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ABSTRACT

On Directional Reinforced Incompressible Nonlinearly Elastic
Solids:
Simple Response and Correlation to the Linear Theory,
and Failure of Ellipticity in Plane Deformation

By

YUE QIU

A model for finitely deformable incompressible elastic materials with fiber
reinforcements is established. The engineering significance of this material model
is verified since it fits well with real material data. The fully nonlinear responses of
this material is discussed for a number of important deformations, and the loss of
monotonicity of the material response is studied. The correlation to the linear
theory is provided in terms of the elastic constants. The ellipticity of this
anisotropic material and the plate bifurcation problem are further studied. It is
revealed that the loss of ellipticity phenomena under planar deformation involve
different patterns, depending on loading path. These patterns involve simple loss of
ellipticity, loss-recovery-loss of ellipticity, and primary loss-secondary loss of
ellipticity. The geometry of the ellipticity boundary is made clear. The discussion
on the directions of the weak discontinuity surfaces is also presented. Finally, it is
concluded that there is no explicit correlation between loss of ellipticity and loss of
monotonicity of the stress response, and no explicit correlation between loss of

ellipticity and bifurcation.
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1. Introduction

In nonlinear elasticity, important and closely related issues, which have obtained
wide attention, are uniqueness, bifurcation and associated stability of the solution, as well
as ellipticity and material stability. There are two kinds of bifurcations, namely
homogeneous bifurcation and inhomogeneous bifurcation, from homogeneous equilib-
rium solutions have been discussed in the literature. The homogeneous bifurcation is a
phenomenon in which more than one homogeneous deformation states correspond to one
single stress state, and in which the shape of the material body is immaterial, as pointed
out by Ball and Schaeffer [Ball and Schaeffer 1983]. It is, therefore, reasonable that the
homogeneous bifurcation analysis be placed in the scope of material stability. The
material stability analysis is a different aspect from the traditional (structural) stability
analysis, since in the former there is no particular structure fabricated from the material
involved. In the analysis of the inhomogeneous bifurcation, the shape or the structure of
the material configuration must be addressed. We shall thus refer the inhomogeneous
bifurcation as structural bifurcation, and the associated stability structural stability, in
contrast to material bifurcation and material stability. It should be noted that the term
material stability is placed on the overall material properties and is not at the microscopic

level herein.

One famous example of the homogeneous bifurcation and stability is Rivlin’s cube
problem [Rivlin 1948b], where the deformation states of an incompressible, isotropic,
neo-Hookean material point under equi-triaxial dead load traction were studied. Further
discussion on this problem for a widened class of materials is given by Ball and Schaeffer

[Ball and Schaeffer 1983]. The homogeneous bifurcation and stability of incompressible,
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isotropic elastic material subject to in-plane equi-biaxial dead load traction was studied by
Ogden under plane strain condition [Ogden 1985] and under plane stress condition
[Ogden 1987]. Certain restrictions for material stability were then deduced from these

studies.

Restrictions pertaining to material stability can be found in the literature. As Rivlin
has summarized [Rivlin 1981], one condition for material stability is that the strain energy
density function must be positive definite if expressed as a function of strain tensor. This
condition is evident from the fact that if the strain energy is non-positive for some nonzero
strain tensor, then the material will be unstable in its undeformed state. Another condition
for material stability is Hadamard’s condition, it requires that the speeds of all plane
waves, propagated in the material body occupying a domain in three-dimensional space,
must be positive [Beatty 1987]. Even in the case of infinitesimally small deformations, the
above mentioned two conditions give different restrictions on material properties. In the
cases where finite deformations are involved, the conditions for material stability can be
that the strain energy density function, in terms of the deformation gradient tensor, be
either positive semi-definite or locally convex [Truesdell and Noll 1965, Rivlin 1981].
Although the mechanisms that cause the material instability have not been made
completely clear yet, we will adopt the condition that the strain energy density function
must be positive semi-definite (and of value zero only for rigid body motions) in

establishing our material model.
Another significant issue that concerns the regularity of the solutions in the theory
of finite deformation is the ellipticity analysis of the governing field equations. Loss of

ordinary ellipticity happens if, in the material body, there exists a surface across which
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weak discontinuity of the solution field is capable of taking place. That is, singular
equilibrium field exists in homogeneous material body. One such phenomenon observed
in real world is localized shear band. Strong ellipticity, which concerns the material
stability, is often correlated with bifurcation of equilibrium solutions. Conditions for
ellipticity can be found in [Knowles and Sternberg 1975, 1977] for compressible
materials, and [Abeyaratne 1980, Zee and Sternberg 1983] for incompressible materials,
respectively. Conditions for ordinary ellipticity are usually expressed as the nonsingularity
of acoustic tensor. In comparison, conditions for strong ellipticity, derived from
Hadamard’s condition, are usually expressed as the positive definiteness of the acoustic
tensor. Further derivations of the ellipticity conditions to explicit inequalities for easy
verification can also be found in these papers. Hill and Hutchinson have established the
plane strain incremental governing equations for the tension problem of the class of
time-independent piecewise linear or wholly linear materials [Hill and Hutchinson 1975,
Hill 1979]). The governing equations change types among elliptic, strong elliptic,
parabolic, hyperbolic types, depending on material and load parameters through the nature
of the roots (real or complex) of the corresponding secular equations. [Rosakis 1990] has
further discussed the derivation of ellipticity conditions and their mechanical
interpretations for compressible materials. Together with a later paper, [Rosakis and Jiang
1993], they have analyzed the problem of existence of equilibrium deformations with
discontinuous gradients. Recently, Horgan has analyzed the ellipticity problem for
generalized Blatz-Ko material [Horgan 1996]. He has found the range of material
parameter for possible loss of ellipticity, and further discussed the deformation parameter

ranges which never fail ellipticity. A discussion on ordinary and strong ellipticity can also



be found in [Ogden 1984].

A phenomenon that is associated with the structural instability is the structural
(inhomogeneous) bifurcation (buckling) of equilibrium configuration. Among various
types of inhomogeneous bifurcations, out-of-plane bifurcation is of special interest.
Examples of this type of structural bifurcations can be found in [Sawyers and Rivlin 1974]
for homogeneous material, and in [Pence and Song 1991, Qiu et. al. 1994] for composite
material. The so called Euler’s stability criterion [Beatty 1987] states, an equilibrium
configuration of a structure is unstable for dead loading if there exists, for the same
loading, another equilibrium configuration situated in the neighborhood of the assigned
one. In the utilization of Euler’s criterion, and in the scope of finite elasticity, the structural
stability analysis is often carried out in the context of the theory of small deformation
superposed on finite deformation [Biot 1965]. It has shown that the structural stability of
equilibrium configuration can be affected by the material anisotropy [Polignone and
Horgan 1993], and by the composite structure [Horgan and Pence 1989].

It has been shown that the out-of-plane inhomogeneous bifurcations under in-plane
loading are possible to take place when the corresponding incremental governing equation
is either elliptic or non-elliptic [Hill and Hutchinson 1975, Hill 1979, Kurashige 1981]. It
is also found, however, that loss of ellipticity of the incremental governing equation and
in-plane inhomogeneous bifurcation take place simultaneously, for incompressible
isotropic elastic membranes under in-plane loading [Haughton 1987]. With the anisotropic
material modeled by adding fiber stiffness to the Blatz-Ko material, Kurashige [1981]

studied the bifurcation of a transversely isotropic slab under axial loads.

It is usual that the difficulty of solving the nonlinear partial differential equations
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of finite elasticity largely confines the number of exact solutions to problems with a high
degree of symmetry, or to problems with fewer dimensions. It is also usual in solving these
problems that certain kinematic constraints and other simplification assumptions are
introduced to restrict the variety of deformations. By the study of Ericksen and Rivlin, the
total number of kinematic constraints can be as many as six [Ericksen and Rivlin 1954].
Among them, the incompressibility and inextensibility in assigned direction are frequently
included in the research in finite elasticity. The incompressibility constraint is a good
approximation for various real materials such as natural rubber, synthetic elastomers and
biological tissues [Beatty 1987]. The inextensibility constraint is usually used to describe
the effect of strong continuous fiber reinforcement [Adkins and Rivlin 1955].

Material models (constitutive relations) play an important role in the research in
finite elasticity. These models enable one to analyze in deep the mechanical phenomena of
a given system, and to predict the response of the material to specified traction and
displacement boundary conditions, and thus provide convenient tools for engineering
design. The material models can also provide guidelines for the design of material
experiment and for the interpretation of experimental data. Two simple but widely-used
isotropic materials models are the neo-Hookean type [Rivlin 1948a] for incompressible
materials and Blatz-Ko type [Blatz and Ko 1962] for compressible materials. In finite
elasticity, it is mathematically convenient to express the material model as a strain energy
density function, while in the classical linear elasticity the material properties are usually

described by a constant elasticity tensor.

The strain energy density is usually expressed as a function of a set of deformation

parameters. These parameters are regularly independent, complete and irreducible strain
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invariants under the symmetry transformation appropriate for the material. For
compressible isotropic materials, the number of such strain invariants is three. For
incompressible isotropic materials, this number becomes two. According to Green and
Adkins [Green and Adkins 1960], the number of such strain invariants describing
compressible transversely isotropic material is exactly five, while this number is four for

the incompressible counterpart.

In engineering practice, material anisotropy is often introduced by fiber
reinforcement. This provides unprecedented flexibility to economically meet performance
setpoints by tailoring the directional response of the individual substructural constituents.
For example, a material reinforced with one family of straight parallel fibers belongs to the
class of transversely isotropic materials, and the corresponding strain energy density
function involves five strain invariants or four strain invariants for compressible or
incompressible materials, respectively. In linear elasticity this material is modeled by five
elastic constants in the elasticity tensor [Christensen 1979]. For materials reinforced with
multiple families of fibers, the number of such strain invariants depends on the number of
families of the reinforcements and depends on the direction of each family of
reinforcement. Besides, the anisotropic effects due to several fiber reinforcements will be
coupled, since reinforcement in one direction may affect the material properties in other
directions. The complete modeling of fiber reinforcements may proceed along the
following line. Given a system of fiber reinforcements, first, derive the complete and
irreducible set of strain invariants under the symmetry transformation group that is
associated with the given system of fiber reinforcements. The material model is usually a

polynomial of these strain invariants. Second, identify each term in this polynomial by its
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nature in deformation and attach each term with appropriate material parameter. The first
step is within the theory of representations for tensor functions, which has obtained the

efforts of a number of researchers and is presented pretty completely in [Zheng 1994].

In literature, there appear two straightforward ways of modeling the effect of fiber
reinforcement. One way is to model the fiber reinforcement by the kinematical constraint
of inextensibility in fiber direction, as can be seen in [Adkins and Rivlin 1955, Pipkin and
Rogers 1971]. This modeling procedure may fail to yield sufficient deformability if the
reinforcement consist of several families of fibers in different directions. Another way of
modeling the fiber reinforcement, that has been used for the analysis of materials
reinforced in single direction, is by adding extra stiffness in fiber direction. Referring to
the works presented in [Kurashige 1981, Triantafyllidis and Abeyaratne 1983], the
modeling of compressible material reinforced with a single family of fibers is gained by
adding fiber stiffness to the Blatz-Ko material in the direction of reinforcement. In a recent
paper [Polignone and Horgan 1993], a similar modeling is obtained in extending the
incompressible neo-Hookean material by fetching in additional stiffness in the radial
direction for the spherical problem considered.

In the early 1970s, Pipkin, Rogers and Spencer developed what is known as the
ideal continuum theory of fiber-reinforced material (ideal theory, for abbreviation) [Pipkin
and Rogers 1971, Rogers and Pipkin 1971b, Spencer 1972], its origin may date back to
[Adkins and Rivlin 1955]. Here the term ideal has three aspects: (1) the fibers are
continuously distributed so that they can be represented by a field of unit vectors and the
material can be treated as continuum, (2) the material is inextensible in the fiber direction,

and (3) the material is incompressible. A number of problems have been solved employing
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the ideal theory [Rogers and Pipkin 1971a, 1971b, England et. al. 1992 and Bradford et.
al. 1992]. Several interesting phenomena have been predicted by the ideal theory, such as:
that stress is channeled, mainly due to the inextensibility, both parallel and normal to the
fiber direction without attenuation; that there exist stress concentration layers; and that
shear deformation can only take place along the fiber direction (see [Pipkin and Rogers
1971] as well as [Rogers 1975]). These phenomena can be expected for highly anisotropic
materials (such as fiber-reinforced composites with stronger fibers and weaker matrices).
For example, as we will see later, the shear modulus for shear normal to fiber direction
will be significantly larger than that along fiber direction for anisotropic materials if the

deformation is beyond infinitesimally small.

The standard mathematical approach for solving a boundary value problem is that
one determines a physical field, often the deformation field, from the governing equation,
the constitutive relations and the boundary conditions. In view of the nonlinearity of the
differential equations of finite elasticity, the standard mathematical approach is usually not
applicable. Instead, one adopts the semi-inverse approach. The semi-inverse approach can
be summarized [Beatty 1987] as follows. First, a suitable class of deformations
characterized by a number of parameters is chosen for study. Then the constitutive
relations is used to determine the stress distribution that satisfies the differential equations
of equilibrium. Finally, the surface loading necessary to maintain the deformation in its
equilibrium configuration is determined. The deformation that can be produced in a
material body by the application of surface traction alone is called the controllable

deformation.

In the studies that follows, we will, in chapter 2, establish a material model for
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materials reinforced, in general, with multiple families of fibers. The material reinforced
with single family of fibers will be studied in detail. The nonlinear response of this
material to certain important deformations will be addressed. The loss of monotonicity of
the material response will be discussed. The elastic constants corresponding to the linear

theory are then derived.

In chapter 3, we shall discuss the ordinary ellipticity of this material reinforced
with single family of fibers. The phenomena of loss of ellipticity under planar deformation
will be clarified. The generation of discontinuity surface in the material body, and the
orientation of the discontinuity surface will be discussed. The loss of ellipticity is further

studied in the context of certain special deformations introduced in chapter 2.

Two substantial appendices are also given. The first, Appendix A, develops the
algebra associated with the polynomial root type changes. Criteria for double real roots,
for two pairs of double real roots, as well as criteria for triple roots and quadruple roots are
discussed. The second, Appendix B, correlates the results of this thesis with the
out-of-plane inhomogeneous bifurcations of a thick plate consisting of the material
reinforced with single family of fibers under end thrust. A short appendix, Appendix C,
provides an alternative way to obtain the ellipticity condition in the buckling problem

discussed in Appendix B.



2. Material Model and Its Properties

The description of nonlinear mechanical behaviors of anisotropic materials is still
in its developing stage. In the present studies we do not attempt to model the fiber
reinforcement in its complete nature. Instead, we take into account the effect of each
family of fibers by including individually additional stiffness in specified directions given
birth by each family of fiber reinforcements and omit any explicit coupling effect. It is
evident that the most significant and direct effect introduced in material body by fiber
reinforcement is the increased stiffness and strength in fiber direction. This modeling
procedure allow us to isolate and investigate the most important effect of the fiber
reinforcement and neglect any other effects at least at this stage. It is assumed that the
material is incompressible, but we are not going to include the constraint of inextensibility
in fiber direction. The fiber inextensibility can be simulated as the additional stiffnesses in
the fiber directions become very large. It is assumed that fibers are continuously
distributed throughout the material body and thus each family of fibers can be modeled by
a field of unit vectors of which the trajectories are fibers. This makes it possible to employ

continuum theory.

In this chapter, the material model is introduced and discussed, including the
connection to material symmetry. Then the fully nonlinear response is discussed for a
number of important deformations. The loss of monotonicity of the material response is
studied, especially for simple shear deformation. Finally the correlation to the linear
theory is provided in terms of the elastic constants that follow from the specialization to

infinitesimal deformations.

10
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2.1. Material Model with Fiber Reinforcements

The mechanical responses of a nonlinearly elastic material that can sustain finite
deformation are determined by two configurations, namely, original (or reference)
configuration and current (or deformed) configuration, but do not depend on the time
history from one configuration to the other. The deformation from original configuration
to current configuration is then an invertible mapping between these two configurations

and can be, in general, written as
x = x(X), (2.1.1)
or in component form as
X, = x;(X}, X5, X3), Xy = X,(X}, X5, X3), x3 = x3(X,, X,, X3), (2.1.2)

which is not written as a function of time here since we are to deal with static processes
only. The corresponding deformation gradient tensor that describes the configurational

relation in between is defined as

_ox
F = X (2.1.3)

The strain energy density function W, defined over the material body with respect to the
original configuration, is important and convenient for determining the mechanical
responses, such as the deformation and stress field, of an elastic material. This strain

energy density function W, in general, is a function of deformation gradient tensor
W = W(F, X) or W = W(F) (2.14)

for an elastic material that is initially inhomogeneous or initially homogeneous,

respectively, in its original configuration.
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Among the various strain energy density functions for finite elastic materials, the
neo-Hookean type is the simplest for the purpose of analysis and gives reasonable
description for incompressible isotropic finite elastic materials. Here, we consider an
incompressible anisotropic finite elastic material model that is extended from the
neo-Hookean material by taking into account the effects of reinforcements of M families
of fibers by adding extra stiffnesses in the fiber directions. This material model given by

the strain energy density function is expressed as

%(11_3).,. Z _(K(m) )™, (2.1.5)
m=1
where
= tr(C), K(m) = A(m). CA(m), C = FTF. (2.1.6)

Here 1, is the first invariant of the right Cauchy-Green strain tensor C given by (2.1.6),.

The incompressibility constraint requires
detF = 1. (2.1.7)

For the material reinforced with M families of fibers, quantities with the superscript (m)
(m = 1,2,...,M) are associated with the m® family of fibers. For the case where materials
are reinforced with only one family of fibers, we will omit the superscript (1). The fiber
reinforcements are assumed to be continuously distributed. Thus, vector A™ is the m" unit
vector field modeling the m" family of fibers in the undeformed configuration and is
determined by the orientation of the fiber of the m" family at a specified point in a given
coordinate system. Now, it is clear that K™-1 is the elongation in the direction of the m”®

family of fibers. Note here that the unit vector field A™ could in general be a function of
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X. If so, the strain energy density W, in view of (2.1.5), takes the form of (2.1.4),. If the
material is uniformly reinforced with only straight parallel fibers, then A™ is independent
of the position vector X and the strain energy density function W takes the form of
(2.1.4),. We shall say that the fiber reinforcement is in-plane fiber reinforcement if all of
the fibers lie in parallel planes. This is the common case for fiber-reinforced composite
materials. For in-plane fiber reinforcement, we shall set the rectangular Cartesian
coordinate system in the way that the planes determined by the in-plane fibers are normal
to the X,-axis. We can, therefore, determine the fiber orientation of the m" family of fibers
at a specified point by an angle 0™ in planes parallel to the (X,,X)-plane. This angle 6™
is measured from the positive direction of the X, coordinate to the tangent direction of the
fiber at that point by a rotation about the X,-axis, and 8™ is positive for rotations that obey
right hand rule, and vice versa (refer to Figure 1). Thus, for straight parallel in-plane fiber

reinforcement, the unit vector

A = {cos8M), 0, sin@(M} . (2.1.8)

i X,

] 4

L

P - T (s o X,

-'{

Figure 1. The graphical description of a composite thick plate reinforced with multiple
families of fibers. The strain energy density function of this type of composite material
is modeled in expressions (2.1.5).
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The fibers in the deformed configuration will in general change their orientation. The

counterpart of A™ in the deformed configuration is a™ (m = 1,2,...M), given by

FA(™)

am = .
,/K(m)

(2.1.9)

In the material model (2.1.5) u>0 is the shear modulus of the neo-Hookean material. The
parameter B(™ >0 characterizes the increased stiffness contributed by the m" family of
fibers in the fiber direction. This in turn will depend on the stiffness and the fiber volume
fraction of the m" family of fibers. The neo-Hookean behavior is retrieved if B™ = 0 for all
m. It is evident that W is symmetric in C. In its undeformed state, I, = 3 and K™=1,in

which case the strain energy density function W given by (2.1.5) is zero.

Anisotropy introduced by the fiber reinforcement is characterized analytically by
the symmetry transformations that do not affect mechanical response. For M = 1 the
material is locally transversely isotropic, and we may let 8 = 0, so that A"’ = i,. Under
transverse isotropy, arbitrary rotations about the i,-axis, and reflections about the plane
with normal i,, do not affect the local mechanical response. For M = 2 if either
AM.AD = 0, 0r B = B? and o’ = a®, then the material is locally orthotropic. If
AM.AD =0, let 6 = 0 and 6@ = -n/2, then A" =i, and A® = i,. This situation
describes perpendicular reinforcing fibers which need not provide identical reinforcing. If,
on the other hand, B = B and a® = o®, let 6" = -6® = 6, then i, and i, are the
perpendicular bisectors of the fiber axes in this plane. That is,
i, = (AN +AR)/(2c0s0), i; = (AP -AWM)/(25in6). This situation describes
biassed reinforcing fibers with balanced reinforcing. Note in both cases that reflections

with respect to planes that are normal to i, i, or i,, respectively, do not affect mechanical
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response. For M = 2 with At"). A4 20 and either Bt} B4 or alt)#atls), the
material is said to be locally clinotropic (see [Zheng 1994]). This situation describes
biassed reinforcing fibers with different reinforcing. Under clinotropy, ®t-rotation about i,

and reflection with respect to a plane normal to i, have no effect on mechanical response.

