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ABSTRACT

MODELLING AND ANALYSIS OF

TOKEN-PASSING COMPUTER NETWORKS

BY

VBI'DOD J. R890

This thesis is concerned with the performance modelling of

token-passing protocols on local area computer networks. A

token-passing system operating on a baseband cable may be viewed in a

queueing-theoretic framework. The computer stations on the system

represent queueing stations at which randomly arriving packets queue for

service. A free token behaves as a single server who travels around the

network, allowing each station that is visited a chance to make a

transmission on the channel. The random time taken by a free token to

cycle around an operational network, called the token's cycle-time, is

an analytically useful measure. The derivation of cycle-time

distributions for general asymmetric N-station systems is a primary

contribution of this research. Both exact and approximate forms of this

distribution are derived. The exact approach is based on general

distributions for packet arrival. service, and token-passing times,

while the approximate approach uses a Poisson arrival assumption.

In modelling performance, the exact and approximate cycle-time

distributions lead to exact and approximate queueing measures,

respectively. Exact measures are obtained by using Poisson packet



arrivals and semi-Markovian transmission times. Some results on the

invariance and insensitivity of cycle-times are obtained, along with

distributions for busy and vacation periods of the channel, with respect

to each station. Approximate measures are obtained via an independence

assumption that leads to single server queues with dependent service.

This is due to serial cycle-time dependencies which arise at all but

extreme loads. Methods of analyzing such queues, including schemes for

estimating service-time variance, covariance matrices, marginal and

joint cycle-time distributions, and correlation effects are discussed.

Under certain conditions, it is shown that limiting and

asymptotically stationary cycle-time distributions exist. Conditions

for stationarity and system stability are derived, and simple stability

measures are introduced. Methods for obtaining the distribution of

system throughput and a new fairness measure are described. The link

between multiqueueing systems with different service and queue emptying

disciplines is demonstrated with the aid of a complex service discipline

for which approximate cycle-time distributions are derived.
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CRAPTBR I

INTRODUCTION

In a local area network, channel usage is regulated by a protocol

operating at the data-link layer, one of the seven layers of the ISO

reference model [Zimm80]. A channel access protocol is an algorithm

specifying how a distributed set of stations must share a common

communication medium. Broadly speaking, these protocols are of two

types: contention-based and conflict-free. Examples of the first type

are the ALOHA [Abra70], CSMA [Toba74, KlTo'IS], and CSMA/CD [ToHuBO].

Among these, the CSMA/CD is the most commonly used medium access control

method for a local area network using a contention bus topology. The

well known Ethernet local network [MeBo76, MeBTC77] is a CSMA/CD

protocol that was developed and patented by Xerox. Performance models

for the CSMA/CD protocols can be found in [Toflu80, LamsBO]. The

contention-free protocols based on token-passing methods or various

reservation methods try to avoid the contention drawback. An excellent

survey of these, including descriptions of several access,

initialization, and synchronization methods, can be found in Penney and

Baghdadi [Pe8a79].

1.1 Simple Problem Statement

The operation of a token-passing protocol can be described



independently of the local network topology in an abstract fashion.

Consider a system of N independent queueing stations that are separated

from one another by unequal distances. Customers arrive in a random

fashion and queue at any one of the N stations for service. Arrivals

between queues, as well as within queues are independent. In general,

any two customers queued at a given station will possess the same

arrival and service characteristics. This is not necessarily true of

two customers queued at two different stations. We will always assume

that there is no restriction on the length of a queue. A single server

is required to visit the N queueing stations in a certain sequence,

serving customers at each station. Within each station, customers are

always served in a first-in first-out mode. Upon completing a station's

service, the server takes a finite time to walk from one station to the

next station in the sequence. We assume that the system is perfectly

reliable at all times and that the server is in perpetual motion, either

serving a customer at a queue, bypassing an empty queue, or walking

between queues. Sometimes it is necessary to account for the time it

takes the server to detect an empty queue and consequently bypass that

queue. This time, called the station's switching time, does not include

the time it takes the server to walk to the next queue.

The system is said to operate under a simple serv1ce scheme if the

sequence of queueing stations visited by the server is strictly cyclic,

i.e. l, 2, ..., N, 1. Simple service schemes may be either

nonexhaustive or exhaustive. The simple nonexhaustive scheme called a

fair serv1ce discipline is one in which service can be provided to at

most one customer per station queue on each server visit to that
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station. Thus, a system may be completely described by specifying N,

the service scheme, the arrival rates and service rates of customers at

each queue, and the mean time it takes the server to walk from one queue

to the next in the cyclic sequence. Given such information, it is

instructive to obtain answers to both qualitative and quantitative

questions regarding the behaviour of such a system under general

conditions. The conceptual queueing model can be seen in Fig. 1. Given

a system of N independent queues with a single server obeying the fair

service discipline, and also given probability distributions describing

customer interarrival and service times at the various queues and the

random walk times between queues, the problem is to find methods of

analysis that will enable us to obtain measures of queue lengths,

response times, server utilization, effectiveness of the service

discipline, improvements in service patterns, conditions under which

queues remain stable etc. A formal definition of the problem is

deferred to the material in chapter II.

1.2 Token-Passing Protocols

The token-passing (contention-free) protocols on ring and bus

networks are two of the three access mechanisms presently being

standardized by the IEEE Standards Committee [IEEEB4a, IEBE84b]. In

principle, the token—passing protocols, like the Mewhall networks

[PaNe69], use a token to regulate channel access. The station that has

received the token is allowed to access the channel. If the station is

ready to transmit and has a packet stored in its buffer, it immediately



puts the packet onto the channel. Upon completing its transmission, a

station passes the token in an orderly fashion to the next station on

the channel. If a station has no packet to send when it acquires the

token, it simply passes the token along to the next station. In either

event, a cyclic token-passing sequence of stations is defined.

A token ring [IEEE84a, ECMA83a] is typically configured as a

series of point-to—point cables between consecutive stations, with

stations tapping onto the ring using active interfaces. The token is a

unique signalling sequence of bits that circulates on the communication

medium in one of two states. A station that wants to transmit listens

to the network, and attempts to identify from each sequence of bits it

receives the special bit pattern corresponding to the token. The last

bit of the token's bit pattern may be either a 0 or a 1, corresponding

to busy and free token states, respectively. Any station that detects

the token in the free state may capture the token, change it to a busy

token (by inverting the last bit), and append a number of informative

bits that go to make up a variable length packet. These bits include

appropriate control and address fields, the data field set up by the

logical link control sublayer, the frame check sequence, and the

frame-ending delimiter. The busy-token and packet combination is read

and forwarded one bit at a time (since the topology is point-to-point)

by consecutive stations on the ring, and only the destination station

copies each bit of the packet as it passes. In an attempt to detect a

free token, each station must pass a sequence of hits, including its

most recently acquired bit, through a pattern matching circuit. Only in

the instance of a free token will the last bit he inverted. In any



event, this token-detection mechanism causes a l-bit delay within each

station. When a station’s transmission is complete, the sending station

performs certain tasks to ensure proper operation and then creates a new

free token, which it passes on to the next station in the cyclic

token—passing sequence. The sending station removes the packet from the

ring when the cycle is complete.

The token-passing bus is conceptually very similar to the

token-passing ring [Buxw84]. A token bus [IEEEB4b, ECMABSb] is

configured as a passive medium, generally a long unbranched trunk, with

stations tapping onto it via stubs in a multidrop fashion. The bus

topology does not impose a sequential ordering of stations, as in the

case of the ring. Thus, the token is made to circulate on a logical

ring instead of a physical one, with a sequence of station addresses

defining the token's path. A bus operates in broadcast mode, in which a

station's transmission can be heard by all stations on the bus. Token

bus protocols take advantage of broadcast mechanisms in executing the

difficult tasks of establishing and maintaining the logical ring. Each

station on the ring is required to know its predecessor and successor.

In steady-state, the protocol is seen to alternate between packet

broadcasts to destination stations, and token-passing broadcasts.

Within the framework of token-passing just described, there is

room for flexibility in protocol design. For example, in the token ring

protocol, two modes of token operation are possible. The description

above specifies that a new token is generated by the transmitting

station only after the busy—token header of the packet is removed from

the ring. This is called the single token rule [Buxw81]. In a multiple



token strategy, the transmitting station may issue a token before it

receives the previous busy-token, thus allowing for more than one token

on the ring at the same time [BCJKBZ]. This reduces the idle time on

the ring that occurs in the single token method. For rings with small

delay (i.e., the time taken for a single bit to make a complete cycle on

the ring), the performance of both methods is approximately the same

[AnSc82]. However, since efficiency of the single token mode is

generally close to that of the multiple token mode and its complexity is

far less, especially when considering fault tolerance, the single token

mode is more popular. In token-passing protocols, a more important

design issue is the maximum length of time that a station is allowed to

retain control of the transmission medium, i.e., a station's

channel-retention time. In the following section, the channel-retention

time of a token-owning station is identified with a finite number of

consecutive packet transmissions that this station is allowed to make

before relinquishing the token. Hence, this time will depend on both

the time to transmit a packet, and the number of consecutive packet

transmissions permitted for that station. In general, the

channel-retention times of the different stations may be allowed to

vary.

1.3 Classification 0f Multiqueueing Systems

In queueing terminology, token-passing systems behave like

multiqueues with a single shared server. The token represents the

server and the station buffers with packets represent queues of



customers. The set of stations forms a logical ring of independent

queues. The terms service scheme or service discipline are used to

describe the sequence in which the server attempts to serve stations.

Recall that this idea was already introduced in section 1.1, where

stations were serviced in the order 1, 2, ... N, 1, ... etc.. Models

of token-passing systems generally assume service schemes that belong to

one of three categories. The first category consists of the early

models that place no limit on any station's channel-retention time

(simple exhaustive service). These models were given considerable

attention in the literature. The second class consists of models

dealing with systems exhibiting simple nonexhaustive service. One such

scheme is the fair service discipline described in section 1.1. Another

example is the gated service discipline, where the server only serves

those customers that are found present in the queue when the server

arrives at the queue. That is, new arrivals are required to wait for

the next round of service. This service discipline has also attracted

special attention in the literature, and probably so due to analytic

difficulties that crop up with other nonexhaustive service patterns

[Buxw84]. Ferguson and Aminetzah [PeAm85] suggest that the reason for

the relatively large amount of research effort directed at performance

modelling of exhaustive service systems is due to the inferiority of

gated system waiting times in contrast to waiting times in exhaustive

service systems. Yet another scheme is one in which the server is

allowed to serve a different number of customers at each queue. Though

this may lead to unfair service, distributing the shared server among

queues with different demands in a manner that is sensitive to changes



in station loads often improves server utilization.

The third class of models are those involving complex serVice

disciplines. With such disciplines, it is no longer necessary for

service to be strictly cyclic, nor is it necessary for the sequence of

stations visited by the server to be static. A complex adaptive

nonexhaustive service discipline is introduced in chapter VIII. The

server attempts to adjust the path of the service cycle in order to

account for imbalances in station loads. Complex disciplines generally

involve service schemes that are not fixed, but change according to a

criterion, such as the minimization of station response times. These

disciplines are usually hard to analyze and have not received much

attention in the literature. Additionally, conditions under which one

kind of server behaviour can be shown to perform better (i.e., attain

nearer optimality of the criterion) than another kind of server

behaviour are difficult to obtain.

In order to further classify different service schemes, we define

a station's channel-retention time in terms of an upper bound on the

number of consecutive packet transmissions that the station is allowed

at any one instance of token acquisition. This instant is defined to be

the instant at which a station obtains and recognizes a free token. The

bound is determined by the station's queue emptying discipline, or QED.

The QED determines the maximum number of packets that can be transmitted

by a station whenever the station acquires the token. The time taken by

the token to make successive reappearances at a station is defined to be

the cycle-time of the token with respect to the station. The token's

arrival instant at a station during a cycle is called the scan instant
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of the station for that cycle. The instant that the token leaves a

station during a cycle is called the departure instant of the station

for that cycle. Observe that the token's cycle-time can be defined

either with respect to scan instants or departure instants, and both

definitions are consistent.

A QED associated with a scan instant is called an s-QED. With the

discipline s-QED = n, the number of transmissions made by a station is

min(n,x), where x is the number of waiting packets recorded by the token

at the station's scan instant. A QED not associated with a scan instant

is called an r-QED, where r is used to denote relaxation of the scan

condition. With the discipline r-QED = n, at most n transmissions are

allowed. In this discipline, packets arriving after the scan instant

but while previous arrivals are being served may still be transmitted

within the batch of n. When n is finite, both QED's require that

transmissions from the stations be nonexhaustive. The scheme s-Qau c a

is really a nonexhaustive transmission mode since x is always finite and

packets arriving after this scan instant have to wait for the next

cycle. With r-Qim = o, exhaustive transmissions are allowed. The above

classification holds for the cases of both finite and infinite queues.

If the queue capacity (buffer size) is finite, say some positive integer

b, then the disciplines are specialized to s-Qal(b) and r-Qae(b). With

s-Qim(b) - n, the number of allowable transmissions is min(b,n,x). Note

that since x S b, this number will always be the minimum of x and n. If

the flow control process of a network node is clever enough to make use

of finite (data-link level) buffer space even while packets are being

transmitted from this node, then the scheme r-QED(b) is equivalent to
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r-QED - a. This is to say that a finite queue capacity does not

preclude the possibility of new packet arrivals at a station while old

packets are being transmitted, with arrivals and transmissions

overlapping in a continuous stream.

Given that the service discipline and QED of a multiqueueing

system remain fixed while the system is in operation for a period of

interest, and also assuming that each station utilizes the same QED,

these systems can be further classified in terms of station parameters.

In describing multiqueues we use random times to model arrival times,

service times, and walk times. In general, station 1 can be described

in terms of hi parameters, with ni not necessarily equal to nj, for

i f j. In the present situation, n1 = n = 3.

i

If the customer arrival processes at all queues are identical, the

system arrival process is called symmetric; otherwise, the arrival

process is called asymmetric. This notion of symmetry applies also to

the service distributions and walk distributions. The concept

associates more readily to a model of a queueing system than the real

process itself. Nevertheless, if a token-passing configuration

possesses uniform traffic arrival characteristics we apply a symmetric

arrival model, and otherwise, an asymmetric arrival model. Similarly, if

all service requirements are identical, a symmetric service model is

applied, and otherwise, an asymmetric service model. This holds also

for the walk processes. A symmetric system is one in which each of the

arrival, service, and walk distributions is the same for all stations on

the network, thus requiring a model that is characterized by only three

distributions. On the other hand, an asymmetric system is characterized
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by 3N distributions. Partially symmetric systems are ones which lie

somewhere in between the two extremes, with some stations characterized

by common distributions while others differ.

1.4 Review Of Previous Work

A considerable amount of work on performance comparisons via

modelling of the various channel access schemes including the

token-passing schemes has been done in the past [ArSt82, Buxwel, LiHGBZ,

Stuc83]. Most of the literature on protocol performance modelling

assumes some combination of the characteristics of symmetry, s-QPD 8 n,

or r-QED c n, with either n = a, or 1 < n < a . The more realistic

asymmetric configurations with QED = 1 appears to have been largely

neglected. One possible reason for this is the inherent difficulty

associated with processes not exhibiting independence, and the

computational intractability of asymmetric multiqueue systems possessing

queues with customer interference.

One of the earliest formal versions of the multiqueueing problem

was presented by Liebowitz [LiebGl]. The arrival distributions are

assumed to be Poisson, walk times are finite, and service distributions

are arbitrary. The system developed was symmetric in all distributions,

and switching times were not considered. Liebowitz was interested in

the stationary probability distribution of the the random number of

customers found waiting (by the server) at any station at its scan

instants. Utilizing the s—Qns - a discipline (gated service), an

approximate solution was obtained. The result is an approximation



13

because of an assumption of independence, namely that "stochastic

processes within a particular queue are considered independent of the

processes within the other queues". Liebowitz [Lieb68] cited his

problem as an important queueing problem for which no exact solution had

been obtained. Eisenberg [Eise72] discovered that the different queue

states at scan times could be modelled as a Markov process and

consequently proposed the first general solution to the problem.

Transform solutions were obtained for customer waiting times and server

intervisit-times at each queue. Unfortunately, Eisenberg's transform

solutions turned out to be difficult to work with. More recently,

Ferguson and Aminetzah [PeAm85] developed an exact solution to this

problem, obtaining the mean customer waiting times (for each station) on

a general asymmetric system. A closely related model in which the

server uses the visit sequence l,2,....,N,N-l,....2,l has been developed

by Swartz [Swaral] with an application to disk service policy. Swartz

obtains average queue contents and average station intervisit time.

Another general model involving the scheme s-QED - l, for both symmetric

and asymmetric arrivals has been examined by Kuehn [Kueh79] in an

approximate fashion, improving on a result of Hashida and Ohara

[HaOh72]. Kuehn uses an independence assumption that leads to an

approximate solution for mean queue lengths and waiting times. The

solution does well in the low and high traffic regions but weakens in

between, especially with an increasing number of queues or increasing

variance in service times. However, Kuehn's presentation was a first

view of the problem as a multiqueue problem subject to different queue

emptying disciplines.
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Many models have been proposed in the literature for variations on

the multiqueue problem. The chief difference between the

Hashida-Ohara/Kuehn model and these is that the variations often involve

a simplifying assumption of dependence between the customer arrival and

service processes. The most common assumption is one which restricts

the station buffers to hold at most one packet at a time (b = l),

additionally requiring that a new packet may be generated only an

independently random time after the present packet is transmitted. This

reduces to a state dependent arrival process, or s-QED(1) - l (the

machine interference problem). While this approach is a workable one,

it follows that the generation of a new packet at a station depends on

the availability of buffer space. In practice, a packet sent to a

filled buffer signals the flow control process of the network layer to

stop sending packets to the data-link layer. This packet is then lost

to the data-link layer and must be regenerated. The time until a

regenerated packet finds itself in the buffer is thus a random time that

depends on the time some packet left the buffer via the transmission

medium. If viewed in this fashion, the customer arrival times do not

correspond to the points of a renewal process [Coxd62], since the

interarrival times are not identically distributed and certainly not

independent. The point to be noted is that the assumption described

above will work under conditions of light load, but gradually tend to

fail as the load is increased to the point where packet arrivals at the

buffers are not independent.

One of the earliest applicable models of the s-QED(l) - l

discipline in the machine interference context is given by Mack, Murphy,
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and Webb [MaMW57]. The model assumes a symmetric system, with constant

walk and service times but zero switching times. The customer

interarrival times (or machine running times) are exponentially

distributed random variables. Expressions for the distribution of the

number of failed machines per server cycle and server utilization were

obtained. Mack also extends the results to the case of variable walk

times [Mack57]. Using the same queueing configuration, Kaye [Kaye72]

uses the Mack, Murphy, and Webb results to obtain an algorithm for the

waiting time distribution of an arbitrary packet. An important point to

be noted here is that Kaye was trying to model loop systems which

typically allowed more than one packet to queue in a station's buffer.

Thus, Kaye's approach was an approximation. However, Kaye conducted

simulation experiments to argue that the number of packets lost in

assuming that buffers could hold only one packet at a time was generally

small. Bux [Buxwel] takes the same approximate approach in modelling

the s-QED - l token-passing system and justifies using the approximation

with Kaye's simulation result on symmetric systems.

Another nonexhaustive service model, but in the setting of an

M/H/l system with two queues was supplied by Eisenberg [Bise79]. The

solutions given require detailed calculations for the restricted two

station model. Other variations on models for nonexhaustive

'transmissions have been proposed by Konheim [Konh76], Hamacher and

Shedler [HaShBl], Wu and Chen [WuCh75], and Heyman [Heym83]. Heyman

develops an approximation (independently of Kuehn's model) for mean

packet delay in the multiqueue problem using simple nonexhaustive

service, constant walk and service times, and zero switching times, with
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the intention of analyzing the performance of Fasnet [LiPlBZ].

In the case of exhaustive transmissions and symmetric arrivals,

nearly all of the literature on protocol comparisons relies somewhat

heavily on the results of Konheim and Meister [KoMe74]. These results

are based on a discrete time approach using scan times and yield

expressions for mean queue length and virtual waiting time for a

stationary system. A review of the literature indicates that

performance models for s-QED = 1 based token-passing protocols and

ordered access protocols sometimes make questionable use [Buxw81,

ChLLBZ, LiHGBZ] of the Konheim and Meister result. This result is meant

for roll-call polling type systems or exhaustive service systems, where

stations transmit until their buffers are emptied. Bux [Buxwel] argues

that the exhaustive model and Kaye's model [Kaye72] (where arrivals and

service are dependent) are equivalent since stations on large systems

(more that 50 nodes) rarely see more than a single packet queued at any

given time. The exhaustive model is then used to analyze the

performance of token-passing ring and bus protocols. It must be noted

that these two protocols are generally implemented with an s-QED - l,

which differs considerably from the service schemes in [KoMe76]

(r-an - a) and [Kaye72] (s-QED(1) - l, or state dependent arrivals).

The above reasoning thus equates one model to a second model with the

intention of analyzing a third. Though the three models resemble one

another, they also have differences that can lead to strong arguments as

to the justifiability of equating them. The load that a station places

on the system, i.e., the ratio of the station's mean arrival rate to the

mean rate of service it receives from the system, plays a part in making
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one model appear to behave as well as another. The system load is

defined to be the sum of the individual station loads. The key to the

dilemma lies in the viability of the statement ”exhaustive service is

equivalent to s-QED(l) = l”. The models are equivalent if and only if

the statement (call it x) is true. Define a heavily loaded station to

be one whose average buffer content exceeds one (e.g., 1.01). Let the

number of such heavily loaded stations (on the average) be H, and let 7

and x be the mean queue lengths for the heavily loaded stations, and the

whole system, respectively. Define L to be the load ratio

L a (7*H)/(x*N). Viewing 8(L) as a Bernoulli random variable whose

parameter L is a function of the parameters of the network, it would be

appropriate to say that x has a higher probability of being true for

smaller values of L. As L approaches 1, it is more and more likely that

X(L) will be false due to packet loss. It is possible to envisage

situations where N is large but only a small fraction of these stations

is responsible for most of the network traffic. Thus a low average

system load on a large network, and a high average system load on a

small network are both situations that must be suspect. x is certainly

not true (with high probability) for heavily biased and highly loaded

asymmetric systems. An analysis of such asymmetric polling systems is

provided by Swartz [Swar80] as a generalization of the Konheim and

Meister result. In fact, Swartz's approach uses the same embedded

Markov chain as Eisenberg [Eise72] and yields an exact expression for

mean waiting time at each station. '

At this stage, it is worthwhile to point out that except for

[LiebGl], [Kaye72], and [MaMWS7], the solutions reviewed above are
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restricted to either mean waiting times, mean queue lengths, or both.

It is uncommon to find results in the literature that present explicit

forms for queueing and waiting time distributions, whether exact or

approximate.

1.5 Su-ery Of Contributions

The research effort involved in writing this dissertation was

motivated by a need for performance models of token-passing systems. In

particular, we are interested in asymmetric token-passing systems where

a station is allowed to transmit at most one packet at each time that it

acquires a free token and is ready to transmit (i.e., fair service

systems). In section 1.1 we described how such N station token-passing

systems can be viewed as multiqueues sharing a single server, where the

service discipline used is s-QED - 1. We attempt to analyze a more

general model, where the time taken by a free token to bypass each

station that is not ready to transmit (e.g., with an empty queue) is not

negligible. This time, called a station's switching time, is typically

a small fraction of a station's service time. Thus, each station is

characterized by four probability distributions describing its arrival,

service and switching times, as well as the random time its takes the

server to walk to the following station. For the most part, we focus

our attention on purely asymmetric systems, thus requiring an analysis

with 4N distributions.

This work was initially undertaken as an exploratory project, with

the objective of understanding token-passing system behaviour subject to
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simple service schemes and various QEDs. When it was discovered that

symmetric and asymmetric s-QED = l systems (a proposed standard

token-passing QED, important for its fairness) presented an enigma to

performance modellers, the focus of the problem shifted to an analysis

of precisely this service scheme and QED. Consider a strictly

asymmetric N-station token-passing system operating under this QED.

Assuming that steady state operation of such a system will exist under

certain conditions, at any random instant in time the system will be in

one of 2" states. Each state can be thought of as a binary vector whose

entries differentiate between empty and nonempty stations.

Additionally, the server's position in the logical ring at this instant

is important. Exponential complexity is one problem that shows itself

immediately. This means that as N increases, simulations of such

systems can be expected to be very expensive and time consuming.

Additionally, the large number of states makes analysis more difficult.

Another problem is one involving dependence. Since a queue can hold a

number of customers at the same time, it becomes necessary to account

for the effect that a certain queue length observed at a certain time

may have on the succeeding server cycles. Still another problem is that

of dependence between queues. A customer requiring a large service time

at one queue will effect the following queues visited by the server,

including the customer's own queue during the next cycle.

The literature reviewed in the last section does provide a few

applicable models, but these are either approximate in themselves (e.g.,

due to assumptions of independence), or models of other queueing systems

‘(borrowed-models) applied to token-passing queues. As pointed out in
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section 1.4, the latter approach leads to an entirely different kind of

approximation which we label as borrowed-model approximations.

Frequently, assumptions of independence are known to fail. But the

conditions under which models assuming independence fail to perform well

can be established far more readily than conditions under which

borrowed-model approximations fail. For example, a model assuming

independence is almost sure to fail in situations where strong

dependence is an intrinsic part of the system being modelled. To detect

conditions under which independence fails will usually require an

identification of parameters causing dependence. On the other hand, to

detect conditions under which a borrowed-model approximation fails will

require an examination of the effects of the various hypotheses under

which the borrowed model was analyzed. Since an approximation is good

only as far as the conditions of its reliability are known, approximate

models assuming independence are generally safer to use than

borroweddmodels.

The approach taken in modelling the s-an - l token-passing

protocol is to both make assumptions of independence, as well as to

account for dependence by resorting to Markov formalism. In

approximating, an independence assumption was chosen over the alternate

approach of applying borrowed-models such as the machine interference

model, or the exhaustive service model. The approximation arises due to

an assumption that at steady state, the status (i.e., nonempty or empty)

of every pair of queues in the system is independent. The entire

research contribution can be divided into two parts. One part is the

approximate method based on M/G/l queues, introduced for multiqueues by
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Paul Kuehn [Kueh79]. This is called the service probability, or SP

approach. The other part is an exact analysis, called the service

vector, or sv approach. The latter view is of token-passing multiqueues

in the framework of Markov queues with semi-Markovian service times.

The latter problem was originally studied by Neuts [Neut66] and Cinlar

[Cin167] in the context of single server queues.

The service probability methods that we introduce chronologically

precede the exact methods. A first step in solving the problem was

obtaining the distribution of server cycle-time for symmetric and

asymmetric systems. This was motivated by Kuehn's [Kueh79] reference to

this as an open problem. Due to the independence assumption, the

cycle-time distribution by itself is of limited use in solving for

queueing distributions. The problem is not directly amenable to an

M/G/l type analysis since the cycle-time random variable does not really

correspond to the general service time random variable of an M/G/l

queueing system. However, given the form of the cycle time

distribution, it is possible to approximate the effects of correlation

between consecutive cycles. Kuehn recognized that an i.i.d (independent

and identically distributed) service time random variable model would

underestimate measures of customer waiting-times. Consequently, Kuehn

introduced two kinds of cycle-times with the intention of increasing

cycle-time variance and thereby obtained better waiting time measures.

For the most part, the approximate methods that we suggest are

variations on Kuehn's method. An attempt is made to account for

correlation effects between neighbouring cycles. We include criteria

under which station queues are stable, indices of stability, the
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existence of stationarity, applications of rarefactions, and a new

definition of fairness. The same ideas are applied in determining the

cycle-time distributions of the server in a complex nonexhaustive

service discipline. In the latter analysis the idea of maximization of

the entropy functional is used as a method of obtaining steady-state

distributions.

The service vector methods are a recent development and

consequently, there is scope for improvement. For the first time, this

problem has been placed in a queueing framework that is both appropriate

(unlike M/G/l queues) as well as familiar to readers of the more

advanced queueing literature. The key to this solution lies in a Markov

renewal matrix and the corresponding embedded Markov matrix.

Unfortunately, for an N station system, the required square matrix is of

size 2". This matrix enables us to study transitions between cycles of

various types and the effects of varying station parameters on the

system. Again, the cycle-time distribution is obtained as a first step.

In this case the cycle time random variable is station dependent, and

the distribution obtained is functionally exact. Additionally, it is

shown that the cycle-time distribution is unique. Otherwise stated,

this is really an invariance result. In the interests of brevity we

restrict our discussion only to an analysis, for the most part. We

reserve much of the application for later work. Given the transition

matrix, it becomes possible to embed our problem into single server

queueing systems with semi-Markovian service and thereby solve for

restricted mean waiting time and mean queue length for a given station.

