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ABSTRACT

Theoretical and Numerical Investigation of

Radiative Extinction of Diffusion Flames

By

Anjan Ray

The influence of soot radiation on diffusion flames was investigated using both

analytical and numerical techniques. Soot generated in diffusion flames dominate

the flame radiation over gaseous combustion products and can significantly lower the

temperature of the flame. In low gravity situations there can be significant accumu-

lation of soot and combustion products in the vicinity of the primary reaction zone

owing to the absence of any convective buoyant flow. Such situations may result

in substantial suppression of chemical activities in a flame and the possibility of a

radiative extinction may also be anticipated. The purpose of this work was to not

only investigate the possibility of radiative extinction of a diffusion flame but also to

qualitatively and quantitatively analyze the influence of soot radiation on a diffusion

flame.

In this study, first a hypothetical radiative loss profile of the form of a sech2 was

assumed to influence a pure diffusion flame. It was observed that the reaction zone

can, under certain circumstances, move through the radiative loss zone and locate



itself on the fuel side of the loss zone, contrary to our initial postulate. On increasing

the intensity and/or width of the loss zone it was possible to extinguish the flame

and extinction plots were generated. In the presence of a convective flow, however,

the movement of the temperature and reaction rate peaks indicated that the flame

behavior is more complicated compared to a pure diffusion flame.

A comprehensive model of soot formation, oxidation and radiation was used in a

more involved analysis. The soot model of Syed, Stewart and Moss [1] was used for

soot nucleation and growth and the model of Nagle and Strickland-Constable [2] was

used for soot oxidation. The soot radiation was considered in the optically thin limit.

An analysis of the flame structure revealed that the radiative loss term is countered

both by the reaction term and the diffusion term. The essential balance for the soot

volume fraction was found to be between the processes of soot convection and soot

growth. Such a balance yielded to analytical treatment and the soot volume fraction

could be expressed in the form of an integral. The integral was evaluated using two

approximate methods and the results agreed very well with the numerical solutions

for all cases examined.
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CHAPTER 1

Introduction

The influence of soot radiation on flames has received significant attention in recent

years [3],[4],[5],[6],[7],[8],[9]. Thermal radiation from combustion products and soot

lower the temperature of the flame and decelerate chemical activities. The purpose

of this study is to critically assess the effect of soot radiation on diffusion flames and

investigate whether under certain circumstances radiative energy losses can result in

an extinction of a diffusion flame.

Soot radiation has considerable influence on flames established in low gravity

situations. In normal gravity the combustion products and the flame-generated soot

get convected away from the primary reaction zone due to buoyancy induced flows.

However, in microgravity, there is no buoyant flow and the combustion products and

soot reside in the vicinity of the primary reaction zone. In addition, the absence

of convective flow results in longer residence time and more soot is produced in a

low gravity situation. Thus, the formation of greater amount of soot and its vicinity

to the primary reaction zone suggest stronger soot radiation effects in microgravity.

There is thus a possibility that the drainage of energy from the flame by means of

soot radiation may be so great in microgravity that the flame may no longer be able



to sustain itself. Thus a radiative extinction of the flame is anticipated under such

situations [10].

Thermal radiation from a flame can be due to (1) radiation from the combustion

gases at high temperature and (2) radiation from combustion generated particulates,

i.e., soot. According to the calculations of Grosshandler and Modak [11] for soot

volume fractions > 10'7 soot radiation is dominant. In the present work, gas radia-

tion has been neglected and soot radiation was modeled assuming the optically thin

limit. Kennedy et al. [12] have observed that for small flames and for moderate soot

loadings the optically thin limit is appropriate for soot radiation. The purpose of our

investigation was to qualitatively and quantitatively study the effect of soot radia-

tion on flames. In particular, the possibility of a radiative extinction was examined

thoroughly.

The soot radiation from a flame depends on the soot volume fraction distribution

in the flame, which is difficult to predict. There are considerable uncertainties in

determining the soot formation and oxidation rates. In particular, the soot distri-

bution in a flame depends on the fuel structure, the temperature distribution, the

influence of inerts, the pressure of the system, etc. Since soot radiation is intimately

coupled with the soot volume fraction distribution, it becomes difficult to predict the

radiation from a flame.

A review of the existing literature in the research area is presented in chapter 2.

The primary focus is on soot evolution, soot modeling and soot radiation.

In chapter 3 the influence of a hypothetical heat loss term of the form of a sech2

on a pure diffusion flame established between two diffusing walls of fuel and oxidizer

was investigated. The thickness of the loss zone and its separation distance from the

ideal, infinite reaction rate flame location were parametrically varied. The influence

of increasing the intensity of the loss zone was also investigated.

The effect of a similar heat loss profile on a diffusion flame with convective fuel



blowing from the wall was also examined. Chapter 4 elucidates interesting results of

the effect of fuel blowing on the flame in the presence of radiative losses.

An analytical model was developed for the soot layer profile and thickness on

the assumption of infinite reaction rate profiles for temperature and species mass

fractions. Chapter 5 outlines the basic assumptions of the model, its derivation and

comparison with numerical results. Then, a prescribed soot volume fraction profile

was used to formulate a radiative loss term and its influence on the flame structure

was examined.

In chapter 6 the comprehensive problem of soot radiation for a diffusion flame

established between an oxidizer and a fuel wall was examined. Similar to chapter 4,

a convective fuel flow from the fuel wall was assumed. A heat loss profile was not

assumed in this case. Instead, the soot model of Moss and co-workers [1] was used and

a soot volume fraction equation was solved in conjunction with the coupled energy

and species mass fraction equations. Results indicate extremely interesting flame

behavior due to radiative losses.

Chapter 7 briefly states the conclusions of the current work. Recommendations

for future work are also outlined.



CHAPTER 2

Literature Review

2.1 Introduction

In this chapter a review of the existing literature pertaining to the research problem

is presented. As discussed in chapter 1, the influence of soot radiation on a diffusion

flame depends strongly on the soot formation and oxidation chemistry. In the follow-

ing sections the soot evolution and burnout processes are reviewed, the soot radiation

effect is discussed and the effect of various parameters on soot radiation is analyzed

in the light of the existing literature.

2.2 Background

Most practical combustion systems burn in the diffusion flame mode. In a diffusion

flame the process of physical mixing of the reactants is generally intended to be much

slower than the chemical reaction between the fuel and the oxidizer. Consequently, the

flame is (generally) kinetically controlled. By contrast, the constituents are already

mixed before they enter the combustor in a premixed flame. In our research problem

we shall focus on diffusion flames only; hence the following review pertains to diffusion

flames.



2.3 Soot

Carbonaceous particles generated during gas phase combustion reactions are called

soot. Soot is formed because of incomplete combustion of fossil fuels and other organic

matter. Principal sources of soot emissions are coal burning furnaces, refuse burning,

coke production processes, wood burning in home fireplaces, the open burning of

waste, and gasoline and diesel powered engines.

Under ideal conditions the combustion of hydrocarbons leads to mainly carbon

dioxide and water. Ideal conditions may be specified by stoichiometric composition

of the combustible mixture, i.e., the oxygen content of the mixture everywhere is

sufficient to convert the fuel completely according to the formal chemical equation

CxHy + (a: + y/4)02—m:C02 + (y/2)H20. Under these conditions a maximum of heat

is released and a maximum of chemical energy is available for mechanical work.

In practical combustion devices such as industrial furnaces, gas turbines, or com-

bustion engines conditions locally deviate from ideality. When the locally available

oxygen is not sufficient to convert the fuel according to the formal chemical equation

mentioned above, other products of incomplete combustion such as carbon monox-

ide, hydrogen, hydrocarbons and soot are produced in addition to carbon dioxide and

water.

2.3.1 How Does Soot Affect Us?

Emission of soot to the atmosphere from various industrial combustion processes is

undesirable for various reasons. Soot particles contribute to reduced atmospheric

visibility and increased particulate fallout. Also, emission of soot is often associ-

ated with carcinogenic polycyclic aromatic hydrocarbons. Consequently, the adverse

health effect is an important issue regarding soot particle emission; the emission of

soot in the atmosphere is unquestionably hazardous and undesirable. However, the



next question is, should soot formation be avoided altogether? This question has var-

ious answers depending on the combustion process being considered. Soot emission

from a practical combustion appliance such as an internal combustion engine reflects

poor combustion conditions and a loss of efficiency. It has deleterious consequences

for the maintenance of the device. For such devices, the designer would like to avoid

soot formation altogether. The same objective also applies in case of fires, whose

mechanism of propagation often involves radiant transfer from hot soot particles.

However, for flames in furnaces and boilers the generation of soot is necessary

as a radiation source for efficient heat transfer. For such flames, the principle is to

generate as much soot as necessary in such a way that it can be burnt up again in

the available time. The carbon black industry is in sharp contrast to the above and

the objective is to produce as much soot as possible by fuel pyrolysis.

2.3.2 Appearance

Soot generated in combustion processes is not a uniquely defined substance [13],[14].

It is normally black. The first soot particles result from condensation reactions in the

gas phase. These particles, as well as the individual primary particles that compose

soot aggregates can be reasonably approximated as spherical [15]. The elementary

particles adhere to each other to form straight or branched chains. These chains

agglomerate and form the visible soot flocculates, generally as a fluffy substance.

2.3.3 Morphology and Chemical Structure

Research has been conducted in laminar and turbulent, (rich and lean) premixed and

nonpremixed flames, momentum and buoyancy driven flames, stirred reactors, spray

flames, shock tubes, and common combustor devices such as engines and furnaces.

There are many similarities in the morphological characteristics [16] for the soot



produced from such different configurations. The similarities in soot morphology

suggest that a common developmental history governs the formation process, even

in very different combustion configurations [15]. Besides carbon, soot particles also

contain hydrogen (10 to 25%), oxygen (00%)) and nitrogen atoms (0(0.1%)) [15].

Electron diffraction indicates the presence of C-C bonds in soot [17].

2.3.4 Characterization of the Soot Distribution

Characterization of the soot distribution is done using three important parameters.

The soot volume fraction, fv, is the volume of soot present in a unit volume of gas

and is expressed in units of m3,oo¢/msga,. The soot particle size is characterized by a

length scale d which equals the diameter for a spherical particle. The particle number

density is denoted by n and is defined as the number of soot particles per unit volume

of gas. The three parameters fv, d and n are related and for spherical monodisperse

soot particles fV = mrd3/6. In general, soot particulates are neither spherical nor

monodisperse. The preceding relation, therefore, may be considered as yet another

generic measure of soot.

2.3.5 Soot Evolution

There are two important stages of soot particle formation, viz., particle inception

and particle growth. The following discussion provides a brief description of the two

stages. However, it has to be kept in mind that the above classification is some-

what mechanistic and in an actual combustion process such distinctions are not very

clear [15].

(1) Particle Inception The first condensed phase material is generated from the fuel
 

molecules via their oxidation and/or pyrolysis products [14]. Such products include

acetylene and its higher analogues and polycyclic aromatic hydrocarbons. These two



types of unsaturated hydrocarbons are often considered the most likely precursors of

soot in flames [14]. Because soot is formed in the intermediate stages of chemical

decomposition the oxidation and pyrolysis products alluded to are reaction inter-

mediates like aldehydes, various radical compounds, alcohols and other such trace

materials.

The condensation reactions of such species often lead to the first recognizable

soot particles known as nuclei. The first particles are very small ((1 < 2 nm); for this

reason, even a large number density results in negligible soot loading in the region

of their formation, which is generally confined to the vicinity of the primary reaction

zone (i.e., where most of the heat release occurs).

(2) Particle Growth Particle growth takes place by means of both surface growth
 

and coagulation. Surface growth means gas species become attached to the soot

particle surface and incorporated in the particulate phase. Haynes and Wagner [14]

have remarked that for soot formation to occur the species with the correct hydrogen

content have to condense followed by subsequent dehydrogenation. Surface growth

reactions lead to an increase in the amount of soot but the number density remains

the same. In the process of coagulation particles grow by colliding and coalescing,

thereby decreasing the number density. Here the volume fraction remains the same.

Particle growth is therefore generally considered to be the result of simultaneous

surface growth and coagulation.

Almost all of the soot mass is provided by surface growth reactions. However,

the inception process is calculated to be the rate limiting step in the formation of

soot. This has been explained from different perspectives in the literature. Fuel

pyrolysis leads to particle inception; some researchers believe that this may be the

most important factor [18], [19], [20], [21]. Also important is the formation of initial

surface area delivered from the inception region and available for growth [22], [23].

However there is at least one exception to the widely held belief that particle



inception controls soot production. Based upon modeling considerations, Kennedy

et a1. [12] disagree that particle inception controls soot production. Instead, they

propose that surface growth is the most important factor. The relative importance

of surface growth and particle inception is a key issue in quantitative models of soot

formation.

2.3.6 Soot Oxidation

The link between soot production within the flame and the smoke yield from the flame

is the oxidation of soot particles. Soot is oxidized in the high temperature combustion

zone leading to decreased soot mass. As observed by [15] a great many experimental

measurements have been conducted in the last twenty years on the soot formation

process in different flame configurations. Yet, only a handful of studies have been

performed on soot oxidation processes, and most of these only quite recently.

The particle destruction rate depends on the flame structure, the temperature

field and the concentration distribution of oxidizing species, principally 0H, 02 and

0 atoms. Nagle and Strickland-Constable [2] derived a semi-empirical formula for

pyrolytic graphite oxidation by 02 for a temperature range 1300 — 2300 K. In their

analysis they assumed that oxidation by other species was negligible.

In many combustion conditions it is clear that OH is also an important oxidizer

of soot particles [24]. For soot to escape from a nonpremixed flame, it must pass

through a relatively hot reaction zone where the concentration of OH is relatively

large.

Puri and Santoro [24] have examined the question of how much CO is produced

from the oxidation of soot by OH and 02 in laminar hydrocarbon flames. They

derived an expression for the soot oxidation rate (or the CO production rate) by

applying a fundamental kinetic theory approach.
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2.3.7 The Influence of Fuel Structure

It has been observed that smaller the hydrocarbon molecule, the greater the resistance

to smoke emission.

An increase of the fuel flow rate increases the height of a diffusion flame, say a

Bunsen-type flame for definiteness. The character of the flame also changes. Initially

the flame is almost completely blue. As the flow rate increases the flame height grows

and the flame tip becomes yellow. Further increases in fuel flow rate result in the

appearance of an orange zone. A subsequent increase in fuel flow rate leads to a

critical value when soot escapes the luminous zone. The sooting tendency is typically

quantified by measuring this critical smoke point height.

The measurement of smoke points of various fuels has been utilized to rank dif—

ferent fuels in order of increasing sooting tendencies; thus polyaromatics > aromatics

> alkynes > alkenes > alkanes > alcohols [15]. Fuels with a greater tendency to soot

emit smoke at lower fuel mass flow rates.

2.3.8 Effect of Pressure

The effect of pressure on soot formation in diffusion flames has been investigated

over a wide range of conditions. Generally speaking, low pressures reduce carbon

formation while high pressures promote it [14].

2.3.9 Influence of Additives

Dilution of fuel flow by addition of inert gases such as Ar, He and N2 generally

decreases the tendency to sooting [25]. If sufficient diluent is added, carbon luminosity

can be suppressed altogether [26]. The possible reason for this is the substantial

temperature reductions in flames in such situations.

When 002 or H20 is added to the fuel, there is a considerable reduction in
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soot-forming tendency [25] and a concentration of 45% CO; completely suppresses

luminosity in methane/air diffusion flames [26]. McLintock [25] has suggested that

the influence of C02 and H20 is exerted primarily in the soot oxidation zone where

these species presumably promote soot burnout.

Some additives promote soot formation. Foremost among these are the halo-

gens, particularly bromine [18], [27]. It has been suggested that these species act by

catalyzing radical recombination, thus neutralizing excess 0H radicals which could

otherwise oxidize soot or soot precursors [14].

2.3.10 Influence of Oxygen Addition

The effect of oxygen addition to the fuel is complex [14]. In ethylene flames, small

additions result in pronounced increased soot emissions [18], [28]. The effect of the

increasing yield is not purely thermal as it is far greater than that obtained at the

same maximum flame temperature produced by oxygen enrichment of the air [14].

In the case of other fuels, both soot promotion and inhibition have been observed

as the result of oxygen addition. Jones and Rosenfeld [29] concluded that ethylene is

the exception and that, for fuels such as propane, butane, and even propylene, oxygen

suppresses soot emissions.

2.4 Soot Models

A large number of experimental studies of soot formation and burnout in diffusion

flames have been carried out in the last two decades or so. However the effort at

developing suitable models for describing the soot processes in a flame has been

relatively less [15]. In what follows we take a look at some of the important modeling

efforts that have been undertaken.

Kennedy and coworkers [12] have proposed a soot formation model for laminar
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diffusion flames based on a correlation between soot surface growth rates and the

mixture fraction. Detailed chemistry was not used, instead the mixture fraction was

calculated. The temperature, density and the gas composition were determined as

functions of the mixture fraction. Axisymmetric, boundary layer forms of the mo-

mentum equation were numerically integrated along with the soot volume fraction

equation. An energy equation was not solved. Oxidation by both molecular oxygen

and OH were included in the model. The thermochemistry of the flame was de-

termined from the results of a detailed laminar counterflow diffusion flame code. A

constant soot number density was assumed. The calculations were carried out for the

axisymmetric, laminar ethylene diffusion flame of [30]. Good agreement was obtained

with the measurements for two different experimental conditions. However it was

found that the decrease in temperature that occurs with radiative energy loss has a

significant impact on the soot loadings in these flames. Therefore, a more thorough

approach to the problem of accounting for radiation in a diffusion flame was deemed

necessary.

In a subsequent work [31] the energy equation was solved along with the continuity,

momentum and mixture fraction equations. A radiative loss term was included in the

energy equation based on the assumption of the optically thin limit. Calculations were

carried out for the axisymmetric laminar jet diffusion flame [30] and a Wolfhard-

Parker two-dimensional flame [32]. The temperature, density, and viscosity were

determined as functions of the mixture fraction and the enthalpy by using a type

of constrained equilibrium chemistry model. Further work includes the prediction

of sooting heights of laminar diffusion flames of Santoro et al. [30]. The agreement

was good in all cases. Their results indicated that OH was the dominant oxidizer of

soot low in the co-flow axisymmetric flames but as the flame tip was approached the

oxidation by O; became more important.

Moss and coworkers have developed a two-equation model for soot processes in
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laminar diffusion flames [1], [33]. They used a Wolfhard-Parker burner in both two-

and three-slot configurations producing a substantially two-dimensional thin flame

suitable for laser extinction measurements of soot volume fraction. The model pa-

rameters controlling the proposed rate processes for nucleation, surface growth and

agglomeration were determined by a comparison between detailed model prediction

and experimental measurement. Both prediction and experiment indicated that soot

formation is restricted to a comparatively narrow range of mixture fractions (between

0.06 and 0.2). The model parameters incorporated in their analysis must be adjusted

for each fuel. Predictions of the soot field were compared to experimental data ob-

tained for laminar ethylene/air and methane/air diffusion flames. For methane/air

diffusion flames it was observed that in contrast with ethylene/air diffusion flames the

growth of soot volume fraction with height (and hence residence time) is non-linear.

Leung et a1. [34] outlined a simplified reaction mechanism for the formation,

growth and combustion of soot particles in laminar nonpremixed flames. The model

was combined with detailed gas phase chemistry. The soot nucleation and growth

reactions were linked to the gas phase by presuming that pyrolysis products, acetylene

in their case, and not the fuel itself, are of primary importance in the soot formation

process. The model involves the solution of two additional conservation equations

for soot mass fraction and soot number density. They assumed that the number of

active sites present locally in the flame is proportional to the square root of the total

surface area available locally in the flame. The radiative heat loss is modeled in a

simple manner by adjusting the adiabatic flame temperature by means of a heat loss

factor. Model predictions were compared with the experimental data of Vandsburger

et al. [35] for counterflow diffusion flames. The agreement was quite good.
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2.5 Soot Radiation

Soot emits in a continuous spectrum in the visible and infrared regions and can

often double or triple the heat radiated by the gaseous products alone [36]. For

soot radiation scattering can be neglected compared to absorption [36]. Since soot

particles are very small, they are generally at the same temperature as the flame [37].

An analysis of transient radiative cooling of a strongly radiating turbulent diffusion

flame was carried out by Gore and Jang [8]. They mention that for strongly radiating

flames, where up to 60 percent of the heat of reaction may be lost by radiation,

'a detailed treatment of the radiation heat transfer is needed. The radiative source

term was expressed as the energy absorbed minus the energy emitted by a small

local participating volume. The energy absorbed was calculated from the large-scale

radiation field by integrating the flux over the surface of the small volume. The energy

emitted depends on the temperature and absorption coefficient of the material in the

small volume. Gas phase radiation was neglected and soot radiation was included

using the Rayleigh approximation for soot particles. Two representative distributions

of soot volume fractions were used. A unique flame structure involving an inflection

point in the temperature profile near the soot layer was observed for strongly radiating

flames. This is caused by the transfer of energy to the soot layer by diffusion from

both sides balancing the high radiative loss.

In a later study Gore et al. [38] studied the structure of turbulent, non-premixed,

strongly radiating acetylene/air flames. The analysis extended the laminar flamelet

concept to include the effects of local radiative heat loss/gain. Measurements of mean

and fluctuating emission temperatures and radiation intensities and data concerning

flame structure were used to evaluate the predictions. Results showed good agreement

between measurements and predictions of flame structure. In a related study [39]

specific absorption coefficients of soot particles were reported in the infrared region
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for three different fuels with varying C/H ratios.

A coupled radiation and soot kinetics calculation was carried out by Sivathanu

and Gore [9] for laminar acetylene/air and acetylene-methane/air diffusion flames.

The simplified soot model of Fairweather et al. [40] was used for the soot kinetics.

The predicted soot volume fractions were found to be in reasonable agreement with

measurements. It was found that the use of a constant radiative fraction in strongly

radiating flames is not effective for predicting the observed trends in axial and radial

distributions of soot volume fractions. The predicted temperature profiles support

the structure of strongly radiating flames discovered earlier [8].

2.6 Diffusion Flames in Microgravity

In low gravity, or microgravity (pg), many combustion phenomena can be studied

to yield more insight into the fundamental processes. Combustion in normal gravity

creates buoyancy-induced flows through the production of hot gases, which are less

dense than air. Suppressing such flows in microgravity helps researchers in several

ways. First, the microgravity environment makes experiments easier to model, thus

making it a better environment for testing theories. Second, the virtual elimination

of buoyant flows permits the study of phenomena which are obscured by gravity.

An interesting case of microgravity diffusion flames pertains to the investigation

of candle flames [41]. The ignition and behavior of candle flames was observed pho-

tographically in free-fall (drop tower) tests under 19% — 25% 02 concentrations in

a nitrogen-diluted, 1—atm environment. In normal gravity a candle flame assumes a

tear-drop shape. However, in microgravity there is no “up” or “down” and the flame

tends toward sphericity. In normal gravity, the buoyant flow removes combustion

products from the primary reaction zone and supplies fresh oxidizer. For a micro.

gravity candle flame this transport does not take place and consequently the supply of
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fuel and oxidizer are diminished. Hence the flame temperature is lowered and the can-

dle in microgravity produces a flame of much lower power. Due to diminished flame

temperature, little or no soot forms. The soot in microgravity is confined within the

fuel-rich region defined by the blue zone. In normal gravity, soot convects across the

blue reactive zone which produces a much larger visible flame. It was also observed

that the main reaction zone, as indicated by the visible blue region, is much farther

away from the wick. This distance, referred to here as the flame standoff distance,

gives an indication of the magnitude of the heat flux from the flame to the liquid fuel

in the wick. In normal gravity, this distance is about 1 mm at the base of the flame;

in microgravity it is about 5 mm.

However it will be presumptuous to conclude from these experiments that micro-

gravity flames are in general less sooty than their normal gravity counterparts. As

noted in [42] the observed microgravity diffusion flames are longer, wider and often

sootier than their normal gravity counterparts. They are dimmer and more reddish,

which indicates a lower flame temperature. It was also remarked in [42] that the

thermal radiation from a microgravity flame and its surroundings can be an order of

magnitude greater in microgravity than in normal gravity. However, at low oxygen

concentrations, blue, soot-free flames appear in microgravity, whereas the identical

normal gravity flames do not show any significant reduction in soot formation at low

oxygen concentrations.

An excellent review of microgravity combustion research has been published re-

cently [43]. It has been pointed out in the review that under atmospheric conditions,

diffusion flames are buoyant and an increase in velocity is observed on moving away

from the burner exit. However, for a weakly buoyant condition the velocity rapidly

decays near the burner exit. The streamwise velocities are roughly inversely propor-

tional to the distance from the burner exit for nonbuoyant flames. This tends to

increase the effectiveness of soot oxidation processes relative to soot growth processes
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for nonbuoyant flames in comparison with buoyant flames. Also, residence times in

nonbuoyant flames are significantly higher than for buoyant flames of comparable size,

providing longer absolute times for soot nucleation, growth and oxidation. Thus, it

is remarked in [43] that “any resemblance between soot processes within nonbuoyant

and buoyant laminar diffusion flames clearly is fortuitous”.

The differences in soot processes of microgravity and normal gravity diffusion

flames have been found to be very important in a recent work [44]. Experiments

were conducted to investigate the behavior of soot particles in diffusion flames under

microgravity conditions using a 490 m drop shaft (10 second microgravity duration)

in Hokkaido, Japan. Butane jet diffusion flames and flames arising from the com-

bustion of paper were observed in microgravity. The oxygen concentration of the

surroundings, the butane flow rate, and the burner diameter were varied as experi-

mental parameters. From the observation of transmission electron microscope (TEM)

images it was found that a large number of luminous spots appear in diffusion flames

in microgravity. The diameters of the agglomerated particles are approximately 0.1

mm, 200 to 500 times as large as those generated under normal gravity. These parti—

cles are the resultant agglomeration of a large number of primary particles. Local flow

velocity, residence time of generated particles in the generation region, and oxygen

concentration of the surrounding ambient dominate the agglomeration and growth

of the soot particles. Therefore, these particles are formed in the limited areas of

diffusion flames where the aforementioned conditions are satisfied. The investigation

of [44] also verifies that microgravity diffusion flames have a much larger volume than

those under normal gravity.

