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ABSTRACT

RECURSIVE QUERY PROCESSING IN LARGE DATABASES

By

Sungwon Jung

Recursive database structures are the fundamental processing elements in numer-

ous important applications including navigation systems, recursive rule processing

in knowledge base systems, and processing IS-A hierarchy in object-oriented sys-

tems. Query processing for these types of structures is the focus of numerous current

database research projects, because traditional approaches are not suitable for this

kind of query processing. In this thesis, we have investigated query processing meth—

ods for large recursive relational databases. We have used automobile navigation

systems as one of the model applications. More general models for recursive queries

using transitive closures have also been investigated.

In automobile navigation systems, a topographical road map can be defined by a

large recursive relation, and “finding shortest paths” using this relation is a recursive

query. We have developed a HiTz' graph model for structuring large recursive relations

to speed up the shortest path computation. The HiTi graph model provides a novel

approach to abstracting and structuring a topographical road map in a hierarchical



fashion. We then proposed a new shortest path algorithm named SPAH, which

utilizes the hierarchical abstraction of a topographical road map for its computation.

Our performance analysis of SPAH showed that it dramatically reduces the search

space. Within the HiTi graph framework, we also studied the parallel processing

for intra and inter query Shortest path problems. Our empirical analysis of these

two problems revealed that the inter query Shortest path problem provides more

opportunity for scalable parallelism than the intra query Shortest path problem.

We then studied recursive query processing for distributed fragments of recursive

relations. The major performance issues involved were the description and location

of recursive fragments in a distributed environment. Traditional approaches to de-

scribing and locating a fragment in non-recursive databases were not effective here.

We have developed a new method for describing and locating recursive fragments

based on the mathematical properties of lattices. We showed that lattice structures

provide a good theoretical and practical basis for describing and locating recursive

fragments. The performance of this lattice approach was analyzed both theoretically

and experimentally in this thesis.
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Chapter 1

Introduction

1.1 Problem Description

Recursive relations have become one of the dominant types of relations in next gen-

eration databases such as deductive and object-oriented databases. The recursive

relation can be easily viewed as a directed graph. Each instance of attributes partic-

ipating in the transitive closure represents a node in the graph, and each tuple in the

relation represents an arc [53]. The above recursive relation is usually called an edge

relation, where each tuple corresponds to a labeled edge. Traditionally, the recursive

relation refers to this edge relation. Queries are recursive if they are defined over re-

cursive relations and their processing requires transitive closure computations. These

recursive queries also must access detailed information about the nodes. Thus, we are

defining another type of relation, called a node relation, where each tuple represents

the detailed information of a node in the graph.

A significant amount of research has been done on recursive relations, primar-
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ily in computing transitive closures [4, 42, 46, 49, 50, 57, 74, 83, 99, 102]. This is

- because every linearly recursive query requires transitive closure computation [52].

The-Shortest path problem is a Special case of the transitive closure computation

problem. The shortest path problem is fundamental for processing road map queries.

Very large recursive relations are needed to store topographical road maps. Previ-

ously suggested transitive closure or graph traversal algorithms are not suitable for

shortest path computations on topographical road maps because of their large search

space.

III this thesis, we will first study an efficient database organization method that

allows us to speed up the single pair shortest path (SPSP) computation from source

to destination nodes on large topographical road maps. We will then investigate a

fast SPSP algorithm that takes advantage of our proposed data organization method.

The efficiency of our proposed SPSP algorithm and data organization method will be

thoroughly analyzed on two dimensional grid graphs. Two dimensional grid graphs

are considered to be typical examples of topographical road maps [64, 91]. Grid

graphs not only closely model topographical road maps but also provide road map

databases for controlled analysis of our algorithms.

This thesis wll then examine the parallel processing for intra and inter query SPSP

problems on large topographical road maps. Intro query SPSP problems deal with

parallelizing a Single transaction of SPSP computation for further speedup, while inter

parallel SPSP problems deal with computing multiple SPSP transactions in parallel.

The inter query SPSP problem arises in the domain of automobile navigation systems

where a single central server provides route information to automobile navigators. In
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these systems, many vehicles send their SPSP computation requests to a central

server and the server must be able to compute these multiple SPSP computation

transactions within a reasonable amount of time. Thus, it is very useful to develop

an efficient inter query parallel SPSP algorithm.

In a centralized database, the primary concern of recursive query processing is

an efficient transitive closure computation (i.e., a Shortest path computation for to-

pographical road maps). However, in a distributed database system, the problems

of describing and locating data are interrelated, and their optimization is an impor-

tant goal for recursive query processing. One important optimization parameter for

describing and locating distributed data-is the data transmission cost, because this

is a major performance bottleneck in distributed query processing. In distributed

database systems, it is often convenient and beneficial to fragment and distribute

data according to referencing frequency or locality. By storing only frequently ac-

cessed data at the site, we can significantly reduce the data maintenance and trans-

mission cost. In recursive relations, frequently accessed data are likely to be related

through the transitive relationships between them.

Most papers on parallel and distributed computation of transitive closure (includ-

ing the shortest path computation) have used either predicates or hash functions to

describe, distribute, and locate the data [32, 45, 47, 74, 84, 102]. However, the above

two methods are not suitable for describing and locating the distributed fragments

because they do not properly capture transitive relationships between data. In this

thesis, we will investigate the problem of describing distributed fragments of the re-

cursive relation that capture transitive relationships between data. Next, we will
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show how to locally determine the location of the remote fragments of the recursive

relation. By locally determining the location of remote fragments, we can avoid a

Significant amount of communication cost for recursive query processing.

1.2 Previous Works and Our Approach

Shortest path problems have been the fundamental problems in computer science.

Therefore, a Significant amount of research has been done on these problems, and

excellent survey papers can be found in [23, 25, 31, 34, 81]. In the domain of auto-

mobile navigation systems where a database contains large recursive relations such

as topographical road maps, one of the primary functions is to compute the shortest

route from the current location (i.e. where a driver is) to the destination (i.e. where

the driver wants to go). Thus, computing SPSP is also essential for processing of

road map queries. As a database problem, the SPSP problem has been traditionally

studied as a special case of Single source and all pair Shortest path problems in the

context of recursive query processing [7, 8, 46, 65, 86, 101], transitive closure computa-

tion [3, 21, 22, 40, 48, 49, 52, 53, 57, 70, 103], and database query languages [2, 26, 71].

However, due to the large search Space a topographical road map creates [64], these

single source or all pair shortest paths algorithms are not suitable for computing

SPSP on this kind of map.

Dijkstra first proposed an algorithm developed Specifically for SPSP problems [24].

This algorithm further reduces the search space required by single—source and all-pair

shortest path algorithms. However, the search Space Dijkstra’s algorithm has to
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explore still remains very large when large topographical road maps are considered.

Nicholson [77] proposed a scheme that finds SPSP by alternately building two trees,

one rooted at the source node and the other rooted at the destination node. By

exploring the search space from both ends simultaneously, his algorithm can reduce

the explored search Space of Dijkstra’s algorithm by roughly half.

Another approach to reducing the explored search Space is to use semantic in-

formation about the domain of topographical road maps. That is, each node in the

graph corresponding to a topographical road map has its distinct coordinates repre-

sented in terms of longitude and latitude. By taking advantages of this information,

we can estimate the cost of the Shortest path between any two nodes. Either Eu-

clidean or Manhattan distances are usually used for the estimation of shortest path

cost between nodes. A* algorithm [30] is a typical example of this approach. A*

algorithm using Manhattan distance estimation gives an optimal shortest path only

when edge costs are uniform. This is because when edge costs are nonuniform, the

Manhattan distance is usually overestimated. Unlike A* algorithm using Manhattan

distance estimation, A* algorithm using Euclidean distance estimation always gives

optimal Shortest paths. The performance of A* algorithm was empirically analyzed

on grid graphs as well as on actual topographical road maps by Pearl and Shekhar

et. al. in [80,91].

Pearl [80] showed that A* algorithm was more efficient than Breadth First Search

(BFS) [20] when the database fit in main memory. However, Pearl’s analysis did not

examine the effect of path length and edge costs on the relative performance of A*

algorithm. This was later analyzed by Shekhar et. al. [91]. Their analysis was done on
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10 x 10, 20 x 20, and 30 x 30 grid graphs with different edge-cost distributions and one

actual digitized Minneapolis road map consisting of 1089 nodes and 3300 edges. Their

analysis shows that A* outperforms BFS if the path (source,destination) is much

smaller than the diameter of the graph, or if the edge—cost distribution is skewed.

The explored search space can be further reduced by combining A* algorithm and

Nicholson’s two-tree building approach. That is, each tree is expanded by using A*

algorithm. Mohr and Pasche [72] proposed a new SPSP algorithm named 0T0, which

is a hybrid of A* and Nicholson’s algorithms. They provided an empirical analysis of

0T0, Nicholson’s, A*, and Dijkstra’s algorithms on three grid graphs (i.e., 100 x 100

nodes with three different edge cost distributions) and one road map of Switzerland

(i.e., 3937 nodes and 12500 edges). For their empirical analysis, they used Manhattan

distance as the estimation of shortest path cost between nodes. Their analysis showed

that 0T0 outperforms Dijkstra and A* algorithms. The 0T0 algorithm was also

Shown to perform far better than Nicholson’s if the degree of edge cost variation is

not high.

Agrawal and Jagadish [5] developed a data organization approach to further speed

up SPSP computation. Their approach was to precompute some partially precom-

puted path information and then use it at run time to prune the explored search

space. This data organization technique assumes that a graph (i.e., topographical

road map) can be decomposed into a set of subgraphs. This assumption is reasonable

in the domain of road maps, since a large road map can be easily decomposed into

a set of small sub-road maps. While this approach gives much faster computation

time than all the algorithms discussed above, it has additional storage overhead and



update complexity.

Although the approach of Agrawal and Jagadish speeds up the Shortest path

computation Significantly, it does not optimize processing the shortest path queries

based on road map navigation. The reason for this is that the shortest path obtained

from their approach still includes all the detail intermediate nodes between the source

and destination, and navigators do not usually need this information. This problem

would be very serious if we needed to compute a shortest path on a large topographical

road map on which the discretized interval is fine—grained, and the two end nodes

on the path are far apart. To cope with this problem, we have developed a HiTi

(Hierarchical mulTi) graph model of very large recursive relations (e.g., topographical

road maps).

The HiTi graph provides a novel approach to abstracting and structuring road

maps in a hierarchical fashion. It is modeled after the mechanism people use to select

a route on a road map. That is, when a person wants to find the shortest route

from a current location in one state to a destination point in another, he/she usually

reads road maps in a deceasing map-scale order. For example, a driver who wants

to find the shortest path from a current location in East Lansing to a destination

in Los Angeles, will consult the highway road map for the entire U.S.A. first. The

person will then find a more detailed highway connection by reading state road maps

(i.e., Michigan, and California). Finally, the driver will consult city road maps of

East Lansing and Los Angeles to find very detailed information about the starting

point and destination. By maintaining road maps in this hierarchical structure, HiTi

graphs provide the following three features:
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1. They allow the computation of a Shortest path without having to search through

all the detailed maps of the intermediate states and cities.

2. They provide a basis for storing road maps at various levels of hierarchical ab—

straction. Thus, a more controlled storage management suitable for navigation

systems (e.g., automobile navigation systems) with limited available storage can

be built.

3. They are able to support various types of database queries on hierarchical ab-

stractions of a road map.

HiTi graphs, therefore, provide a powerful framework for implementing road-map

queries (e.g., shortest-path computation) as well as for storing very large topograph~

ical road maps. We developed a new Shortest-path algorithm named S'PAH, which

utilizes HiTi graph structure. By taking advantage of hierarchical edge levels in the

HiTi graph, SPAH Significantly reduces the explored search space. The performance

of SPAH can be further improved if Euclidean distance estimation is used. Although

SPAH reduces the explored search space significantly, its performance improvement

is limited by the computation power of a single processor.

In order to overcome this performance limitation, we studied parallel processing

for Shortest path problems. In this study, we considered not only intra but also inter

query SPSP problems. Intro query parallel SPSP problems deal with parallelizing a

single pair Shortest path transaction, whereas inter query SPSP problems deal with

parallelizing multiple Single-pair shortest-path computations. Mohr and Pasche [72]

proposed an intra parallel SPSP algorithm called 0T0par, which is a parallel im-
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plementation of the 0T0 algorithm mentioned above. That is, two processors are

used in OTOpar, and each processor executes A* algorithm with Manhattan distance

estimation to build its corresponding tree. To the best of our knowledge, no previous

work has been done OII inter query SPSP problems.

The 0T0par algorithm is not scalable because its use of only two processors

limits its performance improvement. Therefore, we need a parallel intro query SPSP

algorithm that is more scalable and fine-grained than OTOpar. In this thesis, we

proposed both intra query and inter query parallel SPSP algorithms named PASPAH

and MISPAH respectively. These two algorithms are based on the HiTi graph

structure. The HiTi graph structure provides the opportunity for fine-grained parallel

processing for intra query SPSP problems. This is because multiple parallel shortest-

path computations can be initiated based on the nodes at a higher level of abstraction

of a topographical road map.

This far, we have discussed recursive query processing in a centralized database

system where data are stored at a single location. In this environment, the primary

goal of optimizing recursive query processing is to speed up either Shortest path

computation or, more generally, transitive closure computation. Location of the data

in recursive relations is not an issue because they are all in one location. However, in a

distributed database system, recursive relations are often fragmented and distributed

over various sites to reduce the data maintenance cost and the data access cost. Each

site stores the data (i.e., fragments) that are frequently accessed at that sites. In such

a system, the reduction of transmission of data between sites is also very critical for

the optimization of recursive query processing. Thus, we need an efficient fragment
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description and location method to avoid the significant communication costs for

query processing. This could be achieved by keeping remote fragment descriptions in

local Sites.

Most papers on parallel and distributed computation of transitive closure (includ-

ing the shortest path) have used either predicates or hash functions to fragment,

distribute, and identify the data in recursive relations [32, 45, 47, 74, 84, 102]. Huang

et.al. [45] and Valduriez et.al. [102], studied the parallel computation of transitive

closures where a hash function is applied to fragment a recursive relation. Gan-

guly et.al. [32] suggested a framework for the parallel processing of datalog queries

where hash functions are also used to fragment recursive relations. Nejdl et.al. [74]

studied evaluating recursive queries in distributed databases in which recursive rela-

tions are fragmented by predicates. However, these fragmentation criteria, defined by

hash functions or predicates, are not suitable for fragmenting recursive relations in

distributed environments. This is because they do not properly capture the referenc-

ing locality of data, which is of paramount importance to the success of distributed

database systems. Locality often comes from the transitive relationships between

data. Stated another way, relevant data, frequently accessed by recursive queries,

are likely to be related in the transitive closures. Hence, in distributed databases,

fragmentation criteria based on the transitive relationship are considered to be more

suitable for recursive relations than traditional criteria.

Based on the criteria defined by transitive relationships, we developed a method

to describe and locate the fragments of a recursive relation. Our method uses lattice

structures. Lattice structures provide a powerful mathematical representation tool
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for the description of recursive fragments. A distinct set of lattices describes each

recursive fragment. This lattice representation provides a concise but flexible frag-

ment description. It is concise in that a large recursive fragment is represented by

a small set of lattices. At the same time, it is flexible in that it can represent any

type of recursive fragment. Finding the optimal lattice descriptions of fragments is

Shown to be an NP-complete problem. We proposed an efficient heuristics for this

problem. The performance of our heuristics was analyzed theoretically as' well as

empirically. The empirical analysis Showed that our heuristics gives a near-optimal

lattice description. The lattice approach creates unique update problems. We have

extensively analyzed the performance of our proposed update algorithms.

1.3 Dissertation Outline

The structure of this thesis is as follows: Chapter 2 presents a HiTi graph model

of large recursive relations for efficiently computing an optimal single pair shortest

path. In Chapter 3, parallel processing for intra and inter single pair shortest path

problems is discussed. Chapter 4 presents a methodology for describing and locating

the distributed fragments of recursive relations in a distributed database. Chapter 5

concludes the thesis with a list of future research issues.

The following parts of this thesis have been published: The content of chapter 2

appears in [59]. The content of Chapter 4 appears in [82]. The content of Appendix

A appears in [58]. Appendix B [60] and C [104] are being submitted. Chapter 3 will.

be submitted after additional work has been done.



Chapter 2

HiTi Graph Model Of Large

Recursive Relations for the

Shortest Path Computation

In navigation systems, a primary task is to compute the minimum cost route from the

current location to the destination. One of the major problems for navigation systems

is that a significant amount of computation time is required to find a minimum

cost path when the topographical road map is large. Since navigation systems are

real time systems, it is critical that the path be computed while satisfying a time

constraint. An efficient database organization method is proposed for structuring a

topographical road map to speed up the computation of a minimum cost path. Data

organization methods previously suggested either do not allow optimal minimum cost

path generation or require searching all intermediate nodes on the minimum cost path.

12
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In navigation systems, a navigator may not have to know all the intermediate nodes to

go from the current location to destination. In this chapter, we propose a new graph

model named HiTi (Hierarchical mulTi graph model), for efficiently computing an

optimal minimum cost path. Multiple levels of geographical boundaries (e.g. cities,

counties, and states) can be easily mapped into the hierarchical structure of the

proposed graph model. Various levels of hierarchical abstractions can also serve as

the basis for efficient storage management for large road maps. Thus, it provides the

basis to develop a more controlled storage management suitable for navigation systems

with limited available storage (e.g., navigation system inside an automobile). Based

on HiTi graph model, we propose a new single pair minimum cost path algorithm.

We empirically Show that our proposed algorithm dramatically reduces the explored

search space. Further, we empirically analyze our algorithm by varying both edge

cost distribution and hierarchical level number of HiTi graphs.
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2.1 Introduction

III navigation systems, a primary function is to find possible routes from the current

location (e.g., where a driver is currently positioned) to the destination (e.g., where

the driver wants to go) with a minimum expected cost. For this purpose, they use a

topographical road map which is in the form of the following recursive relation :

topographical.road-map (source, destination, cost)

where the cost attribute indicates, for example, a minimum expected time of travel

from point source to point destination. Another applicable cost can be the Shortest

distance between the two end points.

One of the major difficulties of navigation systems is the size of the topographical

road map data. It requires about 2.4 Gbytes of storage to store a small 100 mi x

100 mi map discretized at 100 feet intervals [5, 64]. Thus, the size of data involved is

very large when larger maps are considered. Minimum cost route computation with

this large amount of road map data requires a Significant amount of computation time.

Since navigation systems are real time systems, it is critical to compute a minimum

cost route satisfying a time constraint.

Previously suggested transitive closure or graph traversal algorithms [4, 46, 49,

50, 57, 83, 86, 99] are not directly applicable to topographical-road-map (source,

destination, cost) for the computation of a minimum cost path due to the very large

volume of data they have to search. Thus, we need an efficient database organization

method for structuring the topographical road map to speed up the computation of



15

a minimum cost path. In this regard, two different approaches have been studied in

the past. One approach is to develop a database structure which gives a suboptimal

minimum cost path quickly. The other is to develop the database structure which

gives an optimal Shortest path.

For the suboptimal shortest path generation, Ishikawa et. al., Shapiro et. al., and

Liu et. al. used road hierarchies (i.e., Freeways, Highways, . . ., Side roads) to speed up

minimum cost routes [51, 68, 89, 107]. They used multiple levels of hierarchical details

of road maps to cut down the unnecessary search Space. Ishikawa et. al. [51] applied

Dijkstra algorithm to the hierarchically structured road maps. Shapiro et. al. [89]

proposed a new graph structure, named LGS' (Level Graph Structure) which models

the road hierarchies theoretically. Based on LGS, Shapiro et. al. gave a new algorithm

which generates approximate shortest paths rapidly. Their study Showed that the

length of the path produced by LGS converges rapidly to that of the actual minimum

cost path as the distance between the source and destination nodes increases. Liu et.

al. [68] studied integrating Dijkstra’s algorithm with an Al knowledge—based approach

and case-based reasoning for computing a minimum cost path.

For the optimal Shortest path generation, Agrawal and Jagadish recently studied

a data organization technique which precomputes and stores some partial path infor-

mation [5]. They use the precomputed partial path information to prune the search

space when computing a minimum cost path. While their approach Speeds up the

computation of a minimum cost path, it does not optimize processing minimum cost

path queries based on road map navigation. The reason is that their approach still
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requires searching all the intermediate nodes on a minimum cost path. In navigation

systems, it is not necessary for a navigator to know all the intermediate nodes on

a minimum cost path. This can be illustrated by the following example. Consider

an automobile navigation system where a driver wants to find a minimum cost path

from a place in East Lansing to a destination point in New York city. He/she needs

to know more about detailed route information near East Lansing and New York

city than those in other intermediate places (e.g., Toledo, and Pittsburgh). It is not

likely that that person has to know about detailed route information within all the

intermediate cities. The rational for this is based on the following two observations.

First, a driver likes to have detailed route information near East Lansing to get into

an interstate highway from a current location in East Lansing. Second, he/she needs

to know detailed route information near New York city to get into the local road

which leads to the destination point in New York city.

The above problem would be Very serious if we need to compute a minimum cost

path on a large topographical road map where its discretized interval is fine-grained

and two end nodes on the path are far apart. To cope with this problem, we have

developed a HiTi (Hierarchical mulTi) graph model of very large recursive relations

(e.g., topographical road maps). In the following paragraphs, we will first describe

Hi Ti graphs informally followed by a more formal description of the model.

Consider a topographical road map viewed as a directed graph G( V, E). Nodes in

V correspond to discretized grid points representing map objects in a road map. Edges

in E correspond to the connections between the nodes in V. Then, regional bound-
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aries partition a road map C(V, E) into a set of Component ROad Maps (CROM)

exclusively. Each CROM can be viewed as a subgraph with its boundary nodes defin-

ing the boundary of the CROM. Connectivity between CROMS is represented by the

connectivity of their boundary nodes. One CROM has direct connections with an-

other, if boundary nodes of the former are directly connected to boundary nodes of

the latter. We call this kind of connectivity as between connections of CROMS. For

each CROM, we precompute the cost for each pair of connected boundary nodes. If

two boundary nodes of the same CROM are connected by a path solely contained

within the CROM, we call this a within connection. By using the between and within

connections, we can partition the entire road map. Examples of between and within

connections of CROMS are shown in Figure 1.1 where dotted lines represent regional

boundaries.

Withinconnection forCROM 1:

“MD!

Within connection for CROM 2:

1(B.C).(B.D).(C.D)l

Within connection for CROM 3:

[(EG).(B.F).(F.G)I

Betweenconneetion forCROM I and2:

1(A.B)l

Between connection for CROM 2 and 3:

((C3).(D.F)l

Between connection for CROM] and 3:

101.0”

 

 

Figure 2.1: Examples of within and between connection of CROMS

HiTi graph is a graph whose nodes are the boundary nodes of the CROMS and

edges are the within and between connections of CROMS. Note that a CROM can be
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defined to contain a set of CROMS, thus creating a multi level hierarchy. Thus, we

first need to determine a set of the lowest level CROMS which exclusively partition an

entire road map. We call these CROMS as level 1 CROMS. Then, we can recursively

construct a set of level k CROMS by grouping a set of geographically adjacent level

19-] CROMS where k 2 2. These sets of level I, 2, . .. ,k CROMS form a complete

balanced tree structure where the root node of the tree is a whole road map. For

example, consider a topographical road map covering the entire area of U.S.A. The

U.S.A. consists of 4 subregions which are Eastern, Midwestern, Southern and Western

regions. These 4 regions consist of their subregions which are the states of U.S.A.

Each state consists of a set of counties and each county consists of a set of cities. If

a city road map is defined as basic i.e., level 1, CROMS, then level 2 CROMS are

county road maps, level 3 CROMS the state road maps, and SO on.

