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ABSTRACT

CORE-FREE MAXIMAL SUBGROUPS OF LOCALLY FINITE GROUPS
By

Neil Henry Flowers

In this dissertation we determine the structure of the centers of certain maximal
subgroups in both finite groups and locally finite simple groups. In Theorem 1.1
we show that in a finite group G the center Z(M) of a solvable core-free maximal
subgroup M is cyclic modulo O;(Z(M))O3(Z(M)). In Theorem 3.1 we show that, for
certain primes p, a nonfinitary locally finite simple group cannot contain a subgroup
of type (p,p) in which all nontrivial elements have the same centralizer. As a result
we are able to show that the center of a maximal subgroup of a nonfinitary locally

finite simple group is locally cyclic modulo one of its Sylow subgroups.
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Introduction

A common theme throughout Group Theory has been the interplay between a group
and its maximal subgroups. Of particular interest has been the phenomena in which
properties of the maximal subgroup of a group impose a certain structure on the group
itself. In [11], for example, John G. Thompson showed that any finite group which
has a nilpotent, maximal subgroup of odd order must be solvable. Its the influence
that a maximal subgroup can have on the whole group that makes the study of the

structure of maximal subgroups worth while.

A core-free maximal subgroup of a group G is a maximal subgroup in which the
intersection of all its conjugates is trivial, that is, Coreg(M) = (,ccM* = 1. In
Chapters 1 and 2, we explore the centers of such subgroups and show that in a finite

group any core-free maximal subgroup which is solvable has a cyclic center modulo

0:(2(M))0s(Z(M)).

In [6] Liebeck and Saxl proved that any core-free maximal subgroup of a finite
group must have cyclic center. However their proof of this theorem relied on the
classification of finite simple groups, a reasonably powerful tool. Although Theorem
1.1 is weaker than this result, the proof of Theorem 1.1 does not rely on the classifica-
tion of finite simple groups. Rather it depends on The Amalgam Method, a method
developed by Daniel Goldschmidt [2] and Bernd Stellmacher [9]. This method is a

way of analyzing properties of a group through its action on the coset graphs of some



of its subgroups.

After the completion of the classification of finite simple groups a new interest
arose in the structure of locally finite simple groups. In [7] Ulrich Meierfrankenfeld
showed that a locally finite simple group must be one of three types, a finitary group, a
group that is covered by a system of finite subgroups each of which having alternating
quotients, or a group that is covered by a system of finite subgroups each of which
having quotients isomorphic to projective special linear groups defined over finite
fields of prime characteristic. Using this classification, in Chapter 3 we explore the
structure of the centers Z(M) of maximal subgroups M of nonfinitary locally finite
simple groups G. Indeed, we prove that, for certain primes p, G does not contain
a subgroup Z of type (p,p) in which every nontrivial element of Z has the same
centralizer in G. Therefore, as a consequence, we show the center Z(M) of M,

modulo one of its Sylow-subgroups, is locally cyclic.



Chapter 1

Core-free maximal subgroups of
finite groups

In this section we will start a proof of Theorem 1.1 (below) which does not depend
on the classification of finite simple groups. The proof of Theorem 1.1 is primarily

an application of the Amalgam Method.

Theorem 1.1 Let G be a finite group and M be a core-free mazimal subgroup of G.
Suppose further that M is solvable and p a prime with p > 5. Then O,(Z(M)) is

cyclic.

Let (G, M, p) be a minimal counter example to Theorem 1.1. Then, since O,(Z(M))
is noncyclic and abelian, there exists Z < O,(Z(M)) of type (p, p).
Lemma 1.2 (a) If N QG and N < M, then N = 1.

(b) For any C < Z(M) and 1 # c € C, Cg(c) = Ce(C) = M.

(c) If Q@ < G is a p'-group and Z < Ng(Q), then [Z,Q] =1 and Q < M.
Proof: For (a), since N < G and N < M, we have

N < () M? = Coreg(M) = 1
g9€G

3



and therefore N = 1.

Now C < Z(M) implies M < Cg(c) < G. Hence, by the maximality of M in
G, we get M = Cg(c) or Cg(c) = G. If G = Cg(c), then (c) 9 G and (c) < M.
Thus, by (a), we get (c) = 1, a contradiction. Therefore M = Cg(c). But then, since
C < Z(M), we get Cg(C) < Cg(c) = M < Cg(C). Thus M = Cg(c) = Cg(C)
and we have (b). Finally, for (c), since Z is a noncyclic abelian p-group acting on a

p’-group @, by [3, 6.2.4] we have
Q= (Co(2)l1 # z € Z) (1)

Now by (b), Cq(z) < Cg(z) = M for each 1 # z € Z. Thus, (1) implies Q < M.
Since Z < Z(M), we get [Z,Q] = 1.

Lemma 1.3 Suppose T is a finite solvable group and P < T is a p-subgroup. Then
Oy (N2(P)) < Op(T).

Proof First assume O,(T) = 1. Then we want to show Op(Nr(P)) = 1. Let
A = Op(Nr(P)) and B = Op(T). Since A and P are normal subgroups of Nr(P)
and (|A|,|P]) =1, we have [A,P) < ANP = 1. Also, since BT, Ax P acts on B.
Further [A,Cg(P)] < AN B =1, and so by (3, 5.3.4] [A,B] = 1. Thus A < Cr(B).
If A # 1, then Cr(B) is not a p-group and so B < Cr(B)B A T. Let T = T/B
and Cr(B) be the image of Cr(B) in T. Then we can pick N = N/B < T minimal

such that N 9T and N < Cz(B). Now T is solvable implies T is solvable and so N
is a elementary abelian g-group. If ¢ = p, then N is a p-group. But, since N < T,
we get N < O,(T) = B and hence N = 1, a contradiction. Therefore ¢ # p. Let
Q € Syl (N). Since N is a g-group we have Q = N and therefore N = QB. But
Q < BCr(B), and so
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QCr(B) _ BCr(B) B ,
CT(B) < CT(B) CT(B) B 1S a p-group.

Thus QCr(B)/Cr(B) =1 and so @ < Cr(B). But then N = Q x B and Q charN J
T. Therefore Q is a normal p'-subgroup T and hence @ < O (T) = 1. But then we
get N=QB = B and N = 1, a contradiction. Thus A = O,(Nt(P)) = 1.

Now if Oy (T) # 1, let T = T/Op(T) and P be the image of P in T. Then
0,(T) = 1 and so by the above argument applied to T and P we get O,(Nx(P)) = 1.
Next we claim that Ny(P) = Nz (P). Clearly Np(P) < Nz(P). Let t € Ny(P). Then
P =P implies (PO,(T))* = P'Op(T) = POy (T). Therefore P and P! are p-Sylow
subgroups of PO,(T). Therefore there exists z € O,(T) with P** = P. But then
tr € Nr(P) and therefore € Nr(P). Thus Ny(P) < Nr(P) and the claim holds.

Now we have

Op(N7(P)) < Op(N1(P)) = Op(Ng(P)) = 1

and so Op(N7(P)) £ Ox(T) and the lemma is proved.

Lemma 1.4 (a) 0,/(G)0,(G) = 1, in particular F(G) = Z(G) = 1.

() If M(Z(M)) < H < G, HN' M is mazimal in H, and Q = Corey(H N M),
then (Z(M)) < 2 (Z(0,(Q)))-

(c) There exists g € G with Q,(Z(M)) < M9 and g ¢ M.

(d) 0,(M) = 1.



Proof:  Clearly, since Z(G) < F(G) < 0,(G)0,(G), 0,(G)0,(G) = 1 implies
F(G) = Z(G) = 1. Now O,(G) 2 G implies Z normalizes the p’-group O, (G) and
so, by Lemma 1.2 (c), we have [Z,0,(G)] = 1. But then, O,(G) < Cs(Z) = M, by
Lemma 1.2 (b). Therefore, since O,(G) 9 G, by Lemma 1.2 (a), we have O,(G) = 1.
Next suppose 1 # O,(G). Then, since O,(G) is a normal p-subgroup of G, we have
1 # C = C5(0,(G)) € G. Therefore, by Lemma 1.2 (a) and the maximality of
Min G,C € M and G = CM. But then M N O0,(G) 4 CM = G and so, by
Lemma 1.2 (a), M N O,(G) = 1. Now Z acts on O,(G) and for each 1 # z € Z,
Co,)(2) £ Ca(2)N0,(G) = MNO,(G) = 1. Thus, Co,(c)(z) = 1foreach1 #: € Z
and Z acts fixed-point freely on O,(G). But, since Z and O,(G) are p-groups, this is
a contradiction to (3, 2.6.3]. Therefore, O,/(G)O,(G) = 1 and we have (a).

For (b), suppose ZNQ = 1. Let H= H/Q and H N M be the image of HN M
in H. Then H N M is a core-free maximal subgroup of H. Moreover, M is solvable
implies H N M is solvable. Thus, by the minimality of G, O,(Z(H N M)) is cyclic.
But ZNQ =1 implies Z = Z and Z < O,(Z(H N M)) is of type (p,p), yeilding a

contradiction. And so we may assume Z N Q@ # 1.

Since @ < M, [%(Z(M)),Q] =1 and so Q;(Z(M)) < Cy(Q). Now, by Lemma
1.2 (b), we have Cx(Q) < Ce(ZN Q) = Cg(Z) = M and therefore Cy(Q) <
HnN M. But then Cy(Q) < H implies Cy(Q) < Coreg(H N M) = Q. Thus,
M(Z(M)) < Cu(Q) £ Q. Now, since Q centralizes Q;(Z(M)), we have Q,(Z(M)) <
™(Z(0,(Q))-

For (c), if (% (Z(M)),(Z(M))?) = G for each g € G\ M, then M N M9 <
(u(Z(M)),0(Z(M))*) = G for each g € G\ M. Thus, by Lemma 1.2 (a), MNM? =
1 for each g € G\ M. Now Frobenius’ theorem (3, 2.76] implies G = NM, where
N =(G\U,ec M?)U {1} 2 G and (|N|,|M|) = 1. But, since p € n(|M|), Nis a p'-



group. Hence, by Lemma 1.4 (a), N < 0,/(G)0,(G) =1 and we get G = MN = M,

a contradiction to the maximality of M.

So there exists g € G\ M with (,(Z(M)),(Z(M))?) # G. We may assume
((Z(M)), 0 (Z(M))5) £ M, otherwise, Q,(Z(M)) < M?™" and we are done. Thus,
we can choose H < G minimal such that Q,(Z(M)) < H and H £ M. Then HN' M
is a maximal subgroup of H. For if HN M < Hy < H, then Q,(Z(M)) < Hy < H.
Thus, by the minimalty of H, Ho < HN M or Hy = H. Now by (b), 2,(Z(M)) <
Corey(HNM) < ey M". Since H £ M, picka h € H\ M. Then Q,(Z(M)) < M*
and we are done.

Next we want to show O, (M) = 1. By (c), there exists g € G\ M with Z <
0 (Z(M)) < MS. Then [Z,29) =1 and so Z° < Cg(Z) = M, again by Lemma 1.2
(b). Now Z¢ acts on the p'-group O, (M) and so, by Lemma 1.2 (c), [2¢,0,,(M)] = 1
and Op(M) < M?. Hence, O, (M) I M N M?, and so Op(M) < Op(M N M9). But
Op(M N M?) = 0,(Ng(Z) N M%) = Op(Nps(Z)) < Op(M?) by Lemma 1.3. Thus,
Op(M) < Op(M?). Now by the symmetry of this argument, we get O,(M) =
O, (M?). And so if Op(M) # 1, then

M = No(Op(M)) = No(Op(M?)) = M?

Thus, M = M9 and g € Ng(M) = M, a contradiction to the choice of g.

Lemma 1.5 Let T be a finite group, P € Syl,(T), and H < Z(P). Then,

O,(T/Cr((H™))) = 1



Proof LetV = (HT), T = T/Cr(V) and K = K/Cp(V) = Op(T). Then K QT
implies K I T. Now P € Syl (T) so T = Nr(P N K)K by the Frattini Argument.
Since, K is a p-group and K N P € Syl,(K), we have K =KnNPand so K =
(K N P)Cr(V). Thus, T = N¢(K N P)Cr(V). By assumption H < Z(P), and so
V = (HT) = (HN7(K0P)y < Cr(K N P) Thus, KN P < Cr(V) and so A = Cr(V).
But then, O,(T) = K = 1.

