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ABSTRACT

A SIMPLIFIED STATISTICAL METHOD FOR FIELD EVALUATION OF

SPRINKLER IRRIGATION SYSTEMS.

By

Mohamed E. M. Elwadie

Sprinkler irrigation has become increasingly popular in the recent years, because of

continuous innovations and improvements in the method. However, water distribution

uniformity is an important factor attracting the attention ofmany researchers, because of

its direct impact on crop productivity and the environment.

In this thesis, a simplified statistical method for field evaluation of sprinkler

irrigation systems is presented. The method is based on the estimated coefficient of

variation CV (low/high) and estimated confidence limits. The method can be applied to

the evaluation of any sprinkler irrigation system when 18 catch can depths are randomly

selected. The coefficient of determination (R2) together with 95% confidence limits were

used to compare this method with methods already in practical use.

When the CV (low/high) of solid set sprinkler was compared to the CV (actual) ,

R2 = 0.96. On the other hand, when CV (18) was compared to CV(actual) R2 = 0.94.

Further comparison ofCV (low/high) to CV (18) yielded R2 = 0.97.

With regard to Turf grass sprinklers, a comparison ofCV (actual) to CV

(low/high) resulted in R2 = 0.99. Comparing CV (actual) to CV (18) yielded, R2=O.99.

When CV (low/high) was compared to CV (18) gave R2 = 0.99.

As for the center-pivot system, a comparison ofCV (Heermann) to CV (low/high)



from simulated data yielded R2 = 0.94. When the actual data were statistically analyzed , a

comparison ofCV (Heermann) to CV (SCS) resulted in R2 = 0.93. In addition, when CV

(Heermann) was compared to CV (low/high) R2 = 0.95. Further comparison ofCV (SCS)

to CV (low/high) yielded R2 = 0.99. Finally, a graphical technique for estimating the

statistical uniformity of the the proposed method is presented.

It can be concluded that, the “three lowest and three highest” method is practically

applicable for field evaluation of sprinklers inigation systems. It includes the advantages

ofbeing very simple, easy to use and is based on statistical analysis. In addition, it is a

very useful tool for conservation of energy used for crop production and conservation of

water to the farmer and the environment.
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I. INTRODUCTION

A. Background

Irrigation has enabled many nations to establish ancient civilizations in the semiarid

and arid regions, such as the Egyptian civilization on the River Nile and the Chinese

civilization on the banks of the Yellow River. Irrigation is one of the oldest technologies,

but improvements in irrigation methods and practices are still being made. The future will

require even more innovations and improvements because of the competition for limited

water resources.

Agricultural production in general, and the production offood in particular has not

kept up with need. In 1977 the Food and Agriculture Organization (FA0) ofthe United

Nations (UN) estimated that the total global irrigated area was 233 million hectares (ha),

and that would increase to about 273 million ha by 1990, Jensen (1983). Buringh et al.

(1975), estimated that, of 3419 million ha of potential agricultural land in the world, 470

million ha could be irrigated. A summary of irrigated area by regions and countries was

presented by Zonn (1974) and reproduced by Fukuda (1976). A brief summary is

presented in Table 1, (estimates in Table I differ slightly from those ofthe FAQ). In 1979,

the FAO estimated irrigated agriculture to represent only 13% but the value of its crop

production was 34% ofthe total world arable land. Since the end ofWorld War II, the

development of sprinkler irrigation has been very extensive. One ofthe factors that helped
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in the successful development of sprinkler irrigation was the introduction of the light

weight aluminum pipes. This basically reduced the initial investment cost in equipment.

Other factors include, improvements in sprinkler design and couplings, and fittings. By

1950 Keller and Bliesner (1990) better sprinklers and more efficient pump, further reduced

the cost and increased economic accessibility of sprinkler irrigation systems, hence

accelerating widespread use of the method. More recently, the self-propelled center-pivot

sprinklers, which gained popularity in the 19603, have provided a means for relatively low

cost, high frequency automatic irrigation with a minimum labor cost. Additional

innovations are continually being introduced to reduce labor cost and increase the

efficiency of sprinkler irrigation.

Table 2 shows the increase in US. irrigated land area since 1939. The largest

recent percentage increases occurred in the subhumid and humid south and southeast

states. But the largest increase in the total area occurred in the semiarid central and

southern great plains, Table 3 Jensen (1983). He suggested that 32% ofthe total irrigated

area in the US (20 million ha), was under sprinkler irrigation The largest increase in

sprinkler irrigated areas are in the arid pacific northwest and the semiarid great plains.

Furthermore, in the subhumid cornbelt and arid pacific northwest 84 and 54 percent,

respectively of the total irrigated area are under sprinkler irrigation. Sprinkler irrigation

has grown in popularity, because sprinkler irrigation systems are adaptable and suitable for

a wide variety of cropping systems. Also, they are adaptable to all irrigable soils, different

topographies, and because sprinklers are available in a wide range of discharge capacities.



Table 1. Major world irrigated areas.

 

 

 

 

 

 

 

 

 

 

     

Agricultural Land

Continent and Country Cultivated Cultivated Land Percent

Irrigated Irrigated

ha(1000s) ha (1000s

Afiica 214,000 8,929 4.2

Asia, excluding USSR 463,000 164,640 35.5

Australia and Oceania 47,000 1,701 3.6

Eume, excludingUSSR 145,000 12,774 8.8

North and Central America 271,000 27,431 10.1

South America 84,000 6,662 7.9

USSR 233,000 11,500 4.9

Total 1,457,000 233,637 16.0
 

Adaptedfrom Jensen, (1983).
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Table 2. Irrigated area in the United States.

US. Census data Irrigation Journal data

Year Total Inigated Area in Rate of Total Irrigated Area in Rate of

the US Growth the US Grth

ha (10003) ac (10003) percent ha (10003) ac (10003) percent

1939 7,278 17,893 - - - -

1944 8,312 20,539 2.7 - - -

1949 10,484 @906 4.8 - - -

1954 11,960 29,552 2.7 - - -

1959 13,421 33,164 2.3 - - -

1964 14,997 37,057 2.2 - - -

1969 ”$2 39,122 1.1 - - -

1971 - - - - - -

1972 - - - 20,215 49,951 -

1973 - - - 20,834 51,480 3.1

1974 16,691 41,243 1.1 21,461 53,029 3.0

1975 - - - 21,871 54,044 1.9

1976 - - - 23,032 56,911 5.3

1977 - - - 23,658 58,459 2.7

1978 20,700 51,000 3.0 23,834 58,893 0.7

1979 - - - 24,746 61,148 3.8        
Adoptedfi'om Jensen, (1983).
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Table 3. Characteristics of irrigation development in the US from 1974 to 1979 by

region .

Total Area Irrigated Sprinkler Irrigated

1974 to 1979 1974 to 1979

Region ha (10003) percent ha (10003) Percent percent

oftotal

Arid Southwest, (AZ, CA) 4,010 4,470 11 561 835 28 19

Arid Pacific Northwest, (ID, OR, and 2,963 3,153 7 1,006 1,664 65 53

WA)

Semiarid Central Mountains, (CO, MT, 4,587 4,280 -7 529 559 6 13

NV, UT, and WY)
 

Semiarid Central and South Great Plains, 7,343 8,987 22 1,766 2,884 63 32

(KS, NE, NM, OK, and TX)
 

 

        

Subhumid Combelt, (IL, IN, MN, MO, 261 602 131 172 504 193 84

and WI)

Subhumid and Humid, South and 1,993 2,511 26 504 799 59 32

Southwest, (AR, FL, GA, AL, MS, NC,

and SC )  
 

Adaptedfrom Jensen, (1983).



B. Overview

Hydraulic design is the most important factor in the ultimate success or failure of a

sprinkler irrigation system. A significant amount of research has been done in this area.

To assist in the improved design of sprinkler irrigation, Christiansen (1942), developed the

coefficient ofuniformity as an indicator of a design's distribution uniformity. Heermann

and Hein (1968) modified Christiansen's uniformity coefficient for center-pivot sprinkler

systems. In addition to the coefficient ofuniformity, Christiansen (1942) developed an

adjustment factor for the head loss along a lateral due to sprinkler output. Merriam and

Keller, (1978) developed the distribution uniformity concept. Bralts et al. (1983 a, and b),

developed the statistical uniformity concept for evaluation of drip irrigation systems. The

design of sprinkler irrigation submain units for optimal sprinkler uniformity is very

important, because once the nozzles, the laterals and the main components have been

chosen, very little additional flow control is possible. Thus, the engineer making the

design decision regarding pipe size as well as nozzle and sprinkler selection, must have a

method of determining submain unit Sprinkler uniformity at the design stage.

Sprinkler irrigation systems, figure 1 (Solid set sprinkler) and figure 2 (Center-

pivot), consist ofwater supply and a pump, followed by a network of mainlines, (mostly

pipes of steel, asbestos or recently of polyvinylchloride (PVC), and laterals made of either

aluminum, PVC, or polyethylene, and sprinklers. In addition to delivery for irrigation,

sprinkler irrigation systems can be an effective means for the application of chemicals, i.e.

fertilizers, pesticides, herbicides, descants, and defoliants.
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A typical solid set sprinkler layout. (Adoptedfi'om Sichinga, 1975).Figure 1.

A Typical Center-pivot system layout. (Adoptedfiom Wallace, [98 7)Figure 2.
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The advantages ofthe conjunctive application of chemicals with irrigation water

include savings in labor and equipment, better timing, ease of split and multiple controlled

application, greater flexibility offarm operations, and consequently enhanced crop

production. Other functions of sprinkler irrigation systems may include crop and soil

cooling, protecting crops from frost and freeze damage, delaying fruit and bud

development, controlling wind erosion, providing water for seed germination by effective

light watering and land application ofwastes. Today, sprinkler irrigation systems are

utilized on all types of soils, topographies and crops. However, the use of fertilizer

injection through sprinkler irrigation has not been fully realized. This is because irrigators

were not certain that their sprinkle systems were performing at an acceptable level of

uniformity. The problem has been a lack of field evaluation tools.

The field evaluation of sprinkler irrigation submain units is important for the farmer

to ensure acceptable performance ofwater distribution and chemical application; as well as

a diagnostic tool for the engineer to confirm successful design. I

In this thesis, a simplified method for the field evaluation of sprinkler irrigation

system was evaluated. This work follows the comprehensive procedure used by Bralts et

al (1983) to evaluate drip irrigation submain units by the using statistical uniformity

concept. The same procedures were adopted to evaluate the design and uniformity of

sprinkler irrigation. Then, the estimated coefficient of variation and the estimated

confidence limits were developed for sprinkler irrigation systems based on one sixth

maximum depths and one sixth minimum depths. Finally, the statistical uniformity was

calculated. The method was compared to existing methods used to evaluate sprinkler



9

irrigation systems, by using linear regression method and the results were validated. A

nomograph of sum ofthree minimum depths to the sum of three maximum depths was

generated to calculate the statistical uniformity of sprinkler irrigation systems.

C. Scope and objectives

The broad objectives of this study were to develop a simplified method to conserve

water, chemicals, and energy used for crop production through improved field evaluation

of sprinkler irrigation systems. Improvement offield evaluation techniques can conserve

energy by maximizing the efficiency ofwater use. This simplified method is, also, a very

usefirl tool to diagnose environmental concerns such as runoffwater quality.

This study was, therefore, intended to develop a simplified method for field

evaluation of sprinkler irrigation systems which can be useable by the farmers. The

method described here uses uniformity estimates based upon the coefficient of variation,

and the statistical uniformity concept together with estimated confidence limits.

