

7
.

.
I
I
.
.
.

.
.
3
:
3
5
:
1
2
.

:
"
2
.
1
.
2
.
5
1
:

.
H
.
.
.
#
.
1
:
6
.
.
.
r
d
.

wensmr LIBRARIES

Illllllllllllllllllill loll llloll
31293

This is to certify that the

thesis entitled

A Three-Pronged Approach Towards Improving

the Development of Safety-Critical Software Systems

presented by

Amy C. Christensen

has been accepted towards fulfillment

of the requirements for

Master's degree in Computer Science

Major professor

Date 77/ &l‘7 6

0-7639 MSU is an Affirmative Action/Equal Opportunity Institution

LIBRARY

Michigan State

University

PLACE Di RETURN BOX to roman this checkout from your rocord.

TO AVOID FINES rotum on or botoro onto duo.

DATE DUE DATE DUE DATE DUE

MSU in An Afflnnotivo Action/Equal Opportunity Inflation

mm:

A Three-Pronged Approach Towards Improving

the Development of Safety-Critical Software

Systems

By

Amy C. Christensen

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Computer Science

August 1995

ABSTRACT

A Three-Pronged Approach Towards Improving

the Development of Safety-Critical Software

Systems

By

Amy C. Christensen

We present a proactive approach towards the integration of safety-critical software

systems into the existing legal structure. First, we examine how the current legal sys—

tem handles cases that involve safety-critical systems. Next, we look at incidents

that have involved embedded software systems. The results show that there exist few

software-specific guidelines for handling safety-critical systems. Also, there appears to

be a. lack of responsibility and accountability within the software development commu-

nity. Because of the critical nature of the systems, immediate attention is warranted.

In order to address these problems, we propose a three-pronged approach comprising

complementary actions. The approach involves additions to current legislative policy

and procedure, the restructuring of computer science education, and the induction

of a Software Advisory Board. This dissertation explores the motivations for, the

implications of, and the integrated use of these three types of actions.

Copyright © by

Amy C. Christensen

August 1995

I would like to dedicate this to my parents, Jerry and

Claudia Christensen, whose love and support I truly

treasure.

iv

ACKNOWLEDGMENTS

I would like to thank those who helped me through the various stages of this thesis.

My friends and family were always there to give me the needed support. Credit goes

to both Janet and Chris who had to hear me out during some of my frustrating

moments. Thanks for listening.

With the help from members of both the legal and computer science community, I

was able to explore a new and exciting area. Thanks goes to Clark Turner for sharing

his legal perspective during the beginning stages of my research. I appreciate also all

of the input and discussion generated by members of the Formal Methods Course. In

addition, Dr. Heimdahl and Dr. Weinshank provided me with extensive comments

exposing me to many important issues I would have missed on my own.

Special thanks goes to Jerry Gannod who gave me both technical and emotional

support throughout the entire project. As my personal information source for both

formal methods and IATEX, he was ready and willing to answer all of my questions

and to frequently come to my rescue.

Most of all, I want to thank to Dr. Cheng for her time, knowledge, and motivation.

I know that my topic dove into a new area that has not been subject to much research.

I appreciate the opportunity she gave me to explore computer legal issues; she helped

me gain an entirely new perspective on computer science, as a student and as a

member of the public. I respect and admire her enthusiasm as well as her wisdom.

To everyone I offer my sincere thanks.

TABLE OF CONTENTS

LIST OF TABLES

1 Introduction

1.1 Motivations

1.2 Contributions

1.3 Organization of Dissertation

Safety-Critical Software Systems

2.1 Safety-Critical

2.2 Software Systems

Safety-Critical Incidents

3.1 Incidents in Other Domains

3.2 Incidents Involving Software Systems

3.3 Problems with Software Development

Legislation

4.1 Liability

4.2 Software Systems Policy

Education

5.1 Need for Change

5.2 Role of University in Change

5.3 Course Restructuring

5.4 Technology Transfer

5.5 Sample Course Requirements

Software Advisory Board

6.1 Regulatory

6.2 Approval

6.3 Interactive

vi

viii

10

12

12

14

15

15

20

42

43

43

52

56

56

59

60

65

67

75

76

78

81

7 Cooperative Balance

7.1 Industry

7.2 The Legal System

7.3 Academia

7.4 Discussion

8 Conclusions and Erture Investigations

A Glossary of Legal Terms

BIBLIOGRAPHY

vii

85

85

87

89

91

92

95

97

3.1

3.2

5.1

5.2

5.3

LIST OF TABLES

Therac-25 Overdose Incidents 21

Air Industrie Incidents Involving the Airbus 29

Research Focus: 19754985 62

Required Computer Science Courses 67

Optional Computer Science Courses 71

viii

CHAPTER 1

Introduction

The fast-paced introduction of computer-based systems into the mainstream of society

has ushered in a new area of concern: computer-related risks [1]. While the benefits

of computers can be seen by the public on a daily basis, the associated dangers seem

to have become obscured. A review of several past incidents exposes a problem of

tantamount importance.

0 The Denver International Airport was expected to be a model airport able to

handle traffic even in the midst of poor weather conditions [2]. However, the

grand opening was postponed for more than 1.5 years due to software errors in

the automated baggage system costing the planners $1.1 million per day [2].

o In 1988, the California Department of Motor Vehicles undertook a project to up-

date its primary database system. After spending $44 million of the taxpayer’s

money, the new computer program failed to work. Despite the exorbitant costs,

the project was terminated [3].

o In January 1990, approximately 50 million of AT&T’s long distance customers

went without service as the company attempted to fix a software error in the

switching program. Not only was AT&T faced with angry customers, but it

also suffered a $58 million loss in the period of nine hours [4].

o In a lottery conducted by Pepsi, several “winners” were paid $19 instead of

the $36,000 award promised by the contest [5]. The discrepancy was attributed

to a computer error that produced 500,000+ winning tickets rather than the

intended 18 tickets [5, 6]. Rather than suffer the $18 billion loss, Pepsi officials

attempted to placate the winners by giving them the minimal award [6]. The

error has been followed by several lawsuits, rioting, and anti-Pepsi rallies [5].

Though the above incidents proved to be costly ventures, they were not inconceivable

events to the software development industry. When dealing with computer systems,

people using the systems are prepared for, and maybe even expect, the systems to fail.

Studies have shown that in the computer industry, two large-scale software systems

are cancelled for every six that are put into Operation [2]. It is not always safe to have

technology use software as its backbone without taking proper precautionary steps.

Software developers will be the first to admit that current practices have no means

to guarantee that all software-based systems will work correctly 100% of the time.

Peter Neumann [1], an expert in the area of risk assessment, states that “guaranteed

system behavior is impossible to achieve.” There are always circumstances that can-

not be predicted nor prevented. In addition, the human element is a major factor in

determining risks because humans are imperfect and can introduce errors into sev-

eral phases of the development process of such systems including the design phase,

the implementation phase, the operation phase, etc. The development process has

tolerated a range of discrepancies allowing for the construction of some flagrant and

dangerous systems.

Do all the potential problems and obstacles mean that computer systems should be

eliminated from society? Or should society be willing to accept the risks and problems

that computer systems may cause? Clearly, the answer to both questions is no.

Computers provide valuable services to both businesses and individuals. However, it is

important to recognize the current limitations of our knowledge in building computer

systems and to provide the necessary precautions to help avoid costly damages. While

this task sounds simple, many have failed to satisfy such requirements.

We focus our dissertation specifically on the development of software. Our reasons

stem from many factors. First, software can be very complex making it difficult to

create, analyze, and examine software-based systems. The complexity continues to

increase as technology grows in size and capability. Second, there are few rules and/or

guidelines for developing software. Because computer science is such a new field, it

does not provide access to references containing formulas for software projects or to

proven techniques for handling software. The lack of such fundamentals separates

software development from many other disciplines. Third, software does not “wear

out” so many systems may either run on outdated software created years ago or

may contain reused software that has been forcefully melded with new code. Fourth,

software is usually not a standalone application; most software systems contain some

form of interaction with a user. Thus, those who create software must be concerned

and aware of how the user is able to use the software in addition to having the

software run correctly. Fifth, there is a common misperception that anyone can write

computer programs. While there may be persons who have a limited understanding of

a specific computer programming language, this knowledge does not mean that they

have the expertise needed to responsibly develop reliable software. Sixth, regulations

specifically addressing software-based systems are vague and sometimes nonexistent.

This lack of rigor allows some systems to be used without proper review. Finally,

society places great trust in software. There is little understanding that both good

and bad software exist and that not all software—based systems should be trusted.

These facets of software and software development emphasize the uniqueness of this

field and why it needs to be explored.

Therefore, due to the huge demand placed on the computing industry and the

perceived simplicity of developing software, it has been difficult to foster the guide-

lines needed for software development processes. Moreover, little has been done to

monitor and regulate the use of software-based systems. Thus, some companies have

been allowed to market faulty software-based systems containing potential dangers

that have eventually exposed the public to great harm [1, 7, 8]. This dissertation

specifically addresses the issues relating to the development process of safety-critical

software systems. A safety-critical software system is defined to be any software-

embedded system that may contain hazards that can lead directly to some form of

human loss.

Thesis Statement: The use of three complementary strategies, leg-

islation, education, and a software advisory board, can be used used to

encourage eflectively and enforce responsibility and accountability in soft-

ware development, thereby facilitating the improvement of software quality

and the development process.

1 .1 Motivations

We feel that it is unacceptable to expose the public to harm. People use technology to

improve systems. Therefore, when members of the public are harmed by the systems,

sometimes fatally, we must question the safety of using such technology.

0 While waiting to have an X-ray taken, one patient was crushed by a 3000 pound

X—ray machine. The mistake was found to be a software error that allowed the

machine to completely lower itself to the bottom of the post, overtaking the

area where the patient lay [7].

o A computer-controlled set of hydraulic tongs caused injury to a worker when

the automatic controller failed to turn off [8].

o Twenty-nine American soldiers were killed when a Patriot missile hit their bar-

racks rather than the scud missile for which it was intended. The incident was

attributed to a combination of software errors within the Patriot system and

misuse of the system [1].

The above events may seem to be surreal and unimaginable. While the causes were

not intentional, the events were perhaps preventable. Clearly, software developers

and system designers do not attempt to create systems that cause harm. Still, it is

often the case that the developers may not take all possible precautions to provide

a “reasonable” level of care. Steps could be taken that would aid in the avoidance

of such terrifying tragedies. Few will argue that we are developing new applications

of high technology at a rapid rate. As more systems are integrated into society,

the overall risk increases. Rather than continue to create faulty systems, we should

address the problems and begin to learn from our mistakes. As an initial step, we

need to determine the source of the problem and then provide a practical solution.

Why are computer-based systems not always safe? As will be seen later, computer

systems are like many other products created in the United States. People have the

freedom to create systems that can accomplish great and worthy tasks, but people

should be able to expect that when the systems are used, the systems will work as

intended and that the user will remain free from harm. It is the responsibility of the

developers of such systems to create safe systems and to keep unsafe systems from

being used. Currently, it seems that this sense of duty has at times been ignored

and overshadowed by the lure of monetary gain and temporary benefits. However,

there appears to be a growing awareness among those who are involved with critical

systems. For instance, Clark Turner, a lawyer and computer science doctoral student,

is currently working on improving methods for testing systems [9]. He has also ex-

plored some of the legal aspects of various computer-related issues [10]. Furthermore,

a few law schools now have courses and programs that are designed to address the

issues relevant to computer systems and the law, including John Marshall Law School

(Chicago, Illinois), Santa Clara Law School (Santa Clara, California), and Stanford

Law School (Stanford, California). However, the examples presented thus far show

that, unless more care is taken by the majority of the software industry in the creation

and maintenance of the systems, some of the systems will eventually fail causing great

loss, both financial and fatal. In order to minimize the loss, it is imperative that a

sense of duty is maintained by both the manufacturers and developers of computer

systems.

1.2 Contributions

The public places its trust upon developers and manufacturers to provide products

that serve their intended purpose. The discussion of software system incidents clearly

illustrates the need for change by describing injuries and loss of life caused by software.

It is both frightening and frustrating to realize that many of the incidents could

have been prevented had there been better mechanisms for ensuring the quality and

the correct behavior of software-based products. When such systems go awry and

cause harm, “someone” should be willing to address the all of the consequences, (i.e.,

financial, legal, moral), and remedy the situation before further damage is caused.

This “someone” includes every member involved in the development process of a

system.

The problem at hand is twofold. First, the software components in products

sometimes lack the level of quality needed for safety-critical systems. We define

quality to refer to the correctness of the system with respect to robustness. This

deficiency is not because high quality software cannot be created, but simply that it is

not always being created. The problem then points to the manufacturers and software

developers. Why is poor quality software allowed to be used in some products? Why

do some developers fail to provide quality software? Why do some developers fail to

be accountable for their programs? This lack of responsibility and accountability need

not be allowed. It is the ethical duty of each member in the software development

process, from the manufacturer to the user, to minimize the risks in software in order

to avoid the dangers [11].

Second, there is a distinct problem with the current state of regulation. Measures

need to be taken to address, explicitly, software systems if they are going to be

used by the public. Overall, a new sense of responsibility must be renewed within

the software development community. “Accountability and the responsible practice of

computing, are social values worth sustaining and when necessary, rehabilitating [12].”

Clearly, the current state of affairs necessitates rehabilitation. In order to produce

safer software products, several complementary actions can be taken. The remainder

of this dissertation will focus on these actions.

This dissertation will show that safety-critical software systems have at times

been exempt from normal rules and policy applicable to consumer products that

were put into place for the benefit of the public. (In the context of this dissertation,

“normal” refers to what is expected of general consumer products and services.) Such

exemptions do indeed favor the manufacturers of the systems but can potentially

endanger the public. We will show that safety-critical software systems should not

be subject to special circumstances but instead be held to normal levels of scrutiny.

In the end, this change will benefit both the developer and the user.

This dissertation proposes three complementary areas that need to be addressed

in order to improve the development of software, with the intent of increasing soft-

ware quality: legislation, education, and an advisory board. The addition of new legal

measures would emphasize the importance of public safety from the perspective of

the courts and the public itself. The new legislation would provide further incen-

tives for manufacturers to produce “high” quality software systems. In addition, an

increase in safety can be attained by raising the quality of education of computer sci-

ence graduates. Exposing future developers to their social and moral responsibilities

would ultimately increase the quality of safety-critical software systems. Finally, the

creation of the Software Advisory Board would help to control and oversee the new

legislation, provide interaction between academia and industry, aid in the develop-

ment of a uniform set of processes, and help to increase the quality of the skills of the

software developer. With each approach there are actions that are proactive to the

current technology and those that are reactive corresponding to responsibility and

accountability, respectively. The contributions are discussed in terms of these two

areas of concern.

1.2.1 Responsibility

Some feel that employees should not be held responsible for their part in building

a computer system because of reasons such as: “the results were unintended,” “too

many persons were in contact with the project,” or “it would be difiicult to determine

the direct cause of the defect [12].” Nevertheless, everyone who works on a system

should be equally responsible for the respective contributions. For instance, program-

mers should produce code that adheres to the design specifications. Appropriate and

extensive testing and other validation and verification methods should be applied to

verify that the code is correct. In addition, managers should be held responsible

for any independent developer’s product that is created within their section of the

organization. It is their job to give a “stamp of approval” to the product. Without

responsibility, this approval is meaningless. When dealing with this issue, one must

also recall that the intent of promoting responsibility is to ensure that, if a computer

system is used by the public, it must maintain an acceptable level of “safety.”

Our approach provides proactive measures to renew responsibility in each of the

three areas. Augmenting legislation to include software provides preventative guide-

lines that manufacturers and developers can, and should follow. Improving the com-

puter science education helps to equip the software developers of the future with

knowledge of their technical and ethical responsibilities. Finally, the induction of

the Software Advisory Board will provide industry and academia with a board of

experts who have insight into software-related legal issues and the state of software

development itself.

As stated previously, there are no current methods that will determine if a system

will behave perfectly in every situation [1]. The responsible developer must take

ithe time and the effort to follow precautionary measures to help prevent dangerous

situations. It is important to remember that the effects of responsibility are twofold.

If a system behaves correctly, then the members of the development process can

feel proud of their work and, if approved by management, be compensated for their

accomplishment. However, should a problem arise, the developers should be willing

to remedy the problem and appease those affected by the malfunction, in other words,

they should be accountable.

1.2.2 Accountability

Accountability is a term that can be used within the software development process.

In the context of computer systems, Helen Nissenbaum, the associate director of the

Center for Human Values, provides ‘a clear definition.

Accountability means there will be someone, or several people, to answer

not only for malfunctions in life-critical systems that cause or risk grave

injuries and cause infrastructure and large monetary losses, but even for

the malfunctions that cause individual losses of time, convenience, and

contentment [12].

It is clear that the boundaries of accountability encompass various degrees and

types of errors. Accountability allows for a reactive way to deal with problems.

Although each member of the development team should be accountable for individual

actions regardless of the malfunction, the consequences of the different malfunctions

should be distributed. In an extreme comparison, compensation for a child who was

permanently disfigured should be greater than that for a dented fender. The varying

degrees of compensation is one aspect of accountability, but is usually referred to as

liability. It is useful to differentiate between accountability and liability [12].

While each member of a production process should be 100% accountable for in-

dividual actions, liability can be distributed so that appropriate parties provide a

fractional part of the compensation due to the victim. Therefore, liability can pro-

10

vide compensation for a bad situation [12], but is only part of accountability. Other

steps must be taken to locate the source of the problem and to eradicate the fault(s).

The combination of providing retribution for the victim and a solution to the prob

lem is the form of accountability we wish to further promote in the computer system

development community.

The three-pronged approach addresses accountability in each of the three areas.

Liability precedents for safety-critical software systems and federal laws are proposed

in order to call for legal action. In the alterations to education, emphasis is be placed

on preventing, detecting, and remedying incorrect solutions to homework problems

and projects. Students will also be exposed to incidents that have occurred in the

past with the intent that the students will learn from the mistakes of others. Finally,

we propose that the Software Advisory Board be given authority to hold accountable

those who endanger the public by failing to comply to the official guidelines.

In hopes of raising the level of public safety, we have chosen an approach that

promotes responsibility and accountability in both a proactive and reactive manner.

This approach differs from other methods that use only reactive solutions. An exam-

ple would be to only use costly legal suits to promote liability, but this approach is

not feasible as we will discuss later. The combination of preventative measures with

appropriate compensation can help to make developers create safer computer systems

for all types of use.

1.3 Organization of Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, the scope of

the dissertation will be defined in terms of safety-critical software systems. Chapter 3

examines the current procedure for dealing with critical incidents. Next we examine

how the procedure handles incidents involving software systems which will expose a

11

need for software-specific policy and a better software development process. Finally,

the three-pronged approach is explained proposing additions to legislation, alterations

of computer science education, and the induction of the Software Advisory Board in

Chapter 4, Chapter 5, and Chapter 6, respectively. Chapter 7 describes how three

groups, industry, academia, and the legal profession can make use of the three-pronged

approach. Conclusions and future investigations are discussed in Chapter 8. Also, a

glossary of legal terms is given in Appendix A.

