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ABSTRACT
Image Sequence Analysis: Motion and Structure Estimation
with Transitory Sequences and Recognition of Hand Signs.
By

Yuntao Cuz

This thesis reports two pieces of work related to image sequence analysis. First, we
investigate the problem for a calibrated stereo camera system traveling in an unknown
environment to automatically build a 3D range map of the scene. Due to the dynamic
sensing process, the obtained image sequence is transitory by our definition in that no
component of the scene is visible through the entire sequence. We show that the inte-
gration of a transitory sequence has properties that are very different from those of a
non-transitory one. Two representations, world-centered (WC) and camera-centered
(CC), behave very differently with a transitory sequence. The asymptotical error
properties derived indicate that one representation is significantly superior to the
other, depending on whether one needs camera-centered or world-centered estimates.
Based on these properties, we introduce an efficient “cross-frame” estimation tech-
nique for the CC representation. For the WC representation, our analysis indicates

that a good technique should be based on global pose of the camera instead of inter-



frame motions. In addition to testing with synthetic data, rigorous experiments have
been conducted on a real-image sequence taken by a fully calibrated camera system.
The experimental results have demonstrated good accuracy.

Secondly, we focus on the problem of recognizing hand signs from intensity image
sequences. We present a new framework to recognize hand signs from intensity image
sequences. The framework has two major components: segmentation and recognition.
A prediction-and-verification scheme using attention images from multiple fixations
is presented to segment hands from input images. A major advantage of this scheme
is that it can handle a large number of different deformable and articulated objects
presented in complex backgrounds. The scheme is also relatively efficient since the
segmentation is guided by the past knowledge through a prediction-and-verification
scheme. During the recognition, the system uses multiclass, multidimensional dis-
criminant analysis to automatically select the most discriminating features for gesture
classification. A recursive partition tree approximator is presented to do classification.
The framework has been tested to recognize 28 different hand signs. The experimen-
tal results show that the system can achieve a 93% recognition rate for test sequences

that have not been used in the training phase.
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Chapter 1

Introduction

The goal of a machine vision system is to recover useful information about a scene
from its two-dimensional projections. Early computer vision systems were concerned
primarily with static scenes. Recently, some computer vision systems are being de-

signed to analyze dynamic scenes for different applications.

The input to a dynamic scene analysis system is a sequence of image frames taken
from moving objects. The camera used to acquire the image sequence may also be
in motion. Mounting evidence, accumulated over the past century and especially of
late, leaves no doubt that motion is indeed a fundamental visual dimension like color
and stereopsis [138]. The functional benefits of human image motion processing are

listed as follows.

o Depth reconstruction. The motion of objects can reveal their shapes. Ullman
[181] has an ingenious demonstration of this point: a set of dots is projected

onto a screen. When the dots are stationary, an observer sees merely a screenful
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of randomly distributed dots. When they move, however, the display springs to

life, and the observer sees two cylinders rotating in opposite directions.

o Image segmentation. Related to the problem of depth measurement is the need
to parse the complex pattern of illumination in the optic array into different
physical objects and to distinguish “figure” from “ground”. Motion is eminently
suited for this job because of the mathematical relation between neighboring
points in the optical velocity field at the edges of objects. Points which are
well within the boundaries of a visual object, for example, generally have the
same or very similar velocities between neighboring points whereas this is not

necessarily the case at the boundary of an object in an image.

o Motion in a proprioceptive sense. Gibson [72] suggested that visual motion was
one of the primary sources of information for the moving organism to know
about its own motion in relation to its environment. Early work by Lee and
Anderson [112] measured the importance of optical flow information for pos-
tural control. Standing infants could be made to lose their balance and fall
as a result of movement in the surrounding visual environment. Environmen-
tal visual motion also destabilized the posture of adults, suggesting that visual
motion information can override information obtained from stretch receptors in
the limbs and gravity receptors in the inner ear. Visual motion can also lead to
a profound sensation of self-motion, either as a rotation about a vertical axis or

as a horizontal or vertical translation [27].

o Stimulus to drive eye movement. Ever since the important experiments of Rash-
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bass [155], it has been recognized that the oculomotor pursuit system is driven
by a velocity signal. Rashbass simultaneously stepped a visual target in one di-
rection and initiated a constant velocity motion in the opposite direction. Thus
position information (in the form of a step) was pitted against velocity informa-
tion (in the form of a ramp). Surprisingly, the eye movement system responded
separately to each, generating a smooth eye movement in response to velocity
ramp and an oppositely directed saccade in response to the position step. Later
work has suggested some additional contribution from a visual position encod-
ing system [148], but theoretical discussions of the oculomotor pursuit system

still hinge directly on the notion that the visual system can indeed read velocity.

Broadly speaking, there are two groups of scientists studying motion. The first
group is studying human/animal vision with the goal of understanding the operation
of biological vision systems including their limitations and diversity. The second
group of scientists includes computer scientists and engineers conducting research
in computer vision with the objective of developing vision system. A vision system
with the ability to navigate, recognize and track objects, and estimate their speed
and direction is the ultimate goal of the research. The proposed work falls into the
latter category. We report two pieces of works in this thesis. One is the motion and
structure estimation with transitory sequences and the other one is the recognition

of hand signs.
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1.1 Motion and Structure Estimation from Image

Sequences

Motion estimation is a long-standing problem in computer vision, with many different
applications. A proper formulation of the motion estimation problem requires the
identification of several characteristics of the image acquisition process and the scene,
including: the camera model, the number of cameras, the number of views.

Two distinct approaches have been developed for the computation of motion from
image sequences [3], namely, the feature based approach and the flow based approach.
These two approaches can be further classified based on: 1) The number of images
in each frame: monocular or stereo; 2) Projection model: perspective or parallel
projection; 3) The number of views the system is designed to handle: two-view or

multiple-view.

1.1.1 Feature-based and flow-based motion estimation ap-

proaches

The feature-based motion estimation from image sequences can be divided into two
steps. The first step is to establish feature correspondences for all pairs of consec-
utive image frames in a sequence. The features are a set of relatively sparse, but
highly discriminatory, two-dimensional geometric shapes in the images corresponding
to three-dimensional object features in the scene, such as corners, occluding bound-

aries of surfaces, and boundaries demarcating changes in surface reflectivity. Such
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points, lines and/or curves are extracted from each image. The inter-frame corre-
spondence is then established between these features. The second step is to estimate
motion parameters. Constraints are formulated based on assumptions such as rigid
body motion, i.e., the three dimensional distance between two features on a rigid
body remains the same after object/camera motion. Such constraints usually result
in a system of nonlinear equations. The observed displacement of the 2-D image
features are used to solve these equations leading ultimately to the computation of
motion parameters of the objects in the scene.

Optical flow is the distribution of apparent velocities of movement of brightness
patterns in an image. Optical flow can arise from relative motion of objects and the
viewer. Consequently, optical flow can give important information about the spatial
arrangement of the objects viewed and the rate of change of this arrangement. The
flow-based approach is based on computing the optical flow or the two-dimensional
field of instantaneous velocities of brightness values (gray levels) in the image plane.
Instead of considering temporal changes in image brightness values in computing the
optical flow field, it is possible to also consider temporal changes in values that are
the result of applying various local operators such as contrast, entropy, and spatial
derivatives to the image brightness values. In either case, a relatively dense flow field
is estimated, usually at every pixel in the image. The optical flow is then used in
conjunction with added constraints or information regarding the scene to compute
the actual three-dimensional relative velocities between scene objects and camera.

There is as yet no clearcut evidence recommending one general approach over the

other. The feature-based approach allows a relatively large interframe motion. The
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disadvantages of this approach include: 1) The features are expensive to extract; 2)
The correspondence problem is nontrivial; 3) Features are relatively sparse. On the
contrary, the flow-based approach does not have the above disadvantages, however,
1) it is expensive to compute due to the sheer number of pixels; 2) it can only handle
relatively small interframe motions; 3) it can not integrate long sequences effectively

due to the absence of anchors (features).

1.1.2 Monocular and stereo image sequence

The monocular sequence is a set of images obtained by a single camera. Given a
sequence of monocular images of the scene, the motion and structure of an object can
be estimated by both feature-based approach as well as flow-based approach. The
solutions for structure and motion remain ambiguous with respect to the absolute
value of the distance between the camera and the scene. In other words, structure
and motion parameters are unique only up to a scaling factor. The use of stereoscopy
can provide this additional parameter to uniquely determine depth and hence the

absolute values for the structure and motion parameters.

The fusion of stereo and motion may be effected with different objectives in mind.
Stereoscopic processing may be used to aid motion recovery, or conversely, motion
analysis may be used to establish feature correspondence in stereo image pairs. The
fusion of these two processing modules in human and other biological visual systems

has been detected via neurobiological and psychophysiological investigation [146].
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1.1.3 Perspective and parallel projection

In general, projections transform points in a coordinate system of dimension n into
points in a coordinate system of dimension less than n. Perspective projection is the
fundamental model for the transformation wrought by our eyes, by cameras, or by
numerous other imaging devices. To a first-order approximation, these devices act
like a pinhole camera in that the image results from projecting scene points through

a single point onto an image plane (see Figure 1.1).

\ _(xy.2)

X

Figure 1.1: Perspective projection.

The mathematical equations for a perspective projection are given by:

8

~

< |
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R | 8,
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N

where f is the focal length.
The perspective transformation yields parallel projection as a special case when

the viewpoint is the point at infinity in the z direction. Then all objects are projected
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onto the viewing plane with no distortion of their z and y coordinates. Although
perspective projection is a more precise model, it has its problems. First, when
camera motion is small, effects of camera rotation and translation can be confused
with each other. Second, the shape is computed as relative depth, and it is very
sensitive to noise. These difficulties are especially magnified when the objects are
distant from the camera relative to their size. So, there are still cases where the

parallel projection model is used [8, 178].

1.1.4 Two-view vs. multiple-view

The presence of noise in the image leads to inaccuracy in the resulting estimates of
the object motion parameters. In order to combat the noise, the algorithm needs to
exploit redundancy in the available data to improve the accuracy of the solution. The
over determination of the estimation equations is achieved by using a larger number
of feature points in a two-view case. The alternative is to use a larger number of
image frames. If the interframe motion remains constant, then an arbitrary number
of frames can be used since the number of unknown (motion parameters) is not a
function of the number of the image frames. If the interframe motion is not constant,
which is probably more realistic in the navigation problem where the robot may
constantly need to change direction to avoid obstacles, the problem of preventing
global motion deviation is more important since the error accumulates from each

inaccurate interframe motion.
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1.2 Integration of Transitory Image Sequences

In the case of motion estimation from image sequences (multiple-view), there is a
special case in which the image sequence is transitory. In this thesis, we propose a
new approach to deal with the transitory image sequence. The proposed approach is a
feature based method. Our method uses stereo images and the perspective projection

model. Next, we define the transitory image sequence.

If a system needs to sense a large 3-D rigid scene which cannot be covered by a
single view, the system may actively move and scan the scene [5]. For example, to
automatically build a 3-D map of a floor in a building, a camera system moves from
one room to the next on the floor. To obtain information about all the facets of a 3-D
object, a camera system needs to actively circle around the object or let the object
rotate. In general, during a dynamic sensing process, any component of the scene is

visible only in a subsequence, and thus the resulting image sequence is transitory.

Issues with transitory nature of scene components have mostly not yet been
investigated. Current most of the research deals with non-transitory image se-
quences, and successful improvements have been achieved in this type of fusion
[28, 10, 111, 131, 164, 177]. Experiments for scene construction from transitory image
sequence only started recently. In Cui et al [44], the relative accuracy was reported
from a transitory image sequence, which indicated that the accuracy was not fur-
ther reduced once incoming and exiting feature points are comparable. Tomasi and
Kanade [178] conducted experiments with transitory image sequences and discussed

how to expand the measurement matrix by filling in “hallucinated” projections. The
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results showed that the object structure and camera pose constructed from transitory
sequences “Ball” and “Hand” contained larger error than that from a non-transitory
sequence “Hotel” [178].

Most questions related to the integration of transitory sequences are still open.

Some of them are:

1. With a transitory image sequence, is it still reasonable to expect “the more

images one has, the better the accuracy” as with a non-transitory sequence?
2. How should transitory image sequences be integrated?

3. What representation(s) should one use? World-centered (WC), camera-centered

(CC) or some other representation?

4. What is the asymptotic error behavior from a transitory image sequence? In
other words, how does the error in an estimated object structure and camera

pose change with time (or frame number), for a good estimation method?

5. Are the asymptotic error rates for the method the lowest possible?

6. What kind of accuracy one can reach in a real setup with transitory image
sequences?

The new contributions of our work includes

1. We show that from a transitory sequence it is inherently not possible to get
better estimates with a longer sequence. The later a scene part comes into the
sequence, generally the worse its global accuracy is compared to that in the first

view.
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. We introduce different techniques for two different usages of the results: global
and local(e.g., global corresponds to visual map generation and global pose
determination while local corresponds to obstacle avoidance and object manip-

ulation belong to the latter).

. It is demonstrated that different representations result in very different stabili-
ties. In general, WC is better for a global usage and CC is superior for a local

usage.

. We establish asymptotic error rates with respect to the number of frames, which
indicates how the error estimate evolves with time as well as how to minimize
the pace of error accumulation. Some concise expressions have been derived in
terms of asymptotic error rate for different representations, processing methods,

and image sequence types.

. We establish that the asymptotic error rates are in fact the lowest possible based

on the Cramér-Rao error bound.

. In order to provide actual accuracy with a real system setup, careful experiments
have been conducted with a fully calibrated camera system. The algorithm
includes feature selection, stereo matching, temporal matching and tracking,

3-D structure integration, and motion and pose estimation.
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1.3 Interpretation of Human Action

It has to be admitted that the human visual system is capable of carrying out a wide
variety of image analysis and interpretation tasks with what appears to be utmost
ease. You walk off the plane after a long boring travel, and sight your friend near the
gate who is waving his hand to you. You lighten up a little after seeing his smiling
face. There are three problems that your visual system solves: (i) it identifies the
objects on the basis of their shapes; (ii) it detects their movement, if there is any;
(iii) it recognizes the motion patterns, e.g., hand waving and smiling.

There has been significant interest in the human action recognition from time-
sequential images. Model-based recognition consists of the recognition of objects or
motions directly from the motion information extracted from the sequence of images.
The knowledge about the object or motion is used to construct models that will serve
in the recognition process. There are two main steps in this approach. The first
consists of finding an appropriate representation for the objects or motions, from the
motion cues of the sequence, and then organizing them into useful representations.
The second step consists of the matching of some unknown input with a model.

The work on interpretation of human motion can be classified into three cate-
gories according to their applications, that is, interpretation of facial expressions,

interpretation of hand gestures, and recognition of movements of other body parts.

e Facial expression

The human face has attracted much attention in several disciplines, including

psychology, computer vision, and computer graphics. Psychophysical investi-
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gations clearly indicate that faces are very special visual stimuli. Psychologists
have studied various aspects of human face perception and recognition [30].
They have also examined facial expression - the result of a confluence of volun-
tary muscle articulations that deform the neutral face into an expressive face.
The facial pose space is immense. The face is capable of generating on the
order of 55,000 distinguishable facial expressions with about 30 semantic dis-
tinctions. Studies have identified six primary expressions that communicate

anger, disgust, fear, happiness, sadness, and surprise in all cultures [58].

Automatic facial recognition had an early start in image understanding, but
work on the problem has been sporadic over the years, evidently due to the
difficulty of extracting meaningful information from facial images. Facial clas-
sification systems based on measurements derived from interactively selected
fiducial points (eye and mouth corners, nose, top of head, etc.) go back to the

early 1970’s [99]. Recent works concentrate on the deformation of facial features

[118, 175, 199].

Hand sign

Humans use gestures in daily life as a means of communication (e.g., waving
hands to say good bye to a friend, pointing to an object to bring someone’s at-
tention to the object etc). The best example of communication through gesture
is given by sign language. American sign language (ASL) incorporates the en-
tire English alphabet along with many gestures representing words and phrases

[41], which permits people to exchange information in a nonverbal manner. It
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was shown that requirements in precision and resolution for ASL are relatively

low as compared to greyscale images [167].

¢ Body movement

Body movement is a broad term. There are several ways to view this task. The
first one is to recognize the action performed by a person in a scene, among
a database of human action models. The second way is to be able to recog-
nize the different body parts like arms, legs, etc. throughout a sequence, using
motion. The third way is to define motion as a sequence of object configura-
tions or shapes through time. The knowledge of the shape and motion of an
object, in this case, is used to guide the interpretation of an image sequence in
order to analyze the motion between frames, to determine the most plausible
configuration of the body or to recognize and label different parts of the body.
This approach has been used mostly with humans, and sometimes is called the

tracking of human motion.

The work presented in this thesis focuses on the hand sign recognition.

1.4 Hand Sign Recognition

The evolution of computer technology has seen a corresponding evolution of com-
puter input and human-machine interaction technologies. At first, humans had to
prepare punch cards and paper tapes. Later, the machine was capable of reading

keyboards and providing “real time” feedback on tele-type terminals. Recently, ad-
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vances in memory and computation technology have permitted machines to have
two-dimensional pointing devices such as mice. The next step is to build machines
which can interact with the human users in a natural way. That means that machines
not only need to understand speech but also gestures. One of the most general def-
initions from the Lezis dictionary says that gestures are “movements of body parts,
particularly the arms, the hands or the head conveying, or not conveying, meaning”.
Among them, hand gestures are the most important, having different sign languages
such as American Sign Language.

Since its first known dictionary was printed in 1856 [29], American Sign Language
(ASL) is widely used in the deaf community as well as by handicapped people who are
not deaf [22]. The general hand sign interpretation needs a broad range of contextual
information, general knowledge, cultural background and linguistic capabilities, which
are beyond the capabilities present-day computer. In our current research, we extract
a set of hand gestures which have meaning in human communication. Twenty-eight
different signs are extracted from [23], which are illustrated in Fig. 1.2. These hand
signs have the following characteristics: 1) they represent a wide variation of hand
shapes; 2) they include a wide variation of motion patterns; 3) these hand signs are
performed by one hand; 4) recognition of these signs does not depend on contextual
information. The gestures which require the hand to perform in a certain environment
or point to a specific object are excluded.

In this thesis, we present a new vision-based framework which allows the computer
to interact with users through hand signs. Vision-based analysis of hand signs is one of

the most natural ways of constructing a human-computer gesture interface since it is
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(22) (23) (24) (25) (26) (27)

Figure 1.2: The twenty eight different signs used in the experiment. (1) sign of “angry”;
(2) “any”; (3) “boy”; (4) “yes”; (5) “cute”; (6) “fine”; (7) “funny”; (8) “girl”; (9) “happy”;
(10) “hi”; (11) “high”; (12) “hot™; (13) “later”; (14) “low”; (15) “no”; (16) “nothing”;
(17) “of course”; (18) “ok”; (19) “parent”; (20) “pepper”; (21) “smart”; (22) “sour”; (23)
“strange”; (24) “sweet”; (25) “thank you”; (26) “thirsty”; (27) “welcome”; (28) “wrong”
(Bornstein and Saulnier 1989).



17

based on the major way humans perceive information about their surroundings. How-
ever, it is also the most difficult one to implement in a satisfactory manner because
of the limitations in machine vision today. The approach faces two difficult problems:
1) segmentation of the moving hand from a sometimes complex background, and 2)
analysis and recognition of hand motion. In order to avoid the segmentation problem,
some of the existing systems rely on markers or marked gloves (e.g. [38, 54, 168]).
The others simply assume a uniform background (e.g. [19, 46, 53]).

The patterns of hand motion appearing in our gesture vocabulary are extremely
complicated. It can be a local deformation such as the change of the hand posture.
It can also be a global motion which means the change of the hand position, or it
involves both local and global motion. Many existing systems use simplified models
to characterize hand motion such as 2D fingertip trajectory [54] and 3D joint angles
[110]. These motion models are hand-crafted by algorithm designers. The system
does not have the ability to learn models, neither can it improve or alter the model in
case the model does not fit. This results in a brittle system, since a model cannot fit
in all the cases in reality and typically the system cannot tell whether the model will
fail given an unknown input. Another problem of the existing approaches is that they
typically isolate temporal understanding from spatial understanding. For example,
a system can probably tell something is moving, but cannot tell what is moving.
Isolation of temporal understanding from spatial understanding makes it impossible
to apply the system to unstructured (unknown) environments.

In this thesis, we present a new general framework to learn and recognize hand

signs. The new contributions of this framework are listed as follows.
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1. Segmentation. A prediction-and-verification scheme using attention images
from multiple fixations is presented to segment hands from complex back-
grounds. A major advantage of this scheme is that it can handle a large number
of different deformable objects presented in complex backgrounds. The scheme
is also relatively efficient since the segmentation is guided by the past knowledge

through a prediction-and-verification scheme.

e Prediction. A hierarchical quasi-Voronoi diagram which organizes training

attention images for prediction of the segmentation masks.

e Verification. A learning-based function approximation scheme to verify

the segmentation result.

2. Recognition. We propose a new framework in which Motion understanding is

tightly coupled with spatial recognition.

o Automatic feature selection. In the framework, the discriminant analysis
is used to automatically select the most discriminating features (MDF') for
recognition.

e Inference and generalization. In practice, the system is unable to learn

unlimited number of samples. An interpolation scheme is introduced to

generalize to other variations from a limited number of learned samples.



Chapter 2

Feature-Based Approaches for

Motion Estimation

In this chapter, we review the motion estimation problem which deals with observing
some features on the surface of an object in the environment at different points in
time and using this information to derive the three dimensional motion and structure
of these objects. Let us assume that we have one or more cameras that are moving
continuously in a static environment and following some unknown trajectory. We will
consider the images obtained at a number of time instants to,t,,...,¢,-; and assume
that we can extract from these n images a number of features and match them between
the images. We are interested in the set of finite rigid displacements D; that bring the
camera from its position and orientation at time ¢; to its new position and orientation
at time ¢,4,.

19



20

>
X".Y’) l

(X',)"»Z')
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Figure 2.1: Basic perspective geometry. Lower case letters refer to coordinates in the
object space and upper case letters refer to coordinates on the image plane. f is the focal
length.

2.1 General Problem

The basic geometry of the two view case is sketched in Figure 2.1. The object-
space coordinates are denoted by lowercase letters and the image-space coordinates
are denoted by uppercase letters. The optical center of a pin-hole camera coincides
with the origin of a cartesian coordinate system (oryz) and the positive z-axis is the

direction of view. The image plane is located at a distance equal to the focal length f



21

(which is assumed to be unity) from o along the direction of view. Using a perspective
projection model, a point p = (z,y, 2) on the surface of an object is projected at a

point P = (X,Y) on the image plane, where

(2.1)

Given N corresponding features (points, lines, corners, conics etc.) on the same
rigid object and our problem is to infer motion and structure of this rigid body with

respect to the imaging system. In general, there are three different cases:

1. 2D-to-2D Correspondence: Here, N corresponding features are specified on the
2D image planes either at two different times for a single camera or at the same
instant of time but from two different cameras. In the former case, the problem
is to determine 3D motion and structure of the rigid object and in the latter
case, the problem is to determine the relative orientation and location of the

two imaging cameras.

2. 3D-to-3D Correspondence: We are given 3D locations of N corresponding fea-
tures at two different times and we need to estimate the 3D motion of the rigid
body. Thus the problem has application in either motion estimation using 3D

information which can be obtained by stereo or other range-finding techniques.

3. 2D-to-3D Correspondence: In this case, we are given correspondence of N fea-

tures (fi, f!) such that f; are specified in three dimensions and f; are their
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projection on the 2D image plane. The problem is to find location and orien-
tation of the imaging camera. This has applications in either calibration of a

single camera or passive navigation through known 3D landmarks.

2.2 Motion Model

Let the two views be taken at ¢, and ¢, respectively. Consider a particular physical
point on the surface of a rigid body in the scene. Let

(z,y,z) = object-space coordinates of the point at time ¢,

(¢',y’, 2') = object-space coordinates of the point at time t,.