Interesting recent work on methane and ethylene flames has been done by Atreya

et al. [45]. A small porous sphere made from a low density and a low heat capac-

ity insulating material was used to uniformly supply fuel at a constant rate to the

expanding diffusion flame. A theoretical model was formulated on the assumption
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of infinite reaction rate and unity Lewis number. Both experimental and theoretical

results show that as the flame radius increases, the flame expansion process becomes

diffusion controlled and the flame radius grows as the square root of time.

In a related work Pickett et al. [46] studied the characteristics of methane, ethy-

lene and acetylene flames. For the same flow rate of fuel the ethylene and acetylene

flames were found to be much sootier and smaller. For all the fuels the flame is ini-

tially blue (non-sooty) but becomes bright yellow (sooty) under pg conditions. Later,

as the pg time progresses, the flame grows in size and becomes orange and less lu-

minous and the soot seems to disappear. An explanation of the above phenomenon

was offered on the basis of some theoretical calculations. The soot volume fraction

first quickly increases and later decreases as the local concentration of combustion

products increases. Essentially, further soot formation is inhibited by the increase in

the local concentration of the combustion products and soot oxidation is enhanced.

Thus, at the onset of pg conditions, initially a lot of soot is formed in the vicinity of

the flame front (the outer faint blue envelope) resulting in bright yellow emission. As

the flame grows, several events reduce the flame luminosity: (i) the soot is pushed

toward cooler regions by thermophoresis. In fact, for sootier fuels this leads to the

formation of a soot shell, (ii) the high concentration of combustion products left he-

hind by the flame front inhibits soot formation and promotes soot oxidation, (iii)

the dilution and radiative heat losses caused by the increase in the concentration of

combustion products reduces the flame temperature which in turn reduces the soot

formation rate and flame luminosity.



CHAPTER 3

Influence of a Simple Heat Loss

Profile on a Pure Diffusion Flame

3.1 Introduction

The interaction between the structure of a diffusion flame (DF) and the flame ra-

diation is quite complex. As discussed in chapter 2, soot is formed and oxidized in

a diffusion flame as a consequence of a variety of physical and chemical processes.

There are considerable uncertainties in the description of soot processes in a flame

and the soot evolution mechanisms are not completely understood. Hence, the so-

lution of the complex problem of diffusion flame - soot radiation interaction is very

involved. The energy, species and soot volume fraction equations are all coupled and

contain nonlinear source terms. We chose not to solve the complex problem at the

very outset. Instead, we investigated the effect of a simple and contrived heat loss

profile on a pure diffusion flame established between two diffusing walls of fuel and

oxidizer. This chapter is essentially the next logical step in the generalization of the

model outlined in Appendix A.

A review of pure diffusion flames without heat losses is presented first. In the

following sections we define the problem geometry, describe the particular form of

19
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the heat loss profile used, formulate the conservation equations, briefly indicate the

numerical method used and discuss the results.

3.2 Review of Pure Diffusion Flame Results

In a diffusion flame the characteristic flow time is much greater than the character-

istic chemical reaction time. This implies that the chemical reaction is much faster

than the transport of species to the flame unless the flame is near or approaching the

extinction stage. A pure diffusion flame is established when both oxidizer and fuel

are transported to the flame by means of diffusion only. No convective flow is present.

Some important characteristics of pure diffusion flames have been discussed in [47].

Using the activation energy asymptotic (AEA) method [47] provides an analysis of

the detailed nature of the temperature and reaction rate profiles. It was observed

that the maximum of the reaction rate profile usually will not coincide with the tem-

perature profile maximum. They may be close, and the maximum of the temperature

will be in the vicinity of the maximum of reaction rate, but they will almost never

coincide. The only exception is the symmetric flame for which the overall stoichio-

metric coefficient, ¢(= qup/Yoo), equals unity. This study also shows for a fuel-rich

flame that ZISZTSZT, i.e., the peak of the reaction rate profile (Z,) lies between the

Burke-Schumann flame location (Zf) and the peak of the temperature profile (Z7)

for fuel rich conditions. For oxidizer-rich conditions ZT_<_Z,._<_Zf. It may be argued

that in the thin-flame limit all diffusion flames are “pure” diffusion flames because

the mixture fraction transformation discussed in Williams [48] produces an equation

resembling TzzOCIVZI-zw, where IVZ| is the magnitude of the mixture fraction gra-

dient perpendicular to the flame. However, IVZI depends strongly on the heat flow

conditions and in effect introduces a new parameter that must be accounted for in

a complete analysis. Hence, though the value of IVZfI (i.e., IVZI evaluated at the
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flame sheet) may be “buried” into a suitably redefined Damkéhler number it must of

course be “resurrected” when later conducting a full examination of the problem.

3.3 Problem Geometry

Radiation
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Figure 3.1. The problem geometry.

Figure 3.1 schematically depicts the problem geometry. The physical coordinate for

our one dimensional problem is designated by 1:. The fuel wall and the oxidizer wall

are located at a: = 0 and a: = L respectively. Both the walls issue diffusive fluxes of

the respective constituents. A diffusion flame is established between the two walls. A
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soot layer is assumed to exist on the fuel-side of the DF, consistent with experimental

observations [30]. The walls have the ambient temperature To. There is no fuel on the

oxidizer wall and no oxidizer on the fuel wall. The fuel and oxidizer mass fractions at

the respective walls are specified to have values Ypp and Y00 as shown in Figure 3.1.

3.4 Choice of Parameter values

The combustion reaction under consideration is assumed to be a global, one-step

chemical reaction of the form F + VO—>(1 + V)P, where F denotes the fuel and 0

denotes the oxidizer. Methane is nominally the fuel under consideration and oxygen

is the oxidizing specie, although we must recall that real methane-oxygen reactions

require of the order of 100 reaction steps and individual property choices for the

separate species. The fuel-oxidizer mass ratio, V, is four for the methane-oxygen

combustion reaction. The combustion products are denoted by P. A suitable set of

parameter values must be used to generate a reasonable range of Damkfihler number

and flame temperature values. The adiabatic flame temperature is given by T; =

To + Qprp/[0,,(1 + 95)], where Qp is the heat release per unit mass of fuel from

the combustion reaction and Cp is the specific heat of the mixture. The overall

stoichiometric coefficient is denoted by 45 and is given by VYFF/ Yoo. However, the

use of the above formula produces unrealistically high adiabatic flame temperature

values. Thus, the above equation for Tf was modified to produce a practical range of

adiabatic flame temperatures.

A set of realistic hydrocarbon combustion flame temperatures was used from the

work of Wichman [49] for the analysis of flame spread over thermoplastics. The

idea there was that the fuel mass fraction can not reasonably be determined at the

surface but a more-or—less generic flame temperature can still be evaluated. This

flame temperature varies only with the free-stream oxidizer mass fraction Yoo. The
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value of Ypp, i.e., the fuel mass fraction in the hypothetical fuel stream for our present

calculations was assumed to be 0.85. The oxidizer mass fractions (Yao) and the flame

temperatures (Tf) are tabulated in Table 3.1.

Table 3.1. Flame Temperature versus Yoo data

 

Yoo 0.211 0.233 0.247 0.276 0.329 0.432 0.533 0.727 1.0

Tf 2137 2230 2295 2385 2515 2684 2789 2919 3026

 

           
 

A fourth order polynomial was fitted to the above data to obtain

T, = 486.66 + 12230.85Y00 — 257.28.641/002 + 25360.021’003 — 9323.0Yoo“ (3.1)

Using the above expression, we generate more points for a (Y00,Tf) plot.

We calculate Qp by using the relation Qp = (Tf — To)Cp(1 + ¢)/YFF for T, =

2137 K, Yoo = 0.211, Ypp = 0.85 and To = 298 K. The calculated value of Qp is

11959.43 KJ/kgK. We now introduce a modified formula for calculation of the flame

temperature and write

QFYFFf(Yoo)

CP(1 + 05)

 n=n+ an

Next we calculate the values of the modification factor, f(Yoo), by using the above

expression. The calculated value of Qp and the (Yoo, Tf) data obtained using equa-

tion 3.1 were utilized for this purpose. On obtaining f(Yoo) data, we use an expo-

nential fit of the following form to arrive at a functional relationship between f and

yea:

f = 1.25exp(—2.99Yoo) + 0.33 (3.3)

Finally, we use the above expression for f(Yoo) to calculate Tf for any set of Y00

and Ypp values in equation 3.2. A plot of Tf versus Yoo is shown in Figure 3.2. The
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Figure 3.2. Flame Temperature as a function of Yoo for different values of Ypp.
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YFF values corresponding to the different curves in the plot range from 0.25 to 1.0.

The lowest curve is for Ypp = 0.25. The curves above are for Ypp = 0.30, 0.35, 0.40

etc. It has to be noted that for YFF = 0.25 and 0.30 the peak flame temperature does

not occur at Yoo = 1 because of the slight local maximum in the range 0 < Yoo < 1.

For this reason we shall not use these curves. However, for higher values of Ypp we

do obtain temperature profiles whose maxima occur at Yoo = 1. These profiles will

be used. Also, we note that since we are interested in the effect of soot radiation on

diffusion flames, we are not concerned with low values of YFF which do not produce

significant amounts of soot. Hence, in our analysis, Ypp values of 0.30 and lower are

not used.

The parameter values in the work of Tzeng et al. [50] were used in this disser-

tation. The important values are shown in Table 3.2. These values were used in all

Table 3.2. Parameter values

 

 

 

 

 

 

     

Specific heat C}, 1.35 J/kgK

Thermal diffusivity 010 1.24 x 10“ mf/s

Fuel-oxidant mass ratio 11 4.0

Pre—exponential factor A 5 x 107 1 /3

Activation energy E 121, 841.7 KJ/kmol

Heat release Qp 11959.43 KJ/KgK
 

the chapters of this dissertation except for the pre-exponential factor in chapter 6, as

noted in section 6.2.
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3.5 Formulation

Here we write the equations and boundary conditions for conservation of energy and

species. The energy conservation equation is

, d
pcpm + an] = (Arr). + 52pr — 7:5, (3.4)

with boundary conditions T(:r = 0) = To and T(;r = L) = To, where To is the

temperature at the fuel and oxidizer walls, assumed to be 298 K. Here T is the

temperature, p is the density, Op is the specific heat of the mixture, A is the thermal

conductivity and u is the velocity. The volumetric radiative heat loss term is —dqR/d:r

with units W/m3. The heat release due to combustion is Qp and rim is the reaction

rate term. An Arrhenius type expression was assumed for the one-step irreversible

reaction, so the reaction rate is u°2p = pAYoYpexp—E/RT. The quantity A denotes

the pre-exponential factor. The thermal conductivity is A. The oxidizer mass fraction

equation is

PlYO. + Ill/0.] = (PDoYozh — VU'JF, (3-5)

with boundary conditions Yo(:r = 0) = 0 and Yo(:c = L) = Yoo. Here Do is the

mass diffusivity of the oxidizer. Similarly the fuel mass fraction equation is

PIYF. + ”Val = (PDFYF.)x - “317, (3-6)

with boundary conditions Yp(a: :2 0) '2 YFF and Yp(:c = L) = 0; Dp is the mass

diffusivity of the fuel.

The above equations are now transformed to a mass coordinate system. The

transformed coordinate is Z = 1 — s/so where s = f0I pdzr and so = fol” pdx. We note

that Z = 1 when a: = 0 and Z = 0 when :r = 1. The coordinate Z happens to be
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identical to the mixture fraction coordinate for our simple problem. The following

expressions hold for the above transformation:

gt. = [_slo((,m)0 — (pu).) + 5301000 — (pu)z.)]5%|. + gglz (3-7)

and

3 _ p 3

alt “ -535h (3'8)

Since we are considering a pure diffusion flame, (pu)x=o = (pu),,=L = 0, i.e., there are

no convective flows from the walls. Application of these operators to the energy and

species equations gives

  

 

PA QF . 1 61012
T: ——T —— .t— 0103(2)zz+pprF+-——Cp$0 _d—Z (3 9)

assuming p) to be a constant,

2D mi)

Y0. = ”0 001/022 — F, (3.10)
30 p

assuming p2D0 to be a constant, and

2D 11)

YE}: p0 2F0 YFZZ — —pF-, (3.11)

assuming psz to be a constant. In equations (3.9)-(3.11), we have also assumed

the Lewis number to be unity and we have considered equal species diffusivities. The

quantities with subscript 0 correspond to the reference condition.

We now introduce the nondimensional variables 1' = (T — T0)/(Tf — To), yo =

Yo/Yoo, yp = Yp/Ypp, 5 = s/(poL). Consequently, 30 = so/(poL)=fo1 pdx where

,5 = p/po and :7: = m/L. After some rearrangement, our nondimensional equations
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simplify to

l - NR d6}?

= — —— .12T? ggTzz+QFDT+ 30 dZ , (3 )

1

yo;- = gonz — 457373 (3.13)

O

1

9F? = gszz — D73 (3.14)

0

where r is the nondimensional reaction rate and N3 is a radiation number evalu-

ated as the ratio of the reference radiative and conductive fluxes, given by NR =

qR’rcf/(A0(Tf - To) / L). The thermal conductivity at the reference condition is de-

noted by A0. The quantity ’D is the Damkéhler number given by trey/tchem, where

the reference diffusion time tn, = Lz/ao and the characteristic chemical time tchem =

1 / [AYOOeXp(—E/RTf)]. The nondimensional quantity 63 is given by qR/qnflf, where

gig”, is a reference radiative heat flux. The nondimensional heat release, Op, is given

by QFYFF/[CP(TI — To)] and equals (1 + 05) since the adiabatic flame temperature is

defined as T; = To + Qprp/[0,,(1 + 45)]. We note that in the prefactor multiplying

the reaction term of equation 3.12 we do not utilize the temperature correction dis-

cussed in section 3.4. In addition, we have defined f = t/tref. The nondimensional

reaction term, 1', is written in the form r = yoypexp[-—fl(1 — T)/(l —a(1 —1'))], where

a = l—To/Tf and fl = Ea/(Rqu); E is the activation energy and Ru is the universal

gas constant. The quantity 3 is known as the Zeldovich number.

3.5.1 Infinite Reaction Rate (IRR) Solutions as Initial Con-

ditions

Equations 3.12-3.14 are the governing conservation equations for 1', yo and yp for

the case of finite rate chemistry. The equations become much simpler when the

reaction rate is infinite. In this case, all fuel reaching the flame surface is consumed

instantaneously, and similarly for the oxidizer. Thus no fuel exists on the oxidizer
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side and no oxidizer exists on the fuel side, i.e., yoyp = 0 on both sides of the

flame. The energy equation can now be solved in two adjacent domains, the oxidizer

side (OSZSZf) and the fuel side (ngz31) of the flame. The flame location is

designated by ZI. For our simple problem the mass coordinate Z coincides with the

mixture fraction, a conserved scalar. In the absence of radiative losses the steady

state energy equation becomes 7'22 2 0. Since at the flame 1' = 1, the solution of the

steady state energy equation (Tzz = 0, since NR = 0 and the reaction term can be

excluded) for the infinite reaction rate (IRR) situation gives 1' = Z/Zf for OSZSZI

and T = (1 — Z)/(1 — Z;) for Z;_<_ZSl. Similarly, yo and yp can be solved for the

infinite reaction rate situation and we get yo = (l — Z) — (1 — Zf)T for 0£Z_<_Zf and

yp = Z — ZfT for ZISZSI.

Next, we must evaluate Zf, the coordinate location of the (IRR) flame. As men-

tioned, Z is the mixture fraction coordinate, defined as Z = (¢yp + 1 — yo)/ (65 + 1).

At the flame, yo and yp are both zero so that Zf = 1 / ((15 + 1). With the knowledge

of ZI the nondimensional temperature and species equations can all be determined

exactly. The profiles so obtained are used as initial profiles for the numerical solution

of the transient conservation equations (3.12)—(3.14).

3.5.2 Simple Heat Loss Profile

As shown in Appendix A the simplest model heat loss profile is the “top hat” profile

used therein. Because of the discontinuous derivatives at the edges of the top hat

profile, it is not as convenient for numerical reasons as a smooth and continuous heat

loss profile. For primarily this reason, the profile that we shall use here is of the form

of a seek2 in mixture fraction space, viz.,

£125— dZ = sech2(B(Z — ZR)). (3.15)
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The location where the maximum of —dg’R/dZ occurs is denoted by ZR.
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Figure 3.3. The chosen heat loss profile of the form of a sech”.

Figure 3.3 illustrates the nature of variation of the heat loss profile in the mixture

fraction space. We note that the maximum value of the profile is unity. We define

the Z locations where the value of the function is 1% of its peak value as the two

tails of the function, located respectively at Z3. and at ZR.“ with ZR- < ZR+. The

maximum of the —dq’R/dZ profile occurs at ZR = (Z3. + ZR+)/2. The width of the

loss zone is defined to be AZ3 = Z3... — ZR_. The separation distance of the loss zone

from the location of the ideal Burke-Schumann flame Zf is given by A = Z3. — ZI.

In the subsequent analysis, we shall vary the thickness AZ3, as well as the separation
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distance A in order to study the influence of the loss zone on the flame structure. The

thickness of the loss zone can be chosen by selecting different values of the parameter

B in equation 3.15.

From equation 3.12 we note that the radiative loss term is given by

(NR/§O)ng/dZ, and hence, another important way to modify the loss term is to

experiment with the value of its amplitude, NR/so. We can choose different values of

NR, the radiation number. The quantity so, being given by so/(poL) is a consequence

of the solution obtained and for this reason is evaluated at each time step.

We recall that for the top hat profile the integrated heat loss is

fJ(NR/§o)(U(ZR_) - U(ZR+))dZ = NRAZR. In this case the integrated heat loss

is given by f0l NRsech2[B(Z — ZR)]dZ = NR/(B§O)[tanhB(l — Z3) + tanhBZR]. For

large B this simplifies to 2NR/B + O(B“2) showing that the top-hat loss zone thick-

ness AZR corresponds to 2/B, or B = 2/AZR. Consequently, in analytical formulae

for the top-hat profile (see Appendix A, equation A.40) we can substitute for AZR

the value 2/B in order to test their correspondence to the seek2 profile.

3.6 Numerical Solution

Equations 3.12, 3.13 and 3.14 were numerically solved using the finite difference

method. The nonlinear source terms were linearized using Newton’s method. For

each time step iterations were used until the sum of normalized residuals became

smaller than 1x10‘6. The transient conservation equations were integrated to steady

state.
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3.7 Relation Between Temperature and Density

We utilize the ideal gas law to derive a relation between the temperature and density

of the system. We can write pV = (m/W)R,,T where p is the pressure, V is the

volume, R1, is the universal gas constant and W is the average molecular weight of

the mixture. The quantity m is the mass of the mixture. Hence the pressure can be

expressed as p = pRT where p is the density and R is the characteristic gas constant

for the mixture, given by R = Ru/W. If we assume poRTo to be the constant pressure

of the system then introduction of a = 1 — To/Tf and 1' = (T — To)/(Tf — To) results

in the following important relation:

__ (1—a)

p‘(1—a<1—r))

 (3.16)

We observe that when the temperature is that of the ambient, i.e., T = To = 298 K

then 1' = 0, ,5 = 1, i.e., p = po. At the flame temperature (Tf) the nondimensional

density p = (1 — a) and consequently p = (1 — a)po. Equation 3.16 is used extensively

in all the chapters of this dissertation.

3.8 Evaluation of so

Equations 3.12-3.14 indicate that in order to solve the 1', yo and yp equations in time,

we need to evaluate so at every time step. We recall that so is given by the expression

fol fidi. The quantity .§o enters the analysis by virtue of the coordinate transformation

Z = 1 — s/s’o. By differentiating both sides of this transformation relation, we obtain

dZ/di = —p/§o, since 3 = [of fidi and 5: = m/L. We recall that Z = 1 when :E = 0

and Z = 0 when i = 1, as noted previously in section 3.5. Using the transformation

relation between Z and :7: subject to the above mentioned boundary conditions, we
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get

5 1 (3 17)0 = _, o

1.1 92

and the relation between the s: and Z coordinates can be written as

1 -

5; 2W (3_18)

fo‘ (l/fi)dZ

On obtaining the solutions for 1, yo and yp equation 3.18 is used to transform the

solutions back to the physical coordinate 5:. Thus, so can be evaluated once the p‘

distribution is known. The normalized density 5 can be related to the 1' distribution

by virtue of equation 3.16. Hence, the expression for so can alternatively be written

as

1

go 2 f01 dZ +(a/(1 — a))f011'dZ (3'19)

 

Hence on obtaining the 1' profile we can determine the quantity so. When the tem-

perature throughout the domain is the same as the ambient temperature To, then

1' = 0 everywhere and using equation 3.19, we obtain so = 1. If we next assume

that the temperature everywhere in the domain is the same as the adiabatic flame

temperature Tf then 1' =2 1 and so = (1 - a). Since the minimum and maximum

values of temperature are To and T; respectively, the quantity so must obey the limits

(1— O)S50S1.

3.9 Results and Discussion

Figure 3.4 depicts the nondimensional temperature, 1', plotted as a function of the

mixture fraction coordinate, Z, for different values of the radiation number, NR,

for particular parameter values shown in the title of the figure. The oxidizer and

fuel mass fractions at the respective walls are Yoo = 0.6 and Ypp = 0.8. In our
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subsequent analysis we keep the same set of (Yoo, YFF) and vary the location, width

and intensity of the radiative loss zone. It has to be mentioned here that the above set

of (Yoo, Ypp) represents a typical case and is employed extensively in the following

chapters. The qualitative trends for other Y00 and Ypp values are similar. The

YOO=O.6 YFF=O.8 AZR=O.O4 A=O
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Figure 3.4. Effect of Radiation Number NR on Temperature Profile.

thickness of the radiative loss zone is 0.04 for all values of N3 and the separation

distance of the loss zone from the stoichiometric flame location is zero. We observe

that the flame temperature profile is uniformly lowered as the value of NR increases.

Also, the flame temperature peak keeps moving toward the fuel wall as the value of

N3 is increased. The drop in flame temperature, as well as the shift of the peak,
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become more prominent for higher values of NR. For a value of NR greater than

383, we do not obtain a steady state temperature profile, indicating the occurrence

of a radiative extinction. This maximum or upper bound for NR is then defined as

Ngamma”, i.e., Nana-mtg”, = 383 for this case. We also note from Figure 3.4 that

there is a change of slope of the temperature profile in the radiative loss zone for

higher values of N3, i.e., between Z3. and ZR+.
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Figure 3.5. Effect of Radiation Number NR on Reaction Rate.

Figure 3.5 shows the nondimensional reaction rate term ((1 + 43)’Dr) for the same

situation. We observe that the reaction rate profile collapses for increasing NR values.
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The reaction rate peak also moves towards the fuel side; this movement becomes

more conspicuous for higher values of NR. We notice that the reaction rate profile

has managed to almost move beyond the rightmost side of the radiation loss zone

(indicated by the dashed lines at Z3. and Z3...) for the highest value of N3.

We now focus on the temperature and species profiles for the situation when

NR = 383 for the above case, i.e., at the brink of extinction. Figure 3.6 also shows

YOO=O.6 YFF=O.8 NR=383 AZR=O.O4 A=O
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Figure 3.6. 1', yo, yp profiles for finite and infinite reaction rates. Also shown is the

reaction rate profile.

the temperature and species profiles for the same flame (Yoo = 0.6, Ypp = 0.8,

NR = 0) for the infinite reaction rate (IRR). We notice that when NR = 383 the
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slope of the yo profile is quite different from its IRR counterpart. On the other hand,

the slope of the yp profile follows the IRR yp profile closely until a Z-value of about

0.3, when its slope starts decreasing. This plot therefore demonstrates explicitly the

contrast between the IRR situation and the finite chemistry situation with appreciable

radiative losses. The migration of the peaks of temperature and reactivity profiles is

particularly striking. Also, an abrupt change of the temperature profile seems to take

place in the zone of radiative losses, i.e., between Z3. and ZR+. We add for emphasis

that from the strictly physical viewpoint the finite-rate solution has attained a rather

extreme form, since the reaction zone has almost completely propagated through the

loss zone. In Figure 3.6 we see that the loss zone is now on the oxidizer side of the

reaction rate profile. As we shall see, extreme cases like this are not the norm. They

are also physically unrealistic but mathematically permissible in our simplified model

with a prescribed heat loss function.

We illustrate the details of the flame structure in Figure 3.7, where we plot the

contributions of the different terms in the energy equation when the steady state

solution has been achieved. The loss term is given by (NR/so)sech2(B(Z - ZR» and

the diflusion term, as in equation 3.12, is (1 /sg)1'zz. We have already noted from

figure 3.5 that for N3 = 383 the reaction rate profile has penetrated through the

radiative loss zone. Figure 3.7 indicates that the diffusion term recovers the radiative

losses almost entirely and the reaction term doesn’t contribute to the diffusion term

in such a recovery process. This represents a completely different physical problem,

when the radiative loss term exists on the oxidizer side of the primary reaction zone

(flame). This result is, as already mentioned, clearly in conflict with our hypothesis

that the heat losses take place on the fuel side of the flame due to flame-generated

particulates. This occurs because our hypothetical radiative loss profile is simply a

prescribed function in Z, and as such, it does not contain any mechanism for loss-
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Figure 3.7. The flame structure when NR = 383.
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zone movement as the temperature and species profiles change, as a real soot zone

invariably must.

