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ABSTRACT

Theoretical and Numerical Investigation of

Radiative Extinction of Diffusion Flames
By

Anjan Ray

The influence of soot radiation on diffusion flames was investigated using both
analytical and numerical techniques. Soot generated in diffusion flames dominate
the flame radiation over gaseous combustion products and can significantly lower the
temperature of the flame. In low gravity situations there can be significant accumu-
lation of soot and combustion products in the vicinity of the primary reaction zone
owing to the absence of any convective buoyant flow. Such situations may result
in substantial suppression of chemical activities in a flame and the possibility of a
radiative extinction may also be anticipated. The purpose of this work was to not
only investigate the possibility of radiative extinction of a diffusion flame but also to
qualitatively and quantitatively analyze the influence of soot radiation on a diffusion
flame.

In this study, first a hypothetical radiative loss profile of the form of a sech? was
assumed to influence a pure diffusion flame. It was observed that the reaction zone

can, under certain circumstances, move through the radiative loss zone and locate



itself on the fuel side of the loss zone, contrary to our initial postulate. On increasing
the intensity and/or width of the loss zone it was possible to extinguish the flame
and extinction plots were generated. In the presence of a convective flow, however,
the movement of the temperature and reaction rate peaks indicated that the flame
behavior is more complicated compared to a pure diffusion flame.

A comprehensive model of soot formation, oxidation and radiation was used in a
more involved analysis. The soot model of Syed, Stewart and Moss [1] was used for
soot nucleation and growth and the model of Nagle and Strickland-Constable [2] was
used for soot oxidation. The soot radiation was considered in the optically thin limit.
An analysis of the flame structure revealed that the radiative loss term is countered
both by the reaction term and the diffusion term. The essential balance for the soot
volume fraction was found to be between the processes of soot convection and soot
growth. Such a balance yielded to analytical treatment and the soot volume fraction
could be expressed in the form of an integral. The integral was evaluated using two
approximate methods and the results agreed very well with the numerical solutions

for all cases examined.
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CHAPTER 1

Introduction

The influence of soot radiation on flames has received significant attention in recent
years [3],[4],[5],(6],[7],[8],[9]. Thermal radiation from combustion products and soot
lower the temperature of the flame and decelerate chemical activities. The purpose
of this study is to critically assess the effect of soot radiation on diffusion flames and
investigate whether under certain circumstances radiative energy losses can result in
an extinction of a diffusion flame.

Soot radiation has considerable influence on flames established in low gravity
situations. In normal gravity the combustion products and the flame-generated soot
get convected away from the primary reaction zone due to buoyancy induced flows.
However, in microgravity, there is no buoyant flow and the combustion products and
soot reside in the vicinity of the primary reaction zone. In addition, the absence
of convective flow results in longer residence time and more soot is produced in a
low gravity situation. Thus, the formation of greater amount of soot and its vicinity
to the primary reaction zone suggest stronger soot radiation effects in microgravity.
There is thus a possibility that the drainage of energy from the flame by means of

soot radiation may be so great in microgravity that the flame may no longer be able



to sustain itself. Thus a radiative extinction of the flame is anticipated under such
situations [10].

Thermal radiation from a flame can be due to (1) radiation from the combustion
gases at high temperature and (2) radiation from combustion generated particulates,
i.e., soot. According to the calculations of Grosshandler and Modak [11] for soot
volume fractions > 10~7 soot radiation is dominant. In the present work, gas radia-
tion has been neglected and soot radiation was modeled assuming the optically thin
limit. Kennedy et al. [12] have observed that for small flames and for moderate soot
loadings the optically thin limit is appropriate for soot radiation. The purpose of our
investigation was to qualitatively and quantitatively study the effect of soot radia-
tion on flames. In particular, the possibility of a radiative extinction was examined
thoroughly.

The soot radiation from a flame depends on the soot volume fraction distribution
in the flame, which is difficult to predict. There are considerable uncertainties in
determining the soot formation and oxidation rates. In particular, the soot distri-
bution in a flame depends on the fuel structure, the temperature distribution, the
influence of inerts, the pressure of the system, etc. Since soot radiation is intimately
coupled with the soot volume fraction distribution, it becomes difficult to predict the
radiation from a flame.

A review of the existing literature in the research area is presented in chapter 2.
The primary focus is on soot evolution, soot modeling and soot radiation.

In chapter 3 the influence of a hypothetical heat loss term of the form of a sech?
on a pure diffusion flame established between two diffusing walls of fuel and oxidizer
was investigated. The thickness of the loss zone and its separation distance from the
ideal, infinite reaction rate flame location were parametrically varied. The influence
of increasing the intensity of the loss zone was also investigated.

The effect of a similar heat loss profile on a diffusion flame with convective fuel



blowing from the wall was also examined. Chapter 4 elucidates interesting results of
the effect of fuel blowing on the flame in the presence of radiative losses.

An analytical model was developed for the soot layer profile and thickness on
the assumption of infinite reaction rate profiles for temperature and species mass
fractions. Chapter 5 outlines the basic assumptions of the model, its derivation and
comparison with numerical results. Then, a prescribed soot volume fraction profile
was used to formulate a radiative loss term and its influence on the flame structure
was examined.

In chapter 6 the comprehensive problem of soot radiation for a diffusion flame
established between an oxidizer and a fuel wall was examined. Similar to chapter 4,
a convective fuel flow from the fuel wall was assumed. A heat loss profile was not
assumed in this case. Instead, the soot model of Moss and co-workers [1] was used and
a soot volume fraction equation was solved in conjunction with the coupled energy
and species mass fraction equations. Results indicate extremely interesting flame
behavior due to radiative losses.

Chapter 7 briefly states the conclusions of the current work. Recommendations

for future work are also outlined.



CHAPTER 2

Literature Review

2.1 Introduction

In this chapter a review of the existing literature pertaining to the research problem
is presented. As discussed in chapter 1, the influence of soot radiation on a diffusion
flame depends strongly on the soot formation and oxidation chemistry. In the follow-
ing sections the soot evolution and burnout processes are reviewed, the soot radiation
effect is discussed and the effect of various parameters on soot radiation is analyzed

in the light of the existing literature.

2.2 Background

Most practical combustion systems burn in the diffusion flame mode. In a diffusion
flame the process of physical mixing of the reactants is generally intended to be much
slower than the chemical reaction between the fuel and the oxidizer. Consequently, the
flame is (generally) kinetically controlled. By contrast, the constituents are already
mixed before they enter the combustor in a premixed flame. In our research problem
we shall focus on diffusion flames only; hence the following review pertains to diffusion

flames.



2.3 Soot

Carbonaceous particles generated during gas phase combustion reactions are called
soot. Soot is formed because of incomplete combustion of fossil fuels and other organic
matter. Principal sources of soot emissions are coal burning furnaces, refuse burning,
coke production processes, wood burning in home fireplaces, the open burning of
waste, and gasoline and diesel powered engines.

Under ideal conditions the combustion of hydrocarbons leads to mainly carbon
dioxide and water. Ideal conditions may be specified by stoichiometric composition
of the combustible mixture, i.e., the oxygen content of the mixture everywhere is
sufficient to convert the fuel completely according to the formal chemical equation
C:Hy+ (z+y/4)0O2—zCO2+ (y/2)H,0. Under these conditions a maximum of heat
is released and a maximum of chemical energy is available for mechanical work.

In practical combustion devices such as industrial furnaces, gas turbines, or com-
bustion engines conditions locally deviate from ideality. When the locally available
oxygen is not sufficient to convert the fuel according to the formal chemical equation
mentioned above, other products of incomplete combustion such as carbon monox-
ide, hydrogen, hydrocarbons and soot are produced in addition to carbon dioxide and

water.

2.3.1 How Does Soot Affect Us?

Emission of soot to the atmosphere from various industrial combustion processes is
undesirable for various reasons. Soot particles contribute to reduced atmospheric
visibility and increased particulate fallout. Also, emission of soot is often associ-
ated with carcinogenic polycyclic aromatic hydrocarbons. Consequently, the adverse
health effect is an important issue regarding soot particle emission; the emission of

soot in the atmosphere is unquestionably hazardous and undesirable. However, the



next question is, should soot formation be avoided altogether? This question has var-
ious answers depending on the combustion process being considered. Soot emission
from a practical combustion appliance such as an internal combustion engine reflects
poor combustion conditions and a loss of efficiency. It has deleterious consequences
for the maintenance of the device. For such devices, the designer would like to avoid
soot formation altogether. The same objective also applies in case of fires, whose
mechanism of propagation often involves radiant transfer from hot soot particles.
However, for flames in furnaces and boilers the generation of soot is necessary
as a radiation source for efficient heat transfer. For such flames, the principle is to
generate as much soot as necessary in such a way that it can be burnt up again in
the available time. The carbon black industry is in sharp contrast to the above and

the objective is to produce as much soot as possible by fuel pyrolysis.

2.3.2 Appearance

Soot generated in combustion processes is not a uniquely defined substance [13],[14].
It is normally black. The first soot particles result from condensation reactions in the
gas phase. These particles, as well as the individual primary particles that compose
soot aggregates can be reasonably approximated as spherical [15]. The elementary
particles adhere to each other to form straight or branched chains. These chains

agglomerate and form the visible soot flocculates, generally as a fluffy substance.

2.3.3 Morphology and Chemical Structure

Research has been conducted in laminar and turbulent, (rich and lean) premixed and
nonpremixed flames, momentum and buoyancy driven flames, stirred reactors, spray
flames, shock tubes, and common combustor devices such as engines and furnaces.

There are many similarities in the morphological characteristics [16] for the soot



produced from such different configurations. The similarities in soot morphology
suggest that a common developmental history governs the formation process, even
in very different combustion configurations [15]. Besides carbon, soot particles also
contain hydrogen (10 to 25%), oxygen (O(1%)) and nitrogen atoms (0(0.1%)) [15].

Electron diffraction indicates the presence of C-C bonds in soot [17].

2.3.4 Characterization of the Soot Distribution

Characterization of the soot distribution is done using three important parameters.
The soot volume fraction, fy, is the volume of soot present in a unit volume of gas
and is expressed in units of m3,,,:/m>;,,. The soot particle size is characterized by a
length scale d which equals the diameter for a spherical particle. The particle number
density is denoted by n and is defined as the number of soot particles per unit volume
of gas. The three parameters fy, d and n are related and for spherical monodisperse
soot particles fy = nmd®/6. In general, soot particulates are neither spherical nor
monodisperse. The preceding relation, therefore, may be considered as yet another

generic measure of soot.

2.3.5 Soot Evolution

There are two important stages of soot particle formation, viz., particle inception
and particle growth. The following discussion provides a brief description of the two
stages. However, it has to be kept in mind that the above classification is some-
what mechanistic and in an actual combustion process such distinctions are not very
clear [15].

(1) Particle Inception The first condensed phase material is generated from the fuel

molecules via their oxidation and/or pyrolysis products [14]. Such products include

acetylene and its higher analogues and polycyclic aromatic hydrocarbons. These two



types of unsaturated hydrocarbons are often considered the most likely precursors of
soot in flames [14]. Because soot is formed in the intermediate stages of chemical
decomposition the oxidation and pyrolysis products alluded to are reaction inter-
mediates like aldehydes, various radical compounds, alcohols and other such trace
materials.

The condensation reactions of such species often lead to the first recognizable
soot particles known as nuclei. The first particles are very small (d < 2 nm); for this
reason, even a large number density results in negligible soot loading in the region
of their formation, which is generally confined to the vicinity of the primary reaction
zone (i.e., where most of the heat release occurs).

(2) Particle Growth Particle growth takes place by means of both surface growth

and coagulation. Surface growth means gas species become attached to the soot
particle surface and incorporated in the particulate phase. Haynes and Wagner [14]
have remarked that for soot formation to occur the species with the correct hydrogen
content have to condense followed by subsequent dehydrogenation. Surface growth
reactions lead to an increase in the amount of soot but the number density remains
the same. In the process of coagulation particles grow by colliding and coalescing,
thereby decreasing the number density. Here the volume fraction remains the same.
Particle growth is therefore generally considered to be the result of simultaneous
surface growth and coagulation.

Almost all of the soot mass is provided by surface growth reactions. However,
the inception process is calculated to be the rate limiting step in the formation of
soot. This has been explained from different perspectives in the literature. Fuel
pyrolysis leads to particle inception; some researchers believe that this may be the
most important factor [18], [19], [20], [21]. Also important is the formation of initial
surface area delivered from the inception region and available for growth [22], [23].

However there is at least one exception to the widely held belief that particle



inception controls soot production. Based upon modeling considerations, Kennedy
et al. [12] disagree that particle inception controls soot production. Instead, they
propose that surface growth is the most important factor. The relative importance
of surface growth and particle inception is a key issue in quantitative models of soot

formation.

2.3.6 Soot Oxidation

The link between soot production within the flame and the smoke yield from the flame
is the oxidation of soot particles. Soot is oxidized in the high temperature combustion
zone leading to decreased soot mass. As observed by [15] a great many experimental
measurements have been conducted in the last twenty years on the soot formation
process in different flame configurations. Yet, only a handful of studies have been
performed on soot oxidation processes, and most of these only quite recently.

The particle destruction rate depends on the flame structure, the temperature
field and the concentration distribution of oxidizing species, principally OH, O; and
O atoms. Nagle and Strickland-Constable [2] derived a semi-empirical formula for
pyrolytic graphite oxidation by O, for a temperature range 1300 — 2300 K. In their
analysis they assumed that oxidation by other species was negligible.

In many combustion conditions it is clear that OH is also an important oxidizer
of soot particles [24]. For soot to escape from a nonpremixed flame, it must pass
through a relatively hot reaction zone where the concentration of OH is relatively
large.

Puri and Santoro [24] have examined the question of how much CO is produced
from the oxidation of soot by OH and O, in laminar hydrocarbon flames. They
derived an expression for the soot oxidation rate (or the CO production rate) by

applying a fundamental kinetic theory approach.
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2.3.7 The Influence of Fuel Structure

It has been observed that smaller the hydrocarbon molecule, the greater the resistance
to smoke emission.

An increase of the fuel flow rate increases the height of a diffusion flame, say a
Bunsen-type flame for definiteness. The character of the flame also changes. Initially
the flame is almost completely blue. As the flow rate increases the flame height grows
and the flame tip becomes yellow. Further increases in fuel flow rate result in the
appearance of an orange zone. A subsequent increase in fuel flow rate leads to a
critical value when soot escapes the luminous zone. The sooting tendency is typically
quantified by measuring this critical smoke point height.

The measurement of smoke points of various fuels has been utilized to rank dif-
ferent fuels in order of increasing sooting tendencies; thus polyaromatics > aromatics
> alkynes > alkenes > alkanes > alcohols [15]. Fuels with a greater tendency to soot

emit smoke at lower fuel mass flow rates.

2.3.8 Effect of Pressure

The effect of pressure on soot formation in diffusion flames has been investigated
over a wide range of conditions. Generally speaking, low pressures reduce carbon

formation while high pressures promote it [14].

2.3.9 Influence of Additives

Dilution of fuel flow by addition of inert gases such as Ar, He and N, generally
decreases the tendency to sooting [25]. If sufficient diluent is added, carbon luminosity
can be suppressed altogether [26]. The possible reason for this is the substantial
temperature reductions in flames in such situations.

When CO; or H,;0 is added to the fuel, there is a considerable reduction in
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soot-forming tendency [25] and a concentration of 45% CO, completely suppresses
luminosity in methane/air diffusion flames [26]. McLintock [25] has suggested that
the influence of CO, and H;0O is exerted primarily in the soot oxidation zone where
these species presumably promote soot burnout.

Some additives promote soot formation. Foremost among these are the halo-
gens, particularly bromine [18], [27]. It has been suggested that these species act by
catalyzing radical recombination, thus neutralizing excess OH radicals which could

otherwise oxidize soot or soot precursors [14].

2.3.10 Influence of Oxygen Addition

The effect of oxygen addition to the fuel is complex [14]. In ethylene flames, small
additions result in pronounced increased soot emissions [18], [28]. The effect of the
increasing yield is not purely thermal as it is far greater than that obtained at the
same maximum flame temperature produced by oxygen enrichment of the air [14].
In the case of other fuels, both soot promotion and inhibition have been observed
as the result of oxygen addition. Jones and Rosenfeld [29] concluded that ethylene is
the exception and that, for fuels such as propane, butane, and even propylene, oxygen

suppresses soot emissions.

2.4 Soot Models

A large number of experimental studies of soot formation and burnout in diffusion
flames have been carried out in the last two decades or so. However the effort at
developing suitable models for describing the soot processes in a flame has been
relatively less [15]. In what follows we take a look at some of the important modeling
efforts that have been undertaken.

Kennedy and coworkers [12] have proposed a soot formation model for laminar
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diffusion flames based on a correlation between soot surface growth rates and the
mixture fraction. Detailed chemistry was not used, instead the mixture fraction was
calculated. The temperature, density and the gas composition were determined as
functions of the mixture fraction. Axisymmetric, boundary layer forms of the mo-
mentum equation were numerically integrated along with the soot volume fraction
equation. An energy equation was not solved. Oxidation by both molecular oxygen
and OH were included in the model. The thermochemistry of the flame was de-
termined from the results of a detailed laminar counterflow diffusion flame code. A
constant soot number density was assumed. The calculations were carried out for the
axisymmetric, laminar ethylene diffusion flame of [30]. Good agreement was obtained
with the measurements for two different experimental conditions. However it was
found that the decrease in temperature that occurs with radiative energy loss has a
significant impact on the soot loadings in these flames. Therefore, a more thorough
approach to the problem of accounting for radiation in a diffusion flame was deemed
necessary.