In the linear theory, transversely isotropic materials are characterized by 5 elastic
constants, orthotropic materials are characterized by 9 elastic constants, and clinotropic
materials are characterized by 13 elastic constants. In sections 2.4 and 2.5 we give these
elastic constants derived from material (2.1.5) for the transversely isotropic and biassed
orthotropic cases respectively. In this regard it is necessary to take o™ =2m=1.2,..M)
for the material (2.1.5) to have finite additional stiffness in the fiber directions under
infinitesimal deformations, since a™>2 involves no detectable strengthening in the
infinitesimal limit and ™<2 gives no extension along the A™-axis in the infinitesimal
limit. In other words, the exponent o™ = 2 gives a nontrivial consistency with the familiar
linear elasticity theory. It is worthwhile noting that, in the similar material models
[Kurashige 1981, Triantafyllidis and Abeyaratne 1983, Polignone and Horgan 1993], this
exponent of the additional stiffness, though not mentioned, is taken to be 2. Henceforth we

take o™ =2 (m=1,2,..,M) so that (2.1.5) is rewritten as
o 5 B
W = E(Il -3)+ Y, —2-(K<m)- 1)2. (2.1.10)
m=1

It is clear that the specific augmentation applied to the neo-Hookean form is only one
particular model for fiber reinforcement. In the present study we consider only materials
reinforced with families of straight parallel fibers, hence from now on we will say fibers

instead of straight parallel fibers for abbreviation.
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The generality of the material model (2.1.10) within the symmetry classes
corresponding to transverse isotropy and to orthotropy is clarified by referring to the work
of Zheng [1994] specialized to incompressible materials, and hence isochoric
deformations. For transversely isotropic incompressible materials, it follows that the most

general form for the strain energy density function is given by ([Zheng 1994])
W = W(tr(C), tr(C?), A-CA,A-C2A). (2.1.11)

In our case A = {1,0,0} and so gives a dependence on the four scalar arguments:

(2.1.12)

In particular, (2.1.10) with M = 1 gives
w =ty +c22+c33-3)+g(c,,- 1)2 (2.1.13)

and so represents only one particular model for the finite elastic response of a transversely
isotropic incompressible material. Nevertheless, just as the utility of the neo-Hookean
model for isotropic incompressible materials is widely acknowledged, the form (2.1.13)
provides an idealized form for investigating the effects of transverse isotropy in finite

deformation.

In a similar fashion, the general form of the strain energy density function in an

orthotropic incompressible material is given by ([Zheng 1994])

W = W(tr(C), tr(C2), tr(MC), tr(MCM), tr(CMC), tr(MC2M)), (2.1.14)

where
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M =i ®i —i;®is. (2.1.15)

It can be shown that the dependence upon the six scalar trace variables appearing in the
argument list of (2.1.14) is equivalent to dependence upon the six quantities: C,,, C, Cs;,

C,zz, an, C232. This is because, in addition to the first two equations in (2.1.12),

(2.1.16)
which, in turn, gives
Cyy = 5(tr(MC) +r(MCM)),
Cyy = tr(C) -tr(MCM),
Cys = 5(~tr(MC) + tr(MCM)),
C}, = 3(-tr(C)2 + tr(C2) + 2tr(C)tr(MCM) - tr(MC)tr(MCM)
2.1.17)

—tr(MCM)2 + tr(CMC) - tr(MC2M)),
CP = 3(21(C)2 - 2tr(C?) - tr(MC)? - 4tr(C)tr(MCM)
+ tr(MCM)? + 4tr(MC2M)),
Cly = 5(-tr(C)?2 +tr(C?) + 2tr(C)tr(MCM) + tr(MC)tr(MCM)

~ tr(MCCM)2 — tr(CMC) - tr(MC2M)).

For the orthotropic case arising from perpendicular reinforcing fibers, (2.1.10) with K =

CK?=C,, provides the strain energy density representation
(n (2)
W = %(C“ +Cp+Cy-3)+ %—(Cn -1)2+ %(C” -1)2. (2.1.18)

For the orthotropic case arising from biassed, balanced reinforcing fibers, (2.1.10) with
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KM = (cos0)2C,, +2cos0sinOC,; + (5in6)2Cs; ,

) ) _ o (2.1.19)
K®) = (c0s8)%C,, - 2cos05in0C,; + (5in0)2C;; ,
provides the strain energy density representation
w =%, +C,+Cyy-3)
T2 rhas (2.1.20)

+ B(((cos0)2Cy, + (s5in8)2C3; — 1)? + 4(cosOsin0)2CE;).

As required, C,; enters into this last strain energy density expression only through its

square.

2.2. General Stress-Deformation Relation

The Cauchy stress tensor for the incompressible anisotropic finite elastic material

(2.1.10) is
T = 2P WET o = op W 5 AW KMy 22.1
= 2F5cF el = P gnact X sgm ac |F Pl @2
Here we have the following response functions
oW _p OW_ _ gmygm —

and the derivatives of these strain invariants with respect to the right Cauchy-Green strain

tensor

dl, oK (m)
—_— = — = A(m) (m)
3C , 3C AlM @AM (2.2.3)

The hydrostatic pressure field p = p(X) in (2.2.1) is a scaler (undetermined by the

deformation alone) that is due to the incompressibility constraint that is given in (2.1.7). It
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is usually determined by boundary conditions. The Cauchy stress tensor is

M
T = WFFT-pl+ ) 2BM(FAM . FAM - [)FA(™ @ FA(™, (2.2.4)

m=1
This is the stress-deformation relation (constitutive law) established from material model

(2.1.10) with M families of fibers arranged in orientations indexed by the vectors A™. The

Piola-kirchhoff stress tensor S is then given by S = F-IT.

In the context of this research, consideration will be placed on the material whose
constitutive law is given by expression (2.2.4). It is evident that the strain energy density
W, given in (2.1.10), regarded as a function of deformation gradient F, is positive
semi-definite. The strain energy density W takes the value of zero only if the material

modeled is in its undeformed state or undergoes a rigid body motion.

2.3. Homogeneous Deformations

When a material body undergoes a homogeneous deformation, the size and shape
of the material body have no effect on the pointwise mechanical responses. In other words,
when we consider the material mechanical properties pointwisely under deformation, it is
equivalent to consider a material body of certain size and shape (usually a unit cube) under
the same but homogeneous deformation. For this purpose, the deformation is best
described by the deformation gradient tensor F. We set-forth here the homogeneous

deformations that will be applied in the following sections.

The deformation gradient has the right polar decomposition
F = RU, (2.3.1)

where R is proper orthogonal (RR" = R'R = 1) and characterizes a rigid body rotation,
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while U is symmetric and positive-definite and thus has three real eigenvalues and the
associated three mutually orthogonal eigen-directions. Thus, a deformation can be
observed as, first a pure deformation U, then a post rigid body rotation R. It is worthwhile
noting that the mechanical responses of a material is only affected by U, not affected by R.

It is clear from (2.1.6), that the right Cauchy-Green strain tensor
C = FTF = URTRU = U2 (2.3.2)

is not affected by rigid body rotation.

We consider first the homogeneous triaxial deformation described by the

deformation gradient tensor

A, 0O
F=10x,0f. (2.3.3)
00 2'3}
Here, the principal stretches
A >0, i=1,23. (2.34)

In the literature, this deformation is often referred to as homogeneous pure deformation.
We shall call it homogeneous triaxial deformation to reflect the directional feature shared
with the anisotropic material that will be studied. The constraint of incompressibility

(2.1.7) now becomes

Secondly, a general plane deformation taking place in the (X, X;)-plane can be written, in

the deformation gradient tensor, as
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1::ll FIZ 0
F = F, F,, 0| (2.3.6)
0 01

and F,, # F,, in general. For this plane deformation, the left Cauchy-Green strain tensor

is

Cll C12 0
C=CT= Cy, Cpp Of» (2.3.7)
0 01
With C” = Fkiij SO that
C, >0, Cp,>0. (23.8)

The corresponding incompressibility constraint is
An important specialization of (2.3.6) is generated by requiring F;, = F,, = 0. This gives

the biaxial deformation described by the deformation gradient tensor

A, 00 [& 00
F=10a0 =0 A7l of (2.3.10)
0 01 0 01
where A,=1, and

A, = A7l (2.3.11)

is the incompressibility constraint directly obtained from (2.3.5). Here the deformation is

described by the principal stretch A, alone. Biaxial deformations taking place in other
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coordinate planes can be similarly defined.
Consider now the simple shear deformation with respect to coordinate planes.
There are in total six different canonical cases of simple shear deformations regarding the
direction of shear and the coordinate plane, in which the deformation take place. For a
simple shear of amount k in X,-direction taking place in the (X, X,)-plane, the

deformation gradient tensor has the components

The incompressibility constraint (2.1.7) is satisfied by the simple shear deformation.

Finally we set here more general simple shear deformation in the (X,, X,)-plane.
Consider a unit vector e, lie in the (X;, X;)-plane and pass through the origin of the
coordinate system set forth. This unit vector e, is apart from i, an angle y by right hand
rotation about i,. Let e, = i; X e, and e, = i;. We define simple shear in the direction of
e,, upon which line elements in the direction of e, in the planes normal to i, do not change
their length and orientation, but have slides along e,-direction. Furthermore, the slide of a
specific line element is proportional, by factor k, to the distance measured along e, from e,
to the line element. By this definition, the deformation gradient tensor with respect to the

{i,,i,,i;} coordinate system is given by

1 -kcosysiny kcosz\v 0

F = (2.3.13)

—ksin2\|! 1 +kcosysiny 0}
0 0 1

Simple shear defined in (2.3.12) with indices p = 1 and q = 2 is obtained by letting y =0 in

(2.3.13). Simple shear in (2.3.12) with indices p = 2 and q = 1 is obtained from (2.3.13) by
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setting y = 1/2 and replacing k with -k.
The stress state of a uniaxial load T in the X,-direction is given, in components,

by

T. =TS 5. . (2.3.14)

2.4. Material Properties (Single Fiber Family)

If the material expressed in (2.1.10) is reinforced with only one family of fibers (M
=1 in (2.1.10)), then it has three mutually orthogonal material principal directions and
three mutually orthogonal planes of symmetry. Furthermore, one of these planes of
symmetry is the plane of isotropy. This type of materials is the transversely isotropic
material and is characterized by five independent elastic constants in linear elasticity. We
now investigate the mechanical responses of this material model through prescribed
simple homogeneous deformations in accordance with simple loading conditions, such as
uniaxial load in fiber direction, uniaxial load transverse to fiber direction and simple shear.
For this purpose, we arrange the rectangular Cartesian coordinate system so that the
X,-axis is in the direction of the family of fibers (8 = 0) and, therefore, the X, and X;-axes
are in the material isotropic plane. Thus, the strain energy density function (2.1.10)

becomes
W = %(I,—3)+§(K-1)2. (2.4.1)
The components of the Cauchy stress tensor, following from (2.2.4), are given by

Ty = WF,Fj - p8;; +2B(FF AA - DF Fi A A, . (24.2)

The unit vector field A for the single family of fibers is simply given by
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A={1,00}T or A =38, (2.4.3)

in the coordinate system set previously. This, for M = 1, reduces the Cauchy stress tensor

(2.4.2)to as
Ty = l‘lFiijk _paij +2B(F, F,, - DF;F;,. (2.4.4)

In the case that the material is reinforced with single family of fibers (or families of fibers
that only differ from orientation), we define a dimensionless material parameter (i.e.

stiffness ratio) as
Y=B/n20. (2.4.5)

2.4.1. Material Response to Homogeneous Deformations

Here, we examine the mechanical responses and investigate the properties of the
material (2.4.1) reinforced with one family of fibers through simple homogeneous

deformations corresponding to some simple loading conditions.

(i) Uniaxial load in the X,-direction (fiber direction)

We seek the stress state of uniaxial traction in X,-direction, given by (2.3.14) with
index p = 1, corresponding to a homogeneous triaxial deformation (2.3.3). In view of the
equivalence of the X, and X; material directions in this case, we seek solutions with the

additional lateral symmetry A, = A;. This, in connection with equation (2.3.5), yields

The corresponding left Cauchy-Green strain tensor is diagonal and given by
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A2 0 0
C=]o Al oo 2.4.7)
0 0 Aj!

We now show that there is a single family of such solutions and that they can be

parametrized by A,>0. That is, we obtain functions
Ty = Tuy),  Ay=hda(h), Ay = A, (248)

for each A,>0.

Substituting equations (2.3.3) with (2.4.6) into equation (2.4.4), the only possible

nonzero components of the Cauchy stress tensor are
Ty = uA?+2B(A%-1)A?-p, (2.4.9)
The hydrostatic pressure p which makes T,, = T;; =0 s
p = pAgl. (24.11)

Therefore, the uniaxial load required to produce the deformation corresponding to

deformation gradient (2.3.3) with (2.4.6) is
Ty = RAAZ=A7Y) +2B(AF - 1)A}. (24.12)
Equation (2.4.6) and (2.4.12) yield the following asymptotes:
Ay > oo, Ay —> oo, T ~—HAT! > —eo, as A; >0, (2.4.13)

and
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It can be seen from (2.4.13), that to compress the material body to a flattened state such as
a deformation (2.4.13), ,, the dominant portion of load T), is required to balance the hydrostatic
pressure p which is generated for preserving volume. From (2.4.14), we see that if the material
body is forced to extend very large, such as a deformation (2.4.14), ,, the dominant portion of load
T,, is contributed to overcome the resistance generated by the additional stiffness in the fiber
direction. Figure 2 and Figure 3 are the responses of material (2.4.1) in uniaxial load in fiber
direction. In Figure 2, A, and A,, given by equation (2.4.6), is independent of the material
properties and is determined by the incompressibility constraint only.

Noting (2.4.5) and (2.4.7), we derive from (2.4.1) the normalized strain energy density

function for this deformation, expressed in terms of A, and v, as well as its partial derivative with

respect to A,:
WA, 7) E&W(C(x,), u B) = %(x§+ 2071 -3) + %y(lf— 12, (2.4.15)
%V"V(k, V,Y) = A —-A2+2y(A2 - DA, (2.4.16)
1

respectively. Comparing (2.4.16) with (2.4.12) and noting (2.3.5), one verifies the well-known

result

1 M 5
ﬁTll()"l’ 'Y) - xllzxg‘mw()"]r Y)’ (2.4.17)

in the anisotropic problem studied here.
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0.5 .
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o 0.2 0.4 0.6 0.8 1 1.2 14 1.6 18 2
M

Figure 2. Lateral deformation vs. extension/contraction in the loading direction for the
case of uniaxial load in the fiber direction. Here A, or A, is independent of the material

properties and is determined by the incompressibility constraint only (2.4.6). A, = 1
represents to the undeformed configuration.

40 ‘Y‘—‘IOO Flo 1

201 y:]

Ty/n =0
4
% 02 04 06 08 1T 12 14 1.6 18 2

M
Figure 3. Dimensionless loading T, /)L vs. extension/contraction in the loading direc-
tion for the case of uniaxial load in the fiber direction (2.4.12). The stiffness ratio y
takes the value: Y=0, 1, 10 and 100. For ¥>4.96074S, T, behaves non-monotonically
for A,<1. Loss of monotonicity first take place at y=4.960745, A, = 0.5194. This gives

rise to the possibility that, in compression, three deformed configurations could corre-
spond to one load level. A, = 1 represents the undeformed configuration.

In Figure 3, for larger stiffness ratio 7, the responses (T,,) behave non-monotoni-
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cally in compression (A, < 1) and give rise to the possibility that three deformed
configurations correspond to one load level. The minimum 7y at which T,; becomes
non-monotonical is Y = 4.960745. The cases of Y= 0, 1, 10 and 100, are plotted in Figure
3. For the case that y = 0, the response is simply that of the neo-Hookean material.
Denoting the value of A, at which T}/ takes its local maximum by A}fE ., and the value

of A, at which T,,/u takes its local minimum by Xf&inin) , we now investigate the relation

between these special values of A, and 7. For this purpose, we take the partial derivative of

(2.4.17) with respect to A, and obtain the following equation

9 (1
ax,(ﬁT““l’”) = 2h + A7 +2Y(4A) - 21) = 0, (2.4.18)
which, for every given v, determines A{fi,., and APfi. . Since A; > O, the second

equality in (2.4.18) is equivalent to
8YA]-(4Y-2)A}+1 = 0. (2.4.19)

This is a fifth order polynomial equation and there is no standard solution procedure for it.
However, the number of positive real roots may be determined by the Descarte’s rule of
sign, which states the number of positive real roots of a polynomial equals the number of
sign variation of the polynomial, or less by an even number. The number of sign variation
of the left hand side of (2.4.19) is O for Y < 1/2, and is 2 for y> 1/2. By the Descarte’s
rule of sign, we know that equation (2.4.19) has no positive real root for y<1/2, and
equation (2.4.19) may have either O or 2 positive real roots for y> 1/2. We have found
numerically that local maximum and local minimum exist for Y> 4.960745. We now solve

equation (2.4.19) numerically to obtain AUM . (y), A¥ni.  (y), and plot it in Figure 4.

1(max) 1(min)
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Figure 4. Curves of Ayfi,,,(Y) and Apfii, (Y) Aymin)(Y) corresponding to the non-
monotonic uniaxial response behavior of T;;/u which occurs in Figure 3 for v >
4.960745.

(ii) Biaxial load associated with biaxial deformation

If the deformation is biaxial as given by (2.3.10), then

)\.12 00
C = 0 )_]_2 ol - (2.4.20)
0 01

For these deformations the Cauchy stress tensor is diagonal. If, in addition, the hydrostatic
pressure p is chosen so that T,, = 0, corresponding to a traction free boundary with normal

i,, then the only nonzero components of the Cauchy stress tensor are

Ty = R =-A72) +2B(A2 - 1)AZ,

(24.21)
Ty = (1 -A72).

Here the hydrostatic pressure p which makes T,, =0 is

p = HATZ. (2.4.22)



30

The nonzero component Ti; (2.4.21), is required to maintain biaxial deformation
condition A, = 1. Here T, (2.4.21), is plotted against A, for Y= 0 (neo-Hookean), 1, 10 and
100 in Figure 5. As anticipated,
T 1A piaxial 10ad & biaxial deformation > | 111 M| uniaxial 1oad & triaxial deformation 1f A1 % 1-
Making use of (2.4.20) in (2.4.1), it is found that the normalized strain energy
density function, expressed in terms of A, and v, as well as its partial derivative with

respect to A, are given by
Wk, 1) = WCA) B = 503+A52-2) 45703 - 17, (2423)

d

aMW(k ) = A=A+ 2Y(A2 - 1A, (2.4.24)

for this biaxial deformation. Comparing (2.4.24) with (2.4.21), and noting (2.3.5), one

verifies, again, the well-known result

1
pTue ) =7 ,\2)‘3a,~lw(k1, ), (2.4.25)

in the anisotropic problem studied here.

Figure S indicates, for larger stiffness ratio 7y, that the load responses T,,(A,)
behaves non-monotonically in compression (A, < 1) and so also give rise to the possibility
that three deformed configurations can correspond to one load level. The minimum ¥y at
which T,, becomes non-monotonic for biaxial deformation is y = 14.950393 as shown
below. Denoting the value of A, at which Ty,/u takes its local maximum by AP ... and
the value of A, at which T,/ takes its local minimum by A}i ;) » We now tumn to locate

Abi and AP . | for changing . For this purpose, set the partial derivative of (2.4.25)
1(max) 1(min)
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with respect to A, equal to zero:

i(lT“(kl,y)) = 20 + A3+ 2y(4M3-2))) = O, (2.4.26)
oA \u

which, for every given ¥y, determines possible values A} .., and APl . .. Since A, > O,

the second equality in (2.4.18) is equivalent to
4yAS - (2Y-DAf+1 = 0. (24.27)

Expressing equation (2.4.27) in terms of C,, by noting C,, = A yields the following cubic

equation
4yC3} -(2y-1)CH +1 = 0. (2.4.28)

This cubic equation can be solved by following standard procedure. It is to be noted that
equation (2.4.27) has a positive real root for A, if and only if equation (2.4.28) has a
positive real root for C,,. It is to be further noted that the transition from monotonicity to
nonmonotonicity of T,,/u corresponds to a positive real root of (2.4.28). Following the
theory of cubic equations [Kurosh 1980] indicates that equation (2.4.28) has a double real

root if and only if
8y3-120y2+6y-1 = 0. (2.4.29)

Following, again, the procedure as mentioned in [Kurosh 1980] indicates that (2.4.29) has
only one real root Y= 14.950393. This is the lower bound for nonmonotonic behavior. For

Y > 14.950393, one may then solve equation (2.4.28) ((2.4.27)) to obtain Abi _  (y) and

1(max)

l}’}min)(y) , as shown in Figure 6. Figure 7 compares the nonmonotonicity regions for this

response with that of the uniaxial response as given previously by Figure 4.
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4o} =100 =10 -

Tu/n o

20}

Figure S. Dimensionless loading T;;/i vs. extension/contraction in the loading direc-
tion for the case of biaxial load (2.4.21) associated with biaxial deformation (2.3.10).
The stiffness ratio y takes the value: y=0, 1, 10 and 100. For ¥>14.950393,T,, behaves
non-monotonically for A;<1. Loss of non-monotonicity first takes place at y =
14.950393, A, = 0.5676. This gives rise to the possibility that, in compression, three
deformed configurations could correspond to one load level. A; = 1 represents the
undeformed configuration.

