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ABSTRACT

A COMPARISON OF METHODS FOR CORRECTING MULTIVARIATE DATA FOR

ATTENUATION WITH APPLICATION TO SYNTHESIZING CORRELATION

MATRICES

BY

Christine M. Schram

Corrections for attenuation have long been used to adjust

sample correlations for measurement error. Current research

synthesis (meta-analysis) procedures involve synthesizing

correlational data. The synthesis of multivariate correlation

data raises several statistical questions including correcting

for measurement error. The focus of this work was to discover

the most statistically sound method for correcting

multivariate data for attenuation which accounts for

dependence among the correlations and reliabilities.

Multivariate corrections from "errors-in-variables"

regression analysis were examined, as was an existing

multivariate correction from educational literature. These

methods were compared to the traditional univariate correction

for attenuation. Simulated and exact comparisons were made of

corrected correlations and their resulting variance-covariance

matrices.

All the methods examined produced similar corrected

correlations. Even the simple univariate correction yielded

corrected correlations that were good estimates of the

population correlation. In addition, a variety of
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approximations to the population variance-covariance matrices

of the corrected correlations were associated with these

correction methods. A variance estimator derived in this

dissertation and based on large-sample theory yielded the best

estimates of variation when.compared.to thelempirical sampling

distribution. A related variance estimation method based on

the correction from Fuller and Hidiroglou (1978) also gave

similar results to the large—sample theory method, but relied

on raw data, which are often unavailable in most research

syntheses.

An example illustrated the results of a multivariate

synthesis using the new procedure. The results of this

example showed more variability in the average correlations

and larger' homogeneity' test statistics when compared to

previous analyses of the same studies.

Overall, if corrections are to be applied, the univariate

correction, used with the large-sample variance-covariance

matrix, will yield reasonable results.
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CHAPTER I

INTRODUCTION

Meta-analysis in Educational Research

Meta-analysis is a developing statistical technique that

allows for the synthesis of results from studies of the same

phenomenon. Such studies generally contain data sufficient to

compute an effect size, which exhibits the magnitude of the

relationship studied. Meta-analytic statistical techniques

are then used to combine effect sizes, and summarize the

results. Further analysis allows the explanation of the

variability in effect sizes by the modeling of moderating

variables.

Meta-analyses have been criticized for being too

simplistic and for lacking in theory (Chow, 1987). Because

many meta—analyses simply summarize bivariate relationships

without accounting for moderators, or other significant

relationships, this criticism is justified. One potential

answer to this criticism is to develop methodology which will

allow the synthesis of more complicated theory-based data.

Meta-analytic techniques are currently being developed which

allow the summary of multivariate relationships (see, e.g.,

Becker & Fahrbach, 1994,- Becker & Schram, 1993). These

techniques allow the synthesis of interrelationships

(correlations) among variables, in contrast to the current

syntheses of simple bivariate relationships. Resulting
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syntheses will allow for a more complex and complete picture

of educational phenomena.

Multivariate syntheses examine systems of variables

(models of interrelated variables), in contrast to univariate

syntheses, which summarize data about one relationship.

However, synthesizing models by combining correlation matrices

leads to several statistical problems, one of which involves

correcting for attenuation in a multivariate setting. The

multivariate nature of such corrections led to several

research questions. This work examined the effects of using

various corrections and asked whether there is one best

multivariate correction for attenuation, for the particular

case of multivariate research syntheses.

Purpose of the Study

The purpose of this work was to investigate the

possibilities of using multivariate corrections for

attenuation. Is there a best possible correction? How do

corrections proposed in the "errors-in-variables" regression

literature apply? The meta—analytic context differs from the

regression context in that reliabilities in educational and

social-science data are often scarce or unavailabLe. What

assumptions are necessary before these corrections can be

used? Wherever multivariate situations arise when the

assumptions are met, these techniques should be applicable,

.and.in fact, the applications reach beyond meta-analysis.
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The resultsrof this‘work.are important because correcting

for attenuation will provide better estimates of parameters.

Because sample correlation coefficients underestimate

population parameters, correcting for this measurement error

will yield.more accurate results in research syntheses. .Also,

the power of statistical tests is decreased if correlations

are uncorrected (Williams & Zimmerman, 1982). If the

methodology exists for getting better estimates, better

analyses (including syntheses) will result. Certainly, the

usefulness of getting the best possible estimates is obvious.

We want the analyses to be as "right" as possible.

Four factors contribute to the need for further study of

corrections in multivariate analyses: 1) measurement errors

affect correlation coefficients, 2) dependence in multivariate

data can lead to inaccurate analyses, 3) measurement errors

may be correlated and 4) corrected correlations have different

variances and covariances than uncorrected correlations.

However, simply correcting each correlation in.a matrix using

traditional univariate corrections can lead to problems. Bock

and Petersen (1975) noted that the resulting variance-

covariance matrix associated with the correlation coefficients

may not be positive definite or positive semidefinite.

Preliminary simulation results showed that this possibility

exists.

There are several techniques which could be used to

exorrect correlation matrices, and ultimately their variances



 
and cova

through e

provide

correlat;

such corr

the most

 



4

and covariances, for attenuation. Applying these approaches

will potentially yield different results. Contrasting them

through exact work (derivations) and through simulation should

provide useful information about the best way to correct

correlation matrices. The use of a sample data set shows how

such corrections can influence results in.one case. .Selecting

the most appropriate and applicable procedures for meta-

analytic situations is the focus of this work.

Research Questions

Several questions can be raised about multivariate

attenuation corrections. The questions addressed in this

study are listed below, with a brief description of each

problem, a description of how each was investigated, and the

anticipated results.

1. What are the consequences of using a simple

univariate correction for each of a set of correlations? The

univariate correction ignores the dependence in the data, so

problems with this approach are expected. These problems may

take the form of out-of—range corrected correlations (values

greater than one), or correlation matrices and variance-

covariance ‘matrices for' the correlations *which. are non-

positive definite.

If the usual univariate correction-for-attenuation

formulas are used, and the corrected correlations are

substituted into the formula for the variance of a correlation

coefficient, is the result acceptable? This first research
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question was answered by simulating correlations and computing

their variances and examining the results. It was expected

that this correction would give significantly smaller

variances than those found by examining the sampling

distributions of disattenuated correlations.

2. What would be the difference in variances and

covariances based on the univariate correction (mentioned

above) , versus using a variance-covariance matrix derived from

large-sample distribution theory for correlation coefficients?

If reliabilities are correlation coefficients, then corrected

correlations are functions of correlations. As such, their

large-sample distributions can be derived using results found

in Olkin and Siotani (1976). The resulting variance-

covariance matrix will take into account the covariances

between.the reliabilities and the sample correlations, and the

covariances among the reliabilities. This method treats

reliabilities as random variables rather than fixed,

population quantities as is assumed by other methods mentioned

below.

This method was compared to the variances and covariances

associated with the univariate correction discussed in

question #1, through both exact work and simulations. Exact

work showed how the variances and covariances from these

methods differed, and showed that the large-sample method

based on Olkin and Siotani gave larger variances and
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covariances than the univariate method because the large-

sample correction accounts for variability in reliability

coefficients.

3. Several multivariate attenuation corrections exist

for raw data, including many in the regression literature.

How do these corrections compare to one another, and to the

corrections mentioned above? The nmltivariate corrections

frtmiBock:& Petersen (1975), Fuller and.Hidiroglou (1978), and

Gleser (1992) were compared to one another, and to the

corrections already discussed” The assumptions necessary for

the use of each method were examined, to see if the

assumptions are met in multivariate syntheses. The articles

by Fuller and. Hidiroglou (1978) and, Gleser (1992) give

corrections used in regression. These formulas were examined

to determine whether the corrections can_ be applied to

multivariate synthesis, and whether they can be compared to

corrections based on classical test theory, for example, the

correction of Bock and Petersen (1975). This investigation

determined. whether any' or all of these corrections are

appropriate for multivariate syntheses, and whether the

corrections give acceptable results.

4. Which correction is most feasible and provides the

best results? The corrections were compared on several bases.

First, the frequencies of out-of—range corrected correlations

and non-positive definite variance-covariance matrices for

correlations were noted. The percentage of out-of—range
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values was recorded for each method and each simulation

situation. Second, the variances and covariances of

corrected correlations to expected values were compared, and

the degree of bias in each was assessed. Finally, the

assumptions necessary for the use of each correction, and the

possibility of meeting these assumptions in multivariate

syntheses were discussed.

Exact work was used when possible to show how the

corrections differ in theory. A simulation study showed how

the corrections behaved in applications and in theory.

The results of this investigation suggest the best method

of correcting multivariate data for attenuation. The best

correction is the one with the best statistical properties

that is feasible in terms of assumptions necessary for its

use.

5. How do these corrections affect results of

multivariate syntheses? A set of data was examined using the

methods recommended by the results of this work. The

applications of the corrections to this data set illustrated

the different methods in a practical setting, and focused on

the consequences of using the corrections described. This

data was from Schmidt, Hunter and Outerbridge (1986) and

consisted of correlations representing relationships among

five 'variables, and. their' jpopulation. and. estimated

reliabilities.
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Future directions for research on multivariate

corrections were also addressed. Additional questions which

need to be answered concern reliability distributions and

correlated measurement errors. How are reliabilities

distributed? Hypothetical, "assumed" reliability

distributions have been used in the validity-generalization

literature. Are these distributions accurate and appropriate?

Should reliability in both the predictor and criterion be

considered? Can correcting for both lead to further problems,

especially if the reliabilities themselves are correlated?

How can correlated measurement errors be estimated and what

are appropriate values for such errors? These questions were

not answered in this work, but seem critical for future

research, thus, are discussed extensively in the final chapter

of this dissertation.

Overview of the Dissertation

The dissertation contains four additional chapters. The

second chapter addresses the review of the literature

including the basis for corrections, their current application

in multivariate syntheses, and a description of existing

multivariate corrections. The third chapter details the

methods used in this work. The fourth chapter summarizes the

results, and the fifth chapter discusses recommendations and

future research directions.
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Summary

This work investigated the statistical and practical

effects of multivariate corrections for attenuation.

Different methods for correcting for attenuation in

multivariate situations were described, and the effects of

using these different corrections and the problems arising

from each were examined. Potential problems included non-

positive definite covariance matrices, and out-of—range

variances and correlations. Practical aspects of corrections

were illustrated using a multivariate synthesis example, and

the ramifications of the different corrections were discussed.

The results of this work include a justification and

explanation of the most useful correction(s) for use in meta-

analytic syntheses. 'This investigation. showed. that the

univariate correction was a special case of each method.

However, the method from.Fuller and.Hidiroglou (1978), and the

method derived from large-sample theory yielded variances

which most closely fit the sampling distributions in the

simulation. Evidence is presented to show why these

corrections are the best, and what problems exist with other,

less useful corrections. Also, an indication of future

research directions is presented.
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CHAPTER II

LITERATURE REVIEW

Synthesizing data on models of multiple

interrelationships is complicated. Current meta-analysis

methodology has examined the synthesis of correlation matrices

between variables assumed to be measured without error

(Becker, 1992). However, this assumption is not warranted,

and can be problematic since measurement error can produce

severely underestimated correlation coefficients. However,

the best way to correct for measurement error in multivariate

syntheses is unknown. Several statistical problems associated

with making corrections for attenuation have arisen in such

syntheses and are discussed in this chapter. The literature

pertinent to this problem covers several tOpics, including

measurement error, multivariate analysis, meta-analysis and

validity generalization, and statistical methods needed for

the data analysis. This chapter details literature relevant

to addressing the problems outlined in the first chapter.

MW

Whenever correlation coefficients are used, issues of

measurement error arisen ZBecause of unreliability in.both.the

loredictor and criterion, observed correlations underrepresent

the true (p0pulation) correlation. Formulas for correcting

for unreliability date back to Spearman (1904). The basic

10
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formula for the correction for attenuation in the sample

correlation._r_;xy is

p'xy=rxy/<pxx*pw>1/2. (2.1)

where p'xyiesthe estimated population correlation.between the

fully reliable constructs x and y, r_ is the sample
XY

correlation, and pxx and pW are the known (population)

reliabilities of the predictor and criterion measures

respectively (Allen & Yen, 1979). The correlation p’xy in

(2.1) is the maximum sample correlation which could be

obtained, if no measurement error were present.

Classical test theory forms the basis for this

correction, based on the following assumptions:

1. X = T + E. An observed score is the sum of two

parts, true score and error.

2. E(X) = T. The expected value of an observed score is

the true score.

3. pET = 0. There is no correlation between error and

true score for a population of examinees on one test.

4. p8182 = 0. The errors from two different tests are

uncorrelated.

5. pElm = 0. The error on one test is uncorrelated with

the true score on another test.

6. If two tests have observed scores X and X' that

satisfy .Assumptions 1 through 5, and if for every

population of examinees T=T' and 0E2 = ag.2 , the tests

are called parallel tests.

7. If two tests have observed scores X1 and X2 that

satisfy .Assumptions 1 through 5, and if for every

population of examinees, T1 = T2 + c12 where c12 is

constant, than the tests are called essentially tau-

equivalent tests (Allen & Yen, 1979, p. 57).
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Given these assumptions, one can derive relationships

among true, error, and observed score variances, which form

the basis for one definition of reliability. Theoretically,

reliability is the ratio of true score variance to total

(observed) score variance. For any group of test takers, the

following relationships can be derived from the assumptions

 

above:

Pxx = 02.1. = 02x - 02E = 1 - 02E , (2.2)

a x 02x 0’x

2

where pxx is the reliability, 0 T is the variance of the true

scores, 0'2x is the variance of the observed scores, anddzE is

the variance of the errors.

Observed reliabilities can, be correlations, between

either scores from two administrations of the same test (test-

retest reliability) or scores on two versions of a test

(alternate forms). Also, reliability can be obtained through

an internal consistency measure based on one administration of

a test. Test-retest and alternate-forms reliabilities are

likely to contain errors in measurement that are not included

in the observed correlation between variables at any single

time point (e.g., errors due to change over time, practice

effects, fatigue, differences in forms, etc.). IHowever, test—

retest reliabilities are preferable to the others for

correcting for attenuation, according to Lord and Novick

(1968, p. 135). If the period before retesting is short, and

fatigue factors are minimized, the other minimal errors in
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measurement are likely to lead to high estimates of

reliability, which will, in turn, lead to conservatively

corrected correlations, according to Lord and Novick.

Alternate-forms reliabilities include additional error due to

differences between forms, so this type of reliability is less

useful for disattenuating corrections than test-retest. Lord

and Novick also claimed that internal-consistency estimates

can seriously underrepresent reliabilities, especially when

there is a lack of item homogeneity. Thus, the use of

internal consistency reliability for attenuation corrections

is discouraged. The focus of this work will be on test-retest

reliabilities, and both the exact work and simulations will

consider this type of reliability and its assumptions.

Multivariate Meta-analysis

Multivariate syntheses are one type of analysis where

multivariate corrections for attenuation are potentially

useful» Four recent multivariate syntheses, Harris and

Rosenthal (1985), Schmidt, Hunter and Outerbridge (1986),

Premack and Hunter (1988), and Becker and Schram (1993)

illustrate how and where these corrections could be applied.

Harris and Rosenthal. Harris and Rosenthal (1985) were

some of the first researchers to synthesize several

relationships within one meta-analysis. They examined the

literature on interpersonal expectancy effects using eight

tinivariate meta-analyses. No attempt was made to investigate

a11.of the paths of their model simultaneously. They did not
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model dependencies between paths, but did eliminate within

path dependence by using the median correlation for studies

which reported more than one correlation per path. No

corrections for attenuation were used, nor were they'mentioned

in the text.

Schmidt, Hunter and Outerbridge. Schmidt et al. (1986)

examined a path analysis of the impact of job experience on

job knowledge, with additional paths for the effects of mental

ability, work-sample performance and supervisory ratings of

job performance. They had 4 studies of these 5 variables from

military settings, and. corrected for attenuation in, all

studies. Schmidt, Hunter and Outerbridge conducted a path

analysis on this data, and found path coefficients along each

path of their theoretical model. They averaged the

disattenuated correlations across the 4 studies, then fit the

path.model. They did.not conduct a test of overall model fit,

nor did they consider the dependence in the data.

For 3 of the five variables, the reliabilities were not

based on sample values. For work samples and supervisory

ratings, the reliabilities for all 4 studies were set to .77

and .60, respectively. These values were determined from

weighted averages of reliabilities from several studies, not

including the ones used in this synthesis. The reliability

for job experience was assumed to be 1.00, as the records

:Lndicated the number of months on the job.



Th:

reliabil

research

al., ig:

and the

The reli

their und

rather ti   
Prei

several 1

multivarj

unioniZat

On EVEry

tested a

every pa;

One Pair

with the:

stUdies



15

This study illustrates the main problem with obtaining

reliability information. Often, estimates based on past

research or other samples within a study are used. Schmidt et

al., ignored the uncertainty in the reliability coefficients

and the dependence between correlations and reliabilities.

The reliabilities in their study were sample estimates, so

their uncertainty should have been considered in the analysis,

rather than considering them to be fixed.

Premack and Hunter. Premack and Hunter (1988) examined

several univariate relationships and used them to create a

multivariate (causal) model of employee decisions about

unionization. In effect, they did a univariate meta-analysis

on every path in the model, then combined the results and

tested a causal model. However, not every study examined

every pair of variables and some studies examined more than

one pair. While they provided an overall test of model fit

with their method, the dependence between relationships within

studies was ignored. Premack and Hunter used univariate

attenuation corrections for each individual correlation.

Becker and Schram. Another simple case to which this

methodology might apply considers the data from Friedman

(1991). In this example, data from several studies were

collected to assess the relationship between math, verbal, and

spatial abilities. An existing model hypothesized

relationships among all three variables. Several studies

were collected which contained correlations for all three
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relationships. Mathematical ability was used as an outcome

with.the other two variables (verbal and spatial ability) used

as predictors.

Becker and Schram (1993) conducted both univariate and

multivariate syntheses on a subset of this data. Their

univariate analysis examined. the three relationships

separately (between each.pair of variables) using traditional

meta-analysis procedures, including conducting homogeneity

tests for each path. The results from that analysis indicated

whether each.path.was homogeneous, and.if so, the magnitude of

the average correlation. Although beneficial, these results

did not directly test the model posited. 'There was no overall

test of fit, and the interrelationships among the paths (and

dependence in the data) were ignored.

The multivariate synthesis allowed the examination of the

effects of each predictor on the outcome, and on each other

simultaneously. Tests of significance and the relative

importance of each predictor were also examined and prediction

equations were formulated. This analysis modeled dependence

in the data and gave a more complete assessment than the

univariate analyses because partial relationships were

considered.

All of these examples point out methodological problems

in doing this type of synthesis. The dependencies in data are

often ignored, or unmodeledfl Other statistical problems also

exist. Measurement errors have yet to be completely
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considered” Premack.and Hunter (1988) and.Schmidt, Hunter and

Outerbridge (1986) corrected for attenuation on each path, but

did not account for dependencies among the correlations or

reliabilities. Harris and Rosenthal (1985) and Becker and

Schram (1993) did not correct for measurement artifacts. All

four studies attempt to address the problem in meta-analysis

of synthesizing only main effects. However, much work needs

to be done to solve the problem of the best way to do such a

synthesis.

Validity Generalization and Corrections

Validity generalization (VG) is an approach to combining

correlational study results which grew out of interest in the

power of employment-selection measures to predict job success.

VGV has focused. on correcting for so-called "artifactual

variation" in studies, including measurement error. Schmidt

and Hunter (1977) claimed that the variability among study

results could be attributed solely to sampling error when

measurement errors are eliminated. Their work has focused on

the development of corrections for attenuation and range

restriction in the synthesis of one outcome variable

(bivariate relationships).

However, reliability information is often unavailable in

published studies. Thus, Hunter and Schmidt (1990) (and

cathers) have sampled from hypothetical distributions of

reliabilities in making corrections. Distributions given by

Pearlman, Schmidt, and Hunter (1980) are often used when
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reliability information is missing in studies. Others,

including Raju, Burke, Normand, and Langlois (1991) have

mentioned potential problems with these hypothetical

reliability distributions. In particular, the accuracy of

validity generalization procedures is affected.by how closely

the hypothetical distributions ‘match. the real population

distributions (Paese & Switzer, 1988). Because the real

distributions are not accessible, such a match is almost

impossible to establish” .Also, these hypothetical

distributions were derived for the literature on personnel

selection, which may not represent the distributions of

reliabilities found in educational or social-science data.

Reinhardt and Mendoza (1989) also questioned the use of

these hypothetical distributions. They claimed that the

hypothetical distributions could be unrepresentative of the

real data, and that there were no guidelines to assess the

accuracy of the hypothetical distributions. As a result, they

focused on using traditional VG procedures with "situational

data" rather than with hypothetical data. They used reported

reliabilities from samples in other studies when calculating

unknown reliabilities. Their new procedures were fairly

accurate when as much as 5095 of the reliability data was

missing, suggesting that the procedures did not require a

great number of studies. A few quality studies were

sufficient to produce accurate reliability estimates.
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Raju et al. (1991) approached the hypothetical

reliability distribution problem from a different angle. They

developed a procedure for correcting correlations that

considered the sampling error arising from approximating the

reliabilities. Raju et al. (1991) used averages of available

reliabilities as pxx and pW for making the correction in

(2.1). The variance of the correlation coefficient was

adjusted for the uncertainty that arises from making this

substitution. When a reliability was reported, Raju et al.

treated it as fixed in the derivation. of the variance

formulas, even though it might have been based on a sample.

When the reliability was from an average, it was treated as

variable. The resulting variance in the correlation

coefficient was larger when a hypothetical distribution was

used, because of the additional variability in the

reliabilityn Raju.et al. (1991) used simulation techniques to

show that their method provided.more accurate estimates of the

population correlation than other procedures.

One other criticism of using hypothetical reliability

distributions and simple averages to replace missing

reliabilities is that, in both situations, reliability data

are treated as missing at random. Hedges (1989) has argued

that if low sample correlations are found in a study, the

:researchers may be more likely to report artifact corrections

'than researchers who found high correlations. Also, studies

vflnich focus on situations with.greater economic and legal risk
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may be more likely to monitor and report reliability.

Reliability information therefore seems unlikely to be missing

at random.

Other Univariate Corrections

HakstianLISchroeder. and Rogers (1988). Hakstian et al.

(1988) considered the variance and covariance of univariate

correlations corrected using test-retest reliabilities

differently than those who used the traditional method

(Equation 1). They assumed that one would have two measures

of the two variables, X1 and X2 , and Y1 and Y2, and the sample

correlation would be the average of the correlations between

X1 and Y2 and X2 and Y1 . After this average was computed, the

usual correction was used to estimate the corrected

correlation.

In their study, Hakstian et al. derived, using the delta

method, the variance:of this corrected (separate) correlation,

and the covariance between two corrected correlations

estimating the same phenomenon. using a simulation study,

they found that the corrected correlations behaved fairly

well, provided that the sample size was greater than 150.

They concluded that correcting correlations seems to be a

large-sample procedure, because three sample values with error

are used to estimate the corrected value.

While the results of this study relate to the present

work, the situation examined is problematic. Reliability

information is seldom reported in meta-analytic studies, and
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finding data on two parallel measures of each variable would

be even more unusual. Although the simulation used in the

present study'considers test—retest reliabilities, it will not

consider Hakstian et al.'s formulation because of its

impracticality.

Meta-analysis and corrections. More general synthesis

techniques (meta-analyses) have also considered the use of

corrections for attenuation and range restriction. Rosenthal

(1984) recommended reporting both corrected and uncorrected

results. He suggested that the majority of social-science

researchers do not correct for measurement errors or report

reliabilities, so uncorrected results are more typical.

Hedges and.Olkin (1985) gave the basic correction formulas for

both. mean difference effect sizes and for correlations,

discussed the effect of making the correction on the variance

of the correlation coefficient, and noted that their

univariate methods apply to corrected or uncorrected

correlations. However, Hedges and Olkin considered

reliability values to be fixed and known, and therefore they

did not take the variability of the reliabilities into account

when adjusting the variances of corrected correlations. This

assumption seems unwarranted, given that as noted above,

reliabilities are often missing and estimated, and may involve

much uncertainty.
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Measurement Problems in Univariate Syntheses

Winne and Belfry (1982) discussed several issues related

to correcting for attenuation, including the reasons for

making such corrections. 'The result of the correction for

attenuation is an estimate of the true correlation between the

variables of interest. This correlation represents a

theoretical value, or, according to Winne and Belfry, a latent

trait” ‘Winne and.Belfry urged caution in interpreting results

fromvanalyseS‘which.use corrected correlations, and they cited

several measurement specialists who share their concern (Allen

& Yen, 1979; Cronbach, 1971). The concerns stem from the

claim that the resulting corrected correlation represents the

true value between constructs measured without error. Factors

such as sampling error of observed correlations and

reliabilities and correlated measurement errors may result in

poor estimates of this true correlation.

In the meta—analysis application resulting from the

present work, the interest is in estimating a theoretical

population value, so correcting appears appropriate. However,

as important as the concerns expressed above seem, in

practice, the true values are always estimated, and it is;

never clear how much error is affecting such estimates.

Another problem noted by Winne and Belfry (and others)

was corrected correlations larger than unity. This problem

was attributed to correlated measurement errors, the type of

reliability, and the accuracy of the estimate of the
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reliability used (Winne & Belfry, 1982). Corrected

correlations larger than. unity' were not acceptable, and

adjusting for such potential problems in the multivariate case

(e.g., by forcing the corrected correlations to be between -1

and 1) was necessary. When reliabilities are sampled from

assumed distributions, the potential for out-of—range

corrected correlations may be even greater.

Thomas (1989) derived, based on a classical test theory

model, distributions of corrected correlations. Using his

derivation, Thomas addressed the issue of out-of—range

corrected correlations. He suggested a procedure which uses

the distribution function (and its inverse) of a correlation

coefficient so that the corrected correlation is forced to be

in the interval -1 to 1. His derivations assumed that

reliabilities were known and fixed, and he claimed that

viewing reliabilities as random variables would complicate the

picture, and would not be likely to yield practical increments

of improvement better than those he derived. Thomas claimed

that if the sample size is sufficiently large, the difference

between estimates based on fixed versus random reliabilities

should be negligible. He also stated that more work in this

area was necessary, and the work here should answer some of

the questions he raised. Also, this work examines the case in

‘which reliabilities are viewed as random.
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Measurement Problems in a Multivariate Synthesis

Multivariate syntheses will have their own set of

measurement and statistical problems. Ihi univariate

syntheses, covariances among variables are irrelevant. In a

multivariate synthesis, covariances (i.e., between multiple

study outcomes) also need to be corrected, or calculated with

corrected correlations. Also, when more than one correlation

arises fromithe same sample, and the reliabilities are sample-

based, the potential for correlated measurement errors exists.

When the reliabilities and correlations of interest are

calculated for the same sample, the observed reliability and

the correlation are dependent. This dependence becomes mOre

problematic when the situation is multivariate, because the

reliabilities for different tests could also be interrelated

when they are determined from the same sample. .Accounting for

covariances between (1) reliabilities for two different

measures from the same sample, and (2) between a reliability

estimate and the correlation it is used to correct, is a

further problem that is considered in the present work.

Estimating correlated measurement errors within a set of

data is another issue which needs to be addressed. The

effects of such errors should be considered. Although not

exactly an attenuation issue, this is a measurement-error

issue with practical applications. Extensions of the work of

this dissertation could consider such issues.
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Existing Multivariate Corrections

Multivariate corrections for attenuation have been

studied in the regression literature (e.g., Gleser, 1992;

Fuller & Hidiroglou, 1987). While these corrections are

similar to ones that may apply to meta—analyses, they do not

consider many of the practical problems of meta-analytic data.

Also, they make assumptions about the nature of the data which

are often violated in meta-analyses. For example, both

techniques assume that the population reliabilities are known,

and not based on sample data.

Fuller and Hidiroglou. Fuller and Hidiroglou (1978)

derived regression estimators of slopes based on correcting

the raw moment matrix for attenuation. Their derivations

applied to situations where the error variances are not

estimated from the same data (used to estimate the

reliabilities. They assumed that reliabilities for both the

predictors and the criterion are known. They addressed cases

of both correlated and uncorrelated errors.

Fuller and Hidiroglou’s method corrected the moment

matrix using a diagonal reliability matrix. This matrix used

(1 - reliability) as the basis for the correction. The

quantity (1 - reliability) is the ratio of error variance to

the total variance in the predictor. By pre- and post-

multiplying this reliability matrix by a diagonal matrix

containing the standard deviations of the predictors, the

variances were adjusted for the errors in measurement. This
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corrected moment matrix was then used in the traditional

regression calculations for estimating the regression slopes.

The authors then examined the distributional properties

of this corrected matrix, and of the corrected estimators.

Their procedure guarantees that this corrected moment matrix

is positive definite.

Gleser. Gleser (1992) examined measurement reliability

in multivariate regression. He stated that if the goal is to

assess the relationship among the true (latent) variables,

then classical least squares estimation yields biased and

inconsistent results. IHis errors in veriables regression

(EIVR) procedures provided alternative methods of estimation.

Gleser's approach used prior information about both the

reliabilities and the data to estimate a reliability matrix,

which is then used in estimating the regression slopes.

