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ABSTRACT

ABSORPTION: A STUDY ADAPTING CUBIC EQUATIONS OF STATE

By

Ramkumar Subramanian

The Simplified Local Density (SLD) method is a new engineering approach to

model adsorption based on spatial invariance of the chemical potential along with an

equation of state. This work extends previous pure fluid applications to binary mixtures

and more complex adsorbent geometries (slits, pores). Model predictions are compared

to molecular simulations and experimental data. The SLD model can represent

adsorption isotherms ofTypes I-V at subcritical conditions. Supercritical behavior has

not been classified, however the SLD approach can accurately represent the complex

behavior exhibited at supercritical conditions. In addition, clustering (molecular

charisma) in supercritical fluids is modeled by representing infmite dilution by

calculating the fluid density in the region around a single solute molecule.

Simple engineering models such as Langmuir and Freundlich cannot represent the

variety of experimental adsorption isotherm shapes. On the other hand, molecular

simulations represent the behavior, but are not suitable for routine process design. This

SLD approach bridges the gap by retaining both the essential physics ofthe adsorption

problem and the simplicity of an equation of state. The SLD approach is demonstrated to

be a powerful engineering tool for prediction of adsorption, and requires fewer

parameters than previous engineering models. In addition, the SLD approach can be



extended to non-ideal gas phase regions without additional parameters. The single

parameter used for each adsorbate is temperature- and pressure-independent, permitting

extrapolations and predictions of adsorption behavior.
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CHAPTER 1: INTRODUCTION

Physical adsorption is a separation process in which certain components of a fluid

phase are transferred on to the surface of a solid adsorbent [McCabe, Smith & Harriott,

1984]. It is the result of intermolecular forces of attraction between the fluid and solid

molecules. If the attractive force of the solid on the fluid is greater than the intermolecular

forces among the fluid themselves, the fluid will condense upon the surface of the

adsorbent [Treybal, 1983],and may be accompanied by the evolution of heat. In

engineering applications, adsorption is usually used an alternate to extraction. Adsorption

tends to have a smaller capacity but a higher selectivity than extraction. It can also be

more gentle for e.g. proteins may be denatured by organic extraction but may be adsorbed.

Separation processes using adsorption are on the increase while those using extraction are

on the decrease [Belter, Cussler & Wu, 1988].

Physical adsorption is used in gas purification processes such as the removal of

volatile organic compounds from stack gases, as a means of fractionating fluids that are

difficult to separate by other methods, and in adsorbent regenerations using supercritical

fluids [Tan and Liou, 1988, 1990]. Physical adsorption is also of interest in transportation

and storage of fuel and radioactive gases, separation and purification of lower

hydrocarbons, solid-phase extractions fluids, in supercritical extractions and

chromatography [Findenegg, 1983; Barton, 1983; Strubinger and Parcher, 1989], and in

critical point drying [Rangarajan and Lira, 1992]. Understanding the thermodynamics and



structure of the gas- solid interface is essential to the understanding of heterogeneous

catalysis and wetting phenomena [Findenegg, 1983]. While there are a large number of

theoretical and experimental studies of adsorption below the critical temperature, there are

few studies of adsorption near or above the critical temperature of the fluid. Such studies

are especially relevant to the storage of methane at ambient temperatures (T, = 1.57) at

reasonably high densities.

Theoretical approaches to understanding and predicting adsorption range from

simple empirical fits (Freundlich/Toth isotherms) to theoretically-sound methods such as

molecular dynamics (MD) and Monte-Carlo (MC) simulations. Computer simulations

such as the grand canonical ensemble Monte-Carlo semi-quantitatively predict the cusp-

like behavior near the critical point [van Megan and Snook, 1982]. However, such

methods are computationally intensive. Simulations are difficult near the critical point due

to fluctuations, and require a large number of molecules and consequently significant

amounts of supercomputer time. Statistical mechanical theories such as the density

functional theory are also computationally intensive although they are about two orders of

magnitude faster than computer simulations [Gubbins, 1990]. On the other hand, the

traditional empirical and semi-empirical methods which are computationally undemanding

are unable to account for the wide variety of shapes of adsorption isotherms seen near the

critical region. There is an engineering need for a model that bridges the gap between the

simple and sophisticated models, and has predictive capability. Further, the development

of processes utilizing supercritical fluids requires engineering models capable of spanning

large pressure ranges. Experiments with supercritical fluids are more difficult and



expensive than experiments at atmospheric conditions, and a model that can predict

supercritical behavior would be a well-received developmental tool.

The focus of this thesis is to develop the simplified local density (SLD) model, and

demonstrate its application in predicting pure fluid adsorption isotherms over wide

pressure and temperature ranges by comparing model predictions with experimental data

from literature. The SLD model developed in this work superimposes the fluid-solid

interaction potential on the van der Waals and Peng-Robinson equations—of-state. My

intention is to present the concepts necessary to adapt common cubic equations of state

for describing the adsorption phenomenon. The SLD model is intended to bridge the gap

between the computationally intensive but more theoretically sound statistical mechanical

models and the undemanding, empirical methods. The SLD concept should be a useful

engineering supplement to other available models, and is not intended as a replacement for

the statistical mechanical models.

With the above objectives, the thesis has been divided into the following chapters:

1) Introduction

2) Background, Literature Review and Preliminary Results.

3) Quantitative Modeling of Adsorption and Extension of the SLD

Approach to Predict Clustering

4) Adsorption of Pure Gases in Slits and Pores, and Adsorption of Binary

Mixtures

5) Conclusions and Recommendations



In chapter 2, a detailed literature survey of the various theories of adsorption is

given, followed by the development of the van der Waals SLD model. High pressure

experimental adsorption data that show fascinating behavior are also given in this chapter.

The basic assumptions leading to the SLD model, and the model equations are described

in this chapter..

In chapter 3, the van der Waals equation is replaced by the Peng-Robinson

equation-of-state, thus making the model a quantitative predictive model. Model results

for adsorption on flat walls are compared to experimental data. The model is modified to

describe clustering in supercritical fluids, and model predictions are compared to

experimental fluorescence spectra.

The model is extended to describe adsorption in slits and cylindrical pores in

chapter 4. Model predictions for adsorption of pure fluids are compared to both

experimental data and molecular simulations. The model is extended to describe

adsorption of binary mixtures in slits. Model predictions of both the concentration and

amount adsorbed are compared with experimental data.

Finally, the results of this model are summarized in chapter 5, followed by

recommendations for future work.



CHAPTER 2: BACKGROUND, LITERATURE REVIEW AND

PRELIMINARY RESULTS

DEFINITION

While several different methods are used to measure adsorption, adsorption is un-

ambiguously defined by the surface excess, the excess moles per unit area.

It

A
S

(X

re: =

 

L:[p(2)-p.]dz [2-1]

where p (z) is the density at a distance 2 from the wall, and pb the bulk density. 2., is often

defined as the plane above the surface of the solid where the fluid-solid potential is zero.

Before reviewing the theories for adsorption, some experimental results will be

presented. Reliable experimental measurements of adsorption of fluids on well character-

ized solids are essential in order to test different theories of adsorption. While most com-

mercial adsorbents are porous and heterogeneous, graphitized carbon black (g.c.b.) or

exfoliated graphite or the basal planes of graphite provides an atomically smooth homo-

geneous and non-porous surface to study adsorption. Graphitized carbon black (or Gra-

phon) provides the ideal surface to understand physical adsorption and wetting, and theo-

ries for adsorption on homogeneous surfaces can be extended to heterogeneous and po-

rous materials. Some of the best data available are those of Findenegg and co-workers

who have examined the adsorption of a variety of gases such as ethylene, propane, meth-

5
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ane, krypton and argon on graphon [Findenegg, 1984; Specovius and Findenegg, 1978,

1980]. Some of their results are presented in Figures 2.1 - 2.3, where one sees the ad-

sorption isotherms of subcritical propane and ethylene, near-critical propane and ethylene,

and supercritical ethylene and krypton, on graphon.

CLASSIFICATION OF ADSORPTION ISOTHERMS

Adsorption isotherms (subcritical) are classified into six types [Sing et al., 1982;

Sing 1983], as shown in Figure 2.4. Type I isotherms are normally seen in microporous

adsorbents, Type IV & V on mesoporous adsorbents and Type II, III and VI on non-

porous adsorbents. Types III & V are similar to Types II & IV respectively except for the

stronger magnitude of the adsorbate-adsorbent interaction in the latter cases. Type VI

isotherms indicate layering, and are observed for the adsorption of Ar/Kr on g.c.b. at low

(liquid N2) temperatures [Bienfait 1980 and references therein].

ADSORPTION MODELS

In this section some of the basic theories for physical adsorption will be briefly re-

viewed. There is an enormous amount of literature available on adsorption and the reader

is referred to several monographs [Young and Crowell, 1962; Brunauer, 1945; de Boer,

1953; Defay and Prigogine, 1966; Nicholson and Parsonage, 1982; Yang, 1987; Lee,

1988].
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Henry's Law

In the low relative pressure region, the adsorption is linear, and the amount ad-

sorbed (n) is proportional to the pressure (P). This region is often called the Henry's law

region.

n = k P [2'2]

where k is the Henry’s law constant. Sometimes the pressure at which this law is obeyed

is below experimentally observable pressures. If the adsorption is measured at sufficiently

low pressures discontinuities in the adsorption-pressure curve are sometimes noticed indi-

cating phase transitions in the adsorbed phase as shown by the results of Ross and Clark

[1954], Fisher and McMillan [1957], and more recently by a host of modern techniques by

Thomy and Duvall [Bienfait 1980].

Langmuir Isotherm

One of the most popular empirically-adjusted models for adsorption is the Lang-

muir isotherm, a two parameter equation. This is one of the most popular isotherm due to

its extreme simplicity, and is often expressed as

 a = = [2-3]



12

where W is the mass adsorbed, and Wm the amount adsorbed in a monolayer. The Lang-

muir equation is only derived for monolayer adsorption and therefore predicts only Type I

isotherms. However, it is frequently applied to microporous materials. It is more suitable

for describing chemisorption.

BET Isotherm

The Brunauer, Emmett and Teller (BET) theory extends the Langmuir theory to

multilayers. It assumes that molecules adsorb in stacks or layers and that the uppermost

molecules in the adsorbed stacks are in equilibrium with the vapor. The BET theory treats

the first adsorbed layer separately and assumes that all layers above the first layer are con-

densed, and treats them identically as a liquid . This theory predicts that

I’ll”,
C

P P P

(I‘E)(I’E+CE)

9:121: [2-4]

Wm NM

 

where P, is the vapor pressure, N the number of moles adsorbed and C a constant related

to the fraction of surface that is uncovered. The BET equation is often used in determin-

ing pore-size distributions and is often expressed as

1 1 C—15

W01; _1) = CW," + CW", P0 [2.5]

  



   

 

T1
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In pores where the number of layers are limited to n the BET equation is :

C{l—(n+1)[—I:] +n[£] }

N _ P0 P.

N — n+1

m (£_1){1+(C—1)P_C[_P_) }

P P, P,

  

W
9 _ Wm _ [2-6]

 

This equation reduces to the previous equation when n is infinity and the Langmuir

isotherm for n = 1. The BET theory and its modifications are very p0pular since they

show all the different types of subcritical isotherms. However, some of its limitations are

due to the assumptions made in the developing the theory 1) the surface is energetically

homogeneous; 2) there are no lateral adsorbate interactions; 3) adsorption is localized -

adsorbed molecules are fixed on sites and do not laterally move; 4) the heat of adsorption

in the second and higher layers is the same as the heat of condensation. Most of these as-

sumptions are valid for pressures in the range 0.05 < P/P‘ < 0.35, where the high energy

sites are filled but extensive multi-layer condensation has not commenced. The BET the-

ory is limited to subcritical temperatures, and assumes an ideal gas vapor phase, although

corrections can be applied.

Toth & UNILAN Equations

The Toth equation can be written as



l4

mP

n = ———l',7 [2-7]

(b + P’)

This is a three parameter equation m, b, and t, where m is the saturation capacity (mol/kg),

b and tare constants of the Toth equation, n is the specific amount adsorbed, and P is the

pressure. A similar equation called the UNILAN equation can be written

 n = 31n[c+ Pi] [2-8]
c+Pe23

where sis a constant. Both these equations reduce to the Langmuir equation (Toth - t =

l, UNILAN - s = 0). Both these equations are empirical equations, but are for heteroge-

neous adsorbents. The constants needed are temperature-dependent and atleast two iso-

therms must be measured experimentally before calculating the temperature coefficient of

adsorption. However, these theories seem to be the best overall for microporous adsorb—

ents, and have been used as the basis for multicomponent adsorption models which will be

discussed later in this chapter.

Two Dimensional Equations-of-State

The BET theory of multi-molecular adsorption is a generalization of Langmuir's

unimolecular theory. Both theories are based on localized physisorption, and both neglect

lateral interactions between fluid molecules, i.e. interactions between molecules in the

Same layer. A different approach treats the adsorbed phase as a two-dimensional fluid,
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and uses a two-dimensional equation-of-state to represent the adsorbed layer [Hill, 1946,

1947, 1948; de Boer, 1953]. The two-dimensional equations-of-state allow for interac-

tions between fluid molecules in the first adsorbed layer. Neither the Langmuir nor the

BET theory allow for interactions between molecules, either on the surface, or between

molecules in different layers. When a fluid is adsorbed onto a surface it exerts a pressure

opposing the surface tension of a clean surface. If 70 is the surface tension of the clean

surface and 7 that of the surface with an adsorbed fluid, then the spreading pressure 1t is

defined as

”=70“? [2-9]

The surface tension 7, or 1: can be related to the Gibb's surface excess

1‘" = "IL-51 {2.10}

where a is the activity. For a dilute solution, the activity (a) may be replaced by the con-

centration C or pressure P, and a two-dimensional equation of state is used to give 1:. For

an ideal gas the equation is

7:4er [2-111
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where A is the area per mole. This equation implies no forces or interactions between the

fluid molecules, which is what one would expect at low coverage. These two equations

directly lead to the Henry's law isotherm. Such an approach along with activity coeffi-

cients has been used to model adsorption from gas mixtures and from solutions [Myers

and Prausnitz 1965; Radke and Prausnitz 1972].

Several attempts have been made using a two-dimensional equation-of-state to

represent the adsorbed layer which accounts for mobile interactions and includes lateral

interactions in the first layer (The Langmuir and BET models account only for localized

adsorption - i.e. they neglect lateral interactions between fluid molecules) [I-Iill, 1946,

1947, 1948; de Boer, 1953]. The two dimensional van der Waals equation predicts a two-

dimensional critical temperature Tc; which is one half the bulk critical temperature (Tc2 =

0.5 TC) and a two-dimensional critical pressure (I), = 0.361 P, ( Vc /N )1”. Here the sub-

script c2 is used to describe the critical constants for the two dimensional state. Similar

results for Tc; are obtained with different systems. A Lennard-Jones Devonshire [1937]

model gives Tc2 = 0.53 Tc. An excellent discussion of two dimensional critical tempera-

tures and pressures from the van der Waals equation-of-state is given by de Boer [1953].

Typically Tczl Tc is about 0.4 with extremes of 0.36 and 0.56. This lies in-between mean

field theory prediction of 0.5 and a 2-D Ising model prediction of 0.37 [Bienfait 1980].

The two-dimensional van der Waals model leads to the following equation

 

O

e]exp(-k, G) [2-12]

P

—=k@exP . ,[1
0
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The constant k, depends on a2 and b2 the two-dimensional van der Waals parameters, and

therefore only the adsorbate. A high value of k. implies strong inter-molecular forces

(fluid-fluid). The constant k; measures the strength of adsorption, and the stronger the

adsorption the smaller the k2.

This equation predicts phase transitions on the surface for weak adsorption forces

and strong intermolecular attraction (i.e. large k, and k2). If the fluid-fluid intermolecular

attraction is weak, no condensation is seen. For strong adsorption forces, a tendency to-

wards saturation (Type I isotherm) is seen, and the adsorbed fluid is either a compressed

supercritical fluid or a condensed two dimensional liquid.

Relative to the BET equation, the Hill de-Boer model predicts lower pressures for

coverage's below 0.8, but over-corrects the errors of the BET equation. This is due to the

fact that lateral interactions are allowed, and not due to the mobility. If lateral interactions

are allowed in a localized first layer, condensation takes place at very low pressures, and

jumps from almost zero to near unity at a critical coverage 9, of 0.5. Such a result could

probably be deduced by percolation on a lattice, since the similarity between the abrupt

jump at 9c of 0.5 and a critical percolation probability ofpc of 0.5 does not seem coinci—

dental.
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Potential theories

Several other popular theories are the Polyani potential theory [Polyani 1932] and

modifications of it such as the Dubinin-Radushkevich [Dubinin 1947, 1975], and the

Frenkel-Halsey-Hill [Halsey 1948; Hill 1950] theory.

(i) Polyani Potential Theory

The Polyani potential theory assumes that a potential field exists at the surface of a

solid that attracts the molecules of the surrounding fluid. These attractive forces are es-

sentially London dispersion forces or van der Waals forces, which vary as 1/r3 (where r

is the distance from the surface). The adsorption potential (8;), at a distance i from the

surface is the work done in bringing a molecule from the gas phase at density Px to that

point where the density is pi° Polyani noticed the similarity with gravitational potential,

and used the equation of hydrostatics to calculate the adsorption.

e, =[p'vdp [2-13]
I

It Was assumed that the adsorbent potential at a given distance (or surface at) i is e,- , re-

gardless of the number and kind of molecules located between the i'th surface and the

SOlid or gas, an assumption which was justified later by London's theory of van der Waals

fOl'ces. Each of the potential surfaces along with the surface of the solid adsorbent en-

clOSes a volume 6;. At the surface of the adsorbent 80 is maximum and (1),- is zero. The
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gas phase is assumed to be the region in which 8 = 0, and limits the adsorption volume to

d) = ‘I’max- In actuality, the potential never goes to zero but for practical purposes 8 = 0 at

a finite distance and therefore a finite volume from the surface. The theory assumes that

de/dT = 0 implying that do/dT = 0 and therefore that e = f (4) ) for all temperatures for a

given adsorbent. This is used to form a characteristic curve, which is experimentally de-

termined. The amount adsorbed (n) is given by

4....

n= [0 (p—p.)d¢ [2-14]

In using the theory, first a characteristic curve 8 = f (q) ) is created. This curve should

span the entire adsorption space, and is therefore typically evaluated at a moderate tem-

perature. The second step consists of evaluating adsorption isotherms from these charac-

teristic curves. The characteristic curve equations can be simplified if the temperature is

significantly below or above the critical temperature. These equations ignore adsorption

in vapor form, and the compressibility of the liquid layer, as well as assume ideal behavior.

Near Tc these assumptions result in errors, but the different errors fortuitously cancel re-

sulting in fairly accurate predictions. For high temperatures and pressures the Polyani

theory has been modified by using empirical correction factors to account for the com-

pressibility and thermal expansion of the adsorbed liquid [Berenyi 1923; Brunauer 1945].
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(ii) Dubinin's Theory

,An empirical relationship was found between 80 of Polyani theory and the van der

Waals constant 'a' of the fluid :

e, = NE [215]

which originates from the mixing rules of Berthelot, who proposed that the attractive po-

tential between two molecules at a fixed distance is proportional to ,Ialaz where a 1 and a;

are their van der Waals constants. Using this, the potential theory was extended by Du-

binin and co-workers to include adsorption of mixed gases onto a solid. They expressed

the characteristic curve for all gases on the same adsorbent as :

8 = Bf(¢) [2-16]

where B is called the coefficient of affinity and is defined as the ratio of adsorption poten-

tials (B = e leo) of a gas and a reference fluid, on the given adsorbent. They found that the

molar volumes of the adsorbate in liquid state were closely proportional to the coefficient

of affinity. The characteristic curves resembled the positive side of a Gaussian curve

which lead Dubinin and Radushkevich to assume that the adsorption volume V occupied

by the liquid adsorbate (and V, by the reference) followed



V = V0 exp[—K[%) ] - [247}

where K is a constant depending on the shape and size distribution of pores. This leads to

2 2

RT Po

ln( W) — ln(VoP) - K[73-] [ln(?)] [2-18]

Subcritical vapor pressure data have been extrapolated into the supercritical region and a

good fit has been obtained using the extrapolated fugacities [Maslan et al., 1953].

1 iii) Frenkel-Halsey-Hill Theory

This theory presumes that the adsorbed film consists of a liquid at a density pl

(density of bulk liquid at that temperature) with a thickness of h. The surface excess (fer)

is given by

I‘" = h(pI —p) [2-19]

Where p is the density of the bulk gas. Assuming that the adsorbate and adsorbent interact

tlll‘ough a 12-6 Lennard-Jones potential (and integrating to a 9-3 potential), this leads to



ln(-5] = —-k— [2-20]

where k is a constant.

In a further modification of the Frenkel—Halsey-Hill theory, multiple liquid like

slabs and fugacities have been used to represent the adsorbed layer that has a density p,,,

for 2 S 2. and p; for z, < z < 2:, where the fugacity is related to adsorption by :

“’35 5"— [2-21]
kT 2,1

5
‘
m 5

I
k
e

w

I:

Heref, is the fugacity of the saturated vapor, z; the distance of the i'th statistical layer of

molecules, At: is the perturbation energy of a molecule in the first layer at a distance 21.

For a single step density profile if the density of the layer is p; for z < z,- and p for z > 2,,

then 2,. can be determined from experiments and

 [2-22]

and the parameter m fit from a plot of ln(zi) vs. ln(-ln(fo/f)). Such methods with multiple-

step density profiles have been used to describe adsorption generally in the sub-critical

range [Findenegg 1983].
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van der Waals model of Barrer and Robins

This theory, developed by Barrer and Robins [1951], has been unrecognized for

more than forty years. It uses the fact that the chemical potential is constant at all dis-

tances from a wall, and can be determined by the temperature and pressure far from the

surface. This potential consists of two components - potential due to the interaction of the

fluid molecules themselves, and a potential due to interaction of the fluid and the wall.

Since the potential exerted by the wall and the bulk fluid potential are known the density

profile and surface excess can be calculated. They assumed that the fluid obeyed the van

der Waals equation-of-state and the fluid-wall interaction can be approximated by the 9-3

Lennard-Jones potential. This leads to the following equation

   

6 exp( 0 _2a6_ SIN )= 9,, exp 9,, _2a0b [2_23]

1-9 1-9 bRT rRT l-Ob l-Bb bRT

where a and b are the van der Waals constants, N and n are the total number of molecules

and moles in the system respectively, 0 = bn/V, where V is the total volume occupied by

closely packed molecules, r is the distance between the fluid molecule and the surface, C is

an empirical constant and the subscript b stands for bulk properties. If v is the molar vol-

ume of the fluid being adsorbed on the surface of the adsorbent then equation 2-23 may be

written as
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l b 20 CN 1 b 2a

exp - — 3 = exp — [2-24]

v—b v—b vRT rRT vh—b vh—b vhRT

    

This model predicted the different adsorbent isotherms whose magnitude could be

manipulated by changing the empirical constant C. Hill [1952] suggested that this model

can be improved by treating the fluid not as a bulk fluid as Barret and Robins had done,

but as an inhomogeneous fluid i.e. the chemical potential should not be calculated from the

local density but from the entire density profile. He also suggested replacing the inaccu-

rate van der Waals equation by a better equation.

Statistical Mechanical Models

There are different types of models derived from chemical physics, including the

Lattice Gas model, Integral Equation theory, and Density Functional theory. The Lattice

Gas model is a case of localized adsorption, where the molecules of the solid are large

compared to the molecules of the fluid. This results in the formation of a lattice of ad-

sorption sites that are separated from each other by high potential barriers. This model

simplifies to the Langmuir or BET approaches and predicts several phase transitions on

the surface.

Theoretical interpretations of adsorption include virial expansions in terms of bulk

density at low pressures [Steele 1962]. A van der Waals theory for adsorption has been

proposed by Sullivan [1979]. This approach has been generalized to examine wetting

transitions at the solid-gas interface [Tarazona and Evans 1983], adsorption and wetting
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transitions in binary fluid mixtures by Telo de Gama and Evans [1983]. The van der

Waals density functional model for inhomogeneous fluids has also been used to study

wetting transitions at surfaces [Kung et al., 1990; Teletzke et al., 1982a, b]. More recent

applications of statistical mechanics have involved adaptation of integral equations devel-

oped for homogeneous fluids to inhomogeneous adsorbed fluids. These include integral

equations for liquid state theories such as the BBGKY hierarchy for non-uniform liquids

[Lee, 1987; Henderson, 1992] and density functional theory [Saam and Ebner, 1978;

Fisher and Methfessel, 1980; Tan and Gubbins, 1990; Kierlik and Rosinberg, 1992].

r i) Integral Equation Theory

Statistical mechanical theories use distribution functions to describe the correlation

between fluid molecules and hence the short range order. The primary cause of this short

range order, or structure, of a uniform fluid are the repulsive forces, with attractive forces

forming the background. In order to get a complete theory of liquid state an expression is

needed for g(r) the radial distribution function [McQuarrie, 1976; Rowlinson and Widom,

1982], or the pair correlation function.

-pu
2 y e ”dr...dr

V N. I I 3 N [245]

gm = N2(N-2)! z,

where, there is a system ofN particles in a volume V and at temperature T, ZN is the con-

flgurational integral, r1, r2, r3 are coordinates in space. If the total potential of a N-body
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system can be assumed to be pairwise additive, then all the thermodynamic properties of

the system can be derived from the radial distribution function. For e.g. the pressure is

related to g(r) by

3:— "Pi” ' 4 2d [226]kT—p 6kT 0 ru(r)g(r)1tr r -

A number of approximate equations have been used to solve Equation 2-26. These in-

clude the BBGKY hierarchy and Omstein-Zernike equations with the Percus-Yevick and

hypernetted-chain closures. These approaches are reviewed by McQuarrie [1976] and

Henderson [1992], and are widely used in predicting clustering in supercritical fluids.