It is well known in kinematics that

_ q .-
z' z
/ =
y Ry |+T
z' z
Tir Ti12 T13 T
= T21 To2 T23 y +T (2.2)
T31 T32 T33 2
L 4L

where R is a 3 x 3 orthonormal matrix, i.e., R*'R = RR' = I (I is a 3 x 3 identity
matrix) and det(R) = 1, T is a 3 x 1 vector. Rotation can be specified in a number of
equivalent ways. For example, R can be specified as three successive rotation around

the z—, y—, and z—axis, by angles 6, 1, and ¢, respectively, and can be written as a
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product of these three rotations

cosp sing 0 (cosz[) 0 —siny 1 0 0

R=| —sing cosp 0 0 1 0 0 cosf sinf |- (2.3)

0 0 1 sin 0  cosy 0 —sinf cos()J

Alternatively, the rotation matrix can be expressed in terms of a rotation axis,
n = [ng, ny,n.]', and a rotation angle, ¢, about i. The rotation matrix can be written

as
-

(2 —1c+1 ngn,c—n,s nn,c+ nys

(2.4)

R= nynzc+nys (n2-1)c+1 nyn.c—n;s

n.nzc—nys n.,nge+ngs (n2—1)c+1 ]

L

where ¢ = (1 — cos®) and s = sing.

A rotation around an axis with direction cosines (n;,nz,n3) and rotation angle ¢

can also be represented by the unit quaternion

q=(s;l,m,n) = [cos%;nlsing,ngsing,ngsing] (2.5)

specifically

(0;p;) = q(0; pi)q" (2.6)
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where * denotes complex conjugation. In terms of g, the rotation matrix becomes

s2+ 12 —m? — n? 2(Im + sn) 2(In + sm)
R= 2(Ilm + sn) s2— 12+ m?—n? 2(mn — sl) . (2.7)
2(In — sm) 2(mn + sl) s2— 12 —m? 4 n?

2.3 2D-to-2D Correspondence

Consider the problem in which a point p; = (z;, i, z:) on a rigid body moves to a point
p. = (z!,y!, 2!) with respect to a camera fixed coordinate system. Let the perspective
projection of p; be P; = (X;,Y;,1) and that of p} be P/ = (X!,Y/,1). Due to the rigid

body motion, p; and p! are related by

p;=Rpi+T (2.8)

where R and T are the rotation and translation respectively. Given N correspondences
(P, P!),1 =1,2,...,N, it is impossible to determine the magnitude of translation. If
the rigid body were two times farther away from the image plane, but twice as big, and
translated at twice the speed, we would get exactly the same two images. Therefore,
the translation T and object-point ranges (z;) can only be determined to within a

global positive scale factor.

Roach and Aggarwal [158] proposed an algorithm that solves for motion pa-
rameters directly from nonlinear equations. The equations that relate the three-

dimensional coordinates of a point (z,y,2) and its image plane coordinates (X,Y)
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are

(T — 2o) + r12(y — Yo) + 713(z — 20)
ra1(z — o) + r32(y — Yo) + r33(2 — 20)
ra1(Z — o) + r22(y — Yo) + r23(2 — 20)
r31(2 — Zo) + r32(y — Yo) + r33(2 — 20)°

X=F

Y =

(2.9)

where F' is the focal length, (zo,yo,20) is the projection center and ryy,rs,...,7 33
are functions of (8,v, ¢), as shown in equation (2.3). Roach and Aggarwal showed
that five points in two views are needed to recover these parameters. The five-points
algorithm has a very long history [65]. The problem was solved in 1913 by Kruppa
[109]. In [158], Roach and Aggarwal related the number of points to the number
of equations available for the solution of 3-D coordinates and motion parameters as
follows. The global coordinates of each point are known so the five points produce
15 variables. The camera position and orientation parameters (xo, yo, 20,9, ¥, ¢) in
two views contribute another 12 variables yielding a total of 27 variables. Each
3-D point produces two projection equations thus forming a total of 20 nonlinear
equations. To make the number of unknowns equal to the number of equations, the
six camera parameters of the first view are set to be zero and the Z-component of
one of the five points is set to be an arbitrary positive constant to fix the scaling
factor. An iterative finite difference Levenberg-Marquardt algorithm was used to
solve these nonlinear equations. Nonlinear equations generally have to be solved
through iterative methods with an initial guess or through a global search. Searching
is computationally expensive. Also the iterative methods may diverge or convert to

a local minima.
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(0}

Figure 2.2: Constraint on the motion parameters derived from point matches.

Given eight or more point correspondences, a linear algorithm can be derived [120,
179]. As shown in Figure 2.2, the 3-D point P has images p and p’ at two consecutive
time instants. From the figure, it is clear that p and p’ form a correspondence if
and only if the three vectors PO, OO’ and PO’ are coplanar. The constraint can be

written in the coordinate system of the first camera as

p (T x Rp) = 0. (2.10)

Introduce the antisymmetric matrix G:

G=| 14 o -1 (2.11)
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Matrix G is such that Gz =t x z for all vectors z. Let E = GR, equation (2.10)

can be rewritten as

(p)Ep=0 (2.12)

Dividing both sides of equation (2.12) by the positive quantity 22’ (i.e., dividing p by

z and p’ by 2’) gives

lx' Y’ 1]E Yy | =0 (2.13)

1

e -

Equation (2.13) is linear and homogeneous in terms of nine unknowns of elements of

E, €i;=1,.9- Given N correspondences, we can write equation (2.13) in the form

B[€1,€2,63,€4,€5,86, €7, €s, 89]t =0. (214)

With eight point correspondences, if the rank (B) = 8, E can be uniquely determined

to within a scale factor. Once F is determined, R and T can be obtained.

The existing linear algorithms essentially consider noise-free data. High sensitivity
to noise is reported in [179] [63]. To handle noise, Yasumoto and Medioni [200] used
a regularization approach. Under the assumption of small rotation angles, rotation

matrix R is expressed by

R=| q 1 -q (2.15)
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where Q;, (,, 2, denote the rotation angle around the z, y and z axis, respectively.

The objective function is
Sllew = G:)2 + (B: = Bi)?] + M2 + Q2 4+ Q2 (2.16)
1=1

where the first and second term are the square of the difference between the predicted
and computed displacement, and the third term is the regularization function. A
consequence of their approach is that the estimated motion parameters are biased
towards nonrotational interpretations if the regularization factor is not zero. In their
approach, the search for the global minimum of the objective function in motion

parameter space is computationally expensive.

Weng et. al. [189] used least squares techniques to make use of the redundancy in
the data to combat noise. The algorithm first solves for the essential matrix £. Then
the motion parameters are obtained from E. Finally the spatial structure is derived
from the motion parameters. All the steps of the algorithm use the redundancy in the
data to combat noise. The linear equations in the linear algorithms [179] [120] [203]
are converted to least squares minimization problems. Due to the coupling between
different parameters in the motion vector, the large magnitude of translation is needed

to obtain stable estimation of translation direction and structure of the scene.

If the rank (B) < 8, the above linear algorithms cannot be used. However, if
rank (B) = 5, 6 or 7, then the linear equations (2.14) can be solved along with the
polynominal constraints on the components of matrix E [88] [90]. Specifically, E

is equal to a skew-symmetric matrix post multiplied by a rotation matrix only if
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{ei}i=12,...9, satisfy the following three constraint equations. Let €ii=12,3 be the ith

row of E, then

63'(61 X€2)=0
(lle2ll® + lleal|® = lleal?)(e2 - €3) + 2(e1 - €3) = 0

lleall® = (lle = 2II* = lle]I*)? + 4(ex - €2)*. (2.17)

Thus we get three polynomial equations in {e;}i=12,. 9 of degree 3, 4, 4, respectively.

2.4 3D-to-3D Correspondences

2.4.1 Point features

Suppose we are given N corresponding points (p;, p!) which obey the relationship of

p.=Rp;+T (2.18)

The problem is: given (2.18), find R and T'. The (p;, p.) are 3D coordinates of points
on the surface of the rigid body in motion. It is well known that three noncollinear-
point correspondences are necessary and sufficient to determine R and T uniquely.
Equation (2.18), when expanded represents three scalar equations in six unknown
motion parameters. With three point correspondences, we will get nine nonlinear
equations. Iterative methods can be used to obtain the ‘best’ fits of the six unknowns.

However, it is possible to get stuck in the local minima.
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Blostein and Huang [20] used linear algorithms by observing that equation (2.18)
is linear in components of R and T. Given four correspondences, (p;,p!)i=1,234, We

have the following linear equation:

Pic Py P12 1 ST Pz
P2z P2y P2 1 T12 Paz
= . (2.19)
P3z P3y DP3: 1 T13 ng
P4ar Pay P4z 14 t pfi:r:

Similar equations can be obtained to solve (r21, 722,723, 31, 32, '33, t2,£3). The linear
method uses four points instead of the minimum of three required for uniqueness.
To overcome the problem of supplying the linear method with this extra point corre-
spondence, a “pseudo-correspondence” can be artificially constructed on the basis of

rigidity of the body.

2.4.2 Motion from stereo images

A common method for determining the three-dimensional structure of the surround-
ing environment is through stereo vision, and in fact, the human stereo system is
remarkably adept at this computation, under a wide variety of conditions. Stereo
vision can be characterized by three steps as shown in Figure 2.3: 1) The point in
one image corresponding to the projection of a point on a surface; 2) The point in
the other image corresponding to the projection of the same surface point; 3) The

difference in projection of the corresponding points is used, together with estimates
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Figure 2.3: Stereo triangulation and elongated uncertainty shape. The true point can lie
anywhere inside the shaded uncertainty region.

of the parameters of the imaging geometry to determine a measure of the distance
to the surface point. Marr and Poggio have proposed a feature-point based model
of human stereopsis [126]. A computer implementation of their algorithm was then

developed and tested [78, 79].

In the problem of motion from stereo images, (p;, p)i=1,...n are measured by stereo
triangulation. Since the measurements are subject to error, one prefers to work with

more than three point correspondences. In this case, R and T can be obtained as a
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solution to the following least squares problem:

N
. - . )
W12 P = (Bopi + T (2.20)
subject to the constraint that R is a rotation matrix. where || - || represents the

Euclidean norm. Such a constrained least square problem can be solved with linear

procedures using quaternions [87] or by singular value decomposition [8].

One of the most important advantages of the closed-form solutions is that the cor-
responding algorithms are fast and the solutions are guaranteed. However, the least
squares solution is not optimal in that it equally trusts all components with different
reliabilities. In the three-dimensional position of a point determined by a typical
stereo triangulation, the depth component is much less reliable than the lateral com-
ponents, as shown in Figure 2.3. Matthies and Shafer [131] studied some related issues
‘ of error modeling in stereo navigation. They modeled the error of a three-dimensional
point, constructed through stereo triangulation, by using a three-dimensional random
vector with a Gaussian distribution (called an ellipsoidal model). Given a set of cor-
responding three-dimensional points {p;} before motion and {p!} after motion, the
interframe motion represented by a rotation matrix R and a translation vector T' were

determined to minimize

N
> (Rpi + T — p})'Vi(Rpi + T — p})) (2.21)

=1

where the weighting matrix V; is the inverse of R[';;R™' + I';; (I' with a subscript
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denotes the error covariance matrix of the variable represented by the subscript). A
closed-form solution to this problem was not found. They iteratively minimized (2.21)

using a least squares solution as an initial guess.

Kiang, et. al. [101] replaced the matrix V; in (2.21) by a scalar w?. The dis-
tribution of error in the three-dimensional position of a point was simplified into
an uncertainty line segment. From a least squares solution, a few iterations gave im-
proved motion parameters. Moravec [134] has also used a simpler scalar weight, which
is inversely proportional to the depth of the point. A scalar weight indiscriminately
treats the uncertainties in different components. This implies that either reliable com-
ponents are undertrusted or unreliable components are overtrusted. Furthermore, the

correlation between errors in the components of a three-dimensional point cannot be

taken into account by the scalar weight.

Weng et. al. [191] also used matrix-weighted least squares. They presented a
closed-form approximate matrix-weighted least squares solution for motion parame-
ters from three-dimensional point correspondences, which minimizes (2.21) with the
weighting matrix V; simplified so that it does not vary with the unknown rotation
matrix R. The result of the algorithm approximates the optimal solution if the rota-
tion is small. With large rotation, the result can be used as a better initial guess for

optimal iterative approach.
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Figure 2.4: Imaging geometry for 2D-to-3D correspondence problem. A point p in co-

ordinate system ozyz is imaged at location P’ on the image plane which is specified in

coordinate system o'z’y’z’.

2.5 2D-to-3D Correspondences

This situation arises when each of the features is 3D and their corresponding features
are 2D. If 3D locations of features are known along with their projection on the
camera plane which is at unknown location, then the algorithms described in this
section allow us to determine the attitude, i.e., the location and the orientation of

the camera (known as the camera calibration problem).

As shown in Figure 2.4, consider two coordinate systems. oxyz is a coordinate
system in which the 3D point features are located. Thus p; are points in this co-
ordinate system with coordinates (z;,y;, 2;). The camera is referenced to the other

1o

coordinate system (o'z’y’z’). Image coordinates on the camera plane are obtained by

perspective projection and denoted by (X’,Y’). Thus the image of point p; is at P/
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whose coordinates are given by

.~

Y/ =

N & .”\I.ET‘\

.~

(2.22)

Coordinate system ozyz is obtained by a rotation R and translation 7" of the coor-
dinate system o'z'y’z’ and the goal in camera calibration is to determine R and T,

knowing the N point correspondences (p;, P!)i=1,..N-

The 3D coordinates of p! are related to those of p; by

z’ T
y | = R y |+ T. (2.23)
z' z

Combining equations (2.22) and (2.23), we get

ruT; + 2y + i3z + 4
ra1T; + r3y; + razz; + i3
, TaZ; + 122y + 132 + 1

Y/ = } (2.24)
T31T; + T32yi + T33zi + i3

X! =

There are six unknowns (three for rotation and three for translation) and therefore
with three point correspondences, we have enough (i.e. six) equations. Unfortu-
nately, these are nonlinear transcendental equations, since r;; are related to the three
unknowns of the rotation matrix in a transcendental manner. Iterative methods are

required to solve these nonlinear algebraic equations. In practice, the data (i.e. p;
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and P/) are known only approximately and therefore one may use more than three
point correspondences. In such a case, the following nonlinear least squares problem

may be solved iteratively:

N
' i i+t i i i+t
[Z(X'{_Tnl‘z + gy + i3z + 6 2, yr_TaZit rayi+rezith

; )?] (2.25)
r31T; + r32y; + T332 + U3 31T + r32yi + T332 + i3

min
w.r.t.R,T =

subject to R being a rotation matrix. The disadvantages of these approaches is that
unless one starts with a good initial guess, the iterative procedure may not converge

to the right solution.

If three nonlinear point correspondences are given, then without loss of generality

we can assume that three points lie in the plane z = 0. Then (2.24) becomes

™ + Ty + 4
ra1&; + T3y + i3
) _ TaZi +rayit+t

P oraTi +rayi + s

X! =

(2.26)

Thus the three point correspondences give six linear and homogeneous equations in
nine unknowns 71y, 712, 721, 22, 731, 32, t1, L2, 3. Assuming t3 # 0, we can divide by 3,

to get six linear equations in eight unknowns

Til Ti2 T21 T22 T31 T32 b1 i

Additional constraints on {r;;} can be obtained based on the definition that R is a
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rotation matrix as

r T2 T r r T
(P + () + (2 = (P + (P + ()
3 3 3 3 3 3
T11,,T12 T21,,7T22 T31y,732y _

Thus we have six linear and two quadratic equations in eight unknowns. According
to Bezout’s theorem [184], the maximum number of solutions (real or complex) is
four, assuming that the number of solutions is finite. Solutions can be obtained by
computing the resultant which in this case will be a fourth-degree polynominal in one

of the unknowns.

With four coplanar point correspondences, (2.26) yields eight linear homogeneous
equations in nine unknowns. If this system of equations is nonsingular, R, T can be

obtained uniquely.

If four or five point correspondences are known, then one can either solve a linear
least squares problem or use the above method by taking three point correspondences

at a time.

If six point correspondences are known, then (2.26) gives twelve linear homoge-
neous equations in twelve unknowns {r;;}; j=1,..3, {ti}i=1,...3. R, T can be determined

uniquely, if the system is nonsingular.
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2.6 Motion from Long Sequences

In the previous section, we have concentrated on motion/structure determination
using only two time instants or frames. This is sufficient for some applications (e.g.,
passive navigation, pose determination, camera calibration), but not for others (e.g.,
motion prediction). For motion prediction and general understanding, it is necessary
to work with longer image sequences. Furthermore, using longer image sequences is

potentially a way of combating noise in the data.

2.6.1 Kalman filter

Broida and Chellappa [28] considered the case of a two-dimensional object undergoing
one-dimensional motion. They assume that the object structure is known and attempt
to recover the motion parameters. The unknown model parameters are represented
as a vector:

[zc, zc, zc, ¢, pl, p2, w]' (2.28)

where (zc, z¢) is the location of the center of mass of the object, (&c, z¢) is the object
translational motion, pl and p2 are unknown phase angles of moment arms r1 and
r2 that connect the two feature points to the center of mass. Here rl1 and r2/r1 are
assumed known. The differential equation describing unforced motion is written in

terms of the above vector as:

z(t) = [zc,0, z¢, 0, w, w, 0] (2.29)
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with arbitrary initial conditions zc(t), z¢(t), p1(t), and p2(¢). This system yields the
following state equation:

z(k +1) = F(k)z(k). (2.30)

The measurement model is given by

X1 = L[zc+ rlcos(pl)]/[zc + rlsin(pl)] = hl[z(k)]

X2 = L{zc+ r2cos(p2)]/[z¢c + r2sin(p2)] = h2[z(k)] (2.31)

where X1 and X2 are the images of the two feature points and L is the focal length

of the sensor. The vector representation is given by

X(k) = [X1(k)X(2(K)]t = h[z(k)] + n(k) (2.32)

where h[z] = [h1(z)h2(z)] and n(k) is the term corresponding to zero mean, Gaussian,

spatially correlated, and temporally white noise.

The above formulation is then used to design an iterated extended linear Kalman
filter that solves for the state variables-in this case the translation and rotation pa-

rameters.

Ayache and Faugeras [10] also used an extended Kalman filter to deal with noisy
stereo image sequences. An observation z that depends on a parameter a in a non-

linear fashion that can be expressed as a relation

f(z,a) =0. (2.33)
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Assume that the observation z is corrupted with noise which can be modeled as an

additive zero mean Gaussian noise:

r=1'+¢ (2.34)

with E(¢) =0 and E(ee') = A.

The problem is, given a number of stereo observations z; and start with an initial
estimate ap of a and its associated covariance matrix Sy = E((do — a)(ao — a)t),
the Kalman filtering approach can deduce recursively an estimate a, of a and its
covariance matrix S, = E((a, — a)(a, —a)') after taking into account n observations.

The a, is the parameter vector that minimizes the criterion:

(¢ — 0)'Sg " (a — @o) + D _(y: — Mia)' W' (y: — Mia) (2.35)
=1
where
o af(xiva)
Mi = Oda
_ 0f(zina) , f(zira)
W, = o2 A £ (2.36)

2.6.2 Other approaches

For a linear problem, theoretically, the result of Kalman filtering is the same as that
of a batch method. However, for a nonlinear problem, the result of Kalman filtering

is not as good. The key problem with Kalman filtering for the nonlinear problem is
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that the system Jacobiaan matrix for each old observation cannot be used for future
observations. This is a fundamental structure of sequential processing. To see that
clearly, we consider a time-invariant problem y = f(m) + 6, where the parameter to
be estimated dose not vary with time and the noise is white. In stead of minimizing
the desired objective function, ¥, [y; — fi(m)]?, the iterated extended Kalman filter
minimizes

n m)
> lyi = Ji(im)? Z[y. )m]2 (2.37)

i=0
where y; and f;(m) are the components of y and f(m), respectively, and (") is
the sequentially estimated parameter vector based on the first ¢ observations. For
small 7, () has a large error since just ¢ observations are available. Therefore, J;(m)
evaluated at (") gives a system matrix that is evaluated far from the true parameters.
This results in inaccurate system equations. Once those inaccurate system equations
are generated, they are included in the objective function (2.37), further preventing
the estimated parameter m from approaching the correct parameters while new data

are obtained.

To overcome the above problems, Cui et. al. [45] have proposed a recursive
batch approach to deal with long image sequences. Using batching processing, m(")
in (2.37) is replaced by m, which takes all the observations into account, instead of
just the first ¢ observations. Computationally, when all observations are processed
in a batch fashion, the modification of parameters is reliable, and the system matrix
of every observation is updated at each iteration. In other words, with a sequential

algorithm, the contribution or influence of the later observations to the evaluation of
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the system matrices for the earlier observations is neglected. In order to achieve good
performance without suffering from excessive computational cost, a recursive-batch
approach is used. In this approach, the observation sequence is processed in relatively
small batches. For each batch of data, estimates are determined in a batch fashion
from old estimates and the current batch of data. The approach is recursive because
the processing step is repeated for each batch of data and the newly estimated result

depends on the previous result.

Tomasi and Kanade [178] have presented a factorization method to recover shape
and motion from image sequences. Assume P feature points are tracked over F
frames in an image stream. The trajectories of image coordinates are {(us,,vs,)|f =
l,....,F,p = 1,..., P}. Write the horizontal feature coordinates u, into an F x P
matrix U with one row per frame and one column per feature point. Similarly, an
F x P matrix V is built from the vertical coordinates vs,. The combined matrix of
size 2F x P

W =[=] (2.38)

is called the measurement matriz. The rows of the matrices U and V are then regis-

tered by subtracting from each entry the mean of the entries in the same row:

Ufp = Ufp — Ay

Vip = Vfp — by (2.39)
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where

1 P
as = 75;::1%

1P
by=—S vy (2.40)
P o
This produces two new F x P matrices U = [u},] and V = [v},]. The matrix
-
[ (.41

is called the registered measurement matriz. Without noise, the registered measure-
ment matrix W is at most of rank three. With noise, the best possible shape and
rotation estimate is obtained by considering only the three greatest singular values
of W, together with the corresponding left and right eigenvectors. The approach is

only applicable to orthographic projection.



Chapter 3

Transitory Image Sequences,
Asymptotic Properties, and
Estimation of Motion and

Structure

If a system needs to sense a large 3-D rigid scene which cannot be covered by single
view, the system may actively move and scan the scene [5]. For example, to auto-
matically build a 3-D map of a floor in a building, a camera system moves from one
room to the next on the floor. To obtain information about all the facets of a 3-D
object, a camera system needs to actively circle around the object or let the object
rotate. In general, during a dynamic sensing process, any component of the scene is
visible only in a subsequence, and thus the resulting image sequence is transitory.

44
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A transitory image sequence is one in which no scene element is visible through
the entire sequence. When a camera system scans a scene which cannot be covered by
a single view, the image sequence is transitory. This chapter deals with some major
theoretical and algorithmic issues associated with the task of estimating structure

and motion from transitory image sequences.

3.1 Basic Concepts

We consider a rigid scene and a sensing system (we will call it camera system). They
undergo a motion relative to each other. No matter which is actually moving, or
both are moving, what we need to consider for the kinematics here is just the relative
motion between the two.

We first define the system of reference. Because we are considering two entities:
the scene and the camera system, it does not help us to place the system of reference on
any object other than these two. If the system of reference is placed on the scene, the
representation with respect to this system is called world-centered (WC) (also called
object-centered). If the system is placed on the camera system, the representation is
called camera-centered (CC). Fig. 3.1 shows these two representations. In the WC
representation, the camera is moving with respect to a static scene, while in the CC
representation, the scene is moving relative to a static camera. To be specific in
discussion, we say that the scene is static and camera is moving. Thus, the world-
centered reference system is fixed (with the scene) and the camera-centered reference

system is moving (with the camera).
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WC
E:,-,- N = N ’
b8 :
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_’m N ____'——-' —- radd : )——' - -

(a) (b)

Figure 3.1: Two systems of reference: (a) world-centered and (b) camera-centered.