In a subsequent work [31] the energy equation was solved along with the continuity,
momentum and mixture fraction equations. A radiative loss term was included in the
energy equation based on the assumption of the optically thin limit. Calculations were
carried out for the axisymmetric laminar jet diffusion flame [30] and a Wolfhard-
Parker two-dimensional flame [32]. The temperature, density, and viscosity were
determined as functions of the mixture fraction and the enthalpy by using a type
of constrained equilibrium chemistry model. Further work includes the prediction
of sooting heights of laminar diffusion flames of Santoro et al. [30]. The agreement
was good in all cases. Their results indicated that OH was the dominant oxidizer of
soot low in the co-flow axisymmetric flames but as the flame tip was approached the
oxidation by O; became more important.

Moss and coworkers have developed a two-equation model for soot processes in
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laminar diffusion flames [1], [33]. They used a Wolfhard-Parker burner in both two-
and three-slot configurations producing a substantially two-dimensional thin flame
suitable for laser extinction measurements of soot volume fraction. The model pa-
rameters controlling the proposed rate processes for nucleation, surface growth and
agglomeration were determined by a comparison between detailed model prediction
and experimental measurement. Both prediction and experiment indicated that soot
formation is restricted to a comparatively narrow range of mixture fractions (between
0.06 and 0.2). The model parameters incorporated in their analysis must be adjusted
for each fuel. Predictions of the soot field were compared to experimental data ob-
tained for laminar ethylene/air and methane/air diffusion flames. For methane/air
diffusion flames it was observed that in contrast with ethylene/air diffusion flames the
growth of soot volume fraction with height (and hence residence time) is non-linear.

Leung et al. [34] outlined a simplified reaction mechanism for the formation,
growth and combustion of soot particles in laminar nonpremixed flames. The model
was combined with detailed gas phase chemistry. The soot nucleation and growth
reactions were linked to the gas phase by presuming that pyrolysis products, acetylene
in their case, and not the fuel itself, are of primary importance in the soot formation
process. The model involves the solution of two additional conservation equations
for soot mass fraction and soot number density. They assumed that the number of
active sites present locally in the flame is proportional to the square root of the total
surface area available locally in the flame. The radiative heat loss is modeled in a
simple manner by adjusting the adiabatic flame temperature by means of a heat loss
factor. Model predictions were compared with the experimental data of Vandsburger

et al. [35] for counterflow diffusion flames. The agreement was quite good.
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2.5 Soot Radiation

Soot emits in a continuous spectrum in the visible and infrared regions and can
often double or triple the heat radiated by the gaseous products alone [36]. For
soot radiation scattering can be neglected compared to absorption [36]. Since soot
particles are very small, they are generally at the same temperature as the flame [37].
An analysis of transient radiative cooling of a strongly radiating turbulent diffusion
flame was carried out by Gore and Jang [8]. They mention that for strongly radiating
flames, where up to 60 percent of the heat of reaction may be lost by radiation,
‘a detailed treatment of the radiation heat transfer is needed. The radiative source
term was expressed as the energy absorbed minus the energy emitted by a small
local participating volume. The energy absorbed was calculated from the large-scale
radiation field by integrating the flux over the surface of the small volume. The energy
emitted depends on the temperature and absorption coefficient of the material in the
small volume. Gas phase radiation was neglected and soot radiation was included
using the Rayleigh approximation for soot particles. Two representative distributions
of soot volume fractions were used. A unique flame structure involving an inflection
point in the temperature profile near the soot layer was observed for strongly radiating
flames. This is caused by the transfer of energy to the soot layer by diffusion from
both sides balancing the high radiative loss.

In a later study Gore et al. [38] studied the structure of turbulent, non-premixed,
strongly radiating acetylene/air flames. The analysis extended the laminar flamelet
concept to include the effects of local radiative heat loss/gain. Measurements of mean
and fluctuating emission temperatures and radiation intensities and data concerning
flame structure were used to evaluate the predictions. Results showed good agreement
between measurements and predictions of flame structure. In a related study [39]

specific absorption coefficients of soot particles were reported in the infrared region
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for three different fuels with varying C/H ratios.

A coupled radiation and soot kinetics calculation was carried out by Sivathanu
and Gore [9] for laminar acetylene/air and acetylene-methane/air diffusion flames.
The simplified soot model of Fairweather et al. [40] was used for the soot kinetics.
The predicted soot volume fractions were found to be in reasonable agreement with
measurements. It was found that the use of a constant radiative fraction in strongly
radiating flames is not effective for predicting the observed trends in axial and radial
distributions of soot volume fractions. The predicted temperature profiles support

the structure of strongly radiating flames discovered earlier [8].

2.6 Diffusion Flames in Microgravity

In low gravity, or microgravity (#g), many combustion phenomena can be studied
to yield more insight into the fundamental processes. Combustion in normal gravity
creates buoyancy-induced flows through the production of hot gases, which are less
dense than air. Suppressing such flows in microgravity helps researchers in several
ways. First, the microgravity environment makes experiments easier to model, thus
making it a better environment for testing theories. Second, the virtual elimination
of buoyant flows permits the study of phenomena which are obscured by gravity.
An interesting case of microgravity diffusion flames pertains to the investigation
of candle flames [41]. The ignition and behavior of candle flames was observed pho-
tographically in free-fall (drop tower) tests under 19% — 25% O; concentrations in
a nitrogen-diluted, 1-atm environment. In normal gravity a candle flame assumes a
tear-drop shape. However, in microgravity there is no “up” or “down” and the flame
tends toward sphericity. In normal gravity, the buoyant flow removes combustion
products from the primary reaction zone and supplies fresh oxidizer. For a micro-

gravity candle flame this transport does not take place and consequently the supply of
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fuel and oxidizer are diminished. Hence the flame temperature is lowered and the can-
dle in microgravity produces a flame of much lower power. Due to diminished flame
temperature, little or no soot forms. The soot in microgravity is confined within the
fuel-rich region defined by the blue zone. In normal gravity, soot convects across the
blue reactive zone which produces a much larger visible flame. It was also observed
that the main reaction zone, as indicated by the visible blue region, is much farther
away from the wick. This distance, referred to here as the flame standoff distance,
gives an indication of the magnitude of the heat flux from the flame to the liquid fuel
in the wick. In normal gravity, this distance is about 1 mm at the base of the flame;
in microgravity it is about 5 mm.

However it will be presumptuous to conclude from these experiments that micro-
gravity flames are in general less sooty than their normal gravity counterparts. As
noted in [42] the observed microgravity diffusion flames are longer, wider and often
sootier than their normal gravity counterparts. They are dimmer and more reddish,
which indicates a lower flame temperature. It was also remarked in [42] that the
thermal radiation from a microgravity flame and its surroundings can be an order of
magnitude greater in microgravity than in normal gravity. However, at low oxygen
concentrations, blue, soot-free flames appear in microgravity, whereas the identical
normal gravity flames do not show any significant reduction in soot formation at low
oxygen concentrations.

An excellent review of microgravity combustion research has been published re-
cently [43]. It has been pointed out in the review that under atmospheric conditions,
diffusion flames are buoyant and an increase in velocity is observed on moving away
from the burner exit. However, for a weakly buoyant condition the velocity rapidly
decays near the burner exit. The streamwise velocities are roughly inversely propor-
tional to the distance from the burner exit for nonbuoyant flames. This tends to

increase the effectiveness of soot oxidation processes relative to soot growth processes
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for nonbuoyant flames in comparison with buoyant flames. Also, residence times in
nonbuoyant flames are significantly higher than for buoyant flames of comparable size,
providing longer absolute times for soot nucleation, growth and oxidation. Thus, it
is remarked in [43] that “any resemblance between soot processes within nonbuoyant
and buoyant laminar diffusion flames clearly is fortuitous”.

The differences in soot processes of microgravity and normal gravity diffusion
flames have been found to be very important in a recent work [44]. Experiments
were conducted to investigate the behavior of soot particles in diffusion flames under
microgravity conditions using a 490 m drop shaft (10 second microgravity duration)
in Hokkaido, Japan. Butane jet diffusion flames and flames arising from the com-
bustion of paper were observed in microgravity. The oxygen concentration of the
surroundings, the butane flow rate, and the burner diameter were varied as experi-
mental parameters. From the observation of transmission electron microscope (TEM)
images it was found that a large number of luminous spots appear in diffusion flames
in microgravity. The diameters of the agglomerated particles are approximately 0.1
mm, 200 to 500 times as large as those generated under normal gravity. These parti-
cles are the resultant agglomeration of a large number of primary particles. Local flow
velocity, residence time of generated particles in the generation region, and oxygen
concentration of the surrounding ambient dominate the agglomeration and growth
of the soot particles. Therefore, these particles are formed in the limited areas of
diffusion flames where the aforementioned conditions are satisfied. The investigation
of [44] also verifies that microgravity diffusion flames have a much larger volume than
those under normal gravity.

Interesting recent work on methane and ethylene flames has been done by Atreya
et al. [45]. A small porous sphere made from a low density and a low heat capac-
ity insulating material was used to uniformly supply fuel at a constant rate to the

expanding diffusion flame. A theoretical model was formulated on the assumption
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of infinite reaction rate and unity Lewis number. Both experimental and theoretical
results show that as the flame radius increases, the flame expansion process becomes
diffusion controlled and the flame radius grows as the square root of time.

In a related work Pickett et al. [46] studied the characteristics of methane, ethy-
lene and acetylene flames. For the same flow rate of fuel the ethylene and acetylene
flames were found to be much sootier and smaller. For all the fuels the flame is ini-
tially blue (non-sooty) but becomes bright yellow (sooty) under ug conditions. Later,
as the ug time progresses, the flame grows in size and becomes orange and less lu-
minous and the soot seems to disappear. An explanation of the above phenomenon
was offered on the basis of some theoretical calculations. The soot volume fraction
first quickly increases and later decreases as the local concentration of combustion
products increases. Essentially, further soot formation is inhibited by the increase in
the local concentration of the combustion products and soot oxidation is enhanced.
Thus, at the onset of ug conditions, initially a lot of soot is formed in the vicinity of
the flame front (the outer faint blue envelope) resulting in bright yellow emission. As
the flame grows, several events reduce the flame luminosity: (i) the soot is pushed
toward cooler regions by thermophoresis. In fact, for sootier fuels this leads to the
formation of a soot shell, (ii) the high concentration of combustion products left be-
hind by the flame front inhibits soot formation and promotes soot oxidation, (iii)
the dilution and radiative heat losses caused by the increase in the concentration of
combustion products reduces the flame temperature which in turn reduces the soot

formation rate and flame luminosity.



CHAPTER 3

Influence of a Simple Heat Loss

Profile on a Pure Diffusion Flame

3.1 Introduction

The interaction between the structure of a diffusion flame (DF) and the flame ra-
diation is quite complex. As discussed in chapter 2, soot is formed and oxidized in
a diffusion flame as a consequence of a variety of physical and chemical processes.
There are considerable uncertainties in the description of soot processes in a flame
and the soot evolution mechanisms are not completely understood. Hence, the so-
lution of the complex problem of diffusion flame - soot radiation interaction is very
involved. The energy, species and soot volume fraction equations are all coupled and
contain nonlinear source terms. We chose not to solve the complex problem at the
very outset. Instead, we investigated the effect of a simple and contrived heat loss
profile on a pure diffusion flame established between two diffusing walls of fuel and
oxidizer. This chapter is essentially the next logical step in the generalization of the
model outlined in Appendix A.

A review of pure diffusion flames without heat losses is presented first. In the

following sections we define the problem geometry, describe the particular form of
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the heat loss profile used, formulate the conservation equations, briefly indicate the

numerical method used and discuss the results.

3.2 Review of Pure Diffusion Flame Results

In a diffusion flame the characteristic flow time is much greater than the character-
istic chemical reaction time. This implies that the chemical reaction is much faster
than the transport of species to the flame unless the flame is near or approaching the
extinction stage. A pure diffusion flame is established when both oxidizer and fuel
are transported to the flame by means of diffusion only. No convective flow is present.
Some important characteristics of pure diffusion flames have been discussed in [47].
Using the activation energy asymptotic (AEA) method [47] provides an analysis of
the detailed nature of the temperature and reaction rate profiles. It was observed
that the maximum of the reaction rate profile usually will not coincide with the tem-
perature profile maximum. They may be close, and the maximum of the temperature
will be in the vicinity of the maximum of reaction rate, but they will almost never
coincide. The only exception is the symmetric flame for which the overall stoichio-
metric coefficient, ¢(= vYrr/Yo0), equals unity. This study also shows for a fuel-rich
flame that Z;<Z,<Z,, i.e., the peak of the reaction rate profile (Z,) lies between the
Burke-Schumann flame location (Z;) and the peak of the temperature profile (Z,)
for fuel rich conditions. For oxidizer-rich conditions Z,<Z,<Z;. It may be argued
that in the thin-flame limit all diffusion flames are “pure” diffusion flames because
the mixture fraction transformation discussed in Williams [48] produces an equation
resembling Tzz0<|V Z|"*w, where |V Z| is the magnitude of the mixture fraction gra-
dient perpendicular to the flame. However, |VZ| depends strongly on the heat flow
conditions and in effect introduces a new parameter that must be accounted for in

a complete analysis. Hence, though the value of |VZ;| (i.e., |VZ| evaluated at the



21

flame sheet) may be “buried” into a suitably redefined Damkéhler number it must of

course be “resurrected” when later conducting a full examination of the problem.

3.3 Problem Geometry

Radiation
Zone

Yo=0
Ye=Yer
T=To

Diffusive flux of fuel Diffusive flux of oxidizer

Figure 3.1. The problem geometry.

Figure 3.1 schematically depicts the problem geometry. The physical coordinate for
our one dimensional problem is designated by z. The fuel wall and the oxidizer wall
are located at £ = 0 and z = L respectively. Both the walls issue diffusive fluxes of

the respective constituents. A diffusion flame is established between the two walls. A
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soot layer is assumed to exist on the fuel-side of the DF, consistent with experimental
observations [30]. The walls have the ambient temperature Ty. There is no fuel on the
oxidizer wall and no oxidizer on the fuel wall. The fuel and oxidizer mass fractions at

the respective walls are specified to have values Yrr and Yoo as shown in Figure 3.1.

3.4 Choice of Parameter values

The combustion reaction under consideration is assumed to be a global, one-step
chemical reaction of the form F + vO—(1 + v)P, where F denotes the fuel and O
denotes the oxidizer. Methane is nominally the fuel under consideration and oxygen
is the oxidizing specie, although we must recall that real methane-oxygen reactions
require of the order of 100 reaction steps and individual property choices for the
separate species. The fuel-oxidizer mass ratio, v, is four for the methane-oxygen
combustion reaction. The combustion products are denoted by P. A suitable set of
parameter values must be used to generate a reasonable range of Damkohler number
and flame temperature values. The adiabatic flame temperature is given by Ty =
To + QrYrr/[Cp(1 + ¢)], where QF is the heat release per unit mass of fuel from
the combustion reaction and C, is the specific heat of the mixture. The overall
stoichiometric coefficient is denoted by ¢ and is given by vYrr/Yoo. However, the
use of the above formula produces unrealistically high adiabatic flame temperature
values. Thus, the above equation for Ty was modified to produce a practical range of
adiabatic flame temperatures.

A set of realistic hydrocarbon combustion flame temperatures was used from the
work of Wichman [49] for the analysis of flame spread over thermoplastics. The
idea there was that the fuel mass fraction can not reasonably be determined at the
surface but a more-or-less generic flame temperature can still be evaluated. This

flame temperature varies only with the free-stream oxidizer mass fraction Ypp. The
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value of Yrp, i.e., the fuel mass fraction in the hypothetical fuel stream for our present
calculations was assumed to be 0.85. The oxidizer mass fractions (Ypo) and the flame

temperatures (Ty) are tabulated in Table 3.1.

Table 3.1. Flame Temperature versus Ypo data

Yoo | 0.211 | 0.233 | 0.247 | 0.276 | 0.329 | 0.432 | 0.533 | 0.727 | 1.0
Ty | 2137 | 2230 | 2295 | 2385 | 2515 | 2684 | 2789 | 2919 | 3026

A fourth order polynomial was fitted to the above data to obtain

T; = 486.66 + 12230.85Y00 — 25728.64Y002 + 25360.02Y00° — 9323.0Y00*  (3.1)

Using the above expression, we generate more points for a (Yo0,Ty) plot.