CHAPTER 2

Safety-Critical Software Systems

The need for higher quality computer systems spans almost all domains in which

those systems are used. Of tantamount importance are those products that cause

the greatest risk to the general public. The increasing number of incidents involving

such systems calls for immediate action from within the computer science community.

The primary focus of this dissertation will be on safety-critical software systems. We

feel that this area is causing great risk to the public [10, 13, 14] and is not receiving

the appropriate amount of attention. In order to better understand the nature of

safety-critical software systems, we use this chapter to clarify what is meant by the

terms “safety-critical” and “software systems.”

2.1 Safety-Critical

As computers continue to be embedded in more systems, categorizing the role of

the system in society becomes increasingly difficult. For certain systems, the greater

the number of people interacting with the system, the greater the possible risks.

However, we must ask, at what point does this risk become “safety-critical?” The

answer is subject to interpretation and so the definition of safety-critical has become

12

13

ambiguous. The following will help to define the perspective taken throughout this

work.

According to Webster’s New World Dictionary [15], safety means “being safe,”

where safe is defined to be “free from damage, danger; secure; having escaped injury;

unharmed.” General safety can then be considered to be “the freedom from exposure

to danger, or the exemption from hurt, injury or loss [16].” However, in the context of

software, safety takes on a more precise definition to provide a means for measuring

and rating degrees of safety.

Nancy Leveson, an expert in the field of safety analysis, defines safety as a state of

minimal hazards [17]. Her definition makes an important distinction between hazards

and accidents. She states that a hazard is “a set of conditions that can lead to an

accident given certain environmental conditions [17].” This definition encompasses

more than an accident which is “an unplanned event or series of events that leads to

an unacceptable loss such as death, injury, illness, damage to or loss of equipment

or property, or environmental harm [17].” The distinction shows the need to provide

protection not only from undesirable events, but also the possibility of such events.

The public should not have to worry about unexpected and undesired events, instead

they should be confident that the systems will perform as expected.

For the context of this dissertation, we narrow the scope of all possible safety

issues by limiting the definition of critical to only include those hazards that can

potentially lead to some form of human loss. Human loss will then include direct

bodily injury and death, excluding loss of property or income, though these situations

may indirectly lead to human loss. The purpose is not to dismiss the severity of such

other losses, but to restrict the scope of the dissertation as to provide a foundation

for other research. These issues do need to be addressed within their own context.

14

2.2 Software Systems

Software alone cannot cause harm to anyone; it is simply the programs written for

a computer [15]. However, embedded within a system, software controls machines

that may have life-threatening functions. Thus, when we speak of software systems,

we are referring to systems that are partially or completely controlled by software.

The combination of software and a system constitutes a product that can be sold and

marketed like any other product.

Therefore, safety-critical software systems are defined to be any software-

embedded system that may contain hazards that can lead directly to some form

of human loss. The use of safety-critical systems is not a novel concept, but, when

combined with software systems, normal means of certification, regulation, and even

investigation become obscured. It is this chaotic state that has allowed for incidents

to occur jeopardizing the lives of many and taking the lives of some.

CHAPTER 3

Safety-Critical Incidents

In order to provide context for investigating ‘incidents’ that have involved safety-

critical software systems, we first present ‘incidents’ that did not involve computer-

related products. We refer to the situations as incidents rather than accidents. The

reason is that accidents are perceived by some people to be events that occur by

chance, where as incidents occur because something went wrong. We have character-

ized the following events as incidents because in all the cases, the cause was detected

after investigation and in most cases, the incident could have been prevented. This

discussion describes the normal course of action taken when each incident occurred.

With this presentation, it should become more clear as to what changes need to

be made in order to provide the public with adequate protection while using safety-

critical software systems. This protection should be equal to the protection the public

has when using non-computerized systems.

3.1 Incidents in Other Domains

Each critical product in this discussion falls under a specific domain that is overseen

by a governing body: food and drugs, flight systems, and automobiles. These organi-

zations work to keep products with potential dangers off the market. This protection

15

16

is maintained through specific minimum certification standards for the products, in-

tense investigations when an incident occurs, and legal measures for those who fail to

comply with the regulations.

3.1.1 Tylenol Tampering

In 1982, seven people died of cyanide poisoning after ingesting tainted Tylenol cap-

sules [18]. As soon as paramedics determined the source of the poisoning, the Food

and Drug Administration (FDA) took charge of the situation and began its attempt

to protect others from being harmed. Tylenol capsules, a brand of over-the-counter

drugs, were pulled from stores throughout Chicago. Though the Tylenol incident was

not an accident, but a deliberate crime, the role and importance of the FDA becomes

apparent, particularly given their quick response in handling the situation. The fast

action and cooperation between McNeil Consumer Products Co. (the manufacturer

of Tylenol) and the FDA saved lives. Their noteworthy efforts are still commended

today [19].

Food and Drug Administration. The Food and Drug Administration played

a large role in the Tylenol incident. The quick and responsible reaction to the first

reports of the poisoning helped to minimize the number of fatalities. Before additional

members of the public were able to purchase the contaminated product, the FDA

removed the product from stores in the vicinity of the poisonings [18]. In addition,

the FDA worked with the manufacturer to protect the general public by opting for

a national recall of the product [18]. Meanwhile, investigators worked diligently to

determine where the tampering had occurred, working first with the distribution chain

and then investigating everyone from the manufacturer to the drugstores [18].

The FDA continued to work on the case even after the tainted Tylenol was con-

tained and removed from the public market. The FDA went on to pass anti-tampering

17

laws that made tampering, false reporting of a tampering, and extortion by threat-

ening to tamper, crimes punishable by fines and prison sentences [20]. Since 1982,

several people have been convicted of the above crimes and punished [20]. The laws

and punishments prescribed by the FDA have sent a strong message to the public on

where the FDA stands with regard to consumer product tampering.

3.1.2 ATR Grounding

On Monday, October 31, 1994, all sixty-eight people on board an ATR-72 died as their

plane crashed in Roselawn, Indiana [21]. According to aviation experts, the plane

crash may have been attributed to abnormal ice formations on the wings [22]. The

pilots were unaware of the formations because the flight was under autopilot rather

than manual control. American Eagle Flight 4184 was the first crash of an ATR-

72, according to the French-Italian company, Avions de Transport Regional (ATR)

Marketing [23]. Immediately following the crash, members of the Federal Aviation

Administration, the Secretary of Transportation, and the National Transportation

Safety Board were available at the scene. Because the ATR-72 could hold up to 72

people, it was treated as and considered to be a large aircraft. Furthermore, it was

subject to the same regulations as other aircraft such as Boeing’s 747 and McDonnell

Douglas’ MD-ll [23].

Federal Aviation Administration. The Indiana crash spawned immediate re

sponses from both the public and the Federal Aviation Administration (FAA). In

order to minimize the possibility of future incidents, action was taken on November

9, 1994, that prohibited other ATR-72 aircraft from using autopilot while flying in

icing conditions [22]. In addition, the FAA required airlines to reduce the number of

planes being sent out in poor weather conditions. These measures were instituted to

help protect the public while necessary testing was being performed. At this time,

18

studies were being conducted to analyze the development of ice formations on the

aircraft’s wings. However, the decision to allow planes to continue flying despite the

incident was displeasing to a number of groups that work in the airline industry. The

Air Line Pilots Association began advocating a ban on flights that used the ATR-72

and ATR-42 aircraft in icy conditions [24]. The association’s request was overruled

by individual airlines who found the requests “unfounded” [24] and by the FAA who

felt the recommendation was unnecessary. To further advocate the association’s con-

cerns, somepilots worked to produce a leaflet explaining why they refused to fly the

propeller planes in such conditions [24]. The intent was to warn the passengers of

possible danger. Furthermore, American Eagle’s flight attendant union submitted a

request that the flights be grounded until the investigation into the Indiana crash was

complete [24].

On December 10, 1994, after analyzing results from tunnel tests, the FAA banned

both the ATR-72 and the ATR—42 from flying in weather conditions where there was

the possibility of ice forming on the wings [25]. This order affected many companies

that used the propeller planes built by ATR [25]. Airlines such as Continental Ex-

press and American Eagle were forced to cancel flights as they attempted to move

the ATR-72s and the ATR-42s to warmer climates and bring in other aircraft to

fly in the colder areas [26]. The affected airlines were not completely content with

this decision because the banning order was apt to incur large costs in the figure

of millions of dollars [26]. However, when weighted with the enormous “cost” of a

crash, (i.e., passenger/crew fatalities, the loss of the plane, etc.), the order seemed

justified. Both pilots and prospective passengers agreed. Since early December 1994,

various pilot associations had been requesting such a ban. In addition, many passen-

gers who were disrupted from their scheduled flights were not upset with the FAA.

Though many were inconvenienced, most felt that a few hours of discomfort were well

19

worth an increase in travel safety. Others chose different modes of travel during the

holidays [27].

Finally, on January 11, 1995, the FAA lifted the ban on the ATR-72 and the ATR—

42. Extensive testing was done at Edwards Airforce Base that supported the claim

that the cause of the crash was most likely attributed to ice forming on the wings [28].

The manufacturer’s first proposal for correction focused on having the pilots look out

the window for the ice formations. However, the second proposal was much more

appealing to the FAA who, after much consideration, decided to lift the ban pending

the following. First, pilots were required to watch for the ice formations [29]. Second,

the planes were still banned from flying in freezing rain until new de-icing mechanisms

were put into place and crews were retrained according to new FAA regulations [29].

Third, the aircraft was not allowed to use its flaps during certain icing conditions [30].

Fourth, the detection of freezing rain had to be improved, and planes were required to

exit freezing rain areas [30]. Finally, the pilots had to keep the RPM of the propellers

above a given rate [30]. The FAA expected the new guidelines to raise the level of

ATR safety.

While many holiday travelers were delayed due to the restrictions on ATR flights,

most feel that the “emergency airworthiness directive” initiated by the FAA helped

to maintain safe travel during the holidays and worked to prevent unnecessary inci-

dents [31].

3.1.3 Windstar Recall

In January 1994, the first wave of Ford Windstars were put into production. One year

later, Ford Motor Company recalled all 1995 models that were built between January

31, 1994 and September 19, 1994 [32]. It had been found that “in all the affected

vehicles a loose connection in the electrical power distribution box under the hood

could cause excessive heating and ignite wire insulation and other nearby parts [32].”

20

In addition, approximately half of the minivans also had a possible hazard within a

wire harness that, when pinched, could create an electrical fire [32]. Though none

of the 13 reported fires had caused injuries, Ford chose to recall the models before

injuries occurred [32].

Due to the fast action of Ford, no federal authorities were called to action.

3.2 Incidents Involving Software Systems

As seen in Section 3.1, specific measures were taken to help ensure public safety.

The intent of this section is to expose the need for greater understanding of software

systems in order to provide a higher level of safety for safety-critical software systems.

The purpose of the discussion is not to criticize the existing governing bodies, but to

give insight as to how the computer science community can aid in the governing of

products involving software systems.

3.2.1 Theme-25 Incidents

In 1983, Atomic Energy of Canada, Ltd. (AECL) released the Therac-25, a dual-

mode linear accelerator created to provide radiation treatment for cancer patients.

Concisely stated, the following describes the functionality of the Therac-25 [10].

Medical linear accelerators (linacs) accelerate electrons to create high-

energy beams that can destroy tumors with minimal impact on the sur-

rounding healthy tissue. Relatively shallow tissue is treated with the ac-

celerated electrons; to reach deeper tissue, the electron beam is converted

into X-ray photons.

The new dual mode Theme-25 was based on the Therac—20 and Therac-6 acceler-

ators and included added enhancements to the software and the elimination of what

was thought to be unnecessary hardware components, (e.g., protective circuits, me-

chanical interlocks) [10]. The software program regulated the timing mode (X-ray or

21

electron), strength, and duration of the dose, thus giving software more control of

functions than the software used in the previous versions of the Therac [33].

Five Therac-25 machines were used in the United States and six were used in

Canada [10]. Nancy Leveson and Clark Turner conducted an extensive investigation

of six Therac-25 incidents [10]. By 1987, they found that six patients had been

severely burned by the Therac-25 as detailed in Table 3.1.

une 1985 Kennestone Loss

, 1985 Destruction

1985 Y V issue necrosis

1 1 Texas

11 1986 East Texas Center F

7 1987

Table 3.1. Therac-25 Overdose Incidents

The following summarizes some of their findings.

Kennestone Regional Oncology Center. On June 3, 1985, a patient suffering

from a malignant breast tumor was receiving treatment from the Therac-25 in Mari-

etta, Georgia when she was given an overdose. It was calculated that she received a

measure of 15,000 to 20,000—rads rather than the 200-rad prescription. The patient

complained that she had been burned, but was informed that that was impossible [10].

Still, the patient suffered an immense amount of pain as explained in the following

account [10]:

. . . She developed a reddening and swelling in the center of the treatment

area. Her pain had increased to the point that her shoulder ‘froze’ and

she experienced spasms. She was admitted to West Paces Ferry Hospital

in Atlanta, but her oncologists continued to send her to Kennestone for

Therac-25 treatments. . .About two weeks later, the physicist at Kenne—

stone noticed that the patient had a matching reddening on her back as

though a burn had gone through her body, and the swollen area had be-

22

gun to slough off layers of skin. Her shoulder was immobile, and she was

apparently in great pain. . . Eventually, the patient’s breast had to be re-

moved because of the radiation burns. She completely lost the use of her

shoulder and her arm and was in constant pain.

There was no response to the incident from the center and AECL conducted

no investigations after it was told of the incident. In addition, the FDA was not

contacted and other users of the Therac-25 were left unnotified. The exact cause

of the burn remains undetermined since the treatment prescription printout was not

working at the time of the incident. Understandably, the patient filed a lawsuit that

was eventually settled out of court.

Ontario Cancer Foundation. A similar incident occurred in Hamilton, Ontario,

Canada on July 26, 1985. The patient was being treated for carcinoma of the cervix.

This particular treatment was to be her twenty-fourth by the Therac-25 machine. On

this day, ‘normal’ malfunctions occurred, (i.e., treatment suspensions and treatment

pauses). This time the series of events resulted in the application of 13,000 to 17,000-

rads, again, well exceeding the normal ZOO-rad dosage [10]. It has been noted that a

dose of 500—rads can be fatal if applied to the entire body [10]. Understanding the

patients trauma can help to clarify the serious nature of the overdose [10]:

The patient complained of a burning sensation, described as an ‘electric

tingling shock’ to the treatment area in her hip. . . The patient came back

for further treatment on July 29 and complained of burning, hip pain,

and excessive swelling in the region of the treatment. . .The patient was

hospitalized for the condition on July 30. . . The patient died on November

3, 1985 of an extremely virulent cancer. An autopsy revealed the cause

of death as the cancer, but it was noted that had she not died, a total

hip replacement would have been necessary as a result of the radiation

overexposure.

In this case, a few actions were taken. AECL conducted an investigation and

decided that the problem was located in an “ambiguous position” message for the

turntable. The turntable was controlled by a three-bit signal that rotated the table

23

to one of three positions: electron beam, X ray, or field light [10]. Each position

allowed for different levels of treatment. An overdose could occur if the turntable

was placed in the wrong position. With a three-bit signal, there are several signals

that could designate more than one mode at a time, signals uninterpretable by the

turntable. The code was altered to alleviate the problem and the software was revised

to help provide further checks. AECL also opted for a voluntary recall in which it

notified other users of the problem, yet did not mention that patient injury was

involved. The FDA was informed of the problem and produced a set of modifications

that had to be made in order for the Therac-25 to be officially approved by the FDA.

AECL completed the first modification, but failed to comply to the rest of the FDA’s

directives.

After the patient returned on July 29, 1985 the Ontario Cancer Foundation Clinic

ceased using the Therac-25. In addition, the clinic hired an independent consultant

who found other problems with the system. A letter was sent to AECL outlining the

measures that needed to be taken. AECL (apparently) disregarded the suggestions

provided by the clinic and the independent investigator.

Yakima Valley Memorial Hospital. In December 1985, a patient went to Yakima

Valley Memorial Hospital, located in Yakima, Washington, to receive a radiation

treatment. Even after the incident, no one within AECL was willing to admit that

the incident could have been caused by the Therac-25 [10].

She [the patient] developed erythema (excessive reddening of the skin) in

a parallel striped pattern at one port site (her right hip) after one of the

treatments. Despite this, she continued to be treated by the Therac-25

because the cause of her reaction was not determined to be abnormal until

January or February of 1986. On January 6, 1986, her treatments were

completed.

The stafl' monitored the skin reaction closely and attempted to find pos-

sible causes. The open slots in the blocking trays in the Therac-25 could

have produced such a striped pattern, but by the time the skin reac-

tion had been determined to be abnormal, the blocking trays had been

24

discarded. . . When it was discovered that the woman slept with a heating

pad, a possible explanation was offered on the basis of the parallel wires

that deliver the heat in such pads. The staff x-rayed the heating pad

and discovered that the wire pattern did not correspond to the erythema

pattern on the patient’s hip. . .

The hospital staff eventually ascribed the skin/tissue problem to ‘cause

unknown’. . . About a year later. . .the staff investigated and found that

the patient had a chronic skin ulcer, tissue necrosis (death) under the

skin, and was in constant pain. This [condition] was surgically repaired,

skin grafts were made, and the symptoms relieved. The patient is alive

today, with minor disability and some scarring related to the overdose.

When contacted, AECL responded that the cause of incident could not be at-

tributed to any Therac-25 malfunction [10]. The hospital was forced to conduct

its own investigations as it was never informed of any other injuries caused by the

Therac-25.

East Texas Cancer Center. Three months later in Tyler Texas, on March 21,

1986, another patient received an overdose from the Therac-25. The patient was

scheduled for a treatment of 180 rads on a 10 x 17-cm section of his upperback [10].

Due to some errors in the operator’s input, the machine malfunctioned and delivered

an incorrect dosage. Because the video display and audio monitor were not on,

the patient was unable to warn the operator of the problem. Thus, a second dose

of radiation was given. It was estimated that the patient received approximately

16,500 to 25,000—rads over a 1 cm area in approximately 1 second, clearly causing

much damage [10]. The following excerpt provides a more complete account of the

overdose [10]:

After the first attempt to treat him, the patient said that he felt like he

had received an electric shock or that someone had poured hot coffee on

his back: He felt a thump and heat and heard a buzzing sound from the

equipment. Since this was his ninth treatment, he knew that this was not

normal. He began to get up from the treatment table to go for help. It

was at this moment that the operator hit the ‘P’ key to proceed with the

treatment. The patient said that he felt like his arm was being shocked

25

by electricity and that his hand was leaving his body. He went to the

treatment room door and pounded on it. The operator was shocked and

immediately opened the door for him. He [the patient] appeared shaken

and upset.