A view u of a 3-D feature point z is a 2-vector (two dimensional vector) in the
monocular case and a 4-vector in the stereo case (left and right views). With random
error in the image measurement u, the 3-D position of the point  determined from
u becomes a probability distribution whose extent can be characterized by its error
covariance matrix ;. The covariance matrix of a 3-D point from a monocular view

can be represented by

0 0 o

where, o3 is an extremely large number or infinity and the orthogonal matrix H spec-
ifies the orientation of the major axes of the covariance. By using a covariance matrix
also for monocular view, we can treat monocular and multi-ocular cases in a unified
way. Our analysis is applicable to both perspective and orthographic projections. As
a notation, we write a small perturbation of a vector v by ¢, and the error covariance
matrix of a vector v by I',,.

First, we examine the error from determination of the pose m of a camera system
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in a system of reference, where p is a 6-vector. For example,

m= (axaoyaaz,l’mpyapz) (3°1)

where p;,p,,p. specifies the position of the camera projection center and 6,,0,,0,

specify the orientation of the pose represented by a rotation matrix

_ . 1 -
1 0 0 cosf, 0 sind, cosf, —sinf, 0
R(0:,0,,6:) = | 0 cos 0. —sind, 0 1 0 sinf, cosf, 0
0 sinf, cosd, |- sinf, 0 cosé, 0 0 1

(3.2)

The pose is estimated from z, a set of 3-D points, represented in that reference
system and u, their image observations in the camera. Therefore, the pose is a

function of z and u: m(x,u). We can express the error in m in terms of that in z

and u:
om om
5m = —8?5, + a—uau (33)
and for its covariance matrix:
Om_ Om* Om_ Om'
Pn =525 Y 3a " u (34)

assuming that the correlation between z and u is negligibly small.

Next, we investigate the error in determining 3-D position of a set of 3-D points

y visible by a camera system whose estimated pose is m. These points in y have
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Figure 3.2: Transitory and non-transitory sequences. (a) non-transitory. (b) simple tran-
sitory. (c) general transitory.

been viewed as a set of image points v. The estimated 3-D position of points y in the
above system of reference is then a function y(m,v). We can express the error in the

estimated y by that of m and v as

%y s+, (3.5)

%= 5 v

and for its covariance matrix:

t t
_ v o oy Oy

Ly = 5 am T 50 v 90

(3.6)

assuming that the correlation between error in m and v is negligibly small. The above
equation indicates that the error covariance of the 3-D points has two components,
one is caused by the error in the pose estimate, the other results from error in the

feature measurements.

Now, we use the above result to analyze pose determination from = and the use
of estimated pose m to determine y. We consider two cases. (i) ¢ and y correspond

to the same set of scene points, as shown in Fig: 3.2(a). Thus, u and v are the same
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n (3.3) and (3.5), which gives

ayamé + 6y8m5

§ = 27 oy om ay(s _ ay am 6y om Oy
V" 0mdz T Om Ou 6 om Or

p 3u+8>6" (3.7)

which gives

I, = Al A"+ DU, D! (3.8)

where A and D are the appropriate Jacobians.

(ii) z and y correspond to different scene points as shown in Fig: 3.2(b). Substi-

tuting 'y, in (3.4) for that in (3.6), it following that
I, = Al A"+ BI',B' + CT,C" (3.9)

where A, B and C are the appropriate Jacobians. The first term is caused by the
error in the 3-D structure z from which the pose is computed. The second term is
due to error in u, the observation of x. The third term results from error in the

observation of y.

3.2 Asymptotic Error Properties of Integrations

In this section, we derive how the amount of error in the estimate changes with
integration of various sequences. We assume that the algorithm obtains a linear
minimum variance estimate in the sense of Gauss-Markov [122], which is the minimum

variance estimate with Gaussian noise.
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In order to investigate the best possible result, the processing method is assumed
to be batch unless stated otherwise. This means that all the observed data are
available for processing and the estimate is computed with all the data as a single
batch. In contrast to batch processing is recursive processing [122] where data items
are used one at a time, each giving an updated estimate for the result, and once an
data item is used for updating it is discarded. In other words, recursive processing
imposes a restriction on the way data are available and thus it might not be able
to compute all the estimates that batch processing techniques can compute. Thus,
recursive processing may have a worse asymptotic error behavior than the batch

processing, unless the model is actually linear [122].

3.2.1 World-centered representation

In the WC representation, every new observation about object structure is trans-
formed into the WC system of reference using the estimated camera pose. Then all
the transformed structure observations are fused together according to each’s error

covariance matrix.

Ideal non-transitory sequence

Consider that a set of feature points y is visible in all the views in the image sequence,
as shown in Fig. 3.2(a). Suppose that from ¢t = 1 to t = n, n observations are made

for structure y:

Y=y + 0y, (3.10)



)

Without loss of generality, we can assume that the pose m is relative to the pose
at ¢ = 1. The correlation of error in §,, between different ¢’s is weak because error
is random. According to the Gauss-Markov Theorem [122], the linear minimum
variance estimator of z in the linear equation Az = b+ §, where the noise term § has
a covariance matrix [, is z = (A'[';'A)"'A'T';'b with an error covariance matrix

I, = (AT;'A)~!. Thus, the minimum variance linear estimate for y in (3.10) is

y= (LT () (3.11)

t=1

where 'y, is given in (3.6). The error covariance matrix of y in (3.10) is given by
r,=0Q_r;hH" (3.12)
t=1

Theorem 1 Let A and B be real n x n positive definite matrices. Then, A—(A™! +

B~1)71 is positive definite. Particularly, trace(A) > trace((A~' + B™1)71).

Proof of Theorem 1.

A=A+ B = A-(AY(B+A)B™Y)!
= A-B(B+A)'A
= (I-B(A+B)™MA
= ((A+ B)(A+ B)™' — B(A+ B)™))A

= A(A+B)'A
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Thus, it is clear that A(A + B)™'A is positive definite because A, B are all positive
definite. a

Using the result of Theorem 1, we know from Equation (3.12) that any observation
y; decreases the expected error in the structure. In order to give a concise and intuitive
expression about error covariance matrix, we need to assume some uniformity in the
sense that the difference in the error covariance matrix from each view is neglected
and each is replaced by the average error covariance matrix. Here, we assume that

difference of I'y, among different ¢ is neglected. Thus,

L, = (nlY)" = %ry, — 0(1/n) (3.13)
Thus, it is clear that the expected error variance in the structure is inversely propor-
tional to the number of frames n. We call the factor 1/n error rate. The situation
discussed here applies to that of “Hotel” sequence in Tomasi and Kanade [178].

A point should be mentioned here. As indicated in (3.7), the first term on the
right-hand side is presented in all the observations y,. This implies that the observa-
tions y;’s are not exactly uncorrelated. But, if the structure z is re-estimated using
all the observations, the correlation between this re-estimated z and y, is weak and

it can be neglected especially when n is large.

Simple transitory sequence

In a simple transitory sequence, each scene point is visible in two consecutive frames.

In this case, the pose m estimated from point set z, = z and its observation u, = u is
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used to estimate the new structure z;4; = y whose observation is u;4; = v, as shown

in Fig. 3.2(b). From (3.9), we can estimate the error covariance of the structure z,:
T, = A[Tl.,_, Al + Bl Bi + C,T,,C} (3.14)
Thus, using the above expression recursively, we get

., =Y (BB +CrI,Cy)

t=1

where, B; and C; are the products of the appropriate Jacobian and we have neglected
error in the re-estimated structure represented in the WC reference system, just as
we did in the last subsection. Now, we assume a uniformity in which the difference

among the terms under the summation is neglected. Thus,
., = n(B:ly, B} + C:T,,Cy) (3.15)

In other words, the error covariance in the structure is proportional to the number of

frames. This implies that error is accumulated with the number of frames.

General transitory sequence

The general situation with a transitory sequence is shown in Fig.3.2(c), where a
point can be visible in any number of frames (except the entire sequence). Detailed
formulation for this general case is tedious and the resulting complex expression will

not give us an insight. Because we are interested in asymptotic error behavior, we
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may make some assumption about uniformity. Assume that every feature point is
visible in 2k frames. Thus, we regard the entire sequence F' = {f, | t = 0,1,2,---,n}
as k subsequences F; = {fyk+: | p > 0 is an integer}, [ = 0,1,2,---,k — 1, so that in
each F; each point is visible by two frames and each Fj is then a simple transitory
sequence. k is called visibility span. The entire sequence consists of k subsequences
each is a simple transitory sequence and is of n/k long. According to the result of
simple-transitory case with the uniformity assumption, the error covariance matrix of

the linear minimum variance estimate based on each Fj is proportional to the length

n/k:
n

anzk

(B,Ty, B! + C.I,,C!) = O(n/k) (3.16)

where the factor in the parentheses should be that for a simple transitory subsequence.
On the other hand, we have k subsequences, each gives an independent observation of
structure z;. Thus, we can use the result for ideal non-transitory sequence we obtained
when we derive (3.13), which says that the error covariance matrix is reduced by a
factor of 1/k:

F-'Cn = 2(BtFu¢Bt+Cth,C:) =O(n/k2) (3.17)

?T‘I:

which gives an error rate n/k? for error covariance matrix I';,. This is a very inter-
esting rate. If the temporal sampling density is increased by a factor 2 with the same
scan trajectory, n and k are both doubled, and the error covariance matrix is reduced
by a factor 1/2! We can see that when k = 1, the general rate n/k? becomes the rate
for the simple transitory case and when k = n it gives that for the non-transitory

Case.
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The error rate n/k? in (3.17) implies that the later a part of scene enters the view,
the larger the number n, and thus the larger the variance of the error in its position

with respect to the WC reference system fixed at the first view.

In the above subsequence decomposition, motion is expressed as interframe mo-
tions in each subsequence, which is a motion that cross k frames in the original
sequence. Of course, the above subsequence decomposition is not necessarily what
is done by an actual estimation algorithm. This decomposition is in fact just a way
to derive error rate. By grouping structure observations into the defined subgroups
Fy, errors in the estimate from different groups are uncorrelated. Thus, the decom-
position is to make derivation of error rate more concise and simpler. It does not
affect the asymptotic error rate n/k?, because the best estimate is still derived by

processing the entire set of structure observations as a single batch.

Global pose error

In a non-transitory case, the error covariance matrix is given in (3.4) which is almost

independent of n.

Now, consider the transitory case. According to (3.4), the error variance of camera
pose estimate is the sum of two terms, that from I'y, and that from I';,_, where n —
is the past time frame that shares sufficient features with the current view at n.

Therefore, we have

_n—=l . n . Om_ Om!
e, = [z (BI'w.B' + CiI,,Cy) + 50 L. 5u

(3.18)
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Since [ is in the same order of k, the asymptotic error rate is n/k?. Denote the last
term in the above equation by O(1) indicating it is caused by a single view of u vector.
Thus, the pose error with a transitory sequence has the same asymptotic error rate

as that of the structure estimate:

., = O(n/k*) + 0(1) (3.19)

This is an interesting yet expected result. When n/k? increases without bound,
the error rate of the camera global pose error is n/k?, i.e., the first term in (3.19).
However, Suppose one increases the temporal density of the sequence which covers
the same trajectory, i.e., letting n = ck for some constant ¢ and increase k without
bound. Then, the first term in (3.19) becomes O(ck/k?) = O(c/k) which approaches
zero, and thus the second becomes dominant. The expression in (3.17) is a single
term of O(n/k?). This is because the pose of a camera system is determined by a

single view. while the structure can be determined by many camera views.

3.2.2 Camera-centered representation

In the CC representation, object structure is represented in the camera reference
system. In other words, every previous observation about object structure must be
transformed into the camera reference system at the current frame and be fused
according to the Gauss-Markov Theorem.

An important difference between the WC and CC representations is the following

e In the WC representation, every part of the scene that has been observed but is
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not currently visible does not need to be updated with the current view, because

the WC reference system does not change with respect to the scene.

e In the CC representation, every part of the scene that has been observed but
is not currently visible must be transformed to the current camera centered

system because the CC reference system moves with respect to the scene.

The update for every part of the past structure can be computationally expensive.

We will address this point when we describe our cross-frame approach.

With the CC representation, the pose m to be computed is from the past time
t — p to the current time t, p =1,2,3,---,t — 1. After fusing all the past views with
the current view at ¢, the resulting structure is called the CC structure. Theoretically,
the structure error should be the same as that with the WC representation if all the
past frames are treated in a batch fashion. Thus the behavior of the error covariance
matrix for the CC structure is the same as that of the WC structure estimated with
the WC representation, except that time ¢ is now reversed: the older the frame, the

worse the structure accuracy in the CC representation.

However, the local structure, i.e., that is visible in the current frame, does not have
the above transitory problem, simply because it is visible at current time n. Therefore,
it can take the advantage of the situation enjoyed by the ideal non-transitory sequence.
If the CC structure only take past b frames into account as a batch, and those b frames
share a considerable number of features with the current view at n, then, according to

the result (3.13) derived with uniform ideal non-transitory sequence, the CC structure
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of the currently visible part is of order

Ly (3.20)

where I'y, is the error covariance matrix of the past structure transformed to frame
n, and b is the batch size. For the above expression to hold true, b should be small

enough so that the past b frames share the structure z,, with the view at time n.

Now, we are ready to summarize the asymptotic error rates using Table 3.1. In

Table 3.1: Asymtotic rate for error covariance matrix in integration

[ Representation | Estimate || Non-transitory Simple transitory General transitory
WC structure O(1/n) O(n) O(n/k?)
wC pose O(1) O(n) O(n/k*) + O(1)
CC structure O(1/n) o(1) O(1/b)
CC pose 0 0 0

Table 3.1, n is current time (or frame number), k the visibility span, and b is the
batch size b < k. All the structure error is that for the visible part at the current
n-th frame. The camera pose error in CC representation should be zero in all the
cases, because it is defined directly in the camera system itself instead of measure. In
the table, “0” is used to indicate this fact.

As can be seen from the table, with a general transitory sequence, for global
structure representation which is necessary for extended scene reconstruction, one
should increase the visibility span k as much as possible. For the camera-centered

local structure which is useful in grasping or collision avoidance, one should increase
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the batch processing size b < k for the best possible accuracy.

3.2.3 The tightness of the error rates

The error rates we obtained in Table 3.1 are achievable rates, using the methods
explained in the derivation. However, it is necessary to answer the tightness question.
How tight are those rates? In other words, are those rates the best one can possibly
achieve? If they are too loose, they are of little value. If they are the best one can
possibly achieve theoretically, they give an important insight into the nature of the
problem. To answer this important tightness question, we need to look into theoretical
bounds with respect to parameter estimation.

In general, the observation model of our problem can be expressed as

t = u(a) + d, (3.21)

where 1 is a vector of image-plane observations, contaminated by noise vector §,, and
u(a) is the noise-free image plane vector which depends on the parameter vector a. In
our problem, u consists of image coordinates of all the features in all the image frames.
6, is the error vector which takes into account a wide variety of errors, such as errors
in spatial digitization, feature detection, stereo matching and temporal matchings,
etc. The vector a is the parameter vector one wants to estimate, such as structure of
the currently visible scene, camera pose, motion parameters, etc.

Suppose that & is an unbiased estimator of  from 4 in (3.21), the noise vector &,

has a zero mean and covariance matrix I',, and the probability distribution density
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of the noise factor is p(u, a). In reality our estimator is not exactly unbiased and the
noise mean does not have to be exactly zero. We assume that the absolute bias and
the noise mean are negligibly small. The multi-dimensional version of the Cramér-Rao

error bound [154, 192] gives

E(& —a)(& — a)' > F~! = CRB(a) (3.22)

where E denotes expectation operator, and F' is the Fisher information matrix:

_ alnp(u,a)t Oln p(u, a)
o [Pt o) -

The inequality in (3.22) means that the difference matrix of the two sides is nonneg-
ative definite. In particular, the diagonal elements and the trace of a nonnegative
definite matrix are all nonnegative. Therefore Cramér-Rao bound gives a lower error
bound for the error covariance of every component of the parameter vector a. As
indicated in (3.23), such a bound is evaluated with noise-free observation u and true
parameter vector a. It is worth noting that the bound depends on the problem itself
and is independent of actual algorithm that is used to estimate a. Thus, the bound is
algorithm independent. It indicates that no matter what algorithm is used to estimate
a, the resulting error covariance matrix of & cannot be lower than that specified by

the bound.

Next, we investigate the Cramér-Rao bound of the global pose of the camera

system in WC representation. We consider a general transitory sequence of length n,
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F={fi|t=0,1,2,---,n — 1} with a visibility span k. Since we are investigating
asymptotic behavior in which n goes to infinity, without loss of generality, we consider
n to be an integral multiple of k, i.e., n = (j + 1)k, for some positive integer j. j + 1
is the length of k subsequences F; = {fu+: | p =0,1,---,5}, 1 =0,1,2,--- ,k — 1,

each of them is a simple transitory sequence.

The simple transitory case

Consider the subsequence Fy, of length 5. As explained in (3.1), the global position
of the camera at the z-th frame of Fy, with respect to its global position at 0-th frame

Fy, can be specified by a column vector

m(z) = (pz‘(i)? py(i)’ p-(2), 0,(i), oy(i)’ HZ(i))t

where p(i) = (pz(2),py(2),p:(2))" and 0(i) = (0.(2),0,(),0.(2))" specify the global

position and orientation, respectively. Define incremental interframe displacement

d(z) =m(1) —m(z: —1) (3.24)

i=1,2,---,j. From (3.24), we have the relation m(:) = ¥!_, d(t) + m(0), or

-m(O)- rIO--«OW-m(O)T

m I d

W _ 0 (1) (3.25)
omG) | (LT T dG)
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with I denoting the identity matrix. Alternatively, we write

mjo = M;d;o

where we denote the left side of (3.25) by m ;o and the right side by the product of
the matrix M; and vector d;o. Geometrically, m;o is the global attitude trajectory
of the camera system while d; ¢ is the interframe displacement vector, plus the initial

attitude m(0). According to the definition of the Cramér-Rao bound, we have

t -1
CRB(d;0) = { [aln ZEZ,Odj.O)] [alnp(u’ dj.o)] }

dd; o
and
-1
L 0ln p(u, m;o) ! 0ln p(u,mjo)
CRB(mJ'O) - {[ amJ'O amj'o

Since

Olnp(u,d;jp) _ Odlnp(u,mjo) Om;o _ 6lnp(u,m,-,0)M.

6(1,-,0 amj,o adj,o amj,o J
it follows that
CRB(mj,o) = M]CRB(dJ'o)M; (326)

For our purpose of investigating the asymptotic behavior of the Cramér-Rao bound,
we need the uniformity condition of the motion sequence as we did earlier, since the
behavior of an otherwise arbitrarily changing motion trajectory can depend more on
a particular local motion instead of the temporal trend of the error behavior. Now,

we assume a uniformity with which the differences among the interframe motions
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d(z),1 =1,2,---,7 are neglected. In other words, the Cramér-Rao bound of interframe

motions CRB(d;0), which is a symmetric matrix, is now a band matrix:

-co C, C, 0 -
Cy Co C
CRB(djo)==|C, C, Co - C, (3.27)
Gy
0 C, Cy Co

In other words, denoting CRB(d; o) = [Cpq], then Cpg = Cyp = 0 whenever |p—gq| > h,
for some constant h. The unfirmity condition requires that the error bounds for
estimating interframe motions d; and d;, respectively, are not correlated when the
interframe motions are farther than h frames apart. This is a reasonable condition
because although interframe motion depends mostly on the two image frames that
defined the interframe motion. Although the information about the scene structure
may contribute to the estimation of interframe motion to some degree, two far apart
interframe motions do not share any common scene element when h is large enough
in a general transitory sequence. With a simple transitory sequence, two interframe

motions do not share any common scene element as soon as |p — q| > 2.

Without loss of generality, we can consider h = 2 for a simple transitory sequence.
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Thus, (3.26) and (3.27), give

. - t
I0 0| G 0|1 o0 0
I1r--olla ¢ - I'I -0
CRB(m;0) = (3.28)
. Lot . ‘. . Cl . . :
11 - 1]]o Ci Co||I 1 - 1|

The last element in the bottom row of CRB(m;0) is the Cramér-Rao bound (CRB)

for the global pose of the camera at frame j of Fy, which gives

Co C 0 I
Cl CO -.‘ I . . .
CRB(mj,o)=[1 I 1] = (j+1)Co+25C; = 0(j)
C,
0 Cl Co I_J

(3.29)

In other words, we have proved

Theorem 2 Under the uniformity condition, the Cramér-Rao bound (CRB) of the

global pose error at frame j in a simple transitory sequence is of the order O(j).

It is worth noting that we have not imposed any particular distribution type on noise
in the observation other than the uniformity condition, the above conclusion holds
for any noise distribution provided the uniformity condition is satisfied.

In (3.27), we regarded m(0) the same as d(1),d(2),---,d(7) in the vector d;¢ just
for notation convenience. It will not affect the order of the Cramér-Rao bound we

derived in (3.29) since error in m(0) affects just a constant in CRB(m;).



65

The Cramér-Rao bound of the global position of the structure can be investigated
in a similar manner. Each scene element visible by the last frame in Fy is a function of
global pose coupled with the structure estimate from the global pose, which results in
an additive constant error covariance in addition to that of the global pose. Therefore,
the Cramér-Rao bound of the global position of the structure has the same order in

error rate as the global pose.

The general transitory case

First, we extend the above result for F to the other subsequences F;. We extend our
notation from m;o and d;o to mgll) and dg), respectively, to denote the corresponding
trajectories of Fj, starting from frame f; to frame fjx4, | = 0,1,---,k — 1. Given
F, the above discuss still holds for Fj, except that the meaning of C; in (3.27) is the
Cramér-Rao bound of the corresponding component based on the entire F' instead of

o

just Fy. Therefore, the Cramér-Rao bound of the error rate of the global pose m;; is

still of order O(y) = O(n/k):

CRB(m!)) = O(n/k) (3.30)

Consider each scene element z, that is visible from f;,4;, the last frame of Fj,
l=0,1,---,k — 1. Since Cramér-Rao bound is a lower bound and Table 3.1 means
that CRB(z,) < O(n/k?). To establish CRB(z,) = O(n/k?), all we need to prove
is CRB(z,) > O(n/k?). To do the latter, we can neglect some errors. For [ =

1,2,---,k —1, we neglect the interframe pose error between frame f, and fi, and the
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error in the process of constructing z, from frame f;,4;. Thus, z, is determined by

the camera global position at f;,4; by a function g:

0) (1 k-1
ITn = !J(mg',o» mj,l), T ’m.(i,k—l)) = g(mJ)

where we define

0 (k-1
m; = (mﬁo)’ " )7"'amj,k—l))t

Since all subsequences F are independent with each other, the Cramér-Rao bound of

m; is a block diagonal matrix:

CRB(m;) = diag{ CRB(m'}), CRB(m!})),---, CRB(m!5 )} (3.31)

Using the variable change technique as we used before, we have

[ -1
) - {“"”(S;””"”"“]t[“"”Sf"””"’]}
> [9m; ]’ [81n p(u, ., m;)]" alnp(u zn,m;)] [0m;
- Lal'n amj a 8xn
[ 1 -1
_ 6mj -1 amj
= { .61;”- CRB(mJ) [axn (332)

Since CRB(m;) is block diagonal, then so is its inverse, the above inequality gives

)
CRB(m!})™! [33: ] }

-1

CRB(z,) > {z

1=0

[am(l)

Tn
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. . .- am!")
Under the uniformity condition, —** and CRB(mgI) ) are treated as constant with

respect to [. Thus

©17* ©
CRB(z,) > {k [—amf"’ CRB(m{7)"! [a’rw]}

Zn | ,

-1

71" 07!
= H%] lcRB(m§?g) {BTJ"’] =O(n/k*)  (3.33)

Tn k n

the last equation used the result in (3.30). Therefore, we have CRB(z,) = O(n/k?).

The Cramér-Rao bound for global pose can be directly derived from that of the
global position of the structure. The derivation for the order of Cramér-Rao bound

in nontransitory case is simple and is omitted.

In summary, we have established the following result:

Theorem 3 The asymptotic error rates in Table 3.1 are not only reachable but also
the theoretical lowerest possible specified by the Cramér-Rao lower bound. This is true

for any distribution as long as the uniformity condition is satisfied.

