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ABSTRACT

MUL'I'I-OBJECTIVE SEQUENCING ON A SINGLE PROCESSOR

WITH SEQUENCE DEPENDENT SETUP TIMES:

A SIMULATED ANNEALING APPROACH

BY

KEAH CHOON TAN

This research applies simulated annealing to minimize a weighted sum of tardiness

and setup times on a single processor with sequence dependent setup times. The multiple

objectives are combined by means of a tradeoff parameter. Schedulers can sequence jobs

to minimize a weighted sum of multiple objectives by varying this parameter. New

objectives can be added easily. The same formulation can be used to solve single objective

minimization problems by simply setting the tradeoff parameters ofthe unwanted

objectives to zero, thus eliminating them. Although it is not known if the proposed

simulated annealing scheme identified any optimum solutions for the larger problems, it

located the Optimum solutions for 40% or 144 of the 360 IO-job problems. The algorithm

can retain the best incumbent solution at all time. Therefore, the best known solution is

always readily available should there be a need to terminate the annealing process

prematurely or unexpectedly. This research also exploits the Boltzmann distribution to

provide some analytical guidelines on setting the proper annealing parameters.

The results of this dissertation suggest that simulated annealing holds promise as a

viable solution technique for the type of scheduling problems considered, and the quality



of the solutions developed might be acceptably good for both the single and multiple

objective formulations. Specifically, simulated annealing can handle the complex

combinatorial nature of these problems which are difficult to solve by other methods. By

making it possible to jointly consider multiple objectives, simulated annealing offers a

promising alternative to solve scheduling problems where setup times are sequence

dependent. The results of this research also suggest ways in which more complex

(realistic) job shop environments can be modeled.

Research results indicate that: (1) the types of starting solution and the relative

range of due date have no impact on the Simulated annealing scheme, (2) 50 and 100

updates produced better solution than a single update between changes in temperature

range, (3) setup problems were more difficult to solve than problems involving tardiness,

and (4) the impact of selecting a ‘bad’ job with high setup was minimized with large

problems.
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CHAPTER 1: INTRODUCTION

1.1 Introduction

A significant number of operations scheduling studies have been published over

the last three decades. This research can be classified as either theoretical research dealing

with optimizing procedures limited to static problems, or experimental research dealing

with dispatching rules in both static and dynamic cases. In the static case, all relevant

information about the jobs that are to be processed in the shOp are known at the start of

the scheduling horizon. In the dynamic case, jobs arrive intermittently and relevant

information of all the jobs are not known at the start of the scheduling horizon. As a

result of over thirty years of research, the literature dealing with operations scheduling is

both large and diverse, as obvious from such extensive survey papers as Day and

Hottenstein (1970), Panwalkar and Iskander (1977), Graves (1981), Blackstone, et al.

(1982), and Bax and Candea (1984). The combinatorial nature of the scheduling

problems and the potential benefits that exist in better scheduling continue to challenge

operations researchers.

Though an enormous amount of research exists on Operations scheduling

problems, many either totally ignore setup times or assume that setup times on machines

are independent ofthe job sequence (Corwin and Esogbue 1974, Ragatz 1993). Examples

of sequence independent sequencing research include Potts and Van Wassenhove (1985,

1987, 1991), and Van Laarhoven, et al. (1992). In a survey of one hundred and fifteen

industrial schedulers, Panwalkar, et al. (1973) reported that seventy percent of the
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schedulers stated that sequence dependence of setup times occurred with at least twenty-

five percent ofthe jobs scheduled. The magnitude of setup times depends on the similarity

ofthe process technology requirements oftwo consecutive operations. Typically, large

setup times are expected for two consecutive operations with significant differences in

process technology requirements (White and Wilson 1977, Srikar and Ghosh 1986). In

addition, most research has tended to focus on a single objective (for example, minimizing

makespan, tardiness or setup times).

Panwalkar, et al. (1973) also reported that the single most important scheduling

criterion was meeting due dates. A frequently cited due date related performance measure

was minimizing the total tardiness ofthe jobs, T = 2;, [max(0, completion timei - due

datei)], or mean tardiness which differed only by the constant factor l/n where n was the

number ofjobs. Minimizing total processing time, minimizing total setup times or costs,

and minimizing in-process inventory costs were considered by industrial schedulers as

secondary objectives. Despite the practical importance of operations scheduling to

meeting due dates in the presence of sequence dependent setup times, research in this area

tended to focus on minimizing total setup times. This priority is equivalent to minimizing

the makespan of a set ofjobs since the sum of the processing times is a constant. Total

tardiness is a difficult criterion to work with, since it is a non-linear function.

Furthermore, completing a job before the due date does not reduce total tardiness, but

simply results in zero tardiness for that job. No simple rule is known to minimize

tardiness, except in two special cases when the setup times are sequence independent: (1)

Shortest Processing Time schedules minimize total tardiness if all jobs are tardy, and (2)
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Earliest Due Date schedule minimizes total tardiness if at most one job in the sequence is

tardy (Emmons 1969).

The Simplest shop configuration in operations scheduling is the single processor

(also called the single machine shop). Each job has a single operation that is to be

performed on the single machine in the shop. Scheduling a single processor is equivalent

to sequencing, in that it includes finding a sequence in which jobs have to be processed on

a machine. Theoretically, the simpler single processor is the first step in investigating and

understanding scheduling principles in more complex job shops. Practically speaking,

many shops are limited by a bottleneck machine (Graves 1981, Hax and Candea 1984),

and scheduling is often done by considering only a bottleneck machine. For this reason,

dispatching rules have been studied extensively in the single processor environment.

However, total tardiness remains a performance measure that cannot be optimized by any

dispatching rule, even for this simple environment. Complete enumeration is infeasible for

problems with a large number ofjobs since there are n! possible solutions for n jobs. If

one wishes to minimize total tardiness regardless of sequence dependent setup times, the

only known methods are either dynamic programming or branch and bound procedures

(Blackstone, et al. 1982).

Dynamic programming (DP) is an approach for finding an optimal solution to a

problem by breaking it into smaller subproblems, each labeled a stage. Although DP has

tremendous potential due to its ability to solve difficult problems in which other

optimization tools fail, it suffers from an exponential growth in the amount of computation

as a fiinction of problem size. If the problem doubles in size, the amount of computation
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quadruples. In addition, every time a problem differs slightly, a new formulation must be

designed. For problems with many jobs and constraints, DP is rendered inefficient or even

infeasible.

Branch and bound (BB) procedures are an intelligent search procedure resulting in

either an optimal or a close to optimal solution to mathematical programming problems.

BB procedures include pure Integer Programming (IP) and Mixed Integer Programming

(MIP) problems. The procedure divides a problem into two or more subproblems

(branching) and sets two bounds on the value of the objective function. All subproblems

whose objective functions are better than the established feasible bounds are used to

modify the bound. These are then subdivided and investigated. The process is repeated

until no further subdivision is possible, at which point the optimal or near optimal solution

has been reached. BB can be efficiently coded into computer routine and works well in

problems containing a few integer variables. However, the tightness of the bounding

procedures remains a critical factor in determining how well BB works.

1.2 Problem Statement

The existing research in operations scheduling appears to provide little assistance

to industrial schedulers. Sequencing jobs on a single processor with sequence dependent

setup times to minimize makespan is analogous to the Traveling Salesmen Problem (TSP)

which is an np-complete problem. The time it takes to solve an np-complete problem

tends to increase exponentially with the size (n) of the problem (Hax and Candea 1984).



Minimizing total tardiness is a difficult and challenging task since tardiness is not linear in

completion times, thus requiring combinatorial techniques for solution. In addition,

schedulers do not always focus on a single objective. In many instances, schedulers may

want to optimize the primary objective while keeping some secondary objectives at

reasonable levels. For example, a scheduler may want to optimize tardiness while keeping

total setup times at a reasonable level.

There are very few algorithms or solution approaches that can handle either due

dates or setup times, and virtually no known efficient algorithm exists to handle both setup

times and tardiness sequentially. This study investigates the multi-objective sequencing

problem on a single processor with sequence dependent setup times to minimize a

weighted sum of tardiness and setup times. The research focuses on investigating whether

simulated annealing provides an efficient heuristic approach that can meet the needs of

industrial schedulers.

The research question is: can simulated annealing provide an efficient solution

approach to sequence jobs on a single processor with sequence dependent setup times to

minimize a weighted sum of setup times and tardiness?



1.3 Organization of Dissertation

In chapter 2, the literature on operations scheduling and research addressing single

processor or/and sequence dependent setup times will be discussed. In addition, the

concepts and related research of simulated annealing will be described in detail (Simulation

studies for the dynamic job shop problem will not be covered in depth since it is beyond

the scope of this research). In chapter 3, the methodology, techniques, and the

experiments used in this research will be discussed in detail. Chapter 4 provides a brief

discussion on the data generated, including statistical tests to ensure that the data

conforms to the intended statistical distributions. Chapter 5 discusses the results of this

research, and chapter 6 summarizes the conclusions of this research.



CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

2.1 Introduction

Operations scheduling is the final process associated with hierarchical production

planning and inventory control systems. Its purpose is to make the most detailed

scheduling decisions involving the assigning of operations to specific machines or/and

operators .during a given time interval. It is probably one ofthe most well-studied areas

of production and inventory control systems. A number ofbasic definitions provided by

Conway, et al. (1967) will be used throughout this research.

(i) Operation is an elementary task to be performed.

(ii) Processing Time is the amount of processing required by an operation.

(iii) Setup Time is the time for changing over a machine to process a different

job.

(iv) Job is a set of operations that are interrelated by precedence restrictions

derived from technological constraints.

(v) Machine is a facility that is capable of performing an operation.

(vi) Due date is the time in which the last operation of the job should be

completed. In the case of single machine, it is the time in which the

operation on the machine should be completed.

(vii) Scheduling is assigning each operation of each job a start time and a

completion time onto machines.

(viii) Sequencing is establishing the order in which jobs waiting in the queue in

front of a particular machine to be processed. Scheduling a single

processor is equivalent to sequencing.

(xv) Dispatching indicates the Single job to be performed first.

This chapter will briefly discuss the survey articles in operations scheduling.

Scheduling research that addresses single processor or/and sequence dependent setup

times will be discussed in greater detail. In addition, simulated annealing research will also

be discussed.



2.2 Survey Literature In Operations Scheduling

Day and Hottenstein (1970) provided a schema for classifying machine-constrained

operations scheduling research into three broad categories. The three categories were:

(1)

(2)

(3)

Jobs arrival process.

0 Static scheduling where n jobs arrive at time zero.

0 Dynamic scheduling where an infinite number ofjobs arrive

continuously and according to some probability density

firnction.

The number of machines, m, involved.

0 Single stage or single processor production system where

m = 1.

0 Multistage or multiprocessor production system where

m > 1.

The nature ofthe job route for multistage production system.

0 parallel routing.

0 flow shop.

0 hybrid shop (static case) or job shop (dynamic case).

Day and Hottenstein noted that research in the single processor static sequencing problem

has been extensive. Solution approaches include (1) combinatorial techniques, (2)

mathematical programming, (3) heuristics, and (4) Monte Carlo sampling. Although

optimal sequence techniques have been found to minimize some performance measures,

there was a lack of research that addressed the issue ofminimum tardiness in the presence

of sequence dependent setup times.

Panwalkar and Iskander (1977) classified operations scheduling research into (1)

theoretical research dealing with optimizing procedures limited to the static problems, and

(2) experimental research dealing with dispatching rules in both static and dynamic cases.
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The authors have focused on experimental research and classified over one hundred

dispatching rules. However, they were unable to properly classify the results of the

various researchers because of conflicting results reported in many cases, probably due to

difl‘erences in experimental conditions. They firrther concluded that most operations

scheduling research was based on hypothetical problems, and that there was a need for

more research based on real problems.

Graves (1981) reviewed the theoretical developments for various scheduling

problems and contrasted the available theory with the practice of production scheduling.

Graves reported that a wide variety of results existed for the one stage, one processor

problem, due to different problem specifications. However, the problem of minimizing

weighted tardiness has not been satisfactorily solved. Although there seems to be a

mismatch between scheduling theory and practice, there were encouraging signs for

certain production settings (in particular, the single stage production shop) in which

results of operations scheduling research have been either tested or adopted by

practitioners.

Blackstone, et al. (1982) reviewed recent studies on dispatching rules but failed to

identify a single rule as the best in all production settings. Sequencing procedures were

not discussed in the study. The authors reported that mean tardiness remained a

performance measure that could not be optimized by any dispatching rule, even for the

single processor problem. Branch and bound procedures, and dynamic programming were

the only alternatives for minimizing mean tardiness that guarantee optimality.
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2.3 Scheduling Research With Sequence Dependent Setup Times

Lockett and Muhlemann (1972) emphasized that assumption of sequence

independent setup times did not hold in a significant number of actual situations. They

derived a branch and bound algorithm for scheduling jobs on a machine with sequence

dependent setup times. The objective was to minimize the total number of tool changes.

Tool changes depended not only on the previous job, but on prior jobs as well. However,

this algorithm was computationally restrictive, except for the smallest problem. In

addition, five scheduling heuristics comparable to those used to solve traveling salesman

problems (TSP) were tested. The authors noted that the computational results of these

heuristics were encouraging although they did not guarantee an optimum schedule.

Processing times (which could be added or considered as part ofthe setup times) were

completely ignored in this study.

Panwalkar, et al. (1973) mailed questionnaires and conducted personal plant visits

in an attempt to survey actual industrial scheduling problems. Major discrepancies

between scheduling researchers and practitioners were reported. Scheduling research

tended to focus on minimizing total processing times, makespan, setup times, job lateness,

and work in process. Such performance measures were considered as secondary goals by

practitioners, who considered the meeting of due dates to be the single most important

criterion. In addition, this study concluded that seventy percent of the practitioners

reported that at least twenty five percent of their operations were subject to sequence

dependent setup times. Unfortunately, there were few algorithms that could handle due

dates or/and set up times efficiently. This clearly indicated a need for further research in
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narrowing the gap between scheduling practitioners and researchers. In particular, there

was a need to develop better solution approaches for meeting due dates (tardiness) in the

presence of sequence dependent setup times.

Corwin and Esogbue (1974) presented two dynamic programming formulations for

the two machine flow shop scheduling problems, with sequence dependent setup times on

one ofthe machines. The objective was to determine a schedule that minimized makespan

subject to meeting certain due date constraints. The authors indicated that the

computational complexity of these two formulations was equivalent to the classical

Traveling Salesman Problem, and the largest problem solvable on a computer was

approximately fourteen to fifteen jobs.

Prabhakar (1974) formulated a two stage chemical production scheduling problem

with sequencing considerations as a mixed integer programming (MIP) problem. The

problem was solved using a branch and bound algorithm by first solving the MIP as a

linear programming (LP) problem. The continuous variables established the upper/lower

bound, and each non-integral integer variable originated from a node, from which two

branches were created. The MIP model was able to efficiently solve a problem of

moderate size. However, as the problem size grew larger, the model failed to handle the

sequence dependent part of the problem. The author proposed to decompose the

sequencing part as a subproblem and solve it separately.

White and Wilson (1977) used forward stepwise multiple regression to predict the

setup times required in changing over machine tools. Independent variables considered

include eleven dummy and three continuous variables. Five of the dummy and two of the
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continuous variables were shown to be significant factors (or = 15%) in predicting setup

times. The same regression equation was then used as a heuristic technique for

sequencing jobs onto machines. Basically, the heuristic prioritized jobs with the highest

regression coefficient to be processed as a group, thus preventing setup. The model

ignored interaction effects among the independent variables.

Schrage and Baker (1978) presented a dynamic programming algorithm for solving

one machine sequencing problems with precedence constraints. This algorithm was

Shown to be superior in performance compared to the "Chain" algorithm of Baker and

Schrage (1978), and the branch and bound algorithms of Fisher (1976), Picard and

Queyranne (1976), and Rinnooy Kan, et al. (1975). However, these algorithms were all

coded in different computer languages and executed on different types of computers, thus

making fair comparison of the performance of these different algorithms difficult.

Gupta (1982) proposed a branch and bound algorithm to minimize setup cost in an

n jobs and m machines flow shop with sequence dependent setup times. The performance

of this algorithm was not reported since no other similar technique could solve such a

generalized problem proposed by the author. However, the author noted that this

algorithm was suitable for solving small size problems only. Heuristic rules remained as

the preferred techniques for solving large scheduling problems where computational

efforts increased rapidly with problem size.

Srikar and Ghosh (1986) formulated a mixed integer linear program (MILP) for

solving an n jobs and m machines flowshop with sequence dependent setup times. Their

formulation required considerably reduced number of integer binary variables, than other
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formulations. The formulation used binary variables (X;,- = 0 or 1) to represent the

precedence relationship ofjob i and jobj. The objective of their formulation was to

minimize makespan, which was linear in job completion times. However, like any other

MILP problems, the computation times of their formulation became prohibitive beyond

the 6 jobs x 6 machines on a Prime 550 minicomputer.

2.4 Single Machine Scheduling Research

Gavett (1965) proposed three heuristic rules for sequencing jobs to a single

processor with sequence dependent setup times. The goal was to minimize setup times,

although the proposed heuristics did not guarantee optimum solution. Generally, with

uniformly distributed setup times, the performance of the heuristic rules can be ranked as

(1) Next Best Rule After Column Deductions, (2) Next Best Rule With Variable Origin,

and (3) Next Best Rule. On average, the performance of these rules ranged from

approximately twenty five percent to one hundred and fifty four percent when compared

to the optimum solutions. The distribution and variance of the setup times, and the

number ofjobs in the batch has a significant effect on the performance of the heuristics.

Nevertheless, these heuristics provided a simple and practical approach for sequencing

jobs on a single processor that consistently outperformed random sequencing.

Emmons (1969) proposed an algorithm for sequencing jobs on a single machine to

minimize total tardiness. Setup times ofjobs were assumed to be sequence independent in

this research. The author noted that there was no simple rule that would minimize total or
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mean tardiness, except in two special cases: (1) the shortest processing time dispatching

rule would minimize total or mean tardiness if all jobs in the sequence were tardy (in this

case, tardiness became a linear function of completion times), and (2) the earliest due date

schedule would minimize total or mean tardiness if at most one job was tardy. Basically,

Emmons’ proposed algorithm removed jobs with large processing times and long due

dates to reduce the number ofjobs that need to be sequenced.

Haynes, et al. (1973) examined the effectiveness of the three heuristic rules

proposed by Gavett (1965) where the objective was to minimize setup times. These rules

were evaluated under different job sizes (ranging from five to eleven jobs) and setup time

distributions (normal, uniform and gamma). Three factor, fixed effects analysis of

variance (similar to multiple regression analysis that considered the main effect and higher

order interaction terms) was used to determine the effects ofthe factors. Job sizes,

heuristic rules, and the interaction term of setup time distribution with job sizes were

shown to be statistically significant factors (at or = 0.05) affecting the effectiveness of the

models. All three heuristics tended to be least effective when the setup times were

uniformly distributed.