We calculate QF by using the relation Qr = (Ty — T,)Cp(1 + ¢)/Yrr for Ty =
2137 K, Yoo = 0.211, Yrpr = 0.85 and Ty = 298 K. The calculated value of QF is
11959.43 KJ/kgK. We now introduce a modified formula for calculation of the flame

temperature and write
QrYrrf(Yoo)
Cy(1 + ¢)

Tf =To+ (32)

Next we calculate the values of the modification factor, f(Yoo), by using the above
expression. The calculated value of QF and the (Yoo, Ty) data obtained using equa-
tion 3.1 were utilized for this purpose. On obtaining f(Yoo) data, we use an expo-
nential fit of the following form to arrive at a functional relationship between f and
Yoo:

f =1.25exp(—2.99Y00) + 0.33 (3.3)

Finally, we use the above expression for f(Yoo) to calculate T; for any set of Yoo

and Ygr values in equation 3.2. A plot of T versus Yoo is shown in Figure 3.2. The
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Figure 3.2. Flame Temperature as a function of Yy for different values of Yrp.
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YrF values corresponding to the different curves in the plot range from 0.25 to 1.0.
The lowest curve is for Yrr = 0.25. The curves above are for Yrr = 0.30, 0.35, 0.40
etc. It has to be noted that for Yrr = 0.25 and 0.30 the peak flame temperature does
not occur at Yoo = 1 because of the slight local maximum in the range 0 < Yoo < 1.
For this reason we shall not use these curves. However, for higher values of Yrr we
do obtain temperature profiles whose maxima occur at Yoo = 1. These profiles will
be used. Also, we note that since we are interested in the effect of soot radiation on
diffusion flames, we are not concerned with low values of Yrr which do not produce
significant amounts of soot. Hence, in our analysis, Yrp values of 0.30 and lower are
not used.

The parameter values in the work of Tzeng et al. [50] were used in this disser-

tation. The important values are shown in Table 3.2. These values were used in all

Table 3.2. Parameter values

Specific heat Cp, | 1.35 J/kgK
Thermal diffusivity ap | 1.24x107* | m?/s
Fuel-oxidant mass ratio [ v | 4.0

Pre-exponential factor | A | 5x107 1/s
Activation energy E ]121,841.7 | KJ/kmol
Heat release Qr | 11959.43 | KJ/KgK

the chapters of this dissertation except for the pre-exponential factor in chapter 6, as

noted in section 6.2.
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3.5 Formulation

Here we write the equations and boundary conditions for conservation of energy and

species. The energy conservation equation is

) d
pCP[Tt + uTx] = (ATI)I + QFwF' - %, (34)

with boundary conditions T(z = 0) = Tp and T(z = L) = Ty, where Tp is the
temperature at the fuel and oxidizer walls, assumed to be 298 K. Here T is the
temperature, p is the density, C, is the specific heat of the mixture, ) is the thermal
conductivity and u is the velocity. The volumetric radiative heat loss term is —dqgr/dz
with units W/m3. The heat release due to combustion is Qr and wr is the reaction
rate term. An Arrhenius type expression was assumed for the one-step irreversible
reaction, so the reaction rate is wrp = pAYoYrexp—E/RT. The quantity A denotes
the pre-exponential factor. The thermal conductivity is A. The oxidizer mass fraction
equation is

p[Yo, + uYo,] = (pDoYo,): — virr, (3.5)

with boundary conditions Yo(z = 0) = 0 and Yo(z = L) = Ypo. Here Do is the

mass diffusivity of the oxidizer. Similarly the fuel mass fraction equation is

plYr. + uYr,| = (pDFYF,): — wF, (36)

with boundary conditions Yr(z = 0) = Yrp and Yr(z = L) = 0; D is the mass
diffusivity of the fuel.

The above equations are now transformed to a mass coordinate system. The
transformed coordinate is Z = 1 — s/so where s = ¥ pdz and so = [l pdz. We note

that Z =1 when z = 0 and Z = 0 when z = 1. The coordinate Z happens to be
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identical to the mixture fraction coordinate for our simple problem. The following

expressions hold for the above transformation:

il = (o= () + 5o (el + 5rls @)
and
0 p 0
5;': = —s—oalt (3'8)

Since we are considering a pure diffusion flame, (pu).=0 = (pu)z=L = 0, i.e., there are
no convective flows from the walls. Application of these operators to the energy and

species equations gives

L= et pQC P clso ‘fiqu’ (39)
assuming pA to be a constant,
Yo, = P D00y _ "’:F, (3.10)
assuming p? Do to be a constant, and
Yr, = 22 DFOYFZZ - %’3 (3.11)

assuming p?Dr to be a constant. In equations (3.9)-(3.11), we have also assumed
the Lewis number to be unity and we have considered equal species diffusivities. The
quantities with subscript 0 correspond to the reference condition.

We now introduce the nondimensional variables 7 = (T — To)/(Ty — To), yo =
Yo /Yoo, yr = Yr/Yrr, 3 = 8/(poL). Consequently, 3o = so/(pol) = fol pdz where

p = p/po and T = z/L. After some rearrangement, our nondimensional equations
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simplify to

1 - Nrdgr
T = g—gTZZ+QF'DT+§'E, (3.12)
1

Yoi = ¥ozz — ¢Dr, (3.13)

0

1
yri = 5Yrzz — Dr, (3.14)

0

where r is the nondimensional reaction rate and Ng is a radiation number evalu-
ated as the ratio of the reference radiative and conductive fluxes, given by Ng =
qRryref/(Mo(Ty — To)/L). The thermal conductivity at the reference condition is de-
noted by Ao. The quantity D is the Damkohler number given by t,.f/tchem, Where
the reference diffusion time t,.; = L?/aq and the characteristic chemical time ¢ pen =
1/[AYooexp(—E/RTy)]. The nondimensional quantity §r is given by qr/qr,res, Wwhere
qR,res 18 a reference radiative heat flux. The nondimensional heat release, Qr, is given
by QrYrr/[Cp(Ty — To)] and equals (1 + ¢) since the adiabatic flame temperature is
defined as Ty = Ty + QrYrr/[Cp(1 + ¢)]. We note that in the prefactor multiplying
the reaction term of equation 3.12 we do not utilize the temperature correction dis-
cussed in section 3.4. In addition, we have defined ¢ = t/t,.s. The nondimensional
reaction term, r, is written in the form r = yoyrexp[—8(1 — 7)/(1 —a(1 —17))], where
a=1-T,/Ty and g = Ea/(R,Ty); E is the activation energy and R, is the universal

gas constant. The quantity 8 is known as the Zeldovich number.

3.5.1 Infinite Reaction Rate (IRR) Solutions as Initial Con-
ditions

Equations 3.12-3.14 are the governing conservation equations for 7, yo and yr for
the case of finite rate chemistry. The equations become much simpler when the
reaction rate is infinite. In this case, all fuel reaching the flame surface is consumed

instantaneously, and similarly for the oxidizer. Thus no fuel exists on the oxidizer
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side and no oxidizer exists on the fuel side, i.e., yoyr = 0 on both sides of the
flame. The energy equation can now be solved in two adjacent domains, the oxidizer
side (0£Z<Z;) and the fuel side (Z;<Z<1) of the flame. The flame location is
designated by Z;. For our simple problem the mass coordinate Z coincides with the
mixture fraction, a conserved scalar. In the absence of radiative losses the steady
state energy equation becomes 77z = 0. Since at the flame 7 = 1, the solution of the
steady state energy equation (7zz = 0, since Ng = 0 and the reaction term can be
excluded) for the infinite reaction rate (IRR) situation gives 7 = Z/Z; for 0<Z<Z;
and 7 = (1 — 2)/(1 — Zj) for Z;<Z<1. Similarly, yo and yr can be solved for the
infinite reaction rate situation and we get yo = (1 — Z) — (1 — Z;)7 for 0<Z<Z; and
yrp =2 — Zy7 for Z;<Z<I1.

Next, we must evaluate Z;, the coordinate location of the (IRR) flame. As men-
tioned, Z is the mixture fraction coordinate, defined as Z = (¢yr + 1 — yo)/(é + 1).
At the flame, yo and yr are both zero so that Z; = 1/(¢ + 1). With the knowledge
of Z; the nondimensional temperature and species equations can all be determined
exactly. The profiles so obtained are used as initial profiles for the numerical solution

of the transient conservation equations (3.12)-(3.14).

3.5.2 Simple Heat Loss Profile

As shown in Appendix A the simplest model heat loss profile is the “top hat” profile
used therein. Because of the discontinuous derivatives at the edges of the top hat
profile, it is not as convenient for numerical reasons as a smooth and continuous heat
loss profile. For primarily this reason, the profile that we shall use here is of the form

of a sech? in mixture fraction space, viz.,

—=2 = sech®(B(Z — ZR)). (3.15)
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The location where the maximum of —d@r/dZ occurs is denoted by Zg.

1.0 —— z:, Zn Zu T

0.8 “ A ‘ __ sech’{B[Z-Z,]}

B .
- sl

%0 02 oa = 06 08 10

Z

Figure 3.3. The chosen heat loss profile of the form of a sech?®.

Figure 3.3 illustrates the nature of variation of the heat loss profile in the mixture
fraction space. We note that the maximum value of the profile is unity. We define
the Z locations where the value of the function is 1% of its peak value as the two
tails of the function, located respectively at Zg_ and at Zgy, with Zgr_ < Zgr4. The
maximum of the —dgr/dZ profile occurs at Zr = (Zgr- + Zgr4+)/2. The width of the
loss zone is defined to be AZg = Zry — Zr-. The separation distance of the loss zone
from the location of the ideal Burke-Schumann flame Z; is given by A = Zp_ — Z;.

In the subsequent analysis, we shall vary the thickness AZg, as well as the separation
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distance A in order to study the influence of the loss zone on the flame structure. The
thickness of the loss zone can be chosen by selecting different values of the parameter
B in equation 3.15.

From equation 3.12 we note that the radiative loss term is given by
(Nr/30)dgr/dZ, and hence, another important way to modify the loss term is to
experiment with the value of its amplitude, Ng/3,. We can choose different values of
NRg, the radiation number. The quantity 3o, being given by so/(poL) is a consequence
of the solution obtained and for this reason is evaluated at each time step.

We recall that for the top hat profile the integrated heat loss is
Jo(NRr/30)(U(Zr-) — U(Zr4+))dZ = NrAZg. In this case the integrated heat loss
is given by [) Nrsech?[B(Z — Zg)|dZ = Ngr/(B5o)[tanhB(1 — Zg) + tanhBZg). For
large B this simplifies to 2Ng/B + O(B~?%) showing that the top-hat loss zone thick-
ness AZpg corresponds to 2/B, or B = 2/AZg. Consequently, in analytical formule
for the top-hat profile (see Appendix A, equation A.40) we can substitute for AZg

the value 2/B in order to test their correspondence to the sech? profile.

3.6 Numerical Solution

Equations 3.12, 3.13 and 3.14 were numerically solved using the finite difference
method. The nonlinear source terms were linearized using Newton’s method. For
each time step iterations were used until the sum of normalized residuals became
smaller than 1x1076. The transient conservation equations were integrated to steady

state.
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3.7 Relation Between Temperature and Density

We utilize the ideal gas law to derive a relation between the temperature and density
of the system. We can write pV = (m/W)R,T where p is the pressure, V is the
volume, R, is the universal gas constant and W is the average molecular weight of
the mixture. The quantity m is the mass of the mixture. Hence the pressure can be
expressed as p = pRT where p is the density and R is the characteristic gas constant
for the mixture, given by R = R,/W. If we assume po RT to be the constant pressure
of the system then introduction of @ = 1 — Ty /Ty and 7 = (T — To)/(Ty — To) results
in the following important relation:

(1-a)
l—-a(l-1))

p= ( (3.16)
We observe that when the temperature is that of the ambient, i.e., T = Ty = 298 K
then 7 =0, p = 1, i.e,, p = po. At the flame temperature (Ty) the nondimensional
density p = (1 —a) and consequently p = (1 —a)po. Equation 3.16 is used extensively

in all the chapters of this dissertation.

3.8 Evaluation of 3

Equations 3.12-3.14 indicate that in order to solve the 7, yo and yr equations in time,
we need to evaluate 3y at every time step. We recall that 3, is given by the expression
3 pdz. The quantity 5o enters the analysis by virtue of the coordinate transformation
Z = 1—3/5. By differentiating both sides of this transformation relation, we obtain
dZ/dz = —p/30, since 5 = [; pdz and Z = /L. We recall that Z = 1 when Z = 0
and Z = 0 when Z = 1, as noted previously in section 3.5. Using the transformation

relation between Z and z subject to the above mentioned boundary conditions, we
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5o = = (3.17)
0= ’ .
iz
and the relation between the T and Z coordinates can be written as
1 -
s LD 819
fo (I/P)dZ

On obtaining the solutions for 7, yo and yr equation 3.18 is used to transform the
solutions back to the physical coordinate z. Thus, 5o can be evaluated once the p
distribution is known. The normalized density g can be related to the 7 distribution
by virtue of equation 3.16. Hence, the expression for 3y can alternatively be written
as

1

= R+ (el - ) i 19

Hence on obtaining the 7 profile we can determine the quantity So. When the tem-
perature throughout the domain is the same as the ambient temperature T, then
7 = 0 everywhere and using equation 3.19, we obtain 5o = 1. If we next assume
that the temperature everywhere in the domain is the same as the adiabatic flame
temperature Ty then 7 = 1 and 3 = (1 — a). Since the minimum and maximum
values of temperature are Ty and T respectively, the quantity 5o must obey the limits

(1 — a)<5<1.

3.9 Results and Discussion

Figure 3.4 depicts the nondimensional temperature, 7, plotted as a function of the
mixture fraction coordinate, Z, for different values of the radiation number, Ng,
for particular parameter values shown in the title of the figure. The oxidizer and

fuel mass fractions at the respective walls are Yoo = 0.6 and Yrr = 0.8. In our
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subsequent analysis we keep the same set of (Yoo, Yrr) and vary the location, width
and intensity of the radiative loss zone. It has to be mentioned here that the above set
of (Yoo, Yrr) represents a typical case and is employed extensively in the following

chapters. The qualitative trends for other Yoo and Ypr values are similar. The

Y ,=0.6 Y =0.8 AZ,=0.04 A=0

10 il —— Ng=0
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Figure 3.4. Effect of Radiation Number Ng on Temperature Profile.

thickness of the radiative loss zone is 0.04 for all values of Ng and the separation
distance of the loss zone from the stoichiometric flame location is zero. We observe
that the flame temperature profile is uniformly lowered as the value of Ng increases.
Also, the flame temperature peak keeps moving toward the fuel wall as the value of

Np is increased. The drop in flame temperature, as well as the shift of the peak,
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become more prominent for higher values of Ng. For a value of Ng greater than
383, we do not obtain a steady state temperature profile, indicating the occurrence
of a radiative extinction. This maximum or upper bound for Ng is then defined as
NR eztinctions 1.€-, NR extinction = 383 for this case. We also note from Figure 3.4 that
there is a change of slope of the temperature profile in the radiative loss zone for

higher values of N, i.e., between Zr_ and Zg,.

Y,,=0.6 Y.=0.8 AZ,=0.04 A=0

2000 — — - . ' . , -
Z, 7,

1500

1000

(1+0)Dr
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Figure 3.5. Effect of Radiation Number Ng on Reaction Rate.

Figure 3.5 shows the nondimensional reaction rate term ((1 + ¢)Dr) for the same

situation. We observe that the reaction rate profile collapses for increasing Ng values.
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The reaction rate peak also moves towards the fuel side; this movement becomes
more conspicuous for higher values of Ng. We notice that the reaction rate profile
has managed to almost move beyond the rightmost side of the radiation loss zone
(indicated by the dashed lines at Zg_ and Zg,) for the highest value of Ng.

We now focus on the temperature and species profiles for the situation when

Npg = 383 for the above case, i.e., at the brink of extinction. Figure 3.6 also shows

Y ,,=0.6 Y =0.8 N.=383 AZ_=0.04 A=0

T T'
>© Yo

HyF

v (1+¢)Dr/500

Filled symbols
for IRR case 1

Figure 3.6. 7, yo, yr profiles for finite and infinite reaction rates. Also shown is the
reaction rate profile.

the temperature and species profiles for the same flame (Yoo = 0.6, Yrr = 0.8,

Ngr = 0) for the infinite reaction rate (IRR). We notice that when Ng = 383 the
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slope of the yo profile is quite different from its IRR counterpart. On the other hand,
the slope of the yr profile follows the IRR yr profile closely until a Z-value of about
0.3, when its slope starts decreasing. This plot therefore demonstrates explicitly the
contrast between the IRR situation and the finite chemistry situation with appreciable
radiative losses. The migration of the peaks of temperature and reactivity profiles is
particularly striking. Also, an abrupt change of the temperature profile seems to take
place in the zone of radiative losses, i.e., between Zr_ and Zgr,. We add for emphasis
that from the strictly physical viewpoint the finite-rate solution has attained a rather
extremé form, since the reaction zone has almost completely propagated through the
loss zone. In Figure 3.6 we see that the loss zone is now on the oxidizer side of the
reaction rate profile. As we shall see, extreme cases like this are not the norm. They
are also physically unrealistic but mathematically permissible in our simplified model

with a prescribed heat loss function.