Region of decreasing T, /p

L (0.5676, 14.9504)

o 8 8 8 8

Figure 6. Curves of A}i..,(Y) and A} .. (Y) corresponding to the nonmonotonic
biaxial response behavior of T, /)L which occurs in Figure S for y> 14.950393.
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Figure 7. Comparison of the nonmonotonicity regions between the uniaxial response
and the biaxial response.

(iii) Uniaxial load in X,-direction (transverse to the fiber direction)

Here we seek the stress state of uniaxial traction in X,-direction, given by (2.3.14)
with i = 2, corresponding to the homogeneous deformation (2.3.3). We now show that
there is a single family of such solutions and that they can be parametrized by A,. That is,

we show that given A, we can obtain
A = M), Ty = Ty, Ay = As(hy). (2.4.30)

These relations are, however, not given explicitly.

The nonzero components of the Cauchy stress tensor, by substituting equations

(2.3.3) and the incompressibility constraint (2.3.5) into equation (2.4.4), are

T, = pA2+2B(A2- 1)A2-p, (2.4.31)

Ty, = WAZ-p, (2.4.32)
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Here T, is the load required to produce such a deformation as described in equation
(2.3.3). The uniaxial stress state (2.3.14) with i = 2 requires that T,, = T;; = 0. This permits
the elimination of p between equations (2.4.31) and (2.4.33), and so gives the following

relation between A, and A,
R(AZ2-A2) +2B(A}-1)A2 = 0. (2.4.39)
Then eliminating A, from equation (2.4.34) by using equation (2.3.5), yields
flo(A, A) =2PAS + (- 2B)Af —pAs2 = 0. (2.4.35)
Alternatively eliminating A, from equation (2.4.34) by using equation (2.3.5), yields
f35(A3, Ap) =—pAS + (L - 2B)A52A2 +2BAs* = 0. (2.4.36)
From equations (2.4.35) and (2.4.36), the corresponding A, and A, at every given A, can be
determined. In fact, let x = K,z orx = 7\32 respectively in (2.4.35) or (2.4.36). We then get
either
2Bx3 4+ (u-2P)x2-puAr;2 = 0, (2.4.37)
or
—px3+ (n-2B)As2x +2PA* = 0. (2.4.38)

According to the Descarte’s rule of sign, both equation (2.4.37) and equation (2.4.38) have
exactly one positive real root for x. It follows that equation (2.4.35) or (2.4.36) each gives
one positive real root to A, or A, respectively for every given A,>0 and so define two

functions il and i,3 in (2.4.30),;. The load deflection relation (2.4.30), is then
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T2(A,;) = B{A4-A3(A,)}. Using a numerical procedure, we can graph the responses of
the material defined in (2.4.1) in uniaxial load transverse to the fiber direction according to
equations (2.3.5), (2.4.31)-(2.4.36). Figure 8-Figure 10 are examples of these responses
plotted for y = 0 (neo-Hookean), 1, 10 and 100. This numerical procedure indicates that
the dimensionless loading T,,/it monotonically increases with A, so that for each value of

load Ty, there is one corresponding deformed configuration of type (2.3.3).

4.5r
4
3.5
3|
A 25
=0
2 ¥=1
1.5|
1
¥=100 \
o5 =10 1
0.2 0.4 0.6 08 1 12 14 16 18 2

Figure 8. Lateral deformation in the fiber direction vs. extension/contraction in the
loading direction, for the case of uniaxial load transverse to the fiber direction. The
stiffness ratio y takes the value: Y= 0, 1, 10 and 100. A, = 1 represents the undeformed
configuration.
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asF
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Figure 9. Lateral deformation orthogonal to the fiber direction vs. extension/contrac-
tion in the loading direction, for the case of uniaxial load transverse to the fiber direc-
tion. The stiffness ratio ¥ takes the value: Y= 0, 1, 10 and 100. A, = 1 represents the
undeformed configuration.

Ty/p

Figure 10. Dimensionless loading T,,/jt vs. extension/contraction in the loading direc-
tion, for the case of uniaxial load transverse to fiber direction. The stiffness ratio y
takes the value: =0, 1, 10and 100. A; = 1 the undef d fi

- — - - - - o TE T
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Equations (2.3.5), (2.4.31)-(2.4.33) with T, = T3; = 0, as well as equation (2.4.35) and

(2.4.36) also yields the following asymptotes in terms of A,:

-1/6 )

1/6

T ~ —(2u2B) 30543 = oo, ‘

g

as A, -0, (2.4.39)

-1/4 ]
ll~(l—ﬂ3) A2 50,
M

x3~(1_29)"4151/z_,0, b as A, oo, (2.4.40)
m

T ~pA2 > oo,

(iv) Simple shear deformation with respect to coordinate plane

We now turn to simple shear deformation in the (X,,X;)-plane. First, if the material
is subjected to a simple shear in the X,-direction (in the fiber direction) then the
deformation gradient tensor is given by (2.3.12) with indices p = 1 and q = 2. The Cauchy
stress tensor associated with this deformation is obtained from (2.4.4) as

p(1+k?)-p pk O
T = uk w-p 0 |- (2.4.41)

0 0 p-p
We note that the associated shear stress,
T, =T, = pk (24.42)
is not affected by the additional stiffness in the X-direction, since this deformation

(2.3.12) with i = 1 and j = 2 involves no stretching of the fiber.
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If instead the simple shear is prescribed in the X,-direction (transverse to the fiber
direction) in the (X;,X,)-plane, then the deformation gradient tensor is given by (2.3.12)
with indices p = 2 and q = 1. It then also follows from (2.4.4) that the Cauchy stress tensor

1s

1 -p+2pk?2 pk + 2pk3 0
T =] uk+2pk? p(1+k2)-p+2pk¢ 0 |- (2.4.43)
0 0 k-p
Now, we find that
Ty, = Ty = (b+2Bk2)k. (2.4.44)

The additional shear stiffness 2Bk2 to the total shear stiffness is due to the additional
stiffness, introduced by the fiber reinforcement, in the X,-direction. For infinitesimally
small shear (|k|<<1), this additional shear stiffness is negligible, but this term has
significant effect if the shear deformation is not infinitesimally small. For strongly
anisotropic fiber-reinforced materials, the stiffness in the fiber direction can be greater, by
orders of magnitude, than the stiffness in other direction. If B tends to infinity, as is the
case that simulates an inextensible fiber, then T,, is required to be infinitely large to
maintain nonzero amount of shear k in the X,-direction. This is the same result as obtained
by the ideal theory where the only direction for shear to take place is the fiber direction,

due to the constraint of fiber inextensibility [Pipkin and Rogers 1971].

By symmetry of the X, and X;-directions, the results obtained above hold for
simple shear in the (X,,X;)-plane if subscript 2 is everywhere replaced by subscript 3. On
the other hand, for simple shear in the (X,,X;)-plane, the fiber stiffness B plays no role, and

one easily finds that
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regardless of whether the simple shear is prescribed in the X,-direction or in the
X,-direction.

The nonzero normal components of stress in (2.4.41) and (2.4.43) is due to the
in-plane coupling effect (extension/shear), that, in finite elasticity, normal stresses are

required to support simple shear deformation.

The simple shearing states (2.4.41) and (2.4.43) are supported by in-plane loads if
Ts; = 0. This corresponds to p = d, when utilized in (2.4.41) and (2.4.43) leads to the
response diagrams given in Figure 11 and Figure 12. In Figure 11, the stress components
Ty, Ti; and Ty, in (2.4.41) are plotted, and in Figure 12, the stress components T,;, T}, and

Ty, in (2.4.43) are plotted.

0.8 b

0.6

Ty/n
T/ 0af Tyo/p
Ty/p Ty/pn

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
k

Figure 11. Simple shear in the fiber direction as given by equation (2.4.41) for y= 10.
This choice of 'y corresponding to p = 4.9 and B = 48.9, is motivated by the linear prop-
erties of the boron/epoxy material as exemplified later in Table 1.
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Figure 12. Simple shear transverse to the fiber direction as given by equation (2.4.43)
for y=10.

(v) General simple shear deformation in the (X,,X,)-plane

For the more general simple shear in the (X,,X,)-plane with shear direction rotated
from the fiber direction by an angle v, the Cauchy stress tensor is obtained, by substituting

(2.3.13) into (2.4.4), in component form as

T, = u(kzcosz\v —ksin2vy) + 2B(k2sin 2\;! —ksin2y)(1 —ksin2y + k2 coszlysinz\v),
T, = u(kcos2\|l + %kzsin22w) +2B(k2sin >y — k sin2y) (- ksin >y + k2 cosy ()
T,, = u(k2sin’y + ksin2y) + 2B(k2sin >y — ksin2y)(k2sin*y).

Here once again the hydrostatic pressure p is eliminated by equating p = L so as to give T,
= 0. Equation (2.4.46) reduces to (2.4.41) with p = p if y = 0, and reduces to (2.4.43) with

p =M if ¥y =12 and k is replaced by -k. The responses under this simple shear (2.4.46) for

single fiber family material with a number of shear directions are shown in Figure



41

13-Figure 15. These responses further reveal the in-plane coupling (extension/shear)
effects, which present themselves not only in finite elasticity but also in linear anisotropic

theory.

10

-2} \|I=31t/8 4
kb y=n/4

y=/8

_’o i A ' A 1 1 1 1 A
[o} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

k

Figure 13. Normal stress T; /) in (2.4.46) varies with simple shear k for material with

one family of fibers, where Y= 10 (1 = 4.9 and P = 48.9). The material response to the
simple shear (2.3.13) changes with the orientation y. The existence of normal stress in
simple shear is characteristic of anisotropic materials.
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T

-5

Figure 14. Shear stress T,/ in (2.4.46) varies with simple shear k for material with

one family of fibers, where y= 10 (it = 4.9 and B = 48.9). The material response to the
simple shear (2.3.13) changes with the orientation .

-2 A i 1 1 1 1 1 i s

Figure 15. Normal stress T,,/i in (2.4.46) varies with simple shear k for material with

one family of fibers, where Y= 10 (1 = 4.9 and B = 48.9). The material response to the
simple shear (2.3.13) changes with the orientation .

The in-plane shear stress resolved on surfaces parallel and perpendicular to the shearing
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direction is then given by
T,., = Kk +B(kZsin’y - ksin2y)(2ksin’y - sin2y). (2.4.47)

This resolved shear stress is plotted in Figure 16 for various y at the fixed value y = 10.

The most immediate feature is the loss of monotonicity.

T,./p 2

€€,

Figure 16. Shear stress 'I'el ez/ W in (2.4.47) varies with simple shear k for material

with one family of fibers. As before y = 10. The material response to the simple shear
(2.3.13) changes with the orientation .

This loss of monotonicity is correlated to a progressive contraction and subsequent
relaxation/elongation of a material line element in the reinforcing direction. It is
Convenient to describe the associated line element deformation in terms of “fiber”
shOl‘tening and lengthening. Then JC_H gives the fiber stretch, where, for this

deformation, (2.3.13) yields
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1 - 2kcosysiny + kzsinz\v k(cos2\|1 - sinzw) —-k2Zcosysiny 0

k(cosy - sin2\|I) -k2cosysiny 1+ 2kcosysiny + k2cos2\v o| - (2448

0 0 1

As shown in Figure 17, if 0 <y < 1t/2 this then gives rise to a regime of fiber contraction

(Cy; < 1) for moderate shear k which then gives way to fiber extension (C,, > 1) for large k.

5 T
4 - -
3r ]
C“ 2t 4
4 fiber extended
1
*ﬁber contracted
ot v =0.028
_1 1 1 L 1 —rt - 1 1 1
0 1 2 3 4 5 6 7 8 9 10
k

Figure 17. Fiber length changes with k, the amount of shear in general simple shear
deformation. It is shown that fiber experiences first contraction (C;; < 0), then elonga-
tion (C;; >0)for O<y<m/2.
This effect is due to the rotation that the fiber experiences under the deformation.
Denoting this rotation by ¢, Figure 18 illustrates this phenomena for original fiber
orientation Y = 7/4. For y = n/4 the fiber is contracted for k: 0 — 2 corresponding to ¢:

0 —> -mn/2, after which the fiber is extended for k: 2 — e corresponding to ¢:

~n/2 — -3n/4. More generally Figure 19 shows for any 0 <y <®t/2 that the fiber is
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contracted for k: k) =0—>ky)=2cory corresponding to fiber rotation ¢:
0 — -7 + 2. The minimum deformed fiber length occurs at k ,, = coty , corresponding
to C;, = sin2\|I and ¢ = —(n/2-vy). The fiber is extended for k: k) — e
corresponding to fiber rotation ¢: —%t + 2y — Y — 7. In particular, the fibers align with the

simple shear direction y as k — oo.

Xah %’ e

Fiber is contracted /

from its original length y, / Fiber is extended

forO<k<2 . from its original length
k=2 fork>2

—= : fiber and its orientation

-
X,

Figure 18. Simple shear deformation of a unit block with increasing k for y = /4. The
angle ¢ is the fiber orientation with respect to the X,-direction. Here, as k: 0 — oo, the

angle ¢: 0 » -3n/4. The fiber is first contracted and then extended. The maximum
contraction occurs at ¢ = -1/4.
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Figure 19. Deformation of a fiber under simple shear in arbitrary y-direction. Phases
of fiber contraction, relaxation and extension are shown. Here point (o) represents the
original fiber length and orientation. At point (a) the fiber is mostly contracted and at
point (b) the fiber retrieves its original length. Angle ¢ is the deformed fiber orientation
with respect to X,-direction.

To correlate this fiber contraction/relaxation/extension with the loss of
monotonicity in the stress response (2.4.47), it is instructive to consider changes in the
elastic strain energy density as a function of simple shear k. By making use of (2.4.48), the

strain energy density function (2.1.13) gives that
Wk, y,y) = &W(C(k, V), i, B) = %kz + %y(kzsinz\v - ksin2\|/)2. (2.4.49)
The partial derivative of W with respect to k is
%W(k, V,7) = k+y(k2sin’y — ksin2y)(2ksin >y - sin2y), (2.4.50)
so that (2.4.47) shows that

1 _ 9
[ Tee (o v 7) = W W) (2.4.51)

In Figure 20, T, . /p for a material with y= 10 is plotted against k over a larger extent of
€€
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k than that plotted in Figure 16 for fiber orientations y = 0, ©/8, /4, 3n/8 and n/2. It is to
be noted that T, , /u for y = 0 is the normalized shear stress without the effect of fiber
reinforcement. For other values of v, deviation of shear stress Te, ez/ p from that for y=0
exhibits the effect of fiber reinforcement. Note that the curves for y = n/8, /4, 31/8 each
cross the y = O (unreinforced) curve twice. This is due to the effect of fiber
contraction-relaxation-elongation. On these curves the points corresponding to minimum
fiber length are marked by ‘(a)’ (when k = k,)) and points corresponding to the
retrieval of the original fiber length are marked by ‘(b)’ (when k = k(b) ). The fiber is
continuously contracting for 0 <k <k, , it relaxes back to its original length for k) <k
< k(p)» and it elongates for k > k ;. Points (a) and (b) are exactly the crossing points of
these curves with the straight line for y = 0. For each of these curves, it is seen from
Figure 20 that

T, .,k ¥, 10)> T, . (k, 0, 10), for 0 <k <k,

(2.4.52)
T,k ¥, 10)<T,  (k,0,10),  forky <k<kg).

For fixed reinforcing value y and fiber orientation y one finds that local maxima and

minima to these nonmonotonic response curves occur at

Knax = coty — A/%cot%y—%csc"v, Kpin = coty + A/_%cotz\y—6lycsc4\|l, (2.4.53)

respectively. The quantity in the radical in (2.4.53) must be nonnegative for k,, and k,;, to

exist. This requires that

1 . (2 n 1 . (2
> - -y === =
Y22, 2arcszn(J;) Sy< 3 2arcs1n(J;), (2.4.549)
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for nonmonotonic response. For y = 10 this gives 0.2318 < y < 1.3390, so that all 3 curves
y = /8, W4, 31/8 in Figure 20 are nonmonotonic. In general, the corresponding shear

stresses are
TE(Y,Y) = Tee (Kmaw W ¥)  TEM(Y, Y) = Te o (Kpin ¥, ) (24.55)

These k,,, and k., are mapped to the (k, C,,)-plane and plotted in Figure 21 for y = 10,

together with the response previously given in Figure 17.

6 T T T T T T L] T T
y=n/2 y=31/8 y=n/4
sl (b)
4} i
y=0
K] .
1t (a)
n e,e;
ol (b) i
=/8
(a)
1+ (b) -
0 (@)
o: point (a), minimum fiber length 1
x: Point (b), original fiber length
1o 0.5 1 1.5 2 25 3 3.5 4 45 5
k

Figure 20. Shear stress Te‘ ez/ K in (2.4.51) ((2.4.47)) varies with simple shear k for a

material with Y= 10 and various fiber orientations y with respect to the direction of
shearing. For each curve, the fibers contract from the origin to the point marked (a).
The fibers then relax back to their original length between points (a) and (b). From
point (b) onwards the fibers continue their elongation.

The energy relation (2.4.51) then shows that the decreasing portions of these response

curves are associated with energetically unstable behavior in the standard sense of giving
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~

a?W(k, VY, ¥) <0. This unstable regime includes the point of minimum fiber length
k = k(,). Itis also to be noted that the area between any 0 < y < 7/2 response curve and
the y = 0 baseline curve for 0 < k <k, is the same as the area between the two curves for
k) < k <kg,). This shows, with one exception, that the work required to obtain any of these
k > O deformations in the fiber reinforced materials with 0 <y <®/2 is always greater
than that required in the unreinforced material. The exception is the k = kg,
deformation, associated with regain of original fiber length, which is work neutral with
respect to the unreinforced response.

It is also apparent from Figure 20, for the y = 10 material with fiber orientation y =
Tt/4, that Tel e, < 0 near the local minimum of the response curve. In particular, for relative
fiber strength Y= 10 and original orientation Y = 1/4, one finds that Tee, =0is associated
with shearing k = 0, k = 1.7236 and k = 1.2764. For the y = 10 material, one also finds that
fiber orientation in the range 0.5536 < y < 1.0172 gives an interval of negative T, . near
the minimum of the response curve.

The effect of the relative fiber stiffness parameter 7y is, according to (2.4.50),
merely associated with a simple linear scaling of any y #0 response away from the
unreinforced response (which is formally provided by the y = 0 curve). Although
nonmonotone response will occur in materials obeying Y22 and
arcsin(JZ77) S2y<m- arcsin(Ji?y) , this does not necessarily ensure Telez < 0.
Instead, Te, will only attain negative values for k near k,, if the y-scaling away from the
unreinforced response is sufficiently large. We find that the lower bound value y capable of
providing such negative Telez response is Y= 8. At this value Y= 8 one finds that Telez =0

for y = /4 at k =k, = 1.5. As Y increases from y = 8, one finds that an increasing range
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of original fiber orientations  are capable of supporting T, . < 0 for k near Ky, This
negative Tt.e, response phenomenon is actually energy releasing under the general simple
shear deformation. The region of (y, y) supporting this energy releasing is plotted in

Figure 22.

15 T T T
=n2 =3u8
=4
y=0
1

Local minimum
to T, for y=10
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Local maximum__—*" / fiber length
to T, fory=10 N /8
o L . § . A |
[ 0.5 1 15 2 25 3 35 4

k

Figure 21. Changes of fiber length with k (Figure 17) are plotted again here together
with the curve of minimum fiber length. Fibers are continuously contracted up to min-
imum length, then relaxed to their original length, and then are elongated, with
increasing k for 0 <y <m/2. The corresponding local maximums and local mini-
mums are also plotted for the material with y= 10.
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Figure 22. Region of (v, y) supporting energy releasing behavior (Tel e, < 0) under

general simple shear deformation. Such behavior will occur if and only if Y2 8.

2.4.2. Material Properties at Infinitesimal Limit

Here we consider the behaviors of the material given by (2.4.1) in the case that
deformations are restricted in the neighborhood of the undeformed configuration. The
corresponding elastic constants in linear elasticity are then derived. In the linear theory
[Christensen 1979], a transversely isotropic material is described by five independent
elastic constants, namely, the Young’s moduli E,, and E,,, Poisson ratios v,, and v,, and
shear modulus G,,. All other elastic constants can be obtained from E,,, E,,, v,,, V,, and

G,, by supplementing relations, such as

E22

(2.4.56)

in the plane of isotropy, and
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E) vy = Epvyy,s (2.4.57)

which is required by the symmetry of the elasticity tensor.