The specific objectives ofthis research were:

1. To develop the statistical uniformity concept for sprinkler irrigation

systems based on estimated coefficient of variation and estimated

confidence limits;

2. To apply the estimated coefficient of variation and the statistical uniformity

concept with estimated confidence limits to field evaluation of sprinkler

irrigation systems; and
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To evaluate the usefillness of the estimated coefficient of variation and the

estimated confidence limits for the field evaluation of sprinkler irrigation

systems by statistical comparison of the results to methods already adopted

for field evaluation of sprinkler irrigation systems.



II. LITERATURE REVIEW

A. Soil-water-plant relations

Understanding the general concept underlying basic soil-water-plant relations and

interactions is central to the ability to design and manage sprinkler irrigation system. It is

therefore, worth clarifying the following important terms:

1. Soil water

The soil stores water needed by plants. Adsorptive and capillary forces, called

matricforces, hold significant amounts ofwater which can be removed and used by

plants. It is much easier for plants to obtain water from the soil when it is moist than

when it is dry because these retention forces are more significant under low water content

conditions.

Between saturation and absolute dryness are two important soil water contents

relative to the plant. These water contents, field capacity (fc) and permanent wilting

point ava), are defined respectively as the upper and the lower limits of soil water that is

available to the plants. In practice these parameters are defined as follows: Field capacity

is the percentage ofwater remaining in a soil two to three days after the soil has been

saturated and after free drainage has practically ceased, and permanent wilting point is the

water content ofthe soil after plants can no longer extract water at a sufficient rate for

wilted leaves to recover overnight when placed in a saturated environment. The water

content when the soil is at field capacity is less than saturation, while the soil is not

11
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absolutely dry at the permanent wilting point. Neither field capacity nor wilting point is a

sharply defined quantity.

Because water between field capacity and permanent wilting point is available to

the plants, it is called the available water, (AW). The following equation is used to

compute available water:

= (fc-pWP)
AW 0,, 100 (1)

where:

AW = available water (mm, in);

D,2 = depth of the root zone (cm, in.) the depth to the soil layer that restricts

water movement;

fc = field capacity in percentage by volume; and

pwp = permanent wilting point, in percentage by volume.

Soils of various textures have varying abilities to retain water. Table 4, gives

typical ranges of available water-holding capacities, (field capacity minus permanent

wilting point) of soils of different textures adapted from Chapter 1, Section 3, of Keller

and Bliesner, (1990). These data are important to the farmer because any irrigation

beyond field capacity is an economic 1033. However, if field data were not available, these

averages are very useful in preliminary designs.



13

2. Root depth

The total amount ofwater available for plant use in any soil is the sum of all

available water-holding capacities of all horizons occupied by plant roots (Keller and

Bliesner, 1990). Table 5. can be used to estimate the effective root depth if actual data are

not available. The values represent the depth at which crops will obtain a major portion of

their needed water when grown in a deep, well-drained soil that is adequately irrigated.

3. Consumptive use

To address the question of system capacity that, over the life ofthe system will

maximize profit to the farmer, one must decide how much water the system should be able

to deliver to a crop over a given period. It is necessary to know how much water the crop

will use, not only over the entire growing season, but also during the part ofthe season

when water use is at its peak. It is the rate ofwater use during this peak consumptive

period that is the basis for determining what rate irrigation water must be delivered to the

field. Examples of typical seasonal and peak daily crop water requirements are given in

Table 6.
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Table 4. Range in available water-holding capacity of soils of different texture.

water-holding capacity

range average

Texture mm/rn mm/m

1. Very coarse texture-very coarse sands. 33 to 62 42

2. Coarse texture-coarse sands, fine sands, and 62 to 104 83

loamy sands.

3. Moderatelycoarse texture-sandy loams. 104 to 154 125

4. Medium texture-very fine sandy loams, loams 125 to 192 167

and silt loams.

5. Moderately fine texture clay loams, silty clay 145 to 208 183

loams and sandy clay loams

6. Fine texture -sandy clays, silty clays, and clays 133 to 208 192

7. Peat and mucks. 167 to 250 208   
 

Note: 1 rum/m = 0.012 mm

Adoptedfrom Keller and Bliesner, 1990.
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Table 5. Effective crOp root depths that would contain approximately 80% of

the feeder roots in a deep, uniform, well-drained soil profile.

Crop Root Depth Crop Depth (1n) Crop Root Depth

(111) (m)

Alfalfa 12 to 1.8 Chard 0.6 to 0.9 Peanuts 0.4 to 0.8

Almonds 0.6 to 1.2 Cherry 0.8 to 1.2 Pear 0.6 to 1.2

Apple 0.8 to 1.2 Citrus 0.9 to 1.5 Pepper 0.6 to 0.9

Apricot 0.6 to 1.4 Coffee 0.9 to 1.5 Plum 0.8 to 1.2

Artichoke 0.6 to 0.9 Corn (grain 0.6 to 1.2 Potato (Irish) 0.6 to 0.9

and silage)

Asparagus 1.2 to 1.8 Corn (sweet) 0.4 to 0.6 Potato (sweet) 0.6 to 0.9

Avocado 0.6 to 0.9 Cotton 0.6 to 1.8 Pumpkin 0.9 to 1.2

Banana 0.3 to 0.6 Cucumber 0.4 to 0.6 Radish 0.3

Barley 0.9 to 1.1 Egg plant 0.8 Safflower 0.9 to 1.5

Bean (dry) 0.6 to 1.2 Fig 0.9 Sorghum 0.6 to 0.9

Bean (green) 0.5 to 0.9 Flax 0.6 to 0.9 Sorghum 0.9 to 1.2

(silage)

Bean (lirna) 0.6 to 1.2 Grapes 0.5 to 1.2 Soybean 0.6 to 0.9

Beet (sugar) 0.6 to 1.2 Lettuce 0.2 to 0.5 Spanish 0.4 to 0.6

Beet (table) 0.4 to 0.6 Lucem 1.2 to 1.8 Squash 0.4 to 0.9

Berries 0.6 to 1.2 Oats 0.6 to 1.1 Strawberry 0.3 to 0.5

Broccoli 0.6 Olives 0.9 to 1.5 Sugarcane 0.5 to 1.1

Brussels 0.6 Onion 0.3 to 0.6 Sudan grass 0.9 to 1.2

sprout

Cabbage 0.6 Parsnip 0.6 to 0.9 Tobacco 0.6 to 1.2

Cantaloupe 0.6 to 1.2 Passion fruit 0.3 to 0.5 Tomato 0.6 to 1.2

Carrot 0.4 to 0.6 Pastures 0.3 to 0.8 Turnip (white) 0.5 to 0.8

Cauliflower 0.6 Pea 0.4 to 0.8 Watermelon 0.6 to 0.9

CelerL 0.6 Peach 0.6 to 1.2 Wheat 0.8 to 1.1       
Adaptedfiom Keller andBliesner, 1990.
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Table 6. Typical peak daily and seasonal crop water requirements in different

climates.

Types of climate and water requirements, mm

Season Cool Moderate Hot High desert Low desert

Crop l 2 l 2 l 2 l 2 l 2

Alfalfa 5.1 635 6.4 762 7.6 914 8.9 1016 10.2 1219

Grain 3.8 381 5.1 457 5.8 508 6.6 533 5.8 508

Beets 4.6 584 5.8 635 6.9 711 8.1 732 9.1 914

Beans 4.6 330 5.1 381 6.1 457 7.1 508 7.6 559

Corn 5.1 508 6.4 559 7.6 610 8.9 660 10.2 762

Cotton - - 6.4 559 7.6 660 - - 10.2 813

Peas 4.6 305 4.8 330 5.1 356 5.6 356 5.1 356

Tomatoes 4.6 457 5.1 508 5.6 559 6.4 610 7.1 660

Potatoes 4.6 406 5.8 457 6.9 553 8.1 584 6.9 533

Truck vegetables 4.1 305 4.6 356 5.1 406 5.6 457 6.3 508

Melons 4.1 381 4.6 406 5.1 457 5.6 508 6.4 559

Strawberry 4.6 457 5.1 508 5.6 559 6.1 610 6.6 660

Citrus 4.1 508 4.6 559 5.1 660 - - 5.6 711

Deciduous orchard 3.8 483 4.8 533 5.8 584 6.6 635 7.6 762

Vineyard 3.6 356 4.1 406 4.8 457 5.6 508 6.4 610            
l = Daily; 2 = Seasonal.

Adaptedfiom Keller and Bliesner, 1990.
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4. Soil moisture management

A general rule ofthumb for many field crops in arid and semiarid regions is that the

soil moisture deficit, (SMD), within the root zone should not fall below 50% of the total

available water-holding capacity. This is the management allowable deficit; MAD = 50%

ofAW. Because it is desirable to bring the moisture level back to field capacity with each

irrigation, the depth ofwater applied at each irrigation is constant (50% oftotal available

water holding capacity) throughout the growing season (Keller and Bleisner, 1990). This

means that the duration of each irrigation is also constant, although the frequency of

application varies as a function of changes in the rate ofwater use over the growing

season.

The situation is different in the humid regions, because it is necessary to allow for

rains during the irrigation period. However, the 50% limitation on soil moisture depletion

should be followed as a general guide for field crops.

Soil management, water management, and economic considerations determine the

amount ofwater used in irrigation and the rate ofwater application necessary. The

standard design approach has been to determine the amount ofwater needed to fill the

entire root zone to field capacity, and then apply at one application a larger amount to

account for evaporation, leaching, and inefficiency of application. The traditional

approach to the frequency of application has been to take the depth ofwater in the root

zone reservoir that can be extracted, assuming MAD = 50%, and, using the daily

consumptive use rate ofthe plant, determine how long this supply will last. This approach

is usefill only as a guide to irrigation requirements, as many factors affect the volume, and



18

the timing of application for optimal design and operation of a system.

Table 7. Guide for selecting management-allowable deficit, MAD, values for

various crops.

 

 

 

 

  

MAD, % Crop and root depth

25-40 Shallow-rooted, high-value fi'uit and vegetable

crops

40-50 Orchards,’ vineyards, berries and medium-rooted

row crqrs

50 Forage cropsz grain crops, and deep-rooted row crops
 

 
 

I

Somefi'eshorchardsreqturelowchADvalueedunngfiimfimshmgforsia'ng

Adaptedfrom (Keller and Bleisner, 1990)

5. Irrigation depth

The maximum net depth ofwater to be applied per irrigation, d,, is the same as the

maximum allowable depletion of soil water between irrigations. It is computed by:

x 100 a (2)

where:

d, = maximum net depth ofwater to be applied per irrigation, mm (in);

MAD = management allowed deficit, which can be estimated from Table 4;

W, = available water-holding capacity of the soil, which can be estimated from

Table 4, mm/m; and

Z = effective root depth, which can be taken from Table 5, mm (11).
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6. Irrigation interval

The appropriate irrigation interval, which is the time that should elapse between

the beginning oftwo successive irrigations, is determined by:

where:

_ d"

f'y; (3)

f = irrigation interval or frequency, days;

(1,, = net depth ofwater application per irrigation, to meet consumptive use

requirements, mm (in); and

Ud = conventionally computed average daily crop water requirement, or use

rate, during the peak-use month, which can be estimated from Table 6,

mm/day (in/day).