Given a complete balanced tree representing level I, 2, ,k CROMS, level 1

CROMS will be the leaf nodes, i.e., level 1 node of the tree. Each level 2 nodes ‘of the

tree will represent the level 2 CROMS and capture the between and within connections

of the level 1 CROMS. Thus, in general, a complete balanced tree has 1 thru k levels

corresponding to 1 thru k level CROMS. A level i (S k) node of the tree corresponds

to between connections of level i CROMS plus level 1 within connections. Note that

level 1 within connections capture the between and within connections of the level

1— 1 CROMS that corresponds to the child nodes of the tree. A HiTi graph is named

the level I: Hi Ti graph if its nodes and edges represent boundary nodes, between and

within connections of level I, .‘3, ,k CROMS. The HiTi graph constructed for the
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United States example above is a level 4 Hi Ti graph.

The rest of the paper is organized as follows. In section 2.2, a formal framework

and description of HiTi graphs are discussed. In section 2.3, we propose and empiri-

cally analyzed a new Single pair shortest path algorithm that takes advantage of HiTi

graphs. Section 2.5 discusses the effects of updates on HiTi graphs. Finally, section

2.6 gives concluding remarks.

2.2 Formal Framework and Description of HiTi

Graphs

Recursive relations have the generic form R (attl, attz, att3) where attributes satisfy

the following 3 conditions:

1. attl and att-z are the key attributes of R and share the same domain

2. att, and att-z are the recursive join attributes and their corresponding values

are related by some transitive relationship

3. att3 describes the transitive relationship between attl and attg

Based on the above generic form, a recursive relation can be viewed as a directed

graph G(V, E). Each node in V is represented by the value of attl. Each edge in E

is represented by values of (attl, attg, att3).
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Suppose that a recursive relation G(V, E) is partitioned into a set of subgraphs

(i.e. SG] (141,531), SG; (V21,E._}), ..., SG1 (VulnEl ) ) such that:
1Ij 1I1

V,‘OV.,‘u-~uv‘ =v, E,‘uE,§u---uE‘ CE
n1 n1

Vilfll/j1 = w and £3,105};- = Q) where 1Si,an] and iyéj

We name SG} (V3, E3) a level 1 subgraph i and the connections between all level 1

subgraphs are captured in PE1 2 E— (E,1 U E} U- - -U E},l ). Then, each (:r,y,z) E PEl

has the property that a: 6 V,‘ and y 6 V].1 where i 9i j. Note that (:r,y,z) corresponds

to (attl, attg, att3) where a: = attl, y = attg, z = att3.

Definition 2.2.1 Let N,1 denotes a set of nodes in SC} (Vil, E3) connected to/from

nodes in other subgraphs SG] (VJ-1, E,‘) where i 79 j and 1 S i,j S n1. Specifically,

N,‘ ={;r|(a:,y,z) 6 PE1 /\ :1: 6 V,‘} U {y|(;r,y,z) 6 PE1 /\ y 6 14‘}. Set

N-1 is called level I boundary nodes of SG}.
3

 

Figure 2.2: A digraph G and its level 1 subgraph SG], SG; and 5G;
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For example, consider Figure 2.2 where a digraph G and its subgraphs SG}, SG; and

5G}, are Shown. Set N21 of subgraph SG; is { G, H, M, O }. Each level 1 subgraph

is described and identified by its boundary nodes, since they exclusively belong to

one level 1 subgraph. Based on boundary nodes of 56'}, definition 2.2.2 gives formal

definitions of level 1 between and within edge sets B} and W,‘ of SG].

Definition 2.2.2 Let { SG} ,1,E,l) | j = l,n1 } be a set of level I subgraphs of

graph G(V, E) with the corresponding N}. Then, for each SG} where 1 S i S n1,

B.’ ={ (as/,2) I (an?!) 6 PE‘ A w 6 V9 } and W3 ={ ($,y,fz(2=,y)) | (55,3116

(N1 x N3) A (x’fl’y in SCI) /\ as ye y}.

Each set B} contains an edge (:r,y,z) if there is an edge (x,y,z) in PE1 where a:

is in SG} and y is in a different level 1 subgraph. In other words, set B} contains

connectivity information between level 1 subgraph SG} and other level 1 subgraphs

of G(V, E). Then, the following condition holds:

1 _ n 1

PE ._ u,;,B,-

11.1

From the above, it can be noted that edges in szlBJl exclusively partition graph

G(V, E) into a set of subgraphs SG] (V,‘, E]), SG; (V21, E1), ..., 5G,!“ (an1, EL).

Each set W} contains an edge (2:, y, fz(:r,y)) if there exists a directed path from

the boundary nodes .7: to y of 5G}. Function fz(a:,y) gives an aggregated cost (i.e.

from node 2: to y) with respect to :3 within SG}. In other words, each edge in W?

represents additional precomputed connectivity information of boundary nodes within
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SG,! . Thus,

it 1 n 1 n 1

AS an example, Table 2.2 shows the corresponding values of N}, B} and W} of the

three subgraphs Shown in Figure 2.2. In the following example, fz(:r, y) gives the cost

of a minimum expected time of travel between node 2: and y.

 

N-1 B.1 w}
 

       

1 {Or} {(D,G,2),(F,H,3)} {(P,D,4)}

2 {G’H’MIO} {(OIQI2)I(MIRI4)7(GIFI2)} {(GIOI6)’(G1M’3)’(H1M’3)}

3 {QiR} 0 (0
 

Table 2.1: N}, B}, and W-1 of SG} in Figure 2.2
I

So far, we have introduced level 1 subgraphs and their associated information such

as level 1 Boundary node sets, and between and within edge sets. In general, based

on these level 1 subgraphs and their associated information, we can recursively define

level I: subgraphs SG]c and their corresponding N}, B}, and W} for any h 2 2. Their

details are discussed in the following definitions.

Definition 2.2.3 Let \II"‘1 = { 5qu (Vik'l, Eff-l) I i = 1,nk_1 } be the set of

all level k-I subgraphs of graph G(V, E) where k 2 2. Then, a level I: subgraph

SG]c (Vf, Ef) is defined as a subgraph induced by all nodes of level k-I subgraphs in

(I) Q ‘11,“1 where [CPI Z 2.

After all level k subgraphs in \II" are defined, the following three requirements must

be satisfied:

1. Each level k-I subgraph in ‘1‘,“1 is a subgraph of some. level I: subgraph in ‘1”.
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2. All level It subgraphs in W“ do not overlap among themselves. That is,

V,"uV,*u-~LJV’° = V, Equg‘uo-bEfik c E
nk

VfflVf = 0 and EfflEf = Q) where 1Si,an;c and iaéj

3. All edges belonging to level 1: between edge sets are removed from level k-I

between edges sets. AS a result, (Uj‘éj' Bf"l fl UjvfilBJ-k) = (0.

By satisfying the preceding first two requirements, all subgraphs in U53 Q” are

related to each other in a complete balanced tree structure where the root node of

the tree symbolizes G(V, E). This complete balanced tree is named a subgraph tree

(ST). The root node of ST is considered as a level k+I subgraph and it has all level

I: subgraphs as child nodes. Recursively, each node symbolizing a level I: subgraph

has a set of level k-I subgraphs as child nodes. All leaf nodes of ST symbolizes level

1 subgraphs. This subgraph tree is named level k+1 ST if the root of ST symbolizes

level k+1 subgraph (i.e. G( V, E)). The following Figure 2.3 shows an example of level

3 subgraph tree. This tree structure shows a level 3 subgraph SG? induced by the

nodes in level 2 subgraphs (i.e. SG?, SG: and SG3) It also shows a level 2 subgraph

3G? induced by the nodes in the two level 1 subgraphs SG] and SG;.

For each level It subgraph SGf" of ST where 1 S i S nk, there exist corresponding

level I: boundary nodes (i.e. N1“) and level 1: between and within edge sets (i.e. B!“ and

W,"). The semantics of the level I: boundary nodes, level 1: between and within edge

sets are same as that of level 1 boundary nodes, level 1 between and within edge sets.
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so?

so, so; so; so} so5 so,

Figure 2.3: An example of level 3 subgraph tree ST

They are formally defined in definition 2.2.4.

Definition 2.2.4 Let PE" = E — ([3]c U EfUn-U Eikl- Then, N," = { :c | (z,y,z)

6 PEkAxEI/iij{yl(x,y,;/)E PEkAyel/f},B,-k={(x,y,z)](:1:,y,z)

k k k k k M”) -
6 PE /\ we V, }andW,- ={ (:r,y,fz(:r,y)) | (x,y) E (N,- x N,)/\ (x ——i’ y in

5G5“) /\ :1: # y }. Function fz(;r,y) gives an aggregated cost (i.e. from node a: to y)

with respect to 2 within SGf.

As can be noticed from the above definition, PE" = @118}. Note that of: Bf"

= U32? Bf" — Uj-‘éle. In order to Show how NI“, Bf, and W!“ are obtained, we use

the digraph in Figure 2.4 as an example.

From Figure 2.4, we got PE1 2 { (4,6,2), (5,7,3), (5,20,7), (10,11,4), (10,12,6),

(14,16,4), (l5,14,3), (l7,19,5), (l7,20,4), (18,20,2), (23,25,4), (24,25,5) } and PE2 =

{ (5,20,7), (10,11,4), (10,12,6), (l7,19,5), (l7,20,4), (18,20,2) }. By utilizing these

PE] and PE), we can obtain boundary nodes, within and between edges of level 1

and 2 subgraphs. These are Shown in Table 2.2. Note that in Table 2.2, between

edge sets of SG; and SGI, do not contain edge(s) in {(5,20,7), (10,11,4), (10,12,6)}



   

 

  

 

 

Figure 2.4: An example of a digraph G( V, E) partitioned according to ST in Figure

2.3

and {(l7,19,5), (l7,20,4), (18,20,2) } respectively. This is due to the last requirement

related to Definition 2.2.3. Thus, in general, given level k+1 ST, edges in B!“ of SGf

capture connections between boundary nodes of level k-I child subgraphs of S'G]c and.

those of the rest of level k-I subgraphs. Between edges of level k-I child subgraphs of i

SG? capture connections between boundary nodes of themselves.

 

 

 

 

 

i N} W} B:

1 {4,5} 0 {(4,6,2),(5,7,3)}

2 {6,7,10} {(6,10,3),(7,10,3)} ll

3 {11,12,14} {(11,14,2),(12,14,1)} {(14,16,4)}

4 {15,16,17,18} {(16,15,3),(16,17,2),(16,18,2)} {(15,14,3)}

5 {1920,2324} {(20,23,2),(20,24,3)} {(23,25,4),(24,25,5)}

6 {25} 0 0

i N} W} B?

1 {5.10} {5,10,6ll {(5,20,7).(10.11,4).(10,12,6)}

2 {11,12,17,18} {(1l,17,8),(11,18,8),(12,17,7),(12,18,7)} {(l7,19,5),(17,20,4),(18,20,2)}

3 {19,20} 0 0

i N? w? B?

1 0 0 0

      
Table 2.2: Boundary nodes, between and within edges of level 1, 2, and 3 subgraphs

in Figure 2.4
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We have given basic definitions necessary to define a Hi Ti graph. However, these

definitions (i.e. Nf, BI“, and Wik) do not provide an efficient way of obtaining their

corresponding values. A primary reason for this inefficiency is that their definitions

require obtaining their values by using V," and BI“, which is computationally expen-

sive. Thus, we need a more efficient way of computing these values. The following

definitions provide a recursive way of obtaining the values of N,-", Bf, and W," based

on the values of Nik", Bf", and Wf'l for all level It — l subgraphs in \Ilk‘l.

Definition 2.2.5 Let D = { I, 2?, ..., nk_1 } where nk_1 = [Wk-1|. Suppose level

I: subgraph SG]c (Vik, BI“) is induced by all nodes in level k4 subgraphs SGf’l, V

t E I where I C D. Then, N!“ = { :c I (x,y,z) E UjiLI'Bj-P'l A a: E Utethk'l A

y ¢ UtelNzk-l } U I y l (ital/,2) E Ujléi’Bjc-l A y E Utethk-l A 33 if UtelNik-1 1

Definition 2.2.6 Let D = { I, 2, ..., 711..-} } where nk_1 = [Wk-1|. Suppose level I:

subgraph SG]c (Vf, BI“) is induced by all nodes in level k-I subgraphs 50:”, V t E I

where I C D. Then, Bf = { (:c,y,z) | (z,y,z) E U'-"‘"‘B'~"l A a: E UIEINI"! A
1:1 J

y E Utethk-l }

Definition 2.2.7 Let D = { 1, f3, ..., m,” } where nk_1 = |W"“|. Suppose level I:

subgraph SGf (Vik, El“) is induced by all nodes in level k-I subgraphs SGf’l, V t E I

k _ k k III-1', ) .

where I C D. Then, W,- — { (:r,y,fz(a:,y)) | (x,y) E (N,- x N,) A (a: ——i y in

UtEI(Wtk-l U Bic-l) A 37 E y I-

By taking advantages of the above three definitions, we can efficiently obtain

values of different levels of boundary node, within, and between edge sets. Based on

within and between edge sets, the formal definition of Hi Ti graph is given as below:
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Definition 2.2.8 A HiTi graph is a directed labeled graph defined in terms of between

and within edges associated with all nodes of subgraph tree ST. A HiTi graph defined

over level k+I subgraph tree ST is called level It HiTi graph. It is represented by

Hk(Pk,Ak) where Pk = { :r I (.r,y,z) E Uf=,U;-‘j;_,B; } U {y I (2:,y,z) e Uf=,U;-‘;,B;

} and A" = I (may, [1,W,fz($,y)l) | ($Iy,fz($,y)) E U?‘=1W} f0?“ 1 = Lk } U I

(x,y,[l,B,z]) I (:r,y,z) E U?‘=1BJ’- for l =1,k }.

Note that the symbols “1” and “W”( “B ”) in the definition of an edge in A’c represent

the edge is level 1 within(resp. between) edge. An example of level 2 HiTi graph

corresponding to the digraph in Figure 2.4 is shown in Figure 2.5.

 

 . nu; 6 .
./'. "'3’

5 IIJJI ‘ my, '°

\ ”'07 /’

 

 

Figure 2.5: A level 2 HiTi graph corresponding to the digraph in Figure 2.4

We have introduced basic concepts and formal definitions of a level I: Hi Ti graph

in this section. It is easy to see that the overhead of a level 1:: Hi Ti graph comes from

n.

the within edges in sets UleUFIWj. Thus, for the HiTi graph model to be practical,

we introduce one requirement. That is, IUf=1U;-‘_'__1W;I should be small compared with

IEI in G(V, E). In practice, IUf=1U3‘;,W;I is likely to be very small. This is because

|W;I can not be greater than INjI x Ile where the boundary nodes of 5G;- are usually

quite small compared to IVJ-‘I.
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2.3 Use of HiTi Graphs for Computing Shortest

Route

In this section, we discuss the use of HiTi graphs for computing a minimum cost

path. It is a Simple bookkeeping problem to keep track of nodes on a minimum cost

path; hence we will focus on an algorithm for simply finding a minimum cost of the

path. We first introduce a set of basic notations which will be used in the rest of this

paper.

Definition 2.3.1 Let ST represent a level I: subgraph tree. Assume set X consist of

a set of subgraphs (i.e. nodes) of ST. Then, S],(X) { y I y is a level 1 subgraph

which is an ancestor of each subgraph in X }, SA(X) = UI‘zlSMX), and SC(X) = {

YI Y is a direct child node of a subgraph in X }. Note that Sc(X) = X for all leaf

node subgraphs SG} in X.

Definition 2.3.2 Assume set X consist of a set of subgraphs. Then, SB(X) and

Sw(X) consist of between and within edge sets associated with all the subgraphs in X

respectively. SN(X) consists of boundary node sets associated with all subgraphs in X.

Definition 2.3.3 Let SG} and SG} be two distinct level I subgraphs defined in a level

I: subgraph tree ST. Then, LU B_§(';(.SG!,.9G}) is the least leveled common ancestor

subgraph of SC: and SC].
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The examples of the definition 2.3.1, 2.3.2 and 2.3.3 are illustrated through the

level 4 subgraph tree shown in Figure 2.6. Assume that X = { SGé, SGIl }. Then,

91m: { 9 9a.. I. 93.<X> = { .903. .90: }. SAX) = { 90;. 90:, 903.

9'6"}, 5'6“1“,.9G5}, S(,~(X) = { sag, SGI, }, SC(S'2(X )) ={ SGS, SG;,SGI0,SGI1,

3G12 }. SBOO = I BS9 3h }. Sw(X) = { W31. W111 1.5N(X) = { N819N111 }, and

LUBSG(SG,‘,, 501,) is 50;.

SO

/\ /I\ /I\

/\,l A \ \/,\
i 50; 50i 50i SG\9SGIOSGII50128013561486155016 SGi'I SGis i9

Figure 2.6: An example of level 4 subgraph tree ST

2.3.1 Shortest Path Algorithm SPAH

We now describe a Shortest Path Algorithm based on HiTi graph (SPAH) SPAH

takes advantage of HiTi graphs to speed up the computation of a minimum cost path.

Our algorithm explores at most ES search space necessary for computing a shortest

cost path. The size of ES is shown in the The following theorem.
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Theorem 2.3.1 Let ST represent a level k+I subgraph tree where level Is: HiTi graph

H"(P’°,Ak) is defined. Assume that we want to compute a minimum cost path from

START node in SG,1 to DEST node in SG] Then, the explored search space ES is

at most the union of E}, E} and A’k Q A" where A’k = SB(SC(SA({SGI,SG}}))) U

sw(90(9..({903.San»).

Proof: Let I be the level number of LUBSG(SG,I, SGI). Furthermore, let E31

13; u E}. u SB(SC(U’ 9;;(S(;:,SC.';))) u SW(SC(u5,=,Sg(SGI,50;») and ES2
n=1“

II

= -S'B(SC(U:T—_l+152(LUBSGISGiv SG})))) U SW(SC(U::1+152(LUBSGISGIa36D»)-

Then, we can represent ES as a union of ES} and E32. From ES, it is easy to

see that at least ES} search space is necessary to compute a minimum cost path

from the nodes START and DEST. Hence, we only need to show that E32 is

also a necessary search space. Assume that the shortest cost path from the nodes

START to DEST is 2:0 = START —> $1 —> :22 —> —> :rm —> mm“ —> xm+2

—> xm+3 —> -—> em“ = DEST. It is possible that ({xm} U u;‘=+,,‘{+2{x,,})

c .9~<.9c(u:.....92(.9G:.90;») and 9.... e 9~(so(u.’::3..9::(LUBsa(SG.%SCI)»

where (x,,,,:r,,,+1,[C,B,zI) and (:r,,,+1,:rm+2,[(,B,z]) are level C between edges for

some C such that 1 S (I S k. D

From theorem 2.3.1, it is easy to see that how HiTi graphs can significantly reduce

the search space. That is, without using HiTi graph, ES would be U?;1E,l where 72,

represents a total number of level 1 edges sets. Furthermore, theorem 2.3.1 allows

more controlled storage management that is suitable for navigation systems (e.g.
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automobile navigation system) where available storage is limited. This is possible

because we do not need to have all level 1 edge sets to compute a minimum cost

path. Instead, we only need a part of the level I: HiTi graph and two level 1 edge

sets (i.e. one for START node and the other for DEST node). Note that the major

storage overhead of a topographical road map comes from the size of level 1 edge sets.

We take a level 4 subgraph tree in Figure 2.6 to give an example of theorem 3.1.

Assume that we wants to find a minimum cost path from node START in SG] to node

DEST in SGia- Then, our search space ES consists ofE,1 U Eis U SB(SC(SA(SGI)))

U SWISCISAISGi)» UizGISBISGi’) U SWISGill Ui?_-I7(SB(SGI) U SWISGi'll-

Within the search Space ES, SPAH traverses edges from node START in SG} to

node DEST in SG] to find a minimum cost (i.e. with respect to cost 2) path. Its edge

traversal consists of two phases, the ascending and descending phases. The ascending

phase corresponds to the period of edge traversal from node START to the boundary

nodes in SN(S:,'1(SG;~)) where l is a level number of LUBSG(SGI,SGj-). Similarly,

the descending phase corresponds to the period of edge traversal from the nodes in

SN(Sffl(SGj-)) to node DEST. During the ascending and descending phases, SPAH

traverses edges in a non-decreasing and non-increasing edge level order respectively.

Note that each of the considered paths has its own thread of processing. Some of

the paths are still in the ascending phase, whereas the others are in the descending

phase. The following proposition 2.3.1 provides the theoretical basis of the detailed

ascending method given in SPAH.
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Proposition 2.3.1 Given a level I: HiTi graph, assume that I be the level number of

LUBSG(SGI,SG]) where node START E V,1 and DEST 6 Vi]. Assume that level

II to r edges are incident on node :1: such that :1: E (V,1 U SN(SC(SA(SG})))) and 0 S

u S r. In order to find the shortest path from node :I: to any node in SN(S§"'(SG})),

it is enough to follow only level p edges from node a: where min(l — 1, 7') S p S r.

Proof: Since level It to r edges are incident on node x, we only need to Show that

it is not necessary to follow level It to min(l — l, T) — 1 edges from node 3:. Then, we

need to consider two cases when l— 1 S r and l— l > 7. Let SGI, — 1 be SQ'I(SG}).

0 Case I — 1 S r: In this case, we need to show that we do not have to visit

the nodes adjacent to :1: by following level p to l -— 2 edges for the shortest

path computation within 5fo1 from node a: to the boundary nodes of SGL“.

Since level 1 — 1 edges are incident on node 2:, node a: is in SN(SGI,"1). From

the definitions of WI", it is true that W1“ contains all the shortest path

connections between the boundary nodes of SGI,’1 within SGL“. Thus, all

shortest paths between node :1: and y within SGI,"l are also captured through

level l— 1 within edges (1:,y, [l — 1, W, z]) 6 W1" where y E SN(SGI,‘1), which

proves this case.

0 Case I - l > r: In this case, we need to show that we do not have to visit the

nodes adjacent to :r by following level It to r — 1 edges for the shortest path

computation within SGI,‘l from node a: to the boundary nodes of SG5,“. Since

level 7’ edges are incident on node 2:, node a: is in SN(SG;) where SC; is a

descendant subgraph of SGI,’1 in ST. Then, it is clear from the definition of
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HiTi graphs that all paths generated from node a: by following level p to r — 1

edges must pass through level 7’ boundary node(s) of SGb’. From the definitions

of W;, it is true that W; contains all the Shortest path connections between

the boundary nodes of SC; within SGI. Thus, all Shortest paths from node :1:

to y within SGZ are also captured through level 1' within edges (1:,y, Ir, W, 2])

6 W; where y E Sit/(SGI), which proves this case.

We take Figure 2.3, 2.4, and 2.5 to exemplify proposition 2.3.1. Assume that

we want to find the shortest path from node 5 in SGI to node 25 in SGé. Since

LUBSG(SGI,SG(1,) = 3, l = 3. Thus, we have SN(S§(SG,15)) = N32 = {19,20,25}.

From Figure 2.4 and 2.5, we can see that three edges are incident on node 5. They

are: one level 1 between edge (5, 7, 3), one level 2 within edge (5, 10, 6), and one level 2

between edge (5,20, 7). Then, by the above proposition, in order to find the shortest

path from node 5 to any node in {19,20,25}, we do not need to follow the level 1

between edge (5, 7, 3) from node 5.