In the case of uniaxial load in the fiber direction, the relation between the load and
the stretch in the load direction was found to be given by equation (2.4.12) and the lateral
deformation was found to be given by equation (2.4.6). It follows from equation (2.4.12)

that the corresponding Young’s modulus E,, in the fiber direction is

dT

E, = dTnL - 3 +4P. (2.4.58)
l=

From equation (2.4.6) it follows that the Poisson’s ratio corresponding to uniaxial load in

the fiber direction is

dx,

1
Va1 = —d_7L,

=V = 2 (2.4.59)
A=1

N

This is clearly due to the constraint of incompressibility. Here, the first subscript of v
indicates the direction of lateral contraction/extension, and the second subscript of v

indicates the direction of loading.
Similarly, the corresponding material properties in linear elasticity related to
uniaxial load transverse to the fiber direction, derived from equations (2.3.5),

(2.4.31)-(2.4.33) with T,, = T4; = 0, and equation (2.4.35) and (2.4.36), are given by

dT,, 3u+4B
2= —dkz - =H u+p (2.4.60)
7 =
da, m
Vi, = —— = , 2.4.61
12 dxle=kz=1 2u+2P ( )
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and

dA; _ u+2B

Viy = —5— = .
dA, o= dm 1 2p+2p

(2.4.62)

Note also that, by symmetry, E,, = E;,, v,, = v,; and v3, = v,;. Here again, the subscripts of

v are defined as before.

It is clear from (2.4.42) and (2.4.44), for infinitesimally small deformation of

simple shear, that the shear modulus is

dT,,

G, =Gy = dk

= u. (2.4.63)

k=0
By symmetry, the same results are obtained for G,; = G;, = p. Finally, it is seen from

dT,;

= p_
k=0

Thus we have obtained the elastic constants corresponding to the linear elasticity
for material (2.4.1) under the symmetry of transversely isotropy, and given by equations

(2.4.58)-(2.4.63). It can be readily verified that relations (2.4.56) and (2.4.57) are satisfied.

In comparison, since

p=0 and B0, (2.4.64)

it follows that
and
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If B = 0, then the equality holds everywhere in equation (2.4.65) and in the first of (2.4.66).
In this case the material defined in expression (2.4.1) reduces to the incompressible

isotropic neo-Hookean material, and we have
1
Ej = Ep =31, Gy = Gy = I, Vai = V31 = V2 = V3 = 5. (24.67)
In the extreme case that p = 0, material (2.4.1) has only stiffness in extension/contraction

in the X,-direction, and in such a case we have

E) = 4B, Ep =0, Gz =Gy =0,

| (2.4.68)
Var=Vy3 =5, V=0, vy =1L

[ (8]

It should be noted in all cases that
Vyi1+Vvy =1 and v, +v,, =1, (2.4.69)
which are required by incompressibility, and
EjVviz = Envys (24.70)

which, again, is required by the symmetry of the elasticity tensor [Christensen 1979].

For the five independent elastic constants E; =E;;, E1=E,,, vy 1=0,,
Vpp =03, and G, =G,,, four of them, namely E;, Ey, G,y and v,,, are significant under
the plane stress condition as regards the in-plane stress-strain relations. These four elastic
constants, E,, Er, G;rand v;, can be obtained from [Zweben et. al. 1989] for various
fiber-reinforced composite materials as listed in Table 1. Here, the subscript L denotes the
fiber direction and T denotes the transverse direction. For the elastic constants using L and
T notation, we follow Zweben's convention in which the first subscript of v indicates the

direction of loading, and the second subscript of v indicates the direction of lateral
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contraction/extension. Although the strain density function of material (2.1.5) has only
two parameters, it can still be used to approximate the elastic constants of these composite
materials. Some results are listed in Table 1. We have obtained these results by using least
square method to determine the values of the two parameters W and B, which make the
elastic constants E,’, E;’ and G,;’ derived the best fit to those of measured values of the
various fiber-reinforced composite materials. Note that v;;’ = v,; = 0.5 derived from

(2.4.6) does not depend on p and . In certain cases (e.g. boron/epoxy) the match is very

good as regards E,, Eyand G,
Elastic Constants from b M"‘:g:ls .| Derived Elastic
Composite [Zweben et. al. 1989] 2.1.5) Constants
Fiber/Matrix o

E, Er Gir Vir 13 B E/ Ey’ Gy’

E Glass/ Epoxy 450 | 120 | 55 0.28 32 88 | 450 | 120 | 32

S Glass/ Epoxy 550 | 160 | 76 | 028 | 43 105 | 550 | 160 | 43

KcvlarE49 d/ 76.0 55 2.1 0.34 1.4 179 | 760 | 55 14
pOXy

High-Strength

Graphite/ Epoxy 1450 | 100 | 4.8 0.25 25 343 | 145.0 | 10.0 25

High-Modulus

Graphite/ Epoxy 2200 | 69 48 | 025 1.7 | 53.7 ‘220.0 6.9 1.7

Ultrahigh-Modulu
s Graphite/ Epoxy

Boron/Epoxy 2100 190 | 48 | 025 49 | 489 | 2100 190 | 49

2900 [ 6.2 48 | 0.25 1.6 | 713 |1 290.0| 6.2 1.6

Alumina/ Epoxy |[2300| 210 | 70 | 028 | 54 | 535 | 2300 210 | 54

Table 1. Here E;, Ep, Gyt and V|t are obtained from Zweben et. al. (1989) with volume
fraction of fiber = 0.6. E;’, E;’ and G’ are given by equations (2.4.58), (2.4.60)-(2.4.63)
for parameters U and P listed, which are determined by least square method to best fit to
E, Er and Gy 1. All the quantities except for Vi have unit GPa.
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2.5. Material Properties (Two Balanced Fiber Families)

The material modeled by expression (2.1.10) is reinforced with two balanced
families of fibers if M = 2 with B(1) = B(2), Then, as discussed in section 2.1, it will,
again, have three mutually orthogonal material principal directions and three mutually
orthogonal planes of symmetry. This type of materials is classified as orthotropic material
and is described by nine independent elastic constants in the scope of linear elasticity. This
set of nine elastic constants can be chosen as E,;, E,,, E13, V2, Vi3, V23, G132, G5 and Gy,.

Let us set up the rectangular Cartesian coordinate system in the way discussed in
section 2.1 that the planes determined by the fibers from these two fiber families are
normal to the X,-direction and both the X,-direction and the X;-direction bisects the angle
between fibers from these two families. Thus, the coordinates X,, X, and X, are in the

three material principal directions, respectively. We thus have
o) = _g(2) and B = B2 = B, (2.5.1)

since the material considered here is reinforced with two balanced families of fibers. Now,

the strain energy density function (2.1.10) becomes
W = %‘(11-3)+g(1<(1>- 1)%%(1((2)- 1)2. (2.5.2)

The Cauchy stress tensor is given by

T, = WF;Fj — pd;; + 2BI(F FL ADAD — 1)F, F; ADAD

"o (2.5.3)
+(F F, A@AD - 1)F, F, AOAQ),

where

A = {c,0,-s}T and A = {c,0,s}T, 254
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and ¢ = cos6"” and s = sin6"” (refer to Figure 1). With the coordinates so set, we shall call

the reinforcement discussed here the reinforcement of two families of symmetrically

balanced fibers.

For the triaxial deformation (2.3.3), together with (2.5.4), the potentially nonzero
components of the Cauchy stress tensor, given by (2.5.3), are
Ti; = UA?-p+4B(c®A} +520% - 1)c2A?,
Ty = uAf-p, (25.5)
Ty; = A2 —p +4P(c2A? +52A0F - 1)c2A3.
By considering uniaxial loads in the X, X; and X,-direction in turn, as given by (2.3.14),
the equations (2.5.5) yield a set of three equations for A,, A,, A;, p and the uniaxial load.
This set of equations, in connection with the incompressibility constraint (2.3.5), can be
used to derive the corresponding elastic constants: Young’s moduli and Poisson ratios, as
proceeded in subsection 2.4.2 by considering the limit A, = A, = A; — 1. The results

are written here
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_ 3p2+8pPct +8uPs? — 8upc2s?
1+ 2Ps? ’
_ 3p2+8pPc? +8uPs® — 8upc?s?
B+ 2Bct +2Ps4 —4Pc2s2
_ 3u2+8uPc* + 8uPs* — 8uPc2s?
1+ 2Bc? ’
_ 2p +16PBs? - 8Bs?
4p + 8Bs?
_ 2p+8Bc2s?
37 4p+8pst
v, = 2B+ 16Bs* - 8PBs?
127 4p + 16Bc* + 16Ps* - 8B’
v, = _2h+ 16Bc* — 8Bc?
327 4+ 16Bct + 16Bs® - 8B
_ 2u+8Pc2s?
B7 ap+8pct’
vo, = 2B+ 16Bc4 - 8Bc?
23 4 +8Bc*

tr
bt
I

Vai

(2.5.6)

It is readily to verify that the following relations are satisfied,

Ej\viz = Epvyy,
E; Vi3 = Ezzvsy, (2.5.7)
Epvas = Egvs,

as required by the symmetry of the elasticity tensor.

If the material is subjected to a simple shear as described by (2.3.12), then the
corresponding shear stress can be calculated from (2.5.3), and the corresponding shear
moduli obtained, as proceeded in the limit k — 0. The results are listed here

Gz = Gy = Gy3 = G2 = I,

2.5.8)
G]3 = G31 = “’+8BC282° (

It can be seen that the shear moduli in the plane of fiber reinforcement are enhanced, if
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00 and 6 # /2. As one would expect, these B-dependent elastic constants in (2.5.6)
and (2.5.8) reduce to those corresponding to transverse isotropy as discussed in subsection

24.2,if 8D = 6 = 0 and BV = B@ = B/2.



3. Ordinary Ellipticity in Planar Deformation

The ordinary ellipticity concerns the smoothness of the solution field. The loss of
ordinary ellipticity corresponds to the possible appearance of discontinuity in the
derivatives of the solution field. That is, if loss of ordinary ellipticity takes place, then, in
the material body, there may exist certain surfaces across which the highest order
directional derivative of the solution fields in the direction of the normal of these surfaces

has finite jump. This kind of discontinuity is usually called weak discontinuity.

The analysis of ellipticity usually yields restrictions on deformation parameters, if
loss of ellipticity is to be avoided. The deformation parameters are usually the principal
stretches of the deformation gradient A,, A, and A, or the left Cauchy-Green strain tensor
C;. The restrictions are imposed on deformation parameters depending on material
parameters, such as p and B in (2.4.1). It is convenient to choose principal stretches A,, A,
and A, as deformation parameters for isotropic materials, but not for anisotropic materials.
The reason is that the principal directions of the deformation, i.e. the principal directions
of the left Cauchy-Green strain tensor, will not coincide, in general, with the material
symmetry axes, during deformation. For this reason and for the problem to be considered
being more tractable, we shall choose the components of the left Cauchy-Green strain
tensor as the deformation parameters.

In this chapter, we shall analyze the ordinary ellipticity of material (2.4.1)
reinforced with one single family of fibers. We set, again, the rectangular Cartesian
coordinate system as that set in section 2.4, with X, in the fiber direction. In next two
sections, we discuss, first the ordinary ellipticity condition given by [Zee and Sternberg

1983], and then the specification of this condition to planar deformation. The distinction

60
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between local and global plane strain ellipticity is given. Basic results for both global and
local plane strain ellipticity are presented in section 3.3 and 3.4. In section 3.5, we relate
the global plane strain ellipticity condition to a root type problem for a polynomial of
degree four. A parameter space representation for loss of global plane strain ellipticity is
developed. This involves the clarification of the complex phenomena of loss of ellipticity.
The orientation of discontinuity surface is also clarified, especially with respect to first
loss of ellipticity. Then the loss of ellipticity is discussed in the context of the special

deformations introduced in chapter 2.

3.1. The Ordinary Ellipticity Condition for Arbitrary Deformations

The necessary and sufficient condition for the ordinary ellipticity of the
displacement field for an incompressible material was given by [Zee and Sternberg 1983].
Here, we outline their work in deriving this necessary and sufficient condition. The

Piola-Kirchhoff stress tensor for incompressible hyperelastic materials is given by

oW _ o
s =W _pp. 3.1.1)

Denoting by u the displacement field, and noting Fij = 8ij+ui,j, the equilibrium

equation divS = 0 gives rise to the set of governing equations

-1 _ _
ciquup,qj"p,iji =0 detF = 1 (3.1.2)

for the displacement u and hydrostatic pressure p, where

62
—2 _ W(F) (3.13)

Cijpq

is the elasticity tensor. The result Fj'i} j = 0 for volume preserving deformation has been
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used in arriving at (3.1.2). Now consider a surface § lying within the reference

configuration and described by

X = X(§, 8. (3.1.4)

where (§,, {,) is orthogonal curvilinear coordinate system on S. Further points near S in
the reference configuration can be described in terms of a local orthogonal curvilinear

coordinate system (;, {,, §3), such that

X = X(cp gz’ §3) = i(Cp §2) + C3n(C1, [OYN (3.1.5)

in which n is the unit normal vector of S. Thus, fields u and p on and near S can be
expressed in terms of (§,, {,, ;). By the definition of ordinary ellipticity, the possible

jumps in the derivatives of these fields across S are

[lu, ;] = [[g;z ]]g Loge Lpgll = [[a‘é -]t (3.1.6)

Here [[h]] denotes the jump of a function h across S. Now, the governing equation (3.1.2)

yield, on S,

[[gc st~ [ - o

_]'E)u
Fop acz C3,453,; =0

Note that V;/|VC;| on S coincides with the unit normal n of S. Defining

v = [[%]] q = |Vn3|-1[[%]], (3.1.8)

3.1.7)
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equation (3.1.7) is now written as

Qv-qF-Tn = 0, v-(F-Tn) = 0, (3.1.9)

on S. Here
Qpp = SijpgMig > Qp = Qs (3.1.10)

is the acoustic tensor. Equation (3.1.9) constitutes four linear homogeneous algebraic

equations in the jumps v and q, which do not have nontrivial solution if and only if

_F-T
det[ Q 1 F "];co, V ne U3, (3.1.11)
nTF 0

where ¢ = {nlngn, =1, m=123}. In other words, if condition (3.1.11) is satisfied,
there can exist only zero jumps v and q. Therefore, (3.1.11) is the necessary and sufficient
condition for the ordinary ellipticity.

It is to be noted that the problem here is formulated in the reference configuration,
so that the normal n determines a surface of weak discontinuity in the reference
configuration and Fn/|Fn| determines the counterpart of the surface of weak
discontinuity in the deformed configuration. If (3.1.11) is not true at some point P, so that
the inequality is replaced by equality for some n, say n*, then a surface through P with
normal n* in the reference configuration is capable of supporting a weak discontinuity in
the displacement field. Specifically, recalling that |§3| denotes perpendicular distance in

0%y, p

the direction of n*, then — and

0t? 1

associated discontinuity values in the vector [v, q]T are given by nontrivial solutions to

may suffer finite discontinuities at P. The
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* _ _’r *®
Q") -F~'n [v] = 0. (3.1.12)
n*TF! o |4
Since
_F-T - T -1
Q -Fn| _ |F-T0||FTQF -n||F-! 0| (3.113)
aTF! o 0T 1{| nT of|0T 1
we now have the relation
_F-T T
det|] @ FO - (detF-1)2det|FTQF -nf (3.1.14)
nTF! 0 nT 0

Thus the necessary and sufficient condition for ordinary ellipticity can equivalently be

expressed as
det H -n 20, V ne U, (3.1.15)
nT 0
where
H = FTIQF, HT = H (3.1.16)

is a 3 X 3 symmetric matrix. With the coordinate system set-forth, it follows from (2.4.1)

and (3.1.3) that the elements of ¢ are given by

Cijpq = u8ip8jq + 2[3{21'*'“1:pl + (F,Fg, - 1)8“,}8]-18(1l , (3.1.17)
so that (3.1.10) and (3.1.16) then give
Hpq = uCpq +2B(C}, - l)n|2Cpq + 4|3n12CplClq . (3.1.18)

For a given deformation, and hence given C, and given material parameters | and f,
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condition (3.1.15) with (3.1.18) suffices to determine whether or not surfaces of weak

discontinuity may exist in the three-dimensional displacement field.

3.2. Specialization of the Ordinary Ellipticity Condition to

Planar Deformation

We henceforth restrict attention to deformations occurring in the (X, X,)-plane
either locally or globally. In turn, we restrict attention to possible surfaces of weak
discontinuity with unit normals that have no component in the X,-direction at a material
point under consideration, so that the tangential planes of the surfaces of weak
discontinuity at the material point are perpendicular to the (X,, X,)-plane.

Now, the elements of H can be calculated, for the plane deformation described by
(2.3.7), as

Hy, = uCy, +2B(3C}, -Cyy)nt,
Hy; = Hy = pCy, +2B(3C C ;- Cyy)nt,
Hj3 = Hy = Hy =H; =0.
The restriction on possible surfaces of weak discontinuity, n; = 0, when combined with

(3.1.15) and (3.2.1) gives
H33(Hnn§+H22n12-2H12n1n2)¢0 , V ne U2. (3.2.2)

Here, & = {nlnn, =1, o = 1,2, n = 0}. The satisfaction of (3.2.2) is then the

simultaneous satisfaction of both of the following two conditions

H;;#0, V ne 42, (3.2.3)



and
H,;n +Hy,n?-2H,,n;n, #0, V ne u2. (3.2.4)

Note that conditions (3.2.3) and (3.2.4) are derived from condition (3.1.11) for general
3-dimensional incompressible materials. Following a standard classification [Knowles and
Sternberg 1975], a local plane strain state involves a displacement field that has no
components in the X;-direction at the material point under consideration, and the global
plane strain state is a deformation in which the displacement components in X;-direction
vanish identically. Thus, the normal of the surface of weak discontinuity for local plane
strain happens to be in the (X, X;)-plane, and the surface of weak discontinuity for global
plane strain is a cylindrical surface with generators parallel to the X;-axis. Conditions
(3.2.3) and (3.2.4) must be satisfied simultaneously for ellipticity in local plane strain
deformation. For ellipticity of materials under global plane strain deformation the only
condition required is (3.2.4). Actually, condition (3.2.4), which can be obtained here by
eliminating the third row and the third column in the left hand side of condition (3.1.11),
corresponds to the counterpart of condition (3.1.11) in the global plane strain deformation
analysis given in [Abeyaratne 1980].

The ellipticity problem is now in terms of the deformation parameters C,;, C,, and
C,,, and the material parameters . and B, in seeking nonzero unit normal n = [n;, n,, 0] to
the surface of weak discontinuity. These five parameters are not independent. By making
use of the stiffness ratio 7y defined in (2.4.5) and the incompressibility constraint (2.3.9),
the number of parameters is reduced to three, namely, C,,, C,, and 7. Their respective

domains are given by
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C;;>0,  —<Cj,<e,  Y20. (3.2.5)

Note, by replacing every appearance of C, with (1+C$,)/C,,, that C,, has been
completely eliminated by using the incompressibility constraint (2.3.9). Hence, the
restriction imposed by (2.3.9) on the remaining deformation parameters C,, and C,; has
been released. Triplets (C,,, C,,, ¥) obeying (3.2.5) that satisfy (3.2.4) will be said to
constitute the global plane strain ellipticity set (GPSE). Triplets (C,,, C,;, Y) obeying
(3.2.5) that satisfy both (3.2.4) and (3.2.3) will be said to constitute the local plane strain
ellipticity set (LPSE). Thus, membership in LPSE implies membership in GPSE, but not

vice versa.

It is to be noted for any pair (C,,, C,,) obeying (3.2.5), , that there exists an infinite
number of associated plane strain homogeneous deformations. The infinite set of

deformation gradients F can be parametrized by its F,; component on the range

Fi3 =F; =F;3=Fp =0,
Fy; =1,
F = :I:,/Cll -F3 ., (either sign), (3.2.6)
Fi, = (FyCpp—Fp)/(F} +Ff)) = (‘leiclszCn“F%l)/Cn ’
Fp, = (1+F5F))/Fyy = (£(Cyy = F§y) + C15F,JCyy —~F3)/(Cy1JCyy - F3)).

In particular, choosing F,, = 0 gives

o ti/./c of (3.2.7)
0 0 1

F =
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The homogeneous deformation associated with the positive signed deformation gradient
in (3.2.7) can be obtained as a sequence of two homogeneous deformations. First an axial
expansion/contraction in the fiber direction with stretch ﬁ accompanied by a volume
preserving in-plane stretch 1/( J(J_“ ). This is followed by an in-plane simple shear of

amount C,, in the fiber direction.

For —,/C“ <F, < /C“ the positive and negative roots in (3.2.6) represent two
distinct branches of deformation gradients associated with the given C. These branches

join together at both F,, = —,/C,, and F,; = ,[C,,, where

0 1//C,; 0 0 -1//C,; 0
F=| ., F=|p= : 3.2.8
- Cll —Cl2/ Cll 0 Cll C12/ Cll 0 ( )

0 0 1 0 0 1

respectively. This forms a “loop” of deformation gradients associated with the given C.
Any F on this loop will generate the full loop upon being post multiplied by the full range
of an in-plane rigid body rotations, i.e. rotations about the X,-axis. In particular, the
member of this loop given by the positive roots in (3.2.6) for

F _J C11C122 (3.2.9)
21 <& 2 2 2.

gives the special symmetric, positive definite deformation gradient

JCn(1+Cy)) JCi,Cy,

JA+C2+CH  J(1+Cy)2+Ch
U= , 3.2.10
JC1Ci2 1+C, +C}, ¢ )

J+C N2+ Ch [CJ(1+C )2+ C,
0 0 1
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corresponding to the pure deformation U in the polar decomposition F = RU of any other

member of this loop.