Lemma 1.6 Suppose A is a elementary abelian p-group which acts on a nilpotent

p-group T. Then

[T, Al = ([C1(B), A]| B <, A) (1)
and if in addition A is noncyclic,
[T, A] = ([C1(a), A]|1 # a € A) (2)

Proof Since A acts on T, A also acts on [T, A]. Since A is an elementary p-group

and [T, A] is a p -group, we have

[T, Al = ([Cr.a(B)|B <, A).

Let C = ([C1(B), A]|B <, A). Since A is a p-group and T is a p"-group, by [3, 5.3.6],
we have [T, A] = [T, A, A]. We claim (CT4l) = [T, A]. First, by the definition of C,

we have C < [T, A] and so (CT4l) < [T, A]. On the other hand, by the commutator
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laws [3, 2.2.1], (1) implies [T, A] = [T, A, A] < (CT4l). Thus [T, A] = (C!"4)) and
the claim holds.

Now suppose C < [T, A] and let C < D < [T, A}, where D is a maximal subgroup
of [T, A). Then, since T is nilpotent, [T, A] is nilpotent and so D < [T, A]. But
then we get [T, A] = (CIT4l) < D and hence [T, A] = D. This is a contradiction to
the maximality of D. Therefore C = [T, A] and the first statement of the lemma is
proved.

If A is noncyclic, then [T, A] = (Cir.4)(a)|l # a € A) by [3, 6.2.4]. Now the
second statement in the lemma follows by the same argument used above applied to

C = (Cir.a(a), A]l1 # a € A).

Lemma 1.7 Let T be a finite group, H < T be solvable, and V < H be an abelian
p-group with O,(H/Cy(V)) = 1. Suppose there ezists a noncyclic elementary abelian
p-group P < T such that Ct(P) = Cr(z) for each 1 # z € P. Then,

Ho = (P'|P* < H) < Cq(V). (1)

Proof: Suppose not. Then there exists t € T with P* < H and P' £ Cy(V). Let
E = P'and H = H/Cy(V). Then, E # 1 and O,(H) = 1. Now ENCg(V) = 1,
otherwise there exists 1 # e € ENCy(V) and V < Cr(e) = Cr(E) would imply E =
1. Thus, E = E is a noncyclic abelian p-group. Since O,(H) =1, F(H) is a p'-group.
Hence, by [3, 6.2.4] applied to E and F(H), we get F(H) = (Ceany(®)1 £ €€ E).

But then, by Lemma 1.6, we have

[F(T{)7E] = ([CF(ﬁ)(E)’E]Il :)é S E) (2)
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Let We = [Cra(©), E] for each € € E. Since, Cy(¢) = Cy(e) < Cr(e) =
Cr(E), we have [Cv(€), E] = 1 and so [Cv (), E, Cra(e)] = 1. Also, V H-invariant
implies [Cy(€), Cragy(€)] < Cv(@). Thus, [Cram(€),Cv(€),E] = 1. So by the Three
Subgroup Lemma we get [Wz, Cv(€)] = 1. Now the p’-group Wz acts faithfully on
the abelian p-group V to give V = Cv(Ws) x [V, We]. But, [Wg, Cy(€)] = 1 implies
Civwg(€) = Cv(e) N [V, W] < Cv(We) N [V,Wg] = 1. Thus, Clv,w;)(€) = 1. Since
both (€) and [V, W] are p-groups, we conclude [V, Wg] = 1. Thus, as H acts faithfully
on V, we get Wz = 1. Now, since € € E was arbitrary, by (2) we get [E, F(H)] =
But H is solvable implies H is solvable and so, by [3, 6.1.3], E < Cx(F(H)) < F(H).

This is a contradiction, since 1 # E is a p-group and F(H) is a p'-group.

Lemma 1.8 M contains a Sylow p-subgroup of G.

Proof:  Suppose not. Let S € Syl,(M) and T € Syl (G) with S < T, S # T. Then,
since S and T are p-groups, there exists ¢ € Np(S)\ S. Now Z < Z(M) a p-group
implies Z < Z(S). Thus, since ¢ € Nr(S), we have Z* < Z(S) and [Z*%,0,(M)] = 1.
Now M is solvable, so by [3, 6.1.3], we have Cy(F(M)) < F(M). But Oy (M) =1,
by Lemma 1.3 (d), and so we get Z* < Cum(O,(M)) < O,(M) and, consequently,
Z* < Z(0p(M)).

Let V = ((Z*)M). Then V is a normal abelian p-subgroup of M. Moreover,
by Lemma 1.5, O,(M/Cpm(V)) = 1. Thus, M, Z, and V satisfy the hypothesis of
Lemma 1.5 to give My = (29|29 < M) < Cpm(V). But then My < M N M* and
M§ = (Z9|Z% < M*) > M,. Therefore M§ = M, and since 1 # My < M, by Lemma
1.2 (a), we get
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M = Ng(My) = Ng(MZ) = M*

This means z € Ng(M) = M and therefore z € M NT = S. This contradicts the

choice of z.

The following proposition follows quite easily from Thompson’s work on quadratic

pairs for p > 5, but we prefer to give an elementary proof.

Proposition 1.9 Let p > 5 be a prime, T a finite group, V a finite dimensional
GF(p)T-module, P € Syl (T), P< H <T, and Q = {t € T|[V,t,t] = 0}. Suppose

that

(a) H is the unique mazimal subgroup of T containing P,

(b) H is solvable,

(c) QL H.

Then Cy(H) = Cy(T).

Proof Clearly Cv(T) < Cv(H), and so we only need to show Cy(H) < Cy(T).
The proof is by induction on |T| - dimGF(p)V. If Cr(V) # 1, let T = T/Cp(V),
Q = {t € T|[V,1,7] = 0}, and S, H be the images in T of S and H respectively.
Then P € Syl(T), H is solvable, and V is a GF(p)T-module. If H ¥ Cr(V), then
T = HCr(V) by the maximality of H. Hence, Cyv(H) < Cr(V) and we are done.
So we may assume that Cr(V) < H. Then hypothesis (a) and (c) imply that H is
the unique maximal subgroup of T containing S and Q € H. Now by induction we
get Cv(H) = Cy(H) = Cv(T) = Cy(T) and we are done. Therefore we may assume
that C7(V) =1 and V is a faithful T-module.
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Let U = (Cv(H)T). If U = 0 then we get Cyv(H) = 0 < Cv(T') as desired. Hence,
we may assume U # 0. Suppose U # V. Then, since Q C Qu = {t € T|[U,¢,t] = 0},
Qu £ H and so T, P, H, U, and Qu fullfill the assumptions of the theorem. By

induction we conclude that Cy(H) = Cy(T). But then,

Cv(H) £ Cy(H) = Cy(T) < Cv(T) =1

and so Cy(H) = 1, again we are done. So we may assume that

V = (Cv(H)"). (1)

Then by (1) Corer(H) < Cr(V) =1 and hence

Corer(H) =1 (2)

Let X < H be a p-group maximal with respect to X = (X N Q) and Ny (X) £ H
(we can make this choice since Nr(1) £ H). Since X is a p-group there exists h € H
with X < P* Now, since V is a p-group, by [3, 5.3.6] all elements of Q are p-
elements. Therefore, since P* € Syl,(T'), each element of Q lies in a conjugate of
P*. Suppose (P* N Q) A T. Then, since (P*NQ) < H, (P*N Q) < Corer(H) =1
by (2). But then, since the set Q is T-invariant, ((P*)T N Q) = 1. Thus, we get
Q@ C ((P*)T N Q) = 1, a contradiction to assumption (c). Therefore (P* N Q) 4 T.
Now we have P < Nr({(P* N Q))*™" # T and so by (a) Nr({P* N Q)) < H. Hence,
X # (PN Q).

Suppose Npr(X)NQ C X. Then, since X is a group and X NQ C Npn(X)NQ,

we have
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(Nen(X)NQ) < X =(XNQ) < (Npr(X)N Q)

and, hence X = (Npi(X)NQ). Now, since Q is a T-invariant set, we have Npa(Npr(X)) <
Npr(X) and so Npr(X) = Npa(Npr(X)). But then P* is a p-group and Npr(X) # 1
implies P = Npn(X). Thus, we get X = (Npn(X)NQ) = (P*NQ), a contradiction.
Therefore Npa(X)NQ € X.

Let a € Npn(X)NQ\ X, R = X(a), and choose K < Nr(X) minimal such that
K £ H and R < K. Then clearly

K N H is the unique maximal subgroup of K containing R (3)

Suppose a € O,(K). Then, since K < Np(X) and X is a p-group, we have
X < Oy(K) and so R = X(a) < Op(K). Now (3) implies O,(K) < H or K = O,(K).
In the first case put Y = (O,(K) N Q) and in the second put Y = (KK N H N Q).
Then in both cases X < R < Y and Y is a p-subgroup of H. Moreover, we claim
K < Nr(Y) in both cases. In the first case its clear, since O,(K) < K. In the second,
K is a p-group with KN H < K. Thus R< KNH < Nig(KN H) < K and so
Nk(K N H) = K, by (3). Hence, again K < Nr(Y). Therefore, in either case, we

get a contradiction to the maximal choice of X. Hence, a g O,(K).

Now by Baer’s Theorem [3, 3.8.2] there exist conjugates z, y of @ in A such that
D = (z,y) is not a p-group. Since z and y are p-elements, there exists a composition
factor W for D on V such that [W,D] # 0. Let D = D/Cp(W). If [W,z] = 0,
then D = () is a p-group and acts faithfully and irreducibly on D. Hence, by [3, ],
D =1 and we get [W, D] = [W,y] = 0, a contradiction. Therefore [W, z] # 0 # [W, y]

and D = (7,7). Moreover, T and § are p-elements with [W,z,7] = W,7,9] = 0.
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Since [3, 3.81] holds for the field GF(p) as well as its closure, by [3, 3.81] there exists
E = E/Cp(W) < D with 7 € E and E/Cp(W) = SLy(p). Now z is conjugate to
a in K and so there exists k € K with a = z*. Hence a € E*. Moreover E¥ £ H,
otherwise E¥ < H would imply E* is solvable and therefore E would be solvable.
But then we get E = SL,(p) is solvable, a contradiction as p > 5. Now we have

R< XE* < K and XE* £ H, and so K = XE* by (3).

Suppose that K = T. Then X < T and so X =1 by (2). Thus, T = A" = E*.

Alsoas X =1 and K =T, from (3) we conclude that

H is the unique maximal subgroup of T' containing a (4)

Let N = N/Cp(W) = Z(E). Thenl # N < Eandsol # N 9 E. Thus
1# N* QE*=T. Now a € N¥(a) < T and so N*(a) < H or T = N*¥{a), by (4). If
N*{(a) < H then by (2) we get N¥ < Corer(H) = 1, a contradiction. On the other

hand, if T = N*{a) then a € P* implies T = N*P" and therefore E¥ = N*P*. Thus

E* _ Nkph Ph

NE S TNE S NEA PR 1s a p-group.

and consequently E/N and E/N are p-groups. But then, since N = Z(E), E/Z(N)

is a p-group and therefore E = SL;(p) is nilpotent, a contradiction.

Therefore K # T. Let P, € Syl,(K N H) with R < P, and P, € Syl,(K) with
P, < P,. If P, £ H, then K = P, by the minimal choice of K. But then K is a p-group
and a € O,(K), a contradiction. Thus P, < H and P, = P,. Suppose KNQ C KNH.
Then z,y € KNQ implies z, y € KN H and therefore E < D = (z,y) < KN H. But
then we get £ < H, a contradiction. Hence KN Q € K N H. It follows that K, P,

KNH, KNQ, and V fullfill the assumptions of the theorem. By induction we have
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Cv(K N H) < Cy(K). But then Cy(H) < Cv(K N H) < Cy(K) and T = (H.K)

implies Cy(H) < Cy(T) and the lemma is proved.

Recall, in Lemma 1.8 we found S € Syl,(G) with § < M. Next we show that

there is another subgroup of G containing S.

Lemma 1.10 There exists H< G, H # G, with S < H and H £ M.