During the weeks following the accident, the patient continued to have

pain in his neck and shoulder. He lost the function of his left arm and had

periodic bouts of nausea and vomiting. He was eventually hospitalized

for radiation-induced myelitis of the cervical cord causing paralysis of his

left arm and both legs, left vocal cord paralysis (which left him unable to

speak), neurogenic bowel and bladder, and paralysis of the left diaphragm.

He also had a lesion on his left lung and recurrent herpes simplex skin

infections. He died from complications of the overdose five months after

the accident [original overdose].

The center’s physicist temporarily stopped the center from using the Therac-

25 after the incident and notified AECL. Representatives from AECL visited the

center to examine the machine, but still claimed that the Therac-25 could not give

an overdose [10]. The AECL representatives suggested that the cause may have been

from electrical shock and allowed the center to continue to give treatments with the

Therac-25.

East Texas Cancer Center. Three weeks later, another disaster occurred. On

April 11, 1986, a patient received over 4,000-rads of treatment to a small 7 x 10-cm

section of his face. The dosage was intended to treat his skin cancer, but instead led

to the patient’s death [10]. After the treatment, the patient knew that something

had gone wrong as the following reveals [10]:

The patient began to remove the tape that had held his head in position

and said something was wrong. She [the operator] asked him what he felt,

and he replied ‘fire’ on the side of his face. . .the patient explained that

something had hit him on the side of the face, he saw a flash of light, and

he heard a sizzling sound reminiscent of frying eggs. He was very agitated

and asked, ‘What happened to me, what happened to me?’

The patient died from the overdose on May 1, 1986, three weeks after

the accident. He had disorientation that progressed to coma, fever to 104

degrees Fahrenheit, and neurological damage. Autopsy showed an acute

high-dose radiation injury to the right temporal lobe of the brain and the

brain stem.

26

The center’s physicist again stepped in and kept the center from using the Therac-

25 until the problems had been eradicated. He and the operator performed several

tests to determine the series of events that caused the overdose. It was determined

that the operator had made a mistake entering the treatment data and used the UP

key to make the correction [10]. This action seemed to have triggered the overdose.

AECL was notified, but could not reproduce the overdose after performing several

tests. East Texas Cancer Center’s physicist had to explain to AECL how he produced

the error and then AECL was finally able to reproduce the overdose.

AECL notified the FDA, but the FDA had already begun an investigation after

the first East Texas Cancer Center incident in which it found the Therac-25 defec-

tive and unsuited for use. The FDA then required AECL to notify all users of the

Therac-25 that it was defective and to provide the FDA with a corrective action plan

(CAP). Until a final plan was devised, AECL recommended that the centers use a

“temporary” remedy that involved removing the key cap from the UP key or placing

electrical tape over the key to prevent further use [10]. This recommendation was

found to be unsatisfactory by the FDA, and on May 2, 1986, the Therac-25 was

declared defective [10]. The users began to form a coalition where information was

passed between the various centers. After much discussion, it was found that many

centers had encountered similar problems with the Therac-25. In fact, some had felt

it necessary to add extra safety features to their machines. Several anomalies about

the machine were revealed. In addition to the known overdoses, the users estimated

that 10 to 30 percent of the cases resulted in underdosing [10]. From June 1986 to

January 26, 1987, the FDA and AECL went through several series of revisions to

devise a CAP in an effort to fix the problems of the Therac-25.

Yakima Valley Memorial Hospital. One week before the final CAP was sub-

mitted, another patient received an overdose. On January 17, 1987, the patient went

27

in for treatment for carcinoma. The intended dosage was a total of 86orads. The

following is an account of the actual treatment [10]:

He [the operator] went into the room to speak with the patient, who

reported ‘feeling a burning sensation’ in the chest. . . Later in the day, the

patient developed a skin burn over the entire treatment area. Four days

later, the redness took on the striped pattern matching the slots in the

blocking tray. The striped pattern was similar to the burn a year earlier

at this hospital that had been attributed to ‘cause unknown’. . .

The patient died in April from complications related to the overdose. He

had been suffering from a terminal form of cancer prior to the radiation

overdose, but survivors initiated lawsuits alleging that he died sooner

than he would have and endured unnecessary pain and suffering due to

the overdose. The suit was settled out of court.

The cause of the incident was attributed to race conditions in the software.

Though AECL proposed temporary solutions to the problem, the FDA felt that the

software was an inadequate form of sole protection and that hardware backups needed

to be installed for added protection. Finally, on February 10, 1987, the FDA told

AECL that the Therac-25 was officially defective and unable to be used in the United

States until further notice [10]. Canadian officials also recommended that users refrain

from using the Therac-25.

Discussion. On July 32, 1987, 25 months after the first massive overdose, AECL

sent a final notice to users outlining 34 modifications that were to be implemented on

the Therac-25 in order to make the machine safe to use again [10]. Several questions

were raised concerning the Therac-25: Why did the centers and hospitals continue

to use the Therac-25 while their patients were being injured? How and why did

all of the constant malfunctions of the machine go unnoticed? Why was AECL

allowed to submit incomplete schedules of modifications without any recourse? Most

'Race Conditions occur when two or more processes read from or write to the same data at the

same time causing the result to be dependent upon the order that the data is accessed [34].

Q

im]

the

Kiel]

Prob}

3.2.

lllb]

ihat

It,

28

importantly, why were patients allowed to die before proper attention was given to

the Therac-25?

While we may never be able to provide answers to these questions, we can address

some of the software-related problems that led to the injuries. The development of

the Therac-25 was far from ideal. By observing several of the deficiencies uncovered

in the investigation, it is easy to see how such malfunctions occurred. First, there

was an unreliable reuse of software from the Therac-6 and the Therac-20 [10]. Some

of the old programs were used in the Therac-25 under the incorrect assumption that

they would perform the same in the new machine. Second, the design itself was overly

complex. This complexity made it difficult to evaluate how the system performed.

Third, some of the concurrent programming was invalid [10]. Race conditions and lack

of mutual exclusion were some of the errors later revealed. Fourth, the importance of

the user interface was neglected. Operators of the Therac-25 had become accustomed

to frequent interruptions and unexplained error messages. This lead to the next

problem, the documentation was very poor. Sixth, there was an unverified reliance

upon the software for safety. Testing was limited and there was no validation or

verification performed. Regardless, the software was expected to replace hardware as

the primary safety control unit. Finally, regulation applicable to the Therac-25 was

unable to handle the situation. It is apparent that several deficiencies in many of the

development stages of the Therac-25 contributed to the malfunctions. Though we

are not able to reverse the Therac-25 situations, we can work to find solutions to the

problems uncovered in the investigation and prevent such future incidents.

3.2.2 Airbus Incidents

Airbus Industrie, the manufacturer of the Airbus aircraft, maintains the philosophy

that an automated cockpit is more reliable than a cockpit controlled by a pilot [35].

Thus, the more automation there is, the better. Several past incidents, noted in Ta-

29

ble 3.2, have brought attention to Airbus Industrie and have caused some to question

its philosophy. This European aviation company is the producer of the Airbus A300,

A310, A320, A330, and A340 models, all of which are partially or completely con—

trolled by automatic flight control systems. Of these models, the A320 was the first

fly-by-wirc system used in civil transport aircraft [36, 37]. tThe A320’s fly-by-wire

control system works as follows. The commands from the pilots to the mechanisms of

the plane are sent digitally. Data is collected from both the pilots and on-board sen-

sors. The system will “compensate automatically” for certain common disturbances.

Finally, the system has internal limits that govern different variable values [36].

The A310’s control system comprises two independent software systems provided

for safety reasons [38].

rNo. I Date [Aircraft [Site] Fatalitiea]

1 June 26, 1988 A320 Mulhouse Habsheim 3

2 February 14, 1990 A320 Bangalore 94

3 February 11, 1991 A310 Moscow 0

4 September 1991 A300 Katmandu, Nepal 167

5 January 20, 1992 A320-100 Strasbourg, France 87

6 April 26, 1994 A300—600R Nagoya, Japan 263

7 June 30, 1994 A330 Toulouse, France 7

8 September 19, 1994 A340 Heathrow 0

9 September 24, 1994 A310-300 Paris-Orly 0
Table 3.2. Air Industrie Incidents Involving the Airbus

Incident 1. On June 26, 1988, three passengers on board an Air France Airbus

A320 were killed after their aircraft crashed into a group of trees near the Mulhouse

Habsheim runway [39]. The crash occurred during a flyby maneuver performed for

lA fly-by-wire system is fully controlled by an automatic flight control system (AFCS).

30

an airshow. Flying at a very low altitude and attempting to make the “maximum

attack angle” proved to be a fatal mistake. Minutes before the crash, the pilot

disengaged the autothrottle planning to take full manual control of the aircraft as a

precaution. (It was later determined to be an unnecessary action [40].) After passing

the control tower, the pilot put the throttle in the maximum thrust position. This

action conflicted with the program that expected a “gradual” increase of power [40].

The pilot then put the aircraft in the full nose-up position [40]. By the time the

engines were fully powered, the aircraft had already collided with trees causing two

engines to shutdown [40].

An extensive investigation was conducted in an attempt to determine the cause of

the incident. This investigation included various tests and intense research into the

controls that governed the system [36]. Investigators came to the conclusion that the

incident was caused by a number of factors including: the flyover height was too low,

the speed was too slow, the engine was at flight idle, and the go—around poweriwas

not activated early enough [40].

It may also be noted that the investigation uncovered several inadequacies with

the aircraft. Though none of these attributed to the incident, they were fixed in other

aircraft [40].

Incident 2. On February 14, 1990, 94 of the 146 members aboard an Indian Airlines

Airbus A320 were killed as the aircraft crashed near the Bangalore Airport upon

landing [42]. The series of events that led to the crash began with the improper

selection of the ‘idle open descent mode.’ In addition, the engines were set to idle

allowing the plane to descend at a very low speed. Finally, the automatic flight control

system put the plane into go-around mode fully activating the idle engines. At this

tThe Takeoff/Go-Around (TOGA) mode is used during landings where the aircraft must attempt

another landing and takeoff. In this mode, full power is supplied to the aircraft [41].

31

time, the plane was descending too rapidly and the pilots were unable to switch the

other controls to ascend and try to land again.

Since this incident was the second Indian Airlines A320 crash, the owners of

the aircraft, Indian Airlines, immediately grounded all Airbus A3208 and refused to

accept any of the other A3203 that were to be delivered [42]. Airbus Industrie was

not pleased by this decision. Managers asserted that the A320 and its systems were

not to blame for the crash, and claimed that the aircraft’s design and equipment

provided no basis for the grounding [42]. While no direct link was found between the

crash and the actual aircraft, the question of why the automatic pilot went into the

go-around mode remained unanswered.

Incident 3. On February 11, 1991, the crew of an Interflug Airbus A310 temporar-

ily lost control near Moscow after changing the flight modes [43]. Due to runway

problems, the aircraft had to delay landing. The pilots activated the go-around mode

sending the plane into automatic control. However, the control tower requested that

a specific altitude be maintained, one much lower than that used by the go-around

mode. When the pilot attempted to disengage the mode and return to manual con-

trol, the automated controls took over causing the plane to climb at a steep angle.

Fortunately, the automatic controls were deactivated and no one was injured.

Incident 4. In September 1991, 167 people died in Katmandu, Nepal as a Pakistani

A300 crashed while attempting to land [44]. Investigations determined that the au-

topilot was never completely disengaged, it was only temporarily deactivated pending

reactivation. During the same year, a bulletin was released by Airbus Industrie warn-

ing pilots of the dangers associated with overriding the autopilot mechanism [45]. The

bulletin went on to describe a sample scenario in which the autopilot system could

conflict with the pilots’ maneuvering and could cause a crash.

32

Incident 5. The following year on January 20, an Air Inter Airbus crashed killing

87 of the 96 people on board. The incident, involving a “fly-by-wire” A320-100,

occurred near the Strasbourg-Entzheim Airport located in France. Upon approach,

the plane was set in the “incorrect” descent mode and crashed into a mountain lo-

cated only 8 nautical miles from the airport [46]. After an extensive investigation by

the French authorities, the Delegation Generale pour l’Armement (DGA), and other

organizations, the exact cause of the crash was left as undetermined. However, “com-

plex human factor issues” were noted as potential causes. Pierre-Henri Gourgeon,

a member of DGA, noted that Air Inter did not equip its aircraft with the Ground

Proximity Warning System (GPWS) [47]. The airline’s managers felt that the GPWS

generated too many false alarms and could be replaced by another air traffic control

system [46]. In contrast, other sources state that when used on the A320, the GPWS

was highly reliable [47]. At first, it was also found that failure of the Flight Control

Unit (FCU) may have played a minor role in the incident. After further analysis, a

hypothetical situation was presented to DGA exploring the possibility that confused

crew members may have set the FCU in the incorrect mode [48].

In response to the investigation reports, Airbus Industrie began to redevelop the

FCU as a precautionary method. The problem with the flight mode was attributed

to pilot error. Yet, some French pilots found that the system design was also at fault.

The Airbus A320 was created to run automatically, so many manual operations were

not integrated well into the design. For instance, the FCU was created with little

attention to human factor issues and seemed open for error in cases where the pilot

had manual control. In support of this claim, it was noted that aircraft, including

the A320, required a significant amount of reprogramming in order to accommodate

changing conditions during flight [49]. For example, one pilot refused to make a

landing approach alteration after descending below 3000 feet because it would have

required his copilot to make approximately 12 reprogramming steps without any

33

assistance or guidance [49]. What may have been attributed to pilot error in the

Strasbourg incident, may have actually been caused by poor software design, a design

approved by the manufacturer.

Incident 6. Approximately two years later, another incident was reported in

Nagoya, Japan involving a China Airlines (CAL) Airbus A300 enroute from Taipei,

Taiwan. On April 26, 1994, 263 of the 271 members onboard the A300-600R aircraft

died as their plane crashed upon landing [50]. The Accident Investigation Committee

(AIC), a part of Japan’s Ministry of Transport attributed the cause of the incident to

conflicts between the autopilot system and the pilots’ actions. That is, the crew was

supposed to choose between allowing the plane to remain in automatic pilot or to fly

the plane manually. Instead, the pilots attempted a mixture of both approaches [51].

According to the flight transcript, the take off/go-around (TOGA) switch was acci-

dentally engaged. Crew members made attempts to disengage the switch, but during

the confusion, it was disengaged and then re-activated. At this point, the autopilot

system took over forcing a phantom takeoff during an actual landing then sending

the plane into a fatal ascent [52]. Many sources blamed only the pilots. However,

others felt that there were major problems with the Airbus FCU [14].

The sequence of events that led to this incident closely parallels those mentioned in

the 1991 bulletin [45]. The existence of such a bulletin showed that Airbus Industrie

was aware of possible problems with the autopilot system. In addition, there had

been at least six other incidents involving different models of the Airbus A300 before

the Nagoya incident [44]. Airbus Industrie’s reactions were questioned concerning

possible lack of action. This was the seventh Airbus, though the first A300-600, to

crash in the last 10 years. Airbus Industrie has made no changes in the aircraft

design or in the manufacturing process [51]. The manufacturer of the aircraft (Airbus

34

Industrie) was not the only party questioned after the crash, the owners of the aircraft

(CAL) were also subject to several investigations.

CAL had been the primary transportation for all major “Chinese officials. Fol—

lowing the crash, the director of Taiwan’s Civil Aeronautics Administration (CAA)

and several top executives at CAL resigned taking responsibility for the incident [14].

Upon further investigation, it was believed that CAL had sacrificed improved safety

for profits. For example, the former chairperson of CAL made a decision against the

purchase of new aircraft and equipment because they were too costly [14]. Among

the needed equipment were simulators for flight training. At the time, some training

was done during actual commercial flights [14]. There have been charges that the

CAL board of directors was primarily run by senior military officers who had little

understanding of the airline industry. New management at CAL has recognized the

need for a balance between maintaining safety as well as the company’s standing. Im-

provements, such as bringing in international consultants and hiring competent board

members, have put CAL back on track towards maintaining a safe airline. Had the

autopilot issue been addressed earlier by any of these parties, (i.e., Airbus Industrie,

CAL, CAA), the Nagoya tragedy may have been prevented.

Incident 7. On June 30, 1994, Airbus Industrie was performing tests on the au-

topilot system of an A330 in Toulouse, France, when during one of the test flights the

aircraft crashed immediately after takeoff [53]. All four members of the flight crew

and three airline representatives were killed. The flight crew was attempting to test

the autopilot mechanism in the event of engine failure, a requirement for the Category

3 Certification Test. The Delegation Generale pour l’Armement (DGA), conducted

investigations and determined that the loss of control was caused by contradictory

requirements from the pilots and the autopilot system [41, 54]. However, the conflict

between the autopilot system and the pilot’s instructions could have been resolved

35

had the pilots acted sooner. Some have questioned the overreliance upon the au-

topilot system by crew members. Regardless of whether or not the pilots could have

prevented the crash, the question still remains: What was wrong with the autopilot

system? One account of the incident states the following [54]:

o The autopilot sent the aircraft into a mode that conflicted with the test flight

plans ending the test.

a Pitch altitude was increased while the speed decreased bringing the aircraft to

a speed below that of the minimum control speed.

s The crew disengaged the autopilot.

The investigative report stated that the crash could have been prevented had the

autopilot system been turned off four seconds earlier [41]. If the autopilot system

had been performing correctly, the pilots would not have needed to disengage the

autopilot system at all. Thus, in addition to improving pilot and crew reactions, it

was equally, if not more important, to have reviewed the autopilot system and made

the necessary corrections. Later, it was found that the crash was partially caused by

incomplete logic in the automated system [55]. There was a lack of protection for the

pitch attitude in one of the autopilot modes. Airbus Industrie was able to provide

a temporary fix for the logic problem and began implementing recommendations by

the DGA immediately after the preliminary investigation [41].

Incident 8. On September 19, 1994, an Airbus A340, owned by Virgin Airlines, was

forced into an emergency landing when critical data disappeared from the screen of

the cockpit [56]. The aircraft was able to land safely in manual mode adhering to in-

structions from the control tower. Though no one was injured, the incident caught the

attention of many in the software development community. Among several problems,

it was found that some causes of the incident were partially attributed to software

and hardware errors in the Flight Management Guidance System (FMGS) and the

fuel management system. This was said to be “the first time that an accident report

36

on an A320/330/340 series aircraft specifically cites software and hardware reliability

as the main problem [57].” Airbus Industrie had encountered similar problems with

the FMGS on the A320 and was prepared to research the problem as to provide a

solution [57] .

Incident 9. On September 24, 1994, a Tarom owned A310-300 aircraft lost tem—

porary control near the Paris-Orly Airport when the FCU entered “level change”

mode without the pilot’s knowledge [58]. This change caused the plane to begin a

rapid ascent at a very sharp angle contradicting the pilot’s manual controls. The

plane then went into a steep dive continuing until the aircraft was only 800 feet above

ground [38]. Though no one was killed, and the incident did not result in an crash,

members of the Flight Safety Foundation Icarus Committee (a committee consisting

of safety aviation experts from the United States and various European countries)

were alarmed [59]. The recognition of this hazard showed that they were working

to prevent the occurrence of future incidents. Committee members have found that

there are approximately 360 incidents for every major commercial crash that occurs,

and that if each incident had been thoroughly investigated, many of the problems

would have been detected [59].