We illustrate the details of the flame structure in Figure 3.7, where we plot the
contributions of the different terms in the energy equation when the steady state
solution has been achieved. The loss term is given by (Ng/30)sech?(B(Z — Zg)) and
the diffusion term, as in equation 3.12, is (1/32)7zz. We have already noted from
figure 3.5 that for Ng = 383 the reaction rate profile has penetrated through the
radiative loss zone. Figure 3.7 indicates that the diffusion term recovers the radiative
losses almost entirely and the reaction term doesn’t contribute to the diffusion term
in such a recovery process. This represents a completely different physical problem,
when the radiative loss term exists on the oxidizer side of the primary reaction zone
(flame). This result is, as already mentioned, clearly in conflict with our hypothesis
that the heat losses take place on the fuel side of the flame due to flame-generated
particulates. This occurs because our hypothetical radiative loss profile is simply a

prescribed function in Z, and as such, it does not contain any mechanism for loss-
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Figure 3.7. The flame structure when Ng = 383.
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zone movement as the temperature and species profiles change, as a real soot zone
invariably must.
In order to observe the effect of a thicker loss zone, we now increase AZg to a

value of 0.1. We notice that the drop in the temperature profile is more significant

Y ,,=0.6 Y,.=0.8 AZ =0.1 A=0

Figure 3.8. Effect of Ng on 7 profile for thicker loss zone.

in this case and the flame extinguishes at a lower value of the radiation number, viz.,
for Ngp = 132.

Next we consider the situation when the leftmost side of the loss zone is sufficiently
rermoved from Z; for a flame with Yoo = 0.6 and Ypr = 0.8. The thickness of the

loss zone is AZr = 0.06 and the separation distance, A, is 0.1 in this case. Figure 3.9
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Figure 3.9. Effect of N on 7 profile for A = 0.1.
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indicates that the flame temperature decreases with increasing value of Ng. In this
case, however, the movement of the peak nondimensional flame temperature doesn’t
seem very pronounced, though it does move towards the fuel side. Correspondingly,
Figure 3.10 shows the variation of the reaction term, (1 + ¢)Dr for increasing values
of Nr. As mentioned for the preceding cases, therefore, the reaction zone does not
always propagate through the loss zone. A sufficient separation and magnitude of the

loss term appear sufficient to prevent the through-transit.

Y ,=0.6 Y,=0.8 AZ =0.06 A=0.1

2000.0 , . T . r
—— Ng=0
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} o——o N, = 160
a +—— N, =200
< 10000 — Ny =213

500.0

00 0. . . . 1.0

Figure 3.10. Effect of Ng on (1 + ¢)Dr profile for A = 0.1.

We see that the movement of the reaction rate profile is not very pronounced
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either. We note that the reaction rate peak is always to the left of the temperature
peak, i.e., Zy < Z, < Z,. This is in accordance with the results obtained for pure
diffusion flames without radiative losses [47], as discussed before.

Figure 3.11 is an extinction plot for the case when AZg = 0.06 and A = 0.
Extinction values of N are plotted as a function of Zy, the theoretical flame location

in the mixture fraction coordinate. We recall here that Z; is related to the overall

300.0

£ 2000

Figure 3.11. Extinction Plot for AZgr = 0.06 and A = 0.

stoichiometric coefficient ¢ (= vYrr/Yo0) by the expression Z; = 1/(1 + ¢). We

notice that for a given value of the oxidizer mass fraction at the wall, (NR)ecztinction
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increases as Z; is decreased. A decrease in Z; implies an increase in ¢, which, for a
given Yoo, indicates an increase in Yrr. As Yrp increases, the reaction rate becomes
more vigorous and it becomes more difficult to extinguish the flame through the
application of radiative losses. This explains the nature of the curves that we obtain
on the extinction plot. Also, for the same value of Zy, i.e., for the same value of ¢, a
lower value of Ypo indicates a correspondingly smaller value of Yrp, and hence, the
reaction rate also becomes smaller in magnitude. It then becomes easier to extinguish
the flame. This explains why the curves in Figure 3.11 all shift towards the left for
decreasing values of Ypo.

Our focus is next shifted to some quantities of practical interest. We evaluate
the heat transfer to the wall from flames with the same stoichiometry (Yoo = 0.6
and Yrr = 0.8) but with different thicknesses of the radiative loss zones and for
different separation distances (A) from Z;. Let Qw,0 denote the heat transferred to
the oxidizer wall by the flame per unit surface area of the wall. We reckon that the
oxidizer wall will have a stronger effect on the flame than the fuel wall owing to the
proximity of the flame to the oxidizer wall. The flame transfers heat to the oxidizer
wall by means of both conduction and radiation, and hence, Qwo = Qw,0,cond +
Qw,0,rad, Where the conduction flux is Qw,0,conda = —A(dT'/dz)|,=L and the radiative
flux is Qw0 raa = 0.5% [ (dgr/dz)dz. We assume that half of the radiative losses
travel to each wall: this assumption is reasonable in the thermally-thin limit we
consider here. We can transform the expressions for Qw,0,cond and Qw,0,rqa to the Z
coordinate and normalize Qw, by the reference conductive flux Ao(Ty — To)/L. The
normalised Qw,o = (1/30)(d7/dZ)|z=0 + 0.5x(1/30)NrJfy (1/30)(dGr/dZ)dZ. The

quantity Qw03 is plotted in Figure 3.12.

From Figure 3.12 it is apparent that the heat transfer characteristics do not de-

pend strongly on the separation distance A, and consequently, we see four reasonably
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Figure 3.12. Heat Transfer to the oxidizer wall as a Function of Ng.
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distinct groups of curves corresponding to loss zones of four different thicknesses.
However, as is evident from the plot, the separation distance A does become im-
portant for higher values of Ng, close to extinction. We will notice that nearing
extinction, the flame attempts to reduce the heat losses to the wall as much as pos-
sible. Also, the value of Ng required for extinction is higher when the heat loss zone

is very thin, as intuitively obvious.
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Figure 3.13. Heat Transfer to the oxidizer wall as a Function of Ng(2/B).

We also plotted Qw,030 as a function of the quantity Ng(2/B). Figure 3.13 clearly

shows that the quantity Ng(2/B), which is approximately the value of the integral
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Jo Nrsech?|B(Z — Zg)]dZ, is able to collapse the wall heat transfer data except very
near extinction. Thus, when plotted against Ng(2/B), Qw,050 does not reveal any
appreciable dependance on either the separation distance A or even the thickness of
the loss zone AZp.

Another quantity of practical interest is the radiative fraction x, given by the
ratio qRrad/qTotalr The quantity qr.q is the integral of the radiative loss term
(fa Nrsech®*(B(Z — Zg)|dZ) and qrow is the integrated value of the reaction rate
in mixture fraction space, i.e., fol(l + ¢)DrdZ. From Figure 3.14 we notice that grota
decreases with increasing values of Nr. This happens because with increased inten-
sity of the radiative loss zone, reaction rate values decrease, as observed in Figures 3.5
and 3.10. For thicker loss zones, the drop in ¢r, with increasing values of Np is
more rapid.

We have already noted in section 3.5.2 that the integral of the radiative loss term
profile is approximately (Nr/30)(2/B). Hence, it is of interest to plot the total heat
release grotar as a function of the quantity Ng(2/B). The result is shown in the
Figure 3.15. Figure 3.15 indicates that the quantity Ng(2/B) characterizes the total
heat release rate very well and the curves for different loss zone thicknesses virtually

collapse on one another except for large values of Ny close to extinction.

Figure 3.16 illustrates the variation of x as a function of Ng for different thick-
nesses of the loss zones and for A = 0. We observe that x increases with increasing
Np for a flame with a given loss zone thickness. The integrated quantity qr,q increases
with Ng and, since correspondingly the ¢r,:. values decrease, x, which is a ratio of
the above quantities, increases. In order to produce a given value of y, a higher value
of Np is required for a flame with a thinner loss zone. Similar to the study of g7,¢a We
plot x as a function of Ng(2/B) in Figure 3.17. It is clear from the figure that the use

of Nr(2/B) collapses the data very well except close to extinction. So, the quantity
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Figure 3.14. ¢7ota1 as a function of Ng.
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Figure 3.16. x as a function of Ng
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Ngr(2/B) can be used to correlate the radiative fraction quite effectively. Figure 3.18
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Figure 3.18. A7y as a function of the radiative fraction

shows the variation of the drop in flame peak temperature, A7y, as a function of
the radiative fraction x. If we denote the maximum temperature by 74, then A7y is
defined as 1 — 7y. We recall that the temperature has been normalized in such a way
that the peak nondimensional temperature, 7, for the infinite reaction rate situation
always has the value of unity, regardless of the oxidizer and fuel mass fractions. Thus,
ATy represents the drop in peak temperature for finite rate chemistry and radiative

loss situation, in comparison to the IRR situation. The increase in A7y with x was
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almost linear for smaller values of xy. However the curves for the different loss zone

thicknesses diverged from one another for higher values of the radiative loss fraction

X-

3.9.1 Comparison with the top-hat profile

It has been previously mentioned (section 3.5.2) that the results for the sech? heat
loss profile can be compared with the results in Appendix A for the top-hat profile.
However, the thickness AZg of the top-hat profile must be chosen to be 2/B, where
the value of B is determined from the choice of the thickness of the sech? profile. For

example, when (AZg),, . is chosen to be 0.06, the constant B = 99.7 and conse-

Sec

quently (AZR) = 2/99.7~0.02. As illustrated in Appendix A both analytical

top—hat
and numerical methods were used to determine the extinction value of Ny for the
top-hat profile. Here, we compare analytical and numerical results for the top-hat
profile with the numerical solutions for the sech? profile. Figure 3.19 depicts the

extinction Ng values plotted as a function of Z; when Yoo = 0.7, (AZR) = 0.06,

sech?
(AZR)ypp_pat = 0.02 and A = 0.1. The direction of increasing Yrr has also been
indicated on the plot. The numerical solutions reveal that the sech? and the top-hat
profiles produce very similar Ng ztinction Values. This indicates that the integrated
value of the radiative loss term is the quantity which determines the extinction Ng
value. The extinction Ng values obtained by analytical method are quite different
from the numerical solution. However, on close inspection of the curves depicted in
Figure 3.19 we notice that the ratio of the analytically obtained values to the numeri-
cal solution is about 4 for all the Z; values plotted in Figure 3.19. This indicates that

a modification of the analytical formula based on the inclusion of a correction factor

should yield close correspondence between the analytical and numerical results.
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Figure 3.19. Comparison of Ngeztinction Values for sech? and top-hat profiles.
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3.10 Conclusions

The influence of a simple and hypothetical heat loss zone on a pure diffusion flame
was investigated in detail in this chapter. The loss profile was of the form of a sech?
and we varied the intensity and the width of the loss zone to study the behavior of a
pure diffusion flame. The loss zone was always postulated to lie on the fuel side of the
ideal Burke-Schumann flame. The location of the loss zone on the fuel side relative
to the ideal flame location Z; was also varied. In all situations the increase of the
radiation number Ng resulted in a movement of the flame toward the fuel side. We
found that for thin loss zones located close to Z; the reaction zone may even migrate
to the fuel side of loss zone for significantly high values of Ng. In such a situation
the loss zone exists on the oxidizer side of the flame, contrary to our initial postulate.
This happens because our hypothetical loss zone is static and does not contain any
mechanism for movement. The reaction rate profile, on the other hand, is free to
move and hence locates itself on the fuel side of the loss zone in certain cases.

Extinction plots were generated for different flames for given loss zone thicknesses
(AZR) and given separation distances (A). The plots indicated that for a given Yoo,
an increase in Yz results in higher values of extinction radiation number (Ng).

Nondimensional heat transfer rates to the oxidizer wall were also investigated. The
results indicated that the separation distance A did not have a significant influence
on the wall heat transfer characteristics.

The total heat release in the combustion process, groti, was found to decrease
with increasing values of Ng and the rate of decrease was quite rapid for thicker loss
zones. It was found that the quantity Ng(2/B) characterizes grotai very well and the
curves for the different loss zone thicknesses and separation distances all collapse onto
one another except near extinction.

Investigation of the radiative fraction () showed that x increases with increasing
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values of Ng and the rate of increase is steeper for thicker loss zones. The flame,
however, extinguishes at a larger value of x for loss zones which are relatively thin.
The quantity Ng(2/B) collapses the ¢r,:ai and radiative fraction values very well

except near flame extinction.



CHAPTER 4

Influence of a Simple Heat Loss

Profile on a Diffusion Flame with

Fuel Blowing

4.1 Introduction

In this chapter the influence of a simple sech? heat loss profile on a diffusion flame
is investigated when there is a convective fuel flow through the fuel wall. Thus, the
problem treated in this chapter differs from the one in chapter 3 only in the fuel wall
boundary condition.

In the following section, we present the problem definition. The formulation of the
conservation equations is quite similar to that in the previous chapter and is discussed

only briefly. A discussion of the important results follows.

4.2 Problem Definition

Figure 4.1 shows the geometry of the problem under consideration. A diffusion flame

is established between the oxidizer and fuel walls. A diffusive flux of oxidizer is

56
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supplied by the oxidizer wall. Fuel is released from the fuel wall through the combined

L

influences of diffusion and convection. A mass flux m = (pu)|,=o issues from the
fuel wall. The oxidizer wall allows the mass flux flowing from the fuel side to pass
through the oxidizer wall, thereby preventing the transient accumulation of matter

in the region between z = 0 and z = L. Both walls are maintained at temperature

To. The species boundary conditions have been illustrated in Figure 4.1.

Soot Layer

m = (pu) |,,o

Illlll\lllli

|

T=T, —— S S
Yp=0 — o= I)=1y
S > —
——— —
—— e Vp=0
x=0 x=L
Z=1) Z=0)
Convective flux of fuel Diffusive flux of oxidizer

=W,

F Y..-Y
P R Y

&=

Figure 4.1. The problem geometry and definition.
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4.3 Formulation

The equations we shall solve are the energy and species equations for oxidizer and

fuel. The energy equation is given by

dq
pCo[Ti + T = (T2)s + Qrior — 22, (4.1)

with boundary conditions T'(z = 0) = Tp and T'(z = L) = To, where Tj is the ambient

temperature, assumed to be 298 K. The oxidizer equation is

p[YO, + uYO:] = (pDOYO,)z - Vd)F, (42)

with boundary conditions Yo(z = 0) = 0 and Yo(z = L) = Yoo. As in the previous
chapter, a one-step, irreversible chemical reaction of the form F + vO—(1 + v)P is

assumed. Finally, the fuel equation is given by

plYr + uYr,] = (pDFYF,): — v, (4.3)

with boundary conditions dYr/dz|;=0 = —(m/pDFr)(Yrr — YF|z=0) and Yr(z = L)

0. The quantity m is the mass flux from the fuel wall, equal to pu.
Using the coordinate transformation Z = 1 — s/so where s = [§ pdz and so =
foL pdz and proper normalizations (as outlined in the previous chapter), the above

equations transform to

1 NRdQR
TE = goTz+ oL szz+QF'D7‘+ A

(4.4)

1
Yor = Yo zt L QyOZZ ¢Dr, (4.5)

1 Qo
Yr; = §_oyFZ + uo—ngszz —Dr (4.6)
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where D is the Damkohler number, given by D = t,.s/tchem and r is the nondi-
mensional reaction term given by r = yoyrexp(—B(1 —7)/(1 — a(1 —7))) where a =
1-To/Ty and B = Ea/RTy is the Zeldovich number. The reference timescaleis t,.; =
L/uo and the characteristic chemical time scale is them = 1/[AYooexp(—E/RTy)].
The nondimensional quantity Q is given by @r = QrYrr/Cp(Ts — Tp) and 3o =
So0/Soref Where so,ef = poL. The velocity ug is the magnitude of u at z = 0, i.e., at
Z = 1. Note that the first terms on the right hand side of each of the above equa-
tions originate due to the convective fuel flow and were not present in the governing
equations for a pure diffusion flame, as illustrated in section 3.5 of chapter 3.

The above equations are solved numerically to obtain nondimensional temperature
and species mass fraction profiles for different radiation loss profiles. The radiation
number Ng in the above is a ratio of the reference radiative and convective fluxes,
given by Nr = qryres/(pouoCpAT). This is in contrast to the definition of Ng for a
pure diffusion flame, where Nr was defined to be a ratio of reference radiative and

conductive fluxes.

4.4 Boundary Condition for the Fuel Equation

In contrast to chapter 3, the fuel mass fraction at the fuel wall is not prescribed in
this case. Instead, it is assumed that fuel issues from the fuel wall by both diffusion
and convection. A balance between the rate of depletion of the fuel in the reservoir
and the rate of fuel issue gives the necessary equation for the boundary condition. In
fact, the fuel mass fraction in the reservoir is held constant.

The amount of reservoir fluid lost through a unit surface area per unit time is
Pouo, where po is the density at the reservoir wall temperature, i.e., Ty, and uq is
the velocity at the fuel wall. Correspondingly, the reservoir is deprived of pouoYrr

amount of the fuel species. The fuel leaving the reservoir surface and entering the
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free stream does so under the combined influence of diffusion and convection. The
diffusion rate, by virtue of Fick’s law, is —pDp(dYr /dz)|z=0, Wwhere DF is the diffusion
coefficient of fuel in fuel/air mixture. The convective fuel flow rate is (pouo)Yr|z=1.