(ii) Densig Functional Theog

The density functional approach was derived by Saam and Ebner [1978]. It is

based on the fact that there exists a functional 9 of the local density p(r), such that at

equilibrium this functional is minimized.

F = F[f(r)s p(r), C(r‘ rrz )] [2'27]

Wheref(r) is the local free energy, p(r) is the local density and c(r1, r2) is the direct corre-

lation function. Gubbins and co-workers have used this approach to describe adsorption is

slits and cylindrical pores and have successfully compared their results to molecular simu-
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lations. Kierlik and Rosinberg [1991, 1992] proposed a simplified version of the free en-

ergy functional for the inhomogeneous hard-sphere fluid mixture that requires four distinct

weight functions and generates a triplet direct correlation function for the one component

fluid.

Molecular Simulations

While there a large number of complicated theories they are not exact. The best

solutions, for a given potential, are obtained by computer simulations where the equations

of motion are solved for the particles of an ensemble. Observable macroscopic quantities

are then calculated by time-averaging the appropriate microscopic equations. Such a cal-

culation is called a molecular dynamics (MD) calculation. In the Monte-Carlo (MC)

scheme a large number of configurations are sampled, and particles moved to find the

most stable state, and averages are calculated to give a certain macroscopic property.

Computer simulations are difficult to perform near the critical point due to the

large density fluctuations. However, these techniques are very powerful, and yield the

best results for a given potential. van Megan and Snook [1982, 1985] have simulated the

adsorption of fluids near the critical region using a grand canonical ensemble Monte-Carlo

method. They compare the results of their simulation with experimentally measured

[Specovius and Findenegg, 1978] isotherms of ethylene on graphite, just above the critical

temperature and find reasonably good qualitative agreement with data (Figure 2.5). The

simulation results show cusp-like maxima which are close in magnitude to experimental

values, but the location of the cusp is off by 25% (~15 bar). Their results cannot be
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Figure 2-5: Comparison of Molecular Simulation (van

Megen and Snook, 1982) to Experimental Data

(Specovius and Findenegg, 1978)

'- . Molecular Simulation (Tch = 1.03)

-- Experimental Data ('1‘ / Tc = 1.02)
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quantitatively compared to experimental data because their simulation of bulk ethylene

uses a shifted potential and does not represent the experimental bulk properties of ethyl-

ene; e.g. the simulation critical temperature (Tc, m) of ethylene is 226 K, as opposed to an

experimental value of 282.4 K. However, their results have been the basis for comparison

for the density functional theory using the same shifted potential. Figure 2.6 and 2.7 show

the adsorption of ethylene on a slit like pore at sub and supercritical temperatures. At low

slit widths Type I isotherms are seen. There is also a slight decrease in the surface excess

with increasing pressure. As the slit width increases type IV isotherms are seen. In flat

walls, type H isotherms are seen. Figure 2.8 shows the density functional theory’s predic-

tion of van Megen and Snook’s simulation [Tan and Gubbins, 1990], and it can be seen

that the density functional theory does a very good job of reproducing the results of the

molecular simulation. Snook and van Megen conclude that traditional adsorption theories

will not be able to account for the wide variety of shapes of adsorption isotherms encoun-

tered in their computations.

Mixed-Gas Isotherms

Current models that predict mixed-gas isotherms use pure gas models such as the

Toth or UNILAN equations. One such theory is the ideal-adsorbed-solution theory of

Myers and Prausnitz [1965]. This theory is thermodynamically consistent and exact at the

limit of zero pressure. The success of such theories depends of their ability to predict the

pure gas isotherms accurately. Small errors in the prediction of pure-gas experimental

data may cause large deviations in the mixed-gas predictions. Other sources may be the
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neglect of surface heterogeneity and adsorbate-adsorbent interactions, both of which may

cause non-ideal behavior [Valenzuela and Myers, 1989]. Later models of this type, did

not neglect these heterogeneities and were called non-ideal adsorbed solution theories.

Since the basis of mixed-gas isotherm modeling is the IAS theory, we shall discuss it in

more detail.

Ideal Adsorbed Solution (IAS) Theogz

For a multicomponent system containing N adsorbates, the IAS equations for a

perfect gas are

Py.=P."x. (i=1,2, ..... ,N) [2-28]

where the adsorption isotherm of pure ith adsorbate is n,-0(P,-"), y,- is the mole fraction in the

gas phase and x,- is the mole fraction in the adsorbed phase.

‘I’,°(P,") = ‘11: (P20) =...... = \I';(P,3) [249]

ix, =1 [2-30]

The function ‘I’;°(P,~") is the integral for the spreading pressure (TIA/RT) for the adsorption

0f Pure ith adsorbate at the same temperature as the mixture.
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M_Pn _»wmm
——_[ FdP—J d [2.311n

RT 0 0 d ln(n)

The independent variables are T, P, y1,...y~.1. leaving us with 2N unknowns (Pf, x.) and 2N

equations (2-28 - 2-30). After these three equations are solved, the total amount n, and

the amount of ith component are found as

l N x.

— = 2-3— [2—32]

n: i=1 "i

n, = M.- [2-33]

The general algorithm for solving this theory is given in Valenzuela and Myers

[1 989]. Further development of non-ideal adsorbed solution theories, and the develop-

ment of the fast-IAS theory, where the integrals for the spreading pressure are written as a

series expansion in terms of the central moments of the adsorption energy distribution, are

also given in Valenzuela and Myers [1989]. All these theories require the pure gas iso-

therm parameters (for Toth/UNILAN it is 3), and hence are not predictive models.
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PRELIMINARY RESULTS - SIMPLIFIED LOCAL DENSITY MODEL OE

RANGARAJAN, LIRA AND SUBRAMANIAN

This model, originally developed by Rangarajan [1992], and Rangarajan, Lira and

Subramanian [1995] forms the basis for the rest of this dissertation, and hence will be dis-

cussed in detail. Some of the predictions of this model will also be presented and com-

pared with experimental data. The model has a basis similar to the Polyani potential the-

ory, where the adsorbent exerts an attractive potential on the adsorbate. The model is also

similar to the approaches of Barter and Robins [1951], Hill [1949], Sullivan [1979], and

Kung et al. [1990].

Model Development

The attractive potential between the fluid and solid, at any point z, is assumed to

be independent of temperature and the number of molecules at and around that point. At

equilibrium, the molar chemical potential I4 must be uniform throughout the system

[Denbigh 1981; Guggenhiem 1967] and is calculated by contributions from fluid-fluid and

fluid-solid interactions.

u = u, = 11,,(2) + 11,.(2) [2-341

where the subscript 'b' refers to the bulk, the subscript 'fj“ to the fluid-fluid interactions and

the subscript 'fs' to the fluid-wall interactions. Equation 2-34 requires that at a distance 2
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from the wall, the sum of the chemical potential due to the fluid-fluid interactions and the

attractive potential exerted by the solid on the fluid remains constant, and equal to the

bulk chemical potential. While such an equation has been written from the principles of

Chemical equilibrium, this fundamental result for inhomogeneous systems has been derived

by minimizing the grand potential [Evans 1979; Rowlinson and Widom 1982; Davis and

Scriven 1982]. In using this equation care should be taken to ensure a consistent basis for

chemical potential, whether it be per molecule or mole. If ‘I’( z ) is the potential exerted

by the wall on a fluid molecule , then on a molar basis,

u, (z) = N.‘P<z) 12-351

where NA is Avogadro's number. Therefore

u,<z) = u. - Nmz) [2-361

For a non-ideal fluid :

MT): n.(T)+RT1n[%) [2-37]
0

Wherefb is the bulk fugacity andf, is 1 bar. For an inhomogeneous fluid,
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ma] [”8]

0

pfl(T) = po(T)+ RTln[

Whereff,(z) is the fluid-fluid contribution to the fugacity of the fluid at a position z. The

Equations 2-36 - 2-38 lead to

 

-‘P(z)] [2_39]Wm] M

It should be noted that ‘I’ is negative when attractive, leading to an increased fluid-fluid

fugacity near the wall. The fluid chemical potential consists of a repulsive contribution

prep and an attractive contribution um, [Vera and Prausnitz, 1972]

  

”fl = ”rep + ”at! [2-40]

For a homogeneous fluid, using the van der Waals equation-of-state

RT b

= RT 1n + 2-41

”W i: (v-b) v—b] [ l]

Where v is molar volume and b is the van der Waals constant. The attractive potential is

given by
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u... = [wofldv [2421
V V

where V denotes the volume of integration (all space occupied by the fluid), (p(r) the two-

body interaction potential, g(r) the radial distribution function, which is taken to be a con-

stant outside the hard sphere diameter for a van der Waals fluid [McQuarrie, 1976]. In

the case of a homogeneous fluid (v ¢ v(z)) Equation 2-42 simplifies to the common form

“at: = —_- [2‘43]

where ab is the van der Waals constant. In order to evaluate the integral in Equation 2-42

for an inhomogeneous fluid, if the density changes with position more gradually than (b(r)

does, then one needs to include density as a function of position. Equation 2-42 suggests

that a feasible approximation might be to use a density at the local position for evaluation

of the integral. In other words, the fluid at point z is treated as a homogeneous fluid at a

density of p(z) (such an approximation is the one used by Barrer and Robins [1951]).

Since the two body potential ¢(r) is short ranged (oc 1/r6), and the product of ([1(r) and

p(z) appears in the configurational integral (Equation 2-42), it seems reasonable that most

of the value of the integral (at 2) results from contributions of (p(r) and p(z) near 2. Far

from the given point z, where p(z) changes, the two-body potential (¢(r)) will approach
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zero. Since the density of the fluid is larger closer to the attractive wall and smaller farther

away from the wall, some of the errors introduced by this approximation cancel, although

the approximation will not be as good near a phase transition. The term 'local' refers to

the fact that all thermodynamic properties at point z are calculated using a single density

value, p(z), a 'local average' density, and are not calculated from gradients in density

about the point z. This approximation is called the local density approximation.

Using an equation-of-state, an expression for fugacity in terms of the molar density

or volume can be derived. The van der Waals equation-of-state leads to the following ex-

pression for fugacity for a homogeneous fluid:

   

fb=R
T exp[ b 2“”) [2-44]

v-b v-b-vRT

For an inhomogeneous fluid, the problem is one of calculating the density profile p(z)

which satisfies Equation 2-39. Following Hill [1951], Sullivan [1979], and Kung et al.

[1 990] we assume the short-range repulsive forces determine pm, by the local density. If

We assume that pm, is also determined by the density of p(z), (local density approximation)

then we can rewrite Equation 2-44 to calculate density as a function of z
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[ b _ 20(2)] [245]

v(z)-b v(z)RT

 

f” (2) = v(z) — b ex

where a(z) is evaluated from the integral given in Equation 2-42, in which the molar vol-

ume in the denominator is approximated by the local molar volume at 2. In the model of

Barrer and Robins [1951], the van der Waals a is independent of z (a(z) = ab). In the pre-

sent model, we exclude from the integral of Equation 2-42 that portion of space occupied

by the solid adsorbent. This leads to the following expressions for a(z) (see Appendix 1):

 

a(z)=a,, —5—+£-£— for 0.55—z—Sl.5 [2—46]

16 166,, 01,

a(z)=a, 1- 1 3 for o.5.<_—§—s 1.5 [2.47]

[z I] or
8 __-__

L “If 2 _  

The van der Waals constant a is related to the critical temperature (Tc) and the critical

Pressure (PC) of the fluid. If the excluded volume does not change, then the b term re-

mains constant. Since
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2

. £72]: [2481

b = 18:; [2-49]

The wall critical temperature is related to the bulk critical temperature as

__a...,, = 0.5 = _____(Tm"/ Tc )2 [2-501

ab Pcwall ch

and combined with the equation for b yields Tm” = TC/2. This is the mean-field theory

prediction of a reduction of the critical temperature at the surface.

Outline of algorithm to solve for densigr profile

For a fluid at a given temperature and pressure, the bulk fugacity fb can be evalu-

ated. For a given adsorbent if the potential ‘I‘(z) is known, then Equation 2-39 specifies

the local fugacity. With the assumption of uniform local density, Equation 2—45 can be

801Ved, at each point z, for v(z) or its reciprocal the density. For a given temperature, bulk

PreSsure (fugacity) and adsorbate-adsorbent system, the molar volume (or density) is

Spe-eified at each point by Equation 2-39 and 2-45. However, below the critical point ~

thel‘e may be three values of v which will satisfy Equation 2—45, and the question then be-

Comes that of choosing the correct value of v. Since the fugacity rather than pressure is
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specified, the Maxwell equal-area construction cannot be used to select the root. The

different roots of Equation 2-45 give the same fugacity, but give different values of pres-

sure P, where P is given by the van der Waals equation :

RT _a(z)

v(z)-b v2

 P(z) = [2-51]

This difference in pressure is used to select the correct root. A plot of fugacity versus

pressure for a pure fluid is shown in Figure 2-9. Regions AB and BE represent the stable

vapor and liquid phases respectively. Regions BC and DB are the meta-stable parts of the

isotherm, and CD represents the unstable portion of the van der Waals isotherm. It may

be noticed from the curve that for a given fugacity, the stable root is always at the highest

pressure. The roots to the fugacity Equation (2-45) are substituted into the van der Waals

equation and the root which gives the highest pressure is selected.

Equation 2-45 can be re-written in the following forms:

 

RT b 2a(z)

= b —— — 252
Va) + {f(z)IexP[ v(z) — b v(z)RT] [ l
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Figure 2-9: Fugacity vs Pressure for a Pure Fluid



b

f(z){v(z) - M] + 2a(z)

RT vRT

[2-53] 

 

v(z) = b +

ln[

Equations 2-52 and 2-53 are solved by successive substitution. Equation 2-52 is written

to provide an increasing value of v(z), and for an initial guess the value of v(z) is set equal

to RT/f (2). Equation 2-53 is started off with v(z) = 1.1 b, and rapidly converges on the

liquid root. Checks are placed to ensure that all the realistic roots at a point are obtained.

The computer program used here is attached in Appendix 2. At a given temperature, this

program utilizes the critical temperature of the fluid, the fluid-solid interaction parameter,

and the size of the solid and fluid molecules to calculate the surface excess as a function of

pressure, and the density as a function of position.

Results of the SLD Model

The SLD model discussed here, superimposes the attraction of the fluid molecules

to the wall onto the attraction of fluid molecules to one another. The asymmetry of fluid-

fluid interactions near an inert wall is incorporated into the equations for a, the attractive

Constant. Several limiting cases are discussed below and compared with theory, computer

Simulations and experiments.
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1. Ideal Gas - Hard Wall

For an ideal gas and hard wall, there are neither fluid-fluid intermolecular attrac-

tions, nor fluid-wall attractive forces: Therefore a = 0, b = 0, and ‘I’(z) = 0, f = P, and

Equation 2-39 reduces to P(z) = Pb" When combined with the ideal gas law, this reduces

to p(z) = p1,, and as expected there is no adsorption.

2. Ideal gas - Attractive Wall

Here a = 0, b = 0, f = P. Equation 2-39 exactly reduces to P(z) = Pb exp [-

‘I’(z)/(kT)]. With the ideal gas law this gives p(z) = p1, exp [- ‘I’(z)/(kT)]. The surface ex-

cess is

1'an = L [P(z) — Pb]dz = pbL {exp[——k-T—] - 1} dz [2-54]

Since the integral is constant, and p1, proportional to the pressure Pb, this leads to Henry's

Law.

3. Attractive Fluid - Hard Wall

 

For an attractive fluid and hard wall, a > 0, b > 0, and ‘I’(z) = 0, f(z) = fb. The

InOde] predicts a reduced density near the wall, because of attraction of the fluid molecules

near the wall to fluid molecules in the bulk. In fact a vapor-liquid phase transition is seen



46

adjacent to the wall for certain cases when the bulk fluid is liquid. This is similar to the

observations of Abraham and Singh [1978].

4. Atflctive Fluid - Attrzgztive Wall

For this case, a > 0, b > 0, ‘I’(z) < 0. In general, for an attractive fluid near an at-

tractive wall an increase in density is exhibited near the wall depending on the magnitude

of ‘I’(z). If the wall—fluid forces are stronger than the fluid-fluid forces, the fluid Will wet

the wall, otherwise there will be a rarefaction of gases near the wall. To represent the in-

teractions of the adsorbate and adsorbent we have chosen the partially integrated 10-4

potential model [Lee, 1988]

. 4 1
‘P(z) = 47rpamef,0',3[5:—:f—10‘ -Zx—4] [2-55]

I. I 1

Where paw," = 0 382 atoms/ A2 , x,- is the intermolecular distance between fluid molecular

Centers and the ith plane of solid molecules, where we have truncated the interactions at

the fourth plane of solid atoms, where the interplanar spacing is 3.35 A. 6f, is the well

depth of the fluid-solid potential, and is obtained from the Lorentz—Berthelot mixing rules

Which state that efs = (8,; 8:3)0'5 and of, = 0,5 (of, + 0'”). Table 2-1 summarizes other pa-

ratneters used in this work. Note that Efl‘ is not tabulated because the fluid-fluid contribu-

tion is calculated from Equations 2-46 - 2-48 and not directly from 8,]. Steele [1974],
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Table 2-1: Molecular properties used in SLD model

 

 

  

 

System 6/] (nm) of, (nm) al./k (K)

Ethylene-Graphon 0.422 0.381 450. 23

Krypton-Graphon 0.35 0.345 225
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Nicholson and Parsonage [1982], and Lee [1988] offer a further discussion of fluid-solid

potentials.

Figure 2-10 shows adsorption isotherms that were calculated using the 10-4 po-

tential of Equation 2-47 and the parameters for ethylene and graphon in Table 2-1. The

curves are qualitatively similar to Figure 2-2. A knee is present, the magnitude of which

can be increased by increasing the solid-fluid interaction energy 8,, (Figure 2-10 also

shows calculated adsorption isotherms for condensed phases at subcritical temperatures

above the bulk vapor pressure which are not present in Figure 2-2). Some characteristic

features of adsorption of near-critical fluids are the cusp-shaped isotherms seen near the

critical point, and the 'cross-over' of adsorption isotherms at different temperatures. Con-

sider the effect of temperature at a fixed pressure below the critical pressure. Below the

critical pressure, adsorption decreases with increasing temperature, but this trend is re-

versed above the crossover region at pressures above the critical pressure. The crossover

of the isotherms is eliminated by plotting the calculated surface excess with respect to cal-

culated bulk density as shown in Figure 2-11. The reason for the cusp-like behavior of a

supercritical isotherm in Figure 2-10 can be understood from the calculated density pro-

files shown in Figure 2-12. Below the critical pressure region, the adsorbed layer in-

creases in thickness faster than the bulk density increases. Above the critical pressure re-

gion, the bulk fluid becomes increasingly incompressible, and the bulk fluid density ap-

Proaches the density of the adsorbed fluid, causing the surface excess to decrease.
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Type III isotherms are normally observed when the attraction between the solid

and fluid is weak. Figure 2-13 demonstrates the capability of the SLD model for predic-

tion of Type III isotherms. In this case, the fluid parameters are for ethylene, but the

magnitude of the 8,, has been decreased. The smaller 8,, results in elimination of the knee

and yields a Type III adsorption isotherm. At very low pressures and temperatures, a dis-

continuity in the adsorption isotherms is predicted (not shown here), indicating a phase

transition in the adsorbed phase similar to those discussed for a two-dimensional model

[Ross and Olivier, 1964]. At high pressures, when the bulk fluid exists as a liquid, the

SLD model can predict a negative surface excess when Efs is small. Negative surface ex-

cesses have also been predicted by Sullivan [1979]. Figure 2-14 shows some predicted

adsorption isotherms of krypton on graphon, at temperatures far above the critical tem-

perature. When compared with experimental data shown in Figure 2-3, the predictions are

again qualitatively correct. This model predicts some gas-liquid transitions on the surface,

similar to the transitions seen in the experiments of Thomy [Bienfait, 1980].
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SLD Model - Discussion

The SLD model builds on the approaches of the simple theories such as Langmuir,

BET, two-dimensional equations-of—state and the van der Waals approach of Barrer and

Robins. By treating the fluid with a van der Waals equation with a suitably modified a, the

SLD model allows for interactions between adsorbed molecules at various distances from

the wall. All of the models mentioned above (including the SLD) assume an energetically

homogeneous surface. The effect of heterogeneity will be pronounced at extremely low

pressures and coverages, where the high energy sites are unfilled. To represent a hetero-

geneous surface, one could fit the potential to adsorption in the Henry’s law region, and

then work with a pseudohomogeneous surface.

The limitations of the model can be attributed to: (i) the lack of structure in the

fluid; (ii) the use of the local density approximation; and (iii) the use of the van der Waals

equation to describe the fluid properties. Since we are using the van der Waals equation

and a mean field approach, we do not predict any of the fluid structure seen using either

computer simulations or density functional theory [Snook and Henderson, 1978; Vander-

lick et al., 1988; Kieer and Rosinberg, 1991]. This model cannot describe discrete fluid

structure or be used to study packing near a wall. The use of the local density approxima-

tion also results in the physically unrealistic prediction of abrupt vapor-liquid interfaces.

Despite the fundamental theoretical limitations of the model, since model predictions

mimic experimental trends, this model may be acceptable for engineering calculations. In

order to estimate the errors introduced by the use of the local density approximation,

Equation 2-42 was solved keeping the density inside the integral, leading to an integral
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equation (IE) [Pyada, 1994]. When compared, solutions to the SLD model and IE ap-

proach showed differences which were dependent on pressure, temperature and magnitude

of the gas-solid interaction potential. For the adsorption of ethylene on graphon, the SLD

model tends to underpredict adsorption (relative to the integral equation (IE)) by about

10-20% between 0.9 < Tr < 1.1, except where the surface excess increases steeply at high

pressures. At pressures near 1 bar, the differences are less than 1%. These comparisons

show that the local density assumption can provide a reasonably approximate solution to

the adsorption problem.

A limitation of the van der Waals-based SLD model is the fact that predicted

magnitudes of adsorption and vapor pressures are incorrect. For accurate prediction, the

equation-of-state must be able to correctly predict the vapor pressure and liquid density.

The inaccuracies of the van der Waals equation in this regard are well documented. In

order to represent the fluid properties any equation-of-state can be used, provided the re-

pulsive and configurational contributions can be separated for use in Equation 2-39. The

selection of the van der Waals equation as the basis of this work was due to the fact that it

is the simplest and most easily adapted equation-of-state with a theoretical basis. The ob-

jective of this work is to demonstrate that the proposed approach provides qualitative

predictions with the van der Waals equation, and lay down the framework required to use

a more accurate equation-of-state. A comparison of Figures 2-2 and 2-10 shows that the

SLD model exhibits poor prediction of the vapor pressure for subcritical isotherms, but -

does better at predicting the pressure of the maxima in the supercritical isotherms. This is

because the van der Waals parameters a and b were obtained from the critical temperature
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and pressure. The 8/, in Table 2-1 have been selected to provide semiquantitative fit to the

magnitude of experimental adsorption.

Cubic equations are widely used in industry, and a method that adapts them to the

adsorption problem could find widespread use in process calculations. In the next chapter

we will see how changing the fluid equation-of-state significantly improves the quantita-

tive modeling of adsorption. We will also show the extension of this model to predict

Type I, IV and V isotherms, and multicomponent mixtures.



CHAPTER 3: QUANTITATIVE MODELING OF ADSORP-

TION AND EXTENSION OF THE SLD APPROACH TO

PREDICT CLUSTERING

INTRODUCTION

In the previous chapter, we presented an engineering model that adapts the van der

Waals equation-of-state to describe the fascinating behavior seen in the experiments of

Findenegg [1983]. The fluid-solid potential was superimposed on the van der Waals

equation-of-state, and the configurational energy integral in the inhomogeneous fluid

phase is simplified with a local density approximation. While this model does a good job

of qualitatively describing the adsorption behavior, quantitatively it does not predict the

isotherms very well. The primary reason for this shortcoming was that the van der Waals

equation does not predict accurately the vapor pressure and density of the adsorbing fluid.

In this paper we use the Peng-Robinson equation to describe the fluid properties, which

significantly improves the model predictions relative to the experimental results.

An adsorption model may also be adapted to describe clustering in supercritical

fluids [Lee et. a1, 1991]. Clustering is a phenomena that occurs in supercritical fluids

whereby a large number of solvent molecules collapse around each solute molecule

[Debenedetti, 1987; Eckert et. a1, 1986], and the effect is most pronounced near the criti-

cal point. One of the first experimental studies on clustering involved the measurement of

partial molal volumes near the critical point for solvents such as carbon dioxide and ethyl-

ene around solutes such as naphthalene [Eckert et. al., 1986], demonstrating that the par-

tial molal volumes become extremely negative near the critical point. Debenedetti [1987],

58
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using a fluctuation analysis converted these negative partial molal volumes to number of

solvent molecules that cluster around the solute. Kim and Johnston [1987 a, b] state that

at 300.5 K and 79.8 bar, the partial molal volume of naphthalene in supercritical carbon

dioxide at infinite dilution is -7800 cc/mol, which corresponds to the condensation of 80

solvent molecules around a solute molecule. In a related study, Johnston et. al. [1987]

show that there is a shift in the solvatochromic data of phenol blue in ethylene indicating

an increase in the number of solvent molecules around a solute. Wu et. al. [1990] provide

integral equation calculations on other supercritical systems that also suggest that cluster-

ing does occur in supercritical mixtures.