Unlike Fuller and Hidiroglou’s approach, in Gleser's method

his reliability matrix contained more than the reliabilities

of the predictors. The reliability matrix also contained the

correlations among the components of the reliability values

(true and error variance). Gleser did not consider

‘measurement error in the outcome variable or variables, and.he

assumed that the outcome and the measurement errors in the

'predictors were uncorrelated.

In. Gleser’s ‘method. the estimate of his reliability

inatrix, A, comes from previous information about the

Ixredictors, generally taken from other reliability studies.
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Gleser’s preferred.reliability study would consider all of the

predictors to be used in the regression model. ~His

reliability matrix, A, iS' then used in estimating the

traditional regression model by multiplying the predictor

matrix by the inverse of A in the estimate of the slope. If

least squares estimation is used, this result is a

generalization of the correction for attenuation used by

psychometricians. Gleser uses the eigenvalues and

eigenvectors of A to assess the influence of the measurement

error on the accuracy of the estimates.

Book and Petersen. The regression formulations described

above differ somewhat from that of Book and Petersen (1975).

Bock and Petersen’s multivariate correction for attenuation

used maximum likelihood estimation to make certain that the

resulting variance-covariance matrix is positive semidefinite .

They based their formulation on classical-test—theory models,

and. on having' a known. measurement-error matrixg Their

formulation has been applied in studies (see, e.g., Petersen,

1976); however, the effects of using their correction have not

been studied.

Bock and Peterson’s method is similar to Fuller and

Hidiroglou's, since both rely on adjusting eigenvalues to

guarantee positive definite matrices. Book and Petersen's

derivation was based on true- and error-component covariance

'matrices. A.restricted maximum likelihood estimate of the

‘variance-covariance matrix was the result. Bock and Petersen
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did not make any assumptions about reliability types or

values. The roots of eigenvectors of the difference between

the observed and error matrices (the solution to the two

matrix eigen-problem) were used to ensure that the matrix is

at least positive semidefinite. In the two-variable case

where the measurement errors are uncorrelated, the result was

the traditional Spearman correction.

These methods were all slightly different, and may be

applicable to different situations in the synthesis of

correlation matrices. However, it is not clear if the

corrections used in regression analyses can be applied to

synthesis situations. For example, corrections in regression

situations were applied to raw data (not to the correlation

coefficients). Second, some of the corrections did not

correct for measurement error in.the relationships.between.the

predictors and the outcome.

Summagy

None of the research mentioned previously has attempted

to address the role of corrections in the synthesis of

multivariate correlational data, and, therefore, take into

account the problems mentioned previously. No meta-analytic

studies address the issue of correlations among errors for

different variables within the same study.

This study focuses on methods for correcting correlation

matrices from individual studies and computing the associated

variance-covariance matrix of the correlations for each study.
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Once each study’s correlation matrix is corrected, and its

resulting variance-covariance matrix is found, then a

multivariate synthesis can be completed. The next chapter

details the statistical notation and theory needed to analyze

the issues involving multivariate corrections for attenuation.

To understand the statistical problems with correcting

correlation matrices, we must examine the distributions of

vectors of corrected correlation coefficients.
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CHAPTER III

METHODOLOGY

Statistical Formulations

Notation

Let £1, ...., 3p be random variables with the

multivariate normal distribution, and let the number' of

studies which examine correlations among these p_variables be

denoted as 5. There are p;*_=p(p-1)/2 non—redundant

correlations possible in any study. Let Eist and pist be the

sample and population correlations between x8 and xt for the

ith study, where s and p = 1 to 21, and i = 1 to k.

Let p’ist represent the corrected sample correlation

defined by (2.1) and assume that each study contains only one

measure of each construct or variable of interestt The sample

reliability for a measure of variable s will be denoted.;ass.

The number of people in study _i_ will be denoted pi. In matrix

notation, let r1 represent the vector of observed correlations

(r112, rim,..,rilp,...,ri(p_1)'p) and let p'i represent the

vector of corrected correlations, and p1 the vector of

population correlations. Let V(ri) be the variance-covariance

matrix of the observed correlations, V(p’1) the corrected

variance-covariance matrix, and V(p1) the population variance-

covariance matrix for the correlations. The reliability

matrix or any matrix containing corrections based on

reliabilities will be represented using A1.

30
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Multivariate Analysis

Multivariate analysis generally involves multiple outcome

(dependent) variables and several predictors. bhnfln of the

notation and analysis comes from matrix algebra, and several

algebraic properties of matrices are important in the

statistical analyses. For example, variance—covariance and

correlation matrices are known to be positive definite. This

means that they are invertible and their determinants are

nonzero. Knowing that these matrices must be positive

definite will help determine whether the corrections attempted

in this work are giving appropriate results. The existing

literature on multivariate regression corrections is concerned

with correcting matrices containing raw data or slopes, rather

than correlation matrices, the focus of this work. The

resulting changes in relevant variance-covariance matrices

from using these other methods (e.g., changes in slopes) are

different from the traditional corrections for attenuation.

One way to assess the consequences of the correction for

attenuation is to examine the determinant of the variance-

covariance matrix for the corrected correlations and that of

the corrected correlation matrix itself. The determinant is

a function of the elements of a matrix, and the determinant

shows whether a matrix is invertible (and positive definite).

Estimates of variance-covariance and correlation matrices are

invalid if they are not positive definite.
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Distributions of Corrected and Uncorrected Correlations

Variances. The large-sample asymptotic variance of a

correlation coefficient for a sample of size Qi is given by

Var(r_ist) = (1 - pist2)2/ni , (3.1)

where rast is the sample correlation, East is the population

correlation, and Qi is the sample size. The variance of the

corrected correlation (corrected for unreliability of both the

predictor and the criterion) differs from this because it

considers the covariances between the reliabilities and the

variances of the reliabilities. 'The variance of the corrected

; is given in Appendix A.

Bobko and Rieck (1980), among others, have investigated

the distributions of functions of correlation coefficients.

They found that correlations corrected. using known

reliabilities are more variable than uncorrected correlations.

Their results ShOW’ that simply' substituting' a corrected

correlation into the formula in (3.1) to compute the variance

of corrected correlations can give misleading results.

Cgvariances. No research was found which showed

investigations of the behavior of corrected variance-

covariance matrices of correlations. The variances and

covariances of univariate corrected correlations can be

derived using the delta method (Rao, 1973). Although these

derivations take into account the covariation between

correlations, they still do not consider whether the resulting
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variance-covariance matrix of the correlations is positive

definite.

The covariance between two correlation coefficients which

do not share a common index (the most complicated case) is as

follows (Olkin & Siotani, 1976):

COV (gist I l:iuv ) = [0'5 pist piuv (pisu + pisv T pitu T

2

pitv ) + pisu pitv T pisv pitu ' (pist pisu pisv + pits pitu

pitv + pius pm pm + pivs pm pm )l/si- (15-2)

This equation simplifies when the pair of correlations share

an index; Appendix: B contains the covariances between

correlations for different cases, including covariances

between reliabilities, and between a reliability and a

correlation, based on the formulas found in Olkin and Siotani

(1976). Appendix .A shows the variance of a corrected

correlation and the covariance of a pair of corrected

correlations which were derived using the delta method for the

simplest case, a 3 x 3 correlation matrix. These corrections

lead to new variances and covariances. The corrected

variance-covariance matrix is obtained by pre- and post-

multiplying the uncorrected variance-covariance matrix by the

matrix of first derivatives (the Jacobian) of the functions of

the corrected correlations used in (2.1), which consider both

the sample correlation and the reliabilities as random

variables. The result of this multiplication is a matrix
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which.contains the variance-covariance matrix of the corrected

correlations.

Layout of Simulation

Data Generation

A simulation was conducted to examine the frequency of

problems (such as overcorrection and non-positive determinants

of variance-covariance matrices) occurring because of

corrections. This simulation used multivariate normal data

generated with uncorrelated measurement errors. In the

simulation, population correlations and reliabilities were

fixed, then data were generated for each distribution of true

and error scores. Observed and corrected correlations were

examined, as well as sample reliabilities and determinants of

resulting corrected correlation matrices and variance-

covariance matrices among the corrected correlations.

This simulation examined the simplest posSible

multivariate case, based on three population correlations

(p12, p13, p23) which arise from three variables (51, £2, and

2(3) , and the resulting three sample correlations (£12, £13, and

£23) . The corresponding sample reliabilities are 3211! £22, and

£33-

Two different methods for simulating the results were

used. One, based on classical test theory, begins with true

score and.error variances, and.then.computes reliabilities and

true correlations based on these values. A simplifying
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assumption of letting the variance of the observed scores

equal 1 was used. This method was also used by Raju et al.

(1991). When applying this method to multivariate data, in

the three variable case, two correlations were fixed, and the

third correlation was based on the relationship between the

first two correlations. 'The results indicated that this third

correlation varied around a fixed value (as would be

expected).

In order for the correlation matrix to be positive

definite, there is a distinct relationship between the three

related correlations. The interval of possible values for the

third correlation (rg3), given the first two (:42 and :13), is

centered around the product of the first two correlations:

£12*£13 +/- x/((1-;212)*(1-;213)) (Stanley & Wang, 1969) .

The other method of simulation used the multivariate

normal generator' in. IMSL (International. Mathematical and

Statistical Library). A desired variance-covariance matrix

for the observed scores was derived from the known true and

error variances, based on the population reliabilities, and

under the assumption of unit variances for the observed

variables. The variance-covariance matrix for the true scores

is

 

P11 912 Vpii v(’22 913 V911 V933

912 vpll V922 922 923 VP22 v93

913 V911 V93 923 V922 V933 P33
—    
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The variance-covariance matrix for the errors is

  — —v

With this method, the matrices of the three population

correlations and. the three jpopulation. reliabilities were

specified ahead of time. The multivariate normal generator

then provided data with the given variance-covariance

structure, from. the Cholesky factorization. of these two

matrices. Once the data are generated, the true and error

scores are summed, to yield observed data with the desired

properties.

Both methods gave similar results in basic simulations.

The method using the multivariate normal generator was chosen

for further use, because it allowed the specification of the

third correlation” The third correlation for the data used in

the simulation was always in the range of values specified

above.

Different Univariate Corrections

Differences in simulation results are found when

considering which reliability definition or correction

formulation to use. Raju et al. (1991) showed the derivation

of corrected variances for the univariate case, in which they

defined the corrected correlation to be

C _
r W — rxy , (3 . 3)

rxxt ryyt



where

popula

result

respec

differ

provid-

formul.

simula(

scores

are ne\

reliab;

Ti   



37

where gut = V320: and gyyt = \/_r_yy (the square root of the usual

population reliabilities). This formulation led to different

results, because Raju et al. took derivatives of I£xy with

respect to rkxt instead of £kx° The variances they obtained

differ from those in Appendix A. The fermulation in (3.3)

provides much easier derivatives, but it is unclear which

formulation is really more practical or accurate. For a

simulation, the correlation between true scores and observed

scores is readily available, but in practice, the true scores

are never known. The correlations are only estimated, as are

reliabilities.

(The distributions of these two reliabilities (rkxt and

ryyt) and the effects of these two different formulations were

examined. As expected, the distributions of gut and _ryyt were

much more negatively skewed than the distributions of the rkx

and.ryy. Preliminary simulations showed that the formulation

from Raju et a1. gave variances of corrected.correlations that

were far smaller than those expected based on the sampling

distribution. Also, one can show that in Raju et al.’s

formulation, V(_1:°) would always provide smaller variances than

those corrections shown in Appendix A (V(p')). Therefore,

further use of this formulation was not warranted, and it was

not included in the final simulation study.

Simulation Parameters

Sample sizes. The size of the sample will have an

influence on the magnitudes of the variances and covariances
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of the correlation matrix. Because the derivations used in

this study are based.on large-sample theory, and because other

simulation results have shown that small sample sizes present

problems with covariance-matrix estimation (Becker & Fahrbach,

1994), the sample sizes chosen for the simulation are

relatively large. The sizes chosen for this study are 50,

100, 250, and 500.

Correlations. The correlation triples chosen for this

study are based on practical regression situations in which

one of the variables is an outcome, and the other 2 are

predictors. The correlation triple (.00, .00, .00) was used

so that the simplest case was represented. The rest of the

correlation triples represent various population outcomes that

could underlie data in regression studies. Table 1 displays

the combinations used, along with the R2 value for each

combination. The first two correlations in the triples

represent the population correlations between each predictor

and the outcome. The third correlation in the triples

represents the intercorrelation between the two predictors.

The triples show varying degrees of relationship with the

outcome, from weak to strong, and varying degrees of

intercorrelation” 'The table shows that the percent of

variance explained, using the second and third variables to

predict the first variable ranged from .00 to .77. Many of

the R2 'values are moderate, as would be expected in
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educational situations. All triples are possible, given the

constraints mentioned previously.

Table 1

Simulation Parameters

Sample Sizes: 50, 100, 250, 500

Correlation Triples:

(o, o, 0) R2 = .00

(.4, .3, .1) R2 = .23

( 4, 3, 7) R2 = 16

(6, 4, - 2) R2 = 64

(.6, .4, .2) R2 = .44

(7, 6, 1) R2 = 77

( 7, 6, 8) R2 = 49

Reliability Triples:

(.7, .7, .7)

(.85, .85, .85)

(.9, .8, .7)

(1, l, l)
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Reliabilities. The reliability triples also were based

on previous research. First, the triple (1.00, 1.00, 1.00)

provides the case of measurement without error. The three

other triples show varying degrees of unreliability, with the

lowest triple (.70, .70, .70) representing moderate

measurement error. I; search. through several nationally

administered standardized tests showed that subtest

reliabilities typically ranged from .85 to .95. Therefore,

when considering standardized achievement type measures, ( . 70,

.70, .70) is lowu IHowever, Schmidt, Hunter, Pearlman, & Shane

(1979) provided hypothetical criterion reliabilities which

were much lower. These seemed to have a roughly normal

distribution centered on .60 and ranging from .30 to .90.

Reliabilities this low may be representative of employment

criterion reliabilities, when the outcomes are often

supervisory ratings. In education, reliabilities typically do

not appear that small. In fact, hypothetical reliabilities

for predictors given in Schmidt et al. (1979) ranged from .50

to .90, with 90% of them equal or above .75. This range of

reliabilities seems more consistent with the educational

literature. Examining reliabilities from test manuals seems

more reasonable than arbitrarily using hypothetical

distributions found in employment literature. For example,

Bock & Vandenberg (1968) used test manuals from the

Differential Aptitude Test to give the error variances

(reliabilities) used in their study which used a multivariate
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correction for attenuatitmu All sample sizes, reliability and

correlation triples were completely crossed so that each

possibility was considered. It is expected that some

overcorrection (corrected correlations greater than 1) will

occur when the (.70, .70, .70) reliability triple is paired

with population correlations greater than .70.

The number of replications used was 2000. Given the

parameters of the simulation, there are 4 X 7 X 4 = 112 cases

to be considered. Four methods (Fuller and Hidiroglou, Book

and Petersen, Gleser, and univariate) of correcting

correlations were considered, and their variance-covariance

matrices were computed. The limitations of the variance-

covariance matrices are discussed below. The sampling

distribution for each case was also examined.

Basis for Comparing Methods of Corrections

Corrected correlations. From the multivariate

corrections given by Fuller and Hidiroglou (1978) and.Bock and

Petersen (1975), it was possible to compute a corrected

correlation matrix. Appendix C contains descriptions of the

various methods for finding corrected correlations. The

corrected variance-covariance matrix of the raw scores was

computed, and then converted to a correlation matrix.

Comparing to the univariate corrected correlations in the

simulation was then straightforward. The average magnitudes

of the differences between the population values and these

corrected correlations showed the difference between methods.
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In Gleser’s method, while an estimate was determined for the

matrix lambda (of errors/reliabilities), it was not clear how

the corrected variance-covariance among the raw scores was

adjusted. However, corrected correlations were found. All of

these correction methods were computed in the simulation.

Because the simulation starts with raw'data, all of the needed

corrections were then obtained.

Variance-covariance matrices. None of the three

multivariate corrections (Bock & Petersen, 1975; Fuller &

Hidiroglou, 1978; Gleser, 1992) provided estimates of a

variance-covariance matrix for the corrected correlations.

However, the method from Fuller and Hidiroglou (1978) did

allow'for a derivation.of a variance-covariance matrix for the

corrected correlations. This computation was a variation of

the large—sample theory variances and covariances found in

Appendix A.

Forms of the other two methods (Bock & Petersen; Gleser)

were not amenable to such a calculation. The Gleser

correction was very similar to the univariate correction, and

the variance-covariance matrix for this case was identical to

the large-sample theory method, therefore no computation of

variance for this correction was attempted.

The correction from Book and Petersen.did.not lead to any

possible correction to the variance-covariance matrix of the

corrected correlations. The only possibility was to insert

the corrected correlation from Book and Petersen into
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equations (3.1) and (3.2) to estimate the variance-covariance

matrix of the corrected correlations. This procedure yielded

results similar to the univariate method variance calculation.

The fourth and fifth methods to be compared were the use

of the univariate corrected correlation in the given variance

and covariance formulas (Equations 3.1 and 3.2), and.their use

in the large-sample theory formulas shown in Appendix A.

Finally, treating reliabilities as constant was also examined.

This method involved using Equation (3.1) and multiplying the

resulting variance by the inverse of the product of the

reliability values, i.e.,

V(p'xy) = .1 * V(rx ).

pxxpxy

The covariances were calculated similarly. The comparison of

these six ways of calculating the variance-covariance matrices

of the corrected correlations is shown in the next chapter.

Comparisons Made

W

The exact comparison of formulas for the corrections and

their variance-covariance matrices for the different methods

was difficult. The first examination of these methods

determined how they compared for the simplest case: 2

variables, 2 reliabilities, and 1 correlation. All three

methods were compared to one another and to the typical

univariate correction (Equation 2.1). Book and Petersen's
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(1975) correction claims to be identical to the univariate

correction for this case. Claims are not made about the

equivalence of the other two corrections (Gleser, 1992; Fuller

and Hidiroglou, 1978).

Next, the three variable case was examined. Differences

from the above situations were expected, and the results from

the three methods were not comparable. The result of these

exact comparisons showed whether any of the methods provided

equivalent, larger, or smaller corrected correlations and

variance-covariance matrices.

Simulation Comparisons

The first results of the simulation study display the

percent.of out-of-range corrected correlations, the percent of

invalid (non-positive definite) correlation or variance-

covariance matrices, and the corrected variance-covariance

matrix for each method and case. These results are compared

to one another and.to the sampling distribution created.by the

simulation. The differences between the empirical sampling

distributions and the observed values fromleach.of the methods

show how the methods differ and which method(s) give results

closest to the empirical sampling distribution.

WW

After the simulation results were completed, a comparison

of methods was made using data from a previous synthesis.

'This comparison not only examined the corrected correlations,

but also showed whether the conclusions of the data analyses
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changed, depending on the correction used. The analysis to be

reconsidered is from Becker and Cho (1994) , though the

original data are from Schmidt, Hunter and Outerbridge (1986) .
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CHAPTER IV

RESULTS

Exact Comparisons among the Methods

Exact work was used to compare the methods (univariate,

Gleser (1992) , Book and Petersen (1975) , and Fuller and

Hidiroglou (1978)). The four' corrections ‘were compared

algebraically. First, the 2 variable case, with 2 variables,

2 reliabilities and 1 sample correlation was examined. Book

and Petersen’s (1975) claim that for this simplest case; their

correction was the same as the traditional univariate

correction, was verified.

Gleser (1992)

The correction from Gleser (1992) also always gives the

univariate correction in the cases which were considered here.

The reliability matrix (A) in Gleser is an adjustment to the

usual sum-of—squares and cross products (SSCP) matrix. The

SSCP matrix is p multiplied by the variance-covariance matrix

of the raw scores if the sample mean is 0 and the sample

standard.deviation is L. The simulation studied.here operated

under those assumptions. Gleser (1992) lets A = 2'10,” * 2mm

represent the reliability matrix, where E'lob. is the variance-

covariance matrix of the observed predictors and 2cm. is the

variance-covariance matrix of the true scores for the

predictors. Then, the adjustment in the regression case is

46
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fl = A71 * (X'X)'1 X’Y (Gleser, 1992). The adjustment occurs

when multiplying the inverse of A by (x'x)'1. Elementwise,

for the three variable case, with two predictors (assuming a

mean of 0 and a variance of 1 for all variables), the matrices

 

 

 

look like:

1 "r21

-1 2 2

Eobs = 1 " r 23 1 " r 23

and

'r23 .4

Etrue = 922 r23

r23 P33  

where (X'X) =

 

n r53 n i

:53 n n

  
  

The adjustment is occurring only to the predictor variables.

The variance of the true scores is equal to the reliability

when the variance of the observed scores is assumed to equal

1. The corrected correlation is then found by dividing the

off-diagonal element of (X’X)n" by the product of the square

roots of its diagonal elements where

aux)“, = (4'1 * (x'xr1r1,
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where A'1 = (E'lob. * Bum)’1 The adjustment using A then

gives corrected.correlations identical.t0>the usual univariate

correlations.

Bock and Petersen (1975)

The approach of Book and Petersen (1975) gives the usual

univariate correction if the original correlation matrix is

well defined (non-negative definite), but if the corrected

correlations are greater than unity, the matrix is modified

further so it becomes positive definite, and a different

corrected correlation is produced. This method increases the

observed correlations, but not in the same way as the usual

correction for attenuation.

Bock and Petersen’s method manipulates the moment

matrices, M; and Mp, the mean error and the mean observed sum

of squares and cross products matrices, respectively. These

are the matrices found by dividing the sums of squares and

cross products matrices for the error and observed scores by

their respective degrees of freedom. Their method involves

solving the two matrix eigenproblem

(M? - AiJM.) xi = 0 (Book and Petersen, 1975, p. 674).

Once this problem is solved, the estimate of the true

variance-covariance matrix of the raw scores can be made using

the following formulation. Let X = (xi, ... xp) be the matrix

of eigenvectors, let A' = diag(ki, ..., AP) be the matrix of

eigenvalues, and let Ip be the p x p identity matrix, then

*

2t=MY-M.=B’ (A -Ip)BwhereB-—=X'1.
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If any of the elements of the A.matrix are less than one, they

are replaced by 1.0 in the calculation, This constrains St to

be at least positive semidefiniteu Corrected.correlations are

then calculated using the elements of 2t.

Fuller and Hidiroglou (1978)

Fuller and Hidiroglou’s (1978) method is similar to Bock

and Petersen’s (1975) in that it also uses eigenvalues to

adjust the corrected correlation matrix“ However, it appears

that the corrected correlation from Fuller and Hidiroglou will

be slightly different from that of Bock and Petersen. Fuller

and Hidiroglou’s method considers the already-corrected

correlation.matrix and forces it to be positive definite» The

Fuller and Hidiroglou method only gives corrections different

from the univariate correction.when the corrected correlation

matrix would be non-positive definite.

The Fuller and Hidiroglou method is the same as the

univariate correction in the 2 x 2 case. The following shows

how it compares. 'The Fuller and Hidiroglou.method starts with

the regression equation

)3 = 3'1 (n'1 x' ‘1),

where H‘1== Ufa X’X) - D A D, and where y and x are two

variables in the x matrix and where D is a diagonal matrix

of standard deviations of y and x,
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Also, A is a diagonal matrix containing 1 - reliability

values:

1 — Ihw O

A =

O l - rxx

  

Then, for the case where the mean of each variable is

assumed equal to O and the standard deviation is 1.0, H

simplifies to:

32 s 32 (1 r o
W

    
wa

This in turn yields the new variance-covariance matrix

for the raw scores

  

2

erxx  

Solving for the correlation between 5 and w gives the usual

correction for attenuation

rXW

VERX‘erw

 

If the matrix of corrected correlations is not positive

definite, the adjustment comes from pre-multiplying the DAD

product by the quantity (f - rfl), where f is the smallest
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root (eigenvalue) in the two-matrix eigenproblem | M - fCGC (

= 0. Here C is the matrix of standard deviations of the raw

scores and G a diagonal matrix containing reliability values.

This procedure is similar to Bock and Petersen’s. However,

Fuller and Hidiroglou’s estimate is constrained to be positive

definite, while Bock and Petersen’s is positive semidefinite.

The Three Variable Case

The formulas for the corrections in the three variable

case proved to be excessively complex for all methods (except

the univariate case). As such, algebraic (exact) comparisons

were impossible to make. In other words, comparisons of the

correction formulas did not lead to any clear conclusions.

However, several small-scale examples using spreadsheets and

Minitab were computed, and the following results (before the

simulation part of the study was conducted) were noted.

First, the Gleser method yields corrected correlations

very similar to the traditional univariate correction, in all

cases. The difference between the Gleser and univariate

corrections is minimal, with the difference near zero when

large sample sizes are used. Second, Bock and Petersen (1975)

and Fuller and Hidiroglou (1978) have similar methods, but

they give different corrections; when the usual corrected

correlation matrix is not positive definite or contains

corrected correlations greater than.1ufil3n The simulation

results show which method gives larger corrected correlations,
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and which variances are closest to the expected variances in

the simulation.

The results of the computation of the variance of the

corrected correlations, assuming that reliabilities are fixed

and known values are also of interest. In this case, the

variance of a corrected correlation is simply the variance of

the uncorrected correlation divided by the product of the

reliability values. This variance of a correlation (assuming

that the reliability is fixed) should be larger than the

variance of a univariate corrected correlation computed using

(3.1) and (3.2), unless the reliability values are 1.0. If

the reliabilities are 1.0, the two variances will be equal.

Summary of Exact Results

This examination of the exact results from each method

shows that, for legitimate corrected correlation matrices

(those that are positive definite), all 4 methods produce the

same values for the corrected correlations. If, however, the

corrected correlation matrix would be non-positive definite,

the Fuller and Hidiroglou and Bock and Petersen methods

further adjust the correction. The simulation results should

reflect this exact work, and additionally will show the

magnitudes of differences among the corrected correlations,

and the corresponding differences in the variance-covariance

matrices of the corrected correlations.
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Assumptions of Each Method

Before the simulations were conducted the assumptions of

the different methods were examined. The methods often

violated assumptions that would need to be made in meta-

analytic studies. The following details were noted, and the

three multivariate methods were compared and contrasted.

Fuller' and. Hidiroglou's (1978) derivations apply' to

situations where the error variances are not estimated from

the same data used to estimate the correlations. They assume

that reliabilities for both the predictors and the criterion

are known. This assumption was violated in the simulation

since the data used to estimate the reliabilities were also

the same as those used to estimate the correlations, however,

the dependence was accounted for in the calculation of the

variances and covariances.

Gleser's (1992) approach uses prior information about

reliability values to estimate a reliability matrix which is

then used in estimating the regression slopes. This

reliability'matrix:contains more than the reliabilities of the

predictors. Itialso takes into account the correlations among

the components of the measurement error and also the

correlations among the components of the true vector of

predictors.

Both Fuller and Hidiroglou's (1978) and Gleser’s (1992)

corrections occur in regression models, and both make

assumptions that would not necessarily be reasonable in
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meta-analysis. In most primary studies included in a meta-

analysis, reliability information (if given at all) is from

the sample, thus is not a population.parameter. .Also, both of

these methods correct a raw data matrix rather than a

correlation matrix, and both assume reliabilities are

nonrandom.

Bock.and.Petersen (1975) considered.the‘whole correlation

matrix, rather than the individual elements. Their

multivariate correction for attenuation uses restricted

maximum likelihood estimation to make certain that the

resulting variance-covariance matrix is positive definite. It

is not clear what assumptions they make about the

reliabilities. However, in the example given in their paper,

they use a known value for estimating measurement error of

human characteristics. In another study, Book and Vandenberg

(1968) have used known reliabilities in estimating error

variances. It is unclear whether using reliabilities based on

sample data would violate any assumptions for the Bock and

Petersen procedure.

Although the methods discussed violate some assumptions

of multivariate meta-analyses, all were used in the simulation

part of this studyu Putting all of the corrected correlations

into the derived formulas for the variances and.covariances of

the correlation matrices produced variances and covariances

which were compared to the sampling distribution. The effect

of violating these assumptions (if any) was then determined.
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Simulation Results

Caveats

The simulation program was written in FORTRAN, and a

version of this program is given in Appendix D. 'The data were

summarized using a SAS program. Some assumptions were made

during the data generation and analysis. First, as noted

above, the Gleser (1992) correction was virtually identical to

the traditional univariate correctitmn However, in. the

program, the univariate correction was calculated using the

sample correlation and reliability statistics in Equation

(2.1). The Gleser correction was estimated based on the raw

data matrices, as shown in Chapter 3. Therefore, slightly

different results were expected for these two methods.

Second, although there were five different calculations

for the variance-covariance matrices, only 3 unique methods

existed. These methods are: (1) the traditional variance-

covariance corrections using Equations (3.1) and (3.2), which

were used to get the univariate and the Book and Petersen

variance-covariance matrices, (2) the large-sample theory

variance-covariance matrices (shown in Appendix A), which were

adjusted for use with the Fuller and Hidiroglou method, and

also with a traditional univariate correction, and (3) the

fixed reliability calculation. These methods were then

compared to the empirical variances computed from the sampling

distribution of the corrected correlations across replications

in the simulation.
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In each of the 112 simulation runs, counts of corrected

correlations greater than unity, non—positive definite

corrected correlation. matrices and. non-positive definite

variance-covariance matrices were recorded. One problem

encountered in this process was that the determinants of the

variance-covariance matrices of the corrected correlations

were small. Because the order of these matrices is

proportional to 1/n_3, and because variances and covariances of

correlations are small as well, the determinants of the

variance-covariance matrices of the corrected correlations

were often extremely tiny (<10'10) , especially for the cases

when n = 500. For this reason, after these determinants were

3 before counts andcalculated, they were multiplied by _r;

comparisons among the methods were made. Without this

convention, the majority of the cases would have shown all

2000 replications to have "improper" variance-covariance

matrices.