Proof By Lemma 1.4 (c) we can choose a proper subgroup H of G with Q,(Z(M)) <
H, H £ M and, in this order,

(1) |H N M|, maximal
(2) |H|p, minimal

(3) |H| minimal

Since Q1(Z(M)) is a p-group and ©,(Z(M)) < HNM there exists T € Syl ,(HNM)
with ©,(Z(M)) < T. If T € Syl (M), then T = S™ for some m € M. And so
§=T™"" < H™' and we are done. Therefore it is enough to show that T € Syl (M).
Suppose T ¢ Syl,(M). Then we claim T € Syl,(H). For if Ng(T) < M, then
T < Nu(T) < HN M. Hence T € Syl,(Ny(T)) as T € Syl,(H N M). But then
T € Syl,(H). On the other hand, if Ng(T) £ M, then, Ng(T) £ M, Q,(Z(M)) <
Ng(T), and Ng(T') # G. Moreover, since T ¢ Syl (M), we have

|M 0 Ne(T)l, = |Nm(T)|, > |T| = |H N M|,
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a contradiction to the choice of H. Thus in any case T € Syl,(H). Clearly (1), (2),

and (3) imply

H N M is the unique maximal subgroup of H containing T

and so, by Lemma 1.4 (b), Z < @ (Z(M)) < U (Z(0p(Q))) £ T, where Q =

Corey(H N M), and V = (ZH) is a elementary abelian p-subgroup of T.

Suppose [J(T),V] # 1. Then choose A € A(T) such that [V, A] # 1 and |[VN A|is
maximal. If V £ Ng(A), then by Thompson’s Replacement Theorem [3, 8.25], there
exists A* € A(T) with VN A <V N A* and A* < Ng(A). Then [V, A*] = 1 by the
choice of A and therefore V A* is an abelian subgroup of T' containing A*. Hence,
we have A* = VA* as A* € A(T). But then V < A* < Ng(A), a contradiction.
Therefore V < Ng(A). Let Qo = {h € H|[V,h,h] = 1}. Then [V, A, A] < [4,A] =1
and A < Qo. Now Qo € H N M, otherwise, Qo C M and [Qo,Z] =1 as Z < Z(M).
But, since Qo is a H-invariant set, we get [Qo, V] = 1 and [A, V] = 1, a contradiction
to the choice of A. Thus Qo € H N M. Applying Proposition 1.9 to H, T, HN M,
V, and Qo, we get Cy(H N M) = Cy(H). But then

Z<Cy(HNM)=Cy(H)

implies H centralizes Z and therefore H < M by Lemma 1.2 (b). This is a contra-

diction to the choice of H. Therefore we have shown [J(T),V] = 1.

Now T € Syl,(H) implies Cr(V) € Syl (Cy(V)) and so by the Frattini Argument
we have

H = Ny(Cr(V))Cu(V) (1)
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Since C7(V) is a p-group and [J(T),V] = 1, we have J(T) char < Cr(V) and con-
sequently Ng(Cr(V)) < Nu(J(T)). Then H = Ny(J(T))Cu(V), by (1), and so
Ny(J(T)) € M as H £ M and Cyg(V) < M. Thus, N = Ng(J(T)) £ M,
N(Z(M)) < T < Nand,  MON|, > |[Nu(T)|, > |T| = |[HN M|,. This is a

contradiction to our choice of H and this proves the lemma.

In the following proposition we summarize the main results of this section.

Proposition 1.11 Let S € Syl (M). Then S € Syl (G) and there exists H < G

such that

(a) HZ M and S € Syl (H),

(b) HN M is the unique mazimal subgroup of H containing S.



Chapter 2

The Amalgam Method

In this section we continue the proof of Theorem 1.1 by applying the Amalgam
Method. This method uncovers information about a given group by studying its

action on the coset graph of some of its subgroups.

Let M and H be as in Proposition 1.11 and I' = {Mz, Hy|z,y € G}. Then we
can define an adjacency relationship on I', namely for a, 8 € I', 8 is adjacent to «
ifa# B and anN B # ¢. Then G acts on I' by right multiplication and this action
preserves adjacency in I'. Let A(a) = {8 € I'|8 is adjacent to a}. Since G = (M, H),
it follows that the graph I' is connected. Therefore given any two points a, 8 € T,
we can find a path from a to 3, by starting with a and jumping from one point of T’
to another adjacent point of I' until we reach 3. We can speak of the length of such
a path as the number of jumps taken to make it. By gathering all such paths from
a to B, we can choose one with the fewest jumps and let d(a,3) = the number of

jumps in this path. Define

Go ={9€Gle? =a}
Qo = Op(Ga)

GS,I) = {g € Glﬂg = ,3 for all B with d(a,ﬂ) < 1}

18
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Ua = U(Z(Ga))

Zo = (Up|B € A(e))

It turns out that Z,, Gf,l), and U, are all normal subgroups of G, and G, is
conjugate to M or H for all a € I'. Moreover, since cosets of a subgroup are either
the same or disjoint, I' has an alternating adjacency structure. That is, if a € A(3),
then either G, ~ M and Gg~ Hor G, ~ Hand Gg ~ M. Let a € I" and 3 € A(a).
By Proposition 1.11 there exists S € Syl,(G) with S < M N H. 1t follows from the
definition of adjacency that there exists g € G with S9 < G,NG3. And so all normal

p-subgroups of G, are in G and vice-versa.

From here on let o € T' with G, ~ H. Then, for any 3 € A(a), by Proposition
1.11, G4 N Gy is the unique maximal subgroup of G, containing S¢ for some S9 €
Syl,(G). Also, since Go ~ H, Gg ~ M and so Us contains a conjugate of Z. In

particular, Z, # 1. Hence since
ﬂG,\S ﬂ G;anI=CoreG(M)=l
xer Ga~M z€G

there exists v € T with Z, £ G{". Let b = min{d(a,7)|Zs £ G"}. Then if g,
n €I with G, ~ H and Z, £ G'V, we have b < d(p,m). Now choose o' € T with
d(e,0’) =band Z, £ GV

Lemma 2.1 Let o and o be choosen as above. Then

(a) For any 6 € T', Gs acts transitively on A(6).
(b) If B, 6 € T with B € A(4), then ng) = Coreg,(Gs N Gp).

(c) Z is a elementary p-abelian subgroup of G, .
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(d) Cs.(Za) = G&-
(e) If A<, Z,, then Cg(A) = Cs(Za).
(f) If B, § € T with B € A(S), then G = (Gs,Gp).
Proof For (a) let 8, v € A(d) and, without loss of generality, let § = Mz, 3 = Hy,

and v = Hz. Then, by the definition of adjacency, § N 3 # ¢ and § N v # 6. Hence,

there exists elements g, and g, of G with

g = mz=hy
and
g2 = MmaT = hgz

Put g = (m] 'm;)®. Then g € M* = G5 and

B =(Hy)g = (Hhy)g
= (Hm))m{'myz
= ng:r

= Hh2z

Therefore 49 = v and we are done.

For (b), for any 8 € A(é) we have

Coreg,(GsNGs) = [ (GsNGp)Y* = ((GsNGE) = () (GsN Gas)

9€Gs 9€Gs 9g€Gs
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where the fourth equality holds by (a).

For (c), suppose Z, £ G. Let (a,a+ 1,0+ 2,a + 3,...,a —1,a’) be a path
from a to a’. Then, Z, £ G’f:,)_l as Gil,)_l < G,. And so we get, dla,a’ — 1) <
d(a,a') = b, a contradiction to the minimality of b. Therefore Z, < G,/. Next we
claim that Z, is elementary p-abelian. Since Z, = (Us|B8 € A(a)) and the Us’s are
elementary p-abelian, its enough to show that Z, is abelian. Let 8 € A(a). Then
Us < G, and, by Proposition 1.11, G, N Gg is a maximal subgroup of G,. Thus,
by Lemma 1.4 (b), Us < 24(Z(0,(Q))), where Q = Coreg,(G, N Gg). But by (b),
G = Coreg,(G.NGp) and so we get Ug < Z( 5,1)). But since 8 € A(a) was chosen

arbitrarily, we have Z, < Z(GE,I)) is abelian.

For (d), from the proof of (c) we have Z, < Z(GY") and so G < Cg.(Z,). On
the other hand, for any 8 € A(a), we have Gg ~ M. Hence, by Lemma 1.2 (b), we
have Cg(Ug) = Gs. Therefore, Us < Z, implies Cg(Z,) < Cg(Us) = Gs. Thus,

since B € A(a) was chosen arbitrarily, Cg,_(Z,) < G and (d) holds.

For (e), its clear that C5(Z,) < Cg(A). Since A <, Z,, there exists # € A(a)
with Us £ A and Z, = AUs. Moreover, since Gg ~ M, Us contains a conjugate of

Z. Thus,

_1Zal _ 1UsA|l _ |Ug| P’
p= 1ol = Lodl >
|A| |Al  [UsNA| ~ [UsN Al

Hence, |Us N A| > p and so Us N A # 1. Therefore, by Lemma 1.2 (b), we get
Cc(A) < Ce(UsgnN A) = Ce(Up) and

Cc(A) < Co(UsA) = Cg(Za)

and we have (e).



22

Finally, for (f), without loss of generality, let § = Mz and 3 = Hy for some «,
y € G. Then B € A(J) implies BNJ # ¢. Thus, there exists g = mz = hy € MzNHy.
Now G5 = M*® and G = HY. Moreover, since M is a maximal subgroup of G, M~ is
also a maximal subgroup of G with M* < (M*, HY). Therefore either M* = (M*, HY)
or G = (M*,HY). Suppose M* = (M* , HY). Then HY < M*. But mz = hy implies
y~'mz = hY and so there exists mo € M such that y~'mz = m3. By tranposing this
equation we get m~'y = my'z € My N Mz. Thus, Mz = My and so yr~! € M.
But then HY < M? implies H¥*~' < M. Thus, since yz~! € M, we get H< M, a
contradiction to the choice of H. Therefore G = (M*, HY) = (G5, Gj), which proves

the lemma.

It should be noted that Lemma 2.1 parts (c), (d), and (e) hold for any u, n € T
with G, ~ H, Z, £ G, and d(y,n) = b.

At this point the proof splits into the three cases G, ~ M or H and b > 1 or

G, ~ M and b = 1. In each case we get a contradiction.

Case 1 G, ~ H and b> 1.

Lemma 2.2 (a) If B € A(a), then Z, = (US?).
(b) Z, < Ga.
(c) Op(Ga/Ciu(Za)) = 1.
(d) [Za, Zy]) # 1.

(¢) Zo < Qayk for all k€ {1,2,...,b—1}.

Proof For (a), since Us < Z, and Z, < G,, we have (UﬁG°) < Z,. On the other

hand, let ¥ € A(a). Then by (a) there exists g € G, such that y = 39. But then
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U, = Ugs = Uj < (US®). Therefore Z, = (US?).

For (b), suppose Z_: £ Go. Then Z» £ GS_,)_I and as above we have d(a’,a+1) <

d(a',a) = b, a contradiction to the minimality of b.

For (c) let B € A(a). Then there exists P € Syl,(Ga) N Syl,(Gs) and, by (a),
Zy = (UﬁG°). Hence, since Ug < Z(P), Lemma 1.2 (b) implies O,(Ga/C:,.(Za)) = 1
and we have shown (c).

For (d), if [Za, Z,] = 1 then, by Lemma 2.1 (d), Zs < Cg_,(Z,/) = G'"). This is

a contradiction to the choice of (a,a’).

Finally for (e) we use induction on k. If k = 0, then the result follows as Z,
is a normal p-subgroup of G,. Now suppose (e) holds for k with ¥ < b — 1. Then
k+1<b—-1landsoa+(k+1)<a+(b—1). Hence, by the minimality of b and

induction, we get Z, < G’Sl(kﬂ) < Gotk and Z, < Qo4k- Therefore,

(1) (1)
Z°' < Ga+(k+1) n Q0+k < Op(Ga+(k+1)) < Qa+(k+1)

and we are done.

