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ABSTRACT
A COMPARISON OF METHODS FOR CORRECTING MULTIVARIATE DATA FOR

ATTENUATION WITH APPLICATION TO SYNTHESIZING CORRELATION
MATRICES

By

Christine M. Schram

Corrections for attenuation have long been used to adjust
sample correlations for measurement error. Current research
synthesis (meta-analysis) procedures involve synthesizing
correlational data. The synthesis of multivariate correlation
data raises several statistical questions including correcting
for measurement error. The focus of this work was to discover
the most statistically sound method for correcting
multivariate data for attenuation which accounts for
dependence among the correlations and reliabilities.

Multivariate corrections from ‘"errors-in-variables"
regression analysis were examined, as was an existing
multivariate correction from educational literature. These
methods were compared to the traditional univariate correction
for attenuation. Simulated and exact comparisons were made of
corrected correlations and their resulting variance-covariance
matrices.

All the methods examined produced similar corrected
correlations. Even the simple univariate correction yielded
corrected correlations that were good estimates of the

population correlation. In addition, a variety of
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approximations to the population variance-covariance matrices
of the corrected correlations were associated with these
correction methods. A variance estimator derived in this
dissertation and based on large-sample theory yielded the best
estimates of variation when compared to the empirical sampling
distribution. A related variance estimation method based on
the correction from Fuller and Hidiroglou (1978) also gave
similar results to the large-sample theory method, but relied
on raw data, which are often unavailable in most research
syntheses.

An example illustrated the results of a multivariate
synthesis using the new procedure. The results of this
example showed more variability in the average correlations
and larger homogeneity test statistics when compared to
previous analyses of the same studies.

Overall, if corrections are to be applied, the univariate
correction, used with the large-sample variance-covariance

matrix, will yield reasonable results.
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CHAPTER I
INTRODUCTION
Meta-analysis in Educational Research
Meta-analysis is a developing statistical technique that
allows for the synthesis of results from studies of the same
phenomenon. Such studies generally contain data sufficient to
compute an effect size, which exhibits the magnitude of the
relationship studied. Meta-analytic statistical techniques
are then used to combine effect sizes, and summarize the
results. Further analysis allows the explanation of the
variability in effect sizes by the modeling of moderating
variables.

Meta-analyses have been <criticized for being too
simplistic and for lacking in theory (Chow, 1987). Because
many meta-analyses simply summarize bivariate relationships
without accounting for moderators, or other significant
relationships, this criticism is justified. One potential
answer to this criticism is to develop methodology which will
allow the synthesis of more complicated theory-based data.
Meta-analytic techniques are currently being developed which
allow the summary of multivariate relationships (see, e.g.,
Becker & Fahrbach, 1994; Becker & Schram, 1993). These
techniques allow the synthesis of interrelationships
(correlations) among variables, in contrast to the current

syntheses of simple bivariate relationships. Resulting
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2
syntheses will allow for a more complex and complete picture
of educational phenomena.

Multivariate syntheses examine systems of variables
(models of interrelated variables), in contrast to univariate
syntheses, which summarize data about one relationship.
However, synthesizing models by combining correlation.matricés
leads to several statistical problems, one of which involves
correcting for attenuation in a multivariate setting. The
multivariate nature of such corrections led to several
research questions. This work examined the effects of using
various corrections and asked whether there is one best
multivariate correction for attenuation, for the particular
case of multivariate research syntheses.
Purpose of the Study

The purpose of this work was to investigate the
possibilities of using multivariate corrections for
attenuation. Is there a best possible correction? How do
corrections proposed in the "errors-in-variables" regression
literature apply? The meta-analytic context differs from the
regression context in that reliabilities in educational and
social-science data are often scarce or unavailable. What
assumptions are necessary before these corrections can be
used? Wherever multivariate situations arise when the
assumptions are met, these techniques should be applicable,

and in fact, the applications reach beyond meta-analysis.
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3

The results of this work are important because correcting
for attenuation will provide better estimates of parameters.
Because sample correlation coefficients underestimate
population parameters, correcting for this measurement error
will yield more accurate results in research syntheses. Also,
the power of statistical tests is decreased if correlations
are uncorrected (Williams & Zimmerman, 1982). If the
methodology exists for getting better estimates, better
analyses (including syntheses) will result. Certainly, the
usefulness of getting the best possible estimates is obvious.
We want the analyses to be as "right" as possible.

Four factors contribute to the need for further study of
corrections in multivariate analyses: 1) measurement errors
affect correlation coefficients, 2) dependence in multivariate
data can lead to inaccurate analyses, 3) measurement errors
may be correlated and 4) corrected correlations have different
variances and covariances than uncorrected correlations.
However, simply correcting each correlation in a matrix using
traditional univariate corrections can lead to problems. Bock
and Petersen (1975) noted that the resulting variance-
covariance matrix associated with the correlation coefficients
may not be positive definite or positive semidefinite.
Preliminary simulation results showed that this possibility
exists.

There are several techniques which could be used to

correct correlation matrices, and ultimately their variances
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and covariances, for attenuation. Applying these approaches
will potentially yield different results. Contrasting them
through exact work (derivations) and through simulation should
provide useful information about the best way to correct
correlation matrices. The use of a sample data set shows how
such corrections can influence results in one case. Selecting
the most appropriate and applicable procedures for meta-
analytic situations is the focus of this work.

Research Questions

Several questions can be raised about multivariate
attenuation corrections. The questions addressed in this
study are iisted below, with a brief description of each
problem, a description of how each was investigated, and the
anticipated results.

1. What are the consequences of using a simple
univariate correction for each of a set of correlations? The
univariate correction ignores the dependence in the data, so
problems with this approach are expected. These problems may
take the form of out-of-range corrected correlations (values
greater than one), or correlation matrices and variance-
covariance matrices for the correlations which are non-
positive definite.

If the wusual univariate correction-for-attenuation
formulas are used, and the corrected correlations are
substituted into the formula for the variance of a correlation

coefficient, is the result acceptable? This first research



question
their va£
that th
variances

distribus

covarianc

above), v



5
question was answered by simulating correlations and computing
their variances and examining the results. It was expected
that this correction would give significantly smaller
variances than those found by examining the sampling
distributions of disattenuated correlations.

2. What would be the difference in variances and
covariances based on the univariate correction (mentioned
above), versus using a variance-covariance matrix derived from
large-sample distribution theory for correlation coefficients?
If reliabilities are correlation coefficients, then corrected
correlations are functions of correlations. As such, their
large-sample distributions can be derived using results found
in Olkin and Siotani (1976). The resulting variance-
covariance matrix will take into account the covariances
between the reliabilities and the sample correlations, and the
covariances among the reliabilities. This method treats
reliabilities as random variables rather than fixed,
population quantities as is assumed by other methods mentioned
below.

This method was compared to the variances and covariances
associated with the wunivariate correction discussed in
question #1, through both exact work and simulations. Exact
work showed how the variances and covariances from these
methods differed, and showed that the large-sample method

based on Olkin and Siotani gave larger variances and
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6
covariances than the univariate method because the large-
sample correction accounts for variability in reliability
coefficients.

3. Several multivariate attenuation corrections exist
for raw data, including many in the regression literature.
How do these corrections compare to one another, and to the
corrections mentioned above? The multivariate corrections
from Bock & Petersen (1975), Fuller and Hidiroglou (1978), and
Gleser (1992) were compared to one another, and to the
corrections already discussed. The assumptions necessary fdr
the use of each method were examined, to see if the
assumptions are met in multivariate syntheses. The articles
by Fuller and Hidiroglou (1978) and Gleser (1992) give
corrections used in regression. These formulas were examined
to determine whether the corrections can be applied to
multivariate synthesis, and whether they can be compared to
corrections based on classical test theory, for example, the
correction of Bock and Petersen (1975). This investigation
determined whether any or all of these corrections are
appropriate for multivariate syntheses, and whether the
corrections give acceptable results.

4. Which correction is most feasible and provides the
best results? The corrections were compared on several bases.
First, the frequencies of out-of-range corrected correlations
and non-positive definite variance-covariance matrices for

correlations were noted. The percentage of out-of-range
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7

values was recorded for each method and each simulation
situation. Second, the variances and covariances of
corrected correlations to expected values were compared, and
the degree of bias in each was assessed. Finally, the
assumptions necessary for the use of each correction, and the
possibility of meeting these assumptions in multivariate
syntheses were discussed.

Exact work was used when possible to show how the
corrections differ in theory. A simulation study showed how
the corrections behaved in applications and in theory.

The results of this investigation suggest the best method
of correcting multivariate data for attenuation. The best
correction is the one with the best statistical properties
that is feasible in terms of assumptions necessary for its
use.

5. How do these corrections affect results of
multivariate syntheses? A set of data was examined using the
methods recommended by the results of this work. The
applications of the corrections to this data set illustrated
the different methods in a practical setting, and focused on
the consequences of using the corrections described. This
data was from Schmidt, Hunter and Outerbridge (1986) and
consisted of correlations representing relationships among
five wvariables, and their population and estimated

reliabilities.
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Future directions for research on multivariate
corrections were also addressed. Additional questions which
need to be answered concern reliability distributions and
correlated measurement errors. How are reliabilities
distributed? Hypothetical, "assumed" reliability
distributions have been used in the validity-generalization
literature. Are these distributions accurate and appropriate?
Should reliability in both the predictor and criterion be
considered? Can correcting for both lead to further problems,
especially if the reliabilities themselves are correlated?
How can correlated measurement errors be estimated and what
are appropriate values for such errors? These questions were
not answered in this work, but seem critical for future
research, thus, are discussed extensively in the final chapter
of this dissertation.
Overview of the Dissertation

The dissertation contains four additional chapters. The
second chapter addresses the review of the 1literature
including the basis for corrections, their current application
in multivariate syntheses, and a description of existing
multivariate corrections. The third chapter details the
methods used in this work. The fourth chapter summarizes the
results, and the fifth chapter discusses recommendations and

future research directions.
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Summary

This work investigated the statistical and practical
effects of multivariate <corrections for attenuation.
Different methods for <correcting for attenuation in
multivariate situations were described, and the effects of
using these different corrections and the problems arising
from each were examined. Potential problems included non-
positive definite covariance matrices, and out-of-range
variances and correlations. Practical aspects of corrections
were illustrated using a multivariate synthesis example, and
the ramifications of the different corrections were discussed.

The results of this work include a justification and
explanation of the most useful correction(s) for use in meta-
analytic syntheses. This investigation showed that the
univariate correction was a special case of each method.
However, the method from Fuller and Hidiroglou (1978), and the
method derived from large-sample theory yielded variances
which most closely fit the sampling distributions in the
simulation. Evidence is presented to show why these
corrections are the best, and what problems exist with other,
less useful corrections. Also, an indication of future

research directions is presented.
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CHAPTER 1I

LITERATURE REVIEW

Synthesizing data on models of multiple
interrelationships is complicated. Current meta-analysis
methodology has examined the synthesis of correlation matrices
between variables assumed to be measured without error
(Becker, 1992). However, this assumption is not warranted,
and can be problematic since measurement error can produce
severely underestimated correlation coefficients. However,
the best way to correct for measurement error in multivariate
syntheses is unknown. Several statistical problems associated
with making corrections for attenuation have arisen in such
syntheses and are discussed in this chapter. The literature
pertinent to this problem covers several topics, including
measurement error, multivariate analysis, meta-analysis and
validity generalization, and statistical methods needed for
the data analysis. This chapter details literature relevant
to addressing the problems outlined in the first chapter.
Measurement Error

Whenever correlation coefficients are used, issues of
measurement error arise. Because of unreliability in both the
predictor and criterion, observed correlations underrepresent
the true (population) correlation. Formulas for correcting

for unreliability date back to Spearman (1904). The basic

10
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formula for the correction for attenuation in the sample

correlation r,, is

p'xy=£xy/(pxx*py-y) 1/2; (2.1)
where p’,, is the estimated population correlation between the

fully reliable constructs x and vy, is the sample

Iyy
correlation, and p,, and p,, are the known (population)
reliabilities of the ©predictor and criterion measures
respectively (Allen & Yen, 1979). The correlation P’ xy in
(2.1) is the maximum sample correlation which could be
obtained, if no measurement error were present.

Classical test theory forms the Dbasis for this

correction, based on the following assumptions:

1. X = T + E. An observed score is the sum of two
parts, true score and error.

2. E(X) = T. The expected value of an observed score is
the true score.

3. pgr = 0. There is no correlation between error and
true score for a population of examinees on one test.

4. pgigp = 0. The errors from two different tests are
uncorrelated.

5. Pgir2 = 0. The error on one test is uncorrelated with
the true score on another test.

6. If two tests have observed scores X and X’ that
satisfy Assumptions 1 through 5, and if for every
population of examinees T=T’ and og? = 052 , the tests
are called parallel tests.

7. If two tests have observed scores X, and X, that
satisfy Assumptions 1 through 5, and if for every
population of examinees, T, = T, + c,, where c,, is
constant, then the tests are called essentially tau-
equivalent tests (Allen & Yen, 1979, p. 57).
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12
Given these assumptions, one can derive relationships
among true, error, and observed score variances, which form
the basis for one definition of reliability. Theoretically,
reliability is the ratio of true score variance to total
(observed) score variance. For any group of test takers, the

following relationships can be derived from the assumptions

above:
2
Pxx = ozT = 0% - 02E = 1 - azE p (2.2)
o’y o’y 07x

where py, is the reliability, ¢2, is the variance of the true
XX T

scores, o2

x is the variance of the observed scores, and o%; is
the variance of the errors.

Observed reliabilities can be correlations, between
either scores from two administrations of the same test (test-
retest reliability) or scores on two versions of a test
(alternate forms). Also, reliability can be obtained through
an internal consistency measure based on one administration of
a test. Test-retest and alternate-forms reliabilities are
likely to contain errors in measurement that are not included
in the observed correlation between variables at any single
time point (e.g., errors due to change over time, practice
effects, fatigue, differences in forms, etc.). However, test-
retest reliabilities are preferable to the others for
correcting for attenuation, according to Lord and Novick

(1968, p. 135). 1If the period before retesting is short, and

fatigue factors are minimized, the other minimal errors in
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measurement are likely to 1lead to high estimates of
reliability, which will, in turn, lead to conservatively
corrected correlations, according to Lord and Novick.
Alternate-forms reliabilities include additional error due to
differences between forms, so this type of reliability is less
useful for disattenuating corrections than test-retest. Lord
and Novick also claimed that internal-consistency estimates
can seriously underrepresent reliabilities, especially when
there is a lack of item homogeneity. Thus, the use of
internal consistency reliability for attenuation corrections
is discouraged. The focus of this work will be on test-retest
reliabilities, and both the exact work and simulations will
consider this type of reliability and its assumptions.
Multivariate Meta-analysis

Multivariate syntheses are one type of analysis where
multivariate corrections for attenuation are potentially
useful. Four recent multivariate syntheses, Harris and
Rosenthal (1985), Schmidt, Hunter and Outerbridge (1986),
Premack and Hunter (1988), and Becker and Schram (1993)
illustrate how and where these corrections could be applied.

Harris and Rosenthal. Harris and Rosenthal (1985) were
some of the first researchers to synthesize several
relationships within one meta-analysis. They examined the
literature on interpersonal expectancy effects using eight
univariate meta-analyses. No attempt was made to investigate

all of the paths of their model simultaneously. They did not
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14
model dependencies between paths, but did eliminate within
path dependence by using the median correlation for studies
which reported more than one correlation per path. No
corrections for attenuation were used, nor were they mentioned
in the text.

Schmidt, Hunter and Outerbridge. Schmidt et al. (1986)
examined a path analysis of the impact of job experience on
job knowledge, with additional paths for the effects of mental
ability, work-sample performance and supervisory ratings of
job performance. They had 4 studies of these 5 variables from
military settings, and corrected for attenuation in all
studies. Schmidt, Hunter and Outerbridge conducted a path
analysis on this data, and found path coefficients along each
path of their theoretical model. They averaged the
disattenuated correlations across the 4 studies, then fit the
path model. They did not conduct a test of overall model fit,
nor did they consider the dependence in the data.

For 3 of the five variables, the reliabilities were not
based on sample values. For work samples and supervisory
ratings, the reliabilities for all 4 studies were set to .77
and .60, respectively. These values were determined from
weighted averages of reliabilities from several studies, not
including the ones used in this synthesis. The reliability
for job experience was assumed to be 1.00, as the records

indicated the number of months on the job.
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This study illustrates the main problem with obtaining
reliability information. Often, estimates based on past
research or other samples within a study are used. Schmidt et
al., ignored the uncertainty in the reliability coefficients
and the dependence between correlations and reliabilities.
The reliabilities in their study were sample estimates, so
their uncertainty should have been considered in the analysis,
rather than considering them to be fixed.

Premack and Hunter. Premack and Hunter (1988) examined
several univariate relationships and used them to create a
multivariate (causal) model of employee decisions about
unionization. In effect, they did a univariate meta-analysis
on every path in the model, then combined the results and
tested a causal model. However, not every study examined
every pair of variables and some studies examined more than
one pair. While they provided an overall test of model fit
with their method, the dependence between relationships within
studies was ignored. Premack and Hunter used univariate
attenuation corrections for each individual correlation.

Becker and Schram. Another simple case to which this
methodology might apply considers the data from Friedman
(1991). In this example, data from several studies were
collected to assess the relationship between math, verbal, and
spatial abilities. An existing model hypothesized
relationships among all three variables. Several studies

were collected which contained correlations for all three
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relationships. Mathematical ability was used as an outcome
with the other two variables (verbal and spatial ability) used
as predictors.

Becker and Schram (1993) conducted both univariate and
multivariate syntheses on a subset of this data. Their
univariate analysis examined the three relationshiﬁs
separately (between each pair of variables) using traditional
meta-analysis procedures, including conducting homogeneity
tests for each path. The results from that analysis indicated
whether each path was homogeneous, and if so, the magnitude of
the average correlation. Although beneficial, these results
did not directly test the model posited. There was no overall
test of fit, and the interrelationships among the paths (and
dependence in the data) were ignored.

The multivariate synthesis allowed the examination of the
effects of each predictor on the outcome, and on each other
simultaneously. Tests of significance and the relative
importance of each predictor were also examined and prediction
equations were formulated. This analysis modeled dependence
in the data and gave a more complete assessment than the
univariate analyses because partial relationships were
considered.

All of these examples point out methodological problems
in doing this type of synthesis. The dependencies in data are
often ignored, or unmodeled. Other statistical problems also

exist. Measurement errors have yet to be completely
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considered. Premack and Hunter (1988) and Schmidt, Hunter and
Outerbridge (1986) corrected for attenuation on each path, but
did not account for dependencies among the correlations or
reliabilities. Harris and Rosenthal (1985) and Becker and
Schram (1993) did not correct for measurement artifacts. All
four studies attempt to address the problem in meta-analysis
of synthesizing only main effects. However, much work needs
to be done to solve the problem of the best way to do such a
synthesis.

Validity Generalization and Corrections

Validity generalization (VG) is an approach to combining
correlational study results which grew out of interest in the
power of employment-selection measures to predict job success.
VG has focused on correcting for so-called "artifactual
variation" in studies, including measurement error. Schmidt
and Hunter (1977) claimed that the variability among study
results could be attributed solely to sampling error when
measurement errors are eliminated. Their work has focused on
the development of corrections for attenuation and range
restriction in the synthesis of one outcome variable
(bivariate relationships).

However, reliability information is often unavailable in
published studies. Thus, Hunter and Schmidt (1990) (and
others) have sampled from hypothetical distributions of
reliabilities in making corrections. Distributions given by

Pearlman, Schmidt, and Hunter (1980) are often used when
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reliability information is missing in studies. Others,
including Raju, Burke, Normand, and Langlois (1991) have
mentioned potential problems with these hypothetical
reliability distributions. In particular, the accuracy of
validity generalization procedures is affected by how closely
the hypothetical distributions match the real population
distributions (Paese & Switzer, 1988). Because the real
distributions are not accessible, such a match is almost
impossible to establish. Also, these hypothetical
distributions were derived for the literature on personnel
selection, which may not represent the distributions of
reliabilities found in educational or social-science data.

Reinhardt and Mendoza (1989) also questioned the use of
these hypothetical distributions. They claimed that the
hypothetical distributions could be unrepresentative of the
real data, and that there were no guidelines to assess the
accuracy of the hypothetical distributions. As a result, they
focused on using traditional VG procedures with "situational
data" rather than with hypothetical data. They used reported
reliabilities from samples in other studies when calculating
unknown reliabilities. Their new procedures were fairly
accurate when as much as 50% of the reliability data was
missing, suggesting that the procedures did not require a
great number of studies. A few quality studies were

sufficient to produce accurate reliability estimates.
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Raju et al. (1991) approached the hypothetical
reliability distribution problem from a different angle. They
developed a procedure for correcting correlations that
considered the sampling error arising from approximating the
reliabilities. Raju et al. (1991) used averages of available
reliabilities as py, and py,, for making the correction in
(2.1). The variance of the correlation coefficient was
adjusted for the uncertainty that arises from making this
substitution. When a reliability was reported, Raju et al.
treated it as fixed in the derivation of the variance
formulas, even though it might have been based on a sample.
When the reliability was from an average, it was treated as
variable. The resulting variance in the correlation
coefficient was larger when a hypothetical distribution was
used, because of the additional variability in the
reliability. Raju et al. (1991) used simulation techniques to
show that their method provided more accurate estimates of the
population correlation than other procedures.

One other criticism of using hypothetical reliability
distributions and simple averages to replace missing
reliabilities is that, in both situations, reliability data
are treated as missing at random. Hedges (1989) has argued
that if low sample correlations are found in a study, the
researchers may be more likely to report artifact corrections
than researchers who found high correlations. Also, studies

which focus on situations with greater economic and legal risk
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may be more 1likely to monitor and report reliability.
Reliability information therefore seems unlikely to be missing
at random.
Other Univariate Corrections

Hakstian, Schroeder, and Rogers (1988). Hakstian et al.
(1988) considered the variance and covariance of univariate
correlations <corrected using test-retest reliabilities
differently than those who used the traditional method
(Equation 1). They assumed that one would have two measures
of the two variables, X; and X, , and ¥, and Y,, and the sample
correlation would be the average of the correlations between
X, and Y, and X, and Y, . After this average was computed, the
usual correction was used to estimate the corrected
correlation.

In their study, Hakstian et al. derived, using the delta
method, the variance of this corrected (separate) correlation,
and the covariance between two corrected correlations
estimating the same phenomenon. Using a simulation study,
they found that the corrected correlations behaved fairly
well, provided that the sample size was greater than 150.
They concluded that correcting correlations seems to be a
large-sample procedure, because three sample values with error
are used to estimate the corrected value.

While the results of this study relate to the present
work, the situation examined is problematic. Reliability

information is seldom reported in meta-analytic studies, and
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finding data on two parallel measures of each variable would
be even more unusual. Although the simulation used in the
present study considers test-retest reliabilities, it will not
consider Hakstian et al.’s formulation because of its
impracticality.

Meta-analysis and corrections. More general synthesis
techniques (meta-analyses) have also considered the use of
corrections for attenuation and range restriction. Rosenthal
(1984) recommended reporting both corrected and uncorrected
results. He suggested that the majority of social-science
researchers do not correct for measurement errors or report
reliabilities, so wuncorrected results are more typical.
Hedges and Olkin (1985) gave the basic correction formulas for
both mean difference effect sizes and for correlations,
discussed the effect of making the correction on the variance
of the correlation coefficient, and noted that their
univariate methods apply to corrected or uncorrected
correlations. However, Hedges and Olkin considered
reliability values to be fixed and known, and therefore they
did not take the variability of the reliabilities into account
when adjusting the variances of corrected correlations. This
assumption seems unwarranted, given that as noted above,
reliabilities are often missing and estimated, and may involve

much uncertainty.
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Measurement Problems in Univariate Syntheses

Winne and Belfry (1982) discussed several issues related
to correcting for attenuation, including the reasons for
making such corrections. The result of the correction for
attenuation is an estimate of the true correlation between the
variables of interest. This correlation represents a
theoretical value, or, according to Winne and Belfry, a latent
trait. Winne and Belfry urged caution in interpreting results
from analyses which use corrected correlations, and they cited
several measurement specialists who share their concern (Allen
& Yen, 1979; Cronbach, 1971). The concerns stem from the
claim that the resulting corrected correlation represents the
true value between constructs measured without error. Factors
such as sampling error of observed correlations and
reliabilities and correlated measurement errors may result in
poor estimates of this true correlation.

In the meta-analysis application resulting from the
present work, the interest is in estimating a theoretical
population value, so correcting appears appropriate. However,
as important as the concerns expressed above seem, in
practice, the true values are always estimated, and it is
never clear how much error is affecting such estimates.

Another problem noted by Winne and Belfry (and others)
was corrected correlations larger than unity. This problem
was attributed to correlated measurement errors, the type of

reliability, and the accuracy of the estimate of the
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reliability wused (Winne & Belfry, 1982). Corrected
correlations larger than unity were not acceptable, and
adjusting for such potential problems in the multivariate case
(e.g., by forcing the corrected correlations to be between -1
and 1) was necessary. When reliabilities are sampled from
assumed distributions, the potential for out-of-range
corrected correlations may be even greater.

Thomas (1989) derived, based on a classical test theory
model, distributions of corrected correlations. Using his
derivation, Thomas addressed the issue of out-of-range
corrected correlations. He suggested a procedure which uses
the distribution function (and its inverse) of a correlation
coefficient so that the corrected correlation is forced to be
in the interval -1 to 1. His derivations assumed that
reliabilities were known and fixed, and he claimed that
viewing reliabilities as random variables would complicate the
picture, and would not be likely to yield practical increments
of improvement better than those he derived. Thomas claimed
that if the sample size is sufficiently large, the difference
between estimates based on fixed versus random reliabilities
should be negligible. He also stated that more work in this
area was necessary, and the work here should answer some of
the questions he raised. Also, this work examines the case in

which reliabilities are viewed as random.
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Measurement Problems in a Multivariate Synthesis

Multivariate syntheses will have their own set of
measurement and statistical problems. In univariate
syntheses, covariances among variables are irrelevant. 1In a
multivariate synthesis, covariances (i.e., between multiple
study outcomes) also need to be corrected, or calculated with
corrected correlations. Also, when more than one correlation
arises from the same sample, and the reliabilities are sample-
based, the potential for correlated measurement errors exists.

When the reliabilities and correlations of interest are
calculated for the same sample, the observed reliability and
the correlation are dependent. This dependence becomes more
problematic when the situation is multivariate, because the
reliabilities for different tests could also be interrelated
when they are determined from the same sample. Accounting for
covariances between (1) reliabilities for two different
measures from the same sample, and (2) between a reliability
estimate and the correlation it is used to correct, is a
further problem that is considered in the present work.

Estimating correlated measurement errors within a set of
data is another issue which needs to be addressed. The
effects of such errors should be considered. Although not
exactly an attenuation issue, this 1is a measurement-error
issue with practical applications. Extensions of the work of

this dissertation could consider such issues.
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Existing Multivariate Corrections

Multivariate corrections for attenuation have been
studied in the regression literature (e.g., Gleser, 1992;
Fuller & Hidiroglou, 1987). While these corrections are
similar to ones that may apply to meta-analyses, they do not
consider many of the practical problems of meta-analytic data.
Also, they make assumptions about the nature of the data which
are often violated in meta-analyses. For example, both
techniques assume that the population reliabilities are known,
and not based on sample data.

Fuller and Hidiroglou. Fuller and Hidiroglou (1978)
derived regression estimators of slopes based on correcting
the raw moment matrix for attenuation. Their derivations
applied to situations where the error variances are not
estimated from the same data used to estimate the
reliabilities. They assumed that reliabilities for both the
predictors and the criterion are known. They addressed cases
of both correlated and uncorrelated errors.

Fuller and Hidiroglou’s method corrected the moment
matrix using a diagonal reliability matrix. This matrix used
(1 - reliability) as the basis for the correction. The
quantity (1 - reliability) is the ratio of error variance to
the total variance in the predictor. By pre- and post-
multiplying this reliability matrix by a diagonal matrix
containing the standard deviations of the predictors, the

variances were adjusted for the errors in measurement. This
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corrected moment matrix was then used in the traditional
regression calculations for estimating the regression slopes.

The authors then examined the distributional properties
of this corrected matrix, and of the corrected estimators.
Their procedure guarantees that this corrected moment matrix
is positive definite.

Gleser. Gleser (1992) examined measurement reliability
in multivariate regression. He stated that if the goal is to
assess the relationship among the true (latent) wvariables,
then classical least squares estimation yields biased and
inconsistent results. His errors in variables regression
(EIVR) procedures provided alternative methods of estimation.
Gleser’s approach used prior information about both the
reliabilities and the data to estimate a reliability matrix,
which is then used in estimating the regression slopes.
Unlike Fuller and Hidiroglou’s approach, in Gleser'’s method
his reliability matrix contained more than the reliabilities
of the predictors. The reliability matrix also contained the
correlations among the components of the reliability values
(true and error variance). Gleser did not consider
measurement error in the outcome variable or variables, and he
assumed that the outcome and the measurement errors in the
predictors were uncorrelated.

In Gleser’'s method the estimate of his reliability
matrix, A, comes from previous information about the

predictors, generally taken from other reliability studies.
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Gleser'’s preferred reliability study would consider all of the
predictors to be wused in the regression model. -His
reliability matrix, A, is  then used in estimating the
traditional regression model by multiplying the predictor
matrix by the inverse of A in the estimate of the slope. 1If
least squares estimation is |used, this result 1is a
generalization of the correction for attenuation used by
psychometricians. Gleser uses the eigenvalues and
eigenvectors of A to assess the influence of the measurement
error on the accuraéy of the estimates.

Bock and Petersen. The regression formulations described
above differ somewhat from that of Bock and Petersen (1975).
Bock and Petersen’s multivariate correction for attenuation
used maximum likelihood estimation to make certain that the
resulting variance-covariance matrix is positive semidefinite.
They based their formulation on classical-test-theory models,
and on having a known measurement-error matrix. Their
formulation has been applied in studies (see, e.g., Petersen,
1976) ; however, the effects of using their correction have not
been studied.

