3], deep UV lithography[4], step-edge technique[5] and electron-beam

lithography[6,7]. For this work, we utilize electron-beam lithography (BBL). EBL is
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done in a scanning electron microscope (SEM) system built with control for electron-

bearn writing. The focused electron beam of diameter a few nanometers or less, is

scanned in the desired pattern over an e-beam sensitive resist. Then, the exposed

resist is developed and the resulting image ofthe resist pattern is used as a mask.

The SEM is a JEOL JSM84OA microscope with a tungsten source filament.

Exposure onto the e-beam sensitive resist is done by the focused e-beam with energy

of 30 keV (the maximum for this system is 35 keV). The e-beam current, used for

small structure patteming, is 5 pA, and a beam-blanking shutter controls the exposure

time. The important factors to get optimum performance in EBL are the following;

(1) generation of a well-focused e-beam with fine tuning of astigmatism in the beam

lenses, and sharp focusing of the high energy e-beam on top of the imaging layer, (2)

correct beam dose distribution to minimize the proximity effect, i.e. overexposure of

nearby parts of the pattern, (3) correct aligmnent of lithographic patterns, (4) correct

procedure for developing the exposed resist with control of developing time and

environmental conditions, (5) formation of the “undercut” profile of the developed

area, (6) proper set-up ofSEM electronics to minimize the noise from electrical lines.

33.1 Resolution, Undercut profile.

The most popular electron-beam resist used as the imaging layer is PMMA

(Polymethl Methacrylate) resist which has an inherent resolution of about 20nm[7].

Finite thickness of the resist leads to multiple scattering of the electron beam,

resulting in a bulbous interaction volume. If the resist thickness is kept low, then the

reduced scattering volume and shorter developing time lead to higher resolution.

Even though the thin resist scheme can improve the resolution, thick resist is better to

get the proper vertical profile, i.e. "undercut" profile, of the developed resist for the

device applications. The undercut profile of the resist keeps the evaporated metal
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through the mask from electrically shorting to the outside, so is crucial in the device

fabrication. Bilayer resist systems[8,9] are used to improve the resist profile of the

mask. A bilayer scheme consists of a thin PMMA layer on the top of a thick

copolymer layer, MMA. The bottom layer planarizes substrate topography and

minimizes backscattering at the top imaging layer. Because the copolymer is more

polar than PMMA, the proper choice of a single strong developer such as

methylisobutylketone (MIBK) produces the desirable undercut profile[6,7]. Although

the undercut profile can be obtained in the bilayer resist system, the control of the

resist thickness and developing rate for both layers is important. If the bottom layer is

considerably thicker than the top layer, then developing of both layers at the same

time could result in widening ofthe pattern.

We use 9°/o-copolyrner dissolved in 2-ethoxyethanol solvent as a bottom layer

and 2%-PMMA dissolved in chrolobenzene solvent as a top layer. A single

developer, MIBK, for the both layers is used. Figure 3.2 demonstrates the line width

versus line dose obtained from the fabrication of l rim-long line with five-terminals

attached. Figure 3.3 shows the SEM photograph of the bilayer resist pattern just after

it is developed. The line doses vary from 0.6 nC/cm to 1.4 nC/cm. To minimize the

proximity effect on the sample line, critical doses are exposed in the big areas nearby

the sample line. Two different sets of data in figure 3.2 correspond to the results

obtained from two different thickness of the copolymer layer. Total thickness of each

bilayer system is about 320 nm and 400 nm respectively. A line resolution as small

as 30 nm is achieved. Thinning the bottom copolymer improves the line resolution

with better yield offine line fabrication.

For the pattern to work as a mask, the profile must be "undercut". Figure 3.4a

shows both the undercut profiles and line resolutions, obtained in the ~400 nm thick

bilayer system. Several lines, separated by 1 pm, are patterned with the line doses

from 3 nC/cm at the left to 7 nC/cm at the right. Line resolution as small as 40 nm is
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obtained. The SEM photo in fig. 3.4b shows that the undercut profile expands ~80nm

deep into each side wall. Figure 3.5 also shows the ~100 nrn deep undercut profile of

the bilayer resist exposed by an area dose of 225 uC/cmz. From this bilayer scheme,

we are able to obtain the resolution and a reasonable amount of undercut in the sub-

micron mask.

This bilayer resist scheme works in most applications but has limitation in

terms of controlling the amount of the undercut without losing the line resolution.

One approach to avoid the competition between resolution and undercut profile, is to

use mutually exclusive developers for each layers[9]. For example, the copolymer is

insoluble in a non-polar solvent such as chlorobenzene, which is a solvent for

PMMA. PMMA is insoluble in a polar solvent such as ethoxyethanol, which is a

solvent for the copolymer, MMA. In this scheme, the amount of the undercut is

limited by the e-beam sensitivity of the bottom layer.

3B.2 sub-micron metal stencil.

Fabrication of a sub-micron mask for low-temperature quench-condensation,

combined with in-situ measurement, requires a major change of the conventional

lithography because the final "lift-off" can not be carried out. The mask should

provide mechanical rigidity and electrical isolation between the deposited material on

the substrate and that on the mask surface. Also, the mask must be thermally resistant

during the evaporation or thermal cycling. Low-temperature application of the

bilayer resist scheme is generally painful unless some extra treatment of the resist is

done - for example, evaporation of all the solvent out from the resist matrix.

Application of a metal stencil is the best, and several techniques to produce sub-

micron metal stencil have been reported, including the "brush-fire" technique[10], and

trilayer lithography[l 1]. The brush-fire technique, developed by G. Dolan, produces
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the metal stencil without losing the e-beam resist resolution. Instead, we utilize the

trilayer structure, i.e. PMMA/metal/copolymer structure. A 50nm thick layer of

aluminum is used for the metal layer because the aluminum can be etched easily.

Figure 3.6 shows a schematic procedure for trilayer lithography and the details are

given in Table 3.1. Although the trilayer process provides us with the easy control of

the undercut and the relatively easy process in metal stencil fabrication, the resolution

of the final mask is, however, determined by the isotropic chemical etching process

on the metal layer, resulting in a wider pattern than the imaging layer. An alternative

approach to avoid this problem is to do anisotropic etching of the metal layer; an

aluminum layer can be etched using Cl-based reactive ion etcher(RIE).

Figures 3.7a, 3.7b show SEM photographs of the top view and the side view

of a sub-micron metal stencil on top of the copolymer resist. The aluminum metal

layer is etched in OH-based solution and the stencil opening is 0.3 pm wide. The

0.3~0.4 um deep undercut into a side wall is shown and is quite uniform throughout

the patterned edges. A stencil opening as small as 0.2 pm has been achieved.

Figure 3.8 shows a schematic diagram of the sample geometry, which has five

probes attached. For the l/f noise measurement, the two sides of the sample form the

two lower arms of the Wheatstone bridge circuit shown in figure 3.9.

The characteristics of the samples used in this thesis are summarized in Table

3.3. Samples #5 and #6 were fabricated using Ta filament and are discussed in

Chapter 4. Samples #14 were fabricated using Ni-Cr filament and are discussed in

Chapter 5.
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Table 3.1. Procedure for trilayer e-beam lithography.