Rinnooy Kan, et al. (1975) presented a branch and bound algorithm for sequencing

jobs on a single processor. The goal was to minimize weighted tardiness of the jobs. The

authors claimed that their algorithm was far superior to existing algorithms, particularly

for up to fifieen or twenty jobs. However, when the tardiness factors were increased to

0.6 and 0.8 (6 problems each), their algorithm managed to solve only seven ofthe twelve

20-job problems within the allowable computation time offive minutes on a Control Data
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Cyber 73-28 computer. They cited that sharper lower bounds were needed to reduce the

size of the search tree. As a result, they concluded that minimizing weighted tardiness

remained a difficult problem, and the issue would remain a challenge to researchers for a

long time. The author emphasized that in order to solve the minimizing tardiness problem

satisfactorily, a completely new approach other than the traditional algorithms or

heuristics, or methodology from other disciplines should be investigated.

Driscoll and Emmons (1977) developed an efficient backward-time search

procedure for scheduling jobs on one machine that minimized the total setup costs while

meeting the due dates of the jobs. They claimed the monotonicity property ofthe

forward-time dynamic program could be applied for developing an efficient backward-time

search procedure for solving the problem.

Barnes and Vanston (1981) discussed the problem of scheduling jobs with linear

delay penalties and sequence dependent setup costs. They also discussed and compared

the application ofvarious branch and bound algorithms for solving this class of scheduling

problems. A hybrid algorithm analogous to Morin and Marsten's dynamic programming/

branch and bound approach was shown to be superior in yielding optimal solution.

Potts and Van Wassenhove (1985) presented a branch and bound algorithm for the

single machine total weighted tardiness problem where setups were assumed to be

sequence independent. The algorithm was tested on problems with 20, 30, 40, and 50

jobs. Processing times (p) were generated from uniform distribution between 1 and 100

(p ~ U(l, 100)). Relative range of due dates (RD) and average tardiness factor (TF) were

chosen at 0.2, 0.4, 0.6, 0.8, and 1.0. Each job was given a due date generated from a
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uniform distribution between (p[l-TF-RD/2]) and (p[1-TF+RD/2]). The computation

generated due dates between the ranges -0.5*p (IF = 1 and RD = l) to l.3*p (IF = 0.2

and RD = 1). Although no explanation was given for the negative due date, it probably

meant overdue jobs. The proposed algorithm was reported to have successfirlly solved

problems with up to 40 jobs. The authors also reported that the problems were most

difiicult to solve when the tardiness factors were between 0.6 and 0.8.

Potts and Van Wassenhove (1987) discussed and compared three general

precedence constrained dynamic programming algorithms and seven special purpose

decomposition algorithms for minimizing total tardiness on a single machine where setups

were assumed to be sequence independent. The authors concluded that general

precedence constrained dynamic programming algorithms relied heavily upon Emmons’

(1969) dominance rules. Experimental results indicated that the special purpose

decomposition algorithms were far superior to the general precedence constrained DP

algorithms. The most effective decomposition algorithm solved all the 100-job test

problems in the authors' experiment.

Potts and Van Wassenhove (1991) presented a collection of heuristics for the

single machine total tardiness problem. The authors tested all these heuristics against the

simulated annealing method on a large set of test problems. Experimental results of 20-

job, 40-job, and 50-job test problems indicated that the decomposition heuristic

outperformed simulated annealing method in minimizing total tardiness. However,

simulated annealing method was clearly a viable approach for minimizing total weighted

tardiness. All these heuristics assumed setups were sequence independent. The authors



17

concluded that the initial solution was a significant factor in determining the quality of the

final solution if the simulated annealing process was truncated after a relatively small

number of iterations. In a particular weighted tardiness problem, the difference in best

solution oftwo simulated annealing runs on the same problem was reported to be as high

as 100% afier 10,000 iterations.

Ragatz (1993) proposed a branch and bound approach for minimum tardiness

sequencing on a single processor with sequence dependent setup times. Experimental

results of eight to sixteen jobs indicated that the algorithm was fairly effective in solving

the smaller problems. However, the algorithm has difficulty with larger problems,

particularly those with a narrow range of due dates or/and a high variance in processing

times. In more than half the research problems, the author managed to find the optimal

sequence within the first ten thousand nodes explored.

Rubin and Ragatz (1995) applied a genetic search algorithm (GS) to a subset of

test problems similar to Ragatz (1993). The performance of GS on a set of thirty two test

problems was compared to (1) a pure random search (RS) and (2) Ragatz's branch-and-

bound algorithm (RBB). Moderate tardiness factor and narrow due date range were

considered as the hard levels, whereas low tardiness factor and wide due date range were

considered as the easy levels. The authors concluded that:

(1) processing time variance was not a determinant of comparative

performance,

(2) GS and RS produced "good" solutions faster than RBB with test

problems having moderate tardiness factor and wide due date

range,

(3) RBB was superior to GS and RS when the tardiness factor was low

and due date range was narrow,



l8

(4) GS, RS and RBB located an optimal schedule almost immediately

when the tardiness factor was low and due date range was wide.

The authors classified that category as a trivial problem and stated

that sequencing jobs according to their due dates appeared to work

in general.

(5) Neither GS, RS nor RBB appeared to be consistently superior

when the tardiness factor was moderate and due date was narrow.

2.5 Summary of Current Scheduling Research

This review of current scheduling research suggests that despite its practical

importance, sequencing jobs with sequence dependent setup times to minimize tardiness

has not been given due consideration. Most researchers have focused on a single objective,

and have either attempted to minimize total setup costs or makespan, or assumed

sequence independent setup times. Setup times were either totally ignored or treated as

sequence independent and thus absorbed as part of the processing times. Dynamic

programming and branch and bound algorithms were the general solution approaches

applied so far. Unfortunately, these solution approaches have proved to be neither

efficient nor feasible for problems with large number ofjobs.

2.6 Simulated Annealing

Simulated annealing offers a powerfirl search heuristic for obtaining excellent

solutions for problems in the np-complete category. Unlike local optimization or iterative

improvements which repeatedly improve the initial solution by making small local
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alterations until no such alteration yields a better solution, simulated annealing randomizes

this procedure in a way that allows for occasional changes that worsen the solution, in an

attempt to reduce the probability of becoming stuck in a locally optimal solution. The

only requirement for solving a combinatorial optimization problem with simulated

annealing is that there be a set ofmoves that can generate a new solution from the current

solution. Therefore, it is possible to represent the combinatorial optimization problem of

interest in this research as a simulated annealing problem.

The basic steps in casting a combinatorial problem into an annealing problem are:

(1) describe the state space, (2) the move set, and (3) the objective firnction. In this

research, the state space is the set of feasible solutions, that is, all possible sequences. The

move set involves randomly switching the sequence oftwo jobs. The objective function

consists of a weighted sum of tardiness and setup times. In this research, the proposed

simulated annealing schedule will accept with some probability changes in the sequencing

oftwo jobs, despite poorer performance in an attempt to allow the problem to avoid a

local minimum in favor of a better solution. The procedure uses the Boltzmann

distribution to determine whether to accept a change that leads to a worse sequence.

Simulated annealing makes a random switch in the sequence oftwo jobs (called

state change) and determines the resultant objective value created after the change. The

procedure slowly decreases the probability of accepting the random switch in the sequence

that results in poorer performance. Rejection or acceptance ofthe state change is made

according to the following criteria:

(1) If the objective value is lower after the random state change (i.e. system

performed better), accept the change.
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(2) If the objective value is not lower after the random state change (i.e.

system performed worse), accept or reject the change according to the

Boltzmann Distribution.

2.7 Simulated Annealing Research

Kirkpatrick, et a1. (1983) discussed some successful applications of the simulated

annealing techniques to a number of practical problems, including optimization of the

traveling salesman problem. The technique proposed involved finding a function to be

minimized, choosing a starting temperature, and then dropping the temperature according

to a useful annealing schedule. The authors exploited the annealing analogy of solids to

provide a fi'amework for combinatorial optimization problems. They claimed to have

annealed into local optimum the traveling salesman problem for up to 6,000 cities.

Johnson, et al. (1989) reported on an extended empirical study of the use of

simulated annealing to the combinatorial optimization problem proposed by Kirkpatrick, et

al. (1983). The authors investigated how to adapt simulated annealing to particular

problems and compared its performance to traditional algorithms. They applied simulated

annealing to a graph partitioning problem and reported that simulated annealing clearly

out-performed traditional local optimization and the algorithm due to Kernighan-Lin

(1970). They firrther concluded that longer annealing runs produced better results, and

starting the annealing schedule at a good initial solution produced better solutions than

starting at a randomly generated initial solution. However, Suresh and Sahu (1993)

reported a contradictory finding which stated that a very important feature of simulated

annealing was the nondependence of the final solution on the initial solution.
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Brown, et al. (1992) compared the performance of simulated annealing and genetic

algorithm to routing and scheduling traffic over a freight rail network. The authors

concluded that simulated annealing was computationally more efficient and superior to

genetic algorithm for their application. Genetic algorithms required several hours to

converge on a set of good answers, whereas simulated annealing could often find a fairly

good answer in a few minutes.

Van Laarhoven, et al. (1992) used simulated annealing to find the minimum

makespan in a job shop where setups were assumed to be sequence independent. The

algorithms were tested on problems varying from six jobs on six machines to thirty jobs on

ten machines. Experimental results indicated that the proposed simulated annealing

heuristic was able to find shorter makespans than the iterative improvement approach and

the shifting bottleneck procedure, at the expense of large computation times. However,

the authors considered the disadvantage of large computation times to be compensated for

by: (1) the simplicity of the algorithm, (2) its ease of implementation, (3) the fact that it

required no deep insight into the combinatorial structure of the problem, and (4) the high

‘quality’ of the final solution.

Laursen (1993) investigated the optimal tradeoff between simulation time and

solution quality of simulated annealing algorithms applied to the quadratic assignment

problem. The author confirmed Johnson's, et al. (1989) findings and reported that the

simulation length was indeed optimizable, although a rather broad range of simulation

lengths produced near optimal solution quality. The author found that the optimal

simulation time (about 25,000 iterations) was rather short for the quadratic assignment
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problem. Therefore, several short simulation runs of the same problem should be the

preferable choice rather than using a single long simulation run.

Shang (1993) used the simulated annealing heuristic to find a near optimal solution

for the proposed multicriteria facility layout problem. The multiple objective quadratic

assignment problem combined both qualitative and quantitative objectives. Analytic

hierarchy process was used to find the relative weight for each qualitative aspect of the

facility layout problem. The author tested the simulated annealing heuristic on three

different initial solutions and reported that the initial solution had a significant effect on the

quality ofthe final solution.

2.8 Summary of Simulated Annealing Research

Simulated annealing was first applied to combinatorial problems by Kirkpatrick, et

al. (1983). Many researchers have subsequently reported successfirl applications of

simulated annealing in obtaining good solutions to NP-hard combinatorial problems.

Simulated annealing has been successfirlly used to find good solutions to minimizing

makespan and tardiness problems in job shop scheduling (where setups were assumed to

be sequence independent). It has also been successfully applied to solve multi-objective

facility layout problem. A general conclusion that can be reached is that a well tuned

simulated annealing search heuristic could be a viable and attractive alternative job shop

scheduling approach when the problem is too complex to be solved through optimization

methods.



CHAPTER 3: RESEARCH DESIGN

3.1 Introduction

This research investigated the problem of scheduling a single processor to

minimize a weighted sum of setup times and tardiness when setup times are sequence

dependent. A tradeoff parameter, 0, was used to combine the multi-objective (setup times

and tardiness) into a single objective firnction. An initial solution was generated, and then

simulated annealing was used to ‘lower’ the combined objective fimction into a local or

global minimum. All jobs were sequence dependent and generated according to pre-

defined distributions specified in section 3 .6.

3.2 Research Statement

This study applied simulated annealing to solve the multi-objective sequencing

problem on a single processor with sequence dependent setup times. The objective was to

minimize a weighted sum of tardiness and setup times. The processing time (p,), setup

time (Sij), and the due date (di), for each job were assumed to be known with certainty

when jobs arrived at the shop, and setup times were sequence dependent. In this

environment, minimizing makespan is equivalent to minimizing setups since the total

processing times of all the jobs remained the same regardless of the processing sequence.

23
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Simulated annealing was used to locate the local or global optimal sequence that

minimized a weighted sum of setup times and tardiness. This approach allows minimizing

tardiness and setup times sequentially or considering them together using a tradeoff

parameter. In addition, this research investigated the effect of varying the parameters

affecting the annealing schedule.

The specific issues investigated by this research are as follows:

(a)

(b)

(C)

((1)

Most ofthe existing operations scheduling research has either totally

ignored setup times or assumed that setup times on each machine are

independent ofthe job sequence despite the fact that at least twenty-five

percent ofthe jobs scheduled by practitioners are sequence dependent. In

addition, past research tends to focus on a single objective. This research

focuses on sequencing jobs on a single processor with sequence dependent

setup times to minimize a weighted sum of tardiness and setup times.

Simulated annealing is used to solve the research problem.

In order to derive an appropriate cost function to investigate the effect of

multiple objectives (i.e. setup times and tardiness), the following objective

firnction which is a linear combination ofthe two objectives is used:

Objectivefimction, H = 6 (tardiness) + (1— 6) * (setup times)

In this representation, 0 is used to represent the tradeoffbetween the two

objective functions, tardiness and setup times. When 9 = 1, the formulation

reduces to the single objective of minimizing tardiness, and when 0 = 0, it

reduces to the single objective ofminimizing setup times. When 0 < 0 < l,

the simulated annealing heuristic needs to consider a weighted sum of

tardiness and setup times. Therefore, it should be expected that the

problems are easier to solve when 0 = 0.0 or 0 = 1.0.

This research investigates the effect of the initial solutions on the final

solution. Experimental results on the effect of the initial solution on the

performance of simulated annealing is inconclusive.

Johnson, et al. (1989) concluded that longer annealing runs produced

better results, whereas Laursen (1993) reported that the iterations needed

to obtain a good solution in their experiment are very small. However, this

factor was expected to be a significant factor in determining the quality of
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the final solution. Longer simulation runs are expected to produce better

solutions, but at the expense of higher computation cost.

(e) Ragatz (1993) and Rubin and Ragatz (1995) indicated that tightness of due

dates and the number ofjobs to be scheduled are major factors affecting

the effectiveness of their solution approaches. Tightness of due dates

indicates how closely the due dates of individual jobs are related to each

other. This research investigates the effects of the number ofjobs to be

scheduled and tightness of due dates on the final solutions.

(f) This research also investigates various parameters affecting the simulated

annealing schedule, including:

(i) The starting temperature.

(ii) The final temperature at which the system was considered ‘frozen’.

(iii) The temperature decay rate.

3.3 Problem Description

Minimizing tardiness or minimizing setup times separately is very similar to the

classic Traveling Salesman Problem (TSP), except that the objective function of tardiness

is not linear in job completion times whereas the objective function ofTSP is linear in

distance traveled. This subtle difference makes minimizing tardiness as an objective a

more challenging problem. The actual best solution to either of the problems separately is

an np-complete problem, and the time required to solved it on a computer grows

exponentially with the number ofjobs to be sequenced. The solution approach becomes

more complex when the scheduling objectives involve both minimizing setup times and

minimizing tardiness sequentially.
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Suppose there are n jobs {1, 2, 3, ..., n} available at time zero for processing on a

continuously available machine (i.e., no machine breakdowns) that can process only one

job at a time. For each job i, the processing time (p,), due date ((11), and the sequence

dependent setup times (Sij) are assumed known with certainty when jobs arrive at the

shop. The variable Sij is the sequence dependent setup time ifjobj follows job i in the

processing sequence. The machine is assumed to be idle at time zero. The tardiness ofjob

i can be defined as T; = max{0, completion time,- - due date;}, and the setup times ifjobj

follows job i in the sequence is Sij- Completing a job before its due date does not affect

the tardiness objective. This research addressed how to schedule the set ofn jobs to

minimize a weighted sum of setup times and tardiness.

3.4 Simulated Annealing

AS discussed in chapter 2, simulated annealing was used to solve the class of

scheduling problems considered in this research. Although the general approach to

solving problems using simulated annealing is well known, the issues to be addressed in

this research required careful consideration ofways to implement the simulated annealing

approach. Specifically, simulated annealing requires generating the move set, specifying

the probability of accepting a potential move and setting the values for parameters that

control the cooling schedule. These aspects of simulated annealing are discussed in the

following sections.
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3. 4. 1. The Boltzmann Distribution

The Boltzmann probability firnction is p(c) = 1
1 + e“

where,

T = Temperature

AH = H’ - H

H = Value of the objective firnction before the state changes, and

H’ = Value ofthe objective function after the state changes

AS the parameter T decreases, the equation makes it clear that changes that

decrease the firnction are more likely than those that increase it. At very high T compared

to AH, p(c) is approximately 0.5. That means at high temperature, the simulated annealing

schedule has equal probability of accepting or rejecting a worse sequence. At moderate T,

the higher the AH, the less likely the simulated annealing schedule will accept a change

that leads to a worse sequence. At very small T, the random behavior of the Boltzmann

distribution is eliminated, and p(c) approaches zero. Thus, the probability of accepting a

worse sequence approaches zero.

3. 4. 2. Perturbation Scheme - the move set

The first step in applying the simulated annealing schedule is to generate an initial

feasible schedule. Then, the move set or the perturbation scheme must be defined. The

random perturbation scheme used in this research involved: (1) generate two integer

random numbers from uniform distribution between 1 and n, where n is the total number

ofjobs in the sequence, (2) let these two random numbers represent the job numbers, (3)

exchange the position of these two jobs in the sequence.
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3. 4. 3. SimulatedAnnealing Scheme

The simulated annealing scheme can be summarized as:

1. Set the control parameters:

1.1 Initial temp (Tm)

1.2 Final temp (T0) at which the system is consideredfrozen,

1.3 Temperature decay rate, (r)

2. While not yetfrozen, do the following

2.1 Perform the following loop STEP times

(STEP =1, 50, or 100)

2.1.1 Generate 2 different integer random #’s between 1 and n.

Let these 2 random #’s represent job #‘s.

Exchange the position of these 2 jobs.

2.1.2 LetAH=H’-H

2.1.3 IfAH S 0 (downhill move), accept the new sequence.

2.1.4 IfAH > 0 (uphill move),

(i) calculate the probability of accepting that change from the

l

1+e‘wT ’

(ii) Select h, a uniformly distributed random number between 0

and 1.

2.1.4.1 If P(c) > h, accept the new sequence.

2.1.4.2 If P(c) S h, reject the new sequence, and retain the

previous sequence prior to step 2.1.1.

Boltzmann Distribution, P(c) =

2.1.5 Return to step 2.1.1

2.2 Set T = rT (reduced temperature).

3. Return H.

4. End of Program.
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3.4.4. Setting The Control Parameters

The three control parameters (Tm, To, r) must be determined apriori before the

simulated annealing scheme can be applied to solve the research problem. Pilot runs of the

research problems and the probability filnction of the Boltzmann distribution are used to

derive a good estimate for these three parameters. The firndamental principle of simulated

annealing is to allow an equal chance of rejecting or accepting a worse solution initially.

The chance of rejection is slowly decreased to zero by means of a control parameter

known as ‘temperature’. This is achieved by slowly decreasing T...“ to To at the rate of (1

- r) percent. These three control parameters were derived as followed:

(1) The Initial Temperature (Tn...)