These error rates are determined by the nature of the transitory sequence. Although
we have used the uniformity condition so that the rate can be expressed simply, the
uniformity condition can be applied to ensemble average in terms of random process.
Passing without a rigorous proof, the rates stated in Theorems 2 and 3 are probably
true for general random motion sequences in the sense that they are average rates as

long as the uniformity is true on average.
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3.3 Methods and Algorithms

The above analysis motivated our method of keeping two representations, WC for
global measurements and CC for local measurements. To be specific, we assume
a stereo camera system. The method can be directly extended to monocular case

without any major modification.

We first consider estimation with a nonlinear observation function f. Suppose that

an observation vector y is related to a parameter vector m by a nonlinear equation

y=f(m)+4,

where 6, is a pairwise uncorrelated random noise vector with zero mean, and covari-
ance matrix Iy, = E§,6;. The maximum likelihood estimate with Gaussian noise
d, or minimum variance linear estimate with a general noise distribution calls for
minimizing

(y = f(m))' Ty (y — f(m)) (3.34)

with respect to m. In other words, the optimal parameter vector m is the one that
minimizes the matrix-weighted discrepancy between the computed observation f(m)
and the actual observation y. At the solution that minimizes (3.34), the estimated

has a covariance matrix

L= E(rh — m)(ih —m)" ~ {

m y
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One of the advantage of this minimum variance criterion is that we do not need to

know the exact noise distribution.

3.3.1 Cross-frame approach with CC representation

Let X, denote the 3-D positional vector of a point represented in the CC system at
frame p. Point X, represented in the CC system at frame ¢ is moved to X, in the

CC system at time p:

Xp = Rp,qu + Tp’q-

where R, , and T}, are a rotation matrix and a translation vector, respectively. Let
my,q Which is a function of R,  and T, ,, denote the relative pose from g to p.

All the structure observed in the past needs to be transformed to the CC system
at frame p and properly fused. There are two basic approaches in the fusion of the

past structure.

1. Recursive method: frame by frame. The fused structure at previous frame is
transformed to the current frame p and fused with the new observation at p

according to the estimated interframe motion m, ,_;.

2. Batch method: cross-frame. For eachq € {p—1,p—2,---,p — b+ 1}, estimate
the cross-frame motion m, 4 and transform X to frame p and fuse with the new

observation at p.

The first method involves two frames at a time, p — 1 and p. As we discussed before,

the transformed structure has an error covariance matrix I',, + ',y where I',, is for
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error in interframe motion and I',_; for that in the fused structure up to frame p — 1.
We can see that the error covariance in the transformed structure is increased due to
error in the interframe motion. Thus, according to the similar derivation that leads

to (3.12), the fused structure has an error covariance matrix of

(Cm 4Ty y) "t 007

where [', is the error covariance matrix of single observation at p. We can see from
the above expression that the error variance will not approach zero with the number
of frames integrated, because even if I';,_, = 0, we still have a considerably large
(F;! + T;1)7'. The reason is that the error in interframe motion deteriorates the
previous structure estimate. A structure estimate at from p — [ will undergo ! such
deteriorations under the frame-by-frame recursive method and thus, when [ > 1, the

old structure estimate is hardly useful in the fusion with that in view p.

Under the second cross-frame method, each previous structure estimate at p—{ is
directly transformed to p under one transformation. Thus the transformed structure
deteriorates by the motion error only once. The error covariance matrix of each
transformed structure is a sum of two terms, one from single cross-frame motion and
the other from the observation error at the frame p — [, as long as frame p — [ is in
the same batch as frame p. Thus, following a derivation similar to that in Section
3.2.1, we know that the second method has an asymptotic error rate of 1/b as listed

in Table 3.1. Fig. 3.3 graphically explains the advantage of cross-frame motions.

In practice, we define a number K, called extra batch size, to be the number
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Cross—frame motions

Figure 3.3: Using cross-frame motions to integrate many views. Each elongated ellipse
indicates the uncertainty in 3-D point position transformed from a single previous stereo
view to the current view. The integrated uncertainty is greatly reduced using the multiple
cross-frame motions instead of interframe motions.
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of extra image (stereo) frames that are processed as a batch in additional to the
last two. Thus, at current frame number p, all the image frame batch consists of
frames from p — K — 1 to p. Due to the transitory nature of the image sequence, any
frame ¢, with ¢ < p — K — 1, with not share any portion of the scene with frame
p if K is sufficiently large. According to our discussion about non-transitory and
transitory image sequences, it is useful for K to span a subsequence that is nearly
nontransitory. Otherwise, the estimate is sequential in nature, as expressed in (3.14),

beyond a certain extent.

With a batch at frame p, the current active cross-frame motion set is denoted by

p—1

W(p) = U {mp.i(Rp,i,Tp.i)}-

i=p—K-1

The cross-frame motion set completely defines the motion between any two frames

within the batch. When K = 0, we have just an interframe motion in W(p).

Let N be the total number of feature points being considered; z;, denote the
three dimensional local structure of i-th point in s-th camera-centered system; u; ;,
be the 2-D image coordinate vector of i-th point on the j-th side (left, right) at the
s-th frame. Assuming that the noise in the observations (u; ;) is uncorrelated and
has the same variance (02,02) in the two image coordinates, expression (3.34) that
is to be minimized can be written the following form

min _ f(m,z;,)=A+ B (3.36)

Vz; p,VmeW(p)
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where

N

t t -1
A = Z{Si(vap—A'—lFI:,p—l\'—l p,p—]\——l) Sl}

=1
with

Si = (zip — X(Mpp-K-1, zi..p-’\'-l))
and

P R N ot 0
B = Z E Z(ut,J s — U(nls.ps xi,P))t ('&i,j,s U(ms,p, :L'i,p))
s=p-K ;=L i=1 0 a;?

In the above expression, X (m,, z;,) is the transformation function to transform the
point z;, from camera coordinate system at frame p to frame s based on the motion
parameters m,,. Function u(ms,,z;,) is the noise-free projection computed from
m,p and z; ,, which includes transformation and projection. This objective function
has two terms. The first term, A, reflects the integrated 3-D structure in the past up
to time p — K — 1. The second term, B, is used to minimize the image plane error
of the frames within the batch from from p — K up to p. The summation bound for
1 can be modified to include only those points that are visible in each frame so that

a point does not have to be visible through the entire batch.

Minimization of the objective function

The objective function in (3.36) is neither linear nor quadratic in terms of cross-frame
motion parameters, m, and 3-D feature points, . An iterative algorithm is required

to search for the solution of m and z. The dimension of the unknown parameters is
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intractably huge due to a typically large N. Thus, a direct optimization is impractical.

Our two procedures play a central role in resolving this problem:

First, a (suboptimal) closed-form solution for interframe motion from p—1 to p is
first computed. This interframe motion is used together with previous pose estimate

to compute a preliminary estimate for all the cross-frame motions needed.

The second is to eliminate iteration on the structure. The gradient-based search is
only applied to cross-frame motions, because given each candidate set of cross-frame
motions the best structure for (3.36) can be directly computed in a closed-form.
To show how, let us examine the objective function (3.36). The second term of the
objective function corresponds to minimizing the image vector error within the batch.
An alternative way to approximate this is to use the matrix-weighted discrepancy of

zip — X(myp,j, ij), the 3-D position difference, to give the total discrepancy

14 N
min 3 Y (2ip = X(mpa, 25,) (Rpalaz, RE )™ (@ip = X(mpe2l,)  (3.37)

z .
YP os=p-K i=1

where z}, is computed from the triangulation at frame s, I'z+ is the estimated co-
variance matrix of z}, for triangulation. Substituting the second term of objective

function (3.36) with (3.37), we minimize

14 N
farpl‘ijl flzip) = E Z(xiyp - X(my,, x:,s))‘(Rp,sFr.‘,, R;,s)_l(li.p - X(my.s, I:,s))
’ s=p—-K-1i=1

(3.38)

given any W(p). The above is a linear minimization problem, for which we just need
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to solve the following linear equation [59],

p p

{ X R lZ B o= 3 {(RoulZ) R} )X (mps, i)} (3.39)

s=p—-K-1 s=p—-K-1
which gives

P p

Tip = { Z [RP'SF;,T, R;,a]}-l{ Z {(Rp,sr;.f, R;,s)X(mpmxi»)}}

s=p—K-1 s=p—K-1
Its error covariance matrix is estimated by [59]

p

Frt.p = [ Z Ft—,-’l -

s=p—K-1
where

aX(mPv-” x:.s)

0X(my,,z7,) dX(m,,,z2,) 0X(m,s, z2,)
am 14 y +( 4 , )Fx‘ ( : P ’

t t
om ) oz? e oz )

1,8 1,8

Fi.a = (

), (

3.3.2 World-centered representation

The WC representation follows a similar derivation. The difference is that the struc-
ture does not move in WC system. Thus, the structure integrated in the WC system

up to any time can be used directly for later WC integration.

Objective function

Without loss of generality, let the world coordinate system coincide with the

camera-centered coordinate system of the first frame. M(m,n) = UL, {mi:} =
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UL,.{Ri1,Ti 1}, is the collection of all the global motions, where (R;1,7;1) is the

i=m
rotation matrix and translation vector from frame 1 to i. For each feature points

1, we have structure G; corresponding to the world coordinate system. Now slightly

modifying the equation (3.36), we get the appropriate objective function for the WC

representation:
VG, NmeM(p—K -1.0) f(Giym)=A+B (3.40)
where
N
A=2 (Gi-Gi)TG(Gi = GY) (3.41)
=1
and
p R N 0_;2 0
B= Y Y ) (tijs—u(msy,Gi)) (Qijs — u(ms1,Gi))  (3.42)
s=p—-K j=Li=1 0 0_2

In the objective function, u(m,, G;) is the noise-free projection computed from
m,, and G;. The essence of the above objective function is that newly updated
global structure G; takes into account the old observation G} integrated up to frame
p — K — 1, but it considers all the observations in the batch as image vectors, all
properly weighted in the sense of Gauss-Markov.

Similar to computation for the CC representation, no iteration is needed for struc-
ture part, and a suboptimal closed-form solution is computed first for motion and
structure which is used as the initial guess for minimization. The following equation

gives the closed form solution for structure parameters G; when the motion parame-
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ters M(m,n) are given:

Gi=( Y T3)'( Y 3.6 (3.43)

s=p—K-1 s=p—K-1
where G, , is the estimation based on the single frame s. The estimated error covari-

ance matrix of the newly updated the structure is

P

T, =( Y Ta,)™! (3.44)

s=p—-K-1

This WC based objective function is in essence similar to those of [10] and [131]. The
differences are (a) a batch parameter A is used to better deal with the transitory se-
quence; (b) image-plane discrepancy is minimized to automatically take into account
non-symmetrical nature of error distribution in 3-D point positions; (c) the algorithm
can automatically handle leaving points and coming points which is required with

transitory sequences.

3.4 Experiments

We conducted experiments with synthetic and real world images in order to exper-
imentally exam the error rates listed in Table 3.1 and compare the WC and CC

representations.
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Start position of camera End position of the camera

Figure 3.4: Simulation environment, where 7000mm distance is covered by the 31 frames.

3.4.1 Simulation Data

3-D feature points were generated randomly for each trial, between depth 2000mm
and depth 3000mm, with a uniform distribution. The entire scene is covered by
31 frames and the distance between consecutive frames is roughly 200mm. A small
rotation is added between each pair of two consecutive frames. Fig. 3.4 illustrates the
simulation environment. This environment is similar to the real setup to show later.
The average errors we will show were obtained through 100 random trials each with

a different set of 3-D points.

Measurement

The simulated camera system has a resolution of 512 x 480 pixels, just like the real
cameras we used. Measurement error was simulated by pixel round-off error. This
level of measurement accuracy is generally higher than but close to the accuracy

of our feature detector, matcher and tracker according to our visual inspection of
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the algorithm. The camera’s global orientation is determined by a rotation matrix
(Ri1) and the position by translation vector (T;,). The error of a matrix or vector
is measured as the Euclidean norm of the difference between the estimated and true
one. The world system is placed at the scene at the first frame, based on which the
global structure of the feature points is defined. If a feature point is visible at certain
frame, it also has a local structure (i.e., with respect to the CC reference at that
frame). In the WC representation, the global structure is directly estimated but its
local structure needs to be computed via the estimated global pose of the camera.
The situation is just the opposite in the CC representation, where the local structure
is directly estimated while the global structure must be computed via camera’s global

pose.

Batch Size

Visibility span determines the number of frames which share a common view. It can
also be used as a criterion to select the maximum batch size. Obviously, a batch size
that is beyond the visibility span cannot help much. With our setup, in order to let
the first and the last frame in the batch share at least 30% of the scene, the batch

size should not be larger than 3.

Results

Fig. 3.5 shows the current camera position error (R; 1, T;,) for different frames, where
i is the index of the time as shown in the figure. The first column is for the CC

representation and second is for the WC representation. The results indicate that the
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(a) Error of rotation matrix in CC representation (e) Ervor of rotation matrix in WC representation
T T L] ) | 0.005 T T 1 ] )
Batch size 0 — Batch size 0 —
N Batch size | ---- | Batch size 3 ---- |
0.004 Batch size 3 ----- 0.004 |-
'E 0.003
0.002
0.001
0 1 1 1 1 1 0 1 1 1 1 1
1 6 11 16 21 26 1 6 11 16 21 26
Time sequence Time sequence
(b) Error of translation vector in CC representation () Error of translation vector in WC representation
20 L4 Ll T L] ] 12 ] T ¥ ] 1
Batch size 0 — Batch size 0 —
Batch size | ---- 10 | Batch size 3 ----
15 F Batch size 3 ----- -

Error (mm)

0 1 1 1 1 1 0 1 1 1 1 1
1 6 11 16 21 26 1 6 11 16 21 26
Time sequence Time sequence
(c) XY component error of translation vector in CC (g) Translation XY component error in WC
T T ¥ T T ls T T T L ) T
Batch size 0 — Batch size0 —
Batch size | ---- 12k Batch size 3 ----
Batch size 3 ----- 7

Error (mm)

0 1 1 1 1 1 0 1 1 1 1 1
1 6 11 16 21 26 1 6 i1 16 21 26
Time sequence Time sequence
(d) Z component error of translation vector in CC s (h) Translation Z component ervor in WC
J T T ] ] 1 T T ] T T
Batch size 0 —— Batch size 0 ——
Batch size 1 ---- 12k Batchsize 3 ---- |
Batch size 3 -----

Error (mm)
Error (mm)

0 1 1 1 1 1
1 6 11 16 21 26 1 6 11 16 21 26
Time sequence Time sequence

Figure 3.5: Camera global pose error versus time. The CC representation on the left
column and WC on the right. (a) and (e): Error in rotation matrix. (b) and (f): Error in
translation vector. (c) and (g): Error in zy-component of the translation vector. (d) and
(h): Error in 2-component of the translation vector.
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error increases with the time, an inherent property with transitory image sequences as
Table 3.1 shows. It can be seen from the figure that the batch size has more impact
in the CC representation than WC. This is because in the CC representation, the
reference frame moves, which introduces more nonlinearity than the WC case when
the old observation is transformed into the current CC reference system. A larger
batch size is more appropriate for such a nonlinear transform, because covariance for
error modeling is based on a linear approximation for nonlinear systems. Fig. 3.5
clearly shows that for camera pose estimates the WC representation is a little better,

which is consistent with Table 3.1.

Fig. 3.6 shows the local and global structure error. The error is shown as the
average error of all the visible feature points at the current frame. The result in-
dicates that a larger batch size is very effective to reduce both the local and global
structure errors, for CC representation, as we predicted in Section 3.3.1. Because of
the structure is directly estimated in the WC representation and thus the “measure-
ment equation” is linear. Thus, a lager batch size does not improve much for WC
representation due to dominantly linear nature of the WC structure fusion. The fig-
ure also shows that the WC representation performs better for estimating the global
structure while the CC representation does better for local structure, as predicted by
Table 3.1. A point worth noting here is the fact the local structure error with the CC
representation is constant, while that with the WC representation grows with time,

also a property predicted by Table 3.1.
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(a) Global structure error in CC representation (¢) Global structure error in WC representation
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Figure 3.6: Structure error versus time. The CC representation on the left column and
WC on the right. (a) and (e): Global structure error. (b) and (f): zy-component of the
global structure error. (c) and (g): Local structure error. (d) and (h): zy-component of
the local structure error.
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3.4.2 Experiments with a real setup

A challenging task facing the area of motion and structure analysis is to provide data
from rigorous experiments that verified the actual accuracy of the results, so that we
can evaluate whether passive structure sensing is possible and reliable in real world.
T he result reported here is an effort toward this goal. The data are processed in an

off-line fashion.

The setup used for our image acquisition is a Denning MRV-3 mobile robot and a
Pair of stereo cameras, 265mm apart, mounted on a custom-designed stereo positional
setup that allows step-motor controlled pan and tile for each camera from a computer,
as shown in Fig. 3.7. The stereo camera system was calibrated with distortion com-
pensation using an algorithm from Weng et al [190]. The field of view of each camera
is about 36 degrees diagonally. and each digitized image has 512 x 480 pixels. An im-
age sequence of 151 frames was acquired from the moving mobile robot. It contains a
left-view sequence and a right-view sequence. The entire stereo sequence was used for
automatic feature extraction, matching and tracking. A temporally subsampled (one
sample every 5 frames) subsequence of 31 frames was used for motion and structure
estimation with a consideration that this subsequence is dense enough for estimation
and yet enables cross-frame motions to cover more original frames with a relatively

small batch size. Fig. 3.7 shows a few images in the 151-frame sequence.

A feature point detector has been developed for this project to automatically
detect feature points from images. The feature detector first computes the cornerness

measure (the degree a point looks like at a corner) at every pixel. Then the local peaks



84

()

Figure 3.7: The robot and a few stereo frames in the 151-frame sequence. (a) Robot. (b)
Left image of frame 0. (c) Left image of frame 50. (d) Left image of frame 100. (e) Left
image of frame 150.
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of this cornerness measure are detected to form a peak histogram, ranked with the
cornerness measure. The program automatically determines the threshold so that the
required number of features are given from top rankings. An area directed analysis is
incorporated into the scheme so that the detected feature points evenly spread across

the entire image.

Stereo matching was done using an image matching algorithm from Weng et al
[188], which provides a dense displacement field with a disparity vector for every pixel.

The disparity vector at every feature point is extracted from this field.

For efficiency, the algorithm uses tracking mechanism as much as possible. Only
when the tracking is not successful based on the closeness measure used by tracking,
the matcher is called. For each addition of new points, the stereo and temporal
matchings are performed using the same algorithm from Weng et al [188]. Once a
new feature point is added from a left image, a square template (7 x 7) centered
at this point is recorded as the left template for this point. The stereo matching
algorithm gives the matching pixel in the right image, from which a square template is
recorded as the right template for the point. Temporal tracking uses a prediction-and-
verification scheme for each of the left and right sequences. The temporal interframe
displacement is predicted from the previous displacement of the point. Verification
is then performed based on the value of template matching: Let ¢(z,j), —s < 1,5 <s

be the template, and f(7,j) denote the image value at the point (¢,7). A template
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Trace of Matching-and-Tracking
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Figure 3.8: The tracking record of the feature points through the 151 frames in the se-
quence. If a point k is successfully tracked from frame ¢ to frame j, a vertical line is shown
at point number k from frame ¢ to frame j. (Due to the limit of the printer resolution, lines
are merged in the plot.)

difference value centered at (z,y) is defined by

day)= 3 3 ()~ 1= e +iy+5) - F@w)ll  (3.45)

i=—s j=—s

wheret = ¥0__, 35 _,(i,5) and f(z,y) = Ti_, s f(z+i,y+4). Namely, first,
the template and image are both locally normalized so that their local sum is equal
to zero, and then the template difference value is the sum of the absolute difference
between the locally normalized template and locally normalized image. The best
matching point is the pixel at which the difference value reaches the minimum in
a small neighborhood (5 x 5 in our experiment) centered at the predicted position.
A point becomes inactive if the best matching point exceeds the allowable template

difference value.

This temporal matching and tracking method was very successful. The trace
record of the entire sequence is shown in Fig. 3.8. About 100 feature points were

automatically kept at any time. Since some points may go out of view and some
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points may become inactive, the number of active points may fall below a tolerable
number (90 in our experiment). If this happens, the feature detector is called which
provides additional points from the image and then the stereo matcher is called to
give stereo matching for these new points. The time when the feature detector was
automatically called can be clearly identified in Fig. 3.8. Many points have been
successfully tracked until the time they went out of the view. Figure 3.9 presents
an example of temporal matching-and-tracking. A careful visual inspection of entire
point trace indicates that there was no visible errors.

The measurement of the real setup is similar to the simulation. To verify the
accuracy of structure estimates as well as camera pose estimates, the global coordi-
nates of a set of test points were carefully measured to within an error of Imm. The
selection of test points were based on ease of measurement and was not based on
automatically selected features. Thus, each test point is not necessarily a part of the
feature points used for the automatic algorithms, although many of them are. The
image coordinates of the test points are manually measured from digital images. The
accuracy of the reconstructed structure error was measured by the following steps.
(a) Compute the WC and CC representations for feature point position and camera
pose using the fully automatic algorithm described above. (b) Manually measure the
image coordinates of the test points. (c) Perform a multiframe triangulation to get
the 3-D position of the test points. The number of frame used is according to the
corresponding batch size. (d) Measure the global position error as the difference be-
tween the true and estimated test points. This way of measuring error tests not only

the pose of the camera, but also some of the reconstructed feature points, if they are
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Figure 3.9: Stereo matching and temporal matching-and-tracking. (a) An example of
stereo matching (frame 0). (b) An example of temporal matching and tracking (frame 24
t0 69)_ A needle is draw from the feature point to its position in the target frame. Due to
camersy vergence, the orientation of the needles in (a) is correct.
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Figure 3.10: Sample test points on one frame. Each cross shows the location of a test point

also test points. Table 3.2 lists some data of the real setup. Fig. 3.10 shows the test

points of one frame.
Table 3.2: Some Data for The Real Setup

[ Number of frame 31 I Distance traveled (mm) 3097 ]
[Number of feature points 387 | Number of test points 85 ]

First, to show how well the estimated structure and camera pose agree with the
automatically detected feature points, the estimated 3-D feature points were projected
onto the image plane according to the pose. The average distance difference between
every projected point and actually detected feature point is called image plane resid-
ual and is shown in Fig. 3.3. The values are around a faction of a pixel for both

Tepresentations. These numbers also indicate that camera distortion compensation
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in the calibration was very effective.

Table 3.3: Average Image Plane Residual
Representation | batch size 0 batch size 3
wWC 0.76 pixels  0.68 pixels
CC 0.45 pixels  0.51 pixels

Fig. 3.11 shows the actual camera orientation error. Although the image sequence
here is transitory, the pitch and row errors are comparable with those in the non-
transitory "Hotel” sequence experiment by Tomasi and Kanade [178] over the entire
sequence. The visibility span of our setup is about 4. At frame 4, the yaw error
has the same magnitude as that in [178]. After frame 4, the error tends to increase
due to the transitory nature of the sequence. It is interesting that roll and pitch
errors did not increase quickly with time. After traveling about 3000mm, the total
orientation error is not more than 0.02° in roll, 0.23° in pitch and 2° in yaw with the
WC representation.

Fig. 3.12 shows the camera position error and Fig. 3.13 presents the global error
of the test points visible at the current time. As we predicted, the error increases
with the time. But the estimates appear good. After traveling about 3000mm, the
estimated camera global position error is less than 60mm in depth Z (less than 2.3%),
about 43mm horizontally and under 25mm vertically with the WC representation.
This seems to indicate that reasonable results can be obtained with a fully automatic
algorithm, even with a transitory image sequence.