The values selected for d, will depend upon system design and environmental

factors, and it should be equal to or less than 64. When dn is replaced by d, in equation 2,

f becomes the maximum irrigation interval, j;
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B. Methods of irrigation

Farm irrigation systems must supply water at rates in quantities, and at times

needed to meet farm irrigation requirements and schedules. It is essential that farm

irrigation systems facilitate management by providing a means for measuring and

controlling flow. The methods of applying water to the plants may be classified as

subirrigation, surface irrigation, microirrigation, and sprinkler irrigation.

I. Subirrigation

In special situations, water may be applied below the soil surface by developing or

maintaining a water table that allows water to move up through the root zone by capillary

action. This is essentially the same practice as controlled drainage. Controlled drainage

becomes subirrigation ifwater must be supplied to maintain the desired water level.

Water may be introduced into the soil profile through open ditches, mole drains, or pipe

drains. The open ditch method is most widely used. Water table maintenance is suitable

where the soil in the plant root zone is quite permeable and there is either a continuous

impermeable layer or a natural water table below the root zone. Since subirrigation allows

no opportunity for leaching and establishes an upward movement ofwater, salt

accumulation is a hazard; thus the salt content ofwater should be low.

2. Surface irrigation
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This is the most common method of applying irrigation water, especially in arid

regions. Surface methods include: wide flooding, where the flow ofwater is uncontrolled,

and surface application, where the flow is controlled by furrows, corrugations, border

dikes, contour dikes or basins. To conserve water, the rate ofwater application should be

carefully controlled and the land properly graded.

3. Microirrigation

Increasing use is being made of microirrigation (trickle or drip) systems that apply

water at very low rates, often to individual plants. Such rates are achieved through the

use of specially designed emitters or porous tubes, usually installed on or just below the

soil surface. These systems provide an opportunity for efficient use ofwater because of

minimum evaporation losses, and because irrigation is limited to the root zone. Because

of their high initial cost, their use is generally limited to high-value crops. They are, also

well adaptable for application of agricultural chemicals.

4. Sprinkler irrigation

A sprinkler irrigation system uses pressure energy to form and distribute "rainlike"

droplets over the land surface, (Larry G. James, 1988). In sprinkler irrigation systems

water is conveyed from a pump through a network of pipes, called mainlines and

submains, to one or more pipes with sprinklers called laterals. A typical sprinkler system

is shown by figures 1 and 2. Sprinkler irrigation is a versatile means of applying water to

any crop, soil, and topographic condition. It is popular because surface ditches and prior
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land preparation are not necessary and because pipes are easily transported and provide no

obstruction to farm operations when irrigation is not needed. Sprinkling is suitable for

sandy soils or any other topographic conditions where other methods may be expensive or

inefficient, or where erosion may be particularly hazardous. Low rates and amounts may

be applied, such as required for seed germination, frost protection, delay of fruit budding,

and cooling of crops in hot weather. Fertilizers and soil amendments may be dissolved in

water and applied through irrigation systems. The major concerns of sprinkler irrigation

systems is the investment costs, labor requirements, and evaporation losses.

C. Types of sprinkler irrigation systems

There are 10 major types of sprinkler irrigation systems and several versions of

each type. These types of systems may be divided into two basic groups:

1. Set systems

These operate with a sprinkler set in a fixed position. They can be further divided

to the following subgroups:

(1. Periodic move

Hand-move laterals, end-tow laterals, side-roll laterals, side-move

laterals, gun, and boom sprinklers

b. Fixed sprinkler system

2. Continuous-move systems

These operate while the sprinklers are moving. They can be subdivided into:

Traveling sprinklers, center-pivot system, linear-moving laterals.



23

D. Parameters for sprinkler irrigation evaluation

1. Basic hydraulics

The hydraulic principles of sprinkler irrigation are based upon the classical

continuity and energy equations. The following developments will follow the theory and

nomenclature used by Wu et., al., (1979) and Bralts et a1. (1983 a, b).

a. Pressure and head relationships:

The pressure ofwater at rest in a container at any point is equal to the

product of the unit weight ofwater (1000 Kg/m3 at 20°C) and the height ofwater above

the point, (head ofwater). Head is in meters (m) and pressure in Kilo-Pascal (KPa). One

meter ofwater = 9.81 KPa of pressure. In an irrigation system the head consists of

several components:

i. static head = difference in elevation between source and current position;

ii. pressure head = the pressure (P) divided by the unit weight of water;

iii. velocity head = the energy required to accelerate the water from rest to its

velocity (V2/2g); and

iv. fiiction head (hr) = the energy required for water to flow (to overcome

friction) between two points at the same elevation.

b. Pipeflow equation

The flow in a sprinkler irrigation manifold pipe or lateral will be considered to have

reached a steady state. Flow will, therefore, vary spatially due to fiiction and pipe length,

but not temporally (Bralts, et al. 1983). This means that the total flow in the pipe is

changing, usually decreasing, with respect to length due to friction losses.
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Head 1033 along a lateral is due to sprinkler output and fiiction. Any of several

empirical equations can be used to calculate head loss due to fiiction. In this thesis, only

two such equations will be discussed. The first equation, which is based on the Darcy-

Weisbach equation is as follows:

LP”

28,0 x (4)
 

Where:

hf = head loss due to friction;

f= dimensionless fiiction factor;

L = length ofthe pipe;

D = diameter ofthe pipe;

V = velocity ofwater in the pipe; and

g = acceleration due to gravity.

Since sprinkler irrigation laterals are considered to be hydraulically smooth and

their flow is fully turbulent then the Blasius empirical formula for turbulent flow in a

smooth pipe can be substituted for the dimensionless fiiction factor (f), (Wu and Gitlin,

1974; Howell et. al. 1981; and Bralts et. al. 1983 a, b). Figure 3. represents the

dimensionless energy gradient line, along a sprinkler irrigation lateral line, (Wu and Gitlin,

1974)

The Blasius formula for the fiiction factf, is:
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0.3164

0.25

Re

f: (4000< Re <100000)

where:

f = friction coefficient; and

RC = Reynold number.

Watters and Keller (1978) combined equations (4 and 5) at 20°C and found:

Q 1.75

hf = 7.89 *105 (——)*L
04.75

where:

hf = head loss in meters;

Q = flow rate in Us;

D = pipe diameter in millimeters; and

L = pipe length in meters.

(5)

(6)
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The second empirical equation which is commonly used in hydraulic design is the

Hazen—Williams formula (Keller and Karmeli, 1975; Jeppson 1982):

1.852

h = 1221* 1010 (-—Q———)*L (7)
f C 1.852D 4.871

where: C = the roughness coefficient.

Table 8 shows typical values of C for use in the Hazen-Williams equation.

 

 

 

 

 

 

 

 

Table 8. Typical values of C used in Hazen-Williams equation

Pipe Material C Value

Plastic 150

Epoxy-coated Steel 145

Cement Asbestos 140

Galvanized Steel 135

Aluminum, (with couplers every 30 ft) 130

Steel (new) 130

Steel (15 years old) or Concrete 100   
 

Adoptdfiom James, (1988).

The Hazen-Williams equation was developed from the study ofwater distribution

systems that used 75 mm (3 in.) or larger diameter pipes and discharges greater than 3.2

L/s (50 gpm). Under these flow conditions the, Re is greater than 5 x 10‘, and the
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formula, therefore, predicts the friction losses satisfactorily.

The Reynold number at 20°C (68°F) for water flowing through a pipe is:

(8)

:
0 II 7
?

D
1
1
6

where:

K = conversion constant, (1.3 x 10°, for metric system; 3214 for English

system).

The friction factorffor flow in smooth pipes is given by the following classic

equation for laminar flow where Re < 2000

f=— (9)

For turbulent flow, Rc >2000.

For turbulent flow the fiiction factorf, taking Von Korman formula, becomes;

1 _ D
—5 - 1.14 + 2 log 2- (10)
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and the relationship:

(11)

E
l
m

where:

E = relative roughness;

e = roughness size, (L); and

D = diameter ofthe pipe, (L).

An equation developed by Churchill (1977), perfectly handles the entire range of

Reynold number for determiningfin all types of pipes. It lends itself to numerical

 

solutions:

1

f = 8 ((%)n + ——1——15' 12 (12)

e (K1+K2) '

where:

1 e

K = 2.457 1n ( + 0.27 — )l6

‘ ( 7 09) D (13)

(E)

K2 = (37530/Re)16
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If the value ofC for smooth pipe, of 150 is substituted in equation (4), the

following empirical equation is obtained:

5 Q 1.852

Equation 14 is the same as equation 7, but it incorporates a fixed value for C. The

major difference between Darcy-Weisbach and Hazen-William equations is that, the

Darcy-Weisbach equation has a fiiction factor which is dependent on Reynold Number

while the Hasen-William equation has a constant smooth pipe fiiction factor. However, it

is clear that, the Darcy-Weisbach equation represents the fiiction losses in small diameter

pipes and hoses better than does the Hazen-William formula. Furthermore, when

comparing the two equations at the same velocity, the C-value of the Hazen-Williams

equation seems to be dependent upon pipe diameter.

Howell (1981) recommended the following C-values to use with plastic pipes:

 

 

 

 

Table 9. Recommended C-values for Plastic Pipes

C-value Diameter

130 14 - 15 mm(0.58 inches)

140 18 - 19 mm (0.75 inches)

150 25 - 27 mm (1.0 inch)     
Adoptedfrom Howell, (1981).
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Both equations (4) and (7) are generalized by Wu and Gitlin (1975), and Wu et. al

(1979), as follows:

AH=—aQ"’ (15)

where:

AH = change in head due to friction;

Q = total lateral line flow;

a = pipe constant; and

m = pipe flow exponent.

c. Sprinkler Flow Equation

In general, the relationship between pressure, or pressure head, and discharge from

a sprinkler can be expressed by the orifice equation:

q = K. (1’)”5 (16)

01'

q = K.) (17)“ (17)
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where:

q = sprinkler discharge L/m, (gpm);

Kd = appropriate discharge coeflicient for sprinkler and nozzle combined and

specific units used;

P = sprinkler operating pressure KPa (Psi); and

H = sprinkler operating pressure head, m (ft).

The design coefficient Kd can be determined for any combination of sprinkler and

nozzle, if any value ofP and the corresponding value ofq are known. Because of the

internal sprinkler friction losses, Kd decreases slightly as P and consequently q increase.

However, over the normal operating range of most sprinklers, it can be assumed constant.

Equation (16) can be manipulated to yield;

P = P’ (1)2 aq, (1 >

where;

P’ and q’ can be supplied by the manufacturer's tables; and either P and q is not

known. Also, equation (17) can be manipulated in a similar manner.

A special form of equation (16) and (17) can be modified to account for sprinkler

and nozzle plugging, (Bralts, 1983):

q = (H!) K, P‘"5 (19)
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q = (H!) K. H”'5 (20)

where:

a = the fraction of nozzles likely to plug.

E. Sprinkler system capacity requirements

The required capacity of a sprinkler system depends on the size of the area

irrigated, the gross depth ofwater applied at each irrigation, and the net operating time

allowed to apply this depth.

1. System capacity

The capacity of the system can be computed by the formula presented by (Keller

and Bliesner, 1990):

Q=K— (21)

where:

Q = system discharge capacity, L/s (gpm);

K = conversion constant, 2.78 for metric units, (453 for English units);
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A = design area, ha (acre);

d = gross depth of application, mm (in);

f= operation time allowed for completion of one irrigation, days; and

T = average actual operating time per day, hr/day

2. Sprinkler application rates

The rate at which water should be applied depends on the following:

a. The infiltration characteristics ofthe soil, the field slope, and the crop

cover;

b. The minimum application rate that will produce a uniform sprinkler

distribution pattern and satisfactory efficiency under the prevalent wind and

evaporative demand conditions; and

c. The farm conditions and the type of sprinkler system used.