Now since [Z,,Z,/] # 1, there exists § € A(a’) with [Z,,Us] # 1. Let P €
Syl,(G,) N Syl,(Gs), and Q = {g € G./|[Z,',9,9] = 1}. Then, by Lemma 2.1 (a)
and Proposition 1.11, Z/ is a GF(p)G,-module and G, NG, is the unique maximal
subgroup of G+ containing P with G,» N G solvable. Since, by (a) Z,: < G,, and

Z, 4 G, we have
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[Za'a ch Za] < [ZozaZa] =1

and so Z, < Q. Moreover, @ € G, N Gg, otherwise Z, < Q@ < G, NGy and
Uz < Z(Gp) would imply [Z,,Us] = 1, a contradiction to the choice of 3. Thus,
Z,y, Gy, P, Gy N Gp and Q satisfy the hypothesis to Lemma 1.9 which yields,
Cz,(G,) = Cz (G, N Gp). But then G < Cg(Ug) = Gg, as Ug < Z(Gg) N Z,.
Thus, we get G+ < Gs. But, since 8 € A(c’), by Lemma 2.1 (f) we get G =

(M,H) = (G,,Gg) = Gg, a contradiction to the maximality of M.

Case2 G~ M and b> 1.

Let G = G, /Q, and Q = Q/Q, = F(G,/). Then O,(G,) =1and Q is a

p -group.

Lemma 2.3 (a) Z, # 1

{b) [Q7 ZO!] ﬁ CGQl(Za'—l)Qa'
(c) There exists A <, Z, with [Ca(A), Za) £ Co 1 (Za_1)

(d) Let A be as in (c). Then there exists T € [Ca(Z),Za] with A £ C(Z2,_))

(e) Let (& —1)* =a’ +1. Then A< Gy NG,y

Proof If Z, =1, then Z, < Qs < GS,). Hence we get, Z, < GS,), a contradiction
to the choice of (a,a’). Therefore Z, # 1 and this shows (a). For (b), again we

proceed by contradiction. Suppose [Q, Z,] < Cg ,(Z,_,)@,’- Then,
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[@.2.]<C,(Zy)= () GuNG,

vEA(a'-1)

And so by Lemma 2.2 (e), we have [@,Z—a, Zo)| S Qu_oNQ =1 as Q is a p’-group
and @,/ _, is a p-group.

Therefore [Q, Za, Zo) = 1 and so by the coprime action of the p-group Z, on the p'-

group Q, we have [Q, Z,] = (@, Za, Za) = 1. But then by [3, 6.1.3], Z, < C@(a) <
Q. Since Z, is a p-group and Q is a p-group we get Z, = 1, a contradiction to (a).

For (c), by the coprime action of Z, on Q, we have Q = (Ca(Z)lz <, Z,). Now
by applying Lemma 1.6 to Z, and Q we get

[Q.Z.] = ([C5(A), Za]|A <, Za). (1)

Now by (b), [@,Z.] &£ m and so by (1) implies there exists A <, Z, with
(Ca(A),Za) £ Ca_,(Z,_,).

Suppose (d) does not hold and let K = K/Q_ = [Cﬁ(Z),Z]. Then A < Cg(Zy)
where Zo = (ZX_ ). Now A <, Z, implies A <, Z,. Therefore, by Lemma 2.1 (b),
Cs(Zs) = Cg(A) and consequently Z, < Cg(Zp). Now by the coprime action of the

p-group Z, on the p'-group Ca(Z) we get

and so,

K S [K3 ZO]QQ' S CGOI(ZO)Q(X’ S CGOI(Zo'—l)Qa"

Thus, by taking images in G/, we get [Ca(A),Za) < C ,(Z,,

. (Z4_1), a contradiction to
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(c)-

Finally, for (e), Lemma 2.3 (e) implies A < Z, < Q,_; < G,_,- Hence, since

Q. < Gy_y, weget AQ, < G, _,. Now T € [Ca(Z),Za] < Ca(Z) implies z €
Ng(AQ,). Therefore

AQy = (AQy)" S G, =Garoyy: = Gy

and A<G,_ NG, -

Lemma 2.4 Let § € I'. Define Vs = (Zx|A € A(d)). Then

(a) Voy1 £ Gy and Vy < Gy
(b) Var1 QGoy1 and V,: A G
(c) Vay1 and V. are elementary abelian p-groups.

(d) [va" Va+1, Va+1] = 1

Proof For (a), suppose V,41 £ G,. Then there exists v € A(a + 1) with Z, £

G,. Then, since G'f:,)_ <G, Z, &£ GS,)_ Hence, G, ~ H, Z, £ GS,)_I, and

1 1
d(y,a' —1) < d(a,a’) = b. This contradicts the minimality of . A similar argument

shows V. < Goq1

For (b), let g € Ga41 and ¥ € A(a+1). Then, since the action of G on the graph

I' preserves adjacency, we have 79 € A((a+ 1)) = A(a + 1) and

Z3 = Zyo < Vaop



27

Thus, V,41 < Go41 and a similar argument shows V» I G.

For (c), since V4,41 and V: are generated by elementary abelian p-groups, it is
enough to show that V,,, and V,: are abelian. Let v, d € A(a+1). Then v, § # o,
since G, and Gj are both conjugate to H. Moreover, b > 1, G ~ M, and the
alternating adjacency structure of I' imply b > 3. Hence, since d(v,4) =2 < 3 < b,
by the minimality of b we have Z., < Ggl). But Ggl) = Cq(Zs), by Lemma 2.1 (d) and
so [Z,,Zs] = 1 and V,4, is abelian. A similar argument shows V. is abelian. Finally,
(a), (b), and (c) imply

Vars Vas1, Vari] S [V, Vo] =11

and the lemma is proved.

Now, since A < Z, < V,4; and Z, < V,/, by Lemma 2.3 (d) and Lemma
2.4 (d), we have [Z,/,,,A,A] = 1 and [Z,,,,A] # 1. Thus, there v € A(a’ + 1)
with [4,U,] # 1. Now as before, letting P € Syl,(G,) N SylL,(G,,,) and Q = {g €
Gy 1llZy 4159, 9] = 1}, we see that Gv,,, Z,,, P, Q, and G, NG, ,, satisfy the

hypothesis to Proposition 1.9. Just as before we get G,,, < G,, a contradiction.

O

Case 3 b=1

Since b =1 and Z, d G,, we have, @ < G, and Qus Zas Za) £ [ZayZa) = 1. Let
L = (Z,,G"'). Then L is not a p-group; otherwise, since L < G,,weget Z, <L <
Qs < G’S,), a contradiction to the choice of (a,a’). Since L is not a p-group OP(L) #
1. Thus, since G, is solvable and O,/(G,+) = 1, we have [O?(L), Q,'] # 1. Therefore,
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by [3, 5.3.2], there exists a composition factor V for L on @, with [V,07(L)] # 1.
Now &(V') char < V implies (V') is L-invariant. Since ®(V') is a proper subgroup
of V, we have ®(V') = 1, by the irreducibility of L on V. Thus, since V is a p-group,
by [3, 3.1.3], V is elementary p-abelian. Let L = L/C(V). Then V is a faithful and
irreducible GF(p)L-module and so, by [3, 5.1.3], O,(L) = 1. Since [V, L] # 1, there
exists g € G with [V, 2] # 1. Thus, Z3 # 1 and [V, Z3,Z3] = 1. This means L
is not p-stable, and so, by [3, 3.8.3], L involves SL;(p). Since L < G, and G is
solvable, L and L are solvable. But SLy(p) is not solvable for p > 5. Thus since L

involves SLy(p) we have a contradicition and therefore we have shown Theorem 1.1.

O



Chapter 3

Maximal subgroups of locally finite
simple groups

In this chapter we will show that Theorem 1.1 extends to locally finite simple groups.
This result is Theorem 3.1 and its proof relies indirectly on the classification of finite

simple groups.

Theorem 3.1 Let G be a nonfinitary locally finite simple group, p a prime with p # q
if G is of q-type, and Z a subgroup of G of type (p,p). Then there exist nontrivial
elements z, z € Z with Cg(z) # Cq(2'). In particular, if M is a mazimal subgroup
of G then Op(Z(M)) is locally cyclic.

Def A group G is called locally finite if |(H)| < oo for any finite subset H C G.

Def G is a LFS-group if G is locally finite and simple. A set of pairs K = {(H;, N;)|i €

I} is called a Kegel cover for G if,
(1) H; <G and |H;| < oo for all 7 € I.
(2) N; is a maximal normal subgroup of H; for all 7 € I.

(3) For each finite subgroup H < G, there exists 1 € [ with H < H; and HNN; = 1.
29
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The groups H;/N; are called the factors of the Kegel cover. It has been shown in
[5, 4.3] that every LFS-group has a Kegel cover. Next we define some terminology
that will be useful for us. Let G be a LFS-group and K = {(H;, N;)|i € I} be a Kegel

cover for G. Also let V be a vector space over a field F and 2 be a nonempty set.

Def Let X be a finite subgroup of G. Then K(X) = {(H;, N;) € K|X < H; and XN

N; =1}

Def G is called finitary if there exists a field F' and a faithful FG-module V' such

that dimp[V, g] < oo for all g € G.

Def G is of alternating type if it possesses a Kegel cover all of whose factors are

isomorphic to alternating groups.

Def If q is a prime, G is of ¢-type if G is non-finitary and every Kegel cover for
G has a factor which is isomorphic to a classical group defined over a field of

characteristic q.

Def Suppose z is acting on V, then

degy (z) = dimp[V, z]

and

pdegy(z) = min{degy (Az)|0 # A € F}.

Let V be a vector space over a field F and Q be a nonempty set.

Def Suppose z is acting on 2. Then Suppg(z) is the set of elements of ) that are

not fixed by z and
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degg(z) = pdegg(z) = |SUPPQ($)|-

Def Let € T and T = PSLp(V) or T = Alt(2) and y be the image of z under this

isomorphism. Then

degr(x) = degy(y) or degr(z) = degq(y)

respectively.
In (7, 3.3] U.Meierfrankenfeld proved:
Theorem 3.2 Let T be a LFS-group. Then one of the following must hold:

(a) T is finitary
(b) T is of alternating type
or

(c) There ezists a prime q and a Kegel cover {(H;, N;)|: € I} for T, such that T
is of q-type, H;/O,(H;) is the central product of perfect central extensions of
classical groups defined over a field of characteristic q, and H;|N; is isomorphic

to a projective special linear group for all 1 € I.

Proof of Theorem 3.1 First suppose Theorem 3.1 holds and let M be a maximal
subgroup of G. Indeed, if O,(Z(M)) were not locally cyclic for such a prime p,

then, since G is locally finite, we can find a finite noncyclic abelian p-subgroup H of
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0,(Z(M)). Now inside of H, by the Classification of Finite Abelian Groups, we can
find a subgroup K of type (p,p). But then, sincé G is simple and M is maximal, we
get M =Cg(k) = Cg(k') for all nontrivial elements k k" € K, a contradiction.
Suppose that Theorem 3.1 does not hold. Then Cg(z) = Cg(z') for all nontrivial
elements z, z € Z. Although G is a locally finite group, Lemma 1.2 (c) still holds
for Z and will be used throughout the proof of Theorem 3.1. Since G is a nonfinitary
LFS-group the proof of Theorem 3.1 splits naturally into the two cases (b) and (c)

referred to in the statement of Theorem 3.2.

3.1 Locally finite simple groups of g-type

In this section we consider the case of Theorem 3.1 in which G is of ¢g-type for some

prime q # p.

Case 1 There exists a prime q # p and a Kegel cover K={(H;, N;)|i € I} for G, such
that G is of g-type, H;/O,(H;) is the central product of perfect central ezstensions of
classical groups defined over fields in characteristic q, and H;/N; is isomorphic to a

projective special linear group for all i € I.

For any (H;, N;) € K, let H;/N; = PSL, (¢, Vi), H: = H;/O,(H,), H; = ({L,|j €
J}) with [L;, L] = 1forall j # kand ; = L;/O,(H;) are quasi simple for all 7 € J.

Lemma 3.3 Let (H;,N;) € K and H; = H;/N;. Then

(a) If T < H;, then H; =TN; or T < N;. In particular, O,(H;) < N,.

(b) There exists j € J such that L; £ N;.
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(c) If Ly £ N, then Z(L;) = N;N L; and Hi/N; = L;/Z(L;)

Proof For (a), T 4 H; implies N; < T'N; 4 H;. And so by the maximality of N,
we get N; = N;T or N;T = H;. On one hand, N; = N;T implies T < N;. And on the
other hand, H; = N;T. In particular, O,(H;) < H;, and if H; = O,(H;)N;, then

PSLa,(¢") = H,/N; = Og(H:)Ni/N; 2 O,(H:)/Oy(H:) N N..