1. Copolymer coating

Spin(static dispense) 9%-copolymer (casting solution is 2-Ethoxyethanol) @ 4000

RPM and 1 min., then bake the substrate about 1 hour @ 137~140°C. (The air oven

should be dehydrated.)

Hints:

(1) The baking temperature could be lower than 140°C, but it is better to be above

124°C which is the glass temperature ofthe copolymer.

(2) The sensitivity of copolymer has small dependence on the baking temperature.

(3) For cryogenic usage, it is better to get the solvent out as much as possible.

The melting point of2-Ethoxyethanol is ~ -90F

2. AL layer coating: use thermal evaporator with water-cooled stage, and deposited

thickness is ~50 nm with a chamber pressure, ~2E-6 torr.

3. PMMA layer coating.

Spin 2%-PMMA (casting solution; chlorobenzene) @ 4900 RPM, 1min, then bake

the substrate about 1hr @ 125°C in air convetion oven. Don't bake the substrate at

higher temperature - aluminum metal layer will severely crack.

Hint:

(1) The glass temperature ofPMMA is ~ 104°C; as long as it is basked above the

glass temperature, the resolution ofpolymer matrix is fine.

(2) Eventually the PMMA layer is stripped out by 02 RIE to maximize the

cryogenic application.

4. Sample mounting in SEM chamber
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Put a small drop ofAg paint on the substrate for the E-beam focusing and wait

until it is completely dried. Using a clean dry gas, blow off dirt, if any. Mount the

sample onto a stub. The sample must be flat against the stub. Load the sample

into the chamber and wait until the pressure inside the chamber reaches the base

pressure.

5. Electron- beam exposure.

(1) Set the SEM to the following configuration:

Voltage: 35 kV

Gun Bias: Auto

Coarse Probe Current: 6e-12 (the smallest)

Aperture: 4 (the smallest)

Working Distance: 15 mm

EOS Mode: SEM

Image Select: SE1

(2) Obtain the proper saturation current and align the gun.

(3) Adjust the aperture centering and alignment mark.

(4) Focus the beam at as high as magnification. Correct the astigmatism in the

beam using the standard. Repeat this step until an optimum image is achieved.

(5) First, the sensitivity test related to e-beam exposure needs to be done critically.

(6) Do coarse alignment. Coarse alignment is not a problem either SE mode or SEM

mode for Al 50 nm case because Au contact pads underneath Al layer give enough

contrast.

(7) Do fine alignment between the contact pads and e-beam pattern.

(8) Expose the e-beam.

(9) Develop the resist about 45 see with developer, MIBK:IPA(1 :3) at room

temperature.
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Hint: the solubility ratio between the exposed and unexposed PMMA layer is high

for MIBKzlPA developer.

(10) Rinse with IPA (30 sec), and blow dry with N2 gas

6. check pattern carefully with OPTICAL microscope (X1000)

7. Al layer Wet-ETCH

Prepare fresh etching solution(for example, diluted KOH) , monitor humidity and

temperature.

Calibrate the etching time everyday and etch the substrate.

See the distinct color changes.

Rinse it very carefully with DI water.

Dry the substrate either the N2 gas blow dry or spinner dry(20 sec @ 4000 rpm).

Run a low power RIE process (19 W, 50 mtorr, 30 sec, 12 dc-bias)

Recheck the etching status of the substrate. -- The substrate should have a very nice

edge and some shadow. Be sure to etch completely through out the pattern.

Develop the copolymer layer; as long as it etches through completely, the

copolymer is developed homogeneously and reasonably fast.

8. Develop the COPOLYMER

Develop the copolymer resist with MIBK : IPA (1:3) developer in 90 sec, and rinse

it with IPA, and rinse it with DI water. Dry the substrate (spinner dry or blow dry).

Take a look and the substrate should be clean and uniformly developed. The nice,

optically-visible undercut can be defined with the continuous developing as long as

3 min. Be aware that MIBK itself will dissolve the butylacetate based Ag paint.

9. RIE pattern transfer.
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Use high power 02 RIE (99W, pressure ~ 75 mtorr, processing time ~ 90 sec). It

will take the top PMMA out and transfer the etched pattern in the metal layer down

to the bottom copolymer layer. Proper control gives a well-defined undercut and

clean substrate. A 3 min. long RIE process gives about 0.5pm undercut, with

optical halo.

10. SEM check

Check the metal stencil opening with e-beam current of 5 pA, at magnification around

SOOOX ~15000X.

11. check connections between Al layer andAupads electrically
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3C. Optical Lithography

Microfabrication of features bigger than 1pm can be done optically. A photo-

sensitive resist (for example, Shipley 1813) undergoes a chemical change after it is

exposed optically. When developed, it forms a mask for microfabrication.

Defining a vertical profile of the mask is generally important in the

application ofphotolithography and can be controlled easily using several different

approaches. We use a bilayer photoresist scheme where the sensitivity of each resist

is controlled by the different UV exposure on the layers. This bilayer scheme

produces a 1 ~ 1.5 pm deep undercut profile at the bottom layer with proper exposure

and developing. Evaporation of metal through the mask is done at an angle of 45°

while spinning the substrate. This process allow us to get a well-tapered contact leads

for the next step. Table 3-2 summarizes the procedure of bilayer optical lithography.
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Table 3.2 Bilayer Optical Lithography

1. Make a contact printing mask and prepare clean substrates.

2. Spin the photoresist (Shipley 1813) @ 4900 rpm during 30 Sec. Watch out for the

edge bead. Bake the substrate @ 90°C during 30 min. inside air convection oven.

(The oven must be pre-baked and dehydrated). The resulting thickness ofthe

photoresist layer is about 1.1~1.3 pm

3. Warm up the Hg UV lamp (100 watt ,9» = 240~350 nm) more than 10 min.. Do

blank exposure about 10~12 second.

4 Spin and bake the top layer of photoresist (Shipley 1813) at the same condition.

Cool the substrate down.

4. Do contact printing with mask; expose the UV on the substrate during 11 second.

5. Develop the substrate during about 45-50 second.

6. Check the developed pattern and amount of the undercut.

7. Evaporate metal onto the substrate; tilt the substrate at 40°~45° from the

evaporation source and spin during the evaporation.

8. Soak into Acetone and lift off the resist.



Table 3.3: Sample characteristics. The samples discussed in chapter 5 are 1,2,3 and 4.
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Sample 5 and 6 are discussed in Chapter 4.

 

 

 

 

 

 

 

       

1 20 0.11 13 5.75 13 0.3

2 20 0.11 13 11.5 4.4 0.18

3 5800 205 7.8 0.26

4 5800 205 1.7 0.57

5 20 0.2 33 0.9 32 1.3

6 20 0.45 54 0.45 40 1.4

Bishop 0.074 25 2.1 20 1.0
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3D. l/f Noise Measurement.

The standard procedures for measuring resistance fluctuations (1/f noise)

involve passing a current through the sample, thereby converting resistance noise to

voltage noise by Ohm’s law. (See also figure A in the Appendix.) The chief

difficulty in such measurement is that the noise from the sample may be hidden by

large background noise» either Johnson noise or preamplifier noise. Of course the

signal from the sample can be increased simply by increasing the measurement

current, but this is ofien unacceptable due to Joule heating. Several methods have

been used to reduce the background noise such as an ac bridge technique[12], or use

of a cooled step-up transformer[l3]. Recovering the l/f noise from the background

requires a second measurement without current, then the background is subtracted

from the first total noise measurement. This procedure relies on stable background

noise.