3. Computing set sprinklers application rates

The average application rate from a sprinkler is computed by:

 

(22)

where:

I = average application rate, mm/hr, (in/hr);

K = conversion constant, 60 for metric units, (93 .6 for English units);
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q = sprinkler discharge, L/min, (gpm);

S, = spacing of sprinklers along the laterals, m (ft); and

SI = spacing of laterals along the main line, m (ft)

4. Computing instantaneous application Rate

To compute the average instantaneous application rate, 1,, for a sprinkler having a

radius of throw, R5, and wetting an angular segment, 8,, equation (23) can be modified as:

 

 

TE (R)2 x S0 (23)

where:

K = same as above;

Rj = radius ofwetted area, 111 (ft); and

S, — angular segment, (from a top view) wetted by a stationary a sprinkler jet,

degrees.
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F. Sprinkler uniformity

Irrigation uniformity is a concept used extensively in system design and

management. There are several factors that cause irrigation to be nonuniform under

different methods of irrigation. However, there are specific factors that affect the water

application efliciency of sprinkler irrigation systems:

i. Variation of individual sprinkler discharge throughout a lateral line;

ii. Variation in water distribution within the sprinkler-spacing area, which is

caused primarily by wind;

iii. Losses ofwater by direct evaporation from the spray; and

iv. Evaporation from the soil surface before water is used by plants.

1. Solid sets sprinklers

The uniformity of application is of primary concern in a sprinkler design

procedure. The areal distribution of irrigation depth from a sprinkler system is often a

result of an overlapping application pattern ofmany individual sprinklers at a given

spacing. The uniformity of sprinkler irrigation has been studied by many researchers. The

first pioneer to address the problem of sprinkler uniformity as an important factor affecting

the design and performance of sprinkler irrigation was Christiansen (1942). He was the

first to assign an index to the variability of sprinkler irrigation depth, and introduced a

measure ofuniformity known as the Christiansen Uniformity Coefficient, (UCC), defined

as:
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" I<X.-X’)1
 UCC = 1 - Z (24)

14 nX

where:

.>’< = average depth of irrigation;

X, = observed irrigation depth; and

n = No. of observations.

The mean deviations are given by:

n X;-.?

Mean Deviations = 2| —— | (25)

#1 ”

Keller and Bliesner (1990) suggested that the test data for UCC > 70% usually

forms a bell-shaped normal distribution and is reasonably symmetrical about the mean.

Therefore, UCC can be approximated by:

= A verage (low -halj) depth of water received

.17

UCC X100 (26)

However, the problem with the UCC measure is that it gives the same weight

assigned to irrigation depths above and below the mean. The result is that too little and

too much irrigation has the same effect on yield, which is not quite true. The bottom line
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of this definition ofuniformity is that dispersion of irrigation water is related to the mean

of the amount irrigated.

Wilcox and Swailes (1947) replaced the mean deviation of Christiansen by the

standard deviation. The result was the coefficient of variation (CV), 6/>‘< , and becomes:

UCW = I - (27)
>
<
1
|
°

where:

o = the standard deviation of the sample.

The coeflicient of variation was extensively used by Bralts, et al.. (1981, 83, 84

and 87) to develop statistical uniformity concept to evaluate drip irrigation submain units.

The coefficient of variation is defined as the ratio of the standard deviation to the mean of

a sample or a population. The coefficient of variation was approached by estimating the

mean and the standard deviation. The following is a summary ofhow they developed the

estimation equations.

a. Estimating the standard deviation:

(Q... - Q1.) (28)

Z
I
N

as

where:
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8,, = the estimate of the standard deviation of the emitter (sprinkle) flow rate;

Q“, = the sum ofthe observations in the upper one sixth of the distribution;

Q, = the sum ofthe observations in the lower one sixth of the distribution; and

N = the number of observations in the sample.

b. Estimating the mean:

qs z _(Qus + Q13) (29)

c. Estimating the coefficient ofvariation:

Using the above two equations, the coefficient of variation can be written as:

CVq, = 0.667M (30)

(gas + Q13)

If 18 random measurements of sprinkler or emitter flow rate were made, it would

only be necessary to sum the three highest and the three lowest values to estimate the

coefficient of variation. The above equation can be rearranged to demonstrate the linear

nature of the terms Q“, and Q“:

_ (0.667 + CVq,)

' (0.667 - CV,,) 1‘ (31)
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Thus, for any given coefficient of variation CV,” the Q“, varies linearly with Q],

Bralts, et al., (1983), also used, the inverse relationship of minimum time to

maximum emitter flow rate, so the above equation can be written as:

_ (0.667 + CVq, ) T

max — ( 0667 _ CVqS ) min (32)

 

where:

Tm = the sum of the top one sixth of the emitter flow times required to fill a

Specific volume with water; and

Tmin = .the sum of the bottom one sixth ofthe emitter flow times required to

Specific volume with water.

d. Confidence Limits:

The confidence limits for the coefficient of variation (CV,,) on samples from a

normal population, (Bralts and Kesner, 1983, after Sokal and Rohlf, 1969) can be

expressed as:

p (Vq - 1% SVqs Vq'qu + t% 5V) = 1 - a (33)
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Where:

CVq = sample coefficient of variation;

t,,,2 = student t value for given a;

a = confidence level desired;

CV“q = Actual coefficient of variation for the full submain; and

SW = standard deviation of the coefficient of variation is calculated from the

equation:

 CV

5V. = 5', 1/1 + 2 (CV92 (34)
 

Using these two equations, the confidence lirrrits for the sample coefficient of

variation, CV,, can be found. Since the confidence limits of the estimated coeflicient of

variation are dependent on the assumption of a normal distribution, the above confidence

limits can only be used as the approximate confidence limits of estimated coefficient of

variation.

They translated this relationship into a nomograph figure 4, for drip irrigation field

uniformity estimation. The same procedure will be followed for sprinkler irrigation

uniformity estimator.



42

 

 
 
 

 

    
 

g . 4 I8! CONFIDENCE LIMITS

.—=1

C. L.

. g 3

one :5

:_ IO

1 13

”'18

I”

v ' ‘I

3? coo

3: a . o

g lmjL‘v

h

g

‘5

E

«3 zoo

run

A A l A

o 50 in 180 zoo 250 III

SumolmoTNuMII-mlfml
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Hart, (1961) described a uniformity similar to UCC:

UCH=1—(%)°'5(%) (35)

Hart and Reynolds (1965) from the Hawaiian Sugar Planters' Association

proposed a uniformity coefficient similar to UCC called Hawaiian Sugar Planters'

Association (HSPA). Hart et al. (1980) showed these two coefficients are essentially the

same.

A useful term placing a numerical value on the uniformity for agricultural irrigation

is the distribution uniformity, DU, (Merriam and Keller, 1978). DU indicates the

uniformity of application throughout the field and is computed by:

DU=Axeragelomum§LdepthanateLreceixed* 100

Average depth ofwater received

The average low-quarter depth ofwater received is the average ofthe lowest one-

quarter of measured values, where each value represents an equal area.

The relationship between UCC and DU was approximated by, Keller and

Bleisner(1990), as:

UCC = 100 — 0.63 ( 100 - DU) (36)

01'
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DU = 100 - 1.59 ( 100 — UCC) (37)

And the relationship between UCC and the standard deviation of individual depth

of catch observations can be approximated by:

0 2 05
UCC = 100 ( 1.0 - (—_) (—)' ) (38)

x it

Emmanuel, (1992), referred to the postulation of (Karmeli, 1977, 1978. Karmeli,

Salazer and Walker, 1978), that observations drawn from the cumulative distribution are

approximately linear and could be defined as:

Y=a+bX (39)

where:

Y = dimensionless irrigation depth;

X = dimensionless area received Y depths or less; and

a and b are the intercept and the slope on the Y-axis respectively.

Noting that the uniform distribution provides a linear cumulative distribution, they

defined the uniformity coefficient by:
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UCL = 1.0 — 0.25 b (40)

where:

b = transformed range of dimensionless irrigation depth; and

0.25 = is the mean deviation, dividing the mean for uniform distribution.

2. Center-pivot System

The center-pivot sprinkler system is a versatile method of applying water to a large

scale agricultural area which covers about one-quarter section of a land area. The method

developed because of an increased demand for agricultural labor. The effectiveness of this

method can be evaluated using the guidelines of ASAE. Bittinger and Longenbough

(1962) were the first to develop a mathematical model for center-pivot uniformity.

Heerman and Hein (1968), solved the mathematical expression for the application rate and

the application depth to develop a weighted coefficient ofuniformity for center-pivot

system in the form of:

. ES. (41)

 

  



where:

Cn = coefficient ofuniformity (Heermann and Hein);

D, = catch can depth at distance S from the pivot center; and

S, = distance from catch point to the center of the pivot.

Marek et a1 (1986) used the coefficient of variation to develop an areal-weighted

uniformity coefficient in the form of :

 

 

1:1 ' (42)
 

 Cu =100 1.0 - N NN'I 

   

G. Irrigation Efficiency Terms

1. SCS Pattern Efficiency

The on-farm irrigation committee, (Kruse 1978), defines pattern efliciency as:

EPLQ = i r

Average depth ofwater applied

This is not an efficiency term as the name suggest but a distribution index and it is

similar to the low quarter distribution.
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2 Irrigation Efficiency

There are many different irrigation efficiency concepts now in existence and they

are widely used. However, the most commonly used definition is the ratio of beneficially

used water to total water applied, Chaurdry (1978).

Application efficiency is different from irrigation efficiency and is the ratio ofwater

stored in the root zone to total water applied. Many attempts have been made to

standardize irrigation efficiency terms, e.g. The On Farm Irrigation Committee, and Kruse

(1978)

3. Application Efficiency

There are different available definitions in the literature, which vary according to

the particular use. However, this term should include the effect of losses due to

nonuniformity of application, spray drifts, evaporation, and pipe losses.

4. Water Use Efficiency

Irrigation efficiency sometimes is defined as water use efficiency. Israelsen and

Hansen (1962) defines water use efficiency as:

 E - 100 W"
a — W (43)
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where:

Eu = water use efficiency;

W, = water is beneficially used; and

Wd = water delivered to the farm.

5. Water Application Efficiency

Water application efficiency is defined as:

E - 100 W‘
a — wf (44)

where:

E, = water application efficiency;

Ws = water stored in the root zone during irrigation; and

Wf = water delivered to the farm or irrigation system.

Wallace (1987) also refers to common sources of losses of irrigation water during

water application including surface runoff, (Rf), and deep percolation below the root zone,

(Dr). The sum ofthese losses and water used is equal to total water delivered.

Wf = W. + Rf + Df (45)
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According to this equation water application efficiency (E,) can be defined as:

W-(R +D)
_ f f f

Ea—IOO f (46) 

When the incorporation of leaching these definitions are radically changed, because

water in this case is considered to be beneficially used.

Application efficiency is not an indication of irrigation uniformity or adequacy.

Figure 5, illustrates how, with deficit irrigation, an application efficiency of 100% may be

achieved under sprinkler irrigation (Wallace 1987, refers to Wu and Gitlen, 1981).