Results from Count Data

Corrected correlations greater than unity. Here, a

"case" refers to one of the seven different population

correlation sets from Table 1. The first count examined was

the percent of corrected correlations greater than unity, for

each case and method of correcting the correlations. In

general, the frequency of corrected correlations greater than

unity, as shown in Table 2, was small (no more than three

percent). In two of the cases ( p. = (.00, .00, .00) and



 
p = (.40.

than uni:

the cases

the numbe

tiny (les

produce c

univaria:

was 50, a

overcorre

(and larg

(1975) an

COIIECted

As t

imPrOper I

 



57

p = (.40, .30, .10)), no corrected correlations were greater

than unity for any sample size or reliability combination. In

the cases where p = (.60, .40, .20) and p = (.60, .40, -.20),

the number of corrected correlations greater than unity was

tiny (less than .11%). In these cases, the only methods to

produce corrected correlations greater than unity were the

univariate and the Gleser corrections, when the sample size

was 50, and the reliability triple was (.70, .70, .70). The

overcorrected correlations occurred for the first correlation

(and largest) in the triple (.60). The Book and PEtersen

(1975) and.Fuller and Hidiroglou (1978) corrections never gave

corrected correlations greater than unity in any case.

As the population correlations increased, the percent of

improper corrected correlations increased. In the case where

p = (.40, .30, .70) and g = 50, for the reliability triple

(.70, .70, .70) both.the univariate and Gleser corrections had

0.75% (15 out of 2000) invalid corrected correlations. In the

same case, but where the reliability triple (.90, .80, .70)

was used, the percents were 0.20% and 0.15% for the univariate

and Gleser methods, respectively. All of the invalid

corrected. correlations occurred.*when. the largest (third)

population correlation (p = .70) was corrected. In fact, in

all cases, no sample estimate of a population correlation less

than .60 gave a corrected correlation greater than unity.
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Table 2

Percggt of Corrected Correlations Greater than Unitx

Case 1. 012 3 .0 013 3 .0 023 = .0

Pop. Corr. 0.00

011 "‘ -7 922 ‘-7

Univar

Bock

Fuller

Gleser

0.00

0.00

0.00

0.00

n=50

0.00 0.00

933 3 -7

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

011 = .85 022 8.85 033 3 .85

Univar

Bock

Fuller

Gleser

0.00

0.00

0.00

0.00

l911 " -9 022 “5

Univar

Bock

Fuller

Gleser

p11 3 1.00

Univar

Bock

Fuller

Gleser

0.00

0.00

0.00

0.00

022 3

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

033 3

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

.7

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

n=100

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

58

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

n=250

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

n=500

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00
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Table 2 (Cont’d)

case 2. 012 3 .4 913 3 .3 023 3 .1

n=50 n=100 n=250 n=500

Pop. Corr. 0.40 0.30 0.10 0.40 0.30 0.10 0.40 0.30 0.10 0.40 0.30 0.10

911 = -7 922 3-7 933 = -7

Univar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Bock 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

pm 3 .85 022 3.85 p33 3 .85

Univar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Back 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

pm 3 .9 p22 3.8 p33 3 .T'

Univar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Bock 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

pm 3 1.00 022 3 1.00 033 3 1.00

Univar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Bock 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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table 2 (Cont'd)

l

VCase 3. p12 = .4 p13 = .3 p23 -

n=50 n=100 n=250 n=500

Pop. Corr. 0.40 0.30 0.70 0.40 0.30 0.70 0.40 0.30 0.70 0.40 0.30 0.70

lon = -7 922 ‘-7 933 g -7

Univar 0.00 0.00 0.75

Back 0.00 0.00 0.00

Fuller 0.00 0.00 0.00

Gleser 0.00 0.00 '0.75

.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
0
0
0

l
'

I m U
'

p11 3 .85 p22 3.85 p33

Univar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Bock 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p“ 3 .9 p22 3.8 p33 3 .7

Univar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Bock 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

pm 3 1.00 p22 3 1.00 033 3 1.00

Univar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Bock 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00



Table 2 (Cont'd)

Case 4. p12 = .6 p13 = .4 023 = .2

Pop. Corr. 0.60

n=50

0.40 0.20

lon = -7 922 ‘-7 933 = -7

Univar

Bock

Fuller

Gleser

l911 ‘ ~55 922 ‘-35 033

Univar

Bock

Fuller

Gleser

911 3 -9 022 3-3

Univar

Bock

Fuller

Gleser

p11 a 1.00

Univar

Bock

Fuller

Gleser

0.05

0.00

0.00

0.05

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

922

0.00

0.00

0.00

0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

= .85

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

933 = -7

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

1.00 033 3

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.60

.00

.00

.00

.000
0
0
°

.00

.00

.00

.000
0
0
0

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

n=100

0.40

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

61

0.20

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.60

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

n=250

0.40

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.20

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.60

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

n=500

0.40

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.20

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00



Table 2 (Cont'd)

Case 5. p12 = .6 p13 = .4 p23 =-.2

Pop. Corr. 0.60

911 = -7 022 =-7

Univar

Bock

Fuller

Gleser

0.10

0.00

0.00

0.10

n=50

0.40

l933 ‘

0.00

0.00

0.00

0.00

(’11 3 -35 022 “~55 933

Univar

Bock

Fuller

Gleser

0.00

0.00

0.00

0.00

lon = -9 022 “3

Univar

Bock

Fuller

Gleser

p11 . 1.00

Univar

Bock

Fuller

Gleser

0.00

0.00

0.00

0.00

022 ‘

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

033 =

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

-0.20

0.00

0.00

0.00

0.00

.85

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

033 '

0.00

0.00

0.00

0.00

0.60

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

n=100

0.40

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

62

-0.20

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.60

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

n=250

0.40

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

-0.20

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.60

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

n=500

0.40

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

-0.20

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00



Table 2 (Cont'd)

case 6. 012 3 .7 013 3 .6 023 3

Pop. Corr. 0.70

1911 3 -7 l"22 =-7

Univar

Bock

Fuller

Gleser

0.90

0.00

0.00

0.75

n=50

0.60

(’33 =

0.15

0.00

0.00

0.15

0.10

.7

0.00

0.00

0.00

0.00

011 3 .85 022 3.85 033 3 .85

Univar

Bock

Fuller

Gleser

0.00

0.00

0.00

0.00

011 3 -9 922 3-3

Univar

Bock

Fuller

Gleser

011 3 1.00

Univar

Bock

Fuller

Gleser

0.00

0.00

0.00

0.00

022 3

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

p33:

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

.7

0.00

0.00

0.00

0.00

l933 =

0.00

0.00

0.00

0.00

I

I _
l

0.70

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

n=100

0.60

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

63

0.10

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.70

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

n=250

0.60

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.10

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.70

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

n=500

0.60

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.10

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00



Table 2 (Cont'd)

Case 7. p12 = .7 p13 = .6 p23 -

Pop. Corr. 0.70

n=50

0.60

011 3 -7 922 3-7 933 3

Univar

laock

Fuller

(Sleser

1011 3 -35 l022 3-35 pas

‘Jnivar

laock

Fuller

Gleser

1.15

0.00

0.00

1.15

0.00

0.00

0.00

0.00

On 3 .9 022 3.8

lJnivar

Eiock

Fuller

Gleser

011 3 1.00

Univar

lilock

F ul ler

(Sileser

0.00

0.00

0.00

0.00

l922 3

0.00

0.00

0.00

0.00

0.15

0.00

0.00

0.30

0.00

0.00

0.00

0.00

033 3

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.80

.7

3.00

0.00

0.00

2.95

.85

0.05

0.00

0.00

0.05

1.45

0.00

0.00

1.60

0.00

0.00

0.00

0.00

0.70

.00

.00

.00

.000
0
0
0

0.00

0.00

0.00

0

0.00

0.00

0.00

0.00

.00

0.00

0.00

0.00

0.00

n=100

0.60

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

64

0.80

0.40

0.00

0.00

0.40

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.70

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

n=250

0.60

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.80

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.70

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

n=500

0.60

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.80

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00
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In the case p = (.70, .60, .10), the results were similar to

the case mentioned previously. For _I_1_ = 50, 0.90% of the

corrected correlations from the univariate and 0.75% for the

Gleser methods gave improper corrected correlations, for the

first correlation in the triple (.70) . The second correlation

in the triple (.60) yielded .15% corrected correlations

greater than unity for both the univariate and Gleser cases

with reliabilities equal to .70 and sample size of 50. No

other reliability and sample size combinations produced

invalid corrections for this case.

The case which showed the highest percent of invalid

corrected correlations was p = (.70, .60, .80), as expected.

'The univariate method produced 1.15% improper corrected

«correlations for the first element in the triple (.70), 0.15%

for the second element (.60), and 3.00% for the third element

(.80) for g = 50 and the reliability triple (.70, .70, .70).

'These numbers were 0.95%, 0.30%, and 2.95% respectively for

the Gleser corrected correlations for the same combination.

fIhe third correlation in the triple (.80) also yielded non-

:zero percents for the cases where reliability triples were

(.85, .85, .85) and (.90, .80, .70) with g = 50 reliabilities

(.70, .70, .70) with Q = 100. For the univariate correction

tzhese percents ranged from 0.05% to 1.45% and for the Gleser

<:orrection, from 0.05% to 1.60%.

Overall, in no case where the sample size was 250 or

500, or the reliabilities were 1.0, did any invalid corrected
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correlations occur. These results show that where univariate

corrections are applied, for moderate to large correlations

with small sample sizes and somewhat lower reliabilities, the

chance of corrected correlations greater than one is non-zero.

Because the Bock and Petersen (1975) and.Fuller'and.Hidiroglou

(1978) corrections adjust for these problems, their use may be

‘warranted when such problems are anticipated.

Determinants of the corrected correlation.matrices. The

vast majority of the matrices of the corrected correlations

were positive definite. Table 3 displays, for each method,

the percentages of the corrected correlation matrices that

were less than or equal to 0. The cases, =(.40, .30, .10)

and p = (.00, .00, .00), did.not produce any invalid corrected

correlation matrices and the case p = (.60, .40, .20) produced

only a few invalid matrices, as shown in the table.

For the case p = (.60, .40, -.20) with reliability

triple (.70, .70, .70) the univariate, Bock and Petersen

(1975), and Gleser (1992) methods produced 7.2%, 2.15%, and

7.35% improper corrected correlation matrices, respectively.

These percentages declined to 1.65%, 0.05%, and 1.55% when,

for the same reliability triple, g = 100. With the (.85, .85,

.85) reliability triple and.Q = 50, the univariate and Gleser

methods gave 0.15% invalid matrices, while the Bock and

Petersen method gave 0.05%. Finally, for the reliability

triple (.90, .80, .70) and g = 50, the percentages for the
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univariate, Bock and Petersen, and Gleser methods were 0.55%,

0.25%, and 0.60%, respectively.

Table 3

Percgpt of Determinants of Corrected Correlation figtrices

Less than or Egual to Zero (2000 rgplicatioggz

 

Case 1. 012 3 .0 013 3 .0 023 3 .0

n=50 n=100 n=250 n=500

911 3 -7 l022 3-7 933 3 -7

Univar 0.00 0.00 0.00 0.00

Bock 0.05 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00

011 3 .85 022 3.85 033 3 .85

Univar 0.00 0.00 0.00 0.00

Bock 0.00 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00

911 3 -9 922 3-3 033 3 -7

Univar 0.00 0.00 0.00 0.00

Bock 0.00 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00

011 3 1.00 022 3 1.00 033 3 1.00

Univar 0.00 0.00 0.00 0.00

Bock 0.00 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00
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Table 3 (Cont'd)

Case 2. 012 3 .4 913 3 .3 023 3 .1

n=SO n=100 =250 n=500

911 3 -7 022 3-7 933 3 -7

Univar 0.00 0.00 0.00 0.00

Bock 0.00 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00

p11 3 .85 022 3.85 033 3 .85

Univar 0.00 0.00 0.00 0.00

Bock 0.00 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00

1011 3 -9 922 3-8 033 3 -7

Univar 0.00 0.00 0.00 0.00

Bock 0.00 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00

pm 3 1.00 022 3 1.00 033 3 1.00

Univar 0.00 0.00 0.00 0.00

Bock 0.00 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00



69

Table 3 (Cont'd)

n=50 n=100 =250 n=500

Univar 1.60 0.00 0.00 0.00

Back 0.80 0.05 0.00 0.00

Fuller 0.00 0.00 0.00 0.00

Gleser 1.55 0.00 0.00 0.00

pm 3 .85 022 3.85 p33 3 .85

Univar 0.00 0.00 0.00 0.00

Bock 0.00 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00

911 3 -9 922 3-8 033 3 -7

Univar 0.30 0.00 0.00 0.00

Back 0.30 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00

Gleser 0.30 0.00 0.00 0.00

pm 3 1.00 022 3 1.00 [’33 3 1.00

Univar 0.00 0.00 0.00 0.00

Back 0.00 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00
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Table 3 (Cont'd)

Case 4. 012 3 .6 013 3 .4 923 3 .2

n=50 n=100 n=250 n=500

Univar 0.40 0.00 0.00 0.00

Bock 0.50 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00

Gleser 0.45 0.00 0.00 0.00

011 3 .85 p22 3.85 p33 3 .85

Univar 0.00 0.00 0.00 0.00

Bock 0.00 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00

1911 3 -9 022 3-8 033 3 -7

Univar 0.00 0.00 0.00 0.00

Back 0.05 0.00 0.00 0.00

fuller 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00

Du 3 1.00 022 3 1.00 033 3 1.00

Univar 0.00 0.00 0.00 0.00

Bock 0.00 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00
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Table 3 (Cont'd)

Case 5. 012 3 .6 913 3 .4 023 3'.2

n=50 n=100 n=250 n=500

911 3 -7 022 3-7 933 3 -7

Univar 7.20 1.65 0.00 0.00

Bock 2.15 0.05 0.00 0.00

Fuller 0.00 0.00 0.00 0.00

Gleser 7.35 1.55 0.00 0.00

On 3 .85 p22 3.85 p33 3 .85

Univar 0.15 0.00 0.00 0.00

Bock 0.05 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00

Gleser 0.15 0.00 0.00 0.00

911 3 ~9 922 3-8 p33 3 -7

Univar 0.55 0.00 0.00 0.00

Bock 0.25 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00

Gleser 0.60 0.00 0.00 0.00

pH 3 1.00 022 3 1.00 p33 3 1.00

Univar 0.00 0.00 0.00 0.00

Bock 0.00 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00
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Table 3 (Cont'd)

n=50 n=100 n=250 n=500

Univar 14.65 3.85 0.20 0.00

Bock 5.70 0.45 0.00 0.00

Fuller 0.00 0.00 0.00 0.00

Gleser 14.85 3.80 0.20 0.00

,011 3 .85 022 3.85 p33 3 .85

Univar 1.75 0.00 0.00 0.00

Bock 0.45 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00

Gleser 1.80 0.00 0.00 0.00

911 3 -9 022 3-8 933 3 -7

Univar 1.95 0.10 0.00 0.00

Bock 0.85 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00

Gleser 2.25 0.05 0.00 0.00

011 3 1.00 [322 3 1.00 p33 3 1.00

Univar 0.00 0.00 0.00 0.00

Bock 0.00 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00
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Table 3 (Cont'd)

Case 7. 912 3 .7 D13 3 .6 023 3 .8

n=50 n=100 n=250 n=500

011 3 -7 922 3-7 p33 3 -7

Univar 8.20 1.00 0.00 0.00

Bock 4.60 0.25 0.00 0.00

Fuller 0.00 0.00 0.00 0.00

Gleser 8.25 1.10 0.00 0.00

pm 3 .85 022 3.85 D33 3 .85

Univar 0.15 0.00 0.00 0.00

Back 0.10 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00

Gleser 0.10 0.00 0.00 0.00

911 3 ~9 022 3-8 933 3 -7

Univar 2.40 0.05 0.00 0.00

Bock 0.95 0.05 0.00 0.00

Fuller 0.00 0.00 0.00 0.00

Gleser 2.65 0.05 0.00 0.00

011 3 1.00 022 3 1.00 033 3 1.00

Univar 0.00 0.00 0.00 0.00

Back 0.00 0.00 0.00 0.00

Fuller 0.00 0.00 0.00 0.00

Gleser 0.00 0.00 0.00 0.00

For the case p = (.40, .30, .70) a smaller number of

invalid corrected correlation matrices were found. Again, the

reliability triple (.70, .70, .70) in combination with g = 50

produced the most problems, with 1.60%, 0.80%, and 1.55%

invalid matrices for the univariate, Bock and Petersen, and

Gleser methods respectively. The Bock and Petersen method

also produced one (0.05%) invalid matrix for the same

reliability combination with a sample size n = 100. For the
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reliability triple (.90, .80, .70) with Q = 50, each of the

three methods mentioned above produce 0.30% improper corrected

correlation matrices.

The case with the greatest number of invalid corrected

correlation matrices was p = (.70, .60, .10). Nearly 15% of

the matrices were invalid for the reliability triple (.70,

.70, .70) and g = 50 case for the univariate and Gleser

methods. The Bock and Petersen method in this same

combination produced 5.70% invalid matrices. Within the same

reliability triple, but with n = 100, the univariate, Bock and

Petersen and Gleser method produced 3.85%, 0.45%, and 3.80%

invalid corrected correlation matrices respectivelyu This

particular correlation triple was the only one to produce

invalid results when the sample size was 250. With this

sample size and the reliability triple (.70, .70, .70), the

univariate and.Gleser methods yielded 0.20% invalid matrices.

When the (.85, .85, .85) reliability triple was used, somewhat

fewer problems were found. With this triple and Q = 50, the

univariate, Bock and Petersen, and Gleser methods produced

invalid matrices 1.75%, 0.45%, and 1.80% of the time,

respectively. When the reliability values were changed to

(.90, .80, .70), the three methods gave 1.95%, 0.85%, and

2.25% invalid matrices for _r; = 50. With this same reliability

triple, but with g = 100, the univariate and Gleser methods

gave 0.10% and 0.05% improper matrices, respectively.
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In the last case, p =(.70, .60, .80), with reliability

triple (.70, .70, .70) and g_= 50, the percentages of improper

7corrected,correlationumatrices were 8.20%, 4.60% and 8.25% for

the univariate, Bock and Petersen, and Gleser methods,

respectively. With E = 100 and the same reliability values,

these percentages changed to 1.00%, 0.25%, and 1.10%,

respectively. This case also produced a small number of

invalid matrices for the (.85, .85, .85) reliability triple

with n = 50. These numbers were 0.15% (univariate), 0.10%

(Bock and Petersen), and 0.10% (Gleser). The reliability

triple (.90, .80, .70) yielded 2.40% invalid matrices for the

univariate method, 0.95% for the Bock and Petersen method, and

2.65% for the Gleser method.when the sample size was 50. With

the same reliability triple and _n = 100, all three of the

above methods gave 0.05% improper matrices, or one matrix out

of 2000.

These results indicate that the Fuller and Hidiroglou

method does prevent improper corrected correlation matrices.

None of the combinations, when the Fuller and Hidiroglou

method was used, produced improper results. Problems with the

determinants of the corrected correlation matrices appeared to

be related in part to the presence of corrected correlations

larger than unity. However, invalid matrices occur more

frequently than correlations larger than one. This result

indicates that other problems result from these corrections,

which would imply that the Stanley and Wang (1969) inequality
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is being violated in situations other than when correlations

greater than unity occur. In no case did the original sample

correlation matrix have a determinant less than 0. Therefore,

the problems occurred after the correction had been made.

Determinants of variance-covariance matrices of the

corrected correlations. Also recorded were the percentages of

invalid variance-covariance matrices of the corrected

correlations for each method. Table 4 displays these results.

The case p =(.40, .30, .10) did not produce any invalid

matrices, while the case p= (.00, .00, .00) produced. 1

problematic matrix, for the Bock and Petersen correction with

reliability triple (.70, .70, .70) and Q = 50. As with the

results for the corrected correlations greater than unity and

the number of improper corrected correlation matrices, the

majority of the combinations that caused problems had small

sample sizes and reliability values.
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Table 4

Pergggt of Determinants of Variance/Covariance Matrices

Less than or Equal to Zero (2000 replications}

Case 1. 012 3 .0 013 3 .0 023 3 .0

n=50 n=100 n=250 n=500

011 3 -7 922 3-7 033 3 -7

Univariate 0.00 0.00 0.00 0.00

Bock 8 Petersen 0.00 0.00 0.00 0.00

Fuller 8 Hidiroglou 0.00 0.00 0.00 0.00

Large Sample 0.00 0.00 0.00 0.00

Fixed Reliability 0.00 0.00 0.00 0.00

On 3 .85 922 3.85 033 3 .85

Univariate 0.00 0.00 0.00 0.00

Bock 8 Petersen 0.00 0.00 0.00 0.00

Fuller 8 Hidiroglou 0.00 0.00 0.00 0.00

Large Sample 0.00 0.00 0.00 0.00

Fixed Reliability 0.00 0.00 0.00 0.00

911 3 -9 922 3-3 033 3 -7

Univariate 0.00 0.00 0.00 0.00

Bock 8 Petersen 0.00 0.00 0.00 0.00

Fuller 8 Hidiroglou 0.00 0.00 0.00 0.00

Large Sample 0.00 0.00 0.00 0.00

Fixed Reliability 0.00 0.00 0.00 0.00

0113 1.00 ,022 3 1.00 p33 3 1.00

Univariate 0.00 0.00 0.00 0.00

Bock 8 Petersen 0.00 0.00 0.00 0.00

Fuller 8 Hidiroglou 0.00 0.00 0.00 0.00

Large Sample 0.00 0.00 0.00 0.00

Fixed Reliability 0.00 0.00 0.00 0.00



Table 4 (Cont'd)

Case 2. p12 3 .10 013 3 .3 023 3 .

n=50

911 3 -7 p22 3-7 933 3 -7

Univariate

Back 8 Petersen

Fuller 8 Hidiroglou

Large Sample

Fixed Reliability

pm 3 .85 022 3.85 p33 3 .85

Univariate

Bock 8 Petersen

Fuller 8 Hidiroglou

Large Sample

Fixed Reliability

911 3 -9 022 3-5 933 3 -7

Univariate

Back 8 Petersen

Fuller 8 Hidiroglou

Large Sample

Fixed Reliability

p11 3 1.00 022 3 1.00 [333 3 1.00

Univariate

Bock 8 Petersen

Fuller 8 Hidiroglou

Large Sample

Fixed Reliability

n=100

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00
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n=250

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

n=500

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00



Table 4 (Cont'd)

Univariate

Bock 8 Petersen

Fuller 8 Hidiroglou

Large Sample

Fixed Reliability

On 3 .85 [222 3.85 p33 3 .85

Univariate

Bock 8 Petersen

Fuller 8 Hidiroglou

Large Sample

Fixed Reliability

011 3 -9 022 3-3 033 3 -7

Univariate

Back 8 Petersen

Fuller 8 Hidiroglou

Large Sample

Fixed Reliability

D11 3 1.00 022 3 1.00 p33 3 1.00

Univariate

Bock 8 Petersen

Fuller 8 Hidiroglou

Large Sample

Fixed Reliability

n=50

0.95

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.20

0.30

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

79

n=100

0.00

0.05

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

n=250

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

n=500

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00
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Case ‘. p12 3 .6 013 3 .4 p23 3 .
 

011 3 -7 922 3-7 033 3 -7

Univariate

Beck 8 Petersen

Fuller 8 Hidiroglou

Large Sample

Fixed Reliability

011 3 .85 022 3.85 p33 3 .85

Univariate

Back 8 Petersen

Fuller 8 Hidiroglou

Large Sample

Fixed Reliability

911 3 -9 922 3-3 033 3 -7

Univariate

Back 8 Petersen

Fuller 8 Hidiroglou

Large Sample

Fixed Reliability

0118 1.00 p22 3 1.00 933 3 1.00

Univariate

Bock 8 Petersen

Fuller 8 Hidiroglou

Large Sample

Fixed Reliability

n=50

0.10

0.55

0.00

0.00

0.00

0.00

0.05

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

80

n=100

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

n=250

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

n=500

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00



Table 4 (Cont'd)

Case 5. 012 3 .6 013 3 .4 923 3 3.2

n=50

011 3 -7 922 3-7 933 3 -7

Univariate

Bock 8 Petersen

Fuller 8 Hidiroglou

Large Sample

Fixed Reliability

p11 3 .85 p22 3.85 D33 3 .85

Univariate

Bock 8 Petersen

Fuller 8 Hidiroglou

Large Sample

Fixed Reliability

011 3 ~9 922 3-3 933 3 '7

Univariate

Back 8 Petersen

Fuller 8 Hidiroglou

Large Sample

Fixed Reliability

p11 3 1.00 022 3 1.00 ‘73:; 3 1.00

Univariate

Beck 8 Petersen

Fuller 8 Hidiroglou

Large Sample

Fixed Reliability

n=100

0.25

3.25

0.00

.00

.10

.00

.00

.000
0
°
0
0

.00

.35

.00

.00

.000
0
°
0
0

0.00

0.00

0.00

0.00

0.00

81

n=250

0.05

0.15

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

n=500

0.00

0.00

.00

00

.00

.00

.000
0
°
0
0

.00

.00

.00

.00O
O
O
O
O

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00



Table 4 (Cont'd)

Case 6. 012 = .7 913 = .6 023 = .
 

011 3 -7 022 3-7 033 3 -7

Univariate

Beck 8 Petersen

Fuller 8 Hidiroglou

Large Sample

Fixed Reliability

p11 3 .85 p22 3.85 p33 3 .85

Univariate

Bock 8 Petersen

Fuller 8 Hidiroglou

Large Sample

Fixed Reliability

p11 3 -9 022 3-3 933 3 -7

Univariate

Bock 8 Petersen

Fuller 8 Hidiroglou

Large Sample

Fixed Reliability

01131.00 022 31.00 p33 3 1.00

univariate

Bock 8 Petersen

Fuller 8 Hidiroglou

Large Sample

Fixed Reliability

n=50

2.40

8.05

0.00

0.00

0.00

0.15

0.65

0.00

0.00

0.00

0.05

0.95

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

82

n=100

0.05

0.90

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.05

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

n=250

0.05

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

n=500

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00





table 4 (Cont'd)

Case 7. 012 3 .7 013 3 .6 923 3 .8

p11 3 -7 922 3-7 933 3 -7

Univariate

Bock 8 Petersen

Fuller 8 Hidiroglou

Large Sample

Fixed Reliability

011 3 .85 022 3.85 033 3 .85

Univariate

Bock 8 Petersen

Fuller 8 Hidiroglou

Large Sample

Fixed Reliability

911- 3 -9 922 3-8 033 3 -7

Univariate

Bock 8 Petersen

Fuller 8 Hidiroglou

Large Sample

Fixed Reliability

p11 3 1.00 p22 3 1.00 p33 3 1.00

Univariate

Bock 8 Petersen

Fuller 8 Hidiroglou

Large Sample

Fixed Reliability

n=50

7.00

5.25

0.00

0.00

0.00

0.10

0.20

0.00

0.00

0.00

2.55

1.55

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

83

n=100

1.10

0.25

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.05

0.05

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

n=250

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

n=500

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00
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For the case where p = (.60, .40, .20) the Bock and

Petersen method produced 0.55% and 0.05% invalid.matrices when

a = 50 and the reliability triples (.70, .70, .70) and (.85,

.85, .85) were used, respectively. For the first reliability

triple, the univariate correction yielded 0.10% invalid

variance-covariance matrices. The rest of the combinations

for this case did not provide any problematic matrices.

When the p = (.60, .40, -.20) case was examined, again

the Bock and Petersen and univariate methods were the only

ones to produce invalid matrices. For the reliability triple

(.70, .70, .70) and n = 50, the univariate and Bock and

Petersen methods produced 0.25% and 3.25% improper matrices

respectivelyu These percentages were reduced.when.n_= 100 and

the percentages were also non-zero when other reliability

triples were used.

For the case where p = (.40, .30, .70) with reliability

triple (.70, .70, .70) the only combinations with notable

results were the univariate method, which gave 0.95% invalid

variance-covariance matrices, and the Bock and Petersen method

'which showed 1.00% invalid matrices for n = 50.

When p = (.70, .60, .10) the univariate and Bock and

Fhetersen methods again produced invalid variance-covariance

matrices, particularly in the case where the reliability

tariple (.70, .70, .70) and the sample size n = 50 was used.

II: that case, the univariate method produced 2.40% improper
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matrices, while the Book and Petersen gave 8.05%. Other

reliability and sample size combinations produced non-zero

percentages smaller than this case, as shown in the table.

Finally, the last case, p == (.70, .60, .80) produced

improper matrices for the reliability triples (.70, .70, .70),

(.85, .85, .85) and (.90, .80, .70) for Q = 50. The rates for

0

these three cases for the univariate method were 7.00%, 0.10%

and 2.55% respectively. For the Bock and Petersen method,

these rates were 5.25%, 0.20%, and 1.55%, respectivelyn ‘When

n =100, the reliability triples (.70, .70, .70) and (.90, .80,

.70) also yielded non-zero percents of invalid matrices. For

the former triple, the rates were 1.10% for the univariate

method, and 0.25% for the Bock and Petersen method, while for

the latter triple, the rates for these methods were both

0.05%.