Bock and Peterson’s method is similar to Fuller and
Hidiroglou’s, since both rely on adjusting eigenvalues to
guarantee positive definite matrices. Bock and Petersen’s
derivation was based on true- and error-component covariance
matrices. A restricted maximum likelihood estimate of the

variance-covariance matrix was the result. Bock and Petersen
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did not make any assumptions about reliability types or
values. The roots of eigenvectors of the difference between
the observed and error matrices (the solution to the two
matrix eigen-problem) were used to ensure that the matrix is
at least positive semidefinite. In the two-variable case
where the measurement errors are uncorrelated, the result was
the traditional Spearman correction.

These methods were all slightly different, and may be
applicable to different situations in the synthesis of
correlation matrices. However, it is not clear if the
corrections used in regression analyses can be applied to
synthesis situations. For example, corrections in regression
situations were applied to raw data (not to the correlation
coefficients) . Second, some of the corrections did not
correct for measurement error in the relationships between the
predictors and the outcome.

umm

None of the research mentioned previously has attempted
to address the role of corrections in the synthesis of
multivariate correlational data, and, therefore, take into
account the problems mentioned previously. No meta-analytic
studies address the issue of correlations among errors for
different variables within the same study.

This study focuses on methods for correcting correlation
matrices from individual studies and computing the associated

variance-covariance matrix of the correlations for each study.
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Once each study’s correlation matrix is corrected, and its
resulting variance-covariance matrix is found, then a
multivariate synthesis can be completed. The next chapter
details the statistical notation and theory needed to analyze
the issues involving multivariate corrections for attenuation.
To understand the statistical problems with correcting
correlation matrices, we must examine the distributions of

vectors of corrected correlation coefficients.
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CHAPTER III
METHODOLOGY
Statistical Formulations
Notation
Let X,, ceeen Xy be random variables with the
multivariate normal distribution, and 1let the number 6f
studies which examine correlations among these p variables be
denoted as k. There are p*=p(p-1)/2 non-redundant
correlations possible in any study. Let r;,. and p;.. be the
sample and population correlations between X, and X, for the
ith study, where s and £t = 1 to p*, and 1 = 1 to k.
Let p’;sc represent the corrected sample correlation
defined by (2.1) and assume that each study contains only one

measure of each construct or variable of interest. The sample

reliability for a measure of variable g

will be denoted r;.,-
The number of people in study i will be denoted n;. In matrix
notation, let r; represent the vector of observed correlations
(fj12/ Ti13s--4T53ps---+F5(p-1),p) and let p’; represent the
vector of corrected correlations, and p; the vector of
population correlations. Let V(ry) be the variance-covariance
matrix of the observed correlations, V(p’;) the corrected
variance-covariance matrix, and V(p;) the population variance-
covariance matrix for the correlations. The reliability
matrix or any matrix containing corrections based on

reliabilities will be represented using A;.

30
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Multivariate Analysis

Multivariate analysis generally involves multiple outcome
(dependent) variables and several predictors. Much of the
notation and analysis comes from matrix algebra, and several
algebraic properties of matrices are important in the
statistical analyses. For example, variance-covariance and
correlation matrices are known to be positive definite. This
means that they are invertible and their determinants are
nonzero. Knowing that these matrices must be positive
definite will help determine whether the corrections attempted
in this work are giving appropriate results. The existing
literature on multivariate regression corrections is concerned
with correcting matrices containing raw data or slopes, rather
than correlation matrices, the focus of this work. The
resulting changes in relevant variance-covariance matrices
from using these other methods (e.g., changes in slopes) are
different from the traditional corrections for attenuation.

One way to assess the consequences of the correction for
attenuation is to examine the determinant of the variance-
covariance matrix for the corrected correlations and that of
the corrected correlation matrix itself. The determinant is
a function of the elements of a matrix, and the determinant
shows whether a matrix is invertible (and positive definite).
Estimates of variance-covariance and correlation matrices are

invalid if they are not positive definite.
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Distributions of Corrected and Uncorrected Correlations

Variances. The large-sample asymptotic variance of a

correlation coefficient for a sample of size n; is given by

Var(rjs) = (1 - piee?)?/n; (3.1)

where r;;. is the sample correlation, p;,. is the population
correlation, and n; is the sample size. The variance of the
corrected correlation (corrected for unreliability of both the
predictor and the criterion) differs from this because it
considers the covariances between the reliabilities and the
variances of the reliabilities. The variance of the corrected
r is given in Appendix A.

Bobko and Rieck (1980), among others, have investigated
the distributions of functions of correlation coefficients.
They found that correlations corrected wusing known
reliabilities are more variable than uncorrected correlations.
Their results show that simply substituting a corrected
correlation into the formula in (3.1) to compute the variance
of corrected correlations can give misleading results.

Covariances. No research was found which showed
investigations of the behavior of corrected variance-
covariance matrices of correlations. The variances and
covariances of univariate corrected correlations can be
derived using the delta method (Rao, 1973). Although these
derivations take into account the covariation between

correlations, they still do not consider whether the resulting
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variance-covariance matrix of the correlations is positive
definite.
The covariance between two correlation coefficients which
do not share a common index (the most complicated case) is as

follows (Olkin & Siotani, 1976):

Cov (zist r Liuv ) = [0.5 Pist Piuv (pgsu + p%sv + p?tu +
2
Pitv ) + Pigsu Pitv * Pisv Pitu ~ (pist Pisu Pisv * Pits Pitu
Pitv * Pius Piut Piuv * Pivs Pivt Piwvu )]/Qi° (3.2)

This equation simplifies when the pair of correlations share
an index. Appendix B contains the covariances between
correlations for different cases, including covariances
between reliabilities, and between a reliability and a
correlation, based on the formulas found in Olkin and Siotani
(1976) . Appendix A shows the variance of a corrected
correlation and the covariance of a pair of corrected
correlations which were derived using the delta method for the
simplest case, a 3 x 3 correlation matrix. These corrections
lead to new variances and covariances. The corrected
variance-covariance matrix is obtained by pre- and post-
multiplying the uncorrected variance-covariance matrix by the
matrix of first derivatives (the Jacobian) of the functions of
the corrected correlations used in (2.1), which consider both
the sample correlation and the reliabilities as random

variables. The result of this multiplication is a matrix
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which contains the variance-covariance matrix of the corrected

correlations.

Layout of Simulation
Data Generation

A simulation was conducted to examine the frequency of
problems (such as overcorrection and non-positive determinants
of variance-covariance matrices) occurring because of
corrections. This simulation used multivariate normal data
generated with uncorrelated measurement errors. In the
simulation, population correlations and reliabilities were
fixed, then data were generated for each distribution of true
and error scores. Observed and corrected correlations were
examined, as well as sample reliabilities and determinants of
resulting corrected correlation matrices and variance-
covariance matrices among the corrected correlations.

This simulation examined the simplest posSible
multivariate case, based on three population correlations
(p12+ P13+ P23) which arise from three variables (X;, X,, and
X,), and the resulting three sample correlations (r;,, r;;, and
X,3) . The corresponding sample reliabilities are r,,, x;,, and
E33-

Two different methods for simulating the results were
used. One, based on classical test theory, begins with true
score and error variances, and then computes reliabilities and

true correlations based on these values. A simplifying
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assumption of letting the variance of the observed scores
equal 1 was used. This method was also used by Raju et al.
(1991). When applying this method to multivariate data, in
the three variable case, two correlations were fixed, and the
third correlation was based on the relationship between the
first two correlations. The results indicated that this third
correlation varied around a fixed value (as would be
expected) .

In order for the correlation matrix to be positive
definite, there is a distinct relationship between the three
related correlations. The interval of possible values for the
third correlation (r,;), given the first two (r,, and r;,), is
centered around the product of the first two correlations:
I,,*r;s +/- V((1-r%;;) *(1-x%,)) (Stanley & Wang, 1969).

The other method of simulation used the multivariate
normal generator in IMSL (International Mathematical and
Statistical Library). A desired variance-covariance matrix
for the observed scores was derived from the known true and
error variances, based on the population reliabilities, and
under the assumption of unit variances for the observed
variables. The variance-covariance matrix for the true scores

is

P11 P12 ”/Pll ”/Pzz Pi3 ~/Pn V/Ps3
P12 ‘/911.‘/922 P22 P23 ‘/Pzz ‘/P33

Pi3 ‘/911 V/Psa P23 ”/922 ‘/P33 P33




The va




36

The variance-covariance matrix for the errors is

With this method, the matrices of the three population
correlations and the three population reliabilities were
specified ahead of time. The multivariate normal generator
then provided data with the given variance-covariance
structure, from the Cholesky factorization of these two
matrices. Once the data are generated, the true and error
scores are summed, to yield observed data with the desired
properties.

Both methods gave similar results in basic simulations.
The method using the multivariate normal generator was chosen
for further use, because it allowed the specification of the
third correlation. The third correlation for the data used in
the simulation was always in the range of values specified
above.
Different Univariate Corrections

Differences in simulation results are found when
considering which reliability definition or correction
formulation to use. Raju et al. (1991) showed the derivation
of corrected variances for the univariate case, in which they

defined the corrected correlation to be

c -
rxy - ——lky

Tyxt Tyyt

' (3.3)
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where r, .. = Vi&x and r.,. = Vxr,, (the square root of the usual

84
population reliabilities). This formulation led to different
results, because Raju et al. took derivatives of r‘xy with
respect to r,,. instead of xr,,. The variances they obtained
differ from those in Appendix A. The formulation in (3.3)
provides much easier derivatives, but it is unclear which
formulation is really more practical or accurate. For a
simulation, the correlation between true scores and observed
scores is readily available, but in practice, the true scores
are never known. The correlations are only estimated, as are
reliabilities.

‘The distributions of these two reliabilities (ryxt and
;&yt) and the effects of these two different formulations were
examined. As expected, the distributions of r,,. and Lyyr Were
much more negatively skewed than the distributions of the r,,
and Lyy- Preliminary simulations showed that the formulation
from Raju et al. gave variances of corrected correlations that
were far smaller than those expected based on the sampling
distribution. Also, one can show that in Raju et al.’s
formulation, V(r®) would always provide smaller variances than
those corrections shown in Appendix A (V(p’)). Therefore,
further use of this formulation was not warranted, and it was
not included in the final simulation study.

Simulation Parameters

Sample sizes. The size of the sample will have an

influence on the magnitudes of the variances and covariances
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of the correlation matrix. Because the derivations used in
this study are based on large-sample theory, and because other
simulation results have shown that small sample sizes present
problems with covariance-matrix estimation (Becker & Fahrbach,
1994), the sample sizes chosen for the simulation are
relatively large. The sizes chosen for this study are 50,
100, 250, and 500.

Correlations. The correlation triples chosen for this
study are based on practical regression situations in which
one of the variables is an outcome, and the other 2 are
predictors. The correlation triple (.00, .00, .00) was used
so that the simplest case was represented. The rest of the
correlation triples represent various population outcomes that
could underlie data in regression studies. Table 1 displays
the combinations used, along with the R? value for each
combination. The first two correlations in the triples
represent the population correlations between each predictor
and the outcome. The third correlation in the triples
represents the intercorrelation between the two predictors.
The triples show varying degrees of relationship with the
outcome, from weak to strong, and varying degrees of
intercorrelation. The table shows that the percent of
variance explained, using the second and third variables to
predict the first variable ranged from .00 to .77. Many of

the R? values are moderate, as would be expected in
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educational situations. All triples are possible, given the

constraints mentioned previously.

Table 1

Simulation Parameters

Sample Sizes: 50, 100, 250, 500

Correlation Triples:

(01 0: 0) R2 = .OO
(.4, .3, .1) RZ = .23
(.4, .3, .7) RZ = .16
(.6, .4, -.2) R® = .64
(.6, .4, .2) RZ = .44
(.7, .6, .1) R2 = .77
(.7, .6, .8) R? = .49

Reliability Triples:
(.7, .7, .7)

(.85, .85, .85)

(.9, .8, .7)

(1, 1, 1)
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Reliabilities. The reliability triples also were based
on previous research. First, the triple (1.00, 1.00, 1.00)
provides the case of measurement without error. The three
other triples show varying degrees of unreliability, with the
lowest triple (.70, .70, .70) representing moderate
measurement error. A search through several nationally
administered standardized tests showed that subtest
reliabilities typically ranged from .85 to .95. Therefore,
when considering standardized achievement type measures, (.70,
.70, .70) is low. However, Schmidt, Hunter, Pearlman, & Shane
(1979) provided hypothetical criterion reliabilities which
were much 1lower. These seemed to have a roughly normal
distribution centered on .60 and ranging from .30 to .90.
Reliabilities this low may be representative of employment
criterion reliabilities, when the outcomes are often
supervisory ratings. In education, reliabilities typically do
not appear that small. 1In fact, hypothetical reliabilities
for predictors given in Schmidt et al. (1979) ranged from .50
to .90, with 90% of them equal or above .75. This range of
reliabilities seems more consistent with the educational
literature. Examining reliabilities from test manuals seems
more reasonable than arbitrarily using Thypothetical
distributions found in employment literature. For example,
Bock & Vandenberg (1968) wused test manuals from the
Differential Aptitude Test to give the error variances

(reliabilities) used in their study which used a multivariate
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correction for attenuation. All sample sizes, reliability and
correlation triples were completely crossed so that each
possibility was considered. It 1is expected that some
overcorrection (corrected correlations greater than 1) will
occur when the (.70, .70, .70) reliability triple is paired
with population correlations greater than .70.

The number of replications used was 2000. Given the
parameters of the simulation, there are 4 X 7 X 4 = 112 cases
to be considered. Four methods (Fuller and Hidiroglou, Bock
and Petersen, Gleser, and univariate) of correcting
correlations were considered, and their variance-covariance
matrices were computed. The limitations of the variance-
covariance matrices are discussed below. The sampling
distribution for each case was also examined.

Basis for Comparing Methods of Corrections

Corrected correlations. From the multivariate
corrections given by Fuller and Hidiroglou (1978) and Bock and
Petersen (1975), it was possible to compute a corrected
correlation matrix. Appendix C contains descriptions of the
various methods for finding corrected correlations. The
corrected variance-covariance matrix of the raw scores was
computed, and then converted to a correlation matrix.
Comparing to the univariate corrected correlations in the
simulation was then straightforward. The average magnitudes
of the differences between the population values and these

corrected correlations showed the difference between methods.
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In Gleser’s method, while an estimate was determined for the
matrix lambda (of errors/reliabilities), it was not clear how
the corrected variance-covariance among the raw scores was
adjusted. However, corrected correlations were found. All of
these correction methods were computed in the simulation.
Because the simulation starts with raw data, all of the needed
corrections were then obtained.

Variance-covariance matrices. None of the three
multivariate corrections (Bock & Petersen, 1975; Fuller &
Hidiroglou, 1978; Gleser, 1992) provided estimates of a
variance-covariance matrix for the corrected correlations.
However, the method from Fuller and Hidiroglou (1978) did
allow for a derivation of a variance-covariance matrix for the
corrected correlations. This computation was a variation of
the large-sample theory variances and covariances found in
Appendix A.

Forms of the other two methods (Bock & Petersen; Gleser)
were not amenable to such a calculation. The Gleser
correction was very similar to the univariate correction, and
the variance-covariance matrix for this case was identical to
the large-sample theory method, therefore no computation of
variance for this correction was attempted.

The correction from Bock and Petersen did not lead to any
possible correction to the variance-covariance matrix of the
corrected correlations. The only possibility was to insert

the corrected correlation from Bock and Petersen into
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equations (3.1) and (3.2) to estimate the variance-covariance
matrix of the corrected correlations. This procedure yielded
results similar to the univariate method variance calculation.

The fourth and fifth methods to be compared were the use
of the univariate corrected correlation in the given variance
and covariance formulas (Equations 3.1 and 3.2), and their use
in the large-sample theory formulas shown in Appendix A.
Finally, treating reliabilities as constant was also examined.
This method involved using Equation (3.1) and multiplying the
resulting variance by the inverse of the product of the
reliability values, i.e.,

V(p'xy) = _1 * V(r,,).

PxxPyy

The covariances were calculated similarly. The comparison of
these six ways of calculating the variance-covariance matrices

of the corrected correlations is shown in the next chapter.

Comparisons Made

Exact Comparisons

The exact comparison of formulas for the corrections and
their variance-covariance matrices for the different methods
was difficult. The first examination of these methods
determined how they compared for the simplest case: 2
variables, 2 reliabilities, and 1 correlation. All three
methods were compared to one another and to the typical

univariate correction (Equation 2.1). Bock and Petersen’s
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(1975) correction claims to be identical to the univariate
correction for this case. Claims are not made about the
equivalence of the other two corrections (Gleser, 1992; Fuller
and Hidiroglou, 1978).

Next, the three variable case was examined. Differences
from the above situations were expected, and the results frbm
the three methods were not comparable. The result of these
exact comparisons showed whether any of the methods provided
equivalent, larger, or smaller corrected correlations and
variance-covariance matrices.

Simulation Comparisons

The first results of the simulation study display the
percent of out-of-range corrected correlations, the percent of
invalid (non-positive definite) correlation or variance-
covariance matrices, and the corrected variance-covariance
matrix for each method and case. These results are compared
to one another and to the sampling distribution created by the
simulation. The differences between the empirical sampling
distributions and the observed values from each of the methods
show how the methods differ and which method(s) give results
closest to the empirical sampling distribution.
Methods for the Example

After the simulation results were completed, a comparison
of methods was made using data from a previous synthesis.
This comparison not only examined the corrected correlations,

but also showed whether the conclusions of the data analyses
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changed, depending on the correction used. The analysis to be
reconsidered is from Becker and Cho (1994), though the

original data are from Schmidt, Hunter and Outerbridge (1986) .
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CHAPTER IV

RESULTS

Exact Comparisons among the Methods

Exact work was used to compare the methods (univariate,
Gleser (1992), Bock and Petersen (1975), and Fuller and
Hidiroglou (1978)). The four corrections were compared
algebraically. First, the 2 variable case, with 2 variables,
2 reliabilities and 1 sample correlation was examined. Bock
and Petersen’s (1975) claim that for this simplest case; their
correction was the same as the traditional univariate
correction, was verified.

Gleser (1992)

The correction from Gleser (1992) also always gives the
univariate correction in the cases which were considered here.
The reliability matrix (A) in Gleser is an adjustment to the
usual sum-of-squares and cross products (SSCP) matrix. The
SSCP matrix is n multiplied by the variance-covariance matrix
of the raw scores if the sample mean is 0 and the sample
standard deviation is 1. The simulation studied here operated
under those assumptions. Gleser (1992) lets A = 8’101,. * Tyrue
represent the reliability matrix, where £, is the variance-
covariance matrix of the observed predictors and E.,,, is the
variance-covariance matrix of the true scores for the

predictors. Then, the adjustment in the regression case is

46
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B = A1 * (x'X)°! X'Y (Gleser, 1992). The adjustment occurs
when multiplying the inverse of A by (x’X)"1. Elementwise,
for the three variable case, with two predictors (assuming a

mean of 0 and a variance of 1 for all variables), the matrices

look like:
1 —Xo3—
-1 2 2
Zobs = 1 - 1%, 1 - %),
and
=X>3 1
Zerue = P22 a3
ras P33
where (X’X) =
n X,y n
Y,; n n

The adjustment is occurring only to the predictor variables.
The variance of the true scores is equal to the reliability
when the variance of the observed scores is assumed to equal
1. The corrected correlation is then found by dividing the
off-diagonal element of (X’X),,., by the product of the square
roots of its diagonal elements where

(X'K)pg = (AT * (xx)" 13,
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where A™1 = (271, * T..0) 71

The adjustment using A then
gives corrected correlations identical to the usual univariate
correlations.

Bock and Petersen (1975)

The approach of Bock and Petersen (1975) gives the usual
univariate correction if the original correlation matrix is
well defined (non-negative definite), but if the corrected
correlations are greater than unity, the matrix is modified
further so it becomes positive definite, and a different
corrected correlation is produced. This method increases the
observed correlations, but not in the same way as the usual
correction for attenuation.

Bock and Petersen’s method manipulates the moment
matrices, My and M,, the mean error and the mean observed sum
of squares and cross products matrices, respectively. These
are the matrices found by dividing the sums of squares and
cross products matrices for the error and observed scores by
their respective degrees of freedom. Their method involves
solving the two matrix eigenproblem

(M, - A; M) x; = 0 (Bock and Petersen, 1975, p. 674).
Once this problem is solved, the estimate of the true
variance-covariance matrix of the raw scores can be made using
the following formulation. Let X = (x;, ... X;) be the matrix
of eigenvectors, let A" = diag(XA;, ..., Ap) be the matrix of
eigenvalues, and let I be the p x p identity matrix, then

*

L, =M, - M, =B’ (A" - I)) B where B = X1,



If any ¢
are rep-
be at le]
then cal

Fuller &

Fuiﬂ
and Petd

adjust t:
that the
be sligh:
and Hid

correlat §

Fuller a
from the
Matrix We
The
univariat
how i+ co

the regrE

Were g1

Variables

of Stang,



49
If any of the elements of the A matrix are less than one, they
are replaced by 1.0 in the calculation. This constrains I, to
be at least positive semidefinite. Corrected correlations are
then calculated using the elements of ZL,.
Fuller and Hidiroglou (1978)

Fuller and Hidiroglou’s (1978) method is similar to Bock
and Petersen’s (1975) in that it also uses eigenvalues to
adjust the corrected correlation matrix. However, it appears
that the corrected correlation from Fuller and Hidiroglou will
be slightly different from that of Bock and Petersen. Fuller
and Hidiroglou’s method considers the already-corrected
correlation matrix and forces it to be positive definite. The
Fuller and Hidiroglou method only gives corrections different
from the univariate correction when the corrected correlation
matrix would be non-positive definite.

The Fuller and Hidiroglou method is the same as the
univariate correction in the 2 x 2 case. The following shows
how it compares. The Fuller and Hidiroglou method starts with
the regression equation

B =H?! (n!x v,
where H'! = (n"! X’X) - D A D, and where w and x are two
variables in the X matrix and where D is a diagonal matrix

of standard deviations of w and x,
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Also, A is a diagonal matrix containing 1 - reliability

values:

Then, for the case where the mean of each variable is
assumed equal to 0 and the standard deviation is 1.0, H
simplifies to:

2 2
s?, Syu s2, (1 - ) 0

2 2
S S 0 Sy (1 - r,,)

This in turn yields the new variance-covariance matrix

for the raw scores

S

2
sxrxx

Solving for the correlation between x and w gives the usual
correction for attenuation

rxw

Ve Vo,

If the matrix of corrected correlations is not positive

definite, the adjustment comes from pre-multiplying the DAD

product by the quantity (f - n™!), where f is the smallest
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root (eigenvalue) in the two-matrix eigenproblem | M - £CGC |
= 0. Here C is the matrix of standard deviations of the raw
scores and G a diagonal matrix containing reliability values.
This procedure is similar to Bock and Petersen’s. However,
Fuller and Hidiroglou’s estimate is constrained to be positive
definite, while Bock and Petersen’s is positive semidefinite.
The Three Variable Case

The formulas for the corrections in the three variable
case proved to be excessively complex for all methods (except
the univariate case). As such, algebraic (exact) comparisons
were impossible to make. In other words, comparisons of the
correction formulas did not lead to any clear conclusions.
However, several small-scale examples using spreadsheets and
Minitab were computed, and the following results (before the
simulation part of the study was conducted) were noted.

First, the Gleser method yields corrected correlations
very similar to the traditional univariate correction, in all
cases. The difference between the Gleser and univariate
corrections is minimal, with the difference near zero when
large sample sizes are used. Second, Bock and Petersen (1975)
and Fuller and Hidiroglou (1978) have similar methods, but
they give different corrections; when the usual corrected
correlation matrix is not positive definite or contains
corrected correlations greater than unity. The simulation

results show which method gives larger corrected correlations,
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and which variances are closest to the expected variances in
the simulation.

The results of the computation of the variance of the
corrected correlations, assuming that reliabilities are fixed
and known values are also of interest. In this case, the
variance of a corrected correlation is simply the variance of
the uncorrected correlation divided by the product of the
reliability values. This variance of a correlation (assuming
that the reliability is fixed) should be larger than the
variance of a univariate corrected correlation computed using
(3.1) and (3.2), unless the reliability values are 1.0. If
the reliabilities are 1.0, the two variances will be equal.
Summary of Exact Results

This examination of the exact results from each method
shows that, for legitimate corrected correlation matrices
(those that are positive definite), all 4 methods produce the
same values for the corrected correlations. If, however, the
corrected correlation matrix would be non-positive definite,
the Fuller and Hidiroglou and Bock and Petersen methods
further adjust the correction. The simulation results should
reflect this exact work, and additionally will show the
magnitudes of differences among the corrected correlations,
and the corresponding differences in the variance-covariance

matrices of the corrected correlations.
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Assumptions of Each Method

Before the simulations were conducted the assumptions of
the different methods were examined. The methods often
violated assumptions that would need to be made in meta-
analytic studies. The following details were noted, and the
three multivariate methods were compared and contrasted.

Fuller and Hidiroglou’s (1978) derivations apply to
situations where the error variances are not estimated from
the same data used to estimate the correlations. They assume
that reliabilities for both the predictors and the criterion
are known. This assumption was violated in the simulation
since the data used to estimate the reliabilities were also
the same as those used to estimate the correlations, however,
the dependence was accounted for in the calculation of the
variances and covariances.

Gleser’s (1992) approach uses prior information about
reliability values to estimate a reliability matrix which is
then used in estimating the regression slopes. This
reliability matrix contains more than the reliabilities of the
predictors. It also takes into account the correlations among
the components of the measurement error and also the
correlations among the components of the true vector of
predictors.

Both Fuller and Hidiroglou’s (1978) and Gleser’s (1992)
corrections occur in regression models, and both make

assumptions that would not necessarily be reasonable 1in
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meta-analysis. In most primary studies included in a meta-
analysis, reliability information (if given at all) is from
the sample, thus is not a population parameter. Also, both of
these methods correct a raw data matrix rather than a
correlation matrix, and both assume reliabilities are
nonrandom.

Bock and Petersen (1975) considered the whole correlation
matrix, rather than the individual elements. Their
multivariate correction for attenuation uses restricted
maximum 1likelihood estimation to make certain that the
resulting variance-covariance matrix is positive definite. It
is not <clear what assumptions they make about the
reliabilities. However, in the example given in their paper,
they use a known value for estimating measurement error of
human characteristics. In another study, Bock and Vandenberg
(1968) have used known reliabilities in estimating error
variances. It is unclear whether using reliabilities based on
sample data would violate any assumptions for the Bock and
Petersen procedure.

Although the methods discussed violate some assumptions
of multivariate meta-analyses, all were used in the simulation
part of this study. Putting all of the corrected correlations
into the derived formulas for the variances and covariances of
the correlation matrices produced variances and covariances
which were compared to the sampling distribution. The effect

of violating these assumptions (if any) was then determined.
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Simulation Results

Caveats

The simulation program was written in FORTRAN, and a
version of this program is given in Appendix D. The data were
summarized using a SAS program. Some assumptions were made
during the data generation and analysis. First, as noted
above, the Gleser (1992) correction was virtually identical to
the traditional univariate correction. However, in the
program, the univariate correction was calculated using the
sample correlation and reliability statistics in Equation
(2.1). The Gleser correction was estimated based on the raw
data matrices, as shown in Chapter 3. Therefore, slightly
different results were expected for these two methods.

Second, although there were five different calculations
for the variance-covariance matrices, only 3 unique methods
existed. These methods are: (1) the traditional variance-
covariance corrections using Equations (3.1) and (3.2), which
were used to get the univariate and the Bock and Petersen
variance-covariance matrices, (2) the large-sample theory
variance-covariance matrices (shown in Appendix A), which were
adjusted for use with the Fuller and Hidiroglou method, and
also with a traditional univariate correction, and (3) the
fixed reliability calculation. These methods were then
compared to the empirical variances computed from the sampling
distribution of the corrected correlations across replications

in the simulation.
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In each of the 112 simulation runs, counts of corrected
correlations greater than unity, non-positive definite
corrected correlation matrices and non-positive definite
variance-covariance matrices were recorded. One problem
encountered in this process was that the determinants of the
variance-covariance matrices of the corrected correlations
were small. Because the order of these matrices is
proportional to 1/n3, and because variances and covariances of
correlations are small as well, the determinants of the
variance-covariance matrices of the corrected correlations
were often extremely tiny (<1071%), especially for the cases
when n = 500. For this reason, after these determinants were

3 before counts and

calculated, they were multiplied by n
comparisons among the methods were made. Without this
convention, the majority of the cases would have shown all
2000 replications to have "improper" variance-covariance
matrices.
Results from Count Data

Corrected correlations greater than unity. Here, a

"case" refers to one of the seven different population
correlation sets from Table 1. The first count examined was
the percent of corrected correlations greater than unity, for
each case and method of correcting the correlations. In
general, the frequency of corrected correlations greater than
unity, as shown in Table 2, was small (no more than three

percent). In two of the cases ( p. = (.00, .00, .00) and
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p = (.40, .30, .10)), no corrected correlations were greater
than unity for any sample size or reliability combination. 1In
the cases where p = (.60, .40, .20) and p = (.60, .40, -.20),
the number of corrected correlations greater than unity was
tiny (less than .11%). In these cases, the only methods to
produce corrected correlations greater than unity were the
univariate and the Gleser corrections, when the sample size
was 50, and the reliability triple was (.70, .70, .70). The
overcorrected correlations occurred for the first correlation
(and largest) in the triple (.60). The Bock and Petersen
(1975) and Fuller and Hidiroglou (1978) corrections never gave
corrected correlations greater than unity in any case.