Writing the balance equation yields
_ —(powo)
|lz=0 = —Dr (Yrr — YF|z=0). (4.7)

In the Z coordinate the fuel wall boundary condition assumes the following form:

d uoL3
'dﬁZE Z=1 = ;F’OO(I - yFlz::O)- (48)

where yr = Yz /YFrF, as before, and Dpy is the value of the diffusion coefficient of the

fuel at the reference condition.

4.5 Solution for Infinite Reaction Rate

The temperature and species profiles for the infinite reaction rate (IRR) situation are
used as initial profiles. Hence, our first task is to obtain such solutions. In the limit
of infinite reaction rate the flame sheet is infinitesimally thin. Fuel and oxidizer are
depleted in the flame in the stoichiometric proportion. No fuel exists on the oxidizer
side of the flame and no oxidizer exists on the fuel side, i.e., there is no leakage through
this diffusion flame.

Under such conditions, we can solve for the 7, yo and yF profiles in two adjacent
domains without requiring the reaction term. We solve the following energy equation
in the oxidizer side of the interval subject to the boundary conditions 7(Z = 0) = 0

and 7(Z = Z;) = 1, where Z; is the flame location:
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The above equation must also be solved in the adjacent fuel-side domain, i.e., between
Z =2Zsand Z =1, with 7(Z = 1) = 0. A similar procedure must be followed for the
species equations, although yo = 0 on the fuel side and yr = 0 on the oxidizer side
account for the zero leakage parts of the yo, yr solutions. However, Z; is yet to be

determined. For that purpose, a mixture fraction variable is first defined as follows:

=¢>yp+1—-yo

¢ d+1

(4.10)

We note here that unlike chapter 4 the variable Z does not correspond to the mixture
fraction. We observe that ( satisfies an equation of the same form as the 7 and species

profiles for the IRR situation, i.e.,

1 [0 1))

5_0<Z+ uoL.§3<ZZ =0 (4.11)
The solution for ( is

¢ =[1-exp(—=2Z/c)] (4.12)

where ¢ = ao/(ugL3¢). At the flame, yo and yr are both zero, which, by virtue
of equation 4.10 indicates that {; = 1/(¢ + 1). Correspondingly, Z has the value
Z; = cIn((1 + ¢)/¢). The equations for 7, yo and yr profiles can now be solved for.

The solutions for 7 are

1—e—2/c
et 0<2<Z
r={ e a (4.13)

e 77 R RS AN
The solutions for yo are

—Z[c_ —Zj/c
—=%7— 0<Z<Z,
yo={ 1 ! (4.14)

0 Z,<Z<l.
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Finally, the solutions for yr are

0 0<Z<Z;,
yF = (4.15)
1—e (229l 7Z,<7Z<1.

A plot of the temperature and species profiles is shown in Figure 4.2 for L = 0.01

Y ,,=0.6 Y=0.8 u,;=0.08 m/s L=0.01 m

0.4

Z

Figure 4.2. IRR profiles for 7, yo and yr

m, up = 0.08 m/s, Yoo = 0.6 and Yrr = 0.8. We note here that equations 4.13, 4.14
and 4.15 have to be solved iteratively because the quantity ¢ depends on 3,, which
depends on the solution and can not be ascertained apriori. The procedure is to guess
a value for ¢, i.e., for 50 and then use equations 4.13-4.15 to determine 7, yo and yr

profiles. On obtaining the 7 profile the density (p) profile can also be determined
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using the relation p = (1 — a)/(1 — a(l — 7)), where a = 1 — Ty /Ty. Then, 50 can be
evaluated using the procedure outlined in section 3.8. Using this fresh value of 3¢ the
quantity ¢ can be calculated again. The new value of c is then used to determine 7,
yo and yF profiles. The new 7 profile is then used to calculate the value of ¢ again.
This procedure is repeated until convergence is obtained and we find the 7, yo and

yr profiles for the infinite reaction rate case.

4.6 Parameter Values

The parameter values used in this chapter are the same as those used in chapter 3.
The length of the domain is L = 1.05 cm unless otherwise mentioned. The velocity
of fuel flow at the wall, i.e., up is a new parameter in this chapter. The value of ug

was varied from 0.02 m/s through 0.14 m/s.

4.7 Results and Discussion

The method of analysis in this case is the same as in chapter 3. However, the addi-
tional variable 4o must be taken into account in the examination.

Figure 4.3 illustrates the variation of the temperature profile for different values
of ug for a given flame in the absence of radiative losses (Ng = 0). The values of ug
range from 0.06 m/s to 0.14 m/s. We define a nondimensional parameter uoL/ayp for

characterising the fuel blowing rate and tabulate is in Table 4.1.

Table 4.1. upL/ay for different values of u,.

uo m/s | 0.06 | 0.08 | 0.10 | 0.12 | 0.14
uoL/ap | 5.08 | 6.77 | 8.46 | 10.15 | 11.84
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Y=0.7 Y=0.5 N=0

1.0

| o——o u, = 0.06 m/s

Figure 4.3. Effect ug on 7 profile for a given flame.
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As ug is increased, the flame moves closer to the oxidizer wall. We recall that
the rate of depletion of fuel from the fuel wall is given by (pouo)Yrr. For higher
values of ug, more fuel issues from the reservoir. The oxidizer mass fraction at the
oxidizer wall being unchanged, the flame has to move toward the oxidizer wall since
the rate of supply of fuel is now greater. As uo is increased from 0.06 m/s to 0.10 m/s
through 0.08 m/s, the peak temperature also increases, as evidenced by Figure 4.3.
However, on further increase of ug, the peak temperature decreases. The reasonable
explanation for this is the proximity of the oxidizer wall. For ug = 0.14 m/s, the flame
is quite close to the oxidizer wall and loses much heat to the wall. On closer scrutiny
of Figure 4.3, it can be observed that for higher values of ug, a fixed increment in the
value of ug results in a smaller shift of the temperature profile toward the oxidizer
wall. The flame seems to “feel” the presence of the wall as ug is increased and resists
the attempt of the convective flow to force it against the wall.

The slope of the temperature profile at the wall is a measure of the extent of the
heat transfer to the wall. Figure 4.4 shows the slope, 7z, at the walls, Z = 0 and
Z =1, plotted as a function of up for the flame under consideration (Yoo = 0.7,
Yrr = 0.5, Ngr = 0). The plot clearly exhibits that the heat transfer to the oxidizer
wall (at Z = 0) is much higher than that to the fuel wall. Because it is closer to
the flame, the oxidizer wall exercises a significant influence on it. The influence of
wall heat transfer is an important issue for deciding the location and strength of the
flame.

The reaction rate term, (1 + ¢)Dr, is plotted as a function of Z in Figure 4.5.
The increase in ug clearly results in the movement of the reaction rate profile toward
the oxidizer wall. The value of the peak reaction rate also increases as uq increases.
However, as observed for the 7 profile, the proximity of the wall results in a drop in
the peak value of (1 + ¢)Dr for higher values of uo. We also notice that for uo = 0.06

m/s the reaction rate profile is quite broad. However, as uq is increased, the reaction
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Figure 4.4. Effect uq on 7z for a given flame.
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Figure 4.5. Effect of uo on (1 + ¢)Dr for a given flame.
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rate profile becomes narrower. Since the peak of the reaction rate profile increases
as ug increases (for sufficiently large distance from the wall) and it simultaneously
becomes narrower, the total heat release in the process of combustion, gr,ta1, which
is the integrated value of (1 + ¢)Dr, is also calculated. Figure 4.5 shows as inset a
plot of grotar as a function of ug. It is clear that gr,i. decreases as ug is increased for
this flame. The rate of decrease is significantly enhanced for higher values of u,, i.e.,

when the flame is in the close proximity of the oxidizer wall.

Y0 =0.6 Y =0.8 AZ,=0.04 A=0

u,L/o, = 8.47
1.0 ' T T v ~T T
2L o
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Figure 4.6. Effect of Ng on the temperature profile.

Next, the effect of increasing the intensity of the radiative loss zone, Ng, on
a diffusion flame with prescribed fuel and oxidizer mass fractions in the respective

reservoirs and a given uo through the fuel wall is investigated. The thickness of the loss
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zone, AZg, is assumed to be 0.04 and the separation distance A is zero. As is evident
from Figure 4.6, the temperature profile is uniformly and monotonically lowered as
Npr is increased. The peak of the temperature profile moves toward the fuel wall with
increased radiative losses. For Ng values greater than 28.6, the temperature profile
crashes to zero; here we can not obtain a steady state profile. We also observe that for
higher values of Ng, a given incremental increase in Ng results in a relatively greater
degree of collapse of the temperature profile, i.e., the collapse of the temperature
profile is accelerated. Simultaneously, the rate of movement of the temperature peak

toward the fuel wall is also enhanced for higher values of Npg.

Yo, =0.6 Yy, =0.8 AZ,=0.04 A=0
u,L/ot, = 8.47
1.0 ¢——— A .

Figure 4.7. Effect of Ng on yo and yr profiles.
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Figure 4.7 shows the species profiles, yo and yr, as a function of the Z coordinate.
We recall once again that Z is not the mixture fraction, see equation 4.12. The change
in the oxidizer profile is not very pronounced. However, the yr profile significantly
changes for increasing values of Ng. For Ng = 28.6, yr everywhere is conspicuously
greater than for the no-loss case. The reaction rate decreases with increasing Ng and,
consequently, the flame consumes less fuel and oxidizer. Hence, both the oxidizer and

fuel mass fractions are greater everywhere for higher values of Ng.

Y50 =0.6Y,=08AZ.=004A=0
u,L/o, = 8.47

300

(1+¢)Dr

Figure 4.8. Effect of Ng on reaction rate profiles.

The reaction rate profiles are illustrated in Figure 4.8. With increased radiative

losses, the reaction rates decrease significantly. Also, consistent with the migration
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of the temperature peak, the reaction rate peak also moves toward the fuel side. The
rate of decrease in the reaction rate peak seems to increase for higher values of Ng.
It is clear from a comparison of Figure 4.6 and Figure 4.8 that the temperature peak
at Z, is further to the oxidizer side than the reactivity peak Z, for each and every
value of the radiation number Ng.

The influence of increasing the loss zone thickness is investigated next (Figure 4.9):

AZpg is now increased to 0.1. The peak of the temperature profile indicates a migra-
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Figure 4.9. 7 profiles when AZg = 0.1 and A = 0.

tion toward the fuel wall. The movement is not very conspicuous, though, possibly
because for the entire flame history the reaction zone is squarely inside the loss zone.

Substantial movement to either side seems to be completely restricted. Similarly, the
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reaction rate profile, shown in Figure 4.10, also exhibits a corresponding movement
of the peak toward the fuel wall, although this movement is also very insignificant.

We now turn our attention to the structure of the flame when Ng =9.9, AZr = 0.1

Y ,=0.6 Y z=0.8 AZ,=0.1 A=0
u,L/0,=8.47
300.0 T T v T T
Zr Zny
N — N =0
: ! — Ng=
) ; ———- Ng=175 |
00.0 ; ——- Ny =99
g i
L= 1
X !
1000 | 5 -
0.0 : :
0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.10. (1 + ¢)Dr profiles when AZg = 0.1 and A = 0.

and A = 0. For such a situation the flame is at the brink of extinction and any
further increase of Ny results in the temperature profile crashing to zero everywhere.
Figure 4.11 illustrates the profiles of the different terms in the energy equation. The
convection ((1/3¢)7z) and the diffusion ((ao/(uoL32))7zz) terms balance one another
very near the oxidizer wall and the reaction term is extremely small in that region.
The primary balance in the vicinity of the flame, however, is between the reaction

term and the diffusion term, i.e., the heat released by virtue of the combustion reac-
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tion is diffused away from the primary reaction zone. The radiation loss is principally

recovered by the reaction term.

Y ,=0.6 Y;=0.8 N;=9.9 AZ,=0.1 A=0
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Figure 4.11. Flame structure when Ng = 9.9, AZr =0.1 and A = 0.

We now investigate the effect of shifting the loss zone from the IRR flame location,
Zs. We consider the same flame as before, except we now introduce a separation dis-
tance of A = 0.1. The nondimensional temperature profiles are plotted in Figure 4.12
for different values of Ng. Interestingly, in this case the maximum of the temperature
profile shifts toward the oxidizer side. The reaction rate profiles also indicate a slight

movement of the peak toward the oxidizer wall in Figure 4.13. This result is a rather
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Figure 4.12. Loss zone is now separated from flame location. Observe the movement
of the peak toward the oxidizer wall.
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Figure 4.13. Reaction rate profiles when A
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interesting contrast to the case of the pure diffusion flame, where the reaction zone
always moved toward the loss zone. Here we must observe that there are the three
simultaneous influences of convection, diffusion and reaction: each can respond to
the heat loss zone. In the pure diffusion flame we allowed only diffusion and reaction
to counter the loss zone, and the response was predictable: the reaction zone always
shifted toward the loss zone, even in those cases where it could never penetrate it (see
Figures 3.9 and 3.10) of chapter 3. Here, convection from the fuel wall can force the

reaction zone toward the oxidizer side, away from the loss zone.
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Figure 4.14. Flame structure when Ngp =25, AZg = 0.04 and A = 0.1.

Figure 4.14 shows the structure of the flame when Ng = 25, AZr = 0.04 and

A = 0. For such a situation, the flame is at the brink of extinction. The convection,

A
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diffusion, reaction and radiative loss terms of the energy equation are plotted to show
the relative importance of each term. The primary balance is between the reaction
and diffusion terms. It is also observed that the radiative loss term is recovered almost
entirely by the diffusion term and that the two curves are virtually indistinguishable
in the radiative loss zone. Interestingly, the reaction term does not contribute sig-
nificantly toward recovering the radiative losses. This is because the heat loss zone
is placed at a significant distance from the IRR flame location, Z;, so the primary
balance is between reaction and diffusion.

It is interesting to compare Figure 4.11 with Figure 4.14. In the former case
the heat loss profile was placed right next to the ideal flame location Z;. Hence,
the reaction term had to battle the radiative loss term, unlike in the latter case
when A = 0.1 and the loss term was placed some distance away from the ideal
flame location. Thus, the two flames have significantly different structures. So the
separation distance A between Z; and Zgr_ plays an important role and decides how
the loss term will be recovered. A significantly high value of A results in heat diffusion
into the radiative loss zone by means of conduction. However when A = 0 the reaction
term has to counteract the effect of the imposed heat loss profile.

For the same separation distance of A = 0.1 the loss zone thickness AZg is
now increased to 0.08. As expected the flame extinguishes for a lower value of Ng
(Figure 4.15). For Ng > 13.1 we do not obtain a steady flame. The location of the
maximum flame temperature moves toward the oxidizer wall for increasing values
of Ngr. An investigation of the reaction rate profile also indicates similar behavior
(Figure 4.16).

Let us investigate the effect of changing the velocity up on the temperature and
reaction rate profiles. The value of ug is decreased from 0.10 m/s to 0.05 m/s. The
nondimensional parameter uoL/ag decreases from 8.47 to 4.24. Interestingly, it is

more difficult to extinguish the flame in this case. On decreasing the velocity ug the
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Figure 4.15. 7 profiles when AZr = 0.08 and A = 0.1.
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Figure 4.16. (1 + ¢)Dr profiles when AZgr = 0.08 and A = 0.1.
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flame moves away from the oxidizer wall and Z; increases from 0.08 to 0.2. The flame
loses less heat to the oxidizer wall when ug is smaller and consequently can survive for
higher values of Ng. In this case also the location of the peak flame temperature, Z,,
moves toward the oxidizer wall. Similar behavior was also observed for the reaction

rate profile.
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Figure 4.18. 7 profiles when uoL/ap = 4.24 and AZgr = 0.04.

The loss zone thickness AZg is then halved for the same value of ug = 0.05
m/s. Predictably, it becomes harder to extinguish the flame and the extinction value
of Ng is 29.5, beyond which we do not obtain a steady state temperature profile.
Consistent with previous observations we find that Z, moves toward the oxidizer wall

with increasing values of Ng.
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As explained in chapter 3 the heat transfer to the wall is important to exam-
ine. In the present situation, Qw,o, i.e., the heat transfer to the oxidizer wall, is
normalized with the reference convective heat flux, i.e., pouoCp(Ty — To) to yield
Qwo = (ao/(uoL30))(d7/dZ)|z=0 + 0.5%(1/30)Nrfs (1/30)dgr/dZ. The quantity

Qw,ogo is plotted as a function of Ng in Figure 4.19.

Yy, =0.6 Y =038

u,L/o, = 8.47
1.6
1.5t 1
3
" 14 .
3
3 o—o AZ, = 0.04
13} Aa—a AZ, =0.06 4
»;L e——aAZ, =0.08
< vV—VAZ,=0.10
€12 _
Open Symbols: A =0.0
Filled Symbols: A =0.1
1.1 : . ‘
0.0 10.0 20.0 30.0

N

Figure 4.19. Heat transfer to the oxidizer wall as a function of Ng for the fuel blowing
situation.

A comparison of Figure 4.19 with Figure 3.12 of chapter 3 reveals that unlike for
a pure diffusion flame, the wall heat transfer characteristic curves are not grouped
according to different loss zone thicknesses. The separation distance A seems to

have significant impact in this case. In order to study this in greater detail we plot
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Qw,050 as a function of the quantity Ng(2/B) in Figure 4.20. We recall here that this
quantity was very useful in collapsing the wall heat transfer, the total heat release
and the radiative fraction data for a pure diffusion flame, as discussed in chapter 3.