The chief assumptions made in the various sections of the analyses
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may be summarized as follows. In the approximate methods the assumption

is one of independence between different queues, as explained above. In

obtaining cycle-time distributions under independence, exponential

random variables are used. Actually, the exponential restriction is

required only for customer interarrival times. Similarly, in the

service vector methods, only the customer arrivals are required to be

Poisson. All other distributions may be arbitrary. In all cases we

conveniently assume existence of the first two moments of every

distribution involved. Besides these, the only other assumptions are

that the system is perfectly reliable, transmission or server behaviour

is flawless, and queues whose steady-state distributions we seek satisfy

a given stability criterion. The stability criterion as stated holds

for GI/G/l queues.

1.6 Organization Of The Thesis

The use of queueing theory in the study of communication models or

related applications is so widespread that any survey of the literature

for applicable models must almost surely be incomplete. The review

presented in this chapter demonstrates a collection of useful problems

in the realm of multiqueues that has not been given due attention. We

focus our interest on a special member of this class and in the course

of the dissertation, indicate the many difficulties that arise in the

analysis. The token-passing protocol is formally described as a

multiqueuing problem in a probabilistic context in chapter II. The

parameters of the queueing system are introduced and interpreted in
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terms of token-passing systems. We take the opportunity to briefly

review the definition of a Markov renewal process in terms of required

notation.

The two approaches used in studying the multiqueueing problem form

the two major portions of the dissertation. In chapter III, we

introduce the exact SV methods for cycle-time distributions and obtain

invariance and insensitivity results. In chapter IV, these results are

put to use in determining useful queuing measures. Additionally, we

define a random variable to represent the system's channel utilization.

The results in chapter III are basically applications of Markov

processes and numerical analysis, and the results of Chapter IV rely on

PH-distributions [Neutel]. The results are merely stated in the text,

and all proofs are given in the appendix.

In chapter V we introduce the approximate SP approach, or the

model based on an independence assumption. The cycle-time distribution

is derived for asymmetric and symmetric systems. Interestingly enough,

both the SV as well as the SP approach yield cycle-times whose

distributions are (finite) mixtures. In chapter VI the approximate

cycle-time time random variable is further analyzed for an application

in the study of the queueing process at a fixed station. For the most

part, this analysis focuses the effects of cycle-time dependency on the

queueing process a station.

In chapter VII some conditions (necessary and sufficient) are

presented under which the token (on systems whose packet arrival rates

are constant for the different stations) sees stable queues of packets.

A new definition of fairness is given. This definition relies on
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information that is in distributional form. With such information, we

will be able to vary parameters to obtain fair protocols, or even

compare two (or more) systems, to decide which is more fair.

Additionally, we present an application of rarefactions to a point

process obtained via the token's departure instants at a station. Under

heavy or light traffic, the point process is approximately alternating

renewal and yields the (approximate) distributions of token busy and

idle periods with respect to a fixed station.

Chapter VIII deals with a (non-existent) token-passing scheme

based on a complex service discipline. The motivating idea is that

under certain conditions, an adaptive token (made to adapt in a simple

fashion to states of the network) will perform better than a

non-adaptive one. Using an approximate approach, we obtain

distributions for cycle-times associated with this system. In chapter

Ix we summarize and conclude our study and also outline some interesting

problems in the shape of future work.



CHAPTER II

A QUEUEING MODEL FOR TOKEN-PASSING SCHEMES

In developing a stochastic model for token-passing on buses and

rings we resort to the theory of Markov processes. In particular, we

use a class of random processes called Markov renewal processes. This

class is useful for modelling complex systems and has the advantage of

including many of the standard processes that are popular for modelling.

The theory of Markov renewal processes has been known since the

pioneering work by Levy [Levy54] and Smith [SmitSS]. Its popularity is

chiefly attributed to the two papers by Pyke [Pyke61a, PykeGlb] though

the theory was already being applied in inventory models and queueing

models even before this time [Pabe61, Finc59]. In the following two

sections, we present a formal definition of the token-passing model and

a brief review of Markov renewal processes. In addition, we relate the

parameters of the model to the parameters of token-passing systems.

2.1 The Multiqueue And Cyclic Server Model

The token-passing protocol can be viewed in terms of the

multiqueue and cyclic server model [ReNiad]. The MQCS model is a system

of N independent buffers, chained together to form a ring by sections of

varying cable lengths, as depicted in Fig. 2. Packet arrivals at

station j are generated by some process with interarrival distribution

26
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given by Aj(t) = Pr(IjSt), where Ij is the interarrival time random

variable at station j, jes = {l,2,....,N}. Let us label the walk

between station (j-l) and station j as wj, jeS. In our notation (j-l)

indicates the station just prior to station j, and (j+l) indicates the

station immediately after j on the path of the token. The station index

immediately after j is obtained by computing j mod N + 1. If the

circulating token finds a waiting packet at the buffer of station j, a

transmission of random length Xj ensues, with probability distribution

function Bj(t) Pr(XjSt). If not, it SWitCheS from walk wj to walk

wj+l' taking a random time Vj, with distribution function

Sj(t) = Pr(VjSt). In any event, after leaving station j, the token

spends a random time Yjfl in walk wjflew a {wl,w2,.....,wN}. Y). has

distribution function given by Uj(t) = Pr(YjSt), jes.

We use the term distribution to denote the cumulative probability

distribution, while the term density is reserved for the probability

density function. For analytic convenience, we assume that all

distributions have finite first and second moments. Observe the

following points regarding standard queueing notation. For a fixed

index j, the queue at station 1 is a single server queue. The fact that

the server is unable to give uninterrupted service to queue j does not

change a j-customer's view of this queue as a single server queue.

Thus, queue j is really a GI/G/l queue, where the customer interarrival

distribution is given by Aj(t). Though customers at station j spend

only a random time Xj in service, the GI/G/l approach requires the

service time random variable to be the length of time that the server

spends away from station j from the time the last customer's service
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began.

The time that the server spends away from queue j may be treated

as a server vacation. Several traditional models usually take this

vacation time to be a random variable which is independent of the

general service time distribution. Clearly, the presence of dependency

between queues makes this approach an approximation in our case. If we

combine the vacation time with the random time that the server spends at.

station j, we obtain a single random variable that may be viewed as

station j's service-time random variable. This random time is the

cycle-time of the server as seen from station j.

It is convenient to introduce a random variable that describes the

amount of time that elapses starting from the instant that the server

finds station j empty to the instant that the server finds a customer

queued at this station. This time is called a vacation period of the

server, since a station j customer arriving in this period will find the

server unavailable. Though queue j remains a single server queue in the

cycle-time context, it can no longer be treated as a GI/G/l queue. This

is because the consecutive customer service-times (i.e., cycle-times)

will no longer be i.i.d. To be precise, the queue must be labelled as a

GI/GD/l queue, where the ”GD” denotes a dependent service-time random

variable. If this dependence can be placed in a semi-Markovian setting,

we will have a GI/SM/l queue with vacationing server at station j. If

we visualize the entire system of N queues as a single queue, the

notation GI[Mo]/GD/l or GI[MD]/SM/l can be used for the appropriate

situations. In order to avoid any confusion when referring to any

particular view, we will always describe the queueing configuration.
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The notation MQCS/s-QED a l is used to described the entire N-station

system with respect to the queue emptying discipline that is of major

interest to us.

Due to conceptual similarities, a token ring and a token bus can

both be analyzed with the same performance model. However, due to their

structural differences, the choice of certain system parameters will

differ. On a ring, the walk time between two consecutive stations is

comprised of the signal propagation delay between the two stations and

the token-delay inherent to the two stations in creating and receiving

the token [Buxw84]. The first kind of delay is in the order of 5 u-sec

per Km of cable, and the second kind of delay (station latency) is in

the order of 1 bit tbme. In comparison, the walk time on a token bus is

made up of three kinds of delays. The first kind is caused by the

transmission of the token, the second due to the signal propagation

delay between the stations, and the third due to the delay caused by the

token-receiving station before it transmits either a token or a packet.

Here, the first delay requires a time equivalent to the transmission

time for l52 bits [Buxw84], the second is precisely the maximum

end-to-end propagation delay of the cable, and the third is typically in

the order of 1 bit. Thus, in terms of throughput and delay, a ring

scheme performs better than a corresponding token-passing bus [Stuc83].

As token-passing service disciplines become more complex, it will

be more convenient (or perhaps necessary) to view token related delays

as being of two kinds. One kind will involve station delays, i.e.,

pattern matching circuit delays, delays between token receiving and

reaction times, delays in scheduling near optimal paths etc. The other
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class of delays will be due to signal propagation, token-transmission

time, or even delays caused by an unreliable server (such as a lost

token). With a view towards this type of generality, it was decided to

incorporate the notion of switching times in the MQCS model. These

random times are intended to serve as station related delays. The

second class of delays are represented by the random walk times between

stations.

Performing the analysis is a first step toward acquiring tools for

understanding system behaviour as a function of system parameters. In

an average sense, only two basic characteristics of a local network,

i.e., propagation delay and data rate, set an upper bound on

performance, independent of the channel access protocol [Sta184]. This

is especially true if performance is defined in terms of system

averages. In our model, since we are interested in a more detailed view

of individual stations' characteristics, we choose to model systems with

variable propagation delay between pairs of stations, as well as

variable switching times. Introducing such randomness is one way to

obtain somewhat more realistic and detailed measurements about queueing

processes, such as distributions of packet delay, minimum and maximum

packet queue-sizes, etc. Such information is useful for large systems

with asymmetric traffic characteristics and constraints on

packet-queueing time or buffer sizes. Once again, we will only be

interested in the steady-state behaviour of token-passing systems with a

simple service scheme, s-Qlfl = l and FIFO within queues, flawless

message transfer, and a perfectly reliable physical configuration.
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2.2 Markov Renewal Processes

In this section we present a brief review of Markov renewal

processes and then interpret our problem in terms of notation that we

develop as we proceed. In order to properly define a Markov renewal

process we need a sequence of pairs of random variables from our system.

Let Zn be a random variable taking values in a finite set 5* for n in

the set of non-negative integers 1+. Let Tn be another random variable

such that for each Zn€S*, Tn takes values in the non-negative real

numbers 6+. The complete probability space (O,F,Pr) is defined with

n

: 0 -----> R+

*

2:0 ----->5.

Tn

such that

O = To(u) S Tl(w) S .... S Tn(u) S ...., for 069.

The sequence of pairs {(Zn,Tn)} is called a Markov renewal process if

Pr( Zn+l = j I T - Tn S tl zopeeeeep Zn I ToleeeeeITn)

n+1

Z ). (1)

We take To = 0 for the rest of the discussion and suppose that

fl

Pr( 20 = k ) is given, for some res . The sequence {T —Tn} forms a
n+1

sequence of dependent random varables, because (T ) depends on
n+l'Tn

zn+l and Zn for every n€I+. We will assume that {Tn’ n2 0} is

persistent, i.e. Pr( Tn” - Tn < .. ) = l, for all nef. Additionally,

to exclude the possibility of the process passing through infinitely
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many states in zero time, we assume that Pr( Tn+ — Th 5‘ O ) = l for all
1

neI+. It can be shown [Pykefila] that given {Zn}, the {T -Tn} are
n+l

mutually conditionally independent and satisfy the properties,

(Pl) the process {Zn , neI+} forms a Markov chain satisfying

Pr( zn= j | 20,...,zn_l ) = Pr( 2n = j | zn_ = i )
1

(P2) {Tn I Zn = z} forms a renewal process for every fixed zes .

Let Q be a square matrix with entry Qij(t) S 1 being a

*

nondecreasing right continuous point function for i, j€S . Q is called a

t *

semi-Markov kernel over S if, for each 395 , the following properties

are satisfied.

Qij(t) = O for t s O, and

(2)

z . Qi.(+o) = 1 for 195*.

jes 3

Observe that the Qij's define the joint conditional probability

Qij(t)=PF(Zn+1=j , Tn+1'Tns t | zn=i) (3)

Equation (3) says given that the present state is i, Qij (t) describes

the probability of making a transition to state j after spending at most

time t in state i. The kernel Q serves (for a Markov renewal process) a

purpose analagous to the function of the transition matrix P in a Markov

Process. Thus Q is really a matrix of transition functions for the

process. In simulating the process, the states of the Markov chain must
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first be genetrated with the aid of P. Given that a transition has been

made from state i to state j, Qij(t) defines the distribution of the

random time that elapses before the next jump is triggered. The

probability transition kernel of the embedded Markov chain is defined as

P = 9(9).

In our application, we are mainly interested in the limiting

probability distribution for the semi-Markov process {Z(t)}. This

describes the limiting probability ej of finding the server in any

particular state -j,j€S. , provided the process is stationary. The

service probability approach (see chapters V and VIII) used in the

derivation of cycle-time distributions requires an invariance result for

semi-Markov processes in order for the distribution {¢j,jeS*} to exist.

Such a result is already known, first provided by Arjas, Nummelin, and

Tweedie [ArNT78], and later McDonald [McDoBS], for different conditions.

A similar result, much simpler and restricted to our special case, is

obtained in Theorems 5.1 and 8.4. The essence of the result is an

invariant probability measure for the sequence of probability transition

(k)
kernels P .

In our service probability and service vector applications, a

t

particle makes a sequence of transitions in a finite space S according

(n)
to a sequence of probability transition kernels {P ;n=l,..o}. If the

particle is in state 1 after (k—l) transitions, it goes to state j with

(k) on the kth transition. If the distribution of thea probability pij

random time spent by the particle between transitions depends, in

general, on the transition number, the current state, and the next

'state, then the process can be seen to behave as a semi-Markov process
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with a varying probability transition kernel. If the kernel Q of the

renewal process is known, for each probability matrix P, and if an

invariant probability measure A can be shown to exist for P, then the

classical limit theorems for semi-Markov and semi-regenerative processes

are shown to be robust enough to accomodate our case [McDoBS]. Let

"x be the mean time spent by the process in state x, xes*. McDonald

showed that under certain mixing conditions,

. A(z)uz

llm P{Z(t)=z} = ——-———— (4)

tea 2 . A(x)ux

X95



CHAPTER III

CYCLE-TIME DISTRIBUTIORS VIA SERVICE VECTORS

In the following analysis, a method for deriving the server's

cycle-time distribution for a general, asymmetric MQCS/s-QED = 1 system

is presented. The assumption that arrivals are Poisson is not crucial

to the cycle-time analysis, and all input distributions may be general.

We only require that a certain chain of events satisfy the Markov

property, and this follows by construction. The cycle-time distribution

is defined with respect to a given station which we call a reference

station. Without loss of generality we take station j to be the

reference station.

There are two ways in which we can measure the cycle-time of the

server at the reference station. If an observer is positioned at the

departure point of station j (i.e., the point at which the server exits

from this station), and the observer is required to report to us the

random times between server reappearances at this point, then we obtain

cycle-times of departure type, or dep-cycles. If the observer is

positioned at the reference station's scan point (i.e., the point at

which the server enters this station, to check for possible customers),

then we obtain cycle-times of scan type, or scan-cycles. The length of

a dep-cycle is the random time between two successive appearances of the

server at the departure point of the reference station.

Correspondingly, a scan-cycle length is defined as the random time

36
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between two successive appearances of the server at the reference

station's scan point.

In the analysis that follows, we derive the distributions of the

cycle-times of scan type. This is based on simple probabilistic

arguments and Markov renewal theory. In addition, we obtain a result of

some interest. It is shown that the cycle-times of dep type measured at

station j possess the same distribution as the cycle-times of scan type

measured at station (3') modN + 1. Also, it is shown that the

cycle-times of scan type (or dep type) have a unique distributional

form, independent of the reference station j. Putting these two results

together, we obtain the interesting observation that all N dep-cycles

and all N scan-cycles have the same distributional form, i.e., the

system's cycle-time distribution is unique, and independent of the point

at which the measurement is made.

Section 3.1 introduces an external view of the system, in which an

observer positioned at the reference station's scan point behaves as a

particle in a Markov renewal process. In section 3.2, the structure of

the Markov renewal process is exploited in order obtain the Markov

matrix describing the observer's steady-state transitions. Once this is

known, solving for the invariant vector inevitably leads to a

steady-state form of the cycle-time distribution. This distribution is

obtained in the form of a finite mixture and is functionally exact.

Section 3.3 contains some results on the invariance of cycle-times and

the insensitivity of the cycle-time distribution. The last result is

somewhat surprising in that the exact cycle-time distribution of the

server can be reduced to a function of only the mean conditional and
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unconditional cycle-times.

3.1 The Markov Chain Of Vector Transfers

Assume that the queueing process at station j is stationary and

that the system is operating at steady-state. Let C be the random time

that elapses between two consecutive vector transfers from the server to

the observer. The limiting distribution of this random time is our

focus of interest. The mechanics of the approach that we use to arrive

at this can briefly be explained as follows. In Fig. 2 we see that the

server makes service cycles in order of increasing station indices,

moving over to station 1 after station N has been visited. On each

cycle made with respect to station j, the server constructs a (binary)

vector, called a serVice vector, that records individual station events.

On completing the cycle, the server instantaneously (i.e., in zero time)

transfers the vector over to the observer and begins another cycle. We

make the assumption that this transfer may take place at any time prior

to or precisely the scan instant at the reference station, but only

after the server has left the preceding station's departure point.

Additionally, we require that the transfer be made at the same physical

point for every cycle. Let 6 be the set of all N-bit binary vectors.

The observer can be viewed as a randomly moving particle, with each

vector transfer corresponding to a transition by the particle between

states of a Markov renewal process. In this case, the state space

5* will be the 2N states of the set 6.

Let T1' T2,..., Tn,... be the instants in time at which the
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observer acquires the service vector from the server. Assume that

+ + ,

To - 0, and (Tn+l - Tn) > O, for all n, n91 , Tnea . Define the serVice

vector Z = <zj,..,zN,zl,..,zj_l> as

1 if a station i customer is served in the current cycle

0 otherwise,

for all 185. If j = l, we take (j-l) to denote station N. At time T“,

(n) (n) (n),
the observer receives a service vector Zn = <zj , .., ZN , zl

.., zj_1(n)> associated with the nth transition of the process.

The sequence of states 20, Zl,..., Zn,.... forms a Markov chain.

When time spent by the observer in any state (i.e., a cycle-time) is

taken into consideration, then since this random time is generally not

exponentially distributed, {zn'Tn} will be a Markov renewal process.

Due to the nature of the transitions, i.e., different service vectors

define different service patterns, the time spent by the server in a

state before a transition is made will be a function of the current

state and the next state.

3.2 Asy-etric Systems With General Distributions

In making a transition from a state Zn = z to a state zn+l = z ,

the random time that elapses is precisely defined by the vectors

I I I

z = <zj,...,zj_l> and z = <zj ,...,z j-l>’ If the limiting

distribution of the related semi-Markov process can be determined, the

cycle-time distribution for station j easily follows. In order to deal

with the Markov renewal process, we need its kernel of transitions Q.
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In order to obtain the kernel, our approach requires the probability

transition matrix P corresponding to the Markov chain {Zn} embedded at

the instants of vector transfer from server to observer. For each

possible transition 2 e z', with z,z'ea, we require the steady-state

probability p(z,z') of making the transition.

In the situation where the buffer capacity at each station is

exactly one, the stochastic process governing packet queue lengths can

be placed in a simple framework. If the server can encounter at most

one customer waiting for service at any queue, the queueing process

(seen by the server) at any station takes on a regenerative form, with

future events that are probabilistic replicas and independent of past

events at this station. In essence, this becomes a slightly modified

version of the M/G/l/K queueing problem whose solution and transition

matrix for the embedded chain are well known. In our case, the

assumption of unrestricted buffer capacities makes events associated

with the server's current scan instant at a station depend on past

events at the station. The lack of a regenerative or easily identified

semi-regenerative structure for this process requires another approach

in obtaining P.

In order to obtain a particular transition probability, it is

necessary to examine the time involved in making the transition from the

starting state into the target state. Define a shift operator M that

maps a vector two-tuple from the set 6x9 into the same set such that

M{(x1,...xN).(xl ....xN )} = {(xz....xN,xl ).(x2 ...,XN .x1} (1)
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The mapping views a vector two-tuple as a 2N-bit computer word and

does an end-around left shift on the word in such a way that all bits

move to the left by one position, while the leftmost bit falls off the

left edge and is placed in the rightmost (vacated) bit position.

Applying M recursively for a total of 2N times will yield the original

two-tuple. If we define the starting state 2 and final state 2' of a

particular transition as a two-tuple in 6x6, then with the starting

vector two-tuple and (N-l) repeated applications of M, we can obtain N

vector two-tuples corresponding to the given transition. Let the N

components of a transition 2 e z, (for scan-cycles at station j) be

given by the vector pairs <xj,yj>,.., <xN,yN>, <xl,yl>,.. <xj-l'yj-l>'

Observe that the vectors <xj> and <yj> are, respectively, the first and

second N bits of the 2N bit computer word representing [2,2,]. We fix

our attention on each vector of the form <xi>, ies, and let 61(k)

represent the kth entry (i.e., either 0 or l) of this vector.

Physically, the entries of <xi> indicate exactly which stations required

service (and which stations did not) on station i's scan-cycle during

the transition 2 e 2', 19s. Given such information, it is a simple

matter to compute the length of this particular cycle as a sum of

independent random variables.

The probability of a transition from z to z, is obtained as a

product of N probabilities, one from each station. For each m,

l S m S N, the nth station on the path of the server after a vector

transfer to the observer is denoted by 7(m,j) = (j+m-l) mod N. For each

I

transition 2 e 2 recorded by our observer at station j, and each m,

1‘s m S N, the time taken by the server to make a complete cycle with
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respect to station 7(m.j) is given by

, N

T7(m'j)(z.z ) = kil { J“m j)(k) + Y7(k'j) } (2)

where

J7(m.j)(k) = 57(m,j)‘k’ X7(m.j) ' ‘1 ‘ 57(m,j)‘k” ”7(m.j) ‘3’

Since the random variables Xk, Vk and Yk are independent for all

k, Eq.(2) essentially describes the random cycle-time associated with

station 1(m,j) (for transition 2 4 2' at the observer's point) as a

linear combination of independent random variables. The distributions

of arbitrary linear combinations of independent random variables can be

obtained by the usual techniques [Spri79]. In the case of exponential

random variables, and also gamma random variables with a restricted

class of parameter types, exact results and computational forms are well

known [AlOb82, Math83]. Given arbitrary distributions for each Xk , Vk,

and Yk’ the distributions of the random times described by Eq.(2). can,

in principle, always be obtained. In practice, unless the distributions

8 , Sk and Uk are extremely complicated, the distribution ofk,

T1(m j)(z,z ) can be determined either in exact form or a form suitable
I o

for computation. For the remainder of this chapter, let the

distribution of the random variable 1 )(z,z') in Eq.(2) be denoted
701113.

I I

by F (.,z,z ), for m = l,2,...,N, transition 2 e z , and each

7(mrj)

(fixed) reference station j. Observe that a strictly asymmetric system

will possess 2" possible distributions of this type.

I

In order to make the vector transition 2 a z , the server must
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encounter individual station transitions of the form

4 " — .27(m,j) z 7(m,j) during station J 5 scan cycle For each m,

I

S S , . e .l m N denote the probability of transition 27(m’3) z V(m’J) by

£7(m j)(z,z ). This is the probability that the server encounters

27(m j) customer(s) (i.e., either 0 customers or 1 customer) on the

I

first visit and z j) customer(s) on the second visit to station

I7(m

7(m,j). Let pk(n,z,z') denote the probability that n customers arrive

at station k during arandom time Tk(z,z'), where k takes on integer

values between (and including) 1(l,j) and 7(N,j). Note that this

corresponds to the probability of n arrivals at station k during the

time the server was away from this station, i.e., during a reference

station's scan-cycle transition. If the arrival process at station k is

Poisson, with positive, constant intensity 1k, res, this probability can

be obtained as

I - - n I

pk(n,z,z ) - 3 exp( xkt)(kkt) dFk(t,z,z ). (4)

 

n .'

In the case of a general customer inter-arrival distribution for a

given station, the probability defined in Eq.(e) can always be obtained

by substituting the appropriate distribution in the integral to describe

the probability of n customer arrivals. Each scan-cycle transition

probability p(z,z') can be obtained as

p(ZrZ ) = n £7(m,j) (2,2 ) (5)
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where the approch taken in obtaining each component of the product in

Eq.(S) is explained as follows. For transition 2 4 z', and

k = 7(l,j),...,7(N,j), let events Ak and Bk denote the outcomes of the

binary random variables ”x and z'k , respectively, for given j. We use

the basic probabilistic idea that

P( B /\ A ) = P( B | A ) P( A ) (6)

to obtain each probability zk(z,z'). The event Ak tells us if a

customer was served at station k on the server's last visit to this

station, during transition 2 4 z, . If a customer was not served at

this station (i.e., Ak = O), the cycle-time takes on a value that is

smaller than c, cee*, with a probability that is strictly less than the

corresponding probability for a cycle-time incorporating a customer

service at this station. In other words, for a given vector transition,

cycle-times obtained by excluding a service-time contribution from a

particular station are stochastically less than cycle-times that include

such a contribution.

We are interested in computing the conditional probability

p( Bk | AK ) for each station hes. Observe that knowing AR by itself is

not sufficient to compute this probability. If Ak = 0, then Bk is

strictly a function of the arrival process at station k and the random

time rk(z,z'). This can be computed with the aid of Eq.(S). It A = l,
k

then the situation becomes complicated, since we have no way of knowing

exactly how many customers are queued for service at station k. In

fact, this distribution of customer queue length is one of the many

distributions we seek. If we strictly seek the conditional probability
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that B = 1 given that A = 1, then indeed we are in trouble, since we
k k

must require the queue length distribution for this. Alternately, if we

seek the conditional probability that Bk = 0 given that A = 1, then we
k

can utilize the additional knowledge that this conditional probability

makes sense only if the number of customers queued for service at

station k when the server arrived there was precisely one.

Additionally, no customers must have arrived in the random time

Tk(z,z'). The latter probability is obtained from Eq.(S), but the

probability qk that station k's queue length is exactly one (given that

Ax = l or that it was found nonempty) still remains to be computed.

An example is presented in the following section to demonstrate a

method for computing each qk. Other methods are also described. For

now, assume that we know how qk may be computed for each has. Then with

the aid of Eq.(S), we can write down an expression for computing

I

£k(z,z ), for each res, as

Pk (OIZIZ ) zk=0, Zk =0

[l - pk(0.z,z )] zk=0, zk =1

£k(zpz ) = (7)

PK (01212 )qk 21:31, Zk =0

[l - pk(0.z.z )qk] zk=l, zk =1

At this stage, we have the necessary material to enable us to use

results from Markov renewal theory, if we interested in renewal

analysis. We are interested in the distribution of time that the token
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spends in scan-cycles, as seen by the observer at the reference station.

So, we first focus our attention on P. In particular, we are interested

in the limiting distribution of the Markov chain whose transitions are

governed by P. An application of standard techniques [Klei75] will

yield the limiting distribution {wz,zee}, where ”z is the steady-state

probability that the vector transferred to the observer by the server is

269. Note that this distribution ignores the time spent by the particle

in the various states of the related semi-Markov process. The length of

time spent by the observer in any state 2 = <zj, ..zN,zl, .., zj-l> of 9

is given by the random variable

C(z) = 2 [z +

1.95 7(i.j) Xi (1 ' 270,37) Vi + Y'] (8’.1

with law FC )(.), easily obtained as the distribution of a linear

(z

combination of independent random variables.

In order to obtain the limiting density of the semi-Markov process

{z(t)}, we compute the probability of each state 2 as the product of

'z and E(C(z)) normalized by the sum of all such product probabilities.

Let {‘2' zee} be the probability density obtained in this manner. Each

random service vector 2 describes a service cycle (made with respect to

the observer's position at the reference station) of length C(z), and

occuring with steady-state probability ‘2 . The cycle-time random

variable as seen by the observer will have a distribution given by

F (t) = Z t F (t) (9)
C 269 2 0(2)
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Limiting service vector is (0.3604,0.07l7,0.0497,0.5181)

Fig.3 Markov model for two station example
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The time-considered distribution of cycle-time may be obtained by

replacing ”i by oi for each state i in Eq.(9).

3.3 Application Of The SV Method

In this section we apply the methods just presented to demonstrate

how the cycle-time distribution may be obtained. For convenience, we

assume negligible switching times on a strictly asymmetric, two station

system. Let the arrival rates for stations l and 2 be denoted by Al and

12, respectively. Let the mean service times and mean walk times be

given by l/ak and l/ak, respectively, for k = 1,2. A graphic

description of this scenario is given in Fig. 3, with the system

observer positioned at a point on the path of the server from station 2

to 1. Thus, station 1 is taken to be our reference station.