The size of the determinants of the variance-covariance

matrices. Besides counting the variance-covariance matrices

of the corrected correlations that were non-positive definite,

the size of the determinant of each matrix was also examined.

Table 5 displays the mean determinants for each case and

icombination, for the 2000 replications. The means displayed

:Ln.the tables are actually the mean determinants multiplied by

Q3. As shown in the tables, the univariate and Bock and

ertersen methods produced the smallest determinants. These

WEere considerably smaller for several of the cases. For all

013 the cases, when the reliability triple (1.00, 1.00, 1.00)
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was used, the determinants were virtually identical for each

method. These results fit with the number of improper

variance-covariance matrices found above. The methods and

combinations which yielded the smallest determinants also

produced the highest numbers of invalid variance-covariance

matrices.



Table 5

rmi t f ri nc - ov riance MetricES2D_22E3___nlEL3_2L_I2__1L_JL£L_£L_____________£!

of the Egrrggtgg ggrrglagions 52000 rgglicatigggz

Ease 1. 012 8 .0 013 8 .0 023 = .0

911 3 -7 022 3-7 933 3

Univar

Bock

Fuller

Large Sample

Fixed Rel.

n=50

0.6909

0.5827

7.6797

7.6797

7.7899

n=100

.7

0.8336

0.7561

8.0657

8.0657

8.2097

011 3 .85 022 3.85 033 3 .85

Univar

Sock

Fuller

Large Sample

Fixed Rel.

0.7777

0.6365

2.2706

2.2706

2.3159

0.8829

0.7885

2.6660

2.6660

2.6678

911 3 -9 922 3-3 933 3 -7

Univar

Sock

Fuller

Large Sample

Fixed Rel.

0n = 1.00

Univar

Bock

Fuller

Large Sample

Fixed Rel.

0.7662

0.6650

3.6131

3.6131

3.5079

0.8352

0.6821

0.8357

0.8357

0.8358

0.8669

0.6388

3.6518

3.6518

3.7015

022 3 1.00 033 = 1.00

0.9131

0.8166

0.9137

0.9137

0.9137

n=250

0.9280

0.8911

8.2551

8.2551

8.3239

0.9512

0.9072

2.5716

2.5716

2.5816'

0.9638

0.8123

3.8196

3.8196

3.8601

0.9635

0.9218

0.9661

0.9661

0.9661

n=500

0.9629

0.9628

8.3875

8.3875

8.6231

0.9757

0.9536

2.6130

2.6130

2.6180

0.9730

0.8980

3.8720

3.8720

3.8819

0.9826

0.9593

0.9830

0.9830

0.9830



table 5 (Cont'd)

Cgse Z: [312 3 .4 013 3

011' -7 922 3-7 933 3

Univar

Bock

Fuller

Large Sample

Fixed Rel.

n=50

0.3587

0.2863

5.2766

5.2766

5.8371

.3 023 '

n=100

.7

0.3956

0.3637

5.1876

5.1876

5.7006

011 3 .85 022 3.85 033 3 .85

Univar

Bock

Fuller

Large Sample

Fixed Rel.

011 3 .9 922 8.

Univar

Bock

Fuller

Large Sample

Fixed Rel.

0n a 1.00

Univar

Sock

Fuller

Large Sample

Fixed Rel.

0.3863

0.2961

1.3273

1.3273

1.6263

8 0333.

0.3853

0.1509

2.1002

2.1002

2.2710

0.6056

0.3076

0.6057

0.6057

0.6058

0.6156

0.3597

1.3656

1.3656

1.6588

7

0.6128

0.1518

2.0806

2.0806

2.2371

022 s 1.00 033 . 1.00

0.6266

0.3636

0.6269

0.6269

0.6269

.1

n=250

0.6253

0.3920

5.2869

5.2869

5.7761

0.6336

0.6080

1.3877

1.3877

1.6793

0.6336

0.1673

2.1233

2.1233

2.2762

0.6373

0.6110

0.6376

0.6376

0.6376

N
N
N
O
O

fi
-
l
-
‘
O
O

U
'
I
U
'
I
W
O
O

O
O
O
O
O

=500

.6368

.6188

.3285

.3285

.8119

.6389

.6198

.3969

.3969

.6883

.6386

.1661

.1252

.1252

.2769

.6380

.6261

.6383

.6383

.6383



Table 5 (Cont'd)

£312.}; 912 3 .6 013 '

0n 3 -7 022 3-7 033 3

Univar

Sock

Fuller

Large Sample

Fixed Rel.

n-50

0.0863

0.0633

2.5611

2.5667

3.1538

p11 3 .85 022 3.85 p33 3 .85

Univar

Sock

Fuller

Large Sample

Fixed Rel.

0.0833

0.0655

0.6692

0.6692

0.5601

0.0797

0.0696

0.6158

0.6158

0.5038

011 3 .9 022 3.8 D33 3 .7

Univar

Bock

Fuller

Large Sample

Fixed Rel.

On 3 1.00

Univar

Sock

Fuller

Large Sample

Fixed Rel.

0.0907

0.0261

0.9688

0.9689

1.1539

0.0832

0.0186

0.8756

0.8756

1.0799

022 31.00 033 31.00

0.0807

.3 923 3 .7

n=100 n=250

.7

0.0816 0.0776

0.0716 0.0761

2.6373 2.2706

2.6373 2.2706

3.0535 2.8715

0.0786

0.0778

0.6066

0.6066

0.6918

0.0791

0.0162

0.8290

0.8290

1.0313

0.0771

0.0765

0.0772

0.0772

0.0772

0.0771

0.0761

0.0772

0.0772

0.0772
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Table 5 (Cont'd)

Elli—‘2 912 3 -9 p13 3

011 3 -7 922 3-7 933 3

Univar

Bock

Fuller

Large Suple

Fixed Rel.

n-SO

0.1689

0.1171

3.6035

3.6056

6.0520

Du 3 .85 022 3.85 033 3 .85

Univar

lock

Fuller

Large Sample

Fixed Rel.

911 3 -9 022 3-3 933 3

Univar

lock

Fuller

Large Sample

Fixed Rel.

p11 3 1.00

Univar

Bock

Fuller

Large Sample

Fixed Rel.

0.1555

0.1222

0.6819

0.6819

0.7831

0.1666

0.0665

1.0619

1.0619

1.2167

022 3 1.00

0.1572

0.1216

0.1573

0.1573

0.1573

.4. p23 . .2

n8100 n=250

.7

0.1566 0.1521

0.1358 0.1667

3.2531 3.1028

3.2531 3.1028

3.8803 3.7250

0.1531 0.1562

0.1382 0.1657

0.6528 0.6669

0.6528 0.6669

0.7529 0.7651

.7

0.1535 0.1500

0.0396 0.0359

1.0636 0.9910

1.0636 0.9910

1.2159 1.1602

033 31.00

0.1522 0.1551

0.1352 0.1671

0.1523 0.1553

0.1523 0.1553

0.1526 0.1553



Table 5 (Cont'd)

319.5. 012 3 .6 013 3 .6 023 3 3-2

n-50 n3100 n=250

an 3 .7 022 3.7 033 3 .7

Univar 0.0652 0.0616 0.0572

lock 0.0651 0.0676 0.0520

Fuller 2.5025 2.3815 2.3277

Large Sample 2.5268 2.3860 2.3277

Fixed Rel. 3.2051 3.0605 3.0126

011 3 .85 022 3.85 933 3 .85

Univar 0.0561 0.0553 0.0567

Bock 0.0633 0.0695 0.0526

Fuller 0.3682 0.3680 0.3576

Large Sample 0.3682 0.3680 0.3576

Fixed Rel. 0.6685 0.6699 0.6583

p11 3 .9 022 3.8 D33 3 .7

Univar 0.0559 0.0533 0.0550

Sock 0.0158 0.0157 0.0157

Fuller 0.6635 0.6238 0.6200

Large Sample 0.6637 0.6238 0.6200

Fixed Rel. 0.8687 0.8075 0.8032

01131.00 022 31.00 D33 31.00

Univar 0.0532 0.0566 0.0567

Sock 0.0655 0.0691 0.0525

Fuller 0.0532 0.0567 0.0567

Large Sample 0.0532 0.0567 0.0567

Fixed Rel. 0.0532 0.0567 0.0568

n=500

0.0570

0.0528

2.3139

2.3139

2.9989

0.0553

0.0532

0.3620

0.3620

0.6661

0.0550

0.0158

0.6127

0.6127

0.7950

0.0569

0.0535

0.0550

0.0550

0.0550
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table 5 (Cont'd)

9.9131... 012 ' .7 013‘

0n ' -7 922 '-7 933 ‘

Univar

Bock

Fuller

Large Sample

Fixed Rel.

n=50

0.0250

0.0153

1.6838

1.7260

2.2958

011 . .85 022 ‘.85 033 ' .85

Univar

Bock

Fuller

Large Sample

Fixed Rel.

0.0185

0.0150

0.1937

0.1938

0.2638

0.0163

0.0166

0.1765

0.1765

0.2613

p11 ' .9 022 3.8 D33 ' .7

Univar

Bock

Fuller

Large Sample

Fixed Rel.

D1131.“

Univar

Bock

Fuller

Large Sample

Fixed Rel.

0.0197

0.0065

0.3682

0.3687

0.6815

0.0173

0.0166

0.0176

0.0176

0.0176

0.0166

0.0035

0.3051

0.3052

0.6308

0.0160

0.0169

0.0160

0.0160

0.0160

.6 023 3 .1

n8100 n=250

.7

0.0207 0.0176

0.0156 0.0152

1.5858 1.6702

1.5911 1.6703

2.1665 2.0319

0.0160

0.0152

0.1706

0.1706

0.2365

0.0161

0.0030

0.2937

0.2937

0.6179

0.0156

0.0150

0.0155

0.0155

0.0155

n=500

0.0165

0.0150

1.6259

1.6259

1.9802

0.0157

0.0153

0.1688

0.1688

0.2350

0.0155

0.0028

0.2861

0.2861

0.6089

0.0155

0.0153

0.0155

0.0155

0.0156
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Table 5 (Cont'd)

m 012'.7 013. .6 9233.6

011 . .7 022 '.7 033 ' .7

Univar

Bock

Fuller

Large Sample

Fixed Rel.

n850 n8100

0.0118 0.0078

0.0085 0.0069

1.1106 0.8362

1.1260 0.8351

1.5552 1.2132

011 ' .85 022 ‘.85 D33 3 .05

Univar

Bock

Fuller

Large Sample

Fixed Rel.

0.0085

0.0075

0.0952

0.0952

0.1320

0.0068

0.0068

0.0778

0.0778

0.1101

Du 3 .9 022 3.8 D33 3 .7

Univar

Bock

Fuller

Large Sample

Fixed Rel.

01131.00

Univar

Bock

Fuller

Large Sample

Fixed Rel.

0.0100

0.0017

0.2532

0.2537

0.3696

0.0078

- 0.0076

0.0078

0.0078

0.0078

0.0072

0.0010

0.1960

0.1960

0.2795

022 =1.oo 033 =1.oo

0.0068

0.0069

0.0068

0.0068

0.0068

n=250

.0065

.0061

.7659

.7659

.1087#
0
0
0
0

.0059

.0059

.0700

.0700

.10020
0
0
0
0

.0062

.0008

.1763

.9910

.25690
0
0
0
0

0.0059

0.0062

0.0060

0.0060

0.0060

.0057

.0057

.0669

.0669

.09610
0
0
0
0

0.0057

0.0007

0.1683

0.9960

0.2667

0.0057

0.0059

0.0057

0.0057

0.0057

93
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Summary of counts. The overcorrected correlation counts,

the invalid correlation matrices counts, and the counts of the

improper variance-covariance matrices of the corrected

correlations all show similar patterns. Problems tend to

occur when the sample sizes are small, and the reliability

triples contain moderate reliability values (e.g., .70). In

no case did problems occur when the reliability values were

unity. Also, the cases with high percentages for one of the

three counts, tended to have high percentages on all three

indices. Particularly problematic were the p = (.70, .60,

.10) and the p = (.70, .60, .80) cases. When the higher

correlations were matched with lower reliabilities, problems

were expected, and they did occur.

It must be noted, however, that the percentage of times

that problems occurred was small for all three indices. No

more than 3% of the replications gave out-of-range corrected

correlations for any case and reliability combination. The

percents were larger for the determinants of the variance-

covariances matrices of the corrected correlations, ranging up

to 8% with improper values. Finally, the most problematic of

the three indices was the determinants of the corrected

correlation matrices, showing that up to 15% of the

replications in one case yielded improper results.

I also recorded the number of times per replication that

the Bock and Petersen (1975) and Fuller and Hidiroglou (1978)

(iid not default to the univariate correction. The number of
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cases seems to be associated with the number of invalid

correlation matrices. Table 6 displays the cases where the

Bock and Petersen and Fuller and Hidiroglou methods did not

match the usual univariate correction, these cases are

referred to as "adjusted" cases. Ixithese cases, both of the

methods adjusted for the problem of a non-positive definite

correlation matrix, and used eigenvalues to yield new

matrices. These adjustments did not occur very frequently,

especially when sample sizes were large. The table displays

the number of times per combination that each method

"adjusted". Also in the table is the number of replications

on which the Fuller and Hidiroglou method required the added

adjustment and in the same replication, the univariate and

Gleser-method corrected correlation matrices were non—positive

definite. Most of the time, the use of the adjustment was

related to the invalid nature of the univariate correlation

matrix. The Fuller and Hidiroglou correction obviously worked

to correct this problem because the method did not yield any

problematic correlation matrices.



Table 6

Rggbgr 9! Ti!!! 2:: Qggg gherg thg Fuller and Higirgglou and

k r en ' tment r needed.‘

Fuller Fuller 6

Case Reliability n Adjust invalid Univ.

Corr. Matrix

(0, 0, 0) (.7, .7, .7)) 50 0 0

(.6, .3. .7) (.7, .7, .7) 50 36 29

100 0 0

(.9, .8, .7) 50 6 6

(.6, .6, .2) (.7, .7, .7) 50 10 8

(.85, .85, .85) 50 1 0

(.9, .8, .7) 50 O 0

(.6, 6, -.2) ( 7, .7, .7) 50 170 132

100 33 29

(.85, .85, .85) 50 3 3

(.9, .8, .7) 50 12 10

(.7, .6, .1) (.7, .7, .7) 50 363 281

100 93 73

250 6 6

(.85, .85, .85) 50 66 33

(.9, .8, .7) 50 68 38

100 2 1

(.7, .6, .8) (.7, .7, .7) 50 178 152

100 27 19

(.85, .85, .85) 50 3 1

(.9, .8, .7) 50 63 65

100 2 1

Fuller 6

invalid Gleser

Corr. Matrix

0

29

132

28

10

281

33

39

169

19

67

' Only cases where either the Fuller 8 Hidiroglou or Bock 8 Petersen

adjustments were needed are included in this table.

Bock

Adjust

19

~
1
q
u

162

15

11

19

96

19

Bock &

invalid Bock

Corr. Matrix

1

16

17

92

19
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The Book and Petersen method also showed similar results.

However, even after the adjustment was applied, many of the

resulting corrected correlation matrices were still invalid.

An examination of Table 6 along with the raw numbers produced

from Table 3 show that virtually any time there was a problem

with the corrected correlation matrix, the Fuller and

Hidiroglou and Bock and Petersen methods adjusted. These

methods also adjusted at other times, but the univariate

corrected. correlation. matrices ‘were not necessarily' non-

positive definite. These results could be due to rounding

error.

Results of Magnitude Data

Corrected correlations. The average corrected

correlations across replications appear in Table 7. These

values reflect differences in the methods, as well as how the

corrections become more accurate depending on sample size and

reliability' values. As shown in the tables, the Bock

correction is most different from the others. In fact, when

the Bock correction is used in combination with the (.90, .80,

.70) reliability, the corrected correlations become much

larger than their corresponding population values.

Other results visible in the table show that when the

reliability values are unity, the univariate, Fuller &

Hidiroglou, and Gleser methods all yield identical corrected

correlations. Only the Bock and Petersen correction differs.



Table 7

"I" rr 0

m. 012 3 .0 013 3 .0 023 ’ .0

Pop. Corr. 0.00 0.00

911 ' -7 922 3-7 933 ‘ -7

r e a ions

0
0
0
0

W
0
0
0
°

-0.

'0.

-0.

-0.

Univariate» 0.003 0.001

Bock 0.002 0.002

Fuller 0.002 -0.001

Gleser 0.003 -0.001

011 . .85 022 3.05 D33 '

Univariate -0.003 -0.001

Bock o0.007 0.001

Fuller -0.002 -0.001

Gleser -0.002 -0.001

911 ' -9 922 ‘-3 933 ' -7

Univariate -0.006 -0.002

Bock -0.007 -0.006

Fuller -0.003 -0.003

Gleser -0.003 -0.003

011 3 1.00 022 3 1.00 033 '

Univariate 0.002 -0.002

Bock 0.005 -0.003

Fuller 0.002 -0.002

Gleser 0.002 -0.002 0
0
0
0

0.00
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.006

.006
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table 7 (Cont'd)

mplz ' °‘ 013 ' -3 923 ' '1

Pop. Corr. 0.60 0.30 0.10 0.60 0.30 0.10 0.60 0.30 0.10 0.60 0.30 0.10

911 I .7 022 ..7 p33 8 .7 n850 n=100 n=250 n-500

Univariate 0.390 0.305 0.100 0.398 0.296 0.097 0.399 0.299 0.099 0.601 0.300 0.099

Bock 0.633 0.335 0.120 0.628 0.320 0.115 0.616 0.311 0.102 0.608 0.307 0.103

Fuller 0.387 0.301 0.099 0.396 0.295 0.097 0.399 0.298 0.099 0.601 0.300 0.099

Gleser 0.391 0.305 0.100 0.398 0.296 0.097 0.399 0.299 0.099 0.601 0.300 0.099

011 . .05 022 3.85 D33 ‘ .85

Univariate 0.396 0.296 0.097 0.602 0.299 0.106 0.399 0.300 0.100 0.601 0.300 0.101

Bock 0.661 0.336 0.120 0.633 0.326 0.122 0.613 0.311 0.105 0.609 0.307 0.105

Fuller 0.395 0.295 0.097 0.602 0.299 0.106 0.399 0.300 0.100 0.601 0.300 0.101

Gleser 0.397 0.296 0.097 0.602 0.299 0.106 0.399 0.300 0.100 0.601 0.300 0.101

911 ' -9 922 '-5 933 ' -7

Univariate 0.395 0.295 0.103 0.398 0.296 0.101 0.602 0.300 0.102 0.601 0.298 0.101

lock 0.535 0.638 0.236 0.567 0.657 0.236 0.556 0.672 0.235 0.556 0.679 0.226

Fuller 0.396 0.293 0.103 0.397 0.295 0.100 0.601 0.300 0.102 0.601 0.297 0.101

Gleser 0.395 0.295 0.106 0.398 0.296 0.101 0.602 0.300 0.102 0.601 0.298 0.101

011 3 1.00 [322 3 1.00 033 8 1.00

Univariate 0.601 0.296 0.106 0.397 0.298 0.096 0.399 0.299 0.099 0.600 0.300 0.101

Bock 0.669 0.336 0.129 0.627 0.323 0.111 0.615 0.312 0.106 0.607 0.306 0.106

Fuller 0.601 0.296 0.106 0.397 0.297 0.096 0.399 0.299 0.099 0.600 0.300 0.101

Gleser 0.601 0.296 0.106 0.397 0.297 0.096 0.399 0.299 0.099 0.600 0.300 0.101
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Table 7 (Cont'd)

E88; ‘3 012 3 .6 013 3 0‘ 023 3 .2

Pop. Corr.

p11 3 .7 022 3.7 033 3 .7

0.60 0.60

.7

.85

0.200 0.60

n=50

0.199 0.597

0.219 0.615

0.197 0.596

0.199 0.597

0.195 0.602

0.225 0.618

0.196 0.600

0.195 0.601

0.203 0.602

0.375 0.721

0.203 0.601

0.206 0.602

022 . 1.00 033 . 1.00

Univariate 0.598 0.606

Bock 0.628 0.631

Fuller 0.592 0.600

Gleser 0.598 0.606

911 ' ‘5 022 ”“35 933 "

Univariate 0.600 0.396

lock 0.632 0.625

Fuller 0.597 0.396

Gleser 0.600 0.396

011 ' -9 022 '-° 033 '

Univariater 0.597 0.398

lock 0.710 0.566

Fuller 0.595 0.397

Gleser 0.597 0.399

011 . 1.00

Univariate 0.601 0.396

Bock 0.635 0.626

Fuller 0.601 0.396

Gleser 0.601 0.396

0.197 0.600

0.223 0.618

0.198 0.600

0.198 0.600

0.60

n=100

0.602

0.619

0.600

0.602

0.397

0.610

0.396

0.397

0.397

0.565

0.396

0.397

0.399

0.616

0.399

0.399
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0.216
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0.199

0.210

0.198

0.199

0.200

0.381

0.199

0.200

0.201

0.216

0.201

0.201

0.60 0.60

n=250

0.601

0.606

0.601

0.601

0.600

0.606

0.600

0.601

0.600

0.566

0.600

0.600

0.601

0.609

0.601

0.601 §
§
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§

0.60

n=500

0.600

0.606

0.600

0.600

0.600

0.606
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0.600
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0.562

0.600

0.600
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0.602
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0.20

0.199

0.203

0.199
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0.199

0.199

0.203

0.382

0.203

0.203

0.201

0.202

0.201

0.201
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table 7 (Cont'd)

MD” 3 .6 013 ' .4 923 ' '.2

Pop. COff. 0.60 0.40 '0.20 0.60 0.40 ’0.20 0.60 0.40 '0.20 0.60 0.40 '0.20

011 . .7 022 3.7 033 3 .7 ".50 "3100 "3250 "3500

U01VIrilt6 0.597 0.393 '0.195 0.596 0.395 '0.203 0.597 0.402 '0.200 0.599 0.399 '0.201

Bock 0.617 0.400 '0.185 0.612 0.403 '0.106 0.608 0.405 '0.107 0.605 0.402 '0.192

Fuller 0.590 0.307 '0.193 0.593 0.394 ‘0.202 0.596 0.402 “0.200 0.596 0.399 '0.201

Glesar 0.596 0.393 '0.195 0.596 0.396 '0.203 0.597 0.402 '0.200 0.599 0.399 '0.201

911 3 .85 022 3.65 D33 3 .35

Univariate 0.600 0.397 -0.194 0.590 0.403 -0.199 0.600 0.396 -0.204 0.599 0.401 -0.200

Bock 0.619 0.401 -0.174 0.611 0.410 -0.179 0.609 0.400 -0.189 0.605 0.403 -0.193

Fuller 0.598 0.395 -0.194 0.597 0.403 -0.199 0.599 0.396 -0.204 0.599 0.401 -0.200

Gleser 0.600 0.396 -0.195 0.590 0.403 -0.199 0.600 0.396 -0.204 0.599 0.401 -0.200

Du . .9 922 3.. p33 3 .7

Univariate» 0.597 0.399 '0.196 0.599 0.396 '0.199 0.590 0.396 '0.203 0.600 0.399 '0.200

Bock 0.731 0.461 0.016 0.743 0.484 0.032 0.750 0.460 0.037 0.753 0.405 0.043

Fuller 0.595 0.397 '0.194 0.597 0.397 '0.190 0.596 0.396 '0.202 0.600 0.399 '0.200

Gleser 0.597 0.399 '0.195 0.599 0.396 '0.199 0.590 0.396 '0.202 0.600 0.399 ‘0.200

DH 3 1.00 022 3 1.00 033 3 1.00

UniVOFiltO 0.596 0.396 '0.199 0.597 0.390 '0.199 0.600 0.400 '0.190 0.599 0.400 -0.201

Bock 0.616 0.403 '0.173 0.614 0.404 '0.177 0.609 0.404 '0.164 0.605 0.404 ‘0.192

Fuller 0.596 0.396 ‘0.199 0.597 0.390 ‘0.199 0.600 0.400 ‘0.196 0.599 0.400 '0.201

Gleser 0.596 0.396 '0.199 0.597 0.396 '0.199 0.600 0.400 '0.196 0.599 0.400 ‘0.201



103

1.610 7 (Cont'd)

Ema-012' -7 013 ' -° 023 ' -‘

Pop. Corr. 0.70 0.60 0.10 0.70 0.60 0.10 0.70 0.60 0.10 0.70 0.60 0.10

p“ a .7 022 8.7 033 8 .7 n-50 M100 n=250 n=500

001VIP1010 0.696 0.599 0.102 0.696 0.600 0.095 0.696 0.590 0.094 0.699 0.599 0.090

060k 0.710 0.619 0.140 0.707 0.611 0.116 0.702 0.604 0.104 0.702 0.602 0.102

F0116? 0.604 0.509 0.101 0.692 0.597 0.095 0.695 0.597 0.094 0.699 0.590 0.090

01686? 0.696 0.599 0.102 0.696 0.600 0.095 0.696 0.590 0.094 0.699 0.599 0.090

011 . .85 022 3.85 p33 3 .85

Univariate 0.699 0.596 0.101 0 699 0.597 0.099 0 700 0.597 0.097 0.699 0.601 0.101

IOCK 0.715 0.613 0.132 0.700 0.600 0.120 0.705 0.602 0.107 0.702 0.603 0.106

F0116? 0.697 0.593 0.100 0.690 0.596 0.099 0.700 0.596 0.097 0.699 0.600 0.101

01680f 0.700 0.595 0.101 0.699 0.597 0.099 0.700 0.597 0.097 0.699 0.601 0.101

011 3 .9 022 3.0 033 3 .7

Univariate» 0.690 0.599 0.100 0.699 0.601 0.104 0.697 0.590 0.097 0.700 0.602 0.103

066k 0.005 0.699 0.353 0.010 0.703 0.366 0.012 0.702 0.360 0.015 0.705 0.370

F0110? 0.694 0.595 0.099 0.690 0.599 0.104 0.697 0.597 0.097 0.700 0.602 0.103

01686? 0.690 0.599 0.100 0.699 0.601 0.105 0.697 0.590 0.097 0.700 0.602 0.103

D“ 3 1.00 022 . 1.00 033 3 1.00

001V6filt£* 0.695 0.599 0.099 0.697 0.597 0.096 0.700 0.600 0.102 0.699 0.599 0.099

006k 0.712 0.619 0.140 0.706 0.600 0.120 0.704 0.604 0.111 0.702 0.602 0.105

F0116? 0.695 0.599 0.099 0.697 0.597 0.096 0.700 0.600 0.102 0.699 0.599 0.099

01686? 0.695 0.599 0.099 0.697 0.597 0.096 0.700 0.600 0.102 0.699 0.599 0.099
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10610 7 (Cont'd)
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The Bock and Petersen method yields corrected correlations

larger than the other methods. Trends in the table show that

higher reliabilities lead to more accurate corrections. Also,

the larger the sample size, the more accurate the correction.

Overall, the corrected correlations are all remarkably close

to the population values, with the exception of the Bock and

Petersen correction when the reliabilities are (.90, .80,

.70). This may have something to do with reliabilities being

unequal in these cases” .An investigation of why these results

occurred yielded no solutions.