Hence we get, PSL,,(¢") is a g-group, a contradiction. Therefore O,(H;) < N;.

Next we show (b) by contradiction. Suppose L; < N; for all j € J. Then L; < N;

for all ; € J and

H;=({L;lj e J}) < N.

Hence, H; = N,. Since, by (a), O4(H;) £ N;, we get H; = N;, a contradiction to the
maximality of ;.

For (c), Z(L;) char < L; = K,; < H; implies Z(L;) < H. Let Z(L;) = U/O,(H;).
Then, since Z(L;) is a abelian normal subgroup of H;, we have U < H; and U’ <

O,(H;) < N;. Thus, by (a), we have U < N; or H; = N;U. Now H; = N,U implies

PSL,,(¢") = H;/N; = N;U/N; 2 U/N; n U.

But U/N; N U is abelian as U' < N; N U. Hence, we get PSL, (¢") is abelian,

a contradiction. Hence, U < N; N L; and Z(L_J) =U < N.n L;. On the other

hand, N; Q H; implies N; N L; < L; and N;NL; < L_J Thus, since L_, is quasi-

simple, either N;NL; < Z(L;) or L; = (N;N L;)Z(L;). Since Z(L;) < N,nL;,
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L;=(N.n L;)Z(L;) implies L; = N;N Lj and L; < N;, a contradiction to the choice
of L;. Therefore, N;NL; < Z(L;).

Finally, since L; € N; and L; < H;, (a) implies H; = N;L;. Thus,

H;/N; = N;L;/N; = L;/N.nL; = L;/N;NL; = L;/Z(L;)

and we have (c).

Lemma 3.4 Let q be a prime, k > 0 an integer, and V be a n-dimensional vector
space over GF(g¥). Also let 0 # W <V be a subspace of V, and Qw = CG’L.,(V)(W)O
CGL,.(V)(V/W)' Then,

(a) Qw is a q-subgroup of SL.(V').
) CoL.v)(@w) = QwZ(GLi(V)).

Proof For (a) let {w;}2, be a basis for W. Extend this basis to B = {w;}/2, U

{vi}i,n41, @ basis for V. Let a € Qw. Then the matrix Mp(a) for a in the basis B is

M@= (4 §)

where I is the m x m identity matrix, 0 is the m x (n — m) zero matrix, and A is

some (n — m) x m matrix. Since the field GF(g*) has characteristic g, we have

A
- qgA I

I
~~
o~
~ o
N—
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where I, denotes the n x n identity matrix. Hence every element of Qw is a g-element
and therefore Qw is a g-group. Also, since Mp(a) is a lower triangular matrix with

1’s along the main diagonal, we have det(Mp(a)) = 1 and Qw < SL,.(V).

Next we claim that Qw is abelian. Let a, b € Qw. Then

(4 1)(57)

ab

~ O

(415 )
- b(B+A (;)

Hence, Qw is abelian and Qw < CGL,.(V)(QW)' But then we get Qw Z(GL,(V)) <
CGL,.(V)(QW)' On the other hand, let g € CGL,.(V)(QW) with

MB(9)=(£F{ (Sj)

where R, S, T, and U are m x m, m X n —m, n —m X m, and n —m X n — m matrices

')

SA=0and UA = AR (1)

over GF(g*) respectively. Let a € Qw with

Mp(a) = ( i

Then ga = ag implies

Now, since (1) holds for any n — m x m matrix A over GF(g*), let A = (e;;) be
the n — m x m matrix with e;; = 1 and all other entries zero. Then from (1) we

get S(ei;) = 0 and consequently the ith

column of S is zero. By letting ¢ vary we
eventually get all the columns of S are zero and thus S = 0. Again, by (1) applied

to (e;;) we get U(ei;) = (eij)R. Letting 7 and j vary we get u;; = r;; = A for all ¢ and
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w;; = ri; = 0 for all i # j. But this means R=U = Al. Hence,

vst) = (7 7)

(M0
=\ T A

with ¢ € Qw and y € Z(GL.(V)). Thus g € QwZ(GLA(V)) and the lemma is

proven.

Lemma 3.5 Let p # q be primes, k > 0 an integer, and V a n-dimensional vec-
torspace over GF(q*). Suppose P < GL,(V) such that 1 # P/Z(GLn(V)) is a
p-group and |P/Z(GL,(V))| < n, then

(a) There ezists a nontrivial, P-invariant, subspace W < V with [Qw, P] £ Z(GLn(V)).

(b) Let P denote the image of P in PGL,(V). Then there exists a nontrivial,

g-subgroup Q of PSL,(V) on which P acts nontrivially.

Proof Let0# v €V and W = (vF). Then W is a nonzero, P-invariant, subspace
of V. Let |P/Z(GL.(V))| = t < n and {z;}!_, be a transversal of Z(GL,(V))
in P. If z € P then, z = zz; for some 1 < ¢ < t and some 2z € Z(GL,(V)).
Hence, v® = v™ = (Av)™ = A(v™) € ({v™}!_,) for some A € GF(q*). Therefore
W = (v*|l <1 <t) and so W is properly contained in V, as W is spanned by less
than n vectors. Since W is P-invariant, it follows from the definition of Qw that Qw

is P-invariant. Now suppose [Qw, P] < Z(GL,(V)). Let P, € Syl (P) and P, P, be
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the images of P, P, in PGL,(V). Then, since P is a p-group, we get P = P,. Now
[Qw, P) £ Z(GL,(V)) implies [Qw, P, P] = 1 and therefore [Qw, P, Po] = 1. But,
by Lemma 3.4 (a), Qw is a g-group, and so by the coprime action of Pp on Quw we
get [Qw, Po] = 1. Hence, Py < CGL y(Qw)- But, CGL,v)(@w) = QuwZ(GLa(V)).
by Lemma 3.4 (b). Therefore, since Qw is a g-group and Z(GL.(V)) < GL.(V),
we get Py < Z(GLa(V)). But then P = Py = 1 and P < Z((GLn(V)). This is a
contradiction, since P is noncentral. Therefore [Qw, P] £ Z(GL,(V)) and the lemma

is proved.

For (b), let Qw denote the image of Qw in PGL,(V). Then W is P-invariant
implies Qw is P-invariant. Moreover, by Lemma 3.4 (a), Qw is a g-subgroup of
PSL,(V). Finally, by (a), we have [Qw, P] £ Z(GL.(V)). Thus, as Z(GL,(V)) <
GL,(V), we get Qw £ Z(GL,(V)) and [Qw, P] # 1. Therefore P acts nontrivially

on Qw and Qw # 1.

In [7, 3.1] U.Meierfrankenfeld showed

Theorem 3.6 Let T be a nonfinitary LFS-group and T be a Kegel cover for T. Then

if k is a positive integer and 1 # X < T with |X| < oo

To = {(H,N) € K(X)|pdegy/n(z) > k for all 1 # z € X}

is also a Kegel cover for T.

Let (H;, N;) € K(Z). Then, since |Z| = p? < oo, by Theorem 3.6 we may assume

that pdegy, /n,(2) > p*+1forall1 # 2 € Z. Set H=H;, N = N, V = V,, and
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t =t;,. Then

n = dimgr(yV > pdegyn(z) > p’

for any 1 # z € Z and so p* < n. Moreover, by Lemma 3.3 (c), there exists j € J

such that L; £ N. Let L = L;.

Then by Lemma 3.3 (c), we have

IN., I I

N NnL Z(L)
Hence, since ZN N =1, L/N N L contains a copy Z* of Z. It follows from (1) that

1R

2|l =

R

2|

PSL.(q') = - (1)

Z*=ZNnL/NNL.

Now, since L/N N L = PSL,(q") and |Z*| = p? < n, by Lemma 3.5 (b), there
exists a g-group U of L/N N L on which Z* acts nontrivially on U by conjugation.
Let U = Q/NN L. Then Z* acts nontrivially on @/N N L implies ZN N L acts
nontrivially on Q. Let Q be the preimage of Q in L. Then, since both N and L are
normal subgroups of H, we have [N,Q] < N N L and therefore [N,Q]< NN L < Q.

Thus, N normalizes Q and so (ZN N L)N = ZN acts nontrivially on Q. But then Z

acts on Q.

Since Q/ NN L = Q/Z(L) is a g-group, @/Z(L) is nilpotent. Hence, since Q <

L, the latter implies Q is also nilpotent. Let Qo € Squ(a). Then Qo char < Q

implies Z acts on Qo. Moreover, since Qo € Squ(a) and Q/N N L is a g-group, we
have @ = Qo(N N L). Suppose [Z,Qo] = 1. Then, since [N,Q] < NN L, we have
[N.Qo] < NN L and therefore ZN N'L,Qo] < NN L. Thus we get,

(ZNnIL) Q@
NNnL 'NNnL

[ = (Y
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a contradiction. Hence Z acts nontrivially on Qo and therefore Z acts nontrivially
on Qo, where Qo is the preimage of Qo in H. But, since H = H/O,(H), Qo is a
g-group. Thus Z acts nontrivially on a g-group, a contradiction to Lemma 1.2 (c).

This concludes case 1 of Theorem 3.1.

3.2 Locally finite simple groups of alternating type

In this section we consider those LF S-groups which admit a Kegel cover all of whose

factors are alternating groups, the so-called groups of alternating type.
Case 2 G is a LFS-group of alternating type.

Before we begin this case we start by giving a list of some notations used through-
out. Suppose H is a group acting on a set ! with H/N = Alt(X), for some set ¥ and

some normal subgroup N of H. Let t be a positive integer with ¢t < |T|/2.

Def A system of imprimitivity A for H on §Q is a set of proper subsets of Q such
that |D| > 2 for at least one D € A, D* € Aforall D€ A and h € H, and Q

is the disjoint union of the members of A.

Def H acts t-pseudo naturally on 2 with respect to N if H acts transitively on
and if there exists a system of imprimitivity A for H on Q such that Cy(A) = N

and the action of H on A is isomorphic to the action of H on subsets of size ¢

of .

Def H acts essentially on Q with respect to N if Cy(R2) < N.
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Lemma 3.7 Let H be a finite group and N Q H with H/N perfect. Then there ezists

a unique subnormal subgroup R which is minimal with respect to H = RN.

Proof The proof is by induction on |H|. We first remark that if such an R indeed
exists then R < H. For R" would be a subnormal supplement to N in H for each
h € H. Hence, by uniqueness of R, we have R < R" for each h € H, and therefore
R<JH.

For the proof, suppose R, and R, are two minimal subnormal supplements to N
in H. Let K; be proper normal subgroups of H with R; I K for j = 1,2. Then
H = K\N = KN and, since H/N is perfect, H = H'N. Hence, since K; < H for

7 =1,2, we get

H=HN = [K,N, K,N] = [K;, K3]N (1)

Let j € {1,2}. Then N < H and (1) implies NN[K}, R3] < [K), K2) and NNK; < K.

We also have

[Ky,Ka] [KiKo]N _ H

(K1, K;JNn N N N
and
K; ~ K;N H
K,nN N N’

Thus, both [Ky, K3]/[K1, Ko] N N and K,;/N N K; are perfect. Since [K;, K;) and
K; are proper subgroups of H, by induction on the |H|, there exists unique minimal
subnormal supplements U and V for [Ky, K;) N N and K; N N in [K}, K3) and K

respectively. Hence we have
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(K., K2] = U([K1, K2) N N) and K; = V(K; 0 N) (2)

Also, since [Ki, R3] < K; and R; < Kj, (1) and (2) together imply

K; = K;nH=K;n RN = (K; 0 N)R,

and

K; = K;nH = K; N[Ky, K3)N = (K; N N)[K), K2] = (K; " N)U.

Thus, since R; 49 K and U 44 [k, K] 9 K, by the uniqueness of V' we get,

V<Rjand VU (3)

But H = K;N = (K;NN)VN =VN and V 44 K; J H. Hence, by the minimality
of R;, we get R; =V < U. Now (1) and (2) imply

H = [K, K3]N = U([K1, K2]JN N)N = UN. (4)

Thus, as before, N < H implies NN U < U and U/N N U is perfect. Thus, since
U < H, by induction there exists a unique minimal subnormal supplement R for
UNNinU. Since R; <U and H = R;N, we have U = (U N N)R;, and therefore R;
is a supplement for UN N in U. Moreover, R; I< H and R; < U implies R; I4 U.