As the population correlations increased, the percent of
improper corrected correlations increased. 1In the case where
p = (.40, .30, .70) and n = 50, for the reliability triple
(.70, .70, .70) both the univariate and Gleser corrections had
0.75% (15 out of 2000) invalid corrected correlations. 1In the
same case, but where the reliability triple (.90, .80, .70)
was used, the percents were 0.20% and 0.15% for the univariate
and Gleser methods, respectively. All of the invalid
corrected correlations occurred when the largest (third)
population correlation (p = .70) was corrected. In fact, in
all cases, no sample estimate of a population correlation less

than .60 gave a corrected correlation greater than unity.
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Table 2

Percent of Corrected Correlations Greater than Unity

Case 1. pj; = .0 py3 =

Pop. Corr. 0.00

pu = T Py =7

Univar
8ock

Fuller
Gleser

0.00
0.00
0.00
0.00

n=50
0.00

P33 =

0.00
0.00
0.00
0.00

.0 023 = .0
0.00 0.00
.7
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00

pu = .85 pzz =.85 p33 = .85

Univar
Bock

Fuller
Gleser

0.00
0.00
0.00
0.00

py = .9 by =8

Univar
Bock

Fuller
Gleser

Dn = 1.00

Univar
Bock

Fuller
Gleser

0.00
0.00
0.00
0.00

Py =

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

P33 =

0.00
0.00
0.00
0.00

1.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

7

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

1.00

0.00
0.00
0.00
0.00

n=100
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
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0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

n=250
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

n=500
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00



Table 2 (Cont’d)

Case 2. 912 = .4 013 = .

Pop. Corr. 0.40
P = T Py =7

Univar 0.00
Bock 0.00
Fuller 0.00
Gleser 0.00

n=50
0.30

Py = .

0.00
0.00
0.00
0.00

Py = -85 Py =85 Py

Univar 0.00
Bock 0.00
Fuller 0.00
Gleser 0.00

Py = -9 Py =.8

Univar 0.00
Bock 0.00
Fuller 0.00
Gleser 0.00

Py = 1.00  py, =

Univar 0.00
Bock 0.00
Fuller 0.00
Gleser 0.00

0.00
0.00
0.00
0.00

P33 =

0.00
0.00
0.00
0.00

1.00

0.00
0.00
0.00
0.00

3 D23 = .1
0.10 0.40
7
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
= .85
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
T
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
933 = 1.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00

n=100
0.30

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
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0.10

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.40

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

n=250
0.30

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.10

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.40

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

n=500
0.30

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.10

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00



Table 2 (Cont’d)

Case 3. 012 = .4 013 = .3 023 =

n=50
Pop. Corr. 0.40 0.30 0.70

P = T Py =7 by =.7

Univar 0.00 0.00 0.75
Bock 0.00 0.00 0.00
Fuller 0.00 0.00 0.00
Gleser 0.00 0.00 0.75

pu = .85 022 =.85 p33 = .85

Univar 0.00 0.00 0.00
Bock 0.00 0.00 0.00
Fuller 0.00 0.00 0.00
Gleser 0.00 0.00 0.00

pu = .9 022 =.8 033 = .7

Univar 0.00 0.00 0.00
Bock 0.00 0.00 0.00
Fuller 0.00 0.00 0.00
Gleser 0.00 0.00 0.00

011 = 1.00 022 = 1.00 033 =

Univar 0.00 0.00 0.00
Bock 0.00 0.00 0.00
Fuller 0.00 0.00 0.00
Gleser 0.00 0.00 0.00

|
o

0.40

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

n=100
0.30

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

60

0.70

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.40

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

n=250

0.30 0.70
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00

0.40

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

n=500
0.30

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.70

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00



Table 2 (Cont’d)

Case 4. pyj, = .6 p3=.b Dyy3=.2

Pop. Corr.

0.60

Py = T P =7

Univar
8ock

Fuller
Gleser

0.05
0.00
0.00
0.05

n=50

0.40 0.20
P33 = .7
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00

011 = .85 022 =.85 033 = .85

Univar
Bock

Fuller
Gleser

0.00
0.00
0.00
0.00

Py = .9 by =.8

Univar
Bock

Fuller
Gleser

Py = 1.00

Univer
Bock

Fuller
Gleser

0.00
0.00
0.00
0.00

P2 =

0.00
0.00
0.00
0.00

0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
P33 = .7

0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
1.00 033 =
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00

0.60

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

1.00

0.00
0.00
0.00
0.00

n=100
0.40

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
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0.20

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.60

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

n=250

0.40 0.20
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00

0.60

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

n=500
0.40

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.20

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00



Table 2 (Cont’d)

Case 5. 012 = .6 p]3 = .4 023 =

n=50
Pop. Corr. 0.60 0.40

Pi = T Py =7 py=

Univar 0.10 0.00
Bock 0.00 0.00
Fuller 0.00 0.00
Gleser 0.10 0.00

-0.20

.7

0.00
0.00
0.00
0.00

pll = .85 pzz =.85 033 = .85

Univar 0.00 0.00
Bock 0.00 0.00
Fuller 0.00 0.00
Gleser 0.00 0.00

Piy = .9 Py =8 py3=

Univar 0.00 0.00
Bock 0.00 0.00
Fuller 0.00 0.00
Gleser 0.00 0.00

pn = 1.00 pzz = 1.00

Univar 0.00 0.00
Bock 0.00 0.00
Fuller 0.00 0.00
Gleser 0.00 0.00

0.00
0.00
0.00
0.00

7

0.00
0.00
0.00
0.00

P33 =

0.00
0.00
0.00
0.00

[
)
N

0.60

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

n=100
0.40

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
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-0.20

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.60

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

n=250

0.40 -0.20
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00

0.60

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

n=500
0.40

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

-0.20

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00



Table 2 (Cont’d)

Case 6. p); = .7 Dj3= .6 py3=

n=50
Pop. Corr. 0.70 0.60 0.10

Py = T Py =T Py = .7

Univar 0.90 0.15 0.00
Bock 0.00 0.00 0.00
Fuller 0.00 0.00 0.00
Gleser 0.75 0.15 0.00

Py = .85 P =,85 P33 .85
Univar 0.00 0.00 0.00
Bock 0.00 0.00 0.00
Fuller 0.00 0.00 0.00
Gleser 0.00 0.00 0.00

Py = -9 Py =8 py= .7

Univar 0.00 0.00 0.00
Bock 0.00 0.00 0.00
Fuller 0.00 0.00 0.00
Gleser 0.00 0.00 0.00

pu = 1.00 022 = 1.00 033 =

Univar 0.00 0.00 0.00
Bock 0.00 0.00 0.00
Fuller 0.00 0.00 0.00
Gleser 0.00 0.00 0.00

[
.
-

0.70

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

n=100
0.60

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
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0.10

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.70

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

n=250
0.60

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.10

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.70

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

n=500
0.60

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.10

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00



Table 2 (Cont’d)

Pop. Corr. 0.70

Py =T Py =T

Univar
Bock

Fuller
Gleser

1.15
0.00
0.00
1.15

0.15
0.00
0.00
0.30

3.00
0.00
0.00
2.95

pu = .85 pzz =-85 033 = .85

Univar
Bock

Fuller
Gleser

0.00
0.00
0.00
0.00

Dll = .9 922 =.8

Univar
Bock

Fuller
Gleser

£, = 1.00

Winivar
Bock

Fuller
G leser

0.00
0.00
0.00
0.00

P2 =

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

P33 =

0.00
0.00
0.00
0.00

1.00

0.00
0.00
0.00
0.00

0.05
0.00
0.00
0.05

.7

1.45
0.00
0.00
1.60

P33 =

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

1.00

0.00
0.00
0.00
0.00

n=100

0.60

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
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0.80

0.40
0.00
0.00
0.40

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.70

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

n=250

0.60

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.80

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.70

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

n=500
0.60

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.80

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
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In the case p = (.70, .60, .10), the results were similar to
the case mentioned previously. For n = 50, 0.90% of the
corrected correlations from the univariate and 0.75% for the
Gleser methods gave improper corrected correlations, for the
first correlation in the triple (.70). The second correlation
in the triple (.60) yielded .15% corrected correlations
greater than unity for both the univariate and Gleser cases
with reliabilities equal to .70 and sample size of 50. No
other reliability and sample size combinations produced
invalid corrections for this case.

The case which showed the highest percent of invalid
corrected correlations was p = (.70, .60, .80), as expected.
‘The univariate method produced 1.15% improper corrected
<correlations for the first element in the triple (.70), 0.15%
for the second element (.60), and 3.00% for the third element
(.80) for n = 50 and the reliability triple (.70, .70, .70).
“These numbers were 0.95%, 0.30%, and 2.95% respectively for
the Gleser corrected correlations for the same combination.
*The third correlation in the triple (.80) also yielded non-
=ero percents for the cases where reliability triples were
(.85, .85, .85) and (.90, .80, .70) with n = 50 reliabilities
(.70, .70, .70) with n = 100. For the univariate correction
these percents ranged from 0.05% to 1.45% and for the Gleser
correction, from 0.05% to 1.60%.

Overall, in no case where the sample size was 250 or

500, or the reliabilities were 1.0, did any invalid corrected
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correlations occur. These results show that where univariate
corrections are applied, for moderate to large correlations
with small sample sizes and somewhat lower reliabilities, the
chance of corrected correlations greater than one is non-zero.
Because the Bock and Petersen (1975) and Fuller and Hidiroglou
(1978) corrections adjust for these problems, their use may be
warranted when such problems are anticipated.

Determinants of the corrected correlation matrices. The
vast majority of the matrices of the corrected correlations
were positive definite. Table 3 displays, for each method,
the percentages of the corrected correlation matrices that
were less than or equal to 0. The cases, p =(.40, .30, .10)
and p = (.00, .00, .00), did not produce any invalid corrected
correlation matrices and the case p = (.60, .40, .20) produced
only a few invalid matrices, as shown in the table.

For the case p = (.60, .40, -.20) with reliability
triple (.70, .70, .70) the univariate, Bock and Petersen
(1975), and Gleser (1992) methods produced 7.2%, 2.15%, and
7.35% improper corrected correlation matrices, respectively.
These percentages declined to 1.65%, 0.05%, and 1.55% when,
for the same reliability triple, n = 100. With the (.85, .85,
.85) reliability triple and n = 50, the univariate and Gleser
methods gave 0.15% invalid matrices, while the Bock and
Petersen method gave 0.05%. Finally, for the reliability

triple (.90, .80, .70) and n = 50, the percentages for the



67
univariate, Bock and Petersen, and Gleser methods were 0.55%,

0.25%, and 0.60%, respectively.

Table 3

Percent of Determinants of Corrected Correlation Matrices

Less than or Equal to Zero (2000 replications)

Case 1. pj; = .0 pj3=.0 p)=.0

n=50 n=100 n=250 n=500
P = T by =T Py = .7

Univar 0.00 0.00 0.00 0.00
Bock 0.05 0.00 0.00 0.00
Fuller 0.00 0.00 0.00 0.00
Gleser 0.00 0.00 0.00 0.00

pu = .85 022 =.85 033 = .85

Univar 0.00 0.00 0.00 0.00
Bock 0.00 0.00 0.00 0.00
Fuller 0.00 0.00 0.00 0.00
Gleser 0.00 0.00 0.00 0.00

Py = .9 Py =B Py = .7

Univar 0.00 0.00 0.00 0.00
Bock 0.00 0.00 0.00 0.00
Fuller 0.00 0.00 0.00 0.00
Gleser 0.00 0.00 0.00 0.00

pll = 1.00 DZZ = 1.00 033 = 1.00

Univar 0.00 0.00 0.00 0.00
Bock 0.00 0.00 0.00 0.00
Fuller 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00
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Table 3 (Cont’d)

Case 2. P, = .4 pPj3=.3 pyy=.1

=50 n=100 =250 n=500
by = T Py =7 py3= .7

Univar 0.00 0.00 0.00 0.00
Bock 0.00 0.00 0.00 0.00
Fuller 0.00 0.00 0.00 0.00
Gleser 0.00 0.00 0.00 0.00

pu = .85 022 =.85 p33 = .85

Univar 0.00 0.00 0.00 0.00
Bock 0.00 0.00 0.00 0.00
Fuller 0.00 0.00 0.00 0.00
Gleser 0.00 0.00 0.00 0.00

Py =9 Py =8 py =7

Univar 0.00 0.00 0.00 0.00
Bock 0.00 0.00 0.00 0.00
Fuller 0.00 0.00 0.00 0.00
Gleser 0.00 0.00 0.00 0.00

pll = 1.00 pzz = 1.00 033 = 1.00

Univar 0.00 0.00 0.00 0.00
Bock 0.00 0.00 0.00 0.00
Fuller 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00
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Table 3 (Cont’d)

Case 3. 012 = .4 013 = .3 023 = .7

n=50 n=100 n=250 n=500
by =T by =7 py=.7

Univer 1.60 0.00 0.00 0.00
Bock 0.80 0.05 0.00 0.00
Fuller 0.00 0.00 0.00 0.00
Gleser 1.55 0.00 0.00 0.00

pu = .85 pzz =.85 033 = .85

Univar 0.00 0.00 0.00 0.00
Bock 0.00 0.00 0.00 0.00
Fuller 0.00 0.00 0.00 0.00
Gleser 0.00 0.00 0.00 0.00

Py = .9 Py =8 py=.7

Univar 0.30 0.00 0.00 0.00
Bock 0.30 0.00 0.00 0.00
Fuller 0.00 0.00 0.00 0.00
Gleser 0.30 0.00 0.00 0.00

pn = 1.00 pzz = 1.00 933 = 1.00

Univar 0.00 0.00 0.00 0.00
Bock 0.00 0.00 0.00 0.00
Fuller 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00
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Table 3 (Cont’d)

_case 4. plz = .6 p13 = .4 923 = .2

n=50 n=100 n=250 n=500
b= T b =T Py =.7

Univar 0.40 0.00 0.00 0.00
Bock 0.50 0.00 0.00 0.00
Fuller 0.00 0.00 0.00 0.00
Gleser 0.45 0.00 0.00 0.00

Du = .85 022 =.85 933 = .85

Univar 0.00 0.00 0.00 0.00
Bock 0.00 0.00 0.00 0.00
Fuller 0.00 0.00 0.00 0.00
Gleser 0.00 0.00 0.00 0.00

oy =9 Pp =B Py = .7

WUnivar 0.00 0.00 0.00 0.00
8Bock 0.05 0.00 0.00 0.00
Fuller 0.00 0.00 0.00 0.00
Gleser 0.00 0.00 0.00 0.00

O = 1.00 py = 1.00 Py = 1.00

Univar 0.00 0.00 0.00 0.00
Bock 0.00 0.00 0.00 0.00
Fuller 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00
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Table 3 (Cont’d)

Case 5. plz = .6 013 = .4 pza =-.2

n=50 n=100  n=250  n=500
Py = T Py =T by =.7

Univar 7.20 1.65 0.00 0.00
Bock 2.15 0.05 0.00 0.00
Fuller 0.00 0.00 0.00 0.00
Gleser 7.35 1.55 0.00 0.00

pu = .85 pzz =.85 033 = .85

Univar 0.15 0.00 0.00 0.00
Bock 0.05 0.00 0.00 0.00
Fuller 0.00 0.00 0.00 0.00
Gleser 0.15 0.00 0.00 0.00

Py = .9 Py =8 py=.7

Univar 0.55 0.00 0.00 0.00
Bock 0.25 0.00 0.00 0.00
Fuller 0.00 0.00 0.00 0.00
Gleser 0.60 0.00 0.00 0.00

pu = 1.00 022 = 1.00 p33 = 1.00

Univar 0.00 0.00 0.00 0.00
Bock 0.00 0.00 0.00 0.00
Fuller 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00
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Table 3 (Cont’d)

Cage 6. plz = .7 p13 = .6 923 = .1

n=50 n=100 n=250 n=500

Univar 14.65 3.85 0.20 0.00
Bock 5.70 0.45 0.00 0.00
Fuller 0.00 0.00 0.00 0.00
Gleser 14.85 3.80 0.20 0.00

pu = .85 pzz =.85 033 = .85

Univar 1.75 0.00 0.00 0.00
Bock 0.45 0.00 0.00 0.00
Fuller 0.00 0.00 0.00 0.00
Gleser 1.80 0.00 0.00 0.00

Pip = .9 Py =8 P33 = .7

Univar 1.95 0.10 0.00 0.00
Bock 0.85 0.00 0.00 0.00
Fuller 0.00 0.00 0.00 0.00
Gleser 2.25 0.05 0.00 0.00

pyy = 1.00 Py = 1.00 pyy = 1.00

Univar 0.00 0.00 0.00 0.00
Bock 0.00 0.00 0.00 0.00
Fuller 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00
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Table 3 (Cont’d)

Case 7. D) = .7 pj3 = .6 py3=.8

n=50 n=100  n=250  n=500
Py = T Py =T Py = .7

Univar 8.20 1.00 0.00 0.00
Bock 4.60 0.25 0.00 0.00
Fuller 0.00 0.00 0.00 0.00
Gleser 8.25 1.10 0.00 0.00

Du = .85 022 =.85 033 = .85

Univar 0.15 0.00 0.00 0.00
Bock 0.10 0.00 0.00 0.00
Fuller 0.00 0.00 0.00 0.00
Gleser 0.10 0.00 0.00 0.00

Py = .9 Py =8 py3= .7

Univar 2.40 0.05 0.00 0.00
Bock 0.95 0.05 0.00 0.00
Fuller 0.00 0.00 0.00 0.00
Gleser 2.65 0.05 0.00 0.00

Py = 1.00 Dy = 1.00 Py3 = 1.00

Univar 0.00 0.00 0.00 0.00
Bock 0.00 0.00 0.00 0.00
Fuller 0.00 0.00 0.00 0.00
Gleser 0.00 0.00 0.00 0.00
For the case p = (.40, .30, .70) a smaller number of

invalid corrected correlation matrices were found. Again, the
reliability triple (.70, .70, .70) in combination with n = 50
produced the most problems, with 1.60%, 0.80%, and 1.55%
invalid matrices for the univariate, Bock and Petersen, and
Gleser methods respectively. The Bock and Petersen method
also produced one (0.05%) invalid matrix for the same

reliability combination with a sample size n = 100. For the
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reliability triple (.90, .80, .70) with n = 50, each of the
three methods mentioned above produce 0.30% improper corrected
correlation matrices.

The case with the greatest number of invalid corrected
correlation matrices was p = (.70, .60, .10). Nearly 15% of
the matrices were invalid for the reliability triple (.70,
.70, .70) and n = 50 case for the univariate and Gleser
methods. The Bock and Petersen method in this same
combination produced 5.70% invalid matrices. Within the same
reliability triple, but with n = 100, the univariate, Bock and
Petersen and Gleser method produced 3.85%, 0.45%, and 3.80%
invalid corrected correlation matrices respectively. This
particular correlation triple was the only one to produce
invalid results when the sample size was 250. With this
sample size and the reliability triple (.70, .70, .70), the
univariate and Gleser methods yielded 0.20% invalid matrices.
When the (.85, .85, .85) reliability triple was used, somewhat
fewer problems were found. With this triple and n = 50, the
univariate, Bock and Petersen, and Gleser methods produced
invalid matrices 1.75%, 0.45%, and 1.80% of the time,
respectively. When the reliability values were changed to
(.90, .80, .70), the three methods gave 1.95%, 0.85%, and
2.25% invalid matrices for n = 50. With this same reliability
triple, but with n = 100, the univariate and Gleser methods

gave 0.10% and 0.05% improper matrices, respectively.



75

In the last case, p =(.70, .60, .80), with reliability
triple (.70, .70, .70) and n = 50, the percentages of improper
' corrected correlation matrices were 8.20%, 4.60% and 8.25% for
the wunivariate, Bock and Petersen, and Gleser methods,
respectively. With n = 100 and the same reliability values,
these percentages changed to 1.00%, 0.25%, and 1.10%,
respectively. This case also produced a small number of
invalid matrices for the (.85, .85, .85) reliability triple
with n = 50. These numbers were 0.15% (univariate), 0.10%
(Bock and Petersen), and 0.10% (Gleser). The reliability
triple (.90, .80, .70) yielded 2.40% invalid matrices for the
univariate method, 0.95% for the Bock and Petersen method, and
2.65% for the Gleser method when the sample size was 50. With
the same reliability triple and n = 100, all three of the
above methods gave 0.05% improper matrices, or one matrix out
of 2000.

These results indicate that the Fuller and Hidiroglou
method does prevent improper corrected correlation matrices.
None of the combinations, when the Fuller and Hidiroglou
method was used, produced improper results. Problems with the
determinants of the corrected correlation matrices appeared to
be related in part to the presence of corrected correlations
larger than unity. However, invalid matrices occur more
frequently than correlations larger than one. This result
indicates that other problems result from these corrections,

which would imply that the Stanley and Wang (1969) inequality
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is being violated in situations other than when correlations
greater than unity occur. In no case did the original sample
correlation matrix have a determinant less than 0. Therefore,
the problems occurred after the correction had been made.

Determinants of wvariance-covariance matrices of the
corrected correlations. Also recorded were the percentages of
invalid variance-covariance matrices of the corrected
correlations for each method. Table 4 displays these results.
The case p =(.40, .30, .10) did not produce any invalid
matrices, while the case p= (.00, .00, .00) produced 1
problematic matrix, for the Bock and Petersen correction with
reliability triple (.70, .70, .70) and n = 50. As with the
results for the corrected correlations greater than unity and
the number of improper corrected correlation matrices, the
majority of the combinations that caused problems had small

sample sizes and reliability values.
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Percent of Determinants of Variance/Covariance Matrices
Less than or Equal to 2ero (2000 replications)

Case 1. 012 = .0 pl3 = .0 p23 = .0

Py = T Py =T P33 = .7

Univariate

Bock & Petersen
Fuller & Hidiroglou
Large Sample

Fixed Reliability

Du = .85 D22 =.85 933 = .85

Univariate

Bock & Petersen
Fuller & Hidiroglou
Large Sample

Fixed Reliability

Py = .9 Py =8 pyy = .7

Univariate

Bock & Petersen
Fuller & Hidiroglou
Large Sample

Fixed Reliability

pn = 1.00 022 = 1.00 933 = 1.00

Univariate

Bock & Petersen
Fuller & Hidiroglou
Large Sample

Fixed Reliability

n=50

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

n=100

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

n=250

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

n=500

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
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Py = T Py =T Py =.7

Univariate

Bock & Petersen
Fuller & Hidiroglou
Large Sample

Fixed Reliability

pu = .85 pzz =.85 033 = .85

Univariate

Bock & Petersen
Fuller & Hidiroglou
Large Sample

Fixed Reliability

P = -9 Py =B Py = .7

Univariate

Bock & Petersen
Fuller & Hidiroglou
Large Sample

Fixed Reliability

pn = 1.00 022 = 1.00 033 = 1.00

Univariate

Bock & Petersen
Fuller & Hidiroglou
Large Sample

Fixed Reliability

n=100

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
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n=250

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

n=500

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
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Table 4 (Cont’d)

Case 3. 012 = .4 le = .3 023 = .7

n=50 n=100 n=250 n=500
Pi = T Py =7 by =.7
Univariate 0.95 0.00 0.00 0.00
Bock & Petersen 1.00 0.05 0.00 0.00
Fuller & Hidiroglou 0.00 0.00 0.00 0.00
Large Sample 0.00 0.00 0.00 0.00
Fixed Reliability 0.00 0.00 0.00 0.00
pu = .85 pzz =.85 933 = .85
Univariate 0.00 0.00 0.00 0.00
Bock & Petersen 0.00 0.00 0.00 0.00
Fuller & Hidiroglou 0.00 0.00 0.00 0.00
Large Sample 0.00 0.00 0.00 0.00
Fixed Reliability 0.00 0.00 0.00 0.00
P = 9 Pp =8 Py = .7
Univariate 0.20 0.00 0.00 0.00
Bock & Petersen 0.30 0.00 0.00 0.00
Fuller & Hidiroglou 0.00 0.00 0.00 0.00
Large Sample 0.00 0.00 0.00 0.00
Fixed Reliability 0.00 0.00 0.00 0.00
Du = 1.00 pzz = 1.00 033 = 1.00
Univariate 0.00 0.00 0.00 0.00
Bock & Petersen 0.00 0.00 0.00 0.00
Fuller & Hidiroglou 0.00 0.00 0.00 0.00
Large Sample 0.00 0.00 0.00 0.00

Fixed Reliability 0.00 0.00 0.00 0.00
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Table 4 (Cont’d)

Case 4. Py, = .6 pj3= .4 pyy=.2

n=50 n=100 n=250 n=500
Py = T Py =7 Py3= .7
Univariate 0.10 0.00 0.00 0.00
Bock & Petersen 0.55 0.00 0.00 0.00
Fuller & Hidiroglou 0.00 0.00 0.00 0.00
Large Sample 0.00 0.00 0.00 0.00
Fixed Reliability 0.00 0.00 0.00 0.00
pu = .85 pzz =85 033 = .85
Univariate 0.00 0.00 0.00 0.00
Bock & Petersen 0.05 0.00 0.00 0.00
Fuller & Hidiroglou 0.00 0.00 0.00 0.00
Large Sample 0.00 0.00 0.00 0.00
Fixed Reliability 0.00 0.00 0.00 0.00
Py = -9 Py =B P33 = .7
Univariate 0.00 0.00 0.00 0.00
Bock & Petersen 0.00 0.00 0.00 0.00
Fuller & Hidiroglou 0.00 0.00 0.00 0.00
Large Sample 0.00 0.00 0.00 0.00
Fixed Reliability 0.00 0.00 0.00 0.00
D“ = 1.00 pzz = 1.00 033 = 1.00
Univariate 0.00 0.00 0.00 0.00
Bock & Petersen 0.00 0.00 0.00 0.00
Fuller & Hidiroglou 0.00 0.00 0.00 0.00
Large Sample 0.00 0.00 0.00 0.00

Fixed Reliability 0.00 0.00 0.00 0.00
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Univariate

Bock & Petersen
Fuller & Hidiroglou
Large Sample

Fixed Reliability

pn = .85 pzz =.85 933 = .85

Univariate

Bock & Petersen
Fuller & Hidiroglou
Large Sample

Fixed Reliability

Py =9 Py =8 Py =.7

Univariate

Bock & Petersen
Fuller & Hidiroglou
Large Sample

Fixed Reliability

Du = 1.00 pzz = 1.00 033 = 1.00

Univariate

Bock & Petersen
Fuller & Hidiroglou
Large Sample

Fixed Reliability

n=100

0.25
3.25
0.00
0.00
0.00

0.00
0.10
0.00
0.00
0.00

0.00
0.35
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
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n=250

0.05
0.15
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

n=500

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
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Table 4 (Cont’d)

Case 6. 012 = .7 013 = .6 D23 = .1

n=50 n=100 =250 n=500

Py = T Py =T by =.7

Univariate 2.40 0.05 0.05 0.00
Bock & Petersen 8.05 0.90 0.00 0.00
Fuller & Hidiroglou 0.00 0.00 0.00 0.00
Large Sample 0.00 0.00 0.00 0.00
Fixed Reliability 0.00 0.00 0.00 0.00
pn = .85 022 =.85 033 = .85

Univariate 0.15 0.00 0.00 0.00
Bock & Petersen 0.65 0.00 0.00 0.00
Fuller & Hidiroglou 0.00 0.00 0.00 0.00
Large Sample 0.00 0.00 0.00 0.00
Fixed Reliability 0.00 0.00 0.00 0.00
g = .9 Py =.8 D3y = .7

Univariate 0.05 0.00 0.00 0.00
Bock & Petersen 0.95 0.05 0.00 0.00
Fuller & Hidiroglou 0.00 0.00 0.00 0.00
Large Sample 0.00 0.00 0.00 0.00
Fixed Reliability 0.00 0.00 0.00 0.00

[)11 = 1.00 022 = 1.00 033 = 1.00

Univariate 0.00 0.00 0.00 0.00
Bock & Petersen 0.00 0.00 0.00 0.00
Fuller & Hidiroglou 0.00 0.00 0.00 0.00
Large Sample 0.00 0.00 0.00 0.00

Fixed Reliability 0.00 0.00 0.00 0.00
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Table 4 (Cont’d)

EOSQ 7: 012 = .7 013 = .6 023 = .8

n=50 n=100 n=250 n=500
Py = T Py =T py3= .7
Univariate 7.00 1.10 0.00 0.00
Bock & Petersen 5.25 0.25 0.00 0.00
Fuller & Hidiroglou 0.00 0.00 0.00 0.00
Large Sample 0.00 0.00 0.00 0.00
Fixed Reliability 0.00 0.00 0.00 0.00
011 = .85 022 =.85 033 = .85
Univariate 0.10 0.00 0.00 0.00
Bock & Petersen 0.20 0.00 0.00 0.00
Fuller & Hidiroglou 0.00 0.00 0.00 0.00
Large Sample 0.00 0.00 0.00 0.00
Fixed Reliability 0.00 0.00 0.00 0.00
Py = -9 Py =8 py = .7
Univariate 2.55 0.05 0.00 0.00
Bock & Petersen 1.55 0.05 0.00 0.00
Fuller & Hidiroglou 0.00 0.00 0.00 0.00
Large Sample 0.00 0.00 0.00 0.00
Fixed Reliability 0.00 0.00 0.00 0.00
Du = 1.00 022 = 1.00 033 = 1.00
Univariate 0.00 0.00 0.00 0.00
Bock & Petersen 0.00 0.00 0.00 0.00
Fuller & Hidiroglou 0.00 0.00 0.00 0.00
Large Sample 0.00 0.00 0.00 0.00

Fixed Reliability 0.00 0.00 0.00 0.00
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For the case where p = (.60, .40, .20) the Bock and
Petersen method produced 0.55% and 0.05% invalid matrices when
n = 50 and the reliability triples (.70, .70, .70) and (.85,
.85, .85) were used, respectively. For the first reliability
triple, the wunivariate correction yielded 0.10% invalid
variance-covariance matrices. The rest of the combinations
for this case did not provide any problematic matrices.

When the p = (.60, .40, -.20) case was examined, again
the Bock and Petersen and univariate methods were the only
ones to produce invalid matrices. For the reliability triple
(.70, .70, .70) and n = 50, the univariate and Bock and
Petersen methods produced 0.25% and 3.25% improper matrices
respectively. These percentages were reduced when n = 100 and
the percentages were also non-zero when other reliability
triples were used.

For the case where p = (.40, .30, .70) with reliability
triple (.70, .70, .70) the only combinations with notable
results were the univariate method, which gave 0.95% invalid
variance-covariance matrices, and the Bock and Petersen method
which showed 1.00% invalid matrices for n = 50.