In order to observe the effect of a thicker loss zone, we now increase AZR to a

value of 0.1. We notice that the drop in the temperature profile is more significant

YOO=O.6 YFF=O.8 AZR=O.1 A=0
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Figure 3.8. Effect of NR on T profile for thicker loss zone.

in this case and the flame extinguishes at a lower value of the radiation number, viz.,

for N3 = 132.

Next we consider the situation when the leftmost side of the loss zone is sufficiently

removed from Zf for a flame with Yoo = 0.6 and Ypp = 0.8. The thickness of the

loss zone is AZR = 0.06 and the separation distance, A, is 0.1 in this case. Figure 3.9
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indicates that the flame temperature decreases with increasing value of N3. In this

case, however, the movement of the peak nondimensional flame temperature doesn’t

seem very pronounced, though it does move towards the fuel side. Correspondingly,

Figure 3.10 shows the variation of the reaction term, (1 + ¢)Dr for increasing values

of N3. As mentioned for the preceding cases, therefore, the reaction zone does not

always propagate through the loss zone. A sufficient separation and magnitude of the

loss term appear sufficient to prevent the through-transit.
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Figure 3.10. Effect of NH on (1 + ¢)Dr profile for A = 0.1.

We see that the movement of the reaction rate profile is not very pronounced
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either. We note that the reaction rate peak is always to the left of the temperature

peak, i.e., ZI < Zr < Z,. This is in accordance with the results obtained for pure

diffusion flames without radiative losses [47], as discussed before.

Figure 3.11 is an extinction plot for the case when AZR = 0.06 and A = 0.

Extinction values of NR are plotted as a function of ZI, the theoretical flame location

in the mixture fraction coordinate. We recall here that Zf is related to the overall

400.0
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Figure 3.11. Extinction Plot for AZR = 0.06 and A = 0.

stoichiometric coefficient (15 (= VYpp/Yoo) by the expression Z; = 1/(1 + 45). We

notice that for a given value of the oxidizer mass fraction at the wall, (Nfiertinmm
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increases as Zf is decreased. A decrease in Zf implies an increase in (I), which, for a

given Yoo, indicates an increase in YFF. As Ypp increases, the reaction rate becomes

more vigorous and it becomes more difficult to extinguish the flame through the

application of radiative losses. This explains the nature of the curves that we obtain

on the extinction plot. Also, for the same value of Zf, i.e., for the same value of <15, a

lower value of Yoo indicates a correspondingly smaller value of Ypp, and hence, the

reaction rate also becomes smaller in magnitude. It then becomes easier to extinguish

the flame. This explains why the curves in Figure 3.11 all shift towards the left for

decreasing values of Yoo-

Our focus is next shifted to some quantities of practical interest. We evaluate

the heat transfer to the wall from flames with the same stoichiometry (Yoo = 0.6

and YFF = 0.8) but with different thicknesses of the radiative loss zones and for

different separation distances (A) from Z1. Let pr denote the heat transferred to

the oxidizer wall by the flame per unit surface area of the wall. We reckon that the

oxidizer wall will have a stronger effect on the flame than the fuel wall owing to the

proximity of the flame to the oxidizer wall. The flame transfers heat to the oxidizer

wall by means of both conduction and radiation, and hence, pr = QW,O,cond +

Qw,0,rad, where the conduction flux is QW,O,cond = —/\(dT/da:)|,=L and the radiative

flux is Opt/’0’,“ = 0.5x f0L(dqR/d:r)d:r. We assume that half of the radiative losses

travel to each wall: this assumption is reasonable in the thermally-thin limit we

consider here. We can transform the expressions for prmnd and Q1440,“ to the Z

coordinate and normalize pr by the reference conductive flux Ao(Tf — To) /L. The

normalised QW,0 = (l/so)(d1'/dZ)|z=o + 0.5x(1/§o)NRf0‘ (1/§O)(dq'R/dZ)dZ. The

quantity prso is plotted in Figure 3.12.

From Figure 3.12 it is apparent that the heat transfer characteristics do not de-

pend strongly on the separation distance A, and consequently, we see four reasonably
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Figure 3.12. Heat Transfer to the oxidizer wall as a Function of N3.
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distinct groups of curves corresponding to loss zones of four different thicknesses.

However, as is evident from the plot, the separation distance A does become im—

portant for higher values of N3, close to extinction. We will notice that nearing

extinction, the flame attempts to reduce the heat losses to the wall as much as pos-

sible. Also, the value of NR required for extinction is higher when the heat loss zone

is very thin, as intuitively obvious.
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Figure 3.13. Heat Transfer to the oxidizer wall as a Function of NR(2/B).

We also plotted prso as a function of the quantity NR(2/B) Figure 3.13 clearly

shows that the quantity N3(2/B), which is approximately the value of the integral
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ENRsech2[B(Z - ZR)]dZ, is able to collapse the wall heat transfer data except very

near extinction. Thus, when plotted against NR(2/B), prso does not reveal any

appreciable dependance on either the separation distance A or even the thickness of

the loss zone AZR.

Another quantity of practical interest is the radiative fraction x, given by the

ratio qRad/qrpotal. The quantity qRad is the integral of the radiative loss term

(folNRsech2[B(Z — ZR)]dZ) and qTotal is the integrated value of the reaction rate

in mixture fraction space, i.e., fol (1 + <15)’DrdZ. From Figure 3.14 we notice that qTota;

decreases with increasing values of N3. This happens because with increased inten-

sity of the radiative loss zone, reaction rate values decrease, as observed in Figures 3.5

and 3.10. For thicker loss zones, the drop in QTotat with increasing values of N3 is

more rapid.

We have already noted in section 3.5.2 that the integral of the radiative loss term

profile is approximately (NR/so)(2/B). Hence, it is of interest to plot the total heat

release qTotal as a function of the quantity NR(2/B). The result is shown in the

Figure 3.15. Figure 3.15 indicates that the quantity N3(2/B) characterizes the total

heat release rate very well and the curves for different loss zone thicknesses virtually

collapse on one another except for large values of NR close to extinction.

Figure 3.16 illustrates the variation of x as a function of N3 for different thick-

nesses of the loss zones and for A = 0. We observe that x increases with increasing

NR for a flame with a given loss zone thickness. The integrated quantity qRad increases

with N3 and, since correspondingly the gum values decrease, x, which is a ratio of

the above quantities, increases. In order to produce a given value of x, a higher value

of NR is required for a flame with a thinner loss zone. Similar to the study of gum we

plot X as a function of N3(2/B) in Figure 3.17. It is clear from the figure that the use

of NR(2/B) collapses the data very well except close to extinction. So, the quantity
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N3(2/B) can be used to correlate the radiative fraction quite effectively. Figure 3.18
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Figure 3.18. Arf as a function of the radiative fraction

shows the variation of the drop in flame peak temperature, A17, as a function of

the radiative fraction x. If we denote the maximum temperature by 1',, then A17 is

defined as l — 1',. We recall that the temperature has been normalized in such a way

that the peak nondimensional temperature, 1', for the infinite reaction rate situation

always has the value of unity, regardless of the oxidizer and fuel mass fractions. Thus,

Arf represents the drop in peak temperature for finite rate chemistry and radiative

loss situation, in comparison to the IRR situation. The increase in Ar; with X was
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almost linear for smaller values of x. However the curves for the different loss zone

thicknesses diverged from one another for higher values of the radiative loss fraction

X.

3.9.1 Comparison with the top-hat profile

It has been previously mentioned (section 3.5.2) that the results for the seek2 heat

loss profile can be compared with the results in Appendix A for the top-hat profile.

However, the thickness AZR of the top-hat profile must be chosen to be 2/B, where

the value of B is determined from the choice of the thickness of the sech2 profile. For

example, when (AZR)8ech2 is chosen to be 0.06, the constant B = 99.7 and conse-

quently (AZR)top— = 2/99.720.02. As illustrated in Appendix A both analytical
hat

and numerical methods were used to determine the extinction value of NH for the

top-hat profile. Here, we compare analytical and numerical results for the top-hat

profile with the numerical solutions for the .sech2 profile. Figure 3.19 depicts the

extinction NR values plotted as a function of Zf when Yoo = 0.7, (AZR) = 0.06,
each?

(AZR),OP_,m, = 0.02 and A = 0.1. The direction of increasing Ypp has also been

indicated on the plot. The numerical solutions reveal that the sech2 and the top-hat

profiles produce very similar NRun-notion values. This indicates that the integrated

value of the radiative loss term is the quantity which determines the extinction NR

value. The extinction NR values obtained by analytical method are quite different

from the numerical solution. However, on close inspection of the curves depicted in

Figure 3.19 we notice that the ratio of the analytically obtained values to the numeri-

cal solution is about 4 for all the Z1 values plotted in Figure 3.19. This indicates that

a modification of the analytical formula based on the inclusion of a correction factor

should yield close correspondence between the analytical and numerical results.
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v00 = 0.7 AZR = 0.06 (sech’)

AZR = 0.02 (top-hat) A = 0.1
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Figure 3.19. Comparison of Nmagnetic“ values for seek2 and top-hat profiles.
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3.10 Conclusions

The influence of a simple and hypothetical heat loss zone on a pure diffusion flame

was investigated in detail in this chapter. The loss profile was of the form of a sech2

and we varied the intensity and the width of the loss zone to study the behavior of a

pure diffusion flame. The loss zone was always postulated to lie on the fuel side of the

ideal Burke-Schumann flame. The location of the loss zone on the fuel side relative

to the ideal flame location Zf was also varied. In all situations the increase of the

radiation number N3 resulted in a movement of the flame toward the fuel side. We

found that for thin loss zones located close to ZI the reaction zone may even migrate

to the fuel side of loss zone for significantly high values of NR. In such a situation

the loss zone exists on the oxidizer side of the flame, contrary to our initial postulate.

This happens because our hypothetical loss zone is static and does not contain any

mechanism for movement. The reaction rate profile, on the other hand, is free to

move and hence locates itself on the fuel side of the loss zone in certain cases.

Extinction plots were generated for different flames for given loss zone thicknesses

(AZR) and given separation distances (A). The plots indicated that for a given Yoo,

an increase in Ypp results in higher values of extinction radiation number (NR).

Nondimensional heat transfer rates to the oxidizer wall were also investigated. The

results indicated that the separation distance A did not have a significant influence

on the wall heat transfer characteristics.

The total heat release in the combustion process, qToml, was found to decrease

with increasing values of NR and the rate of decrease was quite rapid for thicker loss

zones. It was found that the quantity N3(2/B) characterizes qTota; very well and the

curves for the different loss zone thicknesses and separation distances all collapse onto

one another except near extinction.

Investigation of the radiative fraction (x) showed that x increases with increasing
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values of N3 and the rate of increase is steeper for thicker loss zones. The flame,

however, extinguishes at a larger value of x for loss zones which are relatively thin.

The quantity NR(2/B) collapses the qTotal and radiative fraction values very well

except near flame extinction.



 

 

CHAPTER 4

Influence of a Simple Heat Loss

Profile on a Diffusion Flame with

Fuel Blowing

4.1 Introduction

In this chapter the influence of a simple .secl‘z2 heat loss profile on a diffusion flame

is investigated when there is a convective fuel flow through the fuel wall. Thus, the

problem treated in this chapter differs from the one in chapter 3 only in the fuel wall

boundary condition.

In the following section, we present the problem definition. The formulation of the

conservation equations is quite similar to that in the previous chapter and is discussed

only briefly. A discussion of the important results follows.

4.2 Problem Definition

Figure 4.1 shows the geometry of the problem under consideration. A diffusion flame

is established between the oxidizer and fuel walls. A diffusive flux of oxidizer is
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supplied by the oxidizer wall. Fuel is released from the fuel wall through the combined

influences of diffusion and convection. A mass flux r'n

fuel wall. The oxidizer wall allows the mass flux flowing from the fuel side to pass

through the oxidizer wall, thereby preventing the transient accumulation of matter

in the region between a: = 0 and :c = L. Both walls are maintained at temperature
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(pu)|x=o issues from the

To. The species boundary conditions have been illustrated in Figure 4.1.
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4.3 Formulation

The equations we shall solve are the energy and species equations for oxidizer and

fuel. The energy equation is given by

dq
pcpm + an] = (AT) + prp — 0%“, (4.1)

with boundary conditions T(a: = 0) = To and T(a: = L) = To, where To is the ambient

temperature, assumed to be 298 K. The oxidizer equation is

PlYO. + “Yoxl = (PDoYo.)x - W'IF, (4-2)

with boundary conditions Y0(a: = 0) = 0 and Yo(a: = L) = Yoo. As in the previous

chapter, a one-step, irreversible chemical reaction of the form F + (IO—*(l + V)P is

assumed. Finally, the fuel equation is given by

PlYF. + uYle = (PDFYFJx - 10F, (4-3)

with boundary conditions de/dflmo = —(7h/pr)(Ypp— Yplx=o) and Yp(a: = L) =

0. The quantity m is the mass flux from the fuel wall, equal to pu.

Using the coordinate transformation Z = 1 - s/so where s = f: pdx and so =

fol” pdm and proper normalizations (as outlined in the previous chapter), the above

equations transform to

1 NR dq__R_

 

7? = 5T2 + uoLso-2Tzz + QFDT +—odZ’ (4'4)

1 0'0

yOt- —_S—OyOZ + uOL—o—_2yOZZ ¢Dr’ (4'5)

1 (10

— = — — — D .
31F: g0 sz + 1,0ng szz 7' (4 6)
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where D is the Damkéhler number, given by D = tnf/tchm and r is the nondi-

mensional reaction term given by r = yoypexp(—fl(1 — T)/ (1 — a(1 - 1'))) where a =

1—To/Tf and ,6 = Ea/RT; is the Zeldovich number. The reference time scale is tn, =

L/uo and the characteristic chemical time scale is tchem = 1/[AY006Xp(—E/RTf)].

The nondimensional quantity QF is given by Qp = Qprp/Cp(Tf — To) and so =

So/So’rcf where so”; = poL. The velocity no is the magnitude of u at a: = 0, i.e., at

Z = 1. Note that the first terms on the right hand side of each of the above equa-

tions originate due to the convective fuel flow and were not present in the governing

equations for a pure diffusion flame, as illustrated in section 3.5 of chapter 3.

The above equations are solved numerically to obtain nondimensional temperature

and species mass fraction profiles for different radiation loss profiles. The radiation

number NR in the above is a ratio of the reference radiative and convective fluxes,

given by NR = qucf/(pouonAT). This is in contrast to the definition of N3 for a

pure diffusion flame, where NR was defined to be a ratio of reference radiative and

conductive fluxes.

4.4 Boundary Condition for the Fuel Equation

In contrast to chapter 3, the fuel mass fraction at the fuel wall is not prescribed in

this case. Instead, it is assumed that fuel issues from the fuel wall by both diffusion

and convection. A balance between the rate of depletion of the fuel in the reservoir

and the rate of fuel issue gives the necessary equation for the boundary condition. In

fact, the fuel mass fraction in the reservoir is held constant.

The amount of reservoir fluid lost through a unit surface area per unit time is

pouo, where p0 is the density at the reservoir wall temperature, i.e., To, and no is

the velocity at the fuel wall. Correspondingly, the reservoir is deprived of poquFF

amount of the fuel species. The fuel leaving the reservoir surface and entering the
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free stream does so under the combined influence of diffusion and convection. The

diffusion rate, by virtue of Fick’s law, is —pr(dYF/da:)|x=o, where Dp is the diffusion

coefficient of fuel in fuel/air mixture. The convective fuel flow rate is (pouo)Yp|z=1.

Writing the balance equation yields

_la::0 : :%-?2(YFF _ YF|x=0)° (4.7)

In the Z coordinate the fuel wall boundary condition assumes the following form:

d u L3

‘dizi 2:1 = gFOO(1 — yF|$=O)- (4.8)
 

where 3]}: = YF/YFF, as before, and DFO is the value of the diffusion coefficient of the

fuel at the reference condition.

4.5 Solution for Infinite Reaction Rate

The temperature and species profiles for the infinite reaction rate (IRR) situation are

used as initial profiles. Hence, our first task is to obtain such solutions. In the limit

of infinite reaction rate the flame sheet is infinitesimally thin. Fuel and oxidizer are

depleted in the flame in the stoichiometric proportion. No fuel exists on the oxidizer

side of the flame and no oxidizer exists on the fuel side, i.e., there is no leakage through

this diffusion flame.

Under such conditions, we can solve for the 7', yo and yp profiles in two adjacent

domains without requiring the reaction term. We solve the following energy equation

in the oxidizer side of the interval subject to the boundary conditions 1'(Z = 0) = 0

and T(Z = Zf) = 1, where Zf is the flame location:
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The above equation must also be solved in the adjacent fuel-side domain, i.e., between

Z = ZI and Z = 1, with T(Z = 1) = 0. A similar procedure must be followed for the

species equations, although yo = 0 on the fuel side and yp = 0 on the oxidizer side

account for the zero leakage parts of the yo, yp solutions. However, ZI is yet to be

determined. For that purpose, a mixture fraction variable is first defined as follows:

=¢yF+1-y0

¢+1

 c (4.10)

We note here that unlike chapter 4 the variable Z does not correspond to the mixture

fraction. We observe that C satisfies an equation of the same form as the 1' and species

profiles for the IRR situation, i.e.,

 

1 (Yo

E—OCZ+ uoLEngz —0 (4'11)

The solution for C is

C = [1 - exI)(-Z/C)l (4-12)

where c = ao/(uoLso). At the flame, yo and 3]}: are both zero, which, by virtue

of equation 4.10 indicates that Cf = 1/(¢ + 1). Correspondingly, Z has the value

Zf = cln((1 + ¢)/¢). The equations for T, yo and yp profiles can now be solved for.

The solutions for 1' are

—Z/c

1—8- c OSZSZ 3

T = 1-e 2’; f (4.13)
—1/c_ —Z/c

TIT—27 2,3231.

The solutions for ya are

—Z/C_ —Zf/C

8 -e c OSZSZ ,

yo = 1-e 2’7 f (4.14)

0 zfgzgr
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Finally, the solutions for 3}}: are

0 05232,,

31F = (4-15)

1 — 642.2,“. 2,329.

A plot of the temperature and species profiles is shown in Figure 4.2 for L = 0.01

YOO=O.6 YFF=O.8 u0=0.08 m/s L=0.01 m
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Figure 4.2. IRR profiles for 7', yo and y;-

m, uo = 0.08 m/s, Yoo = 0.6 and YFF = 0.8. We note here that equations 4.13, 4.14

and 4.15 have to be solved iteratively because the quantity c depends on so, which

depends on the solution and can not be ascertained apriori. The procedure is to guess

a value for c, i.e., for so and then use equations 4.13-4.15 to determine 1', yo and yp

profiles. On obtaining the 1' profile the density ([3) profile can also be determined
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using the relation ,6 = (1— a)/(1 — a(1— 7)), where a = 1 — To/Tf. Then, so can be

evaluated using the procedure outlined in section 3.8. Using this fresh value of so the

quantity 0 can be calculated again. The new value of c is then used to determine T,

yo and yp profiles. The new 1' profile is then used to calculate the value of c again.

This procedure is repeated until convergence is obtained and we find the 1', yo and

yp profiles for the infinite reaction rate case.

4.6 Parameter Values

The parameter values used in this chapter are the same as those used in chapter 3.

The length of the domain is L = 1.05 cm unless otherwise mentioned. The velocity

of fuel flow at the wall, i.e., no is a new parameter in this chapter. The value of no

was varied from 0.02 m/s through 0.14 m/s.

4.7 Results and Discussion

The method of analysis in this case is the same as in chapter 3. However, the addi-

tional variable uo must be taken into account in the examination.

Figure 4.3 illustrates the variation of the temperature profile for different values

of no for a given flame in the absence of radiative losses (NR = 0). The values of no

range from 0.06 m/s to 0.14 m/s. We define a nondimensional parameter uoL/ao for

characterising the fuel blowing rate and tabulate is in Table 4.1.

Table 4.1. uoL/ao for different values of uo.

 

uo m/s 0.06 0.08 0.10 0.12 0.14

uoL/ao 5.08 6.77 8.46 10.15 11.84
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YOO=O.7 YFF=O.5 NR=O

 

  
  
Figure 4.3. Effect no on 7' profile for a given flame.
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As no is increased, the flame moves closer to the oxidizer wall. We recall that

the rate of depletion of fuel from the fuel wall is given by (pouo)YFF. For higher

values of no, more fuel issues from the reservoir. The oxidizer mass fraction at the

oxidizer wall being unchanged, the flame has to move toward the oxidizer wall since

the rate of supply of fuel is now greater. As no is increased from 0.06 m/s to 0.10 m/3

through 0.08 m/s, the peak temperature also increases, as evidenced by Figure 4.3.

However, on further increase of no, the peak temperature decreases. The reasonable

explanation for this is the proximity of the oxidizer wall. For no = 0.14 m/s, the flame

is quite close to the oxidizer wall and loses much heat to the wall. On closer scrutiny

of Figure 4.3, it can be observed that for higher values of no, a fixed increment in the

value of no results in a smaller shift of the temperature profile toward the oxidizer

wall. The flame seems to “feel” the presence of the wall as no is increased and resists

the attempt of the convective flow to force it against the wall.

The slope of the temperature profile at the wall is a measure of the extent of the

heat transfer to the wall. Figure 4.4 shows the slope, 72, at the walls, Z = 0 and

Z = 1, plotted as a function of no for the flame under consideration (Yoo = 0.7,

YFF = 0.5, NR = 0). The plot clearly exhibits that the heat transfer to the oxidizer

wall (at Z = 0) is much higher than that to the fuel wall. Because it is closer to

the flame, the oxidizer wall exercises a significant influence on it. The influence of

wall heat transfer is an important issue for deciding the location and strength of the

flame.

The reaction rate term, (1 + ¢)Dr, is plotted as a function of Z in Figure 4.5.

The increase in no clearly results in the movement of the reaction rate profile toward

the oxidizer wall. The value of the peak reaction rate also increases as no increases.

However, as observed for the 1' profile, the proximity of the wall results in a drop in

the peak value of (1 + ¢)Dr for higher values of no. We also notice that for no = 0.06

m/s the reaction rate profile is quite broad. However, as no is increased, the reaction
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YOO=O.7 YFF=0.5 NR=O
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rate profile becomes narrower. Since the peak of the reaction rate profile increases

as no increases (for sufficiently large distance from the wall) and it simultaneously

becomes narrower, the total heat release in the process of combustion, qTotal, which

is the integrated value of (1 + ¢)Dr, is also calculated. Figure 4.5 shows as inset a

plot of gave“; as a function of no. It is clear that qTotal decreases as no is increased for

this flame. The rate of decrease is significantly enhanced for higher values of no, i.e.,

when the flame is in the close proximity of the oxidizer wall.

Yoo = 0.6 YFF =O.8 AZR=O.O4A = 0
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Figure 4.6. Effect of NR on the temperature profile.

 

Next, the effect of increasing the intensity of the radiative loss zone, NR, on

a diffusion flame with prescribed fuel and oxidizer mass fractions in the respective

reservoirs and a given no through the fuel wall is investigated. The thickness of the loss
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zone, AZR, is assumed to be 0.04 and the separation distance A is zero. As is evident

from Figure 4.6, the temperature profile is uniformly and monotonically lowered as

NR is increased. The peak of the temperature profile moves toward the fuel wall with

increased radiative losses. For NR values greater than 28.6, the temperature profile

crashes to zero; here we can not obtain a steady state profile. We also observe that for

higher values of NR, a given incremental increase in N3 results in a relatively greater

degree of collapse of the temperature profile, i.e., the collapse of the temperature

profile is accelerated. Simultaneously, the rate of movement of the temperature peak

toward the fuel wall is also enhanced for higher values of NR.

Yoo = 0.6 YFF = 0.8 A2,,=0.04 A = 0
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Figure 4.7 shows the species profiles, yo and yp, as a function of the Z coordinate.

We recall once again that Z is not the mixture fraction, see equation 4.12. The change

in the oxidizer profile is not very pronounced. However, the yp profile significantly

changes for increasing values of NR. For NR = 28.6, yp everywhere is conspicuously

greater than for the no—loss case. The reaction rate decreases with increasing NR and,

consequently, the flame consumes less fuel and oxidizer. Hence, both the oxidizer and

fuel mass fractions are greater everywhere for higher values of NR.

Yoo = 0.6 Y“, = 0.8 AZ,=0.04A = 0
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Figure 4.8. Effect of NR on reaction rate profiles.

The reaction rate profiles are illustrated in Figure 4.8. With increased radiative

losses, the reaction rates decrease significantly. Also, consistent with the migration
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of the temperature peak, the reaction rate peak also moves toward the fuel side. The

rate of decrease in the reaction rate peak seems to increase for higher values of NR.

It is clear from a comparison of Figure 4.6 and Figure 4.8 that the temperature peak

at ZT is further to the oxidizer side than the reactivity peak Z, for each and every

value of the radiation number NR.

The influence of increasing the loss zone thickness is investigated next (Figure 4.9):

AZR is now increased to 0.1. The peak of the temperature profile indicates a migra-

Yoo=0.6 YFF=O.8 AZR=0.1 A=O.
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Figure 4.9. T profiles when AZ; 2 0.1 and A = 0.

tion toward the fuel wall. The movement is not very conspicuous, though, possibly

because for the entire flame history the reaction zone is squarely inside the loss zone.

Substantial movement to either side seems to be completely restricted. Similarly, the
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reaction rate profile, shown in Figure 4.10, also exhibits a corresponding movement

of the peak toward the fuel wall, although this movement is also very insignificant.

We now turn our attention to the structure of the flame when NR = 9.9, AZR = 0.1

Yoo=0.6 YW=0.8 AZR=O.1 A=O
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Figure 4.10. (1 + ¢)Dr profiles when AZR = 0.1 and A = 0.

and A = 0. For such a situation the flame is at the brink of extinction and any

further increase of N3 results in the temperature profile crashing to zero everywhere.