An alternative approach is to measure noise and background simultaneously.

Several such techniques have been discussed. The two amplifier cross-correlation

technique[l4] rejects the preamplifier noise in the background, but does not reject the

sample Johnson noise. The double-frequency ac method[15] requires that the bridge

circuit must be in balance at both frequencies.

3D.] dual-phase technique.

There are two elegant methods that subtract background noise using the ac

bridge method with a single drive frequency. First, one can simultaneously measure

the in-phase (0°) and quadrature (90°) signals fi'om the bridge using a dual-phase

lock-in amplifier. The power spectrum of the former contains both sample resistance

noise and background, while the power spectrum of the latter contains only

background. Subtracting the two spectra yields the sample noise alone.

Unfortunately, commercial lock-in amplifiers tend to have large phase noise, so this
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technique is limited in practice. Verbruggen et al. showed that the background is

eliminated by correlating the two orthogonal outputs of a dual phase lock-in amplifier

set to phases of plus and minus 45° with respect to the bridge current[16]. The 45°

cross-correlation method also requires extremely good orthogonality and low phase

noise in the lock-in amplifier.

To achieve the extreme phase stability and orthogonality need for these

methods, we use a completely digital measurement system[l 7]. In addition to these

requirements, a digital measurement system demands a large real-time calculation

bandwidth, since it acts as both lock-in amplifier and spectrum analyzer. The recent

development of the digital signal processor (DSP) integrated circuits makes it

possible to implement such a system using only a DSP board with a small amount of

memory, a digital-to-analog interface, and personal computer.

3B.2 Digital lock-in amplifier.

(This part is based on our article published in Review of Sicentific

Instruments in 1992.)

We have developed a noise measurement system based on the Motorola DSP

56001 digital signal processor. Figure 3.8 shows our noise measurement system

using the Motorola DSP boards and personal computer(PC). The digital signal

processor and several kilobytes of memory lie on one board. A second board contains

16 bit D/A and A/D converters which operate from a single clock, assuring their

synchronization. A sine wave generated by the D/A converter excites the bridge. By

choosing the frequency of the excitation signal to be commensurate with the D/A

clock frequency, total harmonic distortion (THD) 140 dB below the carrier is

achieved. A third board is an interfacing board with the PC.

The difference signal from the bridge is amplified by a low-noise preamp,

such as the Stanford SR 560 or the PAR 116. The output of the preamp is low-pass
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filtered to prevent aliasing, then digitized by the A/D converter. A single-pole RC

filter is sufficient to prevent aliasing with the sigma-delta-type A/D converter which

has the high sample rate. The sigma-delta A/D converter samples the incoming signal

at a rate 128 times faster than the normal data conversion rate, then averages groups

of 128 points to get the output. Since the Motorola A/D converter is supplied with dc

power levels of 0 and 5 V, the A/D inputs are dc biased to 2.5 V with a simple home-

built difi'erential-to-differential level shifter from the standard op-amp circuits. Hence

the signal can be ac coupled.

Figure 3.9 shows the block diagram for the digital signal processing of the

input signal. First, the phase of the signal is shified to compensate for the overall

phase shift of the experiment. The signal is digitally mixed (multiplied) by two

orthogonal sine waves chosen to be either at 0° and 90° or at i45° with respect to the

reference. The mixed signals are digitally filtered[18] and the sampling rate is

decimated to reduce the number of points stored in memory on the DSP board and

later Fourier transformed by the PC. The processing of filtering and decimation is

represented by the following equation:

N

y(M) = 12{100Mmn - k)

where n is the decimation ratio, h(k) are the filter impulse response coefficients, N is

the number of filter taps, and x and y are the input and output data streams,

respectively. We performed the digital filtering in three nested stages to reduce the

number of filtering taps in any one stage. The advantage of a multistage digital filter

is that the initial stages may have wide transition bands as long as aliased signals do

not appear in the final passband of the complete three-stage filter[19]. Only the final

stage need have a sharp transition band to minimize the number of unusable points in
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the power spectrum. We designed three Chevychev equiripple FIR filters with

maximally flat passbands, using the Monarch software package. Three filters have

75, 51, and 40 taps, respectively. Transfer functions of the three filters are shown in

figure 3.10. When used with a 10-5-2 decimation scheme, these filters provides over

100 dB attenuation of the signals above the Nyquist frequency of the final

(decimated) sample rate.

The PC starts the DSP system to collect the data, and simultaneously analyzes

the data from the previous run. The PC performs fast Fourier transforms (FFT) of

each data channel to get the l/f noise spectrum by cross correlation in the case of $45

° method, or it calculates two power spectra and subtracts the results in the case of 0°-

90° method. Our program for the real-time signal processing is written in assembly

language. Table 3.3 shows an assembly code used in the implementation of a dual-

channel digital lock-in-amplifier.

The performance of our system is demonstrated in figure 3.11. The noise

measurements are obtained by averaging 128 runs (~ 35 minuites). Our system

suppresses the background noise by a factor of 100, and substantially out-performs

commercial analog lock-in amplifier. The limit is set by statistical errors due to the

finite measurement time.

After we developed our DSP-based noise measurement system, Stanford

Instruments introduced a commercial DSP lock-in amplifier which is convenient to

vary the experimental set-up, for example, drive current and phase shift. We used a

Stanford SR850 DSP lock-in for the actual noise measurements in this thesis. Since

the Stanford DSP lock-in amplifier works as a voltmeter basically, the output signal is

processed with the Iotech filter and digitizer to get a bandwidth-limited signal for the

Fast-Fourier transform (FFT). The personal computer interfaced with Iotech

instruments performs the FFT to extract the noise power.
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Set-up for quench-condensation.
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Figure 3.1 A schematic set-up for quench-condensation including (a) a cryo-

evaporator and (b) the substrate with sub-micron metal stencil mask.
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Figure 3.2 Line dose versus line width obtained by the bilayer electron-beam

lithography. Thinning the resist gives the better control of line width well below 100

nm.
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Figure 3.3 Scanning electron microscope photograph of the patterned bilayer

resist itself. The developed lines are about 40 mm wide.



 
Figure 3.4 (a) The undercut profiles obtained from ~400 nm thick bilayer resist

are shown. (b) Cross-section ofthe e-beam exposed line is shown with the ~80 nm

deep undercut profile.
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Figure 3.5 SEM photo of the area exposed by the area_dose, 225uC/cm2.
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Trilayer Electron beam Lithography

E-beam exposure : electron-beam

K

\ yresist

metal —> :\\\\\\\\\\\\\\\\\\\/

Substrate 

Developing :

 

Chemical etching :

§\\\\\\\\
\\\\\\\V

 

RIE pattern transfer : . .

,/ Sub-mrcron metal stencrl

M

Figure 3.6 Schematic procedure ofthe trilayer electron beam lithography.
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Figure 3.7 SEM photograph of a sub-micron metal stencil. (a) The top view

shows the uniform undercut profile developed underneath of the metal stencil. (b)

The side view shows the metal stencil on top of the resist.