Thus R < R; by the uniqueness of R. Now R I U J<4 H and by (4),

H=UN=RUNN)N = RN.

Therefore by the minimality of R;, we get R; = R. Since j € {1,2} was chosen
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arbitrarily, we have R, = R = R, and the lemma is proven.

Lemma 3.8 Let H be a finite group acting on a set Q8 and N a proper normal
subgroup of H such that H/N is perfect and simple. If R is the unique subnormal

supplement to N in H, then an orbit O for H on ( is essential with respect to N if
and only if O € Fiz(R).

Proof First suppose O is an essential orbit for H on . Then Cy(O) < N. If
O C Fix(R), then R < Cy(0O) < N. Hence we get, R < N and H = RN = N,
a contradiction to the choice of N. Therefore O € Fix(R). Conversely, suppose
O ¢ Fix(R) for some orbit of H on Q. Then, since O is H-invariant, Cy(O) < H.
Hence, since H/N is simple, we have Cy(O) < Nor H = Cy(O)N. If H = Cy(O)N
then Cy(Q) would be a subnormal supplement to N in H. Thus, by the uniqueness
of R, we get R < Cy(O) and O C Fix(R), a contradiction. Therefore Cy(O) < N

and O is essential.

Lemma 3.9 Let T be a LFS-group with Kegel cover K. If K is the union of finitely
many subsets, K = |J_, K, then at least one of these subsets K; is a Kegel cover for

T.

Proof Suppose the lemma is false. Then none of the A; are Kegel covers for T.
Thus, for each 1 < ¢ < n there exists a finite subgroup L; of T such that for every
memeber (H, N) of K; either L; £ Hor L, < Hand L;,NN # 1. Let L = (L;|]1 <

t < n). Then since T is locally finite and L is finitely generated, |L| < oo. Therefore
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there exists (H,N) € K, with L < H and LN N = 1. But, since (H,N) € X =
UL, Ki, there exists 1 <1< n with (H,N) € K;. Hence, we get L; < L < H and

L;N N <LNN =1, a contradiction to the choice of L;.

Lemma 3.10 Let p be a prime, n an integer with n > 4p, and Q a set of order n. If

o, 0 € Alt() = A, such that

(a) pdegq(®), pdegg(0) > 4p

and
(b) (#,8) is of type (p,p)
Then Ca,(¢) # Ca,(0).

Proof Suppose the lemma is false. Then Cy4,(¢) = C4,(0). Let

¢ = d1¢2...¢, and 0 = 0,0,.....6,

be the decompositions of ¢ and 6 into the product of disjoint p-cycles where

&k = (@k1,ar2,...,0k) and 0; = (b, biz, ..., byp)

forall1 <k <rand1<!<s. Weclaim that Supp(¢) = Supp(d). First, suppose
Supp(#) N Supp(f) = ¢. Then if p is odd, let 7 € S, be the permutation exchanging
the orbits ¢; and ¢, of ¢ and o = m(by;,b12). Then o € A, and [0,¢] = 1. But
[0,60] # 1 as 6°(by2) = by # byz = 6(by2). Hence we get, o € Cy, (¢) \ Ca,.(0), a
contradiction. If p = 2, let 7 € S, be the permutation exchanging the orbits ¢,
for ¢2 and o = mw(by1,b21)(b12,b31). Then o € A, and [0,¢] = 1. But [0,0] # 1 as
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6°(by1) = b2z # bz = 8(b11). Thus, again we get a contradiction to the assumption

that ¢ and 6 have same centralizer in A,. Therefore Supp(¢) N Supp(8) # .

Without loss of generality, let a;; € Supp(é:1) N Supp(d;). Suppose there exists
1 < | < s with Supp(6;) N Supp(¢) = 8. We may assume | = 2. Let 0 € A, be
the permutation exchanging 6, for 8; and 8; for 6,. Then [0,6] = 1 but ¢ # ¢ as
Supp(82) N Supp(¢$) = ¢ and bz, € Supp(¢°) N Supp(f2) # ¢ and so [0, ¢] # 1. Again

we get a contradiction, therefore Supp(6;) N Supp(¢) # ¢ forall1 <[ < s.

Now suppose Supp(0) € Supp(¢). Then there exists 1 < ! < s with Supp(6;) £
Supp(¢). Assume | = 2 and let by; € Supp(82) \ Supp(#). Then from above we know
that Supp(82) meets Supp(¢). Without loss, assume a3; € Supp(82) N Supp(¢s). Let
o € A, be the permutation exchanging the orbits ¢, for ¢, and ¢; for ¢4. Then
[0,4] = 1. But [0,6] = 1 implies #° = 6 and so 63 and 8, are two orbits of §. Since
b2i € Supp(02) NSupp () and orbits are either the same or disjoint, we have 6, = 65.
But o does not centralize 8, as o(by;) = bz and o(a3;) = ag; # azj. Thus we get,
[0,60] # 1, a contradiction. Therefore we have shown Supp(8) C Supp(¢). Now by

the symmetry of this argument we get Supp(¢) = Supp(9).

Next we claim that two elements of the same orbit of ¢ cannot lie in different
orbits of §. First, assume p is odd and, without loss of generality, suppose a;; € 6,
and a;3 € 6;. Then, since Supp($) = Supp(f) there exists 1 < k < r with Supp(6;) N
Supp(¢x) # 8. Let by; € Supp(6;,) NSupp(¢i). Since pis odd, ¢; € A, and [¢y, 9] = 1.
Now 6% = 6 implies 6, and 67" are two orbits of 8 with b;; € Supp(6;) N Supp(6?).
Hence, as before, we get Of‘ = 0,. But this is impossible as a,1, b;; € Supp(6,) and ¢,
fixes by; but moves a;;. Thus ¢, centralizes ¢ but not §. On the other hand, suppose
p = 2 and ay; € 6y, and a,; € 6,. Consider o = ¢;¢,s for some k' ¢ {1,k}. Then

o € An and [0,¢] = 1. But [0,0] # 1, as a;;, b;; € 6, and o fixes a;; but moves b,;.
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Thus, in any case we can find an element of A, that centralizes ¢ but not 6 yeilding

a contradiction to our original assumption.

Altogether we have shown Supp(¢) = Supp(f), ¢ and 8 have the same orbits, and
consequently, r = s. Without loss of generality we may assume Supp(¢;) = Supp(6;)
for all 1 <7 < r. Next we claim that 8 is actually a power of ¢. If p = 2 then, since
they have the same orbits, we get ¢ = 8. Thus, |(¢,8)| = |(#)| = p, a contradiction
to (b). Therefore from here on we may assume p is odd. Suppose a,; is adjacent to
a1; in the orbit 6; of . Then p odd implies ¢, € A,. Moreover, [¢;,¢] = 1 implies
[¢1,0] = 1. Now, since ¢, only acts on elements of 8, we have [¢,0,] = [¢;,0] = 1.
Hence, a,; adjacent to a,; in 6, implies aﬁn is adjacent to aﬁn inf, foralll <m <

p — 1. Therefore 6, = qS{_i. Similarly we can show 6; = qu' for all 1 <: <r. That is,

— 4l yl2 Iy
6= ghgls. . g

Now let o € A, be the permutation exchanging the orbits ¢; for ¢, and ¢3 for ¢,.

Then [0, ¢] = 1 and so, by assumption, [o,0] = 1. But then we get

BPUPEPT ! I2 by 11y 4l !
¢ll 22 33 44”_¢rr=¢12 21 34 43'..¢rr

and therefore |, = I; and [3 = l;. By the same argument applied several times we
eventually get an integer | with /; = [ for all 1 < i < r. But then § = ¢' and
(¢, 0)| = |(¢,¢')| = |(¢)| = p. Hence, we get a contradiction to (b) and this proves

the lemma.
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Now we remark that Lemma 3.3 (a) still holds for Kegel covers that have fac-
tors which are alternating groups and will be used throughout this case. Let K =
{(H;, N;)|s € I} be a Kegel cover for G with H;/N; = Alt(Q;) = An,, where || = n,.
Then, by Lemmas 3.6 and 3.9, we may assume that K = K(Z) and pdeg g4, /n,(z) 2
p*(a + 2) for all (H;,N;) € K(Z), where a = max(l(u),5uw(Z)|Z|*9|Z]*) and

u > (2logy/s|Z]) + 2 from [7, 2.5 and 2.14]. Also, for any positive integer ¢ let

K«(Z) = {(H;, N;) € K|Z has at least t regular orbits on (2;}.

Proposition 3.11 For any integer t > 0, Ki(Z) is a Kegel cover for G.

We prove this by contradiction through a series of lemmas. Suppose there exists
a positive integer ¢ for which K,(Z) is not a Kegel cover for G. Then, by Lemma
3.9, K(Z)\ K«(2Z) is a Kegel cover for G. Without loss of generality we may assume
K =K(Z)\ K:{(Z) and Z has less than t regular orbits on §; for all : € I.

Lemma 3.12 Z has no regular orbits on §); for alli € I.

Proof Since K is a Kegel cover, by embedding H; into larger and larger H;’s, we
can find (H, N) € K such that |H|/|Z| = r > t. Then H has no regular orbits on
for any k € I and Q) on which H acts. For if s € Q; with s¥ a regular orbit for H,
then s*Z would be a regular orbit for Z on i, where {h;}7_, is a transversal for Z

hiZ>s are distinct since cosets of Z in H are either equal

in H. Moreover, each of the s
or distinct. Hence, Z would have r > ¢t regular orbits on ;, a contradiction to our

assumption.
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Thus, H has no regular orbits on % for all k € I. Therefore, by (7, 3.4], there
exists a Kegel cover T C K such that whenever (H, N;), (Hm, Nm) € T with H; <
H,., H N N,, = 1, every essential orbit of H; on (2,, is pseudo natural with respect

to N,. As before we may assume K = 7.

Let d = max;c;{ number of regular orbits of Z on §;} and suppose d > 0. Let
(H;, N;), (H;,N;) € K such that Z has d regular orbits on Q; and H; < H; and
H;N N; = 1. If O is an essential orbit of H; on §2; then O is pseudo natural with
respect to IV;. Thus, there exists a system of imprimitivity A for H; on O such that
Ch,(A) = N; and the action of H; on A is isomorphic to the action of H; on ;. Now

Z has d regular orbits on 2; implies Z has d regular orbits on A.

Let {Ux}¢_, be d members of A such that UZ are regular orbits of Z on A. Let
1 < k < d and pick any uy € Ui. Then uf is a regular orbit of Z on §2;, otherwise
there exists 1 # z € Z with uf = ux and consequently ux € Uy N UZ. But then, as A
is a system of imprimitivity, we get Uy = U}, contradicting the assumption that U2

is a regular orbit of Z on A.

Thus Z has Zi:l |Uk| regular orbits on §;. Since d is the maximum number of
regular orbits of Z on any (2, for any [ € I, we get |Ui| =1 for each 1 < k < d. Thus,

we get

o=|J{wju U U

k=1 {ux}#UeA

where the above union is disjoint. Moreover, since H;-orbits on §); form a partition
of ©; and d is maximal, we get O is the unique essential orbit of H; on ;. Since
H;/N; = Alt(f;) is perfect, by Lemma 3.7, there exists a unique minimal subnormal

supplement to N;, R;, in H;. Then, by Lemma 3.8, O is the unique orbit of H; on 2; on



48

which R; acts nontrivially. Therefore Q;\ O C Fix(R;). Also, since H;/N; = Alt(Q;),
we have Q; C Fix(N;) and therefore A C Fix(}V;), as the actions of H; on A and
H; on §; are isomorphic. Since N; 9 H;, H; leaves Fix(N;) invariant. Thus, for any

k € {1,2,...,d}, we have u; € Fix(N;) and
O = {u;'} C Fix(M).

Thus, since R; acts trivially on all nonessential orbits and N; acts trivially on the only

essential orbit O, we have Q; C Fix(R; N N;) and therefore ;N N; < N;N H; = 1.