Brennecke and Eckert [1989] measured the intensity ratio of the fluorescence

spectra to probe the local density of dilute organics in pure supercritical fluids. The in-

tensity ratio for naphthalene in CO; at 4 K above the critical point was much greater than

at 14 K above the critical point, indicating the clustering effect near the critical point.

Such an increase was also demonstrated for systems such as pyrene-CO; and pyrene-

ethylene. Lee et. al. [1991] have reviewed both the integral equation and spectroscopic

measurements that give evidence of clustering in supercritical fluids.

Clustering is used to explain the unusual behavior in supercritical fluids such as

increased solubilities, synergistic effects of mixed solutes and entrainer effects. The forces

acting on the fluid molecule which result in this behavior are the fluid-fluid and fluid-solute

intermolecular forces. On a molecular level, there is a similarity to the fluid-fluid and

fluid-adsorbent intermolecular forces in physical adsorption on solid surfaces. In cluster-

ing, this leads to an increase in density of the fluid molecules in the region around the sol-
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ute similar to the increase in density around the adsorbent in physical adsorption, and the

fluid can be modeled in the inhomogeneous system.

In this chapter, the results of this simplified local density (SLD) model using the

Peng-Robinson equation-of-state are given. The basic concepts of the SLD approach

have been discussed in the previous chapter. The modifications made to this model to in-

corporate the Peng-Robinson equation, and model predictions of experimental results for

adsorption on flat walls are discussed in detail in this chapter. The modifications made to

this model to predict the clustering phenomenon are also discussed in detail. The model is

capable of predicting the density profile and number of solvent molecules around a solute

to indicate long-ranged interactions, giving evidence of clustering around a solute near the

critical point. The model is shown to correlate with fluorescence spectroscopy measure-

ments.

MODEL DEVELOPMENT

The approach of the model is the adaptation of a cubic equation-of-state to define

the properties of a fluid that is in the external potential field of an adsorbent. First, we de-

velop the model for flat solid adsorbents (incorporating the Peng-Robinson equation) and

then generalize the results for clustering. A fluid molecule at any position from the solid

interacts with both the solid and fluid molecules. Therefore, the chemical potential of the

fluid may be written as a sum of the fluid-fluid and fluid-solid interactions

u(z)=ub =ug(2)+u,.(2) [3-11
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where pfflz) and 11stz) are the chemical potentials due to the fluid-fluid and fluid-solid

interactions, and z is the distance normal to the surface of the solid, and the subscript b

stands for bulk properties. If the fluid-solid potential is given by 111(2) on a molecular ba-

sis, then on a molar basis

11;; (Z) = N A‘F(Z) [3'2]

For a non-ideal bulk fluid, the chemical potential 11b of Equation 3-1 is related to

the fugacity as

11,, = 11° + R T ln(-£42] [3-3]

0

Details of the development of this model are given in the previous chapter.

Using the Peng-Robinson equation-of-state, can write an expression for the bulk

fllgacity in terms of molar volume.

ln(-1%):(Zb - 1) - ln(Zb - B) -  
A, 111(2" +2414 B] {3.4}

2.828 B z, - 0.414 B

where
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P . . ..

Z, = RV; IS the compressrblllty factor

 

 

a P

Ah R2bT2

3:21:
RT

P= RT ab

vb -b_ v,2 +2bvb -b2

where a, b are the constants of the Peng-Robinson equation [1976].

Rearranging Equations 3-2 - 3-4, the component of the fluid fugacity due to fluid-

fluid interaction is

‘1’( )

f17 (z) = f1, “PL—[TL] 13-5]

Using the PEng-Robinson equation, the fluid-fluid fugacity at any point becomes

_ b _ 0(2) V(z)

lnlffld] — v(z)—b v(z)2 +2bv(z)—b2 RT

- 1,1[M] _ 0(2) 1nl:v(z)+2.414 b]

  

13-6]

 

RT 2.828bRT v(z) - 0.414 b
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where v(z) is the molar volume at any point z. a(z) is calculated using the SLD approach,

as given in the previous chapter, assuming a fluid-fluid pair potential oc f6 and is given by

 

a(z) = a, —5— +ii for 0.5 s —z— s 1.5 [3-7]
16 166, of

1 z

a(z) = ab 1- for 1.5 S— S 00 [3-8]

8(—Z— — 0.5)3 0 r

G

where 0', is the diameter of the fluid molecule.

In modifying this model to arrive at Equations 3-6 - 3-8 for the Peng-Robinson

equation assumptions are necessary to evaluate the configurational integral. Returning to

the integral from which the equation-of state a parameter is based, the attractive chemical

potential is given by

11... = jwfifldv 13-91
V

Where V denoted the volume of integration, (p(r) is the two-body interaction potential, and

8(r) is the radial distribution function.
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In the SLD model, the fluid at a point z is treated as a homogeneous fluid at a

density of p(z). Solving Equation 3-9, the attractive pressure term of the van der Waals

equation for a homogeneous fluid becomes -a/v2'. In the case of the Peng-Robinson equa-

a

v2+2bv—b2°

 tion, the attractive pressure term for a homogeneous fluid is — The Peng-

Robinson equation, as an empirical equation-of-state, has an unknown equivalent form of

the integral given by Equation 3-9, and therefore some assumptions are necessary to ap-

proximate this integral. The term v2 in the denominator of the attractive part of the van

der Waals equation is a result of the volume derivative of Equation 3-9 . The term v2 +

2bv- b2 in the Peng-Robinson equation may be treated as an empirical equivalent of the

term v2 of the van der Waals equation, and can be subject to an analogous SLD approxi-

mation. If the density is uniform up to the surface of the adsorbent, then we know that at

this limit 11w," = lib/2, resulting in aw," = ab/Z for the van der Waals equation. The Peng-

Robinson equation should have the same limits. Also, the functionality of the a/ab should

have the same qualitative curvature in both the van der Waals and Peng-Robinson equa-

tions. Since the true form of Equation 3-9 is not known for the Peng-Robinson equation,

as a first approximation, we use the van der Waals ratio of a(z):a1, for the Peng-Robinson

SLD model, and retain v2 + 2bv- b2 as the denominator of the attractive pressure term,

Which results in Equations 3-6 - 3-8.

The other pair potential needed for this model is the fluid-solid potential. The ad-

Sol‘bate-adsorbent interactions are given by the integrated 10-4 Lennard-Jones potential '

[Lee, 1988] as
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0‘}. 1 4 1
T(z)=4npa,me,o, EFT-2'27 [3-10]

1 i=1 1'

For modeling clustering in supercritical fluids, the approach is essentially similar,

with the exception of the configurational integral calculation. The wall in adsorption onto

a flat surface is replaced by a solute molecule with the solvent molecules clustering around

it. Geometrically, this means replacing a planar surface with a spherical particle. The co-

ordinate system is changed from rectangular geometry to spherical geometry and the fu-

gacity, molar volume and the Peng-Robinson a term become functions of r, the radial dis-

tance from the center of the solute molecule. The corresponding a(r) become

 

 

'8 2 , 2 , 1 ‘
3+;(r-r )+§O'f ( + ’)3

r r

—a(r) =3 ’ for 0.50, s r-91 s 150, [3-11]

+— —

_ r {#2 +r2 —2rr” r’2 +r2 +2rr’}_  

P16 26; 1 203, l
—- +

a(r)_i 3 3 (r—r’f 3 (r+r'>’

ab 16 +03{ 1 l }

r r’2+r2—2rr’ r’2+r2+2rr’_

 
 

 for 1.50, s r--62—‘ s cop-12]

 
 

  

Where

_(0',+a,)
I
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r’2 -1-r2 —O'2
n_ f

r — I

2r

 

where the subscriptf stands for fluid, and the subscripts for the solute. Details are given

in the appendix 1.

The solute-solvent interactions are given by the Lennard-Jones potential

0.12 0.6

To) =42”ii-17" [3-13]

The component of the fluid-fluid fugacity due to fluid-fluid interactions, i.e. the

equivalent form of Equation 3-5 for clustering is

 

‘I’( )
fflm = fbexp[- k; ] [344]

Using the Peng-Robinson equation-of-state, the fluid-fluid fugacity can be expressed

Similar to Equation 3-6, except that the molar volume, a and fugacity are functions of r

instead of 2.

Algorithm for solving density profile

To calculate the surface excess or cluster size, the density profile must be known.

The density can be evaluated by first calculating the bulk fugacity and density from a given
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temperature and pressure. Knowing the fluid-solid potential, the fugacity at any point can

' be calculated by Equation 3-5 (physical adsorption) or 3-14 (clustering). The density is

then calculated iteratively using Equation 6 or by the modified form using v(r) and a(r) for

clustering. Once the density profile is known the surface excess can be calculated by equa-

tion 2-1. Similarly, for clustering, the cluster size (Nix) can be calculated as

N" = f(p(r)— pb)dV [3-15]

The FORTRAN programs for calculating the adsorption isotherms and cluster sizes are

available in appendix 2.

RESULTS

The diameters of the fluid, solid and solute are the Lennard-Jones parameters as

tabulated in Reid et. al [1987] and in Lee et. al. [1991]. The Of; is calculated as the arith-

metic mean of the fluid and solid (or solute in clustering), while the fluid-solid potential

(811,) is used as an adjustable parameter to adjust the magnitude of adsorption. The values

Used for all the parameters are summarized in Table 2-1 or 3-1.

Figure 3-1 shows the surface excess of ethylene adsorbing onto graphon at various

Sub- and supercritical temperatures, and over a wide pressure range. This model is capa-

ble of quantitative fits for the adsorption isotherms over this entire pressure and tempera-

ture range, using a single parameter. The model also does a good job of accurately pre-

dicting the pressure at which the peaks occur, showing the characteristic cusp-like behav-
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System odnm) 0, (nm) 6% (nm) EfS /k (K)

Ethylene - Graphon .422 .34 .381 140

Krypton - Graphon .3655 .34 .35275 95

Propane - Graphon .51 18 .34 .4259 110

Argon - Graphon .3542 .34 .3471 68

Methane - Graphon .3758 .34 .3579 107

Carbon dioxide - Naphthalene .3794 .6199 .49965 800

Carbon dioxide - Pyrene .3794 .714 .5467 850

Ethylene - Pyrene .422 .714 .568 800
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ior seen near the fluid critical point. The model predicts the correct temperature-

dependent crossover of adsorption isotherms in the supercritical region. One of the pri-

mary reasons that the Peng-Robinson SLD model does a better job than the van der Waals

SLD model is that the Peng-Robinson equation predicts more accurate density values near

the solid surface, and a more compressible adsorbed layer. A comparison of experimental

saturation densities for ethylene [Angus et. a1, 1974], and both these equations [Pyada,

1994] shows that while the van der Waals equation underpredicts the saturation densities

by 80-90% between 211 and 260 K, the Peng-Robinson equation is within about 6%. van

Megen and Snook [1982] have done Monte-Carlo simulations of Lennard- Jones mole-

cules (that simulate ethylene) on graphon at supercritical temperatures [8] (TITc = 1.03)

(see Figure 2-5). Their results significantly overpredict the experimental values of Fin-

denegg, and their maxima is around 42 bar, as opposed to the experimental value of 58.7

bar, while the SLD model has a maxima at 57.8 bar.

Figures 3-2 and 3-3 show the adsorption isotherms of krypton onto graphon at

supercritical temperatures, and propane at subcritical temperatures. The krypton iso-

therms 253 and 273 K crossover at around 140 bar. Once again, the model predicts this

crossover at the correct pressure. This model was also tested on gases like argon and

methane (Figures 3-4 and 3-5). While, the model predictions for argon were good, the

model did not do a very good job of predicting the isotherms for methane, the reason

maybe that the Peng-Robinson equation does not do a good job of predicting the fluid

properties of liquid methane [Prausnitz, 1980]. The PVT behavior of these different gases

and the error in predicting density values is shown in appendix 3.
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Figures 3-6 - 3-12 describe the clustering phenomenon. The density profile and

the excess number of solvent molecules within a sphere of radius R around a solute are

plotted in Figure 3-6. As shown in the figure, the density goes through a sharp increase

near the surface of the solute but quickly drops to the bulk value. The excess number of

solvent molecules is slightly negative very near the surface before increasing sharply. Such

a trend has been shown in the integral equation calculations of xenon in neon [Wu et. a1,

1990] (Figure 3-7). The figure also shows that the excess number of solvent molecules

increases sharply up to 5 molecular diameters, and then slowly till 9 or 10 molecular di-

ameters, showing the long-ranged effect of this clustering phenomenon. This trend has

also been reported by Wu et. al [1990].

Figures 3-8 & 3-9 shows the results for clustering of C02 molecules around naph-

thalene at 2 K, 4 K and 14 K above its critical point. As seen in Figure 3-8, the cluster

size increases sharply near the critical point, but drops quickly as we move away from the

critical point. The results of the fluctuation calculation of Debenedetti [1987] on the same

system at 308 K are also plotted in Figure 3-8. The model predicts the correct density at

which maximum number of C02 molecules cluster around naphthalene, and does a fair job

of predicting the number of C02 molecules. The model also predicts a slightly broader

density range over which this clustering phenomenon occurs. However, the model does

accurately predict the increase in the number of C02 molecules around a single naphtha-

lene molecule as the critical point is approached, and also the variation of this peak with

temperature and pressure. When this cluster size is plotted against bulk density, cross-
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overs of Figure 3-8 disappear, and the maxima appear at the same bulk density (Figure 3-

9).

The fluorescence intensity ratios are an indication of the total number of molecules

around the solute within a short range, and hence the total amount within the first two

. o, o, .
molecular diameters [—'— S r S -—‘ + 20 f] outsrde the solute was chosen as a measure of

2

the local density. Figures 3-10 - 3-12 show the total number of molecules around a solute

within the first two molecular diameters against bulk density. This is cross-plotted against

the fluorescence signal of Brennecke [1989], Brennecke and Eckert [1989] and Brennecke

et. al. [1990]. The increase in the intensity of the signal near the critical point suggests

that the solvent molecules cluster around the solute. For naphthalene, the stable signal is

the ratio between fluorescence peaks 1 and 4, while for pyrene it is 1 and 3. These figures

show the predicted total number of C02 molecules clustering around naphthalene and py-

rene, and ethylene clustering around pyrene. The model predicts the trends seen in the

fluorescence spectra. For CD; clustering around pyrene and naphthalene at 308.2 K, the

data show a sharp increase at low densities, then becomes rather flat before increasing

again at high densities. Also, at higher temperatures, the flat region is rather small. Once

again this trend is captured by the model. This difference is the trend of the fluorescence

spectra is even more pronounced for ethylene clustering around pyrene. The figures also

show that the intensity of the ratio of the fluorescence spectra and the excess number of

C02 molecules around pyrene is more than around naphthalene. The fluid-solvent inter—

action parameter is higher for pyrene than for naphthalene, and pyrene being a larger

molecule provides a larger surface area for the solvent molecules to collapse upon. Com-
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paring the C02-pyrene and ethylene-pyrene systems, pyrene attracts a larger number of

C02 molecules than ethylene. The reason may be because of the bigger size of the ethyl-

ene molecule which sterically limits the number of ethylene molecules that can surround

the solute. In all the cases presented here, the model predicts greater clustering near the

critical point which is in agreement with the spectroscopic data.

DISCUSSION

The SLD model uses the fluid-fluid and fluid-solid interaction parameters to model

adsorption over wide pressure and temperature ranges. It characterizes the fluid mole-

cules using cubic equations-of-state. Predictions of the SLD model using the van der

Waals model were shown earlier [Rangarajan et. al, 1995, chapter 2]. Here, we use the

Peng-Robinson equation to describe the fluid, thus significantly improving the predictions

of the fluid properties. By comparing Figures 3-1 - 3-2 with the results seen in chapter 2,

the significant improvement is obvious. However, for any particular system, the equation-

of-state that does the best job for representing its properties may be chosen, and the SLD

approach adapted for that purpose.

The fluid-wall potential is used as an adjustable parameter in this approach. It is

fitted to any one of the different temperatures given in the data, and then the same poten-

tial is retained for the other temperatures. This makes the model a semi-predictive model,

in that, while one of its parameters needs to be fitted to experimental data at a particular

temperature, it then becomes a predictive model to describe the adsorption characteristics

at other temperatures. The geometric mean of the Lennard-Jones potentials tends to un-
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derpredict the values of the surface excess. We have consistently used a fluid-solid inter-

action parameter that is about 1.8 to 2.2 times the geometric mean.

The SLD model superimposes the Lennard-Jones potential for solute-solvent in-

teractions on the Peng-Robinson equation of state that describes the properties of the su-

percritical solvent. If the solute is attractive, then the density of solvent molecules near

the solute increases resulting in the phenomenon of clustering. This is very similar to the

adsorption of a fluid on to a flat wall, except that the wall-fluid interactions are slightly

different than the solute-solvent interactions. As shown by the results of both these two

cases, there are many similar behaviors between the two cases. The crossover of the ad-

sorption isotherms is also seen in the case of clustering (Figure 3-8). This crossover dis-

appears when the excess is plotted against bulk density (Figure 3-9). The peak in the su-

percritical adsorption isotherms decreases as we move to higher reduced temperatures.

This phenomenon is also seen in clustering, where the number of excess solvent molecules

drops sharply as the temperature is increased from 2 to 4 K above the critical point. One

of the differences is that below the critical pressure, the surface excess of a fluid adsorbing

on a flat wall increases gradually and then drops sharply as seen at 283 and 293 K for eth-

ylene (Figure3-1). However, in clustering, as the fluctuation calculation of partial molal

Volume data indicates, the number of molecules increases sharply as the critical pressure is

approached and decreases rapidly past the critical pressure. This model’s predictions for

Clustering are more in line with the adsorption data on a flat wall i.e., the excess number of

Solvent molecules increases more gradually below the critical pressure, and then drops

Sharply after the critical pressure. This may be an artifact of the SLD assumptions.
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Wu et. a1. [1990] showed that for the attractive mixture of neon clustering around

xenon, there is a negative N“ close to the surface of the xenon molecule (Figure 3-7).

The SLD model also predicts such a negative value close to the surface. At the surface,

the attractive and repulsive parts of the Lennard-Jones potential cancel, and the solvent

molecules are not attracted to the solute, and this negative value is the result of the sol-

vent-solvent interactions. By choosing the correct solute-solvent potential parameter, this

model may be used to describe a repulsive mixture where there is depletion of solvent

molecules e.g. xenon molecules cavitating around neon.

The SLD model serves as a good first approximation of the adsorption problem.

The use of the Peng-Robinson equation helps resolve one of the limitations of the previous

SLD model viz. use of an equation that can better represent the fluid properties, thus sig-

nificantly improving the capabilities of this model.

High-pressure adsorption and clustering in supercritical fluids are phenomena that

are of importance in various industries. A simple engineering model to describe these dif-

ferent phenomena will enhance their applications in industry. Modifications of this model

to predict adsorption in slits and pores, and for describing adsorption of mixtures onto

different surfaces are discussed in the next chapter.
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CHAPTER 4 ADSORPTION'OF PURE GASES IN SLITS

AND PORES, AND ADSORPTION OF BINARY MIXTURES

INTRODUCTION

In two previous chapters, we presented a new model, called the Simplified Local

Density (SLD) model. for describing physical adsorption of gases on flat walls using cubic

equations-of-state. In this model, the fluid-solid potential is superimposed on a cubic

equation-of—state, and the configurational energy in the inhomogeneous fluid phase is

simplified with a local density approximation. 1n the first chapter, we used the van der

Waals equation, which gave qualitative predictions of the experimental data of Findenegg

[1984]. The van der Waals equation was used because it is the simplest fundamentally

sound equation-of-state and provided a basis for qualitative studies. This model predicts

Type II and Ill isotherms for adsorption on flat walls, shows the characteristic cusp-like

behavior and crossovers seen near the critical point. In the second chapter, we modified

the model to incorporate the Peng-Robinson equation-of-state, which represents the fluid

properties more accurately, including vapor pressure and compressibility, and showed

dramatic improvement in the quantitative representation of experimental measurements of

Ffindenegg.

Most commercial adsorbents are porous, activated carbon being one of them. Ad-

sorption in pores and the phenomenon of pore filling among carbon based adsorbentshas

received considerable attention [Dubinin, 1975]. Gregg and Sing [1982] have classified

pores into three categories, macropores (50 - 100 nm), mesopores (2 - 50 nm) and micro-

87
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pores (<2 nm). Adsorption properties of microporous solids enjoy wide spectrum of ap-

plications including chromatography and other separation processes, filtration, industrial

effluent cleanup, ion exchange, biological applications etc. [Gubbins, 1990; Pendleton and

Zeetllemoyer, 1984]. In microporous solids, adsorbed fluids show many unusual proper-

ties such as preferential adsorption of certain fluid components, chemisorption at particu-

lar sites, hysterisis effects and a variety of new and unusual phase transitions [Gubbins,

1 990]. Dubinin [1975] says that all existing theories of physical adsorption proceed with

the same physical image in describing adsorption in porous and nonporous adsorbents.

Design of columns for thermal swing adsorption and pressure swing adsorption

require the simultaneous solution of partial differential equations for the material, energy

and momentum balances describing the dynamics of adsorption in columns, in conjunction

with the kinetic and equilibrium properties of the adsorbents [Sircar and Myers, 1985].

The models for multicomponent adsorption isotherms are discussed in chapter 2. There

are plenty of experimental and molecular simulation data available for adsorption of pure

gases and mixtures onto slits and pores at low pressures [van Megen and Snook, 1982,

l 985; Barton et al., 1984; Powles et al., 1988; Valenzuela and Myers, 1989; Tan and

Gubbins, 1990; Kierlik and Rosinberg, 1992]. In this paper, we extend the SLD model to

describe adsorption of pure gases and binary mixtures in confined spaces, i.e. slits - two

infinite parallel flat surfaces and cylindrical pores.
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MODEL DEVELOPMENT - PURE GAS

Slit-like Pores

These can be thought of as two parallel serni-infmite plates separated by a small

distance (Figure 4-1). Any particle in between the walls will be subjected to attractive

forces from the two walls. The distance between the two walls may be quite small (<2

nm), which implies that only particles smaller than this will be adsorbed i.e. exclusion will

be important.

The chemical potential of the fluid in the vicinity of a wall may be written as a sum

of the fluid-fluid and fluid-solid interactions, as described in the previous two chapters.

Recapping from the last chapter, using the Peng-Robinson equation-of-state, we

can write an expression for the bulk fugacity in terms of molar volume [Sandler, 1989].

The fluid-fluid fugacity at any point is an analogous expression

b _ a(z) V(z) _

v(z) — b v(z)2 + 2bv(z) - 1)2 RT

ln[v(z)-b] _ a(z) ln[v(z)+2.4l4 b]

RT 2.828bRT v(z)-0.414 b

 

1“”.ng =

[4'1]

where v(z) is the molar volume at any point z, a and b are the constants of the Peng-

Robinson equation [Sandler, 1989; see previous chapter also]. a(z) is calculated using the

SLD approach after suitable modifications, and details are given in appendix 1. The equa-

tions for a(z) in slits are
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“(0:2 _Z_+.5__ 1 3 , for assists [4-2]
ab 8 017 6 L-Z 0’7

3 ———0.5

a(Z)_§ §_ 1 _ l

a -8 3 3 _ 3 ,
b 3[__Z__05] {L 2—05]

or of a

14-31

for 153-3—3—11-45

a, or

a(z)=% L-z+%_ 1 3 , for BL_1.5_<_O_Z_gal;.—0,5 [4-4]

a 0'

” 1’ 3[—5——0.5J ” f H
0'17 -  

Where L+c, is the distance between the centers of the atoms of the two surfaces. Note

that L has to be at least 3 Gfl' in length for the above equations to be used. If L < 3 Of]

the“. the equations will have to be slightly modified and the corresponding equations are

 

0'

“(3:2 —L—1 , for 0.5S—z-S1.5,andifz+0'fl >L-'—fl [4’5]
ab 8

of
2
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'
7

“(0:2 2 _ 6} +—5_

a 8 O' 0' 3 6 ’

b H {Ir—21’ )
14-6]

0'

for 0.5s-Z—sl5 andif “of, 3L...__’I_

or
2

a(z)___3 L-Z 0f]

a 8 0' 0' 3

” 1" 3(z-—”-(L—z))

 
 0” 14-71, for 1.5S—Z—SL———

a 2

  

The adsorbate-adsorbent interactions in slits are given by the partially-integrated

10-4 Lennard-Jones potential [Lee, 1987] (Equation 3-10), where the interactions are

summed over the two walls.