When p = (.70, .60, .10) the univariate and Bock and
Petersen methods again produced invalid variance-covariance
matrices, particularly in the case where the reliability
txiple (.70, .70, .70) and the sample size n = 50 was used.

I that case, the univariate method produced 2.40% improper
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matrices, while the Bock and Petersen gave 8.05%. Other
reliability and sample size combinations produced non-zero
percentages smaller than this case, as shown in the table.

Finally, the last case, p = (.70, .60, .80) produced
improper matrices for the reliability triples (.70, .70, .70),
(.85, .85, .85) and (.90, .80, .70) for n = 50. The rates for
these three cases for the univariate method were 7.00%, 0.10%
and 2.55% respectively. For the Bock and Petersen method,
these rates were 5.25%, 0.20%, and 1.55%, respectively. When
n =100, the reliability triples (.70, .70, .70) and (.90, .80,
.70) also yielded non-zero percents of invalid matrices. For
the former triple, the rates were 1.10% for the univariate
method, and 0.25% for the Bock and Petersen method, while for

the latter triple, the rates for these methods were both

0.05%.

The size of the determinants of the variance-covariance

matrices. Besides counting the variance-covariance matrices
of the corrected correlations that were non-positive definite,
the size of the determinant of each matrix was also examined.
Table 5 displays the mean determinants for each case and
combination, for the 2000 replications. The means displayed
in the tables are actually the mean determinants multiplied by
n3, As shown in the tables, the univariate and Bock and
Petersen methods produced the smallest determinants. These
were considerably smaller for several of the cases. For all

O the cases, when the reliability triple (1.00, 1.00, 1.00)
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was used, the determinants were virtually identical for each
method. These results fit with the number of improper
variance-covariance matrices found above. The methods and
combinations which yielded the smallest determinants also
produced the highest numbers of invalid variance-covariance

matrices.



Table 5
rmingnts of
of th re r

Case 1, 0y, = .0 o3 =
n=50

Py = T Dy =T Py =
Univar 0.6909
Bock 0.5827
Fuller 7.4797
Large Sample 7.4797
Fixed Rel. 7.7899

ri

D“ z .85 DZZ =85 ﬂ:n = .85

Univar 0.7777
Bock 0.6365
Fuller 2.2706
Large Sample 2.2706
Fixed Rel. 2.3159
Py = -9 Py 28 by =
Univar 0.7462
Bock 0.4650
Fuller 3.4131

Large Sample 3.4131

Fixed Rel. 3.5079
0y, = 1.00 p,, = 1.00
Univar 0.8352
Bock 0.6821
Fuller 0.8357

Lerge Sample 0.8357
Fixed Rel. 0.8358

i 000 r
.0 023 = .0
n=100 n=250
.7
0.8336 0.9280
0.7541 0.8911
8.0457 8.2551
8.0457 8.2551
8.2097 8.3239
0.8829 0.9512
0.7885 0.9072
2.4440 2.5716
2.4440 2.5716
2.4678 2.5816
.7
0.8649 0.9438
0.6388 0.8123
3.6518 3.8194
3.6518 3.8194
3.7015 3.8401
033 = 1.00
0.9131 0.9635
0.8164 0.9218
0.9137 0.9641
0.9137 0.9641
0.9137 0.9661

-Covariance Matric
licati

n=500

0.9629
0.9428
8.3875
8.3875
8.4231

0.9757
0.9536
2.6130
2.6130
2.6180

0.9730
0.8980
3.8720
3.8720
3.8819

0.9824
0.9593
0.9830
0.9830
0.9830



Table 5 (Cont’d)

Case 2. Dy, = 4 Py =

pu =z 7 DZZ =,

Univar

Bock

Fuller

Large Sample
Fixed Rel.

n=50
7 Py =

0.3587
0.2843
5.2764
5.2764
5.8371

.3 ng =

n=100
.7

0.3956
0.3437
5.1876
5.1876
5.7004

Dy = .85 Dy =.85 pyy = .85

Univar

Bock

Fuller

Large Sample
Fixed Rel.

oy =9 by =

Univar

Bock

Fuller

Large Sample
Fixed Rel.

0.3843
0.2961
1.3273
1.3273
1.42463

8 033’

0.3853
0.1509
2.1002
2.1002
2.2710

Py = 1.00 Dy = 1.00

Univar

Bock

Fuller

Large Sample
Fixed Rel.

0.405¢4
0.3074
0.4057
0.4057
0.4058

0.4156
0.3597
1.3654
1.3654
1.4588

.7

0.4128
0.1518
2.0806
2.0806
2.23N1

033 = 1,00

0.4266
0.3636
0.4249
0.64249
0.4269

A

n=250

0.4253
0.3920
5.2849
5.2849
5.7761

0.4336
0.4080
1.3877
1.3877
1.4793

0.4334
0.1473
2.1233
2.1233
2.2762

0.4373
0.4110
0.4376
0.4376
0.4376

n=500

0.
0.
S.
S.
5.

0.
0.
.3969
1.
1.

1

NNNOO

[-N-N-N-N-]

4368
4188
3285
3285
8119

4389
4198

3969
4883

.4386
<1461
.1252
.1252
.2769

.4380
L6241
.4383
.4383
.4383



Table 5 (Cont’d)

Cage 3. 0y, = .4 D)3

n=50
Py = T Py =T by =

Univar 0.0843
8ock 0.0633
Fuller 2.5411
Large Sample 2.5447
Fixed Rel. 3.1538

.3 023 = .7
n=100 n=250
.7
0.0816 0.0776
0.0716 0.0741
2.4373 2.2704
2.4373 2.2704
3.0535 2.8715

Dn s .85 pzz =85 p:n = 85

Univar 0.0833
Bock 0.0655
Fuller 0.4492

Large Sample 0.4492
Fixed Rel. 0.5401

Univer 0.0907
Bock 0.0261
Fuller 0.9488
Large Sample 0.9489
Fixed Rel. 1.1539

Du s 1.00 Dzz s 1.00

Univar 0
Bock 0
Fuller 0.
Large Semple O
Fixed Rel. 0

0.0786
0.0778
0.4044
0.4044
0.4918

0.0771
0.0745
0.0772
0.0772
0.0772



Taeble 5 (Cont’d)

Cose &, 0y, = .6 D)y =
n=50
by =7 b=l byt
Univar 0.1489
Bock 0.1171
Fuller 3.4035
Large Sample 3.4056
Fixed Rel. 4.0520

-4 023 s .2
n=100 n=250
.7
0.1566 0.1521
0.1358 0.1447
3.2531 3.1028
3.2531 3.1028
3.8803 3.7250

ﬂll = .85 pzz =85 033 = .85

Univar 0.1555
Bock 0.1222
Fuller 0.6819
Large Sample 0.6819
Fixed Rel. 0.7831
Py =9 0y =8 0y =
Univar 0.1464
Bock 0.0445
Fuller 1.0619
Large Sample 1.0419
Fixed Rel. 1.2147
Du = 1.00 022 = 1.00
Univar 0.1572
Bock 0.1214
Fuller 0.1573
Large Sample 0.1573
Fixed Rel. 0.1573

0.1531 0.1542
0.1382 0.1457
0.6528 0.6449
0.6528 0.6449
0.7529 0.7451
7

0.1535 0.1500
0.03%6 0.0359
1.0434 0.9910
1.0434 0.9910
1.2159 1.1602
033 = 1.00

0.1522 0.1551
0.1352 0.147
0.1523 0.1553
0.1523 0.1553
0.1524 0.1553



Teble 5 (Cont‘d)

Cage 5, Dy = .6 D32 b pyy= -2

n=50
Py = T Py =7 Py
Univar 0.0652
Bock 0.0451
Fuller 2.5025

Large Sample 2.5268
Fixed Rel. 3.2051

n=100

7

0.0614
0.0474
2.3815
2.3840
3.0605

pn = .85 pzz =.85 033 = .85

Univar 0.0541
Bock 0.0433
Fuller 0.3682

Large Sample 0.3682
Fixed Rel. 0.4685

0.0553
0.0495
0.3680
0.3680
0.4699

Du = .9 022 =.8 033 = .7

Univar 0.0559
Bock 0.0158
Fuller 0.6635

Large Sample 0.6637
Fixed Rel. 0.8487

Dll s 1.00 022 = 1.00 033 = 1.00

Univar 0.0532
Bock 0.0455
Fuller 0.0532
Lerge Semple 0.0532
Fixed Rel. 0.0532

0.0533
0.0157
0.6238
0.6238
0.8075

0.0546
0.0491
0.0547
0.0547
0.0547

n=250

0.0572
0.0520
2.3277
2.3217
3.0124

n=500

0.0570
0.0528
2.3139
2.3139
2.9989

0.0553
0.0532
0.3620
0.3620
0.4641

0.0550
0.0158
0.6127
0.6127
0.7950

0.0549
0.0535
0.0550
0.0550
0.0550

9



Table 5 (Cont’d)

Cose €, Pyp =T Py =6 Ppy= A

n=50
Py = T Py =T Py =
Univar 0.0250
Bock 0.0153
Fuller 1.6838

Large Semple 1.7260
Fixed Rel. 2.2958

n=100
.7

0.0207
0.0156
1.5858
1.5911
2.1665

011 = .85 022 =.85 033 = .85

Univar 0.0185
Bock 0.0150
Fuller 0.1937

Large Sample 0.1938
Fixed Rel. 0.2638

Py = .9 Py =B Py =

Univar 0.0197
Bock 0.0045
Fuller 0.3482

Large Sample 0.3487
Fixed Rel. 0.4815

pu = 1.00 022 = 1.00 033 = 1.00

Univar 0.0173
Bock 0.0146
Fuller 0.0174

Large Sample 0.0174
Fixed Rel. 0.0174

0.0163
0.0144
0.1745
0.1745
0.2613

.7

0.0164
0.0035
0.3051
0.3052
0.4308

0.0160
0.0149
0.0160
0.0160
0.0160

n=250

0.0174
0.0152
1.4702
1.4703
2.0319

0.0160
0.0152
0.1704
0.1704
0.2365

0.0161
0.0030
0.2937
0.2937
0.417%

0.0154
0.0150
0.0155
0.0155
0.0155

n=500

0.0165
0.0150
1.4259
1.4259
1.9802

0.0157
0.0153
0.1688
0.1688
0.2350

0.0155
0.0028
0.2861
0.2861
0.4089

0.0155
0.0153
0.0155
0.0155
0.0156

92



Table 5 (Cont’d)

case 7. 0y =7 Py
n=50

by = -7 b =7 Pyt
Univar 0.0118
Bock 0.0085
Fuller 1.1104

Large Sample 1.1240
Fixed Rel. 1.5552

pu s .85 022 =85 033 = .85

Univar 0.0085
Bock 0.0075
Fuller 0.0952

Large Sample 0.0952
Fixed Rel. 0.1320

P = .9 Py =8 by =

Univar 0.0100
Bock 0.0017
Fuller 0.2532

Large Sample 0.2537
Fixed Rel. 0.3496

Py = 1.00 p,, = 1.00
Univar 0.0078
Bock - 0.0076
Fuller 0.0078

Large Sample 0.0078
Fixed Rel. 0.0078

.6 923 = .8
n=100 n=250
.7
0.0078 0.0065
0.0069 0.0061
0.8342 0.7459
0.8351 0.7459
1.2132 1.1087
0.0068 0.0059
0.0068 0.0059
0.0778 0.0700
0.0778 0.0700
0.1101 0.1002
.7
0.0072 0.0062
0.0010 0.0008
0.1960 0.1763
0.1960 0.9910
0.2795 0.2549
033 = 1.00
0.0068 0.0059
0.0069 0.0062
0.0068 0.0060
0.0068 0.0060
0.0068 0.0060

0.0057
0.0007
0.1683

0.2447

0.0057
0.0059
0.0057
0.0057
0.0057

93
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Summary of counts. The overcorrected correlation counts,
the invalid correlation matrices counts, and the counts of the
improper variance-covariance matrices of the corrected
correlations all show similar patterns. Problems tend to
occur when the sample sizes are small, and the reliability
triples contain moderate reliability values (e.g., .70). 1In
no case did problems occur when the reliability wvalues were
unity. Also, the cases with high percentages for one of the
three counts, tended to have high percentages on all three
indices. Particularly problematic were the p = (.70, .60,
.10) and the p = (.70, .60, .80) cases. When the higher
correlations were matched with lower reliabilities, problems
were expected, and they did occur.

It must be noted, however, that the percentage of times
that problems occurred was small for all three indices. No
more than 3% of the replications gave out-of-range corrected
correlations for any case and reliability combination. The
percents were larger for the determinants of the variance-
covariances matrices of the corrected correlations, ranging up
to 8% with improper values. Finally, the most problematic of
the three indices was the determinants of the corrected
correlation matrices, showing that up to 15% of the
replications in one case yielded improper results.

I also recorded the number of times per replication that
the Bock and Petersen (1975) and Fuller and Hidiroglou (1978)

did not default to the univariate correction. The number of
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cases seems to be associated with the number of invalid
correlation matrices. Table 6 displays the cases where the
Bock and Petersen and Fuller and Hidiroglou methods did not
match the wusual univariate correction, these cases are
referred to as "adjusted" cases. In these cases, both of the
methods adjusted for the problem of a non-positive definite
correlation matrix, and used eigenvalues to vyield new
matrices. These adjustments did not occur very frequently,
especially when sample sizes were large. The table displays
the number of times per combination that each method
"adjusted". Also in the table is the number of replications
on which the Fuller and Hidiroglou method required the added
adjustment and in the same replication, the univariate and
Gleser-method corrected correlation matrices were non-positive
definite. Most of the time, the use of the adjustment was
related to the invalid nature of the univariate correlation
matrix. The Fuller and Hidiroglou correction obviously worked
to correct this problem because the method did not yield any

problematic correlation matrices.



Table 6
Nymber of Times Per Case where the Fuller and Hidiroglou and
Bock and Petersen gdjustments were needed.*
Fuller Fuller & Fuller &
Case Reliability n Adjust Invalid Univ. Invalid Gleser
Corr. Matrix Corr. Matrix
(0, 0, 00 (.7, .7, .7 S0 0 0 0
.4, 3..7) (.7, .7, .7) 50 34 29 29
100 0 0 0
.9, .8, .7) 50 6 6 H)
(.6, .4, .2) .7, .7, .7) S0 10 8 8
(.85, .85, .85) S0 1 0 0
(.9, .8, .7) 50 0 0 0
.6, .4, -.2) .7, .7, .7 S0 170 132 132
100 33 29 28
(.85, .85, .85) SO 3 3 3
.9, .8, .7) SO 12 10 10
.7, .6, .1) .7, .7, .7) SO 343 281 281
100 93 3 3
250 6 4 4
(.85, .85, .85) 50 46 33 33
(.9 .8, .7 SO 48 38 39
100 2 1 1
.7, .6, .8) .72, .7, .7) S0 178 152 149
100 27 19 19
(.85, .85, .85) 50 3 1 1
(.9, .8, .7 S50 63 45 4“7
100 2 1 1

* Only cases where either the Fuller & Hidiroglou or Bock & Petersen
adjustments were needed are included in this table.

8ock Bock &
Adjust Invalid Bock
Corr. Matrix

1 1
19 16
1 1
6 6
1 10
0 0

1 1
78 43
3 1
3 1
7 ]
162 114
15 9
0 0
" 9
19 17
0 0
9% 92
5 5
2 2
19 19
1 1
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The Bock and Petersen method also showed similar results.
However, even after the adjustment was applied, many of the
resulting corrected correlation matrices were still invalid.
An examination of Table 6 along with the raw numbers produced
from Table 3 show that virtually any time there was a problem
with the corrected correlation matrix, the Fuller and
Hidiroglou and Bock and Petersen methods adjusted. These
methods also adjusted at other times, but the wunivariate
corrected correlation matrices were not necessarily non-
positive definite. These results could be due to rounding

error.

Results of Magnitude Data

Corrected correlations. The average corrected
correlations across replications appear in Table 7. These

values reflect differences in the methods, as well as how the
corrections become more accurate depending on sample size and
reliability wvalues. As shown in the tables, the Bock
correction is most different from the others. 1In fact, when
the Bock correction is used in combination with the (.90, .80,
.70) reliability, the corrected correlations become much
larger than their corresponding population values.

Other results visible in the table show that when the
reliability values are unity, the wunivariate, Fuller &
Hidiroglou, and Gleser methods all yield identical corrected

correlations. Only the Bock and Petersen correction differs.



Table 7

M e ati

Q”_‘. 012 = .0 913 = .0 Dy = .0

Pop. Corr. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Dll = .7 pzz 2.7 033 = .7 n=50 n=100 n=250 n=500

Univariate 0.003 0.001 0.006 -0.001 -0.002 0.000 0.003 0.006 -0.001 0.000 0.002 -0.001
Bock 0.002 0.002 0.006 0.000 -0.003 -0.003 0.002 0.0046 -0.003 0.001 0.001 0.000
Fuller 0.002 -0.001 0.005 -0.001 -0.001 0.001 0.003 0.0064 -0.001 0.000 0.002 -0.001

Gleser 0.003 -0.001 0.005 -0.001 -0.002 0.000 0.003 0.0046 -0.001 0.000 0.002 -0.001
pu s .85 022 =.85 033 s .85

Univariate -0.003 -0.001 0.006 -0.002 -0.001 -0.001 -0.002 0.001 0.001 -0.002 0.000 -0.002
Bock -0.007 0.001 0.006 -0.006 0.000 0.00" -0.003 0.002 0.000 -0.002 0.001 -0.002
Fuller -0.002 -0.001 0.005 -0.002 -0.001 -0.001 -0.002 0.001 0.001 -0.002 0.000 -0.001
Gleser -0.002 -0.001 0.005 -0.002 -0.001 -0.001 -0.002 ©0.001 0.001 -0.002 0.000 -0.001

Dn s .9 022 = 8 933 = .7

Univariate -0.004 -0.002 -0.005 -0.002 0.001 0.002 -0.003 0.000 -0.002 0.002 0.001 -0.002
Bock -0.007 -0.006 -0.001 -0.004 0.007 0.007 -0.004 -0.002 -0.002 0.004 0.001 -0.002
Fuller -0.003 -0.003 -0.006 -0.002 0.002 0.002 -0.003 0.000 -0.002 0.001 0.001 -0.002
Gleser -0.003 -0.003 -0.006 -0.002 0.002 0.002 -0.003 0.000 -0.002 0.001 0.001 -0.002

Dll = 1.00 022 = 1.00 033 = 1.00

Univariate 0.002 -0.002 0.005 0.001 -0.001 -0.004 0.000 0.00% -0.002 0.000 0.001 0.000
Bock 0.005 -0.003 0.008 0.004 -0.003 -0.007 -0.002 -0.002 -0.002 0.000 0.000 0.002
Fuller 0.002 -0.002 0.005 0.001 -0.001 -0.004 0.000 0.00% -0.002 0.000 0.001 0.000
Gleser 0.002 -0.002 0.005 0.001 -0.001 -0.004 0.000 0.001 -0.002 0.000 0.001 0.000



Table 7 (Cont’d)
Case 2. Py = -4 D33 Py

Pop. Corr. 0.40 0.30 0.10 0.40
Py ® T Dy =7 pyy=.7 n=50

Univariate 0.390 0.305 0.100 0.398
Bock 0.433 0.335 0.120 0.428
Fuller 0.387 0.301 0.099 0.39
Gleser 0.391 0.305 0.100 0.398

Du s .85 pzz =.85 033 = .85

Univariate 0.396 0.2906 0.097 0.402
Bock 0.441 0.3346 0.120 0.433
Fuller 0.395 0.295 0.097 0.402
Gleser 0.397 0.296 0.097 0.402
Pu= -9 by =8 by=.7

Univariate 0.395 0.295 0.103 0.398
Bock 0.535 0.438 0.236 0.547
Fuller 0.3964 0.293 0.103 0.397
Gleser 0.395 0.295 0.106 0.398
Du s 1.00 pzz = 1.00 033 = 1.00
Univariate 0.401 0.296 0.106 0.397
Bock 0.449 0.336 0.129 0.427
Fuller 0.401 0.296 0.106 0.397
Gleser 0.401 0.296 0.106 0.397

0.097
0.115
0.097
0.097

0.106
0.122
0.106
0.106

0.40

0.399
0.414
0.399
0.399

0.399
0.413
0.399
0.399

0.402
0.554
0.401
0.402

0.399
0.415
0.399
0.399

0.40

0.401
0.408
0.401
0.401

0.401
0.409
0.401
0.401

0.401

0.10

0.101
0.226
0.101
0.101

0.101
0.104
0.101
0.101
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Table 7 (Cont’d)

Case 3, D)y = &6 P32 .3 Dyy= .7

0.70

0.30 0. 0.40 0.30 0. 0.40 0.30 0. 0.40 0.30

0.40

Pop. Corr.

n=250 n=500

n=100

n=50

Dll s .7 pzz 2.7 933 3 .7

Univariate

Dn = .85 pzz 8.85 033 = .85

0.401
0.4624

0.399

0.401

Univariaste

Bock
Fuller
Gleser

pu s 9 pzz =.8 033 s 7

Univariate

Dn s 1.00 022 s 1.00 933 s 1.00

Univariate
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Table 7 (Cont’d)

Qasg ‘3 012 s .6 013 s 4 923 s .2

Pop. Corr. 0.60 0.40 0.200 0.60 0.40 0.20 0.60 0.40 0.20 0.60 0.40 0.20

Py ® T Dy =7 Py .7 nsSO n=100 n=250 n=500

Univariate 0.598 0.404 0.199 0.597 0.402 0.199 0.599 0.401 0.200 0.598 0.400  0.199
Bock 0.628 0.431 0.219 0.615 0.419 0.214 0.608 0.406 0.203 0.603 0.404  0.203
Fuller  0.592 0.400 0.197 0.59% 0.400 0.198 0.598 0.401 0.200 0.598 0.400  0.199
Gleser  0.598 0.404 0.199 0.597 0.602 0.199 0.599 0.401 0.200 0.598 0.400  0.199

Du = .85 022 =85 033 s .85

Univariate 0.600 0.396 0.195 0.602 0.397 0.199 0.600 0.400 0.201 0.600 0.400 0.199
Bock 0.632 0.425 0.225 0.6'8 0.410 0.210 0.608 0.406 0.205 0.604 0.404 0.202
Fuller 0.597 0.396 0.194 0.600 0.396 0.198 0.599 0.400 0.201 0.599 0.400 0.199
Gleser 0.600 0.396 0.195 0.601 0.397 0.199 0.600 0.401 0.201 0.600 0.400 0.199

011 s .9 pzz .8 033 s 7

Univariate 0.597 0.398 0.203 0.602 0.397 0.200 0.600 0.400 0.199 0.600 0.400 0.203
Bock 0.710 0.544 0.375 0.721 0.545 0.381 0.726 0.544 0.379 0.732 0.542 0.382
Fuller 0.595 0.397 0.203 0.601 0.396 0.199 0.600 0.400 0.199 0.600 0.400 0.203
Gleser 0.597 0.399 0.204 0.602 0.397 0.200 0.600 0.400 0.199 0.600 0.400 0.203
ﬂn = 1.00 Dzz = 1.00 033 = 1.00

Univariate 0.60" 0.39% 0.197 0.600 0.399 0.201 . 0.401 0.202 . 0.400 0.201

0.402 0.202
0.400 0.201
0.400 0.201

.

OOPD
333

0.600
Bock 0.635 0.4246 0.223 0.618 0.414 0.214 0.609 0.409 0.210
Fuller 0.601 0.39 0.198 0.600 0.399 0.201 0.600 0.401 0.202
Gleser 0.601 0.39¢ 0.198 0.600 0.399 0.201 0.600 0.401 0.202
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Table 7 (Cont’d)
case 3, ;= 6 D3 = .4 Dy -2

Pop. Corr. 0.60 0.40 -0.20 0.60 0.40 -0.20 0.60 0.40 -0.20
Py = .7 Dy =27 Dy = .7 n=50 n=100 n=250

Univariate 0.597 0.393 -0.195 0.596 0.395 -0.203 0.597 0.402 -0.200
Bock 0.617 0.400 -0.185 0.612 0.403 -0.18 0.608 0.405 -0.187
Fuller 0.590 0.387 -0.193 0.593 0.39% -0.202 0.596 0.402 -0.200
Gleser 0.598 0.393 -0.195 0.596 0.396 -0.203 0.597 0.402 -0.200

pu s .85 pzz =.85 933 = .85

Univariate 0.600 0.397 -0.194 0.598 0.403 -0.199 0.600 0.396 -0.204
Bock 0.619 0.401 -0.174 0.611 0.410 -0.179 0.609 0.400 -0.189
Fuller 0.598 0.395 -0.19% 0.597 0.403 -0.199 0.599 0.396 -0.204
Gleser 0.600 0.396 -0.195 0.598 0.403 -0.199 0.600 0.396 -0.204

b = .9 (7] =8 P33 = .7

Univariate 0.597 0.399 -0.196 0.599 0.398 -0.199 0.598 0.396 -0.203
Bock 0.731 0.481 0.016 0.743 0.484 0.032 0.750 0.480 0.037
Fuller 0.595 0.397 -0.19% 0.597 0.397 -0.198 0.598 0.396 -0.202
Gleser 0.597 0.399 -0.195 0.599 0.398 -0.199 0.598 0.396 -0.202

Py = 1.00 Dy = 1.00 pyy = 1.00

Univariste 0.596 0.396 -0.199 0.597 0.398 -0.199

0.600 -0.198
Bock 0.616 0.403 -0.173 0.614 0.404 -0.177 0.609

0.600

0.600

400

404 -0.184
Fuller 0.596 0.396 -0.199 0.597 .398 -0.199 400
Gleser 0.596 0.396 -0.199 0.597 398 -0.199 400

-0.198
-0.198
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Table 7 (Cont‘d)
mpu. N4 ﬂn' .6 023' A

Pop. Corr. 0.70 0.60 0.10 0.70 0.60 0.10 0.70 0.60 0.10 0.70 0.60 0.10
Py = T Py =T Dyy=.7 nes0 r=100 n=250 n=500
Univariate 0.696 0.599 0.102 0.696 0.600 0.095 0.696 0.598 0.09 0.699 0.599 0.098
Bock 0.718 0.619 0.140 0.707 0.611 0.116 0.702 0.604 0.106 0.702 0.602 0.102
Fuller 0.684 0.589 0.101 0.692 0.597 0.095 0.695 0.597 0.09 0.699 0.598 0.098
Gleser 0.696 0.599 0.102 0.69 0.600 0.095 0.696 0.598 0.096 0.699 0.599 0.098
pu = .85 pzz =85 033 = .85

Univariste 0.699 0.596 0.101 0.699 0.597 0.099 0.700 0.597 0.097 0.699 0.601 0.101
Bock 0.7 0.613 0.132 0.708 0.608 0.120 0.705 0.602 0.107 0.702 0.603 0.106
Fuller 0.697 0.593 0.100 0.698 0.596 0.099 0.700 0.596 0.097 0.699 0.600 0.101
Gleser 0.700 0.595 0.101 0.699 0.597 0.099 0.700 0.597 0.097 0.699 0.601 0.101
pu = .9 022 =.8 px’ s 7

Univariate 0.698 0.599 0.100 0.699 0.601 0.1046 0.697 0.598 0.097 0.700 0.602 0.103
Bock 0.805 0.699 0.353 0.810 0.703 0.366 0.812 0.702 0.368 0.815 0.705 0.378
Fuller 0.69¢ 0.595 0.099 0.698 0.599 0.106 0.697 0.597 0.097 0.700 0.602 0.103
Gleser 0.698 0.599 0.100 0.699 0.601 0.105 0.697 0.598 0.097 0.700 0.602 0.103
Py = 1.00 Dy = 1.00 pyy = 1.00

Univariate 0.695 0.599 0.099 0.697 0.597 0.096 0.700 0.600 0.102 0.699 0.599 0.099
Bock 0.712 0.619 0.140 0.706 0.608 0.120 0.706 0.604 0.111 0.702 0.602 0.105
Fuller 0.695 0.599 0.099 0.697 0.597 0.096 0.700 0.600 0.102 0.699 0.599 0.099
Gleser 0.695 0.599 0.099 0.697 0.597 0.09 0.700 0.600 0.102 0.699 0.599 0.099



0.80

0.60
n=500

0.80 0.70

0.
n=250
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0.80 0.

0.60
n=100

0.

n=50

0. 0.

Table 7 (Cont’d)

Cose 7, Py = T Py = .6 Dpyy=.8
0.

p". = .7 022 =7 933 s 7

pu s .85 022 =.85 033 s .85

Du = .9 022 =8 033 s .7

Pop. Corr.
Univariate
Bock
Fuller
Gleser

. .
[-N-N-N-]
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REER
gaRs
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2358

" o o
[-N-X-X-J

31433

cocoo
3388
cococo
R3RE
cococo
R3ER
cococo
28588
occoco

§388

[-R-X-N-J

Univariate

Bock

Fuller
Gleser

Py * 1.00 pyy = 1.00

Dn = 1-00
Univariate

Bock
Gleser

Fuller
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The Bock and Petersen method yields corrected correlations
larger than the other methods. Trends in the table show that
higher reliabilities lead to more accurate corrections. Also,
the larger the sample size, the more accurate the correction.
Overall, the corrected correlations are all remarkably close
to the population values, with the exception of the Bock and
Petersen correction when the reliabilities are (.90, .80,
.70) . This may have something to do with reliabilities being
unequal in these cases. An investigation of why these results
occurred yielded no solutions.