Figure 6, shows a common application efficiency found under sprinkler irrigation. In

figure 6, area A is adequately irrigated, area B is in deficit irrigation, while area C is

excessively irrigated. Using these areas, then, application efiiciency may be defined as:

E:—

" A+C (47)

Bralts et al., (1984) have defined application efficiency for drip irrigation as:

V 1 - P V 1 -

Ea = 100 '( D) = 100 ’( D) (43)

3600 Q, T
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where:

VI = the volume ofwater applied, m3;

PD = irrigation deficit expressed as decimal;

V, = irrigation volume required, m3;

Q, = the actual discharge to the submain per second, m3 ; and

T = irrigation time in hours.

The above equation is illustrated in figure 7. Wallace (1987).

Bralts (1984) used the coefficient of variation when the irrigation volume applied

equals the irrigation volume required, then the irrigation deficit is equal to 0.40 times the

coefficient ofvariation. As a result the application efficiency can be determined by the

equation:

Vr( 1 — PD)

Ea = 100 V = 100 (1 - 0.4 CV) (49) 

Figure 8, shows this relationship.

Hart and Reynolds, (1965) assumed that the standard deviation and the mean

drawn from a population sample adequately represent the actual mean and the variance of

the total population. Then, they used the coefficient of variation to analyze irrigation

system design. They used the normal probability density function:
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 e F i 3 (50)

Where:

N = number of observations;

q = class interval;

x = the value of an occurrence;

$2 = the mean ofthe sample; and

s = the standard deviation.

They, also, assumed that the population is continuous and that it is possible to

determine the fraction of the total number of observations falling between two points with

an equation:

-f)2

13

Ay = f e S (51) 

Replacing Ay with a, a with >‘<H, , and B with co, the equation becomes:
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(52)

where:

a = the fiaction under the normal curve from x = >‘<H, to x = co;

52H, = minimum application on the area a; and

H, = the fraction of the mean application (>7) 2 over the area a.

This equation can be used to compute the fraction of irrigated area in excess or

deficit.



Figure 5.

Figure 6.
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Application efficiency under sprinkler irrigation, (Wallace, 1987)

 

  

Deficit irrigation for 100% efficiency, (Wallace, 1987)
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H. Summary

Sprinkler irrigation uniformity is the measure of spatial variability of the

application ofwater to an irrigated area. Although a large number ofuniformity measures

have been in widespread use, none ofthem can claim to absolutely represent all the

characteristics of a real distribution. An extensive research has been done in this area.

However, the most common statistical measures are Christiansen's uniformity and the

coefficient of variation. The problem with Christiansen uniformity, is its susceptibillity to

arbitrariness of performance measurement. On the other hand, the coefficient ofvariation

uses the squares of the deviation from the mean rather than the deviations themselves. It

uses two statistical moments, the standrd deviation and the mean. Therefore, it gives a

better measure of dispersion.

The On-Farm Irrigation Committee was trying to provide standardized definitions

for irrigation efliciency terms, (Kruse, 1978). However, all the definitions of efficiency

terms are based on theoretical studies and lack empirical investigation and statistical

techniques. In addition, there are statistical relations between irrigation uniformity and

efficiency. Therefore, there is no simple or efficient method for field evaluation of

sprinkler irrigation systems. In this thesis, a simplified statistical method based on the

estimated coefficient of variation and statistical uniformity conceptwill be presented for the

field evaluation of sprinkler irrigation systems.



III. METHODOLOGY

A large body of theoretical research has been published regarding the various

aspects of sprinkler irrigation uniformity. The Literature Review indicated that most of

the work was concentrated in the area of variability ofwater distribution. However, there

is a lack of empirical research in this area. It was also apparent that a number of studies

followed traditional procedures advocated in the past by the Soil Conservation Service,

(SCS), and the American Society of Agricultural Engineers, (ASAE). These procedures,

despite their usefirlness, were tedious and laborious as well as time consuming. Many

attempts have been made to apply the coeflicient of variation and the statistical uniformity

concept to evaluation of sprinkler irrigation, however, there was no extensive research

made to investigate the practical usefulness of these concepts. In this study, 18 randomly

selected application depths were compared to the methods already in practical use by

applying the estimated coefficient ofvariation and estimated confidence limits. The latter

is called three low and three high method.

A. Research approach

There was a need to develop a simple, easy, quick, and relatively accurate method

to evaluate the irrigation uniformity of sprinkler irrigation systems. The ultimate goal was

to conserve water and energy for the irrigator as well as to maximize his profit.

The following approaches were adopted to achieve the stated research objectives.

57
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Objective 1.

Develop the statistical uniformity concept for field evaluation of sprinkler irrigation

systems based on the estimated coefficient of variation and estimated confidence limits

Research approach:

The procedure presented by Bralts and Kesner (1983) to develop an equation for

determining the coefficient of variation for drip irrigation from randomly selected times to

fill a specific container was applied to estimate the coefficient of variation for sprinkler

irrigation systems from Similarly selected depths.

The estimated coefficient of variation was calculated by first, independently

estimating the standard deviation and the mean. The coefficient of variation was then

obtained by dividing the standard deviation by the mean. The method used for estimating

the standard deviation uses the difference between two quantities drawn from the tails of

the normal distribution curve of observed values. The same method will be applied to

develop an equation for estimating the mean. A complete procedure to develop equations

for estimated coefficient of variation and estimated confidence limits was presented in the

theoretical development.

Objective 2.

Apply the estimated coefficient ofvariation and the statistical uniformity concept

with estimated confidence limits to field evaluation of sprinkler irrigation systems.
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Research approach

During this stage of analysis, collected data from sprinkler irrigation were analyzed

according to ASAE recommendation to compute the coefficient of variation. Then the

estimated CV was calculated for 18 randomly selected depths fi'om the actual data. The

three-low and three-high method will be applied to calculate the estimated CV. Finally,

the coefficient ofvariation was also computed for 18 depths by the standard deviation

method.

The software “SURFER, version 4.15. 1989.” and hand picked methods were

used to randomly select 18 depths for solid set sprinklers and center-pivot system

respectively.

The software “SURFER” was used for the following reasons:

1. It shows topographic and surface maps of the water distribution as

illustrated by figures 9 and figure 10;

2. It gives better chance of random selection; and

3. It closely estimates the unrecorded data points during the time of data

collection, because it uses ”minicurve” method with an accuracy of

(0.995).

Objective 3.

Evaluate the usefirlness of the estimated coefficient of variation and the estimated

confidence limits for field evaluation of sprinkler irrigation systems by statistical

comparison of the results to the methods already adopted to evaluate sprinkler systems.
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Research approach

The coefficient of variation from the actual data was compared to the estimated

coefficient of variation calculated by the “three-low and three-high method”. Then the

coefficient of variation resulted from 18 depths was, also, compared to the CV actual and

CV (low/high). The results were statistically tested using the coefficient of determination,

(R2) for field evaluation of sprinkler irrigation systems.

A nomograph was constructed by plotting the sum of three-lowest depths against

the sum ofthree-highest depths. Then, either the statistical uniformity or the coefficient of

variation can easily be found if one knows the required inputs.
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Figure 9. Topographic distribution ofwater from solid set sprinklers.

 

Figure 10. Surface distribution ofwater from solid set sprinklers.



62

B. Theoretical development

The procedure presented by Bralts and Kesner (1983) to develop an equation for

deterrrrining the coefficient of variation for drip irrigation from 18 randomly selected times

to fill a specific container will be followed to estimate the coefficient of variation for

sprinkler irrigation systems.

The development of a statistical method for estimating the coeflicient of variation,

i.e the standard deviation over the mean, was approached by first, considering methods,

for independently estimating the standard deviation and the mean.

1. Estimating the standard deviation:

The method used for estimating the standard deviation uses the difference between

two quantities drawn from the tails of the normal distribution curve of observed values,

Figure 11.

For a normal distribution using the sprinkler flow rates, q (liters per hour), as the

random variable, the sum ofthe observations in the upper portion of the distribution can

be expressed as:

Q.=Np[ci+Sq(Z..,)l (53)

where:

Qu = the sum of the observations in the upper portion of the distribution;
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N = the number of observations in the sample;

p = the proportion of the observations in the upper portion of the

distribution(0<p<0.5);

= the mean sprinkler flow rate;

S q = the standard deviation of sprinkler flow rates; and

Zn, — the mean abscissa in the upper portion ofthe standard normal variate, (u

=0, 0 =1).

It can be shown that Zup = y/p, where y is the ordinate height of the normal

probability density firnction.

 

 e (54)

Figure 11. Standard normal distribution curve, (Bralts, 1983).
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Np represents the number of observations in the upper portion of the distribution.

Expressing the sum ofthe lower portion in similar manner:

Q1 : Np I (I _ Sq (211)] (55)

Where:

Ql = the sum of observation in the lower portion ofthe distribution; and

Z1,, = the mean abscissa in the lower portion of the standard normal variate.

Based on these equations and the observation that Zup = y/p = 2,, the estimate of

the standard deviation of sprinkler flow rate, S,I is derived in the equation of the form:

1

Sq = m [Qu' Q1] (56)

An example of this method is presented by Bralts (1983). He used p equal to one

sixth, (p = 0.167), for which y = 0.25. In this case, Sq can be expressed as the difference

between the sums of the upper and the lower one-sixth of the distribution divided by one

half of the number of observations. Then the estimated standard deviation is given by the

equation:
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2

Sq: = N [ Qus - le ] (57)

Where:

Sq, = the estimate of the standard deviation of sprinkler flow rate when p =

0.167:

Q... = the sum ofthe observation in the upper one sixth of the distribution; and

Q, = the sum ofthe observation in the lower one sixth of the distribution.

2. Estimating the mean:

Since we assumed a normal distribution which is symmetrical about the mean, the

estimated mean sprinkler flow rate a, can be found by:

1
 — : +

q 2pNlQ, Q,] (58)

Setting p = 0.167, the above equation becomes:

i=310 +0.1 (59)
N US 3

Where all variables were as previously defined
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3. Estimating the coefficient of variation:

The coefficient of variation (CV,) is defined as the standard deviation (8,) divided

by the mean(q'). Then the equation for CVq becomes:

 

1 —

=§a=2legu Q1] (60)

q ‘7 4 ..
2pN[Qu Q1]

01'

CV _ PIQu_Q1]

‘1 yiQ,+Q,1 (6‘)

Setting p = 0.167, for which y = 0.25, will result in the estimated coeflicient of

variation as follows:

( Qus _ Q13 )

CV = 0.667

4: (Q... + Q...) ‘62)

If 18 random measurements of sprinkler or emitter flow rate were made, it would

only be necessary to sum the three-highest and the three-lowest values to estimate the
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coefficient of variation. The above equation can be rearranged to demonstrate the linear

nature ofthe terms Q,,, and Q,:

_ (0.667 + CV,,)

“3 _ (0.667 - CV,,) ” (63)

 

Thus, for any given coefficient of variation CV the Q“, varies linearly with Q,
<18,

Bralts, et al., (1983), also used, the inverse relationship of minimum time to

maximum emitter flow rate, so the above equation can be written as:

_ ( 0.667 + CVq, )

"‘3" ' ( 0.667 - C11,) mi“

 

(64)

The above equation can be modified to replace the time to fill specific container

by the depths collected in each catch can. As a result equation (61) becomes:

( 0.667 + CV )

= 9‘ - (65)
m“ ( 0.667 - CVq, ) "“n
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4. Estimating the confidence limits:

The confidence limits for the estimated coefficient of variation are in the literature

review using equations (42). The confidence limits for the coefficient of variation (CV,)

on samples from a normal population, (Bralts and Kesner, 1983, after Sokal and Rohlf,

1969) can be expressed as:

(CV, - tg SVqs CVJSCVq + 1% SVq) = l — 01 (66)

The standard deviation of the coefficient of variation can be calculated from the

equation:

 

 

CVq ([1 + 2 (CVq)2
(67)

JZTV

S =
CV,

Since these estimated confidence limits of estimated coefficient of variation are

dependent on the assumption of normal distribution,, these, limits can only be used as

approximate confidence limits of the estimated coefficient of variation.