Figure 3.8
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Schematic diagram of the sample geometry.
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Figure 3.10 Block diagram of digital signal processing system. The mixing and

digital filtering and decimation are performed in real time by the Motorola DSP

56001. '
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Figure 3.11 Transfer function ofthe three FIR digital filters preceding the three

decimations. The frequency scale is referred to the original sample rate of 14.4 kHz

before decimation. The sample rate is reduced by factors of 10, 5, and 2 in successive

decimation stages.
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background (:1) was measured with the 90 method, and the sample noise (0) was

measured with the 45 cross-correlation method.



input_0

predo

input

endo_1

;perform

calcsl

calccl

73

Table 3.4 The part of Assembly code for implementation

of dual-phase lock-in amplifier using DSP 56000.

do #prepts,predo

jclr #7,x:$ffee,input_0

move p:(r7)+n7,x1

move x1,x:$ffef

nop

do #pts,endo_out

do #dec3,endo_3

do #dec2,endo_2

do #dec1,endo_1

jclr #7,x:$£fee,input

move x:$ffef,x0

move #ahift,n7

move p:(r7),x1

move x1,x:$£fef

move (r7I-n7

move #delta,n7

move x:(r7).x1

mpy x1,x0.a

move a,x:(r0) y:(r7)+n7,y1

mpy y1,x0,a

move #shift,n7

move a,y:(r0)-

move (r7)+n7

nop

first filtering for each carriers

move (r0I+

clr a x:(r0)+,x0 y:(r4)+,y0

rep #ntabsl-l

mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0

macr x0,y0,a

move a,x:(r1l

clr a y:(r0)+,y1 x:(r4)+,x1

rep #ntabsl-l

mac x1,y1,a y:(r0)+,y1 x:(r4)+,x1

macr x1,y1,a (r0)-

move a,y:(r1)-

nopendo_2

;perform second filtering for each carriers

calcsz

calcc2

endo_3

calcs3

move (r1)+

clr a x:(r1)+,x0 y:(r5)+,y0

rep #ntabez-l

mac. x0.y0,a x:(r1)+,x0 y:(r5)+,y0

macr x0,y0,a

move a.x:(r2) '

clr .a y:(r1)+,y1 x:(r5l+,x1

rep #ntabeZ-l

mac x1,y1,a y:(r1)+,y1 x:(r5)+,x1

macr x1,y1,a (r1)-

move a.y:(r2)-

nop

;perform third filtering for each carriers

move (r2)+

clr a x:(r2)+,x0 y:(r6)+,y0

rep #ntabs3-1

mac x0,y0,a x:(r2)+,x0 y:(r6)+,y0
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Chapter 4

Zeeman effect on UCF

4A. Introduction.

In this chapter, we describe our electron transport measurements on a 1D metallic

Li wire in the regime of negligible spin-orbit and spin-flip scattering, which has the

feature of maximum symmetry (GOE)[1] in the absence of a magnetic field.

Application of a magnetic field causes a transition from GOE to GUE, and hence a

reduction of conductance fluctuations (66)2 by exactly a factor of 2. Application of a

much larger field breaks the electron spin degeneracy and creates two independent

eigenvalue sequences, thereby causing a second factor of 2 reduction. Our data show

good agreement with the theory[2,3,4] for the complete crossover function, both for

the GOE to GUE transition and for the splitting of the Zeeman degeneracy. Our

results show that the magnetic field scale for the Zeeman crossover is determined by

the sample temperature, rather than by the Thouless energy as has previously been

suggested[3,5].

4B. Experiment.

We have studied metallic Li films for minimal spin-orbit (SO) scattering with

sample dimensions in the quasi-1D regime (thickness t and width W < L¢) because

this restricted geometry further enhances the noise power via UCF[6]. Samples were

patterned with five leads on silicon substrates using electron-beam lithography and a

trilayer resist/metallresist structure as discussed in Chapter 3. The lateral dimensions

ofthe sample were 0.44 x 20 pm2 as determined from a scanning electron microscope

(SEM) picture before the sample was loaded into the 4He cryostat. The Li film was

quench-condensed in-situ at 4.2 K through the metal stencil, then annealed at 35 K.

The low-temperature sheet resistance was 0.46 O. The film thickness was obtained at
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the conclusion of the experiment by a comparison of the linear temperature

dependence of the resistance above 80 K, shown in figure 4.1, with that of bulk

lithium[7]. By this method, we estimated the thickness of the film to be 54 nm. This

implies le = 40 nm , kFIe = 450 with free-electron values for the electronic constants.

The resistance and resistance fluctuations (l/f noise) were measured using a low

frequency ac bridge method[8], with a liquid-nitrogen cooled Triad G-S transformer

to increase the sample-to-preamplifier noise ratio. To compensate for possible

background fluctuations during the l/f noise measurement, the total noise (l/f noise +

background) and the background were measured simultaneously with a two-phase

digital lock-in amplifier. Figure 4.2 demonstrates the sensitive detection of the l/f

noise with a large background. In this measurement, background noise is mostly

from Johnson noise of the cooled transformer.

A magnetic field perpendicular to the film was provided by a 9 T superconducting

magnet in the liquid He bath outside the vacuum can. We measured the 1/f noise as a

fimction of magnetic field at two fixed temperatures, 1.6 K and 4.2 K.

4C. Magnetoresistance measurement.

Figure 4.3 shows the magnetoresistance at different temperatures and the fit based

on one-dimensional weak localization theory[9]. (The fits were done with 130'] = 0.)

Figure 4.4 illustrates the effect of SO scattering rate in the fit. Fits to these data

provide an upper bound on the SO scattering rate of 1;; < 02-131 at 1.6 K; hence we

are always in the low SO scattering limit. Since the 1D weak localization correction

to the magnetoresistance depends on the width of the sample, it gives another

estimate of film width, W as 0.45 pm, close to the SEM observation. L. is 1.4 11m

and 0.75 pm at 1.6 K and 4.2 K, respectively, hence the sample is quasi-1D (L. >

W).
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Figure 4.5 shows the temperature dependence of the electron phase breaking

length, L. assuming no spin-dependent scattering in the magnetoresistance fits. The

straight line, L¢'2 = (0.096714 0.20)um'2, is a linear least-squares fit to the data. This

linear behavior, although unusual for metal films, has been observed previously for Li

films over a wide temperature range[10] and will be discussed further in Chapter 5.

We believe that the finite intercept at T=0 arises from the presence of a small amount

of spin-dependent scattering (either spin-orbit or spin-flip)[10].

4D. l/f noise measurement.

Figure 4.6 illustrates the 1/f noise power spectra at 1.6 K at three different values

of magnetic field ; B = 0 T, 1.0 T, 8.8 T. At least 64 simultaneous spectra for total

noise and background were averaged to reduce the statistical uncertainty at each data

point. The relatively large error bars at high fiequencies are due to the error

propagation from the background subtraction. The straight lines are least-squares fits

to a power law. The noise slopes are very close to —1.0 d: 0.03 at all values of

magnetic field. The data in fig. 4-6 demonstrate clearly that the amplitude of the l/f

noise power drops as the magnetic field increases.