Variances. The estimated variances of the corrected
correlations can be compared to the empirical variances based
on the sampling distributions (the 2000 cases) of the
corrected correlations. Table 8 displays the variances of the
corrected <correlations for the different cases and
combinations of factors. The third line at the top of each
table shows the theoretical variance if one were to substitute
the population correlation into the usual variance formula
(Equation 3.1). As shown in the tables, this theoretical
variance is smaller than the variance of the corrected
correlations from the sampling distributions. This result was
also found in Becker and Fahrbach (1995). This result was
expected, given the work of Bobko and Rieck (1980) (among
others) who showed that corrected correlations are more

variable than uncorrected correlations.
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Teble 8

Mean Variances of Corrected Correlations
Case 1. Dyy = .0 pj3 = .0 0y = .0

o ) b b o p o ) p ) ) p.
Correlation  0.0500 0.0000 o0.00b0 o0.0%b0 o0.0b00 o.0hb0  0.00d0 o.0%o0 o0.08b0  o.0bbo o0.0%00 o.0Bbo
Expect Var.  0.0200 0.0200 0.0200 0.0100 0.0100 0.0100  0.0040 0.0040 0.0040  0.0020 0.0020 0.0020

pnlputontJ n=50 n=100 n=250 n=500

Emp. Sam. Var. 0.0445 0.0415 0.0425 0.0213 0.0199_0.0210 0.0083_0.0082 0.0087 0.0041 0.0043 0.0043
Univariate 0.0183 0.0184 0.0184 0.0096 0.0096 0.0096 0.0039 0.0039 0.0039 0.0020 0.0020 0.0020
Large Semple 0.0394 0.0396 0.0396 0.0202 0.0202 0.0201 0.0081 0.0081 0.0081 0.0041 0.0041 0.0061
Fuller 0.0396 0.0396 0.0396 0.0202 0.0202 0.0201 0.0081 0.0081 0.0081 0.0041 0.0041 0.0041
Bock 0.0177 0.0177 0.0176 0.0094 0.009¢ 0.0094 0.0039 0.0039 0.0039 0.0020 0.0020 0.0020
Fixed Reliab. 0.0400 0.0401 0.0402 0.0203 0.0203 0.0203 0.0081 0.0081 0.0081 0.0041 0.0041 0.0041
P11*03;*P " -85

Emp. Sam. Var. 0.0297 0.0288 0.0284 0.0143 0.0141 0.0137 0.0056 0.0055 0.0057 0.0027_ 0.0028 0.0027
Univariate 0.0189 0.0189 0.0189 0.0097 0.0097 0.0097 0.0040 0.0040 0.0040 0.0020 0.0020 0.0020
Large Semple 0.0267 0.0267 0.0268 0.0136 0.0136 0.0136 0.0055 0.0055 0.0055 0.0028 0.0028 0.0028
Fuller 0.0267 0.0267 0.0268 0.0136 0.0136 0.0136 0.0055 0.0055 0.0055 0.0028 0.0028 0.0028
Bock 0.0180 0.0180 0.0181 0.0095 0.0095 0.0095 0.0039 0.0039 0.0039 0.0020 0.0020 0.0020

Fixed Relisb. 0.0269 0.0269 0.0270 0.0136 0.0136 0.0136 0.0055 0.00S5 0.0055 0.0028 0.0028 0.0028
pu'.9 9223.3 pn'-7
Emp. Sam. Var, 0.0283 0.0335 0.0398 0.0150 0.0163 0.0180 0.0057 0.0065 0.0072 0.0027  0.0030_ 0.0035

Univariate  0.0189 0.0187 0.0185 0.0097 0.0097 0.0097  0.0040 0.0039 0.0039  0.0020 0.0020 0.0020
Large Semple  0.0269 0.0307 0.0346 0.0136 0.0156 0.0176  0.0055 0.0063 0.0071  0.0028 0.0192 0.0036
Fuller 0.0269 0.0307 0.0346 0.0136 0.0156 0.0176  0.0055 0.0063 0.0071  0.0028 0.0192 0.0036
Bock 0.0170 0.0161 0.0170 0.0091 0.0088 0.0092  0.0038 0.0038 0.0038  0.0020 0.0183 0.0020
Fixed Relisb. 0.0271 0.0310 0.0350 0.0137 0.0157 0.0177  0.0055 0.0063 0.0071  0.0028 0.0192 0.0036
P11*P2*0533™1.00

Emp. Sam. Var. 0.0197 0.0210 0.0208 0.0106_0.0101_ 0.0101 0.0040 0.0040 0.0044 0.0019_ 0.0021 0.0019
Univariate  0.0192 0.0192 0.0192 0.0098 0.0098 0.0098  0.0040 0.0040 0.0040  0.0020 0.0020 0.0020
Large Sample  0.0192 0.0192 0.0192 0.0098 0.0098 0.0098  0.0040 0.0040 0.0040  0.0020 0.0020 0.0020
Fuller 0.0192 0.0192 0.0192 0.0098 0.0098 0.0098  0.0040 0.0040 0.0040  0.0020 0.0020 0.0020
Bock 0.0184 0.0183 0.0183 0.0095 0.009 0.0095  0.0039 0.0039 0.0039  0.0020 0.0020 0.0020
Fixed Relisb. 0.0192 0.0192 0.0192 0.0098 0.0098 0.0098  0.0040 0.0040 0.0040  0.0020 0.0020 0.0020
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Table 8 (Cont’d)

Case 2. D)y = 4 Py = 3Dy .1

) ) ) p ) ) 0y, P ) 0, P p
Correlation  0.4000 0.3600 0.18b0 o0.40b0 0.3%00 0.16%0 0.400d o0.3oo 0.18b0 0.400d 0.3%00 o0.1800
Expect Ver.  0.0141 0.0166 0.0196 0.0071 0.0083 0.0098 0.0028 0.0033 0.0039 0.0016 0.0017 0.0020

PPy Pyg=-T =50 n=100 n=250 n=500

Emp. Sam. Var. 0.0351 0.0352 0.0420 0.0162 0.0187 0.0197 0.0066_ 0.007S 0.0076 0.0032 0.0035 0.0041
Univariate 0.0136 0.0156 0.0181 0.0069 0.0080 0.009% 0.0028 0.0033 0.0039 0.0014 0.0016 0.0019
Large Sswple  0.0331 0.0358 0.0393 0.0162 0.0179 0.0198 0.0065 0.0072 0.0080 0.0033 0.0036 0.0040
Ful ler 0.0331 0.0358 0.0393 0.0162 0.0179 0.0198 0.0065 0.0072 0.0080 0.0033 0.0036 0.0040
Bock 0.0127 0.0145 0.0175 0.0065 0.0078 0.0093 0.0027 0.0032 0.0038 0.0014 0.0016 0.0019
Fixed Relisb. 0.0351 0.0372 0.0399 0.0172 0.0186 0.0200 0.0069 0.0074 0.0081 0.0035 0.0037 0.0040
Py =037%P 33" -85

Emp, Sam. Var. 0.0214 0.0251 0.0285 0.0105 0.0122 0.0146 0.0041 0.0048 0.0056 0.0021 0.0023 0.0027
Univariate 0.0137 0.0159 0.01865 0.0070 0.0081 0.0095 0.0028 0.0033 0.0039 0.001% 0.0017 0.0020
Large Semple  0.0206 0.0232 0.0264 0.0103 0.0117 0.0134 0.0041 0.0047 0.0056 0.0021 0.0024 0.0027
Ful ler 0.0206 0.0232 0.0264 0.0103 0.0117 0.0136 0.0041 0.0047 0.005 0.0021 0.002 0.0027
Bock 0.0124 0.0149 0.0179 0.0065 0.0078 0.009 0.0027 0.0032 0.0039 0.0014 0.0016 0.0019

Fixed Relisb. 0.0215 0.0238 0.0266 0.0108 0.0120 0.0135 0.0043 0.0048 0.0054 0.0022 0.0024 0.0027
pnl.9 0228.8 pn'.7
Emp. Sam. Var. 0.0215 0.0273 0.0363 0.0108 0.0140 0.0178 0.0042 0.0053_ 0.0069 0.0021 0.0027_ 0.0036

Univariate 0.0139 0.0160 0.0183 0.0070 0.0081 0.0095 0.0028 0.0033 0.0039 0.0014 0.0016 0.0019
Large Sample 0.0210 0.0273 0.0343 0.0106 0.0136 0.0173 0.0042 0.0055 0.0070 0.0021 0.0027 0.0035
Fuller 0.0210 0.0273 0.0343 0.0104 0.0136 0.0173 0.0042 0.0055 0.0070 0.0021 0.0027 0.0035
Bock 0.0101 0.0121 0.0159 0.0049 0.0060 0.0083 0.0019 0.0024 0.0035 0.0010 0.0012 0.0018
Fixed Relisb. 0.0219 0.0281 0.0348 0.0108 0.0140 0.0174 0.0044 0.0056 0.0070 0.0022 0.0028 0.0035
pu’pzz‘p:n"' .00

Emp. Sam, Yar. 0.0150 0.0166_ 0.0206_ 0.0076 0.0084_ 0.0105 0.0028 0.0032 0.0040 0.0014 0.0016 0.0020
Univariste 0.0138 0.0162 0.0188 0.0070 0.0082 0.0096 0.0028 0.0033 0.0039 0.0014 0.0016 0.0020
Large Sample 0.0138 0.0162 0.0188 0.0070 0.0082 0.0096 0.0028 0.0033 0.0039 0.00%6 0.0016 0.0020
Fuller 0.0138 0.0162 0.0188 0.0070 0.0082 0.0096 0.0028 0.0033 0.0039 0.0014 0.0016 0.0020
Bock 0.0123 0.0151 0.0182 0.0066 0.0078 0.0095 0.0027 0.0032 0.0039 0.0014 0.0016 0.0019
Fixed Reliab. 0.0138 0.0162 0.0188 0.0070 0.0082 0.0096 0.0028 0.0033 0.0039 0.0014 0.0016 0.0020
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Table 8 (Cont’d)

Case 3. D), = .4 D)3 = .3 pyy = .7

p ) p p p p by, P p Py, P )
Correlation  0.4000 0.3%00 0.70b0 0.400 0.3%00 0.70b0 0.400d 0.3600 0.70b0 0.400d 0.3oo o.70bo

Expect Var. 0.0141 0.0166 0.0052 0.0071 0.0083 0.0026 0.0028 0.0033 0.0010 0.0014 0.0017 0.0005
pll'pa'pu’ "4 n=50 n=100 n=250 n=500

Emp. Sam. Var. 0.0330_ 0.0383 0.0215 0.0179 0.0189 0.0099 0.0071 0.0073 0.0039 0.0033 0.0037 0.0018
Univariate 0.0134 0.0156 0.0056 0.0069 0.0080 0.0027 0.0028 0.0033 0.0010 0.0014 0.0016 0.0005
Large Sample 0.0325 0.0356 0.0205 0.0164 0.0180 0.0100 0.0065 0.0072 0.0039 0.0033 0.0036 0.0019
Fuller 0.0325 0.0355 0.0205 0.0164 0.0180 0.0100 0.0065 0.0072 0.0039 0.0033 0.0036 0.0019
Bock 0.0128 0.0150 0.0047 0.0068 0.0079 0.0025 0.0028 0.0032 0.0010 0.0014 0.0016 0.0005
Fixed Reliab. 0.0345 0.0370 0.0244 0.0174 0.0187 0.0121 0.0069 0.0074 0.0047 0.0035 0.0037 0.0024
P03y -85

Emp. Sam. Var. 0.0217 0.0244 0.0109 0.0106 0.0121 0.0049 0.0043 0.0050_ 0.0020 0.0020 0.0024 0.0009
Univariate 0.0138 0.0159 0.0054 0.0070 0.0081 0.0027 0.0028 0.0033 0.0011 0.0014 0.0016 0.0005
Large Sample 0.0207 0.0232 0.0103 0.0103 0.0117 0.0050 0.0042 0.0047 0.0020 0.0021 0.0024 0.0010
Fuller 0.0207 0.0232 0.0103 0.0103 0.0117 0.0050 0.0042 0.0047 0.0020 0.0021 0.0024 0.0010
Bock 0.0131 0.0153 0.0047 0.0067 0.0079 0.0024 0.0028 0.0033 0.0010 0.0014 0.0016 0.0005

Fixed Relisb. 0.0216 0.0238 0.0121 0.0108 0.0120 0.0059 0.0043 0.0048 0.0023 0.0022 0.0026 0.0012
pn'.’ 9228.8 0]3’.7
Emp. Sam. Var. 0.0215 0.0291 0.0166 0.0107 0.0139 0.0081 0.0041 0.0059 0.0030 0.0022 0.0028 0.0016

Univariate 0.0138 0.0159 0.0057 0.0070 0.0081 0.0027 0.0028 0.0033 0.0011 0.0014 0.0016 0.0005
Large Sample 0.0208 0.0271 0.0167 0.0106 0.0137 0.0080 0.0042 0.0055 0.0031 0.002%1 0.0027 0.0015
Fuller 0.0208 0.0271 0.0167 0.0104 0.0137 0.0080 0.0042 0.0055 0.0031 0.0021 0.0027 0.0015
Bock 0.0104 0.0127 0.0031 0.0051 0.0064 0.0013 0.0020 0.0025 0.0005 0.0010 0.0013 0.0002
Fixed Reliab. 0.0217 0.0280 0.0199 0.0109 0.0141 0.0096 0.0043 0.0056 0.0038 0.0022 0.0028 0.0019
Pyy*P2=P33=1-00

Emp. Sam. Var. 0.0150 0.0178 0.0057 0.0072 0.0083 0.0027 0.0028 0.0033 0.0010 0.0014 0.0016 0.0005
Univariste 0.0140 0.0161 0.005 0.0070 0.0082 0.0027 0.0028 0.0033 0.0010 0.001% 0.0017 0.0005
Large Sample  0.0140 0.0161 0.0056 0.0070 0.0082 0.0027 0.0028 0.0033 0.0010 0.0014 0.0017 0.0005
Fuller 0.0140 0.0161 0.005¢ 0.0070 0.0082 0.0027 0.0028 0.0033 0.0010 0.001%4 0.0017 0.0005
Bock 0.0132 0.0156 0.00646 0.0068 0.0080 0.0025 0.0028 0.0033 0.0010 0.0014 0.0016 0.0005

0

Fixed Reliab. 0.0140 0.0161 0.0056 0.0070 0.0082 0.0027 0.0028 0.0033 0.0010 0.0014 0.0017 0.0005
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Case 4. Dyy = .6 D)3 = b Pyy = .2

Correlation
Expect Var.

P112027=03=- 7

Emp. Sam. Var.
Univariate
Large Sample
Fuller

Bock

Fixed Reliab.

pn'pzz'ﬁ:u‘-as
Emp. Sam. Var.

Univariate
Large Sample
Fuller

Bock

Fixed Reliab.
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9‘13.9 922'.3 033'.7

Emp. Sam. Var.
Univariate
Large Sample
Fuller

Bock

Fixed Reliab.

pu’pzz’pn" .00

Emp. Sam. Var.
Univariate
Large Sample
Fuller

Bock

Fixed Reliab.

p [ b o o P p by I'2} Dy P p.
0.6’300 0.61300 0.26%0 0.6&)0 0.4000 0.2000 0.60& 0.4000 0.2000 0.600 0.45’00 0.26}30
0.0082 0.0141 0.0186 0.0041 0.0071 0.0092 0.0016 0.0028 0.0037 0.0008 0.0014 0.0018

n=50 n=100 n=250 n=500
0.0242 0.0361_ 0.0374 0.0126 0.0174 0.0200 0.0047 0.0065 0.0082 0.0023 0.0031 0.0040
0.0082 0.0137 0.0173 0.0042 0.0069 0.0089 0.0016 0.0028 0.0036 0.0008 0.0014 0.0018
0.0248 0.0331 0.0382 0.0124 0.0164 0.0191 0.0048 0.0065 0.0077 0.0024 0.0033 0.0039
0.0248 0.0331 0.0382 0.0126 0.0164 0.0191 0.0048 0.0065 0.0077 0.0024 0.0033 0.0039
0.0073 0.0129 0.0167 0.0039 0.0067 0.0087 0.0016 0.0028 0.0036 0.0008 0.0014 0.0018
0.0282 0.0350 0.0391 0.011 0.0176 0.0195 0.0056 0.0069 0.0078 0.0028 0.0035 0.0039
0.0145 0.0215 0.0274_ 0.0070 0.0110 0.0133 0.0027 0.0042 0.0054 0.0013 0.0022 0.0026
0.0085 0.0137 0.0175 0.00641 0.0070 0.0099 0.0016 0.0028 0.0037 0.0008 0.0014 0.0018
0.0141 0.0206 0.025% 0.0069 0.0104 0.0127 0.0027 0.0042 0.0051 0.0014 0.0021 0.0026
0.0141 0.0206 0.0251 0.0069 0.0104 0.0127 0.0027 0.0062 0.0051 0.0014 0.0021 0.0026
0.0075 0.0128 0.0169 0.0039 0.0068 0.0088 0.0016 0.0028 0.0000 0.0008 0.0014 0.0018
0.0156 0.0215 0.0255 0.0077 0.0108 0.0129 0.0030 0.0043 0.0052 0.0015 0.0022 0.0026
0.0146_ 0.0251 0.0341 0.0069 0.0127 0.0176 0.0027 0.0052 0.0070 0.0013 0.0023 0.0034
0.0083 0.0137 0.0174 0.0042 0.0070 0.0089 0.0016 0.0028 0.0036 0.0008 0.0014 0.0018
0.0140 0.0243 0.0328 0.0070 0.0122 0.0167 0.0027 0.0049 0.0067 0.0014 0.0026 0.0034%
0.0140 0.0243 0.0328 0.0070 0.0122 0.0167 0.0027 0.0049 0.0067 0.0014 0.0024 0.0034
0.0051 0.0098 0.0137 0.0026 0.0049 0.0070 0.0009 0.0020 0.0029 0.0004 0.0010 0.0015
0.0155 0.0255 0.0335 0.0078 0.0129 0.0169 0.0030 0.0051 0.0068 0.0015 0.0026 0.0034
0.0087 0.0150 0.0190 0.0041 0.0072 0.0089 0.0017 0.0027 0.0038 0.0008 0.0015 0.0019
0.0083 0.0140 0.0178 0.0041 0.0070 0.0090 0.0016 0.0028 0.0037 0.0008 0.0014 0.0018
0.0083 0.0140 0.0178 0.004t 0.0070 0.0090 0.0016 0.0028 0.0037 0.0008 0.001%4 0.0018
0.0083 0.0140 0.0178 0.0041 0.0070 0.0090 0.0016 0.0028 0.0037 0.0008 0.0014 0.0018
0.0072 0.0132 0.0172 0.0038 0.0068 0.0089 0.0016 0.0028 0.0036 0.0008 0.0014 0.0018
0.0083 0.0140 0.0178 0.0041 0.0070 0.0090 0.0016 0.0028 0.0037 0.0008 0.001%4 0.0018
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Case 5. D), = .6 D)3 = b Ppy=-.2
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p 14 D p p p 14 p P 14 p P
Correlation 0.6'&00 0.6900 -0.200 0.66%0 0.4900 '0.5%0 0.6066 0.61300 '0.5%0 0.606% 0.41&00 -0.5%0
Expect Var. 0.0082 0.0141 0.0184 0.0041 0.0071 0.0092 0.0016 0.0028 0.0037 0.0008 0.0014 0.0018
Py 205201327 n=50 n=100 n=250 n=500
Emp. Sam. Var. 0.0265 0.0355 0.0409 0.0125 0.0163 0.0195 0.0050 0.0065_ 0.0076 0.0024 0.0033 0.0039
Univariate 0.0084 0.0135 0.0171 0.0042 0.0069 0.0089 0.0017 0.0028 0.0036 0.0008 0.0014 0.0018
Large Sampte 0.0252 0.0328 0.0378 0.0123 0.0163 0.0191 0.0049 0.0065 0.0077 0.0026 0.0033 0.0039
Fuller 0.0250 0.0326 0.0376 0.0123 0.0163 0.0191 0.0049 0.0065 0.0077 0.00264 0.0033 0.0039
Bock 0.0078 0.0131 0.0169 0.0039 0.0067 0.0089 0.0016 0.0028 0.0037 0.0008 0.0014 0.0018
Fixed Reliab. 0.0285 0.0348 0.0388 0.0140 0.0173 0.019 0.0056 0.0069 ©0.0078 0.0018 0.0035 0.0039
Dn’ozz’pn' .85
Emp. Sam. Var. 0.0147 0.0223 0.0270 0.0072 0.0110 0.0131 0.0027 0.0043 0.0054 0.0014 0.0020 0.0027
Univariate 0.0082 0.0138 0.0175 0.0041 0.0070 0.0090 0.0016 0.0028 0.0037 0.0008 0.0014 0.0018
Large Sample 0.0139 0.0206 0.0251 0.0068 0.0104 0.0128 0.0027 0.0042 0.0051 0.0014 0.0021 0.0026
Fuller 0.0139 0.0206 0.0251 0.0068 0.0104 0.0128 0.0027 0.0042 0.0051 0.0014 0.0021 0.0026
Bock 0.0077 0.0132 0.0173 0.0039 0.0069 0.0090 0.0016 0.0028 0.0037 0.0008 0.0014 0.0018
Fixed Reliab. 0.0154 0.0215 0.0255 0.0076 0.0109 0.0129 0.0030 0.0043 0.0052 0.0015 0.0022 0.0026
011'.9 ﬂzz'.‘ Dn'.7
Emp. Sam. Var. 0.0136 0.0258 0.0336 0.0068 0.0127 0.0173 0.0028 0.0049 0.0067 0.0014 0.0023 0.0032
Univariate 0.0082 0.0137 0.0176 0.0041 0.0069 0.0090 0.0016 0.0028 0.0036 0.0008 0.0014 0.0018
Large Sample 0.0139 0.0244 0.0332 0.0068 0.0122 0.0167 0.0027 0.0049 0.0067 0.0014 0.00246 0.0034
Fuller 0.0139 0.0244 0.0332 0.0068 0 9122 0.0167 0.0027 0.0049 0.0067 0.0014 0.0026 0.0034
Bock 0.0045 0.0112 0.0175S 0.0020 0.0057 0.0093 0.0008 0.0023 0.0039 0.0006 0.0012 0.0020
Fixed Reliab. 0.0155 0.0257 0.0339 0.0076 0.0128 0.0170 0.0031 0.0051 0.0068 0.0015 0.0026 0.0034
P00 3y=1.00
Emp. Sam. Var. 0.0086 0.0151 0.0185 0.0041 0.0071 0.0091 0.0017 0.0030 0.0038 0.0009 0.0015_ 0.0019
Univariate 0.0084 0.0139 0.0178 0.0041 0.0071 0.0091 0.0017 0.0028 0.0037 0.0008 0.0014 0.0018
Large Sample 0.0084 0.0139 0.0178 0.0041 0.0071 0.0091 0.0017 0.0028 0.0037 0.0008 0.0014 0.0018
Fuller 0.0084 0.0139 0.0178 0.0041 0.0071 0.0091 0.0017 0.0028 0.0037 0.0008 0.0014 0.0018
Bock 0.0080 0.0135 0.0176 0.0039 0.0069 0.0091 0.0016 0.0028 0.0037 0.0007 0.0014 0.0018
Fixed Reliab. 0.0086 0.0139 0.0178 0.0041 0.0071 0.0091 0.0017 0.0028 0.0037 0.0008 0.0014 0.0018



Table 8 (Cont’d)

Case 6. Dy, = .7 Dyy = .6 Dpy = .1

Correlation
Expect Var.

PPy T

Emp. Sam. Var.
Univariate
Large Sample
Fuller

Bock

Fixed Reliab.

P13 -85
Emp. Sam. Var,

Univariate
Large Sasple
Fuller

Bock

Fixed Reliab.

m

pu'.’ pzz'.s P33= 7

Emp. Sam. Var. 0.0101 0.0172

Univariate
Large Sample
Fuller

Bock

Fixed Relfsb.

P1y077"03;"1.00
Emp. Sam. Var.

Univeriate
Large Sample
Fuller

Bock

fixed Reliab.

Y o b by oy p P b P 4 b
0.7’&00 0.6’0‘,00 0.16%0 0.7G00 0.6000 0.16%0 0.700% 0.61300 0.16?]0 0.70&) 0.6"}00
0.0052 0.0082 0.019%6 0.0026 0.0041 0.0098 0.0010 0.0016 0.0039 0.0005 0.0008

n=50 n=100 n=250 n=500

0.0204 0.0251 0.0415 0.0099 0.0123 0.0207 0.0039 0.0048 0.0081 0.0019 0.0022
0.0056 0.0082 0.0181 0.0027 0.0042 0.0094 0.0011 0.0016 0.0039 0.0005 0.0008
0.0207 0.0247 0.0393 0.0101 0.0123 0.0199 0.0039 0.0048 0.0080 0.0019 0.0024
0.0204 0.0244 0.0387 0.0101 0.0123 0.0199 0.0039 0.0048 0.0080 0.0019 0.0024
0.0051 0.0076 0.0175 0.0026 0.0040 0.0093 0.0010 0.0016 0.0038 0.0005 0.0008
0.0246 0.0281 0.0399 0.0121 0.0140 0.0201 0.0048 0.0056 0.0081 0.0024 0.0028
0.0100 0.0134 0.0283 0.0049 0.0072 0.0132 0.0019 0.0027 0.0052 0.0009 0.0013
0.0054 0.0084 0.0186 0.0026 0.0041 0.0096 0.0011 0.0016 0.0039 0.0005 0.0008
0.0101 0.0141 0.0264 0.0049 0.0069 0.0134 0.0020 0.0027 0.0054 0.0010 0.0014
0.0101 0.0141 0.0264 0.0049 0.0069 0.0134 0.0020 0.0027 0.0054 0.0010 0.0014
0.0049 0.0079 0.0181 0.0025 0.0040 0.0093 0.0010 0.0016 0.0038 0.0005 0.0008
0.0119 0.0156 0.0266 0.0058 0.0077 0.0135 0.0023 0.0030 0.0054 0.0012 0.0015
0.0368 0.0049 0.0086 0.0179 0.0018 0.0033 0.0070 0.0010 0.0016

0.0056 0.0084 0.0183 0.0026 0.0041 0.0095 0.0011 0.0016 0.0039 0.0005 0.0008
0.0104 0.0174 0.0343 0.0050 0.0084 0.0173 0.0020 0.0034 0.0070 0.0010 0.0017
0.0104 0.0174 0.0342 0.0050 0.0084 0.0173 0.0020 0.0034 0.0070 0.0010 0.0017
0.0028 0.0055 0.0143 0.0013 0.0027 0.0072 0.0005 0.0010 0.0029 0.0002 0.0005
0.0122 0.0196 0.0347 0.0059 0.0095 0.0175 0.0023 0.0038 0.0070 0.0012 0.0019
0.0056_0.0086 0.0195 0.0029 0.0044 0.0105 0.0010 0.0017 0.0041 0.0005 0.0008
0.0055 0.0084 0.0189 0.0027 0.0041 0.0096 0.0010 0.0016 0.0039 0.0005 0.0008
0.0055 0.0084 0.0189 0.0027 0.0041 0.0096 0.0010 0.0016 0.0039 0.0005 0.0008
0.0055 0.00864 0.0189 0.0027 0.0041 0.0096 0.0010 0.0016 0.0039 0.0005 0.0008
0.0050 0.0078 0.0182 0.0025 0.0040 0.009% 0.0010 0.0016 0.0038 0.0005 0.0008
0.0055 0.0084 0.0189 0.0027 0.0041 0.0096 0.0010 0.0016 0.0039 0.0005 0.0008
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Case 7. pj; = .7 D3 = .6 )3 = .8
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) o p p o p by, P p Py, P p
Correlation  0.7000 0.6000 o0.80bo 0.70b0 o0.6800 0.88%0 o.708b o0.%00 0.80b0 o0.700d o0.6Hoo0 o0.8800
Expect Var.  0.0052 0.0082 0.0026 0.0026 0.0041 0.0013 0.0010 0.0016 0.0005 0.0005 0.0008 O.0003
Py *095%Py33-7 n=50 n=100 n=250 n=500

Emp. Sam_Var, 0.0220 0.0258 0.0153 0.0099 0.0128 0.0069 0.0038 0.0048 0.0028_ 0.0018 0.0024 0.0014
Univeriate 0.0057 0.0082 0.0032 0.0027 0.0041 0.0014 0.0011 0.0017 0.0005 0.0005 0.0008 0.0003
Large Sample  0.0209 0.0251 0.0164 0.0100 0.0123 0.0076 0.0039 0.0049 0.0030 0.0019 0.0026 0.0015
Fuller 0.0208 0.0249 0.0163 0.0100 0.0122 0.0076 0.0039 0.0049 0.0030 0.0019 0.0026 0.0015
Bock 0.0052 0.0079 0.0027 0.0026 0.0041 0.0013 0.0010 0.0016 0.0005 0.0005 0.0008 O0.0003
Fixed Reliab. 0.0243 0.0286 0.0206 0.0120 0.0140 0.0098 0.0048 0.0056 0.0039 0.0026 0.0028 0.0019
P11™037*P 33" -85

Emp. Sam. Var. 0.0103 0.0145 0.0067_ 0.0047_ 0.0070 0.0028 0.0019 0.0027 0.0012 0.0010 0.0014 0.0006
Univariate 0.0054 0.0082 0.0028 0.0027 0.0041 0.0013 0.0010 0.0016 0.0005 0.0005 0.0008 0.0003
Large Sample  0.0102 0.0138 0.0066 0.0050 0.0069 0.0032 0.0020 0.0027 0.0012 0.0010 0.0014 0.0006
Fuller 0.0102 0.0138 0.0065 0.0050 0.0069 0.0032 0.0020 0.0027 0.0012 0.0010 0.0014 0.0006
Bock 0.0052 0.0080 0.0025 0.0026 0.0041 0.0013 0.0010 0.0016 0.0005 0.0005 0.0008 0.0003
Fixed Relisb. 0.0120 0.0156 0.008¢ 0.0059 0.0077 0.0041 0.0023 0.0030 0.0016 0.0012 0.0015 0.0008
Du'.9 pzz’-‘ 933.7

Emp. Sam. Var. 0.0109 0.0179 0.0115 0.0047 0.0081 0.0052 0.0020 0.0034 0.0021 0.0010 0.0016 0.0010
Univariate 0.0055 0.0083 0.0030 0.0027 0.0041 0.0014 0.0011 0.0016 0.0005 0.0005 0.0008 O0.0003
Lerge Semple  0.0105 0.0173 0.0123 0.0050 0.0085 0.0058 0.0020 0.0033 0.0023 0.0010 0.0017 0.001%
Fuller 0.0104 0.0173 0.01235 0.0050 0.0085 0.0058 0.0020 0.0033 0.0023 0.0010 0.0017 0.0011
Bock 0.0039 0.0058 0.0013 0.0019 0.0029 0.0005 0.0007 0.0011 0.0002 0.0003 0.0006 0.0001
Fixed Relisb. 0.0122 0.019 0.0156 0.0059 0.009 0.0075 0.0026 0.0038 0.0030 0.0012 0.0019 0.0015
P00 33100

Emp. Sam. Var. 0.0054 0.0082 0.0028 0.0027 0.0042 0.0014 0.0011 0.0017 0.0005 0.0005 0.0008 0.0002
Univariate 0.0054 0.0084 0.0028 0.0027 0.0041 0.001% 0.0010 0.0016 0.0005 0.0005 0.0008 0.0003
Large Sasple  0.0056 0.008 0.0028 0.0027 0.0041 0.001% 0.0010 0.0016 0.0005 0.0005 0.0008 O.0003
Fuller 0.0054 0.0084 0.0028 0.0027 0.0041 0.001%% 0.0010 0.0016 0.0005 0.0005 0.0008 O.0003
Bock 0.0051 0.0082 0.0025 0.0026 0.0041 0.0013 0.0010 0.0016 0.0005 0.0005 0.0008 0.0003
Fixed Relisb. 0.0054 0.0084 0.0028 0.0027 0.0042 0.001% 0.0011 0.0016 0.0005 0.0005 0.0008 O.0003
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The other lines in the table correspond to mean variances

found from various methods. These methods include the
univariate method, which simply takes the corrected
correlation and inserts it into Equation 3.1 and 3.2. As

expected, the results using this method closely approximate
the expected variance, and are much smaller than the variance
of the sampling distribution.