Discussion. Upon review of the numerous incidents involving the different Airbus

aircraft, it can be ascertained that proper action was not always taken to ensure

flight safety. Measures were taken to address the situations caused by the problems

(i.e., blaming the pilots) rather than to address the problems themselves (i.e., the

autopilot system). Two main inadequacies in the software development process sur-

faced throughout the various investigations. First, it was discovered that some of the

control logic governing the autopilot system was not correct. Why the manufacturers

failed to take the corrective action to fix the automated flight system is unknown.

Pe

sio:

sys

(’05

bar

dres

H169

37

Perhaps the system was “too complex” or the remedy too expensive. Maybe officials

did not have proper knowledge of computer systems needed to make corrective deci-

sions. Regardless, the Airbus aircraft were at least partially controlled by software

systems. And as with other types of systems, it is the duty of the manufacturer to

ensure the public’s safety by locating and fixing any known problems. Second, the

design allowed for conflicting modes. Though the problem with the design may not

have been caused by a programming error, it is an issue that could have been ad-

dressed in the design stage. In addition, the pilot-computer interface did not always

meet the pilots’ needs, thus bringing human factor issues to light [35]. The pilots

were unable to differentiate between the various modes. Also, parts of the system

may have been too complex for the pilots. Even if the system performs correctly, it

is of equal importance that users of the system are able to understand and use the

system properly. To help remedy the human factor issues, the pilots need to become

familiar with the new automated cockpits and the automated cockpits need to be

altered to better accommodate the pilots. Little action was taken to address these

needs. The obvious question is how many incidents have to occur before changes are

deemed necessary and implemented?

3.2.3 Anti-lock Brake Systems

In the previous incidents involving the Therac-25 and the Airbus, several fatalities

occurred, bringing much attention to the incidents. However, we hope to have atten-

tion raised before such incidents actually occur, thus reducing the number of fatalities.

The objective should be to prevent incidents by focusing on hazards within safety—

critical software systems. This approach would assist in the prevention of incidents

and in the end prevent loss of and injury to human life. The following set of incidents

involving the braking systems have no reported fatalities. Still, the high number of

incidents warrants investigation in the hope that no fatality will occur.

Det

Adc

. in).

“My, 1

“53811"

38

The automotive industry has recently introduced new braking systems to the

public. The Anti-lock Brake System (ABS) was designed to help prevent incidents

in situations where the wheels lock up due to excessive braking. By providing an

automatic pumping action, wheels remain unlocked, thus giving the driver more time

to take control of the vehicle [60]. The potential widespread use of ABS in new pas-

senger vehicles was enabled by the significant reduction in brake costs. The primary

technology used in ABS is as follows [61]:

The most important component of the ECU [electronic control unit], and

the entire ABS system, is the MPU [microprocessor unit]. A single-chip

electronic microprocessor or microcontroller device, the MPU serves as

the central processing unit (CPU) for all ABS control and monitoring

functions. §

Detailed information regarding details of the ABS system can be found in [61, 62, 63].

Additional testing data can also be found in [64].

One main concern is that there are several different anti-lock brake systems [65].

Each manufacturer may have their own ABS model [66]. In addition to all-wheel sys-

tems and rear-wheel only systems, there are also different ABS systems for passenger

vehicles, truck tractors, trailers, and light trucks, to name a few. Thus, it has been

stated by one carmaker official that there needs to be some type of rating system so

that members of the public will know if the ABS on their automobile is safe [60].

Apparently, all ABS systems are not behaving as predicted. The National Highway

Traffic Safety Administration (NHTSA) has received:

a 146 complaints, including four accident reports, and zero injury reports for

failing ABS on 198893 models of Buick Regal, Pontiac Grand Prix, Chevrolet

Lumina, and Oldsmobile Cutlass Supreme [67]

c 156 complaints, including 57 accident reports, and 22 injuries for ABS on light

trucks made by General Motors [68]

sThe MPU receives data from wheel sensors, performs calculations to determine which wheel,

if any, requires braking action, and then sends the appropriate signal to the modulator of braking

pressure.

39

o 142 complaints, including five accident reports, and two injuries for ABS on

1991-93 Chrysler Corporation minivans [69].

In each of these cases, NHTSA has conducted preliminary evaluations and begun

investigating the reports.

The primary hypothesis about the brakes is that the vehicle owners do not un-

derstand how to react when the automated system is activated. In order for ABS to

work correctly, the driver must apply intense direct pressure to the brakes [70]. The

problem is that many drivers do not expect the automatic pumping so they take their

foot off the brake causing the automated braking to disengage [13]. Another problem

is the lack of sufficient pressure to the brake [70]. In other instances, drivers attempt

to manually pump the brake causing the system to again fail [13]. The inability to

correctly use the anti-lock brakes has caused inaccuracies in the expected decline in

collisions. These problems, perhaps, explain why the large investment of $1.7 billion

dollars in ABS technology has not aided in the reduction of collisions [66].

There have been proposals for fixing ABS systems to make them more usable.

One approach, taken by Lucas Industries Inc., adds a sensor to their existing ABS

system. This addition hopes to better reflect the reactions of the driver during criti-

cal situations. By calculating the speed of the braking, the automatic brake pulsing

will be applied quickly if the pedal is depressed fast, and the automatic brake will be

applied more slowly if the pedal is depressed in a more ‘progressive’ movement [70].

Another suggestion has been to improve the education of drivers of automobiles that

have ABS. In addition to distributing videos and literature that describe how the sys-

tem will react in locking situations, some companies use simulators at the dealerships

to train and educate new car owners [71]. Though these fixes seem to provide safer

automobiles and safer drivers, the conflict between the system and the driver is not

the only problem with ABS. Thus, even with the remedies discussed above, there are

still problems that cause the systems to perform unexpectedly.

40

National Highway Traffic Safety Administration. The reduction of death and

injury on highways has become a primary concern of the administration [72]. Thus,

if the National Highway Traffic Safety Administration (NHTSA) decides to mandate

the use of ABS on all passenger vehicles and light trucks, NHTSA must also make

sure that the addition of ABS reduces the number of injuries and fatalities. NHTSA

currently attempts to control such incidents by thoroughly examining and testing the

various anti-lock brake systems. However, much of the testing is done by individual

manufacturers [66]. The NHTSA must also remain updated on possible additions

to ABS. Two such additions have already been proposed: the addition of sensors to

detect braking pressure [70] and also the incorporation of traction control with the

existing ABS [60]. Once new featurés are added, testing needs to be performed on the

new system as well as on the individual features. The responsibility of overseeing the

regulation of ABS is not a small task, but an important one for automobile drivers

across the nation. About twenty years ago, heavy trucks were required to have ABS.

However, many of the systems were defective and prone to failure causing the mandate

to be revoked [73]. It is clear that ABS systems must be carefully reviewed before

legislature is passed to mandate their use.

NHTSA comprises 660 professionals whose responsibility is to help lower the num-

ber of injuries and fatalities across national highways [72]. However, there has been

some controversy associated with NHTSA. Some feel that despite its efforts there is

still an estimated 20 million defective vehicles on the road [74]. The procedure of

NHTSA is as follows. Most complaints come from the public via free hotline num-

bers [74]. If NHTSA obtains consent from the informant to notify the manufacturer,

a report is forwarded to the manufacturer. When a problem arises, a voluntary recall

is suggested. If the manufacturer declines to recall the vehicle then a mandatory

recall is declared. The law states that manufacturers are required to provide free

corrections of safety problems if the car is less than nine years old [74]. In most

41

cases, the manufacturers cooperate, but in some cases, conflicts arise. The method

seems to be working, but some find the timeliness of the system to be slow. They

state that this method allows hazardous cars to be driven many miles before they are

repaired [74]. Also, many automobiles never receive the correction and continue to

be driven in their unsafe state.

Since Dr. Ricardo Martinez recently assumed the role of Administrator of NHTSA,

there has been a renewed vow to prevent injury [72]. The ABS incidents have thus

far involved no fatalities. The effectiveness of the new administration will potentially

be measured by the handling of the ABS brakes and its ability to prevent injury and

the loss of life.

Discussion. Because the use of ABS is new, a full understanding of the situation

is not available. However, studies have already revealed some of the software-related

problems with ABS. First, the users seem to be unable to correctly use ABS. The

addition of new technology is useless if people are unable to use the new technology.

Second, testing is the primary means of certification. The computer science field has

already determined that testing alone is not necessarily the most reliable nor cost

effective way to remove defects from a system [75]. This leads to the final problem,

the manufacturers of ABS are then unable to verify the level of safety. There are

multiple types of ABS: each manufacturer can have its own type of ABS, there is

all-wheel and rear-only ABS, and various vehicles have to have different ABS. What

types of validation and verification are performed on each type of ABS? How do

consumers know if the ABS in their vehicle is safe?

8D

42

3.3 Problems with Software Development

After reviewing the examples involving software systems, several problems relevant to

the software development process have surfaced. First, unacceptable software is being

created. Though we may not be able to prove that software is 100% correct, there are

some techniques that can be used to help aid in the programming stages. It is apparent

that these techniques are not always being applied. Second, many deficiencies in the

development stage were encountered. Explicit design specifications, validation, and

verification techniques were not always used. Third, there was a lack of understanding

between the users of the system and the designers of the system. Thus, the users were

unable to use the systems properly. The final problem encompasses all of the above. In

each of the incidents, new technology was added without proper analysis. Just because

new technology can be added to a system, that alone does not make the system better.

These problems are of utmost importance especially when found within safety-critical

software systems. These problems can largely be remedied by current technology,

thus providing safer systems. The difficulty is providing those parties involved in

the development and maintenance with the incentives and resources needed to use

preventative and proactive means to develop high-quality systems. The three-fold

solution calls for changes to legislation and education in addition to the induction of

an advisory board.

CHAPTER 4

Legislation

The current legal system attempts to keep products on the market safe. However,

the existing legal structure does not provide the needed “technology-specific” guide-

lines [76]. In order to maintain the expected level of safety and allow the use of

embedded software within products, two main issues need to be addressed. First,

standard liability claims need to include products containing software systems so

that when a defective product causes damage, a product liability claim can be filed

to compensate the victim and punish the party at fault. Second, it is also important

that regulation boards governing the approval of products change their policies to

reflect the impact of the increased use of embedded software.

4.1 Liability

Black’s Law Dictionary defines product liability as: “The legal liability of manufac-

turers and sellers to compensate buyers, users, and even bystanders, for damages or

injuries suffered because of defects in goods purchased [77].” ‘Because critical systems

are usually considered to be ‘goods,’ product liability applies to the systems discussed

in the previous chapters. One lawyer, who has researched the legal aspects of software

’A glossary of legal terms is found in Appendix A.

43

44

in business, finds that safety-critical software systems may be prime candidates for

product liability claims [78]:

Software programs with the greatest vulnerability to products liability

claims would include those used to operate devices that could harm peo-

ple if they malfunctioned, such as airplane guidance systems, dosage con-

trol circuits for X-ray machines and triggers for an automobile’s braking

system.

In order to better understand how safety-critical systems should be treated in

liability claims, guidelines of strict liability are briefly overviewed.

4.1 .1 Strict Liability

The law provides a means of compensation for victims who have been injured by a

defective ‘good’ under the premise of strict liability. The defect can be attributed to

both the design and manufacturing stages of the product [79]. There are four main

facets for strict liability that separate it from other claims, three of which are directly

relevant to safety-critical software systems [80].

1. Disclaimers common to many other claims are not permissible.

2. Economic loss is not sufficient, injury to a person or a person’s property must

be shown.

3. Negligence is not an issue; the manufacturer is held at fault.

By holding the manufacturer “liable without fault,” manufacturers can then be

allowed to place potentially dangerous products on the market by providing the pub-

lic with the assurance that safety will be maintained. If, for any reason, that safety is

compromised, a remedy must be provided. This approach encourages the manufac-

turer to be responsible for its product by making the product as reliable as possible

as to avoid strict liability claims. The law was established for situations where it is

impossible for the manufacturer to guarantee that each product is 100% safe. The

45

manufacturer is expected to do the best job possible and is held accountable when

an incident occurs.

Concept of strict liability in tort is founded on the premise that when

the manufacturer presents his goods to the public for sale, he represents

[claims] they are suitable for their intended use, and to invoke such doc-

trine is essential to prove the product was defective when placed in the

stream of commerce [77].

While the definition of strict liability seems to be explicit, this is not always

true. Each application of strict liability is case specific and the ruling is sometimes

dependent upon the court. One primary concern is that the judicial system will not

handle cases involving safety-critical software systems in the same manner as cases

not involving embedded software. This differentiation means that there could be cases

where software systems are held exempt from strict liability claims simply because

they contain software. This difference in treatment should clearly not be allowed.

When software is embedded within a system, it becomes a part of the entire system.

Even if the software component of a system is created by a contracted party, then

the manufacturer should still be held liable for placing the product on the market.

There have been cases where the strict liability ruling held for a software-controlled

system, but when dealing with software-related products, the claims seem to become

more complex. The following cases help to illustrate the point.

Lewis v. Timco v. Joy. In Lewis v. Timco, Inc., the defendant held that a

defective set of computer controlled tongs caused the defendant serious injury [81]. 1’

Mr. Alfred Lewis was caught in a “snub line” when the tongs failed to disengage after

the throttle was released. The tongs did not disengage because of a design defect.

However, Mr. Lewis was also found guilty of negligence in that he did not adjust

the “snub line” as necessary [81]. Though the case has gone through the court of

lThe tongs are hydraulically controlled and are used to disjoin tubing joints. Explicit controls

are set to allow the tongs to work properly. [81].

46

appeals, each trial has found that the notion of strict liability was applicable [8, 81].

Still, there has been some controversy in the application of comparative negligence.

Though several parties were involved in the chain of actions that led to the use of

the tongs, the first verdict absolved some of the parties of any liability and reduced

the amount of the claim, placing part of the blame on Mr. Lewis’ own negligence.

However, in the appeal, the court chose to follow the premise that, “where a machine

design presents open and obvious dangers, the law holds the human operator to a

reasonable standard only [82].” Thus, Mr. Lewis’ negligence was absolved. The

court also overturned the verdict involving the “sharing of responsibility” among

some of the members. The court felt that [81]:

If strict products liability seeks to impose enterprise responsibility upon

the entity exposing others to the risks of its defective products. . . then

the facts of the instant case dramatize the inappropriateness of applying

comparative negligence principles. We therefore decline to apply the doc-

trine of comparative negligence in this strict products liability action in

admiralty.

In the case notes, the court did acknowledge that some courts may have upheld the

use of comparative negligence as did the first court. In addition, the court felt that

perhaps in other cases, comparative negligence may apply. Comparative negligence

varies from one state to another such that in some states, it is never applied while

in others it is applied when appropriate [8]. This case illustrates the case-specific

and court-specific applicability of strict liability and comparative negligence. The

use of comparative negligence in strict liability cases could have profound effects on

software developers. If the courts are going to disperse accountability to various

parties involved in the case, then there is the possibility that the software developers

may also be held accountable.

Aetna v. Jeppesen. In a more controversial case, Aetna Casualty and Surety

Co. v. Jeppesen & Co., the courts found Jeppesen strictly liable for manufacturing

47

defective instrumental landing charts. In November 1964, all passengers aboard a

Bonanza aircraft were killed as the plane crashed on approach to land in Las Vegas,

Nevada [83]. Aetna attempted to recover the costs paid in the wrongful death suits

for the deceased passengers. Jeppesen felt that they were not to blame and that

the airline company was partially at fault. The court found that the crash was

caused by defective instrument approach charts created by Jeppesen. The discrepancy

involving the charts was that the two graphical views depicted in the charts were

drawn to diflerent scales. Aetna felt that, “it [Jeppesen] had failed in its design goal

of graphically representing this information in a readily understandable way [84].”

Even though there was numerical indicators on the charts that cited the differing

scales, the crew took it for granted that they would be drawn to the same scale.

In the first trial, the court found Jeppesen to be primarily at fault and held

that the crew members were not found to be negligent. Thus, the verdict was that

Jeppesen was 80% at fault and Bonanza was 20% at fault [83]. Bonanza should have

detected the defect and passed the information onto the pilots.

In the appeals trial, the court was willing to apply comparative negligence as

explained: “a defendant remains strictly liable for injuries caused by a defective

product, but plaintiff’s recovery is reduced to the extent that its lack of reasonable

care contributed to the injury [83].” The court felt that the crew was negligent in

misinterpreting the charts and did not find the previous verdict acceptable. Instead,

the court felt that the negligent party should be more liable than the strict liability

party [83]. The previous rulings on the case were annulled and the damages were to

be reassigned [83].

The case sparked controversy outside the realm of Aetna, Jeppesen, and Bonanza.

Many felt that because the charts were computer-generated [84], the charts were sim-

ply output from a program and not an actual item to be sold. Thus, any application

of strict liability should have been dismissed. The courts determined that since the

48

charts were technical tools, strict liability was applicable. This verdict upset many

software developing companies [78]. They felt that the technical charts behaved more

like a book. Had the data been treated as information in a book, Jeppesen would

not have been held at fault. Though the courts and the companies disagreed on the

verdict, one positive result from the ruling occurred, the software industry recognized

the reality of product liability claims for software-related products. It is clear that

anyone who plays a role in the development of a product may be held liable if the

product causes harm [78]. In addition, the role of the user may come to play a larger

role in the courts placing greater importance on correct use of systems.

Discussion. Current cases are beginning to set precedents for future computer-

related strict liability claims. When dealing with safety-critical software systems, the

applicability of strict liability does not appear to be overly controversial. The greatest

controversy comes from those who believe that computers are too complex in nature,

thus making the determination of the defect difficult and liability inapplicable. Such

controversy is understandable, but it must address the appropriate problem. If it is

found that strict liability should not be applicable, then the solution should be to

find or create a new set of liability rules rather than eliminate liability for those who

manufacture and sell computer-related products. Some feel, however, that currently

the best option available is that of strict liability [80]:

If society has made the irrevocable decision to use computers, as it surely

has, and computers are influencing our lives more and more each day,

society must come to grips with the issue of who will pay for the damage

than an errant computer can cause. Strict liability seems to be a rational

and just theory to apply in many instances.

Interestingly, this perspective is shared also by members of the computer science

field. Helen Nissenbaum, whose research also involves issues dealing with computer

ethics, gives the following observation [12]:

49

Software seems, therefore, to be precisely the type of artifact for which

strict liability is necessary—assuring compensation for victims, and send-

ing an emphatic message to producers of software to take extraordinary

care to produce safe and reliable systems.

The effects of liability claims upon the software development community are great.

If it is known that safety-critical software systems are going to be held to the laws of

strict liability, then it will also be recognized that any party involved in the production

of such a product may be held proportionately liable for any defects. This view will

gain widespread recognition by software developers, software companies, and the court

system, with appropriate changes to current laws.