Cylindrical Pores

Any molecule in a cylindrical pore is subject to a force from all sides of this cylin-

der (Figure 4-2). The configuration integral in pores is given by

 
)=}'°}III(72_L—+22)drd0dz [4-8]

where r and z are the radial and axial distances. Using the SLD approach, the region in-

side the pore is divided in three parts: 1) at the pore surface; 2) near the pore surface; and

3) far from the pore surface, and the details of these calculations are given in appendix 1.
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Figure 4-2: Cylindrical Pores
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The resulting solution leaves us with an integral to be solved for a(r1 ):ab, and it is the

longest part in the calculation of the amount adsorbed. The results can be summarized as
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3 Id] 14 cos'l ———fl dz- I 1t— r, Z 3,,
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0.. 7‘ 1 , cos . 1 7c ’
—— d0dz+—

L 41:]0 41*,2cos20+z2 24o},r
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0
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a, It -1111 1; - 017 -tan"(ofl./w) (19+ 1;

b 4 0 4w3 2w2(w2+o}) 2W3 120}

[4-10]

for R— fiSr,< —-——-fi—

363 3O

“(4): I “3 —1 —d0, for OSr,<R—-——”— [4-11]
a, 11: 30'” 160w3 2

2

O'

r',2+0'i,r Zz-(R-EL] O’ 2

Where V: , and w=r,c089+\[(R——H) —r,2sin20-,R+

201/03" 2 2

01/2 is the pore radius, and r, 0, and z are the cylindrical coordinates.
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If the fixed particle is near or at the wall, then the configurational energy calcula-

tion at each point takes about 45 seconds for the fortran calculation. If the fixed particle is

away from the wall, the calculation takes about one second to compute the configurational

integral. Note that the calculation has to be done only once for a given z/of. Similar to the

30'

slits, if the pore radius is smaller than 3 of; + om then rI > R—ji- in all cases and

Equation 4-11 is not required.

In cylindrical pores the adsorbate-adsorbent interactions are given by the potential

of Tjatopolous et al. [1988]

 

_ 2

‘l’(x,Rfi)—n0;fl EM l [4-12]

 

  

where x is the distance of closest approach between the fluid molecule and the pore sur-

face, Rf; = R-t-o,/2 is the pore radius, F[on, B; Y: 8] is the hypergeometric series with pa-

rameters a, [3, y, and n is the number density of carbon atoms.

Algorithm for solving the density profile

The algorithm for solving the density profile and calculation of surface excess are

given in the previous chapters. In slits and pores the only difference is the calculation of
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a/ab, which is given by Equations 4-2 - 4-7 for slits and 4-8 - 4-11 for pores. The amount

adsorbed in slits is calculated as

L—ofl/Z

Amt =j p(z)(S. A. )dz [4-13]
non/2

and in pores as

 

 

Amt = LR-” 27:7Lp(r) dr = IOR-ak r S”: p(r) dr [4-14]

R _ S

2

where S.A. is the experimental surface area (for e.g. BPL activated carbon has a surface

area of 988 mzlg) and L is the length of the cylinder. It was assumed that the experimental

surface area was 21tL(R-o,/2).

MODEL DEVELOPMENT - BINARY MIXTURES

In binary mixtures, the van der Waals mixing rules are used to determine the prop-

erties of the mixture [Prausnitz et al., 1986]

m

l=l j=l

a=izyiyjaij
[4-15]

b = Zyib. [4-161



whe

COP. \

 Wher
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a, =aj, = ,/a,,afl(1—k,.j) {4.17}

where y,- is the mole fraction of component i, and k,-,- is the binary interaction parameter, a

constant introduced to obtain better agreement in mixture equation-of-state calculations.

Equation 4-1 may be written for the fugacity of each component as

2235/10
,-B, .-

lnly—pf-gu-v-wz-m-m A 7
  

Where A, B and z are as discussed in chapter 3.

in =1 [4-19]

i=1

Algorithm to solve density profile

For a binary mixture, the above equations result in solving two simultaneous equations

(fugacity of each component) for both composition and density with position, subject to

the constraint that the sum of the mole fractions of the two components is 1. A technique

developed by Asselineau et al. [1979] for calculating VLE data has been adapted for this

purpose. In this method, Equations 4-17 - 4-19 are written such that the right hand side

equals zero. These equations are called the objective equations, 6,, G2 and 6;.

GI =l'-¢-"—P—1 [4.201

f:
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P
(32 =flL—1 [4—21]

f2

G3 =1-Y1 "Y2 [4’22]

Partial derivatives with respect to the independent variables (pressure and local composi-

tion) are then written in matrix form, which are then inverted to recalculate the objective

 

functions such that G = \/G,2 + G: + G; is minimized. Further details of this method

may be obtained from Asselineau et al. [1979], and the resulting computer program is at-

tached in the appendix 2.

RESULTS

The diameters of the fluid, solid and solute are the Lennard-Jones parameters as

tabulated in Reid et al. [1987], and are given in chapter 3. The of, is calculated as the

arithmetic mean of the fluid and solid, while the fluid-solid potential parameter (sf/k) is

adjusted to match the magnitude of adsorption.

van Megen and Snook have done Monte-Carlo simulations of Lennard- Jones

molecules (that simulate ethylene) on slit-like pores [1985] (Figure 4-3). Their simulation

results cannot be quantitatively compared to either experimental or SLD model results be-

cause their simulation of bulk ethylene does not represent the experimental bulk properties

0f ethylene; e.g. the simulation critical temperature (Tum) of ethylene is 226 K, as op-

posed to Tc = 282.4 K seen experimentally. Figure 4-4 shows the corresponding model
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predictions for adsorption of ethylene on a slit. Their calculations were done at T/T* of

0.95 (where T* = 202 K), yielding a ratio of Tl'I'c,,,m of 0.85. We used the same ratio of

Tl'l‘c (resulting temperature was 239 K) for our calculations. To convert the excess in

umol/mz to the units used by van Megen and Snook, divide by 9.323. ‘b’ is the separation

between the carbon atoms in terms of ethylene molecular diameters. Qualitatively, the

SLD model shows all the trends seen in the Monte-Carlo simulations. At low slit widths

the pore fills quickly, resulting in Type I isotherms. There is also a slight decrease in the

excess as the pressure increases, as reported by van Megen and Snook. As the slit width

is increased Type IV isotherms are seen.

Figure 4-5 shows the adsorption of ethylene in pores of different diameters at low

pressures. These results are compared to the data of Reich et. al. [1982], who have stud-

ied the adsorption of ethylene on BPL activated carbon with a surface area of 988 m2/g.

The value of the ef/k that was used in Figures 3-1 and 44 has been retained in this case.

The model predictions with a pore diameter of 2.45 nm match the experimental data rather

well. However, activated carbon has a pore size distribution with pores ranging from mi-

cro to macropore range, with an average pore size of 3.2 nm, with largest portion of pores

in the 1.5 - 2 nm region. As seen in Figures 4-6 and 4-7, at temperatures of 260.2 and

301.4 K, the model predictions at 2.45 nm are not as accurate. A factor in this tempera-

ture dependency may be due to the fact that in order to truly represent the experimental

data, we need to sum the amount adsorbed over this pore size distribution. At small pore

widths type I isotherms are seen while type IV isotherms are seen at large pore widths.

The amount adsorbed for a pore width of 4.56 nm is actually smaller than the amount ad-

sorbed in a 3.29 nm pore for pressures up to 6 bar at 212. 7 K and for the entire pressure
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range at 260.2 K. Model predictions of adsorption of methane at high pressure were also

conducted. The results obtained were qualitatitively similar to the data of Barton et. al

[1984] (Figure 4-8).

In Figures 4-9 and 4-10, the model predictions of adsorption of a binary mixture of

ethylene and methane are shown. In this case the diameters of both ethylene and methane

are assumed to be 0.4 nm to simplify calculations near the surface of the pore. The fluid-

wall parameter for ethylene is retained as 140 K, while for methane it is taken as 107 K,

which was calculated by fitting it to the pure gas adsorption data. A binary ethylene-

methane interaction parameter of 0.022 was used [Sandler, 1989]. The composition of

ethylene in the adsorbed phase is plotted as a function of pressure at 212.7 K with a bulk

ethylene composition of 74%. The model predictions for the selectivity shows that the

composition in the adsorbed phase is inversely proportional to the pressure, as seen by the

experimental results of Reich et al. [1982]. Note that the model assumes a slit-like geome-

try to model the system. In Figure 4-5, we showed that a 1.6 nm slit shows trends similar

to that of a 2.45 nm pore for ethylene adsorbing on activated carbon at 212.7 K. We used

the slit-like geometry to represent this binary system to show that the SLD model is capa-

ble of showing the right trends with respect to composition and amount adsorbed in binary

mixtures, and as seen by the figure, the SLD model shows great promise for mixture

modeling. Figure 4-10 shows the model prediction for the amount adsorbed as a function

of pressure. As seen by the figure the SLD model qualitatively predicts the amount ad-

sorbed, and shows all the right trends seen in the figure. 9

Figure 4-11 shows the composition of ethylene in an ethylene-methane mixture at

260.2 K mixture. At this temperature, too, the SLD model predicts the selectivity of eth-
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ylene very well. Figure 4-12 shows the adsorption of two members of a homologous se-

ries propylene and ethylene adsorbing on activated carbon. This activated carbon is called

Nuxit-AL, which is made by a Hungarian manufacturer and its characteristics could not be

obtained readily, it was approximated to have the same physical properties as BPL carbon.

Since ethylene and propylene are similar molecules, the binary interaction parameter was

assumed to be zero. The experiments conducted by Szepesy and Illes [1963] were done

by maintaining the pressure constant and varying the concentration of the bulk propylene.

Here we wanted to see the model predictions over a wide range of concentrations. As

seen in Figure 4-12, the model can predict the concentration in the adsorbed phase to a

very high degree of accuracy. Once again, modeling the carbon as a pore, and incorporat-

ing the pore-size distribution data into the model will enhance the model predictions.

DISCUSSION

As discussed in the two previous chapters, the limitations of the SLD model can be

attributed to: 1) the local density approximation; 2) lack of structure in the model; 3)

choice of the fluid equation-of-state to describe the fluid properties. In the previous

chapter, we showed how modifying the fluid equation to incorporate the Peng-Robinson

equation dramatically improved the model predictions for adsorption in flat surfaces.

Here, we modify the SLD approach to predict adsorption in slits and pores. Model pre-

dictions are compared to both molecular simulations and experimental data, and as seen by

the results the SLD approach can quantitatively predict adsorption in activated carbon by

approximating the BPL activated carbon to be a 2.45 nm pore at 212.7 K. However, as
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the temperature is increased the model predictions get worse. It is hoped that by suitably

incorporating the pore-size distribution in the model i.e. by calculating the total amount

adsorbed as the sum of the amount adsorbed over different pore sizes, the model predic-

tions will be quantitative. Another important feature is the fact that the fluid-solid interac-

tion parameter for pores was the same as that of flat walls. This suggests that the fluid-

solid interaction parameter, while not a theoretically determined parameter, can be found

by fitting the data at one temperature and for one surface. Once such a table can be writ-

ten for a number of fluids, this model can be used as a predictive model over different

surfaces. It also strengthens the universality of the SLD approach.

Another limitation of the SLD model is the lack of structure in the model. How-

ever, at pore sizes smaller than 3 molecular diameters, Figure 4-13 shows that the ratio

a(r):a,, is symmetric about the center of the pore but the maximum is off center. As a re-

sult, the calculated maximum density would be where a(r)/ab is maximum. The trends can

be attributed to the fact that at pores smaller than 3 6f, there is a packing effect of the

molecules such that if the particle is at the center of the pore then in the horizontal plane

no other particles can be present, while if the particle is off-center, then another particle

can exist in the same horizontal plane. This suggests that there is some inherent structure

built in this model due to the sizes of the molecules which may lead to exclusion of parti-

cles. This ‘structure’ is not seen in slit-like pores. Slits are infinitely long in two-

dimensions, while pores are infinitely long only in one-dimension. Hence, more molecules

are in the vicinity of a given molecule in a slit, and the packing effect is less important.
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The final limitation of the SLD model may be attributed to the local density ap-

proximation. Figures 4-14 and 4-15 show the adsorption of ethylene on graphon and on

activated carbon at 212.7 K, by treating ethylene as a homogeneous fluid (a(z)=a1,.), simi-

lar to the Barrer and Robins van der Waals model. By comparing these figures with Fig-

ures 3-1 and 4-5, it is obvious that the volume occupied by the adsorbent must be ex-

cluded. The local density approximation makes the SLD model tractable for routine calcu-

lations. It can also solve the entire density profile over wide pressure ranges within a few

seconds, and can give quantitative predictions for the surface excess and amount ad-

sorbed. Hence, the local density approximation, while a limitation, significantly improves

the model predictions over homogenous models. 1

There is also an incorrect limit in a/ab in the model for slits and pores as a slit/pore

width of one molecular diameter is approached. To discuss this inconsistency let us dis-

cuss slits. In such cases, for slits, the SLD model predicts that

_"..=.3_[_P__1]=o 3.32:1 [4—23]

This requires that as the wall separation of the slit approaches 6”, aka, approaches zero.

The physical inference of this result is that either the force of attraction between the parti-

cles is zero or that particles are not present. However, particles can be present in a single

Plane when the slit is one molecular diameter in width and they certainly attract each.

other. This suggests that this SLD methodology will not work in its present form for slit

SiZes approaching Of. The problem arises due to the application of mean field theory that
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neglects particle size, at an interface where particle size is most important. Mean field

theory usually assumes that fluid particles are present in all space between the walls of a

slit. At an interface this is incorrect; the reason can be visualized by considering a flat

wall. In flat walls, we begin integrating from z=0.5 of, because half the volume of this

particle will not be in contact with any fluid particles. This means that no fluid centers can

exist between 0 and 0.5 0,7, which is consistent with particles having finite size. As we

move the fixed particle away from the wall more and more of the particle surface will be in

contact with other particles, and it can be surrounded by other particles at z 2 20' f. In a

confined slit the SLD approach is applied for each wall, excluding particles inside 0.5 03

from each wall. When the width is just one molecular diameter, the limits overlap, thus

the entire volume is excluded.

One way to correct this inconsistency is to refita/ab such that the integration be-

gins from 2:0 6])“, as opposed to 2:05 of}. This would neglect particle sizes for all but the

fixed particle. The problem with this solution is that ‘1’,, includes particle size, and at

Z<0.5 6,; ‘19, becomes large and positive, and hence excludes particles, thus introducing a

mathematical inconsistency.

Another approach would be to calculate the configurational integral for a slit of

one molecular width as a base reference, and add to this integral as slit widths are in-

creased. Presently, however, no clear and simple solution to this problem exists, because

the problem of finite particle size is simply transferred from the first layer to each subse-

quent layer.
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In order to investigate the behavior of a/ab in confined spaces approaching off, we

can easily consider packing of disks in a two-dimensional channel. Solving for the con-

figurational energy of closest packing in a two-dimensional channel for disks of a finite

size by summing a l/r6 potential, the configurational energy for a channel of one molecular

diameter width is approximately 2% lower than the configurational energy of a channel 1.5

molecular diameters wide. Based on this two-dimensional result, it seems reasonable to

assume that a/ab is constant for slit widths below 1.5 off. We chose 1.5 molecular diame-

ters because 1 molecular diameter represents total constraint in packing, while 2 molecular

diameters represents total freedom in packing. Extension of the two-dimensional summa-

tion technique to three-dimensions is most easily and realistically achieved by conducting

molecular simulations in small slits, and determining dependence of configurational energy

on slit size to further refine a/ab. Molecular simulations can be conducted also for pores

to see if the approximation a/ab = constant is followed for pore widths < 1.5 ofl.



CHAPTER 5. CONCLUSIONS

There are many different models that describe adsorption ranging from the simple

empirical fits to the theoretically sound molecular simulations. The simple are widely used

because of their simplicity. Models based on statistical mechanics and molecular

simulations are theoretically sound but significant calculation time. A model that can

retain the simplicity associated with the empirical models and contains the basic physics of

the adsorption problem can be very useful. This is the basis for the development of the

SLD model.

The SLD model is a simple model based on spatial invariance of the chemical

potential, along with a cubic equation of state to describe the fluid properties. The SLD

approach can model a variety of adsorption isotherms - from the low pressure region to

the supercritical region. The model provides information about the density profile of the

adsorbed fluid. In the subcritical region the SLD model predicts Type II and Type III

isotherms on flat walls. It also predicts phase transitions at the surface (under certain

conditions), as well as an abrupt transition between an adsorbed gas layer and fluid layer

(again under certain conditions). Negative adsorption is sometimes predicted, similar to

the predictions of Sullivan [1979]. In the supercritical region the model shows the

experimentally observed cusp-like behavior near the critical point as well as the crosSovers

seen at higher pressures.
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Quantitative modeling, extension to Types 1, IV and V isotherms, prediction of

clustering in supercritical fluids, and adsorption of multicomponent mixtures are

discussed in chapters 3 and 4. By using the Peng-Robinson equation, the SLD model can

quantitatively predict the adsorption of pure gases on flat walls. By modifying the solid-

fluid potential to be two body fluid-fluid potential, the SLD model can predict clustering

in supercritical fluids. The local density approximation calculations were modified to

account for this change in geometry. Comparisons to experimental fluorescence spectra

showed that the SLD model can predict the phenomenon of clustering. In slits and pores,

the SLD model predicts types I, IV and V isotherms, and can also quantitatively model

adsorption. Using the pore-size distributions will improve the model predictions.

By approximating activated carbon to be a slit, adsorption of binary mixtures were

carried out. Calculations were done for two mixtures - ethylene & methane and

propylene & ethylene. The ethylene-methane mixture calculations were done at two

different temperatures - 212.7 and 260.2 K. These calculations show that the SLD model

can qualitiatively predict the selectivity of a binary mixture. The SLD model

qualitatively predicted the amount adsorbed. By modeling the activated carbon as a pore

and suitably incorporating the pore-size distributions, the model predictions can be

enhanced.

The SLD model serves as a good approximation and can provide rapid surveys of

adsorption behavior to guide more detailed and time-consuming simulations. This model

is not intended to replace any of the more complete theories such as Monte-Carlo

simulations, molecular dynamics, or density functional theory, but instead provides a

simple and approximate solution to the adsorption problem, The model may be viewed
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as a compromise or a bridge between the two-dimensional equations-of-state models,

Frenkel-Halsey-Hill theory, and the more rigorous density functional or integral equation

approaches.



APPENDICES



The van der Waals equation and configurational energy calculations - Flat Walls

If we consider a canonical ensemble, the partition function Q is given by [Vera and Prausnitz, 1972]

Q._1_V~(,,,,-_L)”fl"
N! f 2111' A3

where A = h/(21rka)"2. The Helmholtz energy A and the pressure are related to the partition

function:

F , - 91 . u .332

3" r.» 3" rN

31an N arm

61’ 61’

where the molecular rotational, vibrational, electronic partition function, 91.11..» is assumed to have no

volume dependence. The van der Waals free volume V}, for a system with N molecules, is given by

  

1», . V- .11. .
NA

The repulsive part of the pressure is

P"? - km 1 RT

V - Lb v b

NA
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If <1) is the sum of two-body interactions between an arbitrarily selected central molecule and all

other molecules around it, and (l)(r) is the two-body interaction potential, and g(r) the radial

distribution function, then,

d>(r) g(r) 4rtrzb

V
I
Z

° ' 1

For a van der Waals fluid, following McQuarrie [1976], g(r) = 0, for r s o, and g(r) = constant, for r

> o, where o is the hard-core radius of the fluid molecule. To simplify notation, the subscriptflis

omitted from 0 throughout the appendix.

If we assume that the molecules interact with an infinite hard-core repulsive potential and an

inverse-sixth attractive potential, then for r > o,

6

Mr) - -e,°—6
f

where 6..., is the maximum energy of attraction between a pair of fluid molecules. In the bulk fluid,

this leads to

a” - 21: 61.03 Ali/3
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Nonhomogeneous Systems. Consider a fluid molecule of diameter 0 at location z in the vicinity of

a wall, where 0.50 s z s 1.50. For convenience of integration we define a cylindrical coordinate

system with the origin at an arbitrary molecular center at z, and let y be a dummy variable to denote

axial distance and let r denote radial distance. The configurational energy can be calculated from

the two integrals:

With the local density approximation: p(y) z p(z)

1b - -1/2e

5
NA _.—,o u p(z)“ 6)

Since a is proportional to <I>, for 0.50 s z s 1.50, we find

 

3_(Q_ 0(2) _(5 6 2)

am camp» 16 ' TE :

For 1.50 s z < co, the integration is performed in three parts:



will the
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With the local density approximation p(y) = p(z) these can be integrated to give:
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and

27 RITE T
a

M" 64 P, TM

  

N
I
.
—

Note that atz= 0/2,a=abu,k/2, and at z - a, a - am

Note that a and its derivative with respect to z are continuous functions at z = 1.50.
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Calculation of Configurational Integral for Clustering

This calculation is similar to the configurational integral calculation for adsorption on a flat wall and

further details are given in the appendix of a previous publication [Rangarajan et. al., 1995].

If <1) is the sum of two-body interactions between an arbitrarily selected central molecule and

all other molecules around it and (p(r) is the two-body interaction potential, and g(r) is the radial

distribution function, then

(I) = I:%¢(r)g(r)4m'2dr

For a van der Waals type fluid, following McQuarrie [1976], g(r) = 0 for r S 0, and g(r) =

constant, for r > 0' , where 0 is the hard-core radius of the fluid molecule. Note that the subscriptf

has been dropped from 0 for the appendix to simplify the equations.

If we assume that the molecules interact with an infinite hard-core repulsive potential and an

inverse sixth attractive potential, then for r > 0' ,

O.6

¢(r)=_efl-r_6-

where eI, is the maximum energy of attraction between a pair of fluid molecules. In the bulk fluid,

this leads to

_ 417:6” 03NA

”’ 3

 p
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271: 61,. O'BNj

ab = 3 

The relation between the partition function, the attractive and repulsive part of the pressure, a

and <1) are given in previously [Rangarajan et. al., 1995; Vera and Prausnitz, 1972]].

Nonhomogeneous Systems. Consider a fluid (solvent)molecule of diameter 0 at location r in the

 vicinity of a solute molecule of diameter 0, (typically larger than 0), where 0.50 S r — O; S 1.50_

Using cylindrical coordinates with the origin at the center of the solute molecule, we integrate across

all space with r denoting radial distance from the center of the solute molecule, x be the radial

distance from the center of an arbitrary molecule (parallel to the intermolecular vector) and y be a

dummy variable denoting axial distance (perpendicular to the intermolecular vector). The

configurational integral can be calculated from five integrals:

_ 6 °° °° 27'0"!de

(D1 - ‘ e” 0' NALL P0096337);

~ ~ 2nydydr__ 6

(DZ _ 617 0' ~41an p(r,y) (r2 +y2)3

_ 6 r—'" °'° ZWdydx

‘1’: “"511 0 ”Al. lmp(x’Y)——(x2+y2)3

r+r' 0° ZWdydx

(D4 = - EH aéNA £_r.jf———r.2_(,_x)z [30511002 + yz )3

Zn'ydydx
(1):—e 0'6N .. .. x, ———-

5 fl AJIr+r'J0 p( y) (x2 + y2 )3

where

_ (0+0,)
I
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r’2 + r2 —0'2

2r’

II
 

<1>=<1>, +d>2+<l>3+d>4+d>5

With the local density approximation: p(x,y) = p(r) and since a is proportional to <1), we find that

 

  

a(r)_¢(r)

ab (Db

andleadsto

3 8 2 , 0'3 1 1 2 , 1

ar =—a —+— r-r +—- — +—O'

() 16 b(3 O'( ) r(r’2+r2—2rr” r’2+r2+2rr’) 3 ((r+r’)3))

Similarly, for 1.50' S r — 2.24 < oo , the integration is performed as before with an additional

integral. Asthe fluid molecule under consideration is moved to a distance greater than 1.50 the

additional integral accounts for the cohesive energy in the region between 0 I, S x S r —0. This leads

to a six-part integral resulting in

3 16 203 l 03 1 1 203 1

a(r): ab( - I3+ ( I2 2 I ’2 2 I)+ I3)

16 3 3 (r-r) r r +r -2rr r +r +2rr 3 (r+r)

   

These modified a(r) are then used in the calculation of the fluid fugacity.
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Calculation of Configurational Integral for Slits

Definitions: 2 is the distance from the surface of one of the walls. I. is the distance

between the two wall surfaces. r is the radial distance. x is a dummy variable that denotes

axial diatance.

Case 1. Particle is near the wall: 92- S 2 S 3%

The integral is carried out by splitting the regions as follows:

Region 1. x ranges from 0 to z-0/2

2-2 21v

(D1: 48566NAJO 2 Efip(x)mdrdx

1
0 =—2 3N1tp [£-—]

1 8J0 A (Z) O 2

Note that the steps needed to carry out the integration are given in detail in the integral for

flat walls.

Region 2. x ranges from O to 0



<1), = -4eflo6N,j:j;;27p(x)
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( 22.:tr2)3 rdx

x r

(I)2 = —Zefl.0 3N,,1tp(z)

Region 3. x ranges from 0 to L-0/2-z

(D3 = ‘48fi-GGNA LL-olz-zjo p(x)

(D

(I), =-—4e,,0‘5

2

(D3 = -38fi6 3NA1tp(z)

—2e,,c31v,np(z) C:

 

  

 

~ 22nr23lrdx

(x +r)

L-ol2—zp(x)

NARI —de

6 x

r -

1
1-

(5-1-5f

_ 0 2 0 -

+<I>,-1-<I>3

5 1

—+3- L 1 3

aim-£1_ 0 2 0 _  
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Note that for particle near the other wall, the result is a mirror image of the above result

i.e. replace 2 with L - 2.

Case 11. For Large Slits, there is also a region 1.5 S S — 1.5

C
l
|
1
~

i

0

In this case, the axial distance is split into 4 parts

Region 1.x going from 0 to z-0/2

6 2-0/2 0-

0, = 481,0 N, j [0 p(x)———3drdx
21tr

(x2 + r2)

2

(bl = _38463anp(z) 1"

  

Region 2. x going from 0 to 0 - the result is same as case I - region 2.

Region 3. x going from 0 to 0 - the result is same as case I - region 2.

Region 4. x going from 0 to L-0/2-z - the result is same as case I - region 3.