Now, since R; and N; are both normal subgroups of H;, we have [R;, N;] < R; N

N; =1. Also, since ZNN; =1,

Z_ 2N _H,
N,‘OZ-N,' N;

IIZ

VA

%

An

and therefore a copy of Z sits inside of A,,. Moreover, we claim the centralizer
property of Lemma 1.2 (b) for Z still holds inside A,,. That is, all elements of ZN;/N;
have the same centralizer in A,,. To see this let z € Z, H; = H;/N;, and Cy,(z) be
the image of Cp,(z) in H;. We claim that CqA(z) = Ch,(z). Clearly Cy (z) < CeA(2)
and so to prove the claim its enough to show Cz(z) < Cu.(z). Letk € Cq(2).
Then, since H; = R;N;, we have h = rn for somer € R; and n € N;. Thus, A =7
and [7,z] = 1. But then [r,z] € N; and, since R; 9 H;, we get [r,z] € RN\ N; = 1.
Therefore r € Cy,(z) and k = 7 € Cy,(z). Thus CqA(z) < Ch.(z) and so we have
shown Cg(z) = Ch.(z) . Now if 77, 7; € Z, by Lemma 1.2 (b), we have
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Cr(z1) = Ch,(21) = Ch,(22) = Cq(z2)

Hence, all elements of Z have the same centralizer in H;, H; = A, and Z is of type
(p,p). Now, since pdeg y /n,(2) 2 4pforalll #z € Z, we get a contradiction to

Lemma 3.10 and this proves Lemma 3.12.

Now by Lemma 3.12 we know that Z has no regular orbits on §; for all 7 € I.
Let 1 # z) € Z and (H,',N,') € K with Z S H,‘, ZN N,‘ = 1, H,'/N,' = Alt(ﬂ,) Since
hasno regular orbits on §2;, every element of §; is fixed by at least one element of Z.

Hence, we have

Supp(z1) = J Supp(z1) N Fix(2) (1)
1£2'€Z

Since [Supp(z1)| > p*(a+2), (1) implies there exists z; € Z with |Supp(z;)NFix(z2)| >
a +2. Now z; € (2;), otherwise we get Fix(z;) = Fix(z2) and Supp(z;) N Fix(2;) = o,
a contradiction. Therefore Z = (zy,2;). Similarly we can find 1 # z3 € Z with

|Supp(22) N Fix(z3)| > a + 2. Let
A; = Supp(z;) N Fix(z;)
Az = Supp(2;) N Fix(z3)

A3 = Q,‘ \ (A] UAQ)

Then by the definition of a we have |Ay| > a > 5for k=1,2. Let A= {g € H;|g €

Ny, (A3) and g is even on A;UA;}. Then A < H;. Moreover we claim Z < A. Since
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Z is abelian, Z normalizes Aj. If p is odd, then all p-cycles are even. Hence z,
z, € A and therefore Z < A. If p = 2 and |Ak| = 0( mod 4) for all k£ € {1,2} then
again Z < A. On the other hand, if p = 2 and |A| = 2( mod 4) for some k € {1.2}
we must modify the definition of A. In this case, we take one zj-orbit out of Ay.
Let Ay = Ca(A3_x) and B = A; N A; for k = 1,2. Then A, and A; normalize

each other, 23 € A), 22 € A; and

A/B = Alt(A; U A;) and Ax/B = Alt(Ag) for k = 1,2,

Thus, by Lemma 3.7, there exists a unique subnormal supplement R for B in A.

Finally we let A7 = (z2'42) and Aj = (z3'%2).

Lemma 3.13 (a) A, = A}B.
() ZNB =1.

(c) Suppy,n,(2) 2 Ay or Az forall 1 £z € Z.

Proof Since A} Q A; and A;/B = Alt(A;) is simple, either A} < B or A; = A}B.
If A5 < B then z; € B as z; € A}. But B = A; N A; implies 2; € A; = C4(A,), a

contradiction as A; C Supp(z2). Therefore A; = A3B and we have (a).

For (b), let 2 € ZNB. Since Z = (z,, 2;), we have z = z[*z} forsome 1 < m,n < p.
Let s € A;. Then z € B = A; N A; implies 2(s) = s and so 2*z}(s) = s. Since Z
is abelian and 2;(s) = s, we have 2]*(s) = s. But s € Supp(z;) implies m = p and
therefore z = 27. Let s € A,;. Then again z € B implies 2J(s) = s and n = p. Thus,
z =212 =1

Finally for (c), let 1 # z € Z and suppose A; € Supp(z). Then z = z[*z} for

some 1 < m,n < p and there exists s € (A; \ Supp(z)). Hence z(s) = s and, as
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before, we get 2]*(s) = s and m = p. Therefore z = z} and z # 1 implies n # p.

Thus Supp(z) 2 Az and we are done.

Let (H;,N;) € K with A < H;, AN N; = 1, and H;/N; = Alt(Q;)).

Lemma 3.14 Let (H;,N;) € K and H; be as above. Then [A}, A3] < Ca(O) for all

essential orbits O of A on ;.

Proof First, let A= A/C4(O). Then, since O is essential for A, we have C,(O0) <
B. Thus AN N; = BN N; =1 implies

_AN;/N; _ AJANN,
~ BN;/N; _ B/BNN,

A A

. = 5 = Alt(A, UA,)

Therefore A < Sym(0Q), B 9 4, A/B = Alt(A, U A,), [AjUA| >5ZNB =1,
pdegz/p(z) 2 aforalll # 7 € Z and Z has no regular orbits on O. Thus, by [7,

2.14], O is t-pseudo natural for ¢t < |Z| — 2.

Let P,(A; U A;) denote the set of subsets of size t of A; U A, and I' be a set of

imprimitvity for A on O such that I' and P,(A; U A;) are isomorphic as A-sets.

We claim that ¢t = 1. To prove this we proceed by contradiction. Suppose t > 2.
Let ax € Af and X = af for k = 1,2. Also, let X C A, U A, such that |X| =t and
XNXi = {ax} for k = 1,2. We can find such a set X since the order of A;UA; is large
compared to ¢t. That is, since t < p> —2 and | X}| < p?, we have |A;UA,| > 3p? —4 =

p>—2+2p*—2>t+2p*—2andso |A UA; | — (| X1UX2|) > |A UA,| —2p% >t —2.

Now Z has no regular orbits on O implies Z has no regular orbits on I'. Hence,

since I and P,(A;UA;) are isomorphic as A-sets, Z has no regular orbits on P,(A; U
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A;). Therefore there exists 1 # z € Z with X* = X. If af # ax for some k € {1,2},
we get ax, aj € X N X;, a contradiction as | X N Xi| = 1. Thus, a} = a; for k = 1,2.
But, by Lemma 3.27, Supp(z) 2 A; or A; and so z cannot fix both a; and a;. Thus,

it must be the case that t = 1.

Since t = 1, we know that T and A, U A, are isomorphic as A-sets. Let i € {1,2}
and I' = I'; U T, where I'; are the images of A; under this isomorphism. Also for
i € {1,2}, let Y; = Uyer, X, and y € Y; with y € X for X € I';. Since Z has no
regular orbits on §; there exists 1 # z € Z with y* = y. But then X* = X otherwise
X* # X and we get y = y* € X* N X = p, a contradcition as I' is a system of
imprimitivity. But then, since X € I'; and I'; and A; are isomorphic as A-sets, we
have X#+1 = X but X% # X. Therefore (z;;;) = () and so y*+' = y. Thus, z;4,
fixes all elements of Y;.

Now, since A; and A; normalize Y;, A3_; = (z/}'/*?) fixes all elements of Y; and so

[A], A3] fixes all elements of Y; for i = 1,2. Therefore [A}, A}] fixes O and this proves

the lemma.

If A;NR =1, then [A;N R, A3] < A;NR =1 and so [A;N R, A}] = 1. Then, since
A; = (A2N R)B = A}B, we get [(A2N R)B, A}B] < B and [A;, A;) < B. Therefore
A2/ B is abelian, a contradiction as A2/ B = Alt(A,) is nonabelian. Thus, A;NR # 1.

Now by Lemma 3.14, [A], A; N R] fixes every essential orbit of A on Q;. Also R
fixes all nonessential orbits of A on ;. Hence [A], A5 N R] fixes all orbits of 4 on §;
and therefore [A], A3 N R] fixes all of ;. But then [A], A;NR] < H;NN; =1 and so
[A}, A3N R] = 1. Since z3 € A and all elements of Z have the same centralizer in H;,
we have [23, A3 N R] = 1 and [22, A3 N R] = 1. Hence, [A3,A;N R] =1 as A, and A,

normalize A;N R. Now [A2N R, A3] < A3N R implies [A; N R, A3, A3] = 1. But then,
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as before, we have [(A; N R)B, A3B, A;B] < B and [A,, Az, A2] < B. Thus, we get
A;/B = Alt(A;) is nilpotent, a contradiction as |A,| > 5. This proves Proposition

3.11.

Now we may assume K = K4(Z) and so Z has at least four regular orbits on §;
foralli € I. Let (H;, N;) € K, with Z < H;, ZNN; =1, and H;/N; = A,, = Alt(Q;).
Also let Qreg = Uzzl O where Oy is a regular orbit for Z on ;. Finally let |Qreg| =

and put

H* = {h € H;|h € Ny,(Qreg) and h is even on QQreg}

and

N- = CH.(Qreg)

Then, since Z is a semiregular acting subgroup of Sym({2reg) of type (p, p), we have
Z < H*. Moreover, ZN N* =1 and H*/N* = Alt(Qreg) = Ar. Thus, A, contains
a copy of Z and, since Z acts semiregularly on Qreg, r = 4p® > 5 and therefore A,
is simple. Now choose K < H* minimal with respect to Z < K and H* = K N* and

let L=N"NK.

Lemma 3.15 (a) Z< K and ZNL =1.
(b)) K/L = A,.
(c) L is mazimal with respect to being normal in K.

(d)IfZ<U<Kand K=UL, then K =U.
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Proof By definition of A" we have Z < K. Also, ZNL = ZN(N*NK) < ZNN" =1

and so we have (a). For (b), we have

K__K KN _H _,
L NnK N N7

For (c), suppose L < Ko < K. Since K/L = A, is simple, we have either Ao < L or

K = K, and so we have (c).

Finally for (d), A" = UL implies

H*=KN*=ULN*=UN".

Hence, H* = UN* and, since Z < U < K, we get K = U by the minimality of K.

O

Lemma 3.16 (o) IfU < K, then either U< L or K =UZ.

(b) O,(K) < L.

(c) K = (ZK).

(d) Let K = K/O,(K) and T be the image of L in K. Then T is a p'-group and
I =o(F).

(¢) K' is the unique subnormal supplement for L in K.

(f) K' = O°(K').

Proof Suppose U < K. Then L L UL Q K and so L = UM or K = UL, by
the maximality of L. If L = UL then U < L. On the other hand, K = UL implies
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K = UZL. Moreover, Z < UZ and UZ £ L. Hence, by Lemma 3.15 (d), we have
K = UZ and this proves (a).

Now O,(K) < K, and so by (a) either O,(K) < L or K = Op(A)Z. But
K = O,(K)Z implies K is a p-group and consequently A, = K/L is a p-group, a
contradiction. Thus O,(K) < L and we have (b).

Since (ZX) 9 K and ZN L = 1, by (a) we have K = Z(Z¥) = (Z¥), which
implies (c).

For (d) let Z < To € Syl,(K). Then, since L 9 K, T = ToN L € Syl,(L)
and by the Frattini Argument K = Ng(T)L. Now Z < Ty and L d K implies Z
normalizes T = To N L and so Z < Ng(T). Thus, by Lemma 3.15 (d), A = Ng(T)
and therefore T < K. But then T < O,(K)and T = 1. Now T € Syl,(L) implies
1=Tc¢ Sylp(f) and therefore L is a p-group. Suppose L £ ®(K). Then there
exists a maximal subgroup U = U/O,(K) of K with L £ U. Since U is a maximal
subgroup of K, K = UL. Also, since L is a p-group, U contains a Sylow p-subgroup
of R and so Z < UF for some k € K. Then K = UFZ and therefore K = U*L with
Z < U*. Hence, by Lemma 3.15 (d), we get K = U*. Thus we get K = Ur =U,a
contradiction to the maximality of U. Therefore L < ®(K). Let ®(K) = R/O,(K).
Then L < ®(K) < K implies L < R 4 K. Thus either K = Ror L = R by the
maximality of L. If K = R we get, K = R = ®(K), a contradiction. Therefore

L= Rand L = &(K) as claimed.