Fig. 3.14 shows the reconstructed 3D surface. The surface detail is described by

Mmapping intensity of the images onto the reconstructed surface. This approach is
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(d) Camera yaw error in WC
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Figure 3.11: Camera rotation error versus time. (a) and (d): Yaw error. (b) and (e):

Roll error. (c) and (f): Pitch error.
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(a) Camera position (YZ component) in CC
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Figure 3.12: Camera position error versus time. (a) and (e): Camera position (y-
and z-components). (b) and (f): Position error (z-component). (c) and (g): Position
error (y-component). (d) and (h): Position error (2-component).
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Figure 3.13: Structure error. (a) and (d): Global structure error. (b) and (e):
Global structure error (z- and y-components). (c) and (f): Global structure error

(z-component).
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Figure 3.14: Reconstructed 3D surface integrated from many partial views in the
sequence, shown with original intensity viewed from an arbitrary direction.

known as tezture mapping or pattern mapping [17]; the image is called a tezture map,
and its individual elements are often called tezels. The mapping is shown in the Fig.
3.15. The texture map of the tetrahedra of the reconstructed surface is assigned the
average intensity value of its vertices in the images. In our transitory case, multiple
images may corresponds to the single patch of the surface. A weighted method is
used,

k
Ip =Y wilp, (3.46)

i=1
where the weights w;’s are the inverse of the structure uncertainty of the points and

Ip, is the intensity value of the point P at ith-image.
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Figure 3.15: Weighted texture mapping from pixel to the reconstructed surface.

3.5 Conclusions

In this article, we introduced the concept of transitory image sequence for structure
and motion estimation from long image sequences. It has been shown that integration
for transitory sequence has asymptotic error rates that are very different from those
with a non-transitory one. The theoretical error rates listed in Table 3.1 indicates
that the WC representation is better for global estimates and the CC representation

is superior for local estimates.

Based on the analysis, our algorithm keeps both the WC and CC representations.
The data shows that the error in the local structure is effectively reduced by a rel-
atively larger batch size and does not increase with time. The global pose of the
camera and global structure of the scene is better estimated by a WC representa-

tion. Those properties are consistent with the error rates summarized in Table 3.1,
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but our sequence is still not long enough to clearly duplicate the theoretically proved
asymptotic rates.

The experiment was conducted using a fully automatic algorithm and the accuracy
of the result has been verified using the ground truth. The verified accuracy appears
to indicate that with off-the-shelf cameras, one can automatically determine the scene
structure and pose of the camera with a good accuracy (the depth error is less than
3% compared with the traveling distance), although the image sequence here is of a

more different transitory type (compared to the non-transitory one).



Chapter 4

Hand Sign Recognition

Humans have the capability to interpret hand gestures. The study of how humans use
and interpret hand gestures has a long and rich history. The first known dictionary
of American Sign Language (ASL) was published in 1856 [29]. Today, American Sign
Language is widely used in the deaf community, as well as by the people who are not
deaf [22].

Recently, there is a significant amount of research which uses hand gestures in the
field of human machine interface. There are two types of hand gestures: static hand
gestures and dynamic hand gestures. Static gestures are determined by a particular
hand posture while dynamic hand gestures are characterized by a dynamic process
which includes the initial, the intermediate, and the final hand configuration. Sys-
tems which are designed to handle dynamic hand gestures have the full potential of
understanding human gestures.

Two major types of approaches exist in the field of hand gesture recognition. The
first approach uses glove-based input devices. Glove-based devices employ mechanical

97
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or optical sensor attached to a glove that transduces finger flexion and abduction
into electrical signals for the purpose of determining the hand posture. The second
approach is the vision-based approach. This approach acquires visual information
of a hand gesture by using a single video camera or a pair of cameras. Once the
wvisual information is acquired, the sign is extracted by analyzing the temporal image
sequence. In this chapter, we give the literature review of existing hand gesture

recognition systems.

4.1 Glove-Based Systems

G love devices measure the shape of the hand as the fingers and palm flex. Over the
Past decade, especially in the last few years, many researchers have built hand and
gesture measuring devices for computer input. In this section, we briefly describe

some significant ones.

4.1.1 Glove devices

In the early 1980s research at MIT used a camera-based LED system to track body
and limb position for real-time computer graphics animation, termed “scripting-by-
enactment” [74]. This work included a glove studded with LEDs. By focusing the
camera on just the hand, they captured finger motion.

Zimmerman et. al. developed the DataGlove that monitored 10 finger joints and
the six degrees of freedom of the hand’s position and orientation [206]. Commercial-

ization of the DataGlove by VPL Research, at a reasonable cost led to its widespread
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use around the world. Most DataGloves have 10 flex sensors, but some have been

rmade with abduction sensors that measure the angle between adjacent fingers.

Kramer and Leifer [107] developed the CyperGlove at Stanford University. It is a
custom-made cloth glove with up to 22 thin foil strain gauges sewn into the fabric to
senmnse finger and wrist bending. A small electronics box converts the analog signals

into a digital stream that can be read by a computer’s standard serial port.

4.1.2 Interpreting hand sign with gloved-based devices

Several projects have investigated various levels of recognizing hand signs from simple
finger spelling to analysis of American Sign Language. The MIT Media Lab used their
L ED glove as part of an experimental system for finger-spelling using lookup tables

in software to recognize finger postures [83].

Kramer and Leifer used the CyberGlove to translate ASL into spoken English
[107]. They used a Bayesian decision rule-based pattern recognition scheme to map
finger positions, represented as a “hand-state vector”, into predefined letters or sym-
bols. When the instantaneous hand-state lay close enough to a recognizable state, the
corresponding ASL letter or symbol was put in an output buffer. When a word phrase

was completed, a special sign caused the result to be spoken by a voice synthesizer.

ATR Research Labs in Japan developed a coding scheme to allow computer recog-
nition of the Japanese kana manual alphabet [173]. Their system used the DataGlove
to capture hand posture. It recognized signs through a combination of principal com-

ponent analysis (to determine the contributions of each finger joint to the differences
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between signs) and cluster analysis (to group hand configurations).

Fels used a DataGlove to interpret hand motion to drive a speech synthesizer
[66]. His particular approach used a three-stage back-propagation neural network
trained to recognize gestural “words”. He divided hand motions among 66 finger
positions and 6 hand motions. Finger positions defined the root word, while hand
motions modified the meaning and provided expression. These combined to form the
203 words of his “language”, loosely based on conventional gestural languages. Fels

reported a high recognition rate once the system was fully trained.

4.2 Vision-Based Approach

The use of computer vision makes it possible to sense human communication un-
obtrusively and enables human users to interact with computers in a truly natural
fashion. There are two major problems which are needed to be solved in vision-based
approaches. The first problem is segmentation of the moving hand from sometimes
complex background. The second prblem is recognition. This involves modeling the

hand and the hand motion and then recognition of the gesture.

4.2.1 Segmentation

Segmentation is a very difficult problem. Many existing hand gesture recognition
systems avoid this problem by 1) using markers or marked gloves [38, 54, 168]; or 2)
assuming uniform backgrounds [19, 46, 53, 110].

In dealing with dynamic gestures and assuming that the hand is moving in a
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stationary environment, we can use motion as a visual cue to do segmentation. Several
motion segmentation methods have been proposed. These approaches fall into two
categories. Approaches in the first category are designed to deal with rigid moving
objects (e.g. [24, 56]). This type of approaches achieves a segmentation by either
building a reference image of the static background [56], or extracting the motion
entity based on 3-D motion models or 2-D velocity-field models [24]. Since hands are
highly articulated and non-rigid objects, the above approaches are not suitable for
hand segmentation.

The second type of approach fits a shape to deformable objects (e.g. [77, 81, 93,
98, 100, 175]). These models typically need a good initial position to converge. They
also need a relatively clean background since the external forces are defined by the
image gradient.

There are two classes of deformable models, namely, free-form models and para-
metric models. In the free-form models, there is no prior information of the global
structure of the template; the template is constrained only by local continuity and
smoothness constraints [81, 98]. Due to lack of prior information about the global
structure, this type of approach relies heavily on good initial positions. When this
approach is applied to track moving deformable objects, it requires small interframe
deformation to converge. This means that an increase in the sampling rate is needed
to capture the deformation in detail since the change of the hand configuration can
be dramatic within a single gesture. The computational cost increases as more frames
are used to represent a hand sign.

On the other hand, the parametric deformable models use some prior informa-
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tion of the geometrical shape of the object. There are some efforts in this category
which try to locate hands from input images [77, 93, 100]. Typically, the parametric
deformable model includes a prototype template and a deformation model based on
a small set of parameters. The final solution is found by minimizing certain type of
objective function.

Grenander et. al. used a polygon to represent the contour of a human hand [77].
The deformation is described by Markov processes on the edges. A similar scheme
was used by Kervrann and Heitz [100] in their work on locating hands from image
sequences. The “mean shape” is determined by the salient points of the hand contour
and is obtained by the training samples. The deformations, given the “mean shape”,
are modeled using linear combinations of the eigenvectors of the variations from the
mean shape. Jain et. al. used a bitmap to represent the prototype template [93].
The template is then deformed to fit salient edges in the input image by applying a
probabilistic transformation on the prototype contour which maintains smoothness
and connectedness.

The major drawback of the above approaches is that they only allow very limited
deformation. Limited deformation results because the deformation is modeled as a
small perturbation of the prototype [100] or because the penalty term is presented in
the objective functive function when the template deforms from the prototype [93].
This drawback makes the model unsuitable for dealing with dynamic gestures where
typically deformation is large.

Recently, Moghaddam and Pentland [133] presented a maximum likelihood de-

tection method to locate hands in a cluttered scene. The method uses the training
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data to estimate the density of a Mixture-of-Gaussian model (for multimodal distri-
bution). These probability densities are then used to formulate a maximum likelihood
estimation framework to detect hands. The training set of hand shapes is obtained
against a black background and the contour of the hand is extracted using a Canny
edge-operator. Then, a diffusion process is applied to these binary edge maps to
broaden and smear the edges. Finally, they are projected to the eigenspace. The
density estimation is in the eigenspace instead of the original high-dimensional image
space. The major drawback of this method is that on certain illumination condition,

edge operator may fail to pick up some hand contour edges. In that case, the system

can fail to locate hands.

4.2.2 Recognition

Existing approaches typically include two parts, modeling hands and analysis of hand
motion. Models of the human hand include the fingertip model, the three dimensional
model, the two dimensional shape model, and the region-based model. Different hand
models lead to different models of hand motion. The trajectory of each finger tip is
suitable to represent the motion in the case when the fingertip is used to model hands.
T'he system which uses the three dimensional hand model is capable of modeling the
real hand kinematics. The two dimensional hand model can describe two dimensional
rotation and translation. For the system which uses the region-based model, motion

Can be modeled as the change of state.
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Fingertip model

Cipolla, Okamoto and Kuno [38] presented a real-time structure-from-motion method
in which the 3D visual interpretation of hand gestures is used in a man-machine
interface. Consider an arbitrary coordinate system with the z — y plane spanning the
image plane (f from optical center) and the z-axis aligned with the ray. Assume the
fingertip to have a translational velocity with components U;, U;,Us and an angular
velocity with components Q;, 2, Q3. The two components of the image velocity of a
point in space, (X, Y, Z) due to relative motion between the observer and the scene

under perspective projection are given by [119]:

Uy —zU z?
U=[L}—Z'2]+fﬂz—y93—%ﬂl+792

fUz — yUs Ty, Y
= [————] - — =0 — =Q,. .
v=| 7 ] = fQ + 203 Fo fgz (4.1)

The second component depends only on rotational motion about viewer center. It
gives no useful information about the depth of the point or the shape of the visible sur-
face. The rotational component can be removed if, instead of using raw image motion
the difference of the image motion of a pair of points, is used. This is called motion
parallaz. The parallax motion vector, divergence, curl, and deformation components
of the affine transformation of an arbitrary triangle, with the points at each vertex,

determine the projection of the axis of rotation, change in scale, and cyclotorsion.

Davis and Shah [54] have created a system to recognize a sequence of multiple

gestures. The library of gestures includes seven gestures. The user must start in
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the designated start position upon initialization of the system and is able to make
gestures until the termination gesture is recognized by the system. The moving light
display is obtained by extracting finger tips from each frame. A moving light display
labeled by Rashid [156] is a sequence of binary images representing points from a
moving object. The positions of the finger tips are marked by the special gloves. The
trajectory of each finger tip is found by minimizing the overall proximal smoothness
function minimized as much as possible in addition to being fair to each individual
assignment [153]. The success of the algorithm needs assumptions of smooth motion in
the sequence and small motion between consecutive frames. The system is generally
unable to handle occlusion. A finite state machine is used to guide the flow and
recognition of gestures based on the motion characteristics of the hand. Owing to
the nature of the machine, no warping of image sequences is necessary (i.e. it is not

required to have a fixed number of images for each gesture sequence).

Three dimensional model

Kuch and Huang [110] used cubic B-splines to represent the surfaces of the palm,
fingers, and thumb. The use of B-splines allows the rendering of smooth surfaces,
while allowing the calibration system to keep track of a smaller set of control points
versus every vertex in the model. The hand model has a total of 23 degree of freedom
(DOF). Each four finger is given four DOF while five DOF is given to the thumb.
The palm is given two internal DOF located at the base of the forth and fifth (ring
and pinky) metacarpals. The last two DOF reflect the ability of the palm to fold

or curve. These DOF determine the overall orientation in space of the entire hand.
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The model is used to fit a real human hand, so it can be used in tracking and can
be incorporated into a virtual environment or model based compression scheme such
as sign language communication over phone line. The model needs to be calibrated
before it can be used. The calibration is interactive. It requires three specific views
of the real hand. The interactive selection is to locate all the joints and to delineate
the portion currently being fitted from the background. Each tracking starts from
a person holding his hand in a predefined orientation within the field of view of a
camera looking at an uniform background. The DOF of the hand model is then

independently and locally perturbed to fit the moving hand.

Two dimensional model

Starner and Pentland used Hidden Markov models (HMM’s) to recognize American
Sign Language. An eight element feature vector consisting of each hand’s = and y
position, angle of axis of least inertia, and eccentricity of bounding ellipse is chosed
to represent the hand shape. The eccentricity of the bounded ellipse was found by
determining the ratio of the square roots of the eigenvalues that correspond to the

matrix
a b/2

b/2 ¢

where a, b, and ¢ are defined as

a= //x'zda:'dy'
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b= / / r'y'dz'dy’
c= //y'zdx'dy'

(z’ and y’ are the r and y coordinates normalized to the centroid.) The work assumes
that the order of words in American Sign Language is a first order Markov process.
The topology of the HMM used in the paper is a four state HMM with skip transitions
determined to be sufficient for the task. Six personal pronouns, nine verbs, twenty
nouns, and five adjectives are used in the experiment. These words can form a

sentence, however, the structure of the sentence is fixed.

Region-based model

Sometimes the extraction of precise hand and motion information from image se-
quences is not desirable or it is very difficult if not impossible. In these instances, we
can use features generated from the entire image or a relatively large region of the
image. These features are called region-based features.

Darrel and Pentland [53] have adopted a view-based representation for learning,
tracking and recognizing human gestures from a sequence of images. The method uses
an automatic view-based approach to build the set of view models from which gesture
models will be created. The model views of an object are built using normalized
correlation. The first view is chosen by the user as one of the images from a sequence.
The object in the subsequent input images is tracked, and when the correlation score
rm drops below a predetermined threshold, a new model view is created with the

current input image. This process is repeated until no more models are necessary.
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Once all the views of an object have been gathered, gesture models need to be created.
A gesture is a set of views over time. A gesture will be correlated with each stored
view of the object (the hand), and the score plotted, for each view, with respect
to time. Several examples of the same gesture are used, and the mean g,,(¢) and
variance %(gm(t)) of the correlation scores with respect to model view m will be
used to represent that particular gesture g. To compare a new input gesture, each
frame of the new sequence is correlated with a model view. The score results for the
whole sequence is plotted with respect to time. The view-based approach is capable
of modeling complex, articulated objects for which no simple 3-D model or recovery
method is available. The models can be learned by observation rather than needing
precise CAD models. The drawback of view-based system is that complex, articulated
objects (such as hands) have a very large range of appearances, making traditional
approaches to view-based matching difficult. The use of grey level correlation can
also be highly sensitive to noise.

Bobick and Wilson [19] considered each hand image in a sequence as a point in
the eigenspace. The eigenspace is computed from the training hand images. The
sequence of a hand gesture is then defined as an ordered sequence of fuzzy states
in the eigenspace. The fuzziness is defined by the variance of the points that fall
near it. For a given gesture, these states are used to capture both the repeatability
and variability evidenced in a training set of example trajectories. The states are
positioned along a prototype of the gesture, and shaped such that they are narrow
in the directions in which the ensemble of examples is tightly constrained, and wide

in directions in which a great deal of variability is observed. They used Hastie and

o
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Stuetzle [84]’s “principal curves” to compute a prototype trajectory of an ensemble of
trajectories. The method is demonstrated at a relatively low dimensional eigenspace
(3D). Three eigenvectors may be enough for a simple hand sign such as waving hand
in the paper, but for complex signs which have large amount of hand configuration
variation, three eigenvectors may not be enough to capture the variance of the pixel
intensity values of the training frame. With sparse and high dimensional data, the

performance can degrade.




Chapter 5

Overview of the Approach

A hand gesture is a spatiotemporal event. A spatiotemporal event involves an object
of interest and motion of the object. In the linguistic description of American Sign
Language, Stokoe used a structural linguistic framework to analyze sign formation
[171]. He defined three “aspects” that were combined simultaneously in the formation
of a particular sign - what acts, where it acts, and the act. These three aspects
translate into building blocks that linguists describe as - the hand shape, the location,

and the movement.

In this thesis, we present a new framework which will deal with the above three
“aspects” of hand signs. There are two major components in our framework. We have
a prediction-and-verification scheme to locate hands from complex backgrounds. We
also have a spatiotemporal recognition component which combines motion under-
standing (movement) with spatial recognition (hand shape) in an unified framework.

110



111
5.1 Time as a Dimension

A natural way to represent a spatiotemporal event is to consider input image sequence
as data in space and time [42, 60] by associating the serial order of the pattern with
the dimensionality of the pattern vector. The first temporal event is represented in
the plane t = 0 and the second temporal event by plane ¢t = 1, and so on. The entire
spatiotemporal pattern vector is considered as a whole by the framework. Figure 5.1
shows an example in which the hand sign “no” is represented by a spatiotemporal

sequence (three images).

Figure 5.1: The sign “no” and its image sequence representation. (a) The sign of “no”,
snap middle finger, index, and thumb together. (b) The sequence representation of the sign

“no”.
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5.2 Recognition of Spatiotemporal Pattern

As shown in Fig. 5.1, a spatiotemporal event includes two kinds of information: the
object of interest, and the movement of the object. The movement of the object can
be further decomposed into two components: global and local motions. The global
motion capture gross motion in terms of position. The local motion characterizes
deformation, orientation and gesture changes. In the case of sign language, the hand
is the object of interest. The position change of the hand is a global movement and

the change of the hand gesture and orientation is a local movement.

In this thesis, we propose a three-stage framework for spatiotemporal event recog-
nition, as illustrated in Fig. 5.2. The first stage, sequence acquisition, acquires image
sequences representing the event. This involves motion detection and motion-based
visual attention. The start and end of motion mark the temporal attention window
in which the event occurs. We map this temporal window to a standard temporal
length (e.g., 5) to form what is called motion clip, while the speed information is avail-
able from the mapping performed in this stage. In a motion clip, only the temporal

dimension is normalized.

The second stage is visual attention and object segmentation. This stage directs
the system to focus on the object of interest in the image. Given an image, the
object of interest may appear anywhere in the image with certain size and orientation.
Besides the object of interest, the image may contain a complex background as well.
Therefore, the first step is to determine where to look, or in other words, to select

visual attention. If we assume that the object of interest is moving in a stationary
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video

Stage 1: sequence acquisition

image sequence

Y

Stage 2: hand segmentation

fovea vector

Global
motion
vector

v

Stage 3: sign recognition

recognition result

Figure 5.2: The three-stage framework for spatiotemporal event recognition
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environment, it is not very difficult to roughly determine the position of a moving
object in the image using motion information. However, it is not simple if the task is
to extract the contour of the object from various backgrounds.

In Chapter 6, we present an eigen-subspace learning method to segment hands
from attention images. In that method, we assume the visual attention is accom-
plished and the object of interest is centered in the fixed size attention window. In
Chapter 7, a prediction-and-verification segmentation scheme is proposed to locate
hands from complex backgrounds. The scheme uses the past experience to guide
the search of the valid segmentation and is more efficient and effective than other
stochastic approaches such as simulated annealing.

After stage two, the object of interest in each image of a sequence is segmented
and mapped to a fovea image of a standard fixed size. Segmented fovea images at
different times form a standard spatiotemporal fovea sequence, in which both temporal
and spatial dimensions are normalized. The global motion information of the object
of interest is placed in a global motion vector, which records the size and position
information of the segmented object in the original image. This vector is necessary
because once the object is segmented and mapped to a fovea sequence with a standard
spatiotemporal size, the global motion information is lost.

Let a fovea image f of m rows and n columns be an (mn)-dimensional vector. For
example, the set of image pixels {f(¢,7) | 0 < i < m,0 < j < n} can be written as
a vector V = (v,vy,-+,v4) where vniy; = f(7,7) and d = mn. Note that although
pixels in an image are lined up to form a 1-D vector V this way, 2-D neighborhood

information between pixels will be characterized by the scatter matrix of V to be

ity b
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discussed later. Let p be the standard temporal length and f; be the hand fovea
image corresponding to the frame . Then we create a new vector X, called the fovea

vector, which is a concatenation of the hand foveas and global motion vector G,

X = (fl,fg, ...,fp, G) (51)

The third stage is to recognize the spatiotemporal event from the fovea vector. In

Chaptor 8, we present a new framework to recognize hand signs from fovea vectors.



Chapter 6

Hand Segmentation from
Attention Images Based on

Eigen-subspace Learning

Given an image, the object of interest may appear anywhere in the image with certain
size and orientation. Therefore, in order to segment the object of interest from the
input image, the first step is to determine where to look, or in other words, to select

visual attention.

Human'’s visual attention is accomplished by the rotation of eye [170]. Specifically,
it may rotate in a rapid jump-like manner (“saccade”) so as to bring the retinal
image of an unattended, but eccentric, stationary object to fall at the fovea center.
Different visual cues such as motion [24], the generalized symmetry [157], and the
casual semantics [16] are used in computer vision to select visual attention. In the
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next chapter, we present our own learning-based method to select visual attention
and segment hands from images.

In this chapter, we present an eigen-subspace learning method to segment hands
from images. We assume the visual attention is accomplished and the object of
interest is centered in the fixed size attention window. However, we do allow the
background in the attention window. Our goal is to segment the hand from the
attention image.

Ever since it was first proposed by Kass et al. [98], the snake model has drawn a
lot of attention. Various modifications have been proposed to segment objects from
intensity images (e.g. [81, 117]). However, in general, these models need good initial
position to converge. They also need relatively clean background since the external
forces are defined by the gradient. In Malladi et al.’s front propagation approach [123],
the initial curve can be arbitrary as long as it is either inside or outside the object.
This method also suffers when the background (or object) is textured if starting from
outside (or inside).

In our work, we also use a dynamic deformation model, called spring network [35].
The difference is that we first reconstruct the input fovea image. This reconstruction
is based on the learning and has the advantage to preserve the object of interest while
blurring the background. Like all the other deformable models, the spring network
model has quite a few parameters that need to be tuned. Tuning these parameters
is not easy work and these parameters usually depend on the input. Our solution to
this problem again resorts to the learning. We first try to get the best results from

the spring network, then we go back to the learned examples to find the best match.

[PV
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Finally, we apply the spring network model again using the best match as the starting

curve to get the segmentation result.

6.1 Learning

Given a set of training attention images of hands with black background, we first
derive an eigen-subspace using Karhunen-Loeve projection. Next, we transform the
training attention images into the simulated fovea images. The definition of simulated
fovea image will be given later. We store these simulated fovea images in a database.
During the testing session, the database is queried to give an initial contour for

deformation model.

6.1.1 Karhunen-Loeve projection

Let a training attention image f of m rows and n columns be an (mn)-dimensional
vector. For example, the set of image pixels {f(¢,7) | 0 < i < m,0 < j < n} can
be written as a vector V = (v, vz, -+, vy) where vp,;4; = f(i,7) and d = mn. Note
that although pixels in an image are lined up to form a 1-D vector V this way, 2-D
neighborhood information between pixels will be characterized by the scatter matrix
of V to be discussed later.