After obtaining a minimum cost path from SPAH shown in Figure 2.7, a navigator

(e.g. driver) may want to find a more fine-grained path connection on some edges (i.e.

high level edges) with a level number greater than 0. This can be accomplished by

specializing a high level edge. High level within edges are specialized by representing

them in terms of lower level edges. For this purpose, we keep actual shortest path

information for each corresponding within edges. A high level between edge cannot



 

34

 

begin

Step 1:

Assume we have a level It Hi Ti graph defined on a level I: + 1 ST;

Find SG} and SG} to which START and DEST belong respectively;

We maintain G(V, E) together with H"(Pk, A") as adjacency lists;

Let 1 be the level number of LUBgc;(SG}, SGI);

f°r(P=k;p>=1;P--)

Mark all boundary nodes in SN(SC(S2(SG]))) with level p — 1;

Step 2:

/\(START) = 0;

FSet = { START}; ESet = 0;

while (FSet 96 0){

Select u from F'Set with minimum /\(u) + f(u, DEST);

/* the function f(u, DEST) estimates the cost of

the shortest path from node u to DEST */

FSet = FSet-{ u}; ESet: ESet U { u };

if (u = DEST) stop;

Let r be the highest level number of the edges incident on node u;

if (u is NOT marked) { /* Start Ascending Phase */

for each level p where min(l — l,r) S p S 1' {

for each edge u —z-> v with level p {

if ((1) ¢ FSet) and (u g ESet)) {

Mo) = Mu) + z;

FSet = FSet U { v };}

else {

if (Mv) > Mu) + 2) Mv) = Mu) + z; } } } }
else { /* u is marked */ /* Start Descending Phase */

Let [i be the marked level number on node u;

for each edge u ——z—> v with the levels from B to r {

if ((v Q FSet) and (v Q ESet)) I

X(v) = Mu) + z;

FSet = FSct U I v I;}

else {

if (AM > Mu) + 2) Mu) = Mu) + z; } } } }
end  
 

Figure 2.7: SPAH: Finding a Minimum Cost Path from START to DEST
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be specialized in terms of lower level edges. This is because all between edges in

ULIU}; B; are the edges in G(V, E).

2.4 Performance Analysis

The algorithm SPAH can be classified as a variation of A* algorithm in that

it uses the function f(u,DEST) to estimate the cost of the shortest path from

node u to DEST. In the domain of road maps, the function f(u,DEST) com-

putes the Euclidean distance between the node u and DEST. This is possible

because the coordinates (i.e. longitude and latitude) of all nodes on a road map

are assumed to be available. Assuming (u.;r,u.y) and (DEST.x,DEST.y) are

the corresponding coordinates of the nodes u and DEST, f(u, DEST) computes

 

\/(DEST.$ — was)2 + (DEST.y - u.y)2. Since Euclidean distance is not an over—

estimated cost between node u and DEST, our algorithm finds the optimal shortest

path. The detailed proof for the optimality of A* algorithm is found in [30]. The

following Figure 2.8 shows A* algorithm which finds the shortest path from the nodes

START to DEST on G(V, E). Note that l(;c,y) represents the cost associated with

each edge (3,31) 6 E.

A* shortest path algorithm are shown to be more efficient than the breadth-

first search single pair shortest path algorithm when the database can fit in main

memory [64, 80]. For algorithm SPAH, this is the case since we showed in Theorem

2.3.1 that its explored search space is at most ES which is small enough to fit in main
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memory.

 

begin

For each node u E V, Mu) = 00;

Let /\(START) = 0, FSct = {START}, and ESet = 0;

while (FSet 75 0) {

Select a node u in FSet for which /\(u) + f(u, DEST) is minimum;

FSet = FSet — {u} and ESet = ESet U {u};

If (u = DEST), then /\(u) is the shortest path cost and Stop;

else {

For every edge (11,12) in E, if /\(v) > z\(u) + l(u,v) {

Let /\(v) = Mu) + l(u,v);

Let ESet = ESet U {v} if 1) g (ESet U ESet); } }}

end  
  

Figure 2.8: A* Algorithm: Finding a Minimum Cost Path from START to DEST

For our empirical analysis of Algorithm SPAH , we create two dimensional grid

graphs G(V, E) with 4 adjacent nodes. Two dimensional grid graphs are considered

as typical examples of road maps [64, 91]. In grid graph G, W] and IE I are equal to

800 x 800 nodes and 4 x 800 x 799 directed edges. From G( V, E), we create a level

4 subgraph tree ST where each level 1 subgraph SGHW, E3) has [Vt-1| = 100 x 100,

|E,-‘| = 4 x 100 x 99. Thus, the level 4 subgraph tree ST consists of 64 level 1, 16 level

2, 4 level 3, and 1 level 4 subgraphs, which are shown in Figure 2.9.

We use the above level 4 subgraph tree ST to generate level 3 HiTi graph for the

empirical analysis of SPAH in the following subsections.
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Figure 2.9: A 800 x 800 grid graph partitioned according to the level 4 ST

2.4.1 Comparison between SPAH and A* algorithm

To show the search space savings of SPAH over the traditional A* algorithm (pre-

sented in [91]), we create 5 level 3 HiTi graphs where 10 S INEI S 20 and where

the edge cost is generated based on a uniform distribution [100,120] with 5 different

seeds. We represent INN as the total number of boundary nodes defined on level 1

subgraph SC}. Next, we create 5 plain grid graphs which are simply unions of PE1

and level 1 subgraphs used in the above 5 level 3 HiTi graphs. For each level 3 HiTi

graph and plain grid graph created above, we compute 20 different shortest paths

randomly prefixed pairs of source and destination nodes. Let H” and A, be the total

number of edges visited by SPAH and A* respectively. Note that throughout this

paper, we multiply the estimation of f(u, DEST) by 100 to normalize the estimation

with respect to the edge cost. The number 100 is used for this normalization because

the Euclidean distance between two adjacent nodes is l and the edge cost between
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two nodes is at least 100. We compare SPAH and A* by observing the ratio An/Hn.

these values are then averaged over the 5 different level 3 HiTi and plain grid graphs

with the same source and destination nodes. They are shown in Figure 2.10 where

the numbers on :1: axis represent ‘20 ordered < source, destination > pairs with path

length increasing from 1 to 20.

35

30

‘25

‘20

15

10

 

Ari/H1;

 

  1 1 l 1 l 1 1 1 1
 

0 2 4 6 8101214161820

the number of shortest paths

Figure 2.10: Performance comparison between A* and Algorithm 3PAH

Figure 2.10 clearly shows how effectively Algorithm SPAH cuts down the search

space over the traditional A* algorithm. It is interesting to observe that the ratio

An/H" increases rapidly as the path lengths from source to destination increase. This

occurs because the search space A* needs to explore grows exponentially whereas that

of SPAH grows very slowly due to the hierarchical structure of HiTi graphs.

2.4.2 Effects of edge cost distribution

In this section, we studied the effects of edge cost distributions on the performance

of SPAH. For this study, we generate 4 x 5 (i.e. 4 uniform distributions with 5

seeds) level 3 HiTi graphs where 10 _<_ lNgll S 20. Note that the 4 uniform distribu-
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tions [100,120], [100,200], [100,300], and [100,500] correspond to 20%, 100%, 200%,

and 400% variations of edge costs respectively. We apply SPAH to each level 3 Hi Ti

graph by randomly creating 50 different < source, destination > pairs and then aver-

aging the cost. Let MA and MD symbolize SPAH when the estimator f(u, DEST)

gives Euclidean distance and zero (i.e. no optimization based on Euclidean distance)

respectively. Figure 2.11 shows the effect of edge cost distributions on the perfor-

mance of SPAH in terms of flu (i.e. the total number of visited edges) of MA and

MD. Note that the values of Hn are averaged over 5 seeds.
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Figure 2.11: Effect of edge cost on the performance of MA and MD

When f(u, DEST) gives Euclidean distance estimation, the performance of

SPAH deteriorates as the variation of edge cost is increased. The primary reason is

that increasing the variation degrades the quality of Euclidean distance estimation to

shortest path. This degradation of Euclidean distance estimation seems to have more

severe impact on the performance of MA for the first part of edge cost variation (i.e.

between 20% and 200%) than for the rest (i.e. between 200% and 400%). Unlike

MA, MD gives a very stable performance with varying edge cost distribution.
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2.4.3 Effects of the number of hierarchical levels

We examined the effects of different levels of Hi Ti graphs on the performance of

SPAH (i.e. MA and MD). We constructed different levels of HiTi graph out of the

same set of level 1 subgraphs. For this analysis, we create 2 (i.e. 4 g |N3| g 8 and

10 S |N,-‘| S 20) x 5 (i.e. an edge cost distribution [100,200] with 5 seeds) level 3

HiTi graphs. Similarly, we create 2 x 5 level 1 and level 2 HiTi graphs. Then, we

measure average H" of MA and MD the same way as we did in section 3.2.2. They

are shown in Table 3.1 and 3.2.

 

level 1 HiTi graph level 2 HiTi graph level 3 HiTi graph
 

Hn for MA

Hn for MD   

57428

72227  

57336

71953  

57063

69392
 

Table 2.3: Effects of levels of HiTi graphs on Hn when 10 S |N,-1| S 20

 

level 1 HiTi graph level 2 HiTi graph level 3 HiTi graph
 

Hn for MA

Hfl for MD   

50650

59684  

50370

59642  

50669

60114
 

Table 2.4: Effects of levels of HiTi graphs on Hn when 4 S |N§| S 8

As we can see from table 2.3 and 2.4, higher level Hi Ti graphs do not necessarily

guarantee the better performance when using SPAH than the lower level HiTi graphs.

It depends on the the entire search space for SPAH. The entire search space for

SPAH on a level k HiTi graph, represented by T", is formulated as follows:
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up 2flk—1 _ "Is-2

10‘ = 2 IE‘|+Z|W~“I+—ZIW.-" 0+5;—zzjlwf‘21+
i=1 i=1

+—Z|W?|+—EEZIW‘I forl=1,k

3i=l

Note that |E1| represent the total number of edges of a level 1 subgraph and n;

represent the total number of level I subgraphs where 1 S l S k. If T” < T" where

p > q, then SPAH is likely to perform better on the higher level p HiTi graph than

on the lower level q HiTi graph. Otherwise, the higher level HiTi graph is not likely

to provide a performance advantage over the lower level Hi Ti graph. Table 2.5 shows

the values of T1, T2, and T3 corresponding to level 1,2, and 3 HiTi graphs used in

the tables 2.3 and 2.4.

 

T1 T2 T3

10 g |N,-‘| g 20 99000 98737 98487

4 S |N,‘| S 8 82272 83364 83332

 

      

Table 2.5: Effects of levels of HiTi graphs on T"

Table 2.5 verifies our conjecture on the performance of SPAH for different levels

of HiTi graphs. An interesting thing to note from the tables 2.3 and 2.4 is that the

search space (i.e. H,,) does not vary significantly going beyond level 1 HiTi graph.

This is because our experiments were done with the grid graphs havingthe following

property. That is, the difference between T5 and Ti“ does not vary significantly as i

increases. We believe that for most road maps this is the case. As a result, creating
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higher level Hi Ti graphs does not contribute to the reduction in computation time.

From this observation, we can conclude that level i HiTi graph is good enough for

road map applications where the difference between Ti and TH“ is small.

2.5 Updating HiTi Graph

There are two different types of updates for a recursive relation G(V, E) (e.g. topo—

graphical road map). They are edge addition, and edge deletion. An edge addition

(deletion) can connect (resp. disconnect) two existing nodes belonging to either a

level 1 subgraph or two different level 111 subgraph where l S m S 1:.

Since updating G( V, E) may require modifying level I: HiTi graph, special update

problems associated with HiTi graph will need to be addressed. In the following

subsections, we will discuss the update problems on level I: HiTi graph.

2.5.1 Edge Deletion

Suppose edge (2:, y, z) is deleted from E. Then, we have two possible cases to consider.

The first case case is when (x, y, z) is in level m between edge set where 1 S m S k.

The second case is when edge (x,y,z) is in E} where 1 S i S n].

The first case may change boundary nodes (i.e. :1: and y) to non-boundary nodes

and it may invalidate existing within edges. Boundary node :1: (y) becomes non-

boundary nodes if there is no other level m between edges incident on node a: (resp.
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y). Assume that node x and y become non-boundary nodes. We need to delete the

nodes :1: and y from their corresponding boundary node sets. For this purpose, we

first need to identify two level 1 subgraphs SG} and SG} where a: E SN(SG'}) and

y e SN(SG}). Then, we delete node a: from SN( 7;,5],({SG}})) and node y from

SN(U];15,'4({SG;})). Next, we find all existing invalid within edges (a,b,fz(a,b)) in

Sw(SA({SG,I,SG]-})). A within edge (a,b,fz(a,b)) becomes invalid in the following

three cases.

case 4.1.1 Nodes a or b is a: or y.

case 4.1.2 A path from node a to b is disconnected.

case 4.1.3 The value of fz(a,b) is not correct.

For the case 4.1.1 and 4.1.2, we delete (a,b, fz(a,b)) from the corresponding within

edge set. In the case 4.1.3, simply replace the incorrect value of fz(a, b) with a correct

one.

In the second case, the deletion of edge (:r,y,z) from E} may invalidate some

existing within edges in .Sw(SA({SG,I})). Thus, we need to identify all the existing

invalid within edges. After the identification of all invalid within edges, we perform

the same actions as we did in the cases 4.1.2 and 4.1.3.

2.5.2 Edge Addition

Suppose a new edge (:1), y, z) is added to G(V, E). Then, there are two cases we need

to consider. The first case is that edge (2:, y, 2) becomes a new level m between edge
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where 1 S m S k. The second case is that edge (1:,y, z) is added to E}.

The first case changes non-boundary node :1: (y) to boundary node if there is no

other level m between edges incident on node a: (resp. y). Assume that node :1: and

y become new boundary nodes. Then, it is necessary to add node x and y to their

corresponding boundary node sets. For this purpose, we need to identify two level

1 subgraph SC} and SC]- where a: E V,‘ and y E le' Then, we add node a: to

SN( [QISQHSGHD and node 3] to SN( [:1.S[4({SG}})). Next, we add edge (:r,y,z)

to level m between edge set SB(SZ‘({SG,‘}). The addition of this new level 772 between

edge may cause the following cases in Sw(SA({SG}, SG}})).

case 4.2.1 Need to create new level ml within edges where 1 S m1 S k.

case 4.2.2 Need to update fz(a,b) of some existing level m1 within edges where

1 S ml S k.

In the second case, the addition of edge (1:, y, z) to E3 may cause the same cases

as the cases 4.2.1 and 4.2.2 for edges in Sw(SA({SG,I}).

2.6 Conclusion

In this chapter, we developed a new graph, called a HiTi graph, to model very large

topographical road maps. Hi Ti graphs provides a powerful formal framework for

structuring topographical road map data in a hierarchical fashion. We have em-

pirically shown that our proposed shortest path algorithm, based on HiTi graphs,

significantly reduces the search space for computing the minimum cost path over a
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very large topographical road map. Our algorithm is also empirically analyzed by

varying edge cost distributions and the number of levels of HiTi graphs. Finally, we

have investigated the problems of updating a Hi Ti graph in this paper. The applica-

tions of Hi Ti graph structure go beyond the domain of topographical road maps. It

can be applied to any very large recursive relations where hierarchical abstractions of

data are useful.

In addition to SPSP problem discussed in this chapter, there are quite a few other

database research problems associated with the automobile navigation system. They

include data models for storing large amounts of road map data, the determination

of current location in the database, and physical storage structure of road maps. We

give our survey on these problems in Appendix C of this thesis.



Chapter 3

HiTi Graph-based Parallel

Shortest Path Algorithms

In this chapter, we study for both intra and inter query parallel processing for SPSP

problems. Based on HiTi graph structure, we propose two parallel shortest path

algorithms named PASPAH and ISPAH for intra and inter query SPSP problems,

respectively. We empirically analyze the performance of PASPAH and ISPAH a1-

gorithms on two-dimensional grid graphs by implementing them on BBN GP1000

shared memory multiprocessor system. The analysis of PASPAH shows that the

average execution time of PASPAH is not significantly better than those of SPAH

and M0TOpar. From these performance, we conjecture that inter query shortest

path problem has more potential for the parallel processing than intra query shortest

path problem.

46
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3.1 Introduction

A Single Pair Shortest Path (SPSP) computation is fundamental to topographical

road map queries. In order to reduce the large search space of topographical road

maps, a graph traversal approach is usually used. Although the graph traversal ap-

proach reduces the search space significantly, its search space is still large for most

real world road maps. To cope with this limitation, two new approaches are pro-

posed [5, 59]. Agrawal and Jagadish [5] studied SPSP computation in the context of

problem of performing efficient search over disk-resident massive graphs. Jung and

Pramanik [59] proposed a new graph model, named HiTi graph model for this prob-

lem. These two methods narrow down the search space very significantly at the cost

of storing the partially precomputed path information. However, their performance

improvement is still limited to a single processor case. For interactive applications,

further reduction in response time is beneficial. Thus, efficient parallel SPSP algo-

rithms have been developed to improve the performance further.

Little research has been done on parallel SPSP algorithms. Mohr and Pasche [72]

presented a new parallel shortest path algorithm named OTOpar which is a parallel

implementation of 0T0 algorithm. OTOpar uses two processors where each processor

uses A* algorithm with Manhattan distance estimation to build its corresponding tree,

one rooted at the source node and the other rooted at the destination node. Their

empirical analysis shows that the average execution time of OTOparis roughly half of

0T0. However, OTOpar algorithm is not scalable at all. That is, their performance

improvement is limited by only two processors. Thus, we need more scalable parallel
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SPSP algorithms than 0T0par.

In this chapter, we study the parallel processing for intra as well as inter query

shortest path problems. Intra query SPSP problem deals with parallelizing a single

transaction of SPSP problem. The parallel SPSP algorithm proposed by Mohr and

Pasche [72] belongs to this category. Inter query SPSP problem deals with paral-

lelizing multiple single-pair shortest-path computations. Inter query SPSP problem

arises in the domain of automobile navigation systems where many vehicles send their

shortest route computation requests to a central server. Then the server must be able

to handle these multiple SPSP computation requests satisfying a real time constraint.

We have developed two parallel SPSP algorithms. One is for intra query SPSP

problem and the other for inter query SPSP problem. Both algorithms are based on

HiTi graph introduced in Chapter 2. Hi Ti graph structure provides the opportunity

for fine-grained parallel processing for intra query SPSP problem. This is because

multiple parallel shortest-path computations can be initiated based on the nodes at

a higher level of abstraction of a topographical road map. Note that HiTi graph

structure can capture a hierarchical abstraction of the topographical road map and

it is easy to identify the appropriate nodes at the higher level.

Even though we have done extensive analyses on parallel processing of HiTi graph,

we also have explored the possibilities of using HiTi graph in a distributed environ-

ment. In a distributed environment, HiTi graph provides an efficient structure for

computing a distributed transitive closure. That is, it allows a dynamic decomposi-

tion of a transitive closure computation. This dynamic decomposition in turn allows
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us to minimize the communication costs between the sites involved for the transitive

closure computation. Note that reducing the communication costs is a major opti-

mization goal for distributed transitive closure computations. We give the detailed

description of our proposed distributed transitive closure algorithm in the appendix

A of this thesis.

The rest of the chapter is organized as follows. In section 3.2, we give the detailed

description of intra query parallel shortest path algorithm and empirically compare

its performance with those of the previous work. Section 3.3 discusses two inter

query parallel shortest path algorithms. We give empirical performance analysis of

these two inter query parallel algorithms in this section. Finally, section 3.4 gives the

concluding remarks.

3.2 Intra Query Parallel Shortest Path Computa-

tion

The main performance overhead of the shortest path computation comes from the size

of the search space it needs to explore. In this section, we describe a PArallel Shortest

PAth algorithm based on HiTi graph (PASPAH). To show the basic idea behind

PASPAH, we first graphically show the explored search space of the algorithms

A* and OTOpar in Figure 3.1. Note that in the figure, the rectangle and eclipse

represent the entire and the explored search space respectively. Arrows indicate the

direction of exploring the search space. It is intuitively obvious that A* algorithm
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Figure 3.1: Relative size of explored search space for A* and OTOpar

explores the search space in an elliptical shape, which is shown in Figure 3.1 a. Since

OTOpar explores the search space by applying A* algorithm from both the source

(i.e. S) and destination (i.e. T) nodes, the size of its explored search space becomes

smaller than that of A*. This is clearly illustrated in Figure 3.1 b. Based on this

observation, we can infer that, if a middle node M lying on the shortest path is

known, we can further narrow down the search space by applying A* algorithm from

the middle node to both source and destination, simultaneously. Our PASPAH is

based on this idea which is illustrated in Figure 3.2.

 
 

 

    

Figure 3.2: Explored search space size of PASPAH
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3.2.1 Use of HiTi Graph for Identifying Middle Nodes

The problem that remains is how to identify the middle node without computing the

shortest path. This problem can be partially resolved by taking advantage of HiTi

graph structure, which we explain through Figure 3.3.

 

     
  

 

  

 

  

 

   

Figure 3.3: Level 1 HiTi graph created from level 1 subgraphs

In Figure 3.3, the rectangles symbolize the level 1 subgraphs $01 to 509 and

their boundary nodes are represented by Bl through B24. Level 1 HiTi graph de-

fined on these level 1 subgraphs is then easily represented by all the boundary nodes

interconnected by the dotted arrows. Assume that we want to compute the shortest

path from node S in SG7 to node T in S02. It is clear from the figure that the

shortest path from the nodes S to T must pass through at least one boundary node

of SG; and one boundary node of SG2. From this observation, we can approximate

the two possible sets of middle node candidates for the shortest path. They are
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M1 = {818, B21} and M2 = {B2, B3, B6} where set M] is chosen in this example.

Then, the shortest path cost from the nodes S to T, represented by

PSP_COST(S, T), can be computed by exploring the search space from each

node in M1 to S and T simultaneously. Let SP_COST(X, Y) represent the

shortest path cost from the nodes X and Y. To obtain PSP_COST(S, T), we

first compute SP_COST(818,S), SP_COST(818,T), SP-COST(B21,S), and

SP..COST(B21 , T) in parallel. Note that each processor use A* algorithm to compute

SP_COST(X, S) and SP-COST(X, D) where X 6 M1. PSP-COST(S, T) is then

obtained by selecting the minimum of { SP_COST(Bl8,S) + SP_COST(BI8,T),

SP_COST(B21,S) + SP-COST(B21,T) }. Note that we choose M1 over M2 since

the size of set M1 is smaller than that of M2. This way, we can minimize the number

of processors involved for the computation.

As it might be noticed from the above example, there is a possible performance

bottleneck problem in this approach. We re—take Figure 3.3 to explain the bot-

tleneck in the following example. Assume the shortest path computation from

the nodes A in SG4 to D in 3G6. Since the number of the boundary nodes of

SG4 and SG6 are equal, we will randomly choose one of them. In this example,

set {38,811,315} is selected. Then, in order to compute SP-COST(A, D), our

method will compute SP_COST(88,A), SP-COST(B8, D), SP-COST(Bll,A),

SP_COST(Bll,D), SP_COST(BIS,A), and SP_COST(BI5,D) in parallel. As

we can see from Figure 3.3, since node A is located a lot closer to node 811 than the

nodes B8 and 815, the actual shortest path from A to D is likely to pass through
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the boundary node Bll. In such case, SP-COST(Bll,A) and SP-COST(Bll,D)

computations will be done a lot faster than the others.

However, we have to wait until the rest of computations end, although we al-

ready got SP..COST(BII,A) and SP_COST(Bll,D). This waiting time is re-

quired to guarantee the optimality of SP-COST(BII,A) + SP-COST(Bll,D)

among the rest of results, which becomes the performance bottleneck of PASPAH.

To cope with the performance bottleneck, it is necessary to minimize the waiting

time. The minimization of the waiting time can be realized if we have a cor-

rect and efficient stopping condition. The stopping condition allows us to decide

the optimality of SP_COST(Bll,A) + SP-COST(Bll,D) before completing all

the computation of SP_COST(B8, A), SP-C'OST(BS, D), SP-COST(BI5, A), and

SP-COST(815, D).