4.1.2 Limits of Liability

There is a need for additional legislation beyond that which is discussed in product

liability claim courts. The question may arise as to why there is a need to address

issues besides liability. The following reasons should help to alleviate such wonder:

court/case specificity, liability changes, ill-defined computer law, and lack of respon-

sibility.

Court/Case Specificity. First, the applicability of liability fluctuates and cannot

provide needed stability. For instance, liability is determined in a court of law. Such

litigation is costly with respect to both time and money. For computer-related cases,

many courts (including judges, lawyers, and jurors) are unfamiliar with the domain

and thus are not able to always provide a well-informed verdict. This insufficiency is

due in part to the failure of the laws to provide adequate guidelines for addressing

computer-related cases. Also, with rising court costs, it is not always feasible for the

victim to sue the manufacturer who is responsible for the defective product.

50

Liability Changes. Second, the rules encompassing liability are constantly chang-

ing. The House Republicans are now attempting to move the governing of Tort Law

from the state to the federal level [85]. The proposed changes include:

c Having the court cost be paid by the loser of the lawsuit [85].

0 Making it more difficult to sue product sellers [85].

c Placing limits on product liability claims [86].

0 Creating maximum amounts for punitive damage claims [86].

In summary, the bill would make it more difficult to bring claims against many

manufacturers. One particular part of the bill will release drug and medical companies

from any liability as long as they fulfill the requirements provided by the Food and

Drug Administration (FDA) [85]. This legislation assumes that the FDA is able to

provide adequate certification criteria. An illustrative example of the applicability of

this bill is the fact that had this bill been in place, women harmed by silicone breast

implants and Dalkon Shield IUDs would not have been able to sue the makers of the

defective products [85]. It is true that such changes will lower the number of cases

brought to court, but the changes will not necessarily raise the level of the quality of

products. Instead, some of those at fault may be absolved of liability. The goals of

some of the parties backing the bill seem to be contrary to those who support another

bill that affects the car industry.

Another set of cases that will affect liability claims is being sent to the high courts.

Families of tractor-trailer rigs want to hold the manufacturers liable for unsafe vehicles

including those that meet the safety standards enforced by the Department of Trans-

portation (DoT) [87]. Automakers are usually absolved of any responsibility once it is

shown that the vehicle in question complied with the safety standards. The DoT and

families of crash victims are attempting to eliminate this defense under the premise

that the DoT’s standards only provide minimum guidelines. The government’s po-

sition is as follows [87]: “The government contends that federal safety standards are

51

minimum standards and that suits should be permitted against manufacturers who

don’t go beyond the minimum standard.” An example of the applicability of this bill

would be that automobile manufacturers who comply to minimum standards but do

not provide airbags would be held liable in court cases under the premise that they

sold unsafe vehicles [87].

The stances on the FDA cases and the DoT cases seem to be in opposition. This

contradiction simply supports our claim that the laws of liability are unstable. If

either of these bills become law, then the entire structure of liability claims will be

redefined. Even if neither of the propositions are passed, the existence of such claims

reinforces the premise that we cannot rely upon liability alone to ensure public safety.

Ill-defined Camputer Law. Third, Computer Law is not a precisely defined law

as of this date. Many of the fundamental principles of existing laws can be applied

to computer-related cases, but computer law as a whole is ill-defined. The fact that

many computer-related issues do not fit exactly into the existing structure further

complicates the problem at hand. The court cases discussed previously attempted

to apply current product liability law to computer-related cases. In addition, there

have been other computer-related suits. However, there still are no exact guidelines

for dealing with computer-related liability claims.

Legal precedents relating to situations in which computer systems were

involved are in a state of flux. Computer technology is changing rapidly;

on the other hand, the law changes slowly. Thus, despite the approach-

ing maturity of computers, the new legal questions which they present

have as yet been only superficially addressed. . . There are certain unique

characteristics of computers upon which traditional contract law has not

yet been brought to bear. A comprehension of these characteristics is

essential to the development of contract law rules for computer technol-

ogy that can provide the connectedness and dependability which society

expects the law to provide [79].

Clearly, it is up to both the legal community and computer scientists to provide

a distinct set of laws that can govern society that include software guidelines. As of

52

this date, no set of laws exists. Until they are adopted, we must depend upon other

methods to promote safety.

Lack of Responsibility. Finally, liability does not promote a sense of responsibil—

ity. While it holds the defendant liable for certain damages, liability is divided so

that each defendant is assigned a percentage of responsibility. The existence of a trial

allows the defendant to attempt to absolve himself/herself of any responsibility and

reduce the degree that he/she is accountable to the plaintiff. This mode of action

runs contrary to the desired environment where the manufacturer is responsible and

willing to be accountable for its actions. We feel that such qualities are essential

for our domain. Maintaining a certain level of responsibility and accountability can

help to prevent incidents such as those presented in this dissertation, highlighting the

overall preventative approach towards maintaining safer systems.

4.2 Software Systems Policy

Product liability deals with defective products that were already placed on the market.

This section addresses proactive measures that can be taken to prevent defective

products from being placed on the market. Several regulation agencies currently

develop strict guidelines for certifying products. However, as seen previously, the

purpose of these guidelines can be disputed. Some feel that they should be treated

as minimum standards while others feel that they provide adequate testing criteria.

The problem with safety-critical software systems is that many of the guidelines do

not include clauses for addressing software issues. Though we know that software

errors within a system have the ability to cause fatalities, many times the software is

released for use without undergoing a rigorous review process, thus leaving open the

possibility for the public to use defective and potentially harmful products.

5
0

S)‘:

me

the

am

5011

53

Should a product fall through loopholes simply because it contains software?

Clearly the answer is no. Therefore, the regulations that guide various certification

standards need to be updated to include concise software requirements. Revisions to

current policy need to work to prevent hazards not just incidents. Possibilities for

software-related policy additions include the need for: testing criteria, documentation

standards, design specifications, etc. Examples of such include those defined for gen-

eral software engineering courses, process models for the Space Shuttle, and in those

in support of the Capability Maturity Model [88, 89, 90]. Had such additions been

in place, the Therac-25 accidents may have been prevented.

Some may argue that software is too complex and cannot be adequately reviewed.

This complexity does not mean that software should not be subject to regulation

guidelines, but that in certain cases it may be appropriate to refrain from using

certain software programs until they can be shown to meet safety standards. Should

we allow the use of software in systems though the software may have a high degree of

complexity and is difficult to test? If the possible hazards are non-threatening, (e.g.,

computer game software), the answer to this question may be yes. However, in cases

where the application is safety-critical, it clearly is not acceptable to use software

systems that have not been thoroughly tested and examined. While this requirement

may mean that manufacturers may sometimes have to revert to more reliable products

that may not be state-of-the-art, the overall increase in safety provides justification for

their use. Some call for “simpler design” as a means of promoting safer systems [12].

A well known quip seems to capture the intent, “It is better to be safe than sorry.”

This added precaution parallels the procedures that govern the FDA. Before a drug is

placed on the market, the FDA conducts several tests and examinations. Thus, even

though a drug may seem to be producing favorable results, the product will not be

available to the public until those results can be tested and confirmed. Why should

software be treated less stringently?

54

Thus, the solution does not call for a completely new set of laws, but for an

augmentation of the existing certification laws that govern critical systems to include

software criteria. In addition, we should add to current recall regulations so that they

include software safety checks and make software inspection part of the investigation

process. For any critical system that does not have domain-specific certification/

recall laws associated with it, certain software specific guidelines should be created.

Finally, we must make sure that software systems are not found to be exempt from

standard liability laws. Software systems should be treated no differently than any

other product on the market. The fact that software is embedded within a critical

system should not overshadow the safety-critical nature of the system itself.

Example. John Rushby, an expert in the area of Formal Methods for critical sys-

tems, has presented a method that could be used to help define the level of formalism

required to meet specific certification guidelines. He provides a way to categorize

critical systems into four Levels of Rigor defined as follows [91]:

Level 0: No use of formal methods.

Level I: Use of concepts and notation from discrete mathematics.

Level 2: Use of formalized specification languages with some mechanized support

tools.

Level 8: Use of fully formal specification languages with comprehensive support en-

vironments, including mechanized theorem proving or proof checking.

One suggestion would be to require that software within safety-critical systems be

subject to Level 3 Rigor. Requiring such formalism would give the developers a

way to examine the requirements, specifications, and designs [91]. Properties such

as mutual exclusion, correctness, liveness, absence of deadlock, lack of starvation,

and others could be proven to exist in the specification. Though expecting software

developers to adhere to Level 3 Rigor for critical systems may by costly and the level

55

of complexity may have to be reduced, this requirement would provide the needed

basis for providing safer software systems.

CHAPTER 5

Education

It is emphasized that the purpose of expanding the current legislation is not an

attempt to increase the number of litigations per year. Instead, the intent is to

define a rigid set of guidelines to be followed and a clear set of consequences for

those who fail to follow the guidelines. This change would make the responsibilities

of the manufacturers more concise. Manufacturers will be able to understand what

is expected of them and then pass on what will be expected of the contributors to

their products, (i.e., software developers). Once these revisions are made, industry

must be made aware of the changes. This dissertation proposes that in addition to

notifying industry it is equally important to make the guidelines known in academia.

We must recall that the students of today are the system developers of the future.

If we expect change to occur, both the field and computer science education must

change [7].

5.1 Need for Change

The need for change within computer science education, including greater and re-

peated emphasis on responsibility and accountability, is motivated by the increasing

demands placed on the computing industry discussed in previous chapters. The de-

56

57

mand, in addition to the desire, for high quality software is rising. However, upon

review of the current state of computer science education, many of the fundamental

ethical issues are not being taught. In order for the educational system to meet the

needs of the growing industry, educators must reevaluate their current programs and

make the necessary changes.

5.1.1 Software Demands are Increasing

As we move into the Information Age, it is clear that the demands placed upon

software are rapidly increasing. The examples presented in Chapter 3 illustrate the

increased use of software within critical systems ranging from airplanes and automo-

biles to medical machines. Not only is more software being used, but software itself

has become increasingly complex. This increase in complexity has raised several is-

sues. First, the development and the maintenance of complex software has become

increasingly more difficult as the complexity rises. In addition, it is clear that fixing

faulty software is not a trivial task [92]. Also, as the processing power of computers

increases, the demand for software that makes use of this power is increasing. This

creates a bottleneck because the processing power of the computer is stunted by a lack

of software that is equally as powerful [93]. This problem motivates the need for more

research in the area of software design and the need for better software developers.

5.1.2 Current Education System is not Adequate

The current state of Computer Science education has received criticism from various

members of the computer science community. The following comments represent a

sampling of the nature of the complaints from members of computer science education

and industry.

0 Many of the courses were not distinctly formed, but created as a conglomeration

of several courses attempting to cover too much material [94].

58

c There is little or no emphasis on making corrections and giving feedback for

incorrect programs and/or design [94].

0 Large programs are built with little or no use of system analysis [94].

a Theory and practice have diverged [94].

0 Industry finds that most academic research is ‘basic and theoretical—usually

not a good return on investment [95].’

0 Students are taught to create new programs failing to utilize previous re-

sults [93].

0 Poor understanding of algorithmic concepts [96].

0 Lack of necessary mathematical foundations [96].

0 Software engineers do not possess adequate ethical and technical training [96].

In addition to educating the students poorly, there is also sentiment that computer

science programs do not offer a complete understanding of Computer Science. Several

professionals have noted that Computer Science requires not only technical skills, but

also societal understanding [7, 11].

One author likened Computer Science to Architecture by showing that it is im-

portant for a designer to understand the structural limitations of the science and also

the purpose for each project [7]. The scenario involved an architect that was required

to build a door [7]. In addition to knowing the technical knowledge needed to keep a

door, sturdy, the architect also needed to know who would be using the door, what

type of door it would be, and what type of access should be given to users of the

door (e.g., if locks were needed). If the architect did not take into consideration these

social aspects, then a door with no locks could be used as a front door to a bank and

a sliding glass door could be used as an entry to a bathroom.

Clearly, computer science deals with many social aspects of today, but very little

emphasis is placed on societal understanding in the educational process. This lack of

understanding means that we are potentially providing students with a curriculum

that does not include all aspects of the field. The purpose of discussing these issues

59

is to uncover a strategy to help improve the quality of computer science graduates.

While all computer-related courses should be reviewed, the most direct approach is

to begin at the undergraduate university level.

5.2 Role of University in Change

Several factors help account for the current state of Computer Science (CS) education.

First, Computer Science itself is a new field. The first “computers” were developed

in the late 19408 and early 1950s [80]. Compared to other disciplines, such as math-

ematics, that have existed for centuries, Computer Science cannot be expected to

be perfect or well-understood. Second, Computer Science departments were formed

very early relative to the emergence of Computer Science as a discipline [94], perhaps

before any substantial definition of Computer Science had been established. The

rush to establish Computer Science departments as the field was still in its infancy

may explain the diversity of CS programs nationwide. However, this diversity is not

only because CS is a young field, but also because CS technology is rapidly chang-

ing [79]. Quantitative growth is not bad, but it must be accompanied by qualitative

growth. CS departments need to mature as new ideas emerge. Mary Shaw, a professor

of Computer Science and a scientist at the Software Engineering Institute, outlines

the primary shifts of programming any-which-way to programming-in-the-small to

programming-in-the—large in CS research during the last three decades [93]. As more

and more is discovered about CS, it is important that academic departments learn

about the changes so that they can be taught to students. This propagation of new

technology has not always been the case.

David Parnas, a well-known researcher of CS, states that, “A university’s pri-

mary responsibilities are to its students and society at large [94].” This responsibil-

ity implies that it is the duty of the university to remain aware of changes within

60

the research domain and the current state of industry. Such responsibility can be

maintained through a two-fold approach that restructures the current courses and

maintains a bridge between academia and industry.

5.3 Course Restructuring

Before we begin, we should note that each CS department across the nation is differ-

ent. However, each department should provide a group of core classes that present the

fundamentals of the field. We examine the current computer science curriculum to

expose two necessary changes: the insertion of a new course into the beginning of the

course schedule and the integration of social values and formal methods into existing

courses. To illustrate how the changes can be implemented, we look at a sample

CS undergraduate program and propose a new set of course descriptions. Though

the sample program is not certified by the Computing Sciences Accreditation Board

(CSAB), explanation of how the proposed changes would affect the CSAB required

courses is given in Section 5.5.

5.3.1 Adding a New Course

We believe that problem solving is the basis of Computer Science where the purpose

is to use computers to solve problems. This characterization implies that one must

have a thorough understanding of both the problem, its domain, and the computing

resources needed to provide the best solution. Students need to be able to understand

the problem, create a clear representation of the problem, devise a precise solution,

and then implement the solution. While much emphasis is given to the implemen-

tation stage, very little attention is paid to the early stages. The ad hoc method of

implementing a solution before appropriate analysis is performed can have adverse

effects on the solution. These effects may not be apparent in classroom problems, but

61

will be encountered when the student enters industry and attempts to develop large

and complex systems without fully understanding the problem.

The first computer science course usually focuses on teaching the students a pro-

gramming language. This approach is applied at both the secondary education level

(high school) and at the undergraduate education level. We feel that the first com-

puter science course should be a problem solving course emphasizing discussion of

various issues such as:

0 different interpretations of problems

0 problem decomposition

0 several solutions to problems

0 analysis of problem domains

0 the ambiguities encountered when solving problems

a the role of mathematics: logic, probability, discrete

o appreciation of the differences between languages, operating environments, and

machines available for use

a the ramifications of incorrect solutions

0 how errors should be fixed

This type of course would provide a better understanding of problems that can

be used and referenced in all of the other courses throughout the program. Many

computer science students complain about having to take math courses stating that

they are not necessary, but indeed they are. The above proposed course would provide

the motivation for taking discrete mathematics, computer architecture, etc. exposing

them to different perspectives of Computer Science. Whether the student becomes a

programmer or a technical manager, this understanding is vital to producing quality

computer science graduates. Thus, we pr0pose that we insert a new course into the

very beginning of the CS program.

62

In addition to the above, teaching this course would foster the maturity of de-

velopment techniques discussed by Mary Shaw. Recall, she stated that the type of

research done today is different than that done thirty years ago. The most current re-

search focuses on programming-in-the-large and deals with issues such as those listed

in Table 5.1 [93].

I] Attribute] Programming-in-the-Large]]

Characteristic problems Interfaces, management system structures

Data issues Long—lived databases, symbolic as well as numeric

Control issues Program assemblies execute continually

Specification issues Systems with complex specifications

l. State space Large, structured state space

Wanagement focus Team efforts, system lifetime maintenance

I] Tools, methods Environments, integrated tools, documents

Table 5.1. Research Focus: 1975-1985

The problem solving course would not provide the students with specific tech-

niques for solving all types of problems. Instead, it is intended to give them general

problem solving skills and a better understanding of issues that they must deal with

when solving problems. Then, when other courses are taken dealing with more specific

techniques, a general understanding would already be in place.

5.3.2 Changes to Existing Courses

In order to help Computer Science students understand the fundamental responsibility

that they have to society, the notion of responsibility and accountability must be

emphasized throughout the entire program. Such concepts are not separate from

any area, nor are they excluded from any part of professionalism. One method is

the integrative approach which attempts to incorporate specific aspects of Computer

63

Science into all courses [7]. Two primary components must be integrated: social

needs and formal methods.

Social Needs. Emphasis can be placed on the fact that the systems built in in-

dustry will be used by the public and that some systems have the potential to cause

harm. This connection is rarely made. In the classroom setting, if a program gives

an incorrect value, then the grade is adjusted accordingly. The ramifications of an

erroneous program are minimized. However, when a program written for a critical

system produces an incorrect value, the product may cause harm and, in turn, lead

to extreme consequences. The effects that the students, as future system developers,

will have on society will be great, thus giving them a large responsibility with respect

to public safety. Understanding the social aspect of Computer Science is vital to pro—

moting responsibility. “Computer technologies are a medium for an intensely social

activity; and that system design—though technical as an enterprise—involves social

activity and shapes the social infrastructure of the larger society [7].” This respon-

sibility is important in all specializations of Computer Science, and it can be easily

seen that the work of software developers can directly affect the public. Programs

have been written that control major communication systems, space craft tests, com-

bat control systems, etc. [11]. Some define software development itself to be social:

“The software process, from creation to purchase, to use to effect, is a social process

involving human participants who want and need different goods in the process [11].”

Once it is understood by the students that safety-critical software systems can have

a great impact on society, it should follow that the software developers need to take

all available precautions to make the systems safe. Thus, for software that is used in

critical applications, the need for higher quality software, precise design specifications,

and formal methods is made clear.

64

Formal Methods. Developing software has become more than simply writing pro-

grams that produce a certain output. At one time, the computer was thought to be

a simple black box that mysteriously and almost magically produced a given out-

put [80]. This myth has been replaced by a science that studies the methods and the

actions that control the “black box.” Issues such as the form of the output, the needs

of the user, and the correctness of the program all become important. There are

many situations where previous methods of programming are no longer acceptable.