Figure 4.20 shows that for this situation we get two distinct sets of curves for the
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Figure 4.20. Heat transfer to the oxidizer wall as a function of Ng(2/B) for the fuel
blowing situation.

two different separation distances used. Hence, the separation distance of the loss
zone from the flame turns out to be a very important parameter for a diffusion flame
with fuel blowing. For a pure diffusion flame the separation distance A was not very
important for the heat transfer to the wall since the data collapsed to one single curve.

We now focus on the radiative fraction, x, given by the ratio qrad/qrotai. First,
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the quantity qro:a: is plotted as a function of the radiation number Ng in Figure 4.21.

For thinner loss zones the rate of decrease of g7, With Np is less pronounced. For
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Figure 4.21. The total heat release in the combustion process plotted as a function
of the radiation number Ng.

AZgr = 0.10, for example, grota steeply decreases with increasing values of Ng. In
Figure 4.22 we plot qr,ta1 values as a function of Ng(2/B). As expected, the total heat
release values correlate very well with Ng(2/B) with a nearly straight-line dependence
for Ng(2/B) values less than approximately 0.25.

Figure 4.23 illustrates the variation of the radiative fraction x with the radiation
number Ng. The magnitude of x increases with increasing Ng until extinction occurs.

It is observed here that the values of x are significantly lower than for a pure diffusion
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Figure 4.22. The total heat release in the combustion process plotted as a function

of Nr(2/B).
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Figure 4.23. The total radiative fraction x versus the radiation number Ng.
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flame (see Figure 3.16).
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Figure 4.24. The total radiative fraction x versus Ng(2/B).

Next, in Figure 4.24 we plotted the radiative fraction x as a function of Ng(2/B),
and, as expected, the curves for the different loss zone thicknesses collapsed onto
one another. Thus, the quantity Ng(2/B) is of great importance when analyzing
important quantities of practical interest.

Figure 4.25 shows the variation of the drop in peak flame temperature as a function
of the radiative fraction x. As mentioned in chapter 3, A7y is defined as 1 — 74. The
quantity A7y was found to increase almost linearly with the increase of the radiative
fraction x. It is also observed that the A7y curves diverge from one another for high

values of Npg for the different loss zone thicknesses shown in the figure.
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Figure 4.25. A7y as a function of the radiative fraction .
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4.8 Conclusions

In this chapter the influence of a sech? heat loss profile on a diffusion flame with
fuel blowing from the fuel wall was investigated. The analysis in this chapter is quite
similar to that in chapter 3. However, the influence of convection gives rise to more
complexities in the flame behavior compared to a pure diffusion flame.

An important parameter in this chapter is the fuel blowing velocity at the fuel
wall, i.e., up. An increase in ug resulted in a lame movement toward the oxidizer wall.
The peak flame temperature also increased. The reaction rate profile became taller
and narrower as the flame moved closer to the oxidizer wall. The integrated value of
the reaction rate, ¢r,ta1, however, decreased with increasing uo. The proximity of the
oxidizer wall is the primary reason for such a decrease in gr,t;. When the flame is
close to the oxidizer wall it loses much heat to the wall and hence there is a resultant
decrease in the g, values. It was also observed that the rate of movement of the
flame toward the oxidizer wall slowed down at higher values of the fuel blowing rate.

Next, the intensity, the width and the location of the sech? heat loss zone were
varied systematically to examine the influence of each of the variables on the flame. An
increase in the width of the radiation loss zone resulted in a smaller value of extinction
radiation number i.e., Ng eztinction- 1t Was observed that for loss zones placed right
next to the infinite reaction rate (IRR) flame location, Z;, the reaction term recovers
the radiation loss term and the diffusion term does not contribute significantly to
such a recovery process. If, however, the loss term is placed at a significant distance
from Z;, the reaction term does not recover the loss term. Rather, the diffusion term
has to counter the loss term and conduct heat to the region of loss. Thus, the flame
structure depends significantly on where the loss zone is placed.

The migration of the temperature and reactivity peaks was also investigated for

each situation. It was observed that for loss zones placed at a sufficient distance
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from Z; the flame may move slightly toward the oxidizer wall in certain cases. Such
behavior is in sharp contrast with pure diffusion flames studied in chapter 3. For pure
diffusion flames, the reaction zone always moved toward the fuel wall for increased
heat losses. For diffusion flames with fuel blowing, however, the presence of convection
complicates matters significantly, and the flame may move in the opposite direction.

For a loss zone of a given thickness and separation distance, it was observed that
decreasing the fuel blowing velocity, ug, resulted in a higher extinction radiation
number. When u, is decreased the flame moves more toward the fuel wall and away
from the oxidizer wall. Hence it loses less heat to the oxidizer wall and it then becomes
more difficult to extinguish the flame.

An analysis of the heat transfer to the wall revealed that the separation distance
A has significant influence on the characteristics of the curves. However, a similar
examination of the heat transfer characteristics for pure diffusion flames in chapter 3
indicated that the separation distance A was not important at all. Hence, the analysis
in the current chapter suggests that the introduction of fuel blowing can give rise to a
variety of interesting behaviors. The quantity Ng(2/B) was found to be quite useful,
as in chapter 3 in correlating the wall heat transfer rate, the total heat release and

the radiative fraction.



CHAPTER 5

Estimation of Soot Layer Profile
and Thickness

5.1 Introduction

In this chapter approximate methods for estimating the soot layer profile and thick-
ness are discussed. A soot volume fraction equation was developed based on the
model of Syed, Stewart and Moss [1]. The equation was then numerically solved
subject to the assumption of infinite reaction rate (IRR) profiles for temperature and
species. A thorough analysis of the results revealed that the essential balance for the
soot volume fraction equation is between the convection and the soot growth rate
terms. Such a balance yielded to analytical treatment and resulted in an expression
for the soot volume fraction profile in integral form. The integral was evaluated by
two approximate methods. A comparison of the results using the analytical formulee
with the numerical solution indicated good agreement. A soot radiation term was
then formulated using the soot volume fraction profile thus obtained. The effect of
soot radiation on the temperature profile was investigated using the radiation term
in the energy equation.

In the following sections, we discuss the Syed, Stewart and Moss [1] model, develop

91
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the soot volume fraction equation, investigate the numerical solution, derive analytical
expressions for the soot volume fraction profile and compare the analytical results with
the numerical solution. The influence of a prescribed soot volume fraction profile on

the radiation characteristics of a diffusion flame is also described.

5.2 Soot Model

The soot model used here is based on the work by Syed, Stewart and Moss [1]. Their
two-equation model consists of a number density equation and a volume fraction

equation

d n YRR
T Fo) = a—ﬂ('ﬁ;) , (5.1)
dfv . 2 1 a2

ps—y = V(pafv)ind + 4. (5.2)

The quantity n is the soot particle number density (number of particles per m®) and
fv is the soot volume fraction in m3,,,:/m>,q,. The density of soot, p,, is assumed to
be 1800 kg/m?3. The quantity Ny is the Avogadro number, 6.0x10%6. In equation 5.1
the term & corresponds to the process of soot nucleation. The second term on the
right hand side accounts for the decrease in particle number density due to coagula-
tion. Soot nucleation results in inception of new particles and hence, a corresponding
increase in the number density. The process of coagulation results in a decrease in
number density and hence the —ve sign before 3. As noted in [14], theoretically
the decrease in particle number density can be expected to occur according to the
Smoluchowski equation dN/dt = —K N? where the rate constant X depends on the
particle diameter. The coagulation term in equation 5.1 bears close resemblance to

the Smoluchowski equation. The coefficients &, 3, 4 and § are given by the following
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expressions [1]:

& = Csp*T2 Xpexp(—Ts/T) (Nucleation)

§=C,;Ti Coagulation

B=C; | (Coag ) (5.3)
4 = C5pT3 Xpexp(—T5/T)  (Surface Growth)

6 =144%4 (Nucleation)

In the above, Xr is the mole fraction of the parent fuel, i.e., methane in our case.
It can be shown that Xr = YW /Wg, where Yr is the fuel mass fraction, W is the
average molecular weight of the mixture and Wr is the molecular weight of the fuel.
The quantities T5 and T are activation temperatures and have the values 46.1x10°
K and 12.6x10% K respectively. The quantities & and 6 are related to soot particle
nucleation and 3 and 4 are related to the processes of coagulation and surface growth

respectively. The values of the constants Cs, C3 and Cj are [1]

Cs = 6.54x10* [m3/kg>K/%s]
C; =1.3x10" [m®/K'/%s (5.4)
C; =0.1 [m3/kg?*/3K 5]

5.3 Examination of the Soot Model

In this section, an asymptotic mathematical examination of the Syed, Stewart and
Moss [1] model is carried out to enhance our understanding of the model. Writing
n =n/No, 7 =n/n0, t = t/te, T = T/Ty, p = p/ps and using the expressions for &,

B, 4 and 6 from 5.3 we can simplify equation 5.1 to get:

% = ap T2~ (F~To) _ jTii (5.5)
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where a = (XFNotQC&p*2TQ% e‘Tﬁ)/no and b = (CﬁT*l/ noto)/ No. The quantities a
and b are related to soot nucleation and particle coagulation, respectively. The quan-
tity no is a reference number density. Similarly, writing fv = fv/fv,, equation 5.2

can be recast in the following form:
UV _ oTbe-F-P 3k 4 gt The-(BF-To)
ke cpTze Vfens +dp°Tze (5.6)

where ¢ = Xpnol/stoC':,p*T*lne"T"/p,fvol/a and d = 144C'5,t0p,,2T*1/2Xpe"T"/p,fvo.
The quantities ¢ and d are respectively related to the processes of surface growth
and nucleation. We now choose t; such that ¢ = 1, which results in t, =
(ps3 fVO%eT’*) /(X pnO%C:,p*T*%). This is done because we expect that the increase
of fv is mostly through surface growth, and the balance (dfy/dt)~surface growth
reflects the overall soot creation time scale. The quantities a, b and d are then evalu-
ated using the above value of ¢y. Next, the reference quantities p, and T, are chosen
in such a way that pT = 1. Equations (5.5) and (5.6) can now be written (after

dropping the bars on various quantities) as

WM _ r-3e-F-Ta) _ph 2 (5.7)
dt
subject to n(0) = 0 and
%_ — T—%e-(%-Tﬁ)fvgn% +d '%e"(%‘n) (5.8)

subject to fy(0) = 0. Particle number density and volume fraction are both zero at
the initial time (¢ = 0). Next, it is assumed that the system is isothermal, and the
nondimensional T' = 1, i.e., T, is the constant temperature of the system. Two distinct

cases are studied in the following subsection depending on the level of saturation of

n.
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5.3.1 Rapid equilibration of 7

Let us assume that the particle concentration 5 rapidly equilibrates to its asymptotic
value. This assumption is of practical relevance and is supported in the literature [1],
[12]. In that limit, dp/dt = 0 and by virtue of equation 5.7, n = \/(sz. If for
convenience we define the maximum value of 7 as 1, then a = b. The equality of a
and b can be exploited to yield an expression for the characteristic number density

No,

o _ & 2 (—;‘})
No J c;™ Xpe T

With T = 1 equation 5.7 becomes

I — a1 —m?), (5.9)

with 7(0) = 0. The solution for equation 5.9 yieldsn = (e?**—1)/(e?**+1). Examining
the limit lim, ., 77, we conclude that a rapid equilibration of 5 to unity occurs when

a > O(1). The equilibration time is t~a~!. Similarly, equation 5.8 reduces to the

following when T = 1:

d
v _ sy g (5.10)
dt
with the initial condition fy(0) = 0. When 7 rapidly equilibrates to unity equa-
tion 5.10 becomes dfy/dt = fvg + d. In terms of new variables § = fvé/\/(—l and

¢ = t/3V/d, this equation becomes

52ﬁ =1+ 6% (5.11)

€
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subject to §(0) = 0. The substitution § = tanf gives tan?df = d¢, with 6(0) = 0.

Consequently, £ = tanf — 6 and, in terms of original variables, we have

1
v3

t—3\/—[7_——t -l(f)] (5.12)

Solution of the above transcendental equation constitutes the first problem under
consideration. We note that in the limit when d <« O(1) the second term in the
above equation is negligible and we obtain the well-known result fy ~ (¢/3)3. In the
more general situation, a rapid equilibration of 7 is not assumed and equation 5.10

23t _1)/(e?*t + 1). In the following, we carry out a

is solved using the result = (e
discussion and comparison of the results for the two problems.

The numerical solution of equation 5.10 was obtained using the NAG fortran
library routine DO2PCF. This routine uses the Runge-Kutta method.

Figure 5.1 shows two sets of results for the soot volume fraction profiles. In the
first case, d was set equal to 0.5, since d is the only parameter value which needs
to be prescribed for the solution of equation 5.10. For d = 0.5 the saturated 5
assumption (equation 5.12) gives an fy profile which is quite similar to the more
general unsaturated case. For large times, however, the two curves tend to diverge,
albeit at a rather slow rate.

When d = 0.005 the curves for saturated and unsaturated cases are virtually
indistinguishable. It can be recalled at this point that d is the nucleation term in the
soot volume fraction equation 5.10 and for a small value of d, the soot profile saturates
fairly quickly. Hence, in this case, the assumption of 7 rapidly saturating to the value
of unity is quite good. Also, when d = 0.5 the amount of soot generated is much more
compared to the d = 0.005 case. This is because a much stronger nucleation term

results in a higher soot volume fractions. Also plotted in both figures is the function

(t/3)%. As mentioned before, when d < O(1), it is expected that fy ~ (t/3)3.
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Figure 5.1. Comparison of fy profiles for d = 0.5 and d = 0.005.
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When d = 0.005 we see that the numerical solutions are indeed comparable to the
(t/3)3 curve. However, for d = 0.5, the (¢/3)* curve is significantly different from the

numerical solutions.

5.4 Formulation of the Full Problem

The problem geometry and boundary conditions are the same as described in Chap-
ter 4 and illustrated in Figure 4.1. The soot volume fraction equation has the following

form:

p(fve+ (u+ur)fv,) = (pPDsfv )z + tha + g — Wor- (5.13)

In equation 5.13 wy,, w, and w,, are, respectively, the soot nucleation, growth and
oxidation rates in units of kg/m3s, ur is a thermophoretic velocity term, which is
neglected in the present analysis. Equation 5.13 contains a soot diffusivity, D,, which
is taken to be 1% of the gas diffusivity [12]. The physical coordinate of our problem
is z with 0<z<L. The boundary conditions are fy(z =0) =0 and fy(z = L) =0.
First we transform the equations to a (Z,t) system of coordinates, where Z =
1 — s/sp with s = [Zpdz and so = [Epdz. As a result the soot volume fraction

equation takes the following form:

(pouo + pur) p*Ds
T sz = 2
So So

th"“

1,. . .
fVZZ + ;(wﬂ + wy — woz)- (5.14)
Now, we define t = t/t,.; and fv = fv/fv,, where fy, is a suitably chosen reference
value. Consequently, the volume fraction equation becomes

dfy  (1+mr)dfv _ Dy &*fv

0T~ 5 07 " uelsi oz T (ATt Bre = Crer) (5.15)

Here, /i = Yppt,-cj/fvotn, B = Yppt,.ef/fvotg and C' = YOOtref/fVOtoz:- The



99

quantities t,, ¢, and ¢, are characteristic time scales for the processes of soot nu-
cleation, growth and oxidation respectively and are given by t, = poYrr/tinres,
ty = poYrr /Wy ey and top = poYo0/Wozres- The quantity t..s is the characteristic
flow time, given by t,.y = L/ug, and Wn ref, Wg,res and Woz res are reference values for
normalizing nucleation, growth and oxidation terms, respectively. We have also used
50 = So/(poL). The nondimensional thermophoretic term is denoted by mr = pur/uo.
The soot diffusivity at the reference condition is D,o. The rate terms 7,, 7, and 7,
are respectively for soot nucleation, growth and oxidation and 7, = 1,/p, where
Wy, = Wy /W res. The growth rate term 7, and the oxidation rate term 7,, are defined
similarly. Next, we assume that the temperature and species profiles are for the in-
finite reaction rate (IRR) case, which implies that no fuel exists on the oxidizer side
and no oxidizer exists on the fuel side. In the absence of oxidizer on the fuel side,
the source term for oxidation in the soot volume fraction equation can be discarded.