At very high temperature (T), the simulated annealing scheme should have

approximately 50 percent chance of rejecting or accepting a worse solution. Therefore, it

is essential to conduct pilot runs to estimate the worst deterioration of the objective

function value if the sequence oftwo jobs were switched. The worst case scenario is

derived from the 50-job case with TradeoffParameter (6) equals to 1. The deterioration

ofthe objective firnction AH did not exceed 1,000. Therefore, the highest AH was fixed at

1,000. Once the highest AH was fixed, Tm, was calculated easily from the Boltzmann

probability function, p(c). The question was to determine the value ofTm so that p(c) =

0.50. Theoretically, p(c) approaches 0.50 only if Tmax is infinitely large. For the purpose
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of this research, the value ofme was computed by arbitrarily setting p(c) = 0.475, a value

sufficiently close to 0.50.

. . . 1

Boltzmann Distribution, P(c) = 1+ eMn. z 0.5 ; AH = 1,000

1 —

Let W — 0.475

= em“ = 1/0.475 - l

= ew‘m’" = 1.105

=> (AH/Tm) ln e = ln 1.105

=> T,mm = (AH*lne)/ln1.105

= 10,000

(11) The Final Temperature (To)

To must be selected such that the probability of accepting a worse sequence

approaches zero, that is, p(c) = 0. The smallest possible incremental value ofthe objective

firnction AH was 0.5 (when 0 = 0.5). Theoretically, p(c) approaches 0.00 only if To is

close to zero. For the purpose of this research, the value of T0 was computed by

arbitrarily setting p(c) = 0.007, a value sufficiently close to 0.00. Therefore, the value of

T0 was derived by:

Let W = 0.007

= em“ = 1/0.007 - 1

=> em“ = 141.857

=9 (AH/To)lne = In 141.857

2 To = (AH * ln e) / In 141.857

2 0.10
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(III) The Temperature Decay Rate (r)

The Temperature Decay Rate, r, should be as small as possible so as to provide a

better probability for the annealing schedule to escape local optimal. However, the

annealing time would be unacceptably long if r was too small. With Tm and To fixed, the

temperature decay rate was derived by considering the additional computation time

required at each 0.5 percent increment. Figure l plotted the number of iterations required

to bring Tm to To at temperature decay rate from 0.90 to 1.00. Theoretically, r = 1.00 is

impossible because that will require indefinite annealing time. The graph clearly indicates

that the marginal computation time required for r = 0.90 to r = 0.99 is rather insignificant.

However, the marginal time increased significantly when r > 0.995. Therefore, r was

 

selected at 0.995.

Number of Iterations to bring Tmax to To

Tmax = 10,000; To = 0.10
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3.5 Experimental Factors

This research investigated a total of five experimental factors. Three of the

experimental factors were set at 3 levels each, and the other two experimental factors

were set at two levels each. The full factorial experimental design consisted of a total of

108 (3)6X3>Q>Q) treatments with ten test problems in each treatment cell. The factors

were: (1) the types of initial solution, IN]T, (2) the average number of updates per

temperature range, SYEP, (3) the number ofjobs in the sequence, n, (4) tightness of due

dates, RD, and (5) the tradeoff parameter, 9, used to determine the tradeoffbetween

tardiness and setup times.

3. 5. 1. Means at Generating the Initial Solution (1N1!)

Theoretically, simulated annealing tends to yield a near optimal solution

independent of the initial solution. Johnson, et al. (1989), Potts and Wassenhove (1991),

and Shang (1993) reported that starting the annealing schedule at a good initial solution

might produce better final solution than starting at a randomly generated initial solution.

Intuitively, this seems to be a valid claim since the initial solution partially determines how

the final solution settles into a local or global minimum, and also the ability of the

simulated annealing schedule to avoid a local minimum. However, Suresh and Sahu

(1993) report that a very important feature of simulated annealing is the independence of

the final solution from the initial solution.
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This research investigates the effects of better than randomly generated initial

solutions compared to randomly generated (RND) initial solutions. The randomly

generated initial solutions are generated by the computer using pseudo random numbers.

The randomly generated initial solutions are improved by performing pair-wise ‘swaps’ of

two jobs to obtain the better than randomly generated initial solutions. Therefore, in an

n-job sequence, the pairs (1, 2), (1, 3), (1, 4) (1, n), (2, 3), (2, 4) (2, n), (3, 4) (n-

1, n) were checked, and adopted if it lead to a better solution. The better than randomly

generated initial solution is called the pairwise swapped (PWS) initial solution. This factor

relates to the simulated annealing heuristic and average objective value will be used as the

performance measure.

3. 5. 2. Number ot Updates Between Changes in Temperature (STEP)

In each temperature range, a larger number ofupdates was expected to produce

better solutions than a lower number ofupdates. This is due to the fact that a larger

average number of updates increase the probability escaping a local optimum. However,

using an unduly large number ofupdates will lead to wasted computation time. In order

to investigate the influence of this factor on the quality of the final solution and the

computation cost ofthe heuristic, this factor was set at three levels, 1, 50 and 100

updates. One update per temperature range was considered ‘low’, fifty updates were

considered ‘medium’, whereas one hundred updates were estimated to be large enough for

the perturbation scheme to get out of local minimum. This procedure is known as
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metropolis loop and the step is called the metropolis step (Otten and Ginneken, 1989).

This factor relates to the simulated annealing heuristic. Average objective value will be

used as the performance measure.

3. 5. 3. Number ot Jobs In The Sequence (n)

The number ofjobs in the sequence was expected to be an important factor

affecting the effectiveness of simulated annealing. In order to investigate how the

solutions generated by simulated annealing depended on problem size, this factor was set

at n = 10, 30, 50 jobs. However, prior expectation was that the actual global optimum

solutions could not be identified for larger problems. Therefore, the quality of the final

solution was compared based on the average objective fiinction value per job to

investigate if higher number ofjobs lead to larger averages. Averaging the total objective

value works well for the setup problems, but not for problems involving tardiness, since

tardiness is not a linear function of the number ofjobs in the sequence. Investigation of

this factor will be limited to the setup problems only (i.e. 0 = 0.0).

3. 5. 4. Tightness ot Due Dates - Relative Range at Due Date (RBI

The approach for generating the uniformly distributed due date was consistent with

Rinnooy Kan, et al. (1975) and Ragatz (1993). Potts and Van Wassenhove (1985) used a

different method for generating due dates. Their approach generates negative due dates

when both the tardiness factor and the relative range equal to 1. For this research, the
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mean of due dates was set equal to (1-TF)x(n)x(mean processing time) = (1- 0.5)x(n)

x(100) = 50n, and its range was set equal to (RD)><(n)><(mean processing time). RD is the

relative range of due dates and n is the number ofjobs. Rinnooy Kan, et al. (1975),

Ragatz (1993), and Rubin and Ragatz (1995) reported that the problem was more difficult

to solve with a narrow relative range of due date. The relative range of due date, RD, is

an experimental factor in this study. RD was set at 0.2 and 0.5. Levels ofRD lower than

0.2 are not very realistic, since they indicate a need to look for better ways of promising

due dates to customers. In summary, due dates have a mean of 50n and a range of:

(i) 20n = (0.2 x n x 100) when RD = 0.2. That is, d ~ Uniform(40n, 60n).

(ii) 50n = (0.5 X n x 100) when RD = 0.5. That is, d ~ Uniform(25n, 75n).

Investigation ofthis factor will be limited to the 10-job problems only since the optimum

solutions for the larger problems are not known. Final solutions will be compared to the

optimum solutions. The performance measure, ‘percent above optimum’, pctabopt = (final

solution - optimum solution) / optimum solution, will be used.

3. 5. 5. Tradeofl Parameter (62

In the formulation of the objective function, 0 was used to determined the tradeoff

between the two objective functions, tardiness and setup times. If 6 = 1, the formulation

represents the single objective of minimizing tardiness, and if 0 = 0, it represents the single

objective of minimizing setup times. If 0 < 0 < l, the objective to be considered is a

weighted sum of tardiness and setup times. Therefore, it was expected that the problems
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are more difiicult to solve, or simply stated, the simulated annealing heuristic was

expected to be less efficient in identifying the optimum solutions for multi-objective

problems. In order to test this, the tradeoffparameter was investigated at three levels:

(1) 0 = 0.0 (single objective minimizing setup times)

(2) 0 = 0.5 (minimizing a weighted sum of setup times and tardiness)

(3) 0 = 1.0 (single objective minimizing tardiness)

3. 5. 6. Summam ot Merimental Factors

The performance measures used (Section 3 .7), factors and levels can be summarized as:

Table 1: Summary of Experimental Factors

 

 

 

 

 

 

      

Factor Level 1 Level 2 Level 3 Performance

Measure

Types of

Initial Solution (RND) (PWS) _ avg/in 1"

(INIT)

Number of Updates 1 50 100 avg/in

(STEP)

Number of Jobs 10 30 50 avg/in

(n) (e = 0 only) *2

Due Date Tightness 0.2 0.5 _ pctabopt *3

(RD) (n = 10 only)

Tradeofl‘ Parameter 0.0 0.5 1.0 pctabopt

(0) (100% Setup) (100% Tardy) (n = 10 only)
 

*1 avgin = average objective filnction value

*2 For setup problems only since tardiness is not a linear function of n.

*3 pctabopt = percent of the final solution above the optimum solution (IO-job

problems only)
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3.6 Test Problems

The test problems were adapted from Ragatz (1993). Ragatz (1993) used thirty

two test problems for each level of the number ofjobs (n = 8, 10, 12, 14, 16) to be

scheduled, whereas Rubin and Ragatz (1995) used eight test problems for each level of the

number ofjobs (n = 15, 25, 35, 45) to be scheduled. In this research, twenty independent

sets ofjobs (10 each for RD = 0.2 and 0.5) were generated for each level of the number of

jobs (n = 10, 30, 50). In other words, ten problems per experimental cell were solved.

The approach, distributions and levels of the various parameters chosen were consistent

with those considered by Rinnooy Kan, et al. (1975) and Ragatz (1993), despite the fact

that these two past research involved only the single objective of minimizing tardiness.

The following sections describe how each job was generated.

3. 6. 1. Distribution ot Job Processing Time (pl

Job processing time is the time required for a job to be completely processed on

the single processor or machine. Ragatz (1993) used normally distributed job processing

times with an arbitrarily chosen mean of 100, whereas the variance was an experimental

factor chosen at 52 and 252. The author reported that his branch and bound algorithm has

particular difficulty in solving large problem with a narrow due date range and/or a high

variance in processing time. However, Rubin and Ragatz (1995) reported processing time

variance was not a determinant of comparative performance among genetic search,

random search, and Ragatz’s branch and bound. This research used a normally distributed

processing times with a mean of 100 and variance of 252. That is, p ~ Normally( I 00, 252).
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3. 6. 2. Distribution 0 Setu Times s

Ragatz (1993) used uniformly distributed setup times at two levels with a similar

mean of 9.5 as an experimental factor, that is, s ~ Uniform(7, 12) and 3 ~ Uniform(O, 19).

The author reported the range of setup times distribution was not a significant factor

affecting solution difficulty, possibly due to the fact that the average setup time of 9.5 was

too small relative to the mean processing time of 100. Setup times for this research was

set at s ~ Uniform(O, 19).

3. 6. 3. Tardiness Factor

The mean ofthe due dates was set equal to (1-TF)><(n)x(mean processing time),

where n is the total number ofjobs to be processed. This approach is consistent with past

research. The tardiness factor determines the approximate percentage ofjobs in a random

sequence that will be tardy. For example, 777 = 0.50 means approximately fifty percent of

all the jobs are expected to be tardy in a random sequence. Rinnooy Kan, et al. (1975)

reported that solution difficulty increased steadily from TF = 0.20 to TF = 0.80, whereas,

Ragatz (1993) reported that solution difficulty increased from TF = 0.40 to TF = 0.60.

Rubin and Ragatz (1995) reported that the scheduling problem was rather trivial with a

low 7F and wide due date range. They reported that the problem was more difficult to

solve when the tardiness factor was at the moderate level with a narrow due date range.

Due date range is an experimental factor in this research. Tardiness Factor (TF) was set at

a moderate level of 0.5 in this study.
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3.7 Performance Measures

The performance measure for testing the experimental factors specific to the

simulated annealing heuristic (i.e. IN]T and SYEP) is the average objective value per job.

By using the average instead ofthe total objective value, it is possible to compare

problems with different number ofjobs. Data from 10, 30 and 50-job problems will be

used ofthis analysis. The effect of the number ofjob (n = 10, 30 and 50) will also be

tested. However, this will be limited to the pure setup problems (i.e. 0 = 0.0) only,

because tardiness is not a linear function ofthe number ofjobs in the sequence.

The performance measure for testing the ‘quality’ ofthe solution is the percent of

the final solution above the optimum solution, pctabopt = (final solution - optimum

solution) / optimum solution. Analysis of solution quality will be limited to the lO-job

problems. The impact of 0, RD and n on the quality of the lO-job problems will be

investigated.
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CHAPTER 4: DATA VALIDATION

4.1 Introduction

The job generator was coded using the standard version of Microsofi Visual Basic

3.0. Twenty sets ofjobs each were generated for n = 10, 30 and 50 according to the

predefined distribution discussed in section 3.5. Kolmogorov-Smirnov and x2 test were

used to check whether the due dates, setup and processing times of each set ofjobs

conformed to the desired distributions. Wald-Wolfowitz Runs test was also used to check

if prior data generated influenced the values of subsequent data.

4.2 Due Date: (I ~ U(40n, 60n) or d ~ U(25n, 75n)

Ho: Sample Distribution = Population Distribution

H1: Sample Distribution at Population Distribution

Kolmogorov—Smirnov (K-S) test was used to check whether due dates ofjobs

generated came from a uniform distribution between 40n and 60n when RD = 0.2, and

between 25n and 75n when RD = 0.5. The K-S test was more appropriate than the x2 test

because ofthe wide range of due dates which could be assumed to be a continuous

variable. The sampling distribution of the K-S statistics was based on the assumption of a

continuous population variable. However, it should be noted that the actual due dates

distribution was discrete rather than continuous. Using K-S test for discrete population

variable is conservative, in the sense that the actual p-value does not exceed that given by

the continuous population variable. It could be much smaller (Berry and Lindgren, 1990).

40
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Large 2-tailed p-values ofthe K-8 test shown in Tables 2 and 3 (except in three

cases) implied that the null hypothesis Ho could not be rejected at 01 = 0.05. Therefore,

there was no reason to believe that due dates were not uniformly distributed between 40n

and 60n when RD = 0.2, and 25n and 75n when RD = 0.5.

Table 2: RD = 0.2; Due Date, d ~ U(40n, 60n)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

Problem # # of Jobs Mean Std Dev Min Max Runs Test K-S

1 10 535.00 52.69 412 598 0.0950 0.1712

2 10 525.00 51.82 422 595 0.3143 0.4038

3 10 521.20 61.26 418 592 0.3143 0.4059

4 10 507.10 51.07 409 587 0.7373 0.8239

5 10 491.50 60.09 402 586 1.0000 0.9995

6 10 503.60 54.85 408 568 1.0000 0.3802

7 10 487.00 41.83 446 578 0.3143 0.2037

8 10 483.60 57.45 408 588 0.3143 0.7067

9 10 538.50 59.28 407 600 0.7373 0.0536

10 10 500.10 76.30 406 594 0.3143 0.3546

1 30 1503.67 167.35 1213 1784 0.8526 0.7596

2 30 1510.87 181.90 1233 1800 0.3529 0.8052

3 30 1542.10 193.66 1202 1799 0.0945 0.1152

4 30 1478.67 181.82 1202 1754 0.5772 0.7528

5 30 1520.93 150.13 1245 1779 0.8526 0.4448

6 30 1475.73 178.64 1207 1799 0.3529 0.3018

7 30 1512.13 178.85 1203 1784 0.5772 0.2024

8 30 1500.10 171.84 1208 1793 0.3529 1.0000

9 30 1480.93 167.15 1236 1775 0.3529 0.4533

10 30 1423.77 158.74 1232 1702 0.3529 0.0763

1 50 2482.38 292.63 2021 2955 0.2530 0.8766

2 50 2573.94 306.42 2056 2994 0.3913 0.1004

3 50 2471.16 279.70 2028 2971 0.7751 0.8864

4 50 2476.74 284.32 2006 2999 0.5676 0.6318

5 50 2568.74 242.47 2019 2941 0.2530 0.0311

6 50 2496.76 291.92 2023 2996 0.7751 0.9105

7 50 2508.54 298.84 2018 2999 0.0864 0.8839

8 50 2545.44 287.00 2050 2955 0.5676 0.5076

9 50 2425.82 258.40 2005 2984 1.0000 0.101 1

10 50 2518.02 298.48 2000 2989 0.3913 0.3683
 

 



42

Table 3: RD = 0.5; Due Date, (1 ~ U(25n, 75n)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Problem # # of Jobs Mean Std Dev Min Max Runs Test K-8

1 10 447.40 163.13 258 734 0.7373 0.4852

2 10 470.20 147.01 268 654 0.3143 0.8856

3 10 494.50 137.22 289 669 0.3143 0.8654

4 10 454.30 92.40 331 586 1.0000 0.9330

5 10 533.60 138.66 326 708 0.7373 0.8540

6 10 506.40 146.96 267 666 0.7373 0.2267

7 10 428.30 107.80 314 654 0.7373 0.2027

8 10 505.20 143.85 297 712 . 1.0000 0.9620

9 10 482.70 170.30 255 750 0.7373 0.5310

10 10 512.40 141.51 330 742 1.0000 0.6830

1 30 1368.97 452.34 752 2223 0.8526 0.3180

2 30 1584.07 452.66 841 2213 0.8526 0.3463

3 30 1555.17 477.38 770 2231 0.8526 0.5175

4 30 1458.77 471.24 765 2153 0.5772 0.5527

5 30 1413.03 431.14 778 2182 0.5772 0.6578

6 30 1442.10 458.42 752 2222 0.0157 0.4273

7 30 1484.67 473.13 798 2243 0.8526 0.4074

8 30 1522.73 433.69 818 2174 0.3529 0.4271

9 30 1468.80 435.15 794 2222 0.8526 0.6733

10 30 1494.60 461.37 792 2230 0.0945 0.6941

1 50 2467.98 709.84 1276 3734 0.5676 0.9273

2 50 2579.82 621.76 1283 3596 0.2530 0.0121 *

3 50 2409.40 684.03 1260 3674 0.1530 0.6570

4 50 2602.76 604.36 1374 3739 0.0222 0.5779

5 50 2567.94 782.58 1273 3738 0.7751 0.2561

6 50 2504.68 688.33 1418 3683 0.7751 0.5592

7 50 2488.68 750.79 1270 3741 0.3913 0.9495

8 50 2239.76 651.30 1323 3747 0.5676 0.0011 *

9 50 2556.82 683.44 1263 3731 0.7751 0.6566

10 50 2641.90 627.15 1459 3710 0.5748 0.7071       
 

* significance at or = 0.05
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4.3 Processing Time: p ~ N(100, 25‘)

Ho: Sample Distribution = Population Distribution

HI: Sample Distribution at Population Distribution

The Kolmogorov—Smimov (K-S) test was used to test the sampling distribution of

processing time. Tables 4, 5 and 6 showed large 2-tailed p-values ofK-S statistics for all

the lO-job, 30-job, and 50-job problem sets. The null hypothesis Ho could not be rejected

at (X = 0.05. There was no reason to believe that processing time was not normally

distributed with a mean of 100, and a standard deviation of 25.