3.2.2 Efficient Stopping Criteria

Before we explain stopping condition, we first examine how SP-COST(BS, A) in the

above example is computed in A* algorithm. In A*, the search space is explored by

permanently labeling a node a: the shortest path cost from B8 to :1: until the next

selected node :1: becomes the node A. The next unlabeled node a: is selected from the

search space such that SP_COST(B8,:1:) + EuDist(x,A) is minimum. Note that

EuDist(:c,A) is the Euclidean distance estimation from the nodes :1: to A. Based

on this observation, we now formally describe the stopping condition in the following

proposition.
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Proposition 3.2.1 Given a directed graph G(V, E), assume that the shortest path

from the nodes S to T must pass through at least one node from set B = { B}, 82,

..., Bn }. Let set C Q B where SP-COST(X, S) and SP_COST(X, T) are already

computed for each node X E (7 at time to. For each X E B — C, let N(X, S, to) and

N(X, T, to) be the next node at time to selected by A* algorithm for the computation

of SP-COST(X, S) and SP_COST(X, T) respectively. Then, PSP-COST(S, T) is

costo = mianc { SP-COST(X, S) + SP_C’OST(X, T) } if costo S minyeB-c {

SP-COST(Y,N(Y, S, to)) + EuDist(N(Y, S, to),S) + SP-COST(Y,N(Y,T,to)) +

EuDist(N(Y, T, to),T) }.

Proof: Assume that costo is not PSP-COST(S,T) although costo S miny53_c

{ SP-COST(Y,N(Y,S,to)) + EuDist(N(Y,S,to),S) + SP_COST(Y,N(Y,T,to))

+ EuDist(N(Y, T, to),T) }. Then, at some time t1 > to, there must be

some node Z G B — C such that SP-COST(Z,S) + SP_COST(Z,T) <

costo. However, SP_C()ST(Z, S) + SP-COST(Z, T) cannot be smaller than

SP-COST(Z, N(Z, S, to)) + EuDist(N(Z, S, to),S) + SP_COST(Z, N(Z, T, to)) +

EuDist(N(Z, T, to), T). This is because

SP_COST(Z,N(Z,S,t)) + EuDist(N(Z,S,t),S) and SP-COST(Z,N(Z,T,t)) +

EuDist(N(Z, T,t),T) are always monotonically increasing in A* algorithm where

to < t g t]. As a result, we have costo g miny€3_o { SP-COST(Y,N(Y,S,to))

+ EuDist(N(Y, S, to),S) + SP-COST(Y,N(Y, T, to)) + EuDist(N(Y, T, to),T) } <

SP_COST(Z, S) + SP_COST(Z,T) < costo, which is a contradiction. Cl
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To exemplify how proposition 3.2.1 works, we show the stopping con-

dition for the computation of SP-COST(A, D) in Figure 3.3. Assume

that SP-COST(BII,A) and SP-COST(BII,D) are obtained at time to.

Then, PSP_C'OST(A,D) is costo = SP-COST(BII,A) + SP-COST(BII,D)

if costo S min { SP-COST(BS,N(88,A,to)) + EuDist(N(B8,A,to),A),

SP_COST(815, N(Bl5, D, to)) + EuDist(N(Bl5, D, to), D) }.

3.2.3 Formal Description of PASPAH

In the previous section, we described the basic idea as well as a theoretical foundation

of PASPAH when level 1 HiTi graph is given. We now formally present PASPAH

in Figure 3.4 where we use the same notations as those defined in the previous chapter

2.3. Our PASPAH is developed for shared memory multiprocessor systems with the

following architecture assumptions:

0 All processors have their own local memory.

0 All Processors communicate with each others through globally shared memory.

0 All processors share disk.

Based on the preceding assumptions, PASPAH accesses a level k + 1 subgraph tree,

level Is: HiTi graph H"(P",Ak), and level 1 subgraphs U?=‘1SG}(V,-1,E,-l), which are

stored in the globally shared memory.
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begin

Step 1: ‘

for(j=k+l;j>=l;j——) .

Mark all boundary nodes in SN(SC(S,’4(SG1, SG,‘))) with level j — 1;

Let I be the level number of LUBSG(SG;, 5G3);

f0f(J'=l-1;j>=1;j--) _

Mark all boundary nodes in SN(SC(SQ(SG:, SG}))) with level j — 1;

Step 2: i

If (|3~(Si'1(301))| .<. lSN(S.I4-1(SGi))l) 501;] = 32"(501);

else SC};1 = Sfl(SG});

Step 3:

for each boundary node a: in Sit/(50:1)

Enqueue (2:,S) and (2:,T) to BQ;

Step 4:

while (IBQI > 0) {

Dequeue (x,y) from BQ;

A next available processor performs SP(:c, y);

/* 'SP(:c, y) computes the shortest path from :1: to y */

/* It checks stopping criteria given in proposition 3.2.1

when the computation is done */}

end

 

Figure 3.4: PASPAH: Find a shortest path from S in SC; to T in SC}
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PASPAH consists of four steps. At step 1, the boundary nodes of HiTi graph is

marked with edge level numbers. This marking step is necessary to avoid traversing

the unnecessary low level edges incident on the marked nodes. When a marked node

is visited, the corresponding marked level (i.e. lowJevcl) specifies the lowest level

of the edges to be traversed from the marked node. Since the highest level (i.e.

hithevel) of the edges incident on the marked node can be easily identifiable, the

nodes expanded directly from the marked node are only those reachable through

the edges with the levels ranging from towJevel to hithevet. This marking step

guarantees that the explored the search space of PASPAH is at most E,1 U E} U

53(5c(U"+'5i(SGLSGl))) U Sw(SC(Ui:ISI(SGl,303))-i=1

At step 2, we determine the level I subgraph SGfig‘ whose boundary nodes will

be used as the middle nodes as explained in the previous section 3.2.1. The step 3

is self explanatory. In step 4, the shortest path computation SP(;r,y) for each pairs

of nodes (2:,y) in BQ is performed in parallel by the available processors. SP(a:,y)

computes the shortest path from the nodes :1: to y by using A* algorithm. Note that

As: algorithm in SP(:z:, y) explores the neighbor nodes of the currently expanding node

2 by following only those edges whose level number is not less than the marked level

number of the node 2. Whenever each processor finish its computation, it exclusively

checks the stopping condition described in the previous section 3.2.2. If the condition

is satisfied, then it aborts all the computations being performed by other processors.

Otherwise, it simply stops its computation.
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3.2.4 Performance Evaluation

We .empirically compare PASPAH with OTO, OTOpar [72] and SPAH [59] algo-

rithms. SPAH is an improved A* algorithm which takes advantage of HiTi graph

structure. For fair comparisons, we modified 0T0 and OTOpar so that they also uti-

lize HiTi graph structure. In other words, in the modified 0T0 and OTOpar named

M0T0 and MOTOpar respectively, we use SPAH algorithm for building two trees

from both source and destination nodes. Note that we use Euclidean distance for the

lower bound estimation in SPAH rather than Manhattan distance of OTOpar. This

is because Manhattan distance estimation does not guarantee the optimal shortest

path generation.

We implemented SPAH, MOTO, MOTOpar and PASPAH on a BBN GP1000

shared memory multiprocessor system, which has a nonuniform memory architec-

ture. The BBN GP1000 multiprocessor currently consists of 85 nodes, each one with

4MBytes of local memory, linked together by a high speed butterfly switch. In this

system, the globally shared memory is the sum of the memories local to all processors.

Thus, the size of available main memory increases with increasing number of nodes

in the system. The BBN GP1000 system can have up to 250 processing nodes.

For our empirical analysis, we create two dimensional grid graphs G(V, E) with 4

adjacent nodes as we did in chapter 2.4. In grid graph G, [V] and [E] are equal to

400 x 400 nodes and 4 X 400 X 399 directed edges. From G(V, E), we create a level

4 subgraph tree ST where each level 1 subgraph SG}(V,-1,E}) has IV," = 50 x 50,
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IEII = 4 x 50 x 49. The level 2 subgraph tree ST consists of 64 level 1, 16 level 2, 4

level 3, and 1 level 4 subgraphs.

Based on the above level 4 subgraph tree, we create level 1 HiTi graph which

will be used throughout this section. To show performance comparison between

PASPAH, MOTOpar, MOTO, and SPAH, we create 5 level 3 {HiTi graphs where

3 S INEI S 8 and where the edge cost is generated based on a uniform distribution

[100,120] with 5 different seeds. Note that INRI is the total number of boundary

nodes defined on level 1 subgraph SG}. For each level 1 Hi Ti graph, we compute two

different sets SET I and SET 11 of 20 shortest paths randomly prefixed pairs of source

and destination nodes. SET I consists of the pairs whose source node location within

the corresponding level 1 subgraph is not far apart from the destination nodes. A

simplified example of these two sets is shown in Figure 3.5.
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Figure 3.5: An example of sets I and II

We then compare the above 4 algorithms by observing their average execution

times of two sets SET 1 and SET 11 over 5 different level 1 HiTi graphs. The per-

formance of the four algorithms are given in Figure 3.6 a and b. As it is shown in
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Figure 3.6, PASPAH requires 42 processors to achieve the maximum parallelism in

this empirical analysis. Figure 3.6 a shows that PASPAH outperforms the rest of

the algorithms. However, Figure 3.6 b shows that PASPAH does not perform sig-

nificantly better than SPAH and MOTOparl. This is because, when source nodes

comes from SET II, the explored search space of PASPAH becomes almost same

as those of SPAH and MOTOpar. Thus, the average execution time of PASPAH

is not significantly better than SPAH and MOTOpar. From this observation, we

conjecture that the parallel processing for intra query SPSP problem is not promising.

We have observed that SPAH performs better than M0T0 and MOTOpar,

which is a different result from the one given in [72]. Our empirical observation

can be explained by the following two reasons. The first reason is that HiTi graph

structure significantly reduces the advantage of using the two tree expansion approach

given in [72]. In other words, the most of the nodes in the two level 1 subgraphs (i.e.

where source and destination nodes are in) are already explored when two trees start

to include the nodes in Hi Ti graph. This conjecture is verified in the appendix B of

this thesis where the two tree expansion approach performs far better than than that

of one tree expansion approach when HiTi graph is not used. The second reason is

that the lower bound estimation of MOTOpar is Euclidean distance which provides a

lot tighter bound than Manhattan distance of OTOpar in [72]. As a result, compared

with OTOpar, MOTOpar takes much longer time to stop building the two trees

before it finds the shortest path.

 

1In Figure 3.6 b, the minimum execution time of PASPAH , SPAH , MOTOpar, and M0T0

are 8.36, 8.46, 9.92, and 15.56 seconds respectively.
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SET 1 b) SET 11
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3.3 Inter Query Parallel Shortest Paths Computa-

tion

In this section, we study the parallel processing for computing inter query shortest

path based 011 Hi Ti graph. Efficient and fast computation of multiple SPSP shortest

paths are very critical for those automobile navigation systems where all route com-

putations are performed on a single server. For this purpose, we propose a new inter

query parallel shortest path algorithm in the following subsection.

3.3.1 Formal Description of ISPAH Algorithm

As it was already shown in section 3.2.4, SPAH outperforms M0T0 and MOTOpar.

Due to the number of processors PASPAH requires, PASPAH is not appropriate for

inter query parallel shortest paths computation. We therefore use SPAH as the unit

operation for parallelizing inter query shortest paths computation. In other words,

SPAH is performed in parallel for each shortest path computation request. The

detail description of the inter query parallel shortest path algorithm, named Inter

SPAH (ISPAH), is shown in Figure 3.7.

Algorithm ISPAH executes SPAH in parallel on a shared memory multiprocessor

system. For SPAH running on each processor, it accesses both local memory and

globally shared memory for the computation. Algorithm SPAH accesses the glob-

ally shared memory only when it needs to accesses G(V, E) or level It: HiTi graph

Hk(Pk, A"). Other than that, SPAH accesses the local memory. Note that there is
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begin

Adjacency lists of G(V, E) and level k HiTi graph H"(P", Ak)

are stored in the globally shared memory;

Let R contain a set of source and destination nodes pairs (x,y);

for each (x,y) E R do in parallel {

Find SC; and SC; to which :1: and y belong respectively;

Let I be the level number of LUBS(_;(SG;, SGi);

f0r(P=1-1;P>=1;P--)

Locally mark all boundary nodes in SN(SC(SZ(SG}))) with level p — 1;

Perform Step 2 of SPAH for (x,y); } '

/* SPAH is given in Figure 2.7 in section 2.3.1 */

end   
 

Figure 3.7: ISPAH algorithm

no memory access contention for reading or writing a local memory. In the following

section, we empirically analyze the performance of ISPAH .

3.3.2 Performance Evaluation

We implemented 1SPAH on a BBN GP1000 shared memory multiprocessor system.

For our empirical analysis, we used the same grid graph as described in section 3.2.4.

Based on these data sets, we computed 43 randomly prefixed shortest paths. The

performance is then measured in terms of the average speedup Tn, where Tfl represents

the total time taken by 11 processors to compute M shortest paths. We express the

speedup 5,, of 12 processors as T1/T,,. Figure 3.8 shows Sn as n is increased from 1 to

43.

As we can see from Figure 3.8, the speedup of ISPAH increases almost linearly

up to 10 processors, after 10 it is beginning to level off, and after 25 processors,
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Figure 3.8: Performance of ISPAH

the performance is ever deteriorating. This occurs because of the globally shared

memory access contentions. In ISPAH, all processors have to access a single HiTi

graph in a globally shared memory, which causes a severe memory access contention

when more than 25 processors are used. In order to verify our conjecture of this

memory access contention, we modified ISPAH so that an entire level I: HiTi graph

H"(Pk , A") is replicated 011 the local memory of each processor. This revised ISPAH

is named a Modified ISPAH (MISPAH). We empirically analyzed MISPAH the

same way as we did for ISPAH. Figure 3.9 shows the speedup of MISPAH up

to 43 processors showing the advantage of replicating a level I: HiTi graph on each

processor. Although M lSPAH performs better than ISPAH , it is scalable up to

41 processors. From this analysis, we conjecture that the parallel processing for inter

query SPSP problems are much more promising than intra query SPSP problems.
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Figure 3.9: Performance of MISPAH

3.4 Conclusion

In this chapter, we studied the parallel processing for intra as well as inter query

shortest path problems on topographical road maps. Based on HiTi graph structure,

we first developed a parallel shortest path algorithm named PASPAH for intra query

shortest path problem. HiTi graph structure provides an opportunity for developing

more scalable parallel shortest path algorithms than two tree building approach used

in MOTOpar algorithm. In MOTOpar algorithm, only two processors are used for

building two trees, one from source and the other from destination. As a result,

MOTOpar algorithm is not scalable at all. We empirically analyzed the performance

of PASPAH by comparing its execution time on grid graphs with those of MOTOpar

and SPAH. We used a BBN GP1000 shared memory multiprocessor system to

implement PASPAH, MOTOpar, and SPAH. The BBN GP1000 has a nonuniform

memory architecture. Note that SPAH presented in chapter 2 is the HiTi graph-

based sequential shortest path algorithm. Our empirical analysis shows that, although
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PASPAH is more scalable than MOTOpar, the average execution time of PASPAH

is not significantly better than those of MOTOpar and SPAH. From this analysis,

we conjecture that the parallel processing for intra query shortest path problem is

not very promising.

For inter query shortest path problem, we proposed a HiTi graph-based parallel

algorithm named ISPAH . We empirically analyzed the performance of ISPAH on

the BBN GP1000 shared memory multiprocessor system by measuring its speedup

on grid graphs as processors are increased. Our analysis shows that the speedup

of ISPAH increases almost linearly for up to 10 processors. However, ISPAH is

scalable up to 25 processors. This performance degradation occurs due to the severe

memory access conflicts of processors. We then presented an improved version of

lSPAH named MISPAH which reduces the memory access conflicts through partial

data replication. The peformance analysis of MISPAH shows that it is scalable up

to 41 processors. From this empirical analysis, we conjecture that inter query shortest

path problem has more potential for the parallel processing than intra query shortest

path problem.



Chapter 4

Description and Location of

Distributed Fragments of Large

Recursive Relations

In a distributed environment, it is advantageous to fragment a relation and store the

fragments at various sites. In this chapter, based on the concept of lattice structures,

we develop a framework to study the fragmentation problems of distributed recursive

relations. Two of the fragmentation problems are how to describe and locate frag—

ments. Description and location methods previously suggested are more suitable in

parallel environments than in distributed databases. In this chapter, we propose a

method to describe and locate fragments based on lattice structures. Finding lattice

descriptions of fragments is shown to be an NP-complete problem. We analyze the

performance of lattice approach both theoretically and experimentally. This is done

67
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by creating a database of recursive relations. The empirical analysis shows that our

proposed algorithms give near-optimal solutions.
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4.1 Introduction

111 distributed database systems, it is often convenient and beneficial to fragment and

distribute data according to referencing frequency or locality. By having only fre-

quently accessed data stored in each local site, we can reduce the data maintenance

cost. For example, in a distributed database for designing automobiles or aircraft, it

is desirable to store the relevant and frequently-accessed parts together. This data

can be maintained in a single recursive relation such as a parts/subparts relation.

There are three major problems in fragmenting recursive relations in distributed en-

vironment. The first is how to fragment a recursive relation. The second and third is

how to describe and locate the fragments of the recursive relation. The focus of our

research is to investigate the second and third problems.

Fragmentation in traditional (non recursive) databases is accomplished through

the use of logical predicates, which the tuples of the fragments must satisfy. These

logical predicates can easily capture the referencing locality of non-recursive data.

They are formed by conjunction, disjunction, and negation statements defined on the

attribute values of the tuples. The fragmentation criterion, or simply criterion, for a

fragment F is a predicate which, when applied to a relation R, will determine which

tuples of R belong to F. This fragmentation of non-recursive relations is investigated

in [16].

Fragmenting recursive relations in distributed databases has not been extensively

studied. Most papers on parallel and distributed computation of transitive closures
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have applied the traditional fragmentation criteria to recursive relations [32, 45, 47,

74, 84, 102]. However, this criteria, defined by a predicate or a hash function, does not

properly capture the referencing locality of data in recursive relations. Locality often

comes from the transitive relationship between data. Stated another way, relevant

data, frequently accessed by recursive queries, are likely to be related in transitive

closures. Although the fragmentation based on the transitive relationship provides

less efficient non-recursive query processing strategies for recursive relations than the

traditional predicate-based fragmentation, it gives a very powerful basis for an efficient

fragment description and location technique suitable for recursive query processing.

An efficient processing of recursive queries is important for large recursive relations

in distributed databases.

Based on the criteria defined by transitive relationships, Houtsma, et al., studied

the parallel computation of transitive closures in [42, 43] and designed strategies

for fragmentation in [44]. However, Houtsma’s paper [44] did not discuss how to

describe and locate fragments in a distributed environment. In a distributed database,

we need an efficient fragment description and location method because we can avoid

a significant amount of communication cost for query processing by keeping remote

fragment descriptions in local sites. In this paper, we focus only on acyclic recursive

relations. Unless otherwise stated, recursive relations and acyclic recursive relations

will be used interchangeably.

The rest of the chapter is organized as follows. Section 4.2 describes a fragment

description method based on lattice structures. In Section 4.3, a fragment location
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method is described. In section 4.4, we suggest methods to incrementally update

description of fragments when a recursive relation is modified. The performance

analysis of our update algorithm is also discussed in this section. Finally concluding

remarks are given in Section 4.5.

4.2 Fragment Description by Lattice Structures

111 this section we use the properties of partial order sets (posets) to define and locate

fragments of acyclic recursive relations. The acyclic recursive relations, considered in

this paper, have the generic form R (attributel, attributeg, attributeg, . . . , attributem)

where the attributes of R satisfy the following:

I. attribute] and attribute; are the key attributes of R and share the same domain

2. attribute] and attribute; are the recursive join attributes and their correspond-

ing values are related by some transitive relationship

3. attributeg through attributem describe the relationship between attribute] and

attributeg

The above relation R is associated with relation R’ which maintains detail descriptions

0f attribute] of R. Thus, relation R’ has the generic form of R’ (attributel’, attributeg’,

attribute3’, ...,attributc,,’) where the attributes of R’ satisfy the following:

1. attributel’ of R’ is the same as either attribute] or attributeg of R
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2. attribute,’ is the key attribute of R’.

3. attribute; through attributen’ describe attributel’

Examples of relation R and R’ are shown in Table 4.1 and Table 4.2 where R and R’

correspond to part/subpart and part relations respectively.

 

 

  

part subpart quantity

engine cylinder head 1

engine fan belt 1

cylinder head piston 4    
 

Table 4.1: An example of relation R

 

 

  

part color weight dimension cost

engine black 800 3 by 2 by 2 1000

cylinder head gray 100 1 by 2 by 2 250

fan belt black 30 1 by 5 by 1 250

piston silver 70 1 by l by 1 100      
 

Table 4.2: An example of relation R’

The above relations part/subpart and part together can be viewed as a directed

acyclic graph (DAG) GHQ/R, ER). Each node in V3 represent a tuple of the part

relation and symbolized by the key attribute of the part relation. Each edge in ER

represent a tuple of the part/subpart relation and symbolized by the key attributes

of the part/subpart relation. The values of attributes part and subpart are related

by an inclusion (i.e. transitive) relationship. For example, engine directly includes

cylinder head and fan belt while piston is indirectly included in engine. If we consider

this inclusion relationship as a partial order, then DAG GR(VR, ER) is a poset. A
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partial order, :1: j y, is represented as a path in this DAG if there is a path of length

0 or more from node :1: to y.

In our fragmentation method, each site keeps ER while VB is fragmented exclu-

sively and distributed over various sites. Thus, a fragment is a subset of nodes in V3.

Since each site stores E3, our fragmentation technique is more effective when the ratio

of [ER] to Will is small. When [ER] is much larger than IVRI, the benefits of fragment-

ing ER are likely to exceed the benefits of just fragmenting VR. However, fragmenting

ER causes one problem in our fragment description and location method presented

in the following sections. The problem is, if E; is fragmented and distributed, then

we cannot locally determine the location of remote fragments necessary for recursive

query processing.

Definition 4.2.1 Let GR(VR, ER) represent an acyclic recursive relation. Then, an

F—subgraph for a fragment F is a subgraph Gp(Vp,Ep) of the graph G3 induced by

the nodes offragment F.

For example, Figure 4.1 shows a digraph GR(VR, Eg) for a relation R. Suppose G3

has three fragments named F] = { 1, 2, 5, 8, 9 }, F2 = { 3 ,5, 7, 10, 11, 12}, and F3

={4,13}.

Figure 4.2 shows the three F-subgraphs 6'1, 6'2, and G3 induced by the fragments

F1, F2 and F3, respectively. The F—subgraph is not likely to be a set of randomly

unrelated nodes. More likely, it will be a connected component or a collection of

several connected components. This is because, as mentioned before, the referencing

locality of nodes in V3 often comes from the transitive relationships among the nodes.



 

Figure 4.1: A digraph G for an acyclic relation

An F-subgraph is also a poset, since each subset of a poset is itself a poset. Therefore,

the properties of posets can be used to describe and locate fragments.

 

MW03

Figure 4.2: Three F-subgraphs

The descriptions of fragments are maintained in a fragment table at each site. A

fragment table is a binary relation of the form (f, d) where f is a fragment identi-

fier and d is the corresponding description. A naive description (1 of a fragment is

defined as the set of key attribute values for nodes contained in the fragment. This

naive description is quite flexible in the sense that any fragment can be described by

grouping the key attribute values of its elements. It is also easy to maintain when

updating fragments. However, this naive description suffers from the following serious

drawbacks:
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1. Fragment description size is large

2. Fragment description size grows linearly with respect to fragment size

3. Communication of fragments’ descriptions with other sites is costly due to their

large size

4. A large search space is needed to find the fragments containing certain nodes.

The above drawbacks can be very costly, especially when the original relation is very

large. A more efficient approach is required for practical purposes. By taking advan-

tage of ER at each site, we can construct a concise but flexible fragment description

method. This method is illustrated in the following subsections.