4D-l Quantitative analysis of GOE-GUE crossover

Figure 4.7 shows the relative l/f noise power at 0.1Hz as a function of the

perpendicular magnetic field at temperatures of 1.6 K and 4.2 K. The relative noise

power at 1.6 K shows a first reduction to 1/2 with characteristic field Bcl z 22 G,

where Bcl is defined as the field where the noise is 3/4 of its zero-field value. Bc1 is

temperature dependent, increasing to 34 G at 4.2 K. Bcl corresponds to the

h / e

O

 
penetration of a flux quantum through a phase coherent region, BC, = A for a

quasi-1D sample, where A is a numerical constant that depends weakly on the ratio of
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L. =W to LT =W, where D = vpl, I3 is the electronic diffusion

constant. For this fihn, D is 7.8x 10"3m2 /s and the LT is 0.17 pm at 1.6 K.

For a detailed comparison oftheory and experiment, we use Eq. (2-31) for the

GOE-GUE crossover function. (See Chapter 2 for the details.) For pure UCF

fluctuations, one would expect Eq.(2-31) to describe the low-field data in figure 4-7,

with L1, as the only free parameter. We observe, however, that the noise does not

quite drop a full factor of 2. A similar behavior is observed in other Li samples,

shown in figure 4.8, and in Ag fihns[11], and apparently arises fi'om a small

contribution of local interference (LI) type noise[12] that is magnetic field

independent. We therefore include a second parameter to account for this small

effect. The function fitted to the data is:

30(3) _ _ -_SG(0) _ c+(1 c)v(B) (4 1)

where V(B) is given by Eq. (2-31). The solid line in figure 4-7 shows the fit to the

data for B < 0.1 T. The fit yields c=0.1 and 0.2 and L4, =1.0 11m and 0.65 pm at 1.6 K

and 4.2 K, respectively. The latter are remarkably close to the values 1.3 pm and 0.75

pm obtained from magnetoresistance measurements taken at the same drive level as

the noise measurements. (The noise measurements at 1.6 K were taken with a drive

level that caused sample heating to about 1.9 K, as determined from the

magnetoresistance.)

4D-2 Quantitative analysis of Zeeman crossover

As the magnetic field increases above 1 T, the noise power begins a second

decrease. At 1.6 K, the characteristic field scale for this second drop is B¢2 z 4 T,

with saturation at about 7 ~ 8 T. The solid line at high field in fig. 4.7 is our
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numerical evaluation of the noise crossover function, Eq. (2-38), for the Zeeman

effect, valid for B >> BC]. In this computation, we use our experimental values for D,

kBT, and L. , and the free electron value of the g-factor (=2). We emphasize that there

are nofiee parameters in the theory for the Zeeman splitting; the constant c in Eq. (4-

1) was already determined by the fit to the low-field data.

It is of interest to ask whether the Zeeman crossover occurs when Ez exceeds the

Thouless energy, 13c = hD/ L1,2 or the temperature, k,713,4]. At 1.6 K, the value of

Ec/kB in our sample is about 59 mK, about 30 times smaller than the temperature;

hence we can clearly distinguish which of these two energies governs the Zeeman

crossover. In the former case, Bc2 z 2°— = 0.04 T, which is clearly incompatible

8113

with the data. (The uncertainty in our estimation of D due to uncertainty in the fihn

thickness is not enough to account for the discrepancy). In the latter case,

Bc2 z 513-: =15 T , which is not far fi'om the experimental value Bcz z 4 T. When

8113

the correct numerical prefactor is put in, we indeed find the excellent agreement

between theory and experiment shown in fig. 4-7. The result holds only in the regime

k3T >> Ec ; numerical evaluation of the theoretical crossover function shows that it is

always the larger of the two energies that governs the Zeeman crossover.

4E. Comparison with earlier work.

Mailly et al. [13] measured the variance of conductance jumps induced by applied

voltage pulses in GaAs/AlGaAs heterojunctions at zero magnetic field and 0.2 T. At

50 mK, a decrease in the variance by a factor of 3 was observed at 0.2 T.

Debray et al. [5] studied UCF using a static method in a quasi-1D GaAs/AlGaAs

heterostructure. They measured the conductance variance at sample temperature 1.3

K at several values of magnetic fields from 0 to 0.4 T and observed a first reduction

of (8G)2 by a factor of 2 below B ~ 0.001 T (with one data point!), and then a second
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factor of 2 reduction near B ~ 0.06 T. They estimated the Thouless energy as Ec z 88

mK and concluded that the field scale for the Zeeman crossover is determined by the

Thouless energy and the measured field scale is consistent with the theoretical

prediction by Stone[3]. We mention that (1) they couldn't fit the magnetoresistance,

which provides the phase breaking length and an estimate of the Thouless energy, (2)

there are no data points showing the crossover regime of the first reduction in the

variance due to the suppression of the cooper channel, and (3) most of all, we found

that the prediction by Stone is wrong! (See Chapter 2 for further discussion on the

field scale of the Zeeman crossover.) If we accept that their measurement is correct,

then they observed a reduction by a factor of 4 in the relative UCF amplitude with the

value of Bc2 ~ 0.02 T, using our definition of Ba as the midway point of the second

reduction. Also, since kBT>> EC, they should get Bc2 = 2.7kBT / (gu B)= 2.6 T,

which is about 100 times larger than the value observed. The value of Ba above is

calculated with the free electron value of g(=2). We note that several values of g-

factor,~ 0.4[14] and l3[15], in GaAs/AlGaAs heterostructure have been reported. It

is, however, unlikely that the g-factor in GaAs is ~100 times the free electron value.

An important difference between those measurements and ours is that the GaAs

experiment measures the saturated UCF amplitude, rather than unsaturated l/f noise.

But our numerical evaluation of the Zeeman crossover function for the saturated case

also shows that B62 is determined by the larger of kBT and EC. Therefore, we find it

difficult to believe that their measurement and analysis were carried out correctly.



80

References

[1] Y. Imry, Europhys. Lett. 1, 249 (1986) ; P. A. Mello, Phys. Rev. Lett. 60,1089

( 1988) ; K. A. Muttalib, J.-L. Pichard, and A. D. Stone, Phys. Rev. Lett. 59, 2475

(1987)

[2] B. L. Al’tshuler and B. I. Shklovskii, Zh. Eksp. Teor. Fiz. 91, 220 (1986) [Sov.

Phys. JETP 64, 127 (1986)], P. A. Lee, A. D. Stone, and H. Fukuyama, Phys.

Rev. B 35, 1039 (1987).

[3] A. D. Stone, Phys. Rev. B 39, 10736 (1989).

[4] S. Feng, Phys. Rev. B 39, 8722 (1989). The calculation of the full crossover

function for ID was sent to us by Feng, private communication.

[5] P. Debray, J.-L. Pichard, J. Vicente, P. N. Tung, Phys. Rev. Lett. 63, 2264 (1989).

[6] S. Feng, P. A. Lee, A. D. Stone, Phys. Rev. Lett. 56, 1960 (1986).