Since it can be noted from (3.2.1) that the ellipticity is affected by deformation
only through the right Cauchy-Green strain tensor C, it will not be influenced by the rigid
body rotation R. Actually, in view of (2.3.2), the mechanical effect of a deformation
described by C to a material body is equivalent to the mechanical effect of the pure
deformation given by U. The post rotation R is then viewed as post determined by
requiring compatibility with the actual deformation field. One need not, however, consider
this post rotation R to extract the pointwise material properties. That is, the post rotation R
can be set to the identity for the consideration of mechanical response. So, the “putative
normal” is Un/|Un| that determines the possible surface of weak discontinuity and is
produced by the pure deformation part U of the overall deformation F as determined from
the polar decomposition F = RU. The “actual normal” Fn/|Fn| in the actual deformation
field satisfying the compatibility condition will, in general, be rotated rigidly with the
purely deformed material body, but we will not consider the rigid body rotation here.
Similarly, regardless of the post rotation R, the deformed fiber putative direction given by
(2.1.9) is now rewritten as UA/ /K . Unless stated otherwise, all subsequent development
will be with respect to quantities associated with the pure deformation part U of the
overall deformation. For the plane deformation in the (X,, X,)-plane and the original fiber
direction given by (2.4.3), we denote the angle from the X,-axis to the deformed fiber
direction by ¢, which is measured by a right hand rotation about the X;-axis. In view of the

above discussion, it is taken as
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(UA), Cj,

fan® = Ay, - T+Cy

(3.2.11)

3.3. Loss of Ellipticity in Local Plane Strain

A sufficient condition for loss of ellipticity in local plane strain is for the existence
of ne U? such that H;; = 0. Now from (3.2.1),, it follows that H,, = 0 if and only if
n} = (2y(1-Cyy))!. Since 0<nf<1 it follows that the sufficient condition H;; = 0

for loss of ellipticity in local plane strain is met if and only if

1

0S———F—=<
2y(1-Cyy)

1, (3.3.1)

which, since 1 - 1/2y < 1, is equivalent to

1
Csl-5. (33.2)

In view of (3.2.5), this condition cannot be met if y<1/2, which includes the
neo-Hookean case Yy = 0. For C,, obeying (3.3.2), it is sufficient to find an n e U2 that

violates (3.2.3). On the other hand, the satisfaction of the opposite inequality

1
Cu>l-5 (3.3.3)

is equivalent to the satisfaction of (3.2.3). Thus, (3.3.3) is necessary for ellipticity in local
plane strain, however, sufficiency requires the satisfaction of both (3.2.4)and (3.3.3). Since
(3.2.4) alone characterizes the ellipticity in global plane strain, it follows that triplets (C,,,
C.2, Y) in GPSE are also in LPSE if and only if C,, obey (3.3.3). In particular, triplets (C,,,

C,2, ) obeying
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1
Cu=1-5 (3.3.4)

constitute a cylindrical surface in the (C,;, C,,, ¥)-space involving transitions from local
plane strain ellipticity to the loss of this same property.

As an illustration of loss of ellipticity in local plane strain, consider the biaxial

deformation (2.3.10) for which

A2 00 (AM-A72)+2y(M2-1A20 O
C=|p A2 0| T=pn 0 0 0 , (3.3.5)
0 01 0 0 (1-27%)

where the hydrostatic pressure p has been chosen so that T,, = 0. Then, as A, is decreased
from the undeformed value A, = 1, the loss of ellipticity sufficiency condition (3.3.2) is
never met if Y <1/2, that is, if the additional stiffening due to the fibers is sufficiently
weak. On the other hand, if ¥ > 1/2, that is, if the fibers are sufficiently stiff, then loss of
ellipticity is ensured under decreasing A, starting with A; = m At this value of
A, a surface of weak discontinuity with normal direction m = [1, 0, 0] in the reference
configuration can be sustained. Note that this corresponds to the surface with normal in the
fiber direction. Under continued decrease of A, this potential surface of weak discontinuity
rotates away from this initially perpendicular fiber intersection and such a rotation can
occur either clockwise or counterclockwise. In particular, as A; — 0, the normal to the

potential surface of weak discontinuity tends to the value n = [1/2Y, +J1-1/ 4y2,0].

3.4. Basic Results for both Global and Local Plane Strain Ellipticity

The loss of ellipticity results obtained in the previous section were based solely on
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the consideration of (3.2.3). The associated analysis was elementary. Now we turn to the
consideration of (3.2.4) which, we recall, is the sole defining requirement for global plane
strain ellipticity. In contrast to the analysis of (3.2.3), the analysis of (3.2.4) presents some

challenge.

Condition (3.2.4) can be expressed as

[“1 n2:|{(l —2nfy)D+2n127E}|:“|:| 20, V ne u2, (3.4.1)
)

where we have introduced

1+C? )
-3C,,C 3C?
_C12 C“ 1112 11

We now examine the properties of matrices D, E and (E-D). It is verified directly from
(3.4.2) using C,;>0 and detD = 1, that matrix D is positive-definite. In addition since E,, =
1+3C,22>0 and detE = 3C,,2>0, matrix E is also positive-definite. It can also be obtained
from (3.4.2) that matrix (E-D) is positive-definite if and only if C,,;>1. This is because
(E-D),, = C,;(3C,;-1) and det(E-D) = (3C,,-1)(C,,-1). If C,, = 1, then (E-D) is
positive-semidefinite.

According to the above discussion and following from the sufficiency conditions
(3.3.3) and (3.4.1) for local plane strain ellipticity, we arrive at the following conclusions:

(ED) If C;; 21, then local plane strain ellipticity is guaranteed. Here condition
(3.4.1) is satisfied since D is positive-definite and (E-D) is positive-semidefinite.

Condition (3.3.3) is also trivially satisfied. Hence, it is made clear that material (2.4.1) is
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elliptic for planar deformations when fibers are in extension, so that loss of ellipticity can

only take place when fibers are compressed.

(EID If Y= 0 (B = 0, the neo-Hookean material), local plane strain ellipticity is
guaranteed. Here condition (3.4.1) is satisfied and, further, condition (3.3.3) is trivially
satisfied. This result can be extended to materials obeying y<1/2. Since E is
positive-definite, (3.4.1) gives that loss of global plane strain ellipticity is possible only if
l-2n,zy<0. This guarantees global plane strain ellipticity for y < 1/2. Furthermore, when
Y = 1/2, the first term in the left hand side of (3.4.1) may have its minimum value (zero)
only if n} = 1, but now the second term in the left hand side of (3.4.1) is strictly greater
than zero. Thus, global plane strain ellipticity is assured for materials obeying y<1/2.
Note, simultaneously, condition (3.3.3) is again trivially satisfied for y < 1/2. We can thus
conclude that materials obeying 'y < 1/2 guarantee local plane strain ellipticity.

(ETI) For all those unit normals n € U2 with n, = 0, both condition (3.2.3) with
(3.2.1), and condition (3.4.1) are satisfied. Thus, any possible unit normal describing a

surface of weak discontinuity must have nonzero component n,.

3.5. An Alternative Form of the Global Plane Strain Ellipticity Condition

We now turn to examine condition (3.2.4) in more detail. This corresponds to the
global plane strain deformation problem. Since that n = [n,, n,, 0]" is the unit normal of the
surface of weak discontinuity of the displacement field taking place in the (X, X;)-plane,
this suggests the substitution n, = cosa and n, = sina. In seeking the existence of this unit
normal, and equivalently the existence of the surface of weak discontinuity, n and -n play

the same role. Thus, noting (EIII), we restrict that -n/2 < o <®/2. Here, a is the angle
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in the (X, X,)-plane measured from the X;-axis to n. It is positive if it is a right hand

rotation about the X;-axis, and vice versa. By further making the substitution x = tana,

—e0 < X < oo, and expanding the left hand side of condition (3.2.4), using n? = 1 5
+ X
2
2 - X _ _X . . .
n; = 1+ x2 and nn, = 3.2 one obtains the following polynomial of x, P(x, C,,,
C.2, ), of degree four:

P(x, Cy;, Cpp ¥) = {X2 +2Y(3C;; - 1) + 1}{(C;;x = C )2 + 1} —4yC,,. (3.5.1)

The polynomial P(x, C,,, C,,, ¥) expressed in the form of a sum of powers of x is

P(x,Cy;, Cyp V) =CH (x4 + 2, x3 + a,x% +a3x + 3,), (3.5.2)
where
a;=2,(Cy, Cyp) = ‘&’
Cn
1+C%,

2,=25(C,Cip7) = 2Y(3C; -1+ 1+ . ,

4yC,(3C;; - 1) +2Cy, (3:33)
a3=23(Cy, Cpp ¥) = o ,

CZ,{2Y(3C;; = 1)+ 1} +2y(C;; = 1) + 1

a,=24(Cy, Cpp7) = c
i

The condition (3.2.4) for global plane strain ellipticity is now equivalent to the
requirement that the polynomial P(x, C,,, C,,, ¥) has no real roots. That is, if for a given

triplet (C,,, C,,, ), there exists no real x such that
P(X, Cll’ Clz, Y) = 0, (3.5.4)

then the triplet is a member of the global plane strain ellipticity (GPSE) set.

It is evident from (3.5.1) that, if x is a root of equation (3.5.4) at (C,,, C;,, ¥), then
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-x is a root of equation (3.5.4) at (C,,, -C,,, ¥), and vice versa. Further, the unit normal
determined by -x is the reflection about the (X,, X;)-plane of the normal determined by x.
The deformation described by (C,,, -C,,) is a similar reflection to that described by (C,,,

C),). One may, thus, restrict the discussion to the case C;, 20.

3.6. Loss of Ellipticity in Global Plane Strain

We begin analysis on (3.5.1) by giving an example of triplets (C,,, C,,, ¥) that are
associated with loss of global plane strain ellipticity. We consider here the triplets (C,,,
C,2, v) which support the existence of surfaces of weak discontinuity that are normal to the
X,-axis (x = 0). That is, the normal of the surface of weak discontinuity is in the fiber
direction. Let x =0 in (3.5.1), equation (3.5.4) becomes P(0, C,,, C,,, ¥) =0, and yields

_Qy-1)(Ch+1)
7 293C2, +1)

=Cn(Cpp1)- (3.6.1)

Equation (3.6.1) defines a surface in the (C,,, C,,, ¥) parameter space as shown in Figure
23. In view of (3.2.5), and the restriction C,, 20, it is seen that this surface is associated

with pairs (C,,, Y) € X, where
Z = {(C27)| C220,v>1/2}. (3.6.2)

For every triplet (éu » Ci2, Y) on this surface, the polynomial P(x, éu , Ci2, 7) has, at least,
two real roots, one of which is x = 0. In addition to the root x = 0, the other root is, in
general, nonzero and corresponds to a second possible surface of weak discontinuity
whose normal is rotated away from the X,-axis by an angle o . The contours of this angle
o for triplet (é“ » C12, ¥) obeying (3.6.1) is plotted in Figure 24. These angles are found

by substituting from (3.6.1) into (3.5.1) and determining the other real root x of the
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resulting polynomial. The angle o is then given by o = tan™ x. This other real root is seen

to coincide with x = 0, indicating a double root, on the boundary of Z, that is on

dZ={(C,, y)| either C;, =0, ory=1/2}. (3.6.3)
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Figure 23. Surface consisting of triplets (C;;,C},,y) obeying (3.6.1). The asymptotes of
this surface are also shown. Points associated with this surface are not members of
GPSE and can support weak discontinuities with normals in the fiber-direction.
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o o5 1 15 2 25 3 35 4 45 5
ClZ

Figure 24. These contours give the angle &, in degrees, for the direction of the normal
to the second possible surface of weak discontinuity for triplets ((_Z” ,Ci2,Y) obeying
(3.6.1).

According to (EI), plane strain ellipticity is guaranteed for C,; > 1; on the other
hand, for C,, given by (3.6.1), loss of plane strain ellipticity takes place. Consequently, it
follows for each (C;, Y)€ I that there exists at least one value ¢n obeying
én <€) <1 associated with the transition from ellipticity to non-ellipticity. Defined at
(Ci2,Y) € Z, these Ci1's associated with the transition between ellipticity and
non-ellipticity furnish the global plane strain ellipticity boundary B €y, = C“(CIZ, %)
We shall find that there exist more than one such C;; for certain (Cy2 Y) € Z so that
én = é“(CIZv ) may be multiple-valued. In general Bis a two-dimensional manifold

in the (Cy,, C,, ) space.

Since P(x, C,;, Cy,, 7) is a polynomial in x of degree four, it has two pair of
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complex conjugate roots for triplets (C,;, C,,, v) in the ellipticity region. The transition
from ellipticity to non-ellipticity then corresponds to the first transition of a pair of
complex conjugate roots of P(x, C,;, C,,, y) to a pair of real roots. It is convenient to
investigate this root type transition phenomenon in a “well-drilling” fashion. That is, for
fixed (C,,, Y) € Z, C,, is decreased from C;; = 1 to C,, near zero. In the well-drilling
process, a complex-real transition occurs if a pair of complex conjugate roots of P(x, C,,,
C.2, ) changes to a pair of real roots. Accordingly, a real-complex transition occurs if a
pair of real roots changes to a pair of complex roots. The C,;, values at which a
complex-real transition takes place will be denoted by C,,, and the C,, values at which a
real-complex transition takes place will be denoted by C,,. It will be shown that more than
one complex-real transition and more than one real-complex transition may take place in a
single well-drilling, depending on the value of (C,,, ¥). Thus, the manifold in the (C,,, C,,
Y)-space associated with changes in global plane strain ellipticity is much more
complicated than the smooth manifold (3.6.1). In general, C;, and C,, are multiple-valued
functions of (C,,, ¥) € £, and each branch will be written in the form C,, = C,,(Cy,, 1)
and C,, = C,,(C,;, V), respectively. In the following discussion, a superscript in parentheses
will be used to mark each single-valued branch of C,,(C,;, ) and each single-valued
branch of C,,(C,,, ¥). The set of all triplets (C,,, C,,, ) and (C,;, C,,, ¥) will, in general,
form a two-dimensional transition manifold . In general, B is a submanifold of $ since
real-complex transitions and complex-real transitions may or may not involve the root pair

associated with loss or gain of ellipticity.

We now seck to determine the properties of this manifold S. Consequently, triplets

(Cii(Ciz, V), Ci2» M) and (C,(Cyz, ), Cyy, ) 0n Sin the (Cy, Cy,, ) parameter space, are
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associated with values x* that are double real roots of (3.5.4). That is they simultaneously

satisfy the following equations

d
P(x,C;,C7) =0  and  =P(x,C;;,Cpp7) = 0. (3.6.4)

3.7. Global Plane Strain Ellipticity Boundary: Cross-Sections at Constant C,,

It is convenient to explore the properties of S by considering its cross section at various
fixed values of C,,. In general one find that this cross section then evolves in a fairly

complicated way as C,, increases from zero. In particular we find that there exist 6 special

values of C,,:

C() = 1.4444, c@ =2, C{ = 2.026,

3.7.1)
C{® = 2.0945, C(3) = 2.13, C{9 = 2.2635,
2

at which the cross section of §changes its qualitative form.

The cross section of S for C,, = 0 is given by those (C,,, y) pairs that support real
roots x satisfying both equations in (3.6.4). For C,, = 0, one obtains from (3.5.3) that a, =

a, = 0, so that P(x, C,;, 0, y) is quadratic in x’. Accordingly x = 0 is a root of

%P(X,C“,O,Y) = 0. Then one finds that P(0, C,;;, 0, y) = 0 gives C,; = l—zly

((3.3.4)) as an exact expression for the cross section of S at C,, = 0 (Figure 25). Note this
expression coincides both with (3.3.4) and with (3.6.1) for C,; = 0. This completes the

analysis of § for C;, = O since it can be shown that the other two roots x of

:—XP(x, C,y1,0,7) = 0 do not satisfy P(x, C,;, 0, ) = O for triplets (C,;, 0, ) obeying

(3.2.5).
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Figure 25. The cross section of S for C,; = 0 is given by C;, = 1-1/2y and so coincides
with both (3.3.4) and with (.3“(0, Y) . Here Scoincides with B.

We now turn to the consideration of cross-sections of § for C;, > 0. Some results
are plotted in Figure 26-Figure 33. The procedure employed here and in what follows for
generating these cross sections is based on the discussion in Appendix A. There it is
shown that a point (C,;, C,,, ) is a member of S if and only if it satisfies the equation
9(Cy;, Cyp¥) = 0, where ¥ = 2782 +4E3. The two functions &,: R3 - R and
€, R3 — R are given by (A.1). It is also shown that cusp points (see 1 and 1) in Figure
29-Figure 33) to S are associated with the simultaneous solution of the equations
€,(C11»Ci2Y) = 0 and &,(C,;,, C,5,Y) = 0. Such cusp solutions exist only if C;,>2.
This simultaneous set of equations can be treated numerically to locate potential cusp
points. In addition, it is shown that self intersection points (see 1¥in Figure 29-Figure 33)
of the manifold S are associated with the simultaneous solution of b;(C;,,C,5,v) = 0

and b,(C,}, Cyp ¥)2—4b,y(Cyy, Cp, ¥) = 0, where b;: R35 R, by: R3 5 R and
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bsy: R* — R are given by (A.1). These self intersection points also occur only if C;, 22
and can again be located numerically. Consequently, the cross section of § at fixed C,, is
found from a numerical root search of the equation 9(C,;, C,,,Y) = 0, where the cusp
points and the self intersection points are given by the separate analysis of (A.1), and

(A.1),4, respectively. These special values of (C,,, ¥) associated with the limit points 1P,

2 6
l() l()

and I"" in Figure 28-Figure 33 are located by refining the numerical root search of the
equation 9(C,;, C;,,Y) = 0. The special values C,,", i = 1,3,4,5,6 are also determined

numerically. On the other hand, C,;”” = 2 is an exact result associated with the unique

location on $ corresponding to a quadruple root of (3.5.1).

For C,, in the interval 0 < C;, < C,,'"” = 1.4444, two additional cross sections of Sat
fixed C,; =0.5 and C,, = 1.4 are plotted in Figure 26, Figure 27, respectively. Well-drilling
at (C,,, v) obeying C,, < C.," intersect § only once, and this intersection is associated with
the first and only complex-real transition. This root transition is hence a transition
associated with loss of global plane strain ellipticity. We denote this single-valued part of §
by C,,"” = C;;'"(Cy2, ¥), which is part of the ellipticity boundary 8 Cj; = €,(C}5, 7)),
for C,2<C,2“). In the well-drilling process at (C,,, Y) obeying C,2<C,2m, equation (3.5.4)
has, in tum, no real roots if C;,> C,”, and two real roots if C,; <C{}’. Values
(Cy2,7) € X that give rise to this type of behavior, i.e. a single transition from no real
roots to two real roots, will be called the <0, 2>-points of X, and the corresponding

subregion of X possessing this property will be denoted by X,.
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Figure 26. Cross section of $ for C,; = 0.5, showing the global plane strain ellipticity
boundary B. Pairs (C,,, Y) above S are in the GPSE, and pairs below S involve loss of
global plane strain ellipticity. The dotted line shows the cross section of the surface
previously given in Figure 23, which is now interior to the loss of ellipticity region.
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Figure 27. Cross section of $ for C,, = 1.4, showing the global plane strain ellipticity

boundary B. As in Figure 26, the cross section of the surface associated with (3.6.1) is
again shown by the dotted line.

It can be noted from Figure 26 and Figure 27 that, with the increase of C,,
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manifold S is beginning to develop an inflection point. At C,, = 0.5181, C, = C.zm =

1.4444 and y = 7.4009, this inflection point begins to yield two limit points 1 and 1?.
These two limit points 1’ and 1®, with the further increase of C,,, generate two space
curves in the (C,;, C,,, ) parameter space. The associated (C,;, y) values may be

parametrized in terms of C,, as

W= (CH, TD) = (01X(Cy,), TI(Cp)),  forCp2Cl),  (372)

1@=(C, 7P) = (@)(C,,), TO(C,),  for Cp,N<C,,<CIY.  (3.73)

These vertical tangency points are shown in Figure 28 for C,, = 1.8. This is a typical cross

. 1 2
section for C,,\" < C, < C,?

= 2. For C,, in this interval, manifold § is no longer
single-valued with respect to Z. It is triple-valued for I'!)(C,,) <y<T'(3)(C,,).
Well-drilling at (C,,, 7) obeying C),""<C,<C),” and T1)(C,,) <y < [?X(C,,) intersect
S three times. These intersections are, in turn, associated with complex-real transition,
real-complex transition and complex-real transition. Manifold S is thus split into three

single-valued branches by 1’ and 1

. We denote these three single-valued branches of §by
Cu" =C,,Cp 1, €1 = C,,(Cyar 1) and C,,? = T,,°(C12, 7). as illustrated in Figure
28. The second intersection at C,," corresponds to the recovery of ellipticity with
increasing compression (C,, decreasing) of a material particle. Values (C,,,y)€ Z
obeying Cj,"<Cj;<C;,” and T1)(C,,) <y<T@)(C,,) are classified as <0, 2, 0,
2>-points of X, and the corresponding subregion will be denoted by Z,.