4.2.1 Maximal and Minimal Nodes Approach

We can represent a fragment by a set U of maximal nodes and a set of V minimal

nodes of the F-subgraph GF(VF, Ep). Let F be a fragment. Then

F: {:3le VRwhere ajzij aGU /\ bEV}

Thus, a node is in the fragment if it has an ancestor node in U and a descendant node

in V. The fragment F is then represented by the notation < U, V >. This approach,

however, is not complete because it cannot describe certain types of fragments. For

example, consider the DAG GR(VR, ER) in Figure 4.3.
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Figure 4.3: An Example of DAG GR(VR, E3)

The fragment F = { 1, 2, 3, 7, 8, 9 } cannot be represented by this approach. This is

because the fragment represented by < {1, 7}, {3, 9} > contains the additional node

5. In order for this maximal and minimal nodes approach to be applicable, we need

the restriction which should be imposed on fragments. That is, for each fragment F

represented by < U, V >, the intersection between U U { all descendants of nodes

in U } and V U { all ancestors of nodes in V } should be equal to F. In the next

subsection, we give a representation method based on the lattice approach which does

not require the above restriction.

4.2.2 Lattice Approach

111 this approach, a fragment is described by a set of lattices defined on the corre

Sponding F-subgraph Gp(Vp, Ep). A lattice is represented by L = < 2:1,,y1, > where

ml, is the least upper bound (LUB) and yL is the greatest lower bound (GLB). Next,

We present a list of definitions which will be used throughout the rest of the paper.

Definition 4.2.2 Let GF(VF, Ep) represent an F—subgraph. Then, any pair of nodes

(any) in Vp is a candidate lattice < x,y > for GI“ ifs: :5 y.
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Definition 4.2.3 A candidate lattice < .7:,y > is called a simple lattice ifs: 74 y and

there is no 2 such that a: j z j y, z 76 x and z 75 y. A candidate lattice of the form

< 3,:1: > is called a trivial lattice.

Definition 4.2.4 Let GR(VR, ER) represent an acyclic recursive relation and

GF(VF,EF) be an F—subgraph of GR. A candidate lattice < 1:,y > for CF is suit-

able if the intersection between { :1: } U { all descendants ofa: } and{ y } U { all

ancestors ofy } forms a nonempty subset of VF.

Definition 4.2.5 Let L = < :c,y > be a suitable candidate lattice for Gp(Vp, Ep).

Then, lattice L covers node 2 E Vp ifa: j z j y.

Definition 4.2.6 Let CL be a set of suitable candidate lattices defined on the F-

subgraph Gp(Vp, Ep). Let LC Q CL. Then, we say LC is a lattice cover for G}: if

every node of Vp is covered by a member of LC.

We will represent a fragment by a lattice cover. Unlike the maximal and minimal

nodes approach, the lattice approach is complete in that it can describe any fragment

by a set of suitable candidate lattices defined on the corresponding F-subgraph. For

example, { < 1,3 >, < 7, 9 > } is a lattice cover precisely describing the fragment {

1, 2, 3, 7, 8, 9 } shown in Figure 4.3. Thus we can define a fragment F by a lattice

cover as follows:

F = {zlszjy for at least one <z,y>€LC}
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More than one lattice cover exists for a given F-subgraph. Figure 4.4a and 4.4b show

two different lattice covers for the same F-subgraph G2 of Figure 4.2.

 

Figure 4.4: Two lattice covers for the F—subgraph G2

The above Figures 4.4a and 4.4b correspond to the lattice covers LC; = { < 3,10 >,

< 3,11 >, < 3,12 > } LC2 = { < 3,10 >, < 7,11 >, < 3,12i> } respectively.

So far, we have presented the basic idea for describing the fragment by using a set

of suitable candidate lattices called a lattice cover. One important thing to note from

this lattice approach is that our lattice representation scheme (i.e. L = < 1:1,,yL >)

has one representational ambiguity. That is, we cannot always uniquely reconstruct

any lattice L by using its LUB x1, and GLB yL alone. This problem will be shown

from the lattice L]: < 3,11 > = {3 j 6, 6 j 11, 3 j 7, 7 j 11 } in Figure 4.4a.

From L1, consider two lattices L2 = {3 j 6, 6 j 11 } and L3 = { 3 j 7, 7 j 11

} . Even though all three lattices L1, L2, and L3 are represented by the same LUB

and GLB (i.e. < 3,11 >), they are different lattices. However, this representational

ambiguity is not a problem with our lattice approach. This is because in our lattice

ELpproach, lattice L = < xL,yL > always refers to the one which maximally covers



79

nodes in GR(VR,ER). Thus, in the above example, lattice < 3,11 > refers to the

lattice L1.

The question that remains is what criteria will determine a good lattice cover for

an F-subgraph. We define a good lattice cover as one that minimizes the search space

for finding a lattice incorporating a given node. The search time will depend on the

number of lattices in a lattice cover and not on the size of each lattice. In other words,

the number of lattices in a good lattice cover should be as small as possible while the

amount of overlap among the lattices is not important. An index called lattice cover

size will be used to represent the number of lattices in a lattice cover.

In the next subsection, we show that finding a lattice cover with a minimal index

is NP — complete. We then present a heuristics for finding a good lattice cover.

4.2.3 Lattice Cover Problem is NP — complete

The lattice cover problem, LCP, is defined as follows. Let P be a set of nodes where

the partial order j is defined. For a given positive integer K, the problem is to

determine the existence of a lattice cover LC whose cover size S K such that every

node of P belongs to at least one of the lattices in LC. To prove it is NP — complete,

we will map the minimum cover problem [33] to LCP. The minimum Cover problem,

MCP, is stated as follows: Given a collection C of subsets of a finite set S with a

positive integer K S |C|, is there a subset C’ Q C with [0’] S K such that every

element of S belongs to at least one member of C’?
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Before presenting a detailed proof for NP — completeness of LCP, we first explains

the basic intuition on 110w to check if a given set of lattices is a lattice cover for the

F-subgraph. Given a lattice in a lattice cover, finding a set of nodes covered by

the lattice requires performing two transitive operations, one from the LUB (on the

original edge graph) and the other from the GLB (on the inverted edge graph) of

the lattice, and finding the intersection of the two node sets. Checking that a set of

lattices is a lattice cover involves taking the union of the sets of nodes covered by the

lattices and checking if this is identical to the sets of all nodes in a fragment. Next,

we prove that LCP is NP — complete.

Lemma 4.2.1 LCP is NP — complete

Proof: LCP is in NP, since a nondeterministic algorithm may guess a set of

suitable candidate lattices LC for a partial order set (P, S) such that ILC I S K, and

then check in polynomial time whether LC is a lattice cover.

We transform MCP to LCP. Let C = { S], 3;, ..., Sn } be a collection of subsets

of a finite set S. The poset (P, j) is constructed as follows. For each subset S,- E C,

we create four nodes, M,,, Mg.“ N,l , and N,,. Next, we create direct partial orders

for each i such that M,, j N,, and M,, j N,., wherei = 1, 2, . .. ,n. For every x E S,-

where i = 1, 2, .. . ,n, we create a direct partial order such that Mg, j .7: j N,,. This

newly constructed poset (P, S) has 2n maximal nodes (i.e. M1,, M1, M2,, M2,, . . .

a ".11, Mn_12, Mm, Mm) and 211 minimal nodes (i.e. N11, N1, N2“ N22, . . . ,Nn_1,,

N,,.],, N,,,, N,,,). From this poset (P, j), let set M and N consist of all maximal

and minimal nodes of P. Then, we create CL as such CL = { < x,y > : a: E M /\
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y 6 N A :L' j y }.

Then, in any lattice cover LC Q CL, we must have at least 2n suitable candidate

lattices to cover both the n maximal nodes (i.e. M1,, M2,, ,Mn,) and the n

minimal nodes (i.e. N12, N22, ,N,,,). Furthermore, it is always possible to derive

the above 2n suitable candidate lattices as 2n simple lattices. This is because we

have M,, :5 N,, and M,, j N,, where i = 1, 2, ,n. Let a set X denote the above

2n simple lattices.

It is obvious that the lattices in X also cover the remaining n maximal nodes

(i.e. M1,, M2,, ,M,,,) and n minimal nodes (i.e. N11, N2” ,Nm). Note that

no lattice in X covers any node in S because the lattices in X are simple lattices.

Therefore, if we can derive a lattice cover LC, where ILC I S (K + Zn), from this

poset (P, S), then we have a minimum cover C’ Q C with IC’I S K.

To see that this transformation can be performed in polynomial time, it suffices to

observe that the total number of partial orders in (P, j) are bounded by a polynomial

of 0(ICI - max{|S,-] : S, E C}). D

In order to demonstrate how the above transformation works, we will illustrate an

example as follows. Let MCP have the instances such as S = { 1, 2, 3, 4, 5 } and C

={S],S-3,S;3,S4,Ss}whereS1={1,2,3},Sg={4,5},S3={1,2},S4={3,

4 }, and 5;, = { 5 }, From this MCP, we need to construct a poset (P, S). For each

subset S,- E C, we first create four nodes M,“ M,,, N,,, and N,,, which are shown in

Table 4.3.
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i5, Mg, Mg, N5, N5,

1s,={1,2,3} A B K L

2 52={4,5} I J T U

3 S3={I,2} C D N O

4 S..={3,4} E F P Q

5 55={5} G H R s
 

Table 4.3: Newly created nodes for each set S,- for transforming from MCP to LCP

Next, we create direct partial orders for each set S, where i = 1,2, . . ., 5. For 5;,

the direct partial orders created are A :5 L, B j K, A j 1 j K, A j 2 j K, and A .

j 3 j K. The rest of direct partial orders created for other sets in S are shown in

Figure 4.5.

\ I \ I \ I \ I \

\ I I \ I \ I \ I

\ I \ I \ I '

\ I \ p I

X l is 2 if is ‘ A
I\ ’\ I I\

II \/
IIM

\‘/

\ I \ I

V ‘ ‘ r i I i I ‘
L K O N Q P S R U T

Figure 4.5: Partial order sets created from MCP to LCP

Note that in Figure 4.5, dashed arrows (undashed arrows) represent direct partial

orders constructed for newly created nodes (resp. nodes in 3,). Then, set CL consists

of suitable candidate lattices in { < B,K >, < A,L >, < A,K >, < A,N >,

< A,P >, < D,N >, < 0,0 >, < C,N >, < C,K >, < F,P >, < E,Q >,

< E,K >, < E,P >, < H,R >, < G,S>, < G,R>, < G,T >, < J,T>, < I,U >,

< I, R >, < I,T > }. It is easy to see from Figufe 4.5 and CL that if we can derive

a lattice cover LC Q CL, where [LC | S K + 2 - 5, then we have a minimum cover
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C’ c c with m s A".

4.2.4 A General Heuristic for Finding a Good Lattice Cover

[11 this subsection, we present a heuristics for finding a good lattice cover. The

following proposition will establish the relationship between the lattice cover size and

the number of maximal and minimal nodes in the F-subgraph GF(VF, Ep).

Proposition 4.2.1 Given an F-subgraph Gp with M maximal nodes and N minimal

nodes, the index for any lattice cover of Gp must be at least max(M, N).

Proof: Assume that M _>_ N. Since two maximal nodes can not belong to the

same lattice, we need at least M lattices to cover all those maximal nodes. Similarly,

if N 2 M, we need at least N lattices to cover those minimal nodes. D

From the proof of proposition 4.2.1, it is obvious that all maximal (minimal) nodes in

Gp must be used at least once as the LUB (resp. GLB) node of some lattice in any

lattice cover of Gp. This is because a maximal (minimal) node cannot be covered by

any lattice whose LUB (resp. GLB) node is not a maximal (resp. minimal) node.

This property provides a good basis for choosing a set of suitable candidate lattices,

i.e. CL, from all possible suitable candidate lattices.

We restrict all suitable candidate lattices to consist of those whose LUB and GLB

nodes are chosen from maximal and minimal nodes (respectively) of F—subgraph. For

example, consider the F-subgraph G2 in Figure 4.2. The suitable candidate lattice
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< 7,11 > defined on G2 is not chosen as a member of set CL. This is because LUB

node 7 is not a maximal node of the F—subgraph G2. The set CL consists of the

lattices < 3,10 >, < 3,11 > and < 3,12 >. However, it is not always possible to

derive a lattice cover for a given Gp from the subset of suitable candidate lattices we

just described. We take the DAG GR in Figure 4.6a as an example to illustrate this

if) mi Al

I W. 81® 03 ®

a b

problem.

Figure 4.6: A digraph G and F-subgraph of G

From the graph G3 in Figure 4.6a and the fragment F = { 2, 5, 6, 9, 10, 13, 14 },

we get the corresponding Gp shown in Figure 4.6b. It follows that GL = { < 2,13 >

} from which we cannot derive a lattice cover for Gp. This is because set CL cannot

contain the unsuitable candidate lattice < 2,14 > which also includes additional

node 11 ¢ F'. Thus, we need to enumerate additional suitable candidate lattices to

derive a lattice cover. For this purpose, we present Algorithm 1 in Figure 4.7. It

obtains additional suitable lattices by partitioning an unsuitable lattice < x, y > into

a set of suitable lattices. The union of these suitable lattices then covers all nodes in

{zlszjy /\ zEVp}.

"
.

i
.
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The input to the algorithm is VF, unsuitable lattice L =< :r, y > and a subgraph

SG1(V1, E1) induced by the elements of L =< :r, y >. The elements of L =< :c,y >

was obtained from the intersection between ({x} U {all descendants of x}) and ({y} U

{all ancestors of y}) by using ER. Note that the we represent E1 and ER as adjacency

lists.

 

begin

1. Let a subgraph SG1(V1, E1) corresponds to L = < 2:,y >;

2. Let \I' = 0;

3. Obtain IV] = V] - V}: and V1, -'= V] — IV];

4. Let SGL(VL, EL) be a subgraph induced by nodes in V1,;

5. Let P, = 0, S] = {x}, and i = 2;

6. Let S) = { v | (u,v) 6 EL for all uE S] };

7. If 32 = (ll then goto step 10;

8. For each v in S2, let P, = i;

5
"

i = i + l, 51 = $2, and goto step 6;

10. Find 5 = {(u,v) | (u,v) E EL A (u,w) E E1 where w 6 1V1};

11. EL = EL—band N={u | (u,v)Eb};

12. Find w 6 N such that PW = min{ P, I v E N};

13. Let M consist of all maximal nodes in EL;

14. Let \II = \IIU {<u,w> |ueMA(ujw is true in 131)};

15. From EL, obtain S<,,,,,,> = {clm j c j n} for each < m,n >€ ‘1’;

16. Obtain VL -_- vL — {cl 0 e 50....) where < m.n >6 ‘1'};

17. If VL = 0 then goto step 20;

18. Let EL consist of those edges whose end nodes are in V1,;

19. Let N consists of all minimal nodes in EL and goto step 12;

20. return (\II, {SLIL 6111]);

end   
 

Figure 4.7: Algorithm 1: Partition an Unsuitable Candidate lattice L =< 1:, y >

We re—take the DAG GR and Gp in Figure 4.6 as an example to demonstrate

Algorithm 1. The input to this algorithm is a VF = { 2, 5, 6, 9, 10, 13, 14 }, the

unsuitable candidate lattice < 2,14 > and the subgraph SG1(V1, E1) corresponding

to < 2,14 >. Figure 4.8a shows SGL(VL,EL) obtained at step 4. The value P, of
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each node v in V1, is also shown beside node v in Figure 4.8a. Note that due to edge

(5,14), P14 is initially set to 3 and then reset to 4.

.4: .4: .,

“’91: A): :31:
a) b) C)

Figure 4.8: Changes of SGL(VL, EL) in Algorithm 1

At step 10, since node 6 connected to node 11 in [V], 6 contains edge (6, 10). We

delete edge(s) in (i from EL at next step. Thus, the structure of SGL is changed,

which is shown in Figure 4.8b. After the executions of step 12 to 15, we obtain \11

= { < 2,6 > } and change SGL. This changed SGL is shown in Figure 4.8c. Since

V1, is still non-empty, steps 12 to 16 are repeated. During this repetition, set \I' is

changed to \II = { < 2,6 >, < 5,14 > }. This set \I' contains suitable candidate

lattices partitioned from the unsuitable candidate lattice < 2, 14 >. Next, we discuss

the time complexity of Algorithm 1.

The primary complexity of Algorithm 1 comes from traversing edges in EL. Then,

it is easy to see that Algorithm 1 will not traverse more than |\II| - IEL| edges. Thus,

the time complexity is 0(|\II| - IELl).
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We now present Algorithm 2 which generates a good lattice cover for an F-

subgraph. It is given in Figure 4.9. The input to Algorithm 2 is thegF-subgraph

Gp(Vp, Ep), edge set ER, and set M and N. Set M and N denote the sets of max-

inial and minimal nodes of the F—subgraph respectively. Note that edge set ER and

Ep are maintained as adjacency lists.

Algorithm 2 first creates a set of suitable candidate lattices CL by using Algorithm

1 and the method we described in the early part of this subsection. Next, Algorithm

2 tries to identify essential lattices among the lattices in CL. The formal definition

of essential lattices is given in the following definition 4.2.7.

Definition 4.2.7 Let CL be a set of suitable candidate lattices for an F-subgraph

GF(VF,EF). Suppose that CL’ = { LC], LC2, ...,LCk } consists of all possible

lattice covers for G1: where LC, Q CL fori = 1,2,...,k. Then, a lattice in CL is

essential if it belongs to any lattice cover LC, fori = 1,2, . . . ,k.

Identifying all the essential lattices in CL was shown to be NP-Hard [73]. How-

ever, some of the essential lattices can be identified by checking each node in the

F-subgraph. That is, if a node is covered by a single lattice in CL, then the lattice is

essential. After finding all identifiable essential lattices in CL, Algorithm 2 compute

a set of nodes, V, not covered by identified essential lattices in CL. It then repeatedly

apply a greedy heuristics to the nodes in V to select a lattice from CL that covers

the most remaining uncovered nodes in V (with ties broken arbitrary).

Figure 4.10 shows a digraph GR(VR,ER) consisting of two F-subgraphs corre-

sponding to the fragments { l, 2, ,14, 15 } and { 16, 17, , 21, 22 }. The
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Stage 1

1. Let LC = 0. For each node v in Vp, create the corresponding ances-

tor and the lattice set A, and LS, respectively. They are initialized

to 0. Create two sets ECL (Essential Candidate Lattice) and UCL

(Unsuitable Candidate Lattice). Let ECL = UCL = 0.

2. For each maximal node m in M, let A", = { m }. For every v which

is a descendant of m in Ep, let also A, = A, U { m }. Therefore,

given a node v, its ancestor set A, contains all the maximal nodes

which are ancestors of v. For each maximal node m in M, let Am =

{m}-

3.. For each minimal node n in N, and each m 6 A,,, the node pair

(m,n) suggests a candidate lattice < m,n >. There are EneN IAnI

such pairs. Let CL denote the set of ZneN IAnI candidate lattices.

4. For each candidate lattice L =< 2:,y > in CL, create the corre-

sponding set SL by using E3. The elements of SL are obtained from

the intersection between ({ a: } U { all descendants of :1: }) and ({ y

} U { all ancestors of y }). If L is not suitable, move L from CL to

UCL.

5. For each L 6 CL, LS, = LS, U { L } ifv 6 51,. Let UCL’ = 0.

For each node v in Vp such that LS, = 0: UCL’ = UCL’ U { L |

L e UCL A v e .91, }. 1f UCL’ = (2) goto step 8.

6. Apply Algorithm 1 to each unsuitable candidate lattice L 6 UCL’.

Let PCL consists of those suitable candidate lattices returned from

Algorithm 1.

7. For each L E PCL, LS, = LS, U { L } ifv 6 S1,. CL = CL U

PCL.

8. For all u 6 VP, if LS, contains only one lattice L, then move L from

CL to ECL.

9. Let L0 = LC U ECL and V}? = VF - ULeECLSL-

Stage 2

V = Vp; U = CL;

while ( V ¢ 0) {

Select an L E U that maximizes ISL 0 VI;

UzU—L;

V=V—SL;

LC=LCUL;}

LC is the lattice cover for the F-subgraph;

 

Figure 4.9: Algorithm 2: Find a Lattice Cover for an F-sub2ranh
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F-subgraph Gp(Vp, Ep) corresponding to the fragment { 1, 2, ,14, 15 } will be

used to demonstrate Algorithm 2 as follows.

01110121Q131

[01110111 121 0 0131

0111 w @131  \
.

@111 $112.31 011.131 @131

Figure 4.10: A digraph G consisting of two F-subgraphs

Stage 1

2. The ancestor set A, of each node v in VF is shown beside node v in Figure 4.10.

3. The set CL of candidate lattices is obtained: CL = { < 1,12 >, < 1,13 >,

<1,14>,<2,13>,<2,14>,<3,13>,<3,14>,<3,15>}.

4. Table 4.4 shows the nodes of each candidate lattice L in CL. The nodes of each

lattice are computed by using the edge set ER. Among the candidate lattices

in CL, lattice < 1,12 > is not suitable, since it also covers nodes 20 and 21.

Thus, CL 2 CL — {< 1,12 >} and UCL ={ <1,12 > }.

5. In this step, wegot LS1 ={< 1,13 >,< 1,14 > },LSz={<2,l4 >,<2,l5>

},L53={<3,13 >,<3,14 >,<3,15> },LS,=0,...,LS.5={<3,15>

}. Then, by the definition of UCL’, UCL’ = { < 1,12 > }.
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11 SL L 51,

< 1,12> SL={1,4,9,12,20,21} <2,13> SL={2,6,10, 13}

< l,13> SL={1,4,5,9,10,13} <3,l3> SL={3,7,10,13}

< l,14> SL={1,5, 10,14} <3,14> SL={3,7,8,10, 11,14}

< 2,14> SL={2,6,10,14} <3,15> SL={3,7,8,11,15}

Table 4.4: Lattice L and Set SL

6. By applying Algorithm 1 to unsuitable candidate lattice < 1,12 >, we got PCL

={<1,4>,<9,12>}.

7- In this step, by using Ep, we got 50,4) = { 1, 4 }, S<9,12> = { 9, 12 }, L31

={<1,4>,<1,13>,<1,14>}, LS4={<1,4>,<1,13>},L39={

<1,13 >, < 9,12 > }, L512 = { < 9,12 > }. And CL = CL U { < 1,4 >,

< 9,12 > }.

8° The lattices < 9,12 > and < 3,15 > are essential because L312 : { < 9,12 >

}, LSI5 = { <3,15 > }. Hence, ECL = { <9,l2 >, <3,15>}and CL ={

<1,4>,<1,13>,<2,13>,<2,14 >, <3,13 >, <3,14> }.

9‘ LC and V consist of{ < 9,12 >, < 3,15 > } and { 1, 2, 4, 5, 6,10, 13,14}

respectively.

Stage 2

A greedy method is performed in while loop. At the first execution of while

loop, lattice < 1, 13 > will be selected from CL. Then lattice < 2,14 > will be

selected in the next execution of the while loop and Stage 2 will end. Therefore,
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the lattice cover LC consists of{ < 9,12 >, < 3,15 >, <1,13 >, < 2,14 > },

which in this example is the minimal lattice cover.

4-2 -5 Near Optimal Lattice Cover Size

Corrnen et al. [20] used the same greedy heuristics as the one in stage 2 of Algorithm

2- They derived a logarithmic ratio bound for their algorithm. Our greedy approxi-

rnation algorithm has the same performance ratio bound in the worst case as the one

shown in [20]. This is because, in the worst case, our algorithm may not identify any

essential lattice. As a result, only the greedy heuristics of stage 2 is used for deriving

a l at t ice cover.

Let OPT(I*) be the optimal solution and LCP(I) the heuristic solution for LCP

PTOblem. Cormen et al. prove in [20] that LCP(I) < (ln(max{|SL| : L 6 CL}) + 1) .

O PT( I‘). However, for our algorithm, this bound represents the worst case situation.

To measure the performance of Algorithm 2, we create random DAGs GR(VR, ER).