Assume that the system is operating at steady-state. There are

four possible service vectors (corresponding to service cycles) on our

two station system, and these are (00), (01), (lo) and (ll). The

ith entry of each vector tells if station 1 did or did not require a

customer's service on the cycle represented by the vector, for i = l,2.

For example, if the observer obtains a vector 10 from the server, this

is taken to mean that station 1 had one customer served, but station 2

had no customer served in the most recent cycle. For a given vector

(ij), let xij be the probability that no customers arrive at station 1

during a service cycle represented by vector (ij). The corresponding

probability for station 2 is denoted by Yij'

We are interested in constructing a 4 x 4 transition matrix P
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representing transition probabilities for the four different kinds of

cycles seen by the observer. Assume that two vectors consecutively

transferred to the observer are (00) and (01). This means that station

l had no arrivals during its server cycle (00). One application of the

shift operator in Eq.(l) will allow us to determine events at station 2.

Thus, the transition is possible only if station 2 had one or more

customer arrivals during its own server cycle (00). We are interested

in computing the probabilities that the server encounters no customers

at each station given that each station saw the cycles (00), (01), (10),

and (11), respectively. Note that computing the complementary

probabilities directly would be extremely difficult (if not impossible),

since we have no information on queue lengths. Let these probabilities

be denoted by Pk[ o | ij 1, for i,je{o,l}, and k = 1,2. Recalling that

qk is the probability that exactly one customer is queued for service at

station k, given that it is not empty, the conditional probabilities for

k = 1,2 are easily determined as

an=Pl[0|00] = 300 bll=P2[0|00] = YOO

a21 = P1[ 0 I 01 1 ' xOi ”21 = P2[ 0 I 01 1 : yOl (10)

a31 = P1[ 0 I 10 1 ’ x10 91 ”31 = P2[ 0 I 10 1 g le qz

a41 = plt o | 11'] = x11 91 ”41 = P2[ 0 I ll 1 ‘ yll 92

Let the complementary probabilities for stations 1 and 2 be

denoted by an 2 and DH 2, respectively, for n = l.2,3,4. It now remains

I I

to apply Eq.(S) in order to obtain P. Once this is done, the transition

matrix corresponding to the embedded Markov chain of server cycles may
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be written as

oo 01 10 ll

00 all‘bll all‘blz a12"”21 a12*b22

01 a21*”31 a21"”32 a22"”41 a22*b42 (ll)

10 a31*”11 a31"”12 asz'bzl a32*”22

11 a41*”31 a41"”32 a42"”41 a42"”42

At this stage the matrix in P described by Eq.(ll) is easily .

computed if the two conditional probabilities ql and q2 are known. We

now describe a method that allows us to compute them explicitly. Since

P describes a Markov chain for which each state is aperiodic, recurrent,

and nonnull, the Markov chain of vector transitions must be ergodic.

Treating the four limiting state probabilities w 0’ and x

00' ”01' ”1 ll ‘5

well as the conditional probabilities ql and q2 as our six unknowns, we

proceed to determine the matrix in Eq.(ll). With Foster's criteria

[Fe1166] it can be shown that the Markov chain's ergodicity implies that

the four limiting state probabilities satisfy a system of four linearly

independent equations (one of them being the conservation equation, in

which all four probabilities add to one). These four equations still

involve the unknowns ql and q2 . To determine these, we make use of the

mean cycle-time (see Eq.(S) of chapter V) and mean conditional

cycle-times (see Eq.(l) of chapter VII). With these additional

equations, ql and q2 are easily computed. Thus, the matrix and the

invariant vector of limiting probabilities are both determined. By

multiplying the qi's by their respective conditions (i.e., by the

probability that station 1 is not empty at its scan instants, obtained



51

from Eq.(4) of chapter V), the unconditional probability that station i

has exactly one customer queued at its scan instants can also be

determined.

Consider the following numerical example. Let A = 0.0032 and
1

k2 = 0.003492 be the mean arrival rates for stations 1 and 2,

respectively, assuming Poisson arrivals. Also, assume that the service

times and walk times for both stations are exponentially distributed

random variables. Let the mean service times for stations 1 and 2 be

E(X1) = 1/61 = 198 and E(X2) = 1/52 = 100, respectively. Let the

server's mean walking time from station l to station 2 and vice—versa be

given by l/al = l and l/az = 2, respectively. It is now a simple matter

to compute xi and yij for i,j€{0,l}. Once this is done, a system of
1

six independent equations involving "ij and qi , for i,j€{0,l}, can be

set up to enable us to solve.

In this particular example, we chose to obtain ql and q2 from the

mean cycle-time equation in an iterative fashion. Note that an

iteration is not really necessary since these probabilities may be

determined explicitly. Using an iterative criterion that selected both

5
qi subject to a permissible difference of 10-1 between the iterated

mean cycle-time and the exact mean cycle-time, we obtained

ql 8 0.0870366 and 92 8 0.0805674. Consequently, the limiting state

probabilities of the embedded Markov chain are obtained as r - 0.3604,

00

3 0.0717, 0.0497, and I = 0.5181.
'10' 11

Let the random cycle-lengths corresponding to the four service

'01

vectors be F00, F01, F10, and F11, respectively. Note that each Fij'

for i,je{0,l}, is a generalized Erlangian distribution composed of at
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most four distributions of independent, exponentially distributed random

variables. Thus, the (embedded) cycle-time distribution witnessed by

the observer at the instants of vector transfers is given by

.FC(C) = (c) (c) + n' (C) + n (c) (12)
”00 P00 + ”01 F01 10 P10 11 F11

The method for computing qi described above is one in which a

system of equations must be solved. In general for an N station system

possessing ergodicity, the transition matrix (and the conservation

equation) will yield 2" equations for the 2" limiting state

probabilities associated with the service vectors of the system. In

order for the invariant vector to be determined, it is essential that

the N probabilities ql, ...., qN first be determined. Thus, an N

station system will have 2" + N unknowns. Having already accounted for

the 2” equations obtained from the transition matrix, the N mean

conditional cycle-times (Eq.(l). chapter VII) fully determine the

system. Figure 4a depicts the analytic versus simulated cycle-time

densities tor this moderately loaded system. Figure 4b is an enlarged

view of the extremely peaked behaviour or the density for small

cycle-times.

An alternate method is one in which all the limiting state

probabilities are expressed in terms of the unknowns qi, i = 1,...,N.

An expression can now be set up involving the limiting state

probabilites and the mean unconditional cycle-time. Equation (9) tells

us what S(C) should be in teams or the limiting state probabilities,

while on the other hand Eq.(S) of chapter V tells us what the exact
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value of E(C) is. Denote the estimate of mean cycle-time obtained from

EQ.(9) as Cq' The problem then reduces to choosing a point

(ql,q2,..,qN) in the N—dimensional unit cube such that the (nonlinear)

constraint |E(C) - qu is minimized. Still another method, involving

entropy maximization, can also be used. This method is used in chapter

VIII to solve a similar problem.

3.4 Invariance Of Cycle-Times

We obtain the result that for a general asymmetric system, the

distribution of the observer's scan cycle-time is independent of the

index of the station from which the observer makes the measurement. At

first glance, this result appears surprising since two different

stations must possess different transition probabilities corresponding

to the same vector transition. But, note that the cycle-time random

variable can be defined as the time taken by the token to make one

complete traversal of the (logical) ring. This random time must possess

the same distribution regardless of the reference point where the

measurement is made. This is an interesting property, in that the

cycle-time distribution really is unique.

Let A1, A2, ..., AN be the N binary valued random variables

associated with service events at the respective stations during any

steady-state cycle. Define p1 = P(A1 = l) to be the unconditional

probability that a customer is queued at station 1, waiting for the

server during an arbitrary steady-state cycle, and let P(Ai 8 O) to be

the probability that station 1 is empty. Observe that these N random
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variables are not independent. However, given the limiting

probabilities for the 2N vectors, we can proceed to solve for the

probabilities pi as follows. We make use of the identity

N N

P(A \/A \/...A ) = z P(A.) - 2 P(A./\A.)

1 2 N i=1 i<j=2 l 3 (13)

N
N-l

+ z P(A./\A./\A ) + .... + (-1) P(A /\A \.../\A )

i<j<r=3 l J r l 2/ N

Equation (13) expresses the joint distribution of the N random variables

A i = 1,...,N, in term of 2N - l unknowns. Since the 2" limiting1!

state probabilities in {xi} are really joint probabiities, Eq.(lB) can

be used to solve for the joint distribution of an arbitrary combination

of the Al or even the marginals, P(Ai) = pi, i = 1,...,N. The following

results are proved in the appendix.

Lemma 3.1:

Let Pj be the embedded probability transition matrix for

scan-cycles obtained with respect to station j, jes. Then, the

probability transition matrix P for station k = (j) mod N + 1 can be
k

obtained as

3' er ( Pj ) pk

where T is a transformation performed on each entry of the matrix P and

J

the superscript j indicates that the transformation is performed on the

it” multiplicand of each matrix element.
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Lemma 3.2:

Let Pj(s) denote the embedded probability transition matrix for

scan-cycles obtained with respect to station j, jes. Let Pj(d) denote

the corresponding probability for dep-cycles. Then, for each jes,

Pk(5) 8 Pj(d)

where k = j mod N + 1.

Theorem 3.3:

Let Pj(c) and Pk(c) be cycle-time distributions measured with

respect to (scan or departure points of) reference stations j and k,

j f kl jlke50 The!"

Fj(c) = rk(c) = 17(0)

3.4 Summary

In this chapter, we have shown that service-cycles on

token-passing systems can be uniquely associated with binary service

vectors. Using a fixed station as a reference point, the consecutive

service vectors seen at the reference station form consecutive states of

a Markov chain, and the corresponding service-cycle lengths behave as

renewal times in a Markov renewal process. Given the four input

distributions to a token-passing configuration (i.e., arrival, service,

walk, and switching) it is possible to completely formulate the

behaviour of the cycle-time process in a Markov renewal framework,

consequently allowing for the derivation of a (unique) cycle-time

distribution.
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A result of some importance has not been stressed in this chapter.

This is the fact that the distribution of cycle-time can be reduced to a

function of the mean cycle-time. The only other parameters involved are

the N probabilities that each of the N stations has exactly one customer

queued for service. There are methods for determining these

probabilities given the mean cycle-times. Additional results include

invariance properties for the cycle—time random variable, insensitivity

to reference station, and insensitivity to type of cycle.

The algorithm required to compute the distribution of cycle-time

as defined in Eq.(9) is an exponential algorithm. This will always be

the case for an asymmetric system since we must deal with the 2" states

of an N-bit binary vector. For symmetric and partially symmetric

systems the complexity will generally be less than exponential. In the

symmetric case, the expression in Eq.(9) can be put into a binomial

form. Note that for asymmetric systems the matrices involved will be of

the order 2”, while for symmetric systems the matrices will be of the

order N. The results obtained in the last section can be proved easily

for symmetric systems using the notion of exchangeable random variables

[Joxo77]. Only in the case of pure symmetry will certain key random

variables be exchangeable. Symmetric systems are by far more simple to

deal with than asymmetric systems. For example, Eq. (9) requires the

computation of only N Erlang (not generalized Erlangian) distributions,

if we are working with exponential random variables. In the asymmetric

case, this will require 2" generalized Erlangian distributions. It is

possible to reduce this to N distributions by performing certain

approximations. But this necessarily introduces some degree of error in



59

the result. In conclusion, the results of this chapter are very new and

as a consequence there is considerable scope for various extensions and

applications of renewal theory, reversibility, numerical analysis, and

several specialized results.



CHAPTER IV

PERPORHAHCE MEASUREMENTS USING SERVICE VECTORS

If we allow the arrival process at any one station, say reference

station j, to be Poisson, then the queueing process at this station can

be placed in the framework of a queue with semi-Markovian service times.

In order to do this we require the ideas developed in chapter III on

cycle-time distributions. The critical pieces of information are the

probability transition matrix P with entries given by Eq.(3.5), and the

distribution functions FC(z)(’)' for 269. There is a difference between

the queueing process at the reference station and the classical M/SM/l

queue [Neut66, Cin167]. In the latter system arriving customers are

assumed to belong to a finite class of customer types, and the service

time of the nth customer is a function of the types of customers (n-1)

and n. So far the situation is the same with our queueing process at

station j. In the classical M/SM/l queue, an idle period of the server

begins when the server finds the queue empty. In the queueing process

at station j, there really is no idle period. When the queue is found

empty, the server begins another cycle (with respect to station j), in

order to make an attempt to service each of the N stations once again.

A reference station customer who is positioned at the head of the

queue upon arrival does not find an idle server (or initiate a busy

period) as would be the case if the queueing system was M/SM/l.

Instead, this customer must wait for a random time that is the forward

60
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recurrence time of the cycle-time corresponding to the particular cycle

in progress when the customer arrives. Due to this difference, we call

our queueing process an M/SM/l queue with vacationing server. With the

aid of the invariance properties for cycle-times, i.e., the

insensitivity of cycle—times to scan points and to departure points, we

can freely move the observer from scan points to departure points (in a

consistent manner) and vice-versa, to help with the analysis. The

reference station index we use must remain fixed for the duration of the

analysis, since we obtain results for only one queue at a time.

In section 4.1 we embed the queueing process viewed by the

observer at station j in the M/SM/l queue with vacationing server

framework. The busy periods and the vacation periods of the server are

defined in section 4.1. In order to describe the distributions of the

busy and vacation periods it is convenient to resort to distributions of

phase type, or PH-distributions (see [Neutel]). This is done in section

4.2, along with a description of the different service times required by

customers of different types. We make the assumption of exponentially

distributed service, walk, and switching times at each station. This is

done for convenience and is not a necessary assumption.

In section 4.3 we define a three dimensional (countable state)

Markov renewal matrix that describes time-considered transitions for

queue length, successive customer types, and corresponding service times

for station j customers. Also, a stability criterion for the queueing

process at station j is stated. The distributions for packet queue

length and packet queueing delay are obtained in section 4.4 and section

‘4.5, respectively. In section 4.6 we apply the methods of this chapter



62

to the two station example presented in chapter III, and in section 4.7

we introduce a random variable to represent the system's throughput, or

token utilization.

4.1 Busy Periods, Vacation Periods, And Service Times

Assume that an observer is positioned at the reference station's

scan point and is recording service vectors for scan-cycles. Each

vector is of the form 2 = <zj, .. , zj-l>' where (j-l) is meant to

indicate a station 1 such that j = 1 mod N + 1. Define vk(z) to be the

kth entry of such a service vector, and let 61 = {z€9|v1(z)=l} be the

set of all service vectors whose corresponding cycles include service of

a reference station customer. Define its complement in 6 to be

90 = 9\91. For each (binary) service vector 2 recorded by the observer,

269, let d(z) be its decimal representation. Observe that

0 S d(z) S ZN-l. Let To be the instant at which the server completes

some cycle and hands over a service vector 2 to the observer. The

observer instantaneously identifies the most recent cycle-time as either

the service time of a customer of type d(z) if zeal, or a vacation-time

from station j if zeeo. Since it is possible for one or more such

vacation times to occur consecutively, a vaction period is the sum of

consecutively occuring vacation-times.

Consider a sequence of random pairs {Zk'Tk}' where Tk is the

instant at which the observer hands over vector 2x to the observer.

This corresponds to the completion of the kth cycle defined with respect

to scan-cycles at station j. Without loss of generality we take T = 0,
O
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and Zk to be defined only for k 2 1. We define a busy period of the

server to be the random time b defined by

b = Te-l ' Tn-l (la)

where

(l) e > n, for e.nei+,

(2) zeeeo, zneel, zn_leeo, and

(3) zmee n S m < e.1!

A vacation period of the server is the random time V defined by

(1b)

where

(l) n > e, for e,n€I+,

(3) ZmGGO,

zneel, ze_leel, and

eSm<n.

Let (zn’Tn) be the state of the two dimensional stochastic process

th
at the end of the n cycle and let Zn= znee The random service time1'

of the customer who entered service at time Tn depends on the vector

that the server gives to the observer at the instant Tn+l . At this

instant, the observer identifies the customer to be of type d(z), and

the service time distribution of this customer is thus found to be

Fc(z)(')’ This distribution was defined for an arbitrary vector 2 in

Eq.(3.2) and in terms of cycle-times in Eq.(3.8).
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4.2 Distributions Of Busy And Vacation Periods Of The Token

In order to cast our M/SM/l queue with vacationing server into an

M/SM/l framework in the sense of Neuts [Neut66] we are required to make

certain modifications. We permute the rows and columns of the

transition matrix P in order to obtain a new matrix P*. Let the columns

of P (in increasing order) be associated with the elements Cl""'cn'

for n = 2", each c169. Apply a (non-unique) permutation u on the vector

.

(d(Cl)..-.,d(cn)) to obtain the matrix P as

(2)

  

The intention of doing a permutation u on rows and columns of P is

to obtain P0 and P1 as probability matrices describing transitions for

Markov chains in 60 and 91, respectively. P01 is the transition matrix

describing probabilities of transitions from states of 6 to states of

O

61, and its dual matrix P10 defines probabilities of transitions from

91 to so. We relabel the rows (and columns) of 9* as l,2,...,n. Note

that this corresponds to a one-to-one mapping r0:60 e L, where

L = {l,2,...,n}. If we restrict our attention to the set

Lo . {l,2,...,m}, m = 2’”, and the elements of e that are mapped onto

L0, we obtain a Markov chain on the integers {l,2,...,m} with transition

matrix Po.

Applying a similar mapping r :9 e Ll, where L c L\LO. The matrix

I 1

P1 can thus be considered as the transition matrix of a Markov chain on

.the integers {m+l,...,n}. Since each element x in L1 can be uniquely
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associated with an element y in L0 by the linear transformation

y = x - m, we may conveniently consider P1 to describe the transitions

of a Markov chain on the integers in L0.

When dealing with our relabelled states, if we wish to recover an

element zee associated with some integer x of L0, we do the following.

If the transition is in P0, apply the inverse permuation v.1 on vector

(1,...,m) and identify the element 2 such that

o(.,.,d(z),.) = (.,.,x,.). If the transition is in P1, first obtain the

vector whose entries are translated by the positive quantity m and then

apply the inverse permutation to discover 2 as before. Note that the

relabelling procedure described is not necessary if we begin with a

probability transition matrix with raw (and column) indices already in

ascending order.

Let M0 and to be the column vectors whose 1th entries are given by

non) = 2: 901(13):) (3)

15m

coll) = z swam) (4)

lSkSm

Define Markov chains on the states {l,2,...,m+l} with transition

matrices obtained as

(5)

    

where Po and P1 are the substochastic matrices defined earlier,

satisfying the property that (I - P0) and (I - P1) are nonsingular
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matrices, where I denotes the identity matrix.

We motivate our approach to obtaining the token's busy and

vacation period distributions by recalling the definitions in Eqs.(la)

and (lb). A busy period b is initiated at the first instant that the

server transfers a vector of 61 to the observer and terminates at the

first instant that the server transfers a vector of 60 to the observer.

Similarly, the vacation period v of the token (again, defined with

respect to the reference station) is the dual period starting with a

vector transfer involving 60 and ending with a vector transfer involving

91. Since a busy period begins when a vacation period ends and

vice-versa, we see that the random points in time at which vector

transfers are made correspond to points in an alternating renewal

process. We are interested in the distributions of times between

alternating renewals.

Let Fv(') denote the distribution function of a token-vacation

period. A cycle that generates a service vector 2990 is understood to

be a cycle of the server's vacation period and is called a vacation

cycle. A token-vacation period is comprised of a random number of

vacation cycle-times. Recall that for an asymmetric system, vacation

cycle-times are not i.i.d random variables. Each vacation cycle-time

will be a sum of independent random variables, and will have a

distribution given by a finite convolution. Since each vacation type

cycle occurs with a certain steady state probability :21, 268 u, there

is a natural way to formulate the distribution of a random vacation

cycle-time as a finite mixture of finite convolutions. Since a

'token~vacation period is comprised of a random number of such vacation
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cycle-times, the distribution of a token~vacation period is a compound

distribution, given by repeated convolutions of the mixture. Because of

the repeated convolutions required, this is generally not a convenient

form for direct numerical computation. An alternative approach to

describing token-vacation periods is to resort to distributions of

phase-type [Neutsl].

Consider an (m+1)-state continuous-time Markov process with m

transient states and a single absorbing state. Denote its infinitesimal

0

generator to be the matrix Q , given by

(6)

  

where T is a nonsingular square matrix of order m with all diagonal

elements negative and off—diagonal elements nonnegative. Define the

m-vector e to have all entries as l. The m-vector R0 has only

nonnegative entries and is equal to -Te. Define v = (vl,...,vm) and let

(p, v ) be the vector of initial probabilities, satisfying
n+1

ve + v = l, for O S vm+ < l. The probability distribution P(.) of
n+1 l

the time till absorption in the state (n+1) is given by

P(x) = l - v exp(Tx)e for x Z 0. (7)

The distribution F(.) is said to be of phase-type (i.e., P is a

PH—distribution). The pair (v,T) is called a representation of P(.).

We will always assume that v = 0, so that F(.) does not have a jump
m+l

at 0. Under the assumption that the representation guarantees each

‘ state a positive probability of being visited prior to absorption, the
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Markov chain with generator T + no» is irreducible. The moments of F(.)

about the origin all exist and are given by

u(k) = (-l)k(r:)vr'ka for r 2 l. (a)

In the following discussion we present a scheme that allows us to

view FV(.) as a PH-distribution. The same argument can be used to

obtain the phase representation of the token-busy period distribution,

but we do not pursue that distribution any further. Assume that each of

the N stations utilizes exponentially distributed random variables for

service, switch, and walk times, with parameters given by 1/51, 1/11,

and l/ai, respectively, for each station i, 165. This assumption is

made for analytic convenience, since generalized Erlangian distributions

lend themselves very easily to phase representations. For any vector

2690, the distribution Fd(z)(') is an Erlangian distribution with a

phase representation described as follows. Let ‘d(z) be a 2N-bit vector

with all entries as zero except the very first entry, which is a 1.

Then the pair ('d(z)' T) is said to be a representation of Fd(z)' with

entry (i,k) of the order 2N square matrix T given by

-a1, 1 odd-valued, i = k

ai, i odd-valued, k = (1+1)

Tik = . (9)

ui(z) 51 + (l - vi(2)) 71. l even-valued, i - k

-vi(z) pl. - (l - u1(z)) ii. i even-valued, x = (i+l)

Since the process of observer transitions in the set 60 is not a

- Markov process (i.e., it is semi-Markov) we cannot apply Eq.(7)
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directly. Instead, it is necessary to define a semi-Markov point

process that is a very special case of the "versatile Markovian point

process” introduced by Neuts [Neut79]. The number of generalized

Erlangian distributions (or PH-distributions) required to completely

specify the different vacation cycle-times in 9 is m = ZN—l. Each

0

vacation cycle-time is thus comprised of 2N phases of a generalized

Erlangian distribution, N phases given by the service and switching

times, and N phases given by the walk times. We define a point process

with events governed by epochs of transitions of the Markov chain M

defined in Eq.(S). Note that each state of this order (n+1) chain has a

positive probability of being visited before absorption. If the Markov

chain has made a transition to the state i, l S i S m, the next

transition is to state k, with probability pik' and the time between

transitions has a PH-distribution Fi(') of order 2N.

Define the vector («1, x2, ... , an) to be the invariant vector

of the probability transition matrix in Eq.(Z), for n = 2". Recall that

71 is the probability that in steady state, the observer sees the server

in state 299, with i = d(z) + 1. We are only interested in those

vectors z, 2990. Define the vector v = (v1, ... , vm) to be a set of

(normalized) vectors corresponding to probabilities between vectors in

90, given that we are restricted to this set. In other words,

”i = ['i/(1 ’ ”n+1

Let S(t) and 1(t) denote the state of the Markov chain M at time

-eee- 'N)]' for l S i 5 me

t, and the phase of the Markov chain TS(t) at time t, respectively.

Assume that the current time instant is t and the last event occured at

. time 1, at which time the Markov chain I made a transition to the state
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5(7) = k. Recall that the initial vector chosen for the Markov chain

Tk is of order 2N, given by ak = (l,0,.....) for all k, l S k S m. In

the interval (7, t], the Markov chain Tk triggered through zero, one, or

more than one transition, without entering its absorbing state. At time

t, S(t) = k, and the Markov chain Tk is in phase «(t). It is necessary

to make the assumption that for each t > O, the intervals of time

between events is conditionally independent, given the path function of

the Markov chain M. Under this assumption {S(t), n(t)} is a

continuous-time Markov process.

Given the generator of the process {S(t), n(t)}, it is now

possible to describe the distribution FV(.) as a PH-distribution. Let

e. be a 2N-bit column vector with each entry equal to 1. Define an

order m*2N square block-partitioned matrix A*with block-entry (i,k) as

A*(i,k) = pik e'ak, where the vector product denotes the product of a

column vector by a row vector. Define also an order m32N square

.

block-diagonal matrix T with diagonal block-entry i as T Thei'

infinitesimal generator of the Markov process {S(t), s(t)} is given by

T. a T.(I - A*), where I is the order m*2N identity matrix. Thus, the

token's vacation-period distribution is a PH-distribution, with the

representation (v, T'). A similar procedure using the transition matrix

a will yield the token's busy-period distribution as a PH-distribution.
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4.3 The Countable State Markov Renewal Matrix

Let D be a square matrix of order m with entry (i,k) as the

service-time distribution of customer type i (or cycle-time distribution

for vector of type i, i691), for each k, l S k S m. Thus each row of

the matrix is the same. Given the current customer's service-time, the

type of the next customer and service time of the current customer are

both defined through D. Given the m customer types, with corresponding

service vectors coming from 61, we require a probability transition

matrix describing the probability transitions between the various

customer types. Consider the matrix P1 defined in section 4.2. Define

the row sum of the 1th row of this matrix to be 51, for l s i s m.

Define a new matrix a. as

I

s (1.x) = Pl(i,k)/si (10)

for l S i,k S m.

Let A be a square matrix of order m with entry (i,k) given by

A(i,k) = D(i,k) !.(i,k). It can be shown that A is aperiodic and

irreducible and satisfies the property that A(+°) = 8..

Denote the row sum distributions of A(.) by "i(')' i = 1,2, ...,

m. Let n1 be the mean service time of customer type i, and let

n = (nl,...,nm). Observe that n1 is the (finite) mean of the

distribution Mi(.). If 5 = ($1,...,5m) is the limiting invariant vector

.

of B , the traffic intensity at station j is given by

p = pj = XSn (ll)
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where we must assume that p < l for well defined steady state

distributions to exist (see [Neut77]). The triple defining queue

lengths, customer types at departure times, and various customer service

times or cycle-times, leads to the classical definition [Neut66] for an

embedded Markov renewal sequence. The matrix of transition functions

for this sequence is given by

  

80(x) Bl(x) 82(x) B3(x) ...

Ao(x) Al(x) A2(x) A3(x) ...

o A (x) A (x) A (x) ...

90:) = O 1 2 (12)

o o Aolx) Al(x) ...

0 o 0 A0(x) ...

x

where Ak(x) = l P(k,t) dA(t), for k 2 o, (13)

O

and P(k,t) is the generating function of the Poisson arrival process at

station j, describing the probability that k customers arrive during

(O,t]. Using "*" to denote convolution, define

Bk(x) = F§(x) * Ak(x), for k 2 0. (14)

4.4 Distribution of Packet Queue Length

Define x 8 {x(i,k),izo,lSkSm} to be the invariant probability

vector of the matrix 0(a). This vector defines the stationary joint

probability for packet queue length and packet type. at the scan

, instants of reference station j. The stationary infinite vector x
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consists of m-vectors x0,x1,... etc. Similarly, define

y = {y(i,k),iZO,lSkSm} to be the joint probability for packet queue

length and packet type at an arbitrary instant in time for a stationary

queue. This infinite vector consists of m-vectors yoiyl,... etc. The

th
k entries in x and yo describe the embedded and arbitrary-time

O

probabilities that station j has no packets queued, and that the next

type of packet to enter service is associated with cycle vector type R.

It remains to solve the equation x9 = x. The solution may be written as

1+1

x. = x B.(u) + Z
l O l k=l

A for 120 (15)
“k i-k+l(“)'

The unique solution to the nonlinear matrix equation comprised of

substochastic matrices

c = z A Gk (16)

k=0

is given by (see [Neut77]) a matrix G which is both positive and

stochastic. Let g be the invariant probability vector of G. Let S(t)

be the probability generating function of the distribution xo,x in1,000

terms of complex variable 2, for |z|SI. Denote the Laplace-Stieltjes

transform of the Markov renewal matrix A defined in section 4.3 as A(s).