Well-drilling at (C,,, ¥) obeying C,,'"<C,,<C,, and either 1/2 <y < T1)(C,,)

or y>T(2)(C,,), intersects the manifold S only once. This intersection is associated with

complex-real transition, and so these (C,,, y) pairs are <0, 2>-points of X, i.e.



85
(Cip 7)€ Z;. All 6“(1) = énm(Clz, 09) Qum = Q““)(Cn, Y) and -c“(z) = Enm(clz, y) for

C,"’ < Cj, < C,,” = 2 are part of the ellipticity boundary B €, = €;(Cp,¥).
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Figure 28. Cross section of § for C,, = 1.8, showing the global plane strain ellipticity

boundary B. Here 1 and 1’ are limit points associated with vertical tangency. In this
and future figures for $ at constant C,,, the cross section associated with (3.6.1) is no
longer shown.

Note in Figure 28 that there is a sharp bend in the C,,’ branch of § just below 1%,
Starting at C;, = 0.3883, C,, = C;;” = 2 and y = 17.0815, this bend unfolds into three
branches. Two of these, denoted by C,,*” = T,,*’(C,,, y) and C,,*® = C,;2(C,,, V),
continue to be associated with complex-real transition. In between them, the third
unfolded branch, denoted by g”(z) = Q,,m(Cn, Y), is associated with real-complex

transition, as illustrated in Figure 29-Figure 32. This generates 3 special points on each

3 4 S
]( )’ l() ]()

cross-section, which are denoted by and I". As C,, increases from C,, = 2, this
generates 3 new space curves. All 3 curves originate at 2 = (C,,, C,,, 7) = (0.3883, 2,

17.0815) which is the sole quadruple root to (3.6.4),. The associated (C,;, y)-values on
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these curves can also be parametrized in terms of C,, as

1®=(CTH, T®) = (@8X(C}p), TO(Cy,),  forCpp2CR, (374
1= (T, T) = (09(Cpp), TW(C,p)),  forC,2CR,  (3.1.5)
19=(CH, TD) = (@9)(Cp), TENC,,)),  for Cpp 2 CR. (3.7.6)

The space curve 1? is the intersection of E,,‘“’(C,z, Y) with E“m)(C,z, Y) for C,za) =
2<Cj,< C{# =2.0945, and is the intersection of C,;*"(C,;, ¥) with C,;(Cy;, ) for
C;>C{$ =2.0945. Curve 1 corresponds to two distinct root transitions, and triplets
(©B3)(C,,), Cp, TGXC,,)) thus provide two double real roots for equation (3.5.4).
Triplets (©)(C,,), C;,, T*)(C,,)) and (©1)(C,), Cy,, TG)(C,,) ), which are the cusp
points in Figure 29-Figure 32, on the space curves 1 and 1” respectively provide triple
real roots for equation (3.5.4). Now, branch C,,*"(C,,, 7) is bounded by y = 1/2 and 1°,
branch C,,*?(C,,, ¥) is bounded by 1’ and 1®, and branch C,,”(C,,, ¥) is bounded by 1

and 1°),
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Figure 29. Cross section of S for C;, = 2.01 is typical of C;, values obeying Cnm <

Ci2< C,zm. Unlike the cross sections for C;, < C,zm = 2, the cross section now inter-
sects itself (inset). Points on the internal branches created by this intersection are mem-
bers of $ but not members of 3. Triplets (C;,, C;,, ¥) within the triangular region
enclosed by these internal branches have 4 real roots to (3.6.4),.

In the well-drilling process, branches C,,*"(C,,, v) and C,,*(C,,, ¥) are associated
with complex-real transition and branch Qnm(C 12, Y) is associated with real-complex
transition. For C;,;”<C,,<C{3) = 2.026, we have

r()(C,,) < T¥)(C,,) <TB)(C,,) <TG)(C,,) < T)(C,,),

3.7.7)
for C{3 < C,, < C{3.

Thus, for C,zm <Cp< C,zm, the values of (C,,,Y) € Z are classified according to the
parameter y as follows: <0, 2> for 1/2<y<I'U)C,,), <0, 2, 0, 2> for
T(Cp) <y <TW(Cyy), <0, 2,0, 2, 4, 25 for T¥(C,,) <y <TG)(C,,), <0, 2,0, 2>
for T5)(C,,) <y <T2)(C,,), <0, 2> for ¥> I'®)(C,,) . The subregion of T containing

<0, 2, 0, 2, 4, 2>-points will be denoted by X,.
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At C{3) =2.026, it is found that T\4)(C,,) = T'®)(C ,). This gives

r(C,,) <TW(C,,) <TG)XC,,) <TP)(C,,) <TG)(Cy,),
06)(C,,) <0?)(C,,), (3.7.8)
for C{3) < C,, < C{§) = 2.0945.
The values of (C,,,Y) € X, for C12(3)<C,2<C12“), are classified according to the parameter
¥ as follows: <0, 2> for 1/2 <y <T)(C,,), <0, 2, 0, 2> for TV(C,,) <y<T'¥(C,,),
<0, 2, 0, 2, 4, 2> for TA(C,,)<y<T?®)(C;,), <0, 2, 4, 2> for
I'®)(C,,) <y<T®B)C,,), <0, 2> for y>T')(C,,). The subregion of X containing <0,

2, 4, 2>-points will be denoted by X,.
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Figure 30. Cross section of § for C|, = 2.08 is typical of C,, values obeying Clzm <
C,<C ,2(4). Note that the vertical tangency point 1@s approaching the self intersec-
tion point 1(3).

At C{$ =2.0945, it is found that T(®)(C,,) = T3)(C,,) = 19.52 and ©?)(C,,)

= @()(C,,) = 0.3828.. This gives
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r(C,,) <T¥(C,,) <TBG)C,,) <TR)(C,,) <TG)Cy,),
0B)(C,,) >6@)(C,,), (3.7.9)
for C{¥<C,,<C{ =2.13.
The values of (C,,, y) € Z, for Clz“)<C,2<C12(5), are classified according to the parameter
v as: <0, 2>-points, <0, 2, 0; 2>-points, <0, 2, 0, 2, 4, 2>-points, <0, 2, 4, 2, 4, 2>-points,
<0, 2, 4, 2>-points and <0, 2>-points, in turn, for y intervals divided by I*", I, I¥, I'®
and T, as can be seen in Figure 31. The subregion of X containing <0, 2, 4, 2, 4,

2>-points will be denoted by Z,.
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Figure 31. Cross section of S for C;, = 2.11 is typical of C,, values obeying C,zw <
Cp2< C,z(S). Here the vertical tangency point 1) has passed through the self intersec-

tion point 1. These two points coincide only at the special value C;; = C,zw, which is
intermediate between that of Figure 30 and the present figure.

At C{?) =2.13, it is found that T3)(C,,) = '®)(C,,). This gives

I()(C,,) < TB)(C,,) <THX(C,,) < TA(C,,) < TENC,,),

(3.7.10)
for C{3) < C;, < C{§) =2.2635.
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The values of (C,,,Y) € Z, for C,,"<C,,<C,"?, are classified according to the parameter
Y as: <0, 2>-points, <0, 2, 0, 2>-points, <0, 2, 4, 2>-points, <0, 2, 4, 2, 4, 2>-points, <0, 2,
4, 2>-points, and <0, 2>-points, in turn, for 7y intervals divided by ™ r r® and

I, as can be seen in Figure 32.
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Figure 32. Cross section of S for C,, = 2.16 is typical of C;, values obeying C,z(s) <
Ciz2< C.z«’). Note that the vertical tangency point 1@is approaching the cusp point 1.

At C{§) =2.2635, it is found that T®)(C,;) = T4)(C,,) =24.4047 and ©2)X(C,,) =
©4)(C,,) =0.3694 . Hence the branch associated with C, BC,, v) and the limit point @
no longer exist for C,, > C,,'”. However, a new branch C,,” = C,,”X(C,,, 7) is generated

6
l()

along with the new limit point 1", parametrized by the space curve

16) = (8%?’, ’«7(6)) = (0(6)(C,,), T'6)(C,,)), for C;, 2 C{$. (3.7.11)

Now, branch C,,’(C,,, ¥) is bounded by 1 and 1, and branch C,,”(C,,, 7) is bounded by

1 and 1. This new branch 5,,(” (C,,, v) is associated with complex-real transition. Figure
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33 is a typical cross section of §for C;, > C,2(6). In this C,, range:

r(C,,) <TBXC,,) <TON(C,,) <TW(C,,) <TEXCyy,),

) (3.7.12)
C,,>C{(§ =2.2635.

The values of (C,,, Y) € Z, for C,,>C,?, are classified according to the parameter  as:
<0, 2>-points, <0, 2, 0, 2>-points, <0, 2, 4, 2>-points, <0, 2, 4, 2, 4, 2>-points, <0, 2, 4,
2>-points, and <0, 2>-points, for Y intervals divided by 1, 1, 1 and 1°,in turn, as

can be seen in Figure 33.
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Figure 33. Cross section of §for C;, = 4.0 is typical of C,, values obeying C,, > C,z(6).
The dashed lines at fixed y = 30, 70, 110, 130, 160 and 200 provide correlation with
Figure 35.

3.8. Projection of the Ellipticity Boundary onto the (C,,, v)-Plane

The cross-section analysis of the previous section reveals how the manifold § is

G
[©

divided into branches by the space curves . The penetration of each branch provides

a root transition, only some of which are associated with loss or gain of global plane strain
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ellipticity. Changes in C;, at fixed (C,,, Y) € Z involve different root transition sequences

depending on the value of (C,,, ¥) and motivated the classifications X,—Z as an exhaustive

subregion decomposition of Z. The projections of the space curves 1”1 onto the (Cy,,

v¥)-plane give plane curves -1, which provide the boundaries of these subregions. The

curve projections and subregions are plotted in Figure 34.

We find that y-values on the I'-curves are monotonically increasing with C,,. The

curves I*" and I'-T"® involve C,, = . In contrast, curve I® terminates at (C,2(6), 7(6)) at

which point I*® begins. The curves *"-1? intersect at the 6 points:

C) = 14444, ¥ = 7.4009,

c@ =2, Y@ = 17.0815,
C(d = 2.026, Y3 = 17.782,
C() = 20945, @ = 19.521,
Cf = 2.13, Y5) = 2047,

C(9 = 22635,  y© = 24.3891.

The interpretation of these 6 points are as follows:

(C,zm, ) is the origin of the curves ™ and T associated with the

development of C,, tangency (vertical tangency) on S.

(C,zm, 2)) is the (C,5, v) value of B the unique quadruple root of (3.6.4),.
This point is the origin of curves I, 1, I associated with

the creation of internal branches of §that are not on B.

(C,zm, Yy is associated with the intersection of the projection curves r®

2 S
l() l()

and T even though the parent space curves 1 and 1° do not

intersect.

(3.8.1)
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(C1™, ¥*) is associated with the intersection of the vertical tangency space
curve 1 with branch intersection space curve 1. Hence the

projection curves I and T*® also intersect.

(C,®, ¥7) is associated with the intersection of the projection curves g

3 4
l() l()

and I"” even though the parent space curves I and I do not

intersect.

(€, ¥*) is associated with the transition of vertical tangency between
branches of . Specifically, vertical tangency space curve 1? s
converted to vertical tangency space curve 1“due to the
intersection of the combined space curve 171 with cusp curve

4
19,

It is useful to note that the 4 points: (C,z(”, y“’), (C,zm, 2, (C,z“), 4)), (C.zw), 6))

are associated with the intersection of actual space curves 1°. In contrast, the 2 points
(C.zm, 3)) and (C,z‘s), *fs)) are only associated with the intersection of the space curve

projections I'”.
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Figure 34. The projections of the special space curves 11 onto the (Cyz, Y)-plane

give plane curves e These, in turn, divide Z into regions Z,, X, Z;, Z, and Zs

associated with different root it as Cy; is d d from Cy; = 1.

The root transition sequences are I,¢><0,2>, Z,¢<0,2,0,2>,
2;¢<0,2,0,2,4,2>, 3, ¢<0,2,4,2>, £, <0,2,4,2,4,2>.
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3.9. Multiplicity and Orientation of the Discontinuity Surfaces for C,, = 4

In this section we examine the change in the normal direction of the surfaces of
weak discontinuity associated with the well-drilling process at the fixed cross-section of §
corresponding to C,, = 4. The cross-section of $ was given in Figure 33, and is chosen here
in view of its irregular character. We consider well drillings at y = 30, 70, 110, 130, 160
and 200 respectively. These well-drillings are marked by vertical dash lines in Figure 33.
Figure 35(a)-(f) present the corresponding normal directions in terms of the angles o,
which are measured in degree in the (X;, X,)-plane from the X,-axis to the normal
direction. This measurement is positive if it is the result of a right hand rotation about
X,-axis, and vice versa.

Figure 35(a) corresponds to ¥ = 30. Here, for C,, < C{}!)(4, 30) two families of
normals n form a half loop, which is initiated at C;; = C{$!)(4, 30) where the normals
from these two families have the same direction (double real root of P(x, C,,, C,,, ¥)). This
behavior persists for all ¥ < 54.6295. At v = I'(1)(4) = 54.6295, two new families of
normals n make appearance and begin to form a separate upper loop near
C, = E(l)z0.6566. A well-developed (and very thin) upper loop of normals for
C{1)(4,70) < C,, < C{}(4, 70) is shown in Figure 35(b), together with the lower half
loop of normals for C,; < C{}!(4, 70) . Each tip of the upper loop, at C;; = C{1)(4,70)
and C;; = C{}’(4, 70) respectively, corresponds to a double real root of P(x, Cy;, Cyy, ).
The upper full loop is separate from the lower half loop for 54.6295 < y < 127.31. At
vy = TG)(4) = 96.5469, the lower tip of the upper loop reaches the top level (at
C, = C{31)(4, 96.5469)) of the lower half loop, and this situation corresponds to two

double real roots of P(x, C,;, Cy,, 7). For further increased y > I'(3)(4) , there is an overlap
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in the C,;-values of the upper loop with the lower half loop for
C{(4,y)<C,;, <C{31(4, y) as shown in Figure 35(c). In this situation P(x, C,;, Cy5, 7)
has four real roots. At ¥ = I'(6)(4) = 127.31, the further developed upper loop touches
the lower half loop at C,; = ©(6)(4) = 0.3025. This contact point is also a double real
root of P(x, Cy;, C,3, ). For y > I'(6)(4), this contact point splits both the upper loop and
the lower half loop, and forms two extremum points at C,; = C{{(4,y) and
Ch = (_Zﬁ)(4, Y), as can been seen in Figure 35(d). Now in two C,-intervals:
C{h(4,v)<C,,; <C{P(4,v) and C{I(4,7) < C,, <C{}1)(4, 7v), it follows that P(x, Cy,,
C.2, ¥) again has four real roots. With the further increase of v, the extremum points at
C,; = CiP(4,v) and C,; = C{}(4,v) approach each other; these two points finally
merge at (C,;, Y) = (0(4)(4), T')(4)) = (0.2660, 138.57), so that the interval of four real
roots C{1)(4,v) < C,; < C{{(4, v) vanishes and P(x, Cy,, Cy,, ¥) has a triple real root.
Figure 35(e) displays the normal directions after this merge. At (Cy;, 7) = (06)(4),
I')(4)) = (0.3488, 197.87), the remaining two extremum points at C,; = C{3)(4,7)
and C,; = C{}"(4, v) also merge and ends the four real root interval C{3)(4,v) <C,, <
C{#!(4, v) . This merge point corresponds to another triple root of P(x, C,;, C,,, ¥). For
v >T'(5)(4) there are, once again, at most 2 discontinuity surfaces. A typical picture of the
normal directions for y > I"(3)(4) is plotted in Figure 35(f). Note in all six subfigures of
Figure 35 that the angle « is typically close to £90°. This corresponds to fibers which
intersect the discontinuity surface at a shallow angle. Recall however from (EIII) that o =
190° is not allowed so that the discontinuity surface can not actually be a fiber containing

plane.
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Figure 35. The evolution of normal direction o of the surfaces of the weak discontinu-
ity along well-drillings at fixed (C,,,Y). The six separate subfigures all correspond to

C2 = 4.0, and to six separate values of Y. These subfigures correspond to the six
dashed lines in Figure 33.

3.10. Orientation of the Discontinuity Surface at First Loss of Ellipticity

According to the results of the previous section, the only significant deviation from
o near £90° will typically only occur near the first loss of ellipticity. Accordingly, in this
section, we examine the normal direction of the surface of weak discontinuity when it is
first initiated. The triplets (C,;, C,,, ¥) that are associated with this situation are those that
form part of the global plane strain ellipticity boundary, across which the first occurrence

of loss of GPSE takes place in the deformation process. For the purposes of this section we
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consider deformation corresponding to the well-drilling process: decrease of C,, at fixed
Cy2- The set of these triplets, denoted by B": C{}’ = C{{(C,,,¥) for (C,p,¥)€ Z, is

given by

Cn = CHP(Cr ) for (0 < Cy, < C{L) or (C;, > C{L) and y > T()(C,,)),
Cn = CIP(Cyp 1) for C{)<C;,<C{P and 1/2<y<T1)(C,), (3.10.1)

Cn = CH(Cyp ) for C;,2C{% and 1/2 <y < T)(Cy,).
It is to be noted that C{}) = C{}(C,,,7) is discontinuous across 1°(C,,,y). Projecting to
the (C,,,Y)-plane, this discontinuity occurs across I'"(C,,). The double real roots x to the
equation P(x, C{}’, C 15, 7) = 0 can be obtained by solving the simultaneous equations
(3.6.4) using a numerical root searcher at the values C{}’ as determined by the
methodology outlined in section 3.7. The normal directions associated with the triplets
given by (3.10.1) are then measured by angles a in the (X, X;)-plane from the X,-axis to
the normal direction, and the angle o is given by o = tan™'(x). The angle o is positive if it
is the result of a right hand rotation about X;-axis, and vice versa.

Figure 36, plotted in the (C,,Y)-plane, shows the angle o in degrees for
(C2, ¥) € X. All these angles o are positive except those for triplets (C,;, C,,, ¥) along
either C,, = 0 or Y= 1/2, where o = 0 as discussed previously. We find that a = 0 as
Cp—~anda= tan"(C,z) as Y — oo, these results will be verified later in section 3.12.

Regardless the rigid body rotation R, the normal direction o can be mapped to the
deformed material configuration by using U given in (3.2.10) to obtain o’s deformed
counterpart & . The corresponding angles G are plotted in Figure 37.

Recall that the deformed fiber direction ¢ is given by (3.2.11). For triplets (C,,, C,,,

¥) on . given by (3.10.1), one obtains directly from (3.2.11) that ¢ is always positive.
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The positive direction of ¢ is similarly defined as that for o. Figure 38 plots the angles ¢
and Figure 39 plots the angles (& -9), that is, the normal direction of the surface of weak
discontinuity with respect to deformed fiber. It is to be noted that & -¢, being a difference
of directions in the deformed configuration is, in fact, independent of the choice of F=RU

used for obtaining the deformed counterpart.

An interesting question concerns the maximum value of &-¢ on the global plane
strain ellipticity boundary B. Figure 39, for example, shows a 27° contour. Here it is
important to realize that the values given on Figure 39 are associated with only the portion
of B corresponding to the largest C,, at fixed (C,,,y). For comparison,
P=(0.3883,2,17.0815) which locates the unique quadruple root of (3.6.4), is on Bbut is not
on B, and so is not represented on Figure 36-Figure 39. We find at 7=(0.3883,2,17.0815)

that x = 2.5754, so that &-¢ = 24.9°.
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Figure 36. Constant value contours of angle o (in degree) associated with first contact
of Bby decreasing C;; from 1 at fixed (Cy,, ¥). This gives the orientation of the discon-
tinuity surface in the reference configuration. The contours are discontinuous across

", the projection of the 1 vertical tangency curve associated with the termination of

the upper branch of 3.
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180 1

Figure 39. Constant value contours of angle & - ¢ (in degree) associated with first con-
tact of B by decreasing C;; from 1 at fixed (C,, 7). This gives the angle between the
deformed fiber direction and the normal to the discontinuity surface in the deformed

This angle is i dent of the choice of F used for describ-
ing the deformed configuration.