T118 generation of DAGs is based on a uniform distribution in the range [1,IVRI]

Where |VR| represents the total number of nodes. Then, we' create F-subgraphs by

partitioning GR. Each F-subgraph has a small number of maximal and minimal nodes

C0111pared to IVFI (i.e. about 1 % of [VF] on the average). Based on the above scheme,

we Create a set of random F-subgraphs Gp(Vp, EF) as f0110W53

. Size of Vp is varied from 1000, 1500, to 2000 nodes.

. For [Vpl = 1000, we create Gp by varying [Epl from 1500 to 10000 with an
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interval 500 edges.

. For |Vp| = 1500, we create Gp by varying IEFI from 2500 to 10000 with an

interval 500 edges.

0 For |Vp| = 2000, we create Gp by varying [Ep] from 3000 to 10000 with an

interval 500 edges.

0 For each fixed size of VF and Ep, we create 10 Gp’s using 10 different seeds.

For each F-subgraph created as above, we compute the lattice cover size ILCFI and

the percentage ratio between the total number of essential lattices (i.e. IECLI) and

sui table candidate lattices (i.e. lCLl), by using Algorithm 2. Note that CL (ECL) is

Obtained in step 7 (resp. step 8) of Algorithm 2. These values are then averaged over

the 10 F-subgraphs with same values of [VF] and |Ep|. These are shown in Figure

4-11

Figure 4.11a shows that the lattice cover size |LCp| converges to the theoretically

DOSSible minimal lattice cover size as we increase IEFI- The theoretically possible

Irlitlitnal lattice cover size is given in Proposition 2.1. From Figure 4.11b, we can

clearly observe that the value of P approaches close to 100 % as We decrease IEFl This

i ‘11 plies that the total number of essential lattices approaches close to the total number

of the suitable candidate lattices, as we decrease [EFL Since [ECL] S ILCp] S

ICLI, Algorithm 2 gives LCp close to the minimal lattice cover, as [Ep] is decreased.

Therefore, we can conclude that Algorithm 2 gives near optimal lattice covers for both

dense and non-dense F-subgraphs. Note that dense F—subgraphs have much larger



93

number of edges per node than that for non-dense F-subgraphs.

50 l l T
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b) P = 100.130L1/10L1

Figure 4.11: Performance analysis for Algorithm 2

Next, we discuss the complexity of Algorithm 2. Algorithm 2 consists of stage I

and 2. The time complexity of stage I is dominated by step 4. Let N, (N,) be the

1hfiximum number descendants (resp. ancestors) of node a: E M (resp. N). Let e, be

the total number of edges to be traversed to find the above ancestor and descendant

nodes. Then step 4 will run in O(e, + (N; + Na) - 2,511; lAnl)- For stage 2, we can

ea8in see that its time complexity is O(|CL|2 - IVpI). Thus, the time complexity of

the algorithm is 01a + (N. + N.) c.3141 + 10L12- 1W1). Note that. as the

denseness of F-subgraph is decreased, the time complexity will approach to O(et +
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(N4 + Na) - ZneN |A,,|). This is explained by the result shown in Figure 4.11b.

4-3 Finding Relevant Fragments

The fragments containing the nodes a query needs to access, are defined as relevant

fragments of the query. Note these set of nodes may be a super set of the result

11 odes. In order to find relevant fragments of the query, each site needs to access its

local fragment table and local edge set ER. Before discussing methods of locating the

relevant fragments, we first introduce a set of basic notations which will be used in

the rest of this paper. They are defined as follows:

FT : the set of all lattices in the fragment table; Q : a set of nodes;

DQ : Q U { all descendants of nodes in Q };

AQ : Q U { all ancestors of nodes in Q };

SM: {x|<x,y>6FT}; Slubq : {xleSIubeEAQ };

Sglb:{y|<:z:,y>EFT}; SglbqifylyESgIbAyeDQ }i

Note that DQ and AQ are computed from E3 maintained in adjacency lists. The

following proposition provides the basis for locating relevant fragments of the query.

Proposition 4.3.1 Suppose Q consists of a set of nodes needed by a query. Let A be

the set of lattices in FT which cover all nodes in Q. Then, the lattices in A are only

those lattices in T ={ < x,y > I :1: E Stubq /\ y 6 Sglbq /\ < :c,y >6 FT }.
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Proof: We need to show that A g T and T g A to prove A E T.

Case 1: To prove A Q T, we need to show V < 2:,y > (< 1:,y >6 A —> < a:,y >6 T).

Assume that there is a lattice < u,v >6 A such that < u,v >6 T. Then, < 21,!) >

11) ust cover at least one node 2 6 Q. By the definition of T, a 6 Slubq or '0 ¢ 59le-

However, since u j z j v and z 6 Q, u 6 AQ and v 6 Dq. This implies that

u 63 Slubq and v 6 39150, which is a contradiction.

Case 2: To prove T Q A, we need to show V < 2:,y > (< a:,y >6 T —> < $,y >6 A).

Assume that there is a lattice < u,v >6 T such that < u,v >6 A. Then, by the

definition of T, < u,v >6 FT and it must cover at least one node in Q. Since A

Contains all lattices in FT which cover all nodes in Q, A must contain < u,v >. This

contradicts our assumption. 0

Even though proposition 4.3.1 gives a general way of locating relevant fragments,

it is an inefficient approach because it requires computing two transitive closures

(i-e. finding all ancestors and descendants) of all nodes in Q. Thus, we need an

efficient algorithm which minimizes transitive closure computations. Fortunately,

for recursive queries, the nodes they need to access are likely to be a connected

Component or a collection of several connected components. In this case, we can

lhinimize computing two transitive closures of all nodes in Q by taking advantage of

the transitive relationships among the query nodes. Furthermore, if a recursive query

processing requires a transitive closure computation on ER, then either Q E DQ or

Q _=. Aq. Then, in either cases, no more transitive closure computation is necessary.
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This will be proved in the following proposition 4.3.2 and 4.3.3.

Proposition 4.3.2 Let DQ E Q and TI ={ < 2:,y > I y 6 Sggbq /\ < 1:,y >6 FT}.

Then, ll E T.

Proof: We need to show that H (_Z T and T 9; TI to prove TI 5 T.

Case 1: To prove T Q 11, we need to show V < x,y > (< 1:,y >6 T —-) < 2:,y >6 H).

For all < any >6 T, by definition of T, it is true that y 6 39150 and < :c,y >6 FT.

Tl) us, all < :r,y >6 T belongs to ll.

Case 2: To prove ll g T, we need to show V < x,y > (< 23,}; >6 ll —+ < :c,y >6 T).

Assume that there is a lattice < u,v >6 ll such that < u,v >¢ T. Then, it must

be true that v 6 Sglbq, < u,v >6 FT and u 6 Szubq. By proposition 4.3.1, < u,v >

Callliot cover any node in Q. However, < u,v > covers the node v 6 Q, since

'1’ G 5'9le 9 DQ E Q. Thus, < u, 12 >6 T, which is a contradiction. 0

Proposition 4.3.3 Let Ag 5 Q and Q ={ < 3:,y > I a: 6 Szubq A < any >6 FT}.

Then, 9 E T.

Proof: The proof is similar to the one for Proposition 4.3.2.

Before presenting an efficient algorithm (i.e. Algorithm 3) for finding relevant

fragments, we first introduces a function named Block(x,t), which is called within

Algorithm 3. Note that parameter t represents either symbol “L” or “G”. Function

Block(z,G) (Block(:r,L)) returns a set of GLB (resp. LUB) nodes from which a given
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node a: is reachable. This function is described in Figure 4.12.

 

Block(m,t) /* a: : node; t: either G or L; */

begin

current = {1:}; Block 2 0;

Ift = G then .S = $915;

else s = Slub;

While ( current # 0 ) {

temp = current 0 3;

Block = Block U temp;

current = current — temp;

Ift = G then

current = {y|(;z:,y) 6 ER A a: 6 current};

else /* t = L */

current = {:r|(:c,y) 6 ER A y 6 current}; }

return (Block);

end    
Figure 4.12: Procedure Block(x,t)

To show how Block(x, t) works, we take Figure 4.13 as an example.

Figure 4.13a shows three F-subgraphs whose node information is stored at different

Sites. The fragment table corresponding to the DAG GR of Figure 4.13a is shown in

I:igure 4.13b. Note that this fragment table is stored at each site. From Figure 4.13b,

We. have Sglb = { 6, 7, 13, 14, 15, ‘24, 20, 23 } and Slub = { 1, 2, 8, 9, 16, 17, 21 }.

Then, it is easy to see from the procedure that Block(4,G) = {6,7}, Block(6,G) =

{6}, Block(‘23,L) = {9, 16, 17, 21}, and Block(21,L) = {21}.

We now describe Algorithm 3 in Figure 4.14. Let Q consists of a set of nodes a

query need to access. Algorithm 3 first checks if either Q E DQ or Q 5 Ag. If it is,

Using proposition 4.3.2 and 4.3.3, Algorithm 3 easily locates relevant fragments. Oth-

erwise, the algorithm tries to find relevant fragments taking advantage of transitive
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Figure 4.13: a) DAG for the whole recursive relation b) Fragment table

relationships among the nodes in Q.

We re—take the preceding Figure 4.13 to demonstrate Algorithm 3. Assume that

tNW0 recursive queries RQ1 and HQ; need to access nodes in Q1 = { 8, 10, 11, 13, 14 }

Ei-nd Q2 ={ 12, 18, 19, 20, 21 } respectively. We show how to find relevant fragments

of RQ1 and RQ2 in the following two cases.

Case Rle We have LQ = {8}, G’Q = {13,14}, EQ = { (8,10), (8,11), (10,13),

(11,13), (11,14) }, EL = { (6,8), (9,11) }, and Ea = 0. Since E0 = 0, we obtain

LT = {< 8,13 >, < 9, 14 >} at step 3. Thus, fragment 2 is the relevant fragment of

the query RQI .
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begin

1. Compute LQ = Stub O Q and GQ = 59", (1 Q;

2. Compute EQ = {(x,y)la: 6 Q A y 6 Q A (13,31) 6 ER},

EL = {(x,y)lx ¢ QAy 6 QA (33,31) 6 ER},

Ea = {(x,y)lx E Q /\ y 9! Q A (55,31) 6 ER};

3.1fEG =(othen /* Q2 Do */

{LT = {< any > Iy 6 GqA < x,y >6 FT}; Goto step 10;}

IfEL=0then /*QEAQ */

{LT = {< x,y > |;L' 6 LqA < x,y >6 FT}; Goto step 10;}

4. For each node a: 6 Q, L1, = G: = 0;

5. 30, = {$l($,y) e Ea} u Go;

81.0 = {yl($,y) 6 EL} U Lo;

6. For each :1: 6 800’ GI = Block($,G);

For each a: 6 81,0, L,c = Block(zr, L);

7. For each a: 6 300

For every y which is an ancestor of :1: within EQ

G1, = Gy U (1'3;

8. For each a: 6 BLQ {

L’ = L,; G’ = Gt;

LT. = {< a,b> la 6 L.Abe (LA < a,b>6 FT};

while (LT; = 0) { /* No lattice covering node x is yet found */

L' = {uly E L’ A (my) 6 ER};

G" = {va 6 G" A (m,n) 6 133};

For each u 6 L’, Lz = L, U Block(u, L);

For each v 6 G’, Ga, = G'up U Block(v, G);

LTx= {< a,b> |a6 LxAb6G'zA <a,b>6 FT}; }}

9. LT = UxEBLQ LTx;

10. All lattices in LT describe the fragments containing nodes in Q;

end

 

Figure 4.14: Algorithm 3: Find the Relevant Fragments
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Case RQ2: We have LQ = {21}, GQ = {20}, EQ = { (18,20), (19,20), (20,12), (20,21)

}, EL = { (9,12), (16,18), (17,19)}, and E0 = { (12,15), (12,23), (21,23), (20,22) }.

At step 5, we obtain 800 = {12, 20, 21} and 81,0 = {12, 18, 19, 21}. At next step,

function Block-(2:, G) and Block(w, L) gives on = {15,23}, G20 = {20}, 621 = {23},

L1 2 = {9}, L13 = {16}, L19 = {17}, and L2] = {21}. Since nodes 18,19, and 20 are

tlle ancestors of each node :1: 6 BGQ within Eq, G18 = { 15, 20, 23 }, G19 = { 15, 20,

23 } and G20 = { 15, 23 } are computed at step 7. In the following step, we identify

all the lattices covering nodes in BLq. By the definition of LTz, LT12 = {< 9,15 >},

LT” ={<16,‘20 >}, L7}, = (21, and LT,l = {Q 21,23 >}. Since LT19 = 0, we need

to execute the while loop. 111 that loop, we got L’ = (D and G’ = {22}. Then, we

cOmpute G19 = { 15, 20, 23 } U {24}, which gives LT19 = {< 17,24 >}. Thus, the

lattices in { < 9,15 >, < 16,20 >, < 17,24 >, < 21,23 > } describe the relevant

fraugments (i.e. fragment 2 and 3) of RQg. Next, we discuss the time complexity of

A 1 gorithm 3.

The time complexity of Algorithm 3 is varied depending the following two cases.

The first case is when EC; or EL is equal to (D. In this case, the complexity is 0(IEQ U

EL U Ea} + ILTI - IFTI). The second case is when the first case is not true. Let e1,

l‘epresent the total number of edges belong to lattice L. Then, Algorithm 3 in the

Second case do not traverse more than 0(2LeLT |eL|) edges. Thus, the complexity is

0(2Lem ICLI + ILTI ' IFT|)-
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4.4 Updating Recursive Relations

There are four different types of updates on a fragmented recursive relation

GR(VR,ER). They are node addition, node deletion, edge addition, and edge dele-

tion. A new node can be added to V3 or an existing node can be deleted from V3.

This node addition and deletion require updating Vp at the corresponding site. An

edge addition (deletion) can connect (resp. disconnect) two existing nodes belong-

ing to either same fragment or two different fragments. This edge update requires

revising the local copy of edge set ER at each site.

These 4 different types of updates must be performed by following the two update

constraints given below:

1. A new edge (:13, y) can be added to ER if node a: and y already exists in VB.

‘2. A node a: can be deleted from V3 after all edges incident on node :1: are deleted

from ER.

The preceding two constraints are introduced to make each type of update atomic.

The updates may also require revising the descriptions of some fragments (i.e.

lattice covers). If we have to recompute new lattice covers for those fragments affected

by updates, the overhead of maintaining the fragment description would be high.

However, we can avoid this re—computation by using an efficient incremental update

algorithm. This is presented in the following subsections.
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4.4.1 Edge Update

Suppose that an edge (x,y) is added (deleted) to (resp. from) DAG GR(VR, ER) at

site h. Then, by using Algorithm 3, site k can easily locate which fragments contain

Ilode :1: or y. Assume that fragments F,- at site i and F,- at site j contain node :1:

and y respectively. Note that i,j and k are not necessarily distinct. Based on the

above assumption, we describe the detailed update algorithms for edge addition and

d eletion.

Edge Addition

Site It sends the update information (i.e. an addition of edge (x,y)) to site i

alld j. After receiving the update information, site i (j) performs the procedure

AddEdge((:1:,y),i) (resp. AddEdge((:1:,y),j)). This procedure is described in Figure

4- 1 5. The DAG GR(VR,ER) in Figure 4.16 is used as an example to show theex-

eoCution of procedure AddEdge((:1:,y),s). Figure 4.16 shows two F-subgraphs whose

1lodes are stored at site 1 and 2.

Assume that we add edge (13,15) first and then (9,7) to ER. Site 2 performs

AddEdge((13, 15),2) because both node 13 and 15 are available locally. Since A is an

empty set, we obtain L13 = {< 12,13 >} and L15 = {< 15,15 >}. Lattices < 12,13 >

and < 15, 15 > are merged into a new lattice < 12,15 > because lattice < 12,15 > is

suitable. Thus, lattice cover LC2 is changed to {< 8,10 >,< 12,15 >}.

Next, we consider edge (9, 7) addition to 133. Since site 1 and 2 stores node 9 and
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AddEdge((x,y),s) /* (x,y): edge; 3: site number; */

begin

Let LC, be a lattice cover for a fragment F, at site 3;

Let Ep, be an edge set corresponding to F,;

Let Q1 = {10}, Q2 = {31};

By using En, compute $1,,le and 3911,02;

Obtain A = { < u,w > | u 6 31,50! A w 6 5,1qu A < u,w >6 LC, };

If ( == 0) {

/* No lattice becomes unsuitable by the addition of edge (x,y) */

Obtain L, = { < a,.7: > I < a,:1: >6 LC, };

Obtain L3, = { < y,b> I < y,b>6 LC, };

1311' = ER U {(X,)’)};

For each < a,:1: > in L,

For each < y,b > in L1’

If (lattice < a,b > is suitable) {

/* Suitability checking is done by using ER’ */

LC, = LC, — {< a,:r >,< y,b >};

LC, = LC, U {< a,b >}; }}

else { /* Some lattices in A may become unsuitable */

For each < u,w > in A

If (< u, w > is not suitable) {

/* Suitability checking is done by using ER’ */

LC, = LC, — {< u,w >};

Apply Algorithm 1 to lattice < u,w >;

Let LC, include those lattices returned from Algorithm 1; } }

 

end

 
Figure 4.15: Procedure AddEdge((:1:, y), s)

  

 

    
  

Site] Site2

3 9 9 13 9

Lattice Cover LC]: Lattice Cover LC2:

I <1,3>,<5.7> } I <8,10>.<12.13>,<15,15> }

Figure 4.16: A DAG consisting of two F—subgraphs
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7 respectively, the site 1 (2) performs AddEdge((9,7),l) (resp. AddEdge((9,7),2)).

For site 2, no change is made 011 lattice cover LC2 because of A = L9 = L7 = 0.

For site 1, we got A = { < 5,7 > }. Lattice < 5,7 > is not suitable because it

includes additional node 9 stored at site 2. Therefore, it is necessary to partition

lattice < 5, 7 > into a set of suitable lattices. By applying Algorithm 1, we partition

the unsuitable lattice < 5, 7 > into suitable lattices < 5,6 > and < 4, 7 >. Thus, we

obtain L(31={<1,3>,< 5,6 >, < 4,7 > }-

After performing AddEdge((m,y),i) (AddEdge((az,y),j)), site i (resp. j) notifies

to site 1: its fragment description (i.e. lattice cover) changes. Upon receiving the

replies from site i and j, site k updates its local fragment table and ER. Then, site I:

broaKicasts these changes to all other sites. They in turn update their local fragment

table and ER.

We now discuss the time complexity of procedure AddEdge((z,y),s). Its com-

pleXity is determined by the total number of edges to be traversed in ER’. Let LUB,

= { l I<l,g>6(AUL,)}andGLB,,={gI<l,g>6(AUL,,)}whereset

A’ L;- and L, are shown in Figure 4.15. We denote a, (a,) as the total number of

edges to be traversed to compute all descendants (resp. ancestors) of each node in

LI] 8,7, (resp. GLBy). Then, it is easy to see that the time complexity of procedure

AddEdge((z,y),s) is 0(a, + ay).
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Edge Deletion

Site Is: checks if fragments F, and F, are two distinct fragments. If they are, then

no update is necessary on the fragment table. Site It updates only its local ER and

broadcast this change to all other sites. They in turn updates their local ER.

If F,- and F, are same fragment (i.e. i = j), then site [1' sends the update informa-

tion (i.e. a deletion of edge (:1:, y)) to site i. After receiving the update information,

site i performs the procedure DeleteEdge((m,y),i). This procedure is described in

Figure 4.17.

We re—use DAG GR(VR,ER) in Figure 4.16 as an example to show the exe-

cution of procedure DeleteEdge((x,y),s). Assume that we delete edge (8,9) first

and then (8,11) from E3. Thus, site 2 first executes DeleteEdge((8,9),2) and then

DeleteEdge((8,11),2). For DeleteEdge((8,9),2), we got A = {< 8,10 >}. Since

.5'1={8,10,11 } and 5'2 = {8, 9,10,11},LC'2is{< 8,10 >, < 9,10 >,

< 12,13 >, < 15,15 > }. For DeleteEdge((8,11),2), we obtain A = {< 8,10 >}.

Lattice < 8, 10 > becomes unsuitable because S, is an empty set. It is easy to see from

the procedure how LC2 is changed to { < 8,8 >, < 11,10 >, < 9,10 >, < 12,13 >,

<15,15> }.

After performing DeleteEdge((m, y),i), site i notifies to site 11: its fragment descrip-

tion (i.e. lattice cover) changes. Upon receiving the reply from site i, site I: updates

its local fragment table and ER. Then, site k broadcasts these changes to all other

sites. They in turn update their local fragment table and ER. In the next paragraph,

v
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we discuss the time complexity of procedure DeleteEdge((z, y),s).

 

DeleteEdge((zr,y),s) /* (x,y): edge; s: site number; */

begin

Let LC, be a lattice cover for a fragment F, at site 3;

Let Ep, be an edge set corresponding to F,;

Let El”. ..—.. BF: —{(:1:,y)},Q1={:1:}and Q2 = {y};

By using En, compute $1,,le and Sglqu;

Obtain A = { < u,w > I u 6 5'},le A w 6 391qu A < u,w >6 LC, };

If (A # 01) { /* Lattice in A may be affected by the deletion of edge (x,y) */

For each lattice < u,w > in A {

By using Eh, compute S] = { v I u j v j w};

If (5'1 == ) { /* Lattice < u,w > is not suitable */

LC,=LC,-{<u,w>};

LC,=LC,U{<u,:1:>,<y,w> };}

else { /* lattice < u,w > is still suitable */

By using EFL: compute 52 = { v I u j v j w};

If (lSzl 7'5 1511) {

/* The number of nodes lattice < u,w > covers is decreased */

If(u;é:1:) LC, = LC,U{<u,:1:> };

1f(y#w)LCs=LC,U{<y,w>};}}}}

end 

hill-1

 

 
 

Figure 4.17: Procedure DeleteEdge((z, y), s)

The time complexity of procedure DeleteEdge((m, y),s) is determined by the total

number of edges to be traversed in ER. Let LUB, = { u I < u,w > 6 A } and

GLBy = { w I < u,w > 6 A } where set A is referred in Figure 4.17. We denote d,

((1,) as the total number of edges to be traversed to compute all descendants (resp.

ancestors) of each node in LUB, (resp. GLBy). Then, it is easy to see that the time

complexity of procedure DeleteEdge((x, y),s) is 0((1:c + (1,).
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4.4.2 Node Addition and Deletion

Suppose that a new node :r is added to DAG GHQ/R, ER) at the site It. In this case,

we assume that site k wants to store node :1: in its fragment. Site Is first creates a new

trivial lattice < :1:,:1: >. It then updates its local fragment table by adding < :1:,x >

to its fragment description. Site k broadcasts this change to all other sites. They in

turn update their local fragment table.

Suppose that a node :1: is deleted from DAG GR(VR, ER) at the site 11:. Then, by

using Algorithm 3, site k can easily locate which fragment contains node :1:. Assume

that fragment F,- at site i contains node :1:. Note that i and k are not necessarily

distinct. Further note that, by the 2nd update constraint, all the edges incident on

node :1: are already deleted. Therefore, except for a trivial lattice < :1:, :1: >, no lattice

in the description of fragment F,- covers node :1:. Site It updates its local fragment table

by deleting lattice < :1:,:1: > from the description of fragment F,-. It then broadcasts

this change to all other sites. They in turn update their local fragment table.

4.4.3 Performance Analysis of Update Algorithms

In this section, we discuss the performance analysis of our update algorithms given

in the previous section. We use random F-subgraphs for this analysis. Random

F-subgraphs GF(VF, Ep) are created the same way as that given in Section 4.2.5.