[7] J. S. Dugdale, D. Gugan, and K. Okrnura, Proc. Roy. Soc. London, Ser. A 263,

407 (1961).

[8] J. H. Scofield, Rev. Sci. Instrum. 58, 985 (1987).

[9] B. L. Al’tshuler and A. G. Aronov, Pis’ma Zh. Eksp. Teor. Fiz. 33, 515 (1981)

[JETP Lett. 33, 499 (1981)].

[10] J. C. Licini, G. J. Dolan, and D. J. Bishop, Phys. Rev. Lett. 54, 1585 (1985).

[11] Extensive low-temperature noise measurement on Ag films by our group show

that the local interference contribution to the noise becomes significant (10 %) in

both metals when L¢,/le z 25. See also, P. McConville and N. O. Birge, Phys.

Rev. B 47, 16667 (1993).

[12] J. Pelz and J. Clarke, Phys. Rev. B 36, 4479 ( 1987).

[13] D. Mailly, M. Sanquer, J.-L. Pichard, and P. Pari, Europhys. Lett. 62, 195

(1989).

[14] S. Narita et. a1, Jpn. J. Appl. Phys. Part 2 20, L447 (1981).



81

[15] C. Weisbuch and C. Hermann, Phys. Rev. B 15, 816 (1977); M. Dobers, K. v.

Klitzing, and G. Weimann, Phys. Rev. B 38, 5453 (1988).



82

 

48-

46:

44;

42FL

40L

38—

36:-

34:-

32:-

R
e
s
i
s
t
a
n
c
e

(
(
1
)

 28—
1_ J 1 J 1 I 1 l 1 l 1 I 1 I

50 60 70 80 90 100 110 120 130

   
Temperature (K)
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bulk lithium.
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Chapter 5

SPIN-FLIP SCATTERING on UCF

5A. Introduction

In mesoscopic systems, the electrical conductance depends on the microscopic

configuration of scatterers due to long-range quantum interference[l]. If the

scatterers have free spin states (for example, paramagnetic impurities), then

conduction electrons will experience the exchange interaction with the paramagnetic

impurities, leading to relaxation of the electron spin states by spin-flip scattering[2].

Spin-flip scattering breaks the phase coherence and reduces the amplitude of

conductance fluctuations. This picture is valid in a magnetic field that is not strong

enough to align the impurity spins. When pimpB > kBT , spin-flip scattering is

suppressed and the system behaves similarly to one without magnetic scattering. The

magnetic scattering effect on weak localization[3] and conductance fluctuations[4]

has been observed recently.

In this chapter, we report a quantum transport experiment on quasi-1D Li

wires with a finite spin-flip scattering rate which is comparable to the electron phase

breaking rate. The magnetoresistance measurement shows low-temperature residual

scattering and suppression of the phase coherence. The l/f noise measurement versus

magnetic field shows that the phase coherence is recovered at high magnetic field

causing a dramatic increase of conductance fluctuations. The noise power at low

magnetic field shows a reduction by a full factor of 2. These observations are

consistent with the effect ofparamagnetic scattering on UCF.
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5B. Experiment

Our samples were patterned with five leads on silicon substrates using

electron-beam lithography on a bilayer resist structure, PMMA/Copolymer. The

characteristics of the samples are summarized in Table 3.3. In this chapter, we

discuss samples #1 - 4, which show the residual magnetic scattering. We presume

that magnetic impurities such as Cr from the Ni-Cr filament wire contaminated the

samples since Cr impurities in a Li matrix can be strongly magnetic[5]. The Li films

were quench-condensed as described in Chapter 3 and magnetoresistance and l/f

noise were measured in-situ.

5C. Weak localization[6,7]

The inelastic scattering of conductance electrons comes from several

mechanisms: electron-electron and electron-phonon scattering. The electron-electron

scattering rate in a clean metal is determined by collisions with energy transfer of

order of the temperature and momentum transfer of the order of the inverse screening

length, which leads to a 72 dependence, independent ofthe sample dimensionality. In

disordered systems, the electron-electron scattering rate depends on the

dimensionality of the sample which is set by the thermal diffusion length. In the 2D

case, the electron-electron scattering rate is dominated by small energy transfer

collisions, leading to a linear temperature dependence. Experimental observation of

the dependence 11;] at T are generally agreed to be due to the 2D electron-electron

interaction. If the film is three dimensional with respect to electron-electron

interaction one expects Tin—l at T3”.

The electron-phonon scattering is governed by the electron-phonon interaction

and leads to a W dependence in the clean-limit with dimensionality d. In dirty metals

= M[e << 1, where S is the velocity of sound , impurity scattering
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causes the electron-phonon interaction to change and yields the different temperature

dependence of the electron-phonon scattering rate: 7“ [8], or T2[9]. Thus,

understanding the electron-phonon scattering requires more careful comparison

between experiment and theory. Several experimental factors need to be considered

carefully: the film homogeneity, the film-substrate boundary and phonon spectrum of

the film. Despite experimental disputes, there are several cases reported, including

experiments on relatively clean and thick aluminum films[10], thin and quench-

condensed films[11].

Figure 5.1 shows our magnetoresistance data of quasi-1D and 2D samples and

the fits to weak localization theory[6,12]. (The fits were done with rso“=0 because

our data at the lowest temperature couldn't determine rso'l unambiguously.) From the

fit we extract the electron phase breaking rate and the temperature dependence of L4,

is shown in figure 5.2a for the quasi-1D wires and in figure 5.2b for the 2D films.

The straight lines are linear least-squares fit to the data. For the temperature range T=

1.6 ~ 16 K, 11".] at T2 is observed with a typical experimental value of tin (1.6 K) ~

10'10 s. (This inelastic scattering time is estimated from sample #1 which has the

diffusion constant D = 2.5 x 10'3 mz/s.) Licini et al.[13] also measured weakly

localized behavior in quasi-1D Li films and reported the rin'l at T2 dependence

down to 0.25 K with Tin (1 K) ~ 1 x 10'10 s. The observed single power law of

Tin-1 at T2 behavior is consistent in form with clean-limit electron-electron

scattering, the pure electron-phonon scattering involving two-dimensional phonons or

the 3D electron-phonon scattering in the dirty metal. The inelastic lifetime due to the

clean-limit electron-electron interaction is order of 10'7 ~10‘8 s[14] and is too big to

explain the experimental values. The electron-phonon scattering modified by the

impurities yields the lifetime of order of 10'11 ~ 10'12 s[6] and the application of the

dirty-limit electron-phonon scattering is questionable because the product 4112 is not
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less than 1 in the temperature range of interest. Belitz et al. [15] found the asymptotic

expansion used for the electron-phonon scattering to be invalid above helium

temperature and explained experimental results showing I'm-1 at T2 for T = 4 ~20 K,

from Bergmann and collaborators as a superposition of Coulomb and a two-

dimensional electron-phonon contribution. However, the observation of 1:in" at: T2

in Li fihns down to the temperature 0.25 K is quite puzzling at this moment and

further investigation of the phase breaking mechanism in Li films needs to be carried

out to clarify this problem.