Variances. The estimated variances of the corrected

correlations can be compared to the empirical variances based

on the sampling distributions (the 2000 cases) of the

corrected correlations. Table 8 displays the variances of the

corrected. correlations for‘ the different cases and

combinations of factors. The third line at the top of each

table shows the theoretical variance if one were to substitute

the population correlation into the usual variance formula

(Equation 3.1). .As shown in the tables, this theoretical

variance is smaller than the 'variance of the corrected

correlations from the sampling distributions. This result was

also found in Becker and Fahrbach (1995). This result was

expected, given the work of Bobko and Rieck (1980) (among

others) who showed that corrected correlations are more

variable than uncorrected correlations.
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Table 8

Econ Variance: of gorrected Correlations

€880 1. p12 . .0 p13 - .0 023 I .0

D D D D 0 D~ 01 D 07 D1 0 9

Correlation 0.0880 0.0880 0.0680 0.0060 0.0580 0.0080 0.00 0 0.0880 0.00 0 0.00 0 0.0880 0.0680

Expect Ver. 0.0200 0.0200 0.0200 0.0100 0.0100 0.0100 0.0040 0.0040 0.0040 0.0020 0.0020 0.0020

  

Egg. Sam. Var. 0.0445 0.0415 0.0425 0.0213 0.0199 0.0210 0.0083 0.0082 0.0087 0.0041 0.0043 0.0043

Univariate 0.0183 0.0184 0.0184 0.0096 0.0096 0.0096 0.0039 0.0039 0.0039 0.0020 0.0020 0.0020

Large Sample 0.0394 0.0396 0.0396 0.0202 0.0202 0.0201 0.0081 0.0081 0.0081 0.0041 0.0041 0.0041

Fuller 0.0394 0.0396 0.0396 0.0202 0.0202 0.0201 0.0081 0.0081 0.0081 0.0041 0.0041 0.0041

Bock 0.0177 0.0177 0.0176 0.0094 0.0094 0.0094 0.0039 0.0039 0.0039 0.0020 0.0020 0.0020

Fixed Relish. 0.0400 0.0401 0.0402 0.0203 0.0203 0.0203 0.0081 0.0081 0.0081 0.0041 0.0041 0.0041

911‘922’933'-35

Egg. Sam. Var. 0.0297 0.0288 0.0284 0.0143 0.0141 0.0137 0.0056 0.0055 0.0057 0.0027 0.0028 0.0027
  

Univariate 0.0189 0.0189 0.0189 0.0097 0.0097 0.0097 0.0040 0.0040 0.0040 0.0020 0.0020 0.0020

Large Sample 0.0267 0.0267 0.0268 0.0136 0.0136 0.0136 0.0055 0.0055 0.0055 0.0028 0.0028 0.0028

Fuller 0.0267 0.0267 0.0268 0.0136 0.0136 0.0136 0.0055 0.0055 0.0055 0.0028 0.0028 0.0028

Bock 0.0180 0.0180 0.0181 0.0095 0.0095 0.0095 0.0039 0.0039 0.0039 0.0020 0.0020 0.0020

Fixed Relieb. 0.0269 0.0269 0.0270 0.0136 0.0136 0.0136 0.0055 0.0055 0.0055 0.0028 0.0028 0.0028

p11. .9 0223.8 9333 . 7

Egg. Sam. Var. 0.0283 0.0335 0.0398 0.0150 0.0163 0.0180 0.0057 0.0065 0.0072 0.0027 0 0030 0 0035
  

 

Univariate 0.0189 0.0187 0.0185 0.0097 0.0097 0.0097 0.0040 0.0039 0.0039 0.0020 010020 oloozo

Large Seaple 0.0269 0.0307 0.0348 0.0138 0.0158 0.0178 0.0055 0.0083 0.0071 0.0028 0.0192 0.0038

Fuller 0.0269 0.0307 0.0348 0.0138 0.0158 0.0178 0.0055 0.0083 0.0071 0.0028 0.0192 0.0038

sock 0.0170 0.0161 0.0170 0.0091 0.0088 0.0092 0.0038 0.0038 0.0038 0.0020 0.0183 0.0020

Fixed Relish. 0.0271 0.0310 0.0350 0.0137 0.0157 0.0177 0.0055 0.0083 0.0071 0.0028 0.0192 0.0038

”11'922’033" - 0°

Egg, Sam. Var, 0.0197 0.0210 0.0208 0.0106 0.0101 0.0101 0.0040 0.0040 0.0044 0.0019 9.0021 0.0019

Univariate 0.0192 0.0192 0.0192 0.0098 0.0098 0.0098 0.0040 0.0040 0.0040 0.0020 0.0020 .000

Large Sllple 0.0192 0.0192 0.0192 0.0098 0.0098 0.0098 0.0040 0.0040 0.0040 0.0020 0.0020 0 00

Fuller 0.0192 0.0192 0.0192 0.0098 0 0.0098 0.0040 0.0040 0.0040 0.0020 0.0020 0.00

Bock 0.0184 0.0183 0.0183 0.0095 0. 0.0095 0.0039 0.0039 0.0039 0.0020 0.0020 0 00

Fixed Relieb. 0.0192 0.0192 0.0192 0.0098 0 0.0098 0.0040 0.0040 0.0040 0.0020 0.0020 0 00
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Table 8 (Cont'd)

case 2. 012 ' .4 013 3 .3 023 3 .1

D D D D D D D D D D D D

Correlation 0.4000 0.3000 0.1000 0.4000 0.3000 0.1000 0.4000 0.3000 0.1000 0.4000 0.3000 0.1000

Expect Var. 0.0141 0.0166 0.0196 0.0071 0.0083 0.0098 0.0028 0.0033 0.0039 0.0014 0.0017 0.0020

    

 
 

pix-9228033: .7 MW M100 n=250 n=500

Egg. Sam. Var. 0.0351 0.0352 0.0420 0.0162 0.0187 0.0197 0.0066 0.0075 0.0076 0.0032 0.0035 0.0041

Univeriete 0.0136 0.0156 0.0181 0.0069 0.0080 0.0094 0.0028 0.0033 0.0039 0.0014 0.0016 0.0019

Large Sample 0.0331 0.0358 0.0393 0.0162 0.0179 0.0198 0.0065 0.0072 0.0080 0.0033 0.0036 0.0040

Fuller 0.0331 0.0358 0.0393 0.0162 0.0179 0.0198 0.0065 0.0072 0.0080 0.0033 0.0036 0.0040

Bock 0.0127 0.0145 0.0175 0.0065 0.0078 0.0093 0.0027 0.0032 0.0038 0.0014 0.0016 0.0019

Fixed Relieb. 0.0351 0.0372 0.0399 0.0172 0.0186 0.0200 0.0069 0.0074 0.0081 0.0035 0.0037 0.0040

911'922‘933'-55

Egg, Sam. Var. 0.0214 0.0251 0.0285 0.0105 0.0122 0.0146 0.0041 0.0048 0.0056 0.0021 0.0023 0.0027

Univariate 0.0137 0.0159 0.0186 0.0070 0.0081 0.0095 0.0028 0.0033 0.0039 0.0014 0.0017 0.0020

Large Sample 0.0206 0.0232 0.0264 0.0103 0.0117 0.0134 0.0041 0.0047 0.0054 0.0021 0.0024 0.0027

Fuller 0.0206 0.0232 0.0264 0.0103 0.0117 0.0134 0.0041 0.0047 0.0054 0.0021 0.0024 0.0027

Bock 0.0124 0.0149 0.0179 0.0065 0.0078 0.0094 0.0027 0.0032 0.0039 0.0014 0.0016 0.0019

Fixed Relilb. 0.0215 0.0238 0.0266 0.0108 0.0120 0.0135 0.0043 0.0048 0.0054 0.0022 0.0024 0.0027

0118.9 0223.3 0333.7

E99. 588. Var. 0.0215 0.0273 0.0363 0.0108 0.0140 0.0178 0.0042 0.0053 0.0069 0.0021 0.0027. 0.0036
_—“_fl 

Univariate 0.0139 0.0160 0.0183 0.0070 0.0081 0.0095 0.0028 0.0033 0.0039 0.0014 0.0016 0.0019

Large Sample 0.0210 0.0273 0.0343 0.0104 0.0136 0.0173 0.0042 0.0055 0.0070 0.0021 0.0027 0.0035

Fuller 0.0210 0.0273 0.0343 0.0104 0.0136 0.0173 0.0042 0.0055 0.0070 0.0021 0.0027 0.0035

Bock 0.0101 0.0121 0.0159 0.0049 0.0060 0.0083 0.0019 0.0024 0.0035 0.0010 0.0012 0.0018

Fixed Ielieb. 0.0219 0.0281 0.0348 0.0108 0.0140 0.0174 0.0044 0.0056 0.0070 0.0022 0.0028 0.0035

‘1’11'1"22"“":13"’1 - 00

E59. S88, 99?. 0.9150 0.0166 0.0206 0.0076 0.0084 0.0105 0.0028 0.0032 0.0040 0.0014 9.0019 0.0020
    

Univariate 0.0138 0.0162 0.0188 0.0070 0.0082 0.0096 0.0028 0.0033 0.0039 0.0014 0.0016 0.0020

Large Sample 0.0138 0.0162 0.0188 0.0070 0.0082 0.0096 0.0028 0.0033 0.0039 0.0014 0.0016 0.0020

Fuller 0.0138 0.0162 0.0188 0.0070 0.0082 0.0096 0.0028 0.0033 0.0039 0.0014 0.0016 0.0020

Bock 0.0123 0.0151 0.0182 0.0066 0.0078 0.0095 0.0027 0.0032 0.0039 0.0014 0.0016 0.0019

Fixed Reliab. 0.0138 0.0162 0.0188 0.0070 0.0082 0.0096 0.0028 0.0033 0.0039 0.0014 0.0016 0.0020
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Table 8 (Cont'd)

C88! 30 012 8 0‘ p13 - .3 023 a .7

D D D P D D D 0 Do 0 D 0

Correlation 0.0000 0.3000 0.7000 0.4000 0.3000 0.7000 0.4000 0.3000 0.70 0 0.4000 0.3000 0.7000

 

 

Expect Var. 0.0141 0.0166 0.0052 0.0071 0.0083 0.0026 0.0028 0.0033 0.0010 0.0014 0.0017 0.0005

pn-pZZ-pnaj 11:50 10000 n=250 n=500

Egg. San. Var, 0.0330 0.0383 0.0215 0.0179 0.0189 0.0099 0.0071 0.0073 0.0039 0.0033 0.0037 0.0018

Univariate 0.0134 0.0156 0.0056 0.0069 0.0080 0.0027 0.0028 0.0033 0.0010 0.0014 0.0016 0.0005

Large Sample 0.0325 0.0356 0.0205 0.0164 0.0180 0.0100 0.0065 0.0072 0.0039 0.0033 0.0036 0.0019

Fuller 0.0325 0.0355 0.0205 0.0164 0.0180 0.0100 0.0065 0.0072 0.0039 0.0033 0.0036 0.0019

Bock 0.0128 0.0150 0.0047 0.0068 0.0079 0.0025 0.0028 0.0032 0.0010 0.0014 0.0016 0.0005

Fixed Reliab. 0.0345 0.0370 0.0244 0.0174 0.0187 0.0121 0.0069 0.0074 0.0047 0.0035 0.0037 0.0024

911‘922‘933‘-35

Egg. Sam. Var. 0.0217 0.0244 0.0109 0.0106 0 0121 0.0049 0.0043 0.0050 0.0020 0 0020 0.0024 0.0009

Univariate 0.0138 0.0159 0.0054 0.0070 0.0081 0.0027 0.0028 0.0033 0.0011 0.0014 0.0016 0.0005

Large sample 0.0207 0.0232 0.0103 0.0103 0.0117 0.0050 0.0042 0.0047 0.0020 0.0021 0.0024 0.0010

Fuller 0.0207 0.0232 0.0103 0.0103 0.0117 0.0050 0.0042 0.0047 0.0020 0.0021 0.0024 0.0010

Bock 0.0131 0.0153 0.0047 0.0067 0.0079 0.0024 0.0028 0.0033 0.0010 0.0014 0.0016 0.0005

Fixed Reliab. 0.0216 0.0238 0.0121 0.0108 0.0120 0.0059 0.0043 0.0048 0.0023 0.0022 0.0024 0.0012

0113.9 9223.8 0333-7

Egg. Sam. Var. 0.0215 0.0291 0.0166 0.0107 0.0139 0.0081 0.0041 0.0059 0.0030 0.0022 0.0028 0.0016
 

 

Univariate 0.0138 0.0159 0.0057 0.0070 0.0081 0.0027 0.0028 0.0033 0.0011 0.0014 0.0016 0.0005

Large Sample 0.0208 0.0271 0.0167 0.0104 0.0137 0.0080 0.0042 0.0055 0.0031 0.0021 0.0027 0.0015

Fuller 0.0208 0.0271 0.0167 0.010‘ 0.0137 0.0080 0.0042 0.0055 0.0031 0.0021 0.0027 0.0015

Bock 0.0104 0.0127 0.0031 0.0051 0.0064 0.0013 0.0020 0.0025 0.0005 0.0010 0.0013 0.0002

Fixed Reliab. 0.0217 0.0280 0.0199 0.0109 0.0141 0.0096 0.0043 0.0056 0.0038 0.0022 0.0028 0.0019

911'922’033" '00

E52. San. Var. 0.0150 0.0178 0.0057 0.0072, 0.0083 0.0027 0.0028 0.0033 0.0010 0.0014 0.0016 0.0005

Univariate 0.0140 0.0161 0.0054 0.0070 00082 0.0027 0.0028 0.0033 0.0010 0.0014 0.0017 0.0005

Large s-ple 0.0140 0.0161 0.0054 0.0070 0.0082 0.0027 0.0028 0.0033 0.0010 0.0014 0.0017 0.0005

Fuller 0.0140 0.0161 0.0054 0.0070 0.0082 0.0027 0.0028 0.0033 0.0010 0.0010 0.0017 0.0005

Bock 0.0132 0.0154 0.0046 0.0068 00080 0.0025 0.0028 0.0033 0.0010 0.0014 0.0016 0.0005

Fixed Relilb. 0.0100 0.0161 0.0050 0.0070 0.0082 0.0027 0.0028 0.0033 0.0010 0.0014 0.0017 0.0005



Table 8 (Cont'd)

C's. ‘- 012 . .6 013 3 .4 023 ' .2
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0 p 0 D p 09 D D, 09 01 D D~

Correlation 0.61700 0.41800 0.2000 0.6000 0.410300 0.20 0 0.6000 0.4 00 0.20 0 0.6000 0.410100 0.2000

Expcct Var. 0.0082 0.0141 0.0184 0.0041 0.0071 0.0092 0.0016 0.0028 0.0037 0.0008 0.0014 0.0018

pu‘pzzgpn'.7 [1'50 71.100 n=250 0:500

Egg. Sam. Var. 0.0242 0.0351 0.0374 0.0126 0.0174 0.0200 0.0047 0.0065 0.0082 0.0023 0.0031 0.0040

Univariate 0.0082 0.0137 0.0173 0.0042 0.0069 0.0089 0.0016 0.0028 0.0036 0.0008 0.0014 0.0018

Large Sample 0.0248 0.0331 0.0382 0.0124 0.0164 0.0191 0.0048 0.0065 0.0077 0.0024 0.0033 0.0039

Fuller 0.0248 0.0331 0.0382 0.0124 0.0164 0.0191 0.0048 0.0065 0.0077 0.0024 0.0033 0.0039

806k 0.0073 0.0129 0.0167 0.0039 0.0067 0.0087 0.0016 0.0028 0.0036 0.0008 0.0014 0.0018

Fixed 8311.8. 0.0282 0.0350 0.0391 0.0141 0.0174 0.0195 0.0056 0.0069 0.0078 0.0028 0.0035 0.0039

9113922'033‘-35

Egg. Sam. Var. 0.0145 0.0215 0.0274 0.0070 0.0110 0.0133 0 0027 0.0042 0.0054 0.0013 0.0022 0.0026

Univariate 0.0085 0.0137 0.0175 0.0041 0.0070 0.0099 0.0016 0.0028 0.0037 0.0008 0.0014 0.0018

LIFO. Sample 0.0141 0.0206 0.0251 0.0069 0.0104 0.0127 0.0027 0.0042 0.0051 0.0014 0.0021 0.0026

Fuller 0.0141 0.0206 0.0251 0.0069 0.0104 0.0127 0.0027 0.0042 0.0051 0.0014 0.0021 0.0026

806k 0.0075 0.0128 0.0169 0.0039 0.0068 0.0088 0.0016 0.0028 0.0000 0.0008 0.0014 0.0018

Fixed Relilb. 0.0156 0.0215 0.0255 0.0077 0.0108 0.0129 0.0030 0.0043 0.0052 0.0015 0.0022 0.0026

0113.9 022'.a 0333.7

Egg. Sam. Var. 0.0146 0.0251 0.0341 0.0069 0.0127 0.0176 0.0027 0.0052 0.0070 0.0013 0.0023 0.0034

Univariate 0.0083 0.0137 0.0174 0.0042 0.0070 0.0089 0.0016 0.0028 0.0036 0.0008 0.0014 0.0018

Largo Sample 0.0140 0.0243 0.0328 0.0070 0.0122 0.0167 0.0027 0.0049 0.0067 0.0014 0.0024 0.0034

Fuller 0.0140 0.0243 0.0328 0.0070 0.0122 0.0167 0.0027 0.0049 0.0067 0.0014 0.0024 0.0034

006k 0.0051 0.0098 0.0137 0.0024 0.0049 0.0070 0.0009 0.0020 0.0029 0.0004 0.0010 0.0015

Fixed 80l1lb. 0.0155 0.0255 0.0335 0.0078 0.0129 0.0169 0.0030 0.0051 0.0068 0.0015 0.0026 0.0034

911'022‘933“ -°°

Egg. 580. V87. 0.0087 0.0150 0.0190 0.0041 0.0072 0.0089 0.0017 0.0027 0.0038 0.0008 0.0015 0.0019

Univariate 0.0083 0.0140 0.0178 0.0041 0.0070 0.0090 0.0016 0.0028 0.0037 0.0008 0.0014 0.0018

L879. Sample 0.0083 0.0140 0.0178 0.0041 0.0070 0.0090 0.0016 0.0028 0.0037 0.0008 0.0014 0.0018

Fuller 0.0083 0.0140 0.0178 0.0041 0.0070 0.0090 0.0016 0.0028 0.0037 0.0008 0.0014 0.0018

Bock 0.0072 0.0132 0.0172 0.0038 0.0068 0.0089 0.0016 0.0028 0.0036 0.0008 0.0014 0.0018

Fixed 0011.8. 0.0083 0.0140 0.0178 0.0041 0.0070 0.0090 0.0016 0.0028 0.0037 0.0008 0.0014 0.0018



Table 8 (Cont'd)

CBS. 5. 012 3 .6 013 t .40 923 8 '.2
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a 0 p 01 p o o p p D p 0

Correlation 0.6000 0.4000 -0. 0 0.600 0.41000 0.2110 0.60011 0.41300 0.2110 0.6000 0.40300 0200

Expect Ver. 0.0082 0.0141 0.0184 0.0041 0.0071 0.0092 0.0016 0.0028 0.0037 0.0008 0.0014 0.0018

pnspzzapnxj n=50 moo n=250 n=500

Egg. Sam. Var. 0.0265 0.0355 0.0409 0.0125 0.0163 0.0195 0.0050 0.0065 0.0076 0.0024 0.0033 0.0039

Univariate 0.0084 0.0135 0.0171 0.0042 0.0069 0.0089 0.0017 0.0028 0.0036 0.0008 0.0014 0.0018

large Sunple 0.0252 0.0328 0.0378 0.0123 0.0163 0.0191 0.0049 0.0065 0.0077 0.0024 0.0033 0.0039

Fuller 0.0250 0.0326 0.0376 0.0123 0.0163 0.0191 0.0049 0.0065 0.0077 0.0024 0.0033 0.0039

Spelt 0.0078 0.0131 0.0169 0.0039 0.0067 0.0089 0.0016 0.0028 0.0037 0.0008 0.0014 0.0018

Fixed lleliab. 0.0285 0.0348 0.0388 0.0140 0.0173 0.0194 0.0056 0.0069 0.0078 0.0018 0.0035 0.0039

911’022'033'-35

Egg. Sam. Var. 0.0147 0.0223 0.0270 0.0072 0.0110 0.0131 0.0027 0.0043 0.0054 0.0014 0 0020 0.0027

Univariate 0.0082 0.0138 0.0175 0.0041 0.0070 0.0090 0.0016 0.0028 0.0037 0.0008 0.0014 0.0018

Large Sample 0.0139 0.0206 0.0251 0.0068 0.0104 0.0128 0.0027 0.0042 0.0051 0.0014 0.0021 0.0026

Fuller 0.0139 0.0206 0.0251 0.0068 0.0104 0.0128 0.0027 0.0042 0.0051 0.0014 0.0021 0.0026

Bock 0.0077 0.0132 0.0173 0.0039 0.0069 0.0090 0.0016 0.0028 0.0037 0.0008 0.0014 0.0018

Fixed llelieb. 0.0154 0.0215 0.0255 0.0076 0.0109 0.0129 0.0030 0.0043 0.0052 0.0015 0.0022 0.0026

011..9 022..8 D33..7

Egg. Sam. Var, 0.0136 0.0258 0.0336 0.0068 0.0127 0.0173 0.0028 0.0049 0.0067 0.0014 0.0023 0.0032

Univariate 0.0082 0.0137 0.0174 0.0041 0.0069 0.0090 0.0016 0.0028 0.0036 0.0008 0.0014 0.0018

lerpe Sample 0.0139 0.0244 0.0332 0.0068 0.0122 0.0167 0.0027 0.0049 0.0067 0.0014 0.0024 0.0034

Fuller 0.0139 0.0244 0.0332 0.0068 00122 0.0167 0.0027 0.0049 0.0067 0.0014 0.0024 0.0034

aoclt 0.0045 0.0112 0.0175 0.0020 0.0057 0.0093 0.0008 0.0023 0.0039 0.0004 0.0012 0.0020

Fixed Relieb. 0.0155 0.0257 0.0339 0.0076 0.0128 0.0170 0.0031 0.0051 0.0068 0.0015 0.0026 0.0034

911‘022’933“ -°°

Egg. Sam. Var. 0.0086 0.0151 0.0185 0.0041 0.0071 0.0091 0.0017 0.0030 0.0038 0.0009 0.0015 0.0019

Univeriete 0.0084 0.0139 0.0178 0.0041 0.0071 0.0091 0.0017 0.0028 0.0037 0.0008 0.0014 0.0018

Lerpe Sulple 0.0084 0.0139 0.0178 0.0041 0.0071 0.0091 0.0017 0.0028 0.0037 0.0008 0.0014 0.0018

Fuller 0.0084 0.0139 0.0178 0.0041 0.0071 0.0091 0.0017 0.0028 0.0037 0.0008 0.0014 0.0018

Bock 0.0080 0.0135 0.0176 0.0039 0.0069 0.0091 0.0016 0.0028 0.0037 0.0007 0.0014 0.0018

Fixed Ilelieb. 0.0084 0.0139 0.0178 0.0041 0.0071 0.0091 0.0017 0.0028 0.0037 0.0008 0.0014 0.0018



Table 8 (Cont'd)

we 6. p12 3 a? p13 3 .6 923 3 .1

Correlation

Expect Var.

l"11""22"’3:1'°7

Egg. San. Var.

Univariate

Large Sample

Fuller

Bock

Fixed Relieb.

011'922‘033'-55

EQ. §8111, Var.

Univariate

Large Saeple

Fuller

Bock

Fixed Reliab.
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0113.9 0223.8 p333.7

Em. S8111. Var.

Univariate

Large Saeple

Fuller

Bock

Fixed Reliab.

911’922'933" °°°

w
Univariate

Large Seeple

Fuller

Bock

Fixed Reliab.

 

 

  

D D 0 p1 DI D 01 D D D D p

0.7000 0.6000 0.1000 0.70 0 0.6000 0.1000 0.7000 0.6000 0.1000 0.7000 0.6000 0.1000

0.0052 0.0082 0.0196 0.0026 0.0041 0.0098 0.0010 0.0016 0.0039 0.0005 0.0008 0.0020

nISO n=100 n=250 n=500

0.0204 0.0251 0.0415 0 0099 0.0123 0.0207 0.0039 0.0048 0.0081 0.0019 0.0022 0.0042

0.0056 0.0082 0.0181 0.0027 0.0042 0.0094 0.0011 0.0016 0.0039 0.0005 0.0008 0.0019

0.0207 0.0247 0.0393 0.0101 0.0123 0.0199 0.0039 0.0048 0.0080 0.0019 0.0024 0.0040

0.0204 0.0244 0.0387 0.0101 0.0123 0.0199 0.0039 0.0048 0.0080 0.0019 0.0024 0.0040

0.0051 0.0076 0.0175 0.0026 0.0040 0.0093 0.0010 0.0016 0.0038 0.0005 0.0008 0.0019

0.0246 0.0281 0.0399 0.0121 0.0140 0.0201 0.0048 0.0056 0.0081 0.0024 0.0028 0.0040

0.0100 0 0134 0 0283 0 0049 o 0072 0 0132 0.0019 0.0027 0.0052 0 0009 0.0013 0.0027

0.0054 0.0084 0.0186 0.0026 0.0041 0.0096 0.0011 0.0016 0.0039 0.0005 0.0008 0.0020

0.0101 0.0141 0.0264 0.0049 0.0069 0.0134 0.0020 0.0027 0.0054 0.0010 0.0014 0.0027

0.0101 0.0141 0.0264 0.0049 0.0069 0.0134 0.0020 0.0027 0.0054 0.0010 0.0014 0.0027

0.0049 0.0079 0.0181 0.0025 0.0040 0.0093 0.0010 0.0016 0.0038 0.0005 0.0008 0.0019

0.0119 0.0156 0.0266 0.0058 0.0077 0.0135 0.0023 0.0030 0.0054 0.0012 0.0015 0.0027

0 0101 0 0172 0.0368 0.0049 0.0086 0.0179 0.0018 0.0033 0.0070 0 0010 o 0016 0.0036

0.0056 0.0084 0.0183 0.0026 0.0041 0.0095 0.0011 0.0016 0.0039 0.0005 0.0008 0.0019

0.0104 0.0174 0.0343 0.0050 0.0084 0.0173 0.0020 0.0034 0.0070 0.0010 0.0017 0.0035

mmm mmn mun 00w000w400n3 0mm mmu mmm 00m000m70065

0.0028 0.0055 0.0143 0.0013 0.0027 0.0072 0.0005 0.0010 0.0029 0.0002 0.0005 0.0015

0.0122 0.0196 0.0347 0.0059 0.0095 0.0175 0.0023 0.0038 0.0070 0.0012 0.0019 0.0035

9.0056 0.0086 0.0195 0.0029 0.0044 0.0105 0.0010 0 0017 0.0041 0.0005 0.0008 0.0019

0.0055 0.0084 0.0189 0.0027 0.0041 0.0096 0.0010 0.0016 0.0039 0.0005 0.0008 0.0020

0.0055 0.0084 0.0189 0.0027 0.0041 0.0096 0.0010 0.0016 0.0039 0.0005 0.0008 0.0020

0.0055 0.0084 0.0189 0.0027 0.0041 0.0096 0.0010 0.0016 0.0039 0.0005 0.0008 0.0020

0.0050 0.0078 0.0182 0.0025 0.0040 0.0094 0.0010 0.0016 0.0038 0. 05 0.0008 0.0019

0.0055 0.0084 0.0189 0.0027 0.0041 0.0096 0.0010 0.0016 0.0039 0.0005 0.0008 0.0020



Table 8 (Cont'd)

C888 7e p12 8 .7 013 . 06 023 ‘ .8

Correlation

Expect Var.

911'022=933’-7

E19. 5801. VgrI

Univariate

Large Sample

Fuller

Sock

Fixed Reliab.

911'922‘933'-35

Egg. Sam. Var.

Univariate

Large Sample

Fuller

Bock

Fixed Ieliab.
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0118.9 0223.8 Ont-.7

Egg. Sam. Var.

Univariate

Large Sample

Fuller

Bock

Fixed Reliab.

9114023933" -°°

Univariate

Large Sample

Fuller

Bock

Fixed Reliab.

 

 

   

0 o p p 0 p p p 0 p 0 p

0.7000 0.6000 0.8000 0.7000 0.61000 0.8000 0.7000 0.6000 0.8000 0.7000 0.6000 0.8000

0.0052 0.0082 0.0026 0.0026 0.0041 0.0013 0.0010 0.0016 0.0005 0.0005 0.0008 0.0003

"850 n=100 n=250 "8500

0 0220 0.0258 0.0153 0.0099 0.0128 0.0069 0.0038 0.0048 0 0028 0.0018 0.0024 0.0014

0.0057 0.0082 0.0032 0.0027 0.0041 0.0014 0.0011 0.0017 0.0005 0.0005 0.0008 0.0003

0 0209 0.0251 0.0164 0.0100 0.0123 0.0076 0.0039 0.0049 0.0030 0.0019 0.0024 0.0015

0 0208 0.0249 0.0163 0.0100 0.0122 0.0076 0.0039 0.0049 0.0030 0.0019 0.0024 0.0015

0.0052 0.0079 0.0027 0.0026 0.0041 0.0013 0.0010 0.0016 0.0005 0.0005 0.0008 0.0003

0 0248 0.0284 0.0206 0.0120 0.0140 0.0098 0.0048 0.0056 0.0039 0.0024 0.0028 0.0019

0.0103 0.0145 0.0067 0.0047 0.0070 0.0028 0 0019 0 0027 0 0012 0 0010 0.0014 0.0006

0.0054 0.0082 0.0028 0.0027 0.0041 0.0013 0.0010 0.0016 0.0005 0.0005 0.0008 0.0003

0.0102 0.0138 0.0066 0.0050 0.0069 0.0032 0.0020 0.0027 0.0012 0.0010 0.0014 0.0006

0.0102 0.0138 0.0066 0.0050 0.0069 0.0032 0.0020 0.0027 0.0012 0.0010 0.0014 0.0006

0.0052 0.0080 0.0025 0.0026 0.0041 0.0013 0.0010 0.0016 0.0005 0.0005 0.0008 0.0003

0.0120 0.0154 0.0084 0.0059 0.0077 0.0041 0.0023 0.0030 0.0016 0.0012 0.0015 0.0008

0.0109 0.0179 0.0115 0.0047 0.0081 0.0052 0.0020 0.0034 0 0021 0 0010 0.0016 0.0010

0.0055 0.0083 0.0030 0.0027 0.0041 0.0014 0.0011 0.0016 0.0005 0.0005 0.0008 0.0003

0.0105 0.0173 0.0123 0.0050 0.0085 0.0058 0.0020 0.0033 0.0023 0.0010 0.0017 0.0011

0.0104 0.0173 0.0123 0.0050 0.0085 0.0058 0.0020 0.0033 0.0023 0.0010 0.0017 0.0011

0.0039 0.0058 0.0013 0.0019 0.0029 0.0005 0.0007 0.0011 0.0002 0.0003 0.0006 0.0001

0.0122 0.0194 0.0156 0.0059 0.0096 0.0075 0.0024 0.0038 0.0030 0.0012 0 0019 0.0015

0.0054 0 0082 0.0028 0.0027 0.0042 0 0014 0 0011 0 0017 0 0005 0.0005 0.0008 0 0002

0.0054 0.0084 0.0028 0.0027 0.0041 0.0014 0.0010 0.0016 0.0005 0.0005 0.0008 0.0003

0.0054 0.0084 0.0028 0.0027 0.0041 0.0014 0.0010 0.0016 0.0005 0.0005 0.0008 0.0003

0.0054 0.0084 0.0028 0.0027 0.0041 0.0014 0.0010 0.0016 0.0005 0.0005 0.0008 0.0003

0.0051 0.0082 0.0025 0.0026 0.0041 0.0013 0.0010 0.0016 0.0005 0.0005 0.0008 0.0003

0.0054 0.0084 0.0028 0.0027 0.0042 0.0014 0.0011 0.0016 0.0005 0.0005 0.0008 0.0003
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The other lines in the table correspond to mean variances

found from 'various methods. These methods include the

univariate method, which simply takes the corrected

correlation and inserts it into Equation 3.1 and 3.2. As

expected, the results using this method closely approximate

the expected variance, and are much smaller than the variance

of the sampling distribution.