Let LCP be a lattice cover for an F-subgraph Gp(VF, Ep). After each update on

Gp, the size of LCP may change. We denote this changed LCF by SLO (Semi Local

 

 



108

Optimal)-LCF. Besides SLO-LCp, we consider two other LCps after each update on

CF. They are TOP (Theoretically OPtimal)-LCF and NGO (Near Global Optimal)-

LCp. NGO-LCF is obtained by applying Algorithm 2 to Gp. In order to show the

performance of our update algorithm, it is ideal to compare the size of SLO-LCF with

that of TOP-LCP. However, TOP-LCp is computationally very difficult to achieve

due to the NP-completeness of LCP. Thus, as an alternative, we compare the size of

SLO-LCF with that of NGO-LCF.
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Figure 4.18: Effects of updates on ILCpI for a) non-dense and b) dense F-subgraphs

Figure 4.18 shows the effect of random updates on the size of LC}: for a non-dense

as well as a dense F-subgraph. Note that random updates consist of node addition,
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node deletion, edge addition, and edge deletion where each type of update is randomly

chosen. Figure 4.18a shows that, for a non-dense F-subgraph, the performance of our

update algorithms deteriorates very slowly. For a dense F-subgraph, the performance

deteriorates faster than a non—dense F-subgraph. This is shown in Figure 4.18b.

However, in the following paragraph, we will show that this performance degrade will

not cause the frequent application of Algorithm 2 to compute NGO-LCF.

We have measured the impact of updates on ILCFI for varying denseness of F-

subgraphs. In this experiment, ILCFI is measured after 50 random updates. We

averaged the value of ILCFI for 10 F-subgraphs using 10 different seeds, as we did in

section 4.2.5. The results are shown in Figure 4.19. From Figure 4.19a, it is easy to

see that the performance of our update algorithms is good for non-dense F-subgraphs

while it is not as good for dense F—subgraphs. For a non-dense F-subgraph, SLO-LCF

remains near optimal for a large number of random updates. This is seen in Figure

4.18a and 4.19a. Thus, we do not have to frequently apply Algorithm 2 to obtain

NGO LCp. For a dense F-subgraph 0,2, we do not need to frequently obtain NGO

LC11:, either. This is justified from Figure 4.19b, which shows that the percentage ratio

between ILCpI and IVpI for SLO-LCp grows very slowly with increasing denseness

of F-subgraph. Therefore, we conclude that our update algorithms perform well

without requiring frequent application of Algorithm 2 for both dense and non-dense

F-subgraphs.
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4.5 Conclusion

In this chapter, we developed a distributed database model for studying the problem of

fragmentation of recursive relations. We used the mathematical properties of lattices

to investigate fragmentation schemes. We showed that the lattice structures are

powerful representation tools for distributed fragments of recursive relations. Both

theoretical and empirical performance analysis of the lattice approach are provided.

The empirical analysis verifies the near optimality of the performance of our proposed

algorithm. We also showed that lattice approach provides an efficient way of locating

the relevant fragments of a recursive query.

There are special problems with updating fragmented recursive relations which

do not occur in updating fragmented non—recursive relations. We discussed these

PFOblems and their solutions. The empirical performance analysis of these solutions

are also discussed.



Chapter 5

Conclusion and Future Research

5 - 1 Contribution of This Dissertation

We have examined recursive query processing strategies for large recursive relations.

Recursive query processing requires transitive closure computations. As a special

Case of transitive closure computation, the shortest path computation is essential

for recursive query processing for the large recursive relations of topographical road

In this thesis, we proposed an efficient recursive data organization method called

the HiTi graph model. The HiTi graph model allows structuring of large recur-

Sive relations for hierarchical abstraction. Based on the HiTi graph structure, we

de‘VeIOped a new fast shortest path algorithm named S'PAH. SPAH uses the pre-

C01I‘Dutations captured by the HiTi graph to speed up SPSP computation. These
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precomputations are not used in the traditional SPSP algorithms, including A*. By

using these precomputations, SPAH dramatically reduces the explored search space.

This is shown through our empirical analysis of SPAH on grid graphs. We also stud-

ied intra and inter query parallel processing for shortest path computations within

the HiTi graph model framework.

The traditional intra query parallel shortest path algorithm known as 0T0par

is not scalable and was shown to be inefficient on the HiTi graph structure. We

proposed a new parallel intra query shortest path algorithm named PASPAH. We

implemented PASPAH and MOTOpar on a BBN GP1000, Which has a nonuni-

forn] memory architecture. The BBN GP1000 multiprocessor currently consists of 85

nodes, linked together by a high speed butterfly switch. In this system, the globally

shared memory is the sum of the memories local to all processors. Our empirical anal-

ySis of PASPAH on grid graphs showed that it is more scalable and performs better

‘31)an MOTOpar. However, our analysis also showed that the average execution time

of PASPAH is not significantly better than that of SPAH and MOTOpar. Note

that M0T0par is a version of OTOpar modified to utilize the HiTi graph structure.

Next, we proposed a new inter query parallel shortest path algorithm called

I ‘9 PAH. The performance evaluation of ISPAH was also performed on the BBN

GP 1 000 shared-memory multiprocessor system by using the same grid graphs as those

for PASPAH. The empirical analysis of ISPAH revealed that ISPAH is scalable

up to 25 processors although the speedup of ISPAH increases almost linearly for up

1‘. .

O 1 0 processors. One of the major performance bottlenecks of ISPAH results from
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the severe shared-memory access conflicts between processors. We then proposed an

improved version of ISPAH named MISPAH, which reduces the memory-access

conflicts through partial data replication. As a result of this replication, MISPAH

is scalable up to 41 processors. From this analysis, we conjecture that the parallel

processing for inter query SPSP problems is more promising than for intra query

SPSP problems.

We then studied the problems of describing and locating the fragments of large re-

cursive relations in a distributed database. These two problems are not primary query

optimization issues in a centralized database. In a centralized database, distribution

and location of the recursive data are easily handled through hashing or predicates.

Thus, its query optimization is primarily done on shortest path or transitive closure

computations. However, in a distributed database, the above two problems are the

ma,j or performance bottlenecks for recursive query processing. This is because the

COSt of processing recursive queries is strongly dependent on the cost of transmitting

information between sites in a distributed database. Traditional use of hashing is not

Sui table for distributed recursive databases, since they cannot capture the referencing

lOCEAJity of data. We used the mathematical properties of lattices to describe and

idelltify the distributed recursive fragments. We found that lattice structures provide

a. C'Dtnplete and sound description of recursive fragments. Our theoretical and empiri-

Cal performance analysis of the lattice approach verifies its effectiveness in distributed

databases.
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Future Research

Shortest path computation on topographical road maps requires accessing the

road segments on the disk. Since representation of topographical road maps

requires spatial data structures, we need spatial index schemes to enhance the

performance of shortest path computation. Traditionally, R, R+, R*, k-d, k-d-

b, MD, and GDB trees are used for indexing general spatial objects. However,

the above methods are not optimized for the identification of road segments.

Thus, more efficient spatial index schemes for the road segments need to be

developed.

Physically clustering adjacent road segments together in the same disk sector is

an important research issue for the performance of shortest path computation.

If adjacent road segments are not clustered, this will cause very frequent page

faults which in turn will slow down the shortest path computation.

In navigation systems, a shortest path may need to be recomputed because of

changing traffic conditions, such as roadblocking. Instead of recomputing an

entire shortest path, it may be possible to optimize recomputation based on

previously computed path information.

The MISPAH algorithm given in section 3.3.2 is scalable up to 41 processors.

More research is needed for further improvement.
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Appendix A

HiTi Graph Based Distributed '

’I‘ransitive Closure Algorithm

In a distributed database, HiTi graph can be used for describing and identifying local

relations (i.e. level 1 subgraphs). That is, each boundary node of a level 1 subgraph

1111i quely describes and identifies the corresponding local relation. Furthermore, the

StI‘UCture of HiTi graph allows dynamic decomposition of a transitive closure compu-

tation. By utilizing the above two advantages, we developed an efficient distributed

tramsitive closure computation. We first describe two primary algorithms named TC.1

and TC.2 which will be used for our proposed distributed transitive closure algorithm.

Their descriptions are given in Figures A.1 and A.2.
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/* U : Relation U(:1:,y); J: site number; */

/* k : the highest level number of a subgraph tree ST; */

begin

i—- 1; X: {30}; skip: TRUE,

BN’-—- boundary node information of SC(S’+’(X));

R} = 1r01:11,,BN'39,3N1”MU Ddy=:c BNj);

ifR' =(bthen{i=i—1;return((b,i)}

L1.

W191i: (53(sc(s:;,1‘(X)))uSw(Sc(S‘T“(X))));

R—— 773' .,.1:W8' .,yR; .,sgR' .sitc(R; Dal/=3 WBJi)

while (R 75 0) {

skip = FALSE, R3: Rj U R;

R“- "Rewa1.y,BN1.eg,BN1.mc(R My” W81)” R31 }

R; = ”I? .,.11: R' .y,BN1.39,BN'.sitc(R; My=3 BN;);

if (i—- - 1) then return(R}, R2, , R}, i);

BN’-+1k= boundary node information of SC(S'+2(X));

R;+ = WR'.,:1:R'.y,BN' .sg,BN'-.site(R;' My=r BAG-+1);

if(skip = TRUE) then R‘ = 0;

if R‘“-= 0 then return(R‘-, R3, ..., R}, i);

else{X= S’+1(X); i=i+1;

skip-— TRUE; goto L1; }

end   
 

Figure A.1: Algorithm TC.1: AscendingPhase (U,j,k)

These two algorithms use three different types of relations such as WBJ':(:1:,y),

B N;(:1:, sg, site), and R§(:1:, y, sg, site). Relation WB}(x,y) consists of tuples t where

t corresponds to either a level i between or within edge. Relation BN;(x,sg, site)

C011 tains tuples t where t.:c corresponds to a level i boundary node, t.sg corresponds

to the notation of the level i subgraph to which t.:1: belongs, and t.site corresponds to

tllfi site number storing the level 1 subgraph to which t.:1: belongs. We assume that

the: subscript of each level 1 subgraph corresponds to a site number. For example,

hQ local relation correspondmg to SC}3 is stored at srte 3. Relation R3 18 used as
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a working relation for computing a distributed transitive closure. Thus, each site j

has R;(:1:,y,sg, site) for each level i where l S i S k. Note that we use the same

notations as those defined in the chapter 2.3 in TC.1 and TC.2 algorithms.

 

/* Z : Relation Z($1y1 391 Site); */
/* j: site number; i: level number; */

begin

x = S;+‘(X);

EN; = boundary node information of SC(X);

Z = ”z.e,z.y,BN;.ag,BN;.me(Z NF, BN1)?

we; = (sewn) u 51115001)»;

R = 7rZ.x,WB;.y,Z.sg,Z.site(Z ”‘19:: W81);

while (R # 0) {

skip = FALSE; Z = Z U R;

R = 7rR.x,WB;.y,R.sg,R.site(R NF, W331) — Zi 1

if (skip = FALSE) then

Z = 7rZ.z,Z.y,BN;.sg,BN;.aite(Z ”11:11 EN31);

return(Z);

end  
 

Figure A.2: Algorithm TC.2: DescendingPhase (Z, j,i)

Algorithm AscendingPhase() traverses Hi Ti graph by following edges with non-

decreasing level number. To demonstrate Algorithm TC.l, we use the digraph and

its corresponding HiTi graph shown in the Figures A3 and AA respectively.

For site 1, which stores the local relation corresponding to 50;, we have we;

e { (4,6), (5,7), (6,10) }, W19,2 = { (10,11), (11,17), (17,19), (17,20) }, EN} = {

(4. so}, 1), (5, 50;, 1), (6, so}, 2), (7, so}, 2), (10, so}, 2) }, and 191v,2 = {

( 1 O, 50%, 2), (11, 303, 3), (17, SGg, 4), (19, 503, 5), (20, SC; 5) }. Assume that

at site 1, AscendingPhase(U, l, 3) is invoked where U = { (4,4) }. The outputs of



 

 

 

Figure A.3: G(V, E) partitioned according to level 3 subgraph tree
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Figure AA: A level 2 HiTi graph created from Figure A.2

AscendingPhase(U, 1, 3) are stored in relations R} and R? where R} = { (4, 6, 56%,

2), (4, 10, 30.3,, 2) } and Rf = { (4, 11, 563, 3), (4, 17, 30;, 4), (4, 19, 503,, 5), (4,

20, 50:21, 5) }-

In contrast to AscendingPhase (U, j, k), DescendingPhase (Z, j, i) traverses

Hi Ti graph by following edges with a given level number. We use HiTi graph shown

in A.4 as an example to demonstrate Algorithm TC.2. Assume that at site 3,

l3'EtscendingPhase(Z, 3, 2) is called where Z = { (4, 11, 503, 3), (4, 17, 50;, 4)

} 7 Set X is initialized with SG‘.‘3 and it becomes to contain 5G3. Then, site 3 has

BN3 = { (11, sag, 3), (14,303,, 3), (15, 56,1, 4), (16, $03,, 4), (17, 50;, 4) }, and

WE; = (11,14), (14,16), (16,15), (16,17), (15,14) }. After the execution of while

1001) and the join with BNg, Z = { (4, 11, 5G3” 3), (4, 17, 3G1, 4), (4, 14, 50:1,, 3),

(4. 10, so}, 4) }.
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Based on the above two algorithms, we discussed how to compute transitive clo-

sure in distributed database systems. In our distributed transitive closure algorithm,

we have two types of sites where a transitive closure is computed. They are coor-

dinator and participant sites. A site is named a coordinator if a transitive closure

computation is initially started at this site. The coordinator decomposes a transitive

closure computation into a set of sub-computations if needed. A site is called a par-

ticipant if it performs the sub-computation by the request of either a coordinator or

another participant. We give two algorithms TC.3 and TC.4 in Figures A5 and A6

where the former is for a coordinator and the latter for a participant.

 

/* H: a set of nodes; */

/* TC: transitive closure of nodes in H */

/* k : the highest level number of a subgraph tree ST; */

begin

D] = 7TH.z,E}.y(H Dds/=4c Ei); D2 = 0;

D2 = Dz U Dr;

D] = "01.x,E;.y(Dl NF: E1!) " D2; }

AscendingPhase(Dg, j, k) returns (R), Hg, .. ., 12;, i);

for (m = i downto 1 by -1) {

Partition Rg" such that each partition F

share the same value of Ry‘sg;

Let 2 consists of PS of R3";

for each F E 2 {

s = a majority value of F.3ite;

SendParticipant (F, m, j, s); } }

TC = 02 U Wait_Result.From_Participant(R,*);

/* * represents a site number */

end   
 

Figure A.5: Algorithm TC.3: CoordinatorSite j(H,TC,k)



121

 

/* F : Relation F(:I:,y,sg, site); */

/* 172: level number; j: coordinator site number; */

begin

Receive(F, m, j, 2:);

/* * represents a site number */

if (m = 1) {

D = WP.x,EJ‘.y(F M =1: E11); R = 7rx.y(r)i

while ( D 75 (0 ) {

R = R U D;

D = "D.z,EJ‘.y(D Dds/=3 E?) — R; }

SendCoordinator(R, j); }

else {

DescendingPhase (F, j, m) returns Z;

Partition Z such that each partition T

share the same value of Z.sg;

Let 2 consists of Ts of Z;

for each T E Z {

Check if any value of T.site is 3;

If yes then h = 3;

else h = a majority value of T.site;

If (h 75 s) then notify coordinator site j

that site 12 will send the coordinator the

partial results of the transitive closure;

SendParticipant (T, m — 1, j, h); } }

end    
Figure A.6: Algorithm TC.4: ParticipantSite s(I‘, m, j)

To demonstrate Algorithm TC.3, we also use a recursive relation G(V, E) and

Hi Ti graph shown in Figures A.3 and A.4 respectively. Assume that a recursive

query “Find all descendants of node 3” is issued at site 1. Then, site 1 becomes

C00rdinator and algorithm TC.3 is executed at site 1. Algorithm TC.3 first computes

a. transitive closure of node 3 (i.e. H = { 3 }) with respect to SG} (V11, E11). As a

reSult, D; = { (3,4) } and AscendingPhase (D2, 1, 3) is called. After the execution

of AscendingPhase (Dz, 1, 3), we got i = 2, R} = i (3, 6, 56;, 2), (31 101 56;,



122

2) } and R? = (3, 11, S'Gg, 3), (3, 17, 5G3, 4), (3, 19, 5G3, 5), (3, 20, 5G3, 5)

}. R? is partitioned into two relations F; = { (3, 11, 30;, 3), (3, 17, 5G3, 4) }

and F2 = { (3, 19, 50%, 5), (3, 20, 50%, 5) }. Next, coordinator site 1 sends its

decomposed sub-transitive closure computation requests to site 3 and 5 by executing

SendParticipant (1‘1, 2, 1, 3) and SendParticipant (F2, 2, 1, 5). Note that for 1‘1, site

4 could be chosen as a participant since there is no majority site number of elements

in F). For R}, since all tuples share the same Risg (i.e. 50;), we have only one F;

= R} in Z and SendParticipant (F1, 1, 1, 2) is executed. Algorithm TC.4 is executed

at a participant site upon receiving the sub-transitive closure computation request

(e.g. SendParticipant (F1, 1, 1, 2)) from a coordinator.

To show how participant sites work, SendParticipant (F1, 2, 1, 3) and SendPar-

ticipant (F1, 1, 1, 2) mentioned in above paragraph are considered as examples. For

SendParticipant (F1, 2, 1, 3), since m = 2, site 3 first calls DescendingPhase (F1, 1,

‘2) and gets Z = { (3, 11, 5G2” 3), (3, 14, 50:1,, 3), (3, 16, 5G,}, 4), (3, 17, SG},

4) }. Relation Z is partitioned into two relations T1 = { (3, 11, 3G?” 3), (3, 14,

‘90}3, 3) } and T2 = { (3, 16, SC}, 4), (3, 17, 503,, 4) }. For T1, site 3 sends its

deCOI‘DpOSCd transitive closure computation requests to itself by executing SendPar-

ticIipant (T1, 1, 3, 3). For T2, site 3 first notifies the coordinator site 1 that site 4

Will send partial results of the transitive closure. Site 3 then sends its decomposed

$11 b-transitive closure computation to site 4 by executing SendParticipant (T2, 1, 3,

4) - As for SendParticipant (F1, 1, 1, 2), since m = 1, site 2 computes a transitive

c1Osure with respect to 36'; (V21, E)). Relation R contains { (3,6), (3,8), (3,9), (3,10)
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} and site 2 sends R back to the coordinator site 1 by executing SendCoordinator (R,

1).



Appendix B

Empirical Analysis of Computing

Shortest Path for Road Map

Queries

B.1 ' Performance comparison of shortest path al-

gorithms

In this section, we empirically compare the performance of Dijkstra’s and Nicholson’s

Shortest path algorithms on road map graphs. Their pseudo-codes are described

i 11 Figure 3.1 and 8.2 respectively. For the detailed demonstration of Nicholson’s

E11gorithm, readers can refer to Nicholson’s paper in [77]. The inputs to the following

aJgorithms are graph G(V, E), source and destination nodes 3 and d respectively.
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Note that [(x,y) represents the cost associated with each edge (x,y) E E.

 

1. For each node u E V, A(u) = 00.

Let Ms) = 0, FS = {s}, and E5 = 6.

Select a node a in F3 for which A(u) is minimum.

FS = FS — {u} and ES = ES U {u}

If (u = (1), then Mn) is the shortest path cost and Stop.

9
9
1
9
9
1
0

For every edge (u, v) in E, if A(v) > Mu) + l(u, v),

(a) Let /\(v) = Mu) + l(u,v).

(b) Let FS = FS U {12} if 1) ¢ (FS u ES).

  7. Go to step 3.
 

Figure 8.1: Dijkstra’s shortest path algorithm

To compare the performance of Dij kstra’s and Nicholson’s algorithms on road map

graphs, we create two dimensional grid graphs GR(VR, ER) with 4 adjacent nodes. The

grid has N at N nodes where each row and column includes N nodes. Thus, in a graph

G3, Will and IE3] are equal to N * N and 4 at N at (N - 1) respectively. These two

di mensional grid graphs are considered as typical examples of road maps [64]. Based

On the above scheme, we create a grid graph GR where IVR| = 200 a: 200 and IE3] =

4 * 200*199. The cost of each edge in ER is generated based on a uniform distribution

[1 , 100] with 10 different seeds. As a result, we have 10 different grid graphs GRs.

For each grid graph created above, we compute 50 different shortest paths for

‘30 randomly prefixed pairs of source and destination nodes. Let D]J(NIC) be

the total number of nodes visited at step 6 (at step 5.(a).i and 6.(a).i) by Dijkstra’s

( Nicholson’s) algorithms. Note that we also count the nodes re—visited for DIJ(NIC)

We compare the two algorithms by observing the ratio D]J/NIC. These values are
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9
9
°
!
"

For each node u E V, A,(u)=/\t(u)=oo. Let F5, = F5; = 0 and 2: = y = 0.

For each edge (s,u) in E, A,(u) = l(s,u) and F5, = F5, U {n}.

For each edge (d, v) in E, A,(v) = l(d, v) and F5; = F51 U {v}.

Let C, = min/Mu)” /\,(u) and C; = mi"A¢(v)>y A¢(v) where u 6 F5, and

U 6 FS¢.

If (Cs S Ct):

(a) For each m for which A,(m) = minA’M” A,(u) for all u 6 F5,

i. For every edge (m, u) in E, if A,(u) > A,(m) + l(m,u),

A. A,(u) = A,(m) +l(m,u)

B. if u ¢ F5,, F5, = F5, U {u}.

(b) Reset z = minA'M» A,(u).

. If (C; < C,),

(a) For each m for which At(m) = minMv)» A¢(v) for all v E F5,

i. For every edge (m, U) in E, if A¢(v) > Adm) + l(m, v),

A. A¢(v) = At(m) + l(m,v)

B. if v ¢ F51, F51 = F5: U {u}.

(b) Reset y = mi".\.(0)>y At(v).

If minUEFSsUF-gt (Ada) + Atlull S (minA.(w)>x Ash”) + minA¢(v)>y A,(v))

where w 6 F5, and v 6 FS;, the shortest path cost is minu(z\,(u) + At(u))

and Stop.

. Go to step 4.

 

Figure B.2: Nicholson’s shortest path algorithm
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then averaged over the 10 different grid graphs with same source and destination

nodes. These are shown in Figure B.3.

 

DIJ

NIC

   
 

0 5101520253035404550

the number of shortest paths

Figure B.3: Performance comparison between Dijkstra and Nicholson’s algorithms

Figure B.3 clearly shows that Nicholson’s algorithm visit far less nodes than Dijk-

stra’s when they are applied to grid graphs. It is interesting to observe that the ratio

DIJ/NIC is small for shorter paths. This happens when source and destination

nodes are closely located in the graph. However, even in this case, Nicholson’s algo-

rithm still performs slightly better than Dijkstra’s. Therefore, we can conclude from

Figure B.3 that Nicholson’s algorithm is superior to Dijkstra’s when graphs capture

road maps.

Next, we present our shortest path algorithm in Figure B.4 which finds shortest

path by simultaneously constructing two trees, one rooted at the source node and

tille other at the destination node. This simultaneous expansion of two trees is the

primary difference between our and Nicholson’s algorithms. Note that the two trees

in Nicholoson’s algorithm are expanded alternatively. That is, if one tree has the

IZl'ext shortest route than the other, the one with the next shortest route is expanded.

This alternating tree expansion may cause one tree to be expanded more than the
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P
P
N

9
"

5
0
9
0
7
1
9
»

10.

11.

12.

13.

. For each node n E V, A,(u)=/\¢(u)=oo and Marked(u) = 0.

Let A,(s) = A,(d) = 0, Marked(s)=1 and Marked(d)=2.

Let F5,={s}, F5¢={t} and E, = E, = 0.

Select m, and m, respectively from F5, and F5, such that A,(m,) and A2(mt)

are minimum. Let CI = A,(m,) + At(m,).

Let FS, = FS, — {711,}, ES, = ES, u {m,}, Fs, = Fs. — {m2}, E3, =

E5¢U{m2}.

Obtain I = { u | Marked(u) = 2 for all u 6 F5, }.

[f I 75 0, C2 = minu€1(/\,(u) + A¢(u)). Otherwise C2 = 00.