By using the system in Eq.(lS), we obtain

xiz) = u - p)(z-l)sA(A - kz)[21 - an - izn'l (17>

If 1(2) is the probability generating function for the components
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of y, for |z|<l, then in a similar fashion ([Neut771) we obtain

V(z) = (l - p)e + 2(1 - p)e[§(k - k2) - ZIJ-1[I - H(k - 12)] (18)

Analagous to the M/G/l situation, we find that

x0 = (l - p)e = Yo (19)

By using a recursive method, Neuts [Neut77] obtains derivatives

(at 0+) of the Perron-Frobenius eigenvalues of the matrix A(s) and

conseqently (complicated) expressions for the moments of the queue

length distributions. In particular, the restricted mean packet queue

length at station j is obtained as

* -1
L = ig(l - s + n) n

+ { - 2p2 + A2[§n(2) - 25§'(o+)(l - p + n)'ln]}/2(l - p) (20)

where n is the matrix having all m rows equal to s, and n(2) is the

vector whose entries are the second moments of the m different

cycle-times (service-times) from 61.

4.5 Distribution of Packet Queueing Delay

Following Neuts [Neut77], the virtual delay of a packet can be

obtained as follows. The Laplace-Stieltjes transform W(s) for the

virtual delay distribution is given by

«(5) = sxo[(s-)\)I + AA(S)]-le (21)

where e is an m—bit unit vector, and x0 = (l - p)g. Define a vector

U(s) (to enables us to compute the moments of virtual delay) as
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u(s){(s - A)! + AA(S)} = (l - p)Ss (22)

from which the mean packet delay w is obtained (in accordance with the

classical formula due to Little) as

- u'<o*)e.1
'
:

ll

(L - p)/k (23)

The interpretation of the transform in Eq.(ZI) is as follows. Let

Wk(x) be the stationary probability that a virtual packet arriving at

time t = 0 waits for a length of time not exceeding x and initiates a

service-vector that is mapped into element k of the set L Then the00

kth entry in 0(5) is the Laplace-Stieltjes transform of the

corresponding entry in W(s). An inversion performed on Eq.(ZI) will

yield a Volterra system of integral equations

t

w(t) = (l - p)g + A I w(y)[1 - g(t-y)]dy, for t z 0. (24)

0

Note that the system in Eq.(24) is computationally attractive once

9 has been obtained. In implementing a numerical solution, a check on

the accuracy of the implementation is easily' made by observing the

property M(e) = S for s e O in Eq.(21). Computationally useful formulas

for the moments of delay time can be derived [NeutBS].

4.6 An Application Of The SV Method

Consider the two-station example presented in section 3.3. The
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matrix 3* describing customer transitions at station 1 is obtained from

Eq.(lO). Recall that g is the invariant probability vector of a

stochastic matrix G that is the solution to the nonlinear equation in

(16). In Theorem 6 of [Neut74], it is shown that the sequence of

matrices Gk defined by

n

G=A G=ZAG,
o o, k+l ":0 n k

k 2 0,

is non-increasing and converges to the minimal non-negative solution G

of the equation defined in Eq.(lé). The matrix G may be computed by the

method of successive substitutions. For n restricted to a maximum value

of 150, and 30 iterations, we obtain G and g for station 1 as

    

.523 .477 .096

G = and g =

.051 .949 .904

Using the limiting vector 3 = (0.085,0.915), A = 0.0032, and

n = (201,301), the traffic intensity (for station I) is obtained from

Eq.(ll) as p = 0.9359. Finally, on using Eq.(ZO), we obtain the

conditional mean queue length at station 1 as L = 9.9123, and the

restricted mean waiting time for this station's customers as

W = 2805.13. It is possible to compute the unconditional moments for

the queue length and waiting time distribution with some additional

effort, but we do not try for maximum generality in this direction.
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4.7 Distribution Of Channel Throughput

Since the stationary cycle-time random variable is independent of

station indices, without any loss of generality we can assume that the

reference index j = 1. For a given service vector 2 = <21,22,...,2N>

and corresponding service-cycle C(z), define the random time V(z) to be

the time that the channel is actually being used for station

transmissions (and not for overhead). That is,

V(z) = lel + 22x2 +....... + ZNXN (25)

For each 269, define the ratio random variable U(z) = V(z)/C(z).

A method of obtaining an approximate distribution for server utilization

is given as follows. The randem utilization of the server corresponding

to a service vector 2 is simply U(z), and the overall server utilization

is the random variable U' given by

q

ll 2 nz U(z) (26)

296

The expression in Eq.(26) describes the channel utilization of the

system at the time instants of vector transfer from server to observer.

Replacing ”2 by ‘2 in Eq.(26), the corresponding result is obtained for

arbitrary time instants. For a data rate of R Mbps, the channel

throughput of a token-passing system is obtained as 3* = RU'. Observe

that the random variable 0" is defined in the range [0.1).

For each 2, the distribution functions of V(z) and 6(2) can be

obtained by the methods indicated in section 3.2. Given these

distributions, the next step is to obtain the distribution of the
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quotient random variable U(z). This is where a problem arises, forcing

us to make an assumption in order to obtain an approximate distribution.

Note that U(z) is a ratio of dependent random variables. If we make an

assumption of independence, we can proceed as follows. One method is to

resort to the Mellin transform which, for a given function f(x), is

defined as

_ a 5-1
Mf(s) - I f(x) x dx (27)

O

Treating l/C(z) as a random variable, we apply transform techniques to

obtain the Mellin transform of the product (V(z))(l/C(z)) (for

distribution functions denoted by their respective random variables) as

MU(s) = NV NC(2-s) (28)

and the inverse transform, or the distribution of each U(z) as

l c+ib _S

FU(t) = — lim 1 t NU(s) ds (29)

21:1 b-n- c-ib

The complex inversion integral shown above falls in one of four

classes [Spri79] each of which determines the transformed function

uniquely. In this case, if at least one pole exists, the integrand of

the inversion integral can be expressed as a Laurent series, with a

unique expansion. The inversion integral may then be evaluated by the

method of residues. Since poles can be shown to exist in our case, the

next step is to evaluate the integral over the Bromwich path
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(c-iu,c+im). In any event, we assume that the distribution for U may be

obtained by resorting to Bromwich contours and consequently the residue

theorem [Spri79]. At this time, we are not interested in the an

explicit form for the distribution, but only a method to show that it

can be obtained. The approach will necessarily depend on the form of

the Mellin transform convolution and any convenient algebraic

manipulation suggested by the function in determing its series

representation.

An approximate expression for mean system throughput can be

obtained by computing E(C(z)) and E(V(z)), for each vector 2, 269. The

latter expectation may be obtained by computing the mean service-time

associated with service vector 2, and the former expectation is obtained

from E(V(z)) simply by adding mean switching times for stations not

served during this cycle, as well as the sum of all the mean walk times.

Thus, both E(C(2)) and E(V(2)) are known constants, for a given vector

2. The mean utilization of the taken on a cycle generating service

vector 2 is then obtained as E(H(z)) = E(V(z))/E(C(z)). If we take

utilization and throughput to mean the same, then approximate mean

system throughput is simply given as 2 ”z E(U(2)), where the summation

is over all vectors 2, 269.

It is also possible to obtain an exact distribution for server

utilization. We briefly explain how this can be done in terms of our

two station example. Since there are four possible service vectors,

there are four random cycle-times generated by these vectors. Define

the random variable Y = (Y1 + Y2) to represent total (walking-time)

overhead. Then, the four cycle-times are Y, U = (Y + X1), V = (Y + X2):
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and W = (Y + X1 + X2). During three of the four random cycle-times, the

server spends some portion of the cycle doing useful work, i.e., serving

customers. The three ratio random variables corresponding to useful

server utilization times can be defined as

2 3 = (N1 + X2)/(Y + x1 + X2)

The server utilization during the zero vector generated cycle-time Y is

nil. The vectors (Yl/U' YZ/U, R1). (Yl/V' Y2/V, R2), and (Yl/W, YZ/W.

Xl/W, XZ/W) can each be shown to have a generalized Dirichlet

distribution [Spri79]. In oder to use the form in Eq.(26) to define

utilization, we must obtain the marginal distributions for the random

variables R1' R2, and R3. In the case of R3 it will be necessary to

compute the sum of two dependent random variables once the joint

distribution is obtained. Since this is a fairly straightforward

matter, the exact distribution of server utilization or system

throughput follows.

4.8 Summary

In this chapter, applications of the SV method in obtaining

performance measures of the MOCS/s-Qin s l queueing system are

presented. An observer positioned at an arbitrary reference station

pictures the queueing system at that station (in isolation) as an M/SM/l

queue with a vacationing server. Unlike the usual server—vacation

queueing models, the vacation-periods in this model are random sums of

random variables that are conditionally independent but not i.i.d. For
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an appropriate treatment of vacation times, the methods of Neuts

[Neut81] can be applied. This involves an application of

PH-distributions and some detailed, interesting results obtained by

Neuts on the Perron-Frobenius eigenvalue of a Laplace-Stieltjes

transform matrix. The latter matrix is obtained from a consideration of

dependent cycle-times (chapter III).

The main results of this chapter include generating functions for

packet queue length densities and delay times, and first moments of

these distributions. Using [Neut77], additional moments may also be

obtained. The only necessary assumption is that of Poisson arrivals.

Arbitrary distributions may be used for service, walk, and switching on

an asymmetric system (as in chapter III). We take a novel approach in

viewing the system's channel utilization as a random variable defined on

[0,1). An expression is obtained for this random variable, and it is

shown how its distribution may be computed. The use of such a random

variable is clear. A distributional form for utilization will yield

considerably more information on channel behaviour than the usual mean

value approach. It is especially simple to compute the mean system

throughput using this method. Additional results in this chapter are

(exact) mean queue lengths and waiting times for each station, and

distributions for token-busy and token-vacation periods with respect to

a given station. In 4.6 the two station example presented in Chapter

III is further used in order to demonstrate how the sv method may be

applied.



CRAPTER V

CYCLE-TIME DISTRIBUTIONS VIA SERVICE PROBABILITIES

In the following analysis, another method of obtaining cycle-time

distributions is presented. This is based on a vector of probabilities

(pl,p2,...,pN), where pi is the probability that at steady-state, the

server encounters at least one customer queued at station 1 at its scan

instants. The essence of the approach is to decompose C into a sum of

independent random variables. The idea was originally used by Hashida

and Ohara [HaOh72], and later by Kuehn [Rueh79]. Using negligible

switching times, Hashida and Ohara expressed the Laplace-Stieltjes

transform for Fb(.) as a product of walk time distribution and service

time distribution transforms. This requires a major assumption, i.e.,

at steady state the probabilities of service events at stations 1 and j

are independent, for ifj, i,jes. This assumption is difficult to

justify, especially since dependence between the various stations'

queueing patterns can be shown to exist for certain choices of

parameters. Intuitively, the longer the period of time spent by the

server at any one queue, the higher the probability that the server

finds a customer at the next queue.

We use the same approach as in [HaOh72] and [Kueh79] to define C,

except that we have included 'the additional switching time random

variables. We assume exponential distributions for service, switching,

and walk distributions, in order to obtain an explicit form for the

82
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distribution FC(.). In general, it is possible to work with any

distributions, and this can be done for symmetric as well as asymmetric

systems. Interestingly enough, dependence between queues does not

affect the limiting distribution of a stationary random cycle-time when

system load is either very high, or very law. But the effects of

dependence can be observed for loads that are not extreme.

From the results of chapter III we know that a sequence of random

cycle-times can be shown to possess an mth order Markov dependence,

where m varies with the parameters of the system. To determine m as a

function of system parameters is not easy. We content ourselves with

approximating m by studying sequences of cycle-times, with distributions

that are obtained under the independence assumption. In section 5.1,

the server's behaviour at the instants of transition between stations

and walks is modelled as a Markov chain. In section 5.2, the transition

matrix for this chain is acquired via the probabilities pi, i = 1,...,N.

The distribution of cycle-time is obtained for asymmetric and symmetric

systems in sections 5.3 and 5.4, respectively. A simple result on the

existence of limiting distributions is presented in section 5.5, and the

property of cycle-time dependence is discussed in section 5.6.

5.1 The Markov Chain Of Server Transitions

Consider the behaviour of the process as the server moves from a

walk to a station and from a station to a walk. Due to the nature of

server transitions, the sequence of states visited clearly' forms a

Markov chain. If each station, walk, and switching-action is considered
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a state, the system will consist of 3N states in total. By the process

of lumping [KeSn60], states of switching can be combined with

corresponding stations to reduce the state space to 2N states. We are

interested in a Markov renewal process {Zn,Tn}, where Zn is defined over

the finite set S. = S U W. For each n61+, Tn is the (positive) random

time spent by the process in the specific state of 5* defined by Z“.

The kernel of the process is a 2N x 2N matrix 0 (identified with the

distributions characterizing the sojourn times of the token in the

Q

various states of S ) defined as follows :

piUi(t) i=wk 6 W, j=k 6 S

Qij(t) = qui(t) i=wk 6 W, j=wk+l 6 W (l)

piBi(t) + qisi(t) i= k 6 S, j=wk+l 6 W

where pi + qi = l for all 165*. For the interpretation of Q, the

ordering of states (aligned with rows and columns) is taken to be

{w1,l,w2,2,....,wN,N}.

The functions associated with the Markov renewal process (see

section 2.2) can now be interpreted in terms of our model. The basic

dynamic particle of our system is the token. Its behaviour in moving

among the various states of 5., as given by Z", is governed by a

monodesmic semi-Markov process which has a kernel 9. The matrix P is

the matrix of transition probabilities of the underlying Markov chain,

which is aperiodic, recurrent, and nonnull. P describes the transition

probabilities of the taken from state i to state j. On leaving state

wi, p1 is the probability that the next state visited is i, and qi is
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the probability that the next state visited is wi+ It is shown in1'

section 5.2 that under the independence assumption, the chain is

homogeneous in time. It follows that pi is the probability that the

token encounters at least one waiting packet at station 1, and qi is the

probability that the token finds queue 1 empty and switches to the walk

before station (1) mod N + 1. From each state j, j65, the token moves

to state wj+1 with probability 1. The function Hij(t) is the

conditional transition time distribution for the time to make a state

*

transition from i to j. For each 165 , the distribution of the sojourn

time of the taken in state i can be defined by

hi(t) z . Q..(t)

j6S ‘3

Pr( Tn+l - Tn s t | 20,.....,zn )

Pr( Tn+l - TD 5 t 1 2n = i ). (2)

We are interested in determining the limiting density of fc(.), if

it exists. Since stationarity can be shown to hold (see section 5.6),

the cycle-time C can be expressed as a finite sum of independent random

variables with distributions Bi(t)’ Ui(t), and Si(t), i65. With the aid

of the independence assumption, C reduces to a sum of independent random

variables.

If the other stations are not in line of sight, the observer at

station j sees a single server queueing system. Each customer from this

queue keeps the server occupied for a random time C. Thus, to the

observer, this system resembles a GI/G/l queue [Klei75]. In reality,

there are two important differences. In a GI/G/l queueing system,
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customer service times are i.i.d. In our system, the observer clearly

sees the dependence between consecutive server cycles, i.e., customer

service times will be positively correlated. The second difference

arises with respect to the waiting time of a customer who arrives when

the queue is empty. In a GI/G/l queue, this customer finds the server

either serving the previous customer, or idle. In the queue at station

j, the server may either be serving the previous customer at station j,

or be in some other state of S*, but never idle. Hence, while a

customer at station j records a service time of Xj, the observer records

a service time of C for that customer. The key to determining fc(.)

lies in determining the probability pi that at least one customer is

found waiting for service at the scan instant at station 1, for all 165.

5.2. Service Probabilities For Poisson Arrivals

We assume that the arrival processes are all Poisson with positive

and constant rates, and the queue length distribution at the reference

station is stationary. Using standard M/G/l methods [Klei75], the

geometric transform of the packet queue length distribution at this

station is given by

r (z-l) LD. .(l-z)]

6(2) = Oj 3 (3)

2 - L[Aj(l-z)]

where A1 is the rate of the Poisson arrival process at the reference

station j, L[s] is the Laplace-Stieltjes transform of the service time

density expressed in terms of the complex variable 5, and r j is the
O
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probability that the token finds no packet queued at the reference

station at its scan instants.

The initial condition rOj is evaluated from the geometric

transform property G(2=l) = 1. This yields 1 = rojL[O]/(l + AjL'[O]).

Since the transform of the service time density evaluated at s = O is

unity and its derivative is the mean value, it follows that

. = - C 4r03 1 AjE( ) ( )

If the expected length of a cycle in the stationary state and the

Poisson arrival parameter Aj of station j are known, Eq.(4) can be

applied to any station. The probability r01 that the token encounters

no packet at a station 1 during any visit to the station can be

computed. Thus, r01 defines the parameter qi specified in Eq.(l). In

this way the token's holding time at station 1 is obtained as a mixture

of the station's service and switching distributions, the mixing density

being Bernoulli with parameter p1, 165. The expectation E(C) in Eq.(4)

can be obtained by investigating the flow balance of the system in

steady-state. When the system is in the steady state, the mean number

or customers arriving at any station is equal to the mean number of

customers served at that station. In fact, the mean number of customers

served at station j during a cycle is identical to the probability that

the server encounters at least one customer at queue j at this station's

scan instants [Rueh79]. For each station j, this probability is simply

AjE(C). From this we obtain

s(c) -- jg‘{E(Yj) + 015(0))“le + (l-ljs(c))s(vj)}
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and consequently the mean cycle time as

2 [ E(Yj) + E(Vj) J

 

jes

Em = ( () ()i' (5)l - 2 A.E X. + 2 A.E V.

195 1 1 ies 1 1

5.3 Asymmetric Systems With Exponential Distributions

In this section, fc(.) is derived for an asymmetric model, i.e.,

one with all distributions having different parameters. The arrival

processes are assumed to be Poisson(kj), and the Bj's, Sj's, and Uj's

are assumed to be exponential, with means l/ujo, l/u and l/aj,

jl’

respectively. Since a cycle is defined in terms of contributions from

all stations, the random length of a cycle will remain the same

regardless of the index of the station from which the observer measures

it. An observer positioned at any station will record the random

variable C decomposed in terms of its various sojourn times as

R 8

c = z x.' + 2 Y. = x + Y (6)

jes 3 j6S 3

where the starred terms denote the respective sums. The random variable

yj has density aj exp(-ajt), and the random variable x ' has a density
j

that is a mixture of the densities of xi and Vj , given by

pjujo exp(-ujot) + qjujl exp(-ujlt). C can be viewed as the sum of N

hyperexponential random variables and a generalized Erlangian random

variable.

Let the Laplace-Stieltjes transforms of the densities of the
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random variables x' and Y” be given by L[fxs] and L[st], respectively.

For all j65 we have

a. a.

with ajO = pjujo , ajl = qjujl , and

a.

L[fY.] = ————l——— . (a)

3 (s + a .)
J

The transform of fc is obtained as

L[fc] = L[fX*] . L[fY*] = n L[ij'] . L[ij] (9)

jGS

Let 9 be the set of all N digit binary numbers representing the

non-negative integers in the range [0,2N-l]. An element k69 is an N-bit

binary vector of the form [k(l),k(2),....,k(N)]. In terms of our new

notation, we have

 

a .

L[fx*] = z n 1 1(1) (10)

k69 ies ( s + ui k(1) )

5

and L[fYt] = r -—-——1——- (ll)

j6S (s + aj)

_ “i
where 5.— (II ———)a..

3 ies (ai - aj) 1

ifj
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L[fc] can now be obtained from Eqs.(9). (10) and (11). Note that

L[fC] contains ZNN terms, where each term has the form

D .‘(s) = n a1 k(i) “j

11 195 (s + Hi k(i))(s + aj)

for j65 and k69. (12)

Using partial fraction expansion, the resulting expression

consists of terms (5 + u) and (s + a), that are convergent for

Re(s) > -u and Re(s) > -a, respectively. Upon inverting the transform

in Eq.(IZ), we obtain

 

 

( ) { exp(-ajt)

D . t = n a. . 6.

k3 . l k(l) 3
165 U (u - a.)

mes m k(m) J

exp(-u t)

+ z ” 1(“) }. <13)

nesmgs (um k(m)‘un k(n))(aj-un kn”)

mfn

The cycle time density thus can be obtained as

fc(c) = Z Z ij(C) . (l4)

jES REG

The computational complexity of the asymmetric density can be

obtained as follows. Let the time taken for each addition be ts, and

the time taken for each multiplication be t Consider the expressionp.

for ij(c) given in Eq.(l3). The second (summation) term in the sum

requires a time of Nztp + (N-l)ts, and the first term in the sum
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requires a time of Nt The sum itself requires a time of ts, and thep.

product term involving the ai k(“'5 and the Uj's requires an effort of

(N+l)tp. The time required for any D is N2[tp + 2N + l] + Nts. For a
kj

given value of c69+, the effort required to compute fc(c) is

2NN{N2[tp + 2N + l] + Nts} + 2N(N-l)ts. This requires an algorithm of

exponential complexity and is inefficient for large N. In fact, due to

the presence of the summation over the set 9 in Eq.(l4), any algorithm

for fC(.) will always be an exponential algorithm.

5.4 Symmetric Systems With Exponential Distributions

In the event that aj = a, ujO = “0' “jl j

j6S, the computation can be shown to be tractable. In this case we have

= “l' and A = A, for all

do = puo and a1 = qul. The transforms for {X8 and fyt become

N N a a

L[fx*] = z < > [ ——°— 11"1 [ ——i 11 (15)

j=0 j s + “O S + “l

 Llfyrl = [
s + a (16)

The transform L[fC] can be obtained from Eqs.(15) and (16). A

direct inversion by partial fraction expansion will involve repeated

differentiation in the computation of the coefficients of the fractions.

To be precise, each term in the inverse will require the computation of

h h
2N coefficients, where the Nt coefficient involves the N1 derivative

of an expression of the form (5 + s)-m.(s + x)-n, where m S N, and
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n S N. This requires an overall effort of 0(2N) and is clearly an

undesirable scheme. As an alternative, we represent the transform of

the density of X‘ as

  

d. e.

L[fX*] = 2 —-———l——. + z ————2———. (l7)

jes (s + no)3 jes (s + ul)1

where

l N-j N N-j-l _

dj = -——————§:s z ( ) ( ) {-1)” (ao)" “ (al)“ (18)
(u -u ) 3 n=1 n n-l
O l

l N-j N N-j-l _

ej = ____——_N:3 Z ( ) ( ) {-1)n (al)N n (ao)n (19)

(u -u ) n=l n n-l
l 0

for j = l 2 3 N-l with d = a N and e = a NI I '0......’ I N 0 N l .

The transform of the density of C can then be expressed as

d.aN ejaN

L[fc] s z 3 + z (20)

ms e+uphs+m1 imis+mfle+afl

where the computation of the coefficients of the partial fraction

expansion becomes considerably simpler. Each of the 2N terms in the

above transform is expressed as a fraction

x(s) 1

ye) e+ufle+afl
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m-l l

= z z. -————————_. + 9(5)

jm 3 e+uW3

for some mes. The coefficient 1k is given by

 

 

 

l dk (s + u)mx(s)

Ek = — .—

k! ds y(s) s=-a

l dk l

= — — [ N]

k! ds (5 + a) s=-a 

where since m S N we get

(~l)k F(N+k)
 

‘k N+k
k! P(N) (a-u)

for k = 031’2peeepm-le The COGSfiCientS Sky k = O,l,2,...,N-l, for the

(s + a)'s are computed in an identical fashion. An arbitrary term from

the first summation in Eq.(ZO), say

d a"

j
. (21)

e+uphs+m1

 nfe)

can be seen to invert to

 

j-k-l
j-l s t exp(-u t)

Dj(t)= djaN { 2 k 0

r=o P(j-k)

N-l 5: tN’1'1 exp(-et)

+ Z 1 (22)
 

k=0 P(N-k)
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and E). (t) can be obtained in the same manner, with coefficients :1" and

(R', from the term in the second summation. Hence, we obtain the

density for C in the symmetric case as

fc(c) = .2 Dj(c) + .2 Ej(c) . (23)

365 36S

The complexity of an algorithm using Eq.(23) can be determined by

investigation of the function Dj. Consider the quotient immediately

after the first summation in Dj. The partial fraction coefficient

1k requires an effort of tp(N+3k-l), the power of t requires tp(j-k-2),

the gamma function requires tp(j-k-l). and obtaining the quotient with

the final products requires 3t . For a fixed value of k, the quotient

P

term requires a time of tp(N+2j+k-l). Varying k from O to (j-l) to

obtain the first summation requires an overall effort of

tp[5j2/2 + j(N - 3/2)], for each j65. In like fashion, the second

summation can be seen to require an overall effort of tp[7N2/2 - 3N/2],

for each j65. All products involved in the computation of a single

Dj require a total effort of tp[5j2 + j(N - 3/2) + 7N2/2 - N/2 + 1].

All sums involved in the same computation require a total effort of

ts(N+j-l). The total time required to compute the first summation in

Eq.(23) is

tP[5(N+l)2N2/4 + N(N+1)(N-3/2)/2 + 7N3/2 - N2/2 + N] + ts[N(N-l)/2].

By symmetry, 31 can be shown to require the same effort. Thus, we find

that Eq.(23) yields an algorithm of (fourth-order) polynomial

complexity.
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5.5 Stationary Cycle-Time Distributions

Assume that the observer at station j witnesses the operation of

the entire system starting from time t = 0. At first, the observer will

notice that the probabilities pi, 165, follow a transient path,

fluctuating with changes in the system. After a time equal to the

relaxation time [Giff78] of the system, these probabilities will attain

constant values. For the queueing process at any station 1 to be

stable, it is necessary (but not sufficient) that the limiting value of

pi be strictly less than one. The stability of the queueing processes

is not a necessary condition for the stability of the cycle-time random

variable C. That is, if the arrival rate at some station k is so large

that AkE(C) is greater than one, we take the convention that pk = 1.

This will ensure that in steady state, the server stops at station k

with probability one during each cycle, in order to serve a customer.

Viewed in this fashion, it is easy to see that C will always be stable,

i.e., its expectation will be finite since it is the sum of independent

random variables, each of which has finite expectation.

Let us suppose that the observer positioned at the reference

station begins to record the successive cycle times starting from time

t = 0, where without loss of generality we will assume that the token

arrives at the reference station at time t = O. The observer sees a

sequence C1,C2,..,Cn,.. of transient cycle times, where C1 is the

random time taken by the token to complete the it“ cycle, 16I+. If

pj(i) is the probability that queue j is not empty at station j's scan

instant during the 1th cycle, then clearly the length of cycle
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Ci depends on the probabilities pj(l), jes. The distribution of Cl is

obtained as

_ (i), (i), , (i) ,
FCi - [F1 F2 ....... FN ] G

where ”a" is used to denote the convolution operation. F.(l) is the

holding time distribution of the taken in state j, j65, during the

ith cycle. G is a generalized Erlangian distribution constructed from

the walk distributions. We now state a theorem regarding the

distribution of cycle times as seen by the observer in steady state.

The proof can be found in the appendix.

Theorem 5.1:

If the distribution of queue length at each station j, :95 is

stationary, then the random cycle time C posseses a stationary

distribution given by

. (i) (i) (i)
F = 11111 [F a? . .......*F 126. (24)
c l. l 2 N

The effects of varying system parameters on the cycle-time

distributions obtained via the independence assumption are easily

demonstrated. It is intuitively true that at very high loads,

cycle-times are asymptotically independent. In Fig. 5a is shown a

comparison of simulation versus analytic results for the cycle-time

densities for asymmetric sets of two, five, and eight station systems,

respectively. In Fig. 5b, similar results are shown for asymmetric

systems with three, six, and ten station systems, respectively.

Observe, that the independence assumption performs well at high loads.
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Similarly, it can be shown that independence also does well at low

loads. Unfortunately, for system loads that are neither extremely high,

nor extremely low, the independence assumption appears to perform rather

poorly, as can be seen in Fig. 5c.

5.6 Serial Dependence Of Cycle-Times

If we recall the distribution of cycle-time obtained in chapter

III, we see that Eq.(3.9) defines a strictly stationary distribution.

Since the system regenerates itself whenever all the queues become

empty, the time points corresponding to empty-queues also correspond to

regeneration epochs in a regenerative process. By hypothesis, the first

two moments of all system distributions are finite, and consequently

E(C) is finite. It is easy to prove that under this condition, the mean

time between epochs of regeneration is finite. From Theorems lO-4 and

10-5 of [HeSoBZ] it is clear that the stationary version of this

regenerative process is stationary, and the regenerative process itself

is asymptotically stationary. Consequently, the cycle-time process must

be asymptotically stationary. Thus, Bq.(3.9) defines the strictly

stationary distribution that the cycle-time process converges to

asymptotically. Equation (3.9) is strictly stationary simply because we

chose as the initial distribution of the semi-Markov process what would

have been the limiting distribution from an arbitrary initial state.