Table 4: lO-job Problem; Processing Time, p ~ N(100, 25‘)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

Problem # RD Mean Std Dev Min Max Runs Test K-S

1 0.2 105.60 37.83 44 173 0.3143 0.9950

2 0.2 91.60 21.85 63 136 0.7373 0.9891

3 0.2 104.90 24.02 71 140 0.3143 0.7545

4 0.2 100.90 22.24 52 127 0.3143 0.6755

5 0.2 103.90 19.92 71 148 0.3143 0.8687

6 0.2 107.20 22.79 72 138 0.3143 0.8941

7 0.2 105.90 21.19 68 130 1.0000 0.7394

8 0.2 94.60 21.30 54 118 0.3143 0.9586

9 0.2 106.20 18.77 75 135 0.7373 0.9882

10 0.2 97.80 26.43 46 151 0.7373 0.6288

1 0.5 99.00 18.51 64 120 1.0000 0.6033

2 0.5 103.70 23.16 55 126 0.7373 0.5288

3 0.5 86.60 15.65 47 103 1.0000 0.2952

4 0.5 97.40 35.07 36 161 1.0000 0.9567

5 0.5 105.20 29.27 59 165 0.7373 0.3734

6 0.5 97.70 28.02 33 128 0.7373 0.8731

7 0.5 99.60 18.63 75 130 0.7373 0.8571

8 0.5 102.00 26.18 47 126 0.7373 0.5049

9 0.5 100.00 27.01 63 149 0.3143 0.9333

10 0.5 93.50 19.35 65 115 0.7373 0.6979
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Table 5: 30-job Problem; Processing Time, p ~ N(100, 252)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

Problem # RD Mean Std Dev Min Max Runs Test K-S

1 0.2 97.27 24.30 42 145 0.1934 0.9079

2 0.2 101.93 22.80 60 158 0.8526 0.6436

3 0.2 96.00 28.40 27 168 0.8325 0.9908

4 0.2 102.37 25.05 50 151 0.5772 0.8682

5 0.2 102.80 21.03, 57 147 0.5926 0.8315

6 0.2 101.63 26.92 48 157 0.5772 0.8847

7 0.2 96.23 25.04 23 137 0.5772 0.9921

8 0.2 104.47 30.88 40 155 ' 1.0000 0.8990

9 0.2 100.70 21.36 53 134 0.8526 0.7932

10 0.2 89.67 22.47 39 130 0.3529 0.9800

1 0.5 96.27 25.10 45 154 0.8526 0.9800

2 0.5 97.93 28.01 53 156 0.8526 0.6304

3 0.5 97.03 23.65 50 144 0.3529 0.6610

4 0.5 98.97 21.34 51 142 0.5772 0.9029

5 0.5 103.93 23.92 62 155 0.5772 0.5905

6 0.5 99.37 23.82 51 140 0.5772 0.9969

7 0.5 103.13 25.37 56 153 0.8715 0.9877

8 0.5 103.93 21.08 56 142 0.0945 0.3347

9 0.5 107.53 25.30 65 160 0.0157 * 0.6264

10 0.5 101.43 23.67 43 157 0.3529 0.8091
 

* significance at or. = 0.05
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Table 6: 50-job Problem; Processing Time, p ~ N(100, 252)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

Problem # RD Mean Std Dev Min Max Runs Test K-S

1 0.2 97.04 23.87 54 167 0.0864 0.8193

2 0.2 100.54 24.09 36 144 0.2530 0.3894

3 0.2 96.50 29.57 38 187 0.5676 0.7985

4 0.2 99.62 23.14 38 152 0.7835 0.9994

5 0.2 93.88 28.83 38 193 0.5676 0.7808

6 0.2 101.34 27.93 36 170 0.0097 * 0.8706

7 0.2 99.68 28.21 34 165 0.5748 0.9968

8 0.2 93.64 27.56 36 171 0.9168 0.8451

9 0.2 100.40 25.70 33 154 0.7751 0.9085

10 0.2 99.60 27.27 48 155 0.3913 0.9556

1 0.5 99.22 26.23 25 144 0.3913 0.9306

2 0.5 106.06 24.04 45 184 0.5676 0.8491

3 0.5 105.56 23.33 61 182 0.1530 0.9887

4 0.5 101.90 23.13 49 154 0.3913 0.9855

5 0.5 95.16 24.16 51 156 0.9909 0.9316

6 0.5 97.44 20.75 57 144 0.0541 0.9384

7 0.5 94.38 22.39 48 153 0.3968 0.9290

8 0.5 100.80 28.79 54 188 0.5676 0.8580

9 0.5 100.80 27.65 36 172 0.7751 0.9339

10 0.5 98.22 24.72 55 157 0.5593 0.7466
 

"‘ significance at or = 0.05
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4.4 Setup Time: s ~ U(0, 19)

Ho: Sample Distribution = Population Distribution

H1: Sample Distribution at Population Distribution

x2 test was used to test the sampling distribution of setup time due to its narrow

range. Kolmogorov-Smirnov test was inappropriate here because setup time must be an

integer value from 0 to 19. The range of 0 to 19 was too small to be treated as continuous

variable. Therefore, 352 test was used to test the hypotheses about the relative proportion

of cases falling into the 20 mutually exclusive groups (i.e. 0, 1, 2, ..., 19). )8 statistics fiom

Tables 7, 8 and 9 showed that the p-values were too large to reject the null hypotheses

(except four cases) at or = 0.05. There was no reason to suspect that setup time was not

uniformly distributed between 0 and 19.

4.5 Wald-Wolfowitz Runs Test

Ho: Observations were random

H1: Observations were not random

Wald-Wolfowitz Runs (Norusis, 1993a, pp3 82) test was used to check if prior

observation affected the values of subsequent observations. Tables 2 to 9 showed large 2-

tailed Runs test statistics (except 6 cases). Therefore, the hypotheses of randomness was

not rejected at or = 0.05. Since majority of the test problems passed the randomness test,

no additional investigation of the 6 cases were conducted. These tests suggested that the

test problems were indeed generated according to the intended distributions.
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Table 7: lO-job (90 setups per case); Setup, s ~ U(0, l9)

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Problem # RD Mean Std Dev Min Max Runs Test L

1 0.2 8.61 5.70 0 19 0.3850 0.2048

2 0.2 9.07 5.51 0 19 0.3964 0.6720

3 0.2 9.76 5.82 0 19 0.5363 0.6424

4 0.2 9.94 5.50 0 19 0.5276 0.7837

5 0.2 9.22 5.93 0 19 0.6715 0.6424

6 0.2 10.31 6.04 0 19 0.6394 0.1431

7 0.2 10.12 5.78 0 19 0.7252 0.9529

8 0.2 9.36 5.50 0 19 0.9394 0.9888

9 0.2 10.00 5.91 0 19 0.7565 0.4081

10 0.2 9.06 5.91 0 19 0.9962 0.6124

1 0.5 9.38 5.72 0 19 0.1476 0.4640

2 0.5 9.69 5.94 0 19 0.0269 0.4640

3 0.5 10.09 5.44 0 19 0.2891 0.0184 *

4 0.5 9.23 5.98 0 19 0.9051 0.5823

5 0.5 9.20 5.49 1 19 0.6394 0.2048

6 0.5 8.47 5.44 0 19 0.6572 0.7296

7 0.5 10.21 5.54 0 19 0.2681 0.8949

8 0.5 10.44 6.05 0 19 0.6715 0.6124

9 0.5 10.48 5.69 0 19 0.4453 0.4356

10 0.5 10.58 5.49 0 19 0.5720 0.3069       
* significance at or = 0.05 _
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Table 8: 30-job (870 setups per case); Setup, s ~ U(0, 19)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Problem # RD Mean Std Dev Min Max Runs Test X2

l 0.2 9.24 5.91 0 19 0.3738 0.0380 *

2 0.2 9.56 5.90 0 19 0.0786 0.1167

3 0.2 9.41 5.68 0 19 0.9350 0.2912

4 0.2 9.55 5.82 0 19 0.3713 0.8073

5 0.2 9.44 5.85 0 19 0.1224 0.9433

6 0.2 9.47 5.91 0 19 0.8640 0.3006

7 0.2 9.77 5.80 0 19 0.0012 0.2288

8 0.2 9.55 5.80 0 19 0.0573 0.0676

9 0.2 9.48 5.64 0 19 0.7581 0.2430

10 0.2 9.69 5.76 0 19 0.7226 0.6124

1 0.5 9.58 5.89 0 19 0.3764 0.5409

2 0.5 9.76 5.80 0 19 0.6765 0.6311

3 0.5 9.64 5.75 0 19 0.9642 0.7364

4 0.5 9.25 5.74 0 19 0.6613 0.2430

5 0.5 9.69 5.82 0 19 0.0613 0.5440

6 0.5 9.68 5.75 0 19 0.0134 * 0.4043

7 0.5 9.36 5.93 0 19 0.6335 0.0884

8 0.5 9.51 5.81 0 19 0.4853 0.9104

9 0.5 9.49 5.95 0 19 0.2359 0.6187

10 0.5 9.58 5.67 0 19 0.1335 0.4980        
* significance at or = 0.05
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Table 9: 50-job (2450 setups per case); Setup, s ~ U(0, l9)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

Problem # RD Mean Std Dev Min Max Runs Test X2

l 0.2 9.55 5.76 0 19 0.5181 0.2892

2 0.2 9.49 5.70 0 19 0.9356 0.8988

3 0.2 9.27 5.77 0 19 0.4524 0.9125

4 0.2 9.49 5.86 0 19 0.6440 0.8195

5 0.2 9.55 5.84 0 19 0.4922 0.0842

6 0.2 9.34 5.77 0 19 0.7117 0.5356

7 0.2 9.50 5.76 0 19 0.6857 0.1175

8 0.2 9.58 5.80 0 19 0.2577 0.3970

9 0.2 9.32 5.72 0 19 0.6640 0.7444

10 0.2 9.60 5.80 0 19 0.4436 0.4405

1 0.5 9.54 5.74 0 19 0.2809 0.8562

2 0.5 9.27 5.82 0 19 0.9788 0.0381 *

3 0.5 9.50 5.75 0 19 0.1264 0.8133

4 0.5 9.38 5.75 0 19 0.1022 0.5918

5 0.5 9.42 5.87 0 19 0.0711 0.3941

6 0.5 9.31 5.78 0 19 0.0894 0.2560

7 0.5 9.53 5.81 0 19 0.8398 0.9801

8 0.5 9.62 5.82 0 19 0.5495 0.0439 "‘

9 0.5 9.47 5.72 0 19 0.0896 0.1952

10 0.5 9.47 5.86 0 19 0.5193 0.9379   
* significance at or = 0.05

 



CHAPTER 5: RESULTS AND DISCUSSION

5.1 Introduction

This chapter presents the results of the experiments carried out. First, steps taken

to ensure the correctness of simulated annealing solution technique are discussed. This is

followed by a detailed discussion ofthe results for the 10, 30 and 50-job problems.

5.2 Programming Code Verification

The simulated annealing scheme of section 3.4.3 was coded using the standard

version ofMicrosoft Visual Basic 3.0 (APPENDIX 4). All the problems were solved on

an Intel 486-33 MHz personal computer. Due dates, processing and setup times ofjobs

were read in as ASCII format from the data files. The following steps were taken to verify

the programming codes:

(1) Due dates, processing and setup times read fi'om the data files were

immediately written to backup files. Fifteen backup files (5 each for the 10,

30 and 50-job problems) were selected at random to check against the

original data files to ensure that the information read was correct. No

discrepancy was found.

(2) The initial objective function value of each problem and its sequence were

recorded in an output file. Fifteen sequences (5 each for the 10, 30 and 50-

job problems) were selected at random to verify the correctness of the

initial objective function value. No discrepancy was found.

50
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(3) The final objective function value of each problem and its sequence were

also recorded in the output file. Fifteen sequences were selected at random

to verify the correctness ofthe final objective function value. No

discrepancy was found.

(4) All subsequent objective function values between changes in temperature

range during the entire perturbation for each problem were recorded.

Charts ofthe objective values versus temperature were plotted for some of

the problems (e.g., Figures 2 to 5, APPENDICES 2 and 3). No

discrepancy was noted.

5.3 Optimum Solutions of lO-Job Problems

The means, variances, optimum and worst solutions for all the 10-job problems

were obtained by explicitly enumerating all the 10! possible sequences. The purpose was

to establish a benchmark (the optimum solution) for comparing solutions generated by

simulated annealing, at least for the lO-job problems. This is not possible for the 30 and

SO-job problems due to the huge number of feasible solutions (i.e. 30! and 50!). The

results are shown in Tables 10 to 15. Each problem consists of ten jobs to be sequenced,

and there are ten problems in each group.

Figures 2 to 6 show the frequency distribution of the objective value for all feasible

solutions for 5 problems, two ofwhich are considered as easy problems where simulated

annealing identified the optimum solution in all the six combinations of solution
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approaches (STEP = 1,2,3 and [MT= RND & PWS). Simulated annealing failed to

identify the optimum solution for the two problems in Figures 2 and 4. Two of the

simulated annealing solution approaches (IN!T = RND with STEP = 100 and IN]T = PWS

with STEP = 50) identified the optimum solution for the problem in Figure 5. All the five

problems have unique optimum solution (i.e. frequency for optimum solution = 1). The

feasible solutions for all five problems conform to normal distribution, with the worst

solution about 8.5 standard deviations away.

Tables 10 and 11 show the optimum and worst solutions for the 10-job problems

when RD = 0.2 and 0.5 respectively. The objective is to minimize tardiness (i.e. 0 = 1.0).

The mean and variance are the average solution and the variance of all the 10! feasible

solutions for each problem. The variance of problem #1 (58,671.67) is more than four

times larger than the variance of problem #9 (14,629.00), although both the problems have

a mean of approximately 1,900. The large variation of the feasible solutions for problem

#1 may indicate that it is easier to identify the optimum solution compared to one that has

small variation. The rationale is simple. That is, it is always easier to find the best

sequence from a group if the differences among them are very wide. However, it is more

difficult to select the best sequence if the differences are minor. The optimum solutions

when RD = 0.2 range from 835 to 1,645, with an average of 1,298.40 and a standard

deviation of 258.71 for all the 10 problems. When RD = 0.5, the optimum solutions range

from 523 to 1,524, with an average of 1,064.70 and a standard deviation of 28 1 .06 for all

the 10 problems.
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Tables 12 and 13 show the optimum and worst solutions when 0 = 0.0. The

objective is to minimize setup. The means and variances of these sets of problems are

more consistent. The means and variances in Tables 12 very closely matched those in

Table 13 because RD has no effect on setup objective. The optimum solutions when RD =

0.2 range from 11 to 22, with an average of 15.50 for all the 10 problems. When RD =

0.5, the optimum solutions are slightly higher and range from 12 to 25, with an average of

20.40.
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Table 10: Distribution of Tardiness for all Feasible Solutions (n = 10), RD = 0.2

 

Problem # Optimum Worst Mean Variance

1143 2693 1900.4168 58671.67

835 1970 1370.7949 21719.25

1350 2728 1991.2698 31846.58

1299 2523 1898.1343 28455.70

1485 2635 2103,9255 16128.05

1608 2900 2221.5039 21423.85

”I" 1645 2949 2247,7596 25459.63

1114 2319 1740.9244 21555.12

1442 2534 1956.1603 14629.00

1063 2508 1786.1794 35356.82

‘ Average 1298.40 2575.90 1921.7069 27524.57

Std. Dev. 258.71 284.19 256.2510 12728.04

*1 The frequency distribution of the 7 problem (J10RD02G) is shown in Figure 2.
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Figure 2: Frequency Distribution of Tardiness for All Feasible Solutions

(J10RD02G)
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Table 11: Distribution of Tardiness for all Feasible Solutions (n = 10), RD = 0.5

 

 

 

 

 

 

 

 

 

 

 

 

      

Problem # Optimum Worst Mean Variance

1 1171 3242 2241.9184 92479.84

2 1319 3340 2311.1629 76031.18

3 523 2236 1430.3046 54369.79

4 1220 2988 2064.4789 67340.54

5 1001 2874 1981.0228 53492.09

6 *7 951 2719 1800.8868 44730.39

7 1524 3143 2369.8550 48696.38

8 1084 3061 2049,3896 72288.02

9 1087 3230 2138.0429 70571.11

10 767 2446 1645.7220 48947.87

Average 1064.70 2927.90 2003.2784 62894.72

Std. Dev. 281.06 362.83 299.5843 15282.18  
*2 The frequency distribution of the 6‘h problem (J10RD05F) is shown in Figure 3.
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Table 12: Distribution of Total Setup Time for all Feasible Solutions

(n =10), RD = 0.2

 

 

 

 

 

 

 

 

 

 

 

 

    

Problem # Optimum Worst Mean Variance

1 13 146 77.5 243.1322

2 12 151 81.6 260.7318

3 14 157 87.8 284.1675

4 22 155 89.5 246.7626

5 13 155 83.0 315.0128

6 14 163 92.8 329.0397

7 19 156 91.1 305.2628

8 11 145 84.2 273.1718

9 22 166 90.0 305.8402

10 *3 15 152 81.5 261.4442

- 3 Average » 15.50 154.60 85.90 282.4566 ~< .

Std. Dev. 4.03 6.62 5.03 30.0368    
*3 The frequency distribution of the 10‘h problem (J10RD02J) is shown in Figure 4.
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Figure 4: Frequency Distribution of Total Setup Time for All Feasible Solutions

(J10RD02J)
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Table 13: Distribution of Total Setup Time for all Feasible Solutions

(n=10), RD = 0.5

 

 

 

 

 

 

 

 

 

 

 

 

      

Problem # Optimum Worst Mean Variance

1 =1" 17 157 84.4 294.7655

2 22 159 87.2 312.9578

3 27 152 90.8 260.1807

4 12 158 83.1 309.6457

5 24 143 82.8 209.5998

6 14 150 76.2 261.7754

7 21 160 91.9 232.1879

8 18 161 94.0 310.7514

9 25 164 94.3 277.3686

10 24 151 95.2 229.7934

Average 20.40 155.50 87.99 269.9026

Std. Dev. 4.97 6.35 6.28 37.4224   

 

*‘ The frequency distribution of the 1" problem (110RD05A) is shown in Figure 5.
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Figure 5: Frequency Distribution of Total Setup Time for All Feasible Solutions

(J10RD05A)
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Tables 14 and 15 showed the optimum and worst solutions when 0 = 0.5. The

objective is to minimize an equally weighted combination of setup and tardiness

(0.5*{setup+tardiness}). When RD = 0.2, the average optimum solutions for all the 10

problems is higher than when RD = 0.5. However, its standard deviation is smaller due to

the fact that due dates are closer than when RD = 0.5. The optimum solutions when RD =

0.2 range from 438 to 837, with an average of 665.80 for all the 10 problems. When RD

= 0.5, the optimum solutions are slightly lower and range fi'om 284.5 to 787.0, with an

average of 554.70.