If (m, = 171,), the shortest path cost is min(C1,C2) and Stop.

1f (C2 5 C1), the shortest path cost is C2 and Stop.

If (Marked(m,) = 0), Marked(m,) = 1. If (Marked(m,) = O), Marked(m,) =

2.

For every edge (m,, u) in E,

(a) If A,(u) > A,(m,) + l(m,,u),

i. A,(u) = A,(m,) + l(m,,u)

ii. If u 9! (F5, u E51,), FS, 2 F5, u {a}

For every edge (mt, v) in E,

(a) If A,(v) > A¢(m¢) + l(m,,v),

i. A,(v) = /\¢(m¢) + l(m,,v)

ll. Ift) g (F52UE52), F52 = F52 U {U}

Go to step 4.

 

Figure B.4: Our two tree expansion shortest path algorithm
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other. As a result, this unbalanced tree expansion may delay finding the shortest

path. However, in our approach we expand the shortest paths of the two trees. In

order to show the performance comparison between these two algorithms, we used the

same data set and methods as we used for those between Dijsktra’s and Nicholson’s.

This is shown in Figure B.5.
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Figure B.5: Performance comparison between Nicholson’s and Our algorithms

In Figure B.5, JUN represents the total number of nodes visited (including the

revisitation) at step 11.(a) and 12.(a) by our algorithm. Figure B.5 clearly verifies

Our conjecture that Nicholson’s alternating tree expansion delays finding the shortest

Path. From this figure, we can conclude that our algorithm on the average always

performs better than Nicholson’s.

B.2 Conclusion

111 this appendix, we studied a single pair shortest path problem on the domain of

I‘Oad map queries. We have compared Nicholson’s shortest path algorithm with that of

Dijkstra. Our empirical analysis shows that Nicholson’s two tree expansion approach
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outperforms Dijkstra’s one tree expansion method for road map queries. We prOposed

a more efficient two tree expansion shortest path algorithm than Nicholson’s. This is

justified through empirical analysis.



Appendix C

A Survey of Database Problems in

Intelligent Transportation System

C. 1 Introduction

Intelligent Transportation Systems, ITS, are increasingly being used to automate the

navigation function of the automobile. The navigation infrastructures such as Global

Positioning Systems, GPS, and beacons have a profound impact on the design and

development of modern navigation systems. Along with this, ITS also requires power-

ful software systems including very large database system support. The development

of these infrastructures requires substantial resources involving coordination on a

mammoth scale. The US. government has played a major role in providing the nec-

essary leadership in the development of these infrastructures. Software systems and

databases have been developed by governmental as well as non-governmental agencies
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such as Universities and corporations. These infrastructures and the software systems

are built on top of large digital map databases. Much work has been done in the area

of Geographic Information Systems to create large databases of digital maps. In this

paper we survey the database work which is relevant to ITS. We also discuss other

important work that is necessary for an understanding of ITS.

ITS must be able to look up information on a digital map in order to automate

navigation. A digital map not only stores location information about objects, but also

shows the relative locations of objects. These objects are of differing dimensions such

as points, line segments, and regions [106]. Multidimensional objects require more

complex modeling and processing than those required in traditional applications. A

database design for ITS must also capture the spatial relationships between these

objects. One important spatial relationship is that of neighbor. The clustering of

neighbor objects in the same area of the disk is an important database research

issue [93]. A competing topic is the dispersion of stored neighbor objects to different

disks to enable multiprocessing [55].

The database structures for these very large databases must be effective in quickly

accessing multidimensional objects. For example, the map database stored for a

system developed locally for the Twin Cities in Minnesota is approximately 10

Mbytes [92]. A system which uses country or continent wide data will access a much

larger database. Efficient organization of large multidimensional databases for fast

access is a paramount database research issue in this area. Accessing large databases

of multidimensional objects requires efficient spatial indexing schemes. In section 0.2

J
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we discuss such indexing schemes. The currently available commercial navigation

systems use one or more of these index methods. However the actual details of the

indexing scheme used by particular current commercial systems is not known because

they are proprietary.

The currently available position systems, such as GPS and dead reckoning, play

an important role in the design of these database systems. If the GPS system is

used it automatically determines latitude, longitude, and altitude [1]. However, the

returned position is not accurate. If dead reckoning is used, the position of a vehicle

is known precisely at certain locations. As the vehicle travels, the new location is

calculated. Dead reckoning systems often use a beacon to find the initial known

position. The position of the vehicle is then calculated as a displacement from the

known position as the vehicle moves. This calculation of displacement is also prone to

errors. An important issue in designing ITS is to minimize these errors. The correct

determination of a vehicle’s current location is essential for the successful operation

of an automated navigation system. Positioning technologies such as GPS and dead

reckoning are often combined to deliver the desired accuracy needed by ITS [61, 67].

In ITS, quick real time response to large database queries is essential. The simplest

query in ITS is “where am I?” This query is answered partially by the positioning

technology which determines the coordinates of the vehicle. These coordinates are

usually mapped to an object in the database such as a landmark, a road, or a region.

An important database design issue is the representation of the inherent hierarchy of

the data such as roads and landmarks within cities, and cities within counties. An

H':
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example query using this hierarchy is ”List all counties in Michigan which intersect

Interstate Highway 194.” A number of typical road map queries have been discussed

in [92].

Another issue of importance is the placement of the data; on board the vehicle or

at a central site. If the data is on board the vehicle, then each vehicle must have a

copy of the necessary data in order to answer the queries. Real time updates through

a central system is expensive. These updates must be communicated in real time for

up—to-date queries at the vehicle. If the data is maintained at some central site, the

vehicle must access this remote database in order to receive the data or answers to

its queries. In this model the maintenance of the database is simpler but at the cost

of increased communication overhead.

The remainder of this paper is organized as follows. In section C2 of this paper ‘

we describe the data model for ITS, and discuss classes of road map queries for ITS

in section C.3. In section C.4 we briefly review the existing positioning technologies.

Section C.5 describes a number of commercially available intelligent transportation

systems.

C.2 Data Models for Vehicle Navigation Systems

ITS databases contain information about objects such as landmarks, roads, and ge-

ographic regions We can classify these objects as 0—Dimensional, 1-Dimensional, 2-

Dimensional, and 3-Dimensional objects [106]. 0-Dimensional objects are points and
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represent landmarks such as building sites or intersections of roads. A typical 1-

Dimensional object is a road segment, and it is a primary object for road map queries.

Roads are formed from straight line segments which in turn form the network of roads.

Examples of 2-Dimensional objects are geographic regions such as cities, counties, and

states. 3 dimensional objects are necessary for recognizing certain types of landmarks.

An object such as a building must be described by latitude, longitude, and altitude.

Efficient spatial indexing schemes for these multidimensional objects are critical to

the performance of ITS queries.

C.2.1 Indexing Schemes for accessing multidimensional road

objects

Indexing schemes for ITS databases can be classified into 2 groups based on the type

of object indexed. They are point indexes for point objects, and indexes for higher

dimensional objects. We first discuss point indexes. In order to index objects such

as line segments or regions, each vertex is a point to be indexed. Alternatively, the

object may be considered as a point in a higher dimensional space. Point indexing

schemes include quad-trees, oct-trees, point quad-trees, k-d trees, k-d-B-trees, and

the grid file.

A quad-tree is an indexing scheme for objects in a planar region. A planar object

consists of a collection of points in the plane. The quad-tree indexes the planar object

by dividing the planar region into regular quadrants. This is a recursive process, and
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halts when all points in a quadrant are of the same type, i.e., part of the object or not

part of the object. The oct-tree is a generalization of the quad-tree to 3 dimensional

space. The quad-tree can be further generalized to any k-dimensional space. Quad-

trees are efficient mechanisms for computer vision, but not for ITS. The quad—tree (or

oct—tree) is not height balanced. The point quad-tree (or point oct-tree) picks points

of interest at which the plane (or 3—dimensional space) is subdivided into unequal size

quadrants. This gives an index tree which is closer to being height balanced [88].

The k-d tree is a generalization of the point quad tree. A k-d tree is a binary tree

in which k levels of the tree are necessary to partition the k-dimensional region into

2" regions. One significant difference between k-D trees and point quad-trees is that

in k-d trees these 2“ regions do not meet in a single point [88].

The grid file approach partitions a k-dimensional space into non-uniformly sized

k—dimensional grid blocks in order to index the data points located within the

blocks [76]. This grid file approach is not suited to indexing spatial objects of higher

dimension than points. The primary reason is that k-dimensional objects are mapped

into points in 2k-dimensional space in the grid file approach. As a result, most grid

blocks will not be used. Various versions of the grid file have been proposed in order

to improve their performance [28, 63, 96, 12]. Freeston [28] has developed a nested

and balanced grid (BANG) file which has a tree structured directory. This tree struc-

tured directory has the self height balancing B-tree property. Kriegel and Seeger [63]

have proposed a method called PLOP-Hashing to eliminate the grid directory. This

is a multidimensional extendible hashing scheme which expands the pages of the file
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corresponding to grid blocks in a piecewise linear fashion. However, the problem

with PLOP-Hashing is that it can not fully capture natural ordering of higher di-

mension spatial objects. Six and Widmayer [96] present a multilayer paradigm for

transforming point index structures (such as the grid file) into index structures for

k-dimensional intervals. This paradigm allows the preservation of the natural order-

ing of interval data. Blanken et. al. [12] propose a generalized grid file which more

fully preserves the natural ordering between geometric objects. The generalized grid

file integrates the B+-tree, the grid file, and the k-d-B-tree.

The second group of indexing schemes are better suited to indexing k—dimensional

objects in k-dimensional space. The most important indexing scheme is the R-

Tree [38]. The R—tree is a generalization of the B—tree to higher dimension objects.

All objects are in the leaves of the tree, and the leaves are all at the same level. The

R-tree functions by enclosing objects in rectangles. Nodes of the R-tree are formed

by enclosing groups of rectangles in a larger rectangle which becomes an R-tree node.

A problem with the R-tree structure is that these rectangle nodes in the tree overlap,

which causes the lookup procedure to follow multiple tree paths. Several modifica-

tions to the R—tree have been developed to alleviate this problem, such as the R+-tree,

the R*-tree and the packed R-tree [10, 35, 79, 87]. These alterations to the R—tree

prevent overlap (R+-trees) or minimize the overlap by using a complicated algorithm

(R*-trees). A weakness of the R—trees is that rectangles are the stored object. An-

other weakness is that R-trees have poor storage utilization. Objects such as diagonal

line segments and convex objects are not well represented by bounding rectangles.
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The cell tree is a modification of the R—tree in which the bounding regions do not

need to be rectangular [36]. Jagadish uses bounding polyhedra in the P-tree [54] to

eliminate the space wasted by bounding rectangles. Jagadish has also proposed a

line segment index scheme based on the Hough transform. This index scheme always

outperforms minimum bounding rectangle index schemes for retrieving line segments

which go through a specific point or intersect a specific line segment.

Several structures improve the worst case storage utilization found in R-trees. The

MD—tree [75], like the R-tree, is a generalization of the B-tree to higher dimensions

utilizing bounding rectangles. The storage utilization of the MD-tree has a worst

case of 66.7% due to the dynamic readjustment of split regions. The GBD-tree [78]

is similar to the R-tree, but uses extra data to increase the storage utilization. GBD-

trees also speed the processes of insertion and deletion over R-trees, but at a higher

memory cost and at a higher CPU. cost for large extent data. Freeston has pro—

posed a generalization of n-dimensional B-trees in which the worst case performance

is controlled [29]. This solution recursively partitions the data space, guarantees loga-

rithmic access and update, and has a worst case 33% storage utilization. The hB-tree

proposed by Lomet and Salzberg [69] has competitive storage utilization. The hB-tree

differs from B+-trees in that the index terms are organized into k-d trees.

Kolovson and Stonebraker propose segment indexes [62] as an extension to

database indexing structures such as R-trees. These segment intervals improve the

search performance on interval data with non—uniform length distributions.
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C.2.2 Large Database Issues

The amount of stored data is massive. If the data is kept entirely at the vehicle,

then the vehicle system is responsible for all queries and updates. This requires a

powerful system in the vehicle, both in terms of storage space and processing power

in order to access the information. External communications will be minimum for

this configuration. If the data is stored entirely at some site outside of the vehicle,

then the vehicle system will be primarily a communications system. The external

processor(s) must be extremely powerful since all the vehicles in the processing area

will be sending their information requests to that external site. A third alternative

is to distribute the data and processing between the external site and the vehicle. In

this case, the vehicle can download the needed data from an external system, then

answer queries on that downloaded data. Troy Michigan has a system developed by

Siemans which uses this distributed approach.

There are currently a number of systems under development and testing. These

systems are restricted to a small geographic area. In order to develop a system

which is viable in a large scale system, such as the continental United States, large

database issues such as the clustering of data must be explored. Shekhar et. al., [94]

discuss a partitioning technique based on max out partitioning of a similarity graph

whose nodes are data items. The similarity is the probability that the data items will

be accessed together. This technique assigns the data items to distinct disks for a

speed up using parallel processing. The size of the database is indicated by Shekhar,

et.al [92], in that the storage size of the data for the Twin Cities metropolitan area

[1"
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in Minnesota is 10 Mbytes. Jagadish discusses clustering of data so that objects

which are close in multidimensional space are close together after mapping into a one

dimensional [55] in order to minimize disk accesses.

0.2.3 Update

There are two different types of algorithms which are useful in automated navigation.

A real-time system must be continuously updated according to the changes in road

conditions. This also implies that the shortest route is dynamic; that is, the route

planned at the beginning of the trip may not be the route finally taken. Methods to

alter an already computed path using the computed path information could be faster

than completely determining the path from the new current location.

For long trips, a pre-computed path may be used as part of the overall trip. If

it can be determined that the route from source to destination must pass through

certain locations, then shortest path information which is already computed between

those locations can be used in order to improve the speed of the route calculation.

Updating the multidimensional objects in the database can be costly. The cost

depends on the storage mechanism used for the objects. There is also the problem of

changing the stored information about the relative locations of objects. For example,

if a road is closed, all the information about the intersecting roads must be updated.
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C.3 Queries

On a 0-D object, a typical query is to find the landmark (or nearest landmark) for

a particular location. Locations are to be described by latitude and longitude. The

queries on l-D objects are more common, since they include all the find the path types

of queries. Some of these queries are: find the shortest path between two locations;

find the shortest path between two locations going through some list of other locations;

find the shortest path between two locations not going through any locations in

some list. There is also the query to determine which road segment goes through a

particular location. The database must include the connectivity information about

road segments in order to answer these queries. One practical problem that arises is

that there is as yet no accurate large area map. The most common starting point for

automated navigation is the Tiger file produced by the U.S. Census Bureau. These

files have only road map accuracy.

For 2-D objects, typical queries are: which region includes a particular landmark,

which region includes a particular road segment. Another query type is to determine '

the neighboring regions of a particular region.

Of all these types of queries, the predominating ones are the find the path queries.

These types of queries are usually recursive, and can be answered by many types of

algorithms, such as transitive closure, recursive query processing, partial transitive

closure, depth first search, and A* [2, 3, 4, 7, 8, 21, 22, 26, 30, 40, 42, 46, 48, 49,

50, 52, 53, 57, 59, 70, 99, 101, 103]. The interface between the system and the driver

gulf

.
-

-
.
‘
;
§
i
;
Z
.
-

 



142

must be as unobtrusive as possible. A distracting system could become the cause of

accidents. Some possibilities include voice recognition or point to menu choices for

input. For output, voice is the least distracting; reading a map with a blip to indicate

a location on a map is more distracting.

C.3.1 Optimization

Storing the data in an hierarchic fashion can help optimize the query processing. One

method of storing road map data which has been explored is storing the road infor-

mation in a hierarchy. That is, interstate expressways are at level 1, state highways

are at level 2, and county roads are at level 3. An example of the use of this in finding

the path algorithms is that a path from a source to a destination uses level 2 and level

3 roads in the immediate area of the source and destination; level 1 roads are used to

find a path between these areas. This type of method does not guarantee an optimal

path, however, the amount of processing to find a good path is greatly reduced.

In general, the queries must access objects of various types. Indexing schemes such

as k-d-trees and point quad trees are efficient at finding point data (regions can be

transformed into higher dimension points). These methods suffer from an unbalance

in the tree heights. This leads to multiple disk accesses for a single object. The

methods based on B-trees, such as the R-tree, are better in terms of finding a leaf

node in the tree which contains the desired search object, however, multiple leaves

may be discovered in the search due to overlap. The MD-tree and GDB-tree were

developed to decrease the number of disk accesses in a search for an object. Shekhar
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and Liu have presented a clustering method for storing objects such that connected

objects are likely to be stored in the same disk sector [93] Shekhar and Yang have

described MoBiLe Files in which the population density of objects determines the

sector location for storage [90].

The number of processors available to answer queries is a vital factor in optimiza-

tion. For a single processor system, storing neighboring objects in the same bucket

is efficient, since all probable desired objects can be retrieved with a single disk ac-

cess of that bucket. In a multiprocessor environment, it is more efficient to store the

neighboring objects in different buckets on different disks. All probable desired search

objects can be accessed in parallel.

C.3.2 Query Types

We divide the types of queries into two categories, shortest path, which has been

extensively covered in the literature, and all other types of queries which we discuss

in this section. One query is to retrieve certain information about an object in

the database. For example, return the name of a road at a particular latitude and

longitude; list the nearest landmark(s) (building, road intersection, etc.) to a certain

location. Geographical data is inherently hierarchical. Queries are often asked in this

context: list all the restaurants in a particular city; list all the roads in a particular

county which are currently undergoing repair. Another classification of queries is

by neighborhood. List all the national parks near I96; list all public colleges within

200 miles of borne. A query such as list all the roads which intersect Maple street
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within a particular county will use hierarchic information as well as the connectivity

information which is necessary to answer shortest path queries.

C.4 Positioning Technology

One of the main components of a navigation system is the current position determi-

nation system. There are a number of hardware systems available for determining

the current position. Typical examples of them include global positioning system

(GPS), differential global positioning system (DGPS), Loran-C, dead reckoning, and

map matching. The above systems can be used either independently or combined

in the navigation system to enhance the accuracy of the vehicle’s position. In this

section, we discuss the above systems.

The U .8. government has placed satellites in orbit around the earth. GPS func-

tions by sampling signals from several satellites. The hardware systems are able to

use this sampled information to determine the absolute current position of the ve-

hicle in latitude and longitude. GPS is inaccurate and the error can be as great as

100m [61]. Many papers have been published which show methods of reducing this

error [1, 27, 100].

DGPS is a combination of on-board GPS hardware and GPS hardware at a base

station. Here, the precise location of the base station is known. It is assumed that the

positional error, determined by on-board GPS hardware, is identical to that deter-

mined at the base station. By adjusting the reported position of the vehicle according
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to the error at the base station, the error factor can be reduced to as little as 5m.

Problems with DGPS are that the base station must communicate with the vehicle,

requiring additional capabilities on the receivers [27].

Loran-C is a system for sending location information by radio signals from land

based sites. Loran-C signals are propagated along the earth’s surface. The vehicle

hardware samples signals from multiple transmitters, and determines a location. The

positional error of Loran-C is 500m, but can be reduced to 100m. This compares

favorably with that of GPS [66].

Dead Reckoning is a method of locating one’s current position on a map, given

an accurate starting position and the vectors representing headings and velocities of

vehicles. The instruments that are used in dead reckoning to measure changes in a

vehicles direction and speed includes:

0 Wheel odometers for measuring distance, these are subject to changes in tire

inflation, tire tread wear and slippage.

o Compasses for determining direction, these are subject to errors due to the

magnetic field of the vehicle and changes in the earth magnetic field in different

locations.

0 Gyroscopes for measuring angular velocities of the vehicle, they suffer from

changing temperatures which cause drifting problems.

0 Accelerometers for measuring changes in acceleration, both Gyroscopes and

accelerometers cannot accurately measure small changes in movement [67].

It is possible to precisely determine the current position if a complete and accu-

rate information about a vehicles movements and its starting point is given. However,

in reality, the information gathered from the instruments for a vehicle’s movements
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is likely to be inaccurate. As a result, the dead reckoning method accumulates er-

rors as the vehicle continues to move [67]. This error accumulation is the primary

disadvantage of the dead reckoning method.

Map matching is a method of correcting errors in vehicle’s position caused by

either GPS or dead reckoning systems. It tries to locate a logical path on the map

that closely resembles the physical path traveled. For example, if after traveling 5

miles from the starting point the vehicle turns 90 degrees to the right, the map—

matching algorithm will search for a road to fit the new direction.

C.5 Current Systems

In this section, we describe currently operational vehicle navigation systems in Eu-

rope, U.S.A. and Japan. The current vehicle navigation systems can be classified

based on 3 different positioning technologies. They are systems based on dead reck-

oning with map matching, GPS, and the combined use of GPS and dead reckoning

with map matching.

The systems based on the dead reckoning with map matching include Ali Scout,

Euro-Scout, Autoguide, Carin, and ETAK Travelpilot [14, 15, 18, 85, 97, 98]. Among

these system, ETAK Travelpilot is a stand-alone system which does not require any

infrastructure [14, 18]. Its map databases are stored in one CD-ROM disk. Trav-

elpilot provides two major functions to a driver. One is to display to the driver a

road map of the area surrounding the car. The other is to locate destinations by the
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street address, and to indicate those destination on the map. The main disadvantage

of this system is that it does not provide a route guidance to the driver. The rest

of the systems [15, 85, 97, 98] are based on the infrastructure called Beacon. Bea-

cons are usually installed at selected traffic signal lights and other strategic locations.

They broadcast traffic information to the vehicles, such as the current location and

the description of the surrounding road networks. As a result, these beacon-based

navigation systems provide most recent real time route guidance to the drivers. In-

teresting thing to note is that Ali-Scout and Euro-Scout do not require the car be

equipped with CD—ROMs maintaining road maps. In other words, vehicles receive all

necessary map data from the Beacons.

The GPS-based system are GuideStar, Milemaster, Satellite Cruising System,

and NV-l [41, 95]. Milemaster [41] is based on the text—based routes databases while

others are based on the digitized road maps. Unlike beacon-based systems, GPS-

based systems do not provide the most up—to—date real time routing guidance to the

driver.

Advance, Multi Vision, and Socrates are the typical examples of the navigation

systems using GPS as well as dead reckoning with map matching [13, 108]. Compared

with the other systems based on either GPS or dead reckoning with map matching

alone, these system provide very accurate current position of the vehicles.

Two of the most popular providers of digital maps and software for map access are

ETAK and NavTech[][]. ETAK is a provider of a map database and software for ac-

cessing the database. ETAK has been instrumental in a number of ITS projects such
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as Pathfinder ATIS in the Los Angeles area; TravTek in greater Orlando, Florida;

Minnesota Guidestar; TRiMS (Trip Reduction Information Management System);

and'others. ETAK actually uses two separate databases: one database for drawing

maps and another network database with connectivity information for path calcu—

lations. The network database is organized in connectivity—based clusters to reduce

access time. ETAK uses a modified Moore’s algorithm for path finding.

NavTech developed their own data model which has some of the features of the

relational data model to support a navigation system. The physical organization of

database is based on the k-d trees which uses hierarchical notions of parcels, zones,

and regions. Parcels are lowest logical entity and it defines a geographical area with a

certain number of road segments (always less than some maximum) [39]. The stored

regions represent physically overlapping geographic areas.

The NavTech database is compiled from a set of standard files on IBM main-

frame computer, for a particular region. It contains sufficient detail, accuracy, and

breadth to support the advanced transportation and navigation applications. The

database contains navigation and digital cartography information partitioned into

regions. The data includes detailed city and inter-town databases including traf-

fic control data such as time dependent restriction on road accesses. The NavTech

database consists of 7 database layers which are customer specific, points of interest,

cartography, geo-political, navigation, path, and geometry layers [19]. NavTech allows

the database to be compiled into different standards such as the European standard

called GDF(Geographic Data File) [17].
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