Typically an image space is very large. For a moderate 128 x 128-pixel image,
the dimension is d = r¢c = 16,384. The Karhunen-Loeve projection [121] is a very
efficient way to represent a small subspace in a high-dimensional space. It reduces

the dimension of representation from d in S to a much lower dimension for S’ yet still
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keeps most information in the data.

A d-dimensional random vector X can be expanded exactly by d orthonormal

vectors, Vi, Va, -+, Vg, so that
d
X=Zy,~v,~ =VY (6.1)
=1

where V' is an orthogonal dx d square matrix consisting of orthonormal column vectors
v;. Without loss of generality, we can assume that the mean of the random vector
X is a zero vector, since we can always redefine X — EFX as the vector to consider.
If the set of samples of a class typically occupy a very small portion of the entire d-
dimensional space, we can expect that a relatively small number of vectors (or called
features) v; is sufficient to expand the space of the class. Suppose we use m vectors
(features), each corresponds to a component in Y. The approximate representation is
X(m) = Y7, yivi. It has been proved [121] that the best unit vectors vy, vz, -+, Vs
that minimize

e(m) = E[|8X(m)||* = E|X - X(m)|? (6.2)

are the m unit eigenvectors of the covariance matrix £x of X, associated with the
m largest eigenvalues. Let V consists of these m vectors {v;} as column vectors.
Then Y = V(X — Mx), where Mx is the mean vector of X, is a projection from a
d-dimensional space to a lower m-dimensional space. It is called the Karhunen-Loeve
projection. We can choose m so that the ratio r = Y0 ., A/ 37, A; is smaller

than a given percentage (e.g., 5%). We call these m vectors {v,} the most expressive

T et
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features (MEF) in that they best describe the sample population in the sense of linear

transform. Fig. 6.1 gives a 2D illustration of Karhunen-Loeve projection to select

the MEFs.

')

MEEF 2
MEF 1
-
X
Figure 6.1: A 2D illustration of Karhunen-Loeve projection.
If we are given k discrete training samples, X;, X;,- -, Xy, ¥x is approximated
by the corresponding scatter matrix:
k
S = Z(Xi -M)(X; - M)! = UU! (6.3)

=1

where U = [U}, Uy, -+, Ui}, and U; = X; — M, M = (1/k) =5, X,.
In our case, typically k£ < n and thus, S is degenerate. We can find the eigenvectors
and eigenvalues of k x k matrix U'U, which has the same non-zero eigenvalue as

S = UU!. If w; is an eigenvector of U'U associated with the eigenvalue );, then
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v; = Uw; is the eigenvector of S = UU* with the same eigenvalue. Therefore, we just
need to compute the eigenvectors and eigenvalues of a much smaller k x k matrix U'U.
For some earlier works on using MEF for recognition-related problems, the reader is

referred to Turk & Pentland 1991 [180] and Murase & Nayar 1994 [136].

6.1.2 Simulated fovea image

It is well known that the resolution acuity of the human fovea varies with eccentricity
[115]. The center has the highest resolution. In our case, we know that the hand is
centered in the attention image, so it is reasonable to put more weight on the central
pixels than the peripheral ones. Here, we simulate human’s acuity by transforming
the attention image as follows. Let the size of the attention window be 2n x 2n and
the center of the attention window be at the row r. and the column c.. After the

transformation, the intensity value (I} ;) of the pixel at the row ¢ and the column j is

1,J

(1-d/n);; ifd<n

0 otherwise

where d = \/(z —1:)% 4+ (5 — ¢.)? and [;; is the original intensity. The new image is
called simulated fovea image (SFI). The simulated fovea images from the training set

are stored in a database for initial contour query during the test.

K N
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6.2 Segmentation

During the stage of segmentation, an object is presented in an attention image with
complex background and the object is centered in the attention image. Qur segmen-

tation scheme includes the following steps:

1. Reconstruct the input attention image based on learned feature values in the

eigenspace.

2. Generate the mask from the reconstructed image using the dynamic spring

network model.
3. Apply the mask to the input attention image for segmentation.

4. Transform the result of previous step into SFI using equation (6.4) and project

the SFI to the eigenspace.
5. Find the nearest neighbor in the training samples as a recognized model.

6. Apply the spring network model again using the contour of the nearest neighbor

as the starting curve.

In the above steps, step 3, 4 and 5 are straightforward. Step 6 is simply applying

the model. Next, we focus on step 1 and 2.

6.2.1 Reconstruction

Given an image f with background and a set of eigenvectors vi,vz,...,vm, we first

obtain the projection coefficients e; = v; - f, where - is the dot product of the two

'

]

LA



123

vectors. Then we reconstruct the image using
n
fl = Z €é;Vi (65)
=1

The image f can be decomposed into two parts, one is the object of interest with
zero background f, and the other is the background occluded by the object fy,. Thus,

we have f = f, + f,. Since our back-projection is linear, we have
f'=1 +1f (6.6)

If we choose the m so that after the projection the mean-square error is less than
5%, then statistically the f) has less than 5% loss compared with f, if the f, happens
to be the training sample. The loss for f}, is expected more severe since in the training
stage the background information has never been used. If the f, is not the training
sample but the training includes some similar objects which can represent this class
of objects, the reconstruction is still expected to be effective. Fig. 6.2 shows the

reconstruction.

Of course, the degree of background reduction depends on the training samples.
If we train the system to segment and recognize the objects which have similar ap-

pearance, the reduction will be more obvious.

This kind of background reduction is essential to the success of our dynamic
deformation model. If the background has texture, we can pretty much remove it due

to information loss in the reconstruction.
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Eigen-subspace

Figure 6.2: An illustration of the reconstruction.

6.2.2 Dynamic Deformation

In this stage, our input is f’. We want to single out the object of interest from the
reconstructed image f’. First, we apply the Canny edge operator to find the edge map
of the f’. The edge map includes the boundary edges of the object and the number
of edges outside the object boundary is minimum since the f’ preserves most of the
information of the object and at the same time reduces the background if this type
of the object has been presented in the training session.

Second, we apply our dynamic deformation model to obtain the mask. The pixels
on edges act as attractors to pull a deformable spring, which is closed in shape and
is presumeably made of an elastic material. This type of model has been widely
used (e.g. [143, 174]). In our case, we use a two-stage deformation mechanism for
suppressing undesirable effects appearing in the course of model construction [35].

These effects are the oversmoothing and the local concentration of the deformable
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model.

In the first stage of global deformation, globally convex portions of the edge map
are recovered. More specifically, the spring network is restricted to contract down
to the convex hull of the given pixels on edges. In the second stage, we deform the

convex hull to fit the data.

Assume that the vertices of the polygon are interconnected with imaginary springs.
The dynamic behavior of this spring network can be described using the equilibrium
of forces. Let the spring polygon be SP= (V, E), where V = {z;| = 1,...,n} is the set
of vertices, and E = {e;|: = 1,...,m} is the set of links. Assume that all nodes have
the same mass m, and all springs have the same stiffness k. The motion equation for
a single vertex is

d?*z;

__.+kﬁ

m o I +9 = fi. (6.7)

The g; is the internal spring force. Define the adjacent set of a node z; as the set of
nodes connected to z;. The spring force applied to a node is a net force summarizing
the individual forces of springs connecting the node and its adjacent nodes. Let ¢ be

a constant coefficient, then

=y dlimzl=h o g, (6.8)

The f; is the external force. In our case, the external force is defined as the

gravitational forces between spring nodes and sampled points. Let y be the edge

»
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pixel and S is the collection of all the edge pixels, then

m? y—

fi=ZG><

X
s vyl ly—al
v

where G is the gravitational coefficient.

The explicit Euler time-integration procedure can be used to solve the equation

(6.7) [151]. Specifically

xf+At = xf + Atvf+A'
vf_+At _ vf n Ataf-{-At

a:+At — f,‘t+At/m

fAt = fl _ el — ¢, (6.10)
where At is the time step between each iteration, a; = % is the acceleration and
v = % is the velocity. At each iteration, forces, accelerations and velocity are

evaluated. The model becomes stable when a; ~ 0.

The final polygon is used as a mask to mark off the image f. The marking is
simple, we simply assign the zero intensity to pixels outside the polygon. The result
of masking is transformed into SFI and then is projected to the eigenspace. Finally,
we find a nearest neighbor in the space decomposition tree. This nearest neighbor is

our segmentation result.



127
6.3 Experiments

In our experiments, we have applied the above approach to the task of segmentation

and recognition of hands from fovea images.

6.3.1 Training

The system has been trained with 25 classes of different hand shapes. These hand
shapes are illustrated in Fig. 6.3. For each hand shape, five or six training samples

were used. In the training session, these samples were manually segmented.

Figure 6.3: Twenty five different hand shapes used in the experiments.

There are two steps in the training. First, we derived the eigenvectors of the
training samples. In the current implementation, we keep m eigenvectors so that
after the projection the mean-square error is less than 5%. Second, we obtained the

SFIs based on equation (6.4). Fig. 6.4 shows a few SFIs of the training samples.

Figure 6.4: The SFIs of the training samples.
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6.3.2 Testing

We have conducted two types of testing. In the first type of test, we used the training
images. However, in the testing, we do not do any manual segmentation. So, this type
of testing images combines the hands presented in the training and the backgrounds.
In the second type of test, a new set of fovea images was used. The segmentation

routine for test image f is outlined as follows.

Outline of segmentation algorithm
begin

1) Reconstruct f using m eigenvectors. b

2) Build mask using dynamic model.

3) Apply mask to f to get f'.

4) Get SFI (f}) of f'.

5) Reconstruct f, using m’ eigenvectors.

6) Search the nearest neighbor.

7) Adjust the curve using contour of the nearest neighbor as initial guess.
end

In the dynamic model, there is a tradeoff between the shape fidelity and the time
complexity when choosing the number of nodes of a spring network. It is natural to
think that an object with a complicated shape and large size should require a network
having a large number of nodes. Currently, we use an adaptive-size model. If two
nodes become too close or too far away, we start to delete the old vertices or add new
vertices. We also decrease the time step monotonically with the number of iterations
l. Empirically, we define At(l) = al~#, where a and f3 are positive constants.

For the first type of test, if the nearest neighbor is right, we have the perfect seg-

mentation. The number of images used in the first type of test is 135, the test results
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show that we have the correct segmentation for 131 of them. The misclassification is
due to background which was not presented in the training. The correct rate is 97%.

For the test using new set of fovea images, we classify the result of segmentation to
be correct if the hand shape of the nearest neighbor is similar to the one in the input
fovea image. Qut of 115 testing images, we have correctly classified 107 of them. The
correct rate is 93%. The testing results are summarized in Table 6.1. We show the

results of 9 testing images from the second type of test in Fig. 6.5.

Table 6.1: Summary of the segmentation results
Test No. | Number of images | Correct rate

1 135 97%
1 135 93%

6.4 Conclusions

A learning-based segmentation scheme is presented in this chapter. During the train-
ing, we use the Karhunen-Loeve projection for the training set to obtain a set of
eigenvectors. The eigenvectors are used to reconstruct the test attention image. A
dynamic spring network model is used to generate the proper mask. The system is
tested to segment hands from fovea images. The experimental results show 97% cor-
rect rate for the hands presented in the training and 93% correct rate for the hands
that have not been used in the training phase.

The scheme also has its drawbacks. The reconstruction is not going to work

well when the attention image is dominated by the background. Imagining we have
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an elongated object in the square attention image, in this case the fovea image is
dominated by the background. If we try to reconstruct this fovea image, the object
can be lost in the reconstructed image. The SFI is also going to fail since it is
symmetrical in all directions. We believe in this kind of situation, single fixation can
not solve the problem. Like human vision, multiple fixations are needed. We need
to examine different parts of the object first, then assemble each of the individual

results together to get the global picture of the object.

¥
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Figure 6.5: Segmentation results of the fovea images which are not used in the training.
(a) Input fovea images. (b) The results of the reconstruction. We also blur the results of
the reconstruction. (c) The results of applying masks to the original input fovea images.
The masks were derived using the dynamic spring network model to the reconstructed
images. (d) The SFIs of the images in (c). (e) The contours of the nearest neighbors are
superimposed onto the input images. (f) Segmentation results.



Chapter 7

Hand Segmentation Using a

Prediction-and-Verification Scheme

In Chapter 6, we presented an eigen-subspace learning method to segment hands
from attention images. The approach was motivated by the fixation of human vision.
The fixation is the time when the human selects and examines objects from the fovea
[170]. In that approach, the object was assumed to position in a rectangular atten-
tion image together with the background. The attention image first went through a
reconstruction based on features. Then, the reconstructed image was used to predict
the segmentation result. Such a reconstruction is based on learning and can reduce
the background interference to a certain degree. This type of reconstruction is moti-
vated from studies in psychology. It is well known in psychology that in the retrieval
stage, humans may make some kind of reconstructive changes based on past knowl-
edge [161]. However, the reconstruction is not able to fully get rid of the background
interference.
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Input image Attention window of Attention windows of
first level fixation second level fixations

Figure 7.1: An illustration of two level fixations of an input hand image.

One attention window from a single fixation can not solve the segmentation prob-
lem completely. Similar to human vision, multiple fixations are needed. This kind of
multiple fixations has a hierarchal structure. As shown in Fig. 7.1, the first level of
the fixation concentrates on the entire hand, while the next level of the fixation takes
care of different parts of the hand. The attention window of the first level fixation
usually contains a part of the background. But as we continue zooming in the object
from different fixations, the attention windows become focusing on different parts of
the object. One important feature of these attention windows is that they typically
contain much less background than the attention window of the first level fixation.
These attention images from multiple fixations can be used as important visual cues
to segment the object of interest from the input image.

In this chapter, we present a new approach which efficiently utilizes the atten-
tion images obtained from the multiple fixations through a prediction-and-verification
scheme to perform the task of hand segmentation. A general object segmentation sys-
tem accepts an input image I and an intention signal P which specifies the type of

object that it is looking for and outputs the segmentation result C = S(I,P). To

S
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check the validation of the segmentation result, we need a verifier f. In order to build
such a segmentation system, we need to answer two questions: 1) how to find C; 2)

how to construct f.

We present a prediction-and-verification scheme to answer above two questions
in this chapter. First, we introduce the concept of valid segmentation and provide a

criteria to evaluate whether a segmentation is valid or not.

Secondly, we develop a systematic approach to predict the valid segmentation
using attention images of multiple fixations as visual cues. The prediction is based on
the nearest neighbor decision rule. It has been shown that the probability of error of
the nearest neighbor rule is bounded above by twice the Bayes probability of error [43].
Unlike the Bayesian approach, the nearest neighbor decision rule is independent of the
underlying joint distribution on the sample points. In practice, the joint distribution
is unknown and in many cases, a normal distribution is assumed. The assumption

may be invalid and could lead to poor performance.

A hierarchical quasi-Voronoi tessellation is presented to organize the training sam-
ples and propose an efficient algorithm to query the nearest neighbor in high dimen-
sional space. Thus, unlike the exhaustive search method or other stochastic search
approaches such as simulated annealing, our search for valid solution is guided by

prediction using the past knowledge and is significantly more efficient.

The outline of the chapter is as follows. We dedicate the next sections to the
major components of this chapter, namely, verification and prediction. In Section

7.3, we present the experimental results.
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7.1 Valid Segmentation

In this section, we define the verifier f mentioned in the previous section. Let the
segmentation result of an intensity image I with r pixel rows and ¢ pixel columns
be represented by a vector C in (rc)-dimensional space, where C[i x ¢ + j] = 1
if pixel (z,5) in I belongs to the object, otherwise C[i x ¢+ j] = 0. Let P =
{(z1,91), (22,¥2),"**, (Tn,yn)} be the set of pixels in I such that Clz; xc+y;] = 1. We

— H n . — . - — M n . —
denote Tnmin = Minl_; T;, Tmaz = Max—; Tiy Ymin = Minj_; ¥i, and Yme, = max?, y;.

Definition 1 An eztractor € extracts a subimage I' with s rows and t columns from
an tmage I, . based on the segmentation result C, such that I'[i, j| = I[i+Zmin, J+ Ymin)
f Cl(1 4 Tmin) *c+ 7+ Ymin) = 1, otherwise I'[i, 7] =0 for all0 <i <sand0< j < t,

where 8 = Tymazr — Tmin + 1 and t = Yoz — Ymin + 1.

Intuitively speaking, an extractor extracts a subimage from an image I according

to the segmentation result C and C acts like a mask which marks off background.

Definition 2 A scaler M maps an image I' with s rows andt columns to an attention
image F with m rows and n columns, such that F|[i, j] = g(I', i‘—;ﬂ, J—:’—’) forall0 <i<
m and 0 < j < n, where g is an appropriate antialiasing function which reduces the

sampling effect from a digital image to another.

Using an extractor and a scaler, we can construct an attention image from the

result of the segmentation. This entire process is illustrated in Fig. 7.2.

Definition 3 A verifier f is defined such that, f(F,P) = 1 if the segmentation

result is correct, otherwise f(F,P) = 0. Here F is an attention tmage based on a
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Input image Haisd window Attention image

scale to attention
Extract the hand

Figure 7.2: The illustration of constructing attention images.

segmentation result C such that F = M(E(I,C,P)), where I is the input image and

P is the intention signal.

The verifier defined in Definition 3 makes a decision based on the information
presented in the attention window. The biggest advantage of using the attention
window is that we can achieve size and position invariance with a fixed size attention
window.

The function f is extremely complex, because of the high-dimensionality of the
attention image F. A challenging task is to approximate f. One common way to
address this problem is to extract a particular type of feature and then design some
rules to make decisions. One major difficulty of this common approach is in dealing
with different appearances of the same object. It is intractable to manually define the
features that can characterize the variety of appearances of objects in the real world.

In this chapter, we use a learning-based approach to approximate the function f.
The method assumes no restriction on the type of the object the system can handle.
Therefore, it can be applied to a wide variety of objects. The approximation takes

three steps:
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1. Manually extract the object of interest from each training image. The extracted

objects are mapped to attention images using the extractor and scaler.

2. Extract the most expressive features (the principle components) from the train-

ing set.

3. Build an interpolation function to approximate f.

In the following subsections, we discuss step 2 and 3 in detail.

7.1.1 Karhunen-Loeve projection

Definition 4 A vectorizer operator T transforms an attention image F of r rows
and c columns to a d-dimensional vector V, such that V(i x ¢ + j] = F[i, j] for any

0<i<rand0<j)<c, whered=r xc.

Typically d is very large. The Karhunen-Loeve projection (see Chapter 6.1.1 for
details) is a very efficient way to reduce a high-dimensional space to a low-dimensional

subspace.

Definition 5 Let V be a d x m matriz consisting of these m vectors {v;} as column
vectors. Then a Karhunen-Loeve (KL) projection operator P projects an input vector

Y to Z, such that Z = V(Y — Mx) , where Mx is the mean vector of X.

We can choose m so that the ratio 30_, ., Ai/ 37, Ai is smaller than a given

percentage (e.g., 5%).
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7.1.2 Approximation as function interpolation

Now we are ready to give the approximation of the verifier f(F,P). Assuming the
intention signal P is gesture k. Let Ly = {lx1,lk2, ", lkn} be a training set, where
each [, is an attention image of a training sample for gesture k. We first use the
vectorizer T to transform each attention image to a vector. Then, we learn the
Karhunen-Loeve projection matrix V and the mean vector Mx. Finally, we use the

KL projection operator P to project each attention image li; to a vector Xy ; in the

MEF space, such that X;; = P(T () fori =1,2,---,n.

Definition 6 Given a training vector Xy ; in the MEF space, a Gaussian basis func-

tion s; is
IX=Xg, 12
siX)y=e"" = , (7.1)
where o is a positive damping factor, and || - || denotes the Euclidean distance.

A very small o tends to reduce the contribution of neighboring training samples.
The Gaussian is one of the widely used basis functions [147]. There are other in-
terpolation schemes that may be used here, such as the generalized multiquadratics

169, 193).

Definition 7 Given a set of n training samples Ly = {lk1,lk 2, -,k n} of gesture k,

the confidence level that the input X belongs to class k is defined as:

a(X) = 3 (), (7.2)
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where the s; is a Gaussian basis function and the coefficients c;’s are to be determined

by the training samples.

Given n training samples, we have n equations

(X)) = En: ¢isi(Xk,i), (7.3)

=1

which are linear with respect to the coefficients ¢;’s. If we set gx(Xi;) equal to 1,

we can solve the above equations for ¢; using the Gauss-Jordan elimination method

[151]. Fig. 7.3 shows how the interpolation function would look in the case when two

training samples (0,0) and (v/2, v/2) are used and o = 1.
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Figure 7.3: Interpolation function with two training samples, (0,0) and (v2, v2).

Definition 8 Given a set of training samples Ly {leas ey s len} of gesture

k, the corresponding interpolation function gx, and a confidence level I, a function

interpolation scheme approzimates the verifier f as follows:
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fX,P) =1 if g(P(T(X))) >1

= (0 otherwise

7.1.3 Valid segmentation
Based on the definition for the verifier f, we define the concept of valid segmentation.

Definition 9 A segmentation result C defined on an input image I and an intention

signal P is valid if f(P(T(M(E(1,C,P)))),P) =1, where f is the verifier.

Intuitively, a segmentation result C is valid if there is a training sample that is

sufficiently close to it.

7.2 Predication for Valid Segmentation

This section investigate the first major problem presented in the introduction section,
that is, how to find a valid segmentation. Our solution to this problem again resorts

to learning.

7.2.1 Overview

Definition 10 An attention image F from a fization of image I' of m rows and n
columns with scale r < 1 and center position (s,t), where 0 < s<m and 0 <t < n,
is defined as F = M(B), where M is a scaler and B is an image with m' =r x m

rows and n' = r X n columns and
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B(;, j]

I'by+i,bo+5] if 0<b+i<mand0<by+j<n

= 0 otherwise

ml 1
where by =s — T, by =t - 7,

i=0,1,---,m'—1,and j = 0,1,---,n' — 1.
The above definition states how to obtain an attention image F given an image

I'. Each fixation is a partial view of the object in the image I'. The fixation position

is determined by the center position (s,t) and the r is a zooming factor.

Given a training set L = {I;,I,,---,I,}, where I; is a training image, we first
manually get a segmentation mask C for each I,. Then, we apply the extractor to
get a subimage I} for each I;. Next, we obtain a set of attention images from multiple
fixations for each I}. We denote F; ; be an attention image from jth fixation of sample

1 in L. The attention images from the training set Ly is

LF = {Fl,17' o ’Fl,m|7F2,l7' v ,Fl,mga"' 7Fn,l"“aFn,mn}’

where m; is the number of the attention images generated from the training image
I;. Each attention image from a fixation is associated with the segmentation mask
C, the scale r and the position of the fixation (s,t). These information is necessary

to recover the segmentation for the entire object.

During the segmentation stage, we first use the motion information to select vi-
sual attention. Then, we try different fixations on the input image. An attention
image from a fixation of an input image is used to query the training set Ly. The

segmentation mask associated with the query result F; ; is the predication result. The

e



predicted segmentation mask is then applied to the input image. Note in order to

put the mask back in the right position with the right size, we need to use the scale
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and the center position of the fixation associated with the input attention image as

well as the scale and the center position of the fixation associated with F; ;. Finally,
we verify the segmentation result to see if the extracted subimage corresponds to a
hand gesture that has been learned. If the answer is yes, we find the solution. This
solution can further go through a refinement process. Fig. 7.4 gives the outline of the

scheme. In the following subsections, we discuss the organization of attention images

from the training set.

input sequence

Discard

attention images
from multiple fixations

° _ | Motion—based
‘[ visual attention
Extractor < !
l | recalled mask
Information s
needed by the Gs .
Verifier approximate :
function (e.g., -
cocfficients)
information *
for gesture k gesture 1
o0 Predictor
1 gesture k T
[ N BN ]
ture gesture
ges n index
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Figure 7.4: Overview of the segmentation scheme.
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7.2.2 Organization of attention images from fixations

Our objective is to achieve a retrieval with time complexity O(log n) for a learning
set of size n. With this goal in mind, we build a hierarchical structure to organize
the data.

Similar to the training in approximating the verifier, we first use the vectorizer
operator 7 to transform each attention image in the training set L to a vector.
Next, we obtain the Karhunen-Loeve projection matrix V and the mean vector Mx.
Finally, we apply the KL projection operator P to project the training sample to
the MEF space. These vectors in the MEF space are organized using a hierarchical

quasi-Voronoi diagram structure as we explain below.