Figure 4.11 illustrates the profiles of the different terms in the energy equation. The

convection ((1/so)7'z) and the diffusion ((ao/(uoLs3))7'zz) terms balance one another

very near the oxidizer wall and the reaction term is extremely small in that region.

The primary balance in the vicinity of the flame, however, is between the reaction

term and the diffusion term, i.e., the heat released by virtue of the combustion reac-
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tion is diffused away from the primary reaction zone. The radiation loss is principally

recovered by the reaction term.

Yoo=0.6 YFF=O.8 NR=9.9 AZR=O.1 A=0
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Figure 4.11. Flame structure when NR = 9.9, AZR = 0.1 and A = 0.

We now investigate the effect of shifting the loss zone from the IRR flame location,

ZI. We consider the same flame as before, except we now introduce a separation dis-

tance of A = 0.1. The nondimensional temperature profiles are plotted in Figure 4.12

for different values of N3. Interestingly, in this case the maximum of the temperature

profile shifts toward the oxidizer side. The reaction rate profiles also indicate a slight

movement of the peak toward the oxidizer wall in Figure 4.13. This result is a rather
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interesting contrast to the case of the pure diffusion flame, where the reaction zone

always moved toward the loss zone. Here we must observe that there are the three

simultaneous influences of convection, diffusion and reaction: each can respond to

the heat loss zone. In the pure diffusion flame we allowed only diffusion and reaction

to counter the loss zone, and the response was predictable: the reaction zone always

shifted toward the loss zone, even in those cases where it could never penetrate it (see

Figures 3.9 and 3.10) of chapter 3. Here, convection from the fuel wall can force the

reaction zone toward the oxidizer side, away from the loss zone.
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Figure 4.14 shows the structure of the flame when NR = 25, AZR = 0.04 and

A = 0. For such a situation, the flame is at the brink of extinction. The convection,
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diffusion, reaction and radiative loss terms of the energy equation are plotted to show

the relative importance of each term. The primary balance is between the reaction

and diffusion terms. It is also observed that the radiative loss term is recovered almost

entirely by the diffusion term and that the two curves are virtually indistinguishable

in the radiative loss zone. Interestingly, the reaction term does not contribute sig-

nificantly toward recovering the radiative losses. This is because the heat loss zone

is placed at a significant distance from the IRR flame location, Zf, so the primary

balance is between reaction and diffusion.

It is interesting to compare Figure 4.11 with Figure 4.14. In the former case

the heat loss profile was placed right next to the ideal flame location Zf. Hence,

the reaction term had to battle the radiative loss term, unlike in the latter case

when A = 0.1 and the loss term was placed some distance away from the ideal

flame location. Thus, the two flames have significantly different structures. So the

separation distance A between ZI and Z3. plays an important role and decides how

the loss term will be recovered. A significantly high value of A results in heat diffusion

into the radiative loss zone by means of conduction. However when A = 0 the reaction

term has to counteract the effect of the imposed heat loss profile.

For the same separation distance of A = 0.1 the loss zone thickness AZR is

now increased to 0.08. As expected the flame extinguishes for a lower value of N3

(Figure 4.15). For NR > 13.1 we do not obtain a steady flame. The location of the

maximum flame temperature moves toward the oxidizer wall for increasing values

of N3. An investigation of the reaction rate profile also indicates similar behavior

(Figure 4.16).

Let us investigate the effect of changing the velocity no on the temperature and

reaction rate profiles. The value of no is decreased from 0.10 m/s to 0.05 m/s. The

nondimensional parameter uoL/ao decreases from 8.47 to 4.24. Interestingly, it is

more difficult to extinguish the flame in this case. On decreasing the velocity no the
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flame moves away from the oxidizer wall and Zf increases from 0.08 to 0.2. The flame

loses less heat to the oxidizer wall when no is smaller and consequently can survive for

higher values of NR. In this case also the location of the peak flame temperature, Z1,

moves toward the oxidizer wall. Similar behavior was also observed for the reaction

rate profile.
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Figure 4.18. 7' profiles when uoL/ao = 4.24 and AZR = 0.04.

The loss zone thickness AZR is then halved for the same value of no = 0.05

m/s. Predictably, it becomes harder to extinguish the flame and the extinction value

of N3 is 29.5, beyond which we do not obtain a steady state temperature profile.

Consistent with previous observations we find that Z. moves toward the oxidizer wall

with increasing values of N3.
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As explained in chapter 3 the heat transfer to the wall is important to exam-

ine. In the present situation, pr, i.e., the heat transfer to the oxidizer wall, is

normalized with the reference convective heat flux, i.e., pouon(Tf — To) to yield

pr = (ao/(uoLso))(d7'/dZ)Iz=o + 0.5x(1/§o)NRfO‘(1/5o)dqR/dZ. The quantity

prso is plotted as a function of N3 in Figure 4.19.
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Figure 4.19. Heat transfer to the oxidizer wall as a function of NR for the fuel blowing

situation.

A comparison of Figure 4.19 with Figure 3.12 of chapter 3 reveals that unlike for

a pure diffusion flame, the wall heat transfer characteristic curves are not grouped

according to different loss zone thicknesses. The separation distance A seems to

have significant impact in this case. In order to study this in greater detail we plot
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prso as a function of the quantity N3(2/B) in Figure 4.20. We recall here that this

quantity was very useful in collapsing the wall heat transfer, the total heat release

and the radiative fraction data for a pure diffusion flame, as discussed in chapter 3.

Figure 4.20 shows that for this situation we get two distinct sets of curves for the
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Figure 4.20. Heat transfer to the oxidizer wall as a function of NR(2/B) for the fuel

blowing situation.

two different separation distances used. Hence, the separation distance of the loss

zone from the flame turns out to be a very important parameter for a diffusion flame

with fuel blowing. For a pure diffusion flame the separation distance A was not very

important for the heat transfer to the wall since the data collapsed to one single curve.

We now focus on the radiative fraction, x, given by the ratio qRad/qrpotaz. First,
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the quantity qTotal is plotted as a function of the radiation number N3 in Figure 4.21.

For thinner loss zones the rate of decrease of QTozaz with N3 is less pronounced. For
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Figure 4.21. The total heat release in the combustion process plotted as a function

of the radiation number NR.

AZR = 0.10, for example, qTotal steeply decreases with increasing values of N3. In

Figure 4.22 we plot (110ml values as a function of N3(2/B) As expected, the total heat

release values correlate very well with N3(2/B) with a nearly straight-line dependence

for N3(2/B) values less than approximately 0.25.

Figure 4.23 illustrates the variation of the radiative fraction X with the radiation

number NR. The magnitude of X increases with increasing NR until extinction occurs.

It is observed here that the values of X are significantly lower than for a pure diffusion
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flame (see Figure 3.16).
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Figure 4.24. The total radiative fraction X versus NR(2/B).

Next, in Figure 4.24 we plotted the radiative fraction X as a function of N3(2/B),

and, as expected, the curves for the different loss zone thicknesses collapsed onto

one another. Thus, the quantity NR(2/B) is of great importance when analyzing

important quantities of practical interest.

Figure 4.25 shows the variation of the drop in peak flame temperature as a function

of the radiative fraction X. As mentioned in chapter 3, A77 is defined as 1 — Tf. The

quantity ATf was found to increase almost linearly with the increase of the radiative

fraction X. It is also observed that the A77 curves diverge from one another for high

values of NR for the different loss zone thicknesses shown in the figure.
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4.8 Conclusions

In this chapter the influence of a sech2 heat loss profile on a diffusion flame with

fuel blowing from the fuel wall was investigated. The analysis in this chapter is quite

similar to that in chapter 3. However, the influence of convection gives rise to more

complexities in the flame behavior compared to a pure diffusion flame.

An important parameter in this chapter is the fuel blowing velocity at the fuel

wall, i.e., uo. An increase in no resulted in a flame movement toward the oxidizer wall.

The peak flame temperature also increased. The reaction rate profile became taller

and narrower as the flame moved closer to the oxidizer wall. The integrated value of

the reaction rate, qTotal, however, decreased with increasing uo. The proximity of the

oxidizer wall is the primary reason for such a decrease in qTotaz. When the flame is

close to the oxidizer wall it loses much heat to the wall and hence there is a resultant

decrease in the qTotal values. It was also observed that the rate of movement of the

flame toward the oxidizer wall slowed down at higher values of the fuel blowing rate.

Next, the intensity, the width and the location of the sech2 heat loss zone were

varied systematically to examine the influence of each of the variables on the flame. An

increase in the width of the radiation loss zone resulted in a smaller value of extinction

radiation number i.e., Nana-mum. It was observed that for loss zones placed right

next to the infinite reaction rate (IRR) flame location, ZI, the reaction term recovers

the radiation loss term and the diffusion term does not contribute significantly to

such a recovery process. If, however, the loss term is placed at a significant distance

from Zf, the reaction term does not recover the loss term. Rather, the diffusion term

has to counter the loss term and conduct heat to the region of loss. Thus, the flame

structure depends significantly on where the loss zone is placed.

The migration of the temperature and reactivity peaks was also investigated for

each situation. It was observed that for loss zones placed at a sufficient distance
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from Zf the flame may move slightly toward the oxidizer wall in certain cases. Such

behavior is in sharp contrast with pure diffusion flames studied in chapter 3. For pure

diffusion flames, the reaction zone always moved toward the fuel wall for increased

heat losses. For diffusion flames with fuel blowing, however, the presence of convection

complicates matters significantly, and the flame may move in the opposite direction.

For a loss zone of a given thickness and separation distance, it was observed that

decreasing the fuel blowing velocity, uo, resulted in a higher extinction radiation

number. When no is decreased the flame moves more toward the fuel wall and away

from the oxidizer wall. Hence it loses less heat to the oxidizer wall and it then becomes

more difficult to extinguish the flame.

An analysis of the heat transfer to the wall revealed that the separation distance

A has significant influence on the characteristics of the curves. However, a similar

examination of the heat transfer characteristics for pure diffusion flames in chapter 3

indicated that the separation distance A was not important at all. Hence, the analysis

in the current chapter suggests that the introduction of fuel blowing can give rise to a

variety of interesting behaviors. The quantity NR(2/B) was found to be quite useful,

as in chapter 3 in correlating the wall heat transfer rate, the total heat release and

the radiative fraction.



CHAPTER 5

Estimation of Soot Layer Profile

and Thickness

5.1 Introduction

In this chapter approximate methods for estimating the soot layer profile and thick-

ness are discussed. A soot volume fraction equation was developed based on the

model of Syed, Stewart and Moss [1]. The equation was then numerically solved

subject to the assumption of infinite reaction rate (IRR) profiles for temperature and

species. A thorough analysis of the results revealed that the essential balance for the

soot volume fraction equation is between the convection and the soot growth rate

terms. Such a balance yielded to analytical treatment and resulted in an expression

for the soot volume fraction profile in integral form. The integral was evaluated by

two approximate methods. A comparison of the results using the analytical formulae

with the numerical solution indicated good agreement. A soot radiation term was

then formulated using the soot volume fraction profile thus obtained. The effect of

soot radiation on the temperature profile was investigated using the radiation term

in the energy equation.

In the following sections, we discuss the Syed, Stewart and Moss [1] model, develop

91
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the soot volume fraction equation, investigate the numerical solution, derive analytical

expressions for the soot volume fraction profile and compare the analytical results with

the numerical solution. The influence of a prescribed soot volume fraction profile on

the radiation characteristics of a diffusion flame is also described.

5.2 Soot Model

The soot model used here is based on the work by Syed, Stewart and Moss [1]. Their

two—equation model consists of a number density equation and a volume fraction

equation

(I . 71

$010): é-fl(m)21 (5.1)

d 2 1 A

7.1—; = 70.191925 + 6. (5.2)

The quantity n is the soot particle number density (number of particles per m3) and

fv is the soot volume fraction in m3,oot/m3ga,. The density of soot, p,, is assumed to

be 1800 kg/m3. The quantity No is the Avogadro number, 6.0x1026. In equation 5.1

the term 6! corresponds to the process of soot nucleation. The second term on the

right hand side accounts for the decrease in particle number density due to coagula-

tion. Soot nucleation results in inception of new particles and hence, a corresponding

increase in the number density. The process of coagulation results in a decrease in

number density and hence the —ve sign before 8. As noted in [14], theoretically

the decrease in particle number density can be expected to occur according to the

Smoluchowski equation dN/dt = —ICN2 where the rate constant [C depends on the

particle diameter. The coagulation term in equation 5.1 bears close resemblance to

the Smoluchowski equation. The coefficients 6:, fl, ’7 and 8 are given by the following
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expressions [1]:

=oCpszXpexp(——To/T) (Nucleation)

A CT Coa ulationfl: ( g ) (5.3)

=C:,pT2XFexp(T,/T) (Surface Growth)

6 = 144x62 (Nucleation)

In the above, Xp is the mole fraction of the parent fuel, i.e., methane in our case.

It can be shown that Xp = YpW/Wp, where Yp is the fuel mass fraction, W is the

average molecular weight of the mixture and Wp is the molecular weight of the fuel.

The quantities To, and T, are activation temperatures and have the values 46.1 x103

K and 12.6x103 K respectively. The quantities 61 and 6 are related to soot particle

nucleation and B and 3 are related to the processes of coagulation and surface growth

respectively. The values of the constants C5,, 03 and Co are [1]

C5, = 6.54><104 [m3/kgzK1/2s]

Co = 1.3x107 [m3/K1/2s] (5.4)

Co = 0.1 [m3/kg2/3Kss]

5.3 Examination of the Soot Model

In this section, an asymptotic mathematical examination of the Syed, Stewart and

Moss [1] model is carried out to enhance our understanding of the model. Writing

1) = n/No, 17 = 77/an f = t/to, T = T/T*, fi = p/p* and using the expressions for ('i,

,8, ’y and 8 from 5.3 we can simplify equation 5.1 to get:

0:11? = afile/Ze7(%7n) — stfiz (5.5)
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where a = (XFNotoC&p*2To%8—Td)/no and b = (CoT*1/2noto)/No. The quantities a

and b are related to soot nucleation and particle coagulation, respectively. The quan-

tity no is a reference number density. Similarly, writing fv = fV/fvo, equation 5.2

can be recast in the following form:

Egg! = cfiTfe-(T'T’Y) 517% + dfi2T%e'(‘TfL"le (5.6)

where c = Xpnol/3t00:yp*T*1/2€-T7/p,fV01/3 and d = 144Cotop*2T*1/2XF67T¢/p,fvo.

The quantities c and d are respectively related to the processes of surface growth

and nucleation. We now choose to such that c = 1, which results in to =

(psi fvoieT‘v) /(XpnosCo/nTfi). This is done because we expect that the increase

of fV is mostly through surface growth, and the balance (dfv/dt)~surface growth

reflects the overall soot creation time scale. The quantities a, b and d are then evalu-

ated using the above value of to. Next, the reference quantities p* and T* are chosen

in such a way that fiT = 1. Equations (5.5) and (5.6) can now be written (after

dropping the bars on various quantities) as

Q = aT-%6-<%-Ta> _ 117%,]? (5.7)
dt

subject to 77(0) = 0 and

if} = T-ée-<%-T~’fv%n% + dT-%e-<%-Té> (5.8)

subject to fv(0) = 0. Particle number density and volume fraction are both zero at

the initial time ( = 0). Next, it is assumed that the system is isothermal, and the

nondimensional T = 1, i.e., T,. is the constant temperature of the system. Two distinct

cases are studied in the following subsection depending on the level of saturation of

7],.
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5.3.1 Rapid equilibration of 77

Let us assume that the particle concentration 17 rapidly equilibrates to its asymptotic

value. This assumption is of practical relevance and is supported in the literature [1],

[12]. In that limit, d77/dt = 0 and by virtue of equation 5.7, 77 = 1/(—a/—b). If for

convenience we define the maximum value of 77 as 1, then a = b. The equality of a

and b can be exploited to yield an expression for the characteristic number density

n07
 

no fl 2XFe(-§s).

 

With T = 1 equation 5.7 becomes

% = a(1— 772), (5'9)

with 77(0) 2 0. The solution for equation 5.9 yields 77 = (ezat— 1)/(e2“‘+1). Examining

the limit lim.H00 77, we conclude that a rapid equilibration of 77 to unity occurs when

a >> 0(1). The equilibration time is tza‘l. Similarly, equation 5.8 reduces to the

following when T = 1:

d
J): = fvéol/s + d, (5.10)
dt

with the initial condition fv(0) = 0. When 77 rapidly equilibrates to unity equa-

tion 5.10 becomes de/dt = fvg' + d. In terms of new variables 6 = fvfi/x/c—l and

5 = t/3x/c—l, this equation becomes

d6

62—: 2 .d6 1+6, (511)
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subject to 6(0) = 0. The substitution 6 = tan0 gives tan20d0 = d{, with 9(0) = 0.

Consequently, 5 = tan0 — 0 and, in terms of original variables, we have

t = 3&6??? — tan'l(%)]. (5.12)

Solution of the above transcendental equation constitutes the first problem under

consideration. We note that in the limit when d < 0(1) the second term in the

above equation is negligible and we obtain the well-known result fv ~ (t/3)3 . In the

more general situation, a rapid equilibration of 77 is not assumed and equation 5.10

is solved using the result 77 = (62“ — 1) /(6“ + 1). In the following, we carry out a

discussion and comparison of the results for the two problems.

The numerical solution of equation 5.10 was obtained using the NAG fortran

library routine D02PCF. This routine uses the Runge-Kutta method.

Figure 5.1 shows two sets of results for the soot volume fraction profiles. In the

first case, (1 was set equal to 0.5, since d is the only parameter value which needs

to be prescribed for the solution of equation 5.10. For d = 0.5 the saturated 77

assumption (equation 5.12) gives an fv profile which is quite similar to the more

general unsaturated case. For large times, however, the two curves tend to diverge,

albeit at a rather slow rate.

When d = 0.005 the curves for saturated and unsaturated cases are virtually

indistinguishable. It can be recalled at this point that d is the nucleation term in the

soot volume fraction equation 5.10 and for a small value of d, the soot profile saturates

fairly quickly. Hence, in this case, the assumption of 77 rapidly saturating to the value

of unity is quite good. Also, when d = 0.5 the amount of soot generated is much more

compared to the d = 0.005 case. This is because a much stronger nucleation term

results in a higher soot volume fractions. Also plotted in both figures is the function

(t/3)3. As mentioned before, when d < 0(1), it is expected that fv ~ (t/3)3.
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Figure 5.1. Comparison of fv profiles for d = 0.5 and d = 0.005.
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When d = 0.005 we see that the numerical solutions are indeed comparable to the

(t/3)3 curve. However, for d = 0.5, the (t/3)3 curve is significantly different from the

numerical solutions.

5.4 Formulation of the Full Problem

The problem geometry and boundary conditions are the same as described in Chap-

ter 4 and illustrated in Figure 4.1. The soot volume fraction equation has the following

form:

p(th + (u + uT)fV$):(PDst1,-)x + ti)” + 11.)!) _ “301" (5’13)

In equation 5.13 1b“, tbg and 11203 are, respectively, the soot nucleation, growth and

oxidation rates in units of leg/mas, up is a thermophoretic velocity term, which is

neglected in the present analysis. Equation 5.13 contains a soot diffusivity, D,, which

is taken to be 1% of the gas diffusivity [12]. The physical coordinate of our problem

is x with OSxSL. The boundary conditions are fv(x = 0) = 0 and fv(x = L) = 0.

First we transform the equations to a (Z,t) system of coordinates, where Z =

1 — 3/30 with s = fgpdx and so = f(I; pdx. As a result the soot volume fraction

equation takes the following form:

_ p2D3 1u + u . . .

— (po 0 p T)sz szz + ;(wn + my " Him-)- (5-14)

30 802

th
  

Now, we define t— = t/ t,.ef and iv = fV/fvo, where fv0 is a suitably chosen reference

value. Consequently, the volume fraction equation becomes

afv (1 +7717) afv _ 030 asz

a; so 62 _ 210ng 822

  + ([113, + BF, — Cr”). (5.15)  

Here, A '2 Ypptrcf/fvotn, B = Ypptrcf/fvotg and 0 = YOOtrcf/fVotox- The
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quantities tn, tg and tax are characteristic time scales for the processes of soot nu—

cleation, growth and oxidation respectively and are given by tn = poYpp/tbn,,.cf,

t9 = p0YFF/wg’ref and tax = poYoo/tbox,,e;. The quantity inf is the characteristic

flow time, given by tref = L/uo, and than}, 122g,”1 and 11303,"; are reference values for

normalizing nucleation, growth and oxidation terms, respectively. We have also used

50 = so/(poL). The nondimensional thermophoretic term is denoted by 1727 = fiuT/uo.

The soot diffusivity at the reference condition is D“). The rate terms Fm F9 and Fox

are respectively for soot nucleation, growth and oxidation and 17,, = 1.72,, /p, where

1.7),, = wn/11.)”,rej. The growth rate term 1‘,, and the oxidation rate term Fox are defined

similarly. Next, we assume that the temperature and species profiles are for the in-

finite reaction rate (IRR) case, which implies that no fuel exists on the oxidizer side

and no oxidizer exists on the fuel side. In the absence of oxidizer on the fuel side,

the source term for oxidation in the soot volume fraction equation can be discarded.

Further, on neglecting the thermophoretic effect, the soot volume fraction equation

reduces to

afv lafv _ Dso 62f},

at— 50 BZ — 110ng 622

 

+ (Ar. + B5,) (5.16)
 

At this stage, the expressions for A and B are still to be determined. The quan-

tities A and B depend on the time scales tn and t9 respectively, which, in turn,

depend on the choices of 113mm, and 1%,”. By comparing equation 5.13 with the

volume fraction equation (equation 5.1) of the Syed, Stewart and Moss model [1],

we can write 1b,, = pti/p, and 1229 = (p/p,)’y(p,fv)2/3n1/3. On substituting the

"Td/T. Henceexpression for (i using equation 5.3 we get 11),, = 144Cap3T1/2Xpe

113an = 144Cap03Tf3XFoe-Td/Tf can be chosen as a reference for the soot nucle-

ation term. A reference value of the soot growth rate term can now be written as

T

113g”! = (pg/p,)fionol/3(p,fvo)2/3, with ’yo = ryponl/szoe—ffl. The quantities with

suffixes 0 are at the reference condition. On obtaining 15mm} an expression can now
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be written for tn and consequently A can be expressed conveniently as

T
1 .__fi.

L 144p0205Tf2XF06 T!

“0 (PstO)

 A =( (5.17)

Similarly, since we have obtained the expression for 1139”,, we can now write an

expression for t9 and hence for B,

1 -31 i

B = (£)C‘1P0T15XF06 T’ no?

no (Pst0)%

 (5.18)

We now focus our attention on the nondimensional rate terms in equation 5.16, viz., 1",z

and F9. As mentioned before, 1"" = 1D,, /[3 and 11),. = zbn/wn,,ef. Using the expressions

for 11),, and 1b,,”f we can obtain the following expression for in:

 

n: (1 —(1a(_1 (:):»%yFCZI—Efif11_;:f_). (5.19)

The quantity 36: = TAT; — T0)/Tf2 and a, as before, is given by a = 1 — To/Tf. In

the above we have also utilized the relation between temperature and density, i.e.,

[3 =(1— a)/(1 -— a(1— 7)), by virtue of equation 3.16.

An expression can also be found for the rate quantity f9 using the expressions for

1139 and 1139,"). The expression for Fg takes the following form:

w
l
n

_ (l-afiyri —(a.+9i)( 1" )
r — e 6 mm . (5.20)
9—(1—a(1—r))

<

 

G
I
U
‘

At this stage we notice that the expression for B in equation 5.18 involves an unknown

reference number density, no. In order to evaluate that, the soot particle number

density equation has to be examined

P(77t + (u + uT)77x) = (P13377291: + “3n " we, (5°21)
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where 17 = n/No. The w’s in the above are the rates of production of particle number

density in a cubic meter multiplied by the density p and hence have the units of

kg/(mGS). By writing 17 2 77/770, f = t/trcf and transforming the equation to the

mass-based Z coordinate, we can write the normalized number density equation in

the following form:

wc,rcf

P0770

_ (1+ 771T) _ D30 _ an “.37: ref fife

' — —_-— Z = _ Z2 + ‘1- ’ tre — “.—”t 50 77 ”OI/3(2)” p pono f p

 t..,. (5.22)  

We notice that Pane/15mm} has the unit of time and thus qualifies as a characteristic

nucleation time scale. Hence (pono/zbn,ref)/t,¢f is a ratio of a characteristic nucleation

time scale and the characteristic flow time. Let us call the above ratio E. We then

multiply equation 5.22 by E to obtain

(in (be Lbcwef
6 - __ —— = 6 _ —

'7‘ ‘ "Z uoLsg "Z2 ,5 ,5 ohm...)

 (5.23)

When nucleation is rapid E—+0 and the quantities multiplied by E become negligible

and equation 5.23 essentially reduces to a balance of the nucleation and coagulation

terms, and the number density reaches a steady or saturated value, exactly as the

simplified model in section 5.3.1. We get én/fi — éc/fiLiJc’ref/Lbn’ref and hence (1),, =

(126. At this stage we compare (5.21) with equation 5.2 of the Syed, Stewart and

Moss model [1] and write (2),, = p6: = Cap3T1/2Xpe‘T°/T and the = pmn/No)2 =

pCfiT1/2(n/No)2. The equality d2" = the is then utilized to obtain an expression for

1/2C-Td/2T! . The referencethe reference number density, no = poNo(Ca/C,;)l/2Xpo

fuel mole fraction XFo equals YFFW/WF. Using the above no, the quantity B can

be readily determined.
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5.5 Numerical Solution

Equation 5.16 is numerically solved for a range of parameter values to obtain a so-

lution for the soot volume fraction. The equation is discretized by finite difference

method and the source terms are linearized using Newton’s method. The steady

state solution is reached when the sum of normalized residuals between successive

time steps becomes smaller than 1x10'6. The initial soot volume fraction value was

assumed to be zero everywhere in the domain. A typical solution is shown in Fig-

ure 5.2. In order to further investigate the importance of various terms in the soot

Y00=0.6 YFF=0.8 u0=0.07 m/s

szzoo K L=0.01 m

4.0 ' 1 ‘ T fi 1 T T #
 

    
0.0 0.2 0.4 0.6 0.8 1.0

Z

Figure 5.2. Soot Volume Fraction Profile
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volume fraction equation, the convection, diffusion, soot nucleation and growth terms

are all plotted in Figure 5.3. The abscissa of the plot is (Z — Zf), where Zf is the

YOO=O.6 YFF=O.8 u0=0.07 m/s

T.=2200 K L=0.01 m
 

2000.0 1, ' I i I r f r

..,............. Convection
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1\
— - —- - Growth

1000.0 -

 

  
 

-1000.0 (,1 -

-2000.0 ' . . 1 . . . . 1 +
0.00 0.04 0.08 0.12 0.16 0.20

(2-2,)

Figure 5.3. The structure of the soot volume fraction profile

location of the Burke-Schumann flame. We note that close to Zf, there is a balance

between the convection ((1/5o)dfv/dZ) and diffusion ((D,o/uoL§g)d2fv/dZ2) terms.