The method from Book and Petersen, as mentioned

previously, did not yield a variance estimate of its own.

Instead, the corrected correlations from this method were

inserted into the univariate variance formulas for comparison

purposes. The Book and Petersen results are therefore similar

to the univariate results.

The large-sample theory variances are those found using

the formulas in Appendix A and Appendix B. The Fuller and

Hidiroglou (1978) method also made use of this formulation,

though with differing results. The Fuller and Hidiroglou

correction relies on the smallest eigenvalue from the given

variance matrix, and if this value is less than unity, a

substitution is made. The large-sample theory method with the

Fuller and Hidiroglou variation then adjusted for the use of

this eigenvalue“ The large-sample variance and the Fuller and

Hidiroglou variation of that method should be identical,

unless the original correlation matrix is non-positive

definite. As shown in the tables, the large-sample variance

and the Fuller and Hidiroglou variation give very close
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approximations to the variance of the sampling distribution of

the corrected correlations. The accuracy of these estimators

increases as the sample size increases. With E = 500, for

example, the elements of the corrected variance-covariance

matrices using the large-sample method (and the Fuller and

Hidiroglou ‘variation) are within 0.0002 of the sampling

distribution, no matter what the reliability values, or the

correlation case.

The final line in each grouping shows what the variance

would be if one assumed that the sample reliability was a

constant. This differs from the large-sample formulation in

that the large-sample formulation assumes that reliabilities

are variable, and that variability is accounted for in the

computation. The results using this formulation are quite

close to the large-sample results. IHowever, at smaller sample

sizes, they are not nearly as accurate as the other variances.

The other factor of note is the reliability value. It

appears, given these data, to have no effect on the results.

What is apparent, however, is that when the sample

reliabilities are approximating a population reliability of

1.00, all variance correctionslgive similar results, and.these

results closely resemble the expected variance of the

correlations measured without error. This result verifies

that the simulation seems to be working as it should.



table 9

an ri of rr 0 r etion

Canton-4013040230.!)

3135353. {18:33 035311.
Cove. 0 .0

Expected 01200000

911'922‘933'"

m L._-00205
Univar 0.00003

Large-Sn. 0.00006

Fuller 0.00004

lock 0.00004

Fixed Iel. 0.00005

911‘922'93‘45

EQ- Cov, 0.00055

Univar 0.00003

Large-Sn. 0.00001.

Fuller 0.00006

lock 4.00001

Fixed Rel. 0.00006

911", 132-.6 038.7

M 0.00162

Univar 0.00009

LargrSu. 0.00009

Fuller 0.00009

lock 0.00009

Fixed Iel. 0.00009

PuW‘“

m 0.00030

mivar 4.00013

Large-Sn. 4.00013

Fuller 4.00013

lock 4.00015

Fixed lel. 4.00013
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£66630 £06363 31.66386

 

£6199 035551. £6633 £13556

 

MSO M100 "I250 "ISM

Q . 00105 9.00102 9 . 00006 0 . 0009} 0 . 00042 4 . 00015 4 . 00026 4.0001] 4 . 00003 4.00010

0.00019 4.00010 0.00001 0.00002 4.00001 0.00001 0.00000 4.00001 0.00000 0.00000

0.00026 4.00016 0.00001 0.00003 4.00002 0.00002 4.00001 4.00001 0.00000 0.00000

0.00026 4.00016 0.00001 0.00003 4.00002 0.00002 -0.00001 4.00001 0.00000 0.00000

0.00006 4.00011 4.00003 0.00002 4.00001 0.00001 4.00001 -0.00001 0.00000 ILMOOO

0.00027 4.00015 0.00001 0.00003 4.00002 0.00002 -0.00001 -0.00001 0.00000 0.000”

4 . 0001; 0.00077 4.00007 0.00027 - 0 . 00001 4 . 00013 4 . 00003 0.00000 9 . 00002 4. 00002

4.00008 0.00006 0.00001 4.00002 4.00009 0.00001 0.00001 0.00000 0.00000 0.000(1)

4.00009 0.00037 0.00001 4.00002 4.00010 0.00001 0.00001 0.00000 0.00000 0.W000

4.00009 0.00006 0.00001 -0.00002 4.00010 0.00001 0.00001 0.00000 0.00000 0.00000

4.00016 4.00001 0.00006 -0.m004 4.00009 O.W000 0.00002 0.00001 0.00000 0.00”

4.00009 0.00004 0.00001 4.00002 4.W010 0.00001 0.0M1 0.W000 0.00m 0.00000

L00091 4. 00063 0.00011 4. 00003 0.00078 4 . 0001‘ 4 . OOOLL 0.00017 0.00008 0.00011

0.00015 4.00006 0.00006 0.00001 4.00002 0.00002 4.00001 4.00002 0.00000 0.00000

0.00019 4.00010 0.00005 0.000% -0.00004 0.00002 -0.00001 4.00003 0.00000 0.00”!)

0.00019 4.00010 0.00005 0.000” 4.00006 0.00002 4.WOO1 -0.00003 0.00000 ILWOOO

0.00027 4.00001 0.00005 0.00002 4.0MZ 0.00001 4.00001 -0.00004 0.00000 0.00000

0.00020 4.“!110 0.1!)005 0.00000 -0.00004 0.00002 -0.00001 4.Mfl3 0.00000 0.00000

4.00060 4.00012 4.00009 4.00022 0.00006 4.00002 9 00012 9.00025 4 00001 4.00001

4.00020 0.00001 4.00002 4.00002 4.00002 4.00001 0.00000 0.000” . 0.00000

4.00020 0.00001 4.00002 -0.00002 4.00002 4.00001 0.0011“ 0.00000 0.00000 0.1100”

4.00020 0.00001 -0.00002 -0.00002 -0.00002 -0.00001 0.00000 0.00000 0.00” 0.00000

4.0002! 0.000“) 4.00002 0.00001 4.00005 -0.00001 0.00001 0.m00 4.00001 0.00001

4.00020 0.00001 4.00002 -0.00002 4.0W02 4.00001 0.00000 0.00000 0.00000 0.00000

0 .0
03001010

0 I 00001

0 . 00000

-0.m001

-0.w001

-0.00001

4.00001

4.00001

0.00000

0.00000



Table 9 (Cont'd)

00002.012'.6Du3 e392:

Cove. 0 .0 o .0

Expected 0.110061 01.200563

911'922'933'-7 "'50

Egg‘_§g!‘ 0.00008 9.00788

Un1VIr 0.00060 0.00637

LIf’I‘SII. 0.00060 0.00676

Fuller 0.00068 0.00676

lock 0.00050 0.00660

Fixed lel. 0.00121 0.00736

paw-55

£52. £23, 0.00085

Univer 0.00067

terse-Sen. 0.00062 0.

Fuller 0.00062 0.

lack 0.00050 0

Fixed Iel. 0.00078 0

0117'9 022... 033'.7

L'LEQL 0.00073 0

Univar 0.00056 0

Large-See. 0.00056 0.

Fuller 0.00056 0

lock 0.00107 0

Fixed Iel. 0.00000

911%"-°°

Univer 0.00053 0.00661

Lorne-Seek 0.00053 0.00661

Fuller 0.00053 0.00661

lock 0.00056 0.00653

Fixed lel. 0.00053 0.00661

I .1

p. .0
0.01160?

0.00923

0.00627

0.00967

0.00967

0.00639

0.01003

0.00657

0.00792

0.00792

0.00691

0.00017

. ,0.1D

0. 003

0.00059

0.00020

0.00029

0.00029

0.00030

0.00060

.5332

n-100

.00328

0.00223

0.00330

0.00330

0.00220

0.00367

0.00261

0 .0
0.00323

0.00550

0.00336

0.00500

0.00500

0.00350

0.00525
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0 .0

0.00072

0.00026

0.00012

0.00013

0.00013

0.00012

0.00029

0.00012

 

0.00027

0.00025

0.00025

0.00020

0.00063

0.00058
_——_—_—_—_

0.00231

0.00205

0.00335

0.00339

0.00339

0.00339

0.00356

0.00339

0.00012

0.00012

0.00012

0.00012

0.00019

~0.00009

0.00017

0.00007

0.00012

0.00012

0.00012

0.00011

0.00012

 

p 00 p ,D D 001 D to? 01,0

0.110051 01.300120 01600 0. 0.100030

n6250 n=500

0.00128 0.00217 -0 00008 0.00073 0.00092

0.00092 0.00137 0.00006 0.00066 0.00069

0.00139 0.00202 0.00007 0.00070 0.00101

0.00139 0.00202 0.00007 0.00070 0.00101

0.00096 0.00161 0.00006 0.00067 0.00070

0.00150 0.00211 0.00015 0.00075 0.00106

0.00110 0 00161 0.00009 0 00059 0.00090

0.00092 0.00130 0 00006 0.00066 0.00070

0.00111 0.00166 0.00006 0.00056 0.00003

0.00111 0.00166 0.00006 0.00056 0.00003

0.00093 0.00161 0.00006 0.00067 0.00071

0.00116 0.00160 0.00009 0.00050 0.

0.00121 0 00182 0.00007 0.00056 0.00107

0.00092 0.00137 0.00006 0.00067 0.00069

0.00119 0.00202 0.00006 0.00060 0.00101

0.00119 0.00202 0.00006 0.00060 0.00101

0.00109 0.00166 0.00009 0.00056 0.00076

0.00126 0.00207 0.00000 0.00063 0.00106

0.00091 0.00135 9.00012 9.00067 0.00076

0.00093 0.00130 0.00006 0.00067 0.00070

0.00093 0.00130 0.00006 0.00067 0.00070

0.00093 0.00130 0.00006 0.00067 0.00070

0.00096 0.00161 0.00006 0.00067 0.00070

0.00093 0.00130 0.00006 0.00067 0.00070



Ieble 9 (Cont'd)

m3-Du'.‘013.030n

Cove.

Explcted

911‘922'030'-7

ML. _0-01‘3‘
Univ-r 0.00947

Large-Sen. 0.01475

Fuller 0.01475

lock 0.00941

Fixed Rel. 0.01630

011.022.0337 .85

0.01241

Univer 0.00971

Large'Sen. 0.01187

Fuller 0.01187

lock 0.00968

Fixed Rel. 0.01258

011" 922" ”if-7

Egg. Cov. 0.01154

Univar 0.00963

Large-Sank 0.01096

Fuller 0.01096

Bock 0.00833

Fixed Rel. 0.01175

911'922‘933" -°°

D pp 0 00

0.111013 01.20037

n-so

0.00143

0.00129

0.00196

0.00196

0.00116

0.00384

0.00187

0.00133

0.00151

0.00151

0.00119

0.00239

0.00092

0.00131

0.00160

0.00160

0.00102

0.00289

I .7

010028,? 00.000113 0100023

0.0051g 0.00821 0.00079

0.00274

0.00487

0.00487

0.00257

0.00680

0.00364

0.00269

0.00345

0.00345

0.00250

0.00437

0.00524

0.00278

0.00487

0.00487

0.00224

0.00641

§!2‘_9999 g,0110§ 0.0014; 9.00285

Univer 0.00991

Large-Sen. 0.00991

Fuller 0.00991

lock 0.00973

Fixed Rel. 0.00991

0.00130

0.00130

0.00130

0.00119

0.00130

0.00269

0.00269

0.00269

0.00249

0.00269

0.00494

0.00757

0.00757

0.00495

0.00831

0.0054g_

0.00497

0.00603

0.00603

0.00493

0.00637

0.00582

0.00500

0.00566

0.00566

0.00426

0.00604

0.00507

0.00501

0.00501

0.00501

0.00496

0.00501

n-100

0.00067

0.00101

0.00101

0.00063

0.00197

0.00080

0.00068

0.00076

0.00076

0.00063

0.00121

0.00071

0.00066

0.00079

0.00079

0.00053

0.00146

0.00079

0.00066

0.00066

0.00066

0.00064

0.00066

{05:71

9.09220

0.00137

0.00239

0.00239

0.00131

0.00337

0.00173

0.00138

0.00175

0.00175

0.00132

0.00221

0.00225

0.00138

0.00240

0.00240

0.00110

0.00321

9.00157

0.00139

0.00139

0.00139

0.00134

0.00139
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0106592

9.00331

0.00201

0.00305

0.00305

0.00201

0.00334

0.00266

0.00203

0.00245

0.00245

0.00201

0.00258

0.00227

0.00201

0.00227

0.00227

0.00169

0.00242

0.00200

0.00202

0.00202

0.00202

0.00202

0.00202

0 .

0.0.353

n-250

0.00036

0 .0

0¥00056

0.00120

330031132
0 .0

0.0110123

n-soo

0.00010

0.00023

0.00027

0.00030

0.00030

0.00027

0.00048

0.00024

0.00028

0.00033

0.00033

0.00022

0.00061

0.00029

0.00027

0.00027

0.00027

0.00027

0.00027

0.00056

0.00096

0.00096

0.00055

0.00136

0.00066

0.00056

0.00071

0.00071

0.00055

0.00089

0.00093

0.00056

0.00097

0.00097

0.00043

0.00130

0.00054

0.00056

0.00056

0.00056

0.00055

0.00056

0.00101

0.00153

0.00153

0.00101

0.00167

0.00112 9.00013

0.00101

0.00122

0.00122

0.00101

0.00129

0.00121,

0.00101

0.00115

0.00115

0.00085

0.00122

0.00104

0.00102

0.00102

0.00102

0.00101

0.00102

0.00013

0.00020

0.00020

0.00013

0.00040

0.00014

0.00015

0.00015

0.00014

0.00024

0.00020

0.00014

0.00017

0.00017

0.00011

0.00030

0.00017 I

0.00014

0.00014

0.00014

0.00014

0.00014
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”O‘cpu'-6Du'-‘pa'.2

CM. 9900! D ,D D 60 D .0 D .0 91.0 05.01 05.099 51.975 019.91

Expected 0. 0006 01.200227 0.0092? 0.110063 0.011219 0.110662 0.00017 0.110005 01.00105 0:000:39

‘01'pzf¢00'-7 "~50 n-100 n-ZSO

Egg, 90VI 0.000102 0.90549 0.01454 10.00004 0.00386 _‘99721 -0.00002 0.99155 0.00274 0.00022

Univar 0.00079 0.00392 0.00071 0.00066 0.00209 0.00639 0.00017 0.00005 0.00102 0.00009

Largo-sun. 0.00084 0.00655 0.01369 0.00050 0.00360 0.00668 0.00010 0.00137 0.00274 0.00009

Fuller 0.00084 0.00655 0.01348 0.00050 0.00360 0.00668 0.00010 0.00137 0.00274 0.00009

lock 0.00075 0.00305 0.00066 0.00041 0.00206 0.00660 0.00017 0.00084 0.00102 0.00000

Fixed Rel. 0.00226 0.00793 0.01465 0.00125 0.00611 0.00726 0.00069 0.00166 0.00296 0.00025

911'922'930'-‘5

£52. Cov. 0.00016 0.00549 0.01656 0.00006 9.00386 0.00721-0.00002 0.00155 0.00276 0.00022

01mm 0.00000 0.00616 0.00063 0.00062 0.00209 0.00650 0.00017 0.00006 0.00184 0.00009

Largo-5.. 0.00076 0.00522 0.01052 0.00039 0.00260 0.00566 0.00015 0.00105 0.00221 0.00000

701101- 0.00074 0.00522 0.01052 0.00039 0.00260 0.00566 0.00015 0.00105 0.00221 0.00000

lock 0.00077 0.00601 0.00059 0.00061 0.00206 0.00650 0.00016 0.0003 0.00184 0.00000

Find :01. 0.00161 0.00500 0.01106 0.00076 0.00294 0.00570 0.00029 0.00110 0.00231 0.00015

011" 922”“ 933'-7

E52. 90VI 0.00049 0.00576 0,01358 9.00055 0.00296 0.00726 0.00017 0.00102 0.00319 9.00005

unmr 0.00072 0.00405 0.00072 0.00062 0.00200 0.00666 0.00017 0.00006 0.00103 0.00009

Largo-s... 0.00065 0.00557 0.01337 0.00039 0.00202 0.00677 0.00016 0.00116 0.00275 0.00000

70116:- 0.00065 0.00557 0.01337 0.00039 0.00202 0.00677 0.00016 0.00116 0.00275 0.00000

lock 0.00107 0.00349 0.00766 0.00050 0.00175 0.00302 0.00026 0.00069 0.00150 0.00012

Fixed 061. 0.00110 0.00627 0.01613 0.00067 0.00317 0.00714 0.00027 0.00120 0.00290 0.00014

911‘9a‘930"-°°

E!Q‘_£9!‘ 0.00117 9.00443 0.01000 9.00024 0.00193 0.00455 9.00017 .00094 0.00187 0.00011

011m:- 0.00070 0.00607 0.00096 0.00062 0.00210 0.00656 0.00017 0.00006 0.00106 0.00009

Lam-sun. 0.00070 0.00407 0.00894 0.00062 0.00210 0.00656 0.00017 0.00084 0.00106 0.00009

FUUII’ 0.00070 0.00407 0.00096 0.00062 0.00210 0.00656 0.00017 0.00084 0.00184 0.00009

lock 0.00071 0.00309 0.00896 0.00061 0.00205 0.00653 0.00017 0.00003 0.00166 0.00009

710601101. 0.00070 0.00407 0.00096 0.00062 0.00210 0.00656 0.00017 0.00084 0.00106 0.00009

01 OD

0.0008

"3500

0.00070

0.00043

0.00069

.0.00069

0.00042

0.00083

0.00070

0.00042

0.00053

0.00053

0.00042

0.00059

0.00051

0.00042

0.00057

0.00057

0.00034

0.00064

0.00044

0.00043

0.00043

0.00043

0.00042

0.00043

01 1 l 0?

0.00092

0.00133

0.00092

0.00138

0.00138

0.00092

0.00148

0.00133

0.00092

0.00111

0.00111

0.00092

0.00116

9.00140

0.00092

0.00138

0.00138

0.00081

0.00145

0.00095

0.00092

0.00092

0.00092

0.00092

0.00092
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0 .0.

0.0010

0.00156

0.00156

0.00100

0.00160

9.00126

0.00099

0.00123

0.00123

0.00100

0.00125

9.00143

0.00099

0.00156

0.m156

0.00113

0.W155

9.00100

0.00099

0.0M9

0.00099

0.00100

CM. 0 .D D .D D .D D .D D .D D .D p ,0 D .0 01.0 D .0 D .0

Enacted 01.200298 3.06133 0.01199? 0500119 0.6626? 6.115661 656026 12.63107 0300199 0.61030 6.30051

011-022-033- .7 (ISO 71-100 111-250 MSOO

gggfi_9999 -0.00767 0.00987 0.01579_ -0.00349 0.00505 0.00759 -0.00146 0 00198 0.00299 -0.00068 0 00097

thin!” '0.00279 0.00498 0.00908 -0.00146 0.00260 0.00474 '0.00059 0.00106 0.00195 00.00030 0.00053

Large-Sal. °0.00622 0.00931 0.01487 -0.00315 0.00473 0.00760 o0.00127 0.00191 0.00309 -0.00063 0.00095

Fuller ~0.00619 0.00926 0.01477 -o.00314 0.00473 0.00759 -0.00127 0.00191 0.00309 -0.00063 0.00095

lock -0.00271 0.00487 0.00918 -0.00137 0.00256 0.00482 -0.00056 0.00105 0.00198 -0 00029 0.00052

fix-d Iol. ~0.00604 0.00993 0.01555 -0.00301 0.00500 0.00786 -0.00121 0.00202 0.00318 -0.00060 0.00100

paw-IS

figgi_9999 -0.00534 0.00741 0.01289 ~0.00267 9.00339 0.00636 -0.00099 0.00147 0.00259_ ~0.00043 0.00076

“fiver ~0.00298 0.00509 0.00947 -0.00149 0.00259 0.00487 -0.00059 0.00105 0.00198 -0.00030 0.00053

Largo-Sal. -0.00450 0.00694 0.01189 '0.00224 0.00350 0.00609 -0.00089 0.00141 0.00246 ~0.00045 0.00071

Fuller -0.00450 0.00694 0.01189 ~0.00224 0.00350 0.00609 -0.00089 0.00141 0.00246 -0.00045 0.00071

lock -0.00268 0.00498 0.00939 -0.00138 0.00253 0.00492 -0.00056 0.00101 0.00200 -0.00029 0.00053

Fixed Rel. -0.00444 0.00724 0.01220 -0.00220 0.00365 0.00623 -0.00087 0.00147 0.00251 -0.00044 0.00074

011.69 0&368 M07

' £999_9999 -0.00456 0.00703 0.01646 -0 00215 0.00322. 0.00851 ~0.000§§_ 0.00161 0.00314 ~0.00043 0.00080

Univar -0.00292 0.00506 0.00935 -0.00146 0.00259 0.00484 -0.00060 0.00106 0.00196 -0.00030 0.00053

Large-San. -0.00387 0.00765 0.01516 -0.00194 0.00388 0.00774 -0.00079 0.00156 0.00311 -0.00039 0.00078

Fuller -0.00387 0.00765 0.01516 -0.00194 0.00388 0.00774 -0.00079 0.00156 0.00311 -0.00039 0.00078

lock -0.00097 0.00414 0.00997 ~0.00382 0.00205 0.00533 -0.00013 0.00082 0.00223 -0.00006 0.00041

71008 Iol. -0.00426 0.00780 0.01525 '0.00214 0.00393 0.00774 -0.00087 0.00158 0.00309 -0.00043 0.00079

p11""22""‘.10"-"°

Egnfi_99!9 -0.00359 9.00512 0.01024 -0.001§§_ 0.00249_ 0.00499 ~0.00067 0.00101 9.00212 ~0.0003z 9.00057

Univar -0.00306 0.00524 0.00955 -0.00151 0.00261 0.00491 -0.00060 0.00107 0.00197 -0.00030 0.00053

LOfflt‘SllL -0.00306 0.00524 0.00955 -0.00151 0.00261 0.00491 -0.00060 0.00107 0.00197 ~0.00030 0.00053

Fuller -0.00306 0.00524 0.00955 -0.00151 0.00261 0.00491 ~0.00060 0.00107 0.00197 -0.00030 0.00053

lock ~0.00278 0.00504 0.00953 -0.00136 0.00256 0.00497 -0.00056 0.00106 0.00199 -0.00029 0.00053

F1008 Iol. -0.00306 0.00524 0.00955 -0.00151 0.00261 0.00491 -0.00060 0.00107 0.00197 -0.00030 0.00053
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c... 66 Du . .7 pm I .6 023 I .1

Covs. .0 D .0 D .D

Expocud 0211005 05050 0.0007?-

L53-0923033-.7 n-50

§!g9_§9!9 -0.00307 9.01063 0.01477

Univar -0.00026 0.00563 0.00605

LIPIO‘SII. -0.00231 0.01052 0.01376

Full-r -0.00226 0.01061 0.01361

lock -0.00029 0.00566 0.00766

F1166 lcl. -0.00092 0.01252 0.01562

"11"".rz“’:u'-as

Egg. 99!, -0.00091 0.00861 0.01095

Univar -0.00066 0.00563 0.00667

Largo-$660 -0.00169 0.00756 0.01066

Fuller -0.00169 0.00756 0.01066

lock -0.00032 0.00560 0.00621

Fixed lol. -0.00091 0.00652 0.01171

"11"9 922" 933'3

£999_9999 ~9.00029 9.00928 9.01636

Univar -0.00067 0.00569 0.00625

Large-Sal. '0.00115 0.00666 0.01606

Fuller ~0.00115 0.00663 0.01602

lock 0.00027 0.00369 0.00656

$11.6 Iol. ~0.00102 0.00923 0.01666

911‘922'933"°°°

§!p9_gg!b -0. 00M2 9. 00619 9.008%

Univar -0.W 0. 00561 0. 00652

Largt‘6ul0 -0.00066 0.00561 0.00652

Fuller -0.00066 0.00561 0.00652

lock -0.00032 0.00550 0.00616

Fix-d Rel. -0.00066 0.00561 0.00652

p l 0072”

013000140111001

-9.00164

-0.00016

‘0.00116

-0.00116

'0.00016

-0.00066

-0.00096

-0.00016

°0.00069

-0.00069

-0.00015

'0.00039

M151.

'0.00016

'0.00051

'0.00051

0.00021

'0.00066

-9.00017

'0.00019

-0.00019

'0.00019

'0.00015

'0.00019

n-100

9. 005% 000732

0.00266

0.00527

0.00526

0.00261

0.00625
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D .0

010087

0.006B

0. 00705

0.00706

0.00617

0.00792

9 003“ 900569

0. 00266

0.00363

0.00363

0.00279

0.00631

0.004

0.00266

0.00625

0.00625

0.00167

0.00666

EE
EE

E:

0.0073

Lemma;
0.00292

0.00292

0.00292

0.00266

0.00292

0.00631

0.00631

0.00631

0.00620

0.00631

0506082"

'0.009§9 9.00229

-0.00006

'0.00066

'0.00066

-0.00006

-0.00016

0.00039 9.00168

'0.00006

'0.00027

-0.00027

-0.00006

'0.00015

'0-000 M
°0.00006

~0.00019

-0.00019

0.00010

-0.00017

-0.00006

-0.00006

-0.00006

-0.00006

-0.00006

'0.00006

.0

0.01

n-250

0.00117

0.00212

0.00212

0.00116

0.00251

0.00117

0.00156

0.00156

0.00116

0.00175

0.00117

0.00171

0.00171

0.00076

0.00167

01%.00310

0.0215.
0.00172

0.00263

0.00263

0.00170

0.00316

0.00316

0.00176

0.00219

0.00219

0.00172

0.00236

0.00299

0.00172

0.00265

0.00265

0.00136

0.00301

0.00119 0.00166

0.00117

0.00117

0.00117

0.00116

0.00117

0.00176

0.00176

0.00176

0.00172

0.00176

.5033?