<I>=<I>,+<I>2+<I>3+<I>4
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 (I) = -28fl.03NArrp(z) -Z—+——

  

Case III. In small slits i.e less than three fluid molecular diameters big, all three regions

may not be present. In such cases, case I - region 2’s upper limt will become the same as

case I - region 3’s upper limit i.e. region 2’s upper limit will become L—0/2-z. Region 1

will be the same as case I - region 1.

. L-0/2—z . 21V

(1)2 =—4SJG6NAJO Ila—2:2 poomdrdx

. L 1.1, - -..,.a~,.....[;-_-£]

<1) = <1)l + (I),

3 L

(I) = -28 50’ NARP(Z)[; - I]

In the limit that L = 0, the integral reduces to a two-dimensional integral. Here the ‘

solution is given by
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1» ,21trdr

11,, =-4cfi0°NA_L p T

where p’ is given by mol/area.

  

For slits smaller than 2 0 in width the density is a constant. To convert density in

moles/volume to moles/area multiply by the slit width L. i.e.

However, noting that in a slit there are two walls, i.e. the surface area is twice that of a flat

Wall. the equation has to be modified to become

USing this equation we get



 

Note that at the limit L: 2 0

12-:
ab 16

However, the derivative is not constant at L: 2 0.
Q
|
1
~

ll

c
o
l
t
.
»

II

A
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Calculation of Configurational Integral for Cylindrical Pores

Definitions: The distance between the fixed particle and any particle is given by a. R is

the distance from the center to the pore surface. r is the radial distance, and r, is the

distance from the center of the pore and the fixed particle. 0 is the angle formed between

the center of the pore, the fixed particle and the projection of any particle on the

horizontal plane. 2 is the distance between any particle and the horizontal plane in which

the fixed particle is located.

a=\/r2 +22

The cylinder makes a circle in the horizontal plane. The locus of the circle is given by the

equation

where x and y are the x and y coordinates from the center of the circle (r is the radius of

this circle).

x = r1 — rcos(0), y = rsin(0)

Solving the above two equations we get
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r = rl cos(0)+\/(R—(—;-)2 -r,2 sin2(0)

where 0 is the fluid diameter. Note that the subscriptffhas been dropped from 0 to

simplify notation.

Now, the configurational energy is given as

_ 6 r _ r

<1>_—4e,,N,o Jilfidrdedz — [SH-[firdedz

where B = -4eflNA0°.

I. Particle away from the wall

Region 1. z varies from 0 to °<

2 Fr J4. cosi)+"(R—%)2-r.2 111129 rdrdedz

0 0
B: o (r2+zz)3
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w
h
e
n «1 l 1

=J;J:< 4Z4 - 2 _2 F9 dz

4l:’i cosO+\/[R-%) ""12 sinZBJ +22

. l  

 

2

Let b = r1 cosG +\/(R—%) --r,2 sin20

Solving this equations yields

 

<1) 1: 1r[ 1: 0 _tan"(0/b) 9

F 1203 7' o 4123 -2b2(b2+02) 2113

Region 2. z = 0 to 0

_ =cg]: J: qucose+,’(R-—)’-rfisin’0 _r___drd0dz

(r+2“)

Just as before solving the above equation yields

 

2: 1: _1r 0 +tan"(0/b)

B 403 4o 2b2(b2+02) 21)3
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Hence, for particle away from the wall i.e. 0 S rl S R — 30 / 2, (I) is the sum of the two.

11. Particle nearthe wall i.e. R-30 /2Srl SR—o /2

Region 1. For 2 = 0 to °<, the integral remains the same as in 1.

Region 2. For z = o to 0

In this case, 0 cannot go from O to 1t, but can only go from 0 to

O’
r12 +02 -22 _(R__)2

cos"I 2 , because of exclusion due to the presence of the fixed

ZnJoz—z

 

particle.

 

Note that at z=‘/02 —(R-%-rl)2, c050 =—1, 0 =1:

The integral in the r direction is the same as before. This yields

 

d) _ l w -l l cos"w 1

F— 40" J0 COS (WMZ-ZKJO (b2 +Zz)2 dedz
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r,2 +02 -z2 -(R-‘—;-)2

where W:

2rl ’62 -22

 

Hence for particles near the wall i.e. R- 30 /2 S rI S R—0 l2

 

2=L'l£[ n 0' tan"(0/b) 0+—1—-J:cos"(w)dz-%I:J:m-

B 121:3 4 m—2b2(b2+02)- 21:3 40‘

III. Particle at the wall

In this case 0 varies only from 0 to 1t.

Region 1. z varies from 0 to °<

Here,

 

rl cos0 +\/(R-%)2 - r,2 sin2 0 = 2rl cosO

Hence, the integral becomes

1

(b2 +22)2
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’2 Moose _r__drd0dz

B ="‘[“J: I" (r+z23)

 

(I) ~ 12 1 I2 1

-- = —-d9dz - l dad

[3 L]: 424 0": 4[4r,2 c0520 +z2]2 z

 

 

2_ 1t - 1t(2r|2+zz)

Jo 223(4’12+ZZ)3/2 Z
[V2403-

Region 2. For 2 = 0 to 0

Once again 0 cannot go from 0 to 1t, but can only go from O to

O'
2 2 2 2

 

 

 

cos"1 2 J 2 2 2i , because of exclusion due to the presence of the fixed

r1 0 — 2

particle.

w=r1 +6 -zz—(R——)
62-12

21', JO 2 - z 2’1

Doing the calculations as before,

  

ch 1 _ Jez-z2 1 - cos-'w 1
«B— = J: COS '(T)dz -Z‘L J0 d6dz

4 [4r]2 cos2 0 + 2212
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1t _J~ 1t(2r,2+zz) d ~14ch

“40

(I)

B _ 240.3 0223(4r12 +zz)3/2
       

—:Z)d —_'LI‘m “[4rl cos1‘9+z 1d9dz

Note that in all cases 2— = _a_ = (b

ob ab —l6eflo3NA1tp/3
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A ndix2- rams

FLAT WALL - Pure Gas

Program to calculate surface excess or adsorption isotherms

The program uses Peng-Robinson equation of state, with a modified

a to account for exclusion. The strength of the adsorption

potential and its dependence on position is given by Psi.

The fluid-fluid potential uff = u total - u ads.

From this potential the various fluid properties are calculated.

The variables used are defined below.

All units used are SI unless otherwise stated.

COMMON R,TC.PC,OMEGA

Define Psi as a statement function

Use a 10-4 potential where PSI is the negative of the

intermolecular potential.

SIGFW is sigma fluid-wall, in Angstroms.

EPSFW is the fluid-wall potential in K

ALPHA is the ratio of the spacing of the graphite basal planes

(3.35 A) to SIGFW.

The number density of C atoms in graphite is 0.382 atoms/AAZ.

The equation used is that suggested by Lee (1.5).

PSI(ETA)=4.0*3.1415926*O.382*SIGFW*SIGFW*EPSFW*(-O.2

O
D

O
O
O
O
O
O
O

l/ETA** lO+O.5/ETA**4+0.5/(ETA+ALPHA)**4+0.5/(ETA+2.0*

*ALPHA)**4+0.5/(ETA+3.0*ALPHA)**4+0.S/(ETA+4.0*ALPHA)

***4)

- WRITE(*,*)'Temp Plim Epsilon Sigff Sigww To PC omega'

READ(*,*) T,PLIM,EPSFW,SIGFF,SIGWW,TC,PC,OMEGA

WRITE(*,*) 'EPSILON‘

READ(*,*) EPSFW

T=212.7

PLIM=7.E5

SIGFF=4.22

SIGWW=3.4

TC=282.4

PC=50.4e5

OMEGA=0.089

OPEN(UNIT=7,FILE='denpro.dat',STATUS='UNKNOWN')

OPEN(UNIT=8,FILE='adsorp.dat’,STATUS='UNKNOWN‘)

R = Gas constant J/K/mol

Tc = Critical Temperature K

Pc = Critical Pressure Nlm2

OMEGA = Acentric Factor

SIGMA = Sigma fluid-wall in m.

T = Temperature K

FLIM = Bulk fugacity limit.
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EPSFW = Fluid-wall potential well depth in K

SIGFW = Sigma fluid-wall in Angstroms

ALPHA = Spacing of graphite planes / Sigfw

SIGFF = Sigma fluid-fluid in Angstroms

SIGWW = Sigma wall-wall in Angstroms

AB = 8qu Peng-Robinson 'a'

BB = Bulk Peng-Robinson 'b'

R=8.3 l4

POMEG=0.37464+1.54226‘0MEGA-0.26992*(OMEGA"2)

TR = T/l‘C

SIGFW=(SIGWW+SIGFF)/2.

SIGMA=SIGFW*IE-10

ALPHA=3.35/SIGFW

ALPHA = Spacing of graphite planes / Sigfw

SlGFF = Sigma fluid-fluid in Angstroms

Calculate a bulk and b

AB=0.45724*(R‘TC'(1+POMEG*(I-SQRT(TR))))“2/PC

BB=0.0‘T780"R‘TC/PC

Write parameters to files

PCB=PCILOES

IF(TR.GE.1) GO TO 2

CALL FSAT(AB,BB,T,FUGS.PS,VV,VL)

DELP=PLIMI40.

Loop for bulk fugacity

PB=0.0ES

1:0

FOR EACH BULK FUGACITY VALUE

PB=PB+DELP

PB=PLHW

B=BB

A=AB

First calculate bulk density (DENB) and bulk pressure (BP)

CALL BVCAL(A,B,T,PB.PS,V.FB)

CALL PV(A,B,T,V.P)

DENB=1.OIV

BP=P
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C WRITE(7,*) PRESSURE. P

C WRITE(7,")'BULK DENSITY', DENB

DELETA=0.1

ETA=.9

EXCESS=0.0

K=0

ETA=ETA+DELETA0
‘

Calculate local fugacity

Use the following formula to get the local

fugacity (F), for a given position ETA.

F=FB*EXP(PSI(ETA)/l‘)0
0
0
0

ALNFB=ALOG(FB)

ALNF=ALNFB+PSI(ETA)/T

PSIV=PSI(ETA)/l'

C Calculate local a

CALL ACALCCETA,AB,A.SlGWW,SIGFW,SIGFF)

C Using local parameters calculate V and local density DENL

CALL VCALC(A,B,T,ALNF,BP,V)

DENL=1.0/V

EXCESS=SIGMA*(DENL-DENB)*DELETA*l.Eo+EXCESS

C DENLG is the density in gmoles/cc

DENLG=DENIJ1 .056

WRITE (7,102)ETA.DENLG

WRWBO*) 'A'O.O'DAO.O'O'B'D',"BO'Q'DETA

K=K+l

IF(K.LT.200) GOTO 6

9O CONTINUE

BP=P/l .OES

DENBG=DENB/1.56

WRITE(6,*) BP, ',', EXCESS, ',', DENBG

WRITE(8,*) BP, ',', EXCESS, ',', DENBG

J=J+l

IF (J.LT.40) GOTO 5
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100 CONTINUE

C WRITE(*,*)'Press l to continue'

C READ(*,*) INT

C IF (INT.EQ.I) GOTO 566

CONTINUE

102 FORMAT(IX.F8.2,2X.F12.5)

END

C?Itfiifififit.‘fittfitltfififitfitt.tfi‘..*¢¥.***.**tt*#*ti¥ll¢¥¥$*********¥

C234567

C SUBROUTINES

Cttttttttttttttittttttttttttttttttt*ttttutti!mumtitttttttttttttttt

SUBROUTINE VCALC(A,B,T,ALNF,BP,V)

COMMON R.TC.PC.OMEGA

IVI=I

IV3=1

DPDVl=l

DPDV3=I

P1=O

P3=0

V=0

C IF(BP.GT.PS) GOTO 16

CALL VICALC(A,B,T,ALNF,VI ,IV I)

IF(IVI.BQ.1) GOTO 10

CALL DPDV(A,B.T,VI .IDPDVI)

IFODPDVIJSQJ) GOTO 10

CALL PV(A.B,T,Vl ,PI)

10 CONTINUE

CALL V3CALC(A.B,T,ALNF,V3.IV3)

IF (IV3.EQ.I) GOTO l4
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CALL DPDV(A,B,T,V3,IDPDV3)

IF(IDPDV3.EQ.0) THEN

CALL PV(A,B,T,V3 .P3)

ELSE

CONTINUE

ENDIF

l4 CONTINUE

IF (PI .GT.P3) THEN

=Vl

ELSE

=V3

ENDIF

CONTINUE

C WRITE(2,")P1,P3

GOTO 15

C 16 CALL V3CALC(A,B,T;ALNF.V3,IV3)

C IF(IV3.EQ.O) GOTO 21

C 16 CALL VICALC(A,B,T,ALNF,VI,IVI)

C V=Vl

C GOTO 15

C 21 CALL PV(A,B,T,V3,P3)

C V=V3

15 RETURN

END

 

J‘AAJALJ.‘.LJ-AAAA-lAAALJJAJAAAAAJJJAJJJJAJJJJAAJA¢44A‘_JJ_JJJJJ

ItTTCTTVTVTTTTTTTTTTCTTTTTVTTVVTTTTTTTTTTTWTvvvvmuvlvvvlt*****
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SUBROUTINE DPDV(A,B,T,V,IDPDV)

COMMON R

Input A,B.T,V and Output = IDPDV

THIS SUBROUTINE EVALUATES THE DERIVATIVE dP/dv

AND RETURNS A VALUE OF 1 FOR IDPDV IF THE SLOPE

IS POSITIVE. i.e. THE ROOT IS UNSTABLE.0
0
0

0

IDPDV=0

DP=-R"T/(V-B)/(V-B)+2.0"A*(V+B)/((V*V+2*B*V—B*B)**2)

IF (DP.GT.0) IDPDV=1

RETURN

END

C.t.‘..*.***.OIUUtfittfitfittfiltlfififitlt*Ililt##3##*¥*******¥*******¥

SUBROUTINE V1CALC(A,B,T,ALNF,V1,IV1)

COMMON R,TC,PC,OMEGA

1V1=0

C This subroutine uses a successive substituion method

C to get the small root VI.

C Inputs A,B,T.ALNF and Output V1, IV]

C Starting guess for calculating v

Vl=l.05"B

C Iterate 60 times

D020 I = 1,60

ARG=(V1-B)/R/T

IF((V1.LE.B).0R.(ARG.LE.0.0)) THEN

IV 1 =1

C WRITE(9,")'1NV1CAL V1: ',V1,' 3 = ',B,'ARG = ',ARG

C 1,'I =',I,' ALNF.ALNF

GOTO 30

ELSE

DENO=ALNF+ALOG(ARG)+A*V1/R/r/(V1 '"2+2"'B*V l -B.”2)

DENO=DENO+AI2.82/Rfr/B’ALOG((V1+2.414*B)/(V1-0.4 14*B))

V1=B+BIDENO

ENDIF

C WRITE(6,")'V1,B',V1.B

C STOP
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20 CONTINUE

ALNFC=B/(Vl-B)-A"VI/RfF/(Vl*Vl+2*B*Vl-B*B)

ALNFC=ALNFC+ALOG(R'T/(Vl-B))

ALNFC=ALNFC+A/2.82/B/RIF‘ALOG((VI-O.414*B)/(V1+2.414*B))

ERROR=EXP(ALNFC-ALNF)-I .0

IF (ABS(ERROR).GE.0.001) 1V1=1

30 CONTINUE

C WRITE(9,“)'V1 ',ALNFC,ALNF,V 1

RETURN

END

COIOOOOQIOOOOIOIO0.0tfittttfitllfiltllfifitttttttttt***¥¢**#****#*****4!

C234567

0
0

SUBROUTINE V3CALC(A,B,T,ALNF,V3,IV3)

COMMON R,TC.PC.OMEGA

IV3=O

STARTING GUESS FOR V3 = RT/F

ALNV3=ALOG(R"I')-ALNF

V3=EXP(ALNV3)

ITERATE TILL DONE OR 40 TIMES

DO 201:1,40

IF (V3.LE.B) THEN

WRITE(9,")'V3 LE 8', V3,‘ B ',B

IV3=1

GOTO 30

ENDIF

ARG=B/(V3-B)-A*V3/R/T/(V3"2+2*B‘V3-B“2)

IF(ARG.GT.40.) THEN

D3=I./V3

WRI'I'E(9.‘)'V3 = ',V3,' ARG LARGE = ',ARG,'D3 =',D3

1V3=l

GOTO 30

ELSE

DENO=A/2.824/Rfl'/BI"ALOG((V3-O.4 14*B)/(V3+2.4 14*B))

ALNV33=ALOG(R‘T)-ALNF+ARG+DENO

V3=B+EXP(ALNV3B)

ENDIF

20 CONTINUE

ALNFC=B/(V3-B)vA"V3/R/r/(V3‘V3+2*B*V3-B*B)

ALNFC=ALNFC+ALOG(R*T/(V3-B))
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ALNFC=ALNFC+A/2.824I"ALOG((V3-0.4 I4 I"B)/(V3~1-2.4 l4*B))/B/R/1'

C wanton-y IN v3. In to, V3 '.ALNFC,V3

ERROR=EXP(ALNFC-ALNF)-I.O

IF(ABS(ERROR).GE.0.001) IV3=I

3o CONTINUE

C WRITE(4,")'V3',ALNFC,ALNF,V3

RETURN

END

Ctitfitfitfifitfitfiitttitttltlfiltitifitilttittttittttittii*1!**********¥

C234567

SUBROUTINE PV(A.B,T,V,P)

COMMON R

C This subroutine returns the value of P given a,b,T,v

C using the van der Waals equation of state.

P=R*T/(V-B)-A/(V*V+2"B*V-B‘8)

RETURN

END

C.ititttfittllfitlttltlfifilltlfitt.ttfifiliiltttttlttilttttlttt

C234567

SUBROUTINE ARANGE(R1,RZ.R3)

C PROGRAM TO PUT 3 NUMBERS 1N DESCENDING ORDER

DO 20 J=1,3

IF(R2.GT.R1) THEN

TEMP=R 1

R1 =R2

R2=TEMP

ENDIF

1F(R3.GT.R2) THEN

TEMERZ

R2=R3

R3=TEMP

ENDIF

20 CONTINUE

RETURN

END

Ct.tit.*lttttittit...ttitfittlfiififilfitltiltttltttfittttttltit*********************

C234567

SUBROUTINE ACALC(E1'A,AB.A,SIGWW,SIGFW,SIGFF)

C This subroutine calculates the van der Waals a term

C after taking into account the effect of exclusion.
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AB = Value of a in the bulk '

ETA = reduced distance from the center of wall

The main program sends a reduced distance ETA from the

center of the wall molecule, which is the basis for

the integrated 9-3 potential.

However the integrations for configurational energy have

been done from the edge of the wall molecule.

Therefore it is necessary to translate the coordinate.

BETA is the distance from the edge of the wall

in reduced units0
0
0
0
0
0
0
0
0
0

BETA =( ETA - (0.5*SIGWW/SIGFW))*(SIGFW/SIGFF)

IF (BETA.LE.I.5) TIIEN

A=AB*(5.0+6.0*BETA)/16.0

ELSE

A=AB"'(1 .0-1 .0/8.0/(BETA-0.5)“3)

ENDIF

RETURN

END

(:t******ttttttttttttttttttttttitittttfitittittit$ttttttttttt

&71 2 3 4 5 6 72

O.‘ttttlttIttitfitttlltfitlfiO...fit.*ttttt'*tlfififitfititlttfiifit****t***

" SUBROUTINE CUBIC "

I‘********¢$tttttfillltltttltttit.##1##.#I*************************

" THIS SUBROUTINE FINDS THE ROOTS OF A CUBIC EQUATION OF THE

"' FORM X“3 + A2‘X“2 + AI‘X + A0 = 0 ANALYTICALLY. *

*ttfififitttttttttfi*tlt*‘fittttttt*lfiitliitttt*ttlttttt******t********

"' VARIABLES

SUBROUTINE CUBIC(A2,A1,A0,RI.RZ,RB,C1,C2,C3,IFLAG)

DOUBLE PRECISION CHECK,DAO,DA1.DA2,PI,P2,Q,R,SS1,552

COMPLEX ES 1 .ES2,S 1 .8221 ,ZZZ3,CCHECK

DAO = DBLE(AO)

DAI = DBLE(AI)

DA2 = DBLE(A2)

Q = DA1/3.D00 - DA2*DA2/9.DOO

R = (DAI *DA2-3.D00*DAO)/6.D00 - (DA2/3.D00)**3

CHECK = Q"3 + R‘R

IF(CHECK.GT.0.0) THEN

IFLAG = 1

P1 = R+DSQRT(CHECK)

P2 = R-DSQRT(CHECK)

IF(PI .LT.0.0) THEN

$81 = -DEXP((DLOG(-1.D00*P1))/3.D00)

ELSE

$81 = DEXP((DLOG(PI))/3.DOO)

ENDIF

IF(P2.LT.0.0) THEN

SS2 = -DEXP((DLOG(-I.DOO*P2))/3.DOO)

0
0
0
0
0
0
0
0
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ELSE

SS2 = DEXP((DLOG(P2))/3.DOO)

ENDIF

R1 = $51 + $52 -DA2/3.D00

R2 = -(SSI+552)-DA2/3.D00

R3 = R2

Cl = 0.0

C2 = (SQRT(3.))"'(SS l -552)/2.D00

C3 = - C2

ELSE IF (CHECK.LT.0.0) THEN

[FLAG = 3

RR = 1."‘R ‘V

RECK =1 .*CHECK

CCHECK = CMPLXCRECK,0.0)

ESl = CLOG(RR+CSQRT(CCHECK))/3.

E82 = CLOG(RR-CSQRT(CCHECK))/3.

51 = CEXP(ES 1)

52 = CEXP(ESZ)

21 = (51-1-52) - A2/3

22 = ~(SI+S2)/2 - A2/3 +(CMPLX(0.0,3“.5))"(S1-S2)/2

23 = -(Sl+82)/2 - A2/3 - (CMPLX(0.0,3".5))"(S1-52)/2

R1 = REAL(Zl)

R2 = REAL(Z2)

R3 = REAL(Z3)

C1 = 0.0

C2 = C1

C3 = C I

ELSE

[FLAG = 2

IF(R.LT.0.0) THEN

581 = -DEXP((DLOG(-1.DOO*R))/3.D00)

ELSE IF(R.EQ.0.0) THEN

581 = 0.0

ELSE

SS] = DEXP((DLOG(R))/3.D00)

ENDIF

552 = 551

R1=551+SS2-DA2/3.D00

R2 = -(551+SS2)/2~DA2/3.DOO

R3 = R2

C1 = 0.0

C2 = C1

C3 = C2

ENDIF

RETURN

END
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PROGRAM FOR CLUSTERING

ittfififiiifittttfitfititltttttt*t.‘ttttlttttttttttttttt*ttttlfllttttttttfil

C234567

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0

Program to calculate surface excess or adsorption isotherms

The program uses Peng-Robinson equation of state, with a modified

a to account for exclusion. The strength of the adsorption

potential and its dependence on position is given by Psi.

The fluid-fluid potential uff = u t0tal - u ads.

From this potential the various fluid properties are calculated.

The variables used are defined below.

All units used are 81 unless otherwise stated.

COMMON R.TC.PC.OMEGA

Define Psi as a statement function

Use a 10-4 potential where PSI is the negative of the

intermolecular potential.

SIGFW is sigma fluid-wall, in Angstroms.

EPSFW is the fluid-wall potential in K

ALPHA is the ratio of the spacing of the graphite basal planes

(3.35 A) to SIGFW.

The number density ofC atoms in graphite is 0.382 atoms/AAZ.

The equation used is that suggested by Lee (1.5).

PSI(ETA)=4.‘EPSGS‘(1./ETA“6oI JETA"12)

R = Gas constant J/K/mol

Tc = Critical Temperature K

Pc = Critical Pressure N/m2

OMEGA = Acentric Factor

SIGMA = Sigma fluid-wall in m.

T = Temperature K

FLIM = Bulk fugacity limit.

EPSGS = Fluid-wall potential well depth in K

SIGFW = Sigma fluid-wall in Angstroms

ALPHA = Spacing of graphite planes / Sigfw

SIGFF = Sigma fluid-fluid in Angstroms

SIGWW = Sigma wall-wall in Angstroms

AB = Bulk Peng-Robinson 'a'

BB = Bulk Peng-Robinson 'b'

WRITE(*,")' Plim ,T,EPSILON'

READ("',") PLIM,T.EPSGS

R=8.3 l4

TC=282.4

PC=50.4E5

OMEGA=0.089

SIGFF=4.22
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SIGWW=7.14

SIGFW=(SIGWW+SIGFF)/2.

SIGMA=SIGFW"1E-10

Write parameters to files

OPEN(UNIT=7,FILE='denpro.dat',STATUS='UNKNOWN')

OPENCUNIT=8,FILk‘adsorp.dat’,STATUS='UNKNOWN')

WRITE(7,*) ' Ethylene at ',T,' K with an epsilon of ',EPSGS

WRITE(8,"') ' Ethylene at ‘,T,' K with an epsilon of ',EPSGS

WRITE(8,") 'P (Pa) Excess (micro mol/rnAZ) Den (mol/cc)‘

WRITE(8,*) 'Clus (# molecules solvent/molecule solute)’

WRITE(8,997)

WRITE(8,")

WRITE(8,998)

997 FORMAT(7X,'P',9X.'EXCES5',8X,'CLUS',9X,'DEN')

998 FORMAT(7X.'0,',10X,'0,',1 3X,'0,',13X,'0')

v
.
0

0
H
0
(
5

TR=T/TC

FOMEG=0.37464+1 M226'OMEGAO.26992*(OMEGA"2)

Calculate a bulk and b

AB=0.4S724‘(R‘TC’(I+FOMEG*(I-SQRT(TR))))"2/PC

BB=0.07780’R‘TCIPC

PCB=PCI1DE

[P(TR.GE.1) GOTO 2

CALL FSAT(AB,BB.T,FUGS.PS.W,VL)

DELP=PLIMI40.