From the weak localization phenomena, we were able to identify the relative

strength of the spin-orbit scattering compared to the inelastic scattering. The negative

magnetoresistance shown in figure 5.] confirmed that our Li films were in the low SO

scattering limit. We observed, however, the suppression of the phase coherence

compared with samples discussed in Chapter 4 and saturation of L4, at low—

temperature, which results in the finite intercept at T=0 in the plot of L¢'2 versus 72

shown in figure 5.2. The sample #1 yields L4,“2 = 0.58 T2 + 9.8 (um‘z) and sample #2

yields L52 = 0.79 T2 + 27.6 (um’z). We believe that the finite intercept at T=0 arises

from residual magnetic scattering with very weak spin-orbit scattering[l 3].

5D. 1/f noise and UCF

5D.1 Orbital effect on UCF

Spin-flip scattering breaks the phase coherence of the electron, and leads to

the suppression of conductance fluctuations. Theoretically, it is shown that spin-flip

scattering suppresses the cooper and diffuson channels equally[16], so one should be

able to observe the noise reduction by a factor of exactly 2 with application of

magnetic field.
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Figure 5.3a shows the relative l/f noise power of sample #1 as a function of

the perpendicular magnetic field at temperatures of 1.6 K and 4.2 K. As the theory

predicted, the noise drop by a full factor of 2 at 1.6 K. The noise at 4.2 K does not

quite drop to a full factor of 2 because there is a small contribution of local-

interference type noise which is magnetic field independent, as discussed in Chapter

4. Figure 5.3b also shows the l/f noise power versus magnetic field at temperatures

of 1.6 K, 4.2 K and 10 K, measured in sample #2. We also observed the full factor of

2 reduction in the noise at 1.6 K and a small contribution of LI type noise at the other

temperatures.

The l/f noise crossover function due to the suppression of the orbital

contribution ( cooper channel) is governed by the phase breaking length, L¢[l6,17].

Therefore, we can extract another reliable estimate of L¢ from the noise measurement

and compare the value of L¢ with that from magnetoresistance. In the fit of the noise

data, we set rso'l = 0 and include a second parameter to account for the L1

contribution[18]. (See Eq. (4.1) in Chapter 4) The solid lines in figure 5.3 are the

theoretical evaluations of the l/f noise crossover and show excellent fit to the data.

The fit parameters for sample #1 are c = 0 and 0.2 and L4, = 0.28 and 0.22 pm at 1.6 K

and 4.2 K, respectively. The fit parameters for sample #2 are c=0, 0.14 and 0.16 and

L4, = 0.19, 0.14 and 0.09 pm at 1.6 K, 4.2 K and 10 K, respectively.

In figure 5.4 the values of L¢ obtained from the noise data are compared with

those from the magnetoresistance . Both measurements yield very close values of L¢

even though we observed finite spin-flip scattering in our samples. Chadrasekhar et

al. [19] show that the spin-flip scattering effect on the conductance fluctuations can

be incorporated via L4, in the singlet(s) and triplet(t) channel:
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L313”; [£1152 + L114 (8)1“1’2

_ _ 4 _ _ (5.1)

L” =1L1. 2 +11; 2(B)+3-Lso 2] “28,:

where Lin is the inelastic length and Lsf is the spin-flip scattering length. In the

magnetoresistance the spin-flip scattering rate enters into the phase breaking length of

the singlet and triplet channel in a slightly different way[6,10,13]:

LWLS = [Lin-2 +2Lsf—2(B)]-l/2

2 (5.2)

L? =1L1.‘2+—3§L1f2<B>+ 41.41"”

In the strong SO scattering regime, a finite spin-flip scattering yields a big difference

in the measured value of L4, from the two methods because the triplet channel is

suppressed. In the negligible SO scattering limit, the singlet and triplet channel have

the same diffusion length in the noise measurement but not in the magnetoresistance

measurement. Since magnetoresistance measurements yield the longer diffusion

length in the triplet channel and the shorter diffusion length in the singlet channel

compared to that fi'om the noise measurement, it is not surprising to get a very close

value of L1, from these two measurements on our samples.

Since the fit parameter L¢ in the low-field noise data is

L¢= Lg?—= L“? = [L,-,,'2 + Ls",2'11’2, the spin-flip diffusion length L,, can be

estimated if we know the inelastic length Lin- From the slope of the L¢'2 versus 72

plot for sample #1 in figure 5.2, the inelastic diffusion length Lin is estimated as 0.78

pm at 1.6 K. Then LsfiS estimated as 0.30 um, given L1, = 0.28 um from the fit to the

noise data and we get L31 = 0.2 1.1m,L¢t = 0.33 pm. The noise measurement

provides Lg? = gar: 0.28 pm. The inferred length scales for singlet and triplet

channel from two measurements are larger than the sample width (0.11 urn), ensuring
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that quasi-1D localization theory is valid in our sample. For sample #2, we get Lsf =

0.2 pm.

5D.2 Spin effect on UCF

Figure 5.5 shows the magnetic field dependence of the relative l/f noise

power up to 9T obtained from sample #1. (Data below 0.5 T has been discussed in

figure 5.3.) The noise power increases with field dramatically when B > 0.5 T at 1.6

K, and slightly when B > IT at 4.2 K. This behavior is in contrast to the reduction,

we saw in Ch. 4, due to the Zeeman splitting of the conductance electrons. Figure 5.6

shows similar behavior of the relative l/f noise power from sample #2.

A possible explanation of the behavior shown in figures 5.5 and 5.7 is based

on the assumption that there is a finite residual spin-flip scattering in the sample, as

observed in the magnetoresistance. The strong magnetic field aligns the magnetic

impurities and suppresses the spin-flip scattering, leading to the restoration of the

phase coherence and the amplitude of conductance fluctuations. The magnetic field

scale needs to be of order k3T / 11mp [2], which corresponds to 1.1 T and 3.1 T at 1.6

K and 4.2 K respectively if we assume Ilimp = 2113. The estimated magnetic field

scales are close to the experimentally observed values.

To analyze the data quantitatively, spin-flip scattering needs to be

incorporated into UCF. Benoit et al. [20] assumed that (1) only the lowest two

magnetic energy levels of the impurity would be important, so that the magnetic

impurity could be treated as spin 1/2 and (2) the magnetic scattering rate would be

proportional to Pul’d where Pu and Pd are the probabilities of the spin 1/2 impurity

being in the up or down state. The calculation of the magnetic field dependence of

the spin-flip scattering rate gives:
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_ _ _ 1
L4, 2 = L," 2 + L,, 2(13 = 0) 111m B (5.3)

cosh2 (—p—)

kBT

 

At high magnetic field, the electron Zeeman splitting needs to be considered in the

system with electron spin symmetry[16,21]. (See also Chapter 4) Unfortunately, the

situation is more complicated due to the finite spin-flip scattering, Lsf/Lin ~ 0.4 and

0.3 at 1.6 K for sample #1 and #2, respectively. Since strong spin-flip scattering

breaks the electron spin symmetry, we assume that the Zeeman effect on UCF is

negligible in our samples. (See figure 4.7 for the Zeeman effect on UCF.) Then the

theoretical function for the noise with the spin flip scattering is obtained following

Eq. (2.31) and (5.3), where the parameters are Lin, Lsf(B=0) and llimp~ We used the

values of Lin and Lsf(B=0) determined by the low-field fit. The solid lines at high-

field in figure 5.8 show our fits to the theoretical expression with only a single fit

parameter Ilimp = 0.7 113. The simple theoretical function matches the data fairly well

and describes the temperature and field dependence of the noise power at high-field.