Consider the following scenarios:

0 The user needs a program to perform some function, but the actual needs are

defined ambiguously.

c The system is very complex and cannot be tested as a whole (i.e., space shuttle).

c The system is old and needs to be updated.

All of these scenarios are common problems in the industry and all could benefit from

the use of formal methods. A formal method is characterized by a formal specifica-

tion language and a set of rules governing the manipulation of expressions in that

language [97]. With respect to the application of formal methods for software sys—

tems, John Rushby, a longtime researcher in the formal methods community offers

this definition [91]:

. . . the use of mathematical techniques in the design and analysis of com-

puter hardware and software . . . [that] allow properties of a computer sys-

tem to be predicted from a mathematical model of the system by a process

akin to calculation.

Using formal specification languages facilitates the early evaluation of a software

design and verification of its implementation through the use of formal reasoning

techniques [91, 97, 98, 99]. A formal specification can be rigorously manipulated to

allow the designer to assess the consistency, completeness, and robustness of a design

before it is implemented. Each step in the development process can be supported by

65

mathematical proof, thus minimizing the number of errors due to misinterpretation

and ambiguity. This type of approach is supported by many methodologies [98, 100,

101, 102].

Though some may find formal methods useful, we feel that they are necessary for

providing the public with safe systems. Because of their potential dangers, safety-

critical software systems should require a high level of formalism. Some may argue

that formal methods are too difficult to teach in the classroom. However, if formal

methods can be introduced in the beginning problem solving course, then formal

techniques can be used in each of the following computer science courses with the use

of formal methods increasing throughout the student’s education. This approach will

equip the student with a thorough understanding of formal methods one that can be

applied in industry.

5.4 Technology Transfer

The other area of computer science education that is lacking is that which deals with

technology transfer. In order for the educational system to be effective, there must be

a link between academia and industry. Several suggestions have been proposed that

expose the students to real-life problems, yet at a minimized level. We propose that

every computer science student enroll in a practicum course, participate in a co-op

program, or be involved in joint research.

5.4.1 Practicum

In an attempt to link both the social and technical aspects of Computer Science,

some have proposed the use of practicum courses within the curriculum [7]. The

practicum course usually involves organizing the class into small groups and having

them work on real projects in various domains. The projects could be fulfilling needs

66

of the university or perhaps engaging in small contracts with industry. No matter

who the contact is, the students are exposed to issues such as dealing with the cus-

tomer, understanding the customer’s needs, project planning, including working with

deadlines, complying with monetary constraints, and researching the product’s envi-

ronment. The primary disadvantage to having practicums is that the project can be

time consuming for both the students and the professor. One must also realize that

the practicum class alone will not address all of the social issues [7].

5.4.2 Co—op Program

To aid in the transition from student to employee, educators, students, and employees

consider co-op and internship programs to be valuable experiences [94]. The students

are able to benefit from the experience of working on a real project and from dealing

with employers and the employer’s needs. Most students can receive credits for co—op

programs while also earning a salary. While this may seem trivial to some, receiving

monetary compensation for good work is motivating. This program must be run with

direct contact between sponsoring faculty and project supervisors in order to provide

a quality experience [94].

5.4.3 Joint Research

Although it may not be feasible for undergraduate programs, some have proposed

more industry-sponsored academic research [95]. The research conducted would be

funded by private industry and there would be two liaisons: one from academia

and one from industry [95]. Both industry and academia would benefit from the

research. First, industry would be able to utilize the resources of academia, have first-

hand knowledge of state-of-the-art research, and be able to obtain useful results from

the research. In addition, students would be exposed to current problems found by

67

industry, help define the leading edge, and gain experience working with professionals.

The research would be a synthesis of coursework applied to industrial applications.

5.5 Sample Course Requirements

This section reviews the existing undergraduate computer science education require-

ments for Michigan State University (MSU) [103]. As stated previously, though MSU

is not accredited by CSAB, it does contain courses that correspond to the primary

computer course requirements. CSAB accreditation guidelines require, among many

other criteria, that the curriculum contain a set of core computer courses covering

the following areas: theoretical foundations of computer science, algorithms, data

structures, software design, the concepts of programming languages and computer

elements, and architecture [104]. Thus, any references to MSU courses can also be

applied to CSAB curriculum.

We propose modifications to the program and to specific courses that support the

education of students based on ideas mentioned in the previous sections. Emphasis is

given to promote the use of formal methods as well as the integration of social values.

Core Courses

1) Problem Solving

2) Algorithms & Computing

3) Discrete Structures in Computer Science

4) Computer Organization & Assembly Language Programming

5) Data Structures & Programming Concepts

6) Automata & Formal Language Theory

7) Operating Systems

8) Computer Architecture

9) Compiler Construction

10) Design/Synthesis/Capstone Course

Table 5.2. Required Computer Science Courses

68

5.5.1 Core Courses

We have taken the computer science major requirements and added the problem

solving course in order to create the revised course requirements. We have included a

Project Course that will allow the student to gain industry experience 1’ The results

are in Table 5.2. The following augments the course descriptions to include social

responsibility and formal methods.

Problem Solving: This course examines the process of problem solving: under-

standing the problem, expressing the problem, deriving a solution, expressing a solu-

tion, and verification of the solution. This course includes the presentation of various

techniques for addressing each of the steps and the ability to choose the appropriate

technique. Discussion of factors that affect problem solving with respect to com-

puter science are also included: computer system hierarchies, languages, probability,

statistics, etc.

Algorithms & Computing: llntroduction to different approaches to implement-

ing algorithms, the fundamental logic needed to describe such algorithms, and a spe—

cific programming language to implement the algorithms. Beginning programming

concepts, (i.e., text input/output, selection, repetition, arrays, functions and proce—

dures, scope of variables, records, sequential files [105]), and programming techniques,

(i.e., searching, sorting, randomness, and recursion), should be taught. In addition

to teaching the technical aspects of basic programming principles, it is important

to incorporate the practical nature of using such techniques to solve problems into

the lecture. For example, in one lesson about counting loops, a professor asked the

class to write a program according to the specification: “If the heart stops beating

‘This courses replaces the choice between the two courses: Design of the Intelligent Systems and

Software Tools for Concurrent Systems.

tCorresponds to the CSAB course focusing on algorithms.

69

for 10 seconds, the pacemaker’s program should send a signal to give the heart one

electrical shock [7].” The common solution was to implement a loop going from one

to ten. The problem is that the machine cycles were much shorter than one second.

As such, most of the pacemakers were programmed to shock the patient about every

0.000001 seconds, electrocuting the patient [7]. This example presents the type of

problems that occur when discussing programming concepts, machine specifics, and

social impacts.

Discrete Structures in Computer Science: 1 Discrete Structures is the first

pure theory course required for computer science majors. It addresses several of the

fundamentals of formal methods including mathematical logic, set theory, induction,

etc. This course gives the tools needed to be able to use formal methods. To help the

students understand the importance of the course, explanations of how the principles

relate to real-world problems are necessary. It is quite beneficial if students can

appreciate the need for theory early within their coursework.

Data Structures and Programming Concepts: 5Focusing on various data types

and structures and the construction and analysis of algorithms, formal methods could

be incorporated by having the assignments be specified using a formal specification

language. The subject matter should refer to practical situations that help illustrate

the use of the material and guidelines for determining what method to use. Feedback

should be given as to whether or not the students’ assignments were correct as well

as to provide measures to correct the assignments.

Automata and Formal Language Theory: This is the second formal theory

course that the students encounter. In addition to learning about languages and gram-

3Corresponds to the CSAB course focusing on theoretical foundations of computer science.

5Corresponds to the CSAB course focusing on data structures.

70

mars, emphasis should be placed on why various types of languages and paradigms are

used. When introducing Turing computability and undecidability, practical problems

containing similar properties should also be discussed. For instance, the student may

be able to visualize the Traveling Salesman Problem and then be able to understand

its complexity.

Computer Organization & Assembly Language Programming/Operating

Systems/Computer Architecture: 'Each of these courses deals with machine

specific properties. In addition to the regular material covered in these courses, it is

important that the students understand the relationship between the machine and the

application levels. This could include discussion of how machine-dependent factors

affect the entire system. We have already discussed previously an example that

illustrates how clock cycles affect programming concepts. Other discussions could

focus on the semantic gap that exists between the machine’s core concepts and high-

level language concepts [106]. Attention could be given to the discrepancies that such

a gap can create.

Design/Synthesis/Capstone Course: A real-life project course should be taken

that takes an existing problem and goes through the entire cycle of producing a

working solution. Students should be able to get credit for this course by participating

in a practicum course, a co-op program, or joint research. This gives the student

flexibility to find a project relevant to the student’s area of interest. Regardless of

the project course, the students should be able to use formal methods and problems

solving skills to utilize the knowledge gained in the previous courses. It would be

beneficial to have this course be one of the final courses taken.

'Corresponds to the CSAB course focusing on architecture.

71

Optional Courses

1) Software Engineering

2) Computer Networks

3) Artificial Intelligence & Symbolic Programming

4) Translation of Programming Languages

5) Organization of Programming Languages

6) Computer Graphics

7) Vector & Parallel Programming

8) Database Systems

Table 5.3. Optional Computer Science Courses

5.5.2 Optional Courses

The following courses are offered to the students as optional. The students are ex-

pected to choose three to four of the courses listed in Table 5.3. It is important to

notice that all of the courses deal with systems that can be embedded within safety-

critical software systems. Thus, it is important that each address the responsibilities

associated with creating such systems.

Software Engineering: N This course should expand further upon the issues that

have been addressed in the previous chapters. The problem solving process should be

discussed proving guidelines for solving software-related problems. It should provide

the needed foundation for the development of software in any domain. Because soft-

ware development expands into virtually all domains, review of example systems can

show what is currently run by software, and exposure to software failure can show the

effects of poor development or poor understanding of the requirements. The course

should include the discussion of complexity, specification and verification techniques,

testing methods, and tools for software development.

"Corresponds to the CSAB course focusing on software design.

72

Computer Networks: The process of problem solving is clearly applicable to this

area. Though “real-life” examples may not be as accessible, much attention can be

paid to the social aspects of networks. The importance of this topic is evident by

the discussions involving the Internet. There are several articles that address the

following: privacy issues, ownership issues, interstate/international issues, etc. [1,

107,108,109,110,111]

Artificial Intelligence & Symbolic Programming: Techniques for using the

models that have been used in the Artificial Intelligence Community are presented.

This course typically discusses searching and storing information. These programs

can become increasingly complex. In addition, they can be used in systems that can

potentially cause danger. Thus, programs written in the area of Artificial Intelligence

need to be subject to a high level of rigor if they are to be used in the industry. As for

the social aspects of Artificial Intelligence, the area studies various aspects of human

life. Thus, studies are made to understand how people perform specific tasks as well

as why they perform those tasks.

Translation of Programming Languages: “The theory behind the translation

of programming languages is taught and followed by the application of the theory

through programming projects. This course provides a good example of how theoret-

ical mathematical concepts and grammars are actually applied within the domain. In

addition, it allots for understanding of machine specifics. Emphasis should be placed

not only on programs that perform the translations, but also on the fundamental

theory.

”Corresponds in part to the CSAB course focusing on concepts of programming languages and

computer elements.

73

Organization of Programming Languages: ”I‘he emphasis should be placed on

the various types of languages and paradigms upon which the languages are based.

This shows what types of languages are available and what type of capabilities each

language group has. Small programming problems can be given to illustrate the

amenability of language for one type of application over another. Likewise, discussion

of recent incidents that have occurred involving programming language concepts will

also be beneficial. For example, when discussing concurrent programming, issues such

as the need for mutual exclusion and the elimination of race conditions are of primary

importance. The Therac-25 incidents show some consequences of poor programming

that fails to acknowledge the necessity of such precautions.

Computer Graphics: The need for precision within computer graphics programs

is great. Thus, use of some form of formalism can be warranted. As for the social

aspects, understanding of the human factors issues can be discussed. We not only

create accurate systems but ones that can be interpreted correctly by the audience.

Human-Computer Interfaces are becoming more and more important as computer

systems are further integrated into society. The interface issues should be dealt with

during the design specification stage. In applications such as aircraft cockpits, the

data as well as its graphical representation to the pilots is of great importance. If

correct data can not be interpreted, then the data is useless. As seen in the Airbus

incidents, interface issues can be major factors [55].

Vector & Parallel Programming: It is clear that we have not found methods for

perfecting sequential programs. The addition of parallel processing adds an additional

level of complexity to programming. Thus, formal techniques should be used to specify

and verify the correctness of such complex programs.

"Corresponds in part to the CSAB course focusing on concepts of programming languages and

computer elements.

74

Database Systems: In addition to the structuring of data within the database,

issues such as: data integrity and data protection should be handled. The students

need to understand the potentially wide-sweeping effects and impact of incorrect

data. The need for non—ambiguous data is especially critical for systems that have

a direct impact upon human life. The Therac-25 incident involving the turntable

showed the harm that could be caused by ambiguous data. Though the switch signal

was generated by the system, it could have been data stored in a database. There

are several incidents that involve people being declared “dead” in a database and

therefore losing their identity. Another effect of incorrect data involves several possible

situations that could occur if certain parties gained access to confidential information.

In addition, the need for privacy and data security are becoming very important

issues. Though these may not directly cause human loss, the effect of confidential

information being accessed could potentially have serious adverse consequences.

CHAPTER 6

Software Advisory Board

A potentially significant factor that contributes to the lack of a sense of responsibility

and accountability for software developers is the lack of a central agency that deals

primarily with software. The unique qualities of software, as discussed in Chapter 1,

warrant the need for a board that deals specifically with software-related issues. While I

many of the domain-specific regulatory boards, such as the FDA, FAA, and DoT,

have members on their committees that handle software issues, there is no uniformity

between domains. As the use of software-controlled products increases, the various

domains will have to adopt explicit guidelines for handling software systems. If each

domain is allowed to develop its own standards, then it is unlikely that uniform

standards will be applied. Uniform standards could be used to provide minimum

guidelines designed to promote and preserve public safety. Any attempt in the future

to create uniform guidelines between the domains will be difficult, if not impossible.

This problem of failing to uniformly deal with software systems is also found within

the domains themselves. For example, since the Therac-25 incidents, the FDA has

added policies to specifically deal with software systems [10]. The changes, however,

were separate from the new methods that the American Association of Physicists in

Medicine enacted to improve computer-assisted radiation treatment [10]. While each

of the groups’ recognition of the need to change their policy is commendable, there

75

76

remains the need for a body that can facilitate communication between each of the

groups within and among each domain. Such a body would not only create a thread

of cohesiveness, but it would also aid each of the domains in the creation of new

policy.

We propose the establishment of a Software Advisory Board (SAB) to oversee

software—related projects across all domains. The needs for the SAB are numerous.

Rather than list all of the current problems, we examine the proposed functions of

the SAB and address some of the issues that are currently being neglected. In the

previous chapters, propositions for change within the legislature and the educational

system have been examined. The SAB plays an instrumental role in bringing those

propositions to fruition. As software becomes a major part of American culture, it is

logical that there should be a governing body that can help regulate its use.

6.1 Regulatory

In Chapter 4, we discussed some of the problems with the legal system when dealing

with cases that involve software products. The discussion was divided into two main

parts: liability and policy. It is these two areas that the regulatory role of the SAB

will address.

6.1.1 Liability

First, the SAB can help provide guidance for liability cases in each of the domains.

Having a representative body that fully understands the uses as well as the limits

of software will aid in concluding comparable decisions for similar cases. The SAB

will develop a set of standards that accomplish a standard of care as explained in the

following: “The standard of care provides a tool to distinguish between malfunctions

(bugs) due to inadequate practices and those that occur despite a programmer or

77

designer’s best effort [12].” Without a SAB, there will be no source that would

provide guidance for handling similar software liability cases. Instead, each case will

be based upon domain specific analyses performed by each court. This approach can

lead to poor legal practice causing each court to give independent rulings on software

systems. In addition, it is very costly. The SAB could act as a regulatory board

that keeps a set of standards for software systems within the known limits of current

technology, making software liability cases more concrete.

6.1.2 Policy Creation

Work would be done to ensure that each manufacturer of software systems under-

stands what level of quality is expected. This function brings us to the remaining

regulatory role of the SAB, policy. The SAB could provide expert knowledge of what

should be expected of software systems. Amendments to current policy regarding

software would help to clarify the guidelines the manufacturer should adhere to and

also outline limits of software. While it is known that large software systems can-

not be proven to be 100% perfect, there are common procedures that can be used

to help prevent hazards. These procedures include, but are not limited to issues

discussed in the education chapter, (i.e., design documentation, formal specification

of requirements, testing procedures, minimum guidelines). A member of the SAB

would be expected to know the limits as well as the advances of current evaluation

techniques. In the situation where the system design exceeded the limits, the design

should replace the software with a more reliable mechanism, such as hardware.

6.1.3 Criminal Justice

In the case of the Tylenol Tamperings, the Food and Drug Administration had the

authority to enact laws that prohibited tampering or alleged tampering with consumer

78

products [20]. The SAB should also have analogous authority. If there are incidents

where the manufacturers explicitly disregard the policy produced by the SAB and

place the public in danger, then the SAB should be able to take action. By giving

the SAB input into the creation of federal laws intended to protect the public, safety

can be improved.

6.1.4 Extraneous Systems

Another regulatory role of the SAB would be to directly oversee the production of

any safety-critical software system that is not specifically governed by any domain.

In such cases, the SAB would be able to establish certification guidelines and have

the authority to recall the product when the SAB felt that the product threatened

the public’s safety.

6.2 Approval

The SAB would be able to provide industry and academia with a set of SAB approved

validation/verification methods or agencies that provide vital services.

6.2.1 Independent Testing Agencies

The SAB could publish lists of “SAB Approved” Independent Testing Agencies. A

common practice is to have someone within the development process conduct testing

and decide whether or not the product is marketable. To many, this approach seems

counterproductive in that there is an obvious bias.

Today, software is treated like other commercial products, both mass-

produced and contracted. In cases in which correct software performance

is considered critical or at the request of the buyer, the software is tested

(usually by providers) for safety and correctness. Unlike special prod-

ucts such as children’s toys, new medicines, nuclear plants, and chicken,

software is rarely tested by independent agencies [11].

79

Though there may be a variety of reasons contributing to why software is not being

independently tested, if a list of credible testing agencies were publicized, perhaps

more manufacturers could utilize the resource and begin independent testing. Having

a product approved by an independent testing agency would help and certainly not

hinder the product’s retail value. In a recent report regarding the Space Shuttle’s

software system, a committee, independent of NASA, assessed the shuttle’s software

development process [89]. The committee recognized the use of some verification and

validation from within NASA, but recommended that additional independent reviews

be conducted [89].

6.2.2 Rating Methods

A list of acceptable Reliability Rating Methods could also be given. One main problem

with the current state of affairs is that software seems to escape normal certification

procedures. We have already stated that the SAB could work to update regulation

policy. We also propose that the SAB offer additional means of rating the systems in

order to provide a way to obtain added safety. Software, regardless of its complexity,

needs to be controlled.