-0.00027

'0.00003

-0.00023

'0.00023

°0.00003

-0.00006

-0.00013

°0.00003

-0.00013

~0.00013

'0.00003

'0.00007

- .00009

°0.00003

-0.00010

-0.00010

0.00005

'0.00006

-0.00006

'0.00003

-0.00003

'0.00003

-0.00003

-0.00003

0 .0

0. 00

nl500

0.00109

0.00059

0.00105

0.00105

0.00056

0.00125

0.00073

0.00059

0.00076

0.00076

0.00056

0.00067

0.00134

0.00067

0.00163

0.00163

0.00067

0.00160

0.00115

0.00067

0.00110

0.00110

0.00067

0.00116

0.00089 0.00149

0.00059

0.00066

0.00066

0.00036

0.00093

9.00057

0.00059

0.00059

0.00059

0.00059

0.00059

0.00067

0.00163

0.00163

0.00067

0.00151

0.00068

0.00087

0.00067

0.00067

0.00067

0.00067
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table 9 (Cont'd)

m7.pn-.rpu-.6on-.a

Cows. .0 . D .D D .D D . D .0 D .D D .D D .D D..D D2.0 D .0

...... {M m .02.? .35.. .. ..53 .M. ...w 12...}... .....29 ......‘a ...a. .30.”...

pulping-.7060 M100 n-250 m500

Eggfi_§g!‘ 0.00961 0.00266 0.00596 0.00663 0.00099 0.00250 0.00167 0.00065 9.00100 0.00083 0 00017 0.00065

Univar 0.00666 0.00130 0.00262 0.00226 0.00060 0.00116 0.00090 0.00026 0.00067 0.00065 0.00012 0.00026

Llrflo-Sll. 0.00670 0.00261 0.00529 0.00631 0.00126 0.00256 0.00172 0.00051 0.00102 0.00065 0.00025 0.00051

Fultcr 0.00665 0.00260 0.00526 0.00631 0.00126 0.00256 0.00172 0.00051 0.00102 0.00065 0.00025 0.00051

lock 0.00630 0.00111 0.00227 0.00223 0.00056 0.00113 0.00069 0.00023 0.00066 0.00065 0.00012 0.00023

Fix-d 661. 0.01227 0.00626 0.00690 0.00616 0.00306 0.00666 0.00266 0.00123 0.00176 0.00122 0.00061 0.00069

911'922’933'-55

figQ‘_9995 0.00633 0.00169 0.00360 0.00306 0;00065 0.00156 0.00107 0.00026 0.00060 0.00061 9.00019 0.00030

Univnr 0.00666 0.00119 0.00236 0.00226 0.00059 0.00116 0.00069 0.00026 0.00067 0.00066 0.00012 0.00023

tlruo-Sll. 0.00603 0.00153 0.00333 0.00302 0.00075 0.00165 0.00119 0.00030 0.00066 0.00059 0.00015 0.00033

Fullcr 0.00603 0.00153 0.00333 0.00302 0.00075 0.00165 0.00119 0.00030 0.00066 0.00059 0.00015 0.00033

lock 0.00661 0.00105 0.00222 0.00226 0.00055 0.00116 0.00069 0.00023 0.00067 0.00065 0.00012 0.00023

Fixod lcl. 0.00766 0.00302 0.00696 0.00363 0.00150 0.00267 0.00152 0.00060 0.00099 0.00076 0.00030 0.00069

9111.9 022' .6 an. .7

£529_99__0 .90636 0.00191 9 00699 0. 00267 0.00062 0.00218 0.00115 9.00092 9.00086 0.00056 0.00012 0.00066

Univar 0. 0065 1 0. 00126 0. 00261 0. 00226 0.00060 0.00120 0.00069 0.00026 0.00067 0.00065 0.00012 0.00026

LIPIO'SII. 0. 00566 0. 00166 0. 00530 0. 00270 0.00066 0.00260 0.00107 0.00036 0.00102 0.00056 0.00017 0.00051

Fullor 0.00565 0.00166 0.00530 0.00270 0.00066 0.00260 0.00107 0.00036 0.00102 0.00056 0.00017 0.00051

lock 0.00356 0.00069 0.00135 0.00179 0.00032 0.00066 0.00070 0.00013 0.00025 0.00036 0.00006 0.00012

F1160 Rel. 0.00727 0.00602 0.00607 0.00362 0.00200 0.00602 0.00166 0.00061 0.00160 0.00072 0.00060 0.00060

puma-pgfl .W

. 0.00669 0.00117 0.00261A 0.00233 0.00066 0.00130 0.00091 0.00026 0.00069 0 00065 0.00012 9.00023

Univar 0.00651 0.00116 0.00262 0.00226 0.00059 0.00120 0.00069 0.00026 0. 00067 0.00065 0.00012 0.00026

Lorne-Sal. 0.00651 0.00116 0.00262 0.00225 0.00059 0.00120 0.00069 0.00026 0. 00067 0.00065 0.00012 0.00026

Fullcr 0.00651 0.00116 0.00262 0.00225 0.00059 0.00120 0.00069 0.00026 0. 00067 0.00065 0.00012 0.00026

Sock 0.00666 0.00103 0.00225 0.00225 0.00055 0.00115 0.00069 0.00023 0.00067 0.00065 0.00012 0.00026

Fixod 601. 0.00651 0.00116 0.00262 0.00225 0.00059 0.00120 0.00069 0.00026 0.00067 0.00065 0.00012 0.00026
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Covariances. The covariances were derived and calculated

using the same formulation as the variances, and seem to yield

similar results. Table 9 displays the covariances. Again,

the univariate and Bock and Petersen corrections produce

covariances that are identical or nearly identical to those

expected given the population values. And, these two

corrections yield covariances which are far different from

those found in the empirical sampling distribution of the

corrected correlations.

The covariance results are not as dramatic as the

variance results. Often the sampling distribution values are

not close to any of the corrected results. This is especially

true in the case (.60, .40, .20), and for the smaller sample

sizes (3 = 50 and n = 100) for many of the cases. At the

larger sample sizes, again it is clear that the large-sample

formulations give results closest to the sampling distribution

results, and the univariate corrections seem to give

covariances which are too small.

An Application of the Methods to Existing Data

The methods discussed in this study were used to

reanalyze an existing meta—analysis, to see if any differences

were apparent, particularly in the decision to accept or

reject a homogeneity test calculated from correlation

coefficients. This example is a reanalysis of the data from

Becker and Cho (1994), which, in turn, was a reanalysis of the.

data from Schmidt, Hunter and Outerbridge (1986). A computer
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program was written in Fortran which allowed the synthesis of

the data and the calculation of homogeneity tests. These

results were then compared to the results found in Becker and

Cho (1994) and Schmidt, Hunter, and Outerbridge (1986).

The original Schmidt, Hunter and Outerbridge (1986) study

examined four studies, each containing 10 correlations. These

ten correlations summarized the relationships among 5

variables: job knowledge, general mental ability, work sample

performance, supervisory ratings of job performance, and job

experience. Complete data was available for all correlations,

and reliability values were given for every measure. Chapter

two contains more details about this study.

Testing the homogeneity of the correlagion matrices. For

this example, the generalized least squares methods used by

Becker (1992) will be used. A formal hypothesis test can be

used to determine whether the data obtained from several

studies are consistent with the hypothesis of a common

correlation matrix. Let fl, ..., f4 and rcl, ..., r"4 be the

vectors of corrected correlations of length p_(p_+1)/2 = 9* = 10

from each of the 5:4 studies, and let El, ..., 24 be the

large-sample covariance matrices of rel, . . ., r°4. The

correlations are corrected with the univariate correction.

The difference between this example and the methods from

Becker and Cho (1994) will be the use of the large-sample

theory variance-covariance matrices. Becker and Cho's results

used the traditional univariate corrected correlations without
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adjusting for the variances of the reliabilities and the

covariances among the correlations and reliabilities. Define

the g p* dimensional vector r, the 15 p_* x 9* matrix X, and the

h 9* x 3 p* matrix 2 by

    

r1 I1

r = . , x = . ,and

. rk J . Ik J

2 = diag (21, o . o , 2k) ,

where 11, ..., Ik are identity matrices of order 9* (Becker

1992) .

A test of the hypothesis of homogeneity of correlation

matrices across studies, that is to test

uses the statistic

Q = r... [2‘1 - 2‘1 x<x' 2‘1 X)‘1 x' 2‘1 J 1"

(Becker, 1992, p. 349). When. H0 is true then Q has

approximately a chi-square distribution with (3:1) 9* degrees

of freedom. In this example, lg = 4, and 9* =10, so the

degrees of freedom are 30.

The first difference between this example and the

analyses given in Schmidt, Hunter, and Outerbridge (1986) is

the overall test of the hypothesis of the common correlation

matrix. Schmidt et al. did not conduct any tests; they simply
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averaged the correlations and fit a path model using the

average correlations.

Estimating a common correlation matrix. If the studies

share a common pOpulation correlation matrix, then a common

correlation matrix can be estimated. The estimate uses r as

the outcome data for a generalized least squares regression

analysis. To estimate a common correlation vector of length

9*, the model is

r = x f + e,

where r° is defined as above, and f' = (p1, p2, ... , pp.) is

the set of common correlations to be estimated, and X is

defined as above. The generalized least squares estimate of

f is given by

r°. = (x' 2'1 X)'1 x’ 2'1 r°

The approximate variance-covariance matrix for this estimate

is given by

v = (x' 2'1 xrl

(Becker, 1992, p. 348).

Results from the exam9le. A FORTRAN program estimated

the pooled.correlation.matrix and.the homogeneity'testw Three

different methods were made to evaluate the effect of the new

method of estimating the variance-covariance matrix of the

corrected correlations. These three methods were: (1)

corrected correlations were used in estimating population

values, with the large-sample variance method, (2) corrected

correlations were used, with the variances calculated as in
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Becker and Cho (1994) by'lassuming reliabilities equal to 1.00

and (3) raw (uncorrected) correlations were used, and perfect

reliabilities were assumed.

Table 10 shows the different values for the three

methods. The QE statistic given in the table is the test of

homogeneity (30 df). ‘With.all methods, the decision to reject

this test would be the same; the correlations appear to be

heterogeneous. It is clear from the QT statistics, that the

new method of estimating the variances does suggest more

heterogeneous results. This is expected given that the

variability in reliabilities is now being considered.

Also shown in Table 10 are the vectors of the average

correlation matrices based on the different estimates of

variance. These are compared with the results found in

Schmidt et al. (1986). The correlations obtained using the

new method are slightly larger. Because the average

correlation vector is based on a variance weighted average,

and the variances using this new method are larger, there is

reason to assume that these numbers will be different. The

standard errors for the average correlations from the Becker

and Cho and new methods are also shown. Because the new

method accounts for variability in reliabilities, the standard

errors from the new method are larger.

This example demonstrates the effect of using a more

defensible variance estimate. Not only are the variances with

this new method larger, .but other statistics such as
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homogeneity test statistics, are impacted as well. ‘Using this

new method when correcting correlations may be warranted.

Table 10

Methods and Results from Exam9le Data

New Method Becker & Raw Schmidt, et al.

Cho Correlations

QT 6072.95 5993.21 4383.38 ......

QB 5993.62 5816.34 4231.77 ......

93 139.33 176.87 151.60 ------

Vectors of Average Correlations:

0.48(.025) 0.49(.022) 0.41 0.46

0.43(.027) 0.43(.023) 0.36 0.38

0.18(.035) 0.18(.025) 0.13 0.16

0.06(.027) 0.07(.025) 0.06 0.00

0.87(.015) 0.87(.014) 0.71 0.80

0.46(.032) 0.45(.023) 0.33 0.42

0.64(.018) 0.63(.017) 0.59 0.57

0.40(.034) 0.39(.024) 0.27 0.37

0.64(.020) 0.62(.018) 0.55 0.56

0.26(.031) 0.25(.024) 0.20 0.24



CHAPTER V

SUMMARY AND CONCLUSIONS

Results

The results presented in Chapter 4 indicate success in

investigating the results of using various corrections for

attenuation in a multivariate setting. The purpose of this

dissertation was to determine which (if any) corrections gave

reasonable results, and were based on reasonable assumptions

for use in multivariate syntheses. The goal was to address 5

research questions noted in Chapter 1. 'The results related to

each question are addressed, in order, below.

1. What are the consequences of using a simple univariate

correction for each of a set of multiple correlations? This

question was addressed mainly in the simulation study.

Results showed that using a univariate correction would give

a good approximation to the population correlation, on

average. However, some potential problems were found. The

variance of the univariate corrected correlation should go_t be

computed using the corrected value in the familiar approximate

variance formula (3 .1) . The variance-covariance matrix of the

corrected correlations depends on the correlations and on the

reliabilities, and. 9999_ take these ‘values into account.

Computing the corrected correlation with the univariate

correction, and substituting the resulting values into

Equations (3.1) and (3.2) to give the variances and

covariances yielded results that were markedly different from

128
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the empirical values. 'The variances and covariances using the

univariate approach were too small.

Several other problems were also associated with this

correction. These problems included out-of—range corrected

correlations, invalid determinants of corrected correlation

matrices and invalid determinants of variance-covariance

matrices of the corrected correlations. The smaller the

sample size, and the closer the correlation values to the

reliability values, the more problems found. Having any of

these problems could lead to inaccurate results in a

synthesis. Therefore, the simple answer to this question is

that using a univariate correction, without adjusting the

variance estimates, and.without considering the nature of the

resulting ‘matrices, could. result in .invalid. intermediate

results with unknown consequences if analyzed further. Other

corrections and adjustments are warranted.

2. ‘What ‘would. be the difference in 'variances and

covariances based on the univariate correction (mentioned

above) , versus using a variance-covariance matrix derived from

large-sample distribution theory for correlation coefficients?

The difference between these two estimates occurs in the

calculation of the variance—covariance matrices for the

corrected correlations. The large-sample theory estimates

were often equal to the empirical sampling-distribution

values, while the univariate variances and covariances were

too small (up to 50% smaller than they should be based on the
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sampling distributions). This reiterates the findings

reported.for'Question.1,*which indicated that the large-sample

variances and covariances should be used.

3. Several.mmltivariate attenuation corrections exist for

raw data, including many in the regression literature. How do

these corrections compare to one another and to the

corrections mentioned above? Exact comparisons showed that

the existing corrections all yield the traditional univariate

correction, unless the resulting corrected correlation.matrix

was problematic. The Bock and Petersen (1975) and Fuller and

Hidiroglou (1978) corrections had contingencies for situations

in which the initial corrected correlation matrix was not

positive definite or had other problems. These contingencies

(i.e., further adjustments) were not often used, but the

Fuller and Hidiroglou correction seems to produce the best

outcomes. The Bock and Petersen (1975) method produced

results far from the population values when the reliability

triple with unequal (and relatively large) values was used.

In all other cases, the two methods produced similar results.

None of the existing methods provided estimators of the

variance-covariance matrices of the corrected correlations.

This was expected with the Gleser (1992) and Fuller and

Hidiroglou (1978) corrections, as they were designed to

correct for measurement errors in regression slopes.

Similarly, the Bock and Petersen correction was designed to

correct data for use in covariance-component estimation.
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Because none of the three methods provided estimates of

variance-covariance matrices, comparisons of these methods

were made on the basis of variance-covariance estimators

derived using other means. The results of those comparisons

are summarized below.

4. Which correction is most feasible and provides the

best results? The traditional univariate correction seems to

give a reasonable estimate of the population correlation

coefficient based on the simulation results in this work. ‘The

adjustments made in specific cases using the Bock and.Petersen

(1975) and Fuller and Hidiroglou (1978) methods did not

improve this estimate, except when the usual estimators gave

invalid results. In fact, the Bock and Petersen estimate gave

poorer results in certain cases.

The Fuller and Hidiroglou correction seems best overall,

because no out-of-range correlations or determinants were

found, and the corrected correlations were very close to the

population values. The variance-covariance matrices derived

using this method.along with the large-sample method also:gave

the best estimates. IHowever, the Fuller and Hidiroglou method

requires raw data, and therefore needs to be modified for use

with summary data (sufficient statistics) such as

correlations.

The results of this study indicate that if correlations

are corrected, the variance-covariance matrices of these

correlations must be adjusted. The traditional variance
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formulas do not account for dependence among the correlations

and reliabilities. The method introduced in this work does

provide for reasonable estimates of the variances and

covariances, and should be used in synthesizing correlation

matrices and in other situations where corrected correlations

are to be analyzed.

Finally, the matrix of corrected correlations must be

examined, to make certain that this matrix is valid.

Currently there is no method for adjusting the corrected

correlation matrix, unless raw data are available. If raw

data exists, then the Fuller and Hidiroglou method should be

used. If not, then the simple univariate correction with the

large-sample variance-covariance matrix should be used.

5. HOw do these corrections effect results of

multivariate syntheses? Correcting correlations without

adjusting the resulting variance-covariance matrix leads to

different results than not correcting or not adjusting. The

results of this simulation show that modifying both the

correlations and their variance—covariance matrices are

necessary if the sample values are to approach the population

parameters in the long run. The reanalysis of the Schmidt,

Hunter and Outerbridge (1986) example showed that the

homogeneity tests produced evidence for decisions similar to

those in previous analyses. In other examples this may not be

the case. Also, the magnitudes of the average correlations

from a series of studies will most certainly change,
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potentially leading to substantively different

interpretations.

Other Findings

The greatest weakness of this synthesis example was the

inability to transform the regression corrections into

corrections that could be made directly on correlations rather

than raw data. This led to the further problem of being

unable to compute variances of correlations based on these

methods. Further work may lead to a creative solution to

these problems; the Bock and Petersen correction seems most

likely to lead to a solution. However, given the results

reported above for Bock and Petersen method, it is not clear

whether having such a correction for summary data would be of

any'benefitq A.conversion of the Fuller and.Hidiroglou method

to one which considers correlational data instead of raw data

would be desirable.

One other limitation arose because of the difficulty of

making exact comparisons among the methods for the three-

variable case. 'Though.the simulated data clearly showed where

differences occurred, it would have helped to be able to

illustrate the differences without relying on simulation data.

However, the complexity of the formulas limited this process.

A99lications of this Work

This work is intended to be applicable to multivariate

syntheses of correlational data” 'The results are also

applicable to any case where a correlation matrix is to be
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corrected and the variances and covariances of the

correlations are considered important to the results. Using

these corrections on raw data or for correcting slopes may be

feasible. However, those methods were not part of this

simulation. Certainly an extension in that direction is

possible.

Further Investigations

There are several directions which can be taken to further

this research” First, the Book and Petersen correction can be

investigated further, especially to determine why conflicting

results were found when the reliability vector of unequal

values (.90, .80, .70) was used in the simulation. More

importantly, an application of the Fuller and Hidiroglou

method to correlational data should be found.

Second, the effects of correcting correlations on the

results of syntheses could be quantified. This would involve

simulating homogeneity statistics and comparing the decisions

made and the magnitudes of the average correlations under

different methods of estimating variance-covariance matrices.

The results of such a study would indicate the overall effect

of the method chosen for practical purposes.

Another area of research could include applying these

methods along with a Fisher's Z transformation. Wbrk from

Becker and Cho (1994) and Becker and Fahrbach (1994) have

considered this transformation in multivariate synthesis and

found it beneficial. However, no one has attempted to combine
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that transformation with corrected correlations, while

adjusting the resulting variance-covariance matrix for the

corrected correlations in a multivariate situation.

Another research possibility includes simulating

correlated measurement errors to see how they function, and to

see how the methods described here could be applied in such

situations. Little is known about correlated errors, and the

magnitudes of such errors. This work could investigate the

effects of correlated. errors on. corrections and. on the

resulting variance-covariance matrices.

Finally, not enough is known about hypothetical

reliability distributions and their applications. Missing

data is a pernicious problem throughout all meta-analytic

work, and reliability values are often missing. Combining

these corrections with work on missing data in meta-analysis

could be another entire dissertation.

Conclusions

The application of the findings of this work to meta-

analysis is warranted. However, the use of corrections

(especially the univariate method) could still lead to

correlations greater than unity. .As a result, data should be

examined carefully to determine if correlations should be

corrected, or if the reliability estimates are so uncertain

that correcting may lead to more problems than it solves.

In conclusion, this dissertation outlines what is

currently known about multivariate corrections for
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attenuation, with application to synthesis of correlation

matrices. If measurement error is to be corrected, syntheses

must adjust the resulting variance-covariance matrix of the

corrected correlations accordingly. Unadjusted results could

be misleading, since the (unadjusted) variances and

covariances will be underestimated. The traditional

univariate correction is appropriate in most cases . The

variance-covariance matrix estimate should be the large-sample

variance derived in this study.
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APPENDIX A

VARIANCES AND COVARIANCES OF CORRECTED CORRELATIONS

The variance of a sample correlation (r12) corrected for

attenuation in both variables:

V(p'12) = {V(r12)/(rn*r22) - (r12*C(r12,r22))/(r211*r22) -

(r12*C(r12,r22))/(r222*r11) +

(r212*C(r11,r22))/(2*r222*r2n) +

(r212*V(r11))/(4*r311*r22) +

(r212*V(r22) ) / (4*r322*r11) }/n

C(p’12, 9'13) = {C(1’12r3-'13)/(r11"Ir Vr22*r33)

(r12*C(r13,r11) )/(2*r211* Vr22*r33)

’ (r12*C(r13,r22))/(2*rn*r22* Vr22*r33)

' (r13*C(r11,r12) )/(2*r211* Vr22*r33)

+ (r12*r13*V(r11))/(4*r311* x/r22*r33)

+ (r12*r13*C(r11,r22) ) / (4*r211*r22* x/r22*r33)

‘ (r13*C(r12,r33))/(2*r11*r33* \/r22*r33)

4’ (r12*r13*C(r11,r33))/(4*r211*r33* Vr22*r33)

+ (r12*r13*C(r22,r33) ) / (4*r11*r33*r22* \/r22*r33) }/n

Where V and C represent the usual variance and covariance

functions given in Equations 3.1 and 3.2 in the text.
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COVARIANCES AMONG CORRELATIONS

C(r11v
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C(rzzl

C(rlz.

r323}/n

r12)

r13)

r12)

r23)

r13)

r23)

r23)

r13)

r12)

r22)

r33)

r33)

r13)

C(3712' r23)

r313}/n

C(r13:

r312}/n

r23)

APPENDIX B

{r23*(r222 ' 1)*(005*r22 '1) +

{r13*<r233 ' 1)*(O.5*r33 ’1) +

2

{r23*(r 33

{(r11 '

{(rzz ‘

{(r33 ’

{2*1'212

{2*r213

{2*r223

l)*(0.5*r33 '1) +

2 2
* * *

1) (r23 r 12 + r23 r 13

1: * 2 * 2
1) (r13 r 12 + r13 r 23

2 2
* * *

1) ”'12 r 13 4‘ r12 r 23

r

r

r

r

r

r3

(INCLUDING RELIABILITIES)

312*(r11 —1)}/n

313*(r11 -l)}/n

312*(1'22 -1)}/n

323*(r22 —1)}/n

313* (r33 '1) }/n

23*(r33 -1)}/n

2*r12*r13) }/n

2"'1'12’kr23) }/n

2*r13*r23) }/n

*(r11*r33 + 1 ’ r11 ‘ r33)}/1’1

{0.5*(2*r23 ‘ r12*r13)*(1 ' r212 ‘ r213 ‘ r223) +

{0.5*(2*r13 " r12*r23)*(1 ' r212

{0.5*(2*r12 - r13*r23)*(1 - r212
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APPENDIX C

METHODS USED FOR CORRECTING FOR ATTENUATION

Univariate Correction

The corrected correlation is approximated by

)1/2

I

p ' xy=£xy/ (rxx*ryy

where p’xy is the estimated population is the sampleExy

correlation, and rxx and r are the sample reliabilities.
YY

The Fuller and Hidiroglou Correction

The regression estimates are corrected using:

a = H'1 (n‘1 x' Y) ,

where H'1 = (n'1 X'X) - D A D, D is a diagonal matrix of

standard deviations of the predictors and A is a diagonal

matrix containing 1 - reliability values. To guarantee that

H is positive definite, DAD is pre—multiplied by the quantity

(f — n’l), if f < (1 + 9'1); where f is the smallest root

(eigenvalue) in the two-matrix eigenproblem |.M - fCGC | = 0.

Here C is the matrix of standard deviations of the raw scores

(including the outcome), M is 1/9 times the sum-of-squares and

cross-products matrix and G is a diagonal matrix containing

reliability values of the outcome and the predictors. This

calculation also guarantees that the estimated variance-

covariance of the true variables is positive definite. The

corrected correlations are calculated from H71, by dividing

each off—diagonal element by the product of the square roots

of the adjacent diagonal elements.
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The Book and Petersen Correction

Consider M. and mg, the mean error and the mean observed sum

of squares and cross products matrices, respectively. Solve

the two matrix eigenproblem (M7 - Xi Me) xi = 0 (Bock and

Petersen, 1975, p. 674). Once this problem is solved, the

estimate of the true variance-covariance matrix of the raw

scores can be made using the following formulation. Let X =

(xi, ... xp) be the matrix of eigenvectors, let A' = diag(Ai,

., AP) be the matrix of eigenvalues, and let Ip be the p x

O

9 identity matrix, then 2t = M? - M. = B' (A - Ip) B where B

= X'l. If any of the elements of the A matrix are less than

one, they are replaced by 1.0 in the calculation. The

corrected correlations are then found by dividing each off-

diagonal element of 2c by the product of the square roots of

the adjacent diagonal elements.

The Gleser Correction

Let A = 2'10,” * Eu.“ represent the reliability matrix, where

2'10“ is the variance—covariance matrix of the observed

predictors and Dunn is the variance-covariance matrix of the

true scores for the predictors. Then, the adjustment in the

regression case is 5 = A'1 * (X'X)'1 X’Y. The corrected

correlations are then found from taking (A'1 * (X'X)‘1)‘1.

Again, the correlations are a result of dividing the off—

diagonal elements of the resulting matrix by the product of

the square roots of the adjacent diagonal elements.
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APPENDIX D

FORTRAN PROGRAM USED IN SIMULATION

MAIN PROGRAM

IMPLICIT REAL (L, M)

COMMON IT, K, RXY(2000), RXW(2000), RWY(2000),

RXX(2000), RYY(2000),RWW(2000),CRXY(2000), CRXW(2000),

CRWY(2000), COVT(3,3), COVE(3,3), RXTXE(2000),

RYTYE(2000),

RWTWE(2000), RXTX(2000), RYTY(2000),RWTW(2000),

RXTX2(2000), RYTY2(2000), RWTW2(2000), SS, ITR,

IS, GCRXY(2000) , GCRXW(2000) , GCRYW(2000) , HCRXY(2000) ,

HCRXW(2000), HCRYW(2000), BCRXY(2000),

BCRXW(2000),BCRYW(2000), FACT(2000), PXTYT, PXTWT,

PWTYT, PXX, PYY, PWW, DTSR(2000), DTUR(2000),

DTBR(2000), DTFR(2000), DTGR(2000), IMRK(2000)

PXTYT= 0.70

PXTWT= 0.60

PWTYT= 0.80

PXX= .70

PYY= .70

PWW= .70

IS= 100

SS= 100.0

PXEYE=0.0

PXEWE=0.0

PWEYE=0.0

STY=SQRT(PYY)

STX=SQRT(PXX)

STW=SQRT(PWW)

SEY=SQRT(l-STY**2)

SEX=SQRT(1-STX**2)

SEW=SQRT(l-STW**2)

DO 16 J=l,3

DO 17 I=1,3

COVE(I,J)=0.0

CONTINUE

CONTINUE

COVT(1,1)=STX**2

COVT(1,2)=PXTYT*STX*STY

COVT(2,1)=PXTYT*STX*STY

COVT(2,2)=STY**2

COVT(1,3)=PXTWT*STX*STW

COVT(3,1)=PXTWT*STX*STW

COVT(3,3)=STW**2

COVT(2,3)=PWTYT*STY*STW

COVT(3,2)=PWTYT*STY*STW

COVE(1,1)=SEX**2

COVE(2,2)=SEY**2

COVE(3,3)=SEW**2
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COVE(1,2)=PXEYE*SEX*SEY

COVE(1,3)=PXEWE*SEX*SEW

COVE(2,3)=PWEYE*SEW*SEY

COVE(2,1)=COVE(1,2)

COVE(3,1)=COVE(1,3)

COVE(3,2)=COVE(2,3)

ITR=2000

DO 70 IT=1,ITR

CALL GETNM

CONTINUE

CALL VARS

STOP

END

SUBROUTINE GETNM

IMPLICIT REAL (L, M)

DIMENSION X(100), Y(100), W(100), LAMl (3,3),

TCOV(3,3), ECOV(3,3), TRXYW(100,3), ERXYW(100,3),

LAM2(3,3), LAM3(3,3), HOLD1(3,3), HOLD2(3,3),

HOLD3(3,3), H(3,3),

XTX(3,3), M(3,3), ME(3,3), MT(3,3), BEIG(3),

SYMINV(3,3), C(3,3),

BEINV(3,3), BEINVTR(3,3), FEIG(3), XTXINV(3,3),

SYM(3,3), BOCKM(3,3), LAM2INV(3,3), SSCPINV(3,3),

TSCP(3,3), ESCP(3,3),TRXYWTR(3,100),

ERXYWTR(3,100),

CLAM1(3,3), CGC(3,3), HOLD4(3,3),

OBS(100,3), OBSTR(3, 100), SSCP(3,3), FVEC(3,3),

BVEC(3,3), SSCP2(3,3), LAM2A(3,3), LIDENT(3,3),

OBSZINV(3,3), TRU2(3,3),OBSZ(3,3)

COMMON IT, K, RXY(2000), RXW(2000), RWY(2000),

RXX(2000), RYY(2000),RWW(2000),CRXY(2000),

CRXW(2000),

CRWY(2000), COVT(3,3),

COVE(3,3), RXTXE(2000), RYTYE(2000), RWTWE(2000),

RXTX(2000), RYTY(2000), RWTW(2000), RXTX2(2000),

RYTY2(2000), RWTW2(2000), SS,

ITR, IS, GCRXY(2000), GCRXW(2000), GCRYW(2000),

HCRXY(2000), HCRXW(2000), HCRYW(2000), BCRXY(2000).