Table 14: Distribution of Objective Value (0 = 0.5) for all Feasible

Solutions, RD = 0.2

 

 

 

 

 

 

 

 

 

 

 

 

  

Problem # Optimum Worst Mean Variance

1 586.5 1409.0 988.9584 15161.2700

2 438.0 1049.5 726.1975 5995.0270

3 695.5 1437.5 1039.5349 8612.5200

4 668.0 1330.5 993.8171 8256.3940

5 754.0 1388.5 1093.4627 5059.5870

6 823.0 1526.5 1157.1519 6548.1160

7 837.0 1544.5 1169.4298 7450.9890

8 569.0 1221.5 912.5622 5729.5100

9 737.5 1342.0 1023.0801 4813.0590

10 549.5 1308.5 933.8397 9520.4180

Average 665.80 1355.80 1003.8034 7714.6890

Std. Dev. 128.63 145.39 129.6320 3047.939]    
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Table 15: Distribution of Objective Value (0 = 0.5) for all Feasible

Solutions, RD = 0.5

 

Problem # Optimum Worst Mean Variance
 

1 604.5 1689.5 1163.1592 24211.7900
 

2 678.0 1737.0 1199.1815 19686.4700
 

3 284.5 1189.5 760.5523 14336.8300
 

4 630.5 1559.0 1073,7894 17636.7200
 

5 J 527.5 1500.0 1031.9114 14033.8000
 

6 492.5 1423.5 938.5434 11923.6000
 

7
787.0 1643.0 1230.8775 14139.0000
 

8 565.5 1604.5 1071.6948 18834.0800
 

9 574.5 1692.5 1116.1715 18340.1400
 

10 402.5 1289.5 870.4610 12673.2200
 

Average 554.70 1532.80 1045.6342 16581.5650
  Std. Dev.     140.90 182.51 149.7277 3824.0234
 

...rThe frequency distribution of the 5“ problem (J 10RD05E) is shown in Figure 6.

 

Sthev

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

Frequency

1

27

566

5500

29818

103796

248524

447208

621714

696307

624742

450704

252899

108155

31954

6298

577

10

0

0

F
r
e
q
u
e
n
c
y

 

3,628,800

  

700000

600000

500000

4WOO0

300000

200000

100000

.I 10RD05E, Theta = 0.5

OptSolFomd-6a1tof6;Freq1alcyofOptSol-1

 

 

 

 

  

  

 

  

                   

  

  

‘l‘v '.' a".
. . . . . .

a; :.;.
I I o'-
._. ...

.'._ 5..

. . . . . .
. . . . .

. . . . . .

.4 u‘- 1.".
'a u a l I

'1' i'.‘ ‘n'a‘ 1
. . . . . . .

. . . . . .
_._. .1. .5, x.-
. . . . . . . . .
._._ ..._. 5., ..._

. . . . . 1 ..g. 3::- j...

- x -.
n n I" q I' a l

. .. ._.'. .x‘

I._ _. .'. ._.
.-. .- . . . .1

.

'4

‘l

'-

                   
V

1.1.

o“

1‘"
. .. .
. .. .

. '3':
.3: 3:.

3;.

,1. _.‘.

I'. u' .' ‘1" III. >‘I‘- 'u‘a .'

‘4' '.'n u. . 'u'. I.‘ r'-' n

.‘n. 1 III. I-I- '1‘. I'. 1‘.. I.. . . . . . . . . . . .. . g. . . . . . . . . .. . 1. . . ., . . . . .

.u .. -- u. 4.. .. .u '..

.I ‘p': '4': .l-I :1. '1‘ 'n'a In. Ib-O

'.‘. A... a... '1’: .‘u‘ ‘1‘ 'n‘a n'c' '-'-

.j. ‘._. . . t . . . .. 1. .

. . ...3 .9; '_.:. .1. .;.;

'._ .'.: '.'. 1... -_.. 3. ‘:_. 1... t .

.‘4 IA '3: .'-' 'g‘» I“ u -- ‘I'. 4 .'

.
M

Number of Std Dev Away From Optimum Solution

V‘.
v2

.
5

 

Figure 6: Frequency Distribution of Objective Value for All Feasible Solutions

(J10RD05E)
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5.4 Number Of Optimum Solutions Identified In The 10-Job Cases

Table 16: Optimum Solution Identified - 10 job Problem

 

 

 

 

 

 

 

    

Factors Level 1 Level 2 Level 3

Initial Solution INIT = RND [NIT = PWS

(130 Problems/coll) 36.1 % 43.9 %

may of Solution *

Average 12.56 11.75 _

Median 0.91 0.53

Worst % Suboptimal 171.43 227.27

95% Confidence Interval 8.90 to 16.22 7.87 to 15.63

TradeOffParameter 0 = 0.0 0 = 0.5 0 = 1.0

(120 Problems/coll) 14.2 % 52.5 % 53.3 %

Quality of Solution *

Average 33.77 1.62 1.07

Median 22.88 0.00 0.00

Worst % Suboptimal 227.27 20.74 13.39

95% Confidence Interval 27.37 to 40.17 0.97 to 2.27 0.69 to 1.46

Number of Updates STEP = 1 STEP = 50 STEP = 100

(120 problems/cell) 19.2 % 49.2 % 51.7 %

Ql_1alitv of Solution *

Average 22.26 7.71 6.50

Median 5.00 0.09 0.00

Worst % Suboptimal 227.27 100.00 69.23

95% Confidence Interval 15.55 to 28.97 4.77 to 10.64 4.07 to 8.93

Due Date Tightness RD = 0.2 RD = 0.5

(180 Problems/cell) 32.2 % 47.8 %

Qualig of Solution *

Average 14.27 10.04 —

Median 0.96 0.21

Worst % Suboptimal 227.27 133.33

95% Confidence Interval 9.79 to 18.75 7.19 to 12.90

 

pctabopt = (Final Solution - Optimum Solution)/Optimum Solution.

* Quality ofSolution indicates percent above the optimum solution, computed by:
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Table 16 shows the percent of the 10-job problems solved to optimality using

simulated annealing (final solution = optimum solution). The 30 and 50-job problems

were excluded from this analysis because the optimum solutions were unknown. This

analysis ignored any interaction effects among the experimental factors. It simply

expressed the number of problems solved to optimality as a ratio to the total number of

problems. There are a total of 360 problems (2 IN!T x 3 0 X 3 STEP X 2 RD x 10

Problems each). Therefore, each cell consists of 180 problems if the experimental factor is

at two levels, and 120 problems if the experimental factor is at 3 levels.

‘Quality of Solution’ in Table 16 indicates the percent of the final solution above

the optimum solution. The performance measure, pctabopt = (Final solution - Optimum

solution) / (Optimum solution). This performance measure will be used to test the

experimental factors RD, 0 and n, based on the lO-job problems. pctabopt cannot be

computed for the 30 and SO-job problems because the optimum solution was not known.

‘Average’ shows the average percent above optimum solution for all the problems in that

cell, and ‘Worst % Suboptimal’ shows the percent above optimum solution for the worst

problem.

Table 16 shows that slightly less percent of the lO-job problems were solved to

optimality with random initial solution (RND = 36.1%) than better than random initial

solution (PWS = 43.9%). PWS did not seem to have an advantage in locating the

optimum solution. Tradeoff Parameter (0) indicates that as 0 increased from 0 to 0.5, the

percent of problems solved to optimality increased substantially from 14.2% to 53.3%.

When 0 = 1, 53.3% of the problems were solved to optimality. It appears that simulated
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annealing and the annealing parameters used in this research are more effective in solving

tardiness objective (0 = 1) than setup objective (0 = 0). This could be due to the

magnitude ofthe objective values compared to the annealing parameters used. When 0 =

0, the objective was to minimize setup with an average magnitude of approximately 85

(Tables 12 & 13). When 0 = 0.5, the objective was to consider a tradeoff between setup

and tardiness, with an average magnitude of approximately 1,000 (Tables 14 & 15).

When 0 = l, the objective was to minimize tardiness with an average magnitude of

approximately 2,000 (Tables 10 & 11). The annealing parameters (temperature decay

rate, starting and fiozen temperatures) were not experimental factors in this research.

They were calculated using the Boltzmann distribution as explained in chapter 3.

Table 16 also indicates that higher number ofupdates (STEP) between changes in

temperature range, coincided with higher percent of problems in which optimum solution

was identified. When STEP was increased from 1 to 50, optimum solutions identified

increased almost three fold from 19.2% to 49.2%. However, when STEP was increased

from 50 to 100, the percent increased to 51.7%, an additional 2.5%. Due Date Tightness

indicates that 32.2% and 47.8% ofthe optimum solutions were identified when RD = 0.2,

and 0.5 respectively. More optimum solutions were identified when RD = 0.5, probably

due to the fact that it was easier to select or discriminate jobs with wider due dates (i.e.

when RD = 0.5 instead of 0.2).

Other possibilities for the simulated annealing scheme to perform better on

tardiness problems than setup problems include: (1) the perturbation scheme may be

structured so that it does a better job of exploring the ‘neighborhood’ of the optimum
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solution for tardiness problems, and (2) there may be more alternate optimum solutions for

the tardiness criteria, making it easier to run across one during the simulated annealing

process. However, Figures 2 to 6 do not support this rationale. All five problems shown

have unique optimum solution, that is, one optimum solution.

5.5 The Objective Values During The Annealing Process

This section briefly discusses the movement of the objective values during the

entire annealing process, that is, how the objective values changed as the temperature was

decreased. The objective values are plotted on the y-axis, and the annealing temperatures

are plotted on the x-axis. The highest temperature used for the annealing process was

10,000. The system was considered ‘frozen’ when the temperature reached 0.1. Among a

total of 1,080 problems (2 INITx 3 0 x 3 n x 3 STEP x 2 RD x 10 Problems each), 12

problems were selected for the purpose of examining the annealing process in detail.

Three problems (or graphs) each are plotted in Figures 7 to 10. The only difference

among the three graphs in each figure is the number ofupdates between changes in

temperature. That is, the first, second and third graphs used STEP = 1, 50 and 100

respectively. These four figures provide insight into how the objective values changed as

the temperature was decreased in the simulated annealing process.

The first, second and third graphs in Figure 7 shows the movements of the

objective values for a 10-job problem with STEP = 1, 50 and 100 respectively. Other job

parameters (RD, 0, IN]T, and n) are the same for these three graphs. When STEP = 1, it
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is obvious that the movement was not as erratic as when STEP = 50 or 100. The first

graph (STEP = 1) shows that at certain points during the annealing process, there was no

change in the objective value (horizontal movement of setup) as the temperature was

reduced especially between the temperature range 24.4 and 1.2. This phenomenon is not

observed in the second and the third graphs, except toward the ending part ofthe

annealing process because when STEP = 1, the annealing process has only one chance of

accepting a worse solution in each temperature range. Therefore, when it failed to accept

a worse solution, the annealing scheme reverted to its previous objective value before the

state change, thus resulting in a horizontal movement of setup.

All three graphs in Figure 7 represent solution ofthe same lO-job problem. The

initial solution is 64, and the optimum solution is 14. The final solutions for the first,

second and third graphs are 38, 16, and 21 respectively. A close examination ofthe first

graph reveals that the annealing process actually found a better solution than the final

solution when the temperature was approximately between 24 and 5 (the three troughs

that are lower than the final solution). However, the annealing process accepted a worse

solution later on and was unable to return to the better solution found earlier. The same

problem was observed in the third graph. This is due to the fact that simulated annealing

is a “memoryless” system. It does not store a previously found solution in memory, and

thus will not be able to return to a previous solution. Future research will be conducted to

study the effect of adding a “memory loop” in the simulated annealing scheme in an

attempt to improve the annealing process.
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Figure 7 also confirmed that the final temperature (T0) of 0.1 determined in

Section 3.4.4. Setting The Control Parameter was small enough to ensure a near zero

probability of accepting a worse solution toward the end ofthe annealing process. Indeed

the annealing process could be considered ‘frozen’ when the temperature was

approximately equal to 1. Setting To smaller than 0.1 is unlikely to lead to a better final

solution.

Figure 8 shows the annealing process of another 10-job problem, where the

objective is to minimize tardiness. The first, second and third graphs used STEP = 1, 50

and 100 respectively. The initial solution for these three graphs is 2,190 and the optimum

solution is 1,350. Figure 8 demonstrates the same erratic behavior observed in Figure 7,

when STEP were set at 50 and 100. The third graphs reveals that the final solution of

1,363 is not the lowest sampled during the annealing process. The objective value

(Tardiness) was actually lower when the annealing temperature was around 24.4. Indeed,

it found the optimum solution but was unable to return to that solution as temperature was

reduced. Since its final solution is not the optimum solution, this problem was not

counted as solved to optimality in Table 16. The first and second graphs report final

solutions of 1,406 and 1,350 respectively (optimum solution = 1,3 50).
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Figure 7: Objective Values as Temperature Decreased (lo-job, 0 = 0, RND)
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Figure 9 shows the objective values of a 30-job problem with 0 = 0, RD = 0.5,

and [NIT= PWS. The “memoryless” aspect of simulated annealing is not a problem for

the 30-job problems. Unlike the lO-job problems, there is no indication that the annealing

process was unable to return to a better solution found previously. The ratio of the

objective value to the temperature decay rate might play a role in whether simulated

annealing is able to return to a better solution found previously. All three graphs show

that the objective values (setup) were moving around 250 until the temperature reached

approximately 24.4, at which point, the objective values slowly decreased and settled into

the final solutions. The pairwise swapped initial solution (PWS) for these three graphs is

94, and the final solution is 46, 41 and 51 respectively. The best known solution for this

problem is 41. Although the initial solution was 94, setup actually increased to more than

300 before it settled down into its final solution.

The three graphs in Figure 9 also indicates that the objective values did not

decrease until the temperature reached approximately 24.4. This might be an indication

that using a starting temperature of 10,000 was too high for the 30-job problems, thus

resulting in wasted annealing time. It might be more beneficial to use a smaller

temperature decay rate rather than starting at a very high temperature. However, the

starting temperature of 10,000 was selected for all the 10, 30, and 50-job problems for this

experiment for ease of comparison. Two additional runs of the 30-job problem with lower

starting temperature and smaller temperature decay rate did not produce better results.

(See APPENDIX 3). Future research will be conducted to investigate the effect of the

ratio of the objective value to the annealing parameters on the solution.
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Figure 10 shows the objective values of a 50-job problem, with 0 = 1, RD = 0.5,

and [NIT= PWS. The initial pairwise swapped solution is 20,192. The first, second and

third graphs report final solutions of 18545, 16562 and 16661 respectively. The second

graph reports the best known solution for this problem. The first graph visually indicates

that using a better than randomly generated initial solution may not reduce the annealing

time. The objective value (tardiness) actually increased steadily from 20,192 to more than

40,000 before it settled down into its local optimum solution. This is consistent with the

analogy of simulated annealing where one heats up the system and let it slowly cools until

it settles into a steady state (thus the local or optimum solution). Figure 10 also shows a

distinct difi’erence from Figures 7, 8 and 9. Its objective values started to decrease steadily

at a very early stage ofthe annealing process.
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Figure 10: Objective Values as Temperature Decreased (SO-job, 9 = 1, RND)
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5.6 Cases With Worse Final Solution Than The Initial Solution

Table 17 shows the problems where the final solutions at the end of the annealing

process are actually worse than the pairwise swapped initial solutions. However, none of

these initial or final solutions are the best known solutions. BestSol, InitSol, and FinalSol

are the best known, initial and final solutions respectively. The best known solutions for

the lO-job problems are the optimum solutions. Diflis the difference between InitSol and

FinalSol, and % Diffis expressed as a percentage of the initialisolution. n, RD, 9, IN!T,

SYEP are the experimental factors.

Table 17: Problems With Worse Final Solution Than Initial Solution

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            

Jobno n RD 9 IN]T STEP BestSol InitSol FinalSol Diff % Difl'

JIORDOZH 10 0.2 0 PWS 1 11.0 32.0 36.0 -4.0 12.5

JlORDOSG 10 0.5 0.5 PWS 1 787.0 844.0 854.0 -10.0 1.2

J30RDOZB 30 0.2 0 PWS 1 36.0 74.0 91.0 -17.0 23.0

J30RD02F 30 0.2 0 PWS 1 33.0 75.0 86.0 -11.0 14.7

J30RDOZG 30 0.2 0 PWS 1 26.0 80.0 94.0 -14.0 17.5

J30RD05C 30 0.5 0 PWS 1 41.0 80.0 84.0 -4.0 5.0

J30RD051-1 30 0.5 0 PWS 1 38.0 94.0 95.0 -1.0 1.1

JSORD02A 50 0.2 0 PWS 1 60.0 115.0 123.0 -8.0 7.0

JSORDOZD 50 0.2 0 PWS 1 52.0 100.0 151.0 -51.0 51.0

JSORDOZG 50 0.2 0 PWS 1 49.0 133.0 147.0 -14.0 10.5

JSORDOZH 50 0.2 0 PWS 1 61.0 126.0 132.0 -6.0 4.8

JSORDOZI 50 0.2 0 PWS 1 51.0 132.0 136.0 -4.0 3.0

JSORD02J 50 0.2 0 PWS 1 56.0 117.0 128.0 -11.0 9.4

150RD02F 50 0.2 0.5 PWS 1 12,080.0 13,267.5 13,302.5 -35.0 0.3

JSORDOSB 50 0.5 0 PWS 1 60.0 133.0 140.0 -7.0 5.3

JSORDOSC 50 0.5 0 PWS 1 65.0 120.0 153.0 -33.0 27.5

JSORDOSJ 50 0.5 0 PWS 1 48.0 103.0 112.0 -9.0 8.7

JSORDOSA 50 0.5 0.5 PWS 1 9,647.5 10,986.0 11,1405 -154.5 1.4

JSORDOSG 50 0.5 0.5 PWS 1 5,794.5 7,556.0 7,707.5 -151.5 2.0

JSORDOSA 50 0.5 1.0 PWS 1 19.4460 22.0160 22.3230 -307.0 1.4
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There are a total of 20 problems where the final solutions are worse than the initial

solutions, or 1.85% from a total of 1,080 problems. Thirteen of the 20 problems are 50-

job problems (n = 50), and 15 problems (75%) are setup problems (6 = 0). Approximately

equal number ofproblems are from RD = 0.2 and 0.5. All the 20 problems involved

pairwise swapped initial solution (INIT: PWS), and one update between changes in

temperature range (SYEP = 1). Table 17 indicates that the deterioration of the objective

values range fiom 0.3% to 51.0%. A closer analysis of the output file reveals that, only

three of the 20 problems actually sampled a better sequence (lower objective value) during

the annealing process, but were unable to return to that solution at the end of the

annealing process. The lowest objective values sampled by the first, the second, and the

eighth problems are 25, 802.5 and 111 respectively.