3.11. Cross Sections of Sat Fixed y

Six cross sections of the manifold S at fixed y are plotted here to illustrate the
evolution of § with increasing . The six values of v: 5, 10, 20, 50, 100, 200 were chosen
for this purpose. Since v is the sole parameter defining the material, each cross-section

gives the loss of ellipticity boundary for a fixed material. It is to be noted that

5<yM<10<y@ <y®) <y <20 <y < y(6) < 50. 3.11.1)
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Figure 40. Cross section of S for ¥ = 5, showing the global plane strain ellipticity

boundary 43, is typical of y values obeying y < y(!) = 7.4009 . The dotted line shows the

cross section of the surface previously given in Figure 23, which is now interior to the
loss of ellipticity region.
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Figure 41. Cross section of S for y = 10, showing the global plane strain ellipticity
boundary B, is typical of Y values obeying y()=7.4009 <y< y?=17.0815. The
dotted line shows the cross section of the surface previously given in Figure 23 and

will no longer be plotted in the future figures for S at constant . The value of Y= 10
gives correlation to the boron/epoxy composite discussed in subsection 2.4.2.
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Figure 42. Cross section of S for y= 20 is typical of y values obeying Y4 = 19.521 <y

< 7 =20.47. The unfolding of S has already taken place. Points on the internal
branches created by this unfolding are members of $ but not members of B. Triplets

1 2
()andl()

are triple roots of (3.6.4), and

(Ci1» C12, 7) within the triangular region have 4 real roots to (3.6.4),. Points 1
4) (5)
and 1

self intersection point @ gives a pair of double root real roots to (3.6.4),;.

are locations of vertical tangency, cusp points |
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Figure 44. Another typical cross section of  for y values obeying y> y( % The unfold-
ing of Sis now well developed. A value of y at this order of magnitude is not uncom-

mon in fiber reinforced materials.
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Figure 45. Cross section of S for even larger . For this Yy value and practical values of
C,2, loss of ellipticity takes place at C,, very close to 1.

3.12. Asymptotic Properties of the Global Plane Strain Ellipticity Boundary

Although the manifold S as given by the values C1(C,,, ) for (Cy,, ) € I are
not determined explicitly by the numerical procedure that generated Figure 25-Figure 33
and Figure 40-Figure 45, the asymptotic form of $ can be found by an explicit analysis of
(3.6.4) using (3.5.1)-(3.5.4) as we now show. With respect to the octant C;, >0, C,, 20,
Y20 we have in section 3.7 shown that §is given by C,; = 1-1/2y when C,, =0,
whereas in EII it was shown that $ does not intersect y = 0. Here we complete the analysis
of the boundaries of this octant by considering the separate special cases C;; =0,
C,, = o and Y — o (since EI ensures ellipticity for C,, 20 there is no need to consider

(i) C,, = 0. In this case, equation (3.5.4) in conjunction with (3.5.1) becomes
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(x2=2y+1)(CHL +1) = 0. (3.12.1)

The global plane strain ellipticity requirement that (3.5.4) has no real root is met if and

only if
Yy<j,  whenCy =0. (3.12.2)

This result is not in contradiction to the previous result discussed in (EII), since there we
consider only C,;;>0. This confirms that the global plane strain ellipticity boundary
encounters the plane C,, = 0 along the line y= 1/2, where equation (3.12.1) has double real
root x = 0.
(ii) C;, = o at fixed v. To analyze the asymptotic form of Sas C;, - o, we
rewrite equations (3.6.4) in full as
P(x,C;;, Cyp ¥) = CH{x2+2Y(3C;, - 1) +1}

- Cp{2C x[x2+2y(3C,, - 1) + 1]} (3.12.3)

and

)
3 (% Cir Ciz W) = 2Chx=Cppf2C [+ 2/(3C, - D+ 11 +4C, %} |

2C% x[x2+2y(3C,; - 1)+ 11 +2x(C}x2+1) = 0.

Neglecting O(C,,) in (3.12.3) and (3.12.4) gives that the dominant balance equations as

x2+2y(3C;;~1)+1 =0  and  x = 0. (3.12.5)

Thus one obtains that
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c,l-.é-(l-ﬂ) and  x~0  as C;,— oo, (3.12.6)

For the next order correction, let

YRR I AP
C, = 3(1 27)+C“. (3.12.7)
Expanding the left hand sides of equations P(x, %(l - -2-1’;) +C{,Cyy, y) =0 and
%P(x, %(l - 51?) +C{,Cp 7) = 0 in the Taylor’s series to the first order near x = 0

and C§, =0, gives

2Y-1-9CH,YCH = 0,

(3.12.8)

Equation (3.12.8), yields C4, = 3—7-‘—1 , which, in conjunction with (3.12.7) and (3.12.8),

YC?,
gives
1 1} 2y-1 _ 2y-1)2 -
C =—(1——)+—L—+0C2 and x = Y=, o0(C3) (3.129
11 3 27 97C122 ( 12) 9'YC?2 ( 12) ( )

as C;, = . This also verifies the consistency of the procedure and delivers the
horizontal asymptotes seen in Figure 40-Figure 45. Notice that x 50 as C;, 5 o
implies & — 0 which is consistent with Figure 36. The leading order behavior of C,; as
C,, = oo yields the same asymptote as that given by (3.6.1) which, not surprisingly,

followed from the direct consideration of x=0.

(iii) y — oo at fixed C,,. For this case, we rewrite equation (3.6.4) in full as

P(x,Cy;, C1p¥) = Y{2(3C;; - DI(Cyyx = Cyp)2 +11-4C;}

(3.12.10)
+(x2+ 1[(C;x-Cyp)?+11 = 0,
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and
aP C,C = y{4(3C C(C C
I (x,Cy1, Cp ¥) = ¥{4(3C}; - 1NC1(Cy;x-Cy) }
+2x[(C;x=Cp)? + 11+ 2(x2+ 1)C,(C;yx=Cy,) = 0.
Neglecting O('yO ), one obtains the dominant balance equations

Equation (3.12.12) indicates that
For the next order correction, let

C,; = 1+C§} and x = Cp, +x8.

(3.12.11)

(3.12.12)

(3.12.13)

(3.12.14)

Expanding the left hand sides of equations P(C;,+x2,1+Cf,C;5Y) =0 and

0
C{ =0, gives

1+C% +2C,x4+2yCH =0,

Solving equations (3.12.15), , one obtains

1+C?
- 2 +o(yh) and x4

A —1
“h =y o

C,,(1+2C2
_ 12( 12)+0

5 F(Ciz+ x4, 1+ C§, Cy,,7) = 0 in a Taylor’s series to the first order near x4 =0 and

(3.12.15)

'Y, (3.12.16)

as Yy — oo. This verifies the consistency of the procedure, which, in summary, gives

Cy,(1+2C3)

1+C?%,

2y

+o(y)  (3.12.17)
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as Y — . Hence o — tan *(C,;) as Y — o, corresponding to the eventual straight
vertical nature of the constant a curves in Figure 36. The asymptote C,; ~1 as Yy = oo is
consistent with Figure 25-Figure 33. Since x does not approach 0, the asymptote C;; ~ 1

does not match the y — o asymptotic value for C,, in Figure 23.

3.13. Ellipticity under Special Deformations

We now turn to examine the possible loss of global plane strain ellipticity under

certain plane deformations.

Simple Shear

For simple shear in the fiber direction, the deformation gradient tensor is given by

(2.3.12) with i = 1 and j = 2. The right Cauchy-Green strain tensor is then given by

1 k O
C=|k1+Kk20| (3.13.1)
0 0 1

where k is the amount of shear. We have, under this deformation, that C,, = 1 and C,;=k.
Parametrized in terms of k, the loading path of this deformation can be plotted in the (C,,,
C,,)-plane, as shown in Figure 46. Hence, the material (2.4.1) is elliptic with regard to

both the global and the local plane strain criteria.

For simple shear perpendicular to the fiber direction, the deformation gradient
tensor is given by (2.3.12) withi =2 and j = 1, and the right Cauchy-Green strain tensor is

given by
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1+k2k 0
C=| x 10l (3.13.2)

0 o1
where, again, k is the amount of shear. Since under this deformation we have
C,; =1+k221, the material (2.4.1) is, again, elliptic, for both types of plane
deformations, i.e., global plane strain deformation or local plane strain deformation.
Parametrized, again, in terms of k, the loading path of this simple shear perpendicular to

the fiber direction is plotted also in Figure 46.

Cul

Simple shear perpendicular
to fiber direction

Simple shear in fiber direction

o

Biaxial deformation for decreasing C,;

T

Figure 46. Loading paths for some plane deformations.

Biaxial Deformation
For incompressible materials, a plane deformation (2.3.7) in the (X,, X;)-plane is a
biaxial deformation if C,, = 0. Following directly from (2.3.10) with the incompressibility

constraint (2.3.11), and noting that A, = C}{2, the right Cauchy-Green strain tensor for

this biaxial deformation is rewritten as
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C=1o Cl—ll ol - (3.13.3)
0 01

As plotted in Figure 46, the loading path for this deformation goes vertically down with
decreasing C,,. According to the discussion in section 3.7, loss of ellipticity (both local
and global) takes place, if Y > 1/2, as soon as C,; <1-1/2y. Since C,; = A} this
corresponds to A, < m It is to be noted from Figure 47 that there is no obvious
correlation of loss of ellipticity with the loss of monotonicity phenomena associated with

materials obeying y > 14.95 as discussed in (ii) of section 2.4.1.

ﬁmsm, 0.9831)
0.8}

A, 06

A’?zmin) (Y) .
(14.9504, 0.5676)

0-4f A'Nmax)(‘Y)

ook A = J1-172
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05 149504 y

Figure 47. The loss of ellipticity region in biaxial deformation with C;; < 1 (where
C,; = A} and A, is the principal stretch in the fiber direction) is given by
A < J1=1/2y. The principal stretches associated with this loss of ellipticity phe-
nomena do not correlate in any obvious way with nonmonotonic stress response for
this deformation. The nonmonotonic stress response, in terms of A}i,,,, and A}i i,
was used previously in Figure 6.
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General simple shear deformation in the (X, X,)-plane

We now turn to examine the ellipticity under the more general simple shear
deformation discussed in section 2.3. It was shown in that section, loss of monotonicity in
the shear response curves could be addressed in terms of fiber contraction/relaxation/elon-
gation, as for example shown in Figure 17, which diagramed C,, vs. k, where ,/C,, gives
the fiber stretch and k is the amount of simple shear. To address any relation that this may
have with loss of ellipticity it is useful to recast Figure 17 as a diagram of C,; vs. C,,, since
this is the deformation space in which we have determined loss of ellipticity phenomena
(in terms of ). One finds that Figure 17 correlates with Figure 48. In Figure 48, the y =0
curve corresponds to simple shear in the fiber direction and the y = /2 curve is the
k — -k image of the curve for simple shear perpendicular to the fiber direction as shown
previously in Figure 46. As discussed above, neither of these curves involves C,, < 1. Note
from Figure 48 that if 0 <y <®t/4, then C,, first increases and then decreases with k,
whereas C;, is monotonically decreasing with k if t/4 <y <nt/2. One finds that C,, is

again zero for k = 2cot2Vy, corresponding to fiber rotation ¢ = —(7/2 -2vy).
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Figure 48. Loading paths for simple shear in various directions with respect to fiber
direction (y is in radian). The fiber is rotated by -w/4 as k = 1/(sin zw + cosysiny),
and the fiber is rotated by -n/2 as k = 1/(cosysiny) . The minimum deformed fiber
length occurs at k = cory, corresponding to C;; = :inz\v and ¢ = ~(n/2-Vy).
Hence the fiber relaxes back to its original length for cory <k <2coty correspond-
ingto ~(n/2-y)<d<-m+2y.

Since the general simple shear curves for 0 <y <m/2 involve a regime of fiber
contraction for moderate k, it follows that loss of ellipticity may occur. Figure 49
superposes cross sections of global plane strain ellipticity boundary for various 7y in
preparation for comparisons with Figure 48. Note in this figure that the cross sections of
global plane strain ellipticity boundary are extended into negative values of C,,. Figure 50
then combines general simple shear curves of Figure 48 with the cross section of global

plane strain ellipticity boundary for the special value y = 10. As illustrated in Figure 50,

loss of global ellipticity will not occur for 0.4261m <y <m/2 as well as y = 0. Loss of



115

ellipticity and recovery of ellipticity, in turn, will take place with increasing k for

0<y<0.4261x. Furthermore, loss of ellipticity-recovery of ellipticity will take place

twice for 0.01687 < y < 0.0423 7.

15 T T

1 1 L 1

-

0
-3 -2 -1

0
Ci2

Figure 49. The cross sections of the global plane strain ellipticity boundary fory=1, 5,
10, 20, 50 and 100. Here, unlike Figure 40-Figure 45, the global plane strain ellipticity
boundary is shown for both positive and negative C,, in order to aid comparison with
Figure 48.
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Figure 50. Loading paths for simple shear in various directions with respect to fiber
direction (V is in radian). The cross section of S for y= 10 is also plotted here. For y=
10 material, simple shear with 0 <y <1.3385 involves loss of global plane strain
ellipticity.

For this y = 10 material, Figure 51 gives the shear stress response function for
some of the original fiber orientation y shown in Figure 50. In this respect the figure is
similar to Figure 20 of section 2.4. However, now the loss of ellipticity portions of the
response curves are shown in dot lines. It is clear that loss of ellipticity has no explicit
correlation with loss of monotonicity of the stress response. Finally, Figure 52 is the
counterpart to Figure 21 in that it displays the locations in the (C,,, C,))-plane

corresponding to Kp,, and k,,, for the y= 10 material, together with the deformation paths

and the loss of ellipticity region (in shading).
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Figure 51. Shear stress Te, ez/ M in (2.4.51) ((2.4.47)) varies with simple shear k for a

material with Y = 10 and various fiber orientations y with respect to the direction of
shearing. As in Figure 20, the fibers contract from the origin to the point marked (a),
and then relax back to their original length between points (a) and (b). From point (b)
onwards the fibers continue their elongation. In this figure the region of the curve cor-
responding to loss of ellipticity is shown in dotted line.
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Figure 52. Loading paths for simple shear in various directions with respect to fiber
direction (V is in radian). Points on the loading paths associated with Ky, and kp,, are
also plotted (see Figure 21), as is the loss of global plane strain ellipticity region (in
shadow).



4. Summary and Conclusion

A model for incompressible finitely deformable materials with fiber reinforce-
ments is established. The engineering significance of this material model is verified since

it fits well with real material data.

The fully nonlinear responses of this material is discussed for a number of
important deformations, and the loss of monotonicity of the material response is studied.
The correlation to the linear theory is provided in terms of the elastic constants. The

ellipticity of this anisotropic material and the plate bifurcation problem are further studied.

It is revealed that the loss of ellipticity phenomena under planar deformation
involve different patterns, depending on loading path. These patterns involve simple loss
of ellipticity, loss-recover-loss of ellipticity, and primary loss-secondary loss of ellipticity.
The geometry of the ellipticity boundary is made clear. The discussion on the directions of
the weak discontinuity surfaces is also presented.

Finally, it is concluded that there is no explicit correlation between loss of
ellipticity and loss of monotonicity of the stress response, and no explicit correlation
between loss of ellipticity and bifurcation.

The buckling problem presented in Appendix B is, by its own right, an interesting
research topic, including the research aspects as: complete buckled solutions for
bifurcation conditions (B.1), (B.1) and (B.1), the number of the buckled solutions, the
asymptotic behaviors of the buckled solutions for large values of parameters Y and 7, as

well as the ordering of the buckling loads.
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Appendix A: Algebraic Root Analysis of the Characteristic Polynomial

Since the characteristic polynomial (3.5.1) is of degree 4 in x, it follows that its
roots can be expressed in terms of radicals of the polynomial coefficients. In this appendix
we present certain aspects behind this process that enable us to determine properties of .,
which, we recall, is the locus in the (C,,, C,,, ¥)-space associated with double real roots to

the characteristic polynomial.
A.1 General Algebraic Procedures upon the Quartic Polynomial

By applying the linear transformation of the independent variables

_ | Ciz Al
X=Y-ga = Yhae (A1)

and eliminating the common factor C,,” (C;,>0 (3.2.5),), the polynomial P(x, C,;, C,5, v)

given in (3.5.2), (3.5.3) is written as

P(y,Cy;,Cip Y) =y +byy2 + byy + by, (A.1)
where
— 3.9
b, =b,(Cy;, Cyp) = -giitaz,
1 1
— 3 4.1, 1

This linear transformation will not change the nature of the roots of P(x, C,;, C,,, ¥). That

is, if y is a complex (real) root of equation
13(y’ CirCiv) =0 (A.1)
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then x given by (A.1) is a complex (real) root of P(x, C,,, C,,, ¥), and if y is a double root,

then x given by (A.1) is also a double root, etc., and vice versa.

If b, = 0, polynomial (A.1) is factored as
P(y,C;,Ci0Y) = (y2+lb - lb2—b )(y2+lb + lbz—b)
»Cip G 302 ,,/42 4 22 »J42 4) (A.1)
for b; = 0.

Its four roots are given by

1 ’1 1 ’1

Yy = J—§b2+ Zb%_b4 s Y, _J_§b2+ Zb%—b4 .
1 ,1 1 ,1

y; = 4/—.’-’.!)2_ Zb%_b , Y4 = _J_ibz_ Zb%—b“'

If by;#0, then, following the standard solution procedure (refer to [Kurosh 1980]), the

(A.1)

four roots of polynomial (A.1) are given by

- 1 = ~ 1 =
y1=y,(2) = Tz‘ﬁ+JA—"’ Y2=Y,(2) = ﬁfz-JA_l),

(A.1)
~ 1 = ~ 1 =
= (Z)=—(—ﬁ+ A,), = (z):—(_ﬁ_ A,),
Y3=Y3 ﬁ J_z Ya= Y, ﬁ J—;
where
A(G) = ~Z-by— 2 8y(B) = ~5-by+ 2 (A1)
z) = -z2-b,—-—, zZ) = -z-b,+—. .
‘ i 2 2t o
Here z is any one root obtained from equation
3 2, (12 1,5
z° +b,z* + sz—b4 z—-8-b3 =0. (A.1)

The three roots of equation (A.1), denoted by z,, z, and z,, can be obtained again by
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following a standard procedure for cubic polynomials as discussed in [Kurosh 1980], for
example. Equation (A.1) has a root z = 0 if and only if b; = 0, and in this case {y,, y,, ¥,

y4} are given by (A.1).

A.2 Criteria for Double Real Roots

It follows from the theory of cubic equations [Kurosh 1980 p228] that equation

(A.1) has a double (real) root if and only if

B9(Cy, Cpp, ¥) =2783 +4E3 = 0, (A.1)
where
b3 b,b, b3 b2
£1(Ci1,CipY) = _1_()%4‘—25—“—? , £,(Ci1:Cip ) = —é-b4 . (A.1)

It is found that equation (A.1) has double real root if and only if equation (A.1) has double
root. In fact, if z, and z, are distinct roots of (A.1), then examination of the expressions for
the roots of (A.1) as given by say (A.1), reveals that y;(z,) #y;(z;), i = 1,2,3,4. Since
{7121, yo(21), ¥3(21), Ya(z))} and {y\(z2), ¥2(22), y3(Z2), Ya(22)} give the same set of four
roots of (A.1), there must be an 1-1 correspondence between these two sets. Without loss
of generality, assume that y,(z,) = y;(z,). Now, consider z, = z, being double roots of
(A.1), then y,(z,) = yi(z,) are double roots of (A.1). Furthermore, if the double roots y,(z,)
= y,(z,) are complex, then it is required that y,(z,) = y4(z,) and are the complex conjugate.
According to the previous discussion, equation (A.1) can only has two pairs of imaginary
double roots, and this case is prohibited by (A.1). Inversely, if y,(z,) = y;(z,) are double
real roots, then by the 1-1 correspondence we have y,(z,) = ys(z,). It is then follows from

(A.1) that y,(z,) = yi(z,) requires z, = z, be double roots of (A.1). this procedure can be
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exhausted for all the possibilities of the 1-1 correspondence to prove that equation (A.1)
has double real root if and only if equation (A.1) has double root. Consequently, S is
completely defined by the triplets that satisfy (A.1) which determines a two-dimensional

manifold in the (C,,, C,,, ¥)-space.

A.3 Criteria for Two Pairs of Double Real Roots

We now examine the situation at which (A.1) has two pairs of double roots. By
expanding (y-Y,)z(y-Yz)2 and comparing the coefficients of the powers of y in the
expansion with that in (A.1), one finds that the following simultaneous equations

Al
b; =0,  b}-4b, =0, 4D

must be satisfied. Equation (A.1), shows that Y, and Y, are either both real or both
imaginary. Examination of b,, which is real, according to (A.1), under the condition that b,

= 0 reveals that

b <0 if C,, 22 (A-1)
2|b3=0— Hlp=s.

This result, in conjunction with (A.1), shows that if C;, 22, then a (Y, Y,) double root
pair involves real Y, and real Y, whereas if C,,<2 then a (Y,, Y,) double root pair involves
imaginary Y, and imaginary Y, and so need not concern us further. Hence for C,, 22,
equation (A.1),, gives the subset of §associated with two pairs of real double roots. This
one-dimensional manifold, denoted by 1, locates intersection points of § with itself

(Figure 29-Figure 33).
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A4 Criteria for a Triple Roots and a Quadruple Roots

A similar procedure can be execute to prove that equation (A.1) has triple (real)
root if and only if equation (A.1) has triple root. Equation (A.1) has triple (real) root if and

only if

The subset of § associated with triple (real) root of (A.1) are given by the simultaneous
satisfaction of both of (A.1). Space curves along which (A.1) has triple roots are I and 1
and are the cusp points in Figure 29-Figure 32. All 1°, 1 and 1° initiate at the unique
point where (A.1) has quadruple roots. This requires that b, = b, = b, = 0. This set of
algebra equations can be solved to give C;, = C,,” = 2, and give the associated C;, and y
by lengthy exact expressions. Together this gives the quadruple root x = 2.57539, at

(Ci1»Ci2,Y) = (0.3883,2,17.0815) =P as the O-dimensional intersection of the three

3 4 S
]( )’ ]( ) ]( ).