BCRXW(2000), BCRYW(2000),

FACT(2000), PXTYT, PXTWT, PWTYT, PXX, PYY, PWW,

DTSR(2000), DTUR(2000), DTBR(2000), DTFR(2000),

DTGR(2000), IMRK(2000)

XS=0.0

YS=0.0

WS=0.0

XSZ=0.0

Y82=0.0

W82=0.0

XTS=0.0

YTS=0.0

WTS=0.0
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XT82=0.0

YTSZ=0.0

WTSZ=0.0

XES=0.0

YES=0.0

WES=0.0

XE82=0.0

YE82=0.0

WE82=0.0

XYS=0.0

XWS=0.0

WYS=0.0

XTXES=0.0

YTYES=0.0

WTWES=0.0

XTXS=0.0

YTYS=0.0

WTWS=0.0

N=3

IDA=3

IRANK=3

IDR=3

CALL CHFAC(N, COVT, IDA, 0.0001, IRANK, TCOV, IDR)

CALL CHFAC(N, COVE, IDA, 0.0001, IRANK, ECOV, IDR)

CALL RNMVN(IS, 3, ECOV, 3,

CALL RNMVN(IS, 3, TCOV, 3,

DO 30 I=1,IS

ERXYW, IS)

TRXYW, IS)

THE X'S ARE CREATED AND SUMMED

X(I)=TRXYW(I,1)+ERXYW(I,1)

XS=X(I)+XS

XSZ=XSZ+X(I)**2

XTS=TRXYW(I,1)+XTS

XTSZ=XTSZ+TRXYW(I,1)**2

XES=ERXYW(I,1)+XES

XESZ=XE82+ERXYW(I,1)**2

THE Y’S ARE CREATED AND SUMMED

Y(I)=TRXYW(I,2)+ERXYW(I,2)

YS=Y(I)+YS

YS2=YSZ+Y(I)**2

YTS=TRXYW(I,2)+YTS

YT82=YTSZ+TRXYW(I,2)**2

YES=ERXYW(I,2)+YES

YESZ=YE82+ERXYW(I,2)**2

THE W’S ARE CREATED AND SUMMED

W(I)=TRXYW(I,3)+ERXYW(I,3)

WS=W(I)+WS

WSZ=WSZ+W(I)**2

WTS=TRXYW(I,3)+WTS

WTSZ=WTSZ+TRXYW(I,3)**2

WES=ERXYW(I,3)+WES

WESZ=WESZ+ERXYW(I,3)**2

XYS=XYS+X(I)*Y(I)

 



144

XWS=XWS+X(I)*W(I)

WYS=WYS+W(I)*Y(I)

XTXES=XTXES+TRXYW(I,1)*ERXYW(I,1)

YTYES=YTYES+TRXYW(I,2)*ERXYW(I,2)

WTWES=WTWES+TRXYW(I,3)*ERXYW(I,3)

XTXS=XTXS+TRXYW(I,1)*X(I)

YTYS=YTYS+TRXYW(I,2)*Y(I)

WTWS=WTWS+TRXYW(I,3)*W(I)

3o CONTINUE

XM=XS/SS

YM=YS/SS

WM=WS/SS

XTM=XTS/SS

YTM=YTS/SS

WTM=WTS/SS

XEM=XES/SS

YEM=YES/SS

WEM=WES/SS

VX=((xs2-(ss*XM*XM))/(ss-1.))

VY=((YSZ-(SS*YM*YM))/(SS-1.))

VW=((WS2-(SS*WM*WM))/(SS-1.))

VXT=((XTSZ-(SS*XTM*XTM))/(SS-1.

VYT=((YTSZ-(SS*YTM*YTM))/(SS-1.

VWT=((WTSZ-(SS*WTM*WTM))/(SS-1.

VXE=((XESZ-(SS*XEM*XEM))/(SS-1.

VYE= ((YESZ-(SS*YEM*YEM))/(SS- 1.

vwz: ((WESZ- (SS*WEM*WEM))/(SS— 1.

RXY(IT)=(XYS- (SS*XM*YM))/((SS- 1. )*SQRT(VX*VY))

RXW(IT)=(XWS- (SS*XM*WM))/((SS- 1. )*SQRT(VX*VW))

RWY(IT)=(WYS-(SS*WM*YM))/((SS-1.)*SQRT(VW*VY))

RXX(IT)=VXT/(VXT+VXE)

RYY(IT)=VYT/(VYT+VYE)

RWW(IT)=VWT/(VWT+VWE)

CRXY(IT)=RXY(IT)/SQRT(RXX(IT)*RYY(IT))

CRXW(IT)=RXW(IT)/SQRT(RXX(IT)*RWW(IT))

CRWY(IT)=RWY(IT)/SQRT(RWW(IT)*RYY(IT))

0332(1,1)=vx

OBSZ(2,2)=VY

ossz<3,3)=vw

OBSZ(1,2)=RXY(IT)*SQRT(VX*VY)

OBSZ(1,3)=RXW(IT)*SQRT(VX*VW)

OBSZ(2,3)=RWY(IT)*SQRT(VY*VW)

OBSZ(2,1)=RXY(IT)*SQRT(VX*VY)

OBSZ(3,1)=RXW(IT)*SQRT(VX*VW)

OBSZ(3,2)=RWY(IT)*SQRT(VY*VW)

TRU2(1,1)=VXT

TRU2(2,2)=VYT

TRU2(3,3)=VWT

TRU2(1,2)=RXY(IT)*SQRT(VXT*VYT)/(SQRT(RXX(IT)*RYY(IT)))

TRU2(1,3)=RXW(IT)*SQRT(VXT*VWT)/(SQRT(RXX(IT)*RWW(IT)))

TRU2(2,3)=RWY(IT)*SQRT(VYT*VWT)/(SQRT(RWW(IT)*RYY(IT)))
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TRU2(2,1)=RXY(IT)*SQRT(VXT*VYT)/(SQRT(RXX(IT)*RYY(IT)))

TRU2(3,1)=RXW(IT)*SQRT(VXT*VWT)/(SQRT(RXX(IT)*RWW(IT)))

TRU2(3,2)=RWY(IT)*SQRT(VYT*VWT)/(SQRT(RWW(IT)*RYY(IT)))

DO 39 I=1,3

WRITE(6, 101) TRU2(I,1), TRU2(I,2), TRU2(I,3),

+ OBSZ(I,1), OBS2(I,2), OES2(I,3)

FORMAT(1H ,3(F10.7,2X), 4x, 3(F10.7,2X))

CONTINUE

THIS NEXT PART FINDS THE CORRECTED CORRELATIONS USING

THE METHODS OF FULLER, GLESER, AND BOCK

FIRST, THE SET UP, THEN THE FULLER METHOD

DO 22 I=1, IS

OBS(I,1)=X(I)

OBS(I.2)=Y(I)

OBS(I,3)=W(I)

CONTINUE

DO 23 I=1, IS

DO 24 J=1, 3

OBSTR(J,I)=OBS(I,J)

TRXYWTR(J,I)=TRXYW(I,J)

ERXYWTR(J,I)=ERXYW(I,J)

CONTINUE

CONTINUE

CALL MRRRR(3,IS,OBSTR, 3, IS, 3, OBS, IS,3,3, SSCP, 3)

DO 34 I=1, 3

DO 35 J=1, 3

SSCP2(I,J)=SSCP(I,J)

CONTINUE

CONTINUE

CALL MRRRR(3,IS,ERXYWTR,3,IS,3,ERXYW,IS, 3,3, ESCP, 3)

DO 25 I=1,3

DO 29 J=l,3

M(I,J)=SSCP(I,J)/(SS)

ME(I,J)=ESCF(I,J)/(SS)

LAM1(I,J)=0.0

LAM3(I,J)=0.0

LIDENT(I,J)=0.0

C(I,J)=0.0

SYM(I,J)=0.0

SYMINV(I,J)=0.0

CONTINUE

CONTINUE

LAM1(1,1) =

LAMl(2,2) =

LAM1(3,3) =

LIDENT(1,1)=

LIDENT(3,3)=1.

C(1,1)=SQRT(VX)

C(2,2)=SQRT(VY)

C(3.3)=SQRT(VW)

CALL MRRRR(3, 3, C, 3, 3, 3, LAMl, 3, 3, 3, CLAMl, 3)

RXX(IT)

RYY(IT)

RWW(IT)

O
O
O
I
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CALL MRRRR(3, 3, CLAMl, 3, 3 3, C, 3, 3, 3, CGC, 3)

SYMINV(1,1)=l./SQRT(CGC(1,1)

SYMINV(2,2)=1./SQRT(CGC(2,2)

SYMINV(3,3)=1./SQRT(CGC(3,3)

CALL MRRRR(3, 3,SYMINV, 3, 3, 3, M, 3, 3, 3, HOLDl, 3)

CALL MRRRR(3, 3,HOLD1,3, 3, 3, SYMINV, 3,3,3, HOLD4,3)

FIND EIGENS OF CGC WITH 2 MATRIX EIGEN PROBB WITH M

CALL EVCRG(3, HOLD4, 3, FEIG, FVEC, 3)

CALL GVCSP(3, HOLD4, 3, LIDENT, 3, FEIG, FVEC, 3)

IF ((FEIG(1) .LT. FEIG(2)) .AND. (FEIG(l) .LT.

5
)

)

+ FEIG(3))) THEN LOW=FEIG(1)

ELSE IF (FEIG(Z) .LT. FEIG(3)) THEN

LOW=FEIG(2)

ELSE

LOW=FEIG(3)

END IF

IF (LOW .LT. (l.+l./SS)) THEN

FACT(IT)=LOW - (1./SS)

ELSE

FACT(IT)=1.0

END IF

DO 26 I=1,3

DO 26 J=l,3

H(I,J)=M(I,J)-FACT(IT)*CGC(I,J)

CONTINUE

HCRXY(IT)=H(1,2)/SQRT(H(1,1)*H(2,2))

HCRXW(IT)=H(1,3)/SQRT(H(1,1)*H(3,3))

HCRYW(IT)=H(2,3)/SQRT(H(2,2)*H(3,3))

NEXT, GLESER

CALL LINRG(3, SSCP2, 3, SSCPINV, 3)

CALL LINRG(3, OBS2, 3, OBSZINV, 3)

CAIl.MRRRR(3, 3,0BSZINV} 3, 3, 3, TRU2, 3,3,3, LAM2,3)

CALL LINRG(3, LAM2, 3, LAMZINV, 3)

CALL MRRRR(3, 3, LAM2INV, 3, 3, 3, SSCPINV, 3, 3, 3,

XTXINV,3)

NOW FIND THE INV OF XTXINV

CALL LINRG(3, XTXINV, 3, XTX, 3)

GCRXY(IT)=XTX(1,2)/SQRT(XTX(1,1)*XTX(2,2))

GCRXW(IT)=XTX(1,3)/SQRT(XTX(1,1)*XTX(3,3))

GCRYW(IT)=XTX(2,3)/SQRT(XTX(2,2)*XTX(3,3))

NOW FOR ROCK AND PETERSEN

FIND EIGENS OF BEIG (SOLVE 2 MATRIX PROBLEM), ALSO

EIGENVECS

CALL GVCSP(3, M, 3, ME, 3, BEIG, BVEC, 3)

IF ((BEIG(1) .LT. 1.0) .OR. (BEIG(Z) .LT. 1.0) .OR.

(BEIG(3) .LT. 1.0)) THEN

IMRK(IT)=1

ELSE

IMRK(IT)=0

END IF

IF (BEIG(l) .LT. 1.0) THEN

LAM3 (1,1) =0.0



28

147

ELSE

LAM3(1,1)=BEIG(1) - 1.0

END IF

IF (BEIG(Z) .LT. 1.0) THEN

LAM3(2,2)=0.0

ELSE

LAM3(2,2)=BEIG(2) - 1.0

END IF

IF (BEIG(3) .LT. 1.0) THEN

LAM3(3,3)=0.0

ELSE

LAM3(3,3)=BEIG(3) - 1.0

END IF

NAME BVEC THE MATRIX OF EIGENVECS, FIND BEINV

CALL LINRG(3, BVEC, 3, BEINV, 3)

DO 28 I=1,3

DO 28 J=l,3

BEINVTR(J,I)=BEINV(I,J)

CONTINUE

CAllaMRRRR(3, 3,BEINVTR,3, 3, 3, LAM3, 3,3,3,HOLD3, 3)

CAllaMRRRR(3, 3,HOLD3,3, 3, 3, BEINV, 3,3,3, BOCKM, 3)

BCRXY(IT)=BOCKM(1,2)/SQRT(BOCKM(1,1)*BOCKM(2,2))

BCRXW(IT)=BOCKM(1,3)/SQRT(BOCKM(1,1)*BOCKM(3,3))

BCRYW(IT)=BOCKM(2,3)/SQRT(BOCKM(2,2)*BOCKM(3,3))

DTSR(IT)=DETMN1(RXY(IT), RXW(IT), RWY(IT))

DTUR(IT)=DETMN1(CRXY(IT), CRXW(IT), CRWY(IT))

DTBR(IT)=DETMN1(BCRXY(IT), BCRXW(IT), HCRYW(IT))

DTFR(IT) =DETMNl (HCRXY(IT) , HCRXW(IT) , HCRYW(IT))

DTGR(IT)=DETMN1(GCRXY(IT), GCRXW(IT), GCRYW(IT))

RETURN

END

FUNCTION DETMNl (A, B, C)

DETMN1=1.0+(2.0*A*B*C)-(A**2)-(B**2)-(C**2)

RETURN

END
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SUBROUTINE VARS

IMPLICIT REAL (L, M)

DIMENSIONV(3,3) , A(3,6) , PSI(6,6) , AT(6,3) , TEMP1(3,6) ,

+Q5(3,3), DETM(2000), VARM1(2000), VARM2(2000),

+VARM3(2000), COVM12(2000), COVM13(2000), COVM23(2000),

+VARUV1(2000), VARUV2(2000), VARUV3(2000), CVUV1(2000),

+ CVUV2(2000), CVUV3(2000), FA(3,6), FAT(6,3),

+ TEMP2(3,6), FV(3,3), FV1(2000), FV2(2000), FV3(2000),

+ FC12(2000), FC13(2000), FC23(2000), Q1(3,3),

+ DETF(2000), Q2(3,3), Q3(3,3), VU(3,3), VB(3,3),

+VARBl(2000), VARBZ(2000), VARBB(2000), CVB1(2000),

+ CVBZ(2000), CVB3(2000), VARF1(2000), VARF2(2000),

+ VARF3(2000), COVF1(2000), COVF2(2000), COVF3(2000),

+-DETU(2000), DETB(2000), DETFIX(2000), VFX(3,3)) Q4(3,3)

COMMON IT, K, RXY(2000), RXW(2000), RWY(2000),

RXX(2000), RYY(2000),RWW(2000),CRXY(2000), CRXW(2000),

CRWY(2000), COVT(3,3),

COVE(3,3), RXTXE(2000), RYTYE(2000), RWTWE(2000),

RXTX(2000), RYTY(2000), RWTW(2000), RXTX2(2000),

RYTY2(2000), RWTW2(2000), SS,

ITR, IS, GCRXY(2000), GCRXW(2000), GCRYW(2000),

HCRXY(2000), HCRXW(2000), HCRYW(2000), BCRXY(2000),

BCRXW(2000), BCRYW(2000),

FACT(2000), PXTYT, PXTWT, PWTYT, PXX, PYY, PWW,

DTSR(2000), DTUR(2000), DTBR(2000), DTFR(2000),

DTGR(2000), IMRK(2000)

DO 10 IT=1, ITR

IMT1=0

IMT2=0

ICBl=0

ICBZ=0

ICB3=0

ICG1=0

ICG2=0

ICG3=0

ICF1=0

ICF2=0

ICF3=0

ICU1=0

ICU2=0

ICU3=0

IDBl=0

IDF1=0

IDU1=0

IDM1=0

IDX1=0

IDRBl=0

IDRF1=0

IDRU1=0

IDRSl=0

+
+
+
+
+
+
+
+
+
+
+
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IDRG1=0

IFCNT=0

IMT3=0

DO 15 I=1,3

DO 16 J=1,6

A(I,J)=0.0

FA(I,J)=0.0

CONTINUE

CONTINUE

IF'((IMRK (IT) .EQ.Il) .AND. (DTBR(IT) .LT. .0000001))

THEN

IMT3=1

ENDIF

IF (FACT(IT) .LT.

IFCNT=1

ENDIF

IF ((FACT(IT) .LT. 1.0) .AND. (DTUR(IT) .LT. .0000001))

THEN

IMT1= 1

ENDIF

IF ((FACT(IT) .LT. 1.0) .AND. (DTGR(IT) .LT. .0000001))

THEN

IMT2= l

ENDIF

IF (CRXY(IT) .GT.

ICU1=1

ENDIF

IF (CRXW(IT) .GT. 1.0) THEN

ICU2=1

ENDIF

IF (CRWY(IT) .GT. 1.0) THEN

ICU3=1

ENDIF

IF (BCRXY(IT) .GT. 1.0) THEN

ICBl=1

ENDIF

IF (BCRXW(IT) .GT. 1.0) THEN

ICBZ=1

ENDIF

IF (HCRYW(IT) .GT. 1.0) THEN

ICB3=1

ENDIF

IF (HCRXY(IT) .GT. 1.0) THEN

ICF1=1

ENDIF

IF (BCRXW(IT) .GT. 1.0) THEN

ICF2=1

ENDIF

IF (HCRYW(IT) .GT. 1.0) THEN

ICF3=1

ENDIF

IF (GCRXY(IT) .GT. 1.0) THEN

.0) THENH

 

H .0) THEN
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ICG1=1

ENDIF

IF (GCRXW(IT) .GT. 1.0) THEN

ICG2=1

ENDIF

IF (GCRYW(IT) .GT. 1.0) THEN

ICG3=1

ENDIF

IF (DTSR(IT) .LE. 0.0000001) THEN

IDRSl=1

ENDIF

IF (DTFR(IT) .LE. 0.0000001) THEN

IDRF1=1

ENDIF

IF (DTUR(IT) .LE. 0.0000001) THEN

IDRU1=1

ENDIF

IF (DTBR(IT) .LE. 0.0000001) THEN

IDRB1=1

ENDIF

IF (DTGR(IT) .LE. 0.0000001) THEN

IDRG1=1

ENDIF

A(l,1)=1./SQRT(RXX(IT)*RYY(IT))

A(2,2)=1./SQRT(RXX(IT)*RWW(IT))

A(3,3)=1./SQRT(RWW(IT)*RYY(IT))

A(1,4)=-RXY(IT)/(2*RXX(IT)*SQRT(RYY(IT)*RXX(IT)))

A(1,5)=-RXY(IT)/(2*RYY(IT)*SQRT(RYY(IT)*RXX(IT)))

A(2,4)=-RXW(IT)/(2*RXX(IT)*SQRT(RWW(IT)*RXX(IT)))

A(2,6)=-RXW(IT)/(2*RWW(IT)*SQRT(RWW(IT)*RXX(IT)))

A(3,5)=-RWY(IT)/(2*RYY(IT)*SQRT(RWW(IT)*RYY(IT)))

A(3,6)=-RWY(IT)/(2*RWW(IT)*SQRT(RWW(IT)*RYY(IT)))

FP4=(1.-FACT(IT)+FACT(IT)*RXX(IT))

FP5=(1.-FACT(IT)+FACT(IT)*RYY(IT))

FP6=(l.—FACT(IT)+FACT(IT)*RWW(IT))

FA(l,1)=1./SQRT(FP4*FP5)

FA(2,2)=1./SQRT(FP4*FP6)

FA(3,3)=l./SQRT(FP5*FP6)

FA(1,4)=-RXY(IT)*FACT(IT)/(2*FP4*SQRT(FP4*FP5))

FA(1,5)=-RXY(IT)*FACT(IT)/(2*FP5*SQRT(FP4*FP5))

FA(2,4)=-RXW(IT)*FACT(IT)/(2*FP4*SQRT(FP4*FP6))

FA(2,6)=-RXW(IT)*FACT(IT)/(2*FP6*SQRT(FP4*FP6))

FA(3,5)=-RWY(IT)*FACT(IT)/(2*FP5*SQRT(FP5*FP6))

FA(3,6)=-RWY(IT)*FACT(IT)/(2*FP6*SQRT(FPS*FP6))

DO 18 I=1,3

DO 19 J=1,6

AT(J,I)=A(I.J)

FAT(J,I)=FA(I,J)

CONTINUE

CONTINUE

PSI(1,1)=(1.-RXY(IT)*RXY(IT))**2/SS

PSI(2,2)=(1.-RXW(IT)*RXW(IT))**2/SS
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PSI(3,3)=(1.-RWY(IT)*RWY(IT))**2/SS

PSI(4,4)=(1.-RXX(IT)*RXX(IT))**2/SS

PSI(5,5)=(l.-RYY(IT)*RYY(IT))**2/SS

PSI(6,6)=(1.-RWW(IT)*RWW(IT))**2/SS

PSI(1,2)=COVAR4(RWY(IT), RXY(IT), RXW(IT), SS)

PSI(1,3)=COVAR4(RXW(IT), RXY(IT), RWY(IT), SS)

PSI(l,4)=COVARl(RXY(IT), RXX(IT), SS)

PSI(1,5)=COVAR1(RXY(IT), RYY(IT), SS)

PSI(1,6)=COVAR2(RWW(ITW, RXY(ITW, RXW(ITW, RWY(ITW, SS)

PSI(2,3)=COVAR4(RXY(IT), RXW(IT), RWY(IT), SS)

PSI(2,4)=COVAR1(RXW(IT), RXX(IT), SS)

PSI(2,5)=COVAR2(RYY(ITW, RXW(IIW, RXY(ITW, RWY(ITW, SS)

PSI(2,6)=COVAR1(RXW(IT), RWW(IT), SS)

PSI (3,4) =COVAR2 (RXX(IT) , RWY(IT) , RXY(IT) , RXW(IT) , SS)

PSI(3,5)=COVAR1(RWY(IT), RYY(IT), SS)

PSI(3,6)=COVAR1(RWY(IT), RWW(IT), SS)

PSI(4,5)=COVAR3(RXY(IT), RXX(IT), RYY(IT), SS)

PSI(4,6)=COVAR3(RXW(IT), RXX(IT), RWW(IT), SS)

PSI (5, 6) =COVAR3 (RWY(IT) , RYY(IT) , RWW(IT) , SS)

DO 21 I=1,6

DO 22 J=1,6

PSI(J,I)=PSI(I,J)

CONTINUE

CONTINUE

CALL MRRRR(3, 6

CALL MRRRR(3, 6

CALL MRRRR(3, 6

CALL MRRRR(3, 6, TEMPZ,

VARMl (IT) =V(1, 1)

VARM2(IT)=V(2,2)

VARM3(IT)=V(3,3)

COVM12(IT)=V(1,2)

COVM13(IT)=V(1,3)

COVM23(IT)=V(2,3)

FV1(IT)=FV(1,1)

FV2(IT)=FV(2,2)

FV3(IT)=FV(3,3)

FC12(IT)=FV(1,2)

FC13(IT)=FV(1,3)

FC23(IT)=FV(2,3)

VARUV1(IT)= ((1 - CRXY(IT)*CRXY(IT))**2)/SS

VARUV2 (IT) = ( (1 - CRXW(IT) *CRXW(IT) ) **2) /SS

VARUV3(IT)= ((1 - CRWY(IT)*CRWY(IT))**2)/SS

CVUV1(IT)=COVAR4(CRWY(IT),CRXY(IT),CRXW(IT),SS)

CVUV2(IT)=COVAR4(CRXW(IT),CRXY(IT),CRWY(IT),SS)

CVUV3(IT)=COVAR4(CRXY(IT),CRXW(IT),CRWY(IT),SS)

VARB1(IT)= ((1 - BCRXY(IT)*BCRXY(IT))**2)/SS

VARBZ(IT)= ((1 - BCRXW(IT)*BCRXW(IT))**2)/SS

‘VARB3(IT)= ((1 - BCRYW(IT)*BCRYW(IT))**2)/SS

CVBl (IT) =COVAR4 (BCRYW(IT) ,BCRXY (IT) , BCRXW(IT) , SS)

CVB2(IT)=COVAR4(BCRXW(IT),BCRXY(IT),BCRYW(IT),SS)

CVB3 (IT) =COVAR4 (BCRXY(IT) ,BCRXW(IT) ,BCRYW(IT) , SS)

, , , TEMPl, 3)

3. 6. . 3. V. 3)

FA, 3, 6, 6, PSI, 6, 3, 6, TEMP2, 3)

3, 6, 3, 3, Fv, 3)

*
‘
3

[
1
1

3 "
U

..
.:
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VU(1,1)=VARUV1(IT)

VU(2,2)=VARUV2(IT)

VU(3,3)=VARUV3(IT)

VU(1,2)=CVUv1(IT)

VU(1,3)=CVUV2(IT)

VU(2,3)=CVUV3(IT)

VU(2,1)=CVUV1(IT)

VU(3,1)=CVUV2(IT)

VU(3,2)=CVUV3(IT)

VB(1,1)=VARB1(IT)

VB(2,2)=VARB2(IT)

VB(3,3)=VARE3(IT)

VB(1,2)=CVB1(IT)

VB(1,3)=CVB2(IT)

VB(2,3)=CVB3(IT)

VB(2,1)=CVB1(IT)

VB(3,1)=CVB2(IT)

VB(3,2)=CVB3(IT)

DO 202 I=1,3

DO 202 J=l,3

QI(I.J)=SS*V(I,J)

QZ(I,J)=SS*FV(I,J)

QB(I,J)=SS*VU(I,J)

Q4(I,J)=SS*VB(I,J)

202 CONTINUE

DETM(IT)=DETMN2(01(1,1), Ql(2,2), QI(3,3). 01(1,2),

+ Ql(l,3). 01(2.3))

DETF(IT)=DETMN2(QZ(1,1), 02(2,2), 02(3,3), 02(1,2),

+ 02(1,3). 02(2.3))

DETU(IT)=DETMN2(Q3(1,1), Q3(2,2), Q3(3,3), 03(1,2),

+ 03(1 3). Q3(2 3))

DETB(IT) =DETMN2(Q4(1,1), Q4(2,2). 04(3,3), 04(1,2),

+ 04(1, 3), 04(2, 3))

IF (DETM(IT) .LE. 0.0000001) THEN

IDM1=1

ENDIF

IF (DETF(IT) .LE. 0.0000001) THEN

IDF1=1

ENDIF

IF (DETU(IT) .LE. 0.0000001) THEN

IDU1=1

ENDIF

IF (DETB(IT) .LE. 0.0000001) THEN

IDB1=1

ENDIF

HERE I DEAL WITH THE FIXED RELIABILITY ESTIMATES

VARF1(IT)= PSI(1,1)/(RXX(IT)*RYY(IT))

VARF2(IT)= PSI(2,2)/(RXX(IT)*RWW(IT))

VARF3(IT)= PSI(3,3)/(RYY(IT)*RWW(IT))

COVF1(IT)= PSI(1,2)/(RXX(IT)*SQRT(RYY(IT)*RWW(IT)))

COVF2(IT)= PSI(1,3)/(RYY(IT)*SQRT(RXX(IT)*RWW(IT)))

COVF3(IT)= PSI(2,3)/(RWW(IT)*SQRT(RXX(IT)*RYY(IT)))
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VFX(1,1)=VARF1(IT)

VFX(2,2)=VARF2(IT)

VFX(3,3)=VARF3(IT)

VFX(1,2)=COVF1(IT)

VFX(1,3)=COVF2(IT)

VFX(2,3)=COVF3(IT)

DO 179 I=1,3

DO 179 J=l,3

VFX(J,I)=VFX(I,J)

CONTINUE

DO 203 I=1,3

DO 203 J=l,3 r

QS(I,J)=SS*VFX(I,J)

CONTINUE

DETFIX(IT)=DETMN2(Q5(1,1), QS(2,2), QS<3,3), QS<1,2),

05(1,3), 05(2.3))

IF (DETFIX(IT) .LE. 0.0000001) THEN

IDX1=1

ENDIF

I=IT

WRITE(6,88) RXY(I), RXW(I), RWY(I), RXX(I), RYY(I),

RWW(I), CRXY(I), CRXW(I),CRWY(I), DETM(I), DETF(I),

DETB(I), DETU(I), DETFIX(I), PXTYT, PXTWT, PWTYT, Fxx

WRITE(6,89) VARM1(I), VARM2(I), VARM3(I), VARUV1(I),

VARUV2(I), VARUV3(I), COVM12(I), COVM13(I),

COVM23(I), CVUV1(I), CVUV2(I), CVUV3(I)

WRITE(6,90) HCRXY(I), HCRXW(I), HCRYW(I), GCRXY(I),

GCRXW(I), GCRYW(I), BCRXY(I), BCRXW(I), BCRYW(I),

FV1(I), FV2(I), FV3(I), FC12(I), FC13(I), FC23(I), IS

WRITE(6,91) VARB1(I), VARB2(I), VARB3(I), CVB1(I),

CVB2(I), CVB3(I), VARF1(I), VARF2(I), VARF3(I),

COVF1(I), COVF2(I), COVF3(I), PYY, PWW

FORMAT(1H ,9(F6.3,1X),5(F9.4,1X), 4(F4.2,1X))

FORMAT(1H ,3x, 12(F9.6,1X))

FORMAT(1H ,3X,9(F6.3,1X), 6(F9.6,1X), I3)

FORMAT(1H ,3x, 12(F9.6,1X), 2(F4.2,1X))

WRITE(6,92) ICU1, ICU2, ICU3, ICB1, ICB2, ICB3, ICFl,

ICF2, ICGl, ICG2, ICG3, IFCNT, IMT1, IMT2, IMRK(IT),

IMT3, IDU1, IDBl, IDFl, IDMl, IDx1, IDRS1, IDRU1,

IDRBl, IDRFl, ID

FORMAT(1H , 27(I1,1X))

CONTINUE

RETURN

END

FUNCTION DETMN2 (A, B, C, D, E, F)

DETMN2=A*B*C+(2.0*D*E*F)-(C*D**2)-(B*E**2)-(A*F**2)

RETURN

END

FUNCTION COVARl (A, B, SN)

COVAR1=(A*((B**2)-l.)*((B/2.)—1.)+(A**3)*(B-1.))/SN

RETURN

END
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FUNCTION COVARZ (A, B, C, D, SN)

COVAR2=((A-l.)*(B*(C**2)+B*(D**2)-2.*C*D))/SN

RETURN

END

FUNCTION COVAR3 (A, B, C, SN)

COVAR3=(2.*A**2)*(B*C+l.-B-C)/SN

RETURN

END

FUNCTION COVAR4 (A, B, C, SN)

COVAR4=(0.5* ( (2.*A) - (B*C) ) * (1.- (B**2) - (C**2) - (A**2))+

+ A**3)/S

RETURN

END
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