Loop for bulk fugacity

PB=0.0E5

J=0

INN!EAKELBULKIWKENCHWFVALUE

PB=PB+DELP

PB=PLHH

B=BB

A=AB

First calculate bulk density (DENB) and bulk pressure (BP)

CALL BVCAL(A,B,T,PB,PS,V,FB)

CALL PV(A,B,T,V,P)

DENBN=1.0/V

In this method, we calc. the bulk density from the program

in which eta starts at 20.9 and comes inward. Sometimes do check

DENBN and DENB and make sure

WRITE(‘,*) 'BULK DENSITY = ?'

READ("',"') DENB

BP=P

WRITE(7,"')'P = ', P,’ Pa',‘ DEN CALC = ',DENBN,’ gmol/m3'

WRITE(7,')'DENB = ',DENB,'gm01/m3','FB = ',FB,’ Pa'
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WRI'I'E(7,") 'DEN (gmollm3) PMV (cc/gmol)’

WRITE(7,“) 'CLUS (it excess solvent molec/molec. solute)‘

WRITE(7,“) 'AMOUNT (# total solvent molec/molec. solute)‘

WRITE(7,"')

WRITE(7,999)

999 FORMAT(7X,'ETA',8X.'DEN',10X,'PMV',9X,'CLUS',7X,'AMOUNT‘)

C

O
0
0
0
0

C

Start iterating in ETA

DELETA=0.01

ETA=.99

EXCESS=0.0

CLUS=0.0

K=0

ETA=ETA+DELETA

Calculate local fugacity

Use the following formula to get the local

fugacity (F), for a given position ETA.

F=FB*EXP(PSI(ETA)/I')

ALNFB=ALDG(FB)

ALNF=ALNFB+PSI(ETA)/T

PSIV=PS1(ETA)/T

Calculate local a

CALL ACALC(ETA.AB,A,SIGWW.SIGFW,SIGFF)

IF(TR.GE.l.) GO TO 20

CALL FSAT(A,B,T.FUGS,PS,VV,VL)

Using local parameters calculate V and local density DENL

20 CALL VCALC(A,B,T,ALNF,BP,PS.V)

0
0
0
0
0

C

DENL=1 .O/V

IF((DENL/DENB.GT.0.999).AND.(DENL/DENB.LT.1.001)) THEN

DENL=DENB '

ENDIF

CLUS=SIGMA"3’(DENL-DENB)“4.'3.1416‘ETA‘ETA‘DELETA*6.023E23+CLUS

IF(K.EQ.0) THEN

CLUS=CLUS-DENB*4./3*3.I416*SIGMA"3*6.023E23

write(",") eta,clus

ENDIF

AMT is the excess amount (moles) of solvent moles in the system

TV is the vol of the system at any given eta

EV is the equivalent volume in the pure system

TW is the vol of the solvent molecules in the actual system

provided they are present at bulk density

AMT=4."'3.1416"SIGMA"3‘ETA‘ETA*(DENL-DENB)*DELETA+AMT

TW=4.I3.*3.1416‘SIGMA"3"(ETA"3-l .)

'I'V=4./3."3.1416*(ETA’SIGMA)"3

EV=AMT/DENB-t-TW

PMV=TV-EV

PMV=PMV*6.023E29

AMOUNT is the total # of solvent molecules in the system
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C TN is the total # of molecules in the pure system at any eta

C EXCESS is the excess # of solvent molecules in the system

AMOUNT=4.*3.l4 l6*5IGMA**3‘ETA'ETA*DENL‘DELETA*6.023E23+AMOUNT

TN=DENB"6.023E23‘TV

EXCESS=AMOUNT-TN

C DENLG is the density in gmoles/cc

DENLG=DENUI .0136

IF((K.EQ.1 14).OR.(K.EQ. 190)) THEN

WRITE(".*) ETA,AMOUNT

ENDIF

WRITE (7,"')ETA,',',DENL,',',PMV,',',CLUS,',',AMOUNT

=K+1

IF(K.LT.2000) GOTO 6

90 CONTINUE

BP=P/1 .0E5

DENBG=DENBI1 .E6

WRITE(8."')BP.','.EXCESS,',',CLUS,',',DENBG

WRITE(6,*) BPEXCESS,CLUS.PMV

J=J+l

C IF (J.LT.40) GOTO S

100 CONTINUE

102 FORMAT(1X.F8.2.2X.F12.5.2X,FIO.5)

END

C***¢*****fitttttttttfiIt.*tlttifittfittlttittttfl***¥************t*4!!!

C234567

C SUBROUTINES

Ct*tttttttttlt##1##!*ttttttttttttttttttittifltttttttitttttttttIt:InuitIt!

C Use subroutine VCALC as per fiat wall program

C Use subroutine DPDV as per flat wall program

Use subroutine VICALC as per fiat wall program

Use subroutine V3CALC as per flat wall program

Use subroutine PV as per fiat wall program

Use submarine ARANGE as per flat wall program

SUBROUTINE ACALC(ETA,AB,A,SIGWW,SIGFW,SIGFF)

This subroutine calculates the van der Waals a term

after taking into account the effect of exclusion.

AB = Value of a in the bulk

C

C

C

C

C

C

C

C

C ETA = reduced distance from the center of wall
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The main program sends a reduced distance ETA from the

center of the wall molecule, which is the basis for

the integrated 9-3 potential.

However the integrations for configurational energy have

been done from the edge of the wall molecule.

Therefore it is necessary to translate the coordinate.

BETA is the distance from the edge of the wall

in reduced units

BETA = (ETA*(SIGFF+SIGWW)-SIGWW)/(2.'SIGFF)

0
0
0
0
0
0
0
0

SIGMA1=SIGFF

SIGMA2=SIGWW

R=(SIGMA1+SIGMA2)/Z.

Z=ETA*(SIGMA1+SIGMA2)/2.

R1=(R*R-SIGMA1*SIGMA1+Z"Z)/(2"Z)

IF (BETA.LE.I .5) THEN

Al=8./3.+2.*(Z-Rl)/SIGMAI

A2=SIGMAI"surname-2-23m *2»

A3=(SIGMAI"3)/(Z*(R*R+Z*Z+2.*R*Z))

A4=2.*SIGMAI"3/(3."(Z+R)"*3)

A=AB"(AI+A2-A3+A4)"3116.

ELSE

A l=I6J3.-2."SIGMAI"3/(3.*(Z-R)“3)

A2=2.*SIGMAI”3/(3.*(Z+R)"3)

A3=SIGMAI I""‘3/(Z"‘(R"'R+Z"Z-2."Z"'R))

A4=SIGMAI“3/(Z*(R"'R+Z"Z+2.*Z"R))

A=AB"(AI+A2+A3-A4)"3./16.

ENDIF

RETURN

END

C Use subroutine CUBIC as per fiat wall program
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SLITS - PURE GAS

Ilfifitttttttttttltlil*i*****$***¥**#******************INN!!!*********

C234567

n
o
n
o
o
n
n
o
n
n
o
o
n

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

Program to calculate surface excess or adsorption isotherms

The program uses Peng-Robinson equation of state, with a modified

a to account for exclusion. The strength of the adsorption

potential and its dependence on position is given by Psi.

The fluid-fluid potential uff = u total - u ads.

From this potential the various fluid properties are calculated.

The variables used are defined below.

All units used are SI unless otherwise stated.

COMMON R,TC,PC,OMEGA

Define Psi as a statement function

Use a 10-4 potential where PSI is the negative of the

intermolecular potential.

SIGFW is sigma fluid-wall, in Angstroms.

EPSFW is the fluid-wall potential in K

ALPHA is the ratio of the spacing of the graphite basal planes

(3.35 A) to SIGFW.

The number density of C atoms in graphite is 0.382 atoms/AAZ.

The equation used is that suggested by Lee (1.5).

P51 1(ETA)=4.0"'3. 14 15926*0.382*SIGFW*5IGFWI"EPSFW*(-O.2

IIETA“10+0.5/ETA**4+0.5/(ETA+ALPHA)"*4+0.S/(ETA+2.0*

l"ALPHA)"'"'4+0.5/(ETA+3.0"'ALPI-1A)"'"'4+0.5/(ETA-t-4.0‘ALPHA)

ttt4)

PSI2(XI)=4.0*3.l415926‘0.382*SIGFW*SIGFW‘EPSFW*(-0.2

l/XI"10+0.5/XI"4+0.5/(X1+ALPHA)"4+0.5/(XI+2.0"'

‘ALPHA)'*4+0.5/(XI+3.0*ALPHA)**4+0.5/(X1+4.0‘ALPHA)

*tt4)

PSI(ETA)=PSI 1 (ETA)+PSI2(XI)

R = Gas constant J/K/mol

Tc = Critical Temperature K

Pc = Critical Pressure N/m2

OMEGA = Acentric Factor

SIGMA = Sigma fluid-wall in m.

T = Temperature K

FLIM = Bulk fugacity limit.

EPSFW = Fluid-wall potential well depth in K

SIGFW = Sigma fluid-wall in Angstroms

ALPHA = Spacing of graphite planes / Sigfw

SIGFF = Sigma fluid-fluid in Angsu'oms

SIGWW = Sigma wall-wall in Angstroms

AB = Bulk Peng-Robinson 'a'
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C BB = Bulk Peng-Robinson 'b'

C ALPHA = Spacing of graphite planes / Sigfw

C SIGFF = Sigma fluid-fluid in Angstroms

WRITE(‘,*)'P1im ,T,EPSILON, WIDTH'

READ(",*) PLIM,T,EPSFW.ZETA

R=8.3 l4

TC=282.4

=50.4E5

OMEGA=0.089

SIGFF=4.22

SIGWW=3.4

SIGFW=(SIGWW+S1GFF)/2.

SIGMA=SIGFW*1E-10

ALPHA=3.35/SIGFW

C Write parameters to files

OPEN(UNIT=7,FILE='denpro.dat’,STATUS='UNKNOWN')

OPEN(UNIT=8,FILE='adsorp.dat'.STATUS='UNKNOWN')

WRITE(7,"') ' Ethylene at ',T,' K with an epsilon of ',EPSFW

WRITE(8,") ' Ethylene at ',T,' K with an epsilon of ',EPSFW

WRITE(7,*) ' with slit width of ',ZETA .' ethylene mol dia'

WRITE(8,"') ' with slit width of ‘,ZETA ,' ethylene mol dia'

WRITE(8,"‘)

WRITE(8,*)'P bar Exc um/m2 Amt mmol/g Amtl mmol/g Den gmol/cc'

WRIWS’.) 0’" '9 09" '90," '9 0

TR=TITC

POMEG=Q37464+1 .54226*OMEGA41.26992“(OMEGAl""'2)

C Calculate a bulk and b

AB=0.45724*(R"'I‘C*(I+FOMEG‘(I-SQRT(TR))))"2/PC

BB=0.07780*R"'TC/PC

PCB=PC/1.0ES

IF(TR.GE.1) GOTO 2

CALL FSAT(AB,BB,T,FUGS.PS,VV,VL)

2 DELP=PLIMI40.

C Loop for bulk fugacity

PB=0.0ES

1:0

C FOR EACH BULK FUGACITY VALUE

C PB=PLIM

3 PB=PB+DELP

B=BB

A=AB

C First calculate bulk density (DENB) and bulk pressure (BP)

CALL BVCAL(A,B,T.PB,PS,V,FB)
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C

C

C
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CALL PV(A,B,T,V,P)

DENB=1.0/V

BP=P

WRIIE(7,"‘)'P = ', P,‘ bar'

WRITE(7.")'DENB = ',DENB,‘ gmol/m3',‘ FB = ',FB.‘ bar'

WRITE(7.*)

WRITE(‘7,")' ETA',', ',' DEN gmol/m3',', ','Log(Fugacity)'

BETA=0.5-(ZETA-l .)l100.

DELETA=(ZETA-1.)/100.

EXCESS=0.0

AMOUNT=0.0

AMOUNT1=0.0

L20

Start iterating in ETA

BETA=BETA+DELETA

ETA=(BETA'2.*SIGFF+SIGWW)/(S1GFF+SIGWW)

XI=(ZETA“SIGFF+SIGWW/‘2.-BETA*SIGFF)/SIGFW

Calculate local fugacity

Use the following formula to get the local

fugacity (F), for a given position ETA.

F=FB*EXP(PSI(E'I'A)/I')

ALNFB=ALOG(FB)

ALNF=ALNFB+PSI(ETA)/I'

PSIV=PSI(ETA)/I‘

Calculate local a

CALL ACALC(BETA,AB,A.ZETA)

IF(TR.GE.l.) GO TO 20

CALL FSAT(A,B,T.FUGS,PS,VV,VL)

Using local parameters calculate V and local density DENL

20 CALL VCALC(A.B,T,ALNF,BP,PS,V)

DENI: 1 .ON

EXCESS=SIGMA‘(DENL-DENB)*DELETA" 1 .E6/2.+EXCESS

Amount is den(gmol/m"3)"sigma(m)‘deleta'S.A.(m"2/g)

to convert Amount to mmol/g multiply by 1000

AMOUNT=DENL‘SIGMA*DELETA*988."'1.E3+AMOUNT

AMOUNT1=DENL'S16MA‘DELETA‘988J2.‘I.E3+AMOUNT1

DENLG is the density in gmoles/cc

DENLG=DENUI.0E6

WRITE (7,*)BETA,',',DENLG,','.ALNF

L=L+I

IF(L.LT.101) GOTO 5

BP=P/l .OES

DENBG=DENBI1.E6
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WRITE(8,*)BP,'.',EXCESS.','.AMOUNT,',',AMOUNTI ,','.DENBG

WRITE(6,"') BP,EXCESS,AMOUNT,AMOUNTI

J=l+l

IF(I.LT.40) GOTO 3

102 FORMAT(1X,F8.2,2X.F12.5,2X,F10.S)

END

Cflt$ttititttltttltittt##3##tttttttttttttfi*******tilt**************

C234567

C SUBROUTINES

Ctttttttttttttttttttttttttttttt#tttttttttttlflm*ttttttttttttIt:tint-*1:

C Use subroutine VCALC as per flat wall program

Use subroutine DPDV as per flat wall program

Use subroutine VICALC as per fiat wall program

Use subroutine V3CALC as per flat wall program

C

C

C

C Use subroutine PV as per flat wall program

C Use subroutine ARANGE as per flat wall program

C234567

SUBROUTINE ACALC(BETA,AB.A,ZETA)

This subroutine calculates the van der Waals a term

after taking into account the effect of exclusion.

AB = Value of a in the bulk

ETA = reduced distance from the center of wall

The main program sends a reduced distance ETA from the

center of the wall molecule, which is the basis for

the integrated 9-3 potential.

However the integrations for configurational energy have

been done from the edge of the wall molecule.

Therefore it is necessary to translate the coordinate.

BETA is the distance from the edge of the wall

in reduced units

SA=ZETA-O.5-BETA

IF (BETA.LE.1.S) THEN

A I=BETA+0.5

A2=1.-I./SA"*3

A3=1./3."'A2

A=AB*(AI+A3)*3./8.

END IF

IF(BETA.GT.(ZETA-1.5)) THEN

AI=SA+1.

A2=l .- 1 J(BE’I'A-0.5)"""3
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A3=A2I3.

A=AB‘(A1+A3)*3./8.

END IF

IF((BETA.GT.1 .5).AND.(BETA.LE.(ZETA-1 .5))) THEN

AI=7./3.-1./3./(BETA-0.5)""“3

A2=l .-l .ISA"3

A3=A2/3.

A=AB*(A1+A3)*3./8.

END IF

RETURN

END

C Use subroutine CUBIC as per flat wall program
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C PORE -PURE GAS

C *ltttfitttfitifitt***t********¥*t*¥**************#*******************

C234567

Program to calculate surface excess or adsorption isotherms

The program uses Peng-Robinson equation of state, with a modified

a to account for exclusion. The strength of the adsorption

potential and its dependence on position is given by Psi.

The fluid-fluid potential uff = u total - u ads.

From this potential the various fluid properties are calculated.

The variables used are defined below.

All units used are SI unless otherwise stated.

0
0
0
0
0
0
0
0
0
0
0
0
0

DIMENSION H90(30000),H91(30000),H92(30000).H93(30000),H94(30000)

DIMENSION H3(30000),H31(30000),H32(30000),H33(30000),H34(30000)

DIMENSION AC(30000),RHO(30000),DIST(30000)

REAL TC.PC.R,PLIM,AB.A,BB.B.T.OMEGA,DELP

COMMON R.TC.PC.OMEGA.AC

PSI(ETA)=0.382*3.14159’3.l41S9'SIGFW'SIGFW’EPSFW*(3.‘SIGFW"*4“

l(H3(K)‘(RFW/(RFWI"RF'W-ETA"'E'TA"'SIGMA"'SIGMA))""‘4~1~H3 1(K)*((RFW+ALPHA)

*/((RFW+ALPHA)"I*2-ETA*ETA*SIGMA*SIGMA))**4+H32(K)*((RFW+

*2.‘ALPHA)/((RFW+2.*ALPHA)**2-ETA'ETA‘SIGMA'SIGMA))**4+H33(K)

"((RFW+3.‘ALPHA)/((RFW+3.*ALPHA)**2-E'TA‘ETA*SIGMA*SIGMA))**4+

*H34(K)‘((RFW+4."'ALPHA)/((RFW+4.‘ALPHA)*‘2-ETA‘ETA‘SIGMA*SIGMA))

“‘4)-63./32."'SIGFW“10*(1'190(K)*(RFW/(RFW*RFW-ETA‘ETA*SIGMA*SIGMA))

"*10+H9I (K)’((RFW+ALPHA)/((RFW+ALPHA)**2-E'TA*ETA*SIGMA*SIGMA))

"'""10+H92(K)"((RFW+2.I"ALPHA)/((RFW+2.l"ALPI-IA)"'"‘2-ETA"'ETA"‘SIGMA"'

'SIGMA))*"10+H93(I()*((RFW+3.‘ALPHA)/((RFW+3.*ALPHA)"2-ETA*ETA

“SIGMA‘SIGMA))“10+H94(I()*((RFW+4.*ALPHA)/((RFW+4.*ALPHA)**2-

I"ETA"ETA"SIGMA"SIGMA))""" 10))

DO 10 1=1.sr,1

OPEN(UNIT=2,FILE='hyper5-9.dat',STATUS='UNKNOWN')

READ(2,") ET,PO.FI ,F2.F3,F4

c WRITE(*,*)ETAI

J=ET*1000

H90(J)=F0

H9I(I)=Pl

H92(I)=F2

H93(J)=F3

H94(I):F4

C WNW—('a') J.Er.H90(J).H9l(J).H92(J).H93(J)

10 CONTINUE

DO 15 M=1,81,l

OPEN(UNIT=4.FILE='hyper5-3.dat'.STATUS='UNKNOWN')

READ(4.“) ETA1 ,GO.G 1 ,GZ.G3.G4

J=ETA1"'1000
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H31(J)=G]

H32(I)=G2

H33(I)=G3

H3(I)=GO

H34(I)=G4

WRITE("‘."‘) J.ETA1,H3(J).H31(J),H32(J),H33(J)

15 CONTINUE

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
:
3
0

DO 6 MA=1,81.]

OPEN(UNIT=3.FILE='ethdia5.dat'.STATUS='UNKNOWN')

READ(3."') ETAIANEW

=ETA1 "' 1000

AC(J)=ANEW

WRITE(‘.*) JETAIACU)

CONTINUE

write(*.*) AC(O)

R = Gas constant J/K/mol

Tc = Critical Temperature K

Pc = Critical Pressure N/m2

OMEGA = Acentric Factor

SIGMA = Sigma fluid-wall in m.

T = Temperature K -

FLIM = Bulk fugacity limit.

EPSFW = Fluid-wall potential well depth in K

SIGFW = Sigma fluid-wall in Angsu'oms

ALPHA = Spacing of graphite planes / Sigfw

SIGFF = Sigma fluid-fluid in Angstroms

SIGWW = Sigma wall-wall in Angstroms

AB = Bulk Peng-Robinson 'a'

BB = Bulk Peng-Robinson 'b'

ALPHA = Spacing of graphite planes / Sigfw

SIGFF = Sigma fluid-fluid in Angstroms

WRITE("',"')' Plim ,T,EPSILON'

READ("',"') PLIM.T.EPSFW

R=8.3 14

TC=282.4

PC=50.4ES

OMEGA=0.089

SIGMA=4.22

5IGWW=3.4

ALPHA=3.35

RFW= 1 2.25

SIGFW=(SIGWW+SIGMA)/2.

SIGGS=SIGMA*]E-10

Write parameters to files

OPEN(UNIT=7,F'ILE='denpro.dat'.STATUS='UNKNOWN')

OPEN(UNIT=8,FILE='adsorp.dat'.STATUS='UNKNOWN')

WRITE(7,"') ' Ethylene at ',T,' K with an epsilon of ',EPSFW

WRITE(8,*) ' Ethylene at ',T,‘ K with an epsilon of ',EPSFW



0
9
.
1
0

M
0
0
0
0

165

WRITE(8,*)' RFW is ',RFW, ' angstroms '. 'R is RFW - 1.7'

WRITE(8.*)

WRITE(8,")' Pbar',', ‘,‘Excess um/m2'.', ',‘Den moles/cc'

WRITE(8,") 0,', ', 0,', '. 0

TR=T/TC

FOMEG=0.37464+1 .54226’OMEGA-0.26992*(OMEGA"2)

Calculate a bulk and b

AB=0.45724"(R*TC*(1+FOMEG*(I-SQRT(TR))))**2/PC

BB=0.07780*R*TC/PC

PCB=PC/] .0E5

IF(TR.GE. ]) GOTO 2

CALL FSAT(AB,BB,T,FUGS,PS,VV,VL)

DELkPLIM/40.

Loop for bulk fugacity

PB=0.0E5

J=0

FOR EACH BULK FUGACITY VALUE

PB=PB+DELP

PB=PLIM

B=BB

A=AB

First calculate bulk density (DENB) and bulk pressure (BP)

CALL BVCAL(A,B,T,PB,PS,V,FB)

CALL PV(A,B,T,V,P)

DENB=1.0/V

BP=P

WRITE(7,"')'P = ', P.‘ bar'

WRITE(7,‘)'DENB = ',DENB.‘ gmol/m3'.’ FB = ',FB,‘ bar'

WRITE(7,")

WRITE(7,")' ETA',', DEN gmol/m3',', ‘,‘Log(Fugacity)'

Start iterating in ETA

DELETA=0.025

ETA=2.025

EXCESS=0.0

AMOUNT=0.0

AMOUNTI=0.0

KDEL=25

K=2025

L=0

ETA=ETA-DELETA

K=K-KDEL

Calculate local fugacity

Use the following formula to get the local

fugacity (F), for a given position ETA.

F=FB"'EXP(PSI(ETA)/I')

 



0
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ALNFB=ALOG(FB)

ALNF=ALNFB+PSI(ETA)/T

PSIV=PSI(ETA)/T

Calculate local a

WRITE(",*)K,H3(K).H3I(K),H32(K),H33(K)

WRITE(*,*)K,H90(K).H91(K).H92(K),H93(K),PS1(ETA)

WRITE(*,"') K, AC(K)

AC(0)=0.9262953

CALL ACALC(ETA,K,AB,A)

IF(TR.GE.l.) GO TO 20

CALL FSAT(A,B.T.FUGS.PS.VV,VL)

Using local parameters calculate V and local density DENL

20 CALL VCALC(A.B.T,ALNF.BP,PS.V)

C

C

C

C

C

DENL-£1 .0/V

 

Using Rectangular Rule: .

EXCESS=SIGGS*(DENL-DENB)"DELETA* I .E6+EXCESS

Amount is den*r*dr*2 Pi L; 2 Pi L = 988/Pore Radius.