Even though not all of the features in the noise data are explained from the simple

model, we clearly observe the effect of the spin-flip scattering on the conductance

fluctuations, and our data at high- magnetic field are consistent with previous

work[4,20]. All the previous work related to the effect of the spin-flip scattering on

the conductance fluctuations have been carried out at high magnetic field and found

that the amplitude of conductance fluctuations increases with field.

5.E Summary

We have fabricated mesoscopic Li films using quench-condensation and

measured both the weak-localization contribution to the average conductance and the

conductance fluctuations in-situ. From the magnetoresistance, we are able to extract
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the electron phase breaking length and its temperature dependence. The

magnetoresistance data confirm the low spin-orbit scattering in our Li films but show

the suppression ofthe phase coherence due to the finite spin-flip scattering.

We observe that the noise power is reduced by a full factor of 2 with an

application ofweak magnetic field. This observation is consistent with the theoretical

prediction that the spin-flip scattering suppresses the conductance fluctuations equally

in the cooper and diffuson channel and an application of magnetic field suppresses the

cooper channel contribution to UCF. This is one of our important results which has

not been observed previously. We used the noise reduction versus magnetic field to

measure L¢ and found that the value of L4, is very close to that from the weak-

localization measurement.

The amplitude of conductance fluctuations increases dramatically with high

magnetic field. We attribute this behavior to the alignment of the magnetic impurities

at the high magnetic field and the suppression of the spin-flip scattering. We

developed a simple model following Benoit et al. [20] to fit our data over the magnetic

field and the temperature. This paramagnetic model describes the data fairly well

with a single value ofthe temperature-independent parameter ”imp'
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Figure 5.1 (a) Magnetoresistance of quasi-1D Li sample #1 (W = 0.11 pm, R0 =

5.7 (2) taken at T = 2 K. The solid line is the fit to the quasi-1D weak localization

theory. (b) Magnetoresistance of2D Li sample #3 (W = 205 um, R0 = 7.8 (2) taken

at T = 3.5 K. The solid line is the fit to the 2D weak localization theory.
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Figure 5.2 The electron phase breaking length versus temperature, obtained fi'om
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(b) for 2D films. The data for sample 5 (I) in fig. 5.2a are discussed in chapter 4 and

are shown for contrast since they have no residual spin-flip scattering.
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Figure 5.7 A fit to the noise power as a function of magnetic field from sample #1

at temperatures 1.6 K(o) and 4.2 K(D). The low field reduction fit to the quasi-1D

theory is discussed in figure 5.4a. The noise data at high field is fit to the simple

paramagnetic impurity model as discussed in the text.
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Chapter 6

CONCLUSIONS

We have studied quantum transport in the low spin-orbit scattering limit by

measuring the universal conductance fluctuations as a fimction of magnetic field and

the weak-localization correction to the average conductance in mesoscopic Li wires

and films. We were able to obtain several significant results which provide us with a

better understanding of UCF and provide a chance to study random matrix theory

pioneered by Wigner and Dyson.

First, we observed a factor of 2 reduction in the amplitude of UCF with

application of weak magnetic field. We attribute the reduction to the suppression of

the orbital effect on UCF which can be viewed as the crossover from Gaussian

orthogonal ensemble to the Gaussian unitary ensemble due to broken time-reversal

invariance. We calculated the UCF crossover function and found very good

agreement with our data. We confirmed that the crossover field scale is determined

by one flux quantum over the phase coherent area.

Second, we observed a second factor of 2 reduction in the amplitude of UCF

with application of strong magnetic field. We attribute this reduction to lifting the

Zeeman degeneracy of the conductance electrons, and found that our data are

consistent with diagrammatic calculations. Our results show that the magnetic field

scale for the Zeeman crossover is determined by the larger of the sample temperature

and Thouless energy. This is very different fiom previous work, where the field scale

was presumed to be determined by the Thouless energy alone.

Both observations are consistent with the predictions of the random matrix

approach, which provides a more fundamental understanding of UCF. The
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conductance is determined by the transmission matrix, the conductance fluctuations

are universal in the diffusive regime and ultimately determined by the ensemble

symmetry. Since the "universality" is generic for a whole class of transport properties

in mesoscopic conductors and superconductors, future experiments can be carried out

in several directions, including shot-noise, normal-superconductor interfaces and

Josephson junctions.

We also studied the effect of spin-flip scattering on UCF in the low spin-orbit

scattering regime. We confirmed the theoretical prediction that the spin-flip

scattering suppresses the conductance fluctuations equally in the cooper and diffuson

channel, by measuring the noise reduction by a full factor of 2 with application of a

weak magnetic field. At high magnetic field, we observe that the amplitude of

conductance fluctuations increases in a dramatic way and the increase in the noise

power is highly temperature sensitive. We used a simple model based on residual

paramagnetic scattering and found that the model describes our data fairly well.
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Appendix

A. l/f noise.

In disordered metals, defects or impurities can move either by tunneling at low

temperature or by hopping at high temperature. This spontaneous rearrangement of

scattering centers gives rise to temporal fluctuations in the interference pattern among

all the paths in a coherent volume. This causes dynamical fluctuations of the

conductance. Feng, Lee and Stone showed that the low-temperature conductance is

extremely sensitive to a single impurity movement by a distance 5r 2 kp'l. In the

case of kple=l (close to strong localization), a single impurity can cause saturation of

the conductance fluctuations, i.e. 86w ez/h. In most metals, kfle is bigger than 1, so

the conductance change due to the motion of a single impurity (801) is much smaller

than ez/h. This case is called unsaturated noise.

The standard way to measure resistance noise is to apply a current through the

sample, and monitor the temporal fluctuations of the voltage across the sample.

Figure A shows a typical l/f noise and background Johnson noise in the time domain.

The power spectrum ofthe voltage fluctuations is given by

SV ((1)) = if(8V(t')5V(t'+t))cosmtdt

where 8V(t) = V(t) — (V), and the brackets refer to an average over t'.

To understand the power spectrum of the noise, consider a random process

with a single characteristic time r from a defect moving between two or more

positions. The power spectrum of that process is a Debye—Lorentzian spectrum:

I

Sd(03) °C 1:03—2:17me
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For the slow dynamical rearrangement of many impurities, we should consider the

distribution D(t) of the characteristic times of the impurities within a sample. Then

‘1:

1+ (1)212

 56(1)) at (50V; -D(1:)d‘t

The D(r) depends on the microscopic details of the disordered system. For the cases

of thermal activation or ttmneling, the characteristic time for a defect motion depends

exponentially on parameters which are distributed broadly, so D(ln(1:)) is constant (D(

1:) ~ 1‘1) over a wide range of 1:. The resistance fluctuations show the "1/f' power

spectrum.
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A simple circuit for noise.
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Figure A (a) Schematic diagram ofnoise measurement set-up.

(b) Temporal presentation ofbackground Johnson noise.

(c) Temporal presentation of 1/f noise and background.
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