For (e), since K/L = A, is simple, by Lemma 3.7 there exists a unique minimal
subnormal supplement K, for L in K. Since K’ < K we have L < K'L < K and so
either K =K'Lor K' <L by the maximality of L. Now A" < L implies A, = K/L
is abelian, a contradiction. Therefore it must be the case that A~ = A'L and so

Ko < K', as K’ is a subnormal supplement for L in K. Now K, £ L and so by (a)
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we have A = KoZ. But then

K KZ,_ 2

Ko Ko ZnNK,

is abelian.

Hence K' < Ky and so K' = K is the unique subnormal supplement for L in KA.

Finally for (f), its clear that OP(K') < K. Also since OP(K') char < K" 94 K
we have O?(K') < K. Thus O?(K') < L or K = O?(K')L by the maximality of L.
Suppose OP(K') < L and let Q € Squ(K') for some ¢ # p. Then Q < OP(K') < L
and therefore Q < L. Let K = K/L, and K’ and Q be the images of K’ and Q in K.
Then Q =1 and so Q € Squ(K') implies1 =Q € Sylp(F). But K’ is a supplement
for Lin K by (d) and so K’ = K. Hence 1 = Q € Sylp(f) and therefore A is a
q -group for all ¢ # p. But this implies K = K/L = A, is a p-group, an impossibility.
Therefore K = O?(K')L and so K' = OP(K') by (e).

In Lemmas 3.17 through 3.21, F will be a finite field, T a finite group, and V' and

E a finite dimensional F'T-modules.

Def Let 0 € Aut(F'). Then a map s from V x V to E is called F o-sesquilinear if

(a) s(u+v,w) = s(u,w) + s(v,w)
(b) s(u,v+w) = s(u,v) + s(u, w)
(c) s(Au,v) = As(u,v)

(d) s(u, \v) = A?s(u,v)

Def A F o-sesquilinear map s from V x V to E is called T-invariant if s(u,v)' =

s(ut,v')forallu,neVandteT. forallu,v, we V and X € F.
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Lemma 3.17 Let F be a finite field, T a finite group, V and E be finite dimensional
FT-modules, and s be a T-invariant F o-sesquilinear map from V x V to E where
o € Aut(F) with 0® = 1. Also let C = {t € T|t is a scalar on V}, |T|/|C| = m, and

dimpE = n. Then for any subspace W of V there erists a subspace X of W with

4mn ]

dimpX > (dimgW — 4 3

)/4m"

and s lyxu= 0 where U = (XT).

Proof Let L = {t;}]2, be a transversal for C in T, i.e T = |J, t,C, and {4;}]_,

be a basis for E*. Define a map s/ from V x V to F by

s (u,v) = ¢;8(u,v") for all u,v € V

Then, since s is F o-sesquilinear and ¢; and ¢; are are F-linear, s is F o-sesquilinear.
Consider s'! on W. By (7, 2.1] there exists a subspace X; of W with s'! |x,xx,= 0

and dimpX; > %(dimpW — 4). Similarly there exists a subspace X, C X, with

1
S 2 ngxX7= 0 and

1 1
dimpX; > Z(dimFXl —-4) > 4—2(dimpW —4 — 42)

By continuing this process we eventually get a subspace X, C X,_; with s' |x, xx, =

0 and

n-1
dimpX, > 4in(dimpw —4) 4h).
k=0
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Next we look at s?! on X,. Again, by [7, 2.1], there exists a subspace Xn+1 C Xn
with s |x_ . xXns1 = 0 and dimpXayy 2> mrr(dimeW — 437 4%). Eventually we

get X2n - X’.’n—l with s2" ]XZnXX2n_ 0 and dlmFX2n > T(dlmFW 4 22"'1 4k

Continuing this process for each 1 < ¢ < m we get a subspace X, C X;n._; with

smn Ixmnxxmnz 0 a‘nd

mn—1
4mn — 1
dimpX,,, > ——(dlmpW 4 Z 4*) = (dimpW — 4 3 )/4™".
k=0

Now Xp,n € Xijforalll < i <mandl < j < n and so s¥ | X x X = 0
for each ¢ and j. Let u,v € Xpn, 1 € {1,2,...,m} and j € {1,2,...,n}. Then
s"(u,v) = 0 implies ¢;s(u,v") = 0. Since i € {1,2,... ,m} was chosen arbitrarily
and (X7.) = (X%,.), we get ¢;s(u,v) = 0 for all u € X, and v € (XZ,). Now as
{#,}}=, is a basis for E* and j € {1,2,...,n} was chosen arbitrarily we get s(u,v) =0
for all u € Xy, and v € (XT ). But then s(u,v) = 0 for u,v € (XT )assis T-

invariant.

Def Suppose s is a F' o-sesquilinear map from V x V to E. A subspace U < V is

called isotropic if s |yxy= 0.

Lemma 3.18 Let V, E, F, T, C,m, n, s, and ¢ be as in Lemma 3.17. Then
there ezists a increasing function f, defined on the positive integers with the following
property: for every subspace W < V with dimpW > f(mn) there exists 0 £ w € W

such that (wT) is isotropic.

Proof Let f(z) = 4" +4%5l and let W < V with dimpW > f(mn). Then by

Lemma 3.17 there exists a subspace X < W with (XT) isotropic and
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1 .. 4mn — 1
dlmFX Z '4m—n(dlmFW —4 )
1 gmn 1 4mm—]
> 4™ 4+ 4 -4
2 (@t 5 )

= 1

Thus, dimpX > 1 and in particular X # 0. Let 0 # w € X C W. Then (X7) is

isotropic implies (wT) is isotropic as desired.

Lemma 3.19 Let V, E, F, n, and s be as in Lemma 3.17. If W <V is a subspace
of V and

W+ = {v € V|s(v,w) = s(w,v) = 0 for all w € W}

then dimpV/WL < 2n - dimpW.

Proof Define the map:

a:V - Homgp(W, E)

by a(v)(w) = s(v,w) for all v € V and w € W. Then, since s is linear in its first
coordinate, a is a F-linear map. Moreover, Kern a = {v € V|s(v,w) = 0 for all w €

W} and

dimpV/Kern a < dimpa(V) < dimg Homp(W, E) = n - dimgW.
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Similarly define a map:

B:V — Homgp(W, FE)

by B(v)(w).: s(w,v) for all v € V and w € W. Then, as above, we get Kern 8 =
{v € V|s(w,v) = 0 for all w € W} and dimpV/Kern 8 < n - dimgW. Thus, Wt =

Kern a N Kern 8 and,

dimV/W* = dimg(Kern a + Kern ) + dimpV — dimpKern a — dimgKern 8
< dimpV - dimgKern a + dimgV — dimgKern 3
= dimpV/Kern a + dimgV/Kern 3

< 2n-dimgW

and the lemma is proved.

Lemma 3.20 Let V, E, F, T, C, m, n, s, and o be as in Lemma 3.17, f be as in

Lemma 3.18, and S = {W < V|W is a T-invariant, isotropic subspace of V}. Then

(a) If U is a mazimal element of S then dimpU > ——(dimpV — f(mn)).

2n+1

(b) If dimpV > (2n+1)2mn+ f(mn) and z € T with pdegy,(x) > f(mn) then there

exists U € S such that = does not act as a scalar on U.

Proof Since 0, the zero subspace, is in S we have § # ¢. Let U be a maximal
element of S and Ut = {v € V|s(v,u) = s(u,v) = Oforall u € U}. Since U is

isotropic, U < Ut and U1/U is T-invariant. Moreover, by definition of U+, s on
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U+ /U x Ut /U is well defined. Hence, as U € S is maximal, U*/U has no nontrivial

isotropic T-invariant subspaces. Therefore, by lemma 3.18

dimpUt /U < f(in)

where

m = |T|/|{t € T|t is a scalar on U*/U}|.

But, since f is an increasing function and m < m, we have dimgU* /U < f(mn) <

f(mn). Furthermore, by Lemma 3.19, CodimpU* < 2n - dimpU. Thus,

dimpgV = dimpV/U* 4 dimpU* /U 4 dimpU < 2n - dimpU + f(mn) 4+ dimpU

Therefore dimpU > ﬁ(dimpv — f(mn)) and (a) holds.

We show (b) by contradiction. Suppose z is a scalar on all elements of S. Let X
and Y be maximal elements of S, L = {t;}2, be a transversal for Cin T,0# y €Y,
and W = (yT). Since W = (y7) = ({y"}1,), W is spanned by the m vectors {y" }I2,

and so dimpW < m. Also as X € § maximal, (a) implies

dimpX > (dimpV — f(mn)) > ((2n+1)2mn+ f(mn)— f(mn)) = 2mn.

(1)

2n +1 2n +1

and so dimpX > 2mn. But then, by Lemma 3.19, we get

X X+wt

dime s = dime =g

|%
< dimF_vW < 2n-dimgW < 2mn. (2)
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Thus, (1) and (2) imply X N Wt # 0. Now X N W+ + W is a T-invariant isotropic
subspace of V different from X and Y and Therefore (X NW*) + W € S and z acts
as the same scalar on (X N W) + W, X, and Y. Since the choice of X, Y € §
was arbitrary, z acts as a scalar on all of (S). Let z(v) = Av for all v € (S) and
V = (S) ® D for some subspace D of V. Then D has no T-invariant isotropic
subspaces and so by Lemma 3.18 dimgD < f(mn). Now consider the map A~!r from

V onto [V, A71z]. Since (S) C Kern(A~'z) we get,

pdegy (z) < dimp[V,A7'z] = dimpV/Kern(A"'z) < dimpV/(S) = dimpD < f(mn)

a contradiction as pdegy(z) > f(mn) by assumption. This proves the lemma.

Lemma 3.21 Let V be a n-dimensinal vector space over a field F with charF = p

for some prime p. Then for any p-subgroup P of GLr(V)

dimpV < |P| dimgCy(P)

and in particular

dimpV < |P| dimpV/|V, P]

Proof For the proof we use induction on |P|-dimpV. For |P|-dimpgV = 1 then
both |P| and dimpV are equal to 1 and the result only states 1 < 1 which is true.
Assume the result holds for all vector spaces U over F and p-subgroups T of GLg(U )
with |T'|- dimgU < |P|- dimpV.
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Then we can assume that V is indecomposable. For suppose V = U @ W for some
P-invariant subspaces U and W. Let P = P/Cp(U) and P= P/Cp(W). Then the

p-groups P and Pacton U and W respectively. Thus, by induction we get

dimFU S dlmFCU(F)IFI

dimgW < dimFCw(ﬁ) . Iﬁl
Now V = U @& W implies Cv(P) = Cy(P) @ Cw(f’). Therefore we get,

dimpV = dimpU + dimpW < dimpCy(P) - |P| + dimpCw (P) - | P|
< dimpCy(P) - |P| + dimpCw(P) - | P

(dimpCy(P) + dimpCw (P))|P|

dimpCV(P)lP|

as desired.

Let @ be a maximal subgroup of P and assume Q # 1. Then Q < P and |P/Q| <
|P|. Now, since Q is a maximal subgroup of P, we have Cev(@)(P/Q) < Cy(P).

Thus, since P/Q acts on Cy(Q), by induction have

dimpCv(Q) < |P/Q| dimpCe, (q)(P/Q).

Also, by induction applied to @ on V, we get

dimpV < |Q| dimpCy(Q).

But then

dimpV < Q| dimpCy(Q) < th(:Qi: dimrCo, ¢)(P/Q))
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= |P| dimpCc, (q)(P/Q)

< |P| dimpCv(P)

as desired.

Thus we may assume P has no nontrivial maximal subgroups. Then P is cyclic of
order p. Let P = (z) where zP = 1. Now zP = 1 and charF = p implies (z — I)? =0
on V. Hence, since 1 is the only characteristic root of £ and V is indecomposable,

there is a basis B of V for which the matrix Mg(z) for z has the form

1 0 0

01 1 0 0
Mp(z) = | : .

0 1

0 . 1
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