Amt.=denl*siggs'eta*siggs‘deleta‘988/(2.5'siggs) [mmol/g]

AMOUNT=SIGGS*DENL'ETA‘DELETA"988/2.5* I .e3+AMOUNT

 

RHO(L)=DENL

DIST(L)=ETA

DENLG is the density in gmoles/ec

DENLGzDENU1.0E6

.WRITE (7.*)ETA.’,',DENL,'.‘.ALNF

L=L+l

IF(L.LT.8I) GOTO 5

CALL SIMP(RHO.D]ST,EX].AMT1.L,DENB.SIGGS.A3)

BP=P/I .0E5

DENBG=DENBILE6

WRITE(8,"') BP, ',', EX] . ','.AMTI .'.',DENBG

WRITE(6.*) BP, ',', EXCESS. ','.AMOUNT,',',DENBG

WRITE(6,*) BP, ',',EX1 , ',', AMT1,A3

J=I+l

IF (J.LT.40) GOTO 3

102 FORMAT(1X,F8.2.2X.F12.5,2X.F10.5)

END

CIit.Ililtlttttlttttittfitttttttlfitfilttt*ttIII!!!******************

C234567

C SUBROUTINES

Ct...fittitl##1##tit.tit.*tfitttlttttitltttifi*tt*tfitttit#**********

C THIS 15 A SIMPSON'S RULE SUBROUTINE
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SUBROUTINE SIMP(RHO.DIST,EX1.AMT1,L,DENB,SIGGS.A3)

DIMENSION RHO(30000),DIST(30000)

El=0

A1=0

E2=0

A2=0

DO 250 I=0,L-I

A3=A3+SIGGSI"RHO(1)"'DIST(I)“0.025I"988./2.5"' 1 .E3

E3=E3+SIGGS‘(RHO(I)-DENB)*0.025*] .E6

250 CONTINUE

DO 200 1=1,L-2,2

E]=E]+(RI-IO(I)-DENB)

AI=A1+RHO(I)“‘(DIST(1)"SIGGS)

200 CONTINUE

DO 225 I=2.L-3.2

E2=E2+(RHO(I)-DENB)

A2=A2+RHO(I)‘(DIST(I)’SIGGS)

225 CONTINUE

0
0
0
0
0
0

0
0
0
0
0
0
0

EXI=RHO(O)-DENB+RHO(L-1)—DENB+4.*EI+2.*E2

EXI=0.025*SIGGSI3.*EX1'I.E6

AMTl=0.025/3.*(DIST(L.I)*SIGGS‘RHO(L-l)+4.*Al+2.*A2)

AMTl=988./2.5"AMT1 *I.E3

RETURN

END

Use subroutine VCALC as per fiat wall program

Use subroutine DPDV as per flat wall program

Use subroutine VICALC as per flat wall program

Use subroutine V3CALC as per flat wall program

Use subroutine PV as per fiat wall program

Use subroutine ARANGE as per fiat wall program

SUBROUTINE ACALCCETA.K.AB.A)

This subroutine calculates the van der Waals a term

after taking into account the effect of exclusion.

AB = Value of a in the bulk

ETA = reduced distance from the center of wall

The main program sends a reduced distance ETA from the

center of the wall molecule, which is the basis for

the integrated 9-3 potential.

DIMENSION AC(30000)
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COMMON R.TC.PC.OMEGA.AC

A=AB‘AC(K)

IF (AC(K).EQ.0.0) THEN

K 1=INT(K/lOO)

[(2:1(1'100

AK2=FLOAT(K/]00.-K1)

K3=(]( 1+ l)"' I 00 ,

AC(K) = AC(K2)+(AC(K3)-AC(K2))*AK2

WRITE(*.*) K,K1.K2.AK2,K3.AC(K)

A=AB’AC(K)

ENDIF

RETURN

END

C Use subroutine CUBIC as per flat wall program
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PROGRAM FOR BINARY MIXTURES on SLITS

Define Psi as a statement function

Use a 10-4 potential where PSI is the negative of the

intermolecular potential.

SIGGSI and SIGGS2 are sigma fluid-wall for components 1 & 2, in Angstroms.

EPSGSI & 2 are the fluid-wall potential in K

EXCI & 2 are the excess in micro mol/mAZ

AMTI & 2 are the amount adsorbed in mmol/g

Y1 & 2 are the compositions of the two components in the adsorbed phase

P1 & 2 are the fugacity coefficients for the two components

F1 & 2 are the fugacities

p is the pressure in Mpa

TC. PC and W represent the critical temperature. pressure and omega’s

This program is to calculate the adsorption in a mixture

REAL K12

CHARACTER RFILE*80

PS]](ETA)=4.0*3.1415926*0.382*SIGGSI*SIGGS1"EPSGS]*(-0.2

I/ETA"l0-1-0.5/ETA"'"‘4+0.5/(E'TA+ALPHA)"'"'4+0.5/(ETA-1-2.0"l

‘ALPHA)"4+0.5/(ETA+3.0*ALPHA)"4+0.5/(ETA+4.0*ALPHA)

Oit4)

P512(ETA)=4.0*3.1415926‘0.382*SIGGS2‘SIGGS2*EP5GS2*(-0.2

l/ETA“10+0.5/ETA"*4+0.5/(ETA+ALPHA)‘*4+0.5/(ETA+2.0"'

*ALPHA)"4+0.5/(ETA+3.0’ALPHA)‘*4+0.5/(ETA+4.0*ALPHA)

tfit4)

PSI3(XI)=4.0*3.1415926*0.382*SIGGS 1 ’SIGGS] I"EPSGS ] I"(-0.2

I/X1**] 0-t~0.5/XI"'"‘4¢l-t'0.S/(XI+ALPHA)"“"4+0.5/(XI+2.0"l

"ALPHA)"4+0.5/(X1+3.0*ALPHA)“4+0.5/(X1+4.0‘ALPHA)

$.14)

PSI4(X1)=4.0*3.l415926*0.382"'SIGGSZ*SIGGSZ*EPSGSZ*(-0.2

l/XI”10+0.5/XI"4+0.5/(XI+ALPHA)"4+0.5/(X1+2.0*

‘ALPHA)"4+0.5/(X1+3.0*ALPHA)**4+O.5/(XI+4.0*ALPHA)

OOI4)

PSIA(ETA)=PSI 1 (ETA)+PSI3(XI)

PSIB(ETA)=PSIZ(ETA)+PSI4(XI)

51005 1:40

SIGGS2=4.0

ALPHA:3.35/SIGGS I

R = 8.314

TC2=282.4

PC2=5.04

W2=0.089
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TC]=364.9

PC1=5.49

WI=0.]3

K12=0

PC2 = 1000000‘PC2

PC] = 1000000‘PC1

2 PRINT“, 'ENTER T(K), P(MPA),EPSI, EPS2, WIDTH'

READ“, T,P.EPSGS I ,EPSGSZZETA

P=1000000*P

3 PRINT“, 'ENTER YI'

READ", Y1

EXC1=0.0

EXC2=0.0

AMT]=0.0

AMT2=0.0

TYPE'(X.A.$)'.'ENTER THE FILE NAME FOR RESULTS :'

ACCEPT'(A)'.R.FILE

OPEN(UNIT=2,NAME=RFILE,TYPE='UNKNOWN')

Y2=1-Y]

YIIN=YI

Y21N=Y2

DDYI = 1E-5

DDY2 = IE-S

TR1=T/TCI

‘I'R2=T/TC2

" SET DELTA P FOR PARTIAL DERIVATIVES

C DDP=.01‘P

" CALCULATE COMPRESSIBILITY FACTOR (Z)

“ CALCULATE A1.A2. THEN A

CALL ACALC(R.W],TC1.TR1.PC1.A]1)

CALL ACALC(R.W2,TC2,TR2.PC2,A22)

CALL BCALC(BI,TC1,PCI .R)

CALL BCALC(B2,TC2.PC2.R)

A12 = SQRT(A1 I‘A22)’(l-K12)

CALL AM]X(Y 1 1N,Y2IN,AI 1,A22,Al2,A)

CALL ASTAR(A1 1.A22,A12.A,AS].AS2,AS]2.AS,P.R,T)

CALL BMIX(Y11N,Y21N.BI,B2,B)

CALL BSTAR(B 1 ,BZ,B,BS I .BSZ,BS.P,R,T)

CALL SCUBIC(AS.BS.R1.R2,R3.IFLAG)

IF(IFLAG.EQ. 1) 2:121

IF(IFLAGEQ.2) THEN

z.-.-Rl

IF(R2.GT.RI) Z=R2

END IF

IF(IFLAG.EQ.3) THEN
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CALL ARANGE(R132,R3)

Z=R1

END IF

CALL PH(Y1 IN,Y21N.AS ] .AS 12.A52,A5.BS 1 ,BSZ,BS,Z.PI ,P2)

C WRITE("',*) 'A & B star ',AS,BS.'FUG’.P],P2

DENB=PfZ/R/T

PBULK=PI1000000

WRITE(2,*) 'T =',T.' K'.’P =', PBULK.‘ MPa'

WRITE(2."') 'BULK DEN =', DENB,‘ gmol/m"3'.' Width = ',ZETA

WRITE(2,"')'Epsilon 1 & 2 =', EPSGSI ,EPSGSZ

WRITE(2,*) 'inital mol. frac. Y1 = ',Y1,' Y2 = '. Y2

FIBULK=YIIN*PI*P

F28ULK=Y2IN*P2*P

PETA=P

C-------------Start iterating in ETA 

BETA=ZETA/2.+(ZETA/2.-O.5)/100.

DELETA=(ZETA/2.-0.5)/]00.

L20

WRITE (2.102)

5 BETA=BETA-DELETA

ETA=(BETA‘2J'SIGFF+SIGWW)/(SIGFF+SIGWW)

XI=(ZETA*SIGFF+SIGWW/2.-BETA"SIGFF)/5IGGS1

"' SET DELTA P FOR PARTIAL DERIVATIVES

DDP=.0] I"PETA

GOLD=IE5

K=0

H = 0

CALL AZCALC(BETA.A] ],A] .ZETA)

CALL AZCALC(BETA.A22.A2.ZETA)

A12 = SQRT(A1 l"A2)"'(I-K 12)

F] = F1BULK‘EXPO’5]A(ETA)/T)

F2 = FZBULK*EXP(PSIB(ETA)/T)

P=FIIP1+F21P2

C WRITE("',") 'F1.F2.P',F1 ,F2,P

10 CALL AMIX(Y1,Y2,AI,A2.A12,A)

C WRITE(",") 'A='. A

CALL ASTAR(AI ,A2,A 12.A,AS 1 .A52,A512.A5,P,R.T)

CALL BMIX(Y1.Y2,BI,BZ,B)

C WRITE("',*) 'B=', B
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CALL BSTAR(B I ,BZ,B,BS l .B52,BS.P.R.T)

CALL SCUBIC(AS,BS,RI ,R2,R3.IFLAG)

IF(IFLAG.EQ.1) THEN

ZI=R1

CALL PH(Y1,Y2.AS].A512,A52,AS,BS l,B52.BS,ZI ,P1,P2)

CALCULATE OBJECTIVE FUNCTIONS

G1 = Y]*Pl"‘P/Fl-1

02 = Y2'P2’P/F2-I

G3 = 1 - Y] - Y2

GO=SQRT(GI"'G]+ G2*G2 + G3*G3)

NROOT=1

GOTO 25

ENDIF

IF(IFLAG.EQ.2) THEN

2] =R 1

Z2=R2

IF(R2.GT.R 1) THEN

Z]=R2

22=R ]

ENDIF

ENDIF

IF(IFI..AG.EQ.3) THEN

CALL ARANGE(R] ,RZ,R3)

2]=R ]

22=R3

ENDIF

CALL PH(Y1 .Y2,AS 1 .AS 12.A52.AS,BS 1 352.3521 .Pl A,P2A)

CALCULATE OBJECTIVE FUNCTIONS

GIA = Y1*P1A*P/Fl-l

G2A = Y2*P2A*P/F2-1

G3A = 1 - Y1 - Y2

GOA=SQRT(GIA*G]A+ GZA*G2A+ G3A‘G3A)

WRITE(".")'GIA.G2A'.G]A.G2A

GO=GOA

GI=GIA

GZ=G2A

G3=GBA

2:2]

P1=PIA

P2=P2A

NROOT=1

IF(Z2.LT.BS) THEN

PRINT". 'SKIPPING 22'

GOTO 25

ENDIF

CALL PH(Y ].Y2,A51.A512.A52.AS.BSI,BS2,BS,22.P]B,P2B)

CALCULATE OBJECTIVE FUNCTIONS

618 = YI‘PIB*P/F]-1
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G2B = Y2’P28‘P/F2-1

G38 = 1 - Y] - Y2

GOB=SQRT(GIB*GIB + G2B“G28 + G3B*G3B)

IF(GOA.GT.GOB) THEN

G0=GOB

G1:0 I B

GZ=GZB

G3=G3B

Z=Z2

P1=PIB

P2=P2B 1

NROOT=2

ENDIF

25 CONTINUE

PR1NT*.'GO='.GOA,GOB,'NROOT='.NROOT.'1FG='.IFLAG

 

F1CALC=Y1"‘P1"‘P

F2CALC=Y2"‘P2"P

YT=Y1+Y2

WRITE("."') F1CALC.F1 ,P

WRITE(*,*) F2CALC.F2,H

PRINT". 'ETA.Y1'.ETA.Y2

IF (K.LT.5.AND.GOLD.LT.G0) THEN

K=K+1

Y1=Y1-DY]

Y2=Y2~DY2

P=P-DP

DY] = DY1/2

DY2 = DY2/2

DP = DP/Z

GOTO 100

END IF

K=0

GOLD=GO

9999 FORMAT(4G]5.5.1X,I3)

0
0
0

C IF(GO.LT.2E-2) THEN

IF(GO.LT.1E-3) THEN

C WRITE (*,"‘) 'Bubble Pressure Calculation'

C WRITE (‘,101)

C WRITE (',103) X1.X2,T

DEN=P/Z/8.3 14/1‘

PETA=P

EXC1=SIGGS 1 *(Y1*DEN-YlIN‘DENB)*DELETA*1.E-4+EXC1

AMT1=YI*DEN‘SIGGS] *DEI.E'TA*988.*1 .E-7+AMT1

EXC2=5IGGS 1 *(Y2‘DEN-Y2IN‘DENB)*DELETA*1 .E-4+EXC2

AMT2=Y2"DEN"SIGGS ] ‘DELETA‘988.’ 1 .E-7-I-AMT2

WRITE (‘,104) Y 1 ,DEN,P,BETA,]-1

WRITE (2.104) Y 1 ,DEN,P,BETA,H

101 FORMAT(1 0X.'X1'.10X.'X2'.10X.'T-K')
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102 FORMAT(4X,'Y1',7X,'DEN'.9X.'PRESS3.9X.'ETA'.8X.'# ITER')

104 FORMAT(F8.5.2X.2G12.5.2X.Gl2.5.2X.F5.1)

GOTO 200

ENDIF

YY1= Y1+ DDYI

YY2 = Y2 + DDY2

PP=P+ DDP

"' CALCULATE DERIVATIVES WRT P

CALL ASTAR(A1,A2,A12,A.ASI ,ASZ,AS 12,AS,PP,R,T)

CALL BSTAR(B 1 ,BZ,B,BS 1,852.85.PP,R,T)

CALL SCUBIC(AS,BS,R 1 .R2,R3,IFLAG)

IF(IFLAG.EQ.1) THEN

Z=R1

CALL PH(Y I ,Y2.ASI ,AS12.A52,AS.BS I ,B52.BS.Z.PN1,PN2)

GOTO 30

ENDIF

 

IF(IFLAG.EQ.2) THEN

BIG=R1

5MALL=R2

IF(R1.LT.R2) THEN

BIG=R2

SMALL=R1

ENDIF

R 1:8JG

R3=SMALL

ENDIF

IF(IFLAG.EQ.3) THEN

CALL ARANGE(R1 .RZ,R3)

ENDIF

IF(NROOTEQ. 1) THEN

Z=R 1

CALL PH(Y1.Y2,A51 ,A512.A52,AS.BSI ,B52.BS,Z.PN 1,PN2)

ELSE

Z=R3

CALL PH(Y1.Y2,AS].AS]2,A52.AS,BSI.BSZ.BSZ.PN1,PN2)

ENDIF

30 or DP = (Y1*PN1*PP-Y1‘P1"P)/DDP/Fl

D2DP = (Y2*PN2*PP—Y2*P2*P)/DDP/F2

D3DP = 0

" CALCULATE DERIVATIVES WRT Y1

CALL AMIX(YY1.Y2,AI,A2,A12,A)

CALL BMIX(YY1,Y2,BI.BZ.BV)

CALL ASTAR(A],A2.A12,A.A51,A52.A512,AS,P,R,T)

CALL BSTAR(B 1 ,B2,B.BS 1 ,BS2.BS.P.R,T)

CALL SCUBIC(AS.BS.R] ,R2,R3.IFLAG)
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IF(IFLAG.EQ.1) THEN

Z=RI

CALL PH(YYI .Y2.AS 1 .As 12.A52,AS.BS 1 £52,135.Z.PN1 ,PN2)

ooro 4o

ENDIF

IF(IFLAG.EQ.2) THEN

BIG=R]

SMALL=R2

IF(R].LT.R2) THEN

BIG=R2

SMALL=R1

ENDIF

R1=BIG

R3=SMALL

ENDIF

IF(IFLAG.EQ.3) THEN

CALL ARANGE(R1.R2.R3)

ENDIF

IF(NROOTEQ. 1) THEN

Z=R1

CALL PH(YYI.Y2,AS1.AS12.A82,AS,BSI,BS2,BS,Z,PN1.PN2)

ELSE

Z=R3

CALL PH(YY1,Y2,AS1,AS12.AS2,AS.BS1,BSZ,BS.Z,PN1,PN2)

ENDIF

40 D] D] = (PNI l"YYI "P-P] ‘Y1 ‘P)/DDY 1/F1

D2Dl = (PN2'Y2‘P-P2‘Y2‘P)/DDY 1/F'Z

D3D1 = -1

"' CALCULATE DERIVATIVES WRT Y2

CALL AM]X(Y 1,YY2.A1.A2,AI2,A)

CALL BMIX(Y1.YY2,BI.BZ.B)

CALL ASTAR(A1.A2.A12.A.AS1.A52.AS]2,A5.P,R,T)

CALL BSTAR(B] ,BZ,B.B51.BS2.BS.P,R.T)

CALL SCUBIC(AS,BS,R 1 ,RZ.R3,IFLAG)

IF(IFLAG.EQJ) THEN

Z=R1

CALL PH(Y 1,YY2.ASI.AS12.A52,AS.BS],BS2,BS,Z,PN].PN2)

GOTO 50

ENDIF

IF(IFLAG.EQ.2) THEN

BIG=R 1

SMALLzR2

IF(R] .LT.R2) THEN

BIG=R2

SMALL=R1

ENDIF

R1=BIG
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R3=SMALL

ENDIF

IF(IFLAG.EQ.3) THEN

CALL ARANGE(R1,RZ,R3)

ENDIF

IF(NROOTEQ. 1) THEN

Z=R1

CALL PH(Y 1,YY2,AS 1 ,AS 12.A52,AS,BS 1 .BSZ,BS .Z.PN1,PN2)

ELSE

Z=R3

CALL PH(Y 1 .YY2.A51 ,A512.AS2.AS,BS 1 ,BS2,BS .Z,PN1,PN2)

ENDIF

 

50 D1D2 = (PNI *Y] l"P-Pl "Yl 'P)/DDY2/F1

D2D2 = (PN2*YY2*P-P2’Y2*P)/DDY2/F2

D3D2 = -1

* CALCULATE INCREMENTS

CALL INV(D 1DP,D2DP,D3DP,D1 D1 ,D2D1,D3DI,DID2,D2D2,D3D2,DET)

DY] = -G]"'DID1 - G2‘D1D2 - G3‘D1DP

DY2 = -G]"'D2D1 - G2‘D2D2 - G3‘D2DP

DP = -G1"‘D3D1 - G2‘D3D2 - G3‘D3DP

PRINT‘, ETA.Y1,DY1,P.DP

IF(ABS(DY1).GT.Y1) THEN

PRINT‘,'WARN1NG. LARGE DY'.DY1

DY1=0.5*Y1*DY1/ABS(DYI)

DY2=-DY1

C P=9.E7

C DP=0

END IF

100 Y] = Y] + DY]

Y2 = Y2 + DY2

P = P «1» DP

IF(Y1.LT.0)Y1=0

IF(Y1.GT.1)Y1=1.

IF(Y2.LT.0)Y2=0

IF(Y2.GT. 1)Y2= I .

H=H+1

IF (H.LT.200) GO TO 10

PRINT". 'I'TERATIONS EXCEEDED'

C DDY1=]E-3

C DDY2=]E-3

C DDP=.01"P

C GOTO 10

200 CONTINUE

L==L+l

IF(L.LT.101) GOTO 5

WRITE(",") EXC1,EXC2,DENB,AMT1.AMT2
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WRITE(2,"') EXC1,',',EXC2.',',DENB

WRITE(2,"') AMT1.',',AMT2

PRINT", ENTER 1 FOR SAME T, DIFFERENT xr'

PRINT", 'ENTER 2 FOR NEW “I AND NEW xr

PRINT‘, ENTER 0 TO QUIT

READ", IDB

IF (IDB.EQ.1) GO TO 3

IF (IDBEQ.2) GO TO 2

END

fit.‘l..*¥**tfi$¥tltil*Ititltlifi*ltt***********************¥*************

" SUBROUTINES BELOW 1!!!

*

SUBROUTINE ACALC(R,W,TC.TR.PC.AN)

FW = 0.37464 + 1.54226‘W - .26992 " W**2

AN = 0.45724'R“2"TC"2"(1+FW*(1-SQRT(TR)))"2/PC

RETURN

END

SUBROUTINE AMIX(M1,M2,A1,A2,A12,AA)

REAL AA, A], A2, A12, M1, M2

AA = M1"2"A1 + 2*M]"'M2*A12 + M2"2 * A2

RETURN

END

SUBROUTINE ASTAR(A1.A2.AI2,A,ASI ,A52.A512.AS .P.R,T)

AS] = AI‘P/(R"2*T”2)

A52 = A2'P/(R"2*T”2)

A512 == A]2"P/(R"*2*T“2)

A5 = A‘P/(R‘""2"T"2)

RETURN

END

 

SUBROUTINE BCALC(B.TC.PC.R)

B = 0.07780‘R'TC/PC

RETURN

END

SUBROUTINE BMIX(M1,M2.B 1 .B2,BB)

REAL BB. B]. B2. M1. M2

BB = M1’B1+ M2*B2

RETURN

END

SUBROUTINE BSTAR(B],BZ,B,BS1,BSZ,BS.P,R,T)

351 = B]*P/(R‘T)

1332 = arr/(Rm

as = B‘P/(R‘T)

RETURN

END

 

SUBROUTINE TM2(BS,T2)

T2 = BS - 1

WRITE (‘3') T2
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RETURN

END

SUBROUTINE TMI(AS.BS.TI)

T1 = A5 - BS"(2+3"BS)

WRITE (‘3‘) T1

RETURN

END

SUBROUTINE TMO(AS.BS.T0)

'10 = BS“(BS"2 + BS - AS)

WRITE(*.“‘) TO

RETURN

END

 

SUBROUTINE PH(M] ,M2,AS 1 ,AS]2.AS2.AS,BS 1 ,asz,as,z,1>1,1>2)

REAL M1,M2

Q = M1*ASI+ M2*A512

CALL PHICLC(BS 1 .AS.BS.Z.Q.P1)

Q = MI‘ASIZ + M2-Asz

CALL PHICLCCBSZ.AS.BS.Z.Q.P2)

RETURN

END

 

SUBROUTINE PH]CLC(B.AS.BS.Z.Q.PHI)

TERM] = (BlBS)*(Z-I)

TERMIA = (2*Q/AS) - (BIBS)

TERMIB = 2"Q/AS

TERM2 = (2*Q/AS - B/BS)"'(AS/(2*SQRT(2.0)"BS))

TERM3 = 1/(Z-BS)

TERM4 = ((Z-(SQRT(2.0)-1)*BS)/(Z+(SQRT(2.0)+ 1 )"‘BS ))

WRITE(*.") B5. TERMIA, TERMIB

WRITE(*.") TERM2, TERM3. TERM4

PHI = TERM3*(TERM4“TERM2)I"EXPCTERM 1)

RETURN

END

 

SUBROUTINE SCUBIC(AS.BS.R1.RZ.R3.IFLAG)

CALL TM2(BS.T2)

CALL TM1(A5.BS,T1)

CALL TMO(AS.BS,10)

WRITE ('3') 'T2.T] .TO

CALL CUBICC1‘2,T1,T0,RI,R2.R3.C1,C2.C3.IFLAG)

WRITE(",*) IFLAG

WRITE("',") 'R] R2 R3'

WRITE("',") R1,R2,R3

RETURN

END
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 C

SUBROUTINE ARANGE(R1,RZ,R3)

C PROGRAM To PUT 3 NUMBERS IN DESCENDING ORDER

DO 20 1:13 ’

IF(R2.GT.R 1) THEN

TEMP=R I

R1=R2

R2=TEMP

ENDIF

IF(R3.GT.R2) THEN

TEMkRZ

R2=R3

R3=TEMP

ENDIF

 

20 CONTINUE

RETURN

END

C 

SUBROUTINE AZCALC(BETA.AB,A.ZETA)

SA=ZETA.0.5-BETA

IF (BETA.LE.1.5) THEN

A]=BETA+0.5

A2=1.-]./SA*"'3

A3=1./3."'A2

A=AB*(A1+A3)"3./8.

END IF

IF(BETA.GT.(ZETA-1.5)) THEN

A1=SA+1.

A2=1.-1./(BETA-0.5)"3

A3=A2/3.

A=AB“(A1+A3)"'318.

END IF

IF((BETA.GT.1 .5).AND.(BETA.LE.(ZETA-1 .5))) THEN

A1=7./3.-1 l3./(BETA—O.5)"3

A2=1 .-] ./SA"'*3

A3=A2/3.

A=AB*(A1+A3)*3./8.