The fact that we have identified a regenerative process is

important in that a study of the sample paths of the process in any one

interval of the regenerative process will help us completely understand
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the system's behaviour. A method of pursuing this will be via the busy

period distribution of chapter III. In this section, we are interested

in studying the effects of the independence assumption, and consequently

leave the idea just mentioned aside. If we work with the cycle-time

distributions defined in sections 5.3 and 5.4, and assuming an arbitrary

starting random variable C, it is difficult to prove (without using

asymptotic stationarity) the stationarity of the cycle-time process.

Indeed, starting with a regeneration epoch, it can be argued that the

ensuing sequence of cycle-times (which in general will be dependent) is

weakly stationary. It would be interesting to investigate the effects

of the first cycle-time random variable (obtained under independence) on

the following random variables to determine the behaviour of

deteriorating dependence.

An arbitrary cycle seen by the observer at the reference station

is found to have a random length with density fc(.). If the arrival

rates at all stations are sufficiently low, then successive cycle

lengths are approximately independent. The queueing situation at each

station will closely approximate a GI/G/l queue with uncorrelated

service times. For example, when arrivals at each queue occur sparingly

enough so that an average of at most one customer per queue is awaiting

service at a scan instant, and the time between this customer's

beginning of service and the next customer's arrival is an independently

random time. Again, approximate independence holds also for

sufficiently high arrival rates. In this case, a customer is always

found waiting for service at each queue at its scan instants, ensuring

that the cycle time random variable (which now will be the sum of N
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random walk times and N service times) takes the same form for each

cycle, and is independent of the previous cycle. But in general, even

in steady state, successive cycle time lengths are not independent.

Consequently, any study of the system utilizing fc(.) must take into

account this dependence.

Consider an infinite sequence of consecutive cycle lengths

"C-n""C-I'CO'CI""Cn’"’ denoted by {Ch}, that are observed at the

reference station when the system is in the steady state. If cycles

C1 and Cj of the sequence are independent, the autocorrelation function

for terms at lag m = Ij-il in the sequence will be zero. A nonzero

autocorrelation for a given lag m implies a degree of dependence between

cycles that are m positions apart. Given the parameters of the system,

it is not a simple task to establish the value of m for which the

autocorrelation goes to zero. Conversely, if this value of m is

determined in an empirical fashion, it is not correct to assume that

cycles of lag m are independent. Thus, we need to develop an analytic

approach towards identifying independent cycles, making appropriate

assumptions along the way, if necessary.

The discrete parameter stochastic process {Ca} possesses the

property that the joint distribution function for (C1,C1+1) is different

from the joint distribution function for (C.
i

that the service, walk and switching distributions possess finite first

+1&1”). By our assumption

and second moments, {Cn} is a second order process. Further, if it can

I 7

be shown that the process {Cn } defined by OH = Cn+k has the same mean

and covariance functions as the {CH} process, for every fixed number

k61+, then {CD} is second order stationary or weakly stationary. For
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i,j,n€1+, let Men) and rij = Cov(Ci.Cj) be the mean and autocovariance

function of the {CH} process, respectively. We resort to an equivalent

but more functional definition of weak stationarity, i.e., E(Cn) is

independent of n and r1 depends only on the difference between i and j,

j

to prove weak stationarity. In order to emphasize the importance of

lags, and not the index of the process, we define rj = raj

autocovariance function of the process with some cycle Co chosen

as the

arbitrarily from {Cn} to be the reference cycle. From the symmetry

property of autocovariance functions, it can be shown [HoPS72] that

r_j a rj, jeI+, provided that there are a large number of cycles that

occur prior to C0 in {CH}. Since V(Cn) = Cov(Cn,Cn), the common

variance of the random variables in {CD} is given by r0. Using

Schwarz's inequality, it can be shown [HoPS72] that since r0 > 0, the

correlation between an and Cn+ can be given independently of n by
k

rk/ro.

Prom Theorem 5.1 it follows that E(Cn) = E(C) is independent of n,

with E(C) being given by Eq.(S). To prove weak stationarity of {CH}, it

is left to show that rij depends only on Ij-il and not the particular

values of i and j. We now present an argument to demonstrate the

dependence between consecutive cycles of the sequence beginning at

C0 (measured with respect to the reference station). This approach

treats the symmetric and asymmetric situations simultaneously, with the

appropriate density used for {C throughout the rest of this discussion.

Since the arrival process at station j is Poisson, kjco is the

probability that an arrival event at queue j occurs during the token's

Co cycle. This corresponds to the probability that at the start of the
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C1 cycle, at least one customer is seen awaiting service at station j

given that a cycle of length Co has just occurred and no further

information is available about the queue status at its CO scan instant.

Since all stations on the network see the same cycle time random

variable, corresponding probabilities can be generated for each station

by utilizing its arrival parameter. Thus, a larger value of C0 ensures

a higher probability that customers will be awaiting service at each

station during the C1 cycle than a probability generated by a smaller

value of C0. Since the probability that at least one customer awaits

service at a station is equal to the mean number of customers served at

the station, we can conclude that if CO is large, then Cl will also have

a tendency to be large rather than small. Large cycles will tend to

follow large cycles with a high probability. By the same vein, small

cycles will tend to follow small cycles with a high probability. The

notion of 'high probability' simply describes a probability strictly

greater than one-half. By exactly how much this probability exceeds

one-half is a function of the parameters of the system. If E(C) is used

as a means for discriminating between large and small cycles, then since

consecutive cycles tend to group on the same side of the mean, the

covariances between neighbouring terms in {CH} will have a strong

tendency to be positive.

Let fi correspond to the probability density function of the

random variable Cie{cn}‘ By fi/j is meant the conditional density, and

by fi,j is meant the joint density of the random variables C1 and Cj.

The same notation is generalized to three or more random variables. We

take the convention that f0 = fC. Define p. = (pl(m),...,pw(m)) to be



105

the vector of probabilities associated with the N—station configuration

during cycle Ci“ Here, pj(m) = kj .gock/m is the probability that at

least one customer awaits service a: station j during at the server's

Cm scan instant, Cme{Cn}, and jes. By using the mean of the random

sample 00,...., m-l' we obtain queue state probabilities that use some

history of the cycle time process.

The density fc(c) can be also be expressed as a function of

probabilities, i.e., as fc[c,p], where p is the vector (p1,...,pN), with

q = 1 - p. The conditional density of C1 given Co, may be obtained

(1)
simply by replacing the term pj by pj in fc, for all jes. That is

- 1
fl/O - fc[c.p 1 . (25)

and with the aid of Eq.(25), the joint density of (C0,Cl) is obtained

f0,l = fl/O . f0 (26)

The general form of the conditional density function for Cm given

Co"'°’Cm-l can be obtained by extending the idea outlined above, i.e.,

_ m

fm/oll'ooo’m-l - fc[C'p ] (27)

and the joint density of (C0,...,Cm) as

Oll'oeo'm = fm/Opl,...,m-l 0,1,...,m-1

If we compute the marginal distribution of Co by treating this

cycle as the first cycle after the system is found empty (i.e., after a
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regeneration epoch, when it will be easy to compute the probabilities

Pi) we will have described a way to express the conditional density and

joint density functions of random variables from {Cn}° By the manner in

which the joint densities are defined, it is clear that the covariances

between pairs of terms in {CH} depend only on their distances from each

other. Thus, weak stationarity follows. Given any pair of random

variables in the sequence CO'C1""'Cm""’ their joint and marginal

distribution functions may be obtained by repeated integration. These

distributions incorporate the local dependence properties of the second

order process. The intention of the discussion was to demonstrate how

the process may be viewed as weakly stationary, since strict

stationarity is not easily proved without looking for the asymptotic

distribution.

Let the maximal dependent set of random variables in the sequence

CO'C1""Cn"' be defined as {cklxzo,cov(co,ck)za}, where 5 is some

specified tolerance level. Terms in the sequence whose dependence on

Co is too small (smaller than 6) are excluded from the set. Let m be

the largest positive integer satisfying Cov(Co,Cm) z 5. Then, m5 is

called the memory of the sequence with respect to 5. Henceforth, we

suppress the subscript and understand the memory to be defined in terms

of 5. The number m will vary systematically with the parameters of the

process. Generally, higher arrival rates generate sequences with longer

memories, and lower arrival rates give rise to shorter memory sequences.

Also, choice of 6 will affect the memory length considerably. The

relationship between the memory of the process and the parameters of the

process is a subject for further research, as also the covariance
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structure of {Cn}° Observe that if 5 is made arbitrarily small, the

size of the maximal set grows large. By passing to the limit, it is

trivial that the marginal density for each Cm sufficiently far (in the

limit) from C0 enjoys independence of Co. This is a consequence of the

fact that the sample mean is a consistent estimate of the true mean of

the cycle times.

By assuming that terms in {CD} are independent, the variance of

the cycle time process obtained from the density fc underestimates the

”true” (unknown) cycle time variance. The independence assumption made

by Hashida and Ohara [Ha0h72] disregards the positive correlation

between successive random variables in the sequence. Kuehn [Kueh79]

uses a form of conditioning that accounts for two kinds of cycles. One

kind involves a server cycle where a reference station customer is

served, and the other kind involves a server cycle where the reference

station queue is empty. The net effect is to increase the cycle time

variance of the process. This form of conditioning uses information

pertaining only to the current cycle and not previous cycles. To

incorporate such effects, one needs to consider sequences of dependent

cycles and find methods to describe such dependence. The joint density

functions obtained above were developed with the intention of

demonstrating one such method. Given the (n+1) dependent random

variables CO'c1"""'Cm' the marginal density function for each random

variable and joint density functions corresponding to every pair of

random variables in the maximal dependent set are obtained. Prom

Eq.(26) it can be seen that the procedure is computationally simple
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since the form of the joint densities is merely the product of the

individual marginals with the appropriate probabilities substituted.

The variance-covariance matrix is obtained with the aid of the joint and

marginal densities. Let amz represent the maximum ”true” variance of

the cycle time process. Then an estimate of variance may be obtained as

o
)

N

"
N
E

V(Ci)/(m+l) + 2 Z Z Cov(Ci,C.)/m(m+l) (29)

o i<j 3i

The variance estimate obtained in this fashion can be seen to

increase the cycle-time variance by considering the history of cycles

that form a chain of dependence. This increase is due to the positivity

of the covariance terms. The picture in Fig. 6 describes how the study

of dependence is made to increase the estimate. Observe that V(C) takes

the shape of a lower bound for ahz . An upper bound may be achieved

simply by choosing the marginal density in the maximal set that defines

a Ci the sum of whose variance and covariance with C is the largest.

O

The repeated addition of covariance terms from successive entries in the

stationary sequence causes 3&2 to increase to a point beyond which

either all covariances are actually zero, or all are assumed be

negligible (in terms of 6). Thus, the estimate obtained as the maximum

of this averaging process increases the underestimate V(C) by accounting

for dependence.

As a first approximation to mean waiting time, the variance

estimate used above can be used as service-time variance for the

approximate M/G/l queue at station 1. Since this estimate uses more
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information that Kuehn's estimate (and certainly yields a larger

variance for "service-time"), it is expected that the mean waiting times

obtained in this way will be more accurate. It must be noted that

though the procedure for computing the covariance matrix is

computationally simple, the complexity grows with (m+l)2 for a process

having memory m.

5.7 Summary

The essence of this chapter is a method for obtaining the

cycle-time distribution function under the assumption that, at steady

state, the emptiness (or non-emptiness) of one station's buffer does not

affect the emptiness (or non-emptiness) of any other station's buffer.

Additionally, it is required that the arrival process be Poisson. We

have used exponential random variables for service, walk, and switching

times. This was done for convenience, and is not really necessary.

Computationally, the method is simple for both symmetric, as well as

asymmetric systems. Unfortunately, for asymmetric systems, the

complexity of the computational algorithm grows exponentially with N.

For symmetric systems, by resorting to a binomial form for the

coefficients, the computational effort can be reduced to polynomial

time.

The independence assumption is shown to perform very well under

extreme system loads. When system load is moderate, the independence

assumption is poor. It is easy to see that the approximation will

surely degrade with increasing values of N and increasing variance in
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service and switching times. In a simple result, the distribution of a

stationary cycle-time random variable is obtained as the limit of a

sequence of finite convolutions. It is important to note that this can

only be done under a decomposition rule, which in our case is the

independence assumption.

From our previous work in chapter III, we already have a

stationary distribution for the cycle-time random variable. By assuming

independence, we obtain another form for the limiting density of a

stationary (by hypothesis) cycle-time random variable. In this case, it

is difficult to prove strict stationarity without resorting to

regenerative theory and asymptotic stationarity. Consequently, we

introduce an argument that allows us to view a sequence of cycle-times

as weakly stationary. If the first random variable in the sequence

occurs immediately after a regeneration epoch, then it is interesting to

examine the effects of deteriorating dependence. We basically use this

idea to suggest that a number of such dependent cycles may be completely

characterized (by obtaining their joint distribution), and further used

to investigate properties of the system. One such property is the

memory of the cycle-time process. Of course, this can be done directly

with the methods of chapter III, but we must stress that we are

interested in examining the effects of independence here. Using SV

methods, an estimate of memory is easily obtained by taking the ratio of

the mean busy period (i.e., mean time between regeneration epochs) to

the mean cycle-time. The SP methods require the computation of a

covariance matrix. Once the memory is established, we can move on to

the next phase of the analysis, which is to approximate the
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"service-time" variance for station j customers with a function of the

variances of a number of cycle-time random variables. This idea is

discussed further in the next chapter.



CHAPTER VI

PERFORMANCE MEASUREMENTS USING SERVICE PROBABILIIBS

In section 5.1, we mentioned two important differences between the

queueing system at station j and an M/G/l system. If we view the

queueing process at station j as a single server queue with Poisson

arrivals, the dependence between consecutive cycle-times leads to

dependence between the ”service times” of consecutive customers from

station j. The reason for this dependence was explained in section 5.6.

Additionally, we were able to show that consecutive service times are

positively correlated. By assuming that cycle-times are i.i.d, Hashida

and Ohara [HaOh72] ignore the positive covariance between neighbouring

cycles. This amounts to a loss of information and consequently, as

claimed by Kuehn [Kueh79], underestimates for mean waiting times. Kuehn

attempts to account for dependence. by considering some history of a

current cycle. Assume that C. and 0" are random cycle-times

corresponding to cycles in which a customer from station j is served,

and no customer from station j is served, respectively. Kuehn treats a

station j customer's service time as a random variable whose

distribution is a mixture of the distributions of c' and c". The

mixing density is taken to be Bernoulli, with parameter pj. With this

approach, Kuehn obtains improved estimates for mean waiting time and

queue length. Unfortunately, just as in the Hashida-Ohara model, the

accuracy of the cycle-time variance decreases with increasing N or

113
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increasing variance in the random variables Xi’ 165.

The Hashida/Ohara and Kuehn models view the multiqueueing system

through the Laplace-Stieltjes transform of the cycle-time distribution.

Since we have gone a step further by actually obtaining the distribution

of cycle-time, we can obtain more information about the system than in

either [HaOh72] or [Kueh79]. Using the service probability approach,

these authors obtained approximate expressions for mean customer queue

lengths and waiting times, whereas we can aim for approximate moments of

higher order, and even approximate distributions. Using the explicit

form for the distribution of a stationary cycle-time, it is possible to

develop several models to examine the effects of covariance. In

particular, we choose to look at two such models with the intention of

obtaining approximate results for the MQCS/s—QEnel problem. Both models

reduce the MOCS queueing scheme into single server queueing schemes, one

assuming an M/G/l scheme, and the other assuming an M/G(r+1)/l scheme,

where Gr denotes the distribution of a moving average random variable of

order r.

The first model assumes the existence of a quasi-service time

distribution (where the term "quasi" is meant to indicate an

approximating random process) that can be used to model the ”service

time" distribution at station 1 The MIG/l approximating model is

introduced in section 6.1. In section 6.2, methods for obtaining the

covariance matrix of a set of dependent cycles are given. The idea is

to first establish covariance properties for the (n+1) random variables

in a maximal dependent set. This can be done by using either the

conditional distributions (if they are known) or by simply approximating
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the covariance between cycles at lag k with some continuously decreasing

function of k. Such a function is not always easy to obtain, but can be

developed in certain special cases under approximating assumptions. In

any case, we require a variance covariance matrix with the aid of which

we can proceed to apply a principle component analytic approach. In

section 6.3, methods for obtaining (approximate) marginal distributions

are discussed, and in section 6.4, we briefly describe how the

quasi-service time random variable may be obtained. Approximate

expressions for packet queue length and waiting time distributions are

obtained in sections 6.5 and 6.6, respectively. An approximate form of

the system's mean throughput is obtained in section 6.7.

The second model, due to Pearce [Pear67], assumes that successive

customer service times at a reference station (in actuality, the

successive cycle-times) can be represented as moving average type

service times. Without resorting to an i.i.d service time random

variable, it is possible to obtain queueing distributions. In defining

the moving average, we are allowed considerable flexibility in choosing

the weights of the moving average. Since the cycle-time process is

positively correlated, the only restriction is that the weights be

positive. This model, based on M/G(r+l)/l queueing systems, is

presented in section 6.8, and the analysis is reviewed in section 6.9.

6.1 The MIG/l Approximating Model

In this approach, we use the notion of conditioning discussed in

section 5.6. Since we are interested in modelling the queue at station
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j as an M/G/l queue, we require a service time distribution.

Consequently, we assume that the "service time" process seen by the

observer at the reference station j can be represented by a

quasi-service time random variable S . If we can determine the

q

distribution of S , then M/G/l theory can be applied to obtain

q

descriptive results for the queueing system at station j. The problem

we face is that instead of a single service time random variable, what

we really have is a sequence of (n+1) serially dependent cycle-time

random variables. In the following analysis, we demonstrate a method

that enables us to construct Sq as the first principal component of the

(n+1) dependent sequence. In essence, we try to reduce a random

variable in (n+1) dimensions through a filtering process to a single

dimension.

6.2 Covariance Matrix Obtaining Methods

Given a stationary random cycle-time C whose distribution is

0

either of asymmetric or symmetric form (as obtained in chapter V). the

first step is to construct a maximal dependent set of cycle-time random

variables. This is to enable us to determine the order of the required

covariance matrix. One obvious way to do this is to use the approach

outlined in section 5.6. This yields (n+1) correlated random variables

and their corresponding distributions. Thus, the covariance matrix can

be obtained directly with the aid of the marginal distributions.

Another method involves the case where the marginal distributions are

unknown. It is often convenient to first obtain an approximating form
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for the covariance function of the cycle-time process, and then use this

to obtain the marginal distributions. Two methods for doing this will

be described.

The first method attempts to approximate the covariance function

of the cycle-time process by some continuously decreasing function of

cycle lags R. For example, if the server viewed the contents of the

queue at station j at the scan instants of this queue, the server would

see a queueing process with an arrival rate that is a function of the

cycle-time. In this sense, the arrival process at station j can be

approximated by Poisson process whose rate is a function of a

stationary, continuous-time stochastic process, or a process known as a

doubly stochastic Poisson process. We are specifically interested in

the covariance function which relates to how dependent the rate at one

instant of time is to the rate at another instant of time.

Let pj(c) be the packet rate intensity function at station j.

For a large class of doubly stochastic Poisson processes, the integral

of the arrival rate covariance function is directly related to the

limiting variance-to-mean ratio of the number of intervals during a time

interval [CoLe66]. If n(c) is the number of arrivals in a time interval

of length c, then

2 I r(t) dt

Var[n(c)] 0

lim ————————— = l + (l)

6*“ E[n(c)] x

 

where x is the mean of pj(c). If we use the second order process of

section 5.6, then x is simply pj, or AjE(C). The covariance integral in
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Eq.(l) is useful in defining a time constant for the random process.

One easy way to define a time constant is given by the integral

7c = (l/v) é r(t) dt (2)

where the constant 'c is such that an exponential covariance function

approximation of the form

re(t) = v exp(-t/rc) (3)

is generally a good approximation to time function r(t) under a wide

range of conditions [Heffao]. We require that v = Var(C), where the

variance is computed from the densities given in section 5.6 (for

symetric and asymetric cases, respectively), in order that the

condition r(O) = Var(C) is satisfied. Hoff [HeffBO] shows that the

covariance function approximation works very well for the correlated

Poisson arrival process. If we proceed along these lines to determine

the explicit form of the covariance function, then since we obtained the

doubly stochastic view of the arrival process via the dependent

cycle-times, we can assume that the correlation function obtained is

really that of the cycle-time process. In this fashion, we can

determine the correlation between pairs of cycles. Using a threshold 6

(see section 5.6) to define a maximal dependent set of cycles, the next

step is to determine the distributions of the conditional cycle-times in

the set.

The second method is based on the concept of moving averages

[Conoal]. We begin with the random variable CO (whose density is given
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by either Bq.(5.l4) or Eq.(5.23) and demonstrate how a sequence of

dependent random variables can be constructed. Let Xn, n=l,2,... be a

sequence of i.i.d random variables with mean zero and variance one. A

law for this sequence can be obtained from the law of CO by appropriate

scaling. Define the sequence

(1) _

Xn ’ zlxn + zzxn+l' (4)

where 21 + 22

moving average of order two. The superscript l in Eq.(s) is used to

= l, and each 21 is strictly positive. This defines a

denote moving averages made up of level one iterations and is used to

differentiate between moving averages defined in terms of moving

averages , i.e., a level two iteration is a moving average obtained from

the level one terms defined in Eq.(d). Applying a forward shift

operator BX" = X a little algebraic manipulation will yield
n+l'

covariance terms

Cov(Xn(l),Xn(l)) = 212 + 22

and manurxwm, g 21

Using the zero order and first order covariances, a covariance

matrix of the cycle-time process with memory two is obtained. This

procedure can be generalized to higher order covariances for level one

and order two moving average sequences. Consequently, this will lead to

larger covariance matrices with sizes that may more accurately reflect

(l)
the memory of the cycle-time process. Let pk be the correlation of
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two cycle-times at lag k in an order two, level one, moving average

sequence. Using the normal approximation, it can be shown [Conoal] that

(1) - 2
pk ~ exp{ k /4zlzz} (5)

If we choose, we can generalize our solution to level one moving

averages of order three and higher. In any case, we can always obtain

either an exact correlation [Conoal] or the approximation given in

Eq.(S), and as a consequence arrive at a covariance matrix for the

approximating process.

6.3 Marginal Distributions Of Dependent Cycle-Times

In section 5.6, a method for obtaining the distribution of each

cycle in a maximal dependent set of cycles was outlined. If we begin

with a covariance matrix, say obtained via methods described in section

6.2, we have yet another method to obtain the marginal distributions of

cycles in a maximal dependent set. The problem is to determine marginal

distribution functions such that the covariance matrix defined by these

distributions agrees with the given covariance matrix. In general, we

seek forms for the marginal densities fCl""'me given the density

fco of CO. By hypothesis, each Ci

variables xj(1)' and rj. jes. If such is the case, then dependencies

is a sum of independent random

between the C1 must appear only via the probabilities pj and qj in the

distribution of X1. (see section 5.3).

For simplicity, we concentrate only on correlations for random

variable pairs (C1,Ci+l), i = 0...,m-l. The method uses fco to
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determine f and the latter density to obtain f and so on, until
C1' C2

the density of me is obtained. Hence, we need only examine how fCl is

obtained from fCO' where fCO is the (known) cycle-time density of a

(l)'
steady-state cycle. Define xj to be the random time spent by the

server at station j, in either switching past or servicing this station

x.(0)' 7

during cycle Cl‘ By convention, is taken to be Xj . Clearly,

I

Cl's dependence on C follows from the dependence of Xj(l) on C .
0 0

Let Cij be the correlation between cycles Cl. and Cj and let

ijl be the marginal density of Xj(1) . To arrive at fCl we must first

determine the density ij1. jes. Using the methods developed in chapter

v for sums of independent mixtures, fco

be the limiting density of the semi-Markov process {Z(t)} associated

can be obtained. Let {ej,jes*}

with {Zn,Tn} defined in chapter v. An expression for this distribution

I

will be given in section 6.7. Define the correlation between Xj(1)

Co as [calej/(¢1+...+¢N)]. In defining this correlation, our motivation

and

lies in the fact that Xj(l)' plays a part in making Cl dependent on C0,

and this is reflected by a function of j. Ignoring the random walk

times (since they are independent), we define this function to be the

probability ’j normalized by a term that is the limiting probability for

the server being in any station. In essence, this defines the

contribution of station 1 to the correlation.

The key to determining rle lies in determining the probability

pj(1). For notational ease we let p denote this probability, with

(l)' and C can be9 = 1- p. The covariance between random variables Xj 0

expressed as



122

l)’ l)’( - ( (l)'
Cov[xj , c0] - 1:7[xj , c £:[xj ] moo] (6)0]

Since the term on the left of Eq.(6) is known, we obtain an equation in

the two unknowns p and q. With the knowledge that p + q = l, the

probability p can be determined uniquely. Note that each j will yield

different values for p, wih each (p.q) combination determining the

density ij(l)' for one value of j. Given this density for each j, jes,

the density f can be obtained by the methods described in chapter v.
Cl

Continuing in this* trend, we can obtain the density functions for

C1,....’Cm.

6.4 Principle Component Analysis for Quasi-Service Time

In this section, we are interested in defining the quasi-service

time random variable Sq. Clearly, such a random variable will be a

function of the dependent sequence C0,...,Cm, and additionally, must

possess the maximum variability exhibited by the sequence. In

particular, the first principle component of the maximal dependent

sequence is the function that will yield the desired property. In other

words, we seek the normalized linear combination (i.e., with sum of

squares of the coefficients equal to one) that possesses maximum

variance. In order to obtain a positive covariance between terms C1, we

must impose the restriction that coefficients are strictly positive.

Following Anderson [Ande58], let x. be a vector of (n+1)

components C0,...,Cm. For analytic convenience we concentrate on the

0

random variable x with mean vector 0 and obtained from x by appropriate

scaling. Let 2 be the covariance matrix of x and let p be an (n+1)
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component column vector such that 6,6 = 1. By a theorem of Anderson

(see theorem 11.2.1 in [Ande58]), there exists an orthogonal linear

transformation U = s'x such that the covariance matrix of U is

E UU. = A, and A is a diagonal matrix whose entries are the eigenvalues

of the transformation. The matrix B is the matrix of eigenvectors

associated with the transform. We take the first component of U to be

(1)
S = B x, where B‘l) is the first column of B and the superscript is

q

used to denote the first eigenvector, or the eigenvector corresponding

to the first eigenvalue. Observe that the largest eigenvalue is

actually the variance of S .

q

Having determined the linear combination that defines S , the next

q

step is to obtain the distribution of this linear combination. Since we

have the marginal distributions, standard methods can be applied in

determining the distribution for Sq. Note that a way of doing this is

to first obtain the joint density of C0,...,Cm. Fortunately, by the

manner in which we have described their dependence, this can be obtained

by simply taking the product of the marginal density functions. That

is, they are dependent only via probabilities pj(1), for jeS, and

i = O,..,m. Thus the joint distribution will also be a mixture of

exponentials. In taking the Jacobian of the required transformation to

obtain Sh, since we deal with linear combinations, we will obtain only

constants. ‘ Since the constants do not change the form of the

distribution, we can obtain the distribution of S as another mixture

q

distribution.
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6.5 Distribution Of Packet Queue Length

In this section and the next we briefly present the use of the

quasi-service time distribution in deriving approximate distributions

for queue length and waiting time for packets in a stationary asymmetric

system. We denote Sq by S, and consequently the density of Sq by f8.

In order for the solution to hold it is necessary that the system be

completely stable [ReNiBA]. For high asymmetric loads it is possible

that (l - roj) > 1 so that it can no longer be interpreted as a

probability. If the other queues are stable, then the system is only

partially stable since queue j is unstable. In such cases it is

necessary to set (1 - raj) to 1. This means that a customer is present

with probability 1 at each scan instant of this unstable queue.'

Since we know that f3 is a mixture density, we can determine

takes the form of Bq.(5.l¢), with Dunique Ekm such that f km replaced
S

by Ekm' Let Lj(z) be the geometric transform for the number of arrivals

at reference station j (as seen by the observer) during a random time S.