The method from Bock and Petersen, as mentioned
previously, did not yield a variance estimate of its own.
Instead, the corrected correlations from this method were
inserted into the univariate variance formulas for comparison
purposes. The Bock and Petersen results are therefore similar
to the univariate results.

The large-sample theory variances are those found using
the formulas in Appendix A and Appendix B. The Fuller and
Hidiroglou (1978) method also made use of this formulation,
though with differing results. The Fuller and Hidiroglou
correction relies on the smallest eigenvalue from the given
variance matrix, and if this value is less than unity, a
substitution is made. The large-sample theory method with the
Fuller and Hidiroglou variation then adjusted for the use of
this eigenvalue. The large-sample variance and the Fuller and
Hidiroglou variation of that method should be identical,
unless the original correlation matrix is non-positive
definite. As shown in the tables, the large-sample variance

and the Fuller and Hidiroglou variation give very close
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approximations to the variance of the sampling distribution of
the corrected correlations. The accuracy of these estimators
increases as the sample size increases. With n = 500, for
example, the elements of the corrected variance-covariance
matrices using the large-sample method (and the Fuller and
Hidiroglou variation) are within 0.0002 of the sampling
distribution, no matter what the reliability wvalues, or the
correlation case.

The final line in each grouping shows what the variance
would be if one assumed that the sample reliability was a
constant. This differs from the large-sample formulation in
that the large-sample formulation assumes that reliabilities
are variable, and that variability is accounted for in the
computation. The results using this formulation are quite
close to the large-sample results. However, at smaller sample
sizes, they are not nearly as accurate as the other variances.

The other factor of note is the reliability value. It
appears, given these data, to have no effect on the results.
What is apparent, however, is that when the sample
reliabilities are approximating a population reliability of
1.00, all variance corrections give similar results, and these
results closely resemble the expected variance of the
correlations measured without error. This result verifies

that the simulation seems to be working as it should.
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Table 9
an ri of Corr orrelation:

Case 1. 0y = 0Dy ® .00y .0

Covs. Dipubyy  Prp.d D12.09  P12.P PraPy PP Prabyy  Prabr Pyy.P Praibiy PPy Pra.d
Expected 0200000 0700630 o.bbodd '0%dodde o. 05608 o'beddo 0.6 d%oldo o.bb0dd . 0'3addo

Py P20y T n=S0 =100 m~250 =500

Esp. Cov. 0.00205 0.00105 0.00102 0.00006 0.00093 2 -0.00015 9 0002§ -0.0001] -0.00003 .0.00010  0.00001
Univar 0.00003  0.00019 -0.00010 0.00001  0.00002 -0 o 0.00001  0.00000 -0.00001 0.00000 0.00000 0.00000
Large-Sam. 0.00004 0.00026 -0.00016 0.00001 0.00003 -0. ooooz 0.00002 -0. 00001 -0.00001  0.00000 0.00000 -0.00001
Fuller 0.00004 0.00026 -0.00016 0.00001 0.00003 -0.00002 0.00002 -0.00001 -0.00001 0.00000 0.00000 -0.00001
Sock 0.00004 0.00006 -0.0001%1 -0.00003 0.00002 -0.00001 0.00001 -0.00001 -0.00001 0.00000 0.00000 -0.00001
Fixed Rel. 0.00005 0.00027 -0.00015 0.00001 0.00003 -0.00002 0.00002 -0.00001 -0.00001 ©0.00000 0.00000 -0.00001
1100 -85

Emp. Cov, 0.00055 -0.00035 0.00077 -0.00007 0.00027 .0.00001 -0.00013 -0.00003_  0.00000 .00002  -0.00002 -0.00001
Univar 0.00003 -0.00008 0.00004 0.00001 -0.00002 -0.00009 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000
Large-Sem. 0.00004 -0.00009 0.00037 0.00001 -0.00002 -0.0000 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000
Fuller 0.00004 -0.00009 0.00004 0.00001 -0.00002 -0.00010 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000
Bock -0.00001 -0.00016 -0.00001 0.00004 -0.0000& -0.00009 0.00000 0.00002 0.00001 0.00000 0.00000 0.00000
Fixed Rel. 0.00006 -0.00009 ©0.00006 0.00001 -0.00002 -0.00010 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000
py=-9 £z=-8 pyy=.7

Em. Cov. 0.00162 0.00091 -0.00063 0.00011 -0.00003 0.00078 -0.00014 -0.00001 0.00017 0.00008 0.00011 -0.00010
Univar 0.00009 0.00015 -0.00006 0.00004 0.00001 -0.00002 0.00002 -0.00001 -0.00002 0.00000 0.00000 0.00000
Large-Sam. 0.00009 0.00019 -0.00010 0.00005 0.00000 -0.00004 0.00002 -0.00001 -0.00003 0.00000 0.00000 -0.00001
Fuller 0.00009 0.00019 -0.00010 0.00005 0.00000 -0.00006 0.00002 -0.00001 -0.00003 0.00000 0.00000 -0.00001
Bock 0.00009 0.00027 -0.00001 0.00005 0.00002 -0.00002 0.00001 -0.00001 -0.00004 0.00000 0.00000 -0.00001
Fixed Rel. 0.00009 0.00020 -0.00010 ©0.00005 0.00000 -0.00004 0.00002 -0.00001 -0.00003 0.00000 0.00000 -0.00001
PPz Px"1.00

Eso. Cov, 0.00030 -0.00060 -0.00012 -0.00009 -0.00029 0.00006 -0.00002 0.00019 0.00024 _q_m_ -0.00001  0.00003
Univar -0.00013 -0.00020 0.00001 -0.00002 -0.00002 -0.00002 -0.00001 0.00000 0.00000 0.00000 0.00000 0.00000
Large-Sam. -0.00013 -0.00020 0.00001 -0.00002 -0.00002 -0.00002 -0.00001 0.00000 0.00000 0.00000 0.00000 0.00000
Fuller <0.00013 -0.00020 0.00001 -0.00002 -0.00002 -0.00002 -0.00001 0.00000 0.00000 0.00000 0.00000 0.00000
Bock -0.00015 -0.00028 0.00000 -0.00002 0.00001 -0.00005 -0.00001 0.00001 0.00000 -0.00001 0.00001 0.00000
Fixed Rel. -0.00013 -0.00020 0.00001 -0.00002 -0.00002 -0.00002 -0.00001 0.00000 0.00000 0.00000 0.00000 0.00000



Table 9 (Cont’d)
Case 2. Du =

PuPzoxy*-7

Univer 0.00048
Large-Sam. 0.00048
Fuller 0.00048
Sock 0.00050
Fixed Rel. 0.00121

Pyy*P*Pp® -85

Em. Cov. 0.00085

Univer 0.00047
Large-Sam. 0.00042
Fuller 0.00042
Bock 0.00050
Fixed Rel. 0.00078

Pyy=.9 D= .8 Pyy=.7
Emp. Cov, 0.00073

0.00788
0.00437
0.00676
0.00676
0.00468
0.00736

0.00613
0.00439
0.00534
0.00534
0.00450
0.00562

0.00537

& ppye 30yt
Covs. Proubys e DyruDry D
Expacted  0.00081 0%0Zs o 5he o,
=50

Em. Cov. 0.00008 oom 0.00059 0.00328 0.00550

0627
0 00967
0.00947
0.00639
0.01003

0.00028
0.00029
0.00029
0.00030
0.00068

0.00932_ 0.00027

0.00657
0.00792
0.00792
0.00691
0.00817

0.00027
0.00025
0.00025
0.00028
0.00043

0.00058

Univar 0.00056
Large-Sem. 0.00054
Fuller 0.00054
Bock 0.00107
Fixed Rel. 0.00080

Py1*0p0xy=1-00

Emp. Cov, 0.00104

Univer 0.00053
Large-Sem. 0.00053
Fuller 0.00053
Sock 0.00054
Fizxed Rel. 0.00053

0.00426
0.00560
0.00560
0.00479
0.00591

=3
=
Uy
)

o

His

0.00029
0.00027
0.00027
0.00057
0.00041

0.00007
0.00029

0.00029
0.00029
0.00027
0.00029

n=100

0.00223
0.00338
0.00338
0.00228
0.00367

o3 o.B2E o Bosth

0.00336
0.00500
0.00500
0.00350
0.00525

0.00261  0.00444

0.00225
0.00272
0.00272
0.00231
0.00285

0.00261

0.00230
0.00230
0.00230
0.00236
0.00230

0.00339
0.00405
0.00405
0.00352
0.00416

0.00357

0.00339

0.00339
0.00339
0.00354
0.00339
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p"pp p ié
0.0001‘2 o.m
250

0.00026  0.00128
0.00012 0.00092
0.00013  0.00139
0.00013 0.00139
0.00012 0.00094
0.00029 0.00150

0.00012 Q 00110

0.00012

0.00012 0 00"1

0.00012 0.00111
0.00093

0.00012
0.00019 0.00116

0.00007_ 0.0009
0.00012 0.00093

0.00012 0.00093
0.00012 0.00093
0.00011  0.00094
0.00012 0.00093

Py4.D. Dy24Dy 019,029 Pya,0
0-6oflo o0:Bodds 0.6b0c7 0.Ho0?d
n=500
0.00217 -0.00008 0.00073 0.00092
0.00137 0.00006 0.00046 0.00069
0.00202 0.00007 0.00070 0.00101
0.00202 0.00007 0.00070 0.00101
0.00141  0.00006 0.00047 0.00070
0.00211  0.00015 0.00075 0.00106
0.00161  0.00009 0.00059 0.00090
0.00138 0.00006 0.00046 0.00070
0.00164 0.00006 0.00056 0.00083
0.00164 0.00006 0.00056 0.00083
0.00141  0.00006 0.00047 0.00071
0.00168 0.00009 0.00058 0.00085
0.00182_ 0.00007 0.00054 0.00107
0.00137 0.00006 0.00047 0.00069
0.00202 0.00006 0.00060 ©0.00101
0.00202 0.00006 0.00060 0.00101
0.00146 0.00009 0.00056 0.00074
0.00207 0.00008 0.00063 0.00104
0.00135_ 0.00012 0. 00047 0.00076
0.00138 0.00006 0.00047 0.00070
0.00138 0.00006 O. m7 0.00070
0.00133 0.00006 0.00047 0.00070
0.00141  0.00006 0.00047 0.00070
0.00138 0.00006 0.00047 0.00070
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Table 9 (Cont’d)

c‘.‘s-ﬂu'.‘pu'-spn'.7

fvited OBl 05077 AR CHos ool oBrA oW oMseR o%oes 0%l oMbeR o.bsoB

PyyPy=ox=.T w50 =100 250 =500

Emp. Cov, 0.01484 000143 0.00512 0.0082] 0.00079 0.00220 0.00331 0.00036 0.00120 0.00154 0.00010 0.00047
univer 0.00947 0.00129 0.002764 0.00496 0.00067 0.00137 0.00201 0.00027 0.00056 0.00101 0.00013 0.00028
Large-Sem. 0.01475 0.00196 0.00487 0.00757 0.00101 0.00239 0.00305 0.00041 0.00096 0.00153 0.00020 0.00049
Fuller  0.01475 0.00196 0.00487 0.00757 0.00101 0.00239 0.00305 0.00041 0.00096 0.00153 0.00020 0.00049
Sock 0.0091 0.00116 0.00257 0.00495 0.00063 0.00131 0.00201 0.00026 0.00055 0.00101 0.00013 0.00028
Fixed Rel. 0.01630 0.00384 0.00680 0.00831 0.00197 0.00337 0.00334 0.00081 0.00136 0.00167 0.00040 0.00069

)00 3" -85

0.0124] 0.00187 0.00364 0.00642 0.00080 0.00173 0.00266 0.00023 0 00066 0.00112 0.00013 0.00042
Univar 0.00971 0.00133 0.00269 0.00497 0.00068 0.00138 0.00203 0.00027 0.00056 0.00101 0.00014 0.00028
Large-Sam. 0.01187 0.00151 0.00345 0.00603 0.00076 0.00175 0.00245 0.00030 0.00071 0.00122 0.00015 0.00036
Fuller 0.01187 0.00151 0.00345 0.00603 0.00076 0.00175 0.00245 0.00030 0.00071 0.00122 0.00015 O
Sock 0.00968 0.00119 0.00250 0.00493 0.00063 0.00132 0.00201 0.00027 0.00055 0.00101 0.00014 0.00028
Fixed Rel. 0.01258 0.00239 0.00437 0.00637 0.00121 0.00221 0.00258 0.00048 0.00089 0.00129 0.00026 0O

oy=.9 Pp*.8 py=.7
Emp. Cov. 0.01154 0.00092 0.00524 0.00582_ 0.00071 0.00225 0.00227 0.00024 0.00093 0.0012} 0.00020

0
Univar 0.00963 0.00131 0.00278 0.00500 0.00066 0.00138 0.00201 0.00028 0.00056 0.00101 0.00016 0O
Large-Sam. 0.01096 0.00160 0.00487 0.00566 0.00079 0.002¢0 0.00227 0.00033 0.00097 0.00115 0.00017 0.00048
Fuller 0.01096 0.00160 0.00487 0.00566 0.00079 0.00240 0.00227 0.00033 0.00097 0.00115 0.00017 0.00048
Bock 0.00833 0.00102 0.00224 0.00426 0.00053 0.00110 0.00169 0.00022 0.00043 0.00085 0.00011 0
Fixed Rel. 0.01175 0.00289 0.00641 0.00604 0.00146 0.00321 0.00242 0.00061 0.00130 0.00122 0.00030 O

PP *03=1.00

Emp, Cov, 9,0110§ .00142 0.00285_ 0.00507 0.00079_ 0.00157_ 0.00200 0.00029 0.00054 0.00104 0.00017 0.00029
Univer 0.00991 0.00130 O. 00269 0.00501 0.00066 0.00139 0.00202 0.00027 0.00056 0.00102 0.00014 0.00028
Large-Sem. 0. 00991 0.00130 0.00269 0.00501 0.00066 0.00139 0.00202 0.00027 0.00056 0.00102 0.00014 0.00028
Fuller 0.00991 0.00130 0.00269 0.00501 0.00066 0.00139 0.00202 0.00027 0.00056 0.00102 0.00014 0.00028
Bock 0.00973 0.00119 0.00249 0.00496 0.00064 0.00134 0.00202 0.00027 0.00055 0.00101 0.00014 0.00028
Fixed Rel. 0.00991 0.00130 0.00269 0.00501 0.00066 0.00139 0.00202 0.00027 0.00056 0.00102 0.00014 0.00028
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Table 9 (Cont’d)

c...l..pu-.énu-.£pn-.z

Erpectes  OFo08d Ty OB CHoed o WrR (BB o Ber? oooss oolds 0'budds o.Bbed o.Hoed
P 1*P7Pxs=-T =50 n=100 n=250 =500

Emp, Cov, 0.00016 0.00549 0.01454 -0.00004 0.00386 0.00721 -0.00002 0.00155 0.00274 0.00022 0.00070 0.00133
Univar 0.00079 0.00392 0.0087% 0.00044 0.00209 0.00017 0.00085 0.00182 0.00043 0.00092

0

0.00439
Large-Sam. 0.00084 0.00655 0.01349 0.00050 0.00340 0.00668 0.00018 0.00137 0.00274 0.00069 0.00138
Fuller 0.00084 0.00655 0.01348 0.00050 0.00340 0.00668 0.00018 0.00137 0.00274
0.00440
[}

i

0.00069 0.00138
Sock 0.00075 0.00385 0.00846 0.00041 0.00206 0. 0.00017 0.0008 0.00182 0. 0.00042 0.00092
Fixed Rel. 0.0022¢ 0.00793 0.01465 0.00125 0.00411 0.0072¢ 0.00049 0.00166 0.00296 O. 0.00083 0.00148
P00yt B8
Emp. Cov. 0.00016 0.00549 0.01454 -0.00004_0.00386 0.00721 -0.00002 0.00155 0.00274 0.00022 0.00070 0.00133
Univar  0.00080 0.00416 0.00863 0.00042 0.00209 0.00450 0.00017 0.00084 0.C018 0.00009 0.00042 0.00092
Large-Sam. 0.0007¢ 0.00522 0.01052 0.00039 0.00260 0.0054 0.00015 0.00105 0.00221 0.00008 0.00053 0.00111
Fuller  0.0007 0.00522 0.01052 0.00039 0.00260 0.0056 0.00015 0.00105 0.00221 0.00008 0.00053 0.00111
Bock 0.00077 0.00401 0.00850 0.00041 0.00206 0.00450 0.00016 0.000&3 0.0018 0.00008 0.00042 0.00092
Fixed Rel. 0.00141 0.00588 0.01106 0.0007% 0.0029¢ 0.00570 0.00029 0.00118 0.00231 0.00015 0.00059 0.00116

py)=.9 Pyp=.8 pyy=.7

Emp. Cov, 0.00046 0.00576 0.01358 0.00056 0,00296 0.00726 0.00017 0.00102 0.00316 0.00005 0.00051 0.00140
Univar 0.00072 0.00405 0.00872 0.00042 0.00208 0.00446 0.00017 0.0008¢ 0.00183 0.00009 0.00042 0.00092
Large-Sam. 0.00065 0.00557 0.01337 0.00039 0.00282 0.00677 0.00016 0.0011& 0.0027S 0.00008 0.00057 0.00138
Fuller 0.00065 0.00557 0.01337 0.00039 0.00282 0.00677 0.00016 0.00114 0.00275 0.00008 0.00057 0.00138
Bock 0.00107 0.00349 0.00744 0.00058 0.00175 0.00382 0.00024 0.00069 0.00158 0.00012 0.00034 0.00081
Fixed Rel. 0.00118 0.00627 0.01413 0.00067 0.00317 0.00716 0.00027 0.00128 0.00290 0.00014 0.00064 0.00145
Pyy=0z0x1.00

Emp. Cov, 0.00117 0.00443 0.01000 0.00024 0.00193 0.00455 0.00017 0.00094 0.00187 0.00011 0.00044 0.00095
Univar 0.00078 0.00407 0.00894 0.00042 0.00210 0.00456 0.00017 0.00084 0.0018¢ 0.00009 0.00043 0.00092
Large-Sem. 0.00078 0.00407 0.0089¢ 0.00042 0.00210 0.00454 0.00017 0.00084 0.00184 0.00009 0.00043 0.00092
Fuller 0.00078 0.00407 0.0089%4 0.00042 0.00210 0.00454 0.00017 0.00084 0.00184 0.00009 0.00043 0.00092
Sock 0.00071 0.00389 0.00896 0.00041 0.00205 0.00453 0.00017 0.00083 0.00184 0.00009 0.00042 0.00092
Fixed Rel. 0.00078 0.00407 0.0089¢ 0.00042 0.00210 0.00454 0.00017 0.00084 0.00184 0.00009 0.00043 0.00092
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Table 9 (Cont‘d)
Case 5. 01 = .6 0y3 = b ppyy» -2

Covs. 13,01y Prpub Prabr P12:Py;  PraPs Ppybr  Prpubyy Przebry  Prab 013,013 PPy  PyuDs
Expected -0%002%8 F.00933 o.009% -0%otle 0.8828 oMoibh -0'bodde Hoffor oD% -0.bbat o0.%oodd o.bb1dd

Py %020y . T n=50 n=100 n=250 n=500

Emp. Cov. -0.00767 0.00987 0.01579 -0.00343 0.00505 0.00759 -0.00146 0.00198 0.00299 -0.00068 0. 00097 0. 00154
Univar -0.00279 0.00498 0.00908 -0.00146 0.00260 0.00474 -0.00059 0.00106 0.00195 -0.00030 0.00053 0.00099
Large-Sam. -0.00622 0.00931 0.01487 -0.00315 0.00473 0.00760 -0.00127 0.00191 0.00309 -0.00043 0.00095 0.00156
Fuller -0.00619 0.00926 0.01477 -0.00314 0.00473 0.00759 -0.00127 0.00191 0.00309 -0.00063 0.00095 0.00156
Bock -0.00271 0.00487 0.00918 -0.00137 0.00256 0.00482 -0.00056 0.00105 0.00198 -0.00029 0.00052 0.00100
Fixed Rel. -0.00604 0.00993 0.01555 -0.00301 0.00500 0.00786 -0.00121 0.00202 0.00318 -0.00060 0.00100 0.00160
Pr1*027"03s" -85

Emp. Cov, -0.00534 0.00741 0.01289 -0.00267 0.00336 0.00636 -0.00099 0.00147 0.00258_ -0.00043 0.00076 0.00126
Univar -0.00298 0.00509 0.00967 -0.00149 0.00259 0.00487 -0.00059 0.00105 0.00198 -0.00030 0.00053 0.00099
Large-Sam. -0.00450 0.0069% 0.01189 -0.00224 0.00350 0.00609 -0.00089 0.00141 0.00246 -0.0004S 0.0007% 0.0013
Fuller -0.00450 0.0069¢ 0.01189 -0.00224 0.00350 0.00509 -0.00089 0.00141 0.00246 -0.00045 0.00071 0.00123
Sock -0.00268 0.00498 0.00939 -0.00138 0.00253 0.00492 -0.00056 0.00101 0.00200 -0.00029 0.00053 0.00100

0.00 0.00623

Fixed Rel. -0.00444 0.00726 0.01220 -0.00220 0:00365 -0.00087 0.00147 0.00251 -0.00044 0.00074 0.00125

pyy®.9 py=.8 pye.7

" Emp. Cov, -0.00456_ 0.00703 0.01646 -0.00215 0.00372 0.00851 -0.00068 0.00161 0.00314 -0.00043 0.00080 0.00143
Univar -0.00292 0.00506 0.00935 -0.00146 0.00259 0.00484 -0.00060 0.00106 0.00196 -0.00030 0.00053 0.00099
Large-Sam. -0.00387 0.00765 0.01516 -0.00194 0.00388 0.00774 -0.00079 0.00156 0.00311 -0.00039 0.00078 0.00156
Fuller -0.00387 0.00765 0.01516 -0.00194 0.00388 0.00774 -0.00079 0.00156 0.0031% -0.00039 0.00078 0.00156

Bock -0.00097 0.00414 0.00997 -0.00382 0.00205 0.00533 -0.00013 0.00082 0.00223 -0.00006 0.00041 0.00113
Fixed Rel. -0.00426 0.00780 0.01525 -0.00214 0.00393 0.00774 -0.00087 0.00158 0.00309 -0.00043 0.00079 0.0015S
Py =010

Emp. Cov, -0.00353 0.00512 0.01024 -0.00158 0.00246 0.00499_ -0.00067 0.00101 0.00212 -0.00032 0.00057 0.00100
Univar -0.00306 0.00524 0.00955 -0.00151 0.00261 0.00491 -0.00060 0.00107 0.00197 -0.00030 0.00053 0O
Large-Sem. -0.00306 0.00524 0.00955 -0.00151 0.00261 0.00491 -0.00060 0.00107 0.00197 -0.00030 0.00053 O
fuller -0.00306 0.00524 0.00955 -0.00151 0.00261 0.00491 -0.00060 0.00107 0.00197 -0.00030 0.00053 0.00099
Sock -0.00278 0.00504 0.00953 -0.00136 0.00256 0.00497 -0.00056 0.00106 0.00199 -0.00029 0.00053 O
Fixed Rel. -0.00306 0.00524 0.00955 -0.00151 0.00261 0.00491 -0.00060 0.00107 0.00197 -0.00030 0.00053 0O
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Table 9 (Cont‘d)

Case 6. Du'-’pu'.‘pn'J

Covs. P13 PPy Prubn Prabiy P D1r0yy Dby Prysd p Pyv.Py
Expected  -0.00039 0 Char D%osl “Biocdes ohodr -obbodd oBorfd oBords -o.bboct o.Bood o bbed

pu-pzz-on-J n=50 n=100 =250 =500

Emp, Cov, -0.00307 0.01063 0.01477 -0.00164 0.00568 ooonz -0.00068_ 0.00229 0.00275 .0.00027 0.00109 0.00134
Univar ~0.00028 0.00563 0.00805 -0.00016 0.00288 0.00423 -0.00006 0.00117 0.00172 -0.00003 0.00059 0.00087
Large-Sem. -0.00231 0.01052 0.01378 -0.00118 0.00527 ooons -0.00046 0.00212 0.00283 -0.00023 0.00105 0.00143
Fuller -0.00228 0.01041 0.01361 -0.00118 0.00526 0.00704 -0.00046 0.00212 0.00283 -0.00023 0.00105 0.00143
Sock -0.00029 0.00546 0.00784 -0.00014 0.00281 0.00417 -0.00006 0.00116 0.00170 -0.00003 0.00058 0.00087
Fixed Rel. -0.00092 0.01252 0.01562 -0.00046 0.00625 0.00792 -0.00016 0.00251 0.00318 -0.00008 0.00125 0.00160
Py og"oyn-85

Emp. Cov, -0.00091 0.00861 0.01095 -0.00096 0.00364 Q00569 -0.00029_0.00148 0.00214 01} 0.00073_ 0.00115
Univar -0.00044 0.00563 0.00847 -0.00018 0.00288 ~0.00006~ 0.00117  0.0017% -0. 0.00059 0.00087

0.004.
Large-Sam. -0.00149 0.00756 0.01086 -0.00069 0.00383 0.00548 -0.00027 0.00156 0.00219 -0. MIS 0.00078 0.00110
Fuller -0.00149 0.00756 0.01086 -0.00069 0.00383 0.00548 -0.00027 0.00156 0.00219 -0.00013 0.00078 0.00110
Bock -0.00032 0.00540 0.00821 -0.00015 0.00279 0.00422 -0.00006 0.00116 0.00172 -0.00003 0.00058 0.00087
Fixed Rel. -0.00091 0.00852 0.01171 -0.00039 0.00431 0.00590 -0.00015 0.00175 0.00236 -0.00007 0.00087 0.00118

P1y=.9 Pyp=.8 pyy=.7
-0.00093 0.00928 Q 1436 -0.00063 Q Q 0.00738 -00 u /00165 0.00286_ -0. ﬂ .00089 0.00148

Univar -0.00047 0.00569 -0.00018 0.00424 0.00117 0.00172 -0.00003 0.00059 0.00087
Large-Sem. -0.00115 0.00844 0 01‘0‘ -0.00051 0 00‘25 0.00707 °0 mw 0.00171 0.00285 -0.00010 0.000856 0.00143
Fuller <0.00115 0.00843 0.01402 -0.00051 0.00425 0.00707 -0.00019 0.00171 0.00285 -0.00010 0.00086 0.00143
Sock 0.00027 0.00389 0.00656 0.00021 0.00187 0.00332 0.00010 0.00074 0.00134 0.00005 0.00036 0.00067
Fixed Rel. -0.00102 0.00923 0.01488 -0.00044 0.00464 0.00748 -0.00017 0.00187 0.00301 -0.00008 0.00093 0.00151

P07 033100

. -0.00042 0.00616 0.00858_-0.00017 0.00323 0.00469 -0.00004_ 0.00119 0.00184 -0.00004 0.00057 0.00088
Univer -0.00046 0.00581 0.00852 -0.00019 O.