1-dimensional manifolds and

Following the discussion here we know that to find those triplet (C,,, C,,, ¥) at

which (3.5.4) has double real roots and root type transition takes place is equivalently to

find the triplet (C,,, C,,, ) that satisfies equation (A.1).



Appendix B: Bifurcation from Homogeneous Deformation under End

Thrust

Buckling is a major failure mode for load-carrying engineering structure.
Mathematically, buckling corresponds to bifurcation from some equilibrium solution. In
[Haughton 1987], the co-occurrence of loss of ellipticity and in-plane inhomogeneous
bifurcation was observed. This motivate us to seek the correlation between loss of
ellipticity and out-of plane bifurcation here. The bifurcation analysis will be carried out in
the context of the theory of small deformation superposed onto finite homogeneous
deformation [Biot 1965]. The equivalent problem for the neo-Hookean plate (which
therefore does not admit loss of ellipticity) was studied by Sawyers and Rivlin [1974].
They found a family of flexural buckled solutions at relatively low end-thrust and a family
of barrelling buckled solutions at relatively high end-thrust. The extension to a layered
neo-Hookean construction was given by Pence and Song [1991] and Qiu, et. al. [1994]. In
particular, the latter work established the extension of additional families of buckled
solutions, and the conjecture was put firth that an N-ply construction would admit N + 1
families of plane strain buckled solutions.

Here, the composite construction involves directional reinforcing, rather than
multi-layers. For the purpose of comparison, plane deformation inhomogeneous
bifurcation onset from the global plane deformation (2.3.10) (or (3.13.3)) of a thick
rectangular plate under end thrust will be investigated here. This plate is constructed from
the material (2.4.1) reinforced with one single family of fibers oriented in X,-direction.
The associated ellipticity problem was investigated in section 3.7 for C,;, = 0 and section
3.13. First addressed will be the finite homogeneous deformations, figured out by using
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semi-inverse method, of this plate under end thrust. Next, the inhomogeneous bifurcation

phenomena studied.

B.1 Homogeneous Plane Deformation

The thick plate in its original configuration, placed in the 3-dimensional
rectangular Cartesian coordinate system, occupies the region RX,, X,, X;). The region

RX,, X,, X,) is confined by
R: -1, <X, <1, -,£X,<1,, -1;,<X;<1,, (B.1)

with 1, significantly smaller than either 1, or 1,. Illustrated earlier in Figure 1 (M = 1) is the
original configuration of the plate.

The following traction boundary conditions will be applied on the plate and
furnish the so called end thrust condition. We define the lateral surfaces as the surfaces
originally at X, = fl, and X; = %l;, so that the top and bottom surfaces of the thick
plate are the surfaces originally at X, = tl,. By thick we mean that the deformation
along the plate thickness need not relate to each other (or to a central neutral surface) by
some simple prescribed relation through thickness, so that a fully three dimensional
continuum analysis is required through the plate thickness. By end thrust we mean a total
normal force T in the X,-direction will be applied on the pair of lateral surfaces at
X, = #l,, and no shear tractions will be applied on this pair of surfaces. The top and
bottom surfaces of the plate are kept traction free during deformation. In solving the
problem, normal displacements will first be imposed on the pair of lateral surfaces at
X, = tl,. The traction required to maintafn these displacements will then be calculated

following the semi-inverse method. Deformations are assumed to take place in planes
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parallel to the (X,, X,)-plane globally. Hence, the surfaces at X; = tl; are kept
frictionlessly in their original planes. Thus, and to be more specific, we have the boundary

conditions, as

X; = A0, onX, = #l,,

S;;=5,;3=0, on X, = #l,,
Sy =85, =853 =0, onX, = 1l,, (B.1)

S3; =83 =0, on X; = #l;,

X3 = 1l,, on X, = ;.

Here S is the Piola-Kirchhoff stress tensor.

As follows from (2.4.21) and (2.4.22), that the particular biaxial deformation
(2.3.10) can be sustained with in-plane tractions on lateral surfaces. Since in the
constitutive equation (2.2.1), for the material (2.1.10) considered in the context, the
hydrostatic pressure p is arbitrary, is assumed to be constant in position X for
homogeneous deformations. It is then clear from equation (2.2.1) that the Cauchy stress
tensor T, and the corresponding Piola-Kirchhoff stress tensor S, is independent of position

X if the deformation is homogeneous. In this case, the equilibrium equation
divST = 0 (B.1)

is satisfied. Hence, in all the discussions on homogeneous deformations, equilibrium is
ensured.

For the material (2.4.1) reinforced with single fiber family, the Cauchy stress
tensor is given by (2.4.2). The in-plane fiber reinforcement is represented Sy the unit
vector field A(= A"”) given by (2.4.3),. The potentially nonzero components of the Cauchy

stress tensor T are given by (2.4.21). The hydrostatic pressure p in equation (2.4.2) has
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been eliminated by equating T,, to zero in accordance with the traction free condition
(B.1); on the surfaces X, = *l,. The potentially nonzero components of the
Piola-kirchhoff stress tensor, calculated from S = F-1T, are given by

Si1 = WA =AP) +2B(AZ-1A,,

(B.1)
S;3 = W(1-272).

As required, S;; = A,A;T,; = A{!T,; and S33 = A, A,T3; = T35, where T}, and Tj,
are givenin (24.21) and \; = 1, A, = A7L.

It is then evident that the boundary conditions (B.1) can be satisfied by the
homogeneous deformation (2.3.10) and the corresponding Piola-kirchhoff stress tensor
(B.1). Thus, deformation (2.3.10) with A, = A, is the homogeneous solution to the
problem posed by the equilibrium equation (B.1) and the boundary conditions (B.1) for
the plate construction with fiber reinforcement oriented in the X,-direction.

The end thrust T applied on surfaces originally at X, = *l; can now be figured

out as

To obtain equation (B.1), the current area, A = 41,"]213, of the surfaces on which the end
thrust is exerted is applied to (B.1),.

B.2 Incremental Formulation

We now turn to consider the out-of-plane inhomogeneous bifurcation problem.
The homogeneous deformation solution that takes place in planes parallel to the (X,

X,)-plane was given in the previous section. The small incremental deformation to be
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superposed onto finite homogeneous deformation is assumed to be a plane deformation

that takes place in planes parallel to the (X,, X,)-plane.

Thus, the full deformation, by superposing a small incremental deformation u onto
the homogeneous deformation described by (2.3.10), can be written as
% = MX, +eu (X, X,),
R, = A{1X, +eu,(Xy, X5), (B.1)
%3 = X,
where € is a small parameter that will be used to obtain the linearized formulation that
governs bifurcation onset. In the foregoing discussion, quantities associated with the full
deformation (B.1) are indicated by a superposed “A”, and linearized quantities associated
with the incremental deformation u,(X;, X;) and u,(X,, X,) are indicated by a superposed
“-”. It is only necessary to take into account the linearized quantities, since our interest is
bifurcation onset and not the post bifurcation behaviors. Thus, the corresponding
incremental quantities, such as deformation gradient tensor F, hydrostatic pressure p, the

Cauchy stress tensor T and the Piola-Kirchhoff stress tensor $ can be calculated as

F = guy 1 Arl+eu,, 0] B.1)
0 0 1

p(X,e) = p+ep(X) +0(e?), B.1)

T(X,e) = T+eT(X)+O0(e?), B.1)

$(X,e) = S +e8(X) +0(e2?), (B.1)

respectively. Now, we have the determinant of the deformation gradient tensor F
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detf = 1+¢e(Au, ,+Aty, |)+0O(e2). (B.1)
Hence, for the linearized problem, incompressibility requires that

According to equation (B.1), the components of linearized incremental Piola-kirchhoff

stress tensor are given by

Si = Wuy ; —Af2uy 5) —ATIp+2B(3AE -y,
Si2 = W(uy ; +A7%u; 5) +2B(A -y, ,
Sa1 = H(uy, 5+ A%, ),
S = —Mp+2pu,,,
S =P,
Si3=183 =

2]l

23 =353 =0.
Substituting the linearized incremental Piola-Kirchhoff stress tensor into the equilibrium
equation divS = 0, a set of three second order partial differential equations,

- A.;‘ﬁ‘, +1(uy g+ ) +2B(3A% - Dy, ; =0,

_)'lijl +R(uy g +Up ) + 2[3().%— Du =0, B.1)
—[_)'3 =0.

for the unknown functions u,, u, and p, can be obtained. Equation (B.1), yields

I_)(Xp Xz, X3) = ﬁ(xp Xz) . (B.1)
That is, the hydrostatic pressure p is a function of X, and X, only. Equation (B.1),,,
together with the constraint of incompressibility (B.1), are a set of differential equations

governing the bifurcation onset for the plate with reinforcement oriented in the direction

of the end thrust. The boundary conditions are posed in (B.1).
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B.3 Inhomogeneous Bifurcation

In the foregoing analysis, we seek nontrivial solutions (corresponding to
bifurcation) for the incremental deformation u,(X,, X,) and u,(X,, X;). By using the
method of separation of variables, the set of partial governing differential equations
(B.1),, and (B.1) can be turned into

ATIQP(X,) + [p+2B(3AE - 1)]Q2U(X,) -pU,"(X,) = 0,
MP'(X,) + [+ 2B(A2 - 1)]Q2U,(X,) - pU,"(X,) = 0, (B.1)
Here the solution form proposed for the set of partial differential equations (B.1),, and
B.1)is

-sinQX,;
cosQX,

cosQX,
sinQX,

cosQX,

u, =
! sinQX,

}Ul(Xz), u, = }UZ(XZ), p= }P(Xz), B.1)

where Q=jn/], for upper case of (B.1), Q=(j—1/2)n/], for lower case of (B.1),and j = 1,2,...
gives the number of half wavelengths (mode number) in the buckled solution. Eliminating

P(X;) and U,(X,) from equation (B.1), gives the fourth order ordinary differential equation
UMX,) —Q2hy (A, 1)U,"(X,) + Q%h, (A, 1)U,(X;) = 0, (B.1)

where
A=A72>0, A>0 (B.1)

is introduced as a load parameter. Here, the load parameter A describes the amount of
homogeneous deformation through (2.3.10) and (B.1) under given load T, and the stiffness

ratio 'y characterizes the increased stiffness in the fiber direction. The two functions, h,(A,
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¥) and hy(A, ), given by
hy(A,y) = 1+12+27(%— 1) and  hy(Ay) = 12[1 +27(%—1)], (B.1)

are by virtue

M) = a(30Y)  and by = a(3,0.7) ®.1)

in comparing with (3.5.3),,4, by noting that A = 1/C,,.

It is worthwhile noting that the differential system (B.1) (or (B.1) virtually) is a
two parameter (A, Y) system. The nature of this system varies with the parameter pair (A, )
in the domain A >0, vy 20. That is, equation (B.1) will change its type, such as elliptic

and nonelliptic, depending on the coefficients h,(A, ) and hy(A, ).

The characteristic equation of (B.1) for the proposed solution form

U,(X,) = e for unknown r is
r* - Q2h, (A, V)r2+ Q*hy(A,¥) = 0. (B.1)

Equation is exactly that given by C,2Q'PQM, 1/A, 0, 7) = 0 from (3.5.2), where
i = J/~1. We shall, here, denote the four roots of the characteristic equation (B.1) by tr,

and r,. Thus, we obtain
1} = Qf?, 17 = Q2. B.1)

Here

fi(AY) = l2[h1+(h12—4h2)”2]”2, f,(Ay) = é[hl—(h%—%z)”z]”z- (B.1)

J2

It can be proved that
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>0, 12>0 if hy(A,y)>0,
>0, 13<0  if hyA,y)<0, (B.1)
>0, =0 if hyhy)=0.

Figure 53. The solution of the fourth order ordinary differential equation (B.1) changes
its type with (A,y) according to the value of hy(A,y). This deformation is biaxial with A
= 1/Cy,. Ellipticity holds in the region h, > 0 and is lost in the region h, < 0.

It is to be noted that h,(A, y) = 0 yields the same relation as that given by (3.3.4), by
noting that A = 1/C,,. The graphs of h,(A, ¥) and h,(A, ) are plotted in Figure 53. The curve
of h,(A, ¥) = 0 becomes the same curve as plotted in Figure 25, if we exchange the ordinate
with abscissa and make use of the substitution A = 1/C,,. Hence, for h,(A, 7)>0, the
differential equation (B.1) is elliptic type, and for h,(A, ¥)<0 or h,(A, ¥) = 0, we shall say
that equation (B.1) is non-elliptic type (a parallel discussion is given in Appendix C).

The general solution of the homogeneous equation (B.1) is the linear combination

of four linear independent solutions



134

U,(X,) = LUSD(X,) + L,USD(X,) + M, USBN(X,) + M,ULD(X,), B.1)

where Uz(i)(Xz) 1 =1, 2, 3, 4 are determined by the roots of the corresponding
characteristic equation (B.1) and their forms change accordingly.

The solution (B.1) of the fourth order ordinary differential equation (B.1) can be
written, according to the value of hy(A, v), as

U,(X,) = L,cosh(r,X,) +L,sinh(r,X,) + M, cosh(r,X,) + M, sinh(r,X,) ,

if h,(A,7)>0, ®-1)

U,(X,) = L,cosh(r;X,) +L,sinh(r,X,) + M, cos(Im(r;)X,) + Mzsin(lm(rz)X,(%3
if h,(A,y) <0, D

Uy(X,) = Lycosh(r,X,) + Lysinh(r,;X,) + M, + M,X, ,

B.1

Thus, the existence of the incremental solution u,, u, and p, and therefore the existence of
buckled solutions, leads to the determination of the set of nonzero coefficients {L,, L,, M,,
M,} of the linear combination.

To obtain this set of {L,, L,, M,, M,}, the Piola-Kirchhoff stress tensor are then
calculated and subjected, with the full deformation (B.1), to the boundary conditions
(B.1). This manipulation will yield a linear system, controlled by parameters A, 7, and j
(mode number), of algebraic equations. The condition for bifurcation to take place is
therefore the condition of nontrivial solutions of {L,, L,, M,, M,} for this linear system of
algebraic equations. This virtually is a generalized eigenvalue problem for the triplet (A, v,

). Here
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is defined as the mode parameter that is the continuous version of the discrete mode
number j, scaled by the length of the plate 1,. The involvement of 1, in the definition of 1 is
for the convenience of applying the boundary conditions on top and bottom surfaces. Note
here that equation (B.1) can be written in the form of equation (B.1) provided that M, is
taken as an imaginary number. It can be readily shown that the boundary conditions (B.1),
except (B.1),s, are automatically satisfied by the proposed solution form (B.1) and (B.1).
The satisfaction of (B.1),s gives four relations among these four constants L,, L,, M, and
M,, therefore, gives the following 4 by 4 systems of equations for the four unknown

constants L,, L,, M, and M,,

Jl=0. (B.1)
Here
l = (Ll’ Mp L29 Mz)T ’ (B'l)
and
A,C, A,C, 0 0
J=Jc = B1Sy B2 0 0 for h,(A,y)#0, (B.1)
- 0 0 AlSl A282 ’ 2 ? ? :
0 0 B,C, B,C,
DS, 0 0 0
EC A2 0 0
=7d = 1 =
J=J 0 0 DC, E | for hy(A,y) = 0, (B.1)
0 0 ES, A2l

where
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A, = 242202, A, = 13+ 0202,
C, = cosh(f|n), C, = cosh(f,m), B.1)
Sl = Sinh(fln), 82 = Sinh(fzn),

Note that the matrices J° and J* are functions of load parameter A, stiffness ratio y and

deformation mode parameter n.

It is clear that the system (B.1) with the matrix J° given by (B.1) can be divided

into two subsystems as

-
L AC, A,C,|/L
1 B;S; B,S,|\™
L,y |AS, A,S,| L 0
JCB(MZ)E 191 A2, (Mz) _ ( ) (B.1)
2/ |B|C; ByGy|\™2 0

The bifurcation takes place, for (A, y) obeying h,(A,y) 20, if either of the subsystem
(B.1) or (B.1) has nontrivial solution. If the nontrivial solution of subsystem (B.1) exists,
then Uy(X;) is an even function of X,. In this case, the thick plate considered here
undergoes flexural deformation as given by equation (B.1) in connection with equation
(B.1). For the subsystem (B.1) to have a nontrivial solution, it is required that the
determinant of the 2 by 2 matrix must vanish. We, thus, have the flexural bifurcation

condition
YeF(A, v, ) =detJF = 0, for hy(A,y)#0. (B.1)

Similarly, if the subsystem (B.1) has nontrivial solutions, then U,(X;) is an odd function of
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X,, and U,(X,) is then an even function of X,. This type of symmetry corresponds to

barrelling deformation. The barrelling bifurcation condition can then be expressed as
YeB(A, v,m) =detJB = 0, for h,(A,v)#0. (B.1)

Now, we turn to consider the system (B.1) with the matrix J* given by (B.1). This system

can also be divided into two subsystems as

L, S, 07](L, 0
dF = —
J (Mz)—lECI xz](Mz] (o)’ .1
L, |DC| E (L, 0
dB = —4
] (MJ— ES, 1212](M2) (0)' ®.D

Similarly, the bifurcation takes place, for (A, y) obeying h,(A,y) = 0, if either of the

subsystem (B.1) or (B.1) has nontrivial solution. It follows directly from (B.1) that
detJ9F = r A4sinh(fm) %0, for hy(A,y) = 0. (B.1)

Thus, the subsystem (B.1) has only the trivial solution, so that flexural buckling is not a
possibility for (A, y) obeying h,(A,y) = 0. For subsystem (B.1) to have nontrivial

solutions it is required that
YdB(Q, v, ) =detJ9B = 0, for h,(A,y) = 0. (B.1)

This is the barrelling bifurcation condition corresponding to subsystem (B.1), since the
solution to subsystem (B.1) will yield U,(X,) as an odd function of X,, so that U;(X),) is
then an even function of X,.

Here, we turn to examine the correlation between loss of ellipticity and

bifurcation. A preliminary numerical analysis on the flexural bifurcation condition (B.1)
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shows families of buckled solutions for the material with y = 10. The result is plotted in
Figure 54 for (A, 1) pairs satisfying (B.1). It can be easily figure out from Figure 54 that
h,(A, ¥) < 0 if it is evaluated with these large A's on the solution curves in connection with
Y= 10. Thus, bifurcations take place with (C,,, ¥) located in the nonelliptic region. We now
examine whether bifurcation will take place for (C,,, y) located in the elliptic region.
Solving hy(A, ¥) = 1>0 we obtain y = (1 +A)/2A. Pairs (C,;,7) = (1/A, (1 + X)/2L) are
in the elliptic region. Substituting this particular y values in the flexural bifurcation
condition (B.1), we obtain one family of buckled solution, as plotted in Figure 55. It is

thus clear that bifurcation can take place for in both elliptic and non-elliptic regions.

12

10

o A 1 1 1 A . A 1 A
(o) 0.5 1 15 2 2.5 3 3.5 4 4.5 5

n

Figure 54. Solution families of the flexural condition (B.1) for the material with y= 10.
These large A’s in connection with y= 10 are located in the non-elliptic region.
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Figure 55. Flexural bifurcation solution for (C,,, ¥) in the elliptic region.
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Appendix C: An Alternative Way to Obtain the Ellipticity Condition in

the Buckling Problem

The set of governing second order partial differential equations (B.1),, and the

incompressibility constraint (B.1) are rewritten here as

—Xf‘ﬁ,l+u(ul'“+ul,22)+2B(3x,2— Du 4, =0,

~ AP+ MUy gy +Uy ) +2B(AF -y gy = 0, (C.1)

and
Ay 5 +A7Mey = 0. (C.1)
Letu,; = v, u,,=V,, u,; =W, and u,, = W,, noting that (C.1) yields v, = -AZw,, we can

obtain from the second order equations (C.1) a set of first order partial differential

equations as

AT (=AW, + v, 5) —2BAJ(B3AE-1)w, ; = O,
- A‘113,2 + Ll(Wl, 1+ Wz,z) + 25(112 - l)Wl' 1 =0,

(C.1)
A%WZ' 2 + Vz’ 1 = 0,
Wi2-Wy =0,
which has the characteristic equation [Whitham 1974]
det(A-va) = 0, (C.1)
where
A7t o 0 -pAZ-2BA2(3A2-1)
A=1|0 0”+2B(l%—l) 0 , (C.1)
0 1 0 0
| 0 0 0 -1 i
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and

(0 o o]

A, 00
a=0[ " ol (C.1)
0 00A?

|0 010

Let A = A;2 and ¥ = B/M, equation (C.1) gives rise to the following equation

x2[1 +27(%— 1)]+[1 +x2+2yG- 1)]v2+v4 =0, (C.1)

which, virtually, is the equation P(v, 1/A, 0, y) = 0 from (3.5.2). Thus, the types of the roots
of (C.1) and the type of equations (C.1) (and therefore the equations (C.1)) associated with

different values of (A, ) are as discussed in chapter 3.
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