Let r”j be the distribution of queue length at station j, n€I+. In

order to derive the distribution of queue length it is necessary to

exploit the geometric transform of the queue length distribution at

station j (see Bq.(5.3)). If we can represent part of this transform as

a ratio of two power series, the result is a single power series. By

evaluating the low order coefficients of the new series, the terms

rnj may be recovered [AbSt64], for n€I+. We may write Lj(z) as

(H) } Zn

Lj(z) = z z z { s (7)

has tee n=0 km
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E (n) ° n
where é (kjt) exp( hjt) Ekm dt (8)

 

D!

with Ekm defined earlier. Observe that Lj(z) is of the form

Lj(z) = o z” where on describes the probability of n packet arrivals
H

O
M
B

at station j during a random "service time" S. Using the above

equation, we can write the geometric transform for the length of station

j's packet queue as

r .(2-1) 2 o z
OJ ”:0 n

G(z) = (9)

I2

 

from which, after some algebraic manipulation we obtain

 

 

9 0“.)

r0.[ 1 + Z (—£———£—l)zn ]

J _
n-l “0

6(2) = (10)

w - 1 O m

1 + ( 1 )z B (-£)zn

00 n=2 mo

The expression for 6(2) shown above is clearly of the form

a a

(l + z aizi)/(1 + r bizi) which simply reduces to z dizi. Thus d1 can

1 l o

be determined recursively as

i

a - z b d._. i = 1,2,3...
1 jgl j 1 3

d1 = (11)
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With the aid of di it is an easy matter to compute the

distribution of queue length upto any desired value of n , n€I+. For

example, to obtain r1j we compute d1 = 1/00 - l, and then

rlj = rojdl. In order to compute r2j we first compute

_ _ _ 2 . =

d2 - (1 do ol)/o0 , and then obtain rzj rojdz. The higher order

probabilities are computed in a similar fashion. For a stable system,

the distribution of queue length will be unimodal and will possess the

property that rnj = O, n 2 k, for some fixed kel+. Thus, the compuation

will necessarily involve only a finite number of terms.

There are other methods available for determining the distribution

of queue length using Lj(z). For example, if this transform is

extremely complicated, then an approximation may be desirable. Often,

Lj(z) can be viewed as a rational function of the form Q(z)/R(z), with

these functions being polynomials without common factors. The algebra

of partial fractions will yield [Fell68] a simpler (exact) decomposition

for Lj(z). If R(z) has distinct roots, the decomposition is exact.

Methods for determining the zeros [RuTa77, CoBo72, Henr64] via

algorithmic techniques are known. When the roots can only be found

appriximately due to limitations of solving polynomials for zeros

[CoBo72, Henr64], such as when the degree of the polynomial is large,

the transform of the queue length distribution may be approximated

[Henr64, Fell68, Doug63, CrCG79]. Once a simpler form for the transform

is obtained, it may be inverted by one of several methods [Jage78,

JageB‘].
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6.6 Distribution Of Packet Delay

Let F*(s) be the Laplace-Stieltjes transform for PS, where s is a

complex argument. We formulate the delay characteristics of an

arbitrary packet at station j as that of a customer in an M/G/l system,

with service time distribution FS(.). We define the delay of a packet

as the time it spends in its queue before its transmission begins. Let

f;(.) be the residual service time density for a transmission from

station j (i.e., a packet in service). The Laplace-Stieltjes transform

of this density is given by

1 - F'(s)

9"(5) = (12)

s 13(5)

 

Using this, we can express the transform of the packet delay

distribution as

 

l - A (s)

W'(S) = ’15

j l - kjE(S)F (s)

Inverting this last transform to obtain the delay density function, we

obtain

wj(t) = }_:
k

H) (1 - 113(3))[xjusn ?(k)(t) (14)

where €(k)(t) is the k-fold convolution of the residual service time

density. For a stable queueing system at station j, [1.113(8)]k will

approach zero as k increases. This will enable us to approximate Wj(t)
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by a finite number of terms, with accuracy increasing as the number of

terms increases.

Since E(Sr) is seen to exist for r = 1,2...., an application of

Takacs recurrence theorem [Taka62] will allow us to evaluate the moments

of packet delay distribution. Let Lj be the random variable

representing mean queueing time for packets queued at station j. Then,

i. r r E(Ci+l)E(Lr-i)

5(L.’) = -————l—T- z ( ) r = l,2..... (15)

3 (1 — pj ) i=1 i ( i + l )

 

with S(LO) = 1, and pj' = kjE(S) as the mean contribution of station j

to the token's cycle time.

Let Mj represent the random time that station j must wait from the

instant that it begins a transmission to the instant that it next gains

access to the channel (assuming that it does require a free token on the

next pass). By hypothesis, since at least (r+l) moments of the

quasi-service time distribution, and at least r moments of the packet

delay distribution exist, the moments of station j's response time can

be obtained as

I“ 1'

ref) = z, ( )E(s’) r(rjk") r = 1,2..... (16)

6.7 Channel Utilisation

The fraction of time that each station keeps the token occupied

(detains the token during packet transmission) is the station's channel
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utilization. The total utilization (summed over all stations) yields

the channel utilization of the system. This quantity can also be

interpreted as the throughput of the system. In order to obtain an

expression for utilization, it is necessary to obtain the stationary

distributions associated with the semi-Markov process. Let {Z(t)} be

the continuous time semi-Markov process associated with {Zn,Tn}. The

embedded chain {Zn} observed at the instants of state transitions

behaves like a Markov chain. {Zn} is aperiodic, positive recurrent and

irreducible and can be shown [HoPS72] to possess a stationary

distribution fl = (wwl,w1,...,sz,nN). The probability of finding the

token in state 1 after the process has been operating for an arbitrarily

long time is xi, ies'.

The process {Z(t)} can be shown to exhibit a unique limiting

behaviour within the chain {Zn}° The equilibrium distribution of {Z(t)}

is given by Q = (¢w1"1""'¢wN’¢N)’ where ej is the limiting interval

transition probability of observing the token in state 195*. This

probability is different from that obtained from the chain due to the

consideration of the holding time distributions in the various states of

Q

S . With qk = fox and pk = (1 - qk) we obtain

 

'j E(Yj)

{ ( ) r(v )} r r(r ) jg"Z x p E X + q + s
res x k k k k xew x x

ej = (17)

t {P (X.) + q E(V )}
1 JE : 1 :1 jes
 

r {p E(X ) + 3(v )} + z r(r )
res,“ x x qfew x ”r x
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Let uj be the mean channel utilization by station j alone. Then

113. can be given by

. E Y. 'ewe3 ( J) J

uj = (18)

¢j {(l-roj)E(Xj) + rOjE(Vj) 395

and the approximate mean system throughput is obtained as

U = 2 u. (19)

jes 3

6.8 The M/G(r+1)/l Approach

Another interesting queueing model applicable to the MQCS/s-QBDcl

problem can be obtained from analyzing systems in which service times of

adjacent or near adjacent customers (in a single server queue) are

correlated. If we can determine the stationary distributions for such a

queue, then we essentially have a closed-form solution to the problem.

Unfortunately, our solution must depend on the correlation of the

service times. In all the analysis we have carried out from section 5.5

through the present, we have only been able to propose models for

describing the correlation function for a given process. In the

following discussion, we do not require the i.i.d service time

assumption that is often made. Observe that while our closed—form

solution skips the i.i.d assumption, the one remaining difference

between the queueing system at station j and an M/G(r+l)/1 queueing

system still remains to be addressed (see section 5.1). The letter r in

.the queueing notation above is used in conjunction with G to denote the
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distribution of a moving average random variable of order r.

As in the past, the queue at station j is viewed as a single

server queueing system. The service time of the nth customer is given

by

S = gO(Cn ) + 91(C
H'HC’l

n+r ) + ..... + gr(Cn), n z o,

r

with Z inf gi z 0,

i=1

where {cm} is a sequence of i.i.d random variables with density function

given by Eq.(5.14) or Bq.(5.23). The constraint on the 91's is to

ensure nonnegative service times. We are particularly interested in the

situation where the 91's are positive constants. Thus, Sn becomes a

linear combination of independent random variables,

Sn = bocn+r + blcn+r-l +.....+ brCn , n z 0.

An analysis of such queueing systems was pioneered by Loynes

[Loyn62a, Loyn62b], and Pearce [Pear66, Fear67]. Pearce was interested

in queues with moving average service times of order r (i.e., M/G(r+l)/l

systems) where the moving averages guaranteed service times that were

correlated. However, in choosing the particular values of b no

I

10

guidelines are available. Since we are interested in modelling positive

correlation, we require that the bi's be positive. Consider the (n+1)

dependent random variables $0,...,Sm. Application of the PCA method

described in section 6.4 will yield coefficients a i - O,..,m, such1'

'that the corresponding linear combination of the Sn's possesses maximum
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variability. In theory, given the a1, it is possible that each hi can

be determined from a system of linear equations that involve bi's and

61's. Thus, each bi will be defined in terms of the 31's. In practice,

since principle component analysis is difficult for sequences of random

variables with incompletely specified distributions, this approach is

difficult. Instead, an iterative method can be used to determine a set

of positive constants bi that maximizes the variability of a set of 81's

via principle component analysis.

6.9 Queue Length Distributions Via M/G(r+l)/1 Systems

In this section, we focus on the packet-queue length distribution

at station j assuming that this station's packet transmission lengths

(as seen by the observer) can be represented by moving averages of order

two. For convenience, we take the sum of the bi's to be unity. Using

lower case letters to denote actual realizations of random variables,

the (n+r) tuples (co,..,cn+r-l)’ (C0,..,C ) are compactly

(n+r-1))' (C(n+r-1))'

n+r-l

represented as (c with the cycle time distribution

fc(.) taken as the common distribution of the C 's.
i

Let Pk(c("*"l)), r z o, be the probability that (C(“*r‘l) is

equal to (C(n+r-1)) and the server finds k customers queued at station j

(the reference station) after serving customer n. This corresponds to

the instant that the token returns to station j for the (n+l)th time.

The generating function of this distribution is given by

n+r-1)
P(c( ;z) = r P (c(”+"l))zi. IzISl (20)
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(r)
and its integral transform P*(s ;z;n) is given by

(n+r-l)
P'(s(r);z;n) = E[P(U ;z)exp(-srC

n+r-1 - '5r-1Cn+r-2 "" slcn]'

with |z|51, Re 5120, lSiSr.

For the limiting distribution, we obtain the form

P(wl,...,wr;z) = lim E P(C0""'Cn-1'Cn"°"cn+r-1;z)’

where wl,...,w is a realization of u ,..,ur n and its integral

n+r-l'

transform

* (r). _ (r), _ _ _
P (s ,z) - E P(w ,z)exp( srwr ... slwl), |z|Sl, Re 5120,

where fc is used as the density of the i.i.d random variables W1.

Define w = B[exp(-kj5C)], for Re 520. When r = l, forlzISl, Re 5 20, we
I

obtain

zP*(sl;z)=-z(1 - z)w{(l - z)bo + sl/kj}P*o{(l - z)kjb1}[z - W(l - 2)]-1-

After some algebraic manipulation of the integral transform of the

limiting distribution, dividing by z and taking the limit of the

resulting expression as z e O, we arrive at

x . _ _ _ _ -1

P (51,2) - (l z)w{(1 z)b0 + sl/AJ}W(1 biz)[W(bO)] .

(l - i). go drc(c))w(l - z)].’1. |z|s 1, Re 5120.

Finally, the generating function of packet-queue length distribution can

be found by letting 51 = O, or
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mn=(l-mnu-zmgwl-mnwwpr%

(1 — k. I c d? (c))[w(l - z) - z]'1, |z| s 1.
30 C

In the case of r = 2, the limiting packet queue length

distribution's generating function is obtained by similar methods to be

P(z) = - z'l(l - z)w{(l — z)bo}[1 + w'mmwbon'l

I -1 l -1

x [{1 + bow (1)}{w (1)} W(b0 + b1) - how (no + ”1’1

x [{1+bow (1)}{w(1)}'1w(bo+bl+(1-z)b2} - how (no + b1 + (1 - z)b2}]

x [{z - w(l - z)}'lw{(l - z)(bo + bl)}W{bo + (l - z)(b1 + b2)}

+ w{b0 + (l - z)b1}]. |z|sl.

6.10 Summary

This chapter uses the cycle-time distributions developed in

chapter v to develop two kinds of queueing models. One kind assumes

i.i.d service times for queues, and the other kind attempts to

incorporate the dependence between service times. The i.i.d assumption

leads to an M/G/l type approximation that typically yields

underestimates for steady-state queueing and delay distributions. The

other models proposed attempt to take into account the correlations

between pairs of dependent cycles. The intention here was to show that

once an explicit form for the cycle-time distribution is obtained,

several approaches (all giving special attention to dependence) in

modelling these queues are possible.



CHAPTER VII

STABILITY AND EAIRNESS IN TOKEN-PASSING SCHEMES

If the mean queue length at station j, jeS is finite, for finite

Aj and positive service, walk, and switching times, then the queueing

process at station j is called a stable process. Assuming that the

queueing process at station j has a stationary distribution, it can be

shown that the queueing process is stable. Observe that while stability

is a consequence of stationarity, the converse need not hold. A stable

queue is not necessarily stationary since a mean queue length may be

finite even though its distribution may vary with time. Let

pj - kjE(Xj) be the mean channel utilization by customers at station j.

To the observer at station j, pj takes the form of a traffic intensity

at queue j. Unlike standard GI/G/l queueing situations, no simple

condition exists involving pj alone that can ensure stable queueing

conditions at station j [Kueh79].

In Bq.(4.ll) it is shown that the traffic intensity at a single

station can be computed via the SV method provided the limiting

distribution for the vectors is known. Additionally, it is known

[Weut77] that steady-state queueing distributions at a given station

will be stationary only if the traffic intensity at the station is less

that 1. In fact, only under this condition will the matrix G defined in

Bq.(4.l6) be positive and stochastic. In section 7.1, a stability

condition is given in a form that is related to the SP method. In

135
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section 7.2 we describe how a system's degree of stability is related to

the distance between the vector of mean arrival rates and a critical

point in an N-dimensional space. Simple descriptive measures of system

stability are presented. In section 7.3 we introduce the issue of

fairness to describe how fair the operating protocol is to the N

stations. The intention is to describe fairness within an operating

protocol, and not between protocols. With some additional effort, the

ideas presented here can be extended to compare fairness between

different protocols.

For a given set of system parameters, a flexible measure that

describes how fairly service is distributed across the system is

presented in section 7.4. The token-intervisit time for a station

during its active cycles (i.e., those cycles in which this station makes

a transmision) is the key statistic used in the fairness measure. The

flexibility arises in our ability to choose an arbitrary linear

combination of the moments of this random variable to define fairness in

our own context. In section 7.5, we present an application of

rarefactions to show how an approximate first passage time distribution

may be computed. Since the approximation is based on a renewal

assumption for the cycle-time process, the approximation will work well

only for high and low loads.

7.1 Stability Of IQCS Sch-es

Assume that the arrival, walk, service, and switching

distributions at all queues are stationary. Treating each queue j, jGS,
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as a GI/G/l queueing scheme, stability criteria for individual queues

and for the whole system can be developed. Given that all queues in the

set S\{j} are stable (which means that they have sufficiently small

arrival rates), queue j arrives at its maximum contribution to the cycle

time as pj approaches 1. If the arrival rates of the other (stable)

queues remain unchanged, the longest cycles seen from station j

correspond to ones in which a customer from queue j is served with

probability 1. These cycles give rise to a mean cycle time of

2 E(Yk) + Z E(Vk) + E(Xj)

 

res hes

kfj

E.(C) = I (1)

3 l - 2: pk + z: kkEfl'k)

res res

kfj Kfj

where Ej(C) is the mean cycle time conditioned on the event that a

customer from queue j is served during each cycle with probability 1.

Observe that for Poisson arrivals, the successive (random) queue lengths

seen by the server at station j form an embedded Markov chain. This

fact was already made use of in Bq.(5.3) to obtain the probability that

the server finds station j empty at any of its scan instants (i.e.,

Bq.(5.4)). Since the queue at the reference station has the same

embedded Markov chain as an M/G/l queue, a limiting queue length

probability vector with positive entries will exist if, and only if,

this probability vector is the invariant vector of the transition matrix

describing the chain. It is easy to prove ergodicity for the chain, and

consequently, the existence of the invariant vector. But such a vector

(with positive entries) can exist only if Bq.(5.4) holds. Using station
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j's conditional cycle-time as a service time random variable, and noting

that the first two moments of this random variable are finite, by

hypothesis, we arrive at the following. The reciprocal of Ej(C) behaves

as an upper bound for values of kj that generate stable queueing

conditions at station j. In other words, queue j is stable provided

that

 

= l- r (2)

where kj' is the critical arrival rate for queue j customers. If the

arrival rate at queue j equals or exceeds this value, then queue j grows

in unbounded fashion, or is said to saturate. This critical value for

queue j defines its stability boundary.

In the case of QEDs other than s-Qifl = 1, corresponding stability

criteria may be constructed. In particular, consider the service scheme

r-OBD - n In this discipline, the server attends to the queue atj'

station j upto nj times in succession before moving on to station (j+l).

The conditional cycle-time mean at station j can be obtained from Eq.(l)

provided that the term E(Xj) is replaced by njE(Xj). In order to obtain

the critical arrival rate for this discipline, the quantity 1 given in

the fraction in Bq.(2) must be replaced by hi.

It can be shown [Kueh79] that conditions of stability at queue j

are sensitive to the arrival rates, service times, and switching times

of all the other queues, as well as the sum of all the walk times.

Regardless of the various customer arrival rates in the system, the

server's mean cycle time is always stable since it remains bounded above
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by the sum of all the mean walk times and mean service times. This

characteristic of token-passing guarantees that all stations receive

server attention within a random time that has a stable mean.

7.2 Stability Index: A Measure of System Stability

If the condition in inequality (2) is satisfied by all N queueing

processes then the entire system is stable. When modelling symmetric

systems, the stability boundary is the same for all queues.

Investigation of the condition in inequality (2) will show that kj is

forced towards zero as N is increased asymptotically. Keeping all other

parameters fixed, increasing the number of stations in a symmetric model

requires that the arrival rates be decreased in order that condition (2)

is satisfied and stability maintained. It would appear that asymmetric

models are more realistic since it will often be the case that some

queues fail to satisfy the stability condition. A typical situation is

one where some station is doing large file transfers (generating large

volumes of traffic). Such heavily loaded stations will contribute one

packet to every token cycle until their packet traffic decreases. Thus

it is necessary to investigate conditions of partial stability, where

some queueing processes are stable.' In such an asymmetric system, the

lightly loaded stations witness increased token-passing overhead for the

duration of time that some other stations are heavily loaded. If the

arrival parameters do not vary with time, we can define a simple

stability index to capture the relationship between loading (offered

'system traffic) and throughput (channel utilization). Let the vector of
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critical arrival rates for a stable system be denoted by

A' = (ll',...,>.N'). A simple index of stability may be defined as

I

' l. 2 l.|{ J l 3 3 }|

M") = (3)

N

 

which really is the fraction of unstable queues in the system.

Different configurations of unstable queues can give rise to the same

value for the stability index. In order to understand the relation

between the stability index, throughput, and the notion of partial

stability, one must study the effects of varying arrival rates on the

N-station system.

Consider. the following argument presented in terms of an

asymmetric system. From inequality (2) it can be seen that the boundary

of total system stability is defined by the sides of an N-dimensional

cube in an, whose corners are vectors with entries all zero, all

nonzero, or have all but one entry zero. These respectively correspond

to the zero vector, the vector A”, and vectors of the form

Ax“ = (0,..,k *,...O) that describe the stability boundary for station k
k

alone. When the vector of arrival rates lies in the interior of the

cube, the system is totally stable. Replacing the inequality in (2) by

an equality, we obtain a system of N equations in the variables A , RES.

The critical arrival rate vector A, can then be determined as the

solution to this linear system. Let "k = (XI: - Vt) and

= [ 1: Earl.) + 23(5)] + S(Xk). The individual station

1

S

k if):

(stability boundaries are obtained as
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res

, m
l. = , 395. (4)

3 { n sk + n uk } - { z n skui }

res res res ies

ifk

Let the (variable) vector of arrival rates be given by

A = (kl,12,...,kN). The regions of stability as given by inequality (2)

are bounded by planes in an N-dimensional space, with A. as a point

common to all planes. Thus A, defines 2N different regions, only one of

which is bounded on all sides. When A lies inside this region (which is

the cube just described), we have total stability. Here I(A‘) is zero

and does not say much about system throughput. If A z A“, then A lies

in an infinite region where all queues are unstable causing total

instability, with 1(A') = 1. In this case, the throughput attains its

maximum possible value. But for these two regions, all other regions

describe situations of partial system stability. This happens when some

but not all coordinates of A are strictly less than corresponding

coordinates in A', causing 1(A') to take on values between 0 and I. In

this region, the system throughput will be a nondecreasing function of

the stability index.

When A lies within the cube that ensures 'total stability, 1(A')

does not yield any information regarding system throughput. Here, a

stability index that is more sensitive to changes in A can be defined.

This is given by

15(A') = II A - A* ll , (5)
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where || . || is used to denote the Euclidean norm in N dimensions.

The system throughput in the absolutely stable region can be seen to be

a nondecreasing function of the inverse of 15(A*). A phenomena

involving stability occurs here that appears to characterize the

multiqueueing situation and is unlike conditions in typical queueing

systems. If A lies in the absolutely stable region and all coordinates

are simultaneously increased, the queues that are first to become

unstable are precisely those with the highest arrival rates, and they

attain saturation in the order of decreasing arrival rates,

independently of all other parameters [Kueh79].

7.3 Issues of Fairness

The fairness of a distributed protocol is an important measure of

network performance since systems operating under global optimality are

not necessarily fair [GeStBO] in terms of individual usage of the

resource(s). In local-area networks, since protocols are generally

designed to function far from saturation, individual station delay is an

important parameter in the determination of protocol fairness. Unlike

long-haul and contention based networks, individual station channel

utilizations no longer maintain great importance in fairness

determination, especially for the one-packet at a time QED. This is due

to the fact that active stations are periodically visited by the server

(token), independent of their buffer status or desire to transmit. This

is not to imply that utilization cannot be taken as a factor in the

resolution of fairness; only that a station's channel utilization by
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itself does not reflect this station's ease of channel accessibility.

For example, if the station under consideration transmitted packets with

a mean length much smaller than the mean packet lengths of all the other

stations, and if its mean packet arrival rate is not greater than that

of any other station, then this station will have a smaller channel

utilization value than any other station. But this only means that this

station is less demanding of the channel than the other stations, and

does not imply that the protocol is necessarily unfair.

The issue of fairness in the context of local area networks was

first introduced by Marsan and Gerla [MaGe82]. These authors define a

fairness measure in terms of mean delay and mean throughput for

individual stations. It is a well known fact that ordered access

schemes are generally superior to contention-based or random schemes at

conditions of high load. But under light load, the contention schemes

perform better. The performance keywords here are mean throughput (at

high loads) and mean delay (at low load) for individual stations.

Define a particular station's accessibility to the channel (in the mean)

as a ratio of its throughput at high load to its delay at low load. For

convenience, we call this the mean throughput-delay ratio, or TDR.

Fairness in [MaGe82] is defined as the smallest ratio of TDR statistics

generated by pairs of stations, for every pair of stations on the

network. Additionally, a protocol is defined to operate in an optimally

fair fashion if the fairness statistic is unity, i.e., every TDR is

equal to every other TDR.

In the next subsection, we present an alternate approach to

determine fairness. This method is based on the random time between a
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station's access of the transmission medium and its next chance to

access the medium. A definition of fairness is obtained in terms of

distributions. Our approach is motivated by the fact that mean values

are limited in their scope and do not yield any information about

variations in resource usage. That is, the variation in the utilization

of the channel (by a station) has important consequences on how the

channel usage varies between the other stations. Since the total

capacity of the channel is bounded, a highly variable or highly skewed

transmission time by a single station can have strange affects on delays

experienced by other stations. It is fairly easy to build examples

where the fairness measure proposed in [MaGe82] cannot capture such

information.

7.4 A Measure of Fairness

In token-passing schemes, the cycles that are important to a

particular active station are those cycles in which the station makes a

transmission. Let Dj be the random length of a stationary cycle

conditioned on the event that a transmission from station j is made.

The notion of stationary here is taken to mean a random cycle-tbme with

law defining the density in Bq.(5.l4) for the case of asymmetric

systems, and Bq.(5.23) for symmetric systems. Define the order

statistics R1 = max {D1,...,DN} and R2 = min {Dl""’DN}' corresponding

to the largest and smallest such cycles, respectively. Let

vi = stnzil/Emli] and 01. = aid. for a en+ and i=o,l,2.... . For
1' i

.convenience, we limit ourselves to a (generally small) finite number of
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weights, with a sum normalized to unity. For each integer k, k 2 O, we

or) = (00,01,...,0k) and .(k) = (aO'al'...'ak)' and a
define vectors 0

. . - (r) _ (r)
corresponding fairness measure as A(k) - ||o a 'Ik ,

where Il’llk is used to represent the euclidean norm in k dimensions.

t
The protocol is said to exhibit perfect fairness in the r “ degree if

X(k) = 0, for arbitrary choice of the weights a Note that fairness ini‘

the first degree is equivalent to the condition that r(nj) = d, dea*,

for all jes.

The measure introduced above can be motivated by the following

argument. Focusing our attention on the conditional cycle times, we see

that if every station's conditional cycle time converges to the same

random variable in distribution, then every station must have the same

fair chance of accessing the transmission medium. In other words, not

only is their ”waiting time” fair in the mean, but it is also fair in

terms of moments upto order It. For a given value of k, we can choose a

weight vector a that appropriately describes our level of interest in

each of the k moments. Thus if we are equally interested in the mean

and variance, we set a1 = a2 = 0.5, and a1 8 O for all i, 2 S i S k.

The further away the value of (01 + 02) from unity (i.e., the sum of the

weights), the less fair will be the protocol.

(k) as the centre of a unit ball in aWe can view the vector a

k-dimensional space. The measure X(k) lies within the ball or on the

boundary (for a totally unfair protocol). The distance of X(k) from

a(k) determines exactly how far the protocol operates from perfect

fairness in the context of the first x moments of conditional cycle

‘times.
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There is an interesting problem that presents itself at this time.

Note that a fairness measure is really a random function of the

parameters of the system. That is, it changes according to variations

in pj, “jo’ “jl’ aj, jES, and N. Keeping some parameters fixed while

varying others will allow us to study the distribution of a general

fairness statistic X, as a function of the changing parameters.

Consequently, this will allow us to determine those parameters that have

the maximum effect (where we must define the kind of effect we are

interested in) on the fairness of the protocol.

Consider a measure X(k) for a given system to be defined in terms

of the cycle-time density given in Bq.(5.l4). To obtain the density of

the conditional cycle-time random variable Dj, simply replace the

probability pj wherever it appears in Bq.(5.l3) by 1. This can be done

for each station on the system. By definition, the random variables D3,

jeS, are conditionally independent. The distributions of the order

statistics R1 and R2 can be determined in a fairly straightforward

fashion using the N distributions of conditional cycle-times 01,...,DN.

Let the distribution of Dj be denoted by FDj' jeS. In order to obtain

the distribution F of the random variable RR1 we proceed as follows.
1

By definition,

FRl(r) = P(Rl S r)

=P(Dlsr;eeeee' DNsr) (6)

The largest of all the D 's is less than or equal to r if and only if

1

all the Dj's are less than or equal to r. By the assumption of

‘independence of conditional cycle—times, this gives us
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FRl(r) = FDl(r) . FD2(r) ..... FDN(r) (7)

and by using a similar reasoning, we obtain

FR2(r) = l - (l - FD1(r)).(l - FD2(r)).....(l - FDN(r)). (8)

Given the distributions of RI and R2, the next step is to obtain

the distribution of the quotient random variable R = RZ/Rl' Since we

are dealing with a quotient random variable, .and not with ratios of

moments as before, the fairness statistic x' is a tunction of random

variables. In general, determining the distribution of R is not a

straightforward matter since we are now dealing with dependent random

variables (i.e., order statistics are dependent). In order to find the

distribution of the product of dependent random variables the

two-dimensional Mellin transform [Spri79] can be used.

7.5 Approximate Distributions For Token-Intervisit Tiles

Consider the scene involving reterence station j in Fig. 7a. On

arrival at this station, the token may go into either a transmit phase

or a switch phase depending on whether a customer is present or not. We

are interested in successive token departure instants trom station j.

The token's departure instant from the reference station after a

transmit phase is called a T-instant, and the departure instant after a

switch phase is called an S-instant. I: each type or instant is

considered to be an event, the random times or the process {Z (t)} from

-any T-instant to the next T-instant, and from any S-instant to the next
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S-instant are the first passage times of the process between the

respective events.

Let the random variables J and K represent the first passage times

for the transmit events and switch events (Fig. 7b). with distribution

functions FJ and PK, respectively. Let J1,J2,....,Jn,... and

K1,K2,....,Km,... be i.i.d (independent and identically distributed)

sequences of random variables from the distributions FJ and Fk,

respectively. Given the parameters of the system the joint densities of

successive cycle time random variables can be developed and examined for

serial dependence, as has already been outlined in the previous chapter.

This dependence is small when the various traffic intensities are either

very small or very large [Kueh79]. If the dependence is known to be

small, then the cycle times (intervals between successive departure

instants) seen at station j can be approximated by a renewal process

{Sn,nZl;FC(.)}.