It is unreasonable to exempt software from quantitative reliability require-

ments, whenever dependability and risk are otherwise treated in a quanti-

tative fashion. In these cases, there should be an obligation to convincingly

and rigorously demonstrate that such requirements are satisfied [92].

As with the Independent Testing Agencies, providing an approved list of reliabil-

ity measurements produces the possibility that more will try to integrate them into

normal practice.

Example. One method that is increasingly being used as a metric for evaluating

the quality of the development process and organization is the Capability Maturity

Model (CMM) [90]. The intent of CMM is to provide organizations with a way to

80

rate their current process and assess what should happen in the future [90]. CMM is

comprised of the following five levels [90]:

Level I - Initial: Process is ad hoc or chaotic.

Level 2 - Repeatable: Some basic management processes; techniques that work

well on one project are used/repeated on future projects.

Level 3 - Defined: There is a standard software process; most projects closely fol-

low this process.

Level 4 - Managed: The process and product is closely evaluated; quantitative

measurements are used.

Level 5 - Optimizing: Feedback coupled with new ideas is given regarding process;

proper changes are then made.

Further discussion of CMM can be found in the cited reference [90].

Another method that could be examined by the SAB is the verification and valida-

tion techniques used by both NASA and the independent assessment committee. The

committee’s method was based upon an approach that reviews reports and changes

to the shuttle software by using three main areas of analysis that are summarized as

follows [89]:

Limited Analysis: Reviews the problems, impacts, requirements risks, and dispo-

sition.

Focused Analysis: Checks the code, testing, verification, documentation, and

safety issues.

Comprehensive Analysis: Studies implementation of other systems and performs

complete tests and verification.

Though a complete understanding of the assessment process is not available in this

dissertation, the report does provide an additional example of a rating method that

is currently being used. More detailed information about the methodology behind

the analysis can be found in [89].

81

6.2.3 Education Certification

A final set of guidelines that could be approved is the certification criteria for Com-

puter Science education. This would include providing universities with a list of

requirements that are needed to become a certified academic institution. The SAB

could review existing accreditation criteria such as that provided by CSAB or could

simply have the CSAB become a part of the SAB. The educational certification

standards could provide a basis for material found on a future “Computer Science

Professional” exam.

6.3 Interactive

There are several benefits that could be realized if the SAB were used as an interme-

diate link between various parties involved with software systems. The SAB would

help the Software Development Community, the Regulatory Agencies, and academia

interact to provide safer software systems. The role of the SAB as it relates to each

of these communities is discussed in turn.

6.3.1 Software Development Community

The SAB could be used to interact with members of the Software Development Com-

munity. The advantages to such a communication link are many, but two primary

advantages are considered.

First, the SAB could utilize the experiences of the community to help develop

the regulatory policy presented in Section 6.1 and also the approval lists that were

discussed in Section 6.2. To better understand the community’s needs, direct contact

must be maintained.

A second provision that the SAB would provide would be a link between the

software developers and a body of authority. Though this relationship may seem

82

trivial, it is in fact an important asset. Expected to meet specific deadlines, many

products are sent out before adequate testing has been performed. While the product

may meet the minimum guidelines, there still could be other dangers associated with

the product. The decision to send out a product containing software before it is ready

is not the decision of the software developer, but that of the product manger. This

conflict puts the developer into an awkward and undesirable situation having to send

out a product that has not been proven to be safe. We examine a situation that

occurred ending in a tragedy. However, the true tragedy, as will be shown, was that

the incident could have been prevented had the complaints of certain members of the

development team been addressed.

Challenger Incident: In 1986, millions of citizens watched the Space Shuttle Chal-

lenger explode only 73 seconds after liftoff [112]. All crew members, including the

“Teacher in Space,” Christa McAuliffe, were killed [112]. Tragedy overcame the Na-

tion as it attempted to understand the shocking incident. However, the incident was

not shocking to all. Several design engineers had made attempts to postpone the

takeoff predicting such a disaster [112].

The cause of the incident was determined to be a leak in the O-Rings though

knowledge of the problem with the O-Ring had been available since 1979 [112]. Fur-

thermore, a particular engineer, Roger Boisjoly, had been conducting tests that proved

that the rings were subject to failure during low temperatures [112]. He made a no-

table effort to make NASA aware of the existing problems, though to no avail. Finally,

the evening before takeoff, he was part of a teleconference between the company he

worked for, Morton Thiokol, and NASA [112]. During the conference, he proceeded

to explain why he felt an explosion could occur. Despite his substantiated plea, the

Morton Thiokol managers gave into the desires of NASA and gave the go ahead for

the launch. Roger Boisjoly had done everything possible to prevent the disaster and

83

was forced to sit and watch the explosion, the same explosion he predicted. Some

engineers choose to attribute the cause of the Challenger Disaster to poor manage-

ment, “The Challenger did not crash because of a poorly designed O-Ring, it crashed

because of a poorly designed decision-making system—a system where engineers have

little input and no vote [112].”

What happened after the incident causes even more disbelief. Several engineers

testified of the events that had occurred. After their testimony, they were criticized

by their company’s management and demoted from their positions [112]. Other em-

ployees at the company placed blame upon the engineers for criticizing and giving bad

publicity about the company. Roger Boisjoly eventually left the company due to “the

hostile work environment” [112]. He now lectures on the importance of engineering

ethics nationwide [112].

The fact that the engineers were ignored and shunned is shocking. However, it is

easy to see a similar situation occurring where the software developer does not feel

that a given product has received adequate testing or analysis. Confrontations such

as these occur daily, though not always with critical systems. There is obviously a

glaring defect in the corporate ethic system. In the National Society of Professional

Engineers Code of Ethics [112], it states,

The members of the profession recognize that their work has a direct and

vital impact on the quality of life for all people. Accordingly, the services

provided by engineers require honesty, impartiality, fairness, and equity,

and must be dedicated to the protection of the public health, safety and

welfare. . . Engineers shall hold paramount the safety, health, and welfare

of the public in the performance of the professional duties.

While there exists controversy as to whether or not software engineering should be

considered a profession, few can argue with the fact that software developers have a

large impact upon society. In this manner, software designers are similar to engineers

and so their concern with public safety should be the same. Thus, adherence to a

similar set of ethics is not unreasonable.

84

In reference to the Challenger disaster, it has been stated that, engineers are

not required to take courses that study professional ethics and there is no place to

report incidents dealing with ethical dilemmas [112]. The same holds for software

developers. Chapter 5 has already addressed the need for ethics within the computer

science curriculum. We feel that the SAB would be able to act as a grievance board for

those who feel that unsafe software-related products were being sent to the market.

6.3.2 Other Regulatory Agencies

Another purpose of the SAB would be to provide interaction between regulatory

agencies that deal with safety-critical software systems. The relevant agencies include,

but are not limited to: the Food and Drug Administration, the American Association

of Physicists in Medicine, the Federal Aviation Administration, and the Department

of Transportation. These are the agencies that regulate the examples presented in

this dissertation.

6.3.3 Academia

The tie between the SAB and academia has already been explored in previous chap-

ters. Any useful research that is produced in the university setting can be submitted

and reviewed by the SAB. If the research is found to be applicable to the software

development community, such as new reliability rating models, the SAB can publicize

the results and add the method to the list of approved methods. Once new results

are found, the SAB would have the power to integrate the results into the system,

keeping software regulation current.

CHAPTER 7

Cooperative Balance

We have presented a three-pronged approach to promote higher quality software de-

velopment. In order for the approach to be successful, there must be a coopera-

tive balance between three primary organizations: industry, the legal system, and

academia. If one fails to take the prescribed measures, then the others would likewise

fail. The necessity of each organization is complemented with a direct impact on

various members of the organizations.

7.1 Industry

The call for reform addresses the need for safer computer-based systems. In addition

to providing a higher level of safety, the approach also directly affects members of the

safety-critical software development team: management and developers.

7.1 .1 Management

Management is a critical factor in the adoption of more systematic, repeatable, and

formal methods within industry. It is managers that allocate the resources needed

to apply more rigorous methods. The lack of technical knowledge as well as the lack

of appreciation for software safety may be reasons why some managers do not sup-

85

86

port formal methods. Currently, software safety is often neglected in large industrial

projects, projects where they are needed the most [113].

Our approach facilitates the bridging of the gap between management and de-

velopers. By including managers as an active part of the development process, we

place new standards on them calling for managers that understand and appreciate

the formal design process. The impact of such an assumption carries over to many

management-related areas. First, if managers are able to fully understand the tasks

of the workers, there would be a higher level of respect, trust, and interaction be-

tween management and workers. Secondly, the added awareness would help managers

recognize ‘good’ employee skills and the value of educational background (e.g., 'ad-

vanced degrees) leading to better merit evaluations. Also, managers would be able

to recognize the need for certain skills and thus be able to provide opportunities

for improvement through enrollment in workshops and educational programs. Next,

knowledgeable managers would be attentive to the needs of the worker and allow for

more accurate budgeting of funds, time, and resources. In addition, because man-

agers would be directly involved in their team’s progress, management could play a

concrete role in being held accountable for their projects. This role includes willing-

ness to fix errors and to receive commendation for a job well done. Finally, managers

could interact with the SAB enabling them to keep in contact with other managers

within their domain and to remain up-to—date with new technology.

7.1 .2 Workers

The crux of our approach has addressed the lack of responsibility and accountability

of the members in the actual development process. Some of the primary members in

this process are the workers, the developers of the systems. However, we have found

that this discrepancy coincides with several factors such as insufficient education. Our

approach addresses this issue and provides the following for workers.

87

First, workers would be able to have more trust in their projects. The concept

of management would become a more positive aspect of the development process. If

management demonstrates through actions a genuine/sincere concern for the quality

of computer-based systems, there would be more interaction between management

and the workers to help alleviate problems early on. Also, the deadlines management

places on the workers would be much more reasonable and achievable taking into

account time and effort needed to use rigorous approaches to development. Further-

more, adequate resources should be allocated for independent verification/validation

efforts. The use of formal methods would allow for more explicitly defined expecta-

tions of the workers. Second, workers would stay aware of current techniques through

distributions produced by the SAB and also through workshops and short courses

sponsored by management. Third, the appropriate awards for good work and educa-

tion would be acknowledged through the hiring and promotional processes. Finally,

if a worker experiences a problem, (e.g., compromising safety), within the company

and has made several attempts to have it remedied, the SAB would act as a resource

to support the workers ethical responsibilities to the public.

7.2 The Legal System

It has been shown that the legal system has been asked to handle computer-related

issues. Our approach provides the legal community with sound guidelines that should

be followed when dealing with safety-critical software systems. We do not attempt

to define the law but instead to provide the information needed by the legal com-

munity to interpret and understand the law with respect to computer-related issues.

Providing judges and lawyers with finite properties that can be expected of software

systems would help them to interpret regulations and laws and provide a beginning

foundation for computer-related legal issues.

88

7.2.1 Judges

Our approach exposes a need for judges who have a certain level of understanding

of computer-based systems. First, the proposed additions to regulation policy would

provide the judges with a concrete set of guidelines to examine when faced with a

faulty software system. Second, having a more well-defined computer science grad-

uate would raise the level of expectations of the courts and provide a better point

of reference in dealing with what is expected of the “reasonable computer scientist.”

Next, some of the impact of our approach would stem from the induction of the

SAB. The SAB would act as a national authority that can provide information to

the judges regarding the current state of technology and formal methods. The uses

of this SAB role would range from making known recent verdicts within the vari-

ous domains, providing input in the redefinition of permissible courtroom evidence,

discussion on the use of professional witnesses and juries, to the discussion of new

criminal acts for those who disregard public safety. Finally, the SAB would be able

to tie together all domains that deal with safety-critical software systems by having

each domain comply to similar guidelines. This centralization would help to minimize

the work of the judges and also provide a place for software-related precedents. If

this centralization were not the case, then each domain would be able to create its

own set of regulations and actions making each court case domain dependent, a time

consuming and expensive approach.

7.2.2 Lawyers

Our approach calls for competent lawyers to handle computer-related cases while at

the same time creating new opportunities for lawyers nationwide. First, regardless

whether a lawyer represents a manufacturer or a member of the public, our approach

helps to define distinct guidelines for software-related court cases. The responsibility

89

of the manufacturer and the developer have been discussed to provide higher expec-

tations in both roles. The changes to education help to define the level and quality of

competence expected from computer science graduates. Second, the attempt to pro-

vide a uniform handling of software-related systems would help to create precedents

set by standard legal cases that can be studied and reviewed by the lawyers. Thus, a

lawyer working on a computer-related case would not have to start from scratch, but

would have cases to reference. The next impact directly follows implying that there

would be a need for lawyers with an understanding of computer-based systems and

development processes that also have the drive to forge into the unknown. Lawyers

working in this field would be faced with exciting and challenging issues. They would

have to take fundamental legal properties, (i.e., punitive damages, contract law, and

comparative negligence), and interpret them with respect to computer—related cases.

Though the work may be difficult, it certainly presents a worthy challenge.

7.3 Academia

The final area that is directly affected by our approach is academia. Because there

are many complaints as to the quality of computer science graduates, as seen in

Section 5.1.2, change should be welcome.

7.3.1 Professors

The impact of our approach expands into the university faculty as follows. First,

the changes to education as well as the SAB provide direct opportunities for linking

professors with industry. The results are twofold: professors would be able to stay in

touch with industry trends and professors would have more opportunities to present

their ideas to be used in industry, thereby making their instructional techniques

and research more accessible for use. The changes in education would also require

90

professors to have current and updated lecture material and assignments in order

to give the faculty and the students access to state of the art technology and to

the needs of industry. Second, the revised education structure would provide a new

level of expertise in future students. By introducing fundamental concepts early in

the curriculum, professors would be able to focus on the subject matter rather than

spending large amounts of time reviewing basic techniques. This approach applies

to both undergraduate and graduate level courses. It has been stated that often

graduate programs spend much of the time teaching students what should have been

taught in the undergraduate program [96]. Hopefully, the new manner that the

courses would be taught (i.e., including more real-life examples and ethical issues)

would bring new motivation to computer science students. Next, the existence of the

SAB would provide professors with a direct frame of reference to where their program

should be with respect to other universities. Accreditation standards, sample course

syllabi, and SAB approved methods for verification/rating would all be available from

the SAB. Finally, because the foundation for each of the complementary aspects of

our approach is rooted in academia, this would give professors the upperhand on

understanding the technology, formal methods, and the responsibilities associated

with software development. The raised level of respect could potentially provide

them with more opportunities to consult in industry, to be sponsored by industry, or

to serve on the SAB.

7.3.2 Students

We believe that the students would be the group to benefit the most from our ap-

proach. First, the changes to education attempt to provide understanding of the

entire view of computer science. If the students can understand in the first course

how important mathematical skills and ethical responsibilities are, then they would

be able to apply these basic skills in other courses while gaining an appreciation for

91

the other courses, giving them a sense of motivation. Second, the interaction between

academia and industry would keep professors familiar with current techniques rather

than allowing them to become detached from society. Third, students would be better

prepared for various areas of industry. Equipped with technological skills and ethical

responsibility, they would be an asset to the workplace. The experience gained from

the project course would create a solid foundation for entering industry. Finally, the

SAB would provide the uniformity needed to allow computer science graduates to be

able to enter into various domains. Without the SAB, students would have to study

domain-specific standards and expectations for testing, validation, and verification.

In other words, each domain would have different requirements and guidelines. In

general, the computer science student would be faced with a myriad of opportunity

upon graduation.

7.4 Discussion

We have reviewed the impact that our approach has on each organization involved

within the approach. The cooperative balance between each of the organizations fos-

ters many advantages including good communication links, a higher level of ethical

responsibility and accountability, higher-quality development teams, and most impor-

tantly, safer systems. We must remember that though each of the groups is affected

in its own specific manner, each member of the development process, the legal system,

and education system is not only a member of the respective organization, but is also

a member of the public. As a primary goal to provide a safer environment for the

general public, the increase in public safety is by far the most important impact.

CHAPTER 8

Conclusions and Future

Investigations

The promise of public safety is being compromised as potentially dangerous software-

controlled products become a part of daily life. We have examined a few tragic

incidents that expose vulnerabilities in the software development process, namely a

lack of responsibility and accountability. Though the occurrence of such incidents

is unfortunate, it does provide motivation for change. The purpose of this disserta-

tion is to provide an approach for promoting both responsibility and accountability

through proactive and reactive measures. Thus, as a remedy to the problems we

have discovered throughout this dissertation, we present a three-fold strategy that

attempts to renovate the legal system to include software systems, adds to the edu-

cation curriculum with the intent of teaching more rigorous development techniques

and social responsibilities, and proposes the creation of a software advisory board

whose primary concern is software safety.

Updates to legislation include the application of standard liability to software sys-

tems and the recognized need for software-specific policy. The suggested renovation to

the undergraduate education program for computer scientists places more emphasis

on problem solving, ethical responsibilities, and the need for formal methods, espe-

92

93

cially when dealing with safety-critical systems. Finally, the notion of the Software

Advisory Board was introduced exhibiting its ability to regulate the use of software,

give approval to various techniques in certain areas, (i.e., system testing, process rat-

ing, and educational certification), and assist by interacting between members of the

development process. When combined and used constructively, these three actions

provide a foundation for responsibility and accountability in the software development

domain.

We have presented the need for a cooperative balance between three primary

areas: industry, the legal system, and academia. Everyone involved in the software

development process could be greatly and positively impacted by the three-pronged

approach. This impact would include everyone from the professors and students in

academia to the managers and project workers in industry to the judges and lawyers

involved in the legal system. The possible outcome of applying this approach provides

many benefits to each of the groups. However, the approach also unveils many other

issues that have not been addressed.

We hope that serious thought is given to the principles discussed throughout the

dissertation. The legal perspective has produced several other computer-related top-

ics for review. Investigations should be conducted regarding the application of legal

matters in other computer-related areas, such as evaluating the interpretation of Con-

tract Law, the adoption of criminal statues, the possibility of computer programmer

malpractice, and the study of privacy/security issues all with respect to computer

systems.

Insights into the educational system have also brought attention to the need for

better education. In addition, many currently debated topics are revealed. What role

should Formal Methods play in the education of undergraduates? Should Computer

Science be an engineering discipline? Should Software Engineering sever itself from

general Computer Science and become a separate discipline? Questions such as these

94

then lead to a prime debate among industry, Should there be a profession of computer

scientists? If so, which specializations within Computer Science should be included

or excluded? Should we certify software engineers? Though issues such as these seem

to plague the Computer Science community, it is somewhat reassuring to know that

ideas are being discussed and considered.

Finally, the induction of the Software Advisory Board brings to light the role of the

government in software development. Should the SAB be federally controlled? If so,

how would funds be allocated for such a purpose? Who will regulate the SAB? Will

the SAB make specific formal specification languages, testing strategies, and rating

methods mandatory for all software systems? How will the cost of implementing such

features affect industry? How will the SAB enforce specific guidelines?