IV. RESULTS AND DISCUSSION

A. Solid set sprinklers test

In this part of the analysis, data from Sichinga thesis (1975), Appendix A, were

input to the software “SURFER” to select 18 catch can depths. The coeflicients of

variation were calculated from the actual data by the standard deviation method, the by

three-low and three high method, and finally, CV3 were computed from 18 depths using

the standard deviation method all with 95% confidence limits, Table 10.

The objective was to apply the estimated coefficient of variation to field evaluation

of solid set sprinklers. Then to compare the results of estimated coefficient of variation to

the method already in practical use. Figure 12, illustrates the relationship between the

estimated CV from (low/high) to the CV from actual data calculated by standard deviation

method. Then the CV from actual data were compared to CV(18) calculated by standard

deviation method, as can be viewed by Figure 14. In addition, CV (low/high) was

compared to CV (18).

From figure 12 it can be seen that the estimated CV (low/high) is highly correlated

to the coefficient of variation from actual data with R2 = 0.956 with 95% confidence

limits.

Figure 13 shows the estimated confidence limits between the CV (low/high) and

the actual data. A comparison ofCV from actual data to CV (18) yielded R2 = 0.94 with

69
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95% confidence limits as it can be seen from figure 14 and figure 15.

Figures 16 and figure 17 show the relationships between the CV computed by the

three-low and three-high method compared to the CV from 18 depths for set sprinklers.

The coefficients of variation are highly correlated with R2 = 0.97 at 95% confidence limits.

From the above analysis of the linear regression of the CVs calculated by the three

methods, it is clear that there was no significant difference to use either of these methods

for the calculation of the coefficient of variation. It can be concluded that, the three-low

and three-high method is highly applicable for the field evaluation of solid set sprinklers,

it is very simple, easy and based on statistical background. In addition, it is quick, and

could conserve time and money for the farmer. Furthermore, it is a very usefirl tool for

conservation of energy and water to the farmer and the environment.
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Table 10. Coefficient of variation of solid set Sprinklers.

Sample CV (Actual) Number of CV (low/high) CV (18)

Number Points

1 0.109769 79 0.135037 0.144037

2 0.143215 79 0.135333 0.147215

3 0.14791 79 0.156848 0.148938

4 0.16619 79 0.166750 0.176876

5 0.1721 79 0.170628 0.185219

6 0.176896 79 0.173960 0.187173

7 0.184164 79 0.175526 0.190243

8 0.1855 79 0.182231 0.190909

9 0.189543 79 0.183667 0.194137

10 0.193973 79 0.188600 0.195064

11 0.19494 79 0.191877 0.210257

12 0.251356 79 0.204519 0.218163

13 0.26348 79 0.253648 0.265199

14 0.285035 79 0.276561 0.295780

15 0.356115 79 0.325366 0.310588     
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Figure 14. A comparison ofCV (actual) to CV (18).
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B. Turfgrass sprinklers

Data for this part ofthe results were obtained from Saffel, 1993, Hancock

Turfgrass Research Center, Department of Crop and Soil Science, MSU, Appendix B.

Actual data were entered into the software “SURFER” to select 18 catch can depths. The

coefficients of variation were calculated for the actual data, three-high and three-low for

18 depths, and from 18 depths by standard deviation methods. Table 11 shows the

coefficients ofvariation for each method.

The objective of this part ofthe research was to apply the estimated coefficient of

variation to the field evaluation of sprinkler irrigation on the turfgrass. Also the estimated

coefficient of variation was compared to methods already in practical use. The linear

regression analysis was used to statistically compare these coemcients of variation

methods.

Figures 18 and figure 19 illustrate the relationship between the CV from the actual

data to the estimated CV calculated by three-low and three-high from 18 randomly

selected depths. As it can be seen, the estimated CV (low/high) is highly correlated to the

CV ofthe actual data with R2 = 0.99 at 95% confidence limits.

Figures 20 and figure 21 show the relationships between the CV calculated from

18 randomly selected depths and the CV calculated from actual data with both computed

by the standard deviation method. These two methods are, also, highly correlated with R2

= 0.99 at 95% confidence limits.

When the estimated CV calculated by the three-low and three-high method was

compared to the CV from 18 depths computed by the standard deviation methods, the two
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methods show a close relationship, with R2 = 0.99 at 95% confidence limits, as shown by

figure 22 and figure 23.
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Table 11. Coefficient of variation for sprinklers on turf.

Sample CV (Actual) Number of CV (low/high) CV (18)

Number Points

1 0.162 100 0.152 0.161

2 0.249 100 0.259 0.249

3 0.269 100 0.279 0.269

4 0.272 100 0.281 0.272

5 0.279 100 0.282 0.280

6 0.288 100 0.283 0.288

7 0.303 100 0.301 0.303

8 0.306 100 0.319 0.305

9 0.306 100 0.324 0.307

10 0.307 100 0.333 0.307

11 0.341 100 0.333 0.341

12 0.357 100 0.356 0.356

13 0.387 100 0.392 0.388

14 0.413 100 0.415 0.413

15 0.432 100 0.437 0.432

16 0.456 100 0.453 0.456     
 

Data were obtainedfrom the Turfgrass Hancock Research Center, Saffel 1993.
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Figure 21. A comparison ofCV (actual) to CV (18) with 95%

confidence limits on turf.
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Figure 22. A comparison ofCV (low/high) to CV (l 8) on turf.
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Figure 23. A comparison ofCV (low/high) to CV (18) with 95%

confidence limits on turf.



C. Center-pivot system

The coefficients of variation for this analysis were computed from the simulated

data from Pandey,(1989, Appendix C. using the Heermann equation, and the estimated

coeflicients ofvariation using the three-low and three-high method without weighting as

81

done by Heermann and Hein and are presented in table 12.

 

 

 

 

 

 

Table 12. Coefficients of variation for center-pivot from simulated data.

Sample Number CV (Heermann) Number of Data CV(low/high)

Points

1 0.155 135 0.146

2 0.259 34 0.262

3 0.289 34 0.275

4 0.346 34 0.277

5 0.46 40 0.456     
Data were obtainedfiom Pandey 1989.

Actual data collected by Soil Conservation Service (SCS) at St Joseph, Appendix

C, were analyzed and the coefficients of variation were computed by, the Heermann

equation, the Soil Conservation Service (SCS) equation, and the three-low and three-high

method as shown in Table 13.
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Table 13. Coefficient of variation for center pivot from actual data.

 

 

 

 

 

 

Sample CV (Heermann) Number of CV (SCS) CV (low/high)

Number Data Points

1 0.135 61 0.150 0.160

2 0.16 49 0.180 0.196

3 0.261 27 0.260 0.272

4 0.278 27 0.280 0.287

5 0.334 25 0.280 0.296       
Data were obtainedfrom Soil Conservation Service, St. Joseph, 1995.

The objective was to apply the estimated CV to the field evaluation of center-pivot

system. The CV calculated by the Hermann method from simulated data was compared to

the coefficients of variation computed by the three-low and three-high method from

selected catch can depths. The two methods were closely correlated with R2 = 0.93 at

95% confidence limits as can be seen in figure 24 and figure 25.

When the actual data were analyzed, a comparison ofCV (Heermann) to CV

(SCS) resulted in R2 = 0.93 with 95% confidence lirrrits as illustrated by Figure 26 and

Figure 27. When the same CV (Heermann) was compared to CV (low/high) resulted in

R2 = 0.95 with 95% confidence limits as can be viewed in Figure 28 and Figure 29.

Further comparison ofCV (SCS) to CV (low/high) yielded R2 = 0.99 with 95%

confidence limits as can be seen in figure 30 and figure 31.
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Figure 24. A comparison ofCV (Heermann) to CV (low/high).
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Figure 25. A comparison ofCV (Heermann) to CV (low/high)

with 95% confidence limits.
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Figure 26. A comparison ofCV (Heermann) to CV (SCS).
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Figure 27. A comparison ofCV (Heermann) to CV (SCS) with

95% confidence limits.
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Figure 28. A comparison ofCV (Heermann) to CV (low/high).
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Figure 29. A comparison of CV (Heermann) to CV (low/high)

with 95% confidence limits.
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Figure 30. A comparison ofcv (SCS) to cv (low/high).
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D. A nomograph for sprinkler irrigation uniformity estimation.

The following equation will be used to construct a nomograph for sprinkler

irrigation systems.

The following values ofmaximum depths were obtained, if the values for the minimum

“m" _ ( 0.667 - CVqS) mi“

_ ( 0.667 + CVqS)
 

(66)

depths were taken from the randomly selected 18 depths at different confidence limits and

difi‘erent estimated coefficient of variations.

 

 

 

 

 

 

 

 

Table 14. Values ofmaximum depths at different coefficient of variations and known

minimum depths.

Dmin Dum Dm Dm,x Dmax Dmax

cv=0% CV= 10% cv=20% cv=30% CV=40%

0 O O O O O

50 50 67.65 92.83 131.70 199.80

100 100 135.30 185.65 263.50 399.60

150 150 203.00 278.48 395.00 599.40

200 200 271.00 371.31 527.00 799.25

250 250 338.00 464.00 658.72 999.06

300 300 406.00 556.95 790.50 1198.88        
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Figure 32. A nomograph for sprinkler irrigation systems

uniformity estimation.

Example:

Ifwe take the first 18 randomly selected set of depths from

appendix B, as follows:

42, 86, 98,100,101,104,l33,136,142,156,161,184,189,

202, 203, 204, 223, 227.

Sum of three lowest depths = 42 + 86 + 98 = 226 ml

Sum of three highest depths = 204 + 223 + 227 = 654 ml

From the x-axis (sum of three lowest depths) we read a value of 226,

then we read from the y-axis (sum of three highest depth) a value of 654,

then we proceed untill the two lines intersect where the uniformity

coefficient of the system = 67%



V. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The objectives of this research have been addressed in full. The estimated

coefficient of variation has been developed for the field evaluation of sprinkler irrigation

systems. The estimated coefficient of variation has been applied to evaluate the

distribution uniformity of sprinkler irrigation systems. In addition, the estimated

coefficient of variation was found to be very usefial tool for the field evaluation of

sprinkler irrigation systems. The method has been verified for the field evaluation of

sprinkler irrigation systems, by using the linear regression method with the estimated

coefficient of variation statistically correlated to the method already in practical use.

The method was found to be very simple, applicable to sprinkler irrigation systems,

and easy to handle by the farmer. In addition, it conserves time and money for the farmer

and conserves water and energy for crop production. As a result it is environmentally

sound

The specific conclusions were:

1. Solid set sprinklers: the estimated coefficient of variation from 18 random

depths for this system was statistically correlated to the coefficient of

variation from the actual data. The two methods were highly correlated at

95% confidence limits. The method could be easily applied for the field

evaluation of this system.
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2. Turfgrass sprinklers: the estimated coefficient of variation was statistically

compared to coefficient of variation from the actual data, and there was no

significant difference at 95% confidence limits to use either of these

methods for the field evaluation of this system.