Suppose that we delete each point SD of the renewal process with

probability qj. Next, expand the time scale by the factor l/pj. The

deletion of each point is done independently of the other points, and

independent of the process {Sn}. By this rarefaction procedure [RenySG]

we obtain a new point process Rpj = {Sn'}. The notation Rpj is used to

denote a rarefaction procedure with respect to scale l/pj. Each term in

the rarefied sequence {Sn'} is a scaled random sum of intervals of the

process {Sn}, where each interval has distribution Fc(.). Clearly, the

random number of intervals used in the sum is geometrically distributed

with parameter pj. Thus 31* = ijx, where x is the first index that is

hnot deleted. 3x is actually the first passage time of the process
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{Z(t)} from a transmit event to a transmit event at station j.

Alternately, 5x is precisely the random variable J, and S , is a scaled
1

version of this passage time. Consequently, FJ is the distribution of a

geometric sum of random variables c with density fc. Let F3” be the

interval distribution of the rarefied process {Sn'}. Then, except for

the change in scale, PJ* and F: are the same distribution. We new state

a theorem [nenysel that enables us to determine the interval

distribution Ffi'.

Theorem 7.1:

Given a renewal process {Sn,n21;FC(c)}, the rarefied process

Rpj{sn} - {8”,} is also a renewal process. The interval distribution

F t of the new process is given by
J

n _ a (*1) 1'1

FJ (c) pj 1:1 FC (c/pj)qj (9)

where 0 < qj < 1, pj = 1 - qj, and FC(*i) is the i-fold convolution of

the interval distribution FC.

Corollary 7.2:

For renewal processes {Sn} and {Sn*}, where the latter process is a

rarefaction of the former, if E(Sk) < +0, then E(Sk) = E(SK') for

x z 1. If 3(sk) - +~, then r(sk') - +o for x z 1.

Note that except for a scale change, Theorem 7.1 gives us the

distribution of the random variable J. Replacing pj by qj and
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vice-verse in the above argument yields a rarefied process whose

interval distribution PK” is a scaled version of. the distribution of PK.

Thus, we obtain the distributions of the first passage time random

variables J and K.

Using the fact that J and K are sums of random variables obtained

by geometric compounding, we can apply Wald's theorem [Taka62] to obtain

the means as E(J) = E(C)/pj and E(K) = E(C)/qj. and their variances as

V(J) ( l/pj ) v(c) + ( qj/pjz ) (E(c))2

(10)

v(K) ( l/qj ) v(c) + ( pj/qu ) (3(0))2

The mean passage times obtained in this manner are exact,

independent of the renewal assumption. This means that the expressions

for mean passage times are valid under all traffic conditions in a

stationary system. If the traffic conditions are very low or very high,

V(C) is a good approximation to the ”true" cycle time variance, and the

expressions for passage time variances can be expected to perform well

as approximations. If the arrival rates at all queues are zero or all

queues are unstable, the renewal assumption is asymptotically exact.

Since successive cycle times are now independent, V(C) obtained from

fc is exact, and so the variances for the first passage times are also

exact. For other traffic conditions, the serial dependency of cycle

times must be taken into consideration. The approximation improves with

the accuracy in the estimate of cycle-time memory.

When pj = q., we find that J and K reduce to random variables

3

with the same distribution. When pj f qj, J and K will have different
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distributions. Using this line of thought, we try to explain the

behaviour of Kuehn's model.

Let random variables S and T represent the lengths of cycles

involving switch phases and transmit phases at the reference station,

respectively. In the stationary state, the instants at which packets

from station j are transmitted can be viewed as renewal points. At

these instants, the queueing process at this station can be treated as

an embedded Markov chain. Using renewal theory arguments, Kuehn obtains

approximate expressions for the mean number of customers waiting at

station j at the server's scan and departure instant, and the mean

customer waiting time (service time excluded). We observe that

independence between queueing processes at the various stations follows

indirectly from the assumption that S and T are each i.i.d. random

variables. Intuitively, we would suspect that the switch random

variables (i.e., like S) and the transmit random variables (i.e., like

T) are dependent, both within types, as well as between types. Given

the occurrence of a T-cycle, it is more likely that the following cycle

is a T-cycle rather than an S—cycle. That is, the longer it takes the

server to return to the reference queue, the greater is the probability

of finding a packet awaiting service at this queue. Thus, assuming that

S and T are independent, or assuming that sequences of switching cycles

and sequences of transmit cycles are i.i.d in themeslves gives

sufficient cause for concern regarding the validity of the independence

assumption. Note that the manner in which S and T are defined ensures

that SC?) > 8(8).

If the packet traffic offered by station j is very small, then
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pj is close to O. In this case E(S) is very close to E(T), since packet

contributions from station j are scarce. So the approximation can be

expected to work well for station j. If the offered packet traffic at

station j is very high, then pj is close to l, and station j makes

frequent packet contributions to the cycle time. Now we have scarce

S-cycles and conditioning on the distribution of these cycles does not

offer much to the end result. So the approximation can be expected to

work well again. When the offered traffic is moderate, then pj is

closer to qj than before. Our ability to discriminate between the two

types of cycles begins to get weaker as pj approaches qj. Consequently,

the variance of the cycle time begins to depend more heavily on the

actual arrivals at station j. At this stage, the approximation begins

to degrade. Indeed, this was demonstrated both experimentally and

analytically in Fig. 5c.

1.3 Summary

In this chapter, we proposed a new and very general definition of

fairness for token-passing protocols utilizing an s-QHI = 1 scheme. It

is possible to obtain corresponding measures of fairness for other Ohms

by generalizing this approach. The intention of resorting to

distributions in our definition is motivated by the fact that mean

values tend to neglect valuable information in a statistical sense.

Consequently, it follows that the approach to determining the

distributional measures is computationally more complicated than the

{approach suggested by Marsan and Gerla [MaGe82].
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The fairness measure defined in section 7.4 is a function of

several parameters, and in this sense is really a statistic. An

interesting problem that immediately presents itself is the distribution

of this statistic. In section 7.4 we presented a method to determine

its distribution, and reserve the resolution of an explicit form for

future work. Once the distribution is obtained, other insightful

questions may be asked. In particular, we may be interested in the

effect of the parameter N on the distribution of the fairness statistic,

or the limiting and asymptotic forms of this distribution.

The discussion on stability is a generalized form of Kuehn's

[Kueh79] work on multiqueues. The proof for stability is obtained via

the embedded Markov chain of queue length states. We presented two

simple measures of stability, one in which the system's arrival rate

vector fell outside an N-dimensional cube defining a stable region, and

one in which the vector fell within the cube. Additionally, we

discussed a possible interpretation of stability in relation to system

throughput. There is considerable scope for future work in the realm of

system stability, especially for more general arrival processes and

time-varying rates.

The last section of this chapter makes use of the fact that the

cycle-time process closely approximates a renewal process for very high

and very low loads. Clearly, the approximation improves as the load is

further increased, or decreased. By treating consecutive service events

and switching events as renewal points in their respective renewal

processes, an application of rarefactions easily yields the interval

distributions for these processes from the original (approximate)
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renewal cycle-time process. The two intervals can be treated as

first-passage times between service events and switching events,

respectively.



CHAPTER VIII

ADAPTIVE TOKEN-PASSING SCHEMES

Token-passing on large asymmetrically loaded systems can cause

unnecessary delay for some stations (i.e., those that are more active)

when the system load averaged over all stations is low. If a station's

delay periods coincide with fruitless token-solicitations at inactive

stations, a reduction in delay will follow a reduction in the number of

such solicitations. This can be done by scheduling alternate

token-paths at frequent intervals, in a way that the scheduled paths

bypass any inactive station visits. Scheduling is done during a

combined transmission and information gathering cycle (complete network

traversal) of the token, with dynamically assessed priorities assigned

to the active stations. An adaptive token-passing protocol (ATP) that

achieves this has been presented in [ReHu85]. The ATP method is

introduced as an upward compatible enhancement to the non-adaptive

token-passing (NATP) bus protocol proposed by the Standards Committee

[IEEEB4b]. Since ATP requires that the token-path be modified to

accomodate the heavily loaded stations more frequently than in WATP, an

adaptive system behaviour is required in ATP. Hence, the corresponding

queueing model is called the multi-queue and adaptive server (MDAS)

model.

Following in the spirit of chapter five, the method of analysis

used is based on service probabilities. Thus, since the underlying

156
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assumption is one of independence, the results of this chapter are

approximations. A key part of the analysis used in determining

cycle-time distributions involves the queue length density function

values for one-customer queues, for each queue on the system. In this

chapter, these probabilities are determined by M/G/l approximation

methods (i.e., service time represented by cycle-times, quasi-service

times, moving averages etc.). This introduces a second approximation

into the analysis. If such an approximation is not good enough, then

the exact probabilities can be used. Recall that a method for computing

these probabilities exactly was introduced in chapter III.

The main results in this section are the distributions of

cycle-times in the MQAS model or equivalently, in the ATP protocol.

These distributions are important in performance considerations. With

the aid of such distributions, other important distributions (i.e.,

station intervisit-time distributions, packet queue length distributions

etc.) can be obtained. The derivation of these distributions, various

important performance measures, and criteria to aid in comparing WATP

and ATP protocols are a part of an ongoing research programme.

A brief description of the organization of this chapter is as

follows. In sections 8.1 through 8.3 we describe the operation of the

ATP scheme in terms of the MQAS model. Since the system uses two kinds

of service cycles, the distributions involving both cycle-types are

introduced in section 8.1, the scheduling method and the two cycle-types

are introduced in section 8.2, and the distributions involving the

second cycle-type are given in section 8.3. The semi-Markov model for

server behaviour is described in section 8.4 and the distributions for
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both cycle-times are derived in section 8.5. The maximum entropy

approach used in computing steady-state probabilities for nonempty and

one-customer queues (i.e., probabilities that are require to determine

the cycle-time distributions) is outlined in section 8.6 and the

existence of stationary limiting distributions (under independence) is

shown in section 8.7.

8.1 Description Of Model Distributions

The ATP bus is modelled by a system of N independent and infinite

buffers chained together to form a logical ring by sections of varying

cable lengths. Figures 8a and 8b depict similar abstractions of the

MDCS and MQAS models. It must be noted that the server's behaviour as

described by this model is only one of a host of possible adaptive

schemes. Packet arrivals at station j are generated by some process

with interarrival distribution given by Aj(t) = Pr(IjSt), where I is
j

the interarrival time random variable at station j, 195 = {l,2,....,N}.

Let us label the walk between station (j-l) and station j as w jeS.1,

In our notation (j-l) indicates station j's predecessor and (j+l)

indicates station j's successor on the path of the token. The station

index imediately after j is obtained by computing (1) mod N + 1. The

time spent by the server in w is given by Yj, where Y has distribution

1 J

P(YjSt) = Uj(t), for all w 6'.

J

8.2 Cycle-Times l'or WATP And ATP

For as long as it remains part of a logical ring on a
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token-passing bus, the station that initiates a logical ring formation

is defined to be a reference station, and similarly, the station that

precedes this station on the logical ring is called the predecessor

station [Refluas]. If these stations desire to retire, they must first

transfer their respective identities to qualified stations on the ring.

For the rest of our discussion, we take jes to be an index in which we

have a special interest. In the case of MATP, j is arbitrary; since

certain quantities are defined with respect to station j, it is called a

reference station. In ATP, our definitions require that j be the single

predecessor station on the bus. Note that this restriction is merely

due to the fact that ATP cycles are defined with respect to the

predecessor station. The analysis applies regardless of the particular

station defined to be the predecessor.

In this analysis we consider unrestricted queues, with at most one

customer served per station at each of its scan instants. Let the MATP

cycles (defined with respect to station j) be called C-cycles, with C

denoting the random length of a stationary cycle. Let the density and

distribution functions of this random variable be given by fc(.) and

FC(.) respectively.

The behaviour of the token in the ATP scheme involves the

repetition of a pair of cycles. During the first cycle (which is

similar in appearance to a C-cycle and defined with respect to the

predecessor station). the server walks, switches, or services stations

just as in RATP. The only difference is that all stations in S whose

customer queue sizes exceed one at their respective scan instants, are

labelled by the server as active stations. Thus, when the server
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returns to the predecessor station (and the first cycle is complete), a

set A of momentarily active stations on the bus will have been

determined. The status of the active stations is made known to the

other stations on the bus during the first cycle via broadcasting. The

second cycle begins at the predecessor Station and in this cycle only

stations in A are served, in the same order that they were visited in

the first cycle. In this way, stations that are known to have a backlog

of packets are given priority, with information that is accurate upto a

cycle-time. As soon as the last active station (if the first cycle does

find any active) has completed its transmission, the predecessor station

immediately transmits a token control_frame to the reference station,

from where the first cycle begins all over again. If the predecessor

station detects the condition A = o, by performing a counter scan

[ReHuBS], it immediately transmits a token control_frame to the

reference station in order to initiate a Cl-cycle. Thus, steady-state

operation of the ATP bus involves the repetition of the first and second

cycles, in alternating fashion.

Let the first cycle be called a C -cycle and the seCond cycle be
1

called a Cz-cycle.. Correspondingly, let C1 and C be the random lengths
2

of these cycles. Note that if A I S, then the Cz-cycle is the same as

the Cl-cycle, since every station is labelled active. If A 8 a, then no

station is found active, and the CZ-cycle is of length 0. The

situations A - S and A - ¢ occur under heavy traffic and light traffic

conditions, respectively. We follow a convention that assumes the

Cz-cycle always occurs after a Cl-cycle, even if the latter cycle

determines no momentarily active stations and consequently generates a
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null C2-cycle. In this event, its length is taken to be zero.

8.3 Service, Switch, And Scheduled-Walk Distributions

If station i is found empty during the C -cyc1e, the server takes

1

a random time Vi to switch past station 1 to walk wi+l' 195, where

Vi has distribution P(ViSt) = 81(t). If a customer is served at station

i during the Cl-cycle, then the customer's service time is a random

variable Xi with distribution P(XiSt) = Bi(t). During the CZ-cycle,

since only the active stations are visited, there are no switching

distributions involved. Define a scheduled-walk to be the server's walk

between stations in the Cz-cycle. In order to be able to visit only the

active stations, the server's path in the Cz-cycle is scheduled in

advance with the aid of station counters [Reau85]. Thus a

scheduled-walk is a walk between active stations, or between an active

station and the predecessor station, but not necessarily between

adjacent stations.

For each station iGA that is visited during a CZ-cycle, the server

spends a random time y ' in the scheduled-walk to reach this station,
1

and a random time Xi to serve a customer at this station. The random

I I I

variable Y1 has distribution P(Yi St) = Ui (t). Each set A that is

generated by a Cl-cycle (and consequently defines a subsequent C2-cycle)

is defined to be a subset of the set 5' - {1',...,N'} of stations that

potentially require transmission of a packet in each Cz-cycle. The time

spent by the server in any state 16A is given by the random sum

(r '1 + X1). In other words, this is precisely the time taken by the



163

server to walk from the previous active station (or predecessor station)

to station i, plus the time taken to serve a station 1 customer. For

each 165', we take the random sum (11' + x1.) to have the distribution

Bi'(t). For analytic convenience, we assume that all distributions

described in sections 8.1 through 8.3 possess finite first and second

moments.

8.4 The Markov Chain Of Server Transitions

The analysis of the ATP bus is similar to that of the NATP bus,

where the MQCS model is used. Throughout the analysis, we use the MQCS

model as a background model in order to obtain the distributions of

interest in the MOAS model. To be precise, we seek representations for

the distributions of the random times spent by the token in the first

and second cycles, respectively. In order to arrive at these, we

require certain probability vectors, and in order to obtain the vectors,

we must examine how MQAS can be obtained as a modification of MQCS. In

this section, we are only concerned with asymmetric systems.

Consider the scene depicted in Figs. 8a and 8b, where observer 1

is stationed at the reference queue of the NATP bus, and observer 2 is

stationed at the reference queue of the ATP bus. Assume that both

systems are operating under identical conditions (i.e., the respective

arrival, service, switching, walk, and scheduled-walk distributions are

the same, for corresponding stations and walks). Also, assume that the

systems are operating under steady-state conditions, and all queue

length distributions are stationary.
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Observer l sees a single server queueing system at station j.

Recall that the difference between this system and a GI/G/l system was

discussed in section 5.1. In the ATP system, observer 2 also sees an

approximate GI/G/l queueing system. But in this case, the ”service

distribution” is more complicated. For each station ies, let Ti' be the

random time between two successive (server) scan instants at station i.

We call this the trip-time of the server with respect to station i.

Note that an instance of Ti, could either be C or C . If F
1 2 Tj" c1'

and F 2, respectively, thenC2 are the distributions of Tj*, C and C1'

observer 2 sees the trip-time as a compound distribution involving both

C1 and C2. The distribution FTi' , 195, is useful in the investigation

of system performance measures such as queue length distributions,

packet delay distributions etc.

Let Zn be a random variable taking values in the finite set S.,

where 5* is a union of sets S, S', and W, with R an index from the set

of non-negative integers 1+. Let Tn be another random variable such

that for each Zn€S*, Tn takes values in the non-negative real numbers

R+. The sequence of pairs {(Zn,Tn)} is a Markov renewal process whose

limiting behaviour is our main interest. Note that the assumptions made

in chapter II carry over to the present analysis as well.

The transition functions of the ATP server are considerably

different from those of the NATP model's server. In this case, Qij(t)

is an element of a 3N x 3N matrix Q, i.e., the semi-Markov kernel of the

process. The server's behaviour over states of S. can be viewed as a

.semi-Markov process. Let pOj’ plj' and qj be the probabilities that the

server encounters zero, one, and more than one customer at station j's
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scan instants of the Cl-cycle, respectively, for all jes. These

probabilities are the mixing densities used to obtain the holding time

distributions of the process in terms of the distributions specified

earlier. The scene depicted in Pig. 9 describes the transitions of the

token over the state space S. = {1,2,3}U{wl,w2,w3}u{l',2',3'}. In

general, the kernel 9 is defined as

(1 - pai)Ui(t) wkew, j=kes

pOiUi(t) i=wkeW\{wl}, j=wk+l€W

(1 - pOi)Bi(t) + P0151“) i=kes\{N}. j=wk+1ew

N . .

qkmgl (1 " gm)Bi (t) 1=Nesr j=k es I Jfll

N

mill (1 - 9m)Bi (t) i=Nes, j=wlew

Qij(t) = k-l ' . ' . ' ' (1)

N I I I I

n (1 - qmnai (t) i=1: as \{N }, jwlew

m=i+l

31' i=N', j=wl

N . .

N

Paimlll (1 - qmwi (t) i=vN. j=vl

o ' otherwise

a

for all i,jeS . For the interpretation of g, the ordering of states

(aligned with rows and columns) is taken to be
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{wl,1,w2,2,...,wN,N,1',2',...,N'}. Define p to be the matrix with

entries pij = Qij(~), for all i,jes..

The model can be interpreted as follows. The basic dynamic

particle of our system is the server, or token. Its behaviour in moving

among the various states of 5., as given by Zn, is governed by a

monodesmic semi-Markov process which is homogeneous in time and has a

kernel 9. The matrix P is the matrix of transition probabilities of the

underlying Markov chain. P describes the transition probabilities of

the token from state i to state j. On leaving state wieW\{wN}, is
p01

the probability that the token encounters no customer at station 1. It

follows that for each Cl-cycle, p01 is the probability that the token

encounters an empty buffer at station i, and (1 - p01) is the

probability that the token finds at least one waiting packet at station

i's buffer, for all ies. Note that p11 is the probability that exactly

one customer is seen waiting at station 1, for all 165. From state w",

the token visits state N with probability (1 - pON)' and with

probability p0N it either moves to some state in the set S', or to state

"1‘ From states "N or N, the states visited in S. depend entirely on

the probabilities qi, for all 165, where qi is the probability that the

token encounters more that one waiting customer at the buffer of station

1 during each Cl-cycle. From states ke{N'}US\{N}, the token moves to

state wk+l with probability 1.

The trip-time at station j, Tj*, can also be defined as the first

passage time of the process from a state in the set {j,j'} to a state in

the same set. This corresponds to the random time between token

‘ reappearances at the predecessor station. The random time Cl is the
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time between the instant at which state w is entered and either (i) the

1

instant at which state ”N is left (if no customer is found waiting for

service at station N), or (ii) the instant at which state N is left (if

a customer at station N is served). This corresponds to the random time

spent by the server in visiting (and possibly serving customers in) the

various states of S. The random variable C2 is the time spent by the

server in the states of different subsets A of S', for each such subset

of active states generated by the preceding Cl-cycle. Under the

independence assumption, Cl can be expressed as a finite sum of random

variables with distributions Bi(')’ Ui(’)' Si(')' and C2 can be

expressed as a finite sum of random variables with distributions Bi'(t),

195. C1 and C2 will possess limiting densities fCl(.) and fc2(.) that

we would like to determine. Note that since the CZ-cycle depends on

probabilities associated with the Cl-cycle, the random variable

C depends on C
2 l'

8.5 Cycle-Time Distributions for Asymmetric Systems

In the following discussion, we demonstrate how FCl(.) and FC2(.)

may be determined with the aid of the distribution Ft(.). The arrival

process at each station 19S is assumed to be Poisson(li), and 31' Si'

”1' and U1, are assumed to be exponential, with means 1/“10’ l/“il'

1/oi, and 1/ai', respectively. Since a cycle is defined in terms of

contributions from all stations, the random length of a cycle will

remain the same regardless of the index of the station from which the

observer measures it. In this paper, we restrict our attention to
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asymmetric cycle-time distributions for the ATP system. By using the

symmetric form of the cycle-time distribution for C, it is simple to

apply our results to the symmetric ATP distributions. Exponential

distributions are used mainly for convenience and required only for

interarrival times.

The Distribution Of AM MATP C-cycle

Let pol.” be the probability that in the NAT? process the server

encounters no customer at queue i, for all 165, in a stationary system

(and recall that p01. is the corresponding probability in the ATP

process). Also, let aio = (1 - pOi‘)“io and ail = 901'“11' for all ieS.

Let 9 be the set of all N digit binary numbers representing the

non-negative integers in the range [0,2N-1]. An element see is an N-bit

binary vector of the form [k(l),k(2),....,k(N)]. The asymmetric and

symmetric cycle time densities are given by Eqs.(5.l4) and (5.23),

respectively, with p01“ used in place of p01. The latter term is now

used to denote a measure with respect to the Cl-cycle.

The Distribution Of An ATP Cl-cycle

The expectation E(Tj*) is a maximum when all stations in the set

S\{j} take part in a CZ-cycle while station j sees only Cl-cycles. That

is, observer 2 never gets to see the server in the Cz-cycle due to very

low traffic at station j. In this case, E(Tj') takes on the value

[E(Cl) + E(C2)]. But in general,
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E(Tj ) S [E(C1) + E(Cz)l

or 5(Tj') s [r(c) + r(c)] s 25(c) (2)

The inequality in Eq.(Z) merely says that E(C) takes the shape of

an upper bound for E(C1) and E(C2). The inequality E(Cl) S E(C) leads

us to conclude that

(1 - Paj) s (l - poj')
 

(3)

A. A.

J 3

By our assumption that both systems (MATP and ATP) are operating

under identical conditions, inequality (3) yields

3

(l - pOj) s (1 - Paj’

I

or pOj S pOj (4)

From inequality (4), the effect of the Cz-cycle in ATP can be

interpreted as follows. The server has a greater probability of

encountering an empty station buffer (at each station) in the Cl-cycle

of the ATP bus than in the C-cycle of the MATP bus, simply due to the

server's adaptive behaviour. The important point here is that FC1(’)

may be obtained in asymmetric and symmetric forms from qu.(5.l4) and

(5.23), respectively, provided that 'is replaced by p01 for all ies.
p01

Thus, the probabilities p01 for all 195 must first be obtained in order

to obtain FC1(’) .

The Distribution Of An ATP Cz-cycle

Given that the server visits state i, 165 , the random time
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I I

(Xi + Y1 ) spent by the server in this state has distribution 81 (t).

Since this is the sum of independent random variables, Bi may be

obtained as 81 * Ui' for all 165, where ”*” is used to denote the

convolution operation. Note that in general, it is not necessary to

differentiate between index sets S and S. since a specific index in each

set really refers to the same station. However, we do differentiate

between these sets in instances where the kind of cycle being considered

(i.e., first or second) is important. The distribution 8 '(t) is a

  

i

generalized Erlangian distribution with a density given by

I

, , exp(-uol.t) eXp(-oi t)

b. (t) = u .a. [ , + . ] (5)

1 0“ (a -u) (u -e)
i Oi 0i i

for all 165. Note that Eq. (5) is given in asymmetric form, but will

work for the symmetric case if the subscript i is suppressed.

If the system is in steady-state operation, qi is the probability

that the server visits state i, 195', during the Cz-cycle. The

distribution of time spent by the server in state 195. under conditions

of stationarity is given by

I

F21(t) = q181(t) + (l-qi)60(t) (6)

where 60(t) is the dirac delta function, defined with

o t ,1 a, ten“

50“" =
c- t = O

and I +60(t) = 1. Note that this agrees with the transition matrix P

R

obtained from Q in Eq. (3). That is,
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1im F21(t) = qi V165 . (7)

t-ea

The distribution of a Cz-cycle is thus a sum of independent random

variables with the distributions F21,F22,...,F2N. Let

aio = qiai “10

II

and ail = (l - qi) for ieS . The Laplace-Stieltjes

transform for the density of the random variable C2 is given by

n 1

C2]=Z[na.k(i)][n ,][n 1] (a)
. .1

nee ies neG1(s + “n k(n))(s + an ) mer

L[f  

with 61 a {x|k(x)=0}, “2 . {X|k(x)=l}, and the set a defined earlier.

I

The plane of convergence for terms l/(s + “i k(i))(5 + a1 ) is the

region defined by Re(s) > -min (oi'mi k(i))' VieS. Inverting the

expression in Eq.(B) we obtain fc2(.) as

I

exp(-unc) exp(-on c)

r {.n ai k(i)” [ Z . + . 1} (9)

k% 195 11661 (on ' “n RU”) (“n KL”) ' an)

 
 

Thus, Fcz(.) is completely determined provided that p01 and pli are

given, for all ieS. From this and the previous subsection, we see that

obtaining the probabilities p01 and p11, Pies, is crucial in determining

the distributions FCl and FCZ' In the next subsection we examine how

these probabilities may be obtained.

8.6 Computation Of Probabilities for The First Cycle

A sufficient condition for the existence of a stationary

cycle-time distribution FC(.) in the NATP process is the stationarity
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of each station's queue length distribution. This is also the case with

the existence of stationary distributions FCl(.) and FC2(.) of the ATP

process. A necessary condition for FC(.) to be stationary is the

existence of a time-invariant value for p0i*' $165. For FC1(') and

FC2(.) the necessary condition is the existence of time—invariant

values for p01 and pli' VieS. This is summarized in the following

lemma.

Lemma 8.1:

If the queue length distribution at each queue j, j€S , is

stationary, then the NATP system possesses a stationary cycle-time

distribution PC and the ATP system possesses stationary cycle-time

distributions Ft and FC The expectations E(C), E(Cl), and E(C2) are
l 2'

stable even in the absence of stationarity for the respective

distributions. Also, there exist unique probabilities pojx (for the

NATP system), , and plj (for the ATP system) such that

j - 1 - le(cl)

Aj{E(C1) - E(Cz)}

pOj

‘
O

O

I

R

po. 2 p01

and plj = p0j(l - ”Oj)/v0j

for v = r z I (l.t) exp(-A.t) D (t) dt

0’ mes tee a 3 3 k“

with ka(t) given by

, exp(-amt)

Dxm(t) ’ 125 ai k(i) “m {
 

rg‘ (“1" K0“)- am)
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ex (-u t)
+ 2 p n k(n)

n65 n (u

r65

r¢n

 }.

r k(r)-"n k(n))(am-“n k(n))

with aiO' = (l - pain“) and an = paiuil, vies.

Let {Z(t)} be the continuous time semi-Markov process associated

with {Zn,Tn}. The embedded chain {Zn} observed at the instants of state

transitions behaves like a Markov chain. {Zn} is aperiodic, positive

recurrent and irreducible and can be shown [Klei75] to possess a

stationary distribution fl = ("wl’"1'°°’”wN’”N’”1"'°'”N')‘ The

probability of finding the token in state 1 after the process has been

operating for an arbitrarily long time is ”i’ 165*.

The process {Z(t)} can be shown to exhibit a unique limdting

behaviour within the chain {Zn}’ The equilibrium distribution of {Z(t)}

is given by e = (¢w1’¢1'"’¢wN'¢N’¢1""'¢N')' where oj is the limiting

interval transition probability of observing the token in state jeS*.