However, the diffusion term is quite small at an incremental distance from Zf, and for

the most part of the soot layer, the essential balance is between the convection term

and the growth (Big) term. The nucleation term (24173,) is very small in comparison

to the other terms.
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The above insight about the fundamental structure of the soot layer is utilized in

the development of an analytical expression for the soot volume fraction profile.

5.6 Analytical Approximation

As noted in the previous section, the primary balance for the soot volume fraction is

between the convection and the growth terms, except very near Zf. Hence, we assert

that equation 5.16 can be further reduced to

1 div —
——— = BF 5.24

30 d2 .91 ( )

in the steady state limit. The quantity 5’ is a constant, and fl, is the nondimensional

soot growth term, derived from the Syed, Stewart and Moss model, is given by equa-

tion 5.20. Next, we relate dZ to (IT in order to determine a solution for fv(1'). The

fuel side (Zf_<_ZSI) Burke-Schumann temperature distribution is used for the above

 

purpose

e-l/c _ e—Z/c

T = 8-1/1: _ e-Zr/C’
(5'25)

where c = ao/(uoLéo) and Zf, the ideal flame location, is given by Zf =

cln((1 + ¢)/¢). A detailed analysis of the infinite reaction rate situation is included

in section 4.5 of chapter 4. The fuel mass fraction profile is

yp = 1 — 6"(Z‘Z’Vc. (5.26)

In terms of 1', yp can be written as

yp = a(1 — r), (5.27)
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where a = 1 — e‘(1‘Z!)/c. After a little algebraic manipulation, dZ can be written in

terms of dr as dZ = -[(ac)/(1 — a(1 — T))]d7‘. By substituting the expression for 3);?

in terms of 1' and dZ in terms of (17', equation 5.24 is transformed into

(1 _ ,,.)7/6,345,14,2115 11m)

(1— a(1 T))5/6(1 - 0(1— Tlld

1

173/3

 dfv = [B§o(1 - a)4/3a13/6c] (5.28)

At this stage we observe that in order to integrate the soot volume fraction profile, we

need to impose suitable boundary conditions. Before we made any approximations,

the boundary conditions for the soot volume fraction were iv = 0 at Z = 0 and at

Z = 1. However, the soot diffusion term has been dropped, which was the only second

order term in equation 5.16. The resulting approximate equation is first order, and

only one boundary condition can be used. We use the condition that the soot volume

fraction is zero at the fuel wall, i.e., at Z = 1. We expect to obtain a soot volume

fraction profile which is located preferentially on the fuel side of the diffusion flame.

It has to be kept in mind also that in order to substitute for dZ in terms of 011', the

temperature profile on the fuel side was used, and hence, any soot volume fraction

which we may see on the oxidizer side is actually non-existent.

We now integrate equation 5.28 subject to the boundary condition that f—v = 0

when 'r = 0. From equation 5.28 we find that the important integral to evaluate is

_,,.)7/6e—(fi:,+-4)(—_7,—_;5)

0(1(1—- a((1 — 7))5/6(1- a(1— 7))dT

 (5.29)

By substituting u = 1 — 7' and writing ,Bw = 3:, + a: we arrive at the following

expression for 11:

 

du (5.30)

1 117/665%

11 =/ (

1 — au)5/6(1 — cm)

The integral in equation 5.30 could not be analytically evaluated. In order to simplify

matters, the exponents 7/6 and 5/6 on u and (1 — cm) respectively were replaced by
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1. Let the modified integral be called 12. Then, I; happens to be integrable ana-

lytically. An analytical result was obtained using the commercial code MAPLE, and

the result so obtained was verified using another commercial code, MATHEMATICA.

The following expression is obtained for 12:

12 = (A + B + C + D)/(aa(a — a)), (5.31)

where

212 . a a-
= —ae°-° E2(1, (536011—23)A

El?- ' '3 a

B = a—aea Ezl,—-7—

( ) 9.1. ( (“‘1’“) (5.32)

C = —(a-a)e aaE'z'(1 -—"’619—)

D

’ (a(l—T)-1)a

_ $.13; ‘ ’3 a

— 0'6 ENLW),

where Ei(1,a:) is a notation for the exponential integral. The indexed family of

exponential integrals, Ei(n,a:) where n is a non-negative integer, is defined as

Ei(n, z) = faweflflwdt for real, positive 2:.

Integral 1;, thus calculated, is compared with the numerical solution. Also,

Laplace’s method was used as an alternative method to approximately evaluate the

integral I1. The following section briefly describes the analysis.

5.7 Integral Evaluation Using Laplace’s Method

The integral in equation 5.30 can be approximately evaluated using Laplace’s method

and can be written as 11 = f}_,g(u)ef(“)du where g(u) = (1 — au)‘5/6(1 — cm)"1 and

f(u) = —fl,au/(1 — au) + lnu7/6.

Let us next consider the integral 1(x) = f:exh“)f(t)dt, where h(t) is real and

a: is positive and large. Assume that the integral exists, i.e., it has a finite value.
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According to Laplace, only the immediate neighborhood of the point corresponding

to the maximum value of h(t) in [a, b] contributes to the asymptotic expansion of [(3).

Similarly, for expansion of the integral [1 the value of u for which f(u) is a maximum

is sought first. Let us denote the value as u*. Equating df/du to 0 and evaluating

d2f/du2 to ascertain that f attains a maximum at u*, we find that u* = 7/(6flqa).

Next the integral [1 is expanded in the following form:

1
l * (u-u*)2 n *

11 = / [g(u*) + (u — u*)g'(u*) + ...]t:f("*)+(““‘*)‘f (" )+ 2 f (“ )+"‘du (5.33)

1-1'

By using the result f’ (11*) = 0 and evaluating the different derivatives of f(u) and

g(u) at u* and assuming a large ,6.” the above integral can be easily evaluated. After

some algebraic manipulation and neglecting higher order terms in the expansion of

the integral, we obtain the following simplified result for the integral [1:

3101“”: — T)la (5.34)

where 7* is the value of nondimensional temperature corresponding to the value 11*,

i.e., 7* = 1 — 11*. Hence, using equation 5.28 and equation 5.34 we can write the

following expression for the soot volume fraction:

fé=[BsO(1—a)4/3aWe1°—'2——:’l:_.9erfcl\[fl~a( — 1. (5.35)

5.8 Comparison of Results

Figure 5.4 shows a comparison of the numerical solution and the analytical solutions

for the soot volume fraction profiles. In Figure 5.4 “Method 1” refers to the solution

using exponential integrals and “Method 2” refers to the solution using Laplace’s

method. It is seen that both the methods result in soot profiles which have substan-
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Figure 5.4. The analytical solutions plotted along with the numerical solution.
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tially different maximum values compared to the numerical solution. This happens

because the soot profile maximum is close to the flame location, Zf, where the effect

of soot diffusion is prominent, as observed in the section 5.5. Since the diffusion term

was neglected for the analytical solution, the disagreement between the numerical and

analytical solutions is quite conspicuous near ZI. However, consistent with the dis-

cussion in the previous section, a much better agreement is obtained near the trailing

edge of the soot layer, i.e., further from Zf. The agreement between the analytical

and numerical solutions is excellent in that region. Consequently, the thickness of the

soot layer can now be analytically predicted fairly accurately.

5.9 Influence of soot radiation

In this section, we shift our attention to the effect of radiation on a diffusion flame

established between a fuel and an oxidizer wall, with a convective fuel flow from

the fuel wall. This configuration is the same as in Chapter 4. However, the radiation

term used here is different. A soot volume fraction profile, generated using the method

described in section 5.5 was used to formulate a radiative loss term.

5.9.1 Background

Understanding of soot radiation and its proper incorporation in the model are ex-

tremely important for the current research. The radiation from a flame depends on

the soot profile, which depends on the particular fuel used, the temperature profile

and the species profiles. In this section we will assume a soot volume fraction based on

the numerical solution of the soot volume fraction equation described in section 5.5.

A radiation term is formulated based on the “optically thin” assumption for the soot

radiation. A review of the existing literature pertaining to soot radiation is included

in section 2.5 of chapter 2.
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5.9.2 Formulation of the Radiation term

For a. sooty flame the major part of the radiation is a continuum radiation that is

simpler to model than the radiation due to water and carbon dioxide. For soot volume

fractions > 10",, soot radiation should be dominant judging by the calculations of

Grosshandler and Modak [11]. For small flames and moderate soot loadings with

which we are dealing, the optically thin limit is appropriate. In this limit

@ = 45,5(1‘4 — T04), (5.36)
d3:

where, (1,, is the Planck Mean absorption coefficient and a is the Stefan-Boltzmann

constant which has a value of 5.6696x10‘8 W/mzK“. The quantity ap is given by

a : fooo ”(A,fv)€b()\)d/\

” f§°eb(x\)dx '
 (5.37)

Kennedy et al. [31] used It = 7fv /A, where n is the absorption coefficient and A is

the wavelength of radiation. For a blackbody the spectral distribution of hemispher-

ical emissive power in a vacuum is given as a function of absolute temperature and

wavelength by the following expression:

27701

2 155% — 11'
“(1) (5.38)

This is known as Planck ’s spectral distribution of emissive power. The constant 01

has the value 0.59544x10‘16 Wm” and 02 = 1.4388x10'2 mK. Using the expression

for 65 in equation 5.37 and substituting y = Cg/(AT), the following expression is

obtained for ap:

_ 1471'fVC'171 0° y4dy

a __

p o

0025 0 e” — 1

 (5.39)
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The integral f3°y4dy/(ey — 1) is the fourth order Riemann zeta function and whose

value is 24.8862. Hence, ap = 1864.32fVT.

By transforming equation 5.36 to the Z coordinate and using CTR =

QR/Pouon(Tf — To), 7' = (T — To)/(Tf — To), ,6 = p/po and {so = so/(poL) we obtain

13155 _ 4a,,0'LTf4

50 d2 pCp(Tf — To)’uO

 [(1— 5(1 — 7))4 — (1 — (1)4]. (5.40)

By using equation 3.16 for the relationship between temperature and density we can

further reduce the expression for (1/.§o)(din/dZ) and write

 

1 d" —

71-5 = 4.50- a0 - 702((1— an — or — (1 — 002), (540
So dZ

where PR is given by

6
PR _ 4378.2101LfV0Tj (5.42)

_ ponTo(Tf - To)uO025 .

The energy equation for this situation is the same as equation 4.1 of chapter 4. In

the Z coordinate the energy equation becomes

1 Go — 1 dq-R

= _ ’D __
77 307-2 + nongTzz + QF F?“ + 50 d2 ,

 (5.43)

where we have used if}; = qR/qR,,ef and QF = QFYFF/Cp(Tf — To) = (1 + (15). The

reference quantity qnnf was chosen to be pouon(Tf — To). Hence, the radiative loss

term is given by 1/§o(drjR/dZ) We note that we have already derived an expression

for the loss term in equation 5.41. The energy equation can now be solved numeri-

cally using a prescribed soot volume fraction profile in conjunction with the coupled

oxidizer and fuel mass fraction equations. The species equations are the same as

equations 4.5 and 4.6 of chapter 4.
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5.9.3 Results

Figure 5.5 shows a plot of the temperature and species profiles of a flame with a

radiative energy loss modeled as in the previous section. The prescribed soot volume

fraction profile is also shown on the same plot. Next, the structure of the flame is

YOO=O.6 YFF=O.8 u,L/a,=5.45

Prescribed fV profile

1 .0 "' ' T . r . , . ,

G—-0’[

 

Hyo

0.8 " HYF , .,-

—— fv*10

0.6

0.4

0.2

    0.0 -
0.0 0.2 0.4 0.5 0.8 1.0

Figure 5.5. 7', yo and yp profiles for prescribed soot volume fraction.

shown in Figure 5.6. The convection, diffusion and reaction terms of the nondimen-

sional energy equation are plotted along with the radiative loss term. This figure can

be compared with the structure of a. similar flame with a sech2 type radiative loss
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term, as illustrated in Figure 4.11 of Chapter 4. The similarity in the structure of

the two flames is quite striking and suggests that the simple sech2 type radiative loss

profile is a fairly good approximation which is capable of revealing interesting aspects

of the diffusion flame behavior when subject to radiative heat loss.

Y00=0.5 YFF=O.8 uOL/oc0=6.45
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Figure 5.6. Structure of the flame. Note the radiative loss term.
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5.10 Conclusions

A simplified analysis of the soot profile was carried out in this chapter using the Syed,

Stewart and Moss [1] model. Burke-Schumann temperature and species profiles were

assumed and the soot volume fraction equation was solved numerically for a diffusion

flame established between an oxidizer and a fuel wall. Oxygen diffused out of the

oxidizer wall and fuel was released from the fuel wall by means of both diffusion and

convection. It was observed that for the soot volume fraction equation the primary

balance was between the processes of soot convection and soot growth. Equating the

expressions for these two quantities resulted in an analytical expression for the soot

volume fraction in integral form. The integral was evaluated using two methods: the

first one involving exponential integrals and the other using Laplace’s method. The

analytical profiles matched well with the numerical solution except very near the flame

location ZI. Close to the Burke-Schumann flame location, the soot diffusion term is

strong and there the essential balance is between the soot convection and the soot

diffusion, the soot growth term being relatively much smaller. However, the thin zone

may be an artifice of the IRR approximation itself. The analytical expressions, which

were derived on the basis of the soot convection ~ soot growth balance, do not predict

the soot volume fraction values accurately near the infinite reaction rate (IRR) flame

location. However, for most part of the soot layer the soot volume fraction profile is

predicted well by the analytical formulae. Consequently, the soot layer thickness can

also be accurately predicted using analytical methods.

A soot radiation term was also developed on the assumption of the optically thin

limit for the radiation. A soot volume fraction profile obtained from the numerical

solution was used in the expression for the soot radiation term. The radiation term

was then included in an energy equation as a sink term and the equation was solved

simultaneously with the coupled fuel and oxidizer species equations. The results
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revealed that the flame structure closely resembles the structure of the flames studied

in chapter 4 for sech2 heat loss profiles. Such a resemblance indicates that the simple

sech2 heat loss profile examined in chapters 3 and 4 is capable of revealing interesting

details of the flame structure.



CHAPTER 6

Investigation of the Comprehensive

Soot Radiation Problem

In the previous chapters we have analyzed with simplified models of soot profile

and radiation loss effects. In the current chapter we deal with the complex problem

of soot radiation and diffusion flame interaction using a soot model chosen from

the available literature. Here we use the two equation model of Syed, Stewart and

Moss [1] for the soot volume fraction and the soot number density. Their model

has been developed based on experiments with different fuels and for a range of

flow conditions; we have examined this model analytically in chapter 5. A two—

dimensional Wolfhard-Parker burner was used for their experiments in order to fix

various undetermined constants. This model has been used by Syed et al. [1] for

both laminar and turbulent flame predictions. Recently, Ku et al. [51] have used this

model for the simulation of microgravity turbulent diffusion flames and the agreement

of the model with experiments was very good. In the following sections, we first

describe the conservation equations and then formulate the final, non-dimensional

equations including the Syed, Stewart and Moss [1] soot model. Then, we discuss

some interesting results obtained from the numerical solutions of the conservation

equations. Although our results indicate a variety of interesting behaviors, a radiative

116
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extinction was not observed, suggesting to us that a steady state extinction is unlikely.

6.1 Formulation

There are six conservation equations of importance in our problem, viz., the mass, the

energy, the oxidizer and fuel species, the soot volume fraction and the soot number

density equations. At this stage we also note that on an overall basis, we can account

for three principal chemical reactions, as noted below

fuel+air —-> products

fuel —+ soot

soot+oxygen —> products

It has to be kept in mind, however, that each of the above overall reactions is very

complex in reality and consists of hundreds, and may be even thousands of steps and

intermediate products.

The continuity equation is

0 a
_P 12 = 0 (6,1)

at 82:

At steady state, Bpu/ax = 0 and hence, pa = pouo, since the mass flow rate is

m = pouo. Hence,

The energy equation has three source terms accounting for the heat generation due

to the primary chemical reaction, the radiative heat loss and the heat generation due

to soot oxidation. The energy equation is

dQR

PCp(Tt + uTz) = (A717); + QFtbF - E + 620.02.... (6.3)



118

We assume that the reaction C + 3§02 = C0 + Q03 takes place for soot oxidation,

with Q“, being the heat release. The heat release in the above oxidation process is

53 kCal/mole of 02 [52], [53]. Hence, Q03: = 9246.29 kJ/kg of C.

The oxidizer equation has a depletion term due to the primary reaction and an-

other one accounting for soot oxidation, viz.,

4

-15.... (5.4)
p(Y0t + uyOx) = (pDOYOx)a: - 11’le — 3

We also note that for every kg of C 4/3 kg of 02 is required due to the oxidation

reaction for soot particles, hence the coefficient 4/3 for the oxidation rate if)” in the

above equation.

The fuel mass fraction equation includes depletion terms due to the primary chem-

ical reaction as well as the conversion to soot particles,

. 4 .

pCP(YFt + uYFx) = (PDFYFx)x — wF "‘ 3109- (6-5)

For the conversion of fuel to soot, we assume a very simple overall reaction of the form

CH4—>C + 2H2. If the soot growth rate is 1139 kg of C/m3s, then the depletion rate

of the fuel due to soot growth is (4/3)u'2g kg of fuel/m3s, since 1 kg of C is produced

from 4/3 kg of fuel, according to the above chemical reaction.

Finally, we have two conservation equations for the soot volume fraction and the

soot particle number density, viz.,

P(th + (u + uT)fo) = (PDstx)x + Li’11 + “)9 _ 1003, (6-6)

and

10(77: + (u + when) = (st005 + cbn - a)... (6-7)
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In the above, on, 1129 and 1110,, are respectively the soot nucleation, growth and ox-

idation rates in units of kg/m3s. The quantities c2)" and (be are the nucleation and

coagulation rates in units of (kg/m3)(number/m3s). The soot volume fraction in

units of m3,oot/m3ga, is fv and 7] is the number density of soot particles normalized

by Avogadro’s number (No = 6.0x 1026), i.e., 77 = n/No. The thermophoretic velocity

term is denoted by 111. A discussion of thermophoresis is included in section 6.1.1.

The soot diffusivity, D3, is usually quite small and was assumed to be 1% of the gas

diffusivity [12].

As in the preceding chapters we transform the equations to a (Z,t) system of

coordinates, where Z = 1 — s/so with s = fgpda: and so = fg’pdx. As a result, our

conservation equations take the following form:

 

 
 

  

 
 

energy:

Pouo (M) 1 . p dqzz .

T — ——T = T — —— 0:1: 0:: a -1 50 z 010302 22+ pCp(QFwF+ 80 d2 +Q w ) (6 8)

Oxidizer mass fraction:

2
Penn P Do 1 . 4 .

Y _ = __' _ 01: 3 °0: 30 Yoz 302 Yozz p(uwp+3w ) (6 9)

Fuel mass fraction:

2
pong _ p DP 1 . 4 .

YF: - SO YFz — 802 YFzz - ;(wF + 5%), (6.10)

Soot volume fraction:

u + u 2D 1 . . .th _ (po 0 p T)fVZ : P SfVZZ + ;(wn + wg _ wax), (611)

30 302
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Soot number density:

  

+ 2D 1 . .t_ (Polio PUT) : P 257722 + _(wn _ we). (6.12)

so 5 p

In the above, we have assumed the quantities pA, pzDo, p2Dp and p20, to be con-

stant. Next, we nondimensionalize the above equations. We use 1' = (T — To)/(T; —

To), yo = Yo/Yoo, 3])? = YF/Ypp and iv = fv/fvo, where fvo is a suitably chosen

reference value. Also, we define a set of characteristic times for the different chem-

ical processes. The characteristic chemical time for the primary reaction is denoted

by tchem = poYpp/tbp,,.ef. The quantities tn 2 poYpp/tbn,,ej and tg = p0YFF/wg,r¢f

are, respectively, the characteristic times for the processes of soot nucleation and

soot growth. The characteristic time scale for soot oxidation is to; = poYoo /11203,"f.

The quantity 5 is the nondimensional density and the following terms are also used:

1"}: = rim/p, 1‘,, = tbn/fi, F9 = dig/[0' and Fox = wax/p. Consequently, the energy

equation becomes

31' 1 01' _a_o0271 d__qR

b—tz— 30—6Z= “011302 8Z2 + QFDFTF +—50
dZ + @0171)0137.01?)

(6.13)

where 63 is given by qR/pouonAT. The radiation term (1 /5o)(d(jR/dZ) is modeled

exactly as in section 5.9.2 of chapter 5 and is given by equation 5.41. The quantity 5o

equals 3/ (po L) and D0,, is a ratio of the characteristic flow time and the characteristic

oxidation time, i.e., tref/tox, where tn.) = L/uo. The oxidizer mass fraction equation

becomes

ago 10__yo_ ao 6%

Ct— So 72:110ng 8Z2

  3120.13,.) (6.14)— ((bDFFF + 3

Correspondingly the fuel equation takes the following shape:

83);: 1 ayp_ _a_o _3__2yp_ _ 4 va0 _

W — 57,—62 110—53572 pp” + " ’9 (6'15)
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The volume fraction equation looks like the following:

div (1+r72.T)8fV_ 0,0 32f}, __ __ __

6t _ go BZ _ 110133 522 +(A7‘n'l'37'g crox) (6.16)  

In the above, we have assumed do = 000 = Dpo and A = YFFtref/fvotn, B =

Ypptnf/fvotg and C = YOOtref/fVOtox- The quantity firm is given by puT/uo. For

the soot number density, following the analysis in section 5.4 of chapter 5 we can

write 0),, = (1),, i.e., the soot number density equation rapidly saturates and at steady

state the soot nucleation and coagulation rates are equal.

We will now focus our attention on the different rate expressions. The quantity

tbp is the rate of primary chemical reaction, and has the form pAYoYpexp(—E/RT),

where A is the pre-exponential exponent and E is the activation energy.

As mentioned before, for the processes of soot nucleation, growth and coagulation

we have used the Syed, Stewart and Moss [1] model. A detailed description of the

model can be found in section 5.2 of chapter 5 and the expressions for 1"“, F9 are as

formulated in section 5.4 and are respectively given by equations 5.19 and 5.20. The

soot oxidation rate term, Fox was modeled using the semi-empirical formula of Nagle

and Strickland-Constable [2].

6.1.1 The Influence of Thermophoresis

Thermophoresis is the phenomenon wherein small particles, when suspended in a gas

in which there exists a temperature gradient VT, experience a force in the direction

opposite to that of VT [54]. A common example of thermophoresis is the blackening

of the glass globe of a kerosene lantern; the temperature gradient established between

the flame and the globe drives the carbon particles produced in the combustion process

towards the globe, where they deposit. Thermophoresis is of practical importance in

many industrial applications, such as thermal precipitators.
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The temperature gradients in our flames are quite steep and hence, an examination

of the effect of thermophoresis is duly warranted. Santoro et al. [30] observes that

soot particles can usually be treated as being in the free molecular limit for flame

conditions, i. e., the particle diameter is much smaller than the mean free path of

the gas. Under such conditions, the thermophoretic velocity, uT can be written as

uT = —(3/[4(1 + 1rA/8)])(u/T)VT, where u is the kinematic viscosity of the gas

and A is the accommodation coefficient which usually is taken to be 0.9 or 1.0 [30].

Assuming A = 0.9 we obtain the following expression for the thermophoretic velocity

of the gas:

uT = —0.55%VT (6.17)

The — ve sign in the above indicates that the thermophoretic velocity is in the di-

rection of decreasing temperature. The thermophoretic velocity component is simply

added to the convective flow velocity, as in equations 6.6 and 6.7.

Next, we carry out the necessary coordinate transformation and express the quan-

tity fnT = puT/uo as in equation 6.16.

_ 0.551/(1 — a)2 it:

_ [1 — a(1 — r)]3(uoL§o) dZ

 

mT (6.18)

A discussion of the influence of thermophoresis pertaining to this research problem is

included in section 6.4.

6.2 Parameter Values

The parameter values assumed here are the same as in chapters 3 and 4. However, the

value of the pre—exponential factor, A, was taken from the work of Chen et al. [55].

For the quantity A/p they used a value of 5.2)(1013 cm3/gm — s. We assumed a

reference value of p = 0.0012 gm/cm3 and hence our A = 1.95x109 Us The adiabatic
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flame temperature correlation used in chapter 3 was also used in this chapter. The

length of the domain, L = 0.02 m and as before, the thermal diffusivity at the

reference condition, ao = 1.24x10'4 mz/s [50]. The kinematic viscosity of the gas

phase is assumed to be u = 8.68x10‘5 m2/s.