Definition 11 Given a set of points V = {V;,V,,---,V,} in the space S, the Voronoi
diagram partitions S into R = {Ry, Ry,---, Rn} regions, where R; N R; = 0 when
t# 3, UL, Ri=S, and foranyz € S, x € R; if and only if ||z — Vi|| < ||z = V}]| for

=1

any j # 1. We denote V; be the center of the region R;.

Definition 12 A hierarchical quasi-Voronoi diagram P of S is a set of partitions
P={P,P,,---,P,}, where every P, = {P;,---,P.n,},i=1,2,---,m is a partition
of S. Piy1 = {Pis11, ", Piy1niy, } 18 @ finer Voronoi diagram partition of P; in the
sense that corresponding to every element P,y € P;, P,y contains a Voronot partition

{Pi+l,a7""Pi+l,t} Of Pz’,k-

The graphic description in Fig. 7.5 gives an simplified but intuitive explanation of

the hierarchical quasi-Voronoi diagram. The structure is a tree. The root corresponds
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1,1
12 130 14 15[\ 16 17

§44685% 8648 86 b4

21 23 25 27 28 210 2,12 2,14
22 24 26 29 2,11 2,13

(b)

Figure 7.5: A 2-D illustration of a hierarchical quasi-Voronoi diagram and the correspond-
ing recursive partition tree. (a) In partition, the label indicates the center of a cell. The
label of the child to which its parent’s center belongs is not shown due to the lack of space.
(b) The corresponding recursive partition tree.

2,15
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to the entire space of all the possible inputs. The children of the root partition the
space into large cells, as shown by thick lines in Fig. 7.5. The children of a parent

subdivide the parent’s cell future into smaller cells, and so on.

7.2.3 Prediction as querying the training set

Given a training set L, a hierarchical quasi-Voronoi diagram P = {P,, P;,---, P,}
corresponding to L and a query sample X, the prediction problem is to find a training
sample X’ € L, such that || X — X'|| < ||X — X"|| for any X” € L with X" # X".
The type of query mentioned above is a nearest neighbor problem, also known
as post-office problem [104]. The nearest neighbor problem has been studied exten-
sively in the past. There are efficient query algorithms O(logn) for two- or three-
dimensional cases [37, 55]. However, there still lacks of efficient solutions for the case
with dimension higher than three. k-d tree based nearest neighbor algorithms have
been widely used in computer vision [15, 205]. k-d trees are extremely versatile and
efficient to use in low dimensions. However, the performance degrades exponentially
in high dimensions. R-tree and its variants [82, 162, 14] have similar performance
of nearest neighbor searches in high dimensions. In this section, we will present an

efficient algorithm when the training set is d-supportive as defined below.

Definition 13 Let S be a set which contains all possible samples. A training set
L = {L,Ls,---,L,} is a d-supportive training set if for any test sample X € S,

there exist © such that | X — L;|| < d, where || - || is the Euclidean distance.

Next, we will show that a training set can become a d-supportive set as the size of

oy

2

o
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the training set increases if any point Xo € S positively supported as defined below.

Definition 14 Let S be a set which contains all possible samples. We consider X in
a learning set L as a random sample from S. A point Xo € S is positively supported
if for any § > 0 we have P{||X — Xo|| < é} > 0, where P{e} denotes the probability

of the event e.

If S consists of a finite number of discrete points, a point X in P is positively sup-
ported means that the probability of selecting X as a sample is not a zero-probability
event. If S consists of infinitely many points, a point X in P is positively supported
means that in any small neighborhood centered at X, the probability of selecting any

point in the neighborhood is not a zero-probability event.

Theorem 4 Suppose X, is a positively supported point in S. Given any small e > 0,
there is a positive number kg > 0, such that as long as we independently draw k > ko
learning set L = {Ly, L,,---, Ly}, the probability that X, is d-supported by L has the
following property

P{|IX0—LgI|<d|L;€L}>1—6.

Proof of Theorem 4. X, is positively supported, we have P{||Xo—X]|| < d} > 0=
p. If we independently draw k learning samples L, the probability P{||X, — Xi|| >
d|VX; € L} = (1 — p)k. Thus, lim,e P = 0. O
The theorem says that as training size increases, the training set pointwisely con-
verges to a d-supportive set. Next two theorems show the fact that if the training set

is d-supportive, we have an efficient query algorithm.
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Theorem 5 We have a set of d-supportive training set L = {Ly,Lq,--+,L,}, a
hierarchical quasi-Voronoi diagram P = {P, P, ---,P,} corresponding to L and
a query sample X € S. Let the ith partition be P, = {P1,P.2,-++,P;,} and
C = {C1,Cs,---,Cy} be the corresponding centers of regions in P;. Assume C,
be the center to X such that ||Cy —X]|| < ||Ci = X|| for any i # 1. Let C, be any other
center and Py be a boundary hyperplane between regions represented by Cy and C, as
illustrated in Fig. 7.6. Then the region of C; does not contain the nearest training

sample to X if the distance between X and the hyperplane P, is greater than d.

Proof of Theorem 5. If the distance from X to P, is greater than d, then according
to the definition of the d, there is going to a training sample Xj in C; such that

IX = Xj|| < d. Since for any samples Y in region Cs, || X — Y|| > d, so the closest

training sample will not be in the region of Cj. 0O
I
f——
|
C C
! e MO D f 2
I
l b
a m

|

x |
|

P2 PI
boundary hyperplane

Figure 7.6: A 2D illustration of nearest neighbor query theorems.

In order to avoid to calculate the point to hyperplane distance in a high dimen-

-
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sional space, we can use following equivalent theorem.

Theorem 6 Let ||C,—Cyf| =71, f=5,e=5-d,||Ci = X||=a and ||C; - X]| = b
as shown in Fig. 7.6. The region of C; does not contain the nearest training sample

to X if a> — e? < b — f2.

Proof of Theorem 6. Let P, be the hyperplane such that the distance between
P, and P, is d as shown in Fig. 7.6. Notice according to the definition of Voronoi
diagram, f is the distance from C; to hyperplane P; and e is the distance from
C, to hyperplane P,. Let M be the intersection point between line C,C; and P,

X — M|| = m, and the angle ZCyMS = a. Then, we have

a’ — e =m?—2mcosa

b — f2 = m? — 2fmcos(180° — a).

As we have shown in the Theorem 5, the C, region does not contain the nearest
neighbor if X is not in the region between hyperplane P, and P,. This means a < 90°.
Thus, we have a?—e? < m? due to cosa > 0 and b*— f? > m? due to cos(180°—a) < 0.

Therefore, we have a? — e < b? — f2. w

Now we are ready to present our query algorithm. Theorem 7 shows the time

complexity of the query algorithm.
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Given query sample X, a hierarchical quasi-Voronoi diagram P corresponding to

begin
nodes_list = root;
while nodes_list # nil do
Pop the first node nd from nodes_list;
if nd is leaf then
add center Cpq to the center_list;
else
for regions under the node nd do
Add region which is closest X to nodes_list;
Add regions which satisfy Theorem 3 to nodes_list;
end for
end if
end while
Output the center in the center list that minimizes || X — C||.
end begin

a d-supportive learning set with C;; denotes to the center of the partition region P, ;.

The next theorem proves that the average time complexity of the query algorithm

is O(log n) where n is the size of the training set.

Theorem 7 Assume that n training samples in L are independently drawn and the
training set L is d-supportive. The hierarchical quasi-Voronoi diagram P is con-
structed based on the training such that each P;; has no more than p branches and
the volume of region P, j reduces by a constant factor as the ¢ increases, V ; = fViy1,;
and f > 1. Assume P;; be the region Cy as shown in Fig. 7.6. We select d such that
for each region P; ; in P, V!, C Vi ; where V; ; is the volume of the region P;; and V;
is the volume of the region between the hyperplane P, and the hyperplane P, in Fig.

7.6. Then, the above algorithm has the average time complezity O(logn) in terms of

— e



150

finding the nearest neighbor.

Proof of Theorem 7. Assume at the stage ¢, the query example X is in the region
P, ;. Let P;; be the C, region as shown in Fig. 7.6. Let V;; be the volume of the
region P;; and V/; C V;; be the volume of the region (between P, and P, in Fig. 7.6)

where the multiple search is needed. Thus, the average time complexity

Vi Ve=V..
TG <(p VSJ + %)T(i +1)+1, (7.4)

!
1,30

where Vs is the volume of the entire space. Equation (7.4) means that if X €
then may need to search maximum p branches, otherwise one branch is needed. We
expand the equation (7.4)

. . - (p—1)Viik, “ (p—1)Viis,
T(i) < T(z+m)g(1+———-—vs )+kz=:1(l+__vs )+1

Since V; ; = fViy1,;, we have V/, <V ; = f*Viyr;. Then

(p—1)Viir; < (p—1V,;
Vs f¥Vs

For f > 1, it is not difficult to show that

REETEN
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and

Thus, we have

Let : = 0 be the root and m be the height of the tree, we have m = O(logn).
Therefore, T'(0) = O(log n). =)

The query algorithm finds the nearest training sample from L using a tree struc-
ture. If the training set is d-supportive, the nearest neighbor is guaranteed to be
found. However, in order to achieve fast retrieval, as shown in Theorem 7, d should
be selected such that for each region P ; in P, V/; C V;; where V; ; is the volume of
the region P, ; and V/; is the volume of the region between the hyperplane P, and
the hyperplane P; in Fig. 7.6. This means that d can not be too large. If d is small,
the assumption that the training set is d-supportive may be too strong. Another
problem is that there is no way to verify whether the training set is d-supportive or
not because the true distribution of samples is unknown. The next theorem shows

what kind of the solution the query will obtain if the training set is not d-supportive.

Definition 15 Let P, ; be a region in the hierarchical quasi-Voronoi diagram P and

C be the center of the region. A minimum ball B(C,r) of the region P;; is defined

r=1n re€Ry (7.5)

where C 1is the center of the ball, r is the radius of the ball, and R is a set such that
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for any v’ € R, we have P;; C B(C,r'").

The minimum ball B(C,r) is centered at C and has the smallest radius for all

balls which contain the region P, ;.

Theorem 8 Let P = {P\,P,,---,P,} be the hierarchical quasi-Voronoi diagram
based on the training set L. Let the X. € P, be the solution found by the query

algorithm and Xy be the nearest neighbor of the query X in L. Then, we have
r
X~ X < 1K~ X x I, (7.6)

where r is the radius of the minimum ball of the region P, x and d is our assumption

of the training set.

Proof of Theorem 8. First, since P, is the finest partition and according to the
definition of the hierarchical quasi-Voronoi diagram, there exists a P, such that
X. € P, . Next, since X, is the solution, we have X in the minimum ball of the
region P, . So, we have || X — X, || < r. Finally, we have || X — Xx|| > d because

otherwise X, will not be the only choice according to Theorem 5. Thus, we have
T
X = Xl < IX — X x 5. (.7)

O

Theorem 8 gives us some insights to select d. There is a trade off between speed

and accuracy. In practice, given a training set L = {l;,{3,---,[,}, we choose the d as
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follows:

_ 025, [l - k)

n—1

d (7.8)

where [] is the nearest neighbor of [; in L. Since the region P, s in Theorem 8 only
has one training sample, X., we can expect that r is comparable to d. This means
that a reasonable neighbor is found although it is not guaranteed to be the nearest

one.

7.3 Experiments

We have applied our segmentation scheme to the task of hand segmentation in the

experiments.

Figure 7.7: A representative subset of hand shapes used in the experiment.

7.3.1 Training

Two types of training were conducted in the experiments. The first type of training
is to get the approximation for verifier f which would be used later to check the

validation of the segmentation. For each gesture, a number between (27 and 36)
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of training samples were used to obtained the approximation of the verifier f for
that gesture. Given a set of training samples L = {ly,l5,---,l,} for gesture k, we

empirically determined the damping factor o in the interpolation function as follows:

5= 025! X = Xin ]|

n—1

(7.9)

where X; = P(T(l;)), and P and T are the vectorizer operator and the projection

operator respectively.

The second type of training was to generate the attention images from multiple
fixations of training samples. In the current implementation, the selection of the
fixations is mechanical. Totally 19 fixations were used for each training sample.
The scales s and positions (s,t) of these 19 fixations for an image with m rows
and n columns are listed in Table 7.1. Fig. 7.8 shows the attention images of the
19 fixations from one training sample. The attention images with more than 30%
background pixels presented in the attention window would be discarded. The total

number of remaining attention images used in the experiment is 1742.

Table 7.1: The list of fixation scale and position

Scale | P1 P2 P3 P4 P5 P6 pP7 P8 P9
1.0 | (%,%)
0.75 | (%,%)
05 (1) (DG EHGH[GD [ ED [ED [
033 EHEHED G GEDIED I EDIE
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Figure 7.8: The attention images from 19 mechanical fixations of a training sample.

7.3.2 Hand segmentation

The trained system was tested to perform the segmentation task from a temporal
sequence of intensity images. Each sequence represents a complete hand sign. Fig.

7.9 shows eight sample sequences.

Motion-based visual attention

In order to speed up the process of the segmentation, we utilize motion information to
find a motion attention window. The algorithm to find the motion attention window

is outlined as follows. Fig. 7.10 shows results of motion-based visual attention.

Given an image I and a neighboring image I’ in the sequence.
begin
1. Get the difference image D such that
D[lu]] = "1[1,.7] - Il[z’J]”
2. Thresholding D.

3. Find the smallest rectangular window containing the largest connected component in D.

end begin

Segmentation

The task of segmentation would be a lot easier if the motion attention window gen-

erated by the attention algorithm was centered at the right position and included
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e 20

Figure 7.9: Eight sample sequences. From top to bottum, they represent the signs “happy”,
“hot”, “nothing”, “parent”, “pepper”, “smart”, “welcome”, and “yes”.



DLIK

Figure 7.10: Results of motion-based attention are shown using dark rectangular windows.

the entire hand. Unfortunately this is not always true. The attention algorithm can
detect the rough position of a moving object, but the accuracy is not guaranteed. In
Fig. 7.10, we show some of the results of motion-based attention. The dark rect-
angular is the smallest rectangular which contains the largest connected component
of the image difference. The positions of these rectangulars only give us the rough
positions of the hand and they can deviate from the desired positions. We solve this
problem by doing some limited search based on the motion attention window. In
the current implementation, given a motion attention window with m rows and n
columns, we try the candidates with size from (0.5m,0.5n) to (2m,2n) using step
size (0.5m,0.5n). The search stops if a valid segmentation is found. There is a trade
off between training and testing. The more fixations we use in the training, the less

search we need in the testing.

We tested the system with 161 sequences (each has 5 images) which were not used
in the training. A result was rejected if the system could not find a valid segmentation
with a confidence level I. The segmentation was considered as a correct one if the

correct gesture segmentation C was retrieved and placed in the right position of the
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test image. For the case of [ = 0.2, we have achieved 95% correct segmentation rate
with 3% false rejection rate. Fig. 7.11 shows some segmentation results. The average
computational cost for each image was 58.3 seconds on a SGI INDIGO 2 workstation.

The experimental results are summarized in Table 7.2.

Table 7.2: Summary of the experimental data

Training
samples per verifier [ samples for predictor
27~36 | 1742
Testing with confidence level=0.2
number of | false correct CPU time
images | rejection | segmentation | per image
805 3% 95% 58.3 sec.

Figure 7.11: The results of the segmentation are shown after masking off the background.
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7.4 Conclusions and Future Work

A segmentation scheme using attention images from multiple fixations is presented
in this chapter. The major advantage of this scheme is that it can handle a large
number of different deformable objects presented in various complex backgrounds.
The scheme is also relatively efficient since the search of the segmentation is guided
by the past knowledge through a predication-and-verification scheme.

In the current implementation, the fixations are generated mechanically. The
number of fixations and the positions of fixations are the same regardless of the types
of gestures. This is not very efficient. Some gestures may be very simple so that a few
fixations are enough to recognize them. In order to achieve the optimal performance,
different gestures require different positions of fixations. In the future, we plan to
investigate the generation of the fixations based on learning. The previous fixations
are used to guide the next action. The next action could be (a) termination of the
process of generating fixation if the gesture has already been recognized; or (b) finding

the appropriate position for next fixation.



Chapter 8

View-Based Hand Sign
Recognition from Intensity Image

Sequences

After segmentation, the hand in each image of a sequence is mapped to a fovea image
of a standard fixed size. Segmented fovea images at different times form a standard
spatiotemporal fovea sequence, in which both temporal and spatial dimensions are
normalized. The global motion information of the object of interest is placed in a
global motion vector, which records the size and position information of the segmented
object in the original image. This vector is necessary because once the object is
segmented and mapped to a fovea sequence with a standard spatiotemporal size, the

global motion information is lost.

Let a fovea image f of m rows and n columns be an (mn)-dimensional vector. For

160
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example, the set of image pixels {f(¢,7) | 0 < i < m,0 < j < n} can be written as
a vector V = (v, vz, +,v4) where vmitj = f(i,7) and d = mn. Note that although
pixels in an image are lined up to form a 1-D vector V this way, 2-D neighborhood
information between pixels will be characterized by the scatter matrix of V to be
discussed later. Let p be the standard temporal length and f; be the hand fovea
image corresponding to the frame :. Then we create a new vector X, called the fovea

vector, which is a concatenation of the hand foveas and global motion vector G,

X= (f17f2a""fpaG)' (81)

In this chapter, we present a learning-based method to recognize hand signs from

the fovea vector.

An automatic hand gesture recognition system accepts an input fovea vector X
and outputs the recognition result C which classifies the X into one of the gestures.
Thus, a recognition system can be denoted by a function f that maps elements in the
space of X to elements in the space of C. Our objective of constructing a recognition
system is equivalent to approximating function f : S +— C by another function
f : S — C. The error of a approximation can be indicated by certain measure of the

error f — f. One such measure is the mean square error:

A

E(f =D = [ (JX) - J(X)dF(X)

where F(X) is the probability distribution function X in S. In other words, f can
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defer a lot from f in parts where X never occurs, without affecting the error measure.
Another measure is the pointwise absolute error ||f(X) — f(X)]| for any point X in

S’, where S’ C S is a subset of S that is of interest to a certain problem.

Of course, f is typically high-dimensional and highly complex. A powerful method
of constructing fis using learning. Specifically, a series of cases is acquired as the

learning data set:

L= {(X,,f(X,))Iz =12, ’n}'

Then, construct f based on L. For notational convenience, the sample points in L is
denoted by X(L):

X(L) = {X;li = 1,2,--,n}. (8.2)

X (L) should be drawn from the real situation so that the underlying distribution of

X (L) is as close to the real distribution as possible.

In this chapter, we compare two different approximators of the function f. The
first approximator uses the nearest neighbor decision rule in the MEF space. In the
second approach, we use a recursive partition tree to approximate the function f in

the MDF space. The definitions of MEF and MDF will be given at the following

sections.
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8.1 Nearest Neighbor Approximator in the MEF

Space

Typically an image space is very large. The Karhunen-Loeve projection (see Chapter
6.1.1 for details) is a very efficient way to reduce a high-dimensional space a much
lower dimensional space. The base vector of this low dimensional space is called the
most ezxpressive features (MEF) in that they best describe the sample population in

the sense of linear transform.

Given a training set of fovea vectors L = {Fy, F»,---, F,}, we first obtain the
Karhunen-Loeve projection matrix V and the mean vector M. Then, we project
each training sample F; to a vector X; in the MEF space, where X; = VT(F,- — Mp).

Similarly, we also project any query sample onto the above MEF subspace.

Definition 16 Given a learning set L = {X,,X,,---,X,} in its MEF space and its
corresponding labels M = {l1,1,--+,1,}, a nearest-neighbor (NN) approzimator f of
f associated with L is defined as follows. For any query sample X, f(X) = [;, where

X; is the nearest neighbor of X in L.

An NN approximator is a piecewise constant function, constant in every P;, where
P; is a region of the Voronoi diagram based on the training set L. In Chapter 7.2.3,
we presented an efficient nearest neighbor query algorithm which uses the hierarchical

quasi-Voronoi diagram.
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8.2 Approximation Using Recursive Partition

Tree in the MDF Space

The MEF’s are, in general, not the best ones for classification, because the features
that describe some major variations in the class are typically irrelevant to how the

subclasses are divided as illustrated in Fig. 8.1.

Figure 8.1: A 2D illustration of the most discriminating features (MDF). The MDF is
projection along z;. The MEF along y; can not separate the two subclasses.

8.2.1 The Most Discriminating Features (MDF)

In this chapter, multiclass, multivariate discriminant analysis [197] is used to select the
MDPF’s. It is a generalization of Fisher’s linear discriminant [57]. Suppose samples of
Y are m-dimensional random vectors from c classes. The ith class has a probability

p;, a mean vector m; and a scatter matrix ¥;. The within-class scatter matriz is
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defined by

Su = S RE{(Y - m)(Y — m)|w} = 3 piS. (8.3)

i=1 i=1

The between-class scatter matriz is
C
Sy =Y pi(m; — m)(m; — m)’, (8.4)
1=1

where the grand mean m is defined as m = EFY = }°;_, p; M;. The mizture scatter

matriz is the covariance matrix of all the samples regardless of their class assignments:

Sm=E{((Y —m)(Y —m)‘} = S, + S (8.5)

Suppose we use k-dimensional linear features Z = W'Y where W is an m x k
rectangular matrix whose column vectors are linearly independent. The above map-
ping represents a linear projection from m-dimensional space to k-dimensional space.
The samples Y;,Y,,--+,Y, project to a corresponding set of samples Z,,Z,,---,Z,
whose within-class scatter, and between-class scatter matrices are Sz, and Sz,, re-

spectively. It is straightforward matter to show that

Sz, = W'S,W (8.6)

Sz, = W'S,W. (8.7)

These equations show how the within-class and between-class scatter matrices are

transformed by the projection to the lower dimensional space. What we seek is a
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transformation matrix W that maximizes in some sense the ratio of the between-
class scatter to the within-class scatter. A simple scalar measure of scatter is the
determinant of the scatter matrix. The determinant is the product of the eigenval-
ues, and hence is the product of the “variances” in the principal directions, thereby
measuring the square of the hyperellipsoidal scattering volume. Using this measure,
we obtain the criterion function to maximize

WS, |

TWV) = Wi wi

(8.8)

It can be proved [197] that the optimal W that maximizes the above function are the

generalized eigenvectors that correspond to the largest eigenvalues in

Sbw,- = /\,'Sww,'. (89)

In order to avoid compute the inverse of S,,, we can find the eigenvalues as the roots

of the characteristic polynomial

1Sy = XiSu| = 0 (8.10)

and then solve

(Sb - /\,‘Sw)w,' =0 (8.11)

directly for the eigenvectors w;. Since the rank of S, is at most ¢ — 1, we know

that only at most ¢ — 1 features {w,} are needed and we call these features the most
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discriminating features (MDFs).

8.2.2 Curse of dimensionality and the DKL projection

The discriminant analysis procedure breaks down when the within-class scatter ma-
trix S,, becomes degenerate, which is our case due to a high dimension of the input
image and a much smaller number of training samples. Weng [193] proposed DKL
projection (short for Discriminant Karhunen-Loeve projection). In the DKL projec-
tion, the discriminant analysis is based on the space of Karhunen-Loeve projection

(MEF space), where the degeneracy typically does not occur.

8.2.3 Recursive partition tree

For large number of classes, the overall feature set may not be best for specific pairs
of classes. An alternative classification scheme is the hierarchical classifier, where the
most obvious discriminations are done first, postponing the more subtle distinctions
to‘ a later stage [135, 163]. In this chapter, we present a recursive partition tree

approximator in the MDF space.