At this point, it should not be concluded that good final solutions can be generated

by simply swapping jobs pairwise, and simulated annealing is ineffective. However, the

results probably show that simulated annealing may have more difficulty in getting out of

local optima when SHIP = 1. Charts 1 to 7 of Appendix 1 show the objective values of

these 20 problems plotted against the temperature. A general conclusion from these

charts is that the objective values increased steadily at high temperature (initially). This

suggests that the simulated annealing algorithm had no trouble escaping the initial solution

neighborhood. However, it could not get back to the initial solution, or a better solution

at the end ofthe simulated annealing process. Practically, this is not a problem because

anyone using a simulated annealing approach to scheduling would record the best

incumbent. In the event of a poor final solution, the best incumbent can be used.
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5.7 Analysis of Variance - AVGFIN

Stande Analysis of Variance (ANOVA) procedure was used to test the

hypotheses at on = 0.05. All statistical analysis was conducted using SPSS for Windows

version 6.0 on an Intel 486-25 MHz personal computer. The performance measure for

testing the two experimental factors related to simulated annealing (IN!T and STEP) is the

average objective value per job, avg/in. A general filll factorial analysis ofvariance (using

unique sums of squares) was conducted with all the five experimental factors.

Table 18 shows the ANOVA for avgfin. The model is statistically significant with

a very high R2 value of 0.935. Four of the five experimental factors are statistically

significant at the main effect level, except IN]T. Three 2-factor interaction and a 3-factor

interaction are statistically significant. However, the ANOVA model failed both the

Cochrans C and the Bartlett-Box F tests, indicating that it has violated the homogeneity of

variance assumption. The variances (Figure 11) and the standard deviations (Figure 12) of

avgin are plotted against the cell means to investigate the possible reason of the violation.

Figures 11 to 13 clearly indicate that the variances increased with the magnitude of the cell

means, which is a common cause of constant variance violation. Under such

circumstances, a logarithmic transformation would normally stabilize the variance.

However, Box-Cox transformation was used to determine the proper transformation to

stabilize the variance. The normal Q-Q plot of the residuals ofavg/in (Figure 14)

indicates that the model has over-estimated for smaller avgfin and under-estimated for

larger avgin.
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Table 18: Full Factorial ANOVA - avgfin

 

 

 

 

 

 

 

 

  

Source of Variation SS [2F MS F Sig ofF

WITHIN+RESIDUAL 1305394.72 972 1343.00

RD 198717.75 1 198717.75 147.97 .000 *

INIT 66.64 1 66.64 .05 .824

n 3599523.68 2 1799761.80 1340.11 .000 *

9 12413022.67 2 620651l.30 4621.38 .000 *

STEP 19065.79 2 9532.89 7.10 .001 *

RD x INIT 81.88 1 81.88 .06 .805

RD x n 34532.00 2 17266.00 12.86 .000 *

RD x 9 136505.28 2 68252.64 50.82 .000 *

RD x STEP 208.09 2 104.05 .08 .925

INIT x n 4.38 2 2.19 .00 .998

INIT x 9 60.39 2 30.20 .02 .978

INIT x STEP 21.65 2 10.82 .01 .992

n x 9 2419973.46 4 604993.36 450.48 .000 *

n x STEP 10271.55 4 2567.89 1.91 .106

9 x STEP 9246.70 4 2311.68 1.72 .143

RD x INIT x n .16 2 .08 .00 1.000

RD x INIT x 9 149.31 2 74.65 .06 .946

RD x INIT x STEP 52.83 2 26.42 .02 .981

RD x n x 9 22303.49 4 5575.87 4.15 .002 *

RD x n x STEP 497.76 4 124.44 .09 .985

RD x 9 x STEP 120.20 4 30.05 .02 .999

INIT x n x 9 5.51 4 1.38 .00 1.000

INIT x n x STEP 6.00 4 1.50 .00 1.000

INIT x 9 x STEP 23.94 4 5.98 .00 1.000

n x 9 x STEP 6071.38 8 758.92 .57 .807

RD x INIT x n x 9 40.98 4 10.24 .01 1.000

RD XINIT xn XSTEP 22.44 4 5.61 .00 1.000

RD XINIT x9 XSTEP 77.69 4 19.42 .01 1.000

RD x n x 9 x STEP 607.58 8 75.95 .06 1.000

INIT Xn X9 x STEP 58.39 8 7.30 .01 1.000

RDXINITXnXGXSTEP 113.33 8 14.17 .01 1.000

(Model) 18871452.92 107 176368.72 131.32 .000 *

(Total) 20176847.65 1079 18699.58

R-Squared = 0.935

Adj. R-Squared = 0.928

Univariate Homogeneity of Variance Tests

Cochrans C (9, 108) = .08133, p .000 *(approx.)

Bartlett-Box F(107, 78010) = 30.43430, p .000 *  
 

* significance at 0: = 0.05
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5.8 Box-Cox Transformations

Box and Cox (1964) developed a procedure for choosing a transformation from

the family ofpower transformations on the dependent variable (Y = avgfin). This

procedure is useful for correcting skewness ofthe distributions of the residuals, unequal

variances, and non-linearity of the regression function. The family of power

transformations can be expressed as Y. = Y" where A is a parameter to be determined from

the data. The criterion for determining the appropriate 7» of the transformation ofY is to

find the value of 7t that minimizes the sum squares error (SSE) based on the

transformation. However, the power of the transformation affects the magnitude of the

SSE term. Therefore the geometric mean ofY was used as the standardized variable to

neutralize the effect so that SSE is unaffected by the value of 71 (Neter et. al, 1989, pp

149-150). The transformation procedure can be expressed as:

w K1(Y"-1) if1¢0

K2(lnY) if 7. = o

z __1_

Axg“

where: K1

1

K; = HIV)" = geometric mean ofavgin = 36.55629

i=1

Table 19 contains the Box-Cox transformation results for avgfin with selected

values of 7». ranging from -4 to + 4. The Box-Cox procedure suggests a power value of 0

is most appropriate for avgin. It results in the lowest SSE of 61,823.61. For A = O, the
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proper transformation is W = 36.55629 * ln(avg‘in). It should be reminded that the

geometric mean of 36.55629 was used to neutralize the effect of the power transformation

so that SSE could be compared on the same magnitude independent of the value of A.

Natural logarithm, 1n, was used for the transformation. The R2 and the adjusted R2 of

Table 19 were included for comparison purpose only. They have no significance in the

selection of the appropriate value of 7L. A new ANOVA model was fitted on the

transformed dependent variable, lnavgin = ln(avgfin), and presents in Section 5. 9:

Analysis of Variance — LNA VGFIN.

Table 19: Box-Cox Results for avg/in

 

 

 

 

 

 

 

 

 

 

 

     

7. SSE R2 Adj R2

-4 1.0810 E+16 0.390 0.323

-3 7.8897 E+12 0.597 0.552

-2 7,184,911,117 0.804 0.782

-1 9,002,598.87 0.946 0.941

-0.5 385,930.77 0.983 0.981

0 61,823.61 0.991 0.990

0.5 203,651.26 0.971 0.968

1 1,305,394.72 0.935 0.928

2 98,602,470.48 0.858 0.842

3 10,748,813,925 0.780 0.756

4 1.3764 E+12 0.706 0.674
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5.9 Data Exploration - Inavgfin

A brief examination ofthe transformed dependent variable, lnavgin, is presented

in this section. Descriptive statistics are presented in Table 20. The mean is 3.599 and the

most frequently occurring value of lnavgfin (mode) is 0.336. The median, which is the

average of the 540‘“ and the 541“ observation is 4.705. The large difference between the

mode and the other two central tendency measures indicate that the distribution of

Inavgin is not symmetric, that is, the distribution is skewed. The Skewness measure of -

0.556 indicates that the distribution of lnavgin is negatively skewed, or the ‘tail’ (more

cases) is toward smaller values. The Kurtosis measure of -1.437 indicates that

observations cluster around the central point less than those in the normal distribution (i.e.

it is flatter or platykurtic). The standard deviation is 2.197.

Table 20: Descriptive Statistics - Inavgfin

 

 

 

 
 

 

     
 

Mean 3.599 Mode 0.336 Median 4.705

Std error 0-067 Std dev 2°197 Variance 4 - 326 |

Range 6.675 Minimum -0.357 Maximum 6.319 I

Kurtosis ’1-437 S EKurt 0~149 ’

Skewness “0°556 S E Skew 0-074
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A Boxplot displays summary statistics for the distribution, and it can fiirther

summarize and confirm the information in Tables 20. It plots the median (horizontal line

inside the box), the 25'11 (lower boundary of the box) and the 75‘h (upper boundary of the

box) percentiles, and values that are far removed from the rest. These 25‘” and the 75th

percentiles are sometimes called the Tukey’s hinges (Norusis 1989a, pp 185). The range

between these two inter-quartiles is called the box-length. Figures 10 to 14 show the

Boxplots for Inavgfin versus the experimental factors, RD, [N]T, n, 0, and STEP

respectively. The two horizontal lines drawn from the ends of the box represent the

largest and the smallest observed values that are not outliers. Cases with values that are

more than 3 box-lengths from the upper or lower edge ofthe box are known as extreme

values (indicated as * in the Boxplot), and those that are between 1.5 to 3 box-lengths are

called outliers (indicates as 0). Figures 15 to 19 clearly indicate that lnavgfin has no

extreme value or outlier. However, all the medians (except Figure 18) are very close to

the 75th percentile, confirming the negative skewness measure that more cases skewed

toward smaller values.

Figures 15 and 16 show the Boxplots of lnavgfin versus RD and IN]T respectively.

Both the figures show a very wide and similar dispersion (range) of lnavgfin over the two

levels of the experimental factors. Based on the similarity of the dispersions and the

medians of these two plots, RD and IN]T do not seem to have an effect on lnavgfin.

Figure 17 shows that lnavgfin is not as dispersed and the median of lnavgfin is smaller

when n = 10 (level 1). The medians and the dispersions increase as n increased. Figure 18

clearly indicates that lnavgfin is smallest with 0 = 0 (level 1) when compared to 8 = 0.5 or
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1.0 (levels 2 or 3). This is because when 9 = 0, it is a pure setup problem where the

objective fiinction value is much smaller than a combined setup and tardiness or a pure

tardiness problem. The dispersion is small compared to the other plots. Figure 19

indicates that the dispersion of lnavgfin is slightly smaller with STEP = 1 when compared

to STEP = 50 or 100 (levels 2 or 3). It should be noted that these analysis and

comparisons are made without considering any interaction effects among the experimental

factors. The two experimental factors of interested are [N]T and STEP.
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Figure 15: Boxplots of Inavgfin versus RD
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Figure 16: Boxplots of lnavgfin versus IN]T
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Figure 17: Boxplots of Inavgfin versus n
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Figure 18: Boxplots of lnavgfin versus 8
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Figure 19: Boxplots of Inavgfin versus STEP
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5.10 Analysis of Variance - Inavgfin

A general fiill factorial analysis of variance (using unique sums of squares) was

fitted onto the new transformed dependent variable, Inavgfin with all the five experimental

factors. Since the two experimental factors of interest are [N]T and STEP, the factors RD,

0, and n can be combined into one factor. However, the three factors RD, 0, and n were

separated to check for interaction among the three factors themselves (both analyses

produced Similar results - APPENDIX 2). The results are presented in Table 22. The

model fitted the data very well, with a significant F-statistic of 0.000 and an R2 of 0.99].

Four main factor effects, 5 two-factor interactions and a three-factor interaction effects

are significant at 01 = 0.05. In an ANOVA, the residuals are assumed to be independently

and normally distributed random variables with mean zero and variance 0'2. The variance

0'2 is assumed constant for all the experimental cells.

5.10.1. Model Adequacy Checking

Wald-Wolfowitz Runs test was used to check if the residuals are randomly

distributed. Table 21 Shows the runs test of both the raw and standardized residuals. The

runs were tested against the true mean of 0.0000, which was calculated from the residuals.

The zero mean conformed to the assumption that the residuals are distributed with a mean

of zero. Two-tailed test statistics indicate that the hypotheses of randomness could not be
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rejected at a = 0.05. Therefore, there is no reason to suspect that the residuals are not

independently distributed.

Table 21: Runs Test of Residuals

 

 

Raw Residuals

Runs: 559 Test Value = .0000 (Mean)

Cases: 457 LT Mean

_§2§ GE Mean Z = 1.9181

1080 Total 2-Tailed P = .0551

Standardized Residuals

Runs: 559 Test Value = .0000 (Mean)

457 LT Mean

_§2§ GE Mean Z = 1.9181

1080 Total 2-Tailed P = .0551   

The next assumption tested is the homogeneity of variance. Table 22 shows that

the Bartlett-Box F test rejected the null hypothesis that all population cell variances are

equal, but the Cochrans C test did not reject the null hypothesis, which indicates that there

is no reason to suspect that the variances are not equal. Unfortunately, both ofthese tests

are sensitive to departures from normality. In order to further investigate this assumption,

the cell means were plotted against the cells variances (Figure 20) and the standard

deviations (Figure 21). The observed, predicted and standardized residuals were also

plotted against each others (Figure 22). Visual inspection of these figures do not indicate

any serious violation of the homogeneity of variance assumption, except that there is a gap
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in the observations between cell means 1 to 4. This is because there is no observation in

this range. Fortunately, the F test is only slightly affected in the balanced, fixed-effect

model if the constant variance assumption is violated (Montgomery, 1984, pp 91). A

fixed effect model is defined as a design in which the factors and levels under investigation

are the only ones that the researchers are interested in drawing conclusions about.

Figure 23 shows the normal probability plot of the residuals where each observed

value was paired with its expected value from the normal distribution. The points

clustered very closely around the straight line, indicating that the residuals are reasonably

normally distributed. The histograms ofthe raw residuals (Figure 24) and the

standardized residuals (Figure 25) conformed quite closely to the normal curves

superimposed on the charts, confirming that there is no reason to suspect that the residuals

are not normally distributed. However, the Kolmogorov-Smirnov test rejected the

normality assumption. Whenever the sample Size is large, almost any goodness-of-fit test

will reject the null hypothesis. It is almost impossible to find research data that are exactly

normally distributed. In addition, moderate departures from normality are of little concern

in the fixed effects analysis of variance. It usually causes both the true Significance level

and power to differ slightly from the computed values, with the power generally being

lower (Montgomery, 1984, pp 87). For analysis of variance (and indeed most statistical

tests), it is adequate that the data are approximately normally distributed. In summary, the

diagnostic checks on the assumptions did not reveal any major departures.
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Std. Dev = .21

Mean = -.00

N = 1080.00

  
RAWRESID

Figure 24: Histogram of the Raw Residuals of lnavgfin
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Figure 25: Histogram of the Standardized Residuals of Inav m
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5.10.2. The Results at the Full FactorialANOVA

In a full factorial analysis ofvariance, the within source of variation for the error

term is the same as the within+residual source ofvariation because all the possible main

and interaction terms are tested (therefore, residual error term is zero). The ANOVA in

Table 22 shows that there are five main effect terms, ofwhich four are highly significant.

Five of the two-term interactions, and one three-term interaction are significant as well.

None of the four-term nor the five-term interaction is Significant. The F-statistic shows

that the model is significant with an R2 of 0.991 (adjusted R2 = 0.990).

The row labeled IN]Ttested whether the two different means of generating the

initial solution were equally effective in solving the sequencing problem. It was the only

experimental factor that has no interaction effect. The other four factors (including STEP)

have significance interaction terms. Therefore, it made no sense trying to conclude that,

overall, the main effect ofSTEP on lnavgfin. Simultaneous confidence interval of the

parameters are not presented due to these problems. Where interaction is Significant,

comparisons between the means of one factor may be obscured by the interaction. The

approach to this situation in this research is to fix STEP at a specific level (e.g. n = 1, 2 or

3), and apply the Duncan’s multiple range test to the means ofSTEP. However, from

Table 22, it is able to conclude that the types of initial solution (IN!T) has no effect on

Inavgin due to the lack of interaction effect involving [NIT. The effect size measures and

the observed power of the ANOVA are presented in the next section.
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5. 10. 3. Effect Size and Power at the Tests

Table 23 presents the effect size measures and the observed power of the analysis

of variance at or = 0.05. Partial eta-squared statistics (effect-Size measure) describe the

proportion of the total variability explained by the grouping or factor variable. A value

close to one indicates that all of the total variability is attributable to differences between

the groups, while a value close to zero indicates that the grouping variable explains little

ofthe total variability. Table 23 shows that RD explains very little ofthe total variability.

Only two (i.e. RD * 6 = 0.688, and 8 * STEP = 0.168) of the five significant two-factor

interaction terms have partial eta-squared value ofmore than 0.10. In summary, only five

grouping variables (i.e. n, 8, STEP, n * 0, and 0 * STEP) explained more than 0.10 of the

variability in its respective groups.

The observed power is the ability to reject the null hypothesis when it is false,

assuming 01 = 0.05. In general, power depends on the magnitude of the true differences

between the means and the sample Sizes used in the experiment. If the true differences are

very small, large sample Sizes are needed to be able to correctly reject the null hypotheses.

Therefore, it is very useful and important to evaluate the power ofthe test after the

experiment has been completed. Table 23 clearly indicates that the sample size of 10

selected for each experimental cell is large enough to detect a true difference between cell

means as the power of those significance terms are at least 0.794 and above.
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Table 22: Full Factorial ANOVA - Inavgfin

 

 

 

 

 

 

 

 

Source of Variation SS DF MS F Sig ofF

WITHIN+RESIDUAL 46.26 972 .05

RD 4.38 1 4.38 92.04 .000 *

INIT .00 1 .00 .00 .950

n 88.19 2 44.10 926.46 .000 *

8 4939.28 2 2469.64 51888.31 .000 *

STEP 9.41 2 4.70 98.81 .000 *

RD x INIT .04 l .04 .78 .379

RD x n .45 2 .23 4.77 .009 *

RD x 9 5.01 2 2.50 52.63 .000 *

RD x STEP .03 2 .01 .29 .746

INIT x n .02 2 .01 .20 .821

INIT x 9 .02 2 .01 .17 .845

INIT X STEP .01 2 .00 .10 .906

n x 9 102.17 4 25.54 536.68 .000 *

n x STEP 1.18 4 .30 6.21 .000 *

9 x STEP 9.33 4 2.33 48.99 .000 *

RD x INIT X n .00 2 .00 .03 .975

RD x INIT x 9 .02 2 .01 .25 .777

RD x INIT x STEP .05 2 .03 .57 .568

RDXnXO .36 4 .09 1.90 .108

RD x n x STEP .05 4 .01 .25 .908

RD x 8 x STEP .15 4 .04 .76 .550

INIT x n x 9 .02 4 .01 .12 .976

INIT x n x STEP .01 4 .00 .06 .993

INIT x 9 x STEP .02 4 .00 .10 .981

n x 9 x STEP .97 8 .12 2.55 .010 *

RD XINIT xfl x9 .02 4 .01 .13 .973

RD xINIT Xn XSTEP -04 4 .01 .20 .93?

RD xINIT x8 XSTEP -08 4 .02 .44 .782

RDX n x 9 x STEP .03 8 .00 .08 1.000

INIT x“ x 9 XSTEP .04 8 .01 .11 .999

RDXINITXnXBXSTEP - 05 8 . 01 . 13 . 998

(Model) 5161.43 107 48.24 1013.50 .000 *

(Total) 5207.70 1079 4.83

R-Squared = 0.991

Adj. R-Squared = 0.990

  Univariate Homogeneity of Variance Tests

Cochrans C (9, 108) = .02032, p

Bartlett-Box F(107, 78010) = 1.85217, p

1.000 (approx.)