3. For center-pivot system: the estimated coefficient of variation closely

approximated the statistical uniformity when compared to coefficient of

variation fiom actual data computed by the Heermann method.

4. A simplified statistical method for the field evaluation of sprinkler irrigation

systems has been developed from randomly selected 18 catch cans depths

. using the three-low and three-high method.

5. A nomograph to estimate the coefficient of variation or statistical

uniformity for sprinkler irrigation systems has been presented.

Recommendations

1. Analysis of other factors affecting irrigation uniformity such as pressure,

sprinkler spacing, nozzle diameter, and wind speed in the comparison.

2. Incorporation of other environmental factors, such as spacial variability of

soil type which may also affect the irrigation uniformity.

3. Comparison of coefficient ofvariation from Heermann equation to

coefficient of variation from Mariek equation together with estimated

coefficient of variation.
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Appendix A

Solid set sprinklers irrigation data

Data were obtained from Sichinga, 1975. M.S. thesis, Depart. of Agr. Engineering, MSU.

Water distribution from Rainbird 30 E-TNT sprinklers, at varied nozzle diameter,

pressure and wind speed.

setl

X X X

0.05 0.04 0.04 0.04 0.05 0.05 0.07

0.05 0.05 0.05 0.06 0.07 0.07 0.07 0.08 0.05 0.05 0.07 0.07 0.08

0.03 0.04 0.06 0.08 0.07 0.07 0.07 0.06 0.05 0.07 0.07 0.07 0.07

0.04 0.04 0.06 0.07 0.07 0.07 0.07 0.06 0.06 0.07 0.07 0.07 0.07

0.05 0.05 0.06 0.06 0.07 0.07 0.08 0.07 0.06 0.07 0.07 0.06 0.07

0.05 0.06 0.06 0.05 0.06 0.06 0.07 0.08 0.07 0.05 0.05 0.06 0.05

0.05 0.04 0.04 0.08 0.05 . 0.03 0.05

X X X

Figure 1. Water distribution from Rainbird 30 E-TNT sprinklers, 1/8 inch (3 mm) nozzle

X = position of sprinklers

Set2

X X X

0.08 0.03 0.07 0.07 0.04 0.07 0.08

0.06 0.04 0.04 0.06 0.07 0.08 0.07 0.04 0.05 0.07 0.07 0.07 0.08

0.03 0.03 0.04 0.04 0.06 0.04 0.07 0.03 0.05 0.06 0.06 0.05 0.07

0.04 0.03 0.03 0.04 0.04 0.04 0.04 0.03 0.05 0.07 0.07 0.04 0.04

0.04 0.03 0.03 0.04 0.04 0.05 0.08 0.07 0.04 0.05 0.06 0.05 0.05

0.04 0.03 0.04 0.04 0.05 0.07 0.07 0.06 0.05 0.04 0.04 0.07 0.05

0.04 0.03 0.04 0.07 0.04 0.04 0.05

X X X

Figure 2. Same as Figure 1, except wind spwd was 3.23 mph (1.44 m/s).

Set3

X X X

0.04 0.04 0.03 0.04 0.03 0.04 0.04

0.08 0.04 0.04 0.03 0.04 0.04 0.08 0.08 0.04 0.04 0.05 0.06 0.06

0.03 0.04 0.04 0.02 0.03 0.04 0.05 0.05 0.05 0.04 0.05 0.06 0.07

0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.06 0.05 0.04 0.04 0.05 0.06

0.05 0.04 0.04 0.04 0.04 0.06 0.07 0.06 0.04 0.04 0.05 0.05 0.05

0.08 0.05 0.03 0.04 0.05 0.06 0.07 0.07 0.05 0.04 0.04 0.04 0.05

0.05 0.03 0.03 0.03 0.04 0.03 0.04

X X X

Figure 3. Same as above except wind speed was 2.5 mph (1.12 m/s).
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Set4

X X X

0.09 0.07 0.07 0.16 0.08 0.08 0.09

0.08 0.1 0.09 0.09 0.08 0.1 0.16 0.14 0.11 0.1 0.09 0.09 0.09

0.08 0.09 0.1 0.11 0.09 0.09 0.1 0.11 0.12 0.11 0.1 0.09 0.09

0.08 0.09 0.11 0.12 0.11 0.09 0.1 0.11 0.12 0.12 0.11 0.1 0.09

0.08 0.1 0.11 0.11 0.11 0.11 0.12 0.12 0.12 0.12 0.12 0.11 0.08

0.07 0.09 0.11 0.12 0.14 0.13 0.12 0.14 0.14 0.12 0.12 0.11 0.09

0.09 0.09 0.14 0.16 0.12 0.11 0.09

X X X

Figure 4. The nozzle diameter was changed to 5/32 inch, (4 mm).

SetS

X X X

0.08 0.07 0.09 0.1 0.08 0.09 0.09

0.08 0.09 0.09 0.1 0.1 0.1 0.1 0.12 0.09 0.09 0.1 0.1 0.1

0.08 0.08 0.09 0.1 0.1 0.09 0.09 0.1 0.1 0.11 0.11 0.1 0.09

0.07 0.09 0.11 0.11 0.1 0.11 0.1 0.1 0.12 0.12 0.11 0.11 0.1

0.08 0.09 0.11 0.12 0.12 0.11 0.11 0.11 0.14 0.12 0.13 0.12 0.09

0.07 0.09 0.11 0.12 0.14 0.12 0.12 0.12 0.14 0.13 0.13 0.12 0.1

0.07 0.1 0.14 0.16 0.1 0.12 0.09

X X X

Figure 5. Nozzle diameter 5/32 inch (4 mm), pressure 60 psi, wind speed 3.76 mph

(1.67 m/s), N.W.

Set 6

X X X

0.1 0.06 0.08 0.1 0.07 0.07 0.07

0.14 0.09 0.1 0.07 0.08 0.1 0.17 0.12 0.09 0.09 0.08 0.08 0.08

0.08 0.08 0.08 0.08 0.08 0.08 0.1 0.1 0.09 0.1 0.09 0.08 0.07

0.08 0.09 0.1 0.09 0.09 0.09 0.1 0.1 0.1 0.1 0.09 0.09 0.07

0.08 0.1 0.1 0.1 0.11 0.11 0.13 0.11 0.1 0.1 0.09 0.08 0.07

0.07 0.09 0.1 0.11 0.12 0.12 0.12 0.11 0.11 0.09 0.09 0.08 0.07

0.08 0.09 0.11 0.15 0.1 0.05 0.08

X X X

Figure 6. Same as above except, wind speed 0.45 mph (0.20 m/s), N.W.



Set7

X

0.08

0.08 0.08

0.07 0.07

0.07 0.07

0.08 0.08

0.07 0.08

0.08

X

0.05

0.07

0.07

0.07

0.07

0.08

0.09

0.05

0.06

0.07

0.07

0.08

0.06
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0.07 0.1

0.07 0.09 0.1

0.07 0.09 0.1

0.08 0.11 0.13 0.1

0.1

0.1

0.1

X

0.1

0.1

0.11

0.12

X

0.09

0.09

0.09

0.11

0.06

0.07

0.07

0.07

0.07

0.09

0.11

0.07

0.07

0.07

0.07

0.07

0.05

0.07

0.07

0.08

0.07

0.07

0.08

0.07

0.07

0.07

0.07

0.07

X

0.07

0.07

0.07

0.07

0.05

0.06

0.06

X

Figure 7. Nozzle diameter 5/32 inch (4.0 mm), pressure 30 psi, wind speed 0.45 mph

Set 8

X

0.14 0.05

0.17 0.09 0.07 0.09

0.09 0.09 0.09 0.08

0.1 0.1

0.1 0.1

0.09 0.09

0.1

X

0.09

0.1

0.1

0.09

0.09

0.1

0.1

Figure 8. Same as above.

Set9

X

0.1

0.09 0.1

0.08 0.08

0.08 0.1

0.08 0.1

0.09 0.1

0.1

X

0.1

0.09

0.09

0.09

0.11

0.1

0.08

0.1

0.1

0.09

0.1

0.1

0.09

0.08

0.1

0.11

0.11

0.11

0.11

0.12

0.1

0.1

0.1

0.11

0.12

0.1

0.11

0.1

0.11

0.14

0.11

0.14

0.12

0.12

0.13

0.12

0.2

0.17

0.11

0.11

0.15

0.12

0.09

X

0.14

0.14

0.12

0.12

0.14

0.14

0.15

X

0.12

0.09

0.1

0.11

0.11

0.13

0.11

0.12

0.14

0.15

0.14

0.08

0.08

0.1

0.1

0.11

0.09

0.1

0.1

0.1

0.11

0.12

0.14

0.1

0.09

0.08

0.09

0.1

0.08

0.15

0.15

0.14

0.13

0.11

0.06

0.09

0.1

0.09

0.09

0.1

0.08

0.13

0.12

0.12

0.11

0.11

0.1

0.07

0.08

0.09

0.09

0.09

0.09

0.14

0.14

0.12

0.1

0.1

0.08

0.08

0.08

0.08

0.08

0.08

0.09

0.1

0.11

0.12

0.1

0.09

0.1

0.1

X

Figure 9. Nozzle diameter 3/16 inch (4.75 mm), pressure 30 psi, wind speed 3.9578
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Set 10

X X X

0.09 0.13 0.16 0.16 0.14 0.16 0.14

0.08 0.12 0.13 0.15 0.16 0.16 0.16 0.15 0.15 0.15 0.16 0.14 0.12

0.08 0.11 0.13 0.15 0.15 0.15 0.13 0.14 0.15 0.15 0.15 0.14 0.12

0.08 0.11 0.13 0.13 0.13 0.13 0.12 0.13 0.15 0.14 0.15 0.12 0.09

0.07 0.1 0.12 0.11 0.12 0.14 0.14 0.15 0.14 0.13 0.13 0.1 0.09

0.07 0.09 0.11 0.11 0.13 0.11 0.13 0.13 0.13 0.11 0.1 0.1 0.08

0.07 0.09 0.1 0.13 0.11 0.09 0.09

X X X

Figure 10. Same as above except pressure 40 psi.