Further, on neglecting the thermophoretic effect, the soot volume fraction equation

reduces to
Ofv. 10fy _ Dy &*fv
0t 50 0Z  wuolL32 02

+ (AF, + Br,) (5.16)

At this stage, the expressions for A and B are still to be determined. The quan-
tities A and B depend on the time scales ¢, and t, respectively, which, in turn,
depend on the choices of W, ,.s and w,,s. By comparing equation 5.13 with the
volume fraction equation (equation 5.1) of the Syed, Stewart and Moss model [1],
we can write w, = pd/p, and W, = (p/ps)¥(psfv)?/*n}/3. On substituting the

~Ts/T, Hence

expression for 4 using equation 5.3 we get w, = 144C;p°T"/?Xre
Wpref = 144Cap03T13X roe~T4/Ts can be chosen as a reference for the soot nucle-
ation term. A reference value of the soot growth rate term can now be written as

T
Wgres = (po/ pa)iono/(pufu o), with %o = CspoTy/*Xpoe ™. The quantities with

suffixes 0 are at the reference condition. On obtaining w,,.; an expression can now
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be written for ¢, and consequently A can be expressed conveniently as

T,

1 T 3
L 144po2C5Ty2 Xpoe ™t

A= (UO (PafVo)

(5.17)

Similarly, since we have obtained the expression for w,,.s, we can now write an

expression for t, and hence for B,
S
L C:,pon2 Xroe T ngd

B=( ,
o (pstO)3

(5.18)

We now focus our attention on the nondimensional rate terms in equation 5.16, viz., 7,
and 7y. As mentioned before, 7, = w,/p and w, = Wy, /Wy res. Using the expressions

for w, and W,y We can obtain the following expression for 7,:

e —(L(_1 ‘:)i))%yperf—-ﬂﬂ?(%. (5.19)

The quantity 85 = Ts(Ty — To)/Ty* and a, as before, is given by a = 1 — Ty/Ty. In

the above we have also utilized the relation between temperature and density, i.e.,
p=(1-a)/(1 —a(l —71)), by virtue of equation 3.16.

An expression can also be found for the rate quantity 7, using the expressions for

wy and W, ,.s. The expression for 7, takes the following form:

win

(1= 0)Syrsf} _(g+ayar
Fo= e s Ni=ati-7)), (5.20)

T l=a(l=17))

<

o

At this stage we notice that the expression for B in equation 5.18 involves an unknown
reference number density, no. In order to evaluate that, the soot particle number

density equation has to be examined

p(ne + (u + ur)ns) = (pPDsnz)z + wn — o, (5.21)
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where 7 = n/Ny. The w’s in the above are the rates of production of particle number
density in a cubic meter multiplied by the density p and hence have the units of
kg/(m®s). By writing 7 = n/no, t = t/t,; and transforming the equation to the
mass-based Z coordinate, we can write the normalized number density equation in
the following form:

_ (1+mr)_ D, D W ref WDe Weyref

t— ——— = n — tre -
UL 5 nz wols Nzz + — 1

tres. 5.22
55 P poto 7 pomo (5.22)

We notice that po7no/tn res has the unit of time and thus qualifies as a characteristic
nucleation time scale. Hence (po7o/wWn ref)/tres is a ratio of a characteristic nucleation
time scale and the characteristic flow time. Let us call the above ratio &. We then
multiply equation 5.22 by € to obtain

_ (1 + ﬁl'r) — “L)n “;-’c ‘bc,'ref

nz) = E——uozz_znzz +—=-—=

= 5.23
0 P P Wn ref ( )

€(7e 3
When nucleation is rapid é—0 and the quantities multiplied by € become negligible
and equation 5.23 essentially reduces to a balance of the nucleation and coagulation
terms, and the number density reaches a steady or saturated value, exactly as the
simplified model in section 5.3.1. We get @,/p — @c/pieres/Wnres and hence w, =
we. At this stage we compare (5.21) with equation 5.2 of the Syed, Stewart and
Moss model [1] and write @, = p& = Csp°T*Xpe~Te/T and &, = ,o,é(n/No)2 =
pCBTI/ 2(n/N,)®. The equality &, = & is then utilized to obtain an expression for

2¢-Ts/2Ty The reference

the reference number density, no = poNo(Cs/ CB)I/ 2 Xpo!
fuel mole fraction Xro equals YrrW /Wg. Using the above ng, the quantity B can

be readily determined.
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5.5 Numerical Solution

Equation 5.16 is numerically solved for a range of parameter values to obtain a so-
lution for the soot volume fraction. The equation is discretized by finite difference
method and the source terms are linearized using Newton’s method. The steady
state solution is reached when the sum of normalized residuals between successive
time steps becomes smaller than 1x10~¢. The initial soot volume fraction value was
assumed to be zero everywhere in the domain. A typical solution is shown in Fig-
ure 5.2. In order to further investigate the importance of various terms in the soot
Y,,=0.6 Y.=0.8 u,=0.07 m/s

T=2200K L=0.01 m
4.0 - , ' 1 - S

0.0 0.2 0.4 0.6 0.8 1.0
Z

Figure 5.2. Soot Volume Fraction Profile
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volume fraction equation, the convection, diffusion, soot nucleation and growth terms

are all plotted in Figure 5.3. The abscissa of the plot is (Z — Z;), where Z; is the

Y, ,=0.6 Y=0.8 u,=0.07 m/s
T=2200K L=0.01 m

T

T
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Figure 5.3. The structure of the soot volume fraction profile

location of the Burke-Schumann flame. We note that close to Zy, there is a balance

between the convection ((1/30)dfv/dZ) and diffusion ((D,o/uoL53)d*fv/dZ?) terms.

However, the diffusion term is quite small at an incremental distance from Z;, and for
the most part of the soot layer, the essential balance is between the convection term

and the growth (Bf7,) term. The nucleation term (Af,) is very small in comparison

to the other terms.
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The above insight about the fundamental structure of the soot layer is utilized in

the development of an analytical expression for the soot volume fraction profile.

5.6 Analytical Approximation

As noted in the previous section, the primary balance for the soot volume fraction is
between the convection and the growth terms, except very near Z;. Hence, we assert

that equation 5.16 can be further reduced to

1dfy -
———— = BrF 5.24
50 dZ Tga ( )
in the steady state limit. The quantity B is a constant, and 7, is the nondimensional
soot growth term, derived from the Syed, Stewart and Moss model, is given by equa-

tion 5.20. Next, we relate dZ to d7 in order to determine a solution for fy(7). The

fuel side (Z;<Z<1) Burke-Schumann temperature distribution is used for the above

purpose
e—l/c _ e—Z/c
T= ez (5.25)
where ¢ = ap/(uoL30) and Z;, the ideal flame location, is given by Z; =

cln((1+ ¢)/4). A detailed analysis of the infinite reaction rate situation is included

in section 4.5 of chapter 4. The fuel mass fraction profile is

yp=1—e (2-21)c, (5.26)

In terms of 7, yr can be written as

yr=a(l — 1), (5.27)
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where a = 1 — e~(1-2s)/<_ After a little algebraic manipulation, dZ can be written in
terms of dr as dZ = —[(ac)/(1 — a(1 — 7))]dr. By substituting the expression for yr

in terms of 7 and dZ in terms of dr, equation 5.24 is transformed into

(1- 1.)7/6 ~(By+2a &) (=)
(1—afl = 7))*/%(1 - a(1 - T))

#df_v = [B3o(1 — a)*3a'3/8¢] (5.28)
At this stage we observe that in order to integrate the soot volume fraction profile, we
need to impose suitable boundary conditions. Before we made any approximations,
the boundary conditions for the soot volume fraction were fy = 0 at Z = 0 and at
Z = 1. However, the soot diffusion term has been dropped, which was the only second
order term in equation 5.16. The resulting approximate equation is first order, and
only one boundary condition can be used. We use the condition that the soot volume
fraction is zero at the fuel wall, i.e., at Z = 1. We expect to obtain a soot volume
fraction profile which is located preferentially on the fuel side of the diffusion flame.
It has to be kept in mind also that in order to substitute for dZ in terms of dr, the
temperature profile on the fuel side was used, and hence, any soot volume fraction
which we may see on the oxidizer side is actually non-existent.

We now integrate equation 5.28 subject to the boundary condition that fy = 0

when 7 = 0. From equation 5.28 we find that the important integral to evaluate is

, / (1 — 7)7/6e=Brt ) =25)
-
(

1- a(l - T))5/6(1 — (1(]. _ T))dT (529)

By substituting v = 1 — 7 and writing 8, = B5 + %‘* we arrive at the following

expression for I:

=
/ (1 — au)5/¢(1 — au)du (5:30)

The integral in equation 5.30 could not be analytically evaluated. In order to simplify

matters, the exponents 7/6 and 5/6 on u and (1 — au) respectively were replaced by
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1. Let the modified integral be called I;. Then, I, happens to be integrable ana-
lytically. An analytical result was obtained using the commercial code MAPLE, and
the result so obtained was verified using another commercial code, MATHEMATICA.

The following expression is obtained for I;:
I;=(A+ B+ C+ D)/(aa(a — a)), (5.31)

where

= —aesS Eq(1, —"—(—)—(f_‘;)‘('gia))
Bya . —Bra
=(a—a)e = Ei(l, —/—=

fra . —Bra
= —(a—a)e a EZ(].,MT%;—_IT)

O Q & >

Bya . =Bra
= ae°-°E1(1am)’

where Fi(1,z) is a notation for the exponential integral. The indexed family of
exponential integrals, Fi(n,z) where n is a non-negative integer, is defined as
Ei(n,z) = [{°e~=!/t"dt for real, positive .

Integral I, thus calculated, is compared with the numerical solution. Also,
Laplace’s method was used as an alternative method to approximately evaluate the

integral I;. The following section briefly describes the analysis.

5.7 Integral Evaluation Using Laplace’s Method

The integral in equation 5.30 can be approximately evaluated using Laplace’s method
and can be written as I; = [1__g(u)e/®™du where g(u) = (1 — au)~%/¢(1 — au)~! and
f(w) = =Bou/(1 — au) + Inu™/s,

Let us next consider the integral I(z) = [2e**!)f(t)dt, where h(t) is real and

z is positive and large. Assume that the integral exists, i.e., it has a finite value.
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According to Laplace, only the immediate neighborhood of the point corresponding
to the maximum value of h(t) in [a, b] contributes to the asymptotic expansion of I(z).
Similarly, for expansion of the integral I; the value of u for which f(u) is a maximum
is sought first. Let us denote the value as u*. Equating df/du to 0 and evaluating
d?f/du? to ascertain that f attains a maximum at u*, we find that u* = 7/(608,4).

Next the integral I; is expanded in the following form:

1 1oy y (u=u®)2 e o
]l = / [g(u*) + (u _ u*)g'(u*) + m]ef(u*)+(u—u*)f (u*)+ 7 (u )+...du (533)

1-71

By using the result f’(u*) = 0 and evaluating the different derivatives of f(u) and
g(u) at u* and assuming a large f,, the above integral can be easily evaluated. After
some algebraic manipulation and neglecting higher order terms in the expansion of

the integral, we obtain the following simplified result for the integral I;:

0.7136 3 ()] (5.34)

where 7* is the value of nondimensional temperature corresponding to the value u*,
ie., 7 = 1 — u*. Hence, using equation 5.28 and equation 5.34 we can write the

following expression for the soot volume fraction:

f‘é=[Bgo(l—a)‘/sa”/ﬁc]””??erfc[\f Bralr* =)L (5.35)

5.8 Comparison of Results

Figure 5.4 shows a comparison of the numerical solution and the analytical solutions
for the soot volume fraction profiles. In Figure 5.4 “Method 1” refers to the solution
using exponential integrals and “Method 2” refers to the solution using Laplace’s

method. It is seen that both the methods result in soot profiles which have substan-
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Figure 5.4. The analytical solutions plotted along with the numerical solution.
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tially different maximum values compared to the numerical solution. This happens
because the soot profile maximum is close to the flame location, Z;, where the effect
of soot diffusion is prominent, as observed in the section 5.5. Since the diffusion term
was neglected for the analytical solution, the disagreement between the numerical and
analytical solutions is quite conspicuous near Z;. However, consistent with the dis-
cussion in the previous section, a much better agreement is obtained near the trailing
edge of the soot layer, i.e., further from Z;. The agreement between the analytical
and numerical solutions is excellent in that region. Consequently, the thickness of the

soot layer can now be analytically predicted fairly accurately.

5.9 Influence of soot radiation

In this section, we shift our attention to the effect of radiation on a diffusion flame
established between a fuel and an oxidizer wall, with a convective fuel flow from
the fuel wall. This configuration is the same as in Chapter 4. However, the radiation
term used here is different. A soot volume fraction profile, generated using the method

described in section 5.5 was used to formulate a radiative loss term.

5.9.1 Background

Understanding of soot radiation and its proper incorporation in the model are ex-
tremely important for the current research. The radiation from a flame depends on
the soot profile, which depends on the particular fuel used, the temperature profile
and the species profiles. In this section we will assume a soot volume fraction based on
the numerical solution of the soot volume fraction equation described in section 5.5.
A radiation term is formulated based on the “optically thin” assumption for the soot
radiation. A review of the existing literature pertaining to soot radiation is included

in section 2.5 of chapter 2.
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5.9.2 Formulation of the Radiation term

For a sooty flame the major part of the radiation is a continuum radiation that is
simpler to model than the radiation due to water and carbon dioxide. For soot volume
fractions > 1077, soot radiation should be dominant judging by the calculations of
Grosshandler and Modak [11]. For small flames and moderate soot loadings with

which we are dealing, the optically thin limit is appropriate. In this limit

d
SR _ 4a,0(T* - To%), (5.36)
dz

where, a, is the Planck Mean absorption coefficient and o is the Stefan-Boltzmann

constant which has a value of 5.6696x 108 W/m2?K*. The quantity a, is given by

— I k(A fv)es(A)dA
’ IEe(N)dr

(5.37)

Kennedy et al. [31] used £ = 7fy /), where « is the absorption coefficient and ) is
the wavelength of radiation. For a blackbody the spectral distribution of hemispher-
ical emissive power in a vacuum is given as a function of absolute temperature and

wavelength by the following expression:

27('01

A

es(A) (5.38)

This is known as Planck’s spectral distribution of emissive power. The constant C,
has the value 0.59544x 107'® Wm? and C; = 1.4388x10~2 mK. Using the expression
for e, in equation 5.37 and substituting y = C,/(AT), the following expression is

obtained for a,:
. = 147 fyCiT [ yidy
P 60y oev—1°

(5.39)
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The integral [g°y*dy/(e¥ — 1) is the fourth order Riemann zeta function and whose
value is 24.8862. Hence, a, = 1864.32fvT.
By transforming equation 5.36 to the Z coordinate and using gr =

qr/ pouoCyp(Ty — To), 7 = (T — To)/(Ty — To), p = p/po and 3o = so/(poL) we obtain

~l_d(in _ 4a,,0’LT_,f4
50dZ ~— pCo(Ty — To)uo

[(1=a(l=7)*-(1-0a). (5.40)

By using equation 3.16 for the relationship between temperature and density we can

further reduce the expression for (1/3¢)(dgr/dZ) and write

1 dg = 2 4 2
L TR (-a(l =T~ el =) = (1=af),  (541)

where I'g is given by
4378.21C, L fv, T;®

T = . 5.42
R 06CoTo(Ty — To)uoCy® (5.42)

The energy equation for this situation is the same as equation 4.1 of chapter 4. In

the Z coordinate the energy equation becomes

1 dr
30 dZ°

Qo

TT=—Tz+

7122 + QFDFr +
So0 uoL33

(5.43)

where we have used gr = qr/qrres and Qr = QrYrr/Cy(Ts — To) = (1 + ¢). The
reference quantity qr .y was chosen to be pouoCy(Ty — Tp). Hence, the radiative loss
term is given by 1/5¢(dgr/dZ). We note that we have already derived an expression
for the loss term in equation 5.41. The energy equation can now be solved numeri-
cally using a prescribed soot volume fraction profile in conjunction with the coupled
oxidizer and fuel mass fraction equations. The species equations are the same as

equations 4.5 and 4.6 of chapter 4.
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5.9.3 Results

Figure 5.5 shows a plot of the temperature and species profiles of a flame with a
radiative energy loss modeled as in the previous section. The prescribed soot volume

fraction profile is also shown on the same plot. Next, the structure of the flame is

Y,,=0.6 Y=0.8 u,L/ct;=6.45

Prescribed f,, profile
1.0 @ N T v T T T T T
o—o T
g—a yO
0.8 t Y
o, —— f,*10

Figure 5.5. 7, yo and yF profiles for prescribed soot volume fraction.

shown in Figure 5.6. The convection, diffusion and reaction terms of the nondimen-
sional energy equation are plotted along with the radiative loss term. This figure can

be compared with the structure of a similar flame with a sech? type radiative loss
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term, as illustrated in Figure 4.11 of Chapter 4. The similarity in the structure of

the two flames is quite striking and suggests that the simple sech? type radiative loss

profile is a fairly good approximation which is capable of revealing interesting aspects

of the diffusion flame behavior when subject to radiative heat loss.

Y,,=0.6 Y=0.8 u L/0t;=6.45

Prescribed £, profile
200.0 , - - . —
Convection
o——e Diffusion
100.0 | = (1+¢)Dr :

—-—-- Radiative Loss

-100.0

1 1 1 1

-200.0 — ' ‘ '
0.0 0.2 0.4 0.6 0.8

Z

Figure 5.6. Structure of the flame. Note the radiative loss term.