Definition 17 Given a training set of fovea vectors L = {F\,F,,---,F,}, a
recursive partition tree participates the space S as follows. Given a partition
P, = {P.1,P2,---,P.n} of S at level i, the partition at level 1 + 1 Pyy =
{Pis11, Pit12,- -+ Pit1iniy, } 08 a finer partition of P; such that for each P, € P;, P, ;

contains either P;; itself or Py g, Piy1k41,° -5 Pig1,k4b S0 that P;; = U':n=1 Pii1k4m-
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A hierarchical Voronoi diagram is hierarchical partition that satisfies an additional
condition: Every cell is further partitioned at a deeper level only by a Voronoi di-
agram. The Voronoi diagram in each cell is determined by a few training samples
within the cell. In the current implementation, we use an adaptive radius r to split
the cell. Once r is determined, we have k (k > 1) training samples and the distance
between each pair is greater than r. These k samples are the centers to generate a
Voronoi diagram and then we move on to the next level. The graphic description
in Fig. 8.2 gives an simplified but intuitive explanation of the hierarchical Voronoi
diagram. In Fig. 8.2, the partition under the root is created by three samples indi-
cated by circles. Two additional samples indicated by rectangulars are used to get
the partition of the next level. The partition of a region ends when the samples under

the region are from the same class.

Due to the complexity of the problem, the overall MDF feature set may not be
best for specific pairs of classes. In our implementation, the MDF’s are computed
locally. For each subregion P, ;, we obtain DKL projection matrices V;; and W;;
and mean vector M;; based on the training samples within P;;, where V;; is the
projection matrix to the MEF space and W, ; is the projection matrix to the MDF
space as defined previously. The leaves of the partition tree correspond to the regions
which contain the training samples from a single class. The approximator uses the

following decision rule to classify the query fovea vector X to the class of a leaf cell.

Definition 18 Given a training set of fovea vectors L = {Fy, Fy,---, Fn} and cor-

responding recursive partition tree, for any query fovea vector X, if the current level
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class 1

class3 class2 class4  class 2
(b)

Figure 8.2: A 2-D illustration of a hierarchical Voronoi diagram and the corresponding
recursive partition tree. (a) The partition, where the circles and rectangulars indicate the
samples used to create the Voronoi diagram. (b) The corresponding recursive partition tree.
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is not a leaf, the recursive partition tree approrimator (RPTA) selects the cell with
center C; if for any other cell with center C;, we have Ry(X,C;) < Ry(X,C;). If the

current level is a leaf node, RPTA designates the label of the leaf to the query X.

Since each local cell has its own DKL projection, in order to logically compare

between two different cells, we use a measurement called Mixture Distance (Ry).

Definition 19 Let C be the center of the region P, V be the projection matrizr to the
MEF space and W be the projection matriz to the MDF space. The Mizture Distance

(MD) from a query X fovea vector of the center C is defined as follows.

R(X,C) = \/|X = VVIX|P + [VWWVIC — VWWVIX|?

Intuitively, what is being measured can be seen in Fig. 8.3. In Fig. 8.3, the
original image space is a 3D space, the MEF space is a 2D subspace, and the MDF
space is 1D subspace since two classes are well separated along the first MDF vector.
The first term under the radical indicates the distance of the original vector from
the population which indicates how well the MEF subspace represents the query
vector X. This term is necessary since it is entirely possible that a query vector that
is miles away from a particular subregion’s MEF subspace would project very near
to the region’s center. The second term indicates the distance between the MDF
components of the query vector and the MDF components of the center vector in the

original image space.
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Figure 8.3: Illustration of components in the Mixture Distance in a 3D original space.

8.3 Convergence of the Approximators

An important issue to study here is how well the above approximators can approxi-

mate a function f. Its answer is closely related to the way samples are generated for

the learning set L. In [196], Weng and Chen have shown that the nearest neighbor

approximator approaches f pointwise in probability. In this section, we are going to
show that the same result also holds for the recursive partition tree approximator.

Due to a high complexity and undetermined nature of the way in which a learning

set L is drawn from the real world, it is effective to consider that X (L), the set of

samples in S, is generated randomly. We know that a fixed L is a special case of

random L in that the probability distribution is concentrated at the single location.

Thus, we consider X in X(L) as a random sample from S. The learning set L is
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generated by acquiring samples from S with a d-dimensional probability distribution

function F(X).

Definition 20 A point Xy € S is positively supported if for any § > 0 we have

P{||IX — Xy|| £ 6} > 0, where P{e} denotes the probability of the event e.

If S consists of a finite number of discrete points, a point X in P is positively sup-
ported means that the probability of selecting X as a sample is not a zero-probability
event. If S consists of infinitely many points, a point X in P is positively supported
means that in any small neighborhood centered at X, the probability of selecting
any point in the neighborhood is not a zero-probability event. In practice, we are
not interested in cases that almost never appears in a real-world application. An
approximate function f can assume any value in subregions of S that will never be
used in the application, without hurting the real performance of the system. Thus,

we just need to investigate how well the approximation can do at points X’s that are

positively supported.

Definition 21 A point Xy € S is an interior point of a region f(X) = D if there is

a § > 0 such that for any X we have f(Xo) = f(X) = D, where ||Xo — X|| < 4.

For a classification problem, we have a set of discrete number of categories to be

assigned to the input. Then, f(X) is continuous only at the interior points.

Theorem 9 Suppose the query vector X is an interior and positively supported point

in a bounded S. Let n be the size of a training set L. Given any small number
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€ >0, there is a number N, so that as long as we independently drawn > N learning

samples, the recursive partition tree approximatorf has the following property
P{f(X) # f(X)} <¢,

where f’ the approximator based on the recursive partition tree.

Proof of Theorem 9. Let X’ be the nearest neighbor of the query X in the training set
U~ X(L;). We show that as long as we independently draw the training samples, the
probability that X traverses the recursive partition tree exactly same as X’ approaches
1 as n — oo. Assume at the subregion P, ;, we have the projection matrices V' and

W. The Mixture distance from X to a center C' under region P, ; is

RZ(X,C) =X - VV'XI]2 + ||VWW‘V‘X - VWW'V‘CH2
Using the triangle inequality property of the Mixture distance, we have
RIX,C) < |IX-=-X|*+|X - VVX|®+|VVI(X-X)|*

+ [VWWHVIX — VWWIVIC|? + [VWWIVHX — X)||?

Ri(X,C)+ X = X|* + [VV!(X = X)|* + [VWW' V(X - X')||*

If the sum of the last three terms (S3) of the above equation — 0, we would have

Py (X,C) = Ra(X',C) which means that the approximator would make the same

decision for X and X'. Let D, be the event that the nearest neighbor of X in the
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training set Ui, X (L;) has a distance larger than n while E; denotes the event that
the the nearest neighbor of X in the single X(L;) has a distance larger than 7. Since

each L; is independently and identically drawn, we have

P{Dan} =TT P{E: 7}

On the other hand, X is a positively supported, which means that 1 — P{E;,n} =

4 > 0. Thus,

P{Dy,n} = (1-8)"

which approaches zero when n — co. So, given any value S3 = n and ¢ > 0, we can

have a positive N, so that for any n > N, we have
P{D,,n} < e.

Now, we have shown that the approximator makes the same decision for X and X' as
n — oo !. Finally, the fact that X is an interior point guarantees that f(X)=f(X')

as n — oo.

Theorem 9 means that the RPTA approaches f pointwisely in probability:

P{f(X) # f(X)} = 0, as the size of training set L increases without bound.

1This may not be true if X’ lies on the decision boundary. However, the event that X’ lies on
the decision boundary is a zero probability event.
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8.4 k Nearest Neighbors

One drawback of using decision tree to do recognition is that it is unable to reject the

undesirable input. In this section, we present a method to measure the confidence of

the recognition result based on k nearest neighbors. The confidence can be used as a

criteria to do rejection.
Definition 22 Given a learning set L and k nearest neighbors (X;,Xa,---,Xk) of

a testing sample X, the confidence level of X belonging to class c is defined as

k X=X,
l= Em(X.-,c)al_ SHIX=X,T),
=1

In the above definition, m(X;, c¢) is a membership function which takes value 1 if X is
a member of class ¢, otherwise it takes —1. € is a small positive number to avoid the
denominator to become zero. Intuitively speaking, this confidence level is the sum of
weight of each neighbor. The weight is inversely proportional to the distance between
the query and the neighbor. The distance here is the Mixture Distance. The value of
a determines how fast the weight will decrease for other runner up. A points X; at

twice the distance compared to that of the nearest neighbor X; will have its weight

decreased by a factor of 1/a.

8.5 Experimental Results

The framework has been applied to recognize the twenty eight different signs as

illustrated in the Fig. 1.2. The image sequences are obtained while subjects perform
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hand signs in front of a video camera. The variation of hand size in images is limited.
Two different lighting conditions are used. In the current implementation, each hand
sign was represented by five images sampled from the video. Figure 7.9 shows several
examples of these sequences.

We first applied our segmentation scheme as discussed in Chapter 7 to segment
hands from input images. Then we construct the fovea vectors as shown in Chapter
5.2. These fovea vectors were used as the input for sign recognition. The problem
now is how to deal with the sequences which has some images that have been rejected

by the segmentation routine. In this case, we still output those sequences because
there are still good chances that they can be recognized if only one or two images
in the sequences are rejected while the rest of them are fine. The number of images
used in the training is 3300 (660 sequences). The number of testing images is 805

(161 sequences).

8.5.1 Results of the nearest neighbor approximator in the

MEF space

We show some experimental results to indicate the performance of the nearest neigh-
bor approximator in the MEF space. We computed MEF’s using 660 training se-
quences. Fig. 8.4 shows top 10 MEF’s.
The number of MEF’s was selected based on the variation ratio r =
Som L A/ S>°R, Ai, where m out of n MEF vectors were used, as defined in Section

6.1.1. Table 8.1 shows the number of MEF’s corresponding to the variation ratio.




Figure 8.4: Top ten MEF’s

Fig. 8.5 shows the performance of the nearest neighbor approximator under the
different variation ratio. The performance first improves when the ratio r increases.
Then, at the point r = 0.4, the performance saturates at the recognition rate 87.0%.

Fig. 8.6 shows average computation time for each sequence on a SGI INDIGO 2.

The time was obtained based on the two different nearest neighbor query approaches,

Table 8.1: The number of MEF’s vs. the variation ratio

The variation ratio | The number of MEF’s
10% 1
20% 2
40% 6
80% 48
95% 125
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namely, the linear search and the hierarchical quasi-Voronoi diagram in 7.2.3. The use

of the hierarchical quasi-Voronoi diagramapproach dramatically improves the query

time.
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Figure 8.5: Performance of the nearest neighbor approximator in the MEF space. The
performance is given as a function of the number of MEF’s used.

8.5.2 Results of the recursive partition tree approximator in

the MDF space

In this experiment, the same 660 training sequences were used to build a recursive

partition tree. For each nonterminal region, we selected an adaptive radius r as

defined in Section 8.2.3 to split the region into subregions. Given r for a nonterminal
region, we have k > 1 training samples and the distance between each pair of these
k samples is greater than r. These k samples were the centers to generate a Voronoi

diagram. The distance here is the Euclidean distance in the MDF space corresponding
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Figure 8.6: Performance of the two different nearest neighbor query approaches: linear vs.
quasi-Voronoi diagram.

to the region. Fig. 8.7 shows the top 10 MDF’s at the root level.

Once we have created the recursive partition tree, we used it to recognize the
sign. As we did in the experiments for the nearest neighbor approximator in the
MEF space, the segmentation result was used as the input for sign recognition. The

results are summarized in Table 8.2. The correct recognition rate of 161 testing
sequences is 93.2% which is better than the recognition rate (87.0%) of the nearest
neighbor approximator in the MEF space. The average recognition time per sequence

is 0.63 second on a SGI INDIGO 2. The time is longer than the time (0.27 seconds)
of the nearest neighbor approximator when the quasi-Voronoi diagram is used in the
query. This is because each nonterminal node in the recursive partition tree has its
own DKL projection matrices and each time the query vector traverses the node, it

has to go through the local projection, whereas in the case of the nearest neighbor

p—a
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Figure 8.7: Top ten MDF’s

approximator, only one projection is necessary.

Table 8.2: Summary of the experimental data for RPTA

/
[

Il Training Testing
Number of Number of
// training samples | 660 (3300 images) || testing sequences 161 (805 images)
Height of Recognition
/ the tree 7 rate 93.1% (87% for MEF)
Number of Time per
nodes 90 sequence (sec.) 0.63

At
L

YRS
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8.5.3 k nearest neighbors

There are 16 sequences in the above 161 testing sequences and in each of these 16
sequences, at least two out of five images have bad segmentation results. What we
want to do is to reject these sequences. We used the method of k nearest neighbors
(see Chapter 8.4) to evaluate the confidence level of each recognition result. Then,
we set up a threshold and reject any result which has a confidence level below the
threshold. In the experiments, we used the top 5 nearest neighbors and selected 1.1
as the confidence threshold. Here, each of the top 5 nearest neighbors can vote for
the result. The weight of voting power of the result R; equals to ]&L_gﬁl} where X is
the test sample and R, is the nearest neighbor of the test sample. The sign of the
weight is positive if it agrees with the vote of the nearest neighbor, otherwise, it is
negative. The weight for the nearest neighbor is 1.0. The selection of the threshold
is heuristic. The threshold 1.1 requires slightly more support than a single nearest
neighbor. The system accepts 89% of the input sequences. Within these 89% of the
input sequences,, the correct recognition rate is 97%. Among those 11% (18) rejected

sequences, 56% (10) sequences have segmentation error. The experimental results are

shown in Table 8.3.

8.5.4 Experiments related to MDF

We have shown that the approximator in the MDF space has better performance
than the one in the MEF space. This is because the pixel-to-pixel distance, whether

in the original image space or the MEF space, can not well characterize the difference

W L anll’ B VE .2 SV AL TN AP I A



182

Table 8.3: Summary of the experimental data for kNN

Accept rate 89%
Reject rate 11%
Recognition rate among the accepted 97%
Misclassification rate among the accepted | 3%
False reject due to segmentation error
among the rejected 56%
False reject due to recognition error
among the rejected 44%

between two signs due to the effects such as lighting, viewing angle, and hand variation
between different subjects. On the other hand, the MDF’s are the features that best
characterize different categories. In this section, we show some experimental results

to indicate quantitatively how the MEF and the MDF may perform very differently

in classifying signs.

Clustering effects

We computed MEF’s and MDF's, respectively, using 50 sequences (10 for each signs).
These signs are obtained from different subjects and the viewing positions are slightly
different. Fig. 8.8 (a) shows the samples in the subspace spanned by the first two
MEFs and Fig. 8.8 (b) shows them in the subspace spanned by the first two MDF's.
As clearly shown, in the MEF subspace, samples from a single class spread out widely
and samples of different classes are not far apart. In fact, some samples from different
classes mingle together. However, in the MDF subspace, samples of each class are

clustered more tightly and samples from different classes are farther apart. This

shows that the MDFs are better in terms of classification of signs.
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Figure 8.8: The difference between MEF and MDF in representing samples. (a) Samples
represented in the subspace spanned by the first two MEFs. (b) Samples represented in the
subspace spanned by the first two MDFs. The numbers in the plot are the class labels of
the samples.
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Geometric meaning of the MDF

In the MDFs, factors that are not related to classification are discarded or weighted
down, which is accomplished by minimizing the within-class scatter; factors that are
crucial to classification are emphasized, which is achieved by maximizing the between-
class scatter. In this experiment, we show an example that the MDFs can capture

the important geometric features.

Figure 8.9: Two sample sequences of signs “of course” (a) and “wrong” (b).

In our gesture vocabulary, the image sequences of two signs: “of course” and
“wrong” are visually very similar. Fig. 8.9 illustrates two sample sequences of the
above signs. The nearest neighbor approximator generally has difficulty to distinguish
them, but not the recursive partition tree approximator in the MDF space. Fig. 8.10
shows the difference between the MEF and the MDF. The left sequence in Fig. 8.10
is a reconstruction of the sequence “of course” based on the first MDF and the right
sequence is a reconstruction of the same sequence using 95% of MEFs. We can see

that the MEFs are good in terms of preserve the information but not much help
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for classification. On the other hand, the first MDF captures the feature locations

(edges) because it accounts for the major between-sign variation.

(b)

Figure 8.10: The difference between the MEF and MDF. (a) Reconstruction based on the
first MDF. (b) Reconstruction based on 95% MEFs.

8.6 Conclusions

In this chapter, we have presented a new approach to recognize hand signs. In our
approach, motion understanding (the hand movement) is tightly coupled with spatial
recognition (hand shape). To achieve a high applicability and adaptability to various
conditions, we do not impose prior features that the system must use, but rather
the system automatically selects features from images during learning. The system
uses multiclass, multidimensional discriminant analysis to automatically select the
most linear discriminating features for gesture classification. The recursive partition
tree approximator is proposed to do classification. This approach combined with our
previous work on the hand segmentation forms a new framework which addresses three

key aspects of the hand sign interpretation, that is, the hand shape, the location, and
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the movement. The framework has been tested to recognize 28 different hand signs.
The experimental results have shown that the system achieved a 93% recognition rate

without a rejection option. The recognition rate was 97% with a 11% reject rate.




Chapter 9

Summary and Future Work

This chapter summarizes the results of the research described in this thesis. Several

directions for future research are also outlined.

9.1 Summary

Two pieces of work are reported in this thesis. The first one is about motion and
structure estimation using image sequences. The second one is about recognition of

hand signs using intensity image sequences.

9.1.1 Integration of transitory image sequences

We have developed a system to estimate motion and structure from transitory image
sequences. A transitory image sequence is one in which no scene element is visible
through the entire sequence. When a camera system scans a scene which cannot
be covered by a single view, the image sequence is transitory. We have shown that
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from a transitory sequence it is inherently not possible to get better estimates with a
longer sequence. The later a scene part comes into the sequence, generally the worse
its global accuracy compared to that in the first view. We establish asymptotic error
rates with respect to the number of frames, which indicate how the error in the esti-
mates evolves with time and how to minimize the pace of error accumulation. Some
concise expressions have been derived in terms of asymptotic error rate for different
representations, processing methods, and image sequence types. The asymptotic er-
ror rates are in fact the lowest possible error rates based on the Cramér-Rao error
bound. We have proposed two different techniques for two different usages of the
results: global and local(e.g., visual map generation and global pose determination
for the former and obstacle avoidance and object manipulation belong for the latter).
We conducted experiments with synthetic and real world images in order to ex-
perimentally examine the error rates and compare the two representations (WC and
CC). The performance of the algorithm can be demonstrated through simulations,
where ground truth and the amount of noise can be well controlled and the errors in
the estimates can be accurately measured. In the simulation, 3-D feature points were
generated randomly for each trial, between depth 2000mm and depth 3000mm, with
a uniform distribution. The entire scene is covered by 31 frames and the distance
between the consecutive frames is roughly 200mm. A small rotation was added be-
tween each pair of two consecutive frames. Average errors were obtained through 100
random trials each with a different set of 3D points. The results demonstrated that
different representations have very different stabilities. In general, the world-centered

(WC) coordinate system is better for a global usage and the camera-centered (CC)
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coordinate system is superior for a local usage.

In order to provide actual accuracy with a real system setup, careful experiments
have been conducted with a fully calibrated camera system. The setup used for our
image acquisition was a Denning MRV-3 mobile robot and a pair of stereo cameras.
The stereo camera system was calibrated with distortion compensation using an algo-
rithm from Weng et al [190]. An image sequence of 151 frames was acquired from the
moving mobile robot. A temporally subsampled (one sample every 5 frames) subse-
quence of 31 frames was used for motion and structure estimation with a consideration
that this subsequence is dense enough for estimation and yet enables cross-frame mo-
tions to cover more original frames with a relatively small batch size.

The algorithm includes feature selection, stereo matching, temporal matching and
tracking, 3D structure integration, and motion and pose estimation. The results have
been compared with the ground truth of the test points on the scene and the pose

of the camera system. As we predicted, the error increases with the time. But the
estimates appear good. After traveling about 3000mm, the estimated camera global
position error is less than 60mm in depth Z (less than 2.3%), about 43mm horizontally
and under 25mm vertically with the WC representation. This seems to indicate that

reasonable results can be obtained, even with a transitory image sequence.

9.1.2 Hand Sign Recognition

In this thesis, we have presented a new general framework to learn and recognize hand

signs from intensity image sequences. The framework has two major components,
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namely, segmentation and recognition.

A prediction-and-verification scheme using attention images from multiple fixa-
tions is presented to segment hands from complex backgrounds. During the predic-
tion stage, we first apply the motion-based attention to find the rough position of the
hands from the input sequences. Then, the attention images are generated around
the initial position. These attention images are used to query the database of the
training attention images to predict the mask. One important feature of small atten-
tion images which focus on the portion of the object is that they typically contain
little background. These attention images can be used as important visual cues to
segment the object of interest from the input image.

We present a hierarchical quasi-Voronoi tessellation to organize the training atten-
tion images. Based on the hierarchical quasi-Voronoi tessellation, we propose a new
efficient query algorithm for the nearest neighbor in the high dimensional space. The
result of prediction is verified using a learning-based function approximation scheme.

A major advantage of this scheme is that it can handle a large number of different
deformable objects presented in complex backgrounds. The scheme is also relatively
efficient since the segmentation is guided by the past knowledge through a prediction-
and-verification scheme.

In our recognition scheme, motion understanding (hand movement) is tightly cou-
pled with spatial recognition (hand shape). To achieve a high applicability and adapt-
ability to various conditions, we do not impose prior features that the system must
use, but rather the system automatically selects features from images during learning.

The system uses multiclass, multidimensional discriminant analysis to automatically

ctameg w
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select the most discriminating features for gesture classification. A recursive partition

tree approximator is proposed to do classification.

The framework has been tested to recognize 28 different hand signs. The ex-

perimental results show that the system can achieve a 93% recognition rate without

rejection. The recognition rate is 97% with 11% reject rate.

9.2 Future Work

In this section, we discuss a number of research issues which could be addressed in

the future.

9.2.1 Integration of transitory image sequences

In current experiments for the real setup, we have only tested one sequence and we

realize that in order to fully test the algorithm, we need to collect more data and run

the program.

The current design is suitable for a passive navigation system where the navigation
of the sensor is guided by the human operator. During a passive navigation, the sensor
grabs the image sequences. Later, these images are processed in an off-line fashion
to obtain the global structure of the unknown scene. The next question is whether it

is possible to build an automatic navigation system. In order to build an automatic
navigation system, we must have

e Real time processing. Currently, we are unable to do this is because feature

extraction and tracking are very time consuming.
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o Scene understanding. For a goal oriented navigation, the 3D structure infor-

mation of the scene alone is not enough. The navigator has to understand the

scene so that it can follow the road and find the way.

9.2.2 Hand sign recognition

We have presented a three stage framework in Chapter 5. This thesis addresses the
stage 2 and 3, which are segmentation and recognition. However, the stage 1 which
is the image acquisition is not a trivial problem if the speed of the hand motion is
not uniform, for example, person A first performs a sign from a slow pace to a fast
pace and then performs the same sign changing the pace from fast to slow. Then, we
have the problem of selecting the frames to represent the sign since using the same

time interval between the consecutive frame could end up with two very different

sequences. In that case, time warping is necessary.

In the current implementation of the segmentation, the fixations and the positions
of fixations are the same regardless of the types of gestures. This is not very efficient.
Some gestures may be very simple so that a few fixations are enough to recognize
them. In order to achieve the optimal performance, different gestures require different
positions of fixations. In the future, we need to investigate the generation of the
fixations based on learning. The previous fixations are used to guide the next action.
The next action could be (a) termination of the process of generating fixation if the

gesture has already been recognized; or (b) finding the appropriate position for next

fixation.
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Training in the current implementation is done in a batch fashion. A complete
new training session is needed each time we update the training set. This can be very
inefficient when the training set becomes large. In the future, we need to investigate
the problem of incremental learning.

Finally, we would like to give some personal views on the problem of interpretation
of the sign language such as American Sign Language (ASL). Can we extend our
current work to interpret ASL for the disabled? The extension faces the following

obstacles:

e Currently, we are working at the word level (sign). If we want to understand

ASL, we have to understand the sentence made up by a sequence of signs.

e Our experiments only include 28 different signs. Although 28 is a good number
in the current state of the art, it is just a small fraction if we compare it with

the number of the common words in ASL, which is around 5000.

o There are signs in ASL that use both hands and signs whose meaning of depends
on contextual information. Currently our system can not handle these types of

signs.

Based on the above discussion, we think there are still a few large gaps between

our system and a future system which can interpret ASL.
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