Setll

X X X

0.06 0.03 0.04 0.04 0.06 0.04 0.08

0.07 0.04 0.03 0.03 0.04 0.07 0.13 0.07 0.04 0.03 0.04 0.05 0.06

0.03 0.04 0.02 0.03 0.04 0.06 0.08 0.08 0.05 0.04 0.04 0.07 0.08

0.06 0.06 0.06 0.06 0.07 0.07 0.1 0.08 0.07 0.06 0.07 0.08 0.1

0.06 0.07 0.08 0.07 0.06 0.1 0.1 0.1 0.11 0.1 0.09 0.1 0.12

0.07 0.07 0.07 0.06 0.1 0.12 0.13 0.12 0.12 0.1 0.09 0.1 0.1

0.06 0.07 0.07 0.1 0.08 0.1 0.08

X X X

Figure 11. Nozzle diameter 1/8 inch (3.175 mm), pressure 60 psi, wind speed 7.72 mph

Set 12

X X X

0.05 0.04 0.05 0.04 0.03 0.04 0.06

0.05 0.05 0.05 0.06 0.07 0.08 0.08 0.08 0.06 0.06 0.06 0.08 0.07

0.04 0.05 0.05 0.07 0.07 0.08 0.07 0.07 0.06 0.07 0.07 0.08 0.08

0.05 0.05 0.05 0.07 0.07 0.08 0.08 0.07 0.06 0.07 0.08 0.08 0.08

0.05 0.05 0.05 0.06 0.07 0.06 0.07 0.07 0.06 0.07 0.07 0.08 0.08

0.04 0.04 0.04 0.04 0.06 0.07 0.07 0.07 0.07 0.06 0.08 0.06 0.07

0.05 0.04 0.07 0.08 0.05 0.05 0.05

X X X

Figure 12. Same as above except wind speed 5.21 mph (2.33 m/s), N.W.
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Set 13

X X X

0.13 0.15 0.16 0.17 0.15 0.16 0.13

0.17 0.14 0.15 0.17 0.17 0.17 0.17 0.17 0.15 0.14 0.15 0.15 0.12

0.1 0.12 0.14 0.17 0.16 0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.13

0.12 0.13 0.14 0.15 0.16 0.16 0.16 0.15 0.16 0.15 0.16 0.14 0.11

0.12 0.14 0.14 0.14 0.15 0.18 0.18 0.16 0.15 0.15 0.15 0.13 0.11

0.1 0.13 0.14 0.14 0.16 0.17 0.17 0.16 0.16 0.15 0.14 0.12 0.12

0.08 0.13 0.16 0.17 0.13 0.11 0.13

X X X

Figure 13. Nozzle diameter 3/16 inch (4.75 mm), pressure 60 psi, wind speed 2.5 mph

Set 14

X X X

0.12 0.13 0.2 0.21 0.17 0.23 0.18

0.17 0.12 0.14 0.19 0.21 0.23 0.22 0.2 0.17 0.2 0.23 0.23 0.18

0.1 0.1 0.13 0.18 0.2 0.2 0.15 16 0.16 0.17 0.21 0.22 0.18

0.09 0.08 0.11 0.15 0.2 0.18 0.16 0.14 0.13 0.16 0.19 0.18 0.14

0.07 0.08 0.08 0.14 0.17 0.15 0.13 0.13 0.12 0.17 0.16 0.16 0.14

0.05 0.08 0.1 0.13 0.18 0.15 0.13 0.13 0.11 0.14 0.16 0.14 0.12

0.08 0.08 0.13 0.11 0.1 0.12 0.13

X X X

Figure 14. Same as above except wind speed 7.06 mph (3.16 m/s), S.W.

Set 15

X X X

0.13 0.12 0.15 0.13 0.12 0.17 0.15

0.13 0.09 0.13 0.15 0.15 0.17 0.17 0.12 0.12 0.15 0.17 0.16 0.13

0.06 0.09 0.13 0.14 0.15 0.13 0.1 0.09 0.13 0.16 0.15 0.16 0.13

0.06 0.1 0.13 0.15 0.13 0.12 0.11 0.11 0.14 0.16 0.15 0.12 0.1

0.07 0.09 0.12 0.13 0.12 0.13 0.12 0.14 0.13 0.12 0.11 0.11 0.11

0.09 0.1 0.1 0.11 0.11 0.09 0.11 0.11 0.11 0.11 0.1 0.1 0.1

0.1 0.07 0.09 0.09 0.09 0.08 0.1

X X X

Figure 15. Nozzle diameter as above, pressure 30 psi, wind speed 2.98 mph
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Interpolation of observed data using topographic maps by software SURFER.
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18 Randomly selected depths using Topographic distribution fiom software

SURFER, (using MinCurve Method)
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Appendix B

Turfgrass sprinklers irrigation data

These sprinkler irrigation data were obtained from Hancock Turfgrass Research Center,

Safi‘el, 1993. Dept. of Crop and Soil Science, MSU. The cups diameters were 11.46 11.4 cm.

The application rates were in mls. The sprinklers were spaced 10 m X 10 m .

Set] 46 46 46 42 46 42 42 44 50 100

64 88 70 86 96 98 102 104 104 11

40 78 74 106 114 129 146 170 135 126

30 70 90 140 152 164 170 190 160 140

30 70 112 165 184 196 190 220 180 144

40 108 169 196 214 210 220 236 180 170

50 130 194 234 250 250 236 202 184 160

70 142 206 234 270 273 260 229 186 154

98 156 226 246 274 270 263 224 220 210

101 188 186 210 244 220 222 183 154 179

Set2 89 100 120 126 122 114 108 99 98 152

61 108 148 158 162 160 162 149 146 138

23 84 140 180 205 216 205 200 176 142

21 92 154 200 222 238 236 226 198 150

30 100 160 212 227 250 240 194 206 162

34 110 172 218 240 250 255 236 210 169

52 138 180 230 222 247 260 240 210 160
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Actual data were input into the software SURFER for random selection of depths.

MiniCurve method was used for higher accuracy of 0.995.
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Center-pivot Irrigation System Data
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Appendix C

Center-pivot sprinkler irrigation data

Data were obtained from Pandey, 1989. M.S. thesis, Dept. of Agr.

Depth2 Depth3 Depth4 Depth5

inch

2

0.418

0.507

0.313

0.223

0.243

0.271

0.290

0.306

0.308

0.300

0.291

0.272

0.230

0.238

0.267

0.314

0.337

0.361

0.353

0.323

0.292

0.286

0.288

0.294

0.297

0.302

0.300

0.292

0.275

0.239

0.190

0.141

0.087

0.038

Engineering, MSU.

Distance Depth]

11 inch

1

25 0.403

50 0.491

75 0.303

100 0.217

125 0.239

150 0.265

175 0.283

200 0.296

225 0.301

250 0.293

275 0.28

300 0.263

325 0.219

350 0.227

375 0.256

400 0.301

425 0.323

450 0.346

475 0.337

500 0.307

525 0.279

550 0.274

575 0.274

600 0.28

625 0.283

650 0.285

675 0.284

700 0.278

725 0.266

750 0.232

775 0.184

800 0.203

825 0.150

850 0.103

875 0.067

900 0.063

925 0.061

950 0.058

975 0.054

1000 0.049

inch

3

0.528

0.623

0.385

0.263

0.308

0.342

0.350

0.358

0.355

0.364

0.363

0.325

0.299

0.313

0.350

0.385

0.414

0.444

0.433

0.397

0.359

0.352

0.354

0.362

0.365

0.374

0.372

0.358

0.331

0.284

0.224

0.169

0.105

0.065

inch

4

0.463

0.550

0.341

0.239

0.276

0.306

0.308

0.326

0.326

0.317

0.316

0.293

0.262

0.261

0.300

0.342

0.367

0.393

0.384

0.352

0.318

0.312

0.313

0.320

0.324

0.331

0.329

0.317

0.293

0.251

0.199

0.150

0.093

0.057

inch

5

0.413

0.511

0.336

0.356

0.295

0.332

0.356

0.387

0.391

0.382

0.357

0.338

0.285

0.284

0.335

0.381

0.411

0.437

0.427

0.404

0.365

0.337

0.363

0.360

0.341

0.342

0.371

0.374

0.357

0.307

0.249

0.177

0.084

0.037

 



Set 6 Station 11 0 10 20 30

0 1.045

100 1.427 1.428 1.327 1.187

200 1.083 1.123 1.057 1.018

300 0.948 0.974 0.935 0.934

400 0.91 0.915 0.907 0.922

500 0.898 0.892 0.893 0.904

600 0.892 0.899 0.902 0.904

700 0.936 0.943 0.937 0.924

800 0.88 0.883 0.874 0.868

900 0.876 0.868 0.846 0.849

1000 0.705 0.641 0.579 0.563

1100 0.826 0.851 0.886 0.875

1200 0.821 0.795 0.769 0.753

1300 1.063 0.912 0.758 0.626

18 hand-picked random depths:

l 2 3 4 5

0.054 0.087 0.105 0.093 0.084

0.061 0.141 0.169 0.150 0.177

0.067 0.230 0.299 0.262 0.285

0.203 0.239 0.284 0.251 0.307

0.219 0.267 0.350 0.300 0.335

0.232 0.271 0.342 0.306 0.332

0.256 0.272 0.325 0.293 0.338

0.265 0.275 0.331 0.293 0.357

0.274 0.288 0.354 0.313 0.363

0.274 0.292 0.359 0.318 0.365

0.278 0.297 0.365 0.324 0.341

0.28 0.300 0.364 0.317 0.382

0.285 0.300 0.372 0.329 0.371

0.296 0.306 0.358 0.326 0.387

0.301 0.313 0.385 0.341 0.336

0.307 0.337 0.414 0.367 0.411

0.323 0.353 0.433 0.384 0.427

0.337 0.418 0.528 0.463 0.413

CV 0.4557 0.277 0.275 0.274 0.262

Low/high

CV CV

Heermann low/high

1 0.460 0.456

2 0.259 0.277

3 0.346 0.275

4 0.288 0.274

5 0.289 0.262

6 0.155 0.146

106

1.503

1.23

1.057

0.988

0.945

0.900

0.915

0.931

0.879

0.857

0.551

0.845

0.742

0.517

0.579

0.753

0.788

0.801

0.821

0.827

0.828

0.845

0.851

0.88

0.882

0.89

0.892

0.912

0.924

0.935

0.948

1.427

0.146

50

1.888

1.212

1.021

0.95

0.916

0.89

0.904

0.925

0.878

0.854

0.543

0.834

0.716

0.408

1.863

1.109

0.958

0.935

0.907

0.884

0.909

0.909

0.872

0.843

0.586

0.838

0.676

0.279

70

1.708

1.149

0.967

0.958

0.917

0.891

0.93

0.909

0.884

0.828

0.645

0.824

1.311

0.132

80

1.620

1.170

0.967

0.922

0.890

0.893

0.94

0.901

0.881

0.801

0.712

0.814

1.277

90

1.464

1.084

0.927

0.903

0.884

0.888

0.937

0.882

0.869

0.763

0.788

0.827

1.191
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Appendix C Cont.

Data were obtained from Soil Conservation Service (SCS), St Joseph,

Michigan, 1995, for field evaluation of center-pivot irrigation systems

System 1 System 2 System 3 System 4 System 5

Sample Distence Depth 1 Depth 2 Depth 3 Depth 4 Depth 5

number ft ml ml m1 ml ml

1 3O 0 214 59 83 90

2 60 120 50 80 104 105

3 90 130 70 60 91 140

4 120 120 190 60 70 140

5 150 90 105 64 85 97

6 180 84 154 60 64 56

7 210 82 88 56 78 75

8 240 136 80 51 75 74

9 270 l 10 80 59 76 76

10 300 234 1 16 54 70 91

1 1 330 118 69 54 78 84

12 360 120 82 60 70 40

13 390 116 82 55 70 56

14 420 104 89 58 72 55

15 450 108 89 38 74 68

16 480 98 73 44 70 69

17 510 97 92 58 74 48

18 540 122 80 59 70 43

19 570 100 72 55 67 63

20 600 1 12 80 60 70 62

21 630 120 81 49 59 62

22 660 172 80 20 80 57

23 690 180 85 40 73 69

24 720 210 96 65 59 79

25 750 216 93 63 46 56

26 780 95 16 10 60

27 810 87 0 8 56

28 840 92 55

29 870 93 61

30 900 104 56

31 930 88 62

32 960 91 60

33 990 96 61

34 1020 95 66

35 1050 78 57

36 1080 94 64

37 1110 92 64

38 1140 106 61

39 1170 85 56

40 1200 93 58

41 1230 87 69

42 1260 98 19

 i5"
‘

.
1
.



43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

1290

1320

1350

1380

1410

1440

1470

1500

1530

1560

1590

1620

1650

1680

1710

1740

87

91

98

86

124

87

112

114

107

125

100

82

58

123

98

108
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