6.3 Numerical Solution

The nondimensional temperature, species and soot volume fraction equations were

numerically integrated using the finite difference method. The non linear source terms

were linearized using Newton’s method. The Burke-Schumann profiles for tempera-

ture and species were used as initial profiles. The soot volume fraction was assumed

to be zero everywhere at the initial time. The transient conservation equations were

integrated to steady state.

6.4 Results and Discussion

Figure 6.1 illustrates the temperature, species and soot volume fraction profiles in the

Z coordinate when Yoo = 0.6, YFF = 0.7 and uoL/ao = 3.23, which corresponds to

uo = 0.02 m/s. The nondimensional temperature profile indicates a substantial effect

of radiative losses. An examination of the species profiles reveals that there is no

significant diffusion of oxidizer and fuel to the opposite sides of the flame. The soot

volume fraction profile resides primarily on the fuel side of the flame, in accordance

with experimental observations [30]. Note that there is a slight change of slope of the

temperature profile in the radiative loss zone.

The nondimensional temperature profile indicates a significant effect of radiative

losses. The species profiles indicate that there is no significant diffusion of oxidizer

and fuel to the opposite sides of the flame. The soot volume fraction profile resides
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Figure 6.1. Temperature, species and soot volume fraction profiles.
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primarily on the fuel side of the flame, in accordance with experimental observa-

tions [30].

The profiles are depicted again in the physical coordinate in Figure 6.2 in order to

provide an idea of the magnitudes of various quantities. The fuel wall is at a: = 0 mm

and the oxidizer wall is at x = 20 mm. The maximum temperature is about 1745 K

which occurs at a: = 15.55 mm. The soot volume fraction peak is at 14.31 mm. We

also observe that soot exists between approximately a: = 10 mm and a: = 16 mm.

YOO=O.6 YW=0.7 u,L/a,=3.23
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Figure 6.2. Temperature, species and soot volume fraction profiles in the physical

coordinate, 3:.

We examine the temperature profile more closely in Figure 6.3. The temperature

profiles for the infinite reaction rate (IRR) situation and the profile for finite rate

chemistry in the absence of radiation are also plotted in the same figure. It is clear
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that the effect of radiative loss is quite pronounced and the peak nondimensional

temperature drops from about 0.8 to 0.59. The decrease is approximately 510 K.

Another interesting aspect to be noticed is the slope of the oxidizer side tempera-

ture profile is nearly the same for all the three cases. The fuel side slope decreases

considerably on the inclusion of radiative losses.
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Figure 6.3. 1' profiles for three different situations.

The profiles of the different terms in the energy equation are plotted in Figure 6.4.

On close inspection of Figure 6.4 we note that the oxidation term, Qox’Doxroz is very

small everywhere compared to the other terms. The convection and diffusion terms

roughly balance one another near the oxidizer wall (Z = 0). The reaction term

((1 + ¢)Dr) is balanced for the most part by the diffusion term, ao/(uoL§g)rzz. The
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Figure 6.4. The Contribution of various terms in the energy equation.
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diffusion term is positive near the right edge of the reaction term profile and it recovers

the radiative loss term in that area. Thus the radiative loss term is countered by both

the reaction term and the diffusion term. The peak of the temperature profile is at

Z = 0.19 and the radiative loss term maximum is at Z = 0.216. Interestingly, the soot

volume fraction maximum occurs at Z = 0.224, indicating that the radiation term

profile maximum is between the maxima of temperature and soot volume fraction

profiles.

YOO=O.6 YFF=O.7 u,L/a,=3.23
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Figure 6.5. The contribution of various terms in the soot volume fraction equation.

Figure 6.5 shows the profiles of the different terms in the soot volume fraction

equation. It is seen that the soot growth and oxidation regions do not overlap very

significantly. This is expected in a diffusion flame. For most part soot growth (Br-'9)
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is balanced by soot convection term ((D,o/uoL§3)(d2fv/dZ2)). However, when oxi-

dation (Craz) is present the sum of convection and soot growth terms compete with

the oxidation term.
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Figure 6.6. The effect of uo on temperature profile for a given stoichiometry.

We next focus on the effect of fuel blowing velocity, uo, on the temperature profile

when the fuel and oxidizer mass fractions in the reservoir are assumed to be fixed.

For Yoo = 0.6 and Ypp = 0.8 the temperature profiles for different values of no are

plotted in Figure 6.6. As mentioned before, L = 0.02 m and ao = 1.24x10‘4 mz/s.

The fuel flow velocity uo is increased from 0.02 m/s to 0.08 m/s with increments

of 0.01 m/s. With increasing uoL/ao, i.e., with increasing no the maximum flame

temperature is found to increase. Also, the increased fuel supply pushes the flame
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closer to the oxidizer wall. It is also to be noted that the movement of the flame

toward the oxidizer wall with increasing fuel flow rates is quite rapid for lower values

of uo. However, the rate of migration is mitigated for higher values of uo. The slower

rate of movement can presumably be attributed to the proximity of the flame to the

oxidizer wall for high values of uo. It is important to mention here that we have

already noted similar flame behavior in the absence of radiative losses (NR = ) in

section 4.7 of chapter 4.

We now focus on the drop in the maximum flame temperature compared to the

adiabatic flame temperature. As discussed in chapter 3, the quantity of interest is

Ar; and is defined as 1 — r; where r; is the maximum flame temperature. Figure 6.7

is a plot showing the variation of ATf as a function of the nondimensional fuel flow

rate at the fuel wall, i.e., uoL/ao.
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Evidently, Figure 6.7 indicates that there is a drop in the quantity Ari, i.e., an

increase in Tf with increasing uo. This is a direct consequence of the results illustrated

in Figure 6.6.

Y00=O.6 YFF=O.8
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Figure 6.8. The effect of uo on reaction term for a given stoichiometry.

The reaction term((1 + ¢)Dr) also exhibits interesting behavior for increasing uo.

Figure 6.8 indicates that for low fuel flow rates the reaction term is far away from

the oxidizer wall (Z = 0) and it is quite broad in Z space. With increased fuel

flow rates the reaction rate profile becomes narrower and exhibits higher maximum

values. Close to the oxidizer wall a very sharp reaction term profile is observed, e.g.,

for uoL/ao = 12.90. Since the profiles become narrower and taller with increasing
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uo values, the integrated value of the reaction term, i.e., qTotaz = f01(1 + ¢)DrdZ was

also examined. The result is shown as inset to Figure 6.8.

In order to understand the behavior of the reaction rate profile better the species

mass fraction profiles were also investigated.

 

 
0.6

  
Z

Figure 6.9. The influence of no on the species mass fraction profiles for a given

stoichiometry.

It was found that with increased fuel blowing there is a substantial change in the

fuel mass fraction profile. The fuel mass fraction at the wall increases considerably

with increased fuel blowing and saturates to a value of about unity for uoL/ao = 12.90.

This tremendous increase in fuel mass fraction on the fuel side of the flame pushes
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the reaction zone closer to the wall and compresses the reaction zone. The oxidizer

mass fraction for different cases are also shown on the same plot. The direction of

movement of the go profile with increasing uoL/ao is indicated by an arrow on the

plot.

A study of figures 6.6 and 6.9 in conjunction was found to be quite illuminating.

From Figure 6.6 we note that for high values of uoL/ao close to the fuel wall the

nondimensional temperature is close to zero. Figure 6.9, on the other hand, indicates

that the normalized fuel mass fraction values are close to unity near the fuel wall. For

example, when uoL/ao = 12.90, 7'20 and ypzl for Z20.6. This clearly suggests that

in this case, for Z20.6 the conditions in the domain are approximately the same as in

the fuel reservoir, viz., r = 0, yo = 0 and yp = 1. Hence, the fuel wall has virtually

moved in closer to the flame, and has thereby pushed the flame close to the oxidizer

wall and compressed the region of heat release. Thus, the intense heat release takes

place over a very narrow zone and hence, the peak temperature becomes higher, even

though the temperature in most part of the domain decreases, as shown in Figure 6.6.

It is also interesting to scrutinize the soot volume fraction profile for increasing

values of uo. Consistent with the movement of the temperature and reaction rate

profiles the soot volume fraction profile also moves toward the oxidizer wall with

increased fuel flow, as shown in Figure 6.10. For lower flow rates the soot volume

fraction profile is broad but it becomes narrower and taller for increased uo, similar

to the behavior of the reaction zone. Also, the soot volume fraction at the oxidizer

wall is zero for low values of uo and all the soot produced get oxidized on the oxidizer

side of the flame. However the same is not true for enhanced fuel blowing and for

uoL/ao = 12.90, for example, the soot volume fraction at the wall is 1.39x10‘5,

indicating that a significant amount of soot remains on the oxidizer side without

being oxidized.

Having analyzed the effect of uo on r and fv profiles we now focus our attention
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etry.
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on the radiation term, I‘Rf—v(1 — a(1-— 7))2((1-— a(1— 7))“ — (l — (1)2). We note that

the radiation loss term is explicitly dependent on the temperature and soot volume

fraction profiles. We hence expect the radiation loss profile to also migrate toward the

oxidizer wall with increasing values of uo. Figure 6.11 reflects the expected behavior

in the radiative loss term profile. The integrated value of the radiative loss term in

Z space is also found to decrease with increasing uoL/ao.
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Figure 6.11. The effect of uo on the radiative loss term profile for a given stoichiometry.

The maximum of the radiative loss profile was always found to be between the

maxima of the 1' profile and the fV profile, i.e., Z, < ZRad < Zfv, with Z,- denoting the

location of the maximum of the quantity i. The maxima of the reaction rate profile
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was found to exist always to the left of the of Z, for the fuel rich (ml) stoichiometries

considered in the present work.
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Figure 6.12. The effect of no on the radiative loss term profile for a given stoichiometry.

Next, a radiative heat loss fraction, x, is calculated. As described in chapter 3,

X is defined as the ratio of the heat lost due to radiation and the heat generated in

the combustion process, i.e., X = qRad/qrpotag. Figure 6.12 indicates that the radiative

fraction changes very little with increasing value of uo. The mean value of X is

about 0.3. This agrees quite well with the commonly used value of x in combustion

literature [4].

In order to understand the effect of radiative losses better we studied the temper-

ature and species profiles when no soot is generated and there are no radiative losses.
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This necessitates the solution of nondimensional temperature and species equations

with the only source terms resulting from the primary combustion reaction. This is

the same as the treatment in chapter 4 and we would focus on the solutions when

NR=0.
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Figure 6.13. The effect of no on the 7' profile for a given stoichiometry on the assump-

tion of no radiative losses.

The temperature profile shown in Figure 6.13 indicates that similar to the radiative

loss situation the profiles move toward the oxidizer wall on increased fuel blowing. The

maximum of the nondimensional temperature profile also increases with increasing uo.

Interestingly the reaction rate profile also indicates a consistent direction of movement

(Figure 6.14). The integrated value of the reaction term, qTomz, also decreases with
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Figure 6.14. The effect of no on the (1 + ¢)’Dr profile for a given stoichiometry on

the assumption of no radiative losses.
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increasing uoL/ao, indicating that the radiative losses are not primarily responsible

for this attenuation of the value of gut“. The proximity of the oxidizer wall is of

crucial importance in this issue. It is also interesting to note that QTotal increases as

uoL/ao increases from the low value of 3.23 to 4.85. However in the higher range of

values of uoL/ao the flame is extremely close to the oxidizer wall and increases in

uoL/ao necessarily result in a drop in the value of qrmz. Thus our simple analysis

indicates that heat losses to the wall and radiative losses are both important to the

flame in a significant way.

We also examined the effect of changing the oxidizer mass fraction when both the

fuel mass fraction at the wall (Ypp) and the fuel flow rate (no) are kept constant.

YFF=O.8 u01./(x0=3.23
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Figure 6.15. The effect of Yoo on the 7‘ profile for a given YpF and a given uoL/ao.
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On increasing Yoo the temperature profile maximum moves more toward the

fuel wall. However the magnitude of the maximum keeps on decreasing as Yoo is

increased. The species profiles are also studied in detail for a better understanding

of the flame. Figure 6.16 illustrates the normalized oxidizer and fuel mass fraction

profiles. We observe that the oxidizer mass fractions (yo) are everywhere higher when

YW=OBuJflk=323
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Figure 6.16. The influence of Yoo on the species profiles for a given YFF and a given

noL/ao.

Yoo is increased. In sharp contrast, the normalised fuel mass fraction (yp) values are

lower everywhere for increased Yoo values. Also, the normalised fuel mass fraction

values at the wall decrease on increasing Yoo values. The significant decrease in 3]}:

values result in decreased reaction rates, as illustrated in Figure 6.17. The reaction

rate profile also moves toward the fuel wall on increasing the value of Yoo. The
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Figure 6.17. The influence of Yoo on the reaction rate for a given Ypp and a given

HoL/ao.
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integrated reaction rate, qTotaz, decreases with increasing Yao-

The soot volume fraction profile is investigated next. As anticipated from the

movement of the temperature and reactivity profiles, the soot volume fraction profile

moves toward the fuel wall. With increasing Yoo, the temperature values decrease

and consequently, less soot is produced. It has to be mentioned here that for lower

values of Yoo the soot volume fraction profile is located close to the oxidizer wall and

there is a residual soot volume fraction near the wall, which is not oxidized. For higher

values of Yoo there is no residual soot volume fraction near the wall. The radiation

vFF = 0.8 uOL/ozo = 3.23
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Figure 6.18. The influence of Yoo on the soot volume fraction profile for a given YFF

and a given uoL/ao.

term profile (see Figure 6.19) also moves toward the fuel wall and the maximum of the

profile also decreases in magnitude as Yoo is increased. Investigation of the integrated
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value of the radiation term profile was also carried out and the result is shown as inset

to Figure 6.19. The integrated value decreases as a function of increasing Yoo. The

YFF=O.8 u,L/a,=3.23
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Figure 6.19. The effect of Yoo on the radiation term profile for a given Ypp and a

given uoL/ao.

radiative fraction values were also investigated and are plotted in Figure 6.20. The X

values increase with increasing Y00 and are in the vicinity of 0.3.

The effect of increasing Ypp for a given no and a given Yoo is investigated next.

The temperature profile is observed to move toward the oxidizer wall, as expected

(see Figure 6.21). However, there is also a drop in the temperature profile maximum.

A plot of the drop in peak flame temperature as a function of the fuel wall mass
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Figure 6.21. The effect of Ypp on the temperature profile for a given Y00 and a given

HoL/ao.
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fraction is shown in Figure 6.22.
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Figure 6.22. The drop in peak flame temperature as a function of Ypp.

The reaction rate profile also moves toward the oxidizer wall on increasing Ypp

as shown in Figure 6.23. Interestingly, the reaction rate profile maximum increases

with increasing YFF. The integrated value of the reaction rate, qTotal, increases with

increasing YFF, unlike in a previous situation when 110 was increased for a fixed set

of Y00 and YFF.

The species mass fraction profiles are shown in Figure 6.24.

It is clear from a comparison of Figure 6.9 and Figure 6.24 that increasing fuel

blowing rate has a much stronger effect on the fuel mass fraction profile than increas-

ing the fuel mass fraction at the fuel reservoir.
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Figure 6.23. The effect of Ypp on the reaction term profile for a given Y00 and a

given uoL/ao.
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Figure 6.24. The effect of YFF on the species profiles for a given Y00 and a given
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Correspondingly the soot volume fraction profiles are also plotted in Figure 6.25.

Soot volume fraction increases as Ypp is increased and the profile moves closer to the

Y00=0.6 uoL/oco=3.23
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Figure 6.25. The effect of Ypp on the soot volume fraction profile for a given Y00

and a given uoL/ao.

oxidizer wall in accordance with the movement of the temperature and reaction rate

profiles. Figure 6.26 shows the radiation term profile. The integrated value of the

radiative loss profile is found to increase with increasing Ypp values.

The radiative fraction X indicates an increasing trend with Ypp (See Figure 6.26.

It should also be noted that the value of the radiative fraction is close to 0.3 in all

cases.

It is also of interest to examine the velocity profile, 11, for a typical flame. As

discussed before, the velocity u is given by equation 6.2, and hence is dependent
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YO0 = 0.6 uoL/oco = 3.23
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on the density distribution ,5. The p distribution is obtained using equation 3.16

of chapter 3 and a typical case is plotted in Figure 6.28. The normalised density

is the highest at the close to the walls and it attains a minimum at the maximum

temperature location.

YOO=0.6 YFF=0.8 uoL/oco=3.23
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Figure 6.28. The ,6 distribution plotted in the Z coordinate.

The velocity distribution is plotted for two different mass flow rates in Figure 6.29.

Figure 6.29 depicts the profiles for uoL/ao = 3.23 and uoL/ao = 12.90. The velocity

u is quite high near the flame location and decreases to its nominal value no at either

wall. The magnitude of u is much higher when uoL/ao = 12.90, as expected. The

maximum velocity is ~12 cm/s when uoL/ao = 3.23 and it increases to ~12 cm/s

when HoL/ao = 12.90.
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The influence of thermophoresis was examined by plotting 772T as a function of Z.

As noted in section 6.1.1 fnT is given by equation 6.18. Figure 6.30 shows the variation

of 7717 for a low velocity (uoL/ozo = 3.23) and for a higher velocity (uoL/ao = 12.90).

It is apparent from the figure that the value of 771T is not significant for most part
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Figure 6.30. The quantity fizT plotted as a function of Z.

of the domain and it increases near the cold walls. For uoL/ao = 3.23 the influence

of thermophoresis is significantly more important compared to the high velocity case

(uoL/ao = 12.90).

Next, the thermophoretic velocity 117» and the ratio of the thermophoretic velocity

and the convective flow velocity, i.e., uT/u are plotted in the physical coordinate :13.

We recall that the fuel wall is located at a: = 0 m and the oxidizer wall is located
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at :c = 0.02 m. Figure 6.31 indicates that uT is small in both low and high velocity
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Figure 6.31. The quantities 117 and uT/u plotted as a function of the physical coor-

dinate 2:.

cases. However, the ratio uT/u is quite important over a significant region near either

wall. For uoL/ao = 12.90, however, uT/u seems significant only near the oxidizer

wall.

6.5 Estimation of the Soot Volume Fraction Pro-

file

In section 5.6 of chapter 5 we estimated the soot volume fraction profile assum—

ing Burke-Schumann, or, IRR profiles for the temperature and species. However,
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Burke-Schumann profiles are not accurate enough in a finite chemistry situation with

radiative losses. The temperature values are too high for the IRR case and conse-

quently, the soot volume fraction values are unrealistically high in some cases. Hence,

the adiabatic flame temperature was arbitrarily chosen to produce a realistic range

of soot volume fraction values. A more involved treatment is necessary when the in-

fluences of finite chemistry and radiative loss are included. In this section we purport

to introduce the effect of radiative losses in a very simple way and derive a modified

expression for the temperature, species and soot volume fraction.

Let us first assume that the peak value of the nondimensional temperature, 1', is

a fraction 5. Then, equation 4.13 can be modified to write

61:.z". 03232,
T = , f (6.19)

e-l/c_e—Z/c

£6c__1/c:—Zf7c Zfszsln

We note that when t" = 1 we get the Burke—Schumann profiles. We will still use

equation 5.24, which is an expression for the balance of soot convection and growth

terms. Also, similar to the treatment in section 5.6 of chapter 5 we try to express the

normalised fuel mass fraction 3]}: in terms of the fuel side temperature distribution,

1'. We obtain yp = a(1 — T/é). Also, dZ can be written as dZ = —ac/[a1' — (a —1)£].

Using the expressions for yp and dZ in equation 5.24 we get

(1 - r/cwseWE“. )(fizfm)d

(1" 0(1- 7))5/6(ar — (a —1)5)d
 ——de = [B§o(1 — a)4/3al3/6c] (6.20)

Again we note that setting { = 1 in equation 6.20 recovers equation 5.28 of section 5.6.

On integrating equation 6.20 subject to the boundary condition fv = 0 at Z = 1 we

get the soot volume fraction profile. However, integrating equation 6.20 involves
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evaluating the integral

_1)7/6‘,34517+?)(fifq)

 

 

6.21

111=./o((11—a((1 —T))5/6(aT—(a—l){)dT ( )

Substituting 11 = 1 — T and writing 6,0,: 3.9+ Efiwe arrive at the following expression

for 11:

1 _ _ 7/6 j-aauu

I1 = 1 (u (1 5)) e du (6.22)

f u (1'- OU)5/6(€ + 0(1- u - 6))

This integral could not be evaluated by analytical means. To simplify the integrand,

the exponents 7/6 on (u — (1 - 6)) and 5/6 on (1 — cm) were both replaced by unity.

The simplified integral, say 12, was evaluated using the commercial code MAPLE. The

result was in terms of exponential integrals, similar to equation 5.32 of chapter 5.

We note here that the maximum flame temperature is not known and has to be

approximately determined in order to evaluate the soot volume fraction profile using

equation 6.20. In the present work, we use the value of 6 directly from the numerically

obtained solution of the temperature profile. Figure 6.32 shows the numerical solu-

tions for the temperature, species and soot volume fraction profiles when Yoo = 0.5,

YFF = 0.4 and uoL/ao = 4.85. Using the value of E from the numerical solution in

equation 6.19 we determine a nondimensional temperature profile, 7'. The normalised

species mass fraction profiles are then determined iteratively, similar to the procedure

described in section 4.5 of chapter 4. Based on these analytically obtained tempera-

ture and species profiles we numerically solve the soot volume fraction equation. The

solution is plotted in Figure 6.32. The analytical solution of the soot volume fraction

equation involving exponential integrals is also plotted in Figure 6.32. It is clear that

the analytical solutions for 7', yo and yp are in very close agreement with the numeri-

cal solutions. Also, the soot volume fraction profile obtained on the assumption of the

analytical 7', yo and yp profiles approximates the numerical solution reasonably well.
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Figure 6.32. Comparison of fv profiles when Yoo = 0.5, YFF = 0.4 and uoL/ao =

4.85. Numerical Solution, 1 refers to the simultaneous solution of coupled equations

of 1', yo, yF and fv. Numerical Solution, 2 refers to the solution of the soot volume

fraction equation on the assumption of analytical profiles for 7", yo and yp. The

analytical solution of the soot volume fraction equation involves the evaluation of the

integral I; in terms of exponential integrals.



159

The soot volume fraction values are in good agreement and the numerical solution of

the soot volume fraction equation is also capable of predicting the soot zone thickness

fairly well.

6.6 Conclusions

The comprehensive soot radiation problem was analyzed in this chapter assuming

soot radiation in the optically thin limit. For soot formation, the model of Syed,

Stewart and Moss [1] was used. The semi-empirical formula of Nagle and Strickland-

Constable [2] was used for soot oxidation. The conservation equations were numeri-

cally solved for a range of parameter values and the results were analyzed to study the

influences of the various parameters on the flame structure and the flame radiation.

The soot volume fraction profile was always found to exist on the fuel side of

the flame with the location of the peak soot volume fraction being 1 — 2 mm to the

fuel side of the location of the maximum temperature. This is in accordance with

experimental observations [30]. The peak of the radiation term was always located

between the peak temperature and peak soot volume fraction locations.

The influence of increasing the fuel blowing velocity, uo, was investigated first. On

increasing uo the temperature and reaction rate profiles migrated toward the oxidizer

wall. The maximum flame temperature increased as uo was increased. The integrated

value of the reaction term, i.e., qTotag, decreased as uo was increased. A higher fuel

blowing rate managed to push the flame against the oxidizer wall, and consequently,

the heat losses to the wall also increased. This resulted in a reduction in the value of

qul. It was also found that the rate of movement of the flame toward the oxidizer

wall decreased with higher values of uo and the reaction rate profile became taller

and narrower. A similar trend was also observed for the soot volume fraction profile

and the radiative loss profile. The integrated value of the radiation term, i.e., qRad,
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decreased with increasing uo. The value of the radiative fraction was around 0.3.

On increasing Yoo for a given YFF and uoL/ao the flame migrated toward the

fuel wall and the temperature, as well as the reaction rate values decreased. The soot

volume fractions, as well as the qRad values decreased in such a situation.

Finally, Y00 and uoL/ao values were kept fixed and Ypp values were increased

to study the flame behavior. The flame moved toward the oxidizer wall and the

peak flame temperature decreased with increasing Ypp. However, the gum; values

increased. The soot volume fraction values also increased. The radiation term profile

also moved toward the oxidizer wall and the qRad values increased with increases of

Ypp. The radiative loss fraction was found to be around 0.3.

On including a correction factor for the peak temperature it was possible to modify

the analytical expressions for the Burke-Schumann temperature and species profiles to

agree with the numerical solution. Such an agreement was possible primarily because

there was very little leakage of fuel and oxidizer across the flame. Using the modified

expressions for the temperature and species profiles it was possible to develop an

analytical expression for the soot volume fraction profile based on the method already

described in chapter 5. The analytically obtained soot volume fraction profile agreed

very well with the numerical solution.

A radiative extinction was not observed in any of the cases tested. This indicates

that a steady state extinction is not quite likely. As mentioned before, the radiative

fraction value was about 0.3 in all the cases and a decrease (increase) in the qTota;

values resulted in a decrease (increase) of qnad. This phenomenon seems to indicate

that the radiative losses from a flame bears a direct relationship with the heat re-

lease and an excessive increase of radiative losses is not likely when the heat release

decreases.



CHAPTER 7

Conclusions and Recommendations

for Future Work

The work presented in this dissertation has revealed interesting features of the struc-

ture of a radiating diffusion flame. A qualitative analysis of a diffusion flame with a

hypothetical sech2 radiative loss profile indicated that for a loss term fixed in space,

the flame can break through the loss zone on increasing the radiative loss term suf-

ficiently. It was also shown that such a “break through” is only possible for thin

radiative loss zones placed immediately next to the ideal flame location, Z1.

For pure diffusion flames the increase in radiative losses always resulted in the

flame moving toward the oxidizer side. For a diffusion flame with convective fuel

flow from the fuel wall even the opposite was observed. Evidently, the interaction of

convection, diffusion, reaction and radiative losses is harder to predict compared to a

pure diffusion flame situation, when the effect of convection is not present.