END IF

RETURN

END
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SUBROUTINE INV(DIDP,D2DP,D3DP,D1D1,D2D1,D3D1,DID2,D2D2,D3D2,DET)

C011 = D2D2’D3DP-D3D2‘D2DP

C012 = -(D2D1*D3DP-D2DP*D3D])

C013 = DZD1*D3DZ-D3D1"D2D2

C02] = -(D1D2*D3DP-D3D2*D1DP)

C022 = D1D1*D3DP-D3D1"'D1DP

C023 = -(D1D1 *D3D2-D3Dl *D1 D2)

C031 = D1D2*D2DP-D2D2*D1 DP

C032 = -(D1D1*D2DP-D2DI I"D1 DP)

C033 = D1D1*D2D2-D2D1*D1D2

DET: D1DI'C011+ D1D2‘C012 + DIDP‘COI3

WRITE("‘.*) 'DET'

WRITE("'.*) DET

DIDI = C011/DET

D1D2 = C021/DET

D1DP= C031/DET

DZD] = C012/DET

D2D2 = C022/DET

D2DP = C032/DET

D3D1 = C013/DET

D3D2 = C023/DET

D3DP = C033/DET

RETURN

END

Use Subroutine CUBIC as per other
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ACALI.DOC

This is a program to calculate the value of the vanderwaals 'a'

in a cylindrical pore for rl varies from R-3 sigma/2 to R-sigma/‘Z

IMPLICIT DOUBLE PRECISION(A-Z)

INTEGER 1.J.K

WRITE(*."‘) 'ETAl'.' SIGMA'.' PORE SIZE IN NUMBER OF SIGMA'

READ("'.*) ETA1,SIGMA.P

R1=SIGMA*ETA1

=51GMA'P

WRITE(*,*) R,Rl

CASE 1 r1 varies from R-3 sigma/2 to R-sigma/Z

A 1 =0.0

PI=3.1415926535897932

z1=(SIOMA*SIOMA-cR-SIGMA/2.-RI)"2)

WRITE(*,") zr

ZI=DSQRT(ZI)

WRITE(*,*) 21

DO 10 I=0.1000

hP‘Zl/IOOO.

WRITE(*,*) z

B=R1*R1+SIGMA*SIGMA-Z*Z

B ]=(R-SIGMA/2.)*(R-SIGMA/2.)

BkSlGMA‘SIGMA-Z‘Z

WRITE(*,*) 132

IF(BZ.EQ.0.0) THEN

WRITE("',*) '32 E0 0'

GO TO 15

ENDIF

B3=DSQRT(BZ)

A=(B-B 1)/2./R1/B3

WRITE(*,"‘) A

IF(A.GT.].0) THEN

WR1TE(","') 'A.GT.1.0 ',Z.A

A=] .0

ENDIF

IF(A.LE.-1.0) THEN

WRITE(*,*) Z,A

=—1 .0

ENDIF

F=DACOS(A)

GO TO 17

=PI

A1=F’DSQRT(SIGMA*SIGMA-(R-51GMA/2.-R 1 )**2)/1000.+A 1

10 CONTINUE

A1=A1/4./(SIGMA**4)
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WRITE(*,*) 'A1= ',A]

DC 20 J=0.10(X)

Z]=DSQRT(SIGMA‘SIGMA-(R-SIGMA/2.-R 1 )**2)

Z=J*Zl/l000.

D0 30 K=0,1000

B=R1 *R1+516MA‘SIGMA-Z‘Z

B 1=(R-SIGMA/2.)*(R-SIGMA/2.)

BkSIGMA‘SIGMA-Z‘Z

IF(B2.EQ.0.0) GO TO 25

B3=DSQRT(B2)

A=(B-B 1)/2JR1/B3

IF(A.GT.1 .0) THEN

WRITE(*."') 'AA GT 1.0 '.Z.A

A=1.0

ENDIF

IF(A.LT.-1.0) THEN

WRITE(*,*) Z. A

=-1.0

ENDIF

GO TO 27

25 =-].0

27 THETA=DACOS(A)*KI1(XXJ.

C WRITE(*.*) Z, A.THETA

C=R1 *DCOSCI'HETA)

C1=(R-SIGMA/2.)‘(R-SIGMA/2.)

C2=R1 I"R1"DSIN('THE’TA)"'DS1N('1’I-IETA)

C3=DSQRT(C1-C2)

C4=C+C3

F1=C4*C4+Z"Z

F=1 ./F1/F1

AA=F"'Z]/1000."DACOS(A)/]000.+AA

30 CONTINUE

20 CONTINUE

AA=AA/4.

WRITE(*,*) 'AA= ',AA

=DSQRT(SIGMA*SIGMA-(R-SIGMA/Z-R1)"'*2)

DO 50 K=0,1000

THETA=PI"K/1000.

C=R1‘DCOS(TI-IETA)

C1=(R-S]GMA/‘2.)"(R-SIGMA/2.)

C2=R1‘R1 ‘DSING'I-IEI‘AYDSINCI‘HETA)

C3=DSQRT(C1 -C2)

C4=C+C3

C5=C4*C4

F1=SIGMA/2JC5/(C5+SIGMA"SIGMA)

F2=Yl2JC5/(C5+Y"Y)
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F3=DATAN(SIGMA/C4)/2./C5/C4

F4=DATAN(Y/C4)/2./C5/C4

F=F1~F2+F3-F4

AB=F*P1/1000.+AB

50 CONTINUE

AB=P1*(SIGMA-Y)/4./SIGMA**4-AB/4.

WRITE(*.‘) 'AB = ',AB

C PART 2 i.e. 2 going from sigma to infinity

C

D0401=0,1000

THETA=I"PI/1000.

B=R 1 *DCOSCI‘HETA)

B 1=(R-SIGMA/2.)*(R-SIGMA/2.)

Bth’R] *DSINCI'HETA)’DSIN(THETA)

BB=DSQRT(B]-B2)

A=B+B3

F1=P1/4./NA/A

F2=SIGMAIZJA/A/(A*A+SIGMA’SIGMA)

F3=DATAN(SIGMA/A)/2JAIA/A

=F1-F2-F3

WRITE(*,*) F1.F2.F3

A2=F*PI/1000.+A2

40 CONTINUE

A2=A2/4.

A3=PI/12JSIGMA/SIGMNSIGMA-A2

WRITE(*.*) A2.A3

A4=A1-AA+AB+A3

A5=A4*3.*5IGMA‘SIGMA‘SIGMA/PI

WRITE("'."‘) 'A/ABULK= '. A5.A4

END

_

‘
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ACALZF

This is a program to calculate the value of the vanderwaals 'a’

in a cylindrical pore r] varies from 0 to R-3sigma/2

IMPLICIT DOUBLE PRECISION(A-Z)

INTEGER 1

WRITE(*.*) 'ETA]',' SIGMA'.' PORE SIZE IN NUMBER OF SIGMA'

READ(*,*) ETA],SIGMA.P

R1=SIGMA"'ETA1

R=SIGMA‘P

WRITE(*,*) R,R]

CASE 2 r1 varies from 0 to R-3sigma/Z

A1=0.0

PI=3.1415926535897932

DO 10 1:0,]000

THETA=I"'PI/1000.

B=R 1 *DCOSCTHETA)

B 1=(R-SIGMA/Z.)‘(R-SIGMA/2.)

B2=R1*R] I"D51N('T1-IETA)"‘DS1N('THETA)

B3=D5QRT(B 1 ~82)

A=B+B3

F1=A*A"A

F=1./F]

WRITE("',") THETA.A.F

F3=2.*A*A‘A

F=F1+F2IF3

.A1=F‘P1/1000.+A1

10 CONTINUE

A2=1./3.-SIGMA*SIGMA*SIGMA/16.*A1

A3=A2*3.

WRITE(*,"') 'A/ABULK ', A3.AI,A2

END
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ACAL3.F

This is a program to calculate the value of the vanderwaals 'a'

in a cylindrical pore r1 = R-sigma/Z

REAL ETA] ,SIGMA,P.R,RI ,A,A 1 .A2

WRITE(*."') 'ETAI'. ' SIGMA'.' PORE SIZE 1N NUMBER OF SIGMA'

READ("',"') ETA],SIGMAP

R]=51GMA"ETAI

=SIGMA*P

WRITE(*."‘) R,R1

CASE 3 r] = R-sigma/Z

A1=0.0

PI=3. 1415927

DO 101:0.100

Z=I’SIGMA/IOO.

B=SIGMA‘SIGMA-Z‘Z

B]=SQRT(B)

THETA=ACOS(B]/2./R1)

F=THETA/4./SIGMA"4

WRI'I'E(*.‘) Z.A.F

A1=F‘SIGMA/100.+A1

10 CONTINUE

WRITE("',"‘) 'A1= ',Al

Do 20 1:1,100

z=I*SIOMA/Ioo.

B=SIGMA’SIGMA-Z‘Z

BI=SQRT(B)

THETA=ACOS(B]/2./R1)

C=2.*RI *R1+Z"'Z

C1=4."R1*R1+Z*Z

C2=C1**1.5

C3=ClC2flflfl

write(*,"') C.C1,C2.C3

IF(2.EQ.SIGMA) GO To 25

C4=Z*TAN(THETA)/SQRT(C1)

C5=ATAN(C4)

GO TO 27

C5=P1/2.

C6=C3"'C5

write(*.*) C3.C5.C6

D1=R1*R1*51N(2‘THETA)

D2=Z"'Z*C1*(2.*R1*R1+Z*Z+2.*Rl I"R1 *C05(2."‘THETA))
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D3=D]/D2

C WRITE("'."') D1,D2,D3

F=C6~D3

A2=F*51GMA/100.+A2

C WRITE(*,"') Z, A,THETA

20 CONTINUE

A2=A2/4.

AA=A1-A2

WRTTE("',"') 'A2= ',A2.‘ AA: ',AA

C PART 2 i.e. 2 going from sigma to infinity

DO 40 1:0.2000

Z=SIGMA+I*SIGMA/100.

B=R1*R1+Z*Z

Bl=4.“R1*R1+Z*Z

82:81 “1.5

F=BIBZIZIZIZ

A3=F*SIGMA/100.+A3

40 CONTINUE

A3=A3*PI/8.

A4=PII24JSIGMA/SIGMA/SIGMA

A5=A4-A3

WRITE(*,"‘) A3,A4,A5

A6=AA+A5

A=A6*SIGMA‘SIGMA‘SIGMA'BJPI

WRITE(*,*) 'A/ABULK: ', A6,A

END

 

 



 

Appendix 3 - Properties of Gases

 

'Table: Appendix 3 -1 Supercritical fihylene
 

40 F

P(Psia)

500

600

700

800

900

1000

1 100

1200

1300

1400

1500

V(ftSI|b)

0.26035

0.18181

0.04754

0.04511

0.04368

0.04267

0.04187

0.04122

0.04067

0.04019

0.03977

P(MPa)

3.447367

4.1 3684

4.82631 3

5.51 5787

6.20526

6.894733

7.584207

8.27368

8.9631 53

9.652627

1 0.3421

V(cm3lmo| V (PR)

455.9669

318.415

83.2597

79.0039

76.49945

74.73058

73.32949

72.191 1

71 .2785

70.3872

69.65163

443.61091

307.7956

93.08558

85.36646

81 .0538

78.03798I

75.72067

73.84304

72.26802

70.91416

69.72904
 

160 F

P(Psia)

500

600

700

800

900

1 000

1 100

1200

1 300

1400

1 500 

V(ft3llb)

0.29183

0.21835

0.16006

0.10129

0.05804

0.05119

0.04821

0.04637

0.04506

0.04404

0.04322

P(MPa)

3.447367

4. 1 3684

4.82631 3

5.51 5787

6.20526

6.894733

7.584207

8.27368

8.9631 53

9.652627

10.3421

V(em3/mol v (PR)

51 1.0997

382.4097

280.3229

177.3954

101.649

89.65217

84.43312

81.21061

78.91633

77.12994

75.69383

498.076

371.1377 ‘

271.7131

175.101

109.1489!

95.9797

89.38151

85.037

81.82833

79.3

77.225 
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Table: Append"ix_3_-1SLupereritieaTEthylene
 

80 F

P(Psia)

500

600

700

800

900

1 000

1 100

1200

1 300

1400

1 500

V(ft3llb)

0.31926

0.24619

0.19172

0.14789

0.1 1013

0.08024

0.06464

0.05726

0.05314

0.05049

0.0486

100 F

P(Psia)

500

600

700

800

900

1 000

1 100

1200

1 300

1400

1 500

V(ft3/lb)

0.34426

0.27016

0.21611

0.17436

0.14072

0.1 1315

0.09162

0.079677

0.06737

0.06131

0.0572 

P(MPa)

3.447367

4. 13684

4.82631 3

5.51 5787

6.20526

6.894733

7.584207

8.27368

8.9631 53

9.652627

1 0.3421

P(MPa)

3.447367

4. 1 3684

4.82631 3

5.51 5787

6.20526

6.894733

7.584207

8.27368

8.9631 53

9.652627

1 0.3421

V(cm3lmol V (PR)

559.1 395

431 . 1676

335.7709

259.0088

1 92.8774

140.5292

1 13.208

1 00.2829

93.06733

88.42622

85. 1 161 5

V(cm3/mol V (PR)

602.9236

473.1477

378.4866

305.3673

246.4515

198.1665

160.4597

139.5432

117.9892

107.3759

100.1779

545.9039T

419.54

326.25

252.5661

191.167

143.56

117.688

104.796

97.089I

91.807

87.86828.

589.77

461.53

368.65

297.77

241.692

196.747

161.9475

137.3667

121.2451

1 10.5723

103.106  
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TT‘abIe: Appendix 32 Supercritical Methane
 

0 F

P(Psia)

400

500

600

700

800

900

1 000

1 100

1200

1400

1600

1 800

120 F

P(Psia)

400

500

600

700

800

900

1 000

1 100

1200

1400

1600

1800 

V(fl3/|b)

0.70345

0.54934

0.44659

0.37323

0.31829

0.27569

0.2418

0.21431

0.1917

0.15722

0.13293

0.11561

V(ft3llb)

0.9341

0.74051

0.61 165

0.51978

0.45106

0.39777

0.3553

0.3207

0.29202

0.24737

0.21439

0.18923

P(MPa)

2.757893

3.447367

4.13684

4.82631 3

5.515787

6.20526

6.894733

7.584207

8.27368

9.652627

1 1.03157

12.41052

P(MPa)

2.757893

3.447367

4.13684

4.826313

5.51 5787

6.20526

6.894733

7.584207

8.27368

9.652627

1 1.03157

12.41052

702.642

548.709

446.077

372.8013

317.9244

275.3733

241 .523

214.0638

191 .4798

157.0394

132.7773

1 15.4772

933.0271

739.6594

610.9475

519.183

450.5419

397.3131

354.8919

320.3316

291.6846

247.0859 1

214.1438

189.0126

V(cm3lmol v (PR)

602.89

542.64

503.81

476.417

455.814

439.614

426.457

415.5051

406.21 1

391.2046

379.533

370.137

V(cm3/mol V (PR)

868.8

738.296

657.42

602.41 8

562.4746

532.0424

508

488.47

472.25

446.74

427.5

41 2.38

1
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Table: Appendix 3-7 Ethylene
 

TC= 282.4 K

PC= MPa

OMEGA=

T density density Tr

K calc exp

269 0.012189 0.012938 0.95255

255 0.014574 0.014641 0.902975

241 0.016372 0.015908 0.853399

225 0.018031 0.017078 0.796742

211 0.019248 0.017965 0.747167 

°/o error

-5.78915

-0.45762

2.916771

5.580279

7.141664

 
 

_
A
_

-
D
a
n
-
L
L
“
.
-

 



%
E
r
r
o
r

i
n
D
e
n
s
i
t
y

195

 

 
 

    

 

 

  

15

10 '1-

5 ‘1-

0 --

-5 -—

—Ethylene ‘::\ ‘\

-10 -- --— Methane ‘~\ \
------ Propane \

- . _ . Argon
A“ \

- - - - C02 ‘

-15 ’r i 1 1 F

0.7 0.75 0.8 0.85 0.9 0.95

T

Figure Appendix 3-1: Error in the Peng-

Robinson Calculation of Saturation Density



LIST OF REFERENCES

 

 



LIST OF REFERENCES

Abraham, F. F.; Singh, Y. J. Chem. Phys. 1978, 68, 4767.

Angus, 8.; Armstrong, B.; de Reuck, K. M.; Featherstone, W.; Gibson, M. R. Eds.,

‘ International Union ofPure andApplied Chemistry; Butterworths: London, 1974,

39.

Asselineau, L.; Bogdanic G.; Vidal, J., Fluid Phase Equil. 1979, 3, 273.

Barrer, R. M.; Robins, A. 3., Trans. Faraday Soc. 1951, 47, 773.

Barton, S. S.; Dacey, J. R.; Quinn, D. F. In Fundamentals ofAdsorption, Myers, A. L.;

Belfort, G. Eds., Engineering Foundation: New York, 1983, 65.

Berenyi, L. Z. Phys. Chem, 1923, 105, 55.

Bienfait, M. In Phase Transitions in Surface Films, Dash, J. G.; Ruvalds, J. Eds, Plenum

Press: New York, 1980, 29.

Brennecke, J. F.; Eckert, C. A. In Supercritical Fluid Science and Technology; Johnston,

K. P.; Penninger, M. L. Eds., ACS Symposium Series 406, American Chemical

Society: Washington DC, 1989,14.

Brennecke, J. F. Ph. D. Thesis, University ofNotre Dame, 1989.

Brennecke, J. F.; Tomasko, D. L.: Peshkin, J.; Eckert, C. A. Ind. Eng. Chem. Res. 1990,

29, 1682.

Brunauer, S. The Adsorption ofGases and Vapors Vol. 1, Princeton University Press,

Princeton: New Jersey, 1945.

Davis, H. T.; Scriven, L. E. In Advances in Chemical Physics, Prigogine, 1., Rice, S. A.,

Wiley: New York, 1982, 49, 357.

196

 

 



197

Debenedetti, P. G. Chem. Eng. Sci. 1987, 42, 2203.

de Boer, J. H. The Dynamical Character ofAdsorption, Clarendon Press: Oxford, 1953.

Defay, L.; Prigogine, 1., Surface Tension andAdsorption, John Wiley, New York, 1966.

Denbigh, K. The Principles ofChemical Equilibrium, 4th ed., Cambridge University

Press: Cambridge, 1981.

Dubinin, M. M. Proc. Acad. Sci. USSR. 1947, 55, 331.

Dubinin, M. M. Progr. Surf Membrane Sci. 1975, 9, 1.

Eckert, C. A.; Ziger, D. H.; Johnston, K. P.; Ellison, T. K. J. Phys. Chem. 1986, 90, 2798.

Evans, R. Advances in Physics 1979, 28, 143.

Findenegg, G. H. In Fundamentals ofAdsorption, Myers, A. L., Belfort, G. Eds.,

Engineering Foundation: New York, 1983, 207.

Fisher, B. B., McMillan, W. G. J. Am. Chem. Soc., 1957, 79, 2969. '

Fisher, J.; Methfessel, M. Phys. Rev. A. 1980, 22, 2836.

Gregg, S. J.; Sing, K. S. W. Adsorption, Surface Area and Porosity, Academic Press:

London, 1982.

Guggenheim, Thermodynamics, 5th ed., North-Holland Publishing: Amsterdam, 1967.

Henderson, D. Fundamentals ofInhomogeneous Fluids; Marcel Dekker: New York,

1992.

Hill, T. L. J. Chem. Phys. 1946, I4, 441.

Hill, T. L. J. Chem. Phys. 1947, 15, 767.

Hill, T. L. J. Chem. Phys. 1948, 16, 181.

Hill, T. L. J. Phys. Chem. 1950, 54, 1186.

Hill, T. L. J. Chem. Phys. 1951, I9, 261.

Hill, T. L. In Advances in Catalysis, Frankenburg, W. G.; Rideal, E. K.; Komarewsky,

V. I. Eds., Academic Press: New York, 1952, 4, 211.

 

 



198

Johnston, K. P.; Kim, S.; Combs, J. In Supercritical Fluid Science and Technology;

Johnston, K. P.; Penninger, M. L. Eds. ACS Symp. Ser. 406, American Chemical

Society: Washington DC, 1989.

Kierlik E.; Rosinberg, M. L. Phys. Rev. A. 1990, 42, 3382.

Kierlik E.; Rosinberg, M. L. Phys. Rev. A. 1991, 44, 5025.

Kim, S.; Johnston, K. P. Ind. Eng. Chem. Res. 1987a, 26, 1206.

Kim, S.; Johnston, K. P. AIChE J. 1987b, 33, 1603.

Kung, W. C.; Scriven, L. E., Davis, H. T. Chem. Phys. 1990, 149, 141.

Lee, L. L. Molecular Thermodynamics ofNon-Ideal Fluids; Butterworths: Stoneham,

MA, 1988.

Lee, L. L.; Debenedetti, P. G.; Cochran, H. D. In Supercritical Fluid Technology:

Reviews in Modern Theory andApplications, Bruno, T. J.; Ely, J. F. Eds., CRC

Press: Boca Raton, F1, 1991, 193.

Lennard-Jones, J. E.; Devonshire A. F. Proc. Royal Soc. A 1937, I63, 132.

Maslan. F. D.; Altman, M.; Abereth, E. R J. Phys. Chem. 1953, 57, 106.

McQuarrie, D. A. Statistical Mechanics; Harper & Row: New York, 1976.

Myers, A. L.; Prausnitz, J. M. AIChE J. 1965, 11, 121.

Nicholson, D.; Parsonage, N. G. Computer Simulation and Statistical Mechanics of

Adsorption, Academic Press: New York, 1982.

Peng, D. Y.; Robinson, D. B. Ind. Eng. Chem. Fund. 1976, 15, 59.

Polyani, M. Trans. Faraday Soc. 1932, 28, 316.

Powles, J. G.; Rickvayzen, G.; Williams M. L., M01. Phys. 1988, 64, 33.

Prausnitz, J. M. Proceedings ofthe 2nd International Conference, EFCE, DECHEMA:

Berlin, 1980. ‘

Prausnitz, J. M., Liechtenthaler, R. N., de szedo, E. G. Molecular Thermodynamics of

Fluid Phase Equilibria, Prentice-Hall, Englewood-Clifi‘s: New Jersey, 1986.

Pyada, H. Masters Thesis, Michigan State University, 1994.

 



199

Radke C. J., Prausnitz, J. M. AIChE J. 1972, 18, 761.

Rangarajan, B.; Lira, C. T. In Better Ceramics Through Chemistry V, Hampden-Smith,

M. J., Kemperer, W. G., Brinker, C. J. Eds. , Materials Research Society: Pittsburgh,

PA, 1992, 559.

Rangarajan, B.; Lira, C. T.; Subramanian, R. AIChE J. 1995, 41, 838.

Reich, R., Ziegler, W. T., Rogers, K. A. Ind. Eng. Chem. Proc. Des. Dev.l980, 19, 336.

Reid, R. C.; Prausnitz, J. M. Poling, B. The Properties ofGases and Liquids,4th ed,

McGraw-Hill: New York, 1987.

Ross, S., Clark H., J. Am. Chem. Soc. 1954, 76, 4291.

Ross, S.; Olivier, J. P. On Physical Adsorption, Interscience Publishers: New York, 1964.

Rowlinson, J. S.; Widom, B. Molecular Theory ofCapillarity, Clarendon Press: Oxford,

1982.

Saam, W. F.; Ebner, C. Phys. Rev. A. 1978, 17, 1768.

Sandler, S. L. Chemical and Engineering Thermoaynamics, 2nd ed., Wiley: New York,

1989.

Snook, I. K.; Henderson, D. J. Chem. Phys. 1978, 68, 2134.

Specovius J.; Findenegg, G. H. Ber. Bunsenges Phys. Chem. 1978, 82, 174.

Specovius J.; Findenegg, G. H. Ber. Bunsenges Phys. Chem. 1980, 84, 690.

Steele, W. A. In The Solid-Gas Interface Vol 1, Flood, E. A. Ed., Marcel Dekker: New

York, 1967, 307.

Steele, W. A. The Interaction ofGases with Solid Surfaces, Pergamon Press: Oxford,

1974.

Strubinger, J. R.; Parcher, J. F. Anal. Chem. 1989, 61, 951.

Subramanian, R.; Pyada H.; Lira, C. T. Ind. Eng. Chem. Res. (in press).

Sullivan, D. E. Phys Rev. B. 1979, 20, 3991.

Tan, C. -S.; Liou, D. -C. Ind. Eng. Chem. Res. 1988, 27, 988.



200

Tan, C. -S.; Liou, D. -C. Ind. Eng. Chem. Res. 1990, 29, 1412.

Tan, 2.; Gubbins, K. E. J. Phys. Chem. 1990, 94, 6061.

Tarazona, P.; Evans, R. M01. Phys. 1983, 48, 799.

Teletzke, G. F.; Scriven, L. E.; Davis, H. T. J. Colloid Interface Sci. 1982a, 87, 550.

Teletzke, G. F.; Scriven, L. E.; Davis, H. T. J. Chem. Phys. 1982b, 77, 5794.

Telo de Gama, M. M.; Evans, R. Mol. Phys. 1983, 48, 687.

Tjatopolous, G. J.; Feke, D. L.; Adin Mann, Jr., J. J. Phys. Chem. 1988, 192, 4006.

Valenzuela, D. P., Myers, A. L. Adsorption Data Handbook, Prentice-Hall, Englewood-

Cliffs: New Jersey, 1989.

Vanderlick, T. K.; Scriven, L. E.; Davis, H. T. J. Chem. Phys. 1989, 90, 2422.

van Megen, B.; Snook, I. K. Mol. Phys. 1982, 45, 629.

van Megen, B.; Snook, I. K. Mol. Phys. 1985, 54, 741.

Vera, J. H.; Prausnitz, J. M. Chem. Eng. J. 1972, 3, 1.

Wu, R. -S.; Lee, L. L.; Cochran, H. D. Ind. Eng. Chem. Res. 1990, 29, 977.

Yang, R. T. Gas Separation by Adsorption Processes, Butterworths, Stoneham, MA,

1987.

Young, D. M.; Crowell, A. D. Physical Adsorption ofGases, Butterworths, London,

1962.



"llllllllll’ll'lllll  