.000 *

 

* Significance at or = 0.05
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Table 23: Effect Size Measures and Observed Power at a = 0.05

 

 

 

 

 

  

Source of Variation Partial ETA_2 Noncentrality Power

RD .087 92.040 1.000 *

INIT .000 0.004 .031

n .656 1852.920 1.000 *

9 .991 103777.000 1.000 *

STEP .169 197.617 1.000 *

RD x INIT .001 .775 .175

RD x n .010 9.544 .794 *

RD x 9 .098 105.261 1.000 *

RD X STEP .001 .586 .101

INIT x n .000 .395 .084

INIT x 9 .000 .337 .079

INIT x STEP .000 .198 .067

n x 0 .688 2146.700 1.000 *

n x STEP .025 24.826 .988 *

9 x STEP .168 195.956 1.000 *

RD x INIT x n .000 .051 .055

RD x INIT x 0 .001 .506 .094

RD x INIT x STEP .001 1.132 .147

RD x n x 9 .008 7.611 .578

RD x n x STEP .001 1.010 .107

RD x 0 x STEP .003 3.050 .247

INIT x n x 9 .000 .476 .076

INIT x n x STEP .000 .250 .063

INIT x 9 x STEP .000 .415 .072

n x 8 x STEP .021 20.365 .919 *

RD xINIT x n x 0 .001 .508 .077

RD xINIT x n x STEP -001 .809 .095

RD xINIT x 9 x STEP .002 1.745 .154

RD x n x 8 x STEP .001 .626 .072

INIT x n x 0 x STEP .001 .909 .083

RDxINITanGXSTEP .001 1.001 .087

 

* indicates power of significance factors
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5.11 Hypothesis Testing

The effectiveness of[NIT is based on the analysis of variance (Table 22) for

lnavgin since this factor has no interaction effect with other factors. Conclusions on

STEP and n are based on Duncan’s multiple range tests due to significance interaction

effects. The effect ofn was investigated based on the setup problems only. For the other

two experimental factors (RD and 0), pctabopt is used as the performance measure. The

following standardized notations are used for hypothesis testing:

ZINIT, 9’ n, STEP, RD = Inavgin, transformed average objective fimction

value for problems using

IN]T initial solution approach (INIT = RND, PWS)

9 tradeoff parameter (9 = O, 0.5, l)

n number ofjobs in the sequence (n = 10, 30, 50)

STEP updates per temperature range (STEP = 1, 50,

100)

RD relative range of due date (RD = 0.2, 0.5)

X INIT 9 STEP RD = pctabopt, percent above optimum solution

for lO-job problems using

IN]T initial solution approach (1N1T= RND, PWS)

0 tradeoff parameter (0 = 0, 0.5, 1)

STEP updates per temperature range (STEP = 1, 50,

100)

RD relative range of due date (RD = 0.2, 0.5)
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5. 11. 1. The EtZect at The Initial Solution - INIT

H03 ZIMT=RND, an,STEP,RD = ZINIT=PWS, Morgana

H11 ZINIT=RND, a n, SYEP,RD 3* ZINIT=PWS, a, n, snag RD

This hypothesis investigates the contradictory views on the effect of the initial

solution on the quality ofthe final solution. The apriori expectation of this factor was

that the quality of the final solution is independent ofthe initial solution. Table 22 shows

the ANOVA for lnavgfin. It clearly indicates that the analysis of variance failed to reject

the null hypothesis. Table 27 Shows the ANOVA forpctabopt for the lO-job problems,

and it failed to reject the null hypothesis too. There is no interaction between [N]T and

other factors in both tables 22 and 27. There is no evidence to conclude that better than

randomly generated initial solution leads to a better final solution. Therefore, this research

agreed with the results of Suresh and Sahu (1993), but refuted the contradictory findings

ofJohnson et al. (1989), Potts and Wassenhove (1991), and Shang (1993). This finding is

important in that it confirmed the theoretical basis of simulated annealing in which the final

solution should be independent of the initial solution. A carefirl examination of various

graphs (e. g. Figures 7 to 10 and APPENDIX 3) suggests at least three possible reasons

why some researchers reported that the initial solution has a Significant effect on the

quality of the final solution. These reasons include: (1) using a starting temperature that

was too small, (2) using a temperature decay rate that was too large, and (3) stopped the

annealing process too soon. Any of the above reasons would dramatically reduce the

chances for the annealing process to escape local optimums.
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Depending on the magnitude ofthe objective function, the starting temperature

should yield an initial probability of close to 0.5 on the Boltzmann distribution. The

simple reason is that the annealing process Should have an equal chance of rejecting or

accepting a worse solution at very high temperature. The annealing temperature should be

decreased gradually until it reaches a state that the Boltzmann distribution approaches

zero. Section 3. 4. 4. provides a sound analytical approach for checking these possible

problems.

5.11.2. Number of Ugdates Between Changes in Temgerature (STEP)

11032010,, n,STEP= 1,120 = ZINIT, a, n,STEP= 50,120 = ZINIT, an,STEP= 100,120

H13 211111739, )1, STEP= 1, RD 9* ZINIr, ,, mm: 50,120 ¢ ZINIT, a, n, STEP= 100, RD

The apriori expectation of this experimental factor was that a higher number of

updates between changes in temperature range is expected to yield lower average

objective values. The probabilities of evaluating every peak and trough between changes

in temperature should be greatly enhanced by executing this loop indefinitely (Otten and

Ginneken, 1989, pp 14). Therefore, it is expected that a higher number ofupdates should

yield better results.

However, the Duncan’s multiple range tests for lnavgfin in Table 24 report

otherwise. STEP is not a significant factor at 0 = 0.5 and 0 = 1.0, regardless of the job

size (n). At 0 = 0.0 and n = 50, STEP = 100 is statistically more effective than STEP =

50, which in turn is statistically more effective than STEP = 1. For smaller job size (i.e. 0
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= 0.0 and n = 10 or n = 30), both STEP = 100 and STEP = 50 are statistically more

effective than STEP = 1, although there is no statistical difference between STEP = 50 and

STEP = 100. All the comparisons for this part ofthe analyses passed the Levene’s

homogeneity ofvariance tests.

Table 24: Duncan's Multiple Range Tests for STEP- Inavgfin (40 cases per cell)

Means Duncan’s K-S Levene’s

.S‘TEP=1 STEP=50 STEP=100 Results )1 Test Test

.1360.9861 0.7352 0.7088 ¢ = . 10 .3294

¢ =

¢

 

The most likely explanation for the mixed results for this part ofthe analyses

relates to 0, which in turn determines the magnitude ofthe objective function values.

When the problem changed from a pure setup objective to a combined setup and tardiness,

and finally to a pure tardiness problem, the objective function increased at least four fold.

The results can be due to the relative difference between the objective function values and

the size ofSTEP. When STEP was increased from 1 to 50 and then 100, it has a
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Significant efi’ect on the pure setup problem (where the magnitude of the objective

function value is less than 1.0). When 0 was increased to 0.5 and 1.0, the magnitude of

the objective function values increased to an average of 4 and above (i.e. quadruple).

STEP Size of 1, 50 and 100 were no longer large enough to affect the solution. Therefore,

 increasing STEP size four times (the relative increased in the objective firnction) to 200

(50 x 4) and 400 (100 x 4) would probably affect the quality of the solution. The

arbitrarily chosen factor levels of 1, 50 and 100 are probably too small to make any

 

Significant effect on the solution. Future research will be conducted to investigate this

rationale, where the factor levels will be set as a percentage of the objective function.

Table 25: Duncan's Multiple Range Tests for STEP-pctabopt (20 cases per cell)

Mean of Duncan’s

STEP=1 STEP=50 STEP=100 Results RD

74.4537 21.7454 24.7161 ¢ = . 0.2

l 0 ¢ =

 



l 01

Table 25 shows the Duncan’s multiple range test for STEP using pctabopt as the

performance measure at different level of 0 and RD. This analysis compares the effect of

STEP on the quality ofthe final solution for the lO-job problems. The test shows that the

lO-job problems were more difficult to solve when STEP = 1, although there is no

statistical difference between the means for STEP = 50 and 100. At least for the lO-job  problems, it can be shown that STEP Size of 50 or 100 improved the quality of the final

solution.

 

5. 11.3. Number at Jobs in the Sequence (n)

Hui ZINIT, ,= 0.0, n = )0, STEP, 120 = ZINIT, , = 0.0, n = 30, STEP, RD = ZINIT, ,, = 0.0, n = 50, STEP, RD

H13 ZINIT, 9= 0.0, n =10,S7EP,RD 3‘ ZINIT, 9= 0.0, n = 30, mam 9* ZINIT, ,= 0.0, n = so, STERRD

This test is meaningful only when 0 = 0.0 (100% setup). When 0 = 0.5 or 1.0, the  
performance measure, avgin, involve tardiness which is not a linear function of n.

Therefore, dividing the total objective fimction values by n does not yield a good ‘average’

measure for comparing tardiness with different job size. The problem is expected to be

more difficult to solve with larger number ofjobs in the sequence, thus resulting in higher

average setup time per job. Table 26 Shows that when 8 = 0.0, and STEP = 1 or 50, the

cell mean ofn = 10 is statistically larger than the cell mean ofn = 30 or n = 50. There is

no statistical difference between the cell means ofn = 30 and n = 50. At STEP = 100, the

cell mean ofn = 10 is statistically larger than the cell mean ofn = 30, which is in turn

statistically larger than the cell mean ofn = 50. The results suggest that in general, it is
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more difficult to minimize setup for smaller problem using simulated annealing. The

simple explanation to this peculiar finding can be that the effect of including a ‘bad’ job

(one with very high setup) in the sequence is minimized when the number ofjobs in the

sequence is large (i.e. larger denominator).

Table 26: Duncan’s Multiple Range tests for n (40 cases per cell)

 

Means Duncan’s K-S Levene’s

n = 10 n = 30 n = 50 Results STEP Test Test

0.9861 0.8638 0.8974 = . 1 .6154 .002

1 = . . l

at

 

5. 11.4. Tightness of the Relative Range at Due Dates (RD)

Hot xINIT, 9, STEP, 120 = 0.2 = xINIT, 9, STEP, 120 = 0.5

H11 xINIT, 9, STEP, 120 = 0.2 7* xINIT, 9, STEP, 720 = 0.5

This test is meaningfirl only when 0 = 0.5 or 1.0 because RD affects only tardiness

objective. The a priori expectation was that the narrower the relative range of due dates,

the more difficult is the problem. This expectation is consistent with Rinnooy Kan, et al.

(1975), Ragatz (1993) and Rubin and Ragatz (1995). Table 27 shows the ANOVA using

pctabopt as the performance measure. The interaction ofRD with STEP and 0 is
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significant. Comparisons between the means ofRD are conducted by fixing STEP and 0

at a specific level, and applying the independent t-test to the means ofRD at that level.

Separate-variance t-test (marked as Unequal in SPSS outputs) was used where the

Levene’s test for equality ofvariance rejected the null hypotheses (Ho: 0’1 = 02),

suggesting that the population variances from the two samples differed. Pooled-variance

t-test (marked as Equal) was used where the Levene’s test Statistic was greater than 0.05,

suggesting that there was no reason to suspect the population variances in the two groups

were unequal. However, for large samples, the difference between these two tests was

very small. Indeed, test results for RD showed exactly the samep-values, t-values, and

95% confidence interval for many cases. The only difference was that separate-variance t-

test has a smaller degree offreedom (df) for the test.

’
8
1
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Table 27: ANOVA -pctabopt

 

 

 

 

 

 

 

Source of Variation SS DF MS F Sig ofF

WITHIN+RESIDUAL 95185.49 324 293.78

INIT 58.17 1 58.17 .20 .657

STEP 18469.19 2 9234.59 31.43 .000 *

RD 1606.63 1 1606.63 5.47 .020 *

9 84138.27 2 42069.13 143.20 .000 *

INIT x STEP 114.94 2 57.47 .20 .822

INIT x RD 143.01 1 143.01 .49 .486

INIT x 9 5.14 2 2.57 .01 .991

STEP x RD 1342.75 2 671.37 2.29 .103

STEP x 9 23798.71 4 5949.68 20.25 .000 *

RD x 9 3522.31 2 1761.15 5.99 .003 *

INIT x STEP x RD 1305.35 2 652.68 2.22 .110

INIT x STEP x 9 515.85 4 128.96 .44 .780

INIT x RD x 9 11.74 2 5.87 .02 .980

STEP x RD x 9 3246.09 4 811.52 2.76 .028 *

INIT x STEP x RD x 9 1846.76 4 461.69 1.57 .182

(Model) 140124.90 35 4003.57 13.63 .000 *

(Total) 235310.39 359 655.46

R-Squared = .595

Adj. R-Squared = .552

 

  
 

* significance at on = 0.05

 

Table 28: t-test for Equality of Means - RD (20 cases per cell)

2-Tail

Sig

Levene’s

Test

Mean of 95% CI

Ho RD = 0.2 RD = 0.5 8 STEP for Diff

NO 3.2579 5.1819 0.5 1 0.255 -5.30 +1.46 0.021*

NO . . . . . + . . 1

NO . . 4 . . . + . 0.

Reject

NO . . . . . +

no . . 83 . . . + .

NO . . . . . + .

* indicates separate variance t-test was used since Ho: 0'. = 62 was rejected.
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Table 28 shows the results ofthe t-test for equality of means for RD at different

levels ofSTEP and 0. Test results cannot reject the null hypotheses regardless of the

levels ofSTEP. Therefore, there is no evidence to believe that it is more difficult for

simulated annealing to solve the lO-job problems when RD = 0.2. Rinnooy Kan, et al.

(1975), Ragatz (1993) and Rubin and Ragatz (1995) reported that it was more difficult for

their solution approaches to solve the problems with tight relative range of due dates.

This suggests that simulated annealing may be the preferred approach for solving tardiness

problems with tight relative due date range.

5. 11. 5. Tradeofl Parameters (Q)

Hoi xINIT, ,= 0.0, STERRD = xINIT, 9= 0.5, STEP,RD = xINIT, 9= 1.0, STEP,RD

H13 xINIT, 9= 0.0,STEP,RD 7* xINIT, 9: 0.5,STEP,RD ¢ xINIT,9=1.0,STEP,RD

The a priori expectation was that the single objective sequencing problem is easier

to solve than the multi-objective problem ( i.e. 0 = 0.5), because when 0 = 0.5, the

heuristic needs to consider a weighted average of the two objectives. Therefore, the

problem was expected to be more complex and difficult to solve, thus producing higher

‘percent above optimum’, pctabopt, for the lO-job problems.

Table 29 Shows the results of Duncan’s multiple range tests on pctabopt with

different levels ofSTEP and RD. The results rejected the a priori expectation. There is

no evidence to support the a priori expectation that multi-objective problem was more

difficult to solve. However, test results Show that the pure setup problem was more

fi‘
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difficult to solve. The mean for the pure setup problem is substantially higher than those

involving tardiness (0 = 0.5 and 0 = 1.0). The explanation could be that the perturbation

scheme was structured to perform better in exploring the ‘neighborhood’ of the optimum

solution for tardiness problems than the setup problems.

Table 29: Duncan's Multiple Range Tests for 8 - pctabopt (20 cases per cell)

Mean of Duncan’s

0 = 0.0 0 = 0.5 0 = 1.0 Results STEP RD

74.4537 3.2579 2.6402 ,1 = 1 0.2

¢ =

 

 

 



CHAPTER 6: CONCLUSIONS

6.1 Conclusion

Although a Significant amount ofresearch exists on operations scheduling

problems, most of it either totally ignores setup times or assumes that setup times on each

machine are independent ofthe job sequence. In addition, most past research tends to

focus on a Single objective. This research investigates the multi-objective scheduling

problem with sequence dependent setup times. By varying a tradeoff parameter, 0,

between 0 and l, schedulers can now sequence to minimize a weighted sum ofmore than

one objective. By setting 0 = 1 for a particular objective and 0’s for the other objectives,

the algorithm becomes a single objective minimization problem. This research provides an

attractive and efficient approach to enable the industrial schedulers to strive for a balance

among various scheduling objectives.

Schedulers are not limited to the single objective minimization tools that tend to

minimize a sequencing objective yet experience an unacceptable tradeoff of other

objectives. For instance, a production sequence that minimizes setup may be unacceptably

high on tardiness and work in process or vice versa. Although this research deals with a

maximum oftwo objectives, the same principle can be applied if a scheduler needs to

consider more than two objectives. The number and the importance (or weights) of

various sequencing objectives can easily be increased or decreased by simply changing the

value of the tradeoff parameters, (e.g. letting a tradeoff parameter = 0 would effectively

eliminate the associated objective).

107
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Simulated annealing is used to arrive at a good solution to the sequencing problem.

The algorithm identified many optimum solutions in the smaller problems, although it is

not known if the algorithm successfially identified any optimum solutions for the larger

problems. In the lO-job problems, simulated annealing positively identified the optimum

solutions for 40% or 144 (Table 16: 36.1% x 180 + 43.9% x 180) problems out of a total

of 360 problems. Simulated annealing offers a powerfiil search heuristic for obtaining

excellent solutions in this research. The task of multi-objective sequencing was easily

implemented as a simulated annealing problem, and yet the same formulation could be

used to solve single objective sequencing problem.

The algorithm retained a feasible solution and its corresponding objective value at

all times. In addition, scheduler implementing a simulated annealing approach to

scheduling can record any schedule that is better than the best incumbent. The

implications for ‘on-line’ production scheduling is that the best incumbent can be used

should there be a need to terminate the annealing process prematurely or unexpectedly.

The implications of last-minute changes to a production schedule is that the simulated

annealing heuristic can quickly reach a ‘near optimum’ solution. The algorithm is easily

implemented on a personal computer.

It is difficult to determine if the annealing process has positively located the

optimum solution for any problems. However, it is rather easy to ensure that the annealing

process has reached the steady state (i.e. the objective function value has remained

constant for an extended period oftime) before stopping the process simply by plotting

the objective fimction values over times (Figures 7 to 10 and Appendices 1 and 2). The
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annealing process is deemed to have reached the steady state when the probability of

accepting a worse solution approaches zero. The correct annealing parameters must be

selected to ensure an efficient annealing scheme that will locate a good production

sequence with minimum computation times. Although simulated annealing has been used

successfully in solving various complex optimization problems, there is a lack ofproper

guidelines regarding how these parameters can be selected. Past research has typically

treated these parameters as experimental factors. However, it is clear that these

parameters can be derived based on the theoretical basis of simulated annealing as

presented in section 3.4.4.

The results of this research agrees with the theoretical basis of simulated annealing

and the findings of Suresh and Sahu (1993) that a properly tuned simulated annealing

scheme should be independent of the initial solution. Using better than randomly

generated initial solution did not yield better final solution. The usage of incorrect

annealing parameters probably accounted for the contradictory findings ofJohnson, et al.

(1989), Potts and Wassenhove (1991), and Shang (1993).

Contrary to the solution approaches used in Rinnooy Kan, et al. (1975), Ragatz

(1993) and Rubin and Ragatz (1995), this research shows that the simulated annealing

heuristic was not affected by the relative range of due dates. It indicates that simulated

annealing may be the preferred solution technique to solve sequence dependent scheduling

problems with tight relative range of due dates.