An analytical model of soot profile was determined which accurately predicts the

soot zone thickness when Burke-Schumann profiles were assumed for the temperature

and the species mass fractions. Such a model was based on the observation that the

primary balance for the flames studied in our configuration revealed a balance between

the processes of soot growth and soot convection.

161
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Such a balance was also evident from an analysis of the results of the compre-

hensive soot radiation problem (chapter 6). We also discovered that in accordance

with experimental results for sooting diffusion flames the soot growth and oxidation

regions do not significantly overlap, as expected in a diffusion flame. The soot volume

fraction maximum was found to occur on the fuel side of the flame and was typically

at a distance of 1 — 2 mm from the temperature maximum. The radiation loss profile

peak was always situated in between the flame temperature peak and the soot vol-

ume fraction peak. We note that the radiative fraction was around 0.3 for the flames

studied. The consequence of increasing the fuel flow velocity at the wall, uo, was to

push the flame closer to the oxidizer wall. Correspondingly, the reaction rate profile

became narrower and taller, and its integrated value quz decreased with increasing

uo. The integrated value of the radiative loss term also decreased with increasing uo.

In another study, the oxidizer reservoir mass fraction, Yoo, was kept fixed along

with the fuel blowing velocity uo. The fuel reservoir mass fraction was increased from

0.6 to 1.0 in steps of 0.1. It was observed that the flame moved closer to the oxidizer

wall and the peak flame temperature decreased with increasing Ypp values. The

temperature maximum decreased even though the integrated value of the reaction

rate, qTotaz, increased. The integrated value of the radiative loss term, qRad also

increased and the radiative loss fraction value was about 0.3 in all cases. Thus, it was

found that the radiative losses depend directly on the amount of heat released and in

the cases studied, the radiative losses adjusted to the heat release in such a way that

the radiative fraction values were about 0.3.

A radiative extinction was not observed in any of the cases studied, indicating

that a steady state extinction is unlikely. Also, since the radiative fraction values

were close to 0.3 in all cases, it seemed that the flame tried to limit the heat losses

with any decrease of heat release.

The analytical model developed in chapter 5 for the soot volume fraction profile
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used the assumption of Burke-Schumann temperature and species mass fraction pro-

files. However, for a diffusion flame with radiative losses the temperature and species

profiles are significantly different from the infinite reaction rate profiles. Hence, a cor-

rection factor 5 was used for the peak flame temperature. The analytical expressions

for the Burke-Schumann profile were modified to include the factor 6. The resultant

profiles matched very well with the numerical solution of the comprehensive soot ra-

diation problem discussed in chapter 6. Based on the method described in chapter 5

utilizing the balance between soot growth and convection an analytical expression

was then developed for the soot volume fraction profile including the effect of 6. The

analytically obtained soot volume fraction profile matched fairly well the numerical

solution of the comprehensive problem.

The soot model used in the present work has received significant attention in the

literature. However, the physico-chemical processes which lead to the evolution and

burn-out of soot particles are still not well understood. It is anticipated that more

accurate and versatile soot models will appear as the investigation on soot processes in

flames intensifies with the help of better diagnostic and modeling capabilities. Thus,

future work has to utilise more accurate descriptions of soot processes.

It will also be important to investigate the effect of soot radiation in the opti-

cally thick limit. A more comprehensive radiation-soot interaction model has to be

envisaged for that purpose. The soot volume fraction in our flames analyzed in chap-

ter 6 was in the range 10‘7 — 10'5. For soot volume fractions in the vicinity of the

upper limit, it will be worthwhile to examine the influence of a more comprehensive

radiation model.

The radiation from the combustion gases was neglected in our analyses. This

effect can also be included for a more accurate description of the flame behavior.

In our problem the heat losses from the flame occurred because of the radiating

soot particles and also due to the presence of cold reservoir walls. It will be interesting
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to study the effect of other configurations on this flame, specially when conductive

losses to cold boundaries are significantly reduced. For example, it will be interesting

to study the effect of radiation from a fuel strip burning in an ambient oxidizer field

where the boundaries of the domain are far apart. The influence of strain in such a

field on the flame structure and the radiative loss profile will be quite worthwhile to

study.

Methane was chosen as the fuel in the current work because the important parame-

ter values for one-step methane combustion reaction are available. However, methane

is not a heavily sooting fuel and in future, it will be interesting to investigate the

problem with more readily sooting fuels, such as ethylene, acetylene, etc.
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APPENDIX A

Asymptotic Calculations for a

Simplified Model of the Interaction

of a Diffusion Flame With a

Heat-Loss Zone

A.1 Abstract

In this Appendix we examine a highly simplified model problem for the interaction

of a diffusion flame (DF) with a heat-loss zone (the “soot” layer). Explanations are

provided for DF migration (observed in chapter 3) and ultimate quenching when

NRAZR is made large enough (chapters 3, 4).

A.2 Introduction

The purpose of this study is to theoretically analyze the influences of a heat loss zone

on a diffusion flame (DF).

Although fundamental soot formation chemistry has been examined in detail for

165
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many years, the number of studies exploring its relation to actual physical processes

in flames is few. In the sooty region of a DP there are intense heat losses to the

surroundings, perhaps strong enough to retard chemical activity or, under proper

conditions, to cause extinction. The model considered here examines this question

by paring the physics to a minimum and focusing only on the skeletal features of

the flame/radiation interaction. Here we eliminate convection (natural and forced),

thermophoresis, and particulate oxidation, all of which are important in actual sooty

flames. For example, when convection is eliminated (not simply by transformation to

a coordinate system in which the convection and diffusion terms are combined into

one overall “convective-diffusive” term, but actually and entirely eliminated). the

standard formulations of the soot conservation equation become untenable because

there is no means for balancing the creation/destruction terms with a convection

term; a different interpretation of the soot zone is required.

The approach followed here will be to examine a simple model thoroughly. The

emphasis will be placed on making mathematically definite statements that can be

turned into physically useful criteria, given the limitations of the model. We note that

our goal is to describe - not simulate - the influence on DFs of radiant heat losses

from particulates.

Finally, we observe that a study very similar to this one was published in the

literature [56] but an error in one of the calculations prevented correct conclusions

from being drawn. In this study the error is corrected. Revised results are presented

and interpreted.
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A.3 Formulation

A.3.1 Physical Discussion

The following simplifications are employed in this study: geometrically, we consider

the one-dimensional “stagnant film” diffusion flame (DF). The porous fuel wall, at

temperature To, is located at :1: = 0, parallel to the oxidizer wall which also has T = To

and is located at a: = L. The mass fractions of fuel and oxidizer at these walls are

YFF and Y00 respectively (see Figure 3.1).

Dynamically, we limit ourselves to the case of zero mean flow; the movement

of species occurs strictly by diffusion. In addition, we neglect the thermophoretic

flow that is known to occur with particulates in regions of high thermal gradients,

because we wish to examine only the thermal and chemical influences of heat losses.

In summary, we have a one-dimensional stagnant-film DF with no mean flow (u = 0)

and no thermophoretic flow (uT = 0). We also impose the steady-state condition

(3(.)/3t = 0). For the combustion chemistry we assume that the reaction at the

DF occurs through a single irreversible step, F + u0—+(1 + u)P (on a mass basis),

with high activation energy. The “soot-formation mechanism”, which we hypothesize

occurs on the fuel side of the DF, is assumed not to consume fuel. That is, only

“trace” amounts of fuel are required to make “soot” particulates. Also, since the “soot

distribution” will be specified, we do not require a separate soot species equation.

Nor is it necessary to consider a number-density equation, since we assume that our

“soot” particulates are simply a collection of immobile radiating masses located in a

preassigned region on the fuel side of the DF. Strictly speaking, there is no need even

to discuss “particulates” like “soot” because none of the explicit features commonly

associated with particulates appear in our analysis. The relevant features of our “soot

particulate layer” are exclusively thermal; the layer produces only a region of enthalpy

loss that may alter the DF structure and cause extinction.
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Even if extinction does not occur the heat losses may weaken the DF. The re-

lationship between DF-weakening and heat-loss enhancement is an interesting one

that may, within the limits of this analysis, be quantified. We assume that the fuel

and oxidizer walls are perfectly transmitting so the heat lost from the “soot” layer

is permanently lost. Finally, we observe that the “soot” layer is presumed to remain

always on the fuel side of the DF, thereby eliminating discussions of “soot oxidation”,

etc.

A.3.2 The Mathematical Problem

The boundary-value problems governing the distributions of temperature, fuel mass

fraction and oxidizer mass fractions are, respectively,

 

(2') 130% = —pr + $33. T0) = T0) = To. 1

(ii) fi(PDFd—d:£) = w, YF(0) = YFF, YF(L) = 0, l M”

(iii) fi(pDoé£Q) = uw, Yo(0) = 0,Y0(L) = Yoo, 1

where w = pAYoYpexp(—E/RT) is the chemical reaction term, with units mass/vol-

sec, Qp is the chemical heat release, with units energy/mass, and dqR/da: is the

radiant heat-loss term, with units energy/vol-s. The quantity qR is the radiant energy

flux. We nondimensionalize these equations by defining r = (T — T0)/(Tf - To),

yp = Yp/ YFF, yo = Yo/ Yoo, { = s/so, where s = ffpda: is a mass-based coordinate

and so = foLpda: is its maximum value. We observe that 05631 and that the “flame

temperature” Tf is presently undefined. We consider the case p) = constant, [121); =

constant and Leo = Lep = 1. We define (IR = qR/qR,1-cf as the nondimensional

radiant flux. We shall return to this quantity after our discussion of the chemical and
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heat-transfer features of our problem. Our nondimensional equations are

(T) (_QF) (1)

_ 31F = 1 ’Dr+ 0 073— (A2)

1152

1w) 1M 10)
      

subject to

.01 (01/11)} m

yF(0) = 1 , yp(1) = 0 . (A.3)

310(0)) (0)(yo(1)) ll)

Here Q}: = QFYFF/Cp(Tf — To) is the nondimensional heat release, which equals (1 +

       

05), D = (Asosz/poA0)Yooexp(—E/RT;) is the Damkéhler number, 05 = 111/pp/ Yoo

is the stoichiometric index and NR = qR,,cf/[A0(Tf — To)/(so/po)] is a nondimensional

measure of the radiant heat flux. We note that quantities with subscripts “0” are

at ambient conditions attained at either wall. The reaction term is given by r =

yoypexp[—,B(1 — r)/[1 — a(1 — r)]], where 6 = Ea/RT, and a = 1 — To/Tf. Let

us now form the combination HET + by]: + cyo + d, which satisfies the equation

(PH/(162 = (—QF+b+c¢)’Dr+NquR/d{. We can choose 6 and c so that Qp = b+c¢

thereby eliminating the reaction term.

In the absence of radiative heat losses we put NR = 0 and denote H = Ho,

giving d'fHo/dé2 = 0, which integrates to Ho = A + Bf. At the fuel wall Ho = 0,

r = 0, and yo = 0 whereas at the oxidizer wall Ho 2 0 and r = yp = 0, giving

Ho =r—d(yo+yp—l)=0. At theflameyo =yp=0andr= 1 givingd= —1

and b = c = 1. Hence, the quantity H = r + yo + yp — 1 is a convenient measure of

the excess (or defect) of local enthalpy.

In our case the heat losses by radiation produce an “enthalpy sink” that is de-
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scribed by

43!! = Naég‘n, H(O) = H(1)= 0, (M)

m

where H = 7' + yo + yp — 1. We observe that this definition of H leads to Qp =

(1 + 43) (since 0 = c = 1) giving T; = To + Qprp/Cpfl + 45) for the adiabatic

flame temperature. We also observe that with heat losses the flame temperature

will not rise to its theoretical maximum even when fl—eoo. Hence, we may expect a

slight redefinition later of the Damkc'ihler number ’D in terms of a flame temperature

somewhat lower than T!-

We note that the derivation of an excess-enthalpy function may be achieved “phys-

ically”. The conservation equation for the enthalpy takes the form of equation A.4

when convective transport and body force effects and preferential species transport

(La-#1) are neglected. Since h = 2.1-:1 h,Y,- and h,- = h? + Cp(T — To), it is easy to

recover our nondimensional H.

Finally, we observe that even in the most difficult and general case, such as when

the radiation term depends on the spatial coordinate and the temperature and the fuel

mass fraction, as long as no fuel-to-soot depletion terms enter the species equations

(equations A.1.(ii) and A.1.(iii)) we can still define the mixture fraction variable

Z = (qSyF +1 — yo)/(¢+ 1) that satisfies Z56 = 0 with Z = 0 at f = 1 and Z =1

at f = 0. This provides an important simplification of the governing equations. The

solution for Z is Z = 1 -— 6, whereby

(2') yo = (1 -Z)- (1 - Z1)(T- H),

(ii) yr = Z- Z10 - H),

(11.5)

where Zf = (1 + 03)“1 is the DF flame location in the flame coordinate system. Then

the equation for r (the first of equations A2) and the equation for H (equation A.4)
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become

(2') TZZ = —(1 + ¢)Dr(H,r, Z) + NR(—dqR/dZ), 1-(0) = 1(1) = 0

(ii) sz = NR(-d(iR/dZ), mm = 11(1) = 0-

(A.6)

Hence, the solution for r, ya and yp is reduced to the solution of two coupled nonlinear

equations, equations A.6.(i) and A.6.(ii). Equations A.5 and A6 suggest defining

S = r— H giving

(2') 322 = —(1 + 10791: 5(0) = 5(1) = 0,

(ii) H22 = NR(-d§R/dZ), mm = 11(1) -- 0.

(A.7)

where r(H,S,Z) = [1 — Z — (1 — Zf)S][Z — Z;S]exp[—,6(1 — S — H)/[1— a(l —- S -

H)]] It is clear that some rather interesting behaviors may be expected, especially

in the general case when the radiation term is a complicated function of Z,r, and

perhaps other variables. However, we shall examine only the simple case when q]; is

a prescribed function of Z. We shall see that even for this case many complexities

arise.

A.3.3 The Form of H(Z)

The enthalpy defect H(Z) is obtained by integrating equation A.4 or equation A.7.(ii)

twice. We consider the simple case when the radiant heat transfer term is a known,

specified function of position. Then the integrations may be carried out explicitly.

Because of the eventual double integration, we do not need to be particular in our

choice for the radiant heat flux, dq'R/dZ. Hence, we let

(kl-R
75(2) = 0.121-) — U0(ZR+), (AA8)

(as shown in Figure A.1. The quantities Z3. and Z3... are the boundaries of the heat
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Figure A.1. The “top-hat” profile for —dch/dZ.
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loss zone. We note that ZR_ZZf and that there are no restrictions on ZR+ other

than ZR+ < 1, i.e., ZR+ does not have to be “close” to ZR_. From equation A.8 we

see that dig/dZ is a “well” function, and that —dq'R/dZ is a “top-hat” profile. The

solution for H(Z) (see Figure A2) is

 

  
 

0.m I T I '; I T I I I

Z10: Z1.

-0.01 ‘ i i

Q E E 1

= s s

-0.02 - E 5

_0.03 1 1 i 1: 1 1 1 1 4

0.0 0.2 0.4 0.6 0.8 1.0

Z

Figure A.2. The function H(Z).

(i) OSZ < 23. 2 H = —NRAZR[I — 0/212,

(ii) ZR_<Z<ZR+: H=—NRA—Z,n2[1+A—§n€—9—Zgfl]

(A.9)

+4 [z- (Asia—Line)?
(iii) ZR, < 231 : H = —NRA§,AQ(1 — Z)
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It is not difficult to demonstrate that H is less than or equal to zero on the entire

interval. We observe that the values and gradients of H(Z) are continuous across

Z3. and ZR+, although the second derivative of H(Z) - see equations A.7.(ii) and

A.8 - is obviously discontinuous. We note that at Z3. and Z3... we have

(i) H(ZR_) = —NRAZR(1 — Whig—1:281,

A.10)

(ii) H(ZR+) = —NR—A—Zf£(1 — 9112112), (

which we now use to evaluate the influence of soot zone width changes on H(Z) We

note first that

(i) 35%.? = ‘NRZR—(l — 212+). (A 11)

(ii) (fig—(2%) = NR[5§’11‘—2—;—£2 + ZR_(1— ZR-) — (ZR1 — 23-)].

The first of equations A.1] indicates that H(Z3.) decreases as Z3+ increases for fixed

ZR_. The right-hand side of equation A.11.(ii) is generally positive so an increasing

ZR- (shrinking loss zone) increases H(ZR_). We conclude that H(ZR_) decreases as

ZR+ increases and that it increases as ZR- increases. We can also show for H(ZR+)

that

(2') 9%‘22—‘8 = -%B[2ZR+(1 - Zn+> - (2%.. ‘ 2“” (A 12)
(2'1) 234227311 = NRZR_(1 — 231),

so that when the RHS of equations A.12.(i) is negative an increase of ZR+ decreases

H(ZR+), and from equation A.12.(ii) that an increase of ZR- increases H(ZR+).

In general, therefore, a larger or wider heat-loss zone decreases H(Z ) everywhere,

whereas a smaller loss zone increases H(Z) everywhere on the interval. This is con-

sistent with our physical intuition. We note from equations A.9 that H(Z) is directly

proportional to N3.
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We note from equations A.9.(i) and A.10.(i) and A.7.(iii) and A.10.(ii) that we

can write

(2') OSZ<ZR_: H=W

ZR- ’ (A.13)
.. HZ —Z

(22) 2,... < 231: H = -—l(l—+-‘:Z¥i—)—l.

We shall use these convenient formulas extensively.

A.3.4 The Radiation Term

We wish to deduce a realistically calculable form of the ”radiation number” given

presently as NR = qR,,cf/[)\0(Tf — To)/(so/po)], in terms of the undefined QR’rcf. For

optically thin media we know that dqR/dx = 4a,,,o(T4 — To“), by virtue of equa-

tion 5.36 of chapter 5, where (1,, is the Planck mean absorption coefficient. Now,

ap = [6” n(A,fv)eb(A)dA/f§° eb(A)d). and, for soot, K. = Cfv/A where fv is the

soot volume fraction and C is a constant, which has the value of 7 for methane-

oxygen diffusion flames [31]. Using the above value of 1;, ap can be determined as

ap = 1864.32fvT, following the treatment in 5.9.2. Using the expression for ap and

transforming to the Z coordinate we obtain

_F‘IR,rcf£l£l§ _ 4 _ 4
_L50 dZ —4x1864.32fVTa(T T0 )

We now assume the following: (i) The factor T(T4 — To“) can be replaced by

TR(TR4 — T04) where TB is the characteristic “radiation-zone” temperature. (ii) Cor-

respondingly, the average value of the gas phase density in the “radiation-zone” can

be assumed to pR. (iii) The variation in the “soot” volume fraction dictates the

variation of —dqR/dZ. Since —d(jR/dZ = Uo(ZR-) — U0(ZR+) we therefore define

fv = va(Uo(ZR_) —U0(ZR+)). This gives the fv distribution like that in Figure A.1.

Recalling that NR = (112,":,(L30)/A0(Tf - To), we can now write the following expres-
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sion for N32

_ 7457.280TR(TR4 — T.,“)fv,,(L§o)2

— [540(7) - T0)

 

NR

The quantity ,6 is given by pR/po, where, as mentioned before, the gas phase density

was assumed to be p3. Assuming the pressure to be constant, we can write poRTo =

pRRTR, and consequently, ,6 = To/TR.

In order to get an idea of the magnitude of N3 we now assume some practical

values for the different quantities on the RHS of A.14. The flame temperature was

chosen to be T, = 1700 K, the characteristic radiation zone temperature, T3 = 1500

K and the peak value of the soot volume fraction in the radiation zone was assumed

to be va = 1x10‘5. On using A.14 we get NR = N353 = 57.033. It has to be noted

here that the value of s3 is of the order of 0(10‘2). In the numerical solution different

values of N3 were arbitrarily chosen to study the influence on the temperature and

species profiles. The values of N3 were of the order of COD“).

A.4 Results

A.4.1 Influence ofH on Oxidizer, Fuel and Temperature Pro-

files

The general solutions for yo and yp are given by equations A.5. The approach we shall

use here will be to impose restrictions on yo and yp then to calculate the resultant 1'

profiles with the intention of quantifying the influences of H(Z)

Before doing this, however, we shall consider a slightly more general case than

the ones we shall analyze in detail. This will serve as a constant reminder of the

simplistic nature of our formulation and of the restricted validity of our results. We

consider first equation A.5.(i), into which we substitute 1' — H = 1 - 6 when ya = 0
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in order to obtain the modified flame location

2; = Z, + .(1— 2,), (A.14)

suggesting a rightward shift of the flame since 6 > 0. We consider now equa-

tion A.5.(ii), into which we also substitute 7' — H = 1 — c and suppose that yp = 0 to

obtain

Z} = Zf — EZf, (A.15)

suggesting a leftward shift of the flame since 6 > 0. Since a simultaneous rightward

and leftward shift of the flame is not possible, we suspect that equations A.14 and

A.15 suggest that r — H = l — 6 produces a broadening of the DF, and that neither yo

nor yp are zero there due to reactant leakage through both sides of the DF. Another

possibility, which should lead to the “premixed-flame stage” of DF burning [57], is

obtained by imposing flame shift through either of equations A.14 or A.15 and sup-

posing that the opposite reactant leaks through the DF: in the case of equation A.14

it is the fuel that leaks, in the case of it is oxidizer.

We shall return later to these complicated considerations of BF shift in the pres-

ence of heat losses and reactant leakage. Presently we discuss the case of zero leakage,

which is much simpler.

The region OSZ < ZI is the oxidizer side. When there is no fuel leakage to this

side we put 6 = 0 in A.15 to find Z} = Z, so there is no flame shift. When yp = 0

we find from equation A.5.(ii) that r — H = Z/Zf which reduces equation A.5.(i)

to yo = 1 — Z/Zf. These results are of course identical to the zero-heat-loss Burke-

Schumann flame results. On the oxidizer side of the flame we combine the result
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r = H + Z/Zf with equation A.13.(i) to obtain

. _ ng _) z

(z) T ' 2,: Z + 27’ (A 16)

(if) 5% = HZ:- + 2i,

indicating that dT/dZ on the oxidizer side is smaller than its ordinary value without

heat losses, l/Zf. Note that we have implicitly assumed Zf smaller than ZR- (see

Figure A.3). We now consider the region ZR+ < Z < 1 between the rightmost

I l//M
= 0 zlf zR_

(a)

l //..
z = o zf= ZR_ 2

(b)

| V |

1 //, 1
Z = O ZR- Zf ZR+ Z = 1

(C)

 

 

 

_
L

ll H

 
 

Figure A.3. The location of the soot layer relative to the flame location Z1'. In (a)

Zf < ZR_, in (b) Zf = Z3. and in (c) Z; > ZR_.

edge of the soot zone and the fuel wall. Here we require negligible oxidizer leakage,
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so that equation A.5.(i) with ya = 0 gives 1' — H = (1 — Z)/(1 — Zf) whereby

31): = (Z — Zf)/(1 — Zf). The solution for r , using equation A.13.(ii), is

r = H(ZR+) (11:22) + (11:2), (A.17)

so that we obtain for the fuel-side temperature gradient

  

d7 _ H(Z)“) 1
__ —. A.18
dZ 1—zR+ l—Z, ( )

Since H(ZR+) is negative we see that dr/dZ is smaller (in magnitude) than with no

heat losses. In other words, dr/dZ is less negative than it is without heat losses.

The region between the flame at ZI and the leftmost edge of the soot zone ZR-

must also be examined. When we postulate a zero-leakage flame with yo = 0 we

obtain 1' — H = (1 - Z)/(1- Zf) and yp = (Z — Zf)/(1— Zj), the same results as

immediately above for the region between Z = ZR+ and Z = 1. Here, however, we

are still situated to the left of the soot zone, where H(Z) is given by equation A.9,

whence

(2') T=W+(-I_‘_Z_),

 

2"" "21 (A.19)

(2") it _ ”(Zn—l _ 1

2 d2 " zR_ 1—z,'

Since H(ZR_) is negative, dT/dZ is more negative than the zero-loss profile. The

slope of 7'(Z) is therefore steeper here.

The only region remaining to be analyzed is the soot layer itself, where ZR- <

Z < ZR+. Here we use equation A.9.(ii) for H(Z), which we rewrite for convenience

3.8

H(Z) = H(Z“) + %(z — 2*)2 01.20)

where
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Z" = z),+ — (2,2,+ — 2,12%) /2 = (A2,; + (2)/2 — AZRO/Z,

H(Z.) = _NRintgizl [1+ M.) _ gm]

AZ 9 AZ

=—NRA—Zzflgll—L—§L2+’ififll-

When yo = 0 in the soot layer we obtain, as for equations A.17, A.18 and A.19

(2') r = H(Z) + $22; (1.21)

(ii) 3% = NR(Z - Z’l — 1+2,-

Unlike equations A.18 and A.19.(ii) for the gradients on either side of the soot

layer we see from equation A.2l.(ii) that dr/dZ is not constant. It is easily shown

that dr/dZ given by equation A.2l.(ii) matches to equations A.18 and A.19.(ii) on

opposite sides of the soot layer. Hence, both the temperature 1' and the temperature

gradient dT/dZ are continuous through and across the soot layer.

We can now use equations A.16.(ii), (16.ii), A.19.(ii) and A.19.(ii) for dr/dZ in

the four zones considered to plot the characteristic temperature and H profiles in

the domain OSZS 1. These profiles are drawn in Figure A.4, where we note that

1' — H = Z/Zf on the oxidizer side, that r — H = (1 — Z)/(1— Z!) on the fuel side,

and that r is non-analytic only at Z = Zf.

We note briefly that as ZR- approaches ZI from the right (see Figure A.3) subject

to the continued constraint yo = 0 for Z > ZI we can use either equation A.19 or

equation A.21 for dT/dZ by letting ZR_——>Zf therein, viz.,

d7 — H(Zf) 1 = —NR(ZR+ — Z!) [1‘ (
   

:1?— Z, ’1—2,

ZR++Zfl __ 1

2 1—z,'

In this case, the heat-loss layer touches the flame on the fuel side.