1.0
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5.10 Conclusions

A simplified analysis of the soot profile was carried out in this chapter using the Syed,
Stewart and Moss [1] model. Burke-Schumann temperature and species profiles were
assumed and the soot volume fraction equation was solved numerically for a diffusion
flame established between an oxidizer and a fuel wall. Oxygen diffused out of the
oxidizer wall and fuel was released from the fuel wall by means of both diffusion and
convection. It was observed that for the soot volume fraction equation the primary
balance was between the processes of soot convection and soot growth. Equating the
expressions for these two quantities resulted in an analytical expression for the soot
volume fraction in integral form. The integral was evaluated using two methods: the
first one involving exponential integrals and the other using Laplace’s method. The
analytical profiles matched well with the numerical solution except very near the flame
location Z;. Close to the Burke-Schumann flame location, the soot diffusion term is
strong and there the essential balance is between the soot convection and the soot
diffusion, the soot growth term being relatively much smaller. However, the thin zone
may be an artifice of the IRR approximation itself. The analytical expressions, which
were derived on the basis of the soot convection ~ soot growth balance, do not predict
the soot volume fraction values accurately near the infinite reaction rate (IRR) flame
location. However, for most part of the soot layer the soot volume fraction profile is
predicted well by the analytical formulz. Consequently, the soot layer thickness can
also be accurately predicted using analytical methods.

A soot radiation term was also developed on the assumption of the optically thin
limit for the radiation. A soot volume fraction profile obtained from the numerical
solution was used in the expression for the soot radiation term. The radiation term
was then included in an energy equation as a sink term and the equation was solved

simultaneously with the coupled fuel and oxidizer species equations. The results
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revealed that the flame structure closely resembles the structure of the flames studied
in chapter 4 for sech? heat loss profiles. Such a resemblance indicates that the simple
sech? heat loss profile examined in chapters 3 and 4 is capable of revealing interesting

details of the flame structure.



CHAPTER 6

Investigation of the Comprehensive

Soot Radiation Problem

In the previous chapters we have analyzed with simplified models of soot profile
and radiation loss effects. In the current chapter we deal with the complex problem
of soot radiation and diffusion flame interaction using a soot model chosen from
the available literature. Here we use the two equation model of Syed, Stewart and
Moss [1] for the soot volume fraction and the soot number density. Their model
has been developed based on experiments with different fuels and for a range of
flow conditions; we have examined this model analytically in chapter 5. A two-
dimensional Wolfhard-Parker burner was used for their experiments in order to fix
various undetermined constants. This model has been used by Syed et al. [1] for
both laminar and turbulent flame predictions. Recently, Ku et al. [51] have used this
model for the simulation of microgravity turbulent diffusion flames and the agreement
of the model with experiments was very good. In the following sections, we first
describe the conservation equations and then formulate the final, non-dimensional
equations including the Syed, Stewart and Moss [1] soot model. Then, we discuss
some interesting results obtained from the numerical solutions of the conservation

equations. Although our results indicate a variety of interesting behaviors, a radiative

116
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extinction was not observed, suggesting to us that a steady state extinction is unlikely.

6.1 Formulation

There are six conservation equations of importance in our problem, viz., the mass, the
energy, the oxidizer and fuel species, the soot volume fraction and the soot number
density equations. At this stage we also note that on an overall basis, we can account

for three principal chemical reactions, as noted below

fuel + air — products
fuel — soot

soot + ozygen — products

It has to be kept in mind, however, that each of the above overall reactions is very
complex in reality and consists of hundreds, and may be even thousands of steps and
intermediate products.

The continuity equation is
Jp Opu
—+——=0 6.1
ot + 0z (6.1)
At steady state, Opu/dz = 0 and hence, pu = poug, since the mass flow rate is

m = poup. Hence,

u=uo/p (6.2)

The energy equation has three source terms accounting for the heat generation due
to the primary chemical reaction, the radiative heat loss and the heat generation due

to soot oxidation. The energy equation is

. d .
pCp(Tt + uTz:) = (/\Tx):r + QFwF - di: + Qozwor- (63)



118

We assume that the reaction C + %Oz = CO + Q. takes place for soot oxidation,
with Q.. being the heat release. The heat release in the above oxidation process is
53 kCal/mole of O, [52], [563]. Hence, Q.. = 9246.29 kJ/kg of C.

The oxidizer equation has a depletion term due to the primary reaction and an-

other one accounting for soot oxidation, viz.,

2 e (6.4)

p(Yo, + uYo,) = (pDoYo,): — vur — 3

We also note that for every kg of C 4/3 kg of O, is required due to the oxidation
reaction for soot particles, hence the coefficient 4/3 for the oxidation rate w,, in the
above equation.

The fuel mass fraction equation includes depletion terms due to the primary chem-

ical reaction as well as the conversion to soot particles,

. 4 .
PCy(Yre + u¥p.) = (pDFYF.): — wr — 3. (6.5)

For the conversion of fuel to soot, we assume a very simple overall reaction of the form
CHy;—C + 2H,. If the soot growth rate is w, kg of C/m3s, then the depletion rate
of the fuel due to soot growth is (4/3)w, kg of fuel/m3s, since 1 kg of C is produced
from 4/3 kg of fuel, according to the above chemical reaction.

Finally, we have two conservation equations for the soot volume fraction and the

soot particle number density, viz.,

p(fve+ (u+ur)fvy) = (PDsfvs)z + tn + Wy — Wor, (6.6)

and

p(ne + (u + ur)nz) = (pDsnz)z + wn — . (6.7)
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In the above, w,, w, and w,; are respectively the soot nucleation, growth and ox-
idation rates in units of kg/m3s. The quantities w, and w, are the nucleation and
coagulation rates in units of (kg/m3)(number/m3s). The soot volume fraction in
units of m3,,,¢/m3,4, is fy and 7 is the number density of soot particles normalized
by Avogadro’s number (Np = 6.0x10%6), i.e., n = n/Np. The thermophoretic velocity
term is denoted by ur. A discussion of thermophoresis is included in section 6.1.1.
The soot diffusivity, D;, is usually quite small and was assumed to be 1% of the gas
diffusivity [12].

As in the preceding chapters we transform the equations to a (Z,t) system of
coordinates, where Z = 1 — s/so with s = [Zpdz and so = [Epdz. As a result, our

conservation equations take the following form:

energy:
Polio (pA) 1 P dqn
T,——7Tz = T - ST 2 ozWoz ), .
= Te =gtz + pC,,(Q F+ + QozWos) (6.8)
Oxidizer mass fraction:

u 2D 1 4

Yo: — po °Yoz = £ o Yozz — —(vir + o), (6.9)
So 802 P 3

Fuel mass fraction:

pDF 4

Yr, — Pc;:o Yrz = Yrzz — —(U’F + 3'1’9), (6.10)
Soot volume fraction:
ug + pu p*D 1, . ) ;
fv,—vaz = vazz+ (wn+wg—wox)a (6.11)

So



120

Soot number density:

uo + pu D 1. .
ne— osotpur), b Ds it L —0). (6.12)
So So p

In the above, we have assumed the quantities pA, p?Do, p*Dr and p?D, to be con-
stant. Next, we nondimensionalize the above equations. We use 7 = (T — Ty)/(Ty —
To), yo = Yo/Yoo, yr = Yr/Yrr and fv = fv/fve, where fy, is a suitably chosen
reference value. Also, we define a set of characteristic times for the different chem-
ical processes. The characteristic chemical time for the primary reaction is denoted
by tchem = poYrF/wWFres. The quantities t, = poYrr/tnres and ty = poYrr /Wy res
are, respectively, the characteristic times for the processes of soot nucleation and
soot growth. The characteristic time scale for soot oxidation is toz = poY00/Woz,res-
The quantity p is the nondimensional density and the following terms are also used:
fr = Wp/p, Fn = Wn/p, 7y = W,/p and 7o, = W,;/p. Consequently, the energy

equation becomes

or 1 or a0 0%r 1 dgr

at So 507 u0L302 072 + QFDFiF + — 50 a7 + QozDozTox, (6.13)

where g is given by qr/pouoC,AT. The radiation term (1/30)(dgr/dZ) is modeled
exactly as in section 5.9.2 of chapter 5 and is given by equation 5.41. The quantity 3,
equals s/(poL) and D,, is a ratio of the characteristic flow time and the characteristic
oxidation time, i.e., t,¢s/toz, Where t,.y = L/ug. The oxidizer mass fraction equation

becomes
%_ 16yo ao 0%yo
ot 30 02 uoL 52 022

A Doetoc) (6.14)

— (¢Dprr + 3

Correspondingly the fuel equation takes the following shape:

2
ayf' _ iayF — Qo a Yr _ (DF‘ F+ 3 (BfVO) 7') (6.15)

0t 30 0Z  uolLs: 022 Yer
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The volume fraction equation looks like the following:

dfv.  (L+mr)dfv _ Dy &fv
ot 50 0Z uolsi 02?

+ (AF, + Br, — Cfo) (6.16)

In the above, we have assumed ag = Doy = Dro and A = Yrert,es/ fvotn, B =
Yrrtres/ fvoty and C = Yoot,ef/fvotos- The quantity mr is given by pur/ue. For
the soot number density, following the analysis in section 5.4 of chapter 5 we can
write w, = w, i.e., the soot number density equation rapidly saturates and at steady
state the soot nucleation and coagulation rates are equal.

We will now focus our attention on the different rate expressions. The quantity
wr is the rate of primary chemical reaction, and has the form pAYoYrexp(—E/RT),
where A is the pre-exponential exponent and E is the activation energy.

As mentioned before, for the processes of soot nucleation, growth and coagulation
we have used the Syed, Stewart and Moss [1] model. A detailed description of the
model can be found in section 5.2 of chapter 5 and the expressions for 7,, 7, are as
formulated in section 5.4 and are respectively given by equations 5.19 and 5.20. The

soot oxidation rate term, 7,, was modeled using the semi-empirical formula of Nagle

and Strickland-Constable [2].

6.1.1 The Influence of Thermophoresis

Thermophoresis is the phenomenon wherein small particles, when suspended in a gas
in which there exists a temperature gradient VT, experience a force in the direction
opposite to that of VT [54]. A common example of thermophoresis is the blackening
of the glass globe of a kerosene lantern; the temperature gradient established between
the flame and the globe drives the carbon particles produced in the combustion process
towards the globe, where they deposit. Thermophoresis is of practical importance in

many industrial applications, such as thermal precipitators.
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The temperature gradients in our flames are quite steep and hence, an examination
of the effect of thermophoresis is duly warranted. Santoro et al. [30] observes that
soot particles can usually be treated as being in the free molecular limit for flame
conditions, i. e., the particle diameter is much smaller than the mean free path of
the gas. Under such conditions, the thermophoretic velocity, ur can be written as
ur = —(3/[4(1 + ©A/8)])(v/T)VT, where v is the kinematic viscosity of the gas
and A is the accommodation coefficient which usually is taken to be 0.9 or 1.0 [30].
Assuming A = 0.9 we obtain the following expression for the thermophoretic velocity
of the gas:

ur = —0.55%VT (6.17)

The — ve sign in the above indicates that the thermophoretic velocity is in the di-
rection of decreasing temperature. The thermophoretic velocity component is simply
added to the convective flow velocity, as in equations 6.6 and 6.7.

Next, we carry out the necessary coordinate transformation and express the quan-

tity mr = pur/up as in equation 6.16.

_ 0sS(l—a)?  dr
"1 = a1 = 7)3(uoL30) dZ

mr (6.18)

A discussion of the influence of thermophoresis pertaining to this research problem is

included in section 6.4.

6.2 Parameter Values

The parameter values assumed here are the same as in chapters 3 and 4. However, the
value of the pre-exponential factor, A, was taken from the work of Chen et al. [55].
For the quantity A/p they used a value of 5.2x10™® cm3/gm — s. We assumed a

reference value of p = 0.0012 gm/cm?® and hence our A = 1.95x10° 1/s. The adiabatic
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flame temperature correlation used in chapter 3 was also used in this chapter. The
length of the domain, L = 0.02 m and as before, the thermal diffusivity at the
reference condition, ap = 1.24x10™* m?/s [50]. The kinematic viscosity of the gas

phase is assumed to be v = 8.68x107° m?/s.

6.3 Numerical Solution

The nondimensional temperature, species and soot volume fraction equations were
numerically integrated using the finite difference method. The non linear source terms
were linearized using Newton’s method. The Burke-Schumann profiles for tempera-
ture and species were used as initial profiles. The soot volume fraction was assumed
to be zero everywhere at the initial time. The transient conservation equations were

integrated to steady state.

6.4 Results and Discussion

Figure 6.1 illustrates the temperature, species and soot volume fraction profiles in the
Z coordinate when Yoo = 0.6, Yrr = 0.7 and uoL/ap = 3.23, which corresponds to
uo = 0.02 m/s. The nondimensional temperature profile indicates a substantial effect
of radiative losses. An examination of the species profiles reveals that there is no
significant diffusion of oxidizer and fuel to the opposite sides of the flame. The soot
volume fraction profile resides primarily on the fuel side of the flame, in accordance
with experimental observations [30]. Note that there is a slight change of slope of the
temperature profile in the radiative loss zone.

The nondimensional temperature profile indicates a significant effect of radiative
losses. The species profiles indicate that there is no significant diffusion of oxidizer

and fuel to the opposite sides of the flame. The soot volume fraction profile resides
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Figure 6.1. Temperature, species and soot volume fraction profiles.
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primarily on the fuel side of the flame, in accordance with experimental observa-
tions [30].

The profiles are depicted again in the physical coordinate in Figure 6.2 in order to
provide an idea of the magnitudes of various quantities. The fuel wall is at z = 0 mm
and the oxidizer wall is at £ = 20 mm. The maximum temperature is about 1745 K
which occurs at z = 15.55 mm. The soot volume fraction peak is at 14.31 mm. We

also observe that soot exists between approximately z = 10 mm and z = 16 mm.

Y,=0.6 Y=0.7 u L/0,;=3.23

l .25 T - T v — T ™ T

1.00

0.75

0.50

0.25

0.00
0.0

Figure 6.2. Temperature, species and soot volume fraction profiles in the physical
coordinate, z.

We examine the temperature profile more closely in Figure 6.3. The temperature
profiles for the infinite reaction rate (IRR) situation and the profile for finite rate

chemistry in the absence of radiation are also plotted in the same figure. It is clear



126

that the effect of radiative loss is quite pronounced and the peak nondimensional
temperature drops from about 0.8 to 0.59. The decrease is approximately 510 K.
Another interesting aspect to be noticed is the slope of the oxidizer side tempera-
ture profile is nearly the same for all the three cases. The fuel side slope decreases

considerably on the inclusion of radiative losses.

Y ,,=0.6 Y:=0.7 u,L/o,,=3.23
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Figure 6.3. 7 profiles for three different situations.

The profiles of the different terms in the energy equation are plotted in Figure 6.4.
On close inspection of Figure 6.4 we note that the oxidation term, Q,; Doz 7o is Very
small everywhere compared to the other terms. The convection and diffusion terms
roughly balance one another near the oxidizer wall (Z = 0). The reaction term

((1+ ¢)Dr) is balanced for the most part by the diffusion term, ao/(uoL52)7zz. The
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Figure 6.4. The Contribution of various terms in the energy equation.
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diffusion term is positive near the right edge of the reaction term profile and it recovers

the radiative loss term in that area. Thus the radiative loss term is countered by both

the reaction term and the diffusion term. The peak of the temperature profile is at

Z = 0.19 and the radiative loss term maximum is at Z = 0.216. Interestingly, the soot

volume fraction maximum occurs at Z = 0.224, indicating that the radiation term

profile maximum is between the maxima of temperature and soot volume fraction

profiles.
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Figure 6.5. The contribution of various terms in the soot volume fraction equation.

Figure 6.5 shows the profiles of the different terms in the soot volume fraction

equation. It is seen that the soot growth and oxidation regions do not overlap very

significantly. This is expected in a diffusion flame. For most part soot growth (B7,)
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is balanced by soot convection term ((D,o/uoL33)(d?fv/dZ?)). However, when oxi-

dation (Cr,;) is present the sum of convection and soot growth terms compete with

the oxidation term.
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Figure 6.6. The effect of up on temperature profile for a given stoichiometry.

We next focus on the effect of fuel blowing velocity, uo, on the temperature profile

when the fuel and oxidizer mass fractions in the reservoir are assumed to be fixed.

For Yoo = 0.6 and Yrr = 0.8 the temperature profiles for different values of uy are

plotted in Figure 6.6. As mentioned before, L = 0.02 m and ap = 1.24x107* m?/s.

The fuel flow velocity uo is increased from 0.02 m/s to 0.08 m/s with increments

of 0.01 m/s. With increasing uoL/ao, i.e., with increasing uo the maximum flame

temperature is found to increase. Also, the increased fuel supply pushes the flame
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closer to the oxidizer wall. It is also to be noted that the movement of the flame
toward the oxidizer wall with increasing fuel flow rates is quite rapid for lower values
of up. However, the rate of migration is mitigated for higher values of up. The slower
rate of movement can presumably be attributed to the proximity of the flame to the
oxidizer wall for high values of ug. It is important to mention here that we have
already noted similar flame behavior in the absence of radiative losses (Ng = 0) in
section 4.7 of chapter 4.

We now focus on the drop in the maximum flame temperature compared to the
adiabatic flame temperature. As discussed in chapter 3, the quantity of interest is
A7y and is defined as 1 — 74 where 74 is the maximum flame temperature. Figure 6.7
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