0.00292 0.00431 -0.00006 0.00117 0.00176 -0.00003 0.00059 0.00087
Large-Sam. -0.00046 0.00581 0.00852 -0.00019 0.00292 0.00431 -0.00006 0.00117 0.00176 -0.00003 0.00059 0.00087
Fuller -0.00046 0.00581 0.00852 -0.00019 0.00292 0.00431 -0.00006 0.00117 0.0017¢ -0.00003 0.00059 0.00087
Sock -0.00032 0.00550 0.00814 -0.00015 0.00284 0.00420 -0.00006 0.00116 0.00172 -0.00003 0.00059 0.00087
Fixed Rel. -0.00046 0.00581 0.00852 -0.00019 0.00292 0.00431 -0.00006 0.00117 0.00174 -0.00003 0.00059 0.00087



Table 9 (Cont’d)

Case 7. Py = .7 Dy =

Expecred  0.0eld 0%0Te

P00 xy= - Trw50

Emp. Cov. 0.00961 0.00264

Univar 0.00446
Large-Sam. 0.00370
Fuller 0.00865
Sock 0.00430
Fixed Rel. 0.01227

P10 P 35* .85
Emp, Cov. 0.00633

Univer 0.00448
Large-Sam. 0.00603
Fuller 0.00603
Sock 0.00441
Fixed Rel. 0.00764

Py =9 Pp=.8 py=.7T

0.00130
0.00281
0.00280
0.00111
0.00626

0.00119
0.00153
0.00153
0.00105
0.00302

Emp. Cov. 0.00634 0.0018] 0.00482 0.00247

univar 0.00451
Large-Sam. 0.00546
Fuller 0.00545
Sock 0.00354
Fixed Rel. 0.00727

Py 070 3;"1.00

0.001264
0.00184
0.00184
0.00069
0.00402

Emp. Cov, 0.00449 0.00117

univar 0.00451
Large-Sam. 0.00451
Fuller 0.00451
Sock 0.00446
Fined Rel. 0.00451

0.00118
0.00118
0.00118
0.00103
0.00118

0.00149_ 0.00360

Sog .8

BB o5

n=100
0.00594

0.00463

o Hioh

0.00099

o'bofs

0.00250
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Dy9,0
0.bbods

n=250
0.00167

0.002¢42
0.00529
0.00528
0.00227
0.00890

0.00226
0.00431
0.00431
0.00223
0.00614

0.00236
0.00333
0.00333
0.00222
0.00496

0.00226
0.00302
0.00302
0.00224
0.00383

0.00226
0.00270
0.00270
0.00179
0.00362

0.002461
0.00530
0.00530
0.00135
0.00807

0.0024] 0.00233

0.00242
0.00242
0.00242
0.00225
0.00262

0.00224
0.00225
0.00225
0.00225
0.00225

0.00060
0.00128
0.00128
0.00054
0.00304

0.00306 _ 0.00065

0.00059
0.00075
0.00075
0.00055
0.00150

0.00062 0.00218 0.00115

0.00060
0.00088
0.00088
0.00032
0.00200

0.00066

0.00059
0.00059
0.00059
0.00055
0.00059

0.00118
0.00258
0.00258
0.00113
0.004kt

0.00156
0.00118
0.00165
0.00165
0.00114
0.00267

0.00120
0.00260
0.00260
0.00064
0.00402

0.00130

0.00090
0.00172
0.00172
0.00089
0.00246

0.00107_ 0.00026 0.00060

0.00089
0.00119
0.00119
0.00089
0.00152

0.00089
0.00107
0.00107
0.00070
0.00144

0.00091

£ Rt

0.00045

0.00024
0.00051
0.00051
0.00023
0.00123

0.00026
0.00030
0.00030
0.00023
0.00060

0.00022 0.00084

0.00024
0.00036
0.00036
0.00013
0.00081

0.00024

0",D|g

D12,0
0.0b0& 0.Yook

.00100

0.000467
0.00102
0.00102

0.00047
0.00066

§§§

0.00047
0.00102
0.00102
0.00025
0.00160

0.00049

=500

0.00083

0.00045
0.00085
0.00085
0.00045
0.00122

0.00061
D 00044
0.00059
0.00059
0.00045
0.00076

b
01?00012

01,0
0'BodZ

000017
0.00012
0.00025
0.00025
0.00012
0.00061

0.00045
0.00024
0.00051
0.00051
0.00023
0.00089

0.00016 0.00030
0.00012 0.00023

0.00015 0.00033
0.00015 0.00033
0.00012 0.00023
0.00030 0.00049

0.00054 0.00012 0.00044

0.00045

0.00120
0.00120
0.00120
0.00115
0.00120

0.00089
0.00089
0.00089
0.00089
0.00089

0.00026
0.00026
0.00024
0.00023
0.00024

0.00047
0.00047
0.00047
0.00047
0.00047

0.00012
0.00017
0.00017
0.00006
0.00040

0.00026
0.00051
0.00051
0.00012
0.00080

0.00012  0.00023
0.00012 0.00024

0.00012 0.00026
0.00012 0.00024
0.00012 0.00024
0.00012 0.00024
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Covariances. The covariances were derived and calculated
using the same formulation as the variances, and seem to yield
similar results. Table 9 displays the covariances. Again,
the univariate and Bock and Petersen corrections produce
covariances that are identical or nearly identical to those
expected given the population values. And, these two
corrections yield covariances which are far different from
those found in the empirical sampling distribution of the
corrected correlations.

The covariance results are not as dramatic as the
variance results. Often the sampling distribution values are
not close to any of the corrected results. This is especially
true in the case (.60, .40, .20), and for the smaller sample
sizes (n = 50 and n = 100) for many of the cases. At the
larger sample sizes, again it is clear that the large-sample
formulations give results closest to the sampling distribution
results, and the univariate corrections seem to give
covariances which are too small.

An Application of the Methods to Existing Data

The methods discussed in this study were used to
reanalyze an existing meta-analysis, to see if any differences
were apparent, particularly in the decision to accept or
reject a homogeneity test calculated from correlation
coefficients. This example is a reanalysis of the data from
Becker and Cho (1994), which, in turn, was a reanalysis of the

data from Schmidt, Hunter and Outerbridge (1986). A computer
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program was written in Fortran which allowed the synthesis of
the data and the calculation of homogeneity tests. These
results were then compared to the results found in Becker and
Cho (1994) and Schmidt, Hunter, and Outerbridge (1986).

The original Schmidt, Hunter and Outerbridge (1986) study
examined four studies, each containing 10 correlations. These
ten correlations summarized the relationships among 5
variables: job knowledge, general mental ability, work sample
performance, supervisory ratings of job performance, and job
experience. Complete data was available for all correlations,
and reliability values were given for every measure. Chapter
two contains more details about this study.

Testing the homogeneity of the correlation matrices. For
this example, the generalized least squares methods used by
Becker (1992) will be used. A formal hypothesis test can be
used to determine whether the data obtained from several
studies are consistent with the hypothesis of a common
correlation matrix. Let ?;, ..., ?, and ¢, ..., r be the
vectors of corrected correlations of length p(p+1l)/2 = p* = 10
from each of the k=4 studies, and let E;,, ..., I; be the
large-sample covariance matrices of %, ..., rS,. The
correlations are corrected with the univariate correction.
The difference between this example and the methods from
Becker and Cho (1994) will be the use of the large-sample
theory variance-covariance matrices. Becker and Cho’s results

used the traditional univariate corrected correlations without
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adjusting for the variances of the reliabilities and the
covariances among the correlations and reliabilities. Define
the k p* dimensional vector r, the k p* x p*¥ matrix X, and the

k p* x k p* matrix I by

r, I,
r = / X = ,and
ry Ik
L = diag(Z;, ..., Ey),
where I,, ..., I, are identity matrices of order p* (Becker

1992) .

A test of the hypothesis of homogeneity of correlation

matrices across studies, that is to test

uses the statistic

Q=r¢ [l -zlxxztx)lx rl] gc

(Becker, 1992, p. 349). When H; is true then Q has
approximately a chi-square distribution with (k-1) p* degrees
of freedom. In this example, k = 4, and p* =10, so the
degrees of freedom are 30.

The first difference between this example and the
analyses given in Schmidt, Hunter, and Outerbridge (1986) is
the overall test of the hypothesis of the common correlation

matrix. Schmidt et al. did not conduct any tests; they simply
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avera -2ad the correlations and fit a path model using the
average correlations.

Estimating a common correlation matrix. If the studies
share a common population correlation matrix, then a common
correlation matrix can be estimated. The estimate uses r as
the outcome data for a generalized least squares regression
analysis. To estimate a common correlation vector of length
p*, the model is

r = XP? + e,
where r® is defined as above, and ?’' = (p;, Py, ... pp+) is
the set of common correlations to be estimated, and X is
defined as above. The generalized least squares estimate of
P is given by
r¢. = (X' £l x)"! x' £t ¢°
The approximate variance-covariance matrix for this estimate
is given by
v = (x'zlx!
(Becker, 1992, p. 348).

Results from the example. A FORTRAN program estimated
the pooled correlation matrix and the homogeneity test. Three
different methods were made to evaluate the effect of the new
method of estimating the variance-covariance matrix of the
corrected correlations. These three methods were: (1)
corrected correlations were used in estimating population
values, with the large-sample variance method, (2) corrected

correlations were used, with the variances calculated as in
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Becker and Cho (1994) by assuming reliabilities equal to 1.00
and (3) raw (uncorrected) correlations were used, and perfect
reliabilities were assumed.

Table 10 shows the different values for the three
methods. The Qp statistic given in the table is the test of
homogeneity (30 df). With all methods, the decision to reject
this test would be the same; the correlations appear to be
heterogeneous. It is clear from the Q; statistics, that the
new method of estimating the variances does suggest more
heterogeneous results. This 1is expected given that the
variability in reliabilities is now being considered.

Also shown in Table 10 are the vectors of the average

correlation matrices based on the different estimates of

variance. These are compared with the results found in
Schmidt et al. (1986). The correlations obtained using the
new method are slightly larger. Because the average

correlation vector is based on a variance weighted average,
and the variances using this new method are larger, there is
reason to assume that these numbers will be different. The
standard errors for the average correlations from the Becker
and Cho and new methods are also shown. Because the new
method accounts for variability in reliabilities, the standard
errors from the new method are larger.

This example demonstrates the effect of using a more
defensible variance estimate. Not only are the variances with

this new method larger, ‘but other statistics such as
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homogeneity test statistics, are impacted as well. Using this

new method when correcting correlations may be warranted.

Table 10

Methods and Results from Example Data

New Method Becker & Raw Schmidt, et al.
Cho Correlations
Qr 6072.95 5993.21 4383.38 = ------
(0] 5993.62 5816.34 4231.77 @ ------
Qr 139.33 176.87 151.60 = ------

Vectors of Average Correlations:

0.48(.025) 0.49(.022) 0.41 0.46
0.43(.027) 0.43(.023) 0.36 0.38
0.18(.035) 0.18(.025) 0.13 0.16
0.06(.027) 0.07(.025) 0.06 0.00
0.87(.015) 0.87(.014) 0.71 0.80
0.46(.032) 0.45(.023) 0.33 0.42
0.64(.018) 0.63(.017) 0.59 0.57
0.40(.034) 0.39(.024) 0.27 0.37
0.64(.020) 0.62(.018) 0.55 0.56
0.26(.031) 0.25(.024) 0.20 0.24



CHAPTER V
SUMMARY AND CONCLUSIONS

Results

The results presented in Chapter 4 indicate success in
investigating the results of using various corrections for
attenuation in a multivariate setting. The purpose of this
dissertation was to determine which (if any) corrections gave
reasonable results, and were based on reasonable assumptions
for use in multivariate syntheses. The goal was to address 5
research questions noted in Chapter 1. The results related to
each question are addressed, in order, below.

1. What are the consequences of using a simple univariate
correction for each of a set of multiple correlations? This
question was addressed mainly in the simulation study.
Results showed that using a univariate correction would give
a good approximation to the population correlation, on
average. However, some potential problems were found. The
variance of the univariate corrected correlation should not be
computed using the corrected value in the familiar approximate
variance formula (3.1). The variance-covariance matrix of the
corrected correlations depends on the correlations and on the
reliabilities, and must take these values into account.
Computing the corrected correlation with the univariate
correction, and substituting the resulting vaiues into
Equations (3.1) and (3.2) to give the variances and

covariances yielded results that were markedly different from

128
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the empirical values. The variances and covariances using the
univariate approach were too small.

Several other problems were also associated with this
correction. These problems included out-of-range corrected
correlations, invalid determinants of corrected correlation
matrices and invalid determinants of variance-covariance
matrices of the corrected correlations. The smaller the
sample size, and the closer the correlation values to the
reliability values, the more problems found. Having any of
these problems could 1lead to inaccurate results in a
synthesis. Therefore, the simple answer to this question is
that using a univariate correction, without adjusting the
variance estimates, and without considering the nature of the
resulting matrices, could result in invalid intermediate
results with unknown consequences if analyzed further. Other
corrections and adjustments are warranted.

2. What would be the difference in variances and
covariances based on the univariate correction (mentioned
above), versus using a variance-covariance matrix derived from
large-sample distribution theory for correlation coefficients?
The difference between these two estimates occurs in the
calculation of the variance-covariance matrices for the
corrected correlations. The large-sample theory estimates
were often equal to the empirical sampling-distribution
values, while the univariate variances and covariances were

too small (up to 50% smaller than they should be based on the
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sampling distributions). This reiterates the findings
reported for Question 1, which indicated that the large-sample
variances and covariances should be used.

3. Several multivariate attenuation corrections exist for
raw data, including many in the regression literature. How do
these corrections compare to one another and to the
corrections mentioned above? Exact comparisons showed that
the existing corrections all yield the traditional univariate
correction, unless the resulting corrected correlation matrix
was problematic. The Bock and Petersen (1975) and Fuller and
Hidiroglou (1978) corrections had contingencies for situations
in which the initial corrected correlation matrix was not
positive definite or had other problems. These contingencies
(i.e., further adjustments) were not often used, but the
Fuller and Hidiroglou correction seems to produce the best
outcomes. The Bock and Petersen (1975) method produced
results far from the population values when the reliability
triple with unequal (and relatively large) values was ﬁsed.
In all other cases, the two methods produced similar results.

None of the existing methods provided estimators of the
variance-covariance matrices of the corrected correlations.
This was expected with the Gleser (1992) and Fuller and
Hidiroglou (1978) corrections, as they were designed to
correct for measurement errors in regression slopes.
Similarly, the Bock and Petersen correction was designed to

correct data for use in covariance-component estimation.
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Because none of the three methods provided estimates of
variance-covariance matrices, comparisons of these methods
were made on the basis of variance-covariance estimators
derived using other means. The results of those comparisons
are summarized below.

4. Which correction is most feasible and provides tﬁe
best results? The traditional univariate correction seems to
give a reasonable estimate of the population correlation
coefficient based on the simulation results in this work. The
adjustments made in specific cases using the Bock and Petersen
(1975) and Fuller and Hidiroglou (1978) methods did not
improve this estimate, except when the usual estimators gave
invalid results. In fact, the Bock and Petersen estimate gave
poorer results in certain cases.

The Fuller and Hidiroglou correction seems best overall,
because no out-of-range correlations or determinants were
found, and the corrected correlations were very close to the
population values. The variance-covariance matrices derived
using this method along with the large-sample method also gave
the best estimates. However, the Fuller and Hidiroglou method
requires raw data, and therefore needs to be modified for use
with summary data (sufficient statistics) such as
correlations.

The results of this study indicate that if correlations
are corrected, the variance-covariance matrices of these

correlations must be adjusted. The traditional variance
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formulas do not account for dependence among the correlations
and reliabilities. The method introduced in this work does
provide for reasonable estimates of the variances and
covariances, and should be used in synthesizing correlation
matrices and in other situations where corrected correlations
are to be analyzed.

Finally, the matrix of corrected correlations must be
examined, to make certain that this matrix is wvalid.
Currently there is no method for adjusting the corrected
correlation matrix, unless raw data are available. If raw
data exists, then the Fuller and Hidiroglou method should be
used. If not, then the simple univariate correction with the
large-sample variance-covariance matrix should be used.

5. How do these corrections effect results of
multivariate syntheses? Correcting correlations without
adjusting the resulting variance-covariance matrix leads to
different results than not correcting or not adjusting. The
results of this simulation show that modifying both the
correlations and their variance-covariance matrices are
necessary if the sample values are to approach the population
parameters in the long run. The reanalysis of the Schmidt,
Hunter and Outerbridge (1986) example showed that the
homogeneity tests produced evidence for decisions similar to
those in previous analyses. In other examples this may not be
the case. Also, the magnitudes of the average correlations

from a series of studies will most certainly change,
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potentially leading to substantively different
interpretations.
Other Findings

The greatest weakness of this synthesis example was the
inability to transform the regression corrections into
corrections that could be made directly on correlations rather
than raw data. This led to the further problem of being
unable to compute variances of correlations based on these
methods. Further work may lead to a creative solution to
these problems; the Bock and Petersen correction seems most
likely to lead to a solution. However, given the results
reported above for Bock and Petersen method, it is not clear
whether having such a correction for summary data would be of
any benefit. A conversion of the Fuller and Hidiroglou method
to one which considers correlational data instead of raw data
would be desirable.

One other limitation arose because of the difficulty of
making exact comparisons among the methods for the three-
variable case. Though the simulated data clearly showed where
differences occurred, it would have helped to be able to
illustrate the differences without relying on simulation data.
However, the complexity of the formulas limited this process.
Applications of this Work

This work is intended to be applicable to multivariate
syntheses of correlational data. The results are also

applicable to any case where a correlation matrix is to be
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corrected and the variances and <covariances of the
correlations are considered important to the results. Using

these corrections on raw data or for correcting slopes may be

feasible. However, those methods were not part of this
simulation. Certainly an extension in that direction is
possible.

Further Investigations

There are several directions which can be taken to further
this research. First, the Bock and Petersen correction can be
investigated further, especially to determine why conflicting
results were found when the reliability vector of unequal
values (.90, .80, .70) was used in the simulation. More
importantly, an application of the Fuller and Hidiroglou
method to correlational data should be found.

Second, the effects of correcting correlations on the
results of syntheses could be quantified. This would involve
simulating homogeneity statistics and comparing the decisions
made and the magnitudes of the average correlations under
different methods of estimating variance-covariance matrices.
The results of such a study would indicate the overall effect
of the method chosen for practical purposes.

Another area of research could include applying these
methods along with a Fisher’s Z transformation. Work from
Becker and Cho (1994) and Becker and Fahrbach (1994) have
considered this transformation in multivariate synthesis and

found it beneficial. However, no one has attempted to combine
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that transformation with corrected correlations, while
adjusting the resulting variance-covariance matrix for the
corrected correlations in a multivariate situation.

Another research possibility includes simulating
correlated measurement errors to see how they function, and to
see how the methods described here could be applied in such
situations. Little is known about correlated errors, and the
magnitudes of such errors. This work could investigate the
effects of correlated errors on corrections and on the
resulting variance-covariance matrices.

Finally, not enough is known about hypothetical
reliability distributions and their applications. Missing
data is a pernicious problem throughout all meta-analytic
work, and reliability values are often missing. Combining
these corrections with work on missing data in meta-analysis
could be another entire dissertation.

Conclusions

The application of the findings of this work to meta-
analysis is warranted. However, the use of corrections
(especially the univariate method) could still 1lead to
correlations greater than unity. As a result, data should be
examined carefully to determine if correlations should be
corrected, or if the reliability estimates are so uncertain
that correcting may lead to more problems than it solves.

In conclusion, this dissertation outlines what is

currently known about multivariate corrections for
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attenuation, with application to synthesis of correlation
matrices. If measurement error is to be corrected, syntheses
must adjust the resulting variance-covariance matrix of the

corrected correlations accordingly. Unadjusted results could

be misleading, since the (unadjusted) variances and
covariances will be underestimated. The traditional
univariate correction is appropriate in most cases. The

variance-covariance matrix estimate should be the large-sample

variance derived in this study.
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APPENDIX A

VARIANCES AND COVARIANCES OF CORRECTED CORRELATIONS

The variance of a sample correlation (r,,) corrected for

attenuation in both variables:

V(p'12) = {VIiryp) /(rp*rp) - (rpp*Clryp, 1))/ (x2 %xy,) -
(r1%C (x5, 752) ) / (x255%ry,) +
(r2)5%C (x5, 125 ) / (2%x%55%x% ) +
(r?,*V(ry;)) / (4*x3 1 %15,) +

(r2),*V(xry,) ) / (4*r35,%x,) }/n

C(p’13, P'13) = {Clryp,Ty3) /(X * Vry*ry,)
- (Xy*C(ry5,14) )/ (2%02, % VI, %ry,)
- (Ty*CXy3,T55) ) /(2%1y %1% VI, %ry;)
- (ry3*C(ry,,1y5) )/(2*r211* ‘/rzz*rn)
+ (T*T 3*V(xgy) ) /(4%03, % Vry,%ry,)
+ (X *T 3*C(xy,Tp5) ) / (4%r2  *r 0% Vry,*ry,)
- (ry3*C(ry5,T33) ) / (2%, % 5% Vry,%ry,)
+ (T*T 3*C g, T35) )/ (4%02 ) *rya* Vi, *ry;)
+ (xo*ry3%C(ryy,T33)) /(4% *rag*r,0* Vo, *ry;) }/n

Where V and C represent the usual variance and covariance
functions given in Equations 3.1 and 3.2 in the text.
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APPENDIX B

COVARIANCES AMONG CORRELATIONS (INCLUDING RELIABILITIES)

Clryy,
C(ry,,
Clray,
Clry,,
C(ry3,

C(rs3,

Clryy,
Clraa,

C(rss,

Clryy,
C(ryq.

C(ryz,

C (rlzl

r323}/n

Clryz,

r313}/n

C(r13,

r312}/n

r,,)
ry3)
rs)
Y,,)
ry3)

r,s)

r23)
ri;)

r12)

rys)
rj3)

ry,)

ris3)

Yj,)

rp3)

{rig*(r?;; - 1)*(0.5%r;; -1) + r’*(ry; -1)}/n

+

{ry3*(r%;, - 1)*(0.5%r;; -1) + r3 .*(r,, -1)}/n

13 11 11 13 11

{ri,*(r%,, - 1)*(0.5*r,, -1) + r’>,,*(r,, -1)}/n
12 22 22 12 22

{ry3*(r?3; - 1)*(0.5%ry; -1) + r3,3%(ry; -1)}/n

2 2
{(ry; - 1) *(xry3*r?), + ry3*r?); - 2*r;,*r;5)}/n

2 2
{(ry; - 1)*(ry3*r, + rj3*re,, 2*r,,*r,3) }/n

2 2
{(r33 - L) *(r,*rf; + rj*re,, 2*r 3*r,;3) }/n

2

{2*r 12 *(rll*rzz + 1 - rll - rzz)}/n
2

{2%r%); *(r;;*r33 + 1 - ry; - ry;3)}/n

2
{2%r%,; *(ry,*r;3 + 1 - ry, - ry3)}/n

{0.5%(2%rp; - rpp*ryg) (1 - 2y - rPy - r¥y;) +

{0.5%(2%ryy - Tip*rpy) * (1 - r?; - 15 - T +

{0.5% (2%, - ry3*ry) ¥ (1 - r?py - rfyy - rPy) +
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APPENDIX C

METHODS USED FOR CORRECTING FOR ATTENUATION

Univariate Correction

The corrected correlation is approximated by

P’ xy=Lxy/ (Exx*Tyy) /2,

where p’'y, is the estimated population Iy, 1s the sample

correlation, and r,, and r,, are the sample reliabilities.

Yy

The Fuller and Hidiroglou Correction

The regression estimates are corrected using:

g =81 (n!x v,
where H! = (n"! X’X) - D A D, D is a diagonal matrix of
standard deviations of the predictors and A is a diagonal
matrix containing 1 - reliability values. To guarantee that
H is positive definite, DAD is pre-multiplied by the quantity

(fF - nY), if f < (1 + n'); where f is the smallest root

(eigenvalue) in the two-matrix eigenproblem | M - £CGC | 0.
Here C is the matrix of standard deviations of the raw scores
(including the outcome), M is 1/n times the sum-of-squares and
cross-products matrix and @ is a diagonal matrix containing
reliability values of the outcome and the predictors. This
calculation also guarantees that the estimated variance-
covariance of the true variables is positive definite. The
corrected correlations are calculated from H™!, by dividing
each off-diagonal element by the product of the square roots
of the adjacent diagonal elements.
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The Bock and Petersen Correction
Consider M, and M,, the mean error and the mean observed sum
of squares and cross products matrices, respectively. Solve
the two matrix eigenproblem (M, - A; M,) x; = 0 (Bock and
Petersen, 1975, p. 674). Once this problem is solved, the
estimate of the true variance-covariance matrix of the raw
scores can be made using the following formulation. Let X =
(X;, ... X;) be the matrix of eigenvectors, let A' = diag(Ay,
., xp) be the matrix of eigenvalues, and let Ip be the p x

L 4

p identity matrix, then E, = M, - M, = B’ (A" - I,) B where B
= X"!. If any of the elements of the A matrix are less than
one, they are replaced by 1.0 in the calculation. The
corrected correlations are then found by dividing each off-

diagonal element of I, by the product of the square roots of

the adjacent diagonal elements.

The Gleser Correction

Let A = £ * L.rue represent the reliability matrix, where

obs

r-l,, is the variance-covariance matrix of the observed
predictors and I;,,, i8 the variance-covariance matrix of the
true scores for the predictors. Then, the adjustment in the
regression case is B8 = Al » (xrx)7Y x'Y. The corrected
correlations are then found from taking (A"l = (x'x)-1)-1.
Again, the correlations are a result of dividing the off-
diagonal elements of the resulting matrix by the product of

the square roots of the adjacent diagonal elements.
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APPENDIX D
FORTRAN PROGRAM USED IN SIMULATION

MAIN PROGRAM

IMPLICIT REAL (L, M)

COMMON IT, K, RXY(2000), RXW(2000), RWY(2000),

RXX (2000), RYY(2000) ,RWW(2000) ,CRXY(2000), CRXW(2000),
CRWY (2000), COVT(3,3), COVE(3,3), RXTXE(2000),

RYTYE (2000) ,

RWTWE (2000) , RXTX(2000), RYTY(2000),RWTW(2000),
RXTX2(2000), RYTY2(2000), RWTW2(2000), SS, ITR,

IS, GCRXY(2000), GCRXW(2000) , GCRYW(2000) , HCRXY (2000) ,
HCRXW (2000) , HCRYW(2000), BCRXY(2000),

BCRXW(2000) ,BCRYW(2000), FACT(2000), PXTYT, PXTWT,
PWTYT, PXX, PYY, PWW, DTSR(2000), DTUR(2000),
DTBR(2000), DTFR(2000), DTGR(2000), IMRK(2000)

PXTYT= 0.70

PXTWT= 0.60

PWTYT= 0.80

PXX= .70
PYY= .70
PWW= .70
IS= 100
SS= 100.0
PXEYE=0.0
PXEWE=0.0
PWEYE=0.0

STY=SQRT (PYY)

STX=SQRT (PXX)

STW=SQRT (PWW)

SEY=SQRT (1-STY**2)
SEX=SQRT (1-STX**2)
SEW=SQRT (1-STW**2)

DO 16 J=1,3

DO 17 I=1,3
COVE(I,J)=0.0

CONTINUE

CONTINUE

COVT (1,1) =STX**2

COVT (1, 2) =PXTYT*STX*STY
COVT (2,1) =PXTYT*STX*STY
COVT (2,2) =STY**2

COVT (1, 3) =PXTWT*STX*STW
COVT (3,1) =PXTWT*STX*STW
COVT (3,3) =STW**2

COVT (2,3) =PWTYT*STY*STW
COVT (3,2) =PWTYT*STY*STW
COVE (1,1) =SEX**2

COVE (2,2) =SEY**2

COVE (3,3) =SEW**2
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COVE (1, 2) =PXEYE*SEX*SEY

COVE (1, 3) =PXEWE*SEX*SEW

COVE (2, 3) =PWEYE*SEW*SEY

COVE(2,1) =COVE (1, 2)

COVE (3,1) =COVE (1, 3)

COVE (3,2)=COVE(2,3)

ITR=2000

DO 70 IT=1,ITR

CALL GETNM

CONTINUE

CALL VARS

STOP

END

SUBROUTINE GETNM

IMPLICIT REAL (L, M)

DIMENSION X (100), Y(100), W(100), LAM1 (3,3),
TCOV(3,3), ECOV(3,3), TRXYW(100,3), ERXYW(100,3),
LAM2(3,3), LAM3(3,3), HOLD1(3,3), HOLD2(3,3),
HOLD3(3,3), H(3,3),

XTX(3,3), M(3,3), ME(3,3), MT(3,3), BEIG(3),
SYMINV(3,3), C(3,3),

BEINV(3,3), BEINVTR(3,3), FEIG(3), XTXINV(3,3),
SYM(3,3), BOCKM(3,3), LAM2INV(3,3), SSCPINV(3,3),
TSCP(3,3), ESCP(3,3),TRXYWTR(3,100),

ERXYWTR (3,100),

CLAM1(3,3), CGC(3,3), HOLD4(3,3),

OBS(100,3), OBSTR(3, 100), SSCP(3,3), FVEC(3,3),
BVEC(3,3), SSCpP2(3,3), LAM2A(3,3), LIDENT(3,3),
OBS2INV(3,3), TRU2(3,3),0BS2(3,3)

COMMON IT, K, RXY(2000), RXW(2000), RWY(2000),

+++ o+

+ RXX(2000), RYY(2000),RWW(2000) ,CRXY(2000),
+ CRXW(2000),
+ CRWY (2000), COVT(3,3),
+ COVE(3,3), RXTXE(2000), RYTYE(2000), RWTWE(2000),
+ RXTX(2000), RYTY(2000), RWTW(2000), RXTX2(2000),
+ RYTY2(2000), RWTW2(2000), SS,
+ ITR, IS, GCRXY(2000), GCRXW(2000), GCRYW(2000),
+ HCRXY (2000), HCRXW(2000), HCRYW(2000), BCRXY(2000),
+ BCRXW(2000), BCRYW(2000),
+ FACT(2000), PXTYT, PXTWT, PWTYT, PXX, PYY, PWW,
+ DTSR (2000), DTUR(2000), DTBR(2000), DTFR(2000),
+ DTGR(2000), IMRK(2000)

XS=0.0

¥S=0.0

WS=0.0

XS2=0.0

¥S2=0.0

WS2=0.0

XTS=0.0

YTS=0.0

WTS=0.0
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XTS2=0.0
YTS2=0.0
WTS2=0.0
XES=0.0
YES=0.0
WES=0.0
XES2=0.0
YES2=0.0
WES2=0.0
XYS=0.0
XWS=0.0
WYS=0.0
XTXES=0.0
YTYES=0.0
WTWES=0.0
XTXS=0.0
YTYS=0.0
WTWS=0.0
N=3

IDA=3
IRANK=3
IDR=3

CALL CHFAC(N, CoOVT, IDA, 0.0001, IRANK, TCOV,
CALL CHFAC(N, COVE, IDA, 0.0001, IRANK, ECOV,

CALL RNMVN (IS, 3, ECOV, 3,
CALL RNMVN (IS, 3, TCoV, 3,

DO 30 I=1,1IS

ERXYW, IS)
TRXYW, IS)