We examine the changes of slope dr/dZ caused by the heat-loss zone. From

equation A.19 we see that the slope decrement at Z = Z3. to the undisturbed slope
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——1/(l —- Zf) is H(ZR_)/ZR_, whereas the slope increment at Z = Z3. given by

equation A.18 is —H(ZR+)/(1 — ZR+). The decrement at ZR- makes an already—

negative slope more negative whereas the increment at ZR+ makes the final slope

between the soot layer and the wall at Z = 1 less negative. The ratio of the absolute

values of the decrement and increment are

(decrement) _ —H(ZR- )/ZR- __ 2

(increment) "' —H(ZR._)/(1 — 23+) ’ 16 ‘ 1'
  

Consequently, when 0 > 1 the ratio is smaller than one and the increment is larger

than the decrement. When 0 < 1 the opposite is true, see Figure A.5 and Figure A.6.
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Figure A6. The case 0 < 1.

Finally, we shall examine the influence of the loss zone on the temperature pro-

files on either side of the DF. It is through these altered temperature gradients that

the loss zone changes the rate of flame chemistry, this weakening and perhaps even

extinguishing the flame. We shall examine only the “outer” problem, not the detailed

inner reaction zone, which is studied in section A.4.3. From equations A.16.(ii) and

A.19.(ii) we write

a! H Z .. _ 1

OSZ<Z,: 1% = —LIZR+1|+—Zl7=—2+Z,

where EE|H(ZR_)]/ZR_ = NRAZR(1 - 0/2) is the slope change produced by the
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radiative loss zone. It is easily shown that 62/3ZR+ is always greater than or equal

to zero, with 82/8ZR+ = 0 at ZR+ = 1. Hence, for fixed N3 the maximum value of

E is ZMAX = N3(1 — ZR- )2/2. From above, we see immediately that the maximum

possible value of 2 regardless of whether ZR+—>l or not is E = l/Zf; at this 2— value

the temperature gradient on the oxidizer side vanishes. In other words, as E—Il/Zf

the r- profile on the oxidizer side crashes. From the definition of 2 we find that

E = l/Zf gives, for fixed Zf, ZR+, ZR-, the constraint

1 l 1

(NR)MAX = EZW’ (A22)

which we shall compare with other estimates of (N3))”Ax- We shall see later that

when the (NRlMAX estimate is refined the dependence on AZR, Zf and (1 — 0/2)

remains unchanged.

As the oxidizer-side 1 profile is crashing, the fuel-side temperature gradient ap-

proaches the value —(1/Zf + 1/(1 — Z1)) mM. Hence, the heat losses from

the fuel side approach a maximum as the heat losses from the oxidizer side approach

zero. The combined heat losses are given by

dr

dZ

d_T
dz

= _..—L— (11.23)LE ,

21(1 - Zr)    fuel side oxidizer side

which are fixed when Zf is fixed. Hence, the decrease of oxidizer-side losses by

conduction is exactly balanced by increased fuel-size losses.

We conclude by observing that 62/8ZR+ = NR(1 — ZR+) is positive while

BE/OZR_ = —NR(1 — Z3.) is negative, indicating that as ZR+ increases (decreases),

2 increases (decreases) because the loss-zone is thicker (thinner); also as Z3. increases

(decreases), 2 decreases (increases) because the loss zone is thinner (thicker). Conse-

quently, the two most immediate means for independently changing the magnitude of
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the heat loss term are to change NR or AZR. This suggests rewriting equation A.22

as

1 1

(NRAZRMM == Em, (11.24)

because the LHS is now a combined heat-loss amplitude. The quantity 0/2 = (Z3... +

ZR- )/2 contains the loss-zone thickness implicitly, since we can write 0 = AZR+2ZR_ ,

but it is clear that AZR can be changed without changing 0; hence we expect the

heat-loss amplitude to be relatively insensitive to changes in 0 except in the extreme

(and unrealistic) case 0—12.

A.4.2 Influence of Negative H on Flame Shift

We have determined from our numerical work, see especially chapters 3, 4, that for

certain initially-specified parameters of combustion and heat loss, including stoichio-

metric parameters (0 or ZI, loss-zone width (ZR_, Z3...) and loss-zone intensity (NR),

the reaction zone can shift from its original location near Zf to values quite different

from Zf. Interestingly, the shift is usually toward the loss zone rather than away from

it.

In this subsection we shall attempt to explain this preferential flame shift by

examining two model problems. In the first model, we examine a Burke—Schumann

infinite reaction rate (IRR) flame for three distinct cases,

i) finite separation between ZI and Z3. with ZR- > Zf,

ii) zero separation between Z; and ZR_, i.e., ZR- = Zf,

iii) finite separation between Zf and Z3. with ZR- < Zf.

These cases are illustrated in figure A.3.(a), (b), (c). One might say from these figures

that it is not the flame that has shifted but the loss zone. For our simple analysis,

, which is steady, this is not important because it is the relative influence that we are

 I
1
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interested in. In the second model, various extensions are made of the discussion at

the beginning of section A.4.1 on partially premixed DFs.

We proceed with our examination of the first model: case (i): 0 < Zf < ZR- <

ZR+ < 1 (see Figure A.3.(a)). We see from equations A.16.(i) and A.19.(ii) that the r

values are identical at Z = ZI, that is, the heatA-loss zone has not produced an explicit

flame shift. Consequently, in order to make deductions about flame shift we must

examine other quantities. We observe first that as H(ZR__) becomes more negative,

through increased N3, say, the temperature 7' monotonically decreases on the entire

interval. This decrease, however, is subject to the constraint that the minimum r—

value is zero. On the oxidizer side, where r is given by equation A.16, the minimum

 

possible value of the loss term occurs when Z = Zf, i.e., [H(ZR_)Zf/ZR_]min = —1.

Substitution for H(ZR_) from equation A.10 leads to

N AZ < 1 (A 25)
R R_Zf(l—0/2), .

which is identical to equation A.24. On the fuel side we can develop two conditions,

one at Z3. and one at ZR+, both involving the constraint 720. At Z = ZR_,

equation A.19 subjected to the constraint 1'20 yields

1 z, 1— 23.
N < .

RAZR‘ZIU - 6V2) [212- 1- z, l

  

Since Zf/ZR- < l and (1 —- ZR_)/(1 —- Zf) < l the factor in square brackets is

smaller than unity so that the upper bound for NRAZR is smaller than for the previous

result. Consequently, the upper bound for NRAZR is smaller at Z = Z3. than it is at

Z = Zf. Finally, at Z = ZR+, equation A.17 subjected to 7'20 with equation A.10.(ii)
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used for H(ZR+) leads directly to

 NRAZRg Z’ 1" 0/2] (A.26)
1

z,(1— 9/2) [0/2 1— 2,

Since Zf / (9/2) and (1 — 0/2) / (1 — Zf) are both smaller than unity, this restriction

on NRAZR is also tighter than equation A.24. Between the latter two inequalities for

NRAZR it is relatively easily shown that

_z_,_1-—19/2< 2,1—ZR_

0/21—2, ZR_1—Zf'

 (A.27)

Hence, for our case (i) we have determined that the most stringent upper bound on

NRAZR is given by equation A.26 since it produces the smallest allowed NRAZR

value. For values larger than the upper bound of equation A.26 this case (i) flame

will extinguish.

What we shall do in the following analysis is to similarly derive the most stringent

restrictions on NRAZR from cases (ii) and (iii), then to compare them to equa-

tion A.26. Then elementary deductions for the DF and heat-loss-zone interaction are

made. Case (ii): 0 < Zf = Z3. < ZR+ < 1 (see Figure A.3.(b)). We impose the con-

straint 7'20 at Z = Z; = Z3. and at Z = ZR+. At Z; = Z3. we use equation A.16.(i)

to find H(ZR_) + 120 whereby we obtain equation A.24 with 0 = Zf + Z3,” This,

except for the fact that ZR- = Zf, is identical to the first constraint of case (i). At

Z = ZR+, we use equation A.17 which once again leads to equation A.26, although

we must recall that ZR- = Z; in 0. This constraint on NRAZR, as in case (i), is more

severe than the one evaluated at ZI = Z3...

We now ask whether the most rigorous constraint derived here in case (ii) is more

or less severe than the most rigorous constraint derived in case (i). We suppose that

ZR+ and Z3. are unchanged between cases (i) and (ii), so that only ZI has changed,
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see Figures A.3.(a), (b). In other words, AZR and 9 are unchanged, so the ratio

Zl-92

(NRAZRlcase (ii)_ {21(1-9/2) [(W—1-1Z1]}case (ii)_ (1 _ Zf)case (i)

Z-9 _ .

(NRAZRlcase)(i) {2,(1—‘f—0/2) o/2i-23]}(3356 (i) (1 Zflcase (1)

 
  > 1 (A.28)

Therefore, the tightest constraint for case (ii) is larger than the tightest constraint

for case (i). In other words, larger values of NRAZR can be attained before extinc-

tion when the flame moves as shown from its position in Figure A.3.(a) to that of

Figure A.3.(b) at the leftmost edge of the loss zone.

Strictly speaking, the IRR flame in this simple model cannot relocate itself in

response to heat losses the way it can in finite-rate chemistry numerical simulations.

In order to move this flame we must alter the stoichiometry 45, thereby changing

Z;. In the IRR limit, however, this change of Z; has no influence on the flame

vigor because the reaction still occurs with infinite rapidity. The constancy of flame

vigor allows us to make the following statement: all other things being equal, the

constraints or upper bounds on NRAZR become less severe as the flame approaches

the loss zone. These results suggest that as NRAZR increases, it becomes easier to

extinguish the flame for which there is separation between the flame and soot zones,

and that as this separation decreases the NRAZR value can be pushed to higher values

before extinction occurs. For a transient flame we are led to expect that as NRAZR

increases the flame should move toward the loss zone to prolong its survival.

Case (iii): 0 < ZR- < Z; < ZR+ < 1. Here the DF is fully within the loss zone.

We impose the requirement 1'20 at Z = Z3. and Z = Z31. to once again obtain

equation A.24 at Z3. and equation A.26 at ZR," The latter constraint is the more

severe, as in cases (i) and (ii). We now observe that there are two subcases depending

on whether the flame at Z; lies between the left end and the midpoint (Z = 9/2) or

whether it lies between the midpoint and the right end (ZR+). For these cases we
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obtain

 

1 1 — 0/2 .

where

i=1: ZR_<Zf<0/2; Zf/(0/2)=a1<1

i: 2: 0/2 < Z, < 23+; Zf/(0/2) = (1; <1

It is easily demonstrated that (NRAZR)1 < (NRAZR)2, so that by moving from ZR-

toward ZR+ the extinction constraint is loosened. Once again, the DF may move

rightward through the loss zone in order to prolong its existence.

We conclude from our analysis of cases (i), (ii), (iii) that as the numerical value of

NRAZR increases, the DF can survive by moving first toward the loss zone and then

through toward the fuel side. At each increased Zf value in its rightward migration in

mixture-fraction space, the extinction value of NRAZR becomes still larger, suggesting

that the DF is now slightly more difficult to extinguish, see Figure A.7.

We ask, why this should be so? Why should the NRAZR value for extinction

increase as the DF moves toward and through the loss zone? The logical explana-

tion in this IRR formulation is that when the DF is in or very near the loss zone

its temperature on average is higher. Hence, larger NRAZR values are required to

extinguish it. We now examine the second model, which amounts to an extension of

the discussion at the beginning of section A.4.1. In our numerical results we nearly

always observe a rightward shift of the flame location. Since yo = 0 is imposed at

the DF there must be leakage of fuel; as the radiative losses are increased through

increased NRAZR, we anticipate that the value of T — H = 1 — 6 will further decrease

(i.e., 5 will continue to increase), so that from equation A.14 the flame will continue

to shift rightward. Without a more detailed analysis, however, of the type outlined in
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Figure A.7. The direction of increase of NRAZR with flame movement.
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Lifian [57], and a rational explanation for why it should be ya that vanishes at the DF

and not 311?, this explanation is little more than a plausibility argument. Support for

the condition yo = O at the DF is produced in chapter 6. The fuel, not the oxidizer,

leaks through the DF probably because all of the cases we have studied are overall

fuel rich (<25 > 1).

A.4.3 Reaction-Zone Analysis using Activation-Energy

Asymptotics

Here we shall solve equations A.7.(i) and A.7.(ii) across the reaction zone in order

to deduce an extinction criterion that is more realistic than those produced in sec-

tion A.4.2. Before proceeding we note that the mass coordinate so may be rewritten

as

L 1

so = / pdx = poL/ fidiEpoLEO,

o o

where

1

so: / fidi, (A.29)

0

and that the Damkohler number may be rewritten as

2 ~

D = [é-L—Yooe—E/RT’] 5321953, (A.30)

00

in order to illustrate the dependence of D on so, which can change depending on the

integrated value of [a on the interval. We note that in equation A.30 the quantity D

is a fixed numerical value, and that a0 = Ao/poC'p.

We require only one hypothesis to carry through our analysis, namely the reaction

zone (flame) and loss zone (soot layer) are physically separated each from the other.

. When this is true, the enthalpy defect in the entire region 0 < Z < ZR- bounding
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the flame near Z; is given by equation A.9.(i) or equivalently equation A.13.(i). The

temperature gradients on either side of the DF are given by equation A.16.(ii) for

OSZ < Z; and equation A.19.(ii) for Z; < Z < Zn... The corresponding conditions

on the variable 5 in equation A.7 become, respectively,

2' i=9- : -1—, 0<z < Z

() Z! ‘ ’ (A.31)

(iz’) 3—3— = 712—}, ngz < ZR_.

We observe that the S' gradients on either side of the DF are identical to the T—

gradients when there are no heat losses, i.e., when H = O. The only difference in the

boundary value problem of equations A.7.(i) with gradient conditions A.31 on the

flame-zone part of the solution is the presence of H in the Arrhenius exponent.

We now perform an activation-energy-asymptotic (AEA) analysis of the reaction

zone by defining

5 =1-(¢ + ("fl/55.77 = (Z - Zilflc,

along with

= amznaz = emznazf H(ZR-)
H

B ZR— ZR— ( CZR- )7],

  

which when substituted into the Arrhenius exponent give

 
 

—a(1 - (s + H» = -(<I> + can/b + wanna/ZR- + H(ZR-lfl/CZR—

1 — an - (S + H» (1 + aH(ZR->z,/zn-) - (er/mus + an>/b — H(ZR-M/cZR-l'
(A.32)

This obviously reduces to the standard zero-heat-loss result when we put H = 0.

From equation A.33 we have two cases to consider:
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Case (i): H(ZR_)2:O(1). This reduces equation A.33 to

__ fl(1 — 5+ H) _ eH(zR-)Z,/z,._

1— a(1—(S+ H)) _ 1+ aH(ZR—)Z;/ZR_

  (A.33)

in the first approximation. The temperature residue (1) has been entirely eliminated

and the Arrhenius exponent is entirely controlled by the heat-loss term. As fl—wo

the DF is extinguished subject to the constraint that the denominator be positive,

viz., 1+ aH(ZR_)Z;/ZR_ > 0, which gives H(ZR_)| < ZR_/aZ; or

1

aZ;(1— 0/2)

 NRAZR <

This estimate for (NRAZR)MAX compares well with the previous estimates of sec-

tion A.4.2 since it is of the same order of magnitude. However, this case (i) is

unrealistic because the DF should long ago have been extinguished. The following

case is much more realistic.

Case (ii): |H(ZR_)|Eh/fi, i.e., |H(ZR_)|~O(fl‘1). The substitution of this ex-

pression along with <I> = (D0 + fl‘ldh + ..., h = ho + fl‘lhl + into equation A.33

gives

—fl(1—(S' + H)) __ —(<I> + an) hoZ;

1— a(1—(S+ 111))" ‘7— + 3: + 0W") (A.34) 

With this expression along with the choices

(i) a = ZZ; — 1,

(it) b/c = 22,0 — 2,) (A-35)

(2'21) b3 = Wigs-21""apnea/21...],
 

and the expansion D = D0 + B‘lDl + ..., we obtain the following boundary-value
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problem for the reaction zone,

4%» = (‘1’2 - 112)exp[-(<1> + m1)/b], (A-36)

<I>,,-—>¢1 as n—rioo (A.37)

The only difference between our result and previous studies [57] of the zero-heat-

loss DF lies in the factor exp[hoZ;/ZR_] which appears in the reduced Damkohler

number, We note that hoZ;/ZR_ means that h~0(1) since Z;/ZR_~0(1). And

h~0(1) means |H(ZR-)|~O(5‘1): small heat losses can produce DF quenching.

We now make a comparison of the zero and finite-heat-loss cases. Without heat

losses (h = 0) equation A.33.(iii) becomes

 

* 4DOZ}(1—z,)3 ”3
b = R3 ,

which differs from the value of b in equation A.33.(iii) only by the absence

of the exponential term. At extinction the approximate correlation [57] b5 =

[6(1 — Ial) — (1 — Ial)2 + O.26(1 —- Ial)3 + 0.055(1 — |a|)"]1/3 renders b and b“ identical.

Hence, for the same Z; and ,6 we must have

135,, = DOEehOZr/ZR-, (A.38)

where DEE is the value of Do at extinction with no heat losses (h = 0) and DOE is

the value of Do at extinction with heat losses From equation A.38 we see that the

value of the Damkohler number is higher at extinction when there are heat losses.

That is, with D = tflow/tchem and tflow fixed, the characteristic reaction time must be

smaller - a faster reaction. Or conversely, without heat losses the chemical reaction

can afford to be slower.
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From equation A.38 we can write, since It is negative,

DOE = D'OE[exp |h0|]", n = Z;/ZR_ < 1. (A.39)

As ZR- decreases toward Z; or as Z; increases toward ZR- the exponent n in-

creases toward unity. For a fixed D5131 we see that the flame with heat losses is

relatively easier to extinguish because its extinction Damkohler number is larger.

The largest value of DOE occurs when n = 1, i.e., when the loss zone touches the DF

on the fuel side.

We note particularly that IhoZ;/ZR_| = flNRAZRZ;(1 — 9/2) so that for fixed

ZR+, ZR- the quantity BIhOZ;/ZR-|/BZ; is positive. As Z; increases the Damkohler

number of extinction increases and the DF is easier to extinguish. This deduction in

all respects appears to contradict the deductions of section A.4.2 ami the numerical

results. We shall discuss it later in section A.5.

We proceed presently to derive an upper bound for the quantity This, of course, is

the extinction limit. We rearrange equation A.33, after recalling that IhOIZ;/ZR_ =

BNRAZRU — 0/2)Z; to obtain the extinction criterion

  

41302,?(1 — 2,)3
NRAZR= (1_ 0/2) E111n[ 1,5333 ], (A.40)

where

53 = e[(1-|¢1|)-(1-|<1l)2+0.26(1—|a|)3+0.055(1—|a|)4]‘/3

a = 2Z;—l
(A.41)

Do 153-gm”) = (ALz/ao)Yooexp(—E/RT;).

Comparison of equation A.4O to the NRAZR upper bounds obtained in section A.4.2

shows that the basic dependencies on Z; and 1 — 0/2 are the same, but the maximum
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value is reduced by the factor 5“. The dependence on Do is logarithmic and therefore

fairly weak.

Comparisons with numerically-calculated extinction results were made for some

cases. These are shown in Figure A.8. We observe that the extinction radiation

YOO=O.5AZR=O.O6A=O.1

   

  

   

   

300.0 . r . r . , . ,

0—0 Numerical Solution

l A——A Analytical Result

200.0 ‘ YFF '

152

SE

Z 100.0 ~ ~

‘\YEF\

0.0 . L - - ~ . . 1
0.10 0.14 0.18 0.22 0.26

Figure A.8. Comparison of numerical and analytical solutions for the extinction

radiation number.

number value increases as Z; decreases for a given Yoo, i.e., for increasing values of

YFF. The direction of increasing Ypp has been indicated in Figure A.8 by an arrow.

The difference between the analytical and numerical solutions is quite prominent

and indicates poor agreement between the two. However, a closer scrutiny of the

, curves indicates that the analytically obtained extinction values are roughly 4 times
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those obtained from the numerical solution. Hence, the results indicate that we

may introduce a correction factor in A.40 to correlate the analytical results with the

numerical solution.

A.4.4 Influence of Heat-Loss Zone on Flame Displacement

Where there is a temperature decrement, as shown in Figure A.5 and Figure A.6, the

density increases. This produces a displacement of the flame toward the fuel side.

We demonstrate this by writing the flame location as

 2,: 1 = _.fizi—m (A.42)
(1+ ¢) So [01’ pdm

This can be rearranged to yield

:1: L

f I pda: = ¢/ pdx, (A.43)

o 0

which we examine for the cases with and without heat losses. If the flame zone is

negligibly thin we can write p = p0 — (p0 — p;)(L — z)/(L — 2;) on the oxidizer side

between :5; and L, giving p(x;) = p; and p(L) = p0 and yielding ¢(L— x;)(po +p;)/2

for the RHS of equation A.43. For the LHS (the fuel side) we shall for demonstration

purposes can use two different p distributions, the linear profile without heat losses,

pm = p0 — (p0 — p;)(:z:/:1:;), and a nonlinear profile with losses, pm = p0 — (p0 —

p;)(:v / a:;)2: we see that pm is always larger than pm. Substitution into the LHS above

yields x;(po+p;)/2 and x;(po+2(po+p;)/2)/3, respectively, from which we find, after

equating to the RHS. (inf/Ll“) = ¢/(1 + 45) and (xi/Ll”) = M/(po/3 +M+ 2/3)),

where ,—, = (m + 1211/2.
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We then form the difference

 (fl)(1)_(fl)(2) = M4 .

L L (1+¢)(1+¢>+M)’

_ l p —pt

M — 3 (Pg-HO!) > 0

Hence, case 2 with heat losses has a smaller value of 1:; /L indicating that the flame

is displaced to the fuel side.

Although our demonstration has employed simple p distributions, it is generally

valid whenever p on the oxidizer side is unchanged by the heat losses and when the

nondimensional reaction layer thickness, A2:;/L, is small.

Because our analysis in the sections preceding this one is performed in terms of

the mixture-fraction Z,the influences of heat losses on Z; must be examined before

making definite conclusions. In any case, the flame movement caused by density

changes does not alter the flame location in the Z coordinate, since Z; = (1 + ¢)"1

is unchanged.

A.5 Discussion and Conclusions

In this study we have constructed a simplified model of the heat-loss zone interaction

with a DF. The model involves the solution of two coupled equations for the tem-

perature and the heat-loss distribution. The fuel and oxidizer mass fractions do not

enter the calculations since the “soot” is formed from trace amounts of the fuel. We

demonstrated that a feasibility argument could be made to describe the movement

of the flame toward and even through the heat-loss zone, which behavior is observed

for the numerical simulation, see chapters 3,blotex of this thesis. The essence of the

argument is that the upper bound for the extinction value of NRAZR is increased as

the flame moves toward (and through) the loss zone. We demonstrated later that the

NRAZR values calculated in section A.4.2 were unrealistically large: that, coupled
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with the complete absence of finite-rate chemistry, rendered the analysis suggestive

only. Nevertheless, it does square with the available evidence, which indicates that

the DF response to increased heat losses is to burrow through the loss zone, if possible.

In some cases it emerges from the other side weakened (and ready to be extinguished

with further increases of NR) but nevertheless existing. Hence, the plausibility argu-

ments advanced in section A.4.2 are consistent with the actual sequences of events as

obtained from numerical simulations.

The finite—chemistry calculations, however, seem to contradict the section A.4.2

calculations because they say that as the DF moves closer to the loss zone the extinc-

tion Damkoler number becomes larger, making the flames easier to extinguish.

This apparent contradiction between the two results, however, is resolved when

one analyzes the problem in terms of competing mechanisms. One mechanism is the

section A.4.2 impulse for DF translation through the loss zone, the second mechanism

is the section A.4.3 tendency of the extinction D to rise making actual extinction

easier. The two mechanisms are made compatible and complementary by considering

the following two cases. In the first case the value of D is so large that traversal of the

loss zone doesn’t allow D5; to exceed D; this DF therefore survives the full traversal

event and is ultimately extinguished only when NRAZR becomes much larger. In the

second case, D is of borderline magnitude; as the DF approaches the loss zone the

condition DSDE ensues somewhat later. Here the DF can therefore be extinguished

before it traverses the loss zone. The deciding quantity for both of these scenarios is

the initial D value. When it is “large”, complete loss—zone traversal is possible, when

it is “small”, only partial traversal is possible before extinction.

The prospect of a DF traversing the soot zone raises the interesting possibility of a

soot- zone—induced flame flicker. The soot zone weakens the DF which then collapses

toward the soot layer. At a certain limiting value, soot begins to leak through the

DF where it is immediately oxidized. The added heat release of soot oxidation then



200

strengthens the DF which retreats to its previous position. The sequence starts from

the beginning when the soot zone weakens the DF which then collapses toward the

soot layer, etc.

Perhaps the most important result of our analysis is the loss-zone extinction for-

mula, equation A.40. This formula was found to produce good qualitative agreement

with numerically-calculated values of the extinction (NRAZR), although a multi-

plicative correction factor was needed to bring the theoretical and numerical results

to agreement. A principal ingredient in obtaining the agreement was the retention of

the factor 53 which may be as small as 000”) and therefore may alter calculated

NRAZR values by up to 30%. As shown in chapter 4, we can generalize equation A.4O

to account for non-top-hat loss—zone profiles by properly redefining AZR.

We note finally that many of the physical subtleties of our simplified model prob-

lem are discussed in detail in [56]. Despite the error in the calculation of H(Z) and

the faulty deductions obtained therefrom, the discussions about the thermophoretic

effect, the limits of this model, etc. are correct.
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