It is clear that there are many issues left to be addressed. We presented what

we felt to be the most pressing issue, the development of safety-critical software

systems. Though discussion of development is important, the importance of public

safety cannot be ignored. We realize that this thesis does not give a method for

ensuring public safety 100% of the time, but it does provide a model for increasing

the level of safety and the level of awareness. Furthermore, it exposes the need to

integrate legal awareness into Computer Science and the need to integrate computer

issues into the legal system. As we enter a world of new technology, it is critical to

ensure that the development process of such technology also advances and evolves to

handle the additional complexity and the added responsibility to the public. Looking

to new advances in the future is acceptable as long as we do so without forgetting

the fundamental values of the past, values such as responsibility and accountability.

APPENDICES

APPENDIX A

Glossary of Legal Terms

The following provides a list of definitions for some of the fundamental legal concepts

discussed in this dissertation. This glossary is meant to assist those who have had

minimal exposure to such legal terms. Though there are many interpretations, we

provide the definitions that correspond to the term with respect to the context of this

dissertation. The definitions have been paraphrased from Black’s Law Dictionary [77].

Comparative Negligence: Negligence that is split according to the percentage that

the party was at fault; recovery is given to the plaintiff based upon the amount

that the defendant was negligent and the amount that the plaintiff was negligent.

Contract Law: Legal obligations incurred by deviation from a contract, an agree-

ment between two parties. There are many types of contracts each with specific

guidelines.

Disclaimer: Rejection of rights normally retained by certain persons.

Liability: Having an obligation to perform some duty (i.e., pay a debt, make justice,

provide some service).

Negligence: Failure to provide care equal or greater than that of “the reasonable

man” where the reasonable man is held to the standards of the average person.

Punitive Damages: Damages awarded to plaintiffs that exceed compensation val-

ues; they are meant to punish the defendant for a wrongdoing and are usually

applied in cases involving violence, intended harm, and the like.

Strict Liability: Liability with determining fault imposed upon the seller of defec-

tive and potentially dangerous products.

95

96

Tort Law: Violations of the law committed to a person or a person’s property that

was independent of any contract.

BIBLIOGRAPHY

BIBLIOGRAPHY

[1] P. G. Neumann, Computer-Related Risks. Addison-Wesley Publishing Com-

pany,l995.

[2] W. W. Gibbs, “Software’s Chronic Crisis,” Scientific American, vol. 271, pp. 86—

95, September 1994.

[3] “Risks to the public in computers and related systems,” Software Engineering

Notes, vol. 19, pp. 4—12, July 1994.

[4] 1. Peterson, “Finding fault: The formidable task of eradicating software bugs,”

Science News, vol. 139, pp. 104—106, February 1991.

[5] M. J. McCarthy, “PepsiCo Is Facing Mounting Problems In the Phillipines,”

The Wall Street Journal, December 1994.

[6] J. Dalbey, “Pepsi promotion misfires - computer error,” RISKS-FORUM Digest,

vol. 16, December 1994.

[7] B. Friedman and P. H. K. Jr., “Educating computer scientists: Linking the

social and the technical,” Communications of the ACM, vol. 37, pp. 65—70,

January 1994.

[8] S. E. Lipner and S. Kalman, Computer Law: Cases and Materials. Merrill

Publishing Company, 1989.

[9] C. S. Turner, “Private Communication,” January 1995.

[10] N. G. Leveson and C. S. Turner, “An Investigation of the Therac-25 Accidents,”

IEEE Computer, vol. 26, pp. 18—41, July 1994.

[11] W. R. Collins, K. W. Miller, B. J. Spielman, and P. Wherry, “How Good is

Good Enough?,” Communications of the ACM, vol. 37, pp. 81—91, January

1994.

97

98

[12] H. Nissenbaum, “Computing and accountability,” Communications of the ACM,

vol. 37, pp. 73-80, January 1994.

[13] K. Crain, “ABS education needed,” Automotive News, p. 12, February 20, 1995.

[14] J. Baum, “Safety First,” Far Eastern Economic Review, vol. 157, pp. 74—75,

June 16, 1994.

[15] V. Neufeldt, Ed., Webster’s New World Dictionary. High Technology Law

Journal, 1990.

[16] J. Bowen and V. Stavridou, “Safety-Critical Systems, Formal Methods and

Standards,” tech. rep., Oxford University Computing Laboratory, 1992.

[17] N. G. Leveson, “Software Safety in Embedded Computer Systems,” Communi-

cations of the ACM, vol. 34, pp. 34—46, February 1991.

[18] K. L. Ropp, “Tylenol Tampering,” FDA Consumer, vol. 26, p. 16, October

1992.

[19] D. Kirkpatrick, “Intel’s Tainted Tylenol,” Fortune, vol. 130, pp. 23—24, Decem-

ber 1994.

[20] A. Hecht and M. Shaffer, “Tamperings, False Reports Bring Arrests, Jail,” FDA

Consumer, vol. 20, pp. 28—29, September 1986.

[21] Anonymous, “Agency Says Craft Are Safe,” The New York Times, vol. 144,

p. 9, December 3, 1994.

[22] I. Molotsky, “F.A.A. Restricts Some Icy-Weather Flying,” The New York

Times, vol. 144, p. A24, November 10, 1994.

[23] M. L. Wald, “Flight Recorders Found At Indiana Crash Scene,” The New York

Times, vol. 144, p. A20, November 2, 1994.

[24] A. Bryant, “Pilots at Odds With Airline Over Wing Ice,” The New York Times,

vol. 144, p. A17, December 1, 1994.

[25] A. Bryant, “2 Types of Planes Grounded by F.A.A. in Icy Conditions,” The

New York Times, vol. 144, p. 1, December 10, 1994.

[26] A. Bryant, “Flights Canceled After Commuter Planes Are Banned,” The New

York Times, vol. 144, p. 30, December 11, 1994.

99

[27] E. McDowell, “Holiday Travelers Cope With Threat of Chaos,” The New York

Times, vol. 144, p. 20, December 25, 1994.

[28] E. H. Phillips, “NTSB Studies Jetstream Crash, ATR Icing Data,” Aviation

Week €91 Space Technology, vol. 142, pp. 28—30, January 2, 1995.

[29] A. Bryant, “Agency Lifts Restriction on Use of Plane in Cold Weather,” The

New York Times, vol. 144, p. A14, January 12, 1995.

[30] E. H. Phillips, “FAA Lifts Icing Ban on ATR Aircraft,” Aviation Week 6'5 Space

Technology, vol. 142, pp. 28—29, January 16, 1995.

[31] J. T. McKenna, “ATR Problems Force American Eagle to Shuffle Aircraft,

Crews,” Aviation Week 5 Space Technology, vol. 142, pp. 31-32, January 2,

1995.

[32] Anonymous, “Ford Is Recalling 133,476 Windstar Vans,” The New York Times,

vol. 144, p. 9, January 14, 1995.

[33] R. C. Thompson, “Faulty Therapy Machines Cause Radiation Overdoses,” FDA

Consumer, vol. 21, pp. 37—38, December/January 1987/1988.

[34] A. S. Tanenbaum, Operating Systems: Design and Implementation. Prentice-

Hall, Inc., 1987.

[35] D. Hughes and M. A. Dornheim, “Accidents Direct Focus on Cockpit Automa-

tion,” Aviation Week 8 Space Technology, vol. 142, pp. 52—54, January 30,

1995.

[36] Anonymous, “Cabin Crew Evacuated A320 Passengers Until Smoke, Flames

Became Too Intense,” Aviation Week 6? Space Technology, vol. 132, pp. 98—99,

June 25, 1990.

[37] J. Rushby and F. V. Henke, “Formal Verification of Algorithms for Critical

Systems,” in Proceeding of the ACM SIGSOFT ’91 Conference on Software for

Critical Systems, pp. 1—15, ACM, December 1991.

[38] C. Covault, “A310 Pitches Up, Dives on Orly Approach,” Aviation Week 89'

Space Technology, vol. 141, p. 37, October 3, 1994.

[39] Anonymous, “French Report Details 1988 Crash of A320 Following Air Show

Flyby,” Aviation Week 8 Space Technology, vol. 132, pp. 107+, June 4, 1990.

100

[40] Anonymous, “Commission Proposes More Preparation, Special Training for

Airshow Flyovers,” Aviation Week 8 Space Technology, vol. 133, pp. 90+, July

30, 1990.

[41] P. Sparaco, “A330 Crash to Spur Changes at Airbus,” Aviation Week 8 Space

Technology, vol. 141, pp. 20—22, August 8, 1994.

[42] J. M. Lenorovitz, “Indiana A320 Crash Probe Data Show Crew Improperly

Configured Aircraft,” Aviation Week 8 Space Technology, vol. 132, pp. 84—85,

June 25, 1990.

[43] M. A. Dornheim, “Dramatic Incidents Highlight Mode Problems in Cockpits,”

Aviation Week 8 Space Technology, vol. 142, pp. 57-59, January 30, 1995.

[44] A. Pollack, “261 Die When a Flight From Taiwan Crashes in Japan,” The New

York Times, vol. 143, p. A3, April 27, 1994.

[45] M. Mecham, “Bulletin Warned Pilots Against AP Overrides,” Aviation Week

8 Space Technology, vol. 140, p. 32, May 9, 1994.

[46] P. Sparaco, “Human Factors Cited in French A320 Crash,” Aviation Week 8

Space Technology, vol. 140, pp. 30—31, January 4, 1994.

[47] J. M. Lenorovitz, “French Investigators Seek Cause of Rapid Descent,” Aviation

Week 8 Space Technology, vol. 136, pp. 32-33, January 27, 1992.

[48] J. M. Lenorovitz, “Confusion Over Flight Mode May Have Role in A320 Crash,”

Aviation Week 8 Space Technology, vol. 136, pp. 29—30, February 3, 1992.

[49] J. M. Lenorovitz, “Crash Likely to Focus New Attention on Need For Pilot In-

terface on Advanced Transports,” Aviation Week 8 Space Technology, vol. 136,

p. 29, February 3, 1992.

[50] Anonymous, “Pilot’s Go—Around Decision Puzzles China Air Investigators,”

Aviation Week 8 Space Technology, vol. 140, p. 26, May 2, 1994.

[51] M. Mecham, “Autopilot Go-Around Key to CAL Crash,” Aviation Week 8

Space Technology, vol. 140, pp. 31—32, May 9, 1994.

[52] Anonymous, “New CAL 140 Transcript,” Aviation Week 8 Space Technology,

vol. 140, p. 32, May 23, 1994.

[53] Anonymous, “A330 Crashes on Test Flight, Killing Seven,” Aviation Week 8

Space Technology, vol. 141, p. 20, July 4, 1994.

101

[54] P. Sparaco, “Autopilot a Factor in A330 Accident,” Aviation Week 8 Space

Technology, vol. 141, pp. 26—27, July 11, 1994.

[55] M. A. Dornheim, “Modern Cockpit Complexity Challenges Pilot Interfaces,”

Aviation Week 8 Space Technology, vol. 142, pp. 60—63, January 30, 1995.

[56] L. Hatton, “A340 shenanigans,” RISKS-FORUM Digest, vol. 16, December

1994.

[57] P. Ladkin, “Re: A340 incident at Heathrow,” RISKS-FORUM Digest, vol. 16,

March 22 1995.

[58] P. Sparaco, “A310 Inquiry Targets FCU,” Aviation Week 8 Space Technology,

vol. 141, p. 32, October 10, 1994.

[59] P. Sparaco, “French Issue Airbus Alert,” Aviation Week 8 Space Technology,

vol. 141, p. 21, October 24, 1994.

[60] Anonymous, “ABS and Other Features,” Maclean’s, vol. 106, p. A310, Novem-

ber 22, 1993.

[61] P. Greer and D. Boehmer, “Improved electonics aid ABS,” Automotive Engi-

neering, vol. 98, pp. 30—35, September 1990.

[62] T. P. Mathues, “Extending the scope of ABS,” Automotive Engineering,

vol. 102, pp. 15-17, July 1994.

[63] B. Nadel, “Anti-lock Brakes for $400,” Popular Science, vol. 237, pp. 78-81,

October 1990.

[64] R. Eddie, “Anti-lock brakes on snow and ice,” Automotive Engineering, vol. 102,

pp. 47—49, April 1994.

[65] D. Reed, “Anti-lock Brake Systems,” Automotive Engineering, vol. 102, p. 59,

April 1994.

[66] G. Soodoo, “Private Communication,” May 1995. Office of Crash Avoidance,

National Highway Traffic Safety Administration.

[67] M. Gates, “NHTSA looks at GM brakes,” Automotive News, p. 24, October 3,

1994.

[68] M. Gates, “Feds look at brakes on GM trucks,” Automotive News, p. 23, August

1, 1994.

102

[69] M. Gates, “NHTSA investigates ABS in Chrysler’s Minivans,” Automotive

News, p. 6, May 9, 1994.

[70] J. Keebler, “Lucas develops fix to help ABS users,” Automotive News, pp. 3+,

February 20, 1995.

[71] A. J. Zack, “ABS simulator educates drivers,” Automotive News, p. 14, April

3, 1995.

[72] D. Reed, “Injury Costs More Than Crime,” Automotive Engineering, vol. 103,

p. 75, January 1995.

[73] D. Jewett, “Truckmakers say ABS is tough sell,” Automotive News, March 27,

1995.

[74] Anonymous, “Is the Car-Safety Agency up to Speed?,” Consumer Reports,

vol. 59, p. 734, November 1994.

[75] M. E. Fagan, “Advances in Software Inspections,” IEEE Transactions on Soft-

ware Engineering, vol. SE—l2, pp. 744—751, July 1986.

[76] P. G. Neumann, “Technology, laws, and society,” Communications of the ACM,

vol. 37, p. 138, March 1994.

[77] H. Black, Ed., Black’s Law Dictionary. West Publishing Company, 1990.

[78] V. Slind-Flor, “Ruling’s Dicta Causes Uproar,” The National Law Journal,

pp. 3+, July 29, 1991.

[79] J. V. Vergari and V. V. Shue, Fundamentals of Computer — High Technology

Law. The American Law Institute, 1991.

[80] M. C. Gemignani, Computer Law. The Lawyers Co—operative Publishing Com-

pany,1985.

[81] “Lewis v. Timco, Inc. v. Joy Manufacturing,” Federal Reporter of the United

States Court of Appeals, Fifth Circuit, vol. 697, no. 2d, pp. 1252—1256, 1983.

[82] B. Lathrop, “Design-Induced Errors in Computer Systems,” Computer/Law

Journal, vol. X, pp. 87—126, Winter 1990.

[83] “Aetna Casualty and Surety Company v. Jeppesen & Company,” Federal Re-

porter of the United States Court of Appeals, Ninth Circuit, vol. 642, no. 2d,

pp. 339—344, 1980.

103

[84] P. Samuelson, “Liability for defective information,” Communications of the

ACM, vol. 36, pp. 21—26, June 1993.

[85] Anonymous, “GOP prepares to overhaul negligence law,” The Grand Rapids

Press, p. A1, February 19, 1995.

[86] A. R. Dowd, “Regulatory Relief,” Fortune, vol. 131, p. 24, January 16, 1995.

[87] M. Gates, “High court takes on carmaker safety obligations,” Automotive News,

p. 16, January 30, 1995.

[88] R. S. Pressman, Software Engineering: A Practitioner’s Approach. McGraw

Hill, third ed., 1992.

[89] Aeronautics and N. R. C. Space Engineering Board, An Assessment of the Space

Shuttle Flight Software Development Pmcess. Washington, D.C.: National Aca-

demic Press, 1994-1995.

[90] W. S. Humphrey, A Discipline for Software Engineering. Addison-Wesley Pub-

lishing Company, 1995.

[91] J. Rushby, “Formal Methods and the Certification of Critical Systems,” Tech-

nical Report SRI-CSL-93—07, SRI International, Computer Science Laboratory,

Computer Science Laboratory,333 Ravenswood Avenue, Menlo Park, CA 94024-

3493, November 1993.

[92] B. Littlewood and L. Strigini, “Validation of Ultrahigh Dependability for

Software-Based Systems,” Communications of the ACM, vol. 36, pp. 69—80,

November 1993.

[93] M. Shaw, “Prospects for an Engineering Discipline of Software,” IEEE Software,

pp. 15—24, November 1990.

[94] D. L. Parnas, “Education for Computing Professionals,” IEEE Computer,

pp. 17—22, January 1990.

[95] C. K. Chang and G. B. Trubow, “Joint Software Research Between Industry

and Academia,” IEEE Software, pp. 71—77, November 1990.

[96] D. Gries, “Teaching Calculation and Discrimination: A More Effective Curricu-

lum,” Communications of the ACM, vol. 34, pp. 45-55, March 1991.

[97] J. M. Wing, “A Specifier’s Introduction to Formal Methods,” IEEE Computer,

vol. 23, pp. 8—24, September 1990.

104

[98] B. H. C. Cheng, “Synthesis of Procedural Abstractions from Formal Specifica-

tions,” in Proc. of COMPSAC’QI, pp. 149—154, September 1991.

[99] B. H. C. Cheng, “Applying formal methods in automated software develop-

ment,” Journal of Computer and Software Engineering, vol. 2, no. 2, pp. 137—

164, 1994.

[100] C. B. Jones, Systematic Software Development Using VDM. Prentice Hall In-

ternational Series in Computer Science, Prentice Hall International (UK) Ltd.,

second ed., 1990.

[101] E. W. Dijkstra, A Discipline of Programming. Englewood Cliffs, New Jersey:

Prentice Hall, 1976.

[102] D. Gries, The Science of Programming. Springer-Verlag, 1981.

[103] Michigan State University, Undergraduate Program— Department of Computer

Science, first ed., September 1992.

[104] Computing Sciences Accreditation Board, Suite 209, Two Landmark Square-

Stamford, CT 06901, Program Evaluator Evaluation Handbook, 1994-1995.

[105] Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA 90263-4392,

Pepperdine University Seaver College Catalog, 1994-95, March 1994.

[106] G. J. Myers, Advances in Computer Architecture. John Wiley and Sons, 1982.

[107] P. G. Neumann, “Risks on the Information Superhighway,” Communications of

the ACM, vol. 37, p. 114, June 1994.

[108] P. G. Neumann, “Expectations of Security and Privacy,” Communications of

the ACM, vol. 37, p. 138, September 1994.

[109] L. M. Zanger and L. G. Oei, “Electronic-Record Storage Checklist,” IEEE Soft-

ware, vol. 111, pp. 102—103, July 1994.

[110] M. Betts, “Computerized records: An open book?,” ComputerWorld, vol. 27,

pp. 1+, August 9, 1993.

[111] R. Bergman, “Laws sought to guard health data from falling into the wrong

hands,” Hospital and Health Networks, vol. 68, p. 62, January 20, 1994.

105

[112] K. A. Pace, “The legal professional as a standard for improving engineering

ethics: Should engineers behave like lawyers?,” High Technology Law Journal,

vol. 9, no. 1, pp. 93—130, 1994.

[113] S. S. Cha, “Management Aspect of Software Safety,” IEEE, pp. 35—40, 1993.

"‘willlaw