THE X'S ARE CREATED AND SUMMED

X(I)=TRXYW(I,1)+ERXYW(I,1)

XS=X(I)+XS
XS2=XS2+X (I) **2
XTS=TRXYW(I, 1) +XTS
XTS2=XTS2+TRXYW (I, 1) **2
XES=ERXYW(I, 1) +XES
XES2=XES2+ERXYW (I, 1) **2

THE Y’'S ARE CREATED AND SUMMED

Y(I)=TRXYW(I,2)+ERXYW(I,2)

YS=Y(I)+YS
YS2=YS2+Y (I) **2
YTS=TRXYW (I, 2)+YTS
YTS2=YTS2+TRXYW (I, 2) **2
YES=ERXYW (I, 2) +YES
YES2=YES2+ERXYW (I, 2) **2

THE W’'S ARE CREATED AND SUMMED

W(I)=TRXYW(I,3)+ERXYW(I,3)

WS=W(I)+WS
WS2=WS2+W (I) **2
WTS=TRXYW (I, 3)+WTS
WTS2=WTS2+TRXYW (I, 3) **2
WES=ERXYW (I, 3)+WES
WES2=WES2+ERXYW (I, 3) **2
XYS=XYS+X(I)*Y(I)

IDR)
IDR)
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XWS=XWS+X (I) *W(I)
WYS=WYS+W(I)*Y(I)
XTXES=XTXES+TRXYW(I,1) *ERXYW(I, 1)
YTYES=YTYES+TRXYW (I, 2) *ERXYW(I,2)
WTWES=WTWES+TRXYW (I, 3) *ERXYW (I, 3)
XTXS=XTXS+TRXYW(I,1)*X(I)
YTYS=YTYS+TRXYW (I, 2)*Y(I)
WTWS=WTWS+TRXYW (I, 3) *W(I)
CONTINUE

XM=XS/SS

YM=YS/SS

WM=WS/SS

XTM=XTS/SS

YTM=YTS/SS

WTM=WTS/SS

XEM=XES/SS

YEM=YES/SS

WEM=WES/SS

VX=((XS2- (SS*XM*XM) ) / (SS-1.))
VY= ((YS2- (SS*YM*YM)) / (SS-1.))
VW= ( (WS2- (SS*WM*WM) ) / (SS-1.))
VXT=( (XTS2- (SS*XTM*XTM) ) / (SS-1.
VYT=( (YTS2- (SS*YTM*YTM) ) / (SS-1.
VWT=( (WTS2- (SS*WTM*WTM) ) / (SS-1.
VXE=( (XES2- (SS*XEM*XEM) ) / (SS-1.
VYE=( (YES2- (SS*YEM*YEM) ) / (SS-1.
VWE= ( (WES2- (SS*WEM*WEM) ) / (SS-1.
RXY (IT) = (XYS- (SS*XM*YM) ) / ( (SS-1.) *SQRT (VX*VY))
RXW (IT) = (XWS- (SS*XM*WM) ) / ( (SS-1.) *SQRT (VX*VW) )
RWY (IT) = (WYS- (SS*WM*YM) ) / ( (SS-1.) *SQRT (VW*VY) )
RXX (IT) =VXT/ (VXT+VXE)

RYY (IT) =VYT/ (VYT+VYE)

RWW (IT) =VWT/ (VWT+VWE)

CRXY (IT)=RXY(IT)/SQRT (RXX(IT) *RYY(IT))

CRXW (IT)=RXW(IT)/SQRT (RXX(IT) *RWW(IT))

CRWY (IT)=RWY (IT)/SQRT (RWW(IT) *RYY(IT))
OBS2(1,1)=VX

OBS2 (2,2) =VY

OBS2(3,3)=VW

OBS2(1,2)=RXY(IT) *SQRT (VX*VY)

OBS2(1,3) =RXW(IT) *SQRT (VX*VW)
OBS2(2,3)=RWY (IT) *SQRT (VY*VW)
OBS2(2,1) =RXY (IT) *SQRT (VX*VY)
OBS2(3,1) =RXW (IT) *SQRT (VX*VW)
OBS2(3,2)=RWY (IT) *SQRT (VY*VW)

TRU2 (1, 1) =VXT

TRU2 (2, 2) =VYT

TRU2 (3, 3) =VWT

N e el P et v
N S e e e

TRU2 (1,2) =RXY (IT) *SQRT (VXT*VYT) / (SQRT (RXX (IT) *RYY (IT)))
TRU2 (1, 3) =RXW (IT) *SQRT (VXT*VWT) / (SQRT (RXX (IT) *RWW (IT)))
TRU2 (2,3) =RWY (IT) *SQRT (VYT*VWT) / (SQRT (RWW (IT) *RYY (IT)))
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TRU2(2,1) =RXY (IT) *SQRT (VXT*VYT) / (SQRT (RXX (IT) *RYY (IT)))
TRU2 (3,1) =RXW (IT) *SQRT (VXT*VWT) / (SQRT (RXX (IT) *RWW (IT)))
TRU2 (3,2) =RWY (IT) *SQRT (VYT*VWT) / (SQRT (RWW (IT) *RYY (IT)))
DO 39 I=1,3
WRITE(6, 101) TRU2(I,1), TRU2(I,2), TRU2(I,3),
+ OBS2(I,1), OBS2(I1,2), OBS2(I,3)

101 FORMAT (1H ,3(F10.7,2X), 4X, 3(F10.7,2X))
39 CONTINUE
C THIS NEXT PART FINDS THE CORRECTED CORRELATIONS USING
C THE METHODS OF FULLER, GLESER, AND BOCK
C FIRST, THE SET UP, THEN THE FULLER METHOD

DO 22 I=1, IS
OBS(I,1)=X(I)
OBS(I,2)=Y(I)
OBS(I,3)=W(I)

22 CONTINUE
DO 23 I=1, IS
DO 24 J=1, 3
OBSTR (J,I)=0OBS(I,J)
TRXYWTR (J, I) =TRXYW(I,J)
ERXYWTR (J, I) =ERXYW(I,J)

24 CONTINUE

23 CONTINUE
CALL MRRRR(3,IS,OBSTR, 3, IS, 3, OBS, IS,3,3, SSCpP, 3)
DO 34 I=1, 3
DO 35 J=1, 3
SSCP2 (I, J)=SSCP(I,J)

35 CONTINUE
34 CONTINUE
CALL MRRRR (3, IS, ERXYWTR, 3, IS, 3,ERXYW, IS, 3,3, ESCP, 3)
DO 25 I=1,3
DO 29 J=1,3
M(I,J)=SSCP(I,J)/(SS)
ME(I,J)=ESCP(I,J)/(SS)
LAM1(I,J)=0.0
LAM3(I,J)=0.0
LIDENT(I,J)=0.0
C(I,J)=0.0
SYM(I,J)=0.0
SYMINV(I,J)=0.0
29 CONTINUE
25  CONTINUE

LAM1(1,1) = 1.- RXX(IT)
LAM1(2,2) = 1.- RYY(IT)
LAM1(3,3) =1 RWW (IT)

LIDENT(1,1)=1.0
LIDENT(2,2)=1.0
LIDENT(3,3)=1.0
C(1,1) =SQRT (VX)
C(2,2) =SQRT (VY)
C(3,3) =SQRT (VW)
CALL MRRRR(3, 3, C, 3, 3, 3, LAM1, 3, 3, 3, CLAM1, 3)
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CALL MRRRR(3, 3, CLami, 3, 3, 3, C, 3, 3, 3, cacc, 3)
SYMINV(1,1)=1./SQRT(CGC(1,1))
SYMINV(2,2)=1./SQRT(CGC(2,2))
SYMINV(3,3)=1./SQRT(CGC(3,3))
CALL MRRRR (3, 3,SYMINV, 3, 3, 3, M, 3, 3, 3, HOLD1, 3)
CALL MRRRR (3, 3,HOLD1,3, 3, 3, SYMINV, 3,3,3, HOLD4,3)
FIND EIGENS OF CGC WITH 2 MATRIX EIGEN PROBB WITH M
CALL EVCRG(3, HOLD4, 3, FEIG, FVEC, 3)
CALL GVCSP(3, HOLD4, 3, LIDENT, 3, FEIG, FVEC, 3)
IF ((FEIG(1) .LT. FEIG(2)) .AND. (FEIG(1) .LT.
+ FEIG(3))) THEN LOW=FEIG (1)
ELSE IF (FEIG(2) .LT. FEIG(3)) THEN

LOW=FEIG(2)
ELSE

LOW=FEIG(3)
END IF
IF (LOW .LT. (1.+1./SS)) THEN

FACT (IT)=LOW - (1./SS)
ELSE
FACT (IT)=1.0
END IF
DO 26 I=1,3
DO 26 J=1,3
H(I,J)=M(I,J)-FACT(IT)*CGC(I,J)

CONTINUE
HCRXY (IT)=H(1,2)/SQRT(H(1,1)*H(2,2))
HCRXW (IT)=H(1,3)/SQRT(H(1,1)*H(3,3))
HCRYW(IT)=H(2,3)/SQRT(H(2,2)*H(3,3))
NEXT, GLESER
CALL LINRG(3, SSCP2, 3, SSCPINV, 3)
CALL LINRG(3, OBS2, 3, OBS2INV, 3)
CALL MRRRR (3, 3,0BS2INV, 3, 3, 3, TRU2, 3,3,3, LAM2,3)
CALL LINRG (3, LAM2, 3, LAM2INV, 3)
CALL MRRRR(3, 3, LAM2INV, 3, 3, 3, SSCPINV, 3, 3, 3,
XTXINV, 3)
NOW FIND THE INV OF XTXINV
CALL LINRG(3, XTXINV, 3, XTX, 3)
GCRXY (IT)=XTX(1,2)/SQRT(XTX(1,1) *XTX(2,2))
GCRXW (IT)=XTX(1,3)/SQRT(XTX(1,1) *XTX(3,3))
GCRYW (IT) =XTX(2,3) /SQRT (XTX (2,2) *XTX(3,3))
NOW FOR BOCK AND PETERSEN
FIND EIGENS OF BEIG (SOLVE 2 MATRIX PROBLEM), ALSO
EIGENVECS
CALL GVCSP(3, M, 3, ME, 3, BEIG, BVEC, 3)
IF ((BEIG(1) .LT. 1.0) .OR. (BEIG(2) .LT. 1.0) .OR.

+ (BEIG(3) .LT. 1.0)) THEN

IMRK(IT) =1
ELSE
IMRK(IT) =0
END IF
IF (BEIG(1) .LT. 1.0) THEN
LAM3(1,1)=0.0
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ELSE
LAM3(1,1)=BEIG(1) - 1.0

END IF
IF (BEIG(2) .LT. 1.0) THEN

LAM3(2,2)=0.0
ELSE

LAM3 (2,2)=BEIG(2) - 1.0
END IF
IF (BEIG(3) .LT. 1.0) THEN

LAM3(3,3)=0.0
ELSE

LAM3 (3,3)=BEIG(3) - 1.0
END IF
NAME BVEC THE MATRIX OF EIGENVECS, FIND BEINV
CALL LINRG(3, BVEC, 3, BEINV, 3)
DO 28 I=1,3
DO 28 J=1,3
BEINVTR(J,I)=BEINV(I,J)
CONTINUE
CALL MRRRR (3, 3,BEINVTR,3, 3, 3, LAM3, 3,3,3,HOLD3, 3)
CALL MRRRR(3, 3,HOLD3,3, 3, 3, BEINV, 3,3,3, BOCKM, 3)
BCRXY (IT)=BOCKM(1,2) /SQRT (BOCKM(1,1) *BOCKM(2,2))
BCRXW (IT)=BOCKM(1,3) /SQRT (BOCKM(1,1) *BOCKM(3,3))
BCRYW (IT)=BOCKM(2,3) /SQRT (BOCKM(2,2) *BOCKM(3,3))
DTSR (IT)=DETMN1 (RXY(IT), RXW(IT), RWY(IT))
DTUR (IT) =DETMN1 (CRXY (IT), CRXW(IT), CRWY(IT))
DTBR (IT) =DETMN1 (BCRXY (IT), BCRXW(IT), BCRYW(IT))
DTFR(IT) =DETMN1 (HCRXY (IT), HCRXW(IT), HCRYW(IT))
DTGR (IT) =DETMN1 (GCRXY (IT), GCRXW(IT), GCRYW(IT))
RETURN
END
FUNCTION DETMN1 (A, B, C)
DETMN1=1.0+(2.0*A*B*C) - (A**2) - (B**2) - (C**2)
RETURN
END
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SUBROUTINE VARS

IMPLICIT REAL (L, M)

DIMENSION V(3,3), A(3,6), PSI(6,6), AT(6,3), TEMP1(3,6),
+Q5(3,3), DETM(2000), VARM1(2000), VARM2(2000),
+VARM3 (2000), COVM12(2000), COVM13(2000), COVM23(2000),
+VARUV1 (2000), VARUV2(2000), VARUV3(2000), CVUV1(2000),
+ CVUV2(2000), CvUVv3(2000), FA(3,6), FAT(6,3),
+ TEMP2(3,6), FV(3,3), FV1(2000), FV2(2000), FV3(2000),
+ FC12(2000), FC13(2000), FC23(2000), Q1(3,3),
+ DETF(2000), Q2(3,3), Q3(3,3), VU(3,3), VB(3,3),
+VARB1 (2000) , VARB2(2000), VARB3(2000), CVB1(2000),
+ CVB2(2000), CVB3(2000), VARF1(2000), VARF2(2000),
+ VARF3(2000), COVF1(2000), COVF2(2000), COVF3(2000),
+ DETU(2000) , DETB(2000) , DETFIX(2000), VFX(3,3), Q4(3,3)
COMMON IT, K, RXY(2000), RXW(2000), RWY(2000),

RXX (2000), RYY(2000) ,RWW(2000) ,CRXY(2000), CRXW(2000),
CRWY (2000), COVT(3,3),

COVE(3,3), RXTXE(2000), RYTYE(2000), RWTWE(2000),
RXTX (2000), RYTY(2000), RWTW(2000), RXTX2(2000),
RYTY2 (2000), RWTW2(2000), SS,

ITR, IS, GCRXY(2000), GCRXW(2000), GCRYW(2000),

HCRXY (2000) , HCRXW(2000), HCRYW(2000), BCRXY(2000),
BCRXW (2000) , BCRYW(2000),

FACT (2000), PXTYT, PXTWT, PWTYT, PXX, PYY, PWW,

DTSR (2000), DTUR(2000), DTBR(2000), DTFR(2000),
DTGR(2000), IMRK(2000)

DO 10 IT=1, ITR

IMT1=0

IMT2=0

ICB1=0

ICB2=0

ICB3=0

ICG1=0

ICG2=0

ICG3=0

ICF1=0

ICF2=0

ICF3=0

ICU1=0

ICU2=0

ICU3=0

IDB1=0

IDF1=0

IDU1=0

IDM1=0

IDX1=0

IDRB1=0

IDRF1=0

IDRU1=0

IDRS1=0

+H o+
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IDRG1=0
IFCNT=0
IMT3=0
DO 15 I=1,3
DO 16 J=1,6
A(I,J)=0.0
FA(I,J)=0.0
CONTINUE
CONTINUE
IF ((IMRK (IT)
THEN
IMT3=1
ENDIF
IF (FACT(IT)
IFCNT=1
ENDIF
IF ((FACT(IT)
THEN
IMT1= 1
ENDIF
IF ((FACT(IT)
THEN
IMT2= 1
ENDIF
IF (CRXY(IT)
ICUl=1
ENDIF
IF (CRXW(IT)
ICU2=1
ENDIF
IF (CRWY(IT)
ICU3=1
ENDIF
IF (BCRXY(IT)
ICB1=1
ENDIF
IF (BCRXW(IT)
ICB2=1
ENDIF
IF (BCRYW(IT)
ICB3=1
ENDIF
IF (HCRXY(IT)
ICFl1=1
ENDIF
IF (HCRXW(IT)
ICF2=1
ENDIF
IF (HCRYW(IT)
ICF3=1
ENDIF
IF (GCRXY(IT)
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.EQ. 1 ) .AND.
.LT. 1.0) THEN
.LT. 1.0) .AND.
.LT. 1.0) .AND.
.GT. 1.0) THEN
.GT. 1.0) THEN
.GT. 1.0) THEN

.GT. 1.0) THEN

.GT. 1.0) THEN

.GT. 1.0) THEN

.GT. 1.0) THEN

.GT. 1.0) THEN

.GT. 1.0) THEN

.GT. 1.0) THEN

(DTBR(IT)

(DTUR(IT)

(DTGR (IT)

.LT.

.LT.

.LT.

.0000001))

.0000001))

.0000001))
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ICG1=1
ENDIF
IF (GCRXW(IT) .GT. 1.0) THEN

ICG2=1
ENDIF
IF (GCRYW(IT) .GT. 1.0) THEN

ICG3=1
ENDIF
IF (DTSR(IT) .LE. 0.0000001) THEN

IDRS1=1
ENDIF
IF (DTFR(IT) .LE. 0.0000001) THEN

IDRF1=1
ENDIF
IF (DTUR(IT) .LE. 0.0000001) THEN

IDRU1=1
ENDIF
IF (DTBR(IT) .LE. 0.0000001) THEN

IDRB1=1
ENDIF
IF (DTGR(IT) .LE. 0.0000001) THEN

IDRG1=1
ENDIF
A(1,1)=1./SQRT(RXX(IT)*RYY(IT))
A(2,2)=1./SQRT(RXX(IT) *RWW(IT))
A(3,3)=1./SQRT(RWW(IT) *RYY(IT))
A(1,4)=-RXY(IT)/(2*RXX(IT) *SQRT (RYY (IT) *RXX (IT)))
A(1,5)=-RXY(IT)/(2*RYY(IT) *SQRT (RYY (IT) *RXX (IT)))
A(2,4)=-RXW(IT)/(2*RXX(IT) *SQRT (RWW (IT) *RXX (IT)))
A(2,6)=-RXW(IT)/(2*RWW (IT) *SQRT (RWW (IT) *RXX (IT)))
A(3,5)=-RWY(IT)/(2*RYY(IT) *SQRT (RWW(IT) *RYY (IT)))
A(3,6)=-RWY(IT)/(2*RWW (IT) *SQRT (RWW (IT) *RYY (IT)))
FP4=(1.-FACT(IT)+FACT (IT)*RXX(IT))
FPS5=(1.-FACT (IT)+FACT(IT) *RYY(IT))
FP6=(1.-FACT (IT)+FACT(IT) *RWW(IT))
FA(1,1)=1./SQRT (FP4*FP5)
FA(2,2)=1./SQRT (FP4*FP6)
FA(3,3)=1./SQRT (FP5*FP6)
FA(1,4)=-RXY(IT)*FACT(IT)/ (2*FP4*SQRT (FP4*FP5) )
FA(1,5)=-RXY(IT)*FACT (IT)/ (2*FP5*SQRT (FP4*FP5) )
FA(2,4)=-RXW(IT)*FACT(IT)/ (2*FP4*SQRT (FP4*FP6) )
FA(2,6)=-RXW(IT)*FACT(IT)/ (2*FP6*SQRT (FP4*FP6) )
FA(3,5)=-RWY (IT) *FACT (IT)/ (2*FP5*SQRT (FP5*FP6) )
FA(3,6)=-RWY(IT) *FACT(IT)/ (2*FP6*SQRT (FP5*FP6) )
DO 18 I=1,3
DO 19 J=1,6
AT(J,I)=A(I,J)
FAT (J,I)=FA(I,J)
CONTINUE
CONTINUE
PSI(1,1)=(1.-RXY(IT)*RXY(IT))**2/SS
PSI(2,2)=(1.-RXW(IT)*RXW(IT))**2/SS
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PSI(3,3)=(1.
PSI(4,4)=(1.
PSI(5,5)=(1.
PSI(6,6)=(1.
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-RWY (IT) *RWY (IT)) **2/SS
-RXX (IT) *RXX (IT)) **2/8SS
-RYY(IT) *RYY(IT)) **2/SS
-RWW (IT)*RWW(IT)) **2/SS

PSI(1,2)=COVAR4 (RWY (IT),
PSI(1,3)=COVAR4 (RXW(IT),
PSI(1,4)=COVAR1 (RXY(IT), RXX(IT), SS)

PSI(1,5)=COVAR1 (RXY(IT), RYY(IT), SS)
PSI(1,6)=COVAR2 (RWW(IT), RXY(IT), RXW(IT), RWY(IT), SS)
PSI(2,3)=COVAR4 (RXY(IT), RXW(IT), RWY(IT), SS)
PSI(2,4)=COVAR1 (RXW(IT), RXX(IT), SS)
PSI(2,5)=COVAR2 (RYY(IT), RXW(IT), RXY(IT), RWY(IT), SS)
PSI(2,6)=COVAR1 (RXW(IT), RWW(IT), SS)
PSI(3,4)=COVAR2 (RXX(IT), RWY(IT), RXY(IT), RXW(IT), SS)
PSI(3,5)=COVAR1 (RWY (IT), RYY(IT), SS)
PSI(3,6)=COVAR1 (RWY (IT), RWW(IT), SS)

RXY(IT), RXW(IT), SS)
RXY(IT), RWY(IT), SS)

PSI(4,5)=COVAR3 (RXY(IT), RXX(IT), RYY(IT), SS)
PSI(4,6)=COVAR3 (RXW(IT), RXX(IT), RWW(IT), SS)
PSI(5,6)=COVAR3 (RWY(IT), RYY(IT), RWW(IT), SS)

DO 21 I=1,6

DO 22 J=1,6

PSI(J,I)=PSI(I,J)

CONTINUE

CONTINUE

CALL MRRRR(3, 6, A, 3, 6, 6, PSI, 6, 3, 6, TEMP1l, 3)
CALL MRRRR(3, 6, TEMP1, 3, 6, 3, AT, 6, 3, 3, V, 3)
CALL MRRRR(3, 6, FA, 3, 6, 6, PSI, 6, 3, 6, TEMP2, 3)
CALL MRRRR(3, 6, TEMP2, 3, 6, 3, FAT, 6, 3, 3, FV, 3)

VARM1 (IT)=V(1,1)
VARM2 (IT) =V (2, 2)
VARM3 (IT)=V(3,3)
COVM12 (IT)=V(1,2)
COVM13 (IT)=V(1,3)
COVM23 (IT)=V(2,3)
FV1 (IT)=FV(1,1)
FV2 (IT)=FV(2,2)
FV3 (IT)=FV(3,3)
FC12 (IT)=FV(1,2)
FC13 (IT)=FV(1,3)
FC23 (IT)=FV(2,3)

VARUV1 (IT)= ((1 - CRXY(IT)*CRXY(IT))**2)/SS
VARUV2 (IT)= ((1 - CRXW(IT)*CRXW(IT))**2)/SS
VARUV3 (IT)= ((1 - CRWY(IT)*CRWY(IT))**2)/SS

CVUV1 (IT) =COVAR4 (CRWY (IT) ,CRXY (IT) ,CRXW(IT), SS)
CVUV2 (IT) =COVAR4 (CRXW(IT) ,CRXY(IT),CRWY(IT),SS)
CVUV3 (IT) =COVAR4 (CRXY (IT) ,CRXW(IT),CRWY(IT),SS)

VARB1 (IT)= ((1 - BCRXY(IT)*BCRXY(IT))**2)/SS
VARB2 (IT)= ((1 - BCRXW(IT)*BCRXW(IT))**2)/SS
VARB3 (IT)= ((1 - BCRYW(IT)*BCRYW(IT))**2)/SS

CVB1 (IT) =COVAR4 (BCRYW(IT) ,BCRXY (IT) ,BCRXW(IT),SS)
CVB2 (IT) =COVAR4 (BCRXW(IT) ,BCRXY(IT) ,BCRYW(IT),SS)
CVB3 (IT) =COVAR4 (BCRXY(IT) ,BCRXW(IT) ,BCRYW(IT),SS)
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VU(1,1)=VARUV1(IT)
VU(2,2)=VARUV2 (IT)
VU (3,3)=VARUV3 (IT)
VU (1,2)=CVUV1(IT)
VU (1,3)=CVUV2(IT)
VU (2,3)=CVUV3 (IT)
VU (2,1)=CVUV1(IT)
VU (3,1)=CVUV2(IT)
VU (3,2)=CVUV3 (IT)
VB(1,1)=VARB1 (IT)
VB(2,2)=VARB2 (IT)
VB(3,3)=VARB3 (IT)
VB(1,2)=CVB1(IT)
VB(1,3)=CVB2(IT)
VB(2,3)=CVB3(IT)
VB(2,1)=CVB1(IT)
VB(3,1)=CVB2(IT)
DO 202 I=1,3

DO 202 J=1,3
Q1(I,J)=SS*V(I,Jd)
Q2(I,J)=SS*FV(I,Jd)
Q3(I,J)=SS*VU(I,Jd)
Q4(IIJ) =SS*VB(IIJ)

CONTINUE
DETM(IT)=DETMN2(Q1(1,1), Q1(2,2), Q1(3,3), Q1(1,2),
Q1(1,3), Q1(2,3))
DETF (IT) =DETMN2 (Q2(1,1), Q2(2,2), Q2(3,3), Q2(1,2),
Q2(1,3), Q2(2,3))
DETU(IT)=DETMN2(Q3(1,1), Q3(2,2), Q3(3,3), Q3(1,2),
Q3(1,3), Q3(2,3))
DETB (IT) =DETMN2 (Q4 (1, 1), Q4(2,2), Q4(3,3), Q4(1,2),
Q4(1,3), Q4(2,3))
IF (DETM(IT) .LE. 0.0000001) THEN

IDM1=1
ENDIF
IF (DETF(IT) .LE. 0.0000001) THEN

IDF1=1
ENDIF
IF (DETU(IT) .LE. 0.0000001) THEN

IDU1=1
ENDIF
IF (DETB(IT) .LE. 0.0000001) THEN

IDB1=1

ENDIF

HERE I DEAL WITH

THE FIXED RELIABILITY ESTIMATES

VARF1 (IT)= PSI(1,1)/(RXX(IT)*RYY(IT))
VARF2 (IT)= PSI(2,2)/(RXX(IT)*RWW(IT))
VARF3 (IT)= PSI(3,3)/(RYY(IT)*RWW(IT))
COVF1 (IT)= PSI(1,2)/(RXX(IT)*SQRT (RYY(IT)*RWW(IT)))
COVF2 (IT)= PSI(1,3)/(RYY(IT)*SQRT (RXX(IT)*RWW(IT)))
COVF3 (IT)= PSI(2,3)/(RWW(IT)*SQRT (RXX(IT)*RYY(IT)))
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88
89
90
91

92
10

+
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VFX(1,1) =VARF1 (IT)
VFX(2,2) =VARF2 (IT)
VFX (3,3)=VARF3(IT)
VFX(1,2)=COVF1 (IT)
VFX(1,3)=COVF2(IT)
VFX (2,3)=COVF3 (IT)
DO 179 I=1,3
DO 179 J=1,3
VFX(J,I)=VFX(I,J)
CONTINUE
DO 203 I=1,3
DO 203 J=1,3
Q5 (I,J)=SS*VFX(I,J)
CONTINUE
DETFIX (IT)=DETMN2(Q5(1,1), Q5(2,2), Q5(3,3), Q5(1,2),
Q5(1,3), Q5(2,3))
IF (DETFIX(IT) .LE. 0.0000001) THEN

IDX1=1
ENDIF
I=IT
WRITE(6,88) RXY(I), RXW(I), RWY(I), RXX(I), RYY(I),
RWW(I), CRXY(I), CRXW(I),CRWY(I), DETM(I), DETF(I),
DETB(I), DETU(I), DETFIX(I), PXTYT, PXTWT, PWTYT, PXX
WRITE(6,89) VARM1(I), VARM2(I), VARM3(I), VARUV1(I),
VARUV2 (I), VARUV3(I), COVM12(I), COVM13(I),
COVM23 (I), CVUV1(I), CVUV2(I), CVUV3(I)
WRITE(6,90) HCRXY(I), HCRXW(I), HCRYW(I), GCRXY(I),
GCRXW(I), GCRYW(I), BCRXY(I), BCRXW(I), BCRYW(I),
FV1(I), FvV2(I), FV3(I), FC12(I), FC13(I), FC23(1), IS
WRITE(6,91) VARB1(I), VARB2(I), VARB3(I), CVB1l(I),
CVB2(I), CVB3(I), VARF1(I), VARF2(I), VARF3(I),
COVF1(I), COVF2(I), COVF3(I), PYY, PWW
FORMAT (1H ,9(F6.3,1X),5(F9.4,1X), 4(F4.2,1X))
FORMAT (1H ,3X, 12(F9.6,1X))
FORMAT (1H ,3X,9(F6.3,1X), 6(F9.6,1X), I3)
FORMAT (1H ,3X, 12(F9.6,1X), 2(F4.2,1X))
WRITE(6,92) ICUl, ICU2, ICU3, ICB1l, ICB2, ICB3, ICF1,
ICF2, ICGl, ICG2, ICG3, IFCNT, IMT1, IMT2, IMRK(IT),
IMT3, IDU1, IDB1, IDF1, IDM1, IDX1, IDRS1, IDRU1,
IDRB1, IDRF1l, ID
FORMAT (1H , 27(I1,1X))
CONTINUE
RETURN
END
FUNCTION DETMN2 (A, B, C, D, E, F)
DETMN2=A*B*C+ (2.0*D*E*F) - (C*D**2) - (B*E**2) - (A*F**2)
RETURN
END
FUNCTION COVAR1 (A, B, SN)
COVAR1= (A* ((B**2)-1.)*((B/2.)-1.)+(A**3)*(B-1.)) /SN
RETURN
END
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FUNCTION COVAR2 (A, B, C, D, SN)

COVAR2=((A-1.)* (B* (C**2) +B* (D**2) -2  *C*D) ) /SN

RETURN

END

FUNCTION COVAR3 (A, B, C, SN)

COVAR3=(2.*A**2) * (B*C+1.-B-C) /SN

RETURN

END

FUNCTION COVAR4 (A, B, C, SN)

COVAR4=(0.5*((2.*A)-(B*C) )*(1.-(B**2) - (C**2) - (A**2) ) 4+
+ A**3) /S

RETURN

END
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