As for the effect ofjob size (n) on the setup problem, research results indicate that

smaller problems tend to yield higher average setup. A probable explanation is that the
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effect of selecting a ‘bad’ job with high setup will affect the average objective value of the

smaller problem (smaller denominator) more than the larger problem (larger denominator).

The research results also indicate that although higher updates between changes in

temperature produced lower average objective value for the pure setup problem, it has no

statistical impact on the other problems. This finding is rather unexpected because

theoretically higher updates should lead to better solutions. An explanation is that the

magnitude of the pure setup problems are much smaller than the other problems. There

may be a relationship between the size of the updates and the magnitude of the objective

function value. The levels (STEP = 1, 50, 100) selected for this experimental factor are

probably too small for those problems involving tardiness. When the performance

measure (pctabopt) was used to compare the results ofthe lO-job problems, test statistics

show that STEP = 50 and 100 yield final solutions closer to the optimum solution than

when STEP =1.

6.2 Assumptions/Limitations of Present Research

The conclusions and findings from this research although suggestive are not

conclusive beyond the scope of this research. Specifically, the assumptions made in this

research were:

(i) Processing times of the jobs are normally distributed, p ~ N(100, 252),

(ii) Setup times of the jobs are uniformly distributed, 5 ~ U(0, 19),

‘
i
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(iii) Due dates ofthe jobs are uniformly distributed, d ~ U(25n, 75n) or

d ~ (25n, 75n),

(iv) Sequencing a single processor or machine,

(v) No machine breakdowns, and

(vi) All information ofthe jobs (p, s, d) are known when the jobs arrived at the

shop,

(vii) No cancellation ofjobs or changes in due dates,

(viii) Simulated annealing is the only solution technique used.

These assumptions and problem environment suggested by the literature were

adopted so that results can be compared to past scheduling research. The usefulness and

efficacy of simulated annealing in solving more realistic problems (those involving multiple

machines with random arrival ofjobs and multiple routings) is still a matter for

investigation. The results of this research suggest that simulated annealing might hold

considerable promise in solving these complex scheduling problems.

6.3 Suggestions For Future Research

Future research could explore the effectiveness of simulated annealing in solving more

complex scheduling problems. The following ideas seem worth pursuing:



(ii)

(iii)

(“0
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In many instances, simulated annealing was unable to return to a better

solution found earlier in the annealing process. Future research will

investigate the effect of adding a “memory loop” in the simulated annealing

scheme in an attempt to improve the annealing process. Solution

approaches include: (a) replacing the final solution with a previous

solution at the end ofthe annealing process if the latter is a better solution,

(b) returning to the previous solution if the annealing process cannot find a

better solution after a certain number of iterations, or (c) heating up the

annealing process by increasing the temperature and decreasing the decay

rate if the final solution is worse than a previous found solution.

Comparing the performance of simulated annealing to (a) Next Best Rule

(NB), (b) Next Best Rule With Variable Origin (NB’), (c) Next Best Rule

After Column Deduction (NB”) (Gavett 1965), and (d) Lin-Kernighan’s

TSP algorithm (Lin and Kemighan, 1973) for minimizing sequence

dependent setup times.

Comparing the performance of simulated annealing to (a) Branch and

Bound (Ragatz, 1993), and (b) Genetic Search (Rubin and Ragatz, 1995)

for minimizing tardiness with sequence dependent setup times.

Investigating whether it is possible to extend Gavett’s NB, NB’, and NB”

to handle minimizing tardiness problem.
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(v) Extending the research to cover more than one machine scheduling

problem. For example, in the case oftwo machines, the objective function

becomes:

H = 9 (tardiness) + (1 - 9) * (S. + S2)

where,

S1 is the setup times incurred on machine 1

S2 is the setup times incurred on machine 2

(vi) Investigating the relationship of the ratio of the various annealing

parameters (Tm, To, and r) to the objective function value and the quality

ofthe final solution.

(vii) Sensitivity analysis ofthe simulated annealing heuristic to the distribution

ofjob parameters (i.e. processing time, setup time and due date

distribution).

6.4 Contributions to Operations Management and Scheduling Literature

This research addressed many issues in scheduling problems that have been

typically ignored by past research. By addressing these issues, the problem setting

considered in this research is more realistic. The issues addressed include:

0 This research looked at sequence dependent setup times, which often occurs in

practice but usually ignored in research,
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This research addressed minimizing tardiness objective, which is very important to

the industrial schedulers, but has been ignored in sequence dependent setup

environment

This research also addressed the multiple objective scheduling problems in a

sequence dependent setup environment. It allows the scheduler to consider more

than one objective, or to strive a balance between conflicting objectives.

This research shows that simulated annealing offers a promising alternative to

solve scheduling problems where setup times are sequence dependent. Practicality of

simulated annealing approach for scheduling include:

Simulated annealing can often derive a fairly good solution quickly (although not

necessary the optimum solution), and it can retain the best incumbent at all time.

Therefore, it is possible to generate new schedule fairly quickly or to reschedule

frequently if necessary.

Simulated annealing is robust. It can consider a variety of environments and

objectives. It can also be used to solve facility layout problems and to schedule

workforce.

It can be easily implemented on a personal computer.

Any feasible initial solution is a good starting point. Therefore, it is unnecessary to

waste resources trying to derive a good initial solution.

This research also provides a good analytical approach for establishing the proper

annealing parameters.
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APPENDIX 1: CHARTS OF CASES WITH WORSE FINAL SOLUTIONS

Chart 1: Case 1 to 3
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Chart 2: Case 4 to 6
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Chart 3: Case 7 to 9
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Chart 4: Case 10 to 12
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Chart 5: Case 13 to 15
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Chart 6: Case 16 to 18
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Chart 7: Case 19 & 20
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APPENDIX 2: THREE-WAY ANOVA - LNA VGFIN
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Source of Variation SS DF MS F Sig ofF

WITHIN+RESIDUAL 46.26 972 .05

NRDQ 5139.85 17 302.34 6352.39 .000 *

INIT .00 1 .00 .00 .950

STEP 9.41 2 4.70 98.81 .000 *

NRDO x INIT .15 17 .01 .18 .000

NRDG x STEP 11.73 34 .34 7.25 .000 *

INIT X STEP .01 2 .00 .10 .906

NRD9 X INIT X STEP .30 34 .01 .18 .000

(Model) 5161.43 107 48.24 1013.50 .000 *

(Total) 5207.70 1079 4.83

R-Squared = 0.991

Adj. R-Squared = 0.990

Univariate Homogeneity of Variance Tests

Cochrans C (9, = .02032, p = 1.000 (approx.)

Bartlett-Box F(107, 78010) = 1.85217, p = .000 *

 

* significance at or = 0.05

Three-Way ANOVA for LNA VGFIN:

n, RD, and 0 were combined into one factor, NRDG, with 18 levels (3 x

2 x 3). The results are similar to those presented in Table 22: Full

Factorial ANOAV - LNA VGFIN.
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APPENDIX 3: J30RD05E WITH LOWER TEMPERATURE DECAY RATE

Final Solutions With Lower Tmax and r
 

 

 

 

 

Tmax = 10,000 25 25

To = 0.10 0.05 0.05

r = 0.995 0.9973 0.999

# of iterations = 2297 2297 6622

STEP = 1 46 56 63

STEP = 50 41 42 41

STEP = 100 51 47 37

AVERAGE 46.00 48.33 47.00

 

 

     
 

Note:

runs for a particular 30-job problem (J30rd05e) to investigate if using a

smaller Tm, To, and r would produce better result. The first column

shows the original results and annealing parameters used for this research.

The second column shows the results for a different set of annealing

parameters used, but maintaining the same number of iterations to bring

Tmax to To (i.e. 2297). The third column allows a larger number of

iterations with a much smaller r. From these two additional runs, there is

no clear indication that the result is better with smaller parameters. Charts

8 and 9 show how the objective firnction values of these two additional

runs decreased as the temperature was decreased.

This section relates to Section 5.5, page 68. It shows the additional two

The number of iterations to bring Tm to T0 was calculated as followed:

1n(T0 / rm)

1110)

# of iterations =
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Chart 8: Objective Values As Temperature Decreased
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Chart 9: Objective Values As Temerature Decreased
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APPENDIX 4: VISUAL BASIC SIMULATED ANNEALING CODE

Option Explicit

' Declare all variables required in this form

Dim StepPerTemp, JobTemp(2), RndlntNo(2), I, J, K1, K2, K3, K4, n, A, B, C, D(9) As Integer

Dim DueDate(10), ProcTime(10), SetupTime(lO, 10), Job(10), Joblnit(10), JobSW(10) As Integer

Dim NoOfIter, TirneLength, Setup, Tardy, TardyTemp As Long

Dim Energy, Energylnit, EnergySW, EnergyNew, EnergyChange As Single

Dim Tmax, TFinal, TempRate, TNow, TradeOflPar As Single

Dim BoltzProb, Boltand As Double

Dim DataFile As String

Sub cdeancelFrm2_Click 0

End

End Sub

Sub cdeontinueFrrn2_Click 0

'Check all parameters entered are valid

' (a) Does txtTmax.Text have a value?

If Tmax <= 0 Then

MsgBox "You must enter a valid Starting Temperature, Tmax"

txtTmax.SetFocus

Exit Sub

End If

' (b) Does txtTFinal.Text have a value?

IfTFinal <= 0 Or TFinal > Tmax Then

MsgBox "TFinal must be positive, and TFinal < Tmax"

txtTFinaLSetFocus

Exit Sub

End If

' (c) Does txtTempRateText have a value?

If TempRate <= 0 Or TempRate > Tmax Then

MsgBox "Temp Step positive, and TempRate < Tmax"

txtTempRate.SetFocus

Exit Sub

End If

' Randomize random seed

Randomize
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' m lO-Job Problems ***

 

 

n = 10

'(1) First loop, read data files

For K1 = 1 To 10

Select Case K1

Case 1

DataFile = "lerdOZadat"

Case 2

DataFile = "j10rd02b.dat"

Case 3

DataFile = "j 10rd02c.dat"

Case 4

DataFile = "j10rd02d.dat"

Case 5

DataFile = "j10rd02e.dat"

Case 6

DataFile = "j10rd02f.dat"

Case 7

DataFile = "lerd02g.dat"

Case 8

DataFile = "lerd02h.dat"

Case 9

DataFile = "j10rd02i.dat"

Case 10

DataFile = "j10rd02j.dat"

End Select

' Read data file & all variables

Open "c:\vb\j10rd02\" & DataFile For Input Access Read As #1

Do While Not EOF(1)

Input #1, I, B, C, D(l), D(2), D(3), D(4), D(5), D(6), D(7), D(8), D(9), A

DueDate(I) = B: ProcTime(I) = C

For J = 1 To n - 1

[fl > I Then

SetupTime(I, J) = D(J)

Else

SetupTime(I, J + 1) = D(J)

End If

Next I

Loop

Close #1

' Write to "JlORDO??.chk" file to check if data reading is correct

Open "c:\vb\j10rd02\" & Lefi$(DataFile, 8) & ".chk" For Output As #2

For I = 1 To It

Print #2, I; ","; DueDate(I); ","; ProcTime(I); ",";

For J = 1 To it

Print #2, SetupTime(I, J); ",";

Next I

' Force printing to new line

Print #2, 1

Next I
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Close #2

' Show time & the current file

Cls

Print “Start Time = " & Time

Print "Working on file " & DataFile

Print "Please do not re-boot"

Print "Home Phone: 355-2960"

Print "051% Phone: 353-6498"

'(2) Second loop, TradeOfiPar

For K2 = 1 To 3

Select Case K2

Case 1

TradeOfiPar = 0

Case 2

TradeOflPar = .5

Case 3

TradeOflPar = 1

End Select

 

 

'(3) Third loop, initial solution

For K3 = 1 To 2

lfK3 = 1 Then

' Random Initial Solution & set all JobInit = JobInit(l)

JobInit(l) = l + Int(Rnd * n)

For A = 2 To 11

JobInit(A) = JobInit(l)

Next A

‘ Ensure each job occurs only once

For A = 2 To 11

ForB=1To(A-1)

IfJobInit(A) = JobInit(B) Then

JobInit(A) = 1 + Int(Rnd * n)

B = 0

End If

Next B

Next A

' calculate Initial Energy function

TimeLength = ProcTime(JobInit(l))

TardyTemp = TimeLength - DueDate(Joblnit(l))

If TardyTemp < 0 Then

TardyTemp = 0

End If

Tardy = TardyTemp

Setup = O

For A = 1 To It - 1

TimeLength = TimeLength + SetupTime(JobInit(A), JobInit(A + 1)) + ProcTime(JobInit(A + 1))

TardyTemp = TimeLength - DueDate(Joblnit(A + 1))

IfTardyTemp < 0 Then
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TardyTemp = 0

End If

Tardy = Tardy + TardyTemp

Setup = Setup + SetupTime(JobInit(A), JobInit(A + 1))

Next A

Energylnit = TradeOflPar * Tardy + (1 - TradeOfIPar) * Setup

Else

'PairWise Swap

For A = 1 To 11

JobSW(A) = JobInit(A)

Next A

EnergySW = Energylnit

For I = 1 To 11

For J = 1 To 11

If I <1 Then

JobTemp(l) = JobSW(J)

JobTemp(2) = JobSW(J)

JobSW(J) = JobTemp(2)

JobSW(J) = JobTemp(1)

' calculate Swapped Energy function

TimeLength = ProcTime(JobSW(1))

TardyTemp = TimeLength - DueDate(JobSW(1))

IfTardyTemp < 0 Then

TardyTemp = 0

End If

Tardy = TardyTemp

Setup = 0

For A = 1 To n - l

TimeLength = TimeLength + SetupTime(JobSW(A), JobSW(A + 1)) + ProcTime(JobSW(A + 1))

TardyTemp = TimeLength - DueDate(JobSW(A + 1))

IfTardyTemp < 0 Then

TardyTemp = 0

End If

Tardy = Tardy + TardyTemp

Setup = Setup + SetupTime(JobSW(A), JobSW(A + 1))

Next A

' accept swap if lower Energy, else return to original state

EnergyNew = TradeOfiPar * Tardy + (1 - TradeOflPar) * Setup

lenergyNew < EnergySW Then

EnergySW = EnergyNew

Else

JobSW(I) =JobTemp(1)

JobSW(J) = JobTemp(2)

End If

End If

Next J
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Next 1

End If

'(4) Fourth loop, StepPerTemp

For K4 = 1 To 3

Select Case K4

Case 1

StepPerTemp = 1

Case 2

StepPerTemp = 50

Case 3

StepPerTemp = 100

End Select

' Set variables to keep track of statistics

NoOfIter = 0: TNow = Tmax

' Select the correct initial solution

lfK3 = 1 Then

For A = 1 To It

Job(A) = JobInit(A)

Next A

Energy = Energylnit

Else

For A = 1 To n

Job(A) = JobSW(A)

Next A

Energy = EnergySW

End If

' open file #3 as ouput, save k1 to k4, JobInitO, Energylnit

Open "c:\vb\j10rd02\F" & K1 & K2 & K3 & K4 & ".sim" For Output As #3

Print #3, "DataFiIe, K1 ”; DataFile

Print #3, ”Trade Off Parameter, K2 "', TradeOflPar

Print #3, ”Type of Initial Solution, K3 "; K3

Print #3, "Step Per Temperature Range, K4 "', StepPerTemp

Print #3, "Starting Temperature, Tmax "; Tmax

Print #3, ”Frozen temparature, TFinal "; TFinaI

Print #3, "Temperature Step, TempRate "; TempRate

For I = 1 To 11

Print #3, ”The "; 1; "th job is job id "; Job(I)

Next I

Print #3, "The Initial Energy is "; Energy

' 2. Proposed simulated annealing scheme

Do While TNow > TFinal

' 2.1 perform the loop L times

For 1 = 1 To StepPerTemp

' 2.1.1 generate RndlntNo()~U(1,n)

For J = 1 To 2

RndlntNo(J) = 1 + Int(Rnd * it)

Next J

Do While RndlntNo(l) = RndlntNo(2)

‘l
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RndlntNo(2) = 1 + Int(Rnd * n)

Loop

' swith the sequence/position of these two jobs

JobTemp(l) = Job(RndIntNo(1))

JobTemp(2) = Job(RndIntNo(2))

Job(RndIntNo(1)) = JobTemp(2)

Job(RndIntNo(2)) = JobTemp(l)

' 2.1.2 calculate the new Energy

TimeLength = ProcTime(Job( l ))

TardyTemp = TimeLength - DueDate(Job(l))

IfTardyTemp < 0 Then

TardyTemp = 0

End If

Tardy = TardyTemp

Setup = 0

For A = I To 11 - 1

TimeLength = TimeLength + SetupTime(Job(A), Job(A + 1)) + ProcTime(Job(A + 1))

TardyTemp = TimeLength - DueDate(Job(A + 1))

If TardyTemp < 0 Then

TardyTemp = 0

End If

Tardy = Tardy + TardyTemp

Setup = Setup + SetupTime(Job(A), Job(A + 1))

Next A

EnergyNew = TradeOflPar "‘ Tardy + (1 - TradeOflPar) "‘ Setup

EnergyChange = EnergyNew - Energy

' 2.1.3 if downhill move, accept new state

' 2.1.4 else calculate Boltzmann probability

IfEnergyChange <= 0 Then

Energy = EnergyNew

Else

BoltzProb = (EnergyChange / TNow)

' add a check to ensure BoltzProb doesn't go beyond its range

IfBoltzProb > 200 Then

BoltzProb = 0

Else

BoltzProb = 1 / (l + 2.718281828 " BoltzProb)

End If

Boltand = Rnd

‘ 2.1.4.1 if BoltzProb (small at low T) > Boltand, accept change

' 2.1.4.2 else return to original sequence at step 2.1.1

If BoltzProb > Boltand Then

Energy = EnergyNew

Else

Job(RndIntNo(1)) = JobTemp( l)

Job(RndIntNo(2)) = JobTemp(2)

End If

 

‘
F
h
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End If

Next I

' end of 2.1 perform the loop L times

' write Energy to file & reduce T

Print #3, TNow; ","; Energy

'I'Now = TNow * TempRate

NoOfIter = NoOfIter + 1

Loop

' end of do while loop that checks TNow > TFinal

' write final sequence & close output file that tracks energy

Print #3, "Total Iterations = "; NoOfIter

For I = 1 To it

Print #3, Job(l); ",";

Next I

Print #3,

Print #3, ”Final Energy "; ","; Energy

Close #3

Print K1 & K2 & K3 & K4 & “.sim“

Next K4

Next K3

Next K2

Next Kl

End Sub

Sub txtTempRate_Change 0

TempRate = Val(txtTempRatefl‘exi)

End Sub

Sub txtTFinal__Change 0

TFinal = Val(txtTFinal.Text)

End Sub

Sub txtTmax_Change ()

Tmax = Val(txtTmax.Text)

End Sub

‘ Note: This is the Microsofi Visual Basic Code for the lO-job problems.

‘ For the 30 & 50-job problems, the following modifications are needed:

‘ (i) change data file name

‘ (ii) change it = 30 or 50
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