This probability is different from that obtained from the chain due to

the Consideration of the holding time distributions in the various

states of S“. The equilibrium distribution of the server over states of

s' is obtained as

.lm -p(u)s(xj) + pojEUjU

 

 

395

A

ej - zj E(Yj)/A . . jaw (10)

”j {qu(Xj) + qu(Yj )1 jes'

A
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with

A = kgsuk{E(Yk) + [p0kE(Xk) + (l - POk)E(Vk)] + qk[E(Xk) + E(Yk )1}.

Let {¢j(t) = P[Z(t) = j]} be the server's time-considered state

distribution over 5., and suppose that the initial distribution {oj(0)}

may not be the equilibrium distribution. By obtaining the equilibrium

distribution n of the chain {Zn}, the limiting probabilities

‘j = lim ¢j(t), for jeS., may be obtained. In order to identify

conditions under which this equilibrium distribution is obtained, we

proceed as follows. Define the function

4 (t)

H(t) = r , oj h[-1——-] (ll)

:95 ej

where n(y) is a strictly concave function of y, yefl+. Clearly, H(t) is

a function of the server's position (over states in S.) at time t, i.e.,

¢j(t), jeS.. If the initial distribution is the equilibrium

distribution, then H(t) takes on a constant value. Otherwise, H(t)

increases monotonically to this constant value, as shown in the next

lemma [Kell79].

Lemma 8.2:

If the initial distribution {¢j(o)} is not the equilibrium

distribution of the process {z(t)}, then the function H(t), t > o. is

strictly increasing.
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Theorem 8.3:

The equilibrium distribution {oj} of the semi-Markov process

{Z(t)} is the distribution obtained by maximizing the function

¢j(t)

 

H'(t) = Z . ¢j(t) lnl ] .

'e .j s ¢J

where H*(t) corresponds to the entropy of the distribution {¢j(t)}, with

respect to the equilibrium distribution.

In Theorem 8.3 we see that the monotonic increase of H'(t) is a

consequence of the convergence of transient distribution {¢j(t)} to the

equilibrium distribution {oj}. Additionally, this theorem gives

conditions under which the equilibrium probabilities pOj and plj of

Lemma 8.1 can be determined, VjeS. The method involves systematic

increments to probability poj*, VjQS, until probability sets 91 = {poj,

jes} and a2 = {plj, jes} that maximize the entropy H*(t) are obtained.

Algorithm to obtain the sets H1 and W2

step 1: Compute the mean MATP cycle time i.e.,

3(0) = [ 2 E(Y ) + E(V ) 1/(1 - p + 7 ), where p = Z l E(X )
Res k k 0 0 0 RES k k

and 70 Z AKE(Vk).

RES

step 2: Set 6 10-" where (n-l) is the number of digits of accuracy

required, and set Hold = - a.

step 3: Set pOj = pOj + 6, and compute plj' VjGS.

step 4: Compute n and then O. Using e, compute the entropy H”.

step 5: If H' < H then Hold is maximimum; stop. Otherwise, set
old'
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1'

Hold - H and go to step 3.

The algorithm uses pojx, jeS, as prior probabilities in order to

obtain the sets H1 and B By theorem 8.3, since the probabilities in20

these sets maximize the entropy H”, these can be used as equilibrium

probabilities for empty and one-customer buffers. The convergence of

the solution is dependedent on the value of n chosen in step 2; in

general, it is rapid. Once these probability sets are obtained, FC (.)

and FC2(.) are completely determined for the ATP process.

8.7 Stationary Distributions

As in the case of FC(.), the distributions FCl(.) and FCZ(.) can

be obtained as stationary distributions, given that each queue length

distribution is stationary. Let us suppose that observer 2 begins to

record consecutive cycle-time lengths starting at time t = 0, where

without loss of generality we will assume that the token arrives at the

reference station at time t = 0. Thus, observer 2 sees a sequence of

cycle-time pairs (Cll’c21)’°"(Cln'C2n)"" where cin is the random

time taken by the server to complete the Ci

nth pair of cycles. Let poj(n) and plj(n) be the probabilities

-cycle (i=1,2), in the

corresponding to the empty buffer and one-customer buffer, respectively,

at station j's scan instants during the Cln-cycle, for all jes.

Clearly, the length of cycle Cln depends on probabilities poj(n) and

plj(n). The distribution of cycle Cln can be represented as

(n) - (n) , (n) , (n) ,

Fc1 ’ [F11 F12 ”'FlN ] G
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where Fli(n) is used to denote the holding-time distribution of the

token in state ies during cycle Cln' If F21(n) is the holding-time

distribution of the token in state iGS during cycle C2”, then the

distribution of C2n can be represented as

(n) - (n) x (n) t (n)

Fc2. “ [F21 F22 "' FZN 1'

The stationary distributions observed for C1 and C2, when the ATP system

is operating at steady-state, can be obtained from the limiting values

of the above time-dependent distributions.

Theorem 8.4:

If the distribution of queue length at each queue in S is

stationary, the random cycle times C1 and C2 each possess stationary

distributions, given by

. (n)
F = llm F

C1 B9. C1

(n)
and F = lim F

C2 n+9 C2

8.8 Summary

A well known disadvantage of token-passing on a bus is the delay

suffered by a heavily loaded station on a lightly loaded network. If

the network is large, and the fraction of stations contributing to most

of the network traffic is small, then these stations will experience a

considerable amount of delay in waiting for channel access. In this
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study, we reviewed a scheme presented earlier [ReHuBS], where such

stations are given priority over the inactive (or relatively inactive)

stations, with the intention of reducing their delays. The protocol

that achieves this is called the adaptive token-passing (ATP) protocol.

The cycle-time distributions of the the token in the two ATP cycles are

derived in this section order to (i) be utilized in subsequent work for

deriving performance measures of the ATP scheme, and to (ii) compare it

to the standard nonadaptive token-passing (MATP) scheme. For this

presentation, we restricted our attention to the situation where at most

one customer is served per station at its scan instants.

The cycle-time distributions are obtained for an asymmetric system

under exponential assumptions. It is possible to obtain these results

for symmetric systems by either using the asymmetric results themselves,

or by resorting to simpler expressions that are characteristic of

symmetry. The analysis shows how adaptive token-passing can be

formulated as a semi-Markov process, with cycle-time distributions

obtained as stationary distributions (under certain conditions) when the

system is operating at steady-state. ' Certain resulting approximate

distributions are currently being studied as candidates for approximate

models of performance. Note that it is possible to apply the results of

chapters III and Iv to obtain exact results for the ATP system. This is

reserved for future work.



CHAPTER IX

CONCLUSIONS AND FUTURE RESEARCH

In concluding the thesis, we briefly summarize the contents of

each chapter and discuss the consequences of the main results. The goal

of the project was a detailed study of token-passing systems with a view

towards results that would be of interest to researchers in the area of

performance modelling. We were specifically interested in modelling

asymmetric token-passing systems in which at most one packet is

transmitted by a station that is both ready to transmit and is in

possession of the free token. This service discipline has been analyzed

only in an approximate fashion in the past. The usual approximations

involve independence assumptions [Heym83, Kueh79], borrowed-models such

applications of exhaustive service models or Brlang-loss models [Buxw8l,

Heym83, Kaye72] and applications of gated service models [PeAm85], or

light and heavy traffic approximations [Stuc83]. In our analysis, we

are require to make no assumptions other than Poisson arrivals, general

distributions with finite first and second moments for service,

switching, and token-passing times, and the existence of a limiting or

asymptotically stationary behaviour of the system at steady state. The

last assumption can be derived for arbitrary distributions possessing

finite first and second moments. Consequently, for a system with given

parameters, the existence (or non-existence) of well defined steady

state distributions can be established as a very first step.
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Ideally, a performance model should yield results that are

directly amenable to practical use, either for a quantitative or a

qualitative measurement of the real world system being modelled.

Unfortunately, and as is often the case, the results in this

dissertation do not lend themselves to algorithmic coding and testing

with any ease. Most, if not all of the results, involve a number of

nontrivial steps before the final measure is established. The overall

process is usually a trifle tedious and time-consuming, and with

increasing time also increases the possibility of human error. In this

regard, much of the work is largely analytic. It is open to application

in a variety of queueing phenomena that utilize service disciplines

resembling the round-robin service scheme. Due to limitations in

resources and time some of the experimental work was left aside in

favour of the analysis. The experimental and exploratory work in the

neighbourhood of this dissertation area is part of an ongoing research

programme.

In chapter I we introduced the basic research problem in a simple

form. In the interest of clarity, we also introduced the notions of

service-disciplines (or schemes) and ones (queue emptying disciplines)

to describe the server's motion through the queueing network, and the

number of customer's served at each queue, respectively. Note that the

term service-discipline is not to be confused with the meaning of the

term (i.e., FIFO, LIFO, random order) in usual queueing terminology. In

the ”standard" queueing literature, servers are stationary and

customer's arrive, receive service, and depart. In our systems of

multi-queues, it is the server who moves, from one queue to another.
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Hence, the term service-discipline is meant to capture server behaviour.

Within queues, we always take service to be FIFO, though this can be

changed.

The term QED is introduced as an aid to classification of

multiqueueing systems. Apparently, prior to this, such queues were

treated on an individual basis. QEDs and service-disciplines link

multiqueueing systems together in a manner that facilitates analysis.

The literature review of closely related models (in terms of our

notation) is intended to demonstrate the similarities between members of

the class of multiqueueing problems, only a few of which have ever been

addressed. A brief review of Markov renewal processes is presented in

chapter II, mainly to introduce notation. We also take the opportunity

to present a formal definition of the problem.

In chapter III we introduce a key random variable, i.e., the

cycle-time random variable, and proceed to outline an exact method to

determine its stationary distribution. The uses of the cycle-time

random variable should be clear. It is important in that it describes

the length of time between server reappearances at any station. Thus,

we can compute the probability that any station has to wait for upto t

units of time for service. In the past, this was known only

approximately, and the approximation was known to be poor for systems

with many stations. Note that our Markov methods of analysis allow for

a transient analysis even though we choose to stay with steady-state

results.

The bad side of this approach is that the size of the required

Markov matrix grows exponentially with the number of station's on the
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system being modelled. A method for avoiding this drawback is currently

under investigation. On a brighter note, it is shown that one Markov

matrix is all that is required to describe cycle-transitions for all

stations on the system. Given one station's transition matrix, applying

a simple procedure will yield another station's matrix. Consequently,

we also prove some invariance properties and demonstrate insensitivity

of cycle-times.

In chapter Iv we take a novel approach to modelling N-station

multiqueues. The method of analysis is based on work by Neuts [Meut66,

Neut77] and Cinlar [Cin167] on semi-Markovian, single server queues.

The semi-Markovian approach yields the following elegant solution. We

focus our attention on station j and pretend this is a single-server

queueing system. The cycle that begins with service of a particular

station j customer is taken to be the ”service time” of this customer.

There are m = 2N-1 different types of customers (differentiated through

their service vectors), and these arrive at station j according to a

Poisson process. A transition matrix obtained via the Markov transition

matrix of chapter III describes transition probabilities between

successive customer types. Viewed in this fashion, we have a modified

M/SM/l queue. The modification is due to customers who arrive to find

an empty queue.

The notion of server vacation periods is introduced to reduce this

queueing scheme into an M/SM/l queue, using PH-distributions (i.e.,

phase-type distributions) [Neut8l]. We use PH-distributions to model

busy periods and vacation periods of the token. The final stage

involves M/SM/l queueing theory to obtain an algorithmic solution for
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steady-state distributions of packet queueing characteristics at the

reference station. Thus, performance measures can be obtained for each

station on the network. The measures obtained in chapter IV are

restricted to the queue at station j due to conditioning. With some

effort, the actual queue-length measures (i.e., moments of the

distribution) may be obtained. An interesting application of this

approach is the determination of the distribution of throughput, with

throughput considered as a random variable defined on [O,l). Just as in

chapter III, a major problem here is exponential growth of the

transition matrix with increasing N.

The approximate methods discussed in chapters V through VIII

chronologically precede the material in chapters III and IV. Still,

these methods have certain advantages over the exact methods. For

example, their ease of use and the computational convenience in dealing

with square matrices of size N instead of size 2". Loosely speaking,

the ideas are generalizations of previous work in the area of

multiqueueing, notably work by Kuehn [Kueh79], and Hashida and Ohara

[HaOh72]. In chapter V, we use exponential distributions to compute

asymmetric and symmetric cycle-time distributions. We introduce

switching time random variables to avoid working with impulse functions.

In our experimental work we found that empirical distributions computed

with simulated output did not differ from a uniformly random sample

subset of the simulation output. Additionally, we found that for high

and low loads, the cycle-time distribution obtained via independence

assumptions performs remarkably well. For moderate loads, the

independence assumption performs poorly. We can only conclude that this
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is due to serial cycle-time depencencies that arise in a wide range of

moderate loads. Again the problem of computational complexity arises.

With regard to cycle-time densities, asymmetric systems require

computational algorithms of exponential complexity, while symmetric

systems require computational algorithms of polynomial complexity.

In chapter VI, we introduce approximate methods to address the

problem of serial dependence. Just as in chapter IV, this chapter deals

with methods of obtaining queueing distributions. Since the i.i.d

cycle-time assumption of Hashida and Ohara neglected covariance

information, and the methods of Kuehn (mixing two kinds of cycle-times)

which took into account two non i.d cycle-times proved to be superior to

the Hashida/Ohara results, we decided to attack the covariance problem.

Two methods for covariance function approximation, and a method for

determining marginal cycle-time distributions (based on the original

cycle-time distributions) are outlined. In choosing a linear

combination of dependent cycle-times to construct a quasi-service time

random variable, we demonstrate an application of principle component

analysis. The quasi-service time random variable so constructed is

guaranteed to possess maximum variability. Thus, the quasi-service time

random variable may either be used in the Hashida/Ohara sense, or in the

Kuehn sense. In either case, due to consideration of covariance, we are

certain to obtain better results.

In chapter VII, we discuss the stability of token-passing systems.

Two notions of stability are presented. In the SV queueing sense, the

stability criterion (as stated in Chapter IV) is a function of customer

transition probabilities, mean arrival rates, and mean service times.
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In the SP queueing sense, the stability criterion is a function of mean

arrival rates and mean conditional cycle-times. Interestingly enough,

both criteria are based on embedded Markov chains, where the SV chain is

obtained via conditioning and the SP chain is obtained via the

independence hypothesis. A study of the stability criterion in N

dimensions allows us to define simple measures of system stability. The

use of conditional cycle-times is carried one step further in defining a

flexible fairness measure. The flexibility arises in our ability to

change the weights involved in the measure, thereby giving the

particular aspect of the measure that we are more interested in a

correspondingly heavier weight. In this sense, we can change the

measure to suit our purpose. Another result of this section is one that

is very useful for conditions of extreme load. This is based on work by

Renyi [Reny56] on rarefactions and determines the random time between

two consecutive transmissions by a given station.

In chapter VIII, we introduce a complex service discipline with the

intention of deriving cycle-time distributions. This discipline is

applicable to token-passing bus networks. Consider an asymmetric system

with N stations, N very large (i.e., of the order 102). Examine the

effects obtained if a few stations are continuously active and generate

a large proportion of the total load on the network. For example, 5% of

the stations on the system generate 90% of the total (transmission)

load, while the remaining 95% are relatively inactive. This example

illustrates the well-known disadvantage of token-passing for either high

asymmetric station loads or low average loads, with the token spending a

good deal of time in fruitless token-passes [Stalad].
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In order to analyze the complex service scheme, we require the

distributions of the two cycle-time random variables involved. With the

aid of these, the server's interarrival time distribution may be

derived. As an approximate solution, we use the entropy approach

[Kell79] in obtaining the limiting probabilities of certain queue

states. This finally allows for the determination of the distribution

of the server's interarrival time, Tj, at station j. The conditions

under which this simple adaptive token-passing scheme performs better

than a corresponding standard token-passing scheme are simple to derive.

If we keep a given system fixed and change only the OED we obtain

a new queueing problem. Similarly, if we change only the service

discipline, we obtain yet another queueing problem. Thus, there is a

rich class of strongly linked queueing problems that has not surfaced in

the literature in any structured form. In this regard, there is more

than ample scope for future research in this area. It may well turn out

that a single method of analysis is applicable to a host of QEDs

simultaneously. Such a result is not known at the present time.

Some of the problems open for future research can be described as:

(l) Generalizing solutions to accomodate related ones such as

s-Qin a n, n > 1, finite queue capacity, relaxed disciplines,

more complex disciplines etc.

(2) Multiqueueing configurations with more than one server and a

variety of QEDs.

(3) Multiqueueing systems with time-varying arrival rates or

randomly varying arrival parameters.
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(4) Multiqueueing systems with arbitrary distributions for arrival,

service, walk, and switching.

(5) Asymptotic analysis of multiqueueing problems.

(6) Distribution of the Fairness statistic.

(7) Computational algorithms.

The researCh areas outlined by no means exhaust the variety of

interesting multiqueueing problems available. The topic in (7) is

important for practical applications but is probably also extremely

difficult. In fact, all of the topics mentioned above are challenging

research problems. From our work, it is clear that one inherent problem

of asymmetric multiqueues is the high degree of computational

complexity. In this regard, the topic in (5) will provide valuable

insight into the effects of increasing N. With an understanding of

asymptotic behaviour, we can attempt to work around the problem of

computation.

 

 ,
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Proof for Lemma 3.1:

 

Without loss of generality, we first work with stations 1 and 2.

I

Consider any transition of the form 2 * z in P1, where z = <21, .., ZN)

l t

and z = <21 , .., ZN >. By Eq.(S) of chapter III, the probability of

this transition, i.e., p(z,z ), can be written as a product of

conditional probabilities, one from each station. Denote these

0 I I

probabilities as ‘1‘21 |zi, .. , zi ) where i = l,..,N and 20 = N.
-1

For ease of notation we write station 1 s conditional probability

simply as £1, unless specific mention of the condition is required. At

steady state, given that an observer at station l's scan point sees a

transition <z , z > 9 <2 , .. , ZN > occur, another observer at
1’ " N 1

station 2's scan point must see a transition of the form <22, .. , z ,

21 > * <22 , .. , ZN , x>. The x is meant to indicate that the

original transition does not yield sufficient information to determine

this entry. Recalling Eq.(S), we see that (N-l) out of the N

conditional probabilities that go to make the probability p(z,z') in

’1 will also be present in the partial (due to absence of a specific x)

transition probability seen from station 2. Since 21 is merely a

descriptor for events at station 1, substitute 21 in place of x for

station 2's transition. Then, station 2's transition tuple is obtained

as the first and second set of N bits in <n(z,z')>, where w is defined

in Eq.(l) of chapter III.

0

Let H(z,z ) denote a transition from a starting state (first N

189
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bits) to a target state (second N bits), seen from station 2's scan

point. Let p(H(z,z )) denote the probability of this transition in

92 as seen by the observer at station 2. Then this probability can be

obtained as

p(h(z,z')) = [ s2£3....sN ]*[£l(z')/£l(z)]

where all the probabilities on the right hand side are defined. In

particular, £l(z) describes the conditional probability £l(zl|z) and

I I I

£l(z ) describes the conditional probability ‘1‘21 |z ). Repeating this

I

procedure for every transition pair (z,z ) in P will yield the entire
1

transition probability matrix P2. Observe that the rows (and columns)

of P2 will not be in the same order as the rows (and columns) of P1.

In general, to obtain P from Pj, k = j mod N + 1, assuming that

k

I

p(z,z ) describes a transition probability in Pj, the transformation

r3 applied to each entry of pj is formally described as

j I = I I I l

r (2,2 ) [p(u(z.z )>] [£j(zj|zj .....zj_l)/£j(zj lzj....,z )1.
j-l

Extending the above idea, it is easy to show that the probability

matrix viewed with respect to station k's scan-cycle can be obtained for

any station k. Observe that N repetitions of the transformation on

’1 will yield Pl with rows and columns transposed, and 2N repitions will

yield the original Pl.
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Proof for Lane 3.2:

 

If the observer is positioned to witness scan-cycles at station j,

then the service vector obtained from the server is of the form <zj, 2k,

... , zj-1>' Similarly, for scan-cycles seen at station k, the service

vector obtained is <zk, ... ,zj>. If the observer is positioned to

witness dep-cycles at station j, then the first and last entries of the

service vector must correspond to service events at stations k and j,

respectively. Hence, this service vector must be of the form <zk, ...

,zj>, and this is precisely the vector seen at or before station k's

scan point. Furthermore, since the probability transitions for service

vectors are not dependent on scan instants (as in [Kueh79]), we have

that for all jeS,

Pk(s) = Pj(d).

Proof for theore-3.3:

 

Let {“1} be the invariant vector obtained from the Markov

transition matrix Pj. The elements of this vector are 2" probabilities

corresponding to limiting state probabilities for the 2" different

service vectors. Thus, the invariant vector is a vector of

probabilities corresponding to states that are vectors (i.e., service

vectors) in themselves. For each 269, let tjz be the steady-state

probability that the observer at station j receives vector 2 from the

SONG! e
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Let z = <zj,..,zN,zl,..,zj_l>, and define an operator R on

elements of 6 such that

R(zj,..,zN,..,zj_l) = (zj+l,..,zN,..,zj).

In other words, R treats each element of 9 as an N-bit computer word and

performs an end-around left shift. The bit that falls off the left edge

is made to occupy the (vacated) righhmost bit position.

From Lemma 3.1, we see that the transition matrix for any station

will yield an invariant probability vector which, when suitably

transformed, becomes the invariant vector for a neighbouring station.

For each service vector 2 seen on a scan-cycle at station j, yes, it is

easy to see that

”32 = ”Ram

where k = j mod N + 1. Thus, given the invariant service vector

distribution with respect to scan-cycles for any one station, it is

possible to obtain the invariant service vector distribution with

respect to scan-cycles for any other station.

If station j sees a scan-cycle vector 2 (in the steady-state of

the system) with probability :rjz, 299, then station 1: sees a different

vector 8(2) with precisely the same probability. Since the vectors 2

and R(z) both generate the same cycle-time random variable (see Eq.(8)

in chapter III), the mixture distribution obtained in Eq.(9) will be the

same for both stations. That is, station j and station k see the same

cycle-time random variable. By replacing indices, this can be shown to

hold for every pair of stations j and k, for j,k€S.
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Proof for Theorem 5.1:

 

Consider a sequence of transient cycles witnessed by our observer

at station j from the instant the system begins to operate. Without

loss of generality we assume that the system begins at T = O, with
O

20 = j, and that cycles are measured with respect to scan instants at

station j. Let Ci be the it” cycle from the start of the process, 161+.

Let pj(i) be the probability that the server finds at least one customer

awaiting service at station j at its Ci scan instant, and

qj(l) = 1 _ pj(l)'

Let em be the mean of the first m terms in the cycle sequence.

Since cm is a consistent estimate of the true cycle mean 3(0), we have

lim P[|e - E(C)| s e] = 1, for all e > 0.

ma m

Next, consider the observer's view of the system after it has been

operating for an arbitrarily long time. By hypothesis, all queueing

distributions are stationary and consequently stable. Since the

observer sees an H/G/l queueing system at station 1, it follows that

what cm converges to is precisely the mean E(C) of the 6 distribution.

Prom MIG/l theory we have that Iii qj(1) = qj always exists and is

independent of a customer's virtual waiting time at the instant t = O

[Taka62]. That is,

1:

lim (l/k) z 9-”) =q
k». i=0 3 j

 



194

and pj = l - qj. Consequently, for each jes we obtain weak convergence

(k)
of the distributions Fj , i.e.,

lim F.(k) = p.B. + q.S. ., jes.
kg, 3 J 3 J J 3

II

~
1
3

Given the weak convergence, we can interchange the operations of

convolution and limit to obtain the theorem.

Proof for Corollary 7.1:

 

If E(Sl) < a , then

D t

2 5(31 I s

k=1

k

1
8(51 )

I

'
U

(
I
)

N

\
r

'
U
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U
)

H

I

'
U

(
I
)

N

\
v

' k-l
2 E(S ) q. p.

k=1 k 3 3

I

[
'
1
A

(
I
)

H

\
v

"
U

which is equal to 3(31). On the other hand, since 3(51') 2 ij(Sl), we

have that 2(51‘) = a if 3(51) = a. That the result holds for all

integers k > 1 follows from the fact that both processes are renewal

processes.

Proof for Lemma 8.1:

 

By assumption of Poisson arrivals, the queueing process at station

j is an M/G/l queue. The queue length states of queue j viewed at its
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discrete set J of scan instants in the Cl-cycle forms an embedded Markov

chain {L(t), tGJ}. Define pnj = P[L(t) = n], for all tGJ, ne1+, jes.

By hypothesis, {L(t)} is stationary. Prom M/G/l theory [K1ei75], it

follows that poj = 1 - le(cl), for all 365. Similarly, the M/G/l queue

formed by customers at station j with service distribution FCZ yields

poj + plj = 1 - le(c2). for all jes. Consequently,

plj

The inequality poj't 2 p0 is obtained in the analysis [Eq.(lc), Chapter

= xj{E(cl) - E(C2)} for all jes.

III].

The fact that expectations E(Cl) and E(C2) are finite follows from

our assumption that all distributions in section II possess finite first

moments. Hence C1 and C2 are random variables with stable means. The

corresponding proof for the NATP case can be found in [ReN184].

Finally, the proof that plj can be obtained as a function of pOj and

v may be found in section 6.5. This is acquired as a consequence of

Oj

obtaining the queue length distribution (as a performance measure).

Proof for Lemma 3.2:

 

Consider the semi-Markov process {Z(t)}. For some fixed 6 2 0,

define

pjk' = P(Z(t + a) = x | Z(t) = j)

= p(zn+l = k, Tn+l - Tn < 5 | zn = j)

= p(zn+l = x | zn = i)P(Tn+l - Tn < a | zn+l = t, 2n = 1)

Q

 



196

where H1j(t) is the conditional transition time distribution function

defined in Eq.(4), and {Zn} is the Markov chain of queue length states

at station j obtained via embedding.

Let oj(t) = P(Z(t)=j). It follows that

¢k(t + a) = z . ¢j(t)pjk

jes

z ¢.(t)p H. (5)

jes' J jk 3k

and ‘k = lim ¢k(t) = 11m 2 , ¢j(t)pjk'

t*0 t*0 jes

2 e p. H (5).

jes' 1 JR 1k

Let bkj = ejpjk/ek. Consequently,

bk'3 > O, and 2 b

J

kj = 1'

¢k(t + a)/¢k z . ¢j(t)pjk /¢k
jGS

jgs. ¢j(t)ij(5)/¢j

z z b .o.(t)/¢.

jes' k: 3 3

We thus obtain,

H(t + a) z . okn[¢j(t + 5)/¢k]

jes

a z o h[ z b .¢.(t)/¢.].

jes' k kes' k3 3 3

Since h(y) is a strictly increasing, concave function of y,

H(t + a) > z z e b .h[¢.(t)/¢.J

jes' kes' k *3 3 3
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jés' kgs. ¢jpjkht¢j(t)/¢j]

H(t).

Thus, H(t) is a strictly increasing function of t, achieving a maximum

H = lim H(t) lim 2 z ¢.p. h[ ¢.(t)/¢.]

t+e t+¢ j€S* kGS. 3 3k 3 3

2 Z I-P h(l).

jes* xes' 3 3*

Proof for Theorem 8.3:

 

Let the concave function h(y) [see Lemma 8.2] be defined as

h(y) = (-y) ln(Y).

By Lemma 8.2,

H(t) = - jgs. ¢j(t) ln[¢j(t)/¢j]

is a strictly increasing function, and takes on its maximum at

H'(t) = lim - z , ejln(l)

t+e jes

= o.

The monotonic increase of H'(t) is a consequence of the convergence of

the transient distribution {¢j(t)}. tea*, to the equilibrium

distribution ¢ of the process {Z(t)}.
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Proof for Theorem 8.4:

 

Let poj(i), plj(i), and qj(i) be the probabilities that the server

encounters zero, one, or more than one waiting customer at station j,

respectively, at the scan instant of this station during the C11 cycle,

Vjes, VieI+. The token's holding-time distribution at station j has the

representation

F (i) (i) (i)

J' 3'

I

and at station j has the representation

(1) (i) '
F . = . B.

23 q: 3

By hypothesis, the queue length distribution at each queue in S is

, Vjes, 161+.

stationary. It follows that after an infinite number of cycles, the ATP

system must reach a steady state, in which

(1)
lim p = p ,

1' 0k 0k

. (i)
llm p - p ,
1| 1k lk

and lim qk(i) = qk, vxes,

i-Oa

where pOK’ plk’ and q1: are the stationary probabilities for queue res.

We thus obtain

(1)
lim F = F tF I...*F *6, and

il Cl 11 12 IN

lim F (i) = F tr a 2F Vjes
1' C2 21 22 '°° ZN' '

Hence, C11 and C21 converge to Cl and C2 in distribution.
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